1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * SCSI disk target driver. 29 */ 30 #include <sys/scsi/scsi.h> 31 #include <sys/dkbad.h> 32 #include <sys/dklabel.h> 33 #include <sys/dkio.h> 34 #include <sys/fdio.h> 35 #include <sys/cdio.h> 36 #include <sys/mhd.h> 37 #include <sys/vtoc.h> 38 #include <sys/dktp/fdisk.h> 39 #include <sys/kstat.h> 40 #include <sys/vtrace.h> 41 #include <sys/note.h> 42 #include <sys/thread.h> 43 #include <sys/proc.h> 44 #include <sys/efi_partition.h> 45 #include <sys/var.h> 46 #include <sys/aio_req.h> 47 48 #ifdef __lock_lint 49 #define _LP64 50 #define __amd64 51 #endif 52 53 #if (defined(__fibre)) 54 /* Note: is there a leadville version of the following? */ 55 #include <sys/fc4/fcal_linkapp.h> 56 #endif 57 #include <sys/taskq.h> 58 #include <sys/uuid.h> 59 #include <sys/byteorder.h> 60 #include <sys/sdt.h> 61 62 #include "sd_xbuf.h" 63 64 #include <sys/scsi/targets/sddef.h> 65 #include <sys/cmlb.h> 66 #include <sys/sysevent/eventdefs.h> 67 #include <sys/sysevent/dev.h> 68 69 #include <sys/fm/protocol.h> 70 71 /* 72 * Loadable module info. 73 */ 74 #if (defined(__fibre)) 75 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver" 76 char _depends_on[] = "misc/scsi misc/cmlb drv/fcp"; 77 #else 78 #define SD_MODULE_NAME "SCSI Disk Driver" 79 char _depends_on[] = "misc/scsi misc/cmlb"; 80 #endif 81 82 /* 83 * Define the interconnect type, to allow the driver to distinguish 84 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 85 * 86 * This is really for backward compatibility. In the future, the driver 87 * should actually check the "interconnect-type" property as reported by 88 * the HBA; however at present this property is not defined by all HBAs, 89 * so we will use this #define (1) to permit the driver to run in 90 * backward-compatibility mode; and (2) to print a notification message 91 * if an FC HBA does not support the "interconnect-type" property. The 92 * behavior of the driver will be to assume parallel SCSI behaviors unless 93 * the "interconnect-type" property is defined by the HBA **AND** has a 94 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 95 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 96 * Channel behaviors (as per the old ssd). (Note that the 97 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 98 * will result in the driver assuming parallel SCSI behaviors.) 99 * 100 * (see common/sys/scsi/impl/services.h) 101 * 102 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 103 * since some FC HBAs may already support that, and there is some code in 104 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 105 * default would confuse that code, and besides things should work fine 106 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 107 * "interconnect_type" property. 108 * 109 */ 110 #if (defined(__fibre)) 111 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 112 #else 113 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 114 #endif 115 116 /* 117 * The name of the driver, established from the module name in _init. 118 */ 119 static char *sd_label = NULL; 120 121 /* 122 * Driver name is unfortunately prefixed on some driver.conf properties. 123 */ 124 #if (defined(__fibre)) 125 #define sd_max_xfer_size ssd_max_xfer_size 126 #define sd_config_list ssd_config_list 127 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 128 static char *sd_config_list = "ssd-config-list"; 129 #else 130 static char *sd_max_xfer_size = "sd_max_xfer_size"; 131 static char *sd_config_list = "sd-config-list"; 132 #endif 133 134 /* 135 * Driver global variables 136 */ 137 138 #if (defined(__fibre)) 139 /* 140 * These #defines are to avoid namespace collisions that occur because this 141 * code is currently used to compile two separate driver modules: sd and ssd. 142 * All global variables need to be treated this way (even if declared static) 143 * in order to allow the debugger to resolve the names properly. 144 * It is anticipated that in the near future the ssd module will be obsoleted, 145 * at which time this namespace issue should go away. 146 */ 147 #define sd_state ssd_state 148 #define sd_io_time ssd_io_time 149 #define sd_failfast_enable ssd_failfast_enable 150 #define sd_ua_retry_count ssd_ua_retry_count 151 #define sd_report_pfa ssd_report_pfa 152 #define sd_max_throttle ssd_max_throttle 153 #define sd_min_throttle ssd_min_throttle 154 #define sd_rot_delay ssd_rot_delay 155 156 #define sd_retry_on_reservation_conflict \ 157 ssd_retry_on_reservation_conflict 158 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 159 #define sd_resv_conflict_name ssd_resv_conflict_name 160 161 #define sd_component_mask ssd_component_mask 162 #define sd_level_mask ssd_level_mask 163 #define sd_debug_un ssd_debug_un 164 #define sd_error_level ssd_error_level 165 166 #define sd_xbuf_active_limit ssd_xbuf_active_limit 167 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 168 169 #define sd_tr ssd_tr 170 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 171 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 172 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 173 #define sd_check_media_time ssd_check_media_time 174 #define sd_wait_cmds_complete ssd_wait_cmds_complete 175 #define sd_label_mutex ssd_label_mutex 176 #define sd_detach_mutex ssd_detach_mutex 177 #define sd_log_buf ssd_log_buf 178 #define sd_log_mutex ssd_log_mutex 179 180 #define sd_disk_table ssd_disk_table 181 #define sd_disk_table_size ssd_disk_table_size 182 #define sd_sense_mutex ssd_sense_mutex 183 #define sd_cdbtab ssd_cdbtab 184 185 #define sd_cb_ops ssd_cb_ops 186 #define sd_ops ssd_ops 187 #define sd_additional_codes ssd_additional_codes 188 #define sd_tgops ssd_tgops 189 190 #define sd_minor_data ssd_minor_data 191 #define sd_minor_data_efi ssd_minor_data_efi 192 193 #define sd_tq ssd_tq 194 #define sd_wmr_tq ssd_wmr_tq 195 #define sd_taskq_name ssd_taskq_name 196 #define sd_wmr_taskq_name ssd_wmr_taskq_name 197 #define sd_taskq_minalloc ssd_taskq_minalloc 198 #define sd_taskq_maxalloc ssd_taskq_maxalloc 199 200 #define sd_dump_format_string ssd_dump_format_string 201 202 #define sd_iostart_chain ssd_iostart_chain 203 #define sd_iodone_chain ssd_iodone_chain 204 205 #define sd_pm_idletime ssd_pm_idletime 206 207 #define sd_force_pm_supported ssd_force_pm_supported 208 209 #define sd_dtype_optical_bind ssd_dtype_optical_bind 210 211 #define sd_ssc_init ssd_ssc_init 212 #define sd_ssc_send ssd_ssc_send 213 #define sd_ssc_fini ssd_ssc_fini 214 #define sd_ssc_assessment ssd_ssc_assessment 215 #define sd_ssc_post ssd_ssc_post 216 #define sd_ssc_print ssd_ssc_print 217 #define sd_ssc_ereport_post ssd_ssc_ereport_post 218 #define sd_ssc_set_info ssd_ssc_set_info 219 #define sd_ssc_extract_info ssd_ssc_extract_info 220 221 #endif 222 223 #ifdef SDDEBUG 224 int sd_force_pm_supported = 0; 225 #endif /* SDDEBUG */ 226 227 void *sd_state = NULL; 228 int sd_io_time = SD_IO_TIME; 229 int sd_failfast_enable = 1; 230 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 231 int sd_report_pfa = 1; 232 int sd_max_throttle = SD_MAX_THROTTLE; 233 int sd_min_throttle = SD_MIN_THROTTLE; 234 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 235 int sd_qfull_throttle_enable = TRUE; 236 237 int sd_retry_on_reservation_conflict = 1; 238 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 240 241 static int sd_dtype_optical_bind = -1; 242 243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 244 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 245 246 /* 247 * Global data for debug logging. To enable debug printing, sd_component_mask 248 * and sd_level_mask should be set to the desired bit patterns as outlined in 249 * sddef.h. 250 */ 251 uint_t sd_component_mask = 0x0; 252 uint_t sd_level_mask = 0x0; 253 struct sd_lun *sd_debug_un = NULL; 254 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 255 256 /* Note: these may go away in the future... */ 257 static uint32_t sd_xbuf_active_limit = 512; 258 static uint32_t sd_xbuf_reserve_limit = 16; 259 260 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 261 262 /* 263 * Timer value used to reset the throttle after it has been reduced 264 * (typically in response to TRAN_BUSY or STATUS_QFULL) 265 */ 266 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 267 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 268 269 /* 270 * Interval value associated with the media change scsi watch. 271 */ 272 static int sd_check_media_time = 3000000; 273 274 /* 275 * Wait value used for in progress operations during a DDI_SUSPEND 276 */ 277 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 278 279 /* 280 * sd_label_mutex protects a static buffer used in the disk label 281 * component of the driver 282 */ 283 static kmutex_t sd_label_mutex; 284 285 /* 286 * sd_detach_mutex protects un_layer_count, un_detach_count, and 287 * un_opens_in_progress in the sd_lun structure. 288 */ 289 static kmutex_t sd_detach_mutex; 290 291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 292 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 293 294 /* 295 * Global buffer and mutex for debug logging 296 */ 297 static char sd_log_buf[1024]; 298 static kmutex_t sd_log_mutex; 299 300 /* 301 * Structs and globals for recording attached lun information. 302 * This maintains a chain. Each node in the chain represents a SCSI controller. 303 * The structure records the number of luns attached to each target connected 304 * with the controller. 305 * For parallel scsi device only. 306 */ 307 struct sd_scsi_hba_tgt_lun { 308 struct sd_scsi_hba_tgt_lun *next; 309 dev_info_t *pdip; 310 int nlun[NTARGETS_WIDE]; 311 }; 312 313 /* 314 * Flag to indicate the lun is attached or detached 315 */ 316 #define SD_SCSI_LUN_ATTACH 0 317 #define SD_SCSI_LUN_DETACH 1 318 319 static kmutex_t sd_scsi_target_lun_mutex; 320 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 321 322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 323 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 324 325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 326 sd_scsi_target_lun_head)) 327 328 /* 329 * "Smart" Probe Caching structs, globals, #defines, etc. 330 * For parallel scsi and non-self-identify device only. 331 */ 332 333 /* 334 * The following resources and routines are implemented to support 335 * "smart" probing, which caches the scsi_probe() results in an array, 336 * in order to help avoid long probe times. 337 */ 338 struct sd_scsi_probe_cache { 339 struct sd_scsi_probe_cache *next; 340 dev_info_t *pdip; 341 int cache[NTARGETS_WIDE]; 342 }; 343 344 static kmutex_t sd_scsi_probe_cache_mutex; 345 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 346 347 /* 348 * Really we only need protection on the head of the linked list, but 349 * better safe than sorry. 350 */ 351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 352 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 353 354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 355 sd_scsi_probe_cache_head)) 356 357 358 /* 359 * Vendor specific data name property declarations 360 */ 361 362 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 363 364 static sd_tunables seagate_properties = { 365 SEAGATE_THROTTLE_VALUE, 366 0, 367 0, 368 0, 369 0, 370 0, 371 0, 372 0, 373 0 374 }; 375 376 377 static sd_tunables fujitsu_properties = { 378 FUJITSU_THROTTLE_VALUE, 379 0, 380 0, 381 0, 382 0, 383 0, 384 0, 385 0, 386 0 387 }; 388 389 static sd_tunables ibm_properties = { 390 IBM_THROTTLE_VALUE, 391 0, 392 0, 393 0, 394 0, 395 0, 396 0, 397 0, 398 0 399 }; 400 401 static sd_tunables purple_properties = { 402 PURPLE_THROTTLE_VALUE, 403 0, 404 0, 405 PURPLE_BUSY_RETRIES, 406 PURPLE_RESET_RETRY_COUNT, 407 PURPLE_RESERVE_RELEASE_TIME, 408 0, 409 0, 410 0 411 }; 412 413 static sd_tunables sve_properties = { 414 SVE_THROTTLE_VALUE, 415 0, 416 0, 417 SVE_BUSY_RETRIES, 418 SVE_RESET_RETRY_COUNT, 419 SVE_RESERVE_RELEASE_TIME, 420 SVE_MIN_THROTTLE_VALUE, 421 SVE_DISKSORT_DISABLED_FLAG, 422 0 423 }; 424 425 static sd_tunables maserati_properties = { 426 0, 427 0, 428 0, 429 0, 430 0, 431 0, 432 0, 433 MASERATI_DISKSORT_DISABLED_FLAG, 434 MASERATI_LUN_RESET_ENABLED_FLAG 435 }; 436 437 static sd_tunables pirus_properties = { 438 PIRUS_THROTTLE_VALUE, 439 0, 440 PIRUS_NRR_COUNT, 441 PIRUS_BUSY_RETRIES, 442 PIRUS_RESET_RETRY_COUNT, 443 0, 444 PIRUS_MIN_THROTTLE_VALUE, 445 PIRUS_DISKSORT_DISABLED_FLAG, 446 PIRUS_LUN_RESET_ENABLED_FLAG 447 }; 448 449 #endif 450 451 #if (defined(__sparc) && !defined(__fibre)) || \ 452 (defined(__i386) || defined(__amd64)) 453 454 455 static sd_tunables elite_properties = { 456 ELITE_THROTTLE_VALUE, 457 0, 458 0, 459 0, 460 0, 461 0, 462 0, 463 0, 464 0 465 }; 466 467 static sd_tunables st31200n_properties = { 468 ST31200N_THROTTLE_VALUE, 469 0, 470 0, 471 0, 472 0, 473 0, 474 0, 475 0, 476 0 477 }; 478 479 #endif /* Fibre or not */ 480 481 static sd_tunables lsi_properties_scsi = { 482 LSI_THROTTLE_VALUE, 483 0, 484 LSI_NOTREADY_RETRIES, 485 0, 486 0, 487 0, 488 0, 489 0, 490 0 491 }; 492 493 static sd_tunables symbios_properties = { 494 SYMBIOS_THROTTLE_VALUE, 495 0, 496 SYMBIOS_NOTREADY_RETRIES, 497 0, 498 0, 499 0, 500 0, 501 0, 502 0 503 }; 504 505 static sd_tunables lsi_properties = { 506 0, 507 0, 508 LSI_NOTREADY_RETRIES, 509 0, 510 0, 511 0, 512 0, 513 0, 514 0 515 }; 516 517 static sd_tunables lsi_oem_properties = { 518 0, 519 0, 520 LSI_OEM_NOTREADY_RETRIES, 521 0, 522 0, 523 0, 524 0, 525 0, 526 0, 527 1 528 }; 529 530 531 532 #if (defined(SD_PROP_TST)) 533 534 #define SD_TST_CTYPE_VAL CTYPE_CDROM 535 #define SD_TST_THROTTLE_VAL 16 536 #define SD_TST_NOTREADY_VAL 12 537 #define SD_TST_BUSY_VAL 60 538 #define SD_TST_RST_RETRY_VAL 36 539 #define SD_TST_RSV_REL_TIME 60 540 541 static sd_tunables tst_properties = { 542 SD_TST_THROTTLE_VAL, 543 SD_TST_CTYPE_VAL, 544 SD_TST_NOTREADY_VAL, 545 SD_TST_BUSY_VAL, 546 SD_TST_RST_RETRY_VAL, 547 SD_TST_RSV_REL_TIME, 548 0, 549 0, 550 0 551 }; 552 #endif 553 554 /* This is similar to the ANSI toupper implementation */ 555 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 556 557 /* 558 * Static Driver Configuration Table 559 * 560 * This is the table of disks which need throttle adjustment (or, perhaps 561 * something else as defined by the flags at a future time.) device_id 562 * is a string consisting of concatenated vid (vendor), pid (product/model) 563 * and revision strings as defined in the scsi_inquiry structure. Offsets of 564 * the parts of the string are as defined by the sizes in the scsi_inquiry 565 * structure. Device type is searched as far as the device_id string is 566 * defined. Flags defines which values are to be set in the driver from the 567 * properties list. 568 * 569 * Entries below which begin and end with a "*" are a special case. 570 * These do not have a specific vendor, and the string which follows 571 * can appear anywhere in the 16 byte PID portion of the inquiry data. 572 * 573 * Entries below which begin and end with a " " (blank) are a special 574 * case. The comparison function will treat multiple consecutive blanks 575 * as equivalent to a single blank. For example, this causes a 576 * sd_disk_table entry of " NEC CDROM " to match a device's id string 577 * of "NEC CDROM". 578 * 579 * Note: The MD21 controller type has been obsoleted. 580 * ST318202F is a Legacy device 581 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 582 * made with an FC connection. The entries here are a legacy. 583 */ 584 static sd_disk_config_t sd_disk_table[] = { 585 #if defined(__fibre) || defined(__i386) || defined(__amd64) 586 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 587 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 588 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 589 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 590 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 591 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 592 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 593 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 594 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 595 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 596 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 597 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 598 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 599 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 600 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 601 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 602 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 603 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 604 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 605 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 606 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 607 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 608 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 609 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 610 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 611 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 612 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 613 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 614 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 615 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 616 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 617 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 618 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 619 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 620 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 621 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 622 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 623 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 624 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 625 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 626 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 627 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 628 { "IBM 1818", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 629 { "DELL MD3000", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 630 { "DELL MD3000i", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 631 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 632 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 633 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 634 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 635 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT | 636 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 637 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT | 638 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 639 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 640 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 641 { "SUN T3", SD_CONF_BSET_THROTTLE | 642 SD_CONF_BSET_BSY_RETRY_COUNT| 643 SD_CONF_BSET_RST_RETRIES| 644 SD_CONF_BSET_RSV_REL_TIME, 645 &purple_properties }, 646 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 647 SD_CONF_BSET_BSY_RETRY_COUNT| 648 SD_CONF_BSET_RST_RETRIES| 649 SD_CONF_BSET_RSV_REL_TIME| 650 SD_CONF_BSET_MIN_THROTTLE| 651 SD_CONF_BSET_DISKSORT_DISABLED, 652 &sve_properties }, 653 { "SUN T4", SD_CONF_BSET_THROTTLE | 654 SD_CONF_BSET_BSY_RETRY_COUNT| 655 SD_CONF_BSET_RST_RETRIES| 656 SD_CONF_BSET_RSV_REL_TIME, 657 &purple_properties }, 658 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 659 SD_CONF_BSET_LUN_RESET_ENABLED, 660 &maserati_properties }, 661 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 662 SD_CONF_BSET_NRR_COUNT| 663 SD_CONF_BSET_BSY_RETRY_COUNT| 664 SD_CONF_BSET_RST_RETRIES| 665 SD_CONF_BSET_MIN_THROTTLE| 666 SD_CONF_BSET_DISKSORT_DISABLED| 667 SD_CONF_BSET_LUN_RESET_ENABLED, 668 &pirus_properties }, 669 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 670 SD_CONF_BSET_NRR_COUNT| 671 SD_CONF_BSET_BSY_RETRY_COUNT| 672 SD_CONF_BSET_RST_RETRIES| 673 SD_CONF_BSET_MIN_THROTTLE| 674 SD_CONF_BSET_DISKSORT_DISABLED| 675 SD_CONF_BSET_LUN_RESET_ENABLED, 676 &pirus_properties }, 677 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 678 SD_CONF_BSET_NRR_COUNT| 679 SD_CONF_BSET_BSY_RETRY_COUNT| 680 SD_CONF_BSET_RST_RETRIES| 681 SD_CONF_BSET_MIN_THROTTLE| 682 SD_CONF_BSET_DISKSORT_DISABLED| 683 SD_CONF_BSET_LUN_RESET_ENABLED, 684 &pirus_properties }, 685 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 686 SD_CONF_BSET_NRR_COUNT| 687 SD_CONF_BSET_BSY_RETRY_COUNT| 688 SD_CONF_BSET_RST_RETRIES| 689 SD_CONF_BSET_MIN_THROTTLE| 690 SD_CONF_BSET_DISKSORT_DISABLED| 691 SD_CONF_BSET_LUN_RESET_ENABLED, 692 &pirus_properties }, 693 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 694 SD_CONF_BSET_NRR_COUNT| 695 SD_CONF_BSET_BSY_RETRY_COUNT| 696 SD_CONF_BSET_RST_RETRIES| 697 SD_CONF_BSET_MIN_THROTTLE| 698 SD_CONF_BSET_DISKSORT_DISABLED| 699 SD_CONF_BSET_LUN_RESET_ENABLED, 700 &pirus_properties }, 701 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 702 SD_CONF_BSET_NRR_COUNT| 703 SD_CONF_BSET_BSY_RETRY_COUNT| 704 SD_CONF_BSET_RST_RETRIES| 705 SD_CONF_BSET_MIN_THROTTLE| 706 SD_CONF_BSET_DISKSORT_DISABLED| 707 SD_CONF_BSET_LUN_RESET_ENABLED, 708 &pirus_properties }, 709 { "SUN STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 710 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 711 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 712 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 713 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 714 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 715 #endif /* fibre or NON-sparc platforms */ 716 #if ((defined(__sparc) && !defined(__fibre)) ||\ 717 (defined(__i386) || defined(__amd64))) 718 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 719 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 720 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 721 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 722 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 723 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 724 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 725 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 726 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 727 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 728 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 729 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 730 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 731 &symbios_properties }, 732 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 733 &lsi_properties_scsi }, 734 #if defined(__i386) || defined(__amd64) 735 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 736 | SD_CONF_BSET_READSUB_BCD 737 | SD_CONF_BSET_READ_TOC_ADDR_BCD 738 | SD_CONF_BSET_NO_READ_HEADER 739 | SD_CONF_BSET_READ_CD_XD4), NULL }, 740 741 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 742 | SD_CONF_BSET_READSUB_BCD 743 | SD_CONF_BSET_READ_TOC_ADDR_BCD 744 | SD_CONF_BSET_NO_READ_HEADER 745 | SD_CONF_BSET_READ_CD_XD4), NULL }, 746 #endif /* __i386 || __amd64 */ 747 #endif /* sparc NON-fibre or NON-sparc platforms */ 748 749 #if (defined(SD_PROP_TST)) 750 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 751 | SD_CONF_BSET_CTYPE 752 | SD_CONF_BSET_NRR_COUNT 753 | SD_CONF_BSET_FAB_DEVID 754 | SD_CONF_BSET_NOCACHE 755 | SD_CONF_BSET_BSY_RETRY_COUNT 756 | SD_CONF_BSET_PLAYMSF_BCD 757 | SD_CONF_BSET_READSUB_BCD 758 | SD_CONF_BSET_READ_TOC_TRK_BCD 759 | SD_CONF_BSET_READ_TOC_ADDR_BCD 760 | SD_CONF_BSET_NO_READ_HEADER 761 | SD_CONF_BSET_READ_CD_XD4 762 | SD_CONF_BSET_RST_RETRIES 763 | SD_CONF_BSET_RSV_REL_TIME 764 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 765 #endif 766 }; 767 768 static const int sd_disk_table_size = 769 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 770 771 772 773 #define SD_INTERCONNECT_PARALLEL 0 774 #define SD_INTERCONNECT_FABRIC 1 775 #define SD_INTERCONNECT_FIBRE 2 776 #define SD_INTERCONNECT_SSA 3 777 #define SD_INTERCONNECT_SATA 4 778 #define SD_IS_PARALLEL_SCSI(un) \ 779 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 780 #define SD_IS_SERIAL(un) \ 781 ((un)->un_interconnect_type == SD_INTERCONNECT_SATA) 782 783 /* 784 * Definitions used by device id registration routines 785 */ 786 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 787 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 788 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 789 790 static kmutex_t sd_sense_mutex = {0}; 791 792 /* 793 * Macros for updates of the driver state 794 */ 795 #define New_state(un, s) \ 796 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 797 #define Restore_state(un) \ 798 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 799 800 static struct sd_cdbinfo sd_cdbtab[] = { 801 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 802 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 803 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 804 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 805 }; 806 807 /* 808 * Specifies the number of seconds that must have elapsed since the last 809 * cmd. has completed for a device to be declared idle to the PM framework. 810 */ 811 static int sd_pm_idletime = 1; 812 813 /* 814 * Internal function prototypes 815 */ 816 817 #if (defined(__fibre)) 818 /* 819 * These #defines are to avoid namespace collisions that occur because this 820 * code is currently used to compile two separate driver modules: sd and ssd. 821 * All function names need to be treated this way (even if declared static) 822 * in order to allow the debugger to resolve the names properly. 823 * It is anticipated that in the near future the ssd module will be obsoleted, 824 * at which time this ugliness should go away. 825 */ 826 #define sd_log_trace ssd_log_trace 827 #define sd_log_info ssd_log_info 828 #define sd_log_err ssd_log_err 829 #define sdprobe ssdprobe 830 #define sdinfo ssdinfo 831 #define sd_prop_op ssd_prop_op 832 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 833 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 834 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 835 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 836 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 837 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 838 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 839 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 840 #define sd_spin_up_unit ssd_spin_up_unit 841 #define sd_enable_descr_sense ssd_enable_descr_sense 842 #define sd_reenable_dsense_task ssd_reenable_dsense_task 843 #define sd_set_mmc_caps ssd_set_mmc_caps 844 #define sd_read_unit_properties ssd_read_unit_properties 845 #define sd_process_sdconf_file ssd_process_sdconf_file 846 #define sd_process_sdconf_table ssd_process_sdconf_table 847 #define sd_sdconf_id_match ssd_sdconf_id_match 848 #define sd_blank_cmp ssd_blank_cmp 849 #define sd_chk_vers1_data ssd_chk_vers1_data 850 #define sd_set_vers1_properties ssd_set_vers1_properties 851 852 #define sd_get_physical_geometry ssd_get_physical_geometry 853 #define sd_get_virtual_geometry ssd_get_virtual_geometry 854 #define sd_update_block_info ssd_update_block_info 855 #define sd_register_devid ssd_register_devid 856 #define sd_get_devid ssd_get_devid 857 #define sd_create_devid ssd_create_devid 858 #define sd_write_deviceid ssd_write_deviceid 859 #define sd_check_vpd_page_support ssd_check_vpd_page_support 860 #define sd_setup_pm ssd_setup_pm 861 #define sd_create_pm_components ssd_create_pm_components 862 #define sd_ddi_suspend ssd_ddi_suspend 863 #define sd_ddi_pm_suspend ssd_ddi_pm_suspend 864 #define sd_ddi_resume ssd_ddi_resume 865 #define sd_ddi_pm_resume ssd_ddi_pm_resume 866 #define sdpower ssdpower 867 #define sdattach ssdattach 868 #define sddetach ssddetach 869 #define sd_unit_attach ssd_unit_attach 870 #define sd_unit_detach ssd_unit_detach 871 #define sd_set_unit_attributes ssd_set_unit_attributes 872 #define sd_create_errstats ssd_create_errstats 873 #define sd_set_errstats ssd_set_errstats 874 #define sd_set_pstats ssd_set_pstats 875 #define sddump ssddump 876 #define sd_scsi_poll ssd_scsi_poll 877 #define sd_send_polled_RQS ssd_send_polled_RQS 878 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 879 #define sd_init_event_callbacks ssd_init_event_callbacks 880 #define sd_event_callback ssd_event_callback 881 #define sd_cache_control ssd_cache_control 882 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 883 #define sd_get_nv_sup ssd_get_nv_sup 884 #define sd_make_device ssd_make_device 885 #define sdopen ssdopen 886 #define sdclose ssdclose 887 #define sd_ready_and_valid ssd_ready_and_valid 888 #define sdmin ssdmin 889 #define sdread ssdread 890 #define sdwrite ssdwrite 891 #define sdaread ssdaread 892 #define sdawrite ssdawrite 893 #define sdstrategy ssdstrategy 894 #define sdioctl ssdioctl 895 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 896 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 897 #define sd_checksum_iostart ssd_checksum_iostart 898 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 899 #define sd_pm_iostart ssd_pm_iostart 900 #define sd_core_iostart ssd_core_iostart 901 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 902 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 903 #define sd_checksum_iodone ssd_checksum_iodone 904 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 905 #define sd_pm_iodone ssd_pm_iodone 906 #define sd_initpkt_for_buf ssd_initpkt_for_buf 907 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 908 #define sd_setup_rw_pkt ssd_setup_rw_pkt 909 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 910 #define sd_buf_iodone ssd_buf_iodone 911 #define sd_uscsi_strategy ssd_uscsi_strategy 912 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 913 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 914 #define sd_uscsi_iodone ssd_uscsi_iodone 915 #define sd_xbuf_strategy ssd_xbuf_strategy 916 #define sd_xbuf_init ssd_xbuf_init 917 #define sd_pm_entry ssd_pm_entry 918 #define sd_pm_exit ssd_pm_exit 919 920 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 921 #define sd_pm_timeout_handler ssd_pm_timeout_handler 922 923 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 924 #define sdintr ssdintr 925 #define sd_start_cmds ssd_start_cmds 926 #define sd_send_scsi_cmd ssd_send_scsi_cmd 927 #define sd_bioclone_alloc ssd_bioclone_alloc 928 #define sd_bioclone_free ssd_bioclone_free 929 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 930 #define sd_shadow_buf_free ssd_shadow_buf_free 931 #define sd_print_transport_rejected_message \ 932 ssd_print_transport_rejected_message 933 #define sd_retry_command ssd_retry_command 934 #define sd_set_retry_bp ssd_set_retry_bp 935 #define sd_send_request_sense_command ssd_send_request_sense_command 936 #define sd_start_retry_command ssd_start_retry_command 937 #define sd_start_direct_priority_command \ 938 ssd_start_direct_priority_command 939 #define sd_return_failed_command ssd_return_failed_command 940 #define sd_return_failed_command_no_restart \ 941 ssd_return_failed_command_no_restart 942 #define sd_return_command ssd_return_command 943 #define sd_sync_with_callback ssd_sync_with_callback 944 #define sdrunout ssdrunout 945 #define sd_mark_rqs_busy ssd_mark_rqs_busy 946 #define sd_mark_rqs_idle ssd_mark_rqs_idle 947 #define sd_reduce_throttle ssd_reduce_throttle 948 #define sd_restore_throttle ssd_restore_throttle 949 #define sd_print_incomplete_msg ssd_print_incomplete_msg 950 #define sd_init_cdb_limits ssd_init_cdb_limits 951 #define sd_pkt_status_good ssd_pkt_status_good 952 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 953 #define sd_pkt_status_busy ssd_pkt_status_busy 954 #define sd_pkt_status_reservation_conflict \ 955 ssd_pkt_status_reservation_conflict 956 #define sd_pkt_status_qfull ssd_pkt_status_qfull 957 #define sd_handle_request_sense ssd_handle_request_sense 958 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 959 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 960 #define sd_validate_sense_data ssd_validate_sense_data 961 #define sd_decode_sense ssd_decode_sense 962 #define sd_print_sense_msg ssd_print_sense_msg 963 #define sd_sense_key_no_sense ssd_sense_key_no_sense 964 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 965 #define sd_sense_key_not_ready ssd_sense_key_not_ready 966 #define sd_sense_key_medium_or_hardware_error \ 967 ssd_sense_key_medium_or_hardware_error 968 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 969 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 970 #define sd_sense_key_fail_command ssd_sense_key_fail_command 971 #define sd_sense_key_blank_check ssd_sense_key_blank_check 972 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 973 #define sd_sense_key_default ssd_sense_key_default 974 #define sd_print_retry_msg ssd_print_retry_msg 975 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 976 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 977 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 978 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 979 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 980 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 981 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 982 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 983 #define sd_pkt_reason_default ssd_pkt_reason_default 984 #define sd_reset_target ssd_reset_target 985 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 986 #define sd_start_stop_unit_task ssd_start_stop_unit_task 987 #define sd_taskq_create ssd_taskq_create 988 #define sd_taskq_delete ssd_taskq_delete 989 #define sd_target_change_task ssd_target_change_task 990 #define sd_log_lun_expansion_event ssd_log_lun_expansion_event 991 #define sd_media_change_task ssd_media_change_task 992 #define sd_handle_mchange ssd_handle_mchange 993 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 994 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 995 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 996 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 997 #define sd_send_scsi_feature_GET_CONFIGURATION \ 998 sd_send_scsi_feature_GET_CONFIGURATION 999 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1000 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1001 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1002 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1003 ssd_send_scsi_PERSISTENT_RESERVE_IN 1004 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1005 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1006 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1007 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1008 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1009 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1010 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1011 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1012 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1013 #define sd_alloc_rqs ssd_alloc_rqs 1014 #define sd_free_rqs ssd_free_rqs 1015 #define sd_dump_memory ssd_dump_memory 1016 #define sd_get_media_info ssd_get_media_info 1017 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1018 #define sd_nvpair_str_decode ssd_nvpair_str_decode 1019 #define sd_strtok_r ssd_strtok_r 1020 #define sd_set_properties ssd_set_properties 1021 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1022 #define sd_setup_next_xfer ssd_setup_next_xfer 1023 #define sd_dkio_get_temp ssd_dkio_get_temp 1024 #define sd_check_mhd ssd_check_mhd 1025 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1026 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1027 #define sd_sname ssd_sname 1028 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1029 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1030 #define sd_take_ownership ssd_take_ownership 1031 #define sd_reserve_release ssd_reserve_release 1032 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1033 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1034 #define sd_persistent_reservation_in_read_keys \ 1035 ssd_persistent_reservation_in_read_keys 1036 #define sd_persistent_reservation_in_read_resv \ 1037 ssd_persistent_reservation_in_read_resv 1038 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1039 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1040 #define sd_mhdioc_release ssd_mhdioc_release 1041 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1042 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1043 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1044 #define sr_change_blkmode ssr_change_blkmode 1045 #define sr_change_speed ssr_change_speed 1046 #define sr_atapi_change_speed ssr_atapi_change_speed 1047 #define sr_pause_resume ssr_pause_resume 1048 #define sr_play_msf ssr_play_msf 1049 #define sr_play_trkind ssr_play_trkind 1050 #define sr_read_all_subcodes ssr_read_all_subcodes 1051 #define sr_read_subchannel ssr_read_subchannel 1052 #define sr_read_tocentry ssr_read_tocentry 1053 #define sr_read_tochdr ssr_read_tochdr 1054 #define sr_read_cdda ssr_read_cdda 1055 #define sr_read_cdxa ssr_read_cdxa 1056 #define sr_read_mode1 ssr_read_mode1 1057 #define sr_read_mode2 ssr_read_mode2 1058 #define sr_read_cd_mode2 ssr_read_cd_mode2 1059 #define sr_sector_mode ssr_sector_mode 1060 #define sr_eject ssr_eject 1061 #define sr_ejected ssr_ejected 1062 #define sr_check_wp ssr_check_wp 1063 #define sd_check_media ssd_check_media 1064 #define sd_media_watch_cb ssd_media_watch_cb 1065 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1066 #define sr_volume_ctrl ssr_volume_ctrl 1067 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1068 #define sd_log_page_supported ssd_log_page_supported 1069 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1070 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1071 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1072 #define sd_range_lock ssd_range_lock 1073 #define sd_get_range ssd_get_range 1074 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1075 #define sd_range_unlock ssd_range_unlock 1076 #define sd_read_modify_write_task ssd_read_modify_write_task 1077 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1078 1079 #define sd_iostart_chain ssd_iostart_chain 1080 #define sd_iodone_chain ssd_iodone_chain 1081 #define sd_initpkt_map ssd_initpkt_map 1082 #define sd_destroypkt_map ssd_destroypkt_map 1083 #define sd_chain_type_map ssd_chain_type_map 1084 #define sd_chain_index_map ssd_chain_index_map 1085 1086 #define sd_failfast_flushctl ssd_failfast_flushctl 1087 #define sd_failfast_flushq ssd_failfast_flushq 1088 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1089 1090 #define sd_is_lsi ssd_is_lsi 1091 #define sd_tg_rdwr ssd_tg_rdwr 1092 #define sd_tg_getinfo ssd_tg_getinfo 1093 1094 #endif /* #if (defined(__fibre)) */ 1095 1096 1097 int _init(void); 1098 int _fini(void); 1099 int _info(struct modinfo *modinfop); 1100 1101 /*PRINTFLIKE3*/ 1102 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1103 /*PRINTFLIKE3*/ 1104 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1105 /*PRINTFLIKE3*/ 1106 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1107 1108 static int sdprobe(dev_info_t *devi); 1109 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1110 void **result); 1111 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1112 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1113 1114 /* 1115 * Smart probe for parallel scsi 1116 */ 1117 static void sd_scsi_probe_cache_init(void); 1118 static void sd_scsi_probe_cache_fini(void); 1119 static void sd_scsi_clear_probe_cache(void); 1120 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1121 1122 /* 1123 * Attached luns on target for parallel scsi 1124 */ 1125 static void sd_scsi_target_lun_init(void); 1126 static void sd_scsi_target_lun_fini(void); 1127 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1128 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1129 1130 static int sd_spin_up_unit(sd_ssc_t *ssc); 1131 1132 /* 1133 * Using sd_ssc_init to establish sd_ssc_t struct 1134 * Using sd_ssc_send to send uscsi internal command 1135 * Using sd_ssc_fini to free sd_ssc_t struct 1136 */ 1137 static sd_ssc_t *sd_ssc_init(struct sd_lun *un); 1138 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, 1139 int flag, enum uio_seg dataspace, int path_flag); 1140 static void sd_ssc_fini(sd_ssc_t *ssc); 1141 1142 /* 1143 * Using sd_ssc_assessment to set correct type-of-assessment 1144 * Using sd_ssc_post to post ereport & system log 1145 * sd_ssc_post will call sd_ssc_print to print system log 1146 * sd_ssc_post will call sd_ssd_ereport_post to post ereport 1147 */ 1148 static void sd_ssc_assessment(sd_ssc_t *ssc, 1149 enum sd_type_assessment tp_assess); 1150 1151 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess); 1152 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity); 1153 static void sd_ssc_ereport_post(sd_ssc_t *ssc, 1154 enum sd_driver_assessment drv_assess); 1155 1156 /* 1157 * Using sd_ssc_set_info to mark an un-decodable-data error. 1158 * Using sd_ssc_extract_info to transfer information from internal 1159 * data structures to sd_ssc_t. 1160 */ 1161 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, 1162 const char *fmt, ...); 1163 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, 1164 struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp); 1165 1166 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1167 enum uio_seg dataspace, int path_flag); 1168 1169 #ifdef _LP64 1170 static void sd_enable_descr_sense(sd_ssc_t *ssc); 1171 static void sd_reenable_dsense_task(void *arg); 1172 #endif /* _LP64 */ 1173 1174 static void sd_set_mmc_caps(sd_ssc_t *ssc); 1175 1176 static void sd_read_unit_properties(struct sd_lun *un); 1177 static int sd_process_sdconf_file(struct sd_lun *un); 1178 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str); 1179 static char *sd_strtok_r(char *string, const char *sepset, char **lasts); 1180 static void sd_set_properties(struct sd_lun *un, char *name, char *value); 1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1182 int *data_list, sd_tunables *values); 1183 static void sd_process_sdconf_table(struct sd_lun *un); 1184 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1185 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1186 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1187 int list_len, char *dataname_ptr); 1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1189 sd_tunables *prop_list); 1190 1191 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, 1192 int reservation_flag); 1193 static int sd_get_devid(sd_ssc_t *ssc); 1194 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc); 1195 static int sd_write_deviceid(sd_ssc_t *ssc); 1196 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1197 static int sd_check_vpd_page_support(sd_ssc_t *ssc); 1198 1199 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi); 1200 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1201 1202 static int sd_ddi_suspend(dev_info_t *devi); 1203 static int sd_ddi_pm_suspend(struct sd_lun *un); 1204 static int sd_ddi_resume(dev_info_t *devi); 1205 static int sd_ddi_pm_resume(struct sd_lun *un); 1206 static int sdpower(dev_info_t *devi, int component, int level); 1207 1208 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1209 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1210 static int sd_unit_attach(dev_info_t *devi); 1211 static int sd_unit_detach(dev_info_t *devi); 1212 1213 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1214 static void sd_create_errstats(struct sd_lun *un, int instance); 1215 static void sd_set_errstats(struct sd_lun *un); 1216 static void sd_set_pstats(struct sd_lun *un); 1217 1218 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1219 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1220 static int sd_send_polled_RQS(struct sd_lun *un); 1221 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1222 1223 #if (defined(__fibre)) 1224 /* 1225 * Event callbacks (photon) 1226 */ 1227 static void sd_init_event_callbacks(struct sd_lun *un); 1228 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1229 #endif 1230 1231 /* 1232 * Defines for sd_cache_control 1233 */ 1234 1235 #define SD_CACHE_ENABLE 1 1236 #define SD_CACHE_DISABLE 0 1237 #define SD_CACHE_NOCHANGE -1 1238 1239 static int sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag); 1240 static int sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled); 1241 static void sd_get_nv_sup(sd_ssc_t *ssc); 1242 static dev_t sd_make_device(dev_info_t *devi); 1243 1244 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1245 uint64_t capacity); 1246 1247 /* 1248 * Driver entry point functions. 1249 */ 1250 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1251 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1252 static int sd_ready_and_valid(sd_ssc_t *ssc, int part); 1253 1254 static void sdmin(struct buf *bp); 1255 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1256 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1257 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1258 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1259 1260 static int sdstrategy(struct buf *bp); 1261 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1262 1263 /* 1264 * Function prototypes for layering functions in the iostart chain. 1265 */ 1266 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1267 struct buf *bp); 1268 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1269 struct buf *bp); 1270 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1271 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1272 struct buf *bp); 1273 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1274 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1275 1276 /* 1277 * Function prototypes for layering functions in the iodone chain. 1278 */ 1279 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1280 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1281 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1282 struct buf *bp); 1283 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1284 struct buf *bp); 1285 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1286 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1287 struct buf *bp); 1288 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1289 1290 /* 1291 * Prototypes for functions to support buf(9S) based IO. 1292 */ 1293 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1294 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1295 static void sd_destroypkt_for_buf(struct buf *); 1296 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1297 struct buf *bp, int flags, 1298 int (*callback)(caddr_t), caddr_t callback_arg, 1299 diskaddr_t lba, uint32_t blockcount); 1300 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1301 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1302 1303 /* 1304 * Prototypes for functions to support USCSI IO. 1305 */ 1306 static int sd_uscsi_strategy(struct buf *bp); 1307 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1308 static void sd_destroypkt_for_uscsi(struct buf *); 1309 1310 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1311 uchar_t chain_type, void *pktinfop); 1312 1313 static int sd_pm_entry(struct sd_lun *un); 1314 static void sd_pm_exit(struct sd_lun *un); 1315 1316 static void sd_pm_idletimeout_handler(void *arg); 1317 1318 /* 1319 * sd_core internal functions (used at the sd_core_io layer). 1320 */ 1321 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1322 static void sdintr(struct scsi_pkt *pktp); 1323 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1324 1325 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1326 enum uio_seg dataspace, int path_flag); 1327 1328 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1329 daddr_t blkno, int (*func)(struct buf *)); 1330 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1331 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1332 static void sd_bioclone_free(struct buf *bp); 1333 static void sd_shadow_buf_free(struct buf *bp); 1334 1335 static void sd_print_transport_rejected_message(struct sd_lun *un, 1336 struct sd_xbuf *xp, int code); 1337 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1338 void *arg, int code); 1339 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1340 void *arg, int code); 1341 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1342 void *arg, int code); 1343 1344 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1345 int retry_check_flag, 1346 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1347 int c), 1348 void *user_arg, int failure_code, clock_t retry_delay, 1349 void (*statp)(kstat_io_t *)); 1350 1351 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1352 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1353 1354 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1355 struct scsi_pkt *pktp); 1356 static void sd_start_retry_command(void *arg); 1357 static void sd_start_direct_priority_command(void *arg); 1358 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1359 int errcode); 1360 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1361 struct buf *bp, int errcode); 1362 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1363 static void sd_sync_with_callback(struct sd_lun *un); 1364 static int sdrunout(caddr_t arg); 1365 1366 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1367 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1368 1369 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1370 static void sd_restore_throttle(void *arg); 1371 1372 static void sd_init_cdb_limits(struct sd_lun *un); 1373 1374 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1375 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1376 1377 /* 1378 * Error handling functions 1379 */ 1380 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1381 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1382 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1383 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1384 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1385 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1386 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1387 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1388 1389 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1390 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1391 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1392 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1393 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1394 struct sd_xbuf *xp, size_t actual_len); 1395 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1396 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1397 1398 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1399 void *arg, int code); 1400 1401 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1402 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1403 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1404 uint8_t *sense_datap, 1405 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1406 static void sd_sense_key_not_ready(struct sd_lun *un, 1407 uint8_t *sense_datap, 1408 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1409 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1410 uint8_t *sense_datap, 1411 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1412 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1413 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1414 static void sd_sense_key_unit_attention(struct sd_lun *un, 1415 uint8_t *sense_datap, 1416 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1417 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1418 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1419 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1420 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1421 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1422 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1423 static void sd_sense_key_default(struct sd_lun *un, 1424 uint8_t *sense_datap, 1425 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1426 1427 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1428 void *arg, int flag); 1429 1430 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1431 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1432 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1433 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1434 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1435 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1436 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1437 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1438 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1439 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1440 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1441 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1442 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1443 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1444 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1445 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1446 1447 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1448 1449 static void sd_start_stop_unit_callback(void *arg); 1450 static void sd_start_stop_unit_task(void *arg); 1451 1452 static void sd_taskq_create(void); 1453 static void sd_taskq_delete(void); 1454 static void sd_target_change_task(void *arg); 1455 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag); 1456 static void sd_media_change_task(void *arg); 1457 1458 static int sd_handle_mchange(struct sd_lun *un); 1459 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag); 1460 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, 1461 uint32_t *lbap, int path_flag); 1462 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 1463 uint32_t *lbap, int path_flag); 1464 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, 1465 int path_flag); 1466 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, 1467 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1468 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag); 1469 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, 1470 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1471 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, 1472 uchar_t usr_cmd, uchar_t *usr_bufp); 1473 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1474 struct dk_callback *dkc); 1475 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1476 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, 1477 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1478 uchar_t *bufaddr, uint_t buflen, int path_flag); 1479 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 1480 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1481 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1482 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, 1483 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1484 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, 1485 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1486 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 1487 size_t buflen, daddr_t start_block, int path_flag); 1488 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \ 1489 sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \ 1490 path_flag) 1491 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\ 1492 sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\ 1493 path_flag) 1494 1495 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, 1496 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1497 uint16_t param_ptr, int path_flag); 1498 1499 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1500 static void sd_free_rqs(struct sd_lun *un); 1501 1502 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1503 uchar_t *data, int len, int fmt); 1504 static void sd_panic_for_res_conflict(struct sd_lun *un); 1505 1506 /* 1507 * Disk Ioctl Function Prototypes 1508 */ 1509 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1510 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1511 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1512 1513 /* 1514 * Multi-host Ioctl Prototypes 1515 */ 1516 static int sd_check_mhd(dev_t dev, int interval); 1517 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1518 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1519 static char *sd_sname(uchar_t status); 1520 static void sd_mhd_resvd_recover(void *arg); 1521 static void sd_resv_reclaim_thread(); 1522 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1523 static int sd_reserve_release(dev_t dev, int cmd); 1524 static void sd_rmv_resv_reclaim_req(dev_t dev); 1525 static void sd_mhd_reset_notify_cb(caddr_t arg); 1526 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1527 mhioc_inkeys_t *usrp, int flag); 1528 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1529 mhioc_inresvs_t *usrp, int flag); 1530 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1531 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1532 static int sd_mhdioc_release(dev_t dev); 1533 static int sd_mhdioc_register_devid(dev_t dev); 1534 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1535 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1536 1537 /* 1538 * SCSI removable prototypes 1539 */ 1540 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1541 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1542 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1543 static int sr_pause_resume(dev_t dev, int mode); 1544 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1545 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1546 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1547 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1548 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1549 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1550 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1551 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1552 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1553 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1554 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1555 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1556 static int sr_eject(dev_t dev); 1557 static void sr_ejected(register struct sd_lun *un); 1558 static int sr_check_wp(dev_t dev); 1559 static int sd_check_media(dev_t dev, enum dkio_state state); 1560 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1561 static void sd_delayed_cv_broadcast(void *arg); 1562 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1563 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1564 1565 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page); 1566 1567 /* 1568 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1569 */ 1570 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag); 1571 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1572 static void sd_wm_cache_destructor(void *wm, void *un); 1573 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1574 daddr_t endb, ushort_t typ); 1575 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1576 daddr_t endb); 1577 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1578 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1579 static void sd_read_modify_write_task(void * arg); 1580 static int 1581 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1582 struct buf **bpp); 1583 1584 1585 /* 1586 * Function prototypes for failfast support. 1587 */ 1588 static void sd_failfast_flushq(struct sd_lun *un); 1589 static int sd_failfast_flushq_callback(struct buf *bp); 1590 1591 /* 1592 * Function prototypes to check for lsi devices 1593 */ 1594 static void sd_is_lsi(struct sd_lun *un); 1595 1596 /* 1597 * Function prototypes for partial DMA support 1598 */ 1599 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1600 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1601 1602 1603 /* Function prototypes for cmlb */ 1604 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1605 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1606 1607 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1608 1609 /* 1610 * Constants for failfast support: 1611 * 1612 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1613 * failfast processing being performed. 1614 * 1615 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1616 * failfast processing on all bufs with B_FAILFAST set. 1617 */ 1618 1619 #define SD_FAILFAST_INACTIVE 0 1620 #define SD_FAILFAST_ACTIVE 1 1621 1622 /* 1623 * Bitmask to control behavior of buf(9S) flushes when a transition to 1624 * the failfast state occurs. Optional bits include: 1625 * 1626 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1627 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1628 * be flushed. 1629 * 1630 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1631 * driver, in addition to the regular wait queue. This includes the xbuf 1632 * queues. When clear, only the driver's wait queue will be flushed. 1633 */ 1634 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1635 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1636 1637 /* 1638 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1639 * to flush all queues within the driver. 1640 */ 1641 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1642 1643 1644 /* 1645 * SD Testing Fault Injection 1646 */ 1647 #ifdef SD_FAULT_INJECTION 1648 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1649 static void sd_faultinjection(struct scsi_pkt *pktp); 1650 static void sd_injection_log(char *buf, struct sd_lun *un); 1651 #endif 1652 1653 /* 1654 * Device driver ops vector 1655 */ 1656 static struct cb_ops sd_cb_ops = { 1657 sdopen, /* open */ 1658 sdclose, /* close */ 1659 sdstrategy, /* strategy */ 1660 nodev, /* print */ 1661 sddump, /* dump */ 1662 sdread, /* read */ 1663 sdwrite, /* write */ 1664 sdioctl, /* ioctl */ 1665 nodev, /* devmap */ 1666 nodev, /* mmap */ 1667 nodev, /* segmap */ 1668 nochpoll, /* poll */ 1669 sd_prop_op, /* cb_prop_op */ 1670 0, /* streamtab */ 1671 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1672 CB_REV, /* cb_rev */ 1673 sdaread, /* async I/O read entry point */ 1674 sdawrite /* async I/O write entry point */ 1675 }; 1676 1677 static struct dev_ops sd_ops = { 1678 DEVO_REV, /* devo_rev, */ 1679 0, /* refcnt */ 1680 sdinfo, /* info */ 1681 nulldev, /* identify */ 1682 sdprobe, /* probe */ 1683 sdattach, /* attach */ 1684 sddetach, /* detach */ 1685 nodev, /* reset */ 1686 &sd_cb_ops, /* driver operations */ 1687 NULL, /* bus operations */ 1688 sdpower, /* power */ 1689 ddi_quiesce_not_needed, /* quiesce */ 1690 }; 1691 1692 1693 /* 1694 * This is the loadable module wrapper. 1695 */ 1696 #include <sys/modctl.h> 1697 1698 static struct modldrv modldrv = { 1699 &mod_driverops, /* Type of module. This one is a driver */ 1700 SD_MODULE_NAME, /* Module name. */ 1701 &sd_ops /* driver ops */ 1702 }; 1703 1704 1705 static struct modlinkage modlinkage = { 1706 MODREV_1, 1707 &modldrv, 1708 NULL 1709 }; 1710 1711 static cmlb_tg_ops_t sd_tgops = { 1712 TG_DK_OPS_VERSION_1, 1713 sd_tg_rdwr, 1714 sd_tg_getinfo 1715 }; 1716 1717 static struct scsi_asq_key_strings sd_additional_codes[] = { 1718 0x81, 0, "Logical Unit is Reserved", 1719 0x85, 0, "Audio Address Not Valid", 1720 0xb6, 0, "Media Load Mechanism Failed", 1721 0xB9, 0, "Audio Play Operation Aborted", 1722 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1723 0x53, 2, "Medium removal prevented", 1724 0x6f, 0, "Authentication failed during key exchange", 1725 0x6f, 1, "Key not present", 1726 0x6f, 2, "Key not established", 1727 0x6f, 3, "Read without proper authentication", 1728 0x6f, 4, "Mismatched region to this logical unit", 1729 0x6f, 5, "Region reset count error", 1730 0xffff, 0x0, NULL 1731 }; 1732 1733 1734 /* 1735 * Struct for passing printing information for sense data messages 1736 */ 1737 struct sd_sense_info { 1738 int ssi_severity; 1739 int ssi_pfa_flag; 1740 }; 1741 1742 /* 1743 * Table of function pointers for iostart-side routines. Separate "chains" 1744 * of layered function calls are formed by placing the function pointers 1745 * sequentially in the desired order. Functions are called according to an 1746 * incrementing table index ordering. The last function in each chain must 1747 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1748 * in the sd_iodone_chain[] array. 1749 * 1750 * Note: It may seem more natural to organize both the iostart and iodone 1751 * functions together, into an array of structures (or some similar 1752 * organization) with a common index, rather than two separate arrays which 1753 * must be maintained in synchronization. The purpose of this division is 1754 * to achieve improved performance: individual arrays allows for more 1755 * effective cache line utilization on certain platforms. 1756 */ 1757 1758 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1759 1760 1761 static sd_chain_t sd_iostart_chain[] = { 1762 1763 /* Chain for buf IO for disk drive targets (PM enabled) */ 1764 sd_mapblockaddr_iostart, /* Index: 0 */ 1765 sd_pm_iostart, /* Index: 1 */ 1766 sd_core_iostart, /* Index: 2 */ 1767 1768 /* Chain for buf IO for disk drive targets (PM disabled) */ 1769 sd_mapblockaddr_iostart, /* Index: 3 */ 1770 sd_core_iostart, /* Index: 4 */ 1771 1772 /* Chain for buf IO for removable-media targets (PM enabled) */ 1773 sd_mapblockaddr_iostart, /* Index: 5 */ 1774 sd_mapblocksize_iostart, /* Index: 6 */ 1775 sd_pm_iostart, /* Index: 7 */ 1776 sd_core_iostart, /* Index: 8 */ 1777 1778 /* Chain for buf IO for removable-media targets (PM disabled) */ 1779 sd_mapblockaddr_iostart, /* Index: 9 */ 1780 sd_mapblocksize_iostart, /* Index: 10 */ 1781 sd_core_iostart, /* Index: 11 */ 1782 1783 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1784 sd_mapblockaddr_iostart, /* Index: 12 */ 1785 sd_checksum_iostart, /* Index: 13 */ 1786 sd_pm_iostart, /* Index: 14 */ 1787 sd_core_iostart, /* Index: 15 */ 1788 1789 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1790 sd_mapblockaddr_iostart, /* Index: 16 */ 1791 sd_checksum_iostart, /* Index: 17 */ 1792 sd_core_iostart, /* Index: 18 */ 1793 1794 /* Chain for USCSI commands (all targets) */ 1795 sd_pm_iostart, /* Index: 19 */ 1796 sd_core_iostart, /* Index: 20 */ 1797 1798 /* Chain for checksumming USCSI commands (all targets) */ 1799 sd_checksum_uscsi_iostart, /* Index: 21 */ 1800 sd_pm_iostart, /* Index: 22 */ 1801 sd_core_iostart, /* Index: 23 */ 1802 1803 /* Chain for "direct" USCSI commands (all targets) */ 1804 sd_core_iostart, /* Index: 24 */ 1805 1806 /* Chain for "direct priority" USCSI commands (all targets) */ 1807 sd_core_iostart, /* Index: 25 */ 1808 }; 1809 1810 /* 1811 * Macros to locate the first function of each iostart chain in the 1812 * sd_iostart_chain[] array. These are located by the index in the array. 1813 */ 1814 #define SD_CHAIN_DISK_IOSTART 0 1815 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1816 #define SD_CHAIN_RMMEDIA_IOSTART 5 1817 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1818 #define SD_CHAIN_CHKSUM_IOSTART 12 1819 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1820 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1821 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1822 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1823 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1824 1825 1826 /* 1827 * Table of function pointers for the iodone-side routines for the driver- 1828 * internal layering mechanism. The calling sequence for iodone routines 1829 * uses a decrementing table index, so the last routine called in a chain 1830 * must be at the lowest array index location for that chain. The last 1831 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1832 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1833 * of the functions in an iodone side chain must correspond to the ordering 1834 * of the iostart routines for that chain. Note that there is no iodone 1835 * side routine that corresponds to sd_core_iostart(), so there is no 1836 * entry in the table for this. 1837 */ 1838 1839 static sd_chain_t sd_iodone_chain[] = { 1840 1841 /* Chain for buf IO for disk drive targets (PM enabled) */ 1842 sd_buf_iodone, /* Index: 0 */ 1843 sd_mapblockaddr_iodone, /* Index: 1 */ 1844 sd_pm_iodone, /* Index: 2 */ 1845 1846 /* Chain for buf IO for disk drive targets (PM disabled) */ 1847 sd_buf_iodone, /* Index: 3 */ 1848 sd_mapblockaddr_iodone, /* Index: 4 */ 1849 1850 /* Chain for buf IO for removable-media targets (PM enabled) */ 1851 sd_buf_iodone, /* Index: 5 */ 1852 sd_mapblockaddr_iodone, /* Index: 6 */ 1853 sd_mapblocksize_iodone, /* Index: 7 */ 1854 sd_pm_iodone, /* Index: 8 */ 1855 1856 /* Chain for buf IO for removable-media targets (PM disabled) */ 1857 sd_buf_iodone, /* Index: 9 */ 1858 sd_mapblockaddr_iodone, /* Index: 10 */ 1859 sd_mapblocksize_iodone, /* Index: 11 */ 1860 1861 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1862 sd_buf_iodone, /* Index: 12 */ 1863 sd_mapblockaddr_iodone, /* Index: 13 */ 1864 sd_checksum_iodone, /* Index: 14 */ 1865 sd_pm_iodone, /* Index: 15 */ 1866 1867 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1868 sd_buf_iodone, /* Index: 16 */ 1869 sd_mapblockaddr_iodone, /* Index: 17 */ 1870 sd_checksum_iodone, /* Index: 18 */ 1871 1872 /* Chain for USCSI commands (non-checksum targets) */ 1873 sd_uscsi_iodone, /* Index: 19 */ 1874 sd_pm_iodone, /* Index: 20 */ 1875 1876 /* Chain for USCSI commands (checksum targets) */ 1877 sd_uscsi_iodone, /* Index: 21 */ 1878 sd_checksum_uscsi_iodone, /* Index: 22 */ 1879 sd_pm_iodone, /* Index: 22 */ 1880 1881 /* Chain for "direct" USCSI commands (all targets) */ 1882 sd_uscsi_iodone, /* Index: 24 */ 1883 1884 /* Chain for "direct priority" USCSI commands (all targets) */ 1885 sd_uscsi_iodone, /* Index: 25 */ 1886 }; 1887 1888 1889 /* 1890 * Macros to locate the "first" function in the sd_iodone_chain[] array for 1891 * each iodone-side chain. These are located by the array index, but as the 1892 * iodone side functions are called in a decrementing-index order, the 1893 * highest index number in each chain must be specified (as these correspond 1894 * to the first function in the iodone chain that will be called by the core 1895 * at IO completion time). 1896 */ 1897 1898 #define SD_CHAIN_DISK_IODONE 2 1899 #define SD_CHAIN_DISK_IODONE_NO_PM 4 1900 #define SD_CHAIN_RMMEDIA_IODONE 8 1901 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 1902 #define SD_CHAIN_CHKSUM_IODONE 15 1903 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 1904 #define SD_CHAIN_USCSI_CMD_IODONE 20 1905 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 1906 #define SD_CHAIN_DIRECT_CMD_IODONE 24 1907 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 1908 1909 1910 1911 1912 /* 1913 * Array to map a layering chain index to the appropriate initpkt routine. 1914 * The redundant entries are present so that the index used for accessing 1915 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1916 * with this table as well. 1917 */ 1918 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 1919 1920 static sd_initpkt_t sd_initpkt_map[] = { 1921 1922 /* Chain for buf IO for disk drive targets (PM enabled) */ 1923 sd_initpkt_for_buf, /* Index: 0 */ 1924 sd_initpkt_for_buf, /* Index: 1 */ 1925 sd_initpkt_for_buf, /* Index: 2 */ 1926 1927 /* Chain for buf IO for disk drive targets (PM disabled) */ 1928 sd_initpkt_for_buf, /* Index: 3 */ 1929 sd_initpkt_for_buf, /* Index: 4 */ 1930 1931 /* Chain for buf IO for removable-media targets (PM enabled) */ 1932 sd_initpkt_for_buf, /* Index: 5 */ 1933 sd_initpkt_for_buf, /* Index: 6 */ 1934 sd_initpkt_for_buf, /* Index: 7 */ 1935 sd_initpkt_for_buf, /* Index: 8 */ 1936 1937 /* Chain for buf IO for removable-media targets (PM disabled) */ 1938 sd_initpkt_for_buf, /* Index: 9 */ 1939 sd_initpkt_for_buf, /* Index: 10 */ 1940 sd_initpkt_for_buf, /* Index: 11 */ 1941 1942 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1943 sd_initpkt_for_buf, /* Index: 12 */ 1944 sd_initpkt_for_buf, /* Index: 13 */ 1945 sd_initpkt_for_buf, /* Index: 14 */ 1946 sd_initpkt_for_buf, /* Index: 15 */ 1947 1948 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1949 sd_initpkt_for_buf, /* Index: 16 */ 1950 sd_initpkt_for_buf, /* Index: 17 */ 1951 sd_initpkt_for_buf, /* Index: 18 */ 1952 1953 /* Chain for USCSI commands (non-checksum targets) */ 1954 sd_initpkt_for_uscsi, /* Index: 19 */ 1955 sd_initpkt_for_uscsi, /* Index: 20 */ 1956 1957 /* Chain for USCSI commands (checksum targets) */ 1958 sd_initpkt_for_uscsi, /* Index: 21 */ 1959 sd_initpkt_for_uscsi, /* Index: 22 */ 1960 sd_initpkt_for_uscsi, /* Index: 22 */ 1961 1962 /* Chain for "direct" USCSI commands (all targets) */ 1963 sd_initpkt_for_uscsi, /* Index: 24 */ 1964 1965 /* Chain for "direct priority" USCSI commands (all targets) */ 1966 sd_initpkt_for_uscsi, /* Index: 25 */ 1967 1968 }; 1969 1970 1971 /* 1972 * Array to map a layering chain index to the appropriate destroypktpkt routine. 1973 * The redundant entries are present so that the index used for accessing 1974 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1975 * with this table as well. 1976 */ 1977 typedef void (*sd_destroypkt_t)(struct buf *); 1978 1979 static sd_destroypkt_t sd_destroypkt_map[] = { 1980 1981 /* Chain for buf IO for disk drive targets (PM enabled) */ 1982 sd_destroypkt_for_buf, /* Index: 0 */ 1983 sd_destroypkt_for_buf, /* Index: 1 */ 1984 sd_destroypkt_for_buf, /* Index: 2 */ 1985 1986 /* Chain for buf IO for disk drive targets (PM disabled) */ 1987 sd_destroypkt_for_buf, /* Index: 3 */ 1988 sd_destroypkt_for_buf, /* Index: 4 */ 1989 1990 /* Chain for buf IO for removable-media targets (PM enabled) */ 1991 sd_destroypkt_for_buf, /* Index: 5 */ 1992 sd_destroypkt_for_buf, /* Index: 6 */ 1993 sd_destroypkt_for_buf, /* Index: 7 */ 1994 sd_destroypkt_for_buf, /* Index: 8 */ 1995 1996 /* Chain for buf IO for removable-media targets (PM disabled) */ 1997 sd_destroypkt_for_buf, /* Index: 9 */ 1998 sd_destroypkt_for_buf, /* Index: 10 */ 1999 sd_destroypkt_for_buf, /* Index: 11 */ 2000 2001 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2002 sd_destroypkt_for_buf, /* Index: 12 */ 2003 sd_destroypkt_for_buf, /* Index: 13 */ 2004 sd_destroypkt_for_buf, /* Index: 14 */ 2005 sd_destroypkt_for_buf, /* Index: 15 */ 2006 2007 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2008 sd_destroypkt_for_buf, /* Index: 16 */ 2009 sd_destroypkt_for_buf, /* Index: 17 */ 2010 sd_destroypkt_for_buf, /* Index: 18 */ 2011 2012 /* Chain for USCSI commands (non-checksum targets) */ 2013 sd_destroypkt_for_uscsi, /* Index: 19 */ 2014 sd_destroypkt_for_uscsi, /* Index: 20 */ 2015 2016 /* Chain for USCSI commands (checksum targets) */ 2017 sd_destroypkt_for_uscsi, /* Index: 21 */ 2018 sd_destroypkt_for_uscsi, /* Index: 22 */ 2019 sd_destroypkt_for_uscsi, /* Index: 22 */ 2020 2021 /* Chain for "direct" USCSI commands (all targets) */ 2022 sd_destroypkt_for_uscsi, /* Index: 24 */ 2023 2024 /* Chain for "direct priority" USCSI commands (all targets) */ 2025 sd_destroypkt_for_uscsi, /* Index: 25 */ 2026 2027 }; 2028 2029 2030 2031 /* 2032 * Array to map a layering chain index to the appropriate chain "type". 2033 * The chain type indicates a specific property/usage of the chain. 2034 * The redundant entries are present so that the index used for accessing 2035 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2036 * with this table as well. 2037 */ 2038 2039 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2040 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2041 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2042 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2043 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2044 /* (for error recovery) */ 2045 2046 static int sd_chain_type_map[] = { 2047 2048 /* Chain for buf IO for disk drive targets (PM enabled) */ 2049 SD_CHAIN_BUFIO, /* Index: 0 */ 2050 SD_CHAIN_BUFIO, /* Index: 1 */ 2051 SD_CHAIN_BUFIO, /* Index: 2 */ 2052 2053 /* Chain for buf IO for disk drive targets (PM disabled) */ 2054 SD_CHAIN_BUFIO, /* Index: 3 */ 2055 SD_CHAIN_BUFIO, /* Index: 4 */ 2056 2057 /* Chain for buf IO for removable-media targets (PM enabled) */ 2058 SD_CHAIN_BUFIO, /* Index: 5 */ 2059 SD_CHAIN_BUFIO, /* Index: 6 */ 2060 SD_CHAIN_BUFIO, /* Index: 7 */ 2061 SD_CHAIN_BUFIO, /* Index: 8 */ 2062 2063 /* Chain for buf IO for removable-media targets (PM disabled) */ 2064 SD_CHAIN_BUFIO, /* Index: 9 */ 2065 SD_CHAIN_BUFIO, /* Index: 10 */ 2066 SD_CHAIN_BUFIO, /* Index: 11 */ 2067 2068 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2069 SD_CHAIN_BUFIO, /* Index: 12 */ 2070 SD_CHAIN_BUFIO, /* Index: 13 */ 2071 SD_CHAIN_BUFIO, /* Index: 14 */ 2072 SD_CHAIN_BUFIO, /* Index: 15 */ 2073 2074 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2075 SD_CHAIN_BUFIO, /* Index: 16 */ 2076 SD_CHAIN_BUFIO, /* Index: 17 */ 2077 SD_CHAIN_BUFIO, /* Index: 18 */ 2078 2079 /* Chain for USCSI commands (non-checksum targets) */ 2080 SD_CHAIN_USCSI, /* Index: 19 */ 2081 SD_CHAIN_USCSI, /* Index: 20 */ 2082 2083 /* Chain for USCSI commands (checksum targets) */ 2084 SD_CHAIN_USCSI, /* Index: 21 */ 2085 SD_CHAIN_USCSI, /* Index: 22 */ 2086 SD_CHAIN_USCSI, /* Index: 22 */ 2087 2088 /* Chain for "direct" USCSI commands (all targets) */ 2089 SD_CHAIN_DIRECT, /* Index: 24 */ 2090 2091 /* Chain for "direct priority" USCSI commands (all targets) */ 2092 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2093 }; 2094 2095 2096 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2097 #define SD_IS_BUFIO(xp) \ 2098 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2099 2100 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2101 #define SD_IS_DIRECT_PRIORITY(xp) \ 2102 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2103 2104 2105 2106 /* 2107 * Struct, array, and macros to map a specific chain to the appropriate 2108 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2109 * 2110 * The sd_chain_index_map[] array is used at attach time to set the various 2111 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2112 * chain to be used with the instance. This allows different instances to use 2113 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2114 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2115 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2116 * dynamically & without the use of locking; and (2) a layer may update the 2117 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2118 * to allow for deferred processing of an IO within the same chain from a 2119 * different execution context. 2120 */ 2121 2122 struct sd_chain_index { 2123 int sci_iostart_index; 2124 int sci_iodone_index; 2125 }; 2126 2127 static struct sd_chain_index sd_chain_index_map[] = { 2128 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2129 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2130 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2131 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2132 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2133 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2134 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2135 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2136 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2137 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2138 }; 2139 2140 2141 /* 2142 * The following are indexes into the sd_chain_index_map[] array. 2143 */ 2144 2145 /* un->un_buf_chain_type must be set to one of these */ 2146 #define SD_CHAIN_INFO_DISK 0 2147 #define SD_CHAIN_INFO_DISK_NO_PM 1 2148 #define SD_CHAIN_INFO_RMMEDIA 2 2149 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2150 #define SD_CHAIN_INFO_CHKSUM 4 2151 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2152 2153 /* un->un_uscsi_chain_type must be set to one of these */ 2154 #define SD_CHAIN_INFO_USCSI_CMD 6 2155 /* USCSI with PM disabled is the same as DIRECT */ 2156 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2157 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2158 2159 /* un->un_direct_chain_type must be set to one of these */ 2160 #define SD_CHAIN_INFO_DIRECT_CMD 8 2161 2162 /* un->un_priority_chain_type must be set to one of these */ 2163 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2164 2165 /* size for devid inquiries */ 2166 #define MAX_INQUIRY_SIZE 0xF0 2167 2168 /* 2169 * Macros used by functions to pass a given buf(9S) struct along to the 2170 * next function in the layering chain for further processing. 2171 * 2172 * In the following macros, passing more than three arguments to the called 2173 * routines causes the optimizer for the SPARC compiler to stop doing tail 2174 * call elimination which results in significant performance degradation. 2175 */ 2176 #define SD_BEGIN_IOSTART(index, un, bp) \ 2177 ((*(sd_iostart_chain[index]))(index, un, bp)) 2178 2179 #define SD_BEGIN_IODONE(index, un, bp) \ 2180 ((*(sd_iodone_chain[index]))(index, un, bp)) 2181 2182 #define SD_NEXT_IOSTART(index, un, bp) \ 2183 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2184 2185 #define SD_NEXT_IODONE(index, un, bp) \ 2186 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2187 2188 /* 2189 * Function: _init 2190 * 2191 * Description: This is the driver _init(9E) entry point. 2192 * 2193 * Return Code: Returns the value from mod_install(9F) or 2194 * ddi_soft_state_init(9F) as appropriate. 2195 * 2196 * Context: Called when driver module loaded. 2197 */ 2198 2199 int 2200 _init(void) 2201 { 2202 int err; 2203 2204 /* establish driver name from module name */ 2205 sd_label = (char *)mod_modname(&modlinkage); 2206 2207 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2208 SD_MAXUNIT); 2209 2210 if (err != 0) { 2211 return (err); 2212 } 2213 2214 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2215 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2216 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2217 2218 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2219 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2220 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2221 2222 /* 2223 * it's ok to init here even for fibre device 2224 */ 2225 sd_scsi_probe_cache_init(); 2226 2227 sd_scsi_target_lun_init(); 2228 2229 /* 2230 * Creating taskq before mod_install ensures that all callers (threads) 2231 * that enter the module after a successful mod_install encounter 2232 * a valid taskq. 2233 */ 2234 sd_taskq_create(); 2235 2236 err = mod_install(&modlinkage); 2237 if (err != 0) { 2238 /* delete taskq if install fails */ 2239 sd_taskq_delete(); 2240 2241 mutex_destroy(&sd_detach_mutex); 2242 mutex_destroy(&sd_log_mutex); 2243 mutex_destroy(&sd_label_mutex); 2244 2245 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2246 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2247 cv_destroy(&sd_tr.srq_inprocess_cv); 2248 2249 sd_scsi_probe_cache_fini(); 2250 2251 sd_scsi_target_lun_fini(); 2252 2253 ddi_soft_state_fini(&sd_state); 2254 return (err); 2255 } 2256 2257 return (err); 2258 } 2259 2260 2261 /* 2262 * Function: _fini 2263 * 2264 * Description: This is the driver _fini(9E) entry point. 2265 * 2266 * Return Code: Returns the value from mod_remove(9F) 2267 * 2268 * Context: Called when driver module is unloaded. 2269 */ 2270 2271 int 2272 _fini(void) 2273 { 2274 int err; 2275 2276 if ((err = mod_remove(&modlinkage)) != 0) { 2277 return (err); 2278 } 2279 2280 sd_taskq_delete(); 2281 2282 mutex_destroy(&sd_detach_mutex); 2283 mutex_destroy(&sd_log_mutex); 2284 mutex_destroy(&sd_label_mutex); 2285 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2286 2287 sd_scsi_probe_cache_fini(); 2288 2289 sd_scsi_target_lun_fini(); 2290 2291 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2292 cv_destroy(&sd_tr.srq_inprocess_cv); 2293 2294 ddi_soft_state_fini(&sd_state); 2295 2296 return (err); 2297 } 2298 2299 2300 /* 2301 * Function: _info 2302 * 2303 * Description: This is the driver _info(9E) entry point. 2304 * 2305 * Arguments: modinfop - pointer to the driver modinfo structure 2306 * 2307 * Return Code: Returns the value from mod_info(9F). 2308 * 2309 * Context: Kernel thread context 2310 */ 2311 2312 int 2313 _info(struct modinfo *modinfop) 2314 { 2315 return (mod_info(&modlinkage, modinfop)); 2316 } 2317 2318 2319 /* 2320 * The following routines implement the driver message logging facility. 2321 * They provide component- and level- based debug output filtering. 2322 * Output may also be restricted to messages for a single instance by 2323 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2324 * to NULL, then messages for all instances are printed. 2325 * 2326 * These routines have been cloned from each other due to the language 2327 * constraints of macros and variable argument list processing. 2328 */ 2329 2330 2331 /* 2332 * Function: sd_log_err 2333 * 2334 * Description: This routine is called by the SD_ERROR macro for debug 2335 * logging of error conditions. 2336 * 2337 * Arguments: comp - driver component being logged 2338 * dev - pointer to driver info structure 2339 * fmt - error string and format to be logged 2340 */ 2341 2342 static void 2343 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2344 { 2345 va_list ap; 2346 dev_info_t *dev; 2347 2348 ASSERT(un != NULL); 2349 dev = SD_DEVINFO(un); 2350 ASSERT(dev != NULL); 2351 2352 /* 2353 * Filter messages based on the global component and level masks. 2354 * Also print if un matches the value of sd_debug_un, or if 2355 * sd_debug_un is set to NULL. 2356 */ 2357 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2358 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2359 mutex_enter(&sd_log_mutex); 2360 va_start(ap, fmt); 2361 (void) vsprintf(sd_log_buf, fmt, ap); 2362 va_end(ap); 2363 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2364 mutex_exit(&sd_log_mutex); 2365 } 2366 #ifdef SD_FAULT_INJECTION 2367 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2368 if (un->sd_injection_mask & comp) { 2369 mutex_enter(&sd_log_mutex); 2370 va_start(ap, fmt); 2371 (void) vsprintf(sd_log_buf, fmt, ap); 2372 va_end(ap); 2373 sd_injection_log(sd_log_buf, un); 2374 mutex_exit(&sd_log_mutex); 2375 } 2376 #endif 2377 } 2378 2379 2380 /* 2381 * Function: sd_log_info 2382 * 2383 * Description: This routine is called by the SD_INFO macro for debug 2384 * logging of general purpose informational conditions. 2385 * 2386 * Arguments: comp - driver component being logged 2387 * dev - pointer to driver info structure 2388 * fmt - info string and format to be logged 2389 */ 2390 2391 static void 2392 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2393 { 2394 va_list ap; 2395 dev_info_t *dev; 2396 2397 ASSERT(un != NULL); 2398 dev = SD_DEVINFO(un); 2399 ASSERT(dev != NULL); 2400 2401 /* 2402 * Filter messages based on the global component and level masks. 2403 * Also print if un matches the value of sd_debug_un, or if 2404 * sd_debug_un is set to NULL. 2405 */ 2406 if ((sd_component_mask & component) && 2407 (sd_level_mask & SD_LOGMASK_INFO) && 2408 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2409 mutex_enter(&sd_log_mutex); 2410 va_start(ap, fmt); 2411 (void) vsprintf(sd_log_buf, fmt, ap); 2412 va_end(ap); 2413 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2414 mutex_exit(&sd_log_mutex); 2415 } 2416 #ifdef SD_FAULT_INJECTION 2417 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2418 if (un->sd_injection_mask & component) { 2419 mutex_enter(&sd_log_mutex); 2420 va_start(ap, fmt); 2421 (void) vsprintf(sd_log_buf, fmt, ap); 2422 va_end(ap); 2423 sd_injection_log(sd_log_buf, un); 2424 mutex_exit(&sd_log_mutex); 2425 } 2426 #endif 2427 } 2428 2429 2430 /* 2431 * Function: sd_log_trace 2432 * 2433 * Description: This routine is called by the SD_TRACE macro for debug 2434 * logging of trace conditions (i.e. function entry/exit). 2435 * 2436 * Arguments: comp - driver component being logged 2437 * dev - pointer to driver info structure 2438 * fmt - trace string and format to be logged 2439 */ 2440 2441 static void 2442 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2443 { 2444 va_list ap; 2445 dev_info_t *dev; 2446 2447 ASSERT(un != NULL); 2448 dev = SD_DEVINFO(un); 2449 ASSERT(dev != NULL); 2450 2451 /* 2452 * Filter messages based on the global component and level masks. 2453 * Also print if un matches the value of sd_debug_un, or if 2454 * sd_debug_un is set to NULL. 2455 */ 2456 if ((sd_component_mask & component) && 2457 (sd_level_mask & SD_LOGMASK_TRACE) && 2458 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2459 mutex_enter(&sd_log_mutex); 2460 va_start(ap, fmt); 2461 (void) vsprintf(sd_log_buf, fmt, ap); 2462 va_end(ap); 2463 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2464 mutex_exit(&sd_log_mutex); 2465 } 2466 #ifdef SD_FAULT_INJECTION 2467 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2468 if (un->sd_injection_mask & component) { 2469 mutex_enter(&sd_log_mutex); 2470 va_start(ap, fmt); 2471 (void) vsprintf(sd_log_buf, fmt, ap); 2472 va_end(ap); 2473 sd_injection_log(sd_log_buf, un); 2474 mutex_exit(&sd_log_mutex); 2475 } 2476 #endif 2477 } 2478 2479 2480 /* 2481 * Function: sdprobe 2482 * 2483 * Description: This is the driver probe(9e) entry point function. 2484 * 2485 * Arguments: devi - opaque device info handle 2486 * 2487 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2488 * DDI_PROBE_FAILURE: If the probe failed. 2489 * DDI_PROBE_PARTIAL: If the instance is not present now, 2490 * but may be present in the future. 2491 */ 2492 2493 static int 2494 sdprobe(dev_info_t *devi) 2495 { 2496 struct scsi_device *devp; 2497 int rval; 2498 int instance; 2499 2500 /* 2501 * if it wasn't for pln, sdprobe could actually be nulldev 2502 * in the "__fibre" case. 2503 */ 2504 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2505 return (DDI_PROBE_DONTCARE); 2506 } 2507 2508 devp = ddi_get_driver_private(devi); 2509 2510 if (devp == NULL) { 2511 /* Ooops... nexus driver is mis-configured... */ 2512 return (DDI_PROBE_FAILURE); 2513 } 2514 2515 instance = ddi_get_instance(devi); 2516 2517 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2518 return (DDI_PROBE_PARTIAL); 2519 } 2520 2521 /* 2522 * Call the SCSA utility probe routine to see if we actually 2523 * have a target at this SCSI nexus. 2524 */ 2525 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2526 case SCSIPROBE_EXISTS: 2527 switch (devp->sd_inq->inq_dtype) { 2528 case DTYPE_DIRECT: 2529 rval = DDI_PROBE_SUCCESS; 2530 break; 2531 case DTYPE_RODIRECT: 2532 /* CDs etc. Can be removable media */ 2533 rval = DDI_PROBE_SUCCESS; 2534 break; 2535 case DTYPE_OPTICAL: 2536 /* 2537 * Rewritable optical driver HP115AA 2538 * Can also be removable media 2539 */ 2540 2541 /* 2542 * Do not attempt to bind to DTYPE_OPTICAL if 2543 * pre solaris 9 sparc sd behavior is required 2544 * 2545 * If first time through and sd_dtype_optical_bind 2546 * has not been set in /etc/system check properties 2547 */ 2548 2549 if (sd_dtype_optical_bind < 0) { 2550 sd_dtype_optical_bind = ddi_prop_get_int 2551 (DDI_DEV_T_ANY, devi, 0, 2552 "optical-device-bind", 1); 2553 } 2554 2555 if (sd_dtype_optical_bind == 0) { 2556 rval = DDI_PROBE_FAILURE; 2557 } else { 2558 rval = DDI_PROBE_SUCCESS; 2559 } 2560 break; 2561 2562 case DTYPE_NOTPRESENT: 2563 default: 2564 rval = DDI_PROBE_FAILURE; 2565 break; 2566 } 2567 break; 2568 default: 2569 rval = DDI_PROBE_PARTIAL; 2570 break; 2571 } 2572 2573 /* 2574 * This routine checks for resource allocation prior to freeing, 2575 * so it will take care of the "smart probing" case where a 2576 * scsi_probe() may or may not have been issued and will *not* 2577 * free previously-freed resources. 2578 */ 2579 scsi_unprobe(devp); 2580 return (rval); 2581 } 2582 2583 2584 /* 2585 * Function: sdinfo 2586 * 2587 * Description: This is the driver getinfo(9e) entry point function. 2588 * Given the device number, return the devinfo pointer from 2589 * the scsi_device structure or the instance number 2590 * associated with the dev_t. 2591 * 2592 * Arguments: dip - pointer to device info structure 2593 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2594 * DDI_INFO_DEVT2INSTANCE) 2595 * arg - driver dev_t 2596 * resultp - user buffer for request response 2597 * 2598 * Return Code: DDI_SUCCESS 2599 * DDI_FAILURE 2600 */ 2601 /* ARGSUSED */ 2602 static int 2603 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2604 { 2605 struct sd_lun *un; 2606 dev_t dev; 2607 int instance; 2608 int error; 2609 2610 switch (infocmd) { 2611 case DDI_INFO_DEVT2DEVINFO: 2612 dev = (dev_t)arg; 2613 instance = SDUNIT(dev); 2614 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2615 return (DDI_FAILURE); 2616 } 2617 *result = (void *) SD_DEVINFO(un); 2618 error = DDI_SUCCESS; 2619 break; 2620 case DDI_INFO_DEVT2INSTANCE: 2621 dev = (dev_t)arg; 2622 instance = SDUNIT(dev); 2623 *result = (void *)(uintptr_t)instance; 2624 error = DDI_SUCCESS; 2625 break; 2626 default: 2627 error = DDI_FAILURE; 2628 } 2629 return (error); 2630 } 2631 2632 /* 2633 * Function: sd_prop_op 2634 * 2635 * Description: This is the driver prop_op(9e) entry point function. 2636 * Return the number of blocks for the partition in question 2637 * or forward the request to the property facilities. 2638 * 2639 * Arguments: dev - device number 2640 * dip - pointer to device info structure 2641 * prop_op - property operator 2642 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2643 * name - pointer to property name 2644 * valuep - pointer or address of the user buffer 2645 * lengthp - property length 2646 * 2647 * Return Code: DDI_PROP_SUCCESS 2648 * DDI_PROP_NOT_FOUND 2649 * DDI_PROP_UNDEFINED 2650 * DDI_PROP_NO_MEMORY 2651 * DDI_PROP_BUF_TOO_SMALL 2652 */ 2653 2654 static int 2655 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2656 char *name, caddr_t valuep, int *lengthp) 2657 { 2658 struct sd_lun *un; 2659 2660 if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL) 2661 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2662 name, valuep, lengthp)); 2663 2664 return (cmlb_prop_op(un->un_cmlbhandle, 2665 dev, dip, prop_op, mod_flags, name, valuep, lengthp, 2666 SDPART(dev), (void *)SD_PATH_DIRECT)); 2667 } 2668 2669 /* 2670 * The following functions are for smart probing: 2671 * sd_scsi_probe_cache_init() 2672 * sd_scsi_probe_cache_fini() 2673 * sd_scsi_clear_probe_cache() 2674 * sd_scsi_probe_with_cache() 2675 */ 2676 2677 /* 2678 * Function: sd_scsi_probe_cache_init 2679 * 2680 * Description: Initializes the probe response cache mutex and head pointer. 2681 * 2682 * Context: Kernel thread context 2683 */ 2684 2685 static void 2686 sd_scsi_probe_cache_init(void) 2687 { 2688 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2689 sd_scsi_probe_cache_head = NULL; 2690 } 2691 2692 2693 /* 2694 * Function: sd_scsi_probe_cache_fini 2695 * 2696 * Description: Frees all resources associated with the probe response cache. 2697 * 2698 * Context: Kernel thread context 2699 */ 2700 2701 static void 2702 sd_scsi_probe_cache_fini(void) 2703 { 2704 struct sd_scsi_probe_cache *cp; 2705 struct sd_scsi_probe_cache *ncp; 2706 2707 /* Clean up our smart probing linked list */ 2708 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2709 ncp = cp->next; 2710 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2711 } 2712 sd_scsi_probe_cache_head = NULL; 2713 mutex_destroy(&sd_scsi_probe_cache_mutex); 2714 } 2715 2716 2717 /* 2718 * Function: sd_scsi_clear_probe_cache 2719 * 2720 * Description: This routine clears the probe response cache. This is 2721 * done when open() returns ENXIO so that when deferred 2722 * attach is attempted (possibly after a device has been 2723 * turned on) we will retry the probe. Since we don't know 2724 * which target we failed to open, we just clear the 2725 * entire cache. 2726 * 2727 * Context: Kernel thread context 2728 */ 2729 2730 static void 2731 sd_scsi_clear_probe_cache(void) 2732 { 2733 struct sd_scsi_probe_cache *cp; 2734 int i; 2735 2736 mutex_enter(&sd_scsi_probe_cache_mutex); 2737 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2738 /* 2739 * Reset all entries to SCSIPROBE_EXISTS. This will 2740 * force probing to be performed the next time 2741 * sd_scsi_probe_with_cache is called. 2742 */ 2743 for (i = 0; i < NTARGETS_WIDE; i++) { 2744 cp->cache[i] = SCSIPROBE_EXISTS; 2745 } 2746 } 2747 mutex_exit(&sd_scsi_probe_cache_mutex); 2748 } 2749 2750 2751 /* 2752 * Function: sd_scsi_probe_with_cache 2753 * 2754 * Description: This routine implements support for a scsi device probe 2755 * with cache. The driver maintains a cache of the target 2756 * responses to scsi probes. If we get no response from a 2757 * target during a probe inquiry, we remember that, and we 2758 * avoid additional calls to scsi_probe on non-zero LUNs 2759 * on the same target until the cache is cleared. By doing 2760 * so we avoid the 1/4 sec selection timeout for nonzero 2761 * LUNs. lun0 of a target is always probed. 2762 * 2763 * Arguments: devp - Pointer to a scsi_device(9S) structure 2764 * waitfunc - indicates what the allocator routines should 2765 * do when resources are not available. This value 2766 * is passed on to scsi_probe() when that routine 2767 * is called. 2768 * 2769 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2770 * otherwise the value returned by scsi_probe(9F). 2771 * 2772 * Context: Kernel thread context 2773 */ 2774 2775 static int 2776 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2777 { 2778 struct sd_scsi_probe_cache *cp; 2779 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2780 int lun, tgt; 2781 2782 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2783 SCSI_ADDR_PROP_LUN, 0); 2784 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2785 SCSI_ADDR_PROP_TARGET, -1); 2786 2787 /* Make sure caching enabled and target in range */ 2788 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 2789 /* do it the old way (no cache) */ 2790 return (scsi_probe(devp, waitfn)); 2791 } 2792 2793 mutex_enter(&sd_scsi_probe_cache_mutex); 2794 2795 /* Find the cache for this scsi bus instance */ 2796 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2797 if (cp->pdip == pdip) { 2798 break; 2799 } 2800 } 2801 2802 /* If we can't find a cache for this pdip, create one */ 2803 if (cp == NULL) { 2804 int i; 2805 2806 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 2807 KM_SLEEP); 2808 cp->pdip = pdip; 2809 cp->next = sd_scsi_probe_cache_head; 2810 sd_scsi_probe_cache_head = cp; 2811 for (i = 0; i < NTARGETS_WIDE; i++) { 2812 cp->cache[i] = SCSIPROBE_EXISTS; 2813 } 2814 } 2815 2816 mutex_exit(&sd_scsi_probe_cache_mutex); 2817 2818 /* Recompute the cache for this target if LUN zero */ 2819 if (lun == 0) { 2820 cp->cache[tgt] = SCSIPROBE_EXISTS; 2821 } 2822 2823 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 2824 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 2825 return (SCSIPROBE_NORESP); 2826 } 2827 2828 /* Do the actual probe; save & return the result */ 2829 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 2830 } 2831 2832 2833 /* 2834 * Function: sd_scsi_target_lun_init 2835 * 2836 * Description: Initializes the attached lun chain mutex and head pointer. 2837 * 2838 * Context: Kernel thread context 2839 */ 2840 2841 static void 2842 sd_scsi_target_lun_init(void) 2843 { 2844 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 2845 sd_scsi_target_lun_head = NULL; 2846 } 2847 2848 2849 /* 2850 * Function: sd_scsi_target_lun_fini 2851 * 2852 * Description: Frees all resources associated with the attached lun 2853 * chain 2854 * 2855 * Context: Kernel thread context 2856 */ 2857 2858 static void 2859 sd_scsi_target_lun_fini(void) 2860 { 2861 struct sd_scsi_hba_tgt_lun *cp; 2862 struct sd_scsi_hba_tgt_lun *ncp; 2863 2864 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 2865 ncp = cp->next; 2866 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 2867 } 2868 sd_scsi_target_lun_head = NULL; 2869 mutex_destroy(&sd_scsi_target_lun_mutex); 2870 } 2871 2872 2873 /* 2874 * Function: sd_scsi_get_target_lun_count 2875 * 2876 * Description: This routine will check in the attached lun chain to see 2877 * how many luns are attached on the required SCSI controller 2878 * and target. Currently, some capabilities like tagged queue 2879 * are supported per target based by HBA. So all luns in a 2880 * target have the same capabilities. Based on this assumption, 2881 * sd should only set these capabilities once per target. This 2882 * function is called when sd needs to decide how many luns 2883 * already attached on a target. 2884 * 2885 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 2886 * controller device. 2887 * target - The target ID on the controller's SCSI bus. 2888 * 2889 * Return Code: The number of luns attached on the required target and 2890 * controller. 2891 * -1 if target ID is not in parallel SCSI scope or the given 2892 * dip is not in the chain. 2893 * 2894 * Context: Kernel thread context 2895 */ 2896 2897 static int 2898 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 2899 { 2900 struct sd_scsi_hba_tgt_lun *cp; 2901 2902 if ((target < 0) || (target >= NTARGETS_WIDE)) { 2903 return (-1); 2904 } 2905 2906 mutex_enter(&sd_scsi_target_lun_mutex); 2907 2908 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 2909 if (cp->pdip == dip) { 2910 break; 2911 } 2912 } 2913 2914 mutex_exit(&sd_scsi_target_lun_mutex); 2915 2916 if (cp == NULL) { 2917 return (-1); 2918 } 2919 2920 return (cp->nlun[target]); 2921 } 2922 2923 2924 /* 2925 * Function: sd_scsi_update_lun_on_target 2926 * 2927 * Description: This routine is used to update the attached lun chain when a 2928 * lun is attached or detached on a target. 2929 * 2930 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 2931 * controller device. 2932 * target - The target ID on the controller's SCSI bus. 2933 * flag - Indicate the lun is attached or detached. 2934 * 2935 * Context: Kernel thread context 2936 */ 2937 2938 static void 2939 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 2940 { 2941 struct sd_scsi_hba_tgt_lun *cp; 2942 2943 mutex_enter(&sd_scsi_target_lun_mutex); 2944 2945 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 2946 if (cp->pdip == dip) { 2947 break; 2948 } 2949 } 2950 2951 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 2952 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 2953 KM_SLEEP); 2954 cp->pdip = dip; 2955 cp->next = sd_scsi_target_lun_head; 2956 sd_scsi_target_lun_head = cp; 2957 } 2958 2959 mutex_exit(&sd_scsi_target_lun_mutex); 2960 2961 if (cp != NULL) { 2962 if (flag == SD_SCSI_LUN_ATTACH) { 2963 cp->nlun[target] ++; 2964 } else { 2965 cp->nlun[target] --; 2966 } 2967 } 2968 } 2969 2970 2971 /* 2972 * Function: sd_spin_up_unit 2973 * 2974 * Description: Issues the following commands to spin-up the device: 2975 * START STOP UNIT, and INQUIRY. 2976 * 2977 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 2978 * structure for this target. 2979 * 2980 * Return Code: 0 - success 2981 * EIO - failure 2982 * EACCES - reservation conflict 2983 * 2984 * Context: Kernel thread context 2985 */ 2986 2987 static int 2988 sd_spin_up_unit(sd_ssc_t *ssc) 2989 { 2990 size_t resid = 0; 2991 int has_conflict = FALSE; 2992 uchar_t *bufaddr; 2993 int status; 2994 struct sd_lun *un; 2995 2996 ASSERT(ssc != NULL); 2997 un = ssc->ssc_un; 2998 ASSERT(un != NULL); 2999 3000 /* 3001 * Send a throwaway START UNIT command. 3002 * 3003 * If we fail on this, we don't care presently what precisely 3004 * is wrong. EMC's arrays will also fail this with a check 3005 * condition (0x2/0x4/0x3) if the device is "inactive," but 3006 * we don't want to fail the attach because it may become 3007 * "active" later. 3008 */ 3009 status = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START, 3010 SD_PATH_DIRECT); 3011 3012 if (status != 0) { 3013 if (status == EACCES) 3014 has_conflict = TRUE; 3015 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3016 } 3017 3018 /* 3019 * Send another INQUIRY command to the target. This is necessary for 3020 * non-removable media direct access devices because their INQUIRY data 3021 * may not be fully qualified until they are spun up (perhaps via the 3022 * START command above). Note: This seems to be needed for some 3023 * legacy devices only.) The INQUIRY command should succeed even if a 3024 * Reservation Conflict is present. 3025 */ 3026 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3027 3028 if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid) 3029 != 0) { 3030 kmem_free(bufaddr, SUN_INQSIZE); 3031 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 3032 return (EIO); 3033 } 3034 3035 /* 3036 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3037 * Note that this routine does not return a failure here even if the 3038 * INQUIRY command did not return any data. This is a legacy behavior. 3039 */ 3040 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3041 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3042 } 3043 3044 kmem_free(bufaddr, SUN_INQSIZE); 3045 3046 /* If we hit a reservation conflict above, tell the caller. */ 3047 if (has_conflict == TRUE) { 3048 return (EACCES); 3049 } 3050 3051 return (0); 3052 } 3053 3054 #ifdef _LP64 3055 /* 3056 * Function: sd_enable_descr_sense 3057 * 3058 * Description: This routine attempts to select descriptor sense format 3059 * using the Control mode page. Devices that support 64 bit 3060 * LBAs (for >2TB luns) should also implement descriptor 3061 * sense data so we will call this function whenever we see 3062 * a lun larger than 2TB. If for some reason the device 3063 * supports 64 bit LBAs but doesn't support descriptor sense 3064 * presumably the mode select will fail. Everything will 3065 * continue to work normally except that we will not get 3066 * complete sense data for commands that fail with an LBA 3067 * larger than 32 bits. 3068 * 3069 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3070 * structure for this target. 3071 * 3072 * Context: Kernel thread context only 3073 */ 3074 3075 static void 3076 sd_enable_descr_sense(sd_ssc_t *ssc) 3077 { 3078 uchar_t *header; 3079 struct mode_control_scsi3 *ctrl_bufp; 3080 size_t buflen; 3081 size_t bd_len; 3082 int status; 3083 struct sd_lun *un; 3084 3085 ASSERT(ssc != NULL); 3086 un = ssc->ssc_un; 3087 ASSERT(un != NULL); 3088 3089 /* 3090 * Read MODE SENSE page 0xA, Control Mode Page 3091 */ 3092 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3093 sizeof (struct mode_control_scsi3); 3094 header = kmem_zalloc(buflen, KM_SLEEP); 3095 3096 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 3097 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT); 3098 3099 if (status != 0) { 3100 SD_ERROR(SD_LOG_COMMON, un, 3101 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3102 goto eds_exit; 3103 } 3104 3105 /* 3106 * Determine size of Block Descriptors in order to locate 3107 * the mode page data. ATAPI devices return 0, SCSI devices 3108 * should return MODE_BLK_DESC_LENGTH. 3109 */ 3110 bd_len = ((struct mode_header *)header)->bdesc_length; 3111 3112 /* Clear the mode data length field for MODE SELECT */ 3113 ((struct mode_header *)header)->length = 0; 3114 3115 ctrl_bufp = (struct mode_control_scsi3 *) 3116 (header + MODE_HEADER_LENGTH + bd_len); 3117 3118 /* 3119 * If the page length is smaller than the expected value, 3120 * the target device doesn't support D_SENSE. Bail out here. 3121 */ 3122 if (ctrl_bufp->mode_page.length < 3123 sizeof (struct mode_control_scsi3) - 2) { 3124 SD_ERROR(SD_LOG_COMMON, un, 3125 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3126 goto eds_exit; 3127 } 3128 3129 /* 3130 * Clear PS bit for MODE SELECT 3131 */ 3132 ctrl_bufp->mode_page.ps = 0; 3133 3134 /* 3135 * Set D_SENSE to enable descriptor sense format. 3136 */ 3137 ctrl_bufp->d_sense = 1; 3138 3139 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3140 3141 /* 3142 * Use MODE SELECT to commit the change to the D_SENSE bit 3143 */ 3144 status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 3145 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT); 3146 3147 if (status != 0) { 3148 SD_INFO(SD_LOG_COMMON, un, 3149 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3150 } else { 3151 kmem_free(header, buflen); 3152 return; 3153 } 3154 3155 eds_exit: 3156 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3157 kmem_free(header, buflen); 3158 } 3159 3160 /* 3161 * Function: sd_reenable_dsense_task 3162 * 3163 * Description: Re-enable descriptor sense after device or bus reset 3164 * 3165 * Context: Executes in a taskq() thread context 3166 */ 3167 static void 3168 sd_reenable_dsense_task(void *arg) 3169 { 3170 struct sd_lun *un = arg; 3171 sd_ssc_t *ssc; 3172 3173 ASSERT(un != NULL); 3174 3175 ssc = sd_ssc_init(un); 3176 sd_enable_descr_sense(ssc); 3177 sd_ssc_fini(ssc); 3178 } 3179 #endif /* _LP64 */ 3180 3181 /* 3182 * Function: sd_set_mmc_caps 3183 * 3184 * Description: This routine determines if the device is MMC compliant and if 3185 * the device supports CDDA via a mode sense of the CDVD 3186 * capabilities mode page. Also checks if the device is a 3187 * dvdram writable device. 3188 * 3189 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3190 * structure for this target. 3191 * 3192 * Context: Kernel thread context only 3193 */ 3194 3195 static void 3196 sd_set_mmc_caps(sd_ssc_t *ssc) 3197 { 3198 struct mode_header_grp2 *sense_mhp; 3199 uchar_t *sense_page; 3200 caddr_t buf; 3201 int bd_len; 3202 int status; 3203 struct uscsi_cmd com; 3204 int rtn; 3205 uchar_t *out_data_rw, *out_data_hd; 3206 uchar_t *rqbuf_rw, *rqbuf_hd; 3207 struct sd_lun *un; 3208 3209 ASSERT(ssc != NULL); 3210 un = ssc->ssc_un; 3211 ASSERT(un != NULL); 3212 3213 /* 3214 * The flags which will be set in this function are - mmc compliant, 3215 * dvdram writable device, cdda support. Initialize them to FALSE 3216 * and if a capability is detected - it will be set to TRUE. 3217 */ 3218 un->un_f_mmc_cap = FALSE; 3219 un->un_f_dvdram_writable_device = FALSE; 3220 un->un_f_cfg_cdda = FALSE; 3221 3222 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3223 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3224 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3225 3226 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3227 3228 if (status != 0) { 3229 /* command failed; just return */ 3230 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3231 return; 3232 } 3233 /* 3234 * If the mode sense request for the CDROM CAPABILITIES 3235 * page (0x2A) succeeds the device is assumed to be MMC. 3236 */ 3237 un->un_f_mmc_cap = TRUE; 3238 3239 /* Get to the page data */ 3240 sense_mhp = (struct mode_header_grp2 *)buf; 3241 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3242 sense_mhp->bdesc_length_lo; 3243 if (bd_len > MODE_BLK_DESC_LENGTH) { 3244 /* 3245 * We did not get back the expected block descriptor 3246 * length so we cannot determine if the device supports 3247 * CDDA. However, we still indicate the device is MMC 3248 * according to the successful response to the page 3249 * 0x2A mode sense request. 3250 */ 3251 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3252 "sd_set_mmc_caps: Mode Sense returned " 3253 "invalid block descriptor length\n"); 3254 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3255 return; 3256 } 3257 3258 /* See if read CDDA is supported */ 3259 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3260 bd_len); 3261 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3262 3263 /* See if writing DVD RAM is supported. */ 3264 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3265 if (un->un_f_dvdram_writable_device == TRUE) { 3266 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3267 return; 3268 } 3269 3270 /* 3271 * If the device presents DVD or CD capabilities in the mode 3272 * page, we can return here since a RRD will not have 3273 * these capabilities. 3274 */ 3275 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3276 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3277 return; 3278 } 3279 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3280 3281 /* 3282 * If un->un_f_dvdram_writable_device is still FALSE, 3283 * check for a Removable Rigid Disk (RRD). A RRD 3284 * device is identified by the features RANDOM_WRITABLE and 3285 * HARDWARE_DEFECT_MANAGEMENT. 3286 */ 3287 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3288 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3289 3290 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3291 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3292 RANDOM_WRITABLE, SD_PATH_STANDARD); 3293 3294 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3295 3296 if (rtn != 0) { 3297 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3298 kmem_free(rqbuf_rw, SENSE_LENGTH); 3299 return; 3300 } 3301 3302 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3303 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3304 3305 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3306 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3307 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3308 3309 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3310 3311 if (rtn == 0) { 3312 /* 3313 * We have good information, check for random writable 3314 * and hardware defect features. 3315 */ 3316 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3317 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3318 un->un_f_dvdram_writable_device = TRUE; 3319 } 3320 } 3321 3322 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3323 kmem_free(rqbuf_rw, SENSE_LENGTH); 3324 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3325 kmem_free(rqbuf_hd, SENSE_LENGTH); 3326 } 3327 3328 /* 3329 * Function: sd_check_for_writable_cd 3330 * 3331 * Description: This routine determines if the media in the device is 3332 * writable or not. It uses the get configuration command (0x46) 3333 * to determine if the media is writable 3334 * 3335 * Arguments: un - driver soft state (unit) structure 3336 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3337 * chain and the normal command waitq, or 3338 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3339 * "direct" chain and bypass the normal command 3340 * waitq. 3341 * 3342 * Context: Never called at interrupt context. 3343 */ 3344 3345 static void 3346 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag) 3347 { 3348 struct uscsi_cmd com; 3349 uchar_t *out_data; 3350 uchar_t *rqbuf; 3351 int rtn; 3352 uchar_t *out_data_rw, *out_data_hd; 3353 uchar_t *rqbuf_rw, *rqbuf_hd; 3354 struct mode_header_grp2 *sense_mhp; 3355 uchar_t *sense_page; 3356 caddr_t buf; 3357 int bd_len; 3358 int status; 3359 struct sd_lun *un; 3360 3361 ASSERT(ssc != NULL); 3362 un = ssc->ssc_un; 3363 ASSERT(un != NULL); 3364 ASSERT(mutex_owned(SD_MUTEX(un))); 3365 3366 /* 3367 * Initialize the writable media to false, if configuration info. 3368 * tells us otherwise then only we will set it. 3369 */ 3370 un->un_f_mmc_writable_media = FALSE; 3371 mutex_exit(SD_MUTEX(un)); 3372 3373 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3374 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3375 3376 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH, 3377 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3378 3379 if (rtn != 0) 3380 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3381 3382 mutex_enter(SD_MUTEX(un)); 3383 if (rtn == 0) { 3384 /* 3385 * We have good information, check for writable DVD. 3386 */ 3387 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3388 un->un_f_mmc_writable_media = TRUE; 3389 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3390 kmem_free(rqbuf, SENSE_LENGTH); 3391 return; 3392 } 3393 } 3394 3395 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3396 kmem_free(rqbuf, SENSE_LENGTH); 3397 3398 /* 3399 * Determine if this is a RRD type device. 3400 */ 3401 mutex_exit(SD_MUTEX(un)); 3402 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3403 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3404 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3405 3406 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3407 3408 mutex_enter(SD_MUTEX(un)); 3409 if (status != 0) { 3410 /* command failed; just return */ 3411 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3412 return; 3413 } 3414 3415 /* Get to the page data */ 3416 sense_mhp = (struct mode_header_grp2 *)buf; 3417 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3418 if (bd_len > MODE_BLK_DESC_LENGTH) { 3419 /* 3420 * We did not get back the expected block descriptor length so 3421 * we cannot check the mode page. 3422 */ 3423 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3424 "sd_check_for_writable_cd: Mode Sense returned " 3425 "invalid block descriptor length\n"); 3426 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3427 return; 3428 } 3429 3430 /* 3431 * If the device presents DVD or CD capabilities in the mode 3432 * page, we can return here since a RRD device will not have 3433 * these capabilities. 3434 */ 3435 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3436 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3437 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3438 return; 3439 } 3440 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3441 3442 /* 3443 * If un->un_f_mmc_writable_media is still FALSE, 3444 * check for RRD type media. A RRD device is identified 3445 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3446 */ 3447 mutex_exit(SD_MUTEX(un)); 3448 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3449 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3450 3451 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3452 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3453 RANDOM_WRITABLE, path_flag); 3454 3455 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3456 if (rtn != 0) { 3457 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3458 kmem_free(rqbuf_rw, SENSE_LENGTH); 3459 mutex_enter(SD_MUTEX(un)); 3460 return; 3461 } 3462 3463 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3464 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3465 3466 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3467 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3468 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3469 3470 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3471 mutex_enter(SD_MUTEX(un)); 3472 if (rtn == 0) { 3473 /* 3474 * We have good information, check for random writable 3475 * and hardware defect features as current. 3476 */ 3477 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3478 (out_data_rw[10] & 0x1) && 3479 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3480 (out_data_hd[10] & 0x1)) { 3481 un->un_f_mmc_writable_media = TRUE; 3482 } 3483 } 3484 3485 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3486 kmem_free(rqbuf_rw, SENSE_LENGTH); 3487 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3488 kmem_free(rqbuf_hd, SENSE_LENGTH); 3489 } 3490 3491 /* 3492 * Function: sd_read_unit_properties 3493 * 3494 * Description: The following implements a property lookup mechanism. 3495 * Properties for particular disks (keyed on vendor, model 3496 * and rev numbers) are sought in the sd.conf file via 3497 * sd_process_sdconf_file(), and if not found there, are 3498 * looked for in a list hardcoded in this driver via 3499 * sd_process_sdconf_table() Once located the properties 3500 * are used to update the driver unit structure. 3501 * 3502 * Arguments: un - driver soft state (unit) structure 3503 */ 3504 3505 static void 3506 sd_read_unit_properties(struct sd_lun *un) 3507 { 3508 /* 3509 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3510 * the "sd-config-list" property (from the sd.conf file) or if 3511 * there was not a match for the inquiry vid/pid. If this event 3512 * occurs the static driver configuration table is searched for 3513 * a match. 3514 */ 3515 ASSERT(un != NULL); 3516 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3517 sd_process_sdconf_table(un); 3518 } 3519 3520 /* check for LSI device */ 3521 sd_is_lsi(un); 3522 3523 3524 } 3525 3526 3527 /* 3528 * Function: sd_process_sdconf_file 3529 * 3530 * Description: Use ddi_prop_lookup(9F) to obtain the properties from the 3531 * driver's config file (ie, sd.conf) and update the driver 3532 * soft state structure accordingly. 3533 * 3534 * Arguments: un - driver soft state (unit) structure 3535 * 3536 * Return Code: SD_SUCCESS - The properties were successfully set according 3537 * to the driver configuration file. 3538 * SD_FAILURE - The driver config list was not obtained or 3539 * there was no vid/pid match. This indicates that 3540 * the static config table should be used. 3541 * 3542 * The config file has a property, "sd-config-list". Currently we support 3543 * two kinds of formats. For both formats, the value of this property 3544 * is a list of duplets: 3545 * 3546 * sd-config-list= 3547 * <duplet>, 3548 * [,<duplet>]*; 3549 * 3550 * For the improved format, where 3551 * 3552 * <duplet>:= "<vid+pid>","<tunable-list>" 3553 * 3554 * and 3555 * 3556 * <tunable-list>:= <tunable> [, <tunable> ]*; 3557 * <tunable> = <name> : <value> 3558 * 3559 * The <vid+pid> is the string that is returned by the target device on a 3560 * SCSI inquiry command, the <tunable-list> contains one or more tunables 3561 * to apply to all target devices with the specified <vid+pid>. 3562 * 3563 * Each <tunable> is a "<name> : <value>" pair. 3564 * 3565 * For the old format, the structure of each duplet is as follows: 3566 * 3567 * <duplet>:= "<vid+pid>","<data-property-name_list>" 3568 * 3569 * The first entry of the duplet is the device ID string (the concatenated 3570 * vid & pid; not to be confused with a device_id). This is defined in 3571 * the same way as in the sd_disk_table. 3572 * 3573 * The second part of the duplet is a string that identifies a 3574 * data-property-name-list. The data-property-name-list is defined as 3575 * follows: 3576 * 3577 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3578 * 3579 * The syntax of <data-property-name> depends on the <version> field. 3580 * 3581 * If version = SD_CONF_VERSION_1 we have the following syntax: 3582 * 3583 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3584 * 3585 * where the prop0 value will be used to set prop0 if bit0 set in the 3586 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3587 * 3588 */ 3589 3590 static int 3591 sd_process_sdconf_file(struct sd_lun *un) 3592 { 3593 char **config_list = NULL; 3594 uint_t nelements; 3595 char *vidptr; 3596 int vidlen; 3597 char *dnlist_ptr; 3598 char *dataname_ptr; 3599 char *dataname_lasts; 3600 int *data_list = NULL; 3601 uint_t data_list_len; 3602 int rval = SD_FAILURE; 3603 int i; 3604 3605 ASSERT(un != NULL); 3606 3607 /* Obtain the configuration list associated with the .conf file */ 3608 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un), 3609 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list, 3610 &config_list, &nelements) != DDI_PROP_SUCCESS) { 3611 return (SD_FAILURE); 3612 } 3613 3614 /* 3615 * Compare vids in each duplet to the inquiry vid - if a match is 3616 * made, get the data value and update the soft state structure 3617 * accordingly. 3618 * 3619 * Each duplet should show as a pair of strings, return SD_FAILURE 3620 * otherwise. 3621 */ 3622 if (nelements & 1) { 3623 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3624 "sd-config-list should show as pairs of strings.\n"); 3625 if (config_list) 3626 ddi_prop_free(config_list); 3627 return (SD_FAILURE); 3628 } 3629 3630 for (i = 0; i < nelements; i += 2) { 3631 /* 3632 * Note: The assumption here is that each vid entry is on 3633 * a unique line from its associated duplet. 3634 */ 3635 vidptr = config_list[i]; 3636 vidlen = (int)strlen(vidptr); 3637 if ((vidlen == 0) || 3638 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3639 continue; 3640 } 3641 3642 /* 3643 * dnlist contains 1 or more blank separated 3644 * data-property-name entries 3645 */ 3646 dnlist_ptr = config_list[i + 1]; 3647 3648 if (strchr(dnlist_ptr, ':') != NULL) { 3649 /* 3650 * Decode the improved format sd-config-list. 3651 */ 3652 sd_nvpair_str_decode(un, dnlist_ptr); 3653 } else { 3654 /* 3655 * The old format sd-config-list, loop through all 3656 * data-property-name entries in the 3657 * data-property-name-list 3658 * setting the properties for each. 3659 */ 3660 for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t", 3661 &dataname_lasts); dataname_ptr != NULL; 3662 dataname_ptr = sd_strtok_r(NULL, " \t", 3663 &dataname_lasts)) { 3664 int version; 3665 3666 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3667 "sd_process_sdconf_file: disk:%s, " 3668 "data:%s\n", vidptr, dataname_ptr); 3669 3670 /* Get the data list */ 3671 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, 3672 SD_DEVINFO(un), 0, dataname_ptr, &data_list, 3673 &data_list_len) != DDI_PROP_SUCCESS) { 3674 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3675 "sd_process_sdconf_file: data " 3676 "property (%s) has no value\n", 3677 dataname_ptr); 3678 continue; 3679 } 3680 3681 version = data_list[0]; 3682 3683 if (version == SD_CONF_VERSION_1) { 3684 sd_tunables values; 3685 3686 /* Set the properties */ 3687 if (sd_chk_vers1_data(un, data_list[1], 3688 &data_list[2], data_list_len, 3689 dataname_ptr) == SD_SUCCESS) { 3690 sd_get_tunables_from_conf(un, 3691 data_list[1], &data_list[2], 3692 &values); 3693 sd_set_vers1_properties(un, 3694 data_list[1], &values); 3695 rval = SD_SUCCESS; 3696 } else { 3697 rval = SD_FAILURE; 3698 } 3699 } else { 3700 scsi_log(SD_DEVINFO(un), sd_label, 3701 CE_WARN, "data property %s version " 3702 "0x%x is invalid.", 3703 dataname_ptr, version); 3704 rval = SD_FAILURE; 3705 } 3706 if (data_list) 3707 ddi_prop_free(data_list); 3708 } 3709 } 3710 } 3711 3712 /* free up the memory allocated by ddi_prop_lookup_string_array(). */ 3713 if (config_list) { 3714 ddi_prop_free(config_list); 3715 } 3716 3717 return (rval); 3718 } 3719 3720 /* 3721 * Function: sd_nvpair_str_decode() 3722 * 3723 * Description: Parse the improved format sd-config-list to get 3724 * each entry of tunable, which includes a name-value pair. 3725 * Then call sd_set_properties() to set the property. 3726 * 3727 * Arguments: un - driver soft state (unit) structure 3728 * nvpair_str - the tunable list 3729 */ 3730 static void 3731 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str) 3732 { 3733 char *nv, *name, *value, *token; 3734 char *nv_lasts, *v_lasts, *x_lasts; 3735 3736 for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL; 3737 nv = sd_strtok_r(NULL, ",", &nv_lasts)) { 3738 token = sd_strtok_r(nv, ":", &v_lasts); 3739 name = sd_strtok_r(token, " \t", &x_lasts); 3740 token = sd_strtok_r(NULL, ":", &v_lasts); 3741 value = sd_strtok_r(token, " \t", &x_lasts); 3742 if (name == NULL || value == NULL) { 3743 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3744 "sd_nvpair_str_decode: " 3745 "name or value is not valid!\n"); 3746 } else { 3747 sd_set_properties(un, name, value); 3748 } 3749 } 3750 } 3751 3752 /* 3753 * Function: sd_strtok_r() 3754 * 3755 * Description: This function uses strpbrk and strspn to break 3756 * string into tokens on sequentially subsequent calls. Return 3757 * NULL when no non-separator characters remain. The first 3758 * argument is NULL for subsequent calls. 3759 */ 3760 static char * 3761 sd_strtok_r(char *string, const char *sepset, char **lasts) 3762 { 3763 char *q, *r; 3764 3765 /* First or subsequent call */ 3766 if (string == NULL) 3767 string = *lasts; 3768 3769 if (string == NULL) 3770 return (NULL); 3771 3772 /* Skip leading separators */ 3773 q = string + strspn(string, sepset); 3774 3775 if (*q == '\0') 3776 return (NULL); 3777 3778 if ((r = strpbrk(q, sepset)) == NULL) 3779 *lasts = NULL; 3780 else { 3781 *r = '\0'; 3782 *lasts = r + 1; 3783 } 3784 return (q); 3785 } 3786 3787 /* 3788 * Function: sd_set_properties() 3789 * 3790 * Description: Set device properties based on the improved 3791 * format sd-config-list. 3792 * 3793 * Arguments: un - driver soft state (unit) structure 3794 * name - supported tunable name 3795 * value - tunable value 3796 */ 3797 static void 3798 sd_set_properties(struct sd_lun *un, char *name, char *value) 3799 { 3800 char *endptr = NULL; 3801 long val = 0; 3802 3803 if (strcasecmp(name, "cache-nonvolatile") == 0) { 3804 if (strcasecmp(value, "true") == 0) { 3805 un->un_f_suppress_cache_flush = TRUE; 3806 } else if (strcasecmp(value, "false") == 0) { 3807 un->un_f_suppress_cache_flush = FALSE; 3808 } else { 3809 goto value_invalid; 3810 } 3811 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3812 "suppress_cache_flush flag set to %d\n", 3813 un->un_f_suppress_cache_flush); 3814 return; 3815 } 3816 3817 if (strcasecmp(name, "controller-type") == 0) { 3818 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3819 un->un_ctype = val; 3820 } else { 3821 goto value_invalid; 3822 } 3823 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3824 "ctype set to %d\n", un->un_ctype); 3825 return; 3826 } 3827 3828 if (strcasecmp(name, "delay-busy") == 0) { 3829 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3830 un->un_busy_timeout = drv_usectohz(val / 1000); 3831 } else { 3832 goto value_invalid; 3833 } 3834 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3835 "busy_timeout set to %d\n", un->un_busy_timeout); 3836 return; 3837 } 3838 3839 if (strcasecmp(name, "disksort") == 0) { 3840 if (strcasecmp(value, "true") == 0) { 3841 un->un_f_disksort_disabled = FALSE; 3842 } else if (strcasecmp(value, "false") == 0) { 3843 un->un_f_disksort_disabled = TRUE; 3844 } else { 3845 goto value_invalid; 3846 } 3847 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3848 "disksort disabled flag set to %d\n", 3849 un->un_f_disksort_disabled); 3850 return; 3851 } 3852 3853 if (strcasecmp(name, "timeout-releasereservation") == 0) { 3854 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3855 un->un_reserve_release_time = val; 3856 } else { 3857 goto value_invalid; 3858 } 3859 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3860 "reservation release timeout set to %d\n", 3861 un->un_reserve_release_time); 3862 return; 3863 } 3864 3865 if (strcasecmp(name, "reset-lun") == 0) { 3866 if (strcasecmp(value, "true") == 0) { 3867 un->un_f_lun_reset_enabled = TRUE; 3868 } else if (strcasecmp(value, "false") == 0) { 3869 un->un_f_lun_reset_enabled = FALSE; 3870 } else { 3871 goto value_invalid; 3872 } 3873 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3874 "lun reset enabled flag set to %d\n", 3875 un->un_f_lun_reset_enabled); 3876 return; 3877 } 3878 3879 if (strcasecmp(name, "retries-busy") == 0) { 3880 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3881 un->un_busy_retry_count = val; 3882 } else { 3883 goto value_invalid; 3884 } 3885 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3886 "busy retry count set to %d\n", un->un_busy_retry_count); 3887 return; 3888 } 3889 3890 if (strcasecmp(name, "retries-timeout") == 0) { 3891 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3892 un->un_retry_count = val; 3893 } else { 3894 goto value_invalid; 3895 } 3896 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3897 "timeout retry count set to %d\n", un->un_retry_count); 3898 return; 3899 } 3900 3901 if (strcasecmp(name, "retries-notready") == 0) { 3902 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3903 un->un_notready_retry_count = val; 3904 } else { 3905 goto value_invalid; 3906 } 3907 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3908 "notready retry count set to %d\n", 3909 un->un_notready_retry_count); 3910 return; 3911 } 3912 3913 if (strcasecmp(name, "retries-reset") == 0) { 3914 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3915 un->un_reset_retry_count = val; 3916 } else { 3917 goto value_invalid; 3918 } 3919 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3920 "reset retry count set to %d\n", 3921 un->un_reset_retry_count); 3922 return; 3923 } 3924 3925 if (strcasecmp(name, "throttle-max") == 0) { 3926 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3927 un->un_saved_throttle = un->un_throttle = val; 3928 } else { 3929 goto value_invalid; 3930 } 3931 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3932 "throttle set to %d\n", un->un_throttle); 3933 } 3934 3935 if (strcasecmp(name, "throttle-min") == 0) { 3936 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 3937 un->un_min_throttle = val; 3938 } else { 3939 goto value_invalid; 3940 } 3941 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3942 "min throttle set to %d\n", un->un_min_throttle); 3943 } 3944 3945 /* 3946 * Validate the throttle values. 3947 * If any of the numbers are invalid, set everything to defaults. 3948 */ 3949 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 3950 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 3951 (un->un_min_throttle > un->un_throttle)) { 3952 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 3953 un->un_min_throttle = sd_min_throttle; 3954 } 3955 return; 3956 3957 value_invalid: 3958 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 3959 "value of prop %s is invalid\n", name); 3960 } 3961 3962 /* 3963 * Function: sd_get_tunables_from_conf() 3964 * 3965 * 3966 * This function reads the data list from the sd.conf file and pulls 3967 * the values that can have numeric values as arguments and places 3968 * the values in the appropriate sd_tunables member. 3969 * Since the order of the data list members varies across platforms 3970 * This function reads them from the data list in a platform specific 3971 * order and places them into the correct sd_tunable member that is 3972 * consistent across all platforms. 3973 */ 3974 static void 3975 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 3976 sd_tunables *values) 3977 { 3978 int i; 3979 int mask; 3980 3981 bzero(values, sizeof (sd_tunables)); 3982 3983 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3984 3985 mask = 1 << i; 3986 if (mask > flags) { 3987 break; 3988 } 3989 3990 switch (mask & flags) { 3991 case 0: /* This mask bit not set in flags */ 3992 continue; 3993 case SD_CONF_BSET_THROTTLE: 3994 values->sdt_throttle = data_list[i]; 3995 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3996 "sd_get_tunables_from_conf: throttle = %d\n", 3997 values->sdt_throttle); 3998 break; 3999 case SD_CONF_BSET_CTYPE: 4000 values->sdt_ctype = data_list[i]; 4001 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4002 "sd_get_tunables_from_conf: ctype = %d\n", 4003 values->sdt_ctype); 4004 break; 4005 case SD_CONF_BSET_NRR_COUNT: 4006 values->sdt_not_rdy_retries = data_list[i]; 4007 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4008 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 4009 values->sdt_not_rdy_retries); 4010 break; 4011 case SD_CONF_BSET_BSY_RETRY_COUNT: 4012 values->sdt_busy_retries = data_list[i]; 4013 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4014 "sd_get_tunables_from_conf: busy_retries = %d\n", 4015 values->sdt_busy_retries); 4016 break; 4017 case SD_CONF_BSET_RST_RETRIES: 4018 values->sdt_reset_retries = data_list[i]; 4019 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4020 "sd_get_tunables_from_conf: reset_retries = %d\n", 4021 values->sdt_reset_retries); 4022 break; 4023 case SD_CONF_BSET_RSV_REL_TIME: 4024 values->sdt_reserv_rel_time = data_list[i]; 4025 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4026 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 4027 values->sdt_reserv_rel_time); 4028 break; 4029 case SD_CONF_BSET_MIN_THROTTLE: 4030 values->sdt_min_throttle = data_list[i]; 4031 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4032 "sd_get_tunables_from_conf: min_throttle = %d\n", 4033 values->sdt_min_throttle); 4034 break; 4035 case SD_CONF_BSET_DISKSORT_DISABLED: 4036 values->sdt_disk_sort_dis = data_list[i]; 4037 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4038 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 4039 values->sdt_disk_sort_dis); 4040 break; 4041 case SD_CONF_BSET_LUN_RESET_ENABLED: 4042 values->sdt_lun_reset_enable = data_list[i]; 4043 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4044 "sd_get_tunables_from_conf: lun_reset_enable = %d" 4045 "\n", values->sdt_lun_reset_enable); 4046 break; 4047 case SD_CONF_BSET_CACHE_IS_NV: 4048 values->sdt_suppress_cache_flush = data_list[i]; 4049 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4050 "sd_get_tunables_from_conf: \ 4051 suppress_cache_flush = %d" 4052 "\n", values->sdt_suppress_cache_flush); 4053 break; 4054 } 4055 } 4056 } 4057 4058 /* 4059 * Function: sd_process_sdconf_table 4060 * 4061 * Description: Search the static configuration table for a match on the 4062 * inquiry vid/pid and update the driver soft state structure 4063 * according to the table property values for the device. 4064 * 4065 * The form of a configuration table entry is: 4066 * <vid+pid>,<flags>,<property-data> 4067 * "SEAGATE ST42400N",1,0x40000, 4068 * 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 4069 * 4070 * Arguments: un - driver soft state (unit) structure 4071 */ 4072 4073 static void 4074 sd_process_sdconf_table(struct sd_lun *un) 4075 { 4076 char *id = NULL; 4077 int table_index; 4078 int idlen; 4079 4080 ASSERT(un != NULL); 4081 for (table_index = 0; table_index < sd_disk_table_size; 4082 table_index++) { 4083 id = sd_disk_table[table_index].device_id; 4084 idlen = strlen(id); 4085 if (idlen == 0) { 4086 continue; 4087 } 4088 4089 /* 4090 * The static configuration table currently does not 4091 * implement version 10 properties. Additionally, 4092 * multiple data-property-name entries are not 4093 * implemented in the static configuration table. 4094 */ 4095 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4096 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4097 "sd_process_sdconf_table: disk %s\n", id); 4098 sd_set_vers1_properties(un, 4099 sd_disk_table[table_index].flags, 4100 sd_disk_table[table_index].properties); 4101 break; 4102 } 4103 } 4104 } 4105 4106 4107 /* 4108 * Function: sd_sdconf_id_match 4109 * 4110 * Description: This local function implements a case sensitive vid/pid 4111 * comparison as well as the boundary cases of wild card and 4112 * multiple blanks. 4113 * 4114 * Note: An implicit assumption made here is that the scsi 4115 * inquiry structure will always keep the vid, pid and 4116 * revision strings in consecutive sequence, so they can be 4117 * read as a single string. If this assumption is not the 4118 * case, a separate string, to be used for the check, needs 4119 * to be built with these strings concatenated. 4120 * 4121 * Arguments: un - driver soft state (unit) structure 4122 * id - table or config file vid/pid 4123 * idlen - length of the vid/pid (bytes) 4124 * 4125 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4126 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4127 */ 4128 4129 static int 4130 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 4131 { 4132 struct scsi_inquiry *sd_inq; 4133 int rval = SD_SUCCESS; 4134 4135 ASSERT(un != NULL); 4136 sd_inq = un->un_sd->sd_inq; 4137 ASSERT(id != NULL); 4138 4139 /* 4140 * We use the inq_vid as a pointer to a buffer containing the 4141 * vid and pid and use the entire vid/pid length of the table 4142 * entry for the comparison. This works because the inq_pid 4143 * data member follows inq_vid in the scsi_inquiry structure. 4144 */ 4145 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 4146 /* 4147 * The user id string is compared to the inquiry vid/pid 4148 * using a case insensitive comparison and ignoring 4149 * multiple spaces. 4150 */ 4151 rval = sd_blank_cmp(un, id, idlen); 4152 if (rval != SD_SUCCESS) { 4153 /* 4154 * User id strings that start and end with a "*" 4155 * are a special case. These do not have a 4156 * specific vendor, and the product string can 4157 * appear anywhere in the 16 byte PID portion of 4158 * the inquiry data. This is a simple strstr() 4159 * type search for the user id in the inquiry data. 4160 */ 4161 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 4162 char *pidptr = &id[1]; 4163 int i; 4164 int j; 4165 int pidstrlen = idlen - 2; 4166 j = sizeof (SD_INQUIRY(un)->inq_pid) - 4167 pidstrlen; 4168 4169 if (j < 0) { 4170 return (SD_FAILURE); 4171 } 4172 for (i = 0; i < j; i++) { 4173 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 4174 pidptr, pidstrlen) == 0) { 4175 rval = SD_SUCCESS; 4176 break; 4177 } 4178 } 4179 } 4180 } 4181 } 4182 return (rval); 4183 } 4184 4185 4186 /* 4187 * Function: sd_blank_cmp 4188 * 4189 * Description: If the id string starts and ends with a space, treat 4190 * multiple consecutive spaces as equivalent to a single 4191 * space. For example, this causes a sd_disk_table entry 4192 * of " NEC CDROM " to match a device's id string of 4193 * "NEC CDROM". 4194 * 4195 * Note: The success exit condition for this routine is if 4196 * the pointer to the table entry is '\0' and the cnt of 4197 * the inquiry length is zero. This will happen if the inquiry 4198 * string returned by the device is padded with spaces to be 4199 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 4200 * SCSI spec states that the inquiry string is to be padded with 4201 * spaces. 4202 * 4203 * Arguments: un - driver soft state (unit) structure 4204 * id - table or config file vid/pid 4205 * idlen - length of the vid/pid (bytes) 4206 * 4207 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4208 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4209 */ 4210 4211 static int 4212 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 4213 { 4214 char *p1; 4215 char *p2; 4216 int cnt; 4217 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 4218 sizeof (SD_INQUIRY(un)->inq_pid); 4219 4220 ASSERT(un != NULL); 4221 p2 = un->un_sd->sd_inq->inq_vid; 4222 ASSERT(id != NULL); 4223 p1 = id; 4224 4225 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 4226 /* 4227 * Note: string p1 is terminated by a NUL but string p2 4228 * isn't. The end of p2 is determined by cnt. 4229 */ 4230 for (;;) { 4231 /* skip over any extra blanks in both strings */ 4232 while ((*p1 != '\0') && (*p1 == ' ')) { 4233 p1++; 4234 } 4235 while ((cnt != 0) && (*p2 == ' ')) { 4236 p2++; 4237 cnt--; 4238 } 4239 4240 /* compare the two strings */ 4241 if ((cnt == 0) || 4242 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 4243 break; 4244 } 4245 while ((cnt > 0) && 4246 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 4247 p1++; 4248 p2++; 4249 cnt--; 4250 } 4251 } 4252 } 4253 4254 /* return SD_SUCCESS if both strings match */ 4255 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 4256 } 4257 4258 4259 /* 4260 * Function: sd_chk_vers1_data 4261 * 4262 * Description: Verify the version 1 device properties provided by the 4263 * user via the configuration file 4264 * 4265 * Arguments: un - driver soft state (unit) structure 4266 * flags - integer mask indicating properties to be set 4267 * prop_list - integer list of property values 4268 * list_len - number of the elements 4269 * 4270 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4271 * SD_FAILURE - Indicates the user provided data is invalid 4272 */ 4273 4274 static int 4275 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4276 int list_len, char *dataname_ptr) 4277 { 4278 int i; 4279 int mask = 1; 4280 int index = 0; 4281 4282 ASSERT(un != NULL); 4283 4284 /* Check for a NULL property name and list */ 4285 if (dataname_ptr == NULL) { 4286 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4287 "sd_chk_vers1_data: NULL data property name."); 4288 return (SD_FAILURE); 4289 } 4290 if (prop_list == NULL) { 4291 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4292 "sd_chk_vers1_data: %s NULL data property list.", 4293 dataname_ptr); 4294 return (SD_FAILURE); 4295 } 4296 4297 /* Display a warning if undefined bits are set in the flags */ 4298 if (flags & ~SD_CONF_BIT_MASK) { 4299 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4300 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4301 "Properties not set.", 4302 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4303 return (SD_FAILURE); 4304 } 4305 4306 /* 4307 * Verify the length of the list by identifying the highest bit set 4308 * in the flags and validating that the property list has a length 4309 * up to the index of this bit. 4310 */ 4311 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4312 if (flags & mask) { 4313 index++; 4314 } 4315 mask = 1 << i; 4316 } 4317 if (list_len < (index + 2)) { 4318 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4319 "sd_chk_vers1_data: " 4320 "Data property list %s size is incorrect. " 4321 "Properties not set.", dataname_ptr); 4322 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4323 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4324 return (SD_FAILURE); 4325 } 4326 return (SD_SUCCESS); 4327 } 4328 4329 4330 /* 4331 * Function: sd_set_vers1_properties 4332 * 4333 * Description: Set version 1 device properties based on a property list 4334 * retrieved from the driver configuration file or static 4335 * configuration table. Version 1 properties have the format: 4336 * 4337 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4338 * 4339 * where the prop0 value will be used to set prop0 if bit0 4340 * is set in the flags 4341 * 4342 * Arguments: un - driver soft state (unit) structure 4343 * flags - integer mask indicating properties to be set 4344 * prop_list - integer list of property values 4345 */ 4346 4347 static void 4348 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4349 { 4350 ASSERT(un != NULL); 4351 4352 /* 4353 * Set the flag to indicate cache is to be disabled. An attempt 4354 * to disable the cache via sd_cache_control() will be made 4355 * later during attach once the basic initialization is complete. 4356 */ 4357 if (flags & SD_CONF_BSET_NOCACHE) { 4358 un->un_f_opt_disable_cache = TRUE; 4359 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4360 "sd_set_vers1_properties: caching disabled flag set\n"); 4361 } 4362 4363 /* CD-specific configuration parameters */ 4364 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4365 un->un_f_cfg_playmsf_bcd = TRUE; 4366 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4367 "sd_set_vers1_properties: playmsf_bcd set\n"); 4368 } 4369 if (flags & SD_CONF_BSET_READSUB_BCD) { 4370 un->un_f_cfg_readsub_bcd = TRUE; 4371 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4372 "sd_set_vers1_properties: readsub_bcd set\n"); 4373 } 4374 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4375 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4376 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4377 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4378 } 4379 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4380 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4381 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4382 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4383 } 4384 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4385 un->un_f_cfg_no_read_header = TRUE; 4386 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4387 "sd_set_vers1_properties: no_read_header set\n"); 4388 } 4389 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4390 un->un_f_cfg_read_cd_xd4 = TRUE; 4391 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4392 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4393 } 4394 4395 /* Support for devices which do not have valid/unique serial numbers */ 4396 if (flags & SD_CONF_BSET_FAB_DEVID) { 4397 un->un_f_opt_fab_devid = TRUE; 4398 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4399 "sd_set_vers1_properties: fab_devid bit set\n"); 4400 } 4401 4402 /* Support for user throttle configuration */ 4403 if (flags & SD_CONF_BSET_THROTTLE) { 4404 ASSERT(prop_list != NULL); 4405 un->un_saved_throttle = un->un_throttle = 4406 prop_list->sdt_throttle; 4407 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4408 "sd_set_vers1_properties: throttle set to %d\n", 4409 prop_list->sdt_throttle); 4410 } 4411 4412 /* Set the per disk retry count according to the conf file or table. */ 4413 if (flags & SD_CONF_BSET_NRR_COUNT) { 4414 ASSERT(prop_list != NULL); 4415 if (prop_list->sdt_not_rdy_retries) { 4416 un->un_notready_retry_count = 4417 prop_list->sdt_not_rdy_retries; 4418 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4419 "sd_set_vers1_properties: not ready retry count" 4420 " set to %d\n", un->un_notready_retry_count); 4421 } 4422 } 4423 4424 /* The controller type is reported for generic disk driver ioctls */ 4425 if (flags & SD_CONF_BSET_CTYPE) { 4426 ASSERT(prop_list != NULL); 4427 switch (prop_list->sdt_ctype) { 4428 case CTYPE_CDROM: 4429 un->un_ctype = prop_list->sdt_ctype; 4430 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4431 "sd_set_vers1_properties: ctype set to " 4432 "CTYPE_CDROM\n"); 4433 break; 4434 case CTYPE_CCS: 4435 un->un_ctype = prop_list->sdt_ctype; 4436 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4437 "sd_set_vers1_properties: ctype set to " 4438 "CTYPE_CCS\n"); 4439 break; 4440 case CTYPE_ROD: /* RW optical */ 4441 un->un_ctype = prop_list->sdt_ctype; 4442 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4443 "sd_set_vers1_properties: ctype set to " 4444 "CTYPE_ROD\n"); 4445 break; 4446 default: 4447 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4448 "sd_set_vers1_properties: Could not set " 4449 "invalid ctype value (%d)", 4450 prop_list->sdt_ctype); 4451 } 4452 } 4453 4454 /* Purple failover timeout */ 4455 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4456 ASSERT(prop_list != NULL); 4457 un->un_busy_retry_count = 4458 prop_list->sdt_busy_retries; 4459 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4460 "sd_set_vers1_properties: " 4461 "busy retry count set to %d\n", 4462 un->un_busy_retry_count); 4463 } 4464 4465 /* Purple reset retry count */ 4466 if (flags & SD_CONF_BSET_RST_RETRIES) { 4467 ASSERT(prop_list != NULL); 4468 un->un_reset_retry_count = 4469 prop_list->sdt_reset_retries; 4470 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4471 "sd_set_vers1_properties: " 4472 "reset retry count set to %d\n", 4473 un->un_reset_retry_count); 4474 } 4475 4476 /* Purple reservation release timeout */ 4477 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4478 ASSERT(prop_list != NULL); 4479 un->un_reserve_release_time = 4480 prop_list->sdt_reserv_rel_time; 4481 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4482 "sd_set_vers1_properties: " 4483 "reservation release timeout set to %d\n", 4484 un->un_reserve_release_time); 4485 } 4486 4487 /* 4488 * Driver flag telling the driver to verify that no commands are pending 4489 * for a device before issuing a Test Unit Ready. This is a workaround 4490 * for a firmware bug in some Seagate eliteI drives. 4491 */ 4492 if (flags & SD_CONF_BSET_TUR_CHECK) { 4493 un->un_f_cfg_tur_check = TRUE; 4494 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4495 "sd_set_vers1_properties: tur queue check set\n"); 4496 } 4497 4498 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4499 un->un_min_throttle = prop_list->sdt_min_throttle; 4500 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4501 "sd_set_vers1_properties: min throttle set to %d\n", 4502 un->un_min_throttle); 4503 } 4504 4505 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4506 un->un_f_disksort_disabled = 4507 (prop_list->sdt_disk_sort_dis != 0) ? 4508 TRUE : FALSE; 4509 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4510 "sd_set_vers1_properties: disksort disabled " 4511 "flag set to %d\n", 4512 prop_list->sdt_disk_sort_dis); 4513 } 4514 4515 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4516 un->un_f_lun_reset_enabled = 4517 (prop_list->sdt_lun_reset_enable != 0) ? 4518 TRUE : FALSE; 4519 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4520 "sd_set_vers1_properties: lun reset enabled " 4521 "flag set to %d\n", 4522 prop_list->sdt_lun_reset_enable); 4523 } 4524 4525 if (flags & SD_CONF_BSET_CACHE_IS_NV) { 4526 un->un_f_suppress_cache_flush = 4527 (prop_list->sdt_suppress_cache_flush != 0) ? 4528 TRUE : FALSE; 4529 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4530 "sd_set_vers1_properties: suppress_cache_flush " 4531 "flag set to %d\n", 4532 prop_list->sdt_suppress_cache_flush); 4533 } 4534 4535 /* 4536 * Validate the throttle values. 4537 * If any of the numbers are invalid, set everything to defaults. 4538 */ 4539 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4540 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4541 (un->un_min_throttle > un->un_throttle)) { 4542 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4543 un->un_min_throttle = sd_min_throttle; 4544 } 4545 } 4546 4547 /* 4548 * Function: sd_is_lsi() 4549 * 4550 * Description: Check for lsi devices, step through the static device 4551 * table to match vid/pid. 4552 * 4553 * Args: un - ptr to sd_lun 4554 * 4555 * Notes: When creating new LSI property, need to add the new LSI property 4556 * to this function. 4557 */ 4558 static void 4559 sd_is_lsi(struct sd_lun *un) 4560 { 4561 char *id = NULL; 4562 int table_index; 4563 int idlen; 4564 void *prop; 4565 4566 ASSERT(un != NULL); 4567 for (table_index = 0; table_index < sd_disk_table_size; 4568 table_index++) { 4569 id = sd_disk_table[table_index].device_id; 4570 idlen = strlen(id); 4571 if (idlen == 0) { 4572 continue; 4573 } 4574 4575 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4576 prop = sd_disk_table[table_index].properties; 4577 if (prop == &lsi_properties || 4578 prop == &lsi_oem_properties || 4579 prop == &lsi_properties_scsi || 4580 prop == &symbios_properties) { 4581 un->un_f_cfg_is_lsi = TRUE; 4582 } 4583 break; 4584 } 4585 } 4586 } 4587 4588 /* 4589 * Function: sd_get_physical_geometry 4590 * 4591 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4592 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4593 * target, and use this information to initialize the physical 4594 * geometry cache specified by pgeom_p. 4595 * 4596 * MODE SENSE is an optional command, so failure in this case 4597 * does not necessarily denote an error. We want to use the 4598 * MODE SENSE commands to derive the physical geometry of the 4599 * device, but if either command fails, the logical geometry is 4600 * used as the fallback for disk label geometry in cmlb. 4601 * 4602 * This requires that un->un_blockcount and un->un_tgt_blocksize 4603 * have already been initialized for the current target and 4604 * that the current values be passed as args so that we don't 4605 * end up ever trying to use -1 as a valid value. This could 4606 * happen if either value is reset while we're not holding 4607 * the mutex. 4608 * 4609 * Arguments: un - driver soft state (unit) structure 4610 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4611 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4612 * to use the USCSI "direct" chain and bypass the normal 4613 * command waitq. 4614 * 4615 * Context: Kernel thread only (can sleep). 4616 */ 4617 4618 static int 4619 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4620 diskaddr_t capacity, int lbasize, int path_flag) 4621 { 4622 struct mode_format *page3p; 4623 struct mode_geometry *page4p; 4624 struct mode_header *headerp; 4625 int sector_size; 4626 int nsect; 4627 int nhead; 4628 int ncyl; 4629 int intrlv; 4630 int spc; 4631 diskaddr_t modesense_capacity; 4632 int rpm; 4633 int bd_len; 4634 int mode_header_length; 4635 uchar_t *p3bufp; 4636 uchar_t *p4bufp; 4637 int cdbsize; 4638 int ret = EIO; 4639 sd_ssc_t *ssc; 4640 int status; 4641 4642 ASSERT(un != NULL); 4643 4644 if (lbasize == 0) { 4645 if (ISCD(un)) { 4646 lbasize = 2048; 4647 } else { 4648 lbasize = un->un_sys_blocksize; 4649 } 4650 } 4651 pgeom_p->g_secsize = (unsigned short)lbasize; 4652 4653 /* 4654 * If the unit is a cd/dvd drive MODE SENSE page three 4655 * and MODE SENSE page four are reserved (see SBC spec 4656 * and MMC spec). To prevent soft errors just return 4657 * using the default LBA size. 4658 */ 4659 if (ISCD(un)) 4660 return (ret); 4661 4662 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4663 4664 /* 4665 * Retrieve MODE SENSE page 3 - Format Device Page 4666 */ 4667 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4668 ssc = sd_ssc_init(un); 4669 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp, 4670 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag); 4671 if (status != 0) { 4672 SD_ERROR(SD_LOG_COMMON, un, 4673 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4674 goto page3_exit; 4675 } 4676 4677 /* 4678 * Determine size of Block Descriptors in order to locate the mode 4679 * page data. ATAPI devices return 0, SCSI devices should return 4680 * MODE_BLK_DESC_LENGTH. 4681 */ 4682 headerp = (struct mode_header *)p3bufp; 4683 if (un->un_f_cfg_is_atapi == TRUE) { 4684 struct mode_header_grp2 *mhp = 4685 (struct mode_header_grp2 *)headerp; 4686 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4687 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4688 } else { 4689 mode_header_length = MODE_HEADER_LENGTH; 4690 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4691 } 4692 4693 if (bd_len > MODE_BLK_DESC_LENGTH) { 4694 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4695 "sd_get_physical_geometry: received unexpected bd_len " 4696 "of %d, page3\n", bd_len); 4697 status = EIO; 4698 goto page3_exit; 4699 } 4700 4701 page3p = (struct mode_format *) 4702 ((caddr_t)headerp + mode_header_length + bd_len); 4703 4704 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 4705 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4706 "sd_get_physical_geometry: mode sense pg3 code mismatch " 4707 "%d\n", page3p->mode_page.code); 4708 status = EIO; 4709 goto page3_exit; 4710 } 4711 4712 /* 4713 * Use this physical geometry data only if BOTH MODE SENSE commands 4714 * complete successfully; otherwise, revert to the logical geometry. 4715 * So, we need to save everything in temporary variables. 4716 */ 4717 sector_size = BE_16(page3p->data_bytes_sect); 4718 4719 /* 4720 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 4721 */ 4722 if (sector_size == 0) { 4723 sector_size = un->un_sys_blocksize; 4724 } else { 4725 sector_size &= ~(un->un_sys_blocksize - 1); 4726 } 4727 4728 nsect = BE_16(page3p->sect_track); 4729 intrlv = BE_16(page3p->interleave); 4730 4731 SD_INFO(SD_LOG_COMMON, un, 4732 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 4733 SD_INFO(SD_LOG_COMMON, un, 4734 " mode page: %d; nsect: %d; sector size: %d;\n", 4735 page3p->mode_page.code, nsect, sector_size); 4736 SD_INFO(SD_LOG_COMMON, un, 4737 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 4738 BE_16(page3p->track_skew), 4739 BE_16(page3p->cylinder_skew)); 4740 4741 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 4742 4743 /* 4744 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 4745 */ 4746 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 4747 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp, 4748 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag); 4749 if (status != 0) { 4750 SD_ERROR(SD_LOG_COMMON, un, 4751 "sd_get_physical_geometry: mode sense page 4 failed\n"); 4752 goto page4_exit; 4753 } 4754 4755 /* 4756 * Determine size of Block Descriptors in order to locate the mode 4757 * page data. ATAPI devices return 0, SCSI devices should return 4758 * MODE_BLK_DESC_LENGTH. 4759 */ 4760 headerp = (struct mode_header *)p4bufp; 4761 if (un->un_f_cfg_is_atapi == TRUE) { 4762 struct mode_header_grp2 *mhp = 4763 (struct mode_header_grp2 *)headerp; 4764 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4765 } else { 4766 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4767 } 4768 4769 if (bd_len > MODE_BLK_DESC_LENGTH) { 4770 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4771 "sd_get_physical_geometry: received unexpected bd_len of " 4772 "%d, page4\n", bd_len); 4773 status = EIO; 4774 goto page4_exit; 4775 } 4776 4777 page4p = (struct mode_geometry *) 4778 ((caddr_t)headerp + mode_header_length + bd_len); 4779 4780 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 4781 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4782 "sd_get_physical_geometry: mode sense pg4 code mismatch " 4783 "%d\n", page4p->mode_page.code); 4784 status = EIO; 4785 goto page4_exit; 4786 } 4787 4788 /* 4789 * Stash the data now, after we know that both commands completed. 4790 */ 4791 4792 4793 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 4794 spc = nhead * nsect; 4795 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 4796 rpm = BE_16(page4p->rpm); 4797 4798 modesense_capacity = spc * ncyl; 4799 4800 SD_INFO(SD_LOG_COMMON, un, 4801 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 4802 SD_INFO(SD_LOG_COMMON, un, 4803 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 4804 SD_INFO(SD_LOG_COMMON, un, 4805 " computed capacity(h*s*c): %d;\n", modesense_capacity); 4806 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 4807 (void *)pgeom_p, capacity); 4808 4809 /* 4810 * Compensate if the drive's geometry is not rectangular, i.e., 4811 * the product of C * H * S returned by MODE SENSE >= that returned 4812 * by read capacity. This is an idiosyncrasy of the original x86 4813 * disk subsystem. 4814 */ 4815 if (modesense_capacity >= capacity) { 4816 SD_INFO(SD_LOG_COMMON, un, 4817 "sd_get_physical_geometry: adjusting acyl; " 4818 "old: %d; new: %d\n", pgeom_p->g_acyl, 4819 (modesense_capacity - capacity + spc - 1) / spc); 4820 if (sector_size != 0) { 4821 /* 1243403: NEC D38x7 drives don't support sec size */ 4822 pgeom_p->g_secsize = (unsigned short)sector_size; 4823 } 4824 pgeom_p->g_nsect = (unsigned short)nsect; 4825 pgeom_p->g_nhead = (unsigned short)nhead; 4826 pgeom_p->g_capacity = capacity; 4827 pgeom_p->g_acyl = 4828 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 4829 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 4830 } 4831 4832 pgeom_p->g_rpm = (unsigned short)rpm; 4833 pgeom_p->g_intrlv = (unsigned short)intrlv; 4834 ret = 0; 4835 4836 SD_INFO(SD_LOG_COMMON, un, 4837 "sd_get_physical_geometry: mode sense geometry:\n"); 4838 SD_INFO(SD_LOG_COMMON, un, 4839 " nsect: %d; sector size: %d; interlv: %d\n", 4840 nsect, sector_size, intrlv); 4841 SD_INFO(SD_LOG_COMMON, un, 4842 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 4843 nhead, ncyl, rpm, modesense_capacity); 4844 SD_INFO(SD_LOG_COMMON, un, 4845 "sd_get_physical_geometry: (cached)\n"); 4846 SD_INFO(SD_LOG_COMMON, un, 4847 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 4848 pgeom_p->g_ncyl, pgeom_p->g_acyl, 4849 pgeom_p->g_nhead, pgeom_p->g_nsect); 4850 SD_INFO(SD_LOG_COMMON, un, 4851 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 4852 pgeom_p->g_secsize, pgeom_p->g_capacity, 4853 pgeom_p->g_intrlv, pgeom_p->g_rpm); 4854 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 4855 4856 page4_exit: 4857 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 4858 4859 page3_exit: 4860 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 4861 4862 if (status != 0) { 4863 if (status == EIO) { 4864 /* 4865 * Some disks do not support mode sense(6), we 4866 * should ignore this kind of error(sense key is 4867 * 0x5 - illegal request). 4868 */ 4869 uint8_t *sensep; 4870 int senlen; 4871 4872 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 4873 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 4874 ssc->ssc_uscsi_cmd->uscsi_rqresid); 4875 4876 if (senlen > 0 && 4877 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 4878 sd_ssc_assessment(ssc, 4879 SD_FMT_IGNORE_COMPROMISE); 4880 } else { 4881 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 4882 } 4883 } else { 4884 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 4885 } 4886 } 4887 sd_ssc_fini(ssc); 4888 return (ret); 4889 } 4890 4891 /* 4892 * Function: sd_get_virtual_geometry 4893 * 4894 * Description: Ask the controller to tell us about the target device. 4895 * 4896 * Arguments: un - pointer to softstate 4897 * capacity - disk capacity in #blocks 4898 * lbasize - disk block size in bytes 4899 * 4900 * Context: Kernel thread only 4901 */ 4902 4903 static int 4904 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 4905 diskaddr_t capacity, int lbasize) 4906 { 4907 uint_t geombuf; 4908 int spc; 4909 4910 ASSERT(un != NULL); 4911 4912 /* Set sector size, and total number of sectors */ 4913 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 4914 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 4915 4916 /* Let the HBA tell us its geometry */ 4917 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 4918 4919 /* A value of -1 indicates an undefined "geometry" property */ 4920 if (geombuf == (-1)) { 4921 return (EINVAL); 4922 } 4923 4924 /* Initialize the logical geometry cache. */ 4925 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 4926 lgeom_p->g_nsect = geombuf & 0xffff; 4927 lgeom_p->g_secsize = un->un_sys_blocksize; 4928 4929 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 4930 4931 /* 4932 * Note: The driver originally converted the capacity value from 4933 * target blocks to system blocks. However, the capacity value passed 4934 * to this routine is already in terms of system blocks (this scaling 4935 * is done when the READ CAPACITY command is issued and processed). 4936 * This 'error' may have gone undetected because the usage of g_ncyl 4937 * (which is based upon g_capacity) is very limited within the driver 4938 */ 4939 lgeom_p->g_capacity = capacity; 4940 4941 /* 4942 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 4943 * hba may return zero values if the device has been removed. 4944 */ 4945 if (spc == 0) { 4946 lgeom_p->g_ncyl = 0; 4947 } else { 4948 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 4949 } 4950 lgeom_p->g_acyl = 0; 4951 4952 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 4953 return (0); 4954 4955 } 4956 /* 4957 * Function: sd_update_block_info 4958 * 4959 * Description: Calculate a byte count to sector count bitshift value 4960 * from sector size. 4961 * 4962 * Arguments: un: unit struct. 4963 * lbasize: new target sector size 4964 * capacity: new target capacity, ie. block count 4965 * 4966 * Context: Kernel thread context 4967 */ 4968 4969 static void 4970 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 4971 { 4972 if (lbasize != 0) { 4973 un->un_tgt_blocksize = lbasize; 4974 un->un_f_tgt_blocksize_is_valid = TRUE; 4975 } 4976 4977 if (capacity != 0) { 4978 un->un_blockcount = capacity; 4979 un->un_f_blockcount_is_valid = TRUE; 4980 } 4981 } 4982 4983 4984 /* 4985 * Function: sd_register_devid 4986 * 4987 * Description: This routine will obtain the device id information from the 4988 * target, obtain the serial number, and register the device 4989 * id with the ddi framework. 4990 * 4991 * Arguments: devi - the system's dev_info_t for the device. 4992 * un - driver soft state (unit) structure 4993 * reservation_flag - indicates if a reservation conflict 4994 * occurred during attach 4995 * 4996 * Context: Kernel Thread 4997 */ 4998 static void 4999 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag) 5000 { 5001 int rval = 0; 5002 uchar_t *inq80 = NULL; 5003 size_t inq80_len = MAX_INQUIRY_SIZE; 5004 size_t inq80_resid = 0; 5005 uchar_t *inq83 = NULL; 5006 size_t inq83_len = MAX_INQUIRY_SIZE; 5007 size_t inq83_resid = 0; 5008 int dlen, len; 5009 char *sn; 5010 struct sd_lun *un; 5011 5012 ASSERT(ssc != NULL); 5013 un = ssc->ssc_un; 5014 ASSERT(un != NULL); 5015 ASSERT(mutex_owned(SD_MUTEX(un))); 5016 ASSERT((SD_DEVINFO(un)) == devi); 5017 5018 /* 5019 * If transport has already registered a devid for this target 5020 * then that takes precedence over the driver's determination 5021 * of the devid. 5022 */ 5023 if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) { 5024 ASSERT(un->un_devid); 5025 return; /* use devid registered by the transport */ 5026 } 5027 5028 /* 5029 * This is the case of antiquated Sun disk drives that have the 5030 * FAB_DEVID property set in the disk_table. These drives 5031 * manage the devid's by storing them in last 2 available sectors 5032 * on the drive and have them fabricated by the ddi layer by calling 5033 * ddi_devid_init and passing the DEVID_FAB flag. 5034 */ 5035 if (un->un_f_opt_fab_devid == TRUE) { 5036 /* 5037 * Depending on EINVAL isn't reliable, since a reserved disk 5038 * may result in invalid geometry, so check to make sure a 5039 * reservation conflict did not occur during attach. 5040 */ 5041 if ((sd_get_devid(ssc) == EINVAL) && 5042 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5043 /* 5044 * The devid is invalid AND there is no reservation 5045 * conflict. Fabricate a new devid. 5046 */ 5047 (void) sd_create_devid(ssc); 5048 } 5049 5050 /* Register the devid if it exists */ 5051 if (un->un_devid != NULL) { 5052 (void) ddi_devid_register(SD_DEVINFO(un), 5053 un->un_devid); 5054 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5055 "sd_register_devid: Devid Fabricated\n"); 5056 } 5057 return; 5058 } 5059 5060 /* 5061 * We check the availability of the World Wide Name (0x83) and Unit 5062 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5063 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5064 * 0x83 is available, that is the best choice. Our next choice is 5065 * 0x80. If neither are available, we munge the devid from the device 5066 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5067 * to fabricate a devid for non-Sun qualified disks. 5068 */ 5069 if (sd_check_vpd_page_support(ssc) == 0) { 5070 /* collect page 80 data if available */ 5071 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5072 5073 mutex_exit(SD_MUTEX(un)); 5074 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5075 5076 rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len, 5077 0x01, 0x80, &inq80_resid); 5078 5079 if (rval != 0) { 5080 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5081 kmem_free(inq80, inq80_len); 5082 inq80 = NULL; 5083 inq80_len = 0; 5084 } else if (ddi_prop_exists( 5085 DDI_DEV_T_NONE, SD_DEVINFO(un), 5086 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 5087 INQUIRY_SERIAL_NO) == 0) { 5088 /* 5089 * If we don't already have a serial number 5090 * property, do quick verify of data returned 5091 * and define property. 5092 */ 5093 dlen = inq80_len - inq80_resid; 5094 len = (size_t)inq80[3]; 5095 if ((dlen >= 4) && ((len + 4) <= dlen)) { 5096 /* 5097 * Ensure sn termination, skip leading 5098 * blanks, and create property 5099 * 'inquiry-serial-no'. 5100 */ 5101 sn = (char *)&inq80[4]; 5102 sn[len] = 0; 5103 while (*sn && (*sn == ' ')) 5104 sn++; 5105 if (*sn) { 5106 (void) ddi_prop_update_string( 5107 DDI_DEV_T_NONE, 5108 SD_DEVINFO(un), 5109 INQUIRY_SERIAL_NO, sn); 5110 } 5111 } 5112 } 5113 mutex_enter(SD_MUTEX(un)); 5114 } 5115 5116 /* collect page 83 data if available */ 5117 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5118 mutex_exit(SD_MUTEX(un)); 5119 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 5120 5121 rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len, 5122 0x01, 0x83, &inq83_resid); 5123 5124 if (rval != 0) { 5125 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5126 kmem_free(inq83, inq83_len); 5127 inq83 = NULL; 5128 inq83_len = 0; 5129 } 5130 mutex_enter(SD_MUTEX(un)); 5131 } 5132 } 5133 5134 /* encode best devid possible based on data available */ 5135 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 5136 (char *)ddi_driver_name(SD_DEVINFO(un)), 5137 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 5138 inq80, inq80_len - inq80_resid, inq83, inq83_len - 5139 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 5140 5141 /* devid successfully encoded, register devid */ 5142 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 5143 5144 } else { 5145 /* 5146 * Unable to encode a devid based on data available. 5147 * This is not a Sun qualified disk. Older Sun disk 5148 * drives that have the SD_FAB_DEVID property 5149 * set in the disk_table and non Sun qualified 5150 * disks are treated in the same manner. These 5151 * drives manage the devid's by storing them in 5152 * last 2 available sectors on the drive and 5153 * have them fabricated by the ddi layer by 5154 * calling ddi_devid_init and passing the 5155 * DEVID_FAB flag. 5156 * Create a fabricate devid only if there's no 5157 * fabricate devid existed. 5158 */ 5159 if (sd_get_devid(ssc) == EINVAL) { 5160 (void) sd_create_devid(ssc); 5161 } 5162 un->un_f_opt_fab_devid = TRUE; 5163 5164 /* Register the devid if it exists */ 5165 if (un->un_devid != NULL) { 5166 (void) ddi_devid_register(SD_DEVINFO(un), 5167 un->un_devid); 5168 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5169 "sd_register_devid: devid fabricated using " 5170 "ddi framework\n"); 5171 } 5172 } 5173 5174 /* clean up resources */ 5175 if (inq80 != NULL) { 5176 kmem_free(inq80, inq80_len); 5177 } 5178 if (inq83 != NULL) { 5179 kmem_free(inq83, inq83_len); 5180 } 5181 } 5182 5183 5184 5185 /* 5186 * Function: sd_get_devid 5187 * 5188 * Description: This routine will return 0 if a valid device id has been 5189 * obtained from the target and stored in the soft state. If a 5190 * valid device id has not been previously read and stored, a 5191 * read attempt will be made. 5192 * 5193 * Arguments: un - driver soft state (unit) structure 5194 * 5195 * Return Code: 0 if we successfully get the device id 5196 * 5197 * Context: Kernel Thread 5198 */ 5199 5200 static int 5201 sd_get_devid(sd_ssc_t *ssc) 5202 { 5203 struct dk_devid *dkdevid; 5204 ddi_devid_t tmpid; 5205 uint_t *ip; 5206 size_t sz; 5207 diskaddr_t blk; 5208 int status; 5209 int chksum; 5210 int i; 5211 size_t buffer_size; 5212 struct sd_lun *un; 5213 5214 ASSERT(ssc != NULL); 5215 un = ssc->ssc_un; 5216 ASSERT(un != NULL); 5217 ASSERT(mutex_owned(SD_MUTEX(un))); 5218 5219 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 5220 un); 5221 5222 if (un->un_devid != NULL) { 5223 return (0); 5224 } 5225 5226 mutex_exit(SD_MUTEX(un)); 5227 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5228 (void *)SD_PATH_DIRECT) != 0) { 5229 mutex_enter(SD_MUTEX(un)); 5230 return (EINVAL); 5231 } 5232 5233 /* 5234 * Read and verify device id, stored in the reserved cylinders at the 5235 * end of the disk. Backup label is on the odd sectors of the last 5236 * track of the last cylinder. Device id will be on track of the next 5237 * to last cylinder. 5238 */ 5239 mutex_enter(SD_MUTEX(un)); 5240 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 5241 mutex_exit(SD_MUTEX(un)); 5242 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 5243 status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk, 5244 SD_PATH_DIRECT); 5245 5246 if (status != 0) { 5247 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5248 goto error; 5249 } 5250 5251 /* Validate the revision */ 5252 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 5253 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 5254 status = EINVAL; 5255 goto error; 5256 } 5257 5258 /* Calculate the checksum */ 5259 chksum = 0; 5260 ip = (uint_t *)dkdevid; 5261 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 5262 i++) { 5263 chksum ^= ip[i]; 5264 } 5265 5266 /* Compare the checksums */ 5267 if (DKD_GETCHKSUM(dkdevid) != chksum) { 5268 status = EINVAL; 5269 goto error; 5270 } 5271 5272 /* Validate the device id */ 5273 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 5274 status = EINVAL; 5275 goto error; 5276 } 5277 5278 /* 5279 * Store the device id in the driver soft state 5280 */ 5281 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 5282 tmpid = kmem_alloc(sz, KM_SLEEP); 5283 5284 mutex_enter(SD_MUTEX(un)); 5285 5286 un->un_devid = tmpid; 5287 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 5288 5289 kmem_free(dkdevid, buffer_size); 5290 5291 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 5292 5293 return (status); 5294 error: 5295 mutex_enter(SD_MUTEX(un)); 5296 kmem_free(dkdevid, buffer_size); 5297 return (status); 5298 } 5299 5300 5301 /* 5302 * Function: sd_create_devid 5303 * 5304 * Description: This routine will fabricate the device id and write it 5305 * to the disk. 5306 * 5307 * Arguments: un - driver soft state (unit) structure 5308 * 5309 * Return Code: value of the fabricated device id 5310 * 5311 * Context: Kernel Thread 5312 */ 5313 5314 static ddi_devid_t 5315 sd_create_devid(sd_ssc_t *ssc) 5316 { 5317 struct sd_lun *un; 5318 5319 ASSERT(ssc != NULL); 5320 un = ssc->ssc_un; 5321 ASSERT(un != NULL); 5322 5323 /* Fabricate the devid */ 5324 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 5325 == DDI_FAILURE) { 5326 return (NULL); 5327 } 5328 5329 /* Write the devid to disk */ 5330 if (sd_write_deviceid(ssc) != 0) { 5331 ddi_devid_free(un->un_devid); 5332 un->un_devid = NULL; 5333 } 5334 5335 return (un->un_devid); 5336 } 5337 5338 5339 /* 5340 * Function: sd_write_deviceid 5341 * 5342 * Description: This routine will write the device id to the disk 5343 * reserved sector. 5344 * 5345 * Arguments: un - driver soft state (unit) structure 5346 * 5347 * Return Code: EINVAL 5348 * value returned by sd_send_scsi_cmd 5349 * 5350 * Context: Kernel Thread 5351 */ 5352 5353 static int 5354 sd_write_deviceid(sd_ssc_t *ssc) 5355 { 5356 struct dk_devid *dkdevid; 5357 diskaddr_t blk; 5358 uint_t *ip, chksum; 5359 int status; 5360 int i; 5361 struct sd_lun *un; 5362 5363 ASSERT(ssc != NULL); 5364 un = ssc->ssc_un; 5365 ASSERT(un != NULL); 5366 ASSERT(mutex_owned(SD_MUTEX(un))); 5367 5368 mutex_exit(SD_MUTEX(un)); 5369 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5370 (void *)SD_PATH_DIRECT) != 0) { 5371 mutex_enter(SD_MUTEX(un)); 5372 return (-1); 5373 } 5374 5375 5376 /* Allocate the buffer */ 5377 dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 5378 5379 /* Fill in the revision */ 5380 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 5381 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 5382 5383 /* Copy in the device id */ 5384 mutex_enter(SD_MUTEX(un)); 5385 bcopy(un->un_devid, &dkdevid->dkd_devid, 5386 ddi_devid_sizeof(un->un_devid)); 5387 mutex_exit(SD_MUTEX(un)); 5388 5389 /* Calculate the checksum */ 5390 chksum = 0; 5391 ip = (uint_t *)dkdevid; 5392 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 5393 i++) { 5394 chksum ^= ip[i]; 5395 } 5396 5397 /* Fill-in checksum */ 5398 DKD_FORMCHKSUM(chksum, dkdevid); 5399 5400 /* Write the reserved sector */ 5401 status = sd_send_scsi_WRITE(ssc, dkdevid, un->un_sys_blocksize, blk, 5402 SD_PATH_DIRECT); 5403 if (status != 0) 5404 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5405 5406 kmem_free(dkdevid, un->un_sys_blocksize); 5407 5408 mutex_enter(SD_MUTEX(un)); 5409 return (status); 5410 } 5411 5412 5413 /* 5414 * Function: sd_check_vpd_page_support 5415 * 5416 * Description: This routine sends an inquiry command with the EVPD bit set and 5417 * a page code of 0x00 to the device. It is used to determine which 5418 * vital product pages are available to find the devid. We are 5419 * looking for pages 0x83 or 0x80. If we return a negative 1, the 5420 * device does not support that command. 5421 * 5422 * Arguments: un - driver soft state (unit) structure 5423 * 5424 * Return Code: 0 - success 5425 * 1 - check condition 5426 * 5427 * Context: This routine can sleep. 5428 */ 5429 5430 static int 5431 sd_check_vpd_page_support(sd_ssc_t *ssc) 5432 { 5433 uchar_t *page_list = NULL; 5434 uchar_t page_length = 0xff; /* Use max possible length */ 5435 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5436 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5437 int rval = 0; 5438 int counter; 5439 struct sd_lun *un; 5440 5441 ASSERT(ssc != NULL); 5442 un = ssc->ssc_un; 5443 ASSERT(un != NULL); 5444 ASSERT(mutex_owned(SD_MUTEX(un))); 5445 5446 mutex_exit(SD_MUTEX(un)); 5447 5448 /* 5449 * We'll set the page length to the maximum to save figuring it out 5450 * with an additional call. 5451 */ 5452 page_list = kmem_zalloc(page_length, KM_SLEEP); 5453 5454 rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd, 5455 page_code, NULL); 5456 5457 if (rval != 0) 5458 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5459 5460 mutex_enter(SD_MUTEX(un)); 5461 5462 /* 5463 * Now we must validate that the device accepted the command, as some 5464 * drives do not support it. If the drive does support it, we will 5465 * return 0, and the supported pages will be in un_vpd_page_mask. If 5466 * not, we return -1. 5467 */ 5468 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5469 /* Loop to find one of the 2 pages we need */ 5470 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5471 5472 /* 5473 * Pages are returned in ascending order, and 0x83 is what we 5474 * are hoping for. 5475 */ 5476 while ((page_list[counter] <= 0x86) && 5477 (counter <= (page_list[VPD_PAGE_LENGTH] + 5478 VPD_HEAD_OFFSET))) { 5479 /* 5480 * Add 3 because page_list[3] is the number of 5481 * pages minus 3 5482 */ 5483 5484 switch (page_list[counter]) { 5485 case 0x00: 5486 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5487 break; 5488 case 0x80: 5489 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5490 break; 5491 case 0x81: 5492 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5493 break; 5494 case 0x82: 5495 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5496 break; 5497 case 0x83: 5498 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5499 break; 5500 case 0x86: 5501 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG; 5502 break; 5503 } 5504 counter++; 5505 } 5506 5507 } else { 5508 rval = -1; 5509 5510 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5511 "sd_check_vpd_page_support: This drive does not implement " 5512 "VPD pages.\n"); 5513 } 5514 5515 kmem_free(page_list, page_length); 5516 5517 return (rval); 5518 } 5519 5520 5521 /* 5522 * Function: sd_setup_pm 5523 * 5524 * Description: Initialize Power Management on the device 5525 * 5526 * Context: Kernel Thread 5527 */ 5528 5529 static void 5530 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi) 5531 { 5532 uint_t log_page_size; 5533 uchar_t *log_page_data; 5534 int rval = 0; 5535 struct sd_lun *un; 5536 5537 ASSERT(ssc != NULL); 5538 un = ssc->ssc_un; 5539 ASSERT(un != NULL); 5540 5541 /* 5542 * Since we are called from attach, holding a mutex for 5543 * un is unnecessary. Because some of the routines called 5544 * from here require SD_MUTEX to not be held, assert this 5545 * right up front. 5546 */ 5547 ASSERT(!mutex_owned(SD_MUTEX(un))); 5548 /* 5549 * Since the sd device does not have the 'reg' property, 5550 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 5551 * The following code is to tell cpr that this device 5552 * DOES need to be suspended and resumed. 5553 */ 5554 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 5555 "pm-hardware-state", "needs-suspend-resume"); 5556 5557 /* 5558 * This complies with the new power management framework 5559 * for certain desktop machines. Create the pm_components 5560 * property as a string array property. 5561 */ 5562 if (un->un_f_pm_supported) { 5563 /* 5564 * not all devices have a motor, try it first. 5565 * some devices may return ILLEGAL REQUEST, some 5566 * will hang 5567 * The following START_STOP_UNIT is used to check if target 5568 * device has a motor. 5569 */ 5570 un->un_f_start_stop_supported = TRUE; 5571 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START, 5572 SD_PATH_DIRECT); 5573 5574 if (rval != 0) { 5575 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5576 un->un_f_start_stop_supported = FALSE; 5577 } 5578 5579 /* 5580 * create pm properties anyways otherwise the parent can't 5581 * go to sleep 5582 */ 5583 (void) sd_create_pm_components(devi, un); 5584 un->un_f_pm_is_enabled = TRUE; 5585 return; 5586 } 5587 5588 if (!un->un_f_log_sense_supported) { 5589 un->un_power_level = SD_SPINDLE_ON; 5590 un->un_f_pm_is_enabled = FALSE; 5591 return; 5592 } 5593 5594 rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE); 5595 5596 #ifdef SDDEBUG 5597 if (sd_force_pm_supported) { 5598 /* Force a successful result */ 5599 rval = 1; 5600 } 5601 #endif 5602 5603 /* 5604 * If the start-stop cycle counter log page is not supported 5605 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0) 5606 * then we should not create the pm_components property. 5607 */ 5608 if (rval == -1) { 5609 /* 5610 * Error. 5611 * Reading log sense failed, most likely this is 5612 * an older drive that does not support log sense. 5613 * If this fails auto-pm is not supported. 5614 */ 5615 un->un_power_level = SD_SPINDLE_ON; 5616 un->un_f_pm_is_enabled = FALSE; 5617 5618 } else if (rval == 0) { 5619 /* 5620 * Page not found. 5621 * The start stop cycle counter is implemented as page 5622 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 5623 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 5624 */ 5625 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) { 5626 /* 5627 * Page found, use this one. 5628 */ 5629 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 5630 un->un_f_pm_is_enabled = TRUE; 5631 } else { 5632 /* 5633 * Error or page not found. 5634 * auto-pm is not supported for this device. 5635 */ 5636 un->un_power_level = SD_SPINDLE_ON; 5637 un->un_f_pm_is_enabled = FALSE; 5638 } 5639 } else { 5640 /* 5641 * Page found, use it. 5642 */ 5643 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 5644 un->un_f_pm_is_enabled = TRUE; 5645 } 5646 5647 5648 if (un->un_f_pm_is_enabled == TRUE) { 5649 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 5650 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 5651 5652 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 5653 log_page_size, un->un_start_stop_cycle_page, 5654 0x01, 0, SD_PATH_DIRECT); 5655 5656 if (rval != 0) { 5657 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5658 } 5659 5660 #ifdef SDDEBUG 5661 if (sd_force_pm_supported) { 5662 /* Force a successful result */ 5663 rval = 0; 5664 } 5665 #endif 5666 5667 /* 5668 * If the Log sense for Page( Start/stop cycle counter page) 5669 * succeeds, then power management is supported and we can 5670 * enable auto-pm. 5671 */ 5672 if (rval == 0) { 5673 (void) sd_create_pm_components(devi, un); 5674 } else { 5675 un->un_power_level = SD_SPINDLE_ON; 5676 un->un_f_pm_is_enabled = FALSE; 5677 } 5678 5679 kmem_free(log_page_data, log_page_size); 5680 } 5681 } 5682 5683 5684 /* 5685 * Function: sd_create_pm_components 5686 * 5687 * Description: Initialize PM property. 5688 * 5689 * Context: Kernel thread context 5690 */ 5691 5692 static void 5693 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 5694 { 5695 char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL }; 5696 5697 ASSERT(!mutex_owned(SD_MUTEX(un))); 5698 5699 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 5700 "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) { 5701 /* 5702 * When components are initially created they are idle, 5703 * power up any non-removables. 5704 * Note: the return value of pm_raise_power can't be used 5705 * for determining if PM should be enabled for this device. 5706 * Even if you check the return values and remove this 5707 * property created above, the PM framework will not honor the 5708 * change after the first call to pm_raise_power. Hence, 5709 * removal of that property does not help if pm_raise_power 5710 * fails. In the case of removable media, the start/stop 5711 * will fail if the media is not present. 5712 */ 5713 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 5714 SD_SPINDLE_ON) == DDI_SUCCESS)) { 5715 mutex_enter(SD_MUTEX(un)); 5716 un->un_power_level = SD_SPINDLE_ON; 5717 mutex_enter(&un->un_pm_mutex); 5718 /* Set to on and not busy. */ 5719 un->un_pm_count = 0; 5720 } else { 5721 mutex_enter(SD_MUTEX(un)); 5722 un->un_power_level = SD_SPINDLE_OFF; 5723 mutex_enter(&un->un_pm_mutex); 5724 /* Set to off. */ 5725 un->un_pm_count = -1; 5726 } 5727 mutex_exit(&un->un_pm_mutex); 5728 mutex_exit(SD_MUTEX(un)); 5729 } else { 5730 un->un_power_level = SD_SPINDLE_ON; 5731 un->un_f_pm_is_enabled = FALSE; 5732 } 5733 } 5734 5735 5736 /* 5737 * Function: sd_ddi_suspend 5738 * 5739 * Description: Performs system power-down operations. This includes 5740 * setting the drive state to indicate its suspended so 5741 * that no new commands will be accepted. Also, wait for 5742 * all commands that are in transport or queued to a timer 5743 * for retry to complete. All timeout threads are cancelled. 5744 * 5745 * Return Code: DDI_FAILURE or DDI_SUCCESS 5746 * 5747 * Context: Kernel thread context 5748 */ 5749 5750 static int 5751 sd_ddi_suspend(dev_info_t *devi) 5752 { 5753 struct sd_lun *un; 5754 clock_t wait_cmds_complete; 5755 5756 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 5757 if (un == NULL) { 5758 return (DDI_FAILURE); 5759 } 5760 5761 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 5762 5763 mutex_enter(SD_MUTEX(un)); 5764 5765 /* Return success if the device is already suspended. */ 5766 if (un->un_state == SD_STATE_SUSPENDED) { 5767 mutex_exit(SD_MUTEX(un)); 5768 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 5769 "device already suspended, exiting\n"); 5770 return (DDI_SUCCESS); 5771 } 5772 5773 /* Return failure if the device is being used by HA */ 5774 if (un->un_resvd_status & 5775 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 5776 mutex_exit(SD_MUTEX(un)); 5777 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 5778 "device in use by HA, exiting\n"); 5779 return (DDI_FAILURE); 5780 } 5781 5782 /* 5783 * Return failure if the device is in a resource wait 5784 * or power changing state. 5785 */ 5786 if ((un->un_state == SD_STATE_RWAIT) || 5787 (un->un_state == SD_STATE_PM_CHANGING)) { 5788 mutex_exit(SD_MUTEX(un)); 5789 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 5790 "device in resource wait state, exiting\n"); 5791 return (DDI_FAILURE); 5792 } 5793 5794 5795 un->un_save_state = un->un_last_state; 5796 New_state(un, SD_STATE_SUSPENDED); 5797 5798 /* 5799 * Wait for all commands that are in transport or queued to a timer 5800 * for retry to complete. 5801 * 5802 * While waiting, no new commands will be accepted or sent because of 5803 * the new state we set above. 5804 * 5805 * Wait till current operation has completed. If we are in the resource 5806 * wait state (with an intr outstanding) then we need to wait till the 5807 * intr completes and starts the next cmd. We want to wait for 5808 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 5809 */ 5810 wait_cmds_complete = ddi_get_lbolt() + 5811 (sd_wait_cmds_complete * drv_usectohz(1000000)); 5812 5813 while (un->un_ncmds_in_transport != 0) { 5814 /* 5815 * Fail if commands do not finish in the specified time. 5816 */ 5817 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 5818 wait_cmds_complete) == -1) { 5819 /* 5820 * Undo the state changes made above. Everything 5821 * must go back to it's original value. 5822 */ 5823 Restore_state(un); 5824 un->un_last_state = un->un_save_state; 5825 /* Wake up any threads that might be waiting. */ 5826 cv_broadcast(&un->un_suspend_cv); 5827 mutex_exit(SD_MUTEX(un)); 5828 SD_ERROR(SD_LOG_IO_PM, un, 5829 "sd_ddi_suspend: failed due to outstanding cmds\n"); 5830 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 5831 return (DDI_FAILURE); 5832 } 5833 } 5834 5835 /* 5836 * Cancel SCSI watch thread and timeouts, if any are active 5837 */ 5838 5839 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 5840 opaque_t temp_token = un->un_swr_token; 5841 mutex_exit(SD_MUTEX(un)); 5842 scsi_watch_suspend(temp_token); 5843 mutex_enter(SD_MUTEX(un)); 5844 } 5845 5846 if (un->un_reset_throttle_timeid != NULL) { 5847 timeout_id_t temp_id = un->un_reset_throttle_timeid; 5848 un->un_reset_throttle_timeid = NULL; 5849 mutex_exit(SD_MUTEX(un)); 5850 (void) untimeout(temp_id); 5851 mutex_enter(SD_MUTEX(un)); 5852 } 5853 5854 if (un->un_dcvb_timeid != NULL) { 5855 timeout_id_t temp_id = un->un_dcvb_timeid; 5856 un->un_dcvb_timeid = NULL; 5857 mutex_exit(SD_MUTEX(un)); 5858 (void) untimeout(temp_id); 5859 mutex_enter(SD_MUTEX(un)); 5860 } 5861 5862 mutex_enter(&un->un_pm_mutex); 5863 if (un->un_pm_timeid != NULL) { 5864 timeout_id_t temp_id = un->un_pm_timeid; 5865 un->un_pm_timeid = NULL; 5866 mutex_exit(&un->un_pm_mutex); 5867 mutex_exit(SD_MUTEX(un)); 5868 (void) untimeout(temp_id); 5869 mutex_enter(SD_MUTEX(un)); 5870 } else { 5871 mutex_exit(&un->un_pm_mutex); 5872 } 5873 5874 if (un->un_retry_timeid != NULL) { 5875 timeout_id_t temp_id = un->un_retry_timeid; 5876 un->un_retry_timeid = NULL; 5877 mutex_exit(SD_MUTEX(un)); 5878 (void) untimeout(temp_id); 5879 mutex_enter(SD_MUTEX(un)); 5880 5881 if (un->un_retry_bp != NULL) { 5882 un->un_retry_bp->av_forw = un->un_waitq_headp; 5883 un->un_waitq_headp = un->un_retry_bp; 5884 if (un->un_waitq_tailp == NULL) { 5885 un->un_waitq_tailp = un->un_retry_bp; 5886 } 5887 un->un_retry_bp = NULL; 5888 un->un_retry_statp = NULL; 5889 } 5890 } 5891 5892 if (un->un_direct_priority_timeid != NULL) { 5893 timeout_id_t temp_id = un->un_direct_priority_timeid; 5894 un->un_direct_priority_timeid = NULL; 5895 mutex_exit(SD_MUTEX(un)); 5896 (void) untimeout(temp_id); 5897 mutex_enter(SD_MUTEX(un)); 5898 } 5899 5900 if (un->un_f_is_fibre == TRUE) { 5901 /* 5902 * Remove callbacks for insert and remove events 5903 */ 5904 if (un->un_insert_event != NULL) { 5905 mutex_exit(SD_MUTEX(un)); 5906 (void) ddi_remove_event_handler(un->un_insert_cb_id); 5907 mutex_enter(SD_MUTEX(un)); 5908 un->un_insert_event = NULL; 5909 } 5910 5911 if (un->un_remove_event != NULL) { 5912 mutex_exit(SD_MUTEX(un)); 5913 (void) ddi_remove_event_handler(un->un_remove_cb_id); 5914 mutex_enter(SD_MUTEX(un)); 5915 un->un_remove_event = NULL; 5916 } 5917 } 5918 5919 mutex_exit(SD_MUTEX(un)); 5920 5921 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 5922 5923 return (DDI_SUCCESS); 5924 } 5925 5926 5927 /* 5928 * Function: sd_ddi_pm_suspend 5929 * 5930 * Description: Set the drive state to low power. 5931 * Someone else is required to actually change the drive 5932 * power level. 5933 * 5934 * Arguments: un - driver soft state (unit) structure 5935 * 5936 * Return Code: DDI_FAILURE or DDI_SUCCESS 5937 * 5938 * Context: Kernel thread context 5939 */ 5940 5941 static int 5942 sd_ddi_pm_suspend(struct sd_lun *un) 5943 { 5944 ASSERT(un != NULL); 5945 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n"); 5946 5947 ASSERT(!mutex_owned(SD_MUTEX(un))); 5948 mutex_enter(SD_MUTEX(un)); 5949 5950 /* 5951 * Exit if power management is not enabled for this device, or if 5952 * the device is being used by HA. 5953 */ 5954 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 5955 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 5956 mutex_exit(SD_MUTEX(un)); 5957 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n"); 5958 return (DDI_SUCCESS); 5959 } 5960 5961 SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n", 5962 un->un_ncmds_in_driver); 5963 5964 /* 5965 * See if the device is not busy, ie.: 5966 * - we have no commands in the driver for this device 5967 * - not waiting for resources 5968 */ 5969 if ((un->un_ncmds_in_driver == 0) && 5970 (un->un_state != SD_STATE_RWAIT)) { 5971 /* 5972 * The device is not busy, so it is OK to go to low power state. 5973 * Indicate low power, but rely on someone else to actually 5974 * change it. 5975 */ 5976 mutex_enter(&un->un_pm_mutex); 5977 un->un_pm_count = -1; 5978 mutex_exit(&un->un_pm_mutex); 5979 un->un_power_level = SD_SPINDLE_OFF; 5980 } 5981 5982 mutex_exit(SD_MUTEX(un)); 5983 5984 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n"); 5985 5986 return (DDI_SUCCESS); 5987 } 5988 5989 5990 /* 5991 * Function: sd_ddi_resume 5992 * 5993 * Description: Performs system power-up operations.. 5994 * 5995 * Return Code: DDI_SUCCESS 5996 * DDI_FAILURE 5997 * 5998 * Context: Kernel thread context 5999 */ 6000 6001 static int 6002 sd_ddi_resume(dev_info_t *devi) 6003 { 6004 struct sd_lun *un; 6005 6006 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6007 if (un == NULL) { 6008 return (DDI_FAILURE); 6009 } 6010 6011 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6012 6013 mutex_enter(SD_MUTEX(un)); 6014 Restore_state(un); 6015 6016 /* 6017 * Restore the state which was saved to give the 6018 * the right state in un_last_state 6019 */ 6020 un->un_last_state = un->un_save_state; 6021 /* 6022 * Note: throttle comes back at full. 6023 * Also note: this MUST be done before calling pm_raise_power 6024 * otherwise the system can get hung in biowait. The scenario where 6025 * this'll happen is under cpr suspend. Writing of the system 6026 * state goes through sddump, which writes 0 to un_throttle. If 6027 * writing the system state then fails, example if the partition is 6028 * too small, then cpr attempts a resume. If throttle isn't restored 6029 * from the saved value until after calling pm_raise_power then 6030 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6031 * in biowait. 6032 */ 6033 un->un_throttle = un->un_saved_throttle; 6034 6035 /* 6036 * The chance of failure is very rare as the only command done in power 6037 * entry point is START command when you transition from 0->1 or 6038 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6039 * which suspend was done. Ignore the return value as the resume should 6040 * not be failed. In the case of removable media the media need not be 6041 * inserted and hence there is a chance that raise power will fail with 6042 * media not present. 6043 */ 6044 if (un->un_f_attach_spinup) { 6045 mutex_exit(SD_MUTEX(un)); 6046 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 6047 mutex_enter(SD_MUTEX(un)); 6048 } 6049 6050 /* 6051 * Don't broadcast to the suspend cv and therefore possibly 6052 * start I/O until after power has been restored. 6053 */ 6054 cv_broadcast(&un->un_suspend_cv); 6055 cv_broadcast(&un->un_state_cv); 6056 6057 /* restart thread */ 6058 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6059 scsi_watch_resume(un->un_swr_token); 6060 } 6061 6062 #if (defined(__fibre)) 6063 if (un->un_f_is_fibre == TRUE) { 6064 /* 6065 * Add callbacks for insert and remove events 6066 */ 6067 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6068 sd_init_event_callbacks(un); 6069 } 6070 } 6071 #endif 6072 6073 /* 6074 * Transport any pending commands to the target. 6075 * 6076 * If this is a low-activity device commands in queue will have to wait 6077 * until new commands come in, which may take awhile. Also, we 6078 * specifically don't check un_ncmds_in_transport because we know that 6079 * there really are no commands in progress after the unit was 6080 * suspended and we could have reached the throttle level, been 6081 * suspended, and have no new commands coming in for awhile. Highly 6082 * unlikely, but so is the low-activity disk scenario. 6083 */ 6084 ddi_xbuf_dispatch(un->un_xbuf_attr); 6085 6086 sd_start_cmds(un, NULL); 6087 mutex_exit(SD_MUTEX(un)); 6088 6089 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6090 6091 return (DDI_SUCCESS); 6092 } 6093 6094 6095 /* 6096 * Function: sd_ddi_pm_resume 6097 * 6098 * Description: Set the drive state to powered on. 6099 * Someone else is required to actually change the drive 6100 * power level. 6101 * 6102 * Arguments: un - driver soft state (unit) structure 6103 * 6104 * Return Code: DDI_SUCCESS 6105 * 6106 * Context: Kernel thread context 6107 */ 6108 6109 static int 6110 sd_ddi_pm_resume(struct sd_lun *un) 6111 { 6112 ASSERT(un != NULL); 6113 6114 ASSERT(!mutex_owned(SD_MUTEX(un))); 6115 mutex_enter(SD_MUTEX(un)); 6116 un->un_power_level = SD_SPINDLE_ON; 6117 6118 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6119 mutex_enter(&un->un_pm_mutex); 6120 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6121 un->un_pm_count++; 6122 ASSERT(un->un_pm_count == 0); 6123 /* 6124 * Note: no longer do the cv_broadcast on un_suspend_cv. The 6125 * un_suspend_cv is for a system resume, not a power management 6126 * device resume. (4297749) 6127 * cv_broadcast(&un->un_suspend_cv); 6128 */ 6129 } 6130 mutex_exit(&un->un_pm_mutex); 6131 mutex_exit(SD_MUTEX(un)); 6132 6133 return (DDI_SUCCESS); 6134 } 6135 6136 6137 /* 6138 * Function: sd_pm_idletimeout_handler 6139 * 6140 * Description: A timer routine that's active only while a device is busy. 6141 * The purpose is to extend slightly the pm framework's busy 6142 * view of the device to prevent busy/idle thrashing for 6143 * back-to-back commands. Do this by comparing the current time 6144 * to the time at which the last command completed and when the 6145 * difference is greater than sd_pm_idletime, call 6146 * pm_idle_component. In addition to indicating idle to the pm 6147 * framework, update the chain type to again use the internal pm 6148 * layers of the driver. 6149 * 6150 * Arguments: arg - driver soft state (unit) structure 6151 * 6152 * Context: Executes in a timeout(9F) thread context 6153 */ 6154 6155 static void 6156 sd_pm_idletimeout_handler(void *arg) 6157 { 6158 struct sd_lun *un = arg; 6159 6160 time_t now; 6161 6162 mutex_enter(&sd_detach_mutex); 6163 if (un->un_detach_count != 0) { 6164 /* Abort if the instance is detaching */ 6165 mutex_exit(&sd_detach_mutex); 6166 return; 6167 } 6168 mutex_exit(&sd_detach_mutex); 6169 6170 now = ddi_get_time(); 6171 /* 6172 * Grab both mutexes, in the proper order, since we're accessing 6173 * both PM and softstate variables. 6174 */ 6175 mutex_enter(SD_MUTEX(un)); 6176 mutex_enter(&un->un_pm_mutex); 6177 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 6178 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 6179 /* 6180 * Update the chain types. 6181 * This takes affect on the next new command received. 6182 */ 6183 if (un->un_f_non_devbsize_supported) { 6184 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6185 } else { 6186 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6187 } 6188 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6189 6190 SD_TRACE(SD_LOG_IO_PM, un, 6191 "sd_pm_idletimeout_handler: idling device\n"); 6192 (void) pm_idle_component(SD_DEVINFO(un), 0); 6193 un->un_pm_idle_timeid = NULL; 6194 } else { 6195 un->un_pm_idle_timeid = 6196 timeout(sd_pm_idletimeout_handler, un, 6197 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 6198 } 6199 mutex_exit(&un->un_pm_mutex); 6200 mutex_exit(SD_MUTEX(un)); 6201 } 6202 6203 6204 /* 6205 * Function: sd_pm_timeout_handler 6206 * 6207 * Description: Callback to tell framework we are idle. 6208 * 6209 * Context: timeout(9f) thread context. 6210 */ 6211 6212 static void 6213 sd_pm_timeout_handler(void *arg) 6214 { 6215 struct sd_lun *un = arg; 6216 6217 (void) pm_idle_component(SD_DEVINFO(un), 0); 6218 mutex_enter(&un->un_pm_mutex); 6219 un->un_pm_timeid = NULL; 6220 mutex_exit(&un->un_pm_mutex); 6221 } 6222 6223 6224 /* 6225 * Function: sdpower 6226 * 6227 * Description: PM entry point. 6228 * 6229 * Return Code: DDI_SUCCESS 6230 * DDI_FAILURE 6231 * 6232 * Context: Kernel thread context 6233 */ 6234 6235 static int 6236 sdpower(dev_info_t *devi, int component, int level) 6237 { 6238 struct sd_lun *un; 6239 int instance; 6240 int rval = DDI_SUCCESS; 6241 uint_t i, log_page_size, maxcycles, ncycles; 6242 uchar_t *log_page_data; 6243 int log_sense_page; 6244 int medium_present; 6245 time_t intvlp; 6246 dev_t dev; 6247 struct pm_trans_data sd_pm_tran_data; 6248 uchar_t save_state; 6249 int sval; 6250 uchar_t state_before_pm; 6251 int got_semaphore_here; 6252 sd_ssc_t *ssc; 6253 6254 instance = ddi_get_instance(devi); 6255 6256 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 6257 (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) || 6258 component != 0) { 6259 return (DDI_FAILURE); 6260 } 6261 6262 dev = sd_make_device(SD_DEVINFO(un)); 6263 ssc = sd_ssc_init(un); 6264 6265 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 6266 6267 /* 6268 * Must synchronize power down with close. 6269 * Attempt to decrement/acquire the open/close semaphore, 6270 * but do NOT wait on it. If it's not greater than zero, 6271 * ie. it can't be decremented without waiting, then 6272 * someone else, either open or close, already has it 6273 * and the try returns 0. Use that knowledge here to determine 6274 * if it's OK to change the device power level. 6275 * Also, only increment it on exit if it was decremented, ie. gotten, 6276 * here. 6277 */ 6278 got_semaphore_here = sema_tryp(&un->un_semoclose); 6279 6280 mutex_enter(SD_MUTEX(un)); 6281 6282 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 6283 un->un_ncmds_in_driver); 6284 6285 /* 6286 * If un_ncmds_in_driver is non-zero it indicates commands are 6287 * already being processed in the driver, or if the semaphore was 6288 * not gotten here it indicates an open or close is being processed. 6289 * At the same time somebody is requesting to go low power which 6290 * can't happen, therefore we need to return failure. 6291 */ 6292 if ((level == SD_SPINDLE_OFF) && 6293 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 6294 mutex_exit(SD_MUTEX(un)); 6295 6296 if (got_semaphore_here != 0) { 6297 sema_v(&un->un_semoclose); 6298 } 6299 SD_TRACE(SD_LOG_IO_PM, un, 6300 "sdpower: exit, device has queued cmds.\n"); 6301 6302 goto sdpower_failed; 6303 } 6304 6305 /* 6306 * if it is OFFLINE that means the disk is completely dead 6307 * in our case we have to put the disk in on or off by sending commands 6308 * Of course that will fail anyway so return back here. 6309 * 6310 * Power changes to a device that's OFFLINE or SUSPENDED 6311 * are not allowed. 6312 */ 6313 if ((un->un_state == SD_STATE_OFFLINE) || 6314 (un->un_state == SD_STATE_SUSPENDED)) { 6315 mutex_exit(SD_MUTEX(un)); 6316 6317 if (got_semaphore_here != 0) { 6318 sema_v(&un->un_semoclose); 6319 } 6320 SD_TRACE(SD_LOG_IO_PM, un, 6321 "sdpower: exit, device is off-line.\n"); 6322 6323 goto sdpower_failed; 6324 } 6325 6326 /* 6327 * Change the device's state to indicate it's power level 6328 * is being changed. Do this to prevent a power off in the 6329 * middle of commands, which is especially bad on devices 6330 * that are really powered off instead of just spun down. 6331 */ 6332 state_before_pm = un->un_state; 6333 un->un_state = SD_STATE_PM_CHANGING; 6334 6335 mutex_exit(SD_MUTEX(un)); 6336 6337 /* 6338 * If "pm-capable" property is set to TRUE by HBA drivers, 6339 * bypass the following checking, otherwise, check the log 6340 * sense information for this device 6341 */ 6342 if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) { 6343 /* 6344 * Get the log sense information to understand whether the 6345 * the powercycle counts have gone beyond the threshhold. 6346 */ 6347 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6348 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6349 6350 mutex_enter(SD_MUTEX(un)); 6351 log_sense_page = un->un_start_stop_cycle_page; 6352 mutex_exit(SD_MUTEX(un)); 6353 6354 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6355 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 6356 6357 if (rval != 0) { 6358 if (rval == EIO) 6359 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6360 else 6361 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6362 } 6363 6364 #ifdef SDDEBUG 6365 if (sd_force_pm_supported) { 6366 /* Force a successful result */ 6367 rval = 0; 6368 } 6369 #endif 6370 if (rval != 0) { 6371 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 6372 "Log Sense Failed\n"); 6373 6374 kmem_free(log_page_data, log_page_size); 6375 /* Cannot support power management on those drives */ 6376 6377 if (got_semaphore_here != 0) { 6378 sema_v(&un->un_semoclose); 6379 } 6380 /* 6381 * On exit put the state back to it's original value 6382 * and broadcast to anyone waiting for the power 6383 * change completion. 6384 */ 6385 mutex_enter(SD_MUTEX(un)); 6386 un->un_state = state_before_pm; 6387 cv_broadcast(&un->un_suspend_cv); 6388 mutex_exit(SD_MUTEX(un)); 6389 SD_TRACE(SD_LOG_IO_PM, un, 6390 "sdpower: exit, Log Sense Failed.\n"); 6391 6392 goto sdpower_failed; 6393 } 6394 6395 /* 6396 * From the page data - Convert the essential information to 6397 * pm_trans_data 6398 */ 6399 maxcycles = 6400 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 6401 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 6402 6403 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 6404 6405 ncycles = 6406 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 6407 (log_page_data[0x26] << 8) | log_page_data[0x27]; 6408 6409 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 6410 6411 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 6412 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 6413 log_page_data[8+i]; 6414 } 6415 6416 kmem_free(log_page_data, log_page_size); 6417 6418 /* 6419 * Call pm_trans_check routine to get the Ok from 6420 * the global policy 6421 */ 6422 6423 sd_pm_tran_data.format = DC_SCSI_FORMAT; 6424 sd_pm_tran_data.un.scsi_cycles.flag = 0; 6425 6426 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 6427 #ifdef SDDEBUG 6428 if (sd_force_pm_supported) { 6429 /* Force a successful result */ 6430 rval = 1; 6431 } 6432 #endif 6433 switch (rval) { 6434 case 0: 6435 /* 6436 * Not Ok to Power cycle or error in parameters passed 6437 * Would have given the advised time to consider power 6438 * cycle. Based on the new intvlp parameter we are 6439 * supposed to pretend we are busy so that pm framework 6440 * will never call our power entry point. Because of 6441 * that install a timeout handler and wait for the 6442 * recommended time to elapse so that power management 6443 * can be effective again. 6444 * 6445 * To effect this behavior, call pm_busy_component to 6446 * indicate to the framework this device is busy. 6447 * By not adjusting un_pm_count the rest of PM in 6448 * the driver will function normally, and independent 6449 * of this but because the framework is told the device 6450 * is busy it won't attempt powering down until it gets 6451 * a matching idle. The timeout handler sends this. 6452 * Note: sd_pm_entry can't be called here to do this 6453 * because sdpower may have been called as a result 6454 * of a call to pm_raise_power from within sd_pm_entry. 6455 * 6456 * If a timeout handler is already active then 6457 * don't install another. 6458 */ 6459 mutex_enter(&un->un_pm_mutex); 6460 if (un->un_pm_timeid == NULL) { 6461 un->un_pm_timeid = 6462 timeout(sd_pm_timeout_handler, 6463 un, intvlp * drv_usectohz(1000000)); 6464 mutex_exit(&un->un_pm_mutex); 6465 (void) pm_busy_component(SD_DEVINFO(un), 0); 6466 } else { 6467 mutex_exit(&un->un_pm_mutex); 6468 } 6469 if (got_semaphore_here != 0) { 6470 sema_v(&un->un_semoclose); 6471 } 6472 /* 6473 * On exit put the state back to it's original value 6474 * and broadcast to anyone waiting for the power 6475 * change completion. 6476 */ 6477 mutex_enter(SD_MUTEX(un)); 6478 un->un_state = state_before_pm; 6479 cv_broadcast(&un->un_suspend_cv); 6480 mutex_exit(SD_MUTEX(un)); 6481 6482 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6483 "trans check Failed, not ok to power cycle.\n"); 6484 6485 goto sdpower_failed; 6486 case -1: 6487 if (got_semaphore_here != 0) { 6488 sema_v(&un->un_semoclose); 6489 } 6490 /* 6491 * On exit put the state back to it's original value 6492 * and broadcast to anyone waiting for the power 6493 * change completion. 6494 */ 6495 mutex_enter(SD_MUTEX(un)); 6496 un->un_state = state_before_pm; 6497 cv_broadcast(&un->un_suspend_cv); 6498 mutex_exit(SD_MUTEX(un)); 6499 SD_TRACE(SD_LOG_IO_PM, un, 6500 "sdpower: exit, trans check command Failed.\n"); 6501 6502 goto sdpower_failed; 6503 } 6504 } 6505 6506 if (level == SD_SPINDLE_OFF) { 6507 /* 6508 * Save the last state... if the STOP FAILS we need it 6509 * for restoring 6510 */ 6511 mutex_enter(SD_MUTEX(un)); 6512 save_state = un->un_last_state; 6513 /* 6514 * There must not be any cmds. getting processed 6515 * in the driver when we get here. Power to the 6516 * device is potentially going off. 6517 */ 6518 ASSERT(un->un_ncmds_in_driver == 0); 6519 mutex_exit(SD_MUTEX(un)); 6520 6521 /* 6522 * For now suspend the device completely before spindle is 6523 * turned off 6524 */ 6525 if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) { 6526 if (got_semaphore_here != 0) { 6527 sema_v(&un->un_semoclose); 6528 } 6529 /* 6530 * On exit put the state back to it's original value 6531 * and broadcast to anyone waiting for the power 6532 * change completion. 6533 */ 6534 mutex_enter(SD_MUTEX(un)); 6535 un->un_state = state_before_pm; 6536 cv_broadcast(&un->un_suspend_cv); 6537 mutex_exit(SD_MUTEX(un)); 6538 SD_TRACE(SD_LOG_IO_PM, un, 6539 "sdpower: exit, PM suspend Failed.\n"); 6540 6541 goto sdpower_failed; 6542 } 6543 } 6544 6545 /* 6546 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 6547 * close, or strategy. Dump no long uses this routine, it uses it's 6548 * own code so it can be done in polled mode. 6549 */ 6550 6551 medium_present = TRUE; 6552 6553 /* 6554 * When powering up, issue a TUR in case the device is at unit 6555 * attention. Don't do retries. Bypass the PM layer, otherwise 6556 * a deadlock on un_pm_busy_cv will occur. 6557 */ 6558 if (level == SD_SPINDLE_ON) { 6559 sval = sd_send_scsi_TEST_UNIT_READY(ssc, 6560 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 6561 if (sval != 0) 6562 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6563 } 6564 6565 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 6566 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 6567 6568 sval = sd_send_scsi_START_STOP_UNIT(ssc, 6569 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP), 6570 SD_PATH_DIRECT); 6571 if (sval != 0) { 6572 if (sval == EIO) 6573 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6574 else 6575 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6576 } 6577 6578 /* Command failed, check for media present. */ 6579 if ((sval == ENXIO) && un->un_f_has_removable_media) { 6580 medium_present = FALSE; 6581 } 6582 6583 /* 6584 * The conditions of interest here are: 6585 * if a spindle off with media present fails, 6586 * then restore the state and return an error. 6587 * else if a spindle on fails, 6588 * then return an error (there's no state to restore). 6589 * In all other cases we setup for the new state 6590 * and return success. 6591 */ 6592 switch (level) { 6593 case SD_SPINDLE_OFF: 6594 if ((medium_present == TRUE) && (sval != 0)) { 6595 /* The stop command from above failed */ 6596 rval = DDI_FAILURE; 6597 /* 6598 * The stop command failed, and we have media 6599 * present. Put the level back by calling the 6600 * sd_pm_resume() and set the state back to 6601 * it's previous value. 6602 */ 6603 (void) sd_ddi_pm_resume(un); 6604 mutex_enter(SD_MUTEX(un)); 6605 un->un_last_state = save_state; 6606 mutex_exit(SD_MUTEX(un)); 6607 break; 6608 } 6609 /* 6610 * The stop command from above succeeded. 6611 */ 6612 if (un->un_f_monitor_media_state) { 6613 /* 6614 * Terminate watch thread in case of removable media 6615 * devices going into low power state. This is as per 6616 * the requirements of pm framework, otherwise commands 6617 * will be generated for the device (through watch 6618 * thread), even when the device is in low power state. 6619 */ 6620 mutex_enter(SD_MUTEX(un)); 6621 un->un_f_watcht_stopped = FALSE; 6622 if (un->un_swr_token != NULL) { 6623 opaque_t temp_token = un->un_swr_token; 6624 un->un_f_watcht_stopped = TRUE; 6625 un->un_swr_token = NULL; 6626 mutex_exit(SD_MUTEX(un)); 6627 (void) scsi_watch_request_terminate(temp_token, 6628 SCSI_WATCH_TERMINATE_ALL_WAIT); 6629 } else { 6630 mutex_exit(SD_MUTEX(un)); 6631 } 6632 } 6633 break; 6634 6635 default: /* The level requested is spindle on... */ 6636 /* 6637 * Legacy behavior: return success on a failed spinup 6638 * if there is no media in the drive. 6639 * Do this by looking at medium_present here. 6640 */ 6641 if ((sval != 0) && medium_present) { 6642 /* The start command from above failed */ 6643 rval = DDI_FAILURE; 6644 break; 6645 } 6646 /* 6647 * The start command from above succeeded 6648 * Resume the devices now that we have 6649 * started the disks 6650 */ 6651 (void) sd_ddi_pm_resume(un); 6652 6653 /* 6654 * Resume the watch thread since it was suspended 6655 * when the device went into low power mode. 6656 */ 6657 if (un->un_f_monitor_media_state) { 6658 mutex_enter(SD_MUTEX(un)); 6659 if (un->un_f_watcht_stopped == TRUE) { 6660 opaque_t temp_token; 6661 6662 un->un_f_watcht_stopped = FALSE; 6663 mutex_exit(SD_MUTEX(un)); 6664 temp_token = scsi_watch_request_submit( 6665 SD_SCSI_DEVP(un), 6666 sd_check_media_time, 6667 SENSE_LENGTH, sd_media_watch_cb, 6668 (caddr_t)dev); 6669 mutex_enter(SD_MUTEX(un)); 6670 un->un_swr_token = temp_token; 6671 } 6672 mutex_exit(SD_MUTEX(un)); 6673 } 6674 } 6675 if (got_semaphore_here != 0) { 6676 sema_v(&un->un_semoclose); 6677 } 6678 /* 6679 * On exit put the state back to it's original value 6680 * and broadcast to anyone waiting for the power 6681 * change completion. 6682 */ 6683 mutex_enter(SD_MUTEX(un)); 6684 un->un_state = state_before_pm; 6685 cv_broadcast(&un->un_suspend_cv); 6686 mutex_exit(SD_MUTEX(un)); 6687 6688 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 6689 6690 sd_ssc_fini(ssc); 6691 return (rval); 6692 6693 sdpower_failed: 6694 6695 sd_ssc_fini(ssc); 6696 return (DDI_FAILURE); 6697 } 6698 6699 6700 6701 /* 6702 * Function: sdattach 6703 * 6704 * Description: Driver's attach(9e) entry point function. 6705 * 6706 * Arguments: devi - opaque device info handle 6707 * cmd - attach type 6708 * 6709 * Return Code: DDI_SUCCESS 6710 * DDI_FAILURE 6711 * 6712 * Context: Kernel thread context 6713 */ 6714 6715 static int 6716 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 6717 { 6718 switch (cmd) { 6719 case DDI_ATTACH: 6720 return (sd_unit_attach(devi)); 6721 case DDI_RESUME: 6722 return (sd_ddi_resume(devi)); 6723 default: 6724 break; 6725 } 6726 return (DDI_FAILURE); 6727 } 6728 6729 6730 /* 6731 * Function: sddetach 6732 * 6733 * Description: Driver's detach(9E) entry point function. 6734 * 6735 * Arguments: devi - opaque device info handle 6736 * cmd - detach type 6737 * 6738 * Return Code: DDI_SUCCESS 6739 * DDI_FAILURE 6740 * 6741 * Context: Kernel thread context 6742 */ 6743 6744 static int 6745 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 6746 { 6747 switch (cmd) { 6748 case DDI_DETACH: 6749 return (sd_unit_detach(devi)); 6750 case DDI_SUSPEND: 6751 return (sd_ddi_suspend(devi)); 6752 default: 6753 break; 6754 } 6755 return (DDI_FAILURE); 6756 } 6757 6758 6759 /* 6760 * Function: sd_sync_with_callback 6761 * 6762 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 6763 * state while the callback routine is active. 6764 * 6765 * Arguments: un: softstate structure for the instance 6766 * 6767 * Context: Kernel thread context 6768 */ 6769 6770 static void 6771 sd_sync_with_callback(struct sd_lun *un) 6772 { 6773 ASSERT(un != NULL); 6774 6775 mutex_enter(SD_MUTEX(un)); 6776 6777 ASSERT(un->un_in_callback >= 0); 6778 6779 while (un->un_in_callback > 0) { 6780 mutex_exit(SD_MUTEX(un)); 6781 delay(2); 6782 mutex_enter(SD_MUTEX(un)); 6783 } 6784 6785 mutex_exit(SD_MUTEX(un)); 6786 } 6787 6788 /* 6789 * Function: sd_unit_attach 6790 * 6791 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 6792 * the soft state structure for the device and performs 6793 * all necessary structure and device initializations. 6794 * 6795 * Arguments: devi: the system's dev_info_t for the device. 6796 * 6797 * Return Code: DDI_SUCCESS if attach is successful. 6798 * DDI_FAILURE if any part of the attach fails. 6799 * 6800 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 6801 * Kernel thread context only. Can sleep. 6802 */ 6803 6804 static int 6805 sd_unit_attach(dev_info_t *devi) 6806 { 6807 struct scsi_device *devp; 6808 struct sd_lun *un; 6809 char *variantp; 6810 int reservation_flag = SD_TARGET_IS_UNRESERVED; 6811 int instance; 6812 int rval; 6813 int wc_enabled; 6814 int tgt; 6815 uint64_t capacity; 6816 uint_t lbasize = 0; 6817 dev_info_t *pdip = ddi_get_parent(devi); 6818 int offbyone = 0; 6819 int geom_label_valid = 0; 6820 sd_ssc_t *ssc; 6821 int status; 6822 struct sd_fm_internal *sfip = NULL; 6823 #if defined(__sparc) 6824 int max_xfer_size; 6825 #endif 6826 6827 /* 6828 * Retrieve the target driver's private data area. This was set 6829 * up by the HBA. 6830 */ 6831 devp = ddi_get_driver_private(devi); 6832 6833 /* 6834 * Retrieve the target ID of the device. 6835 */ 6836 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 6837 SCSI_ADDR_PROP_TARGET, -1); 6838 6839 /* 6840 * Since we have no idea what state things were left in by the last 6841 * user of the device, set up some 'default' settings, ie. turn 'em 6842 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 6843 * Do this before the scsi_probe, which sends an inquiry. 6844 * This is a fix for bug (4430280). 6845 * Of special importance is wide-xfer. The drive could have been left 6846 * in wide transfer mode by the last driver to communicate with it, 6847 * this includes us. If that's the case, and if the following is not 6848 * setup properly or we don't re-negotiate with the drive prior to 6849 * transferring data to/from the drive, it causes bus parity errors, 6850 * data overruns, and unexpected interrupts. This first occurred when 6851 * the fix for bug (4378686) was made. 6852 */ 6853 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 6854 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 6855 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 6856 6857 /* 6858 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 6859 * on a target. Setting it per lun instance actually sets the 6860 * capability of this target, which affects those luns already 6861 * attached on the same target. So during attach, we can only disable 6862 * this capability only when no other lun has been attached on this 6863 * target. By doing this, we assume a target has the same tagged-qing 6864 * capability for every lun. The condition can be removed when HBA 6865 * is changed to support per lun based tagged-qing capability. 6866 */ 6867 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 6868 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 6869 } 6870 6871 /* 6872 * Use scsi_probe() to issue an INQUIRY command to the device. 6873 * This call will allocate and fill in the scsi_inquiry structure 6874 * and point the sd_inq member of the scsi_device structure to it. 6875 * If the attach succeeds, then this memory will not be de-allocated 6876 * (via scsi_unprobe()) until the instance is detached. 6877 */ 6878 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 6879 goto probe_failed; 6880 } 6881 6882 /* 6883 * Check the device type as specified in the inquiry data and 6884 * claim it if it is of a type that we support. 6885 */ 6886 switch (devp->sd_inq->inq_dtype) { 6887 case DTYPE_DIRECT: 6888 break; 6889 case DTYPE_RODIRECT: 6890 break; 6891 case DTYPE_OPTICAL: 6892 break; 6893 case DTYPE_NOTPRESENT: 6894 default: 6895 /* Unsupported device type; fail the attach. */ 6896 goto probe_failed; 6897 } 6898 6899 /* 6900 * Allocate the soft state structure for this unit. 6901 * 6902 * We rely upon this memory being set to all zeroes by 6903 * ddi_soft_state_zalloc(). We assume that any member of the 6904 * soft state structure that is not explicitly initialized by 6905 * this routine will have a value of zero. 6906 */ 6907 instance = ddi_get_instance(devp->sd_dev); 6908 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 6909 goto probe_failed; 6910 } 6911 6912 /* 6913 * Retrieve a pointer to the newly-allocated soft state. 6914 * 6915 * This should NEVER fail if the ddi_soft_state_zalloc() call above 6916 * was successful, unless something has gone horribly wrong and the 6917 * ddi's soft state internals are corrupt (in which case it is 6918 * probably better to halt here than just fail the attach....) 6919 */ 6920 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 6921 panic("sd_unit_attach: NULL soft state on instance:0x%x", 6922 instance); 6923 /*NOTREACHED*/ 6924 } 6925 6926 /* 6927 * Link the back ptr of the driver soft state to the scsi_device 6928 * struct for this lun. 6929 * Save a pointer to the softstate in the driver-private area of 6930 * the scsi_device struct. 6931 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 6932 * we first set un->un_sd below. 6933 */ 6934 un->un_sd = devp; 6935 devp->sd_private = (opaque_t)un; 6936 6937 /* 6938 * The following must be after devp is stored in the soft state struct. 6939 */ 6940 #ifdef SDDEBUG 6941 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 6942 "%s_unit_attach: un:0x%p instance:%d\n", 6943 ddi_driver_name(devi), un, instance); 6944 #endif 6945 6946 /* 6947 * Set up the device type and node type (for the minor nodes). 6948 * By default we assume that the device can at least support the 6949 * Common Command Set. Call it a CD-ROM if it reports itself 6950 * as a RODIRECT device. 6951 */ 6952 switch (devp->sd_inq->inq_dtype) { 6953 case DTYPE_RODIRECT: 6954 un->un_node_type = DDI_NT_CD_CHAN; 6955 un->un_ctype = CTYPE_CDROM; 6956 break; 6957 case DTYPE_OPTICAL: 6958 un->un_node_type = DDI_NT_BLOCK_CHAN; 6959 un->un_ctype = CTYPE_ROD; 6960 break; 6961 default: 6962 un->un_node_type = DDI_NT_BLOCK_CHAN; 6963 un->un_ctype = CTYPE_CCS; 6964 break; 6965 } 6966 6967 /* 6968 * Try to read the interconnect type from the HBA. 6969 * 6970 * Note: This driver is currently compiled as two binaries, a parallel 6971 * scsi version (sd) and a fibre channel version (ssd). All functional 6972 * differences are determined at compile time. In the future a single 6973 * binary will be provided and the interconnect type will be used to 6974 * differentiate between fibre and parallel scsi behaviors. At that time 6975 * it will be necessary for all fibre channel HBAs to support this 6976 * property. 6977 * 6978 * set un_f_is_fiber to TRUE ( default fiber ) 6979 */ 6980 un->un_f_is_fibre = TRUE; 6981 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 6982 case INTERCONNECT_SSA: 6983 un->un_interconnect_type = SD_INTERCONNECT_SSA; 6984 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6985 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 6986 break; 6987 case INTERCONNECT_PARALLEL: 6988 un->un_f_is_fibre = FALSE; 6989 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 6990 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6991 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 6992 break; 6993 case INTERCONNECT_SATA: 6994 un->un_f_is_fibre = FALSE; 6995 un->un_interconnect_type = SD_INTERCONNECT_SATA; 6996 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6997 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 6998 break; 6999 case INTERCONNECT_FIBRE: 7000 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7001 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7002 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7003 break; 7004 case INTERCONNECT_FABRIC: 7005 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7006 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7007 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7008 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7009 break; 7010 default: 7011 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7012 /* 7013 * The HBA does not support the "interconnect-type" property 7014 * (or did not provide a recognized type). 7015 * 7016 * Note: This will be obsoleted when a single fibre channel 7017 * and parallel scsi driver is delivered. In the meantime the 7018 * interconnect type will be set to the platform default.If that 7019 * type is not parallel SCSI, it means that we should be 7020 * assuming "ssd" semantics. However, here this also means that 7021 * the FC HBA is not supporting the "interconnect-type" property 7022 * like we expect it to, so log this occurrence. 7023 */ 7024 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7025 if (!SD_IS_PARALLEL_SCSI(un)) { 7026 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7027 "sd_unit_attach: un:0x%p Assuming " 7028 "INTERCONNECT_FIBRE\n", un); 7029 } else { 7030 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7031 "sd_unit_attach: un:0x%p Assuming " 7032 "INTERCONNECT_PARALLEL\n", un); 7033 un->un_f_is_fibre = FALSE; 7034 } 7035 #else 7036 /* 7037 * Note: This source will be implemented when a single fibre 7038 * channel and parallel scsi driver is delivered. The default 7039 * will be to assume that if a device does not support the 7040 * "interconnect-type" property it is a parallel SCSI HBA and 7041 * we will set the interconnect type for parallel scsi. 7042 */ 7043 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7044 un->un_f_is_fibre = FALSE; 7045 #endif 7046 break; 7047 } 7048 7049 if (un->un_f_is_fibre == TRUE) { 7050 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7051 SCSI_VERSION_3) { 7052 switch (un->un_interconnect_type) { 7053 case SD_INTERCONNECT_FIBRE: 7054 case SD_INTERCONNECT_SSA: 7055 un->un_node_type = DDI_NT_BLOCK_WWN; 7056 break; 7057 default: 7058 break; 7059 } 7060 } 7061 } 7062 7063 /* 7064 * Initialize the Request Sense command for the target 7065 */ 7066 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7067 goto alloc_rqs_failed; 7068 } 7069 7070 /* 7071 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7072 * with separate binary for sd and ssd. 7073 * 7074 * x86 has 1 binary, un_retry_count is set base on connection type. 7075 * The hardcoded values will go away when Sparc uses 1 binary 7076 * for sd and ssd. This hardcoded values need to match 7077 * SD_RETRY_COUNT in sddef.h 7078 * The value used is base on interconnect type. 7079 * fibre = 3, parallel = 5 7080 */ 7081 #if defined(__i386) || defined(__amd64) 7082 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7083 #else 7084 un->un_retry_count = SD_RETRY_COUNT; 7085 #endif 7086 7087 /* 7088 * Set the per disk retry count to the default number of retries 7089 * for disks and CDROMs. This value can be overridden by the 7090 * disk property list or an entry in sd.conf. 7091 */ 7092 un->un_notready_retry_count = 7093 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7094 : DISK_NOT_READY_RETRY_COUNT(un); 7095 7096 /* 7097 * Set the busy retry count to the default value of un_retry_count. 7098 * This can be overridden by entries in sd.conf or the device 7099 * config table. 7100 */ 7101 un->un_busy_retry_count = un->un_retry_count; 7102 7103 /* 7104 * Init the reset threshold for retries. This number determines 7105 * how many retries must be performed before a reset can be issued 7106 * (for certain error conditions). This can be overridden by entries 7107 * in sd.conf or the device config table. 7108 */ 7109 un->un_reset_retry_count = (un->un_retry_count / 2); 7110 7111 /* 7112 * Set the victim_retry_count to the default un_retry_count 7113 */ 7114 un->un_victim_retry_count = (2 * un->un_retry_count); 7115 7116 /* 7117 * Set the reservation release timeout to the default value of 7118 * 5 seconds. This can be overridden by entries in ssd.conf or the 7119 * device config table. 7120 */ 7121 un->un_reserve_release_time = 5; 7122 7123 /* 7124 * Set up the default maximum transfer size. Note that this may 7125 * get updated later in the attach, when setting up default wide 7126 * operations for disks. 7127 */ 7128 #if defined(__i386) || defined(__amd64) 7129 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7130 un->un_partial_dma_supported = 1; 7131 #else 7132 un->un_max_xfer_size = (uint_t)maxphys; 7133 #endif 7134 7135 /* 7136 * Get "allow bus device reset" property (defaults to "enabled" if 7137 * the property was not defined). This is to disable bus resets for 7138 * certain kinds of error recovery. Note: In the future when a run-time 7139 * fibre check is available the soft state flag should default to 7140 * enabled. 7141 */ 7142 if (un->un_f_is_fibre == TRUE) { 7143 un->un_f_allow_bus_device_reset = TRUE; 7144 } else { 7145 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7146 "allow-bus-device-reset", 1) != 0) { 7147 un->un_f_allow_bus_device_reset = TRUE; 7148 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7149 "sd_unit_attach: un:0x%p Bus device reset " 7150 "enabled\n", un); 7151 } else { 7152 un->un_f_allow_bus_device_reset = FALSE; 7153 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7154 "sd_unit_attach: un:0x%p Bus device reset " 7155 "disabled\n", un); 7156 } 7157 } 7158 7159 /* 7160 * Check if this is an ATAPI device. ATAPI devices use Group 1 7161 * Read/Write commands and Group 2 Mode Sense/Select commands. 7162 * 7163 * Note: The "obsolete" way of doing this is to check for the "atapi" 7164 * property. The new "variant" property with a value of "atapi" has been 7165 * introduced so that future 'variants' of standard SCSI behavior (like 7166 * atapi) could be specified by the underlying HBA drivers by supplying 7167 * a new value for the "variant" property, instead of having to define a 7168 * new property. 7169 */ 7170 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7171 un->un_f_cfg_is_atapi = TRUE; 7172 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7173 "sd_unit_attach: un:0x%p Atapi device\n", un); 7174 } 7175 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7176 &variantp) == DDI_PROP_SUCCESS) { 7177 if (strcmp(variantp, "atapi") == 0) { 7178 un->un_f_cfg_is_atapi = TRUE; 7179 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7180 "sd_unit_attach: un:0x%p Atapi device\n", un); 7181 } 7182 ddi_prop_free(variantp); 7183 } 7184 7185 un->un_cmd_timeout = SD_IO_TIME; 7186 7187 un->un_busy_timeout = SD_BSY_TIMEOUT; 7188 7189 /* Info on current states, statuses, etc. (Updated frequently) */ 7190 un->un_state = SD_STATE_NORMAL; 7191 un->un_last_state = SD_STATE_NORMAL; 7192 7193 /* Control & status info for command throttling */ 7194 un->un_throttle = sd_max_throttle; 7195 un->un_saved_throttle = sd_max_throttle; 7196 un->un_min_throttle = sd_min_throttle; 7197 7198 if (un->un_f_is_fibre == TRUE) { 7199 un->un_f_use_adaptive_throttle = TRUE; 7200 } else { 7201 un->un_f_use_adaptive_throttle = FALSE; 7202 } 7203 7204 /* Removable media support. */ 7205 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7206 un->un_mediastate = DKIO_NONE; 7207 un->un_specified_mediastate = DKIO_NONE; 7208 7209 /* CVs for suspend/resume (PM or DR) */ 7210 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7211 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7212 7213 /* Power management support. */ 7214 un->un_power_level = SD_SPINDLE_UNINIT; 7215 7216 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 7217 un->un_f_wcc_inprog = 0; 7218 7219 /* 7220 * The open/close semaphore is used to serialize threads executing 7221 * in the driver's open & close entry point routines for a given 7222 * instance. 7223 */ 7224 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 7225 7226 /* 7227 * The conf file entry and softstate variable is a forceful override, 7228 * meaning a non-zero value must be entered to change the default. 7229 */ 7230 un->un_f_disksort_disabled = FALSE; 7231 7232 /* 7233 * Retrieve the properties from the static driver table or the driver 7234 * configuration file (.conf) for this unit and update the soft state 7235 * for the device as needed for the indicated properties. 7236 * Note: the property configuration needs to occur here as some of the 7237 * following routines may have dependencies on soft state flags set 7238 * as part of the driver property configuration. 7239 */ 7240 sd_read_unit_properties(un); 7241 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7242 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 7243 7244 /* 7245 * Only if a device has "hotpluggable" property, it is 7246 * treated as hotpluggable device. Otherwise, it is 7247 * regarded as non-hotpluggable one. 7248 */ 7249 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 7250 -1) != -1) { 7251 un->un_f_is_hotpluggable = TRUE; 7252 } 7253 7254 /* 7255 * set unit's attributes(flags) according to "hotpluggable" and 7256 * RMB bit in INQUIRY data. 7257 */ 7258 sd_set_unit_attributes(un, devi); 7259 7260 /* 7261 * By default, we mark the capacity, lbasize, and geometry 7262 * as invalid. Only if we successfully read a valid capacity 7263 * will we update the un_blockcount and un_tgt_blocksize with the 7264 * valid values (the geometry will be validated later). 7265 */ 7266 un->un_f_blockcount_is_valid = FALSE; 7267 un->un_f_tgt_blocksize_is_valid = FALSE; 7268 7269 /* 7270 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 7271 * otherwise. 7272 */ 7273 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 7274 un->un_blockcount = 0; 7275 7276 /* 7277 * Set up the per-instance info needed to determine the correct 7278 * CDBs and other info for issuing commands to the target. 7279 */ 7280 sd_init_cdb_limits(un); 7281 7282 /* 7283 * Set up the IO chains to use, based upon the target type. 7284 */ 7285 if (un->un_f_non_devbsize_supported) { 7286 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7287 } else { 7288 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7289 } 7290 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7291 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 7292 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 7293 7294 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 7295 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 7296 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 7297 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 7298 7299 7300 if (ISCD(un)) { 7301 un->un_additional_codes = sd_additional_codes; 7302 } else { 7303 un->un_additional_codes = NULL; 7304 } 7305 7306 /* 7307 * Create the kstats here so they can be available for attach-time 7308 * routines that send commands to the unit (either polled or via 7309 * sd_send_scsi_cmd). 7310 * 7311 * Note: This is a critical sequence that needs to be maintained: 7312 * 1) Instantiate the kstats here, before any routines using the 7313 * iopath (i.e. sd_send_scsi_cmd). 7314 * 2) Instantiate and initialize the partition stats 7315 * (sd_set_pstats). 7316 * 3) Initialize the error stats (sd_set_errstats), following 7317 * sd_validate_geometry(),sd_register_devid(), 7318 * and sd_cache_control(). 7319 */ 7320 7321 un->un_stats = kstat_create(sd_label, instance, 7322 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 7323 if (un->un_stats != NULL) { 7324 un->un_stats->ks_lock = SD_MUTEX(un); 7325 kstat_install(un->un_stats); 7326 } 7327 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7328 "sd_unit_attach: un:0x%p un_stats created\n", un); 7329 7330 sd_create_errstats(un, instance); 7331 if (un->un_errstats == NULL) { 7332 goto create_errstats_failed; 7333 } 7334 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7335 "sd_unit_attach: un:0x%p errstats created\n", un); 7336 7337 /* 7338 * The following if/else code was relocated here from below as part 7339 * of the fix for bug (4430280). However with the default setup added 7340 * on entry to this routine, it's no longer absolutely necessary for 7341 * this to be before the call to sd_spin_up_unit. 7342 */ 7343 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 7344 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) || 7345 (devp->sd_inq->inq_ansi == 5)) && 7346 devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque; 7347 7348 /* 7349 * If tagged queueing is supported by the target 7350 * and by the host adapter then we will enable it 7351 */ 7352 un->un_tagflags = 0; 7353 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag && 7354 (un->un_f_arq_enabled == TRUE)) { 7355 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 7356 1, 1) == 1) { 7357 un->un_tagflags = FLAG_STAG; 7358 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7359 "sd_unit_attach: un:0x%p tag queueing " 7360 "enabled\n", un); 7361 } else if (scsi_ifgetcap(SD_ADDRESS(un), 7362 "untagged-qing", 0) == 1) { 7363 un->un_f_opt_queueing = TRUE; 7364 un->un_saved_throttle = un->un_throttle = 7365 min(un->un_throttle, 3); 7366 } else { 7367 un->un_f_opt_queueing = FALSE; 7368 un->un_saved_throttle = un->un_throttle = 1; 7369 } 7370 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 7371 == 1) && (un->un_f_arq_enabled == TRUE)) { 7372 /* The Host Adapter supports internal queueing. */ 7373 un->un_f_opt_queueing = TRUE; 7374 un->un_saved_throttle = un->un_throttle = 7375 min(un->un_throttle, 3); 7376 } else { 7377 un->un_f_opt_queueing = FALSE; 7378 un->un_saved_throttle = un->un_throttle = 1; 7379 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7380 "sd_unit_attach: un:0x%p no tag queueing\n", un); 7381 } 7382 7383 /* 7384 * Enable large transfers for SATA/SAS drives 7385 */ 7386 if (SD_IS_SERIAL(un)) { 7387 un->un_max_xfer_size = 7388 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7389 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7390 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7391 "sd_unit_attach: un:0x%p max transfer " 7392 "size=0x%x\n", un, un->un_max_xfer_size); 7393 7394 } 7395 7396 /* Setup or tear down default wide operations for disks */ 7397 7398 /* 7399 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 7400 * and "ssd_max_xfer_size" to exist simultaneously on the same 7401 * system and be set to different values. In the future this 7402 * code may need to be updated when the ssd module is 7403 * obsoleted and removed from the system. (4299588) 7404 */ 7405 if (SD_IS_PARALLEL_SCSI(un) && 7406 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 7407 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 7408 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7409 1, 1) == 1) { 7410 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7411 "sd_unit_attach: un:0x%p Wide Transfer " 7412 "enabled\n", un); 7413 } 7414 7415 /* 7416 * If tagged queuing has also been enabled, then 7417 * enable large xfers 7418 */ 7419 if (un->un_saved_throttle == sd_max_throttle) { 7420 un->un_max_xfer_size = 7421 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7422 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7423 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7424 "sd_unit_attach: un:0x%p max transfer " 7425 "size=0x%x\n", un, un->un_max_xfer_size); 7426 } 7427 } else { 7428 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7429 0, 1) == 1) { 7430 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7431 "sd_unit_attach: un:0x%p " 7432 "Wide Transfer disabled\n", un); 7433 } 7434 } 7435 } else { 7436 un->un_tagflags = FLAG_STAG; 7437 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 7438 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 7439 } 7440 7441 /* 7442 * If this target supports LUN reset, try to enable it. 7443 */ 7444 if (un->un_f_lun_reset_enabled) { 7445 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 7446 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7447 "un:0x%p lun_reset capability set\n", un); 7448 } else { 7449 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7450 "un:0x%p lun-reset capability not set\n", un); 7451 } 7452 } 7453 7454 /* 7455 * Adjust the maximum transfer size. This is to fix 7456 * the problem of partial DMA support on SPARC. Some 7457 * HBA driver, like aac, has very small dma_attr_maxxfer 7458 * size, which requires partial DMA support on SPARC. 7459 * In the future the SPARC pci nexus driver may solve 7460 * the problem instead of this fix. 7461 */ 7462 #if defined(__sparc) 7463 max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1); 7464 if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) { 7465 un->un_max_xfer_size = max_xfer_size; 7466 un->un_partial_dma_supported = 1; 7467 } 7468 #endif 7469 7470 /* 7471 * Set PKT_DMA_PARTIAL flag. 7472 */ 7473 if (un->un_partial_dma_supported == 1) { 7474 un->un_pkt_flags = PKT_DMA_PARTIAL; 7475 } else { 7476 un->un_pkt_flags = 0; 7477 } 7478 7479 /* Initialize sd_ssc_t for internal uscsi commands */ 7480 ssc = sd_ssc_init(un); 7481 scsi_fm_init(devp); 7482 7483 /* 7484 * Allocate memory for SCSI FMA stuffs. 7485 */ 7486 un->un_fm_private = 7487 kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP); 7488 sfip = (struct sd_fm_internal *)un->un_fm_private; 7489 sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd; 7490 sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo; 7491 sfip->fm_ssc.ssc_un = un; 7492 7493 if (ISCD(un) || 7494 un->un_f_has_removable_media || 7495 devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) { 7496 /* 7497 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device. 7498 * Their log are unchanged. 7499 */ 7500 sfip->fm_log_level = SD_FM_LOG_NSUP; 7501 } else { 7502 /* 7503 * If enter here, it should be non-CDROM and FM-capable 7504 * device, and it will not keep the old scsi_log as before 7505 * in /var/adm/messages. However, the property 7506 * "fm-scsi-log" will control whether the FM telemetry will 7507 * be logged in /var/adm/messages. 7508 */ 7509 int fm_scsi_log; 7510 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7511 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0); 7512 7513 if (fm_scsi_log) 7514 sfip->fm_log_level = SD_FM_LOG_EREPORT; 7515 else 7516 sfip->fm_log_level = SD_FM_LOG_SILENT; 7517 } 7518 7519 /* 7520 * At this point in the attach, we have enough info in the 7521 * soft state to be able to issue commands to the target. 7522 * 7523 * All command paths used below MUST issue their commands as 7524 * SD_PATH_DIRECT. This is important as intermediate layers 7525 * are not all initialized yet (such as PM). 7526 */ 7527 7528 /* 7529 * Send a TEST UNIT READY command to the device. This should clear 7530 * any outstanding UNIT ATTENTION that may be present. 7531 * 7532 * Note: Don't check for success, just track if there is a reservation, 7533 * this is a throw away command to clear any unit attentions. 7534 * 7535 * Note: This MUST be the first command issued to the target during 7536 * attach to ensure power on UNIT ATTENTIONS are cleared. 7537 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 7538 * with attempts at spinning up a device with no media. 7539 */ 7540 status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 7541 if (status != 0) { 7542 if (status == EACCES) 7543 reservation_flag = SD_TARGET_IS_RESERVED; 7544 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7545 } 7546 7547 /* 7548 * If the device is NOT a removable media device, attempt to spin 7549 * it up (using the START_STOP_UNIT command) and read its capacity 7550 * (using the READ CAPACITY command). Note, however, that either 7551 * of these could fail and in some cases we would continue with 7552 * the attach despite the failure (see below). 7553 */ 7554 if (un->un_f_descr_format_supported) { 7555 7556 switch (sd_spin_up_unit(ssc)) { 7557 case 0: 7558 /* 7559 * Spin-up was successful; now try to read the 7560 * capacity. If successful then save the results 7561 * and mark the capacity & lbasize as valid. 7562 */ 7563 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7564 "sd_unit_attach: un:0x%p spin-up successful\n", un); 7565 7566 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 7567 &lbasize, SD_PATH_DIRECT); 7568 7569 switch (status) { 7570 case 0: { 7571 if (capacity > DK_MAX_BLOCKS) { 7572 #ifdef _LP64 7573 if ((capacity + 1) > 7574 SD_GROUP1_MAX_ADDRESS) { 7575 /* 7576 * Enable descriptor format 7577 * sense data so that we can 7578 * get 64 bit sense data 7579 * fields. 7580 */ 7581 sd_enable_descr_sense(ssc); 7582 } 7583 #else 7584 /* 32-bit kernels can't handle this */ 7585 scsi_log(SD_DEVINFO(un), 7586 sd_label, CE_WARN, 7587 "disk has %llu blocks, which " 7588 "is too large for a 32-bit " 7589 "kernel", capacity); 7590 7591 #if defined(__i386) || defined(__amd64) 7592 /* 7593 * 1TB disk was treated as (1T - 512)B 7594 * in the past, so that it might have 7595 * valid VTOC and solaris partitions, 7596 * we have to allow it to continue to 7597 * work. 7598 */ 7599 if (capacity -1 > DK_MAX_BLOCKS) 7600 #endif 7601 goto spinup_failed; 7602 #endif 7603 } 7604 7605 /* 7606 * Here it's not necessary to check the case: 7607 * the capacity of the device is bigger than 7608 * what the max hba cdb can support. Because 7609 * sd_send_scsi_READ_CAPACITY will retrieve 7610 * the capacity by sending USCSI command, which 7611 * is constrained by the max hba cdb. Actually, 7612 * sd_send_scsi_READ_CAPACITY will return 7613 * EINVAL when using bigger cdb than required 7614 * cdb length. Will handle this case in 7615 * "case EINVAL". 7616 */ 7617 7618 /* 7619 * The following relies on 7620 * sd_send_scsi_READ_CAPACITY never 7621 * returning 0 for capacity and/or lbasize. 7622 */ 7623 sd_update_block_info(un, lbasize, capacity); 7624 7625 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7626 "sd_unit_attach: un:0x%p capacity = %ld " 7627 "blocks; lbasize= %ld.\n", un, 7628 un->un_blockcount, un->un_tgt_blocksize); 7629 7630 break; 7631 } 7632 case EINVAL: 7633 /* 7634 * In the case where the max-cdb-length property 7635 * is smaller than the required CDB length for 7636 * a SCSI device, a target driver can fail to 7637 * attach to that device. 7638 */ 7639 scsi_log(SD_DEVINFO(un), 7640 sd_label, CE_WARN, 7641 "disk capacity is too large " 7642 "for current cdb length"); 7643 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7644 7645 goto spinup_failed; 7646 case EACCES: 7647 /* 7648 * Should never get here if the spin-up 7649 * succeeded, but code it in anyway. 7650 * From here, just continue with the attach... 7651 */ 7652 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7653 "sd_unit_attach: un:0x%p " 7654 "sd_send_scsi_READ_CAPACITY " 7655 "returned reservation conflict\n", un); 7656 reservation_flag = SD_TARGET_IS_RESERVED; 7657 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7658 break; 7659 default: 7660 /* 7661 * Likewise, should never get here if the 7662 * spin-up succeeded. Just continue with 7663 * the attach... 7664 */ 7665 if (status == EIO) 7666 sd_ssc_assessment(ssc, 7667 SD_FMT_STATUS_CHECK); 7668 else 7669 sd_ssc_assessment(ssc, 7670 SD_FMT_IGNORE); 7671 break; 7672 } 7673 break; 7674 case EACCES: 7675 /* 7676 * Device is reserved by another host. In this case 7677 * we could not spin it up or read the capacity, but 7678 * we continue with the attach anyway. 7679 */ 7680 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7681 "sd_unit_attach: un:0x%p spin-up reservation " 7682 "conflict.\n", un); 7683 reservation_flag = SD_TARGET_IS_RESERVED; 7684 break; 7685 default: 7686 /* Fail the attach if the spin-up failed. */ 7687 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7688 "sd_unit_attach: un:0x%p spin-up failed.", un); 7689 goto spinup_failed; 7690 } 7691 7692 } 7693 7694 /* 7695 * Check to see if this is a MMC drive 7696 */ 7697 if (ISCD(un)) { 7698 sd_set_mmc_caps(ssc); 7699 } 7700 7701 7702 /* 7703 * Add a zero-length attribute to tell the world we support 7704 * kernel ioctls (for layered drivers) 7705 */ 7706 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 7707 DDI_KERNEL_IOCTL, NULL, 0); 7708 7709 /* 7710 * Add a boolean property to tell the world we support 7711 * the B_FAILFAST flag (for layered drivers) 7712 */ 7713 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 7714 "ddi-failfast-supported", NULL, 0); 7715 7716 /* 7717 * Initialize power management 7718 */ 7719 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 7720 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 7721 sd_setup_pm(ssc, devi); 7722 if (un->un_f_pm_is_enabled == FALSE) { 7723 /* 7724 * For performance, point to a jump table that does 7725 * not include pm. 7726 * The direct and priority chains don't change with PM. 7727 * 7728 * Note: this is currently done based on individual device 7729 * capabilities. When an interface for determining system 7730 * power enabled state becomes available, or when additional 7731 * layers are added to the command chain, these values will 7732 * have to be re-evaluated for correctness. 7733 */ 7734 if (un->un_f_non_devbsize_supported) { 7735 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 7736 } else { 7737 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 7738 } 7739 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 7740 } 7741 7742 /* 7743 * This property is set to 0 by HA software to avoid retries 7744 * on a reserved disk. (The preferred property name is 7745 * "retry-on-reservation-conflict") (1189689) 7746 * 7747 * Note: The use of a global here can have unintended consequences. A 7748 * per instance variable is preferable to match the capabilities of 7749 * different underlying hba's (4402600) 7750 */ 7751 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 7752 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 7753 sd_retry_on_reservation_conflict); 7754 if (sd_retry_on_reservation_conflict != 0) { 7755 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 7756 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 7757 sd_retry_on_reservation_conflict); 7758 } 7759 7760 /* Set up options for QFULL handling. */ 7761 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7762 "qfull-retries", -1)) != -1) { 7763 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 7764 rval, 1); 7765 } 7766 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7767 "qfull-retry-interval", -1)) != -1) { 7768 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 7769 rval, 1); 7770 } 7771 7772 /* 7773 * This just prints a message that announces the existence of the 7774 * device. The message is always printed in the system logfile, but 7775 * only appears on the console if the system is booted with the 7776 * -v (verbose) argument. 7777 */ 7778 ddi_report_dev(devi); 7779 7780 un->un_mediastate = DKIO_NONE; 7781 7782 cmlb_alloc_handle(&un->un_cmlbhandle); 7783 7784 #if defined(__i386) || defined(__amd64) 7785 /* 7786 * On x86, compensate for off-by-1 legacy error 7787 */ 7788 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 7789 (lbasize == un->un_sys_blocksize)) 7790 offbyone = CMLB_OFF_BY_ONE; 7791 #endif 7792 7793 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 7794 un->un_f_has_removable_media, un->un_f_is_hotpluggable, 7795 un->un_node_type, offbyone, un->un_cmlbhandle, 7796 (void *)SD_PATH_DIRECT) != 0) { 7797 goto cmlb_attach_failed; 7798 } 7799 7800 7801 /* 7802 * Read and validate the device's geometry (ie, disk label) 7803 * A new unformatted drive will not have a valid geometry, but 7804 * the driver needs to successfully attach to this device so 7805 * the drive can be formatted via ioctls. 7806 */ 7807 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 7808 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 7809 7810 mutex_enter(SD_MUTEX(un)); 7811 7812 /* 7813 * Read and initialize the devid for the unit. 7814 */ 7815 if (un->un_f_devid_supported) { 7816 sd_register_devid(ssc, devi, reservation_flag); 7817 } 7818 mutex_exit(SD_MUTEX(un)); 7819 7820 #if (defined(__fibre)) 7821 /* 7822 * Register callbacks for fibre only. You can't do this solely 7823 * on the basis of the devid_type because this is hba specific. 7824 * We need to query our hba capabilities to find out whether to 7825 * register or not. 7826 */ 7827 if (un->un_f_is_fibre) { 7828 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 7829 sd_init_event_callbacks(un); 7830 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7831 "sd_unit_attach: un:0x%p event callbacks inserted", 7832 un); 7833 } 7834 } 7835 #endif 7836 7837 if (un->un_f_opt_disable_cache == TRUE) { 7838 /* 7839 * Disable both read cache and write cache. This is 7840 * the historic behavior of the keywords in the config file. 7841 */ 7842 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 7843 0) { 7844 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 7845 "sd_unit_attach: un:0x%p Could not disable " 7846 "caching", un); 7847 goto devid_failed; 7848 } 7849 } 7850 7851 /* 7852 * Check the value of the WCE bit now and 7853 * set un_f_write_cache_enabled accordingly. 7854 */ 7855 (void) sd_get_write_cache_enabled(ssc, &wc_enabled); 7856 mutex_enter(SD_MUTEX(un)); 7857 un->un_f_write_cache_enabled = (wc_enabled != 0); 7858 mutex_exit(SD_MUTEX(un)); 7859 7860 /* 7861 * Check the value of the NV_SUP bit and set 7862 * un_f_suppress_cache_flush accordingly. 7863 */ 7864 sd_get_nv_sup(ssc); 7865 7866 /* 7867 * Find out what type of reservation this disk supports. 7868 */ 7869 status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL); 7870 7871 switch (status) { 7872 case 0: 7873 /* 7874 * SCSI-3 reservations are supported. 7875 */ 7876 un->un_reservation_type = SD_SCSI3_RESERVATION; 7877 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7878 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 7879 break; 7880 case ENOTSUP: 7881 /* 7882 * The PERSISTENT RESERVE IN command would not be recognized by 7883 * a SCSI-2 device, so assume the reservation type is SCSI-2. 7884 */ 7885 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7886 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 7887 un->un_reservation_type = SD_SCSI2_RESERVATION; 7888 7889 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7890 break; 7891 default: 7892 /* 7893 * default to SCSI-3 reservations 7894 */ 7895 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7896 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 7897 un->un_reservation_type = SD_SCSI3_RESERVATION; 7898 7899 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7900 break; 7901 } 7902 7903 /* 7904 * Set the pstat and error stat values here, so data obtained during the 7905 * previous attach-time routines is available. 7906 * 7907 * Note: This is a critical sequence that needs to be maintained: 7908 * 1) Instantiate the kstats before any routines using the iopath 7909 * (i.e. sd_send_scsi_cmd). 7910 * 2) Initialize the error stats (sd_set_errstats) and partition 7911 * stats (sd_set_pstats)here, following 7912 * cmlb_validate_geometry(), sd_register_devid(), and 7913 * sd_cache_control(). 7914 */ 7915 7916 if (un->un_f_pkstats_enabled && geom_label_valid) { 7917 sd_set_pstats(un); 7918 SD_TRACE(SD_LOG_IO_PARTITION, un, 7919 "sd_unit_attach: un:0x%p pstats created and set\n", un); 7920 } 7921 7922 sd_set_errstats(un); 7923 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7924 "sd_unit_attach: un:0x%p errstats set\n", un); 7925 7926 7927 /* 7928 * After successfully attaching an instance, we record the information 7929 * of how many luns have been attached on the relative target and 7930 * controller for parallel SCSI. This information is used when sd tries 7931 * to set the tagged queuing capability in HBA. 7932 */ 7933 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 7934 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 7935 } 7936 7937 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7938 "sd_unit_attach: un:0x%p exit success\n", un); 7939 7940 /* Uninitialize sd_ssc_t pointer */ 7941 sd_ssc_fini(ssc); 7942 7943 return (DDI_SUCCESS); 7944 7945 /* 7946 * An error occurred during the attach; clean up & return failure. 7947 */ 7948 7949 devid_failed: 7950 7951 setup_pm_failed: 7952 ddi_remove_minor_node(devi, NULL); 7953 7954 cmlb_attach_failed: 7955 /* 7956 * Cleanup from the scsi_ifsetcap() calls (437868) 7957 */ 7958 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 7959 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 7960 7961 /* 7962 * Refer to the comments of setting tagged-qing in the beginning of 7963 * sd_unit_attach. We can only disable tagged queuing when there is 7964 * no lun attached on the target. 7965 */ 7966 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7967 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 7968 } 7969 7970 if (un->un_f_is_fibre == FALSE) { 7971 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 7972 } 7973 7974 spinup_failed: 7975 7976 /* Uninitialize sd_ssc_t pointer */ 7977 sd_ssc_fini(ssc); 7978 7979 mutex_enter(SD_MUTEX(un)); 7980 7981 /* Deallocate SCSI FMA memory spaces */ 7982 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 7983 7984 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 7985 if (un->un_direct_priority_timeid != NULL) { 7986 timeout_id_t temp_id = un->un_direct_priority_timeid; 7987 un->un_direct_priority_timeid = NULL; 7988 mutex_exit(SD_MUTEX(un)); 7989 (void) untimeout(temp_id); 7990 mutex_enter(SD_MUTEX(un)); 7991 } 7992 7993 /* Cancel any pending start/stop timeouts */ 7994 if (un->un_startstop_timeid != NULL) { 7995 timeout_id_t temp_id = un->un_startstop_timeid; 7996 un->un_startstop_timeid = NULL; 7997 mutex_exit(SD_MUTEX(un)); 7998 (void) untimeout(temp_id); 7999 mutex_enter(SD_MUTEX(un)); 8000 } 8001 8002 /* Cancel any pending reset-throttle timeouts */ 8003 if (un->un_reset_throttle_timeid != NULL) { 8004 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8005 un->un_reset_throttle_timeid = NULL; 8006 mutex_exit(SD_MUTEX(un)); 8007 (void) untimeout(temp_id); 8008 mutex_enter(SD_MUTEX(un)); 8009 } 8010 8011 /* Cancel any pending retry timeouts */ 8012 if (un->un_retry_timeid != NULL) { 8013 timeout_id_t temp_id = un->un_retry_timeid; 8014 un->un_retry_timeid = NULL; 8015 mutex_exit(SD_MUTEX(un)); 8016 (void) untimeout(temp_id); 8017 mutex_enter(SD_MUTEX(un)); 8018 } 8019 8020 /* Cancel any pending delayed cv broadcast timeouts */ 8021 if (un->un_dcvb_timeid != NULL) { 8022 timeout_id_t temp_id = un->un_dcvb_timeid; 8023 un->un_dcvb_timeid = NULL; 8024 mutex_exit(SD_MUTEX(un)); 8025 (void) untimeout(temp_id); 8026 mutex_enter(SD_MUTEX(un)); 8027 } 8028 8029 mutex_exit(SD_MUTEX(un)); 8030 8031 /* There should not be any in-progress I/O so ASSERT this check */ 8032 ASSERT(un->un_ncmds_in_transport == 0); 8033 ASSERT(un->un_ncmds_in_driver == 0); 8034 8035 /* Do not free the softstate if the callback routine is active */ 8036 sd_sync_with_callback(un); 8037 8038 /* 8039 * Partition stats apparently are not used with removables. These would 8040 * not have been created during attach, so no need to clean them up... 8041 */ 8042 if (un->un_errstats != NULL) { 8043 kstat_delete(un->un_errstats); 8044 un->un_errstats = NULL; 8045 } 8046 8047 create_errstats_failed: 8048 8049 if (un->un_stats != NULL) { 8050 kstat_delete(un->un_stats); 8051 un->un_stats = NULL; 8052 } 8053 8054 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8055 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8056 8057 ddi_prop_remove_all(devi); 8058 sema_destroy(&un->un_semoclose); 8059 cv_destroy(&un->un_state_cv); 8060 8061 getrbuf_failed: 8062 8063 sd_free_rqs(un); 8064 8065 alloc_rqs_failed: 8066 8067 devp->sd_private = NULL; 8068 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8069 8070 get_softstate_failed: 8071 /* 8072 * Note: the man pages are unclear as to whether or not doing a 8073 * ddi_soft_state_free(sd_state, instance) is the right way to 8074 * clean up after the ddi_soft_state_zalloc() if the subsequent 8075 * ddi_get_soft_state() fails. The implication seems to be 8076 * that the get_soft_state cannot fail if the zalloc succeeds. 8077 */ 8078 ddi_soft_state_free(sd_state, instance); 8079 8080 probe_failed: 8081 scsi_unprobe(devp); 8082 8083 return (DDI_FAILURE); 8084 } 8085 8086 8087 /* 8088 * Function: sd_unit_detach 8089 * 8090 * Description: Performs DDI_DETACH processing for sddetach(). 8091 * 8092 * Return Code: DDI_SUCCESS 8093 * DDI_FAILURE 8094 * 8095 * Context: Kernel thread context 8096 */ 8097 8098 static int 8099 sd_unit_detach(dev_info_t *devi) 8100 { 8101 struct scsi_device *devp; 8102 struct sd_lun *un; 8103 int i; 8104 int tgt; 8105 dev_t dev; 8106 dev_info_t *pdip = ddi_get_parent(devi); 8107 int instance = ddi_get_instance(devi); 8108 8109 mutex_enter(&sd_detach_mutex); 8110 8111 /* 8112 * Fail the detach for any of the following: 8113 * - Unable to get the sd_lun struct for the instance 8114 * - A layered driver has an outstanding open on the instance 8115 * - Another thread is already detaching this instance 8116 * - Another thread is currently performing an open 8117 */ 8118 devp = ddi_get_driver_private(devi); 8119 if ((devp == NULL) || 8120 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8121 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8122 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8123 mutex_exit(&sd_detach_mutex); 8124 return (DDI_FAILURE); 8125 } 8126 8127 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8128 8129 /* 8130 * Mark this instance as currently in a detach, to inhibit any 8131 * opens from a layered driver. 8132 */ 8133 un->un_detach_count++; 8134 mutex_exit(&sd_detach_mutex); 8135 8136 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8137 SCSI_ADDR_PROP_TARGET, -1); 8138 8139 dev = sd_make_device(SD_DEVINFO(un)); 8140 8141 #ifndef lint 8142 _NOTE(COMPETING_THREADS_NOW); 8143 #endif 8144 8145 mutex_enter(SD_MUTEX(un)); 8146 8147 /* 8148 * Fail the detach if there are any outstanding layered 8149 * opens on this device. 8150 */ 8151 for (i = 0; i < NDKMAP; i++) { 8152 if (un->un_ocmap.lyropen[i] != 0) { 8153 goto err_notclosed; 8154 } 8155 } 8156 8157 /* 8158 * Verify there are NO outstanding commands issued to this device. 8159 * ie, un_ncmds_in_transport == 0. 8160 * It's possible to have outstanding commands through the physio 8161 * code path, even though everything's closed. 8162 */ 8163 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8164 (un->un_direct_priority_timeid != NULL) || 8165 (un->un_state == SD_STATE_RWAIT)) { 8166 mutex_exit(SD_MUTEX(un)); 8167 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8168 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8169 goto err_stillbusy; 8170 } 8171 8172 /* 8173 * If we have the device reserved, release the reservation. 8174 */ 8175 if ((un->un_resvd_status & SD_RESERVE) && 8176 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8177 mutex_exit(SD_MUTEX(un)); 8178 /* 8179 * Note: sd_reserve_release sends a command to the device 8180 * via the sd_ioctlcmd() path, and can sleep. 8181 */ 8182 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8183 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8184 "sd_dr_detach: Cannot release reservation \n"); 8185 } 8186 } else { 8187 mutex_exit(SD_MUTEX(un)); 8188 } 8189 8190 /* 8191 * Untimeout any reserve recover, throttle reset, restart unit 8192 * and delayed broadcast timeout threads. Protect the timeout pointer 8193 * from getting nulled by their callback functions. 8194 */ 8195 mutex_enter(SD_MUTEX(un)); 8196 if (un->un_resvd_timeid != NULL) { 8197 timeout_id_t temp_id = un->un_resvd_timeid; 8198 un->un_resvd_timeid = NULL; 8199 mutex_exit(SD_MUTEX(un)); 8200 (void) untimeout(temp_id); 8201 mutex_enter(SD_MUTEX(un)); 8202 } 8203 8204 if (un->un_reset_throttle_timeid != NULL) { 8205 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8206 un->un_reset_throttle_timeid = NULL; 8207 mutex_exit(SD_MUTEX(un)); 8208 (void) untimeout(temp_id); 8209 mutex_enter(SD_MUTEX(un)); 8210 } 8211 8212 if (un->un_startstop_timeid != NULL) { 8213 timeout_id_t temp_id = un->un_startstop_timeid; 8214 un->un_startstop_timeid = NULL; 8215 mutex_exit(SD_MUTEX(un)); 8216 (void) untimeout(temp_id); 8217 mutex_enter(SD_MUTEX(un)); 8218 } 8219 8220 if (un->un_dcvb_timeid != NULL) { 8221 timeout_id_t temp_id = un->un_dcvb_timeid; 8222 un->un_dcvb_timeid = NULL; 8223 mutex_exit(SD_MUTEX(un)); 8224 (void) untimeout(temp_id); 8225 } else { 8226 mutex_exit(SD_MUTEX(un)); 8227 } 8228 8229 /* Remove any pending reservation reclaim requests for this device */ 8230 sd_rmv_resv_reclaim_req(dev); 8231 8232 mutex_enter(SD_MUTEX(un)); 8233 8234 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8235 if (un->un_direct_priority_timeid != NULL) { 8236 timeout_id_t temp_id = un->un_direct_priority_timeid; 8237 un->un_direct_priority_timeid = NULL; 8238 mutex_exit(SD_MUTEX(un)); 8239 (void) untimeout(temp_id); 8240 mutex_enter(SD_MUTEX(un)); 8241 } 8242 8243 /* Cancel any active multi-host disk watch thread requests */ 8244 if (un->un_mhd_token != NULL) { 8245 mutex_exit(SD_MUTEX(un)); 8246 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8247 if (scsi_watch_request_terminate(un->un_mhd_token, 8248 SCSI_WATCH_TERMINATE_NOWAIT)) { 8249 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8250 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8251 /* 8252 * Note: We are returning here after having removed 8253 * some driver timeouts above. This is consistent with 8254 * the legacy implementation but perhaps the watch 8255 * terminate call should be made with the wait flag set. 8256 */ 8257 goto err_stillbusy; 8258 } 8259 mutex_enter(SD_MUTEX(un)); 8260 un->un_mhd_token = NULL; 8261 } 8262 8263 if (un->un_swr_token != NULL) { 8264 mutex_exit(SD_MUTEX(un)); 8265 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8266 if (scsi_watch_request_terminate(un->un_swr_token, 8267 SCSI_WATCH_TERMINATE_NOWAIT)) { 8268 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8269 "sd_dr_detach: Cannot cancel swr watch request\n"); 8270 /* 8271 * Note: We are returning here after having removed 8272 * some driver timeouts above. This is consistent with 8273 * the legacy implementation but perhaps the watch 8274 * terminate call should be made with the wait flag set. 8275 */ 8276 goto err_stillbusy; 8277 } 8278 mutex_enter(SD_MUTEX(un)); 8279 un->un_swr_token = NULL; 8280 } 8281 8282 mutex_exit(SD_MUTEX(un)); 8283 8284 /* 8285 * Clear any scsi_reset_notifies. We clear the reset notifies 8286 * if we have not registered one. 8287 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8288 */ 8289 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8290 sd_mhd_reset_notify_cb, (caddr_t)un); 8291 8292 /* 8293 * protect the timeout pointers from getting nulled by 8294 * their callback functions during the cancellation process. 8295 * In such a scenario untimeout can be invoked with a null value. 8296 */ 8297 _NOTE(NO_COMPETING_THREADS_NOW); 8298 8299 mutex_enter(&un->un_pm_mutex); 8300 if (un->un_pm_idle_timeid != NULL) { 8301 timeout_id_t temp_id = un->un_pm_idle_timeid; 8302 un->un_pm_idle_timeid = NULL; 8303 mutex_exit(&un->un_pm_mutex); 8304 8305 /* 8306 * Timeout is active; cancel it. 8307 * Note that it'll never be active on a device 8308 * that does not support PM therefore we don't 8309 * have to check before calling pm_idle_component. 8310 */ 8311 (void) untimeout(temp_id); 8312 (void) pm_idle_component(SD_DEVINFO(un), 0); 8313 mutex_enter(&un->un_pm_mutex); 8314 } 8315 8316 /* 8317 * Check whether there is already a timeout scheduled for power 8318 * management. If yes then don't lower the power here, that's. 8319 * the timeout handler's job. 8320 */ 8321 if (un->un_pm_timeid != NULL) { 8322 timeout_id_t temp_id = un->un_pm_timeid; 8323 un->un_pm_timeid = NULL; 8324 mutex_exit(&un->un_pm_mutex); 8325 /* 8326 * Timeout is active; cancel it. 8327 * Note that it'll never be active on a device 8328 * that does not support PM therefore we don't 8329 * have to check before calling pm_idle_component. 8330 */ 8331 (void) untimeout(temp_id); 8332 (void) pm_idle_component(SD_DEVINFO(un), 0); 8333 8334 } else { 8335 mutex_exit(&un->un_pm_mutex); 8336 if ((un->un_f_pm_is_enabled == TRUE) && 8337 (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) != 8338 DDI_SUCCESS)) { 8339 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8340 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8341 /* 8342 * Fix for bug: 4297749, item # 13 8343 * The above test now includes a check to see if PM is 8344 * supported by this device before call 8345 * pm_lower_power(). 8346 * Note, the following is not dead code. The call to 8347 * pm_lower_power above will generate a call back into 8348 * our sdpower routine which might result in a timeout 8349 * handler getting activated. Therefore the following 8350 * code is valid and necessary. 8351 */ 8352 mutex_enter(&un->un_pm_mutex); 8353 if (un->un_pm_timeid != NULL) { 8354 timeout_id_t temp_id = un->un_pm_timeid; 8355 un->un_pm_timeid = NULL; 8356 mutex_exit(&un->un_pm_mutex); 8357 (void) untimeout(temp_id); 8358 (void) pm_idle_component(SD_DEVINFO(un), 0); 8359 } else { 8360 mutex_exit(&un->un_pm_mutex); 8361 } 8362 } 8363 } 8364 8365 /* 8366 * Cleanup from the scsi_ifsetcap() calls (437868) 8367 * Relocated here from above to be after the call to 8368 * pm_lower_power, which was getting errors. 8369 */ 8370 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8371 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8372 8373 /* 8374 * Currently, tagged queuing is supported per target based by HBA. 8375 * Setting this per lun instance actually sets the capability of this 8376 * target in HBA, which affects those luns already attached on the 8377 * same target. So during detach, we can only disable this capability 8378 * only when this is the only lun left on this target. By doing 8379 * this, we assume a target has the same tagged queuing capability 8380 * for every lun. The condition can be removed when HBA is changed to 8381 * support per lun based tagged queuing capability. 8382 */ 8383 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 8384 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8385 } 8386 8387 if (un->un_f_is_fibre == FALSE) { 8388 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8389 } 8390 8391 /* 8392 * Remove any event callbacks, fibre only 8393 */ 8394 if (un->un_f_is_fibre == TRUE) { 8395 if ((un->un_insert_event != NULL) && 8396 (ddi_remove_event_handler(un->un_insert_cb_id) != 8397 DDI_SUCCESS)) { 8398 /* 8399 * Note: We are returning here after having done 8400 * substantial cleanup above. This is consistent 8401 * with the legacy implementation but this may not 8402 * be the right thing to do. 8403 */ 8404 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8405 "sd_dr_detach: Cannot cancel insert event\n"); 8406 goto err_remove_event; 8407 } 8408 un->un_insert_event = NULL; 8409 8410 if ((un->un_remove_event != NULL) && 8411 (ddi_remove_event_handler(un->un_remove_cb_id) != 8412 DDI_SUCCESS)) { 8413 /* 8414 * Note: We are returning here after having done 8415 * substantial cleanup above. This is consistent 8416 * with the legacy implementation but this may not 8417 * be the right thing to do. 8418 */ 8419 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8420 "sd_dr_detach: Cannot cancel remove event\n"); 8421 goto err_remove_event; 8422 } 8423 un->un_remove_event = NULL; 8424 } 8425 8426 /* Do not free the softstate if the callback routine is active */ 8427 sd_sync_with_callback(un); 8428 8429 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 8430 cmlb_free_handle(&un->un_cmlbhandle); 8431 8432 /* 8433 * Hold the detach mutex here, to make sure that no other threads ever 8434 * can access a (partially) freed soft state structure. 8435 */ 8436 mutex_enter(&sd_detach_mutex); 8437 8438 /* 8439 * Clean up the soft state struct. 8440 * Cleanup is done in reverse order of allocs/inits. 8441 * At this point there should be no competing threads anymore. 8442 */ 8443 8444 scsi_fm_fini(devp); 8445 8446 /* 8447 * Deallocate memory for SCSI FMA. 8448 */ 8449 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8450 8451 /* Unregister and free device id. */ 8452 ddi_devid_unregister(devi); 8453 if (un->un_devid) { 8454 ddi_devid_free(un->un_devid); 8455 un->un_devid = NULL; 8456 } 8457 8458 /* 8459 * Destroy wmap cache if it exists. 8460 */ 8461 if (un->un_wm_cache != NULL) { 8462 kmem_cache_destroy(un->un_wm_cache); 8463 un->un_wm_cache = NULL; 8464 } 8465 8466 /* 8467 * kstat cleanup is done in detach for all device types (4363169). 8468 * We do not want to fail detach if the device kstats are not deleted 8469 * since there is a confusion about the devo_refcnt for the device. 8470 * We just delete the kstats and let detach complete successfully. 8471 */ 8472 if (un->un_stats != NULL) { 8473 kstat_delete(un->un_stats); 8474 un->un_stats = NULL; 8475 } 8476 if (un->un_errstats != NULL) { 8477 kstat_delete(un->un_errstats); 8478 un->un_errstats = NULL; 8479 } 8480 8481 /* Remove partition stats */ 8482 if (un->un_f_pkstats_enabled) { 8483 for (i = 0; i < NSDMAP; i++) { 8484 if (un->un_pstats[i] != NULL) { 8485 kstat_delete(un->un_pstats[i]); 8486 un->un_pstats[i] = NULL; 8487 } 8488 } 8489 } 8490 8491 /* Remove xbuf registration */ 8492 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8493 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8494 8495 /* Remove driver properties */ 8496 ddi_prop_remove_all(devi); 8497 8498 mutex_destroy(&un->un_pm_mutex); 8499 cv_destroy(&un->un_pm_busy_cv); 8500 8501 cv_destroy(&un->un_wcc_cv); 8502 8503 /* Open/close semaphore */ 8504 sema_destroy(&un->un_semoclose); 8505 8506 /* Removable media condvar. */ 8507 cv_destroy(&un->un_state_cv); 8508 8509 /* Suspend/resume condvar. */ 8510 cv_destroy(&un->un_suspend_cv); 8511 cv_destroy(&un->un_disk_busy_cv); 8512 8513 sd_free_rqs(un); 8514 8515 /* Free up soft state */ 8516 devp->sd_private = NULL; 8517 8518 bzero(un, sizeof (struct sd_lun)); 8519 ddi_soft_state_free(sd_state, instance); 8520 8521 mutex_exit(&sd_detach_mutex); 8522 8523 /* This frees up the INQUIRY data associated with the device. */ 8524 scsi_unprobe(devp); 8525 8526 /* 8527 * After successfully detaching an instance, we update the information 8528 * of how many luns have been attached in the relative target and 8529 * controller for parallel SCSI. This information is used when sd tries 8530 * to set the tagged queuing capability in HBA. 8531 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 8532 * check if the device is parallel SCSI. However, we don't need to 8533 * check here because we've already checked during attach. No device 8534 * that is not parallel SCSI is in the chain. 8535 */ 8536 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8537 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 8538 } 8539 8540 return (DDI_SUCCESS); 8541 8542 err_notclosed: 8543 mutex_exit(SD_MUTEX(un)); 8544 8545 err_stillbusy: 8546 _NOTE(NO_COMPETING_THREADS_NOW); 8547 8548 err_remove_event: 8549 mutex_enter(&sd_detach_mutex); 8550 un->un_detach_count--; 8551 mutex_exit(&sd_detach_mutex); 8552 8553 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 8554 return (DDI_FAILURE); 8555 } 8556 8557 8558 /* 8559 * Function: sd_create_errstats 8560 * 8561 * Description: This routine instantiates the device error stats. 8562 * 8563 * Note: During attach the stats are instantiated first so they are 8564 * available for attach-time routines that utilize the driver 8565 * iopath to send commands to the device. The stats are initialized 8566 * separately so data obtained during some attach-time routines is 8567 * available. (4362483) 8568 * 8569 * Arguments: un - driver soft state (unit) structure 8570 * instance - driver instance 8571 * 8572 * Context: Kernel thread context 8573 */ 8574 8575 static void 8576 sd_create_errstats(struct sd_lun *un, int instance) 8577 { 8578 struct sd_errstats *stp; 8579 char kstatmodule_err[KSTAT_STRLEN]; 8580 char kstatname[KSTAT_STRLEN]; 8581 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 8582 8583 ASSERT(un != NULL); 8584 8585 if (un->un_errstats != NULL) { 8586 return; 8587 } 8588 8589 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 8590 "%serr", sd_label); 8591 (void) snprintf(kstatname, sizeof (kstatname), 8592 "%s%d,err", sd_label, instance); 8593 8594 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 8595 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 8596 8597 if (un->un_errstats == NULL) { 8598 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8599 "sd_create_errstats: Failed kstat_create\n"); 8600 return; 8601 } 8602 8603 stp = (struct sd_errstats *)un->un_errstats->ks_data; 8604 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 8605 KSTAT_DATA_UINT32); 8606 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 8607 KSTAT_DATA_UINT32); 8608 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 8609 KSTAT_DATA_UINT32); 8610 kstat_named_init(&stp->sd_vid, "Vendor", 8611 KSTAT_DATA_CHAR); 8612 kstat_named_init(&stp->sd_pid, "Product", 8613 KSTAT_DATA_CHAR); 8614 kstat_named_init(&stp->sd_revision, "Revision", 8615 KSTAT_DATA_CHAR); 8616 kstat_named_init(&stp->sd_serial, "Serial No", 8617 KSTAT_DATA_CHAR); 8618 kstat_named_init(&stp->sd_capacity, "Size", 8619 KSTAT_DATA_ULONGLONG); 8620 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 8621 KSTAT_DATA_UINT32); 8622 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 8623 KSTAT_DATA_UINT32); 8624 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 8625 KSTAT_DATA_UINT32); 8626 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 8627 KSTAT_DATA_UINT32); 8628 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 8629 KSTAT_DATA_UINT32); 8630 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 8631 KSTAT_DATA_UINT32); 8632 8633 un->un_errstats->ks_private = un; 8634 un->un_errstats->ks_update = nulldev; 8635 8636 kstat_install(un->un_errstats); 8637 } 8638 8639 8640 /* 8641 * Function: sd_set_errstats 8642 * 8643 * Description: This routine sets the value of the vendor id, product id, 8644 * revision, serial number, and capacity device error stats. 8645 * 8646 * Note: During attach the stats are instantiated first so they are 8647 * available for attach-time routines that utilize the driver 8648 * iopath to send commands to the device. The stats are initialized 8649 * separately so data obtained during some attach-time routines is 8650 * available. (4362483) 8651 * 8652 * Arguments: un - driver soft state (unit) structure 8653 * 8654 * Context: Kernel thread context 8655 */ 8656 8657 static void 8658 sd_set_errstats(struct sd_lun *un) 8659 { 8660 struct sd_errstats *stp; 8661 8662 ASSERT(un != NULL); 8663 ASSERT(un->un_errstats != NULL); 8664 stp = (struct sd_errstats *)un->un_errstats->ks_data; 8665 ASSERT(stp != NULL); 8666 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 8667 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 8668 (void) strncpy(stp->sd_revision.value.c, 8669 un->un_sd->sd_inq->inq_revision, 4); 8670 8671 /* 8672 * All the errstats are persistent across detach/attach, 8673 * so reset all the errstats here in case of the hot 8674 * replacement of disk drives, except for not changed 8675 * Sun qualified drives. 8676 */ 8677 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 8678 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 8679 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 8680 stp->sd_softerrs.value.ui32 = 0; 8681 stp->sd_harderrs.value.ui32 = 0; 8682 stp->sd_transerrs.value.ui32 = 0; 8683 stp->sd_rq_media_err.value.ui32 = 0; 8684 stp->sd_rq_ntrdy_err.value.ui32 = 0; 8685 stp->sd_rq_nodev_err.value.ui32 = 0; 8686 stp->sd_rq_recov_err.value.ui32 = 0; 8687 stp->sd_rq_illrq_err.value.ui32 = 0; 8688 stp->sd_rq_pfa_err.value.ui32 = 0; 8689 } 8690 8691 /* 8692 * Set the "Serial No" kstat for Sun qualified drives (indicated by 8693 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 8694 * (4376302)) 8695 */ 8696 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 8697 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 8698 sizeof (SD_INQUIRY(un)->inq_serial)); 8699 } 8700 8701 if (un->un_f_blockcount_is_valid != TRUE) { 8702 /* 8703 * Set capacity error stat to 0 for no media. This ensures 8704 * a valid capacity is displayed in response to 'iostat -E' 8705 * when no media is present in the device. 8706 */ 8707 stp->sd_capacity.value.ui64 = 0; 8708 } else { 8709 /* 8710 * Multiply un_blockcount by un->un_sys_blocksize to get 8711 * capacity. 8712 * 8713 * Note: for non-512 blocksize devices "un_blockcount" has been 8714 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 8715 * (un_tgt_blocksize / un->un_sys_blocksize). 8716 */ 8717 stp->sd_capacity.value.ui64 = (uint64_t) 8718 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 8719 } 8720 } 8721 8722 8723 /* 8724 * Function: sd_set_pstats 8725 * 8726 * Description: This routine instantiates and initializes the partition 8727 * stats for each partition with more than zero blocks. 8728 * (4363169) 8729 * 8730 * Arguments: un - driver soft state (unit) structure 8731 * 8732 * Context: Kernel thread context 8733 */ 8734 8735 static void 8736 sd_set_pstats(struct sd_lun *un) 8737 { 8738 char kstatname[KSTAT_STRLEN]; 8739 int instance; 8740 int i; 8741 diskaddr_t nblks = 0; 8742 char *partname = NULL; 8743 8744 ASSERT(un != NULL); 8745 8746 instance = ddi_get_instance(SD_DEVINFO(un)); 8747 8748 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 8749 for (i = 0; i < NSDMAP; i++) { 8750 8751 if (cmlb_partinfo(un->un_cmlbhandle, i, 8752 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 8753 continue; 8754 mutex_enter(SD_MUTEX(un)); 8755 8756 if ((un->un_pstats[i] == NULL) && 8757 (nblks != 0)) { 8758 8759 (void) snprintf(kstatname, sizeof (kstatname), 8760 "%s%d,%s", sd_label, instance, 8761 partname); 8762 8763 un->un_pstats[i] = kstat_create(sd_label, 8764 instance, kstatname, "partition", KSTAT_TYPE_IO, 8765 1, KSTAT_FLAG_PERSISTENT); 8766 if (un->un_pstats[i] != NULL) { 8767 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 8768 kstat_install(un->un_pstats[i]); 8769 } 8770 } 8771 mutex_exit(SD_MUTEX(un)); 8772 } 8773 } 8774 8775 8776 #if (defined(__fibre)) 8777 /* 8778 * Function: sd_init_event_callbacks 8779 * 8780 * Description: This routine initializes the insertion and removal event 8781 * callbacks. (fibre only) 8782 * 8783 * Arguments: un - driver soft state (unit) structure 8784 * 8785 * Context: Kernel thread context 8786 */ 8787 8788 static void 8789 sd_init_event_callbacks(struct sd_lun *un) 8790 { 8791 ASSERT(un != NULL); 8792 8793 if ((un->un_insert_event == NULL) && 8794 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 8795 &un->un_insert_event) == DDI_SUCCESS)) { 8796 /* 8797 * Add the callback for an insertion event 8798 */ 8799 (void) ddi_add_event_handler(SD_DEVINFO(un), 8800 un->un_insert_event, sd_event_callback, (void *)un, 8801 &(un->un_insert_cb_id)); 8802 } 8803 8804 if ((un->un_remove_event == NULL) && 8805 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 8806 &un->un_remove_event) == DDI_SUCCESS)) { 8807 /* 8808 * Add the callback for a removal event 8809 */ 8810 (void) ddi_add_event_handler(SD_DEVINFO(un), 8811 un->un_remove_event, sd_event_callback, (void *)un, 8812 &(un->un_remove_cb_id)); 8813 } 8814 } 8815 8816 8817 /* 8818 * Function: sd_event_callback 8819 * 8820 * Description: This routine handles insert/remove events (photon). The 8821 * state is changed to OFFLINE which can be used to supress 8822 * error msgs. (fibre only) 8823 * 8824 * Arguments: un - driver soft state (unit) structure 8825 * 8826 * Context: Callout thread context 8827 */ 8828 /* ARGSUSED */ 8829 static void 8830 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 8831 void *bus_impldata) 8832 { 8833 struct sd_lun *un = (struct sd_lun *)arg; 8834 8835 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 8836 if (event == un->un_insert_event) { 8837 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 8838 mutex_enter(SD_MUTEX(un)); 8839 if (un->un_state == SD_STATE_OFFLINE) { 8840 if (un->un_last_state != SD_STATE_SUSPENDED) { 8841 un->un_state = un->un_last_state; 8842 } else { 8843 /* 8844 * We have gone through SUSPEND/RESUME while 8845 * we were offline. Restore the last state 8846 */ 8847 un->un_state = un->un_save_state; 8848 } 8849 } 8850 mutex_exit(SD_MUTEX(un)); 8851 8852 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 8853 } else if (event == un->un_remove_event) { 8854 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 8855 mutex_enter(SD_MUTEX(un)); 8856 /* 8857 * We need to handle an event callback that occurs during 8858 * the suspend operation, since we don't prevent it. 8859 */ 8860 if (un->un_state != SD_STATE_OFFLINE) { 8861 if (un->un_state != SD_STATE_SUSPENDED) { 8862 New_state(un, SD_STATE_OFFLINE); 8863 } else { 8864 un->un_last_state = SD_STATE_OFFLINE; 8865 } 8866 } 8867 mutex_exit(SD_MUTEX(un)); 8868 } else { 8869 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 8870 "!Unknown event\n"); 8871 } 8872 8873 } 8874 #endif 8875 8876 /* 8877 * Function: sd_cache_control() 8878 * 8879 * Description: This routine is the driver entry point for setting 8880 * read and write caching by modifying the WCE (write cache 8881 * enable) and RCD (read cache disable) bits of mode 8882 * page 8 (MODEPAGE_CACHING). 8883 * 8884 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 8885 * structure for this target. 8886 * rcd_flag - flag for controlling the read cache 8887 * wce_flag - flag for controlling the write cache 8888 * 8889 * Return Code: EIO 8890 * code returned by sd_send_scsi_MODE_SENSE and 8891 * sd_send_scsi_MODE_SELECT 8892 * 8893 * Context: Kernel Thread 8894 */ 8895 8896 static int 8897 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag) 8898 { 8899 struct mode_caching *mode_caching_page; 8900 uchar_t *header; 8901 size_t buflen; 8902 int hdrlen; 8903 int bd_len; 8904 int rval = 0; 8905 struct mode_header_grp2 *mhp; 8906 struct sd_lun *un; 8907 int status; 8908 8909 ASSERT(ssc != NULL); 8910 un = ssc->ssc_un; 8911 ASSERT(un != NULL); 8912 8913 /* 8914 * Do a test unit ready, otherwise a mode sense may not work if this 8915 * is the first command sent to the device after boot. 8916 */ 8917 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 8918 if (status != 0) 8919 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8920 8921 if (un->un_f_cfg_is_atapi == TRUE) { 8922 hdrlen = MODE_HEADER_LENGTH_GRP2; 8923 } else { 8924 hdrlen = MODE_HEADER_LENGTH; 8925 } 8926 8927 /* 8928 * Allocate memory for the retrieved mode page and its headers. Set 8929 * a pointer to the page itself. Use mode_cache_scsi3 to insure 8930 * we get all of the mode sense data otherwise, the mode select 8931 * will fail. mode_cache_scsi3 is a superset of mode_caching. 8932 */ 8933 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 8934 sizeof (struct mode_cache_scsi3); 8935 8936 header = kmem_zalloc(buflen, KM_SLEEP); 8937 8938 /* Get the information from the device. */ 8939 if (un->un_f_cfg_is_atapi == TRUE) { 8940 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 8941 MODEPAGE_CACHING, SD_PATH_DIRECT); 8942 } else { 8943 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 8944 MODEPAGE_CACHING, SD_PATH_DIRECT); 8945 } 8946 8947 if (rval != 0) { 8948 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 8949 "sd_cache_control: Mode Sense Failed\n"); 8950 goto mode_sense_failed; 8951 } 8952 8953 /* 8954 * Determine size of Block Descriptors in order to locate 8955 * the mode page data. ATAPI devices return 0, SCSI devices 8956 * should return MODE_BLK_DESC_LENGTH. 8957 */ 8958 if (un->un_f_cfg_is_atapi == TRUE) { 8959 mhp = (struct mode_header_grp2 *)header; 8960 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 8961 } else { 8962 bd_len = ((struct mode_header *)header)->bdesc_length; 8963 } 8964 8965 if (bd_len > MODE_BLK_DESC_LENGTH) { 8966 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 8967 "sd_cache_control: Mode Sense returned invalid block " 8968 "descriptor length\n"); 8969 rval = EIO; 8970 goto mode_sense_failed; 8971 } 8972 8973 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 8974 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 8975 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 8976 "sd_cache_control: Mode Sense caching page code mismatch " 8977 "%d\n", mode_caching_page->mode_page.code); 8978 rval = EIO; 8979 goto mode_sense_failed; 8980 } 8981 8982 /* Check the relevant bits on successful mode sense. */ 8983 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 8984 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 8985 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 8986 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 8987 8988 size_t sbuflen; 8989 uchar_t save_pg; 8990 8991 /* 8992 * Construct select buffer length based on the 8993 * length of the sense data returned. 8994 */ 8995 sbuflen = hdrlen + MODE_BLK_DESC_LENGTH + 8996 sizeof (struct mode_page) + 8997 (int)mode_caching_page->mode_page.length; 8998 8999 /* 9000 * Set the caching bits as requested. 9001 */ 9002 if (rcd_flag == SD_CACHE_ENABLE) 9003 mode_caching_page->rcd = 0; 9004 else if (rcd_flag == SD_CACHE_DISABLE) 9005 mode_caching_page->rcd = 1; 9006 9007 if (wce_flag == SD_CACHE_ENABLE) 9008 mode_caching_page->wce = 1; 9009 else if (wce_flag == SD_CACHE_DISABLE) 9010 mode_caching_page->wce = 0; 9011 9012 /* 9013 * Save the page if the mode sense says the 9014 * drive supports it. 9015 */ 9016 save_pg = mode_caching_page->mode_page.ps ? 9017 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9018 9019 /* Clear reserved bits before mode select. */ 9020 mode_caching_page->mode_page.ps = 0; 9021 9022 /* 9023 * Clear out mode header for mode select. 9024 * The rest of the retrieved page will be reused. 9025 */ 9026 bzero(header, hdrlen); 9027 9028 if (un->un_f_cfg_is_atapi == TRUE) { 9029 mhp = (struct mode_header_grp2 *)header; 9030 mhp->bdesc_length_hi = bd_len >> 8; 9031 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9032 } else { 9033 ((struct mode_header *)header)->bdesc_length = bd_len; 9034 } 9035 9036 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9037 9038 /* Issue mode select to change the cache settings */ 9039 if (un->un_f_cfg_is_atapi == TRUE) { 9040 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header, 9041 sbuflen, save_pg, SD_PATH_DIRECT); 9042 } else { 9043 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 9044 sbuflen, save_pg, SD_PATH_DIRECT); 9045 } 9046 9047 } 9048 9049 9050 mode_sense_failed: 9051 9052 kmem_free(header, buflen); 9053 9054 if (rval != 0) { 9055 if (rval == EIO) 9056 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9057 else 9058 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9059 } 9060 return (rval); 9061 } 9062 9063 9064 /* 9065 * Function: sd_get_write_cache_enabled() 9066 * 9067 * Description: This routine is the driver entry point for determining if 9068 * write caching is enabled. It examines the WCE (write cache 9069 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9070 * 9071 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9072 * structure for this target. 9073 * is_enabled - pointer to int where write cache enabled state 9074 * is returned (non-zero -> write cache enabled) 9075 * 9076 * 9077 * Return Code: EIO 9078 * code returned by sd_send_scsi_MODE_SENSE 9079 * 9080 * Context: Kernel Thread 9081 * 9082 * NOTE: If ioctl is added to disable write cache, this sequence should 9083 * be followed so that no locking is required for accesses to 9084 * un->un_f_write_cache_enabled: 9085 * do mode select to clear wce 9086 * do synchronize cache to flush cache 9087 * set un->un_f_write_cache_enabled = FALSE 9088 * 9089 * Conversely, an ioctl to enable the write cache should be done 9090 * in this order: 9091 * set un->un_f_write_cache_enabled = TRUE 9092 * do mode select to set wce 9093 */ 9094 9095 static int 9096 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled) 9097 { 9098 struct mode_caching *mode_caching_page; 9099 uchar_t *header; 9100 size_t buflen; 9101 int hdrlen; 9102 int bd_len; 9103 int rval = 0; 9104 struct sd_lun *un; 9105 int status; 9106 9107 ASSERT(ssc != NULL); 9108 un = ssc->ssc_un; 9109 ASSERT(un != NULL); 9110 ASSERT(is_enabled != NULL); 9111 9112 /* in case of error, flag as enabled */ 9113 *is_enabled = TRUE; 9114 9115 /* 9116 * Do a test unit ready, otherwise a mode sense may not work if this 9117 * is the first command sent to the device after boot. 9118 */ 9119 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9120 9121 if (status != 0) 9122 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9123 9124 if (un->un_f_cfg_is_atapi == TRUE) { 9125 hdrlen = MODE_HEADER_LENGTH_GRP2; 9126 } else { 9127 hdrlen = MODE_HEADER_LENGTH; 9128 } 9129 9130 /* 9131 * Allocate memory for the retrieved mode page and its headers. Set 9132 * a pointer to the page itself. 9133 */ 9134 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9135 header = kmem_zalloc(buflen, KM_SLEEP); 9136 9137 /* Get the information from the device. */ 9138 if (un->un_f_cfg_is_atapi == TRUE) { 9139 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9140 MODEPAGE_CACHING, SD_PATH_DIRECT); 9141 } else { 9142 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9143 MODEPAGE_CACHING, SD_PATH_DIRECT); 9144 } 9145 9146 if (rval != 0) { 9147 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9148 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9149 goto mode_sense_failed; 9150 } 9151 9152 /* 9153 * Determine size of Block Descriptors in order to locate 9154 * the mode page data. ATAPI devices return 0, SCSI devices 9155 * should return MODE_BLK_DESC_LENGTH. 9156 */ 9157 if (un->un_f_cfg_is_atapi == TRUE) { 9158 struct mode_header_grp2 *mhp; 9159 mhp = (struct mode_header_grp2 *)header; 9160 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9161 } else { 9162 bd_len = ((struct mode_header *)header)->bdesc_length; 9163 } 9164 9165 if (bd_len > MODE_BLK_DESC_LENGTH) { 9166 /* FMA should make upset complain here */ 9167 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9168 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9169 "block descriptor length\n"); 9170 rval = EIO; 9171 goto mode_sense_failed; 9172 } 9173 9174 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9175 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9176 /* FMA could make upset complain here */ 9177 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9178 "sd_get_write_cache_enabled: Mode Sense caching page " 9179 "code mismatch %d\n", mode_caching_page->mode_page.code); 9180 rval = EIO; 9181 goto mode_sense_failed; 9182 } 9183 *is_enabled = mode_caching_page->wce; 9184 9185 mode_sense_failed: 9186 if (rval == 0) { 9187 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9188 } else if (rval == EIO) { 9189 /* 9190 * Some disks do not support mode sense(6), we 9191 * should ignore this kind of error(sense key is 9192 * 0x5 - illegal request). 9193 */ 9194 uint8_t *sensep; 9195 int senlen; 9196 9197 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 9198 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 9199 ssc->ssc_uscsi_cmd->uscsi_rqresid); 9200 9201 if (senlen > 0 && 9202 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 9203 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 9204 } else { 9205 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9206 } 9207 } else { 9208 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9209 } 9210 kmem_free(header, buflen); 9211 return (rval); 9212 } 9213 9214 /* 9215 * Function: sd_get_nv_sup() 9216 * 9217 * Description: This routine is the driver entry point for 9218 * determining whether non-volatile cache is supported. This 9219 * determination process works as follows: 9220 * 9221 * 1. sd first queries sd.conf on whether 9222 * suppress_cache_flush bit is set for this device. 9223 * 9224 * 2. if not there, then queries the internal disk table. 9225 * 9226 * 3. if either sd.conf or internal disk table specifies 9227 * cache flush be suppressed, we don't bother checking 9228 * NV_SUP bit. 9229 * 9230 * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries 9231 * the optional INQUIRY VPD page 0x86. If the device 9232 * supports VPD page 0x86, sd examines the NV_SUP 9233 * (non-volatile cache support) bit in the INQUIRY VPD page 9234 * 0x86: 9235 * o If NV_SUP bit is set, sd assumes the device has a 9236 * non-volatile cache and set the 9237 * un_f_sync_nv_supported to TRUE. 9238 * o Otherwise cache is not non-volatile, 9239 * un_f_sync_nv_supported is set to FALSE. 9240 * 9241 * Arguments: un - driver soft state (unit) structure 9242 * 9243 * Return Code: 9244 * 9245 * Context: Kernel Thread 9246 */ 9247 9248 static void 9249 sd_get_nv_sup(sd_ssc_t *ssc) 9250 { 9251 int rval = 0; 9252 uchar_t *inq86 = NULL; 9253 size_t inq86_len = MAX_INQUIRY_SIZE; 9254 size_t inq86_resid = 0; 9255 struct dk_callback *dkc; 9256 struct sd_lun *un; 9257 9258 ASSERT(ssc != NULL); 9259 un = ssc->ssc_un; 9260 ASSERT(un != NULL); 9261 9262 mutex_enter(SD_MUTEX(un)); 9263 9264 /* 9265 * Be conservative on the device's support of 9266 * SYNC_NV bit: un_f_sync_nv_supported is 9267 * initialized to be false. 9268 */ 9269 un->un_f_sync_nv_supported = FALSE; 9270 9271 /* 9272 * If either sd.conf or internal disk table 9273 * specifies cache flush be suppressed, then 9274 * we don't bother checking NV_SUP bit. 9275 */ 9276 if (un->un_f_suppress_cache_flush == TRUE) { 9277 mutex_exit(SD_MUTEX(un)); 9278 return; 9279 } 9280 9281 if (sd_check_vpd_page_support(ssc) == 0 && 9282 un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) { 9283 mutex_exit(SD_MUTEX(un)); 9284 /* collect page 86 data if available */ 9285 inq86 = kmem_zalloc(inq86_len, KM_SLEEP); 9286 9287 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len, 9288 0x01, 0x86, &inq86_resid); 9289 9290 if (rval == 0 && (inq86_len - inq86_resid > 6)) { 9291 SD_TRACE(SD_LOG_COMMON, un, 9292 "sd_get_nv_sup: \ 9293 successfully get VPD page: %x \ 9294 PAGE LENGTH: %x BYTE 6: %x\n", 9295 inq86[1], inq86[3], inq86[6]); 9296 9297 mutex_enter(SD_MUTEX(un)); 9298 /* 9299 * check the value of NV_SUP bit: only if the device 9300 * reports NV_SUP bit to be 1, the 9301 * un_f_sync_nv_supported bit will be set to true. 9302 */ 9303 if (inq86[6] & SD_VPD_NV_SUP) { 9304 un->un_f_sync_nv_supported = TRUE; 9305 } 9306 mutex_exit(SD_MUTEX(un)); 9307 } else if (rval != 0) { 9308 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9309 } 9310 9311 kmem_free(inq86, inq86_len); 9312 } else { 9313 mutex_exit(SD_MUTEX(un)); 9314 } 9315 9316 /* 9317 * Send a SYNC CACHE command to check whether 9318 * SYNC_NV bit is supported. This command should have 9319 * un_f_sync_nv_supported set to correct value. 9320 */ 9321 mutex_enter(SD_MUTEX(un)); 9322 if (un->un_f_sync_nv_supported) { 9323 mutex_exit(SD_MUTEX(un)); 9324 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP); 9325 dkc->dkc_flag = FLUSH_VOLATILE; 9326 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 9327 9328 /* 9329 * Send a TEST UNIT READY command to the device. This should 9330 * clear any outstanding UNIT ATTENTION that may be present. 9331 */ 9332 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 9333 if (rval != 0) 9334 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9335 9336 kmem_free(dkc, sizeof (struct dk_callback)); 9337 } else { 9338 mutex_exit(SD_MUTEX(un)); 9339 } 9340 9341 SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \ 9342 un_f_suppress_cache_flush is set to %d\n", 9343 un->un_f_suppress_cache_flush); 9344 } 9345 9346 /* 9347 * Function: sd_make_device 9348 * 9349 * Description: Utility routine to return the Solaris device number from 9350 * the data in the device's dev_info structure. 9351 * 9352 * Return Code: The Solaris device number 9353 * 9354 * Context: Any 9355 */ 9356 9357 static dev_t 9358 sd_make_device(dev_info_t *devi) 9359 { 9360 return (makedevice(ddi_name_to_major(ddi_get_name(devi)), 9361 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9362 } 9363 9364 9365 /* 9366 * Function: sd_pm_entry 9367 * 9368 * Description: Called at the start of a new command to manage power 9369 * and busy status of a device. This includes determining whether 9370 * the current power state of the device is sufficient for 9371 * performing the command or whether it must be changed. 9372 * The PM framework is notified appropriately. 9373 * Only with a return status of DDI_SUCCESS will the 9374 * component be busy to the framework. 9375 * 9376 * All callers of sd_pm_entry must check the return status 9377 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9378 * of DDI_FAILURE indicates the device failed to power up. 9379 * In this case un_pm_count has been adjusted so the result 9380 * on exit is still powered down, ie. count is less than 0. 9381 * Calling sd_pm_exit with this count value hits an ASSERT. 9382 * 9383 * Return Code: DDI_SUCCESS or DDI_FAILURE 9384 * 9385 * Context: Kernel thread context. 9386 */ 9387 9388 static int 9389 sd_pm_entry(struct sd_lun *un) 9390 { 9391 int return_status = DDI_SUCCESS; 9392 9393 ASSERT(!mutex_owned(SD_MUTEX(un))); 9394 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9395 9396 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9397 9398 if (un->un_f_pm_is_enabled == FALSE) { 9399 SD_TRACE(SD_LOG_IO_PM, un, 9400 "sd_pm_entry: exiting, PM not enabled\n"); 9401 return (return_status); 9402 } 9403 9404 /* 9405 * Just increment a counter if PM is enabled. On the transition from 9406 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9407 * the count with each IO and mark the device as idle when the count 9408 * hits 0. 9409 * 9410 * If the count is less than 0 the device is powered down. If a powered 9411 * down device is successfully powered up then the count must be 9412 * incremented to reflect the power up. Note that it'll get incremented 9413 * a second time to become busy. 9414 * 9415 * Because the following has the potential to change the device state 9416 * and must release the un_pm_mutex to do so, only one thread can be 9417 * allowed through at a time. 9418 */ 9419 9420 mutex_enter(&un->un_pm_mutex); 9421 while (un->un_pm_busy == TRUE) { 9422 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9423 } 9424 un->un_pm_busy = TRUE; 9425 9426 if (un->un_pm_count < 1) { 9427 9428 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9429 9430 /* 9431 * Indicate we are now busy so the framework won't attempt to 9432 * power down the device. This call will only fail if either 9433 * we passed a bad component number or the device has no 9434 * components. Neither of these should ever happen. 9435 */ 9436 mutex_exit(&un->un_pm_mutex); 9437 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9438 ASSERT(return_status == DDI_SUCCESS); 9439 9440 mutex_enter(&un->un_pm_mutex); 9441 9442 if (un->un_pm_count < 0) { 9443 mutex_exit(&un->un_pm_mutex); 9444 9445 SD_TRACE(SD_LOG_IO_PM, un, 9446 "sd_pm_entry: power up component\n"); 9447 9448 /* 9449 * pm_raise_power will cause sdpower to be called 9450 * which brings the device power level to the 9451 * desired state, ON in this case. If successful, 9452 * un_pm_count and un_power_level will be updated 9453 * appropriately. 9454 */ 9455 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9456 SD_SPINDLE_ON); 9457 9458 mutex_enter(&un->un_pm_mutex); 9459 9460 if (return_status != DDI_SUCCESS) { 9461 /* 9462 * Power up failed. 9463 * Idle the device and adjust the count 9464 * so the result on exit is that we're 9465 * still powered down, ie. count is less than 0. 9466 */ 9467 SD_TRACE(SD_LOG_IO_PM, un, 9468 "sd_pm_entry: power up failed," 9469 " idle the component\n"); 9470 9471 (void) pm_idle_component(SD_DEVINFO(un), 0); 9472 un->un_pm_count--; 9473 } else { 9474 /* 9475 * Device is powered up, verify the 9476 * count is non-negative. 9477 * This is debug only. 9478 */ 9479 ASSERT(un->un_pm_count == 0); 9480 } 9481 } 9482 9483 if (return_status == DDI_SUCCESS) { 9484 /* 9485 * For performance, now that the device has been tagged 9486 * as busy, and it's known to be powered up, update the 9487 * chain types to use jump tables that do not include 9488 * pm. This significantly lowers the overhead and 9489 * therefore improves performance. 9490 */ 9491 9492 mutex_exit(&un->un_pm_mutex); 9493 mutex_enter(SD_MUTEX(un)); 9494 SD_TRACE(SD_LOG_IO_PM, un, 9495 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9496 un->un_uscsi_chain_type); 9497 9498 if (un->un_f_non_devbsize_supported) { 9499 un->un_buf_chain_type = 9500 SD_CHAIN_INFO_RMMEDIA_NO_PM; 9501 } else { 9502 un->un_buf_chain_type = 9503 SD_CHAIN_INFO_DISK_NO_PM; 9504 } 9505 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 9506 9507 SD_TRACE(SD_LOG_IO_PM, un, 9508 " changed uscsi_chain_type to %d\n", 9509 un->un_uscsi_chain_type); 9510 mutex_exit(SD_MUTEX(un)); 9511 mutex_enter(&un->un_pm_mutex); 9512 9513 if (un->un_pm_idle_timeid == NULL) { 9514 /* 300 ms. */ 9515 un->un_pm_idle_timeid = 9516 timeout(sd_pm_idletimeout_handler, un, 9517 (drv_usectohz((clock_t)300000))); 9518 /* 9519 * Include an extra call to busy which keeps the 9520 * device busy with-respect-to the PM layer 9521 * until the timer fires, at which time it'll 9522 * get the extra idle call. 9523 */ 9524 (void) pm_busy_component(SD_DEVINFO(un), 0); 9525 } 9526 } 9527 } 9528 un->un_pm_busy = FALSE; 9529 /* Next... */ 9530 cv_signal(&un->un_pm_busy_cv); 9531 9532 un->un_pm_count++; 9533 9534 SD_TRACE(SD_LOG_IO_PM, un, 9535 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 9536 9537 mutex_exit(&un->un_pm_mutex); 9538 9539 return (return_status); 9540 } 9541 9542 9543 /* 9544 * Function: sd_pm_exit 9545 * 9546 * Description: Called at the completion of a command to manage busy 9547 * status for the device. If the device becomes idle the 9548 * PM framework is notified. 9549 * 9550 * Context: Kernel thread context 9551 */ 9552 9553 static void 9554 sd_pm_exit(struct sd_lun *un) 9555 { 9556 ASSERT(!mutex_owned(SD_MUTEX(un))); 9557 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9558 9559 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 9560 9561 /* 9562 * After attach the following flag is only read, so don't 9563 * take the penalty of acquiring a mutex for it. 9564 */ 9565 if (un->un_f_pm_is_enabled == TRUE) { 9566 9567 mutex_enter(&un->un_pm_mutex); 9568 un->un_pm_count--; 9569 9570 SD_TRACE(SD_LOG_IO_PM, un, 9571 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 9572 9573 ASSERT(un->un_pm_count >= 0); 9574 if (un->un_pm_count == 0) { 9575 mutex_exit(&un->un_pm_mutex); 9576 9577 SD_TRACE(SD_LOG_IO_PM, un, 9578 "sd_pm_exit: idle component\n"); 9579 9580 (void) pm_idle_component(SD_DEVINFO(un), 0); 9581 9582 } else { 9583 mutex_exit(&un->un_pm_mutex); 9584 } 9585 } 9586 9587 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 9588 } 9589 9590 9591 /* 9592 * Function: sdopen 9593 * 9594 * Description: Driver's open(9e) entry point function. 9595 * 9596 * Arguments: dev_i - pointer to device number 9597 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 9598 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 9599 * cred_p - user credential pointer 9600 * 9601 * Return Code: EINVAL 9602 * ENXIO 9603 * EIO 9604 * EROFS 9605 * EBUSY 9606 * 9607 * Context: Kernel thread context 9608 */ 9609 /* ARGSUSED */ 9610 static int 9611 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 9612 { 9613 struct sd_lun *un; 9614 int nodelay; 9615 int part; 9616 uint64_t partmask; 9617 int instance; 9618 dev_t dev; 9619 int rval = EIO; 9620 diskaddr_t nblks = 0; 9621 diskaddr_t label_cap; 9622 9623 /* Validate the open type */ 9624 if (otyp >= OTYPCNT) { 9625 return (EINVAL); 9626 } 9627 9628 dev = *dev_p; 9629 instance = SDUNIT(dev); 9630 mutex_enter(&sd_detach_mutex); 9631 9632 /* 9633 * Fail the open if there is no softstate for the instance, or 9634 * if another thread somewhere is trying to detach the instance. 9635 */ 9636 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 9637 (un->un_detach_count != 0)) { 9638 mutex_exit(&sd_detach_mutex); 9639 /* 9640 * The probe cache only needs to be cleared when open (9e) fails 9641 * with ENXIO (4238046). 9642 */ 9643 /* 9644 * un-conditionally clearing probe cache is ok with 9645 * separate sd/ssd binaries 9646 * x86 platform can be an issue with both parallel 9647 * and fibre in 1 binary 9648 */ 9649 sd_scsi_clear_probe_cache(); 9650 return (ENXIO); 9651 } 9652 9653 /* 9654 * The un_layer_count is to prevent another thread in specfs from 9655 * trying to detach the instance, which can happen when we are 9656 * called from a higher-layer driver instead of thru specfs. 9657 * This will not be needed when DDI provides a layered driver 9658 * interface that allows specfs to know that an instance is in 9659 * use by a layered driver & should not be detached. 9660 * 9661 * Note: the semantics for layered driver opens are exactly one 9662 * close for every open. 9663 */ 9664 if (otyp == OTYP_LYR) { 9665 un->un_layer_count++; 9666 } 9667 9668 /* 9669 * Keep a count of the current # of opens in progress. This is because 9670 * some layered drivers try to call us as a regular open. This can 9671 * cause problems that we cannot prevent, however by keeping this count 9672 * we can at least keep our open and detach routines from racing against 9673 * each other under such conditions. 9674 */ 9675 un->un_opens_in_progress++; 9676 mutex_exit(&sd_detach_mutex); 9677 9678 nodelay = (flag & (FNDELAY | FNONBLOCK)); 9679 part = SDPART(dev); 9680 partmask = 1 << part; 9681 9682 /* 9683 * We use a semaphore here in order to serialize 9684 * open and close requests on the device. 9685 */ 9686 sema_p(&un->un_semoclose); 9687 9688 mutex_enter(SD_MUTEX(un)); 9689 9690 /* 9691 * All device accesses go thru sdstrategy() where we check 9692 * on suspend status but there could be a scsi_poll command, 9693 * which bypasses sdstrategy(), so we need to check pm 9694 * status. 9695 */ 9696 9697 if (!nodelay) { 9698 while ((un->un_state == SD_STATE_SUSPENDED) || 9699 (un->un_state == SD_STATE_PM_CHANGING)) { 9700 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 9701 } 9702 9703 mutex_exit(SD_MUTEX(un)); 9704 if (sd_pm_entry(un) != DDI_SUCCESS) { 9705 rval = EIO; 9706 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 9707 "sdopen: sd_pm_entry failed\n"); 9708 goto open_failed_with_pm; 9709 } 9710 mutex_enter(SD_MUTEX(un)); 9711 } 9712 9713 /* check for previous exclusive open */ 9714 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 9715 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 9716 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 9717 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 9718 9719 if (un->un_exclopen & (partmask)) { 9720 goto excl_open_fail; 9721 } 9722 9723 if (flag & FEXCL) { 9724 int i; 9725 if (un->un_ocmap.lyropen[part]) { 9726 goto excl_open_fail; 9727 } 9728 for (i = 0; i < (OTYPCNT - 1); i++) { 9729 if (un->un_ocmap.regopen[i] & (partmask)) { 9730 goto excl_open_fail; 9731 } 9732 } 9733 } 9734 9735 /* 9736 * Check the write permission if this is a removable media device, 9737 * NDELAY has not been set, and writable permission is requested. 9738 * 9739 * Note: If NDELAY was set and this is write-protected media the WRITE 9740 * attempt will fail with EIO as part of the I/O processing. This is a 9741 * more permissive implementation that allows the open to succeed and 9742 * WRITE attempts to fail when appropriate. 9743 */ 9744 if (un->un_f_chk_wp_open) { 9745 if ((flag & FWRITE) && (!nodelay)) { 9746 mutex_exit(SD_MUTEX(un)); 9747 /* 9748 * Defer the check for write permission on writable 9749 * DVD drive till sdstrategy and will not fail open even 9750 * if FWRITE is set as the device can be writable 9751 * depending upon the media and the media can change 9752 * after the call to open(). 9753 */ 9754 if (un->un_f_dvdram_writable_device == FALSE) { 9755 if (ISCD(un) || sr_check_wp(dev)) { 9756 rval = EROFS; 9757 mutex_enter(SD_MUTEX(un)); 9758 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 9759 "write to cd or write protected media\n"); 9760 goto open_fail; 9761 } 9762 } 9763 mutex_enter(SD_MUTEX(un)); 9764 } 9765 } 9766 9767 /* 9768 * If opening in NDELAY/NONBLOCK mode, just return. 9769 * Check if disk is ready and has a valid geometry later. 9770 */ 9771 if (!nodelay) { 9772 sd_ssc_t *ssc; 9773 9774 mutex_exit(SD_MUTEX(un)); 9775 ssc = sd_ssc_init(un); 9776 rval = sd_ready_and_valid(ssc, part); 9777 sd_ssc_fini(ssc); 9778 mutex_enter(SD_MUTEX(un)); 9779 /* 9780 * Fail if device is not ready or if the number of disk 9781 * blocks is zero or negative for non CD devices. 9782 */ 9783 9784 nblks = 0; 9785 9786 if (rval == SD_READY_VALID && (!ISCD(un))) { 9787 /* if cmlb_partinfo fails, nblks remains 0 */ 9788 mutex_exit(SD_MUTEX(un)); 9789 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 9790 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 9791 mutex_enter(SD_MUTEX(un)); 9792 } 9793 9794 if ((rval != SD_READY_VALID) || 9795 (!ISCD(un) && nblks <= 0)) { 9796 rval = un->un_f_has_removable_media ? ENXIO : EIO; 9797 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 9798 "device not ready or invalid disk block value\n"); 9799 goto open_fail; 9800 } 9801 #if defined(__i386) || defined(__amd64) 9802 } else { 9803 uchar_t *cp; 9804 /* 9805 * x86 requires special nodelay handling, so that p0 is 9806 * always defined and accessible. 9807 * Invalidate geometry only if device is not already open. 9808 */ 9809 cp = &un->un_ocmap.chkd[0]; 9810 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 9811 if (*cp != (uchar_t)0) { 9812 break; 9813 } 9814 cp++; 9815 } 9816 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 9817 mutex_exit(SD_MUTEX(un)); 9818 cmlb_invalidate(un->un_cmlbhandle, 9819 (void *)SD_PATH_DIRECT); 9820 mutex_enter(SD_MUTEX(un)); 9821 } 9822 9823 #endif 9824 } 9825 9826 if (otyp == OTYP_LYR) { 9827 un->un_ocmap.lyropen[part]++; 9828 } else { 9829 un->un_ocmap.regopen[otyp] |= partmask; 9830 } 9831 9832 /* Set up open and exclusive open flags */ 9833 if (flag & FEXCL) { 9834 un->un_exclopen |= (partmask); 9835 } 9836 9837 /* 9838 * If the lun is EFI labeled and lun capacity is greater than the 9839 * capacity contained in the label, log a sys-event to notify the 9840 * interested module. 9841 * To avoid an infinite loop of logging sys-event, we only log the 9842 * event when the lun is not opened in NDELAY mode. The event handler 9843 * should open the lun in NDELAY mode. 9844 */ 9845 if (!(flag & FNDELAY)) { 9846 mutex_exit(SD_MUTEX(un)); 9847 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 9848 (void*)SD_PATH_DIRECT) == 0) { 9849 mutex_enter(SD_MUTEX(un)); 9850 if (un->un_f_blockcount_is_valid && 9851 un->un_blockcount > label_cap) { 9852 mutex_exit(SD_MUTEX(un)); 9853 sd_log_lun_expansion_event(un, 9854 (nodelay ? KM_NOSLEEP : KM_SLEEP)); 9855 mutex_enter(SD_MUTEX(un)); 9856 } 9857 } else { 9858 mutex_enter(SD_MUTEX(un)); 9859 } 9860 } 9861 9862 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 9863 "open of part %d type %d\n", part, otyp); 9864 9865 mutex_exit(SD_MUTEX(un)); 9866 if (!nodelay) { 9867 sd_pm_exit(un); 9868 } 9869 9870 sema_v(&un->un_semoclose); 9871 9872 mutex_enter(&sd_detach_mutex); 9873 un->un_opens_in_progress--; 9874 mutex_exit(&sd_detach_mutex); 9875 9876 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 9877 return (DDI_SUCCESS); 9878 9879 excl_open_fail: 9880 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 9881 rval = EBUSY; 9882 9883 open_fail: 9884 mutex_exit(SD_MUTEX(un)); 9885 9886 /* 9887 * On a failed open we must exit the pm management. 9888 */ 9889 if (!nodelay) { 9890 sd_pm_exit(un); 9891 } 9892 open_failed_with_pm: 9893 sema_v(&un->un_semoclose); 9894 9895 mutex_enter(&sd_detach_mutex); 9896 un->un_opens_in_progress--; 9897 if (otyp == OTYP_LYR) { 9898 un->un_layer_count--; 9899 } 9900 mutex_exit(&sd_detach_mutex); 9901 9902 return (rval); 9903 } 9904 9905 9906 /* 9907 * Function: sdclose 9908 * 9909 * Description: Driver's close(9e) entry point function. 9910 * 9911 * Arguments: dev - device number 9912 * flag - file status flag, informational only 9913 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 9914 * cred_p - user credential pointer 9915 * 9916 * Return Code: ENXIO 9917 * 9918 * Context: Kernel thread context 9919 */ 9920 /* ARGSUSED */ 9921 static int 9922 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 9923 { 9924 struct sd_lun *un; 9925 uchar_t *cp; 9926 int part; 9927 int nodelay; 9928 int rval = 0; 9929 9930 /* Validate the open type */ 9931 if (otyp >= OTYPCNT) { 9932 return (ENXIO); 9933 } 9934 9935 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 9936 return (ENXIO); 9937 } 9938 9939 part = SDPART(dev); 9940 nodelay = flag & (FNDELAY | FNONBLOCK); 9941 9942 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 9943 "sdclose: close of part %d type %d\n", part, otyp); 9944 9945 /* 9946 * We use a semaphore here in order to serialize 9947 * open and close requests on the device. 9948 */ 9949 sema_p(&un->un_semoclose); 9950 9951 mutex_enter(SD_MUTEX(un)); 9952 9953 /* Don't proceed if power is being changed. */ 9954 while (un->un_state == SD_STATE_PM_CHANGING) { 9955 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 9956 } 9957 9958 if (un->un_exclopen & (1 << part)) { 9959 un->un_exclopen &= ~(1 << part); 9960 } 9961 9962 /* Update the open partition map */ 9963 if (otyp == OTYP_LYR) { 9964 un->un_ocmap.lyropen[part] -= 1; 9965 } else { 9966 un->un_ocmap.regopen[otyp] &= ~(1 << part); 9967 } 9968 9969 cp = &un->un_ocmap.chkd[0]; 9970 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 9971 if (*cp != NULL) { 9972 break; 9973 } 9974 cp++; 9975 } 9976 9977 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 9978 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 9979 9980 /* 9981 * We avoid persistance upon the last close, and set 9982 * the throttle back to the maximum. 9983 */ 9984 un->un_throttle = un->un_saved_throttle; 9985 9986 if (un->un_state == SD_STATE_OFFLINE) { 9987 if (un->un_f_is_fibre == FALSE) { 9988 scsi_log(SD_DEVINFO(un), sd_label, 9989 CE_WARN, "offline\n"); 9990 } 9991 mutex_exit(SD_MUTEX(un)); 9992 cmlb_invalidate(un->un_cmlbhandle, 9993 (void *)SD_PATH_DIRECT); 9994 mutex_enter(SD_MUTEX(un)); 9995 9996 } else { 9997 /* 9998 * Flush any outstanding writes in NVRAM cache. 9999 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10000 * cmd, it may not work for non-Pluto devices. 10001 * SYNCHRONIZE CACHE is not required for removables, 10002 * except DVD-RAM drives. 10003 * 10004 * Also note: because SYNCHRONIZE CACHE is currently 10005 * the only command issued here that requires the 10006 * drive be powered up, only do the power up before 10007 * sending the Sync Cache command. If additional 10008 * commands are added which require a powered up 10009 * drive, the following sequence may have to change. 10010 * 10011 * And finally, note that parallel SCSI on SPARC 10012 * only issues a Sync Cache to DVD-RAM, a newly 10013 * supported device. 10014 */ 10015 #if defined(__i386) || defined(__amd64) 10016 if ((un->un_f_sync_cache_supported && 10017 un->un_f_sync_cache_required) || 10018 un->un_f_dvdram_writable_device == TRUE) { 10019 #else 10020 if (un->un_f_dvdram_writable_device == TRUE) { 10021 #endif 10022 mutex_exit(SD_MUTEX(un)); 10023 if (sd_pm_entry(un) == DDI_SUCCESS) { 10024 rval = 10025 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10026 NULL); 10027 /* ignore error if not supported */ 10028 if (rval == ENOTSUP) { 10029 rval = 0; 10030 } else if (rval != 0) { 10031 rval = EIO; 10032 } 10033 sd_pm_exit(un); 10034 } else { 10035 rval = EIO; 10036 } 10037 mutex_enter(SD_MUTEX(un)); 10038 } 10039 10040 /* 10041 * For devices which supports DOOR_LOCK, send an ALLOW 10042 * MEDIA REMOVAL command, but don't get upset if it 10043 * fails. We need to raise the power of the drive before 10044 * we can call sd_send_scsi_DOORLOCK() 10045 */ 10046 if (un->un_f_doorlock_supported) { 10047 mutex_exit(SD_MUTEX(un)); 10048 if (sd_pm_entry(un) == DDI_SUCCESS) { 10049 sd_ssc_t *ssc; 10050 10051 ssc = sd_ssc_init(un); 10052 rval = sd_send_scsi_DOORLOCK(ssc, 10053 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10054 if (rval != 0) 10055 sd_ssc_assessment(ssc, 10056 SD_FMT_IGNORE); 10057 sd_ssc_fini(ssc); 10058 10059 sd_pm_exit(un); 10060 if (ISCD(un) && (rval != 0) && 10061 (nodelay != 0)) { 10062 rval = ENXIO; 10063 } 10064 } else { 10065 rval = EIO; 10066 } 10067 mutex_enter(SD_MUTEX(un)); 10068 } 10069 10070 /* 10071 * If a device has removable media, invalidate all 10072 * parameters related to media, such as geometry, 10073 * blocksize, and blockcount. 10074 */ 10075 if (un->un_f_has_removable_media) { 10076 sr_ejected(un); 10077 } 10078 10079 /* 10080 * Destroy the cache (if it exists) which was 10081 * allocated for the write maps since this is 10082 * the last close for this media. 10083 */ 10084 if (un->un_wm_cache) { 10085 /* 10086 * Check if there are pending commands. 10087 * and if there are give a warning and 10088 * do not destroy the cache. 10089 */ 10090 if (un->un_ncmds_in_driver > 0) { 10091 scsi_log(SD_DEVINFO(un), 10092 sd_label, CE_WARN, 10093 "Unable to clean up memory " 10094 "because of pending I/O\n"); 10095 } else { 10096 kmem_cache_destroy( 10097 un->un_wm_cache); 10098 un->un_wm_cache = NULL; 10099 } 10100 } 10101 } 10102 } 10103 10104 mutex_exit(SD_MUTEX(un)); 10105 sema_v(&un->un_semoclose); 10106 10107 if (otyp == OTYP_LYR) { 10108 mutex_enter(&sd_detach_mutex); 10109 /* 10110 * The detach routine may run when the layer count 10111 * drops to zero. 10112 */ 10113 un->un_layer_count--; 10114 mutex_exit(&sd_detach_mutex); 10115 } 10116 10117 return (rval); 10118 } 10119 10120 10121 /* 10122 * Function: sd_ready_and_valid 10123 * 10124 * Description: Test if device is ready and has a valid geometry. 10125 * 10126 * Arguments: ssc - sd_ssc_t will contain un 10127 * un - driver soft state (unit) structure 10128 * 10129 * Return Code: SD_READY_VALID ready and valid label 10130 * SD_NOT_READY_VALID not ready, no label 10131 * SD_RESERVED_BY_OTHERS reservation conflict 10132 * 10133 * Context: Never called at interrupt context. 10134 */ 10135 10136 static int 10137 sd_ready_and_valid(sd_ssc_t *ssc, int part) 10138 { 10139 struct sd_errstats *stp; 10140 uint64_t capacity; 10141 uint_t lbasize; 10142 int rval = SD_READY_VALID; 10143 char name_str[48]; 10144 int is_valid; 10145 struct sd_lun *un; 10146 int status; 10147 10148 ASSERT(ssc != NULL); 10149 un = ssc->ssc_un; 10150 ASSERT(un != NULL); 10151 ASSERT(!mutex_owned(SD_MUTEX(un))); 10152 10153 mutex_enter(SD_MUTEX(un)); 10154 /* 10155 * If a device has removable media, we must check if media is 10156 * ready when checking if this device is ready and valid. 10157 */ 10158 if (un->un_f_has_removable_media) { 10159 mutex_exit(SD_MUTEX(un)); 10160 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10161 10162 if (status != 0) { 10163 rval = SD_NOT_READY_VALID; 10164 mutex_enter(SD_MUTEX(un)); 10165 10166 /* Ignore all failed status for removalbe media */ 10167 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10168 10169 goto done; 10170 } 10171 10172 is_valid = SD_IS_VALID_LABEL(un); 10173 mutex_enter(SD_MUTEX(un)); 10174 if (!is_valid || 10175 (un->un_f_blockcount_is_valid == FALSE) || 10176 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10177 10178 /* capacity has to be read every open. */ 10179 mutex_exit(SD_MUTEX(un)); 10180 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 10181 &lbasize, SD_PATH_DIRECT); 10182 10183 if (status != 0) { 10184 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10185 10186 cmlb_invalidate(un->un_cmlbhandle, 10187 (void *)SD_PATH_DIRECT); 10188 mutex_enter(SD_MUTEX(un)); 10189 rval = SD_NOT_READY_VALID; 10190 10191 goto done; 10192 } else { 10193 mutex_enter(SD_MUTEX(un)); 10194 sd_update_block_info(un, lbasize, capacity); 10195 } 10196 } 10197 10198 /* 10199 * Check if the media in the device is writable or not. 10200 */ 10201 if (!is_valid && ISCD(un)) { 10202 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 10203 } 10204 10205 } else { 10206 /* 10207 * Do a test unit ready to clear any unit attention from non-cd 10208 * devices. 10209 */ 10210 mutex_exit(SD_MUTEX(un)); 10211 10212 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10213 if (status != 0) { 10214 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10215 } 10216 10217 mutex_enter(SD_MUTEX(un)); 10218 } 10219 10220 10221 /* 10222 * If this is a non 512 block device, allocate space for 10223 * the wmap cache. This is being done here since every time 10224 * a media is changed this routine will be called and the 10225 * block size is a function of media rather than device. 10226 */ 10227 if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) { 10228 if (!(un->un_wm_cache)) { 10229 (void) snprintf(name_str, sizeof (name_str), 10230 "%s%d_cache", 10231 ddi_driver_name(SD_DEVINFO(un)), 10232 ddi_get_instance(SD_DEVINFO(un))); 10233 un->un_wm_cache = kmem_cache_create( 10234 name_str, sizeof (struct sd_w_map), 10235 8, sd_wm_cache_constructor, 10236 sd_wm_cache_destructor, NULL, 10237 (void *)un, NULL, 0); 10238 if (!(un->un_wm_cache)) { 10239 rval = ENOMEM; 10240 goto done; 10241 } 10242 } 10243 } 10244 10245 if (un->un_state == SD_STATE_NORMAL) { 10246 /* 10247 * If the target is not yet ready here (defined by a TUR 10248 * failure), invalidate the geometry and print an 'offline' 10249 * message. This is a legacy message, as the state of the 10250 * target is not actually changed to SD_STATE_OFFLINE. 10251 * 10252 * If the TUR fails for EACCES (Reservation Conflict), 10253 * SD_RESERVED_BY_OTHERS will be returned to indicate 10254 * reservation conflict. If the TUR fails for other 10255 * reasons, SD_NOT_READY_VALID will be returned. 10256 */ 10257 int err; 10258 10259 mutex_exit(SD_MUTEX(un)); 10260 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10261 mutex_enter(SD_MUTEX(un)); 10262 10263 if (err != 0) { 10264 mutex_exit(SD_MUTEX(un)); 10265 cmlb_invalidate(un->un_cmlbhandle, 10266 (void *)SD_PATH_DIRECT); 10267 mutex_enter(SD_MUTEX(un)); 10268 if (err == EACCES) { 10269 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10270 "reservation conflict\n"); 10271 rval = SD_RESERVED_BY_OTHERS; 10272 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10273 } else { 10274 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10275 "drive offline\n"); 10276 rval = SD_NOT_READY_VALID; 10277 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 10278 } 10279 goto done; 10280 } 10281 } 10282 10283 if (un->un_f_format_in_progress == FALSE) { 10284 mutex_exit(SD_MUTEX(un)); 10285 10286 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL, 10287 NULL, (void *) SD_PATH_DIRECT) != 0) { 10288 rval = SD_NOT_READY_VALID; 10289 mutex_enter(SD_MUTEX(un)); 10290 10291 goto done; 10292 } 10293 if (un->un_f_pkstats_enabled) { 10294 sd_set_pstats(un); 10295 SD_TRACE(SD_LOG_IO_PARTITION, un, 10296 "sd_ready_and_valid: un:0x%p pstats created and " 10297 "set\n", un); 10298 } 10299 mutex_enter(SD_MUTEX(un)); 10300 } 10301 10302 /* 10303 * If this device supports DOOR_LOCK command, try and send 10304 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10305 * if it fails. For a CD, however, it is an error 10306 */ 10307 if (un->un_f_doorlock_supported) { 10308 mutex_exit(SD_MUTEX(un)); 10309 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 10310 SD_PATH_DIRECT); 10311 10312 if ((status != 0) && ISCD(un)) { 10313 rval = SD_NOT_READY_VALID; 10314 mutex_enter(SD_MUTEX(un)); 10315 10316 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10317 10318 goto done; 10319 } else if (status != 0) 10320 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10321 mutex_enter(SD_MUTEX(un)); 10322 } 10323 10324 /* The state has changed, inform the media watch routines */ 10325 un->un_mediastate = DKIO_INSERTED; 10326 cv_broadcast(&un->un_state_cv); 10327 rval = SD_READY_VALID; 10328 10329 done: 10330 10331 /* 10332 * Initialize the capacity kstat value, if no media previously 10333 * (capacity kstat is 0) and a media has been inserted 10334 * (un_blockcount > 0). 10335 */ 10336 if (un->un_errstats != NULL) { 10337 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10338 if ((stp->sd_capacity.value.ui64 == 0) && 10339 (un->un_f_blockcount_is_valid == TRUE)) { 10340 stp->sd_capacity.value.ui64 = 10341 (uint64_t)((uint64_t)un->un_blockcount * 10342 un->un_sys_blocksize); 10343 } 10344 } 10345 10346 mutex_exit(SD_MUTEX(un)); 10347 return (rval); 10348 } 10349 10350 10351 /* 10352 * Function: sdmin 10353 * 10354 * Description: Routine to limit the size of a data transfer. Used in 10355 * conjunction with physio(9F). 10356 * 10357 * Arguments: bp - pointer to the indicated buf(9S) struct. 10358 * 10359 * Context: Kernel thread context. 10360 */ 10361 10362 static void 10363 sdmin(struct buf *bp) 10364 { 10365 struct sd_lun *un; 10366 int instance; 10367 10368 instance = SDUNIT(bp->b_edev); 10369 10370 un = ddi_get_soft_state(sd_state, instance); 10371 ASSERT(un != NULL); 10372 10373 if (bp->b_bcount > un->un_max_xfer_size) { 10374 bp->b_bcount = un->un_max_xfer_size; 10375 } 10376 } 10377 10378 10379 /* 10380 * Function: sdread 10381 * 10382 * Description: Driver's read(9e) entry point function. 10383 * 10384 * Arguments: dev - device number 10385 * uio - structure pointer describing where data is to be stored 10386 * in user's space 10387 * cred_p - user credential pointer 10388 * 10389 * Return Code: ENXIO 10390 * EIO 10391 * EINVAL 10392 * value returned by physio 10393 * 10394 * Context: Kernel thread context. 10395 */ 10396 /* ARGSUSED */ 10397 static int 10398 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10399 { 10400 struct sd_lun *un = NULL; 10401 int secmask; 10402 int err = 0; 10403 sd_ssc_t *ssc; 10404 10405 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10406 return (ENXIO); 10407 } 10408 10409 ASSERT(!mutex_owned(SD_MUTEX(un))); 10410 10411 10412 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10413 mutex_enter(SD_MUTEX(un)); 10414 /* 10415 * Because the call to sd_ready_and_valid will issue I/O we 10416 * must wait here if either the device is suspended or 10417 * if it's power level is changing. 10418 */ 10419 while ((un->un_state == SD_STATE_SUSPENDED) || 10420 (un->un_state == SD_STATE_PM_CHANGING)) { 10421 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10422 } 10423 un->un_ncmds_in_driver++; 10424 mutex_exit(SD_MUTEX(un)); 10425 10426 /* Initialize sd_ssc_t for internal uscsi commands */ 10427 ssc = sd_ssc_init(un); 10428 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10429 err = EIO; 10430 } else { 10431 err = 0; 10432 } 10433 sd_ssc_fini(ssc); 10434 10435 mutex_enter(SD_MUTEX(un)); 10436 un->un_ncmds_in_driver--; 10437 ASSERT(un->un_ncmds_in_driver >= 0); 10438 mutex_exit(SD_MUTEX(un)); 10439 if (err != 0) 10440 return (err); 10441 } 10442 10443 /* 10444 * Read requests are restricted to multiples of the system block size. 10445 */ 10446 secmask = un->un_sys_blocksize - 1; 10447 10448 if (uio->uio_loffset & ((offset_t)(secmask))) { 10449 SD_ERROR(SD_LOG_READ_WRITE, un, 10450 "sdread: file offset not modulo %d\n", 10451 un->un_sys_blocksize); 10452 err = EINVAL; 10453 } else if (uio->uio_iov->iov_len & (secmask)) { 10454 SD_ERROR(SD_LOG_READ_WRITE, un, 10455 "sdread: transfer length not modulo %d\n", 10456 un->un_sys_blocksize); 10457 err = EINVAL; 10458 } else { 10459 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10460 } 10461 10462 return (err); 10463 } 10464 10465 10466 /* 10467 * Function: sdwrite 10468 * 10469 * Description: Driver's write(9e) entry point function. 10470 * 10471 * Arguments: dev - device number 10472 * uio - structure pointer describing where data is stored in 10473 * user's space 10474 * cred_p - user credential pointer 10475 * 10476 * Return Code: ENXIO 10477 * EIO 10478 * EINVAL 10479 * value returned by physio 10480 * 10481 * Context: Kernel thread context. 10482 */ 10483 /* ARGSUSED */ 10484 static int 10485 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10486 { 10487 struct sd_lun *un = NULL; 10488 int secmask; 10489 int err = 0; 10490 sd_ssc_t *ssc; 10491 10492 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10493 return (ENXIO); 10494 } 10495 10496 ASSERT(!mutex_owned(SD_MUTEX(un))); 10497 10498 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10499 mutex_enter(SD_MUTEX(un)); 10500 /* 10501 * Because the call to sd_ready_and_valid will issue I/O we 10502 * must wait here if either the device is suspended or 10503 * if it's power level is changing. 10504 */ 10505 while ((un->un_state == SD_STATE_SUSPENDED) || 10506 (un->un_state == SD_STATE_PM_CHANGING)) { 10507 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10508 } 10509 un->un_ncmds_in_driver++; 10510 mutex_exit(SD_MUTEX(un)); 10511 10512 /* Initialize sd_ssc_t for internal uscsi commands */ 10513 ssc = sd_ssc_init(un); 10514 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10515 err = EIO; 10516 } else { 10517 err = 0; 10518 } 10519 sd_ssc_fini(ssc); 10520 10521 mutex_enter(SD_MUTEX(un)); 10522 un->un_ncmds_in_driver--; 10523 ASSERT(un->un_ncmds_in_driver >= 0); 10524 mutex_exit(SD_MUTEX(un)); 10525 if (err != 0) 10526 return (err); 10527 } 10528 10529 /* 10530 * Write requests are restricted to multiples of the system block size. 10531 */ 10532 secmask = un->un_sys_blocksize - 1; 10533 10534 if (uio->uio_loffset & ((offset_t)(secmask))) { 10535 SD_ERROR(SD_LOG_READ_WRITE, un, 10536 "sdwrite: file offset not modulo %d\n", 10537 un->un_sys_blocksize); 10538 err = EINVAL; 10539 } else if (uio->uio_iov->iov_len & (secmask)) { 10540 SD_ERROR(SD_LOG_READ_WRITE, un, 10541 "sdwrite: transfer length not modulo %d\n", 10542 un->un_sys_blocksize); 10543 err = EINVAL; 10544 } else { 10545 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 10546 } 10547 10548 return (err); 10549 } 10550 10551 10552 /* 10553 * Function: sdaread 10554 * 10555 * Description: Driver's aread(9e) entry point function. 10556 * 10557 * Arguments: dev - device number 10558 * aio - structure pointer describing where data is to be stored 10559 * cred_p - user credential pointer 10560 * 10561 * Return Code: ENXIO 10562 * EIO 10563 * EINVAL 10564 * value returned by aphysio 10565 * 10566 * Context: Kernel thread context. 10567 */ 10568 /* ARGSUSED */ 10569 static int 10570 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 10571 { 10572 struct sd_lun *un = NULL; 10573 struct uio *uio = aio->aio_uio; 10574 int secmask; 10575 int err = 0; 10576 sd_ssc_t *ssc; 10577 10578 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10579 return (ENXIO); 10580 } 10581 10582 ASSERT(!mutex_owned(SD_MUTEX(un))); 10583 10584 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10585 mutex_enter(SD_MUTEX(un)); 10586 /* 10587 * Because the call to sd_ready_and_valid will issue I/O we 10588 * must wait here if either the device is suspended or 10589 * if it's power level is changing. 10590 */ 10591 while ((un->un_state == SD_STATE_SUSPENDED) || 10592 (un->un_state == SD_STATE_PM_CHANGING)) { 10593 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10594 } 10595 un->un_ncmds_in_driver++; 10596 mutex_exit(SD_MUTEX(un)); 10597 10598 /* Initialize sd_ssc_t for internal uscsi commands */ 10599 ssc = sd_ssc_init(un); 10600 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10601 err = EIO; 10602 } else { 10603 err = 0; 10604 } 10605 sd_ssc_fini(ssc); 10606 10607 mutex_enter(SD_MUTEX(un)); 10608 un->un_ncmds_in_driver--; 10609 ASSERT(un->un_ncmds_in_driver >= 0); 10610 mutex_exit(SD_MUTEX(un)); 10611 if (err != 0) 10612 return (err); 10613 } 10614 10615 /* 10616 * Read requests are restricted to multiples of the system block size. 10617 */ 10618 secmask = un->un_sys_blocksize - 1; 10619 10620 if (uio->uio_loffset & ((offset_t)(secmask))) { 10621 SD_ERROR(SD_LOG_READ_WRITE, un, 10622 "sdaread: file offset not modulo %d\n", 10623 un->un_sys_blocksize); 10624 err = EINVAL; 10625 } else if (uio->uio_iov->iov_len & (secmask)) { 10626 SD_ERROR(SD_LOG_READ_WRITE, un, 10627 "sdaread: transfer length not modulo %d\n", 10628 un->un_sys_blocksize); 10629 err = EINVAL; 10630 } else { 10631 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 10632 } 10633 10634 return (err); 10635 } 10636 10637 10638 /* 10639 * Function: sdawrite 10640 * 10641 * Description: Driver's awrite(9e) entry point function. 10642 * 10643 * Arguments: dev - device number 10644 * aio - structure pointer describing where data is stored 10645 * cred_p - user credential pointer 10646 * 10647 * Return Code: ENXIO 10648 * EIO 10649 * EINVAL 10650 * value returned by aphysio 10651 * 10652 * Context: Kernel thread context. 10653 */ 10654 /* ARGSUSED */ 10655 static int 10656 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 10657 { 10658 struct sd_lun *un = NULL; 10659 struct uio *uio = aio->aio_uio; 10660 int secmask; 10661 int err = 0; 10662 sd_ssc_t *ssc; 10663 10664 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10665 return (ENXIO); 10666 } 10667 10668 ASSERT(!mutex_owned(SD_MUTEX(un))); 10669 10670 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10671 mutex_enter(SD_MUTEX(un)); 10672 /* 10673 * Because the call to sd_ready_and_valid will issue I/O we 10674 * must wait here if either the device is suspended or 10675 * if it's power level is changing. 10676 */ 10677 while ((un->un_state == SD_STATE_SUSPENDED) || 10678 (un->un_state == SD_STATE_PM_CHANGING)) { 10679 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10680 } 10681 un->un_ncmds_in_driver++; 10682 mutex_exit(SD_MUTEX(un)); 10683 10684 /* Initialize sd_ssc_t for internal uscsi commands */ 10685 ssc = sd_ssc_init(un); 10686 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10687 err = EIO; 10688 } else { 10689 err = 0; 10690 } 10691 sd_ssc_fini(ssc); 10692 10693 mutex_enter(SD_MUTEX(un)); 10694 un->un_ncmds_in_driver--; 10695 ASSERT(un->un_ncmds_in_driver >= 0); 10696 mutex_exit(SD_MUTEX(un)); 10697 if (err != 0) 10698 return (err); 10699 } 10700 10701 /* 10702 * Write requests are restricted to multiples of the system block size. 10703 */ 10704 secmask = un->un_sys_blocksize - 1; 10705 10706 if (uio->uio_loffset & ((offset_t)(secmask))) { 10707 SD_ERROR(SD_LOG_READ_WRITE, un, 10708 "sdawrite: file offset not modulo %d\n", 10709 un->un_sys_blocksize); 10710 err = EINVAL; 10711 } else if (uio->uio_iov->iov_len & (secmask)) { 10712 SD_ERROR(SD_LOG_READ_WRITE, un, 10713 "sdawrite: transfer length not modulo %d\n", 10714 un->un_sys_blocksize); 10715 err = EINVAL; 10716 } else { 10717 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 10718 } 10719 10720 return (err); 10721 } 10722 10723 10724 10725 10726 10727 /* 10728 * Driver IO processing follows the following sequence: 10729 * 10730 * sdioctl(9E) sdstrategy(9E) biodone(9F) 10731 * | | ^ 10732 * v v | 10733 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 10734 * | | | | 10735 * v | | | 10736 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 10737 * | | ^ ^ 10738 * v v | | 10739 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 10740 * | | | | 10741 * +---+ | +------------+ +-------+ 10742 * | | | | 10743 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 10744 * | v | | 10745 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 10746 * | | ^ | 10747 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 10748 * | v | | 10749 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 10750 * | | ^ | 10751 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 10752 * | v | | 10753 * | sd_checksum_iostart() sd_checksum_iodone() | 10754 * | | ^ | 10755 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 10756 * | v | | 10757 * | sd_pm_iostart() sd_pm_iodone() | 10758 * | | ^ | 10759 * | | | | 10760 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 10761 * | ^ 10762 * v | 10763 * sd_core_iostart() | 10764 * | | 10765 * | +------>(*destroypkt)() 10766 * +-> sd_start_cmds() <-+ | | 10767 * | | | v 10768 * | | | scsi_destroy_pkt(9F) 10769 * | | | 10770 * +->(*initpkt)() +- sdintr() 10771 * | | | | 10772 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 10773 * | +-> scsi_setup_cdb(9F) | 10774 * | | 10775 * +--> scsi_transport(9F) | 10776 * | | 10777 * +----> SCSA ---->+ 10778 * 10779 * 10780 * This code is based upon the following presumptions: 10781 * 10782 * - iostart and iodone functions operate on buf(9S) structures. These 10783 * functions perform the necessary operations on the buf(9S) and pass 10784 * them along to the next function in the chain by using the macros 10785 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 10786 * (for iodone side functions). 10787 * 10788 * - The iostart side functions may sleep. The iodone side functions 10789 * are called under interrupt context and may NOT sleep. Therefore 10790 * iodone side functions also may not call iostart side functions. 10791 * (NOTE: iostart side functions should NOT sleep for memory, as 10792 * this could result in deadlock.) 10793 * 10794 * - An iostart side function may call its corresponding iodone side 10795 * function directly (if necessary). 10796 * 10797 * - In the event of an error, an iostart side function can return a buf(9S) 10798 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 10799 * b_error in the usual way of course). 10800 * 10801 * - The taskq mechanism may be used by the iodone side functions to dispatch 10802 * requests to the iostart side functions. The iostart side functions in 10803 * this case would be called under the context of a taskq thread, so it's 10804 * OK for them to block/sleep/spin in this case. 10805 * 10806 * - iostart side functions may allocate "shadow" buf(9S) structs and 10807 * pass them along to the next function in the chain. The corresponding 10808 * iodone side functions must coalesce the "shadow" bufs and return 10809 * the "original" buf to the next higher layer. 10810 * 10811 * - The b_private field of the buf(9S) struct holds a pointer to 10812 * an sd_xbuf struct, which contains information needed to 10813 * construct the scsi_pkt for the command. 10814 * 10815 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 10816 * layer must acquire & release the SD_MUTEX(un) as needed. 10817 */ 10818 10819 10820 /* 10821 * Create taskq for all targets in the system. This is created at 10822 * _init(9E) and destroyed at _fini(9E). 10823 * 10824 * Note: here we set the minalloc to a reasonably high number to ensure that 10825 * we will have an adequate supply of task entries available at interrupt time. 10826 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 10827 * sd_create_taskq(). Since we do not want to sleep for allocations at 10828 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 10829 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 10830 * requests any one instant in time. 10831 */ 10832 #define SD_TASKQ_NUMTHREADS 8 10833 #define SD_TASKQ_MINALLOC 256 10834 #define SD_TASKQ_MAXALLOC 256 10835 10836 static taskq_t *sd_tq = NULL; 10837 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 10838 10839 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 10840 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 10841 10842 /* 10843 * The following task queue is being created for the write part of 10844 * read-modify-write of non-512 block size devices. 10845 * Limit the number of threads to 1 for now. This number has been chosen 10846 * considering the fact that it applies only to dvd ram drives/MO drives 10847 * currently. Performance for which is not main criteria at this stage. 10848 * Note: It needs to be explored if we can use a single taskq in future 10849 */ 10850 #define SD_WMR_TASKQ_NUMTHREADS 1 10851 static taskq_t *sd_wmr_tq = NULL; 10852 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 10853 10854 /* 10855 * Function: sd_taskq_create 10856 * 10857 * Description: Create taskq thread(s) and preallocate task entries 10858 * 10859 * Return Code: Returns a pointer to the allocated taskq_t. 10860 * 10861 * Context: Can sleep. Requires blockable context. 10862 * 10863 * Notes: - The taskq() facility currently is NOT part of the DDI. 10864 * (definitely NOT recommeded for 3rd-party drivers!) :-) 10865 * - taskq_create() will block for memory, also it will panic 10866 * if it cannot create the requested number of threads. 10867 * - Currently taskq_create() creates threads that cannot be 10868 * swapped. 10869 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 10870 * supply of taskq entries at interrupt time (ie, so that we 10871 * do not have to sleep for memory) 10872 */ 10873 10874 static void 10875 sd_taskq_create(void) 10876 { 10877 char taskq_name[TASKQ_NAMELEN]; 10878 10879 ASSERT(sd_tq == NULL); 10880 ASSERT(sd_wmr_tq == NULL); 10881 10882 (void) snprintf(taskq_name, sizeof (taskq_name), 10883 "%s_drv_taskq", sd_label); 10884 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 10885 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 10886 TASKQ_PREPOPULATE)); 10887 10888 (void) snprintf(taskq_name, sizeof (taskq_name), 10889 "%s_rmw_taskq", sd_label); 10890 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 10891 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 10892 TASKQ_PREPOPULATE)); 10893 } 10894 10895 10896 /* 10897 * Function: sd_taskq_delete 10898 * 10899 * Description: Complementary cleanup routine for sd_taskq_create(). 10900 * 10901 * Context: Kernel thread context. 10902 */ 10903 10904 static void 10905 sd_taskq_delete(void) 10906 { 10907 ASSERT(sd_tq != NULL); 10908 ASSERT(sd_wmr_tq != NULL); 10909 taskq_destroy(sd_tq); 10910 taskq_destroy(sd_wmr_tq); 10911 sd_tq = NULL; 10912 sd_wmr_tq = NULL; 10913 } 10914 10915 10916 /* 10917 * Function: sdstrategy 10918 * 10919 * Description: Driver's strategy (9E) entry point function. 10920 * 10921 * Arguments: bp - pointer to buf(9S) 10922 * 10923 * Return Code: Always returns zero 10924 * 10925 * Context: Kernel thread context. 10926 */ 10927 10928 static int 10929 sdstrategy(struct buf *bp) 10930 { 10931 struct sd_lun *un; 10932 10933 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 10934 if (un == NULL) { 10935 bioerror(bp, EIO); 10936 bp->b_resid = bp->b_bcount; 10937 biodone(bp); 10938 return (0); 10939 } 10940 /* As was done in the past, fail new cmds. if state is dumping. */ 10941 if (un->un_state == SD_STATE_DUMPING) { 10942 bioerror(bp, ENXIO); 10943 bp->b_resid = bp->b_bcount; 10944 biodone(bp); 10945 return (0); 10946 } 10947 10948 ASSERT(!mutex_owned(SD_MUTEX(un))); 10949 10950 /* 10951 * Commands may sneak in while we released the mutex in 10952 * DDI_SUSPEND, we should block new commands. However, old 10953 * commands that are still in the driver at this point should 10954 * still be allowed to drain. 10955 */ 10956 mutex_enter(SD_MUTEX(un)); 10957 /* 10958 * Must wait here if either the device is suspended or 10959 * if it's power level is changing. 10960 */ 10961 while ((un->un_state == SD_STATE_SUSPENDED) || 10962 (un->un_state == SD_STATE_PM_CHANGING)) { 10963 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10964 } 10965 10966 un->un_ncmds_in_driver++; 10967 10968 /* 10969 * atapi: Since we are running the CD for now in PIO mode we need to 10970 * call bp_mapin here to avoid bp_mapin called interrupt context under 10971 * the HBA's init_pkt routine. 10972 */ 10973 if (un->un_f_cfg_is_atapi == TRUE) { 10974 mutex_exit(SD_MUTEX(un)); 10975 bp_mapin(bp); 10976 mutex_enter(SD_MUTEX(un)); 10977 } 10978 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 10979 un->un_ncmds_in_driver); 10980 10981 if (bp->b_flags & B_WRITE) 10982 un->un_f_sync_cache_required = TRUE; 10983 10984 mutex_exit(SD_MUTEX(un)); 10985 10986 /* 10987 * This will (eventually) allocate the sd_xbuf area and 10988 * call sd_xbuf_strategy(). We just want to return the 10989 * result of ddi_xbuf_qstrategy so that we have an opt- 10990 * imized tail call which saves us a stack frame. 10991 */ 10992 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 10993 } 10994 10995 10996 /* 10997 * Function: sd_xbuf_strategy 10998 * 10999 * Description: Function for initiating IO operations via the 11000 * ddi_xbuf_qstrategy() mechanism. 11001 * 11002 * Context: Kernel thread context. 11003 */ 11004 11005 static void 11006 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11007 { 11008 struct sd_lun *un = arg; 11009 11010 ASSERT(bp != NULL); 11011 ASSERT(xp != NULL); 11012 ASSERT(un != NULL); 11013 ASSERT(!mutex_owned(SD_MUTEX(un))); 11014 11015 /* 11016 * Initialize the fields in the xbuf and save a pointer to the 11017 * xbuf in bp->b_private. 11018 */ 11019 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11020 11021 /* Send the buf down the iostart chain */ 11022 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11023 } 11024 11025 11026 /* 11027 * Function: sd_xbuf_init 11028 * 11029 * Description: Prepare the given sd_xbuf struct for use. 11030 * 11031 * Arguments: un - ptr to softstate 11032 * bp - ptr to associated buf(9S) 11033 * xp - ptr to associated sd_xbuf 11034 * chain_type - IO chain type to use: 11035 * SD_CHAIN_NULL 11036 * SD_CHAIN_BUFIO 11037 * SD_CHAIN_USCSI 11038 * SD_CHAIN_DIRECT 11039 * SD_CHAIN_DIRECT_PRIORITY 11040 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11041 * initialization; may be NULL if none. 11042 * 11043 * Context: Kernel thread context 11044 */ 11045 11046 static void 11047 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11048 uchar_t chain_type, void *pktinfop) 11049 { 11050 int index; 11051 11052 ASSERT(un != NULL); 11053 ASSERT(bp != NULL); 11054 ASSERT(xp != NULL); 11055 11056 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11057 bp, chain_type); 11058 11059 xp->xb_un = un; 11060 xp->xb_pktp = NULL; 11061 xp->xb_pktinfo = pktinfop; 11062 xp->xb_private = bp->b_private; 11063 xp->xb_blkno = (daddr_t)bp->b_blkno; 11064 11065 /* 11066 * Set up the iostart and iodone chain indexes in the xbuf, based 11067 * upon the specified chain type to use. 11068 */ 11069 switch (chain_type) { 11070 case SD_CHAIN_NULL: 11071 /* 11072 * Fall thru to just use the values for the buf type, even 11073 * tho for the NULL chain these values will never be used. 11074 */ 11075 /* FALLTHRU */ 11076 case SD_CHAIN_BUFIO: 11077 index = un->un_buf_chain_type; 11078 break; 11079 case SD_CHAIN_USCSI: 11080 index = un->un_uscsi_chain_type; 11081 break; 11082 case SD_CHAIN_DIRECT: 11083 index = un->un_direct_chain_type; 11084 break; 11085 case SD_CHAIN_DIRECT_PRIORITY: 11086 index = un->un_priority_chain_type; 11087 break; 11088 default: 11089 /* We're really broken if we ever get here... */ 11090 panic("sd_xbuf_init: illegal chain type!"); 11091 /*NOTREACHED*/ 11092 } 11093 11094 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11095 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11096 11097 /* 11098 * It might be a bit easier to simply bzero the entire xbuf above, 11099 * but it turns out that since we init a fair number of members anyway, 11100 * we save a fair number cycles by doing explicit assignment of zero. 11101 */ 11102 xp->xb_pkt_flags = 0; 11103 xp->xb_dma_resid = 0; 11104 xp->xb_retry_count = 0; 11105 xp->xb_victim_retry_count = 0; 11106 xp->xb_ua_retry_count = 0; 11107 xp->xb_nr_retry_count = 0; 11108 xp->xb_sense_bp = NULL; 11109 xp->xb_sense_status = 0; 11110 xp->xb_sense_state = 0; 11111 xp->xb_sense_resid = 0; 11112 xp->xb_ena = 0; 11113 11114 bp->b_private = xp; 11115 bp->b_flags &= ~(B_DONE | B_ERROR); 11116 bp->b_resid = 0; 11117 bp->av_forw = NULL; 11118 bp->av_back = NULL; 11119 bioerror(bp, 0); 11120 11121 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11122 } 11123 11124 11125 /* 11126 * Function: sd_uscsi_strategy 11127 * 11128 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11129 * 11130 * Arguments: bp - buf struct ptr 11131 * 11132 * Return Code: Always returns 0 11133 * 11134 * Context: Kernel thread context 11135 */ 11136 11137 static int 11138 sd_uscsi_strategy(struct buf *bp) 11139 { 11140 struct sd_lun *un; 11141 struct sd_uscsi_info *uip; 11142 struct sd_xbuf *xp; 11143 uchar_t chain_type; 11144 uchar_t cmd; 11145 11146 ASSERT(bp != NULL); 11147 11148 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11149 if (un == NULL) { 11150 bioerror(bp, EIO); 11151 bp->b_resid = bp->b_bcount; 11152 biodone(bp); 11153 return (0); 11154 } 11155 11156 ASSERT(!mutex_owned(SD_MUTEX(un))); 11157 11158 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11159 11160 /* 11161 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11162 */ 11163 ASSERT(bp->b_private != NULL); 11164 uip = (struct sd_uscsi_info *)bp->b_private; 11165 cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0]; 11166 11167 mutex_enter(SD_MUTEX(un)); 11168 /* 11169 * atapi: Since we are running the CD for now in PIO mode we need to 11170 * call bp_mapin here to avoid bp_mapin called interrupt context under 11171 * the HBA's init_pkt routine. 11172 */ 11173 if (un->un_f_cfg_is_atapi == TRUE) { 11174 mutex_exit(SD_MUTEX(un)); 11175 bp_mapin(bp); 11176 mutex_enter(SD_MUTEX(un)); 11177 } 11178 un->un_ncmds_in_driver++; 11179 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11180 un->un_ncmds_in_driver); 11181 11182 if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) && 11183 (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1)) 11184 un->un_f_sync_cache_required = TRUE; 11185 11186 mutex_exit(SD_MUTEX(un)); 11187 11188 switch (uip->ui_flags) { 11189 case SD_PATH_DIRECT: 11190 chain_type = SD_CHAIN_DIRECT; 11191 break; 11192 case SD_PATH_DIRECT_PRIORITY: 11193 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11194 break; 11195 default: 11196 chain_type = SD_CHAIN_USCSI; 11197 break; 11198 } 11199 11200 /* 11201 * We may allocate extra buf for external USCSI commands. If the 11202 * application asks for bigger than 20-byte sense data via USCSI, 11203 * SCSA layer will allocate 252 bytes sense buf for that command. 11204 */ 11205 if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen > 11206 SENSE_LENGTH) { 11207 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH + 11208 MAX_SENSE_LENGTH, KM_SLEEP); 11209 } else { 11210 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP); 11211 } 11212 11213 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11214 11215 /* Use the index obtained within xbuf_init */ 11216 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11217 11218 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11219 11220 return (0); 11221 } 11222 11223 /* 11224 * Function: sd_send_scsi_cmd 11225 * 11226 * Description: Runs a USCSI command for user (when called thru sdioctl), 11227 * or for the driver 11228 * 11229 * Arguments: dev - the dev_t for the device 11230 * incmd - ptr to a valid uscsi_cmd struct 11231 * flag - bit flag, indicating open settings, 32/64 bit type 11232 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11233 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11234 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11235 * to use the USCSI "direct" chain and bypass the normal 11236 * command waitq. 11237 * 11238 * Return Code: 0 - successful completion of the given command 11239 * EIO - scsi_uscsi_handle_command() failed 11240 * ENXIO - soft state not found for specified dev 11241 * EINVAL 11242 * EFAULT - copyin/copyout error 11243 * return code of scsi_uscsi_handle_command(): 11244 * EIO 11245 * ENXIO 11246 * EACCES 11247 * 11248 * Context: Waits for command to complete. Can sleep. 11249 */ 11250 11251 static int 11252 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 11253 enum uio_seg dataspace, int path_flag) 11254 { 11255 struct sd_lun *un; 11256 sd_ssc_t *ssc; 11257 int rval; 11258 11259 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11260 if (un == NULL) { 11261 return (ENXIO); 11262 } 11263 11264 /* 11265 * Using sd_ssc_send to handle uscsi cmd 11266 */ 11267 ssc = sd_ssc_init(un); 11268 rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag); 11269 sd_ssc_fini(ssc); 11270 11271 return (rval); 11272 } 11273 11274 /* 11275 * Function: sd_ssc_init 11276 * 11277 * Description: Uscsi end-user call this function to initialize necessary 11278 * fields, such as uscsi_cmd and sd_uscsi_info struct. 11279 * 11280 * The return value of sd_send_scsi_cmd will be treated as a 11281 * fault in various conditions. Even it is not Zero, some 11282 * callers may ignore the return value. That is to say, we can 11283 * not make an accurate assessment in sdintr, since if a 11284 * command is failed in sdintr it does not mean the caller of 11285 * sd_send_scsi_cmd will treat it as a real failure. 11286 * 11287 * To avoid printing too many error logs for a failed uscsi 11288 * packet that the caller may not treat it as a failure, the 11289 * sd will keep silent for handling all uscsi commands. 11290 * 11291 * During detach->attach and attach-open, for some types of 11292 * problems, the driver should be providing information about 11293 * the problem encountered. Device use USCSI_SILENT, which 11294 * suppresses all driver information. The result is that no 11295 * information about the problem is available. Being 11296 * completely silent during this time is inappropriate. The 11297 * driver needs a more selective filter than USCSI_SILENT, so 11298 * that information related to faults is provided. 11299 * 11300 * To make the accurate accessment, the caller of 11301 * sd_send_scsi_USCSI_CMD should take the ownership and 11302 * get necessary information to print error messages. 11303 * 11304 * If we want to print necessary info of uscsi command, we need to 11305 * keep the uscsi_cmd and sd_uscsi_info till we can make the 11306 * assessment. We use sd_ssc_init to alloc necessary 11307 * structs for sending an uscsi command and we are also 11308 * responsible for free the memory by calling 11309 * sd_ssc_fini. 11310 * 11311 * The calling secquences will look like: 11312 * sd_ssc_init-> 11313 * 11314 * ... 11315 * 11316 * sd_send_scsi_USCSI_CMD-> 11317 * sd_ssc_send-> - - - sdintr 11318 * ... 11319 * 11320 * if we think the return value should be treated as a 11321 * failure, we make the accessment here and print out 11322 * necessary by retrieving uscsi_cmd and sd_uscsi_info' 11323 * 11324 * ... 11325 * 11326 * sd_ssc_fini 11327 * 11328 * 11329 * Arguments: un - pointer to driver soft state (unit) structure for this 11330 * target. 11331 * 11332 * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains 11333 * uscsi_cmd and sd_uscsi_info. 11334 * NULL - if can not alloc memory for sd_ssc_t struct 11335 * 11336 * Context: Kernel Thread. 11337 */ 11338 static sd_ssc_t * 11339 sd_ssc_init(struct sd_lun *un) 11340 { 11341 sd_ssc_t *ssc; 11342 struct uscsi_cmd *ucmdp; 11343 struct sd_uscsi_info *uip; 11344 11345 ASSERT(un != NULL); 11346 ASSERT(!mutex_owned(SD_MUTEX(un))); 11347 11348 /* 11349 * Allocate sd_ssc_t structure 11350 */ 11351 ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP); 11352 11353 /* 11354 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine 11355 */ 11356 ucmdp = scsi_uscsi_alloc(); 11357 11358 /* 11359 * Allocate sd_uscsi_info structure 11360 */ 11361 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11362 11363 ssc->ssc_uscsi_cmd = ucmdp; 11364 ssc->ssc_uscsi_info = uip; 11365 ssc->ssc_un = un; 11366 11367 return (ssc); 11368 } 11369 11370 /* 11371 * Function: sd_ssc_fini 11372 * 11373 * Description: To free sd_ssc_t and it's hanging off 11374 * 11375 * Arguments: ssc - struct pointer of sd_ssc_t. 11376 */ 11377 static void 11378 sd_ssc_fini(sd_ssc_t *ssc) 11379 { 11380 scsi_uscsi_free(ssc->ssc_uscsi_cmd); 11381 11382 if (ssc->ssc_uscsi_info != NULL) { 11383 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info)); 11384 ssc->ssc_uscsi_info = NULL; 11385 } 11386 11387 kmem_free(ssc, sizeof (sd_ssc_t)); 11388 ssc = NULL; 11389 } 11390 11391 /* 11392 * Function: sd_ssc_send 11393 * 11394 * Description: Runs a USCSI command for user when called through sdioctl, 11395 * or for the driver. 11396 * 11397 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11398 * sd_uscsi_info in. 11399 * incmd - ptr to a valid uscsi_cmd struct 11400 * flag - bit flag, indicating open settings, 32/64 bit type 11401 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11402 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11403 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11404 * to use the USCSI "direct" chain and bypass the normal 11405 * command waitq. 11406 * 11407 * Return Code: 0 - successful completion of the given command 11408 * EIO - scsi_uscsi_handle_command() failed 11409 * ENXIO - soft state not found for specified dev 11410 * EINVAL 11411 * EFAULT - copyin/copyout error 11412 * return code of scsi_uscsi_handle_command(): 11413 * EIO 11414 * ENXIO 11415 * EACCES 11416 * 11417 * Context: Kernel Thread; 11418 * Waits for command to complete. Can sleep. 11419 */ 11420 static int 11421 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag, 11422 enum uio_seg dataspace, int path_flag) 11423 { 11424 struct sd_uscsi_info *uip; 11425 struct uscsi_cmd *uscmd; 11426 struct sd_lun *un; 11427 dev_t dev; 11428 11429 int format = 0; 11430 int rval; 11431 11432 ASSERT(ssc != NULL); 11433 un = ssc->ssc_un; 11434 ASSERT(un != NULL); 11435 uscmd = ssc->ssc_uscsi_cmd; 11436 ASSERT(uscmd != NULL); 11437 ASSERT(!mutex_owned(SD_MUTEX(un))); 11438 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 11439 /* 11440 * If enter here, it indicates that the previous uscsi 11441 * command has not been processed by sd_ssc_assessment. 11442 * This is violating our rules of FMA telemetry processing. 11443 * We should print out this message and the last undisposed 11444 * uscsi command. 11445 */ 11446 if (uscmd->uscsi_cdb != NULL) { 11447 SD_INFO(SD_LOG_SDTEST, un, 11448 "sd_ssc_send is missing the alternative " 11449 "sd_ssc_assessment when running command 0x%x.\n", 11450 uscmd->uscsi_cdb[0]); 11451 } 11452 /* 11453 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be 11454 * the initial status. 11455 */ 11456 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11457 } 11458 11459 /* 11460 * We need to make sure sd_ssc_send will have sd_ssc_assessment 11461 * followed to avoid missing FMA telemetries. 11462 */ 11463 ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT; 11464 11465 #ifdef SDDEBUG 11466 switch (dataspace) { 11467 case UIO_USERSPACE: 11468 SD_TRACE(SD_LOG_IO, un, 11469 "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un); 11470 break; 11471 case UIO_SYSSPACE: 11472 SD_TRACE(SD_LOG_IO, un, 11473 "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un); 11474 break; 11475 default: 11476 SD_TRACE(SD_LOG_IO, un, 11477 "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un); 11478 break; 11479 } 11480 #endif 11481 11482 rval = scsi_uscsi_copyin((intptr_t)incmd, flag, 11483 SD_ADDRESS(un), &uscmd); 11484 if (rval != 0) { 11485 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 11486 "scsi_uscsi_alloc_and_copyin failed\n", un); 11487 return (rval); 11488 } 11489 11490 if ((uscmd->uscsi_cdb != NULL) && 11491 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 11492 mutex_enter(SD_MUTEX(un)); 11493 un->un_f_format_in_progress = TRUE; 11494 mutex_exit(SD_MUTEX(un)); 11495 format = 1; 11496 } 11497 11498 /* 11499 * Allocate an sd_uscsi_info struct and fill it with the info 11500 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 11501 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 11502 * since we allocate the buf here in this function, we do not 11503 * need to preserve the prior contents of b_private. 11504 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 11505 */ 11506 uip = ssc->ssc_uscsi_info; 11507 uip->ui_flags = path_flag; 11508 uip->ui_cmdp = uscmd; 11509 11510 /* 11511 * Commands sent with priority are intended for error recovery 11512 * situations, and do not have retries performed. 11513 */ 11514 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 11515 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 11516 } 11517 uscmd->uscsi_flags &= ~USCSI_NOINTR; 11518 11519 dev = SD_GET_DEV(un); 11520 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 11521 sd_uscsi_strategy, NULL, uip); 11522 11523 /* 11524 * mark ssc_flags right after handle_cmd to make sure 11525 * the uscsi has been sent 11526 */ 11527 ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED; 11528 11529 #ifdef SDDEBUG 11530 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 11531 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 11532 uscmd->uscsi_status, uscmd->uscsi_resid); 11533 if (uscmd->uscsi_bufaddr != NULL) { 11534 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 11535 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 11536 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 11537 if (dataspace == UIO_SYSSPACE) { 11538 SD_DUMP_MEMORY(un, SD_LOG_IO, 11539 "data", (uchar_t *)uscmd->uscsi_bufaddr, 11540 uscmd->uscsi_buflen, SD_LOG_HEX); 11541 } 11542 } 11543 #endif 11544 11545 if (format == 1) { 11546 mutex_enter(SD_MUTEX(un)); 11547 un->un_f_format_in_progress = FALSE; 11548 mutex_exit(SD_MUTEX(un)); 11549 } 11550 11551 (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd); 11552 11553 return (rval); 11554 } 11555 11556 /* 11557 * Function: sd_ssc_print 11558 * 11559 * Description: Print information available to the console. 11560 * 11561 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11562 * sd_uscsi_info in. 11563 * sd_severity - log level. 11564 * Context: Kernel thread or interrupt context. 11565 */ 11566 static void 11567 sd_ssc_print(sd_ssc_t *ssc, int sd_severity) 11568 { 11569 struct uscsi_cmd *ucmdp; 11570 struct scsi_device *devp; 11571 dev_info_t *devinfo; 11572 uchar_t *sensep; 11573 int senlen; 11574 union scsi_cdb *cdbp; 11575 uchar_t com; 11576 extern struct scsi_key_strings scsi_cmds[]; 11577 11578 ASSERT(ssc != NULL); 11579 ASSERT(ssc->ssc_un != NULL); 11580 11581 if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT) 11582 return; 11583 ucmdp = ssc->ssc_uscsi_cmd; 11584 devp = SD_SCSI_DEVP(ssc->ssc_un); 11585 devinfo = SD_DEVINFO(ssc->ssc_un); 11586 ASSERT(ucmdp != NULL); 11587 ASSERT(devp != NULL); 11588 ASSERT(devinfo != NULL); 11589 sensep = (uint8_t *)ucmdp->uscsi_rqbuf; 11590 senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid; 11591 cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb; 11592 11593 /* In certain case (like DOORLOCK), the cdb could be NULL. */ 11594 if (cdbp == NULL) 11595 return; 11596 /* We don't print log if no sense data available. */ 11597 if (senlen == 0) 11598 sensep = NULL; 11599 com = cdbp->scc_cmd; 11600 scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com, 11601 scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL); 11602 } 11603 11604 /* 11605 * Function: sd_ssc_assessment 11606 * 11607 * Description: We use this function to make an assessment at the point 11608 * where SD driver may encounter a potential error. 11609 * 11610 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11611 * sd_uscsi_info in. 11612 * tp_assess - a hint of strategy for ereport posting. 11613 * Possible values of tp_assess include: 11614 * SD_FMT_IGNORE - we don't post any ereport because we're 11615 * sure that it is ok to ignore the underlying problems. 11616 * SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now 11617 * but it might be not correct to ignore the underlying hardware 11618 * error. 11619 * SD_FMT_STATUS_CHECK - we will post an ereport with the 11620 * payload driver-assessment of value "fail" or 11621 * "fatal"(depending on what information we have here). This 11622 * assessment value is usually set when SD driver think there 11623 * is a potential error occurred(Typically, when return value 11624 * of the SCSI command is EIO). 11625 * SD_FMT_STANDARD - we will post an ereport with the payload 11626 * driver-assessment of value "info". This assessment value is 11627 * set when the SCSI command returned successfully and with 11628 * sense data sent back. 11629 * 11630 * Context: Kernel thread. 11631 */ 11632 static void 11633 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess) 11634 { 11635 int senlen = 0; 11636 struct uscsi_cmd *ucmdp = NULL; 11637 struct sd_lun *un; 11638 11639 ASSERT(ssc != NULL); 11640 un = ssc->ssc_un; 11641 ASSERT(un != NULL); 11642 ucmdp = ssc->ssc_uscsi_cmd; 11643 ASSERT(ucmdp != NULL); 11644 11645 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 11646 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT; 11647 } else { 11648 /* 11649 * If enter here, it indicates that we have a wrong 11650 * calling sequence of sd_ssc_send and sd_ssc_assessment, 11651 * both of which should be called in a pair in case of 11652 * loss of FMA telemetries. 11653 */ 11654 if (ucmdp->uscsi_cdb != NULL) { 11655 SD_INFO(SD_LOG_SDTEST, un, 11656 "sd_ssc_assessment is missing the " 11657 "alternative sd_ssc_send when running 0x%x, " 11658 "or there are superfluous sd_ssc_assessment for " 11659 "the same sd_ssc_send.\n", 11660 ucmdp->uscsi_cdb[0]); 11661 } 11662 /* 11663 * Set the ssc_flags to the initial value to avoid passing 11664 * down dirty flags to the following sd_ssc_send function. 11665 */ 11666 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11667 return; 11668 } 11669 11670 /* 11671 * Only handle an issued command which is waiting for assessment. 11672 * A command which is not issued will not have 11673 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here. 11674 */ 11675 if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) { 11676 sd_ssc_print(ssc, SCSI_ERR_INFO); 11677 return; 11678 } else { 11679 /* 11680 * For an issued command, we should clear this flag in 11681 * order to make the sd_ssc_t structure be used off 11682 * multiple uscsi commands. 11683 */ 11684 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED; 11685 } 11686 11687 /* 11688 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set) 11689 * commands here. And we should clear the ssc_flags before return. 11690 */ 11691 if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) { 11692 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11693 return; 11694 } 11695 11696 switch (tp_assess) { 11697 case SD_FMT_IGNORE: 11698 case SD_FMT_IGNORE_COMPROMISE: 11699 break; 11700 case SD_FMT_STATUS_CHECK: 11701 /* 11702 * For a failed command(including the succeeded command 11703 * with invalid data sent back). 11704 */ 11705 sd_ssc_post(ssc, SD_FM_DRV_FATAL); 11706 break; 11707 case SD_FMT_STANDARD: 11708 /* 11709 * Always for the succeeded commands probably with sense 11710 * data sent back. 11711 * Limitation: 11712 * We can only handle a succeeded command with sense 11713 * data sent back when auto-request-sense is enabled. 11714 */ 11715 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen - 11716 ssc->ssc_uscsi_cmd->uscsi_rqresid; 11717 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) && 11718 (un->un_f_arq_enabled == TRUE) && 11719 senlen > 0 && 11720 ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) { 11721 sd_ssc_post(ssc, SD_FM_DRV_NOTICE); 11722 } 11723 break; 11724 default: 11725 /* 11726 * Should not have other type of assessment. 11727 */ 11728 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 11729 "sd_ssc_assessment got wrong " 11730 "sd_type_assessment %d.\n", tp_assess); 11731 break; 11732 } 11733 /* 11734 * Clear up the ssc_flags before return. 11735 */ 11736 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11737 } 11738 11739 /* 11740 * Function: sd_ssc_post 11741 * 11742 * Description: 1. read the driver property to get fm-scsi-log flag. 11743 * 2. print log if fm_log_capable is non-zero. 11744 * 3. call sd_ssc_ereport_post to post ereport if possible. 11745 * 11746 * Context: May be called from kernel thread or interrupt context. 11747 */ 11748 static void 11749 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess) 11750 { 11751 struct sd_lun *un; 11752 int sd_severity; 11753 11754 ASSERT(ssc != NULL); 11755 un = ssc->ssc_un; 11756 ASSERT(un != NULL); 11757 11758 /* 11759 * We may enter here from sd_ssc_assessment(for USCSI command) or 11760 * by directly called from sdintr context. 11761 * We don't handle a non-disk drive(CD-ROM, removable media). 11762 * Clear the ssc_flags before return in case we've set 11763 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk 11764 * driver. 11765 */ 11766 if (ISCD(un) || un->un_f_has_removable_media) { 11767 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11768 return; 11769 } 11770 11771 switch (sd_assess) { 11772 case SD_FM_DRV_FATAL: 11773 sd_severity = SCSI_ERR_FATAL; 11774 break; 11775 case SD_FM_DRV_RECOVERY: 11776 sd_severity = SCSI_ERR_RECOVERED; 11777 break; 11778 case SD_FM_DRV_RETRY: 11779 sd_severity = SCSI_ERR_RETRYABLE; 11780 break; 11781 case SD_FM_DRV_NOTICE: 11782 sd_severity = SCSI_ERR_INFO; 11783 break; 11784 default: 11785 sd_severity = SCSI_ERR_UNKNOWN; 11786 } 11787 /* print log */ 11788 sd_ssc_print(ssc, sd_severity); 11789 11790 /* always post ereport */ 11791 sd_ssc_ereport_post(ssc, sd_assess); 11792 } 11793 11794 /* 11795 * Function: sd_ssc_set_info 11796 * 11797 * Description: Mark ssc_flags and set ssc_info which would be the 11798 * payload of uderr ereport. This function will cause 11799 * sd_ssc_ereport_post to post uderr ereport only. 11800 * Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI), 11801 * the function will also call SD_ERROR or scsi_log for a 11802 * CDROM/removable-media/DDI_FM_NOT_CAPABLE device. 11803 * 11804 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11805 * sd_uscsi_info in. 11806 * ssc_flags - indicate the sub-category of a uderr. 11807 * comp - this argument is meaningful only when 11808 * ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible 11809 * values include: 11810 * > 0, SD_ERROR is used with comp as the driver logging 11811 * component; 11812 * = 0, scsi-log is used to log error telemetries; 11813 * < 0, no log available for this telemetry. 11814 * 11815 * Context: Kernel thread or interrupt context 11816 */ 11817 static void 11818 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...) 11819 { 11820 va_list ap; 11821 11822 ASSERT(ssc != NULL); 11823 ASSERT(ssc->ssc_un != NULL); 11824 11825 ssc->ssc_flags |= ssc_flags; 11826 va_start(ap, fmt); 11827 (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap); 11828 va_end(ap); 11829 11830 /* 11831 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command 11832 * with invalid data sent back. For non-uscsi command, the 11833 * following code will be bypassed. 11834 */ 11835 if (ssc_flags & SSC_FLAGS_INVALID_DATA) { 11836 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) { 11837 /* 11838 * If the error belong to certain component and we 11839 * do not want it to show up on the console, we 11840 * will use SD_ERROR, otherwise scsi_log is 11841 * preferred. 11842 */ 11843 if (comp > 0) { 11844 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info); 11845 } else if (comp == 0) { 11846 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label, 11847 CE_WARN, ssc->ssc_info); 11848 } 11849 } 11850 } 11851 } 11852 11853 /* 11854 * Function: sd_buf_iodone 11855 * 11856 * Description: Frees the sd_xbuf & returns the buf to its originator. 11857 * 11858 * Context: May be called from interrupt context. 11859 */ 11860 /* ARGSUSED */ 11861 static void 11862 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 11863 { 11864 struct sd_xbuf *xp; 11865 11866 ASSERT(un != NULL); 11867 ASSERT(bp != NULL); 11868 ASSERT(!mutex_owned(SD_MUTEX(un))); 11869 11870 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 11871 11872 xp = SD_GET_XBUF(bp); 11873 ASSERT(xp != NULL); 11874 11875 mutex_enter(SD_MUTEX(un)); 11876 11877 /* 11878 * Grab time when the cmd completed. 11879 * This is used for determining if the system has been 11880 * idle long enough to make it idle to the PM framework. 11881 * This is for lowering the overhead, and therefore improving 11882 * performance per I/O operation. 11883 */ 11884 un->un_pm_idle_time = ddi_get_time(); 11885 11886 un->un_ncmds_in_driver--; 11887 ASSERT(un->un_ncmds_in_driver >= 0); 11888 SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 11889 un->un_ncmds_in_driver); 11890 11891 mutex_exit(SD_MUTEX(un)); 11892 11893 ddi_xbuf_done(bp, un->un_xbuf_attr); /* xbuf is gone after this */ 11894 biodone(bp); /* bp is gone after this */ 11895 11896 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 11897 } 11898 11899 11900 /* 11901 * Function: sd_uscsi_iodone 11902 * 11903 * Description: Frees the sd_xbuf & returns the buf to its originator. 11904 * 11905 * Context: May be called from interrupt context. 11906 */ 11907 /* ARGSUSED */ 11908 static void 11909 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 11910 { 11911 struct sd_xbuf *xp; 11912 11913 ASSERT(un != NULL); 11914 ASSERT(bp != NULL); 11915 11916 xp = SD_GET_XBUF(bp); 11917 ASSERT(xp != NULL); 11918 ASSERT(!mutex_owned(SD_MUTEX(un))); 11919 11920 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 11921 11922 bp->b_private = xp->xb_private; 11923 11924 mutex_enter(SD_MUTEX(un)); 11925 11926 /* 11927 * Grab time when the cmd completed. 11928 * This is used for determining if the system has been 11929 * idle long enough to make it idle to the PM framework. 11930 * This is for lowering the overhead, and therefore improving 11931 * performance per I/O operation. 11932 */ 11933 un->un_pm_idle_time = ddi_get_time(); 11934 11935 un->un_ncmds_in_driver--; 11936 ASSERT(un->un_ncmds_in_driver >= 0); 11937 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 11938 un->un_ncmds_in_driver); 11939 11940 mutex_exit(SD_MUTEX(un)); 11941 11942 if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen > 11943 SENSE_LENGTH) { 11944 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH + 11945 MAX_SENSE_LENGTH); 11946 } else { 11947 kmem_free(xp, sizeof (struct sd_xbuf)); 11948 } 11949 11950 biodone(bp); 11951 11952 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 11953 } 11954 11955 11956 /* 11957 * Function: sd_mapblockaddr_iostart 11958 * 11959 * Description: Verify request lies within the partition limits for 11960 * the indicated minor device. Issue "overrun" buf if 11961 * request would exceed partition range. Converts 11962 * partition-relative block address to absolute. 11963 * 11964 * Context: Can sleep 11965 * 11966 * Issues: This follows what the old code did, in terms of accessing 11967 * some of the partition info in the unit struct without holding 11968 * the mutext. This is a general issue, if the partition info 11969 * can be altered while IO is in progress... as soon as we send 11970 * a buf, its partitioning can be invalid before it gets to the 11971 * device. Probably the right fix is to move partitioning out 11972 * of the driver entirely. 11973 */ 11974 11975 static void 11976 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 11977 { 11978 diskaddr_t nblocks; /* #blocks in the given partition */ 11979 daddr_t blocknum; /* Block number specified by the buf */ 11980 size_t requested_nblocks; 11981 size_t available_nblocks; 11982 int partition; 11983 diskaddr_t partition_offset; 11984 struct sd_xbuf *xp; 11985 11986 ASSERT(un != NULL); 11987 ASSERT(bp != NULL); 11988 ASSERT(!mutex_owned(SD_MUTEX(un))); 11989 11990 SD_TRACE(SD_LOG_IO_PARTITION, un, 11991 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 11992 11993 xp = SD_GET_XBUF(bp); 11994 ASSERT(xp != NULL); 11995 11996 /* 11997 * If the geometry is not indicated as valid, attempt to access 11998 * the unit & verify the geometry/label. This can be the case for 11999 * removable-media devices, of if the device was opened in 12000 * NDELAY/NONBLOCK mode. 12001 */ 12002 partition = SDPART(bp->b_edev); 12003 12004 if (!SD_IS_VALID_LABEL(un)) { 12005 sd_ssc_t *ssc; 12006 /* 12007 * Initialize sd_ssc_t for internal uscsi commands 12008 * In case of potential porformance issue, we need 12009 * to alloc memory only if there is invalid label 12010 */ 12011 ssc = sd_ssc_init(un); 12012 12013 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) { 12014 /* 12015 * For removable devices it is possible to start an 12016 * I/O without a media by opening the device in nodelay 12017 * mode. Also for writable CDs there can be many 12018 * scenarios where there is no geometry yet but volume 12019 * manager is trying to issue a read() just because 12020 * it can see TOC on the CD. So do not print a message 12021 * for removables. 12022 */ 12023 if (!un->un_f_has_removable_media) { 12024 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12025 "i/o to invalid geometry\n"); 12026 } 12027 bioerror(bp, EIO); 12028 bp->b_resid = bp->b_bcount; 12029 SD_BEGIN_IODONE(index, un, bp); 12030 12031 sd_ssc_fini(ssc); 12032 return; 12033 } 12034 sd_ssc_fini(ssc); 12035 } 12036 12037 nblocks = 0; 12038 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 12039 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 12040 12041 /* 12042 * blocknum is the starting block number of the request. At this 12043 * point it is still relative to the start of the minor device. 12044 */ 12045 blocknum = xp->xb_blkno; 12046 12047 /* 12048 * Legacy: If the starting block number is one past the last block 12049 * in the partition, do not set B_ERROR in the buf. 12050 */ 12051 if (blocknum == nblocks) { 12052 goto error_exit; 12053 } 12054 12055 /* 12056 * Confirm that the first block of the request lies within the 12057 * partition limits. Also the requested number of bytes must be 12058 * a multiple of the system block size. 12059 */ 12060 if ((blocknum < 0) || (blocknum >= nblocks) || 12061 ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) { 12062 bp->b_flags |= B_ERROR; 12063 goto error_exit; 12064 } 12065 12066 /* 12067 * If the requsted # blocks exceeds the available # blocks, that 12068 * is an overrun of the partition. 12069 */ 12070 requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount); 12071 available_nblocks = (size_t)(nblocks - blocknum); 12072 ASSERT(nblocks >= blocknum); 12073 12074 if (requested_nblocks > available_nblocks) { 12075 /* 12076 * Allocate an "overrun" buf to allow the request to proceed 12077 * for the amount of space available in the partition. The 12078 * amount not transferred will be added into the b_resid 12079 * when the operation is complete. The overrun buf 12080 * replaces the original buf here, and the original buf 12081 * is saved inside the overrun buf, for later use. 12082 */ 12083 size_t resid = SD_SYSBLOCKS2BYTES(un, 12084 (offset_t)(requested_nblocks - available_nblocks)); 12085 size_t count = bp->b_bcount - resid; 12086 /* 12087 * Note: count is an unsigned entity thus it'll NEVER 12088 * be less than 0 so ASSERT the original values are 12089 * correct. 12090 */ 12091 ASSERT(bp->b_bcount >= resid); 12092 12093 bp = sd_bioclone_alloc(bp, count, blocknum, 12094 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12095 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12096 ASSERT(xp != NULL); 12097 } 12098 12099 /* At this point there should be no residual for this buf. */ 12100 ASSERT(bp->b_resid == 0); 12101 12102 /* Convert the block number to an absolute address. */ 12103 xp->xb_blkno += partition_offset; 12104 12105 SD_NEXT_IOSTART(index, un, bp); 12106 12107 SD_TRACE(SD_LOG_IO_PARTITION, un, 12108 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12109 12110 return; 12111 12112 error_exit: 12113 bp->b_resid = bp->b_bcount; 12114 SD_BEGIN_IODONE(index, un, bp); 12115 SD_TRACE(SD_LOG_IO_PARTITION, un, 12116 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12117 } 12118 12119 12120 /* 12121 * Function: sd_mapblockaddr_iodone 12122 * 12123 * Description: Completion-side processing for partition management. 12124 * 12125 * Context: May be called under interrupt context 12126 */ 12127 12128 static void 12129 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12130 { 12131 /* int partition; */ /* Not used, see below. */ 12132 ASSERT(un != NULL); 12133 ASSERT(bp != NULL); 12134 ASSERT(!mutex_owned(SD_MUTEX(un))); 12135 12136 SD_TRACE(SD_LOG_IO_PARTITION, un, 12137 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12138 12139 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12140 /* 12141 * We have an "overrun" buf to deal with... 12142 */ 12143 struct sd_xbuf *xp; 12144 struct buf *obp; /* ptr to the original buf */ 12145 12146 xp = SD_GET_XBUF(bp); 12147 ASSERT(xp != NULL); 12148 12149 /* Retrieve the pointer to the original buf */ 12150 obp = (struct buf *)xp->xb_private; 12151 ASSERT(obp != NULL); 12152 12153 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12154 bioerror(obp, bp->b_error); 12155 12156 sd_bioclone_free(bp); 12157 12158 /* 12159 * Get back the original buf. 12160 * Note that since the restoration of xb_blkno below 12161 * was removed, the sd_xbuf is not needed. 12162 */ 12163 bp = obp; 12164 /* 12165 * xp = SD_GET_XBUF(bp); 12166 * ASSERT(xp != NULL); 12167 */ 12168 } 12169 12170 /* 12171 * Convert sd->xb_blkno back to a minor-device relative value. 12172 * Note: this has been commented out, as it is not needed in the 12173 * current implementation of the driver (ie, since this function 12174 * is at the top of the layering chains, so the info will be 12175 * discarded) and it is in the "hot" IO path. 12176 * 12177 * partition = getminor(bp->b_edev) & SDPART_MASK; 12178 * xp->xb_blkno -= un->un_offset[partition]; 12179 */ 12180 12181 SD_NEXT_IODONE(index, un, bp); 12182 12183 SD_TRACE(SD_LOG_IO_PARTITION, un, 12184 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12185 } 12186 12187 12188 /* 12189 * Function: sd_mapblocksize_iostart 12190 * 12191 * Description: Convert between system block size (un->un_sys_blocksize) 12192 * and target block size (un->un_tgt_blocksize). 12193 * 12194 * Context: Can sleep to allocate resources. 12195 * 12196 * Assumptions: A higher layer has already performed any partition validation, 12197 * and converted the xp->xb_blkno to an absolute value relative 12198 * to the start of the device. 12199 * 12200 * It is also assumed that the higher layer has implemented 12201 * an "overrun" mechanism for the case where the request would 12202 * read/write beyond the end of a partition. In this case we 12203 * assume (and ASSERT) that bp->b_resid == 0. 12204 * 12205 * Note: The implementation for this routine assumes the target 12206 * block size remains constant between allocation and transport. 12207 */ 12208 12209 static void 12210 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12211 { 12212 struct sd_mapblocksize_info *bsp; 12213 struct sd_xbuf *xp; 12214 offset_t first_byte; 12215 daddr_t start_block, end_block; 12216 daddr_t request_bytes; 12217 ushort_t is_aligned = FALSE; 12218 12219 ASSERT(un != NULL); 12220 ASSERT(bp != NULL); 12221 ASSERT(!mutex_owned(SD_MUTEX(un))); 12222 ASSERT(bp->b_resid == 0); 12223 12224 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12225 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12226 12227 /* 12228 * For a non-writable CD, a write request is an error 12229 */ 12230 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12231 (un->un_f_mmc_writable_media == FALSE)) { 12232 bioerror(bp, EIO); 12233 bp->b_resid = bp->b_bcount; 12234 SD_BEGIN_IODONE(index, un, bp); 12235 return; 12236 } 12237 12238 /* 12239 * We do not need a shadow buf if the device is using 12240 * un->un_sys_blocksize as its block size or if bcount == 0. 12241 * In this case there is no layer-private data block allocated. 12242 */ 12243 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12244 (bp->b_bcount == 0)) { 12245 goto done; 12246 } 12247 12248 #if defined(__i386) || defined(__amd64) 12249 /* We do not support non-block-aligned transfers for ROD devices */ 12250 ASSERT(!ISROD(un)); 12251 #endif 12252 12253 xp = SD_GET_XBUF(bp); 12254 ASSERT(xp != NULL); 12255 12256 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12257 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12258 un->un_tgt_blocksize, un->un_sys_blocksize); 12259 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12260 "request start block:0x%x\n", xp->xb_blkno); 12261 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12262 "request len:0x%x\n", bp->b_bcount); 12263 12264 /* 12265 * Allocate the layer-private data area for the mapblocksize layer. 12266 * Layers are allowed to use the xp_private member of the sd_xbuf 12267 * struct to store the pointer to their layer-private data block, but 12268 * each layer also has the responsibility of restoring the prior 12269 * contents of xb_private before returning the buf/xbuf to the 12270 * higher layer that sent it. 12271 * 12272 * Here we save the prior contents of xp->xb_private into the 12273 * bsp->mbs_oprivate field of our layer-private data area. This value 12274 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12275 * the layer-private area and returning the buf/xbuf to the layer 12276 * that sent it. 12277 * 12278 * Note that here we use kmem_zalloc for the allocation as there are 12279 * parts of the mapblocksize code that expect certain fields to be 12280 * zero unless explicitly set to a required value. 12281 */ 12282 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12283 bsp->mbs_oprivate = xp->xb_private; 12284 xp->xb_private = bsp; 12285 12286 /* 12287 * This treats the data on the disk (target) as an array of bytes. 12288 * first_byte is the byte offset, from the beginning of the device, 12289 * to the location of the request. This is converted from a 12290 * un->un_sys_blocksize block address to a byte offset, and then back 12291 * to a block address based upon a un->un_tgt_blocksize block size. 12292 * 12293 * xp->xb_blkno should be absolute upon entry into this function, 12294 * but, but it is based upon partitions that use the "system" 12295 * block size. It must be adjusted to reflect the block size of 12296 * the target. 12297 * 12298 * Note that end_block is actually the block that follows the last 12299 * block of the request, but that's what is needed for the computation. 12300 */ 12301 first_byte = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12302 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12303 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 12304 un->un_tgt_blocksize; 12305 12306 /* request_bytes is rounded up to a multiple of the target block size */ 12307 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12308 12309 /* 12310 * See if the starting address of the request and the request 12311 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12312 * then we do not need to allocate a shadow buf to handle the request. 12313 */ 12314 if (((first_byte % un->un_tgt_blocksize) == 0) && 12315 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12316 is_aligned = TRUE; 12317 } 12318 12319 if ((bp->b_flags & B_READ) == 0) { 12320 /* 12321 * Lock the range for a write operation. An aligned request is 12322 * considered a simple write; otherwise the request must be a 12323 * read-modify-write. 12324 */ 12325 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12326 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12327 } 12328 12329 /* 12330 * Alloc a shadow buf if the request is not aligned. Also, this is 12331 * where the READ command is generated for a read-modify-write. (The 12332 * write phase is deferred until after the read completes.) 12333 */ 12334 if (is_aligned == FALSE) { 12335 12336 struct sd_mapblocksize_info *shadow_bsp; 12337 struct sd_xbuf *shadow_xp; 12338 struct buf *shadow_bp; 12339 12340 /* 12341 * Allocate the shadow buf and it associated xbuf. Note that 12342 * after this call the xb_blkno value in both the original 12343 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12344 * same: absolute relative to the start of the device, and 12345 * adjusted for the target block size. The b_blkno in the 12346 * shadow buf will also be set to this value. We should never 12347 * change b_blkno in the original bp however. 12348 * 12349 * Note also that the shadow buf will always need to be a 12350 * READ command, regardless of whether the incoming command 12351 * is a READ or a WRITE. 12352 */ 12353 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 12354 xp->xb_blkno, 12355 (int (*)(struct buf *)) sd_mapblocksize_iodone); 12356 12357 shadow_xp = SD_GET_XBUF(shadow_bp); 12358 12359 /* 12360 * Allocate the layer-private data for the shadow buf. 12361 * (No need to preserve xb_private in the shadow xbuf.) 12362 */ 12363 shadow_xp->xb_private = shadow_bsp = 12364 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12365 12366 /* 12367 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 12368 * to figure out where the start of the user data is (based upon 12369 * the system block size) in the data returned by the READ 12370 * command (which will be based upon the target blocksize). Note 12371 * that this is only really used if the request is unaligned. 12372 */ 12373 bsp->mbs_copy_offset = (ssize_t)(first_byte - 12374 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 12375 ASSERT((bsp->mbs_copy_offset >= 0) && 12376 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 12377 12378 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 12379 12380 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 12381 12382 /* Transfer the wmap (if any) to the shadow buf */ 12383 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 12384 bsp->mbs_wmp = NULL; 12385 12386 /* 12387 * The shadow buf goes on from here in place of the 12388 * original buf. 12389 */ 12390 shadow_bsp->mbs_orig_bp = bp; 12391 bp = shadow_bp; 12392 } 12393 12394 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12395 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 12396 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12397 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 12398 request_bytes); 12399 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12400 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 12401 12402 done: 12403 SD_NEXT_IOSTART(index, un, bp); 12404 12405 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12406 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 12407 } 12408 12409 12410 /* 12411 * Function: sd_mapblocksize_iodone 12412 * 12413 * Description: Completion side processing for block-size mapping. 12414 * 12415 * Context: May be called under interrupt context 12416 */ 12417 12418 static void 12419 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 12420 { 12421 struct sd_mapblocksize_info *bsp; 12422 struct sd_xbuf *xp; 12423 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 12424 struct buf *orig_bp; /* ptr to the original buf */ 12425 offset_t shadow_end; 12426 offset_t request_end; 12427 offset_t shadow_start; 12428 ssize_t copy_offset; 12429 size_t copy_length; 12430 size_t shortfall; 12431 uint_t is_write; /* TRUE if this bp is a WRITE */ 12432 uint_t has_wmap; /* TRUE is this bp has a wmap */ 12433 12434 ASSERT(un != NULL); 12435 ASSERT(bp != NULL); 12436 12437 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12438 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 12439 12440 /* 12441 * There is no shadow buf or layer-private data if the target is 12442 * using un->un_sys_blocksize as its block size or if bcount == 0. 12443 */ 12444 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12445 (bp->b_bcount == 0)) { 12446 goto exit; 12447 } 12448 12449 xp = SD_GET_XBUF(bp); 12450 ASSERT(xp != NULL); 12451 12452 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 12453 bsp = xp->xb_private; 12454 12455 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 12456 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 12457 12458 if (is_write) { 12459 /* 12460 * For a WRITE request we must free up the block range that 12461 * we have locked up. This holds regardless of whether this is 12462 * an aligned write request or a read-modify-write request. 12463 */ 12464 sd_range_unlock(un, bsp->mbs_wmp); 12465 bsp->mbs_wmp = NULL; 12466 } 12467 12468 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 12469 /* 12470 * An aligned read or write command will have no shadow buf; 12471 * there is not much else to do with it. 12472 */ 12473 goto done; 12474 } 12475 12476 orig_bp = bsp->mbs_orig_bp; 12477 ASSERT(orig_bp != NULL); 12478 orig_xp = SD_GET_XBUF(orig_bp); 12479 ASSERT(orig_xp != NULL); 12480 ASSERT(!mutex_owned(SD_MUTEX(un))); 12481 12482 if (!is_write && has_wmap) { 12483 /* 12484 * A READ with a wmap means this is the READ phase of a 12485 * read-modify-write. If an error occurred on the READ then 12486 * we do not proceed with the WRITE phase or copy any data. 12487 * Just release the write maps and return with an error. 12488 */ 12489 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 12490 orig_bp->b_resid = orig_bp->b_bcount; 12491 bioerror(orig_bp, bp->b_error); 12492 sd_range_unlock(un, bsp->mbs_wmp); 12493 goto freebuf_done; 12494 } 12495 } 12496 12497 /* 12498 * Here is where we set up to copy the data from the shadow buf 12499 * into the space associated with the original buf. 12500 * 12501 * To deal with the conversion between block sizes, these 12502 * computations treat the data as an array of bytes, with the 12503 * first byte (byte 0) corresponding to the first byte in the 12504 * first block on the disk. 12505 */ 12506 12507 /* 12508 * shadow_start and shadow_len indicate the location and size of 12509 * the data returned with the shadow IO request. 12510 */ 12511 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12512 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 12513 12514 /* 12515 * copy_offset gives the offset (in bytes) from the start of the first 12516 * block of the READ request to the beginning of the data. We retrieve 12517 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 12518 * there by sd_mapblockize_iostart(). copy_length gives the amount of 12519 * data to be copied (in bytes). 12520 */ 12521 copy_offset = bsp->mbs_copy_offset; 12522 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 12523 copy_length = orig_bp->b_bcount; 12524 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 12525 12526 /* 12527 * Set up the resid and error fields of orig_bp as appropriate. 12528 */ 12529 if (shadow_end >= request_end) { 12530 /* We got all the requested data; set resid to zero */ 12531 orig_bp->b_resid = 0; 12532 } else { 12533 /* 12534 * We failed to get enough data to fully satisfy the original 12535 * request. Just copy back whatever data we got and set 12536 * up the residual and error code as required. 12537 * 12538 * 'shortfall' is the amount by which the data received with the 12539 * shadow buf has "fallen short" of the requested amount. 12540 */ 12541 shortfall = (size_t)(request_end - shadow_end); 12542 12543 if (shortfall > orig_bp->b_bcount) { 12544 /* 12545 * We did not get enough data to even partially 12546 * fulfill the original request. The residual is 12547 * equal to the amount requested. 12548 */ 12549 orig_bp->b_resid = orig_bp->b_bcount; 12550 } else { 12551 /* 12552 * We did not get all the data that we requested 12553 * from the device, but we will try to return what 12554 * portion we did get. 12555 */ 12556 orig_bp->b_resid = shortfall; 12557 } 12558 ASSERT(copy_length >= orig_bp->b_resid); 12559 copy_length -= orig_bp->b_resid; 12560 } 12561 12562 /* Propagate the error code from the shadow buf to the original buf */ 12563 bioerror(orig_bp, bp->b_error); 12564 12565 if (is_write) { 12566 goto freebuf_done; /* No data copying for a WRITE */ 12567 } 12568 12569 if (has_wmap) { 12570 /* 12571 * This is a READ command from the READ phase of a 12572 * read-modify-write request. We have to copy the data given 12573 * by the user OVER the data returned by the READ command, 12574 * then convert the command from a READ to a WRITE and send 12575 * it back to the target. 12576 */ 12577 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 12578 copy_length); 12579 12580 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 12581 12582 /* 12583 * Dispatch the WRITE command to the taskq thread, which 12584 * will in turn send the command to the target. When the 12585 * WRITE command completes, we (sd_mapblocksize_iodone()) 12586 * will get called again as part of the iodone chain 12587 * processing for it. Note that we will still be dealing 12588 * with the shadow buf at that point. 12589 */ 12590 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 12591 KM_NOSLEEP) != 0) { 12592 /* 12593 * Dispatch was successful so we are done. Return 12594 * without going any higher up the iodone chain. Do 12595 * not free up any layer-private data until after the 12596 * WRITE completes. 12597 */ 12598 return; 12599 } 12600 12601 /* 12602 * Dispatch of the WRITE command failed; set up the error 12603 * condition and send this IO back up the iodone chain. 12604 */ 12605 bioerror(orig_bp, EIO); 12606 orig_bp->b_resid = orig_bp->b_bcount; 12607 12608 } else { 12609 /* 12610 * This is a regular READ request (ie, not a RMW). Copy the 12611 * data from the shadow buf into the original buf. The 12612 * copy_offset compensates for any "misalignment" between the 12613 * shadow buf (with its un->un_tgt_blocksize blocks) and the 12614 * original buf (with its un->un_sys_blocksize blocks). 12615 */ 12616 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 12617 copy_length); 12618 } 12619 12620 freebuf_done: 12621 12622 /* 12623 * At this point we still have both the shadow buf AND the original 12624 * buf to deal with, as well as the layer-private data area in each. 12625 * Local variables are as follows: 12626 * 12627 * bp -- points to shadow buf 12628 * xp -- points to xbuf of shadow buf 12629 * bsp -- points to layer-private data area of shadow buf 12630 * orig_bp -- points to original buf 12631 * 12632 * First free the shadow buf and its associated xbuf, then free the 12633 * layer-private data area from the shadow buf. There is no need to 12634 * restore xb_private in the shadow xbuf. 12635 */ 12636 sd_shadow_buf_free(bp); 12637 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 12638 12639 /* 12640 * Now update the local variables to point to the original buf, xbuf, 12641 * and layer-private area. 12642 */ 12643 bp = orig_bp; 12644 xp = SD_GET_XBUF(bp); 12645 ASSERT(xp != NULL); 12646 ASSERT(xp == orig_xp); 12647 bsp = xp->xb_private; 12648 ASSERT(bsp != NULL); 12649 12650 done: 12651 /* 12652 * Restore xb_private to whatever it was set to by the next higher 12653 * layer in the chain, then free the layer-private data area. 12654 */ 12655 xp->xb_private = bsp->mbs_oprivate; 12656 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 12657 12658 exit: 12659 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 12660 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 12661 12662 SD_NEXT_IODONE(index, un, bp); 12663 } 12664 12665 12666 /* 12667 * Function: sd_checksum_iostart 12668 * 12669 * Description: A stub function for a layer that's currently not used. 12670 * For now just a placeholder. 12671 * 12672 * Context: Kernel thread context 12673 */ 12674 12675 static void 12676 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 12677 { 12678 ASSERT(un != NULL); 12679 ASSERT(bp != NULL); 12680 ASSERT(!mutex_owned(SD_MUTEX(un))); 12681 SD_NEXT_IOSTART(index, un, bp); 12682 } 12683 12684 12685 /* 12686 * Function: sd_checksum_iodone 12687 * 12688 * Description: A stub function for a layer that's currently not used. 12689 * For now just a placeholder. 12690 * 12691 * Context: May be called under interrupt context 12692 */ 12693 12694 static void 12695 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 12696 { 12697 ASSERT(un != NULL); 12698 ASSERT(bp != NULL); 12699 ASSERT(!mutex_owned(SD_MUTEX(un))); 12700 SD_NEXT_IODONE(index, un, bp); 12701 } 12702 12703 12704 /* 12705 * Function: sd_checksum_uscsi_iostart 12706 * 12707 * Description: A stub function for a layer that's currently not used. 12708 * For now just a placeholder. 12709 * 12710 * Context: Kernel thread context 12711 */ 12712 12713 static void 12714 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 12715 { 12716 ASSERT(un != NULL); 12717 ASSERT(bp != NULL); 12718 ASSERT(!mutex_owned(SD_MUTEX(un))); 12719 SD_NEXT_IOSTART(index, un, bp); 12720 } 12721 12722 12723 /* 12724 * Function: sd_checksum_uscsi_iodone 12725 * 12726 * Description: A stub function for a layer that's currently not used. 12727 * For now just a placeholder. 12728 * 12729 * Context: May be called under interrupt context 12730 */ 12731 12732 static void 12733 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12734 { 12735 ASSERT(un != NULL); 12736 ASSERT(bp != NULL); 12737 ASSERT(!mutex_owned(SD_MUTEX(un))); 12738 SD_NEXT_IODONE(index, un, bp); 12739 } 12740 12741 12742 /* 12743 * Function: sd_pm_iostart 12744 * 12745 * Description: iostart-side routine for Power mangement. 12746 * 12747 * Context: Kernel thread context 12748 */ 12749 12750 static void 12751 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 12752 { 12753 ASSERT(un != NULL); 12754 ASSERT(bp != NULL); 12755 ASSERT(!mutex_owned(SD_MUTEX(un))); 12756 ASSERT(!mutex_owned(&un->un_pm_mutex)); 12757 12758 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 12759 12760 if (sd_pm_entry(un) != DDI_SUCCESS) { 12761 /* 12762 * Set up to return the failed buf back up the 'iodone' 12763 * side of the calling chain. 12764 */ 12765 bioerror(bp, EIO); 12766 bp->b_resid = bp->b_bcount; 12767 12768 SD_BEGIN_IODONE(index, un, bp); 12769 12770 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 12771 return; 12772 } 12773 12774 SD_NEXT_IOSTART(index, un, bp); 12775 12776 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 12777 } 12778 12779 12780 /* 12781 * Function: sd_pm_iodone 12782 * 12783 * Description: iodone-side routine for power mangement. 12784 * 12785 * Context: may be called from interrupt context 12786 */ 12787 12788 static void 12789 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 12790 { 12791 ASSERT(un != NULL); 12792 ASSERT(bp != NULL); 12793 ASSERT(!mutex_owned(&un->un_pm_mutex)); 12794 12795 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 12796 12797 /* 12798 * After attach the following flag is only read, so don't 12799 * take the penalty of acquiring a mutex for it. 12800 */ 12801 if (un->un_f_pm_is_enabled == TRUE) { 12802 sd_pm_exit(un); 12803 } 12804 12805 SD_NEXT_IODONE(index, un, bp); 12806 12807 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 12808 } 12809 12810 12811 /* 12812 * Function: sd_core_iostart 12813 * 12814 * Description: Primary driver function for enqueuing buf(9S) structs from 12815 * the system and initiating IO to the target device 12816 * 12817 * Context: Kernel thread context. Can sleep. 12818 * 12819 * Assumptions: - The given xp->xb_blkno is absolute 12820 * (ie, relative to the start of the device). 12821 * - The IO is to be done using the native blocksize of 12822 * the device, as specified in un->un_tgt_blocksize. 12823 */ 12824 /* ARGSUSED */ 12825 static void 12826 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 12827 { 12828 struct sd_xbuf *xp; 12829 12830 ASSERT(un != NULL); 12831 ASSERT(bp != NULL); 12832 ASSERT(!mutex_owned(SD_MUTEX(un))); 12833 ASSERT(bp->b_resid == 0); 12834 12835 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 12836 12837 xp = SD_GET_XBUF(bp); 12838 ASSERT(xp != NULL); 12839 12840 mutex_enter(SD_MUTEX(un)); 12841 12842 /* 12843 * If we are currently in the failfast state, fail any new IO 12844 * that has B_FAILFAST set, then return. 12845 */ 12846 if ((bp->b_flags & B_FAILFAST) && 12847 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 12848 mutex_exit(SD_MUTEX(un)); 12849 bioerror(bp, EIO); 12850 bp->b_resid = bp->b_bcount; 12851 SD_BEGIN_IODONE(index, un, bp); 12852 return; 12853 } 12854 12855 if (SD_IS_DIRECT_PRIORITY(xp)) { 12856 /* 12857 * Priority command -- transport it immediately. 12858 * 12859 * Note: We may want to assert that USCSI_DIAGNOSE is set, 12860 * because all direct priority commands should be associated 12861 * with error recovery actions which we don't want to retry. 12862 */ 12863 sd_start_cmds(un, bp); 12864 } else { 12865 /* 12866 * Normal command -- add it to the wait queue, then start 12867 * transporting commands from the wait queue. 12868 */ 12869 sd_add_buf_to_waitq(un, bp); 12870 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 12871 sd_start_cmds(un, NULL); 12872 } 12873 12874 mutex_exit(SD_MUTEX(un)); 12875 12876 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 12877 } 12878 12879 12880 /* 12881 * Function: sd_init_cdb_limits 12882 * 12883 * Description: This is to handle scsi_pkt initialization differences 12884 * between the driver platforms. 12885 * 12886 * Legacy behaviors: 12887 * 12888 * If the block number or the sector count exceeds the 12889 * capabilities of a Group 0 command, shift over to a 12890 * Group 1 command. We don't blindly use Group 1 12891 * commands because a) some drives (CDC Wren IVs) get a 12892 * bit confused, and b) there is probably a fair amount 12893 * of speed difference for a target to receive and decode 12894 * a 10 byte command instead of a 6 byte command. 12895 * 12896 * The xfer time difference of 6 vs 10 byte CDBs is 12897 * still significant so this code is still worthwhile. 12898 * 10 byte CDBs are very inefficient with the fas HBA driver 12899 * and older disks. Each CDB byte took 1 usec with some 12900 * popular disks. 12901 * 12902 * Context: Must be called at attach time 12903 */ 12904 12905 static void 12906 sd_init_cdb_limits(struct sd_lun *un) 12907 { 12908 int hba_cdb_limit; 12909 12910 /* 12911 * Use CDB_GROUP1 commands for most devices except for 12912 * parallel SCSI fixed drives in which case we get better 12913 * performance using CDB_GROUP0 commands (where applicable). 12914 */ 12915 un->un_mincdb = SD_CDB_GROUP1; 12916 #if !defined(__fibre) 12917 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 12918 !un->un_f_has_removable_media) { 12919 un->un_mincdb = SD_CDB_GROUP0; 12920 } 12921 #endif 12922 12923 /* 12924 * Try to read the max-cdb-length supported by HBA. 12925 */ 12926 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 12927 if (0 >= un->un_max_hba_cdb) { 12928 un->un_max_hba_cdb = CDB_GROUP4; 12929 hba_cdb_limit = SD_CDB_GROUP4; 12930 } else if (0 < un->un_max_hba_cdb && 12931 un->un_max_hba_cdb < CDB_GROUP1) { 12932 hba_cdb_limit = SD_CDB_GROUP0; 12933 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 12934 un->un_max_hba_cdb < CDB_GROUP5) { 12935 hba_cdb_limit = SD_CDB_GROUP1; 12936 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 12937 un->un_max_hba_cdb < CDB_GROUP4) { 12938 hba_cdb_limit = SD_CDB_GROUP5; 12939 } else { 12940 hba_cdb_limit = SD_CDB_GROUP4; 12941 } 12942 12943 /* 12944 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 12945 * commands for fixed disks unless we are building for a 32 bit 12946 * kernel. 12947 */ 12948 #ifdef _LP64 12949 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 12950 min(hba_cdb_limit, SD_CDB_GROUP4); 12951 #else 12952 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 12953 min(hba_cdb_limit, SD_CDB_GROUP1); 12954 #endif 12955 12956 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 12957 ? sizeof (struct scsi_arq_status) : 1); 12958 un->un_cmd_timeout = (ushort_t)sd_io_time; 12959 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 12960 } 12961 12962 12963 /* 12964 * Function: sd_initpkt_for_buf 12965 * 12966 * Description: Allocate and initialize for transport a scsi_pkt struct, 12967 * based upon the info specified in the given buf struct. 12968 * 12969 * Assumes the xb_blkno in the request is absolute (ie, 12970 * relative to the start of the device (NOT partition!). 12971 * Also assumes that the request is using the native block 12972 * size of the device (as returned by the READ CAPACITY 12973 * command). 12974 * 12975 * Return Code: SD_PKT_ALLOC_SUCCESS 12976 * SD_PKT_ALLOC_FAILURE 12977 * SD_PKT_ALLOC_FAILURE_NO_DMA 12978 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 12979 * 12980 * Context: Kernel thread and may be called from software interrupt context 12981 * as part of a sdrunout callback. This function may not block or 12982 * call routines that block 12983 */ 12984 12985 static int 12986 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 12987 { 12988 struct sd_xbuf *xp; 12989 struct scsi_pkt *pktp = NULL; 12990 struct sd_lun *un; 12991 size_t blockcount; 12992 daddr_t startblock; 12993 int rval; 12994 int cmd_flags; 12995 12996 ASSERT(bp != NULL); 12997 ASSERT(pktpp != NULL); 12998 xp = SD_GET_XBUF(bp); 12999 ASSERT(xp != NULL); 13000 un = SD_GET_UN(bp); 13001 ASSERT(un != NULL); 13002 ASSERT(mutex_owned(SD_MUTEX(un))); 13003 ASSERT(bp->b_resid == 0); 13004 13005 SD_TRACE(SD_LOG_IO_CORE, un, 13006 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13007 13008 mutex_exit(SD_MUTEX(un)); 13009 13010 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13011 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13012 /* 13013 * Already have a scsi_pkt -- just need DMA resources. 13014 * We must recompute the CDB in case the mapping returns 13015 * a nonzero pkt_resid. 13016 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13017 * that is being retried, the unmap/remap of the DMA resouces 13018 * will result in the entire transfer starting over again 13019 * from the very first block. 13020 */ 13021 ASSERT(xp->xb_pktp != NULL); 13022 pktp = xp->xb_pktp; 13023 } else { 13024 pktp = NULL; 13025 } 13026 #endif /* __i386 || __amd64 */ 13027 13028 startblock = xp->xb_blkno; /* Absolute block num. */ 13029 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13030 13031 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13032 13033 /* 13034 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13035 * call scsi_init_pkt, and build the CDB. 13036 */ 13037 rval = sd_setup_rw_pkt(un, &pktp, bp, 13038 cmd_flags, sdrunout, (caddr_t)un, 13039 startblock, blockcount); 13040 13041 if (rval == 0) { 13042 /* 13043 * Success. 13044 * 13045 * If partial DMA is being used and required for this transfer. 13046 * set it up here. 13047 */ 13048 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13049 (pktp->pkt_resid != 0)) { 13050 13051 /* 13052 * Save the CDB length and pkt_resid for the 13053 * next xfer 13054 */ 13055 xp->xb_dma_resid = pktp->pkt_resid; 13056 13057 /* rezero resid */ 13058 pktp->pkt_resid = 0; 13059 13060 } else { 13061 xp->xb_dma_resid = 0; 13062 } 13063 13064 pktp->pkt_flags = un->un_tagflags; 13065 pktp->pkt_time = un->un_cmd_timeout; 13066 pktp->pkt_comp = sdintr; 13067 13068 pktp->pkt_private = bp; 13069 *pktpp = pktp; 13070 13071 SD_TRACE(SD_LOG_IO_CORE, un, 13072 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13073 13074 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13075 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13076 #endif 13077 13078 mutex_enter(SD_MUTEX(un)); 13079 return (SD_PKT_ALLOC_SUCCESS); 13080 13081 } 13082 13083 /* 13084 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13085 * from sd_setup_rw_pkt. 13086 */ 13087 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13088 13089 if (rval == SD_PKT_ALLOC_FAILURE) { 13090 *pktpp = NULL; 13091 /* 13092 * Set the driver state to RWAIT to indicate the driver 13093 * is waiting on resource allocations. The driver will not 13094 * suspend, pm_suspend, or detatch while the state is RWAIT. 13095 */ 13096 mutex_enter(SD_MUTEX(un)); 13097 New_state(un, SD_STATE_RWAIT); 13098 13099 SD_ERROR(SD_LOG_IO_CORE, un, 13100 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13101 13102 if ((bp->b_flags & B_ERROR) != 0) { 13103 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13104 } 13105 return (SD_PKT_ALLOC_FAILURE); 13106 } else { 13107 /* 13108 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13109 * 13110 * This should never happen. Maybe someone messed with the 13111 * kernel's minphys? 13112 */ 13113 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13114 "Request rejected: too large for CDB: " 13115 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13116 SD_ERROR(SD_LOG_IO_CORE, un, 13117 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13118 mutex_enter(SD_MUTEX(un)); 13119 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13120 13121 } 13122 } 13123 13124 13125 /* 13126 * Function: sd_destroypkt_for_buf 13127 * 13128 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13129 * 13130 * Context: Kernel thread or interrupt context 13131 */ 13132 13133 static void 13134 sd_destroypkt_for_buf(struct buf *bp) 13135 { 13136 ASSERT(bp != NULL); 13137 ASSERT(SD_GET_UN(bp) != NULL); 13138 13139 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13140 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13141 13142 ASSERT(SD_GET_PKTP(bp) != NULL); 13143 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13144 13145 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13146 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13147 } 13148 13149 /* 13150 * Function: sd_setup_rw_pkt 13151 * 13152 * Description: Determines appropriate CDB group for the requested LBA 13153 * and transfer length, calls scsi_init_pkt, and builds 13154 * the CDB. Do not use for partial DMA transfers except 13155 * for the initial transfer since the CDB size must 13156 * remain constant. 13157 * 13158 * Context: Kernel thread and may be called from software interrupt 13159 * context as part of a sdrunout callback. This function may not 13160 * block or call routines that block 13161 */ 13162 13163 13164 int 13165 sd_setup_rw_pkt(struct sd_lun *un, 13166 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13167 int (*callback)(caddr_t), caddr_t callback_arg, 13168 diskaddr_t lba, uint32_t blockcount) 13169 { 13170 struct scsi_pkt *return_pktp; 13171 union scsi_cdb *cdbp; 13172 struct sd_cdbinfo *cp = NULL; 13173 int i; 13174 13175 /* 13176 * See which size CDB to use, based upon the request. 13177 */ 13178 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13179 13180 /* 13181 * Check lba and block count against sd_cdbtab limits. 13182 * In the partial DMA case, we have to use the same size 13183 * CDB for all the transfers. Check lba + blockcount 13184 * against the max LBA so we know that segment of the 13185 * transfer can use the CDB we select. 13186 */ 13187 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13188 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13189 13190 /* 13191 * The command will fit into the CDB type 13192 * specified by sd_cdbtab[i]. 13193 */ 13194 cp = sd_cdbtab + i; 13195 13196 /* 13197 * Call scsi_init_pkt so we can fill in the 13198 * CDB. 13199 */ 13200 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13201 bp, cp->sc_grpcode, un->un_status_len, 0, 13202 flags, callback, callback_arg); 13203 13204 if (return_pktp != NULL) { 13205 13206 /* 13207 * Return new value of pkt 13208 */ 13209 *pktpp = return_pktp; 13210 13211 /* 13212 * To be safe, zero the CDB insuring there is 13213 * no leftover data from a previous command. 13214 */ 13215 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13216 13217 /* 13218 * Handle partial DMA mapping 13219 */ 13220 if (return_pktp->pkt_resid != 0) { 13221 13222 /* 13223 * Not going to xfer as many blocks as 13224 * originally expected 13225 */ 13226 blockcount -= 13227 SD_BYTES2TGTBLOCKS(un, 13228 return_pktp->pkt_resid); 13229 } 13230 13231 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13232 13233 /* 13234 * Set command byte based on the CDB 13235 * type we matched. 13236 */ 13237 cdbp->scc_cmd = cp->sc_grpmask | 13238 ((bp->b_flags & B_READ) ? 13239 SCMD_READ : SCMD_WRITE); 13240 13241 SD_FILL_SCSI1_LUN(un, return_pktp); 13242 13243 /* 13244 * Fill in LBA and length 13245 */ 13246 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13247 (cp->sc_grpcode == CDB_GROUP4) || 13248 (cp->sc_grpcode == CDB_GROUP0) || 13249 (cp->sc_grpcode == CDB_GROUP5)); 13250 13251 if (cp->sc_grpcode == CDB_GROUP1) { 13252 FORMG1ADDR(cdbp, lba); 13253 FORMG1COUNT(cdbp, blockcount); 13254 return (0); 13255 } else if (cp->sc_grpcode == CDB_GROUP4) { 13256 FORMG4LONGADDR(cdbp, lba); 13257 FORMG4COUNT(cdbp, blockcount); 13258 return (0); 13259 } else if (cp->sc_grpcode == CDB_GROUP0) { 13260 FORMG0ADDR(cdbp, lba); 13261 FORMG0COUNT(cdbp, blockcount); 13262 return (0); 13263 } else if (cp->sc_grpcode == CDB_GROUP5) { 13264 FORMG5ADDR(cdbp, lba); 13265 FORMG5COUNT(cdbp, blockcount); 13266 return (0); 13267 } 13268 13269 /* 13270 * It should be impossible to not match one 13271 * of the CDB types above, so we should never 13272 * reach this point. Set the CDB command byte 13273 * to test-unit-ready to avoid writing 13274 * to somewhere we don't intend. 13275 */ 13276 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13277 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13278 } else { 13279 /* 13280 * Couldn't get scsi_pkt 13281 */ 13282 return (SD_PKT_ALLOC_FAILURE); 13283 } 13284 } 13285 } 13286 13287 /* 13288 * None of the available CDB types were suitable. This really 13289 * should never happen: on a 64 bit system we support 13290 * READ16/WRITE16 which will hold an entire 64 bit disk address 13291 * and on a 32 bit system we will refuse to bind to a device 13292 * larger than 2TB so addresses will never be larger than 32 bits. 13293 */ 13294 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13295 } 13296 13297 /* 13298 * Function: sd_setup_next_rw_pkt 13299 * 13300 * Description: Setup packet for partial DMA transfers, except for the 13301 * initial transfer. sd_setup_rw_pkt should be used for 13302 * the initial transfer. 13303 * 13304 * Context: Kernel thread and may be called from interrupt context. 13305 */ 13306 13307 int 13308 sd_setup_next_rw_pkt(struct sd_lun *un, 13309 struct scsi_pkt *pktp, struct buf *bp, 13310 diskaddr_t lba, uint32_t blockcount) 13311 { 13312 uchar_t com; 13313 union scsi_cdb *cdbp; 13314 uchar_t cdb_group_id; 13315 13316 ASSERT(pktp != NULL); 13317 ASSERT(pktp->pkt_cdbp != NULL); 13318 13319 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13320 com = cdbp->scc_cmd; 13321 cdb_group_id = CDB_GROUPID(com); 13322 13323 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13324 (cdb_group_id == CDB_GROUPID_1) || 13325 (cdb_group_id == CDB_GROUPID_4) || 13326 (cdb_group_id == CDB_GROUPID_5)); 13327 13328 /* 13329 * Move pkt to the next portion of the xfer. 13330 * func is NULL_FUNC so we do not have to release 13331 * the disk mutex here. 13332 */ 13333 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 13334 NULL_FUNC, NULL) == pktp) { 13335 /* Success. Handle partial DMA */ 13336 if (pktp->pkt_resid != 0) { 13337 blockcount -= 13338 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 13339 } 13340 13341 cdbp->scc_cmd = com; 13342 SD_FILL_SCSI1_LUN(un, pktp); 13343 if (cdb_group_id == CDB_GROUPID_1) { 13344 FORMG1ADDR(cdbp, lba); 13345 FORMG1COUNT(cdbp, blockcount); 13346 return (0); 13347 } else if (cdb_group_id == CDB_GROUPID_4) { 13348 FORMG4LONGADDR(cdbp, lba); 13349 FORMG4COUNT(cdbp, blockcount); 13350 return (0); 13351 } else if (cdb_group_id == CDB_GROUPID_0) { 13352 FORMG0ADDR(cdbp, lba); 13353 FORMG0COUNT(cdbp, blockcount); 13354 return (0); 13355 } else if (cdb_group_id == CDB_GROUPID_5) { 13356 FORMG5ADDR(cdbp, lba); 13357 FORMG5COUNT(cdbp, blockcount); 13358 return (0); 13359 } 13360 13361 /* Unreachable */ 13362 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13363 } 13364 13365 /* 13366 * Error setting up next portion of cmd transfer. 13367 * Something is definitely very wrong and this 13368 * should not happen. 13369 */ 13370 return (SD_PKT_ALLOC_FAILURE); 13371 } 13372 13373 /* 13374 * Function: sd_initpkt_for_uscsi 13375 * 13376 * Description: Allocate and initialize for transport a scsi_pkt struct, 13377 * based upon the info specified in the given uscsi_cmd struct. 13378 * 13379 * Return Code: SD_PKT_ALLOC_SUCCESS 13380 * SD_PKT_ALLOC_FAILURE 13381 * SD_PKT_ALLOC_FAILURE_NO_DMA 13382 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13383 * 13384 * Context: Kernel thread and may be called from software interrupt context 13385 * as part of a sdrunout callback. This function may not block or 13386 * call routines that block 13387 */ 13388 13389 static int 13390 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 13391 { 13392 struct uscsi_cmd *uscmd; 13393 struct sd_xbuf *xp; 13394 struct scsi_pkt *pktp; 13395 struct sd_lun *un; 13396 uint32_t flags = 0; 13397 13398 ASSERT(bp != NULL); 13399 ASSERT(pktpp != NULL); 13400 xp = SD_GET_XBUF(bp); 13401 ASSERT(xp != NULL); 13402 un = SD_GET_UN(bp); 13403 ASSERT(un != NULL); 13404 ASSERT(mutex_owned(SD_MUTEX(un))); 13405 13406 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13407 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13408 ASSERT(uscmd != NULL); 13409 13410 SD_TRACE(SD_LOG_IO_CORE, un, 13411 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 13412 13413 /* 13414 * Allocate the scsi_pkt for the command. 13415 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 13416 * during scsi_init_pkt time and will continue to use the 13417 * same path as long as the same scsi_pkt is used without 13418 * intervening scsi_dma_free(). Since uscsi command does 13419 * not call scsi_dmafree() before retry failed command, it 13420 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 13421 * set such that scsi_vhci can use other available path for 13422 * retry. Besides, ucsci command does not allow DMA breakup, 13423 * so there is no need to set PKT_DMA_PARTIAL flag. 13424 */ 13425 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 13426 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13427 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13428 ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status) 13429 - sizeof (struct scsi_extended_sense)), 0, 13430 (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ, 13431 sdrunout, (caddr_t)un); 13432 } else { 13433 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13434 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13435 sizeof (struct scsi_arq_status), 0, 13436 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 13437 sdrunout, (caddr_t)un); 13438 } 13439 13440 if (pktp == NULL) { 13441 *pktpp = NULL; 13442 /* 13443 * Set the driver state to RWAIT to indicate the driver 13444 * is waiting on resource allocations. The driver will not 13445 * suspend, pm_suspend, or detatch while the state is RWAIT. 13446 */ 13447 New_state(un, SD_STATE_RWAIT); 13448 13449 SD_ERROR(SD_LOG_IO_CORE, un, 13450 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 13451 13452 if ((bp->b_flags & B_ERROR) != 0) { 13453 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13454 } 13455 return (SD_PKT_ALLOC_FAILURE); 13456 } 13457 13458 /* 13459 * We do not do DMA breakup for USCSI commands, so return failure 13460 * here if all the needed DMA resources were not allocated. 13461 */ 13462 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 13463 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 13464 scsi_destroy_pkt(pktp); 13465 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 13466 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 13467 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 13468 } 13469 13470 /* Init the cdb from the given uscsi struct */ 13471 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 13472 uscmd->uscsi_cdb[0], 0, 0, 0); 13473 13474 SD_FILL_SCSI1_LUN(un, pktp); 13475 13476 /* 13477 * Set up the optional USCSI flags. See the uscsi (7I) man page 13478 * for listing of the supported flags. 13479 */ 13480 13481 if (uscmd->uscsi_flags & USCSI_SILENT) { 13482 flags |= FLAG_SILENT; 13483 } 13484 13485 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 13486 flags |= FLAG_DIAGNOSE; 13487 } 13488 13489 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 13490 flags |= FLAG_ISOLATE; 13491 } 13492 13493 if (un->un_f_is_fibre == FALSE) { 13494 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 13495 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 13496 } 13497 } 13498 13499 /* 13500 * Set the pkt flags here so we save time later. 13501 * Note: These flags are NOT in the uscsi man page!!! 13502 */ 13503 if (uscmd->uscsi_flags & USCSI_HEAD) { 13504 flags |= FLAG_HEAD; 13505 } 13506 13507 if (uscmd->uscsi_flags & USCSI_NOINTR) { 13508 flags |= FLAG_NOINTR; 13509 } 13510 13511 /* 13512 * For tagged queueing, things get a bit complicated. 13513 * Check first for head of queue and last for ordered queue. 13514 * If neither head nor order, use the default driver tag flags. 13515 */ 13516 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 13517 if (uscmd->uscsi_flags & USCSI_HTAG) { 13518 flags |= FLAG_HTAG; 13519 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 13520 flags |= FLAG_OTAG; 13521 } else { 13522 flags |= un->un_tagflags & FLAG_TAGMASK; 13523 } 13524 } 13525 13526 if (uscmd->uscsi_flags & USCSI_NODISCON) { 13527 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 13528 } 13529 13530 pktp->pkt_flags = flags; 13531 13532 /* Transfer uscsi information to scsi_pkt */ 13533 (void) scsi_uscsi_pktinit(uscmd, pktp); 13534 13535 /* Copy the caller's CDB into the pkt... */ 13536 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 13537 13538 if (uscmd->uscsi_timeout == 0) { 13539 pktp->pkt_time = un->un_uscsi_timeout; 13540 } else { 13541 pktp->pkt_time = uscmd->uscsi_timeout; 13542 } 13543 13544 /* need it later to identify USCSI request in sdintr */ 13545 xp->xb_pkt_flags |= SD_XB_USCSICMD; 13546 13547 xp->xb_sense_resid = uscmd->uscsi_rqresid; 13548 13549 pktp->pkt_private = bp; 13550 pktp->pkt_comp = sdintr; 13551 *pktpp = pktp; 13552 13553 SD_TRACE(SD_LOG_IO_CORE, un, 13554 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 13555 13556 return (SD_PKT_ALLOC_SUCCESS); 13557 } 13558 13559 13560 /* 13561 * Function: sd_destroypkt_for_uscsi 13562 * 13563 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 13564 * IOs.. Also saves relevant info into the associated uscsi_cmd 13565 * struct. 13566 * 13567 * Context: May be called under interrupt context 13568 */ 13569 13570 static void 13571 sd_destroypkt_for_uscsi(struct buf *bp) 13572 { 13573 struct uscsi_cmd *uscmd; 13574 struct sd_xbuf *xp; 13575 struct scsi_pkt *pktp; 13576 struct sd_lun *un; 13577 struct sd_uscsi_info *suip; 13578 13579 ASSERT(bp != NULL); 13580 xp = SD_GET_XBUF(bp); 13581 ASSERT(xp != NULL); 13582 un = SD_GET_UN(bp); 13583 ASSERT(un != NULL); 13584 ASSERT(!mutex_owned(SD_MUTEX(un))); 13585 pktp = SD_GET_PKTP(bp); 13586 ASSERT(pktp != NULL); 13587 13588 SD_TRACE(SD_LOG_IO_CORE, un, 13589 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 13590 13591 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13592 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13593 ASSERT(uscmd != NULL); 13594 13595 /* Save the status and the residual into the uscsi_cmd struct */ 13596 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 13597 uscmd->uscsi_resid = bp->b_resid; 13598 13599 /* Transfer scsi_pkt information to uscsi */ 13600 (void) scsi_uscsi_pktfini(pktp, uscmd); 13601 13602 /* 13603 * If enabled, copy any saved sense data into the area specified 13604 * by the uscsi command. 13605 */ 13606 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 13607 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 13608 /* 13609 * Note: uscmd->uscsi_rqbuf should always point to a buffer 13610 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 13611 */ 13612 uscmd->uscsi_rqstatus = xp->xb_sense_status; 13613 uscmd->uscsi_rqresid = xp->xb_sense_resid; 13614 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 13615 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 13616 MAX_SENSE_LENGTH); 13617 } else { 13618 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 13619 SENSE_LENGTH); 13620 } 13621 } 13622 /* 13623 * The following assignments are for SCSI FMA. 13624 */ 13625 ASSERT(xp->xb_private != NULL); 13626 suip = (struct sd_uscsi_info *)xp->xb_private; 13627 suip->ui_pkt_reason = pktp->pkt_reason; 13628 suip->ui_pkt_state = pktp->pkt_state; 13629 suip->ui_pkt_statistics = pktp->pkt_statistics; 13630 suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 13631 13632 /* We are done with the scsi_pkt; free it now */ 13633 ASSERT(SD_GET_PKTP(bp) != NULL); 13634 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13635 13636 SD_TRACE(SD_LOG_IO_CORE, un, 13637 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 13638 } 13639 13640 13641 /* 13642 * Function: sd_bioclone_alloc 13643 * 13644 * Description: Allocate a buf(9S) and init it as per the given buf 13645 * and the various arguments. The associated sd_xbuf 13646 * struct is (nearly) duplicated. The struct buf *bp 13647 * argument is saved in new_xp->xb_private. 13648 * 13649 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 13650 * datalen - size of data area for the shadow bp 13651 * blkno - starting LBA 13652 * func - function pointer for b_iodone in the shadow buf. (May 13653 * be NULL if none.) 13654 * 13655 * Return Code: Pointer to allocates buf(9S) struct 13656 * 13657 * Context: Can sleep. 13658 */ 13659 13660 static struct buf * 13661 sd_bioclone_alloc(struct buf *bp, size_t datalen, 13662 daddr_t blkno, int (*func)(struct buf *)) 13663 { 13664 struct sd_lun *un; 13665 struct sd_xbuf *xp; 13666 struct sd_xbuf *new_xp; 13667 struct buf *new_bp; 13668 13669 ASSERT(bp != NULL); 13670 xp = SD_GET_XBUF(bp); 13671 ASSERT(xp != NULL); 13672 un = SD_GET_UN(bp); 13673 ASSERT(un != NULL); 13674 ASSERT(!mutex_owned(SD_MUTEX(un))); 13675 13676 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 13677 NULL, KM_SLEEP); 13678 13679 new_bp->b_lblkno = blkno; 13680 13681 /* 13682 * Allocate an xbuf for the shadow bp and copy the contents of the 13683 * original xbuf into it. 13684 */ 13685 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 13686 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 13687 13688 /* 13689 * The given bp is automatically saved in the xb_private member 13690 * of the new xbuf. Callers are allowed to depend on this. 13691 */ 13692 new_xp->xb_private = bp; 13693 13694 new_bp->b_private = new_xp; 13695 13696 return (new_bp); 13697 } 13698 13699 /* 13700 * Function: sd_shadow_buf_alloc 13701 * 13702 * Description: Allocate a buf(9S) and init it as per the given buf 13703 * and the various arguments. The associated sd_xbuf 13704 * struct is (nearly) duplicated. The struct buf *bp 13705 * argument is saved in new_xp->xb_private. 13706 * 13707 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 13708 * datalen - size of data area for the shadow bp 13709 * bflags - B_READ or B_WRITE (pseudo flag) 13710 * blkno - starting LBA 13711 * func - function pointer for b_iodone in the shadow buf. (May 13712 * be NULL if none.) 13713 * 13714 * Return Code: Pointer to allocates buf(9S) struct 13715 * 13716 * Context: Can sleep. 13717 */ 13718 13719 static struct buf * 13720 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 13721 daddr_t blkno, int (*func)(struct buf *)) 13722 { 13723 struct sd_lun *un; 13724 struct sd_xbuf *xp; 13725 struct sd_xbuf *new_xp; 13726 struct buf *new_bp; 13727 13728 ASSERT(bp != NULL); 13729 xp = SD_GET_XBUF(bp); 13730 ASSERT(xp != NULL); 13731 un = SD_GET_UN(bp); 13732 ASSERT(un != NULL); 13733 ASSERT(!mutex_owned(SD_MUTEX(un))); 13734 13735 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 13736 bp_mapin(bp); 13737 } 13738 13739 bflags &= (B_READ | B_WRITE); 13740 #if defined(__i386) || defined(__amd64) 13741 new_bp = getrbuf(KM_SLEEP); 13742 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 13743 new_bp->b_bcount = datalen; 13744 new_bp->b_flags = bflags | 13745 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 13746 #else 13747 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 13748 datalen, bflags, SLEEP_FUNC, NULL); 13749 #endif 13750 new_bp->av_forw = NULL; 13751 new_bp->av_back = NULL; 13752 new_bp->b_dev = bp->b_dev; 13753 new_bp->b_blkno = blkno; 13754 new_bp->b_iodone = func; 13755 new_bp->b_edev = bp->b_edev; 13756 new_bp->b_resid = 0; 13757 13758 /* We need to preserve the B_FAILFAST flag */ 13759 if (bp->b_flags & B_FAILFAST) { 13760 new_bp->b_flags |= B_FAILFAST; 13761 } 13762 13763 /* 13764 * Allocate an xbuf for the shadow bp and copy the contents of the 13765 * original xbuf into it. 13766 */ 13767 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 13768 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 13769 13770 /* Need later to copy data between the shadow buf & original buf! */ 13771 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 13772 13773 /* 13774 * The given bp is automatically saved in the xb_private member 13775 * of the new xbuf. Callers are allowed to depend on this. 13776 */ 13777 new_xp->xb_private = bp; 13778 13779 new_bp->b_private = new_xp; 13780 13781 return (new_bp); 13782 } 13783 13784 /* 13785 * Function: sd_bioclone_free 13786 * 13787 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 13788 * in the larger than partition operation. 13789 * 13790 * Context: May be called under interrupt context 13791 */ 13792 13793 static void 13794 sd_bioclone_free(struct buf *bp) 13795 { 13796 struct sd_xbuf *xp; 13797 13798 ASSERT(bp != NULL); 13799 xp = SD_GET_XBUF(bp); 13800 ASSERT(xp != NULL); 13801 13802 /* 13803 * Call bp_mapout() before freeing the buf, in case a lower 13804 * layer or HBA had done a bp_mapin(). we must do this here 13805 * as we are the "originator" of the shadow buf. 13806 */ 13807 bp_mapout(bp); 13808 13809 /* 13810 * Null out b_iodone before freeing the bp, to ensure that the driver 13811 * never gets confused by a stale value in this field. (Just a little 13812 * extra defensiveness here.) 13813 */ 13814 bp->b_iodone = NULL; 13815 13816 freerbuf(bp); 13817 13818 kmem_free(xp, sizeof (struct sd_xbuf)); 13819 } 13820 13821 /* 13822 * Function: sd_shadow_buf_free 13823 * 13824 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 13825 * 13826 * Context: May be called under interrupt context 13827 */ 13828 13829 static void 13830 sd_shadow_buf_free(struct buf *bp) 13831 { 13832 struct sd_xbuf *xp; 13833 13834 ASSERT(bp != NULL); 13835 xp = SD_GET_XBUF(bp); 13836 ASSERT(xp != NULL); 13837 13838 #if defined(__sparc) 13839 /* 13840 * Call bp_mapout() before freeing the buf, in case a lower 13841 * layer or HBA had done a bp_mapin(). we must do this here 13842 * as we are the "originator" of the shadow buf. 13843 */ 13844 bp_mapout(bp); 13845 #endif 13846 13847 /* 13848 * Null out b_iodone before freeing the bp, to ensure that the driver 13849 * never gets confused by a stale value in this field. (Just a little 13850 * extra defensiveness here.) 13851 */ 13852 bp->b_iodone = NULL; 13853 13854 #if defined(__i386) || defined(__amd64) 13855 kmem_free(bp->b_un.b_addr, bp->b_bcount); 13856 freerbuf(bp); 13857 #else 13858 scsi_free_consistent_buf(bp); 13859 #endif 13860 13861 kmem_free(xp, sizeof (struct sd_xbuf)); 13862 } 13863 13864 13865 /* 13866 * Function: sd_print_transport_rejected_message 13867 * 13868 * Description: This implements the ludicrously complex rules for printing 13869 * a "transport rejected" message. This is to address the 13870 * specific problem of having a flood of this error message 13871 * produced when a failover occurs. 13872 * 13873 * Context: Any. 13874 */ 13875 13876 static void 13877 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 13878 int code) 13879 { 13880 ASSERT(un != NULL); 13881 ASSERT(mutex_owned(SD_MUTEX(un))); 13882 ASSERT(xp != NULL); 13883 13884 /* 13885 * Print the "transport rejected" message under the following 13886 * conditions: 13887 * 13888 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 13889 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 13890 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 13891 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 13892 * scsi_transport(9F) (which indicates that the target might have 13893 * gone off-line). This uses the un->un_tran_fatal_count 13894 * count, which is incremented whenever a TRAN_FATAL_ERROR is 13895 * received, and reset to zero whenver a TRAN_ACCEPT is returned 13896 * from scsi_transport(). 13897 * 13898 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 13899 * the preceeding cases in order for the message to be printed. 13900 */ 13901 if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) && 13902 (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) { 13903 if ((sd_level_mask & SD_LOGMASK_DIAG) || 13904 (code != TRAN_FATAL_ERROR) || 13905 (un->un_tran_fatal_count == 1)) { 13906 switch (code) { 13907 case TRAN_BADPKT: 13908 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13909 "transport rejected bad packet\n"); 13910 break; 13911 case TRAN_FATAL_ERROR: 13912 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13913 "transport rejected fatal error\n"); 13914 break; 13915 default: 13916 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13917 "transport rejected (%d)\n", code); 13918 break; 13919 } 13920 } 13921 } 13922 } 13923 13924 13925 /* 13926 * Function: sd_add_buf_to_waitq 13927 * 13928 * Description: Add the given buf(9S) struct to the wait queue for the 13929 * instance. If sorting is enabled, then the buf is added 13930 * to the queue via an elevator sort algorithm (a la 13931 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 13932 * If sorting is not enabled, then the buf is just added 13933 * to the end of the wait queue. 13934 * 13935 * Return Code: void 13936 * 13937 * Context: Does not sleep/block, therefore technically can be called 13938 * from any context. However if sorting is enabled then the 13939 * execution time is indeterminate, and may take long if 13940 * the wait queue grows large. 13941 */ 13942 13943 static void 13944 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 13945 { 13946 struct buf *ap; 13947 13948 ASSERT(bp != NULL); 13949 ASSERT(un != NULL); 13950 ASSERT(mutex_owned(SD_MUTEX(un))); 13951 13952 /* If the queue is empty, add the buf as the only entry & return. */ 13953 if (un->un_waitq_headp == NULL) { 13954 ASSERT(un->un_waitq_tailp == NULL); 13955 un->un_waitq_headp = un->un_waitq_tailp = bp; 13956 bp->av_forw = NULL; 13957 return; 13958 } 13959 13960 ASSERT(un->un_waitq_tailp != NULL); 13961 13962 /* 13963 * If sorting is disabled, just add the buf to the tail end of 13964 * the wait queue and return. 13965 */ 13966 if (un->un_f_disksort_disabled) { 13967 un->un_waitq_tailp->av_forw = bp; 13968 un->un_waitq_tailp = bp; 13969 bp->av_forw = NULL; 13970 return; 13971 } 13972 13973 /* 13974 * Sort thru the list of requests currently on the wait queue 13975 * and add the new buf request at the appropriate position. 13976 * 13977 * The un->un_waitq_headp is an activity chain pointer on which 13978 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 13979 * first queue holds those requests which are positioned after 13980 * the current SD_GET_BLKNO() (in the first request); the second holds 13981 * requests which came in after their SD_GET_BLKNO() number was passed. 13982 * Thus we implement a one way scan, retracting after reaching 13983 * the end of the drive to the first request on the second 13984 * queue, at which time it becomes the first queue. 13985 * A one-way scan is natural because of the way UNIX read-ahead 13986 * blocks are allocated. 13987 * 13988 * If we lie after the first request, then we must locate the 13989 * second request list and add ourselves to it. 13990 */ 13991 ap = un->un_waitq_headp; 13992 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 13993 while (ap->av_forw != NULL) { 13994 /* 13995 * Look for an "inversion" in the (normally 13996 * ascending) block numbers. This indicates 13997 * the start of the second request list. 13998 */ 13999 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14000 /* 14001 * Search the second request list for the 14002 * first request at a larger block number. 14003 * We go before that; however if there is 14004 * no such request, we go at the end. 14005 */ 14006 do { 14007 if (SD_GET_BLKNO(bp) < 14008 SD_GET_BLKNO(ap->av_forw)) { 14009 goto insert; 14010 } 14011 ap = ap->av_forw; 14012 } while (ap->av_forw != NULL); 14013 goto insert; /* after last */ 14014 } 14015 ap = ap->av_forw; 14016 } 14017 14018 /* 14019 * No inversions... we will go after the last, and 14020 * be the first request in the second request list. 14021 */ 14022 goto insert; 14023 } 14024 14025 /* 14026 * Request is at/after the current request... 14027 * sort in the first request list. 14028 */ 14029 while (ap->av_forw != NULL) { 14030 /* 14031 * We want to go after the current request (1) if 14032 * there is an inversion after it (i.e. it is the end 14033 * of the first request list), or (2) if the next 14034 * request is a larger block no. than our request. 14035 */ 14036 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14037 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14038 goto insert; 14039 } 14040 ap = ap->av_forw; 14041 } 14042 14043 /* 14044 * Neither a second list nor a larger request, therefore 14045 * we go at the end of the first list (which is the same 14046 * as the end of the whole schebang). 14047 */ 14048 insert: 14049 bp->av_forw = ap->av_forw; 14050 ap->av_forw = bp; 14051 14052 /* 14053 * If we inserted onto the tail end of the waitq, make sure the 14054 * tail pointer is updated. 14055 */ 14056 if (ap == un->un_waitq_tailp) { 14057 un->un_waitq_tailp = bp; 14058 } 14059 } 14060 14061 14062 /* 14063 * Function: sd_start_cmds 14064 * 14065 * Description: Remove and transport cmds from the driver queues. 14066 * 14067 * Arguments: un - pointer to the unit (soft state) struct for the target. 14068 * 14069 * immed_bp - ptr to a buf to be transported immediately. Only 14070 * the immed_bp is transported; bufs on the waitq are not 14071 * processed and the un_retry_bp is not checked. If immed_bp is 14072 * NULL, then normal queue processing is performed. 14073 * 14074 * Context: May be called from kernel thread context, interrupt context, 14075 * or runout callback context. This function may not block or 14076 * call routines that block. 14077 */ 14078 14079 static void 14080 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14081 { 14082 struct sd_xbuf *xp; 14083 struct buf *bp; 14084 void (*statp)(kstat_io_t *); 14085 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14086 void (*saved_statp)(kstat_io_t *); 14087 #endif 14088 int rval; 14089 struct sd_fm_internal *sfip = NULL; 14090 14091 ASSERT(un != NULL); 14092 ASSERT(mutex_owned(SD_MUTEX(un))); 14093 ASSERT(un->un_ncmds_in_transport >= 0); 14094 ASSERT(un->un_throttle >= 0); 14095 14096 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14097 14098 do { 14099 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14100 saved_statp = NULL; 14101 #endif 14102 14103 /* 14104 * If we are syncing or dumping, fail the command to 14105 * avoid recursively calling back into scsi_transport(). 14106 * The dump I/O itself uses a separate code path so this 14107 * only prevents non-dump I/O from being sent while dumping. 14108 * File system sync takes place before dumping begins. 14109 * During panic, filesystem I/O is allowed provided 14110 * un_in_callback is <= 1. This is to prevent recursion 14111 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14112 * sd_start_cmds and so on. See panic.c for more information 14113 * about the states the system can be in during panic. 14114 */ 14115 if ((un->un_state == SD_STATE_DUMPING) || 14116 (ddi_in_panic() && (un->un_in_callback > 1))) { 14117 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14118 "sd_start_cmds: panicking\n"); 14119 goto exit; 14120 } 14121 14122 if ((bp = immed_bp) != NULL) { 14123 /* 14124 * We have a bp that must be transported immediately. 14125 * It's OK to transport the immed_bp here without doing 14126 * the throttle limit check because the immed_bp is 14127 * always used in a retry/recovery case. This means 14128 * that we know we are not at the throttle limit by 14129 * virtue of the fact that to get here we must have 14130 * already gotten a command back via sdintr(). This also 14131 * relies on (1) the command on un_retry_bp preventing 14132 * further commands from the waitq from being issued; 14133 * and (2) the code in sd_retry_command checking the 14134 * throttle limit before issuing a delayed or immediate 14135 * retry. This holds even if the throttle limit is 14136 * currently ratcheted down from its maximum value. 14137 */ 14138 statp = kstat_runq_enter; 14139 if (bp == un->un_retry_bp) { 14140 ASSERT((un->un_retry_statp == NULL) || 14141 (un->un_retry_statp == kstat_waitq_enter) || 14142 (un->un_retry_statp == 14143 kstat_runq_back_to_waitq)); 14144 /* 14145 * If the waitq kstat was incremented when 14146 * sd_set_retry_bp() queued this bp for a retry, 14147 * then we must set up statp so that the waitq 14148 * count will get decremented correctly below. 14149 * Also we must clear un->un_retry_statp to 14150 * ensure that we do not act on a stale value 14151 * in this field. 14152 */ 14153 if ((un->un_retry_statp == kstat_waitq_enter) || 14154 (un->un_retry_statp == 14155 kstat_runq_back_to_waitq)) { 14156 statp = kstat_waitq_to_runq; 14157 } 14158 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14159 saved_statp = un->un_retry_statp; 14160 #endif 14161 un->un_retry_statp = NULL; 14162 14163 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14164 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14165 "un_throttle:%d un_ncmds_in_transport:%d\n", 14166 un, un->un_retry_bp, un->un_throttle, 14167 un->un_ncmds_in_transport); 14168 } else { 14169 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14170 "processing priority bp:0x%p\n", bp); 14171 } 14172 14173 } else if ((bp = un->un_waitq_headp) != NULL) { 14174 /* 14175 * A command on the waitq is ready to go, but do not 14176 * send it if: 14177 * 14178 * (1) the throttle limit has been reached, or 14179 * (2) a retry is pending, or 14180 * (3) a START_STOP_UNIT callback pending, or 14181 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14182 * command is pending. 14183 * 14184 * For all of these conditions, IO processing will 14185 * restart after the condition is cleared. 14186 */ 14187 if (un->un_ncmds_in_transport >= un->un_throttle) { 14188 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14189 "sd_start_cmds: exiting, " 14190 "throttle limit reached!\n"); 14191 goto exit; 14192 } 14193 if (un->un_retry_bp != NULL) { 14194 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14195 "sd_start_cmds: exiting, retry pending!\n"); 14196 goto exit; 14197 } 14198 if (un->un_startstop_timeid != NULL) { 14199 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14200 "sd_start_cmds: exiting, " 14201 "START_STOP pending!\n"); 14202 goto exit; 14203 } 14204 if (un->un_direct_priority_timeid != NULL) { 14205 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14206 "sd_start_cmds: exiting, " 14207 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14208 goto exit; 14209 } 14210 14211 /* Dequeue the command */ 14212 un->un_waitq_headp = bp->av_forw; 14213 if (un->un_waitq_headp == NULL) { 14214 un->un_waitq_tailp = NULL; 14215 } 14216 bp->av_forw = NULL; 14217 statp = kstat_waitq_to_runq; 14218 SD_TRACE(SD_LOG_IO_CORE, un, 14219 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14220 14221 } else { 14222 /* No work to do so bail out now */ 14223 SD_TRACE(SD_LOG_IO_CORE, un, 14224 "sd_start_cmds: no more work, exiting!\n"); 14225 goto exit; 14226 } 14227 14228 /* 14229 * Reset the state to normal. This is the mechanism by which 14230 * the state transitions from either SD_STATE_RWAIT or 14231 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14232 * If state is SD_STATE_PM_CHANGING then this command is 14233 * part of the device power control and the state must 14234 * not be put back to normal. Doing so would would 14235 * allow new commands to proceed when they shouldn't, 14236 * the device may be going off. 14237 */ 14238 if ((un->un_state != SD_STATE_SUSPENDED) && 14239 (un->un_state != SD_STATE_PM_CHANGING)) { 14240 New_state(un, SD_STATE_NORMAL); 14241 } 14242 14243 xp = SD_GET_XBUF(bp); 14244 ASSERT(xp != NULL); 14245 14246 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14247 /* 14248 * Allocate the scsi_pkt if we need one, or attach DMA 14249 * resources if we have a scsi_pkt that needs them. The 14250 * latter should only occur for commands that are being 14251 * retried. 14252 */ 14253 if ((xp->xb_pktp == NULL) || 14254 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14255 #else 14256 if (xp->xb_pktp == NULL) { 14257 #endif 14258 /* 14259 * There is no scsi_pkt allocated for this buf. Call 14260 * the initpkt function to allocate & init one. 14261 * 14262 * The scsi_init_pkt runout callback functionality is 14263 * implemented as follows: 14264 * 14265 * 1) The initpkt function always calls 14266 * scsi_init_pkt(9F) with sdrunout specified as the 14267 * callback routine. 14268 * 2) A successful packet allocation is initialized and 14269 * the I/O is transported. 14270 * 3) The I/O associated with an allocation resource 14271 * failure is left on its queue to be retried via 14272 * runout or the next I/O. 14273 * 4) The I/O associated with a DMA error is removed 14274 * from the queue and failed with EIO. Processing of 14275 * the transport queues is also halted to be 14276 * restarted via runout or the next I/O. 14277 * 5) The I/O associated with a CDB size or packet 14278 * size error is removed from the queue and failed 14279 * with EIO. Processing of the transport queues is 14280 * continued. 14281 * 14282 * Note: there is no interface for canceling a runout 14283 * callback. To prevent the driver from detaching or 14284 * suspending while a runout is pending the driver 14285 * state is set to SD_STATE_RWAIT 14286 * 14287 * Note: using the scsi_init_pkt callback facility can 14288 * result in an I/O request persisting at the head of 14289 * the list which cannot be satisfied even after 14290 * multiple retries. In the future the driver may 14291 * implement some kind of maximum runout count before 14292 * failing an I/O. 14293 * 14294 * Note: the use of funcp below may seem superfluous, 14295 * but it helps warlock figure out the correct 14296 * initpkt function calls (see [s]sd.wlcmd). 14297 */ 14298 struct scsi_pkt *pktp; 14299 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14300 14301 ASSERT(bp != un->un_rqs_bp); 14302 14303 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14304 switch ((*funcp)(bp, &pktp)) { 14305 case SD_PKT_ALLOC_SUCCESS: 14306 xp->xb_pktp = pktp; 14307 SD_TRACE(SD_LOG_IO_CORE, un, 14308 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14309 pktp); 14310 goto got_pkt; 14311 14312 case SD_PKT_ALLOC_FAILURE: 14313 /* 14314 * Temporary (hopefully) resource depletion. 14315 * Since retries and RQS commands always have a 14316 * scsi_pkt allocated, these cases should never 14317 * get here. So the only cases this needs to 14318 * handle is a bp from the waitq (which we put 14319 * back onto the waitq for sdrunout), or a bp 14320 * sent as an immed_bp (which we just fail). 14321 */ 14322 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14323 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14324 14325 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14326 14327 if (bp == immed_bp) { 14328 /* 14329 * If SD_XB_DMA_FREED is clear, then 14330 * this is a failure to allocate a 14331 * scsi_pkt, and we must fail the 14332 * command. 14333 */ 14334 if ((xp->xb_pkt_flags & 14335 SD_XB_DMA_FREED) == 0) { 14336 break; 14337 } 14338 14339 /* 14340 * If this immediate command is NOT our 14341 * un_retry_bp, then we must fail it. 14342 */ 14343 if (bp != un->un_retry_bp) { 14344 break; 14345 } 14346 14347 /* 14348 * We get here if this cmd is our 14349 * un_retry_bp that was DMAFREED, but 14350 * scsi_init_pkt() failed to reallocate 14351 * DMA resources when we attempted to 14352 * retry it. This can happen when an 14353 * mpxio failover is in progress, but 14354 * we don't want to just fail the 14355 * command in this case. 14356 * 14357 * Use timeout(9F) to restart it after 14358 * a 100ms delay. We don't want to 14359 * let sdrunout() restart it, because 14360 * sdrunout() is just supposed to start 14361 * commands that are sitting on the 14362 * wait queue. The un_retry_bp stays 14363 * set until the command completes, but 14364 * sdrunout can be called many times 14365 * before that happens. Since sdrunout 14366 * cannot tell if the un_retry_bp is 14367 * already in the transport, it could 14368 * end up calling scsi_transport() for 14369 * the un_retry_bp multiple times. 14370 * 14371 * Also: don't schedule the callback 14372 * if some other callback is already 14373 * pending. 14374 */ 14375 if (un->un_retry_statp == NULL) { 14376 /* 14377 * restore the kstat pointer to 14378 * keep kstat counts coherent 14379 * when we do retry the command. 14380 */ 14381 un->un_retry_statp = 14382 saved_statp; 14383 } 14384 14385 if ((un->un_startstop_timeid == NULL) && 14386 (un->un_retry_timeid == NULL) && 14387 (un->un_direct_priority_timeid == 14388 NULL)) { 14389 14390 un->un_retry_timeid = 14391 timeout( 14392 sd_start_retry_command, 14393 un, SD_RESTART_TIMEOUT); 14394 } 14395 goto exit; 14396 } 14397 14398 #else 14399 if (bp == immed_bp) { 14400 break; /* Just fail the command */ 14401 } 14402 #endif 14403 14404 /* Add the buf back to the head of the waitq */ 14405 bp->av_forw = un->un_waitq_headp; 14406 un->un_waitq_headp = bp; 14407 if (un->un_waitq_tailp == NULL) { 14408 un->un_waitq_tailp = bp; 14409 } 14410 goto exit; 14411 14412 case SD_PKT_ALLOC_FAILURE_NO_DMA: 14413 /* 14414 * HBA DMA resource failure. Fail the command 14415 * and continue processing of the queues. 14416 */ 14417 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14418 "sd_start_cmds: " 14419 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 14420 break; 14421 14422 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 14423 /* 14424 * Note:x86: Partial DMA mapping not supported 14425 * for USCSI commands, and all the needed DMA 14426 * resources were not allocated. 14427 */ 14428 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14429 "sd_start_cmds: " 14430 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 14431 break; 14432 14433 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 14434 /* 14435 * Note:x86: Request cannot fit into CDB based 14436 * on lba and len. 14437 */ 14438 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14439 "sd_start_cmds: " 14440 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 14441 break; 14442 14443 default: 14444 /* Should NEVER get here! */ 14445 panic("scsi_initpkt error"); 14446 /*NOTREACHED*/ 14447 } 14448 14449 /* 14450 * Fatal error in allocating a scsi_pkt for this buf. 14451 * Update kstats & return the buf with an error code. 14452 * We must use sd_return_failed_command_no_restart() to 14453 * avoid a recursive call back into sd_start_cmds(). 14454 * However this also means that we must keep processing 14455 * the waitq here in order to avoid stalling. 14456 */ 14457 if (statp == kstat_waitq_to_runq) { 14458 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 14459 } 14460 sd_return_failed_command_no_restart(un, bp, EIO); 14461 if (bp == immed_bp) { 14462 /* immed_bp is gone by now, so clear this */ 14463 immed_bp = NULL; 14464 } 14465 continue; 14466 } 14467 got_pkt: 14468 if (bp == immed_bp) { 14469 /* goto the head of the class.... */ 14470 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 14471 } 14472 14473 un->un_ncmds_in_transport++; 14474 SD_UPDATE_KSTATS(un, statp, bp); 14475 14476 /* 14477 * Call scsi_transport() to send the command to the target. 14478 * According to SCSA architecture, we must drop the mutex here 14479 * before calling scsi_transport() in order to avoid deadlock. 14480 * Note that the scsi_pkt's completion routine can be executed 14481 * (from interrupt context) even before the call to 14482 * scsi_transport() returns. 14483 */ 14484 SD_TRACE(SD_LOG_IO_CORE, un, 14485 "sd_start_cmds: calling scsi_transport()\n"); 14486 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 14487 14488 mutex_exit(SD_MUTEX(un)); 14489 rval = scsi_transport(xp->xb_pktp); 14490 mutex_enter(SD_MUTEX(un)); 14491 14492 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14493 "sd_start_cmds: scsi_transport() returned %d\n", rval); 14494 14495 switch (rval) { 14496 case TRAN_ACCEPT: 14497 /* Clear this with every pkt accepted by the HBA */ 14498 un->un_tran_fatal_count = 0; 14499 break; /* Success; try the next cmd (if any) */ 14500 14501 case TRAN_BUSY: 14502 un->un_ncmds_in_transport--; 14503 ASSERT(un->un_ncmds_in_transport >= 0); 14504 14505 /* 14506 * Don't retry request sense, the sense data 14507 * is lost when another request is sent. 14508 * Free up the rqs buf and retry 14509 * the original failed cmd. Update kstat. 14510 */ 14511 if (bp == un->un_rqs_bp) { 14512 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14513 bp = sd_mark_rqs_idle(un, xp); 14514 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 14515 NULL, NULL, EIO, un->un_busy_timeout / 500, 14516 kstat_waitq_enter); 14517 goto exit; 14518 } 14519 14520 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14521 /* 14522 * Free the DMA resources for the scsi_pkt. This will 14523 * allow mpxio to select another path the next time 14524 * we call scsi_transport() with this scsi_pkt. 14525 * See sdintr() for the rationalization behind this. 14526 */ 14527 if ((un->un_f_is_fibre == TRUE) && 14528 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 14529 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 14530 scsi_dmafree(xp->xb_pktp); 14531 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 14532 } 14533 #endif 14534 14535 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 14536 /* 14537 * Commands that are SD_PATH_DIRECT_PRIORITY 14538 * are for error recovery situations. These do 14539 * not use the normal command waitq, so if they 14540 * get a TRAN_BUSY we cannot put them back onto 14541 * the waitq for later retry. One possible 14542 * problem is that there could already be some 14543 * other command on un_retry_bp that is waiting 14544 * for this one to complete, so we would be 14545 * deadlocked if we put this command back onto 14546 * the waitq for later retry (since un_retry_bp 14547 * must complete before the driver gets back to 14548 * commands on the waitq). 14549 * 14550 * To avoid deadlock we must schedule a callback 14551 * that will restart this command after a set 14552 * interval. This should keep retrying for as 14553 * long as the underlying transport keeps 14554 * returning TRAN_BUSY (just like for other 14555 * commands). Use the same timeout interval as 14556 * for the ordinary TRAN_BUSY retry. 14557 */ 14558 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14559 "sd_start_cmds: scsi_transport() returned " 14560 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 14561 14562 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14563 un->un_direct_priority_timeid = 14564 timeout(sd_start_direct_priority_command, 14565 bp, un->un_busy_timeout / 500); 14566 14567 goto exit; 14568 } 14569 14570 /* 14571 * For TRAN_BUSY, we want to reduce the throttle value, 14572 * unless we are retrying a command. 14573 */ 14574 if (bp != un->un_retry_bp) { 14575 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 14576 } 14577 14578 /* 14579 * Set up the bp to be tried again 10 ms later. 14580 * Note:x86: Is there a timeout value in the sd_lun 14581 * for this condition? 14582 */ 14583 sd_set_retry_bp(un, bp, un->un_busy_timeout / 500, 14584 kstat_runq_back_to_waitq); 14585 goto exit; 14586 14587 case TRAN_FATAL_ERROR: 14588 un->un_tran_fatal_count++; 14589 /* FALLTHRU */ 14590 14591 case TRAN_BADPKT: 14592 default: 14593 un->un_ncmds_in_transport--; 14594 ASSERT(un->un_ncmds_in_transport >= 0); 14595 14596 /* 14597 * If this is our REQUEST SENSE command with a 14598 * transport error, we must get back the pointers 14599 * to the original buf, and mark the REQUEST 14600 * SENSE command as "available". 14601 */ 14602 if (bp == un->un_rqs_bp) { 14603 bp = sd_mark_rqs_idle(un, xp); 14604 xp = SD_GET_XBUF(bp); 14605 } else { 14606 /* 14607 * Legacy behavior: do not update transport 14608 * error count for request sense commands. 14609 */ 14610 SD_UPDATE_ERRSTATS(un, sd_transerrs); 14611 } 14612 14613 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14614 sd_print_transport_rejected_message(un, xp, rval); 14615 14616 /* 14617 * This command will be terminated by SD driver due 14618 * to a fatal transport error. We should post 14619 * ereport.io.scsi.cmd.disk.tran with driver-assessment 14620 * of "fail" for any command to indicate this 14621 * situation. 14622 */ 14623 if (xp->xb_ena > 0) { 14624 ASSERT(un->un_fm_private != NULL); 14625 sfip = un->un_fm_private; 14626 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT; 14627 sd_ssc_extract_info(&sfip->fm_ssc, un, 14628 xp->xb_pktp, bp, xp); 14629 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 14630 } 14631 14632 /* 14633 * We must use sd_return_failed_command_no_restart() to 14634 * avoid a recursive call back into sd_start_cmds(). 14635 * However this also means that we must keep processing 14636 * the waitq here in order to avoid stalling. 14637 */ 14638 sd_return_failed_command_no_restart(un, bp, EIO); 14639 14640 /* 14641 * Notify any threads waiting in sd_ddi_suspend() that 14642 * a command completion has occurred. 14643 */ 14644 if (un->un_state == SD_STATE_SUSPENDED) { 14645 cv_broadcast(&un->un_disk_busy_cv); 14646 } 14647 14648 if (bp == immed_bp) { 14649 /* immed_bp is gone by now, so clear this */ 14650 immed_bp = NULL; 14651 } 14652 break; 14653 } 14654 14655 } while (immed_bp == NULL); 14656 14657 exit: 14658 ASSERT(mutex_owned(SD_MUTEX(un))); 14659 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 14660 } 14661 14662 14663 /* 14664 * Function: sd_return_command 14665 * 14666 * Description: Returns a command to its originator (with or without an 14667 * error). Also starts commands waiting to be transported 14668 * to the target. 14669 * 14670 * Context: May be called from interrupt, kernel, or timeout context 14671 */ 14672 14673 static void 14674 sd_return_command(struct sd_lun *un, struct buf *bp) 14675 { 14676 struct sd_xbuf *xp; 14677 struct scsi_pkt *pktp; 14678 struct sd_fm_internal *sfip; 14679 14680 ASSERT(bp != NULL); 14681 ASSERT(un != NULL); 14682 ASSERT(mutex_owned(SD_MUTEX(un))); 14683 ASSERT(bp != un->un_rqs_bp); 14684 xp = SD_GET_XBUF(bp); 14685 ASSERT(xp != NULL); 14686 14687 pktp = SD_GET_PKTP(bp); 14688 sfip = (struct sd_fm_internal *)un->un_fm_private; 14689 ASSERT(sfip != NULL); 14690 14691 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 14692 14693 /* 14694 * Note: check for the "sdrestart failed" case. 14695 */ 14696 if ((un->un_partial_dma_supported == 1) && 14697 ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 14698 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 14699 (xp->xb_pktp->pkt_resid == 0)) { 14700 14701 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 14702 /* 14703 * Successfully set up next portion of cmd 14704 * transfer, try sending it 14705 */ 14706 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 14707 NULL, NULL, 0, (clock_t)0, NULL); 14708 sd_start_cmds(un, NULL); 14709 return; /* Note:x86: need a return here? */ 14710 } 14711 } 14712 14713 /* 14714 * If this is the failfast bp, clear it from un_failfast_bp. This 14715 * can happen if upon being re-tried the failfast bp either 14716 * succeeded or encountered another error (possibly even a different 14717 * error than the one that precipitated the failfast state, but in 14718 * that case it would have had to exhaust retries as well). Regardless, 14719 * this should not occur whenever the instance is in the active 14720 * failfast state. 14721 */ 14722 if (bp == un->un_failfast_bp) { 14723 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 14724 un->un_failfast_bp = NULL; 14725 } 14726 14727 /* 14728 * Clear the failfast state upon successful completion of ANY cmd. 14729 */ 14730 if (bp->b_error == 0) { 14731 un->un_failfast_state = SD_FAILFAST_INACTIVE; 14732 /* 14733 * If this is a successful command, but used to be retried, 14734 * we will take it as a recovered command and post an 14735 * ereport with driver-assessment of "recovered". 14736 */ 14737 if (xp->xb_ena > 0) { 14738 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 14739 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY); 14740 } 14741 } else { 14742 /* 14743 * If this is a failed non-USCSI command we will post an 14744 * ereport with driver-assessment set accordingly("fail" or 14745 * "fatal"). 14746 */ 14747 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 14748 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 14749 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 14750 } 14751 } 14752 14753 /* 14754 * This is used if the command was retried one or more times. Show that 14755 * we are done with it, and allow processing of the waitq to resume. 14756 */ 14757 if (bp == un->un_retry_bp) { 14758 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14759 "sd_return_command: un:0x%p: " 14760 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 14761 un->un_retry_bp = NULL; 14762 un->un_retry_statp = NULL; 14763 } 14764 14765 SD_UPDATE_RDWR_STATS(un, bp); 14766 SD_UPDATE_PARTITION_STATS(un, bp); 14767 14768 switch (un->un_state) { 14769 case SD_STATE_SUSPENDED: 14770 /* 14771 * Notify any threads waiting in sd_ddi_suspend() that 14772 * a command completion has occurred. 14773 */ 14774 cv_broadcast(&un->un_disk_busy_cv); 14775 break; 14776 default: 14777 sd_start_cmds(un, NULL); 14778 break; 14779 } 14780 14781 /* Return this command up the iodone chain to its originator. */ 14782 mutex_exit(SD_MUTEX(un)); 14783 14784 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 14785 xp->xb_pktp = NULL; 14786 14787 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 14788 14789 ASSERT(!mutex_owned(SD_MUTEX(un))); 14790 mutex_enter(SD_MUTEX(un)); 14791 14792 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 14793 } 14794 14795 14796 /* 14797 * Function: sd_return_failed_command 14798 * 14799 * Description: Command completion when an error occurred. 14800 * 14801 * Context: May be called from interrupt context 14802 */ 14803 14804 static void 14805 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 14806 { 14807 ASSERT(bp != NULL); 14808 ASSERT(un != NULL); 14809 ASSERT(mutex_owned(SD_MUTEX(un))); 14810 14811 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14812 "sd_return_failed_command: entry\n"); 14813 14814 /* 14815 * b_resid could already be nonzero due to a partial data 14816 * transfer, so do not change it here. 14817 */ 14818 SD_BIOERROR(bp, errcode); 14819 14820 sd_return_command(un, bp); 14821 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14822 "sd_return_failed_command: exit\n"); 14823 } 14824 14825 14826 /* 14827 * Function: sd_return_failed_command_no_restart 14828 * 14829 * Description: Same as sd_return_failed_command, but ensures that no 14830 * call back into sd_start_cmds will be issued. 14831 * 14832 * Context: May be called from interrupt context 14833 */ 14834 14835 static void 14836 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 14837 int errcode) 14838 { 14839 struct sd_xbuf *xp; 14840 14841 ASSERT(bp != NULL); 14842 ASSERT(un != NULL); 14843 ASSERT(mutex_owned(SD_MUTEX(un))); 14844 xp = SD_GET_XBUF(bp); 14845 ASSERT(xp != NULL); 14846 ASSERT(errcode != 0); 14847 14848 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14849 "sd_return_failed_command_no_restart: entry\n"); 14850 14851 /* 14852 * b_resid could already be nonzero due to a partial data 14853 * transfer, so do not change it here. 14854 */ 14855 SD_BIOERROR(bp, errcode); 14856 14857 /* 14858 * If this is the failfast bp, clear it. This can happen if the 14859 * failfast bp encounterd a fatal error when we attempted to 14860 * re-try it (such as a scsi_transport(9F) failure). However 14861 * we should NOT be in an active failfast state if the failfast 14862 * bp is not NULL. 14863 */ 14864 if (bp == un->un_failfast_bp) { 14865 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 14866 un->un_failfast_bp = NULL; 14867 } 14868 14869 if (bp == un->un_retry_bp) { 14870 /* 14871 * This command was retried one or more times. Show that we are 14872 * done with it, and allow processing of the waitq to resume. 14873 */ 14874 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14875 "sd_return_failed_command_no_restart: " 14876 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 14877 un->un_retry_bp = NULL; 14878 un->un_retry_statp = NULL; 14879 } 14880 14881 SD_UPDATE_RDWR_STATS(un, bp); 14882 SD_UPDATE_PARTITION_STATS(un, bp); 14883 14884 mutex_exit(SD_MUTEX(un)); 14885 14886 if (xp->xb_pktp != NULL) { 14887 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 14888 xp->xb_pktp = NULL; 14889 } 14890 14891 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 14892 14893 mutex_enter(SD_MUTEX(un)); 14894 14895 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14896 "sd_return_failed_command_no_restart: exit\n"); 14897 } 14898 14899 14900 /* 14901 * Function: sd_retry_command 14902 * 14903 * Description: queue up a command for retry, or (optionally) fail it 14904 * if retry counts are exhausted. 14905 * 14906 * Arguments: un - Pointer to the sd_lun struct for the target. 14907 * 14908 * bp - Pointer to the buf for the command to be retried. 14909 * 14910 * retry_check_flag - Flag to see which (if any) of the retry 14911 * counts should be decremented/checked. If the indicated 14912 * retry count is exhausted, then the command will not be 14913 * retried; it will be failed instead. This should use a 14914 * value equal to one of the following: 14915 * 14916 * SD_RETRIES_NOCHECK 14917 * SD_RESD_RETRIES_STANDARD 14918 * SD_RETRIES_VICTIM 14919 * 14920 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 14921 * if the check should be made to see of FLAG_ISOLATE is set 14922 * in the pkt. If FLAG_ISOLATE is set, then the command is 14923 * not retried, it is simply failed. 14924 * 14925 * user_funcp - Ptr to function to call before dispatching the 14926 * command. May be NULL if no action needs to be performed. 14927 * (Primarily intended for printing messages.) 14928 * 14929 * user_arg - Optional argument to be passed along to 14930 * the user_funcp call. 14931 * 14932 * failure_code - errno return code to set in the bp if the 14933 * command is going to be failed. 14934 * 14935 * retry_delay - Retry delay interval in (clock_t) units. May 14936 * be zero which indicates that the retry should be retried 14937 * immediately (ie, without an intervening delay). 14938 * 14939 * statp - Ptr to kstat function to be updated if the command 14940 * is queued for a delayed retry. May be NULL if no kstat 14941 * update is desired. 14942 * 14943 * Context: May be called from interrupt context. 14944 */ 14945 14946 static void 14947 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 14948 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 14949 code), void *user_arg, int failure_code, clock_t retry_delay, 14950 void (*statp)(kstat_io_t *)) 14951 { 14952 struct sd_xbuf *xp; 14953 struct scsi_pkt *pktp; 14954 struct sd_fm_internal *sfip; 14955 14956 ASSERT(un != NULL); 14957 ASSERT(mutex_owned(SD_MUTEX(un))); 14958 ASSERT(bp != NULL); 14959 xp = SD_GET_XBUF(bp); 14960 ASSERT(xp != NULL); 14961 pktp = SD_GET_PKTP(bp); 14962 ASSERT(pktp != NULL); 14963 14964 sfip = (struct sd_fm_internal *)un->un_fm_private; 14965 ASSERT(sfip != NULL); 14966 14967 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14968 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 14969 14970 /* 14971 * If we are syncing or dumping, fail the command to avoid 14972 * recursively calling back into scsi_transport(). 14973 */ 14974 if (ddi_in_panic()) { 14975 goto fail_command_no_log; 14976 } 14977 14978 /* 14979 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 14980 * log an error and fail the command. 14981 */ 14982 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 14983 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 14984 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 14985 sd_dump_memory(un, SD_LOG_IO, "CDB", 14986 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 14987 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 14988 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 14989 goto fail_command; 14990 } 14991 14992 /* 14993 * If we are suspended, then put the command onto head of the 14994 * wait queue since we don't want to start more commands, and 14995 * clear the un_retry_bp. Next time when we are resumed, will 14996 * handle the command in the wait queue. 14997 */ 14998 switch (un->un_state) { 14999 case SD_STATE_SUSPENDED: 15000 case SD_STATE_DUMPING: 15001 bp->av_forw = un->un_waitq_headp; 15002 un->un_waitq_headp = bp; 15003 if (un->un_waitq_tailp == NULL) { 15004 un->un_waitq_tailp = bp; 15005 } 15006 if (bp == un->un_retry_bp) { 15007 un->un_retry_bp = NULL; 15008 un->un_retry_statp = NULL; 15009 } 15010 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15011 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15012 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15013 return; 15014 default: 15015 break; 15016 } 15017 15018 /* 15019 * If the caller wants us to check FLAG_ISOLATE, then see if that 15020 * is set; if it is then we do not want to retry the command. 15021 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15022 */ 15023 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15024 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15025 goto fail_command; 15026 } 15027 } 15028 15029 15030 /* 15031 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15032 * command timeout or a selection timeout has occurred. This means 15033 * that we were unable to establish an kind of communication with 15034 * the target, and subsequent retries and/or commands are likely 15035 * to encounter similar results and take a long time to complete. 15036 * 15037 * If this is a failfast error condition, we need to update the 15038 * failfast state, even if this bp does not have B_FAILFAST set. 15039 */ 15040 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15041 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15042 ASSERT(un->un_failfast_bp == NULL); 15043 /* 15044 * If we are already in the active failfast state, and 15045 * another failfast error condition has been detected, 15046 * then fail this command if it has B_FAILFAST set. 15047 * If B_FAILFAST is clear, then maintain the legacy 15048 * behavior of retrying heroically, even tho this will 15049 * take a lot more time to fail the command. 15050 */ 15051 if (bp->b_flags & B_FAILFAST) { 15052 goto fail_command; 15053 } 15054 } else { 15055 /* 15056 * We're not in the active failfast state, but we 15057 * have a failfast error condition, so we must begin 15058 * transition to the next state. We do this regardless 15059 * of whether or not this bp has B_FAILFAST set. 15060 */ 15061 if (un->un_failfast_bp == NULL) { 15062 /* 15063 * This is the first bp to meet a failfast 15064 * condition so save it on un_failfast_bp & 15065 * do normal retry processing. Do not enter 15066 * active failfast state yet. This marks 15067 * entry into the "failfast pending" state. 15068 */ 15069 un->un_failfast_bp = bp; 15070 15071 } else if (un->un_failfast_bp == bp) { 15072 /* 15073 * This is the second time *this* bp has 15074 * encountered a failfast error condition, 15075 * so enter active failfast state & flush 15076 * queues as appropriate. 15077 */ 15078 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15079 un->un_failfast_bp = NULL; 15080 sd_failfast_flushq(un); 15081 15082 /* 15083 * Fail this bp now if B_FAILFAST set; 15084 * otherwise continue with retries. (It would 15085 * be pretty ironic if this bp succeeded on a 15086 * subsequent retry after we just flushed all 15087 * the queues). 15088 */ 15089 if (bp->b_flags & B_FAILFAST) { 15090 goto fail_command; 15091 } 15092 15093 #if !defined(lint) && !defined(__lint) 15094 } else { 15095 /* 15096 * If neither of the preceeding conditionals 15097 * was true, it means that there is some 15098 * *other* bp that has met an inital failfast 15099 * condition and is currently either being 15100 * retried or is waiting to be retried. In 15101 * that case we should perform normal retry 15102 * processing on *this* bp, since there is a 15103 * chance that the current failfast condition 15104 * is transient and recoverable. If that does 15105 * not turn out to be the case, then retries 15106 * will be cleared when the wait queue is 15107 * flushed anyway. 15108 */ 15109 #endif 15110 } 15111 } 15112 } else { 15113 /* 15114 * SD_RETRIES_FAILFAST is clear, which indicates that we 15115 * likely were able to at least establish some level of 15116 * communication with the target and subsequent commands 15117 * and/or retries are likely to get through to the target, 15118 * In this case we want to be aggressive about clearing 15119 * the failfast state. Note that this does not affect 15120 * the "failfast pending" condition. 15121 */ 15122 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15123 } 15124 15125 15126 /* 15127 * Check the specified retry count to see if we can still do 15128 * any retries with this pkt before we should fail it. 15129 */ 15130 switch (retry_check_flag & SD_RETRIES_MASK) { 15131 case SD_RETRIES_VICTIM: 15132 /* 15133 * Check the victim retry count. If exhausted, then fall 15134 * thru & check against the standard retry count. 15135 */ 15136 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15137 /* Increment count & proceed with the retry */ 15138 xp->xb_victim_retry_count++; 15139 break; 15140 } 15141 /* Victim retries exhausted, fall back to std. retries... */ 15142 /* FALLTHRU */ 15143 15144 case SD_RETRIES_STANDARD: 15145 if (xp->xb_retry_count >= un->un_retry_count) { 15146 /* Retries exhausted, fail the command */ 15147 SD_TRACE(SD_LOG_IO_CORE, un, 15148 "sd_retry_command: retries exhausted!\n"); 15149 /* 15150 * update b_resid for failed SCMD_READ & SCMD_WRITE 15151 * commands with nonzero pkt_resid. 15152 */ 15153 if ((pktp->pkt_reason == CMD_CMPLT) && 15154 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15155 (pktp->pkt_resid != 0)) { 15156 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15157 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15158 SD_UPDATE_B_RESID(bp, pktp); 15159 } 15160 } 15161 goto fail_command; 15162 } 15163 xp->xb_retry_count++; 15164 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15165 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15166 break; 15167 15168 case SD_RETRIES_UA: 15169 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15170 /* Retries exhausted, fail the command */ 15171 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15172 "Unit Attention retries exhausted. " 15173 "Check the target.\n"); 15174 goto fail_command; 15175 } 15176 xp->xb_ua_retry_count++; 15177 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15178 "sd_retry_command: retry count:%d\n", 15179 xp->xb_ua_retry_count); 15180 break; 15181 15182 case SD_RETRIES_BUSY: 15183 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15184 /* Retries exhausted, fail the command */ 15185 SD_TRACE(SD_LOG_IO_CORE, un, 15186 "sd_retry_command: retries exhausted!\n"); 15187 goto fail_command; 15188 } 15189 xp->xb_retry_count++; 15190 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15191 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15192 break; 15193 15194 case SD_RETRIES_NOCHECK: 15195 default: 15196 /* No retry count to check. Just proceed with the retry */ 15197 break; 15198 } 15199 15200 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15201 15202 /* 15203 * If this is a non-USCSI command being retried 15204 * during execution last time, we should post an ereport with 15205 * driver-assessment of the value "retry". 15206 * For partial DMA, request sense and STATUS_QFULL, there are no 15207 * hardware errors, we bypass ereport posting. 15208 */ 15209 if (failure_code != 0) { 15210 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15211 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15212 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY); 15213 } 15214 } 15215 15216 /* 15217 * If we were given a zero timeout, we must attempt to retry the 15218 * command immediately (ie, without a delay). 15219 */ 15220 if (retry_delay == 0) { 15221 /* 15222 * Check some limiting conditions to see if we can actually 15223 * do the immediate retry. If we cannot, then we must 15224 * fall back to queueing up a delayed retry. 15225 */ 15226 if (un->un_ncmds_in_transport >= un->un_throttle) { 15227 /* 15228 * We are at the throttle limit for the target, 15229 * fall back to delayed retry. 15230 */ 15231 retry_delay = un->un_busy_timeout; 15232 statp = kstat_waitq_enter; 15233 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15234 "sd_retry_command: immed. retry hit " 15235 "throttle!\n"); 15236 } else { 15237 /* 15238 * We're clear to proceed with the immediate retry. 15239 * First call the user-provided function (if any) 15240 */ 15241 if (user_funcp != NULL) { 15242 (*user_funcp)(un, bp, user_arg, 15243 SD_IMMEDIATE_RETRY_ISSUED); 15244 #ifdef __lock_lint 15245 sd_print_incomplete_msg(un, bp, user_arg, 15246 SD_IMMEDIATE_RETRY_ISSUED); 15247 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15248 SD_IMMEDIATE_RETRY_ISSUED); 15249 sd_print_sense_failed_msg(un, bp, user_arg, 15250 SD_IMMEDIATE_RETRY_ISSUED); 15251 #endif 15252 } 15253 15254 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15255 "sd_retry_command: issuing immediate retry\n"); 15256 15257 /* 15258 * Call sd_start_cmds() to transport the command to 15259 * the target. 15260 */ 15261 sd_start_cmds(un, bp); 15262 15263 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15264 "sd_retry_command exit\n"); 15265 return; 15266 } 15267 } 15268 15269 /* 15270 * Set up to retry the command after a delay. 15271 * First call the user-provided function (if any) 15272 */ 15273 if (user_funcp != NULL) { 15274 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15275 } 15276 15277 sd_set_retry_bp(un, bp, retry_delay, statp); 15278 15279 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15280 return; 15281 15282 fail_command: 15283 15284 if (user_funcp != NULL) { 15285 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15286 } 15287 15288 fail_command_no_log: 15289 15290 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15291 "sd_retry_command: returning failed command\n"); 15292 15293 sd_return_failed_command(un, bp, failure_code); 15294 15295 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15296 } 15297 15298 15299 /* 15300 * Function: sd_set_retry_bp 15301 * 15302 * Description: Set up the given bp for retry. 15303 * 15304 * Arguments: un - ptr to associated softstate 15305 * bp - ptr to buf(9S) for the command 15306 * retry_delay - time interval before issuing retry (may be 0) 15307 * statp - optional pointer to kstat function 15308 * 15309 * Context: May be called under interrupt context 15310 */ 15311 15312 static void 15313 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15314 void (*statp)(kstat_io_t *)) 15315 { 15316 ASSERT(un != NULL); 15317 ASSERT(mutex_owned(SD_MUTEX(un))); 15318 ASSERT(bp != NULL); 15319 15320 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15321 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15322 15323 /* 15324 * Indicate that the command is being retried. This will not allow any 15325 * other commands on the wait queue to be transported to the target 15326 * until this command has been completed (success or failure). The 15327 * "retry command" is not transported to the target until the given 15328 * time delay expires, unless the user specified a 0 retry_delay. 15329 * 15330 * Note: the timeout(9F) callback routine is what actually calls 15331 * sd_start_cmds() to transport the command, with the exception of a 15332 * zero retry_delay. The only current implementor of a zero retry delay 15333 * is the case where a START_STOP_UNIT is sent to spin-up a device. 15334 */ 15335 if (un->un_retry_bp == NULL) { 15336 ASSERT(un->un_retry_statp == NULL); 15337 un->un_retry_bp = bp; 15338 15339 /* 15340 * If the user has not specified a delay the command should 15341 * be queued and no timeout should be scheduled. 15342 */ 15343 if (retry_delay == 0) { 15344 /* 15345 * Save the kstat pointer that will be used in the 15346 * call to SD_UPDATE_KSTATS() below, so that 15347 * sd_start_cmds() can correctly decrement the waitq 15348 * count when it is time to transport this command. 15349 */ 15350 un->un_retry_statp = statp; 15351 goto done; 15352 } 15353 } 15354 15355 if (un->un_retry_bp == bp) { 15356 /* 15357 * Save the kstat pointer that will be used in the call to 15358 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 15359 * correctly decrement the waitq count when it is time to 15360 * transport this command. 15361 */ 15362 un->un_retry_statp = statp; 15363 15364 /* 15365 * Schedule a timeout if: 15366 * 1) The user has specified a delay. 15367 * 2) There is not a START_STOP_UNIT callback pending. 15368 * 15369 * If no delay has been specified, then it is up to the caller 15370 * to ensure that IO processing continues without stalling. 15371 * Effectively, this means that the caller will issue the 15372 * required call to sd_start_cmds(). The START_STOP_UNIT 15373 * callback does this after the START STOP UNIT command has 15374 * completed. In either of these cases we should not schedule 15375 * a timeout callback here. Also don't schedule the timeout if 15376 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 15377 */ 15378 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 15379 (un->un_direct_priority_timeid == NULL)) { 15380 un->un_retry_timeid = 15381 timeout(sd_start_retry_command, un, retry_delay); 15382 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15383 "sd_set_retry_bp: setting timeout: un: 0x%p" 15384 " bp:0x%p un_retry_timeid:0x%p\n", 15385 un, bp, un->un_retry_timeid); 15386 } 15387 } else { 15388 /* 15389 * We only get in here if there is already another command 15390 * waiting to be retried. In this case, we just put the 15391 * given command onto the wait queue, so it can be transported 15392 * after the current retry command has completed. 15393 * 15394 * Also we have to make sure that if the command at the head 15395 * of the wait queue is the un_failfast_bp, that we do not 15396 * put ahead of it any other commands that are to be retried. 15397 */ 15398 if ((un->un_failfast_bp != NULL) && 15399 (un->un_failfast_bp == un->un_waitq_headp)) { 15400 /* 15401 * Enqueue this command AFTER the first command on 15402 * the wait queue (which is also un_failfast_bp). 15403 */ 15404 bp->av_forw = un->un_waitq_headp->av_forw; 15405 un->un_waitq_headp->av_forw = bp; 15406 if (un->un_waitq_headp == un->un_waitq_tailp) { 15407 un->un_waitq_tailp = bp; 15408 } 15409 } else { 15410 /* Enqueue this command at the head of the waitq. */ 15411 bp->av_forw = un->un_waitq_headp; 15412 un->un_waitq_headp = bp; 15413 if (un->un_waitq_tailp == NULL) { 15414 un->un_waitq_tailp = bp; 15415 } 15416 } 15417 15418 if (statp == NULL) { 15419 statp = kstat_waitq_enter; 15420 } 15421 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15422 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 15423 } 15424 15425 done: 15426 if (statp != NULL) { 15427 SD_UPDATE_KSTATS(un, statp, bp); 15428 } 15429 15430 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15431 "sd_set_retry_bp: exit un:0x%p\n", un); 15432 } 15433 15434 15435 /* 15436 * Function: sd_start_retry_command 15437 * 15438 * Description: Start the command that has been waiting on the target's 15439 * retry queue. Called from timeout(9F) context after the 15440 * retry delay interval has expired. 15441 * 15442 * Arguments: arg - pointer to associated softstate for the device. 15443 * 15444 * Context: timeout(9F) thread context. May not sleep. 15445 */ 15446 15447 static void 15448 sd_start_retry_command(void *arg) 15449 { 15450 struct sd_lun *un = arg; 15451 15452 ASSERT(un != NULL); 15453 ASSERT(!mutex_owned(SD_MUTEX(un))); 15454 15455 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15456 "sd_start_retry_command: entry\n"); 15457 15458 mutex_enter(SD_MUTEX(un)); 15459 15460 un->un_retry_timeid = NULL; 15461 15462 if (un->un_retry_bp != NULL) { 15463 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15464 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 15465 un, un->un_retry_bp); 15466 sd_start_cmds(un, un->un_retry_bp); 15467 } 15468 15469 mutex_exit(SD_MUTEX(un)); 15470 15471 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15472 "sd_start_retry_command: exit\n"); 15473 } 15474 15475 15476 /* 15477 * Function: sd_start_direct_priority_command 15478 * 15479 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 15480 * received TRAN_BUSY when we called scsi_transport() to send it 15481 * to the underlying HBA. This function is called from timeout(9F) 15482 * context after the delay interval has expired. 15483 * 15484 * Arguments: arg - pointer to associated buf(9S) to be restarted. 15485 * 15486 * Context: timeout(9F) thread context. May not sleep. 15487 */ 15488 15489 static void 15490 sd_start_direct_priority_command(void *arg) 15491 { 15492 struct buf *priority_bp = arg; 15493 struct sd_lun *un; 15494 15495 ASSERT(priority_bp != NULL); 15496 un = SD_GET_UN(priority_bp); 15497 ASSERT(un != NULL); 15498 ASSERT(!mutex_owned(SD_MUTEX(un))); 15499 15500 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15501 "sd_start_direct_priority_command: entry\n"); 15502 15503 mutex_enter(SD_MUTEX(un)); 15504 un->un_direct_priority_timeid = NULL; 15505 sd_start_cmds(un, priority_bp); 15506 mutex_exit(SD_MUTEX(un)); 15507 15508 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15509 "sd_start_direct_priority_command: exit\n"); 15510 } 15511 15512 15513 /* 15514 * Function: sd_send_request_sense_command 15515 * 15516 * Description: Sends a REQUEST SENSE command to the target 15517 * 15518 * Context: May be called from interrupt context. 15519 */ 15520 15521 static void 15522 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 15523 struct scsi_pkt *pktp) 15524 { 15525 ASSERT(bp != NULL); 15526 ASSERT(un != NULL); 15527 ASSERT(mutex_owned(SD_MUTEX(un))); 15528 15529 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 15530 "entry: buf:0x%p\n", bp); 15531 15532 /* 15533 * If we are syncing or dumping, then fail the command to avoid a 15534 * recursive callback into scsi_transport(). Also fail the command 15535 * if we are suspended (legacy behavior). 15536 */ 15537 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 15538 (un->un_state == SD_STATE_DUMPING)) { 15539 sd_return_failed_command(un, bp, EIO); 15540 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15541 "sd_send_request_sense_command: syncing/dumping, exit\n"); 15542 return; 15543 } 15544 15545 /* 15546 * Retry the failed command and don't issue the request sense if: 15547 * 1) the sense buf is busy 15548 * 2) we have 1 or more outstanding commands on the target 15549 * (the sense data will be cleared or invalidated any way) 15550 * 15551 * Note: There could be an issue with not checking a retry limit here, 15552 * the problem is determining which retry limit to check. 15553 */ 15554 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 15555 /* Don't retry if the command is flagged as non-retryable */ 15556 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 15557 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15558 NULL, NULL, 0, un->un_busy_timeout, 15559 kstat_waitq_enter); 15560 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15561 "sd_send_request_sense_command: " 15562 "at full throttle, retrying exit\n"); 15563 } else { 15564 sd_return_failed_command(un, bp, EIO); 15565 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15566 "sd_send_request_sense_command: " 15567 "at full throttle, non-retryable exit\n"); 15568 } 15569 return; 15570 } 15571 15572 sd_mark_rqs_busy(un, bp); 15573 sd_start_cmds(un, un->un_rqs_bp); 15574 15575 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15576 "sd_send_request_sense_command: exit\n"); 15577 } 15578 15579 15580 /* 15581 * Function: sd_mark_rqs_busy 15582 * 15583 * Description: Indicate that the request sense bp for this instance is 15584 * in use. 15585 * 15586 * Context: May be called under interrupt context 15587 */ 15588 15589 static void 15590 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 15591 { 15592 struct sd_xbuf *sense_xp; 15593 15594 ASSERT(un != NULL); 15595 ASSERT(bp != NULL); 15596 ASSERT(mutex_owned(SD_MUTEX(un))); 15597 ASSERT(un->un_sense_isbusy == 0); 15598 15599 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 15600 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 15601 15602 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 15603 ASSERT(sense_xp != NULL); 15604 15605 SD_INFO(SD_LOG_IO, un, 15606 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 15607 15608 ASSERT(sense_xp->xb_pktp != NULL); 15609 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 15610 == (FLAG_SENSING | FLAG_HEAD)); 15611 15612 un->un_sense_isbusy = 1; 15613 un->un_rqs_bp->b_resid = 0; 15614 sense_xp->xb_pktp->pkt_resid = 0; 15615 sense_xp->xb_pktp->pkt_reason = 0; 15616 15617 /* So we can get back the bp at interrupt time! */ 15618 sense_xp->xb_sense_bp = bp; 15619 15620 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 15621 15622 /* 15623 * Mark this buf as awaiting sense data. (This is already set in 15624 * the pkt_flags for the RQS packet.) 15625 */ 15626 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 15627 15628 /* Request sense down same path */ 15629 if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) && 15630 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance) 15631 sense_xp->xb_pktp->pkt_path_instance = 15632 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance; 15633 15634 sense_xp->xb_retry_count = 0; 15635 sense_xp->xb_victim_retry_count = 0; 15636 sense_xp->xb_ua_retry_count = 0; 15637 sense_xp->xb_nr_retry_count = 0; 15638 sense_xp->xb_dma_resid = 0; 15639 15640 /* Clean up the fields for auto-request sense */ 15641 sense_xp->xb_sense_status = 0; 15642 sense_xp->xb_sense_state = 0; 15643 sense_xp->xb_sense_resid = 0; 15644 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 15645 15646 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 15647 } 15648 15649 15650 /* 15651 * Function: sd_mark_rqs_idle 15652 * 15653 * Description: SD_MUTEX must be held continuously through this routine 15654 * to prevent reuse of the rqs struct before the caller can 15655 * complete it's processing. 15656 * 15657 * Return Code: Pointer to the RQS buf 15658 * 15659 * Context: May be called under interrupt context 15660 */ 15661 15662 static struct buf * 15663 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 15664 { 15665 struct buf *bp; 15666 ASSERT(un != NULL); 15667 ASSERT(sense_xp != NULL); 15668 ASSERT(mutex_owned(SD_MUTEX(un))); 15669 ASSERT(un->un_sense_isbusy != 0); 15670 15671 un->un_sense_isbusy = 0; 15672 bp = sense_xp->xb_sense_bp; 15673 sense_xp->xb_sense_bp = NULL; 15674 15675 /* This pkt is no longer interested in getting sense data */ 15676 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 15677 15678 return (bp); 15679 } 15680 15681 15682 15683 /* 15684 * Function: sd_alloc_rqs 15685 * 15686 * Description: Set up the unit to receive auto request sense data 15687 * 15688 * Return Code: DDI_SUCCESS or DDI_FAILURE 15689 * 15690 * Context: Called under attach(9E) context 15691 */ 15692 15693 static int 15694 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 15695 { 15696 struct sd_xbuf *xp; 15697 15698 ASSERT(un != NULL); 15699 ASSERT(!mutex_owned(SD_MUTEX(un))); 15700 ASSERT(un->un_rqs_bp == NULL); 15701 ASSERT(un->un_rqs_pktp == NULL); 15702 15703 /* 15704 * First allocate the required buf and scsi_pkt structs, then set up 15705 * the CDB in the scsi_pkt for a REQUEST SENSE command. 15706 */ 15707 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 15708 MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 15709 if (un->un_rqs_bp == NULL) { 15710 return (DDI_FAILURE); 15711 } 15712 15713 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 15714 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 15715 15716 if (un->un_rqs_pktp == NULL) { 15717 sd_free_rqs(un); 15718 return (DDI_FAILURE); 15719 } 15720 15721 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 15722 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 15723 SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0); 15724 15725 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 15726 15727 /* Set up the other needed members in the ARQ scsi_pkt. */ 15728 un->un_rqs_pktp->pkt_comp = sdintr; 15729 un->un_rqs_pktp->pkt_time = sd_io_time; 15730 un->un_rqs_pktp->pkt_flags |= 15731 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 15732 15733 /* 15734 * Allocate & init the sd_xbuf struct for the RQS command. Do not 15735 * provide any intpkt, destroypkt routines as we take care of 15736 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 15737 */ 15738 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 15739 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 15740 xp->xb_pktp = un->un_rqs_pktp; 15741 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15742 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 15743 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 15744 15745 /* 15746 * Save the pointer to the request sense private bp so it can 15747 * be retrieved in sdintr. 15748 */ 15749 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 15750 ASSERT(un->un_rqs_bp->b_private == xp); 15751 15752 /* 15753 * See if the HBA supports auto-request sense for the specified 15754 * target/lun. If it does, then try to enable it (if not already 15755 * enabled). 15756 * 15757 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 15758 * failure, while for other HBAs (pln) scsi_ifsetcap will always 15759 * return success. However, in both of these cases ARQ is always 15760 * enabled and scsi_ifgetcap will always return true. The best approach 15761 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 15762 * 15763 * The 3rd case is the HBA (adp) always return enabled on 15764 * scsi_ifgetgetcap even when it's not enable, the best approach 15765 * is issue a scsi_ifsetcap then a scsi_ifgetcap 15766 * Note: this case is to circumvent the Adaptec bug. (x86 only) 15767 */ 15768 15769 if (un->un_f_is_fibre == TRUE) { 15770 un->un_f_arq_enabled = TRUE; 15771 } else { 15772 #if defined(__i386) || defined(__amd64) 15773 /* 15774 * Circumvent the Adaptec bug, remove this code when 15775 * the bug is fixed 15776 */ 15777 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 15778 #endif 15779 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 15780 case 0: 15781 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15782 "sd_alloc_rqs: HBA supports ARQ\n"); 15783 /* 15784 * ARQ is supported by this HBA but currently is not 15785 * enabled. Attempt to enable it and if successful then 15786 * mark this instance as ARQ enabled. 15787 */ 15788 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 15789 == 1) { 15790 /* Successfully enabled ARQ in the HBA */ 15791 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15792 "sd_alloc_rqs: ARQ enabled\n"); 15793 un->un_f_arq_enabled = TRUE; 15794 } else { 15795 /* Could not enable ARQ in the HBA */ 15796 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15797 "sd_alloc_rqs: failed ARQ enable\n"); 15798 un->un_f_arq_enabled = FALSE; 15799 } 15800 break; 15801 case 1: 15802 /* 15803 * ARQ is supported by this HBA and is already enabled. 15804 * Just mark ARQ as enabled for this instance. 15805 */ 15806 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15807 "sd_alloc_rqs: ARQ already enabled\n"); 15808 un->un_f_arq_enabled = TRUE; 15809 break; 15810 default: 15811 /* 15812 * ARQ is not supported by this HBA; disable it for this 15813 * instance. 15814 */ 15815 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15816 "sd_alloc_rqs: HBA does not support ARQ\n"); 15817 un->un_f_arq_enabled = FALSE; 15818 break; 15819 } 15820 } 15821 15822 return (DDI_SUCCESS); 15823 } 15824 15825 15826 /* 15827 * Function: sd_free_rqs 15828 * 15829 * Description: Cleanup for the pre-instance RQS command. 15830 * 15831 * Context: Kernel thread context 15832 */ 15833 15834 static void 15835 sd_free_rqs(struct sd_lun *un) 15836 { 15837 ASSERT(un != NULL); 15838 15839 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 15840 15841 /* 15842 * If consistent memory is bound to a scsi_pkt, the pkt 15843 * has to be destroyed *before* freeing the consistent memory. 15844 * Don't change the sequence of this operations. 15845 * scsi_destroy_pkt() might access memory, which isn't allowed, 15846 * after it was freed in scsi_free_consistent_buf(). 15847 */ 15848 if (un->un_rqs_pktp != NULL) { 15849 scsi_destroy_pkt(un->un_rqs_pktp); 15850 un->un_rqs_pktp = NULL; 15851 } 15852 15853 if (un->un_rqs_bp != NULL) { 15854 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp); 15855 if (xp != NULL) { 15856 kmem_free(xp, sizeof (struct sd_xbuf)); 15857 } 15858 scsi_free_consistent_buf(un->un_rqs_bp); 15859 un->un_rqs_bp = NULL; 15860 } 15861 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 15862 } 15863 15864 15865 15866 /* 15867 * Function: sd_reduce_throttle 15868 * 15869 * Description: Reduces the maximum # of outstanding commands on a 15870 * target to the current number of outstanding commands. 15871 * Queues a tiemout(9F) callback to restore the limit 15872 * after a specified interval has elapsed. 15873 * Typically used when we get a TRAN_BUSY return code 15874 * back from scsi_transport(). 15875 * 15876 * Arguments: un - ptr to the sd_lun softstate struct 15877 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 15878 * 15879 * Context: May be called from interrupt context 15880 */ 15881 15882 static void 15883 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 15884 { 15885 ASSERT(un != NULL); 15886 ASSERT(mutex_owned(SD_MUTEX(un))); 15887 ASSERT(un->un_ncmds_in_transport >= 0); 15888 15889 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 15890 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 15891 un, un->un_throttle, un->un_ncmds_in_transport); 15892 15893 if (un->un_throttle > 1) { 15894 if (un->un_f_use_adaptive_throttle == TRUE) { 15895 switch (throttle_type) { 15896 case SD_THROTTLE_TRAN_BUSY: 15897 if (un->un_busy_throttle == 0) { 15898 un->un_busy_throttle = un->un_throttle; 15899 } 15900 break; 15901 case SD_THROTTLE_QFULL: 15902 un->un_busy_throttle = 0; 15903 break; 15904 default: 15905 ASSERT(FALSE); 15906 } 15907 15908 if (un->un_ncmds_in_transport > 0) { 15909 un->un_throttle = un->un_ncmds_in_transport; 15910 } 15911 15912 } else { 15913 if (un->un_ncmds_in_transport == 0) { 15914 un->un_throttle = 1; 15915 } else { 15916 un->un_throttle = un->un_ncmds_in_transport; 15917 } 15918 } 15919 } 15920 15921 /* Reschedule the timeout if none is currently active */ 15922 if (un->un_reset_throttle_timeid == NULL) { 15923 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 15924 un, SD_THROTTLE_RESET_INTERVAL); 15925 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15926 "sd_reduce_throttle: timeout scheduled!\n"); 15927 } 15928 15929 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 15930 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 15931 } 15932 15933 15934 15935 /* 15936 * Function: sd_restore_throttle 15937 * 15938 * Description: Callback function for timeout(9F). Resets the current 15939 * value of un->un_throttle to its default. 15940 * 15941 * Arguments: arg - pointer to associated softstate for the device. 15942 * 15943 * Context: May be called from interrupt context 15944 */ 15945 15946 static void 15947 sd_restore_throttle(void *arg) 15948 { 15949 struct sd_lun *un = arg; 15950 15951 ASSERT(un != NULL); 15952 ASSERT(!mutex_owned(SD_MUTEX(un))); 15953 15954 mutex_enter(SD_MUTEX(un)); 15955 15956 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 15957 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 15958 15959 un->un_reset_throttle_timeid = NULL; 15960 15961 if (un->un_f_use_adaptive_throttle == TRUE) { 15962 /* 15963 * If un_busy_throttle is nonzero, then it contains the 15964 * value that un_throttle was when we got a TRAN_BUSY back 15965 * from scsi_transport(). We want to revert back to this 15966 * value. 15967 * 15968 * In the QFULL case, the throttle limit will incrementally 15969 * increase until it reaches max throttle. 15970 */ 15971 if (un->un_busy_throttle > 0) { 15972 un->un_throttle = un->un_busy_throttle; 15973 un->un_busy_throttle = 0; 15974 } else { 15975 /* 15976 * increase throttle by 10% open gate slowly, schedule 15977 * another restore if saved throttle has not been 15978 * reached 15979 */ 15980 short throttle; 15981 if (sd_qfull_throttle_enable) { 15982 throttle = un->un_throttle + 15983 max((un->un_throttle / 10), 1); 15984 un->un_throttle = 15985 (throttle < un->un_saved_throttle) ? 15986 throttle : un->un_saved_throttle; 15987 if (un->un_throttle < un->un_saved_throttle) { 15988 un->un_reset_throttle_timeid = 15989 timeout(sd_restore_throttle, 15990 un, 15991 SD_QFULL_THROTTLE_RESET_INTERVAL); 15992 } 15993 } 15994 } 15995 15996 /* 15997 * If un_throttle has fallen below the low-water mark, we 15998 * restore the maximum value here (and allow it to ratchet 15999 * down again if necessary). 16000 */ 16001 if (un->un_throttle < un->un_min_throttle) { 16002 un->un_throttle = un->un_saved_throttle; 16003 } 16004 } else { 16005 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16006 "restoring limit from 0x%x to 0x%x\n", 16007 un->un_throttle, un->un_saved_throttle); 16008 un->un_throttle = un->un_saved_throttle; 16009 } 16010 16011 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16012 "sd_restore_throttle: calling sd_start_cmds!\n"); 16013 16014 sd_start_cmds(un, NULL); 16015 16016 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16017 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16018 un, un->un_throttle); 16019 16020 mutex_exit(SD_MUTEX(un)); 16021 16022 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16023 } 16024 16025 /* 16026 * Function: sdrunout 16027 * 16028 * Description: Callback routine for scsi_init_pkt when a resource allocation 16029 * fails. 16030 * 16031 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16032 * soft state instance. 16033 * 16034 * Return Code: The scsi_init_pkt routine allows for the callback function to 16035 * return a 0 indicating the callback should be rescheduled or a 1 16036 * indicating not to reschedule. This routine always returns 1 16037 * because the driver always provides a callback function to 16038 * scsi_init_pkt. This results in a callback always being scheduled 16039 * (via the scsi_init_pkt callback implementation) if a resource 16040 * failure occurs. 16041 * 16042 * Context: This callback function may not block or call routines that block 16043 * 16044 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16045 * request persisting at the head of the list which cannot be 16046 * satisfied even after multiple retries. In the future the driver 16047 * may implement some time of maximum runout count before failing 16048 * an I/O. 16049 */ 16050 16051 static int 16052 sdrunout(caddr_t arg) 16053 { 16054 struct sd_lun *un = (struct sd_lun *)arg; 16055 16056 ASSERT(un != NULL); 16057 ASSERT(!mutex_owned(SD_MUTEX(un))); 16058 16059 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16060 16061 mutex_enter(SD_MUTEX(un)); 16062 sd_start_cmds(un, NULL); 16063 mutex_exit(SD_MUTEX(un)); 16064 /* 16065 * This callback routine always returns 1 (i.e. do not reschedule) 16066 * because we always specify sdrunout as the callback handler for 16067 * scsi_init_pkt inside the call to sd_start_cmds. 16068 */ 16069 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16070 return (1); 16071 } 16072 16073 16074 /* 16075 * Function: sdintr 16076 * 16077 * Description: Completion callback routine for scsi_pkt(9S) structs 16078 * sent to the HBA driver via scsi_transport(9F). 16079 * 16080 * Context: Interrupt context 16081 */ 16082 16083 static void 16084 sdintr(struct scsi_pkt *pktp) 16085 { 16086 struct buf *bp; 16087 struct sd_xbuf *xp; 16088 struct sd_lun *un; 16089 size_t actual_len; 16090 sd_ssc_t *sscp; 16091 16092 ASSERT(pktp != NULL); 16093 bp = (struct buf *)pktp->pkt_private; 16094 ASSERT(bp != NULL); 16095 xp = SD_GET_XBUF(bp); 16096 ASSERT(xp != NULL); 16097 ASSERT(xp->xb_pktp != NULL); 16098 un = SD_GET_UN(bp); 16099 ASSERT(un != NULL); 16100 ASSERT(!mutex_owned(SD_MUTEX(un))); 16101 16102 #ifdef SD_FAULT_INJECTION 16103 16104 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16105 /* SD FaultInjection */ 16106 sd_faultinjection(pktp); 16107 16108 #endif /* SD_FAULT_INJECTION */ 16109 16110 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16111 " xp:0x%p, un:0x%p\n", bp, xp, un); 16112 16113 mutex_enter(SD_MUTEX(un)); 16114 16115 ASSERT(un->un_fm_private != NULL); 16116 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16117 ASSERT(sscp != NULL); 16118 16119 /* Reduce the count of the #commands currently in transport */ 16120 un->un_ncmds_in_transport--; 16121 ASSERT(un->un_ncmds_in_transport >= 0); 16122 16123 /* Increment counter to indicate that the callback routine is active */ 16124 un->un_in_callback++; 16125 16126 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16127 16128 #ifdef SDDEBUG 16129 if (bp == un->un_retry_bp) { 16130 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16131 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16132 un, un->un_retry_bp, un->un_ncmds_in_transport); 16133 } 16134 #endif 16135 16136 /* 16137 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 16138 * state if needed. 16139 */ 16140 if (pktp->pkt_reason == CMD_DEV_GONE) { 16141 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16142 "Command failed to complete...Device is gone\n"); 16143 if (un->un_mediastate != DKIO_DEV_GONE) { 16144 un->un_mediastate = DKIO_DEV_GONE; 16145 cv_broadcast(&un->un_state_cv); 16146 } 16147 sd_return_failed_command(un, bp, EIO); 16148 goto exit; 16149 } 16150 16151 if (pktp->pkt_state & STATE_XARQ_DONE) { 16152 SD_TRACE(SD_LOG_COMMON, un, 16153 "sdintr: extra sense data received. pkt=%p\n", pktp); 16154 } 16155 16156 /* 16157 * First see if the pkt has auto-request sense data with it.... 16158 * Look at the packet state first so we don't take a performance 16159 * hit looking at the arq enabled flag unless absolutely necessary. 16160 */ 16161 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16162 (un->un_f_arq_enabled == TRUE)) { 16163 /* 16164 * The HBA did an auto request sense for this command so check 16165 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16166 * driver command that should not be retried. 16167 */ 16168 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16169 /* 16170 * Save the relevant sense info into the xp for the 16171 * original cmd. 16172 */ 16173 struct scsi_arq_status *asp; 16174 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16175 xp->xb_sense_status = 16176 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16177 xp->xb_sense_state = asp->sts_rqpkt_state; 16178 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16179 if (pktp->pkt_state & STATE_XARQ_DONE) { 16180 actual_len = MAX_SENSE_LENGTH - 16181 xp->xb_sense_resid; 16182 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16183 MAX_SENSE_LENGTH); 16184 } else { 16185 if (xp->xb_sense_resid > SENSE_LENGTH) { 16186 actual_len = MAX_SENSE_LENGTH - 16187 xp->xb_sense_resid; 16188 } else { 16189 actual_len = SENSE_LENGTH - 16190 xp->xb_sense_resid; 16191 } 16192 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16193 if ((((struct uscsi_cmd *) 16194 (xp->xb_pktinfo))->uscsi_rqlen) > 16195 actual_len) { 16196 xp->xb_sense_resid = 16197 (((struct uscsi_cmd *) 16198 (xp->xb_pktinfo))-> 16199 uscsi_rqlen) - actual_len; 16200 } else { 16201 xp->xb_sense_resid = 0; 16202 } 16203 } 16204 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16205 SENSE_LENGTH); 16206 } 16207 16208 /* fail the command */ 16209 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16210 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16211 sd_return_failed_command(un, bp, EIO); 16212 goto exit; 16213 } 16214 16215 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16216 /* 16217 * We want to either retry or fail this command, so free 16218 * the DMA resources here. If we retry the command then 16219 * the DMA resources will be reallocated in sd_start_cmds(). 16220 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16221 * causes the *entire* transfer to start over again from the 16222 * beginning of the request, even for PARTIAL chunks that 16223 * have already transferred successfully. 16224 */ 16225 if ((un->un_f_is_fibre == TRUE) && 16226 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16227 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16228 scsi_dmafree(pktp); 16229 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16230 } 16231 #endif 16232 16233 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16234 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16235 16236 sd_handle_auto_request_sense(un, bp, xp, pktp); 16237 goto exit; 16238 } 16239 16240 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16241 if (pktp->pkt_flags & FLAG_SENSING) { 16242 /* This pktp is from the unit's REQUEST_SENSE command */ 16243 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16244 "sdintr: sd_handle_request_sense\n"); 16245 sd_handle_request_sense(un, bp, xp, pktp); 16246 goto exit; 16247 } 16248 16249 /* 16250 * Check to see if the command successfully completed as requested; 16251 * this is the most common case (and also the hot performance path). 16252 * 16253 * Requirements for successful completion are: 16254 * pkt_reason is CMD_CMPLT and packet status is status good. 16255 * In addition: 16256 * - A residual of zero indicates successful completion no matter what 16257 * the command is. 16258 * - If the residual is not zero and the command is not a read or 16259 * write, then it's still defined as successful completion. In other 16260 * words, if the command is a read or write the residual must be 16261 * zero for successful completion. 16262 * - If the residual is not zero and the command is a read or 16263 * write, and it's a USCSICMD, then it's still defined as 16264 * successful completion. 16265 */ 16266 if ((pktp->pkt_reason == CMD_CMPLT) && 16267 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16268 16269 /* 16270 * Since this command is returned with a good status, we 16271 * can reset the count for Sonoma failover. 16272 */ 16273 un->un_sonoma_failure_count = 0; 16274 16275 /* 16276 * Return all USCSI commands on good status 16277 */ 16278 if (pktp->pkt_resid == 0) { 16279 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16280 "sdintr: returning command for resid == 0\n"); 16281 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 16282 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 16283 SD_UPDATE_B_RESID(bp, pktp); 16284 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16285 "sdintr: returning command for resid != 0\n"); 16286 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16287 SD_UPDATE_B_RESID(bp, pktp); 16288 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16289 "sdintr: returning uscsi command\n"); 16290 } else { 16291 goto not_successful; 16292 } 16293 sd_return_command(un, bp); 16294 16295 /* 16296 * Decrement counter to indicate that the callback routine 16297 * is done. 16298 */ 16299 un->un_in_callback--; 16300 ASSERT(un->un_in_callback >= 0); 16301 mutex_exit(SD_MUTEX(un)); 16302 16303 return; 16304 } 16305 16306 not_successful: 16307 16308 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16309 /* 16310 * The following is based upon knowledge of the underlying transport 16311 * and its use of DMA resources. This code should be removed when 16312 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 16313 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 16314 * and sd_start_cmds(). 16315 * 16316 * Free any DMA resources associated with this command if there 16317 * is a chance it could be retried or enqueued for later retry. 16318 * If we keep the DMA binding then mpxio cannot reissue the 16319 * command on another path whenever a path failure occurs. 16320 * 16321 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 16322 * causes the *entire* transfer to start over again from the 16323 * beginning of the request, even for PARTIAL chunks that 16324 * have already transferred successfully. 16325 * 16326 * This is only done for non-uscsi commands (and also skipped for the 16327 * driver's internal RQS command). Also just do this for Fibre Channel 16328 * devices as these are the only ones that support mpxio. 16329 */ 16330 if ((un->un_f_is_fibre == TRUE) && 16331 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16332 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16333 scsi_dmafree(pktp); 16334 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16335 } 16336 #endif 16337 16338 /* 16339 * The command did not successfully complete as requested so check 16340 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16341 * driver command that should not be retried so just return. If 16342 * FLAG_DIAGNOSE is not set the error will be processed below. 16343 */ 16344 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16345 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16346 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 16347 /* 16348 * Issue a request sense if a check condition caused the error 16349 * (we handle the auto request sense case above), otherwise 16350 * just fail the command. 16351 */ 16352 if ((pktp->pkt_reason == CMD_CMPLT) && 16353 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 16354 sd_send_request_sense_command(un, bp, pktp); 16355 } else { 16356 sd_return_failed_command(un, bp, EIO); 16357 } 16358 goto exit; 16359 } 16360 16361 /* 16362 * The command did not successfully complete as requested so process 16363 * the error, retry, and/or attempt recovery. 16364 */ 16365 switch (pktp->pkt_reason) { 16366 case CMD_CMPLT: 16367 switch (SD_GET_PKT_STATUS(pktp)) { 16368 case STATUS_GOOD: 16369 /* 16370 * The command completed successfully with a non-zero 16371 * residual 16372 */ 16373 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16374 "sdintr: STATUS_GOOD \n"); 16375 sd_pkt_status_good(un, bp, xp, pktp); 16376 break; 16377 16378 case STATUS_CHECK: 16379 case STATUS_TERMINATED: 16380 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16381 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 16382 sd_pkt_status_check_condition(un, bp, xp, pktp); 16383 break; 16384 16385 case STATUS_BUSY: 16386 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16387 "sdintr: STATUS_BUSY\n"); 16388 sd_pkt_status_busy(un, bp, xp, pktp); 16389 break; 16390 16391 case STATUS_RESERVATION_CONFLICT: 16392 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16393 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 16394 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16395 break; 16396 16397 case STATUS_QFULL: 16398 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16399 "sdintr: STATUS_QFULL\n"); 16400 sd_pkt_status_qfull(un, bp, xp, pktp); 16401 break; 16402 16403 case STATUS_MET: 16404 case STATUS_INTERMEDIATE: 16405 case STATUS_SCSI2: 16406 case STATUS_INTERMEDIATE_MET: 16407 case STATUS_ACA_ACTIVE: 16408 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16409 "Unexpected SCSI status received: 0x%x\n", 16410 SD_GET_PKT_STATUS(pktp)); 16411 /* 16412 * Mark the ssc_flags when detected invalid status 16413 * code for non-USCSI command. 16414 */ 16415 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16416 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 16417 0, "stat-code"); 16418 } 16419 sd_return_failed_command(un, bp, EIO); 16420 break; 16421 16422 default: 16423 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16424 "Invalid SCSI status received: 0x%x\n", 16425 SD_GET_PKT_STATUS(pktp)); 16426 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16427 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 16428 0, "stat-code"); 16429 } 16430 sd_return_failed_command(un, bp, EIO); 16431 break; 16432 16433 } 16434 break; 16435 16436 case CMD_INCOMPLETE: 16437 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16438 "sdintr: CMD_INCOMPLETE\n"); 16439 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 16440 break; 16441 case CMD_TRAN_ERR: 16442 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16443 "sdintr: CMD_TRAN_ERR\n"); 16444 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 16445 break; 16446 case CMD_RESET: 16447 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16448 "sdintr: CMD_RESET \n"); 16449 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 16450 break; 16451 case CMD_ABORTED: 16452 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16453 "sdintr: CMD_ABORTED \n"); 16454 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 16455 break; 16456 case CMD_TIMEOUT: 16457 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16458 "sdintr: CMD_TIMEOUT\n"); 16459 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 16460 break; 16461 case CMD_UNX_BUS_FREE: 16462 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16463 "sdintr: CMD_UNX_BUS_FREE \n"); 16464 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 16465 break; 16466 case CMD_TAG_REJECT: 16467 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16468 "sdintr: CMD_TAG_REJECT\n"); 16469 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 16470 break; 16471 default: 16472 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16473 "sdintr: default\n"); 16474 /* 16475 * Mark the ssc_flags for detecting invliad pkt_reason. 16476 */ 16477 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16478 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON, 16479 0, "pkt-reason"); 16480 } 16481 sd_pkt_reason_default(un, bp, xp, pktp); 16482 break; 16483 } 16484 16485 exit: 16486 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 16487 16488 /* Decrement counter to indicate that the callback routine is done. */ 16489 un->un_in_callback--; 16490 ASSERT(un->un_in_callback >= 0); 16491 16492 /* 16493 * At this point, the pkt has been dispatched, ie, it is either 16494 * being re-tried or has been returned to its caller and should 16495 * not be referenced. 16496 */ 16497 16498 mutex_exit(SD_MUTEX(un)); 16499 } 16500 16501 16502 /* 16503 * Function: sd_print_incomplete_msg 16504 * 16505 * Description: Prints the error message for a CMD_INCOMPLETE error. 16506 * 16507 * Arguments: un - ptr to associated softstate for the device. 16508 * bp - ptr to the buf(9S) for the command. 16509 * arg - message string ptr 16510 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 16511 * or SD_NO_RETRY_ISSUED. 16512 * 16513 * Context: May be called under interrupt context 16514 */ 16515 16516 static void 16517 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 16518 { 16519 struct scsi_pkt *pktp; 16520 char *msgp; 16521 char *cmdp = arg; 16522 16523 ASSERT(un != NULL); 16524 ASSERT(mutex_owned(SD_MUTEX(un))); 16525 ASSERT(bp != NULL); 16526 ASSERT(arg != NULL); 16527 pktp = SD_GET_PKTP(bp); 16528 ASSERT(pktp != NULL); 16529 16530 switch (code) { 16531 case SD_DELAYED_RETRY_ISSUED: 16532 case SD_IMMEDIATE_RETRY_ISSUED: 16533 msgp = "retrying"; 16534 break; 16535 case SD_NO_RETRY_ISSUED: 16536 default: 16537 msgp = "giving up"; 16538 break; 16539 } 16540 16541 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16542 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16543 "incomplete %s- %s\n", cmdp, msgp); 16544 } 16545 } 16546 16547 16548 16549 /* 16550 * Function: sd_pkt_status_good 16551 * 16552 * Description: Processing for a STATUS_GOOD code in pkt_status. 16553 * 16554 * Context: May be called under interrupt context 16555 */ 16556 16557 static void 16558 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 16559 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16560 { 16561 char *cmdp; 16562 16563 ASSERT(un != NULL); 16564 ASSERT(mutex_owned(SD_MUTEX(un))); 16565 ASSERT(bp != NULL); 16566 ASSERT(xp != NULL); 16567 ASSERT(pktp != NULL); 16568 ASSERT(pktp->pkt_reason == CMD_CMPLT); 16569 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 16570 ASSERT(pktp->pkt_resid != 0); 16571 16572 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 16573 16574 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16575 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 16576 case SCMD_READ: 16577 cmdp = "read"; 16578 break; 16579 case SCMD_WRITE: 16580 cmdp = "write"; 16581 break; 16582 default: 16583 SD_UPDATE_B_RESID(bp, pktp); 16584 sd_return_command(un, bp); 16585 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16586 return; 16587 } 16588 16589 /* 16590 * See if we can retry the read/write, preferrably immediately. 16591 * If retries are exhaused, then sd_retry_command() will update 16592 * the b_resid count. 16593 */ 16594 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 16595 cmdp, EIO, (clock_t)0, NULL); 16596 16597 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16598 } 16599 16600 16601 16602 16603 16604 /* 16605 * Function: sd_handle_request_sense 16606 * 16607 * Description: Processing for non-auto Request Sense command. 16608 * 16609 * Arguments: un - ptr to associated softstate 16610 * sense_bp - ptr to buf(9S) for the RQS command 16611 * sense_xp - ptr to the sd_xbuf for the RQS command 16612 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 16613 * 16614 * Context: May be called under interrupt context 16615 */ 16616 16617 static void 16618 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 16619 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 16620 { 16621 struct buf *cmd_bp; /* buf for the original command */ 16622 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 16623 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 16624 size_t actual_len; /* actual sense data length */ 16625 16626 ASSERT(un != NULL); 16627 ASSERT(mutex_owned(SD_MUTEX(un))); 16628 ASSERT(sense_bp != NULL); 16629 ASSERT(sense_xp != NULL); 16630 ASSERT(sense_pktp != NULL); 16631 16632 /* 16633 * Note the sense_bp, sense_xp, and sense_pktp here are for the 16634 * RQS command and not the original command. 16635 */ 16636 ASSERT(sense_pktp == un->un_rqs_pktp); 16637 ASSERT(sense_bp == un->un_rqs_bp); 16638 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 16639 (FLAG_SENSING | FLAG_HEAD)); 16640 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 16641 FLAG_SENSING) == FLAG_SENSING); 16642 16643 /* These are the bp, xp, and pktp for the original command */ 16644 cmd_bp = sense_xp->xb_sense_bp; 16645 cmd_xp = SD_GET_XBUF(cmd_bp); 16646 cmd_pktp = SD_GET_PKTP(cmd_bp); 16647 16648 if (sense_pktp->pkt_reason != CMD_CMPLT) { 16649 /* 16650 * The REQUEST SENSE command failed. Release the REQUEST 16651 * SENSE command for re-use, get back the bp for the original 16652 * command, and attempt to re-try the original command if 16653 * FLAG_DIAGNOSE is not set in the original packet. 16654 */ 16655 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16656 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16657 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 16658 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 16659 NULL, NULL, EIO, (clock_t)0, NULL); 16660 return; 16661 } 16662 } 16663 16664 /* 16665 * Save the relevant sense info into the xp for the original cmd. 16666 * 16667 * Note: if the request sense failed the state info will be zero 16668 * as set in sd_mark_rqs_busy() 16669 */ 16670 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 16671 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 16672 actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid; 16673 if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) && 16674 (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen > 16675 SENSE_LENGTH)) { 16676 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 16677 MAX_SENSE_LENGTH); 16678 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 16679 } else { 16680 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 16681 SENSE_LENGTH); 16682 if (actual_len < SENSE_LENGTH) { 16683 cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len; 16684 } else { 16685 cmd_xp->xb_sense_resid = 0; 16686 } 16687 } 16688 16689 /* 16690 * Free up the RQS command.... 16691 * NOTE: 16692 * Must do this BEFORE calling sd_validate_sense_data! 16693 * sd_validate_sense_data may return the original command in 16694 * which case the pkt will be freed and the flags can no 16695 * longer be touched. 16696 * SD_MUTEX is held through this process until the command 16697 * is dispatched based upon the sense data, so there are 16698 * no race conditions. 16699 */ 16700 (void) sd_mark_rqs_idle(un, sense_xp); 16701 16702 /* 16703 * For a retryable command see if we have valid sense data, if so then 16704 * turn it over to sd_decode_sense() to figure out the right course of 16705 * action. Just fail a non-retryable command. 16706 */ 16707 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16708 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) == 16709 SD_SENSE_DATA_IS_VALID) { 16710 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 16711 } 16712 } else { 16713 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 16714 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 16715 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 16716 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 16717 sd_return_failed_command(un, cmd_bp, EIO); 16718 } 16719 } 16720 16721 16722 16723 16724 /* 16725 * Function: sd_handle_auto_request_sense 16726 * 16727 * Description: Processing for auto-request sense information. 16728 * 16729 * Arguments: un - ptr to associated softstate 16730 * bp - ptr to buf(9S) for the command 16731 * xp - ptr to the sd_xbuf for the command 16732 * pktp - ptr to the scsi_pkt(9S) for the command 16733 * 16734 * Context: May be called under interrupt context 16735 */ 16736 16737 static void 16738 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 16739 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16740 { 16741 struct scsi_arq_status *asp; 16742 size_t actual_len; 16743 16744 ASSERT(un != NULL); 16745 ASSERT(mutex_owned(SD_MUTEX(un))); 16746 ASSERT(bp != NULL); 16747 ASSERT(xp != NULL); 16748 ASSERT(pktp != NULL); 16749 ASSERT(pktp != un->un_rqs_pktp); 16750 ASSERT(bp != un->un_rqs_bp); 16751 16752 /* 16753 * For auto-request sense, we get a scsi_arq_status back from 16754 * the HBA, with the sense data in the sts_sensedata member. 16755 * The pkt_scbp of the packet points to this scsi_arq_status. 16756 */ 16757 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16758 16759 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 16760 /* 16761 * The auto REQUEST SENSE failed; see if we can re-try 16762 * the original command. 16763 */ 16764 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16765 "auto request sense failed (reason=%s)\n", 16766 scsi_rname(asp->sts_rqpkt_reason)); 16767 16768 sd_reset_target(un, pktp); 16769 16770 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 16771 NULL, NULL, EIO, (clock_t)0, NULL); 16772 return; 16773 } 16774 16775 /* Save the relevant sense info into the xp for the original cmd. */ 16776 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 16777 xp->xb_sense_state = asp->sts_rqpkt_state; 16778 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16779 if (xp->xb_sense_state & STATE_XARQ_DONE) { 16780 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 16781 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16782 MAX_SENSE_LENGTH); 16783 } else { 16784 if (xp->xb_sense_resid > SENSE_LENGTH) { 16785 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 16786 } else { 16787 actual_len = SENSE_LENGTH - xp->xb_sense_resid; 16788 } 16789 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16790 if ((((struct uscsi_cmd *) 16791 (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) { 16792 xp->xb_sense_resid = (((struct uscsi_cmd *) 16793 (xp->xb_pktinfo))->uscsi_rqlen) - 16794 actual_len; 16795 } else { 16796 xp->xb_sense_resid = 0; 16797 } 16798 } 16799 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH); 16800 } 16801 16802 /* 16803 * See if we have valid sense data, if so then turn it over to 16804 * sd_decode_sense() to figure out the right course of action. 16805 */ 16806 if (sd_validate_sense_data(un, bp, xp, actual_len) == 16807 SD_SENSE_DATA_IS_VALID) { 16808 sd_decode_sense(un, bp, xp, pktp); 16809 } 16810 } 16811 16812 16813 /* 16814 * Function: sd_print_sense_failed_msg 16815 * 16816 * Description: Print log message when RQS has failed. 16817 * 16818 * Arguments: un - ptr to associated softstate 16819 * bp - ptr to buf(9S) for the command 16820 * arg - generic message string ptr 16821 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 16822 * or SD_NO_RETRY_ISSUED 16823 * 16824 * Context: May be called from interrupt context 16825 */ 16826 16827 static void 16828 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 16829 int code) 16830 { 16831 char *msgp = arg; 16832 16833 ASSERT(un != NULL); 16834 ASSERT(mutex_owned(SD_MUTEX(un))); 16835 ASSERT(bp != NULL); 16836 16837 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 16838 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 16839 } 16840 } 16841 16842 16843 /* 16844 * Function: sd_validate_sense_data 16845 * 16846 * Description: Check the given sense data for validity. 16847 * If the sense data is not valid, the command will 16848 * be either failed or retried! 16849 * 16850 * Return Code: SD_SENSE_DATA_IS_INVALID 16851 * SD_SENSE_DATA_IS_VALID 16852 * 16853 * Context: May be called from interrupt context 16854 */ 16855 16856 static int 16857 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 16858 size_t actual_len) 16859 { 16860 struct scsi_extended_sense *esp; 16861 struct scsi_pkt *pktp; 16862 char *msgp = NULL; 16863 sd_ssc_t *sscp; 16864 16865 ASSERT(un != NULL); 16866 ASSERT(mutex_owned(SD_MUTEX(un))); 16867 ASSERT(bp != NULL); 16868 ASSERT(bp != un->un_rqs_bp); 16869 ASSERT(xp != NULL); 16870 ASSERT(un->un_fm_private != NULL); 16871 16872 pktp = SD_GET_PKTP(bp); 16873 ASSERT(pktp != NULL); 16874 16875 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16876 ASSERT(sscp != NULL); 16877 16878 /* 16879 * Check the status of the RQS command (auto or manual). 16880 */ 16881 switch (xp->xb_sense_status & STATUS_MASK) { 16882 case STATUS_GOOD: 16883 break; 16884 16885 case STATUS_RESERVATION_CONFLICT: 16886 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16887 return (SD_SENSE_DATA_IS_INVALID); 16888 16889 case STATUS_BUSY: 16890 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16891 "Busy Status on REQUEST SENSE\n"); 16892 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 16893 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 16894 return (SD_SENSE_DATA_IS_INVALID); 16895 16896 case STATUS_QFULL: 16897 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16898 "QFULL Status on REQUEST SENSE\n"); 16899 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 16900 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 16901 return (SD_SENSE_DATA_IS_INVALID); 16902 16903 case STATUS_CHECK: 16904 case STATUS_TERMINATED: 16905 msgp = "Check Condition on REQUEST SENSE\n"; 16906 goto sense_failed; 16907 16908 default: 16909 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 16910 goto sense_failed; 16911 } 16912 16913 /* 16914 * See if we got the minimum required amount of sense data. 16915 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 16916 * or less. 16917 */ 16918 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 16919 (actual_len == 0)) { 16920 msgp = "Request Sense couldn't get sense data\n"; 16921 goto sense_failed; 16922 } 16923 16924 if (actual_len < SUN_MIN_SENSE_LENGTH) { 16925 msgp = "Not enough sense information\n"; 16926 /* Mark the ssc_flags for detecting invalid sense data */ 16927 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16928 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 16929 "sense-data"); 16930 } 16931 goto sense_failed; 16932 } 16933 16934 /* 16935 * We require the extended sense data 16936 */ 16937 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 16938 if (esp->es_class != CLASS_EXTENDED_SENSE) { 16939 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16940 static char tmp[8]; 16941 static char buf[148]; 16942 char *p = (char *)(xp->xb_sense_data); 16943 int i; 16944 16945 mutex_enter(&sd_sense_mutex); 16946 (void) strcpy(buf, "undecodable sense information:"); 16947 for (i = 0; i < actual_len; i++) { 16948 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 16949 (void) strcpy(&buf[strlen(buf)], tmp); 16950 } 16951 i = strlen(buf); 16952 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 16953 16954 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 16955 scsi_log(SD_DEVINFO(un), sd_label, 16956 CE_WARN, buf); 16957 } 16958 mutex_exit(&sd_sense_mutex); 16959 } 16960 16961 /* Mark the ssc_flags for detecting invalid sense data */ 16962 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16963 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 16964 "sense-data"); 16965 } 16966 16967 /* Note: Legacy behavior, fail the command with no retry */ 16968 sd_return_failed_command(un, bp, EIO); 16969 return (SD_SENSE_DATA_IS_INVALID); 16970 } 16971 16972 /* 16973 * Check that es_code is valid (es_class concatenated with es_code 16974 * make up the "response code" field. es_class will always be 7, so 16975 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 16976 * format. 16977 */ 16978 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 16979 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 16980 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 16981 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 16982 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 16983 /* Mark the ssc_flags for detecting invalid sense data */ 16984 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16985 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 16986 "sense-data"); 16987 } 16988 goto sense_failed; 16989 } 16990 16991 return (SD_SENSE_DATA_IS_VALID); 16992 16993 sense_failed: 16994 /* 16995 * If the request sense failed (for whatever reason), attempt 16996 * to retry the original command. 16997 */ 16998 #if defined(__i386) || defined(__amd64) 16999 /* 17000 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17001 * sddef.h for Sparc platform, and x86 uses 1 binary 17002 * for both SCSI/FC. 17003 * The SD_RETRY_DELAY value need to be adjusted here 17004 * when SD_RETRY_DELAY change in sddef.h 17005 */ 17006 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17007 sd_print_sense_failed_msg, msgp, EIO, 17008 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17009 #else 17010 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17011 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17012 #endif 17013 17014 return (SD_SENSE_DATA_IS_INVALID); 17015 } 17016 17017 /* 17018 * Function: sd_decode_sense 17019 * 17020 * Description: Take recovery action(s) when SCSI Sense Data is received. 17021 * 17022 * Context: Interrupt context. 17023 */ 17024 17025 static void 17026 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17027 struct scsi_pkt *pktp) 17028 { 17029 uint8_t sense_key; 17030 17031 ASSERT(un != NULL); 17032 ASSERT(mutex_owned(SD_MUTEX(un))); 17033 ASSERT(bp != NULL); 17034 ASSERT(bp != un->un_rqs_bp); 17035 ASSERT(xp != NULL); 17036 ASSERT(pktp != NULL); 17037 17038 sense_key = scsi_sense_key(xp->xb_sense_data); 17039 17040 switch (sense_key) { 17041 case KEY_NO_SENSE: 17042 sd_sense_key_no_sense(un, bp, xp, pktp); 17043 break; 17044 case KEY_RECOVERABLE_ERROR: 17045 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17046 bp, xp, pktp); 17047 break; 17048 case KEY_NOT_READY: 17049 sd_sense_key_not_ready(un, xp->xb_sense_data, 17050 bp, xp, pktp); 17051 break; 17052 case KEY_MEDIUM_ERROR: 17053 case KEY_HARDWARE_ERROR: 17054 sd_sense_key_medium_or_hardware_error(un, 17055 xp->xb_sense_data, bp, xp, pktp); 17056 break; 17057 case KEY_ILLEGAL_REQUEST: 17058 sd_sense_key_illegal_request(un, bp, xp, pktp); 17059 break; 17060 case KEY_UNIT_ATTENTION: 17061 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17062 bp, xp, pktp); 17063 break; 17064 case KEY_WRITE_PROTECT: 17065 case KEY_VOLUME_OVERFLOW: 17066 case KEY_MISCOMPARE: 17067 sd_sense_key_fail_command(un, bp, xp, pktp); 17068 break; 17069 case KEY_BLANK_CHECK: 17070 sd_sense_key_blank_check(un, bp, xp, pktp); 17071 break; 17072 case KEY_ABORTED_COMMAND: 17073 sd_sense_key_aborted_command(un, bp, xp, pktp); 17074 break; 17075 case KEY_VENDOR_UNIQUE: 17076 case KEY_COPY_ABORTED: 17077 case KEY_EQUAL: 17078 case KEY_RESERVED: 17079 default: 17080 sd_sense_key_default(un, xp->xb_sense_data, 17081 bp, xp, pktp); 17082 break; 17083 } 17084 } 17085 17086 17087 /* 17088 * Function: sd_dump_memory 17089 * 17090 * Description: Debug logging routine to print the contents of a user provided 17091 * buffer. The output of the buffer is broken up into 256 byte 17092 * segments due to a size constraint of the scsi_log. 17093 * implementation. 17094 * 17095 * Arguments: un - ptr to softstate 17096 * comp - component mask 17097 * title - "title" string to preceed data when printed 17098 * data - ptr to data block to be printed 17099 * len - size of data block to be printed 17100 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17101 * 17102 * Context: May be called from interrupt context 17103 */ 17104 17105 #define SD_DUMP_MEMORY_BUF_SIZE 256 17106 17107 static char *sd_dump_format_string[] = { 17108 " 0x%02x", 17109 " %c" 17110 }; 17111 17112 static void 17113 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17114 int len, int fmt) 17115 { 17116 int i, j; 17117 int avail_count; 17118 int start_offset; 17119 int end_offset; 17120 size_t entry_len; 17121 char *bufp; 17122 char *local_buf; 17123 char *format_string; 17124 17125 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17126 17127 /* 17128 * In the debug version of the driver, this function is called from a 17129 * number of places which are NOPs in the release driver. 17130 * The debug driver therefore has additional methods of filtering 17131 * debug output. 17132 */ 17133 #ifdef SDDEBUG 17134 /* 17135 * In the debug version of the driver we can reduce the amount of debug 17136 * messages by setting sd_error_level to something other than 17137 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17138 * sd_component_mask. 17139 */ 17140 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17141 (sd_error_level != SCSI_ERR_ALL)) { 17142 return; 17143 } 17144 if (((sd_component_mask & comp) == 0) || 17145 (sd_error_level != SCSI_ERR_ALL)) { 17146 return; 17147 } 17148 #else 17149 if (sd_error_level != SCSI_ERR_ALL) { 17150 return; 17151 } 17152 #endif 17153 17154 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17155 bufp = local_buf; 17156 /* 17157 * Available length is the length of local_buf[], minus the 17158 * length of the title string, minus one for the ":", minus 17159 * one for the newline, minus one for the NULL terminator. 17160 * This gives the #bytes available for holding the printed 17161 * values from the given data buffer. 17162 */ 17163 if (fmt == SD_LOG_HEX) { 17164 format_string = sd_dump_format_string[0]; 17165 } else /* SD_LOG_CHAR */ { 17166 format_string = sd_dump_format_string[1]; 17167 } 17168 /* 17169 * Available count is the number of elements from the given 17170 * data buffer that we can fit into the available length. 17171 * This is based upon the size of the format string used. 17172 * Make one entry and find it's size. 17173 */ 17174 (void) sprintf(bufp, format_string, data[0]); 17175 entry_len = strlen(bufp); 17176 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17177 17178 j = 0; 17179 while (j < len) { 17180 bufp = local_buf; 17181 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17182 start_offset = j; 17183 17184 end_offset = start_offset + avail_count; 17185 17186 (void) sprintf(bufp, "%s:", title); 17187 bufp += strlen(bufp); 17188 for (i = start_offset; ((i < end_offset) && (j < len)); 17189 i++, j++) { 17190 (void) sprintf(bufp, format_string, data[i]); 17191 bufp += entry_len; 17192 } 17193 (void) sprintf(bufp, "\n"); 17194 17195 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17196 } 17197 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17198 } 17199 17200 /* 17201 * Function: sd_print_sense_msg 17202 * 17203 * Description: Log a message based upon the given sense data. 17204 * 17205 * Arguments: un - ptr to associated softstate 17206 * bp - ptr to buf(9S) for the command 17207 * arg - ptr to associate sd_sense_info struct 17208 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17209 * or SD_NO_RETRY_ISSUED 17210 * 17211 * Context: May be called from interrupt context 17212 */ 17213 17214 static void 17215 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17216 { 17217 struct sd_xbuf *xp; 17218 struct scsi_pkt *pktp; 17219 uint8_t *sensep; 17220 daddr_t request_blkno; 17221 diskaddr_t err_blkno; 17222 int severity; 17223 int pfa_flag; 17224 extern struct scsi_key_strings scsi_cmds[]; 17225 17226 ASSERT(un != NULL); 17227 ASSERT(mutex_owned(SD_MUTEX(un))); 17228 ASSERT(bp != NULL); 17229 xp = SD_GET_XBUF(bp); 17230 ASSERT(xp != NULL); 17231 pktp = SD_GET_PKTP(bp); 17232 ASSERT(pktp != NULL); 17233 ASSERT(arg != NULL); 17234 17235 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17236 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17237 17238 if ((code == SD_DELAYED_RETRY_ISSUED) || 17239 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17240 severity = SCSI_ERR_RETRYABLE; 17241 } 17242 17243 /* Use absolute block number for the request block number */ 17244 request_blkno = xp->xb_blkno; 17245 17246 /* 17247 * Now try to get the error block number from the sense data 17248 */ 17249 sensep = xp->xb_sense_data; 17250 17251 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 17252 (uint64_t *)&err_blkno)) { 17253 /* 17254 * We retrieved the error block number from the information 17255 * portion of the sense data. 17256 * 17257 * For USCSI commands we are better off using the error 17258 * block no. as the requested block no. (This is the best 17259 * we can estimate.) 17260 */ 17261 if ((SD_IS_BUFIO(xp) == FALSE) && 17262 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17263 request_blkno = err_blkno; 17264 } 17265 } else { 17266 /* 17267 * Without the es_valid bit set (for fixed format) or an 17268 * information descriptor (for descriptor format) we cannot 17269 * be certain of the error blkno, so just use the 17270 * request_blkno. 17271 */ 17272 err_blkno = (diskaddr_t)request_blkno; 17273 } 17274 17275 /* 17276 * The following will log the buffer contents for the release driver 17277 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 17278 * level is set to verbose. 17279 */ 17280 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 17281 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17282 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 17283 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 17284 17285 if (pfa_flag == FALSE) { 17286 /* This is normally only set for USCSI */ 17287 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 17288 return; 17289 } 17290 17291 if ((SD_IS_BUFIO(xp) == TRUE) && 17292 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 17293 (severity < sd_error_level))) { 17294 return; 17295 } 17296 } 17297 /* 17298 * Check for Sonoma Failover and keep a count of how many failed I/O's 17299 */ 17300 if ((SD_IS_LSI(un)) && 17301 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 17302 (scsi_sense_asc(sensep) == 0x94) && 17303 (scsi_sense_ascq(sensep) == 0x01)) { 17304 un->un_sonoma_failure_count++; 17305 if (un->un_sonoma_failure_count > 1) { 17306 return; 17307 } 17308 } 17309 17310 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP || 17311 ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) && 17312 (pktp->pkt_resid == 0))) { 17313 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 17314 request_blkno, err_blkno, scsi_cmds, 17315 (struct scsi_extended_sense *)sensep, 17316 un->un_additional_codes, NULL); 17317 } 17318 } 17319 17320 /* 17321 * Function: sd_sense_key_no_sense 17322 * 17323 * Description: Recovery action when sense data was not received. 17324 * 17325 * Context: May be called from interrupt context 17326 */ 17327 17328 static void 17329 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 17330 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17331 { 17332 struct sd_sense_info si; 17333 17334 ASSERT(un != NULL); 17335 ASSERT(mutex_owned(SD_MUTEX(un))); 17336 ASSERT(bp != NULL); 17337 ASSERT(xp != NULL); 17338 ASSERT(pktp != NULL); 17339 17340 si.ssi_severity = SCSI_ERR_FATAL; 17341 si.ssi_pfa_flag = FALSE; 17342 17343 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17344 17345 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17346 &si, EIO, (clock_t)0, NULL); 17347 } 17348 17349 17350 /* 17351 * Function: sd_sense_key_recoverable_error 17352 * 17353 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 17354 * 17355 * Context: May be called from interrupt context 17356 */ 17357 17358 static void 17359 sd_sense_key_recoverable_error(struct sd_lun *un, 17360 uint8_t *sense_datap, 17361 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17362 { 17363 struct sd_sense_info si; 17364 uint8_t asc = scsi_sense_asc(sense_datap); 17365 17366 ASSERT(un != NULL); 17367 ASSERT(mutex_owned(SD_MUTEX(un))); 17368 ASSERT(bp != NULL); 17369 ASSERT(xp != NULL); 17370 ASSERT(pktp != NULL); 17371 17372 /* 17373 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 17374 */ 17375 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 17376 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17377 si.ssi_severity = SCSI_ERR_INFO; 17378 si.ssi_pfa_flag = TRUE; 17379 } else { 17380 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17381 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 17382 si.ssi_severity = SCSI_ERR_RECOVERED; 17383 si.ssi_pfa_flag = FALSE; 17384 } 17385 17386 if (pktp->pkt_resid == 0) { 17387 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17388 sd_return_command(un, bp); 17389 return; 17390 } 17391 17392 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17393 &si, EIO, (clock_t)0, NULL); 17394 } 17395 17396 17397 17398 17399 /* 17400 * Function: sd_sense_key_not_ready 17401 * 17402 * Description: Recovery actions for a SCSI "Not Ready" sense key. 17403 * 17404 * Context: May be called from interrupt context 17405 */ 17406 17407 static void 17408 sd_sense_key_not_ready(struct sd_lun *un, 17409 uint8_t *sense_datap, 17410 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17411 { 17412 struct sd_sense_info si; 17413 uint8_t asc = scsi_sense_asc(sense_datap); 17414 uint8_t ascq = scsi_sense_ascq(sense_datap); 17415 17416 ASSERT(un != NULL); 17417 ASSERT(mutex_owned(SD_MUTEX(un))); 17418 ASSERT(bp != NULL); 17419 ASSERT(xp != NULL); 17420 ASSERT(pktp != NULL); 17421 17422 si.ssi_severity = SCSI_ERR_FATAL; 17423 si.ssi_pfa_flag = FALSE; 17424 17425 /* 17426 * Update error stats after first NOT READY error. Disks may have 17427 * been powered down and may need to be restarted. For CDROMs, 17428 * report NOT READY errors only if media is present. 17429 */ 17430 if ((ISCD(un) && (asc == 0x3A)) || 17431 (xp->xb_nr_retry_count > 0)) { 17432 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17433 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 17434 } 17435 17436 /* 17437 * Just fail if the "not ready" retry limit has been reached. 17438 */ 17439 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 17440 /* Special check for error message printing for removables. */ 17441 if (un->un_f_has_removable_media && (asc == 0x04) && 17442 (ascq >= 0x04)) { 17443 si.ssi_severity = SCSI_ERR_ALL; 17444 } 17445 goto fail_command; 17446 } 17447 17448 /* 17449 * Check the ASC and ASCQ in the sense data as needed, to determine 17450 * what to do. 17451 */ 17452 switch (asc) { 17453 case 0x04: /* LOGICAL UNIT NOT READY */ 17454 /* 17455 * disk drives that don't spin up result in a very long delay 17456 * in format without warning messages. We will log a message 17457 * if the error level is set to verbose. 17458 */ 17459 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17460 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17461 "logical unit not ready, resetting disk\n"); 17462 } 17463 17464 /* 17465 * There are different requirements for CDROMs and disks for 17466 * the number of retries. If a CD-ROM is giving this, it is 17467 * probably reading TOC and is in the process of getting 17468 * ready, so we should keep on trying for a long time to make 17469 * sure that all types of media are taken in account (for 17470 * some media the drive takes a long time to read TOC). For 17471 * disks we do not want to retry this too many times as this 17472 * can cause a long hang in format when the drive refuses to 17473 * spin up (a very common failure). 17474 */ 17475 switch (ascq) { 17476 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 17477 /* 17478 * Disk drives frequently refuse to spin up which 17479 * results in a very long hang in format without 17480 * warning messages. 17481 * 17482 * Note: This code preserves the legacy behavior of 17483 * comparing xb_nr_retry_count against zero for fibre 17484 * channel targets instead of comparing against the 17485 * un_reset_retry_count value. The reason for this 17486 * discrepancy has been so utterly lost beneath the 17487 * Sands of Time that even Indiana Jones could not 17488 * find it. 17489 */ 17490 if (un->un_f_is_fibre == TRUE) { 17491 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17492 (xp->xb_nr_retry_count > 0)) && 17493 (un->un_startstop_timeid == NULL)) { 17494 scsi_log(SD_DEVINFO(un), sd_label, 17495 CE_WARN, "logical unit not ready, " 17496 "resetting disk\n"); 17497 sd_reset_target(un, pktp); 17498 } 17499 } else { 17500 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17501 (xp->xb_nr_retry_count > 17502 un->un_reset_retry_count)) && 17503 (un->un_startstop_timeid == NULL)) { 17504 scsi_log(SD_DEVINFO(un), sd_label, 17505 CE_WARN, "logical unit not ready, " 17506 "resetting disk\n"); 17507 sd_reset_target(un, pktp); 17508 } 17509 } 17510 break; 17511 17512 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 17513 /* 17514 * If the target is in the process of becoming 17515 * ready, just proceed with the retry. This can 17516 * happen with CD-ROMs that take a long time to 17517 * read TOC after a power cycle or reset. 17518 */ 17519 goto do_retry; 17520 17521 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 17522 break; 17523 17524 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 17525 /* 17526 * Retries cannot help here so just fail right away. 17527 */ 17528 goto fail_command; 17529 17530 case 0x88: 17531 /* 17532 * Vendor-unique code for T3/T4: it indicates a 17533 * path problem in a mutipathed config, but as far as 17534 * the target driver is concerned it equates to a fatal 17535 * error, so we should just fail the command right away 17536 * (without printing anything to the console). If this 17537 * is not a T3/T4, fall thru to the default recovery 17538 * action. 17539 * T3/T4 is FC only, don't need to check is_fibre 17540 */ 17541 if (SD_IS_T3(un) || SD_IS_T4(un)) { 17542 sd_return_failed_command(un, bp, EIO); 17543 return; 17544 } 17545 /* FALLTHRU */ 17546 17547 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 17548 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 17549 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 17550 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 17551 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 17552 default: /* Possible future codes in SCSI spec? */ 17553 /* 17554 * For removable-media devices, do not retry if 17555 * ASCQ > 2 as these result mostly from USCSI commands 17556 * on MMC devices issued to check status of an 17557 * operation initiated in immediate mode. Also for 17558 * ASCQ >= 4 do not print console messages as these 17559 * mainly represent a user-initiated operation 17560 * instead of a system failure. 17561 */ 17562 if (un->un_f_has_removable_media) { 17563 si.ssi_severity = SCSI_ERR_ALL; 17564 goto fail_command; 17565 } 17566 break; 17567 } 17568 17569 /* 17570 * As part of our recovery attempt for the NOT READY 17571 * condition, we issue a START STOP UNIT command. However 17572 * we want to wait for a short delay before attempting this 17573 * as there may still be more commands coming back from the 17574 * target with the check condition. To do this we use 17575 * timeout(9F) to call sd_start_stop_unit_callback() after 17576 * the delay interval expires. (sd_start_stop_unit_callback() 17577 * dispatches sd_start_stop_unit_task(), which will issue 17578 * the actual START STOP UNIT command. The delay interval 17579 * is one-half of the delay that we will use to retry the 17580 * command that generated the NOT READY condition. 17581 * 17582 * Note that we could just dispatch sd_start_stop_unit_task() 17583 * from here and allow it to sleep for the delay interval, 17584 * but then we would be tying up the taskq thread 17585 * uncesessarily for the duration of the delay. 17586 * 17587 * Do not issue the START STOP UNIT if the current command 17588 * is already a START STOP UNIT. 17589 */ 17590 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 17591 break; 17592 } 17593 17594 /* 17595 * Do not schedule the timeout if one is already pending. 17596 */ 17597 if (un->un_startstop_timeid != NULL) { 17598 SD_INFO(SD_LOG_ERROR, un, 17599 "sd_sense_key_not_ready: restart already issued to" 17600 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 17601 ddi_get_instance(SD_DEVINFO(un))); 17602 break; 17603 } 17604 17605 /* 17606 * Schedule the START STOP UNIT command, then queue the command 17607 * for a retry. 17608 * 17609 * Note: A timeout is not scheduled for this retry because we 17610 * want the retry to be serial with the START_STOP_UNIT. The 17611 * retry will be started when the START_STOP_UNIT is completed 17612 * in sd_start_stop_unit_task. 17613 */ 17614 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 17615 un, un->un_busy_timeout / 2); 17616 xp->xb_nr_retry_count++; 17617 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 17618 return; 17619 17620 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 17621 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17622 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17623 "unit does not respond to selection\n"); 17624 } 17625 break; 17626 17627 case 0x3A: /* MEDIUM NOT PRESENT */ 17628 if (sd_error_level >= SCSI_ERR_FATAL) { 17629 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17630 "Caddy not inserted in drive\n"); 17631 } 17632 17633 sr_ejected(un); 17634 un->un_mediastate = DKIO_EJECTED; 17635 /* The state has changed, inform the media watch routines */ 17636 cv_broadcast(&un->un_state_cv); 17637 /* Just fail if no media is present in the drive. */ 17638 goto fail_command; 17639 17640 default: 17641 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17642 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 17643 "Unit not Ready. Additional sense code 0x%x\n", 17644 asc); 17645 } 17646 break; 17647 } 17648 17649 do_retry: 17650 17651 /* 17652 * Retry the command, as some targets may report NOT READY for 17653 * several seconds after being reset. 17654 */ 17655 xp->xb_nr_retry_count++; 17656 si.ssi_severity = SCSI_ERR_RETRYABLE; 17657 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 17658 &si, EIO, un->un_busy_timeout, NULL); 17659 17660 return; 17661 17662 fail_command: 17663 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17664 sd_return_failed_command(un, bp, EIO); 17665 } 17666 17667 17668 17669 /* 17670 * Function: sd_sense_key_medium_or_hardware_error 17671 * 17672 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 17673 * sense key. 17674 * 17675 * Context: May be called from interrupt context 17676 */ 17677 17678 static void 17679 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 17680 uint8_t *sense_datap, 17681 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17682 { 17683 struct sd_sense_info si; 17684 uint8_t sense_key = scsi_sense_key(sense_datap); 17685 uint8_t asc = scsi_sense_asc(sense_datap); 17686 17687 ASSERT(un != NULL); 17688 ASSERT(mutex_owned(SD_MUTEX(un))); 17689 ASSERT(bp != NULL); 17690 ASSERT(xp != NULL); 17691 ASSERT(pktp != NULL); 17692 17693 si.ssi_severity = SCSI_ERR_FATAL; 17694 si.ssi_pfa_flag = FALSE; 17695 17696 if (sense_key == KEY_MEDIUM_ERROR) { 17697 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 17698 } 17699 17700 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17701 17702 if ((un->un_reset_retry_count != 0) && 17703 (xp->xb_retry_count == un->un_reset_retry_count)) { 17704 mutex_exit(SD_MUTEX(un)); 17705 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 17706 if (un->un_f_allow_bus_device_reset == TRUE) { 17707 17708 boolean_t try_resetting_target = B_TRUE; 17709 17710 /* 17711 * We need to be able to handle specific ASC when we are 17712 * handling a KEY_HARDWARE_ERROR. In particular 17713 * taking the default action of resetting the target may 17714 * not be the appropriate way to attempt recovery. 17715 * Resetting a target because of a single LUN failure 17716 * victimizes all LUNs on that target. 17717 * 17718 * This is true for the LSI arrays, if an LSI 17719 * array controller returns an ASC of 0x84 (LUN Dead) we 17720 * should trust it. 17721 */ 17722 17723 if (sense_key == KEY_HARDWARE_ERROR) { 17724 switch (asc) { 17725 case 0x84: 17726 if (SD_IS_LSI(un)) { 17727 try_resetting_target = B_FALSE; 17728 } 17729 break; 17730 default: 17731 break; 17732 } 17733 } 17734 17735 if (try_resetting_target == B_TRUE) { 17736 int reset_retval = 0; 17737 if (un->un_f_lun_reset_enabled == TRUE) { 17738 SD_TRACE(SD_LOG_IO_CORE, un, 17739 "sd_sense_key_medium_or_hardware_" 17740 "error: issuing RESET_LUN\n"); 17741 reset_retval = 17742 scsi_reset(SD_ADDRESS(un), 17743 RESET_LUN); 17744 } 17745 if (reset_retval == 0) { 17746 SD_TRACE(SD_LOG_IO_CORE, un, 17747 "sd_sense_key_medium_or_hardware_" 17748 "error: issuing RESET_TARGET\n"); 17749 (void) scsi_reset(SD_ADDRESS(un), 17750 RESET_TARGET); 17751 } 17752 } 17753 } 17754 mutex_enter(SD_MUTEX(un)); 17755 } 17756 17757 /* 17758 * This really ought to be a fatal error, but we will retry anyway 17759 * as some drives report this as a spurious error. 17760 */ 17761 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17762 &si, EIO, (clock_t)0, NULL); 17763 } 17764 17765 17766 17767 /* 17768 * Function: sd_sense_key_illegal_request 17769 * 17770 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 17771 * 17772 * Context: May be called from interrupt context 17773 */ 17774 17775 static void 17776 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 17777 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17778 { 17779 struct sd_sense_info si; 17780 17781 ASSERT(un != NULL); 17782 ASSERT(mutex_owned(SD_MUTEX(un))); 17783 ASSERT(bp != NULL); 17784 ASSERT(xp != NULL); 17785 ASSERT(pktp != NULL); 17786 17787 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 17788 17789 si.ssi_severity = SCSI_ERR_INFO; 17790 si.ssi_pfa_flag = FALSE; 17791 17792 /* Pointless to retry if the target thinks it's an illegal request */ 17793 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17794 sd_return_failed_command(un, bp, EIO); 17795 } 17796 17797 17798 17799 17800 /* 17801 * Function: sd_sense_key_unit_attention 17802 * 17803 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 17804 * 17805 * Context: May be called from interrupt context 17806 */ 17807 17808 static void 17809 sd_sense_key_unit_attention(struct sd_lun *un, 17810 uint8_t *sense_datap, 17811 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17812 { 17813 /* 17814 * For UNIT ATTENTION we allow retries for one minute. Devices 17815 * like Sonoma can return UNIT ATTENTION close to a minute 17816 * under certain conditions. 17817 */ 17818 int retry_check_flag = SD_RETRIES_UA; 17819 boolean_t kstat_updated = B_FALSE; 17820 struct sd_sense_info si; 17821 uint8_t asc = scsi_sense_asc(sense_datap); 17822 uint8_t ascq = scsi_sense_ascq(sense_datap); 17823 17824 ASSERT(un != NULL); 17825 ASSERT(mutex_owned(SD_MUTEX(un))); 17826 ASSERT(bp != NULL); 17827 ASSERT(xp != NULL); 17828 ASSERT(pktp != NULL); 17829 17830 si.ssi_severity = SCSI_ERR_INFO; 17831 si.ssi_pfa_flag = FALSE; 17832 17833 17834 switch (asc) { 17835 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 17836 if (sd_report_pfa != 0) { 17837 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17838 si.ssi_pfa_flag = TRUE; 17839 retry_check_flag = SD_RETRIES_STANDARD; 17840 goto do_retry; 17841 } 17842 17843 break; 17844 17845 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 17846 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 17847 un->un_resvd_status |= 17848 (SD_LOST_RESERVE | SD_WANT_RESERVE); 17849 } 17850 #ifdef _LP64 17851 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 17852 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 17853 un, KM_NOSLEEP) == 0) { 17854 /* 17855 * If we can't dispatch the task we'll just 17856 * live without descriptor sense. We can 17857 * try again on the next "unit attention" 17858 */ 17859 SD_ERROR(SD_LOG_ERROR, un, 17860 "sd_sense_key_unit_attention: " 17861 "Could not dispatch " 17862 "sd_reenable_dsense_task\n"); 17863 } 17864 } 17865 #endif /* _LP64 */ 17866 /* FALLTHRU */ 17867 17868 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 17869 if (!un->un_f_has_removable_media) { 17870 break; 17871 } 17872 17873 /* 17874 * When we get a unit attention from a removable-media device, 17875 * it may be in a state that will take a long time to recover 17876 * (e.g., from a reset). Since we are executing in interrupt 17877 * context here, we cannot wait around for the device to come 17878 * back. So hand this command off to sd_media_change_task() 17879 * for deferred processing under taskq thread context. (Note 17880 * that the command still may be failed if a problem is 17881 * encountered at a later time.) 17882 */ 17883 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 17884 KM_NOSLEEP) == 0) { 17885 /* 17886 * Cannot dispatch the request so fail the command. 17887 */ 17888 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17889 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 17890 si.ssi_severity = SCSI_ERR_FATAL; 17891 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17892 sd_return_failed_command(un, bp, EIO); 17893 } 17894 17895 /* 17896 * If failed to dispatch sd_media_change_task(), we already 17897 * updated kstat. If succeed to dispatch sd_media_change_task(), 17898 * we should update kstat later if it encounters an error. So, 17899 * we update kstat_updated flag here. 17900 */ 17901 kstat_updated = B_TRUE; 17902 17903 /* 17904 * Either the command has been successfully dispatched to a 17905 * task Q for retrying, or the dispatch failed. In either case 17906 * do NOT retry again by calling sd_retry_command. This sets up 17907 * two retries of the same command and when one completes and 17908 * frees the resources the other will access freed memory, 17909 * a bad thing. 17910 */ 17911 return; 17912 17913 default: 17914 break; 17915 } 17916 17917 /* 17918 * ASC ASCQ 17919 * 2A 09 Capacity data has changed 17920 * 2A 01 Mode parameters changed 17921 * 3F 0E Reported luns data has changed 17922 * Arrays that support logical unit expansion should report 17923 * capacity changes(2Ah/09). Mode parameters changed and 17924 * reported luns data has changed are the approximation. 17925 */ 17926 if (((asc == 0x2a) && (ascq == 0x09)) || 17927 ((asc == 0x2a) && (ascq == 0x01)) || 17928 ((asc == 0x3f) && (ascq == 0x0e))) { 17929 if (taskq_dispatch(sd_tq, sd_target_change_task, un, 17930 KM_NOSLEEP) == 0) { 17931 SD_ERROR(SD_LOG_ERROR, un, 17932 "sd_sense_key_unit_attention: " 17933 "Could not dispatch sd_target_change_task\n"); 17934 } 17935 } 17936 17937 /* 17938 * Update kstat if we haven't done that. 17939 */ 17940 if (!kstat_updated) { 17941 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17942 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 17943 } 17944 17945 do_retry: 17946 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 17947 EIO, SD_UA_RETRY_DELAY, NULL); 17948 } 17949 17950 17951 17952 /* 17953 * Function: sd_sense_key_fail_command 17954 * 17955 * Description: Use to fail a command when we don't like the sense key that 17956 * was returned. 17957 * 17958 * Context: May be called from interrupt context 17959 */ 17960 17961 static void 17962 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 17963 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17964 { 17965 struct sd_sense_info si; 17966 17967 ASSERT(un != NULL); 17968 ASSERT(mutex_owned(SD_MUTEX(un))); 17969 ASSERT(bp != NULL); 17970 ASSERT(xp != NULL); 17971 ASSERT(pktp != NULL); 17972 17973 si.ssi_severity = SCSI_ERR_FATAL; 17974 si.ssi_pfa_flag = FALSE; 17975 17976 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17977 sd_return_failed_command(un, bp, EIO); 17978 } 17979 17980 17981 17982 /* 17983 * Function: sd_sense_key_blank_check 17984 * 17985 * Description: Recovery actions for a SCSI "Blank Check" sense key. 17986 * Has no monetary connotation. 17987 * 17988 * Context: May be called from interrupt context 17989 */ 17990 17991 static void 17992 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 17993 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17994 { 17995 struct sd_sense_info si; 17996 17997 ASSERT(un != NULL); 17998 ASSERT(mutex_owned(SD_MUTEX(un))); 17999 ASSERT(bp != NULL); 18000 ASSERT(xp != NULL); 18001 ASSERT(pktp != NULL); 18002 18003 /* 18004 * Blank check is not fatal for removable devices, therefore 18005 * it does not require a console message. 18006 */ 18007 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18008 SCSI_ERR_FATAL; 18009 si.ssi_pfa_flag = FALSE; 18010 18011 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18012 sd_return_failed_command(un, bp, EIO); 18013 } 18014 18015 18016 18017 18018 /* 18019 * Function: sd_sense_key_aborted_command 18020 * 18021 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18022 * 18023 * Context: May be called from interrupt context 18024 */ 18025 18026 static void 18027 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18028 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18029 { 18030 struct sd_sense_info si; 18031 18032 ASSERT(un != NULL); 18033 ASSERT(mutex_owned(SD_MUTEX(un))); 18034 ASSERT(bp != NULL); 18035 ASSERT(xp != NULL); 18036 ASSERT(pktp != NULL); 18037 18038 si.ssi_severity = SCSI_ERR_FATAL; 18039 si.ssi_pfa_flag = FALSE; 18040 18041 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18042 18043 /* 18044 * This really ought to be a fatal error, but we will retry anyway 18045 * as some drives report this as a spurious error. 18046 */ 18047 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18048 &si, EIO, drv_usectohz(100000), NULL); 18049 } 18050 18051 18052 18053 /* 18054 * Function: sd_sense_key_default 18055 * 18056 * Description: Default recovery action for several SCSI sense keys (basically 18057 * attempts a retry). 18058 * 18059 * Context: May be called from interrupt context 18060 */ 18061 18062 static void 18063 sd_sense_key_default(struct sd_lun *un, 18064 uint8_t *sense_datap, 18065 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18066 { 18067 struct sd_sense_info si; 18068 uint8_t sense_key = scsi_sense_key(sense_datap); 18069 18070 ASSERT(un != NULL); 18071 ASSERT(mutex_owned(SD_MUTEX(un))); 18072 ASSERT(bp != NULL); 18073 ASSERT(xp != NULL); 18074 ASSERT(pktp != NULL); 18075 18076 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18077 18078 /* 18079 * Undecoded sense key. Attempt retries and hope that will fix 18080 * the problem. Otherwise, we're dead. 18081 */ 18082 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18083 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18084 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18085 } 18086 18087 si.ssi_severity = SCSI_ERR_FATAL; 18088 si.ssi_pfa_flag = FALSE; 18089 18090 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18091 &si, EIO, (clock_t)0, NULL); 18092 } 18093 18094 18095 18096 /* 18097 * Function: sd_print_retry_msg 18098 * 18099 * Description: Print a message indicating the retry action being taken. 18100 * 18101 * Arguments: un - ptr to associated softstate 18102 * bp - ptr to buf(9S) for the command 18103 * arg - not used. 18104 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18105 * or SD_NO_RETRY_ISSUED 18106 * 18107 * Context: May be called from interrupt context 18108 */ 18109 /* ARGSUSED */ 18110 static void 18111 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18112 { 18113 struct sd_xbuf *xp; 18114 struct scsi_pkt *pktp; 18115 char *reasonp; 18116 char *msgp; 18117 18118 ASSERT(un != NULL); 18119 ASSERT(mutex_owned(SD_MUTEX(un))); 18120 ASSERT(bp != NULL); 18121 pktp = SD_GET_PKTP(bp); 18122 ASSERT(pktp != NULL); 18123 xp = SD_GET_XBUF(bp); 18124 ASSERT(xp != NULL); 18125 18126 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18127 mutex_enter(&un->un_pm_mutex); 18128 if ((un->un_state == SD_STATE_SUSPENDED) || 18129 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18130 (pktp->pkt_flags & FLAG_SILENT)) { 18131 mutex_exit(&un->un_pm_mutex); 18132 goto update_pkt_reason; 18133 } 18134 mutex_exit(&un->un_pm_mutex); 18135 18136 /* 18137 * Suppress messages if they are all the same pkt_reason; with 18138 * TQ, many (up to 256) are returned with the same pkt_reason. 18139 * If we are in panic, then suppress the retry messages. 18140 */ 18141 switch (flag) { 18142 case SD_NO_RETRY_ISSUED: 18143 msgp = "giving up"; 18144 break; 18145 case SD_IMMEDIATE_RETRY_ISSUED: 18146 case SD_DELAYED_RETRY_ISSUED: 18147 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18148 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18149 (sd_error_level != SCSI_ERR_ALL))) { 18150 return; 18151 } 18152 msgp = "retrying command"; 18153 break; 18154 default: 18155 goto update_pkt_reason; 18156 } 18157 18158 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18159 scsi_rname(pktp->pkt_reason)); 18160 18161 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 18162 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18163 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18164 } 18165 18166 update_pkt_reason: 18167 /* 18168 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18169 * This is to prevent multiple console messages for the same failure 18170 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18171 * when the command is retried successfully because there still may be 18172 * more commands coming back with the same value of pktp->pkt_reason. 18173 */ 18174 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18175 un->un_last_pkt_reason = pktp->pkt_reason; 18176 } 18177 } 18178 18179 18180 /* 18181 * Function: sd_print_cmd_incomplete_msg 18182 * 18183 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18184 * 18185 * Arguments: un - ptr to associated softstate 18186 * bp - ptr to buf(9S) for the command 18187 * arg - passed to sd_print_retry_msg() 18188 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18189 * or SD_NO_RETRY_ISSUED 18190 * 18191 * Context: May be called from interrupt context 18192 */ 18193 18194 static void 18195 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18196 int code) 18197 { 18198 dev_info_t *dip; 18199 18200 ASSERT(un != NULL); 18201 ASSERT(mutex_owned(SD_MUTEX(un))); 18202 ASSERT(bp != NULL); 18203 18204 switch (code) { 18205 case SD_NO_RETRY_ISSUED: 18206 /* Command was failed. Someone turned off this target? */ 18207 if (un->un_state != SD_STATE_OFFLINE) { 18208 /* 18209 * Suppress message if we are detaching and 18210 * device has been disconnected 18211 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18212 * private interface and not part of the DDI 18213 */ 18214 dip = un->un_sd->sd_dev; 18215 if (!(DEVI_IS_DETACHING(dip) && 18216 DEVI_IS_DEVICE_REMOVED(dip))) { 18217 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18218 "disk not responding to selection\n"); 18219 } 18220 New_state(un, SD_STATE_OFFLINE); 18221 } 18222 break; 18223 18224 case SD_DELAYED_RETRY_ISSUED: 18225 case SD_IMMEDIATE_RETRY_ISSUED: 18226 default: 18227 /* Command was successfully queued for retry */ 18228 sd_print_retry_msg(un, bp, arg, code); 18229 break; 18230 } 18231 } 18232 18233 18234 /* 18235 * Function: sd_pkt_reason_cmd_incomplete 18236 * 18237 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18238 * 18239 * Context: May be called from interrupt context 18240 */ 18241 18242 static void 18243 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18244 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18245 { 18246 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18247 18248 ASSERT(un != NULL); 18249 ASSERT(mutex_owned(SD_MUTEX(un))); 18250 ASSERT(bp != NULL); 18251 ASSERT(xp != NULL); 18252 ASSERT(pktp != NULL); 18253 18254 /* Do not do a reset if selection did not complete */ 18255 /* Note: Should this not just check the bit? */ 18256 if (pktp->pkt_state != STATE_GOT_BUS) { 18257 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18258 sd_reset_target(un, pktp); 18259 } 18260 18261 /* 18262 * If the target was not successfully selected, then set 18263 * SD_RETRIES_FAILFAST to indicate that we lost communication 18264 * with the target, and further retries and/or commands are 18265 * likely to take a long time. 18266 */ 18267 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18268 flag |= SD_RETRIES_FAILFAST; 18269 } 18270 18271 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18272 18273 sd_retry_command(un, bp, flag, 18274 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18275 } 18276 18277 18278 18279 /* 18280 * Function: sd_pkt_reason_cmd_tran_err 18281 * 18282 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 18283 * 18284 * Context: May be called from interrupt context 18285 */ 18286 18287 static void 18288 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 18289 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18290 { 18291 ASSERT(un != NULL); 18292 ASSERT(mutex_owned(SD_MUTEX(un))); 18293 ASSERT(bp != NULL); 18294 ASSERT(xp != NULL); 18295 ASSERT(pktp != NULL); 18296 18297 /* 18298 * Do not reset if we got a parity error, or if 18299 * selection did not complete. 18300 */ 18301 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18302 /* Note: Should this not just check the bit for pkt_state? */ 18303 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 18304 (pktp->pkt_state != STATE_GOT_BUS)) { 18305 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18306 sd_reset_target(un, pktp); 18307 } 18308 18309 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18310 18311 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18312 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18313 } 18314 18315 18316 18317 /* 18318 * Function: sd_pkt_reason_cmd_reset 18319 * 18320 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 18321 * 18322 * Context: May be called from interrupt context 18323 */ 18324 18325 static void 18326 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 18327 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18328 { 18329 ASSERT(un != NULL); 18330 ASSERT(mutex_owned(SD_MUTEX(un))); 18331 ASSERT(bp != NULL); 18332 ASSERT(xp != NULL); 18333 ASSERT(pktp != NULL); 18334 18335 /* The target may still be running the command, so try to reset. */ 18336 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18337 sd_reset_target(un, pktp); 18338 18339 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18340 18341 /* 18342 * If pkt_reason is CMD_RESET chances are that this pkt got 18343 * reset because another target on this bus caused it. The target 18344 * that caused it should get CMD_TIMEOUT with pkt_statistics 18345 * of STAT_TIMEOUT/STAT_DEV_RESET. 18346 */ 18347 18348 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18349 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18350 } 18351 18352 18353 18354 18355 /* 18356 * Function: sd_pkt_reason_cmd_aborted 18357 * 18358 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 18359 * 18360 * Context: May be called from interrupt context 18361 */ 18362 18363 static void 18364 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 18365 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18366 { 18367 ASSERT(un != NULL); 18368 ASSERT(mutex_owned(SD_MUTEX(un))); 18369 ASSERT(bp != NULL); 18370 ASSERT(xp != NULL); 18371 ASSERT(pktp != NULL); 18372 18373 /* The target may still be running the command, so try to reset. */ 18374 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18375 sd_reset_target(un, pktp); 18376 18377 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18378 18379 /* 18380 * If pkt_reason is CMD_ABORTED chances are that this pkt got 18381 * aborted because another target on this bus caused it. The target 18382 * that caused it should get CMD_TIMEOUT with pkt_statistics 18383 * of STAT_TIMEOUT/STAT_DEV_RESET. 18384 */ 18385 18386 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18387 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18388 } 18389 18390 18391 18392 /* 18393 * Function: sd_pkt_reason_cmd_timeout 18394 * 18395 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 18396 * 18397 * Context: May be called from interrupt context 18398 */ 18399 18400 static void 18401 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 18402 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18403 { 18404 ASSERT(un != NULL); 18405 ASSERT(mutex_owned(SD_MUTEX(un))); 18406 ASSERT(bp != NULL); 18407 ASSERT(xp != NULL); 18408 ASSERT(pktp != NULL); 18409 18410 18411 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18412 sd_reset_target(un, pktp); 18413 18414 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18415 18416 /* 18417 * A command timeout indicates that we could not establish 18418 * communication with the target, so set SD_RETRIES_FAILFAST 18419 * as further retries/commands are likely to take a long time. 18420 */ 18421 sd_retry_command(un, bp, 18422 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 18423 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18424 } 18425 18426 18427 18428 /* 18429 * Function: sd_pkt_reason_cmd_unx_bus_free 18430 * 18431 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 18432 * 18433 * Context: May be called from interrupt context 18434 */ 18435 18436 static void 18437 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 18438 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18439 { 18440 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 18441 18442 ASSERT(un != NULL); 18443 ASSERT(mutex_owned(SD_MUTEX(un))); 18444 ASSERT(bp != NULL); 18445 ASSERT(xp != NULL); 18446 ASSERT(pktp != NULL); 18447 18448 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18449 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18450 18451 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 18452 sd_print_retry_msg : NULL; 18453 18454 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18455 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18456 } 18457 18458 18459 /* 18460 * Function: sd_pkt_reason_cmd_tag_reject 18461 * 18462 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 18463 * 18464 * Context: May be called from interrupt context 18465 */ 18466 18467 static void 18468 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 18469 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18470 { 18471 ASSERT(un != NULL); 18472 ASSERT(mutex_owned(SD_MUTEX(un))); 18473 ASSERT(bp != NULL); 18474 ASSERT(xp != NULL); 18475 ASSERT(pktp != NULL); 18476 18477 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18478 pktp->pkt_flags = 0; 18479 un->un_tagflags = 0; 18480 if (un->un_f_opt_queueing == TRUE) { 18481 un->un_throttle = min(un->un_throttle, 3); 18482 } else { 18483 un->un_throttle = 1; 18484 } 18485 mutex_exit(SD_MUTEX(un)); 18486 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 18487 mutex_enter(SD_MUTEX(un)); 18488 18489 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18490 18491 /* Legacy behavior not to check retry counts here. */ 18492 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 18493 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18494 } 18495 18496 18497 /* 18498 * Function: sd_pkt_reason_default 18499 * 18500 * Description: Default recovery actions for SCSA pkt_reason values that 18501 * do not have more explicit recovery actions. 18502 * 18503 * Context: May be called from interrupt context 18504 */ 18505 18506 static void 18507 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 18508 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18509 { 18510 ASSERT(un != NULL); 18511 ASSERT(mutex_owned(SD_MUTEX(un))); 18512 ASSERT(bp != NULL); 18513 ASSERT(xp != NULL); 18514 ASSERT(pktp != NULL); 18515 18516 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18517 sd_reset_target(un, pktp); 18518 18519 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18520 18521 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18522 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18523 } 18524 18525 18526 18527 /* 18528 * Function: sd_pkt_status_check_condition 18529 * 18530 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 18531 * 18532 * Context: May be called from interrupt context 18533 */ 18534 18535 static void 18536 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 18537 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18538 { 18539 ASSERT(un != NULL); 18540 ASSERT(mutex_owned(SD_MUTEX(un))); 18541 ASSERT(bp != NULL); 18542 ASSERT(xp != NULL); 18543 ASSERT(pktp != NULL); 18544 18545 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 18546 "entry: buf:0x%p xp:0x%p\n", bp, xp); 18547 18548 /* 18549 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 18550 * command will be retried after the request sense). Otherwise, retry 18551 * the command. Note: we are issuing the request sense even though the 18552 * retry limit may have been reached for the failed command. 18553 */ 18554 if (un->un_f_arq_enabled == FALSE) { 18555 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18556 "no ARQ, sending request sense command\n"); 18557 sd_send_request_sense_command(un, bp, pktp); 18558 } else { 18559 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18560 "ARQ,retrying request sense command\n"); 18561 #if defined(__i386) || defined(__amd64) 18562 /* 18563 * The SD_RETRY_DELAY value need to be adjusted here 18564 * when SD_RETRY_DELAY change in sddef.h 18565 */ 18566 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18567 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 18568 NULL); 18569 #else 18570 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 18571 EIO, SD_RETRY_DELAY, NULL); 18572 #endif 18573 } 18574 18575 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 18576 } 18577 18578 18579 /* 18580 * Function: sd_pkt_status_busy 18581 * 18582 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 18583 * 18584 * Context: May be called from interrupt context 18585 */ 18586 18587 static void 18588 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 18589 struct scsi_pkt *pktp) 18590 { 18591 ASSERT(un != NULL); 18592 ASSERT(mutex_owned(SD_MUTEX(un))); 18593 ASSERT(bp != NULL); 18594 ASSERT(xp != NULL); 18595 ASSERT(pktp != NULL); 18596 18597 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18598 "sd_pkt_status_busy: entry\n"); 18599 18600 /* If retries are exhausted, just fail the command. */ 18601 if (xp->xb_retry_count >= un->un_busy_retry_count) { 18602 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18603 "device busy too long\n"); 18604 sd_return_failed_command(un, bp, EIO); 18605 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18606 "sd_pkt_status_busy: exit\n"); 18607 return; 18608 } 18609 xp->xb_retry_count++; 18610 18611 /* 18612 * Try to reset the target. However, we do not want to perform 18613 * more than one reset if the device continues to fail. The reset 18614 * will be performed when the retry count reaches the reset 18615 * threshold. This threshold should be set such that at least 18616 * one retry is issued before the reset is performed. 18617 */ 18618 if (xp->xb_retry_count == 18619 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 18620 int rval = 0; 18621 mutex_exit(SD_MUTEX(un)); 18622 if (un->un_f_allow_bus_device_reset == TRUE) { 18623 /* 18624 * First try to reset the LUN; if we cannot then 18625 * try to reset the target. 18626 */ 18627 if (un->un_f_lun_reset_enabled == TRUE) { 18628 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18629 "sd_pkt_status_busy: RESET_LUN\n"); 18630 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18631 } 18632 if (rval == 0) { 18633 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18634 "sd_pkt_status_busy: RESET_TARGET\n"); 18635 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 18636 } 18637 } 18638 if (rval == 0) { 18639 /* 18640 * If the RESET_LUN and/or RESET_TARGET failed, 18641 * try RESET_ALL 18642 */ 18643 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18644 "sd_pkt_status_busy: RESET_ALL\n"); 18645 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 18646 } 18647 mutex_enter(SD_MUTEX(un)); 18648 if (rval == 0) { 18649 /* 18650 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 18651 * At this point we give up & fail the command. 18652 */ 18653 sd_return_failed_command(un, bp, EIO); 18654 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18655 "sd_pkt_status_busy: exit (failed cmd)\n"); 18656 return; 18657 } 18658 } 18659 18660 /* 18661 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 18662 * we have already checked the retry counts above. 18663 */ 18664 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 18665 EIO, un->un_busy_timeout, NULL); 18666 18667 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18668 "sd_pkt_status_busy: exit\n"); 18669 } 18670 18671 18672 /* 18673 * Function: sd_pkt_status_reservation_conflict 18674 * 18675 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 18676 * command status. 18677 * 18678 * Context: May be called from interrupt context 18679 */ 18680 18681 static void 18682 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 18683 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18684 { 18685 ASSERT(un != NULL); 18686 ASSERT(mutex_owned(SD_MUTEX(un))); 18687 ASSERT(bp != NULL); 18688 ASSERT(xp != NULL); 18689 ASSERT(pktp != NULL); 18690 18691 /* 18692 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 18693 * conflict could be due to various reasons like incorrect keys, not 18694 * registered or not reserved etc. So, we return EACCES to the caller. 18695 */ 18696 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 18697 int cmd = SD_GET_PKT_OPCODE(pktp); 18698 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 18699 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 18700 sd_return_failed_command(un, bp, EACCES); 18701 return; 18702 } 18703 } 18704 18705 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 18706 18707 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 18708 if (sd_failfast_enable != 0) { 18709 /* By definition, we must panic here.... */ 18710 sd_panic_for_res_conflict(un); 18711 /*NOTREACHED*/ 18712 } 18713 SD_ERROR(SD_LOG_IO, un, 18714 "sd_handle_resv_conflict: Disk Reserved\n"); 18715 sd_return_failed_command(un, bp, EACCES); 18716 return; 18717 } 18718 18719 /* 18720 * 1147670: retry only if sd_retry_on_reservation_conflict 18721 * property is set (default is 1). Retries will not succeed 18722 * on a disk reserved by another initiator. HA systems 18723 * may reset this via sd.conf to avoid these retries. 18724 * 18725 * Note: The legacy return code for this failure is EIO, however EACCES 18726 * seems more appropriate for a reservation conflict. 18727 */ 18728 if (sd_retry_on_reservation_conflict == 0) { 18729 SD_ERROR(SD_LOG_IO, un, 18730 "sd_handle_resv_conflict: Device Reserved\n"); 18731 sd_return_failed_command(un, bp, EIO); 18732 return; 18733 } 18734 18735 /* 18736 * Retry the command if we can. 18737 * 18738 * Note: The legacy return code for this failure is EIO, however EACCES 18739 * seems more appropriate for a reservation conflict. 18740 */ 18741 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18742 (clock_t)2, NULL); 18743 } 18744 18745 18746 18747 /* 18748 * Function: sd_pkt_status_qfull 18749 * 18750 * Description: Handle a QUEUE FULL condition from the target. This can 18751 * occur if the HBA does not handle the queue full condition. 18752 * (Basically this means third-party HBAs as Sun HBAs will 18753 * handle the queue full condition.) Note that if there are 18754 * some commands already in the transport, then the queue full 18755 * has occurred because the queue for this nexus is actually 18756 * full. If there are no commands in the transport, then the 18757 * queue full is resulting from some other initiator or lun 18758 * consuming all the resources at the target. 18759 * 18760 * Context: May be called from interrupt context 18761 */ 18762 18763 static void 18764 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 18765 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18766 { 18767 ASSERT(un != NULL); 18768 ASSERT(mutex_owned(SD_MUTEX(un))); 18769 ASSERT(bp != NULL); 18770 ASSERT(xp != NULL); 18771 ASSERT(pktp != NULL); 18772 18773 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18774 "sd_pkt_status_qfull: entry\n"); 18775 18776 /* 18777 * Just lower the QFULL throttle and retry the command. Note that 18778 * we do not limit the number of retries here. 18779 */ 18780 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 18781 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 18782 SD_RESTART_TIMEOUT, NULL); 18783 18784 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18785 "sd_pkt_status_qfull: exit\n"); 18786 } 18787 18788 18789 /* 18790 * Function: sd_reset_target 18791 * 18792 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 18793 * RESET_TARGET, or RESET_ALL. 18794 * 18795 * Context: May be called under interrupt context. 18796 */ 18797 18798 static void 18799 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 18800 { 18801 int rval = 0; 18802 18803 ASSERT(un != NULL); 18804 ASSERT(mutex_owned(SD_MUTEX(un))); 18805 ASSERT(pktp != NULL); 18806 18807 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 18808 18809 /* 18810 * No need to reset if the transport layer has already done so. 18811 */ 18812 if ((pktp->pkt_statistics & 18813 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 18814 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18815 "sd_reset_target: no reset\n"); 18816 return; 18817 } 18818 18819 mutex_exit(SD_MUTEX(un)); 18820 18821 if (un->un_f_allow_bus_device_reset == TRUE) { 18822 if (un->un_f_lun_reset_enabled == TRUE) { 18823 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18824 "sd_reset_target: RESET_LUN\n"); 18825 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18826 } 18827 if (rval == 0) { 18828 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18829 "sd_reset_target: RESET_TARGET\n"); 18830 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 18831 } 18832 } 18833 18834 if (rval == 0) { 18835 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18836 "sd_reset_target: RESET_ALL\n"); 18837 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 18838 } 18839 18840 mutex_enter(SD_MUTEX(un)); 18841 18842 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 18843 } 18844 18845 /* 18846 * Function: sd_target_change_task 18847 * 18848 * Description: Handle dynamic target change 18849 * 18850 * Context: Executes in a taskq() thread context 18851 */ 18852 static void 18853 sd_target_change_task(void *arg) 18854 { 18855 struct sd_lun *un = arg; 18856 uint64_t capacity; 18857 diskaddr_t label_cap; 18858 uint_t lbasize; 18859 sd_ssc_t *ssc; 18860 18861 ASSERT(un != NULL); 18862 ASSERT(!mutex_owned(SD_MUTEX(un))); 18863 18864 if ((un->un_f_blockcount_is_valid == FALSE) || 18865 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 18866 return; 18867 } 18868 18869 ssc = sd_ssc_init(un); 18870 18871 if (sd_send_scsi_READ_CAPACITY(ssc, &capacity, 18872 &lbasize, SD_PATH_DIRECT) != 0) { 18873 SD_ERROR(SD_LOG_ERROR, un, 18874 "sd_target_change_task: fail to read capacity\n"); 18875 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 18876 goto task_exit; 18877 } 18878 18879 mutex_enter(SD_MUTEX(un)); 18880 if (capacity <= un->un_blockcount) { 18881 mutex_exit(SD_MUTEX(un)); 18882 goto task_exit; 18883 } 18884 18885 sd_update_block_info(un, lbasize, capacity); 18886 mutex_exit(SD_MUTEX(un)); 18887 18888 /* 18889 * If lun is EFI labeled and lun capacity is greater than the 18890 * capacity contained in the label, log a sys event. 18891 */ 18892 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 18893 (void*)SD_PATH_DIRECT) == 0) { 18894 mutex_enter(SD_MUTEX(un)); 18895 if (un->un_f_blockcount_is_valid && 18896 un->un_blockcount > label_cap) { 18897 mutex_exit(SD_MUTEX(un)); 18898 sd_log_lun_expansion_event(un, KM_SLEEP); 18899 } else { 18900 mutex_exit(SD_MUTEX(un)); 18901 } 18902 } 18903 18904 task_exit: 18905 sd_ssc_fini(ssc); 18906 } 18907 18908 /* 18909 * Function: sd_log_lun_expansion_event 18910 * 18911 * Description: Log lun expansion sys event 18912 * 18913 * Context: Never called from interrupt context 18914 */ 18915 static void 18916 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag) 18917 { 18918 int err; 18919 char *path; 18920 nvlist_t *dle_attr_list; 18921 18922 /* Allocate and build sysevent attribute list */ 18923 err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag); 18924 if (err != 0) { 18925 SD_ERROR(SD_LOG_ERROR, un, 18926 "sd_log_lun_expansion_event: fail to allocate space\n"); 18927 return; 18928 } 18929 18930 path = kmem_alloc(MAXPATHLEN, km_flag); 18931 if (path == NULL) { 18932 nvlist_free(dle_attr_list); 18933 SD_ERROR(SD_LOG_ERROR, un, 18934 "sd_log_lun_expansion_event: fail to allocate space\n"); 18935 return; 18936 } 18937 /* 18938 * Add path attribute to identify the lun. 18939 * We are using minor node 'a' as the sysevent attribute. 18940 */ 18941 (void) snprintf(path, MAXPATHLEN, "/devices"); 18942 (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path)); 18943 (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path), 18944 ":a"); 18945 18946 err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path); 18947 if (err != 0) { 18948 nvlist_free(dle_attr_list); 18949 kmem_free(path, MAXPATHLEN); 18950 SD_ERROR(SD_LOG_ERROR, un, 18951 "sd_log_lun_expansion_event: fail to add attribute\n"); 18952 return; 18953 } 18954 18955 /* Log dynamic lun expansion sysevent */ 18956 err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS, 18957 ESC_DEV_DLE, dle_attr_list, NULL, km_flag); 18958 if (err != DDI_SUCCESS) { 18959 SD_ERROR(SD_LOG_ERROR, un, 18960 "sd_log_lun_expansion_event: fail to log sysevent\n"); 18961 } 18962 18963 nvlist_free(dle_attr_list); 18964 kmem_free(path, MAXPATHLEN); 18965 } 18966 18967 /* 18968 * Function: sd_media_change_task 18969 * 18970 * Description: Recovery action for CDROM to become available. 18971 * 18972 * Context: Executes in a taskq() thread context 18973 */ 18974 18975 static void 18976 sd_media_change_task(void *arg) 18977 { 18978 struct scsi_pkt *pktp = arg; 18979 struct sd_lun *un; 18980 struct buf *bp; 18981 struct sd_xbuf *xp; 18982 int err = 0; 18983 int retry_count = 0; 18984 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 18985 struct sd_sense_info si; 18986 18987 ASSERT(pktp != NULL); 18988 bp = (struct buf *)pktp->pkt_private; 18989 ASSERT(bp != NULL); 18990 xp = SD_GET_XBUF(bp); 18991 ASSERT(xp != NULL); 18992 un = SD_GET_UN(bp); 18993 ASSERT(un != NULL); 18994 ASSERT(!mutex_owned(SD_MUTEX(un))); 18995 ASSERT(un->un_f_monitor_media_state); 18996 18997 si.ssi_severity = SCSI_ERR_INFO; 18998 si.ssi_pfa_flag = FALSE; 18999 19000 /* 19001 * When a reset is issued on a CDROM, it takes a long time to 19002 * recover. First few attempts to read capacity and other things 19003 * related to handling unit attention fail (with a ASC 0x4 and 19004 * ASCQ 0x1). In that case we want to do enough retries and we want 19005 * to limit the retries in other cases of genuine failures like 19006 * no media in drive. 19007 */ 19008 while (retry_count++ < retry_limit) { 19009 if ((err = sd_handle_mchange(un)) == 0) { 19010 break; 19011 } 19012 if (err == EAGAIN) { 19013 retry_limit = SD_UNIT_ATTENTION_RETRY; 19014 } 19015 /* Sleep for 0.5 sec. & try again */ 19016 delay(drv_usectohz(500000)); 19017 } 19018 19019 /* 19020 * Dispatch (retry or fail) the original command here, 19021 * along with appropriate console messages.... 19022 * 19023 * Must grab the mutex before calling sd_retry_command, 19024 * sd_print_sense_msg and sd_return_failed_command. 19025 */ 19026 mutex_enter(SD_MUTEX(un)); 19027 if (err != SD_CMD_SUCCESS) { 19028 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19029 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19030 si.ssi_severity = SCSI_ERR_FATAL; 19031 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19032 sd_return_failed_command(un, bp, EIO); 19033 } else { 19034 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 19035 &si, EIO, (clock_t)0, NULL); 19036 } 19037 mutex_exit(SD_MUTEX(un)); 19038 } 19039 19040 19041 19042 /* 19043 * Function: sd_handle_mchange 19044 * 19045 * Description: Perform geometry validation & other recovery when CDROM 19046 * has been removed from drive. 19047 * 19048 * Return Code: 0 for success 19049 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19050 * sd_send_scsi_READ_CAPACITY() 19051 * 19052 * Context: Executes in a taskq() thread context 19053 */ 19054 19055 static int 19056 sd_handle_mchange(struct sd_lun *un) 19057 { 19058 uint64_t capacity; 19059 uint32_t lbasize; 19060 int rval; 19061 sd_ssc_t *ssc; 19062 19063 ASSERT(!mutex_owned(SD_MUTEX(un))); 19064 ASSERT(un->un_f_monitor_media_state); 19065 19066 ssc = sd_ssc_init(un); 19067 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 19068 SD_PATH_DIRECT_PRIORITY); 19069 19070 if (rval != 0) 19071 goto failed; 19072 19073 mutex_enter(SD_MUTEX(un)); 19074 sd_update_block_info(un, lbasize, capacity); 19075 19076 if (un->un_errstats != NULL) { 19077 struct sd_errstats *stp = 19078 (struct sd_errstats *)un->un_errstats->ks_data; 19079 stp->sd_capacity.value.ui64 = (uint64_t) 19080 ((uint64_t)un->un_blockcount * 19081 (uint64_t)un->un_tgt_blocksize); 19082 } 19083 19084 /* 19085 * Check if the media in the device is writable or not 19086 */ 19087 if (ISCD(un)) { 19088 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY); 19089 } 19090 19091 /* 19092 * Note: Maybe let the strategy/partitioning chain worry about getting 19093 * valid geometry. 19094 */ 19095 mutex_exit(SD_MUTEX(un)); 19096 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 19097 19098 19099 if (cmlb_validate(un->un_cmlbhandle, 0, 19100 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 19101 sd_ssc_fini(ssc); 19102 return (EIO); 19103 } else { 19104 if (un->un_f_pkstats_enabled) { 19105 sd_set_pstats(un); 19106 SD_TRACE(SD_LOG_IO_PARTITION, un, 19107 "sd_handle_mchange: un:0x%p pstats created and " 19108 "set\n", un); 19109 } 19110 } 19111 19112 /* 19113 * Try to lock the door 19114 */ 19115 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 19116 SD_PATH_DIRECT_PRIORITY); 19117 failed: 19118 if (rval != 0) 19119 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19120 sd_ssc_fini(ssc); 19121 return (rval); 19122 } 19123 19124 19125 /* 19126 * Function: sd_send_scsi_DOORLOCK 19127 * 19128 * Description: Issue the scsi DOOR LOCK command 19129 * 19130 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19131 * structure for this target. 19132 * flag - SD_REMOVAL_ALLOW 19133 * SD_REMOVAL_PREVENT 19134 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19135 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19136 * to use the USCSI "direct" chain and bypass the normal 19137 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19138 * command is issued as part of an error recovery action. 19139 * 19140 * Return Code: 0 - Success 19141 * errno return code from sd_ssc_send() 19142 * 19143 * Context: Can sleep. 19144 */ 19145 19146 static int 19147 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag) 19148 { 19149 struct scsi_extended_sense sense_buf; 19150 union scsi_cdb cdb; 19151 struct uscsi_cmd ucmd_buf; 19152 int status; 19153 struct sd_lun *un; 19154 19155 ASSERT(ssc != NULL); 19156 un = ssc->ssc_un; 19157 ASSERT(un != NULL); 19158 ASSERT(!mutex_owned(SD_MUTEX(un))); 19159 19160 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 19161 19162 /* already determined doorlock is not supported, fake success */ 19163 if (un->un_f_doorlock_supported == FALSE) { 19164 return (0); 19165 } 19166 19167 /* 19168 * If we are ejecting and see an SD_REMOVAL_PREVENT 19169 * ignore the command so we can complete the eject 19170 * operation. 19171 */ 19172 if (flag == SD_REMOVAL_PREVENT) { 19173 mutex_enter(SD_MUTEX(un)); 19174 if (un->un_f_ejecting == TRUE) { 19175 mutex_exit(SD_MUTEX(un)); 19176 return (EAGAIN); 19177 } 19178 mutex_exit(SD_MUTEX(un)); 19179 } 19180 19181 bzero(&cdb, sizeof (cdb)); 19182 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19183 19184 cdb.scc_cmd = SCMD_DOORLOCK; 19185 cdb.cdb_opaque[4] = (uchar_t)flag; 19186 19187 ucmd_buf.uscsi_cdb = (char *)&cdb; 19188 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19189 ucmd_buf.uscsi_bufaddr = NULL; 19190 ucmd_buf.uscsi_buflen = 0; 19191 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19192 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19193 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19194 ucmd_buf.uscsi_timeout = 15; 19195 19196 SD_TRACE(SD_LOG_IO, un, 19197 "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n"); 19198 19199 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19200 UIO_SYSSPACE, path_flag); 19201 19202 if (status == 0) 19203 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19204 19205 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 19206 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19207 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 19208 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19209 19210 /* fake success and skip subsequent doorlock commands */ 19211 un->un_f_doorlock_supported = FALSE; 19212 return (0); 19213 } 19214 19215 return (status); 19216 } 19217 19218 /* 19219 * Function: sd_send_scsi_READ_CAPACITY 19220 * 19221 * Description: This routine uses the scsi READ CAPACITY command to determine 19222 * the device capacity in number of blocks and the device native 19223 * block size. If this function returns a failure, then the 19224 * values in *capp and *lbap are undefined. If the capacity 19225 * returned is 0xffffffff then the lun is too large for a 19226 * normal READ CAPACITY command and the results of a 19227 * READ CAPACITY 16 will be used instead. 19228 * 19229 * Arguments: ssc - ssc contains ptr to soft state struct for the target 19230 * capp - ptr to unsigned 64-bit variable to receive the 19231 * capacity value from the command. 19232 * lbap - ptr to unsigned 32-bit varaible to receive the 19233 * block size value from the command 19234 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19235 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19236 * to use the USCSI "direct" chain and bypass the normal 19237 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19238 * command is issued as part of an error recovery action. 19239 * 19240 * Return Code: 0 - Success 19241 * EIO - IO error 19242 * EACCES - Reservation conflict detected 19243 * EAGAIN - Device is becoming ready 19244 * errno return code from sd_ssc_send() 19245 * 19246 * Context: Can sleep. Blocks until command completes. 19247 */ 19248 19249 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 19250 19251 static int 19252 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 19253 int path_flag) 19254 { 19255 struct scsi_extended_sense sense_buf; 19256 struct uscsi_cmd ucmd_buf; 19257 union scsi_cdb cdb; 19258 uint32_t *capacity_buf; 19259 uint64_t capacity; 19260 uint32_t lbasize; 19261 int status; 19262 struct sd_lun *un; 19263 19264 ASSERT(ssc != NULL); 19265 19266 un = ssc->ssc_un; 19267 ASSERT(un != NULL); 19268 ASSERT(!mutex_owned(SD_MUTEX(un))); 19269 ASSERT(capp != NULL); 19270 ASSERT(lbap != NULL); 19271 19272 SD_TRACE(SD_LOG_IO, un, 19273 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19274 19275 /* 19276 * First send a READ_CAPACITY command to the target. 19277 * (This command is mandatory under SCSI-2.) 19278 * 19279 * Set up the CDB for the READ_CAPACITY command. The Partial 19280 * Medium Indicator bit is cleared. The address field must be 19281 * zero if the PMI bit is zero. 19282 */ 19283 bzero(&cdb, sizeof (cdb)); 19284 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19285 19286 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 19287 19288 cdb.scc_cmd = SCMD_READ_CAPACITY; 19289 19290 ucmd_buf.uscsi_cdb = (char *)&cdb; 19291 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19292 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 19293 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 19294 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19295 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19296 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19297 ucmd_buf.uscsi_timeout = 60; 19298 19299 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19300 UIO_SYSSPACE, path_flag); 19301 19302 switch (status) { 19303 case 0: 19304 /* Return failure if we did not get valid capacity data. */ 19305 if (ucmd_buf.uscsi_resid != 0) { 19306 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19307 "sd_send_scsi_READ_CAPACITY received invalid " 19308 "capacity data"); 19309 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19310 return (EIO); 19311 } 19312 /* 19313 * Read capacity and block size from the READ CAPACITY 10 data. 19314 * This data may be adjusted later due to device specific 19315 * issues. 19316 * 19317 * According to the SCSI spec, the READ CAPACITY 10 19318 * command returns the following: 19319 * 19320 * bytes 0-3: Maximum logical block address available. 19321 * (MSB in byte:0 & LSB in byte:3) 19322 * 19323 * bytes 4-7: Block length in bytes 19324 * (MSB in byte:4 & LSB in byte:7) 19325 * 19326 */ 19327 capacity = BE_32(capacity_buf[0]); 19328 lbasize = BE_32(capacity_buf[1]); 19329 19330 /* 19331 * Done with capacity_buf 19332 */ 19333 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19334 19335 /* 19336 * if the reported capacity is set to all 0xf's, then 19337 * this disk is too large and requires SBC-2 commands. 19338 * Reissue the request using READ CAPACITY 16. 19339 */ 19340 if (capacity == 0xffffffff) { 19341 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19342 status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, 19343 &lbasize, path_flag); 19344 if (status != 0) { 19345 return (status); 19346 } 19347 } 19348 break; /* Success! */ 19349 case EIO: 19350 switch (ucmd_buf.uscsi_status) { 19351 case STATUS_RESERVATION_CONFLICT: 19352 status = EACCES; 19353 break; 19354 case STATUS_CHECK: 19355 /* 19356 * Check condition; look for ASC/ASCQ of 0x04/0x01 19357 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19358 */ 19359 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19360 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 19361 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 19362 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19363 return (EAGAIN); 19364 } 19365 break; 19366 default: 19367 break; 19368 } 19369 /* FALLTHRU */ 19370 default: 19371 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19372 return (status); 19373 } 19374 19375 /* 19376 * Some ATAPI CD-ROM drives report inaccurate LBA size values 19377 * (2352 and 0 are common) so for these devices always force the value 19378 * to 2048 as required by the ATAPI specs. 19379 */ 19380 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 19381 lbasize = 2048; 19382 } 19383 19384 /* 19385 * Get the maximum LBA value from the READ CAPACITY data. 19386 * Here we assume that the Partial Medium Indicator (PMI) bit 19387 * was cleared when issuing the command. This means that the LBA 19388 * returned from the device is the LBA of the last logical block 19389 * on the logical unit. The actual logical block count will be 19390 * this value plus one. 19391 * 19392 * Currently the capacity is saved in terms of un->un_sys_blocksize, 19393 * so scale the capacity value to reflect this. 19394 */ 19395 capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize); 19396 19397 /* 19398 * Copy the values from the READ CAPACITY command into the space 19399 * provided by the caller. 19400 */ 19401 *capp = capacity; 19402 *lbap = lbasize; 19403 19404 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 19405 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19406 19407 /* 19408 * Both the lbasize and capacity from the device must be nonzero, 19409 * otherwise we assume that the values are not valid and return 19410 * failure to the caller. (4203735) 19411 */ 19412 if ((capacity == 0) || (lbasize == 0)) { 19413 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19414 "sd_send_scsi_READ_CAPACITY received invalid value " 19415 "capacity %llu lbasize %d", capacity, lbasize); 19416 return (EIO); 19417 } 19418 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19419 return (0); 19420 } 19421 19422 /* 19423 * Function: sd_send_scsi_READ_CAPACITY_16 19424 * 19425 * Description: This routine uses the scsi READ CAPACITY 16 command to 19426 * determine the device capacity in number of blocks and the 19427 * device native block size. If this function returns a failure, 19428 * then the values in *capp and *lbap are undefined. 19429 * This routine should always be called by 19430 * sd_send_scsi_READ_CAPACITY which will appy any device 19431 * specific adjustments to capacity and lbasize. 19432 * 19433 * Arguments: ssc - ssc contains ptr to soft state struct for the target 19434 * capp - ptr to unsigned 64-bit variable to receive the 19435 * capacity value from the command. 19436 * lbap - ptr to unsigned 32-bit varaible to receive the 19437 * block size value from the command 19438 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19439 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19440 * to use the USCSI "direct" chain and bypass the normal 19441 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 19442 * this command is issued as part of an error recovery 19443 * action. 19444 * 19445 * Return Code: 0 - Success 19446 * EIO - IO error 19447 * EACCES - Reservation conflict detected 19448 * EAGAIN - Device is becoming ready 19449 * errno return code from sd_ssc_send() 19450 * 19451 * Context: Can sleep. Blocks until command completes. 19452 */ 19453 19454 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 19455 19456 static int 19457 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 19458 uint32_t *lbap, int path_flag) 19459 { 19460 struct scsi_extended_sense sense_buf; 19461 struct uscsi_cmd ucmd_buf; 19462 union scsi_cdb cdb; 19463 uint64_t *capacity16_buf; 19464 uint64_t capacity; 19465 uint32_t lbasize; 19466 int status; 19467 struct sd_lun *un; 19468 19469 ASSERT(ssc != NULL); 19470 19471 un = ssc->ssc_un; 19472 ASSERT(un != NULL); 19473 ASSERT(!mutex_owned(SD_MUTEX(un))); 19474 ASSERT(capp != NULL); 19475 ASSERT(lbap != NULL); 19476 19477 SD_TRACE(SD_LOG_IO, un, 19478 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19479 19480 /* 19481 * First send a READ_CAPACITY_16 command to the target. 19482 * 19483 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 19484 * Medium Indicator bit is cleared. The address field must be 19485 * zero if the PMI bit is zero. 19486 */ 19487 bzero(&cdb, sizeof (cdb)); 19488 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19489 19490 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 19491 19492 ucmd_buf.uscsi_cdb = (char *)&cdb; 19493 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 19494 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 19495 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 19496 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19497 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19498 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19499 ucmd_buf.uscsi_timeout = 60; 19500 19501 /* 19502 * Read Capacity (16) is a Service Action In command. One 19503 * command byte (0x9E) is overloaded for multiple operations, 19504 * with the second CDB byte specifying the desired operation 19505 */ 19506 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 19507 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 19508 19509 /* 19510 * Fill in allocation length field 19511 */ 19512 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 19513 19514 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19515 UIO_SYSSPACE, path_flag); 19516 19517 switch (status) { 19518 case 0: 19519 /* Return failure if we did not get valid capacity data. */ 19520 if (ucmd_buf.uscsi_resid > 20) { 19521 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19522 "sd_send_scsi_READ_CAPACITY_16 received invalid " 19523 "capacity data"); 19524 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19525 return (EIO); 19526 } 19527 19528 /* 19529 * Read capacity and block size from the READ CAPACITY 10 data. 19530 * This data may be adjusted later due to device specific 19531 * issues. 19532 * 19533 * According to the SCSI spec, the READ CAPACITY 10 19534 * command returns the following: 19535 * 19536 * bytes 0-7: Maximum logical block address available. 19537 * (MSB in byte:0 & LSB in byte:7) 19538 * 19539 * bytes 8-11: Block length in bytes 19540 * (MSB in byte:8 & LSB in byte:11) 19541 * 19542 */ 19543 capacity = BE_64(capacity16_buf[0]); 19544 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 19545 19546 /* 19547 * Done with capacity16_buf 19548 */ 19549 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19550 19551 /* 19552 * if the reported capacity is set to all 0xf's, then 19553 * this disk is too large. This could only happen with 19554 * a device that supports LBAs larger than 64 bits which 19555 * are not defined by any current T10 standards. 19556 */ 19557 if (capacity == 0xffffffffffffffff) { 19558 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19559 "disk is too large"); 19560 return (EIO); 19561 } 19562 break; /* Success! */ 19563 case EIO: 19564 switch (ucmd_buf.uscsi_status) { 19565 case STATUS_RESERVATION_CONFLICT: 19566 status = EACCES; 19567 break; 19568 case STATUS_CHECK: 19569 /* 19570 * Check condition; look for ASC/ASCQ of 0x04/0x01 19571 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19572 */ 19573 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19574 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 19575 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 19576 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19577 return (EAGAIN); 19578 } 19579 break; 19580 default: 19581 break; 19582 } 19583 /* FALLTHRU */ 19584 default: 19585 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19586 return (status); 19587 } 19588 19589 *capp = capacity; 19590 *lbap = lbasize; 19591 19592 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 19593 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19594 19595 return (0); 19596 } 19597 19598 19599 /* 19600 * Function: sd_send_scsi_START_STOP_UNIT 19601 * 19602 * Description: Issue a scsi START STOP UNIT command to the target. 19603 * 19604 * Arguments: ssc - ssc contatins pointer to driver soft state (unit) 19605 * structure for this target. 19606 * flag - SD_TARGET_START 19607 * SD_TARGET_STOP 19608 * SD_TARGET_EJECT 19609 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19610 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19611 * to use the USCSI "direct" chain and bypass the normal 19612 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19613 * command is issued as part of an error recovery action. 19614 * 19615 * Return Code: 0 - Success 19616 * EIO - IO error 19617 * EACCES - Reservation conflict detected 19618 * ENXIO - Not Ready, medium not present 19619 * errno return code from sd_ssc_send() 19620 * 19621 * Context: Can sleep. 19622 */ 19623 19624 static int 19625 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, int path_flag) 19626 { 19627 struct scsi_extended_sense sense_buf; 19628 union scsi_cdb cdb; 19629 struct uscsi_cmd ucmd_buf; 19630 int status; 19631 struct sd_lun *un; 19632 19633 ASSERT(ssc != NULL); 19634 un = ssc->ssc_un; 19635 ASSERT(un != NULL); 19636 ASSERT(!mutex_owned(SD_MUTEX(un))); 19637 19638 SD_TRACE(SD_LOG_IO, un, 19639 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 19640 19641 if (un->un_f_check_start_stop && 19642 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 19643 (un->un_f_start_stop_supported != TRUE)) { 19644 return (0); 19645 } 19646 19647 /* 19648 * If we are performing an eject operation and 19649 * we receive any command other than SD_TARGET_EJECT 19650 * we should immediately return. 19651 */ 19652 if (flag != SD_TARGET_EJECT) { 19653 mutex_enter(SD_MUTEX(un)); 19654 if (un->un_f_ejecting == TRUE) { 19655 mutex_exit(SD_MUTEX(un)); 19656 return (EAGAIN); 19657 } 19658 mutex_exit(SD_MUTEX(un)); 19659 } 19660 19661 bzero(&cdb, sizeof (cdb)); 19662 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19663 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19664 19665 cdb.scc_cmd = SCMD_START_STOP; 19666 cdb.cdb_opaque[4] = (uchar_t)flag; 19667 19668 ucmd_buf.uscsi_cdb = (char *)&cdb; 19669 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19670 ucmd_buf.uscsi_bufaddr = NULL; 19671 ucmd_buf.uscsi_buflen = 0; 19672 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19673 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19674 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19675 ucmd_buf.uscsi_timeout = 200; 19676 19677 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19678 UIO_SYSSPACE, path_flag); 19679 19680 switch (status) { 19681 case 0: 19682 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19683 break; /* Success! */ 19684 case EIO: 19685 switch (ucmd_buf.uscsi_status) { 19686 case STATUS_RESERVATION_CONFLICT: 19687 status = EACCES; 19688 break; 19689 case STATUS_CHECK: 19690 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 19691 switch (scsi_sense_key( 19692 (uint8_t *)&sense_buf)) { 19693 case KEY_ILLEGAL_REQUEST: 19694 status = ENOTSUP; 19695 break; 19696 case KEY_NOT_READY: 19697 if (scsi_sense_asc( 19698 (uint8_t *)&sense_buf) 19699 == 0x3A) { 19700 status = ENXIO; 19701 } 19702 break; 19703 default: 19704 break; 19705 } 19706 } 19707 break; 19708 default: 19709 break; 19710 } 19711 break; 19712 default: 19713 break; 19714 } 19715 19716 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 19717 19718 return (status); 19719 } 19720 19721 19722 /* 19723 * Function: sd_start_stop_unit_callback 19724 * 19725 * Description: timeout(9F) callback to begin recovery process for a 19726 * device that has spun down. 19727 * 19728 * Arguments: arg - pointer to associated softstate struct. 19729 * 19730 * Context: Executes in a timeout(9F) thread context 19731 */ 19732 19733 static void 19734 sd_start_stop_unit_callback(void *arg) 19735 { 19736 struct sd_lun *un = arg; 19737 ASSERT(un != NULL); 19738 ASSERT(!mutex_owned(SD_MUTEX(un))); 19739 19740 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 19741 19742 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 19743 } 19744 19745 19746 /* 19747 * Function: sd_start_stop_unit_task 19748 * 19749 * Description: Recovery procedure when a drive is spun down. 19750 * 19751 * Arguments: arg - pointer to associated softstate struct. 19752 * 19753 * Context: Executes in a taskq() thread context 19754 */ 19755 19756 static void 19757 sd_start_stop_unit_task(void *arg) 19758 { 19759 struct sd_lun *un = arg; 19760 sd_ssc_t *ssc; 19761 int rval; 19762 19763 ASSERT(un != NULL); 19764 ASSERT(!mutex_owned(SD_MUTEX(un))); 19765 19766 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 19767 19768 /* 19769 * Some unformatted drives report not ready error, no need to 19770 * restart if format has been initiated. 19771 */ 19772 mutex_enter(SD_MUTEX(un)); 19773 if (un->un_f_format_in_progress == TRUE) { 19774 mutex_exit(SD_MUTEX(un)); 19775 return; 19776 } 19777 mutex_exit(SD_MUTEX(un)); 19778 19779 /* 19780 * When a START STOP command is issued from here, it is part of a 19781 * failure recovery operation and must be issued before any other 19782 * commands, including any pending retries. Thus it must be sent 19783 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 19784 * succeeds or not, we will start I/O after the attempt. 19785 */ 19786 ssc = sd_ssc_init(un); 19787 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START, 19788 SD_PATH_DIRECT_PRIORITY); 19789 if (rval != 0) 19790 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19791 sd_ssc_fini(ssc); 19792 /* 19793 * The above call blocks until the START_STOP_UNIT command completes. 19794 * Now that it has completed, we must re-try the original IO that 19795 * received the NOT READY condition in the first place. There are 19796 * three possible conditions here: 19797 * 19798 * (1) The original IO is on un_retry_bp. 19799 * (2) The original IO is on the regular wait queue, and un_retry_bp 19800 * is NULL. 19801 * (3) The original IO is on the regular wait queue, and un_retry_bp 19802 * points to some other, unrelated bp. 19803 * 19804 * For each case, we must call sd_start_cmds() with un_retry_bp 19805 * as the argument. If un_retry_bp is NULL, this will initiate 19806 * processing of the regular wait queue. If un_retry_bp is not NULL, 19807 * then this will process the bp on un_retry_bp. That may or may not 19808 * be the original IO, but that does not matter: the important thing 19809 * is to keep the IO processing going at this point. 19810 * 19811 * Note: This is a very specific error recovery sequence associated 19812 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 19813 * serialize the I/O with completion of the spin-up. 19814 */ 19815 mutex_enter(SD_MUTEX(un)); 19816 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19817 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 19818 un, un->un_retry_bp); 19819 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 19820 sd_start_cmds(un, un->un_retry_bp); 19821 mutex_exit(SD_MUTEX(un)); 19822 19823 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 19824 } 19825 19826 19827 /* 19828 * Function: sd_send_scsi_INQUIRY 19829 * 19830 * Description: Issue the scsi INQUIRY command. 19831 * 19832 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19833 * structure for this target. 19834 * bufaddr 19835 * buflen 19836 * evpd 19837 * page_code 19838 * page_length 19839 * 19840 * Return Code: 0 - Success 19841 * errno return code from sd_ssc_send() 19842 * 19843 * Context: Can sleep. Does not return until command is completed. 19844 */ 19845 19846 static int 19847 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen, 19848 uchar_t evpd, uchar_t page_code, size_t *residp) 19849 { 19850 union scsi_cdb cdb; 19851 struct uscsi_cmd ucmd_buf; 19852 int status; 19853 struct sd_lun *un; 19854 19855 ASSERT(ssc != NULL); 19856 un = ssc->ssc_un; 19857 ASSERT(un != NULL); 19858 ASSERT(!mutex_owned(SD_MUTEX(un))); 19859 ASSERT(bufaddr != NULL); 19860 19861 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 19862 19863 bzero(&cdb, sizeof (cdb)); 19864 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19865 bzero(bufaddr, buflen); 19866 19867 cdb.scc_cmd = SCMD_INQUIRY; 19868 cdb.cdb_opaque[1] = evpd; 19869 cdb.cdb_opaque[2] = page_code; 19870 FORMG0COUNT(&cdb, buflen); 19871 19872 ucmd_buf.uscsi_cdb = (char *)&cdb; 19873 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19874 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 19875 ucmd_buf.uscsi_buflen = buflen; 19876 ucmd_buf.uscsi_rqbuf = NULL; 19877 ucmd_buf.uscsi_rqlen = 0; 19878 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 19879 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 19880 19881 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19882 UIO_SYSSPACE, SD_PATH_DIRECT); 19883 19884 /* 19885 * Only handle status == 0, the upper-level caller 19886 * will put different assessment based on the context. 19887 */ 19888 if (status == 0) 19889 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19890 19891 if ((status == 0) && (residp != NULL)) { 19892 *residp = ucmd_buf.uscsi_resid; 19893 } 19894 19895 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 19896 19897 return (status); 19898 } 19899 19900 19901 /* 19902 * Function: sd_send_scsi_TEST_UNIT_READY 19903 * 19904 * Description: Issue the scsi TEST UNIT READY command. 19905 * This routine can be told to set the flag USCSI_DIAGNOSE to 19906 * prevent retrying failed commands. Use this when the intent 19907 * is either to check for device readiness, to clear a Unit 19908 * Attention, or to clear any outstanding sense data. 19909 * However under specific conditions the expected behavior 19910 * is for retries to bring a device ready, so use the flag 19911 * with caution. 19912 * 19913 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19914 * structure for this target. 19915 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 19916 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 19917 * 0: dont check for media present, do retries on cmd. 19918 * 19919 * Return Code: 0 - Success 19920 * EIO - IO error 19921 * EACCES - Reservation conflict detected 19922 * ENXIO - Not Ready, medium not present 19923 * errno return code from sd_ssc_send() 19924 * 19925 * Context: Can sleep. Does not return until command is completed. 19926 */ 19927 19928 static int 19929 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag) 19930 { 19931 struct scsi_extended_sense sense_buf; 19932 union scsi_cdb cdb; 19933 struct uscsi_cmd ucmd_buf; 19934 int status; 19935 struct sd_lun *un; 19936 19937 ASSERT(ssc != NULL); 19938 un = ssc->ssc_un; 19939 ASSERT(un != NULL); 19940 ASSERT(!mutex_owned(SD_MUTEX(un))); 19941 19942 SD_TRACE(SD_LOG_IO, un, 19943 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 19944 19945 /* 19946 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 19947 * timeouts when they receive a TUR and the queue is not empty. Check 19948 * the configuration flag set during attach (indicating the drive has 19949 * this firmware bug) and un_ncmds_in_transport before issuing the 19950 * TUR. If there are 19951 * pending commands return success, this is a bit arbitrary but is ok 19952 * for non-removables (i.e. the eliteI disks) and non-clustering 19953 * configurations. 19954 */ 19955 if (un->un_f_cfg_tur_check == TRUE) { 19956 mutex_enter(SD_MUTEX(un)); 19957 if (un->un_ncmds_in_transport != 0) { 19958 mutex_exit(SD_MUTEX(un)); 19959 return (0); 19960 } 19961 mutex_exit(SD_MUTEX(un)); 19962 } 19963 19964 bzero(&cdb, sizeof (cdb)); 19965 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19966 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19967 19968 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 19969 19970 ucmd_buf.uscsi_cdb = (char *)&cdb; 19971 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19972 ucmd_buf.uscsi_bufaddr = NULL; 19973 ucmd_buf.uscsi_buflen = 0; 19974 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19975 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19976 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19977 19978 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 19979 if ((flag & SD_DONT_RETRY_TUR) != 0) { 19980 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 19981 } 19982 ucmd_buf.uscsi_timeout = 60; 19983 19984 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19985 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 19986 SD_PATH_STANDARD)); 19987 19988 switch (status) { 19989 case 0: 19990 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19991 break; /* Success! */ 19992 case EIO: 19993 switch (ucmd_buf.uscsi_status) { 19994 case STATUS_RESERVATION_CONFLICT: 19995 status = EACCES; 19996 break; 19997 case STATUS_CHECK: 19998 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 19999 break; 20000 } 20001 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20002 (scsi_sense_key((uint8_t *)&sense_buf) == 20003 KEY_NOT_READY) && 20004 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 20005 status = ENXIO; 20006 } 20007 break; 20008 default: 20009 break; 20010 } 20011 break; 20012 default: 20013 break; 20014 } 20015 20016 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 20017 20018 return (status); 20019 } 20020 20021 /* 20022 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 20023 * 20024 * Description: Issue the scsi PERSISTENT RESERVE IN command. 20025 * 20026 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20027 * structure for this target. 20028 * 20029 * Return Code: 0 - Success 20030 * EACCES 20031 * ENOTSUP 20032 * errno return code from sd_ssc_send() 20033 * 20034 * Context: Can sleep. Does not return until command is completed. 20035 */ 20036 20037 static int 20038 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd, 20039 uint16_t data_len, uchar_t *data_bufp) 20040 { 20041 struct scsi_extended_sense sense_buf; 20042 union scsi_cdb cdb; 20043 struct uscsi_cmd ucmd_buf; 20044 int status; 20045 int no_caller_buf = FALSE; 20046 struct sd_lun *un; 20047 20048 ASSERT(ssc != NULL); 20049 un = ssc->ssc_un; 20050 ASSERT(un != NULL); 20051 ASSERT(!mutex_owned(SD_MUTEX(un))); 20052 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 20053 20054 SD_TRACE(SD_LOG_IO, un, 20055 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 20056 20057 bzero(&cdb, sizeof (cdb)); 20058 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20059 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20060 if (data_bufp == NULL) { 20061 /* Allocate a default buf if the caller did not give one */ 20062 ASSERT(data_len == 0); 20063 data_len = MHIOC_RESV_KEY_SIZE; 20064 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 20065 no_caller_buf = TRUE; 20066 } 20067 20068 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 20069 cdb.cdb_opaque[1] = usr_cmd; 20070 FORMG1COUNT(&cdb, data_len); 20071 20072 ucmd_buf.uscsi_cdb = (char *)&cdb; 20073 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20074 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 20075 ucmd_buf.uscsi_buflen = data_len; 20076 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20077 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20078 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20079 ucmd_buf.uscsi_timeout = 60; 20080 20081 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20082 UIO_SYSSPACE, SD_PATH_STANDARD); 20083 20084 switch (status) { 20085 case 0: 20086 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20087 20088 break; /* Success! */ 20089 case EIO: 20090 switch (ucmd_buf.uscsi_status) { 20091 case STATUS_RESERVATION_CONFLICT: 20092 status = EACCES; 20093 break; 20094 case STATUS_CHECK: 20095 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20096 (scsi_sense_key((uint8_t *)&sense_buf) == 20097 KEY_ILLEGAL_REQUEST)) { 20098 status = ENOTSUP; 20099 } 20100 break; 20101 default: 20102 break; 20103 } 20104 break; 20105 default: 20106 break; 20107 } 20108 20109 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 20110 20111 if (no_caller_buf == TRUE) { 20112 kmem_free(data_bufp, data_len); 20113 } 20114 20115 return (status); 20116 } 20117 20118 20119 /* 20120 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 20121 * 20122 * Description: This routine is the driver entry point for handling CD-ROM 20123 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 20124 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 20125 * device. 20126 * 20127 * Arguments: ssc - ssc contains un - pointer to soft state struct 20128 * for the target. 20129 * usr_cmd SCSI-3 reservation facility command (one of 20130 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 20131 * SD_SCSI3_PREEMPTANDABORT) 20132 * usr_bufp - user provided pointer register, reserve descriptor or 20133 * preempt and abort structure (mhioc_register_t, 20134 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 20135 * 20136 * Return Code: 0 - Success 20137 * EACCES 20138 * ENOTSUP 20139 * errno return code from sd_ssc_send() 20140 * 20141 * Context: Can sleep. Does not return until command is completed. 20142 */ 20143 20144 static int 20145 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd, 20146 uchar_t *usr_bufp) 20147 { 20148 struct scsi_extended_sense sense_buf; 20149 union scsi_cdb cdb; 20150 struct uscsi_cmd ucmd_buf; 20151 int status; 20152 uchar_t data_len = sizeof (sd_prout_t); 20153 sd_prout_t *prp; 20154 struct sd_lun *un; 20155 20156 ASSERT(ssc != NULL); 20157 un = ssc->ssc_un; 20158 ASSERT(un != NULL); 20159 ASSERT(!mutex_owned(SD_MUTEX(un))); 20160 ASSERT(data_len == 24); /* required by scsi spec */ 20161 20162 SD_TRACE(SD_LOG_IO, un, 20163 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 20164 20165 if (usr_bufp == NULL) { 20166 return (EINVAL); 20167 } 20168 20169 bzero(&cdb, sizeof (cdb)); 20170 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20171 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20172 prp = kmem_zalloc(data_len, KM_SLEEP); 20173 20174 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 20175 cdb.cdb_opaque[1] = usr_cmd; 20176 FORMG1COUNT(&cdb, data_len); 20177 20178 ucmd_buf.uscsi_cdb = (char *)&cdb; 20179 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20180 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 20181 ucmd_buf.uscsi_buflen = data_len; 20182 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20183 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20184 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20185 ucmd_buf.uscsi_timeout = 60; 20186 20187 switch (usr_cmd) { 20188 case SD_SCSI3_REGISTER: { 20189 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 20190 20191 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20192 bcopy(ptr->newkey.key, prp->service_key, 20193 MHIOC_RESV_KEY_SIZE); 20194 prp->aptpl = ptr->aptpl; 20195 break; 20196 } 20197 case SD_SCSI3_RESERVE: 20198 case SD_SCSI3_RELEASE: { 20199 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 20200 20201 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20202 prp->scope_address = BE_32(ptr->scope_specific_addr); 20203 cdb.cdb_opaque[2] = ptr->type; 20204 break; 20205 } 20206 case SD_SCSI3_PREEMPTANDABORT: { 20207 mhioc_preemptandabort_t *ptr = 20208 (mhioc_preemptandabort_t *)usr_bufp; 20209 20210 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20211 bcopy(ptr->victim_key.key, prp->service_key, 20212 MHIOC_RESV_KEY_SIZE); 20213 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 20214 cdb.cdb_opaque[2] = ptr->resvdesc.type; 20215 ucmd_buf.uscsi_flags |= USCSI_HEAD; 20216 break; 20217 } 20218 case SD_SCSI3_REGISTERANDIGNOREKEY: 20219 { 20220 mhioc_registerandignorekey_t *ptr; 20221 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 20222 bcopy(ptr->newkey.key, 20223 prp->service_key, MHIOC_RESV_KEY_SIZE); 20224 prp->aptpl = ptr->aptpl; 20225 break; 20226 } 20227 default: 20228 ASSERT(FALSE); 20229 break; 20230 } 20231 20232 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20233 UIO_SYSSPACE, SD_PATH_STANDARD); 20234 20235 switch (status) { 20236 case 0: 20237 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20238 break; /* Success! */ 20239 case EIO: 20240 switch (ucmd_buf.uscsi_status) { 20241 case STATUS_RESERVATION_CONFLICT: 20242 status = EACCES; 20243 break; 20244 case STATUS_CHECK: 20245 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20246 (scsi_sense_key((uint8_t *)&sense_buf) == 20247 KEY_ILLEGAL_REQUEST)) { 20248 status = ENOTSUP; 20249 } 20250 break; 20251 default: 20252 break; 20253 } 20254 break; 20255 default: 20256 break; 20257 } 20258 20259 kmem_free(prp, data_len); 20260 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 20261 return (status); 20262 } 20263 20264 20265 /* 20266 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 20267 * 20268 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 20269 * 20270 * Arguments: un - pointer to the target's soft state struct 20271 * dkc - pointer to the callback structure 20272 * 20273 * Return Code: 0 - success 20274 * errno-type error code 20275 * 20276 * Context: kernel thread context only. 20277 * 20278 * _______________________________________________________________ 20279 * | dkc_flag & | dkc_callback | DKIOCFLUSHWRITECACHE | 20280 * |FLUSH_VOLATILE| | operation | 20281 * |______________|______________|_________________________________| 20282 * | 0 | NULL | Synchronous flush on both | 20283 * | | | volatile and non-volatile cache | 20284 * |______________|______________|_________________________________| 20285 * | 1 | NULL | Synchronous flush on volatile | 20286 * | | | cache; disk drivers may suppress| 20287 * | | | flush if disk table indicates | 20288 * | | | non-volatile cache | 20289 * |______________|______________|_________________________________| 20290 * | 0 | !NULL | Asynchronous flush on both | 20291 * | | | volatile and non-volatile cache;| 20292 * |______________|______________|_________________________________| 20293 * | 1 | !NULL | Asynchronous flush on volatile | 20294 * | | | cache; disk drivers may suppress| 20295 * | | | flush if disk table indicates | 20296 * | | | non-volatile cache | 20297 * |______________|______________|_________________________________| 20298 * 20299 */ 20300 20301 static int 20302 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 20303 { 20304 struct sd_uscsi_info *uip; 20305 struct uscsi_cmd *uscmd; 20306 union scsi_cdb *cdb; 20307 struct buf *bp; 20308 int rval = 0; 20309 int is_async; 20310 20311 SD_TRACE(SD_LOG_IO, un, 20312 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 20313 20314 ASSERT(un != NULL); 20315 ASSERT(!mutex_owned(SD_MUTEX(un))); 20316 20317 if (dkc == NULL || dkc->dkc_callback == NULL) { 20318 is_async = FALSE; 20319 } else { 20320 is_async = TRUE; 20321 } 20322 20323 mutex_enter(SD_MUTEX(un)); 20324 /* check whether cache flush should be suppressed */ 20325 if (un->un_f_suppress_cache_flush == TRUE) { 20326 mutex_exit(SD_MUTEX(un)); 20327 /* 20328 * suppress the cache flush if the device is told to do 20329 * so by sd.conf or disk table 20330 */ 20331 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \ 20332 skip the cache flush since suppress_cache_flush is %d!\n", 20333 un->un_f_suppress_cache_flush); 20334 20335 if (is_async == TRUE) { 20336 /* invoke callback for asynchronous flush */ 20337 (*dkc->dkc_callback)(dkc->dkc_cookie, 0); 20338 } 20339 return (rval); 20340 } 20341 mutex_exit(SD_MUTEX(un)); 20342 20343 /* 20344 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be 20345 * set properly 20346 */ 20347 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 20348 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 20349 20350 mutex_enter(SD_MUTEX(un)); 20351 if (dkc != NULL && un->un_f_sync_nv_supported && 20352 (dkc->dkc_flag & FLUSH_VOLATILE)) { 20353 /* 20354 * if the device supports SYNC_NV bit, turn on 20355 * the SYNC_NV bit to only flush volatile cache 20356 */ 20357 cdb->cdb_un.tag |= SD_SYNC_NV_BIT; 20358 } 20359 mutex_exit(SD_MUTEX(un)); 20360 20361 /* 20362 * First get some memory for the uscsi_cmd struct and cdb 20363 * and initialize for SYNCHRONIZE_CACHE cmd. 20364 */ 20365 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 20366 uscmd->uscsi_cdblen = CDB_GROUP1; 20367 uscmd->uscsi_cdb = (caddr_t)cdb; 20368 uscmd->uscsi_bufaddr = NULL; 20369 uscmd->uscsi_buflen = 0; 20370 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 20371 uscmd->uscsi_rqlen = SENSE_LENGTH; 20372 uscmd->uscsi_rqresid = SENSE_LENGTH; 20373 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20374 uscmd->uscsi_timeout = sd_io_time; 20375 20376 /* 20377 * Allocate an sd_uscsi_info struct and fill it with the info 20378 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 20379 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 20380 * since we allocate the buf here in this function, we do not 20381 * need to preserve the prior contents of b_private. 20382 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 20383 */ 20384 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 20385 uip->ui_flags = SD_PATH_DIRECT; 20386 uip->ui_cmdp = uscmd; 20387 20388 bp = getrbuf(KM_SLEEP); 20389 bp->b_private = uip; 20390 20391 /* 20392 * Setup buffer to carry uscsi request. 20393 */ 20394 bp->b_flags = B_BUSY; 20395 bp->b_bcount = 0; 20396 bp->b_blkno = 0; 20397 20398 if (is_async == TRUE) { 20399 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 20400 uip->ui_dkc = *dkc; 20401 } 20402 20403 bp->b_edev = SD_GET_DEV(un); 20404 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 20405 20406 /* 20407 * Unset un_f_sync_cache_required flag 20408 */ 20409 mutex_enter(SD_MUTEX(un)); 20410 un->un_f_sync_cache_required = FALSE; 20411 mutex_exit(SD_MUTEX(un)); 20412 20413 (void) sd_uscsi_strategy(bp); 20414 20415 /* 20416 * If synchronous request, wait for completion 20417 * If async just return and let b_iodone callback 20418 * cleanup. 20419 * NOTE: On return, u_ncmds_in_driver will be decremented, 20420 * but it was also incremented in sd_uscsi_strategy(), so 20421 * we should be ok. 20422 */ 20423 if (is_async == FALSE) { 20424 (void) biowait(bp); 20425 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 20426 } 20427 20428 return (rval); 20429 } 20430 20431 20432 static int 20433 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 20434 { 20435 struct sd_uscsi_info *uip; 20436 struct uscsi_cmd *uscmd; 20437 uint8_t *sense_buf; 20438 struct sd_lun *un; 20439 int status; 20440 union scsi_cdb *cdb; 20441 20442 uip = (struct sd_uscsi_info *)(bp->b_private); 20443 ASSERT(uip != NULL); 20444 20445 uscmd = uip->ui_cmdp; 20446 ASSERT(uscmd != NULL); 20447 20448 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 20449 ASSERT(sense_buf != NULL); 20450 20451 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 20452 ASSERT(un != NULL); 20453 20454 cdb = (union scsi_cdb *)uscmd->uscsi_cdb; 20455 20456 status = geterror(bp); 20457 switch (status) { 20458 case 0: 20459 break; /* Success! */ 20460 case EIO: 20461 switch (uscmd->uscsi_status) { 20462 case STATUS_RESERVATION_CONFLICT: 20463 /* Ignore reservation conflict */ 20464 status = 0; 20465 goto done; 20466 20467 case STATUS_CHECK: 20468 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 20469 (scsi_sense_key(sense_buf) == 20470 KEY_ILLEGAL_REQUEST)) { 20471 /* Ignore Illegal Request error */ 20472 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) { 20473 mutex_enter(SD_MUTEX(un)); 20474 un->un_f_sync_nv_supported = FALSE; 20475 mutex_exit(SD_MUTEX(un)); 20476 status = 0; 20477 SD_TRACE(SD_LOG_IO, un, 20478 "un_f_sync_nv_supported \ 20479 is set to false.\n"); 20480 goto done; 20481 } 20482 20483 mutex_enter(SD_MUTEX(un)); 20484 un->un_f_sync_cache_supported = FALSE; 20485 mutex_exit(SD_MUTEX(un)); 20486 SD_TRACE(SD_LOG_IO, un, 20487 "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \ 20488 un_f_sync_cache_supported set to false \ 20489 with asc = %x, ascq = %x\n", 20490 scsi_sense_asc(sense_buf), 20491 scsi_sense_ascq(sense_buf)); 20492 status = ENOTSUP; 20493 goto done; 20494 } 20495 break; 20496 default: 20497 break; 20498 } 20499 /* FALLTHRU */ 20500 default: 20501 /* 20502 * Turn on the un_f_sync_cache_required flag 20503 * since the SYNC CACHE command failed 20504 */ 20505 mutex_enter(SD_MUTEX(un)); 20506 un->un_f_sync_cache_required = TRUE; 20507 mutex_exit(SD_MUTEX(un)); 20508 20509 /* 20510 * Don't log an error message if this device 20511 * has removable media. 20512 */ 20513 if (!un->un_f_has_removable_media) { 20514 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 20515 "SYNCHRONIZE CACHE command failed (%d)\n", status); 20516 } 20517 break; 20518 } 20519 20520 done: 20521 if (uip->ui_dkc.dkc_callback != NULL) { 20522 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 20523 } 20524 20525 ASSERT((bp->b_flags & B_REMAPPED) == 0); 20526 freerbuf(bp); 20527 kmem_free(uip, sizeof (struct sd_uscsi_info)); 20528 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 20529 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 20530 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 20531 20532 return (status); 20533 } 20534 20535 20536 /* 20537 * Function: sd_send_scsi_GET_CONFIGURATION 20538 * 20539 * Description: Issues the get configuration command to the device. 20540 * Called from sd_check_for_writable_cd & sd_get_media_info 20541 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 20542 * Arguments: ssc 20543 * ucmdbuf 20544 * rqbuf 20545 * rqbuflen 20546 * bufaddr 20547 * buflen 20548 * path_flag 20549 * 20550 * Return Code: 0 - Success 20551 * errno return code from sd_ssc_send() 20552 * 20553 * Context: Can sleep. Does not return until command is completed. 20554 * 20555 */ 20556 20557 static int 20558 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 20559 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 20560 int path_flag) 20561 { 20562 char cdb[CDB_GROUP1]; 20563 int status; 20564 struct sd_lun *un; 20565 20566 ASSERT(ssc != NULL); 20567 un = ssc->ssc_un; 20568 ASSERT(un != NULL); 20569 ASSERT(!mutex_owned(SD_MUTEX(un))); 20570 ASSERT(bufaddr != NULL); 20571 ASSERT(ucmdbuf != NULL); 20572 ASSERT(rqbuf != NULL); 20573 20574 SD_TRACE(SD_LOG_IO, un, 20575 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 20576 20577 bzero(cdb, sizeof (cdb)); 20578 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20579 bzero(rqbuf, rqbuflen); 20580 bzero(bufaddr, buflen); 20581 20582 /* 20583 * Set up cdb field for the get configuration command. 20584 */ 20585 cdb[0] = SCMD_GET_CONFIGURATION; 20586 cdb[1] = 0x02; /* Requested Type */ 20587 cdb[8] = SD_PROFILE_HEADER_LEN; 20588 ucmdbuf->uscsi_cdb = cdb; 20589 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20590 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20591 ucmdbuf->uscsi_buflen = buflen; 20592 ucmdbuf->uscsi_timeout = sd_io_time; 20593 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20594 ucmdbuf->uscsi_rqlen = rqbuflen; 20595 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20596 20597 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 20598 UIO_SYSSPACE, path_flag); 20599 20600 switch (status) { 20601 case 0: 20602 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20603 break; /* Success! */ 20604 case EIO: 20605 switch (ucmdbuf->uscsi_status) { 20606 case STATUS_RESERVATION_CONFLICT: 20607 status = EACCES; 20608 break; 20609 default: 20610 break; 20611 } 20612 break; 20613 default: 20614 break; 20615 } 20616 20617 if (status == 0) { 20618 SD_DUMP_MEMORY(un, SD_LOG_IO, 20619 "sd_send_scsi_GET_CONFIGURATION: data", 20620 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20621 } 20622 20623 SD_TRACE(SD_LOG_IO, un, 20624 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 20625 20626 return (status); 20627 } 20628 20629 /* 20630 * Function: sd_send_scsi_feature_GET_CONFIGURATION 20631 * 20632 * Description: Issues the get configuration command to the device to 20633 * retrieve a specific feature. Called from 20634 * sd_check_for_writable_cd & sd_set_mmc_caps. 20635 * Arguments: ssc 20636 * ucmdbuf 20637 * rqbuf 20638 * rqbuflen 20639 * bufaddr 20640 * buflen 20641 * feature 20642 * 20643 * Return Code: 0 - Success 20644 * errno return code from sd_ssc_send() 20645 * 20646 * Context: Can sleep. Does not return until command is completed. 20647 * 20648 */ 20649 static int 20650 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 20651 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 20652 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag) 20653 { 20654 char cdb[CDB_GROUP1]; 20655 int status; 20656 struct sd_lun *un; 20657 20658 ASSERT(ssc != NULL); 20659 un = ssc->ssc_un; 20660 ASSERT(un != NULL); 20661 ASSERT(!mutex_owned(SD_MUTEX(un))); 20662 ASSERT(bufaddr != NULL); 20663 ASSERT(ucmdbuf != NULL); 20664 ASSERT(rqbuf != NULL); 20665 20666 SD_TRACE(SD_LOG_IO, un, 20667 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 20668 20669 bzero(cdb, sizeof (cdb)); 20670 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20671 bzero(rqbuf, rqbuflen); 20672 bzero(bufaddr, buflen); 20673 20674 /* 20675 * Set up cdb field for the get configuration command. 20676 */ 20677 cdb[0] = SCMD_GET_CONFIGURATION; 20678 cdb[1] = 0x02; /* Requested Type */ 20679 cdb[3] = feature; 20680 cdb[8] = buflen; 20681 ucmdbuf->uscsi_cdb = cdb; 20682 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20683 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20684 ucmdbuf->uscsi_buflen = buflen; 20685 ucmdbuf->uscsi_timeout = sd_io_time; 20686 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20687 ucmdbuf->uscsi_rqlen = rqbuflen; 20688 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20689 20690 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 20691 UIO_SYSSPACE, path_flag); 20692 20693 switch (status) { 20694 case 0: 20695 20696 break; /* Success! */ 20697 case EIO: 20698 switch (ucmdbuf->uscsi_status) { 20699 case STATUS_RESERVATION_CONFLICT: 20700 status = EACCES; 20701 break; 20702 default: 20703 break; 20704 } 20705 break; 20706 default: 20707 break; 20708 } 20709 20710 if (status == 0) { 20711 SD_DUMP_MEMORY(un, SD_LOG_IO, 20712 "sd_send_scsi_feature_GET_CONFIGURATION: data", 20713 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20714 } 20715 20716 SD_TRACE(SD_LOG_IO, un, 20717 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 20718 20719 return (status); 20720 } 20721 20722 20723 /* 20724 * Function: sd_send_scsi_MODE_SENSE 20725 * 20726 * Description: Utility function for issuing a scsi MODE SENSE command. 20727 * Note: This routine uses a consistent implementation for Group0, 20728 * Group1, and Group2 commands across all platforms. ATAPI devices 20729 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20730 * 20731 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20732 * structure for this target. 20733 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20734 * CDB_GROUP[1|2] (10 byte). 20735 * bufaddr - buffer for page data retrieved from the target. 20736 * buflen - size of page to be retrieved. 20737 * page_code - page code of data to be retrieved from the target. 20738 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20739 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20740 * to use the USCSI "direct" chain and bypass the normal 20741 * command waitq. 20742 * 20743 * Return Code: 0 - Success 20744 * errno return code from sd_ssc_send() 20745 * 20746 * Context: Can sleep. Does not return until command is completed. 20747 */ 20748 20749 static int 20750 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 20751 size_t buflen, uchar_t page_code, int path_flag) 20752 { 20753 struct scsi_extended_sense sense_buf; 20754 union scsi_cdb cdb; 20755 struct uscsi_cmd ucmd_buf; 20756 int status; 20757 int headlen; 20758 struct sd_lun *un; 20759 20760 ASSERT(ssc != NULL); 20761 un = ssc->ssc_un; 20762 ASSERT(un != NULL); 20763 ASSERT(!mutex_owned(SD_MUTEX(un))); 20764 ASSERT(bufaddr != NULL); 20765 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20766 (cdbsize == CDB_GROUP2)); 20767 20768 SD_TRACE(SD_LOG_IO, un, 20769 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 20770 20771 bzero(&cdb, sizeof (cdb)); 20772 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20773 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20774 bzero(bufaddr, buflen); 20775 20776 if (cdbsize == CDB_GROUP0) { 20777 cdb.scc_cmd = SCMD_MODE_SENSE; 20778 cdb.cdb_opaque[2] = page_code; 20779 FORMG0COUNT(&cdb, buflen); 20780 headlen = MODE_HEADER_LENGTH; 20781 } else { 20782 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 20783 cdb.cdb_opaque[2] = page_code; 20784 FORMG1COUNT(&cdb, buflen); 20785 headlen = MODE_HEADER_LENGTH_GRP2; 20786 } 20787 20788 ASSERT(headlen <= buflen); 20789 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20790 20791 ucmd_buf.uscsi_cdb = (char *)&cdb; 20792 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20793 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20794 ucmd_buf.uscsi_buflen = buflen; 20795 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20796 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20797 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20798 ucmd_buf.uscsi_timeout = 60; 20799 20800 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20801 UIO_SYSSPACE, path_flag); 20802 20803 switch (status) { 20804 case 0: 20805 /* 20806 * sr_check_wp() uses 0x3f page code and check the header of 20807 * mode page to determine if target device is write-protected. 20808 * But some USB devices return 0 bytes for 0x3f page code. For 20809 * this case, make sure that mode page header is returned at 20810 * least. 20811 */ 20812 if (buflen - ucmd_buf.uscsi_resid < headlen) { 20813 status = EIO; 20814 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20815 "mode page header is not returned"); 20816 } 20817 break; /* Success! */ 20818 case EIO: 20819 switch (ucmd_buf.uscsi_status) { 20820 case STATUS_RESERVATION_CONFLICT: 20821 status = EACCES; 20822 break; 20823 default: 20824 break; 20825 } 20826 break; 20827 default: 20828 break; 20829 } 20830 20831 if (status == 0) { 20832 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 20833 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20834 } 20835 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 20836 20837 return (status); 20838 } 20839 20840 20841 /* 20842 * Function: sd_send_scsi_MODE_SELECT 20843 * 20844 * Description: Utility function for issuing a scsi MODE SELECT command. 20845 * Note: This routine uses a consistent implementation for Group0, 20846 * Group1, and Group2 commands across all platforms. ATAPI devices 20847 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20848 * 20849 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20850 * structure for this target. 20851 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20852 * CDB_GROUP[1|2] (10 byte). 20853 * bufaddr - buffer for page data retrieved from the target. 20854 * buflen - size of page to be retrieved. 20855 * save_page - boolean to determin if SP bit should be set. 20856 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20857 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20858 * to use the USCSI "direct" chain and bypass the normal 20859 * command waitq. 20860 * 20861 * Return Code: 0 - Success 20862 * errno return code from sd_ssc_send() 20863 * 20864 * Context: Can sleep. Does not return until command is completed. 20865 */ 20866 20867 static int 20868 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 20869 size_t buflen, uchar_t save_page, int path_flag) 20870 { 20871 struct scsi_extended_sense sense_buf; 20872 union scsi_cdb cdb; 20873 struct uscsi_cmd ucmd_buf; 20874 int status; 20875 struct sd_lun *un; 20876 20877 ASSERT(ssc != NULL); 20878 un = ssc->ssc_un; 20879 ASSERT(un != NULL); 20880 ASSERT(!mutex_owned(SD_MUTEX(un))); 20881 ASSERT(bufaddr != NULL); 20882 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20883 (cdbsize == CDB_GROUP2)); 20884 20885 SD_TRACE(SD_LOG_IO, un, 20886 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 20887 20888 bzero(&cdb, sizeof (cdb)); 20889 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20890 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20891 20892 /* Set the PF bit for many third party drives */ 20893 cdb.cdb_opaque[1] = 0x10; 20894 20895 /* Set the savepage(SP) bit if given */ 20896 if (save_page == SD_SAVE_PAGE) { 20897 cdb.cdb_opaque[1] |= 0x01; 20898 } 20899 20900 if (cdbsize == CDB_GROUP0) { 20901 cdb.scc_cmd = SCMD_MODE_SELECT; 20902 FORMG0COUNT(&cdb, buflen); 20903 } else { 20904 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 20905 FORMG1COUNT(&cdb, buflen); 20906 } 20907 20908 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20909 20910 ucmd_buf.uscsi_cdb = (char *)&cdb; 20911 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20912 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20913 ucmd_buf.uscsi_buflen = buflen; 20914 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20915 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20916 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20917 ucmd_buf.uscsi_timeout = 60; 20918 20919 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20920 UIO_SYSSPACE, path_flag); 20921 20922 switch (status) { 20923 case 0: 20924 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20925 break; /* Success! */ 20926 case EIO: 20927 switch (ucmd_buf.uscsi_status) { 20928 case STATUS_RESERVATION_CONFLICT: 20929 status = EACCES; 20930 break; 20931 default: 20932 break; 20933 } 20934 break; 20935 default: 20936 break; 20937 } 20938 20939 if (status == 0) { 20940 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 20941 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20942 } 20943 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 20944 20945 return (status); 20946 } 20947 20948 20949 /* 20950 * Function: sd_send_scsi_RDWR 20951 * 20952 * Description: Issue a scsi READ or WRITE command with the given parameters. 20953 * 20954 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20955 * structure for this target. 20956 * cmd: SCMD_READ or SCMD_WRITE 20957 * bufaddr: Address of caller's buffer to receive the RDWR data 20958 * buflen: Length of caller's buffer receive the RDWR data. 20959 * start_block: Block number for the start of the RDWR operation. 20960 * (Assumes target-native block size.) 20961 * residp: Pointer to variable to receive the redisual of the 20962 * RDWR operation (may be NULL of no residual requested). 20963 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20964 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20965 * to use the USCSI "direct" chain and bypass the normal 20966 * command waitq. 20967 * 20968 * Return Code: 0 - Success 20969 * errno return code from sd_ssc_send() 20970 * 20971 * Context: Can sleep. Does not return until command is completed. 20972 */ 20973 20974 static int 20975 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 20976 size_t buflen, daddr_t start_block, int path_flag) 20977 { 20978 struct scsi_extended_sense sense_buf; 20979 union scsi_cdb cdb; 20980 struct uscsi_cmd ucmd_buf; 20981 uint32_t block_count; 20982 int status; 20983 int cdbsize; 20984 uchar_t flag; 20985 struct sd_lun *un; 20986 20987 ASSERT(ssc != NULL); 20988 un = ssc->ssc_un; 20989 ASSERT(un != NULL); 20990 ASSERT(!mutex_owned(SD_MUTEX(un))); 20991 ASSERT(bufaddr != NULL); 20992 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 20993 20994 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 20995 20996 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 20997 return (EINVAL); 20998 } 20999 21000 mutex_enter(SD_MUTEX(un)); 21001 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 21002 mutex_exit(SD_MUTEX(un)); 21003 21004 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 21005 21006 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 21007 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 21008 bufaddr, buflen, start_block, block_count); 21009 21010 bzero(&cdb, sizeof (cdb)); 21011 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21012 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21013 21014 /* Compute CDB size to use */ 21015 if (start_block > 0xffffffff) 21016 cdbsize = CDB_GROUP4; 21017 else if ((start_block & 0xFFE00000) || 21018 (un->un_f_cfg_is_atapi == TRUE)) 21019 cdbsize = CDB_GROUP1; 21020 else 21021 cdbsize = CDB_GROUP0; 21022 21023 switch (cdbsize) { 21024 case CDB_GROUP0: /* 6-byte CDBs */ 21025 cdb.scc_cmd = cmd; 21026 FORMG0ADDR(&cdb, start_block); 21027 FORMG0COUNT(&cdb, block_count); 21028 break; 21029 case CDB_GROUP1: /* 10-byte CDBs */ 21030 cdb.scc_cmd = cmd | SCMD_GROUP1; 21031 FORMG1ADDR(&cdb, start_block); 21032 FORMG1COUNT(&cdb, block_count); 21033 break; 21034 case CDB_GROUP4: /* 16-byte CDBs */ 21035 cdb.scc_cmd = cmd | SCMD_GROUP4; 21036 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 21037 FORMG4COUNT(&cdb, block_count); 21038 break; 21039 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 21040 default: 21041 /* All others reserved */ 21042 return (EINVAL); 21043 } 21044 21045 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 21046 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21047 21048 ucmd_buf.uscsi_cdb = (char *)&cdb; 21049 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21050 ucmd_buf.uscsi_bufaddr = bufaddr; 21051 ucmd_buf.uscsi_buflen = buflen; 21052 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21053 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21054 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 21055 ucmd_buf.uscsi_timeout = 60; 21056 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21057 UIO_SYSSPACE, path_flag); 21058 21059 switch (status) { 21060 case 0: 21061 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21062 break; /* Success! */ 21063 case EIO: 21064 switch (ucmd_buf.uscsi_status) { 21065 case STATUS_RESERVATION_CONFLICT: 21066 status = EACCES; 21067 break; 21068 default: 21069 break; 21070 } 21071 break; 21072 default: 21073 break; 21074 } 21075 21076 if (status == 0) { 21077 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 21078 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21079 } 21080 21081 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 21082 21083 return (status); 21084 } 21085 21086 21087 /* 21088 * Function: sd_send_scsi_LOG_SENSE 21089 * 21090 * Description: Issue a scsi LOG_SENSE command with the given parameters. 21091 * 21092 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21093 * structure for this target. 21094 * 21095 * Return Code: 0 - Success 21096 * errno return code from sd_ssc_send() 21097 * 21098 * Context: Can sleep. Does not return until command is completed. 21099 */ 21100 21101 static int 21102 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen, 21103 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 21104 int path_flag) 21105 21106 { 21107 struct scsi_extended_sense sense_buf; 21108 union scsi_cdb cdb; 21109 struct uscsi_cmd ucmd_buf; 21110 int status; 21111 struct sd_lun *un; 21112 21113 ASSERT(ssc != NULL); 21114 un = ssc->ssc_un; 21115 ASSERT(un != NULL); 21116 ASSERT(!mutex_owned(SD_MUTEX(un))); 21117 21118 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 21119 21120 bzero(&cdb, sizeof (cdb)); 21121 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21122 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21123 21124 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 21125 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 21126 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 21127 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 21128 FORMG1COUNT(&cdb, buflen); 21129 21130 ucmd_buf.uscsi_cdb = (char *)&cdb; 21131 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21132 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21133 ucmd_buf.uscsi_buflen = buflen; 21134 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21135 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21136 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21137 ucmd_buf.uscsi_timeout = 60; 21138 21139 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21140 UIO_SYSSPACE, path_flag); 21141 21142 switch (status) { 21143 case 0: 21144 break; 21145 case EIO: 21146 switch (ucmd_buf.uscsi_status) { 21147 case STATUS_RESERVATION_CONFLICT: 21148 status = EACCES; 21149 break; 21150 case STATUS_CHECK: 21151 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21152 (scsi_sense_key((uint8_t *)&sense_buf) == 21153 KEY_ILLEGAL_REQUEST) && 21154 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 21155 /* 21156 * ASC 0x24: INVALID FIELD IN CDB 21157 */ 21158 switch (page_code) { 21159 case START_STOP_CYCLE_PAGE: 21160 /* 21161 * The start stop cycle counter is 21162 * implemented as page 0x31 in earlier 21163 * generation disks. In new generation 21164 * disks the start stop cycle counter is 21165 * implemented as page 0xE. To properly 21166 * handle this case if an attempt for 21167 * log page 0xE is made and fails we 21168 * will try again using page 0x31. 21169 * 21170 * Network storage BU committed to 21171 * maintain the page 0x31 for this 21172 * purpose and will not have any other 21173 * page implemented with page code 0x31 21174 * until all disks transition to the 21175 * standard page. 21176 */ 21177 mutex_enter(SD_MUTEX(un)); 21178 un->un_start_stop_cycle_page = 21179 START_STOP_CYCLE_VU_PAGE; 21180 cdb.cdb_opaque[2] = 21181 (char)(page_control << 6) | 21182 un->un_start_stop_cycle_page; 21183 mutex_exit(SD_MUTEX(un)); 21184 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 21185 status = sd_ssc_send( 21186 ssc, &ucmd_buf, FKIOCTL, 21187 UIO_SYSSPACE, path_flag); 21188 21189 break; 21190 case TEMPERATURE_PAGE: 21191 status = ENOTTY; 21192 break; 21193 default: 21194 break; 21195 } 21196 } 21197 break; 21198 default: 21199 break; 21200 } 21201 break; 21202 default: 21203 break; 21204 } 21205 21206 if (status == 0) { 21207 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21208 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 21209 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21210 } 21211 21212 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 21213 21214 return (status); 21215 } 21216 21217 21218 /* 21219 * Function: sdioctl 21220 * 21221 * Description: Driver's ioctl(9e) entry point function. 21222 * 21223 * Arguments: dev - device number 21224 * cmd - ioctl operation to be performed 21225 * arg - user argument, contains data to be set or reference 21226 * parameter for get 21227 * flag - bit flag, indicating open settings, 32/64 bit type 21228 * cred_p - user credential pointer 21229 * rval_p - calling process return value (OPT) 21230 * 21231 * Return Code: EINVAL 21232 * ENOTTY 21233 * ENXIO 21234 * EIO 21235 * EFAULT 21236 * ENOTSUP 21237 * EPERM 21238 * 21239 * Context: Called from the device switch at normal priority. 21240 */ 21241 21242 static int 21243 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 21244 { 21245 struct sd_lun *un = NULL; 21246 int err = 0; 21247 int i = 0; 21248 cred_t *cr; 21249 int tmprval = EINVAL; 21250 int is_valid; 21251 sd_ssc_t *ssc; 21252 21253 /* 21254 * All device accesses go thru sdstrategy where we check on suspend 21255 * status 21256 */ 21257 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21258 return (ENXIO); 21259 } 21260 21261 ASSERT(!mutex_owned(SD_MUTEX(un))); 21262 21263 /* Initialize sd_ssc_t for internal uscsi commands */ 21264 ssc = sd_ssc_init(un); 21265 21266 is_valid = SD_IS_VALID_LABEL(un); 21267 21268 /* 21269 * Moved this wait from sd_uscsi_strategy to here for 21270 * reasons of deadlock prevention. Internal driver commands, 21271 * specifically those to change a devices power level, result 21272 * in a call to sd_uscsi_strategy. 21273 */ 21274 mutex_enter(SD_MUTEX(un)); 21275 while ((un->un_state == SD_STATE_SUSPENDED) || 21276 (un->un_state == SD_STATE_PM_CHANGING)) { 21277 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 21278 } 21279 /* 21280 * Twiddling the counter here protects commands from now 21281 * through to the top of sd_uscsi_strategy. Without the 21282 * counter inc. a power down, for example, could get in 21283 * after the above check for state is made and before 21284 * execution gets to the top of sd_uscsi_strategy. 21285 * That would cause problems. 21286 */ 21287 un->un_ncmds_in_driver++; 21288 21289 if (!is_valid && 21290 (flag & (FNDELAY | FNONBLOCK))) { 21291 switch (cmd) { 21292 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 21293 case DKIOCGVTOC: 21294 case DKIOCGEXTVTOC: 21295 case DKIOCGAPART: 21296 case DKIOCPARTINFO: 21297 case DKIOCEXTPARTINFO: 21298 case DKIOCSGEOM: 21299 case DKIOCSAPART: 21300 case DKIOCGETEFI: 21301 case DKIOCPARTITION: 21302 case DKIOCSVTOC: 21303 case DKIOCSEXTVTOC: 21304 case DKIOCSETEFI: 21305 case DKIOCGMBOOT: 21306 case DKIOCSMBOOT: 21307 case DKIOCG_PHYGEOM: 21308 case DKIOCG_VIRTGEOM: 21309 #if defined(__i386) || defined(__amd64) 21310 case DKIOCSETEXTPART: 21311 #endif 21312 /* let cmlb handle it */ 21313 goto skip_ready_valid; 21314 21315 case CDROMPAUSE: 21316 case CDROMRESUME: 21317 case CDROMPLAYMSF: 21318 case CDROMPLAYTRKIND: 21319 case CDROMREADTOCHDR: 21320 case CDROMREADTOCENTRY: 21321 case CDROMSTOP: 21322 case CDROMSTART: 21323 case CDROMVOLCTRL: 21324 case CDROMSUBCHNL: 21325 case CDROMREADMODE2: 21326 case CDROMREADMODE1: 21327 case CDROMREADOFFSET: 21328 case CDROMSBLKMODE: 21329 case CDROMGBLKMODE: 21330 case CDROMGDRVSPEED: 21331 case CDROMSDRVSPEED: 21332 case CDROMCDDA: 21333 case CDROMCDXA: 21334 case CDROMSUBCODE: 21335 if (!ISCD(un)) { 21336 un->un_ncmds_in_driver--; 21337 ASSERT(un->un_ncmds_in_driver >= 0); 21338 mutex_exit(SD_MUTEX(un)); 21339 err = ENOTTY; 21340 goto done_without_assess; 21341 } 21342 break; 21343 case FDEJECT: 21344 case DKIOCEJECT: 21345 case CDROMEJECT: 21346 if (!un->un_f_eject_media_supported) { 21347 un->un_ncmds_in_driver--; 21348 ASSERT(un->un_ncmds_in_driver >= 0); 21349 mutex_exit(SD_MUTEX(un)); 21350 err = ENOTTY; 21351 goto done_without_assess; 21352 } 21353 break; 21354 case DKIOCFLUSHWRITECACHE: 21355 mutex_exit(SD_MUTEX(un)); 21356 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 21357 if (err != 0) { 21358 mutex_enter(SD_MUTEX(un)); 21359 un->un_ncmds_in_driver--; 21360 ASSERT(un->un_ncmds_in_driver >= 0); 21361 mutex_exit(SD_MUTEX(un)); 21362 err = EIO; 21363 goto done_quick_assess; 21364 } 21365 mutex_enter(SD_MUTEX(un)); 21366 /* FALLTHROUGH */ 21367 case DKIOCREMOVABLE: 21368 case DKIOCHOTPLUGGABLE: 21369 case DKIOCINFO: 21370 case DKIOCGMEDIAINFO: 21371 case MHIOCENFAILFAST: 21372 case MHIOCSTATUS: 21373 case MHIOCTKOWN: 21374 case MHIOCRELEASE: 21375 case MHIOCGRP_INKEYS: 21376 case MHIOCGRP_INRESV: 21377 case MHIOCGRP_REGISTER: 21378 case MHIOCGRP_RESERVE: 21379 case MHIOCGRP_PREEMPTANDABORT: 21380 case MHIOCGRP_REGISTERANDIGNOREKEY: 21381 case CDROMCLOSETRAY: 21382 case USCSICMD: 21383 goto skip_ready_valid; 21384 default: 21385 break; 21386 } 21387 21388 mutex_exit(SD_MUTEX(un)); 21389 err = sd_ready_and_valid(ssc, SDPART(dev)); 21390 mutex_enter(SD_MUTEX(un)); 21391 21392 if (err != SD_READY_VALID) { 21393 switch (cmd) { 21394 case DKIOCSTATE: 21395 case CDROMGDRVSPEED: 21396 case CDROMSDRVSPEED: 21397 case FDEJECT: /* for eject command */ 21398 case DKIOCEJECT: 21399 case CDROMEJECT: 21400 case DKIOCREMOVABLE: 21401 case DKIOCHOTPLUGGABLE: 21402 break; 21403 default: 21404 if (un->un_f_has_removable_media) { 21405 err = ENXIO; 21406 } else { 21407 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 21408 if (err == SD_RESERVED_BY_OTHERS) { 21409 err = EACCES; 21410 } else { 21411 err = EIO; 21412 } 21413 } 21414 un->un_ncmds_in_driver--; 21415 ASSERT(un->un_ncmds_in_driver >= 0); 21416 mutex_exit(SD_MUTEX(un)); 21417 21418 goto done_without_assess; 21419 } 21420 } 21421 } 21422 21423 skip_ready_valid: 21424 mutex_exit(SD_MUTEX(un)); 21425 21426 switch (cmd) { 21427 case DKIOCINFO: 21428 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 21429 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 21430 break; 21431 21432 case DKIOCGMEDIAINFO: 21433 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 21434 err = sd_get_media_info(dev, (caddr_t)arg, flag); 21435 break; 21436 21437 case DKIOCGGEOM: 21438 case DKIOCGVTOC: 21439 case DKIOCGEXTVTOC: 21440 case DKIOCGAPART: 21441 case DKIOCPARTINFO: 21442 case DKIOCEXTPARTINFO: 21443 case DKIOCSGEOM: 21444 case DKIOCSAPART: 21445 case DKIOCGETEFI: 21446 case DKIOCPARTITION: 21447 case DKIOCSVTOC: 21448 case DKIOCSEXTVTOC: 21449 case DKIOCSETEFI: 21450 case DKIOCGMBOOT: 21451 case DKIOCSMBOOT: 21452 case DKIOCG_PHYGEOM: 21453 case DKIOCG_VIRTGEOM: 21454 #if defined(__i386) || defined(__amd64) 21455 case DKIOCSETEXTPART: 21456 #endif 21457 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 21458 21459 /* TUR should spin up */ 21460 21461 if (un->un_f_has_removable_media) 21462 err = sd_send_scsi_TEST_UNIT_READY(ssc, 21463 SD_CHECK_FOR_MEDIA); 21464 21465 else 21466 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 21467 21468 if (err != 0) 21469 goto done_with_assess; 21470 21471 err = cmlb_ioctl(un->un_cmlbhandle, dev, 21472 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 21473 21474 if ((err == 0) && 21475 ((cmd == DKIOCSETEFI) || 21476 (un->un_f_pkstats_enabled) && 21477 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC || 21478 cmd == DKIOCSEXTVTOC))) { 21479 21480 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 21481 (void *)SD_PATH_DIRECT); 21482 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 21483 sd_set_pstats(un); 21484 SD_TRACE(SD_LOG_IO_PARTITION, un, 21485 "sd_ioctl: un:0x%p pstats created and " 21486 "set\n", un); 21487 } 21488 } 21489 21490 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) || 21491 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 21492 21493 mutex_enter(SD_MUTEX(un)); 21494 if (un->un_f_devid_supported && 21495 (un->un_f_opt_fab_devid == TRUE)) { 21496 if (un->un_devid == NULL) { 21497 sd_register_devid(ssc, SD_DEVINFO(un), 21498 SD_TARGET_IS_UNRESERVED); 21499 } else { 21500 /* 21501 * The device id for this disk 21502 * has been fabricated. The 21503 * device id must be preserved 21504 * by writing it back out to 21505 * disk. 21506 */ 21507 if (sd_write_deviceid(ssc) != 0) { 21508 ddi_devid_free(un->un_devid); 21509 un->un_devid = NULL; 21510 } 21511 } 21512 } 21513 mutex_exit(SD_MUTEX(un)); 21514 } 21515 21516 break; 21517 21518 case DKIOCLOCK: 21519 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 21520 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 21521 SD_PATH_STANDARD); 21522 goto done_with_assess; 21523 21524 case DKIOCUNLOCK: 21525 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 21526 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 21527 SD_PATH_STANDARD); 21528 goto done_with_assess; 21529 21530 case DKIOCSTATE: { 21531 enum dkio_state state; 21532 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 21533 21534 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 21535 err = EFAULT; 21536 } else { 21537 err = sd_check_media(dev, state); 21538 if (err == 0) { 21539 if (ddi_copyout(&un->un_mediastate, (void *)arg, 21540 sizeof (int), flag) != 0) 21541 err = EFAULT; 21542 } 21543 } 21544 break; 21545 } 21546 21547 case DKIOCREMOVABLE: 21548 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 21549 i = un->un_f_has_removable_media ? 1 : 0; 21550 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21551 err = EFAULT; 21552 } else { 21553 err = 0; 21554 } 21555 break; 21556 21557 case DKIOCHOTPLUGGABLE: 21558 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 21559 i = un->un_f_is_hotpluggable ? 1 : 0; 21560 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21561 err = EFAULT; 21562 } else { 21563 err = 0; 21564 } 21565 break; 21566 21567 case DKIOCGTEMPERATURE: 21568 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 21569 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 21570 break; 21571 21572 case MHIOCENFAILFAST: 21573 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 21574 if ((err = drv_priv(cred_p)) == 0) { 21575 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 21576 } 21577 break; 21578 21579 case MHIOCTKOWN: 21580 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 21581 if ((err = drv_priv(cred_p)) == 0) { 21582 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 21583 } 21584 break; 21585 21586 case MHIOCRELEASE: 21587 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 21588 if ((err = drv_priv(cred_p)) == 0) { 21589 err = sd_mhdioc_release(dev); 21590 } 21591 break; 21592 21593 case MHIOCSTATUS: 21594 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 21595 if ((err = drv_priv(cred_p)) == 0) { 21596 switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) { 21597 case 0: 21598 err = 0; 21599 break; 21600 case EACCES: 21601 *rval_p = 1; 21602 err = 0; 21603 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 21604 break; 21605 default: 21606 err = EIO; 21607 goto done_with_assess; 21608 } 21609 } 21610 break; 21611 21612 case MHIOCQRESERVE: 21613 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 21614 if ((err = drv_priv(cred_p)) == 0) { 21615 err = sd_reserve_release(dev, SD_RESERVE); 21616 } 21617 break; 21618 21619 case MHIOCREREGISTERDEVID: 21620 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 21621 if (drv_priv(cred_p) == EPERM) { 21622 err = EPERM; 21623 } else if (!un->un_f_devid_supported) { 21624 err = ENOTTY; 21625 } else { 21626 err = sd_mhdioc_register_devid(dev); 21627 } 21628 break; 21629 21630 case MHIOCGRP_INKEYS: 21631 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 21632 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21633 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21634 err = ENOTSUP; 21635 } else { 21636 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 21637 flag); 21638 } 21639 } 21640 break; 21641 21642 case MHIOCGRP_INRESV: 21643 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 21644 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21645 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21646 err = ENOTSUP; 21647 } else { 21648 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 21649 } 21650 } 21651 break; 21652 21653 case MHIOCGRP_REGISTER: 21654 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 21655 if ((err = drv_priv(cred_p)) != EPERM) { 21656 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21657 err = ENOTSUP; 21658 } else if (arg != NULL) { 21659 mhioc_register_t reg; 21660 if (ddi_copyin((void *)arg, ®, 21661 sizeof (mhioc_register_t), flag) != 0) { 21662 err = EFAULT; 21663 } else { 21664 err = 21665 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21666 ssc, SD_SCSI3_REGISTER, 21667 (uchar_t *)®); 21668 if (err != 0) 21669 goto done_with_assess; 21670 } 21671 } 21672 } 21673 break; 21674 21675 case MHIOCGRP_RESERVE: 21676 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 21677 if ((err = drv_priv(cred_p)) != EPERM) { 21678 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21679 err = ENOTSUP; 21680 } else if (arg != NULL) { 21681 mhioc_resv_desc_t resv_desc; 21682 if (ddi_copyin((void *)arg, &resv_desc, 21683 sizeof (mhioc_resv_desc_t), flag) != 0) { 21684 err = EFAULT; 21685 } else { 21686 err = 21687 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21688 ssc, SD_SCSI3_RESERVE, 21689 (uchar_t *)&resv_desc); 21690 if (err != 0) 21691 goto done_with_assess; 21692 } 21693 } 21694 } 21695 break; 21696 21697 case MHIOCGRP_PREEMPTANDABORT: 21698 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 21699 if ((err = drv_priv(cred_p)) != EPERM) { 21700 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21701 err = ENOTSUP; 21702 } else if (arg != NULL) { 21703 mhioc_preemptandabort_t preempt_abort; 21704 if (ddi_copyin((void *)arg, &preempt_abort, 21705 sizeof (mhioc_preemptandabort_t), 21706 flag) != 0) { 21707 err = EFAULT; 21708 } else { 21709 err = 21710 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21711 ssc, SD_SCSI3_PREEMPTANDABORT, 21712 (uchar_t *)&preempt_abort); 21713 if (err != 0) 21714 goto done_with_assess; 21715 } 21716 } 21717 } 21718 break; 21719 21720 case MHIOCGRP_REGISTERANDIGNOREKEY: 21721 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 21722 if ((err = drv_priv(cred_p)) != EPERM) { 21723 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21724 err = ENOTSUP; 21725 } else if (arg != NULL) { 21726 mhioc_registerandignorekey_t r_and_i; 21727 if (ddi_copyin((void *)arg, (void *)&r_and_i, 21728 sizeof (mhioc_registerandignorekey_t), 21729 flag) != 0) { 21730 err = EFAULT; 21731 } else { 21732 err = 21733 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21734 ssc, SD_SCSI3_REGISTERANDIGNOREKEY, 21735 (uchar_t *)&r_and_i); 21736 if (err != 0) 21737 goto done_with_assess; 21738 } 21739 } 21740 } 21741 break; 21742 21743 case USCSICMD: 21744 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 21745 cr = ddi_get_cred(); 21746 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 21747 err = EPERM; 21748 } else { 21749 enum uio_seg uioseg; 21750 21751 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 21752 UIO_USERSPACE; 21753 if (un->un_f_format_in_progress == TRUE) { 21754 err = EAGAIN; 21755 break; 21756 } 21757 21758 err = sd_ssc_send(ssc, 21759 (struct uscsi_cmd *)arg, 21760 flag, uioseg, SD_PATH_STANDARD); 21761 if (err != 0) 21762 goto done_with_assess; 21763 else 21764 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21765 } 21766 break; 21767 21768 case CDROMPAUSE: 21769 case CDROMRESUME: 21770 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 21771 if (!ISCD(un)) { 21772 err = ENOTTY; 21773 } else { 21774 err = sr_pause_resume(dev, cmd); 21775 } 21776 break; 21777 21778 case CDROMPLAYMSF: 21779 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 21780 if (!ISCD(un)) { 21781 err = ENOTTY; 21782 } else { 21783 err = sr_play_msf(dev, (caddr_t)arg, flag); 21784 } 21785 break; 21786 21787 case CDROMPLAYTRKIND: 21788 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 21789 #if defined(__i386) || defined(__amd64) 21790 /* 21791 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 21792 */ 21793 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21794 #else 21795 if (!ISCD(un)) { 21796 #endif 21797 err = ENOTTY; 21798 } else { 21799 err = sr_play_trkind(dev, (caddr_t)arg, flag); 21800 } 21801 break; 21802 21803 case CDROMREADTOCHDR: 21804 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 21805 if (!ISCD(un)) { 21806 err = ENOTTY; 21807 } else { 21808 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 21809 } 21810 break; 21811 21812 case CDROMREADTOCENTRY: 21813 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 21814 if (!ISCD(un)) { 21815 err = ENOTTY; 21816 } else { 21817 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 21818 } 21819 break; 21820 21821 case CDROMSTOP: 21822 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 21823 if (!ISCD(un)) { 21824 err = ENOTTY; 21825 } else { 21826 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_STOP, 21827 SD_PATH_STANDARD); 21828 goto done_with_assess; 21829 } 21830 break; 21831 21832 case CDROMSTART: 21833 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 21834 if (!ISCD(un)) { 21835 err = ENOTTY; 21836 } else { 21837 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START, 21838 SD_PATH_STANDARD); 21839 goto done_with_assess; 21840 } 21841 break; 21842 21843 case CDROMCLOSETRAY: 21844 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 21845 if (!ISCD(un)) { 21846 err = ENOTTY; 21847 } else { 21848 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_CLOSE, 21849 SD_PATH_STANDARD); 21850 goto done_with_assess; 21851 } 21852 break; 21853 21854 case FDEJECT: /* for eject command */ 21855 case DKIOCEJECT: 21856 case CDROMEJECT: 21857 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 21858 if (!un->un_f_eject_media_supported) { 21859 err = ENOTTY; 21860 } else { 21861 err = sr_eject(dev); 21862 } 21863 break; 21864 21865 case CDROMVOLCTRL: 21866 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 21867 if (!ISCD(un)) { 21868 err = ENOTTY; 21869 } else { 21870 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 21871 } 21872 break; 21873 21874 case CDROMSUBCHNL: 21875 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 21876 if (!ISCD(un)) { 21877 err = ENOTTY; 21878 } else { 21879 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 21880 } 21881 break; 21882 21883 case CDROMREADMODE2: 21884 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 21885 if (!ISCD(un)) { 21886 err = ENOTTY; 21887 } else if (un->un_f_cfg_is_atapi == TRUE) { 21888 /* 21889 * If the drive supports READ CD, use that instead of 21890 * switching the LBA size via a MODE SELECT 21891 * Block Descriptor 21892 */ 21893 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 21894 } else { 21895 err = sr_read_mode2(dev, (caddr_t)arg, flag); 21896 } 21897 break; 21898 21899 case CDROMREADMODE1: 21900 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 21901 if (!ISCD(un)) { 21902 err = ENOTTY; 21903 } else { 21904 err = sr_read_mode1(dev, (caddr_t)arg, flag); 21905 } 21906 break; 21907 21908 case CDROMREADOFFSET: 21909 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 21910 if (!ISCD(un)) { 21911 err = ENOTTY; 21912 } else { 21913 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 21914 flag); 21915 } 21916 break; 21917 21918 case CDROMSBLKMODE: 21919 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 21920 /* 21921 * There is no means of changing block size in case of atapi 21922 * drives, thus return ENOTTY if drive type is atapi 21923 */ 21924 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21925 err = ENOTTY; 21926 } else if (un->un_f_mmc_cap == TRUE) { 21927 21928 /* 21929 * MMC Devices do not support changing the 21930 * logical block size 21931 * 21932 * Note: EINVAL is being returned instead of ENOTTY to 21933 * maintain consistancy with the original mmc 21934 * driver update. 21935 */ 21936 err = EINVAL; 21937 } else { 21938 mutex_enter(SD_MUTEX(un)); 21939 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 21940 (un->un_ncmds_in_transport > 0)) { 21941 mutex_exit(SD_MUTEX(un)); 21942 err = EINVAL; 21943 } else { 21944 mutex_exit(SD_MUTEX(un)); 21945 err = sr_change_blkmode(dev, cmd, arg, flag); 21946 } 21947 } 21948 break; 21949 21950 case CDROMGBLKMODE: 21951 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 21952 if (!ISCD(un)) { 21953 err = ENOTTY; 21954 } else if ((un->un_f_cfg_is_atapi != FALSE) && 21955 (un->un_f_blockcount_is_valid != FALSE)) { 21956 /* 21957 * Drive is an ATAPI drive so return target block 21958 * size for ATAPI drives since we cannot change the 21959 * blocksize on ATAPI drives. Used primarily to detect 21960 * if an ATAPI cdrom is present. 21961 */ 21962 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 21963 sizeof (int), flag) != 0) { 21964 err = EFAULT; 21965 } else { 21966 err = 0; 21967 } 21968 21969 } else { 21970 /* 21971 * Drive supports changing block sizes via a Mode 21972 * Select. 21973 */ 21974 err = sr_change_blkmode(dev, cmd, arg, flag); 21975 } 21976 break; 21977 21978 case CDROMGDRVSPEED: 21979 case CDROMSDRVSPEED: 21980 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 21981 if (!ISCD(un)) { 21982 err = ENOTTY; 21983 } else if (un->un_f_mmc_cap == TRUE) { 21984 /* 21985 * Note: In the future the driver implementation 21986 * for getting and 21987 * setting cd speed should entail: 21988 * 1) If non-mmc try the Toshiba mode page 21989 * (sr_change_speed) 21990 * 2) If mmc but no support for Real Time Streaming try 21991 * the SET CD SPEED (0xBB) command 21992 * (sr_atapi_change_speed) 21993 * 3) If mmc and support for Real Time Streaming 21994 * try the GET PERFORMANCE and SET STREAMING 21995 * commands (not yet implemented, 4380808) 21996 */ 21997 /* 21998 * As per recent MMC spec, CD-ROM speed is variable 21999 * and changes with LBA. Since there is no such 22000 * things as drive speed now, fail this ioctl. 22001 * 22002 * Note: EINVAL is returned for consistancy of original 22003 * implementation which included support for getting 22004 * the drive speed of mmc devices but not setting 22005 * the drive speed. Thus EINVAL would be returned 22006 * if a set request was made for an mmc device. 22007 * We no longer support get or set speed for 22008 * mmc but need to remain consistent with regard 22009 * to the error code returned. 22010 */ 22011 err = EINVAL; 22012 } else if (un->un_f_cfg_is_atapi == TRUE) { 22013 err = sr_atapi_change_speed(dev, cmd, arg, flag); 22014 } else { 22015 err = sr_change_speed(dev, cmd, arg, flag); 22016 } 22017 break; 22018 22019 case CDROMCDDA: 22020 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 22021 if (!ISCD(un)) { 22022 err = ENOTTY; 22023 } else { 22024 err = sr_read_cdda(dev, (void *)arg, flag); 22025 } 22026 break; 22027 22028 case CDROMCDXA: 22029 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 22030 if (!ISCD(un)) { 22031 err = ENOTTY; 22032 } else { 22033 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 22034 } 22035 break; 22036 22037 case CDROMSUBCODE: 22038 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 22039 if (!ISCD(un)) { 22040 err = ENOTTY; 22041 } else { 22042 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 22043 } 22044 break; 22045 22046 22047 #ifdef SDDEBUG 22048 /* RESET/ABORTS testing ioctls */ 22049 case DKIOCRESET: { 22050 int reset_level; 22051 22052 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 22053 err = EFAULT; 22054 } else { 22055 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 22056 "reset_level = 0x%lx\n", reset_level); 22057 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 22058 err = 0; 22059 } else { 22060 err = EIO; 22061 } 22062 } 22063 break; 22064 } 22065 22066 case DKIOCABORT: 22067 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 22068 if (scsi_abort(SD_ADDRESS(un), NULL)) { 22069 err = 0; 22070 } else { 22071 err = EIO; 22072 } 22073 break; 22074 #endif 22075 22076 #ifdef SD_FAULT_INJECTION 22077 /* SDIOC FaultInjection testing ioctls */ 22078 case SDIOCSTART: 22079 case SDIOCSTOP: 22080 case SDIOCINSERTPKT: 22081 case SDIOCINSERTXB: 22082 case SDIOCINSERTUN: 22083 case SDIOCINSERTARQ: 22084 case SDIOCPUSH: 22085 case SDIOCRETRIEVE: 22086 case SDIOCRUN: 22087 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 22088 "SDIOC detected cmd:0x%X:\n", cmd); 22089 /* call error generator */ 22090 sd_faultinjection_ioctl(cmd, arg, un); 22091 err = 0; 22092 break; 22093 22094 #endif /* SD_FAULT_INJECTION */ 22095 22096 case DKIOCFLUSHWRITECACHE: 22097 { 22098 struct dk_callback *dkc = (struct dk_callback *)arg; 22099 22100 mutex_enter(SD_MUTEX(un)); 22101 if (!un->un_f_sync_cache_supported || 22102 !un->un_f_write_cache_enabled) { 22103 err = un->un_f_sync_cache_supported ? 22104 0 : ENOTSUP; 22105 mutex_exit(SD_MUTEX(un)); 22106 if ((flag & FKIOCTL) && dkc != NULL && 22107 dkc->dkc_callback != NULL) { 22108 (*dkc->dkc_callback)(dkc->dkc_cookie, 22109 err); 22110 /* 22111 * Did callback and reported error. 22112 * Since we did a callback, ioctl 22113 * should return 0. 22114 */ 22115 err = 0; 22116 } 22117 break; 22118 } 22119 mutex_exit(SD_MUTEX(un)); 22120 22121 if ((flag & FKIOCTL) && dkc != NULL && 22122 dkc->dkc_callback != NULL) { 22123 /* async SYNC CACHE request */ 22124 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 22125 } else { 22126 /* synchronous SYNC CACHE request */ 22127 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 22128 } 22129 } 22130 break; 22131 22132 case DKIOCGETWCE: { 22133 22134 int wce; 22135 22136 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) { 22137 break; 22138 } 22139 22140 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 22141 err = EFAULT; 22142 } 22143 break; 22144 } 22145 22146 case DKIOCSETWCE: { 22147 22148 int wce, sync_supported; 22149 22150 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 22151 err = EFAULT; 22152 break; 22153 } 22154 22155 /* 22156 * Synchronize multiple threads trying to enable 22157 * or disable the cache via the un_f_wcc_cv 22158 * condition variable. 22159 */ 22160 mutex_enter(SD_MUTEX(un)); 22161 22162 /* 22163 * Don't allow the cache to be enabled if the 22164 * config file has it disabled. 22165 */ 22166 if (un->un_f_opt_disable_cache && wce) { 22167 mutex_exit(SD_MUTEX(un)); 22168 err = EINVAL; 22169 break; 22170 } 22171 22172 /* 22173 * Wait for write cache change in progress 22174 * bit to be clear before proceeding. 22175 */ 22176 while (un->un_f_wcc_inprog) 22177 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 22178 22179 un->un_f_wcc_inprog = 1; 22180 22181 if (un->un_f_write_cache_enabled && wce == 0) { 22182 /* 22183 * Disable the write cache. Don't clear 22184 * un_f_write_cache_enabled until after 22185 * the mode select and flush are complete. 22186 */ 22187 sync_supported = un->un_f_sync_cache_supported; 22188 22189 /* 22190 * If cache flush is suppressed, we assume that the 22191 * controller firmware will take care of managing the 22192 * write cache for us: no need to explicitly 22193 * disable it. 22194 */ 22195 if (!un->un_f_suppress_cache_flush) { 22196 mutex_exit(SD_MUTEX(un)); 22197 if ((err = sd_cache_control(ssc, 22198 SD_CACHE_NOCHANGE, 22199 SD_CACHE_DISABLE)) == 0 && 22200 sync_supported) { 22201 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, 22202 NULL); 22203 } 22204 } else { 22205 mutex_exit(SD_MUTEX(un)); 22206 } 22207 22208 mutex_enter(SD_MUTEX(un)); 22209 if (err == 0) { 22210 un->un_f_write_cache_enabled = 0; 22211 } 22212 22213 } else if (!un->un_f_write_cache_enabled && wce != 0) { 22214 /* 22215 * Set un_f_write_cache_enabled first, so there is 22216 * no window where the cache is enabled, but the 22217 * bit says it isn't. 22218 */ 22219 un->un_f_write_cache_enabled = 1; 22220 22221 /* 22222 * If cache flush is suppressed, we assume that the 22223 * controller firmware will take care of managing the 22224 * write cache for us: no need to explicitly 22225 * enable it. 22226 */ 22227 if (!un->un_f_suppress_cache_flush) { 22228 mutex_exit(SD_MUTEX(un)); 22229 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE, 22230 SD_CACHE_ENABLE); 22231 } else { 22232 mutex_exit(SD_MUTEX(un)); 22233 } 22234 22235 mutex_enter(SD_MUTEX(un)); 22236 22237 if (err) { 22238 un->un_f_write_cache_enabled = 0; 22239 } 22240 } 22241 22242 un->un_f_wcc_inprog = 0; 22243 cv_broadcast(&un->un_wcc_cv); 22244 mutex_exit(SD_MUTEX(un)); 22245 break; 22246 } 22247 22248 default: 22249 err = ENOTTY; 22250 break; 22251 } 22252 mutex_enter(SD_MUTEX(un)); 22253 un->un_ncmds_in_driver--; 22254 ASSERT(un->un_ncmds_in_driver >= 0); 22255 mutex_exit(SD_MUTEX(un)); 22256 22257 22258 done_without_assess: 22259 sd_ssc_fini(ssc); 22260 22261 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 22262 return (err); 22263 22264 done_with_assess: 22265 mutex_enter(SD_MUTEX(un)); 22266 un->un_ncmds_in_driver--; 22267 ASSERT(un->un_ncmds_in_driver >= 0); 22268 mutex_exit(SD_MUTEX(un)); 22269 22270 done_quick_assess: 22271 if (err != 0) 22272 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22273 /* Uninitialize sd_ssc_t pointer */ 22274 sd_ssc_fini(ssc); 22275 22276 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 22277 return (err); 22278 } 22279 22280 22281 /* 22282 * Function: sd_dkio_ctrl_info 22283 * 22284 * Description: This routine is the driver entry point for handling controller 22285 * information ioctl requests (DKIOCINFO). 22286 * 22287 * Arguments: dev - the device number 22288 * arg - pointer to user provided dk_cinfo structure 22289 * specifying the controller type and attributes. 22290 * flag - this argument is a pass through to ddi_copyxxx() 22291 * directly from the mode argument of ioctl(). 22292 * 22293 * Return Code: 0 22294 * EFAULT 22295 * ENXIO 22296 */ 22297 22298 static int 22299 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 22300 { 22301 struct sd_lun *un = NULL; 22302 struct dk_cinfo *info; 22303 dev_info_t *pdip; 22304 int lun, tgt; 22305 22306 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22307 return (ENXIO); 22308 } 22309 22310 info = (struct dk_cinfo *) 22311 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 22312 22313 switch (un->un_ctype) { 22314 case CTYPE_CDROM: 22315 info->dki_ctype = DKC_CDROM; 22316 break; 22317 default: 22318 info->dki_ctype = DKC_SCSI_CCS; 22319 break; 22320 } 22321 pdip = ddi_get_parent(SD_DEVINFO(un)); 22322 info->dki_cnum = ddi_get_instance(pdip); 22323 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 22324 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 22325 } else { 22326 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 22327 DK_DEVLEN - 1); 22328 } 22329 22330 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22331 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 22332 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22333 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 22334 22335 /* Unit Information */ 22336 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 22337 info->dki_slave = ((tgt << 3) | lun); 22338 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 22339 DK_DEVLEN - 1); 22340 info->dki_flags = DKI_FMTVOL; 22341 info->dki_partition = SDPART(dev); 22342 22343 /* Max Transfer size of this device in blocks */ 22344 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 22345 info->dki_addr = 0; 22346 info->dki_space = 0; 22347 info->dki_prio = 0; 22348 info->dki_vec = 0; 22349 22350 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 22351 kmem_free(info, sizeof (struct dk_cinfo)); 22352 return (EFAULT); 22353 } else { 22354 kmem_free(info, sizeof (struct dk_cinfo)); 22355 return (0); 22356 } 22357 } 22358 22359 22360 /* 22361 * Function: sd_get_media_info 22362 * 22363 * Description: This routine is the driver entry point for handling ioctl 22364 * requests for the media type or command set profile used by the 22365 * drive to operate on the media (DKIOCGMEDIAINFO). 22366 * 22367 * Arguments: dev - the device number 22368 * arg - pointer to user provided dk_minfo structure 22369 * specifying the media type, logical block size and 22370 * drive capacity. 22371 * flag - this argument is a pass through to ddi_copyxxx() 22372 * directly from the mode argument of ioctl(). 22373 * 22374 * Return Code: 0 22375 * EACCESS 22376 * EFAULT 22377 * ENXIO 22378 * EIO 22379 */ 22380 22381 static int 22382 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 22383 { 22384 struct sd_lun *un = NULL; 22385 struct uscsi_cmd com; 22386 struct scsi_inquiry *sinq; 22387 struct dk_minfo media_info; 22388 u_longlong_t media_capacity; 22389 uint64_t capacity; 22390 uint_t lbasize; 22391 uchar_t *out_data; 22392 uchar_t *rqbuf; 22393 int rval = 0; 22394 int rtn; 22395 sd_ssc_t *ssc; 22396 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 22397 (un->un_state == SD_STATE_OFFLINE)) { 22398 return (ENXIO); 22399 } 22400 22401 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 22402 22403 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 22404 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 22405 22406 /* Issue a TUR to determine if the drive is ready with media present */ 22407 ssc = sd_ssc_init(un); 22408 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 22409 if (rval == ENXIO) { 22410 goto done; 22411 } else if (rval != 0) { 22412 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22413 } 22414 22415 /* Now get configuration data */ 22416 if (ISCD(un)) { 22417 media_info.dki_media_type = DK_CDROM; 22418 22419 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 22420 if (un->un_f_mmc_cap == TRUE) { 22421 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 22422 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 22423 SD_PATH_STANDARD); 22424 22425 if (rtn) { 22426 /* 22427 * We ignore all failures for CD and need to 22428 * put the assessment before processing code 22429 * to avoid missing assessment for FMA. 22430 */ 22431 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22432 /* 22433 * Failed for other than an illegal request 22434 * or command not supported 22435 */ 22436 if ((com.uscsi_status == STATUS_CHECK) && 22437 (com.uscsi_rqstatus == STATUS_GOOD)) { 22438 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 22439 (rqbuf[12] != 0x20)) { 22440 rval = EIO; 22441 goto no_assessment; 22442 } 22443 } 22444 } else { 22445 /* 22446 * The GET CONFIGURATION command succeeded 22447 * so set the media type according to the 22448 * returned data 22449 */ 22450 media_info.dki_media_type = out_data[6]; 22451 media_info.dki_media_type <<= 8; 22452 media_info.dki_media_type |= out_data[7]; 22453 } 22454 } 22455 } else { 22456 /* 22457 * The profile list is not available, so we attempt to identify 22458 * the media type based on the inquiry data 22459 */ 22460 sinq = un->un_sd->sd_inq; 22461 if ((sinq->inq_dtype == DTYPE_DIRECT) || 22462 (sinq->inq_dtype == DTYPE_OPTICAL)) { 22463 /* This is a direct access device or optical disk */ 22464 media_info.dki_media_type = DK_FIXED_DISK; 22465 22466 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 22467 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 22468 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 22469 media_info.dki_media_type = DK_ZIP; 22470 } else if ( 22471 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 22472 media_info.dki_media_type = DK_JAZ; 22473 } 22474 } 22475 } else { 22476 /* 22477 * Not a CD, direct access or optical disk so return 22478 * unknown media 22479 */ 22480 media_info.dki_media_type = DK_UNKNOWN; 22481 } 22482 } 22483 22484 /* Now read the capacity so we can provide the lbasize and capacity */ 22485 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 22486 SD_PATH_DIRECT); 22487 switch (rval) { 22488 case 0: 22489 break; 22490 case EACCES: 22491 rval = EACCES; 22492 goto done; 22493 default: 22494 rval = EIO; 22495 goto done; 22496 } 22497 22498 /* 22499 * If lun is expanded dynamically, update the un structure. 22500 */ 22501 mutex_enter(SD_MUTEX(un)); 22502 if ((un->un_f_blockcount_is_valid == TRUE) && 22503 (un->un_f_tgt_blocksize_is_valid == TRUE) && 22504 (capacity > un->un_blockcount)) { 22505 sd_update_block_info(un, lbasize, capacity); 22506 } 22507 mutex_exit(SD_MUTEX(un)); 22508 22509 media_info.dki_lbsize = lbasize; 22510 media_capacity = capacity; 22511 22512 /* 22513 * sd_send_scsi_READ_CAPACITY() reports capacity in 22514 * un->un_sys_blocksize chunks. So we need to convert it into 22515 * cap.lbasize chunks. 22516 */ 22517 media_capacity *= un->un_sys_blocksize; 22518 media_capacity /= lbasize; 22519 media_info.dki_capacity = media_capacity; 22520 22521 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 22522 rval = EFAULT; 22523 /* Put goto. Anybody might add some code below in future */ 22524 goto no_assessment; 22525 } 22526 done: 22527 if (rval != 0) { 22528 if (rval == EIO) 22529 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 22530 else 22531 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22532 } 22533 no_assessment: 22534 sd_ssc_fini(ssc); 22535 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 22536 kmem_free(rqbuf, SENSE_LENGTH); 22537 return (rval); 22538 } 22539 22540 22541 /* 22542 * Function: sd_check_media 22543 * 22544 * Description: This utility routine implements the functionality for the 22545 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 22546 * driver state changes from that specified by the user 22547 * (inserted or ejected). For example, if the user specifies 22548 * DKIO_EJECTED and the current media state is inserted this 22549 * routine will immediately return DKIO_INSERTED. However, if the 22550 * current media state is not inserted the user thread will be 22551 * blocked until the drive state changes. If DKIO_NONE is specified 22552 * the user thread will block until a drive state change occurs. 22553 * 22554 * Arguments: dev - the device number 22555 * state - user pointer to a dkio_state, updated with the current 22556 * drive state at return. 22557 * 22558 * Return Code: ENXIO 22559 * EIO 22560 * EAGAIN 22561 * EINTR 22562 */ 22563 22564 static int 22565 sd_check_media(dev_t dev, enum dkio_state state) 22566 { 22567 struct sd_lun *un = NULL; 22568 enum dkio_state prev_state; 22569 opaque_t token = NULL; 22570 int rval = 0; 22571 sd_ssc_t *ssc; 22572 22573 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22574 return (ENXIO); 22575 } 22576 22577 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 22578 22579 ssc = sd_ssc_init(un); 22580 22581 mutex_enter(SD_MUTEX(un)); 22582 22583 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 22584 "state=%x, mediastate=%x\n", state, un->un_mediastate); 22585 22586 prev_state = un->un_mediastate; 22587 22588 /* is there anything to do? */ 22589 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 22590 /* 22591 * submit the request to the scsi_watch service; 22592 * scsi_media_watch_cb() does the real work 22593 */ 22594 mutex_exit(SD_MUTEX(un)); 22595 22596 /* 22597 * This change handles the case where a scsi watch request is 22598 * added to a device that is powered down. To accomplish this 22599 * we power up the device before adding the scsi watch request, 22600 * since the scsi watch sends a TUR directly to the device 22601 * which the device cannot handle if it is powered down. 22602 */ 22603 if (sd_pm_entry(un) != DDI_SUCCESS) { 22604 mutex_enter(SD_MUTEX(un)); 22605 goto done; 22606 } 22607 22608 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), 22609 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 22610 (caddr_t)dev); 22611 22612 sd_pm_exit(un); 22613 22614 mutex_enter(SD_MUTEX(un)); 22615 if (token == NULL) { 22616 rval = EAGAIN; 22617 goto done; 22618 } 22619 22620 /* 22621 * This is a special case IOCTL that doesn't return 22622 * until the media state changes. Routine sdpower 22623 * knows about and handles this so don't count it 22624 * as an active cmd in the driver, which would 22625 * keep the device busy to the pm framework. 22626 * If the count isn't decremented the device can't 22627 * be powered down. 22628 */ 22629 un->un_ncmds_in_driver--; 22630 ASSERT(un->un_ncmds_in_driver >= 0); 22631 22632 /* 22633 * if a prior request had been made, this will be the same 22634 * token, as scsi_watch was designed that way. 22635 */ 22636 un->un_swr_token = token; 22637 un->un_specified_mediastate = state; 22638 22639 /* 22640 * now wait for media change 22641 * we will not be signalled unless mediastate == state but it is 22642 * still better to test for this condition, since there is a 22643 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 22644 */ 22645 SD_TRACE(SD_LOG_COMMON, un, 22646 "sd_check_media: waiting for media state change\n"); 22647 while (un->un_mediastate == state) { 22648 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 22649 SD_TRACE(SD_LOG_COMMON, un, 22650 "sd_check_media: waiting for media state " 22651 "was interrupted\n"); 22652 un->un_ncmds_in_driver++; 22653 rval = EINTR; 22654 goto done; 22655 } 22656 SD_TRACE(SD_LOG_COMMON, un, 22657 "sd_check_media: received signal, state=%x\n", 22658 un->un_mediastate); 22659 } 22660 /* 22661 * Inc the counter to indicate the device once again 22662 * has an active outstanding cmd. 22663 */ 22664 un->un_ncmds_in_driver++; 22665 } 22666 22667 /* invalidate geometry */ 22668 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 22669 sr_ejected(un); 22670 } 22671 22672 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 22673 uint64_t capacity; 22674 uint_t lbasize; 22675 22676 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 22677 mutex_exit(SD_MUTEX(un)); 22678 /* 22679 * Since the following routines use SD_PATH_DIRECT, we must 22680 * call PM directly before the upcoming disk accesses. This 22681 * may cause the disk to be power/spin up. 22682 */ 22683 22684 if (sd_pm_entry(un) == DDI_SUCCESS) { 22685 rval = sd_send_scsi_READ_CAPACITY(ssc, 22686 &capacity, &lbasize, SD_PATH_DIRECT); 22687 if (rval != 0) { 22688 sd_pm_exit(un); 22689 if (rval == EIO) 22690 sd_ssc_assessment(ssc, 22691 SD_FMT_STATUS_CHECK); 22692 else 22693 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22694 mutex_enter(SD_MUTEX(un)); 22695 goto done; 22696 } 22697 } else { 22698 rval = EIO; 22699 mutex_enter(SD_MUTEX(un)); 22700 goto done; 22701 } 22702 mutex_enter(SD_MUTEX(un)); 22703 22704 sd_update_block_info(un, lbasize, capacity); 22705 22706 /* 22707 * Check if the media in the device is writable or not 22708 */ 22709 if (ISCD(un)) { 22710 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 22711 } 22712 22713 mutex_exit(SD_MUTEX(un)); 22714 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 22715 if ((cmlb_validate(un->un_cmlbhandle, 0, 22716 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 22717 sd_set_pstats(un); 22718 SD_TRACE(SD_LOG_IO_PARTITION, un, 22719 "sd_check_media: un:0x%p pstats created and " 22720 "set\n", un); 22721 } 22722 22723 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 22724 SD_PATH_DIRECT); 22725 22726 sd_pm_exit(un); 22727 22728 if (rval != 0) { 22729 if (rval == EIO) 22730 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 22731 else 22732 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22733 } 22734 22735 mutex_enter(SD_MUTEX(un)); 22736 } 22737 done: 22738 sd_ssc_fini(ssc); 22739 un->un_f_watcht_stopped = FALSE; 22740 /* 22741 * Use of this local token and the mutex ensures that we avoid 22742 * some race conditions associated with terminating the 22743 * scsi watch. 22744 */ 22745 if (token) { 22746 un->un_swr_token = (opaque_t)NULL; 22747 mutex_exit(SD_MUTEX(un)); 22748 (void) scsi_watch_request_terminate(token, 22749 SCSI_WATCH_TERMINATE_WAIT); 22750 mutex_enter(SD_MUTEX(un)); 22751 } 22752 22753 /* 22754 * Update the capacity kstat value, if no media previously 22755 * (capacity kstat is 0) and a media has been inserted 22756 * (un_f_blockcount_is_valid == TRUE) 22757 */ 22758 if (un->un_errstats) { 22759 struct sd_errstats *stp = NULL; 22760 22761 stp = (struct sd_errstats *)un->un_errstats->ks_data; 22762 if ((stp->sd_capacity.value.ui64 == 0) && 22763 (un->un_f_blockcount_is_valid == TRUE)) { 22764 stp->sd_capacity.value.ui64 = 22765 (uint64_t)((uint64_t)un->un_blockcount * 22766 un->un_sys_blocksize); 22767 } 22768 } 22769 mutex_exit(SD_MUTEX(un)); 22770 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 22771 return (rval); 22772 } 22773 22774 22775 /* 22776 * Function: sd_delayed_cv_broadcast 22777 * 22778 * Description: Delayed cv_broadcast to allow for target to recover from media 22779 * insertion. 22780 * 22781 * Arguments: arg - driver soft state (unit) structure 22782 */ 22783 22784 static void 22785 sd_delayed_cv_broadcast(void *arg) 22786 { 22787 struct sd_lun *un = arg; 22788 22789 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 22790 22791 mutex_enter(SD_MUTEX(un)); 22792 un->un_dcvb_timeid = NULL; 22793 cv_broadcast(&un->un_state_cv); 22794 mutex_exit(SD_MUTEX(un)); 22795 } 22796 22797 22798 /* 22799 * Function: sd_media_watch_cb 22800 * 22801 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 22802 * routine processes the TUR sense data and updates the driver 22803 * state if a transition has occurred. The user thread 22804 * (sd_check_media) is then signalled. 22805 * 22806 * Arguments: arg - the device 'dev_t' is used for context to discriminate 22807 * among multiple watches that share this callback function 22808 * resultp - scsi watch facility result packet containing scsi 22809 * packet, status byte and sense data 22810 * 22811 * Return Code: 0 for success, -1 for failure 22812 */ 22813 22814 static int 22815 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 22816 { 22817 struct sd_lun *un; 22818 struct scsi_status *statusp = resultp->statusp; 22819 uint8_t *sensep = (uint8_t *)resultp->sensep; 22820 enum dkio_state state = DKIO_NONE; 22821 dev_t dev = (dev_t)arg; 22822 uchar_t actual_sense_length; 22823 uint8_t skey, asc, ascq; 22824 22825 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22826 return (-1); 22827 } 22828 actual_sense_length = resultp->actual_sense_length; 22829 22830 mutex_enter(SD_MUTEX(un)); 22831 SD_TRACE(SD_LOG_COMMON, un, 22832 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 22833 *((char *)statusp), (void *)sensep, actual_sense_length); 22834 22835 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 22836 un->un_mediastate = DKIO_DEV_GONE; 22837 cv_broadcast(&un->un_state_cv); 22838 mutex_exit(SD_MUTEX(un)); 22839 22840 return (0); 22841 } 22842 22843 /* 22844 * If there was a check condition then sensep points to valid sense data 22845 * If status was not a check condition but a reservation or busy status 22846 * then the new state is DKIO_NONE 22847 */ 22848 if (sensep != NULL) { 22849 skey = scsi_sense_key(sensep); 22850 asc = scsi_sense_asc(sensep); 22851 ascq = scsi_sense_ascq(sensep); 22852 22853 SD_INFO(SD_LOG_COMMON, un, 22854 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 22855 skey, asc, ascq); 22856 /* This routine only uses up to 13 bytes of sense data. */ 22857 if (actual_sense_length >= 13) { 22858 if (skey == KEY_UNIT_ATTENTION) { 22859 if (asc == 0x28) { 22860 state = DKIO_INSERTED; 22861 } 22862 } else if (skey == KEY_NOT_READY) { 22863 /* 22864 * Sense data of 02/06/00 means that the 22865 * drive could not read the media (No 22866 * reference position found). In this case 22867 * to prevent a hang on the DKIOCSTATE IOCTL 22868 * we set the media state to DKIO_INSERTED. 22869 */ 22870 if (asc == 0x06 && ascq == 0x00) 22871 state = DKIO_INSERTED; 22872 22873 /* 22874 * if 02/04/02 means that the host 22875 * should send start command. Explicitly 22876 * leave the media state as is 22877 * (inserted) as the media is inserted 22878 * and host has stopped device for PM 22879 * reasons. Upon next true read/write 22880 * to this media will bring the 22881 * device to the right state good for 22882 * media access. 22883 */ 22884 if (asc == 0x3a) { 22885 state = DKIO_EJECTED; 22886 } else { 22887 /* 22888 * If the drive is busy with an 22889 * operation or long write, keep the 22890 * media in an inserted state. 22891 */ 22892 22893 if ((asc == 0x04) && 22894 ((ascq == 0x02) || 22895 (ascq == 0x07) || 22896 (ascq == 0x08))) { 22897 state = DKIO_INSERTED; 22898 } 22899 } 22900 } else if (skey == KEY_NO_SENSE) { 22901 if ((asc == 0x00) && (ascq == 0x00)) { 22902 /* 22903 * Sense Data 00/00/00 does not provide 22904 * any information about the state of 22905 * the media. Ignore it. 22906 */ 22907 mutex_exit(SD_MUTEX(un)); 22908 return (0); 22909 } 22910 } 22911 } 22912 } else if ((*((char *)statusp) == STATUS_GOOD) && 22913 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 22914 state = DKIO_INSERTED; 22915 } 22916 22917 SD_TRACE(SD_LOG_COMMON, un, 22918 "sd_media_watch_cb: state=%x, specified=%x\n", 22919 state, un->un_specified_mediastate); 22920 22921 /* 22922 * now signal the waiting thread if this is *not* the specified state; 22923 * delay the signal if the state is DKIO_INSERTED to allow the target 22924 * to recover 22925 */ 22926 if (state != un->un_specified_mediastate) { 22927 un->un_mediastate = state; 22928 if (state == DKIO_INSERTED) { 22929 /* 22930 * delay the signal to give the drive a chance 22931 * to do what it apparently needs to do 22932 */ 22933 SD_TRACE(SD_LOG_COMMON, un, 22934 "sd_media_watch_cb: delayed cv_broadcast\n"); 22935 if (un->un_dcvb_timeid == NULL) { 22936 un->un_dcvb_timeid = 22937 timeout(sd_delayed_cv_broadcast, un, 22938 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 22939 } 22940 } else { 22941 SD_TRACE(SD_LOG_COMMON, un, 22942 "sd_media_watch_cb: immediate cv_broadcast\n"); 22943 cv_broadcast(&un->un_state_cv); 22944 } 22945 } 22946 mutex_exit(SD_MUTEX(un)); 22947 return (0); 22948 } 22949 22950 22951 /* 22952 * Function: sd_dkio_get_temp 22953 * 22954 * Description: This routine is the driver entry point for handling ioctl 22955 * requests to get the disk temperature. 22956 * 22957 * Arguments: dev - the device number 22958 * arg - pointer to user provided dk_temperature structure. 22959 * flag - this argument is a pass through to ddi_copyxxx() 22960 * directly from the mode argument of ioctl(). 22961 * 22962 * Return Code: 0 22963 * EFAULT 22964 * ENXIO 22965 * EAGAIN 22966 */ 22967 22968 static int 22969 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 22970 { 22971 struct sd_lun *un = NULL; 22972 struct dk_temperature *dktemp = NULL; 22973 uchar_t *temperature_page; 22974 int rval = 0; 22975 int path_flag = SD_PATH_STANDARD; 22976 sd_ssc_t *ssc; 22977 22978 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22979 return (ENXIO); 22980 } 22981 22982 ssc = sd_ssc_init(un); 22983 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 22984 22985 /* copyin the disk temp argument to get the user flags */ 22986 if (ddi_copyin((void *)arg, dktemp, 22987 sizeof (struct dk_temperature), flag) != 0) { 22988 rval = EFAULT; 22989 goto done; 22990 } 22991 22992 /* Initialize the temperature to invalid. */ 22993 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 22994 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 22995 22996 /* 22997 * Note: Investigate removing the "bypass pm" semantic. 22998 * Can we just bypass PM always? 22999 */ 23000 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 23001 path_flag = SD_PATH_DIRECT; 23002 ASSERT(!mutex_owned(&un->un_pm_mutex)); 23003 mutex_enter(&un->un_pm_mutex); 23004 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 23005 /* 23006 * If DKT_BYPASS_PM is set, and the drive happens to be 23007 * in low power mode, we can not wake it up, Need to 23008 * return EAGAIN. 23009 */ 23010 mutex_exit(&un->un_pm_mutex); 23011 rval = EAGAIN; 23012 goto done; 23013 } else { 23014 /* 23015 * Indicate to PM the device is busy. This is required 23016 * to avoid a race - i.e. the ioctl is issuing a 23017 * command and the pm framework brings down the device 23018 * to low power mode (possible power cut-off on some 23019 * platforms). 23020 */ 23021 mutex_exit(&un->un_pm_mutex); 23022 if (sd_pm_entry(un) != DDI_SUCCESS) { 23023 rval = EAGAIN; 23024 goto done; 23025 } 23026 } 23027 } 23028 23029 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 23030 23031 rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page, 23032 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag); 23033 if (rval != 0) 23034 goto done2; 23035 23036 /* 23037 * For the current temperature verify that the parameter length is 0x02 23038 * and the parameter code is 0x00 23039 */ 23040 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 23041 (temperature_page[5] == 0x00)) { 23042 if (temperature_page[9] == 0xFF) { 23043 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 23044 } else { 23045 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 23046 } 23047 } 23048 23049 /* 23050 * For the reference temperature verify that the parameter 23051 * length is 0x02 and the parameter code is 0x01 23052 */ 23053 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 23054 (temperature_page[11] == 0x01)) { 23055 if (temperature_page[15] == 0xFF) { 23056 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 23057 } else { 23058 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 23059 } 23060 } 23061 23062 /* Do the copyout regardless of the temperature commands status. */ 23063 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 23064 flag) != 0) { 23065 rval = EFAULT; 23066 goto done1; 23067 } 23068 23069 done2: 23070 if (rval != 0) { 23071 if (rval == EIO) 23072 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23073 else 23074 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23075 } 23076 done1: 23077 if (path_flag == SD_PATH_DIRECT) { 23078 sd_pm_exit(un); 23079 } 23080 23081 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 23082 done: 23083 sd_ssc_fini(ssc); 23084 if (dktemp != NULL) { 23085 kmem_free(dktemp, sizeof (struct dk_temperature)); 23086 } 23087 23088 return (rval); 23089 } 23090 23091 23092 /* 23093 * Function: sd_log_page_supported 23094 * 23095 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 23096 * supported log pages. 23097 * 23098 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 23099 * structure for this target. 23100 * log_page - 23101 * 23102 * Return Code: -1 - on error (log sense is optional and may not be supported). 23103 * 0 - log page not found. 23104 * 1 - log page found. 23105 */ 23106 23107 static int 23108 sd_log_page_supported(sd_ssc_t *ssc, int log_page) 23109 { 23110 uchar_t *log_page_data; 23111 int i; 23112 int match = 0; 23113 int log_size; 23114 int status = 0; 23115 struct sd_lun *un; 23116 23117 ASSERT(ssc != NULL); 23118 un = ssc->ssc_un; 23119 ASSERT(un != NULL); 23120 23121 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 23122 23123 status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0, 23124 SD_PATH_DIRECT); 23125 23126 if (status != 0) { 23127 if (status == EIO) { 23128 /* 23129 * Some disks do not support log sense, we 23130 * should ignore this kind of error(sense key is 23131 * 0x5 - illegal request). 23132 */ 23133 uint8_t *sensep; 23134 int senlen; 23135 23136 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 23137 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 23138 ssc->ssc_uscsi_cmd->uscsi_rqresid); 23139 23140 if (senlen > 0 && 23141 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 23142 sd_ssc_assessment(ssc, 23143 SD_FMT_IGNORE_COMPROMISE); 23144 } else { 23145 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23146 } 23147 } else { 23148 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23149 } 23150 23151 SD_ERROR(SD_LOG_COMMON, un, 23152 "sd_log_page_supported: failed log page retrieval\n"); 23153 kmem_free(log_page_data, 0xFF); 23154 return (-1); 23155 } 23156 23157 log_size = log_page_data[3]; 23158 23159 /* 23160 * The list of supported log pages start from the fourth byte. Check 23161 * until we run out of log pages or a match is found. 23162 */ 23163 for (i = 4; (i < (log_size + 4)) && !match; i++) { 23164 if (log_page_data[i] == log_page) { 23165 match++; 23166 } 23167 } 23168 kmem_free(log_page_data, 0xFF); 23169 return (match); 23170 } 23171 23172 23173 /* 23174 * Function: sd_mhdioc_failfast 23175 * 23176 * Description: This routine is the driver entry point for handling ioctl 23177 * requests to enable/disable the multihost failfast option. 23178 * (MHIOCENFAILFAST) 23179 * 23180 * Arguments: dev - the device number 23181 * arg - user specified probing interval. 23182 * flag - this argument is a pass through to ddi_copyxxx() 23183 * directly from the mode argument of ioctl(). 23184 * 23185 * Return Code: 0 23186 * EFAULT 23187 * ENXIO 23188 */ 23189 23190 static int 23191 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 23192 { 23193 struct sd_lun *un = NULL; 23194 int mh_time; 23195 int rval = 0; 23196 23197 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23198 return (ENXIO); 23199 } 23200 23201 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 23202 return (EFAULT); 23203 23204 if (mh_time) { 23205 mutex_enter(SD_MUTEX(un)); 23206 un->un_resvd_status |= SD_FAILFAST; 23207 mutex_exit(SD_MUTEX(un)); 23208 /* 23209 * If mh_time is INT_MAX, then this ioctl is being used for 23210 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 23211 */ 23212 if (mh_time != INT_MAX) { 23213 rval = sd_check_mhd(dev, mh_time); 23214 } 23215 } else { 23216 (void) sd_check_mhd(dev, 0); 23217 mutex_enter(SD_MUTEX(un)); 23218 un->un_resvd_status &= ~SD_FAILFAST; 23219 mutex_exit(SD_MUTEX(un)); 23220 } 23221 return (rval); 23222 } 23223 23224 23225 /* 23226 * Function: sd_mhdioc_takeown 23227 * 23228 * Description: This routine is the driver entry point for handling ioctl 23229 * requests to forcefully acquire exclusive access rights to the 23230 * multihost disk (MHIOCTKOWN). 23231 * 23232 * Arguments: dev - the device number 23233 * arg - user provided structure specifying the delay 23234 * parameters in milliseconds 23235 * flag - this argument is a pass through to ddi_copyxxx() 23236 * directly from the mode argument of ioctl(). 23237 * 23238 * Return Code: 0 23239 * EFAULT 23240 * ENXIO 23241 */ 23242 23243 static int 23244 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 23245 { 23246 struct sd_lun *un = NULL; 23247 struct mhioctkown *tkown = NULL; 23248 int rval = 0; 23249 23250 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23251 return (ENXIO); 23252 } 23253 23254 if (arg != NULL) { 23255 tkown = (struct mhioctkown *) 23256 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 23257 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 23258 if (rval != 0) { 23259 rval = EFAULT; 23260 goto error; 23261 } 23262 } 23263 23264 rval = sd_take_ownership(dev, tkown); 23265 mutex_enter(SD_MUTEX(un)); 23266 if (rval == 0) { 23267 un->un_resvd_status |= SD_RESERVE; 23268 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 23269 sd_reinstate_resv_delay = 23270 tkown->reinstate_resv_delay * 1000; 23271 } else { 23272 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 23273 } 23274 /* 23275 * Give the scsi_watch routine interval set by 23276 * the MHIOCENFAILFAST ioctl precedence here. 23277 */ 23278 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 23279 mutex_exit(SD_MUTEX(un)); 23280 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 23281 SD_TRACE(SD_LOG_IOCTL_MHD, un, 23282 "sd_mhdioc_takeown : %d\n", 23283 sd_reinstate_resv_delay); 23284 } else { 23285 mutex_exit(SD_MUTEX(un)); 23286 } 23287 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 23288 sd_mhd_reset_notify_cb, (caddr_t)un); 23289 } else { 23290 un->un_resvd_status &= ~SD_RESERVE; 23291 mutex_exit(SD_MUTEX(un)); 23292 } 23293 23294 error: 23295 if (tkown != NULL) { 23296 kmem_free(tkown, sizeof (struct mhioctkown)); 23297 } 23298 return (rval); 23299 } 23300 23301 23302 /* 23303 * Function: sd_mhdioc_release 23304 * 23305 * Description: This routine is the driver entry point for handling ioctl 23306 * requests to release exclusive access rights to the multihost 23307 * disk (MHIOCRELEASE). 23308 * 23309 * Arguments: dev - the device number 23310 * 23311 * Return Code: 0 23312 * ENXIO 23313 */ 23314 23315 static int 23316 sd_mhdioc_release(dev_t dev) 23317 { 23318 struct sd_lun *un = NULL; 23319 timeout_id_t resvd_timeid_save; 23320 int resvd_status_save; 23321 int rval = 0; 23322 23323 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23324 return (ENXIO); 23325 } 23326 23327 mutex_enter(SD_MUTEX(un)); 23328 resvd_status_save = un->un_resvd_status; 23329 un->un_resvd_status &= 23330 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 23331 if (un->un_resvd_timeid) { 23332 resvd_timeid_save = un->un_resvd_timeid; 23333 un->un_resvd_timeid = NULL; 23334 mutex_exit(SD_MUTEX(un)); 23335 (void) untimeout(resvd_timeid_save); 23336 } else { 23337 mutex_exit(SD_MUTEX(un)); 23338 } 23339 23340 /* 23341 * destroy any pending timeout thread that may be attempting to 23342 * reinstate reservation on this device. 23343 */ 23344 sd_rmv_resv_reclaim_req(dev); 23345 23346 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 23347 mutex_enter(SD_MUTEX(un)); 23348 if ((un->un_mhd_token) && 23349 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 23350 mutex_exit(SD_MUTEX(un)); 23351 (void) sd_check_mhd(dev, 0); 23352 } else { 23353 mutex_exit(SD_MUTEX(un)); 23354 } 23355 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 23356 sd_mhd_reset_notify_cb, (caddr_t)un); 23357 } else { 23358 /* 23359 * sd_mhd_watch_cb will restart the resvd recover timeout thread 23360 */ 23361 mutex_enter(SD_MUTEX(un)); 23362 un->un_resvd_status = resvd_status_save; 23363 mutex_exit(SD_MUTEX(un)); 23364 } 23365 return (rval); 23366 } 23367 23368 23369 /* 23370 * Function: sd_mhdioc_register_devid 23371 * 23372 * Description: This routine is the driver entry point for handling ioctl 23373 * requests to register the device id (MHIOCREREGISTERDEVID). 23374 * 23375 * Note: The implementation for this ioctl has been updated to 23376 * be consistent with the original PSARC case (1999/357) 23377 * (4375899, 4241671, 4220005) 23378 * 23379 * Arguments: dev - the device number 23380 * 23381 * Return Code: 0 23382 * ENXIO 23383 */ 23384 23385 static int 23386 sd_mhdioc_register_devid(dev_t dev) 23387 { 23388 struct sd_lun *un = NULL; 23389 int rval = 0; 23390 sd_ssc_t *ssc; 23391 23392 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23393 return (ENXIO); 23394 } 23395 23396 ASSERT(!mutex_owned(SD_MUTEX(un))); 23397 23398 mutex_enter(SD_MUTEX(un)); 23399 23400 /* If a devid already exists, de-register it */ 23401 if (un->un_devid != NULL) { 23402 ddi_devid_unregister(SD_DEVINFO(un)); 23403 /* 23404 * After unregister devid, needs to free devid memory 23405 */ 23406 ddi_devid_free(un->un_devid); 23407 un->un_devid = NULL; 23408 } 23409 23410 /* Check for reservation conflict */ 23411 mutex_exit(SD_MUTEX(un)); 23412 ssc = sd_ssc_init(un); 23413 rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 23414 mutex_enter(SD_MUTEX(un)); 23415 23416 switch (rval) { 23417 case 0: 23418 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 23419 break; 23420 case EACCES: 23421 break; 23422 default: 23423 rval = EIO; 23424 } 23425 23426 mutex_exit(SD_MUTEX(un)); 23427 if (rval != 0) { 23428 if (rval == EIO) 23429 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23430 else 23431 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23432 } 23433 sd_ssc_fini(ssc); 23434 return (rval); 23435 } 23436 23437 23438 /* 23439 * Function: sd_mhdioc_inkeys 23440 * 23441 * Description: This routine is the driver entry point for handling ioctl 23442 * requests to issue the SCSI-3 Persistent In Read Keys command 23443 * to the device (MHIOCGRP_INKEYS). 23444 * 23445 * Arguments: dev - the device number 23446 * arg - user provided in_keys structure 23447 * flag - this argument is a pass through to ddi_copyxxx() 23448 * directly from the mode argument of ioctl(). 23449 * 23450 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 23451 * ENXIO 23452 * EFAULT 23453 */ 23454 23455 static int 23456 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 23457 { 23458 struct sd_lun *un; 23459 mhioc_inkeys_t inkeys; 23460 int rval = 0; 23461 23462 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23463 return (ENXIO); 23464 } 23465 23466 #ifdef _MULTI_DATAMODEL 23467 switch (ddi_model_convert_from(flag & FMODELS)) { 23468 case DDI_MODEL_ILP32: { 23469 struct mhioc_inkeys32 inkeys32; 23470 23471 if (ddi_copyin(arg, &inkeys32, 23472 sizeof (struct mhioc_inkeys32), flag) != 0) { 23473 return (EFAULT); 23474 } 23475 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 23476 if ((rval = sd_persistent_reservation_in_read_keys(un, 23477 &inkeys, flag)) != 0) { 23478 return (rval); 23479 } 23480 inkeys32.generation = inkeys.generation; 23481 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 23482 flag) != 0) { 23483 return (EFAULT); 23484 } 23485 break; 23486 } 23487 case DDI_MODEL_NONE: 23488 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 23489 flag) != 0) { 23490 return (EFAULT); 23491 } 23492 if ((rval = sd_persistent_reservation_in_read_keys(un, 23493 &inkeys, flag)) != 0) { 23494 return (rval); 23495 } 23496 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 23497 flag) != 0) { 23498 return (EFAULT); 23499 } 23500 break; 23501 } 23502 23503 #else /* ! _MULTI_DATAMODEL */ 23504 23505 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 23506 return (EFAULT); 23507 } 23508 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 23509 if (rval != 0) { 23510 return (rval); 23511 } 23512 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 23513 return (EFAULT); 23514 } 23515 23516 #endif /* _MULTI_DATAMODEL */ 23517 23518 return (rval); 23519 } 23520 23521 23522 /* 23523 * Function: sd_mhdioc_inresv 23524 * 23525 * Description: This routine is the driver entry point for handling ioctl 23526 * requests to issue the SCSI-3 Persistent In Read Reservations 23527 * command to the device (MHIOCGRP_INKEYS). 23528 * 23529 * Arguments: dev - the device number 23530 * arg - user provided in_resv structure 23531 * flag - this argument is a pass through to ddi_copyxxx() 23532 * directly from the mode argument of ioctl(). 23533 * 23534 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 23535 * ENXIO 23536 * EFAULT 23537 */ 23538 23539 static int 23540 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 23541 { 23542 struct sd_lun *un; 23543 mhioc_inresvs_t inresvs; 23544 int rval = 0; 23545 23546 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23547 return (ENXIO); 23548 } 23549 23550 #ifdef _MULTI_DATAMODEL 23551 23552 switch (ddi_model_convert_from(flag & FMODELS)) { 23553 case DDI_MODEL_ILP32: { 23554 struct mhioc_inresvs32 inresvs32; 23555 23556 if (ddi_copyin(arg, &inresvs32, 23557 sizeof (struct mhioc_inresvs32), flag) != 0) { 23558 return (EFAULT); 23559 } 23560 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 23561 if ((rval = sd_persistent_reservation_in_read_resv(un, 23562 &inresvs, flag)) != 0) { 23563 return (rval); 23564 } 23565 inresvs32.generation = inresvs.generation; 23566 if (ddi_copyout(&inresvs32, arg, 23567 sizeof (struct mhioc_inresvs32), flag) != 0) { 23568 return (EFAULT); 23569 } 23570 break; 23571 } 23572 case DDI_MODEL_NONE: 23573 if (ddi_copyin(arg, &inresvs, 23574 sizeof (mhioc_inresvs_t), flag) != 0) { 23575 return (EFAULT); 23576 } 23577 if ((rval = sd_persistent_reservation_in_read_resv(un, 23578 &inresvs, flag)) != 0) { 23579 return (rval); 23580 } 23581 if (ddi_copyout(&inresvs, arg, 23582 sizeof (mhioc_inresvs_t), flag) != 0) { 23583 return (EFAULT); 23584 } 23585 break; 23586 } 23587 23588 #else /* ! _MULTI_DATAMODEL */ 23589 23590 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 23591 return (EFAULT); 23592 } 23593 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 23594 if (rval != 0) { 23595 return (rval); 23596 } 23597 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 23598 return (EFAULT); 23599 } 23600 23601 #endif /* ! _MULTI_DATAMODEL */ 23602 23603 return (rval); 23604 } 23605 23606 23607 /* 23608 * The following routines support the clustering functionality described below 23609 * and implement lost reservation reclaim functionality. 23610 * 23611 * Clustering 23612 * ---------- 23613 * The clustering code uses two different, independent forms of SCSI 23614 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 23615 * Persistent Group Reservations. For any particular disk, it will use either 23616 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 23617 * 23618 * SCSI-2 23619 * The cluster software takes ownership of a multi-hosted disk by issuing the 23620 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 23621 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 23622 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 23623 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 23624 * driver. The meaning of failfast is that if the driver (on this host) ever 23625 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 23626 * it should immediately panic the host. The motivation for this ioctl is that 23627 * if this host does encounter reservation conflict, the underlying cause is 23628 * that some other host of the cluster has decided that this host is no longer 23629 * in the cluster and has seized control of the disks for itself. Since this 23630 * host is no longer in the cluster, it ought to panic itself. The 23631 * MHIOCENFAILFAST ioctl does two things: 23632 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 23633 * error to panic the host 23634 * (b) it sets up a periodic timer to test whether this host still has 23635 * "access" (in that no other host has reserved the device): if the 23636 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 23637 * purpose of that periodic timer is to handle scenarios where the host is 23638 * otherwise temporarily quiescent, temporarily doing no real i/o. 23639 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 23640 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 23641 * the device itself. 23642 * 23643 * SCSI-3 PGR 23644 * A direct semantic implementation of the SCSI-3 Persistent Reservation 23645 * facility is supported through the shared multihost disk ioctls 23646 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 23647 * MHIOCGRP_PREEMPTANDABORT) 23648 * 23649 * Reservation Reclaim: 23650 * -------------------- 23651 * To support the lost reservation reclaim operations this driver creates a 23652 * single thread to handle reinstating reservations on all devices that have 23653 * lost reservations sd_resv_reclaim_requests are logged for all devices that 23654 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 23655 * and the reservation reclaim thread loops through the requests to regain the 23656 * lost reservations. 23657 */ 23658 23659 /* 23660 * Function: sd_check_mhd() 23661 * 23662 * Description: This function sets up and submits a scsi watch request or 23663 * terminates an existing watch request. This routine is used in 23664 * support of reservation reclaim. 23665 * 23666 * Arguments: dev - the device 'dev_t' is used for context to discriminate 23667 * among multiple watches that share the callback function 23668 * interval - the number of microseconds specifying the watch 23669 * interval for issuing TEST UNIT READY commands. If 23670 * set to 0 the watch should be terminated. If the 23671 * interval is set to 0 and if the device is required 23672 * to hold reservation while disabling failfast, the 23673 * watch is restarted with an interval of 23674 * reinstate_resv_delay. 23675 * 23676 * Return Code: 0 - Successful submit/terminate of scsi watch request 23677 * ENXIO - Indicates an invalid device was specified 23678 * EAGAIN - Unable to submit the scsi watch request 23679 */ 23680 23681 static int 23682 sd_check_mhd(dev_t dev, int interval) 23683 { 23684 struct sd_lun *un; 23685 opaque_t token; 23686 23687 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23688 return (ENXIO); 23689 } 23690 23691 /* is this a watch termination request? */ 23692 if (interval == 0) { 23693 mutex_enter(SD_MUTEX(un)); 23694 /* if there is an existing watch task then terminate it */ 23695 if (un->un_mhd_token) { 23696 token = un->un_mhd_token; 23697 un->un_mhd_token = NULL; 23698 mutex_exit(SD_MUTEX(un)); 23699 (void) scsi_watch_request_terminate(token, 23700 SCSI_WATCH_TERMINATE_ALL_WAIT); 23701 mutex_enter(SD_MUTEX(un)); 23702 } else { 23703 mutex_exit(SD_MUTEX(un)); 23704 /* 23705 * Note: If we return here we don't check for the 23706 * failfast case. This is the original legacy 23707 * implementation but perhaps we should be checking 23708 * the failfast case. 23709 */ 23710 return (0); 23711 } 23712 /* 23713 * If the device is required to hold reservation while 23714 * disabling failfast, we need to restart the scsi_watch 23715 * routine with an interval of reinstate_resv_delay. 23716 */ 23717 if (un->un_resvd_status & SD_RESERVE) { 23718 interval = sd_reinstate_resv_delay/1000; 23719 } else { 23720 /* no failfast so bail */ 23721 mutex_exit(SD_MUTEX(un)); 23722 return (0); 23723 } 23724 mutex_exit(SD_MUTEX(un)); 23725 } 23726 23727 /* 23728 * adjust minimum time interval to 1 second, 23729 * and convert from msecs to usecs 23730 */ 23731 if (interval > 0 && interval < 1000) { 23732 interval = 1000; 23733 } 23734 interval *= 1000; 23735 23736 /* 23737 * submit the request to the scsi_watch service 23738 */ 23739 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 23740 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 23741 if (token == NULL) { 23742 return (EAGAIN); 23743 } 23744 23745 /* 23746 * save token for termination later on 23747 */ 23748 mutex_enter(SD_MUTEX(un)); 23749 un->un_mhd_token = token; 23750 mutex_exit(SD_MUTEX(un)); 23751 return (0); 23752 } 23753 23754 23755 /* 23756 * Function: sd_mhd_watch_cb() 23757 * 23758 * Description: This function is the call back function used by the scsi watch 23759 * facility. The scsi watch facility sends the "Test Unit Ready" 23760 * and processes the status. If applicable (i.e. a "Unit Attention" 23761 * status and automatic "Request Sense" not used) the scsi watch 23762 * facility will send a "Request Sense" and retrieve the sense data 23763 * to be passed to this callback function. In either case the 23764 * automatic "Request Sense" or the facility submitting one, this 23765 * callback is passed the status and sense data. 23766 * 23767 * Arguments: arg - the device 'dev_t' is used for context to discriminate 23768 * among multiple watches that share this callback function 23769 * resultp - scsi watch facility result packet containing scsi 23770 * packet, status byte and sense data 23771 * 23772 * Return Code: 0 - continue the watch task 23773 * non-zero - terminate the watch task 23774 */ 23775 23776 static int 23777 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 23778 { 23779 struct sd_lun *un; 23780 struct scsi_status *statusp; 23781 uint8_t *sensep; 23782 struct scsi_pkt *pkt; 23783 uchar_t actual_sense_length; 23784 dev_t dev = (dev_t)arg; 23785 23786 ASSERT(resultp != NULL); 23787 statusp = resultp->statusp; 23788 sensep = (uint8_t *)resultp->sensep; 23789 pkt = resultp->pkt; 23790 actual_sense_length = resultp->actual_sense_length; 23791 23792 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23793 return (ENXIO); 23794 } 23795 23796 SD_TRACE(SD_LOG_IOCTL_MHD, un, 23797 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 23798 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 23799 23800 /* Begin processing of the status and/or sense data */ 23801 if (pkt->pkt_reason != CMD_CMPLT) { 23802 /* Handle the incomplete packet */ 23803 sd_mhd_watch_incomplete(un, pkt); 23804 return (0); 23805 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 23806 if (*((unsigned char *)statusp) 23807 == STATUS_RESERVATION_CONFLICT) { 23808 /* 23809 * Handle a reservation conflict by panicking if 23810 * configured for failfast or by logging the conflict 23811 * and updating the reservation status 23812 */ 23813 mutex_enter(SD_MUTEX(un)); 23814 if ((un->un_resvd_status & SD_FAILFAST) && 23815 (sd_failfast_enable)) { 23816 sd_panic_for_res_conflict(un); 23817 /*NOTREACHED*/ 23818 } 23819 SD_INFO(SD_LOG_IOCTL_MHD, un, 23820 "sd_mhd_watch_cb: Reservation Conflict\n"); 23821 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 23822 mutex_exit(SD_MUTEX(un)); 23823 } 23824 } 23825 23826 if (sensep != NULL) { 23827 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 23828 mutex_enter(SD_MUTEX(un)); 23829 if ((scsi_sense_asc(sensep) == 23830 SD_SCSI_RESET_SENSE_CODE) && 23831 (un->un_resvd_status & SD_RESERVE)) { 23832 /* 23833 * The additional sense code indicates a power 23834 * on or bus device reset has occurred; update 23835 * the reservation status. 23836 */ 23837 un->un_resvd_status |= 23838 (SD_LOST_RESERVE | SD_WANT_RESERVE); 23839 SD_INFO(SD_LOG_IOCTL_MHD, un, 23840 "sd_mhd_watch_cb: Lost Reservation\n"); 23841 } 23842 } else { 23843 return (0); 23844 } 23845 } else { 23846 mutex_enter(SD_MUTEX(un)); 23847 } 23848 23849 if ((un->un_resvd_status & SD_RESERVE) && 23850 (un->un_resvd_status & SD_LOST_RESERVE)) { 23851 if (un->un_resvd_status & SD_WANT_RESERVE) { 23852 /* 23853 * A reset occurred in between the last probe and this 23854 * one so if a timeout is pending cancel it. 23855 */ 23856 if (un->un_resvd_timeid) { 23857 timeout_id_t temp_id = un->un_resvd_timeid; 23858 un->un_resvd_timeid = NULL; 23859 mutex_exit(SD_MUTEX(un)); 23860 (void) untimeout(temp_id); 23861 mutex_enter(SD_MUTEX(un)); 23862 } 23863 un->un_resvd_status &= ~SD_WANT_RESERVE; 23864 } 23865 if (un->un_resvd_timeid == 0) { 23866 /* Schedule a timeout to handle the lost reservation */ 23867 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 23868 (void *)dev, 23869 drv_usectohz(sd_reinstate_resv_delay)); 23870 } 23871 } 23872 mutex_exit(SD_MUTEX(un)); 23873 return (0); 23874 } 23875 23876 23877 /* 23878 * Function: sd_mhd_watch_incomplete() 23879 * 23880 * Description: This function is used to find out why a scsi pkt sent by the 23881 * scsi watch facility was not completed. Under some scenarios this 23882 * routine will return. Otherwise it will send a bus reset to see 23883 * if the drive is still online. 23884 * 23885 * Arguments: un - driver soft state (unit) structure 23886 * pkt - incomplete scsi pkt 23887 */ 23888 23889 static void 23890 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 23891 { 23892 int be_chatty; 23893 int perr; 23894 23895 ASSERT(pkt != NULL); 23896 ASSERT(un != NULL); 23897 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 23898 perr = (pkt->pkt_statistics & STAT_PERR); 23899 23900 mutex_enter(SD_MUTEX(un)); 23901 if (un->un_state == SD_STATE_DUMPING) { 23902 mutex_exit(SD_MUTEX(un)); 23903 return; 23904 } 23905 23906 switch (pkt->pkt_reason) { 23907 case CMD_UNX_BUS_FREE: 23908 /* 23909 * If we had a parity error that caused the target to drop BSY*, 23910 * don't be chatty about it. 23911 */ 23912 if (perr && be_chatty) { 23913 be_chatty = 0; 23914 } 23915 break; 23916 case CMD_TAG_REJECT: 23917 /* 23918 * The SCSI-2 spec states that a tag reject will be sent by the 23919 * target if tagged queuing is not supported. A tag reject may 23920 * also be sent during certain initialization periods or to 23921 * control internal resources. For the latter case the target 23922 * may also return Queue Full. 23923 * 23924 * If this driver receives a tag reject from a target that is 23925 * going through an init period or controlling internal 23926 * resources tagged queuing will be disabled. This is a less 23927 * than optimal behavior but the driver is unable to determine 23928 * the target state and assumes tagged queueing is not supported 23929 */ 23930 pkt->pkt_flags = 0; 23931 un->un_tagflags = 0; 23932 23933 if (un->un_f_opt_queueing == TRUE) { 23934 un->un_throttle = min(un->un_throttle, 3); 23935 } else { 23936 un->un_throttle = 1; 23937 } 23938 mutex_exit(SD_MUTEX(un)); 23939 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 23940 mutex_enter(SD_MUTEX(un)); 23941 break; 23942 case CMD_INCOMPLETE: 23943 /* 23944 * The transport stopped with an abnormal state, fallthrough and 23945 * reset the target and/or bus unless selection did not complete 23946 * (indicated by STATE_GOT_BUS) in which case we don't want to 23947 * go through a target/bus reset 23948 */ 23949 if (pkt->pkt_state == STATE_GOT_BUS) { 23950 break; 23951 } 23952 /*FALLTHROUGH*/ 23953 23954 case CMD_TIMEOUT: 23955 default: 23956 /* 23957 * The lun may still be running the command, so a lun reset 23958 * should be attempted. If the lun reset fails or cannot be 23959 * issued, than try a target reset. Lastly try a bus reset. 23960 */ 23961 if ((pkt->pkt_statistics & 23962 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 23963 int reset_retval = 0; 23964 mutex_exit(SD_MUTEX(un)); 23965 if (un->un_f_allow_bus_device_reset == TRUE) { 23966 if (un->un_f_lun_reset_enabled == TRUE) { 23967 reset_retval = 23968 scsi_reset(SD_ADDRESS(un), 23969 RESET_LUN); 23970 } 23971 if (reset_retval == 0) { 23972 reset_retval = 23973 scsi_reset(SD_ADDRESS(un), 23974 RESET_TARGET); 23975 } 23976 } 23977 if (reset_retval == 0) { 23978 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 23979 } 23980 mutex_enter(SD_MUTEX(un)); 23981 } 23982 break; 23983 } 23984 23985 /* A device/bus reset has occurred; update the reservation status. */ 23986 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 23987 (STAT_BUS_RESET | STAT_DEV_RESET))) { 23988 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 23989 un->un_resvd_status |= 23990 (SD_LOST_RESERVE | SD_WANT_RESERVE); 23991 SD_INFO(SD_LOG_IOCTL_MHD, un, 23992 "sd_mhd_watch_incomplete: Lost Reservation\n"); 23993 } 23994 } 23995 23996 /* 23997 * The disk has been turned off; Update the device state. 23998 * 23999 * Note: Should we be offlining the disk here? 24000 */ 24001 if (pkt->pkt_state == STATE_GOT_BUS) { 24002 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 24003 "Disk not responding to selection\n"); 24004 if (un->un_state != SD_STATE_OFFLINE) { 24005 New_state(un, SD_STATE_OFFLINE); 24006 } 24007 } else if (be_chatty) { 24008 /* 24009 * suppress messages if they are all the same pkt reason; 24010 * with TQ, many (up to 256) are returned with the same 24011 * pkt_reason 24012 */ 24013 if (pkt->pkt_reason != un->un_last_pkt_reason) { 24014 SD_ERROR(SD_LOG_IOCTL_MHD, un, 24015 "sd_mhd_watch_incomplete: " 24016 "SCSI transport failed: reason '%s'\n", 24017 scsi_rname(pkt->pkt_reason)); 24018 } 24019 } 24020 un->un_last_pkt_reason = pkt->pkt_reason; 24021 mutex_exit(SD_MUTEX(un)); 24022 } 24023 24024 24025 /* 24026 * Function: sd_sname() 24027 * 24028 * Description: This is a simple little routine to return a string containing 24029 * a printable description of command status byte for use in 24030 * logging. 24031 * 24032 * Arguments: status - pointer to a status byte 24033 * 24034 * Return Code: char * - string containing status description. 24035 */ 24036 24037 static char * 24038 sd_sname(uchar_t status) 24039 { 24040 switch (status & STATUS_MASK) { 24041 case STATUS_GOOD: 24042 return ("good status"); 24043 case STATUS_CHECK: 24044 return ("check condition"); 24045 case STATUS_MET: 24046 return ("condition met"); 24047 case STATUS_BUSY: 24048 return ("busy"); 24049 case STATUS_INTERMEDIATE: 24050 return ("intermediate"); 24051 case STATUS_INTERMEDIATE_MET: 24052 return ("intermediate - condition met"); 24053 case STATUS_RESERVATION_CONFLICT: 24054 return ("reservation_conflict"); 24055 case STATUS_TERMINATED: 24056 return ("command terminated"); 24057 case STATUS_QFULL: 24058 return ("queue full"); 24059 default: 24060 return ("<unknown status>"); 24061 } 24062 } 24063 24064 24065 /* 24066 * Function: sd_mhd_resvd_recover() 24067 * 24068 * Description: This function adds a reservation entry to the 24069 * sd_resv_reclaim_request list and signals the reservation 24070 * reclaim thread that there is work pending. If the reservation 24071 * reclaim thread has not been previously created this function 24072 * will kick it off. 24073 * 24074 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24075 * among multiple watches that share this callback function 24076 * 24077 * Context: This routine is called by timeout() and is run in interrupt 24078 * context. It must not sleep or call other functions which may 24079 * sleep. 24080 */ 24081 24082 static void 24083 sd_mhd_resvd_recover(void *arg) 24084 { 24085 dev_t dev = (dev_t)arg; 24086 struct sd_lun *un; 24087 struct sd_thr_request *sd_treq = NULL; 24088 struct sd_thr_request *sd_cur = NULL; 24089 struct sd_thr_request *sd_prev = NULL; 24090 int already_there = 0; 24091 24092 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24093 return; 24094 } 24095 24096 mutex_enter(SD_MUTEX(un)); 24097 un->un_resvd_timeid = NULL; 24098 if (un->un_resvd_status & SD_WANT_RESERVE) { 24099 /* 24100 * There was a reset so don't issue the reserve, allow the 24101 * sd_mhd_watch_cb callback function to notice this and 24102 * reschedule the timeout for reservation. 24103 */ 24104 mutex_exit(SD_MUTEX(un)); 24105 return; 24106 } 24107 mutex_exit(SD_MUTEX(un)); 24108 24109 /* 24110 * Add this device to the sd_resv_reclaim_request list and the 24111 * sd_resv_reclaim_thread should take care of the rest. 24112 * 24113 * Note: We can't sleep in this context so if the memory allocation 24114 * fails allow the sd_mhd_watch_cb callback function to notice this and 24115 * reschedule the timeout for reservation. (4378460) 24116 */ 24117 sd_treq = (struct sd_thr_request *) 24118 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 24119 if (sd_treq == NULL) { 24120 return; 24121 } 24122 24123 sd_treq->sd_thr_req_next = NULL; 24124 sd_treq->dev = dev; 24125 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 24126 if (sd_tr.srq_thr_req_head == NULL) { 24127 sd_tr.srq_thr_req_head = sd_treq; 24128 } else { 24129 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 24130 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 24131 if (sd_cur->dev == dev) { 24132 /* 24133 * already in Queue so don't log 24134 * another request for the device 24135 */ 24136 already_there = 1; 24137 break; 24138 } 24139 sd_prev = sd_cur; 24140 } 24141 if (!already_there) { 24142 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 24143 "logging request for %lx\n", dev); 24144 sd_prev->sd_thr_req_next = sd_treq; 24145 } else { 24146 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 24147 } 24148 } 24149 24150 /* 24151 * Create a kernel thread to do the reservation reclaim and free up this 24152 * thread. We cannot block this thread while we go away to do the 24153 * reservation reclaim 24154 */ 24155 if (sd_tr.srq_resv_reclaim_thread == NULL) 24156 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 24157 sd_resv_reclaim_thread, NULL, 24158 0, &p0, TS_RUN, v.v_maxsyspri - 2); 24159 24160 /* Tell the reservation reclaim thread that it has work to do */ 24161 cv_signal(&sd_tr.srq_resv_reclaim_cv); 24162 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 24163 } 24164 24165 /* 24166 * Function: sd_resv_reclaim_thread() 24167 * 24168 * Description: This function implements the reservation reclaim operations 24169 * 24170 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24171 * among multiple watches that share this callback function 24172 */ 24173 24174 static void 24175 sd_resv_reclaim_thread() 24176 { 24177 struct sd_lun *un; 24178 struct sd_thr_request *sd_mhreq; 24179 24180 /* Wait for work */ 24181 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 24182 if (sd_tr.srq_thr_req_head == NULL) { 24183 cv_wait(&sd_tr.srq_resv_reclaim_cv, 24184 &sd_tr.srq_resv_reclaim_mutex); 24185 } 24186 24187 /* Loop while we have work */ 24188 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 24189 un = ddi_get_soft_state(sd_state, 24190 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 24191 if (un == NULL) { 24192 /* 24193 * softstate structure is NULL so just 24194 * dequeue the request and continue 24195 */ 24196 sd_tr.srq_thr_req_head = 24197 sd_tr.srq_thr_cur_req->sd_thr_req_next; 24198 kmem_free(sd_tr.srq_thr_cur_req, 24199 sizeof (struct sd_thr_request)); 24200 continue; 24201 } 24202 24203 /* dequeue the request */ 24204 sd_mhreq = sd_tr.srq_thr_cur_req; 24205 sd_tr.srq_thr_req_head = 24206 sd_tr.srq_thr_cur_req->sd_thr_req_next; 24207 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 24208 24209 /* 24210 * Reclaim reservation only if SD_RESERVE is still set. There 24211 * may have been a call to MHIOCRELEASE before we got here. 24212 */ 24213 mutex_enter(SD_MUTEX(un)); 24214 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 24215 /* 24216 * Note: The SD_LOST_RESERVE flag is cleared before 24217 * reclaiming the reservation. If this is done after the 24218 * call to sd_reserve_release a reservation loss in the 24219 * window between pkt completion of reserve cmd and 24220 * mutex_enter below may not be recognized 24221 */ 24222 un->un_resvd_status &= ~SD_LOST_RESERVE; 24223 mutex_exit(SD_MUTEX(un)); 24224 24225 if (sd_reserve_release(sd_mhreq->dev, 24226 SD_RESERVE) == 0) { 24227 mutex_enter(SD_MUTEX(un)); 24228 un->un_resvd_status |= SD_RESERVE; 24229 mutex_exit(SD_MUTEX(un)); 24230 SD_INFO(SD_LOG_IOCTL_MHD, un, 24231 "sd_resv_reclaim_thread: " 24232 "Reservation Recovered\n"); 24233 } else { 24234 mutex_enter(SD_MUTEX(un)); 24235 un->un_resvd_status |= SD_LOST_RESERVE; 24236 mutex_exit(SD_MUTEX(un)); 24237 SD_INFO(SD_LOG_IOCTL_MHD, un, 24238 "sd_resv_reclaim_thread: Failed " 24239 "Reservation Recovery\n"); 24240 } 24241 } else { 24242 mutex_exit(SD_MUTEX(un)); 24243 } 24244 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 24245 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 24246 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 24247 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 24248 /* 24249 * wakeup the destroy thread if anyone is waiting on 24250 * us to complete. 24251 */ 24252 cv_signal(&sd_tr.srq_inprocess_cv); 24253 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24254 "sd_resv_reclaim_thread: cv_signalling current request \n"); 24255 } 24256 24257 /* 24258 * cleanup the sd_tr structure now that this thread will not exist 24259 */ 24260 ASSERT(sd_tr.srq_thr_req_head == NULL); 24261 ASSERT(sd_tr.srq_thr_cur_req == NULL); 24262 sd_tr.srq_resv_reclaim_thread = NULL; 24263 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 24264 thread_exit(); 24265 } 24266 24267 24268 /* 24269 * Function: sd_rmv_resv_reclaim_req() 24270 * 24271 * Description: This function removes any pending reservation reclaim requests 24272 * for the specified device. 24273 * 24274 * Arguments: dev - the device 'dev_t' 24275 */ 24276 24277 static void 24278 sd_rmv_resv_reclaim_req(dev_t dev) 24279 { 24280 struct sd_thr_request *sd_mhreq; 24281 struct sd_thr_request *sd_prev; 24282 24283 /* Remove a reservation reclaim request from the list */ 24284 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 24285 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 24286 /* 24287 * We are attempting to reinstate reservation for 24288 * this device. We wait for sd_reserve_release() 24289 * to return before we return. 24290 */ 24291 cv_wait(&sd_tr.srq_inprocess_cv, 24292 &sd_tr.srq_resv_reclaim_mutex); 24293 } else { 24294 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 24295 if (sd_mhreq && sd_mhreq->dev == dev) { 24296 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 24297 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 24298 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 24299 return; 24300 } 24301 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 24302 if (sd_mhreq && sd_mhreq->dev == dev) { 24303 break; 24304 } 24305 sd_prev = sd_mhreq; 24306 } 24307 if (sd_mhreq != NULL) { 24308 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 24309 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 24310 } 24311 } 24312 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 24313 } 24314 24315 24316 /* 24317 * Function: sd_mhd_reset_notify_cb() 24318 * 24319 * Description: This is a call back function for scsi_reset_notify. This 24320 * function updates the softstate reserved status and logs the 24321 * reset. The driver scsi watch facility callback function 24322 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 24323 * will reclaim the reservation. 24324 * 24325 * Arguments: arg - driver soft state (unit) structure 24326 */ 24327 24328 static void 24329 sd_mhd_reset_notify_cb(caddr_t arg) 24330 { 24331 struct sd_lun *un = (struct sd_lun *)arg; 24332 24333 mutex_enter(SD_MUTEX(un)); 24334 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 24335 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 24336 SD_INFO(SD_LOG_IOCTL_MHD, un, 24337 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 24338 } 24339 mutex_exit(SD_MUTEX(un)); 24340 } 24341 24342 24343 /* 24344 * Function: sd_take_ownership() 24345 * 24346 * Description: This routine implements an algorithm to achieve a stable 24347 * reservation on disks which don't implement priority reserve, 24348 * and makes sure that other host lose re-reservation attempts. 24349 * This algorithm contains of a loop that keeps issuing the RESERVE 24350 * for some period of time (min_ownership_delay, default 6 seconds) 24351 * During that loop, it looks to see if there has been a bus device 24352 * reset or bus reset (both of which cause an existing reservation 24353 * to be lost). If the reservation is lost issue RESERVE until a 24354 * period of min_ownership_delay with no resets has gone by, or 24355 * until max_ownership_delay has expired. This loop ensures that 24356 * the host really did manage to reserve the device, in spite of 24357 * resets. The looping for min_ownership_delay (default six 24358 * seconds) is important to early generation clustering products, 24359 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 24360 * MHIOCENFAILFAST periodic timer of two seconds. By having 24361 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 24362 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 24363 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 24364 * have already noticed, via the MHIOCENFAILFAST polling, that it 24365 * no longer "owns" the disk and will have panicked itself. Thus, 24366 * the host issuing the MHIOCTKOWN is assured (with timing 24367 * dependencies) that by the time it actually starts to use the 24368 * disk for real work, the old owner is no longer accessing it. 24369 * 24370 * min_ownership_delay is the minimum amount of time for which the 24371 * disk must be reserved continuously devoid of resets before the 24372 * MHIOCTKOWN ioctl will return success. 24373 * 24374 * max_ownership_delay indicates the amount of time by which the 24375 * take ownership should succeed or timeout with an error. 24376 * 24377 * Arguments: dev - the device 'dev_t' 24378 * *p - struct containing timing info. 24379 * 24380 * Return Code: 0 for success or error code 24381 */ 24382 24383 static int 24384 sd_take_ownership(dev_t dev, struct mhioctkown *p) 24385 { 24386 struct sd_lun *un; 24387 int rval; 24388 int err; 24389 int reservation_count = 0; 24390 int min_ownership_delay = 6000000; /* in usec */ 24391 int max_ownership_delay = 30000000; /* in usec */ 24392 clock_t start_time; /* starting time of this algorithm */ 24393 clock_t end_time; /* time limit for giving up */ 24394 clock_t ownership_time; /* time limit for stable ownership */ 24395 clock_t current_time; 24396 clock_t previous_current_time; 24397 24398 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24399 return (ENXIO); 24400 } 24401 24402 /* 24403 * Attempt a device reservation. A priority reservation is requested. 24404 */ 24405 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 24406 != SD_SUCCESS) { 24407 SD_ERROR(SD_LOG_IOCTL_MHD, un, 24408 "sd_take_ownership: return(1)=%d\n", rval); 24409 return (rval); 24410 } 24411 24412 /* Update the softstate reserved status to indicate the reservation */ 24413 mutex_enter(SD_MUTEX(un)); 24414 un->un_resvd_status |= SD_RESERVE; 24415 un->un_resvd_status &= 24416 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 24417 mutex_exit(SD_MUTEX(un)); 24418 24419 if (p != NULL) { 24420 if (p->min_ownership_delay != 0) { 24421 min_ownership_delay = p->min_ownership_delay * 1000; 24422 } 24423 if (p->max_ownership_delay != 0) { 24424 max_ownership_delay = p->max_ownership_delay * 1000; 24425 } 24426 } 24427 SD_INFO(SD_LOG_IOCTL_MHD, un, 24428 "sd_take_ownership: min, max delays: %d, %d\n", 24429 min_ownership_delay, max_ownership_delay); 24430 24431 start_time = ddi_get_lbolt(); 24432 current_time = start_time; 24433 ownership_time = current_time + drv_usectohz(min_ownership_delay); 24434 end_time = start_time + drv_usectohz(max_ownership_delay); 24435 24436 while (current_time - end_time < 0) { 24437 delay(drv_usectohz(500000)); 24438 24439 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 24440 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 24441 mutex_enter(SD_MUTEX(un)); 24442 rval = (un->un_resvd_status & 24443 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 24444 mutex_exit(SD_MUTEX(un)); 24445 break; 24446 } 24447 } 24448 previous_current_time = current_time; 24449 current_time = ddi_get_lbolt(); 24450 mutex_enter(SD_MUTEX(un)); 24451 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 24452 ownership_time = ddi_get_lbolt() + 24453 drv_usectohz(min_ownership_delay); 24454 reservation_count = 0; 24455 } else { 24456 reservation_count++; 24457 } 24458 un->un_resvd_status |= SD_RESERVE; 24459 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 24460 mutex_exit(SD_MUTEX(un)); 24461 24462 SD_INFO(SD_LOG_IOCTL_MHD, un, 24463 "sd_take_ownership: ticks for loop iteration=%ld, " 24464 "reservation=%s\n", (current_time - previous_current_time), 24465 reservation_count ? "ok" : "reclaimed"); 24466 24467 if (current_time - ownership_time >= 0 && 24468 reservation_count >= 4) { 24469 rval = 0; /* Achieved a stable ownership */ 24470 break; 24471 } 24472 if (current_time - end_time >= 0) { 24473 rval = EACCES; /* No ownership in max possible time */ 24474 break; 24475 } 24476 } 24477 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24478 "sd_take_ownership: return(2)=%d\n", rval); 24479 return (rval); 24480 } 24481 24482 24483 /* 24484 * Function: sd_reserve_release() 24485 * 24486 * Description: This function builds and sends scsi RESERVE, RELEASE, and 24487 * PRIORITY RESERVE commands based on a user specified command type 24488 * 24489 * Arguments: dev - the device 'dev_t' 24490 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 24491 * SD_RESERVE, SD_RELEASE 24492 * 24493 * Return Code: 0 or Error Code 24494 */ 24495 24496 static int 24497 sd_reserve_release(dev_t dev, int cmd) 24498 { 24499 struct uscsi_cmd *com = NULL; 24500 struct sd_lun *un = NULL; 24501 char cdb[CDB_GROUP0]; 24502 int rval; 24503 24504 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 24505 (cmd == SD_PRIORITY_RESERVE)); 24506 24507 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24508 return (ENXIO); 24509 } 24510 24511 /* instantiate and initialize the command and cdb */ 24512 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 24513 bzero(cdb, CDB_GROUP0); 24514 com->uscsi_flags = USCSI_SILENT; 24515 com->uscsi_timeout = un->un_reserve_release_time; 24516 com->uscsi_cdblen = CDB_GROUP0; 24517 com->uscsi_cdb = cdb; 24518 if (cmd == SD_RELEASE) { 24519 cdb[0] = SCMD_RELEASE; 24520 } else { 24521 cdb[0] = SCMD_RESERVE; 24522 } 24523 24524 /* Send the command. */ 24525 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24526 SD_PATH_STANDARD); 24527 24528 /* 24529 * "break" a reservation that is held by another host, by issuing a 24530 * reset if priority reserve is desired, and we could not get the 24531 * device. 24532 */ 24533 if ((cmd == SD_PRIORITY_RESERVE) && 24534 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 24535 /* 24536 * First try to reset the LUN. If we cannot, then try a target 24537 * reset, followed by a bus reset if the target reset fails. 24538 */ 24539 int reset_retval = 0; 24540 if (un->un_f_lun_reset_enabled == TRUE) { 24541 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 24542 } 24543 if (reset_retval == 0) { 24544 /* The LUN reset either failed or was not issued */ 24545 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 24546 } 24547 if ((reset_retval == 0) && 24548 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 24549 rval = EIO; 24550 kmem_free(com, sizeof (*com)); 24551 return (rval); 24552 } 24553 24554 bzero(com, sizeof (struct uscsi_cmd)); 24555 com->uscsi_flags = USCSI_SILENT; 24556 com->uscsi_cdb = cdb; 24557 com->uscsi_cdblen = CDB_GROUP0; 24558 com->uscsi_timeout = 5; 24559 24560 /* 24561 * Reissue the last reserve command, this time without request 24562 * sense. Assume that it is just a regular reserve command. 24563 */ 24564 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 24565 SD_PATH_STANDARD); 24566 } 24567 24568 /* Return an error if still getting a reservation conflict. */ 24569 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 24570 rval = EACCES; 24571 } 24572 24573 kmem_free(com, sizeof (*com)); 24574 return (rval); 24575 } 24576 24577 24578 #define SD_NDUMP_RETRIES 12 24579 /* 24580 * System Crash Dump routine 24581 */ 24582 24583 static int 24584 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 24585 { 24586 int instance; 24587 int partition; 24588 int i; 24589 int err; 24590 struct sd_lun *un; 24591 struct scsi_pkt *wr_pktp; 24592 struct buf *wr_bp; 24593 struct buf wr_buf; 24594 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 24595 daddr_t tgt_blkno; /* rmw - blkno for target */ 24596 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 24597 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 24598 size_t io_start_offset; 24599 int doing_rmw = FALSE; 24600 int rval; 24601 ssize_t dma_resid; 24602 daddr_t oblkno; 24603 diskaddr_t nblks = 0; 24604 diskaddr_t start_block; 24605 24606 instance = SDUNIT(dev); 24607 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 24608 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 24609 return (ENXIO); 24610 } 24611 24612 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 24613 24614 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 24615 24616 partition = SDPART(dev); 24617 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 24618 24619 /* Validate blocks to dump at against partition size. */ 24620 24621 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 24622 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 24623 24624 if ((blkno + nblk) > nblks) { 24625 SD_TRACE(SD_LOG_DUMP, un, 24626 "sddump: dump range larger than partition: " 24627 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 24628 blkno, nblk, nblks); 24629 return (EINVAL); 24630 } 24631 24632 mutex_enter(&un->un_pm_mutex); 24633 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24634 struct scsi_pkt *start_pktp; 24635 24636 mutex_exit(&un->un_pm_mutex); 24637 24638 /* 24639 * use pm framework to power on HBA 1st 24640 */ 24641 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 24642 24643 /* 24644 * Dump no long uses sdpower to power on a device, it's 24645 * in-line here so it can be done in polled mode. 24646 */ 24647 24648 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 24649 24650 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 24651 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 24652 24653 if (start_pktp == NULL) { 24654 /* We were not given a SCSI packet, fail. */ 24655 return (EIO); 24656 } 24657 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 24658 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 24659 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 24660 start_pktp->pkt_flags = FLAG_NOINTR; 24661 24662 mutex_enter(SD_MUTEX(un)); 24663 SD_FILL_SCSI1_LUN(un, start_pktp); 24664 mutex_exit(SD_MUTEX(un)); 24665 /* 24666 * Scsi_poll returns 0 (success) if the command completes and 24667 * the status block is STATUS_GOOD. 24668 */ 24669 if (sd_scsi_poll(un, start_pktp) != 0) { 24670 scsi_destroy_pkt(start_pktp); 24671 return (EIO); 24672 } 24673 scsi_destroy_pkt(start_pktp); 24674 (void) sd_ddi_pm_resume(un); 24675 } else { 24676 mutex_exit(&un->un_pm_mutex); 24677 } 24678 24679 mutex_enter(SD_MUTEX(un)); 24680 un->un_throttle = 0; 24681 24682 /* 24683 * The first time through, reset the specific target device. 24684 * However, when cpr calls sddump we know that sd is in a 24685 * a good state so no bus reset is required. 24686 * Clear sense data via Request Sense cmd. 24687 * In sddump we don't care about allow_bus_device_reset anymore 24688 */ 24689 24690 if ((un->un_state != SD_STATE_SUSPENDED) && 24691 (un->un_state != SD_STATE_DUMPING)) { 24692 24693 New_state(un, SD_STATE_DUMPING); 24694 24695 if (un->un_f_is_fibre == FALSE) { 24696 mutex_exit(SD_MUTEX(un)); 24697 /* 24698 * Attempt a bus reset for parallel scsi. 24699 * 24700 * Note: A bus reset is required because on some host 24701 * systems (i.e. E420R) a bus device reset is 24702 * insufficient to reset the state of the target. 24703 * 24704 * Note: Don't issue the reset for fibre-channel, 24705 * because this tends to hang the bus (loop) for 24706 * too long while everyone is logging out and in 24707 * and the deadman timer for dumping will fire 24708 * before the dump is complete. 24709 */ 24710 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 24711 mutex_enter(SD_MUTEX(un)); 24712 Restore_state(un); 24713 mutex_exit(SD_MUTEX(un)); 24714 return (EIO); 24715 } 24716 24717 /* Delay to give the device some recovery time. */ 24718 drv_usecwait(10000); 24719 24720 if (sd_send_polled_RQS(un) == SD_FAILURE) { 24721 SD_INFO(SD_LOG_DUMP, un, 24722 "sddump: sd_send_polled_RQS failed\n"); 24723 } 24724 mutex_enter(SD_MUTEX(un)); 24725 } 24726 } 24727 24728 /* 24729 * Convert the partition-relative block number to a 24730 * disk physical block number. 24731 */ 24732 blkno += start_block; 24733 24734 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 24735 24736 24737 /* 24738 * Check if the device has a non-512 block size. 24739 */ 24740 wr_bp = NULL; 24741 if (NOT_DEVBSIZE(un)) { 24742 tgt_byte_offset = blkno * un->un_sys_blocksize; 24743 tgt_byte_count = nblk * un->un_sys_blocksize; 24744 if ((tgt_byte_offset % un->un_tgt_blocksize) || 24745 (tgt_byte_count % un->un_tgt_blocksize)) { 24746 doing_rmw = TRUE; 24747 /* 24748 * Calculate the block number and number of block 24749 * in terms of the media block size. 24750 */ 24751 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 24752 tgt_nblk = 24753 ((tgt_byte_offset + tgt_byte_count + 24754 (un->un_tgt_blocksize - 1)) / 24755 un->un_tgt_blocksize) - tgt_blkno; 24756 24757 /* 24758 * Invoke the routine which is going to do read part 24759 * of read-modify-write. 24760 * Note that this routine returns a pointer to 24761 * a valid bp in wr_bp. 24762 */ 24763 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 24764 &wr_bp); 24765 if (err) { 24766 mutex_exit(SD_MUTEX(un)); 24767 return (err); 24768 } 24769 /* 24770 * Offset is being calculated as - 24771 * (original block # * system block size) - 24772 * (new block # * target block size) 24773 */ 24774 io_start_offset = 24775 ((uint64_t)(blkno * un->un_sys_blocksize)) - 24776 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 24777 24778 ASSERT((io_start_offset >= 0) && 24779 (io_start_offset < un->un_tgt_blocksize)); 24780 /* 24781 * Do the modify portion of read modify write. 24782 */ 24783 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 24784 (size_t)nblk * un->un_sys_blocksize); 24785 } else { 24786 doing_rmw = FALSE; 24787 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 24788 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 24789 } 24790 24791 /* Convert blkno and nblk to target blocks */ 24792 blkno = tgt_blkno; 24793 nblk = tgt_nblk; 24794 } else { 24795 wr_bp = &wr_buf; 24796 bzero(wr_bp, sizeof (struct buf)); 24797 wr_bp->b_flags = B_BUSY; 24798 wr_bp->b_un.b_addr = addr; 24799 wr_bp->b_bcount = nblk << DEV_BSHIFT; 24800 wr_bp->b_resid = 0; 24801 } 24802 24803 mutex_exit(SD_MUTEX(un)); 24804 24805 /* 24806 * Obtain a SCSI packet for the write command. 24807 * It should be safe to call the allocator here without 24808 * worrying about being locked for DVMA mapping because 24809 * the address we're passed is already a DVMA mapping 24810 * 24811 * We are also not going to worry about semaphore ownership 24812 * in the dump buffer. Dumping is single threaded at present. 24813 */ 24814 24815 wr_pktp = NULL; 24816 24817 dma_resid = wr_bp->b_bcount; 24818 oblkno = blkno; 24819 24820 while (dma_resid != 0) { 24821 24822 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 24823 wr_bp->b_flags &= ~B_ERROR; 24824 24825 if (un->un_partial_dma_supported == 1) { 24826 blkno = oblkno + 24827 ((wr_bp->b_bcount - dma_resid) / 24828 un->un_tgt_blocksize); 24829 nblk = dma_resid / un->un_tgt_blocksize; 24830 24831 if (wr_pktp) { 24832 /* 24833 * Partial DMA transfers after initial transfer 24834 */ 24835 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 24836 blkno, nblk); 24837 } else { 24838 /* Initial transfer */ 24839 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 24840 un->un_pkt_flags, NULL_FUNC, NULL, 24841 blkno, nblk); 24842 } 24843 } else { 24844 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 24845 0, NULL_FUNC, NULL, blkno, nblk); 24846 } 24847 24848 if (rval == 0) { 24849 /* We were given a SCSI packet, continue. */ 24850 break; 24851 } 24852 24853 if (i == 0) { 24854 if (wr_bp->b_flags & B_ERROR) { 24855 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24856 "no resources for dumping; " 24857 "error code: 0x%x, retrying", 24858 geterror(wr_bp)); 24859 } else { 24860 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24861 "no resources for dumping; retrying"); 24862 } 24863 } else if (i != (SD_NDUMP_RETRIES - 1)) { 24864 if (wr_bp->b_flags & B_ERROR) { 24865 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 24866 "no resources for dumping; error code: " 24867 "0x%x, retrying\n", geterror(wr_bp)); 24868 } 24869 } else { 24870 if (wr_bp->b_flags & B_ERROR) { 24871 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 24872 "no resources for dumping; " 24873 "error code: 0x%x, retries failed, " 24874 "giving up.\n", geterror(wr_bp)); 24875 } else { 24876 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 24877 "no resources for dumping; " 24878 "retries failed, giving up.\n"); 24879 } 24880 mutex_enter(SD_MUTEX(un)); 24881 Restore_state(un); 24882 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 24883 mutex_exit(SD_MUTEX(un)); 24884 scsi_free_consistent_buf(wr_bp); 24885 } else { 24886 mutex_exit(SD_MUTEX(un)); 24887 } 24888 return (EIO); 24889 } 24890 drv_usecwait(10000); 24891 } 24892 24893 if (un->un_partial_dma_supported == 1) { 24894 /* 24895 * save the resid from PARTIAL_DMA 24896 */ 24897 dma_resid = wr_pktp->pkt_resid; 24898 if (dma_resid != 0) 24899 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 24900 wr_pktp->pkt_resid = 0; 24901 } else { 24902 dma_resid = 0; 24903 } 24904 24905 /* SunBug 1222170 */ 24906 wr_pktp->pkt_flags = FLAG_NOINTR; 24907 24908 err = EIO; 24909 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 24910 24911 /* 24912 * Scsi_poll returns 0 (success) if the command completes and 24913 * the status block is STATUS_GOOD. We should only check 24914 * errors if this condition is not true. Even then we should 24915 * send our own request sense packet only if we have a check 24916 * condition and auto request sense has not been performed by 24917 * the hba. 24918 */ 24919 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 24920 24921 if ((sd_scsi_poll(un, wr_pktp) == 0) && 24922 (wr_pktp->pkt_resid == 0)) { 24923 err = SD_SUCCESS; 24924 break; 24925 } 24926 24927 /* 24928 * Check CMD_DEV_GONE 1st, give up if device is gone. 24929 */ 24930 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 24931 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 24932 "Error while dumping state...Device is gone\n"); 24933 break; 24934 } 24935 24936 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 24937 SD_INFO(SD_LOG_DUMP, un, 24938 "sddump: write failed with CHECK, try # %d\n", i); 24939 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 24940 (void) sd_send_polled_RQS(un); 24941 } 24942 24943 continue; 24944 } 24945 24946 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 24947 int reset_retval = 0; 24948 24949 SD_INFO(SD_LOG_DUMP, un, 24950 "sddump: write failed with BUSY, try # %d\n", i); 24951 24952 if (un->un_f_lun_reset_enabled == TRUE) { 24953 reset_retval = scsi_reset(SD_ADDRESS(un), 24954 RESET_LUN); 24955 } 24956 if (reset_retval == 0) { 24957 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 24958 } 24959 (void) sd_send_polled_RQS(un); 24960 24961 } else { 24962 SD_INFO(SD_LOG_DUMP, un, 24963 "sddump: write failed with 0x%x, try # %d\n", 24964 SD_GET_PKT_STATUS(wr_pktp), i); 24965 mutex_enter(SD_MUTEX(un)); 24966 sd_reset_target(un, wr_pktp); 24967 mutex_exit(SD_MUTEX(un)); 24968 } 24969 24970 /* 24971 * If we are not getting anywhere with lun/target resets, 24972 * let's reset the bus. 24973 */ 24974 if (i == SD_NDUMP_RETRIES/2) { 24975 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 24976 (void) sd_send_polled_RQS(un); 24977 } 24978 } 24979 } 24980 24981 scsi_destroy_pkt(wr_pktp); 24982 mutex_enter(SD_MUTEX(un)); 24983 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 24984 mutex_exit(SD_MUTEX(un)); 24985 scsi_free_consistent_buf(wr_bp); 24986 } else { 24987 mutex_exit(SD_MUTEX(un)); 24988 } 24989 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 24990 return (err); 24991 } 24992 24993 /* 24994 * Function: sd_scsi_poll() 24995 * 24996 * Description: This is a wrapper for the scsi_poll call. 24997 * 24998 * Arguments: sd_lun - The unit structure 24999 * scsi_pkt - The scsi packet being sent to the device. 25000 * 25001 * Return Code: 0 - Command completed successfully with good status 25002 * -1 - Command failed. This could indicate a check condition 25003 * or other status value requiring recovery action. 25004 * 25005 * NOTE: This code is only called off sddump(). 25006 */ 25007 25008 static int 25009 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 25010 { 25011 int status; 25012 25013 ASSERT(un != NULL); 25014 ASSERT(!mutex_owned(SD_MUTEX(un))); 25015 ASSERT(pktp != NULL); 25016 25017 status = SD_SUCCESS; 25018 25019 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 25020 pktp->pkt_flags |= un->un_tagflags; 25021 pktp->pkt_flags &= ~FLAG_NODISCON; 25022 } 25023 25024 status = sd_ddi_scsi_poll(pktp); 25025 /* 25026 * Scsi_poll returns 0 (success) if the command completes and the 25027 * status block is STATUS_GOOD. We should only check errors if this 25028 * condition is not true. Even then we should send our own request 25029 * sense packet only if we have a check condition and auto 25030 * request sense has not been performed by the hba. 25031 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 25032 */ 25033 if ((status != SD_SUCCESS) && 25034 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 25035 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 25036 (pktp->pkt_reason != CMD_DEV_GONE)) 25037 (void) sd_send_polled_RQS(un); 25038 25039 return (status); 25040 } 25041 25042 /* 25043 * Function: sd_send_polled_RQS() 25044 * 25045 * Description: This sends the request sense command to a device. 25046 * 25047 * Arguments: sd_lun - The unit structure 25048 * 25049 * Return Code: 0 - Command completed successfully with good status 25050 * -1 - Command failed. 25051 * 25052 */ 25053 25054 static int 25055 sd_send_polled_RQS(struct sd_lun *un) 25056 { 25057 int ret_val; 25058 struct scsi_pkt *rqs_pktp; 25059 struct buf *rqs_bp; 25060 25061 ASSERT(un != NULL); 25062 ASSERT(!mutex_owned(SD_MUTEX(un))); 25063 25064 ret_val = SD_SUCCESS; 25065 25066 rqs_pktp = un->un_rqs_pktp; 25067 rqs_bp = un->un_rqs_bp; 25068 25069 mutex_enter(SD_MUTEX(un)); 25070 25071 if (un->un_sense_isbusy) { 25072 ret_val = SD_FAILURE; 25073 mutex_exit(SD_MUTEX(un)); 25074 return (ret_val); 25075 } 25076 25077 /* 25078 * If the request sense buffer (and packet) is not in use, 25079 * let's set the un_sense_isbusy and send our packet 25080 */ 25081 un->un_sense_isbusy = 1; 25082 rqs_pktp->pkt_resid = 0; 25083 rqs_pktp->pkt_reason = 0; 25084 rqs_pktp->pkt_flags |= FLAG_NOINTR; 25085 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 25086 25087 mutex_exit(SD_MUTEX(un)); 25088 25089 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 25090 " 0x%p\n", rqs_bp->b_un.b_addr); 25091 25092 /* 25093 * Can't send this to sd_scsi_poll, we wrap ourselves around the 25094 * axle - it has a call into us! 25095 */ 25096 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 25097 SD_INFO(SD_LOG_COMMON, un, 25098 "sd_send_polled_RQS: RQS failed\n"); 25099 } 25100 25101 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 25102 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 25103 25104 mutex_enter(SD_MUTEX(un)); 25105 un->un_sense_isbusy = 0; 25106 mutex_exit(SD_MUTEX(un)); 25107 25108 return (ret_val); 25109 } 25110 25111 /* 25112 * Defines needed for localized version of the scsi_poll routine. 25113 */ 25114 #define CSEC 10000 /* usecs */ 25115 #define SEC_TO_CSEC (1000000/CSEC) 25116 25117 /* 25118 * Function: sd_ddi_scsi_poll() 25119 * 25120 * Description: Localized version of the scsi_poll routine. The purpose is to 25121 * send a scsi_pkt to a device as a polled command. This version 25122 * is to ensure more robust handling of transport errors. 25123 * Specifically this routine cures not ready, coming ready 25124 * transition for power up and reset of sonoma's. This can take 25125 * up to 45 seconds for power-on and 20 seconds for reset of a 25126 * sonoma lun. 25127 * 25128 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 25129 * 25130 * Return Code: 0 - Command completed successfully with good status 25131 * -1 - Command failed. 25132 * 25133 * NOTE: This code is almost identical to scsi_poll, however before 6668774 can 25134 * be fixed (removing this code), we need to determine how to handle the 25135 * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump(). 25136 * 25137 * NOTE: This code is only called off sddump(). 25138 */ 25139 static int 25140 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 25141 { 25142 int rval = -1; 25143 int savef; 25144 long savet; 25145 void (*savec)(); 25146 int timeout; 25147 int busy_count; 25148 int poll_delay; 25149 int rc; 25150 uint8_t *sensep; 25151 struct scsi_arq_status *arqstat; 25152 extern int do_polled_io; 25153 25154 ASSERT(pkt->pkt_scbp); 25155 25156 /* 25157 * save old flags.. 25158 */ 25159 savef = pkt->pkt_flags; 25160 savec = pkt->pkt_comp; 25161 savet = pkt->pkt_time; 25162 25163 pkt->pkt_flags |= FLAG_NOINTR; 25164 25165 /* 25166 * XXX there is nothing in the SCSA spec that states that we should not 25167 * do a callback for polled cmds; however, removing this will break sd 25168 * and probably other target drivers 25169 */ 25170 pkt->pkt_comp = NULL; 25171 25172 /* 25173 * we don't like a polled command without timeout. 25174 * 60 seconds seems long enough. 25175 */ 25176 if (pkt->pkt_time == 0) 25177 pkt->pkt_time = SCSI_POLL_TIMEOUT; 25178 25179 /* 25180 * Send polled cmd. 25181 * 25182 * We do some error recovery for various errors. Tran_busy, 25183 * queue full, and non-dispatched commands are retried every 10 msec. 25184 * as they are typically transient failures. Busy status and Not 25185 * Ready are retried every second as this status takes a while to 25186 * change. 25187 */ 25188 timeout = pkt->pkt_time * SEC_TO_CSEC; 25189 25190 for (busy_count = 0; busy_count < timeout; busy_count++) { 25191 /* 25192 * Initialize pkt status variables. 25193 */ 25194 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 25195 25196 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 25197 if (rc != TRAN_BUSY) { 25198 /* Transport failed - give up. */ 25199 break; 25200 } else { 25201 /* Transport busy - try again. */ 25202 poll_delay = 1 * CSEC; /* 10 msec. */ 25203 } 25204 } else { 25205 /* 25206 * Transport accepted - check pkt status. 25207 */ 25208 rc = (*pkt->pkt_scbp) & STATUS_MASK; 25209 if ((pkt->pkt_reason == CMD_CMPLT) && 25210 (rc == STATUS_CHECK) && 25211 (pkt->pkt_state & STATE_ARQ_DONE)) { 25212 arqstat = 25213 (struct scsi_arq_status *)(pkt->pkt_scbp); 25214 sensep = (uint8_t *)&arqstat->sts_sensedata; 25215 } else { 25216 sensep = NULL; 25217 } 25218 25219 if ((pkt->pkt_reason == CMD_CMPLT) && 25220 (rc == STATUS_GOOD)) { 25221 /* No error - we're done */ 25222 rval = 0; 25223 break; 25224 25225 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 25226 /* Lost connection - give up */ 25227 break; 25228 25229 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 25230 (pkt->pkt_state == 0)) { 25231 /* Pkt not dispatched - try again. */ 25232 poll_delay = 1 * CSEC; /* 10 msec. */ 25233 25234 } else if ((pkt->pkt_reason == CMD_CMPLT) && 25235 (rc == STATUS_QFULL)) { 25236 /* Queue full - try again. */ 25237 poll_delay = 1 * CSEC; /* 10 msec. */ 25238 25239 } else if ((pkt->pkt_reason == CMD_CMPLT) && 25240 (rc == STATUS_BUSY)) { 25241 /* Busy - try again. */ 25242 poll_delay = 100 * CSEC; /* 1 sec. */ 25243 busy_count += (SEC_TO_CSEC - 1); 25244 25245 } else if ((sensep != NULL) && 25246 (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) { 25247 /* 25248 * Unit Attention - try again. 25249 * Pretend it took 1 sec. 25250 * NOTE: 'continue' avoids poll_delay 25251 */ 25252 busy_count += (SEC_TO_CSEC - 1); 25253 continue; 25254 25255 } else if ((sensep != NULL) && 25256 (scsi_sense_key(sensep) == KEY_NOT_READY) && 25257 (scsi_sense_asc(sensep) == 0x04) && 25258 (scsi_sense_ascq(sensep) == 0x01)) { 25259 /* 25260 * Not ready -> ready - try again. 25261 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 25262 * ...same as STATUS_BUSY 25263 */ 25264 poll_delay = 100 * CSEC; /* 1 sec. */ 25265 busy_count += (SEC_TO_CSEC - 1); 25266 25267 } else { 25268 /* BAD status - give up. */ 25269 break; 25270 } 25271 } 25272 25273 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 25274 !do_polled_io) { 25275 delay(drv_usectohz(poll_delay)); 25276 } else { 25277 /* we busy wait during cpr_dump or interrupt threads */ 25278 drv_usecwait(poll_delay); 25279 } 25280 } 25281 25282 pkt->pkt_flags = savef; 25283 pkt->pkt_comp = savec; 25284 pkt->pkt_time = savet; 25285 25286 /* return on error */ 25287 if (rval) 25288 return (rval); 25289 25290 /* 25291 * This is not a performance critical code path. 25292 * 25293 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 25294 * issues associated with looking at DMA memory prior to 25295 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 25296 */ 25297 scsi_sync_pkt(pkt); 25298 return (0); 25299 } 25300 25301 25302 25303 /* 25304 * Function: sd_persistent_reservation_in_read_keys 25305 * 25306 * Description: This routine is the driver entry point for handling CD-ROM 25307 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 25308 * by sending the SCSI-3 PRIN commands to the device. 25309 * Processes the read keys command response by copying the 25310 * reservation key information into the user provided buffer. 25311 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 25312 * 25313 * Arguments: un - Pointer to soft state struct for the target. 25314 * usrp - user provided pointer to multihost Persistent In Read 25315 * Keys structure (mhioc_inkeys_t) 25316 * flag - this argument is a pass through to ddi_copyxxx() 25317 * directly from the mode argument of ioctl(). 25318 * 25319 * Return Code: 0 - Success 25320 * EACCES 25321 * ENOTSUP 25322 * errno return code from sd_send_scsi_cmd() 25323 * 25324 * Context: Can sleep. Does not return until command is completed. 25325 */ 25326 25327 static int 25328 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 25329 mhioc_inkeys_t *usrp, int flag) 25330 { 25331 #ifdef _MULTI_DATAMODEL 25332 struct mhioc_key_list32 li32; 25333 #endif 25334 sd_prin_readkeys_t *in; 25335 mhioc_inkeys_t *ptr; 25336 mhioc_key_list_t li; 25337 uchar_t *data_bufp; 25338 int data_len; 25339 int rval = 0; 25340 size_t copysz; 25341 sd_ssc_t *ssc; 25342 25343 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 25344 return (EINVAL); 25345 } 25346 bzero(&li, sizeof (mhioc_key_list_t)); 25347 25348 ssc = sd_ssc_init(un); 25349 25350 /* 25351 * Get the listsize from user 25352 */ 25353 #ifdef _MULTI_DATAMODEL 25354 25355 switch (ddi_model_convert_from(flag & FMODELS)) { 25356 case DDI_MODEL_ILP32: 25357 copysz = sizeof (struct mhioc_key_list32); 25358 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 25359 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25360 "sd_persistent_reservation_in_read_keys: " 25361 "failed ddi_copyin: mhioc_key_list32_t\n"); 25362 rval = EFAULT; 25363 goto done; 25364 } 25365 li.listsize = li32.listsize; 25366 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 25367 break; 25368 25369 case DDI_MODEL_NONE: 25370 copysz = sizeof (mhioc_key_list_t); 25371 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 25372 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25373 "sd_persistent_reservation_in_read_keys: " 25374 "failed ddi_copyin: mhioc_key_list_t\n"); 25375 rval = EFAULT; 25376 goto done; 25377 } 25378 break; 25379 } 25380 25381 #else /* ! _MULTI_DATAMODEL */ 25382 copysz = sizeof (mhioc_key_list_t); 25383 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 25384 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25385 "sd_persistent_reservation_in_read_keys: " 25386 "failed ddi_copyin: mhioc_key_list_t\n"); 25387 rval = EFAULT; 25388 goto done; 25389 } 25390 #endif 25391 25392 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 25393 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 25394 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 25395 25396 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 25397 data_len, data_bufp); 25398 if (rval != 0) { 25399 if (rval == EIO) 25400 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 25401 else 25402 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 25403 goto done; 25404 } 25405 in = (sd_prin_readkeys_t *)data_bufp; 25406 ptr->generation = BE_32(in->generation); 25407 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 25408 25409 /* 25410 * Return the min(listsize, listlen) keys 25411 */ 25412 #ifdef _MULTI_DATAMODEL 25413 25414 switch (ddi_model_convert_from(flag & FMODELS)) { 25415 case DDI_MODEL_ILP32: 25416 li32.listlen = li.listlen; 25417 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 25418 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25419 "sd_persistent_reservation_in_read_keys: " 25420 "failed ddi_copyout: mhioc_key_list32_t\n"); 25421 rval = EFAULT; 25422 goto done; 25423 } 25424 break; 25425 25426 case DDI_MODEL_NONE: 25427 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 25428 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25429 "sd_persistent_reservation_in_read_keys: " 25430 "failed ddi_copyout: mhioc_key_list_t\n"); 25431 rval = EFAULT; 25432 goto done; 25433 } 25434 break; 25435 } 25436 25437 #else /* ! _MULTI_DATAMODEL */ 25438 25439 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 25440 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25441 "sd_persistent_reservation_in_read_keys: " 25442 "failed ddi_copyout: mhioc_key_list_t\n"); 25443 rval = EFAULT; 25444 goto done; 25445 } 25446 25447 #endif /* _MULTI_DATAMODEL */ 25448 25449 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 25450 li.listsize * MHIOC_RESV_KEY_SIZE); 25451 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 25452 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25453 "sd_persistent_reservation_in_read_keys: " 25454 "failed ddi_copyout: keylist\n"); 25455 rval = EFAULT; 25456 } 25457 done: 25458 sd_ssc_fini(ssc); 25459 kmem_free(data_bufp, data_len); 25460 return (rval); 25461 } 25462 25463 25464 /* 25465 * Function: sd_persistent_reservation_in_read_resv 25466 * 25467 * Description: This routine is the driver entry point for handling CD-ROM 25468 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 25469 * by sending the SCSI-3 PRIN commands to the device. 25470 * Process the read persistent reservations command response by 25471 * copying the reservation information into the user provided 25472 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 25473 * 25474 * Arguments: un - Pointer to soft state struct for the target. 25475 * usrp - user provided pointer to multihost Persistent In Read 25476 * Keys structure (mhioc_inkeys_t) 25477 * flag - this argument is a pass through to ddi_copyxxx() 25478 * directly from the mode argument of ioctl(). 25479 * 25480 * Return Code: 0 - Success 25481 * EACCES 25482 * ENOTSUP 25483 * errno return code from sd_send_scsi_cmd() 25484 * 25485 * Context: Can sleep. Does not return until command is completed. 25486 */ 25487 25488 static int 25489 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 25490 mhioc_inresvs_t *usrp, int flag) 25491 { 25492 #ifdef _MULTI_DATAMODEL 25493 struct mhioc_resv_desc_list32 resvlist32; 25494 #endif 25495 sd_prin_readresv_t *in; 25496 mhioc_inresvs_t *ptr; 25497 sd_readresv_desc_t *readresv_ptr; 25498 mhioc_resv_desc_list_t resvlist; 25499 mhioc_resv_desc_t resvdesc; 25500 uchar_t *data_bufp = NULL; 25501 int data_len; 25502 int rval = 0; 25503 int i; 25504 size_t copysz; 25505 mhioc_resv_desc_t *bufp; 25506 sd_ssc_t *ssc; 25507 25508 if ((ptr = usrp) == NULL) { 25509 return (EINVAL); 25510 } 25511 25512 ssc = sd_ssc_init(un); 25513 25514 /* 25515 * Get the listsize from user 25516 */ 25517 #ifdef _MULTI_DATAMODEL 25518 switch (ddi_model_convert_from(flag & FMODELS)) { 25519 case DDI_MODEL_ILP32: 25520 copysz = sizeof (struct mhioc_resv_desc_list32); 25521 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 25522 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25523 "sd_persistent_reservation_in_read_resv: " 25524 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 25525 rval = EFAULT; 25526 goto done; 25527 } 25528 resvlist.listsize = resvlist32.listsize; 25529 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 25530 break; 25531 25532 case DDI_MODEL_NONE: 25533 copysz = sizeof (mhioc_resv_desc_list_t); 25534 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 25535 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25536 "sd_persistent_reservation_in_read_resv: " 25537 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 25538 rval = EFAULT; 25539 goto done; 25540 } 25541 break; 25542 } 25543 #else /* ! _MULTI_DATAMODEL */ 25544 copysz = sizeof (mhioc_resv_desc_list_t); 25545 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 25546 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25547 "sd_persistent_reservation_in_read_resv: " 25548 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 25549 rval = EFAULT; 25550 goto done; 25551 } 25552 #endif /* ! _MULTI_DATAMODEL */ 25553 25554 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 25555 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 25556 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 25557 25558 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV, 25559 data_len, data_bufp); 25560 if (rval != 0) { 25561 if (rval == EIO) 25562 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 25563 else 25564 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 25565 goto done; 25566 } 25567 in = (sd_prin_readresv_t *)data_bufp; 25568 ptr->generation = BE_32(in->generation); 25569 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 25570 25571 /* 25572 * Return the min(listsize, listlen( keys 25573 */ 25574 #ifdef _MULTI_DATAMODEL 25575 25576 switch (ddi_model_convert_from(flag & FMODELS)) { 25577 case DDI_MODEL_ILP32: 25578 resvlist32.listlen = resvlist.listlen; 25579 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 25580 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25581 "sd_persistent_reservation_in_read_resv: " 25582 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 25583 rval = EFAULT; 25584 goto done; 25585 } 25586 break; 25587 25588 case DDI_MODEL_NONE: 25589 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 25590 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25591 "sd_persistent_reservation_in_read_resv: " 25592 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 25593 rval = EFAULT; 25594 goto done; 25595 } 25596 break; 25597 } 25598 25599 #else /* ! _MULTI_DATAMODEL */ 25600 25601 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 25602 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25603 "sd_persistent_reservation_in_read_resv: " 25604 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 25605 rval = EFAULT; 25606 goto done; 25607 } 25608 25609 #endif /* ! _MULTI_DATAMODEL */ 25610 25611 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 25612 bufp = resvlist.list; 25613 copysz = sizeof (mhioc_resv_desc_t); 25614 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 25615 i++, readresv_ptr++, bufp++) { 25616 25617 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 25618 MHIOC_RESV_KEY_SIZE); 25619 resvdesc.type = readresv_ptr->type; 25620 resvdesc.scope = readresv_ptr->scope; 25621 resvdesc.scope_specific_addr = 25622 BE_32(readresv_ptr->scope_specific_addr); 25623 25624 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 25625 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25626 "sd_persistent_reservation_in_read_resv: " 25627 "failed ddi_copyout: resvlist\n"); 25628 rval = EFAULT; 25629 goto done; 25630 } 25631 } 25632 done: 25633 sd_ssc_fini(ssc); 25634 /* only if data_bufp is allocated, we need to free it */ 25635 if (data_bufp) { 25636 kmem_free(data_bufp, data_len); 25637 } 25638 return (rval); 25639 } 25640 25641 25642 /* 25643 * Function: sr_change_blkmode() 25644 * 25645 * Description: This routine is the driver entry point for handling CD-ROM 25646 * block mode ioctl requests. Support for returning and changing 25647 * the current block size in use by the device is implemented. The 25648 * LBA size is changed via a MODE SELECT Block Descriptor. 25649 * 25650 * This routine issues a mode sense with an allocation length of 25651 * 12 bytes for the mode page header and a single block descriptor. 25652 * 25653 * Arguments: dev - the device 'dev_t' 25654 * cmd - the request type; one of CDROMGBLKMODE (get) or 25655 * CDROMSBLKMODE (set) 25656 * data - current block size or requested block size 25657 * flag - this argument is a pass through to ddi_copyxxx() directly 25658 * from the mode argument of ioctl(). 25659 * 25660 * Return Code: the code returned by sd_send_scsi_cmd() 25661 * EINVAL if invalid arguments are provided 25662 * EFAULT if ddi_copyxxx() fails 25663 * ENXIO if fail ddi_get_soft_state 25664 * EIO if invalid mode sense block descriptor length 25665 * 25666 */ 25667 25668 static int 25669 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 25670 { 25671 struct sd_lun *un = NULL; 25672 struct mode_header *sense_mhp, *select_mhp; 25673 struct block_descriptor *sense_desc, *select_desc; 25674 int current_bsize; 25675 int rval = EINVAL; 25676 uchar_t *sense = NULL; 25677 uchar_t *select = NULL; 25678 sd_ssc_t *ssc; 25679 25680 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 25681 25682 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25683 return (ENXIO); 25684 } 25685 25686 /* 25687 * The block length is changed via the Mode Select block descriptor, the 25688 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 25689 * required as part of this routine. Therefore the mode sense allocation 25690 * length is specified to be the length of a mode page header and a 25691 * block descriptor. 25692 */ 25693 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 25694 25695 ssc = sd_ssc_init(un); 25696 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 25697 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 25698 sd_ssc_fini(ssc); 25699 if (rval != 0) { 25700 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25701 "sr_change_blkmode: Mode Sense Failed\n"); 25702 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 25703 return (rval); 25704 } 25705 25706 /* Check the block descriptor len to handle only 1 block descriptor */ 25707 sense_mhp = (struct mode_header *)sense; 25708 if ((sense_mhp->bdesc_length == 0) || 25709 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 25710 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25711 "sr_change_blkmode: Mode Sense returned invalid block" 25712 " descriptor length\n"); 25713 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 25714 return (EIO); 25715 } 25716 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 25717 current_bsize = ((sense_desc->blksize_hi << 16) | 25718 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 25719 25720 /* Process command */ 25721 switch (cmd) { 25722 case CDROMGBLKMODE: 25723 /* Return the block size obtained during the mode sense */ 25724 if (ddi_copyout(¤t_bsize, (void *)data, 25725 sizeof (int), flag) != 0) 25726 rval = EFAULT; 25727 break; 25728 case CDROMSBLKMODE: 25729 /* Validate the requested block size */ 25730 switch (data) { 25731 case CDROM_BLK_512: 25732 case CDROM_BLK_1024: 25733 case CDROM_BLK_2048: 25734 case CDROM_BLK_2056: 25735 case CDROM_BLK_2336: 25736 case CDROM_BLK_2340: 25737 case CDROM_BLK_2352: 25738 case CDROM_BLK_2368: 25739 case CDROM_BLK_2448: 25740 case CDROM_BLK_2646: 25741 case CDROM_BLK_2647: 25742 break; 25743 default: 25744 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25745 "sr_change_blkmode: " 25746 "Block Size '%ld' Not Supported\n", data); 25747 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 25748 return (EINVAL); 25749 } 25750 25751 /* 25752 * The current block size matches the requested block size so 25753 * there is no need to send the mode select to change the size 25754 */ 25755 if (current_bsize == data) { 25756 break; 25757 } 25758 25759 /* Build the select data for the requested block size */ 25760 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 25761 select_mhp = (struct mode_header *)select; 25762 select_desc = 25763 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 25764 /* 25765 * The LBA size is changed via the block descriptor, so the 25766 * descriptor is built according to the user data 25767 */ 25768 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 25769 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 25770 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 25771 select_desc->blksize_lo = (char)((data) & 0x000000ff); 25772 25773 /* Send the mode select for the requested block size */ 25774 ssc = sd_ssc_init(un); 25775 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 25776 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 25777 SD_PATH_STANDARD); 25778 sd_ssc_fini(ssc); 25779 if (rval != 0) { 25780 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25781 "sr_change_blkmode: Mode Select Failed\n"); 25782 /* 25783 * The mode select failed for the requested block size, 25784 * so reset the data for the original block size and 25785 * send it to the target. The error is indicated by the 25786 * return value for the failed mode select. 25787 */ 25788 select_desc->blksize_hi = sense_desc->blksize_hi; 25789 select_desc->blksize_mid = sense_desc->blksize_mid; 25790 select_desc->blksize_lo = sense_desc->blksize_lo; 25791 ssc = sd_ssc_init(un); 25792 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 25793 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 25794 SD_PATH_STANDARD); 25795 sd_ssc_fini(ssc); 25796 } else { 25797 ASSERT(!mutex_owned(SD_MUTEX(un))); 25798 mutex_enter(SD_MUTEX(un)); 25799 sd_update_block_info(un, (uint32_t)data, 0); 25800 mutex_exit(SD_MUTEX(un)); 25801 } 25802 break; 25803 default: 25804 /* should not reach here, but check anyway */ 25805 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25806 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 25807 rval = EINVAL; 25808 break; 25809 } 25810 25811 if (select) { 25812 kmem_free(select, BUFLEN_CHG_BLK_MODE); 25813 } 25814 if (sense) { 25815 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 25816 } 25817 return (rval); 25818 } 25819 25820 25821 /* 25822 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 25823 * implement driver support for getting and setting the CD speed. The command 25824 * set used will be based on the device type. If the device has not been 25825 * identified as MMC the Toshiba vendor specific mode page will be used. If 25826 * the device is MMC but does not support the Real Time Streaming feature 25827 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 25828 * be used to read the speed. 25829 */ 25830 25831 /* 25832 * Function: sr_change_speed() 25833 * 25834 * Description: This routine is the driver entry point for handling CD-ROM 25835 * drive speed ioctl requests for devices supporting the Toshiba 25836 * vendor specific drive speed mode page. Support for returning 25837 * and changing the current drive speed in use by the device is 25838 * implemented. 25839 * 25840 * Arguments: dev - the device 'dev_t' 25841 * cmd - the request type; one of CDROMGDRVSPEED (get) or 25842 * CDROMSDRVSPEED (set) 25843 * data - current drive speed or requested drive speed 25844 * flag - this argument is a pass through to ddi_copyxxx() directly 25845 * from the mode argument of ioctl(). 25846 * 25847 * Return Code: the code returned by sd_send_scsi_cmd() 25848 * EINVAL if invalid arguments are provided 25849 * EFAULT if ddi_copyxxx() fails 25850 * ENXIO if fail ddi_get_soft_state 25851 * EIO if invalid mode sense block descriptor length 25852 */ 25853 25854 static int 25855 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 25856 { 25857 struct sd_lun *un = NULL; 25858 struct mode_header *sense_mhp, *select_mhp; 25859 struct mode_speed *sense_page, *select_page; 25860 int current_speed; 25861 int rval = EINVAL; 25862 int bd_len; 25863 uchar_t *sense = NULL; 25864 uchar_t *select = NULL; 25865 sd_ssc_t *ssc; 25866 25867 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 25868 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25869 return (ENXIO); 25870 } 25871 25872 /* 25873 * Note: The drive speed is being modified here according to a Toshiba 25874 * vendor specific mode page (0x31). 25875 */ 25876 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 25877 25878 ssc = sd_ssc_init(un); 25879 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 25880 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 25881 SD_PATH_STANDARD); 25882 sd_ssc_fini(ssc); 25883 if (rval != 0) { 25884 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25885 "sr_change_speed: Mode Sense Failed\n"); 25886 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 25887 return (rval); 25888 } 25889 sense_mhp = (struct mode_header *)sense; 25890 25891 /* Check the block descriptor len to handle only 1 block descriptor */ 25892 bd_len = sense_mhp->bdesc_length; 25893 if (bd_len > MODE_BLK_DESC_LENGTH) { 25894 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25895 "sr_change_speed: Mode Sense returned invalid block " 25896 "descriptor length\n"); 25897 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 25898 return (EIO); 25899 } 25900 25901 sense_page = (struct mode_speed *) 25902 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 25903 current_speed = sense_page->speed; 25904 25905 /* Process command */ 25906 switch (cmd) { 25907 case CDROMGDRVSPEED: 25908 /* Return the drive speed obtained during the mode sense */ 25909 if (current_speed == 0x2) { 25910 current_speed = CDROM_TWELVE_SPEED; 25911 } 25912 if (ddi_copyout(¤t_speed, (void *)data, 25913 sizeof (int), flag) != 0) { 25914 rval = EFAULT; 25915 } 25916 break; 25917 case CDROMSDRVSPEED: 25918 /* Validate the requested drive speed */ 25919 switch ((uchar_t)data) { 25920 case CDROM_TWELVE_SPEED: 25921 data = 0x2; 25922 /*FALLTHROUGH*/ 25923 case CDROM_NORMAL_SPEED: 25924 case CDROM_DOUBLE_SPEED: 25925 case CDROM_QUAD_SPEED: 25926 case CDROM_MAXIMUM_SPEED: 25927 break; 25928 default: 25929 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25930 "sr_change_speed: " 25931 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 25932 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 25933 return (EINVAL); 25934 } 25935 25936 /* 25937 * The current drive speed matches the requested drive speed so 25938 * there is no need to send the mode select to change the speed 25939 */ 25940 if (current_speed == data) { 25941 break; 25942 } 25943 25944 /* Build the select data for the requested drive speed */ 25945 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 25946 select_mhp = (struct mode_header *)select; 25947 select_mhp->bdesc_length = 0; 25948 select_page = 25949 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 25950 select_page = 25951 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 25952 select_page->mode_page.code = CDROM_MODE_SPEED; 25953 select_page->mode_page.length = 2; 25954 select_page->speed = (uchar_t)data; 25955 25956 /* Send the mode select for the requested block size */ 25957 ssc = sd_ssc_init(un); 25958 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 25959 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 25960 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 25961 sd_ssc_fini(ssc); 25962 if (rval != 0) { 25963 /* 25964 * The mode select failed for the requested drive speed, 25965 * so reset the data for the original drive speed and 25966 * send it to the target. The error is indicated by the 25967 * return value for the failed mode select. 25968 */ 25969 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25970 "sr_drive_speed: Mode Select Failed\n"); 25971 select_page->speed = sense_page->speed; 25972 ssc = sd_ssc_init(un); 25973 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 25974 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 25975 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 25976 sd_ssc_fini(ssc); 25977 } 25978 break; 25979 default: 25980 /* should not reach here, but check anyway */ 25981 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25982 "sr_change_speed: Command '%x' Not Supported\n", cmd); 25983 rval = EINVAL; 25984 break; 25985 } 25986 25987 if (select) { 25988 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 25989 } 25990 if (sense) { 25991 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 25992 } 25993 25994 return (rval); 25995 } 25996 25997 25998 /* 25999 * Function: sr_atapi_change_speed() 26000 * 26001 * Description: This routine is the driver entry point for handling CD-ROM 26002 * drive speed ioctl requests for MMC devices that do not support 26003 * the Real Time Streaming feature (0x107). 26004 * 26005 * Note: This routine will use the SET SPEED command which may not 26006 * be supported by all devices. 26007 * 26008 * Arguments: dev- the device 'dev_t' 26009 * cmd- the request type; one of CDROMGDRVSPEED (get) or 26010 * CDROMSDRVSPEED (set) 26011 * data- current drive speed or requested drive speed 26012 * flag- this argument is a pass through to ddi_copyxxx() directly 26013 * from the mode argument of ioctl(). 26014 * 26015 * Return Code: the code returned by sd_send_scsi_cmd() 26016 * EINVAL if invalid arguments are provided 26017 * EFAULT if ddi_copyxxx() fails 26018 * ENXIO if fail ddi_get_soft_state 26019 * EIO if invalid mode sense block descriptor length 26020 */ 26021 26022 static int 26023 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 26024 { 26025 struct sd_lun *un; 26026 struct uscsi_cmd *com = NULL; 26027 struct mode_header_grp2 *sense_mhp; 26028 uchar_t *sense_page; 26029 uchar_t *sense = NULL; 26030 char cdb[CDB_GROUP5]; 26031 int bd_len; 26032 int current_speed = 0; 26033 int max_speed = 0; 26034 int rval; 26035 sd_ssc_t *ssc; 26036 26037 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 26038 26039 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26040 return (ENXIO); 26041 } 26042 26043 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 26044 26045 ssc = sd_ssc_init(un); 26046 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 26047 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 26048 SD_PATH_STANDARD); 26049 sd_ssc_fini(ssc); 26050 if (rval != 0) { 26051 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26052 "sr_atapi_change_speed: Mode Sense Failed\n"); 26053 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26054 return (rval); 26055 } 26056 26057 /* Check the block descriptor len to handle only 1 block descriptor */ 26058 sense_mhp = (struct mode_header_grp2 *)sense; 26059 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 26060 if (bd_len > MODE_BLK_DESC_LENGTH) { 26061 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26062 "sr_atapi_change_speed: Mode Sense returned invalid " 26063 "block descriptor length\n"); 26064 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26065 return (EIO); 26066 } 26067 26068 /* Calculate the current and maximum drive speeds */ 26069 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 26070 current_speed = (sense_page[14] << 8) | sense_page[15]; 26071 max_speed = (sense_page[8] << 8) | sense_page[9]; 26072 26073 /* Process the command */ 26074 switch (cmd) { 26075 case CDROMGDRVSPEED: 26076 current_speed /= SD_SPEED_1X; 26077 if (ddi_copyout(¤t_speed, (void *)data, 26078 sizeof (int), flag) != 0) 26079 rval = EFAULT; 26080 break; 26081 case CDROMSDRVSPEED: 26082 /* Convert the speed code to KB/sec */ 26083 switch ((uchar_t)data) { 26084 case CDROM_NORMAL_SPEED: 26085 current_speed = SD_SPEED_1X; 26086 break; 26087 case CDROM_DOUBLE_SPEED: 26088 current_speed = 2 * SD_SPEED_1X; 26089 break; 26090 case CDROM_QUAD_SPEED: 26091 current_speed = 4 * SD_SPEED_1X; 26092 break; 26093 case CDROM_TWELVE_SPEED: 26094 current_speed = 12 * SD_SPEED_1X; 26095 break; 26096 case CDROM_MAXIMUM_SPEED: 26097 current_speed = 0xffff; 26098 break; 26099 default: 26100 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26101 "sr_atapi_change_speed: invalid drive speed %d\n", 26102 (uchar_t)data); 26103 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26104 return (EINVAL); 26105 } 26106 26107 /* Check the request against the drive's max speed. */ 26108 if (current_speed != 0xffff) { 26109 if (current_speed > max_speed) { 26110 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26111 return (EINVAL); 26112 } 26113 } 26114 26115 /* 26116 * Build and send the SET SPEED command 26117 * 26118 * Note: The SET SPEED (0xBB) command used in this routine is 26119 * obsolete per the SCSI MMC spec but still supported in the 26120 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 26121 * therefore the command is still implemented in this routine. 26122 */ 26123 bzero(cdb, sizeof (cdb)); 26124 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 26125 cdb[2] = (uchar_t)(current_speed >> 8); 26126 cdb[3] = (uchar_t)current_speed; 26127 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26128 com->uscsi_cdb = (caddr_t)cdb; 26129 com->uscsi_cdblen = CDB_GROUP5; 26130 com->uscsi_bufaddr = NULL; 26131 com->uscsi_buflen = 0; 26132 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 26133 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 26134 break; 26135 default: 26136 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26137 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 26138 rval = EINVAL; 26139 } 26140 26141 if (sense) { 26142 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26143 } 26144 if (com) { 26145 kmem_free(com, sizeof (*com)); 26146 } 26147 return (rval); 26148 } 26149 26150 26151 /* 26152 * Function: sr_pause_resume() 26153 * 26154 * Description: This routine is the driver entry point for handling CD-ROM 26155 * pause/resume ioctl requests. This only affects the audio play 26156 * operation. 26157 * 26158 * Arguments: dev - the device 'dev_t' 26159 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 26160 * for setting the resume bit of the cdb. 26161 * 26162 * Return Code: the code returned by sd_send_scsi_cmd() 26163 * EINVAL if invalid mode specified 26164 * 26165 */ 26166 26167 static int 26168 sr_pause_resume(dev_t dev, int cmd) 26169 { 26170 struct sd_lun *un; 26171 struct uscsi_cmd *com; 26172 char cdb[CDB_GROUP1]; 26173 int rval; 26174 26175 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26176 return (ENXIO); 26177 } 26178 26179 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26180 bzero(cdb, CDB_GROUP1); 26181 cdb[0] = SCMD_PAUSE_RESUME; 26182 switch (cmd) { 26183 case CDROMRESUME: 26184 cdb[8] = 1; 26185 break; 26186 case CDROMPAUSE: 26187 cdb[8] = 0; 26188 break; 26189 default: 26190 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 26191 " Command '%x' Not Supported\n", cmd); 26192 rval = EINVAL; 26193 goto done; 26194 } 26195 26196 com->uscsi_cdb = cdb; 26197 com->uscsi_cdblen = CDB_GROUP1; 26198 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 26199 26200 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26201 SD_PATH_STANDARD); 26202 26203 done: 26204 kmem_free(com, sizeof (*com)); 26205 return (rval); 26206 } 26207 26208 26209 /* 26210 * Function: sr_play_msf() 26211 * 26212 * Description: This routine is the driver entry point for handling CD-ROM 26213 * ioctl requests to output the audio signals at the specified 26214 * starting address and continue the audio play until the specified 26215 * ending address (CDROMPLAYMSF) The address is in Minute Second 26216 * Frame (MSF) format. 26217 * 26218 * Arguments: dev - the device 'dev_t' 26219 * data - pointer to user provided audio msf structure, 26220 * specifying start/end addresses. 26221 * flag - this argument is a pass through to ddi_copyxxx() 26222 * directly from the mode argument of ioctl(). 26223 * 26224 * Return Code: the code returned by sd_send_scsi_cmd() 26225 * EFAULT if ddi_copyxxx() fails 26226 * ENXIO if fail ddi_get_soft_state 26227 * EINVAL if data pointer is NULL 26228 */ 26229 26230 static int 26231 sr_play_msf(dev_t dev, caddr_t data, int flag) 26232 { 26233 struct sd_lun *un; 26234 struct uscsi_cmd *com; 26235 struct cdrom_msf msf_struct; 26236 struct cdrom_msf *msf = &msf_struct; 26237 char cdb[CDB_GROUP1]; 26238 int rval; 26239 26240 if (data == NULL) { 26241 return (EINVAL); 26242 } 26243 26244 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26245 return (ENXIO); 26246 } 26247 26248 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 26249 return (EFAULT); 26250 } 26251 26252 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26253 bzero(cdb, CDB_GROUP1); 26254 cdb[0] = SCMD_PLAYAUDIO_MSF; 26255 if (un->un_f_cfg_playmsf_bcd == TRUE) { 26256 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 26257 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 26258 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 26259 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 26260 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 26261 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 26262 } else { 26263 cdb[3] = msf->cdmsf_min0; 26264 cdb[4] = msf->cdmsf_sec0; 26265 cdb[5] = msf->cdmsf_frame0; 26266 cdb[6] = msf->cdmsf_min1; 26267 cdb[7] = msf->cdmsf_sec1; 26268 cdb[8] = msf->cdmsf_frame1; 26269 } 26270 com->uscsi_cdb = cdb; 26271 com->uscsi_cdblen = CDB_GROUP1; 26272 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 26273 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26274 SD_PATH_STANDARD); 26275 kmem_free(com, sizeof (*com)); 26276 return (rval); 26277 } 26278 26279 26280 /* 26281 * Function: sr_play_trkind() 26282 * 26283 * Description: This routine is the driver entry point for handling CD-ROM 26284 * ioctl requests to output the audio signals at the specified 26285 * starting address and continue the audio play until the specified 26286 * ending address (CDROMPLAYTRKIND). The address is in Track Index 26287 * format. 26288 * 26289 * Arguments: dev - the device 'dev_t' 26290 * data - pointer to user provided audio track/index structure, 26291 * specifying start/end addresses. 26292 * flag - this argument is a pass through to ddi_copyxxx() 26293 * directly from the mode argument of ioctl(). 26294 * 26295 * Return Code: the code returned by sd_send_scsi_cmd() 26296 * EFAULT if ddi_copyxxx() fails 26297 * ENXIO if fail ddi_get_soft_state 26298 * EINVAL if data pointer is NULL 26299 */ 26300 26301 static int 26302 sr_play_trkind(dev_t dev, caddr_t data, int flag) 26303 { 26304 struct cdrom_ti ti_struct; 26305 struct cdrom_ti *ti = &ti_struct; 26306 struct uscsi_cmd *com = NULL; 26307 char cdb[CDB_GROUP1]; 26308 int rval; 26309 26310 if (data == NULL) { 26311 return (EINVAL); 26312 } 26313 26314 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 26315 return (EFAULT); 26316 } 26317 26318 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26319 bzero(cdb, CDB_GROUP1); 26320 cdb[0] = SCMD_PLAYAUDIO_TI; 26321 cdb[4] = ti->cdti_trk0; 26322 cdb[5] = ti->cdti_ind0; 26323 cdb[7] = ti->cdti_trk1; 26324 cdb[8] = ti->cdti_ind1; 26325 com->uscsi_cdb = cdb; 26326 com->uscsi_cdblen = CDB_GROUP1; 26327 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 26328 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26329 SD_PATH_STANDARD); 26330 kmem_free(com, sizeof (*com)); 26331 return (rval); 26332 } 26333 26334 26335 /* 26336 * Function: sr_read_all_subcodes() 26337 * 26338 * Description: This routine is the driver entry point for handling CD-ROM 26339 * ioctl requests to return raw subcode data while the target is 26340 * playing audio (CDROMSUBCODE). 26341 * 26342 * Arguments: dev - the device 'dev_t' 26343 * data - pointer to user provided cdrom subcode structure, 26344 * specifying the transfer length and address. 26345 * flag - this argument is a pass through to ddi_copyxxx() 26346 * directly from the mode argument of ioctl(). 26347 * 26348 * Return Code: the code returned by sd_send_scsi_cmd() 26349 * EFAULT if ddi_copyxxx() fails 26350 * ENXIO if fail ddi_get_soft_state 26351 * EINVAL if data pointer is NULL 26352 */ 26353 26354 static int 26355 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 26356 { 26357 struct sd_lun *un = NULL; 26358 struct uscsi_cmd *com = NULL; 26359 struct cdrom_subcode *subcode = NULL; 26360 int rval; 26361 size_t buflen; 26362 char cdb[CDB_GROUP5]; 26363 26364 #ifdef _MULTI_DATAMODEL 26365 /* To support ILP32 applications in an LP64 world */ 26366 struct cdrom_subcode32 cdrom_subcode32; 26367 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 26368 #endif 26369 if (data == NULL) { 26370 return (EINVAL); 26371 } 26372 26373 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26374 return (ENXIO); 26375 } 26376 26377 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 26378 26379 #ifdef _MULTI_DATAMODEL 26380 switch (ddi_model_convert_from(flag & FMODELS)) { 26381 case DDI_MODEL_ILP32: 26382 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 26383 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26384 "sr_read_all_subcodes: ddi_copyin Failed\n"); 26385 kmem_free(subcode, sizeof (struct cdrom_subcode)); 26386 return (EFAULT); 26387 } 26388 /* Convert the ILP32 uscsi data from the application to LP64 */ 26389 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 26390 break; 26391 case DDI_MODEL_NONE: 26392 if (ddi_copyin(data, subcode, 26393 sizeof (struct cdrom_subcode), flag)) { 26394 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26395 "sr_read_all_subcodes: ddi_copyin Failed\n"); 26396 kmem_free(subcode, sizeof (struct cdrom_subcode)); 26397 return (EFAULT); 26398 } 26399 break; 26400 } 26401 #else /* ! _MULTI_DATAMODEL */ 26402 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 26403 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26404 "sr_read_all_subcodes: ddi_copyin Failed\n"); 26405 kmem_free(subcode, sizeof (struct cdrom_subcode)); 26406 return (EFAULT); 26407 } 26408 #endif /* _MULTI_DATAMODEL */ 26409 26410 /* 26411 * Since MMC-2 expects max 3 bytes for length, check if the 26412 * length input is greater than 3 bytes 26413 */ 26414 if ((subcode->cdsc_length & 0xFF000000) != 0) { 26415 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26416 "sr_read_all_subcodes: " 26417 "cdrom transfer length too large: %d (limit %d)\n", 26418 subcode->cdsc_length, 0xFFFFFF); 26419 kmem_free(subcode, sizeof (struct cdrom_subcode)); 26420 return (EINVAL); 26421 } 26422 26423 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 26424 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26425 bzero(cdb, CDB_GROUP5); 26426 26427 if (un->un_f_mmc_cap == TRUE) { 26428 cdb[0] = (char)SCMD_READ_CD; 26429 cdb[2] = (char)0xff; 26430 cdb[3] = (char)0xff; 26431 cdb[4] = (char)0xff; 26432 cdb[5] = (char)0xff; 26433 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 26434 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 26435 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 26436 cdb[10] = 1; 26437 } else { 26438 /* 26439 * Note: A vendor specific command (0xDF) is being used her to 26440 * request a read of all subcodes. 26441 */ 26442 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 26443 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 26444 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 26445 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 26446 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 26447 } 26448 com->uscsi_cdb = cdb; 26449 com->uscsi_cdblen = CDB_GROUP5; 26450 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 26451 com->uscsi_buflen = buflen; 26452 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 26453 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 26454 SD_PATH_STANDARD); 26455 kmem_free(subcode, sizeof (struct cdrom_subcode)); 26456 kmem_free(com, sizeof (*com)); 26457 return (rval); 26458 } 26459 26460 26461 /* 26462 * Function: sr_read_subchannel() 26463 * 26464 * Description: This routine is the driver entry point for handling CD-ROM 26465 * ioctl requests to return the Q sub-channel data of the CD 26466 * current position block. (CDROMSUBCHNL) The data includes the 26467 * track number, index number, absolute CD-ROM address (LBA or MSF 26468 * format per the user) , track relative CD-ROM address (LBA or MSF 26469 * format per the user), control data and audio status. 26470 * 26471 * Arguments: dev - the device 'dev_t' 26472 * data - pointer to user provided cdrom sub-channel structure 26473 * flag - this argument is a pass through to ddi_copyxxx() 26474 * directly from the mode argument of ioctl(). 26475 * 26476 * Return Code: the code returned by sd_send_scsi_cmd() 26477 * EFAULT if ddi_copyxxx() fails 26478 * ENXIO if fail ddi_get_soft_state 26479 * EINVAL if data pointer is NULL 26480 */ 26481 26482 static int 26483 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 26484 { 26485 struct sd_lun *un; 26486 struct uscsi_cmd *com; 26487 struct cdrom_subchnl subchanel; 26488 struct cdrom_subchnl *subchnl = &subchanel; 26489 char cdb[CDB_GROUP1]; 26490 caddr_t buffer; 26491 int rval; 26492 26493 if (data == NULL) { 26494 return (EINVAL); 26495 } 26496 26497 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 26498 (un->un_state == SD_STATE_OFFLINE)) { 26499 return (ENXIO); 26500 } 26501 26502 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 26503 return (EFAULT); 26504 } 26505 26506 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 26507 bzero(cdb, CDB_GROUP1); 26508 cdb[0] = SCMD_READ_SUBCHANNEL; 26509 /* Set the MSF bit based on the user requested address format */ 26510 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 26511 /* 26512 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 26513 * returned 26514 */ 26515 cdb[2] = 0x40; 26516 /* 26517 * Set byte 3 to specify the return data format. A value of 0x01 26518 * indicates that the CD-ROM current position should be returned. 26519 */ 26520 cdb[3] = 0x01; 26521 cdb[8] = 0x10; 26522 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26523 com->uscsi_cdb = cdb; 26524 com->uscsi_cdblen = CDB_GROUP1; 26525 com->uscsi_bufaddr = buffer; 26526 com->uscsi_buflen = 16; 26527 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 26528 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26529 SD_PATH_STANDARD); 26530 if (rval != 0) { 26531 kmem_free(buffer, 16); 26532 kmem_free(com, sizeof (*com)); 26533 return (rval); 26534 } 26535 26536 /* Process the returned Q sub-channel data */ 26537 subchnl->cdsc_audiostatus = buffer[1]; 26538 subchnl->cdsc_adr = (buffer[5] & 0xF0); 26539 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 26540 subchnl->cdsc_trk = buffer[6]; 26541 subchnl->cdsc_ind = buffer[7]; 26542 if (subchnl->cdsc_format & CDROM_LBA) { 26543 subchnl->cdsc_absaddr.lba = 26544 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 26545 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 26546 subchnl->cdsc_reladdr.lba = 26547 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 26548 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 26549 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 26550 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 26551 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 26552 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 26553 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 26554 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 26555 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 26556 } else { 26557 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 26558 subchnl->cdsc_absaddr.msf.second = buffer[10]; 26559 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 26560 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 26561 subchnl->cdsc_reladdr.msf.second = buffer[14]; 26562 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 26563 } 26564 kmem_free(buffer, 16); 26565 kmem_free(com, sizeof (*com)); 26566 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 26567 != 0) { 26568 return (EFAULT); 26569 } 26570 return (rval); 26571 } 26572 26573 26574 /* 26575 * Function: sr_read_tocentry() 26576 * 26577 * Description: This routine is the driver entry point for handling CD-ROM 26578 * ioctl requests to read from the Table of Contents (TOC) 26579 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 26580 * fields, the starting address (LBA or MSF format per the user) 26581 * and the data mode if the user specified track is a data track. 26582 * 26583 * Note: The READ HEADER (0x44) command used in this routine is 26584 * obsolete per the SCSI MMC spec but still supported in the 26585 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 26586 * therefore the command is still implemented in this routine. 26587 * 26588 * Arguments: dev - the device 'dev_t' 26589 * data - pointer to user provided toc entry structure, 26590 * specifying the track # and the address format 26591 * (LBA or MSF). 26592 * flag - this argument is a pass through to ddi_copyxxx() 26593 * directly from the mode argument of ioctl(). 26594 * 26595 * Return Code: the code returned by sd_send_scsi_cmd() 26596 * EFAULT if ddi_copyxxx() fails 26597 * ENXIO if fail ddi_get_soft_state 26598 * EINVAL if data pointer is NULL 26599 */ 26600 26601 static int 26602 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 26603 { 26604 struct sd_lun *un = NULL; 26605 struct uscsi_cmd *com; 26606 struct cdrom_tocentry toc_entry; 26607 struct cdrom_tocentry *entry = &toc_entry; 26608 caddr_t buffer; 26609 int rval; 26610 char cdb[CDB_GROUP1]; 26611 26612 if (data == NULL) { 26613 return (EINVAL); 26614 } 26615 26616 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 26617 (un->un_state == SD_STATE_OFFLINE)) { 26618 return (ENXIO); 26619 } 26620 26621 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 26622 return (EFAULT); 26623 } 26624 26625 /* Validate the requested track and address format */ 26626 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 26627 return (EINVAL); 26628 } 26629 26630 if (entry->cdte_track == 0) { 26631 return (EINVAL); 26632 } 26633 26634 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 26635 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26636 bzero(cdb, CDB_GROUP1); 26637 26638 cdb[0] = SCMD_READ_TOC; 26639 /* Set the MSF bit based on the user requested address format */ 26640 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 26641 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 26642 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 26643 } else { 26644 cdb[6] = entry->cdte_track; 26645 } 26646 26647 /* 26648 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 26649 * (4 byte TOC response header + 8 byte track descriptor) 26650 */ 26651 cdb[8] = 12; 26652 com->uscsi_cdb = cdb; 26653 com->uscsi_cdblen = CDB_GROUP1; 26654 com->uscsi_bufaddr = buffer; 26655 com->uscsi_buflen = 0x0C; 26656 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 26657 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26658 SD_PATH_STANDARD); 26659 if (rval != 0) { 26660 kmem_free(buffer, 12); 26661 kmem_free(com, sizeof (*com)); 26662 return (rval); 26663 } 26664 26665 /* Process the toc entry */ 26666 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 26667 entry->cdte_ctrl = (buffer[5] & 0x0F); 26668 if (entry->cdte_format & CDROM_LBA) { 26669 entry->cdte_addr.lba = 26670 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 26671 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 26672 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 26673 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 26674 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 26675 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 26676 /* 26677 * Send a READ TOC command using the LBA address format to get 26678 * the LBA for the track requested so it can be used in the 26679 * READ HEADER request 26680 * 26681 * Note: The MSF bit of the READ HEADER command specifies the 26682 * output format. The block address specified in that command 26683 * must be in LBA format. 26684 */ 26685 cdb[1] = 0; 26686 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26687 SD_PATH_STANDARD); 26688 if (rval != 0) { 26689 kmem_free(buffer, 12); 26690 kmem_free(com, sizeof (*com)); 26691 return (rval); 26692 } 26693 } else { 26694 entry->cdte_addr.msf.minute = buffer[9]; 26695 entry->cdte_addr.msf.second = buffer[10]; 26696 entry->cdte_addr.msf.frame = buffer[11]; 26697 /* 26698 * Send a READ TOC command using the LBA address format to get 26699 * the LBA for the track requested so it can be used in the 26700 * READ HEADER request 26701 * 26702 * Note: The MSF bit of the READ HEADER command specifies the 26703 * output format. The block address specified in that command 26704 * must be in LBA format. 26705 */ 26706 cdb[1] = 0; 26707 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26708 SD_PATH_STANDARD); 26709 if (rval != 0) { 26710 kmem_free(buffer, 12); 26711 kmem_free(com, sizeof (*com)); 26712 return (rval); 26713 } 26714 } 26715 26716 /* 26717 * Build and send the READ HEADER command to determine the data mode of 26718 * the user specified track. 26719 */ 26720 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 26721 (entry->cdte_track != CDROM_LEADOUT)) { 26722 bzero(cdb, CDB_GROUP1); 26723 cdb[0] = SCMD_READ_HEADER; 26724 cdb[2] = buffer[8]; 26725 cdb[3] = buffer[9]; 26726 cdb[4] = buffer[10]; 26727 cdb[5] = buffer[11]; 26728 cdb[8] = 0x08; 26729 com->uscsi_buflen = 0x08; 26730 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26731 SD_PATH_STANDARD); 26732 if (rval == 0) { 26733 entry->cdte_datamode = buffer[0]; 26734 } else { 26735 /* 26736 * READ HEADER command failed, since this is 26737 * obsoleted in one spec, its better to return 26738 * -1 for an invlid track so that we can still 26739 * receive the rest of the TOC data. 26740 */ 26741 entry->cdte_datamode = (uchar_t)-1; 26742 } 26743 } else { 26744 entry->cdte_datamode = (uchar_t)-1; 26745 } 26746 26747 kmem_free(buffer, 12); 26748 kmem_free(com, sizeof (*com)); 26749 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 26750 return (EFAULT); 26751 26752 return (rval); 26753 } 26754 26755 26756 /* 26757 * Function: sr_read_tochdr() 26758 * 26759 * Description: This routine is the driver entry point for handling CD-ROM 26760 * ioctl requests to read the Table of Contents (TOC) header 26761 * (CDROMREADTOHDR). The TOC header consists of the disk starting 26762 * and ending track numbers 26763 * 26764 * Arguments: dev - the device 'dev_t' 26765 * data - pointer to user provided toc header structure, 26766 * specifying the starting and ending track numbers. 26767 * flag - this argument is a pass through to ddi_copyxxx() 26768 * directly from the mode argument of ioctl(). 26769 * 26770 * Return Code: the code returned by sd_send_scsi_cmd() 26771 * EFAULT if ddi_copyxxx() fails 26772 * ENXIO if fail ddi_get_soft_state 26773 * EINVAL if data pointer is NULL 26774 */ 26775 26776 static int 26777 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 26778 { 26779 struct sd_lun *un; 26780 struct uscsi_cmd *com; 26781 struct cdrom_tochdr toc_header; 26782 struct cdrom_tochdr *hdr = &toc_header; 26783 char cdb[CDB_GROUP1]; 26784 int rval; 26785 caddr_t buffer; 26786 26787 if (data == NULL) { 26788 return (EINVAL); 26789 } 26790 26791 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 26792 (un->un_state == SD_STATE_OFFLINE)) { 26793 return (ENXIO); 26794 } 26795 26796 buffer = kmem_zalloc(4, KM_SLEEP); 26797 bzero(cdb, CDB_GROUP1); 26798 cdb[0] = SCMD_READ_TOC; 26799 /* 26800 * Specifying a track number of 0x00 in the READ TOC command indicates 26801 * that the TOC header should be returned 26802 */ 26803 cdb[6] = 0x00; 26804 /* 26805 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 26806 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 26807 */ 26808 cdb[8] = 0x04; 26809 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26810 com->uscsi_cdb = cdb; 26811 com->uscsi_cdblen = CDB_GROUP1; 26812 com->uscsi_bufaddr = buffer; 26813 com->uscsi_buflen = 0x04; 26814 com->uscsi_timeout = 300; 26815 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 26816 26817 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26818 SD_PATH_STANDARD); 26819 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 26820 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 26821 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 26822 } else { 26823 hdr->cdth_trk0 = buffer[2]; 26824 hdr->cdth_trk1 = buffer[3]; 26825 } 26826 kmem_free(buffer, 4); 26827 kmem_free(com, sizeof (*com)); 26828 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 26829 return (EFAULT); 26830 } 26831 return (rval); 26832 } 26833 26834 26835 /* 26836 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 26837 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 26838 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 26839 * digital audio and extended architecture digital audio. These modes are 26840 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 26841 * MMC specs. 26842 * 26843 * In addition to support for the various data formats these routines also 26844 * include support for devices that implement only the direct access READ 26845 * commands (0x08, 0x28), devices that implement the READ_CD commands 26846 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 26847 * READ CDXA commands (0xD8, 0xDB) 26848 */ 26849 26850 /* 26851 * Function: sr_read_mode1() 26852 * 26853 * Description: This routine is the driver entry point for handling CD-ROM 26854 * ioctl read mode1 requests (CDROMREADMODE1). 26855 * 26856 * Arguments: dev - the device 'dev_t' 26857 * data - pointer to user provided cd read structure specifying 26858 * the lba buffer address and length. 26859 * flag - this argument is a pass through to ddi_copyxxx() 26860 * directly from the mode argument of ioctl(). 26861 * 26862 * Return Code: the code returned by sd_send_scsi_cmd() 26863 * EFAULT if ddi_copyxxx() fails 26864 * ENXIO if fail ddi_get_soft_state 26865 * EINVAL if data pointer is NULL 26866 */ 26867 26868 static int 26869 sr_read_mode1(dev_t dev, caddr_t data, int flag) 26870 { 26871 struct sd_lun *un; 26872 struct cdrom_read mode1_struct; 26873 struct cdrom_read *mode1 = &mode1_struct; 26874 int rval; 26875 sd_ssc_t *ssc; 26876 26877 #ifdef _MULTI_DATAMODEL 26878 /* To support ILP32 applications in an LP64 world */ 26879 struct cdrom_read32 cdrom_read32; 26880 struct cdrom_read32 *cdrd32 = &cdrom_read32; 26881 #endif /* _MULTI_DATAMODEL */ 26882 26883 if (data == NULL) { 26884 return (EINVAL); 26885 } 26886 26887 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 26888 (un->un_state == SD_STATE_OFFLINE)) { 26889 return (ENXIO); 26890 } 26891 26892 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 26893 "sd_read_mode1: entry: un:0x%p\n", un); 26894 26895 #ifdef _MULTI_DATAMODEL 26896 switch (ddi_model_convert_from(flag & FMODELS)) { 26897 case DDI_MODEL_ILP32: 26898 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 26899 return (EFAULT); 26900 } 26901 /* Convert the ILP32 uscsi data from the application to LP64 */ 26902 cdrom_read32tocdrom_read(cdrd32, mode1); 26903 break; 26904 case DDI_MODEL_NONE: 26905 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 26906 return (EFAULT); 26907 } 26908 } 26909 #else /* ! _MULTI_DATAMODEL */ 26910 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 26911 return (EFAULT); 26912 } 26913 #endif /* _MULTI_DATAMODEL */ 26914 26915 ssc = sd_ssc_init(un); 26916 rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr, 26917 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 26918 sd_ssc_fini(ssc); 26919 26920 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 26921 "sd_read_mode1: exit: un:0x%p\n", un); 26922 26923 return (rval); 26924 } 26925 26926 26927 /* 26928 * Function: sr_read_cd_mode2() 26929 * 26930 * Description: This routine is the driver entry point for handling CD-ROM 26931 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 26932 * support the READ CD (0xBE) command or the 1st generation 26933 * READ CD (0xD4) command. 26934 * 26935 * Arguments: dev - the device 'dev_t' 26936 * data - pointer to user provided cd read structure specifying 26937 * the lba buffer address and length. 26938 * flag - this argument is a pass through to ddi_copyxxx() 26939 * directly from the mode argument of ioctl(). 26940 * 26941 * Return Code: the code returned by sd_send_scsi_cmd() 26942 * EFAULT if ddi_copyxxx() fails 26943 * ENXIO if fail ddi_get_soft_state 26944 * EINVAL if data pointer is NULL 26945 */ 26946 26947 static int 26948 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 26949 { 26950 struct sd_lun *un; 26951 struct uscsi_cmd *com; 26952 struct cdrom_read mode2_struct; 26953 struct cdrom_read *mode2 = &mode2_struct; 26954 uchar_t cdb[CDB_GROUP5]; 26955 int nblocks; 26956 int rval; 26957 #ifdef _MULTI_DATAMODEL 26958 /* To support ILP32 applications in an LP64 world */ 26959 struct cdrom_read32 cdrom_read32; 26960 struct cdrom_read32 *cdrd32 = &cdrom_read32; 26961 #endif /* _MULTI_DATAMODEL */ 26962 26963 if (data == NULL) { 26964 return (EINVAL); 26965 } 26966 26967 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 26968 (un->un_state == SD_STATE_OFFLINE)) { 26969 return (ENXIO); 26970 } 26971 26972 #ifdef _MULTI_DATAMODEL 26973 switch (ddi_model_convert_from(flag & FMODELS)) { 26974 case DDI_MODEL_ILP32: 26975 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 26976 return (EFAULT); 26977 } 26978 /* Convert the ILP32 uscsi data from the application to LP64 */ 26979 cdrom_read32tocdrom_read(cdrd32, mode2); 26980 break; 26981 case DDI_MODEL_NONE: 26982 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 26983 return (EFAULT); 26984 } 26985 break; 26986 } 26987 26988 #else /* ! _MULTI_DATAMODEL */ 26989 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 26990 return (EFAULT); 26991 } 26992 #endif /* _MULTI_DATAMODEL */ 26993 26994 bzero(cdb, sizeof (cdb)); 26995 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 26996 /* Read command supported by 1st generation atapi drives */ 26997 cdb[0] = SCMD_READ_CDD4; 26998 } else { 26999 /* Universal CD Access Command */ 27000 cdb[0] = SCMD_READ_CD; 27001 } 27002 27003 /* 27004 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 27005 */ 27006 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 27007 27008 /* set the start address */ 27009 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 27010 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 27011 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 27012 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 27013 27014 /* set the transfer length */ 27015 nblocks = mode2->cdread_buflen / 2336; 27016 cdb[6] = (uchar_t)(nblocks >> 16); 27017 cdb[7] = (uchar_t)(nblocks >> 8); 27018 cdb[8] = (uchar_t)nblocks; 27019 27020 /* set the filter bits */ 27021 cdb[9] = CDROM_READ_CD_USERDATA; 27022 27023 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27024 com->uscsi_cdb = (caddr_t)cdb; 27025 com->uscsi_cdblen = sizeof (cdb); 27026 com->uscsi_bufaddr = mode2->cdread_bufaddr; 27027 com->uscsi_buflen = mode2->cdread_buflen; 27028 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27029 27030 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27031 SD_PATH_STANDARD); 27032 kmem_free(com, sizeof (*com)); 27033 return (rval); 27034 } 27035 27036 27037 /* 27038 * Function: sr_read_mode2() 27039 * 27040 * Description: This routine is the driver entry point for handling CD-ROM 27041 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 27042 * do not support the READ CD (0xBE) command. 27043 * 27044 * Arguments: dev - the device 'dev_t' 27045 * data - pointer to user provided cd read structure specifying 27046 * the lba buffer address and length. 27047 * flag - this argument is a pass through to ddi_copyxxx() 27048 * directly from the mode argument of ioctl(). 27049 * 27050 * Return Code: the code returned by sd_send_scsi_cmd() 27051 * EFAULT if ddi_copyxxx() fails 27052 * ENXIO if fail ddi_get_soft_state 27053 * EINVAL if data pointer is NULL 27054 * EIO if fail to reset block size 27055 * EAGAIN if commands are in progress in the driver 27056 */ 27057 27058 static int 27059 sr_read_mode2(dev_t dev, caddr_t data, int flag) 27060 { 27061 struct sd_lun *un; 27062 struct cdrom_read mode2_struct; 27063 struct cdrom_read *mode2 = &mode2_struct; 27064 int rval; 27065 uint32_t restore_blksize; 27066 struct uscsi_cmd *com; 27067 uchar_t cdb[CDB_GROUP0]; 27068 int nblocks; 27069 27070 #ifdef _MULTI_DATAMODEL 27071 /* To support ILP32 applications in an LP64 world */ 27072 struct cdrom_read32 cdrom_read32; 27073 struct cdrom_read32 *cdrd32 = &cdrom_read32; 27074 #endif /* _MULTI_DATAMODEL */ 27075 27076 if (data == NULL) { 27077 return (EINVAL); 27078 } 27079 27080 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27081 (un->un_state == SD_STATE_OFFLINE)) { 27082 return (ENXIO); 27083 } 27084 27085 /* 27086 * Because this routine will update the device and driver block size 27087 * being used we want to make sure there are no commands in progress. 27088 * If commands are in progress the user will have to try again. 27089 * 27090 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 27091 * in sdioctl to protect commands from sdioctl through to the top of 27092 * sd_uscsi_strategy. See sdioctl for details. 27093 */ 27094 mutex_enter(SD_MUTEX(un)); 27095 if (un->un_ncmds_in_driver != 1) { 27096 mutex_exit(SD_MUTEX(un)); 27097 return (EAGAIN); 27098 } 27099 mutex_exit(SD_MUTEX(un)); 27100 27101 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27102 "sd_read_mode2: entry: un:0x%p\n", un); 27103 27104 #ifdef _MULTI_DATAMODEL 27105 switch (ddi_model_convert_from(flag & FMODELS)) { 27106 case DDI_MODEL_ILP32: 27107 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 27108 return (EFAULT); 27109 } 27110 /* Convert the ILP32 uscsi data from the application to LP64 */ 27111 cdrom_read32tocdrom_read(cdrd32, mode2); 27112 break; 27113 case DDI_MODEL_NONE: 27114 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 27115 return (EFAULT); 27116 } 27117 break; 27118 } 27119 #else /* ! _MULTI_DATAMODEL */ 27120 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 27121 return (EFAULT); 27122 } 27123 #endif /* _MULTI_DATAMODEL */ 27124 27125 /* Store the current target block size for restoration later */ 27126 restore_blksize = un->un_tgt_blocksize; 27127 27128 /* Change the device and soft state target block size to 2336 */ 27129 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 27130 rval = EIO; 27131 goto done; 27132 } 27133 27134 27135 bzero(cdb, sizeof (cdb)); 27136 27137 /* set READ operation */ 27138 cdb[0] = SCMD_READ; 27139 27140 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 27141 mode2->cdread_lba >>= 2; 27142 27143 /* set the start address */ 27144 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 27145 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 27146 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 27147 27148 /* set the transfer length */ 27149 nblocks = mode2->cdread_buflen / 2336; 27150 cdb[4] = (uchar_t)nblocks & 0xFF; 27151 27152 /* build command */ 27153 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27154 com->uscsi_cdb = (caddr_t)cdb; 27155 com->uscsi_cdblen = sizeof (cdb); 27156 com->uscsi_bufaddr = mode2->cdread_bufaddr; 27157 com->uscsi_buflen = mode2->cdread_buflen; 27158 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27159 27160 /* 27161 * Issue SCSI command with user space address for read buffer. 27162 * 27163 * This sends the command through main channel in the driver. 27164 * 27165 * Since this is accessed via an IOCTL call, we go through the 27166 * standard path, so that if the device was powered down, then 27167 * it would be 'awakened' to handle the command. 27168 */ 27169 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27170 SD_PATH_STANDARD); 27171 27172 kmem_free(com, sizeof (*com)); 27173 27174 /* Restore the device and soft state target block size */ 27175 if (sr_sector_mode(dev, restore_blksize) != 0) { 27176 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27177 "can't do switch back to mode 1\n"); 27178 /* 27179 * If sd_send_scsi_READ succeeded we still need to report 27180 * an error because we failed to reset the block size 27181 */ 27182 if (rval == 0) { 27183 rval = EIO; 27184 } 27185 } 27186 27187 done: 27188 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27189 "sd_read_mode2: exit: un:0x%p\n", un); 27190 27191 return (rval); 27192 } 27193 27194 27195 /* 27196 * Function: sr_sector_mode() 27197 * 27198 * Description: This utility function is used by sr_read_mode2 to set the target 27199 * block size based on the user specified size. This is a legacy 27200 * implementation based upon a vendor specific mode page 27201 * 27202 * Arguments: dev - the device 'dev_t' 27203 * data - flag indicating if block size is being set to 2336 or 27204 * 512. 27205 * 27206 * Return Code: the code returned by sd_send_scsi_cmd() 27207 * EFAULT if ddi_copyxxx() fails 27208 * ENXIO if fail ddi_get_soft_state 27209 * EINVAL if data pointer is NULL 27210 */ 27211 27212 static int 27213 sr_sector_mode(dev_t dev, uint32_t blksize) 27214 { 27215 struct sd_lun *un; 27216 uchar_t *sense; 27217 uchar_t *select; 27218 int rval; 27219 sd_ssc_t *ssc; 27220 27221 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27222 (un->un_state == SD_STATE_OFFLINE)) { 27223 return (ENXIO); 27224 } 27225 27226 sense = kmem_zalloc(20, KM_SLEEP); 27227 27228 /* Note: This is a vendor specific mode page (0x81) */ 27229 ssc = sd_ssc_init(un); 27230 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81, 27231 SD_PATH_STANDARD); 27232 sd_ssc_fini(ssc); 27233 if (rval != 0) { 27234 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 27235 "sr_sector_mode: Mode Sense failed\n"); 27236 kmem_free(sense, 20); 27237 return (rval); 27238 } 27239 select = kmem_zalloc(20, KM_SLEEP); 27240 select[3] = 0x08; 27241 select[10] = ((blksize >> 8) & 0xff); 27242 select[11] = (blksize & 0xff); 27243 select[12] = 0x01; 27244 select[13] = 0x06; 27245 select[14] = sense[14]; 27246 select[15] = sense[15]; 27247 if (blksize == SD_MODE2_BLKSIZE) { 27248 select[14] |= 0x01; 27249 } 27250 27251 ssc = sd_ssc_init(un); 27252 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20, 27253 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27254 sd_ssc_fini(ssc); 27255 if (rval != 0) { 27256 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 27257 "sr_sector_mode: Mode Select failed\n"); 27258 } else { 27259 /* 27260 * Only update the softstate block size if we successfully 27261 * changed the device block mode. 27262 */ 27263 mutex_enter(SD_MUTEX(un)); 27264 sd_update_block_info(un, blksize, 0); 27265 mutex_exit(SD_MUTEX(un)); 27266 } 27267 kmem_free(sense, 20); 27268 kmem_free(select, 20); 27269 return (rval); 27270 } 27271 27272 27273 /* 27274 * Function: sr_read_cdda() 27275 * 27276 * Description: This routine is the driver entry point for handling CD-ROM 27277 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 27278 * the target supports CDDA these requests are handled via a vendor 27279 * specific command (0xD8) If the target does not support CDDA 27280 * these requests are handled via the READ CD command (0xBE). 27281 * 27282 * Arguments: dev - the device 'dev_t' 27283 * data - pointer to user provided CD-DA structure specifying 27284 * the track starting address, transfer length, and 27285 * subcode options. 27286 * flag - this argument is a pass through to ddi_copyxxx() 27287 * directly from the mode argument of ioctl(). 27288 * 27289 * Return Code: the code returned by sd_send_scsi_cmd() 27290 * EFAULT if ddi_copyxxx() fails 27291 * ENXIO if fail ddi_get_soft_state 27292 * EINVAL if invalid arguments are provided 27293 * ENOTTY 27294 */ 27295 27296 static int 27297 sr_read_cdda(dev_t dev, caddr_t data, int flag) 27298 { 27299 struct sd_lun *un; 27300 struct uscsi_cmd *com; 27301 struct cdrom_cdda *cdda; 27302 int rval; 27303 size_t buflen; 27304 char cdb[CDB_GROUP5]; 27305 27306 #ifdef _MULTI_DATAMODEL 27307 /* To support ILP32 applications in an LP64 world */ 27308 struct cdrom_cdda32 cdrom_cdda32; 27309 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 27310 #endif /* _MULTI_DATAMODEL */ 27311 27312 if (data == NULL) { 27313 return (EINVAL); 27314 } 27315 27316 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27317 return (ENXIO); 27318 } 27319 27320 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 27321 27322 #ifdef _MULTI_DATAMODEL 27323 switch (ddi_model_convert_from(flag & FMODELS)) { 27324 case DDI_MODEL_ILP32: 27325 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 27326 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27327 "sr_read_cdda: ddi_copyin Failed\n"); 27328 kmem_free(cdda, sizeof (struct cdrom_cdda)); 27329 return (EFAULT); 27330 } 27331 /* Convert the ILP32 uscsi data from the application to LP64 */ 27332 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 27333 break; 27334 case DDI_MODEL_NONE: 27335 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 27336 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27337 "sr_read_cdda: ddi_copyin Failed\n"); 27338 kmem_free(cdda, sizeof (struct cdrom_cdda)); 27339 return (EFAULT); 27340 } 27341 break; 27342 } 27343 #else /* ! _MULTI_DATAMODEL */ 27344 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 27345 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27346 "sr_read_cdda: ddi_copyin Failed\n"); 27347 kmem_free(cdda, sizeof (struct cdrom_cdda)); 27348 return (EFAULT); 27349 } 27350 #endif /* _MULTI_DATAMODEL */ 27351 27352 /* 27353 * Since MMC-2 expects max 3 bytes for length, check if the 27354 * length input is greater than 3 bytes 27355 */ 27356 if ((cdda->cdda_length & 0xFF000000) != 0) { 27357 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 27358 "cdrom transfer length too large: %d (limit %d)\n", 27359 cdda->cdda_length, 0xFFFFFF); 27360 kmem_free(cdda, sizeof (struct cdrom_cdda)); 27361 return (EINVAL); 27362 } 27363 27364 switch (cdda->cdda_subcode) { 27365 case CDROM_DA_NO_SUBCODE: 27366 buflen = CDROM_BLK_2352 * cdda->cdda_length; 27367 break; 27368 case CDROM_DA_SUBQ: 27369 buflen = CDROM_BLK_2368 * cdda->cdda_length; 27370 break; 27371 case CDROM_DA_ALL_SUBCODE: 27372 buflen = CDROM_BLK_2448 * cdda->cdda_length; 27373 break; 27374 case CDROM_DA_SUBCODE_ONLY: 27375 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 27376 break; 27377 default: 27378 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27379 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 27380 cdda->cdda_subcode); 27381 kmem_free(cdda, sizeof (struct cdrom_cdda)); 27382 return (EINVAL); 27383 } 27384 27385 /* Build and send the command */ 27386 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27387 bzero(cdb, CDB_GROUP5); 27388 27389 if (un->un_f_cfg_cdda == TRUE) { 27390 cdb[0] = (char)SCMD_READ_CD; 27391 cdb[1] = 0x04; 27392 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 27393 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 27394 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 27395 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 27396 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 27397 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 27398 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 27399 cdb[9] = 0x10; 27400 switch (cdda->cdda_subcode) { 27401 case CDROM_DA_NO_SUBCODE : 27402 cdb[10] = 0x0; 27403 break; 27404 case CDROM_DA_SUBQ : 27405 cdb[10] = 0x2; 27406 break; 27407 case CDROM_DA_ALL_SUBCODE : 27408 cdb[10] = 0x1; 27409 break; 27410 case CDROM_DA_SUBCODE_ONLY : 27411 /* FALLTHROUGH */ 27412 default : 27413 kmem_free(cdda, sizeof (struct cdrom_cdda)); 27414 kmem_free(com, sizeof (*com)); 27415 return (ENOTTY); 27416 } 27417 } else { 27418 cdb[0] = (char)SCMD_READ_CDDA; 27419 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 27420 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 27421 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 27422 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 27423 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 27424 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 27425 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 27426 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 27427 cdb[10] = cdda->cdda_subcode; 27428 } 27429 27430 com->uscsi_cdb = cdb; 27431 com->uscsi_cdblen = CDB_GROUP5; 27432 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 27433 com->uscsi_buflen = buflen; 27434 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27435 27436 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27437 SD_PATH_STANDARD); 27438 27439 kmem_free(cdda, sizeof (struct cdrom_cdda)); 27440 kmem_free(com, sizeof (*com)); 27441 return (rval); 27442 } 27443 27444 27445 /* 27446 * Function: sr_read_cdxa() 27447 * 27448 * Description: This routine is the driver entry point for handling CD-ROM 27449 * ioctl requests to return CD-XA (Extended Architecture) data. 27450 * (CDROMCDXA). 27451 * 27452 * Arguments: dev - the device 'dev_t' 27453 * data - pointer to user provided CD-XA structure specifying 27454 * the data starting address, transfer length, and format 27455 * flag - this argument is a pass through to ddi_copyxxx() 27456 * directly from the mode argument of ioctl(). 27457 * 27458 * Return Code: the code returned by sd_send_scsi_cmd() 27459 * EFAULT if ddi_copyxxx() fails 27460 * ENXIO if fail ddi_get_soft_state 27461 * EINVAL if data pointer is NULL 27462 */ 27463 27464 static int 27465 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 27466 { 27467 struct sd_lun *un; 27468 struct uscsi_cmd *com; 27469 struct cdrom_cdxa *cdxa; 27470 int rval; 27471 size_t buflen; 27472 char cdb[CDB_GROUP5]; 27473 uchar_t read_flags; 27474 27475 #ifdef _MULTI_DATAMODEL 27476 /* To support ILP32 applications in an LP64 world */ 27477 struct cdrom_cdxa32 cdrom_cdxa32; 27478 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 27479 #endif /* _MULTI_DATAMODEL */ 27480 27481 if (data == NULL) { 27482 return (EINVAL); 27483 } 27484 27485 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27486 return (ENXIO); 27487 } 27488 27489 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 27490 27491 #ifdef _MULTI_DATAMODEL 27492 switch (ddi_model_convert_from(flag & FMODELS)) { 27493 case DDI_MODEL_ILP32: 27494 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 27495 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 27496 return (EFAULT); 27497 } 27498 /* 27499 * Convert the ILP32 uscsi data from the 27500 * application to LP64 for internal use. 27501 */ 27502 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 27503 break; 27504 case DDI_MODEL_NONE: 27505 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 27506 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 27507 return (EFAULT); 27508 } 27509 break; 27510 } 27511 #else /* ! _MULTI_DATAMODEL */ 27512 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 27513 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 27514 return (EFAULT); 27515 } 27516 #endif /* _MULTI_DATAMODEL */ 27517 27518 /* 27519 * Since MMC-2 expects max 3 bytes for length, check if the 27520 * length input is greater than 3 bytes 27521 */ 27522 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 27523 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 27524 "cdrom transfer length too large: %d (limit %d)\n", 27525 cdxa->cdxa_length, 0xFFFFFF); 27526 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 27527 return (EINVAL); 27528 } 27529 27530 switch (cdxa->cdxa_format) { 27531 case CDROM_XA_DATA: 27532 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 27533 read_flags = 0x10; 27534 break; 27535 case CDROM_XA_SECTOR_DATA: 27536 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 27537 read_flags = 0xf8; 27538 break; 27539 case CDROM_XA_DATA_W_ERROR: 27540 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 27541 read_flags = 0xfc; 27542 break; 27543 default: 27544 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27545 "sr_read_cdxa: Format '0x%x' Not Supported\n", 27546 cdxa->cdxa_format); 27547 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 27548 return (EINVAL); 27549 } 27550 27551 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27552 bzero(cdb, CDB_GROUP5); 27553 if (un->un_f_mmc_cap == TRUE) { 27554 cdb[0] = (char)SCMD_READ_CD; 27555 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 27556 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 27557 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 27558 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 27559 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 27560 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 27561 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 27562 cdb[9] = (char)read_flags; 27563 } else { 27564 /* 27565 * Note: A vendor specific command (0xDB) is being used her to 27566 * request a read of all subcodes. 27567 */ 27568 cdb[0] = (char)SCMD_READ_CDXA; 27569 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 27570 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 27571 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 27572 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 27573 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 27574 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 27575 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 27576 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 27577 cdb[10] = cdxa->cdxa_format; 27578 } 27579 com->uscsi_cdb = cdb; 27580 com->uscsi_cdblen = CDB_GROUP5; 27581 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 27582 com->uscsi_buflen = buflen; 27583 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27584 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27585 SD_PATH_STANDARD); 27586 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 27587 kmem_free(com, sizeof (*com)); 27588 return (rval); 27589 } 27590 27591 27592 /* 27593 * Function: sr_eject() 27594 * 27595 * Description: This routine is the driver entry point for handling CD-ROM 27596 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 27597 * 27598 * Arguments: dev - the device 'dev_t' 27599 * 27600 * Return Code: the code returned by sd_send_scsi_cmd() 27601 */ 27602 27603 static int 27604 sr_eject(dev_t dev) 27605 { 27606 struct sd_lun *un; 27607 int rval; 27608 sd_ssc_t *ssc; 27609 27610 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27611 (un->un_state == SD_STATE_OFFLINE)) { 27612 return (ENXIO); 27613 } 27614 27615 /* 27616 * To prevent race conditions with the eject 27617 * command, keep track of an eject command as 27618 * it progresses. If we are already handling 27619 * an eject command in the driver for the given 27620 * unit and another request to eject is received 27621 * immediately return EAGAIN so we don't lose 27622 * the command if the current eject command fails. 27623 */ 27624 mutex_enter(SD_MUTEX(un)); 27625 if (un->un_f_ejecting == TRUE) { 27626 mutex_exit(SD_MUTEX(un)); 27627 return (EAGAIN); 27628 } 27629 un->un_f_ejecting = TRUE; 27630 mutex_exit(SD_MUTEX(un)); 27631 27632 ssc = sd_ssc_init(un); 27633 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 27634 SD_PATH_STANDARD); 27635 sd_ssc_fini(ssc); 27636 27637 if (rval != 0) { 27638 mutex_enter(SD_MUTEX(un)); 27639 un->un_f_ejecting = FALSE; 27640 mutex_exit(SD_MUTEX(un)); 27641 return (rval); 27642 } 27643 27644 ssc = sd_ssc_init(un); 27645 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_EJECT, 27646 SD_PATH_STANDARD); 27647 sd_ssc_fini(ssc); 27648 27649 if (rval == 0) { 27650 mutex_enter(SD_MUTEX(un)); 27651 sr_ejected(un); 27652 un->un_mediastate = DKIO_EJECTED; 27653 un->un_f_ejecting = FALSE; 27654 cv_broadcast(&un->un_state_cv); 27655 mutex_exit(SD_MUTEX(un)); 27656 } else { 27657 mutex_enter(SD_MUTEX(un)); 27658 un->un_f_ejecting = FALSE; 27659 mutex_exit(SD_MUTEX(un)); 27660 } 27661 return (rval); 27662 } 27663 27664 27665 /* 27666 * Function: sr_ejected() 27667 * 27668 * Description: This routine updates the soft state structure to invalidate the 27669 * geometry information after the media has been ejected or a 27670 * media eject has been detected. 27671 * 27672 * Arguments: un - driver soft state (unit) structure 27673 */ 27674 27675 static void 27676 sr_ejected(struct sd_lun *un) 27677 { 27678 struct sd_errstats *stp; 27679 27680 ASSERT(un != NULL); 27681 ASSERT(mutex_owned(SD_MUTEX(un))); 27682 27683 un->un_f_blockcount_is_valid = FALSE; 27684 un->un_f_tgt_blocksize_is_valid = FALSE; 27685 mutex_exit(SD_MUTEX(un)); 27686 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 27687 mutex_enter(SD_MUTEX(un)); 27688 27689 if (un->un_errstats != NULL) { 27690 stp = (struct sd_errstats *)un->un_errstats->ks_data; 27691 stp->sd_capacity.value.ui64 = 0; 27692 } 27693 } 27694 27695 27696 /* 27697 * Function: sr_check_wp() 27698 * 27699 * Description: This routine checks the write protection of a removable 27700 * media disk and hotpluggable devices via the write protect bit of 27701 * the Mode Page Header device specific field. Some devices choke 27702 * on unsupported mode page. In order to workaround this issue, 27703 * this routine has been implemented to use 0x3f mode page(request 27704 * for all pages) for all device types. 27705 * 27706 * Arguments: dev - the device 'dev_t' 27707 * 27708 * Return Code: int indicating if the device is write protected (1) or not (0) 27709 * 27710 * Context: Kernel thread. 27711 * 27712 */ 27713 27714 static int 27715 sr_check_wp(dev_t dev) 27716 { 27717 struct sd_lun *un; 27718 uchar_t device_specific; 27719 uchar_t *sense; 27720 int hdrlen; 27721 int rval = FALSE; 27722 int status; 27723 sd_ssc_t *ssc; 27724 27725 /* 27726 * Note: The return codes for this routine should be reworked to 27727 * properly handle the case of a NULL softstate. 27728 */ 27729 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27730 return (FALSE); 27731 } 27732 27733 if (un->un_f_cfg_is_atapi == TRUE) { 27734 /* 27735 * The mode page contents are not required; set the allocation 27736 * length for the mode page header only 27737 */ 27738 hdrlen = MODE_HEADER_LENGTH_GRP2; 27739 sense = kmem_zalloc(hdrlen, KM_SLEEP); 27740 ssc = sd_ssc_init(un); 27741 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen, 27742 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 27743 sd_ssc_fini(ssc); 27744 if (status != 0) 27745 goto err_exit; 27746 device_specific = 27747 ((struct mode_header_grp2 *)sense)->device_specific; 27748 } else { 27749 hdrlen = MODE_HEADER_LENGTH; 27750 sense = kmem_zalloc(hdrlen, KM_SLEEP); 27751 ssc = sd_ssc_init(un); 27752 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen, 27753 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 27754 sd_ssc_fini(ssc); 27755 if (status != 0) 27756 goto err_exit; 27757 device_specific = 27758 ((struct mode_header *)sense)->device_specific; 27759 } 27760 27761 27762 /* 27763 * Write protect mode sense failed; not all disks 27764 * understand this query. Return FALSE assuming that 27765 * these devices are not writable. 27766 */ 27767 if (device_specific & WRITE_PROTECT) { 27768 rval = TRUE; 27769 } 27770 27771 err_exit: 27772 kmem_free(sense, hdrlen); 27773 return (rval); 27774 } 27775 27776 /* 27777 * Function: sr_volume_ctrl() 27778 * 27779 * Description: This routine is the driver entry point for handling CD-ROM 27780 * audio output volume ioctl requests. (CDROMVOLCTRL) 27781 * 27782 * Arguments: dev - the device 'dev_t' 27783 * data - pointer to user audio volume control structure 27784 * flag - this argument is a pass through to ddi_copyxxx() 27785 * directly from the mode argument of ioctl(). 27786 * 27787 * Return Code: the code returned by sd_send_scsi_cmd() 27788 * EFAULT if ddi_copyxxx() fails 27789 * ENXIO if fail ddi_get_soft_state 27790 * EINVAL if data pointer is NULL 27791 * 27792 */ 27793 27794 static int 27795 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 27796 { 27797 struct sd_lun *un; 27798 struct cdrom_volctrl volume; 27799 struct cdrom_volctrl *vol = &volume; 27800 uchar_t *sense_page; 27801 uchar_t *select_page; 27802 uchar_t *sense; 27803 uchar_t *select; 27804 int sense_buflen; 27805 int select_buflen; 27806 int rval; 27807 sd_ssc_t *ssc; 27808 27809 if (data == NULL) { 27810 return (EINVAL); 27811 } 27812 27813 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27814 (un->un_state == SD_STATE_OFFLINE)) { 27815 return (ENXIO); 27816 } 27817 27818 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 27819 return (EFAULT); 27820 } 27821 27822 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 27823 struct mode_header_grp2 *sense_mhp; 27824 struct mode_header_grp2 *select_mhp; 27825 int bd_len; 27826 27827 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 27828 select_buflen = MODE_HEADER_LENGTH_GRP2 + 27829 MODEPAGE_AUDIO_CTRL_LEN; 27830 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 27831 select = kmem_zalloc(select_buflen, KM_SLEEP); 27832 ssc = sd_ssc_init(un); 27833 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 27834 sense_buflen, MODEPAGE_AUDIO_CTRL, 27835 SD_PATH_STANDARD); 27836 sd_ssc_fini(ssc); 27837 27838 if (rval != 0) { 27839 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 27840 "sr_volume_ctrl: Mode Sense Failed\n"); 27841 kmem_free(sense, sense_buflen); 27842 kmem_free(select, select_buflen); 27843 return (rval); 27844 } 27845 sense_mhp = (struct mode_header_grp2 *)sense; 27846 select_mhp = (struct mode_header_grp2 *)select; 27847 bd_len = (sense_mhp->bdesc_length_hi << 8) | 27848 sense_mhp->bdesc_length_lo; 27849 if (bd_len > MODE_BLK_DESC_LENGTH) { 27850 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27851 "sr_volume_ctrl: Mode Sense returned invalid " 27852 "block descriptor length\n"); 27853 kmem_free(sense, sense_buflen); 27854 kmem_free(select, select_buflen); 27855 return (EIO); 27856 } 27857 sense_page = (uchar_t *) 27858 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27859 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 27860 select_mhp->length_msb = 0; 27861 select_mhp->length_lsb = 0; 27862 select_mhp->bdesc_length_hi = 0; 27863 select_mhp->bdesc_length_lo = 0; 27864 } else { 27865 struct mode_header *sense_mhp, *select_mhp; 27866 27867 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 27868 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 27869 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 27870 select = kmem_zalloc(select_buflen, KM_SLEEP); 27871 ssc = sd_ssc_init(un); 27872 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 27873 sense_buflen, MODEPAGE_AUDIO_CTRL, 27874 SD_PATH_STANDARD); 27875 sd_ssc_fini(ssc); 27876 27877 if (rval != 0) { 27878 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27879 "sr_volume_ctrl: Mode Sense Failed\n"); 27880 kmem_free(sense, sense_buflen); 27881 kmem_free(select, select_buflen); 27882 return (rval); 27883 } 27884 sense_mhp = (struct mode_header *)sense; 27885 select_mhp = (struct mode_header *)select; 27886 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 27887 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27888 "sr_volume_ctrl: Mode Sense returned invalid " 27889 "block descriptor length\n"); 27890 kmem_free(sense, sense_buflen); 27891 kmem_free(select, select_buflen); 27892 return (EIO); 27893 } 27894 sense_page = (uchar_t *) 27895 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 27896 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 27897 select_mhp->length = 0; 27898 select_mhp->bdesc_length = 0; 27899 } 27900 /* 27901 * Note: An audio control data structure could be created and overlayed 27902 * on the following in place of the array indexing method implemented. 27903 */ 27904 27905 /* Build the select data for the user volume data */ 27906 select_page[0] = MODEPAGE_AUDIO_CTRL; 27907 select_page[1] = 0xE; 27908 /* Set the immediate bit */ 27909 select_page[2] = 0x04; 27910 /* Zero out reserved fields */ 27911 select_page[3] = 0x00; 27912 select_page[4] = 0x00; 27913 /* Return sense data for fields not to be modified */ 27914 select_page[5] = sense_page[5]; 27915 select_page[6] = sense_page[6]; 27916 select_page[7] = sense_page[7]; 27917 /* Set the user specified volume levels for channel 0 and 1 */ 27918 select_page[8] = 0x01; 27919 select_page[9] = vol->channel0; 27920 select_page[10] = 0x02; 27921 select_page[11] = vol->channel1; 27922 /* Channel 2 and 3 are currently unsupported so return the sense data */ 27923 select_page[12] = sense_page[12]; 27924 select_page[13] = sense_page[13]; 27925 select_page[14] = sense_page[14]; 27926 select_page[15] = sense_page[15]; 27927 27928 ssc = sd_ssc_init(un); 27929 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 27930 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select, 27931 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27932 } else { 27933 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27934 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27935 } 27936 sd_ssc_fini(ssc); 27937 27938 kmem_free(sense, sense_buflen); 27939 kmem_free(select, select_buflen); 27940 return (rval); 27941 } 27942 27943 27944 /* 27945 * Function: sr_read_sony_session_offset() 27946 * 27947 * Description: This routine is the driver entry point for handling CD-ROM 27948 * ioctl requests for session offset information. (CDROMREADOFFSET) 27949 * The address of the first track in the last session of a 27950 * multi-session CD-ROM is returned 27951 * 27952 * Note: This routine uses a vendor specific key value in the 27953 * command control field without implementing any vendor check here 27954 * or in the ioctl routine. 27955 * 27956 * Arguments: dev - the device 'dev_t' 27957 * data - pointer to an int to hold the requested address 27958 * flag - this argument is a pass through to ddi_copyxxx() 27959 * directly from the mode argument of ioctl(). 27960 * 27961 * Return Code: the code returned by sd_send_scsi_cmd() 27962 * EFAULT if ddi_copyxxx() fails 27963 * ENXIO if fail ddi_get_soft_state 27964 * EINVAL if data pointer is NULL 27965 */ 27966 27967 static int 27968 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 27969 { 27970 struct sd_lun *un; 27971 struct uscsi_cmd *com; 27972 caddr_t buffer; 27973 char cdb[CDB_GROUP1]; 27974 int session_offset = 0; 27975 int rval; 27976 27977 if (data == NULL) { 27978 return (EINVAL); 27979 } 27980 27981 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27982 (un->un_state == SD_STATE_OFFLINE)) { 27983 return (ENXIO); 27984 } 27985 27986 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 27987 bzero(cdb, CDB_GROUP1); 27988 cdb[0] = SCMD_READ_TOC; 27989 /* 27990 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27991 * (4 byte TOC response header + 8 byte response data) 27992 */ 27993 cdb[8] = SONY_SESSION_OFFSET_LEN; 27994 /* Byte 9 is the control byte. A vendor specific value is used */ 27995 cdb[9] = SONY_SESSION_OFFSET_KEY; 27996 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27997 com->uscsi_cdb = cdb; 27998 com->uscsi_cdblen = CDB_GROUP1; 27999 com->uscsi_bufaddr = buffer; 28000 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 28001 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28002 28003 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28004 SD_PATH_STANDARD); 28005 if (rval != 0) { 28006 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 28007 kmem_free(com, sizeof (*com)); 28008 return (rval); 28009 } 28010 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 28011 session_offset = 28012 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 28013 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 28014 /* 28015 * Offset returned offset in current lbasize block's. Convert to 28016 * 2k block's to return to the user 28017 */ 28018 if (un->un_tgt_blocksize == CDROM_BLK_512) { 28019 session_offset >>= 2; 28020 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 28021 session_offset >>= 1; 28022 } 28023 } 28024 28025 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 28026 rval = EFAULT; 28027 } 28028 28029 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 28030 kmem_free(com, sizeof (*com)); 28031 return (rval); 28032 } 28033 28034 28035 /* 28036 * Function: sd_wm_cache_constructor() 28037 * 28038 * Description: Cache Constructor for the wmap cache for the read/modify/write 28039 * devices. 28040 * 28041 * Arguments: wm - A pointer to the sd_w_map to be initialized. 28042 * un - sd_lun structure for the device. 28043 * flag - the km flags passed to constructor 28044 * 28045 * Return Code: 0 on success. 28046 * -1 on failure. 28047 */ 28048 28049 /*ARGSUSED*/ 28050 static int 28051 sd_wm_cache_constructor(void *wm, void *un, int flags) 28052 { 28053 bzero(wm, sizeof (struct sd_w_map)); 28054 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 28055 return (0); 28056 } 28057 28058 28059 /* 28060 * Function: sd_wm_cache_destructor() 28061 * 28062 * Description: Cache destructor for the wmap cache for the read/modify/write 28063 * devices. 28064 * 28065 * Arguments: wm - A pointer to the sd_w_map to be initialized. 28066 * un - sd_lun structure for the device. 28067 */ 28068 /*ARGSUSED*/ 28069 static void 28070 sd_wm_cache_destructor(void *wm, void *un) 28071 { 28072 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 28073 } 28074 28075 28076 /* 28077 * Function: sd_range_lock() 28078 * 28079 * Description: Lock the range of blocks specified as parameter to ensure 28080 * that read, modify write is atomic and no other i/o writes 28081 * to the same location. The range is specified in terms 28082 * of start and end blocks. Block numbers are the actual 28083 * media block numbers and not system. 28084 * 28085 * Arguments: un - sd_lun structure for the device. 28086 * startb - The starting block number 28087 * endb - The end block number 28088 * typ - type of i/o - simple/read_modify_write 28089 * 28090 * Return Code: wm - pointer to the wmap structure. 28091 * 28092 * Context: This routine can sleep. 28093 */ 28094 28095 static struct sd_w_map * 28096 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 28097 { 28098 struct sd_w_map *wmp = NULL; 28099 struct sd_w_map *sl_wmp = NULL; 28100 struct sd_w_map *tmp_wmp; 28101 wm_state state = SD_WM_CHK_LIST; 28102 28103 28104 ASSERT(un != NULL); 28105 ASSERT(!mutex_owned(SD_MUTEX(un))); 28106 28107 mutex_enter(SD_MUTEX(un)); 28108 28109 while (state != SD_WM_DONE) { 28110 28111 switch (state) { 28112 case SD_WM_CHK_LIST: 28113 /* 28114 * This is the starting state. Check the wmap list 28115 * to see if the range is currently available. 28116 */ 28117 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 28118 /* 28119 * If this is a simple write and no rmw 28120 * i/o is pending then try to lock the 28121 * range as the range should be available. 28122 */ 28123 state = SD_WM_LOCK_RANGE; 28124 } else { 28125 tmp_wmp = sd_get_range(un, startb, endb); 28126 if (tmp_wmp != NULL) { 28127 if ((wmp != NULL) && ONLIST(un, wmp)) { 28128 /* 28129 * Should not keep onlist wmps 28130 * while waiting this macro 28131 * will also do wmp = NULL; 28132 */ 28133 FREE_ONLIST_WMAP(un, wmp); 28134 } 28135 /* 28136 * sl_wmp is the wmap on which wait 28137 * is done, since the tmp_wmp points 28138 * to the inuse wmap, set sl_wmp to 28139 * tmp_wmp and change the state to sleep 28140 */ 28141 sl_wmp = tmp_wmp; 28142 state = SD_WM_WAIT_MAP; 28143 } else { 28144 state = SD_WM_LOCK_RANGE; 28145 } 28146 28147 } 28148 break; 28149 28150 case SD_WM_LOCK_RANGE: 28151 ASSERT(un->un_wm_cache); 28152 /* 28153 * The range need to be locked, try to get a wmap. 28154 * First attempt it with NO_SLEEP, want to avoid a sleep 28155 * if possible as we will have to release the sd mutex 28156 * if we have to sleep. 28157 */ 28158 if (wmp == NULL) 28159 wmp = kmem_cache_alloc(un->un_wm_cache, 28160 KM_NOSLEEP); 28161 if (wmp == NULL) { 28162 mutex_exit(SD_MUTEX(un)); 28163 _NOTE(DATA_READABLE_WITHOUT_LOCK 28164 (sd_lun::un_wm_cache)) 28165 wmp = kmem_cache_alloc(un->un_wm_cache, 28166 KM_SLEEP); 28167 mutex_enter(SD_MUTEX(un)); 28168 /* 28169 * we released the mutex so recheck and go to 28170 * check list state. 28171 */ 28172 state = SD_WM_CHK_LIST; 28173 } else { 28174 /* 28175 * We exit out of state machine since we 28176 * have the wmap. Do the housekeeping first. 28177 * place the wmap on the wmap list if it is not 28178 * on it already and then set the state to done. 28179 */ 28180 wmp->wm_start = startb; 28181 wmp->wm_end = endb; 28182 wmp->wm_flags = typ | SD_WM_BUSY; 28183 if (typ & SD_WTYPE_RMW) { 28184 un->un_rmw_count++; 28185 } 28186 /* 28187 * If not already on the list then link 28188 */ 28189 if (!ONLIST(un, wmp)) { 28190 wmp->wm_next = un->un_wm; 28191 wmp->wm_prev = NULL; 28192 if (wmp->wm_next) 28193 wmp->wm_next->wm_prev = wmp; 28194 un->un_wm = wmp; 28195 } 28196 state = SD_WM_DONE; 28197 } 28198 break; 28199 28200 case SD_WM_WAIT_MAP: 28201 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 28202 /* 28203 * Wait is done on sl_wmp, which is set in the 28204 * check_list state. 28205 */ 28206 sl_wmp->wm_wanted_count++; 28207 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 28208 sl_wmp->wm_wanted_count--; 28209 /* 28210 * We can reuse the memory from the completed sl_wmp 28211 * lock range for our new lock, but only if noone is 28212 * waiting for it. 28213 */ 28214 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 28215 if (sl_wmp->wm_wanted_count == 0) { 28216 if (wmp != NULL) 28217 CHK_N_FREEWMP(un, wmp); 28218 wmp = sl_wmp; 28219 } 28220 sl_wmp = NULL; 28221 /* 28222 * After waking up, need to recheck for availability of 28223 * range. 28224 */ 28225 state = SD_WM_CHK_LIST; 28226 break; 28227 28228 default: 28229 panic("sd_range_lock: " 28230 "Unknown state %d in sd_range_lock", state); 28231 /*NOTREACHED*/ 28232 } /* switch(state) */ 28233 28234 } /* while(state != SD_WM_DONE) */ 28235 28236 mutex_exit(SD_MUTEX(un)); 28237 28238 ASSERT(wmp != NULL); 28239 28240 return (wmp); 28241 } 28242 28243 28244 /* 28245 * Function: sd_get_range() 28246 * 28247 * Description: Find if there any overlapping I/O to this one 28248 * Returns the write-map of 1st such I/O, NULL otherwise. 28249 * 28250 * Arguments: un - sd_lun structure for the device. 28251 * startb - The starting block number 28252 * endb - The end block number 28253 * 28254 * Return Code: wm - pointer to the wmap structure. 28255 */ 28256 28257 static struct sd_w_map * 28258 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 28259 { 28260 struct sd_w_map *wmp; 28261 28262 ASSERT(un != NULL); 28263 28264 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 28265 if (!(wmp->wm_flags & SD_WM_BUSY)) { 28266 continue; 28267 } 28268 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 28269 break; 28270 } 28271 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 28272 break; 28273 } 28274 } 28275 28276 return (wmp); 28277 } 28278 28279 28280 /* 28281 * Function: sd_free_inlist_wmap() 28282 * 28283 * Description: Unlink and free a write map struct. 28284 * 28285 * Arguments: un - sd_lun structure for the device. 28286 * wmp - sd_w_map which needs to be unlinked. 28287 */ 28288 28289 static void 28290 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 28291 { 28292 ASSERT(un != NULL); 28293 28294 if (un->un_wm == wmp) { 28295 un->un_wm = wmp->wm_next; 28296 } else { 28297 wmp->wm_prev->wm_next = wmp->wm_next; 28298 } 28299 28300 if (wmp->wm_next) { 28301 wmp->wm_next->wm_prev = wmp->wm_prev; 28302 } 28303 28304 wmp->wm_next = wmp->wm_prev = NULL; 28305 28306 kmem_cache_free(un->un_wm_cache, wmp); 28307 } 28308 28309 28310 /* 28311 * Function: sd_range_unlock() 28312 * 28313 * Description: Unlock the range locked by wm. 28314 * Free write map if nobody else is waiting on it. 28315 * 28316 * Arguments: un - sd_lun structure for the device. 28317 * wmp - sd_w_map which needs to be unlinked. 28318 */ 28319 28320 static void 28321 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 28322 { 28323 ASSERT(un != NULL); 28324 ASSERT(wm != NULL); 28325 ASSERT(!mutex_owned(SD_MUTEX(un))); 28326 28327 mutex_enter(SD_MUTEX(un)); 28328 28329 if (wm->wm_flags & SD_WTYPE_RMW) { 28330 un->un_rmw_count--; 28331 } 28332 28333 if (wm->wm_wanted_count) { 28334 wm->wm_flags = 0; 28335 /* 28336 * Broadcast that the wmap is available now. 28337 */ 28338 cv_broadcast(&wm->wm_avail); 28339 } else { 28340 /* 28341 * If no one is waiting on the map, it should be free'ed. 28342 */ 28343 sd_free_inlist_wmap(un, wm); 28344 } 28345 28346 mutex_exit(SD_MUTEX(un)); 28347 } 28348 28349 28350 /* 28351 * Function: sd_read_modify_write_task 28352 * 28353 * Description: Called from a taskq thread to initiate the write phase of 28354 * a read-modify-write request. This is used for targets where 28355 * un->un_sys_blocksize != un->un_tgt_blocksize. 28356 * 28357 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 28358 * 28359 * Context: Called under taskq thread context. 28360 */ 28361 28362 static void 28363 sd_read_modify_write_task(void *arg) 28364 { 28365 struct sd_mapblocksize_info *bsp; 28366 struct buf *bp; 28367 struct sd_xbuf *xp; 28368 struct sd_lun *un; 28369 28370 bp = arg; /* The bp is given in arg */ 28371 ASSERT(bp != NULL); 28372 28373 /* Get the pointer to the layer-private data struct */ 28374 xp = SD_GET_XBUF(bp); 28375 ASSERT(xp != NULL); 28376 bsp = xp->xb_private; 28377 ASSERT(bsp != NULL); 28378 28379 un = SD_GET_UN(bp); 28380 ASSERT(un != NULL); 28381 ASSERT(!mutex_owned(SD_MUTEX(un))); 28382 28383 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 28384 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 28385 28386 /* 28387 * This is the write phase of a read-modify-write request, called 28388 * under the context of a taskq thread in response to the completion 28389 * of the read portion of the rmw request completing under interrupt 28390 * context. The write request must be sent from here down the iostart 28391 * chain as if it were being sent from sd_mapblocksize_iostart(), so 28392 * we use the layer index saved in the layer-private data area. 28393 */ 28394 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 28395 28396 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 28397 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 28398 } 28399 28400 28401 /* 28402 * Function: sddump_do_read_of_rmw() 28403 * 28404 * Description: This routine will be called from sddump, If sddump is called 28405 * with an I/O which not aligned on device blocksize boundary 28406 * then the write has to be converted to read-modify-write. 28407 * Do the read part here in order to keep sddump simple. 28408 * Note - That the sd_mutex is held across the call to this 28409 * routine. 28410 * 28411 * Arguments: un - sd_lun 28412 * blkno - block number in terms of media block size. 28413 * nblk - number of blocks. 28414 * bpp - pointer to pointer to the buf structure. On return 28415 * from this function, *bpp points to the valid buffer 28416 * to which the write has to be done. 28417 * 28418 * Return Code: 0 for success or errno-type return code 28419 */ 28420 28421 static int 28422 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 28423 struct buf **bpp) 28424 { 28425 int err; 28426 int i; 28427 int rval; 28428 struct buf *bp; 28429 struct scsi_pkt *pkt = NULL; 28430 uint32_t target_blocksize; 28431 28432 ASSERT(un != NULL); 28433 ASSERT(mutex_owned(SD_MUTEX(un))); 28434 28435 target_blocksize = un->un_tgt_blocksize; 28436 28437 mutex_exit(SD_MUTEX(un)); 28438 28439 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 28440 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 28441 if (bp == NULL) { 28442 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28443 "no resources for dumping; giving up"); 28444 err = ENOMEM; 28445 goto done; 28446 } 28447 28448 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 28449 blkno, nblk); 28450 if (rval != 0) { 28451 scsi_free_consistent_buf(bp); 28452 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28453 "no resources for dumping; giving up"); 28454 err = ENOMEM; 28455 goto done; 28456 } 28457 28458 pkt->pkt_flags |= FLAG_NOINTR; 28459 28460 err = EIO; 28461 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 28462 28463 /* 28464 * Scsi_poll returns 0 (success) if the command completes and 28465 * the status block is STATUS_GOOD. We should only check 28466 * errors if this condition is not true. Even then we should 28467 * send our own request sense packet only if we have a check 28468 * condition and auto request sense has not been performed by 28469 * the hba. 28470 */ 28471 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 28472 28473 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 28474 err = 0; 28475 break; 28476 } 28477 28478 /* 28479 * Check CMD_DEV_GONE 1st, give up if device is gone, 28480 * no need to read RQS data. 28481 */ 28482 if (pkt->pkt_reason == CMD_DEV_GONE) { 28483 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28484 "Error while dumping state with rmw..." 28485 "Device is gone\n"); 28486 break; 28487 } 28488 28489 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 28490 SD_INFO(SD_LOG_DUMP, un, 28491 "sddump: read failed with CHECK, try # %d\n", i); 28492 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 28493 (void) sd_send_polled_RQS(un); 28494 } 28495 28496 continue; 28497 } 28498 28499 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 28500 int reset_retval = 0; 28501 28502 SD_INFO(SD_LOG_DUMP, un, 28503 "sddump: read failed with BUSY, try # %d\n", i); 28504 28505 if (un->un_f_lun_reset_enabled == TRUE) { 28506 reset_retval = scsi_reset(SD_ADDRESS(un), 28507 RESET_LUN); 28508 } 28509 if (reset_retval == 0) { 28510 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 28511 } 28512 (void) sd_send_polled_RQS(un); 28513 28514 } else { 28515 SD_INFO(SD_LOG_DUMP, un, 28516 "sddump: read failed with 0x%x, try # %d\n", 28517 SD_GET_PKT_STATUS(pkt), i); 28518 mutex_enter(SD_MUTEX(un)); 28519 sd_reset_target(un, pkt); 28520 mutex_exit(SD_MUTEX(un)); 28521 } 28522 28523 /* 28524 * If we are not getting anywhere with lun/target resets, 28525 * let's reset the bus. 28526 */ 28527 if (i > SD_NDUMP_RETRIES/2) { 28528 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 28529 (void) sd_send_polled_RQS(un); 28530 } 28531 28532 } 28533 scsi_destroy_pkt(pkt); 28534 28535 if (err != 0) { 28536 scsi_free_consistent_buf(bp); 28537 *bpp = NULL; 28538 } else { 28539 *bpp = bp; 28540 } 28541 28542 done: 28543 mutex_enter(SD_MUTEX(un)); 28544 return (err); 28545 } 28546 28547 28548 /* 28549 * Function: sd_failfast_flushq 28550 * 28551 * Description: Take all bp's on the wait queue that have B_FAILFAST set 28552 * in b_flags and move them onto the failfast queue, then kick 28553 * off a thread to return all bp's on the failfast queue to 28554 * their owners with an error set. 28555 * 28556 * Arguments: un - pointer to the soft state struct for the instance. 28557 * 28558 * Context: may execute in interrupt context. 28559 */ 28560 28561 static void 28562 sd_failfast_flushq(struct sd_lun *un) 28563 { 28564 struct buf *bp; 28565 struct buf *next_waitq_bp; 28566 struct buf *prev_waitq_bp = NULL; 28567 28568 ASSERT(un != NULL); 28569 ASSERT(mutex_owned(SD_MUTEX(un))); 28570 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 28571 ASSERT(un->un_failfast_bp == NULL); 28572 28573 SD_TRACE(SD_LOG_IO_FAILFAST, un, 28574 "sd_failfast_flushq: entry: un:0x%p\n", un); 28575 28576 /* 28577 * Check if we should flush all bufs when entering failfast state, or 28578 * just those with B_FAILFAST set. 28579 */ 28580 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 28581 /* 28582 * Move *all* bp's on the wait queue to the failfast flush 28583 * queue, including those that do NOT have B_FAILFAST set. 28584 */ 28585 if (un->un_failfast_headp == NULL) { 28586 ASSERT(un->un_failfast_tailp == NULL); 28587 un->un_failfast_headp = un->un_waitq_headp; 28588 } else { 28589 ASSERT(un->un_failfast_tailp != NULL); 28590 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 28591 } 28592 28593 un->un_failfast_tailp = un->un_waitq_tailp; 28594 28595 /* update kstat for each bp moved out of the waitq */ 28596 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 28597 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 28598 } 28599 28600 /* empty the waitq */ 28601 un->un_waitq_headp = un->un_waitq_tailp = NULL; 28602 28603 } else { 28604 /* 28605 * Go thru the wait queue, pick off all entries with 28606 * B_FAILFAST set, and move these onto the failfast queue. 28607 */ 28608 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 28609 /* 28610 * Save the pointer to the next bp on the wait queue, 28611 * so we get to it on the next iteration of this loop. 28612 */ 28613 next_waitq_bp = bp->av_forw; 28614 28615 /* 28616 * If this bp from the wait queue does NOT have 28617 * B_FAILFAST set, just move on to the next element 28618 * in the wait queue. Note, this is the only place 28619 * where it is correct to set prev_waitq_bp. 28620 */ 28621 if ((bp->b_flags & B_FAILFAST) == 0) { 28622 prev_waitq_bp = bp; 28623 continue; 28624 } 28625 28626 /* 28627 * Remove the bp from the wait queue. 28628 */ 28629 if (bp == un->un_waitq_headp) { 28630 /* The bp is the first element of the waitq. */ 28631 un->un_waitq_headp = next_waitq_bp; 28632 if (un->un_waitq_headp == NULL) { 28633 /* The wait queue is now empty */ 28634 un->un_waitq_tailp = NULL; 28635 } 28636 } else { 28637 /* 28638 * The bp is either somewhere in the middle 28639 * or at the end of the wait queue. 28640 */ 28641 ASSERT(un->un_waitq_headp != NULL); 28642 ASSERT(prev_waitq_bp != NULL); 28643 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 28644 == 0); 28645 if (bp == un->un_waitq_tailp) { 28646 /* bp is the last entry on the waitq. */ 28647 ASSERT(next_waitq_bp == NULL); 28648 un->un_waitq_tailp = prev_waitq_bp; 28649 } 28650 prev_waitq_bp->av_forw = next_waitq_bp; 28651 } 28652 bp->av_forw = NULL; 28653 28654 /* 28655 * update kstat since the bp is moved out of 28656 * the waitq 28657 */ 28658 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 28659 28660 /* 28661 * Now put the bp onto the failfast queue. 28662 */ 28663 if (un->un_failfast_headp == NULL) { 28664 /* failfast queue is currently empty */ 28665 ASSERT(un->un_failfast_tailp == NULL); 28666 un->un_failfast_headp = 28667 un->un_failfast_tailp = bp; 28668 } else { 28669 /* Add the bp to the end of the failfast q */ 28670 ASSERT(un->un_failfast_tailp != NULL); 28671 ASSERT(un->un_failfast_tailp->b_flags & 28672 B_FAILFAST); 28673 un->un_failfast_tailp->av_forw = bp; 28674 un->un_failfast_tailp = bp; 28675 } 28676 } 28677 } 28678 28679 /* 28680 * Now return all bp's on the failfast queue to their owners. 28681 */ 28682 while ((bp = un->un_failfast_headp) != NULL) { 28683 28684 un->un_failfast_headp = bp->av_forw; 28685 if (un->un_failfast_headp == NULL) { 28686 un->un_failfast_tailp = NULL; 28687 } 28688 28689 /* 28690 * We want to return the bp with a failure error code, but 28691 * we do not want a call to sd_start_cmds() to occur here, 28692 * so use sd_return_failed_command_no_restart() instead of 28693 * sd_return_failed_command(). 28694 */ 28695 sd_return_failed_command_no_restart(un, bp, EIO); 28696 } 28697 28698 /* Flush the xbuf queues if required. */ 28699 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 28700 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 28701 } 28702 28703 SD_TRACE(SD_LOG_IO_FAILFAST, un, 28704 "sd_failfast_flushq: exit: un:0x%p\n", un); 28705 } 28706 28707 28708 /* 28709 * Function: sd_failfast_flushq_callback 28710 * 28711 * Description: Return TRUE if the given bp meets the criteria for failfast 28712 * flushing. Used with ddi_xbuf_flushq(9F). 28713 * 28714 * Arguments: bp - ptr to buf struct to be examined. 28715 * 28716 * Context: Any 28717 */ 28718 28719 static int 28720 sd_failfast_flushq_callback(struct buf *bp) 28721 { 28722 /* 28723 * Return TRUE if (1) we want to flush ALL bufs when the failfast 28724 * state is entered; OR (2) the given bp has B_FAILFAST set. 28725 */ 28726 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 28727 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 28728 } 28729 28730 28731 28732 /* 28733 * Function: sd_setup_next_xfer 28734 * 28735 * Description: Prepare next I/O operation using DMA_PARTIAL 28736 * 28737 */ 28738 28739 static int 28740 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 28741 struct scsi_pkt *pkt, struct sd_xbuf *xp) 28742 { 28743 ssize_t num_blks_not_xfered; 28744 daddr_t strt_blk_num; 28745 ssize_t bytes_not_xfered; 28746 int rval; 28747 28748 ASSERT(pkt->pkt_resid == 0); 28749 28750 /* 28751 * Calculate next block number and amount to be transferred. 28752 * 28753 * How much data NOT transfered to the HBA yet. 28754 */ 28755 bytes_not_xfered = xp->xb_dma_resid; 28756 28757 /* 28758 * figure how many blocks NOT transfered to the HBA yet. 28759 */ 28760 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 28761 28762 /* 28763 * set starting block number to the end of what WAS transfered. 28764 */ 28765 strt_blk_num = xp->xb_blkno + 28766 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 28767 28768 /* 28769 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 28770 * will call scsi_initpkt with NULL_FUNC so we do not have to release 28771 * the disk mutex here. 28772 */ 28773 rval = sd_setup_next_rw_pkt(un, pkt, bp, 28774 strt_blk_num, num_blks_not_xfered); 28775 28776 if (rval == 0) { 28777 28778 /* 28779 * Success. 28780 * 28781 * Adjust things if there are still more blocks to be 28782 * transfered. 28783 */ 28784 xp->xb_dma_resid = pkt->pkt_resid; 28785 pkt->pkt_resid = 0; 28786 28787 return (1); 28788 } 28789 28790 /* 28791 * There's really only one possible return value from 28792 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 28793 * returns NULL. 28794 */ 28795 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 28796 28797 bp->b_resid = bp->b_bcount; 28798 bp->b_flags |= B_ERROR; 28799 28800 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28801 "Error setting up next portion of DMA transfer\n"); 28802 28803 return (0); 28804 } 28805 28806 /* 28807 * Function: sd_panic_for_res_conflict 28808 * 28809 * Description: Call panic with a string formatted with "Reservation Conflict" 28810 * and a human readable identifier indicating the SD instance 28811 * that experienced the reservation conflict. 28812 * 28813 * Arguments: un - pointer to the soft state struct for the instance. 28814 * 28815 * Context: may execute in interrupt context. 28816 */ 28817 28818 #define SD_RESV_CONFLICT_FMT_LEN 40 28819 void 28820 sd_panic_for_res_conflict(struct sd_lun *un) 28821 { 28822 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 28823 char path_str[MAXPATHLEN]; 28824 28825 (void) snprintf(panic_str, sizeof (panic_str), 28826 "Reservation Conflict\nDisk: %s", 28827 ddi_pathname(SD_DEVINFO(un), path_str)); 28828 28829 panic(panic_str); 28830 } 28831 28832 /* 28833 * Note: The following sd_faultinjection_ioctl( ) routines implement 28834 * driver support for handling fault injection for error analysis 28835 * causing faults in multiple layers of the driver. 28836 * 28837 */ 28838 28839 #ifdef SD_FAULT_INJECTION 28840 static uint_t sd_fault_injection_on = 0; 28841 28842 /* 28843 * Function: sd_faultinjection_ioctl() 28844 * 28845 * Description: This routine is the driver entry point for handling 28846 * faultinjection ioctls to inject errors into the 28847 * layer model 28848 * 28849 * Arguments: cmd - the ioctl cmd received 28850 * arg - the arguments from user and returns 28851 */ 28852 28853 static void 28854 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 28855 28856 uint_t i = 0; 28857 uint_t rval; 28858 28859 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 28860 28861 mutex_enter(SD_MUTEX(un)); 28862 28863 switch (cmd) { 28864 case SDIOCRUN: 28865 /* Allow pushed faults to be injected */ 28866 SD_INFO(SD_LOG_SDTEST, un, 28867 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 28868 28869 sd_fault_injection_on = 1; 28870 28871 SD_INFO(SD_LOG_IOERR, un, 28872 "sd_faultinjection_ioctl: run finished\n"); 28873 break; 28874 28875 case SDIOCSTART: 28876 /* Start Injection Session */ 28877 SD_INFO(SD_LOG_SDTEST, un, 28878 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 28879 28880 sd_fault_injection_on = 0; 28881 un->sd_injection_mask = 0xFFFFFFFF; 28882 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 28883 un->sd_fi_fifo_pkt[i] = NULL; 28884 un->sd_fi_fifo_xb[i] = NULL; 28885 un->sd_fi_fifo_un[i] = NULL; 28886 un->sd_fi_fifo_arq[i] = NULL; 28887 } 28888 un->sd_fi_fifo_start = 0; 28889 un->sd_fi_fifo_end = 0; 28890 28891 mutex_enter(&(un->un_fi_mutex)); 28892 un->sd_fi_log[0] = '\0'; 28893 un->sd_fi_buf_len = 0; 28894 mutex_exit(&(un->un_fi_mutex)); 28895 28896 SD_INFO(SD_LOG_IOERR, un, 28897 "sd_faultinjection_ioctl: start finished\n"); 28898 break; 28899 28900 case SDIOCSTOP: 28901 /* Stop Injection Session */ 28902 SD_INFO(SD_LOG_SDTEST, un, 28903 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 28904 sd_fault_injection_on = 0; 28905 un->sd_injection_mask = 0x0; 28906 28907 /* Empty stray or unuseds structs from fifo */ 28908 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 28909 if (un->sd_fi_fifo_pkt[i] != NULL) { 28910 kmem_free(un->sd_fi_fifo_pkt[i], 28911 sizeof (struct sd_fi_pkt)); 28912 } 28913 if (un->sd_fi_fifo_xb[i] != NULL) { 28914 kmem_free(un->sd_fi_fifo_xb[i], 28915 sizeof (struct sd_fi_xb)); 28916 } 28917 if (un->sd_fi_fifo_un[i] != NULL) { 28918 kmem_free(un->sd_fi_fifo_un[i], 28919 sizeof (struct sd_fi_un)); 28920 } 28921 if (un->sd_fi_fifo_arq[i] != NULL) { 28922 kmem_free(un->sd_fi_fifo_arq[i], 28923 sizeof (struct sd_fi_arq)); 28924 } 28925 un->sd_fi_fifo_pkt[i] = NULL; 28926 un->sd_fi_fifo_un[i] = NULL; 28927 un->sd_fi_fifo_xb[i] = NULL; 28928 un->sd_fi_fifo_arq[i] = NULL; 28929 } 28930 un->sd_fi_fifo_start = 0; 28931 un->sd_fi_fifo_end = 0; 28932 28933 SD_INFO(SD_LOG_IOERR, un, 28934 "sd_faultinjection_ioctl: stop finished\n"); 28935 break; 28936 28937 case SDIOCINSERTPKT: 28938 /* Store a packet struct to be pushed onto fifo */ 28939 SD_INFO(SD_LOG_SDTEST, un, 28940 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 28941 28942 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 28943 28944 sd_fault_injection_on = 0; 28945 28946 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 28947 if (un->sd_fi_fifo_pkt[i] != NULL) { 28948 kmem_free(un->sd_fi_fifo_pkt[i], 28949 sizeof (struct sd_fi_pkt)); 28950 } 28951 if (arg != NULL) { 28952 un->sd_fi_fifo_pkt[i] = 28953 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 28954 if (un->sd_fi_fifo_pkt[i] == NULL) { 28955 /* Alloc failed don't store anything */ 28956 break; 28957 } 28958 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 28959 sizeof (struct sd_fi_pkt), 0); 28960 if (rval == -1) { 28961 kmem_free(un->sd_fi_fifo_pkt[i], 28962 sizeof (struct sd_fi_pkt)); 28963 un->sd_fi_fifo_pkt[i] = NULL; 28964 } 28965 } else { 28966 SD_INFO(SD_LOG_IOERR, un, 28967 "sd_faultinjection_ioctl: pkt null\n"); 28968 } 28969 break; 28970 28971 case SDIOCINSERTXB: 28972 /* Store a xb struct to be pushed onto fifo */ 28973 SD_INFO(SD_LOG_SDTEST, un, 28974 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 28975 28976 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 28977 28978 sd_fault_injection_on = 0; 28979 28980 if (un->sd_fi_fifo_xb[i] != NULL) { 28981 kmem_free(un->sd_fi_fifo_xb[i], 28982 sizeof (struct sd_fi_xb)); 28983 un->sd_fi_fifo_xb[i] = NULL; 28984 } 28985 if (arg != NULL) { 28986 un->sd_fi_fifo_xb[i] = 28987 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 28988 if (un->sd_fi_fifo_xb[i] == NULL) { 28989 /* Alloc failed don't store anything */ 28990 break; 28991 } 28992 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 28993 sizeof (struct sd_fi_xb), 0); 28994 28995 if (rval == -1) { 28996 kmem_free(un->sd_fi_fifo_xb[i], 28997 sizeof (struct sd_fi_xb)); 28998 un->sd_fi_fifo_xb[i] = NULL; 28999 } 29000 } else { 29001 SD_INFO(SD_LOG_IOERR, un, 29002 "sd_faultinjection_ioctl: xb null\n"); 29003 } 29004 break; 29005 29006 case SDIOCINSERTUN: 29007 /* Store a un struct to be pushed onto fifo */ 29008 SD_INFO(SD_LOG_SDTEST, un, 29009 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 29010 29011 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 29012 29013 sd_fault_injection_on = 0; 29014 29015 if (un->sd_fi_fifo_un[i] != NULL) { 29016 kmem_free(un->sd_fi_fifo_un[i], 29017 sizeof (struct sd_fi_un)); 29018 un->sd_fi_fifo_un[i] = NULL; 29019 } 29020 if (arg != NULL) { 29021 un->sd_fi_fifo_un[i] = 29022 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 29023 if (un->sd_fi_fifo_un[i] == NULL) { 29024 /* Alloc failed don't store anything */ 29025 break; 29026 } 29027 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 29028 sizeof (struct sd_fi_un), 0); 29029 if (rval == -1) { 29030 kmem_free(un->sd_fi_fifo_un[i], 29031 sizeof (struct sd_fi_un)); 29032 un->sd_fi_fifo_un[i] = NULL; 29033 } 29034 29035 } else { 29036 SD_INFO(SD_LOG_IOERR, un, 29037 "sd_faultinjection_ioctl: un null\n"); 29038 } 29039 29040 break; 29041 29042 case SDIOCINSERTARQ: 29043 /* Store a arq struct to be pushed onto fifo */ 29044 SD_INFO(SD_LOG_SDTEST, un, 29045 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 29046 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 29047 29048 sd_fault_injection_on = 0; 29049 29050 if (un->sd_fi_fifo_arq[i] != NULL) { 29051 kmem_free(un->sd_fi_fifo_arq[i], 29052 sizeof (struct sd_fi_arq)); 29053 un->sd_fi_fifo_arq[i] = NULL; 29054 } 29055 if (arg != NULL) { 29056 un->sd_fi_fifo_arq[i] = 29057 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 29058 if (un->sd_fi_fifo_arq[i] == NULL) { 29059 /* Alloc failed don't store anything */ 29060 break; 29061 } 29062 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 29063 sizeof (struct sd_fi_arq), 0); 29064 if (rval == -1) { 29065 kmem_free(un->sd_fi_fifo_arq[i], 29066 sizeof (struct sd_fi_arq)); 29067 un->sd_fi_fifo_arq[i] = NULL; 29068 } 29069 29070 } else { 29071 SD_INFO(SD_LOG_IOERR, un, 29072 "sd_faultinjection_ioctl: arq null\n"); 29073 } 29074 29075 break; 29076 29077 case SDIOCPUSH: 29078 /* Push stored xb, pkt, un, and arq onto fifo */ 29079 sd_fault_injection_on = 0; 29080 29081 if (arg != NULL) { 29082 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 29083 if (rval != -1 && 29084 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 29085 un->sd_fi_fifo_end += i; 29086 } 29087 } else { 29088 SD_INFO(SD_LOG_IOERR, un, 29089 "sd_faultinjection_ioctl: push arg null\n"); 29090 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 29091 un->sd_fi_fifo_end++; 29092 } 29093 } 29094 SD_INFO(SD_LOG_IOERR, un, 29095 "sd_faultinjection_ioctl: push to end=%d\n", 29096 un->sd_fi_fifo_end); 29097 break; 29098 29099 case SDIOCRETRIEVE: 29100 /* Return buffer of log from Injection session */ 29101 SD_INFO(SD_LOG_SDTEST, un, 29102 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 29103 29104 sd_fault_injection_on = 0; 29105 29106 mutex_enter(&(un->un_fi_mutex)); 29107 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 29108 un->sd_fi_buf_len+1, 0); 29109 mutex_exit(&(un->un_fi_mutex)); 29110 29111 if (rval == -1) { 29112 /* 29113 * arg is possibly invalid setting 29114 * it to NULL for return 29115 */ 29116 arg = NULL; 29117 } 29118 break; 29119 } 29120 29121 mutex_exit(SD_MUTEX(un)); 29122 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 29123 " exit\n"); 29124 } 29125 29126 29127 /* 29128 * Function: sd_injection_log() 29129 * 29130 * Description: This routine adds buff to the already existing injection log 29131 * for retrieval via faultinjection_ioctl for use in fault 29132 * detection and recovery 29133 * 29134 * Arguments: buf - the string to add to the log 29135 */ 29136 29137 static void 29138 sd_injection_log(char *buf, struct sd_lun *un) 29139 { 29140 uint_t len; 29141 29142 ASSERT(un != NULL); 29143 ASSERT(buf != NULL); 29144 29145 mutex_enter(&(un->un_fi_mutex)); 29146 29147 len = min(strlen(buf), 255); 29148 /* Add logged value to Injection log to be returned later */ 29149 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 29150 uint_t offset = strlen((char *)un->sd_fi_log); 29151 char *destp = (char *)un->sd_fi_log + offset; 29152 int i; 29153 for (i = 0; i < len; i++) { 29154 *destp++ = *buf++; 29155 } 29156 un->sd_fi_buf_len += len; 29157 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 29158 } 29159 29160 mutex_exit(&(un->un_fi_mutex)); 29161 } 29162 29163 29164 /* 29165 * Function: sd_faultinjection() 29166 * 29167 * Description: This routine takes the pkt and changes its 29168 * content based on error injection scenerio. 29169 * 29170 * Arguments: pktp - packet to be changed 29171 */ 29172 29173 static void 29174 sd_faultinjection(struct scsi_pkt *pktp) 29175 { 29176 uint_t i; 29177 struct sd_fi_pkt *fi_pkt; 29178 struct sd_fi_xb *fi_xb; 29179 struct sd_fi_un *fi_un; 29180 struct sd_fi_arq *fi_arq; 29181 struct buf *bp; 29182 struct sd_xbuf *xb; 29183 struct sd_lun *un; 29184 29185 ASSERT(pktp != NULL); 29186 29187 /* pull bp xb and un from pktp */ 29188 bp = (struct buf *)pktp->pkt_private; 29189 xb = SD_GET_XBUF(bp); 29190 un = SD_GET_UN(bp); 29191 29192 ASSERT(un != NULL); 29193 29194 mutex_enter(SD_MUTEX(un)); 29195 29196 SD_TRACE(SD_LOG_SDTEST, un, 29197 "sd_faultinjection: entry Injection from sdintr\n"); 29198 29199 /* if injection is off return */ 29200 if (sd_fault_injection_on == 0 || 29201 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 29202 mutex_exit(SD_MUTEX(un)); 29203 return; 29204 } 29205 29206 SD_INFO(SD_LOG_SDTEST, un, 29207 "sd_faultinjection: is working for copying\n"); 29208 29209 /* take next set off fifo */ 29210 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 29211 29212 fi_pkt = un->sd_fi_fifo_pkt[i]; 29213 fi_xb = un->sd_fi_fifo_xb[i]; 29214 fi_un = un->sd_fi_fifo_un[i]; 29215 fi_arq = un->sd_fi_fifo_arq[i]; 29216 29217 29218 /* set variables accordingly */ 29219 /* set pkt if it was on fifo */ 29220 if (fi_pkt != NULL) { 29221 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 29222 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 29223 if (fi_pkt->pkt_cdbp != 0xff) 29224 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 29225 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 29226 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 29227 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 29228 29229 } 29230 /* set xb if it was on fifo */ 29231 if (fi_xb != NULL) { 29232 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 29233 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 29234 if (fi_xb->xb_retry_count != 0) 29235 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 29236 SD_CONDSET(xb, xb, xb_victim_retry_count, 29237 "xb_victim_retry_count"); 29238 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 29239 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 29240 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 29241 29242 /* copy in block data from sense */ 29243 /* 29244 * if (fi_xb->xb_sense_data[0] != -1) { 29245 * bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 29246 * SENSE_LENGTH); 29247 * } 29248 */ 29249 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH); 29250 29251 /* copy in extended sense codes */ 29252 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 29253 xb, es_code, "es_code"); 29254 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 29255 xb, es_key, "es_key"); 29256 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 29257 xb, es_add_code, "es_add_code"); 29258 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 29259 xb, es_qual_code, "es_qual_code"); 29260 struct scsi_extended_sense *esp; 29261 esp = (struct scsi_extended_sense *)xb->xb_sense_data; 29262 esp->es_class = CLASS_EXTENDED_SENSE; 29263 } 29264 29265 /* set un if it was on fifo */ 29266 if (fi_un != NULL) { 29267 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 29268 SD_CONDSET(un, un, un_ctype, "un_ctype"); 29269 SD_CONDSET(un, un, un_reset_retry_count, 29270 "un_reset_retry_count"); 29271 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 29272 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 29273 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 29274 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 29275 "un_f_allow_bus_device_reset"); 29276 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 29277 29278 } 29279 29280 /* copy in auto request sense if it was on fifo */ 29281 if (fi_arq != NULL) { 29282 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 29283 } 29284 29285 /* free structs */ 29286 if (un->sd_fi_fifo_pkt[i] != NULL) { 29287 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 29288 } 29289 if (un->sd_fi_fifo_xb[i] != NULL) { 29290 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 29291 } 29292 if (un->sd_fi_fifo_un[i] != NULL) { 29293 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 29294 } 29295 if (un->sd_fi_fifo_arq[i] != NULL) { 29296 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 29297 } 29298 29299 /* 29300 * kmem_free does not gurantee to set to NULL 29301 * since we uses these to determine if we set 29302 * values or not lets confirm they are always 29303 * NULL after free 29304 */ 29305 un->sd_fi_fifo_pkt[i] = NULL; 29306 un->sd_fi_fifo_un[i] = NULL; 29307 un->sd_fi_fifo_xb[i] = NULL; 29308 un->sd_fi_fifo_arq[i] = NULL; 29309 29310 un->sd_fi_fifo_start++; 29311 29312 mutex_exit(SD_MUTEX(un)); 29313 29314 SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 29315 } 29316 29317 #endif /* SD_FAULT_INJECTION */ 29318 29319 /* 29320 * This routine is invoked in sd_unit_attach(). Before calling it, the 29321 * properties in conf file should be processed already, and "hotpluggable" 29322 * property was processed also. 29323 * 29324 * The sd driver distinguishes 3 different type of devices: removable media, 29325 * non-removable media, and hotpluggable. Below the differences are defined: 29326 * 29327 * 1. Device ID 29328 * 29329 * The device ID of a device is used to identify this device. Refer to 29330 * ddi_devid_register(9F). 29331 * 29332 * For a non-removable media disk device which can provide 0x80 or 0x83 29333 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 29334 * device ID is created to identify this device. For other non-removable 29335 * media devices, a default device ID is created only if this device has 29336 * at least 2 alter cylinders. Otherwise, this device has no devid. 29337 * 29338 * ------------------------------------------------------- 29339 * removable media hotpluggable | Can Have Device ID 29340 * ------------------------------------------------------- 29341 * false false | Yes 29342 * false true | Yes 29343 * true x | No 29344 * ------------------------------------------------------ 29345 * 29346 * 29347 * 2. SCSI group 4 commands 29348 * 29349 * In SCSI specs, only some commands in group 4 command set can use 29350 * 8-byte addresses that can be used to access >2TB storage spaces. 29351 * Other commands have no such capability. Without supporting group4, 29352 * it is impossible to make full use of storage spaces of a disk with 29353 * capacity larger than 2TB. 29354 * 29355 * ----------------------------------------------- 29356 * removable media hotpluggable LP64 | Group 29357 * ----------------------------------------------- 29358 * false false false | 1 29359 * false false true | 4 29360 * false true false | 1 29361 * false true true | 4 29362 * true x x | 5 29363 * ----------------------------------------------- 29364 * 29365 * 29366 * 3. Check for VTOC Label 29367 * 29368 * If a direct-access disk has no EFI label, sd will check if it has a 29369 * valid VTOC label. Now, sd also does that check for removable media 29370 * and hotpluggable devices. 29371 * 29372 * -------------------------------------------------------------- 29373 * Direct-Access removable media hotpluggable | Check Label 29374 * ------------------------------------------------------------- 29375 * false false false | No 29376 * false false true | No 29377 * false true false | Yes 29378 * false true true | Yes 29379 * true x x | Yes 29380 * -------------------------------------------------------------- 29381 * 29382 * 29383 * 4. Building default VTOC label 29384 * 29385 * As section 3 says, sd checks if some kinds of devices have VTOC label. 29386 * If those devices have no valid VTOC label, sd(7d) will attempt to 29387 * create default VTOC for them. Currently sd creates default VTOC label 29388 * for all devices on x86 platform (VTOC_16), but only for removable 29389 * media devices on SPARC (VTOC_8). 29390 * 29391 * ----------------------------------------------------------- 29392 * removable media hotpluggable platform | Default Label 29393 * ----------------------------------------------------------- 29394 * false false sparc | No 29395 * false true x86 | Yes 29396 * false true sparc | Yes 29397 * true x x | Yes 29398 * ---------------------------------------------------------- 29399 * 29400 * 29401 * 5. Supported blocksizes of target devices 29402 * 29403 * Sd supports non-512-byte blocksize for removable media devices only. 29404 * For other devices, only 512-byte blocksize is supported. This may be 29405 * changed in near future because some RAID devices require non-512-byte 29406 * blocksize 29407 * 29408 * ----------------------------------------------------------- 29409 * removable media hotpluggable | non-512-byte blocksize 29410 * ----------------------------------------------------------- 29411 * false false | No 29412 * false true | No 29413 * true x | Yes 29414 * ----------------------------------------------------------- 29415 * 29416 * 29417 * 6. Automatic mount & unmount 29418 * 29419 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 29420 * if a device is removable media device. It return 1 for removable media 29421 * devices, and 0 for others. 29422 * 29423 * The automatic mounting subsystem should distinguish between the types 29424 * of devices and apply automounting policies to each. 29425 * 29426 * 29427 * 7. fdisk partition management 29428 * 29429 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 29430 * just supports fdisk partitions on x86 platform. On sparc platform, sd 29431 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 29432 * fdisk partitions on both x86 and SPARC platform. 29433 * 29434 * ----------------------------------------------------------- 29435 * platform removable media USB/1394 | fdisk supported 29436 * ----------------------------------------------------------- 29437 * x86 X X | true 29438 * ------------------------------------------------------------ 29439 * sparc X X | false 29440 * ------------------------------------------------------------ 29441 * 29442 * 29443 * 8. MBOOT/MBR 29444 * 29445 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 29446 * read/write mboot for removable media devices on sparc platform. 29447 * 29448 * ----------------------------------------------------------- 29449 * platform removable media USB/1394 | mboot supported 29450 * ----------------------------------------------------------- 29451 * x86 X X | true 29452 * ------------------------------------------------------------ 29453 * sparc false false | false 29454 * sparc false true | true 29455 * sparc true false | true 29456 * sparc true true | true 29457 * ------------------------------------------------------------ 29458 * 29459 * 29460 * 9. error handling during opening device 29461 * 29462 * If failed to open a disk device, an errno is returned. For some kinds 29463 * of errors, different errno is returned depending on if this device is 29464 * a removable media device. This brings USB/1394 hard disks in line with 29465 * expected hard disk behavior. It is not expected that this breaks any 29466 * application. 29467 * 29468 * ------------------------------------------------------ 29469 * removable media hotpluggable | errno 29470 * ------------------------------------------------------ 29471 * false false | EIO 29472 * false true | EIO 29473 * true x | ENXIO 29474 * ------------------------------------------------------ 29475 * 29476 * 29477 * 11. ioctls: DKIOCEJECT, CDROMEJECT 29478 * 29479 * These IOCTLs are applicable only to removable media devices. 29480 * 29481 * ----------------------------------------------------------- 29482 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 29483 * ----------------------------------------------------------- 29484 * false false | No 29485 * false true | No 29486 * true x | Yes 29487 * ----------------------------------------------------------- 29488 * 29489 * 29490 * 12. Kstats for partitions 29491 * 29492 * sd creates partition kstat for non-removable media devices. USB and 29493 * Firewire hard disks now have partition kstats 29494 * 29495 * ------------------------------------------------------ 29496 * removable media hotpluggable | kstat 29497 * ------------------------------------------------------ 29498 * false false | Yes 29499 * false true | Yes 29500 * true x | No 29501 * ------------------------------------------------------ 29502 * 29503 * 29504 * 13. Removable media & hotpluggable properties 29505 * 29506 * Sd driver creates a "removable-media" property for removable media 29507 * devices. Parent nexus drivers create a "hotpluggable" property if 29508 * it supports hotplugging. 29509 * 29510 * --------------------------------------------------------------------- 29511 * removable media hotpluggable | "removable-media" " hotpluggable" 29512 * --------------------------------------------------------------------- 29513 * false false | No No 29514 * false true | No Yes 29515 * true false | Yes No 29516 * true true | Yes Yes 29517 * --------------------------------------------------------------------- 29518 * 29519 * 29520 * 14. Power Management 29521 * 29522 * sd only power manages removable media devices or devices that support 29523 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 29524 * 29525 * A parent nexus that supports hotplugging can also set "pm-capable" 29526 * if the disk can be power managed. 29527 * 29528 * ------------------------------------------------------------ 29529 * removable media hotpluggable pm-capable | power manage 29530 * ------------------------------------------------------------ 29531 * false false false | No 29532 * false false true | Yes 29533 * false true false | No 29534 * false true true | Yes 29535 * true x x | Yes 29536 * ------------------------------------------------------------ 29537 * 29538 * USB and firewire hard disks can now be power managed independently 29539 * of the framebuffer 29540 * 29541 * 29542 * 15. Support for USB disks with capacity larger than 1TB 29543 * 29544 * Currently, sd doesn't permit a fixed disk device with capacity 29545 * larger than 1TB to be used in a 32-bit operating system environment. 29546 * However, sd doesn't do that for removable media devices. Instead, it 29547 * assumes that removable media devices cannot have a capacity larger 29548 * than 1TB. Therefore, using those devices on 32-bit system is partially 29549 * supported, which can cause some unexpected results. 29550 * 29551 * --------------------------------------------------------------------- 29552 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 29553 * --------------------------------------------------------------------- 29554 * false false | true | no 29555 * false true | true | no 29556 * true false | true | Yes 29557 * true true | true | Yes 29558 * --------------------------------------------------------------------- 29559 * 29560 * 29561 * 16. Check write-protection at open time 29562 * 29563 * When a removable media device is being opened for writing without NDELAY 29564 * flag, sd will check if this device is writable. If attempting to open 29565 * without NDELAY flag a write-protected device, this operation will abort. 29566 * 29567 * ------------------------------------------------------------ 29568 * removable media USB/1394 | WP Check 29569 * ------------------------------------------------------------ 29570 * false false | No 29571 * false true | No 29572 * true false | Yes 29573 * true true | Yes 29574 * ------------------------------------------------------------ 29575 * 29576 * 29577 * 17. syslog when corrupted VTOC is encountered 29578 * 29579 * Currently, if an invalid VTOC is encountered, sd only print syslog 29580 * for fixed SCSI disks. 29581 * ------------------------------------------------------------ 29582 * removable media USB/1394 | print syslog 29583 * ------------------------------------------------------------ 29584 * false false | Yes 29585 * false true | No 29586 * true false | No 29587 * true true | No 29588 * ------------------------------------------------------------ 29589 */ 29590 static void 29591 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 29592 { 29593 int pm_capable_prop; 29594 29595 ASSERT(un->un_sd); 29596 ASSERT(un->un_sd->sd_inq); 29597 29598 /* 29599 * Enable SYNC CACHE support for all devices. 29600 */ 29601 un->un_f_sync_cache_supported = TRUE; 29602 29603 /* 29604 * Set the sync cache required flag to false. 29605 * This would ensure that there is no SYNC CACHE 29606 * sent when there are no writes 29607 */ 29608 un->un_f_sync_cache_required = FALSE; 29609 29610 if (un->un_sd->sd_inq->inq_rmb) { 29611 /* 29612 * The media of this device is removable. And for this kind 29613 * of devices, it is possible to change medium after opening 29614 * devices. Thus we should support this operation. 29615 */ 29616 un->un_f_has_removable_media = TRUE; 29617 29618 /* 29619 * support non-512-byte blocksize of removable media devices 29620 */ 29621 un->un_f_non_devbsize_supported = TRUE; 29622 29623 /* 29624 * Assume that all removable media devices support DOOR_LOCK 29625 */ 29626 un->un_f_doorlock_supported = TRUE; 29627 29628 /* 29629 * For a removable media device, it is possible to be opened 29630 * with NDELAY flag when there is no media in drive, in this 29631 * case we don't care if device is writable. But if without 29632 * NDELAY flag, we need to check if media is write-protected. 29633 */ 29634 un->un_f_chk_wp_open = TRUE; 29635 29636 /* 29637 * need to start a SCSI watch thread to monitor media state, 29638 * when media is being inserted or ejected, notify syseventd. 29639 */ 29640 un->un_f_monitor_media_state = TRUE; 29641 29642 /* 29643 * Some devices don't support START_STOP_UNIT command. 29644 * Therefore, we'd better check if a device supports it 29645 * before sending it. 29646 */ 29647 un->un_f_check_start_stop = TRUE; 29648 29649 /* 29650 * support eject media ioctl: 29651 * FDEJECT, DKIOCEJECT, CDROMEJECT 29652 */ 29653 un->un_f_eject_media_supported = TRUE; 29654 29655 /* 29656 * Because many removable-media devices don't support 29657 * LOG_SENSE, we couldn't use this command to check if 29658 * a removable media device support power-management. 29659 * We assume that they support power-management via 29660 * START_STOP_UNIT command and can be spun up and down 29661 * without limitations. 29662 */ 29663 un->un_f_pm_supported = TRUE; 29664 29665 /* 29666 * Need to create a zero length (Boolean) property 29667 * removable-media for the removable media devices. 29668 * Note that the return value of the property is not being 29669 * checked, since if unable to create the property 29670 * then do not want the attach to fail altogether. Consistent 29671 * with other property creation in attach. 29672 */ 29673 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 29674 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 29675 29676 } else { 29677 /* 29678 * create device ID for device 29679 */ 29680 un->un_f_devid_supported = TRUE; 29681 29682 /* 29683 * Spin up non-removable-media devices once it is attached 29684 */ 29685 un->un_f_attach_spinup = TRUE; 29686 29687 /* 29688 * According to SCSI specification, Sense data has two kinds of 29689 * format: fixed format, and descriptor format. At present, we 29690 * don't support descriptor format sense data for removable 29691 * media. 29692 */ 29693 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 29694 un->un_f_descr_format_supported = TRUE; 29695 } 29696 29697 /* 29698 * kstats are created only for non-removable media devices. 29699 * 29700 * Set this in sd.conf to 0 in order to disable kstats. The 29701 * default is 1, so they are enabled by default. 29702 */ 29703 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 29704 SD_DEVINFO(un), DDI_PROP_DONTPASS, 29705 "enable-partition-kstats", 1)); 29706 29707 /* 29708 * Check if HBA has set the "pm-capable" property. 29709 * If "pm-capable" exists and is non-zero then we can 29710 * power manage the device without checking the start/stop 29711 * cycle count log sense page. 29712 * 29713 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0) 29714 * then we should not power manage the device. 29715 * 29716 * If "pm-capable" doesn't exist then pm_capable_prop will 29717 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 29718 * sd will check the start/stop cycle count log sense page 29719 * and power manage the device if the cycle count limit has 29720 * not been exceeded. 29721 */ 29722 pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 29723 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 29724 if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) { 29725 un->un_f_log_sense_supported = TRUE; 29726 } else { 29727 /* 29728 * pm-capable property exists. 29729 * 29730 * Convert "TRUE" values for pm_capable_prop to 29731 * SD_PM_CAPABLE_TRUE (1) to make it easier to check 29732 * later. "TRUE" values are any values except 29733 * SD_PM_CAPABLE_FALSE (0) and 29734 * SD_PM_CAPABLE_UNDEFINED (-1) 29735 */ 29736 if (pm_capable_prop == SD_PM_CAPABLE_FALSE) { 29737 un->un_f_log_sense_supported = FALSE; 29738 } else { 29739 un->un_f_pm_supported = TRUE; 29740 } 29741 29742 SD_INFO(SD_LOG_ATTACH_DETACH, un, 29743 "sd_unit_attach: un:0x%p pm-capable " 29744 "property set to %d.\n", un, un->un_f_pm_supported); 29745 } 29746 } 29747 29748 if (un->un_f_is_hotpluggable) { 29749 29750 /* 29751 * Have to watch hotpluggable devices as well, since 29752 * that's the only way for userland applications to 29753 * detect hot removal while device is busy/mounted. 29754 */ 29755 un->un_f_monitor_media_state = TRUE; 29756 29757 un->un_f_check_start_stop = TRUE; 29758 29759 } 29760 } 29761 29762 /* 29763 * sd_tg_rdwr: 29764 * Provides rdwr access for cmlb via sd_tgops. The start_block is 29765 * in sys block size, req_length in bytes. 29766 * 29767 */ 29768 static int 29769 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 29770 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 29771 { 29772 struct sd_lun *un; 29773 int path_flag = (int)(uintptr_t)tg_cookie; 29774 char *dkl = NULL; 29775 diskaddr_t real_addr = start_block; 29776 diskaddr_t first_byte, end_block; 29777 29778 size_t buffer_size = reqlength; 29779 int rval = 0; 29780 diskaddr_t cap; 29781 uint32_t lbasize; 29782 sd_ssc_t *ssc; 29783 29784 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 29785 if (un == NULL) 29786 return (ENXIO); 29787 29788 if (cmd != TG_READ && cmd != TG_WRITE) 29789 return (EINVAL); 29790 29791 ssc = sd_ssc_init(un); 29792 mutex_enter(SD_MUTEX(un)); 29793 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 29794 mutex_exit(SD_MUTEX(un)); 29795 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 29796 &lbasize, path_flag); 29797 if (rval != 0) 29798 goto done1; 29799 mutex_enter(SD_MUTEX(un)); 29800 sd_update_block_info(un, lbasize, cap); 29801 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 29802 mutex_exit(SD_MUTEX(un)); 29803 rval = EIO; 29804 goto done; 29805 } 29806 } 29807 29808 if (NOT_DEVBSIZE(un)) { 29809 /* 29810 * sys_blocksize != tgt_blocksize, need to re-adjust 29811 * blkno and save the index to beginning of dk_label 29812 */ 29813 first_byte = SD_SYSBLOCKS2BYTES(un, start_block); 29814 real_addr = first_byte / un->un_tgt_blocksize; 29815 29816 end_block = (first_byte + reqlength + 29817 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 29818 29819 /* round up buffer size to multiple of target block size */ 29820 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 29821 29822 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 29823 "label_addr: 0x%x allocation size: 0x%x\n", 29824 real_addr, buffer_size); 29825 29826 if (((first_byte % un->un_tgt_blocksize) != 0) || 29827 (reqlength % un->un_tgt_blocksize) != 0) 29828 /* the request is not aligned */ 29829 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 29830 } 29831 29832 /* 29833 * The MMC standard allows READ CAPACITY to be 29834 * inaccurate by a bounded amount (in the interest of 29835 * response latency). As a result, failed READs are 29836 * commonplace (due to the reading of metadata and not 29837 * data). Depending on the per-Vendor/drive Sense data, 29838 * the failed READ can cause many (unnecessary) retries. 29839 */ 29840 29841 if (ISCD(un) && (cmd == TG_READ) && 29842 (un->un_f_blockcount_is_valid == TRUE) && 29843 ((start_block == (un->un_blockcount - 1))|| 29844 (start_block == (un->un_blockcount - 2)))) { 29845 path_flag = SD_PATH_DIRECT_PRIORITY; 29846 } 29847 29848 mutex_exit(SD_MUTEX(un)); 29849 if (cmd == TG_READ) { 29850 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr, 29851 buffer_size, real_addr, path_flag); 29852 if (dkl != NULL) 29853 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 29854 real_addr), bufaddr, reqlength); 29855 } else { 29856 if (dkl) { 29857 rval = sd_send_scsi_READ(ssc, dkl, buffer_size, 29858 real_addr, path_flag); 29859 if (rval) { 29860 goto done1; 29861 } 29862 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 29863 real_addr), reqlength); 29864 } 29865 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr, 29866 buffer_size, real_addr, path_flag); 29867 } 29868 29869 done1: 29870 if (dkl != NULL) 29871 kmem_free(dkl, buffer_size); 29872 29873 if (rval != 0) { 29874 if (rval == EIO) 29875 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 29876 else 29877 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 29878 } 29879 done: 29880 sd_ssc_fini(ssc); 29881 return (rval); 29882 } 29883 29884 29885 static int 29886 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 29887 { 29888 29889 struct sd_lun *un; 29890 diskaddr_t cap; 29891 uint32_t lbasize; 29892 int path_flag = (int)(uintptr_t)tg_cookie; 29893 int ret = 0; 29894 29895 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 29896 if (un == NULL) 29897 return (ENXIO); 29898 29899 switch (cmd) { 29900 case TG_GETPHYGEOM: 29901 case TG_GETVIRTGEOM: 29902 case TG_GETCAPACITY: 29903 case TG_GETBLOCKSIZE: 29904 mutex_enter(SD_MUTEX(un)); 29905 29906 if ((un->un_f_blockcount_is_valid == TRUE) && 29907 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 29908 cap = un->un_blockcount; 29909 lbasize = un->un_tgt_blocksize; 29910 mutex_exit(SD_MUTEX(un)); 29911 } else { 29912 sd_ssc_t *ssc; 29913 mutex_exit(SD_MUTEX(un)); 29914 ssc = sd_ssc_init(un); 29915 ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 29916 &lbasize, path_flag); 29917 if (ret != 0) { 29918 if (ret == EIO) 29919 sd_ssc_assessment(ssc, 29920 SD_FMT_STATUS_CHECK); 29921 else 29922 sd_ssc_assessment(ssc, 29923 SD_FMT_IGNORE); 29924 sd_ssc_fini(ssc); 29925 return (ret); 29926 } 29927 sd_ssc_fini(ssc); 29928 mutex_enter(SD_MUTEX(un)); 29929 sd_update_block_info(un, lbasize, cap); 29930 if ((un->un_f_blockcount_is_valid == FALSE) || 29931 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 29932 mutex_exit(SD_MUTEX(un)); 29933 return (EIO); 29934 } 29935 mutex_exit(SD_MUTEX(un)); 29936 } 29937 29938 if (cmd == TG_GETCAPACITY) { 29939 *(diskaddr_t *)arg = cap; 29940 return (0); 29941 } 29942 29943 if (cmd == TG_GETBLOCKSIZE) { 29944 *(uint32_t *)arg = lbasize; 29945 return (0); 29946 } 29947 29948 if (cmd == TG_GETPHYGEOM) 29949 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 29950 cap, lbasize, path_flag); 29951 else 29952 /* TG_GETVIRTGEOM */ 29953 ret = sd_get_virtual_geometry(un, 29954 (cmlb_geom_t *)arg, cap, lbasize); 29955 29956 return (ret); 29957 29958 case TG_GETATTR: 29959 mutex_enter(SD_MUTEX(un)); 29960 ((tg_attribute_t *)arg)->media_is_writable = 29961 un->un_f_mmc_writable_media; 29962 mutex_exit(SD_MUTEX(un)); 29963 return (0); 29964 default: 29965 return (ENOTTY); 29966 29967 } 29968 } 29969 29970 /* 29971 * Function: sd_ssc_ereport_post 29972 * 29973 * Description: Will be called when SD driver need to post an ereport. 29974 * 29975 * Context: Kernel thread or interrupt context. 29976 */ 29977 static void 29978 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess) 29979 { 29980 int uscsi_path_instance = 0; 29981 uchar_t uscsi_pkt_reason; 29982 uint32_t uscsi_pkt_state; 29983 uint32_t uscsi_pkt_statistics; 29984 uint64_t uscsi_ena; 29985 uchar_t op_code; 29986 uint8_t *sensep; 29987 union scsi_cdb *cdbp; 29988 uint_t cdblen = 0; 29989 uint_t senlen = 0; 29990 struct sd_lun *un; 29991 dev_info_t *dip; 29992 char *devid; 29993 int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON | 29994 SSC_FLAGS_INVALID_STATUS | 29995 SSC_FLAGS_INVALID_SENSE | 29996 SSC_FLAGS_INVALID_DATA; 29997 char assessment[16]; 29998 29999 ASSERT(ssc != NULL); 30000 ASSERT(ssc->ssc_uscsi_cmd != NULL); 30001 ASSERT(ssc->ssc_uscsi_info != NULL); 30002 30003 un = ssc->ssc_un; 30004 ASSERT(un != NULL); 30005 30006 dip = un->un_sd->sd_dev; 30007 30008 /* 30009 * Get the devid: 30010 * devid will only be passed to non-transport error reports. 30011 */ 30012 devid = DEVI(dip)->devi_devid_str; 30013 30014 /* 30015 * If we are syncing or dumping, the command will not be executed 30016 * so we bypass this situation. 30017 */ 30018 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 30019 (un->un_state == SD_STATE_DUMPING)) 30020 return; 30021 30022 uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason; 30023 uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance; 30024 uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state; 30025 uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics; 30026 uscsi_ena = ssc->ssc_uscsi_info->ui_ena; 30027 30028 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 30029 cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb; 30030 30031 /* In rare cases, EG:DOORLOCK, the cdb could be NULL */ 30032 if (cdbp == NULL) { 30033 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30034 "sd_ssc_ereport_post meet empty cdb\n"); 30035 return; 30036 } 30037 30038 op_code = cdbp->scc_cmd; 30039 30040 cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen; 30041 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 30042 ssc->ssc_uscsi_cmd->uscsi_rqresid); 30043 30044 if (senlen > 0) 30045 ASSERT(sensep != NULL); 30046 30047 /* 30048 * Initialize drv_assess to corresponding values. 30049 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending 30050 * on the sense-key returned back. 30051 */ 30052 switch (drv_assess) { 30053 case SD_FM_DRV_RECOVERY: 30054 (void) sprintf(assessment, "%s", "recovered"); 30055 break; 30056 case SD_FM_DRV_RETRY: 30057 (void) sprintf(assessment, "%s", "retry"); 30058 break; 30059 case SD_FM_DRV_NOTICE: 30060 (void) sprintf(assessment, "%s", "info"); 30061 break; 30062 case SD_FM_DRV_FATAL: 30063 default: 30064 (void) sprintf(assessment, "%s", "unknown"); 30065 } 30066 /* 30067 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered 30068 * command, we will post ereport.io.scsi.cmd.disk.recovered. 30069 * driver-assessment will always be "recovered" here. 30070 */ 30071 if (drv_assess == SD_FM_DRV_RECOVERY) { 30072 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 30073 "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP, 30074 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30075 "driver-assessment", DATA_TYPE_STRING, assessment, 30076 "op-code", DATA_TYPE_UINT8, op_code, 30077 "cdb", DATA_TYPE_UINT8_ARRAY, 30078 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 30079 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 30080 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 30081 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 30082 NULL); 30083 return; 30084 } 30085 30086 /* 30087 * If there is un-expected/un-decodable data, we should post 30088 * ereport.io.scsi.cmd.disk.dev.uderr. 30089 * driver-assessment will be set based on parameter drv_assess. 30090 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back. 30091 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered. 30092 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered. 30093 * SSC_FLAGS_INVALID_DATA - invalid data sent back. 30094 */ 30095 if (ssc->ssc_flags & ssc_invalid_flags) { 30096 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) { 30097 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 30098 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 30099 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30100 "driver-assessment", DATA_TYPE_STRING, 30101 drv_assess == SD_FM_DRV_FATAL ? 30102 "fail" : assessment, 30103 "op-code", DATA_TYPE_UINT8, op_code, 30104 "cdb", DATA_TYPE_UINT8_ARRAY, 30105 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 30106 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 30107 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 30108 "pkt-stats", DATA_TYPE_UINT32, 30109 uscsi_pkt_statistics, 30110 "stat-code", DATA_TYPE_UINT8, 30111 ssc->ssc_uscsi_cmd->uscsi_status, 30112 "un-decode-info", DATA_TYPE_STRING, 30113 ssc->ssc_info, 30114 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 30115 senlen, sensep, 30116 NULL); 30117 } else { 30118 /* 30119 * For other type of invalid data, the 30120 * un-decode-value field would be empty because the 30121 * un-decodable content could be seen from upper 30122 * level payload or inside un-decode-info. 30123 */ 30124 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 30125 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 30126 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30127 "driver-assessment", DATA_TYPE_STRING, 30128 drv_assess == SD_FM_DRV_FATAL ? 30129 "fail" : assessment, 30130 "op-code", DATA_TYPE_UINT8, op_code, 30131 "cdb", DATA_TYPE_UINT8_ARRAY, 30132 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 30133 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 30134 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 30135 "pkt-stats", DATA_TYPE_UINT32, 30136 uscsi_pkt_statistics, 30137 "stat-code", DATA_TYPE_UINT8, 30138 ssc->ssc_uscsi_cmd->uscsi_status, 30139 "un-decode-info", DATA_TYPE_STRING, 30140 ssc->ssc_info, 30141 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 30142 0, NULL, 30143 NULL); 30144 } 30145 ssc->ssc_flags &= ~ssc_invalid_flags; 30146 return; 30147 } 30148 30149 if (uscsi_pkt_reason != CMD_CMPLT || 30150 (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) { 30151 /* 30152 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was 30153 * set inside sd_start_cmds due to errors(bad packet or 30154 * fatal transport error), we should take it as a 30155 * transport error, so we post ereport.io.scsi.cmd.disk.tran. 30156 * driver-assessment will be set based on drv_assess. 30157 * We will set devid to NULL because it is a transport 30158 * error. 30159 */ 30160 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT) 30161 ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT; 30162 30163 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 30164 "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION, 30165 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30166 "driver-assessment", DATA_TYPE_STRING, 30167 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 30168 "op-code", DATA_TYPE_UINT8, op_code, 30169 "cdb", DATA_TYPE_UINT8_ARRAY, 30170 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 30171 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 30172 "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state, 30173 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 30174 NULL); 30175 } else { 30176 /* 30177 * If we got here, we have a completed command, and we need 30178 * to further investigate the sense data to see what kind 30179 * of ereport we should post. 30180 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr 30181 * if sense-key == 0x3. 30182 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise. 30183 * driver-assessment will be set based on the parameter 30184 * drv_assess. 30185 */ 30186 if (senlen > 0) { 30187 /* 30188 * Here we have sense data available. 30189 */ 30190 uint8_t sense_key; 30191 sense_key = scsi_sense_key(sensep); 30192 if (sense_key == 0x3) { 30193 /* 30194 * sense-key == 0x3(medium error), 30195 * driver-assessment should be "fatal" if 30196 * drv_assess is SD_FM_DRV_FATAL. 30197 */ 30198 scsi_fm_ereport_post(un->un_sd, 30199 uscsi_path_instance, 30200 "cmd.disk.dev.rqs.merr", 30201 uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION, 30202 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30203 "driver-assessment", 30204 DATA_TYPE_STRING, 30205 drv_assess == SD_FM_DRV_FATAL ? 30206 "fatal" : assessment, 30207 "op-code", 30208 DATA_TYPE_UINT8, op_code, 30209 "cdb", 30210 DATA_TYPE_UINT8_ARRAY, cdblen, 30211 ssc->ssc_uscsi_cmd->uscsi_cdb, 30212 "pkt-reason", 30213 DATA_TYPE_UINT8, uscsi_pkt_reason, 30214 "pkt-state", 30215 DATA_TYPE_UINT8, uscsi_pkt_state, 30216 "pkt-stats", 30217 DATA_TYPE_UINT32, 30218 uscsi_pkt_statistics, 30219 "stat-code", 30220 DATA_TYPE_UINT8, 30221 ssc->ssc_uscsi_cmd->uscsi_status, 30222 "key", 30223 DATA_TYPE_UINT8, 30224 scsi_sense_key(sensep), 30225 "asc", 30226 DATA_TYPE_UINT8, 30227 scsi_sense_asc(sensep), 30228 "ascq", 30229 DATA_TYPE_UINT8, 30230 scsi_sense_ascq(sensep), 30231 "sense-data", 30232 DATA_TYPE_UINT8_ARRAY, 30233 senlen, sensep, 30234 "lba", 30235 DATA_TYPE_UINT64, 30236 ssc->ssc_uscsi_info->ui_lba, 30237 NULL); 30238 } else { 30239 /* 30240 * if sense-key == 0x4(hardware 30241 * error), driver-assessment should 30242 * be "fatal" if drv_assess is 30243 * SD_FM_DRV_FATAL. 30244 */ 30245 scsi_fm_ereport_post(un->un_sd, 30246 uscsi_path_instance, 30247 "cmd.disk.dev.rqs.derr", 30248 uscsi_ena, devid, DDI_NOSLEEP, 30249 FM_VERSION, 30250 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30251 "driver-assessment", 30252 DATA_TYPE_STRING, 30253 drv_assess == SD_FM_DRV_FATAL ? 30254 (sense_key == 0x4 ? 30255 "fatal" : "fail") : assessment, 30256 "op-code", 30257 DATA_TYPE_UINT8, op_code, 30258 "cdb", 30259 DATA_TYPE_UINT8_ARRAY, cdblen, 30260 ssc->ssc_uscsi_cmd->uscsi_cdb, 30261 "pkt-reason", 30262 DATA_TYPE_UINT8, uscsi_pkt_reason, 30263 "pkt-state", 30264 DATA_TYPE_UINT8, uscsi_pkt_state, 30265 "pkt-stats", 30266 DATA_TYPE_UINT32, 30267 uscsi_pkt_statistics, 30268 "stat-code", 30269 DATA_TYPE_UINT8, 30270 ssc->ssc_uscsi_cmd->uscsi_status, 30271 "key", 30272 DATA_TYPE_UINT8, 30273 scsi_sense_key(sensep), 30274 "asc", 30275 DATA_TYPE_UINT8, 30276 scsi_sense_asc(sensep), 30277 "ascq", 30278 DATA_TYPE_UINT8, 30279 scsi_sense_ascq(sensep), 30280 "sense-data", 30281 DATA_TYPE_UINT8_ARRAY, 30282 senlen, sensep, 30283 NULL); 30284 } 30285 } else { 30286 /* 30287 * For stat_code == STATUS_GOOD, this is not a 30288 * hardware error. 30289 */ 30290 if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) 30291 return; 30292 30293 /* 30294 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the 30295 * stat-code but with sense data unavailable. 30296 * driver-assessment will be set based on parameter 30297 * drv_assess. 30298 */ 30299 scsi_fm_ereport_post(un->un_sd, 30300 uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena, 30301 devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 30302 FM_EREPORT_VERS0, 30303 "driver-assessment", DATA_TYPE_STRING, 30304 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 30305 "op-code", DATA_TYPE_UINT8, op_code, 30306 "cdb", 30307 DATA_TYPE_UINT8_ARRAY, 30308 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 30309 "pkt-reason", 30310 DATA_TYPE_UINT8, uscsi_pkt_reason, 30311 "pkt-state", 30312 DATA_TYPE_UINT8, uscsi_pkt_state, 30313 "pkt-stats", 30314 DATA_TYPE_UINT32, uscsi_pkt_statistics, 30315 "stat-code", 30316 DATA_TYPE_UINT8, 30317 ssc->ssc_uscsi_cmd->uscsi_status, 30318 NULL); 30319 } 30320 } 30321 } 30322 30323 /* 30324 * Function: sd_ssc_extract_info 30325 * 30326 * Description: Extract information available to help generate ereport. 30327 * 30328 * Context: Kernel thread or interrupt context. 30329 */ 30330 static void 30331 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp, 30332 struct buf *bp, struct sd_xbuf *xp) 30333 { 30334 size_t senlen = 0; 30335 union scsi_cdb *cdbp; 30336 int path_instance; 30337 /* 30338 * Need scsi_cdb_size array to determine the cdb length. 30339 */ 30340 extern uchar_t scsi_cdb_size[]; 30341 30342 ASSERT(un != NULL); 30343 ASSERT(pktp != NULL); 30344 ASSERT(bp != NULL); 30345 ASSERT(xp != NULL); 30346 ASSERT(ssc != NULL); 30347 ASSERT(mutex_owned(SD_MUTEX(un))); 30348 30349 /* 30350 * Transfer the cdb buffer pointer here. 30351 */ 30352 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 30353 30354 ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)]; 30355 ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp; 30356 30357 /* 30358 * Transfer the sense data buffer pointer if sense data is available, 30359 * calculate the sense data length first. 30360 */ 30361 if ((xp->xb_sense_state & STATE_XARQ_DONE) || 30362 (xp->xb_sense_state & STATE_ARQ_DONE)) { 30363 /* 30364 * For arq case, we will enter here. 30365 */ 30366 if (xp->xb_sense_state & STATE_XARQ_DONE) { 30367 senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid; 30368 } else { 30369 senlen = SENSE_LENGTH; 30370 } 30371 } else { 30372 /* 30373 * For non-arq case, we will enter this branch. 30374 */ 30375 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK && 30376 (xp->xb_sense_state & STATE_XFERRED_DATA)) { 30377 senlen = SENSE_LENGTH - xp->xb_sense_resid; 30378 } 30379 30380 } 30381 30382 ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff); 30383 ssc->ssc_uscsi_cmd->uscsi_rqresid = 0; 30384 ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data; 30385 30386 ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 30387 30388 /* 30389 * Only transfer path_instance when scsi_pkt was properly allocated. 30390 */ 30391 path_instance = pktp->pkt_path_instance; 30392 if (scsi_pkt_allocated_correctly(pktp) && path_instance) 30393 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance; 30394 else 30395 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0; 30396 30397 /* 30398 * Copy in the other fields we may need when posting ereport. 30399 */ 30400 ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason; 30401 ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state; 30402 ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics; 30403 ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 30404 30405 /* 30406 * For partially read/write command, we will not create ena 30407 * in case of a successful command be reconized as recovered. 30408 */ 30409 if ((pktp->pkt_reason == CMD_CMPLT) && 30410 (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) && 30411 (senlen == 0)) { 30412 return; 30413 } 30414 30415 /* 30416 * To associate ereports of a single command execution flow, we 30417 * need a shared ena for a specific command. 30418 */ 30419 if (xp->xb_ena == 0) 30420 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1); 30421 ssc->ssc_uscsi_info->ui_ena = xp->xb_ena; 30422 } 30423