1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 27 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 28 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 29 * Copyright 2016 Joyent, Inc. 30 * Copyright 2017 Nexenta Systems, Inc. 31 */ 32 /* 33 * Copyright 2011 cyril.galibern@opensvc.com 34 */ 35 36 /* 37 * SCSI disk target driver. 38 */ 39 #include <sys/scsi/scsi.h> 40 #include <sys/dkbad.h> 41 #include <sys/dklabel.h> 42 #include <sys/dkio.h> 43 #include <sys/fdio.h> 44 #include <sys/cdio.h> 45 #include <sys/mhd.h> 46 #include <sys/vtoc.h> 47 #include <sys/dktp/fdisk.h> 48 #include <sys/kstat.h> 49 #include <sys/vtrace.h> 50 #include <sys/note.h> 51 #include <sys/thread.h> 52 #include <sys/proc.h> 53 #include <sys/efi_partition.h> 54 #include <sys/var.h> 55 #include <sys/aio_req.h> 56 #include <sys/dkioc_free_util.h> 57 58 #ifdef __lock_lint 59 #define _LP64 60 #define __amd64 61 #endif 62 63 #if (defined(__fibre)) 64 /* Note: is there a leadville version of the following? */ 65 #include <sys/fc4/fcal_linkapp.h> 66 #endif 67 #include <sys/taskq.h> 68 #include <sys/uuid.h> 69 #include <sys/byteorder.h> 70 #include <sys/sdt.h> 71 72 #include "sd_xbuf.h" 73 74 #include <sys/scsi/targets/sddef.h> 75 #include <sys/cmlb.h> 76 #include <sys/sysevent/eventdefs.h> 77 #include <sys/sysevent/dev.h> 78 79 #include <sys/fm/protocol.h> 80 81 /* 82 * Loadable module info. 83 */ 84 #if (defined(__fibre)) 85 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver" 86 #else /* !__fibre */ 87 #define SD_MODULE_NAME "SCSI Disk Driver" 88 #endif /* !__fibre */ 89 90 /* 91 * Define the interconnect type, to allow the driver to distinguish 92 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 93 * 94 * This is really for backward compatibility. In the future, the driver 95 * should actually check the "interconnect-type" property as reported by 96 * the HBA; however at present this property is not defined by all HBAs, 97 * so we will use this #define (1) to permit the driver to run in 98 * backward-compatibility mode; and (2) to print a notification message 99 * if an FC HBA does not support the "interconnect-type" property. The 100 * behavior of the driver will be to assume parallel SCSI behaviors unless 101 * the "interconnect-type" property is defined by the HBA **AND** has a 102 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 103 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 104 * Channel behaviors (as per the old ssd). (Note that the 105 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 106 * will result in the driver assuming parallel SCSI behaviors.) 107 * 108 * (see common/sys/scsi/impl/services.h) 109 * 110 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 111 * since some FC HBAs may already support that, and there is some code in 112 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 113 * default would confuse that code, and besides things should work fine 114 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 115 * "interconnect_type" property. 116 * 117 */ 118 #if (defined(__fibre)) 119 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 120 #else 121 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 122 #endif 123 124 /* 125 * The name of the driver, established from the module name in _init. 126 */ 127 static char *sd_label = NULL; 128 129 /* 130 * Driver name is unfortunately prefixed on some driver.conf properties. 131 */ 132 #if (defined(__fibre)) 133 #define sd_max_xfer_size ssd_max_xfer_size 134 #define sd_config_list ssd_config_list 135 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 136 static char *sd_config_list = "ssd-config-list"; 137 #else 138 static char *sd_max_xfer_size = "sd_max_xfer_size"; 139 static char *sd_config_list = "sd-config-list"; 140 #endif 141 142 /* 143 * Driver global variables 144 */ 145 146 #if (defined(__fibre)) 147 /* 148 * These #defines are to avoid namespace collisions that occur because this 149 * code is currently used to compile two separate driver modules: sd and ssd. 150 * All global variables need to be treated this way (even if declared static) 151 * in order to allow the debugger to resolve the names properly. 152 * It is anticipated that in the near future the ssd module will be obsoleted, 153 * at which time this namespace issue should go away. 154 */ 155 #define sd_state ssd_state 156 #define sd_io_time ssd_io_time 157 #define sd_failfast_enable ssd_failfast_enable 158 #define sd_ua_retry_count ssd_ua_retry_count 159 #define sd_report_pfa ssd_report_pfa 160 #define sd_max_throttle ssd_max_throttle 161 #define sd_min_throttle ssd_min_throttle 162 #define sd_rot_delay ssd_rot_delay 163 164 #define sd_retry_on_reservation_conflict \ 165 ssd_retry_on_reservation_conflict 166 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 167 #define sd_resv_conflict_name ssd_resv_conflict_name 168 169 #define sd_component_mask ssd_component_mask 170 #define sd_level_mask ssd_level_mask 171 #define sd_debug_un ssd_debug_un 172 #define sd_error_level ssd_error_level 173 174 #define sd_xbuf_active_limit ssd_xbuf_active_limit 175 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 176 177 #define sd_tr ssd_tr 178 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 179 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 180 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 181 #define sd_check_media_time ssd_check_media_time 182 #define sd_wait_cmds_complete ssd_wait_cmds_complete 183 #define sd_label_mutex ssd_label_mutex 184 #define sd_detach_mutex ssd_detach_mutex 185 #define sd_log_buf ssd_log_buf 186 #define sd_log_mutex ssd_log_mutex 187 188 #define sd_disk_table ssd_disk_table 189 #define sd_disk_table_size ssd_disk_table_size 190 #define sd_sense_mutex ssd_sense_mutex 191 #define sd_cdbtab ssd_cdbtab 192 193 #define sd_cb_ops ssd_cb_ops 194 #define sd_ops ssd_ops 195 #define sd_additional_codes ssd_additional_codes 196 #define sd_tgops ssd_tgops 197 198 #define sd_minor_data ssd_minor_data 199 #define sd_minor_data_efi ssd_minor_data_efi 200 201 #define sd_tq ssd_tq 202 #define sd_wmr_tq ssd_wmr_tq 203 #define sd_taskq_name ssd_taskq_name 204 #define sd_wmr_taskq_name ssd_wmr_taskq_name 205 #define sd_taskq_minalloc ssd_taskq_minalloc 206 #define sd_taskq_maxalloc ssd_taskq_maxalloc 207 208 #define sd_dump_format_string ssd_dump_format_string 209 210 #define sd_iostart_chain ssd_iostart_chain 211 #define sd_iodone_chain ssd_iodone_chain 212 213 #define sd_pm_idletime ssd_pm_idletime 214 215 #define sd_force_pm_supported ssd_force_pm_supported 216 217 #define sd_dtype_optical_bind ssd_dtype_optical_bind 218 219 #define sd_ssc_init ssd_ssc_init 220 #define sd_ssc_send ssd_ssc_send 221 #define sd_ssc_fini ssd_ssc_fini 222 #define sd_ssc_assessment ssd_ssc_assessment 223 #define sd_ssc_post ssd_ssc_post 224 #define sd_ssc_print ssd_ssc_print 225 #define sd_ssc_ereport_post ssd_ssc_ereport_post 226 #define sd_ssc_set_info ssd_ssc_set_info 227 #define sd_ssc_extract_info ssd_ssc_extract_info 228 229 #endif 230 231 #ifdef SDDEBUG 232 int sd_force_pm_supported = 0; 233 #endif /* SDDEBUG */ 234 235 void *sd_state = NULL; 236 int sd_io_time = SD_IO_TIME; 237 int sd_failfast_enable = 1; 238 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 239 int sd_report_pfa = 1; 240 int sd_max_throttle = SD_MAX_THROTTLE; 241 int sd_min_throttle = SD_MIN_THROTTLE; 242 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 243 int sd_qfull_throttle_enable = TRUE; 244 245 int sd_retry_on_reservation_conflict = 1; 246 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 247 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 248 249 static int sd_dtype_optical_bind = -1; 250 251 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 252 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 253 254 /* 255 * Global data for debug logging. To enable debug printing, sd_component_mask 256 * and sd_level_mask should be set to the desired bit patterns as outlined in 257 * sddef.h. 258 */ 259 uint_t sd_component_mask = 0x0; 260 uint_t sd_level_mask = 0x0; 261 struct sd_lun *sd_debug_un = NULL; 262 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 263 264 /* Note: these may go away in the future... */ 265 static uint32_t sd_xbuf_active_limit = 512; 266 static uint32_t sd_xbuf_reserve_limit = 16; 267 268 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 269 270 /* 271 * Timer value used to reset the throttle after it has been reduced 272 * (typically in response to TRAN_BUSY or STATUS_QFULL) 273 */ 274 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 275 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 276 277 /* 278 * Interval value associated with the media change scsi watch. 279 */ 280 static int sd_check_media_time = 3000000; 281 282 /* 283 * Wait value used for in progress operations during a DDI_SUSPEND 284 */ 285 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 286 287 /* 288 * sd_label_mutex protects a static buffer used in the disk label 289 * component of the driver 290 */ 291 static kmutex_t sd_label_mutex; 292 293 /* 294 * sd_detach_mutex protects un_layer_count, un_detach_count, and 295 * un_opens_in_progress in the sd_lun structure. 296 */ 297 static kmutex_t sd_detach_mutex; 298 299 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 300 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 301 302 /* 303 * Global buffer and mutex for debug logging 304 */ 305 static char sd_log_buf[1024]; 306 static kmutex_t sd_log_mutex; 307 308 /* 309 * Structs and globals for recording attached lun information. 310 * This maintains a chain. Each node in the chain represents a SCSI controller. 311 * The structure records the number of luns attached to each target connected 312 * with the controller. 313 * For parallel scsi device only. 314 */ 315 struct sd_scsi_hba_tgt_lun { 316 struct sd_scsi_hba_tgt_lun *next; 317 dev_info_t *pdip; 318 int nlun[NTARGETS_WIDE]; 319 }; 320 321 /* 322 * Flag to indicate the lun is attached or detached 323 */ 324 #define SD_SCSI_LUN_ATTACH 0 325 #define SD_SCSI_LUN_DETACH 1 326 327 static kmutex_t sd_scsi_target_lun_mutex; 328 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 329 330 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 331 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 332 333 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 334 sd_scsi_target_lun_head)) 335 336 /* 337 * "Smart" Probe Caching structs, globals, #defines, etc. 338 * For parallel scsi and non-self-identify device only. 339 */ 340 341 /* 342 * The following resources and routines are implemented to support 343 * "smart" probing, which caches the scsi_probe() results in an array, 344 * in order to help avoid long probe times. 345 */ 346 struct sd_scsi_probe_cache { 347 struct sd_scsi_probe_cache *next; 348 dev_info_t *pdip; 349 int cache[NTARGETS_WIDE]; 350 }; 351 352 static kmutex_t sd_scsi_probe_cache_mutex; 353 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 354 355 /* 356 * Really we only need protection on the head of the linked list, but 357 * better safe than sorry. 358 */ 359 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 360 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 361 362 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 363 sd_scsi_probe_cache_head)) 364 365 /* 366 * Power attribute table 367 */ 368 static sd_power_attr_ss sd_pwr_ss = { 369 { "NAME=spindle-motor", "0=off", "1=on", NULL }, 370 {0, 100}, 371 {30, 0}, 372 {20000, 0} 373 }; 374 375 static sd_power_attr_pc sd_pwr_pc = { 376 { "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle", 377 "3=active", NULL }, 378 {0, 0, 0, 100}, 379 {90, 90, 20, 0}, 380 {15000, 15000, 1000, 0} 381 }; 382 383 /* 384 * Power level to power condition 385 */ 386 static int sd_pl2pc[] = { 387 SD_TARGET_START_VALID, 388 SD_TARGET_STANDBY, 389 SD_TARGET_IDLE, 390 SD_TARGET_ACTIVE 391 }; 392 393 /* 394 * Vendor specific data name property declarations 395 */ 396 397 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 398 399 static sd_tunables seagate_properties = { 400 SEAGATE_THROTTLE_VALUE, 401 0, 402 0, 403 0, 404 0, 405 0, 406 0, 407 0, 408 0 409 }; 410 411 412 static sd_tunables fujitsu_properties = { 413 FUJITSU_THROTTLE_VALUE, 414 0, 415 0, 416 0, 417 0, 418 0, 419 0, 420 0, 421 0 422 }; 423 424 static sd_tunables ibm_properties = { 425 IBM_THROTTLE_VALUE, 426 0, 427 0, 428 0, 429 0, 430 0, 431 0, 432 0, 433 0 434 }; 435 436 static sd_tunables purple_properties = { 437 PURPLE_THROTTLE_VALUE, 438 0, 439 0, 440 PURPLE_BUSY_RETRIES, 441 PURPLE_RESET_RETRY_COUNT, 442 PURPLE_RESERVE_RELEASE_TIME, 443 0, 444 0, 445 0 446 }; 447 448 static sd_tunables sve_properties = { 449 SVE_THROTTLE_VALUE, 450 0, 451 0, 452 SVE_BUSY_RETRIES, 453 SVE_RESET_RETRY_COUNT, 454 SVE_RESERVE_RELEASE_TIME, 455 SVE_MIN_THROTTLE_VALUE, 456 SVE_DISKSORT_DISABLED_FLAG, 457 0 458 }; 459 460 static sd_tunables maserati_properties = { 461 0, 462 0, 463 0, 464 0, 465 0, 466 0, 467 0, 468 MASERATI_DISKSORT_DISABLED_FLAG, 469 MASERATI_LUN_RESET_ENABLED_FLAG 470 }; 471 472 static sd_tunables pirus_properties = { 473 PIRUS_THROTTLE_VALUE, 474 0, 475 PIRUS_NRR_COUNT, 476 PIRUS_BUSY_RETRIES, 477 PIRUS_RESET_RETRY_COUNT, 478 0, 479 PIRUS_MIN_THROTTLE_VALUE, 480 PIRUS_DISKSORT_DISABLED_FLAG, 481 PIRUS_LUN_RESET_ENABLED_FLAG 482 }; 483 484 #endif 485 486 #if (defined(__sparc) && !defined(__fibre)) || \ 487 (defined(__i386) || defined(__amd64)) 488 489 490 static sd_tunables elite_properties = { 491 ELITE_THROTTLE_VALUE, 492 0, 493 0, 494 0, 495 0, 496 0, 497 0, 498 0, 499 0 500 }; 501 502 static sd_tunables st31200n_properties = { 503 ST31200N_THROTTLE_VALUE, 504 0, 505 0, 506 0, 507 0, 508 0, 509 0, 510 0, 511 0 512 }; 513 514 #endif /* Fibre or not */ 515 516 static sd_tunables lsi_properties_scsi = { 517 LSI_THROTTLE_VALUE, 518 0, 519 LSI_NOTREADY_RETRIES, 520 0, 521 0, 522 0, 523 0, 524 0, 525 0 526 }; 527 528 static sd_tunables symbios_properties = { 529 SYMBIOS_THROTTLE_VALUE, 530 0, 531 SYMBIOS_NOTREADY_RETRIES, 532 0, 533 0, 534 0, 535 0, 536 0, 537 0 538 }; 539 540 static sd_tunables lsi_properties = { 541 0, 542 0, 543 LSI_NOTREADY_RETRIES, 544 0, 545 0, 546 0, 547 0, 548 0, 549 0 550 }; 551 552 static sd_tunables lsi_oem_properties = { 553 0, 554 0, 555 LSI_OEM_NOTREADY_RETRIES, 556 0, 557 0, 558 0, 559 0, 560 0, 561 0, 562 1 563 }; 564 565 566 567 #if (defined(SD_PROP_TST)) 568 569 #define SD_TST_CTYPE_VAL CTYPE_CDROM 570 #define SD_TST_THROTTLE_VAL 16 571 #define SD_TST_NOTREADY_VAL 12 572 #define SD_TST_BUSY_VAL 60 573 #define SD_TST_RST_RETRY_VAL 36 574 #define SD_TST_RSV_REL_TIME 60 575 576 static sd_tunables tst_properties = { 577 SD_TST_THROTTLE_VAL, 578 SD_TST_CTYPE_VAL, 579 SD_TST_NOTREADY_VAL, 580 SD_TST_BUSY_VAL, 581 SD_TST_RST_RETRY_VAL, 582 SD_TST_RSV_REL_TIME, 583 0, 584 0, 585 0 586 }; 587 #endif 588 589 /* This is similar to the ANSI toupper implementation */ 590 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 591 592 /* 593 * Static Driver Configuration Table 594 * 595 * This is the table of disks which need throttle adjustment (or, perhaps 596 * something else as defined by the flags at a future time.) device_id 597 * is a string consisting of concatenated vid (vendor), pid (product/model) 598 * and revision strings as defined in the scsi_inquiry structure. Offsets of 599 * the parts of the string are as defined by the sizes in the scsi_inquiry 600 * structure. Device type is searched as far as the device_id string is 601 * defined. Flags defines which values are to be set in the driver from the 602 * properties list. 603 * 604 * Entries below which begin and end with a "*" are a special case. 605 * These do not have a specific vendor, and the string which follows 606 * can appear anywhere in the 16 byte PID portion of the inquiry data. 607 * 608 * Entries below which begin and end with a " " (blank) are a special 609 * case. The comparison function will treat multiple consecutive blanks 610 * as equivalent to a single blank. For example, this causes a 611 * sd_disk_table entry of " NEC CDROM " to match a device's id string 612 * of "NEC CDROM". 613 * 614 * Note: The MD21 controller type has been obsoleted. 615 * ST318202F is a Legacy device 616 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 617 * made with an FC connection. The entries here are a legacy. 618 */ 619 static sd_disk_config_t sd_disk_table[] = { 620 #if defined(__fibre) || defined(__i386) || defined(__amd64) 621 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 622 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 623 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 624 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 625 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 626 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 627 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 628 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 629 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 630 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 631 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 632 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 633 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 634 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 635 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 636 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 637 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 638 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 639 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 640 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 641 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 642 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 643 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 644 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 645 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 646 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 647 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 648 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 649 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 650 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 651 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 652 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 653 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 654 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 655 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 656 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 657 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 658 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 659 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 663 { "IBM 1818", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 664 { "DELL MD3000", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 665 { "DELL MD3000i", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 666 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 667 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 668 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 669 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 670 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT | 671 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 672 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT | 673 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 674 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 675 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 676 { "SUN T3", SD_CONF_BSET_THROTTLE | 677 SD_CONF_BSET_BSY_RETRY_COUNT| 678 SD_CONF_BSET_RST_RETRIES| 679 SD_CONF_BSET_RSV_REL_TIME, 680 &purple_properties }, 681 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 682 SD_CONF_BSET_BSY_RETRY_COUNT| 683 SD_CONF_BSET_RST_RETRIES| 684 SD_CONF_BSET_RSV_REL_TIME| 685 SD_CONF_BSET_MIN_THROTTLE| 686 SD_CONF_BSET_DISKSORT_DISABLED, 687 &sve_properties }, 688 { "SUN T4", SD_CONF_BSET_THROTTLE | 689 SD_CONF_BSET_BSY_RETRY_COUNT| 690 SD_CONF_BSET_RST_RETRIES| 691 SD_CONF_BSET_RSV_REL_TIME, 692 &purple_properties }, 693 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 694 SD_CONF_BSET_LUN_RESET_ENABLED, 695 &maserati_properties }, 696 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 697 SD_CONF_BSET_NRR_COUNT| 698 SD_CONF_BSET_BSY_RETRY_COUNT| 699 SD_CONF_BSET_RST_RETRIES| 700 SD_CONF_BSET_MIN_THROTTLE| 701 SD_CONF_BSET_DISKSORT_DISABLED| 702 SD_CONF_BSET_LUN_RESET_ENABLED, 703 &pirus_properties }, 704 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 705 SD_CONF_BSET_NRR_COUNT| 706 SD_CONF_BSET_BSY_RETRY_COUNT| 707 SD_CONF_BSET_RST_RETRIES| 708 SD_CONF_BSET_MIN_THROTTLE| 709 SD_CONF_BSET_DISKSORT_DISABLED| 710 SD_CONF_BSET_LUN_RESET_ENABLED, 711 &pirus_properties }, 712 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 713 SD_CONF_BSET_NRR_COUNT| 714 SD_CONF_BSET_BSY_RETRY_COUNT| 715 SD_CONF_BSET_RST_RETRIES| 716 SD_CONF_BSET_MIN_THROTTLE| 717 SD_CONF_BSET_DISKSORT_DISABLED| 718 SD_CONF_BSET_LUN_RESET_ENABLED, 719 &pirus_properties }, 720 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 721 SD_CONF_BSET_NRR_COUNT| 722 SD_CONF_BSET_BSY_RETRY_COUNT| 723 SD_CONF_BSET_RST_RETRIES| 724 SD_CONF_BSET_MIN_THROTTLE| 725 SD_CONF_BSET_DISKSORT_DISABLED| 726 SD_CONF_BSET_LUN_RESET_ENABLED, 727 &pirus_properties }, 728 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 729 SD_CONF_BSET_NRR_COUNT| 730 SD_CONF_BSET_BSY_RETRY_COUNT| 731 SD_CONF_BSET_RST_RETRIES| 732 SD_CONF_BSET_MIN_THROTTLE| 733 SD_CONF_BSET_DISKSORT_DISABLED| 734 SD_CONF_BSET_LUN_RESET_ENABLED, 735 &pirus_properties }, 736 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 737 SD_CONF_BSET_NRR_COUNT| 738 SD_CONF_BSET_BSY_RETRY_COUNT| 739 SD_CONF_BSET_RST_RETRIES| 740 SD_CONF_BSET_MIN_THROTTLE| 741 SD_CONF_BSET_DISKSORT_DISABLED| 742 SD_CONF_BSET_LUN_RESET_ENABLED, 743 &pirus_properties }, 744 { "SUN STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 745 { "SUN SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 746 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 747 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 748 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 749 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 750 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 751 #endif /* fibre or NON-sparc platforms */ 752 #if ((defined(__sparc) && !defined(__fibre)) ||\ 753 (defined(__i386) || defined(__amd64))) 754 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 755 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 756 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 757 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 758 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 759 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 760 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 761 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 762 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 763 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 764 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 765 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 766 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 767 &symbios_properties }, 768 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 769 &lsi_properties_scsi }, 770 #if defined(__i386) || defined(__amd64) 771 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 772 | SD_CONF_BSET_READSUB_BCD 773 | SD_CONF_BSET_READ_TOC_ADDR_BCD 774 | SD_CONF_BSET_NO_READ_HEADER 775 | SD_CONF_BSET_READ_CD_XD4), NULL }, 776 777 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 778 | SD_CONF_BSET_READSUB_BCD 779 | SD_CONF_BSET_READ_TOC_ADDR_BCD 780 | SD_CONF_BSET_NO_READ_HEADER 781 | SD_CONF_BSET_READ_CD_XD4), NULL }, 782 #endif /* __i386 || __amd64 */ 783 #endif /* sparc NON-fibre or NON-sparc platforms */ 784 785 #if (defined(SD_PROP_TST)) 786 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 787 | SD_CONF_BSET_CTYPE 788 | SD_CONF_BSET_NRR_COUNT 789 | SD_CONF_BSET_FAB_DEVID 790 | SD_CONF_BSET_NOCACHE 791 | SD_CONF_BSET_BSY_RETRY_COUNT 792 | SD_CONF_BSET_PLAYMSF_BCD 793 | SD_CONF_BSET_READSUB_BCD 794 | SD_CONF_BSET_READ_TOC_TRK_BCD 795 | SD_CONF_BSET_READ_TOC_ADDR_BCD 796 | SD_CONF_BSET_NO_READ_HEADER 797 | SD_CONF_BSET_READ_CD_XD4 798 | SD_CONF_BSET_RST_RETRIES 799 | SD_CONF_BSET_RSV_REL_TIME 800 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 801 #endif 802 }; 803 804 static const int sd_disk_table_size = 805 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 806 807 /* 808 * Emulation mode disk drive VID/PID table 809 */ 810 static char sd_flash_dev_table[][25] = { 811 "ATA MARVELL SD88SA02", 812 "MARVELL SD88SA02", 813 "TOSHIBA THNSNV05", 814 }; 815 816 static const int sd_flash_dev_table_size = 817 sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]); 818 819 #define SD_INTERCONNECT_PARALLEL 0 820 #define SD_INTERCONNECT_FABRIC 1 821 #define SD_INTERCONNECT_FIBRE 2 822 #define SD_INTERCONNECT_SSA 3 823 #define SD_INTERCONNECT_SATA 4 824 #define SD_INTERCONNECT_SAS 5 825 826 #define SD_IS_PARALLEL_SCSI(un) \ 827 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 828 #define SD_IS_SERIAL(un) \ 829 (((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\ 830 ((un)->un_interconnect_type == SD_INTERCONNECT_SAS)) 831 832 /* 833 * Definitions used by device id registration routines 834 */ 835 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 836 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 837 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 838 839 static kmutex_t sd_sense_mutex = {0}; 840 841 /* 842 * Macros for updates of the driver state 843 */ 844 #define New_state(un, s) \ 845 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 846 #define Restore_state(un) \ 847 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 848 849 static struct sd_cdbinfo sd_cdbtab[] = { 850 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 851 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 852 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 853 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 854 }; 855 856 /* 857 * Specifies the number of seconds that must have elapsed since the last 858 * cmd. has completed for a device to be declared idle to the PM framework. 859 */ 860 static int sd_pm_idletime = 1; 861 862 /* 863 * Internal function prototypes 864 */ 865 866 #if (defined(__fibre)) 867 /* 868 * These #defines are to avoid namespace collisions that occur because this 869 * code is currently used to compile two separate driver modules: sd and ssd. 870 * All function names need to be treated this way (even if declared static) 871 * in order to allow the debugger to resolve the names properly. 872 * It is anticipated that in the near future the ssd module will be obsoleted, 873 * at which time this ugliness should go away. 874 */ 875 #define sd_log_trace ssd_log_trace 876 #define sd_log_info ssd_log_info 877 #define sd_log_err ssd_log_err 878 #define sdprobe ssdprobe 879 #define sdinfo ssdinfo 880 #define sd_prop_op ssd_prop_op 881 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 882 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 883 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 884 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 885 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 886 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 887 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 888 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 889 #define sd_spin_up_unit ssd_spin_up_unit 890 #define sd_enable_descr_sense ssd_enable_descr_sense 891 #define sd_reenable_dsense_task ssd_reenable_dsense_task 892 #define sd_set_mmc_caps ssd_set_mmc_caps 893 #define sd_read_unit_properties ssd_read_unit_properties 894 #define sd_process_sdconf_file ssd_process_sdconf_file 895 #define sd_process_sdconf_table ssd_process_sdconf_table 896 #define sd_sdconf_id_match ssd_sdconf_id_match 897 #define sd_blank_cmp ssd_blank_cmp 898 #define sd_chk_vers1_data ssd_chk_vers1_data 899 #define sd_set_vers1_properties ssd_set_vers1_properties 900 #define sd_check_bdc_vpd ssd_check_bdc_vpd 901 #define sd_check_emulation_mode ssd_check_emulation_mode 902 903 #define sd_get_physical_geometry ssd_get_physical_geometry 904 #define sd_get_virtual_geometry ssd_get_virtual_geometry 905 #define sd_update_block_info ssd_update_block_info 906 #define sd_register_devid ssd_register_devid 907 #define sd_get_devid ssd_get_devid 908 #define sd_create_devid ssd_create_devid 909 #define sd_write_deviceid ssd_write_deviceid 910 #define sd_check_vpd_page_support ssd_check_vpd_page_support 911 #define sd_setup_pm ssd_setup_pm 912 #define sd_create_pm_components ssd_create_pm_components 913 #define sd_ddi_suspend ssd_ddi_suspend 914 #define sd_ddi_resume ssd_ddi_resume 915 #define sd_pm_state_change ssd_pm_state_change 916 #define sdpower ssdpower 917 #define sdattach ssdattach 918 #define sddetach ssddetach 919 #define sd_unit_attach ssd_unit_attach 920 #define sd_unit_detach ssd_unit_detach 921 #define sd_set_unit_attributes ssd_set_unit_attributes 922 #define sd_create_errstats ssd_create_errstats 923 #define sd_set_errstats ssd_set_errstats 924 #define sd_set_pstats ssd_set_pstats 925 #define sddump ssddump 926 #define sd_scsi_poll ssd_scsi_poll 927 #define sd_send_polled_RQS ssd_send_polled_RQS 928 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 929 #define sd_init_event_callbacks ssd_init_event_callbacks 930 #define sd_event_callback ssd_event_callback 931 #define sd_cache_control ssd_cache_control 932 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 933 #define sd_get_write_cache_changeable ssd_get_write_cache_changeable 934 #define sd_get_nv_sup ssd_get_nv_sup 935 #define sd_make_device ssd_make_device 936 #define sdopen ssdopen 937 #define sdclose ssdclose 938 #define sd_ready_and_valid ssd_ready_and_valid 939 #define sdmin ssdmin 940 #define sdread ssdread 941 #define sdwrite ssdwrite 942 #define sdaread ssdaread 943 #define sdawrite ssdawrite 944 #define sdstrategy ssdstrategy 945 #define sdioctl ssdioctl 946 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 947 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 948 #define sd_checksum_iostart ssd_checksum_iostart 949 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 950 #define sd_pm_iostart ssd_pm_iostart 951 #define sd_core_iostart ssd_core_iostart 952 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 953 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 954 #define sd_checksum_iodone ssd_checksum_iodone 955 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 956 #define sd_pm_iodone ssd_pm_iodone 957 #define sd_initpkt_for_buf ssd_initpkt_for_buf 958 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 959 #define sd_setup_rw_pkt ssd_setup_rw_pkt 960 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 961 #define sd_buf_iodone ssd_buf_iodone 962 #define sd_uscsi_strategy ssd_uscsi_strategy 963 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 964 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 965 #define sd_uscsi_iodone ssd_uscsi_iodone 966 #define sd_xbuf_strategy ssd_xbuf_strategy 967 #define sd_xbuf_init ssd_xbuf_init 968 #define sd_pm_entry ssd_pm_entry 969 #define sd_pm_exit ssd_pm_exit 970 971 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 972 #define sd_pm_timeout_handler ssd_pm_timeout_handler 973 974 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 975 #define sdintr ssdintr 976 #define sd_start_cmds ssd_start_cmds 977 #define sd_send_scsi_cmd ssd_send_scsi_cmd 978 #define sd_bioclone_alloc ssd_bioclone_alloc 979 #define sd_bioclone_free ssd_bioclone_free 980 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 981 #define sd_shadow_buf_free ssd_shadow_buf_free 982 #define sd_print_transport_rejected_message \ 983 ssd_print_transport_rejected_message 984 #define sd_retry_command ssd_retry_command 985 #define sd_set_retry_bp ssd_set_retry_bp 986 #define sd_send_request_sense_command ssd_send_request_sense_command 987 #define sd_start_retry_command ssd_start_retry_command 988 #define sd_start_direct_priority_command \ 989 ssd_start_direct_priority_command 990 #define sd_return_failed_command ssd_return_failed_command 991 #define sd_return_failed_command_no_restart \ 992 ssd_return_failed_command_no_restart 993 #define sd_return_command ssd_return_command 994 #define sd_sync_with_callback ssd_sync_with_callback 995 #define sdrunout ssdrunout 996 #define sd_mark_rqs_busy ssd_mark_rqs_busy 997 #define sd_mark_rqs_idle ssd_mark_rqs_idle 998 #define sd_reduce_throttle ssd_reduce_throttle 999 #define sd_restore_throttle ssd_restore_throttle 1000 #define sd_print_incomplete_msg ssd_print_incomplete_msg 1001 #define sd_init_cdb_limits ssd_init_cdb_limits 1002 #define sd_pkt_status_good ssd_pkt_status_good 1003 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 1004 #define sd_pkt_status_busy ssd_pkt_status_busy 1005 #define sd_pkt_status_reservation_conflict \ 1006 ssd_pkt_status_reservation_conflict 1007 #define sd_pkt_status_qfull ssd_pkt_status_qfull 1008 #define sd_handle_request_sense ssd_handle_request_sense 1009 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 1010 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 1011 #define sd_validate_sense_data ssd_validate_sense_data 1012 #define sd_decode_sense ssd_decode_sense 1013 #define sd_print_sense_msg ssd_print_sense_msg 1014 #define sd_sense_key_no_sense ssd_sense_key_no_sense 1015 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 1016 #define sd_sense_key_not_ready ssd_sense_key_not_ready 1017 #define sd_sense_key_medium_or_hardware_error \ 1018 ssd_sense_key_medium_or_hardware_error 1019 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 1020 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 1021 #define sd_sense_key_fail_command ssd_sense_key_fail_command 1022 #define sd_sense_key_blank_check ssd_sense_key_blank_check 1023 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 1024 #define sd_sense_key_default ssd_sense_key_default 1025 #define sd_print_retry_msg ssd_print_retry_msg 1026 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 1027 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 1028 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 1029 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 1030 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 1031 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 1032 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 1033 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 1034 #define sd_pkt_reason_default ssd_pkt_reason_default 1035 #define sd_reset_target ssd_reset_target 1036 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 1037 #define sd_start_stop_unit_task ssd_start_stop_unit_task 1038 #define sd_taskq_create ssd_taskq_create 1039 #define sd_taskq_delete ssd_taskq_delete 1040 #define sd_target_change_task ssd_target_change_task 1041 #define sd_log_dev_status_event ssd_log_dev_status_event 1042 #define sd_log_lun_expansion_event ssd_log_lun_expansion_event 1043 #define sd_log_eject_request_event ssd_log_eject_request_event 1044 #define sd_media_change_task ssd_media_change_task 1045 #define sd_handle_mchange ssd_handle_mchange 1046 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 1047 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 1048 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 1049 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 1050 #define sd_send_scsi_feature_GET_CONFIGURATION \ 1051 sd_send_scsi_feature_GET_CONFIGURATION 1052 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1053 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1054 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1055 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1056 ssd_send_scsi_PERSISTENT_RESERVE_IN 1057 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1058 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1059 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1060 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1061 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1062 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1063 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1064 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1065 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1066 #define sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION \ 1067 ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 1068 #define sd_gesn_media_data_valid ssd_gesn_media_data_valid 1069 #define sd_alloc_rqs ssd_alloc_rqs 1070 #define sd_free_rqs ssd_free_rqs 1071 #define sd_dump_memory ssd_dump_memory 1072 #define sd_get_media_info_com ssd_get_media_info_com 1073 #define sd_get_media_info ssd_get_media_info 1074 #define sd_get_media_info_ext ssd_get_media_info_ext 1075 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1076 #define sd_nvpair_str_decode ssd_nvpair_str_decode 1077 #define sd_strtok_r ssd_strtok_r 1078 #define sd_set_properties ssd_set_properties 1079 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1080 #define sd_setup_next_xfer ssd_setup_next_xfer 1081 #define sd_dkio_get_temp ssd_dkio_get_temp 1082 #define sd_check_mhd ssd_check_mhd 1083 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1084 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1085 #define sd_sname ssd_sname 1086 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1087 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1088 #define sd_take_ownership ssd_take_ownership 1089 #define sd_reserve_release ssd_reserve_release 1090 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1091 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1092 #define sd_persistent_reservation_in_read_keys \ 1093 ssd_persistent_reservation_in_read_keys 1094 #define sd_persistent_reservation_in_read_resv \ 1095 ssd_persistent_reservation_in_read_resv 1096 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1097 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1098 #define sd_mhdioc_release ssd_mhdioc_release 1099 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1100 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1101 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1102 #define sr_change_blkmode ssr_change_blkmode 1103 #define sr_change_speed ssr_change_speed 1104 #define sr_atapi_change_speed ssr_atapi_change_speed 1105 #define sr_pause_resume ssr_pause_resume 1106 #define sr_play_msf ssr_play_msf 1107 #define sr_play_trkind ssr_play_trkind 1108 #define sr_read_all_subcodes ssr_read_all_subcodes 1109 #define sr_read_subchannel ssr_read_subchannel 1110 #define sr_read_tocentry ssr_read_tocentry 1111 #define sr_read_tochdr ssr_read_tochdr 1112 #define sr_read_cdda ssr_read_cdda 1113 #define sr_read_cdxa ssr_read_cdxa 1114 #define sr_read_mode1 ssr_read_mode1 1115 #define sr_read_mode2 ssr_read_mode2 1116 #define sr_read_cd_mode2 ssr_read_cd_mode2 1117 #define sr_sector_mode ssr_sector_mode 1118 #define sr_eject ssr_eject 1119 #define sr_ejected ssr_ejected 1120 #define sr_check_wp ssr_check_wp 1121 #define sd_watch_request_submit ssd_watch_request_submit 1122 #define sd_check_media ssd_check_media 1123 #define sd_media_watch_cb ssd_media_watch_cb 1124 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1125 #define sr_volume_ctrl ssr_volume_ctrl 1126 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1127 #define sd_log_page_supported ssd_log_page_supported 1128 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1129 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1130 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1131 #define sd_range_lock ssd_range_lock 1132 #define sd_get_range ssd_get_range 1133 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1134 #define sd_range_unlock ssd_range_unlock 1135 #define sd_read_modify_write_task ssd_read_modify_write_task 1136 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1137 1138 #define sd_iostart_chain ssd_iostart_chain 1139 #define sd_iodone_chain ssd_iodone_chain 1140 #define sd_initpkt_map ssd_initpkt_map 1141 #define sd_destroypkt_map ssd_destroypkt_map 1142 #define sd_chain_type_map ssd_chain_type_map 1143 #define sd_chain_index_map ssd_chain_index_map 1144 1145 #define sd_failfast_flushctl ssd_failfast_flushctl 1146 #define sd_failfast_flushq ssd_failfast_flushq 1147 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1148 1149 #define sd_is_lsi ssd_is_lsi 1150 #define sd_tg_rdwr ssd_tg_rdwr 1151 #define sd_tg_getinfo ssd_tg_getinfo 1152 #define sd_rmw_msg_print_handler ssd_rmw_msg_print_handler 1153 1154 #endif /* #if (defined(__fibre)) */ 1155 1156 typedef struct unmap_param_hdr_s { 1157 uint16_t uph_data_len; 1158 uint16_t uph_descr_data_len; 1159 uint32_t uph_reserved; 1160 } unmap_param_hdr_t; 1161 1162 typedef struct unmap_blk_descr_s { 1163 uint64_t ubd_lba; 1164 uint32_t ubd_lba_cnt; 1165 uint32_t ubd_reserved; 1166 } unmap_blk_descr_t; 1167 1168 /* Max number of block descriptors in UNMAP command */ 1169 #define SD_UNMAP_MAX_DESCR \ 1170 ((UINT16_MAX - sizeof (unmap_param_hdr_t)) / sizeof (unmap_blk_descr_t)) 1171 /* Max size of the UNMAP parameter list in bytes */ 1172 #define SD_UNMAP_PARAM_LIST_MAXSZ (sizeof (unmap_param_hdr_t) + \ 1173 SD_UNMAP_MAX_DESCR * sizeof (unmap_blk_descr_t)) 1174 1175 int _init(void); 1176 int _fini(void); 1177 int _info(struct modinfo *modinfop); 1178 1179 /*PRINTFLIKE3*/ 1180 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1181 /*PRINTFLIKE3*/ 1182 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1183 /*PRINTFLIKE3*/ 1184 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1185 1186 static int sdprobe(dev_info_t *devi); 1187 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1188 void **result); 1189 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1190 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1191 1192 /* 1193 * Smart probe for parallel scsi 1194 */ 1195 static void sd_scsi_probe_cache_init(void); 1196 static void sd_scsi_probe_cache_fini(void); 1197 static void sd_scsi_clear_probe_cache(void); 1198 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1199 1200 /* 1201 * Attached luns on target for parallel scsi 1202 */ 1203 static void sd_scsi_target_lun_init(void); 1204 static void sd_scsi_target_lun_fini(void); 1205 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1206 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1207 1208 static int sd_spin_up_unit(sd_ssc_t *ssc); 1209 1210 /* 1211 * Using sd_ssc_init to establish sd_ssc_t struct 1212 * Using sd_ssc_send to send uscsi internal command 1213 * Using sd_ssc_fini to free sd_ssc_t struct 1214 */ 1215 static sd_ssc_t *sd_ssc_init(struct sd_lun *un); 1216 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, 1217 int flag, enum uio_seg dataspace, int path_flag); 1218 static void sd_ssc_fini(sd_ssc_t *ssc); 1219 1220 /* 1221 * Using sd_ssc_assessment to set correct type-of-assessment 1222 * Using sd_ssc_post to post ereport & system log 1223 * sd_ssc_post will call sd_ssc_print to print system log 1224 * sd_ssc_post will call sd_ssd_ereport_post to post ereport 1225 */ 1226 static void sd_ssc_assessment(sd_ssc_t *ssc, 1227 enum sd_type_assessment tp_assess); 1228 1229 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess); 1230 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity); 1231 static void sd_ssc_ereport_post(sd_ssc_t *ssc, 1232 enum sd_driver_assessment drv_assess); 1233 1234 /* 1235 * Using sd_ssc_set_info to mark an un-decodable-data error. 1236 * Using sd_ssc_extract_info to transfer information from internal 1237 * data structures to sd_ssc_t. 1238 */ 1239 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, 1240 const char *fmt, ...); 1241 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, 1242 struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp); 1243 1244 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1245 enum uio_seg dataspace, int path_flag); 1246 1247 #ifdef _LP64 1248 static void sd_enable_descr_sense(sd_ssc_t *ssc); 1249 static void sd_reenable_dsense_task(void *arg); 1250 #endif /* _LP64 */ 1251 1252 static void sd_set_mmc_caps(sd_ssc_t *ssc); 1253 1254 static void sd_read_unit_properties(struct sd_lun *un); 1255 static int sd_process_sdconf_file(struct sd_lun *un); 1256 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str); 1257 static char *sd_strtok_r(char *string, const char *sepset, char **lasts); 1258 static void sd_set_properties(struct sd_lun *un, char *name, char *value); 1259 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1260 int *data_list, sd_tunables *values); 1261 static void sd_process_sdconf_table(struct sd_lun *un); 1262 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1263 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1264 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1265 int list_len, char *dataname_ptr); 1266 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1267 sd_tunables *prop_list); 1268 1269 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, 1270 int reservation_flag); 1271 static int sd_get_devid(sd_ssc_t *ssc); 1272 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc); 1273 static int sd_write_deviceid(sd_ssc_t *ssc); 1274 static int sd_check_vpd_page_support(sd_ssc_t *ssc); 1275 1276 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi); 1277 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1278 1279 static int sd_ddi_suspend(dev_info_t *devi); 1280 static int sd_ddi_resume(dev_info_t *devi); 1281 static int sd_pm_state_change(struct sd_lun *un, int level, int flag); 1282 static int sdpower(dev_info_t *devi, int component, int level); 1283 1284 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1285 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1286 static int sd_unit_attach(dev_info_t *devi); 1287 static int sd_unit_detach(dev_info_t *devi); 1288 1289 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1290 static void sd_create_errstats(struct sd_lun *un, int instance); 1291 static void sd_set_errstats(struct sd_lun *un); 1292 static void sd_set_pstats(struct sd_lun *un); 1293 1294 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1295 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1296 static int sd_send_polled_RQS(struct sd_lun *un); 1297 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1298 1299 #if (defined(__fibre)) 1300 /* 1301 * Event callbacks (photon) 1302 */ 1303 static void sd_init_event_callbacks(struct sd_lun *un); 1304 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1305 #endif 1306 1307 /* 1308 * Defines for sd_cache_control 1309 */ 1310 1311 #define SD_CACHE_ENABLE 1 1312 #define SD_CACHE_DISABLE 0 1313 #define SD_CACHE_NOCHANGE -1 1314 1315 static int sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag); 1316 static int sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled); 1317 static void sd_get_write_cache_changeable(sd_ssc_t *ssc, int *is_changeable); 1318 static void sd_get_nv_sup(sd_ssc_t *ssc); 1319 static dev_t sd_make_device(dev_info_t *devi); 1320 static void sd_check_bdc_vpd(sd_ssc_t *ssc); 1321 static void sd_check_emulation_mode(sd_ssc_t *ssc); 1322 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1323 uint64_t capacity); 1324 1325 /* 1326 * Driver entry point functions. 1327 */ 1328 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1329 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1330 static int sd_ready_and_valid(sd_ssc_t *ssc, int part); 1331 1332 static void sdmin(struct buf *bp); 1333 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1334 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1335 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1336 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1337 1338 static int sdstrategy(struct buf *bp); 1339 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1340 1341 /* 1342 * Function prototypes for layering functions in the iostart chain. 1343 */ 1344 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1345 struct buf *bp); 1346 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1347 struct buf *bp); 1348 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1349 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1350 struct buf *bp); 1351 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1352 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1353 1354 /* 1355 * Function prototypes for layering functions in the iodone chain. 1356 */ 1357 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1358 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1359 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1360 struct buf *bp); 1361 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1362 struct buf *bp); 1363 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1364 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1365 struct buf *bp); 1366 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1367 1368 /* 1369 * Prototypes for functions to support buf(9S) based IO. 1370 */ 1371 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1372 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1373 static void sd_destroypkt_for_buf(struct buf *); 1374 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1375 struct buf *bp, int flags, 1376 int (*callback)(caddr_t), caddr_t callback_arg, 1377 diskaddr_t lba, uint32_t blockcount); 1378 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1379 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1380 1381 /* 1382 * Prototypes for functions to support USCSI IO. 1383 */ 1384 static int sd_uscsi_strategy(struct buf *bp); 1385 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1386 static void sd_destroypkt_for_uscsi(struct buf *); 1387 1388 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1389 uchar_t chain_type, void *pktinfop); 1390 1391 static int sd_pm_entry(struct sd_lun *un); 1392 static void sd_pm_exit(struct sd_lun *un); 1393 1394 static void sd_pm_idletimeout_handler(void *arg); 1395 1396 /* 1397 * sd_core internal functions (used at the sd_core_io layer). 1398 */ 1399 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1400 static void sdintr(struct scsi_pkt *pktp); 1401 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1402 1403 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1404 enum uio_seg dataspace, int path_flag); 1405 1406 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1407 daddr_t blkno, int (*func)(struct buf *)); 1408 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1409 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1410 static void sd_bioclone_free(struct buf *bp); 1411 static void sd_shadow_buf_free(struct buf *bp); 1412 1413 static void sd_print_transport_rejected_message(struct sd_lun *un, 1414 struct sd_xbuf *xp, int code); 1415 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1416 void *arg, int code); 1417 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1418 void *arg, int code); 1419 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1420 void *arg, int code); 1421 1422 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1423 int retry_check_flag, 1424 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1425 int c), 1426 void *user_arg, int failure_code, clock_t retry_delay, 1427 void (*statp)(kstat_io_t *)); 1428 1429 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1430 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1431 1432 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1433 struct scsi_pkt *pktp); 1434 static void sd_start_retry_command(void *arg); 1435 static void sd_start_direct_priority_command(void *arg); 1436 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1437 int errcode); 1438 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1439 struct buf *bp, int errcode); 1440 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1441 static void sd_sync_with_callback(struct sd_lun *un); 1442 static int sdrunout(caddr_t arg); 1443 1444 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1445 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1446 1447 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1448 static void sd_restore_throttle(void *arg); 1449 1450 static void sd_init_cdb_limits(struct sd_lun *un); 1451 1452 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1453 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1454 1455 /* 1456 * Error handling functions 1457 */ 1458 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1459 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1460 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1461 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1462 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1463 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1464 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1465 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1466 1467 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1468 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1469 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1470 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1471 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1472 struct sd_xbuf *xp, size_t actual_len); 1473 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1474 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1475 1476 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1477 void *arg, int code); 1478 1479 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1480 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1481 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1482 uint8_t *sense_datap, 1483 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1484 static void sd_sense_key_not_ready(struct sd_lun *un, 1485 uint8_t *sense_datap, 1486 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1487 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1488 uint8_t *sense_datap, 1489 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1490 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1491 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1492 static void sd_sense_key_unit_attention(struct sd_lun *un, 1493 uint8_t *sense_datap, 1494 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1495 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1496 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1497 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1498 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1499 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1500 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1501 static void sd_sense_key_default(struct sd_lun *un, 1502 uint8_t *sense_datap, 1503 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1504 1505 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1506 void *arg, int flag); 1507 1508 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1509 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1510 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1511 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1512 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1513 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1514 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1515 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1516 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1517 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1518 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1519 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1520 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1521 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1522 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1523 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1524 1525 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1526 1527 static void sd_start_stop_unit_callback(void *arg); 1528 static void sd_start_stop_unit_task(void *arg); 1529 1530 static void sd_taskq_create(void); 1531 static void sd_taskq_delete(void); 1532 static void sd_target_change_task(void *arg); 1533 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag); 1534 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag); 1535 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag); 1536 static void sd_media_change_task(void *arg); 1537 1538 static int sd_handle_mchange(struct sd_lun *un); 1539 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag); 1540 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, 1541 uint32_t *lbap, int path_flag); 1542 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 1543 uint32_t *lbap, uint32_t *psp, int path_flag); 1544 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, 1545 int flag, int path_flag); 1546 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, 1547 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1548 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag); 1549 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, 1550 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1551 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, 1552 uchar_t usr_cmd, uchar_t *usr_bufp); 1553 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1554 struct dk_callback *dkc); 1555 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1556 static int sd_send_scsi_UNMAP(dev_t dev, sd_ssc_t *ssc, dkioc_free_list_t *dfl, 1557 int flag); 1558 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, 1559 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1560 uchar_t *bufaddr, uint_t buflen, int path_flag); 1561 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 1562 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1563 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1564 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, 1565 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1566 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, 1567 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1568 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 1569 size_t buflen, daddr_t start_block, int path_flag); 1570 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \ 1571 sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \ 1572 path_flag) 1573 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\ 1574 sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\ 1575 path_flag) 1576 1577 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, 1578 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1579 uint16_t param_ptr, int path_flag); 1580 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, 1581 uchar_t *bufaddr, size_t buflen, uchar_t class_req); 1582 static boolean_t sd_gesn_media_data_valid(uchar_t *data); 1583 1584 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1585 static void sd_free_rqs(struct sd_lun *un); 1586 1587 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1588 uchar_t *data, int len, int fmt); 1589 static void sd_panic_for_res_conflict(struct sd_lun *un); 1590 1591 /* 1592 * Disk Ioctl Function Prototypes 1593 */ 1594 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1595 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag); 1596 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1597 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1598 1599 /* 1600 * Multi-host Ioctl Prototypes 1601 */ 1602 static int sd_check_mhd(dev_t dev, int interval); 1603 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1604 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1605 static char *sd_sname(uchar_t status); 1606 static void sd_mhd_resvd_recover(void *arg); 1607 static void sd_resv_reclaim_thread(); 1608 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1609 static int sd_reserve_release(dev_t dev, int cmd); 1610 static void sd_rmv_resv_reclaim_req(dev_t dev); 1611 static void sd_mhd_reset_notify_cb(caddr_t arg); 1612 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1613 mhioc_inkeys_t *usrp, int flag); 1614 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1615 mhioc_inresvs_t *usrp, int flag); 1616 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1617 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1618 static int sd_mhdioc_release(dev_t dev); 1619 static int sd_mhdioc_register_devid(dev_t dev); 1620 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1621 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1622 1623 /* 1624 * SCSI removable prototypes 1625 */ 1626 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1627 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1628 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1629 static int sr_pause_resume(dev_t dev, int mode); 1630 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1631 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1632 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1633 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1634 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1635 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1636 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1637 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1638 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1639 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1640 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1641 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1642 static int sr_eject(dev_t dev); 1643 static void sr_ejected(register struct sd_lun *un); 1644 static int sr_check_wp(dev_t dev); 1645 static opaque_t sd_watch_request_submit(struct sd_lun *un); 1646 static int sd_check_media(dev_t dev, enum dkio_state state); 1647 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1648 static void sd_delayed_cv_broadcast(void *arg); 1649 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1650 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1651 1652 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page); 1653 1654 /* 1655 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1656 */ 1657 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag); 1658 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1659 static void sd_wm_cache_destructor(void *wm, void *un); 1660 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1661 daddr_t endb, ushort_t typ); 1662 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1663 daddr_t endb); 1664 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1665 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1666 static void sd_read_modify_write_task(void * arg); 1667 static int 1668 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1669 struct buf **bpp); 1670 1671 1672 /* 1673 * Function prototypes for failfast support. 1674 */ 1675 static void sd_failfast_flushq(struct sd_lun *un); 1676 static int sd_failfast_flushq_callback(struct buf *bp); 1677 1678 /* 1679 * Function prototypes to check for lsi devices 1680 */ 1681 static void sd_is_lsi(struct sd_lun *un); 1682 1683 /* 1684 * Function prototypes for partial DMA support 1685 */ 1686 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1687 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1688 1689 1690 /* Function prototypes for cmlb */ 1691 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1692 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1693 1694 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1695 1696 /* 1697 * For printing RMW warning message timely 1698 */ 1699 static void sd_rmw_msg_print_handler(void *arg); 1700 1701 /* 1702 * Constants for failfast support: 1703 * 1704 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1705 * failfast processing being performed. 1706 * 1707 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1708 * failfast processing on all bufs with B_FAILFAST set. 1709 */ 1710 1711 #define SD_FAILFAST_INACTIVE 0 1712 #define SD_FAILFAST_ACTIVE 1 1713 1714 /* 1715 * Bitmask to control behavior of buf(9S) flushes when a transition to 1716 * the failfast state occurs. Optional bits include: 1717 * 1718 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1719 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1720 * be flushed. 1721 * 1722 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1723 * driver, in addition to the regular wait queue. This includes the xbuf 1724 * queues. When clear, only the driver's wait queue will be flushed. 1725 */ 1726 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1727 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1728 1729 /* 1730 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1731 * to flush all queues within the driver. 1732 */ 1733 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1734 1735 1736 /* 1737 * SD Testing Fault Injection 1738 */ 1739 #ifdef SD_FAULT_INJECTION 1740 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1741 static void sd_faultinjection(struct scsi_pkt *pktp); 1742 static void sd_injection_log(char *buf, struct sd_lun *un); 1743 #endif 1744 1745 /* 1746 * Device driver ops vector 1747 */ 1748 static struct cb_ops sd_cb_ops = { 1749 sdopen, /* open */ 1750 sdclose, /* close */ 1751 sdstrategy, /* strategy */ 1752 nodev, /* print */ 1753 sddump, /* dump */ 1754 sdread, /* read */ 1755 sdwrite, /* write */ 1756 sdioctl, /* ioctl */ 1757 nodev, /* devmap */ 1758 nodev, /* mmap */ 1759 nodev, /* segmap */ 1760 nochpoll, /* poll */ 1761 sd_prop_op, /* cb_prop_op */ 1762 0, /* streamtab */ 1763 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1764 CB_REV, /* cb_rev */ 1765 sdaread, /* async I/O read entry point */ 1766 sdawrite /* async I/O write entry point */ 1767 }; 1768 1769 struct dev_ops sd_ops = { 1770 DEVO_REV, /* devo_rev, */ 1771 0, /* refcnt */ 1772 sdinfo, /* info */ 1773 nulldev, /* identify */ 1774 sdprobe, /* probe */ 1775 sdattach, /* attach */ 1776 sddetach, /* detach */ 1777 nodev, /* reset */ 1778 &sd_cb_ops, /* driver operations */ 1779 NULL, /* bus operations */ 1780 sdpower, /* power */ 1781 ddi_quiesce_not_needed, /* quiesce */ 1782 }; 1783 1784 /* 1785 * This is the loadable module wrapper. 1786 */ 1787 #include <sys/modctl.h> 1788 1789 static struct modldrv modldrv = { 1790 &mod_driverops, /* Type of module. This one is a driver */ 1791 SD_MODULE_NAME, /* Module name. */ 1792 &sd_ops /* driver ops */ 1793 }; 1794 1795 static struct modlinkage modlinkage = { 1796 MODREV_1, &modldrv, NULL 1797 }; 1798 1799 static cmlb_tg_ops_t sd_tgops = { 1800 TG_DK_OPS_VERSION_1, 1801 sd_tg_rdwr, 1802 sd_tg_getinfo 1803 }; 1804 1805 static struct scsi_asq_key_strings sd_additional_codes[] = { 1806 0x81, 0, "Logical Unit is Reserved", 1807 0x85, 0, "Audio Address Not Valid", 1808 0xb6, 0, "Media Load Mechanism Failed", 1809 0xB9, 0, "Audio Play Operation Aborted", 1810 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1811 0x53, 2, "Medium removal prevented", 1812 0x6f, 0, "Authentication failed during key exchange", 1813 0x6f, 1, "Key not present", 1814 0x6f, 2, "Key not established", 1815 0x6f, 3, "Read without proper authentication", 1816 0x6f, 4, "Mismatched region to this logical unit", 1817 0x6f, 5, "Region reset count error", 1818 0xffff, 0x0, NULL 1819 }; 1820 1821 1822 /* 1823 * Struct for passing printing information for sense data messages 1824 */ 1825 struct sd_sense_info { 1826 int ssi_severity; 1827 int ssi_pfa_flag; 1828 }; 1829 1830 /* 1831 * Table of function pointers for iostart-side routines. Separate "chains" 1832 * of layered function calls are formed by placing the function pointers 1833 * sequentially in the desired order. Functions are called according to an 1834 * incrementing table index ordering. The last function in each chain must 1835 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1836 * in the sd_iodone_chain[] array. 1837 * 1838 * Note: It may seem more natural to organize both the iostart and iodone 1839 * functions together, into an array of structures (or some similar 1840 * organization) with a common index, rather than two separate arrays which 1841 * must be maintained in synchronization. The purpose of this division is 1842 * to achieve improved performance: individual arrays allows for more 1843 * effective cache line utilization on certain platforms. 1844 */ 1845 1846 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1847 1848 1849 static sd_chain_t sd_iostart_chain[] = { 1850 1851 /* Chain for buf IO for disk drive targets (PM enabled) */ 1852 sd_mapblockaddr_iostart, /* Index: 0 */ 1853 sd_pm_iostart, /* Index: 1 */ 1854 sd_core_iostart, /* Index: 2 */ 1855 1856 /* Chain for buf IO for disk drive targets (PM disabled) */ 1857 sd_mapblockaddr_iostart, /* Index: 3 */ 1858 sd_core_iostart, /* Index: 4 */ 1859 1860 /* 1861 * Chain for buf IO for removable-media or large sector size 1862 * disk drive targets with RMW needed (PM enabled) 1863 */ 1864 sd_mapblockaddr_iostart, /* Index: 5 */ 1865 sd_mapblocksize_iostart, /* Index: 6 */ 1866 sd_pm_iostart, /* Index: 7 */ 1867 sd_core_iostart, /* Index: 8 */ 1868 1869 /* 1870 * Chain for buf IO for removable-media or large sector size 1871 * disk drive targets with RMW needed (PM disabled) 1872 */ 1873 sd_mapblockaddr_iostart, /* Index: 9 */ 1874 sd_mapblocksize_iostart, /* Index: 10 */ 1875 sd_core_iostart, /* Index: 11 */ 1876 1877 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1878 sd_mapblockaddr_iostart, /* Index: 12 */ 1879 sd_checksum_iostart, /* Index: 13 */ 1880 sd_pm_iostart, /* Index: 14 */ 1881 sd_core_iostart, /* Index: 15 */ 1882 1883 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1884 sd_mapblockaddr_iostart, /* Index: 16 */ 1885 sd_checksum_iostart, /* Index: 17 */ 1886 sd_core_iostart, /* Index: 18 */ 1887 1888 /* Chain for USCSI commands (all targets) */ 1889 sd_pm_iostart, /* Index: 19 */ 1890 sd_core_iostart, /* Index: 20 */ 1891 1892 /* Chain for checksumming USCSI commands (all targets) */ 1893 sd_checksum_uscsi_iostart, /* Index: 21 */ 1894 sd_pm_iostart, /* Index: 22 */ 1895 sd_core_iostart, /* Index: 23 */ 1896 1897 /* Chain for "direct" USCSI commands (all targets) */ 1898 sd_core_iostart, /* Index: 24 */ 1899 1900 /* Chain for "direct priority" USCSI commands (all targets) */ 1901 sd_core_iostart, /* Index: 25 */ 1902 1903 /* 1904 * Chain for buf IO for large sector size disk drive targets 1905 * with RMW needed with checksumming (PM enabled) 1906 */ 1907 sd_mapblockaddr_iostart, /* Index: 26 */ 1908 sd_mapblocksize_iostart, /* Index: 27 */ 1909 sd_checksum_iostart, /* Index: 28 */ 1910 sd_pm_iostart, /* Index: 29 */ 1911 sd_core_iostart, /* Index: 30 */ 1912 1913 /* 1914 * Chain for buf IO for large sector size disk drive targets 1915 * with RMW needed with checksumming (PM disabled) 1916 */ 1917 sd_mapblockaddr_iostart, /* Index: 31 */ 1918 sd_mapblocksize_iostart, /* Index: 32 */ 1919 sd_checksum_iostart, /* Index: 33 */ 1920 sd_core_iostart, /* Index: 34 */ 1921 1922 }; 1923 1924 /* 1925 * Macros to locate the first function of each iostart chain in the 1926 * sd_iostart_chain[] array. These are located by the index in the array. 1927 */ 1928 #define SD_CHAIN_DISK_IOSTART 0 1929 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1930 #define SD_CHAIN_MSS_DISK_IOSTART 5 1931 #define SD_CHAIN_RMMEDIA_IOSTART 5 1932 #define SD_CHAIN_MSS_DISK_IOSTART_NO_PM 9 1933 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1934 #define SD_CHAIN_CHKSUM_IOSTART 12 1935 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1936 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1937 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1938 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1939 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1940 #define SD_CHAIN_MSS_CHKSUM_IOSTART 26 1941 #define SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM 31 1942 1943 1944 /* 1945 * Table of function pointers for the iodone-side routines for the driver- 1946 * internal layering mechanism. The calling sequence for iodone routines 1947 * uses a decrementing table index, so the last routine called in a chain 1948 * must be at the lowest array index location for that chain. The last 1949 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1950 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1951 * of the functions in an iodone side chain must correspond to the ordering 1952 * of the iostart routines for that chain. Note that there is no iodone 1953 * side routine that corresponds to sd_core_iostart(), so there is no 1954 * entry in the table for this. 1955 */ 1956 1957 static sd_chain_t sd_iodone_chain[] = { 1958 1959 /* Chain for buf IO for disk drive targets (PM enabled) */ 1960 sd_buf_iodone, /* Index: 0 */ 1961 sd_mapblockaddr_iodone, /* Index: 1 */ 1962 sd_pm_iodone, /* Index: 2 */ 1963 1964 /* Chain for buf IO for disk drive targets (PM disabled) */ 1965 sd_buf_iodone, /* Index: 3 */ 1966 sd_mapblockaddr_iodone, /* Index: 4 */ 1967 1968 /* 1969 * Chain for buf IO for removable-media or large sector size 1970 * disk drive targets with RMW needed (PM enabled) 1971 */ 1972 sd_buf_iodone, /* Index: 5 */ 1973 sd_mapblockaddr_iodone, /* Index: 6 */ 1974 sd_mapblocksize_iodone, /* Index: 7 */ 1975 sd_pm_iodone, /* Index: 8 */ 1976 1977 /* 1978 * Chain for buf IO for removable-media or large sector size 1979 * disk drive targets with RMW needed (PM disabled) 1980 */ 1981 sd_buf_iodone, /* Index: 9 */ 1982 sd_mapblockaddr_iodone, /* Index: 10 */ 1983 sd_mapblocksize_iodone, /* Index: 11 */ 1984 1985 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1986 sd_buf_iodone, /* Index: 12 */ 1987 sd_mapblockaddr_iodone, /* Index: 13 */ 1988 sd_checksum_iodone, /* Index: 14 */ 1989 sd_pm_iodone, /* Index: 15 */ 1990 1991 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1992 sd_buf_iodone, /* Index: 16 */ 1993 sd_mapblockaddr_iodone, /* Index: 17 */ 1994 sd_checksum_iodone, /* Index: 18 */ 1995 1996 /* Chain for USCSI commands (non-checksum targets) */ 1997 sd_uscsi_iodone, /* Index: 19 */ 1998 sd_pm_iodone, /* Index: 20 */ 1999 2000 /* Chain for USCSI commands (checksum targets) */ 2001 sd_uscsi_iodone, /* Index: 21 */ 2002 sd_checksum_uscsi_iodone, /* Index: 22 */ 2003 sd_pm_iodone, /* Index: 22 */ 2004 2005 /* Chain for "direct" USCSI commands (all targets) */ 2006 sd_uscsi_iodone, /* Index: 24 */ 2007 2008 /* Chain for "direct priority" USCSI commands (all targets) */ 2009 sd_uscsi_iodone, /* Index: 25 */ 2010 2011 /* 2012 * Chain for buf IO for large sector size disk drive targets 2013 * with checksumming (PM enabled) 2014 */ 2015 sd_buf_iodone, /* Index: 26 */ 2016 sd_mapblockaddr_iodone, /* Index: 27 */ 2017 sd_mapblocksize_iodone, /* Index: 28 */ 2018 sd_checksum_iodone, /* Index: 29 */ 2019 sd_pm_iodone, /* Index: 30 */ 2020 2021 /* 2022 * Chain for buf IO for large sector size disk drive targets 2023 * with checksumming (PM disabled) 2024 */ 2025 sd_buf_iodone, /* Index: 31 */ 2026 sd_mapblockaddr_iodone, /* Index: 32 */ 2027 sd_mapblocksize_iodone, /* Index: 33 */ 2028 sd_checksum_iodone, /* Index: 34 */ 2029 }; 2030 2031 2032 /* 2033 * Macros to locate the "first" function in the sd_iodone_chain[] array for 2034 * each iodone-side chain. These are located by the array index, but as the 2035 * iodone side functions are called in a decrementing-index order, the 2036 * highest index number in each chain must be specified (as these correspond 2037 * to the first function in the iodone chain that will be called by the core 2038 * at IO completion time). 2039 */ 2040 2041 #define SD_CHAIN_DISK_IODONE 2 2042 #define SD_CHAIN_DISK_IODONE_NO_PM 4 2043 #define SD_CHAIN_RMMEDIA_IODONE 8 2044 #define SD_CHAIN_MSS_DISK_IODONE 8 2045 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 2046 #define SD_CHAIN_MSS_DISK_IODONE_NO_PM 11 2047 #define SD_CHAIN_CHKSUM_IODONE 15 2048 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 2049 #define SD_CHAIN_USCSI_CMD_IODONE 20 2050 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 2051 #define SD_CHAIN_DIRECT_CMD_IODONE 24 2052 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 2053 #define SD_CHAIN_MSS_CHKSUM_IODONE 30 2054 #define SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM 34 2055 2056 2057 2058 /* 2059 * Array to map a layering chain index to the appropriate initpkt routine. 2060 * The redundant entries are present so that the index used for accessing 2061 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2062 * with this table as well. 2063 */ 2064 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 2065 2066 static sd_initpkt_t sd_initpkt_map[] = { 2067 2068 /* Chain for buf IO for disk drive targets (PM enabled) */ 2069 sd_initpkt_for_buf, /* Index: 0 */ 2070 sd_initpkt_for_buf, /* Index: 1 */ 2071 sd_initpkt_for_buf, /* Index: 2 */ 2072 2073 /* Chain for buf IO for disk drive targets (PM disabled) */ 2074 sd_initpkt_for_buf, /* Index: 3 */ 2075 sd_initpkt_for_buf, /* Index: 4 */ 2076 2077 /* 2078 * Chain for buf IO for removable-media or large sector size 2079 * disk drive targets (PM enabled) 2080 */ 2081 sd_initpkt_for_buf, /* Index: 5 */ 2082 sd_initpkt_for_buf, /* Index: 6 */ 2083 sd_initpkt_for_buf, /* Index: 7 */ 2084 sd_initpkt_for_buf, /* Index: 8 */ 2085 2086 /* 2087 * Chain for buf IO for removable-media or large sector size 2088 * disk drive targets (PM disabled) 2089 */ 2090 sd_initpkt_for_buf, /* Index: 9 */ 2091 sd_initpkt_for_buf, /* Index: 10 */ 2092 sd_initpkt_for_buf, /* Index: 11 */ 2093 2094 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2095 sd_initpkt_for_buf, /* Index: 12 */ 2096 sd_initpkt_for_buf, /* Index: 13 */ 2097 sd_initpkt_for_buf, /* Index: 14 */ 2098 sd_initpkt_for_buf, /* Index: 15 */ 2099 2100 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2101 sd_initpkt_for_buf, /* Index: 16 */ 2102 sd_initpkt_for_buf, /* Index: 17 */ 2103 sd_initpkt_for_buf, /* Index: 18 */ 2104 2105 /* Chain for USCSI commands (non-checksum targets) */ 2106 sd_initpkt_for_uscsi, /* Index: 19 */ 2107 sd_initpkt_for_uscsi, /* Index: 20 */ 2108 2109 /* Chain for USCSI commands (checksum targets) */ 2110 sd_initpkt_for_uscsi, /* Index: 21 */ 2111 sd_initpkt_for_uscsi, /* Index: 22 */ 2112 sd_initpkt_for_uscsi, /* Index: 22 */ 2113 2114 /* Chain for "direct" USCSI commands (all targets) */ 2115 sd_initpkt_for_uscsi, /* Index: 24 */ 2116 2117 /* Chain for "direct priority" USCSI commands (all targets) */ 2118 sd_initpkt_for_uscsi, /* Index: 25 */ 2119 2120 /* 2121 * Chain for buf IO for large sector size disk drive targets 2122 * with checksumming (PM enabled) 2123 */ 2124 sd_initpkt_for_buf, /* Index: 26 */ 2125 sd_initpkt_for_buf, /* Index: 27 */ 2126 sd_initpkt_for_buf, /* Index: 28 */ 2127 sd_initpkt_for_buf, /* Index: 29 */ 2128 sd_initpkt_for_buf, /* Index: 30 */ 2129 2130 /* 2131 * Chain for buf IO for large sector size disk drive targets 2132 * with checksumming (PM disabled) 2133 */ 2134 sd_initpkt_for_buf, /* Index: 31 */ 2135 sd_initpkt_for_buf, /* Index: 32 */ 2136 sd_initpkt_for_buf, /* Index: 33 */ 2137 sd_initpkt_for_buf, /* Index: 34 */ 2138 }; 2139 2140 2141 /* 2142 * Array to map a layering chain index to the appropriate destroypktpkt routine. 2143 * The redundant entries are present so that the index used for accessing 2144 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2145 * with this table as well. 2146 */ 2147 typedef void (*sd_destroypkt_t)(struct buf *); 2148 2149 static sd_destroypkt_t sd_destroypkt_map[] = { 2150 2151 /* Chain for buf IO for disk drive targets (PM enabled) */ 2152 sd_destroypkt_for_buf, /* Index: 0 */ 2153 sd_destroypkt_for_buf, /* Index: 1 */ 2154 sd_destroypkt_for_buf, /* Index: 2 */ 2155 2156 /* Chain for buf IO for disk drive targets (PM disabled) */ 2157 sd_destroypkt_for_buf, /* Index: 3 */ 2158 sd_destroypkt_for_buf, /* Index: 4 */ 2159 2160 /* 2161 * Chain for buf IO for removable-media or large sector size 2162 * disk drive targets (PM enabled) 2163 */ 2164 sd_destroypkt_for_buf, /* Index: 5 */ 2165 sd_destroypkt_for_buf, /* Index: 6 */ 2166 sd_destroypkt_for_buf, /* Index: 7 */ 2167 sd_destroypkt_for_buf, /* Index: 8 */ 2168 2169 /* 2170 * Chain for buf IO for removable-media or large sector size 2171 * disk drive targets (PM disabled) 2172 */ 2173 sd_destroypkt_for_buf, /* Index: 9 */ 2174 sd_destroypkt_for_buf, /* Index: 10 */ 2175 sd_destroypkt_for_buf, /* Index: 11 */ 2176 2177 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2178 sd_destroypkt_for_buf, /* Index: 12 */ 2179 sd_destroypkt_for_buf, /* Index: 13 */ 2180 sd_destroypkt_for_buf, /* Index: 14 */ 2181 sd_destroypkt_for_buf, /* Index: 15 */ 2182 2183 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2184 sd_destroypkt_for_buf, /* Index: 16 */ 2185 sd_destroypkt_for_buf, /* Index: 17 */ 2186 sd_destroypkt_for_buf, /* Index: 18 */ 2187 2188 /* Chain for USCSI commands (non-checksum targets) */ 2189 sd_destroypkt_for_uscsi, /* Index: 19 */ 2190 sd_destroypkt_for_uscsi, /* Index: 20 */ 2191 2192 /* Chain for USCSI commands (checksum targets) */ 2193 sd_destroypkt_for_uscsi, /* Index: 21 */ 2194 sd_destroypkt_for_uscsi, /* Index: 22 */ 2195 sd_destroypkt_for_uscsi, /* Index: 22 */ 2196 2197 /* Chain for "direct" USCSI commands (all targets) */ 2198 sd_destroypkt_for_uscsi, /* Index: 24 */ 2199 2200 /* Chain for "direct priority" USCSI commands (all targets) */ 2201 sd_destroypkt_for_uscsi, /* Index: 25 */ 2202 2203 /* 2204 * Chain for buf IO for large sector size disk drive targets 2205 * with checksumming (PM disabled) 2206 */ 2207 sd_destroypkt_for_buf, /* Index: 26 */ 2208 sd_destroypkt_for_buf, /* Index: 27 */ 2209 sd_destroypkt_for_buf, /* Index: 28 */ 2210 sd_destroypkt_for_buf, /* Index: 29 */ 2211 sd_destroypkt_for_buf, /* Index: 30 */ 2212 2213 /* 2214 * Chain for buf IO for large sector size disk drive targets 2215 * with checksumming (PM enabled) 2216 */ 2217 sd_destroypkt_for_buf, /* Index: 31 */ 2218 sd_destroypkt_for_buf, /* Index: 32 */ 2219 sd_destroypkt_for_buf, /* Index: 33 */ 2220 sd_destroypkt_for_buf, /* Index: 34 */ 2221 }; 2222 2223 2224 2225 /* 2226 * Array to map a layering chain index to the appropriate chain "type". 2227 * The chain type indicates a specific property/usage of the chain. 2228 * The redundant entries are present so that the index used for accessing 2229 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2230 * with this table as well. 2231 */ 2232 2233 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2234 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2235 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2236 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2237 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2238 /* (for error recovery) */ 2239 2240 static int sd_chain_type_map[] = { 2241 2242 /* Chain for buf IO for disk drive targets (PM enabled) */ 2243 SD_CHAIN_BUFIO, /* Index: 0 */ 2244 SD_CHAIN_BUFIO, /* Index: 1 */ 2245 SD_CHAIN_BUFIO, /* Index: 2 */ 2246 2247 /* Chain for buf IO for disk drive targets (PM disabled) */ 2248 SD_CHAIN_BUFIO, /* Index: 3 */ 2249 SD_CHAIN_BUFIO, /* Index: 4 */ 2250 2251 /* 2252 * Chain for buf IO for removable-media or large sector size 2253 * disk drive targets (PM enabled) 2254 */ 2255 SD_CHAIN_BUFIO, /* Index: 5 */ 2256 SD_CHAIN_BUFIO, /* Index: 6 */ 2257 SD_CHAIN_BUFIO, /* Index: 7 */ 2258 SD_CHAIN_BUFIO, /* Index: 8 */ 2259 2260 /* 2261 * Chain for buf IO for removable-media or large sector size 2262 * disk drive targets (PM disabled) 2263 */ 2264 SD_CHAIN_BUFIO, /* Index: 9 */ 2265 SD_CHAIN_BUFIO, /* Index: 10 */ 2266 SD_CHAIN_BUFIO, /* Index: 11 */ 2267 2268 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2269 SD_CHAIN_BUFIO, /* Index: 12 */ 2270 SD_CHAIN_BUFIO, /* Index: 13 */ 2271 SD_CHAIN_BUFIO, /* Index: 14 */ 2272 SD_CHAIN_BUFIO, /* Index: 15 */ 2273 2274 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2275 SD_CHAIN_BUFIO, /* Index: 16 */ 2276 SD_CHAIN_BUFIO, /* Index: 17 */ 2277 SD_CHAIN_BUFIO, /* Index: 18 */ 2278 2279 /* Chain for USCSI commands (non-checksum targets) */ 2280 SD_CHAIN_USCSI, /* Index: 19 */ 2281 SD_CHAIN_USCSI, /* Index: 20 */ 2282 2283 /* Chain for USCSI commands (checksum targets) */ 2284 SD_CHAIN_USCSI, /* Index: 21 */ 2285 SD_CHAIN_USCSI, /* Index: 22 */ 2286 SD_CHAIN_USCSI, /* Index: 23 */ 2287 2288 /* Chain for "direct" USCSI commands (all targets) */ 2289 SD_CHAIN_DIRECT, /* Index: 24 */ 2290 2291 /* Chain for "direct priority" USCSI commands (all targets) */ 2292 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2293 2294 /* 2295 * Chain for buf IO for large sector size disk drive targets 2296 * with checksumming (PM enabled) 2297 */ 2298 SD_CHAIN_BUFIO, /* Index: 26 */ 2299 SD_CHAIN_BUFIO, /* Index: 27 */ 2300 SD_CHAIN_BUFIO, /* Index: 28 */ 2301 SD_CHAIN_BUFIO, /* Index: 29 */ 2302 SD_CHAIN_BUFIO, /* Index: 30 */ 2303 2304 /* 2305 * Chain for buf IO for large sector size disk drive targets 2306 * with checksumming (PM disabled) 2307 */ 2308 SD_CHAIN_BUFIO, /* Index: 31 */ 2309 SD_CHAIN_BUFIO, /* Index: 32 */ 2310 SD_CHAIN_BUFIO, /* Index: 33 */ 2311 SD_CHAIN_BUFIO, /* Index: 34 */ 2312 }; 2313 2314 2315 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2316 #define SD_IS_BUFIO(xp) \ 2317 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2318 2319 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2320 #define SD_IS_DIRECT_PRIORITY(xp) \ 2321 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2322 2323 2324 2325 /* 2326 * Struct, array, and macros to map a specific chain to the appropriate 2327 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2328 * 2329 * The sd_chain_index_map[] array is used at attach time to set the various 2330 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2331 * chain to be used with the instance. This allows different instances to use 2332 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2333 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2334 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2335 * dynamically & without the use of locking; and (2) a layer may update the 2336 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2337 * to allow for deferred processing of an IO within the same chain from a 2338 * different execution context. 2339 */ 2340 2341 struct sd_chain_index { 2342 int sci_iostart_index; 2343 int sci_iodone_index; 2344 }; 2345 2346 static struct sd_chain_index sd_chain_index_map[] = { 2347 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2348 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2349 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2350 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2351 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2352 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2353 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2354 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2355 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2356 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2357 { SD_CHAIN_MSS_CHKSUM_IOSTART, SD_CHAIN_MSS_CHKSUM_IODONE }, 2358 { SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM }, 2359 2360 }; 2361 2362 2363 /* 2364 * The following are indexes into the sd_chain_index_map[] array. 2365 */ 2366 2367 /* un->un_buf_chain_type must be set to one of these */ 2368 #define SD_CHAIN_INFO_DISK 0 2369 #define SD_CHAIN_INFO_DISK_NO_PM 1 2370 #define SD_CHAIN_INFO_RMMEDIA 2 2371 #define SD_CHAIN_INFO_MSS_DISK 2 2372 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2373 #define SD_CHAIN_INFO_MSS_DSK_NO_PM 3 2374 #define SD_CHAIN_INFO_CHKSUM 4 2375 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2376 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM 10 2377 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM 11 2378 2379 /* un->un_uscsi_chain_type must be set to one of these */ 2380 #define SD_CHAIN_INFO_USCSI_CMD 6 2381 /* USCSI with PM disabled is the same as DIRECT */ 2382 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2383 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2384 2385 /* un->un_direct_chain_type must be set to one of these */ 2386 #define SD_CHAIN_INFO_DIRECT_CMD 8 2387 2388 /* un->un_priority_chain_type must be set to one of these */ 2389 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2390 2391 /* size for devid inquiries */ 2392 #define MAX_INQUIRY_SIZE 0xF0 2393 2394 /* 2395 * Macros used by functions to pass a given buf(9S) struct along to the 2396 * next function in the layering chain for further processing. 2397 * 2398 * In the following macros, passing more than three arguments to the called 2399 * routines causes the optimizer for the SPARC compiler to stop doing tail 2400 * call elimination which results in significant performance degradation. 2401 */ 2402 #define SD_BEGIN_IOSTART(index, un, bp) \ 2403 ((*(sd_iostart_chain[index]))(index, un, bp)) 2404 2405 #define SD_BEGIN_IODONE(index, un, bp) \ 2406 ((*(sd_iodone_chain[index]))(index, un, bp)) 2407 2408 #define SD_NEXT_IOSTART(index, un, bp) \ 2409 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2410 2411 #define SD_NEXT_IODONE(index, un, bp) \ 2412 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2413 2414 /* 2415 * Function: _init 2416 * 2417 * Description: This is the driver _init(9E) entry point. 2418 * 2419 * Return Code: Returns the value from mod_install(9F) or 2420 * ddi_soft_state_init(9F) as appropriate. 2421 * 2422 * Context: Called when driver module loaded. 2423 */ 2424 2425 int 2426 _init(void) 2427 { 2428 int err; 2429 2430 /* establish driver name from module name */ 2431 sd_label = (char *)mod_modname(&modlinkage); 2432 2433 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2434 SD_MAXUNIT); 2435 if (err != 0) { 2436 return (err); 2437 } 2438 2439 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2440 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2441 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2442 2443 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2444 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2445 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2446 2447 /* 2448 * it's ok to init here even for fibre device 2449 */ 2450 sd_scsi_probe_cache_init(); 2451 2452 sd_scsi_target_lun_init(); 2453 2454 /* 2455 * Creating taskq before mod_install ensures that all callers (threads) 2456 * that enter the module after a successful mod_install encounter 2457 * a valid taskq. 2458 */ 2459 sd_taskq_create(); 2460 2461 err = mod_install(&modlinkage); 2462 if (err != 0) { 2463 /* delete taskq if install fails */ 2464 sd_taskq_delete(); 2465 2466 mutex_destroy(&sd_detach_mutex); 2467 mutex_destroy(&sd_log_mutex); 2468 mutex_destroy(&sd_label_mutex); 2469 2470 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2471 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2472 cv_destroy(&sd_tr.srq_inprocess_cv); 2473 2474 sd_scsi_probe_cache_fini(); 2475 2476 sd_scsi_target_lun_fini(); 2477 2478 ddi_soft_state_fini(&sd_state); 2479 2480 return (err); 2481 } 2482 2483 return (err); 2484 } 2485 2486 2487 /* 2488 * Function: _fini 2489 * 2490 * Description: This is the driver _fini(9E) entry point. 2491 * 2492 * Return Code: Returns the value from mod_remove(9F) 2493 * 2494 * Context: Called when driver module is unloaded. 2495 */ 2496 2497 int 2498 _fini(void) 2499 { 2500 int err; 2501 2502 if ((err = mod_remove(&modlinkage)) != 0) { 2503 return (err); 2504 } 2505 2506 sd_taskq_delete(); 2507 2508 mutex_destroy(&sd_detach_mutex); 2509 mutex_destroy(&sd_log_mutex); 2510 mutex_destroy(&sd_label_mutex); 2511 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2512 2513 sd_scsi_probe_cache_fini(); 2514 2515 sd_scsi_target_lun_fini(); 2516 2517 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2518 cv_destroy(&sd_tr.srq_inprocess_cv); 2519 2520 ddi_soft_state_fini(&sd_state); 2521 2522 return (err); 2523 } 2524 2525 2526 /* 2527 * Function: _info 2528 * 2529 * Description: This is the driver _info(9E) entry point. 2530 * 2531 * Arguments: modinfop - pointer to the driver modinfo structure 2532 * 2533 * Return Code: Returns the value from mod_info(9F). 2534 * 2535 * Context: Kernel thread context 2536 */ 2537 2538 int 2539 _info(struct modinfo *modinfop) 2540 { 2541 return (mod_info(&modlinkage, modinfop)); 2542 } 2543 2544 2545 /* 2546 * The following routines implement the driver message logging facility. 2547 * They provide component- and level- based debug output filtering. 2548 * Output may also be restricted to messages for a single instance by 2549 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2550 * to NULL, then messages for all instances are printed. 2551 * 2552 * These routines have been cloned from each other due to the language 2553 * constraints of macros and variable argument list processing. 2554 */ 2555 2556 2557 /* 2558 * Function: sd_log_err 2559 * 2560 * Description: This routine is called by the SD_ERROR macro for debug 2561 * logging of error conditions. 2562 * 2563 * Arguments: comp - driver component being logged 2564 * dev - pointer to driver info structure 2565 * fmt - error string and format to be logged 2566 */ 2567 2568 static void 2569 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2570 { 2571 va_list ap; 2572 dev_info_t *dev; 2573 2574 ASSERT(un != NULL); 2575 dev = SD_DEVINFO(un); 2576 ASSERT(dev != NULL); 2577 2578 /* 2579 * Filter messages based on the global component and level masks. 2580 * Also print if un matches the value of sd_debug_un, or if 2581 * sd_debug_un is set to NULL. 2582 */ 2583 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2584 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2585 mutex_enter(&sd_log_mutex); 2586 va_start(ap, fmt); 2587 (void) vsprintf(sd_log_buf, fmt, ap); 2588 va_end(ap); 2589 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2590 mutex_exit(&sd_log_mutex); 2591 } 2592 #ifdef SD_FAULT_INJECTION 2593 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2594 if (un->sd_injection_mask & comp) { 2595 mutex_enter(&sd_log_mutex); 2596 va_start(ap, fmt); 2597 (void) vsprintf(sd_log_buf, fmt, ap); 2598 va_end(ap); 2599 sd_injection_log(sd_log_buf, un); 2600 mutex_exit(&sd_log_mutex); 2601 } 2602 #endif 2603 } 2604 2605 2606 /* 2607 * Function: sd_log_info 2608 * 2609 * Description: This routine is called by the SD_INFO macro for debug 2610 * logging of general purpose informational conditions. 2611 * 2612 * Arguments: comp - driver component being logged 2613 * dev - pointer to driver info structure 2614 * fmt - info string and format to be logged 2615 */ 2616 2617 static void 2618 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2619 { 2620 va_list ap; 2621 dev_info_t *dev; 2622 2623 ASSERT(un != NULL); 2624 dev = SD_DEVINFO(un); 2625 ASSERT(dev != NULL); 2626 2627 /* 2628 * Filter messages based on the global component and level masks. 2629 * Also print if un matches the value of sd_debug_un, or if 2630 * sd_debug_un is set to NULL. 2631 */ 2632 if ((sd_component_mask & component) && 2633 (sd_level_mask & SD_LOGMASK_INFO) && 2634 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2635 mutex_enter(&sd_log_mutex); 2636 va_start(ap, fmt); 2637 (void) vsprintf(sd_log_buf, fmt, ap); 2638 va_end(ap); 2639 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2640 mutex_exit(&sd_log_mutex); 2641 } 2642 #ifdef SD_FAULT_INJECTION 2643 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2644 if (un->sd_injection_mask & component) { 2645 mutex_enter(&sd_log_mutex); 2646 va_start(ap, fmt); 2647 (void) vsprintf(sd_log_buf, fmt, ap); 2648 va_end(ap); 2649 sd_injection_log(sd_log_buf, un); 2650 mutex_exit(&sd_log_mutex); 2651 } 2652 #endif 2653 } 2654 2655 2656 /* 2657 * Function: sd_log_trace 2658 * 2659 * Description: This routine is called by the SD_TRACE macro for debug 2660 * logging of trace conditions (i.e. function entry/exit). 2661 * 2662 * Arguments: comp - driver component being logged 2663 * dev - pointer to driver info structure 2664 * fmt - trace string and format to be logged 2665 */ 2666 2667 static void 2668 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2669 { 2670 va_list ap; 2671 dev_info_t *dev; 2672 2673 ASSERT(un != NULL); 2674 dev = SD_DEVINFO(un); 2675 ASSERT(dev != NULL); 2676 2677 /* 2678 * Filter messages based on the global component and level masks. 2679 * Also print if un matches the value of sd_debug_un, or if 2680 * sd_debug_un is set to NULL. 2681 */ 2682 if ((sd_component_mask & component) && 2683 (sd_level_mask & SD_LOGMASK_TRACE) && 2684 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2685 mutex_enter(&sd_log_mutex); 2686 va_start(ap, fmt); 2687 (void) vsprintf(sd_log_buf, fmt, ap); 2688 va_end(ap); 2689 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2690 mutex_exit(&sd_log_mutex); 2691 } 2692 #ifdef SD_FAULT_INJECTION 2693 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2694 if (un->sd_injection_mask & component) { 2695 mutex_enter(&sd_log_mutex); 2696 va_start(ap, fmt); 2697 (void) vsprintf(sd_log_buf, fmt, ap); 2698 va_end(ap); 2699 sd_injection_log(sd_log_buf, un); 2700 mutex_exit(&sd_log_mutex); 2701 } 2702 #endif 2703 } 2704 2705 2706 /* 2707 * Function: sdprobe 2708 * 2709 * Description: This is the driver probe(9e) entry point function. 2710 * 2711 * Arguments: devi - opaque device info handle 2712 * 2713 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2714 * DDI_PROBE_FAILURE: If the probe failed. 2715 * DDI_PROBE_PARTIAL: If the instance is not present now, 2716 * but may be present in the future. 2717 */ 2718 2719 static int 2720 sdprobe(dev_info_t *devi) 2721 { 2722 struct scsi_device *devp; 2723 int rval; 2724 int instance = ddi_get_instance(devi); 2725 2726 /* 2727 * if it wasn't for pln, sdprobe could actually be nulldev 2728 * in the "__fibre" case. 2729 */ 2730 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2731 return (DDI_PROBE_DONTCARE); 2732 } 2733 2734 devp = ddi_get_driver_private(devi); 2735 2736 if (devp == NULL) { 2737 /* Ooops... nexus driver is mis-configured... */ 2738 return (DDI_PROBE_FAILURE); 2739 } 2740 2741 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2742 return (DDI_PROBE_PARTIAL); 2743 } 2744 2745 /* 2746 * Call the SCSA utility probe routine to see if we actually 2747 * have a target at this SCSI nexus. 2748 */ 2749 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2750 case SCSIPROBE_EXISTS: 2751 switch (devp->sd_inq->inq_dtype) { 2752 case DTYPE_DIRECT: 2753 rval = DDI_PROBE_SUCCESS; 2754 break; 2755 case DTYPE_RODIRECT: 2756 /* CDs etc. Can be removable media */ 2757 rval = DDI_PROBE_SUCCESS; 2758 break; 2759 case DTYPE_OPTICAL: 2760 /* 2761 * Rewritable optical driver HP115AA 2762 * Can also be removable media 2763 */ 2764 2765 /* 2766 * Do not attempt to bind to DTYPE_OPTICAL if 2767 * pre solaris 9 sparc sd behavior is required 2768 * 2769 * If first time through and sd_dtype_optical_bind 2770 * has not been set in /etc/system check properties 2771 */ 2772 2773 if (sd_dtype_optical_bind < 0) { 2774 sd_dtype_optical_bind = ddi_prop_get_int 2775 (DDI_DEV_T_ANY, devi, 0, 2776 "optical-device-bind", 1); 2777 } 2778 2779 if (sd_dtype_optical_bind == 0) { 2780 rval = DDI_PROBE_FAILURE; 2781 } else { 2782 rval = DDI_PROBE_SUCCESS; 2783 } 2784 break; 2785 2786 case DTYPE_NOTPRESENT: 2787 default: 2788 rval = DDI_PROBE_FAILURE; 2789 break; 2790 } 2791 break; 2792 default: 2793 rval = DDI_PROBE_PARTIAL; 2794 break; 2795 } 2796 2797 /* 2798 * This routine checks for resource allocation prior to freeing, 2799 * so it will take care of the "smart probing" case where a 2800 * scsi_probe() may or may not have been issued and will *not* 2801 * free previously-freed resources. 2802 */ 2803 scsi_unprobe(devp); 2804 return (rval); 2805 } 2806 2807 2808 /* 2809 * Function: sdinfo 2810 * 2811 * Description: This is the driver getinfo(9e) entry point function. 2812 * Given the device number, return the devinfo pointer from 2813 * the scsi_device structure or the instance number 2814 * associated with the dev_t. 2815 * 2816 * Arguments: dip - pointer to device info structure 2817 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2818 * DDI_INFO_DEVT2INSTANCE) 2819 * arg - driver dev_t 2820 * resultp - user buffer for request response 2821 * 2822 * Return Code: DDI_SUCCESS 2823 * DDI_FAILURE 2824 */ 2825 /* ARGSUSED */ 2826 static int 2827 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2828 { 2829 struct sd_lun *un; 2830 dev_t dev; 2831 int instance; 2832 int error; 2833 2834 switch (infocmd) { 2835 case DDI_INFO_DEVT2DEVINFO: 2836 dev = (dev_t)arg; 2837 instance = SDUNIT(dev); 2838 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2839 return (DDI_FAILURE); 2840 } 2841 *result = (void *) SD_DEVINFO(un); 2842 error = DDI_SUCCESS; 2843 break; 2844 case DDI_INFO_DEVT2INSTANCE: 2845 dev = (dev_t)arg; 2846 instance = SDUNIT(dev); 2847 *result = (void *)(uintptr_t)instance; 2848 error = DDI_SUCCESS; 2849 break; 2850 default: 2851 error = DDI_FAILURE; 2852 } 2853 return (error); 2854 } 2855 2856 /* 2857 * Function: sd_prop_op 2858 * 2859 * Description: This is the driver prop_op(9e) entry point function. 2860 * Return the number of blocks for the partition in question 2861 * or forward the request to the property facilities. 2862 * 2863 * Arguments: dev - device number 2864 * dip - pointer to device info structure 2865 * prop_op - property operator 2866 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2867 * name - pointer to property name 2868 * valuep - pointer or address of the user buffer 2869 * lengthp - property length 2870 * 2871 * Return Code: DDI_PROP_SUCCESS 2872 * DDI_PROP_NOT_FOUND 2873 * DDI_PROP_UNDEFINED 2874 * DDI_PROP_NO_MEMORY 2875 * DDI_PROP_BUF_TOO_SMALL 2876 */ 2877 2878 static int 2879 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2880 char *name, caddr_t valuep, int *lengthp) 2881 { 2882 struct sd_lun *un; 2883 2884 if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL) 2885 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2886 name, valuep, lengthp)); 2887 2888 return (cmlb_prop_op(un->un_cmlbhandle, 2889 dev, dip, prop_op, mod_flags, name, valuep, lengthp, 2890 SDPART(dev), (void *)SD_PATH_DIRECT)); 2891 } 2892 2893 /* 2894 * The following functions are for smart probing: 2895 * sd_scsi_probe_cache_init() 2896 * sd_scsi_probe_cache_fini() 2897 * sd_scsi_clear_probe_cache() 2898 * sd_scsi_probe_with_cache() 2899 */ 2900 2901 /* 2902 * Function: sd_scsi_probe_cache_init 2903 * 2904 * Description: Initializes the probe response cache mutex and head pointer. 2905 * 2906 * Context: Kernel thread context 2907 */ 2908 2909 static void 2910 sd_scsi_probe_cache_init(void) 2911 { 2912 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2913 sd_scsi_probe_cache_head = NULL; 2914 } 2915 2916 2917 /* 2918 * Function: sd_scsi_probe_cache_fini 2919 * 2920 * Description: Frees all resources associated with the probe response cache. 2921 * 2922 * Context: Kernel thread context 2923 */ 2924 2925 static void 2926 sd_scsi_probe_cache_fini(void) 2927 { 2928 struct sd_scsi_probe_cache *cp; 2929 struct sd_scsi_probe_cache *ncp; 2930 2931 /* Clean up our smart probing linked list */ 2932 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2933 ncp = cp->next; 2934 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2935 } 2936 sd_scsi_probe_cache_head = NULL; 2937 mutex_destroy(&sd_scsi_probe_cache_mutex); 2938 } 2939 2940 2941 /* 2942 * Function: sd_scsi_clear_probe_cache 2943 * 2944 * Description: This routine clears the probe response cache. This is 2945 * done when open() returns ENXIO so that when deferred 2946 * attach is attempted (possibly after a device has been 2947 * turned on) we will retry the probe. Since we don't know 2948 * which target we failed to open, we just clear the 2949 * entire cache. 2950 * 2951 * Context: Kernel thread context 2952 */ 2953 2954 static void 2955 sd_scsi_clear_probe_cache(void) 2956 { 2957 struct sd_scsi_probe_cache *cp; 2958 int i; 2959 2960 mutex_enter(&sd_scsi_probe_cache_mutex); 2961 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2962 /* 2963 * Reset all entries to SCSIPROBE_EXISTS. This will 2964 * force probing to be performed the next time 2965 * sd_scsi_probe_with_cache is called. 2966 */ 2967 for (i = 0; i < NTARGETS_WIDE; i++) { 2968 cp->cache[i] = SCSIPROBE_EXISTS; 2969 } 2970 } 2971 mutex_exit(&sd_scsi_probe_cache_mutex); 2972 } 2973 2974 2975 /* 2976 * Function: sd_scsi_probe_with_cache 2977 * 2978 * Description: This routine implements support for a scsi device probe 2979 * with cache. The driver maintains a cache of the target 2980 * responses to scsi probes. If we get no response from a 2981 * target during a probe inquiry, we remember that, and we 2982 * avoid additional calls to scsi_probe on non-zero LUNs 2983 * on the same target until the cache is cleared. By doing 2984 * so we avoid the 1/4 sec selection timeout for nonzero 2985 * LUNs. lun0 of a target is always probed. 2986 * 2987 * Arguments: devp - Pointer to a scsi_device(9S) structure 2988 * waitfunc - indicates what the allocator routines should 2989 * do when resources are not available. This value 2990 * is passed on to scsi_probe() when that routine 2991 * is called. 2992 * 2993 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2994 * otherwise the value returned by scsi_probe(9F). 2995 * 2996 * Context: Kernel thread context 2997 */ 2998 2999 static int 3000 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 3001 { 3002 struct sd_scsi_probe_cache *cp; 3003 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 3004 int lun, tgt; 3005 3006 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 3007 SCSI_ADDR_PROP_LUN, 0); 3008 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 3009 SCSI_ADDR_PROP_TARGET, -1); 3010 3011 /* Make sure caching enabled and target in range */ 3012 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 3013 /* do it the old way (no cache) */ 3014 return (scsi_probe(devp, waitfn)); 3015 } 3016 3017 mutex_enter(&sd_scsi_probe_cache_mutex); 3018 3019 /* Find the cache for this scsi bus instance */ 3020 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 3021 if (cp->pdip == pdip) { 3022 break; 3023 } 3024 } 3025 3026 /* If we can't find a cache for this pdip, create one */ 3027 if (cp == NULL) { 3028 int i; 3029 3030 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 3031 KM_SLEEP); 3032 cp->pdip = pdip; 3033 cp->next = sd_scsi_probe_cache_head; 3034 sd_scsi_probe_cache_head = cp; 3035 for (i = 0; i < NTARGETS_WIDE; i++) { 3036 cp->cache[i] = SCSIPROBE_EXISTS; 3037 } 3038 } 3039 3040 mutex_exit(&sd_scsi_probe_cache_mutex); 3041 3042 /* Recompute the cache for this target if LUN zero */ 3043 if (lun == 0) { 3044 cp->cache[tgt] = SCSIPROBE_EXISTS; 3045 } 3046 3047 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 3048 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 3049 return (SCSIPROBE_NORESP); 3050 } 3051 3052 /* Do the actual probe; save & return the result */ 3053 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 3054 } 3055 3056 3057 /* 3058 * Function: sd_scsi_target_lun_init 3059 * 3060 * Description: Initializes the attached lun chain mutex and head pointer. 3061 * 3062 * Context: Kernel thread context 3063 */ 3064 3065 static void 3066 sd_scsi_target_lun_init(void) 3067 { 3068 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 3069 sd_scsi_target_lun_head = NULL; 3070 } 3071 3072 3073 /* 3074 * Function: sd_scsi_target_lun_fini 3075 * 3076 * Description: Frees all resources associated with the attached lun 3077 * chain 3078 * 3079 * Context: Kernel thread context 3080 */ 3081 3082 static void 3083 sd_scsi_target_lun_fini(void) 3084 { 3085 struct sd_scsi_hba_tgt_lun *cp; 3086 struct sd_scsi_hba_tgt_lun *ncp; 3087 3088 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 3089 ncp = cp->next; 3090 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 3091 } 3092 sd_scsi_target_lun_head = NULL; 3093 mutex_destroy(&sd_scsi_target_lun_mutex); 3094 } 3095 3096 3097 /* 3098 * Function: sd_scsi_get_target_lun_count 3099 * 3100 * Description: This routine will check in the attached lun chain to see 3101 * how many luns are attached on the required SCSI controller 3102 * and target. Currently, some capabilities like tagged queue 3103 * are supported per target based by HBA. So all luns in a 3104 * target have the same capabilities. Based on this assumption, 3105 * sd should only set these capabilities once per target. This 3106 * function is called when sd needs to decide how many luns 3107 * already attached on a target. 3108 * 3109 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3110 * controller device. 3111 * target - The target ID on the controller's SCSI bus. 3112 * 3113 * Return Code: The number of luns attached on the required target and 3114 * controller. 3115 * -1 if target ID is not in parallel SCSI scope or the given 3116 * dip is not in the chain. 3117 * 3118 * Context: Kernel thread context 3119 */ 3120 3121 static int 3122 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 3123 { 3124 struct sd_scsi_hba_tgt_lun *cp; 3125 3126 if ((target < 0) || (target >= NTARGETS_WIDE)) { 3127 return (-1); 3128 } 3129 3130 mutex_enter(&sd_scsi_target_lun_mutex); 3131 3132 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3133 if (cp->pdip == dip) { 3134 break; 3135 } 3136 } 3137 3138 mutex_exit(&sd_scsi_target_lun_mutex); 3139 3140 if (cp == NULL) { 3141 return (-1); 3142 } 3143 3144 return (cp->nlun[target]); 3145 } 3146 3147 3148 /* 3149 * Function: sd_scsi_update_lun_on_target 3150 * 3151 * Description: This routine is used to update the attached lun chain when a 3152 * lun is attached or detached on a target. 3153 * 3154 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3155 * controller device. 3156 * target - The target ID on the controller's SCSI bus. 3157 * flag - Indicate the lun is attached or detached. 3158 * 3159 * Context: Kernel thread context 3160 */ 3161 3162 static void 3163 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 3164 { 3165 struct sd_scsi_hba_tgt_lun *cp; 3166 3167 mutex_enter(&sd_scsi_target_lun_mutex); 3168 3169 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3170 if (cp->pdip == dip) { 3171 break; 3172 } 3173 } 3174 3175 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 3176 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 3177 KM_SLEEP); 3178 cp->pdip = dip; 3179 cp->next = sd_scsi_target_lun_head; 3180 sd_scsi_target_lun_head = cp; 3181 } 3182 3183 mutex_exit(&sd_scsi_target_lun_mutex); 3184 3185 if (cp != NULL) { 3186 if (flag == SD_SCSI_LUN_ATTACH) { 3187 cp->nlun[target] ++; 3188 } else { 3189 cp->nlun[target] --; 3190 } 3191 } 3192 } 3193 3194 3195 /* 3196 * Function: sd_spin_up_unit 3197 * 3198 * Description: Issues the following commands to spin-up the device: 3199 * START STOP UNIT, and INQUIRY. 3200 * 3201 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3202 * structure for this target. 3203 * 3204 * Return Code: 0 - success 3205 * EIO - failure 3206 * EACCES - reservation conflict 3207 * 3208 * Context: Kernel thread context 3209 */ 3210 3211 static int 3212 sd_spin_up_unit(sd_ssc_t *ssc) 3213 { 3214 size_t resid = 0; 3215 int has_conflict = FALSE; 3216 uchar_t *bufaddr; 3217 int status; 3218 struct sd_lun *un; 3219 3220 ASSERT(ssc != NULL); 3221 un = ssc->ssc_un; 3222 ASSERT(un != NULL); 3223 3224 /* 3225 * Send a throwaway START UNIT command. 3226 * 3227 * If we fail on this, we don't care presently what precisely 3228 * is wrong. EMC's arrays will also fail this with a check 3229 * condition (0x2/0x4/0x3) if the device is "inactive," but 3230 * we don't want to fail the attach because it may become 3231 * "active" later. 3232 * We don't know if power condition is supported or not at 3233 * this stage, use START STOP bit. 3234 */ 3235 status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 3236 SD_TARGET_START, SD_PATH_DIRECT); 3237 3238 if (status != 0) { 3239 if (status == EACCES) 3240 has_conflict = TRUE; 3241 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3242 } 3243 3244 /* 3245 * Send another INQUIRY command to the target. This is necessary for 3246 * non-removable media direct access devices because their INQUIRY data 3247 * may not be fully qualified until they are spun up (perhaps via the 3248 * START command above). Note: This seems to be needed for some 3249 * legacy devices only.) The INQUIRY command should succeed even if a 3250 * Reservation Conflict is present. 3251 */ 3252 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3253 3254 if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid) 3255 != 0) { 3256 kmem_free(bufaddr, SUN_INQSIZE); 3257 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 3258 return (EIO); 3259 } 3260 3261 /* 3262 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3263 * Note that this routine does not return a failure here even if the 3264 * INQUIRY command did not return any data. This is a legacy behavior. 3265 */ 3266 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3267 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3268 } 3269 3270 kmem_free(bufaddr, SUN_INQSIZE); 3271 3272 /* If we hit a reservation conflict above, tell the caller. */ 3273 if (has_conflict == TRUE) { 3274 return (EACCES); 3275 } 3276 3277 return (0); 3278 } 3279 3280 #ifdef _LP64 3281 /* 3282 * Function: sd_enable_descr_sense 3283 * 3284 * Description: This routine attempts to select descriptor sense format 3285 * using the Control mode page. Devices that support 64 bit 3286 * LBAs (for >2TB luns) should also implement descriptor 3287 * sense data so we will call this function whenever we see 3288 * a lun larger than 2TB. If for some reason the device 3289 * supports 64 bit LBAs but doesn't support descriptor sense 3290 * presumably the mode select will fail. Everything will 3291 * continue to work normally except that we will not get 3292 * complete sense data for commands that fail with an LBA 3293 * larger than 32 bits. 3294 * 3295 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3296 * structure for this target. 3297 * 3298 * Context: Kernel thread context only 3299 */ 3300 3301 static void 3302 sd_enable_descr_sense(sd_ssc_t *ssc) 3303 { 3304 uchar_t *header; 3305 struct mode_control_scsi3 *ctrl_bufp; 3306 size_t buflen; 3307 size_t bd_len; 3308 int status; 3309 struct sd_lun *un; 3310 3311 ASSERT(ssc != NULL); 3312 un = ssc->ssc_un; 3313 ASSERT(un != NULL); 3314 3315 /* 3316 * Read MODE SENSE page 0xA, Control Mode Page 3317 */ 3318 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3319 sizeof (struct mode_control_scsi3); 3320 header = kmem_zalloc(buflen, KM_SLEEP); 3321 3322 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 3323 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT); 3324 3325 if (status != 0) { 3326 SD_ERROR(SD_LOG_COMMON, un, 3327 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3328 goto eds_exit; 3329 } 3330 3331 /* 3332 * Determine size of Block Descriptors in order to locate 3333 * the mode page data. ATAPI devices return 0, SCSI devices 3334 * should return MODE_BLK_DESC_LENGTH. 3335 */ 3336 bd_len = ((struct mode_header *)header)->bdesc_length; 3337 3338 /* Clear the mode data length field for MODE SELECT */ 3339 ((struct mode_header *)header)->length = 0; 3340 3341 ctrl_bufp = (struct mode_control_scsi3 *) 3342 (header + MODE_HEADER_LENGTH + bd_len); 3343 3344 /* 3345 * If the page length is smaller than the expected value, 3346 * the target device doesn't support D_SENSE. Bail out here. 3347 */ 3348 if (ctrl_bufp->mode_page.length < 3349 sizeof (struct mode_control_scsi3) - 2) { 3350 SD_ERROR(SD_LOG_COMMON, un, 3351 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3352 goto eds_exit; 3353 } 3354 3355 /* 3356 * Clear PS bit for MODE SELECT 3357 */ 3358 ctrl_bufp->mode_page.ps = 0; 3359 3360 /* 3361 * Set D_SENSE to enable descriptor sense format. 3362 */ 3363 ctrl_bufp->d_sense = 1; 3364 3365 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3366 3367 /* 3368 * Use MODE SELECT to commit the change to the D_SENSE bit 3369 */ 3370 status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 3371 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT); 3372 3373 if (status != 0) { 3374 SD_INFO(SD_LOG_COMMON, un, 3375 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3376 } else { 3377 kmem_free(header, buflen); 3378 return; 3379 } 3380 3381 eds_exit: 3382 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3383 kmem_free(header, buflen); 3384 } 3385 3386 /* 3387 * Function: sd_reenable_dsense_task 3388 * 3389 * Description: Re-enable descriptor sense after device or bus reset 3390 * 3391 * Context: Executes in a taskq() thread context 3392 */ 3393 static void 3394 sd_reenable_dsense_task(void *arg) 3395 { 3396 struct sd_lun *un = arg; 3397 sd_ssc_t *ssc; 3398 3399 ASSERT(un != NULL); 3400 3401 ssc = sd_ssc_init(un); 3402 sd_enable_descr_sense(ssc); 3403 sd_ssc_fini(ssc); 3404 } 3405 #endif /* _LP64 */ 3406 3407 /* 3408 * Function: sd_set_mmc_caps 3409 * 3410 * Description: This routine determines if the device is MMC compliant and if 3411 * the device supports CDDA via a mode sense of the CDVD 3412 * capabilities mode page. Also checks if the device is a 3413 * dvdram writable device. 3414 * 3415 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3416 * structure for this target. 3417 * 3418 * Context: Kernel thread context only 3419 */ 3420 3421 static void 3422 sd_set_mmc_caps(sd_ssc_t *ssc) 3423 { 3424 struct mode_header_grp2 *sense_mhp; 3425 uchar_t *sense_page; 3426 caddr_t buf; 3427 int bd_len; 3428 int status; 3429 struct uscsi_cmd com; 3430 int rtn; 3431 uchar_t *out_data_rw, *out_data_hd; 3432 uchar_t *rqbuf_rw, *rqbuf_hd; 3433 uchar_t *out_data_gesn; 3434 int gesn_len; 3435 struct sd_lun *un; 3436 3437 ASSERT(ssc != NULL); 3438 un = ssc->ssc_un; 3439 ASSERT(un != NULL); 3440 3441 /* 3442 * The flags which will be set in this function are - mmc compliant, 3443 * dvdram writable device, cdda support. Initialize them to FALSE 3444 * and if a capability is detected - it will be set to TRUE. 3445 */ 3446 un->un_f_mmc_cap = FALSE; 3447 un->un_f_dvdram_writable_device = FALSE; 3448 un->un_f_cfg_cdda = FALSE; 3449 3450 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3451 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3452 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3453 3454 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3455 3456 if (status != 0) { 3457 /* command failed; just return */ 3458 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3459 return; 3460 } 3461 /* 3462 * If the mode sense request for the CDROM CAPABILITIES 3463 * page (0x2A) succeeds the device is assumed to be MMC. 3464 */ 3465 un->un_f_mmc_cap = TRUE; 3466 3467 /* See if GET STATUS EVENT NOTIFICATION is supported */ 3468 if (un->un_f_mmc_gesn_polling) { 3469 gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN; 3470 out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP); 3471 3472 rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc, 3473 out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS); 3474 3475 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3476 3477 if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) { 3478 un->un_f_mmc_gesn_polling = FALSE; 3479 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3480 "sd_set_mmc_caps: gesn not supported " 3481 "%d %x %x %x %x\n", rtn, 3482 out_data_gesn[0], out_data_gesn[1], 3483 out_data_gesn[2], out_data_gesn[3]); 3484 } 3485 3486 kmem_free(out_data_gesn, gesn_len); 3487 } 3488 3489 /* Get to the page data */ 3490 sense_mhp = (struct mode_header_grp2 *)buf; 3491 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3492 sense_mhp->bdesc_length_lo; 3493 if (bd_len > MODE_BLK_DESC_LENGTH) { 3494 /* 3495 * We did not get back the expected block descriptor 3496 * length so we cannot determine if the device supports 3497 * CDDA. However, we still indicate the device is MMC 3498 * according to the successful response to the page 3499 * 0x2A mode sense request. 3500 */ 3501 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3502 "sd_set_mmc_caps: Mode Sense returned " 3503 "invalid block descriptor length\n"); 3504 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3505 return; 3506 } 3507 3508 /* See if read CDDA is supported */ 3509 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3510 bd_len); 3511 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3512 3513 /* See if writing DVD RAM is supported. */ 3514 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3515 if (un->un_f_dvdram_writable_device == TRUE) { 3516 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3517 return; 3518 } 3519 3520 /* 3521 * If the device presents DVD or CD capabilities in the mode 3522 * page, we can return here since a RRD will not have 3523 * these capabilities. 3524 */ 3525 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3526 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3527 return; 3528 } 3529 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3530 3531 /* 3532 * If un->un_f_dvdram_writable_device is still FALSE, 3533 * check for a Removable Rigid Disk (RRD). A RRD 3534 * device is identified by the features RANDOM_WRITABLE and 3535 * HARDWARE_DEFECT_MANAGEMENT. 3536 */ 3537 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3538 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3539 3540 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3541 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3542 RANDOM_WRITABLE, SD_PATH_STANDARD); 3543 3544 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3545 3546 if (rtn != 0) { 3547 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3548 kmem_free(rqbuf_rw, SENSE_LENGTH); 3549 return; 3550 } 3551 3552 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3553 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3554 3555 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3556 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3557 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3558 3559 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3560 3561 if (rtn == 0) { 3562 /* 3563 * We have good information, check for random writable 3564 * and hardware defect features. 3565 */ 3566 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3567 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3568 un->un_f_dvdram_writable_device = TRUE; 3569 } 3570 } 3571 3572 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3573 kmem_free(rqbuf_rw, SENSE_LENGTH); 3574 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3575 kmem_free(rqbuf_hd, SENSE_LENGTH); 3576 } 3577 3578 /* 3579 * Function: sd_check_for_writable_cd 3580 * 3581 * Description: This routine determines if the media in the device is 3582 * writable or not. It uses the get configuration command (0x46) 3583 * to determine if the media is writable 3584 * 3585 * Arguments: un - driver soft state (unit) structure 3586 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3587 * chain and the normal command waitq, or 3588 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3589 * "direct" chain and bypass the normal command 3590 * waitq. 3591 * 3592 * Context: Never called at interrupt context. 3593 */ 3594 3595 static void 3596 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag) 3597 { 3598 struct uscsi_cmd com; 3599 uchar_t *out_data; 3600 uchar_t *rqbuf; 3601 int rtn; 3602 uchar_t *out_data_rw, *out_data_hd; 3603 uchar_t *rqbuf_rw, *rqbuf_hd; 3604 struct mode_header_grp2 *sense_mhp; 3605 uchar_t *sense_page; 3606 caddr_t buf; 3607 int bd_len; 3608 int status; 3609 struct sd_lun *un; 3610 3611 ASSERT(ssc != NULL); 3612 un = ssc->ssc_un; 3613 ASSERT(un != NULL); 3614 ASSERT(mutex_owned(SD_MUTEX(un))); 3615 3616 /* 3617 * Initialize the writable media to false, if configuration info. 3618 * tells us otherwise then only we will set it. 3619 */ 3620 un->un_f_mmc_writable_media = FALSE; 3621 mutex_exit(SD_MUTEX(un)); 3622 3623 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3624 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3625 3626 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH, 3627 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3628 3629 if (rtn != 0) 3630 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3631 3632 mutex_enter(SD_MUTEX(un)); 3633 if (rtn == 0) { 3634 /* 3635 * We have good information, check for writable DVD. 3636 */ 3637 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3638 un->un_f_mmc_writable_media = TRUE; 3639 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3640 kmem_free(rqbuf, SENSE_LENGTH); 3641 return; 3642 } 3643 } 3644 3645 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3646 kmem_free(rqbuf, SENSE_LENGTH); 3647 3648 /* 3649 * Determine if this is a RRD type device. 3650 */ 3651 mutex_exit(SD_MUTEX(un)); 3652 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3653 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3654 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3655 3656 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3657 3658 mutex_enter(SD_MUTEX(un)); 3659 if (status != 0) { 3660 /* command failed; just return */ 3661 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3662 return; 3663 } 3664 3665 /* Get to the page data */ 3666 sense_mhp = (struct mode_header_grp2 *)buf; 3667 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3668 if (bd_len > MODE_BLK_DESC_LENGTH) { 3669 /* 3670 * We did not get back the expected block descriptor length so 3671 * we cannot check the mode page. 3672 */ 3673 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3674 "sd_check_for_writable_cd: Mode Sense returned " 3675 "invalid block descriptor length\n"); 3676 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3677 return; 3678 } 3679 3680 /* 3681 * If the device presents DVD or CD capabilities in the mode 3682 * page, we can return here since a RRD device will not have 3683 * these capabilities. 3684 */ 3685 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3686 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3687 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3688 return; 3689 } 3690 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3691 3692 /* 3693 * If un->un_f_mmc_writable_media is still FALSE, 3694 * check for RRD type media. A RRD device is identified 3695 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3696 */ 3697 mutex_exit(SD_MUTEX(un)); 3698 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3699 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3700 3701 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3702 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3703 RANDOM_WRITABLE, path_flag); 3704 3705 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3706 if (rtn != 0) { 3707 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3708 kmem_free(rqbuf_rw, SENSE_LENGTH); 3709 mutex_enter(SD_MUTEX(un)); 3710 return; 3711 } 3712 3713 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3714 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3715 3716 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3717 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3718 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3719 3720 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3721 mutex_enter(SD_MUTEX(un)); 3722 if (rtn == 0) { 3723 /* 3724 * We have good information, check for random writable 3725 * and hardware defect features as current. 3726 */ 3727 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3728 (out_data_rw[10] & 0x1) && 3729 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3730 (out_data_hd[10] & 0x1)) { 3731 un->un_f_mmc_writable_media = TRUE; 3732 } 3733 } 3734 3735 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3736 kmem_free(rqbuf_rw, SENSE_LENGTH); 3737 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3738 kmem_free(rqbuf_hd, SENSE_LENGTH); 3739 } 3740 3741 /* 3742 * Function: sd_read_unit_properties 3743 * 3744 * Description: The following implements a property lookup mechanism. 3745 * Properties for particular disks (keyed on vendor, model 3746 * and rev numbers) are sought in the sd.conf file via 3747 * sd_process_sdconf_file(), and if not found there, are 3748 * looked for in a list hardcoded in this driver via 3749 * sd_process_sdconf_table() Once located the properties 3750 * are used to update the driver unit structure. 3751 * 3752 * Arguments: un - driver soft state (unit) structure 3753 */ 3754 3755 static void 3756 sd_read_unit_properties(struct sd_lun *un) 3757 { 3758 /* 3759 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3760 * the "sd-config-list" property (from the sd.conf file) or if 3761 * there was not a match for the inquiry vid/pid. If this event 3762 * occurs the static driver configuration table is searched for 3763 * a match. 3764 */ 3765 ASSERT(un != NULL); 3766 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3767 sd_process_sdconf_table(un); 3768 } 3769 3770 /* check for LSI device */ 3771 sd_is_lsi(un); 3772 3773 3774 } 3775 3776 3777 /* 3778 * Function: sd_process_sdconf_file 3779 * 3780 * Description: Use ddi_prop_lookup(9F) to obtain the properties from the 3781 * driver's config file (ie, sd.conf) and update the driver 3782 * soft state structure accordingly. 3783 * 3784 * Arguments: un - driver soft state (unit) structure 3785 * 3786 * Return Code: SD_SUCCESS - The properties were successfully set according 3787 * to the driver configuration file. 3788 * SD_FAILURE - The driver config list was not obtained or 3789 * there was no vid/pid match. This indicates that 3790 * the static config table should be used. 3791 * 3792 * The config file has a property, "sd-config-list". Currently we support 3793 * two kinds of formats. For both formats, the value of this property 3794 * is a list of duplets: 3795 * 3796 * sd-config-list= 3797 * <duplet>, 3798 * [,<duplet>]*; 3799 * 3800 * For the improved format, where 3801 * 3802 * <duplet>:= "<vid+pid>","<tunable-list>" 3803 * 3804 * and 3805 * 3806 * <tunable-list>:= <tunable> [, <tunable> ]*; 3807 * <tunable> = <name> : <value> 3808 * 3809 * The <vid+pid> is the string that is returned by the target device on a 3810 * SCSI inquiry command, the <tunable-list> contains one or more tunables 3811 * to apply to all target devices with the specified <vid+pid>. 3812 * 3813 * Each <tunable> is a "<name> : <value>" pair. 3814 * 3815 * For the old format, the structure of each duplet is as follows: 3816 * 3817 * <duplet>:= "<vid+pid>","<data-property-name_list>" 3818 * 3819 * The first entry of the duplet is the device ID string (the concatenated 3820 * vid & pid; not to be confused with a device_id). This is defined in 3821 * the same way as in the sd_disk_table. 3822 * 3823 * The second part of the duplet is a string that identifies a 3824 * data-property-name-list. The data-property-name-list is defined as 3825 * follows: 3826 * 3827 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3828 * 3829 * The syntax of <data-property-name> depends on the <version> field. 3830 * 3831 * If version = SD_CONF_VERSION_1 we have the following syntax: 3832 * 3833 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3834 * 3835 * where the prop0 value will be used to set prop0 if bit0 set in the 3836 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3837 * 3838 */ 3839 3840 static int 3841 sd_process_sdconf_file(struct sd_lun *un) 3842 { 3843 char **config_list = NULL; 3844 uint_t nelements; 3845 char *vidptr; 3846 int vidlen; 3847 char *dnlist_ptr; 3848 char *dataname_ptr; 3849 char *dataname_lasts; 3850 int *data_list = NULL; 3851 uint_t data_list_len; 3852 int rval = SD_FAILURE; 3853 int i; 3854 3855 ASSERT(un != NULL); 3856 3857 /* Obtain the configuration list associated with the .conf file */ 3858 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un), 3859 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list, 3860 &config_list, &nelements) != DDI_PROP_SUCCESS) { 3861 return (SD_FAILURE); 3862 } 3863 3864 /* 3865 * Compare vids in each duplet to the inquiry vid - if a match is 3866 * made, get the data value and update the soft state structure 3867 * accordingly. 3868 * 3869 * Each duplet should show as a pair of strings, return SD_FAILURE 3870 * otherwise. 3871 */ 3872 if (nelements & 1) { 3873 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3874 "sd-config-list should show as pairs of strings.\n"); 3875 if (config_list) 3876 ddi_prop_free(config_list); 3877 return (SD_FAILURE); 3878 } 3879 3880 for (i = 0; i < nelements; i += 2) { 3881 /* 3882 * Note: The assumption here is that each vid entry is on 3883 * a unique line from its associated duplet. 3884 */ 3885 vidptr = config_list[i]; 3886 vidlen = (int)strlen(vidptr); 3887 if (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS) { 3888 continue; 3889 } 3890 3891 /* 3892 * dnlist contains 1 or more blank separated 3893 * data-property-name entries 3894 */ 3895 dnlist_ptr = config_list[i + 1]; 3896 3897 if (strchr(dnlist_ptr, ':') != NULL) { 3898 /* 3899 * Decode the improved format sd-config-list. 3900 */ 3901 sd_nvpair_str_decode(un, dnlist_ptr); 3902 } else { 3903 /* 3904 * The old format sd-config-list, loop through all 3905 * data-property-name entries in the 3906 * data-property-name-list 3907 * setting the properties for each. 3908 */ 3909 for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t", 3910 &dataname_lasts); dataname_ptr != NULL; 3911 dataname_ptr = sd_strtok_r(NULL, " \t", 3912 &dataname_lasts)) { 3913 int version; 3914 3915 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3916 "sd_process_sdconf_file: disk:%s, " 3917 "data:%s\n", vidptr, dataname_ptr); 3918 3919 /* Get the data list */ 3920 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, 3921 SD_DEVINFO(un), 0, dataname_ptr, &data_list, 3922 &data_list_len) != DDI_PROP_SUCCESS) { 3923 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3924 "sd_process_sdconf_file: data " 3925 "property (%s) has no value\n", 3926 dataname_ptr); 3927 continue; 3928 } 3929 3930 version = data_list[0]; 3931 3932 if (version == SD_CONF_VERSION_1) { 3933 sd_tunables values; 3934 3935 /* Set the properties */ 3936 if (sd_chk_vers1_data(un, data_list[1], 3937 &data_list[2], data_list_len, 3938 dataname_ptr) == SD_SUCCESS) { 3939 sd_get_tunables_from_conf(un, 3940 data_list[1], &data_list[2], 3941 &values); 3942 sd_set_vers1_properties(un, 3943 data_list[1], &values); 3944 rval = SD_SUCCESS; 3945 } else { 3946 rval = SD_FAILURE; 3947 } 3948 } else { 3949 scsi_log(SD_DEVINFO(un), sd_label, 3950 CE_WARN, "data property %s version " 3951 "0x%x is invalid.", 3952 dataname_ptr, version); 3953 rval = SD_FAILURE; 3954 } 3955 if (data_list) 3956 ddi_prop_free(data_list); 3957 } 3958 } 3959 } 3960 3961 /* free up the memory allocated by ddi_prop_lookup_string_array(). */ 3962 if (config_list) { 3963 ddi_prop_free(config_list); 3964 } 3965 3966 return (rval); 3967 } 3968 3969 /* 3970 * Function: sd_nvpair_str_decode() 3971 * 3972 * Description: Parse the improved format sd-config-list to get 3973 * each entry of tunable, which includes a name-value pair. 3974 * Then call sd_set_properties() to set the property. 3975 * 3976 * Arguments: un - driver soft state (unit) structure 3977 * nvpair_str - the tunable list 3978 */ 3979 static void 3980 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str) 3981 { 3982 char *nv, *name, *value, *token; 3983 char *nv_lasts, *v_lasts, *x_lasts; 3984 3985 for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL; 3986 nv = sd_strtok_r(NULL, ",", &nv_lasts)) { 3987 token = sd_strtok_r(nv, ":", &v_lasts); 3988 name = sd_strtok_r(token, " \t", &x_lasts); 3989 token = sd_strtok_r(NULL, ":", &v_lasts); 3990 value = sd_strtok_r(token, " \t", &x_lasts); 3991 if (name == NULL || value == NULL) { 3992 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3993 "sd_nvpair_str_decode: " 3994 "name or value is not valid!\n"); 3995 } else { 3996 sd_set_properties(un, name, value); 3997 } 3998 } 3999 } 4000 4001 /* 4002 * Function: sd_strtok_r() 4003 * 4004 * Description: This function uses strpbrk and strspn to break 4005 * string into tokens on sequentially subsequent calls. Return 4006 * NULL when no non-separator characters remain. The first 4007 * argument is NULL for subsequent calls. 4008 */ 4009 static char * 4010 sd_strtok_r(char *string, const char *sepset, char **lasts) 4011 { 4012 char *q, *r; 4013 4014 /* First or subsequent call */ 4015 if (string == NULL) 4016 string = *lasts; 4017 4018 if (string == NULL) 4019 return (NULL); 4020 4021 /* Skip leading separators */ 4022 q = string + strspn(string, sepset); 4023 4024 if (*q == '\0') 4025 return (NULL); 4026 4027 if ((r = strpbrk(q, sepset)) == NULL) 4028 *lasts = NULL; 4029 else { 4030 *r = '\0'; 4031 *lasts = r + 1; 4032 } 4033 return (q); 4034 } 4035 4036 /* 4037 * Function: sd_set_properties() 4038 * 4039 * Description: Set device properties based on the improved 4040 * format sd-config-list. 4041 * 4042 * Arguments: un - driver soft state (unit) structure 4043 * name - supported tunable name 4044 * value - tunable value 4045 */ 4046 static void 4047 sd_set_properties(struct sd_lun *un, char *name, char *value) 4048 { 4049 char *endptr = NULL; 4050 long val = 0; 4051 4052 if (strcasecmp(name, "cache-nonvolatile") == 0) { 4053 if (strcasecmp(value, "true") == 0) { 4054 un->un_f_suppress_cache_flush = TRUE; 4055 } else if (strcasecmp(value, "false") == 0) { 4056 un->un_f_suppress_cache_flush = FALSE; 4057 } else { 4058 goto value_invalid; 4059 } 4060 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4061 "suppress_cache_flush flag set to %d\n", 4062 un->un_f_suppress_cache_flush); 4063 return; 4064 } 4065 4066 if (strcasecmp(name, "controller-type") == 0) { 4067 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4068 un->un_ctype = val; 4069 } else { 4070 goto value_invalid; 4071 } 4072 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4073 "ctype set to %d\n", un->un_ctype); 4074 return; 4075 } 4076 4077 if (strcasecmp(name, "delay-busy") == 0) { 4078 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4079 un->un_busy_timeout = drv_usectohz(val / 1000); 4080 } else { 4081 goto value_invalid; 4082 } 4083 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4084 "busy_timeout set to %d\n", un->un_busy_timeout); 4085 return; 4086 } 4087 4088 if (strcasecmp(name, "disksort") == 0) { 4089 if (strcasecmp(value, "true") == 0) { 4090 un->un_f_disksort_disabled = FALSE; 4091 } else if (strcasecmp(value, "false") == 0) { 4092 un->un_f_disksort_disabled = TRUE; 4093 } else { 4094 goto value_invalid; 4095 } 4096 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4097 "disksort disabled flag set to %d\n", 4098 un->un_f_disksort_disabled); 4099 return; 4100 } 4101 4102 if (strcasecmp(name, "power-condition") == 0) { 4103 if (strcasecmp(value, "true") == 0) { 4104 un->un_f_power_condition_disabled = FALSE; 4105 } else if (strcasecmp(value, "false") == 0) { 4106 un->un_f_power_condition_disabled = TRUE; 4107 } else { 4108 goto value_invalid; 4109 } 4110 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4111 "power condition disabled flag set to %d\n", 4112 un->un_f_power_condition_disabled); 4113 return; 4114 } 4115 4116 if (strcasecmp(name, "timeout-releasereservation") == 0) { 4117 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4118 un->un_reserve_release_time = val; 4119 } else { 4120 goto value_invalid; 4121 } 4122 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4123 "reservation release timeout set to %d\n", 4124 un->un_reserve_release_time); 4125 return; 4126 } 4127 4128 if (strcasecmp(name, "reset-lun") == 0) { 4129 if (strcasecmp(value, "true") == 0) { 4130 un->un_f_lun_reset_enabled = TRUE; 4131 } else if (strcasecmp(value, "false") == 0) { 4132 un->un_f_lun_reset_enabled = FALSE; 4133 } else { 4134 goto value_invalid; 4135 } 4136 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4137 "lun reset enabled flag set to %d\n", 4138 un->un_f_lun_reset_enabled); 4139 return; 4140 } 4141 4142 if (strcasecmp(name, "retries-busy") == 0) { 4143 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4144 un->un_busy_retry_count = val; 4145 } else { 4146 goto value_invalid; 4147 } 4148 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4149 "busy retry count set to %d\n", un->un_busy_retry_count); 4150 return; 4151 } 4152 4153 if (strcasecmp(name, "retries-timeout") == 0) { 4154 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4155 un->un_retry_count = val; 4156 } else { 4157 goto value_invalid; 4158 } 4159 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4160 "timeout retry count set to %d\n", un->un_retry_count); 4161 return; 4162 } 4163 4164 if (strcasecmp(name, "retries-notready") == 0) { 4165 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4166 un->un_notready_retry_count = val; 4167 } else { 4168 goto value_invalid; 4169 } 4170 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4171 "notready retry count set to %d\n", 4172 un->un_notready_retry_count); 4173 return; 4174 } 4175 4176 if (strcasecmp(name, "retries-reset") == 0) { 4177 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4178 un->un_reset_retry_count = val; 4179 } else { 4180 goto value_invalid; 4181 } 4182 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4183 "reset retry count set to %d\n", 4184 un->un_reset_retry_count); 4185 return; 4186 } 4187 4188 if (strcasecmp(name, "throttle-max") == 0) { 4189 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4190 un->un_saved_throttle = un->un_throttle = val; 4191 } else { 4192 goto value_invalid; 4193 } 4194 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4195 "throttle set to %d\n", un->un_throttle); 4196 } 4197 4198 if (strcasecmp(name, "throttle-min") == 0) { 4199 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4200 un->un_min_throttle = val; 4201 } else { 4202 goto value_invalid; 4203 } 4204 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4205 "min throttle set to %d\n", un->un_min_throttle); 4206 } 4207 4208 if (strcasecmp(name, "rmw-type") == 0) { 4209 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4210 un->un_f_rmw_type = val; 4211 } else { 4212 goto value_invalid; 4213 } 4214 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4215 "RMW type set to %d\n", un->un_f_rmw_type); 4216 } 4217 4218 if (strcasecmp(name, "physical-block-size") == 0) { 4219 if (ddi_strtol(value, &endptr, 0, &val) == 0 && 4220 ISP2(val) && val >= un->un_tgt_blocksize && 4221 val >= un->un_sys_blocksize) { 4222 un->un_phy_blocksize = val; 4223 } else { 4224 goto value_invalid; 4225 } 4226 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4227 "physical block size set to %d\n", un->un_phy_blocksize); 4228 } 4229 4230 if (strcasecmp(name, "retries-victim") == 0) { 4231 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4232 un->un_victim_retry_count = val; 4233 } else { 4234 goto value_invalid; 4235 } 4236 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4237 "victim retry count set to %d\n", 4238 un->un_victim_retry_count); 4239 return; 4240 } 4241 4242 /* 4243 * Validate the throttle values. 4244 * If any of the numbers are invalid, set everything to defaults. 4245 */ 4246 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4247 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4248 (un->un_min_throttle > un->un_throttle)) { 4249 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4250 un->un_min_throttle = sd_min_throttle; 4251 } 4252 4253 if (strcasecmp(name, "mmc-gesn-polling") == 0) { 4254 if (strcasecmp(value, "true") == 0) { 4255 un->un_f_mmc_gesn_polling = TRUE; 4256 } else if (strcasecmp(value, "false") == 0) { 4257 un->un_f_mmc_gesn_polling = FALSE; 4258 } else { 4259 goto value_invalid; 4260 } 4261 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4262 "mmc-gesn-polling set to %d\n", 4263 un->un_f_mmc_gesn_polling); 4264 } 4265 4266 return; 4267 4268 value_invalid: 4269 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4270 "value of prop %s is invalid\n", name); 4271 } 4272 4273 /* 4274 * Function: sd_get_tunables_from_conf() 4275 * 4276 * 4277 * This function reads the data list from the sd.conf file and pulls 4278 * the values that can have numeric values as arguments and places 4279 * the values in the appropriate sd_tunables member. 4280 * Since the order of the data list members varies across platforms 4281 * This function reads them from the data list in a platform specific 4282 * order and places them into the correct sd_tunable member that is 4283 * consistent across all platforms. 4284 */ 4285 static void 4286 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 4287 sd_tunables *values) 4288 { 4289 int i; 4290 int mask; 4291 4292 bzero(values, sizeof (sd_tunables)); 4293 4294 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4295 4296 mask = 1 << i; 4297 if (mask > flags) { 4298 break; 4299 } 4300 4301 switch (mask & flags) { 4302 case 0: /* This mask bit not set in flags */ 4303 continue; 4304 case SD_CONF_BSET_THROTTLE: 4305 values->sdt_throttle = data_list[i]; 4306 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4307 "sd_get_tunables_from_conf: throttle = %d\n", 4308 values->sdt_throttle); 4309 break; 4310 case SD_CONF_BSET_CTYPE: 4311 values->sdt_ctype = data_list[i]; 4312 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4313 "sd_get_tunables_from_conf: ctype = %d\n", 4314 values->sdt_ctype); 4315 break; 4316 case SD_CONF_BSET_NRR_COUNT: 4317 values->sdt_not_rdy_retries = data_list[i]; 4318 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4319 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 4320 values->sdt_not_rdy_retries); 4321 break; 4322 case SD_CONF_BSET_BSY_RETRY_COUNT: 4323 values->sdt_busy_retries = data_list[i]; 4324 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4325 "sd_get_tunables_from_conf: busy_retries = %d\n", 4326 values->sdt_busy_retries); 4327 break; 4328 case SD_CONF_BSET_RST_RETRIES: 4329 values->sdt_reset_retries = data_list[i]; 4330 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4331 "sd_get_tunables_from_conf: reset_retries = %d\n", 4332 values->sdt_reset_retries); 4333 break; 4334 case SD_CONF_BSET_RSV_REL_TIME: 4335 values->sdt_reserv_rel_time = data_list[i]; 4336 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4337 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 4338 values->sdt_reserv_rel_time); 4339 break; 4340 case SD_CONF_BSET_MIN_THROTTLE: 4341 values->sdt_min_throttle = data_list[i]; 4342 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4343 "sd_get_tunables_from_conf: min_throttle = %d\n", 4344 values->sdt_min_throttle); 4345 break; 4346 case SD_CONF_BSET_DISKSORT_DISABLED: 4347 values->sdt_disk_sort_dis = data_list[i]; 4348 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4349 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 4350 values->sdt_disk_sort_dis); 4351 break; 4352 case SD_CONF_BSET_LUN_RESET_ENABLED: 4353 values->sdt_lun_reset_enable = data_list[i]; 4354 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4355 "sd_get_tunables_from_conf: lun_reset_enable = %d" 4356 "\n", values->sdt_lun_reset_enable); 4357 break; 4358 case SD_CONF_BSET_CACHE_IS_NV: 4359 values->sdt_suppress_cache_flush = data_list[i]; 4360 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4361 "sd_get_tunables_from_conf: \ 4362 suppress_cache_flush = %d" 4363 "\n", values->sdt_suppress_cache_flush); 4364 break; 4365 case SD_CONF_BSET_PC_DISABLED: 4366 values->sdt_disk_sort_dis = data_list[i]; 4367 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4368 "sd_get_tunables_from_conf: power_condition_dis = " 4369 "%d\n", values->sdt_power_condition_dis); 4370 break; 4371 } 4372 } 4373 } 4374 4375 /* 4376 * Function: sd_process_sdconf_table 4377 * 4378 * Description: Search the static configuration table for a match on the 4379 * inquiry vid/pid and update the driver soft state structure 4380 * according to the table property values for the device. 4381 * 4382 * The form of a configuration table entry is: 4383 * <vid+pid>,<flags>,<property-data> 4384 * "SEAGATE ST42400N",1,0x40000, 4385 * 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 4386 * 4387 * Arguments: un - driver soft state (unit) structure 4388 */ 4389 4390 static void 4391 sd_process_sdconf_table(struct sd_lun *un) 4392 { 4393 char *id = NULL; 4394 int table_index; 4395 int idlen; 4396 4397 ASSERT(un != NULL); 4398 for (table_index = 0; table_index < sd_disk_table_size; 4399 table_index++) { 4400 id = sd_disk_table[table_index].device_id; 4401 idlen = strlen(id); 4402 4403 /* 4404 * The static configuration table currently does not 4405 * implement version 10 properties. Additionally, 4406 * multiple data-property-name entries are not 4407 * implemented in the static configuration table. 4408 */ 4409 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4410 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4411 "sd_process_sdconf_table: disk %s\n", id); 4412 sd_set_vers1_properties(un, 4413 sd_disk_table[table_index].flags, 4414 sd_disk_table[table_index].properties); 4415 break; 4416 } 4417 } 4418 } 4419 4420 4421 /* 4422 * Function: sd_sdconf_id_match 4423 * 4424 * Description: This local function implements a case sensitive vid/pid 4425 * comparison as well as the boundary cases of wild card and 4426 * multiple blanks. 4427 * 4428 * Note: An implicit assumption made here is that the scsi 4429 * inquiry structure will always keep the vid, pid and 4430 * revision strings in consecutive sequence, so they can be 4431 * read as a single string. If this assumption is not the 4432 * case, a separate string, to be used for the check, needs 4433 * to be built with these strings concatenated. 4434 * 4435 * Arguments: un - driver soft state (unit) structure 4436 * id - table or config file vid/pid 4437 * idlen - length of the vid/pid (bytes) 4438 * 4439 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4440 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4441 */ 4442 4443 static int 4444 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 4445 { 4446 struct scsi_inquiry *sd_inq; 4447 int rval = SD_SUCCESS; 4448 4449 ASSERT(un != NULL); 4450 sd_inq = un->un_sd->sd_inq; 4451 ASSERT(id != NULL); 4452 4453 /* 4454 * We use the inq_vid as a pointer to a buffer containing the 4455 * vid and pid and use the entire vid/pid length of the table 4456 * entry for the comparison. This works because the inq_pid 4457 * data member follows inq_vid in the scsi_inquiry structure. 4458 */ 4459 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 4460 /* 4461 * The user id string is compared to the inquiry vid/pid 4462 * using a case insensitive comparison and ignoring 4463 * multiple spaces. 4464 */ 4465 rval = sd_blank_cmp(un, id, idlen); 4466 if (rval != SD_SUCCESS) { 4467 /* 4468 * User id strings that start and end with a "*" 4469 * are a special case. These do not have a 4470 * specific vendor, and the product string can 4471 * appear anywhere in the 16 byte PID portion of 4472 * the inquiry data. This is a simple strstr() 4473 * type search for the user id in the inquiry data. 4474 */ 4475 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 4476 char *pidptr = &id[1]; 4477 int i; 4478 int j; 4479 int pidstrlen = idlen - 2; 4480 j = sizeof (SD_INQUIRY(un)->inq_pid) - 4481 pidstrlen; 4482 4483 if (j < 0) { 4484 return (SD_FAILURE); 4485 } 4486 for (i = 0; i < j; i++) { 4487 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 4488 pidptr, pidstrlen) == 0) { 4489 rval = SD_SUCCESS; 4490 break; 4491 } 4492 } 4493 } 4494 } 4495 } 4496 return (rval); 4497 } 4498 4499 4500 /* 4501 * Function: sd_blank_cmp 4502 * 4503 * Description: If the id string starts and ends with a space, treat 4504 * multiple consecutive spaces as equivalent to a single 4505 * space. For example, this causes a sd_disk_table entry 4506 * of " NEC CDROM " to match a device's id string of 4507 * "NEC CDROM". 4508 * 4509 * Note: The success exit condition for this routine is if 4510 * the pointer to the table entry is '\0' and the cnt of 4511 * the inquiry length is zero. This will happen if the inquiry 4512 * string returned by the device is padded with spaces to be 4513 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 4514 * SCSI spec states that the inquiry string is to be padded with 4515 * spaces. 4516 * 4517 * Arguments: un - driver soft state (unit) structure 4518 * id - table or config file vid/pid 4519 * idlen - length of the vid/pid (bytes) 4520 * 4521 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4522 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4523 */ 4524 4525 static int 4526 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 4527 { 4528 char *p1; 4529 char *p2; 4530 int cnt; 4531 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 4532 sizeof (SD_INQUIRY(un)->inq_pid); 4533 4534 ASSERT(un != NULL); 4535 p2 = un->un_sd->sd_inq->inq_vid; 4536 ASSERT(id != NULL); 4537 p1 = id; 4538 4539 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 4540 /* 4541 * Note: string p1 is terminated by a NUL but string p2 4542 * isn't. The end of p2 is determined by cnt. 4543 */ 4544 for (;;) { 4545 /* skip over any extra blanks in both strings */ 4546 while ((*p1 != '\0') && (*p1 == ' ')) { 4547 p1++; 4548 } 4549 while ((cnt != 0) && (*p2 == ' ')) { 4550 p2++; 4551 cnt--; 4552 } 4553 4554 /* compare the two strings */ 4555 if ((cnt == 0) || 4556 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 4557 break; 4558 } 4559 while ((cnt > 0) && 4560 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 4561 p1++; 4562 p2++; 4563 cnt--; 4564 } 4565 } 4566 } 4567 4568 /* return SD_SUCCESS if both strings match */ 4569 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 4570 } 4571 4572 4573 /* 4574 * Function: sd_chk_vers1_data 4575 * 4576 * Description: Verify the version 1 device properties provided by the 4577 * user via the configuration file 4578 * 4579 * Arguments: un - driver soft state (unit) structure 4580 * flags - integer mask indicating properties to be set 4581 * prop_list - integer list of property values 4582 * list_len - number of the elements 4583 * 4584 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4585 * SD_FAILURE - Indicates the user provided data is invalid 4586 */ 4587 4588 static int 4589 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4590 int list_len, char *dataname_ptr) 4591 { 4592 int i; 4593 int mask = 1; 4594 int index = 0; 4595 4596 ASSERT(un != NULL); 4597 4598 /* Check for a NULL property name and list */ 4599 if (dataname_ptr == NULL) { 4600 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4601 "sd_chk_vers1_data: NULL data property name."); 4602 return (SD_FAILURE); 4603 } 4604 if (prop_list == NULL) { 4605 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4606 "sd_chk_vers1_data: %s NULL data property list.", 4607 dataname_ptr); 4608 return (SD_FAILURE); 4609 } 4610 4611 /* Display a warning if undefined bits are set in the flags */ 4612 if (flags & ~SD_CONF_BIT_MASK) { 4613 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4614 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4615 "Properties not set.", 4616 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4617 return (SD_FAILURE); 4618 } 4619 4620 /* 4621 * Verify the length of the list by identifying the highest bit set 4622 * in the flags and validating that the property list has a length 4623 * up to the index of this bit. 4624 */ 4625 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4626 if (flags & mask) { 4627 index++; 4628 } 4629 mask = 1 << i; 4630 } 4631 if (list_len < (index + 2)) { 4632 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4633 "sd_chk_vers1_data: " 4634 "Data property list %s size is incorrect. " 4635 "Properties not set.", dataname_ptr); 4636 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4637 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4638 return (SD_FAILURE); 4639 } 4640 return (SD_SUCCESS); 4641 } 4642 4643 4644 /* 4645 * Function: sd_set_vers1_properties 4646 * 4647 * Description: Set version 1 device properties based on a property list 4648 * retrieved from the driver configuration file or static 4649 * configuration table. Version 1 properties have the format: 4650 * 4651 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4652 * 4653 * where the prop0 value will be used to set prop0 if bit0 4654 * is set in the flags 4655 * 4656 * Arguments: un - driver soft state (unit) structure 4657 * flags - integer mask indicating properties to be set 4658 * prop_list - integer list of property values 4659 */ 4660 4661 static void 4662 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4663 { 4664 ASSERT(un != NULL); 4665 4666 /* 4667 * Set the flag to indicate cache is to be disabled. An attempt 4668 * to disable the cache via sd_cache_control() will be made 4669 * later during attach once the basic initialization is complete. 4670 */ 4671 if (flags & SD_CONF_BSET_NOCACHE) { 4672 un->un_f_opt_disable_cache = TRUE; 4673 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4674 "sd_set_vers1_properties: caching disabled flag set\n"); 4675 } 4676 4677 /* CD-specific configuration parameters */ 4678 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4679 un->un_f_cfg_playmsf_bcd = TRUE; 4680 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4681 "sd_set_vers1_properties: playmsf_bcd set\n"); 4682 } 4683 if (flags & SD_CONF_BSET_READSUB_BCD) { 4684 un->un_f_cfg_readsub_bcd = TRUE; 4685 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4686 "sd_set_vers1_properties: readsub_bcd set\n"); 4687 } 4688 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4689 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4690 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4691 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4692 } 4693 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4694 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4695 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4696 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4697 } 4698 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4699 un->un_f_cfg_no_read_header = TRUE; 4700 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4701 "sd_set_vers1_properties: no_read_header set\n"); 4702 } 4703 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4704 un->un_f_cfg_read_cd_xd4 = TRUE; 4705 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4706 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4707 } 4708 4709 /* Support for devices which do not have valid/unique serial numbers */ 4710 if (flags & SD_CONF_BSET_FAB_DEVID) { 4711 un->un_f_opt_fab_devid = TRUE; 4712 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4713 "sd_set_vers1_properties: fab_devid bit set\n"); 4714 } 4715 4716 /* Support for user throttle configuration */ 4717 if (flags & SD_CONF_BSET_THROTTLE) { 4718 ASSERT(prop_list != NULL); 4719 un->un_saved_throttle = un->un_throttle = 4720 prop_list->sdt_throttle; 4721 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4722 "sd_set_vers1_properties: throttle set to %d\n", 4723 prop_list->sdt_throttle); 4724 } 4725 4726 /* Set the per disk retry count according to the conf file or table. */ 4727 if (flags & SD_CONF_BSET_NRR_COUNT) { 4728 ASSERT(prop_list != NULL); 4729 if (prop_list->sdt_not_rdy_retries) { 4730 un->un_notready_retry_count = 4731 prop_list->sdt_not_rdy_retries; 4732 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4733 "sd_set_vers1_properties: not ready retry count" 4734 " set to %d\n", un->un_notready_retry_count); 4735 } 4736 } 4737 4738 /* The controller type is reported for generic disk driver ioctls */ 4739 if (flags & SD_CONF_BSET_CTYPE) { 4740 ASSERT(prop_list != NULL); 4741 switch (prop_list->sdt_ctype) { 4742 case CTYPE_CDROM: 4743 un->un_ctype = prop_list->sdt_ctype; 4744 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4745 "sd_set_vers1_properties: ctype set to " 4746 "CTYPE_CDROM\n"); 4747 break; 4748 case CTYPE_CCS: 4749 un->un_ctype = prop_list->sdt_ctype; 4750 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4751 "sd_set_vers1_properties: ctype set to " 4752 "CTYPE_CCS\n"); 4753 break; 4754 case CTYPE_ROD: /* RW optical */ 4755 un->un_ctype = prop_list->sdt_ctype; 4756 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4757 "sd_set_vers1_properties: ctype set to " 4758 "CTYPE_ROD\n"); 4759 break; 4760 default: 4761 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4762 "sd_set_vers1_properties: Could not set " 4763 "invalid ctype value (%d)", 4764 prop_list->sdt_ctype); 4765 } 4766 } 4767 4768 /* Purple failover timeout */ 4769 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4770 ASSERT(prop_list != NULL); 4771 un->un_busy_retry_count = 4772 prop_list->sdt_busy_retries; 4773 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4774 "sd_set_vers1_properties: " 4775 "busy retry count set to %d\n", 4776 un->un_busy_retry_count); 4777 } 4778 4779 /* Purple reset retry count */ 4780 if (flags & SD_CONF_BSET_RST_RETRIES) { 4781 ASSERT(prop_list != NULL); 4782 un->un_reset_retry_count = 4783 prop_list->sdt_reset_retries; 4784 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4785 "sd_set_vers1_properties: " 4786 "reset retry count set to %d\n", 4787 un->un_reset_retry_count); 4788 } 4789 4790 /* Purple reservation release timeout */ 4791 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4792 ASSERT(prop_list != NULL); 4793 un->un_reserve_release_time = 4794 prop_list->sdt_reserv_rel_time; 4795 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4796 "sd_set_vers1_properties: " 4797 "reservation release timeout set to %d\n", 4798 un->un_reserve_release_time); 4799 } 4800 4801 /* 4802 * Driver flag telling the driver to verify that no commands are pending 4803 * for a device before issuing a Test Unit Ready. This is a workaround 4804 * for a firmware bug in some Seagate eliteI drives. 4805 */ 4806 if (flags & SD_CONF_BSET_TUR_CHECK) { 4807 un->un_f_cfg_tur_check = TRUE; 4808 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4809 "sd_set_vers1_properties: tur queue check set\n"); 4810 } 4811 4812 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4813 un->un_min_throttle = prop_list->sdt_min_throttle; 4814 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4815 "sd_set_vers1_properties: min throttle set to %d\n", 4816 un->un_min_throttle); 4817 } 4818 4819 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4820 un->un_f_disksort_disabled = 4821 (prop_list->sdt_disk_sort_dis != 0) ? 4822 TRUE : FALSE; 4823 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4824 "sd_set_vers1_properties: disksort disabled " 4825 "flag set to %d\n", 4826 prop_list->sdt_disk_sort_dis); 4827 } 4828 4829 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4830 un->un_f_lun_reset_enabled = 4831 (prop_list->sdt_lun_reset_enable != 0) ? 4832 TRUE : FALSE; 4833 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4834 "sd_set_vers1_properties: lun reset enabled " 4835 "flag set to %d\n", 4836 prop_list->sdt_lun_reset_enable); 4837 } 4838 4839 if (flags & SD_CONF_BSET_CACHE_IS_NV) { 4840 un->un_f_suppress_cache_flush = 4841 (prop_list->sdt_suppress_cache_flush != 0) ? 4842 TRUE : FALSE; 4843 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4844 "sd_set_vers1_properties: suppress_cache_flush " 4845 "flag set to %d\n", 4846 prop_list->sdt_suppress_cache_flush); 4847 } 4848 4849 if (flags & SD_CONF_BSET_PC_DISABLED) { 4850 un->un_f_power_condition_disabled = 4851 (prop_list->sdt_power_condition_dis != 0) ? 4852 TRUE : FALSE; 4853 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4854 "sd_set_vers1_properties: power_condition_disabled " 4855 "flag set to %d\n", 4856 prop_list->sdt_power_condition_dis); 4857 } 4858 4859 /* 4860 * Validate the throttle values. 4861 * If any of the numbers are invalid, set everything to defaults. 4862 */ 4863 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4864 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4865 (un->un_min_throttle > un->un_throttle)) { 4866 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4867 un->un_min_throttle = sd_min_throttle; 4868 } 4869 } 4870 4871 /* 4872 * Function: sd_is_lsi() 4873 * 4874 * Description: Check for lsi devices, step through the static device 4875 * table to match vid/pid. 4876 * 4877 * Args: un - ptr to sd_lun 4878 * 4879 * Notes: When creating new LSI property, need to add the new LSI property 4880 * to this function. 4881 */ 4882 static void 4883 sd_is_lsi(struct sd_lun *un) 4884 { 4885 char *id = NULL; 4886 int table_index; 4887 int idlen; 4888 void *prop; 4889 4890 ASSERT(un != NULL); 4891 for (table_index = 0; table_index < sd_disk_table_size; 4892 table_index++) { 4893 id = sd_disk_table[table_index].device_id; 4894 idlen = strlen(id); 4895 if (idlen == 0) { 4896 continue; 4897 } 4898 4899 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4900 prop = sd_disk_table[table_index].properties; 4901 if (prop == &lsi_properties || 4902 prop == &lsi_oem_properties || 4903 prop == &lsi_properties_scsi || 4904 prop == &symbios_properties) { 4905 un->un_f_cfg_is_lsi = TRUE; 4906 } 4907 break; 4908 } 4909 } 4910 } 4911 4912 /* 4913 * Function: sd_get_physical_geometry 4914 * 4915 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4916 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4917 * target, and use this information to initialize the physical 4918 * geometry cache specified by pgeom_p. 4919 * 4920 * MODE SENSE is an optional command, so failure in this case 4921 * does not necessarily denote an error. We want to use the 4922 * MODE SENSE commands to derive the physical geometry of the 4923 * device, but if either command fails, the logical geometry is 4924 * used as the fallback for disk label geometry in cmlb. 4925 * 4926 * This requires that un->un_blockcount and un->un_tgt_blocksize 4927 * have already been initialized for the current target and 4928 * that the current values be passed as args so that we don't 4929 * end up ever trying to use -1 as a valid value. This could 4930 * happen if either value is reset while we're not holding 4931 * the mutex. 4932 * 4933 * Arguments: un - driver soft state (unit) structure 4934 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4935 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4936 * to use the USCSI "direct" chain and bypass the normal 4937 * command waitq. 4938 * 4939 * Context: Kernel thread only (can sleep). 4940 */ 4941 4942 static int 4943 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4944 diskaddr_t capacity, int lbasize, int path_flag) 4945 { 4946 struct mode_format *page3p; 4947 struct mode_geometry *page4p; 4948 struct mode_header *headerp; 4949 int sector_size; 4950 int nsect; 4951 int nhead; 4952 int ncyl; 4953 int intrlv; 4954 int spc; 4955 diskaddr_t modesense_capacity; 4956 int rpm; 4957 int bd_len; 4958 int mode_header_length; 4959 uchar_t *p3bufp; 4960 uchar_t *p4bufp; 4961 int cdbsize; 4962 int ret = EIO; 4963 sd_ssc_t *ssc; 4964 int status; 4965 4966 ASSERT(un != NULL); 4967 4968 if (lbasize == 0) { 4969 if (ISCD(un)) { 4970 lbasize = 2048; 4971 } else { 4972 lbasize = un->un_sys_blocksize; 4973 } 4974 } 4975 pgeom_p->g_secsize = (unsigned short)lbasize; 4976 4977 /* 4978 * If the unit is a cd/dvd drive MODE SENSE page three 4979 * and MODE SENSE page four are reserved (see SBC spec 4980 * and MMC spec). To prevent soft errors just return 4981 * using the default LBA size. 4982 * 4983 * Since SATA MODE SENSE function (sata_txlt_mode_sense()) does not 4984 * implement support for mode pages 3 and 4 return here to prevent 4985 * illegal requests on SATA drives. 4986 * 4987 * These pages are also reserved in SBC-2 and later. We assume SBC-2 4988 * or later for a direct-attached block device if the SCSI version is 4989 * at least SPC-3. 4990 */ 4991 4992 if (ISCD(un) || 4993 un->un_interconnect_type == SD_INTERCONNECT_SATA || 4994 (un->un_ctype == CTYPE_CCS && SD_INQUIRY(un)->inq_ansi >= 5)) 4995 return (ret); 4996 4997 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4998 4999 /* 5000 * Retrieve MODE SENSE page 3 - Format Device Page 5001 */ 5002 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 5003 ssc = sd_ssc_init(un); 5004 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp, 5005 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag); 5006 if (status != 0) { 5007 SD_ERROR(SD_LOG_COMMON, un, 5008 "sd_get_physical_geometry: mode sense page 3 failed\n"); 5009 goto page3_exit; 5010 } 5011 5012 /* 5013 * Determine size of Block Descriptors in order to locate the mode 5014 * page data. ATAPI devices return 0, SCSI devices should return 5015 * MODE_BLK_DESC_LENGTH. 5016 */ 5017 headerp = (struct mode_header *)p3bufp; 5018 if (un->un_f_cfg_is_atapi == TRUE) { 5019 struct mode_header_grp2 *mhp = 5020 (struct mode_header_grp2 *)headerp; 5021 mode_header_length = MODE_HEADER_LENGTH_GRP2; 5022 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5023 } else { 5024 mode_header_length = MODE_HEADER_LENGTH; 5025 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5026 } 5027 5028 if (bd_len > MODE_BLK_DESC_LENGTH) { 5029 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5030 "sd_get_physical_geometry: received unexpected bd_len " 5031 "of %d, page3\n", bd_len); 5032 status = EIO; 5033 goto page3_exit; 5034 } 5035 5036 page3p = (struct mode_format *) 5037 ((caddr_t)headerp + mode_header_length + bd_len); 5038 5039 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 5040 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5041 "sd_get_physical_geometry: mode sense pg3 code mismatch " 5042 "%d\n", page3p->mode_page.code); 5043 status = EIO; 5044 goto page3_exit; 5045 } 5046 5047 /* 5048 * Use this physical geometry data only if BOTH MODE SENSE commands 5049 * complete successfully; otherwise, revert to the logical geometry. 5050 * So, we need to save everything in temporary variables. 5051 */ 5052 sector_size = BE_16(page3p->data_bytes_sect); 5053 5054 /* 5055 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 5056 */ 5057 if (sector_size == 0) { 5058 sector_size = un->un_sys_blocksize; 5059 } else { 5060 sector_size &= ~(un->un_sys_blocksize - 1); 5061 } 5062 5063 nsect = BE_16(page3p->sect_track); 5064 intrlv = BE_16(page3p->interleave); 5065 5066 SD_INFO(SD_LOG_COMMON, un, 5067 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 5068 SD_INFO(SD_LOG_COMMON, un, 5069 " mode page: %d; nsect: %d; sector size: %d;\n", 5070 page3p->mode_page.code, nsect, sector_size); 5071 SD_INFO(SD_LOG_COMMON, un, 5072 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 5073 BE_16(page3p->track_skew), 5074 BE_16(page3p->cylinder_skew)); 5075 5076 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5077 5078 /* 5079 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 5080 */ 5081 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 5082 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp, 5083 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag); 5084 if (status != 0) { 5085 SD_ERROR(SD_LOG_COMMON, un, 5086 "sd_get_physical_geometry: mode sense page 4 failed\n"); 5087 goto page4_exit; 5088 } 5089 5090 /* 5091 * Determine size of Block Descriptors in order to locate the mode 5092 * page data. ATAPI devices return 0, SCSI devices should return 5093 * MODE_BLK_DESC_LENGTH. 5094 */ 5095 headerp = (struct mode_header *)p4bufp; 5096 if (un->un_f_cfg_is_atapi == TRUE) { 5097 struct mode_header_grp2 *mhp = 5098 (struct mode_header_grp2 *)headerp; 5099 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5100 } else { 5101 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5102 } 5103 5104 if (bd_len > MODE_BLK_DESC_LENGTH) { 5105 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5106 "sd_get_physical_geometry: received unexpected bd_len of " 5107 "%d, page4\n", bd_len); 5108 status = EIO; 5109 goto page4_exit; 5110 } 5111 5112 page4p = (struct mode_geometry *) 5113 ((caddr_t)headerp + mode_header_length + bd_len); 5114 5115 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 5116 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5117 "sd_get_physical_geometry: mode sense pg4 code mismatch " 5118 "%d\n", page4p->mode_page.code); 5119 status = EIO; 5120 goto page4_exit; 5121 } 5122 5123 /* 5124 * Stash the data now, after we know that both commands completed. 5125 */ 5126 5127 5128 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 5129 spc = nhead * nsect; 5130 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 5131 rpm = BE_16(page4p->rpm); 5132 5133 modesense_capacity = spc * ncyl; 5134 5135 SD_INFO(SD_LOG_COMMON, un, 5136 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 5137 SD_INFO(SD_LOG_COMMON, un, 5138 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 5139 SD_INFO(SD_LOG_COMMON, un, 5140 " computed capacity(h*s*c): %d;\n", modesense_capacity); 5141 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 5142 (void *)pgeom_p, capacity); 5143 5144 /* 5145 * Compensate if the drive's geometry is not rectangular, i.e., 5146 * the product of C * H * S returned by MODE SENSE >= that returned 5147 * by read capacity. This is an idiosyncrasy of the original x86 5148 * disk subsystem. 5149 */ 5150 if (modesense_capacity >= capacity) { 5151 SD_INFO(SD_LOG_COMMON, un, 5152 "sd_get_physical_geometry: adjusting acyl; " 5153 "old: %d; new: %d\n", pgeom_p->g_acyl, 5154 (modesense_capacity - capacity + spc - 1) / spc); 5155 if (sector_size != 0) { 5156 /* 1243403: NEC D38x7 drives don't support sec size */ 5157 pgeom_p->g_secsize = (unsigned short)sector_size; 5158 } 5159 pgeom_p->g_nsect = (unsigned short)nsect; 5160 pgeom_p->g_nhead = (unsigned short)nhead; 5161 pgeom_p->g_capacity = capacity; 5162 pgeom_p->g_acyl = 5163 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5164 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5165 } 5166 5167 pgeom_p->g_rpm = (unsigned short)rpm; 5168 pgeom_p->g_intrlv = (unsigned short)intrlv; 5169 ret = 0; 5170 5171 SD_INFO(SD_LOG_COMMON, un, 5172 "sd_get_physical_geometry: mode sense geometry:\n"); 5173 SD_INFO(SD_LOG_COMMON, un, 5174 " nsect: %d; sector size: %d; interlv: %d\n", 5175 nsect, sector_size, intrlv); 5176 SD_INFO(SD_LOG_COMMON, un, 5177 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5178 nhead, ncyl, rpm, modesense_capacity); 5179 SD_INFO(SD_LOG_COMMON, un, 5180 "sd_get_physical_geometry: (cached)\n"); 5181 SD_INFO(SD_LOG_COMMON, un, 5182 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5183 pgeom_p->g_ncyl, pgeom_p->g_acyl, 5184 pgeom_p->g_nhead, pgeom_p->g_nsect); 5185 SD_INFO(SD_LOG_COMMON, un, 5186 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5187 pgeom_p->g_secsize, pgeom_p->g_capacity, 5188 pgeom_p->g_intrlv, pgeom_p->g_rpm); 5189 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5190 5191 page4_exit: 5192 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5193 5194 page3_exit: 5195 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5196 5197 if (status != 0) { 5198 if (status == EIO) { 5199 /* 5200 * Some disks do not support mode sense(6), we 5201 * should ignore this kind of error(sense key is 5202 * 0x5 - illegal request). 5203 */ 5204 uint8_t *sensep; 5205 int senlen; 5206 5207 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 5208 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 5209 ssc->ssc_uscsi_cmd->uscsi_rqresid); 5210 5211 if (senlen > 0 && 5212 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 5213 sd_ssc_assessment(ssc, 5214 SD_FMT_IGNORE_COMPROMISE); 5215 } else { 5216 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 5217 } 5218 } else { 5219 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5220 } 5221 } 5222 sd_ssc_fini(ssc); 5223 return (ret); 5224 } 5225 5226 /* 5227 * Function: sd_get_virtual_geometry 5228 * 5229 * Description: Ask the controller to tell us about the target device. 5230 * 5231 * Arguments: un - pointer to softstate 5232 * capacity - disk capacity in #blocks 5233 * lbasize - disk block size in bytes 5234 * 5235 * Context: Kernel thread only 5236 */ 5237 5238 static int 5239 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 5240 diskaddr_t capacity, int lbasize) 5241 { 5242 uint_t geombuf; 5243 int spc; 5244 5245 ASSERT(un != NULL); 5246 5247 /* Set sector size, and total number of sectors */ 5248 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5249 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5250 5251 /* Let the HBA tell us its geometry */ 5252 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5253 5254 /* A value of -1 indicates an undefined "geometry" property */ 5255 if (geombuf == (-1)) { 5256 return (EINVAL); 5257 } 5258 5259 /* Initialize the logical geometry cache. */ 5260 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5261 lgeom_p->g_nsect = geombuf & 0xffff; 5262 lgeom_p->g_secsize = un->un_sys_blocksize; 5263 5264 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5265 5266 /* 5267 * Note: The driver originally converted the capacity value from 5268 * target blocks to system blocks. However, the capacity value passed 5269 * to this routine is already in terms of system blocks (this scaling 5270 * is done when the READ CAPACITY command is issued and processed). 5271 * This 'error' may have gone undetected because the usage of g_ncyl 5272 * (which is based upon g_capacity) is very limited within the driver 5273 */ 5274 lgeom_p->g_capacity = capacity; 5275 5276 /* 5277 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5278 * hba may return zero values if the device has been removed. 5279 */ 5280 if (spc == 0) { 5281 lgeom_p->g_ncyl = 0; 5282 } else { 5283 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5284 } 5285 lgeom_p->g_acyl = 0; 5286 5287 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5288 return (0); 5289 5290 } 5291 /* 5292 * Function: sd_update_block_info 5293 * 5294 * Description: Calculate a byte count to sector count bitshift value 5295 * from sector size. 5296 * 5297 * Arguments: un: unit struct. 5298 * lbasize: new target sector size 5299 * capacity: new target capacity, ie. block count 5300 * 5301 * Context: Kernel thread context 5302 */ 5303 5304 static void 5305 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5306 { 5307 if (lbasize != 0) { 5308 un->un_tgt_blocksize = lbasize; 5309 un->un_f_tgt_blocksize_is_valid = TRUE; 5310 if (!un->un_f_has_removable_media) { 5311 un->un_sys_blocksize = lbasize; 5312 } 5313 } 5314 5315 if (capacity != 0) { 5316 un->un_blockcount = capacity; 5317 un->un_f_blockcount_is_valid = TRUE; 5318 5319 /* 5320 * The capacity has changed so update the errstats. 5321 */ 5322 if (un->un_errstats != NULL) { 5323 struct sd_errstats *stp; 5324 5325 capacity *= un->un_sys_blocksize; 5326 stp = (struct sd_errstats *)un->un_errstats->ks_data; 5327 if (stp->sd_capacity.value.ui64 < capacity) 5328 stp->sd_capacity.value.ui64 = capacity; 5329 } 5330 } 5331 } 5332 5333 /* 5334 * Parses the SCSI Block Limits VPD page (0xB0). It's legal to pass NULL for 5335 * vpd_pg, in which case all the block limits will be reset to the defaults. 5336 */ 5337 static void 5338 sd_parse_blk_limits_vpd(struct sd_lun *un, uchar_t *vpd_pg) 5339 { 5340 sd_blk_limits_t *lim = &un->un_blk_lim; 5341 unsigned pg_len; 5342 5343 if (vpd_pg != NULL) 5344 pg_len = BE_IN16(&vpd_pg[2]); 5345 else 5346 pg_len = 0; 5347 5348 /* Block Limits VPD can be 16 bytes or 64 bytes long - support both */ 5349 if (pg_len >= 0x10) { 5350 lim->lim_opt_xfer_len_gran = BE_IN16(&vpd_pg[6]); 5351 lim->lim_max_xfer_len = BE_IN32(&vpd_pg[8]); 5352 lim->lim_opt_xfer_len = BE_IN32(&vpd_pg[12]); 5353 5354 /* Zero means not reported, so use "unlimited" */ 5355 if (lim->lim_max_xfer_len == 0) 5356 lim->lim_max_xfer_len = UINT32_MAX; 5357 if (lim->lim_opt_xfer_len == 0) 5358 lim->lim_opt_xfer_len = UINT32_MAX; 5359 } else { 5360 lim->lim_opt_xfer_len_gran = 0; 5361 lim->lim_max_xfer_len = UINT32_MAX; 5362 lim->lim_opt_xfer_len = UINT32_MAX; 5363 } 5364 if (pg_len >= 0x3c) { 5365 lim->lim_max_pfetch_len = BE_IN32(&vpd_pg[16]); 5366 /* 5367 * A zero in either of the following two fields indicates lack 5368 * of UNMAP support. 5369 */ 5370 lim->lim_max_unmap_lba_cnt = BE_IN32(&vpd_pg[20]); 5371 lim->lim_max_unmap_descr_cnt = BE_IN32(&vpd_pg[24]); 5372 lim->lim_opt_unmap_gran = BE_IN32(&vpd_pg[28]); 5373 if ((vpd_pg[32] >> 7) == 1) { 5374 lim->lim_unmap_gran_align = 5375 ((vpd_pg[32] & 0x7f) << 24) | (vpd_pg[33] << 16) | 5376 (vpd_pg[34] << 8) | vpd_pg[35]; 5377 } else { 5378 lim->lim_unmap_gran_align = 0; 5379 } 5380 lim->lim_max_write_same_len = BE_IN64(&vpd_pg[36]); 5381 } else { 5382 lim->lim_max_pfetch_len = UINT32_MAX; 5383 lim->lim_max_unmap_lba_cnt = UINT32_MAX; 5384 lim->lim_max_unmap_descr_cnt = SD_UNMAP_MAX_DESCR; 5385 lim->lim_opt_unmap_gran = 0; 5386 lim->lim_unmap_gran_align = 0; 5387 lim->lim_max_write_same_len = UINT64_MAX; 5388 } 5389 } 5390 5391 /* 5392 * Collects VPD page B0 data if available (block limits). If the data is 5393 * not available or querying the device failed, we revert to the defaults. 5394 */ 5395 static void 5396 sd_setup_blk_limits(sd_ssc_t *ssc) 5397 { 5398 struct sd_lun *un = ssc->ssc_un; 5399 uchar_t *inqB0 = NULL; 5400 size_t inqB0_resid = 0; 5401 int rval; 5402 5403 if (un->un_vpd_page_mask & SD_VPD_BLK_LIMITS_PG) { 5404 inqB0 = kmem_zalloc(MAX_INQUIRY_SIZE, KM_SLEEP); 5405 rval = sd_send_scsi_INQUIRY(ssc, inqB0, MAX_INQUIRY_SIZE, 0x01, 5406 0xB0, &inqB0_resid); 5407 if (rval != 0) { 5408 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5409 kmem_free(inqB0, MAX_INQUIRY_SIZE); 5410 inqB0 = NULL; 5411 } 5412 } 5413 /* passing NULL inqB0 will reset to defaults */ 5414 sd_parse_blk_limits_vpd(ssc->ssc_un, inqB0); 5415 if (inqB0) 5416 kmem_free(inqB0, MAX_INQUIRY_SIZE); 5417 } 5418 5419 /* 5420 * Function: sd_register_devid 5421 * 5422 * Description: This routine will obtain the device id information from the 5423 * target, obtain the serial number, and register the device 5424 * id with the ddi framework. 5425 * 5426 * Arguments: devi - the system's dev_info_t for the device. 5427 * un - driver soft state (unit) structure 5428 * reservation_flag - indicates if a reservation conflict 5429 * occurred during attach 5430 * 5431 * Context: Kernel Thread 5432 */ 5433 static void 5434 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag) 5435 { 5436 int rval = 0; 5437 uchar_t *inq80 = NULL; 5438 size_t inq80_len = MAX_INQUIRY_SIZE; 5439 size_t inq80_resid = 0; 5440 uchar_t *inq83 = NULL; 5441 size_t inq83_len = MAX_INQUIRY_SIZE; 5442 size_t inq83_resid = 0; 5443 int dlen, len; 5444 char *sn; 5445 struct sd_lun *un; 5446 5447 ASSERT(ssc != NULL); 5448 un = ssc->ssc_un; 5449 ASSERT(un != NULL); 5450 ASSERT(mutex_owned(SD_MUTEX(un))); 5451 ASSERT((SD_DEVINFO(un)) == devi); 5452 5453 5454 /* 5455 * We check the availability of the World Wide Name (0x83) and Unit 5456 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5457 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5458 * 0x83 is available, that is the best choice. Our next choice is 5459 * 0x80. If neither are available, we munge the devid from the device 5460 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5461 * to fabricate a devid for non-Sun qualified disks. 5462 */ 5463 if (sd_check_vpd_page_support(ssc) == 0) { 5464 /* collect page 80 data if available */ 5465 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5466 5467 mutex_exit(SD_MUTEX(un)); 5468 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5469 5470 rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len, 5471 0x01, 0x80, &inq80_resid); 5472 5473 if (rval != 0) { 5474 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5475 kmem_free(inq80, inq80_len); 5476 inq80 = NULL; 5477 inq80_len = 0; 5478 } else if (ddi_prop_exists( 5479 DDI_DEV_T_NONE, SD_DEVINFO(un), 5480 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 5481 INQUIRY_SERIAL_NO) == 0) { 5482 /* 5483 * If we don't already have a serial number 5484 * property, do quick verify of data returned 5485 * and define property. 5486 */ 5487 dlen = inq80_len - inq80_resid; 5488 len = (size_t)inq80[3]; 5489 if ((dlen >= 4) && ((len + 4) <= dlen)) { 5490 /* 5491 * Ensure sn termination, skip leading 5492 * blanks, and create property 5493 * 'inquiry-serial-no'. 5494 */ 5495 sn = (char *)&inq80[4]; 5496 sn[len] = 0; 5497 while (*sn && (*sn == ' ')) 5498 sn++; 5499 if (*sn) { 5500 (void) ddi_prop_update_string( 5501 DDI_DEV_T_NONE, 5502 SD_DEVINFO(un), 5503 INQUIRY_SERIAL_NO, sn); 5504 } 5505 } 5506 } 5507 mutex_enter(SD_MUTEX(un)); 5508 } 5509 5510 /* collect page 83 data if available */ 5511 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5512 mutex_exit(SD_MUTEX(un)); 5513 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 5514 5515 rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len, 5516 0x01, 0x83, &inq83_resid); 5517 5518 if (rval != 0) { 5519 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5520 kmem_free(inq83, inq83_len); 5521 inq83 = NULL; 5522 inq83_len = 0; 5523 } 5524 mutex_enter(SD_MUTEX(un)); 5525 } 5526 } 5527 5528 /* 5529 * If transport has already registered a devid for this target 5530 * then that takes precedence over the driver's determination 5531 * of the devid. 5532 * 5533 * NOTE: The reason this check is done here instead of at the beginning 5534 * of the function is to allow the code above to create the 5535 * 'inquiry-serial-no' property. 5536 */ 5537 if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) { 5538 ASSERT(un->un_devid); 5539 un->un_f_devid_transport_defined = TRUE; 5540 goto cleanup; /* use devid registered by the transport */ 5541 } 5542 5543 /* 5544 * This is the case of antiquated Sun disk drives that have the 5545 * FAB_DEVID property set in the disk_table. These drives 5546 * manage the devid's by storing them in last 2 available sectors 5547 * on the drive and have them fabricated by the ddi layer by calling 5548 * ddi_devid_init and passing the DEVID_FAB flag. 5549 */ 5550 if (un->un_f_opt_fab_devid == TRUE) { 5551 /* 5552 * Depending on EINVAL isn't reliable, since a reserved disk 5553 * may result in invalid geometry, so check to make sure a 5554 * reservation conflict did not occur during attach. 5555 */ 5556 if ((sd_get_devid(ssc) == EINVAL) && 5557 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5558 /* 5559 * The devid is invalid AND there is no reservation 5560 * conflict. Fabricate a new devid. 5561 */ 5562 (void) sd_create_devid(ssc); 5563 } 5564 5565 /* Register the devid if it exists */ 5566 if (un->un_devid != NULL) { 5567 (void) ddi_devid_register(SD_DEVINFO(un), 5568 un->un_devid); 5569 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5570 "sd_register_devid: Devid Fabricated\n"); 5571 } 5572 goto cleanup; 5573 } 5574 5575 /* encode best devid possible based on data available */ 5576 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 5577 (char *)ddi_driver_name(SD_DEVINFO(un)), 5578 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 5579 inq80, inq80_len - inq80_resid, inq83, inq83_len - 5580 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 5581 5582 /* devid successfully encoded, register devid */ 5583 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 5584 5585 } else { 5586 /* 5587 * Unable to encode a devid based on data available. 5588 * This is not a Sun qualified disk. Older Sun disk 5589 * drives that have the SD_FAB_DEVID property 5590 * set in the disk_table and non Sun qualified 5591 * disks are treated in the same manner. These 5592 * drives manage the devid's by storing them in 5593 * last 2 available sectors on the drive and 5594 * have them fabricated by the ddi layer by 5595 * calling ddi_devid_init and passing the 5596 * DEVID_FAB flag. 5597 * Create a fabricate devid only if there's no 5598 * fabricate devid existed. 5599 */ 5600 if (sd_get_devid(ssc) == EINVAL) { 5601 (void) sd_create_devid(ssc); 5602 } 5603 un->un_f_opt_fab_devid = TRUE; 5604 5605 /* Register the devid if it exists */ 5606 if (un->un_devid != NULL) { 5607 (void) ddi_devid_register(SD_DEVINFO(un), 5608 un->un_devid); 5609 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5610 "sd_register_devid: devid fabricated using " 5611 "ddi framework\n"); 5612 } 5613 } 5614 5615 cleanup: 5616 /* clean up resources */ 5617 if (inq80 != NULL) { 5618 kmem_free(inq80, inq80_len); 5619 } 5620 if (inq83 != NULL) { 5621 kmem_free(inq83, inq83_len); 5622 } 5623 } 5624 5625 5626 5627 /* 5628 * Function: sd_get_devid 5629 * 5630 * Description: This routine will return 0 if a valid device id has been 5631 * obtained from the target and stored in the soft state. If a 5632 * valid device id has not been previously read and stored, a 5633 * read attempt will be made. 5634 * 5635 * Arguments: un - driver soft state (unit) structure 5636 * 5637 * Return Code: 0 if we successfully get the device id 5638 * 5639 * Context: Kernel Thread 5640 */ 5641 5642 static int 5643 sd_get_devid(sd_ssc_t *ssc) 5644 { 5645 struct dk_devid *dkdevid; 5646 ddi_devid_t tmpid; 5647 uint_t *ip; 5648 size_t sz; 5649 diskaddr_t blk; 5650 int status; 5651 int chksum; 5652 int i; 5653 size_t buffer_size; 5654 struct sd_lun *un; 5655 5656 ASSERT(ssc != NULL); 5657 un = ssc->ssc_un; 5658 ASSERT(un != NULL); 5659 ASSERT(mutex_owned(SD_MUTEX(un))); 5660 5661 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 5662 un); 5663 5664 if (un->un_devid != NULL) { 5665 return (0); 5666 } 5667 5668 mutex_exit(SD_MUTEX(un)); 5669 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5670 (void *)SD_PATH_DIRECT) != 0) { 5671 mutex_enter(SD_MUTEX(un)); 5672 return (EINVAL); 5673 } 5674 5675 /* 5676 * Read and verify device id, stored in the reserved cylinders at the 5677 * end of the disk. Backup label is on the odd sectors of the last 5678 * track of the last cylinder. Device id will be on track of the next 5679 * to last cylinder. 5680 */ 5681 mutex_enter(SD_MUTEX(un)); 5682 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 5683 mutex_exit(SD_MUTEX(un)); 5684 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 5685 status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk, 5686 SD_PATH_DIRECT); 5687 5688 if (status != 0) { 5689 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5690 goto error; 5691 } 5692 5693 /* Validate the revision */ 5694 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 5695 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 5696 status = EINVAL; 5697 goto error; 5698 } 5699 5700 /* Calculate the checksum */ 5701 chksum = 0; 5702 ip = (uint_t *)dkdevid; 5703 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5704 i++) { 5705 chksum ^= ip[i]; 5706 } 5707 5708 /* Compare the checksums */ 5709 if (DKD_GETCHKSUM(dkdevid) != chksum) { 5710 status = EINVAL; 5711 goto error; 5712 } 5713 5714 /* Validate the device id */ 5715 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 5716 status = EINVAL; 5717 goto error; 5718 } 5719 5720 /* 5721 * Store the device id in the driver soft state 5722 */ 5723 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 5724 tmpid = kmem_alloc(sz, KM_SLEEP); 5725 5726 mutex_enter(SD_MUTEX(un)); 5727 5728 un->un_devid = tmpid; 5729 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 5730 5731 kmem_free(dkdevid, buffer_size); 5732 5733 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 5734 5735 return (status); 5736 error: 5737 mutex_enter(SD_MUTEX(un)); 5738 kmem_free(dkdevid, buffer_size); 5739 return (status); 5740 } 5741 5742 5743 /* 5744 * Function: sd_create_devid 5745 * 5746 * Description: This routine will fabricate the device id and write it 5747 * to the disk. 5748 * 5749 * Arguments: un - driver soft state (unit) structure 5750 * 5751 * Return Code: value of the fabricated device id 5752 * 5753 * Context: Kernel Thread 5754 */ 5755 5756 static ddi_devid_t 5757 sd_create_devid(sd_ssc_t *ssc) 5758 { 5759 struct sd_lun *un; 5760 5761 ASSERT(ssc != NULL); 5762 un = ssc->ssc_un; 5763 ASSERT(un != NULL); 5764 5765 /* Fabricate the devid */ 5766 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 5767 == DDI_FAILURE) { 5768 return (NULL); 5769 } 5770 5771 /* Write the devid to disk */ 5772 if (sd_write_deviceid(ssc) != 0) { 5773 ddi_devid_free(un->un_devid); 5774 un->un_devid = NULL; 5775 } 5776 5777 return (un->un_devid); 5778 } 5779 5780 5781 /* 5782 * Function: sd_write_deviceid 5783 * 5784 * Description: This routine will write the device id to the disk 5785 * reserved sector. 5786 * 5787 * Arguments: un - driver soft state (unit) structure 5788 * 5789 * Return Code: EINVAL 5790 * value returned by sd_send_scsi_cmd 5791 * 5792 * Context: Kernel Thread 5793 */ 5794 5795 static int 5796 sd_write_deviceid(sd_ssc_t *ssc) 5797 { 5798 struct dk_devid *dkdevid; 5799 uchar_t *buf; 5800 diskaddr_t blk; 5801 uint_t *ip, chksum; 5802 int status; 5803 int i; 5804 struct sd_lun *un; 5805 5806 ASSERT(ssc != NULL); 5807 un = ssc->ssc_un; 5808 ASSERT(un != NULL); 5809 ASSERT(mutex_owned(SD_MUTEX(un))); 5810 5811 mutex_exit(SD_MUTEX(un)); 5812 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5813 (void *)SD_PATH_DIRECT) != 0) { 5814 mutex_enter(SD_MUTEX(un)); 5815 return (-1); 5816 } 5817 5818 5819 /* Allocate the buffer */ 5820 buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 5821 dkdevid = (struct dk_devid *)buf; 5822 5823 /* Fill in the revision */ 5824 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 5825 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 5826 5827 /* Copy in the device id */ 5828 mutex_enter(SD_MUTEX(un)); 5829 bcopy(un->un_devid, &dkdevid->dkd_devid, 5830 ddi_devid_sizeof(un->un_devid)); 5831 mutex_exit(SD_MUTEX(un)); 5832 5833 /* Calculate the checksum */ 5834 chksum = 0; 5835 ip = (uint_t *)dkdevid; 5836 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5837 i++) { 5838 chksum ^= ip[i]; 5839 } 5840 5841 /* Fill-in checksum */ 5842 DKD_FORMCHKSUM(chksum, dkdevid); 5843 5844 /* Write the reserved sector */ 5845 status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk, 5846 SD_PATH_DIRECT); 5847 if (status != 0) 5848 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5849 5850 kmem_free(buf, un->un_sys_blocksize); 5851 5852 mutex_enter(SD_MUTEX(un)); 5853 return (status); 5854 } 5855 5856 5857 /* 5858 * Function: sd_check_vpd_page_support 5859 * 5860 * Description: This routine sends an inquiry command with the EVPD bit set and 5861 * a page code of 0x00 to the device. It is used to determine which 5862 * vital product pages are available to find the devid. We are 5863 * looking for pages 0x83 0x80 or 0xB1. If we return a negative 1, 5864 * the device does not support that command. 5865 * 5866 * Arguments: un - driver soft state (unit) structure 5867 * 5868 * Return Code: 0 - success 5869 * 1 - check condition 5870 * 5871 * Context: This routine can sleep. 5872 */ 5873 5874 static int 5875 sd_check_vpd_page_support(sd_ssc_t *ssc) 5876 { 5877 uchar_t *page_list = NULL; 5878 uchar_t page_length = 0xff; /* Use max possible length */ 5879 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5880 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5881 int rval = 0; 5882 int counter; 5883 struct sd_lun *un; 5884 5885 ASSERT(ssc != NULL); 5886 un = ssc->ssc_un; 5887 ASSERT(un != NULL); 5888 ASSERT(mutex_owned(SD_MUTEX(un))); 5889 5890 mutex_exit(SD_MUTEX(un)); 5891 5892 /* 5893 * We'll set the page length to the maximum to save figuring it out 5894 * with an additional call. 5895 */ 5896 page_list = kmem_zalloc(page_length, KM_SLEEP); 5897 5898 rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd, 5899 page_code, NULL); 5900 5901 if (rval != 0) 5902 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5903 5904 mutex_enter(SD_MUTEX(un)); 5905 5906 /* 5907 * Now we must validate that the device accepted the command, as some 5908 * drives do not support it. If the drive does support it, we will 5909 * return 0, and the supported pages will be in un_vpd_page_mask. If 5910 * not, we return -1. 5911 */ 5912 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5913 /* Loop to find one of the 2 pages we need */ 5914 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5915 5916 /* 5917 * Pages are returned in ascending order, and 0x83 is what we 5918 * are hoping for. 5919 */ 5920 while ((page_list[counter] <= 0xB1) && 5921 (counter <= (page_list[VPD_PAGE_LENGTH] + 5922 VPD_HEAD_OFFSET))) { 5923 /* 5924 * Add 3 because page_list[3] is the number of 5925 * pages minus 3 5926 */ 5927 5928 switch (page_list[counter]) { 5929 case 0x00: 5930 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5931 break; 5932 case 0x80: 5933 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5934 break; 5935 case 0x81: 5936 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5937 break; 5938 case 0x82: 5939 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5940 break; 5941 case 0x83: 5942 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5943 break; 5944 case 0x86: 5945 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG; 5946 break; 5947 case 0xB0: 5948 un->un_vpd_page_mask |= SD_VPD_BLK_LIMITS_PG; 5949 break; 5950 case 0xB1: 5951 un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG; 5952 break; 5953 } 5954 counter++; 5955 } 5956 5957 } else { 5958 rval = -1; 5959 5960 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5961 "sd_check_vpd_page_support: This drive does not implement " 5962 "VPD pages.\n"); 5963 } 5964 5965 kmem_free(page_list, page_length); 5966 5967 return (rval); 5968 } 5969 5970 5971 /* 5972 * Function: sd_setup_pm 5973 * 5974 * Description: Initialize Power Management on the device 5975 * 5976 * Context: Kernel Thread 5977 */ 5978 5979 static void 5980 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi) 5981 { 5982 uint_t log_page_size; 5983 uchar_t *log_page_data; 5984 int rval = 0; 5985 struct sd_lun *un; 5986 5987 ASSERT(ssc != NULL); 5988 un = ssc->ssc_un; 5989 ASSERT(un != NULL); 5990 5991 /* 5992 * Since we are called from attach, holding a mutex for 5993 * un is unnecessary. Because some of the routines called 5994 * from here require SD_MUTEX to not be held, assert this 5995 * right up front. 5996 */ 5997 ASSERT(!mutex_owned(SD_MUTEX(un))); 5998 /* 5999 * Since the sd device does not have the 'reg' property, 6000 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 6001 * The following code is to tell cpr that this device 6002 * DOES need to be suspended and resumed. 6003 */ 6004 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 6005 "pm-hardware-state", "needs-suspend-resume"); 6006 6007 /* 6008 * This complies with the new power management framework 6009 * for certain desktop machines. Create the pm_components 6010 * property as a string array property. 6011 * If un_f_pm_supported is TRUE, that means the disk 6012 * attached HBA has set the "pm-capable" property and 6013 * the value of this property is bigger than 0. 6014 */ 6015 if (un->un_f_pm_supported) { 6016 /* 6017 * not all devices have a motor, try it first. 6018 * some devices may return ILLEGAL REQUEST, some 6019 * will hang 6020 * The following START_STOP_UNIT is used to check if target 6021 * device has a motor. 6022 */ 6023 un->un_f_start_stop_supported = TRUE; 6024 6025 if (un->un_f_power_condition_supported) { 6026 rval = sd_send_scsi_START_STOP_UNIT(ssc, 6027 SD_POWER_CONDITION, SD_TARGET_ACTIVE, 6028 SD_PATH_DIRECT); 6029 if (rval != 0) { 6030 un->un_f_power_condition_supported = FALSE; 6031 } 6032 } 6033 if (!un->un_f_power_condition_supported) { 6034 rval = sd_send_scsi_START_STOP_UNIT(ssc, 6035 SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT); 6036 } 6037 if (rval != 0) { 6038 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6039 un->un_f_start_stop_supported = FALSE; 6040 } 6041 6042 /* 6043 * create pm properties anyways otherwise the parent can't 6044 * go to sleep 6045 */ 6046 un->un_f_pm_is_enabled = TRUE; 6047 (void) sd_create_pm_components(devi, un); 6048 6049 /* 6050 * If it claims that log sense is supported, check it out. 6051 */ 6052 if (un->un_f_log_sense_supported) { 6053 rval = sd_log_page_supported(ssc, 6054 START_STOP_CYCLE_PAGE); 6055 if (rval == 1) { 6056 /* Page found, use it. */ 6057 un->un_start_stop_cycle_page = 6058 START_STOP_CYCLE_PAGE; 6059 } else { 6060 /* 6061 * Page not found or log sense is not 6062 * supported. 6063 * Notice we do not check the old style 6064 * START_STOP_CYCLE_VU_PAGE because this 6065 * code path does not apply to old disks. 6066 */ 6067 un->un_f_log_sense_supported = FALSE; 6068 un->un_f_pm_log_sense_smart = FALSE; 6069 } 6070 } 6071 6072 return; 6073 } 6074 6075 /* 6076 * For the disk whose attached HBA has not set the "pm-capable" 6077 * property, check if it supports the power management. 6078 */ 6079 if (!un->un_f_log_sense_supported) { 6080 un->un_power_level = SD_SPINDLE_ON; 6081 un->un_f_pm_is_enabled = FALSE; 6082 return; 6083 } 6084 6085 rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE); 6086 6087 #ifdef SDDEBUG 6088 if (sd_force_pm_supported) { 6089 /* Force a successful result */ 6090 rval = 1; 6091 } 6092 #endif 6093 6094 /* 6095 * If the start-stop cycle counter log page is not supported 6096 * or if the pm-capable property is set to be false (0), 6097 * then we should not create the pm_components property. 6098 */ 6099 if (rval == -1) { 6100 /* 6101 * Error. 6102 * Reading log sense failed, most likely this is 6103 * an older drive that does not support log sense. 6104 * If this fails auto-pm is not supported. 6105 */ 6106 un->un_power_level = SD_SPINDLE_ON; 6107 un->un_f_pm_is_enabled = FALSE; 6108 6109 } else if (rval == 0) { 6110 /* 6111 * Page not found. 6112 * The start stop cycle counter is implemented as page 6113 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 6114 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 6115 */ 6116 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) { 6117 /* 6118 * Page found, use this one. 6119 */ 6120 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 6121 un->un_f_pm_is_enabled = TRUE; 6122 } else { 6123 /* 6124 * Error or page not found. 6125 * auto-pm is not supported for this device. 6126 */ 6127 un->un_power_level = SD_SPINDLE_ON; 6128 un->un_f_pm_is_enabled = FALSE; 6129 } 6130 } else { 6131 /* 6132 * Page found, use it. 6133 */ 6134 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 6135 un->un_f_pm_is_enabled = TRUE; 6136 } 6137 6138 6139 if (un->un_f_pm_is_enabled == TRUE) { 6140 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6141 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6142 6143 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6144 log_page_size, un->un_start_stop_cycle_page, 6145 0x01, 0, SD_PATH_DIRECT); 6146 6147 if (rval != 0) { 6148 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6149 } 6150 6151 #ifdef SDDEBUG 6152 if (sd_force_pm_supported) { 6153 /* Force a successful result */ 6154 rval = 0; 6155 } 6156 #endif 6157 6158 /* 6159 * If the Log sense for Page( Start/stop cycle counter page) 6160 * succeeds, then power management is supported and we can 6161 * enable auto-pm. 6162 */ 6163 if (rval == 0) { 6164 (void) sd_create_pm_components(devi, un); 6165 } else { 6166 un->un_power_level = SD_SPINDLE_ON; 6167 un->un_f_pm_is_enabled = FALSE; 6168 } 6169 6170 kmem_free(log_page_data, log_page_size); 6171 } 6172 } 6173 6174 6175 /* 6176 * Function: sd_create_pm_components 6177 * 6178 * Description: Initialize PM property. 6179 * 6180 * Context: Kernel thread context 6181 */ 6182 6183 static void 6184 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6185 { 6186 ASSERT(!mutex_owned(SD_MUTEX(un))); 6187 6188 if (un->un_f_power_condition_supported) { 6189 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6190 "pm-components", sd_pwr_pc.pm_comp, 5) 6191 != DDI_PROP_SUCCESS) { 6192 un->un_power_level = SD_SPINDLE_ACTIVE; 6193 un->un_f_pm_is_enabled = FALSE; 6194 return; 6195 } 6196 } else { 6197 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6198 "pm-components", sd_pwr_ss.pm_comp, 3) 6199 != DDI_PROP_SUCCESS) { 6200 un->un_power_level = SD_SPINDLE_ON; 6201 un->un_f_pm_is_enabled = FALSE; 6202 return; 6203 } 6204 } 6205 /* 6206 * When components are initially created they are idle, 6207 * power up any non-removables. 6208 * Note: the return value of pm_raise_power can't be used 6209 * for determining if PM should be enabled for this device. 6210 * Even if you check the return values and remove this 6211 * property created above, the PM framework will not honor the 6212 * change after the first call to pm_raise_power. Hence, 6213 * removal of that property does not help if pm_raise_power 6214 * fails. In the case of removable media, the start/stop 6215 * will fail if the media is not present. 6216 */ 6217 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6218 SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) { 6219 mutex_enter(SD_MUTEX(un)); 6220 un->un_power_level = SD_PM_STATE_ACTIVE(un); 6221 mutex_enter(&un->un_pm_mutex); 6222 /* Set to on and not busy. */ 6223 un->un_pm_count = 0; 6224 } else { 6225 mutex_enter(SD_MUTEX(un)); 6226 un->un_power_level = SD_PM_STATE_STOPPED(un); 6227 mutex_enter(&un->un_pm_mutex); 6228 /* Set to off. */ 6229 un->un_pm_count = -1; 6230 } 6231 mutex_exit(&un->un_pm_mutex); 6232 mutex_exit(SD_MUTEX(un)); 6233 } 6234 6235 6236 /* 6237 * Function: sd_ddi_suspend 6238 * 6239 * Description: Performs system power-down operations. This includes 6240 * setting the drive state to indicate its suspended so 6241 * that no new commands will be accepted. Also, wait for 6242 * all commands that are in transport or queued to a timer 6243 * for retry to complete. All timeout threads are cancelled. 6244 * 6245 * Return Code: DDI_FAILURE or DDI_SUCCESS 6246 * 6247 * Context: Kernel thread context 6248 */ 6249 6250 static int 6251 sd_ddi_suspend(dev_info_t *devi) 6252 { 6253 struct sd_lun *un; 6254 clock_t wait_cmds_complete; 6255 6256 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6257 if (un == NULL) { 6258 return (DDI_FAILURE); 6259 } 6260 6261 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6262 6263 mutex_enter(SD_MUTEX(un)); 6264 6265 /* Return success if the device is already suspended. */ 6266 if (un->un_state == SD_STATE_SUSPENDED) { 6267 mutex_exit(SD_MUTEX(un)); 6268 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6269 "device already suspended, exiting\n"); 6270 return (DDI_SUCCESS); 6271 } 6272 6273 /* Return failure if the device is being used by HA */ 6274 if (un->un_resvd_status & 6275 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6276 mutex_exit(SD_MUTEX(un)); 6277 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6278 "device in use by HA, exiting\n"); 6279 return (DDI_FAILURE); 6280 } 6281 6282 /* 6283 * Return failure if the device is in a resource wait 6284 * or power changing state. 6285 */ 6286 if ((un->un_state == SD_STATE_RWAIT) || 6287 (un->un_state == SD_STATE_PM_CHANGING)) { 6288 mutex_exit(SD_MUTEX(un)); 6289 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6290 "device in resource wait state, exiting\n"); 6291 return (DDI_FAILURE); 6292 } 6293 6294 6295 un->un_save_state = un->un_last_state; 6296 New_state(un, SD_STATE_SUSPENDED); 6297 6298 /* 6299 * Wait for all commands that are in transport or queued to a timer 6300 * for retry to complete. 6301 * 6302 * While waiting, no new commands will be accepted or sent because of 6303 * the new state we set above. 6304 * 6305 * Wait till current operation has completed. If we are in the resource 6306 * wait state (with an intr outstanding) then we need to wait till the 6307 * intr completes and starts the next cmd. We want to wait for 6308 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6309 */ 6310 wait_cmds_complete = ddi_get_lbolt() + 6311 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6312 6313 while (un->un_ncmds_in_transport != 0) { 6314 /* 6315 * Fail if commands do not finish in the specified time. 6316 */ 6317 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6318 wait_cmds_complete) == -1) { 6319 /* 6320 * Undo the state changes made above. Everything 6321 * must go back to it's original value. 6322 */ 6323 Restore_state(un); 6324 un->un_last_state = un->un_save_state; 6325 /* Wake up any threads that might be waiting. */ 6326 cv_broadcast(&un->un_suspend_cv); 6327 mutex_exit(SD_MUTEX(un)); 6328 SD_ERROR(SD_LOG_IO_PM, un, 6329 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6330 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6331 return (DDI_FAILURE); 6332 } 6333 } 6334 6335 /* 6336 * Cancel SCSI watch thread and timeouts, if any are active 6337 */ 6338 6339 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6340 opaque_t temp_token = un->un_swr_token; 6341 mutex_exit(SD_MUTEX(un)); 6342 scsi_watch_suspend(temp_token); 6343 mutex_enter(SD_MUTEX(un)); 6344 } 6345 6346 if (un->un_reset_throttle_timeid != NULL) { 6347 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6348 un->un_reset_throttle_timeid = NULL; 6349 mutex_exit(SD_MUTEX(un)); 6350 (void) untimeout(temp_id); 6351 mutex_enter(SD_MUTEX(un)); 6352 } 6353 6354 if (un->un_dcvb_timeid != NULL) { 6355 timeout_id_t temp_id = un->un_dcvb_timeid; 6356 un->un_dcvb_timeid = NULL; 6357 mutex_exit(SD_MUTEX(un)); 6358 (void) untimeout(temp_id); 6359 mutex_enter(SD_MUTEX(un)); 6360 } 6361 6362 mutex_enter(&un->un_pm_mutex); 6363 if (un->un_pm_timeid != NULL) { 6364 timeout_id_t temp_id = un->un_pm_timeid; 6365 un->un_pm_timeid = NULL; 6366 mutex_exit(&un->un_pm_mutex); 6367 mutex_exit(SD_MUTEX(un)); 6368 (void) untimeout(temp_id); 6369 mutex_enter(SD_MUTEX(un)); 6370 } else { 6371 mutex_exit(&un->un_pm_mutex); 6372 } 6373 6374 if (un->un_rmw_msg_timeid != NULL) { 6375 timeout_id_t temp_id = un->un_rmw_msg_timeid; 6376 un->un_rmw_msg_timeid = NULL; 6377 mutex_exit(SD_MUTEX(un)); 6378 (void) untimeout(temp_id); 6379 mutex_enter(SD_MUTEX(un)); 6380 } 6381 6382 if (un->un_retry_timeid != NULL) { 6383 timeout_id_t temp_id = un->un_retry_timeid; 6384 un->un_retry_timeid = NULL; 6385 mutex_exit(SD_MUTEX(un)); 6386 (void) untimeout(temp_id); 6387 mutex_enter(SD_MUTEX(un)); 6388 6389 if (un->un_retry_bp != NULL) { 6390 un->un_retry_bp->av_forw = un->un_waitq_headp; 6391 un->un_waitq_headp = un->un_retry_bp; 6392 if (un->un_waitq_tailp == NULL) { 6393 un->un_waitq_tailp = un->un_retry_bp; 6394 } 6395 un->un_retry_bp = NULL; 6396 un->un_retry_statp = NULL; 6397 } 6398 } 6399 6400 if (un->un_direct_priority_timeid != NULL) { 6401 timeout_id_t temp_id = un->un_direct_priority_timeid; 6402 un->un_direct_priority_timeid = NULL; 6403 mutex_exit(SD_MUTEX(un)); 6404 (void) untimeout(temp_id); 6405 mutex_enter(SD_MUTEX(un)); 6406 } 6407 6408 if (un->un_f_is_fibre == TRUE) { 6409 /* 6410 * Remove callbacks for insert and remove events 6411 */ 6412 if (un->un_insert_event != NULL) { 6413 mutex_exit(SD_MUTEX(un)); 6414 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6415 mutex_enter(SD_MUTEX(un)); 6416 un->un_insert_event = NULL; 6417 } 6418 6419 if (un->un_remove_event != NULL) { 6420 mutex_exit(SD_MUTEX(un)); 6421 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6422 mutex_enter(SD_MUTEX(un)); 6423 un->un_remove_event = NULL; 6424 } 6425 } 6426 6427 mutex_exit(SD_MUTEX(un)); 6428 6429 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6430 6431 return (DDI_SUCCESS); 6432 } 6433 6434 6435 /* 6436 * Function: sd_ddi_resume 6437 * 6438 * Description: Performs system power-up operations.. 6439 * 6440 * Return Code: DDI_SUCCESS 6441 * DDI_FAILURE 6442 * 6443 * Context: Kernel thread context 6444 */ 6445 6446 static int 6447 sd_ddi_resume(dev_info_t *devi) 6448 { 6449 struct sd_lun *un; 6450 6451 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6452 if (un == NULL) { 6453 return (DDI_FAILURE); 6454 } 6455 6456 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6457 6458 mutex_enter(SD_MUTEX(un)); 6459 Restore_state(un); 6460 6461 /* 6462 * Restore the state which was saved to give the 6463 * the right state in un_last_state 6464 */ 6465 un->un_last_state = un->un_save_state; 6466 /* 6467 * Note: throttle comes back at full. 6468 * Also note: this MUST be done before calling pm_raise_power 6469 * otherwise the system can get hung in biowait. The scenario where 6470 * this'll happen is under cpr suspend. Writing of the system 6471 * state goes through sddump, which writes 0 to un_throttle. If 6472 * writing the system state then fails, example if the partition is 6473 * too small, then cpr attempts a resume. If throttle isn't restored 6474 * from the saved value until after calling pm_raise_power then 6475 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6476 * in biowait. 6477 */ 6478 un->un_throttle = un->un_saved_throttle; 6479 6480 /* 6481 * The chance of failure is very rare as the only command done in power 6482 * entry point is START command when you transition from 0->1 or 6483 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6484 * which suspend was done. Ignore the return value as the resume should 6485 * not be failed. In the case of removable media the media need not be 6486 * inserted and hence there is a chance that raise power will fail with 6487 * media not present. 6488 */ 6489 if (un->un_f_attach_spinup) { 6490 mutex_exit(SD_MUTEX(un)); 6491 (void) pm_raise_power(SD_DEVINFO(un), 0, 6492 SD_PM_STATE_ACTIVE(un)); 6493 mutex_enter(SD_MUTEX(un)); 6494 } 6495 6496 /* 6497 * Don't broadcast to the suspend cv and therefore possibly 6498 * start I/O until after power has been restored. 6499 */ 6500 cv_broadcast(&un->un_suspend_cv); 6501 cv_broadcast(&un->un_state_cv); 6502 6503 /* restart thread */ 6504 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6505 scsi_watch_resume(un->un_swr_token); 6506 } 6507 6508 #if (defined(__fibre)) 6509 if (un->un_f_is_fibre == TRUE) { 6510 /* 6511 * Add callbacks for insert and remove events 6512 */ 6513 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6514 sd_init_event_callbacks(un); 6515 } 6516 } 6517 #endif 6518 6519 /* 6520 * Transport any pending commands to the target. 6521 * 6522 * If this is a low-activity device commands in queue will have to wait 6523 * until new commands come in, which may take awhile. Also, we 6524 * specifically don't check un_ncmds_in_transport because we know that 6525 * there really are no commands in progress after the unit was 6526 * suspended and we could have reached the throttle level, been 6527 * suspended, and have no new commands coming in for awhile. Highly 6528 * unlikely, but so is the low-activity disk scenario. 6529 */ 6530 ddi_xbuf_dispatch(un->un_xbuf_attr); 6531 6532 sd_start_cmds(un, NULL); 6533 mutex_exit(SD_MUTEX(un)); 6534 6535 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6536 6537 return (DDI_SUCCESS); 6538 } 6539 6540 6541 /* 6542 * Function: sd_pm_state_change 6543 * 6544 * Description: Change the driver power state. 6545 * Someone else is required to actually change the driver 6546 * power level. 6547 * 6548 * Arguments: un - driver soft state (unit) structure 6549 * level - the power level that is changed to 6550 * flag - to decide how to change the power state 6551 * 6552 * Return Code: DDI_SUCCESS 6553 * 6554 * Context: Kernel thread context 6555 */ 6556 static int 6557 sd_pm_state_change(struct sd_lun *un, int level, int flag) 6558 { 6559 ASSERT(un != NULL); 6560 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n"); 6561 6562 ASSERT(!mutex_owned(SD_MUTEX(un))); 6563 mutex_enter(SD_MUTEX(un)); 6564 6565 if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) { 6566 un->un_power_level = level; 6567 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6568 mutex_enter(&un->un_pm_mutex); 6569 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6570 un->un_pm_count++; 6571 ASSERT(un->un_pm_count == 0); 6572 } 6573 mutex_exit(&un->un_pm_mutex); 6574 } else { 6575 /* 6576 * Exit if power management is not enabled for this device, 6577 * or if the device is being used by HA. 6578 */ 6579 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6580 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6581 mutex_exit(SD_MUTEX(un)); 6582 SD_TRACE(SD_LOG_POWER, un, 6583 "sd_pm_state_change: exiting\n"); 6584 return (DDI_FAILURE); 6585 } 6586 6587 SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: " 6588 "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver); 6589 6590 /* 6591 * See if the device is not busy, ie.: 6592 * - we have no commands in the driver for this device 6593 * - not waiting for resources 6594 */ 6595 if ((un->un_ncmds_in_driver == 0) && 6596 (un->un_state != SD_STATE_RWAIT)) { 6597 /* 6598 * The device is not busy, so it is OK to go to low 6599 * power state. Indicate low power, but rely on someone 6600 * else to actually change it. 6601 */ 6602 mutex_enter(&un->un_pm_mutex); 6603 un->un_pm_count = -1; 6604 mutex_exit(&un->un_pm_mutex); 6605 un->un_power_level = level; 6606 } 6607 } 6608 6609 mutex_exit(SD_MUTEX(un)); 6610 6611 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n"); 6612 6613 return (DDI_SUCCESS); 6614 } 6615 6616 6617 /* 6618 * Function: sd_pm_idletimeout_handler 6619 * 6620 * Description: A timer routine that's active only while a device is busy. 6621 * The purpose is to extend slightly the pm framework's busy 6622 * view of the device to prevent busy/idle thrashing for 6623 * back-to-back commands. Do this by comparing the current time 6624 * to the time at which the last command completed and when the 6625 * difference is greater than sd_pm_idletime, call 6626 * pm_idle_component. In addition to indicating idle to the pm 6627 * framework, update the chain type to again use the internal pm 6628 * layers of the driver. 6629 * 6630 * Arguments: arg - driver soft state (unit) structure 6631 * 6632 * Context: Executes in a timeout(9F) thread context 6633 */ 6634 6635 static void 6636 sd_pm_idletimeout_handler(void *arg) 6637 { 6638 const hrtime_t idletime = sd_pm_idletime * NANOSEC; 6639 struct sd_lun *un = arg; 6640 6641 mutex_enter(&sd_detach_mutex); 6642 if (un->un_detach_count != 0) { 6643 /* Abort if the instance is detaching */ 6644 mutex_exit(&sd_detach_mutex); 6645 return; 6646 } 6647 mutex_exit(&sd_detach_mutex); 6648 6649 /* 6650 * Grab both mutexes, in the proper order, since we're accessing 6651 * both PM and softstate variables. 6652 */ 6653 mutex_enter(SD_MUTEX(un)); 6654 mutex_enter(&un->un_pm_mutex); 6655 if (((gethrtime() - un->un_pm_idle_time) > idletime) && 6656 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 6657 /* 6658 * Update the chain types. 6659 * This takes affect on the next new command received. 6660 */ 6661 if (un->un_f_non_devbsize_supported) { 6662 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6663 } else { 6664 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6665 } 6666 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6667 6668 SD_TRACE(SD_LOG_IO_PM, un, 6669 "sd_pm_idletimeout_handler: idling device\n"); 6670 (void) pm_idle_component(SD_DEVINFO(un), 0); 6671 un->un_pm_idle_timeid = NULL; 6672 } else { 6673 un->un_pm_idle_timeid = 6674 timeout(sd_pm_idletimeout_handler, un, 6675 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 6676 } 6677 mutex_exit(&un->un_pm_mutex); 6678 mutex_exit(SD_MUTEX(un)); 6679 } 6680 6681 6682 /* 6683 * Function: sd_pm_timeout_handler 6684 * 6685 * Description: Callback to tell framework we are idle. 6686 * 6687 * Context: timeout(9f) thread context. 6688 */ 6689 6690 static void 6691 sd_pm_timeout_handler(void *arg) 6692 { 6693 struct sd_lun *un = arg; 6694 6695 (void) pm_idle_component(SD_DEVINFO(un), 0); 6696 mutex_enter(&un->un_pm_mutex); 6697 un->un_pm_timeid = NULL; 6698 mutex_exit(&un->un_pm_mutex); 6699 } 6700 6701 6702 /* 6703 * Function: sdpower 6704 * 6705 * Description: PM entry point. 6706 * 6707 * Return Code: DDI_SUCCESS 6708 * DDI_FAILURE 6709 * 6710 * Context: Kernel thread context 6711 */ 6712 6713 static int 6714 sdpower(dev_info_t *devi, int component, int level) 6715 { 6716 struct sd_lun *un; 6717 int instance; 6718 int rval = DDI_SUCCESS; 6719 uint_t i, log_page_size, maxcycles, ncycles; 6720 uchar_t *log_page_data; 6721 int log_sense_page; 6722 int medium_present; 6723 time_t intvlp; 6724 struct pm_trans_data sd_pm_tran_data; 6725 uchar_t save_state = SD_STATE_NORMAL; 6726 int sval; 6727 uchar_t state_before_pm; 6728 int got_semaphore_here; 6729 sd_ssc_t *ssc; 6730 int last_power_level = SD_SPINDLE_UNINIT; 6731 6732 instance = ddi_get_instance(devi); 6733 6734 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 6735 !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) { 6736 return (DDI_FAILURE); 6737 } 6738 6739 ssc = sd_ssc_init(un); 6740 6741 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 6742 6743 /* 6744 * Must synchronize power down with close. 6745 * Attempt to decrement/acquire the open/close semaphore, 6746 * but do NOT wait on it. If it's not greater than zero, 6747 * ie. it can't be decremented without waiting, then 6748 * someone else, either open or close, already has it 6749 * and the try returns 0. Use that knowledge here to determine 6750 * if it's OK to change the device power level. 6751 * Also, only increment it on exit if it was decremented, ie. gotten, 6752 * here. 6753 */ 6754 got_semaphore_here = sema_tryp(&un->un_semoclose); 6755 6756 mutex_enter(SD_MUTEX(un)); 6757 6758 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 6759 un->un_ncmds_in_driver); 6760 6761 /* 6762 * If un_ncmds_in_driver is non-zero it indicates commands are 6763 * already being processed in the driver, or if the semaphore was 6764 * not gotten here it indicates an open or close is being processed. 6765 * At the same time somebody is requesting to go to a lower power 6766 * that can't perform I/O, which can't happen, therefore we need to 6767 * return failure. 6768 */ 6769 if ((!SD_PM_IS_IO_CAPABLE(un, level)) && 6770 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 6771 mutex_exit(SD_MUTEX(un)); 6772 6773 if (got_semaphore_here != 0) { 6774 sema_v(&un->un_semoclose); 6775 } 6776 SD_TRACE(SD_LOG_IO_PM, un, 6777 "sdpower: exit, device has queued cmds.\n"); 6778 6779 goto sdpower_failed; 6780 } 6781 6782 /* 6783 * if it is OFFLINE that means the disk is completely dead 6784 * in our case we have to put the disk in on or off by sending commands 6785 * Of course that will fail anyway so return back here. 6786 * 6787 * Power changes to a device that's OFFLINE or SUSPENDED 6788 * are not allowed. 6789 */ 6790 if ((un->un_state == SD_STATE_OFFLINE) || 6791 (un->un_state == SD_STATE_SUSPENDED)) { 6792 mutex_exit(SD_MUTEX(un)); 6793 6794 if (got_semaphore_here != 0) { 6795 sema_v(&un->un_semoclose); 6796 } 6797 SD_TRACE(SD_LOG_IO_PM, un, 6798 "sdpower: exit, device is off-line.\n"); 6799 6800 goto sdpower_failed; 6801 } 6802 6803 /* 6804 * Change the device's state to indicate it's power level 6805 * is being changed. Do this to prevent a power off in the 6806 * middle of commands, which is especially bad on devices 6807 * that are really powered off instead of just spun down. 6808 */ 6809 state_before_pm = un->un_state; 6810 un->un_state = SD_STATE_PM_CHANGING; 6811 6812 mutex_exit(SD_MUTEX(un)); 6813 6814 /* 6815 * If log sense command is not supported, bypass the 6816 * following checking, otherwise, check the log sense 6817 * information for this device. 6818 */ 6819 if (SD_PM_STOP_MOTOR_NEEDED(un, level) && 6820 un->un_f_log_sense_supported) { 6821 /* 6822 * Get the log sense information to understand whether the 6823 * the powercycle counts have gone beyond the threshhold. 6824 */ 6825 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6826 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6827 6828 mutex_enter(SD_MUTEX(un)); 6829 log_sense_page = un->un_start_stop_cycle_page; 6830 mutex_exit(SD_MUTEX(un)); 6831 6832 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6833 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 6834 6835 if (rval != 0) { 6836 if (rval == EIO) 6837 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6838 else 6839 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6840 } 6841 6842 #ifdef SDDEBUG 6843 if (sd_force_pm_supported) { 6844 /* Force a successful result */ 6845 rval = 0; 6846 } 6847 #endif 6848 if (rval != 0) { 6849 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 6850 "Log Sense Failed\n"); 6851 6852 kmem_free(log_page_data, log_page_size); 6853 /* Cannot support power management on those drives */ 6854 6855 if (got_semaphore_here != 0) { 6856 sema_v(&un->un_semoclose); 6857 } 6858 /* 6859 * On exit put the state back to it's original value 6860 * and broadcast to anyone waiting for the power 6861 * change completion. 6862 */ 6863 mutex_enter(SD_MUTEX(un)); 6864 un->un_state = state_before_pm; 6865 cv_broadcast(&un->un_suspend_cv); 6866 mutex_exit(SD_MUTEX(un)); 6867 SD_TRACE(SD_LOG_IO_PM, un, 6868 "sdpower: exit, Log Sense Failed.\n"); 6869 6870 goto sdpower_failed; 6871 } 6872 6873 /* 6874 * From the page data - Convert the essential information to 6875 * pm_trans_data 6876 */ 6877 maxcycles = 6878 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 6879 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 6880 6881 ncycles = 6882 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 6883 (log_page_data[0x26] << 8) | log_page_data[0x27]; 6884 6885 if (un->un_f_pm_log_sense_smart) { 6886 sd_pm_tran_data.un.smart_count.allowed = maxcycles; 6887 sd_pm_tran_data.un.smart_count.consumed = ncycles; 6888 sd_pm_tran_data.un.smart_count.flag = 0; 6889 sd_pm_tran_data.format = DC_SMART_FORMAT; 6890 } else { 6891 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 6892 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 6893 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 6894 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 6895 log_page_data[8+i]; 6896 } 6897 sd_pm_tran_data.un.scsi_cycles.flag = 0; 6898 sd_pm_tran_data.format = DC_SCSI_FORMAT; 6899 } 6900 6901 kmem_free(log_page_data, log_page_size); 6902 6903 /* 6904 * Call pm_trans_check routine to get the Ok from 6905 * the global policy 6906 */ 6907 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 6908 #ifdef SDDEBUG 6909 if (sd_force_pm_supported) { 6910 /* Force a successful result */ 6911 rval = 1; 6912 } 6913 #endif 6914 switch (rval) { 6915 case 0: 6916 /* 6917 * Not Ok to Power cycle or error in parameters passed 6918 * Would have given the advised time to consider power 6919 * cycle. Based on the new intvlp parameter we are 6920 * supposed to pretend we are busy so that pm framework 6921 * will never call our power entry point. Because of 6922 * that install a timeout handler and wait for the 6923 * recommended time to elapse so that power management 6924 * can be effective again. 6925 * 6926 * To effect this behavior, call pm_busy_component to 6927 * indicate to the framework this device is busy. 6928 * By not adjusting un_pm_count the rest of PM in 6929 * the driver will function normally, and independent 6930 * of this but because the framework is told the device 6931 * is busy it won't attempt powering down until it gets 6932 * a matching idle. The timeout handler sends this. 6933 * Note: sd_pm_entry can't be called here to do this 6934 * because sdpower may have been called as a result 6935 * of a call to pm_raise_power from within sd_pm_entry. 6936 * 6937 * If a timeout handler is already active then 6938 * don't install another. 6939 */ 6940 mutex_enter(&un->un_pm_mutex); 6941 if (un->un_pm_timeid == NULL) { 6942 un->un_pm_timeid = 6943 timeout(sd_pm_timeout_handler, 6944 un, intvlp * drv_usectohz(1000000)); 6945 mutex_exit(&un->un_pm_mutex); 6946 (void) pm_busy_component(SD_DEVINFO(un), 0); 6947 } else { 6948 mutex_exit(&un->un_pm_mutex); 6949 } 6950 if (got_semaphore_here != 0) { 6951 sema_v(&un->un_semoclose); 6952 } 6953 /* 6954 * On exit put the state back to it's original value 6955 * and broadcast to anyone waiting for the power 6956 * change completion. 6957 */ 6958 mutex_enter(SD_MUTEX(un)); 6959 un->un_state = state_before_pm; 6960 cv_broadcast(&un->un_suspend_cv); 6961 mutex_exit(SD_MUTEX(un)); 6962 6963 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6964 "trans check Failed, not ok to power cycle.\n"); 6965 6966 goto sdpower_failed; 6967 case -1: 6968 if (got_semaphore_here != 0) { 6969 sema_v(&un->un_semoclose); 6970 } 6971 /* 6972 * On exit put the state back to it's original value 6973 * and broadcast to anyone waiting for the power 6974 * change completion. 6975 */ 6976 mutex_enter(SD_MUTEX(un)); 6977 un->un_state = state_before_pm; 6978 cv_broadcast(&un->un_suspend_cv); 6979 mutex_exit(SD_MUTEX(un)); 6980 SD_TRACE(SD_LOG_IO_PM, un, 6981 "sdpower: exit, trans check command Failed.\n"); 6982 6983 goto sdpower_failed; 6984 } 6985 } 6986 6987 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6988 /* 6989 * Save the last state... if the STOP FAILS we need it 6990 * for restoring 6991 */ 6992 mutex_enter(SD_MUTEX(un)); 6993 save_state = un->un_last_state; 6994 last_power_level = un->un_power_level; 6995 /* 6996 * There must not be any cmds. getting processed 6997 * in the driver when we get here. Power to the 6998 * device is potentially going off. 6999 */ 7000 ASSERT(un->un_ncmds_in_driver == 0); 7001 mutex_exit(SD_MUTEX(un)); 7002 7003 /* 7004 * For now PM suspend the device completely before spindle is 7005 * turned off 7006 */ 7007 if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE)) 7008 == DDI_FAILURE) { 7009 if (got_semaphore_here != 0) { 7010 sema_v(&un->un_semoclose); 7011 } 7012 /* 7013 * On exit put the state back to it's original value 7014 * and broadcast to anyone waiting for the power 7015 * change completion. 7016 */ 7017 mutex_enter(SD_MUTEX(un)); 7018 un->un_state = state_before_pm; 7019 un->un_power_level = last_power_level; 7020 cv_broadcast(&un->un_suspend_cv); 7021 mutex_exit(SD_MUTEX(un)); 7022 SD_TRACE(SD_LOG_IO_PM, un, 7023 "sdpower: exit, PM suspend Failed.\n"); 7024 7025 goto sdpower_failed; 7026 } 7027 } 7028 7029 /* 7030 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 7031 * close, or strategy. Dump no long uses this routine, it uses it's 7032 * own code so it can be done in polled mode. 7033 */ 7034 7035 medium_present = TRUE; 7036 7037 /* 7038 * When powering up, issue a TUR in case the device is at unit 7039 * attention. Don't do retries. Bypass the PM layer, otherwise 7040 * a deadlock on un_pm_busy_cv will occur. 7041 */ 7042 if (SD_PM_IS_IO_CAPABLE(un, level)) { 7043 sval = sd_send_scsi_TEST_UNIT_READY(ssc, 7044 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 7045 if (sval != 0) 7046 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7047 } 7048 7049 if (un->un_f_power_condition_supported) { 7050 char *pm_condition_name[] = {"STOPPED", "STANDBY", 7051 "IDLE", "ACTIVE"}; 7052 SD_TRACE(SD_LOG_IO_PM, un, 7053 "sdpower: sending \'%s\' power condition", 7054 pm_condition_name[level]); 7055 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 7056 sd_pl2pc[level], SD_PATH_DIRECT); 7057 } else { 7058 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 7059 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 7060 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 7061 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : 7062 SD_TARGET_STOP), SD_PATH_DIRECT); 7063 } 7064 if (sval != 0) { 7065 if (sval == EIO) 7066 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 7067 else 7068 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7069 } 7070 7071 /* Command failed, check for media present. */ 7072 if ((sval == ENXIO) && un->un_f_has_removable_media) { 7073 medium_present = FALSE; 7074 } 7075 7076 /* 7077 * The conditions of interest here are: 7078 * if a spindle off with media present fails, 7079 * then restore the state and return an error. 7080 * else if a spindle on fails, 7081 * then return an error (there's no state to restore). 7082 * In all other cases we setup for the new state 7083 * and return success. 7084 */ 7085 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 7086 if ((medium_present == TRUE) && (sval != 0)) { 7087 /* The stop command from above failed */ 7088 rval = DDI_FAILURE; 7089 /* 7090 * The stop command failed, and we have media 7091 * present. Put the level back by calling the 7092 * sd_pm_resume() and set the state back to 7093 * it's previous value. 7094 */ 7095 (void) sd_pm_state_change(un, last_power_level, 7096 SD_PM_STATE_ROLLBACK); 7097 mutex_enter(SD_MUTEX(un)); 7098 un->un_last_state = save_state; 7099 mutex_exit(SD_MUTEX(un)); 7100 } else if (un->un_f_monitor_media_state) { 7101 /* 7102 * The stop command from above succeeded. 7103 * Terminate watch thread in case of removable media 7104 * devices going into low power state. This is as per 7105 * the requirements of pm framework, otherwise commands 7106 * will be generated for the device (through watch 7107 * thread), even when the device is in low power state. 7108 */ 7109 mutex_enter(SD_MUTEX(un)); 7110 un->un_f_watcht_stopped = FALSE; 7111 if (un->un_swr_token != NULL) { 7112 opaque_t temp_token = un->un_swr_token; 7113 un->un_f_watcht_stopped = TRUE; 7114 un->un_swr_token = NULL; 7115 mutex_exit(SD_MUTEX(un)); 7116 (void) scsi_watch_request_terminate(temp_token, 7117 SCSI_WATCH_TERMINATE_ALL_WAIT); 7118 } else { 7119 mutex_exit(SD_MUTEX(un)); 7120 } 7121 } 7122 } else { 7123 /* 7124 * The level requested is I/O capable. 7125 * Legacy behavior: return success on a failed spinup 7126 * if there is no media in the drive. 7127 * Do this by looking at medium_present here. 7128 */ 7129 if ((sval != 0) && medium_present) { 7130 /* The start command from above failed */ 7131 rval = DDI_FAILURE; 7132 } else { 7133 /* 7134 * The start command from above succeeded 7135 * PM resume the devices now that we have 7136 * started the disks 7137 */ 7138 (void) sd_pm_state_change(un, level, 7139 SD_PM_STATE_CHANGE); 7140 7141 /* 7142 * Resume the watch thread since it was suspended 7143 * when the device went into low power mode. 7144 */ 7145 if (un->un_f_monitor_media_state) { 7146 mutex_enter(SD_MUTEX(un)); 7147 if (un->un_f_watcht_stopped == TRUE) { 7148 opaque_t temp_token; 7149 7150 un->un_f_watcht_stopped = FALSE; 7151 mutex_exit(SD_MUTEX(un)); 7152 temp_token = 7153 sd_watch_request_submit(un); 7154 mutex_enter(SD_MUTEX(un)); 7155 un->un_swr_token = temp_token; 7156 } 7157 mutex_exit(SD_MUTEX(un)); 7158 } 7159 } 7160 } 7161 7162 if (got_semaphore_here != 0) { 7163 sema_v(&un->un_semoclose); 7164 } 7165 /* 7166 * On exit put the state back to it's original value 7167 * and broadcast to anyone waiting for the power 7168 * change completion. 7169 */ 7170 mutex_enter(SD_MUTEX(un)); 7171 un->un_state = state_before_pm; 7172 cv_broadcast(&un->un_suspend_cv); 7173 mutex_exit(SD_MUTEX(un)); 7174 7175 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7176 7177 sd_ssc_fini(ssc); 7178 return (rval); 7179 7180 sdpower_failed: 7181 7182 sd_ssc_fini(ssc); 7183 return (DDI_FAILURE); 7184 } 7185 7186 7187 7188 /* 7189 * Function: sdattach 7190 * 7191 * Description: Driver's attach(9e) entry point function. 7192 * 7193 * Arguments: devi - opaque device info handle 7194 * cmd - attach type 7195 * 7196 * Return Code: DDI_SUCCESS 7197 * DDI_FAILURE 7198 * 7199 * Context: Kernel thread context 7200 */ 7201 7202 static int 7203 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7204 { 7205 switch (cmd) { 7206 case DDI_ATTACH: 7207 return (sd_unit_attach(devi)); 7208 case DDI_RESUME: 7209 return (sd_ddi_resume(devi)); 7210 default: 7211 break; 7212 } 7213 return (DDI_FAILURE); 7214 } 7215 7216 7217 /* 7218 * Function: sddetach 7219 * 7220 * Description: Driver's detach(9E) entry point function. 7221 * 7222 * Arguments: devi - opaque device info handle 7223 * cmd - detach type 7224 * 7225 * Return Code: DDI_SUCCESS 7226 * DDI_FAILURE 7227 * 7228 * Context: Kernel thread context 7229 */ 7230 7231 static int 7232 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7233 { 7234 switch (cmd) { 7235 case DDI_DETACH: 7236 return (sd_unit_detach(devi)); 7237 case DDI_SUSPEND: 7238 return (sd_ddi_suspend(devi)); 7239 default: 7240 break; 7241 } 7242 return (DDI_FAILURE); 7243 } 7244 7245 7246 /* 7247 * Function: sd_sync_with_callback 7248 * 7249 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7250 * state while the callback routine is active. 7251 * 7252 * Arguments: un: softstate structure for the instance 7253 * 7254 * Context: Kernel thread context 7255 */ 7256 7257 static void 7258 sd_sync_with_callback(struct sd_lun *un) 7259 { 7260 ASSERT(un != NULL); 7261 7262 mutex_enter(SD_MUTEX(un)); 7263 7264 ASSERT(un->un_in_callback >= 0); 7265 7266 while (un->un_in_callback > 0) { 7267 mutex_exit(SD_MUTEX(un)); 7268 delay(2); 7269 mutex_enter(SD_MUTEX(un)); 7270 } 7271 7272 mutex_exit(SD_MUTEX(un)); 7273 } 7274 7275 /* 7276 * Function: sd_unit_attach 7277 * 7278 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7279 * the soft state structure for the device and performs 7280 * all necessary structure and device initializations. 7281 * 7282 * Arguments: devi: the system's dev_info_t for the device. 7283 * 7284 * Return Code: DDI_SUCCESS if attach is successful. 7285 * DDI_FAILURE if any part of the attach fails. 7286 * 7287 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7288 * Kernel thread context only. Can sleep. 7289 */ 7290 7291 static int 7292 sd_unit_attach(dev_info_t *devi) 7293 { 7294 struct scsi_device *devp; 7295 struct sd_lun *un; 7296 char *variantp; 7297 char name_str[48]; 7298 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7299 int instance; 7300 int rval; 7301 int wc_enabled; 7302 int wc_changeable; 7303 int tgt; 7304 uint64_t capacity; 7305 uint_t lbasize = 0; 7306 dev_info_t *pdip = ddi_get_parent(devi); 7307 int offbyone = 0; 7308 int geom_label_valid = 0; 7309 sd_ssc_t *ssc; 7310 int status; 7311 struct sd_fm_internal *sfip = NULL; 7312 int max_xfer_size; 7313 7314 /* 7315 * Retrieve the target driver's private data area. This was set 7316 * up by the HBA. 7317 */ 7318 devp = ddi_get_driver_private(devi); 7319 7320 /* 7321 * Retrieve the target ID of the device. 7322 */ 7323 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7324 SCSI_ADDR_PROP_TARGET, -1); 7325 7326 /* 7327 * Since we have no idea what state things were left in by the last 7328 * user of the device, set up some 'default' settings, ie. turn 'em 7329 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7330 * Do this before the scsi_probe, which sends an inquiry. 7331 * This is a fix for bug (4430280). 7332 * Of special importance is wide-xfer. The drive could have been left 7333 * in wide transfer mode by the last driver to communicate with it, 7334 * this includes us. If that's the case, and if the following is not 7335 * setup properly or we don't re-negotiate with the drive prior to 7336 * transferring data to/from the drive, it causes bus parity errors, 7337 * data overruns, and unexpected interrupts. This first occurred when 7338 * the fix for bug (4378686) was made. 7339 */ 7340 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7341 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7342 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7343 7344 /* 7345 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 7346 * on a target. Setting it per lun instance actually sets the 7347 * capability of this target, which affects those luns already 7348 * attached on the same target. So during attach, we can only disable 7349 * this capability only when no other lun has been attached on this 7350 * target. By doing this, we assume a target has the same tagged-qing 7351 * capability for every lun. The condition can be removed when HBA 7352 * is changed to support per lun based tagged-qing capability. 7353 */ 7354 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7355 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7356 } 7357 7358 /* 7359 * Use scsi_probe() to issue an INQUIRY command to the device. 7360 * This call will allocate and fill in the scsi_inquiry structure 7361 * and point the sd_inq member of the scsi_device structure to it. 7362 * If the attach succeeds, then this memory will not be de-allocated 7363 * (via scsi_unprobe()) until the instance is detached. 7364 */ 7365 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7366 goto probe_failed; 7367 } 7368 7369 /* 7370 * Check the device type as specified in the inquiry data and 7371 * claim it if it is of a type that we support. 7372 */ 7373 switch (devp->sd_inq->inq_dtype) { 7374 case DTYPE_DIRECT: 7375 break; 7376 case DTYPE_RODIRECT: 7377 break; 7378 case DTYPE_OPTICAL: 7379 break; 7380 case DTYPE_NOTPRESENT: 7381 default: 7382 /* Unsupported device type; fail the attach. */ 7383 goto probe_failed; 7384 } 7385 7386 /* 7387 * Allocate the soft state structure for this unit. 7388 * 7389 * We rely upon this memory being set to all zeroes by 7390 * ddi_soft_state_zalloc(). We assume that any member of the 7391 * soft state structure that is not explicitly initialized by 7392 * this routine will have a value of zero. 7393 */ 7394 instance = ddi_get_instance(devp->sd_dev); 7395 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7396 goto probe_failed; 7397 } 7398 7399 /* 7400 * Retrieve a pointer to the newly-allocated soft state. 7401 * 7402 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7403 * was successful, unless something has gone horribly wrong and the 7404 * ddi's soft state internals are corrupt (in which case it is 7405 * probably better to halt here than just fail the attach....) 7406 */ 7407 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7408 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7409 instance); 7410 /*NOTREACHED*/ 7411 } 7412 7413 /* 7414 * Link the back ptr of the driver soft state to the scsi_device 7415 * struct for this lun. 7416 * Save a pointer to the softstate in the driver-private area of 7417 * the scsi_device struct. 7418 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7419 * we first set un->un_sd below. 7420 */ 7421 un->un_sd = devp; 7422 devp->sd_private = (opaque_t)un; 7423 7424 /* 7425 * The following must be after devp is stored in the soft state struct. 7426 */ 7427 #ifdef SDDEBUG 7428 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7429 "%s_unit_attach: un:0x%p instance:%d\n", 7430 ddi_driver_name(devi), un, instance); 7431 #endif 7432 7433 /* 7434 * Set up the device type and node type (for the minor nodes). 7435 * By default we assume that the device can at least support the 7436 * Common Command Set. Call it a CD-ROM if it reports itself 7437 * as a RODIRECT device. 7438 */ 7439 switch (devp->sd_inq->inq_dtype) { 7440 case DTYPE_RODIRECT: 7441 un->un_node_type = DDI_NT_CD_CHAN; 7442 un->un_ctype = CTYPE_CDROM; 7443 break; 7444 case DTYPE_OPTICAL: 7445 un->un_node_type = DDI_NT_BLOCK_CHAN; 7446 un->un_ctype = CTYPE_ROD; 7447 break; 7448 default: 7449 un->un_node_type = DDI_NT_BLOCK_CHAN; 7450 un->un_ctype = CTYPE_CCS; 7451 break; 7452 } 7453 7454 /* 7455 * Try to read the interconnect type from the HBA. 7456 * 7457 * Note: This driver is currently compiled as two binaries, a parallel 7458 * scsi version (sd) and a fibre channel version (ssd). All functional 7459 * differences are determined at compile time. In the future a single 7460 * binary will be provided and the interconnect type will be used to 7461 * differentiate between fibre and parallel scsi behaviors. At that time 7462 * it will be necessary for all fibre channel HBAs to support this 7463 * property. 7464 * 7465 * set un_f_is_fiber to TRUE ( default fiber ) 7466 */ 7467 un->un_f_is_fibre = TRUE; 7468 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7469 case INTERCONNECT_SSA: 7470 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7471 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7472 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7473 break; 7474 case INTERCONNECT_PARALLEL: 7475 un->un_f_is_fibre = FALSE; 7476 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7477 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7478 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7479 break; 7480 case INTERCONNECT_SAS: 7481 un->un_f_is_fibre = FALSE; 7482 un->un_interconnect_type = SD_INTERCONNECT_SAS; 7483 un->un_node_type = DDI_NT_BLOCK_SAS; 7484 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7485 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un); 7486 break; 7487 case INTERCONNECT_SATA: 7488 un->un_f_is_fibre = FALSE; 7489 un->un_interconnect_type = SD_INTERCONNECT_SATA; 7490 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7491 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 7492 break; 7493 case INTERCONNECT_FIBRE: 7494 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7495 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7496 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7497 break; 7498 case INTERCONNECT_FABRIC: 7499 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7500 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7501 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7502 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7503 break; 7504 default: 7505 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7506 /* 7507 * The HBA does not support the "interconnect-type" property 7508 * (or did not provide a recognized type). 7509 * 7510 * Note: This will be obsoleted when a single fibre channel 7511 * and parallel scsi driver is delivered. In the meantime the 7512 * interconnect type will be set to the platform default.If that 7513 * type is not parallel SCSI, it means that we should be 7514 * assuming "ssd" semantics. However, here this also means that 7515 * the FC HBA is not supporting the "interconnect-type" property 7516 * like we expect it to, so log this occurrence. 7517 */ 7518 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7519 if (!SD_IS_PARALLEL_SCSI(un)) { 7520 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7521 "sd_unit_attach: un:0x%p Assuming " 7522 "INTERCONNECT_FIBRE\n", un); 7523 } else { 7524 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7525 "sd_unit_attach: un:0x%p Assuming " 7526 "INTERCONNECT_PARALLEL\n", un); 7527 un->un_f_is_fibre = FALSE; 7528 } 7529 #else 7530 /* 7531 * Note: This source will be implemented when a single fibre 7532 * channel and parallel scsi driver is delivered. The default 7533 * will be to assume that if a device does not support the 7534 * "interconnect-type" property it is a parallel SCSI HBA and 7535 * we will set the interconnect type for parallel scsi. 7536 */ 7537 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7538 un->un_f_is_fibre = FALSE; 7539 #endif 7540 break; 7541 } 7542 7543 if (un->un_f_is_fibre == TRUE) { 7544 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7545 SCSI_VERSION_3) { 7546 switch (un->un_interconnect_type) { 7547 case SD_INTERCONNECT_FIBRE: 7548 case SD_INTERCONNECT_SSA: 7549 un->un_node_type = DDI_NT_BLOCK_WWN; 7550 break; 7551 default: 7552 break; 7553 } 7554 } 7555 } 7556 7557 /* 7558 * Initialize the Request Sense command for the target 7559 */ 7560 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7561 goto alloc_rqs_failed; 7562 } 7563 7564 /* 7565 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7566 * with separate binary for sd and ssd. 7567 * 7568 * x86 has 1 binary, un_retry_count is set base on connection type. 7569 * The hardcoded values will go away when Sparc uses 1 binary 7570 * for sd and ssd. This hardcoded values need to match 7571 * SD_RETRY_COUNT in sddef.h 7572 * The value used is base on interconnect type. 7573 * fibre = 3, parallel = 5 7574 */ 7575 #if defined(__i386) || defined(__amd64) 7576 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7577 #else 7578 un->un_retry_count = SD_RETRY_COUNT; 7579 #endif 7580 7581 /* 7582 * Set the per disk retry count to the default number of retries 7583 * for disks and CDROMs. This value can be overridden by the 7584 * disk property list or an entry in sd.conf. 7585 */ 7586 un->un_notready_retry_count = 7587 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7588 : DISK_NOT_READY_RETRY_COUNT(un); 7589 7590 /* 7591 * Set the busy retry count to the default value of un_retry_count. 7592 * This can be overridden by entries in sd.conf or the device 7593 * config table. 7594 */ 7595 un->un_busy_retry_count = un->un_retry_count; 7596 7597 /* 7598 * Init the reset threshold for retries. This number determines 7599 * how many retries must be performed before a reset can be issued 7600 * (for certain error conditions). This can be overridden by entries 7601 * in sd.conf or the device config table. 7602 */ 7603 un->un_reset_retry_count = (un->un_retry_count / 2); 7604 7605 /* 7606 * Set the victim_retry_count to the default un_retry_count 7607 */ 7608 un->un_victim_retry_count = (2 * un->un_retry_count); 7609 7610 /* 7611 * Set the reservation release timeout to the default value of 7612 * 5 seconds. This can be overridden by entries in ssd.conf or the 7613 * device config table. 7614 */ 7615 un->un_reserve_release_time = 5; 7616 7617 /* 7618 * Set up the default maximum transfer size. Note that this may 7619 * get updated later in the attach, when setting up default wide 7620 * operations for disks. 7621 */ 7622 #if defined(__i386) || defined(__amd64) 7623 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7624 un->un_partial_dma_supported = 1; 7625 #else 7626 un->un_max_xfer_size = (uint_t)maxphys; 7627 #endif 7628 7629 /* 7630 * Get "allow bus device reset" property (defaults to "enabled" if 7631 * the property was not defined). This is to disable bus resets for 7632 * certain kinds of error recovery. Note: In the future when a run-time 7633 * fibre check is available the soft state flag should default to 7634 * enabled. 7635 */ 7636 if (un->un_f_is_fibre == TRUE) { 7637 un->un_f_allow_bus_device_reset = TRUE; 7638 } else { 7639 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7640 "allow-bus-device-reset", 1) != 0) { 7641 un->un_f_allow_bus_device_reset = TRUE; 7642 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7643 "sd_unit_attach: un:0x%p Bus device reset " 7644 "enabled\n", un); 7645 } else { 7646 un->un_f_allow_bus_device_reset = FALSE; 7647 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7648 "sd_unit_attach: un:0x%p Bus device reset " 7649 "disabled\n", un); 7650 } 7651 } 7652 7653 /* 7654 * Check if this is an ATAPI device. ATAPI devices use Group 1 7655 * Read/Write commands and Group 2 Mode Sense/Select commands. 7656 * 7657 * Note: The "obsolete" way of doing this is to check for the "atapi" 7658 * property. The new "variant" property with a value of "atapi" has been 7659 * introduced so that future 'variants' of standard SCSI behavior (like 7660 * atapi) could be specified by the underlying HBA drivers by supplying 7661 * a new value for the "variant" property, instead of having to define a 7662 * new property. 7663 */ 7664 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7665 un->un_f_cfg_is_atapi = TRUE; 7666 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7667 "sd_unit_attach: un:0x%p Atapi device\n", un); 7668 } 7669 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7670 &variantp) == DDI_PROP_SUCCESS) { 7671 if (strcmp(variantp, "atapi") == 0) { 7672 un->un_f_cfg_is_atapi = TRUE; 7673 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7674 "sd_unit_attach: un:0x%p Atapi device\n", un); 7675 } 7676 ddi_prop_free(variantp); 7677 } 7678 7679 un->un_cmd_timeout = SD_IO_TIME; 7680 7681 un->un_busy_timeout = SD_BSY_TIMEOUT; 7682 7683 /* Info on current states, statuses, etc. (Updated frequently) */ 7684 un->un_state = SD_STATE_NORMAL; 7685 un->un_last_state = SD_STATE_NORMAL; 7686 7687 /* Control & status info for command throttling */ 7688 un->un_throttle = sd_max_throttle; 7689 un->un_saved_throttle = sd_max_throttle; 7690 un->un_min_throttle = sd_min_throttle; 7691 7692 if (un->un_f_is_fibre == TRUE) { 7693 un->un_f_use_adaptive_throttle = TRUE; 7694 } else { 7695 un->un_f_use_adaptive_throttle = FALSE; 7696 } 7697 7698 /* Removable media support. */ 7699 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7700 un->un_mediastate = DKIO_NONE; 7701 un->un_specified_mediastate = DKIO_NONE; 7702 7703 /* CVs for suspend/resume (PM or DR) */ 7704 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7705 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7706 7707 /* Power management support. */ 7708 un->un_power_level = SD_SPINDLE_UNINIT; 7709 7710 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 7711 un->un_f_wcc_inprog = 0; 7712 7713 /* 7714 * The open/close semaphore is used to serialize threads executing 7715 * in the driver's open & close entry point routines for a given 7716 * instance. 7717 */ 7718 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 7719 7720 /* 7721 * The conf file entry and softstate variable is a forceful override, 7722 * meaning a non-zero value must be entered to change the default. 7723 */ 7724 un->un_f_disksort_disabled = FALSE; 7725 un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT; 7726 un->un_f_enable_rmw = FALSE; 7727 7728 /* 7729 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but 7730 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property. 7731 */ 7732 un->un_f_mmc_gesn_polling = TRUE; 7733 7734 /* 7735 * physical sector size defaults to DEV_BSIZE currently. We can 7736 * override this value via the driver configuration file so we must 7737 * set it before calling sd_read_unit_properties(). 7738 */ 7739 un->un_phy_blocksize = DEV_BSIZE; 7740 7741 /* 7742 * Retrieve the properties from the static driver table or the driver 7743 * configuration file (.conf) for this unit and update the soft state 7744 * for the device as needed for the indicated properties. 7745 * Note: the property configuration needs to occur here as some of the 7746 * following routines may have dependencies on soft state flags set 7747 * as part of the driver property configuration. 7748 */ 7749 sd_read_unit_properties(un); 7750 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7751 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 7752 7753 /* 7754 * Only if a device has "hotpluggable" property, it is 7755 * treated as hotpluggable device. Otherwise, it is 7756 * regarded as non-hotpluggable one. 7757 */ 7758 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 7759 -1) != -1) { 7760 un->un_f_is_hotpluggable = TRUE; 7761 } 7762 7763 /* 7764 * set unit's attributes(flags) according to "hotpluggable" and 7765 * RMB bit in INQUIRY data. 7766 */ 7767 sd_set_unit_attributes(un, devi); 7768 7769 /* 7770 * By default, we mark the capacity, lbasize, and geometry 7771 * as invalid. Only if we successfully read a valid capacity 7772 * will we update the un_blockcount and un_tgt_blocksize with the 7773 * valid values (the geometry will be validated later). 7774 */ 7775 un->un_f_blockcount_is_valid = FALSE; 7776 un->un_f_tgt_blocksize_is_valid = FALSE; 7777 7778 /* 7779 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 7780 * otherwise. 7781 */ 7782 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 7783 un->un_blockcount = 0; 7784 7785 /* 7786 * Set up the per-instance info needed to determine the correct 7787 * CDBs and other info for issuing commands to the target. 7788 */ 7789 sd_init_cdb_limits(un); 7790 7791 /* 7792 * Set up the IO chains to use, based upon the target type. 7793 */ 7794 if (un->un_f_non_devbsize_supported) { 7795 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7796 } else { 7797 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7798 } 7799 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7800 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 7801 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 7802 7803 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 7804 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 7805 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 7806 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 7807 7808 7809 if (ISCD(un)) { 7810 un->un_additional_codes = sd_additional_codes; 7811 } else { 7812 un->un_additional_codes = NULL; 7813 } 7814 7815 /* 7816 * Create the kstats here so they can be available for attach-time 7817 * routines that send commands to the unit (either polled or via 7818 * sd_send_scsi_cmd). 7819 * 7820 * Note: This is a critical sequence that needs to be maintained: 7821 * 1) Instantiate the kstats here, before any routines using the 7822 * iopath (i.e. sd_send_scsi_cmd). 7823 * 2) Instantiate and initialize the partition stats 7824 * (sd_set_pstats). 7825 * 3) Initialize the error stats (sd_set_errstats), following 7826 * sd_validate_geometry(),sd_register_devid(), 7827 * and sd_cache_control(). 7828 */ 7829 7830 un->un_stats = kstat_create(sd_label, instance, 7831 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 7832 if (un->un_stats != NULL) { 7833 un->un_stats->ks_lock = SD_MUTEX(un); 7834 kstat_install(un->un_stats); 7835 } 7836 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7837 "sd_unit_attach: un:0x%p un_stats created\n", un); 7838 7839 un->un_unmapstats_ks = kstat_create(sd_label, instance, "unmapstats", 7840 "misc", KSTAT_TYPE_NAMED, sizeof (*un->un_unmapstats) / 7841 sizeof (kstat_named_t), 0); 7842 if (un->un_unmapstats_ks) { 7843 un->un_unmapstats = un->un_unmapstats_ks->ks_data; 7844 7845 kstat_named_init(&un->un_unmapstats->us_cmds, 7846 "commands", KSTAT_DATA_UINT64); 7847 kstat_named_init(&un->un_unmapstats->us_errs, 7848 "errors", KSTAT_DATA_UINT64); 7849 kstat_named_init(&un->un_unmapstats->us_extents, 7850 "extents", KSTAT_DATA_UINT64); 7851 kstat_named_init(&un->un_unmapstats->us_bytes, 7852 "bytes", KSTAT_DATA_UINT64); 7853 7854 kstat_install(un->un_unmapstats_ks); 7855 } else { 7856 cmn_err(CE_NOTE, "!Cannot create unmap kstats for disk %d", 7857 instance); 7858 } 7859 7860 sd_create_errstats(un, instance); 7861 if (un->un_errstats == NULL) { 7862 goto create_errstats_failed; 7863 } 7864 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7865 "sd_unit_attach: un:0x%p errstats created\n", un); 7866 7867 /* 7868 * The following if/else code was relocated here from below as part 7869 * of the fix for bug (4430280). However with the default setup added 7870 * on entry to this routine, it's no longer absolutely necessary for 7871 * this to be before the call to sd_spin_up_unit. 7872 */ 7873 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 7874 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) || 7875 (devp->sd_inq->inq_ansi == 5)) && 7876 devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque; 7877 7878 /* 7879 * If tagged queueing is supported by the target 7880 * and by the host adapter then we will enable it 7881 */ 7882 un->un_tagflags = 0; 7883 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag && 7884 (un->un_f_arq_enabled == TRUE)) { 7885 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 7886 1, 1) == 1) { 7887 un->un_tagflags = FLAG_STAG; 7888 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7889 "sd_unit_attach: un:0x%p tag queueing " 7890 "enabled\n", un); 7891 } else if (scsi_ifgetcap(SD_ADDRESS(un), 7892 "untagged-qing", 0) == 1) { 7893 un->un_f_opt_queueing = TRUE; 7894 un->un_saved_throttle = un->un_throttle = 7895 min(un->un_throttle, 3); 7896 } else { 7897 un->un_f_opt_queueing = FALSE; 7898 un->un_saved_throttle = un->un_throttle = 1; 7899 } 7900 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 7901 == 1) && (un->un_f_arq_enabled == TRUE)) { 7902 /* The Host Adapter supports internal queueing. */ 7903 un->un_f_opt_queueing = TRUE; 7904 un->un_saved_throttle = un->un_throttle = 7905 min(un->un_throttle, 3); 7906 } else { 7907 un->un_f_opt_queueing = FALSE; 7908 un->un_saved_throttle = un->un_throttle = 1; 7909 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7910 "sd_unit_attach: un:0x%p no tag queueing\n", un); 7911 } 7912 7913 /* 7914 * Enable large transfers for SATA/SAS drives 7915 */ 7916 if (SD_IS_SERIAL(un)) { 7917 un->un_max_xfer_size = 7918 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7919 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7920 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7921 "sd_unit_attach: un:0x%p max transfer " 7922 "size=0x%x\n", un, un->un_max_xfer_size); 7923 7924 } 7925 7926 /* Setup or tear down default wide operations for disks */ 7927 7928 /* 7929 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 7930 * and "ssd_max_xfer_size" to exist simultaneously on the same 7931 * system and be set to different values. In the future this 7932 * code may need to be updated when the ssd module is 7933 * obsoleted and removed from the system. (4299588) 7934 */ 7935 if (SD_IS_PARALLEL_SCSI(un) && 7936 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 7937 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 7938 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7939 1, 1) == 1) { 7940 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7941 "sd_unit_attach: un:0x%p Wide Transfer " 7942 "enabled\n", un); 7943 } 7944 7945 /* 7946 * If tagged queuing has also been enabled, then 7947 * enable large xfers 7948 */ 7949 if (un->un_saved_throttle == sd_max_throttle) { 7950 un->un_max_xfer_size = 7951 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7952 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7953 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7954 "sd_unit_attach: un:0x%p max transfer " 7955 "size=0x%x\n", un, un->un_max_xfer_size); 7956 } 7957 } else { 7958 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7959 0, 1) == 1) { 7960 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7961 "sd_unit_attach: un:0x%p " 7962 "Wide Transfer disabled\n", un); 7963 } 7964 } 7965 } else { 7966 un->un_tagflags = FLAG_STAG; 7967 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 7968 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 7969 } 7970 7971 /* 7972 * If this target supports LUN reset, try to enable it. 7973 */ 7974 if (un->un_f_lun_reset_enabled) { 7975 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 7976 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7977 "un:0x%p lun_reset capability set\n", un); 7978 } else { 7979 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7980 "un:0x%p lun-reset capability not set\n", un); 7981 } 7982 } 7983 7984 /* 7985 * Adjust the maximum transfer size. This is to fix 7986 * the problem of partial DMA support on SPARC. Some 7987 * HBA driver, like aac, has very small dma_attr_maxxfer 7988 * size, which requires partial DMA support on SPARC. 7989 * In the future the SPARC pci nexus driver may solve 7990 * the problem instead of this fix. 7991 */ 7992 max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1); 7993 if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) { 7994 /* We need DMA partial even on sparc to ensure sddump() works */ 7995 un->un_max_xfer_size = max_xfer_size; 7996 if (un->un_partial_dma_supported == 0) 7997 un->un_partial_dma_supported = 1; 7998 } 7999 if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 8000 DDI_PROP_DONTPASS, "buf_break", 0) == 1) { 8001 if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr, 8002 un->un_max_xfer_size) == 1) { 8003 un->un_buf_breakup_supported = 1; 8004 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 8005 "un:0x%p Buf breakup enabled\n", un); 8006 } 8007 } 8008 8009 /* 8010 * Set PKT_DMA_PARTIAL flag. 8011 */ 8012 if (un->un_partial_dma_supported == 1) { 8013 un->un_pkt_flags = PKT_DMA_PARTIAL; 8014 } else { 8015 un->un_pkt_flags = 0; 8016 } 8017 8018 /* Initialize sd_ssc_t for internal uscsi commands */ 8019 ssc = sd_ssc_init(un); 8020 scsi_fm_init(devp); 8021 8022 /* 8023 * Allocate memory for SCSI FMA stuffs. 8024 */ 8025 un->un_fm_private = 8026 kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP); 8027 sfip = (struct sd_fm_internal *)un->un_fm_private; 8028 sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd; 8029 sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo; 8030 sfip->fm_ssc.ssc_un = un; 8031 8032 if (ISCD(un) || 8033 un->un_f_has_removable_media || 8034 devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) { 8035 /* 8036 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device. 8037 * Their log are unchanged. 8038 */ 8039 sfip->fm_log_level = SD_FM_LOG_NSUP; 8040 } else { 8041 /* 8042 * If enter here, it should be non-CDROM and FM-capable 8043 * device, and it will not keep the old scsi_log as before 8044 * in /var/adm/messages. However, the property 8045 * "fm-scsi-log" will control whether the FM telemetry will 8046 * be logged in /var/adm/messages. 8047 */ 8048 int fm_scsi_log; 8049 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 8050 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0); 8051 8052 if (fm_scsi_log) 8053 sfip->fm_log_level = SD_FM_LOG_EREPORT; 8054 else 8055 sfip->fm_log_level = SD_FM_LOG_SILENT; 8056 } 8057 8058 /* 8059 * At this point in the attach, we have enough info in the 8060 * soft state to be able to issue commands to the target. 8061 * 8062 * All command paths used below MUST issue their commands as 8063 * SD_PATH_DIRECT. This is important as intermediate layers 8064 * are not all initialized yet (such as PM). 8065 */ 8066 8067 /* 8068 * Send a TEST UNIT READY command to the device. This should clear 8069 * any outstanding UNIT ATTENTION that may be present. 8070 * 8071 * Note: Don't check for success, just track if there is a reservation, 8072 * this is a throw away command to clear any unit attentions. 8073 * 8074 * Note: This MUST be the first command issued to the target during 8075 * attach to ensure power on UNIT ATTENTIONS are cleared. 8076 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 8077 * with attempts at spinning up a device with no media. 8078 */ 8079 status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 8080 if (status != 0) { 8081 if (status == EACCES) 8082 reservation_flag = SD_TARGET_IS_RESERVED; 8083 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8084 } 8085 8086 /* 8087 * If the device is NOT a removable media device, attempt to spin 8088 * it up (using the START_STOP_UNIT command) and read its capacity 8089 * (using the READ CAPACITY command). Note, however, that either 8090 * of these could fail and in some cases we would continue with 8091 * the attach despite the failure (see below). 8092 */ 8093 if (un->un_f_descr_format_supported) { 8094 8095 switch (sd_spin_up_unit(ssc)) { 8096 case 0: 8097 /* 8098 * Spin-up was successful; now try to read the 8099 * capacity. If successful then save the results 8100 * and mark the capacity & lbasize as valid. 8101 */ 8102 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8103 "sd_unit_attach: un:0x%p spin-up successful\n", un); 8104 8105 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 8106 &lbasize, SD_PATH_DIRECT); 8107 8108 switch (status) { 8109 case 0: { 8110 if (capacity > DK_MAX_BLOCKS) { 8111 #ifdef _LP64 8112 if ((capacity + 1) > 8113 SD_GROUP1_MAX_ADDRESS) { 8114 /* 8115 * Enable descriptor format 8116 * sense data so that we can 8117 * get 64 bit sense data 8118 * fields. 8119 */ 8120 sd_enable_descr_sense(ssc); 8121 } 8122 #else 8123 /* 32-bit kernels can't handle this */ 8124 scsi_log(SD_DEVINFO(un), 8125 sd_label, CE_WARN, 8126 "disk has %llu blocks, which " 8127 "is too large for a 32-bit " 8128 "kernel", capacity); 8129 8130 #if defined(__i386) || defined(__amd64) 8131 /* 8132 * 1TB disk was treated as (1T - 512)B 8133 * in the past, so that it might have 8134 * valid VTOC and solaris partitions, 8135 * we have to allow it to continue to 8136 * work. 8137 */ 8138 if (capacity -1 > DK_MAX_BLOCKS) 8139 #endif 8140 goto spinup_failed; 8141 #endif 8142 } 8143 8144 /* 8145 * Here it's not necessary to check the case: 8146 * the capacity of the device is bigger than 8147 * what the max hba cdb can support. Because 8148 * sd_send_scsi_READ_CAPACITY will retrieve 8149 * the capacity by sending USCSI command, which 8150 * is constrained by the max hba cdb. Actually, 8151 * sd_send_scsi_READ_CAPACITY will return 8152 * EINVAL when using bigger cdb than required 8153 * cdb length. Will handle this case in 8154 * "case EINVAL". 8155 */ 8156 8157 /* 8158 * The following relies on 8159 * sd_send_scsi_READ_CAPACITY never 8160 * returning 0 for capacity and/or lbasize. 8161 */ 8162 sd_update_block_info(un, lbasize, capacity); 8163 8164 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8165 "sd_unit_attach: un:0x%p capacity = %ld " 8166 "blocks; lbasize= %ld.\n", un, 8167 un->un_blockcount, un->un_tgt_blocksize); 8168 8169 break; 8170 } 8171 case EINVAL: 8172 /* 8173 * In the case where the max-cdb-length property 8174 * is smaller than the required CDB length for 8175 * a SCSI device, a target driver can fail to 8176 * attach to that device. 8177 */ 8178 scsi_log(SD_DEVINFO(un), 8179 sd_label, CE_WARN, 8180 "disk capacity is too large " 8181 "for current cdb length"); 8182 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8183 8184 goto spinup_failed; 8185 case EACCES: 8186 /* 8187 * Should never get here if the spin-up 8188 * succeeded, but code it in anyway. 8189 * From here, just continue with the attach... 8190 */ 8191 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8192 "sd_unit_attach: un:0x%p " 8193 "sd_send_scsi_READ_CAPACITY " 8194 "returned reservation conflict\n", un); 8195 reservation_flag = SD_TARGET_IS_RESERVED; 8196 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8197 break; 8198 default: 8199 /* 8200 * Likewise, should never get here if the 8201 * spin-up succeeded. Just continue with 8202 * the attach... 8203 */ 8204 if (status == EIO) 8205 sd_ssc_assessment(ssc, 8206 SD_FMT_STATUS_CHECK); 8207 else 8208 sd_ssc_assessment(ssc, 8209 SD_FMT_IGNORE); 8210 break; 8211 } 8212 break; 8213 case EACCES: 8214 /* 8215 * Device is reserved by another host. In this case 8216 * we could not spin it up or read the capacity, but 8217 * we continue with the attach anyway. 8218 */ 8219 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8220 "sd_unit_attach: un:0x%p spin-up reservation " 8221 "conflict.\n", un); 8222 reservation_flag = SD_TARGET_IS_RESERVED; 8223 break; 8224 default: 8225 /* Fail the attach if the spin-up failed. */ 8226 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8227 "sd_unit_attach: un:0x%p spin-up failed.", un); 8228 goto spinup_failed; 8229 } 8230 8231 } 8232 8233 /* 8234 * Check to see if this is a MMC drive 8235 */ 8236 if (ISCD(un)) { 8237 sd_set_mmc_caps(ssc); 8238 } 8239 8240 /* 8241 * Add a zero-length attribute to tell the world we support 8242 * kernel ioctls (for layered drivers) 8243 */ 8244 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8245 DDI_KERNEL_IOCTL, NULL, 0); 8246 8247 /* 8248 * Add a boolean property to tell the world we support 8249 * the B_FAILFAST flag (for layered drivers) 8250 */ 8251 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8252 "ddi-failfast-supported", NULL, 0); 8253 8254 /* 8255 * Initialize power management 8256 */ 8257 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8258 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8259 sd_setup_pm(ssc, devi); 8260 if (un->un_f_pm_is_enabled == FALSE) { 8261 /* 8262 * For performance, point to a jump table that does 8263 * not include pm. 8264 * The direct and priority chains don't change with PM. 8265 * 8266 * Note: this is currently done based on individual device 8267 * capabilities. When an interface for determining system 8268 * power enabled state becomes available, or when additional 8269 * layers are added to the command chain, these values will 8270 * have to be re-evaluated for correctness. 8271 */ 8272 if (un->un_f_non_devbsize_supported) { 8273 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8274 } else { 8275 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8276 } 8277 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8278 } 8279 8280 /* 8281 * This property is set to 0 by HA software to avoid retries 8282 * on a reserved disk. (The preferred property name is 8283 * "retry-on-reservation-conflict") (1189689) 8284 * 8285 * Note: The use of a global here can have unintended consequences. A 8286 * per instance variable is preferable to match the capabilities of 8287 * different underlying hba's (4402600) 8288 */ 8289 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8290 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8291 sd_retry_on_reservation_conflict); 8292 if (sd_retry_on_reservation_conflict != 0) { 8293 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8294 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8295 sd_retry_on_reservation_conflict); 8296 } 8297 8298 /* Set up options for QFULL handling. */ 8299 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8300 "qfull-retries", -1)) != -1) { 8301 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8302 rval, 1); 8303 } 8304 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8305 "qfull-retry-interval", -1)) != -1) { 8306 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8307 rval, 1); 8308 } 8309 8310 /* 8311 * This just prints a message that announces the existence of the 8312 * device. The message is always printed in the system logfile, but 8313 * only appears on the console if the system is booted with the 8314 * -v (verbose) argument. 8315 */ 8316 ddi_report_dev(devi); 8317 8318 un->un_mediastate = DKIO_NONE; 8319 8320 /* 8321 * Check Block Device Characteristics VPD. 8322 */ 8323 sd_check_bdc_vpd(ssc); 8324 8325 /* 8326 * Check whether the drive is in emulation mode. 8327 */ 8328 sd_check_emulation_mode(ssc); 8329 8330 cmlb_alloc_handle(&un->un_cmlbhandle); 8331 8332 #if defined(__i386) || defined(__amd64) 8333 /* 8334 * On x86, compensate for off-by-1 legacy error 8335 */ 8336 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 8337 (lbasize == un->un_sys_blocksize)) 8338 offbyone = CMLB_OFF_BY_ONE; 8339 #endif 8340 8341 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 8342 VOID2BOOLEAN(un->un_f_has_removable_media != 0), 8343 VOID2BOOLEAN(un->un_f_is_hotpluggable != 0), 8344 un->un_node_type, offbyone, un->un_cmlbhandle, 8345 (void *)SD_PATH_DIRECT) != 0) { 8346 goto cmlb_attach_failed; 8347 } 8348 8349 8350 /* 8351 * Read and validate the device's geometry (ie, disk label) 8352 * A new unformatted drive will not have a valid geometry, but 8353 * the driver needs to successfully attach to this device so 8354 * the drive can be formatted via ioctls. 8355 */ 8356 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 8357 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 8358 8359 mutex_enter(SD_MUTEX(un)); 8360 8361 /* 8362 * Read and initialize the devid for the unit. 8363 */ 8364 if (un->un_f_devid_supported) { 8365 sd_register_devid(ssc, devi, reservation_flag); 8366 } 8367 mutex_exit(SD_MUTEX(un)); 8368 8369 #if (defined(__fibre)) 8370 /* 8371 * Register callbacks for fibre only. You can't do this solely 8372 * on the basis of the devid_type because this is hba specific. 8373 * We need to query our hba capabilities to find out whether to 8374 * register or not. 8375 */ 8376 if (un->un_f_is_fibre) { 8377 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8378 sd_init_event_callbacks(un); 8379 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8380 "sd_unit_attach: un:0x%p event callbacks inserted", 8381 un); 8382 } 8383 } 8384 #endif 8385 8386 if (un->un_f_opt_disable_cache == TRUE) { 8387 /* 8388 * Disable both read cache and write cache. This is 8389 * the historic behavior of the keywords in the config file. 8390 */ 8391 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8392 0) { 8393 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8394 "sd_unit_attach: un:0x%p Could not disable " 8395 "caching", un); 8396 goto devid_failed; 8397 } 8398 } 8399 8400 /* 8401 * Check the value of the WCE bit and if it's allowed to be changed, 8402 * set un_f_write_cache_enabled and un_f_cache_mode_changeable 8403 * accordingly. 8404 */ 8405 (void) sd_get_write_cache_enabled(ssc, &wc_enabled); 8406 sd_get_write_cache_changeable(ssc, &wc_changeable); 8407 mutex_enter(SD_MUTEX(un)); 8408 un->un_f_write_cache_enabled = (wc_enabled != 0); 8409 un->un_f_cache_mode_changeable = (wc_changeable != 0); 8410 mutex_exit(SD_MUTEX(un)); 8411 8412 if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR && 8413 un->un_tgt_blocksize != DEV_BSIZE) || 8414 un->un_f_enable_rmw) { 8415 if (!(un->un_wm_cache)) { 8416 (void) snprintf(name_str, sizeof (name_str), 8417 "%s%d_cache", 8418 ddi_driver_name(SD_DEVINFO(un)), 8419 ddi_get_instance(SD_DEVINFO(un))); 8420 un->un_wm_cache = kmem_cache_create( 8421 name_str, sizeof (struct sd_w_map), 8422 8, sd_wm_cache_constructor, 8423 sd_wm_cache_destructor, NULL, 8424 (void *)un, NULL, 0); 8425 if (!(un->un_wm_cache)) { 8426 goto wm_cache_failed; 8427 } 8428 } 8429 } 8430 8431 /* 8432 * Check the value of the NV_SUP bit and set 8433 * un_f_suppress_cache_flush accordingly. 8434 */ 8435 sd_get_nv_sup(ssc); 8436 8437 /* 8438 * Find out what type of reservation this disk supports. 8439 */ 8440 status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL); 8441 8442 switch (status) { 8443 case 0: 8444 /* 8445 * SCSI-3 reservations are supported. 8446 */ 8447 un->un_reservation_type = SD_SCSI3_RESERVATION; 8448 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8449 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8450 break; 8451 case ENOTSUP: 8452 /* 8453 * The PERSISTENT RESERVE IN command would not be recognized by 8454 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8455 */ 8456 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8457 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8458 un->un_reservation_type = SD_SCSI2_RESERVATION; 8459 8460 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8461 break; 8462 default: 8463 /* 8464 * default to SCSI-3 reservations 8465 */ 8466 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8467 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8468 un->un_reservation_type = SD_SCSI3_RESERVATION; 8469 8470 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8471 break; 8472 } 8473 8474 /* 8475 * Set the pstat and error stat values here, so data obtained during the 8476 * previous attach-time routines is available. 8477 * 8478 * Note: This is a critical sequence that needs to be maintained: 8479 * 1) Instantiate the kstats before any routines using the iopath 8480 * (i.e. sd_send_scsi_cmd). 8481 * 2) Initialize the error stats (sd_set_errstats) and partition 8482 * stats (sd_set_pstats)here, following 8483 * cmlb_validate_geometry(), sd_register_devid(), and 8484 * sd_cache_control(). 8485 */ 8486 8487 if (un->un_f_pkstats_enabled && geom_label_valid) { 8488 sd_set_pstats(un); 8489 SD_TRACE(SD_LOG_IO_PARTITION, un, 8490 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8491 } 8492 8493 sd_set_errstats(un); 8494 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8495 "sd_unit_attach: un:0x%p errstats set\n", un); 8496 8497 sd_setup_blk_limits(ssc); 8498 8499 /* 8500 * After successfully attaching an instance, we record the information 8501 * of how many luns have been attached on the relative target and 8502 * controller for parallel SCSI. This information is used when sd tries 8503 * to set the tagged queuing capability in HBA. 8504 */ 8505 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8506 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 8507 } 8508 8509 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8510 "sd_unit_attach: un:0x%p exit success\n", un); 8511 8512 /* Uninitialize sd_ssc_t pointer */ 8513 sd_ssc_fini(ssc); 8514 8515 return (DDI_SUCCESS); 8516 8517 /* 8518 * An error occurred during the attach; clean up & return failure. 8519 */ 8520 wm_cache_failed: 8521 devid_failed: 8522 ddi_remove_minor_node(devi, NULL); 8523 8524 cmlb_attach_failed: 8525 /* 8526 * Cleanup from the scsi_ifsetcap() calls (437868) 8527 */ 8528 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8529 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8530 8531 /* 8532 * Refer to the comments of setting tagged-qing in the beginning of 8533 * sd_unit_attach. We can only disable tagged queuing when there is 8534 * no lun attached on the target. 8535 */ 8536 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 8537 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8538 } 8539 8540 if (un->un_f_is_fibre == FALSE) { 8541 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8542 } 8543 8544 spinup_failed: 8545 8546 /* Uninitialize sd_ssc_t pointer */ 8547 sd_ssc_fini(ssc); 8548 8549 mutex_enter(SD_MUTEX(un)); 8550 8551 /* Deallocate SCSI FMA memory spaces */ 8552 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8553 8554 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8555 if (un->un_direct_priority_timeid != NULL) { 8556 timeout_id_t temp_id = un->un_direct_priority_timeid; 8557 un->un_direct_priority_timeid = NULL; 8558 mutex_exit(SD_MUTEX(un)); 8559 (void) untimeout(temp_id); 8560 mutex_enter(SD_MUTEX(un)); 8561 } 8562 8563 /* Cancel any pending start/stop timeouts */ 8564 if (un->un_startstop_timeid != NULL) { 8565 timeout_id_t temp_id = un->un_startstop_timeid; 8566 un->un_startstop_timeid = NULL; 8567 mutex_exit(SD_MUTEX(un)); 8568 (void) untimeout(temp_id); 8569 mutex_enter(SD_MUTEX(un)); 8570 } 8571 8572 /* Cancel any pending reset-throttle timeouts */ 8573 if (un->un_reset_throttle_timeid != NULL) { 8574 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8575 un->un_reset_throttle_timeid = NULL; 8576 mutex_exit(SD_MUTEX(un)); 8577 (void) untimeout(temp_id); 8578 mutex_enter(SD_MUTEX(un)); 8579 } 8580 8581 /* Cancel rmw warning message timeouts */ 8582 if (un->un_rmw_msg_timeid != NULL) { 8583 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8584 un->un_rmw_msg_timeid = NULL; 8585 mutex_exit(SD_MUTEX(un)); 8586 (void) untimeout(temp_id); 8587 mutex_enter(SD_MUTEX(un)); 8588 } 8589 8590 /* Cancel any pending retry timeouts */ 8591 if (un->un_retry_timeid != NULL) { 8592 timeout_id_t temp_id = un->un_retry_timeid; 8593 un->un_retry_timeid = NULL; 8594 mutex_exit(SD_MUTEX(un)); 8595 (void) untimeout(temp_id); 8596 mutex_enter(SD_MUTEX(un)); 8597 } 8598 8599 /* Cancel any pending delayed cv broadcast timeouts */ 8600 if (un->un_dcvb_timeid != NULL) { 8601 timeout_id_t temp_id = un->un_dcvb_timeid; 8602 un->un_dcvb_timeid = NULL; 8603 mutex_exit(SD_MUTEX(un)); 8604 (void) untimeout(temp_id); 8605 mutex_enter(SD_MUTEX(un)); 8606 } 8607 8608 mutex_exit(SD_MUTEX(un)); 8609 8610 /* There should not be any in-progress I/O so ASSERT this check */ 8611 ASSERT(un->un_ncmds_in_transport == 0); 8612 ASSERT(un->un_ncmds_in_driver == 0); 8613 8614 /* Do not free the softstate if the callback routine is active */ 8615 sd_sync_with_callback(un); 8616 8617 /* 8618 * Partition stats apparently are not used with removables. These would 8619 * not have been created during attach, so no need to clean them up... 8620 */ 8621 if (un->un_errstats != NULL) { 8622 kstat_delete(un->un_errstats); 8623 un->un_errstats = NULL; 8624 } 8625 8626 create_errstats_failed: 8627 8628 if (un->un_stats != NULL) { 8629 kstat_delete(un->un_stats); 8630 un->un_stats = NULL; 8631 } 8632 8633 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8634 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8635 8636 ddi_prop_remove_all(devi); 8637 sema_destroy(&un->un_semoclose); 8638 cv_destroy(&un->un_state_cv); 8639 8640 sd_free_rqs(un); 8641 8642 alloc_rqs_failed: 8643 8644 devp->sd_private = NULL; 8645 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8646 8647 /* 8648 * Note: the man pages are unclear as to whether or not doing a 8649 * ddi_soft_state_free(sd_state, instance) is the right way to 8650 * clean up after the ddi_soft_state_zalloc() if the subsequent 8651 * ddi_get_soft_state() fails. The implication seems to be 8652 * that the get_soft_state cannot fail if the zalloc succeeds. 8653 */ 8654 #ifndef XPV_HVM_DRIVER 8655 ddi_soft_state_free(sd_state, instance); 8656 #endif /* !XPV_HVM_DRIVER */ 8657 8658 probe_failed: 8659 scsi_unprobe(devp); 8660 8661 return (DDI_FAILURE); 8662 } 8663 8664 8665 /* 8666 * Function: sd_unit_detach 8667 * 8668 * Description: Performs DDI_DETACH processing for sddetach(). 8669 * 8670 * Return Code: DDI_SUCCESS 8671 * DDI_FAILURE 8672 * 8673 * Context: Kernel thread context 8674 */ 8675 8676 static int 8677 sd_unit_detach(dev_info_t *devi) 8678 { 8679 struct scsi_device *devp; 8680 struct sd_lun *un; 8681 int i; 8682 int tgt; 8683 dev_t dev; 8684 dev_info_t *pdip = ddi_get_parent(devi); 8685 int instance = ddi_get_instance(devi); 8686 8687 mutex_enter(&sd_detach_mutex); 8688 8689 /* 8690 * Fail the detach for any of the following: 8691 * - Unable to get the sd_lun struct for the instance 8692 * - A layered driver has an outstanding open on the instance 8693 * - Another thread is already detaching this instance 8694 * - Another thread is currently performing an open 8695 */ 8696 devp = ddi_get_driver_private(devi); 8697 if ((devp == NULL) || 8698 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8699 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8700 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8701 mutex_exit(&sd_detach_mutex); 8702 return (DDI_FAILURE); 8703 } 8704 8705 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8706 8707 /* 8708 * Mark this instance as currently in a detach, to inhibit any 8709 * opens from a layered driver. 8710 */ 8711 un->un_detach_count++; 8712 mutex_exit(&sd_detach_mutex); 8713 8714 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8715 SCSI_ADDR_PROP_TARGET, -1); 8716 8717 dev = sd_make_device(SD_DEVINFO(un)); 8718 8719 #ifndef lint 8720 _NOTE(COMPETING_THREADS_NOW); 8721 #endif 8722 8723 mutex_enter(SD_MUTEX(un)); 8724 8725 /* 8726 * Fail the detach if there are any outstanding layered 8727 * opens on this device. 8728 */ 8729 for (i = 0; i < NDKMAP; i++) { 8730 if (un->un_ocmap.lyropen[i] != 0) { 8731 goto err_notclosed; 8732 } 8733 } 8734 8735 /* 8736 * Verify there are NO outstanding commands issued to this device. 8737 * ie, un_ncmds_in_transport == 0. 8738 * It's possible to have outstanding commands through the physio 8739 * code path, even though everything's closed. 8740 */ 8741 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8742 (un->un_direct_priority_timeid != NULL) || 8743 (un->un_state == SD_STATE_RWAIT)) { 8744 mutex_exit(SD_MUTEX(un)); 8745 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8746 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8747 goto err_stillbusy; 8748 } 8749 8750 /* 8751 * If we have the device reserved, release the reservation. 8752 */ 8753 if ((un->un_resvd_status & SD_RESERVE) && 8754 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8755 mutex_exit(SD_MUTEX(un)); 8756 /* 8757 * Note: sd_reserve_release sends a command to the device 8758 * via the sd_ioctlcmd() path, and can sleep. 8759 */ 8760 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8761 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8762 "sd_dr_detach: Cannot release reservation \n"); 8763 } 8764 } else { 8765 mutex_exit(SD_MUTEX(un)); 8766 } 8767 8768 /* 8769 * Untimeout any reserve recover, throttle reset, restart unit 8770 * and delayed broadcast timeout threads. Protect the timeout pointer 8771 * from getting nulled by their callback functions. 8772 */ 8773 mutex_enter(SD_MUTEX(un)); 8774 if (un->un_resvd_timeid != NULL) { 8775 timeout_id_t temp_id = un->un_resvd_timeid; 8776 un->un_resvd_timeid = NULL; 8777 mutex_exit(SD_MUTEX(un)); 8778 (void) untimeout(temp_id); 8779 mutex_enter(SD_MUTEX(un)); 8780 } 8781 8782 if (un->un_reset_throttle_timeid != NULL) { 8783 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8784 un->un_reset_throttle_timeid = NULL; 8785 mutex_exit(SD_MUTEX(un)); 8786 (void) untimeout(temp_id); 8787 mutex_enter(SD_MUTEX(un)); 8788 } 8789 8790 if (un->un_startstop_timeid != NULL) { 8791 timeout_id_t temp_id = un->un_startstop_timeid; 8792 un->un_startstop_timeid = NULL; 8793 mutex_exit(SD_MUTEX(un)); 8794 (void) untimeout(temp_id); 8795 mutex_enter(SD_MUTEX(un)); 8796 } 8797 8798 if (un->un_rmw_msg_timeid != NULL) { 8799 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8800 un->un_rmw_msg_timeid = NULL; 8801 mutex_exit(SD_MUTEX(un)); 8802 (void) untimeout(temp_id); 8803 mutex_enter(SD_MUTEX(un)); 8804 } 8805 8806 if (un->un_dcvb_timeid != NULL) { 8807 timeout_id_t temp_id = un->un_dcvb_timeid; 8808 un->un_dcvb_timeid = NULL; 8809 mutex_exit(SD_MUTEX(un)); 8810 (void) untimeout(temp_id); 8811 } else { 8812 mutex_exit(SD_MUTEX(un)); 8813 } 8814 8815 /* Remove any pending reservation reclaim requests for this device */ 8816 sd_rmv_resv_reclaim_req(dev); 8817 8818 mutex_enter(SD_MUTEX(un)); 8819 8820 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8821 if (un->un_direct_priority_timeid != NULL) { 8822 timeout_id_t temp_id = un->un_direct_priority_timeid; 8823 un->un_direct_priority_timeid = NULL; 8824 mutex_exit(SD_MUTEX(un)); 8825 (void) untimeout(temp_id); 8826 mutex_enter(SD_MUTEX(un)); 8827 } 8828 8829 /* Cancel any active multi-host disk watch thread requests */ 8830 if (un->un_mhd_token != NULL) { 8831 mutex_exit(SD_MUTEX(un)); 8832 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8833 if (scsi_watch_request_terminate(un->un_mhd_token, 8834 SCSI_WATCH_TERMINATE_NOWAIT)) { 8835 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8836 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8837 /* 8838 * Note: We are returning here after having removed 8839 * some driver timeouts above. This is consistent with 8840 * the legacy implementation but perhaps the watch 8841 * terminate call should be made with the wait flag set. 8842 */ 8843 goto err_stillbusy; 8844 } 8845 mutex_enter(SD_MUTEX(un)); 8846 un->un_mhd_token = NULL; 8847 } 8848 8849 if (un->un_swr_token != NULL) { 8850 mutex_exit(SD_MUTEX(un)); 8851 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8852 if (scsi_watch_request_terminate(un->un_swr_token, 8853 SCSI_WATCH_TERMINATE_NOWAIT)) { 8854 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8855 "sd_dr_detach: Cannot cancel swr watch request\n"); 8856 /* 8857 * Note: We are returning here after having removed 8858 * some driver timeouts above. This is consistent with 8859 * the legacy implementation but perhaps the watch 8860 * terminate call should be made with the wait flag set. 8861 */ 8862 goto err_stillbusy; 8863 } 8864 mutex_enter(SD_MUTEX(un)); 8865 un->un_swr_token = NULL; 8866 } 8867 8868 mutex_exit(SD_MUTEX(un)); 8869 8870 /* 8871 * Clear any scsi_reset_notifies. We clear the reset notifies 8872 * if we have not registered one. 8873 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8874 */ 8875 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8876 sd_mhd_reset_notify_cb, (caddr_t)un); 8877 8878 /* 8879 * protect the timeout pointers from getting nulled by 8880 * their callback functions during the cancellation process. 8881 * In such a scenario untimeout can be invoked with a null value. 8882 */ 8883 _NOTE(NO_COMPETING_THREADS_NOW); 8884 8885 mutex_enter(&un->un_pm_mutex); 8886 if (un->un_pm_idle_timeid != NULL) { 8887 timeout_id_t temp_id = un->un_pm_idle_timeid; 8888 un->un_pm_idle_timeid = NULL; 8889 mutex_exit(&un->un_pm_mutex); 8890 8891 /* 8892 * Timeout is active; cancel it. 8893 * Note that it'll never be active on a device 8894 * that does not support PM therefore we don't 8895 * have to check before calling pm_idle_component. 8896 */ 8897 (void) untimeout(temp_id); 8898 (void) pm_idle_component(SD_DEVINFO(un), 0); 8899 mutex_enter(&un->un_pm_mutex); 8900 } 8901 8902 /* 8903 * Check whether there is already a timeout scheduled for power 8904 * management. If yes then don't lower the power here, that's. 8905 * the timeout handler's job. 8906 */ 8907 if (un->un_pm_timeid != NULL) { 8908 timeout_id_t temp_id = un->un_pm_timeid; 8909 un->un_pm_timeid = NULL; 8910 mutex_exit(&un->un_pm_mutex); 8911 /* 8912 * Timeout is active; cancel it. 8913 * Note that it'll never be active on a device 8914 * that does not support PM therefore we don't 8915 * have to check before calling pm_idle_component. 8916 */ 8917 (void) untimeout(temp_id); 8918 (void) pm_idle_component(SD_DEVINFO(un), 0); 8919 8920 } else { 8921 mutex_exit(&un->un_pm_mutex); 8922 if ((un->un_f_pm_is_enabled == TRUE) && 8923 (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un)) 8924 != DDI_SUCCESS)) { 8925 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8926 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8927 /* 8928 * Fix for bug: 4297749, item # 13 8929 * The above test now includes a check to see if PM is 8930 * supported by this device before call 8931 * pm_lower_power(). 8932 * Note, the following is not dead code. The call to 8933 * pm_lower_power above will generate a call back into 8934 * our sdpower routine which might result in a timeout 8935 * handler getting activated. Therefore the following 8936 * code is valid and necessary. 8937 */ 8938 mutex_enter(&un->un_pm_mutex); 8939 if (un->un_pm_timeid != NULL) { 8940 timeout_id_t temp_id = un->un_pm_timeid; 8941 un->un_pm_timeid = NULL; 8942 mutex_exit(&un->un_pm_mutex); 8943 (void) untimeout(temp_id); 8944 (void) pm_idle_component(SD_DEVINFO(un), 0); 8945 } else { 8946 mutex_exit(&un->un_pm_mutex); 8947 } 8948 } 8949 } 8950 8951 /* 8952 * Cleanup from the scsi_ifsetcap() calls (437868) 8953 * Relocated here from above to be after the call to 8954 * pm_lower_power, which was getting errors. 8955 */ 8956 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8957 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8958 8959 /* 8960 * Currently, tagged queuing is supported per target based by HBA. 8961 * Setting this per lun instance actually sets the capability of this 8962 * target in HBA, which affects those luns already attached on the 8963 * same target. So during detach, we can only disable this capability 8964 * only when this is the only lun left on this target. By doing 8965 * this, we assume a target has the same tagged queuing capability 8966 * for every lun. The condition can be removed when HBA is changed to 8967 * support per lun based tagged queuing capability. 8968 */ 8969 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 8970 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8971 } 8972 8973 if (un->un_f_is_fibre == FALSE) { 8974 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8975 } 8976 8977 /* 8978 * Remove any event callbacks, fibre only 8979 */ 8980 if (un->un_f_is_fibre == TRUE) { 8981 if ((un->un_insert_event != NULL) && 8982 (ddi_remove_event_handler(un->un_insert_cb_id) != 8983 DDI_SUCCESS)) { 8984 /* 8985 * Note: We are returning here after having done 8986 * substantial cleanup above. This is consistent 8987 * with the legacy implementation but this may not 8988 * be the right thing to do. 8989 */ 8990 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8991 "sd_dr_detach: Cannot cancel insert event\n"); 8992 goto err_remove_event; 8993 } 8994 un->un_insert_event = NULL; 8995 8996 if ((un->un_remove_event != NULL) && 8997 (ddi_remove_event_handler(un->un_remove_cb_id) != 8998 DDI_SUCCESS)) { 8999 /* 9000 * Note: We are returning here after having done 9001 * substantial cleanup above. This is consistent 9002 * with the legacy implementation but this may not 9003 * be the right thing to do. 9004 */ 9005 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9006 "sd_dr_detach: Cannot cancel remove event\n"); 9007 goto err_remove_event; 9008 } 9009 un->un_remove_event = NULL; 9010 } 9011 9012 /* Do not free the softstate if the callback routine is active */ 9013 sd_sync_with_callback(un); 9014 9015 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 9016 cmlb_free_handle(&un->un_cmlbhandle); 9017 9018 /* 9019 * Hold the detach mutex here, to make sure that no other threads ever 9020 * can access a (partially) freed soft state structure. 9021 */ 9022 mutex_enter(&sd_detach_mutex); 9023 9024 /* 9025 * Clean up the soft state struct. 9026 * Cleanup is done in reverse order of allocs/inits. 9027 * At this point there should be no competing threads anymore. 9028 */ 9029 9030 scsi_fm_fini(devp); 9031 9032 /* 9033 * Deallocate memory for SCSI FMA. 9034 */ 9035 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 9036 9037 /* 9038 * Unregister and free device id if it was not registered 9039 * by the transport. 9040 */ 9041 if (un->un_f_devid_transport_defined == FALSE) 9042 ddi_devid_unregister(devi); 9043 9044 /* 9045 * free the devid structure if allocated before (by ddi_devid_init() 9046 * or ddi_devid_get()). 9047 */ 9048 if (un->un_devid) { 9049 ddi_devid_free(un->un_devid); 9050 un->un_devid = NULL; 9051 } 9052 9053 /* 9054 * Destroy wmap cache if it exists. 9055 */ 9056 if (un->un_wm_cache != NULL) { 9057 kmem_cache_destroy(un->un_wm_cache); 9058 un->un_wm_cache = NULL; 9059 } 9060 9061 /* 9062 * kstat cleanup is done in detach for all device types (4363169). 9063 * We do not want to fail detach if the device kstats are not deleted 9064 * since there is a confusion about the devo_refcnt for the device. 9065 * We just delete the kstats and let detach complete successfully. 9066 */ 9067 if (un->un_stats != NULL) { 9068 kstat_delete(un->un_stats); 9069 un->un_stats = NULL; 9070 } 9071 if (un->un_unmapstats != NULL) { 9072 kstat_delete(un->un_unmapstats_ks); 9073 un->un_unmapstats_ks = NULL; 9074 un->un_unmapstats = NULL; 9075 } 9076 if (un->un_errstats != NULL) { 9077 kstat_delete(un->un_errstats); 9078 un->un_errstats = NULL; 9079 } 9080 9081 /* Remove partition stats */ 9082 if (un->un_f_pkstats_enabled) { 9083 for (i = 0; i < NSDMAP; i++) { 9084 if (un->un_pstats[i] != NULL) { 9085 kstat_delete(un->un_pstats[i]); 9086 un->un_pstats[i] = NULL; 9087 } 9088 } 9089 } 9090 9091 /* Remove xbuf registration */ 9092 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 9093 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 9094 9095 /* Remove driver properties */ 9096 ddi_prop_remove_all(devi); 9097 9098 mutex_destroy(&un->un_pm_mutex); 9099 cv_destroy(&un->un_pm_busy_cv); 9100 9101 cv_destroy(&un->un_wcc_cv); 9102 9103 /* Open/close semaphore */ 9104 sema_destroy(&un->un_semoclose); 9105 9106 /* Removable media condvar. */ 9107 cv_destroy(&un->un_state_cv); 9108 9109 /* Suspend/resume condvar. */ 9110 cv_destroy(&un->un_suspend_cv); 9111 cv_destroy(&un->un_disk_busy_cv); 9112 9113 sd_free_rqs(un); 9114 9115 /* Free up soft state */ 9116 devp->sd_private = NULL; 9117 9118 bzero(un, sizeof (struct sd_lun)); 9119 9120 ddi_soft_state_free(sd_state, instance); 9121 9122 mutex_exit(&sd_detach_mutex); 9123 9124 /* This frees up the INQUIRY data associated with the device. */ 9125 scsi_unprobe(devp); 9126 9127 /* 9128 * After successfully detaching an instance, we update the information 9129 * of how many luns have been attached in the relative target and 9130 * controller for parallel SCSI. This information is used when sd tries 9131 * to set the tagged queuing capability in HBA. 9132 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 9133 * check if the device is parallel SCSI. However, we don't need to 9134 * check here because we've already checked during attach. No device 9135 * that is not parallel SCSI is in the chain. 9136 */ 9137 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 9138 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 9139 } 9140 9141 return (DDI_SUCCESS); 9142 9143 err_notclosed: 9144 mutex_exit(SD_MUTEX(un)); 9145 9146 err_stillbusy: 9147 _NOTE(NO_COMPETING_THREADS_NOW); 9148 9149 err_remove_event: 9150 mutex_enter(&sd_detach_mutex); 9151 un->un_detach_count--; 9152 mutex_exit(&sd_detach_mutex); 9153 9154 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 9155 return (DDI_FAILURE); 9156 } 9157 9158 9159 /* 9160 * Function: sd_create_errstats 9161 * 9162 * Description: This routine instantiates the device error stats. 9163 * 9164 * Note: During attach the stats are instantiated first so they are 9165 * available for attach-time routines that utilize the driver 9166 * iopath to send commands to the device. The stats are initialized 9167 * separately so data obtained during some attach-time routines is 9168 * available. (4362483) 9169 * 9170 * Arguments: un - driver soft state (unit) structure 9171 * instance - driver instance 9172 * 9173 * Context: Kernel thread context 9174 */ 9175 9176 static void 9177 sd_create_errstats(struct sd_lun *un, int instance) 9178 { 9179 struct sd_errstats *stp; 9180 char kstatmodule_err[KSTAT_STRLEN]; 9181 char kstatname[KSTAT_STRLEN]; 9182 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9183 9184 ASSERT(un != NULL); 9185 9186 if (un->un_errstats != NULL) { 9187 return; 9188 } 9189 9190 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9191 "%serr", sd_label); 9192 (void) snprintf(kstatname, sizeof (kstatname), 9193 "%s%d,err", sd_label, instance); 9194 9195 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9196 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9197 9198 if (un->un_errstats == NULL) { 9199 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9200 "sd_create_errstats: Failed kstat_create\n"); 9201 return; 9202 } 9203 9204 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9205 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9206 KSTAT_DATA_UINT32); 9207 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9208 KSTAT_DATA_UINT32); 9209 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9210 KSTAT_DATA_UINT32); 9211 kstat_named_init(&stp->sd_vid, "Vendor", 9212 KSTAT_DATA_CHAR); 9213 kstat_named_init(&stp->sd_pid, "Product", 9214 KSTAT_DATA_CHAR); 9215 kstat_named_init(&stp->sd_revision, "Revision", 9216 KSTAT_DATA_CHAR); 9217 kstat_named_init(&stp->sd_serial, "Serial No", 9218 KSTAT_DATA_CHAR); 9219 kstat_named_init(&stp->sd_capacity, "Size", 9220 KSTAT_DATA_ULONGLONG); 9221 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9222 KSTAT_DATA_UINT32); 9223 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9224 KSTAT_DATA_UINT32); 9225 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9226 KSTAT_DATA_UINT32); 9227 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9228 KSTAT_DATA_UINT32); 9229 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9230 KSTAT_DATA_UINT32); 9231 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9232 KSTAT_DATA_UINT32); 9233 9234 un->un_errstats->ks_private = un; 9235 un->un_errstats->ks_update = nulldev; 9236 9237 kstat_install(un->un_errstats); 9238 } 9239 9240 9241 /* 9242 * Function: sd_set_errstats 9243 * 9244 * Description: This routine sets the value of the vendor id, product id, 9245 * revision, serial number, and capacity device error stats. 9246 * 9247 * Note: During attach the stats are instantiated first so they are 9248 * available for attach-time routines that utilize the driver 9249 * iopath to send commands to the device. The stats are initialized 9250 * separately so data obtained during some attach-time routines is 9251 * available. (4362483) 9252 * 9253 * Arguments: un - driver soft state (unit) structure 9254 * 9255 * Context: Kernel thread context 9256 */ 9257 9258 static void 9259 sd_set_errstats(struct sd_lun *un) 9260 { 9261 struct sd_errstats *stp; 9262 char *sn; 9263 9264 ASSERT(un != NULL); 9265 ASSERT(un->un_errstats != NULL); 9266 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9267 ASSERT(stp != NULL); 9268 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9269 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9270 (void) strncpy(stp->sd_revision.value.c, 9271 un->un_sd->sd_inq->inq_revision, 4); 9272 9273 /* 9274 * All the errstats are persistent across detach/attach, 9275 * so reset all the errstats here in case of the hot 9276 * replacement of disk drives, except for not changed 9277 * Sun qualified drives. 9278 */ 9279 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 9280 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9281 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 9282 stp->sd_softerrs.value.ui32 = 0; 9283 stp->sd_harderrs.value.ui32 = 0; 9284 stp->sd_transerrs.value.ui32 = 0; 9285 stp->sd_rq_media_err.value.ui32 = 0; 9286 stp->sd_rq_ntrdy_err.value.ui32 = 0; 9287 stp->sd_rq_nodev_err.value.ui32 = 0; 9288 stp->sd_rq_recov_err.value.ui32 = 0; 9289 stp->sd_rq_illrq_err.value.ui32 = 0; 9290 stp->sd_rq_pfa_err.value.ui32 = 0; 9291 } 9292 9293 /* 9294 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9295 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9296 * (4376302)) 9297 */ 9298 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9299 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9300 sizeof (SD_INQUIRY(un)->inq_serial)); 9301 } else { 9302 /* 9303 * Set the "Serial No" kstat for non-Sun qualified drives 9304 */ 9305 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un), 9306 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 9307 INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) { 9308 (void) strlcpy(stp->sd_serial.value.c, sn, 9309 sizeof (stp->sd_serial.value.c)); 9310 ddi_prop_free(sn); 9311 } 9312 } 9313 9314 if (un->un_f_blockcount_is_valid != TRUE) { 9315 /* 9316 * Set capacity error stat to 0 for no media. This ensures 9317 * a valid capacity is displayed in response to 'iostat -E' 9318 * when no media is present in the device. 9319 */ 9320 stp->sd_capacity.value.ui64 = 0; 9321 } else { 9322 /* 9323 * Multiply un_blockcount by un->un_sys_blocksize to get 9324 * capacity. 9325 * 9326 * Note: for non-512 blocksize devices "un_blockcount" has been 9327 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9328 * (un_tgt_blocksize / un->un_sys_blocksize). 9329 */ 9330 stp->sd_capacity.value.ui64 = (uint64_t) 9331 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9332 } 9333 } 9334 9335 9336 /* 9337 * Function: sd_set_pstats 9338 * 9339 * Description: This routine instantiates and initializes the partition 9340 * stats for each partition with more than zero blocks. 9341 * (4363169) 9342 * 9343 * Arguments: un - driver soft state (unit) structure 9344 * 9345 * Context: Kernel thread context 9346 */ 9347 9348 static void 9349 sd_set_pstats(struct sd_lun *un) 9350 { 9351 char kstatname[KSTAT_STRLEN]; 9352 int instance; 9353 int i; 9354 diskaddr_t nblks = 0; 9355 char *partname = NULL; 9356 9357 ASSERT(un != NULL); 9358 9359 instance = ddi_get_instance(SD_DEVINFO(un)); 9360 9361 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9362 for (i = 0; i < NSDMAP; i++) { 9363 9364 if (cmlb_partinfo(un->un_cmlbhandle, i, 9365 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 9366 continue; 9367 mutex_enter(SD_MUTEX(un)); 9368 9369 if ((un->un_pstats[i] == NULL) && 9370 (nblks != 0)) { 9371 9372 (void) snprintf(kstatname, sizeof (kstatname), 9373 "%s%d,%s", sd_label, instance, 9374 partname); 9375 9376 un->un_pstats[i] = kstat_create(sd_label, 9377 instance, kstatname, "partition", KSTAT_TYPE_IO, 9378 1, KSTAT_FLAG_PERSISTENT); 9379 if (un->un_pstats[i] != NULL) { 9380 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9381 kstat_install(un->un_pstats[i]); 9382 } 9383 } 9384 mutex_exit(SD_MUTEX(un)); 9385 } 9386 } 9387 9388 9389 #if (defined(__fibre)) 9390 /* 9391 * Function: sd_init_event_callbacks 9392 * 9393 * Description: This routine initializes the insertion and removal event 9394 * callbacks. (fibre only) 9395 * 9396 * Arguments: un - driver soft state (unit) structure 9397 * 9398 * Context: Kernel thread context 9399 */ 9400 9401 static void 9402 sd_init_event_callbacks(struct sd_lun *un) 9403 { 9404 ASSERT(un != NULL); 9405 9406 if ((un->un_insert_event == NULL) && 9407 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9408 &un->un_insert_event) == DDI_SUCCESS)) { 9409 /* 9410 * Add the callback for an insertion event 9411 */ 9412 (void) ddi_add_event_handler(SD_DEVINFO(un), 9413 un->un_insert_event, sd_event_callback, (void *)un, 9414 &(un->un_insert_cb_id)); 9415 } 9416 9417 if ((un->un_remove_event == NULL) && 9418 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9419 &un->un_remove_event) == DDI_SUCCESS)) { 9420 /* 9421 * Add the callback for a removal event 9422 */ 9423 (void) ddi_add_event_handler(SD_DEVINFO(un), 9424 un->un_remove_event, sd_event_callback, (void *)un, 9425 &(un->un_remove_cb_id)); 9426 } 9427 } 9428 9429 9430 /* 9431 * Function: sd_event_callback 9432 * 9433 * Description: This routine handles insert/remove events (photon). The 9434 * state is changed to OFFLINE which can be used to supress 9435 * error msgs. (fibre only) 9436 * 9437 * Arguments: un - driver soft state (unit) structure 9438 * 9439 * Context: Callout thread context 9440 */ 9441 /* ARGSUSED */ 9442 static void 9443 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9444 void *bus_impldata) 9445 { 9446 struct sd_lun *un = (struct sd_lun *)arg; 9447 9448 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9449 if (event == un->un_insert_event) { 9450 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9451 mutex_enter(SD_MUTEX(un)); 9452 if (un->un_state == SD_STATE_OFFLINE) { 9453 if (un->un_last_state != SD_STATE_SUSPENDED) { 9454 un->un_state = un->un_last_state; 9455 } else { 9456 /* 9457 * We have gone through SUSPEND/RESUME while 9458 * we were offline. Restore the last state 9459 */ 9460 un->un_state = un->un_save_state; 9461 } 9462 } 9463 mutex_exit(SD_MUTEX(un)); 9464 9465 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9466 } else if (event == un->un_remove_event) { 9467 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9468 mutex_enter(SD_MUTEX(un)); 9469 /* 9470 * We need to handle an event callback that occurs during 9471 * the suspend operation, since we don't prevent it. 9472 */ 9473 if (un->un_state != SD_STATE_OFFLINE) { 9474 if (un->un_state != SD_STATE_SUSPENDED) { 9475 New_state(un, SD_STATE_OFFLINE); 9476 } else { 9477 un->un_last_state = SD_STATE_OFFLINE; 9478 } 9479 } 9480 mutex_exit(SD_MUTEX(un)); 9481 } else { 9482 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9483 "!Unknown event\n"); 9484 } 9485 9486 } 9487 #endif 9488 9489 /* 9490 * Values related to caching mode page depending on whether the unit is ATAPI. 9491 */ 9492 #define SDC_CDB_GROUP(un) ((un->un_f_cfg_is_atapi == TRUE) ? \ 9493 CDB_GROUP1 : CDB_GROUP0) 9494 #define SDC_HDRLEN(un) ((un->un_f_cfg_is_atapi == TRUE) ? \ 9495 MODE_HEADER_LENGTH_GRP2 : MODE_HEADER_LENGTH) 9496 /* 9497 * Use mode_cache_scsi3 to ensure we get all of the mode sense data, otherwise 9498 * the mode select will fail (mode_cache_scsi3 is a superset of mode_caching). 9499 */ 9500 #define SDC_BUFLEN(un) (SDC_HDRLEN(un) + MODE_BLK_DESC_LENGTH + \ 9501 sizeof (struct mode_cache_scsi3)) 9502 9503 static int 9504 sd_get_caching_mode_page(sd_ssc_t *ssc, uchar_t page_control, uchar_t **header, 9505 int *bdlen) 9506 { 9507 struct sd_lun *un = ssc->ssc_un; 9508 struct mode_caching *mode_caching_page; 9509 size_t buflen = SDC_BUFLEN(un); 9510 int hdrlen = SDC_HDRLEN(un); 9511 int rval; 9512 9513 /* 9514 * Do a test unit ready, otherwise a mode sense may not work if this 9515 * is the first command sent to the device after boot. 9516 */ 9517 if (sd_send_scsi_TEST_UNIT_READY(ssc, 0) != 0) 9518 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9519 9520 /* 9521 * Allocate memory for the retrieved mode page and its headers. Set 9522 * a pointer to the page itself. 9523 */ 9524 *header = kmem_zalloc(buflen, KM_SLEEP); 9525 9526 /* Get the information from the device */ 9527 rval = sd_send_scsi_MODE_SENSE(ssc, SDC_CDB_GROUP(un), *header, buflen, 9528 page_control | MODEPAGE_CACHING, SD_PATH_DIRECT); 9529 if (rval != 0) { 9530 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, "%s: Mode Sense Failed\n", 9531 __func__); 9532 goto mode_sense_failed; 9533 } 9534 9535 /* 9536 * Determine size of Block Descriptors in order to locate 9537 * the mode page data. ATAPI devices return 0, SCSI devices 9538 * should return MODE_BLK_DESC_LENGTH. 9539 */ 9540 if (un->un_f_cfg_is_atapi == TRUE) { 9541 struct mode_header_grp2 *mhp = 9542 (struct mode_header_grp2 *)(*header); 9543 *bdlen = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9544 } else { 9545 *bdlen = ((struct mode_header *)(*header))->bdesc_length; 9546 } 9547 9548 if (*bdlen > MODE_BLK_DESC_LENGTH) { 9549 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9550 "%s: Mode Sense returned invalid block descriptor length\n", 9551 __func__); 9552 rval = EIO; 9553 goto mode_sense_failed; 9554 } 9555 9556 mode_caching_page = (struct mode_caching *)(*header + hdrlen + *bdlen); 9557 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9558 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9559 "%s: Mode Sense caching page code mismatch %d\n", 9560 __func__, mode_caching_page->mode_page.code); 9561 rval = EIO; 9562 } 9563 9564 mode_sense_failed: 9565 if (rval != 0) { 9566 kmem_free(*header, buflen); 9567 *header = NULL; 9568 *bdlen = 0; 9569 } 9570 return (rval); 9571 } 9572 9573 /* 9574 * Function: sd_cache_control() 9575 * 9576 * Description: This routine is the driver entry point for setting 9577 * read and write caching by modifying the WCE (write cache 9578 * enable) and RCD (read cache disable) bits of mode 9579 * page 8 (MODEPAGE_CACHING). 9580 * 9581 * Arguments: ssc - ssc contains pointer to driver soft state 9582 * (unit) structure for this target. 9583 * rcd_flag - flag for controlling the read cache 9584 * wce_flag - flag for controlling the write cache 9585 * 9586 * Return Code: EIO 9587 * code returned by sd_send_scsi_MODE_SENSE and 9588 * sd_send_scsi_MODE_SELECT 9589 * 9590 * Context: Kernel Thread 9591 */ 9592 9593 static int 9594 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag) 9595 { 9596 struct sd_lun *un = ssc->ssc_un; 9597 struct mode_caching *mode_caching_page; 9598 uchar_t *header; 9599 size_t buflen = SDC_BUFLEN(un); 9600 int hdrlen = SDC_HDRLEN(un); 9601 int bdlen; 9602 int rval; 9603 9604 rval = sd_get_caching_mode_page(ssc, MODEPAGE_CURRENT, &header, &bdlen); 9605 switch (rval) { 9606 case 0: 9607 /* Check the relevant bits on successful mode sense */ 9608 mode_caching_page = (struct mode_caching *)(header + hdrlen + 9609 bdlen); 9610 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9611 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9612 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9613 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9614 size_t sbuflen; 9615 uchar_t save_pg; 9616 9617 /* 9618 * Construct select buffer length based on the 9619 * length of the sense data returned. 9620 */ 9621 sbuflen = hdrlen + bdlen + sizeof (struct mode_page) + 9622 (int)mode_caching_page->mode_page.length; 9623 9624 /* Set the caching bits as requested */ 9625 if (rcd_flag == SD_CACHE_ENABLE) 9626 mode_caching_page->rcd = 0; 9627 else if (rcd_flag == SD_CACHE_DISABLE) 9628 mode_caching_page->rcd = 1; 9629 9630 if (wce_flag == SD_CACHE_ENABLE) 9631 mode_caching_page->wce = 1; 9632 else if (wce_flag == SD_CACHE_DISABLE) 9633 mode_caching_page->wce = 0; 9634 9635 /* 9636 * Save the page if the mode sense says the 9637 * drive supports it. 9638 */ 9639 save_pg = mode_caching_page->mode_page.ps ? 9640 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9641 9642 /* Clear reserved bits before mode select */ 9643 mode_caching_page->mode_page.ps = 0; 9644 9645 /* 9646 * Clear out mode header for mode select. 9647 * The rest of the retrieved page will be reused. 9648 */ 9649 bzero(header, hdrlen); 9650 9651 if (un->un_f_cfg_is_atapi == TRUE) { 9652 struct mode_header_grp2 *mhp = 9653 (struct mode_header_grp2 *)header; 9654 mhp->bdesc_length_hi = bdlen >> 8; 9655 mhp->bdesc_length_lo = (uchar_t)bdlen & 0xff; 9656 } else { 9657 ((struct mode_header *)header)->bdesc_length = 9658 bdlen; 9659 } 9660 9661 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9662 9663 /* Issue mode select to change the cache settings */ 9664 rval = sd_send_scsi_MODE_SELECT(ssc, SDC_CDB_GROUP(un), 9665 header, sbuflen, save_pg, SD_PATH_DIRECT); 9666 } 9667 kmem_free(header, buflen); 9668 break; 9669 case EIO: 9670 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9671 break; 9672 default: 9673 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9674 break; 9675 } 9676 9677 return (rval); 9678 } 9679 9680 9681 /* 9682 * Function: sd_get_write_cache_enabled() 9683 * 9684 * Description: This routine is the driver entry point for determining if write 9685 * caching is enabled. It examines the WCE (write cache enable) 9686 * bits of mode page 8 (MODEPAGE_CACHING) with Page Control field 9687 * bits set to MODEPAGE_CURRENT. 9688 * 9689 * Arguments: ssc - ssc contains pointer to driver soft state 9690 * (unit) structure for this target. 9691 * is_enabled - pointer to int where write cache enabled state 9692 * is returned (non-zero -> write cache enabled) 9693 * 9694 * Return Code: EIO 9695 * code returned by sd_send_scsi_MODE_SENSE 9696 * 9697 * Context: Kernel Thread 9698 * 9699 * NOTE: If ioctl is added to disable write cache, this sequence should 9700 * be followed so that no locking is required for accesses to 9701 * un->un_f_write_cache_enabled: 9702 * do mode select to clear wce 9703 * do synchronize cache to flush cache 9704 * set un->un_f_write_cache_enabled = FALSE 9705 * 9706 * Conversely, an ioctl to enable the write cache should be done 9707 * in this order: 9708 * set un->un_f_write_cache_enabled = TRUE 9709 * do mode select to set wce 9710 */ 9711 9712 static int 9713 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled) 9714 { 9715 struct sd_lun *un = ssc->ssc_un; 9716 struct mode_caching *mode_caching_page; 9717 uchar_t *header; 9718 size_t buflen = SDC_BUFLEN(un); 9719 int hdrlen = SDC_HDRLEN(un); 9720 int bdlen; 9721 int rval; 9722 9723 /* In case of error, flag as enabled */ 9724 *is_enabled = TRUE; 9725 9726 rval = sd_get_caching_mode_page(ssc, MODEPAGE_CURRENT, &header, &bdlen); 9727 switch (rval) { 9728 case 0: 9729 mode_caching_page = (struct mode_caching *)(header + hdrlen + 9730 bdlen); 9731 *is_enabled = mode_caching_page->wce; 9732 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9733 kmem_free(header, buflen); 9734 break; 9735 case EIO: { 9736 /* 9737 * Some disks do not support Mode Sense(6), we 9738 * should ignore this kind of error (sense key is 9739 * 0x5 - illegal request). 9740 */ 9741 uint8_t *sensep; 9742 int senlen; 9743 9744 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 9745 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 9746 ssc->ssc_uscsi_cmd->uscsi_rqresid); 9747 9748 if (senlen > 0 && 9749 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 9750 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 9751 } else { 9752 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9753 } 9754 break; 9755 } 9756 default: 9757 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9758 break; 9759 } 9760 9761 return (rval); 9762 } 9763 9764 /* 9765 * Function: sd_get_write_cache_changeable() 9766 * 9767 * Description: This routine is the driver entry point for determining if write 9768 * caching is changeable. It examines the WCE (write cache enable) 9769 * bits of mode page 8 (MODEPAGE_CACHING) with Page Control field 9770 * bits set to MODEPAGE_CHANGEABLE. 9771 * 9772 * Arguments: ssc - ssc contains pointer to driver soft state 9773 * (unit) structure for this target. 9774 * is_changeable - pointer to int where write cache changeable 9775 * state is returned (non-zero -> write cache 9776 * changeable) 9777 * 9778 * Context: Kernel Thread 9779 */ 9780 9781 static void 9782 sd_get_write_cache_changeable(sd_ssc_t *ssc, int *is_changeable) 9783 { 9784 struct sd_lun *un = ssc->ssc_un; 9785 struct mode_caching *mode_caching_page; 9786 uchar_t *header; 9787 size_t buflen = SDC_BUFLEN(un); 9788 int hdrlen = SDC_HDRLEN(un); 9789 int bdlen; 9790 int rval; 9791 9792 /* In case of error, flag as enabled */ 9793 *is_changeable = TRUE; 9794 9795 rval = sd_get_caching_mode_page(ssc, MODEPAGE_CHANGEABLE, &header, 9796 &bdlen); 9797 switch (rval) { 9798 case 0: 9799 mode_caching_page = (struct mode_caching *)(header + hdrlen + 9800 bdlen); 9801 *is_changeable = mode_caching_page->wce; 9802 kmem_free(header, buflen); 9803 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9804 break; 9805 case EIO: 9806 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9807 break; 9808 default: 9809 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9810 break; 9811 } 9812 } 9813 9814 /* 9815 * Function: sd_get_nv_sup() 9816 * 9817 * Description: This routine is the driver entry point for 9818 * determining whether non-volatile cache is supported. This 9819 * determination process works as follows: 9820 * 9821 * 1. sd first queries sd.conf on whether 9822 * suppress_cache_flush bit is set for this device. 9823 * 9824 * 2. if not there, then queries the internal disk table. 9825 * 9826 * 3. if either sd.conf or internal disk table specifies 9827 * cache flush be suppressed, we don't bother checking 9828 * NV_SUP bit. 9829 * 9830 * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries 9831 * the optional INQUIRY VPD page 0x86. If the device 9832 * supports VPD page 0x86, sd examines the NV_SUP 9833 * (non-volatile cache support) bit in the INQUIRY VPD page 9834 * 0x86: 9835 * o If NV_SUP bit is set, sd assumes the device has a 9836 * non-volatile cache and set the 9837 * un_f_sync_nv_supported to TRUE. 9838 * o Otherwise cache is not non-volatile, 9839 * un_f_sync_nv_supported is set to FALSE. 9840 * 9841 * Arguments: un - driver soft state (unit) structure 9842 * 9843 * Return Code: 9844 * 9845 * Context: Kernel Thread 9846 */ 9847 9848 static void 9849 sd_get_nv_sup(sd_ssc_t *ssc) 9850 { 9851 int rval = 0; 9852 uchar_t *inq86 = NULL; 9853 size_t inq86_len = MAX_INQUIRY_SIZE; 9854 size_t inq86_resid = 0; 9855 struct dk_callback *dkc; 9856 struct sd_lun *un; 9857 9858 ASSERT(ssc != NULL); 9859 un = ssc->ssc_un; 9860 ASSERT(un != NULL); 9861 9862 mutex_enter(SD_MUTEX(un)); 9863 9864 /* 9865 * Be conservative on the device's support of 9866 * SYNC_NV bit: un_f_sync_nv_supported is 9867 * initialized to be false. 9868 */ 9869 un->un_f_sync_nv_supported = FALSE; 9870 9871 /* 9872 * If either sd.conf or internal disk table 9873 * specifies cache flush be suppressed, then 9874 * we don't bother checking NV_SUP bit. 9875 */ 9876 if (un->un_f_suppress_cache_flush == TRUE) { 9877 mutex_exit(SD_MUTEX(un)); 9878 return; 9879 } 9880 9881 if (sd_check_vpd_page_support(ssc) == 0 && 9882 un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) { 9883 mutex_exit(SD_MUTEX(un)); 9884 /* collect page 86 data if available */ 9885 inq86 = kmem_zalloc(inq86_len, KM_SLEEP); 9886 9887 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len, 9888 0x01, 0x86, &inq86_resid); 9889 9890 if (rval == 0 && (inq86_len - inq86_resid > 6)) { 9891 SD_TRACE(SD_LOG_COMMON, un, 9892 "sd_get_nv_sup: \ 9893 successfully get VPD page: %x \ 9894 PAGE LENGTH: %x BYTE 6: %x\n", 9895 inq86[1], inq86[3], inq86[6]); 9896 9897 mutex_enter(SD_MUTEX(un)); 9898 /* 9899 * check the value of NV_SUP bit: only if the device 9900 * reports NV_SUP bit to be 1, the 9901 * un_f_sync_nv_supported bit will be set to true. 9902 */ 9903 if (inq86[6] & SD_VPD_NV_SUP) { 9904 un->un_f_sync_nv_supported = TRUE; 9905 } 9906 mutex_exit(SD_MUTEX(un)); 9907 } else if (rval != 0) { 9908 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9909 } 9910 9911 kmem_free(inq86, inq86_len); 9912 } else { 9913 mutex_exit(SD_MUTEX(un)); 9914 } 9915 9916 /* 9917 * Send a SYNC CACHE command to check whether 9918 * SYNC_NV bit is supported. This command should have 9919 * un_f_sync_nv_supported set to correct value. 9920 */ 9921 mutex_enter(SD_MUTEX(un)); 9922 if (un->un_f_sync_nv_supported) { 9923 mutex_exit(SD_MUTEX(un)); 9924 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP); 9925 dkc->dkc_flag = FLUSH_VOLATILE; 9926 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 9927 9928 /* 9929 * Send a TEST UNIT READY command to the device. This should 9930 * clear any outstanding UNIT ATTENTION that may be present. 9931 */ 9932 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 9933 if (rval != 0) 9934 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9935 9936 kmem_free(dkc, sizeof (struct dk_callback)); 9937 } else { 9938 mutex_exit(SD_MUTEX(un)); 9939 } 9940 9941 SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \ 9942 un_f_suppress_cache_flush is set to %d\n", 9943 un->un_f_suppress_cache_flush); 9944 } 9945 9946 /* 9947 * Function: sd_make_device 9948 * 9949 * Description: Utility routine to return the Solaris device number from 9950 * the data in the device's dev_info structure. 9951 * 9952 * Return Code: The Solaris device number 9953 * 9954 * Context: Any 9955 */ 9956 9957 static dev_t 9958 sd_make_device(dev_info_t *devi) 9959 { 9960 return (makedevice(ddi_driver_major(devi), 9961 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9962 } 9963 9964 9965 /* 9966 * Function: sd_pm_entry 9967 * 9968 * Description: Called at the start of a new command to manage power 9969 * and busy status of a device. This includes determining whether 9970 * the current power state of the device is sufficient for 9971 * performing the command or whether it must be changed. 9972 * The PM framework is notified appropriately. 9973 * Only with a return status of DDI_SUCCESS will the 9974 * component be busy to the framework. 9975 * 9976 * All callers of sd_pm_entry must check the return status 9977 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9978 * of DDI_FAILURE indicates the device failed to power up. 9979 * In this case un_pm_count has been adjusted so the result 9980 * on exit is still powered down, ie. count is less than 0. 9981 * Calling sd_pm_exit with this count value hits an ASSERT. 9982 * 9983 * Return Code: DDI_SUCCESS or DDI_FAILURE 9984 * 9985 * Context: Kernel thread context. 9986 */ 9987 9988 static int 9989 sd_pm_entry(struct sd_lun *un) 9990 { 9991 int return_status = DDI_SUCCESS; 9992 9993 ASSERT(!mutex_owned(SD_MUTEX(un))); 9994 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9995 9996 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9997 9998 if (un->un_f_pm_is_enabled == FALSE) { 9999 SD_TRACE(SD_LOG_IO_PM, un, 10000 "sd_pm_entry: exiting, PM not enabled\n"); 10001 return (return_status); 10002 } 10003 10004 /* 10005 * Just increment a counter if PM is enabled. On the transition from 10006 * 0 ==> 1, mark the device as busy. The iodone side will decrement 10007 * the count with each IO and mark the device as idle when the count 10008 * hits 0. 10009 * 10010 * If the count is less than 0 the device is powered down. If a powered 10011 * down device is successfully powered up then the count must be 10012 * incremented to reflect the power up. Note that it'll get incremented 10013 * a second time to become busy. 10014 * 10015 * Because the following has the potential to change the device state 10016 * and must release the un_pm_mutex to do so, only one thread can be 10017 * allowed through at a time. 10018 */ 10019 10020 mutex_enter(&un->un_pm_mutex); 10021 while (un->un_pm_busy == TRUE) { 10022 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 10023 } 10024 un->un_pm_busy = TRUE; 10025 10026 if (un->un_pm_count < 1) { 10027 10028 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 10029 10030 /* 10031 * Indicate we are now busy so the framework won't attempt to 10032 * power down the device. This call will only fail if either 10033 * we passed a bad component number or the device has no 10034 * components. Neither of these should ever happen. 10035 */ 10036 mutex_exit(&un->un_pm_mutex); 10037 return_status = pm_busy_component(SD_DEVINFO(un), 0); 10038 ASSERT(return_status == DDI_SUCCESS); 10039 10040 mutex_enter(&un->un_pm_mutex); 10041 10042 if (un->un_pm_count < 0) { 10043 mutex_exit(&un->un_pm_mutex); 10044 10045 SD_TRACE(SD_LOG_IO_PM, un, 10046 "sd_pm_entry: power up component\n"); 10047 10048 /* 10049 * pm_raise_power will cause sdpower to be called 10050 * which brings the device power level to the 10051 * desired state, If successful, un_pm_count and 10052 * un_power_level will be updated appropriately. 10053 */ 10054 return_status = pm_raise_power(SD_DEVINFO(un), 0, 10055 SD_PM_STATE_ACTIVE(un)); 10056 10057 mutex_enter(&un->un_pm_mutex); 10058 10059 if (return_status != DDI_SUCCESS) { 10060 /* 10061 * Power up failed. 10062 * Idle the device and adjust the count 10063 * so the result on exit is that we're 10064 * still powered down, ie. count is less than 0. 10065 */ 10066 SD_TRACE(SD_LOG_IO_PM, un, 10067 "sd_pm_entry: power up failed," 10068 " idle the component\n"); 10069 10070 (void) pm_idle_component(SD_DEVINFO(un), 0); 10071 un->un_pm_count--; 10072 } else { 10073 /* 10074 * Device is powered up, verify the 10075 * count is non-negative. 10076 * This is debug only. 10077 */ 10078 ASSERT(un->un_pm_count == 0); 10079 } 10080 } 10081 10082 if (return_status == DDI_SUCCESS) { 10083 /* 10084 * For performance, now that the device has been tagged 10085 * as busy, and it's known to be powered up, update the 10086 * chain types to use jump tables that do not include 10087 * pm. This significantly lowers the overhead and 10088 * therefore improves performance. 10089 */ 10090 10091 mutex_exit(&un->un_pm_mutex); 10092 mutex_enter(SD_MUTEX(un)); 10093 SD_TRACE(SD_LOG_IO_PM, un, 10094 "sd_pm_entry: changing uscsi_chain_type from %d\n", 10095 un->un_uscsi_chain_type); 10096 10097 if (un->un_f_non_devbsize_supported) { 10098 un->un_buf_chain_type = 10099 SD_CHAIN_INFO_RMMEDIA_NO_PM; 10100 } else { 10101 un->un_buf_chain_type = 10102 SD_CHAIN_INFO_DISK_NO_PM; 10103 } 10104 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 10105 10106 SD_TRACE(SD_LOG_IO_PM, un, 10107 " changed uscsi_chain_type to %d\n", 10108 un->un_uscsi_chain_type); 10109 mutex_exit(SD_MUTEX(un)); 10110 mutex_enter(&un->un_pm_mutex); 10111 10112 if (un->un_pm_idle_timeid == NULL) { 10113 /* 300 ms. */ 10114 un->un_pm_idle_timeid = 10115 timeout(sd_pm_idletimeout_handler, un, 10116 (drv_usectohz((clock_t)300000))); 10117 /* 10118 * Include an extra call to busy which keeps the 10119 * device busy with-respect-to the PM layer 10120 * until the timer fires, at which time it'll 10121 * get the extra idle call. 10122 */ 10123 (void) pm_busy_component(SD_DEVINFO(un), 0); 10124 } 10125 } 10126 } 10127 un->un_pm_busy = FALSE; 10128 /* Next... */ 10129 cv_signal(&un->un_pm_busy_cv); 10130 10131 un->un_pm_count++; 10132 10133 SD_TRACE(SD_LOG_IO_PM, un, 10134 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 10135 10136 mutex_exit(&un->un_pm_mutex); 10137 10138 return (return_status); 10139 } 10140 10141 10142 /* 10143 * Function: sd_pm_exit 10144 * 10145 * Description: Called at the completion of a command to manage busy 10146 * status for the device. If the device becomes idle the 10147 * PM framework is notified. 10148 * 10149 * Context: Kernel thread context 10150 */ 10151 10152 static void 10153 sd_pm_exit(struct sd_lun *un) 10154 { 10155 ASSERT(!mutex_owned(SD_MUTEX(un))); 10156 ASSERT(!mutex_owned(&un->un_pm_mutex)); 10157 10158 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 10159 10160 /* 10161 * After attach the following flag is only read, so don't 10162 * take the penalty of acquiring a mutex for it. 10163 */ 10164 if (un->un_f_pm_is_enabled == TRUE) { 10165 10166 mutex_enter(&un->un_pm_mutex); 10167 un->un_pm_count--; 10168 10169 SD_TRACE(SD_LOG_IO_PM, un, 10170 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 10171 10172 ASSERT(un->un_pm_count >= 0); 10173 if (un->un_pm_count == 0) { 10174 mutex_exit(&un->un_pm_mutex); 10175 10176 SD_TRACE(SD_LOG_IO_PM, un, 10177 "sd_pm_exit: idle component\n"); 10178 10179 (void) pm_idle_component(SD_DEVINFO(un), 0); 10180 10181 } else { 10182 mutex_exit(&un->un_pm_mutex); 10183 } 10184 } 10185 10186 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10187 } 10188 10189 10190 /* 10191 * Function: sdopen 10192 * 10193 * Description: Driver's open(9e) entry point function. 10194 * 10195 * Arguments: dev_i - pointer to device number 10196 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10197 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10198 * cred_p - user credential pointer 10199 * 10200 * Return Code: EINVAL 10201 * ENXIO 10202 * EIO 10203 * EROFS 10204 * EBUSY 10205 * 10206 * Context: Kernel thread context 10207 */ 10208 /* ARGSUSED */ 10209 static int 10210 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10211 { 10212 struct sd_lun *un; 10213 int nodelay; 10214 int part; 10215 uint64_t partmask; 10216 int instance; 10217 dev_t dev; 10218 int rval = EIO; 10219 diskaddr_t nblks = 0; 10220 diskaddr_t label_cap; 10221 10222 /* Validate the open type */ 10223 if (otyp >= OTYPCNT) { 10224 return (EINVAL); 10225 } 10226 10227 dev = *dev_p; 10228 instance = SDUNIT(dev); 10229 mutex_enter(&sd_detach_mutex); 10230 10231 /* 10232 * Fail the open if there is no softstate for the instance, or 10233 * if another thread somewhere is trying to detach the instance. 10234 */ 10235 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10236 (un->un_detach_count != 0)) { 10237 mutex_exit(&sd_detach_mutex); 10238 /* 10239 * The probe cache only needs to be cleared when open (9e) fails 10240 * with ENXIO (4238046). 10241 */ 10242 /* 10243 * un-conditionally clearing probe cache is ok with 10244 * separate sd/ssd binaries 10245 * x86 platform can be an issue with both parallel 10246 * and fibre in 1 binary 10247 */ 10248 sd_scsi_clear_probe_cache(); 10249 return (ENXIO); 10250 } 10251 10252 /* 10253 * The un_layer_count is to prevent another thread in specfs from 10254 * trying to detach the instance, which can happen when we are 10255 * called from a higher-layer driver instead of thru specfs. 10256 * This will not be needed when DDI provides a layered driver 10257 * interface that allows specfs to know that an instance is in 10258 * use by a layered driver & should not be detached. 10259 * 10260 * Note: the semantics for layered driver opens are exactly one 10261 * close for every open. 10262 */ 10263 if (otyp == OTYP_LYR) { 10264 un->un_layer_count++; 10265 } 10266 10267 /* 10268 * Keep a count of the current # of opens in progress. This is because 10269 * some layered drivers try to call us as a regular open. This can 10270 * cause problems that we cannot prevent, however by keeping this count 10271 * we can at least keep our open and detach routines from racing against 10272 * each other under such conditions. 10273 */ 10274 un->un_opens_in_progress++; 10275 mutex_exit(&sd_detach_mutex); 10276 10277 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10278 part = SDPART(dev); 10279 partmask = 1 << part; 10280 10281 /* 10282 * We use a semaphore here in order to serialize 10283 * open and close requests on the device. 10284 */ 10285 sema_p(&un->un_semoclose); 10286 10287 mutex_enter(SD_MUTEX(un)); 10288 10289 /* 10290 * All device accesses go thru sdstrategy() where we check 10291 * on suspend status but there could be a scsi_poll command, 10292 * which bypasses sdstrategy(), so we need to check pm 10293 * status. 10294 */ 10295 10296 if (!nodelay) { 10297 while ((un->un_state == SD_STATE_SUSPENDED) || 10298 (un->un_state == SD_STATE_PM_CHANGING)) { 10299 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10300 } 10301 10302 mutex_exit(SD_MUTEX(un)); 10303 if (sd_pm_entry(un) != DDI_SUCCESS) { 10304 rval = EIO; 10305 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10306 "sdopen: sd_pm_entry failed\n"); 10307 goto open_failed_with_pm; 10308 } 10309 mutex_enter(SD_MUTEX(un)); 10310 } 10311 10312 /* check for previous exclusive open */ 10313 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10314 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10315 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10316 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10317 10318 if (un->un_exclopen & (partmask)) { 10319 goto excl_open_fail; 10320 } 10321 10322 if (flag & FEXCL) { 10323 int i; 10324 if (un->un_ocmap.lyropen[part]) { 10325 goto excl_open_fail; 10326 } 10327 for (i = 0; i < (OTYPCNT - 1); i++) { 10328 if (un->un_ocmap.regopen[i] & (partmask)) { 10329 goto excl_open_fail; 10330 } 10331 } 10332 } 10333 10334 /* 10335 * Check the write permission if this is a removable media device, 10336 * NDELAY has not been set, and writable permission is requested. 10337 * 10338 * Note: If NDELAY was set and this is write-protected media the WRITE 10339 * attempt will fail with EIO as part of the I/O processing. This is a 10340 * more permissive implementation that allows the open to succeed and 10341 * WRITE attempts to fail when appropriate. 10342 */ 10343 if (un->un_f_chk_wp_open) { 10344 if ((flag & FWRITE) && (!nodelay)) { 10345 mutex_exit(SD_MUTEX(un)); 10346 /* 10347 * Defer the check for write permission on writable 10348 * DVD drive till sdstrategy and will not fail open even 10349 * if FWRITE is set as the device can be writable 10350 * depending upon the media and the media can change 10351 * after the call to open(). 10352 */ 10353 if (un->un_f_dvdram_writable_device == FALSE) { 10354 if (ISCD(un) || sr_check_wp(dev)) { 10355 rval = EROFS; 10356 mutex_enter(SD_MUTEX(un)); 10357 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10358 "write to cd or write protected media\n"); 10359 goto open_fail; 10360 } 10361 } 10362 mutex_enter(SD_MUTEX(un)); 10363 } 10364 } 10365 10366 /* 10367 * If opening in NDELAY/NONBLOCK mode, just return. 10368 * Check if disk is ready and has a valid geometry later. 10369 */ 10370 if (!nodelay) { 10371 sd_ssc_t *ssc; 10372 10373 mutex_exit(SD_MUTEX(un)); 10374 ssc = sd_ssc_init(un); 10375 rval = sd_ready_and_valid(ssc, part); 10376 sd_ssc_fini(ssc); 10377 mutex_enter(SD_MUTEX(un)); 10378 /* 10379 * Fail if device is not ready or if the number of disk 10380 * blocks is zero or negative for non CD devices. 10381 */ 10382 10383 nblks = 0; 10384 10385 if (rval == SD_READY_VALID && (!ISCD(un))) { 10386 /* if cmlb_partinfo fails, nblks remains 0 */ 10387 mutex_exit(SD_MUTEX(un)); 10388 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 10389 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 10390 mutex_enter(SD_MUTEX(un)); 10391 } 10392 10393 if ((rval != SD_READY_VALID) || 10394 (!ISCD(un) && nblks <= 0)) { 10395 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10396 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10397 "device not ready or invalid disk block value\n"); 10398 goto open_fail; 10399 } 10400 #if defined(__i386) || defined(__amd64) 10401 } else { 10402 uchar_t *cp; 10403 /* 10404 * x86 requires special nodelay handling, so that p0 is 10405 * always defined and accessible. 10406 * Invalidate geometry only if device is not already open. 10407 */ 10408 cp = &un->un_ocmap.chkd[0]; 10409 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10410 if (*cp != (uchar_t)0) { 10411 break; 10412 } 10413 cp++; 10414 } 10415 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10416 mutex_exit(SD_MUTEX(un)); 10417 cmlb_invalidate(un->un_cmlbhandle, 10418 (void *)SD_PATH_DIRECT); 10419 mutex_enter(SD_MUTEX(un)); 10420 } 10421 10422 #endif 10423 } 10424 10425 if (otyp == OTYP_LYR) { 10426 un->un_ocmap.lyropen[part]++; 10427 } else { 10428 un->un_ocmap.regopen[otyp] |= partmask; 10429 } 10430 10431 /* Set up open and exclusive open flags */ 10432 if (flag & FEXCL) { 10433 un->un_exclopen |= (partmask); 10434 } 10435 10436 /* 10437 * If the lun is EFI labeled and lun capacity is greater than the 10438 * capacity contained in the label, log a sys-event to notify the 10439 * interested module. 10440 * To avoid an infinite loop of logging sys-event, we only log the 10441 * event when the lun is not opened in NDELAY mode. The event handler 10442 * should open the lun in NDELAY mode. 10443 */ 10444 if (!nodelay) { 10445 mutex_exit(SD_MUTEX(un)); 10446 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 10447 (void*)SD_PATH_DIRECT) == 0) { 10448 mutex_enter(SD_MUTEX(un)); 10449 if (un->un_f_blockcount_is_valid && 10450 un->un_blockcount > label_cap && 10451 un->un_f_expnevent == B_FALSE) { 10452 un->un_f_expnevent = B_TRUE; 10453 mutex_exit(SD_MUTEX(un)); 10454 sd_log_lun_expansion_event(un, 10455 (nodelay ? KM_NOSLEEP : KM_SLEEP)); 10456 mutex_enter(SD_MUTEX(un)); 10457 } 10458 } else { 10459 mutex_enter(SD_MUTEX(un)); 10460 } 10461 } 10462 10463 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10464 "open of part %d type %d\n", part, otyp); 10465 10466 mutex_exit(SD_MUTEX(un)); 10467 if (!nodelay) { 10468 sd_pm_exit(un); 10469 } 10470 10471 sema_v(&un->un_semoclose); 10472 10473 mutex_enter(&sd_detach_mutex); 10474 un->un_opens_in_progress--; 10475 mutex_exit(&sd_detach_mutex); 10476 10477 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10478 return (DDI_SUCCESS); 10479 10480 excl_open_fail: 10481 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10482 rval = EBUSY; 10483 10484 open_fail: 10485 mutex_exit(SD_MUTEX(un)); 10486 10487 /* 10488 * On a failed open we must exit the pm management. 10489 */ 10490 if (!nodelay) { 10491 sd_pm_exit(un); 10492 } 10493 open_failed_with_pm: 10494 sema_v(&un->un_semoclose); 10495 10496 mutex_enter(&sd_detach_mutex); 10497 un->un_opens_in_progress--; 10498 if (otyp == OTYP_LYR) { 10499 un->un_layer_count--; 10500 } 10501 mutex_exit(&sd_detach_mutex); 10502 10503 return (rval); 10504 } 10505 10506 10507 /* 10508 * Function: sdclose 10509 * 10510 * Description: Driver's close(9e) entry point function. 10511 * 10512 * Arguments: dev - device number 10513 * flag - file status flag, informational only 10514 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10515 * cred_p - user credential pointer 10516 * 10517 * Return Code: ENXIO 10518 * 10519 * Context: Kernel thread context 10520 */ 10521 /* ARGSUSED */ 10522 static int 10523 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10524 { 10525 struct sd_lun *un; 10526 uchar_t *cp; 10527 int part; 10528 int nodelay; 10529 int rval = 0; 10530 10531 /* Validate the open type */ 10532 if (otyp >= OTYPCNT) { 10533 return (ENXIO); 10534 } 10535 10536 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10537 return (ENXIO); 10538 } 10539 10540 part = SDPART(dev); 10541 nodelay = flag & (FNDELAY | FNONBLOCK); 10542 10543 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10544 "sdclose: close of part %d type %d\n", part, otyp); 10545 10546 /* 10547 * We use a semaphore here in order to serialize 10548 * open and close requests on the device. 10549 */ 10550 sema_p(&un->un_semoclose); 10551 10552 mutex_enter(SD_MUTEX(un)); 10553 10554 /* Don't proceed if power is being changed. */ 10555 while (un->un_state == SD_STATE_PM_CHANGING) { 10556 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10557 } 10558 10559 if (un->un_exclopen & (1 << part)) { 10560 un->un_exclopen &= ~(1 << part); 10561 } 10562 10563 /* Update the open partition map */ 10564 if (otyp == OTYP_LYR) { 10565 un->un_ocmap.lyropen[part] -= 1; 10566 } else { 10567 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10568 } 10569 10570 cp = &un->un_ocmap.chkd[0]; 10571 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10572 if (*cp != NULL) { 10573 break; 10574 } 10575 cp++; 10576 } 10577 10578 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10579 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10580 10581 /* 10582 * We avoid persistance upon the last close, and set 10583 * the throttle back to the maximum. 10584 */ 10585 un->un_throttle = un->un_saved_throttle; 10586 10587 if (un->un_state == SD_STATE_OFFLINE) { 10588 if (un->un_f_is_fibre == FALSE) { 10589 scsi_log(SD_DEVINFO(un), sd_label, 10590 CE_WARN, "offline\n"); 10591 } 10592 mutex_exit(SD_MUTEX(un)); 10593 cmlb_invalidate(un->un_cmlbhandle, 10594 (void *)SD_PATH_DIRECT); 10595 mutex_enter(SD_MUTEX(un)); 10596 10597 } else { 10598 /* 10599 * Flush any outstanding writes in NVRAM cache. 10600 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10601 * cmd, it may not work for non-Pluto devices. 10602 * SYNCHRONIZE CACHE is not required for removables, 10603 * except DVD-RAM drives. 10604 * 10605 * Also note: because SYNCHRONIZE CACHE is currently 10606 * the only command issued here that requires the 10607 * drive be powered up, only do the power up before 10608 * sending the Sync Cache command. If additional 10609 * commands are added which require a powered up 10610 * drive, the following sequence may have to change. 10611 * 10612 * And finally, note that parallel SCSI on SPARC 10613 * only issues a Sync Cache to DVD-RAM, a newly 10614 * supported device. 10615 */ 10616 #if defined(__i386) || defined(__amd64) 10617 if ((un->un_f_sync_cache_supported && 10618 un->un_f_sync_cache_required) || 10619 un->un_f_dvdram_writable_device == TRUE) { 10620 #else 10621 if (un->un_f_dvdram_writable_device == TRUE) { 10622 #endif 10623 mutex_exit(SD_MUTEX(un)); 10624 if (sd_pm_entry(un) == DDI_SUCCESS) { 10625 rval = 10626 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10627 NULL); 10628 /* ignore error if not supported */ 10629 if (rval == ENOTSUP) { 10630 rval = 0; 10631 } else if (rval != 0) { 10632 rval = EIO; 10633 } 10634 sd_pm_exit(un); 10635 } else { 10636 rval = EIO; 10637 } 10638 mutex_enter(SD_MUTEX(un)); 10639 } 10640 10641 /* 10642 * For devices which supports DOOR_LOCK, send an ALLOW 10643 * MEDIA REMOVAL command, but don't get upset if it 10644 * fails. We need to raise the power of the drive before 10645 * we can call sd_send_scsi_DOORLOCK() 10646 */ 10647 if (un->un_f_doorlock_supported) { 10648 mutex_exit(SD_MUTEX(un)); 10649 if (sd_pm_entry(un) == DDI_SUCCESS) { 10650 sd_ssc_t *ssc; 10651 10652 ssc = sd_ssc_init(un); 10653 rval = sd_send_scsi_DOORLOCK(ssc, 10654 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10655 if (rval != 0) 10656 sd_ssc_assessment(ssc, 10657 SD_FMT_IGNORE); 10658 sd_ssc_fini(ssc); 10659 10660 sd_pm_exit(un); 10661 if (ISCD(un) && (rval != 0) && 10662 (nodelay != 0)) { 10663 rval = ENXIO; 10664 } 10665 } else { 10666 rval = EIO; 10667 } 10668 mutex_enter(SD_MUTEX(un)); 10669 } 10670 10671 /* 10672 * If a device has removable media, invalidate all 10673 * parameters related to media, such as geometry, 10674 * blocksize, and blockcount. 10675 */ 10676 if (un->un_f_has_removable_media) { 10677 sr_ejected(un); 10678 } 10679 10680 /* 10681 * Destroy the cache (if it exists) which was 10682 * allocated for the write maps since this is 10683 * the last close for this media. 10684 */ 10685 if (un->un_wm_cache) { 10686 /* 10687 * Check if there are pending commands. 10688 * and if there are give a warning and 10689 * do not destroy the cache. 10690 */ 10691 if (un->un_ncmds_in_driver > 0) { 10692 scsi_log(SD_DEVINFO(un), 10693 sd_label, CE_WARN, 10694 "Unable to clean up memory " 10695 "because of pending I/O\n"); 10696 } else { 10697 kmem_cache_destroy( 10698 un->un_wm_cache); 10699 un->un_wm_cache = NULL; 10700 } 10701 } 10702 } 10703 } 10704 10705 mutex_exit(SD_MUTEX(un)); 10706 sema_v(&un->un_semoclose); 10707 10708 if (otyp == OTYP_LYR) { 10709 mutex_enter(&sd_detach_mutex); 10710 /* 10711 * The detach routine may run when the layer count 10712 * drops to zero. 10713 */ 10714 un->un_layer_count--; 10715 mutex_exit(&sd_detach_mutex); 10716 } 10717 10718 return (rval); 10719 } 10720 10721 10722 /* 10723 * Function: sd_ready_and_valid 10724 * 10725 * Description: Test if device is ready and has a valid geometry. 10726 * 10727 * Arguments: ssc - sd_ssc_t will contain un 10728 * un - driver soft state (unit) structure 10729 * 10730 * Return Code: SD_READY_VALID ready and valid label 10731 * SD_NOT_READY_VALID not ready, no label 10732 * SD_RESERVED_BY_OTHERS reservation conflict 10733 * 10734 * Context: Never called at interrupt context. 10735 */ 10736 10737 static int 10738 sd_ready_and_valid(sd_ssc_t *ssc, int part) 10739 { 10740 struct sd_errstats *stp; 10741 uint64_t capacity; 10742 uint_t lbasize; 10743 int rval = SD_READY_VALID; 10744 char name_str[48]; 10745 boolean_t is_valid; 10746 struct sd_lun *un; 10747 int status; 10748 10749 ASSERT(ssc != NULL); 10750 un = ssc->ssc_un; 10751 ASSERT(un != NULL); 10752 ASSERT(!mutex_owned(SD_MUTEX(un))); 10753 10754 mutex_enter(SD_MUTEX(un)); 10755 /* 10756 * If a device has removable media, we must check if media is 10757 * ready when checking if this device is ready and valid. 10758 */ 10759 if (un->un_f_has_removable_media) { 10760 mutex_exit(SD_MUTEX(un)); 10761 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10762 10763 if (status != 0) { 10764 rval = SD_NOT_READY_VALID; 10765 mutex_enter(SD_MUTEX(un)); 10766 10767 /* Ignore all failed status for removalbe media */ 10768 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10769 10770 goto done; 10771 } 10772 10773 is_valid = SD_IS_VALID_LABEL(un); 10774 mutex_enter(SD_MUTEX(un)); 10775 if (!is_valid || 10776 (un->un_f_blockcount_is_valid == FALSE) || 10777 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10778 10779 /* capacity has to be read every open. */ 10780 mutex_exit(SD_MUTEX(un)); 10781 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 10782 &lbasize, SD_PATH_DIRECT); 10783 10784 if (status != 0) { 10785 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10786 10787 cmlb_invalidate(un->un_cmlbhandle, 10788 (void *)SD_PATH_DIRECT); 10789 mutex_enter(SD_MUTEX(un)); 10790 rval = SD_NOT_READY_VALID; 10791 10792 goto done; 10793 } else { 10794 mutex_enter(SD_MUTEX(un)); 10795 sd_update_block_info(un, lbasize, capacity); 10796 } 10797 } 10798 10799 /* 10800 * Check if the media in the device is writable or not. 10801 */ 10802 if (!is_valid && ISCD(un)) { 10803 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 10804 } 10805 10806 } else { 10807 /* 10808 * Do a test unit ready to clear any unit attention from non-cd 10809 * devices. 10810 */ 10811 mutex_exit(SD_MUTEX(un)); 10812 10813 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10814 if (status != 0) { 10815 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10816 } 10817 10818 mutex_enter(SD_MUTEX(un)); 10819 } 10820 10821 10822 /* 10823 * If this is a non 512 block device, allocate space for 10824 * the wmap cache. This is being done here since every time 10825 * a media is changed this routine will be called and the 10826 * block size is a function of media rather than device. 10827 */ 10828 if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR || 10829 un->un_f_non_devbsize_supported) && 10830 un->un_tgt_blocksize != DEV_BSIZE) || 10831 un->un_f_enable_rmw) { 10832 if (!(un->un_wm_cache)) { 10833 (void) snprintf(name_str, sizeof (name_str), 10834 "%s%d_cache", 10835 ddi_driver_name(SD_DEVINFO(un)), 10836 ddi_get_instance(SD_DEVINFO(un))); 10837 un->un_wm_cache = kmem_cache_create( 10838 name_str, sizeof (struct sd_w_map), 10839 8, sd_wm_cache_constructor, 10840 sd_wm_cache_destructor, NULL, 10841 (void *)un, NULL, 0); 10842 if (!(un->un_wm_cache)) { 10843 rval = ENOMEM; 10844 goto done; 10845 } 10846 } 10847 } 10848 10849 if (un->un_state == SD_STATE_NORMAL) { 10850 /* 10851 * If the target is not yet ready here (defined by a TUR 10852 * failure), invalidate the geometry and print an 'offline' 10853 * message. This is a legacy message, as the state of the 10854 * target is not actually changed to SD_STATE_OFFLINE. 10855 * 10856 * If the TUR fails for EACCES (Reservation Conflict), 10857 * SD_RESERVED_BY_OTHERS will be returned to indicate 10858 * reservation conflict. If the TUR fails for other 10859 * reasons, SD_NOT_READY_VALID will be returned. 10860 */ 10861 int err; 10862 10863 mutex_exit(SD_MUTEX(un)); 10864 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10865 mutex_enter(SD_MUTEX(un)); 10866 10867 if (err != 0) { 10868 mutex_exit(SD_MUTEX(un)); 10869 cmlb_invalidate(un->un_cmlbhandle, 10870 (void *)SD_PATH_DIRECT); 10871 mutex_enter(SD_MUTEX(un)); 10872 if (err == EACCES) { 10873 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10874 "reservation conflict\n"); 10875 rval = SD_RESERVED_BY_OTHERS; 10876 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10877 } else { 10878 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10879 "drive offline\n"); 10880 rval = SD_NOT_READY_VALID; 10881 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 10882 } 10883 goto done; 10884 } 10885 } 10886 10887 if (un->un_f_format_in_progress == FALSE) { 10888 mutex_exit(SD_MUTEX(un)); 10889 10890 (void) cmlb_validate(un->un_cmlbhandle, 0, 10891 (void *)SD_PATH_DIRECT); 10892 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL, 10893 NULL, (void *) SD_PATH_DIRECT) != 0) { 10894 rval = SD_NOT_READY_VALID; 10895 mutex_enter(SD_MUTEX(un)); 10896 10897 goto done; 10898 } 10899 if (un->un_f_pkstats_enabled) { 10900 sd_set_pstats(un); 10901 SD_TRACE(SD_LOG_IO_PARTITION, un, 10902 "sd_ready_and_valid: un:0x%p pstats created and " 10903 "set\n", un); 10904 } 10905 mutex_enter(SD_MUTEX(un)); 10906 } 10907 10908 /* 10909 * If this device supports DOOR_LOCK command, try and send 10910 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10911 * if it fails. For a CD, however, it is an error 10912 */ 10913 if (un->un_f_doorlock_supported) { 10914 mutex_exit(SD_MUTEX(un)); 10915 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 10916 SD_PATH_DIRECT); 10917 10918 if ((status != 0) && ISCD(un)) { 10919 rval = SD_NOT_READY_VALID; 10920 mutex_enter(SD_MUTEX(un)); 10921 10922 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10923 10924 goto done; 10925 } else if (status != 0) 10926 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10927 mutex_enter(SD_MUTEX(un)); 10928 } 10929 10930 /* The state has changed, inform the media watch routines */ 10931 un->un_mediastate = DKIO_INSERTED; 10932 cv_broadcast(&un->un_state_cv); 10933 rval = SD_READY_VALID; 10934 10935 done: 10936 10937 /* 10938 * Initialize the capacity kstat value, if no media previously 10939 * (capacity kstat is 0) and a media has been inserted 10940 * (un_blockcount > 0). 10941 */ 10942 if (un->un_errstats != NULL) { 10943 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10944 if ((stp->sd_capacity.value.ui64 == 0) && 10945 (un->un_f_blockcount_is_valid == TRUE)) { 10946 stp->sd_capacity.value.ui64 = 10947 (uint64_t)((uint64_t)un->un_blockcount * 10948 un->un_sys_blocksize); 10949 } 10950 } 10951 10952 mutex_exit(SD_MUTEX(un)); 10953 return (rval); 10954 } 10955 10956 10957 /* 10958 * Function: sdmin 10959 * 10960 * Description: Routine to limit the size of a data transfer. Used in 10961 * conjunction with physio(9F). 10962 * 10963 * Arguments: bp - pointer to the indicated buf(9S) struct. 10964 * 10965 * Context: Kernel thread context. 10966 */ 10967 10968 static void 10969 sdmin(struct buf *bp) 10970 { 10971 struct sd_lun *un; 10972 int instance; 10973 10974 instance = SDUNIT(bp->b_edev); 10975 10976 un = ddi_get_soft_state(sd_state, instance); 10977 ASSERT(un != NULL); 10978 10979 /* 10980 * We depend on buf breakup to restrict 10981 * IO size if it is enabled. 10982 */ 10983 if (un->un_buf_breakup_supported) { 10984 return; 10985 } 10986 10987 if (bp->b_bcount > un->un_max_xfer_size) { 10988 bp->b_bcount = un->un_max_xfer_size; 10989 } 10990 } 10991 10992 10993 /* 10994 * Function: sdread 10995 * 10996 * Description: Driver's read(9e) entry point function. 10997 * 10998 * Arguments: dev - device number 10999 * uio - structure pointer describing where data is to be stored 11000 * in user's space 11001 * cred_p - user credential pointer 11002 * 11003 * Return Code: ENXIO 11004 * EIO 11005 * EINVAL 11006 * value returned by physio 11007 * 11008 * Context: Kernel thread context. 11009 */ 11010 /* ARGSUSED */ 11011 static int 11012 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 11013 { 11014 struct sd_lun *un = NULL; 11015 int secmask; 11016 int err = 0; 11017 sd_ssc_t *ssc; 11018 11019 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11020 return (ENXIO); 11021 } 11022 11023 ASSERT(!mutex_owned(SD_MUTEX(un))); 11024 11025 11026 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11027 mutex_enter(SD_MUTEX(un)); 11028 /* 11029 * Because the call to sd_ready_and_valid will issue I/O we 11030 * must wait here if either the device is suspended or 11031 * if it's power level is changing. 11032 */ 11033 while ((un->un_state == SD_STATE_SUSPENDED) || 11034 (un->un_state == SD_STATE_PM_CHANGING)) { 11035 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11036 } 11037 un->un_ncmds_in_driver++; 11038 mutex_exit(SD_MUTEX(un)); 11039 11040 /* Initialize sd_ssc_t for internal uscsi commands */ 11041 ssc = sd_ssc_init(un); 11042 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11043 err = EIO; 11044 } else { 11045 err = 0; 11046 } 11047 sd_ssc_fini(ssc); 11048 11049 mutex_enter(SD_MUTEX(un)); 11050 un->un_ncmds_in_driver--; 11051 ASSERT(un->un_ncmds_in_driver >= 0); 11052 mutex_exit(SD_MUTEX(un)); 11053 if (err != 0) 11054 return (err); 11055 } 11056 11057 /* 11058 * Read requests are restricted to multiples of the system block size. 11059 */ 11060 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11061 !un->un_f_enable_rmw) 11062 secmask = un->un_tgt_blocksize - 1; 11063 else 11064 secmask = DEV_BSIZE - 1; 11065 11066 if (uio->uio_loffset & ((offset_t)(secmask))) { 11067 SD_ERROR(SD_LOG_READ_WRITE, un, 11068 "sdread: file offset not modulo %d\n", 11069 secmask + 1); 11070 err = EINVAL; 11071 } else if (uio->uio_iov->iov_len & (secmask)) { 11072 SD_ERROR(SD_LOG_READ_WRITE, un, 11073 "sdread: transfer length not modulo %d\n", 11074 secmask + 1); 11075 err = EINVAL; 11076 } else { 11077 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 11078 } 11079 11080 return (err); 11081 } 11082 11083 11084 /* 11085 * Function: sdwrite 11086 * 11087 * Description: Driver's write(9e) entry point function. 11088 * 11089 * Arguments: dev - device number 11090 * uio - structure pointer describing where data is stored in 11091 * user's space 11092 * cred_p - user credential pointer 11093 * 11094 * Return Code: ENXIO 11095 * EIO 11096 * EINVAL 11097 * value returned by physio 11098 * 11099 * Context: Kernel thread context. 11100 */ 11101 /* ARGSUSED */ 11102 static int 11103 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 11104 { 11105 struct sd_lun *un = NULL; 11106 int secmask; 11107 int err = 0; 11108 sd_ssc_t *ssc; 11109 11110 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11111 return (ENXIO); 11112 } 11113 11114 ASSERT(!mutex_owned(SD_MUTEX(un))); 11115 11116 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11117 mutex_enter(SD_MUTEX(un)); 11118 /* 11119 * Because the call to sd_ready_and_valid will issue I/O we 11120 * must wait here if either the device is suspended or 11121 * if it's power level is changing. 11122 */ 11123 while ((un->un_state == SD_STATE_SUSPENDED) || 11124 (un->un_state == SD_STATE_PM_CHANGING)) { 11125 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11126 } 11127 un->un_ncmds_in_driver++; 11128 mutex_exit(SD_MUTEX(un)); 11129 11130 /* Initialize sd_ssc_t for internal uscsi commands */ 11131 ssc = sd_ssc_init(un); 11132 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11133 err = EIO; 11134 } else { 11135 err = 0; 11136 } 11137 sd_ssc_fini(ssc); 11138 11139 mutex_enter(SD_MUTEX(un)); 11140 un->un_ncmds_in_driver--; 11141 ASSERT(un->un_ncmds_in_driver >= 0); 11142 mutex_exit(SD_MUTEX(un)); 11143 if (err != 0) 11144 return (err); 11145 } 11146 11147 /* 11148 * Write requests are restricted to multiples of the system block size. 11149 */ 11150 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11151 !un->un_f_enable_rmw) 11152 secmask = un->un_tgt_blocksize - 1; 11153 else 11154 secmask = DEV_BSIZE - 1; 11155 11156 if (uio->uio_loffset & ((offset_t)(secmask))) { 11157 SD_ERROR(SD_LOG_READ_WRITE, un, 11158 "sdwrite: file offset not modulo %d\n", 11159 secmask + 1); 11160 err = EINVAL; 11161 } else if (uio->uio_iov->iov_len & (secmask)) { 11162 SD_ERROR(SD_LOG_READ_WRITE, un, 11163 "sdwrite: transfer length not modulo %d\n", 11164 secmask + 1); 11165 err = EINVAL; 11166 } else { 11167 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 11168 } 11169 11170 return (err); 11171 } 11172 11173 11174 /* 11175 * Function: sdaread 11176 * 11177 * Description: Driver's aread(9e) entry point function. 11178 * 11179 * Arguments: dev - device number 11180 * aio - structure pointer describing where data is to be stored 11181 * cred_p - user credential pointer 11182 * 11183 * Return Code: ENXIO 11184 * EIO 11185 * EINVAL 11186 * value returned by aphysio 11187 * 11188 * Context: Kernel thread context. 11189 */ 11190 /* ARGSUSED */ 11191 static int 11192 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11193 { 11194 struct sd_lun *un = NULL; 11195 struct uio *uio = aio->aio_uio; 11196 int secmask; 11197 int err = 0; 11198 sd_ssc_t *ssc; 11199 11200 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11201 return (ENXIO); 11202 } 11203 11204 ASSERT(!mutex_owned(SD_MUTEX(un))); 11205 11206 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11207 mutex_enter(SD_MUTEX(un)); 11208 /* 11209 * Because the call to sd_ready_and_valid will issue I/O we 11210 * must wait here if either the device is suspended or 11211 * if it's power level is changing. 11212 */ 11213 while ((un->un_state == SD_STATE_SUSPENDED) || 11214 (un->un_state == SD_STATE_PM_CHANGING)) { 11215 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11216 } 11217 un->un_ncmds_in_driver++; 11218 mutex_exit(SD_MUTEX(un)); 11219 11220 /* Initialize sd_ssc_t for internal uscsi commands */ 11221 ssc = sd_ssc_init(un); 11222 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11223 err = EIO; 11224 } else { 11225 err = 0; 11226 } 11227 sd_ssc_fini(ssc); 11228 11229 mutex_enter(SD_MUTEX(un)); 11230 un->un_ncmds_in_driver--; 11231 ASSERT(un->un_ncmds_in_driver >= 0); 11232 mutex_exit(SD_MUTEX(un)); 11233 if (err != 0) 11234 return (err); 11235 } 11236 11237 /* 11238 * Read requests are restricted to multiples of the system block size. 11239 */ 11240 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11241 !un->un_f_enable_rmw) 11242 secmask = un->un_tgt_blocksize - 1; 11243 else 11244 secmask = DEV_BSIZE - 1; 11245 11246 if (uio->uio_loffset & ((offset_t)(secmask))) { 11247 SD_ERROR(SD_LOG_READ_WRITE, un, 11248 "sdaread: file offset not modulo %d\n", 11249 secmask + 1); 11250 err = EINVAL; 11251 } else if (uio->uio_iov->iov_len & (secmask)) { 11252 SD_ERROR(SD_LOG_READ_WRITE, un, 11253 "sdaread: transfer length not modulo %d\n", 11254 secmask + 1); 11255 err = EINVAL; 11256 } else { 11257 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11258 } 11259 11260 return (err); 11261 } 11262 11263 11264 /* 11265 * Function: sdawrite 11266 * 11267 * Description: Driver's awrite(9e) entry point function. 11268 * 11269 * Arguments: dev - device number 11270 * aio - structure pointer describing where data is stored 11271 * cred_p - user credential pointer 11272 * 11273 * Return Code: ENXIO 11274 * EIO 11275 * EINVAL 11276 * value returned by aphysio 11277 * 11278 * Context: Kernel thread context. 11279 */ 11280 /* ARGSUSED */ 11281 static int 11282 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11283 { 11284 struct sd_lun *un = NULL; 11285 struct uio *uio = aio->aio_uio; 11286 int secmask; 11287 int err = 0; 11288 sd_ssc_t *ssc; 11289 11290 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11291 return (ENXIO); 11292 } 11293 11294 ASSERT(!mutex_owned(SD_MUTEX(un))); 11295 11296 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11297 mutex_enter(SD_MUTEX(un)); 11298 /* 11299 * Because the call to sd_ready_and_valid will issue I/O we 11300 * must wait here if either the device is suspended or 11301 * if it's power level is changing. 11302 */ 11303 while ((un->un_state == SD_STATE_SUSPENDED) || 11304 (un->un_state == SD_STATE_PM_CHANGING)) { 11305 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11306 } 11307 un->un_ncmds_in_driver++; 11308 mutex_exit(SD_MUTEX(un)); 11309 11310 /* Initialize sd_ssc_t for internal uscsi commands */ 11311 ssc = sd_ssc_init(un); 11312 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11313 err = EIO; 11314 } else { 11315 err = 0; 11316 } 11317 sd_ssc_fini(ssc); 11318 11319 mutex_enter(SD_MUTEX(un)); 11320 un->un_ncmds_in_driver--; 11321 ASSERT(un->un_ncmds_in_driver >= 0); 11322 mutex_exit(SD_MUTEX(un)); 11323 if (err != 0) 11324 return (err); 11325 } 11326 11327 /* 11328 * Write requests are restricted to multiples of the system block size. 11329 */ 11330 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11331 !un->un_f_enable_rmw) 11332 secmask = un->un_tgt_blocksize - 1; 11333 else 11334 secmask = DEV_BSIZE - 1; 11335 11336 if (uio->uio_loffset & ((offset_t)(secmask))) { 11337 SD_ERROR(SD_LOG_READ_WRITE, un, 11338 "sdawrite: file offset not modulo %d\n", 11339 secmask + 1); 11340 err = EINVAL; 11341 } else if (uio->uio_iov->iov_len & (secmask)) { 11342 SD_ERROR(SD_LOG_READ_WRITE, un, 11343 "sdawrite: transfer length not modulo %d\n", 11344 secmask + 1); 11345 err = EINVAL; 11346 } else { 11347 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11348 } 11349 11350 return (err); 11351 } 11352 11353 11354 11355 11356 11357 /* 11358 * Driver IO processing follows the following sequence: 11359 * 11360 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11361 * | | ^ 11362 * v v | 11363 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11364 * | | | | 11365 * v | | | 11366 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11367 * | | ^ ^ 11368 * v v | | 11369 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11370 * | | | | 11371 * +---+ | +------------+ +-------+ 11372 * | | | | 11373 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11374 * | v | | 11375 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11376 * | | ^ | 11377 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11378 * | v | | 11379 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11380 * | | ^ | 11381 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11382 * | v | | 11383 * | sd_checksum_iostart() sd_checksum_iodone() | 11384 * | | ^ | 11385 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11386 * | v | | 11387 * | sd_pm_iostart() sd_pm_iodone() | 11388 * | | ^ | 11389 * | | | | 11390 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11391 * | ^ 11392 * v | 11393 * sd_core_iostart() | 11394 * | | 11395 * | +------>(*destroypkt)() 11396 * +-> sd_start_cmds() <-+ | | 11397 * | | | v 11398 * | | | scsi_destroy_pkt(9F) 11399 * | | | 11400 * +->(*initpkt)() +- sdintr() 11401 * | | | | 11402 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11403 * | +-> scsi_setup_cdb(9F) | 11404 * | | 11405 * +--> scsi_transport(9F) | 11406 * | | 11407 * +----> SCSA ---->+ 11408 * 11409 * 11410 * This code is based upon the following presumptions: 11411 * 11412 * - iostart and iodone functions operate on buf(9S) structures. These 11413 * functions perform the necessary operations on the buf(9S) and pass 11414 * them along to the next function in the chain by using the macros 11415 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11416 * (for iodone side functions). 11417 * 11418 * - The iostart side functions may sleep. The iodone side functions 11419 * are called under interrupt context and may NOT sleep. Therefore 11420 * iodone side functions also may not call iostart side functions. 11421 * (NOTE: iostart side functions should NOT sleep for memory, as 11422 * this could result in deadlock.) 11423 * 11424 * - An iostart side function may call its corresponding iodone side 11425 * function directly (if necessary). 11426 * 11427 * - In the event of an error, an iostart side function can return a buf(9S) 11428 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11429 * b_error in the usual way of course). 11430 * 11431 * - The taskq mechanism may be used by the iodone side functions to dispatch 11432 * requests to the iostart side functions. The iostart side functions in 11433 * this case would be called under the context of a taskq thread, so it's 11434 * OK for them to block/sleep/spin in this case. 11435 * 11436 * - iostart side functions may allocate "shadow" buf(9S) structs and 11437 * pass them along to the next function in the chain. The corresponding 11438 * iodone side functions must coalesce the "shadow" bufs and return 11439 * the "original" buf to the next higher layer. 11440 * 11441 * - The b_private field of the buf(9S) struct holds a pointer to 11442 * an sd_xbuf struct, which contains information needed to 11443 * construct the scsi_pkt for the command. 11444 * 11445 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11446 * layer must acquire & release the SD_MUTEX(un) as needed. 11447 */ 11448 11449 11450 /* 11451 * Create taskq for all targets in the system. This is created at 11452 * _init(9E) and destroyed at _fini(9E). 11453 * 11454 * Note: here we set the minalloc to a reasonably high number to ensure that 11455 * we will have an adequate supply of task entries available at interrupt time. 11456 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11457 * sd_create_taskq(). Since we do not want to sleep for allocations at 11458 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11459 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11460 * requests any one instant in time. 11461 */ 11462 #define SD_TASKQ_NUMTHREADS 8 11463 #define SD_TASKQ_MINALLOC 256 11464 #define SD_TASKQ_MAXALLOC 256 11465 11466 static taskq_t *sd_tq = NULL; 11467 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11468 11469 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11470 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11471 11472 /* 11473 * The following task queue is being created for the write part of 11474 * read-modify-write of non-512 block size devices. 11475 * Limit the number of threads to 1 for now. This number has been chosen 11476 * considering the fact that it applies only to dvd ram drives/MO drives 11477 * currently. Performance for which is not main criteria at this stage. 11478 * Note: It needs to be explored if we can use a single taskq in future 11479 */ 11480 #define SD_WMR_TASKQ_NUMTHREADS 1 11481 static taskq_t *sd_wmr_tq = NULL; 11482 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11483 11484 /* 11485 * Function: sd_taskq_create 11486 * 11487 * Description: Create taskq thread(s) and preallocate task entries 11488 * 11489 * Return Code: Returns a pointer to the allocated taskq_t. 11490 * 11491 * Context: Can sleep. Requires blockable context. 11492 * 11493 * Notes: - The taskq() facility currently is NOT part of the DDI. 11494 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11495 * - taskq_create() will block for memory, also it will panic 11496 * if it cannot create the requested number of threads. 11497 * - Currently taskq_create() creates threads that cannot be 11498 * swapped. 11499 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11500 * supply of taskq entries at interrupt time (ie, so that we 11501 * do not have to sleep for memory) 11502 */ 11503 11504 static void 11505 sd_taskq_create(void) 11506 { 11507 char taskq_name[TASKQ_NAMELEN]; 11508 11509 ASSERT(sd_tq == NULL); 11510 ASSERT(sd_wmr_tq == NULL); 11511 11512 (void) snprintf(taskq_name, sizeof (taskq_name), 11513 "%s_drv_taskq", sd_label); 11514 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11515 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11516 TASKQ_PREPOPULATE)); 11517 11518 (void) snprintf(taskq_name, sizeof (taskq_name), 11519 "%s_rmw_taskq", sd_label); 11520 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11521 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11522 TASKQ_PREPOPULATE)); 11523 } 11524 11525 11526 /* 11527 * Function: sd_taskq_delete 11528 * 11529 * Description: Complementary cleanup routine for sd_taskq_create(). 11530 * 11531 * Context: Kernel thread context. 11532 */ 11533 11534 static void 11535 sd_taskq_delete(void) 11536 { 11537 ASSERT(sd_tq != NULL); 11538 ASSERT(sd_wmr_tq != NULL); 11539 taskq_destroy(sd_tq); 11540 taskq_destroy(sd_wmr_tq); 11541 sd_tq = NULL; 11542 sd_wmr_tq = NULL; 11543 } 11544 11545 11546 /* 11547 * Function: sdstrategy 11548 * 11549 * Description: Driver's strategy (9E) entry point function. 11550 * 11551 * Arguments: bp - pointer to buf(9S) 11552 * 11553 * Return Code: Always returns zero 11554 * 11555 * Context: Kernel thread context. 11556 */ 11557 11558 static int 11559 sdstrategy(struct buf *bp) 11560 { 11561 struct sd_lun *un; 11562 11563 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11564 if (un == NULL) { 11565 bioerror(bp, EIO); 11566 bp->b_resid = bp->b_bcount; 11567 biodone(bp); 11568 return (0); 11569 } 11570 11571 /* As was done in the past, fail new cmds. if state is dumping. */ 11572 if (un->un_state == SD_STATE_DUMPING) { 11573 bioerror(bp, ENXIO); 11574 bp->b_resid = bp->b_bcount; 11575 biodone(bp); 11576 return (0); 11577 } 11578 11579 ASSERT(!mutex_owned(SD_MUTEX(un))); 11580 11581 /* 11582 * Commands may sneak in while we released the mutex in 11583 * DDI_SUSPEND, we should block new commands. However, old 11584 * commands that are still in the driver at this point should 11585 * still be allowed to drain. 11586 */ 11587 mutex_enter(SD_MUTEX(un)); 11588 /* 11589 * Must wait here if either the device is suspended or 11590 * if it's power level is changing. 11591 */ 11592 while ((un->un_state == SD_STATE_SUSPENDED) || 11593 (un->un_state == SD_STATE_PM_CHANGING)) { 11594 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11595 } 11596 11597 un->un_ncmds_in_driver++; 11598 11599 /* 11600 * atapi: Since we are running the CD for now in PIO mode we need to 11601 * call bp_mapin here to avoid bp_mapin called interrupt context under 11602 * the HBA's init_pkt routine. 11603 */ 11604 if (un->un_f_cfg_is_atapi == TRUE) { 11605 mutex_exit(SD_MUTEX(un)); 11606 bp_mapin(bp); 11607 mutex_enter(SD_MUTEX(un)); 11608 } 11609 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11610 un->un_ncmds_in_driver); 11611 11612 if (bp->b_flags & B_WRITE) 11613 un->un_f_sync_cache_required = TRUE; 11614 11615 mutex_exit(SD_MUTEX(un)); 11616 11617 /* 11618 * This will (eventually) allocate the sd_xbuf area and 11619 * call sd_xbuf_strategy(). We just want to return the 11620 * result of ddi_xbuf_qstrategy so that we have an opt- 11621 * imized tail call which saves us a stack frame. 11622 */ 11623 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11624 } 11625 11626 11627 /* 11628 * Function: sd_xbuf_strategy 11629 * 11630 * Description: Function for initiating IO operations via the 11631 * ddi_xbuf_qstrategy() mechanism. 11632 * 11633 * Context: Kernel thread context. 11634 */ 11635 11636 static void 11637 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11638 { 11639 struct sd_lun *un = arg; 11640 11641 ASSERT(bp != NULL); 11642 ASSERT(xp != NULL); 11643 ASSERT(un != NULL); 11644 ASSERT(!mutex_owned(SD_MUTEX(un))); 11645 11646 /* 11647 * Initialize the fields in the xbuf and save a pointer to the 11648 * xbuf in bp->b_private. 11649 */ 11650 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11651 11652 /* Send the buf down the iostart chain */ 11653 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11654 } 11655 11656 11657 /* 11658 * Function: sd_xbuf_init 11659 * 11660 * Description: Prepare the given sd_xbuf struct for use. 11661 * 11662 * Arguments: un - ptr to softstate 11663 * bp - ptr to associated buf(9S) 11664 * xp - ptr to associated sd_xbuf 11665 * chain_type - IO chain type to use: 11666 * SD_CHAIN_NULL 11667 * SD_CHAIN_BUFIO 11668 * SD_CHAIN_USCSI 11669 * SD_CHAIN_DIRECT 11670 * SD_CHAIN_DIRECT_PRIORITY 11671 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11672 * initialization; may be NULL if none. 11673 * 11674 * Context: Kernel thread context 11675 */ 11676 11677 static void 11678 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11679 uchar_t chain_type, void *pktinfop) 11680 { 11681 int index; 11682 11683 ASSERT(un != NULL); 11684 ASSERT(bp != NULL); 11685 ASSERT(xp != NULL); 11686 11687 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11688 bp, chain_type); 11689 11690 xp->xb_un = un; 11691 xp->xb_pktp = NULL; 11692 xp->xb_pktinfo = pktinfop; 11693 xp->xb_private = bp->b_private; 11694 xp->xb_blkno = (daddr_t)bp->b_blkno; 11695 11696 /* 11697 * Set up the iostart and iodone chain indexes in the xbuf, based 11698 * upon the specified chain type to use. 11699 */ 11700 switch (chain_type) { 11701 case SD_CHAIN_NULL: 11702 /* 11703 * Fall thru to just use the values for the buf type, even 11704 * tho for the NULL chain these values will never be used. 11705 */ 11706 /* FALLTHRU */ 11707 case SD_CHAIN_BUFIO: 11708 index = un->un_buf_chain_type; 11709 if ((!un->un_f_has_removable_media) && 11710 (un->un_tgt_blocksize != 0) && 11711 (un->un_tgt_blocksize != DEV_BSIZE || 11712 un->un_f_enable_rmw)) { 11713 int secmask = 0, blknomask = 0; 11714 if (un->un_f_enable_rmw) { 11715 blknomask = 11716 (un->un_phy_blocksize / DEV_BSIZE) - 1; 11717 secmask = un->un_phy_blocksize - 1; 11718 } else { 11719 blknomask = 11720 (un->un_tgt_blocksize / DEV_BSIZE) - 1; 11721 secmask = un->un_tgt_blocksize - 1; 11722 } 11723 11724 if ((bp->b_lblkno & (blknomask)) || 11725 (bp->b_bcount & (secmask))) { 11726 if ((un->un_f_rmw_type != 11727 SD_RMW_TYPE_RETURN_ERROR) || 11728 un->un_f_enable_rmw) { 11729 if (un->un_f_pm_is_enabled == FALSE) 11730 index = 11731 SD_CHAIN_INFO_MSS_DSK_NO_PM; 11732 else 11733 index = 11734 SD_CHAIN_INFO_MSS_DISK; 11735 } 11736 } 11737 } 11738 break; 11739 case SD_CHAIN_USCSI: 11740 index = un->un_uscsi_chain_type; 11741 break; 11742 case SD_CHAIN_DIRECT: 11743 index = un->un_direct_chain_type; 11744 break; 11745 case SD_CHAIN_DIRECT_PRIORITY: 11746 index = un->un_priority_chain_type; 11747 break; 11748 default: 11749 /* We're really broken if we ever get here... */ 11750 panic("sd_xbuf_init: illegal chain type!"); 11751 /*NOTREACHED*/ 11752 } 11753 11754 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11755 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11756 11757 /* 11758 * It might be a bit easier to simply bzero the entire xbuf above, 11759 * but it turns out that since we init a fair number of members anyway, 11760 * we save a fair number cycles by doing explicit assignment of zero. 11761 */ 11762 xp->xb_pkt_flags = 0; 11763 xp->xb_dma_resid = 0; 11764 xp->xb_retry_count = 0; 11765 xp->xb_victim_retry_count = 0; 11766 xp->xb_ua_retry_count = 0; 11767 xp->xb_nr_retry_count = 0; 11768 xp->xb_sense_bp = NULL; 11769 xp->xb_sense_status = 0; 11770 xp->xb_sense_state = 0; 11771 xp->xb_sense_resid = 0; 11772 xp->xb_ena = 0; 11773 11774 bp->b_private = xp; 11775 bp->b_flags &= ~(B_DONE | B_ERROR); 11776 bp->b_resid = 0; 11777 bp->av_forw = NULL; 11778 bp->av_back = NULL; 11779 bioerror(bp, 0); 11780 11781 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11782 } 11783 11784 11785 /* 11786 * Function: sd_uscsi_strategy 11787 * 11788 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11789 * 11790 * Arguments: bp - buf struct ptr 11791 * 11792 * Return Code: Always returns 0 11793 * 11794 * Context: Kernel thread context 11795 */ 11796 11797 static int 11798 sd_uscsi_strategy(struct buf *bp) 11799 { 11800 struct sd_lun *un; 11801 struct sd_uscsi_info *uip; 11802 struct sd_xbuf *xp; 11803 uchar_t chain_type; 11804 uchar_t cmd; 11805 11806 ASSERT(bp != NULL); 11807 11808 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11809 if (un == NULL) { 11810 bioerror(bp, EIO); 11811 bp->b_resid = bp->b_bcount; 11812 biodone(bp); 11813 return (0); 11814 } 11815 11816 ASSERT(!mutex_owned(SD_MUTEX(un))); 11817 11818 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11819 11820 /* 11821 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11822 */ 11823 ASSERT(bp->b_private != NULL); 11824 uip = (struct sd_uscsi_info *)bp->b_private; 11825 cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0]; 11826 11827 mutex_enter(SD_MUTEX(un)); 11828 /* 11829 * atapi: Since we are running the CD for now in PIO mode we need to 11830 * call bp_mapin here to avoid bp_mapin called interrupt context under 11831 * the HBA's init_pkt routine. 11832 */ 11833 if (un->un_f_cfg_is_atapi == TRUE) { 11834 mutex_exit(SD_MUTEX(un)); 11835 bp_mapin(bp); 11836 mutex_enter(SD_MUTEX(un)); 11837 } 11838 un->un_ncmds_in_driver++; 11839 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11840 un->un_ncmds_in_driver); 11841 11842 if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) && 11843 (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1)) 11844 un->un_f_sync_cache_required = TRUE; 11845 11846 mutex_exit(SD_MUTEX(un)); 11847 11848 switch (uip->ui_flags) { 11849 case SD_PATH_DIRECT: 11850 chain_type = SD_CHAIN_DIRECT; 11851 break; 11852 case SD_PATH_DIRECT_PRIORITY: 11853 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11854 break; 11855 default: 11856 chain_type = SD_CHAIN_USCSI; 11857 break; 11858 } 11859 11860 /* 11861 * We may allocate extra buf for external USCSI commands. If the 11862 * application asks for bigger than 20-byte sense data via USCSI, 11863 * SCSA layer will allocate 252 bytes sense buf for that command. 11864 */ 11865 if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen > 11866 SENSE_LENGTH) { 11867 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH + 11868 MAX_SENSE_LENGTH, KM_SLEEP); 11869 } else { 11870 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP); 11871 } 11872 11873 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11874 11875 /* Use the index obtained within xbuf_init */ 11876 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11877 11878 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11879 11880 return (0); 11881 } 11882 11883 /* 11884 * Function: sd_send_scsi_cmd 11885 * 11886 * Description: Runs a USCSI command for user (when called thru sdioctl), 11887 * or for the driver 11888 * 11889 * Arguments: dev - the dev_t for the device 11890 * incmd - ptr to a valid uscsi_cmd struct 11891 * flag - bit flag, indicating open settings, 32/64 bit type 11892 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11893 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11894 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11895 * to use the USCSI "direct" chain and bypass the normal 11896 * command waitq. 11897 * 11898 * Return Code: 0 - successful completion of the given command 11899 * EIO - scsi_uscsi_handle_command() failed 11900 * ENXIO - soft state not found for specified dev 11901 * EINVAL 11902 * EFAULT - copyin/copyout error 11903 * return code of scsi_uscsi_handle_command(): 11904 * EIO 11905 * ENXIO 11906 * EACCES 11907 * 11908 * Context: Waits for command to complete. Can sleep. 11909 */ 11910 11911 static int 11912 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 11913 enum uio_seg dataspace, int path_flag) 11914 { 11915 struct sd_lun *un; 11916 sd_ssc_t *ssc; 11917 int rval; 11918 11919 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11920 if (un == NULL) { 11921 return (ENXIO); 11922 } 11923 11924 /* 11925 * Using sd_ssc_send to handle uscsi cmd 11926 */ 11927 ssc = sd_ssc_init(un); 11928 rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag); 11929 sd_ssc_fini(ssc); 11930 11931 return (rval); 11932 } 11933 11934 /* 11935 * Function: sd_ssc_init 11936 * 11937 * Description: Uscsi end-user call this function to initialize necessary 11938 * fields, such as uscsi_cmd and sd_uscsi_info struct. 11939 * 11940 * The return value of sd_send_scsi_cmd will be treated as a 11941 * fault in various conditions. Even it is not Zero, some 11942 * callers may ignore the return value. That is to say, we can 11943 * not make an accurate assessment in sdintr, since if a 11944 * command is failed in sdintr it does not mean the caller of 11945 * sd_send_scsi_cmd will treat it as a real failure. 11946 * 11947 * To avoid printing too many error logs for a failed uscsi 11948 * packet that the caller may not treat it as a failure, the 11949 * sd will keep silent for handling all uscsi commands. 11950 * 11951 * During detach->attach and attach-open, for some types of 11952 * problems, the driver should be providing information about 11953 * the problem encountered. Device use USCSI_SILENT, which 11954 * suppresses all driver information. The result is that no 11955 * information about the problem is available. Being 11956 * completely silent during this time is inappropriate. The 11957 * driver needs a more selective filter than USCSI_SILENT, so 11958 * that information related to faults is provided. 11959 * 11960 * To make the accurate accessment, the caller of 11961 * sd_send_scsi_USCSI_CMD should take the ownership and 11962 * get necessary information to print error messages. 11963 * 11964 * If we want to print necessary info of uscsi command, we need to 11965 * keep the uscsi_cmd and sd_uscsi_info till we can make the 11966 * assessment. We use sd_ssc_init to alloc necessary 11967 * structs for sending an uscsi command and we are also 11968 * responsible for free the memory by calling 11969 * sd_ssc_fini. 11970 * 11971 * The calling secquences will look like: 11972 * sd_ssc_init-> 11973 * 11974 * ... 11975 * 11976 * sd_send_scsi_USCSI_CMD-> 11977 * sd_ssc_send-> - - - sdintr 11978 * ... 11979 * 11980 * if we think the return value should be treated as a 11981 * failure, we make the accessment here and print out 11982 * necessary by retrieving uscsi_cmd and sd_uscsi_info' 11983 * 11984 * ... 11985 * 11986 * sd_ssc_fini 11987 * 11988 * 11989 * Arguments: un - pointer to driver soft state (unit) structure for this 11990 * target. 11991 * 11992 * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains 11993 * uscsi_cmd and sd_uscsi_info. 11994 * NULL - if can not alloc memory for sd_ssc_t struct 11995 * 11996 * Context: Kernel Thread. 11997 */ 11998 static sd_ssc_t * 11999 sd_ssc_init(struct sd_lun *un) 12000 { 12001 sd_ssc_t *ssc; 12002 struct uscsi_cmd *ucmdp; 12003 struct sd_uscsi_info *uip; 12004 12005 ASSERT(un != NULL); 12006 ASSERT(!mutex_owned(SD_MUTEX(un))); 12007 12008 /* 12009 * Allocate sd_ssc_t structure 12010 */ 12011 ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP); 12012 12013 /* 12014 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine 12015 */ 12016 ucmdp = scsi_uscsi_alloc(); 12017 12018 /* 12019 * Allocate sd_uscsi_info structure 12020 */ 12021 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 12022 12023 ssc->ssc_uscsi_cmd = ucmdp; 12024 ssc->ssc_uscsi_info = uip; 12025 ssc->ssc_un = un; 12026 12027 return (ssc); 12028 } 12029 12030 /* 12031 * Function: sd_ssc_fini 12032 * 12033 * Description: To free sd_ssc_t and it's hanging off 12034 * 12035 * Arguments: ssc - struct pointer of sd_ssc_t. 12036 */ 12037 static void 12038 sd_ssc_fini(sd_ssc_t *ssc) 12039 { 12040 scsi_uscsi_free(ssc->ssc_uscsi_cmd); 12041 12042 if (ssc->ssc_uscsi_info != NULL) { 12043 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info)); 12044 ssc->ssc_uscsi_info = NULL; 12045 } 12046 12047 kmem_free(ssc, sizeof (sd_ssc_t)); 12048 ssc = NULL; 12049 } 12050 12051 /* 12052 * Function: sd_ssc_send 12053 * 12054 * Description: Runs a USCSI command for user when called through sdioctl, 12055 * or for the driver. 12056 * 12057 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12058 * sd_uscsi_info in. 12059 * incmd - ptr to a valid uscsi_cmd struct 12060 * flag - bit flag, indicating open settings, 32/64 bit type 12061 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 12062 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 12063 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 12064 * to use the USCSI "direct" chain and bypass the normal 12065 * command waitq. 12066 * 12067 * Return Code: 0 - successful completion of the given command 12068 * EIO - scsi_uscsi_handle_command() failed 12069 * ENXIO - soft state not found for specified dev 12070 * ECANCELED - command cancelled due to low power 12071 * EINVAL 12072 * EFAULT - copyin/copyout error 12073 * return code of scsi_uscsi_handle_command(): 12074 * EIO 12075 * ENXIO 12076 * EACCES 12077 * 12078 * Context: Kernel Thread; 12079 * Waits for command to complete. Can sleep. 12080 */ 12081 static int 12082 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag, 12083 enum uio_seg dataspace, int path_flag) 12084 { 12085 struct sd_uscsi_info *uip; 12086 struct uscsi_cmd *uscmd; 12087 struct sd_lun *un; 12088 dev_t dev; 12089 12090 int format = 0; 12091 int rval; 12092 12093 ASSERT(ssc != NULL); 12094 un = ssc->ssc_un; 12095 ASSERT(un != NULL); 12096 uscmd = ssc->ssc_uscsi_cmd; 12097 ASSERT(uscmd != NULL); 12098 ASSERT(!mutex_owned(SD_MUTEX(un))); 12099 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 12100 /* 12101 * If enter here, it indicates that the previous uscsi 12102 * command has not been processed by sd_ssc_assessment. 12103 * This is violating our rules of FMA telemetry processing. 12104 * We should print out this message and the last undisposed 12105 * uscsi command. 12106 */ 12107 if (uscmd->uscsi_cdb != NULL) { 12108 SD_INFO(SD_LOG_SDTEST, un, 12109 "sd_ssc_send is missing the alternative " 12110 "sd_ssc_assessment when running command 0x%x.\n", 12111 uscmd->uscsi_cdb[0]); 12112 } 12113 /* 12114 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be 12115 * the initial status. 12116 */ 12117 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12118 } 12119 12120 /* 12121 * We need to make sure sd_ssc_send will have sd_ssc_assessment 12122 * followed to avoid missing FMA telemetries. 12123 */ 12124 ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT; 12125 12126 /* 12127 * if USCSI_PMFAILFAST is set and un is in low power, fail the 12128 * command immediately. 12129 */ 12130 mutex_enter(SD_MUTEX(un)); 12131 mutex_enter(&un->un_pm_mutex); 12132 if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) && 12133 SD_DEVICE_IS_IN_LOW_POWER(un)) { 12134 SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:" 12135 "un:0x%p is in low power\n", un); 12136 mutex_exit(&un->un_pm_mutex); 12137 mutex_exit(SD_MUTEX(un)); 12138 return (ECANCELED); 12139 } 12140 mutex_exit(&un->un_pm_mutex); 12141 mutex_exit(SD_MUTEX(un)); 12142 12143 #ifdef SDDEBUG 12144 switch (dataspace) { 12145 case UIO_USERSPACE: 12146 SD_TRACE(SD_LOG_IO, un, 12147 "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un); 12148 break; 12149 case UIO_SYSSPACE: 12150 SD_TRACE(SD_LOG_IO, un, 12151 "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un); 12152 break; 12153 default: 12154 SD_TRACE(SD_LOG_IO, un, 12155 "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un); 12156 break; 12157 } 12158 #endif 12159 12160 rval = scsi_uscsi_copyin((intptr_t)incmd, flag, 12161 SD_ADDRESS(un), &uscmd); 12162 if (rval != 0) { 12163 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 12164 "scsi_uscsi_alloc_and_copyin failed\n", un); 12165 return (rval); 12166 } 12167 12168 if ((uscmd->uscsi_cdb != NULL) && 12169 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 12170 mutex_enter(SD_MUTEX(un)); 12171 un->un_f_format_in_progress = TRUE; 12172 mutex_exit(SD_MUTEX(un)); 12173 format = 1; 12174 } 12175 12176 /* 12177 * Allocate an sd_uscsi_info struct and fill it with the info 12178 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 12179 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 12180 * since we allocate the buf here in this function, we do not 12181 * need to preserve the prior contents of b_private. 12182 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 12183 */ 12184 uip = ssc->ssc_uscsi_info; 12185 uip->ui_flags = path_flag; 12186 uip->ui_cmdp = uscmd; 12187 12188 /* 12189 * Commands sent with priority are intended for error recovery 12190 * situations, and do not have retries performed. 12191 */ 12192 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 12193 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 12194 } 12195 uscmd->uscsi_flags &= ~USCSI_NOINTR; 12196 12197 dev = SD_GET_DEV(un); 12198 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 12199 sd_uscsi_strategy, NULL, uip); 12200 12201 /* 12202 * mark ssc_flags right after handle_cmd to make sure 12203 * the uscsi has been sent 12204 */ 12205 ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED; 12206 12207 #ifdef SDDEBUG 12208 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12209 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 12210 uscmd->uscsi_status, uscmd->uscsi_resid); 12211 if (uscmd->uscsi_bufaddr != NULL) { 12212 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12213 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 12214 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 12215 if (dataspace == UIO_SYSSPACE) { 12216 SD_DUMP_MEMORY(un, SD_LOG_IO, 12217 "data", (uchar_t *)uscmd->uscsi_bufaddr, 12218 uscmd->uscsi_buflen, SD_LOG_HEX); 12219 } 12220 } 12221 #endif 12222 12223 if (format == 1) { 12224 mutex_enter(SD_MUTEX(un)); 12225 un->un_f_format_in_progress = FALSE; 12226 mutex_exit(SD_MUTEX(un)); 12227 } 12228 12229 (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd); 12230 12231 return (rval); 12232 } 12233 12234 /* 12235 * Function: sd_ssc_print 12236 * 12237 * Description: Print information available to the console. 12238 * 12239 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12240 * sd_uscsi_info in. 12241 * sd_severity - log level. 12242 * Context: Kernel thread or interrupt context. 12243 */ 12244 static void 12245 sd_ssc_print(sd_ssc_t *ssc, int sd_severity) 12246 { 12247 struct uscsi_cmd *ucmdp; 12248 struct scsi_device *devp; 12249 dev_info_t *devinfo; 12250 uchar_t *sensep; 12251 int senlen; 12252 union scsi_cdb *cdbp; 12253 uchar_t com; 12254 extern struct scsi_key_strings scsi_cmds[]; 12255 12256 ASSERT(ssc != NULL); 12257 ASSERT(ssc->ssc_un != NULL); 12258 12259 if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT) 12260 return; 12261 ucmdp = ssc->ssc_uscsi_cmd; 12262 devp = SD_SCSI_DEVP(ssc->ssc_un); 12263 devinfo = SD_DEVINFO(ssc->ssc_un); 12264 ASSERT(ucmdp != NULL); 12265 ASSERT(devp != NULL); 12266 ASSERT(devinfo != NULL); 12267 sensep = (uint8_t *)ucmdp->uscsi_rqbuf; 12268 senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid; 12269 cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb; 12270 12271 /* In certain case (like DOORLOCK), the cdb could be NULL. */ 12272 if (cdbp == NULL) 12273 return; 12274 /* We don't print log if no sense data available. */ 12275 if (senlen == 0) 12276 sensep = NULL; 12277 com = cdbp->scc_cmd; 12278 scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com, 12279 scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL); 12280 } 12281 12282 /* 12283 * Function: sd_ssc_assessment 12284 * 12285 * Description: We use this function to make an assessment at the point 12286 * where SD driver may encounter a potential error. 12287 * 12288 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12289 * sd_uscsi_info in. 12290 * tp_assess - a hint of strategy for ereport posting. 12291 * Possible values of tp_assess include: 12292 * SD_FMT_IGNORE - we don't post any ereport because we're 12293 * sure that it is ok to ignore the underlying problems. 12294 * SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now 12295 * but it might be not correct to ignore the underlying hardware 12296 * error. 12297 * SD_FMT_STATUS_CHECK - we will post an ereport with the 12298 * payload driver-assessment of value "fail" or 12299 * "fatal"(depending on what information we have here). This 12300 * assessment value is usually set when SD driver think there 12301 * is a potential error occurred(Typically, when return value 12302 * of the SCSI command is EIO). 12303 * SD_FMT_STANDARD - we will post an ereport with the payload 12304 * driver-assessment of value "info". This assessment value is 12305 * set when the SCSI command returned successfully and with 12306 * sense data sent back. 12307 * 12308 * Context: Kernel thread. 12309 */ 12310 static void 12311 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess) 12312 { 12313 int senlen = 0; 12314 struct uscsi_cmd *ucmdp = NULL; 12315 struct sd_lun *un; 12316 12317 ASSERT(ssc != NULL); 12318 un = ssc->ssc_un; 12319 ASSERT(un != NULL); 12320 ucmdp = ssc->ssc_uscsi_cmd; 12321 ASSERT(ucmdp != NULL); 12322 12323 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 12324 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT; 12325 } else { 12326 /* 12327 * If enter here, it indicates that we have a wrong 12328 * calling sequence of sd_ssc_send and sd_ssc_assessment, 12329 * both of which should be called in a pair in case of 12330 * loss of FMA telemetries. 12331 */ 12332 if (ucmdp->uscsi_cdb != NULL) { 12333 SD_INFO(SD_LOG_SDTEST, un, 12334 "sd_ssc_assessment is missing the " 12335 "alternative sd_ssc_send when running 0x%x, " 12336 "or there are superfluous sd_ssc_assessment for " 12337 "the same sd_ssc_send.\n", 12338 ucmdp->uscsi_cdb[0]); 12339 } 12340 /* 12341 * Set the ssc_flags to the initial value to avoid passing 12342 * down dirty flags to the following sd_ssc_send function. 12343 */ 12344 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12345 return; 12346 } 12347 12348 /* 12349 * Only handle an issued command which is waiting for assessment. 12350 * A command which is not issued will not have 12351 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here. 12352 */ 12353 if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) { 12354 sd_ssc_print(ssc, SCSI_ERR_INFO); 12355 return; 12356 } else { 12357 /* 12358 * For an issued command, we should clear this flag in 12359 * order to make the sd_ssc_t structure be used off 12360 * multiple uscsi commands. 12361 */ 12362 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED; 12363 } 12364 12365 /* 12366 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set) 12367 * commands here. And we should clear the ssc_flags before return. 12368 */ 12369 if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) { 12370 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12371 return; 12372 } 12373 12374 switch (tp_assess) { 12375 case SD_FMT_IGNORE: 12376 case SD_FMT_IGNORE_COMPROMISE: 12377 break; 12378 case SD_FMT_STATUS_CHECK: 12379 /* 12380 * For a failed command(including the succeeded command 12381 * with invalid data sent back). 12382 */ 12383 sd_ssc_post(ssc, SD_FM_DRV_FATAL); 12384 break; 12385 case SD_FMT_STANDARD: 12386 /* 12387 * Always for the succeeded commands probably with sense 12388 * data sent back. 12389 * Limitation: 12390 * We can only handle a succeeded command with sense 12391 * data sent back when auto-request-sense is enabled. 12392 */ 12393 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen - 12394 ssc->ssc_uscsi_cmd->uscsi_rqresid; 12395 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) && 12396 (un->un_f_arq_enabled == TRUE) && 12397 senlen > 0 && 12398 ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) { 12399 sd_ssc_post(ssc, SD_FM_DRV_NOTICE); 12400 } 12401 break; 12402 default: 12403 /* 12404 * Should not have other type of assessment. 12405 */ 12406 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 12407 "sd_ssc_assessment got wrong " 12408 "sd_type_assessment %d.\n", tp_assess); 12409 break; 12410 } 12411 /* 12412 * Clear up the ssc_flags before return. 12413 */ 12414 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12415 } 12416 12417 /* 12418 * Function: sd_ssc_post 12419 * 12420 * Description: 1. read the driver property to get fm-scsi-log flag. 12421 * 2. print log if fm_log_capable is non-zero. 12422 * 3. call sd_ssc_ereport_post to post ereport if possible. 12423 * 12424 * Context: May be called from kernel thread or interrupt context. 12425 */ 12426 static void 12427 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess) 12428 { 12429 struct sd_lun *un; 12430 int sd_severity; 12431 12432 ASSERT(ssc != NULL); 12433 un = ssc->ssc_un; 12434 ASSERT(un != NULL); 12435 12436 /* 12437 * We may enter here from sd_ssc_assessment(for USCSI command) or 12438 * by directly called from sdintr context. 12439 * We don't handle a non-disk drive(CD-ROM, removable media). 12440 * Clear the ssc_flags before return in case we've set 12441 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk 12442 * driver. 12443 */ 12444 if (ISCD(un) || un->un_f_has_removable_media) { 12445 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12446 return; 12447 } 12448 12449 switch (sd_assess) { 12450 case SD_FM_DRV_FATAL: 12451 sd_severity = SCSI_ERR_FATAL; 12452 break; 12453 case SD_FM_DRV_RECOVERY: 12454 sd_severity = SCSI_ERR_RECOVERED; 12455 break; 12456 case SD_FM_DRV_RETRY: 12457 sd_severity = SCSI_ERR_RETRYABLE; 12458 break; 12459 case SD_FM_DRV_NOTICE: 12460 sd_severity = SCSI_ERR_INFO; 12461 break; 12462 default: 12463 sd_severity = SCSI_ERR_UNKNOWN; 12464 } 12465 /* print log */ 12466 sd_ssc_print(ssc, sd_severity); 12467 12468 /* always post ereport */ 12469 sd_ssc_ereport_post(ssc, sd_assess); 12470 } 12471 12472 /* 12473 * Function: sd_ssc_set_info 12474 * 12475 * Description: Mark ssc_flags and set ssc_info which would be the 12476 * payload of uderr ereport. This function will cause 12477 * sd_ssc_ereport_post to post uderr ereport only. 12478 * Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI), 12479 * the function will also call SD_ERROR or scsi_log for a 12480 * CDROM/removable-media/DDI_FM_NOT_CAPABLE device. 12481 * 12482 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12483 * sd_uscsi_info in. 12484 * ssc_flags - indicate the sub-category of a uderr. 12485 * comp - this argument is meaningful only when 12486 * ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible 12487 * values include: 12488 * > 0, SD_ERROR is used with comp as the driver logging 12489 * component; 12490 * = 0, scsi-log is used to log error telemetries; 12491 * < 0, no log available for this telemetry. 12492 * 12493 * Context: Kernel thread or interrupt context 12494 */ 12495 static void 12496 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...) 12497 { 12498 va_list ap; 12499 12500 ASSERT(ssc != NULL); 12501 ASSERT(ssc->ssc_un != NULL); 12502 12503 ssc->ssc_flags |= ssc_flags; 12504 va_start(ap, fmt); 12505 (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap); 12506 va_end(ap); 12507 12508 /* 12509 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command 12510 * with invalid data sent back. For non-uscsi command, the 12511 * following code will be bypassed. 12512 */ 12513 if (ssc_flags & SSC_FLAGS_INVALID_DATA) { 12514 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) { 12515 /* 12516 * If the error belong to certain component and we 12517 * do not want it to show up on the console, we 12518 * will use SD_ERROR, otherwise scsi_log is 12519 * preferred. 12520 */ 12521 if (comp > 0) { 12522 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info); 12523 } else if (comp == 0) { 12524 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label, 12525 CE_WARN, ssc->ssc_info); 12526 } 12527 } 12528 } 12529 } 12530 12531 /* 12532 * Function: sd_buf_iodone 12533 * 12534 * Description: Frees the sd_xbuf & returns the buf to its originator. 12535 * 12536 * Context: May be called from interrupt context. 12537 */ 12538 /* ARGSUSED */ 12539 static void 12540 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 12541 { 12542 struct sd_xbuf *xp; 12543 12544 ASSERT(un != NULL); 12545 ASSERT(bp != NULL); 12546 ASSERT(!mutex_owned(SD_MUTEX(un))); 12547 12548 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 12549 12550 xp = SD_GET_XBUF(bp); 12551 ASSERT(xp != NULL); 12552 12553 /* xbuf is gone after this */ 12554 if (ddi_xbuf_done(bp, un->un_xbuf_attr)) { 12555 mutex_enter(SD_MUTEX(un)); 12556 12557 /* 12558 * Grab time when the cmd completed. 12559 * This is used for determining if the system has been 12560 * idle long enough to make it idle to the PM framework. 12561 * This is for lowering the overhead, and therefore improving 12562 * performance per I/O operation. 12563 */ 12564 un->un_pm_idle_time = gethrtime(); 12565 12566 un->un_ncmds_in_driver--; 12567 ASSERT(un->un_ncmds_in_driver >= 0); 12568 SD_INFO(SD_LOG_IO, un, 12569 "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12570 un->un_ncmds_in_driver); 12571 12572 mutex_exit(SD_MUTEX(un)); 12573 } 12574 12575 biodone(bp); /* bp is gone after this */ 12576 12577 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12578 } 12579 12580 12581 /* 12582 * Function: sd_uscsi_iodone 12583 * 12584 * Description: Frees the sd_xbuf & returns the buf to its originator. 12585 * 12586 * Context: May be called from interrupt context. 12587 */ 12588 /* ARGSUSED */ 12589 static void 12590 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12591 { 12592 struct sd_xbuf *xp; 12593 12594 ASSERT(un != NULL); 12595 ASSERT(bp != NULL); 12596 12597 xp = SD_GET_XBUF(bp); 12598 ASSERT(xp != NULL); 12599 ASSERT(!mutex_owned(SD_MUTEX(un))); 12600 12601 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12602 12603 bp->b_private = xp->xb_private; 12604 12605 mutex_enter(SD_MUTEX(un)); 12606 12607 /* 12608 * Grab time when the cmd completed. 12609 * This is used for determining if the system has been 12610 * idle long enough to make it idle to the PM framework. 12611 * This is for lowering the overhead, and therefore improving 12612 * performance per I/O operation. 12613 */ 12614 un->un_pm_idle_time = gethrtime(); 12615 12616 un->un_ncmds_in_driver--; 12617 ASSERT(un->un_ncmds_in_driver >= 0); 12618 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12619 un->un_ncmds_in_driver); 12620 12621 mutex_exit(SD_MUTEX(un)); 12622 12623 if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen > 12624 SENSE_LENGTH) { 12625 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH + 12626 MAX_SENSE_LENGTH); 12627 } else { 12628 kmem_free(xp, sizeof (struct sd_xbuf)); 12629 } 12630 12631 biodone(bp); 12632 12633 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12634 } 12635 12636 12637 /* 12638 * Function: sd_mapblockaddr_iostart 12639 * 12640 * Description: Verify request lies within the partition limits for 12641 * the indicated minor device. Issue "overrun" buf if 12642 * request would exceed partition range. Converts 12643 * partition-relative block address to absolute. 12644 * 12645 * Upon exit of this function: 12646 * 1.I/O is aligned 12647 * xp->xb_blkno represents the absolute sector address 12648 * 2.I/O is misaligned 12649 * xp->xb_blkno represents the absolute logical block address 12650 * based on DEV_BSIZE. The logical block address will be 12651 * converted to physical sector address in sd_mapblocksize_\ 12652 * iostart. 12653 * 3.I/O is misaligned but is aligned in "overrun" buf 12654 * xp->xb_blkno represents the absolute logical block address 12655 * based on DEV_BSIZE. The logical block address will be 12656 * converted to physical sector address in sd_mapblocksize_\ 12657 * iostart. But no RMW will be issued in this case. 12658 * 12659 * Context: Can sleep 12660 * 12661 * Issues: This follows what the old code did, in terms of accessing 12662 * some of the partition info in the unit struct without holding 12663 * the mutext. This is a general issue, if the partition info 12664 * can be altered while IO is in progress... as soon as we send 12665 * a buf, its partitioning can be invalid before it gets to the 12666 * device. Probably the right fix is to move partitioning out 12667 * of the driver entirely. 12668 */ 12669 12670 static void 12671 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12672 { 12673 diskaddr_t nblocks; /* #blocks in the given partition */ 12674 daddr_t blocknum; /* Block number specified by the buf */ 12675 size_t requested_nblocks; 12676 size_t available_nblocks; 12677 int partition; 12678 diskaddr_t partition_offset; 12679 struct sd_xbuf *xp; 12680 int secmask = 0, blknomask = 0; 12681 ushort_t is_aligned = TRUE; 12682 12683 ASSERT(un != NULL); 12684 ASSERT(bp != NULL); 12685 ASSERT(!mutex_owned(SD_MUTEX(un))); 12686 12687 SD_TRACE(SD_LOG_IO_PARTITION, un, 12688 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12689 12690 xp = SD_GET_XBUF(bp); 12691 ASSERT(xp != NULL); 12692 12693 /* 12694 * If the geometry is not indicated as valid, attempt to access 12695 * the unit & verify the geometry/label. This can be the case for 12696 * removable-media devices, of if the device was opened in 12697 * NDELAY/NONBLOCK mode. 12698 */ 12699 partition = SDPART(bp->b_edev); 12700 12701 if (!SD_IS_VALID_LABEL(un)) { 12702 sd_ssc_t *ssc; 12703 /* 12704 * Initialize sd_ssc_t for internal uscsi commands 12705 * In case of potential porformance issue, we need 12706 * to alloc memory only if there is invalid label 12707 */ 12708 ssc = sd_ssc_init(un); 12709 12710 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) { 12711 /* 12712 * For removable devices it is possible to start an 12713 * I/O without a media by opening the device in nodelay 12714 * mode. Also for writable CDs there can be many 12715 * scenarios where there is no geometry yet but volume 12716 * manager is trying to issue a read() just because 12717 * it can see TOC on the CD. So do not print a message 12718 * for removables. 12719 */ 12720 if (!un->un_f_has_removable_media) { 12721 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12722 "i/o to invalid geometry\n"); 12723 } 12724 bioerror(bp, EIO); 12725 bp->b_resid = bp->b_bcount; 12726 SD_BEGIN_IODONE(index, un, bp); 12727 12728 sd_ssc_fini(ssc); 12729 return; 12730 } 12731 sd_ssc_fini(ssc); 12732 } 12733 12734 nblocks = 0; 12735 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 12736 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 12737 12738 if (un->un_f_enable_rmw) { 12739 blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1; 12740 secmask = un->un_phy_blocksize - 1; 12741 } else { 12742 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 12743 secmask = un->un_tgt_blocksize - 1; 12744 } 12745 12746 if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) { 12747 is_aligned = FALSE; 12748 } 12749 12750 if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) { 12751 /* 12752 * If I/O is aligned, no need to involve RMW(Read Modify Write) 12753 * Convert the logical block number to target's physical sector 12754 * number. 12755 */ 12756 if (is_aligned) { 12757 xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno); 12758 } else { 12759 /* 12760 * There is no RMW if we're just reading, so don't 12761 * warn or error out because of it. 12762 */ 12763 if (bp->b_flags & B_READ) { 12764 /*EMPTY*/ 12765 } else if (!un->un_f_enable_rmw && 12766 un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) { 12767 bp->b_flags |= B_ERROR; 12768 goto error_exit; 12769 } else if (un->un_f_rmw_type == SD_RMW_TYPE_DEFAULT) { 12770 mutex_enter(SD_MUTEX(un)); 12771 if (!un->un_f_enable_rmw && 12772 un->un_rmw_msg_timeid == NULL) { 12773 scsi_log(SD_DEVINFO(un), sd_label, 12774 CE_WARN, "I/O request is not " 12775 "aligned with %d disk sector size. " 12776 "It is handled through Read Modify " 12777 "Write but the performance is " 12778 "very low.\n", 12779 un->un_tgt_blocksize); 12780 un->un_rmw_msg_timeid = 12781 timeout(sd_rmw_msg_print_handler, 12782 un, SD_RMW_MSG_PRINT_TIMEOUT); 12783 } else { 12784 un->un_rmw_incre_count ++; 12785 } 12786 mutex_exit(SD_MUTEX(un)); 12787 } 12788 12789 nblocks = SD_TGT2SYSBLOCK(un, nblocks); 12790 partition_offset = SD_TGT2SYSBLOCK(un, 12791 partition_offset); 12792 } 12793 } 12794 12795 /* 12796 * blocknum is the starting block number of the request. At this 12797 * point it is still relative to the start of the minor device. 12798 */ 12799 blocknum = xp->xb_blkno; 12800 12801 /* 12802 * Legacy: If the starting block number is one past the last block 12803 * in the partition, do not set B_ERROR in the buf. 12804 */ 12805 if (blocknum == nblocks) { 12806 goto error_exit; 12807 } 12808 12809 /* 12810 * Confirm that the first block of the request lies within the 12811 * partition limits. Also the requested number of bytes must be 12812 * a multiple of the system block size. 12813 */ 12814 if ((blocknum < 0) || (blocknum >= nblocks) || 12815 ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) { 12816 bp->b_flags |= B_ERROR; 12817 goto error_exit; 12818 } 12819 12820 /* 12821 * If the requsted # blocks exceeds the available # blocks, that 12822 * is an overrun of the partition. 12823 */ 12824 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12825 requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 12826 } else { 12827 requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount); 12828 } 12829 12830 available_nblocks = (size_t)(nblocks - blocknum); 12831 ASSERT(nblocks >= blocknum); 12832 12833 if (requested_nblocks > available_nblocks) { 12834 size_t resid; 12835 12836 /* 12837 * Allocate an "overrun" buf to allow the request to proceed 12838 * for the amount of space available in the partition. The 12839 * amount not transferred will be added into the b_resid 12840 * when the operation is complete. The overrun buf 12841 * replaces the original buf here, and the original buf 12842 * is saved inside the overrun buf, for later use. 12843 */ 12844 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12845 resid = SD_TGTBLOCKS2BYTES(un, 12846 (offset_t)(requested_nblocks - available_nblocks)); 12847 } else { 12848 resid = SD_SYSBLOCKS2BYTES( 12849 (offset_t)(requested_nblocks - available_nblocks)); 12850 } 12851 12852 size_t count = bp->b_bcount - resid; 12853 /* 12854 * Note: count is an unsigned entity thus it'll NEVER 12855 * be less than 0 so ASSERT the original values are 12856 * correct. 12857 */ 12858 ASSERT(bp->b_bcount >= resid); 12859 12860 bp = sd_bioclone_alloc(bp, count, blocknum, 12861 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12862 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12863 ASSERT(xp != NULL); 12864 } 12865 12866 /* At this point there should be no residual for this buf. */ 12867 ASSERT(bp->b_resid == 0); 12868 12869 /* Convert the block number to an absolute address. */ 12870 xp->xb_blkno += partition_offset; 12871 12872 SD_NEXT_IOSTART(index, un, bp); 12873 12874 SD_TRACE(SD_LOG_IO_PARTITION, un, 12875 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12876 12877 return; 12878 12879 error_exit: 12880 bp->b_resid = bp->b_bcount; 12881 SD_BEGIN_IODONE(index, un, bp); 12882 SD_TRACE(SD_LOG_IO_PARTITION, un, 12883 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12884 } 12885 12886 12887 /* 12888 * Function: sd_mapblockaddr_iodone 12889 * 12890 * Description: Completion-side processing for partition management. 12891 * 12892 * Context: May be called under interrupt context 12893 */ 12894 12895 static void 12896 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12897 { 12898 /* int partition; */ /* Not used, see below. */ 12899 ASSERT(un != NULL); 12900 ASSERT(bp != NULL); 12901 ASSERT(!mutex_owned(SD_MUTEX(un))); 12902 12903 SD_TRACE(SD_LOG_IO_PARTITION, un, 12904 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12905 12906 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12907 /* 12908 * We have an "overrun" buf to deal with... 12909 */ 12910 struct sd_xbuf *xp; 12911 struct buf *obp; /* ptr to the original buf */ 12912 12913 xp = SD_GET_XBUF(bp); 12914 ASSERT(xp != NULL); 12915 12916 /* Retrieve the pointer to the original buf */ 12917 obp = (struct buf *)xp->xb_private; 12918 ASSERT(obp != NULL); 12919 12920 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12921 bioerror(obp, bp->b_error); 12922 12923 sd_bioclone_free(bp); 12924 12925 /* 12926 * Get back the original buf. 12927 * Note that since the restoration of xb_blkno below 12928 * was removed, the sd_xbuf is not needed. 12929 */ 12930 bp = obp; 12931 /* 12932 * xp = SD_GET_XBUF(bp); 12933 * ASSERT(xp != NULL); 12934 */ 12935 } 12936 12937 /* 12938 * Convert sd->xb_blkno back to a minor-device relative value. 12939 * Note: this has been commented out, as it is not needed in the 12940 * current implementation of the driver (ie, since this function 12941 * is at the top of the layering chains, so the info will be 12942 * discarded) and it is in the "hot" IO path. 12943 * 12944 * partition = getminor(bp->b_edev) & SDPART_MASK; 12945 * xp->xb_blkno -= un->un_offset[partition]; 12946 */ 12947 12948 SD_NEXT_IODONE(index, un, bp); 12949 12950 SD_TRACE(SD_LOG_IO_PARTITION, un, 12951 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12952 } 12953 12954 12955 /* 12956 * Function: sd_mapblocksize_iostart 12957 * 12958 * Description: Convert between system block size (un->un_sys_blocksize) 12959 * and target block size (un->un_tgt_blocksize). 12960 * 12961 * Context: Can sleep to allocate resources. 12962 * 12963 * Assumptions: A higher layer has already performed any partition validation, 12964 * and converted the xp->xb_blkno to an absolute value relative 12965 * to the start of the device. 12966 * 12967 * It is also assumed that the higher layer has implemented 12968 * an "overrun" mechanism for the case where the request would 12969 * read/write beyond the end of a partition. In this case we 12970 * assume (and ASSERT) that bp->b_resid == 0. 12971 * 12972 * Note: The implementation for this routine assumes the target 12973 * block size remains constant between allocation and transport. 12974 */ 12975 12976 static void 12977 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12978 { 12979 struct sd_mapblocksize_info *bsp; 12980 struct sd_xbuf *xp; 12981 offset_t first_byte; 12982 daddr_t start_block, end_block; 12983 daddr_t request_bytes; 12984 ushort_t is_aligned = FALSE; 12985 12986 ASSERT(un != NULL); 12987 ASSERT(bp != NULL); 12988 ASSERT(!mutex_owned(SD_MUTEX(un))); 12989 ASSERT(bp->b_resid == 0); 12990 12991 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12992 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12993 12994 /* 12995 * For a non-writable CD, a write request is an error 12996 */ 12997 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12998 (un->un_f_mmc_writable_media == FALSE)) { 12999 bioerror(bp, EIO); 13000 bp->b_resid = bp->b_bcount; 13001 SD_BEGIN_IODONE(index, un, bp); 13002 return; 13003 } 13004 13005 /* 13006 * We do not need a shadow buf if the device is using 13007 * un->un_sys_blocksize as its block size or if bcount == 0. 13008 * In this case there is no layer-private data block allocated. 13009 */ 13010 if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) || 13011 (bp->b_bcount == 0)) { 13012 goto done; 13013 } 13014 13015 #if defined(__i386) || defined(__amd64) 13016 /* We do not support non-block-aligned transfers for ROD devices */ 13017 ASSERT(!ISROD(un)); 13018 #endif 13019 13020 xp = SD_GET_XBUF(bp); 13021 ASSERT(xp != NULL); 13022 13023 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 13024 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 13025 un->un_tgt_blocksize, DEV_BSIZE); 13026 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 13027 "request start block:0x%x\n", xp->xb_blkno); 13028 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 13029 "request len:0x%x\n", bp->b_bcount); 13030 13031 /* 13032 * Allocate the layer-private data area for the mapblocksize layer. 13033 * Layers are allowed to use the xp_private member of the sd_xbuf 13034 * struct to store the pointer to their layer-private data block, but 13035 * each layer also has the responsibility of restoring the prior 13036 * contents of xb_private before returning the buf/xbuf to the 13037 * higher layer that sent it. 13038 * 13039 * Here we save the prior contents of xp->xb_private into the 13040 * bsp->mbs_oprivate field of our layer-private data area. This value 13041 * is restored by sd_mapblocksize_iodone() just prior to freeing up 13042 * the layer-private area and returning the buf/xbuf to the layer 13043 * that sent it. 13044 * 13045 * Note that here we use kmem_zalloc for the allocation as there are 13046 * parts of the mapblocksize code that expect certain fields to be 13047 * zero unless explicitly set to a required value. 13048 */ 13049 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 13050 bsp->mbs_oprivate = xp->xb_private; 13051 xp->xb_private = bsp; 13052 13053 /* 13054 * This treats the data on the disk (target) as an array of bytes. 13055 * first_byte is the byte offset, from the beginning of the device, 13056 * to the location of the request. This is converted from a 13057 * un->un_sys_blocksize block address to a byte offset, and then back 13058 * to a block address based upon a un->un_tgt_blocksize block size. 13059 * 13060 * xp->xb_blkno should be absolute upon entry into this function, 13061 * but, but it is based upon partitions that use the "system" 13062 * block size. It must be adjusted to reflect the block size of 13063 * the target. 13064 * 13065 * Note that end_block is actually the block that follows the last 13066 * block of the request, but that's what is needed for the computation. 13067 */ 13068 first_byte = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 13069 if (un->un_f_enable_rmw) { 13070 start_block = xp->xb_blkno = 13071 (first_byte / un->un_phy_blocksize) * 13072 (un->un_phy_blocksize / DEV_BSIZE); 13073 end_block = ((first_byte + bp->b_bcount + 13074 un->un_phy_blocksize - 1) / un->un_phy_blocksize) * 13075 (un->un_phy_blocksize / DEV_BSIZE); 13076 } else { 13077 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 13078 end_block = (first_byte + bp->b_bcount + 13079 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 13080 } 13081 13082 /* request_bytes is rounded up to a multiple of the target block size */ 13083 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 13084 13085 /* 13086 * See if the starting address of the request and the request 13087 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 13088 * then we do not need to allocate a shadow buf to handle the request. 13089 */ 13090 if (un->un_f_enable_rmw) { 13091 if (((first_byte % un->un_phy_blocksize) == 0) && 13092 ((bp->b_bcount % un->un_phy_blocksize) == 0)) { 13093 is_aligned = TRUE; 13094 } 13095 } else { 13096 if (((first_byte % un->un_tgt_blocksize) == 0) && 13097 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 13098 is_aligned = TRUE; 13099 } 13100 } 13101 13102 if ((bp->b_flags & B_READ) == 0) { 13103 /* 13104 * Lock the range for a write operation. An aligned request is 13105 * considered a simple write; otherwise the request must be a 13106 * read-modify-write. 13107 */ 13108 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 13109 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 13110 } 13111 13112 /* 13113 * Alloc a shadow buf if the request is not aligned. Also, this is 13114 * where the READ command is generated for a read-modify-write. (The 13115 * write phase is deferred until after the read completes.) 13116 */ 13117 if (is_aligned == FALSE) { 13118 13119 struct sd_mapblocksize_info *shadow_bsp; 13120 struct sd_xbuf *shadow_xp; 13121 struct buf *shadow_bp; 13122 13123 /* 13124 * Allocate the shadow buf and it associated xbuf. Note that 13125 * after this call the xb_blkno value in both the original 13126 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 13127 * same: absolute relative to the start of the device, and 13128 * adjusted for the target block size. The b_blkno in the 13129 * shadow buf will also be set to this value. We should never 13130 * change b_blkno in the original bp however. 13131 * 13132 * Note also that the shadow buf will always need to be a 13133 * READ command, regardless of whether the incoming command 13134 * is a READ or a WRITE. 13135 */ 13136 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 13137 xp->xb_blkno, 13138 (int (*)(struct buf *)) sd_mapblocksize_iodone); 13139 13140 shadow_xp = SD_GET_XBUF(shadow_bp); 13141 13142 /* 13143 * Allocate the layer-private data for the shadow buf. 13144 * (No need to preserve xb_private in the shadow xbuf.) 13145 */ 13146 shadow_xp->xb_private = shadow_bsp = 13147 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 13148 13149 /* 13150 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 13151 * to figure out where the start of the user data is (based upon 13152 * the system block size) in the data returned by the READ 13153 * command (which will be based upon the target blocksize). Note 13154 * that this is only really used if the request is unaligned. 13155 */ 13156 if (un->un_f_enable_rmw) { 13157 bsp->mbs_copy_offset = (ssize_t)(first_byte - 13158 ((offset_t)xp->xb_blkno * un->un_sys_blocksize)); 13159 ASSERT((bsp->mbs_copy_offset >= 0) && 13160 (bsp->mbs_copy_offset < un->un_phy_blocksize)); 13161 } else { 13162 bsp->mbs_copy_offset = (ssize_t)(first_byte - 13163 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 13164 ASSERT((bsp->mbs_copy_offset >= 0) && 13165 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 13166 } 13167 13168 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 13169 13170 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 13171 13172 /* Transfer the wmap (if any) to the shadow buf */ 13173 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 13174 bsp->mbs_wmp = NULL; 13175 13176 /* 13177 * The shadow buf goes on from here in place of the 13178 * original buf. 13179 */ 13180 shadow_bsp->mbs_orig_bp = bp; 13181 bp = shadow_bp; 13182 } 13183 13184 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13185 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 13186 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13187 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 13188 request_bytes); 13189 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13190 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 13191 13192 done: 13193 SD_NEXT_IOSTART(index, un, bp); 13194 13195 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13196 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 13197 } 13198 13199 13200 /* 13201 * Function: sd_mapblocksize_iodone 13202 * 13203 * Description: Completion side processing for block-size mapping. 13204 * 13205 * Context: May be called under interrupt context 13206 */ 13207 13208 static void 13209 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 13210 { 13211 struct sd_mapblocksize_info *bsp; 13212 struct sd_xbuf *xp; 13213 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 13214 struct buf *orig_bp; /* ptr to the original buf */ 13215 offset_t shadow_end; 13216 offset_t request_end; 13217 offset_t shadow_start; 13218 ssize_t copy_offset; 13219 size_t copy_length; 13220 size_t shortfall; 13221 uint_t is_write; /* TRUE if this bp is a WRITE */ 13222 uint_t has_wmap; /* TRUE is this bp has a wmap */ 13223 13224 ASSERT(un != NULL); 13225 ASSERT(bp != NULL); 13226 13227 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13228 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 13229 13230 /* 13231 * There is no shadow buf or layer-private data if the target is 13232 * using un->un_sys_blocksize as its block size or if bcount == 0. 13233 */ 13234 if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) || 13235 (bp->b_bcount == 0)) { 13236 goto exit; 13237 } 13238 13239 xp = SD_GET_XBUF(bp); 13240 ASSERT(xp != NULL); 13241 13242 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 13243 bsp = xp->xb_private; 13244 13245 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 13246 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 13247 13248 if (is_write) { 13249 /* 13250 * For a WRITE request we must free up the block range that 13251 * we have locked up. This holds regardless of whether this is 13252 * an aligned write request or a read-modify-write request. 13253 */ 13254 sd_range_unlock(un, bsp->mbs_wmp); 13255 bsp->mbs_wmp = NULL; 13256 } 13257 13258 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 13259 /* 13260 * An aligned read or write command will have no shadow buf; 13261 * there is not much else to do with it. 13262 */ 13263 goto done; 13264 } 13265 13266 orig_bp = bsp->mbs_orig_bp; 13267 ASSERT(orig_bp != NULL); 13268 orig_xp = SD_GET_XBUF(orig_bp); 13269 ASSERT(orig_xp != NULL); 13270 ASSERT(!mutex_owned(SD_MUTEX(un))); 13271 13272 if (!is_write && has_wmap) { 13273 /* 13274 * A READ with a wmap means this is the READ phase of a 13275 * read-modify-write. If an error occurred on the READ then 13276 * we do not proceed with the WRITE phase or copy any data. 13277 * Just release the write maps and return with an error. 13278 */ 13279 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 13280 orig_bp->b_resid = orig_bp->b_bcount; 13281 bioerror(orig_bp, bp->b_error); 13282 sd_range_unlock(un, bsp->mbs_wmp); 13283 goto freebuf_done; 13284 } 13285 } 13286 13287 /* 13288 * Here is where we set up to copy the data from the shadow buf 13289 * into the space associated with the original buf. 13290 * 13291 * To deal with the conversion between block sizes, these 13292 * computations treat the data as an array of bytes, with the 13293 * first byte (byte 0) corresponding to the first byte in the 13294 * first block on the disk. 13295 */ 13296 13297 /* 13298 * shadow_start and shadow_len indicate the location and size of 13299 * the data returned with the shadow IO request. 13300 */ 13301 if (un->un_f_enable_rmw) { 13302 shadow_start = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 13303 } else { 13304 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 13305 } 13306 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 13307 13308 /* 13309 * copy_offset gives the offset (in bytes) from the start of the first 13310 * block of the READ request to the beginning of the data. We retrieve 13311 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 13312 * there by sd_mapblockize_iostart(). copy_length gives the amount of 13313 * data to be copied (in bytes). 13314 */ 13315 copy_offset = bsp->mbs_copy_offset; 13316 if (un->un_f_enable_rmw) { 13317 ASSERT((copy_offset >= 0) && 13318 (copy_offset < un->un_phy_blocksize)); 13319 } else { 13320 ASSERT((copy_offset >= 0) && 13321 (copy_offset < un->un_tgt_blocksize)); 13322 } 13323 13324 copy_length = orig_bp->b_bcount; 13325 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 13326 13327 /* 13328 * Set up the resid and error fields of orig_bp as appropriate. 13329 */ 13330 if (shadow_end >= request_end) { 13331 /* We got all the requested data; set resid to zero */ 13332 orig_bp->b_resid = 0; 13333 } else { 13334 /* 13335 * We failed to get enough data to fully satisfy the original 13336 * request. Just copy back whatever data we got and set 13337 * up the residual and error code as required. 13338 * 13339 * 'shortfall' is the amount by which the data received with the 13340 * shadow buf has "fallen short" of the requested amount. 13341 */ 13342 shortfall = (size_t)(request_end - shadow_end); 13343 13344 if (shortfall > orig_bp->b_bcount) { 13345 /* 13346 * We did not get enough data to even partially 13347 * fulfill the original request. The residual is 13348 * equal to the amount requested. 13349 */ 13350 orig_bp->b_resid = orig_bp->b_bcount; 13351 } else { 13352 /* 13353 * We did not get all the data that we requested 13354 * from the device, but we will try to return what 13355 * portion we did get. 13356 */ 13357 orig_bp->b_resid = shortfall; 13358 } 13359 ASSERT(copy_length >= orig_bp->b_resid); 13360 copy_length -= orig_bp->b_resid; 13361 } 13362 13363 /* Propagate the error code from the shadow buf to the original buf */ 13364 bioerror(orig_bp, bp->b_error); 13365 13366 if (is_write) { 13367 goto freebuf_done; /* No data copying for a WRITE */ 13368 } 13369 13370 if (has_wmap) { 13371 /* 13372 * This is a READ command from the READ phase of a 13373 * read-modify-write request. We have to copy the data given 13374 * by the user OVER the data returned by the READ command, 13375 * then convert the command from a READ to a WRITE and send 13376 * it back to the target. 13377 */ 13378 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 13379 copy_length); 13380 13381 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 13382 13383 /* 13384 * Dispatch the WRITE command to the taskq thread, which 13385 * will in turn send the command to the target. When the 13386 * WRITE command completes, we (sd_mapblocksize_iodone()) 13387 * will get called again as part of the iodone chain 13388 * processing for it. Note that we will still be dealing 13389 * with the shadow buf at that point. 13390 */ 13391 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 13392 KM_NOSLEEP) != 0) { 13393 /* 13394 * Dispatch was successful so we are done. Return 13395 * without going any higher up the iodone chain. Do 13396 * not free up any layer-private data until after the 13397 * WRITE completes. 13398 */ 13399 return; 13400 } 13401 13402 /* 13403 * Dispatch of the WRITE command failed; set up the error 13404 * condition and send this IO back up the iodone chain. 13405 */ 13406 bioerror(orig_bp, EIO); 13407 orig_bp->b_resid = orig_bp->b_bcount; 13408 13409 } else { 13410 /* 13411 * This is a regular READ request (ie, not a RMW). Copy the 13412 * data from the shadow buf into the original buf. The 13413 * copy_offset compensates for any "misalignment" between the 13414 * shadow buf (with its un->un_tgt_blocksize blocks) and the 13415 * original buf (with its un->un_sys_blocksize blocks). 13416 */ 13417 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 13418 copy_length); 13419 } 13420 13421 freebuf_done: 13422 13423 /* 13424 * At this point we still have both the shadow buf AND the original 13425 * buf to deal with, as well as the layer-private data area in each. 13426 * Local variables are as follows: 13427 * 13428 * bp -- points to shadow buf 13429 * xp -- points to xbuf of shadow buf 13430 * bsp -- points to layer-private data area of shadow buf 13431 * orig_bp -- points to original buf 13432 * 13433 * First free the shadow buf and its associated xbuf, then free the 13434 * layer-private data area from the shadow buf. There is no need to 13435 * restore xb_private in the shadow xbuf. 13436 */ 13437 sd_shadow_buf_free(bp); 13438 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13439 13440 /* 13441 * Now update the local variables to point to the original buf, xbuf, 13442 * and layer-private area. 13443 */ 13444 bp = orig_bp; 13445 xp = SD_GET_XBUF(bp); 13446 ASSERT(xp != NULL); 13447 ASSERT(xp == orig_xp); 13448 bsp = xp->xb_private; 13449 ASSERT(bsp != NULL); 13450 13451 done: 13452 /* 13453 * Restore xb_private to whatever it was set to by the next higher 13454 * layer in the chain, then free the layer-private data area. 13455 */ 13456 xp->xb_private = bsp->mbs_oprivate; 13457 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13458 13459 exit: 13460 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 13461 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 13462 13463 SD_NEXT_IODONE(index, un, bp); 13464 } 13465 13466 13467 /* 13468 * Function: sd_checksum_iostart 13469 * 13470 * Description: A stub function for a layer that's currently not used. 13471 * For now just a placeholder. 13472 * 13473 * Context: Kernel thread context 13474 */ 13475 13476 static void 13477 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 13478 { 13479 ASSERT(un != NULL); 13480 ASSERT(bp != NULL); 13481 ASSERT(!mutex_owned(SD_MUTEX(un))); 13482 SD_NEXT_IOSTART(index, un, bp); 13483 } 13484 13485 13486 /* 13487 * Function: sd_checksum_iodone 13488 * 13489 * Description: A stub function for a layer that's currently not used. 13490 * For now just a placeholder. 13491 * 13492 * Context: May be called under interrupt context 13493 */ 13494 13495 static void 13496 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 13497 { 13498 ASSERT(un != NULL); 13499 ASSERT(bp != NULL); 13500 ASSERT(!mutex_owned(SD_MUTEX(un))); 13501 SD_NEXT_IODONE(index, un, bp); 13502 } 13503 13504 13505 /* 13506 * Function: sd_checksum_uscsi_iostart 13507 * 13508 * Description: A stub function for a layer that's currently not used. 13509 * For now just a placeholder. 13510 * 13511 * Context: Kernel thread context 13512 */ 13513 13514 static void 13515 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 13516 { 13517 ASSERT(un != NULL); 13518 ASSERT(bp != NULL); 13519 ASSERT(!mutex_owned(SD_MUTEX(un))); 13520 SD_NEXT_IOSTART(index, un, bp); 13521 } 13522 13523 13524 /* 13525 * Function: sd_checksum_uscsi_iodone 13526 * 13527 * Description: A stub function for a layer that's currently not used. 13528 * For now just a placeholder. 13529 * 13530 * Context: May be called under interrupt context 13531 */ 13532 13533 static void 13534 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 13535 { 13536 ASSERT(un != NULL); 13537 ASSERT(bp != NULL); 13538 ASSERT(!mutex_owned(SD_MUTEX(un))); 13539 SD_NEXT_IODONE(index, un, bp); 13540 } 13541 13542 13543 /* 13544 * Function: sd_pm_iostart 13545 * 13546 * Description: iostart-side routine for Power mangement. 13547 * 13548 * Context: Kernel thread context 13549 */ 13550 13551 static void 13552 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 13553 { 13554 ASSERT(un != NULL); 13555 ASSERT(bp != NULL); 13556 ASSERT(!mutex_owned(SD_MUTEX(un))); 13557 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13558 13559 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 13560 13561 if (sd_pm_entry(un) != DDI_SUCCESS) { 13562 /* 13563 * Set up to return the failed buf back up the 'iodone' 13564 * side of the calling chain. 13565 */ 13566 bioerror(bp, EIO); 13567 bp->b_resid = bp->b_bcount; 13568 13569 SD_BEGIN_IODONE(index, un, bp); 13570 13571 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13572 return; 13573 } 13574 13575 SD_NEXT_IOSTART(index, un, bp); 13576 13577 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13578 } 13579 13580 13581 /* 13582 * Function: sd_pm_iodone 13583 * 13584 * Description: iodone-side routine for power mangement. 13585 * 13586 * Context: may be called from interrupt context 13587 */ 13588 13589 static void 13590 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 13591 { 13592 ASSERT(un != NULL); 13593 ASSERT(bp != NULL); 13594 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13595 13596 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 13597 13598 /* 13599 * After attach the following flag is only read, so don't 13600 * take the penalty of acquiring a mutex for it. 13601 */ 13602 if (un->un_f_pm_is_enabled == TRUE) { 13603 sd_pm_exit(un); 13604 } 13605 13606 SD_NEXT_IODONE(index, un, bp); 13607 13608 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 13609 } 13610 13611 13612 /* 13613 * Function: sd_core_iostart 13614 * 13615 * Description: Primary driver function for enqueuing buf(9S) structs from 13616 * the system and initiating IO to the target device 13617 * 13618 * Context: Kernel thread context. Can sleep. 13619 * 13620 * Assumptions: - The given xp->xb_blkno is absolute 13621 * (ie, relative to the start of the device). 13622 * - The IO is to be done using the native blocksize of 13623 * the device, as specified in un->un_tgt_blocksize. 13624 */ 13625 /* ARGSUSED */ 13626 static void 13627 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 13628 { 13629 struct sd_xbuf *xp; 13630 13631 ASSERT(un != NULL); 13632 ASSERT(bp != NULL); 13633 ASSERT(!mutex_owned(SD_MUTEX(un))); 13634 ASSERT(bp->b_resid == 0); 13635 13636 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 13637 13638 xp = SD_GET_XBUF(bp); 13639 ASSERT(xp != NULL); 13640 13641 mutex_enter(SD_MUTEX(un)); 13642 13643 /* 13644 * If we are currently in the failfast state, fail any new IO 13645 * that has B_FAILFAST set, then return. 13646 */ 13647 if ((bp->b_flags & B_FAILFAST) && 13648 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 13649 mutex_exit(SD_MUTEX(un)); 13650 bioerror(bp, EIO); 13651 bp->b_resid = bp->b_bcount; 13652 SD_BEGIN_IODONE(index, un, bp); 13653 return; 13654 } 13655 13656 if (SD_IS_DIRECT_PRIORITY(xp)) { 13657 /* 13658 * Priority command -- transport it immediately. 13659 * 13660 * Note: We may want to assert that USCSI_DIAGNOSE is set, 13661 * because all direct priority commands should be associated 13662 * with error recovery actions which we don't want to retry. 13663 */ 13664 sd_start_cmds(un, bp); 13665 } else { 13666 /* 13667 * Normal command -- add it to the wait queue, then start 13668 * transporting commands from the wait queue. 13669 */ 13670 sd_add_buf_to_waitq(un, bp); 13671 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13672 sd_start_cmds(un, NULL); 13673 } 13674 13675 mutex_exit(SD_MUTEX(un)); 13676 13677 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 13678 } 13679 13680 13681 /* 13682 * Function: sd_init_cdb_limits 13683 * 13684 * Description: This is to handle scsi_pkt initialization differences 13685 * between the driver platforms. 13686 * 13687 * Legacy behaviors: 13688 * 13689 * If the block number or the sector count exceeds the 13690 * capabilities of a Group 0 command, shift over to a 13691 * Group 1 command. We don't blindly use Group 1 13692 * commands because a) some drives (CDC Wren IVs) get a 13693 * bit confused, and b) there is probably a fair amount 13694 * of speed difference for a target to receive and decode 13695 * a 10 byte command instead of a 6 byte command. 13696 * 13697 * The xfer time difference of 6 vs 10 byte CDBs is 13698 * still significant so this code is still worthwhile. 13699 * 10 byte CDBs are very inefficient with the fas HBA driver 13700 * and older disks. Each CDB byte took 1 usec with some 13701 * popular disks. 13702 * 13703 * Context: Must be called at attach time 13704 */ 13705 13706 static void 13707 sd_init_cdb_limits(struct sd_lun *un) 13708 { 13709 int hba_cdb_limit; 13710 13711 /* 13712 * Use CDB_GROUP1 commands for most devices except for 13713 * parallel SCSI fixed drives in which case we get better 13714 * performance using CDB_GROUP0 commands (where applicable). 13715 */ 13716 un->un_mincdb = SD_CDB_GROUP1; 13717 #if !defined(__fibre) 13718 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13719 !un->un_f_has_removable_media) { 13720 un->un_mincdb = SD_CDB_GROUP0; 13721 } 13722 #endif 13723 13724 /* 13725 * Try to read the max-cdb-length supported by HBA. 13726 */ 13727 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 13728 if (0 >= un->un_max_hba_cdb) { 13729 un->un_max_hba_cdb = CDB_GROUP4; 13730 hba_cdb_limit = SD_CDB_GROUP4; 13731 } else if (0 < un->un_max_hba_cdb && 13732 un->un_max_hba_cdb < CDB_GROUP1) { 13733 hba_cdb_limit = SD_CDB_GROUP0; 13734 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 13735 un->un_max_hba_cdb < CDB_GROUP5) { 13736 hba_cdb_limit = SD_CDB_GROUP1; 13737 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 13738 un->un_max_hba_cdb < CDB_GROUP4) { 13739 hba_cdb_limit = SD_CDB_GROUP5; 13740 } else { 13741 hba_cdb_limit = SD_CDB_GROUP4; 13742 } 13743 13744 /* 13745 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13746 * commands for fixed disks unless we are building for a 32 bit 13747 * kernel. 13748 */ 13749 #ifdef _LP64 13750 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13751 min(hba_cdb_limit, SD_CDB_GROUP4); 13752 #else 13753 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13754 min(hba_cdb_limit, SD_CDB_GROUP1); 13755 #endif 13756 13757 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13758 ? sizeof (struct scsi_arq_status) : 1); 13759 if (!ISCD(un)) 13760 un->un_cmd_timeout = (ushort_t)sd_io_time; 13761 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13762 } 13763 13764 13765 /* 13766 * Function: sd_initpkt_for_buf 13767 * 13768 * Description: Allocate and initialize for transport a scsi_pkt struct, 13769 * based upon the info specified in the given buf struct. 13770 * 13771 * Assumes the xb_blkno in the request is absolute (ie, 13772 * relative to the start of the device (NOT partition!). 13773 * Also assumes that the request is using the native block 13774 * size of the device (as returned by the READ CAPACITY 13775 * command). 13776 * 13777 * Return Code: SD_PKT_ALLOC_SUCCESS 13778 * SD_PKT_ALLOC_FAILURE 13779 * SD_PKT_ALLOC_FAILURE_NO_DMA 13780 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13781 * 13782 * Context: Kernel thread and may be called from software interrupt context 13783 * as part of a sdrunout callback. This function may not block or 13784 * call routines that block 13785 */ 13786 13787 static int 13788 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13789 { 13790 struct sd_xbuf *xp; 13791 struct scsi_pkt *pktp = NULL; 13792 struct sd_lun *un; 13793 size_t blockcount; 13794 daddr_t startblock; 13795 int rval; 13796 int cmd_flags; 13797 13798 ASSERT(bp != NULL); 13799 ASSERT(pktpp != NULL); 13800 xp = SD_GET_XBUF(bp); 13801 ASSERT(xp != NULL); 13802 un = SD_GET_UN(bp); 13803 ASSERT(un != NULL); 13804 ASSERT(mutex_owned(SD_MUTEX(un))); 13805 ASSERT(bp->b_resid == 0); 13806 13807 SD_TRACE(SD_LOG_IO_CORE, un, 13808 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13809 13810 mutex_exit(SD_MUTEX(un)); 13811 13812 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13813 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13814 /* 13815 * Already have a scsi_pkt -- just need DMA resources. 13816 * We must recompute the CDB in case the mapping returns 13817 * a nonzero pkt_resid. 13818 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13819 * that is being retried, the unmap/remap of the DMA resouces 13820 * will result in the entire transfer starting over again 13821 * from the very first block. 13822 */ 13823 ASSERT(xp->xb_pktp != NULL); 13824 pktp = xp->xb_pktp; 13825 } else { 13826 pktp = NULL; 13827 } 13828 #endif /* __i386 || __amd64 */ 13829 13830 startblock = xp->xb_blkno; /* Absolute block num. */ 13831 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13832 13833 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13834 13835 /* 13836 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13837 * call scsi_init_pkt, and build the CDB. 13838 */ 13839 rval = sd_setup_rw_pkt(un, &pktp, bp, 13840 cmd_flags, sdrunout, (caddr_t)un, 13841 startblock, blockcount); 13842 13843 if (rval == 0) { 13844 /* 13845 * Success. 13846 * 13847 * If partial DMA is being used and required for this transfer. 13848 * set it up here. 13849 */ 13850 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13851 (pktp->pkt_resid != 0)) { 13852 13853 /* 13854 * Save the CDB length and pkt_resid for the 13855 * next xfer 13856 */ 13857 xp->xb_dma_resid = pktp->pkt_resid; 13858 13859 /* rezero resid */ 13860 pktp->pkt_resid = 0; 13861 13862 } else { 13863 xp->xb_dma_resid = 0; 13864 } 13865 13866 pktp->pkt_flags = un->un_tagflags; 13867 pktp->pkt_time = un->un_cmd_timeout; 13868 pktp->pkt_comp = sdintr; 13869 13870 pktp->pkt_private = bp; 13871 *pktpp = pktp; 13872 13873 SD_TRACE(SD_LOG_IO_CORE, un, 13874 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13875 13876 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13877 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13878 #endif 13879 13880 mutex_enter(SD_MUTEX(un)); 13881 return (SD_PKT_ALLOC_SUCCESS); 13882 13883 } 13884 13885 /* 13886 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13887 * from sd_setup_rw_pkt. 13888 */ 13889 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13890 13891 if (rval == SD_PKT_ALLOC_FAILURE) { 13892 *pktpp = NULL; 13893 /* 13894 * Set the driver state to RWAIT to indicate the driver 13895 * is waiting on resource allocations. The driver will not 13896 * suspend, pm_suspend, or detatch while the state is RWAIT. 13897 */ 13898 mutex_enter(SD_MUTEX(un)); 13899 New_state(un, SD_STATE_RWAIT); 13900 13901 SD_ERROR(SD_LOG_IO_CORE, un, 13902 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13903 13904 if ((bp->b_flags & B_ERROR) != 0) { 13905 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13906 } 13907 return (SD_PKT_ALLOC_FAILURE); 13908 } else { 13909 /* 13910 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13911 * 13912 * This should never happen. Maybe someone messed with the 13913 * kernel's minphys? 13914 */ 13915 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13916 "Request rejected: too large for CDB: " 13917 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13918 SD_ERROR(SD_LOG_IO_CORE, un, 13919 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13920 mutex_enter(SD_MUTEX(un)); 13921 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13922 13923 } 13924 } 13925 13926 13927 /* 13928 * Function: sd_destroypkt_for_buf 13929 * 13930 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13931 * 13932 * Context: Kernel thread or interrupt context 13933 */ 13934 13935 static void 13936 sd_destroypkt_for_buf(struct buf *bp) 13937 { 13938 ASSERT(bp != NULL); 13939 ASSERT(SD_GET_UN(bp) != NULL); 13940 13941 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13942 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13943 13944 ASSERT(SD_GET_PKTP(bp) != NULL); 13945 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13946 13947 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13948 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13949 } 13950 13951 /* 13952 * Function: sd_setup_rw_pkt 13953 * 13954 * Description: Determines appropriate CDB group for the requested LBA 13955 * and transfer length, calls scsi_init_pkt, and builds 13956 * the CDB. Do not use for partial DMA transfers except 13957 * for the initial transfer since the CDB size must 13958 * remain constant. 13959 * 13960 * Context: Kernel thread and may be called from software interrupt 13961 * context as part of a sdrunout callback. This function may not 13962 * block or call routines that block 13963 */ 13964 13965 13966 int 13967 sd_setup_rw_pkt(struct sd_lun *un, 13968 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13969 int (*callback)(caddr_t), caddr_t callback_arg, 13970 diskaddr_t lba, uint32_t blockcount) 13971 { 13972 struct scsi_pkt *return_pktp; 13973 union scsi_cdb *cdbp; 13974 struct sd_cdbinfo *cp = NULL; 13975 int i; 13976 13977 /* 13978 * See which size CDB to use, based upon the request. 13979 */ 13980 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13981 13982 /* 13983 * Check lba and block count against sd_cdbtab limits. 13984 * In the partial DMA case, we have to use the same size 13985 * CDB for all the transfers. Check lba + blockcount 13986 * against the max LBA so we know that segment of the 13987 * transfer can use the CDB we select. 13988 */ 13989 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13990 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13991 13992 /* 13993 * The command will fit into the CDB type 13994 * specified by sd_cdbtab[i]. 13995 */ 13996 cp = sd_cdbtab + i; 13997 13998 /* 13999 * Call scsi_init_pkt so we can fill in the 14000 * CDB. 14001 */ 14002 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 14003 bp, cp->sc_grpcode, un->un_status_len, 0, 14004 flags, callback, callback_arg); 14005 14006 if (return_pktp != NULL) { 14007 14008 /* 14009 * Return new value of pkt 14010 */ 14011 *pktpp = return_pktp; 14012 14013 /* 14014 * To be safe, zero the CDB insuring there is 14015 * no leftover data from a previous command. 14016 */ 14017 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 14018 14019 /* 14020 * Handle partial DMA mapping 14021 */ 14022 if (return_pktp->pkt_resid != 0) { 14023 14024 /* 14025 * Not going to xfer as many blocks as 14026 * originally expected 14027 */ 14028 blockcount -= 14029 SD_BYTES2TGTBLOCKS(un, 14030 return_pktp->pkt_resid); 14031 } 14032 14033 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 14034 14035 /* 14036 * Set command byte based on the CDB 14037 * type we matched. 14038 */ 14039 cdbp->scc_cmd = cp->sc_grpmask | 14040 ((bp->b_flags & B_READ) ? 14041 SCMD_READ : SCMD_WRITE); 14042 14043 SD_FILL_SCSI1_LUN(un, return_pktp); 14044 14045 /* 14046 * Fill in LBA and length 14047 */ 14048 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 14049 (cp->sc_grpcode == CDB_GROUP4) || 14050 (cp->sc_grpcode == CDB_GROUP0) || 14051 (cp->sc_grpcode == CDB_GROUP5)); 14052 14053 if (cp->sc_grpcode == CDB_GROUP1) { 14054 FORMG1ADDR(cdbp, lba); 14055 FORMG1COUNT(cdbp, blockcount); 14056 return (0); 14057 } else if (cp->sc_grpcode == CDB_GROUP4) { 14058 FORMG4LONGADDR(cdbp, lba); 14059 FORMG4COUNT(cdbp, blockcount); 14060 return (0); 14061 } else if (cp->sc_grpcode == CDB_GROUP0) { 14062 FORMG0ADDR(cdbp, lba); 14063 FORMG0COUNT(cdbp, blockcount); 14064 return (0); 14065 } else if (cp->sc_grpcode == CDB_GROUP5) { 14066 FORMG5ADDR(cdbp, lba); 14067 FORMG5COUNT(cdbp, blockcount); 14068 return (0); 14069 } 14070 14071 /* 14072 * It should be impossible to not match one 14073 * of the CDB types above, so we should never 14074 * reach this point. Set the CDB command byte 14075 * to test-unit-ready to avoid writing 14076 * to somewhere we don't intend. 14077 */ 14078 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 14079 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 14080 } else { 14081 /* 14082 * Couldn't get scsi_pkt 14083 */ 14084 return (SD_PKT_ALLOC_FAILURE); 14085 } 14086 } 14087 } 14088 14089 /* 14090 * None of the available CDB types were suitable. This really 14091 * should never happen: on a 64 bit system we support 14092 * READ16/WRITE16 which will hold an entire 64 bit disk address 14093 * and on a 32 bit system we will refuse to bind to a device 14094 * larger than 2TB so addresses will never be larger than 32 bits. 14095 */ 14096 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 14097 } 14098 14099 /* 14100 * Function: sd_setup_next_rw_pkt 14101 * 14102 * Description: Setup packet for partial DMA transfers, except for the 14103 * initial transfer. sd_setup_rw_pkt should be used for 14104 * the initial transfer. 14105 * 14106 * Context: Kernel thread and may be called from interrupt context. 14107 */ 14108 14109 int 14110 sd_setup_next_rw_pkt(struct sd_lun *un, 14111 struct scsi_pkt *pktp, struct buf *bp, 14112 diskaddr_t lba, uint32_t blockcount) 14113 { 14114 uchar_t com; 14115 union scsi_cdb *cdbp; 14116 uchar_t cdb_group_id; 14117 14118 ASSERT(pktp != NULL); 14119 ASSERT(pktp->pkt_cdbp != NULL); 14120 14121 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 14122 com = cdbp->scc_cmd; 14123 cdb_group_id = CDB_GROUPID(com); 14124 14125 ASSERT((cdb_group_id == CDB_GROUPID_0) || 14126 (cdb_group_id == CDB_GROUPID_1) || 14127 (cdb_group_id == CDB_GROUPID_4) || 14128 (cdb_group_id == CDB_GROUPID_5)); 14129 14130 /* 14131 * Move pkt to the next portion of the xfer. 14132 * func is NULL_FUNC so we do not have to release 14133 * the disk mutex here. 14134 */ 14135 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 14136 NULL_FUNC, NULL) == pktp) { 14137 /* Success. Handle partial DMA */ 14138 if (pktp->pkt_resid != 0) { 14139 blockcount -= 14140 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 14141 } 14142 14143 cdbp->scc_cmd = com; 14144 SD_FILL_SCSI1_LUN(un, pktp); 14145 if (cdb_group_id == CDB_GROUPID_1) { 14146 FORMG1ADDR(cdbp, lba); 14147 FORMG1COUNT(cdbp, blockcount); 14148 return (0); 14149 } else if (cdb_group_id == CDB_GROUPID_4) { 14150 FORMG4LONGADDR(cdbp, lba); 14151 FORMG4COUNT(cdbp, blockcount); 14152 return (0); 14153 } else if (cdb_group_id == CDB_GROUPID_0) { 14154 FORMG0ADDR(cdbp, lba); 14155 FORMG0COUNT(cdbp, blockcount); 14156 return (0); 14157 } else if (cdb_group_id == CDB_GROUPID_5) { 14158 FORMG5ADDR(cdbp, lba); 14159 FORMG5COUNT(cdbp, blockcount); 14160 return (0); 14161 } 14162 14163 /* Unreachable */ 14164 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 14165 } 14166 14167 /* 14168 * Error setting up next portion of cmd transfer. 14169 * Something is definitely very wrong and this 14170 * should not happen. 14171 */ 14172 return (SD_PKT_ALLOC_FAILURE); 14173 } 14174 14175 /* 14176 * Function: sd_initpkt_for_uscsi 14177 * 14178 * Description: Allocate and initialize for transport a scsi_pkt struct, 14179 * based upon the info specified in the given uscsi_cmd struct. 14180 * 14181 * Return Code: SD_PKT_ALLOC_SUCCESS 14182 * SD_PKT_ALLOC_FAILURE 14183 * SD_PKT_ALLOC_FAILURE_NO_DMA 14184 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 14185 * 14186 * Context: Kernel thread and may be called from software interrupt context 14187 * as part of a sdrunout callback. This function may not block or 14188 * call routines that block 14189 */ 14190 14191 static int 14192 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 14193 { 14194 struct uscsi_cmd *uscmd; 14195 struct sd_xbuf *xp; 14196 struct scsi_pkt *pktp; 14197 struct sd_lun *un; 14198 uint32_t flags = 0; 14199 14200 ASSERT(bp != NULL); 14201 ASSERT(pktpp != NULL); 14202 xp = SD_GET_XBUF(bp); 14203 ASSERT(xp != NULL); 14204 un = SD_GET_UN(bp); 14205 ASSERT(un != NULL); 14206 ASSERT(mutex_owned(SD_MUTEX(un))); 14207 14208 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14209 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14210 ASSERT(uscmd != NULL); 14211 14212 SD_TRACE(SD_LOG_IO_CORE, un, 14213 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 14214 14215 /* 14216 * Allocate the scsi_pkt for the command. 14217 * 14218 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 14219 * during scsi_init_pkt time and will continue to use the 14220 * same path as long as the same scsi_pkt is used without 14221 * intervening scsi_dmafree(). Since uscsi command does 14222 * not call scsi_dmafree() before retry failed command, it 14223 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 14224 * set such that scsi_vhci can use other available path for 14225 * retry. Besides, ucsci command does not allow DMA breakup, 14226 * so there is no need to set PKT_DMA_PARTIAL flag. 14227 * 14228 * More fundamentally, we can't support breaking up this DMA into 14229 * multiple windows on x86. There is, in general, no guarantee 14230 * that arbitrary SCSI commands are idempotent, which is required 14231 * if we want to use multiple windows for a given command. 14232 */ 14233 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14234 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14235 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14236 ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status) 14237 - sizeof (struct scsi_extended_sense)), 0, 14238 (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ, 14239 sdrunout, (caddr_t)un); 14240 } else { 14241 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14242 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14243 sizeof (struct scsi_arq_status), 0, 14244 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 14245 sdrunout, (caddr_t)un); 14246 } 14247 14248 if (pktp == NULL) { 14249 *pktpp = NULL; 14250 /* 14251 * Set the driver state to RWAIT to indicate the driver 14252 * is waiting on resource allocations. The driver will not 14253 * suspend, pm_suspend, or detatch while the state is RWAIT. 14254 */ 14255 New_state(un, SD_STATE_RWAIT); 14256 14257 SD_ERROR(SD_LOG_IO_CORE, un, 14258 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 14259 14260 if ((bp->b_flags & B_ERROR) != 0) { 14261 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 14262 } 14263 return (SD_PKT_ALLOC_FAILURE); 14264 } 14265 14266 /* 14267 * We do not do DMA breakup for USCSI commands, so return failure 14268 * here if all the needed DMA resources were not allocated. 14269 */ 14270 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 14271 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 14272 scsi_destroy_pkt(pktp); 14273 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 14274 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 14275 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 14276 } 14277 14278 /* Init the cdb from the given uscsi struct */ 14279 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 14280 uscmd->uscsi_cdb[0], 0, 0, 0); 14281 14282 SD_FILL_SCSI1_LUN(un, pktp); 14283 14284 /* 14285 * Set up the optional USCSI flags. See the uscsi (7I) man page 14286 * for listing of the supported flags. 14287 */ 14288 14289 if (uscmd->uscsi_flags & USCSI_SILENT) { 14290 flags |= FLAG_SILENT; 14291 } 14292 14293 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 14294 flags |= FLAG_DIAGNOSE; 14295 } 14296 14297 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 14298 flags |= FLAG_ISOLATE; 14299 } 14300 14301 if (un->un_f_is_fibre == FALSE) { 14302 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 14303 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 14304 } 14305 } 14306 14307 /* 14308 * Set the pkt flags here so we save time later. 14309 * Note: These flags are NOT in the uscsi man page!!! 14310 */ 14311 if (uscmd->uscsi_flags & USCSI_HEAD) { 14312 flags |= FLAG_HEAD; 14313 } 14314 14315 if (uscmd->uscsi_flags & USCSI_NOINTR) { 14316 flags |= FLAG_NOINTR; 14317 } 14318 14319 /* 14320 * For tagged queueing, things get a bit complicated. 14321 * Check first for head of queue and last for ordered queue. 14322 * If neither head nor order, use the default driver tag flags. 14323 */ 14324 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 14325 if (uscmd->uscsi_flags & USCSI_HTAG) { 14326 flags |= FLAG_HTAG; 14327 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 14328 flags |= FLAG_OTAG; 14329 } else { 14330 flags |= un->un_tagflags & FLAG_TAGMASK; 14331 } 14332 } 14333 14334 if (uscmd->uscsi_flags & USCSI_NODISCON) { 14335 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 14336 } 14337 14338 pktp->pkt_flags = flags; 14339 14340 /* Transfer uscsi information to scsi_pkt */ 14341 (void) scsi_uscsi_pktinit(uscmd, pktp); 14342 14343 /* Copy the caller's CDB into the pkt... */ 14344 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 14345 14346 if (uscmd->uscsi_timeout == 0) { 14347 pktp->pkt_time = un->un_uscsi_timeout; 14348 } else { 14349 pktp->pkt_time = uscmd->uscsi_timeout; 14350 } 14351 14352 /* need it later to identify USCSI request in sdintr */ 14353 xp->xb_pkt_flags |= SD_XB_USCSICMD; 14354 14355 xp->xb_sense_resid = uscmd->uscsi_rqresid; 14356 14357 pktp->pkt_private = bp; 14358 pktp->pkt_comp = sdintr; 14359 *pktpp = pktp; 14360 14361 SD_TRACE(SD_LOG_IO_CORE, un, 14362 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 14363 14364 return (SD_PKT_ALLOC_SUCCESS); 14365 } 14366 14367 14368 /* 14369 * Function: sd_destroypkt_for_uscsi 14370 * 14371 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 14372 * IOs.. Also saves relevant info into the associated uscsi_cmd 14373 * struct. 14374 * 14375 * Context: May be called under interrupt context 14376 */ 14377 14378 static void 14379 sd_destroypkt_for_uscsi(struct buf *bp) 14380 { 14381 struct uscsi_cmd *uscmd; 14382 struct sd_xbuf *xp; 14383 struct scsi_pkt *pktp; 14384 struct sd_lun *un; 14385 struct sd_uscsi_info *suip; 14386 14387 ASSERT(bp != NULL); 14388 xp = SD_GET_XBUF(bp); 14389 ASSERT(xp != NULL); 14390 un = SD_GET_UN(bp); 14391 ASSERT(un != NULL); 14392 ASSERT(!mutex_owned(SD_MUTEX(un))); 14393 pktp = SD_GET_PKTP(bp); 14394 ASSERT(pktp != NULL); 14395 14396 SD_TRACE(SD_LOG_IO_CORE, un, 14397 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 14398 14399 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14400 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14401 ASSERT(uscmd != NULL); 14402 14403 /* Save the status and the residual into the uscsi_cmd struct */ 14404 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 14405 uscmd->uscsi_resid = bp->b_resid; 14406 14407 /* Transfer scsi_pkt information to uscsi */ 14408 (void) scsi_uscsi_pktfini(pktp, uscmd); 14409 14410 /* 14411 * If enabled, copy any saved sense data into the area specified 14412 * by the uscsi command. 14413 */ 14414 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 14415 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 14416 /* 14417 * Note: uscmd->uscsi_rqbuf should always point to a buffer 14418 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 14419 */ 14420 uscmd->uscsi_rqstatus = xp->xb_sense_status; 14421 uscmd->uscsi_rqresid = xp->xb_sense_resid; 14422 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14423 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14424 MAX_SENSE_LENGTH); 14425 } else { 14426 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14427 SENSE_LENGTH); 14428 } 14429 } 14430 /* 14431 * The following assignments are for SCSI FMA. 14432 */ 14433 ASSERT(xp->xb_private != NULL); 14434 suip = (struct sd_uscsi_info *)xp->xb_private; 14435 suip->ui_pkt_reason = pktp->pkt_reason; 14436 suip->ui_pkt_state = pktp->pkt_state; 14437 suip->ui_pkt_statistics = pktp->pkt_statistics; 14438 suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 14439 14440 /* We are done with the scsi_pkt; free it now */ 14441 ASSERT(SD_GET_PKTP(bp) != NULL); 14442 scsi_destroy_pkt(SD_GET_PKTP(bp)); 14443 14444 SD_TRACE(SD_LOG_IO_CORE, un, 14445 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 14446 } 14447 14448 14449 /* 14450 * Function: sd_bioclone_alloc 14451 * 14452 * Description: Allocate a buf(9S) and init it as per the given buf 14453 * and the various arguments. The associated sd_xbuf 14454 * struct is (nearly) duplicated. The struct buf *bp 14455 * argument is saved in new_xp->xb_private. 14456 * 14457 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14458 * datalen - size of data area for the shadow bp 14459 * blkno - starting LBA 14460 * func - function pointer for b_iodone in the shadow buf. (May 14461 * be NULL if none.) 14462 * 14463 * Return Code: Pointer to allocates buf(9S) struct 14464 * 14465 * Context: Can sleep. 14466 */ 14467 14468 static struct buf * 14469 sd_bioclone_alloc(struct buf *bp, size_t datalen, daddr_t blkno, 14470 int (*func)(struct buf *)) 14471 { 14472 struct sd_lun *un; 14473 struct sd_xbuf *xp; 14474 struct sd_xbuf *new_xp; 14475 struct buf *new_bp; 14476 14477 ASSERT(bp != NULL); 14478 xp = SD_GET_XBUF(bp); 14479 ASSERT(xp != NULL); 14480 un = SD_GET_UN(bp); 14481 ASSERT(un != NULL); 14482 ASSERT(!mutex_owned(SD_MUTEX(un))); 14483 14484 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 14485 NULL, KM_SLEEP); 14486 14487 new_bp->b_lblkno = blkno; 14488 14489 /* 14490 * Allocate an xbuf for the shadow bp and copy the contents of the 14491 * original xbuf into it. 14492 */ 14493 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14494 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14495 14496 /* 14497 * The given bp is automatically saved in the xb_private member 14498 * of the new xbuf. Callers are allowed to depend on this. 14499 */ 14500 new_xp->xb_private = bp; 14501 14502 new_bp->b_private = new_xp; 14503 14504 return (new_bp); 14505 } 14506 14507 /* 14508 * Function: sd_shadow_buf_alloc 14509 * 14510 * Description: Allocate a buf(9S) and init it as per the given buf 14511 * and the various arguments. The associated sd_xbuf 14512 * struct is (nearly) duplicated. The struct buf *bp 14513 * argument is saved in new_xp->xb_private. 14514 * 14515 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14516 * datalen - size of data area for the shadow bp 14517 * bflags - B_READ or B_WRITE (pseudo flag) 14518 * blkno - starting LBA 14519 * func - function pointer for b_iodone in the shadow buf. (May 14520 * be NULL if none.) 14521 * 14522 * Return Code: Pointer to allocates buf(9S) struct 14523 * 14524 * Context: Can sleep. 14525 */ 14526 14527 static struct buf * 14528 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 14529 daddr_t blkno, int (*func)(struct buf *)) 14530 { 14531 struct sd_lun *un; 14532 struct sd_xbuf *xp; 14533 struct sd_xbuf *new_xp; 14534 struct buf *new_bp; 14535 14536 ASSERT(bp != NULL); 14537 xp = SD_GET_XBUF(bp); 14538 ASSERT(xp != NULL); 14539 un = SD_GET_UN(bp); 14540 ASSERT(un != NULL); 14541 ASSERT(!mutex_owned(SD_MUTEX(un))); 14542 14543 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 14544 bp_mapin(bp); 14545 } 14546 14547 bflags &= (B_READ | B_WRITE); 14548 #if defined(__i386) || defined(__amd64) 14549 new_bp = getrbuf(KM_SLEEP); 14550 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 14551 new_bp->b_bcount = datalen; 14552 new_bp->b_flags = bflags | 14553 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 14554 #else 14555 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 14556 datalen, bflags, SLEEP_FUNC, NULL); 14557 #endif 14558 new_bp->av_forw = NULL; 14559 new_bp->av_back = NULL; 14560 new_bp->b_dev = bp->b_dev; 14561 new_bp->b_blkno = blkno; 14562 new_bp->b_iodone = func; 14563 new_bp->b_edev = bp->b_edev; 14564 new_bp->b_resid = 0; 14565 14566 /* We need to preserve the B_FAILFAST flag */ 14567 if (bp->b_flags & B_FAILFAST) { 14568 new_bp->b_flags |= B_FAILFAST; 14569 } 14570 14571 /* 14572 * Allocate an xbuf for the shadow bp and copy the contents of the 14573 * original xbuf into it. 14574 */ 14575 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14576 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14577 14578 /* Need later to copy data between the shadow buf & original buf! */ 14579 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 14580 14581 /* 14582 * The given bp is automatically saved in the xb_private member 14583 * of the new xbuf. Callers are allowed to depend on this. 14584 */ 14585 new_xp->xb_private = bp; 14586 14587 new_bp->b_private = new_xp; 14588 14589 return (new_bp); 14590 } 14591 14592 /* 14593 * Function: sd_bioclone_free 14594 * 14595 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 14596 * in the larger than partition operation. 14597 * 14598 * Context: May be called under interrupt context 14599 */ 14600 14601 static void 14602 sd_bioclone_free(struct buf *bp) 14603 { 14604 struct sd_xbuf *xp; 14605 14606 ASSERT(bp != NULL); 14607 xp = SD_GET_XBUF(bp); 14608 ASSERT(xp != NULL); 14609 14610 /* 14611 * Call bp_mapout() before freeing the buf, in case a lower 14612 * layer or HBA had done a bp_mapin(). we must do this here 14613 * as we are the "originator" of the shadow buf. 14614 */ 14615 bp_mapout(bp); 14616 14617 /* 14618 * Null out b_iodone before freeing the bp, to ensure that the driver 14619 * never gets confused by a stale value in this field. (Just a little 14620 * extra defensiveness here.) 14621 */ 14622 bp->b_iodone = NULL; 14623 14624 freerbuf(bp); 14625 14626 kmem_free(xp, sizeof (struct sd_xbuf)); 14627 } 14628 14629 /* 14630 * Function: sd_shadow_buf_free 14631 * 14632 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 14633 * 14634 * Context: May be called under interrupt context 14635 */ 14636 14637 static void 14638 sd_shadow_buf_free(struct buf *bp) 14639 { 14640 struct sd_xbuf *xp; 14641 14642 ASSERT(bp != NULL); 14643 xp = SD_GET_XBUF(bp); 14644 ASSERT(xp != NULL); 14645 14646 #if defined(__sparc) 14647 /* 14648 * Call bp_mapout() before freeing the buf, in case a lower 14649 * layer or HBA had done a bp_mapin(). we must do this here 14650 * as we are the "originator" of the shadow buf. 14651 */ 14652 bp_mapout(bp); 14653 #endif 14654 14655 /* 14656 * Null out b_iodone before freeing the bp, to ensure that the driver 14657 * never gets confused by a stale value in this field. (Just a little 14658 * extra defensiveness here.) 14659 */ 14660 bp->b_iodone = NULL; 14661 14662 #if defined(__i386) || defined(__amd64) 14663 kmem_free(bp->b_un.b_addr, bp->b_bcount); 14664 freerbuf(bp); 14665 #else 14666 scsi_free_consistent_buf(bp); 14667 #endif 14668 14669 kmem_free(xp, sizeof (struct sd_xbuf)); 14670 } 14671 14672 14673 /* 14674 * Function: sd_print_transport_rejected_message 14675 * 14676 * Description: This implements the ludicrously complex rules for printing 14677 * a "transport rejected" message. This is to address the 14678 * specific problem of having a flood of this error message 14679 * produced when a failover occurs. 14680 * 14681 * Context: Any. 14682 */ 14683 14684 static void 14685 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 14686 int code) 14687 { 14688 ASSERT(un != NULL); 14689 ASSERT(mutex_owned(SD_MUTEX(un))); 14690 ASSERT(xp != NULL); 14691 14692 /* 14693 * Print the "transport rejected" message under the following 14694 * conditions: 14695 * 14696 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 14697 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 14698 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 14699 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 14700 * scsi_transport(9F) (which indicates that the target might have 14701 * gone off-line). This uses the un->un_tran_fatal_count 14702 * count, which is incremented whenever a TRAN_FATAL_ERROR is 14703 * received, and reset to zero whenver a TRAN_ACCEPT is returned 14704 * from scsi_transport(). 14705 * 14706 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 14707 * the preceeding cases in order for the message to be printed. 14708 */ 14709 if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) && 14710 (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) { 14711 if ((sd_level_mask & SD_LOGMASK_DIAG) || 14712 (code != TRAN_FATAL_ERROR) || 14713 (un->un_tran_fatal_count == 1)) { 14714 switch (code) { 14715 case TRAN_BADPKT: 14716 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14717 "transport rejected bad packet\n"); 14718 break; 14719 case TRAN_FATAL_ERROR: 14720 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14721 "transport rejected fatal error\n"); 14722 break; 14723 default: 14724 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14725 "transport rejected (%d)\n", code); 14726 break; 14727 } 14728 } 14729 } 14730 } 14731 14732 14733 /* 14734 * Function: sd_add_buf_to_waitq 14735 * 14736 * Description: Add the given buf(9S) struct to the wait queue for the 14737 * instance. If sorting is enabled, then the buf is added 14738 * to the queue via an elevator sort algorithm (a la 14739 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 14740 * If sorting is not enabled, then the buf is just added 14741 * to the end of the wait queue. 14742 * 14743 * Return Code: void 14744 * 14745 * Context: Does not sleep/block, therefore technically can be called 14746 * from any context. However if sorting is enabled then the 14747 * execution time is indeterminate, and may take long if 14748 * the wait queue grows large. 14749 */ 14750 14751 static void 14752 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14753 { 14754 struct buf *ap; 14755 14756 ASSERT(bp != NULL); 14757 ASSERT(un != NULL); 14758 ASSERT(mutex_owned(SD_MUTEX(un))); 14759 14760 /* If the queue is empty, add the buf as the only entry & return. */ 14761 if (un->un_waitq_headp == NULL) { 14762 ASSERT(un->un_waitq_tailp == NULL); 14763 un->un_waitq_headp = un->un_waitq_tailp = bp; 14764 bp->av_forw = NULL; 14765 return; 14766 } 14767 14768 ASSERT(un->un_waitq_tailp != NULL); 14769 14770 /* 14771 * If sorting is disabled, just add the buf to the tail end of 14772 * the wait queue and return. 14773 */ 14774 if (un->un_f_disksort_disabled || un->un_f_enable_rmw) { 14775 un->un_waitq_tailp->av_forw = bp; 14776 un->un_waitq_tailp = bp; 14777 bp->av_forw = NULL; 14778 return; 14779 } 14780 14781 /* 14782 * Sort thru the list of requests currently on the wait queue 14783 * and add the new buf request at the appropriate position. 14784 * 14785 * The un->un_waitq_headp is an activity chain pointer on which 14786 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14787 * first queue holds those requests which are positioned after 14788 * the current SD_GET_BLKNO() (in the first request); the second holds 14789 * requests which came in after their SD_GET_BLKNO() number was passed. 14790 * Thus we implement a one way scan, retracting after reaching 14791 * the end of the drive to the first request on the second 14792 * queue, at which time it becomes the first queue. 14793 * A one-way scan is natural because of the way UNIX read-ahead 14794 * blocks are allocated. 14795 * 14796 * If we lie after the first request, then we must locate the 14797 * second request list and add ourselves to it. 14798 */ 14799 ap = un->un_waitq_headp; 14800 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14801 while (ap->av_forw != NULL) { 14802 /* 14803 * Look for an "inversion" in the (normally 14804 * ascending) block numbers. This indicates 14805 * the start of the second request list. 14806 */ 14807 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14808 /* 14809 * Search the second request list for the 14810 * first request at a larger block number. 14811 * We go before that; however if there is 14812 * no such request, we go at the end. 14813 */ 14814 do { 14815 if (SD_GET_BLKNO(bp) < 14816 SD_GET_BLKNO(ap->av_forw)) { 14817 goto insert; 14818 } 14819 ap = ap->av_forw; 14820 } while (ap->av_forw != NULL); 14821 goto insert; /* after last */ 14822 } 14823 ap = ap->av_forw; 14824 } 14825 14826 /* 14827 * No inversions... we will go after the last, and 14828 * be the first request in the second request list. 14829 */ 14830 goto insert; 14831 } 14832 14833 /* 14834 * Request is at/after the current request... 14835 * sort in the first request list. 14836 */ 14837 while (ap->av_forw != NULL) { 14838 /* 14839 * We want to go after the current request (1) if 14840 * there is an inversion after it (i.e. it is the end 14841 * of the first request list), or (2) if the next 14842 * request is a larger block no. than our request. 14843 */ 14844 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14845 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14846 goto insert; 14847 } 14848 ap = ap->av_forw; 14849 } 14850 14851 /* 14852 * Neither a second list nor a larger request, therefore 14853 * we go at the end of the first list (which is the same 14854 * as the end of the whole schebang). 14855 */ 14856 insert: 14857 bp->av_forw = ap->av_forw; 14858 ap->av_forw = bp; 14859 14860 /* 14861 * If we inserted onto the tail end of the waitq, make sure the 14862 * tail pointer is updated. 14863 */ 14864 if (ap == un->un_waitq_tailp) { 14865 un->un_waitq_tailp = bp; 14866 } 14867 } 14868 14869 14870 /* 14871 * Function: sd_start_cmds 14872 * 14873 * Description: Remove and transport cmds from the driver queues. 14874 * 14875 * Arguments: un - pointer to the unit (soft state) struct for the target. 14876 * 14877 * immed_bp - ptr to a buf to be transported immediately. Only 14878 * the immed_bp is transported; bufs on the waitq are not 14879 * processed and the un_retry_bp is not checked. If immed_bp is 14880 * NULL, then normal queue processing is performed. 14881 * 14882 * Context: May be called from kernel thread context, interrupt context, 14883 * or runout callback context. This function may not block or 14884 * call routines that block. 14885 */ 14886 14887 static void 14888 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14889 { 14890 struct sd_xbuf *xp; 14891 struct buf *bp; 14892 void (*statp)(kstat_io_t *); 14893 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14894 void (*saved_statp)(kstat_io_t *); 14895 #endif 14896 int rval; 14897 struct sd_fm_internal *sfip = NULL; 14898 14899 ASSERT(un != NULL); 14900 ASSERT(mutex_owned(SD_MUTEX(un))); 14901 ASSERT(un->un_ncmds_in_transport >= 0); 14902 ASSERT(un->un_throttle >= 0); 14903 14904 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14905 14906 do { 14907 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14908 saved_statp = NULL; 14909 #endif 14910 14911 /* 14912 * If we are syncing or dumping, fail the command to 14913 * avoid recursively calling back into scsi_transport(). 14914 * The dump I/O itself uses a separate code path so this 14915 * only prevents non-dump I/O from being sent while dumping. 14916 * File system sync takes place before dumping begins. 14917 * During panic, filesystem I/O is allowed provided 14918 * un_in_callback is <= 1. This is to prevent recursion 14919 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14920 * sd_start_cmds and so on. See panic.c for more information 14921 * about the states the system can be in during panic. 14922 */ 14923 if ((un->un_state == SD_STATE_DUMPING) || 14924 (ddi_in_panic() && (un->un_in_callback > 1))) { 14925 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14926 "sd_start_cmds: panicking\n"); 14927 goto exit; 14928 } 14929 14930 if ((bp = immed_bp) != NULL) { 14931 /* 14932 * We have a bp that must be transported immediately. 14933 * It's OK to transport the immed_bp here without doing 14934 * the throttle limit check because the immed_bp is 14935 * always used in a retry/recovery case. This means 14936 * that we know we are not at the throttle limit by 14937 * virtue of the fact that to get here we must have 14938 * already gotten a command back via sdintr(). This also 14939 * relies on (1) the command on un_retry_bp preventing 14940 * further commands from the waitq from being issued; 14941 * and (2) the code in sd_retry_command checking the 14942 * throttle limit before issuing a delayed or immediate 14943 * retry. This holds even if the throttle limit is 14944 * currently ratcheted down from its maximum value. 14945 */ 14946 statp = kstat_runq_enter; 14947 if (bp == un->un_retry_bp) { 14948 ASSERT((un->un_retry_statp == NULL) || 14949 (un->un_retry_statp == kstat_waitq_enter) || 14950 (un->un_retry_statp == 14951 kstat_runq_back_to_waitq)); 14952 /* 14953 * If the waitq kstat was incremented when 14954 * sd_set_retry_bp() queued this bp for a retry, 14955 * then we must set up statp so that the waitq 14956 * count will get decremented correctly below. 14957 * Also we must clear un->un_retry_statp to 14958 * ensure that we do not act on a stale value 14959 * in this field. 14960 */ 14961 if ((un->un_retry_statp == kstat_waitq_enter) || 14962 (un->un_retry_statp == 14963 kstat_runq_back_to_waitq)) { 14964 statp = kstat_waitq_to_runq; 14965 } 14966 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14967 saved_statp = un->un_retry_statp; 14968 #endif 14969 un->un_retry_statp = NULL; 14970 14971 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14972 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14973 "un_throttle:%d un_ncmds_in_transport:%d\n", 14974 un, un->un_retry_bp, un->un_throttle, 14975 un->un_ncmds_in_transport); 14976 } else { 14977 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14978 "processing priority bp:0x%p\n", bp); 14979 } 14980 14981 } else if ((bp = un->un_waitq_headp) != NULL) { 14982 /* 14983 * A command on the waitq is ready to go, but do not 14984 * send it if: 14985 * 14986 * (1) the throttle limit has been reached, or 14987 * (2) a retry is pending, or 14988 * (3) a START_STOP_UNIT callback pending, or 14989 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14990 * command is pending. 14991 * 14992 * For all of these conditions, IO processing will 14993 * restart after the condition is cleared. 14994 */ 14995 if (un->un_ncmds_in_transport >= un->un_throttle) { 14996 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14997 "sd_start_cmds: exiting, " 14998 "throttle limit reached!\n"); 14999 goto exit; 15000 } 15001 if (un->un_retry_bp != NULL) { 15002 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15003 "sd_start_cmds: exiting, retry pending!\n"); 15004 goto exit; 15005 } 15006 if (un->un_startstop_timeid != NULL) { 15007 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15008 "sd_start_cmds: exiting, " 15009 "START_STOP pending!\n"); 15010 goto exit; 15011 } 15012 if (un->un_direct_priority_timeid != NULL) { 15013 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15014 "sd_start_cmds: exiting, " 15015 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 15016 goto exit; 15017 } 15018 15019 /* Dequeue the command */ 15020 un->un_waitq_headp = bp->av_forw; 15021 if (un->un_waitq_headp == NULL) { 15022 un->un_waitq_tailp = NULL; 15023 } 15024 bp->av_forw = NULL; 15025 statp = kstat_waitq_to_runq; 15026 SD_TRACE(SD_LOG_IO_CORE, un, 15027 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 15028 15029 } else { 15030 /* No work to do so bail out now */ 15031 SD_TRACE(SD_LOG_IO_CORE, un, 15032 "sd_start_cmds: no more work, exiting!\n"); 15033 goto exit; 15034 } 15035 15036 /* 15037 * Reset the state to normal. This is the mechanism by which 15038 * the state transitions from either SD_STATE_RWAIT or 15039 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 15040 * If state is SD_STATE_PM_CHANGING then this command is 15041 * part of the device power control and the state must 15042 * not be put back to normal. Doing so would would 15043 * allow new commands to proceed when they shouldn't, 15044 * the device may be going off. 15045 */ 15046 if ((un->un_state != SD_STATE_SUSPENDED) && 15047 (un->un_state != SD_STATE_PM_CHANGING)) { 15048 New_state(un, SD_STATE_NORMAL); 15049 } 15050 15051 xp = SD_GET_XBUF(bp); 15052 ASSERT(xp != NULL); 15053 15054 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15055 /* 15056 * Allocate the scsi_pkt if we need one, or attach DMA 15057 * resources if we have a scsi_pkt that needs them. The 15058 * latter should only occur for commands that are being 15059 * retried. 15060 */ 15061 if ((xp->xb_pktp == NULL) || 15062 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 15063 #else 15064 if (xp->xb_pktp == NULL) { 15065 #endif 15066 /* 15067 * There is no scsi_pkt allocated for this buf. Call 15068 * the initpkt function to allocate & init one. 15069 * 15070 * The scsi_init_pkt runout callback functionality is 15071 * implemented as follows: 15072 * 15073 * 1) The initpkt function always calls 15074 * scsi_init_pkt(9F) with sdrunout specified as the 15075 * callback routine. 15076 * 2) A successful packet allocation is initialized and 15077 * the I/O is transported. 15078 * 3) The I/O associated with an allocation resource 15079 * failure is left on its queue to be retried via 15080 * runout or the next I/O. 15081 * 4) The I/O associated with a DMA error is removed 15082 * from the queue and failed with EIO. Processing of 15083 * the transport queues is also halted to be 15084 * restarted via runout or the next I/O. 15085 * 5) The I/O associated with a CDB size or packet 15086 * size error is removed from the queue and failed 15087 * with EIO. Processing of the transport queues is 15088 * continued. 15089 * 15090 * Note: there is no interface for canceling a runout 15091 * callback. To prevent the driver from detaching or 15092 * suspending while a runout is pending the driver 15093 * state is set to SD_STATE_RWAIT 15094 * 15095 * Note: using the scsi_init_pkt callback facility can 15096 * result in an I/O request persisting at the head of 15097 * the list which cannot be satisfied even after 15098 * multiple retries. In the future the driver may 15099 * implement some kind of maximum runout count before 15100 * failing an I/O. 15101 * 15102 * Note: the use of funcp below may seem superfluous, 15103 * but it helps warlock figure out the correct 15104 * initpkt function calls (see [s]sd.wlcmd). 15105 */ 15106 struct scsi_pkt *pktp; 15107 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 15108 15109 ASSERT(bp != un->un_rqs_bp); 15110 15111 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 15112 switch ((*funcp)(bp, &pktp)) { 15113 case SD_PKT_ALLOC_SUCCESS: 15114 xp->xb_pktp = pktp; 15115 SD_TRACE(SD_LOG_IO_CORE, un, 15116 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 15117 pktp); 15118 goto got_pkt; 15119 15120 case SD_PKT_ALLOC_FAILURE: 15121 /* 15122 * Temporary (hopefully) resource depletion. 15123 * Since retries and RQS commands always have a 15124 * scsi_pkt allocated, these cases should never 15125 * get here. So the only cases this needs to 15126 * handle is a bp from the waitq (which we put 15127 * back onto the waitq for sdrunout), or a bp 15128 * sent as an immed_bp (which we just fail). 15129 */ 15130 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15131 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 15132 15133 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15134 15135 if (bp == immed_bp) { 15136 /* 15137 * If SD_XB_DMA_FREED is clear, then 15138 * this is a failure to allocate a 15139 * scsi_pkt, and we must fail the 15140 * command. 15141 */ 15142 if ((xp->xb_pkt_flags & 15143 SD_XB_DMA_FREED) == 0) { 15144 break; 15145 } 15146 15147 /* 15148 * If this immediate command is NOT our 15149 * un_retry_bp, then we must fail it. 15150 */ 15151 if (bp != un->un_retry_bp) { 15152 break; 15153 } 15154 15155 /* 15156 * We get here if this cmd is our 15157 * un_retry_bp that was DMAFREED, but 15158 * scsi_init_pkt() failed to reallocate 15159 * DMA resources when we attempted to 15160 * retry it. This can happen when an 15161 * mpxio failover is in progress, but 15162 * we don't want to just fail the 15163 * command in this case. 15164 * 15165 * Use timeout(9F) to restart it after 15166 * a 100ms delay. We don't want to 15167 * let sdrunout() restart it, because 15168 * sdrunout() is just supposed to start 15169 * commands that are sitting on the 15170 * wait queue. The un_retry_bp stays 15171 * set until the command completes, but 15172 * sdrunout can be called many times 15173 * before that happens. Since sdrunout 15174 * cannot tell if the un_retry_bp is 15175 * already in the transport, it could 15176 * end up calling scsi_transport() for 15177 * the un_retry_bp multiple times. 15178 * 15179 * Also: don't schedule the callback 15180 * if some other callback is already 15181 * pending. 15182 */ 15183 if (un->un_retry_statp == NULL) { 15184 /* 15185 * restore the kstat pointer to 15186 * keep kstat counts coherent 15187 * when we do retry the command. 15188 */ 15189 un->un_retry_statp = 15190 saved_statp; 15191 } 15192 15193 if ((un->un_startstop_timeid == NULL) && 15194 (un->un_retry_timeid == NULL) && 15195 (un->un_direct_priority_timeid == 15196 NULL)) { 15197 15198 un->un_retry_timeid = 15199 timeout( 15200 sd_start_retry_command, 15201 un, SD_RESTART_TIMEOUT); 15202 } 15203 goto exit; 15204 } 15205 15206 #else 15207 if (bp == immed_bp) { 15208 break; /* Just fail the command */ 15209 } 15210 #endif 15211 15212 /* Add the buf back to the head of the waitq */ 15213 bp->av_forw = un->un_waitq_headp; 15214 un->un_waitq_headp = bp; 15215 if (un->un_waitq_tailp == NULL) { 15216 un->un_waitq_tailp = bp; 15217 } 15218 goto exit; 15219 15220 case SD_PKT_ALLOC_FAILURE_NO_DMA: 15221 /* 15222 * HBA DMA resource failure. Fail the command 15223 * and continue processing of the queues. 15224 */ 15225 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15226 "sd_start_cmds: " 15227 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 15228 break; 15229 15230 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 15231 /* 15232 * Note:x86: Partial DMA mapping not supported 15233 * for USCSI commands, and all the needed DMA 15234 * resources were not allocated. 15235 */ 15236 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15237 "sd_start_cmds: " 15238 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 15239 break; 15240 15241 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 15242 /* 15243 * Note:x86: Request cannot fit into CDB based 15244 * on lba and len. 15245 */ 15246 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15247 "sd_start_cmds: " 15248 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 15249 break; 15250 15251 default: 15252 /* Should NEVER get here! */ 15253 panic("scsi_initpkt error"); 15254 /*NOTREACHED*/ 15255 } 15256 15257 /* 15258 * Fatal error in allocating a scsi_pkt for this buf. 15259 * Update kstats & return the buf with an error code. 15260 * We must use sd_return_failed_command_no_restart() to 15261 * avoid a recursive call back into sd_start_cmds(). 15262 * However this also means that we must keep processing 15263 * the waitq here in order to avoid stalling. 15264 */ 15265 if (statp == kstat_waitq_to_runq) { 15266 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 15267 } 15268 sd_return_failed_command_no_restart(un, bp, EIO); 15269 if (bp == immed_bp) { 15270 /* immed_bp is gone by now, so clear this */ 15271 immed_bp = NULL; 15272 } 15273 continue; 15274 } 15275 got_pkt: 15276 if (bp == immed_bp) { 15277 /* goto the head of the class.... */ 15278 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15279 } 15280 15281 un->un_ncmds_in_transport++; 15282 SD_UPDATE_KSTATS(un, statp, bp); 15283 15284 /* 15285 * Call scsi_transport() to send the command to the target. 15286 * According to SCSA architecture, we must drop the mutex here 15287 * before calling scsi_transport() in order to avoid deadlock. 15288 * Note that the scsi_pkt's completion routine can be executed 15289 * (from interrupt context) even before the call to 15290 * scsi_transport() returns. 15291 */ 15292 SD_TRACE(SD_LOG_IO_CORE, un, 15293 "sd_start_cmds: calling scsi_transport()\n"); 15294 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 15295 15296 mutex_exit(SD_MUTEX(un)); 15297 rval = scsi_transport(xp->xb_pktp); 15298 mutex_enter(SD_MUTEX(un)); 15299 15300 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15301 "sd_start_cmds: scsi_transport() returned %d\n", rval); 15302 15303 switch (rval) { 15304 case TRAN_ACCEPT: 15305 /* Clear this with every pkt accepted by the HBA */ 15306 un->un_tran_fatal_count = 0; 15307 break; /* Success; try the next cmd (if any) */ 15308 15309 case TRAN_BUSY: 15310 un->un_ncmds_in_transport--; 15311 ASSERT(un->un_ncmds_in_transport >= 0); 15312 15313 /* 15314 * Don't retry request sense, the sense data 15315 * is lost when another request is sent. 15316 * Free up the rqs buf and retry 15317 * the original failed cmd. Update kstat. 15318 */ 15319 if (bp == un->un_rqs_bp) { 15320 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15321 bp = sd_mark_rqs_idle(un, xp); 15322 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15323 NULL, NULL, EIO, un->un_busy_timeout / 500, 15324 kstat_waitq_enter); 15325 goto exit; 15326 } 15327 15328 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15329 /* 15330 * Free the DMA resources for the scsi_pkt. This will 15331 * allow mpxio to select another path the next time 15332 * we call scsi_transport() with this scsi_pkt. 15333 * See sdintr() for the rationalization behind this. 15334 */ 15335 if ((un->un_f_is_fibre == TRUE) && 15336 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 15337 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 15338 scsi_dmafree(xp->xb_pktp); 15339 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 15340 } 15341 #endif 15342 15343 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 15344 /* 15345 * Commands that are SD_PATH_DIRECT_PRIORITY 15346 * are for error recovery situations. These do 15347 * not use the normal command waitq, so if they 15348 * get a TRAN_BUSY we cannot put them back onto 15349 * the waitq for later retry. One possible 15350 * problem is that there could already be some 15351 * other command on un_retry_bp that is waiting 15352 * for this one to complete, so we would be 15353 * deadlocked if we put this command back onto 15354 * the waitq for later retry (since un_retry_bp 15355 * must complete before the driver gets back to 15356 * commands on the waitq). 15357 * 15358 * To avoid deadlock we must schedule a callback 15359 * that will restart this command after a set 15360 * interval. This should keep retrying for as 15361 * long as the underlying transport keeps 15362 * returning TRAN_BUSY (just like for other 15363 * commands). Use the same timeout interval as 15364 * for the ordinary TRAN_BUSY retry. 15365 */ 15366 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15367 "sd_start_cmds: scsi_transport() returned " 15368 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 15369 15370 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15371 un->un_direct_priority_timeid = 15372 timeout(sd_start_direct_priority_command, 15373 bp, un->un_busy_timeout / 500); 15374 15375 goto exit; 15376 } 15377 15378 /* 15379 * For TRAN_BUSY, we want to reduce the throttle value, 15380 * unless we are retrying a command. 15381 */ 15382 if (bp != un->un_retry_bp) { 15383 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 15384 } 15385 15386 /* 15387 * Set up the bp to be tried again 10 ms later. 15388 * Note:x86: Is there a timeout value in the sd_lun 15389 * for this condition? 15390 */ 15391 sd_set_retry_bp(un, bp, un->un_busy_timeout / 500, 15392 kstat_runq_back_to_waitq); 15393 goto exit; 15394 15395 case TRAN_FATAL_ERROR: 15396 un->un_tran_fatal_count++; 15397 /* FALLTHRU */ 15398 15399 case TRAN_BADPKT: 15400 default: 15401 un->un_ncmds_in_transport--; 15402 ASSERT(un->un_ncmds_in_transport >= 0); 15403 15404 /* 15405 * If this is our REQUEST SENSE command with a 15406 * transport error, we must get back the pointers 15407 * to the original buf, and mark the REQUEST 15408 * SENSE command as "available". 15409 */ 15410 if (bp == un->un_rqs_bp) { 15411 bp = sd_mark_rqs_idle(un, xp); 15412 xp = SD_GET_XBUF(bp); 15413 } else { 15414 /* 15415 * Legacy behavior: do not update transport 15416 * error count for request sense commands. 15417 */ 15418 SD_UPDATE_ERRSTATS(un, sd_transerrs); 15419 } 15420 15421 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15422 sd_print_transport_rejected_message(un, xp, rval); 15423 15424 /* 15425 * This command will be terminated by SD driver due 15426 * to a fatal transport error. We should post 15427 * ereport.io.scsi.cmd.disk.tran with driver-assessment 15428 * of "fail" for any command to indicate this 15429 * situation. 15430 */ 15431 if (xp->xb_ena > 0) { 15432 ASSERT(un->un_fm_private != NULL); 15433 sfip = un->un_fm_private; 15434 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT; 15435 sd_ssc_extract_info(&sfip->fm_ssc, un, 15436 xp->xb_pktp, bp, xp); 15437 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15438 } 15439 15440 /* 15441 * We must use sd_return_failed_command_no_restart() to 15442 * avoid a recursive call back into sd_start_cmds(). 15443 * However this also means that we must keep processing 15444 * the waitq here in order to avoid stalling. 15445 */ 15446 sd_return_failed_command_no_restart(un, bp, EIO); 15447 15448 /* 15449 * Notify any threads waiting in sd_ddi_suspend() that 15450 * a command completion has occurred. 15451 */ 15452 if (un->un_state == SD_STATE_SUSPENDED) { 15453 cv_broadcast(&un->un_disk_busy_cv); 15454 } 15455 15456 if (bp == immed_bp) { 15457 /* immed_bp is gone by now, so clear this */ 15458 immed_bp = NULL; 15459 } 15460 break; 15461 } 15462 15463 } while (immed_bp == NULL); 15464 15465 exit: 15466 ASSERT(mutex_owned(SD_MUTEX(un))); 15467 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 15468 } 15469 15470 15471 /* 15472 * Function: sd_return_command 15473 * 15474 * Description: Returns a command to its originator (with or without an 15475 * error). Also starts commands waiting to be transported 15476 * to the target. 15477 * 15478 * Context: May be called from interrupt, kernel, or timeout context 15479 */ 15480 15481 static void 15482 sd_return_command(struct sd_lun *un, struct buf *bp) 15483 { 15484 struct sd_xbuf *xp; 15485 struct scsi_pkt *pktp; 15486 struct sd_fm_internal *sfip; 15487 15488 ASSERT(bp != NULL); 15489 ASSERT(un != NULL); 15490 ASSERT(mutex_owned(SD_MUTEX(un))); 15491 ASSERT(bp != un->un_rqs_bp); 15492 xp = SD_GET_XBUF(bp); 15493 ASSERT(xp != NULL); 15494 15495 pktp = SD_GET_PKTP(bp); 15496 sfip = (struct sd_fm_internal *)un->un_fm_private; 15497 ASSERT(sfip != NULL); 15498 15499 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 15500 15501 /* 15502 * Note: check for the "sdrestart failed" case. 15503 */ 15504 if ((un->un_partial_dma_supported == 1) && 15505 ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 15506 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 15507 (xp->xb_pktp->pkt_resid == 0)) { 15508 15509 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 15510 /* 15511 * Successfully set up next portion of cmd 15512 * transfer, try sending it 15513 */ 15514 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15515 NULL, NULL, 0, (clock_t)0, NULL); 15516 sd_start_cmds(un, NULL); 15517 return; /* Note:x86: need a return here? */ 15518 } 15519 } 15520 15521 /* 15522 * If this is the failfast bp, clear it from un_failfast_bp. This 15523 * can happen if upon being re-tried the failfast bp either 15524 * succeeded or encountered another error (possibly even a different 15525 * error than the one that precipitated the failfast state, but in 15526 * that case it would have had to exhaust retries as well). Regardless, 15527 * this should not occur whenever the instance is in the active 15528 * failfast state. 15529 */ 15530 if (bp == un->un_failfast_bp) { 15531 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15532 un->un_failfast_bp = NULL; 15533 } 15534 15535 /* 15536 * Clear the failfast state upon successful completion of ANY cmd. 15537 */ 15538 if (bp->b_error == 0) { 15539 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15540 /* 15541 * If this is a successful command, but used to be retried, 15542 * we will take it as a recovered command and post an 15543 * ereport with driver-assessment of "recovered". 15544 */ 15545 if (xp->xb_ena > 0) { 15546 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15547 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY); 15548 } 15549 } else { 15550 /* 15551 * If this is a failed non-USCSI command we will post an 15552 * ereport with driver-assessment set accordingly("fail" or 15553 * "fatal"). 15554 */ 15555 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15556 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15557 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15558 } 15559 } 15560 15561 /* 15562 * This is used if the command was retried one or more times. Show that 15563 * we are done with it, and allow processing of the waitq to resume. 15564 */ 15565 if (bp == un->un_retry_bp) { 15566 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15567 "sd_return_command: un:0x%p: " 15568 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15569 un->un_retry_bp = NULL; 15570 un->un_retry_statp = NULL; 15571 } 15572 15573 SD_UPDATE_RDWR_STATS(un, bp); 15574 SD_UPDATE_PARTITION_STATS(un, bp); 15575 15576 switch (un->un_state) { 15577 case SD_STATE_SUSPENDED: 15578 /* 15579 * Notify any threads waiting in sd_ddi_suspend() that 15580 * a command completion has occurred. 15581 */ 15582 cv_broadcast(&un->un_disk_busy_cv); 15583 break; 15584 default: 15585 sd_start_cmds(un, NULL); 15586 break; 15587 } 15588 15589 /* Return this command up the iodone chain to its originator. */ 15590 mutex_exit(SD_MUTEX(un)); 15591 15592 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15593 xp->xb_pktp = NULL; 15594 15595 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15596 15597 ASSERT(!mutex_owned(SD_MUTEX(un))); 15598 mutex_enter(SD_MUTEX(un)); 15599 15600 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 15601 } 15602 15603 15604 /* 15605 * Function: sd_return_failed_command 15606 * 15607 * Description: Command completion when an error occurred. 15608 * 15609 * Context: May be called from interrupt context 15610 */ 15611 15612 static void 15613 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 15614 { 15615 ASSERT(bp != NULL); 15616 ASSERT(un != NULL); 15617 ASSERT(mutex_owned(SD_MUTEX(un))); 15618 15619 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15620 "sd_return_failed_command: entry\n"); 15621 15622 /* 15623 * b_resid could already be nonzero due to a partial data 15624 * transfer, so do not change it here. 15625 */ 15626 SD_BIOERROR(bp, errcode); 15627 15628 sd_return_command(un, bp); 15629 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15630 "sd_return_failed_command: exit\n"); 15631 } 15632 15633 15634 /* 15635 * Function: sd_return_failed_command_no_restart 15636 * 15637 * Description: Same as sd_return_failed_command, but ensures that no 15638 * call back into sd_start_cmds will be issued. 15639 * 15640 * Context: May be called from interrupt context 15641 */ 15642 15643 static void 15644 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 15645 int errcode) 15646 { 15647 struct sd_xbuf *xp; 15648 15649 ASSERT(bp != NULL); 15650 ASSERT(un != NULL); 15651 ASSERT(mutex_owned(SD_MUTEX(un))); 15652 xp = SD_GET_XBUF(bp); 15653 ASSERT(xp != NULL); 15654 ASSERT(errcode != 0); 15655 15656 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15657 "sd_return_failed_command_no_restart: entry\n"); 15658 15659 /* 15660 * b_resid could already be nonzero due to a partial data 15661 * transfer, so do not change it here. 15662 */ 15663 SD_BIOERROR(bp, errcode); 15664 15665 /* 15666 * If this is the failfast bp, clear it. This can happen if the 15667 * failfast bp encounterd a fatal error when we attempted to 15668 * re-try it (such as a scsi_transport(9F) failure). However 15669 * we should NOT be in an active failfast state if the failfast 15670 * bp is not NULL. 15671 */ 15672 if (bp == un->un_failfast_bp) { 15673 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15674 un->un_failfast_bp = NULL; 15675 } 15676 15677 if (bp == un->un_retry_bp) { 15678 /* 15679 * This command was retried one or more times. Show that we are 15680 * done with it, and allow processing of the waitq to resume. 15681 */ 15682 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15683 "sd_return_failed_command_no_restart: " 15684 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15685 un->un_retry_bp = NULL; 15686 un->un_retry_statp = NULL; 15687 } 15688 15689 SD_UPDATE_RDWR_STATS(un, bp); 15690 SD_UPDATE_PARTITION_STATS(un, bp); 15691 15692 mutex_exit(SD_MUTEX(un)); 15693 15694 if (xp->xb_pktp != NULL) { 15695 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15696 xp->xb_pktp = NULL; 15697 } 15698 15699 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15700 15701 mutex_enter(SD_MUTEX(un)); 15702 15703 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15704 "sd_return_failed_command_no_restart: exit\n"); 15705 } 15706 15707 15708 /* 15709 * Function: sd_retry_command 15710 * 15711 * Description: queue up a command for retry, or (optionally) fail it 15712 * if retry counts are exhausted. 15713 * 15714 * Arguments: un - Pointer to the sd_lun struct for the target. 15715 * 15716 * bp - Pointer to the buf for the command to be retried. 15717 * 15718 * retry_check_flag - Flag to see which (if any) of the retry 15719 * counts should be decremented/checked. If the indicated 15720 * retry count is exhausted, then the command will not be 15721 * retried; it will be failed instead. This should use a 15722 * value equal to one of the following: 15723 * 15724 * SD_RETRIES_NOCHECK 15725 * SD_RESD_RETRIES_STANDARD 15726 * SD_RETRIES_VICTIM 15727 * 15728 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 15729 * if the check should be made to see of FLAG_ISOLATE is set 15730 * in the pkt. If FLAG_ISOLATE is set, then the command is 15731 * not retried, it is simply failed. 15732 * 15733 * user_funcp - Ptr to function to call before dispatching the 15734 * command. May be NULL if no action needs to be performed. 15735 * (Primarily intended for printing messages.) 15736 * 15737 * user_arg - Optional argument to be passed along to 15738 * the user_funcp call. 15739 * 15740 * failure_code - errno return code to set in the bp if the 15741 * command is going to be failed. 15742 * 15743 * retry_delay - Retry delay interval in (clock_t) units. May 15744 * be zero which indicates that the retry should be retried 15745 * immediately (ie, without an intervening delay). 15746 * 15747 * statp - Ptr to kstat function to be updated if the command 15748 * is queued for a delayed retry. May be NULL if no kstat 15749 * update is desired. 15750 * 15751 * Context: May be called from interrupt context. 15752 */ 15753 15754 static void 15755 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 15756 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int code), 15757 void *user_arg, int failure_code, clock_t retry_delay, 15758 void (*statp)(kstat_io_t *)) 15759 { 15760 struct sd_xbuf *xp; 15761 struct scsi_pkt *pktp; 15762 struct sd_fm_internal *sfip; 15763 15764 ASSERT(un != NULL); 15765 ASSERT(mutex_owned(SD_MUTEX(un))); 15766 ASSERT(bp != NULL); 15767 xp = SD_GET_XBUF(bp); 15768 ASSERT(xp != NULL); 15769 pktp = SD_GET_PKTP(bp); 15770 ASSERT(pktp != NULL); 15771 15772 sfip = (struct sd_fm_internal *)un->un_fm_private; 15773 ASSERT(sfip != NULL); 15774 15775 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15776 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 15777 15778 /* 15779 * If we are syncing or dumping, fail the command to avoid 15780 * recursively calling back into scsi_transport(). 15781 */ 15782 if (ddi_in_panic()) { 15783 goto fail_command_no_log; 15784 } 15785 15786 /* 15787 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 15788 * log an error and fail the command. 15789 */ 15790 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15791 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15792 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15793 sd_dump_memory(un, SD_LOG_IO, "CDB", 15794 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15795 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15796 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15797 goto fail_command; 15798 } 15799 15800 /* 15801 * If we are suspended, then put the command onto head of the 15802 * wait queue since we don't want to start more commands, and 15803 * clear the un_retry_bp. Next time when we are resumed, will 15804 * handle the command in the wait queue. 15805 */ 15806 switch (un->un_state) { 15807 case SD_STATE_SUSPENDED: 15808 case SD_STATE_DUMPING: 15809 bp->av_forw = un->un_waitq_headp; 15810 un->un_waitq_headp = bp; 15811 if (un->un_waitq_tailp == NULL) { 15812 un->un_waitq_tailp = bp; 15813 } 15814 if (bp == un->un_retry_bp) { 15815 un->un_retry_bp = NULL; 15816 un->un_retry_statp = NULL; 15817 } 15818 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15819 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15820 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15821 return; 15822 default: 15823 break; 15824 } 15825 15826 /* 15827 * If the caller wants us to check FLAG_ISOLATE, then see if that 15828 * is set; if it is then we do not want to retry the command. 15829 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15830 */ 15831 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15832 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15833 goto fail_command; 15834 } 15835 } 15836 15837 15838 /* 15839 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15840 * command timeout or a selection timeout has occurred. This means 15841 * that we were unable to establish an kind of communication with 15842 * the target, and subsequent retries and/or commands are likely 15843 * to encounter similar results and take a long time to complete. 15844 * 15845 * If this is a failfast error condition, we need to update the 15846 * failfast state, even if this bp does not have B_FAILFAST set. 15847 */ 15848 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15849 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15850 ASSERT(un->un_failfast_bp == NULL); 15851 /* 15852 * If we are already in the active failfast state, and 15853 * another failfast error condition has been detected, 15854 * then fail this command if it has B_FAILFAST set. 15855 * If B_FAILFAST is clear, then maintain the legacy 15856 * behavior of retrying heroically, even tho this will 15857 * take a lot more time to fail the command. 15858 */ 15859 if (bp->b_flags & B_FAILFAST) { 15860 goto fail_command; 15861 } 15862 } else { 15863 /* 15864 * We're not in the active failfast state, but we 15865 * have a failfast error condition, so we must begin 15866 * transition to the next state. We do this regardless 15867 * of whether or not this bp has B_FAILFAST set. 15868 */ 15869 if (un->un_failfast_bp == NULL) { 15870 /* 15871 * This is the first bp to meet a failfast 15872 * condition so save it on un_failfast_bp & 15873 * do normal retry processing. Do not enter 15874 * active failfast state yet. This marks 15875 * entry into the "failfast pending" state. 15876 */ 15877 un->un_failfast_bp = bp; 15878 15879 } else if (un->un_failfast_bp == bp) { 15880 /* 15881 * This is the second time *this* bp has 15882 * encountered a failfast error condition, 15883 * so enter active failfast state & flush 15884 * queues as appropriate. 15885 */ 15886 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15887 un->un_failfast_bp = NULL; 15888 sd_failfast_flushq(un); 15889 15890 /* 15891 * Fail this bp now if B_FAILFAST set; 15892 * otherwise continue with retries. (It would 15893 * be pretty ironic if this bp succeeded on a 15894 * subsequent retry after we just flushed all 15895 * the queues). 15896 */ 15897 if (bp->b_flags & B_FAILFAST) { 15898 goto fail_command; 15899 } 15900 15901 #if !defined(lint) && !defined(__lint) 15902 } else { 15903 /* 15904 * If neither of the preceeding conditionals 15905 * was true, it means that there is some 15906 * *other* bp that has met an inital failfast 15907 * condition and is currently either being 15908 * retried or is waiting to be retried. In 15909 * that case we should perform normal retry 15910 * processing on *this* bp, since there is a 15911 * chance that the current failfast condition 15912 * is transient and recoverable. If that does 15913 * not turn out to be the case, then retries 15914 * will be cleared when the wait queue is 15915 * flushed anyway. 15916 */ 15917 #endif 15918 } 15919 } 15920 } else { 15921 /* 15922 * SD_RETRIES_FAILFAST is clear, which indicates that we 15923 * likely were able to at least establish some level of 15924 * communication with the target and subsequent commands 15925 * and/or retries are likely to get through to the target, 15926 * In this case we want to be aggressive about clearing 15927 * the failfast state. Note that this does not affect 15928 * the "failfast pending" condition. 15929 */ 15930 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15931 } 15932 15933 15934 /* 15935 * Check the specified retry count to see if we can still do 15936 * any retries with this pkt before we should fail it. 15937 */ 15938 switch (retry_check_flag & SD_RETRIES_MASK) { 15939 case SD_RETRIES_VICTIM: 15940 /* 15941 * Check the victim retry count. If exhausted, then fall 15942 * thru & check against the standard retry count. 15943 */ 15944 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15945 /* Increment count & proceed with the retry */ 15946 xp->xb_victim_retry_count++; 15947 break; 15948 } 15949 /* Victim retries exhausted, fall back to std. retries... */ 15950 /* FALLTHRU */ 15951 15952 case SD_RETRIES_STANDARD: 15953 if (xp->xb_retry_count >= un->un_retry_count) { 15954 /* Retries exhausted, fail the command */ 15955 SD_TRACE(SD_LOG_IO_CORE, un, 15956 "sd_retry_command: retries exhausted!\n"); 15957 /* 15958 * update b_resid for failed SCMD_READ & SCMD_WRITE 15959 * commands with nonzero pkt_resid. 15960 */ 15961 if ((pktp->pkt_reason == CMD_CMPLT) && 15962 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15963 (pktp->pkt_resid != 0)) { 15964 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15965 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15966 SD_UPDATE_B_RESID(bp, pktp); 15967 } 15968 } 15969 goto fail_command; 15970 } 15971 xp->xb_retry_count++; 15972 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15973 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15974 break; 15975 15976 case SD_RETRIES_UA: 15977 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15978 /* Retries exhausted, fail the command */ 15979 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15980 "Unit Attention retries exhausted. " 15981 "Check the target.\n"); 15982 goto fail_command; 15983 } 15984 xp->xb_ua_retry_count++; 15985 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15986 "sd_retry_command: retry count:%d\n", 15987 xp->xb_ua_retry_count); 15988 break; 15989 15990 case SD_RETRIES_BUSY: 15991 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15992 /* Retries exhausted, fail the command */ 15993 SD_TRACE(SD_LOG_IO_CORE, un, 15994 "sd_retry_command: retries exhausted!\n"); 15995 goto fail_command; 15996 } 15997 xp->xb_retry_count++; 15998 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15999 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 16000 break; 16001 16002 case SD_RETRIES_NOCHECK: 16003 default: 16004 /* No retry count to check. Just proceed with the retry */ 16005 break; 16006 } 16007 16008 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 16009 16010 /* 16011 * If this is a non-USCSI command being retried 16012 * during execution last time, we should post an ereport with 16013 * driver-assessment of the value "retry". 16014 * For partial DMA, request sense and STATUS_QFULL, there are no 16015 * hardware errors, we bypass ereport posting. 16016 */ 16017 if (failure_code != 0) { 16018 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16019 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 16020 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY); 16021 } 16022 } 16023 16024 /* 16025 * If we were given a zero timeout, we must attempt to retry the 16026 * command immediately (ie, without a delay). 16027 */ 16028 if (retry_delay == 0) { 16029 /* 16030 * Check some limiting conditions to see if we can actually 16031 * do the immediate retry. If we cannot, then we must 16032 * fall back to queueing up a delayed retry. 16033 */ 16034 if (un->un_ncmds_in_transport >= un->un_throttle) { 16035 /* 16036 * We are at the throttle limit for the target, 16037 * fall back to delayed retry. 16038 */ 16039 retry_delay = un->un_busy_timeout; 16040 statp = kstat_waitq_enter; 16041 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16042 "sd_retry_command: immed. retry hit " 16043 "throttle!\n"); 16044 } else { 16045 /* 16046 * We're clear to proceed with the immediate retry. 16047 * First call the user-provided function (if any) 16048 */ 16049 if (user_funcp != NULL) { 16050 (*user_funcp)(un, bp, user_arg, 16051 SD_IMMEDIATE_RETRY_ISSUED); 16052 #ifdef __lock_lint 16053 sd_print_incomplete_msg(un, bp, user_arg, 16054 SD_IMMEDIATE_RETRY_ISSUED); 16055 sd_print_cmd_incomplete_msg(un, bp, user_arg, 16056 SD_IMMEDIATE_RETRY_ISSUED); 16057 sd_print_sense_failed_msg(un, bp, user_arg, 16058 SD_IMMEDIATE_RETRY_ISSUED); 16059 #endif 16060 } 16061 16062 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16063 "sd_retry_command: issuing immediate retry\n"); 16064 16065 /* 16066 * Call sd_start_cmds() to transport the command to 16067 * the target. 16068 */ 16069 sd_start_cmds(un, bp); 16070 16071 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16072 "sd_retry_command exit\n"); 16073 return; 16074 } 16075 } 16076 16077 /* 16078 * Set up to retry the command after a delay. 16079 * First call the user-provided function (if any) 16080 */ 16081 if (user_funcp != NULL) { 16082 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 16083 } 16084 16085 sd_set_retry_bp(un, bp, retry_delay, statp); 16086 16087 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 16088 return; 16089 16090 fail_command: 16091 16092 if (user_funcp != NULL) { 16093 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 16094 } 16095 16096 fail_command_no_log: 16097 16098 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16099 "sd_retry_command: returning failed command\n"); 16100 16101 sd_return_failed_command(un, bp, failure_code); 16102 16103 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 16104 } 16105 16106 16107 /* 16108 * Function: sd_set_retry_bp 16109 * 16110 * Description: Set up the given bp for retry. 16111 * 16112 * Arguments: un - ptr to associated softstate 16113 * bp - ptr to buf(9S) for the command 16114 * retry_delay - time interval before issuing retry (may be 0) 16115 * statp - optional pointer to kstat function 16116 * 16117 * Context: May be called under interrupt context 16118 */ 16119 16120 static void 16121 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 16122 void (*statp)(kstat_io_t *)) 16123 { 16124 ASSERT(un != NULL); 16125 ASSERT(mutex_owned(SD_MUTEX(un))); 16126 ASSERT(bp != NULL); 16127 16128 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16129 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 16130 16131 /* 16132 * Indicate that the command is being retried. This will not allow any 16133 * other commands on the wait queue to be transported to the target 16134 * until this command has been completed (success or failure). The 16135 * "retry command" is not transported to the target until the given 16136 * time delay expires, unless the user specified a 0 retry_delay. 16137 * 16138 * Note: the timeout(9F) callback routine is what actually calls 16139 * sd_start_cmds() to transport the command, with the exception of a 16140 * zero retry_delay. The only current implementor of a zero retry delay 16141 * is the case where a START_STOP_UNIT is sent to spin-up a device. 16142 */ 16143 if (un->un_retry_bp == NULL) { 16144 ASSERT(un->un_retry_statp == NULL); 16145 un->un_retry_bp = bp; 16146 16147 /* 16148 * If the user has not specified a delay the command should 16149 * be queued and no timeout should be scheduled. 16150 */ 16151 if (retry_delay == 0) { 16152 /* 16153 * Save the kstat pointer that will be used in the 16154 * call to SD_UPDATE_KSTATS() below, so that 16155 * sd_start_cmds() can correctly decrement the waitq 16156 * count when it is time to transport this command. 16157 */ 16158 un->un_retry_statp = statp; 16159 goto done; 16160 } 16161 } 16162 16163 if (un->un_retry_bp == bp) { 16164 /* 16165 * Save the kstat pointer that will be used in the call to 16166 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 16167 * correctly decrement the waitq count when it is time to 16168 * transport this command. 16169 */ 16170 un->un_retry_statp = statp; 16171 16172 /* 16173 * Schedule a timeout if: 16174 * 1) The user has specified a delay. 16175 * 2) There is not a START_STOP_UNIT callback pending. 16176 * 16177 * If no delay has been specified, then it is up to the caller 16178 * to ensure that IO processing continues without stalling. 16179 * Effectively, this means that the caller will issue the 16180 * required call to sd_start_cmds(). The START_STOP_UNIT 16181 * callback does this after the START STOP UNIT command has 16182 * completed. In either of these cases we should not schedule 16183 * a timeout callback here. Also don't schedule the timeout if 16184 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 16185 */ 16186 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 16187 (un->un_direct_priority_timeid == NULL)) { 16188 un->un_retry_timeid = 16189 timeout(sd_start_retry_command, un, retry_delay); 16190 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16191 "sd_set_retry_bp: setting timeout: un: 0x%p" 16192 " bp:0x%p un_retry_timeid:0x%p\n", 16193 un, bp, un->un_retry_timeid); 16194 } 16195 } else { 16196 /* 16197 * We only get in here if there is already another command 16198 * waiting to be retried. In this case, we just put the 16199 * given command onto the wait queue, so it can be transported 16200 * after the current retry command has completed. 16201 * 16202 * Also we have to make sure that if the command at the head 16203 * of the wait queue is the un_failfast_bp, that we do not 16204 * put ahead of it any other commands that are to be retried. 16205 */ 16206 if ((un->un_failfast_bp != NULL) && 16207 (un->un_failfast_bp == un->un_waitq_headp)) { 16208 /* 16209 * Enqueue this command AFTER the first command on 16210 * the wait queue (which is also un_failfast_bp). 16211 */ 16212 bp->av_forw = un->un_waitq_headp->av_forw; 16213 un->un_waitq_headp->av_forw = bp; 16214 if (un->un_waitq_headp == un->un_waitq_tailp) { 16215 un->un_waitq_tailp = bp; 16216 } 16217 } else { 16218 /* Enqueue this command at the head of the waitq. */ 16219 bp->av_forw = un->un_waitq_headp; 16220 un->un_waitq_headp = bp; 16221 if (un->un_waitq_tailp == NULL) { 16222 un->un_waitq_tailp = bp; 16223 } 16224 } 16225 16226 if (statp == NULL) { 16227 statp = kstat_waitq_enter; 16228 } 16229 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16230 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 16231 } 16232 16233 done: 16234 if (statp != NULL) { 16235 SD_UPDATE_KSTATS(un, statp, bp); 16236 } 16237 16238 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16239 "sd_set_retry_bp: exit un:0x%p\n", un); 16240 } 16241 16242 16243 /* 16244 * Function: sd_start_retry_command 16245 * 16246 * Description: Start the command that has been waiting on the target's 16247 * retry queue. Called from timeout(9F) context after the 16248 * retry delay interval has expired. 16249 * 16250 * Arguments: arg - pointer to associated softstate for the device. 16251 * 16252 * Context: timeout(9F) thread context. May not sleep. 16253 */ 16254 16255 static void 16256 sd_start_retry_command(void *arg) 16257 { 16258 struct sd_lun *un = arg; 16259 16260 ASSERT(un != NULL); 16261 ASSERT(!mutex_owned(SD_MUTEX(un))); 16262 16263 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16264 "sd_start_retry_command: entry\n"); 16265 16266 mutex_enter(SD_MUTEX(un)); 16267 16268 un->un_retry_timeid = NULL; 16269 16270 if (un->un_retry_bp != NULL) { 16271 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16272 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 16273 un, un->un_retry_bp); 16274 sd_start_cmds(un, un->un_retry_bp); 16275 } 16276 16277 mutex_exit(SD_MUTEX(un)); 16278 16279 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16280 "sd_start_retry_command: exit\n"); 16281 } 16282 16283 /* 16284 * Function: sd_rmw_msg_print_handler 16285 * 16286 * Description: If RMW mode is enabled and warning message is triggered 16287 * print I/O count during a fixed interval. 16288 * 16289 * Arguments: arg - pointer to associated softstate for the device. 16290 * 16291 * Context: timeout(9F) thread context. May not sleep. 16292 */ 16293 static void 16294 sd_rmw_msg_print_handler(void *arg) 16295 { 16296 struct sd_lun *un = arg; 16297 16298 ASSERT(un != NULL); 16299 ASSERT(!mutex_owned(SD_MUTEX(un))); 16300 16301 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16302 "sd_rmw_msg_print_handler: entry\n"); 16303 16304 mutex_enter(SD_MUTEX(un)); 16305 16306 if (un->un_rmw_incre_count > 0) { 16307 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16308 "%"PRIu64" I/O requests are not aligned with %d disk " 16309 "sector size in %ld seconds. They are handled through " 16310 "Read Modify Write but the performance is very low!\n", 16311 un->un_rmw_incre_count, un->un_tgt_blocksize, 16312 drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000); 16313 un->un_rmw_incre_count = 0; 16314 un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler, 16315 un, SD_RMW_MSG_PRINT_TIMEOUT); 16316 } else { 16317 un->un_rmw_msg_timeid = NULL; 16318 } 16319 16320 mutex_exit(SD_MUTEX(un)); 16321 16322 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16323 "sd_rmw_msg_print_handler: exit\n"); 16324 } 16325 16326 /* 16327 * Function: sd_start_direct_priority_command 16328 * 16329 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 16330 * received TRAN_BUSY when we called scsi_transport() to send it 16331 * to the underlying HBA. This function is called from timeout(9F) 16332 * context after the delay interval has expired. 16333 * 16334 * Arguments: arg - pointer to associated buf(9S) to be restarted. 16335 * 16336 * Context: timeout(9F) thread context. May not sleep. 16337 */ 16338 16339 static void 16340 sd_start_direct_priority_command(void *arg) 16341 { 16342 struct buf *priority_bp = arg; 16343 struct sd_lun *un; 16344 16345 ASSERT(priority_bp != NULL); 16346 un = SD_GET_UN(priority_bp); 16347 ASSERT(un != NULL); 16348 ASSERT(!mutex_owned(SD_MUTEX(un))); 16349 16350 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16351 "sd_start_direct_priority_command: entry\n"); 16352 16353 mutex_enter(SD_MUTEX(un)); 16354 un->un_direct_priority_timeid = NULL; 16355 sd_start_cmds(un, priority_bp); 16356 mutex_exit(SD_MUTEX(un)); 16357 16358 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16359 "sd_start_direct_priority_command: exit\n"); 16360 } 16361 16362 16363 /* 16364 * Function: sd_send_request_sense_command 16365 * 16366 * Description: Sends a REQUEST SENSE command to the target 16367 * 16368 * Context: May be called from interrupt context. 16369 */ 16370 16371 static void 16372 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 16373 struct scsi_pkt *pktp) 16374 { 16375 ASSERT(bp != NULL); 16376 ASSERT(un != NULL); 16377 ASSERT(mutex_owned(SD_MUTEX(un))); 16378 16379 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 16380 "entry: buf:0x%p\n", bp); 16381 16382 /* 16383 * If we are syncing or dumping, then fail the command to avoid a 16384 * recursive callback into scsi_transport(). Also fail the command 16385 * if we are suspended (legacy behavior). 16386 */ 16387 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 16388 (un->un_state == SD_STATE_DUMPING)) { 16389 sd_return_failed_command(un, bp, EIO); 16390 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16391 "sd_send_request_sense_command: syncing/dumping, exit\n"); 16392 return; 16393 } 16394 16395 /* 16396 * Retry the failed command and don't issue the request sense if: 16397 * 1) the sense buf is busy 16398 * 2) we have 1 or more outstanding commands on the target 16399 * (the sense data will be cleared or invalidated any way) 16400 * 16401 * Note: There could be an issue with not checking a retry limit here, 16402 * the problem is determining which retry limit to check. 16403 */ 16404 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 16405 /* Don't retry if the command is flagged as non-retryable */ 16406 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16407 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 16408 NULL, NULL, 0, un->un_busy_timeout, 16409 kstat_waitq_enter); 16410 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16411 "sd_send_request_sense_command: " 16412 "at full throttle, retrying exit\n"); 16413 } else { 16414 sd_return_failed_command(un, bp, EIO); 16415 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16416 "sd_send_request_sense_command: " 16417 "at full throttle, non-retryable exit\n"); 16418 } 16419 return; 16420 } 16421 16422 sd_mark_rqs_busy(un, bp); 16423 sd_start_cmds(un, un->un_rqs_bp); 16424 16425 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16426 "sd_send_request_sense_command: exit\n"); 16427 } 16428 16429 16430 /* 16431 * Function: sd_mark_rqs_busy 16432 * 16433 * Description: Indicate that the request sense bp for this instance is 16434 * in use. 16435 * 16436 * Context: May be called under interrupt context 16437 */ 16438 16439 static void 16440 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 16441 { 16442 struct sd_xbuf *sense_xp; 16443 16444 ASSERT(un != NULL); 16445 ASSERT(bp != NULL); 16446 ASSERT(mutex_owned(SD_MUTEX(un))); 16447 ASSERT(un->un_sense_isbusy == 0); 16448 16449 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 16450 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 16451 16452 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 16453 ASSERT(sense_xp != NULL); 16454 16455 SD_INFO(SD_LOG_IO, un, 16456 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 16457 16458 ASSERT(sense_xp->xb_pktp != NULL); 16459 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 16460 == (FLAG_SENSING | FLAG_HEAD)); 16461 16462 un->un_sense_isbusy = 1; 16463 un->un_rqs_bp->b_resid = 0; 16464 sense_xp->xb_pktp->pkt_resid = 0; 16465 sense_xp->xb_pktp->pkt_reason = 0; 16466 16467 /* So we can get back the bp at interrupt time! */ 16468 sense_xp->xb_sense_bp = bp; 16469 16470 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 16471 16472 /* 16473 * Mark this buf as awaiting sense data. (This is already set in 16474 * the pkt_flags for the RQS packet.) 16475 */ 16476 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 16477 16478 /* Request sense down same path */ 16479 if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) && 16480 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance) 16481 sense_xp->xb_pktp->pkt_path_instance = 16482 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance; 16483 16484 sense_xp->xb_retry_count = 0; 16485 sense_xp->xb_victim_retry_count = 0; 16486 sense_xp->xb_ua_retry_count = 0; 16487 sense_xp->xb_nr_retry_count = 0; 16488 sense_xp->xb_dma_resid = 0; 16489 16490 /* Clean up the fields for auto-request sense */ 16491 sense_xp->xb_sense_status = 0; 16492 sense_xp->xb_sense_state = 0; 16493 sense_xp->xb_sense_resid = 0; 16494 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 16495 16496 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 16497 } 16498 16499 16500 /* 16501 * Function: sd_mark_rqs_idle 16502 * 16503 * Description: SD_MUTEX must be held continuously through this routine 16504 * to prevent reuse of the rqs struct before the caller can 16505 * complete it's processing. 16506 * 16507 * Return Code: Pointer to the RQS buf 16508 * 16509 * Context: May be called under interrupt context 16510 */ 16511 16512 static struct buf * 16513 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 16514 { 16515 struct buf *bp; 16516 ASSERT(un != NULL); 16517 ASSERT(sense_xp != NULL); 16518 ASSERT(mutex_owned(SD_MUTEX(un))); 16519 ASSERT(un->un_sense_isbusy != 0); 16520 16521 un->un_sense_isbusy = 0; 16522 bp = sense_xp->xb_sense_bp; 16523 sense_xp->xb_sense_bp = NULL; 16524 16525 /* This pkt is no longer interested in getting sense data */ 16526 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 16527 16528 return (bp); 16529 } 16530 16531 16532 16533 /* 16534 * Function: sd_alloc_rqs 16535 * 16536 * Description: Set up the unit to receive auto request sense data 16537 * 16538 * Return Code: DDI_SUCCESS or DDI_FAILURE 16539 * 16540 * Context: Called under attach(9E) context 16541 */ 16542 16543 static int 16544 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 16545 { 16546 struct sd_xbuf *xp; 16547 16548 ASSERT(un != NULL); 16549 ASSERT(!mutex_owned(SD_MUTEX(un))); 16550 ASSERT(un->un_rqs_bp == NULL); 16551 ASSERT(un->un_rqs_pktp == NULL); 16552 16553 /* 16554 * First allocate the required buf and scsi_pkt structs, then set up 16555 * the CDB in the scsi_pkt for a REQUEST SENSE command. 16556 */ 16557 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 16558 MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 16559 if (un->un_rqs_bp == NULL) { 16560 return (DDI_FAILURE); 16561 } 16562 16563 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 16564 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 16565 16566 if (un->un_rqs_pktp == NULL) { 16567 sd_free_rqs(un); 16568 return (DDI_FAILURE); 16569 } 16570 16571 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 16572 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 16573 SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0); 16574 16575 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 16576 16577 /* Set up the other needed members in the ARQ scsi_pkt. */ 16578 un->un_rqs_pktp->pkt_comp = sdintr; 16579 un->un_rqs_pktp->pkt_time = sd_io_time; 16580 un->un_rqs_pktp->pkt_flags |= 16581 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 16582 16583 /* 16584 * Allocate & init the sd_xbuf struct for the RQS command. Do not 16585 * provide any intpkt, destroypkt routines as we take care of 16586 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 16587 */ 16588 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 16589 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 16590 xp->xb_pktp = un->un_rqs_pktp; 16591 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16592 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 16593 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 16594 16595 /* 16596 * Save the pointer to the request sense private bp so it can 16597 * be retrieved in sdintr. 16598 */ 16599 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 16600 ASSERT(un->un_rqs_bp->b_private == xp); 16601 16602 /* 16603 * See if the HBA supports auto-request sense for the specified 16604 * target/lun. If it does, then try to enable it (if not already 16605 * enabled). 16606 * 16607 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 16608 * failure, while for other HBAs (pln) scsi_ifsetcap will always 16609 * return success. However, in both of these cases ARQ is always 16610 * enabled and scsi_ifgetcap will always return true. The best approach 16611 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 16612 * 16613 * The 3rd case is the HBA (adp) always return enabled on 16614 * scsi_ifgetgetcap even when it's not enable, the best approach 16615 * is issue a scsi_ifsetcap then a scsi_ifgetcap 16616 * Note: this case is to circumvent the Adaptec bug. (x86 only) 16617 */ 16618 16619 if (un->un_f_is_fibre == TRUE) { 16620 un->un_f_arq_enabled = TRUE; 16621 } else { 16622 #if defined(__i386) || defined(__amd64) 16623 /* 16624 * Circumvent the Adaptec bug, remove this code when 16625 * the bug is fixed 16626 */ 16627 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 16628 #endif 16629 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 16630 case 0: 16631 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16632 "sd_alloc_rqs: HBA supports ARQ\n"); 16633 /* 16634 * ARQ is supported by this HBA but currently is not 16635 * enabled. Attempt to enable it and if successful then 16636 * mark this instance as ARQ enabled. 16637 */ 16638 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 16639 == 1) { 16640 /* Successfully enabled ARQ in the HBA */ 16641 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16642 "sd_alloc_rqs: ARQ enabled\n"); 16643 un->un_f_arq_enabled = TRUE; 16644 } else { 16645 /* Could not enable ARQ in the HBA */ 16646 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16647 "sd_alloc_rqs: failed ARQ enable\n"); 16648 un->un_f_arq_enabled = FALSE; 16649 } 16650 break; 16651 case 1: 16652 /* 16653 * ARQ is supported by this HBA and is already enabled. 16654 * Just mark ARQ as enabled for this instance. 16655 */ 16656 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16657 "sd_alloc_rqs: ARQ already enabled\n"); 16658 un->un_f_arq_enabled = TRUE; 16659 break; 16660 default: 16661 /* 16662 * ARQ is not supported by this HBA; disable it for this 16663 * instance. 16664 */ 16665 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16666 "sd_alloc_rqs: HBA does not support ARQ\n"); 16667 un->un_f_arq_enabled = FALSE; 16668 break; 16669 } 16670 } 16671 16672 return (DDI_SUCCESS); 16673 } 16674 16675 16676 /* 16677 * Function: sd_free_rqs 16678 * 16679 * Description: Cleanup for the pre-instance RQS command. 16680 * 16681 * Context: Kernel thread context 16682 */ 16683 16684 static void 16685 sd_free_rqs(struct sd_lun *un) 16686 { 16687 ASSERT(un != NULL); 16688 16689 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 16690 16691 /* 16692 * If consistent memory is bound to a scsi_pkt, the pkt 16693 * has to be destroyed *before* freeing the consistent memory. 16694 * Don't change the sequence of this operations. 16695 * scsi_destroy_pkt() might access memory, which isn't allowed, 16696 * after it was freed in scsi_free_consistent_buf(). 16697 */ 16698 if (un->un_rqs_pktp != NULL) { 16699 scsi_destroy_pkt(un->un_rqs_pktp); 16700 un->un_rqs_pktp = NULL; 16701 } 16702 16703 if (un->un_rqs_bp != NULL) { 16704 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp); 16705 if (xp != NULL) { 16706 kmem_free(xp, sizeof (struct sd_xbuf)); 16707 } 16708 scsi_free_consistent_buf(un->un_rqs_bp); 16709 un->un_rqs_bp = NULL; 16710 } 16711 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 16712 } 16713 16714 16715 16716 /* 16717 * Function: sd_reduce_throttle 16718 * 16719 * Description: Reduces the maximum # of outstanding commands on a 16720 * target to the current number of outstanding commands. 16721 * Queues a tiemout(9F) callback to restore the limit 16722 * after a specified interval has elapsed. 16723 * Typically used when we get a TRAN_BUSY return code 16724 * back from scsi_transport(). 16725 * 16726 * Arguments: un - ptr to the sd_lun softstate struct 16727 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 16728 * 16729 * Context: May be called from interrupt context 16730 */ 16731 16732 static void 16733 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 16734 { 16735 ASSERT(un != NULL); 16736 ASSERT(mutex_owned(SD_MUTEX(un))); 16737 ASSERT(un->un_ncmds_in_transport >= 0); 16738 16739 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16740 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 16741 un, un->un_throttle, un->un_ncmds_in_transport); 16742 16743 if (un->un_throttle > 1) { 16744 if (un->un_f_use_adaptive_throttle == TRUE) { 16745 switch (throttle_type) { 16746 case SD_THROTTLE_TRAN_BUSY: 16747 if (un->un_busy_throttle == 0) { 16748 un->un_busy_throttle = un->un_throttle; 16749 } 16750 break; 16751 case SD_THROTTLE_QFULL: 16752 un->un_busy_throttle = 0; 16753 break; 16754 default: 16755 ASSERT(FALSE); 16756 } 16757 16758 if (un->un_ncmds_in_transport > 0) { 16759 un->un_throttle = un->un_ncmds_in_transport; 16760 } 16761 16762 } else { 16763 if (un->un_ncmds_in_transport == 0) { 16764 un->un_throttle = 1; 16765 } else { 16766 un->un_throttle = un->un_ncmds_in_transport; 16767 } 16768 } 16769 } 16770 16771 /* Reschedule the timeout if none is currently active */ 16772 if (un->un_reset_throttle_timeid == NULL) { 16773 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 16774 un, SD_THROTTLE_RESET_INTERVAL); 16775 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16776 "sd_reduce_throttle: timeout scheduled!\n"); 16777 } 16778 16779 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16780 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16781 } 16782 16783 16784 16785 /* 16786 * Function: sd_restore_throttle 16787 * 16788 * Description: Callback function for timeout(9F). Resets the current 16789 * value of un->un_throttle to its default. 16790 * 16791 * Arguments: arg - pointer to associated softstate for the device. 16792 * 16793 * Context: May be called from interrupt context 16794 */ 16795 16796 static void 16797 sd_restore_throttle(void *arg) 16798 { 16799 struct sd_lun *un = arg; 16800 16801 ASSERT(un != NULL); 16802 ASSERT(!mutex_owned(SD_MUTEX(un))); 16803 16804 mutex_enter(SD_MUTEX(un)); 16805 16806 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16807 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16808 16809 un->un_reset_throttle_timeid = NULL; 16810 16811 if (un->un_f_use_adaptive_throttle == TRUE) { 16812 /* 16813 * If un_busy_throttle is nonzero, then it contains the 16814 * value that un_throttle was when we got a TRAN_BUSY back 16815 * from scsi_transport(). We want to revert back to this 16816 * value. 16817 * 16818 * In the QFULL case, the throttle limit will incrementally 16819 * increase until it reaches max throttle. 16820 */ 16821 if (un->un_busy_throttle > 0) { 16822 un->un_throttle = un->un_busy_throttle; 16823 un->un_busy_throttle = 0; 16824 } else { 16825 /* 16826 * increase throttle by 10% open gate slowly, schedule 16827 * another restore if saved throttle has not been 16828 * reached 16829 */ 16830 short throttle; 16831 if (sd_qfull_throttle_enable) { 16832 throttle = un->un_throttle + 16833 max((un->un_throttle / 10), 1); 16834 un->un_throttle = 16835 (throttle < un->un_saved_throttle) ? 16836 throttle : un->un_saved_throttle; 16837 if (un->un_throttle < un->un_saved_throttle) { 16838 un->un_reset_throttle_timeid = 16839 timeout(sd_restore_throttle, 16840 un, 16841 SD_QFULL_THROTTLE_RESET_INTERVAL); 16842 } 16843 } 16844 } 16845 16846 /* 16847 * If un_throttle has fallen below the low-water mark, we 16848 * restore the maximum value here (and allow it to ratchet 16849 * down again if necessary). 16850 */ 16851 if (un->un_throttle < un->un_min_throttle) { 16852 un->un_throttle = un->un_saved_throttle; 16853 } 16854 } else { 16855 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16856 "restoring limit from 0x%x to 0x%x\n", 16857 un->un_throttle, un->un_saved_throttle); 16858 un->un_throttle = un->un_saved_throttle; 16859 } 16860 16861 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16862 "sd_restore_throttle: calling sd_start_cmds!\n"); 16863 16864 sd_start_cmds(un, NULL); 16865 16866 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16867 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16868 un, un->un_throttle); 16869 16870 mutex_exit(SD_MUTEX(un)); 16871 16872 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16873 } 16874 16875 /* 16876 * Function: sdrunout 16877 * 16878 * Description: Callback routine for scsi_init_pkt when a resource allocation 16879 * fails. 16880 * 16881 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16882 * soft state instance. 16883 * 16884 * Return Code: The scsi_init_pkt routine allows for the callback function to 16885 * return a 0 indicating the callback should be rescheduled or a 1 16886 * indicating not to reschedule. This routine always returns 1 16887 * because the driver always provides a callback function to 16888 * scsi_init_pkt. This results in a callback always being scheduled 16889 * (via the scsi_init_pkt callback implementation) if a resource 16890 * failure occurs. 16891 * 16892 * Context: This callback function may not block or call routines that block 16893 * 16894 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16895 * request persisting at the head of the list which cannot be 16896 * satisfied even after multiple retries. In the future the driver 16897 * may implement some time of maximum runout count before failing 16898 * an I/O. 16899 */ 16900 16901 static int 16902 sdrunout(caddr_t arg) 16903 { 16904 struct sd_lun *un = (struct sd_lun *)arg; 16905 16906 ASSERT(un != NULL); 16907 ASSERT(!mutex_owned(SD_MUTEX(un))); 16908 16909 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16910 16911 mutex_enter(SD_MUTEX(un)); 16912 sd_start_cmds(un, NULL); 16913 mutex_exit(SD_MUTEX(un)); 16914 /* 16915 * This callback routine always returns 1 (i.e. do not reschedule) 16916 * because we always specify sdrunout as the callback handler for 16917 * scsi_init_pkt inside the call to sd_start_cmds. 16918 */ 16919 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16920 return (1); 16921 } 16922 16923 16924 /* 16925 * Function: sdintr 16926 * 16927 * Description: Completion callback routine for scsi_pkt(9S) structs 16928 * sent to the HBA driver via scsi_transport(9F). 16929 * 16930 * Context: Interrupt context 16931 */ 16932 16933 static void 16934 sdintr(struct scsi_pkt *pktp) 16935 { 16936 struct buf *bp; 16937 struct sd_xbuf *xp; 16938 struct sd_lun *un; 16939 size_t actual_len; 16940 sd_ssc_t *sscp; 16941 16942 ASSERT(pktp != NULL); 16943 bp = (struct buf *)pktp->pkt_private; 16944 ASSERT(bp != NULL); 16945 xp = SD_GET_XBUF(bp); 16946 ASSERT(xp != NULL); 16947 ASSERT(xp->xb_pktp != NULL); 16948 un = SD_GET_UN(bp); 16949 ASSERT(un != NULL); 16950 ASSERT(!mutex_owned(SD_MUTEX(un))); 16951 16952 #ifdef SD_FAULT_INJECTION 16953 16954 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16955 /* SD FaultInjection */ 16956 sd_faultinjection(pktp); 16957 16958 #endif /* SD_FAULT_INJECTION */ 16959 16960 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16961 " xp:0x%p, un:0x%p\n", bp, xp, un); 16962 16963 mutex_enter(SD_MUTEX(un)); 16964 16965 ASSERT(un->un_fm_private != NULL); 16966 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16967 ASSERT(sscp != NULL); 16968 16969 /* Reduce the count of the #commands currently in transport */ 16970 un->un_ncmds_in_transport--; 16971 ASSERT(un->un_ncmds_in_transport >= 0); 16972 16973 /* Increment counter to indicate that the callback routine is active */ 16974 un->un_in_callback++; 16975 16976 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16977 16978 #ifdef SDDEBUG 16979 if (bp == un->un_retry_bp) { 16980 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16981 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16982 un, un->un_retry_bp, un->un_ncmds_in_transport); 16983 } 16984 #endif 16985 16986 /* 16987 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 16988 * state if needed. 16989 */ 16990 if (pktp->pkt_reason == CMD_DEV_GONE) { 16991 /* Prevent multiple console messages for the same failure. */ 16992 if (un->un_last_pkt_reason != CMD_DEV_GONE) { 16993 un->un_last_pkt_reason = CMD_DEV_GONE; 16994 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16995 "Command failed to complete...Device is gone\n"); 16996 } 16997 if (un->un_mediastate != DKIO_DEV_GONE) { 16998 un->un_mediastate = DKIO_DEV_GONE; 16999 cv_broadcast(&un->un_state_cv); 17000 } 17001 /* 17002 * If the command happens to be the REQUEST SENSE command, 17003 * free up the rqs buf and fail the original command. 17004 */ 17005 if (bp == un->un_rqs_bp) { 17006 bp = sd_mark_rqs_idle(un, xp); 17007 } 17008 sd_return_failed_command(un, bp, EIO); 17009 goto exit; 17010 } 17011 17012 if (pktp->pkt_state & STATE_XARQ_DONE) { 17013 SD_TRACE(SD_LOG_COMMON, un, 17014 "sdintr: extra sense data received. pkt=%p\n", pktp); 17015 } 17016 17017 /* 17018 * First see if the pkt has auto-request sense data with it.... 17019 * Look at the packet state first so we don't take a performance 17020 * hit looking at the arq enabled flag unless absolutely necessary. 17021 */ 17022 if ((pktp->pkt_state & STATE_ARQ_DONE) && 17023 (un->un_f_arq_enabled == TRUE)) { 17024 /* 17025 * The HBA did an auto request sense for this command so check 17026 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 17027 * driver command that should not be retried. 17028 */ 17029 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 17030 /* 17031 * Save the relevant sense info into the xp for the 17032 * original cmd. 17033 */ 17034 struct scsi_arq_status *asp; 17035 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 17036 xp->xb_sense_status = 17037 *((uchar_t *)(&(asp->sts_rqpkt_status))); 17038 xp->xb_sense_state = asp->sts_rqpkt_state; 17039 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17040 if (pktp->pkt_state & STATE_XARQ_DONE) { 17041 actual_len = MAX_SENSE_LENGTH - 17042 xp->xb_sense_resid; 17043 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17044 MAX_SENSE_LENGTH); 17045 } else { 17046 if (xp->xb_sense_resid > SENSE_LENGTH) { 17047 actual_len = MAX_SENSE_LENGTH - 17048 xp->xb_sense_resid; 17049 } else { 17050 actual_len = SENSE_LENGTH - 17051 xp->xb_sense_resid; 17052 } 17053 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17054 if ((((struct uscsi_cmd *) 17055 (xp->xb_pktinfo))->uscsi_rqlen) > 17056 actual_len) { 17057 xp->xb_sense_resid = 17058 (((struct uscsi_cmd *) 17059 (xp->xb_pktinfo))-> 17060 uscsi_rqlen) - actual_len; 17061 } else { 17062 xp->xb_sense_resid = 0; 17063 } 17064 } 17065 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17066 SENSE_LENGTH); 17067 } 17068 17069 /* fail the command */ 17070 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17071 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 17072 sd_return_failed_command(un, bp, EIO); 17073 goto exit; 17074 } 17075 17076 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 17077 /* 17078 * We want to either retry or fail this command, so free 17079 * the DMA resources here. If we retry the command then 17080 * the DMA resources will be reallocated in sd_start_cmds(). 17081 * Note that when PKT_DMA_PARTIAL is used, this reallocation 17082 * causes the *entire* transfer to start over again from the 17083 * beginning of the request, even for PARTIAL chunks that 17084 * have already transferred successfully. 17085 */ 17086 if ((un->un_f_is_fibre == TRUE) && 17087 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 17088 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 17089 scsi_dmafree(pktp); 17090 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 17091 } 17092 #endif 17093 17094 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17095 "sdintr: arq done, sd_handle_auto_request_sense\n"); 17096 17097 sd_handle_auto_request_sense(un, bp, xp, pktp); 17098 goto exit; 17099 } 17100 17101 /* Next see if this is the REQUEST SENSE pkt for the instance */ 17102 if (pktp->pkt_flags & FLAG_SENSING) { 17103 /* This pktp is from the unit's REQUEST_SENSE command */ 17104 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17105 "sdintr: sd_handle_request_sense\n"); 17106 sd_handle_request_sense(un, bp, xp, pktp); 17107 goto exit; 17108 } 17109 17110 /* 17111 * Check to see if the command successfully completed as requested; 17112 * this is the most common case (and also the hot performance path). 17113 * 17114 * Requirements for successful completion are: 17115 * pkt_reason is CMD_CMPLT and packet status is status good. 17116 * In addition: 17117 * - A residual of zero indicates successful completion no matter what 17118 * the command is. 17119 * - If the residual is not zero and the command is not a read or 17120 * write, then it's still defined as successful completion. In other 17121 * words, if the command is a read or write the residual must be 17122 * zero for successful completion. 17123 * - If the residual is not zero and the command is a read or 17124 * write, and it's a USCSICMD, then it's still defined as 17125 * successful completion. 17126 */ 17127 if ((pktp->pkt_reason == CMD_CMPLT) && 17128 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 17129 17130 /* 17131 * Since this command is returned with a good status, we 17132 * can reset the count for Sonoma failover. 17133 */ 17134 un->un_sonoma_failure_count = 0; 17135 17136 /* 17137 * Return all USCSI commands on good status 17138 */ 17139 if (pktp->pkt_resid == 0) { 17140 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17141 "sdintr: returning command for resid == 0\n"); 17142 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 17143 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 17144 SD_UPDATE_B_RESID(bp, pktp); 17145 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17146 "sdintr: returning command for resid != 0\n"); 17147 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17148 SD_UPDATE_B_RESID(bp, pktp); 17149 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17150 "sdintr: returning uscsi command\n"); 17151 } else { 17152 goto not_successful; 17153 } 17154 sd_return_command(un, bp); 17155 17156 /* 17157 * Decrement counter to indicate that the callback routine 17158 * is done. 17159 */ 17160 un->un_in_callback--; 17161 ASSERT(un->un_in_callback >= 0); 17162 mutex_exit(SD_MUTEX(un)); 17163 17164 return; 17165 } 17166 17167 not_successful: 17168 17169 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 17170 /* 17171 * The following is based upon knowledge of the underlying transport 17172 * and its use of DMA resources. This code should be removed when 17173 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 17174 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 17175 * and sd_start_cmds(). 17176 * 17177 * Free any DMA resources associated with this command if there 17178 * is a chance it could be retried or enqueued for later retry. 17179 * If we keep the DMA binding then mpxio cannot reissue the 17180 * command on another path whenever a path failure occurs. 17181 * 17182 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 17183 * causes the *entire* transfer to start over again from the 17184 * beginning of the request, even for PARTIAL chunks that 17185 * have already transferred successfully. 17186 * 17187 * This is only done for non-uscsi commands (and also skipped for the 17188 * driver's internal RQS command). Also just do this for Fibre Channel 17189 * devices as these are the only ones that support mpxio. 17190 */ 17191 if ((un->un_f_is_fibre == TRUE) && 17192 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 17193 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 17194 scsi_dmafree(pktp); 17195 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 17196 } 17197 #endif 17198 17199 /* 17200 * The command did not successfully complete as requested so check 17201 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 17202 * driver command that should not be retried so just return. If 17203 * FLAG_DIAGNOSE is not set the error will be processed below. 17204 */ 17205 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 17206 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17207 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 17208 /* 17209 * Issue a request sense if a check condition caused the error 17210 * (we handle the auto request sense case above), otherwise 17211 * just fail the command. 17212 */ 17213 if ((pktp->pkt_reason == CMD_CMPLT) && 17214 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 17215 sd_send_request_sense_command(un, bp, pktp); 17216 } else { 17217 sd_return_failed_command(un, bp, EIO); 17218 } 17219 goto exit; 17220 } 17221 17222 /* 17223 * The command did not successfully complete as requested so process 17224 * the error, retry, and/or attempt recovery. 17225 */ 17226 switch (pktp->pkt_reason) { 17227 case CMD_CMPLT: 17228 switch (SD_GET_PKT_STATUS(pktp)) { 17229 case STATUS_GOOD: 17230 /* 17231 * The command completed successfully with a non-zero 17232 * residual 17233 */ 17234 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17235 "sdintr: STATUS_GOOD \n"); 17236 sd_pkt_status_good(un, bp, xp, pktp); 17237 break; 17238 17239 case STATUS_CHECK: 17240 case STATUS_TERMINATED: 17241 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17242 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 17243 sd_pkt_status_check_condition(un, bp, xp, pktp); 17244 break; 17245 17246 case STATUS_BUSY: 17247 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17248 "sdintr: STATUS_BUSY\n"); 17249 sd_pkt_status_busy(un, bp, xp, pktp); 17250 break; 17251 17252 case STATUS_RESERVATION_CONFLICT: 17253 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17254 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 17255 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17256 break; 17257 17258 case STATUS_QFULL: 17259 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17260 "sdintr: STATUS_QFULL\n"); 17261 sd_pkt_status_qfull(un, bp, xp, pktp); 17262 break; 17263 17264 case STATUS_MET: 17265 case STATUS_INTERMEDIATE: 17266 case STATUS_SCSI2: 17267 case STATUS_INTERMEDIATE_MET: 17268 case STATUS_ACA_ACTIVE: 17269 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17270 "Unexpected SCSI status received: 0x%x\n", 17271 SD_GET_PKT_STATUS(pktp)); 17272 /* 17273 * Mark the ssc_flags when detected invalid status 17274 * code for non-USCSI command. 17275 */ 17276 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17277 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17278 0, "stat-code"); 17279 } 17280 sd_return_failed_command(un, bp, EIO); 17281 break; 17282 17283 default: 17284 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17285 "Invalid SCSI status received: 0x%x\n", 17286 SD_GET_PKT_STATUS(pktp)); 17287 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17288 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17289 0, "stat-code"); 17290 } 17291 sd_return_failed_command(un, bp, EIO); 17292 break; 17293 17294 } 17295 break; 17296 17297 case CMD_INCOMPLETE: 17298 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17299 "sdintr: CMD_INCOMPLETE\n"); 17300 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 17301 break; 17302 case CMD_TRAN_ERR: 17303 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17304 "sdintr: CMD_TRAN_ERR\n"); 17305 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 17306 break; 17307 case CMD_RESET: 17308 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17309 "sdintr: CMD_RESET \n"); 17310 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 17311 break; 17312 case CMD_ABORTED: 17313 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17314 "sdintr: CMD_ABORTED \n"); 17315 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 17316 break; 17317 case CMD_TIMEOUT: 17318 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17319 "sdintr: CMD_TIMEOUT\n"); 17320 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 17321 break; 17322 case CMD_UNX_BUS_FREE: 17323 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17324 "sdintr: CMD_UNX_BUS_FREE \n"); 17325 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 17326 break; 17327 case CMD_TAG_REJECT: 17328 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17329 "sdintr: CMD_TAG_REJECT\n"); 17330 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 17331 break; 17332 default: 17333 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17334 "sdintr: default\n"); 17335 /* 17336 * Mark the ssc_flags for detecting invliad pkt_reason. 17337 */ 17338 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17339 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON, 17340 0, "pkt-reason"); 17341 } 17342 sd_pkt_reason_default(un, bp, xp, pktp); 17343 break; 17344 } 17345 17346 exit: 17347 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 17348 17349 /* Decrement counter to indicate that the callback routine is done. */ 17350 un->un_in_callback--; 17351 ASSERT(un->un_in_callback >= 0); 17352 17353 /* 17354 * At this point, the pkt has been dispatched, ie, it is either 17355 * being re-tried or has been returned to its caller and should 17356 * not be referenced. 17357 */ 17358 17359 mutex_exit(SD_MUTEX(un)); 17360 } 17361 17362 17363 /* 17364 * Function: sd_print_incomplete_msg 17365 * 17366 * Description: Prints the error message for a CMD_INCOMPLETE error. 17367 * 17368 * Arguments: un - ptr to associated softstate for the device. 17369 * bp - ptr to the buf(9S) for the command. 17370 * arg - message string ptr 17371 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 17372 * or SD_NO_RETRY_ISSUED. 17373 * 17374 * Context: May be called under interrupt context 17375 */ 17376 17377 static void 17378 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17379 { 17380 struct scsi_pkt *pktp; 17381 char *msgp; 17382 char *cmdp = arg; 17383 17384 ASSERT(un != NULL); 17385 ASSERT(mutex_owned(SD_MUTEX(un))); 17386 ASSERT(bp != NULL); 17387 ASSERT(arg != NULL); 17388 pktp = SD_GET_PKTP(bp); 17389 ASSERT(pktp != NULL); 17390 17391 switch (code) { 17392 case SD_DELAYED_RETRY_ISSUED: 17393 case SD_IMMEDIATE_RETRY_ISSUED: 17394 msgp = "retrying"; 17395 break; 17396 case SD_NO_RETRY_ISSUED: 17397 default: 17398 msgp = "giving up"; 17399 break; 17400 } 17401 17402 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17403 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17404 "incomplete %s- %s\n", cmdp, msgp); 17405 } 17406 } 17407 17408 17409 17410 /* 17411 * Function: sd_pkt_status_good 17412 * 17413 * Description: Processing for a STATUS_GOOD code in pkt_status. 17414 * 17415 * Context: May be called under interrupt context 17416 */ 17417 17418 static void 17419 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 17420 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17421 { 17422 char *cmdp; 17423 17424 ASSERT(un != NULL); 17425 ASSERT(mutex_owned(SD_MUTEX(un))); 17426 ASSERT(bp != NULL); 17427 ASSERT(xp != NULL); 17428 ASSERT(pktp != NULL); 17429 ASSERT(pktp->pkt_reason == CMD_CMPLT); 17430 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 17431 ASSERT(pktp->pkt_resid != 0); 17432 17433 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 17434 17435 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17436 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 17437 case SCMD_READ: 17438 cmdp = "read"; 17439 break; 17440 case SCMD_WRITE: 17441 cmdp = "write"; 17442 break; 17443 default: 17444 SD_UPDATE_B_RESID(bp, pktp); 17445 sd_return_command(un, bp); 17446 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17447 return; 17448 } 17449 17450 /* 17451 * See if we can retry the read/write, preferrably immediately. 17452 * If retries are exhaused, then sd_retry_command() will update 17453 * the b_resid count. 17454 */ 17455 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 17456 cmdp, EIO, (clock_t)0, NULL); 17457 17458 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17459 } 17460 17461 17462 17463 17464 17465 /* 17466 * Function: sd_handle_request_sense 17467 * 17468 * Description: Processing for non-auto Request Sense command. 17469 * 17470 * Arguments: un - ptr to associated softstate 17471 * sense_bp - ptr to buf(9S) for the RQS command 17472 * sense_xp - ptr to the sd_xbuf for the RQS command 17473 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 17474 * 17475 * Context: May be called under interrupt context 17476 */ 17477 17478 static void 17479 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 17480 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 17481 { 17482 struct buf *cmd_bp; /* buf for the original command */ 17483 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 17484 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 17485 size_t actual_len; /* actual sense data length */ 17486 17487 ASSERT(un != NULL); 17488 ASSERT(mutex_owned(SD_MUTEX(un))); 17489 ASSERT(sense_bp != NULL); 17490 ASSERT(sense_xp != NULL); 17491 ASSERT(sense_pktp != NULL); 17492 17493 /* 17494 * Note the sense_bp, sense_xp, and sense_pktp here are for the 17495 * RQS command and not the original command. 17496 */ 17497 ASSERT(sense_pktp == un->un_rqs_pktp); 17498 ASSERT(sense_bp == un->un_rqs_bp); 17499 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 17500 (FLAG_SENSING | FLAG_HEAD)); 17501 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 17502 FLAG_SENSING) == FLAG_SENSING); 17503 17504 /* These are the bp, xp, and pktp for the original command */ 17505 cmd_bp = sense_xp->xb_sense_bp; 17506 cmd_xp = SD_GET_XBUF(cmd_bp); 17507 cmd_pktp = SD_GET_PKTP(cmd_bp); 17508 17509 if (sense_pktp->pkt_reason != CMD_CMPLT) { 17510 /* 17511 * The REQUEST SENSE command failed. Release the REQUEST 17512 * SENSE command for re-use, get back the bp for the original 17513 * command, and attempt to re-try the original command if 17514 * FLAG_DIAGNOSE is not set in the original packet. 17515 */ 17516 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17517 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17518 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 17519 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 17520 NULL, NULL, EIO, (clock_t)0, NULL); 17521 return; 17522 } 17523 } 17524 17525 /* 17526 * Save the relevant sense info into the xp for the original cmd. 17527 * 17528 * Note: if the request sense failed the state info will be zero 17529 * as set in sd_mark_rqs_busy() 17530 */ 17531 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 17532 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 17533 actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid; 17534 if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) && 17535 (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen > 17536 SENSE_LENGTH)) { 17537 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17538 MAX_SENSE_LENGTH); 17539 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 17540 } else { 17541 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17542 SENSE_LENGTH); 17543 if (actual_len < SENSE_LENGTH) { 17544 cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len; 17545 } else { 17546 cmd_xp->xb_sense_resid = 0; 17547 } 17548 } 17549 17550 /* 17551 * Free up the RQS command.... 17552 * NOTE: 17553 * Must do this BEFORE calling sd_validate_sense_data! 17554 * sd_validate_sense_data may return the original command in 17555 * which case the pkt will be freed and the flags can no 17556 * longer be touched. 17557 * SD_MUTEX is held through this process until the command 17558 * is dispatched based upon the sense data, so there are 17559 * no race conditions. 17560 */ 17561 (void) sd_mark_rqs_idle(un, sense_xp); 17562 17563 /* 17564 * For a retryable command see if we have valid sense data, if so then 17565 * turn it over to sd_decode_sense() to figure out the right course of 17566 * action. Just fail a non-retryable command. 17567 */ 17568 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17569 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) == 17570 SD_SENSE_DATA_IS_VALID) { 17571 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 17572 } 17573 } else { 17574 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 17575 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17576 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 17577 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 17578 sd_return_failed_command(un, cmd_bp, EIO); 17579 } 17580 } 17581 17582 17583 17584 17585 /* 17586 * Function: sd_handle_auto_request_sense 17587 * 17588 * Description: Processing for auto-request sense information. 17589 * 17590 * Arguments: un - ptr to associated softstate 17591 * bp - ptr to buf(9S) for the command 17592 * xp - ptr to the sd_xbuf for the command 17593 * pktp - ptr to the scsi_pkt(9S) for the command 17594 * 17595 * Context: May be called under interrupt context 17596 */ 17597 17598 static void 17599 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 17600 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17601 { 17602 struct scsi_arq_status *asp; 17603 size_t actual_len; 17604 17605 ASSERT(un != NULL); 17606 ASSERT(mutex_owned(SD_MUTEX(un))); 17607 ASSERT(bp != NULL); 17608 ASSERT(xp != NULL); 17609 ASSERT(pktp != NULL); 17610 ASSERT(pktp != un->un_rqs_pktp); 17611 ASSERT(bp != un->un_rqs_bp); 17612 17613 /* 17614 * For auto-request sense, we get a scsi_arq_status back from 17615 * the HBA, with the sense data in the sts_sensedata member. 17616 * The pkt_scbp of the packet points to this scsi_arq_status. 17617 */ 17618 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 17619 17620 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 17621 /* 17622 * The auto REQUEST SENSE failed; see if we can re-try 17623 * the original command. 17624 */ 17625 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17626 "auto request sense failed (reason=%s)\n", 17627 scsi_rname(asp->sts_rqpkt_reason)); 17628 17629 sd_reset_target(un, pktp); 17630 17631 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17632 NULL, NULL, EIO, (clock_t)0, NULL); 17633 return; 17634 } 17635 17636 /* Save the relevant sense info into the xp for the original cmd. */ 17637 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 17638 xp->xb_sense_state = asp->sts_rqpkt_state; 17639 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17640 if (xp->xb_sense_state & STATE_XARQ_DONE) { 17641 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17642 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17643 MAX_SENSE_LENGTH); 17644 } else { 17645 if (xp->xb_sense_resid > SENSE_LENGTH) { 17646 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17647 } else { 17648 actual_len = SENSE_LENGTH - xp->xb_sense_resid; 17649 } 17650 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17651 if ((((struct uscsi_cmd *) 17652 (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) { 17653 xp->xb_sense_resid = (((struct uscsi_cmd *) 17654 (xp->xb_pktinfo))->uscsi_rqlen) - 17655 actual_len; 17656 } else { 17657 xp->xb_sense_resid = 0; 17658 } 17659 } 17660 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH); 17661 } 17662 17663 /* 17664 * See if we have valid sense data, if so then turn it over to 17665 * sd_decode_sense() to figure out the right course of action. 17666 */ 17667 if (sd_validate_sense_data(un, bp, xp, actual_len) == 17668 SD_SENSE_DATA_IS_VALID) { 17669 sd_decode_sense(un, bp, xp, pktp); 17670 } 17671 } 17672 17673 17674 /* 17675 * Function: sd_print_sense_failed_msg 17676 * 17677 * Description: Print log message when RQS has failed. 17678 * 17679 * Arguments: un - ptr to associated softstate 17680 * bp - ptr to buf(9S) for the command 17681 * arg - generic message string ptr 17682 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17683 * or SD_NO_RETRY_ISSUED 17684 * 17685 * Context: May be called from interrupt context 17686 */ 17687 17688 static void 17689 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 17690 int code) 17691 { 17692 char *msgp = arg; 17693 17694 ASSERT(un != NULL); 17695 ASSERT(mutex_owned(SD_MUTEX(un))); 17696 ASSERT(bp != NULL); 17697 17698 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 17699 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 17700 } 17701 } 17702 17703 17704 /* 17705 * Function: sd_validate_sense_data 17706 * 17707 * Description: Check the given sense data for validity. 17708 * If the sense data is not valid, the command will 17709 * be either failed or retried! 17710 * 17711 * Return Code: SD_SENSE_DATA_IS_INVALID 17712 * SD_SENSE_DATA_IS_VALID 17713 * 17714 * Context: May be called from interrupt context 17715 */ 17716 17717 static int 17718 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17719 size_t actual_len) 17720 { 17721 struct scsi_extended_sense *esp; 17722 struct scsi_pkt *pktp; 17723 char *msgp = NULL; 17724 sd_ssc_t *sscp; 17725 17726 ASSERT(un != NULL); 17727 ASSERT(mutex_owned(SD_MUTEX(un))); 17728 ASSERT(bp != NULL); 17729 ASSERT(bp != un->un_rqs_bp); 17730 ASSERT(xp != NULL); 17731 ASSERT(un->un_fm_private != NULL); 17732 17733 pktp = SD_GET_PKTP(bp); 17734 ASSERT(pktp != NULL); 17735 17736 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 17737 ASSERT(sscp != NULL); 17738 17739 /* 17740 * Check the status of the RQS command (auto or manual). 17741 */ 17742 switch (xp->xb_sense_status & STATUS_MASK) { 17743 case STATUS_GOOD: 17744 break; 17745 17746 case STATUS_RESERVATION_CONFLICT: 17747 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17748 return (SD_SENSE_DATA_IS_INVALID); 17749 17750 case STATUS_BUSY: 17751 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17752 "Busy Status on REQUEST SENSE\n"); 17753 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 17754 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17755 return (SD_SENSE_DATA_IS_INVALID); 17756 17757 case STATUS_QFULL: 17758 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17759 "QFULL Status on REQUEST SENSE\n"); 17760 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 17761 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17762 return (SD_SENSE_DATA_IS_INVALID); 17763 17764 case STATUS_CHECK: 17765 case STATUS_TERMINATED: 17766 msgp = "Check Condition on REQUEST SENSE\n"; 17767 goto sense_failed; 17768 17769 default: 17770 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 17771 goto sense_failed; 17772 } 17773 17774 /* 17775 * See if we got the minimum required amount of sense data. 17776 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 17777 * or less. 17778 */ 17779 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 17780 (actual_len == 0)) { 17781 msgp = "Request Sense couldn't get sense data\n"; 17782 goto sense_failed; 17783 } 17784 17785 if (actual_len < SUN_MIN_SENSE_LENGTH) { 17786 msgp = "Not enough sense information\n"; 17787 /* Mark the ssc_flags for detecting invalid sense data */ 17788 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17789 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17790 "sense-data"); 17791 } 17792 goto sense_failed; 17793 } 17794 17795 /* 17796 * We require the extended sense data 17797 */ 17798 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 17799 if (esp->es_class != CLASS_EXTENDED_SENSE) { 17800 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17801 static char tmp[8]; 17802 static char buf[148]; 17803 char *p = (char *)(xp->xb_sense_data); 17804 int i; 17805 17806 mutex_enter(&sd_sense_mutex); 17807 (void) strcpy(buf, "undecodable sense information:"); 17808 for (i = 0; i < actual_len; i++) { 17809 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 17810 (void) strcpy(&buf[strlen(buf)], tmp); 17811 } 17812 i = strlen(buf); 17813 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 17814 17815 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 17816 scsi_log(SD_DEVINFO(un), sd_label, 17817 CE_WARN, buf); 17818 } 17819 mutex_exit(&sd_sense_mutex); 17820 } 17821 17822 /* Mark the ssc_flags for detecting invalid sense data */ 17823 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17824 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17825 "sense-data"); 17826 } 17827 17828 /* Note: Legacy behavior, fail the command with no retry */ 17829 sd_return_failed_command(un, bp, EIO); 17830 return (SD_SENSE_DATA_IS_INVALID); 17831 } 17832 17833 /* 17834 * Check that es_code is valid (es_class concatenated with es_code 17835 * make up the "response code" field. es_class will always be 7, so 17836 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 17837 * format. 17838 */ 17839 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 17840 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 17841 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 17842 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 17843 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 17844 /* Mark the ssc_flags for detecting invalid sense data */ 17845 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17846 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17847 "sense-data"); 17848 } 17849 goto sense_failed; 17850 } 17851 17852 return (SD_SENSE_DATA_IS_VALID); 17853 17854 sense_failed: 17855 /* 17856 * If the request sense failed (for whatever reason), attempt 17857 * to retry the original command. 17858 */ 17859 #if defined(__i386) || defined(__amd64) 17860 /* 17861 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17862 * sddef.h for Sparc platform, and x86 uses 1 binary 17863 * for both SCSI/FC. 17864 * The SD_RETRY_DELAY value need to be adjusted here 17865 * when SD_RETRY_DELAY change in sddef.h 17866 */ 17867 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17868 sd_print_sense_failed_msg, msgp, EIO, 17869 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17870 #else 17871 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17872 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17873 #endif 17874 17875 return (SD_SENSE_DATA_IS_INVALID); 17876 } 17877 17878 /* 17879 * Function: sd_decode_sense 17880 * 17881 * Description: Take recovery action(s) when SCSI Sense Data is received. 17882 * 17883 * Context: Interrupt context. 17884 */ 17885 17886 static void 17887 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17888 struct scsi_pkt *pktp) 17889 { 17890 uint8_t sense_key; 17891 17892 ASSERT(un != NULL); 17893 ASSERT(mutex_owned(SD_MUTEX(un))); 17894 ASSERT(bp != NULL); 17895 ASSERT(bp != un->un_rqs_bp); 17896 ASSERT(xp != NULL); 17897 ASSERT(pktp != NULL); 17898 17899 sense_key = scsi_sense_key(xp->xb_sense_data); 17900 17901 switch (sense_key) { 17902 case KEY_NO_SENSE: 17903 sd_sense_key_no_sense(un, bp, xp, pktp); 17904 break; 17905 case KEY_RECOVERABLE_ERROR: 17906 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17907 bp, xp, pktp); 17908 break; 17909 case KEY_NOT_READY: 17910 sd_sense_key_not_ready(un, xp->xb_sense_data, 17911 bp, xp, pktp); 17912 break; 17913 case KEY_MEDIUM_ERROR: 17914 case KEY_HARDWARE_ERROR: 17915 sd_sense_key_medium_or_hardware_error(un, 17916 xp->xb_sense_data, bp, xp, pktp); 17917 break; 17918 case KEY_ILLEGAL_REQUEST: 17919 sd_sense_key_illegal_request(un, bp, xp, pktp); 17920 break; 17921 case KEY_UNIT_ATTENTION: 17922 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17923 bp, xp, pktp); 17924 break; 17925 case KEY_WRITE_PROTECT: 17926 case KEY_VOLUME_OVERFLOW: 17927 case KEY_MISCOMPARE: 17928 sd_sense_key_fail_command(un, bp, xp, pktp); 17929 break; 17930 case KEY_BLANK_CHECK: 17931 sd_sense_key_blank_check(un, bp, xp, pktp); 17932 break; 17933 case KEY_ABORTED_COMMAND: 17934 sd_sense_key_aborted_command(un, bp, xp, pktp); 17935 break; 17936 case KEY_VENDOR_UNIQUE: 17937 case KEY_COPY_ABORTED: 17938 case KEY_EQUAL: 17939 case KEY_RESERVED: 17940 default: 17941 sd_sense_key_default(un, xp->xb_sense_data, 17942 bp, xp, pktp); 17943 break; 17944 } 17945 } 17946 17947 17948 /* 17949 * Function: sd_dump_memory 17950 * 17951 * Description: Debug logging routine to print the contents of a user provided 17952 * buffer. The output of the buffer is broken up into 256 byte 17953 * segments due to a size constraint of the scsi_log. 17954 * implementation. 17955 * 17956 * Arguments: un - ptr to softstate 17957 * comp - component mask 17958 * title - "title" string to preceed data when printed 17959 * data - ptr to data block to be printed 17960 * len - size of data block to be printed 17961 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17962 * 17963 * Context: May be called from interrupt context 17964 */ 17965 17966 #define SD_DUMP_MEMORY_BUF_SIZE 256 17967 17968 static char *sd_dump_format_string[] = { 17969 " 0x%02x", 17970 " %c" 17971 }; 17972 17973 static void 17974 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17975 int len, int fmt) 17976 { 17977 int i, j; 17978 int avail_count; 17979 int start_offset; 17980 int end_offset; 17981 size_t entry_len; 17982 char *bufp; 17983 char *local_buf; 17984 char *format_string; 17985 17986 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17987 17988 /* 17989 * In the debug version of the driver, this function is called from a 17990 * number of places which are NOPs in the release driver. 17991 * The debug driver therefore has additional methods of filtering 17992 * debug output. 17993 */ 17994 #ifdef SDDEBUG 17995 /* 17996 * In the debug version of the driver we can reduce the amount of debug 17997 * messages by setting sd_error_level to something other than 17998 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17999 * sd_component_mask. 18000 */ 18001 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 18002 (sd_error_level != SCSI_ERR_ALL)) { 18003 return; 18004 } 18005 if (((sd_component_mask & comp) == 0) || 18006 (sd_error_level != SCSI_ERR_ALL)) { 18007 return; 18008 } 18009 #else 18010 if (sd_error_level != SCSI_ERR_ALL) { 18011 return; 18012 } 18013 #endif 18014 18015 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 18016 bufp = local_buf; 18017 /* 18018 * Available length is the length of local_buf[], minus the 18019 * length of the title string, minus one for the ":", minus 18020 * one for the newline, minus one for the NULL terminator. 18021 * This gives the #bytes available for holding the printed 18022 * values from the given data buffer. 18023 */ 18024 if (fmt == SD_LOG_HEX) { 18025 format_string = sd_dump_format_string[0]; 18026 } else /* SD_LOG_CHAR */ { 18027 format_string = sd_dump_format_string[1]; 18028 } 18029 /* 18030 * Available count is the number of elements from the given 18031 * data buffer that we can fit into the available length. 18032 * This is based upon the size of the format string used. 18033 * Make one entry and find it's size. 18034 */ 18035 (void) sprintf(bufp, format_string, data[0]); 18036 entry_len = strlen(bufp); 18037 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 18038 18039 j = 0; 18040 while (j < len) { 18041 bufp = local_buf; 18042 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 18043 start_offset = j; 18044 18045 end_offset = start_offset + avail_count; 18046 18047 (void) sprintf(bufp, "%s:", title); 18048 bufp += strlen(bufp); 18049 for (i = start_offset; ((i < end_offset) && (j < len)); 18050 i++, j++) { 18051 (void) sprintf(bufp, format_string, data[i]); 18052 bufp += entry_len; 18053 } 18054 (void) sprintf(bufp, "\n"); 18055 18056 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 18057 } 18058 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 18059 } 18060 18061 /* 18062 * Function: sd_print_sense_msg 18063 * 18064 * Description: Log a message based upon the given sense data. 18065 * 18066 * Arguments: un - ptr to associated softstate 18067 * bp - ptr to buf(9S) for the command 18068 * arg - ptr to associate sd_sense_info struct 18069 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18070 * or SD_NO_RETRY_ISSUED 18071 * 18072 * Context: May be called from interrupt context 18073 */ 18074 18075 static void 18076 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 18077 { 18078 struct sd_xbuf *xp; 18079 struct scsi_pkt *pktp; 18080 uint8_t *sensep; 18081 daddr_t request_blkno; 18082 diskaddr_t err_blkno; 18083 int severity; 18084 int pfa_flag; 18085 extern struct scsi_key_strings scsi_cmds[]; 18086 18087 ASSERT(un != NULL); 18088 ASSERT(mutex_owned(SD_MUTEX(un))); 18089 ASSERT(bp != NULL); 18090 xp = SD_GET_XBUF(bp); 18091 ASSERT(xp != NULL); 18092 pktp = SD_GET_PKTP(bp); 18093 ASSERT(pktp != NULL); 18094 ASSERT(arg != NULL); 18095 18096 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 18097 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 18098 18099 if ((code == SD_DELAYED_RETRY_ISSUED) || 18100 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 18101 severity = SCSI_ERR_RETRYABLE; 18102 } 18103 18104 /* Use absolute block number for the request block number */ 18105 request_blkno = xp->xb_blkno; 18106 18107 /* 18108 * Now try to get the error block number from the sense data 18109 */ 18110 sensep = xp->xb_sense_data; 18111 18112 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 18113 (uint64_t *)&err_blkno)) { 18114 /* 18115 * We retrieved the error block number from the information 18116 * portion of the sense data. 18117 * 18118 * For USCSI commands we are better off using the error 18119 * block no. as the requested block no. (This is the best 18120 * we can estimate.) 18121 */ 18122 if ((SD_IS_BUFIO(xp) == FALSE) && 18123 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 18124 request_blkno = err_blkno; 18125 } 18126 } else { 18127 /* 18128 * Without the es_valid bit set (for fixed format) or an 18129 * information descriptor (for descriptor format) we cannot 18130 * be certain of the error blkno, so just use the 18131 * request_blkno. 18132 */ 18133 err_blkno = (diskaddr_t)request_blkno; 18134 } 18135 18136 /* 18137 * The following will log the buffer contents for the release driver 18138 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 18139 * level is set to verbose. 18140 */ 18141 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 18142 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 18143 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 18144 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 18145 18146 if (pfa_flag == FALSE) { 18147 /* This is normally only set for USCSI */ 18148 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 18149 return; 18150 } 18151 18152 if ((SD_IS_BUFIO(xp) == TRUE) && 18153 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 18154 (severity < sd_error_level))) { 18155 return; 18156 } 18157 } 18158 /* 18159 * Check for Sonoma Failover and keep a count of how many failed I/O's 18160 */ 18161 if ((SD_IS_LSI(un)) && 18162 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 18163 (scsi_sense_asc(sensep) == 0x94) && 18164 (scsi_sense_ascq(sensep) == 0x01)) { 18165 un->un_sonoma_failure_count++; 18166 if (un->un_sonoma_failure_count > 1) { 18167 return; 18168 } 18169 } 18170 18171 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP || 18172 ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) && 18173 (pktp->pkt_resid == 0))) { 18174 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 18175 request_blkno, err_blkno, scsi_cmds, 18176 (struct scsi_extended_sense *)sensep, 18177 un->un_additional_codes, NULL); 18178 } 18179 } 18180 18181 /* 18182 * Function: sd_sense_key_no_sense 18183 * 18184 * Description: Recovery action when sense data was not received. 18185 * 18186 * Context: May be called from interrupt context 18187 */ 18188 18189 static void 18190 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 18191 struct scsi_pkt *pktp) 18192 { 18193 struct sd_sense_info si; 18194 18195 ASSERT(un != NULL); 18196 ASSERT(mutex_owned(SD_MUTEX(un))); 18197 ASSERT(bp != NULL); 18198 ASSERT(xp != NULL); 18199 ASSERT(pktp != NULL); 18200 18201 si.ssi_severity = SCSI_ERR_FATAL; 18202 si.ssi_pfa_flag = FALSE; 18203 18204 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18205 18206 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18207 &si, EIO, (clock_t)0, NULL); 18208 } 18209 18210 18211 /* 18212 * Function: sd_sense_key_recoverable_error 18213 * 18214 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 18215 * 18216 * Context: May be called from interrupt context 18217 */ 18218 18219 static void 18220 sd_sense_key_recoverable_error(struct sd_lun *un, uint8_t *sense_datap, 18221 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18222 { 18223 struct sd_sense_info si; 18224 uint8_t asc = scsi_sense_asc(sense_datap); 18225 uint8_t ascq = scsi_sense_ascq(sense_datap); 18226 18227 ASSERT(un != NULL); 18228 ASSERT(mutex_owned(SD_MUTEX(un))); 18229 ASSERT(bp != NULL); 18230 ASSERT(xp != NULL); 18231 ASSERT(pktp != NULL); 18232 18233 /* 18234 * 0x00, 0x1D: ATA PASSTHROUGH INFORMATION AVAILABLE 18235 */ 18236 if (asc == 0x00 && ascq == 0x1D) { 18237 sd_return_command(un, bp); 18238 return; 18239 } 18240 18241 /* 18242 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 18243 */ 18244 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 18245 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18246 si.ssi_severity = SCSI_ERR_INFO; 18247 si.ssi_pfa_flag = TRUE; 18248 } else { 18249 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18250 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 18251 si.ssi_severity = SCSI_ERR_RECOVERED; 18252 si.ssi_pfa_flag = FALSE; 18253 } 18254 18255 if (pktp->pkt_resid == 0) { 18256 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18257 sd_return_command(un, bp); 18258 return; 18259 } 18260 18261 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18262 &si, EIO, (clock_t)0, NULL); 18263 } 18264 18265 18266 18267 18268 /* 18269 * Function: sd_sense_key_not_ready 18270 * 18271 * Description: Recovery actions for a SCSI "Not Ready" sense key. 18272 * 18273 * Context: May be called from interrupt context 18274 */ 18275 18276 static void 18277 sd_sense_key_not_ready(struct sd_lun *un, uint8_t *sense_datap, struct buf *bp, 18278 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18279 { 18280 struct sd_sense_info si; 18281 uint8_t asc = scsi_sense_asc(sense_datap); 18282 uint8_t ascq = scsi_sense_ascq(sense_datap); 18283 18284 ASSERT(un != NULL); 18285 ASSERT(mutex_owned(SD_MUTEX(un))); 18286 ASSERT(bp != NULL); 18287 ASSERT(xp != NULL); 18288 ASSERT(pktp != NULL); 18289 18290 si.ssi_severity = SCSI_ERR_FATAL; 18291 si.ssi_pfa_flag = FALSE; 18292 18293 /* 18294 * Update error stats after first NOT READY error. Disks may have 18295 * been powered down and may need to be restarted. For CDROMs, 18296 * report NOT READY errors only if media is present. 18297 */ 18298 if ((ISCD(un) && (asc == 0x3A)) || 18299 (xp->xb_nr_retry_count > 0)) { 18300 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18301 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 18302 } 18303 18304 /* 18305 * Just fail if the "not ready" retry limit has been reached. 18306 */ 18307 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 18308 /* Special check for error message printing for removables. */ 18309 if (un->un_f_has_removable_media && (asc == 0x04) && 18310 (ascq >= 0x04)) { 18311 si.ssi_severity = SCSI_ERR_ALL; 18312 } 18313 goto fail_command; 18314 } 18315 18316 /* 18317 * Check the ASC and ASCQ in the sense data as needed, to determine 18318 * what to do. 18319 */ 18320 switch (asc) { 18321 case 0x04: /* LOGICAL UNIT NOT READY */ 18322 /* 18323 * disk drives that don't spin up result in a very long delay 18324 * in format without warning messages. We will log a message 18325 * if the error level is set to verbose. 18326 */ 18327 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18328 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18329 "logical unit not ready, resetting disk\n"); 18330 } 18331 18332 /* 18333 * There are different requirements for CDROMs and disks for 18334 * the number of retries. If a CD-ROM is giving this, it is 18335 * probably reading TOC and is in the process of getting 18336 * ready, so we should keep on trying for a long time to make 18337 * sure that all types of media are taken in account (for 18338 * some media the drive takes a long time to read TOC). For 18339 * disks we do not want to retry this too many times as this 18340 * can cause a long hang in format when the drive refuses to 18341 * spin up (a very common failure). 18342 */ 18343 switch (ascq) { 18344 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 18345 /* 18346 * Disk drives frequently refuse to spin up which 18347 * results in a very long hang in format without 18348 * warning messages. 18349 * 18350 * Note: This code preserves the legacy behavior of 18351 * comparing xb_nr_retry_count against zero for fibre 18352 * channel targets instead of comparing against the 18353 * un_reset_retry_count value. The reason for this 18354 * discrepancy has been so utterly lost beneath the 18355 * Sands of Time that even Indiana Jones could not 18356 * find it. 18357 */ 18358 if (un->un_f_is_fibre == TRUE) { 18359 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18360 (xp->xb_nr_retry_count > 0)) && 18361 (un->un_startstop_timeid == NULL)) { 18362 scsi_log(SD_DEVINFO(un), sd_label, 18363 CE_WARN, "logical unit not ready, " 18364 "resetting disk\n"); 18365 sd_reset_target(un, pktp); 18366 } 18367 } else { 18368 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18369 (xp->xb_nr_retry_count > 18370 un->un_reset_retry_count)) && 18371 (un->un_startstop_timeid == NULL)) { 18372 scsi_log(SD_DEVINFO(un), sd_label, 18373 CE_WARN, "logical unit not ready, " 18374 "resetting disk\n"); 18375 sd_reset_target(un, pktp); 18376 } 18377 } 18378 break; 18379 18380 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 18381 /* 18382 * If the target is in the process of becoming 18383 * ready, just proceed with the retry. This can 18384 * happen with CD-ROMs that take a long time to 18385 * read TOC after a power cycle or reset. 18386 */ 18387 goto do_retry; 18388 18389 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 18390 break; 18391 18392 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 18393 /* 18394 * Retries cannot help here so just fail right away. 18395 */ 18396 goto fail_command; 18397 18398 case 0x88: 18399 /* 18400 * Vendor-unique code for T3/T4: it indicates a 18401 * path problem in a mutipathed config, but as far as 18402 * the target driver is concerned it equates to a fatal 18403 * error, so we should just fail the command right away 18404 * (without printing anything to the console). If this 18405 * is not a T3/T4, fall thru to the default recovery 18406 * action. 18407 * T3/T4 is FC only, don't need to check is_fibre 18408 */ 18409 if (SD_IS_T3(un) || SD_IS_T4(un)) { 18410 sd_return_failed_command(un, bp, EIO); 18411 return; 18412 } 18413 /* FALLTHRU */ 18414 18415 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 18416 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 18417 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 18418 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 18419 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 18420 default: /* Possible future codes in SCSI spec? */ 18421 /* 18422 * For removable-media devices, do not retry if 18423 * ASCQ > 2 as these result mostly from USCSI commands 18424 * on MMC devices issued to check status of an 18425 * operation initiated in immediate mode. Also for 18426 * ASCQ >= 4 do not print console messages as these 18427 * mainly represent a user-initiated operation 18428 * instead of a system failure. 18429 */ 18430 if (un->un_f_has_removable_media) { 18431 si.ssi_severity = SCSI_ERR_ALL; 18432 goto fail_command; 18433 } 18434 break; 18435 } 18436 18437 /* 18438 * As part of our recovery attempt for the NOT READY 18439 * condition, we issue a START STOP UNIT command. However 18440 * we want to wait for a short delay before attempting this 18441 * as there may still be more commands coming back from the 18442 * target with the check condition. To do this we use 18443 * timeout(9F) to call sd_start_stop_unit_callback() after 18444 * the delay interval expires. (sd_start_stop_unit_callback() 18445 * dispatches sd_start_stop_unit_task(), which will issue 18446 * the actual START STOP UNIT command. The delay interval 18447 * is one-half of the delay that we will use to retry the 18448 * command that generated the NOT READY condition. 18449 * 18450 * Note that we could just dispatch sd_start_stop_unit_task() 18451 * from here and allow it to sleep for the delay interval, 18452 * but then we would be tying up the taskq thread 18453 * uncesessarily for the duration of the delay. 18454 * 18455 * Do not issue the START STOP UNIT if the current command 18456 * is already a START STOP UNIT. 18457 */ 18458 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 18459 break; 18460 } 18461 18462 /* 18463 * Do not schedule the timeout if one is already pending. 18464 */ 18465 if (un->un_startstop_timeid != NULL) { 18466 SD_INFO(SD_LOG_ERROR, un, 18467 "sd_sense_key_not_ready: restart already issued to" 18468 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 18469 ddi_get_instance(SD_DEVINFO(un))); 18470 break; 18471 } 18472 18473 /* 18474 * Schedule the START STOP UNIT command, then queue the command 18475 * for a retry. 18476 * 18477 * Note: A timeout is not scheduled for this retry because we 18478 * want the retry to be serial with the START_STOP_UNIT. The 18479 * retry will be started when the START_STOP_UNIT is completed 18480 * in sd_start_stop_unit_task. 18481 */ 18482 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 18483 un, un->un_busy_timeout / 2); 18484 xp->xb_nr_retry_count++; 18485 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 18486 return; 18487 18488 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 18489 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18490 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18491 "unit does not respond to selection\n"); 18492 } 18493 break; 18494 18495 case 0x3A: /* MEDIUM NOT PRESENT */ 18496 if (sd_error_level >= SCSI_ERR_FATAL) { 18497 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18498 "Caddy not inserted in drive\n"); 18499 } 18500 18501 sr_ejected(un); 18502 un->un_mediastate = DKIO_EJECTED; 18503 /* The state has changed, inform the media watch routines */ 18504 cv_broadcast(&un->un_state_cv); 18505 /* Just fail if no media is present in the drive. */ 18506 goto fail_command; 18507 18508 default: 18509 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18510 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 18511 "Unit not Ready. Additional sense code 0x%x\n", 18512 asc); 18513 } 18514 break; 18515 } 18516 18517 do_retry: 18518 18519 /* 18520 * Retry the command, as some targets may report NOT READY for 18521 * several seconds after being reset. 18522 */ 18523 xp->xb_nr_retry_count++; 18524 si.ssi_severity = SCSI_ERR_RETRYABLE; 18525 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18526 &si, EIO, un->un_busy_timeout, NULL); 18527 18528 return; 18529 18530 fail_command: 18531 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18532 sd_return_failed_command(un, bp, EIO); 18533 } 18534 18535 18536 18537 /* 18538 * Function: sd_sense_key_medium_or_hardware_error 18539 * 18540 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 18541 * sense key. 18542 * 18543 * Context: May be called from interrupt context 18544 */ 18545 18546 static void 18547 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, uint8_t *sense_datap, 18548 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18549 { 18550 struct sd_sense_info si; 18551 uint8_t sense_key = scsi_sense_key(sense_datap); 18552 uint8_t asc = scsi_sense_asc(sense_datap); 18553 18554 ASSERT(un != NULL); 18555 ASSERT(mutex_owned(SD_MUTEX(un))); 18556 ASSERT(bp != NULL); 18557 ASSERT(xp != NULL); 18558 ASSERT(pktp != NULL); 18559 18560 si.ssi_severity = SCSI_ERR_FATAL; 18561 si.ssi_pfa_flag = FALSE; 18562 18563 if (sense_key == KEY_MEDIUM_ERROR) { 18564 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 18565 } 18566 18567 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18568 18569 if ((un->un_reset_retry_count != 0) && 18570 (xp->xb_retry_count == un->un_reset_retry_count)) { 18571 mutex_exit(SD_MUTEX(un)); 18572 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 18573 if (un->un_f_allow_bus_device_reset == TRUE) { 18574 18575 boolean_t try_resetting_target = B_TRUE; 18576 18577 /* 18578 * We need to be able to handle specific ASC when we are 18579 * handling a KEY_HARDWARE_ERROR. In particular 18580 * taking the default action of resetting the target may 18581 * not be the appropriate way to attempt recovery. 18582 * Resetting a target because of a single LUN failure 18583 * victimizes all LUNs on that target. 18584 * 18585 * This is true for the LSI arrays, if an LSI 18586 * array controller returns an ASC of 0x84 (LUN Dead) we 18587 * should trust it. 18588 */ 18589 18590 if (sense_key == KEY_HARDWARE_ERROR) { 18591 switch (asc) { 18592 case 0x84: 18593 if (SD_IS_LSI(un)) { 18594 try_resetting_target = B_FALSE; 18595 } 18596 break; 18597 default: 18598 break; 18599 } 18600 } 18601 18602 if (try_resetting_target == B_TRUE) { 18603 int reset_retval = 0; 18604 if (un->un_f_lun_reset_enabled == TRUE) { 18605 SD_TRACE(SD_LOG_IO_CORE, un, 18606 "sd_sense_key_medium_or_hardware_" 18607 "error: issuing RESET_LUN\n"); 18608 reset_retval = 18609 scsi_reset(SD_ADDRESS(un), 18610 RESET_LUN); 18611 } 18612 if (reset_retval == 0) { 18613 SD_TRACE(SD_LOG_IO_CORE, un, 18614 "sd_sense_key_medium_or_hardware_" 18615 "error: issuing RESET_TARGET\n"); 18616 (void) scsi_reset(SD_ADDRESS(un), 18617 RESET_TARGET); 18618 } 18619 } 18620 } 18621 mutex_enter(SD_MUTEX(un)); 18622 } 18623 18624 /* 18625 * This really ought to be a fatal error, but we will retry anyway 18626 * as some drives report this as a spurious error. 18627 */ 18628 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18629 &si, EIO, (clock_t)0, NULL); 18630 } 18631 18632 18633 18634 /* 18635 * Function: sd_sense_key_illegal_request 18636 * 18637 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 18638 * 18639 * Context: May be called from interrupt context 18640 */ 18641 18642 static void 18643 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 18644 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18645 { 18646 struct sd_sense_info si; 18647 18648 ASSERT(un != NULL); 18649 ASSERT(mutex_owned(SD_MUTEX(un))); 18650 ASSERT(bp != NULL); 18651 ASSERT(xp != NULL); 18652 ASSERT(pktp != NULL); 18653 18654 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 18655 18656 si.ssi_severity = SCSI_ERR_INFO; 18657 si.ssi_pfa_flag = FALSE; 18658 18659 /* Pointless to retry if the target thinks it's an illegal request */ 18660 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18661 sd_return_failed_command(un, bp, EIO); 18662 } 18663 18664 18665 18666 18667 /* 18668 * Function: sd_sense_key_unit_attention 18669 * 18670 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 18671 * 18672 * Context: May be called from interrupt context 18673 */ 18674 18675 static void 18676 sd_sense_key_unit_attention(struct sd_lun *un, uint8_t *sense_datap, 18677 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18678 { 18679 /* 18680 * For UNIT ATTENTION we allow retries for one minute. Devices 18681 * like Sonoma can return UNIT ATTENTION close to a minute 18682 * under certain conditions. 18683 */ 18684 int retry_check_flag = SD_RETRIES_UA; 18685 boolean_t kstat_updated = B_FALSE; 18686 struct sd_sense_info si; 18687 uint8_t asc = scsi_sense_asc(sense_datap); 18688 uint8_t ascq = scsi_sense_ascq(sense_datap); 18689 18690 ASSERT(un != NULL); 18691 ASSERT(mutex_owned(SD_MUTEX(un))); 18692 ASSERT(bp != NULL); 18693 ASSERT(xp != NULL); 18694 ASSERT(pktp != NULL); 18695 18696 si.ssi_severity = SCSI_ERR_INFO; 18697 si.ssi_pfa_flag = FALSE; 18698 18699 18700 switch (asc) { 18701 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 18702 if (sd_report_pfa != 0) { 18703 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18704 si.ssi_pfa_flag = TRUE; 18705 retry_check_flag = SD_RETRIES_STANDARD; 18706 goto do_retry; 18707 } 18708 18709 break; 18710 18711 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 18712 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 18713 un->un_resvd_status |= 18714 (SD_LOST_RESERVE | SD_WANT_RESERVE); 18715 } 18716 #ifdef _LP64 18717 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 18718 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 18719 un, KM_NOSLEEP) == 0) { 18720 /* 18721 * If we can't dispatch the task we'll just 18722 * live without descriptor sense. We can 18723 * try again on the next "unit attention" 18724 */ 18725 SD_ERROR(SD_LOG_ERROR, un, 18726 "sd_sense_key_unit_attention: " 18727 "Could not dispatch " 18728 "sd_reenable_dsense_task\n"); 18729 } 18730 } 18731 #endif /* _LP64 */ 18732 /* FALLTHRU */ 18733 18734 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 18735 if (!un->un_f_has_removable_media) { 18736 break; 18737 } 18738 18739 /* 18740 * When we get a unit attention from a removable-media device, 18741 * it may be in a state that will take a long time to recover 18742 * (e.g., from a reset). Since we are executing in interrupt 18743 * context here, we cannot wait around for the device to come 18744 * back. So hand this command off to sd_media_change_task() 18745 * for deferred processing under taskq thread context. (Note 18746 * that the command still may be failed if a problem is 18747 * encountered at a later time.) 18748 */ 18749 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 18750 KM_NOSLEEP) == 0) { 18751 /* 18752 * Cannot dispatch the request so fail the command. 18753 */ 18754 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18755 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18756 si.ssi_severity = SCSI_ERR_FATAL; 18757 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18758 sd_return_failed_command(un, bp, EIO); 18759 } 18760 18761 /* 18762 * If failed to dispatch sd_media_change_task(), we already 18763 * updated kstat. If succeed to dispatch sd_media_change_task(), 18764 * we should update kstat later if it encounters an error. So, 18765 * we update kstat_updated flag here. 18766 */ 18767 kstat_updated = B_TRUE; 18768 18769 /* 18770 * Either the command has been successfully dispatched to a 18771 * task Q for retrying, or the dispatch failed. In either case 18772 * do NOT retry again by calling sd_retry_command. This sets up 18773 * two retries of the same command and when one completes and 18774 * frees the resources the other will access freed memory, 18775 * a bad thing. 18776 */ 18777 return; 18778 18779 default: 18780 break; 18781 } 18782 18783 /* 18784 * ASC ASCQ 18785 * 2A 09 Capacity data has changed 18786 * 2A 01 Mode parameters changed 18787 * 3F 0E Reported luns data has changed 18788 * Arrays that support logical unit expansion should report 18789 * capacity changes(2Ah/09). Mode parameters changed and 18790 * reported luns data has changed are the approximation. 18791 */ 18792 if (((asc == 0x2a) && (ascq == 0x09)) || 18793 ((asc == 0x2a) && (ascq == 0x01)) || 18794 ((asc == 0x3f) && (ascq == 0x0e))) { 18795 if (taskq_dispatch(sd_tq, sd_target_change_task, un, 18796 KM_NOSLEEP) == 0) { 18797 SD_ERROR(SD_LOG_ERROR, un, 18798 "sd_sense_key_unit_attention: " 18799 "Could not dispatch sd_target_change_task\n"); 18800 } 18801 } 18802 18803 /* 18804 * Update kstat if we haven't done that. 18805 */ 18806 if (!kstat_updated) { 18807 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18808 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18809 } 18810 18811 do_retry: 18812 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 18813 EIO, SD_UA_RETRY_DELAY, NULL); 18814 } 18815 18816 18817 18818 /* 18819 * Function: sd_sense_key_fail_command 18820 * 18821 * Description: Use to fail a command when we don't like the sense key that 18822 * was returned. 18823 * 18824 * Context: May be called from interrupt context 18825 */ 18826 18827 static void 18828 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 18829 struct scsi_pkt *pktp) 18830 { 18831 struct sd_sense_info si; 18832 18833 ASSERT(un != NULL); 18834 ASSERT(mutex_owned(SD_MUTEX(un))); 18835 ASSERT(bp != NULL); 18836 ASSERT(xp != NULL); 18837 ASSERT(pktp != NULL); 18838 18839 si.ssi_severity = SCSI_ERR_FATAL; 18840 si.ssi_pfa_flag = FALSE; 18841 18842 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18843 sd_return_failed_command(un, bp, EIO); 18844 } 18845 18846 18847 18848 /* 18849 * Function: sd_sense_key_blank_check 18850 * 18851 * Description: Recovery actions for a SCSI "Blank Check" sense key. 18852 * Has no monetary connotation. 18853 * 18854 * Context: May be called from interrupt context 18855 */ 18856 18857 static void 18858 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 18859 struct scsi_pkt *pktp) 18860 { 18861 struct sd_sense_info si; 18862 18863 ASSERT(un != NULL); 18864 ASSERT(mutex_owned(SD_MUTEX(un))); 18865 ASSERT(bp != NULL); 18866 ASSERT(xp != NULL); 18867 ASSERT(pktp != NULL); 18868 18869 /* 18870 * Blank check is not fatal for removable devices, therefore 18871 * it does not require a console message. 18872 */ 18873 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18874 SCSI_ERR_FATAL; 18875 si.ssi_pfa_flag = FALSE; 18876 18877 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18878 sd_return_failed_command(un, bp, EIO); 18879 } 18880 18881 18882 18883 18884 /* 18885 * Function: sd_sense_key_aborted_command 18886 * 18887 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18888 * 18889 * Context: May be called from interrupt context 18890 */ 18891 18892 static void 18893 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18894 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18895 { 18896 struct sd_sense_info si; 18897 18898 ASSERT(un != NULL); 18899 ASSERT(mutex_owned(SD_MUTEX(un))); 18900 ASSERT(bp != NULL); 18901 ASSERT(xp != NULL); 18902 ASSERT(pktp != NULL); 18903 18904 si.ssi_severity = SCSI_ERR_FATAL; 18905 si.ssi_pfa_flag = FALSE; 18906 18907 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18908 18909 /* 18910 * This really ought to be a fatal error, but we will retry anyway 18911 * as some drives report this as a spurious error. 18912 */ 18913 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18914 &si, EIO, drv_usectohz(100000), NULL); 18915 } 18916 18917 18918 18919 /* 18920 * Function: sd_sense_key_default 18921 * 18922 * Description: Default recovery action for several SCSI sense keys (basically 18923 * attempts a retry). 18924 * 18925 * Context: May be called from interrupt context 18926 */ 18927 18928 static void 18929 sd_sense_key_default(struct sd_lun *un, uint8_t *sense_datap, struct buf *bp, 18930 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18931 { 18932 struct sd_sense_info si; 18933 uint8_t sense_key = scsi_sense_key(sense_datap); 18934 18935 ASSERT(un != NULL); 18936 ASSERT(mutex_owned(SD_MUTEX(un))); 18937 ASSERT(bp != NULL); 18938 ASSERT(xp != NULL); 18939 ASSERT(pktp != NULL); 18940 18941 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18942 18943 /* 18944 * Undecoded sense key. Attempt retries and hope that will fix 18945 * the problem. Otherwise, we're dead. 18946 */ 18947 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18948 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18949 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18950 } 18951 18952 si.ssi_severity = SCSI_ERR_FATAL; 18953 si.ssi_pfa_flag = FALSE; 18954 18955 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18956 &si, EIO, (clock_t)0, NULL); 18957 } 18958 18959 18960 18961 /* 18962 * Function: sd_print_retry_msg 18963 * 18964 * Description: Print a message indicating the retry action being taken. 18965 * 18966 * Arguments: un - ptr to associated softstate 18967 * bp - ptr to buf(9S) for the command 18968 * arg - not used. 18969 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18970 * or SD_NO_RETRY_ISSUED 18971 * 18972 * Context: May be called from interrupt context 18973 */ 18974 /* ARGSUSED */ 18975 static void 18976 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18977 { 18978 struct sd_xbuf *xp; 18979 struct scsi_pkt *pktp; 18980 char *reasonp; 18981 char *msgp; 18982 18983 ASSERT(un != NULL); 18984 ASSERT(mutex_owned(SD_MUTEX(un))); 18985 ASSERT(bp != NULL); 18986 pktp = SD_GET_PKTP(bp); 18987 ASSERT(pktp != NULL); 18988 xp = SD_GET_XBUF(bp); 18989 ASSERT(xp != NULL); 18990 18991 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18992 mutex_enter(&un->un_pm_mutex); 18993 if ((un->un_state == SD_STATE_SUSPENDED) || 18994 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18995 (pktp->pkt_flags & FLAG_SILENT)) { 18996 mutex_exit(&un->un_pm_mutex); 18997 goto update_pkt_reason; 18998 } 18999 mutex_exit(&un->un_pm_mutex); 19000 19001 /* 19002 * Suppress messages if they are all the same pkt_reason; with 19003 * TQ, many (up to 256) are returned with the same pkt_reason. 19004 * If we are in panic, then suppress the retry messages. 19005 */ 19006 switch (flag) { 19007 case SD_NO_RETRY_ISSUED: 19008 msgp = "giving up"; 19009 break; 19010 case SD_IMMEDIATE_RETRY_ISSUED: 19011 case SD_DELAYED_RETRY_ISSUED: 19012 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 19013 ((pktp->pkt_reason == un->un_last_pkt_reason) && 19014 (sd_error_level != SCSI_ERR_ALL))) { 19015 return; 19016 } 19017 msgp = "retrying command"; 19018 break; 19019 default: 19020 goto update_pkt_reason; 19021 } 19022 19023 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 19024 scsi_rname(pktp->pkt_reason)); 19025 19026 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 19027 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19028 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 19029 } 19030 19031 update_pkt_reason: 19032 /* 19033 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 19034 * This is to prevent multiple console messages for the same failure 19035 * condition. Note that un->un_last_pkt_reason is NOT restored if & 19036 * when the command is retried successfully because there still may be 19037 * more commands coming back with the same value of pktp->pkt_reason. 19038 */ 19039 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 19040 un->un_last_pkt_reason = pktp->pkt_reason; 19041 } 19042 } 19043 19044 19045 /* 19046 * Function: sd_print_cmd_incomplete_msg 19047 * 19048 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 19049 * 19050 * Arguments: un - ptr to associated softstate 19051 * bp - ptr to buf(9S) for the command 19052 * arg - passed to sd_print_retry_msg() 19053 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 19054 * or SD_NO_RETRY_ISSUED 19055 * 19056 * Context: May be called from interrupt context 19057 */ 19058 19059 static void 19060 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 19061 int code) 19062 { 19063 dev_info_t *dip; 19064 19065 ASSERT(un != NULL); 19066 ASSERT(mutex_owned(SD_MUTEX(un))); 19067 ASSERT(bp != NULL); 19068 19069 switch (code) { 19070 case SD_NO_RETRY_ISSUED: 19071 /* Command was failed. Someone turned off this target? */ 19072 if (un->un_state != SD_STATE_OFFLINE) { 19073 /* 19074 * Suppress message if we are detaching and 19075 * device has been disconnected 19076 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 19077 * private interface and not part of the DDI 19078 */ 19079 dip = un->un_sd->sd_dev; 19080 if (!(DEVI_IS_DETACHING(dip) && 19081 DEVI_IS_DEVICE_REMOVED(dip))) { 19082 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19083 "disk not responding to selection\n"); 19084 } 19085 New_state(un, SD_STATE_OFFLINE); 19086 } 19087 break; 19088 19089 case SD_DELAYED_RETRY_ISSUED: 19090 case SD_IMMEDIATE_RETRY_ISSUED: 19091 default: 19092 /* Command was successfully queued for retry */ 19093 sd_print_retry_msg(un, bp, arg, code); 19094 break; 19095 } 19096 } 19097 19098 19099 /* 19100 * Function: sd_pkt_reason_cmd_incomplete 19101 * 19102 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 19103 * 19104 * Context: May be called from interrupt context 19105 */ 19106 19107 static void 19108 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 19109 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19110 { 19111 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 19112 19113 ASSERT(un != NULL); 19114 ASSERT(mutex_owned(SD_MUTEX(un))); 19115 ASSERT(bp != NULL); 19116 ASSERT(xp != NULL); 19117 ASSERT(pktp != NULL); 19118 19119 /* Do not do a reset if selection did not complete */ 19120 /* Note: Should this not just check the bit? */ 19121 if (pktp->pkt_state != STATE_GOT_BUS) { 19122 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19123 sd_reset_target(un, pktp); 19124 } 19125 19126 /* 19127 * If the target was not successfully selected, then set 19128 * SD_RETRIES_FAILFAST to indicate that we lost communication 19129 * with the target, and further retries and/or commands are 19130 * likely to take a long time. 19131 */ 19132 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 19133 flag |= SD_RETRIES_FAILFAST; 19134 } 19135 19136 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19137 19138 sd_retry_command(un, bp, flag, 19139 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19140 } 19141 19142 19143 19144 /* 19145 * Function: sd_pkt_reason_cmd_tran_err 19146 * 19147 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 19148 * 19149 * Context: May be called from interrupt context 19150 */ 19151 19152 static void 19153 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 19154 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19155 { 19156 ASSERT(un != NULL); 19157 ASSERT(mutex_owned(SD_MUTEX(un))); 19158 ASSERT(bp != NULL); 19159 ASSERT(xp != NULL); 19160 ASSERT(pktp != NULL); 19161 19162 /* 19163 * Do not reset if we got a parity error, or if 19164 * selection did not complete. 19165 */ 19166 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19167 /* Note: Should this not just check the bit for pkt_state? */ 19168 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 19169 (pktp->pkt_state != STATE_GOT_BUS)) { 19170 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19171 sd_reset_target(un, pktp); 19172 } 19173 19174 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19175 19176 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19177 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19178 } 19179 19180 19181 19182 /* 19183 * Function: sd_pkt_reason_cmd_reset 19184 * 19185 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 19186 * 19187 * Context: May be called from interrupt context 19188 */ 19189 19190 static void 19191 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19192 struct scsi_pkt *pktp) 19193 { 19194 ASSERT(un != NULL); 19195 ASSERT(mutex_owned(SD_MUTEX(un))); 19196 ASSERT(bp != NULL); 19197 ASSERT(xp != NULL); 19198 ASSERT(pktp != NULL); 19199 19200 /* The target may still be running the command, so try to reset. */ 19201 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19202 sd_reset_target(un, pktp); 19203 19204 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19205 19206 /* 19207 * If pkt_reason is CMD_RESET chances are that this pkt got 19208 * reset because another target on this bus caused it. The target 19209 * that caused it should get CMD_TIMEOUT with pkt_statistics 19210 * of STAT_TIMEOUT/STAT_DEV_RESET. 19211 */ 19212 19213 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19214 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19215 } 19216 19217 19218 19219 19220 /* 19221 * Function: sd_pkt_reason_cmd_aborted 19222 * 19223 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 19224 * 19225 * Context: May be called from interrupt context 19226 */ 19227 19228 static void 19229 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19230 struct scsi_pkt *pktp) 19231 { 19232 ASSERT(un != NULL); 19233 ASSERT(mutex_owned(SD_MUTEX(un))); 19234 ASSERT(bp != NULL); 19235 ASSERT(xp != NULL); 19236 ASSERT(pktp != NULL); 19237 19238 /* The target may still be running the command, so try to reset. */ 19239 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19240 sd_reset_target(un, pktp); 19241 19242 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19243 19244 /* 19245 * If pkt_reason is CMD_ABORTED chances are that this pkt got 19246 * aborted because another target on this bus caused it. The target 19247 * that caused it should get CMD_TIMEOUT with pkt_statistics 19248 * of STAT_TIMEOUT/STAT_DEV_RESET. 19249 */ 19250 19251 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19252 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19253 } 19254 19255 19256 19257 /* 19258 * Function: sd_pkt_reason_cmd_timeout 19259 * 19260 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 19261 * 19262 * Context: May be called from interrupt context 19263 */ 19264 19265 static void 19266 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19267 struct scsi_pkt *pktp) 19268 { 19269 ASSERT(un != NULL); 19270 ASSERT(mutex_owned(SD_MUTEX(un))); 19271 ASSERT(bp != NULL); 19272 ASSERT(xp != NULL); 19273 ASSERT(pktp != NULL); 19274 19275 19276 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19277 sd_reset_target(un, pktp); 19278 19279 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19280 19281 /* 19282 * A command timeout indicates that we could not establish 19283 * communication with the target, so set SD_RETRIES_FAILFAST 19284 * as further retries/commands are likely to take a long time. 19285 */ 19286 sd_retry_command(un, bp, 19287 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 19288 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19289 } 19290 19291 19292 19293 /* 19294 * Function: sd_pkt_reason_cmd_unx_bus_free 19295 * 19296 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 19297 * 19298 * Context: May be called from interrupt context 19299 */ 19300 19301 static void 19302 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 19303 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19304 { 19305 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 19306 19307 ASSERT(un != NULL); 19308 ASSERT(mutex_owned(SD_MUTEX(un))); 19309 ASSERT(bp != NULL); 19310 ASSERT(xp != NULL); 19311 ASSERT(pktp != NULL); 19312 19313 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19314 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19315 19316 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 19317 sd_print_retry_msg : NULL; 19318 19319 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19320 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19321 } 19322 19323 19324 /* 19325 * Function: sd_pkt_reason_cmd_tag_reject 19326 * 19327 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 19328 * 19329 * Context: May be called from interrupt context 19330 */ 19331 19332 static void 19333 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 19334 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19335 { 19336 ASSERT(un != NULL); 19337 ASSERT(mutex_owned(SD_MUTEX(un))); 19338 ASSERT(bp != NULL); 19339 ASSERT(xp != NULL); 19340 ASSERT(pktp != NULL); 19341 19342 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19343 pktp->pkt_flags = 0; 19344 un->un_tagflags = 0; 19345 if (un->un_f_opt_queueing == TRUE) { 19346 un->un_throttle = min(un->un_throttle, 3); 19347 } else { 19348 un->un_throttle = 1; 19349 } 19350 mutex_exit(SD_MUTEX(un)); 19351 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 19352 mutex_enter(SD_MUTEX(un)); 19353 19354 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19355 19356 /* Legacy behavior not to check retry counts here. */ 19357 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 19358 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19359 } 19360 19361 19362 /* 19363 * Function: sd_pkt_reason_default 19364 * 19365 * Description: Default recovery actions for SCSA pkt_reason values that 19366 * do not have more explicit recovery actions. 19367 * 19368 * Context: May be called from interrupt context 19369 */ 19370 19371 static void 19372 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19373 struct scsi_pkt *pktp) 19374 { 19375 ASSERT(un != NULL); 19376 ASSERT(mutex_owned(SD_MUTEX(un))); 19377 ASSERT(bp != NULL); 19378 ASSERT(xp != NULL); 19379 ASSERT(pktp != NULL); 19380 19381 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19382 sd_reset_target(un, pktp); 19383 19384 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19385 19386 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19387 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19388 } 19389 19390 19391 19392 /* 19393 * Function: sd_pkt_status_check_condition 19394 * 19395 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 19396 * 19397 * Context: May be called from interrupt context 19398 */ 19399 19400 static void 19401 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 19402 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19403 { 19404 ASSERT(un != NULL); 19405 ASSERT(mutex_owned(SD_MUTEX(un))); 19406 ASSERT(bp != NULL); 19407 ASSERT(xp != NULL); 19408 ASSERT(pktp != NULL); 19409 19410 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 19411 "entry: buf:0x%p xp:0x%p\n", bp, xp); 19412 19413 /* 19414 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 19415 * command will be retried after the request sense). Otherwise, retry 19416 * the command. Note: we are issuing the request sense even though the 19417 * retry limit may have been reached for the failed command. 19418 */ 19419 if (un->un_f_arq_enabled == FALSE) { 19420 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19421 "no ARQ, sending request sense command\n"); 19422 sd_send_request_sense_command(un, bp, pktp); 19423 } else { 19424 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19425 "ARQ,retrying request sense command\n"); 19426 #if defined(__i386) || defined(__amd64) 19427 /* 19428 * The SD_RETRY_DELAY value need to be adjusted here 19429 * when SD_RETRY_DELAY change in sddef.h 19430 */ 19431 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19432 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 19433 NULL); 19434 #else 19435 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 19436 EIO, SD_RETRY_DELAY, NULL); 19437 #endif 19438 } 19439 19440 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 19441 } 19442 19443 19444 /* 19445 * Function: sd_pkt_status_busy 19446 * 19447 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 19448 * 19449 * Context: May be called from interrupt context 19450 */ 19451 19452 static void 19453 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19454 struct scsi_pkt *pktp) 19455 { 19456 ASSERT(un != NULL); 19457 ASSERT(mutex_owned(SD_MUTEX(un))); 19458 ASSERT(bp != NULL); 19459 ASSERT(xp != NULL); 19460 ASSERT(pktp != NULL); 19461 19462 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19463 "sd_pkt_status_busy: entry\n"); 19464 19465 /* If retries are exhausted, just fail the command. */ 19466 if (xp->xb_retry_count >= un->un_busy_retry_count) { 19467 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19468 "device busy too long\n"); 19469 sd_return_failed_command(un, bp, EIO); 19470 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19471 "sd_pkt_status_busy: exit\n"); 19472 return; 19473 } 19474 xp->xb_retry_count++; 19475 19476 /* 19477 * Try to reset the target. However, we do not want to perform 19478 * more than one reset if the device continues to fail. The reset 19479 * will be performed when the retry count reaches the reset 19480 * threshold. This threshold should be set such that at least 19481 * one retry is issued before the reset is performed. 19482 */ 19483 if (xp->xb_retry_count == 19484 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 19485 int rval = 0; 19486 mutex_exit(SD_MUTEX(un)); 19487 if (un->un_f_allow_bus_device_reset == TRUE) { 19488 /* 19489 * First try to reset the LUN; if we cannot then 19490 * try to reset the target. 19491 */ 19492 if (un->un_f_lun_reset_enabled == TRUE) { 19493 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19494 "sd_pkt_status_busy: RESET_LUN\n"); 19495 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19496 } 19497 if (rval == 0) { 19498 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19499 "sd_pkt_status_busy: RESET_TARGET\n"); 19500 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19501 } 19502 } 19503 if (rval == 0) { 19504 /* 19505 * If the RESET_LUN and/or RESET_TARGET failed, 19506 * try RESET_ALL 19507 */ 19508 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19509 "sd_pkt_status_busy: RESET_ALL\n"); 19510 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 19511 } 19512 mutex_enter(SD_MUTEX(un)); 19513 if (rval == 0) { 19514 /* 19515 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 19516 * At this point we give up & fail the command. 19517 */ 19518 sd_return_failed_command(un, bp, EIO); 19519 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19520 "sd_pkt_status_busy: exit (failed cmd)\n"); 19521 return; 19522 } 19523 } 19524 19525 /* 19526 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 19527 * we have already checked the retry counts above. 19528 */ 19529 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 19530 EIO, un->un_busy_timeout, NULL); 19531 19532 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19533 "sd_pkt_status_busy: exit\n"); 19534 } 19535 19536 19537 /* 19538 * Function: sd_pkt_status_reservation_conflict 19539 * 19540 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 19541 * command status. 19542 * 19543 * Context: May be called from interrupt context 19544 */ 19545 19546 static void 19547 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 19548 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19549 { 19550 ASSERT(un != NULL); 19551 ASSERT(mutex_owned(SD_MUTEX(un))); 19552 ASSERT(bp != NULL); 19553 ASSERT(xp != NULL); 19554 ASSERT(pktp != NULL); 19555 19556 /* 19557 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 19558 * conflict could be due to various reasons like incorrect keys, not 19559 * registered or not reserved etc. So, we return EACCES to the caller. 19560 */ 19561 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 19562 int cmd = SD_GET_PKT_OPCODE(pktp); 19563 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 19564 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 19565 sd_return_failed_command(un, bp, EACCES); 19566 return; 19567 } 19568 } 19569 19570 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 19571 19572 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 19573 if (sd_failfast_enable != 0) { 19574 /* By definition, we must panic here.... */ 19575 sd_panic_for_res_conflict(un); 19576 /*NOTREACHED*/ 19577 } 19578 SD_ERROR(SD_LOG_IO, un, 19579 "sd_handle_resv_conflict: Disk Reserved\n"); 19580 sd_return_failed_command(un, bp, EACCES); 19581 return; 19582 } 19583 19584 /* 19585 * 1147670: retry only if sd_retry_on_reservation_conflict 19586 * property is set (default is 1). Retries will not succeed 19587 * on a disk reserved by another initiator. HA systems 19588 * may reset this via sd.conf to avoid these retries. 19589 * 19590 * Note: The legacy return code for this failure is EIO, however EACCES 19591 * seems more appropriate for a reservation conflict. 19592 */ 19593 if (sd_retry_on_reservation_conflict == 0) { 19594 SD_ERROR(SD_LOG_IO, un, 19595 "sd_handle_resv_conflict: Device Reserved\n"); 19596 sd_return_failed_command(un, bp, EIO); 19597 return; 19598 } 19599 19600 /* 19601 * Retry the command if we can. 19602 * 19603 * Note: The legacy return code for this failure is EIO, however EACCES 19604 * seems more appropriate for a reservation conflict. 19605 */ 19606 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19607 (clock_t)2, NULL); 19608 } 19609 19610 19611 19612 /* 19613 * Function: sd_pkt_status_qfull 19614 * 19615 * Description: Handle a QUEUE FULL condition from the target. This can 19616 * occur if the HBA does not handle the queue full condition. 19617 * (Basically this means third-party HBAs as Sun HBAs will 19618 * handle the queue full condition.) Note that if there are 19619 * some commands already in the transport, then the queue full 19620 * has occurred because the queue for this nexus is actually 19621 * full. If there are no commands in the transport, then the 19622 * queue full is resulting from some other initiator or lun 19623 * consuming all the resources at the target. 19624 * 19625 * Context: May be called from interrupt context 19626 */ 19627 19628 static void 19629 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19630 struct scsi_pkt *pktp) 19631 { 19632 ASSERT(un != NULL); 19633 ASSERT(mutex_owned(SD_MUTEX(un))); 19634 ASSERT(bp != NULL); 19635 ASSERT(xp != NULL); 19636 ASSERT(pktp != NULL); 19637 19638 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19639 "sd_pkt_status_qfull: entry\n"); 19640 19641 /* 19642 * Just lower the QFULL throttle and retry the command. Note that 19643 * we do not limit the number of retries here. 19644 */ 19645 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 19646 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 19647 SD_RESTART_TIMEOUT, NULL); 19648 19649 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19650 "sd_pkt_status_qfull: exit\n"); 19651 } 19652 19653 19654 /* 19655 * Function: sd_reset_target 19656 * 19657 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 19658 * RESET_TARGET, or RESET_ALL. 19659 * 19660 * Context: May be called under interrupt context. 19661 */ 19662 19663 static void 19664 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 19665 { 19666 int rval = 0; 19667 19668 ASSERT(un != NULL); 19669 ASSERT(mutex_owned(SD_MUTEX(un))); 19670 ASSERT(pktp != NULL); 19671 19672 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 19673 19674 /* 19675 * No need to reset if the transport layer has already done so. 19676 */ 19677 if ((pktp->pkt_statistics & 19678 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 19679 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19680 "sd_reset_target: no reset\n"); 19681 return; 19682 } 19683 19684 mutex_exit(SD_MUTEX(un)); 19685 19686 if (un->un_f_allow_bus_device_reset == TRUE) { 19687 if (un->un_f_lun_reset_enabled == TRUE) { 19688 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19689 "sd_reset_target: RESET_LUN\n"); 19690 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19691 } 19692 if (rval == 0) { 19693 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19694 "sd_reset_target: RESET_TARGET\n"); 19695 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19696 } 19697 } 19698 19699 if (rval == 0) { 19700 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19701 "sd_reset_target: RESET_ALL\n"); 19702 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 19703 } 19704 19705 mutex_enter(SD_MUTEX(un)); 19706 19707 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 19708 } 19709 19710 /* 19711 * Function: sd_target_change_task 19712 * 19713 * Description: Handle dynamic target change 19714 * 19715 * Context: Executes in a taskq() thread context 19716 */ 19717 static void 19718 sd_target_change_task(void *arg) 19719 { 19720 struct sd_lun *un = arg; 19721 uint64_t capacity; 19722 diskaddr_t label_cap; 19723 uint_t lbasize; 19724 sd_ssc_t *ssc; 19725 19726 ASSERT(un != NULL); 19727 ASSERT(!mutex_owned(SD_MUTEX(un))); 19728 19729 if ((un->un_f_blockcount_is_valid == FALSE) || 19730 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 19731 return; 19732 } 19733 19734 ssc = sd_ssc_init(un); 19735 19736 if (sd_send_scsi_READ_CAPACITY(ssc, &capacity, 19737 &lbasize, SD_PATH_DIRECT) != 0) { 19738 SD_ERROR(SD_LOG_ERROR, un, 19739 "sd_target_change_task: fail to read capacity\n"); 19740 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19741 goto task_exit; 19742 } 19743 19744 mutex_enter(SD_MUTEX(un)); 19745 if (capacity <= un->un_blockcount) { 19746 mutex_exit(SD_MUTEX(un)); 19747 goto task_exit; 19748 } 19749 19750 sd_update_block_info(un, lbasize, capacity); 19751 mutex_exit(SD_MUTEX(un)); 19752 19753 /* 19754 * If lun is EFI labeled and lun capacity is greater than the 19755 * capacity contained in the label, log a sys event. 19756 */ 19757 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 19758 (void*)SD_PATH_DIRECT) == 0) { 19759 mutex_enter(SD_MUTEX(un)); 19760 if (un->un_f_blockcount_is_valid && 19761 un->un_blockcount > label_cap) { 19762 mutex_exit(SD_MUTEX(un)); 19763 sd_log_lun_expansion_event(un, KM_SLEEP); 19764 } else { 19765 mutex_exit(SD_MUTEX(un)); 19766 } 19767 } 19768 19769 task_exit: 19770 sd_ssc_fini(ssc); 19771 } 19772 19773 19774 /* 19775 * Function: sd_log_dev_status_event 19776 * 19777 * Description: Log EC_dev_status sysevent 19778 * 19779 * Context: Never called from interrupt context 19780 */ 19781 static void 19782 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag) 19783 { 19784 int err; 19785 char *path; 19786 nvlist_t *attr_list; 19787 19788 /* Allocate and build sysevent attribute list */ 19789 err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag); 19790 if (err != 0) { 19791 SD_ERROR(SD_LOG_ERROR, un, 19792 "sd_log_dev_status_event: fail to allocate space\n"); 19793 return; 19794 } 19795 19796 path = kmem_alloc(MAXPATHLEN, km_flag); 19797 if (path == NULL) { 19798 nvlist_free(attr_list); 19799 SD_ERROR(SD_LOG_ERROR, un, 19800 "sd_log_dev_status_event: fail to allocate space\n"); 19801 return; 19802 } 19803 /* 19804 * Add path attribute to identify the lun. 19805 * We are using minor node 'a' as the sysevent attribute. 19806 */ 19807 (void) snprintf(path, MAXPATHLEN, "/devices"); 19808 (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path)); 19809 (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path), 19810 ":a"); 19811 19812 err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path); 19813 if (err != 0) { 19814 nvlist_free(attr_list); 19815 kmem_free(path, MAXPATHLEN); 19816 SD_ERROR(SD_LOG_ERROR, un, 19817 "sd_log_dev_status_event: fail to add attribute\n"); 19818 return; 19819 } 19820 19821 /* Log dynamic lun expansion sysevent */ 19822 err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS, 19823 esc, attr_list, NULL, km_flag); 19824 if (err != DDI_SUCCESS) { 19825 SD_ERROR(SD_LOG_ERROR, un, 19826 "sd_log_dev_status_event: fail to log sysevent\n"); 19827 } 19828 19829 nvlist_free(attr_list); 19830 kmem_free(path, MAXPATHLEN); 19831 } 19832 19833 19834 /* 19835 * Function: sd_log_lun_expansion_event 19836 * 19837 * Description: Log lun expansion sys event 19838 * 19839 * Context: Never called from interrupt context 19840 */ 19841 static void 19842 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag) 19843 { 19844 sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag); 19845 } 19846 19847 19848 /* 19849 * Function: sd_log_eject_request_event 19850 * 19851 * Description: Log eject request sysevent 19852 * 19853 * Context: Never called from interrupt context 19854 */ 19855 static void 19856 sd_log_eject_request_event(struct sd_lun *un, int km_flag) 19857 { 19858 sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag); 19859 } 19860 19861 19862 /* 19863 * Function: sd_media_change_task 19864 * 19865 * Description: Recovery action for CDROM to become available. 19866 * 19867 * Context: Executes in a taskq() thread context 19868 */ 19869 19870 static void 19871 sd_media_change_task(void *arg) 19872 { 19873 struct scsi_pkt *pktp = arg; 19874 struct sd_lun *un; 19875 struct buf *bp; 19876 struct sd_xbuf *xp; 19877 int err = 0; 19878 int retry_count = 0; 19879 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 19880 struct sd_sense_info si; 19881 19882 ASSERT(pktp != NULL); 19883 bp = (struct buf *)pktp->pkt_private; 19884 ASSERT(bp != NULL); 19885 xp = SD_GET_XBUF(bp); 19886 ASSERT(xp != NULL); 19887 un = SD_GET_UN(bp); 19888 ASSERT(un != NULL); 19889 ASSERT(!mutex_owned(SD_MUTEX(un))); 19890 ASSERT(un->un_f_monitor_media_state); 19891 19892 si.ssi_severity = SCSI_ERR_INFO; 19893 si.ssi_pfa_flag = FALSE; 19894 19895 /* 19896 * When a reset is issued on a CDROM, it takes a long time to 19897 * recover. First few attempts to read capacity and other things 19898 * related to handling unit attention fail (with a ASC 0x4 and 19899 * ASCQ 0x1). In that case we want to do enough retries and we want 19900 * to limit the retries in other cases of genuine failures like 19901 * no media in drive. 19902 */ 19903 while (retry_count++ < retry_limit) { 19904 if ((err = sd_handle_mchange(un)) == 0) { 19905 break; 19906 } 19907 if (err == EAGAIN) { 19908 retry_limit = SD_UNIT_ATTENTION_RETRY; 19909 } 19910 /* Sleep for 0.5 sec. & try again */ 19911 delay(drv_usectohz(500000)); 19912 } 19913 19914 /* 19915 * Dispatch (retry or fail) the original command here, 19916 * along with appropriate console messages.... 19917 * 19918 * Must grab the mutex before calling sd_retry_command, 19919 * sd_print_sense_msg and sd_return_failed_command. 19920 */ 19921 mutex_enter(SD_MUTEX(un)); 19922 if (err != SD_CMD_SUCCESS) { 19923 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19924 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19925 si.ssi_severity = SCSI_ERR_FATAL; 19926 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19927 sd_return_failed_command(un, bp, EIO); 19928 } else { 19929 sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg, 19930 &si, EIO, (clock_t)0, NULL); 19931 } 19932 mutex_exit(SD_MUTEX(un)); 19933 } 19934 19935 19936 19937 /* 19938 * Function: sd_handle_mchange 19939 * 19940 * Description: Perform geometry validation & other recovery when CDROM 19941 * has been removed from drive. 19942 * 19943 * Return Code: 0 for success 19944 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19945 * sd_send_scsi_READ_CAPACITY() 19946 * 19947 * Context: Executes in a taskq() thread context 19948 */ 19949 19950 static int 19951 sd_handle_mchange(struct sd_lun *un) 19952 { 19953 uint64_t capacity; 19954 uint32_t lbasize; 19955 int rval; 19956 sd_ssc_t *ssc; 19957 19958 ASSERT(!mutex_owned(SD_MUTEX(un))); 19959 ASSERT(un->un_f_monitor_media_state); 19960 19961 ssc = sd_ssc_init(un); 19962 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 19963 SD_PATH_DIRECT_PRIORITY); 19964 19965 if (rval != 0) 19966 goto failed; 19967 19968 mutex_enter(SD_MUTEX(un)); 19969 sd_update_block_info(un, lbasize, capacity); 19970 19971 if (un->un_errstats != NULL) { 19972 struct sd_errstats *stp = 19973 (struct sd_errstats *)un->un_errstats->ks_data; 19974 stp->sd_capacity.value.ui64 = (uint64_t) 19975 ((uint64_t)un->un_blockcount * 19976 (uint64_t)un->un_tgt_blocksize); 19977 } 19978 19979 /* 19980 * Check if the media in the device is writable or not 19981 */ 19982 if (ISCD(un)) { 19983 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY); 19984 } 19985 19986 /* 19987 * Note: Maybe let the strategy/partitioning chain worry about getting 19988 * valid geometry. 19989 */ 19990 mutex_exit(SD_MUTEX(un)); 19991 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 19992 19993 19994 if (cmlb_validate(un->un_cmlbhandle, 0, 19995 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 19996 sd_ssc_fini(ssc); 19997 return (EIO); 19998 } else { 19999 if (un->un_f_pkstats_enabled) { 20000 sd_set_pstats(un); 20001 SD_TRACE(SD_LOG_IO_PARTITION, un, 20002 "sd_handle_mchange: un:0x%p pstats created and " 20003 "set\n", un); 20004 } 20005 } 20006 20007 /* 20008 * Try to lock the door 20009 */ 20010 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 20011 SD_PATH_DIRECT_PRIORITY); 20012 failed: 20013 if (rval != 0) 20014 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20015 sd_ssc_fini(ssc); 20016 return (rval); 20017 } 20018 20019 20020 /* 20021 * Function: sd_send_scsi_DOORLOCK 20022 * 20023 * Description: Issue the scsi DOOR LOCK command 20024 * 20025 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20026 * structure for this target. 20027 * flag - SD_REMOVAL_ALLOW 20028 * SD_REMOVAL_PREVENT 20029 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20030 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20031 * to use the USCSI "direct" chain and bypass the normal 20032 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20033 * command is issued as part of an error recovery action. 20034 * 20035 * Return Code: 0 - Success 20036 * errno return code from sd_ssc_send() 20037 * 20038 * Context: Can sleep. 20039 */ 20040 20041 static int 20042 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag) 20043 { 20044 struct scsi_extended_sense sense_buf; 20045 union scsi_cdb cdb; 20046 struct uscsi_cmd ucmd_buf; 20047 int status; 20048 struct sd_lun *un; 20049 20050 ASSERT(ssc != NULL); 20051 un = ssc->ssc_un; 20052 ASSERT(un != NULL); 20053 ASSERT(!mutex_owned(SD_MUTEX(un))); 20054 20055 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 20056 20057 /* already determined doorlock is not supported, fake success */ 20058 if (un->un_f_doorlock_supported == FALSE) { 20059 return (0); 20060 } 20061 20062 /* 20063 * If we are ejecting and see an SD_REMOVAL_PREVENT 20064 * ignore the command so we can complete the eject 20065 * operation. 20066 */ 20067 if (flag == SD_REMOVAL_PREVENT) { 20068 mutex_enter(SD_MUTEX(un)); 20069 if (un->un_f_ejecting == TRUE) { 20070 mutex_exit(SD_MUTEX(un)); 20071 return (EAGAIN); 20072 } 20073 mutex_exit(SD_MUTEX(un)); 20074 } 20075 20076 bzero(&cdb, sizeof (cdb)); 20077 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20078 20079 cdb.scc_cmd = SCMD_DOORLOCK; 20080 cdb.cdb_opaque[4] = (uchar_t)flag; 20081 20082 ucmd_buf.uscsi_cdb = (char *)&cdb; 20083 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20084 ucmd_buf.uscsi_bufaddr = NULL; 20085 ucmd_buf.uscsi_buflen = 0; 20086 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20087 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20088 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20089 ucmd_buf.uscsi_timeout = 15; 20090 20091 SD_TRACE(SD_LOG_IO, un, 20092 "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n"); 20093 20094 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20095 UIO_SYSSPACE, path_flag); 20096 20097 if (status == 0) 20098 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20099 20100 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 20101 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20102 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 20103 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20104 20105 /* fake success and skip subsequent doorlock commands */ 20106 un->un_f_doorlock_supported = FALSE; 20107 return (0); 20108 } 20109 20110 return (status); 20111 } 20112 20113 /* 20114 * Function: sd_send_scsi_READ_CAPACITY 20115 * 20116 * Description: This routine uses the scsi READ CAPACITY command to determine 20117 * the device capacity in number of blocks and the device native 20118 * block size. If this function returns a failure, then the 20119 * values in *capp and *lbap are undefined. If the capacity 20120 * returned is 0xffffffff then the lun is too large for a 20121 * normal READ CAPACITY command and the results of a 20122 * READ CAPACITY 16 will be used instead. 20123 * 20124 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20125 * capp - ptr to unsigned 64-bit variable to receive the 20126 * capacity value from the command. 20127 * lbap - ptr to unsigned 32-bit varaible to receive the 20128 * block size value from the command 20129 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20130 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20131 * to use the USCSI "direct" chain and bypass the normal 20132 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20133 * command is issued as part of an error recovery action. 20134 * 20135 * Return Code: 0 - Success 20136 * EIO - IO error 20137 * EACCES - Reservation conflict detected 20138 * EAGAIN - Device is becoming ready 20139 * errno return code from sd_ssc_send() 20140 * 20141 * Context: Can sleep. Blocks until command completes. 20142 */ 20143 20144 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 20145 20146 static int 20147 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 20148 int path_flag) 20149 { 20150 struct scsi_extended_sense sense_buf; 20151 struct uscsi_cmd ucmd_buf; 20152 union scsi_cdb cdb; 20153 uint32_t *capacity_buf; 20154 uint64_t capacity; 20155 uint32_t lbasize; 20156 uint32_t pbsize; 20157 int status; 20158 struct sd_lun *un; 20159 20160 ASSERT(ssc != NULL); 20161 20162 un = ssc->ssc_un; 20163 ASSERT(un != NULL); 20164 ASSERT(!mutex_owned(SD_MUTEX(un))); 20165 ASSERT(capp != NULL); 20166 ASSERT(lbap != NULL); 20167 20168 SD_TRACE(SD_LOG_IO, un, 20169 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20170 20171 /* 20172 * First send a READ_CAPACITY command to the target. 20173 * (This command is mandatory under SCSI-2.) 20174 * 20175 * Set up the CDB for the READ_CAPACITY command. The Partial 20176 * Medium Indicator bit is cleared. The address field must be 20177 * zero if the PMI bit is zero. 20178 */ 20179 bzero(&cdb, sizeof (cdb)); 20180 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20181 20182 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 20183 20184 cdb.scc_cmd = SCMD_READ_CAPACITY; 20185 20186 ucmd_buf.uscsi_cdb = (char *)&cdb; 20187 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20188 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 20189 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 20190 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20191 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20192 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20193 ucmd_buf.uscsi_timeout = 60; 20194 20195 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20196 UIO_SYSSPACE, path_flag); 20197 20198 switch (status) { 20199 case 0: 20200 /* Return failure if we did not get valid capacity data. */ 20201 if (ucmd_buf.uscsi_resid != 0) { 20202 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20203 "sd_send_scsi_READ_CAPACITY received invalid " 20204 "capacity data"); 20205 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20206 return (EIO); 20207 } 20208 /* 20209 * Read capacity and block size from the READ CAPACITY 10 data. 20210 * This data may be adjusted later due to device specific 20211 * issues. 20212 * 20213 * According to the SCSI spec, the READ CAPACITY 10 20214 * command returns the following: 20215 * 20216 * bytes 0-3: Maximum logical block address available. 20217 * (MSB in byte:0 & LSB in byte:3) 20218 * 20219 * bytes 4-7: Block length in bytes 20220 * (MSB in byte:4 & LSB in byte:7) 20221 * 20222 */ 20223 capacity = BE_32(capacity_buf[0]); 20224 lbasize = BE_32(capacity_buf[1]); 20225 20226 /* 20227 * Done with capacity_buf 20228 */ 20229 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20230 20231 /* 20232 * if the reported capacity is set to all 0xf's, then 20233 * this disk is too large and requires SBC-2 commands. 20234 * Reissue the request using READ CAPACITY 16. 20235 */ 20236 if (capacity == 0xffffffff) { 20237 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20238 status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, 20239 &lbasize, &pbsize, path_flag); 20240 if (status != 0) { 20241 return (status); 20242 } else { 20243 goto rc16_done; 20244 } 20245 } 20246 break; /* Success! */ 20247 case EIO: 20248 switch (ucmd_buf.uscsi_status) { 20249 case STATUS_RESERVATION_CONFLICT: 20250 status = EACCES; 20251 break; 20252 case STATUS_CHECK: 20253 /* 20254 * Check condition; look for ASC/ASCQ of 0x04/0x01 20255 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20256 */ 20257 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20258 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20259 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20260 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20261 return (EAGAIN); 20262 } 20263 break; 20264 default: 20265 break; 20266 } 20267 /* FALLTHRU */ 20268 default: 20269 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20270 return (status); 20271 } 20272 20273 /* 20274 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20275 * (2352 and 0 are common) so for these devices always force the value 20276 * to 2048 as required by the ATAPI specs. 20277 */ 20278 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20279 lbasize = 2048; 20280 } 20281 20282 /* 20283 * Get the maximum LBA value from the READ CAPACITY data. 20284 * Here we assume that the Partial Medium Indicator (PMI) bit 20285 * was cleared when issuing the command. This means that the LBA 20286 * returned from the device is the LBA of the last logical block 20287 * on the logical unit. The actual logical block count will be 20288 * this value plus one. 20289 */ 20290 capacity += 1; 20291 20292 /* 20293 * Currently, for removable media, the capacity is saved in terms 20294 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20295 */ 20296 if (un->un_f_has_removable_media) 20297 capacity *= (lbasize / un->un_sys_blocksize); 20298 20299 rc16_done: 20300 20301 /* 20302 * Copy the values from the READ CAPACITY command into the space 20303 * provided by the caller. 20304 */ 20305 *capp = capacity; 20306 *lbap = lbasize; 20307 20308 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 20309 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 20310 20311 /* 20312 * Both the lbasize and capacity from the device must be nonzero, 20313 * otherwise we assume that the values are not valid and return 20314 * failure to the caller. (4203735) 20315 */ 20316 if ((capacity == 0) || (lbasize == 0)) { 20317 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20318 "sd_send_scsi_READ_CAPACITY received invalid value " 20319 "capacity %llu lbasize %d", capacity, lbasize); 20320 return (EIO); 20321 } 20322 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20323 return (0); 20324 } 20325 20326 /* 20327 * Function: sd_send_scsi_READ_CAPACITY_16 20328 * 20329 * Description: This routine uses the scsi READ CAPACITY 16 command to 20330 * determine the device capacity in number of blocks and the 20331 * device native block size. If this function returns a failure, 20332 * then the values in *capp and *lbap are undefined. 20333 * This routine should be called by sd_send_scsi_READ_CAPACITY 20334 * which will apply any device specific adjustments to capacity 20335 * and lbasize. One exception is it is also called by 20336 * sd_get_media_info_ext. In that function, there is no need to 20337 * adjust the capacity and lbasize. 20338 * 20339 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20340 * capp - ptr to unsigned 64-bit variable to receive the 20341 * capacity value from the command. 20342 * lbap - ptr to unsigned 32-bit varaible to receive the 20343 * block size value from the command 20344 * psp - ptr to unsigned 32-bit variable to receive the 20345 * physical block size value from the command 20346 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20347 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20348 * to use the USCSI "direct" chain and bypass the normal 20349 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 20350 * this command is issued as part of an error recovery 20351 * action. 20352 * 20353 * Return Code: 0 - Success 20354 * EIO - IO error 20355 * EACCES - Reservation conflict detected 20356 * EAGAIN - Device is becoming ready 20357 * errno return code from sd_ssc_send() 20358 * 20359 * Context: Can sleep. Blocks until command completes. 20360 */ 20361 20362 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 20363 20364 static int 20365 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 20366 uint32_t *psp, int path_flag) 20367 { 20368 struct scsi_extended_sense sense_buf; 20369 struct uscsi_cmd ucmd_buf; 20370 union scsi_cdb cdb; 20371 uint64_t *capacity16_buf; 20372 uint64_t capacity; 20373 uint32_t lbasize; 20374 uint32_t pbsize; 20375 uint32_t lbpb_exp; 20376 int status; 20377 struct sd_lun *un; 20378 20379 ASSERT(ssc != NULL); 20380 20381 un = ssc->ssc_un; 20382 ASSERT(un != NULL); 20383 ASSERT(!mutex_owned(SD_MUTEX(un))); 20384 ASSERT(capp != NULL); 20385 ASSERT(lbap != NULL); 20386 20387 SD_TRACE(SD_LOG_IO, un, 20388 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20389 20390 /* 20391 * First send a READ_CAPACITY_16 command to the target. 20392 * 20393 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 20394 * Medium Indicator bit is cleared. The address field must be 20395 * zero if the PMI bit is zero. 20396 */ 20397 bzero(&cdb, sizeof (cdb)); 20398 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20399 20400 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 20401 20402 ucmd_buf.uscsi_cdb = (char *)&cdb; 20403 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 20404 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 20405 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 20406 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20407 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20408 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20409 ucmd_buf.uscsi_timeout = 60; 20410 20411 /* 20412 * Read Capacity (16) is a Service Action In command. One 20413 * command byte (0x9E) is overloaded for multiple operations, 20414 * with the second CDB byte specifying the desired operation 20415 */ 20416 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 20417 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 20418 20419 /* 20420 * Fill in allocation length field 20421 */ 20422 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 20423 20424 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20425 UIO_SYSSPACE, path_flag); 20426 20427 switch (status) { 20428 case 0: 20429 /* Return failure if we did not get valid capacity data. */ 20430 if (ucmd_buf.uscsi_resid > 20) { 20431 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20432 "sd_send_scsi_READ_CAPACITY_16 received invalid " 20433 "capacity data"); 20434 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20435 return (EIO); 20436 } 20437 20438 /* 20439 * Read capacity and block size from the READ CAPACITY 16 data. 20440 * This data may be adjusted later due to device specific 20441 * issues. 20442 * 20443 * According to the SCSI spec, the READ CAPACITY 16 20444 * command returns the following: 20445 * 20446 * bytes 0-7: Maximum logical block address available. 20447 * (MSB in byte:0 & LSB in byte:7) 20448 * 20449 * bytes 8-11: Block length in bytes 20450 * (MSB in byte:8 & LSB in byte:11) 20451 * 20452 * byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT 20453 * 20454 * byte 14: 20455 * bit 7: Thin-Provisioning Enabled 20456 * bit 6: Thin-Provisioning Read Zeros 20457 */ 20458 capacity = BE_64(capacity16_buf[0]); 20459 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 20460 lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f; 20461 20462 un->un_thin_flags = 0; 20463 if (((uint8_t *)capacity16_buf)[14] & (1 << 7)) 20464 un->un_thin_flags |= SD_THIN_PROV_ENABLED; 20465 if (((uint8_t *)capacity16_buf)[14] & (1 << 6)) 20466 un->un_thin_flags |= SD_THIN_PROV_READ_ZEROS; 20467 20468 pbsize = lbasize << lbpb_exp; 20469 20470 /* 20471 * Done with capacity16_buf 20472 */ 20473 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20474 20475 /* 20476 * if the reported capacity is set to all 0xf's, then 20477 * this disk is too large. This could only happen with 20478 * a device that supports LBAs larger than 64 bits which 20479 * are not defined by any current T10 standards. 20480 */ 20481 if (capacity == 0xffffffffffffffff) { 20482 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20483 "disk is too large"); 20484 return (EIO); 20485 } 20486 break; /* Success! */ 20487 case EIO: 20488 switch (ucmd_buf.uscsi_status) { 20489 case STATUS_RESERVATION_CONFLICT: 20490 status = EACCES; 20491 break; 20492 case STATUS_CHECK: 20493 /* 20494 * Check condition; look for ASC/ASCQ of 0x04/0x01 20495 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20496 */ 20497 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20498 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20499 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20500 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20501 return (EAGAIN); 20502 } 20503 break; 20504 default: 20505 break; 20506 } 20507 /* FALLTHRU */ 20508 default: 20509 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20510 return (status); 20511 } 20512 20513 /* 20514 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20515 * (2352 and 0 are common) so for these devices always force the value 20516 * to 2048 as required by the ATAPI specs. 20517 */ 20518 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20519 lbasize = 2048; 20520 } 20521 20522 /* 20523 * Get the maximum LBA value from the READ CAPACITY 16 data. 20524 * Here we assume that the Partial Medium Indicator (PMI) bit 20525 * was cleared when issuing the command. This means that the LBA 20526 * returned from the device is the LBA of the last logical block 20527 * on the logical unit. The actual logical block count will be 20528 * this value plus one. 20529 */ 20530 capacity += 1; 20531 20532 /* 20533 * Currently, for removable media, the capacity is saved in terms 20534 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20535 */ 20536 if (un->un_f_has_removable_media) 20537 capacity *= (lbasize / un->un_sys_blocksize); 20538 20539 *capp = capacity; 20540 *lbap = lbasize; 20541 *psp = pbsize; 20542 20543 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 20544 "capacity:0x%llx lbasize:0x%x, pbsize: 0x%x\n", 20545 capacity, lbasize, pbsize); 20546 20547 if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) { 20548 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20549 "sd_send_scsi_READ_CAPACITY_16 received invalid value " 20550 "capacity %llu lbasize %d pbsize %d", capacity, lbasize); 20551 return (EIO); 20552 } 20553 20554 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20555 return (0); 20556 } 20557 20558 20559 /* 20560 * Function: sd_send_scsi_START_STOP_UNIT 20561 * 20562 * Description: Issue a scsi START STOP UNIT command to the target. 20563 * 20564 * Arguments: ssc - ssc contatins pointer to driver soft state (unit) 20565 * structure for this target. 20566 * pc_flag - SD_POWER_CONDITION 20567 * SD_START_STOP 20568 * flag - SD_TARGET_START 20569 * SD_TARGET_STOP 20570 * SD_TARGET_EJECT 20571 * SD_TARGET_CLOSE 20572 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20573 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20574 * to use the USCSI "direct" chain and bypass the normal 20575 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20576 * command is issued as part of an error recovery action. 20577 * 20578 * Return Code: 0 - Success 20579 * EIO - IO error 20580 * EACCES - Reservation conflict detected 20581 * ENXIO - Not Ready, medium not present 20582 * errno return code from sd_ssc_send() 20583 * 20584 * Context: Can sleep. 20585 */ 20586 20587 static int 20588 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag, 20589 int path_flag) 20590 { 20591 struct scsi_extended_sense sense_buf; 20592 union scsi_cdb cdb; 20593 struct uscsi_cmd ucmd_buf; 20594 int status; 20595 struct sd_lun *un; 20596 20597 ASSERT(ssc != NULL); 20598 un = ssc->ssc_un; 20599 ASSERT(un != NULL); 20600 ASSERT(!mutex_owned(SD_MUTEX(un))); 20601 20602 SD_TRACE(SD_LOG_IO, un, 20603 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 20604 20605 if (un->un_f_check_start_stop && 20606 (pc_flag == SD_START_STOP) && 20607 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 20608 (un->un_f_start_stop_supported != TRUE)) { 20609 return (0); 20610 } 20611 20612 /* 20613 * If we are performing an eject operation and 20614 * we receive any command other than SD_TARGET_EJECT 20615 * we should immediately return. 20616 */ 20617 if (flag != SD_TARGET_EJECT) { 20618 mutex_enter(SD_MUTEX(un)); 20619 if (un->un_f_ejecting == TRUE) { 20620 mutex_exit(SD_MUTEX(un)); 20621 return (EAGAIN); 20622 } 20623 mutex_exit(SD_MUTEX(un)); 20624 } 20625 20626 bzero(&cdb, sizeof (cdb)); 20627 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20628 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20629 20630 cdb.scc_cmd = SCMD_START_STOP; 20631 cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ? 20632 (uchar_t)(flag << 4) : (uchar_t)flag; 20633 20634 ucmd_buf.uscsi_cdb = (char *)&cdb; 20635 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20636 ucmd_buf.uscsi_bufaddr = NULL; 20637 ucmd_buf.uscsi_buflen = 0; 20638 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20639 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20640 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20641 ucmd_buf.uscsi_timeout = 200; 20642 20643 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20644 UIO_SYSSPACE, path_flag); 20645 20646 switch (status) { 20647 case 0: 20648 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20649 break; /* Success! */ 20650 case EIO: 20651 switch (ucmd_buf.uscsi_status) { 20652 case STATUS_RESERVATION_CONFLICT: 20653 status = EACCES; 20654 break; 20655 case STATUS_CHECK: 20656 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 20657 switch (scsi_sense_key( 20658 (uint8_t *)&sense_buf)) { 20659 case KEY_ILLEGAL_REQUEST: 20660 status = ENOTSUP; 20661 break; 20662 case KEY_NOT_READY: 20663 if (scsi_sense_asc( 20664 (uint8_t *)&sense_buf) 20665 == 0x3A) { 20666 status = ENXIO; 20667 } 20668 break; 20669 default: 20670 break; 20671 } 20672 } 20673 break; 20674 default: 20675 break; 20676 } 20677 break; 20678 default: 20679 break; 20680 } 20681 20682 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 20683 20684 return (status); 20685 } 20686 20687 20688 /* 20689 * Function: sd_start_stop_unit_callback 20690 * 20691 * Description: timeout(9F) callback to begin recovery process for a 20692 * device that has spun down. 20693 * 20694 * Arguments: arg - pointer to associated softstate struct. 20695 * 20696 * Context: Executes in a timeout(9F) thread context 20697 */ 20698 20699 static void 20700 sd_start_stop_unit_callback(void *arg) 20701 { 20702 struct sd_lun *un = arg; 20703 ASSERT(un != NULL); 20704 ASSERT(!mutex_owned(SD_MUTEX(un))); 20705 20706 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 20707 20708 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 20709 } 20710 20711 20712 /* 20713 * Function: sd_start_stop_unit_task 20714 * 20715 * Description: Recovery procedure when a drive is spun down. 20716 * 20717 * Arguments: arg - pointer to associated softstate struct. 20718 * 20719 * Context: Executes in a taskq() thread context 20720 */ 20721 20722 static void 20723 sd_start_stop_unit_task(void *arg) 20724 { 20725 struct sd_lun *un = arg; 20726 sd_ssc_t *ssc; 20727 int power_level; 20728 int rval; 20729 20730 ASSERT(un != NULL); 20731 ASSERT(!mutex_owned(SD_MUTEX(un))); 20732 20733 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 20734 20735 /* 20736 * Some unformatted drives report not ready error, no need to 20737 * restart if format has been initiated. 20738 */ 20739 mutex_enter(SD_MUTEX(un)); 20740 if (un->un_f_format_in_progress == TRUE) { 20741 mutex_exit(SD_MUTEX(un)); 20742 return; 20743 } 20744 mutex_exit(SD_MUTEX(un)); 20745 20746 ssc = sd_ssc_init(un); 20747 /* 20748 * When a START STOP command is issued from here, it is part of a 20749 * failure recovery operation and must be issued before any other 20750 * commands, including any pending retries. Thus it must be sent 20751 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 20752 * succeeds or not, we will start I/O after the attempt. 20753 * If power condition is supported and the current power level 20754 * is capable of performing I/O, we should set the power condition 20755 * to that level. Otherwise, set the power condition to ACTIVE. 20756 */ 20757 if (un->un_f_power_condition_supported) { 20758 mutex_enter(SD_MUTEX(un)); 20759 ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level)); 20760 power_level = sd_pwr_pc.ran_perf[un->un_power_level] 20761 > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE; 20762 mutex_exit(SD_MUTEX(un)); 20763 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 20764 sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY); 20765 } else { 20766 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 20767 SD_TARGET_START, SD_PATH_DIRECT_PRIORITY); 20768 } 20769 20770 if (rval != 0) 20771 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20772 sd_ssc_fini(ssc); 20773 /* 20774 * The above call blocks until the START_STOP_UNIT command completes. 20775 * Now that it has completed, we must re-try the original IO that 20776 * received the NOT READY condition in the first place. There are 20777 * three possible conditions here: 20778 * 20779 * (1) The original IO is on un_retry_bp. 20780 * (2) The original IO is on the regular wait queue, and un_retry_bp 20781 * is NULL. 20782 * (3) The original IO is on the regular wait queue, and un_retry_bp 20783 * points to some other, unrelated bp. 20784 * 20785 * For each case, we must call sd_start_cmds() with un_retry_bp 20786 * as the argument. If un_retry_bp is NULL, this will initiate 20787 * processing of the regular wait queue. If un_retry_bp is not NULL, 20788 * then this will process the bp on un_retry_bp. That may or may not 20789 * be the original IO, but that does not matter: the important thing 20790 * is to keep the IO processing going at this point. 20791 * 20792 * Note: This is a very specific error recovery sequence associated 20793 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 20794 * serialize the I/O with completion of the spin-up. 20795 */ 20796 mutex_enter(SD_MUTEX(un)); 20797 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 20798 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 20799 un, un->un_retry_bp); 20800 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 20801 sd_start_cmds(un, un->un_retry_bp); 20802 mutex_exit(SD_MUTEX(un)); 20803 20804 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 20805 } 20806 20807 20808 /* 20809 * Function: sd_send_scsi_INQUIRY 20810 * 20811 * Description: Issue the scsi INQUIRY command. 20812 * 20813 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20814 * structure for this target. 20815 * bufaddr 20816 * buflen 20817 * evpd 20818 * page_code 20819 * page_length 20820 * 20821 * Return Code: 0 - Success 20822 * errno return code from sd_ssc_send() 20823 * 20824 * Context: Can sleep. Does not return until command is completed. 20825 */ 20826 20827 static int 20828 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen, 20829 uchar_t evpd, uchar_t page_code, size_t *residp) 20830 { 20831 union scsi_cdb cdb; 20832 struct uscsi_cmd ucmd_buf; 20833 int status; 20834 struct sd_lun *un; 20835 20836 ASSERT(ssc != NULL); 20837 un = ssc->ssc_un; 20838 ASSERT(un != NULL); 20839 ASSERT(!mutex_owned(SD_MUTEX(un))); 20840 ASSERT(bufaddr != NULL); 20841 20842 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 20843 20844 bzero(&cdb, sizeof (cdb)); 20845 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20846 bzero(bufaddr, buflen); 20847 20848 cdb.scc_cmd = SCMD_INQUIRY; 20849 cdb.cdb_opaque[1] = evpd; 20850 cdb.cdb_opaque[2] = page_code; 20851 FORMG0COUNT(&cdb, buflen); 20852 20853 ucmd_buf.uscsi_cdb = (char *)&cdb; 20854 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20855 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20856 ucmd_buf.uscsi_buflen = buflen; 20857 ucmd_buf.uscsi_rqbuf = NULL; 20858 ucmd_buf.uscsi_rqlen = 0; 20859 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 20860 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 20861 20862 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20863 UIO_SYSSPACE, SD_PATH_DIRECT); 20864 20865 /* 20866 * Only handle status == 0, the upper-level caller 20867 * will put different assessment based on the context. 20868 */ 20869 if (status == 0) 20870 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20871 20872 if ((status == 0) && (residp != NULL)) { 20873 *residp = ucmd_buf.uscsi_resid; 20874 } 20875 20876 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 20877 20878 return (status); 20879 } 20880 20881 20882 /* 20883 * Function: sd_send_scsi_TEST_UNIT_READY 20884 * 20885 * Description: Issue the scsi TEST UNIT READY command. 20886 * This routine can be told to set the flag USCSI_DIAGNOSE to 20887 * prevent retrying failed commands. Use this when the intent 20888 * is either to check for device readiness, to clear a Unit 20889 * Attention, or to clear any outstanding sense data. 20890 * However under specific conditions the expected behavior 20891 * is for retries to bring a device ready, so use the flag 20892 * with caution. 20893 * 20894 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20895 * structure for this target. 20896 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 20897 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 20898 * 0: dont check for media present, do retries on cmd. 20899 * 20900 * Return Code: 0 - Success 20901 * EIO - IO error 20902 * EACCES - Reservation conflict detected 20903 * ENXIO - Not Ready, medium not present 20904 * errno return code from sd_ssc_send() 20905 * 20906 * Context: Can sleep. Does not return until command is completed. 20907 */ 20908 20909 static int 20910 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag) 20911 { 20912 struct scsi_extended_sense sense_buf; 20913 union scsi_cdb cdb; 20914 struct uscsi_cmd ucmd_buf; 20915 int status; 20916 struct sd_lun *un; 20917 20918 ASSERT(ssc != NULL); 20919 un = ssc->ssc_un; 20920 ASSERT(un != NULL); 20921 ASSERT(!mutex_owned(SD_MUTEX(un))); 20922 20923 SD_TRACE(SD_LOG_IO, un, 20924 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 20925 20926 /* 20927 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 20928 * timeouts when they receive a TUR and the queue is not empty. Check 20929 * the configuration flag set during attach (indicating the drive has 20930 * this firmware bug) and un_ncmds_in_transport before issuing the 20931 * TUR. If there are 20932 * pending commands return success, this is a bit arbitrary but is ok 20933 * for non-removables (i.e. the eliteI disks) and non-clustering 20934 * configurations. 20935 */ 20936 if (un->un_f_cfg_tur_check == TRUE) { 20937 mutex_enter(SD_MUTEX(un)); 20938 if (un->un_ncmds_in_transport != 0) { 20939 mutex_exit(SD_MUTEX(un)); 20940 return (0); 20941 } 20942 mutex_exit(SD_MUTEX(un)); 20943 } 20944 20945 bzero(&cdb, sizeof (cdb)); 20946 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20947 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20948 20949 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 20950 20951 ucmd_buf.uscsi_cdb = (char *)&cdb; 20952 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20953 ucmd_buf.uscsi_bufaddr = NULL; 20954 ucmd_buf.uscsi_buflen = 0; 20955 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20956 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20957 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20958 20959 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 20960 if ((flag & SD_DONT_RETRY_TUR) != 0) { 20961 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 20962 } 20963 ucmd_buf.uscsi_timeout = 60; 20964 20965 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20966 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 20967 SD_PATH_STANDARD)); 20968 20969 switch (status) { 20970 case 0: 20971 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20972 break; /* Success! */ 20973 case EIO: 20974 switch (ucmd_buf.uscsi_status) { 20975 case STATUS_RESERVATION_CONFLICT: 20976 status = EACCES; 20977 break; 20978 case STATUS_CHECK: 20979 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 20980 break; 20981 } 20982 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20983 (scsi_sense_key((uint8_t *)&sense_buf) == 20984 KEY_NOT_READY) && 20985 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 20986 status = ENXIO; 20987 } 20988 break; 20989 default: 20990 break; 20991 } 20992 break; 20993 default: 20994 break; 20995 } 20996 20997 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 20998 20999 return (status); 21000 } 21001 21002 /* 21003 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 21004 * 21005 * Description: Issue the scsi PERSISTENT RESERVE IN command. 21006 * 21007 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21008 * structure for this target. 21009 * 21010 * Return Code: 0 - Success 21011 * EACCES 21012 * ENOTSUP 21013 * errno return code from sd_ssc_send() 21014 * 21015 * Context: Can sleep. Does not return until command is completed. 21016 */ 21017 21018 static int 21019 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd, 21020 uint16_t data_len, uchar_t *data_bufp) 21021 { 21022 struct scsi_extended_sense sense_buf; 21023 union scsi_cdb cdb; 21024 struct uscsi_cmd ucmd_buf; 21025 int status; 21026 int no_caller_buf = FALSE; 21027 struct sd_lun *un; 21028 21029 ASSERT(ssc != NULL); 21030 un = ssc->ssc_un; 21031 ASSERT(un != NULL); 21032 ASSERT(!mutex_owned(SD_MUTEX(un))); 21033 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 21034 21035 SD_TRACE(SD_LOG_IO, un, 21036 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 21037 21038 bzero(&cdb, sizeof (cdb)); 21039 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21040 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21041 if (data_bufp == NULL) { 21042 /* Allocate a default buf if the caller did not give one */ 21043 ASSERT(data_len == 0); 21044 data_len = MHIOC_RESV_KEY_SIZE; 21045 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 21046 no_caller_buf = TRUE; 21047 } 21048 21049 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 21050 cdb.cdb_opaque[1] = usr_cmd; 21051 FORMG1COUNT(&cdb, data_len); 21052 21053 ucmd_buf.uscsi_cdb = (char *)&cdb; 21054 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21055 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 21056 ucmd_buf.uscsi_buflen = data_len; 21057 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21058 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21059 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21060 ucmd_buf.uscsi_timeout = 60; 21061 21062 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21063 UIO_SYSSPACE, SD_PATH_STANDARD); 21064 21065 switch (status) { 21066 case 0: 21067 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21068 21069 break; /* Success! */ 21070 case EIO: 21071 switch (ucmd_buf.uscsi_status) { 21072 case STATUS_RESERVATION_CONFLICT: 21073 status = EACCES; 21074 break; 21075 case STATUS_CHECK: 21076 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21077 (scsi_sense_key((uint8_t *)&sense_buf) == 21078 KEY_ILLEGAL_REQUEST)) { 21079 status = ENOTSUP; 21080 } 21081 break; 21082 default: 21083 break; 21084 } 21085 break; 21086 default: 21087 break; 21088 } 21089 21090 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 21091 21092 if (no_caller_buf == TRUE) { 21093 kmem_free(data_bufp, data_len); 21094 } 21095 21096 return (status); 21097 } 21098 21099 21100 /* 21101 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 21102 * 21103 * Description: This routine is the driver entry point for handling CD-ROM 21104 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 21105 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 21106 * device. 21107 * 21108 * Arguments: ssc - ssc contains un - pointer to soft state struct 21109 * for the target. 21110 * usr_cmd SCSI-3 reservation facility command (one of 21111 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 21112 * SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR) 21113 * usr_bufp - user provided pointer register, reserve descriptor or 21114 * preempt and abort structure (mhioc_register_t, 21115 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 21116 * 21117 * Return Code: 0 - Success 21118 * EACCES 21119 * ENOTSUP 21120 * errno return code from sd_ssc_send() 21121 * 21122 * Context: Can sleep. Does not return until command is completed. 21123 */ 21124 21125 static int 21126 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd, 21127 uchar_t *usr_bufp) 21128 { 21129 struct scsi_extended_sense sense_buf; 21130 union scsi_cdb cdb; 21131 struct uscsi_cmd ucmd_buf; 21132 int status; 21133 uchar_t data_len = sizeof (sd_prout_t); 21134 sd_prout_t *prp; 21135 struct sd_lun *un; 21136 21137 ASSERT(ssc != NULL); 21138 un = ssc->ssc_un; 21139 ASSERT(un != NULL); 21140 ASSERT(!mutex_owned(SD_MUTEX(un))); 21141 ASSERT(data_len == 24); /* required by scsi spec */ 21142 21143 SD_TRACE(SD_LOG_IO, un, 21144 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 21145 21146 if (usr_bufp == NULL) { 21147 return (EINVAL); 21148 } 21149 21150 bzero(&cdb, sizeof (cdb)); 21151 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21152 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21153 prp = kmem_zalloc(data_len, KM_SLEEP); 21154 21155 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 21156 cdb.cdb_opaque[1] = usr_cmd; 21157 FORMG1COUNT(&cdb, data_len); 21158 21159 ucmd_buf.uscsi_cdb = (char *)&cdb; 21160 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21161 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 21162 ucmd_buf.uscsi_buflen = data_len; 21163 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21164 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21165 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21166 ucmd_buf.uscsi_timeout = 60; 21167 21168 switch (usr_cmd) { 21169 case SD_SCSI3_REGISTER: { 21170 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 21171 21172 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21173 bcopy(ptr->newkey.key, prp->service_key, 21174 MHIOC_RESV_KEY_SIZE); 21175 prp->aptpl = ptr->aptpl; 21176 break; 21177 } 21178 case SD_SCSI3_CLEAR: { 21179 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 21180 21181 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21182 break; 21183 } 21184 case SD_SCSI3_RESERVE: 21185 case SD_SCSI3_RELEASE: { 21186 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 21187 21188 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21189 prp->scope_address = BE_32(ptr->scope_specific_addr); 21190 cdb.cdb_opaque[2] = ptr->type; 21191 break; 21192 } 21193 case SD_SCSI3_PREEMPTANDABORT: { 21194 mhioc_preemptandabort_t *ptr = 21195 (mhioc_preemptandabort_t *)usr_bufp; 21196 21197 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21198 bcopy(ptr->victim_key.key, prp->service_key, 21199 MHIOC_RESV_KEY_SIZE); 21200 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 21201 cdb.cdb_opaque[2] = ptr->resvdesc.type; 21202 ucmd_buf.uscsi_flags |= USCSI_HEAD; 21203 break; 21204 } 21205 case SD_SCSI3_REGISTERANDIGNOREKEY: 21206 { 21207 mhioc_registerandignorekey_t *ptr; 21208 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 21209 bcopy(ptr->newkey.key, 21210 prp->service_key, MHIOC_RESV_KEY_SIZE); 21211 prp->aptpl = ptr->aptpl; 21212 break; 21213 } 21214 default: 21215 ASSERT(FALSE); 21216 break; 21217 } 21218 21219 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21220 UIO_SYSSPACE, SD_PATH_STANDARD); 21221 21222 switch (status) { 21223 case 0: 21224 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21225 break; /* Success! */ 21226 case EIO: 21227 switch (ucmd_buf.uscsi_status) { 21228 case STATUS_RESERVATION_CONFLICT: 21229 status = EACCES; 21230 break; 21231 case STATUS_CHECK: 21232 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21233 (scsi_sense_key((uint8_t *)&sense_buf) == 21234 KEY_ILLEGAL_REQUEST)) { 21235 status = ENOTSUP; 21236 } 21237 break; 21238 default: 21239 break; 21240 } 21241 break; 21242 default: 21243 break; 21244 } 21245 21246 kmem_free(prp, data_len); 21247 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 21248 return (status); 21249 } 21250 21251 21252 /* 21253 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 21254 * 21255 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 21256 * 21257 * Arguments: un - pointer to the target's soft state struct 21258 * dkc - pointer to the callback structure 21259 * 21260 * Return Code: 0 - success 21261 * errno-type error code 21262 * 21263 * Context: kernel thread context only. 21264 * 21265 * _______________________________________________________________ 21266 * | dkc_flag & | dkc_callback | DKIOCFLUSHWRITECACHE | 21267 * |FLUSH_VOLATILE| | operation | 21268 * |______________|______________|_________________________________| 21269 * | 0 | NULL | Synchronous flush on both | 21270 * | | | volatile and non-volatile cache | 21271 * |______________|______________|_________________________________| 21272 * | 1 | NULL | Synchronous flush on volatile | 21273 * | | | cache; disk drivers may suppress| 21274 * | | | flush if disk table indicates | 21275 * | | | non-volatile cache | 21276 * |______________|______________|_________________________________| 21277 * | 0 | !NULL | Asynchronous flush on both | 21278 * | | | volatile and non-volatile cache;| 21279 * |______________|______________|_________________________________| 21280 * | 1 | !NULL | Asynchronous flush on volatile | 21281 * | | | cache; disk drivers may suppress| 21282 * | | | flush if disk table indicates | 21283 * | | | non-volatile cache | 21284 * |______________|______________|_________________________________| 21285 * 21286 */ 21287 21288 static int 21289 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 21290 { 21291 struct sd_uscsi_info *uip; 21292 struct uscsi_cmd *uscmd; 21293 union scsi_cdb *cdb; 21294 struct buf *bp; 21295 int rval = 0; 21296 int is_async; 21297 21298 SD_TRACE(SD_LOG_IO, un, 21299 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 21300 21301 ASSERT(un != NULL); 21302 ASSERT(!mutex_owned(SD_MUTEX(un))); 21303 21304 if (dkc == NULL || dkc->dkc_callback == NULL) { 21305 is_async = FALSE; 21306 } else { 21307 is_async = TRUE; 21308 } 21309 21310 mutex_enter(SD_MUTEX(un)); 21311 /* check whether cache flush should be suppressed */ 21312 if (un->un_f_suppress_cache_flush == TRUE) { 21313 mutex_exit(SD_MUTEX(un)); 21314 /* 21315 * suppress the cache flush if the device is told to do 21316 * so by sd.conf or disk table 21317 */ 21318 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \ 21319 skip the cache flush since suppress_cache_flush is %d!\n", 21320 un->un_f_suppress_cache_flush); 21321 21322 if (is_async == TRUE) { 21323 /* invoke callback for asynchronous flush */ 21324 (*dkc->dkc_callback)(dkc->dkc_cookie, 0); 21325 } 21326 return (rval); 21327 } 21328 mutex_exit(SD_MUTEX(un)); 21329 21330 /* 21331 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be 21332 * set properly 21333 */ 21334 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 21335 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 21336 21337 mutex_enter(SD_MUTEX(un)); 21338 if (dkc != NULL && un->un_f_sync_nv_supported && 21339 (dkc->dkc_flag & FLUSH_VOLATILE)) { 21340 /* 21341 * if the device supports SYNC_NV bit, turn on 21342 * the SYNC_NV bit to only flush volatile cache 21343 */ 21344 cdb->cdb_un.tag |= SD_SYNC_NV_BIT; 21345 } 21346 mutex_exit(SD_MUTEX(un)); 21347 21348 /* 21349 * First get some memory for the uscsi_cmd struct and cdb 21350 * and initialize for SYNCHRONIZE_CACHE cmd. 21351 */ 21352 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 21353 uscmd->uscsi_cdblen = CDB_GROUP1; 21354 uscmd->uscsi_cdb = (caddr_t)cdb; 21355 uscmd->uscsi_bufaddr = NULL; 21356 uscmd->uscsi_buflen = 0; 21357 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 21358 uscmd->uscsi_rqlen = SENSE_LENGTH; 21359 uscmd->uscsi_rqresid = SENSE_LENGTH; 21360 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 21361 uscmd->uscsi_timeout = sd_io_time; 21362 21363 /* 21364 * Allocate an sd_uscsi_info struct and fill it with the info 21365 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 21366 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 21367 * since we allocate the buf here in this function, we do not 21368 * need to preserve the prior contents of b_private. 21369 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 21370 */ 21371 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 21372 uip->ui_flags = SD_PATH_DIRECT; 21373 uip->ui_cmdp = uscmd; 21374 21375 bp = getrbuf(KM_SLEEP); 21376 bp->b_private = uip; 21377 21378 /* 21379 * Setup buffer to carry uscsi request. 21380 */ 21381 bp->b_flags = B_BUSY; 21382 bp->b_bcount = 0; 21383 bp->b_blkno = 0; 21384 21385 if (is_async == TRUE) { 21386 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 21387 uip->ui_dkc = *dkc; 21388 } 21389 21390 bp->b_edev = SD_GET_DEV(un); 21391 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 21392 21393 /* 21394 * Unset un_f_sync_cache_required flag 21395 */ 21396 mutex_enter(SD_MUTEX(un)); 21397 un->un_f_sync_cache_required = FALSE; 21398 mutex_exit(SD_MUTEX(un)); 21399 21400 (void) sd_uscsi_strategy(bp); 21401 21402 /* 21403 * If synchronous request, wait for completion 21404 * If async just return and let b_iodone callback 21405 * cleanup. 21406 * NOTE: On return, u_ncmds_in_driver will be decremented, 21407 * but it was also incremented in sd_uscsi_strategy(), so 21408 * we should be ok. 21409 */ 21410 if (is_async == FALSE) { 21411 (void) biowait(bp); 21412 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 21413 } 21414 21415 return (rval); 21416 } 21417 21418 21419 static int 21420 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 21421 { 21422 struct sd_uscsi_info *uip; 21423 struct uscsi_cmd *uscmd; 21424 uint8_t *sense_buf; 21425 struct sd_lun *un; 21426 int status; 21427 union scsi_cdb *cdb; 21428 21429 uip = (struct sd_uscsi_info *)(bp->b_private); 21430 ASSERT(uip != NULL); 21431 21432 uscmd = uip->ui_cmdp; 21433 ASSERT(uscmd != NULL); 21434 21435 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 21436 ASSERT(sense_buf != NULL); 21437 21438 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 21439 ASSERT(un != NULL); 21440 21441 cdb = (union scsi_cdb *)uscmd->uscsi_cdb; 21442 21443 status = geterror(bp); 21444 switch (status) { 21445 case 0: 21446 break; /* Success! */ 21447 case EIO: 21448 switch (uscmd->uscsi_status) { 21449 case STATUS_RESERVATION_CONFLICT: 21450 /* Ignore reservation conflict */ 21451 status = 0; 21452 goto done; 21453 21454 case STATUS_CHECK: 21455 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 21456 (scsi_sense_key(sense_buf) == 21457 KEY_ILLEGAL_REQUEST)) { 21458 /* Ignore Illegal Request error */ 21459 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) { 21460 mutex_enter(SD_MUTEX(un)); 21461 un->un_f_sync_nv_supported = FALSE; 21462 mutex_exit(SD_MUTEX(un)); 21463 status = 0; 21464 SD_TRACE(SD_LOG_IO, un, 21465 "un_f_sync_nv_supported \ 21466 is set to false.\n"); 21467 goto done; 21468 } 21469 21470 mutex_enter(SD_MUTEX(un)); 21471 un->un_f_sync_cache_supported = FALSE; 21472 mutex_exit(SD_MUTEX(un)); 21473 SD_TRACE(SD_LOG_IO, un, 21474 "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \ 21475 un_f_sync_cache_supported set to false \ 21476 with asc = %x, ascq = %x\n", 21477 scsi_sense_asc(sense_buf), 21478 scsi_sense_ascq(sense_buf)); 21479 status = ENOTSUP; 21480 goto done; 21481 } 21482 break; 21483 default: 21484 break; 21485 } 21486 /* FALLTHRU */ 21487 default: 21488 /* 21489 * Turn on the un_f_sync_cache_required flag 21490 * since the SYNC CACHE command failed 21491 */ 21492 mutex_enter(SD_MUTEX(un)); 21493 un->un_f_sync_cache_required = TRUE; 21494 mutex_exit(SD_MUTEX(un)); 21495 21496 /* 21497 * Don't log an error message if this device 21498 * has removable media. 21499 */ 21500 if (!un->un_f_has_removable_media) { 21501 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 21502 "SYNCHRONIZE CACHE command failed (%d)\n", status); 21503 } 21504 break; 21505 } 21506 21507 done: 21508 if (uip->ui_dkc.dkc_callback != NULL) { 21509 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 21510 } 21511 21512 ASSERT((bp->b_flags & B_REMAPPED) == 0); 21513 freerbuf(bp); 21514 kmem_free(uip, sizeof (struct sd_uscsi_info)); 21515 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 21516 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 21517 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 21518 21519 return (status); 21520 } 21521 21522 /* 21523 * Issues a single SCSI UNMAP command with a prepared UNMAP parameter list. 21524 * Returns zero on success, or the non-zero command error code on failure. 21525 */ 21526 static int 21527 sd_send_scsi_UNMAP_issue_one(sd_ssc_t *ssc, unmap_param_hdr_t *uph, 21528 uint64_t num_descr, uint64_t bytes) 21529 { 21530 struct sd_lun *un = ssc->ssc_un; 21531 struct scsi_extended_sense sense_buf; 21532 union scsi_cdb cdb; 21533 struct uscsi_cmd ucmd_buf; 21534 int status; 21535 const uint64_t param_size = sizeof (unmap_param_hdr_t) + 21536 num_descr * sizeof (unmap_blk_descr_t); 21537 21538 ASSERT3U(param_size - 2, <=, UINT16_MAX); 21539 uph->uph_data_len = BE_16(param_size - 2); 21540 uph->uph_descr_data_len = BE_16(param_size - 8); 21541 21542 bzero(&cdb, sizeof (cdb)); 21543 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21544 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21545 21546 cdb.scc_cmd = SCMD_UNMAP; 21547 FORMG1COUNT(&cdb, param_size); 21548 21549 ucmd_buf.uscsi_cdb = (char *)&cdb; 21550 ucmd_buf.uscsi_cdblen = (uchar_t)CDB_GROUP1; 21551 ucmd_buf.uscsi_bufaddr = (caddr_t)uph; 21552 ucmd_buf.uscsi_buflen = param_size; 21553 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21554 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21555 ucmd_buf.uscsi_flags = USCSI_WRITE | USCSI_RQENABLE | USCSI_SILENT; 21556 ucmd_buf.uscsi_timeout = un->un_cmd_timeout; 21557 21558 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, UIO_SYSSPACE, 21559 SD_PATH_STANDARD); 21560 21561 switch (status) { 21562 case 0: 21563 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21564 21565 if (un->un_unmapstats) { 21566 atomic_inc_64(&un->un_unmapstats->us_cmds.value.ui64); 21567 atomic_add_64(&un->un_unmapstats->us_extents.value.ui64, 21568 num_descr); 21569 atomic_add_64(&un->un_unmapstats->us_bytes.value.ui64, 21570 bytes); 21571 } 21572 break; /* Success! */ 21573 case EIO: 21574 if (un->un_unmapstats) 21575 atomic_inc_64(&un->un_unmapstats->us_errs.value.ui64); 21576 switch (ucmd_buf.uscsi_status) { 21577 case STATUS_RESERVATION_CONFLICT: 21578 status = EACCES; 21579 break; 21580 default: 21581 break; 21582 } 21583 break; 21584 default: 21585 if (un->un_unmapstats) 21586 atomic_inc_64(&un->un_unmapstats->us_errs.value.ui64); 21587 break; 21588 } 21589 21590 return (status); 21591 } 21592 21593 /* 21594 * Returns a pointer to the i'th block descriptor inside an UNMAP param list. 21595 */ 21596 static inline unmap_blk_descr_t * 21597 UNMAP_blk_descr_i(void *buf, size_t i) 21598 { 21599 return ((unmap_blk_descr_t *)((uintptr_t)buf + 21600 sizeof (unmap_param_hdr_t) + (i * sizeof (unmap_blk_descr_t)))); 21601 } 21602 21603 /* 21604 * Takes the list of extents from sd_send_scsi_UNMAP, chops it up, prepares 21605 * UNMAP block descriptors and issues individual SCSI UNMAP commands. While 21606 * doing so we consult the block limits to determine at most how many 21607 * extents and LBAs we can UNMAP in one command. 21608 * If a command fails for whatever, reason, extent list processing is aborted 21609 * and the failed command's status is returned. Otherwise returns 0 on 21610 * success. 21611 */ 21612 static int 21613 sd_send_scsi_UNMAP_issue(dev_t dev, sd_ssc_t *ssc, const dkioc_free_list_t *dfl) 21614 { 21615 struct sd_lun *un = ssc->ssc_un; 21616 unmap_param_hdr_t *uph; 21617 sd_blk_limits_t *lim = &un->un_blk_lim; 21618 int rval = 0; 21619 int partition; 21620 /* partition offset & length in system blocks */ 21621 diskaddr_t part_off_sysblks = 0, part_len_sysblks = 0; 21622 uint64_t part_off, part_len; 21623 uint64_t descr_cnt_lim, byte_cnt_lim; 21624 uint64_t descr_issued = 0, bytes_issued = 0; 21625 21626 uph = kmem_zalloc(SD_UNMAP_PARAM_LIST_MAXSZ, KM_SLEEP); 21627 21628 partition = SDPART(dev); 21629 rval = cmlb_partinfo(un->un_cmlbhandle, partition, &part_len_sysblks, 21630 &part_off_sysblks, NULL, NULL, (void *)SD_PATH_DIRECT); 21631 if (rval != 0) 21632 goto out; 21633 part_off = SD_SYSBLOCKS2BYTES(part_off_sysblks); 21634 part_len = SD_SYSBLOCKS2BYTES(part_len_sysblks); 21635 21636 ASSERT(un->un_blk_lim.lim_max_unmap_lba_cnt != 0); 21637 ASSERT(un->un_blk_lim.lim_max_unmap_descr_cnt != 0); 21638 /* Spec says 0xffffffff are special values, so compute maximums. */ 21639 byte_cnt_lim = lim->lim_max_unmap_lba_cnt < UINT32_MAX ? 21640 (uint64_t)lim->lim_max_unmap_lba_cnt * un->un_tgt_blocksize : 21641 UINT64_MAX; 21642 descr_cnt_lim = MIN(lim->lim_max_unmap_descr_cnt, SD_UNMAP_MAX_DESCR); 21643 21644 if (dfl->dfl_offset >= part_len) { 21645 rval = SET_ERROR(EINVAL); 21646 goto out; 21647 } 21648 21649 for (size_t i = 0; i < dfl->dfl_num_exts; i++) { 21650 const dkioc_free_list_ext_t *ext = &dfl->dfl_exts[i]; 21651 uint64_t ext_start = ext->dfle_start; 21652 uint64_t ext_length = ext->dfle_length; 21653 21654 while (ext_length > 0) { 21655 unmap_blk_descr_t *ubd; 21656 /* Respect device limit on LBA count per command */ 21657 uint64_t len = MIN(MIN(ext_length, byte_cnt_lim - 21658 bytes_issued), SD_TGTBLOCKS2BYTES(un, UINT32_MAX)); 21659 21660 /* check partition limits */ 21661 if (ext_start >= part_len || 21662 ext_start + len < ext_start || 21663 dfl->dfl_offset + ext_start + len < 21664 dfl->dfl_offset || 21665 dfl->dfl_offset + ext_start + len > part_len) { 21666 rval = SET_ERROR(EINVAL); 21667 goto out; 21668 } 21669 21670 ASSERT3U(descr_issued, <, descr_cnt_lim); 21671 ASSERT3U(bytes_issued, <, byte_cnt_lim); 21672 ubd = UNMAP_blk_descr_i(uph, descr_issued); 21673 21674 /* adjust in-partition addresses to be device-global */ 21675 ubd->ubd_lba = BE_64(SD_BYTES2TGTBLOCKS(un, 21676 dfl->dfl_offset + ext_start + part_off)); 21677 ubd->ubd_lba_cnt = BE_32(SD_BYTES2TGTBLOCKS(un, len)); 21678 21679 descr_issued++; 21680 bytes_issued += len; 21681 21682 /* Issue command when device limits reached */ 21683 if (descr_issued == descr_cnt_lim || 21684 bytes_issued == byte_cnt_lim) { 21685 rval = sd_send_scsi_UNMAP_issue_one(ssc, uph, 21686 descr_issued, bytes_issued); 21687 if (rval != 0) 21688 goto out; 21689 descr_issued = 0; 21690 bytes_issued = 0; 21691 } 21692 21693 ext_start += len; 21694 ext_length -= len; 21695 } 21696 } 21697 21698 if (descr_issued > 0) { 21699 /* issue last command */ 21700 rval = sd_send_scsi_UNMAP_issue_one(ssc, uph, descr_issued, 21701 bytes_issued); 21702 } 21703 21704 out: 21705 kmem_free(uph, SD_UNMAP_PARAM_LIST_MAXSZ); 21706 return (rval); 21707 } 21708 21709 /* 21710 * Issues one or several UNMAP commands based on a list of extents to be 21711 * unmapped. The internal multi-command processing is hidden, as the exact 21712 * number of commands and extents per command is limited by both SCSI 21713 * command syntax and device limits (as expressed in the SCSI Block Limits 21714 * VPD page and un_blk_lim in struct sd_lun). 21715 * Returns zero on success, or the error code of the first failed SCSI UNMAP 21716 * command. 21717 */ 21718 static int 21719 sd_send_scsi_UNMAP(dev_t dev, sd_ssc_t *ssc, dkioc_free_list_t *dfl, int flag) 21720 { 21721 struct sd_lun *un = ssc->ssc_un; 21722 int rval = 0; 21723 21724 ASSERT(!mutex_owned(SD_MUTEX(un))); 21725 ASSERT(dfl != NULL); 21726 21727 /* Per spec, any of these conditions signals lack of UNMAP support. */ 21728 if (!(un->un_thin_flags & SD_THIN_PROV_ENABLED) || 21729 un->un_blk_lim.lim_max_unmap_descr_cnt == 0 || 21730 un->un_blk_lim.lim_max_unmap_lba_cnt == 0) { 21731 return (SET_ERROR(ENOTSUP)); 21732 } 21733 21734 /* For userspace calls we must copy in. */ 21735 if (!(flag & FKIOCTL)) { 21736 int err = dfl_copyin(dfl, &dfl, flag, KM_SLEEP); 21737 if (err != 0) 21738 return (err); 21739 } else if (dfl->dfl_num_exts > DFL_COPYIN_MAX_EXTS) { 21740 ASSERT3U(dfl->dfl_num_exts, <=, DFL_COPYIN_MAX_EXTS); 21741 return (SET_ERROR(EINVAL)); 21742 } 21743 21744 rval = sd_send_scsi_UNMAP_issue(dev, ssc, dfl); 21745 21746 if (!(flag & FKIOCTL)) { 21747 dfl_free(dfl); 21748 dfl = NULL; 21749 } 21750 21751 return (rval); 21752 } 21753 21754 /* 21755 * Function: sd_send_scsi_GET_CONFIGURATION 21756 * 21757 * Description: Issues the get configuration command to the device. 21758 * Called from sd_check_for_writable_cd & sd_get_media_info 21759 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 21760 * Arguments: ssc 21761 * ucmdbuf 21762 * rqbuf 21763 * rqbuflen 21764 * bufaddr 21765 * buflen 21766 * path_flag 21767 * 21768 * Return Code: 0 - Success 21769 * errno return code from sd_ssc_send() 21770 * 21771 * Context: Can sleep. Does not return until command is completed. 21772 * 21773 */ 21774 21775 static int 21776 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 21777 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 21778 int path_flag) 21779 { 21780 char cdb[CDB_GROUP1]; 21781 int status; 21782 struct sd_lun *un; 21783 21784 ASSERT(ssc != NULL); 21785 un = ssc->ssc_un; 21786 ASSERT(un != NULL); 21787 ASSERT(!mutex_owned(SD_MUTEX(un))); 21788 ASSERT(bufaddr != NULL); 21789 ASSERT(ucmdbuf != NULL); 21790 ASSERT(rqbuf != NULL); 21791 21792 SD_TRACE(SD_LOG_IO, un, 21793 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 21794 21795 bzero(cdb, sizeof (cdb)); 21796 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21797 bzero(rqbuf, rqbuflen); 21798 bzero(bufaddr, buflen); 21799 21800 /* 21801 * Set up cdb field for the get configuration command. 21802 */ 21803 cdb[0] = SCMD_GET_CONFIGURATION; 21804 cdb[1] = 0x02; /* Requested Type */ 21805 cdb[8] = SD_PROFILE_HEADER_LEN; 21806 ucmdbuf->uscsi_cdb = cdb; 21807 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21808 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21809 ucmdbuf->uscsi_buflen = buflen; 21810 ucmdbuf->uscsi_timeout = sd_io_time; 21811 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21812 ucmdbuf->uscsi_rqlen = rqbuflen; 21813 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21814 21815 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21816 UIO_SYSSPACE, path_flag); 21817 21818 switch (status) { 21819 case 0: 21820 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21821 break; /* Success! */ 21822 case EIO: 21823 switch (ucmdbuf->uscsi_status) { 21824 case STATUS_RESERVATION_CONFLICT: 21825 status = EACCES; 21826 break; 21827 default: 21828 break; 21829 } 21830 break; 21831 default: 21832 break; 21833 } 21834 21835 if (status == 0) { 21836 SD_DUMP_MEMORY(un, SD_LOG_IO, 21837 "sd_send_scsi_GET_CONFIGURATION: data", 21838 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21839 } 21840 21841 SD_TRACE(SD_LOG_IO, un, 21842 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 21843 21844 return (status); 21845 } 21846 21847 /* 21848 * Function: sd_send_scsi_feature_GET_CONFIGURATION 21849 * 21850 * Description: Issues the get configuration command to the device to 21851 * retrieve a specific feature. Called from 21852 * sd_check_for_writable_cd & sd_set_mmc_caps. 21853 * Arguments: ssc 21854 * ucmdbuf 21855 * rqbuf 21856 * rqbuflen 21857 * bufaddr 21858 * buflen 21859 * feature 21860 * 21861 * Return Code: 0 - Success 21862 * errno return code from sd_ssc_send() 21863 * 21864 * Context: Can sleep. Does not return until command is completed. 21865 * 21866 */ 21867 static int 21868 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 21869 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 21870 char feature, int path_flag) 21871 { 21872 char cdb[CDB_GROUP1]; 21873 int status; 21874 struct sd_lun *un; 21875 21876 ASSERT(ssc != NULL); 21877 un = ssc->ssc_un; 21878 ASSERT(un != NULL); 21879 ASSERT(!mutex_owned(SD_MUTEX(un))); 21880 ASSERT(bufaddr != NULL); 21881 ASSERT(ucmdbuf != NULL); 21882 ASSERT(rqbuf != NULL); 21883 21884 SD_TRACE(SD_LOG_IO, un, 21885 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 21886 21887 bzero(cdb, sizeof (cdb)); 21888 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21889 bzero(rqbuf, rqbuflen); 21890 bzero(bufaddr, buflen); 21891 21892 /* 21893 * Set up cdb field for the get configuration command. 21894 */ 21895 cdb[0] = SCMD_GET_CONFIGURATION; 21896 cdb[1] = 0x02; /* Requested Type */ 21897 cdb[3] = feature; 21898 cdb[8] = buflen; 21899 ucmdbuf->uscsi_cdb = cdb; 21900 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21901 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21902 ucmdbuf->uscsi_buflen = buflen; 21903 ucmdbuf->uscsi_timeout = sd_io_time; 21904 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21905 ucmdbuf->uscsi_rqlen = rqbuflen; 21906 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21907 21908 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21909 UIO_SYSSPACE, path_flag); 21910 21911 switch (status) { 21912 case 0: 21913 21914 break; /* Success! */ 21915 case EIO: 21916 switch (ucmdbuf->uscsi_status) { 21917 case STATUS_RESERVATION_CONFLICT: 21918 status = EACCES; 21919 break; 21920 default: 21921 break; 21922 } 21923 break; 21924 default: 21925 break; 21926 } 21927 21928 if (status == 0) { 21929 SD_DUMP_MEMORY(un, SD_LOG_IO, 21930 "sd_send_scsi_feature_GET_CONFIGURATION: data", 21931 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21932 } 21933 21934 SD_TRACE(SD_LOG_IO, un, 21935 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 21936 21937 return (status); 21938 } 21939 21940 21941 /* 21942 * Function: sd_send_scsi_MODE_SENSE 21943 * 21944 * Description: Utility function for issuing a scsi MODE SENSE command. 21945 * Note: This routine uses a consistent implementation for Group0, 21946 * Group1, and Group2 commands across all platforms. ATAPI devices 21947 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21948 * 21949 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21950 * structure for this target. 21951 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21952 * CDB_GROUP[1|2] (10 byte). 21953 * bufaddr - buffer for page data retrieved from the target. 21954 * buflen - size of page to be retrieved. 21955 * page_code - page code of data to be retrieved from the target. 21956 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21957 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21958 * to use the USCSI "direct" chain and bypass the normal 21959 * command waitq. 21960 * 21961 * Return Code: 0 - Success 21962 * errno return code from sd_ssc_send() 21963 * 21964 * Context: Can sleep. Does not return until command is completed. 21965 */ 21966 21967 static int 21968 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21969 size_t buflen, uchar_t page_code, int path_flag) 21970 { 21971 struct scsi_extended_sense sense_buf; 21972 union scsi_cdb cdb; 21973 struct uscsi_cmd ucmd_buf; 21974 int status; 21975 int headlen; 21976 struct sd_lun *un; 21977 21978 ASSERT(ssc != NULL); 21979 un = ssc->ssc_un; 21980 ASSERT(un != NULL); 21981 ASSERT(!mutex_owned(SD_MUTEX(un))); 21982 ASSERT(bufaddr != NULL); 21983 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21984 (cdbsize == CDB_GROUP2)); 21985 21986 SD_TRACE(SD_LOG_IO, un, 21987 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 21988 21989 bzero(&cdb, sizeof (cdb)); 21990 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21991 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21992 bzero(bufaddr, buflen); 21993 21994 if (cdbsize == CDB_GROUP0) { 21995 cdb.scc_cmd = SCMD_MODE_SENSE; 21996 cdb.cdb_opaque[2] = page_code; 21997 FORMG0COUNT(&cdb, buflen); 21998 headlen = MODE_HEADER_LENGTH; 21999 } else { 22000 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 22001 cdb.cdb_opaque[2] = page_code; 22002 FORMG1COUNT(&cdb, buflen); 22003 headlen = MODE_HEADER_LENGTH_GRP2; 22004 } 22005 22006 ASSERT(headlen <= buflen); 22007 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 22008 22009 ucmd_buf.uscsi_cdb = (char *)&cdb; 22010 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 22011 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 22012 ucmd_buf.uscsi_buflen = buflen; 22013 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 22014 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 22015 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 22016 ucmd_buf.uscsi_timeout = 60; 22017 22018 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 22019 UIO_SYSSPACE, path_flag); 22020 22021 switch (status) { 22022 case 0: 22023 /* 22024 * sr_check_wp() uses 0x3f page code and check the header of 22025 * mode page to determine if target device is write-protected. 22026 * But some USB devices return 0 bytes for 0x3f page code. For 22027 * this case, make sure that mode page header is returned at 22028 * least. 22029 */ 22030 if (buflen - ucmd_buf.uscsi_resid < headlen) { 22031 status = EIO; 22032 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 22033 "mode page header is not returned"); 22034 } 22035 break; /* Success! */ 22036 case EIO: 22037 switch (ucmd_buf.uscsi_status) { 22038 case STATUS_RESERVATION_CONFLICT: 22039 status = EACCES; 22040 break; 22041 default: 22042 break; 22043 } 22044 break; 22045 default: 22046 break; 22047 } 22048 22049 if (status == 0) { 22050 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 22051 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 22052 } 22053 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 22054 22055 return (status); 22056 } 22057 22058 22059 /* 22060 * Function: sd_send_scsi_MODE_SELECT 22061 * 22062 * Description: Utility function for issuing a scsi MODE SELECT command. 22063 * Note: This routine uses a consistent implementation for Group0, 22064 * Group1, and Group2 commands across all platforms. ATAPI devices 22065 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 22066 * 22067 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 22068 * structure for this target. 22069 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 22070 * CDB_GROUP[1|2] (10 byte). 22071 * bufaddr - buffer for page data retrieved from the target. 22072 * buflen - size of page to be retrieved. 22073 * save_page - boolean to determin if SP bit should be set. 22074 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 22075 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 22076 * to use the USCSI "direct" chain and bypass the normal 22077 * command waitq. 22078 * 22079 * Return Code: 0 - Success 22080 * errno return code from sd_ssc_send() 22081 * 22082 * Context: Can sleep. Does not return until command is completed. 22083 */ 22084 22085 static int 22086 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 22087 size_t buflen, uchar_t save_page, int path_flag) 22088 { 22089 struct scsi_extended_sense sense_buf; 22090 union scsi_cdb cdb; 22091 struct uscsi_cmd ucmd_buf; 22092 int status; 22093 struct sd_lun *un; 22094 22095 ASSERT(ssc != NULL); 22096 un = ssc->ssc_un; 22097 ASSERT(un != NULL); 22098 ASSERT(!mutex_owned(SD_MUTEX(un))); 22099 ASSERT(bufaddr != NULL); 22100 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 22101 (cdbsize == CDB_GROUP2)); 22102 22103 SD_TRACE(SD_LOG_IO, un, 22104 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 22105 22106 bzero(&cdb, sizeof (cdb)); 22107 bzero(&ucmd_buf, sizeof (ucmd_buf)); 22108 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 22109 22110 /* Set the PF bit for many third party drives */ 22111 cdb.cdb_opaque[1] = 0x10; 22112 22113 /* Set the savepage(SP) bit if given */ 22114 if (save_page == SD_SAVE_PAGE) { 22115 cdb.cdb_opaque[1] |= 0x01; 22116 } 22117 22118 if (cdbsize == CDB_GROUP0) { 22119 cdb.scc_cmd = SCMD_MODE_SELECT; 22120 FORMG0COUNT(&cdb, buflen); 22121 } else { 22122 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 22123 FORMG1COUNT(&cdb, buflen); 22124 } 22125 22126 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 22127 22128 ucmd_buf.uscsi_cdb = (char *)&cdb; 22129 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 22130 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 22131 ucmd_buf.uscsi_buflen = buflen; 22132 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 22133 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 22134 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 22135 ucmd_buf.uscsi_timeout = 60; 22136 22137 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 22138 UIO_SYSSPACE, path_flag); 22139 22140 switch (status) { 22141 case 0: 22142 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22143 break; /* Success! */ 22144 case EIO: 22145 switch (ucmd_buf.uscsi_status) { 22146 case STATUS_RESERVATION_CONFLICT: 22147 status = EACCES; 22148 break; 22149 default: 22150 break; 22151 } 22152 break; 22153 default: 22154 break; 22155 } 22156 22157 if (status == 0) { 22158 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 22159 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 22160 } 22161 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 22162 22163 return (status); 22164 } 22165 22166 22167 /* 22168 * Function: sd_send_scsi_RDWR 22169 * 22170 * Description: Issue a scsi READ or WRITE command with the given parameters. 22171 * 22172 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 22173 * structure for this target. 22174 * cmd: SCMD_READ or SCMD_WRITE 22175 * bufaddr: Address of caller's buffer to receive the RDWR data 22176 * buflen: Length of caller's buffer receive the RDWR data. 22177 * start_block: Block number for the start of the RDWR operation. 22178 * (Assumes target-native block size.) 22179 * residp: Pointer to variable to receive the redisual of the 22180 * RDWR operation (may be NULL of no residual requested). 22181 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 22182 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 22183 * to use the USCSI "direct" chain and bypass the normal 22184 * command waitq. 22185 * 22186 * Return Code: 0 - Success 22187 * errno return code from sd_ssc_send() 22188 * 22189 * Context: Can sleep. Does not return until command is completed. 22190 */ 22191 22192 static int 22193 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 22194 size_t buflen, daddr_t start_block, int path_flag) 22195 { 22196 struct scsi_extended_sense sense_buf; 22197 union scsi_cdb cdb; 22198 struct uscsi_cmd ucmd_buf; 22199 uint32_t block_count; 22200 int status; 22201 int cdbsize; 22202 uchar_t flag; 22203 struct sd_lun *un; 22204 22205 ASSERT(ssc != NULL); 22206 un = ssc->ssc_un; 22207 ASSERT(un != NULL); 22208 ASSERT(!mutex_owned(SD_MUTEX(un))); 22209 ASSERT(bufaddr != NULL); 22210 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 22211 22212 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 22213 22214 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 22215 return (EINVAL); 22216 } 22217 22218 mutex_enter(SD_MUTEX(un)); 22219 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 22220 mutex_exit(SD_MUTEX(un)); 22221 22222 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 22223 22224 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 22225 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 22226 bufaddr, buflen, start_block, block_count); 22227 22228 bzero(&cdb, sizeof (cdb)); 22229 bzero(&ucmd_buf, sizeof (ucmd_buf)); 22230 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 22231 22232 /* Compute CDB size to use */ 22233 if (start_block > 0xffffffff) 22234 cdbsize = CDB_GROUP4; 22235 else if ((start_block & 0xFFE00000) || 22236 (un->un_f_cfg_is_atapi == TRUE)) 22237 cdbsize = CDB_GROUP1; 22238 else 22239 cdbsize = CDB_GROUP0; 22240 22241 switch (cdbsize) { 22242 case CDB_GROUP0: /* 6-byte CDBs */ 22243 cdb.scc_cmd = cmd; 22244 FORMG0ADDR(&cdb, start_block); 22245 FORMG0COUNT(&cdb, block_count); 22246 break; 22247 case CDB_GROUP1: /* 10-byte CDBs */ 22248 cdb.scc_cmd = cmd | SCMD_GROUP1; 22249 FORMG1ADDR(&cdb, start_block); 22250 FORMG1COUNT(&cdb, block_count); 22251 break; 22252 case CDB_GROUP4: /* 16-byte CDBs */ 22253 cdb.scc_cmd = cmd | SCMD_GROUP4; 22254 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 22255 FORMG4COUNT(&cdb, block_count); 22256 break; 22257 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 22258 default: 22259 /* All others reserved */ 22260 return (EINVAL); 22261 } 22262 22263 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 22264 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 22265 22266 ucmd_buf.uscsi_cdb = (char *)&cdb; 22267 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 22268 ucmd_buf.uscsi_bufaddr = bufaddr; 22269 ucmd_buf.uscsi_buflen = buflen; 22270 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 22271 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 22272 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 22273 ucmd_buf.uscsi_timeout = 60; 22274 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 22275 UIO_SYSSPACE, path_flag); 22276 22277 switch (status) { 22278 case 0: 22279 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22280 break; /* Success! */ 22281 case EIO: 22282 switch (ucmd_buf.uscsi_status) { 22283 case STATUS_RESERVATION_CONFLICT: 22284 status = EACCES; 22285 break; 22286 default: 22287 break; 22288 } 22289 break; 22290 default: 22291 break; 22292 } 22293 22294 if (status == 0) { 22295 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 22296 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 22297 } 22298 22299 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 22300 22301 return (status); 22302 } 22303 22304 22305 /* 22306 * Function: sd_send_scsi_LOG_SENSE 22307 * 22308 * Description: Issue a scsi LOG_SENSE command with the given parameters. 22309 * 22310 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 22311 * structure for this target. 22312 * 22313 * Return Code: 0 - Success 22314 * errno return code from sd_ssc_send() 22315 * 22316 * Context: Can sleep. Does not return until command is completed. 22317 */ 22318 22319 static int 22320 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen, 22321 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, int path_flag) 22322 { 22323 struct scsi_extended_sense sense_buf; 22324 union scsi_cdb cdb; 22325 struct uscsi_cmd ucmd_buf; 22326 int status; 22327 struct sd_lun *un; 22328 22329 ASSERT(ssc != NULL); 22330 un = ssc->ssc_un; 22331 ASSERT(un != NULL); 22332 ASSERT(!mutex_owned(SD_MUTEX(un))); 22333 22334 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 22335 22336 bzero(&cdb, sizeof (cdb)); 22337 bzero(&ucmd_buf, sizeof (ucmd_buf)); 22338 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 22339 22340 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 22341 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 22342 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 22343 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 22344 FORMG1COUNT(&cdb, buflen); 22345 22346 ucmd_buf.uscsi_cdb = (char *)&cdb; 22347 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 22348 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 22349 ucmd_buf.uscsi_buflen = buflen; 22350 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 22351 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 22352 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 22353 ucmd_buf.uscsi_timeout = 60; 22354 22355 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 22356 UIO_SYSSPACE, path_flag); 22357 22358 switch (status) { 22359 case 0: 22360 break; 22361 case EIO: 22362 switch (ucmd_buf.uscsi_status) { 22363 case STATUS_RESERVATION_CONFLICT: 22364 status = EACCES; 22365 break; 22366 case STATUS_CHECK: 22367 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 22368 (scsi_sense_key((uint8_t *)&sense_buf) == 22369 KEY_ILLEGAL_REQUEST) && 22370 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 22371 /* 22372 * ASC 0x24: INVALID FIELD IN CDB 22373 */ 22374 switch (page_code) { 22375 case START_STOP_CYCLE_PAGE: 22376 /* 22377 * The start stop cycle counter is 22378 * implemented as page 0x31 in earlier 22379 * generation disks. In new generation 22380 * disks the start stop cycle counter is 22381 * implemented as page 0xE. To properly 22382 * handle this case if an attempt for 22383 * log page 0xE is made and fails we 22384 * will try again using page 0x31. 22385 * 22386 * Network storage BU committed to 22387 * maintain the page 0x31 for this 22388 * purpose and will not have any other 22389 * page implemented with page code 0x31 22390 * until all disks transition to the 22391 * standard page. 22392 */ 22393 mutex_enter(SD_MUTEX(un)); 22394 un->un_start_stop_cycle_page = 22395 START_STOP_CYCLE_VU_PAGE; 22396 cdb.cdb_opaque[2] = 22397 (char)(page_control << 6) | 22398 un->un_start_stop_cycle_page; 22399 mutex_exit(SD_MUTEX(un)); 22400 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22401 status = sd_ssc_send( 22402 ssc, &ucmd_buf, FKIOCTL, 22403 UIO_SYSSPACE, path_flag); 22404 22405 break; 22406 case TEMPERATURE_PAGE: 22407 status = ENOTTY; 22408 break; 22409 default: 22410 break; 22411 } 22412 } 22413 break; 22414 default: 22415 break; 22416 } 22417 break; 22418 default: 22419 break; 22420 } 22421 22422 if (status == 0) { 22423 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22424 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 22425 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 22426 } 22427 22428 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 22429 22430 return (status); 22431 } 22432 22433 22434 /* 22435 * Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 22436 * 22437 * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command. 22438 * 22439 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 22440 * structure for this target. 22441 * bufaddr 22442 * buflen 22443 * class_req 22444 * 22445 * Return Code: 0 - Success 22446 * errno return code from sd_ssc_send() 22447 * 22448 * Context: Can sleep. Does not return until command is completed. 22449 */ 22450 22451 static int 22452 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr, 22453 size_t buflen, uchar_t class_req) 22454 { 22455 union scsi_cdb cdb; 22456 struct uscsi_cmd ucmd_buf; 22457 int status; 22458 struct sd_lun *un; 22459 22460 ASSERT(ssc != NULL); 22461 un = ssc->ssc_un; 22462 ASSERT(un != NULL); 22463 ASSERT(!mutex_owned(SD_MUTEX(un))); 22464 ASSERT(bufaddr != NULL); 22465 22466 SD_TRACE(SD_LOG_IO, un, 22467 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un); 22468 22469 bzero(&cdb, sizeof (cdb)); 22470 bzero(&ucmd_buf, sizeof (ucmd_buf)); 22471 bzero(bufaddr, buflen); 22472 22473 cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION; 22474 cdb.cdb_opaque[1] = 1; /* polled */ 22475 cdb.cdb_opaque[4] = class_req; 22476 FORMG1COUNT(&cdb, buflen); 22477 22478 ucmd_buf.uscsi_cdb = (char *)&cdb; 22479 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 22480 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 22481 ucmd_buf.uscsi_buflen = buflen; 22482 ucmd_buf.uscsi_rqbuf = NULL; 22483 ucmd_buf.uscsi_rqlen = 0; 22484 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 22485 ucmd_buf.uscsi_timeout = 60; 22486 22487 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 22488 UIO_SYSSPACE, SD_PATH_DIRECT); 22489 22490 /* 22491 * Only handle status == 0, the upper-level caller 22492 * will put different assessment based on the context. 22493 */ 22494 if (status == 0) { 22495 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22496 22497 if (ucmd_buf.uscsi_resid != 0) { 22498 status = EIO; 22499 } 22500 } 22501 22502 SD_TRACE(SD_LOG_IO, un, 22503 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n"); 22504 22505 return (status); 22506 } 22507 22508 22509 static boolean_t 22510 sd_gesn_media_data_valid(uchar_t *data) 22511 { 22512 uint16_t len; 22513 22514 len = (data[1] << 8) | data[0]; 22515 return ((len >= 6) && 22516 ((data[2] & SD_GESN_HEADER_NEA) == 0) && 22517 ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) && 22518 ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0)); 22519 } 22520 22521 22522 /* 22523 * Function: sdioctl 22524 * 22525 * Description: Driver's ioctl(9e) entry point function. 22526 * 22527 * Arguments: dev - device number 22528 * cmd - ioctl operation to be performed 22529 * arg - user argument, contains data to be set or reference 22530 * parameter for get 22531 * flag - bit flag, indicating open settings, 32/64 bit type 22532 * cred_p - user credential pointer 22533 * rval_p - calling process return value (OPT) 22534 * 22535 * Return Code: EINVAL 22536 * ENOTTY 22537 * ENXIO 22538 * EIO 22539 * EFAULT 22540 * ENOTSUP 22541 * EPERM 22542 * 22543 * Context: Called from the device switch at normal priority. 22544 */ 22545 22546 static int 22547 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 22548 { 22549 struct sd_lun *un = NULL; 22550 int err = 0; 22551 int i = 0; 22552 cred_t *cr; 22553 int tmprval = EINVAL; 22554 boolean_t is_valid; 22555 sd_ssc_t *ssc; 22556 22557 /* 22558 * All device accesses go thru sdstrategy where we check on suspend 22559 * status 22560 */ 22561 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22562 return (ENXIO); 22563 } 22564 22565 ASSERT(!mutex_owned(SD_MUTEX(un))); 22566 22567 /* Initialize sd_ssc_t for internal uscsi commands */ 22568 ssc = sd_ssc_init(un); 22569 22570 is_valid = SD_IS_VALID_LABEL(un); 22571 22572 /* 22573 * Moved this wait from sd_uscsi_strategy to here for 22574 * reasons of deadlock prevention. Internal driver commands, 22575 * specifically those to change a devices power level, result 22576 * in a call to sd_uscsi_strategy. 22577 */ 22578 mutex_enter(SD_MUTEX(un)); 22579 while ((un->un_state == SD_STATE_SUSPENDED) || 22580 (un->un_state == SD_STATE_PM_CHANGING)) { 22581 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 22582 } 22583 /* 22584 * Twiddling the counter here protects commands from now 22585 * through to the top of sd_uscsi_strategy. Without the 22586 * counter inc. a power down, for example, could get in 22587 * after the above check for state is made and before 22588 * execution gets to the top of sd_uscsi_strategy. 22589 * That would cause problems. 22590 */ 22591 un->un_ncmds_in_driver++; 22592 22593 if (!is_valid && 22594 (flag & (FNDELAY | FNONBLOCK))) { 22595 switch (cmd) { 22596 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 22597 case DKIOCGVTOC: 22598 case DKIOCGEXTVTOC: 22599 case DKIOCGAPART: 22600 case DKIOCPARTINFO: 22601 case DKIOCEXTPARTINFO: 22602 case DKIOCSGEOM: 22603 case DKIOCSAPART: 22604 case DKIOCGETEFI: 22605 case DKIOCPARTITION: 22606 case DKIOCSVTOC: 22607 case DKIOCSEXTVTOC: 22608 case DKIOCSETEFI: 22609 case DKIOCGMBOOT: 22610 case DKIOCSMBOOT: 22611 case DKIOCG_PHYGEOM: 22612 case DKIOCG_VIRTGEOM: 22613 #if defined(__i386) || defined(__amd64) 22614 case DKIOCSETEXTPART: 22615 #endif 22616 /* let cmlb handle it */ 22617 goto skip_ready_valid; 22618 22619 case CDROMPAUSE: 22620 case CDROMRESUME: 22621 case CDROMPLAYMSF: 22622 case CDROMPLAYTRKIND: 22623 case CDROMREADTOCHDR: 22624 case CDROMREADTOCENTRY: 22625 case CDROMSTOP: 22626 case CDROMSTART: 22627 case CDROMVOLCTRL: 22628 case CDROMSUBCHNL: 22629 case CDROMREADMODE2: 22630 case CDROMREADMODE1: 22631 case CDROMREADOFFSET: 22632 case CDROMSBLKMODE: 22633 case CDROMGBLKMODE: 22634 case CDROMGDRVSPEED: 22635 case CDROMSDRVSPEED: 22636 case CDROMCDDA: 22637 case CDROMCDXA: 22638 case CDROMSUBCODE: 22639 if (!ISCD(un)) { 22640 un->un_ncmds_in_driver--; 22641 ASSERT(un->un_ncmds_in_driver >= 0); 22642 mutex_exit(SD_MUTEX(un)); 22643 err = ENOTTY; 22644 goto done_without_assess; 22645 } 22646 break; 22647 case FDEJECT: 22648 case DKIOCEJECT: 22649 case CDROMEJECT: 22650 if (!un->un_f_eject_media_supported) { 22651 un->un_ncmds_in_driver--; 22652 ASSERT(un->un_ncmds_in_driver >= 0); 22653 mutex_exit(SD_MUTEX(un)); 22654 err = ENOTTY; 22655 goto done_without_assess; 22656 } 22657 break; 22658 case DKIOCFLUSHWRITECACHE: 22659 mutex_exit(SD_MUTEX(un)); 22660 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22661 if (err != 0) { 22662 mutex_enter(SD_MUTEX(un)); 22663 un->un_ncmds_in_driver--; 22664 ASSERT(un->un_ncmds_in_driver >= 0); 22665 mutex_exit(SD_MUTEX(un)); 22666 err = EIO; 22667 goto done_quick_assess; 22668 } 22669 mutex_enter(SD_MUTEX(un)); 22670 /* FALLTHROUGH */ 22671 case DKIOCREMOVABLE: 22672 case DKIOCHOTPLUGGABLE: 22673 case DKIOCINFO: 22674 case DKIOCGMEDIAINFO: 22675 case DKIOCGMEDIAINFOEXT: 22676 case DKIOCSOLIDSTATE: 22677 case MHIOCENFAILFAST: 22678 case MHIOCSTATUS: 22679 case MHIOCTKOWN: 22680 case MHIOCRELEASE: 22681 case MHIOCGRP_INKEYS: 22682 case MHIOCGRP_INRESV: 22683 case MHIOCGRP_REGISTER: 22684 case MHIOCGRP_CLEAR: 22685 case MHIOCGRP_RESERVE: 22686 case MHIOCGRP_PREEMPTANDABORT: 22687 case MHIOCGRP_REGISTERANDIGNOREKEY: 22688 case CDROMCLOSETRAY: 22689 case USCSICMD: 22690 case USCSIMAXXFER: 22691 goto skip_ready_valid; 22692 default: 22693 break; 22694 } 22695 22696 mutex_exit(SD_MUTEX(un)); 22697 err = sd_ready_and_valid(ssc, SDPART(dev)); 22698 mutex_enter(SD_MUTEX(un)); 22699 22700 if (err != SD_READY_VALID) { 22701 switch (cmd) { 22702 case DKIOCSTATE: 22703 case CDROMGDRVSPEED: 22704 case CDROMSDRVSPEED: 22705 case FDEJECT: /* for eject command */ 22706 case DKIOCEJECT: 22707 case CDROMEJECT: 22708 case DKIOCREMOVABLE: 22709 case DKIOCHOTPLUGGABLE: 22710 break; 22711 default: 22712 if (un->un_f_has_removable_media) { 22713 err = ENXIO; 22714 } else { 22715 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 22716 if (err == SD_RESERVED_BY_OTHERS) { 22717 err = EACCES; 22718 } else { 22719 err = EIO; 22720 } 22721 } 22722 un->un_ncmds_in_driver--; 22723 ASSERT(un->un_ncmds_in_driver >= 0); 22724 mutex_exit(SD_MUTEX(un)); 22725 22726 goto done_without_assess; 22727 } 22728 } 22729 } 22730 22731 skip_ready_valid: 22732 mutex_exit(SD_MUTEX(un)); 22733 22734 switch (cmd) { 22735 case DKIOCINFO: 22736 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 22737 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 22738 break; 22739 22740 case DKIOCGMEDIAINFO: 22741 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 22742 err = sd_get_media_info(dev, (caddr_t)arg, flag); 22743 break; 22744 22745 case DKIOCGMEDIAINFOEXT: 22746 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n"); 22747 err = sd_get_media_info_ext(dev, (caddr_t)arg, flag); 22748 break; 22749 22750 case DKIOCGGEOM: 22751 case DKIOCGVTOC: 22752 case DKIOCGEXTVTOC: 22753 case DKIOCGAPART: 22754 case DKIOCPARTINFO: 22755 case DKIOCEXTPARTINFO: 22756 case DKIOCSGEOM: 22757 case DKIOCSAPART: 22758 case DKIOCGETEFI: 22759 case DKIOCPARTITION: 22760 case DKIOCSVTOC: 22761 case DKIOCSEXTVTOC: 22762 case DKIOCSETEFI: 22763 case DKIOCGMBOOT: 22764 case DKIOCSMBOOT: 22765 case DKIOCG_PHYGEOM: 22766 case DKIOCG_VIRTGEOM: 22767 #if defined(__i386) || defined(__amd64) 22768 case DKIOCSETEXTPART: 22769 #endif 22770 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 22771 22772 /* TUR should spin up */ 22773 22774 if (un->un_f_has_removable_media) 22775 err = sd_send_scsi_TEST_UNIT_READY(ssc, 22776 SD_CHECK_FOR_MEDIA); 22777 22778 else 22779 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22780 22781 if (err != 0) 22782 goto done_with_assess; 22783 22784 err = cmlb_ioctl(un->un_cmlbhandle, dev, 22785 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 22786 22787 if ((err == 0) && 22788 ((cmd == DKIOCSETEFI) || 22789 ((un->un_f_pkstats_enabled) && 22790 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC || 22791 cmd == DKIOCSEXTVTOC)))) { 22792 22793 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 22794 (void *)SD_PATH_DIRECT); 22795 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 22796 sd_set_pstats(un); 22797 SD_TRACE(SD_LOG_IO_PARTITION, un, 22798 "sd_ioctl: un:0x%p pstats created and " 22799 "set\n", un); 22800 } 22801 } 22802 22803 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) || 22804 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 22805 22806 mutex_enter(SD_MUTEX(un)); 22807 if (un->un_f_devid_supported && 22808 (un->un_f_opt_fab_devid == TRUE)) { 22809 if (un->un_devid == NULL) { 22810 sd_register_devid(ssc, SD_DEVINFO(un), 22811 SD_TARGET_IS_UNRESERVED); 22812 } else { 22813 /* 22814 * The device id for this disk 22815 * has been fabricated. The 22816 * device id must be preserved 22817 * by writing it back out to 22818 * disk. 22819 */ 22820 if (sd_write_deviceid(ssc) != 0) { 22821 ddi_devid_free(un->un_devid); 22822 un->un_devid = NULL; 22823 } 22824 } 22825 } 22826 mutex_exit(SD_MUTEX(un)); 22827 } 22828 22829 break; 22830 22831 case DKIOCLOCK: 22832 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 22833 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 22834 SD_PATH_STANDARD); 22835 goto done_with_assess; 22836 22837 case DKIOCUNLOCK: 22838 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 22839 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 22840 SD_PATH_STANDARD); 22841 goto done_with_assess; 22842 22843 case DKIOCSTATE: { 22844 enum dkio_state state; 22845 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 22846 22847 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 22848 err = EFAULT; 22849 } else { 22850 err = sd_check_media(dev, state); 22851 if (err == 0) { 22852 if (ddi_copyout(&un->un_mediastate, (void *)arg, 22853 sizeof (int), flag) != 0) 22854 err = EFAULT; 22855 } 22856 } 22857 break; 22858 } 22859 22860 case DKIOCREMOVABLE: 22861 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 22862 i = un->un_f_has_removable_media ? 1 : 0; 22863 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22864 err = EFAULT; 22865 } else { 22866 err = 0; 22867 } 22868 break; 22869 22870 case DKIOCSOLIDSTATE: 22871 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSOLIDSTATE\n"); 22872 i = un->un_f_is_solid_state ? 1 : 0; 22873 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22874 err = EFAULT; 22875 } else { 22876 err = 0; 22877 } 22878 break; 22879 22880 case DKIOCHOTPLUGGABLE: 22881 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 22882 i = un->un_f_is_hotpluggable ? 1 : 0; 22883 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22884 err = EFAULT; 22885 } else { 22886 err = 0; 22887 } 22888 break; 22889 22890 case DKIOCREADONLY: 22891 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n"); 22892 i = 0; 22893 if ((ISCD(un) && !un->un_f_mmc_writable_media) || 22894 (sr_check_wp(dev) != 0)) { 22895 i = 1; 22896 } 22897 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22898 err = EFAULT; 22899 } else { 22900 err = 0; 22901 } 22902 break; 22903 22904 case DKIOCGTEMPERATURE: 22905 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 22906 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 22907 break; 22908 22909 case MHIOCENFAILFAST: 22910 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 22911 if ((err = drv_priv(cred_p)) == 0) { 22912 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 22913 } 22914 break; 22915 22916 case MHIOCTKOWN: 22917 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 22918 if ((err = drv_priv(cred_p)) == 0) { 22919 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 22920 } 22921 break; 22922 22923 case MHIOCRELEASE: 22924 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 22925 if ((err = drv_priv(cred_p)) == 0) { 22926 err = sd_mhdioc_release(dev); 22927 } 22928 break; 22929 22930 case MHIOCSTATUS: 22931 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 22932 if ((err = drv_priv(cred_p)) == 0) { 22933 switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) { 22934 case 0: 22935 err = 0; 22936 break; 22937 case EACCES: 22938 *rval_p = 1; 22939 err = 0; 22940 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22941 break; 22942 default: 22943 err = EIO; 22944 goto done_with_assess; 22945 } 22946 } 22947 break; 22948 22949 case MHIOCQRESERVE: 22950 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 22951 if ((err = drv_priv(cred_p)) == 0) { 22952 err = sd_reserve_release(dev, SD_RESERVE); 22953 } 22954 break; 22955 22956 case MHIOCREREGISTERDEVID: 22957 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 22958 if (drv_priv(cred_p) == EPERM) { 22959 err = EPERM; 22960 } else if (!un->un_f_devid_supported) { 22961 err = ENOTTY; 22962 } else { 22963 err = sd_mhdioc_register_devid(dev); 22964 } 22965 break; 22966 22967 case MHIOCGRP_INKEYS: 22968 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 22969 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22970 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22971 err = ENOTSUP; 22972 } else { 22973 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 22974 flag); 22975 } 22976 } 22977 break; 22978 22979 case MHIOCGRP_INRESV: 22980 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 22981 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22982 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22983 err = ENOTSUP; 22984 } else { 22985 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 22986 } 22987 } 22988 break; 22989 22990 case MHIOCGRP_REGISTER: 22991 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 22992 if ((err = drv_priv(cred_p)) != EPERM) { 22993 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22994 err = ENOTSUP; 22995 } else if (arg != NULL) { 22996 mhioc_register_t reg; 22997 if (ddi_copyin((void *)arg, ®, 22998 sizeof (mhioc_register_t), flag) != 0) { 22999 err = EFAULT; 23000 } else { 23001 err = 23002 sd_send_scsi_PERSISTENT_RESERVE_OUT( 23003 ssc, SD_SCSI3_REGISTER, 23004 (uchar_t *)®); 23005 if (err != 0) 23006 goto done_with_assess; 23007 } 23008 } 23009 } 23010 break; 23011 23012 case MHIOCGRP_CLEAR: 23013 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n"); 23014 if ((err = drv_priv(cred_p)) != EPERM) { 23015 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 23016 err = ENOTSUP; 23017 } else if (arg != NULL) { 23018 mhioc_register_t reg; 23019 if (ddi_copyin((void *)arg, ®, 23020 sizeof (mhioc_register_t), flag) != 0) { 23021 err = EFAULT; 23022 } else { 23023 err = 23024 sd_send_scsi_PERSISTENT_RESERVE_OUT( 23025 ssc, SD_SCSI3_CLEAR, 23026 (uchar_t *)®); 23027 if (err != 0) 23028 goto done_with_assess; 23029 } 23030 } 23031 } 23032 break; 23033 23034 case MHIOCGRP_RESERVE: 23035 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 23036 if ((err = drv_priv(cred_p)) != EPERM) { 23037 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 23038 err = ENOTSUP; 23039 } else if (arg != NULL) { 23040 mhioc_resv_desc_t resv_desc; 23041 if (ddi_copyin((void *)arg, &resv_desc, 23042 sizeof (mhioc_resv_desc_t), flag) != 0) { 23043 err = EFAULT; 23044 } else { 23045 err = 23046 sd_send_scsi_PERSISTENT_RESERVE_OUT( 23047 ssc, SD_SCSI3_RESERVE, 23048 (uchar_t *)&resv_desc); 23049 if (err != 0) 23050 goto done_with_assess; 23051 } 23052 } 23053 } 23054 break; 23055 23056 case MHIOCGRP_PREEMPTANDABORT: 23057 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 23058 if ((err = drv_priv(cred_p)) != EPERM) { 23059 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 23060 err = ENOTSUP; 23061 } else if (arg != NULL) { 23062 mhioc_preemptandabort_t preempt_abort; 23063 if (ddi_copyin((void *)arg, &preempt_abort, 23064 sizeof (mhioc_preemptandabort_t), 23065 flag) != 0) { 23066 err = EFAULT; 23067 } else { 23068 err = 23069 sd_send_scsi_PERSISTENT_RESERVE_OUT( 23070 ssc, SD_SCSI3_PREEMPTANDABORT, 23071 (uchar_t *)&preempt_abort); 23072 if (err != 0) 23073 goto done_with_assess; 23074 } 23075 } 23076 } 23077 break; 23078 23079 case MHIOCGRP_REGISTERANDIGNOREKEY: 23080 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 23081 if ((err = drv_priv(cred_p)) != EPERM) { 23082 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 23083 err = ENOTSUP; 23084 } else if (arg != NULL) { 23085 mhioc_registerandignorekey_t r_and_i; 23086 if (ddi_copyin((void *)arg, (void *)&r_and_i, 23087 sizeof (mhioc_registerandignorekey_t), 23088 flag) != 0) { 23089 err = EFAULT; 23090 } else { 23091 err = 23092 sd_send_scsi_PERSISTENT_RESERVE_OUT( 23093 ssc, SD_SCSI3_REGISTERANDIGNOREKEY, 23094 (uchar_t *)&r_and_i); 23095 if (err != 0) 23096 goto done_with_assess; 23097 } 23098 } 23099 } 23100 break; 23101 23102 case USCSICMD: 23103 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 23104 cr = ddi_get_cred(); 23105 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 23106 err = EPERM; 23107 } else { 23108 enum uio_seg uioseg; 23109 23110 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 23111 UIO_USERSPACE; 23112 if (un->un_f_format_in_progress == TRUE) { 23113 err = EAGAIN; 23114 break; 23115 } 23116 23117 err = sd_ssc_send(ssc, 23118 (struct uscsi_cmd *)arg, 23119 flag, uioseg, SD_PATH_STANDARD); 23120 if (err != 0) 23121 goto done_with_assess; 23122 else 23123 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 23124 } 23125 break; 23126 23127 case USCSIMAXXFER: 23128 SD_TRACE(SD_LOG_IOCTL, un, "USCSIMAXXFER\n"); 23129 cr = ddi_get_cred(); 23130 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 23131 err = EPERM; 23132 } else { 23133 const uscsi_xfer_t xfer = un->un_max_xfer_size; 23134 23135 if (ddi_copyout(&xfer, (void *)arg, sizeof (xfer), 23136 flag) != 0) { 23137 err = EFAULT; 23138 } else { 23139 err = 0; 23140 } 23141 } 23142 break; 23143 23144 case CDROMPAUSE: 23145 case CDROMRESUME: 23146 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 23147 if (!ISCD(un)) { 23148 err = ENOTTY; 23149 } else { 23150 err = sr_pause_resume(dev, cmd); 23151 } 23152 break; 23153 23154 case CDROMPLAYMSF: 23155 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 23156 if (!ISCD(un)) { 23157 err = ENOTTY; 23158 } else { 23159 err = sr_play_msf(dev, (caddr_t)arg, flag); 23160 } 23161 break; 23162 23163 case CDROMPLAYTRKIND: 23164 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 23165 #if defined(__i386) || defined(__amd64) 23166 /* 23167 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 23168 */ 23169 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 23170 #else 23171 if (!ISCD(un)) { 23172 #endif 23173 err = ENOTTY; 23174 } else { 23175 err = sr_play_trkind(dev, (caddr_t)arg, flag); 23176 } 23177 break; 23178 23179 case CDROMREADTOCHDR: 23180 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 23181 if (!ISCD(un)) { 23182 err = ENOTTY; 23183 } else { 23184 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 23185 } 23186 break; 23187 23188 case CDROMREADTOCENTRY: 23189 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 23190 if (!ISCD(un)) { 23191 err = ENOTTY; 23192 } else { 23193 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 23194 } 23195 break; 23196 23197 case CDROMSTOP: 23198 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 23199 if (!ISCD(un)) { 23200 err = ENOTTY; 23201 } else { 23202 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 23203 SD_TARGET_STOP, SD_PATH_STANDARD); 23204 goto done_with_assess; 23205 } 23206 break; 23207 23208 case CDROMSTART: 23209 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 23210 if (!ISCD(un)) { 23211 err = ENOTTY; 23212 } else { 23213 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 23214 SD_TARGET_START, SD_PATH_STANDARD); 23215 goto done_with_assess; 23216 } 23217 break; 23218 23219 case CDROMCLOSETRAY: 23220 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 23221 if (!ISCD(un)) { 23222 err = ENOTTY; 23223 } else { 23224 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 23225 SD_TARGET_CLOSE, SD_PATH_STANDARD); 23226 goto done_with_assess; 23227 } 23228 break; 23229 23230 case FDEJECT: /* for eject command */ 23231 case DKIOCEJECT: 23232 case CDROMEJECT: 23233 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 23234 if (!un->un_f_eject_media_supported) { 23235 err = ENOTTY; 23236 } else { 23237 err = sr_eject(dev); 23238 } 23239 break; 23240 23241 case CDROMVOLCTRL: 23242 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 23243 if (!ISCD(un)) { 23244 err = ENOTTY; 23245 } else { 23246 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 23247 } 23248 break; 23249 23250 case CDROMSUBCHNL: 23251 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 23252 if (!ISCD(un)) { 23253 err = ENOTTY; 23254 } else { 23255 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 23256 } 23257 break; 23258 23259 case CDROMREADMODE2: 23260 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 23261 if (!ISCD(un)) { 23262 err = ENOTTY; 23263 } else if (un->un_f_cfg_is_atapi == TRUE) { 23264 /* 23265 * If the drive supports READ CD, use that instead of 23266 * switching the LBA size via a MODE SELECT 23267 * Block Descriptor 23268 */ 23269 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 23270 } else { 23271 err = sr_read_mode2(dev, (caddr_t)arg, flag); 23272 } 23273 break; 23274 23275 case CDROMREADMODE1: 23276 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 23277 if (!ISCD(un)) { 23278 err = ENOTTY; 23279 } else { 23280 err = sr_read_mode1(dev, (caddr_t)arg, flag); 23281 } 23282 break; 23283 23284 case CDROMREADOFFSET: 23285 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 23286 if (!ISCD(un)) { 23287 err = ENOTTY; 23288 } else { 23289 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 23290 flag); 23291 } 23292 break; 23293 23294 case CDROMSBLKMODE: 23295 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 23296 /* 23297 * There is no means of changing block size in case of atapi 23298 * drives, thus return ENOTTY if drive type is atapi 23299 */ 23300 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 23301 err = ENOTTY; 23302 } else if (un->un_f_mmc_cap == TRUE) { 23303 23304 /* 23305 * MMC Devices do not support changing the 23306 * logical block size 23307 * 23308 * Note: EINVAL is being returned instead of ENOTTY to 23309 * maintain consistancy with the original mmc 23310 * driver update. 23311 */ 23312 err = EINVAL; 23313 } else { 23314 mutex_enter(SD_MUTEX(un)); 23315 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 23316 (un->un_ncmds_in_transport > 0)) { 23317 mutex_exit(SD_MUTEX(un)); 23318 err = EINVAL; 23319 } else { 23320 mutex_exit(SD_MUTEX(un)); 23321 err = sr_change_blkmode(dev, cmd, arg, flag); 23322 } 23323 } 23324 break; 23325 23326 case CDROMGBLKMODE: 23327 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 23328 if (!ISCD(un)) { 23329 err = ENOTTY; 23330 } else if ((un->un_f_cfg_is_atapi != FALSE) && 23331 (un->un_f_blockcount_is_valid != FALSE)) { 23332 /* 23333 * Drive is an ATAPI drive so return target block 23334 * size for ATAPI drives since we cannot change the 23335 * blocksize on ATAPI drives. Used primarily to detect 23336 * if an ATAPI cdrom is present. 23337 */ 23338 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 23339 sizeof (int), flag) != 0) { 23340 err = EFAULT; 23341 } else { 23342 err = 0; 23343 } 23344 23345 } else { 23346 /* 23347 * Drive supports changing block sizes via a Mode 23348 * Select. 23349 */ 23350 err = sr_change_blkmode(dev, cmd, arg, flag); 23351 } 23352 break; 23353 23354 case CDROMGDRVSPEED: 23355 case CDROMSDRVSPEED: 23356 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 23357 if (!ISCD(un)) { 23358 err = ENOTTY; 23359 } else if (un->un_f_mmc_cap == TRUE) { 23360 /* 23361 * Note: In the future the driver implementation 23362 * for getting and 23363 * setting cd speed should entail: 23364 * 1) If non-mmc try the Toshiba mode page 23365 * (sr_change_speed) 23366 * 2) If mmc but no support for Real Time Streaming try 23367 * the SET CD SPEED (0xBB) command 23368 * (sr_atapi_change_speed) 23369 * 3) If mmc and support for Real Time Streaming 23370 * try the GET PERFORMANCE and SET STREAMING 23371 * commands (not yet implemented, 4380808) 23372 */ 23373 /* 23374 * As per recent MMC spec, CD-ROM speed is variable 23375 * and changes with LBA. Since there is no such 23376 * things as drive speed now, fail this ioctl. 23377 * 23378 * Note: EINVAL is returned for consistancy of original 23379 * implementation which included support for getting 23380 * the drive speed of mmc devices but not setting 23381 * the drive speed. Thus EINVAL would be returned 23382 * if a set request was made for an mmc device. 23383 * We no longer support get or set speed for 23384 * mmc but need to remain consistent with regard 23385 * to the error code returned. 23386 */ 23387 err = EINVAL; 23388 } else if (un->un_f_cfg_is_atapi == TRUE) { 23389 err = sr_atapi_change_speed(dev, cmd, arg, flag); 23390 } else { 23391 err = sr_change_speed(dev, cmd, arg, flag); 23392 } 23393 break; 23394 23395 case CDROMCDDA: 23396 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 23397 if (!ISCD(un)) { 23398 err = ENOTTY; 23399 } else { 23400 err = sr_read_cdda(dev, (void *)arg, flag); 23401 } 23402 break; 23403 23404 case CDROMCDXA: 23405 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 23406 if (!ISCD(un)) { 23407 err = ENOTTY; 23408 } else { 23409 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 23410 } 23411 break; 23412 23413 case CDROMSUBCODE: 23414 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 23415 if (!ISCD(un)) { 23416 err = ENOTTY; 23417 } else { 23418 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 23419 } 23420 break; 23421 23422 23423 #ifdef SDDEBUG 23424 /* RESET/ABORTS testing ioctls */ 23425 case DKIOCRESET: { 23426 int reset_level; 23427 23428 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 23429 err = EFAULT; 23430 } else { 23431 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 23432 "reset_level = 0x%lx\n", reset_level); 23433 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 23434 err = 0; 23435 } else { 23436 err = EIO; 23437 } 23438 } 23439 break; 23440 } 23441 23442 case DKIOCABORT: 23443 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 23444 if (scsi_abort(SD_ADDRESS(un), NULL)) { 23445 err = 0; 23446 } else { 23447 err = EIO; 23448 } 23449 break; 23450 #endif 23451 23452 #ifdef SD_FAULT_INJECTION 23453 /* SDIOC FaultInjection testing ioctls */ 23454 case SDIOCSTART: 23455 case SDIOCSTOP: 23456 case SDIOCINSERTPKT: 23457 case SDIOCINSERTXB: 23458 case SDIOCINSERTUN: 23459 case SDIOCINSERTARQ: 23460 case SDIOCPUSH: 23461 case SDIOCRETRIEVE: 23462 case SDIOCRUN: 23463 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 23464 "SDIOC detected cmd:0x%X:\n", cmd); 23465 /* call error generator */ 23466 sd_faultinjection_ioctl(cmd, arg, un); 23467 err = 0; 23468 break; 23469 23470 #endif /* SD_FAULT_INJECTION */ 23471 23472 case DKIOCFLUSHWRITECACHE: 23473 { 23474 struct dk_callback *dkc = (struct dk_callback *)arg; 23475 23476 mutex_enter(SD_MUTEX(un)); 23477 if (!un->un_f_sync_cache_supported || 23478 !un->un_f_write_cache_enabled) { 23479 err = un->un_f_sync_cache_supported ? 23480 0 : ENOTSUP; 23481 mutex_exit(SD_MUTEX(un)); 23482 if ((flag & FKIOCTL) && dkc != NULL && 23483 dkc->dkc_callback != NULL) { 23484 (*dkc->dkc_callback)(dkc->dkc_cookie, 23485 err); 23486 /* 23487 * Did callback and reported error. 23488 * Since we did a callback, ioctl 23489 * should return 0. 23490 */ 23491 err = 0; 23492 } 23493 break; 23494 } 23495 mutex_exit(SD_MUTEX(un)); 23496 23497 if ((flag & FKIOCTL) && dkc != NULL && 23498 dkc->dkc_callback != NULL) { 23499 /* async SYNC CACHE request */ 23500 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 23501 } else { 23502 /* synchronous SYNC CACHE request */ 23503 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 23504 } 23505 } 23506 break; 23507 23508 case DKIOCFREE: 23509 { 23510 dkioc_free_list_t *dfl = (dkioc_free_list_t *)arg; 23511 23512 /* bad ioctls shouldn't panic */ 23513 if (dfl == NULL) { 23514 /* check kernel callers strictly in debug */ 23515 ASSERT0(flag & FKIOCTL); 23516 err = SET_ERROR(EINVAL); 23517 break; 23518 } 23519 /* synchronous UNMAP request */ 23520 err = sd_send_scsi_UNMAP(dev, ssc, dfl, flag); 23521 } 23522 break; 23523 23524 case DKIOCGETWCE: { 23525 23526 int wce; 23527 23528 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) { 23529 break; 23530 } 23531 23532 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 23533 err = EFAULT; 23534 } 23535 break; 23536 } 23537 23538 case DKIOCSETWCE: { 23539 23540 int wce, sync_supported; 23541 int cur_wce = 0; 23542 23543 if (!un->un_f_cache_mode_changeable) { 23544 err = EINVAL; 23545 break; 23546 } 23547 23548 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 23549 err = EFAULT; 23550 break; 23551 } 23552 23553 /* 23554 * Synchronize multiple threads trying to enable 23555 * or disable the cache via the un_f_wcc_cv 23556 * condition variable. 23557 */ 23558 mutex_enter(SD_MUTEX(un)); 23559 23560 /* 23561 * Don't allow the cache to be enabled if the 23562 * config file has it disabled. 23563 */ 23564 if (un->un_f_opt_disable_cache && wce) { 23565 mutex_exit(SD_MUTEX(un)); 23566 err = EINVAL; 23567 break; 23568 } 23569 23570 /* 23571 * Wait for write cache change in progress 23572 * bit to be clear before proceeding. 23573 */ 23574 while (un->un_f_wcc_inprog) 23575 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 23576 23577 un->un_f_wcc_inprog = 1; 23578 23579 mutex_exit(SD_MUTEX(un)); 23580 23581 /* 23582 * Get the current write cache state 23583 */ 23584 if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) { 23585 mutex_enter(SD_MUTEX(un)); 23586 un->un_f_wcc_inprog = 0; 23587 cv_broadcast(&un->un_wcc_cv); 23588 mutex_exit(SD_MUTEX(un)); 23589 break; 23590 } 23591 23592 mutex_enter(SD_MUTEX(un)); 23593 un->un_f_write_cache_enabled = (cur_wce != 0); 23594 23595 if (un->un_f_write_cache_enabled && wce == 0) { 23596 /* 23597 * Disable the write cache. Don't clear 23598 * un_f_write_cache_enabled until after 23599 * the mode select and flush are complete. 23600 */ 23601 sync_supported = un->un_f_sync_cache_supported; 23602 23603 /* 23604 * If cache flush is suppressed, we assume that the 23605 * controller firmware will take care of managing the 23606 * write cache for us: no need to explicitly 23607 * disable it. 23608 */ 23609 if (!un->un_f_suppress_cache_flush) { 23610 mutex_exit(SD_MUTEX(un)); 23611 if ((err = sd_cache_control(ssc, 23612 SD_CACHE_NOCHANGE, 23613 SD_CACHE_DISABLE)) == 0 && 23614 sync_supported) { 23615 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, 23616 NULL); 23617 } 23618 } else { 23619 mutex_exit(SD_MUTEX(un)); 23620 } 23621 23622 mutex_enter(SD_MUTEX(un)); 23623 if (err == 0) { 23624 un->un_f_write_cache_enabled = 0; 23625 } 23626 23627 } else if (!un->un_f_write_cache_enabled && wce != 0) { 23628 /* 23629 * Set un_f_write_cache_enabled first, so there is 23630 * no window where the cache is enabled, but the 23631 * bit says it isn't. 23632 */ 23633 un->un_f_write_cache_enabled = 1; 23634 23635 /* 23636 * If cache flush is suppressed, we assume that the 23637 * controller firmware will take care of managing the 23638 * write cache for us: no need to explicitly 23639 * enable it. 23640 */ 23641 if (!un->un_f_suppress_cache_flush) { 23642 mutex_exit(SD_MUTEX(un)); 23643 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE, 23644 SD_CACHE_ENABLE); 23645 } else { 23646 mutex_exit(SD_MUTEX(un)); 23647 } 23648 23649 mutex_enter(SD_MUTEX(un)); 23650 23651 if (err) { 23652 un->un_f_write_cache_enabled = 0; 23653 } 23654 } 23655 23656 un->un_f_wcc_inprog = 0; 23657 cv_broadcast(&un->un_wcc_cv); 23658 mutex_exit(SD_MUTEX(un)); 23659 break; 23660 } 23661 23662 default: 23663 err = ENOTTY; 23664 break; 23665 } 23666 mutex_enter(SD_MUTEX(un)); 23667 un->un_ncmds_in_driver--; 23668 ASSERT(un->un_ncmds_in_driver >= 0); 23669 mutex_exit(SD_MUTEX(un)); 23670 23671 23672 done_without_assess: 23673 sd_ssc_fini(ssc); 23674 23675 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23676 return (err); 23677 23678 done_with_assess: 23679 mutex_enter(SD_MUTEX(un)); 23680 un->un_ncmds_in_driver--; 23681 ASSERT(un->un_ncmds_in_driver >= 0); 23682 mutex_exit(SD_MUTEX(un)); 23683 23684 done_quick_assess: 23685 if (err != 0) 23686 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23687 /* Uninitialize sd_ssc_t pointer */ 23688 sd_ssc_fini(ssc); 23689 23690 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23691 return (err); 23692 } 23693 23694 23695 /* 23696 * Function: sd_dkio_ctrl_info 23697 * 23698 * Description: This routine is the driver entry point for handling controller 23699 * information ioctl requests (DKIOCINFO). 23700 * 23701 * Arguments: dev - the device number 23702 * arg - pointer to user provided dk_cinfo structure 23703 * specifying the controller type and attributes. 23704 * flag - this argument is a pass through to ddi_copyxxx() 23705 * directly from the mode argument of ioctl(). 23706 * 23707 * Return Code: 0 23708 * EFAULT 23709 * ENXIO 23710 */ 23711 23712 static int 23713 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 23714 { 23715 struct sd_lun *un = NULL; 23716 struct dk_cinfo *info; 23717 dev_info_t *pdip; 23718 int lun, tgt; 23719 23720 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23721 return (ENXIO); 23722 } 23723 23724 info = (struct dk_cinfo *) 23725 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 23726 23727 switch (un->un_ctype) { 23728 case CTYPE_CDROM: 23729 info->dki_ctype = DKC_CDROM; 23730 break; 23731 default: 23732 info->dki_ctype = DKC_SCSI_CCS; 23733 break; 23734 } 23735 pdip = ddi_get_parent(SD_DEVINFO(un)); 23736 info->dki_cnum = ddi_get_instance(pdip); 23737 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 23738 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 23739 } else { 23740 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 23741 DK_DEVLEN - 1); 23742 } 23743 23744 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23745 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 23746 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23747 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 23748 23749 /* Unit Information */ 23750 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 23751 info->dki_slave = ((tgt << 3) | lun); 23752 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 23753 DK_DEVLEN - 1); 23754 info->dki_flags = DKI_FMTVOL; 23755 info->dki_partition = SDPART(dev); 23756 23757 /* Max Transfer size of this device in blocks */ 23758 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 23759 info->dki_addr = 0; 23760 info->dki_space = 0; 23761 info->dki_prio = 0; 23762 info->dki_vec = 0; 23763 23764 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 23765 kmem_free(info, sizeof (struct dk_cinfo)); 23766 return (EFAULT); 23767 } else { 23768 kmem_free(info, sizeof (struct dk_cinfo)); 23769 return (0); 23770 } 23771 } 23772 23773 /* 23774 * Function: sd_get_media_info_com 23775 * 23776 * Description: This routine returns the information required to populate 23777 * the fields for the dk_minfo/dk_minfo_ext structures. 23778 * 23779 * Arguments: dev - the device number 23780 * dki_media_type - media_type 23781 * dki_lbsize - logical block size 23782 * dki_capacity - capacity in blocks 23783 * dki_pbsize - physical block size (if requested) 23784 * 23785 * Return Code: 0 23786 * EACCESS 23787 * EFAULT 23788 * ENXIO 23789 * EIO 23790 */ 23791 static int 23792 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize, 23793 diskaddr_t *dki_capacity, uint_t *dki_pbsize) 23794 { 23795 struct sd_lun *un = NULL; 23796 struct uscsi_cmd com; 23797 struct scsi_inquiry *sinq; 23798 u_longlong_t media_capacity; 23799 uint64_t capacity; 23800 uint_t lbasize; 23801 uint_t pbsize; 23802 uchar_t *out_data; 23803 uchar_t *rqbuf; 23804 int rval = 0; 23805 int rtn; 23806 sd_ssc_t *ssc; 23807 23808 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23809 (un->un_state == SD_STATE_OFFLINE)) { 23810 return (ENXIO); 23811 } 23812 23813 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n"); 23814 23815 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23816 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23817 ssc = sd_ssc_init(un); 23818 23819 /* Issue a TUR to determine if the drive is ready with media present */ 23820 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23821 if (rval == ENXIO) { 23822 goto done; 23823 } else if (rval != 0) { 23824 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23825 } 23826 23827 /* Now get configuration data */ 23828 if (ISCD(un)) { 23829 *dki_media_type = DK_CDROM; 23830 23831 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23832 if (un->un_f_mmc_cap == TRUE) { 23833 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23834 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23835 SD_PATH_STANDARD); 23836 23837 if (rtn) { 23838 /* 23839 * We ignore all failures for CD and need to 23840 * put the assessment before processing code 23841 * to avoid missing assessment for FMA. 23842 */ 23843 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23844 /* 23845 * Failed for other than an illegal request 23846 * or command not supported 23847 */ 23848 if ((com.uscsi_status == STATUS_CHECK) && 23849 (com.uscsi_rqstatus == STATUS_GOOD)) { 23850 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23851 (rqbuf[12] != 0x20)) { 23852 rval = EIO; 23853 goto no_assessment; 23854 } 23855 } 23856 } else { 23857 /* 23858 * The GET CONFIGURATION command succeeded 23859 * so set the media type according to the 23860 * returned data 23861 */ 23862 *dki_media_type = out_data[6]; 23863 *dki_media_type <<= 8; 23864 *dki_media_type |= out_data[7]; 23865 } 23866 } 23867 } else { 23868 /* 23869 * The profile list is not available, so we attempt to identify 23870 * the media type based on the inquiry data 23871 */ 23872 sinq = un->un_sd->sd_inq; 23873 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23874 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23875 /* This is a direct access device or optical disk */ 23876 *dki_media_type = DK_FIXED_DISK; 23877 23878 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23879 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23880 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23881 *dki_media_type = DK_ZIP; 23882 } else if ( 23883 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23884 *dki_media_type = DK_JAZ; 23885 } 23886 } 23887 } else { 23888 /* 23889 * Not a CD, direct access or optical disk so return 23890 * unknown media 23891 */ 23892 *dki_media_type = DK_UNKNOWN; 23893 } 23894 } 23895 23896 /* 23897 * Now read the capacity so we can provide the lbasize, 23898 * pbsize and capacity. 23899 */ 23900 if (dki_pbsize && un->un_f_descr_format_supported) { 23901 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, 23902 &pbsize, SD_PATH_DIRECT); 23903 23904 /* 23905 * Override the physical blocksize if the instance already 23906 * has a larger value. 23907 */ 23908 pbsize = MAX(pbsize, un->un_phy_blocksize); 23909 } 23910 23911 if (dki_pbsize == NULL || rval != 0 || 23912 !un->un_f_descr_format_supported) { 23913 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23914 SD_PATH_DIRECT); 23915 23916 switch (rval) { 23917 case 0: 23918 if (un->un_f_enable_rmw && 23919 un->un_phy_blocksize != 0) { 23920 pbsize = un->un_phy_blocksize; 23921 } else { 23922 pbsize = lbasize; 23923 } 23924 media_capacity = capacity; 23925 23926 /* 23927 * sd_send_scsi_READ_CAPACITY() reports capacity in 23928 * un->un_sys_blocksize chunks. So we need to convert 23929 * it into cap.lbsize chunks. 23930 */ 23931 if (un->un_f_has_removable_media) { 23932 media_capacity *= un->un_sys_blocksize; 23933 media_capacity /= lbasize; 23934 } 23935 break; 23936 case EACCES: 23937 rval = EACCES; 23938 goto done; 23939 default: 23940 rval = EIO; 23941 goto done; 23942 } 23943 } else { 23944 if (un->un_f_enable_rmw && 23945 !ISP2(pbsize % DEV_BSIZE)) { 23946 pbsize = SSD_SECSIZE; 23947 } else if (!ISP2(lbasize % DEV_BSIZE) || 23948 !ISP2(pbsize % DEV_BSIZE)) { 23949 pbsize = lbasize = DEV_BSIZE; 23950 } 23951 media_capacity = capacity; 23952 } 23953 23954 /* 23955 * If lun is expanded dynamically, update the un structure. 23956 */ 23957 mutex_enter(SD_MUTEX(un)); 23958 if ((un->un_f_blockcount_is_valid == TRUE) && 23959 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23960 (capacity > un->un_blockcount)) { 23961 un->un_f_expnevent = B_FALSE; 23962 sd_update_block_info(un, lbasize, capacity); 23963 } 23964 mutex_exit(SD_MUTEX(un)); 23965 23966 *dki_lbsize = lbasize; 23967 *dki_capacity = media_capacity; 23968 if (dki_pbsize) 23969 *dki_pbsize = pbsize; 23970 23971 done: 23972 if (rval != 0) { 23973 if (rval == EIO) 23974 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23975 else 23976 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23977 } 23978 no_assessment: 23979 sd_ssc_fini(ssc); 23980 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23981 kmem_free(rqbuf, SENSE_LENGTH); 23982 return (rval); 23983 } 23984 23985 /* 23986 * Function: sd_get_media_info 23987 * 23988 * Description: This routine is the driver entry point for handling ioctl 23989 * requests for the media type or command set profile used by the 23990 * drive to operate on the media (DKIOCGMEDIAINFO). 23991 * 23992 * Arguments: dev - the device number 23993 * arg - pointer to user provided dk_minfo structure 23994 * specifying the media type, logical block size and 23995 * drive capacity. 23996 * flag - this argument is a pass through to ddi_copyxxx() 23997 * directly from the mode argument of ioctl(). 23998 * 23999 * Return Code: returns the value from sd_get_media_info_com 24000 */ 24001 static int 24002 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 24003 { 24004 struct dk_minfo mi; 24005 int rval; 24006 24007 rval = sd_get_media_info_com(dev, &mi.dki_media_type, 24008 &mi.dki_lbsize, &mi.dki_capacity, NULL); 24009 24010 if (rval) 24011 return (rval); 24012 if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag)) 24013 rval = EFAULT; 24014 return (rval); 24015 } 24016 24017 /* 24018 * Function: sd_get_media_info_ext 24019 * 24020 * Description: This routine is the driver entry point for handling ioctl 24021 * requests for the media type or command set profile used by the 24022 * drive to operate on the media (DKIOCGMEDIAINFOEXT). The 24023 * difference this ioctl and DKIOCGMEDIAINFO is the return value 24024 * of this ioctl contains both logical block size and physical 24025 * block size. 24026 * 24027 * 24028 * Arguments: dev - the device number 24029 * arg - pointer to user provided dk_minfo_ext structure 24030 * specifying the media type, logical block size, 24031 * physical block size and disk capacity. 24032 * flag - this argument is a pass through to ddi_copyxxx() 24033 * directly from the mode argument of ioctl(). 24034 * 24035 * Return Code: returns the value from sd_get_media_info_com 24036 */ 24037 static int 24038 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag) 24039 { 24040 struct dk_minfo_ext mie; 24041 int rval = 0; 24042 24043 rval = sd_get_media_info_com(dev, &mie.dki_media_type, 24044 &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize); 24045 24046 if (rval) 24047 return (rval); 24048 if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag)) 24049 rval = EFAULT; 24050 return (rval); 24051 24052 } 24053 24054 /* 24055 * Function: sd_watch_request_submit 24056 * 24057 * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit 24058 * depending on which is supported by device. 24059 */ 24060 static opaque_t 24061 sd_watch_request_submit(struct sd_lun *un) 24062 { 24063 dev_t dev; 24064 24065 /* All submissions are unified to use same device number */ 24066 dev = sd_make_device(SD_DEVINFO(un)); 24067 24068 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 24069 return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un), 24070 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 24071 (caddr_t)dev)); 24072 } else { 24073 return (scsi_watch_request_submit(SD_SCSI_DEVP(un), 24074 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 24075 (caddr_t)dev)); 24076 } 24077 } 24078 24079 24080 /* 24081 * Function: sd_check_media 24082 * 24083 * Description: This utility routine implements the functionality for the 24084 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 24085 * driver state changes from that specified by the user 24086 * (inserted or ejected). For example, if the user specifies 24087 * DKIO_EJECTED and the current media state is inserted this 24088 * routine will immediately return DKIO_INSERTED. However, if the 24089 * current media state is not inserted the user thread will be 24090 * blocked until the drive state changes. If DKIO_NONE is specified 24091 * the user thread will block until a drive state change occurs. 24092 * 24093 * Arguments: dev - the device number 24094 * state - user pointer to a dkio_state, updated with the current 24095 * drive state at return. 24096 * 24097 * Return Code: ENXIO 24098 * EIO 24099 * EAGAIN 24100 * EINTR 24101 */ 24102 24103 static int 24104 sd_check_media(dev_t dev, enum dkio_state state) 24105 { 24106 struct sd_lun *un = NULL; 24107 enum dkio_state prev_state; 24108 opaque_t token = NULL; 24109 int rval = 0; 24110 sd_ssc_t *ssc; 24111 24112 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24113 return (ENXIO); 24114 } 24115 24116 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 24117 24118 ssc = sd_ssc_init(un); 24119 24120 mutex_enter(SD_MUTEX(un)); 24121 24122 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 24123 "state=%x, mediastate=%x\n", state, un->un_mediastate); 24124 24125 prev_state = un->un_mediastate; 24126 24127 /* is there anything to do? */ 24128 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 24129 /* 24130 * submit the request to the scsi_watch service; 24131 * scsi_media_watch_cb() does the real work 24132 */ 24133 mutex_exit(SD_MUTEX(un)); 24134 24135 /* 24136 * This change handles the case where a scsi watch request is 24137 * added to a device that is powered down. To accomplish this 24138 * we power up the device before adding the scsi watch request, 24139 * since the scsi watch sends a TUR directly to the device 24140 * which the device cannot handle if it is powered down. 24141 */ 24142 if (sd_pm_entry(un) != DDI_SUCCESS) { 24143 mutex_enter(SD_MUTEX(un)); 24144 goto done; 24145 } 24146 24147 token = sd_watch_request_submit(un); 24148 24149 sd_pm_exit(un); 24150 24151 mutex_enter(SD_MUTEX(un)); 24152 if (token == NULL) { 24153 rval = EAGAIN; 24154 goto done; 24155 } 24156 24157 /* 24158 * This is a special case IOCTL that doesn't return 24159 * until the media state changes. Routine sdpower 24160 * knows about and handles this so don't count it 24161 * as an active cmd in the driver, which would 24162 * keep the device busy to the pm framework. 24163 * If the count isn't decremented the device can't 24164 * be powered down. 24165 */ 24166 un->un_ncmds_in_driver--; 24167 ASSERT(un->un_ncmds_in_driver >= 0); 24168 24169 /* 24170 * if a prior request had been made, this will be the same 24171 * token, as scsi_watch was designed that way. 24172 */ 24173 un->un_swr_token = token; 24174 un->un_specified_mediastate = state; 24175 24176 /* 24177 * now wait for media change 24178 * we will not be signalled unless mediastate == state but it is 24179 * still better to test for this condition, since there is a 24180 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 24181 */ 24182 SD_TRACE(SD_LOG_COMMON, un, 24183 "sd_check_media: waiting for media state change\n"); 24184 while (un->un_mediastate == state) { 24185 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 24186 SD_TRACE(SD_LOG_COMMON, un, 24187 "sd_check_media: waiting for media state " 24188 "was interrupted\n"); 24189 un->un_ncmds_in_driver++; 24190 rval = EINTR; 24191 goto done; 24192 } 24193 SD_TRACE(SD_LOG_COMMON, un, 24194 "sd_check_media: received signal, state=%x\n", 24195 un->un_mediastate); 24196 } 24197 /* 24198 * Inc the counter to indicate the device once again 24199 * has an active outstanding cmd. 24200 */ 24201 un->un_ncmds_in_driver++; 24202 } 24203 24204 /* invalidate geometry */ 24205 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 24206 sr_ejected(un); 24207 } 24208 24209 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 24210 uint64_t capacity; 24211 uint_t lbasize; 24212 24213 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 24214 mutex_exit(SD_MUTEX(un)); 24215 /* 24216 * Since the following routines use SD_PATH_DIRECT, we must 24217 * call PM directly before the upcoming disk accesses. This 24218 * may cause the disk to be power/spin up. 24219 */ 24220 24221 if (sd_pm_entry(un) == DDI_SUCCESS) { 24222 rval = sd_send_scsi_READ_CAPACITY(ssc, 24223 &capacity, &lbasize, SD_PATH_DIRECT); 24224 if (rval != 0) { 24225 sd_pm_exit(un); 24226 if (rval == EIO) 24227 sd_ssc_assessment(ssc, 24228 SD_FMT_STATUS_CHECK); 24229 else 24230 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24231 mutex_enter(SD_MUTEX(un)); 24232 goto done; 24233 } 24234 } else { 24235 rval = EIO; 24236 mutex_enter(SD_MUTEX(un)); 24237 goto done; 24238 } 24239 mutex_enter(SD_MUTEX(un)); 24240 24241 sd_update_block_info(un, lbasize, capacity); 24242 24243 /* 24244 * Check if the media in the device is writable or not 24245 */ 24246 if (ISCD(un)) { 24247 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 24248 } 24249 24250 mutex_exit(SD_MUTEX(un)); 24251 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 24252 if ((cmlb_validate(un->un_cmlbhandle, 0, 24253 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 24254 sd_set_pstats(un); 24255 SD_TRACE(SD_LOG_IO_PARTITION, un, 24256 "sd_check_media: un:0x%p pstats created and " 24257 "set\n", un); 24258 } 24259 24260 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 24261 SD_PATH_DIRECT); 24262 24263 sd_pm_exit(un); 24264 24265 if (rval != 0) { 24266 if (rval == EIO) 24267 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24268 else 24269 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24270 } 24271 24272 mutex_enter(SD_MUTEX(un)); 24273 } 24274 done: 24275 sd_ssc_fini(ssc); 24276 un->un_f_watcht_stopped = FALSE; 24277 if (token != NULL && un->un_swr_token != NULL) { 24278 /* 24279 * Use of this local token and the mutex ensures that we avoid 24280 * some race conditions associated with terminating the 24281 * scsi watch. 24282 */ 24283 token = un->un_swr_token; 24284 mutex_exit(SD_MUTEX(un)); 24285 (void) scsi_watch_request_terminate(token, 24286 SCSI_WATCH_TERMINATE_WAIT); 24287 if (scsi_watch_get_ref_count(token) == 0) { 24288 mutex_enter(SD_MUTEX(un)); 24289 un->un_swr_token = (opaque_t)NULL; 24290 } else { 24291 mutex_enter(SD_MUTEX(un)); 24292 } 24293 } 24294 24295 /* 24296 * Update the capacity kstat value, if no media previously 24297 * (capacity kstat is 0) and a media has been inserted 24298 * (un_f_blockcount_is_valid == TRUE) 24299 */ 24300 if (un->un_errstats) { 24301 struct sd_errstats *stp = NULL; 24302 24303 stp = (struct sd_errstats *)un->un_errstats->ks_data; 24304 if ((stp->sd_capacity.value.ui64 == 0) && 24305 (un->un_f_blockcount_is_valid == TRUE)) { 24306 stp->sd_capacity.value.ui64 = 24307 (uint64_t)((uint64_t)un->un_blockcount * 24308 un->un_sys_blocksize); 24309 } 24310 } 24311 mutex_exit(SD_MUTEX(un)); 24312 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 24313 return (rval); 24314 } 24315 24316 24317 /* 24318 * Function: sd_delayed_cv_broadcast 24319 * 24320 * Description: Delayed cv_broadcast to allow for target to recover from media 24321 * insertion. 24322 * 24323 * Arguments: arg - driver soft state (unit) structure 24324 */ 24325 24326 static void 24327 sd_delayed_cv_broadcast(void *arg) 24328 { 24329 struct sd_lun *un = arg; 24330 24331 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 24332 24333 mutex_enter(SD_MUTEX(un)); 24334 un->un_dcvb_timeid = NULL; 24335 cv_broadcast(&un->un_state_cv); 24336 mutex_exit(SD_MUTEX(un)); 24337 } 24338 24339 24340 /* 24341 * Function: sd_media_watch_cb 24342 * 24343 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 24344 * routine processes the TUR sense data and updates the driver 24345 * state if a transition has occurred. The user thread 24346 * (sd_check_media) is then signalled. 24347 * 24348 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24349 * among multiple watches that share this callback function 24350 * resultp - scsi watch facility result packet containing scsi 24351 * packet, status byte and sense data 24352 * 24353 * Return Code: 0 for success, -1 for failure 24354 */ 24355 24356 static int 24357 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24358 { 24359 struct sd_lun *un; 24360 struct scsi_status *statusp = resultp->statusp; 24361 uint8_t *sensep = (uint8_t *)resultp->sensep; 24362 enum dkio_state state = DKIO_NONE; 24363 dev_t dev = (dev_t)arg; 24364 uchar_t actual_sense_length; 24365 uint8_t skey, asc, ascq; 24366 24367 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24368 return (-1); 24369 } 24370 actual_sense_length = resultp->actual_sense_length; 24371 24372 mutex_enter(SD_MUTEX(un)); 24373 SD_TRACE(SD_LOG_COMMON, un, 24374 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 24375 *((char *)statusp), (void *)sensep, actual_sense_length); 24376 24377 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 24378 un->un_mediastate = DKIO_DEV_GONE; 24379 cv_broadcast(&un->un_state_cv); 24380 mutex_exit(SD_MUTEX(un)); 24381 24382 return (0); 24383 } 24384 24385 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 24386 if (sd_gesn_media_data_valid(resultp->mmc_data)) { 24387 if ((resultp->mmc_data[5] & 24388 SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) { 24389 state = DKIO_INSERTED; 24390 } else { 24391 state = DKIO_EJECTED; 24392 } 24393 if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) == 24394 SD_GESN_MEDIA_EVENT_EJECTREQUEST) { 24395 sd_log_eject_request_event(un, KM_NOSLEEP); 24396 } 24397 } 24398 } else if (sensep != NULL) { 24399 /* 24400 * If there was a check condition then sensep points to valid 24401 * sense data. If status was not a check condition but a 24402 * reservation or busy status then the new state is DKIO_NONE. 24403 */ 24404 skey = scsi_sense_key(sensep); 24405 asc = scsi_sense_asc(sensep); 24406 ascq = scsi_sense_ascq(sensep); 24407 24408 SD_INFO(SD_LOG_COMMON, un, 24409 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 24410 skey, asc, ascq); 24411 /* This routine only uses up to 13 bytes of sense data. */ 24412 if (actual_sense_length >= 13) { 24413 if (skey == KEY_UNIT_ATTENTION) { 24414 if (asc == 0x28) { 24415 state = DKIO_INSERTED; 24416 } 24417 } else if (skey == KEY_NOT_READY) { 24418 /* 24419 * Sense data of 02/06/00 means that the 24420 * drive could not read the media (No 24421 * reference position found). In this case 24422 * to prevent a hang on the DKIOCSTATE IOCTL 24423 * we set the media state to DKIO_INSERTED. 24424 */ 24425 if (asc == 0x06 && ascq == 0x00) 24426 state = DKIO_INSERTED; 24427 24428 /* 24429 * if 02/04/02 means that the host 24430 * should send start command. Explicitly 24431 * leave the media state as is 24432 * (inserted) as the media is inserted 24433 * and host has stopped device for PM 24434 * reasons. Upon next true read/write 24435 * to this media will bring the 24436 * device to the right state good for 24437 * media access. 24438 */ 24439 if (asc == 0x3a) { 24440 state = DKIO_EJECTED; 24441 } else { 24442 /* 24443 * If the drive is busy with an 24444 * operation or long write, keep the 24445 * media in an inserted state. 24446 */ 24447 24448 if ((asc == 0x04) && 24449 ((ascq == 0x02) || 24450 (ascq == 0x07) || 24451 (ascq == 0x08))) { 24452 state = DKIO_INSERTED; 24453 } 24454 } 24455 } else if (skey == KEY_NO_SENSE) { 24456 if ((asc == 0x00) && (ascq == 0x00)) { 24457 /* 24458 * Sense Data 00/00/00 does not provide 24459 * any information about the state of 24460 * the media. Ignore it. 24461 */ 24462 mutex_exit(SD_MUTEX(un)); 24463 return (0); 24464 } 24465 } 24466 } 24467 } else if ((*((char *)statusp) == STATUS_GOOD) && 24468 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 24469 state = DKIO_INSERTED; 24470 } 24471 24472 SD_TRACE(SD_LOG_COMMON, un, 24473 "sd_media_watch_cb: state=%x, specified=%x\n", 24474 state, un->un_specified_mediastate); 24475 24476 /* 24477 * now signal the waiting thread if this is *not* the specified state; 24478 * delay the signal if the state is DKIO_INSERTED to allow the target 24479 * to recover 24480 */ 24481 if (state != un->un_specified_mediastate) { 24482 un->un_mediastate = state; 24483 if (state == DKIO_INSERTED) { 24484 /* 24485 * delay the signal to give the drive a chance 24486 * to do what it apparently needs to do 24487 */ 24488 SD_TRACE(SD_LOG_COMMON, un, 24489 "sd_media_watch_cb: delayed cv_broadcast\n"); 24490 if (un->un_dcvb_timeid == NULL) { 24491 un->un_dcvb_timeid = 24492 timeout(sd_delayed_cv_broadcast, un, 24493 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 24494 } 24495 } else { 24496 SD_TRACE(SD_LOG_COMMON, un, 24497 "sd_media_watch_cb: immediate cv_broadcast\n"); 24498 cv_broadcast(&un->un_state_cv); 24499 } 24500 } 24501 mutex_exit(SD_MUTEX(un)); 24502 return (0); 24503 } 24504 24505 24506 /* 24507 * Function: sd_dkio_get_temp 24508 * 24509 * Description: This routine is the driver entry point for handling ioctl 24510 * requests to get the disk temperature. 24511 * 24512 * Arguments: dev - the device number 24513 * arg - pointer to user provided dk_temperature structure. 24514 * flag - this argument is a pass through to ddi_copyxxx() 24515 * directly from the mode argument of ioctl(). 24516 * 24517 * Return Code: 0 24518 * EFAULT 24519 * ENXIO 24520 * EAGAIN 24521 */ 24522 24523 static int 24524 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 24525 { 24526 struct sd_lun *un = NULL; 24527 struct dk_temperature *dktemp = NULL; 24528 uchar_t *temperature_page; 24529 int rval = 0; 24530 int path_flag = SD_PATH_STANDARD; 24531 sd_ssc_t *ssc; 24532 24533 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24534 return (ENXIO); 24535 } 24536 24537 ssc = sd_ssc_init(un); 24538 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24539 24540 /* copyin the disk temp argument to get the user flags */ 24541 if (ddi_copyin((void *)arg, dktemp, 24542 sizeof (struct dk_temperature), flag) != 0) { 24543 rval = EFAULT; 24544 goto done; 24545 } 24546 24547 /* Initialize the temperature to invalid. */ 24548 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24549 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24550 24551 /* 24552 * Note: Investigate removing the "bypass pm" semantic. 24553 * Can we just bypass PM always? 24554 */ 24555 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24556 path_flag = SD_PATH_DIRECT; 24557 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24558 mutex_enter(&un->un_pm_mutex); 24559 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24560 /* 24561 * If DKT_BYPASS_PM is set, and the drive happens to be 24562 * in low power mode, we can not wake it up, Need to 24563 * return EAGAIN. 24564 */ 24565 mutex_exit(&un->un_pm_mutex); 24566 rval = EAGAIN; 24567 goto done; 24568 } else { 24569 /* 24570 * Indicate to PM the device is busy. This is required 24571 * to avoid a race - i.e. the ioctl is issuing a 24572 * command and the pm framework brings down the device 24573 * to low power mode (possible power cut-off on some 24574 * platforms). 24575 */ 24576 mutex_exit(&un->un_pm_mutex); 24577 if (sd_pm_entry(un) != DDI_SUCCESS) { 24578 rval = EAGAIN; 24579 goto done; 24580 } 24581 } 24582 } 24583 24584 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24585 24586 rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page, 24587 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag); 24588 if (rval != 0) 24589 goto done2; 24590 24591 /* 24592 * For the current temperature verify that the parameter length is 0x02 24593 * and the parameter code is 0x00 24594 */ 24595 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24596 (temperature_page[5] == 0x00)) { 24597 if (temperature_page[9] == 0xFF) { 24598 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24599 } else { 24600 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24601 } 24602 } 24603 24604 /* 24605 * For the reference temperature verify that the parameter 24606 * length is 0x02 and the parameter code is 0x01 24607 */ 24608 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24609 (temperature_page[11] == 0x01)) { 24610 if (temperature_page[15] == 0xFF) { 24611 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24612 } else { 24613 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24614 } 24615 } 24616 24617 /* Do the copyout regardless of the temperature commands status. */ 24618 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24619 flag) != 0) { 24620 rval = EFAULT; 24621 goto done1; 24622 } 24623 24624 done2: 24625 if (rval != 0) { 24626 if (rval == EIO) 24627 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24628 else 24629 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24630 } 24631 done1: 24632 if (path_flag == SD_PATH_DIRECT) { 24633 sd_pm_exit(un); 24634 } 24635 24636 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24637 done: 24638 sd_ssc_fini(ssc); 24639 if (dktemp != NULL) { 24640 kmem_free(dktemp, sizeof (struct dk_temperature)); 24641 } 24642 24643 return (rval); 24644 } 24645 24646 24647 /* 24648 * Function: sd_log_page_supported 24649 * 24650 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24651 * supported log pages. 24652 * 24653 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 24654 * structure for this target. 24655 * log_page - 24656 * 24657 * Return Code: -1 - on error (log sense is optional and may not be supported). 24658 * 0 - log page not found. 24659 * 1 - log page found. 24660 */ 24661 24662 static int 24663 sd_log_page_supported(sd_ssc_t *ssc, int log_page) 24664 { 24665 uchar_t *log_page_data; 24666 int i; 24667 int match = 0; 24668 int log_size; 24669 int status = 0; 24670 struct sd_lun *un; 24671 24672 ASSERT(ssc != NULL); 24673 un = ssc->ssc_un; 24674 ASSERT(un != NULL); 24675 24676 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24677 24678 status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0, 24679 SD_PATH_DIRECT); 24680 24681 if (status != 0) { 24682 if (status == EIO) { 24683 /* 24684 * Some disks do not support log sense, we 24685 * should ignore this kind of error(sense key is 24686 * 0x5 - illegal request). 24687 */ 24688 uint8_t *sensep; 24689 int senlen; 24690 24691 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 24692 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 24693 ssc->ssc_uscsi_cmd->uscsi_rqresid); 24694 24695 if (senlen > 0 && 24696 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 24697 sd_ssc_assessment(ssc, 24698 SD_FMT_IGNORE_COMPROMISE); 24699 } else { 24700 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24701 } 24702 } else { 24703 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24704 } 24705 24706 SD_ERROR(SD_LOG_COMMON, un, 24707 "sd_log_page_supported: failed log page retrieval\n"); 24708 kmem_free(log_page_data, 0xFF); 24709 return (-1); 24710 } 24711 24712 log_size = log_page_data[3]; 24713 24714 /* 24715 * The list of supported log pages start from the fourth byte. Check 24716 * until we run out of log pages or a match is found. 24717 */ 24718 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24719 if (log_page_data[i] == log_page) { 24720 match++; 24721 } 24722 } 24723 kmem_free(log_page_data, 0xFF); 24724 return (match); 24725 } 24726 24727 24728 /* 24729 * Function: sd_mhdioc_failfast 24730 * 24731 * Description: This routine is the driver entry point for handling ioctl 24732 * requests to enable/disable the multihost failfast option. 24733 * (MHIOCENFAILFAST) 24734 * 24735 * Arguments: dev - the device number 24736 * arg - user specified probing interval. 24737 * flag - this argument is a pass through to ddi_copyxxx() 24738 * directly from the mode argument of ioctl(). 24739 * 24740 * Return Code: 0 24741 * EFAULT 24742 * ENXIO 24743 */ 24744 24745 static int 24746 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24747 { 24748 struct sd_lun *un = NULL; 24749 int mh_time; 24750 int rval = 0; 24751 24752 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24753 return (ENXIO); 24754 } 24755 24756 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24757 return (EFAULT); 24758 24759 if (mh_time) { 24760 mutex_enter(SD_MUTEX(un)); 24761 un->un_resvd_status |= SD_FAILFAST; 24762 mutex_exit(SD_MUTEX(un)); 24763 /* 24764 * If mh_time is INT_MAX, then this ioctl is being used for 24765 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24766 */ 24767 if (mh_time != INT_MAX) { 24768 rval = sd_check_mhd(dev, mh_time); 24769 } 24770 } else { 24771 (void) sd_check_mhd(dev, 0); 24772 mutex_enter(SD_MUTEX(un)); 24773 un->un_resvd_status &= ~SD_FAILFAST; 24774 mutex_exit(SD_MUTEX(un)); 24775 } 24776 return (rval); 24777 } 24778 24779 24780 /* 24781 * Function: sd_mhdioc_takeown 24782 * 24783 * Description: This routine is the driver entry point for handling ioctl 24784 * requests to forcefully acquire exclusive access rights to the 24785 * multihost disk (MHIOCTKOWN). 24786 * 24787 * Arguments: dev - the device number 24788 * arg - user provided structure specifying the delay 24789 * parameters in milliseconds 24790 * flag - this argument is a pass through to ddi_copyxxx() 24791 * directly from the mode argument of ioctl(). 24792 * 24793 * Return Code: 0 24794 * EFAULT 24795 * ENXIO 24796 */ 24797 24798 static int 24799 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24800 { 24801 struct sd_lun *un = NULL; 24802 struct mhioctkown *tkown = NULL; 24803 int rval = 0; 24804 24805 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24806 return (ENXIO); 24807 } 24808 24809 if (arg != NULL) { 24810 tkown = (struct mhioctkown *) 24811 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24812 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24813 if (rval != 0) { 24814 rval = EFAULT; 24815 goto error; 24816 } 24817 } 24818 24819 rval = sd_take_ownership(dev, tkown); 24820 mutex_enter(SD_MUTEX(un)); 24821 if (rval == 0) { 24822 un->un_resvd_status |= SD_RESERVE; 24823 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24824 sd_reinstate_resv_delay = 24825 tkown->reinstate_resv_delay * 1000; 24826 } else { 24827 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24828 } 24829 /* 24830 * Give the scsi_watch routine interval set by 24831 * the MHIOCENFAILFAST ioctl precedence here. 24832 */ 24833 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24834 mutex_exit(SD_MUTEX(un)); 24835 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24836 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24837 "sd_mhdioc_takeown : %d\n", 24838 sd_reinstate_resv_delay); 24839 } else { 24840 mutex_exit(SD_MUTEX(un)); 24841 } 24842 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24843 sd_mhd_reset_notify_cb, (caddr_t)un); 24844 } else { 24845 un->un_resvd_status &= ~SD_RESERVE; 24846 mutex_exit(SD_MUTEX(un)); 24847 } 24848 24849 error: 24850 if (tkown != NULL) { 24851 kmem_free(tkown, sizeof (struct mhioctkown)); 24852 } 24853 return (rval); 24854 } 24855 24856 24857 /* 24858 * Function: sd_mhdioc_release 24859 * 24860 * Description: This routine is the driver entry point for handling ioctl 24861 * requests to release exclusive access rights to the multihost 24862 * disk (MHIOCRELEASE). 24863 * 24864 * Arguments: dev - the device number 24865 * 24866 * Return Code: 0 24867 * ENXIO 24868 */ 24869 24870 static int 24871 sd_mhdioc_release(dev_t dev) 24872 { 24873 struct sd_lun *un = NULL; 24874 timeout_id_t resvd_timeid_save; 24875 int resvd_status_save; 24876 int rval = 0; 24877 24878 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24879 return (ENXIO); 24880 } 24881 24882 mutex_enter(SD_MUTEX(un)); 24883 resvd_status_save = un->un_resvd_status; 24884 un->un_resvd_status &= 24885 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24886 if (un->un_resvd_timeid) { 24887 resvd_timeid_save = un->un_resvd_timeid; 24888 un->un_resvd_timeid = NULL; 24889 mutex_exit(SD_MUTEX(un)); 24890 (void) untimeout(resvd_timeid_save); 24891 } else { 24892 mutex_exit(SD_MUTEX(un)); 24893 } 24894 24895 /* 24896 * destroy any pending timeout thread that may be attempting to 24897 * reinstate reservation on this device. 24898 */ 24899 sd_rmv_resv_reclaim_req(dev); 24900 24901 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24902 mutex_enter(SD_MUTEX(un)); 24903 if ((un->un_mhd_token) && 24904 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24905 mutex_exit(SD_MUTEX(un)); 24906 (void) sd_check_mhd(dev, 0); 24907 } else { 24908 mutex_exit(SD_MUTEX(un)); 24909 } 24910 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24911 sd_mhd_reset_notify_cb, (caddr_t)un); 24912 } else { 24913 /* 24914 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24915 */ 24916 mutex_enter(SD_MUTEX(un)); 24917 un->un_resvd_status = resvd_status_save; 24918 mutex_exit(SD_MUTEX(un)); 24919 } 24920 return (rval); 24921 } 24922 24923 24924 /* 24925 * Function: sd_mhdioc_register_devid 24926 * 24927 * Description: This routine is the driver entry point for handling ioctl 24928 * requests to register the device id (MHIOCREREGISTERDEVID). 24929 * 24930 * Note: The implementation for this ioctl has been updated to 24931 * be consistent with the original PSARC case (1999/357) 24932 * (4375899, 4241671, 4220005) 24933 * 24934 * Arguments: dev - the device number 24935 * 24936 * Return Code: 0 24937 * ENXIO 24938 */ 24939 24940 static int 24941 sd_mhdioc_register_devid(dev_t dev) 24942 { 24943 struct sd_lun *un = NULL; 24944 int rval = 0; 24945 sd_ssc_t *ssc; 24946 24947 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24948 return (ENXIO); 24949 } 24950 24951 ASSERT(!mutex_owned(SD_MUTEX(un))); 24952 24953 mutex_enter(SD_MUTEX(un)); 24954 24955 /* If a devid already exists, de-register it */ 24956 if (un->un_devid != NULL) { 24957 ddi_devid_unregister(SD_DEVINFO(un)); 24958 /* 24959 * After unregister devid, needs to free devid memory 24960 */ 24961 ddi_devid_free(un->un_devid); 24962 un->un_devid = NULL; 24963 } 24964 24965 /* Check for reservation conflict */ 24966 mutex_exit(SD_MUTEX(un)); 24967 ssc = sd_ssc_init(un); 24968 rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 24969 mutex_enter(SD_MUTEX(un)); 24970 24971 switch (rval) { 24972 case 0: 24973 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24974 break; 24975 case EACCES: 24976 break; 24977 default: 24978 rval = EIO; 24979 } 24980 24981 mutex_exit(SD_MUTEX(un)); 24982 if (rval != 0) { 24983 if (rval == EIO) 24984 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24985 else 24986 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24987 } 24988 sd_ssc_fini(ssc); 24989 return (rval); 24990 } 24991 24992 24993 /* 24994 * Function: sd_mhdioc_inkeys 24995 * 24996 * Description: This routine is the driver entry point for handling ioctl 24997 * requests to issue the SCSI-3 Persistent In Read Keys command 24998 * to the device (MHIOCGRP_INKEYS). 24999 * 25000 * Arguments: dev - the device number 25001 * arg - user provided in_keys structure 25002 * flag - this argument is a pass through to ddi_copyxxx() 25003 * directly from the mode argument of ioctl(). 25004 * 25005 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 25006 * ENXIO 25007 * EFAULT 25008 */ 25009 25010 static int 25011 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 25012 { 25013 struct sd_lun *un; 25014 mhioc_inkeys_t inkeys; 25015 int rval = 0; 25016 25017 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25018 return (ENXIO); 25019 } 25020 25021 #ifdef _MULTI_DATAMODEL 25022 switch (ddi_model_convert_from(flag & FMODELS)) { 25023 case DDI_MODEL_ILP32: { 25024 struct mhioc_inkeys32 inkeys32; 25025 25026 if (ddi_copyin(arg, &inkeys32, 25027 sizeof (struct mhioc_inkeys32), flag) != 0) { 25028 return (EFAULT); 25029 } 25030 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 25031 if ((rval = sd_persistent_reservation_in_read_keys(un, 25032 &inkeys, flag)) != 0) { 25033 return (rval); 25034 } 25035 inkeys32.generation = inkeys.generation; 25036 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 25037 flag) != 0) { 25038 return (EFAULT); 25039 } 25040 break; 25041 } 25042 case DDI_MODEL_NONE: 25043 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 25044 flag) != 0) { 25045 return (EFAULT); 25046 } 25047 if ((rval = sd_persistent_reservation_in_read_keys(un, 25048 &inkeys, flag)) != 0) { 25049 return (rval); 25050 } 25051 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 25052 flag) != 0) { 25053 return (EFAULT); 25054 } 25055 break; 25056 } 25057 25058 #else /* ! _MULTI_DATAMODEL */ 25059 25060 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 25061 return (EFAULT); 25062 } 25063 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 25064 if (rval != 0) { 25065 return (rval); 25066 } 25067 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 25068 return (EFAULT); 25069 } 25070 25071 #endif /* _MULTI_DATAMODEL */ 25072 25073 return (rval); 25074 } 25075 25076 25077 /* 25078 * Function: sd_mhdioc_inresv 25079 * 25080 * Description: This routine is the driver entry point for handling ioctl 25081 * requests to issue the SCSI-3 Persistent In Read Reservations 25082 * command to the device (MHIOCGRP_INKEYS). 25083 * 25084 * Arguments: dev - the device number 25085 * arg - user provided in_resv structure 25086 * flag - this argument is a pass through to ddi_copyxxx() 25087 * directly from the mode argument of ioctl(). 25088 * 25089 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 25090 * ENXIO 25091 * EFAULT 25092 */ 25093 25094 static int 25095 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 25096 { 25097 struct sd_lun *un; 25098 mhioc_inresvs_t inresvs; 25099 int rval = 0; 25100 25101 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25102 return (ENXIO); 25103 } 25104 25105 #ifdef _MULTI_DATAMODEL 25106 25107 switch (ddi_model_convert_from(flag & FMODELS)) { 25108 case DDI_MODEL_ILP32: { 25109 struct mhioc_inresvs32 inresvs32; 25110 25111 if (ddi_copyin(arg, &inresvs32, 25112 sizeof (struct mhioc_inresvs32), flag) != 0) { 25113 return (EFAULT); 25114 } 25115 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 25116 if ((rval = sd_persistent_reservation_in_read_resv(un, 25117 &inresvs, flag)) != 0) { 25118 return (rval); 25119 } 25120 inresvs32.generation = inresvs.generation; 25121 if (ddi_copyout(&inresvs32, arg, 25122 sizeof (struct mhioc_inresvs32), flag) != 0) { 25123 return (EFAULT); 25124 } 25125 break; 25126 } 25127 case DDI_MODEL_NONE: 25128 if (ddi_copyin(arg, &inresvs, 25129 sizeof (mhioc_inresvs_t), flag) != 0) { 25130 return (EFAULT); 25131 } 25132 if ((rval = sd_persistent_reservation_in_read_resv(un, 25133 &inresvs, flag)) != 0) { 25134 return (rval); 25135 } 25136 if (ddi_copyout(&inresvs, arg, 25137 sizeof (mhioc_inresvs_t), flag) != 0) { 25138 return (EFAULT); 25139 } 25140 break; 25141 } 25142 25143 #else /* ! _MULTI_DATAMODEL */ 25144 25145 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 25146 return (EFAULT); 25147 } 25148 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 25149 if (rval != 0) { 25150 return (rval); 25151 } 25152 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 25153 return (EFAULT); 25154 } 25155 25156 #endif /* ! _MULTI_DATAMODEL */ 25157 25158 return (rval); 25159 } 25160 25161 25162 /* 25163 * The following routines support the clustering functionality described below 25164 * and implement lost reservation reclaim functionality. 25165 * 25166 * Clustering 25167 * ---------- 25168 * The clustering code uses two different, independent forms of SCSI 25169 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 25170 * Persistent Group Reservations. For any particular disk, it will use either 25171 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 25172 * 25173 * SCSI-2 25174 * The cluster software takes ownership of a multi-hosted disk by issuing the 25175 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 25176 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 25177 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 25178 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 25179 * driver. The meaning of failfast is that if the driver (on this host) ever 25180 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 25181 * it should immediately panic the host. The motivation for this ioctl is that 25182 * if this host does encounter reservation conflict, the underlying cause is 25183 * that some other host of the cluster has decided that this host is no longer 25184 * in the cluster and has seized control of the disks for itself. Since this 25185 * host is no longer in the cluster, it ought to panic itself. The 25186 * MHIOCENFAILFAST ioctl does two things: 25187 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 25188 * error to panic the host 25189 * (b) it sets up a periodic timer to test whether this host still has 25190 * "access" (in that no other host has reserved the device): if the 25191 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 25192 * purpose of that periodic timer is to handle scenarios where the host is 25193 * otherwise temporarily quiescent, temporarily doing no real i/o. 25194 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 25195 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 25196 * the device itself. 25197 * 25198 * SCSI-3 PGR 25199 * A direct semantic implementation of the SCSI-3 Persistent Reservation 25200 * facility is supported through the shared multihost disk ioctls 25201 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 25202 * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR) 25203 * 25204 * Reservation Reclaim: 25205 * -------------------- 25206 * To support the lost reservation reclaim operations this driver creates a 25207 * single thread to handle reinstating reservations on all devices that have 25208 * lost reservations sd_resv_reclaim_requests are logged for all devices that 25209 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 25210 * and the reservation reclaim thread loops through the requests to regain the 25211 * lost reservations. 25212 */ 25213 25214 /* 25215 * Function: sd_check_mhd() 25216 * 25217 * Description: This function sets up and submits a scsi watch request or 25218 * terminates an existing watch request. This routine is used in 25219 * support of reservation reclaim. 25220 * 25221 * Arguments: dev - the device 'dev_t' is used for context to discriminate 25222 * among multiple watches that share the callback function 25223 * interval - the number of microseconds specifying the watch 25224 * interval for issuing TEST UNIT READY commands. If 25225 * set to 0 the watch should be terminated. If the 25226 * interval is set to 0 and if the device is required 25227 * to hold reservation while disabling failfast, the 25228 * watch is restarted with an interval of 25229 * reinstate_resv_delay. 25230 * 25231 * Return Code: 0 - Successful submit/terminate of scsi watch request 25232 * ENXIO - Indicates an invalid device was specified 25233 * EAGAIN - Unable to submit the scsi watch request 25234 */ 25235 25236 static int 25237 sd_check_mhd(dev_t dev, int interval) 25238 { 25239 struct sd_lun *un; 25240 opaque_t token; 25241 25242 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25243 return (ENXIO); 25244 } 25245 25246 /* is this a watch termination request? */ 25247 if (interval == 0) { 25248 mutex_enter(SD_MUTEX(un)); 25249 /* if there is an existing watch task then terminate it */ 25250 if (un->un_mhd_token) { 25251 token = un->un_mhd_token; 25252 un->un_mhd_token = NULL; 25253 mutex_exit(SD_MUTEX(un)); 25254 (void) scsi_watch_request_terminate(token, 25255 SCSI_WATCH_TERMINATE_ALL_WAIT); 25256 mutex_enter(SD_MUTEX(un)); 25257 } else { 25258 mutex_exit(SD_MUTEX(un)); 25259 /* 25260 * Note: If we return here we don't check for the 25261 * failfast case. This is the original legacy 25262 * implementation but perhaps we should be checking 25263 * the failfast case. 25264 */ 25265 return (0); 25266 } 25267 /* 25268 * If the device is required to hold reservation while 25269 * disabling failfast, we need to restart the scsi_watch 25270 * routine with an interval of reinstate_resv_delay. 25271 */ 25272 if (un->un_resvd_status & SD_RESERVE) { 25273 interval = sd_reinstate_resv_delay/1000; 25274 } else { 25275 /* no failfast so bail */ 25276 mutex_exit(SD_MUTEX(un)); 25277 return (0); 25278 } 25279 mutex_exit(SD_MUTEX(un)); 25280 } 25281 25282 /* 25283 * adjust minimum time interval to 1 second, 25284 * and convert from msecs to usecs 25285 */ 25286 if (interval > 0 && interval < 1000) { 25287 interval = 1000; 25288 } 25289 interval *= 1000; 25290 25291 /* 25292 * submit the request to the scsi_watch service 25293 */ 25294 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 25295 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 25296 if (token == NULL) { 25297 return (EAGAIN); 25298 } 25299 25300 /* 25301 * save token for termination later on 25302 */ 25303 mutex_enter(SD_MUTEX(un)); 25304 un->un_mhd_token = token; 25305 mutex_exit(SD_MUTEX(un)); 25306 return (0); 25307 } 25308 25309 25310 /* 25311 * Function: sd_mhd_watch_cb() 25312 * 25313 * Description: This function is the call back function used by the scsi watch 25314 * facility. The scsi watch facility sends the "Test Unit Ready" 25315 * and processes the status. If applicable (i.e. a "Unit Attention" 25316 * status and automatic "Request Sense" not used) the scsi watch 25317 * facility will send a "Request Sense" and retrieve the sense data 25318 * to be passed to this callback function. In either case the 25319 * automatic "Request Sense" or the facility submitting one, this 25320 * callback is passed the status and sense data. 25321 * 25322 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25323 * among multiple watches that share this callback function 25324 * resultp - scsi watch facility result packet containing scsi 25325 * packet, status byte and sense data 25326 * 25327 * Return Code: 0 - continue the watch task 25328 * non-zero - terminate the watch task 25329 */ 25330 25331 static int 25332 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 25333 { 25334 struct sd_lun *un; 25335 struct scsi_status *statusp; 25336 uint8_t *sensep; 25337 struct scsi_pkt *pkt; 25338 uchar_t actual_sense_length; 25339 dev_t dev = (dev_t)arg; 25340 25341 ASSERT(resultp != NULL); 25342 statusp = resultp->statusp; 25343 sensep = (uint8_t *)resultp->sensep; 25344 pkt = resultp->pkt; 25345 actual_sense_length = resultp->actual_sense_length; 25346 25347 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25348 return (ENXIO); 25349 } 25350 25351 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25352 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 25353 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 25354 25355 /* Begin processing of the status and/or sense data */ 25356 if (pkt->pkt_reason != CMD_CMPLT) { 25357 /* Handle the incomplete packet */ 25358 sd_mhd_watch_incomplete(un, pkt); 25359 return (0); 25360 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 25361 if (*((unsigned char *)statusp) 25362 == STATUS_RESERVATION_CONFLICT) { 25363 /* 25364 * Handle a reservation conflict by panicking if 25365 * configured for failfast or by logging the conflict 25366 * and updating the reservation status 25367 */ 25368 mutex_enter(SD_MUTEX(un)); 25369 if ((un->un_resvd_status & SD_FAILFAST) && 25370 (sd_failfast_enable)) { 25371 sd_panic_for_res_conflict(un); 25372 /*NOTREACHED*/ 25373 } 25374 SD_INFO(SD_LOG_IOCTL_MHD, un, 25375 "sd_mhd_watch_cb: Reservation Conflict\n"); 25376 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 25377 mutex_exit(SD_MUTEX(un)); 25378 } 25379 } 25380 25381 if (sensep != NULL) { 25382 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 25383 mutex_enter(SD_MUTEX(un)); 25384 if ((scsi_sense_asc(sensep) == 25385 SD_SCSI_RESET_SENSE_CODE) && 25386 (un->un_resvd_status & SD_RESERVE)) { 25387 /* 25388 * The additional sense code indicates a power 25389 * on or bus device reset has occurred; update 25390 * the reservation status. 25391 */ 25392 un->un_resvd_status |= 25393 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25394 SD_INFO(SD_LOG_IOCTL_MHD, un, 25395 "sd_mhd_watch_cb: Lost Reservation\n"); 25396 } 25397 } else { 25398 return (0); 25399 } 25400 } else { 25401 mutex_enter(SD_MUTEX(un)); 25402 } 25403 25404 if ((un->un_resvd_status & SD_RESERVE) && 25405 (un->un_resvd_status & SD_LOST_RESERVE)) { 25406 if (un->un_resvd_status & SD_WANT_RESERVE) { 25407 /* 25408 * A reset occurred in between the last probe and this 25409 * one so if a timeout is pending cancel it. 25410 */ 25411 if (un->un_resvd_timeid) { 25412 timeout_id_t temp_id = un->un_resvd_timeid; 25413 un->un_resvd_timeid = NULL; 25414 mutex_exit(SD_MUTEX(un)); 25415 (void) untimeout(temp_id); 25416 mutex_enter(SD_MUTEX(un)); 25417 } 25418 un->un_resvd_status &= ~SD_WANT_RESERVE; 25419 } 25420 if (un->un_resvd_timeid == 0) { 25421 /* Schedule a timeout to handle the lost reservation */ 25422 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 25423 (void *)dev, 25424 drv_usectohz(sd_reinstate_resv_delay)); 25425 } 25426 } 25427 mutex_exit(SD_MUTEX(un)); 25428 return (0); 25429 } 25430 25431 25432 /* 25433 * Function: sd_mhd_watch_incomplete() 25434 * 25435 * Description: This function is used to find out why a scsi pkt sent by the 25436 * scsi watch facility was not completed. Under some scenarios this 25437 * routine will return. Otherwise it will send a bus reset to see 25438 * if the drive is still online. 25439 * 25440 * Arguments: un - driver soft state (unit) structure 25441 * pkt - incomplete scsi pkt 25442 */ 25443 25444 static void 25445 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 25446 { 25447 int be_chatty; 25448 int perr; 25449 25450 ASSERT(pkt != NULL); 25451 ASSERT(un != NULL); 25452 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 25453 perr = (pkt->pkt_statistics & STAT_PERR); 25454 25455 mutex_enter(SD_MUTEX(un)); 25456 if (un->un_state == SD_STATE_DUMPING) { 25457 mutex_exit(SD_MUTEX(un)); 25458 return; 25459 } 25460 25461 switch (pkt->pkt_reason) { 25462 case CMD_UNX_BUS_FREE: 25463 /* 25464 * If we had a parity error that caused the target to drop BSY*, 25465 * don't be chatty about it. 25466 */ 25467 if (perr && be_chatty) { 25468 be_chatty = 0; 25469 } 25470 break; 25471 case CMD_TAG_REJECT: 25472 /* 25473 * The SCSI-2 spec states that a tag reject will be sent by the 25474 * target if tagged queuing is not supported. A tag reject may 25475 * also be sent during certain initialization periods or to 25476 * control internal resources. For the latter case the target 25477 * may also return Queue Full. 25478 * 25479 * If this driver receives a tag reject from a target that is 25480 * going through an init period or controlling internal 25481 * resources tagged queuing will be disabled. This is a less 25482 * than optimal behavior but the driver is unable to determine 25483 * the target state and assumes tagged queueing is not supported 25484 */ 25485 pkt->pkt_flags = 0; 25486 un->un_tagflags = 0; 25487 25488 if (un->un_f_opt_queueing == TRUE) { 25489 un->un_throttle = min(un->un_throttle, 3); 25490 } else { 25491 un->un_throttle = 1; 25492 } 25493 mutex_exit(SD_MUTEX(un)); 25494 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 25495 mutex_enter(SD_MUTEX(un)); 25496 break; 25497 case CMD_INCOMPLETE: 25498 /* 25499 * The transport stopped with an abnormal state, fallthrough and 25500 * reset the target and/or bus unless selection did not complete 25501 * (indicated by STATE_GOT_BUS) in which case we don't want to 25502 * go through a target/bus reset 25503 */ 25504 if (pkt->pkt_state == STATE_GOT_BUS) { 25505 break; 25506 } 25507 /*FALLTHROUGH*/ 25508 25509 case CMD_TIMEOUT: 25510 default: 25511 /* 25512 * The lun may still be running the command, so a lun reset 25513 * should be attempted. If the lun reset fails or cannot be 25514 * issued, than try a target reset. Lastly try a bus reset. 25515 */ 25516 if ((pkt->pkt_statistics & 25517 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 25518 int reset_retval = 0; 25519 mutex_exit(SD_MUTEX(un)); 25520 if (un->un_f_allow_bus_device_reset == TRUE) { 25521 if (un->un_f_lun_reset_enabled == TRUE) { 25522 reset_retval = 25523 scsi_reset(SD_ADDRESS(un), 25524 RESET_LUN); 25525 } 25526 if (reset_retval == 0) { 25527 reset_retval = 25528 scsi_reset(SD_ADDRESS(un), 25529 RESET_TARGET); 25530 } 25531 } 25532 if (reset_retval == 0) { 25533 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25534 } 25535 mutex_enter(SD_MUTEX(un)); 25536 } 25537 break; 25538 } 25539 25540 /* A device/bus reset has occurred; update the reservation status. */ 25541 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25542 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25543 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25544 un->un_resvd_status |= 25545 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25546 SD_INFO(SD_LOG_IOCTL_MHD, un, 25547 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25548 } 25549 } 25550 25551 /* 25552 * The disk has been turned off; Update the device state. 25553 * 25554 * Note: Should we be offlining the disk here? 25555 */ 25556 if (pkt->pkt_state == STATE_GOT_BUS) { 25557 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25558 "Disk not responding to selection\n"); 25559 if (un->un_state != SD_STATE_OFFLINE) { 25560 New_state(un, SD_STATE_OFFLINE); 25561 } 25562 } else if (be_chatty) { 25563 /* 25564 * suppress messages if they are all the same pkt reason; 25565 * with TQ, many (up to 256) are returned with the same 25566 * pkt_reason 25567 */ 25568 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25569 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25570 "sd_mhd_watch_incomplete: " 25571 "SCSI transport failed: reason '%s'\n", 25572 scsi_rname(pkt->pkt_reason)); 25573 } 25574 } 25575 un->un_last_pkt_reason = pkt->pkt_reason; 25576 mutex_exit(SD_MUTEX(un)); 25577 } 25578 25579 25580 /* 25581 * Function: sd_sname() 25582 * 25583 * Description: This is a simple little routine to return a string containing 25584 * a printable description of command status byte for use in 25585 * logging. 25586 * 25587 * Arguments: status - pointer to a status byte 25588 * 25589 * Return Code: char * - string containing status description. 25590 */ 25591 25592 static char * 25593 sd_sname(uchar_t status) 25594 { 25595 switch (status & STATUS_MASK) { 25596 case STATUS_GOOD: 25597 return ("good status"); 25598 case STATUS_CHECK: 25599 return ("check condition"); 25600 case STATUS_MET: 25601 return ("condition met"); 25602 case STATUS_BUSY: 25603 return ("busy"); 25604 case STATUS_INTERMEDIATE: 25605 return ("intermediate"); 25606 case STATUS_INTERMEDIATE_MET: 25607 return ("intermediate - condition met"); 25608 case STATUS_RESERVATION_CONFLICT: 25609 return ("reservation_conflict"); 25610 case STATUS_TERMINATED: 25611 return ("command terminated"); 25612 case STATUS_QFULL: 25613 return ("queue full"); 25614 default: 25615 return ("<unknown status>"); 25616 } 25617 } 25618 25619 25620 /* 25621 * Function: sd_mhd_resvd_recover() 25622 * 25623 * Description: This function adds a reservation entry to the 25624 * sd_resv_reclaim_request list and signals the reservation 25625 * reclaim thread that there is work pending. If the reservation 25626 * reclaim thread has not been previously created this function 25627 * will kick it off. 25628 * 25629 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25630 * among multiple watches that share this callback function 25631 * 25632 * Context: This routine is called by timeout() and is run in interrupt 25633 * context. It must not sleep or call other functions which may 25634 * sleep. 25635 */ 25636 25637 static void 25638 sd_mhd_resvd_recover(void *arg) 25639 { 25640 dev_t dev = (dev_t)arg; 25641 struct sd_lun *un; 25642 struct sd_thr_request *sd_treq = NULL; 25643 struct sd_thr_request *sd_cur = NULL; 25644 struct sd_thr_request *sd_prev = NULL; 25645 int already_there = 0; 25646 25647 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25648 return; 25649 } 25650 25651 mutex_enter(SD_MUTEX(un)); 25652 un->un_resvd_timeid = NULL; 25653 if (un->un_resvd_status & SD_WANT_RESERVE) { 25654 /* 25655 * There was a reset so don't issue the reserve, allow the 25656 * sd_mhd_watch_cb callback function to notice this and 25657 * reschedule the timeout for reservation. 25658 */ 25659 mutex_exit(SD_MUTEX(un)); 25660 return; 25661 } 25662 mutex_exit(SD_MUTEX(un)); 25663 25664 /* 25665 * Add this device to the sd_resv_reclaim_request list and the 25666 * sd_resv_reclaim_thread should take care of the rest. 25667 * 25668 * Note: We can't sleep in this context so if the memory allocation 25669 * fails allow the sd_mhd_watch_cb callback function to notice this and 25670 * reschedule the timeout for reservation. (4378460) 25671 */ 25672 sd_treq = (struct sd_thr_request *) 25673 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25674 if (sd_treq == NULL) { 25675 return; 25676 } 25677 25678 sd_treq->sd_thr_req_next = NULL; 25679 sd_treq->dev = dev; 25680 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25681 if (sd_tr.srq_thr_req_head == NULL) { 25682 sd_tr.srq_thr_req_head = sd_treq; 25683 } else { 25684 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25685 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25686 if (sd_cur->dev == dev) { 25687 /* 25688 * already in Queue so don't log 25689 * another request for the device 25690 */ 25691 already_there = 1; 25692 break; 25693 } 25694 sd_prev = sd_cur; 25695 } 25696 if (!already_there) { 25697 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25698 "logging request for %lx\n", dev); 25699 sd_prev->sd_thr_req_next = sd_treq; 25700 } else { 25701 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25702 } 25703 } 25704 25705 /* 25706 * Create a kernel thread to do the reservation reclaim and free up this 25707 * thread. We cannot block this thread while we go away to do the 25708 * reservation reclaim 25709 */ 25710 if (sd_tr.srq_resv_reclaim_thread == NULL) 25711 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25712 sd_resv_reclaim_thread, NULL, 25713 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25714 25715 /* Tell the reservation reclaim thread that it has work to do */ 25716 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25717 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25718 } 25719 25720 /* 25721 * Function: sd_resv_reclaim_thread() 25722 * 25723 * Description: This function implements the reservation reclaim operations 25724 * 25725 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25726 * among multiple watches that share this callback function 25727 */ 25728 25729 static void 25730 sd_resv_reclaim_thread() 25731 { 25732 struct sd_lun *un; 25733 struct sd_thr_request *sd_mhreq; 25734 25735 /* Wait for work */ 25736 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25737 if (sd_tr.srq_thr_req_head == NULL) { 25738 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25739 &sd_tr.srq_resv_reclaim_mutex); 25740 } 25741 25742 /* Loop while we have work */ 25743 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25744 un = ddi_get_soft_state(sd_state, 25745 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25746 if (un == NULL) { 25747 /* 25748 * softstate structure is NULL so just 25749 * dequeue the request and continue 25750 */ 25751 sd_tr.srq_thr_req_head = 25752 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25753 kmem_free(sd_tr.srq_thr_cur_req, 25754 sizeof (struct sd_thr_request)); 25755 continue; 25756 } 25757 25758 /* dequeue the request */ 25759 sd_mhreq = sd_tr.srq_thr_cur_req; 25760 sd_tr.srq_thr_req_head = 25761 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25762 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25763 25764 /* 25765 * Reclaim reservation only if SD_RESERVE is still set. There 25766 * may have been a call to MHIOCRELEASE before we got here. 25767 */ 25768 mutex_enter(SD_MUTEX(un)); 25769 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25770 /* 25771 * Note: The SD_LOST_RESERVE flag is cleared before 25772 * reclaiming the reservation. If this is done after the 25773 * call to sd_reserve_release a reservation loss in the 25774 * window between pkt completion of reserve cmd and 25775 * mutex_enter below may not be recognized 25776 */ 25777 un->un_resvd_status &= ~SD_LOST_RESERVE; 25778 mutex_exit(SD_MUTEX(un)); 25779 25780 if (sd_reserve_release(sd_mhreq->dev, 25781 SD_RESERVE) == 0) { 25782 mutex_enter(SD_MUTEX(un)); 25783 un->un_resvd_status |= SD_RESERVE; 25784 mutex_exit(SD_MUTEX(un)); 25785 SD_INFO(SD_LOG_IOCTL_MHD, un, 25786 "sd_resv_reclaim_thread: " 25787 "Reservation Recovered\n"); 25788 } else { 25789 mutex_enter(SD_MUTEX(un)); 25790 un->un_resvd_status |= SD_LOST_RESERVE; 25791 mutex_exit(SD_MUTEX(un)); 25792 SD_INFO(SD_LOG_IOCTL_MHD, un, 25793 "sd_resv_reclaim_thread: Failed " 25794 "Reservation Recovery\n"); 25795 } 25796 } else { 25797 mutex_exit(SD_MUTEX(un)); 25798 } 25799 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25800 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25801 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25802 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25803 /* 25804 * wakeup the destroy thread if anyone is waiting on 25805 * us to complete. 25806 */ 25807 cv_signal(&sd_tr.srq_inprocess_cv); 25808 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25809 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25810 } 25811 25812 /* 25813 * cleanup the sd_tr structure now that this thread will not exist 25814 */ 25815 ASSERT(sd_tr.srq_thr_req_head == NULL); 25816 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25817 sd_tr.srq_resv_reclaim_thread = NULL; 25818 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25819 thread_exit(); 25820 } 25821 25822 25823 /* 25824 * Function: sd_rmv_resv_reclaim_req() 25825 * 25826 * Description: This function removes any pending reservation reclaim requests 25827 * for the specified device. 25828 * 25829 * Arguments: dev - the device 'dev_t' 25830 */ 25831 25832 static void 25833 sd_rmv_resv_reclaim_req(dev_t dev) 25834 { 25835 struct sd_thr_request *sd_mhreq; 25836 struct sd_thr_request *sd_prev; 25837 25838 /* Remove a reservation reclaim request from the list */ 25839 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25840 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25841 /* 25842 * We are attempting to reinstate reservation for 25843 * this device. We wait for sd_reserve_release() 25844 * to return before we return. 25845 */ 25846 cv_wait(&sd_tr.srq_inprocess_cv, 25847 &sd_tr.srq_resv_reclaim_mutex); 25848 } else { 25849 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25850 if (sd_mhreq && sd_mhreq->dev == dev) { 25851 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25852 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25853 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25854 return; 25855 } 25856 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25857 if (sd_mhreq && sd_mhreq->dev == dev) { 25858 break; 25859 } 25860 sd_prev = sd_mhreq; 25861 } 25862 if (sd_mhreq != NULL) { 25863 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25864 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25865 } 25866 } 25867 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25868 } 25869 25870 25871 /* 25872 * Function: sd_mhd_reset_notify_cb() 25873 * 25874 * Description: This is a call back function for scsi_reset_notify. This 25875 * function updates the softstate reserved status and logs the 25876 * reset. The driver scsi watch facility callback function 25877 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25878 * will reclaim the reservation. 25879 * 25880 * Arguments: arg - driver soft state (unit) structure 25881 */ 25882 25883 static void 25884 sd_mhd_reset_notify_cb(caddr_t arg) 25885 { 25886 struct sd_lun *un = (struct sd_lun *)arg; 25887 25888 mutex_enter(SD_MUTEX(un)); 25889 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25890 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25891 SD_INFO(SD_LOG_IOCTL_MHD, un, 25892 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25893 } 25894 mutex_exit(SD_MUTEX(un)); 25895 } 25896 25897 25898 /* 25899 * Function: sd_take_ownership() 25900 * 25901 * Description: This routine implements an algorithm to achieve a stable 25902 * reservation on disks which don't implement priority reserve, 25903 * and makes sure that other host lose re-reservation attempts. 25904 * This algorithm contains of a loop that keeps issuing the RESERVE 25905 * for some period of time (min_ownership_delay, default 6 seconds) 25906 * During that loop, it looks to see if there has been a bus device 25907 * reset or bus reset (both of which cause an existing reservation 25908 * to be lost). If the reservation is lost issue RESERVE until a 25909 * period of min_ownership_delay with no resets has gone by, or 25910 * until max_ownership_delay has expired. This loop ensures that 25911 * the host really did manage to reserve the device, in spite of 25912 * resets. The looping for min_ownership_delay (default six 25913 * seconds) is important to early generation clustering products, 25914 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25915 * MHIOCENFAILFAST periodic timer of two seconds. By having 25916 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25917 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25918 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25919 * have already noticed, via the MHIOCENFAILFAST polling, that it 25920 * no longer "owns" the disk and will have panicked itself. Thus, 25921 * the host issuing the MHIOCTKOWN is assured (with timing 25922 * dependencies) that by the time it actually starts to use the 25923 * disk for real work, the old owner is no longer accessing it. 25924 * 25925 * min_ownership_delay is the minimum amount of time for which the 25926 * disk must be reserved continuously devoid of resets before the 25927 * MHIOCTKOWN ioctl will return success. 25928 * 25929 * max_ownership_delay indicates the amount of time by which the 25930 * take ownership should succeed or timeout with an error. 25931 * 25932 * Arguments: dev - the device 'dev_t' 25933 * *p - struct containing timing info. 25934 * 25935 * Return Code: 0 for success or error code 25936 */ 25937 25938 static int 25939 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25940 { 25941 struct sd_lun *un; 25942 int rval; 25943 int err; 25944 int reservation_count = 0; 25945 int min_ownership_delay = 6000000; /* in usec */ 25946 int max_ownership_delay = 30000000; /* in usec */ 25947 clock_t start_time; /* starting time of this algorithm */ 25948 clock_t end_time; /* time limit for giving up */ 25949 clock_t ownership_time; /* time limit for stable ownership */ 25950 clock_t current_time; 25951 clock_t previous_current_time; 25952 25953 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25954 return (ENXIO); 25955 } 25956 25957 /* 25958 * Attempt a device reservation. A priority reservation is requested. 25959 */ 25960 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25961 != SD_SUCCESS) { 25962 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25963 "sd_take_ownership: return(1)=%d\n", rval); 25964 return (rval); 25965 } 25966 25967 /* Update the softstate reserved status to indicate the reservation */ 25968 mutex_enter(SD_MUTEX(un)); 25969 un->un_resvd_status |= SD_RESERVE; 25970 un->un_resvd_status &= 25971 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25972 mutex_exit(SD_MUTEX(un)); 25973 25974 if (p != NULL) { 25975 if (p->min_ownership_delay != 0) { 25976 min_ownership_delay = p->min_ownership_delay * 1000; 25977 } 25978 if (p->max_ownership_delay != 0) { 25979 max_ownership_delay = p->max_ownership_delay * 1000; 25980 } 25981 } 25982 SD_INFO(SD_LOG_IOCTL_MHD, un, 25983 "sd_take_ownership: min, max delays: %d, %d\n", 25984 min_ownership_delay, max_ownership_delay); 25985 25986 start_time = ddi_get_lbolt(); 25987 current_time = start_time; 25988 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25989 end_time = start_time + drv_usectohz(max_ownership_delay); 25990 25991 while (current_time - end_time < 0) { 25992 delay(drv_usectohz(500000)); 25993 25994 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25995 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25996 mutex_enter(SD_MUTEX(un)); 25997 rval = (un->un_resvd_status & 25998 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25999 mutex_exit(SD_MUTEX(un)); 26000 break; 26001 } 26002 } 26003 previous_current_time = current_time; 26004 current_time = ddi_get_lbolt(); 26005 mutex_enter(SD_MUTEX(un)); 26006 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 26007 ownership_time = ddi_get_lbolt() + 26008 drv_usectohz(min_ownership_delay); 26009 reservation_count = 0; 26010 } else { 26011 reservation_count++; 26012 } 26013 un->un_resvd_status |= SD_RESERVE; 26014 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 26015 mutex_exit(SD_MUTEX(un)); 26016 26017 SD_INFO(SD_LOG_IOCTL_MHD, un, 26018 "sd_take_ownership: ticks for loop iteration=%ld, " 26019 "reservation=%s\n", (current_time - previous_current_time), 26020 reservation_count ? "ok" : "reclaimed"); 26021 26022 if (current_time - ownership_time >= 0 && 26023 reservation_count >= 4) { 26024 rval = 0; /* Achieved a stable ownership */ 26025 break; 26026 } 26027 if (current_time - end_time >= 0) { 26028 rval = EACCES; /* No ownership in max possible time */ 26029 break; 26030 } 26031 } 26032 SD_TRACE(SD_LOG_IOCTL_MHD, un, 26033 "sd_take_ownership: return(2)=%d\n", rval); 26034 return (rval); 26035 } 26036 26037 26038 /* 26039 * Function: sd_reserve_release() 26040 * 26041 * Description: This function builds and sends scsi RESERVE, RELEASE, and 26042 * PRIORITY RESERVE commands based on a user specified command type 26043 * 26044 * Arguments: dev - the device 'dev_t' 26045 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 26046 * SD_RESERVE, SD_RELEASE 26047 * 26048 * Return Code: 0 or Error Code 26049 */ 26050 26051 static int 26052 sd_reserve_release(dev_t dev, int cmd) 26053 { 26054 struct uscsi_cmd *com = NULL; 26055 struct sd_lun *un = NULL; 26056 char cdb[CDB_GROUP0]; 26057 int rval; 26058 26059 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 26060 (cmd == SD_PRIORITY_RESERVE)); 26061 26062 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26063 return (ENXIO); 26064 } 26065 26066 /* instantiate and initialize the command and cdb */ 26067 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26068 bzero(cdb, CDB_GROUP0); 26069 com->uscsi_flags = USCSI_SILENT; 26070 com->uscsi_timeout = un->un_reserve_release_time; 26071 com->uscsi_cdblen = CDB_GROUP0; 26072 com->uscsi_cdb = cdb; 26073 if (cmd == SD_RELEASE) { 26074 cdb[0] = SCMD_RELEASE; 26075 } else { 26076 cdb[0] = SCMD_RESERVE; 26077 } 26078 26079 /* Send the command. */ 26080 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26081 SD_PATH_STANDARD); 26082 26083 /* 26084 * "break" a reservation that is held by another host, by issuing a 26085 * reset if priority reserve is desired, and we could not get the 26086 * device. 26087 */ 26088 if ((cmd == SD_PRIORITY_RESERVE) && 26089 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 26090 /* 26091 * First try to reset the LUN. If we cannot, then try a target 26092 * reset, followed by a bus reset if the target reset fails. 26093 */ 26094 int reset_retval = 0; 26095 if (un->un_f_lun_reset_enabled == TRUE) { 26096 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 26097 } 26098 if (reset_retval == 0) { 26099 /* The LUN reset either failed or was not issued */ 26100 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26101 } 26102 if ((reset_retval == 0) && 26103 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 26104 rval = EIO; 26105 kmem_free(com, sizeof (*com)); 26106 return (rval); 26107 } 26108 26109 bzero(com, sizeof (struct uscsi_cmd)); 26110 com->uscsi_flags = USCSI_SILENT; 26111 com->uscsi_cdb = cdb; 26112 com->uscsi_cdblen = CDB_GROUP0; 26113 com->uscsi_timeout = 5; 26114 26115 /* 26116 * Reissue the last reserve command, this time without request 26117 * sense. Assume that it is just a regular reserve command. 26118 */ 26119 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26120 SD_PATH_STANDARD); 26121 } 26122 26123 /* Return an error if still getting a reservation conflict. */ 26124 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 26125 rval = EACCES; 26126 } 26127 26128 kmem_free(com, sizeof (*com)); 26129 return (rval); 26130 } 26131 26132 26133 #define SD_NDUMP_RETRIES 12 26134 /* 26135 * System Crash Dump routine 26136 */ 26137 26138 static int 26139 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 26140 { 26141 int instance; 26142 int partition; 26143 int i; 26144 int err; 26145 struct sd_lun *un; 26146 struct scsi_pkt *wr_pktp; 26147 struct buf *wr_bp; 26148 struct buf wr_buf; 26149 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 26150 daddr_t tgt_blkno; /* rmw - blkno for target */ 26151 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 26152 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 26153 size_t io_start_offset; 26154 int doing_rmw = FALSE; 26155 int rval; 26156 ssize_t dma_resid; 26157 daddr_t oblkno; 26158 diskaddr_t nblks = 0; 26159 diskaddr_t start_block; 26160 26161 instance = SDUNIT(dev); 26162 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 26163 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 26164 return (ENXIO); 26165 } 26166 26167 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 26168 26169 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 26170 26171 partition = SDPART(dev); 26172 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 26173 26174 if (!(NOT_DEVBSIZE(un))) { 26175 int secmask = 0; 26176 int blknomask = 0; 26177 26178 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 26179 secmask = un->un_tgt_blocksize - 1; 26180 26181 if (blkno & blknomask) { 26182 SD_TRACE(SD_LOG_DUMP, un, 26183 "sddump: dump start block not modulo %d\n", 26184 un->un_tgt_blocksize); 26185 return (EINVAL); 26186 } 26187 26188 if ((nblk * DEV_BSIZE) & secmask) { 26189 SD_TRACE(SD_LOG_DUMP, un, 26190 "sddump: dump length not modulo %d\n", 26191 un->un_tgt_blocksize); 26192 return (EINVAL); 26193 } 26194 26195 } 26196 26197 /* Validate blocks to dump at against partition size. */ 26198 26199 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 26200 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 26201 26202 if (NOT_DEVBSIZE(un)) { 26203 if ((blkno + nblk) > nblks) { 26204 SD_TRACE(SD_LOG_DUMP, un, 26205 "sddump: dump range larger than partition: " 26206 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 26207 blkno, nblk, nblks); 26208 return (EINVAL); 26209 } 26210 } else { 26211 if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) + 26212 (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) { 26213 SD_TRACE(SD_LOG_DUMP, un, 26214 "sddump: dump range larger than partition: " 26215 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 26216 blkno, nblk, nblks); 26217 return (EINVAL); 26218 } 26219 } 26220 26221 mutex_enter(&un->un_pm_mutex); 26222 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 26223 struct scsi_pkt *start_pktp; 26224 26225 mutex_exit(&un->un_pm_mutex); 26226 26227 /* 26228 * use pm framework to power on HBA 1st 26229 */ 26230 (void) pm_raise_power(SD_DEVINFO(un), 0, 26231 SD_PM_STATE_ACTIVE(un)); 26232 26233 /* 26234 * Dump no long uses sdpower to power on a device, it's 26235 * in-line here so it can be done in polled mode. 26236 */ 26237 26238 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 26239 26240 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 26241 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 26242 26243 if (start_pktp == NULL) { 26244 /* We were not given a SCSI packet, fail. */ 26245 return (EIO); 26246 } 26247 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 26248 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 26249 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 26250 start_pktp->pkt_flags = FLAG_NOINTR; 26251 26252 mutex_enter(SD_MUTEX(un)); 26253 SD_FILL_SCSI1_LUN(un, start_pktp); 26254 mutex_exit(SD_MUTEX(un)); 26255 /* 26256 * Scsi_poll returns 0 (success) if the command completes and 26257 * the status block is STATUS_GOOD. 26258 */ 26259 if (sd_scsi_poll(un, start_pktp) != 0) { 26260 scsi_destroy_pkt(start_pktp); 26261 return (EIO); 26262 } 26263 scsi_destroy_pkt(start_pktp); 26264 (void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un), 26265 SD_PM_STATE_CHANGE); 26266 } else { 26267 mutex_exit(&un->un_pm_mutex); 26268 } 26269 26270 mutex_enter(SD_MUTEX(un)); 26271 un->un_throttle = 0; 26272 26273 /* 26274 * The first time through, reset the specific target device. 26275 * However, when cpr calls sddump we know that sd is in a 26276 * a good state so no bus reset is required. 26277 * Clear sense data via Request Sense cmd. 26278 * In sddump we don't care about allow_bus_device_reset anymore 26279 */ 26280 26281 if ((un->un_state != SD_STATE_SUSPENDED) && 26282 (un->un_state != SD_STATE_DUMPING)) { 26283 26284 New_state(un, SD_STATE_DUMPING); 26285 26286 if (un->un_f_is_fibre == FALSE) { 26287 mutex_exit(SD_MUTEX(un)); 26288 /* 26289 * Attempt a bus reset for parallel scsi. 26290 * 26291 * Note: A bus reset is required because on some host 26292 * systems (i.e. E420R) a bus device reset is 26293 * insufficient to reset the state of the target. 26294 * 26295 * Note: Don't issue the reset for fibre-channel, 26296 * because this tends to hang the bus (loop) for 26297 * too long while everyone is logging out and in 26298 * and the deadman timer for dumping will fire 26299 * before the dump is complete. 26300 */ 26301 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 26302 mutex_enter(SD_MUTEX(un)); 26303 Restore_state(un); 26304 mutex_exit(SD_MUTEX(un)); 26305 return (EIO); 26306 } 26307 26308 /* Delay to give the device some recovery time. */ 26309 drv_usecwait(10000); 26310 26311 if (sd_send_polled_RQS(un) == SD_FAILURE) { 26312 SD_INFO(SD_LOG_DUMP, un, 26313 "sddump: sd_send_polled_RQS failed\n"); 26314 } 26315 mutex_enter(SD_MUTEX(un)); 26316 } 26317 } 26318 26319 /* 26320 * Convert the partition-relative block number to a 26321 * disk physical block number. 26322 */ 26323 if (NOT_DEVBSIZE(un)) { 26324 blkno += start_block; 26325 } else { 26326 blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE); 26327 blkno += start_block; 26328 } 26329 26330 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 26331 26332 26333 /* 26334 * Check if the device has a non-512 block size. 26335 */ 26336 wr_bp = NULL; 26337 if (NOT_DEVBSIZE(un)) { 26338 tgt_byte_offset = blkno * un->un_sys_blocksize; 26339 tgt_byte_count = nblk * un->un_sys_blocksize; 26340 if ((tgt_byte_offset % un->un_tgt_blocksize) || 26341 (tgt_byte_count % un->un_tgt_blocksize)) { 26342 doing_rmw = TRUE; 26343 /* 26344 * Calculate the block number and number of block 26345 * in terms of the media block size. 26346 */ 26347 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26348 tgt_nblk = 26349 ((tgt_byte_offset + tgt_byte_count + 26350 (un->un_tgt_blocksize - 1)) / 26351 un->un_tgt_blocksize) - tgt_blkno; 26352 26353 /* 26354 * Invoke the routine which is going to do read part 26355 * of read-modify-write. 26356 * Note that this routine returns a pointer to 26357 * a valid bp in wr_bp. 26358 */ 26359 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 26360 &wr_bp); 26361 if (err) { 26362 mutex_exit(SD_MUTEX(un)); 26363 return (err); 26364 } 26365 /* 26366 * Offset is being calculated as - 26367 * (original block # * system block size) - 26368 * (new block # * target block size) 26369 */ 26370 io_start_offset = 26371 ((uint64_t)(blkno * un->un_sys_blocksize)) - 26372 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 26373 26374 ASSERT(io_start_offset < un->un_tgt_blocksize); 26375 /* 26376 * Do the modify portion of read modify write. 26377 */ 26378 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 26379 (size_t)nblk * un->un_sys_blocksize); 26380 } else { 26381 doing_rmw = FALSE; 26382 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26383 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 26384 } 26385 26386 /* Convert blkno and nblk to target blocks */ 26387 blkno = tgt_blkno; 26388 nblk = tgt_nblk; 26389 } else { 26390 wr_bp = &wr_buf; 26391 bzero(wr_bp, sizeof (struct buf)); 26392 wr_bp->b_flags = B_BUSY; 26393 wr_bp->b_un.b_addr = addr; 26394 wr_bp->b_bcount = nblk << DEV_BSHIFT; 26395 wr_bp->b_resid = 0; 26396 } 26397 26398 mutex_exit(SD_MUTEX(un)); 26399 26400 /* 26401 * Obtain a SCSI packet for the write command. 26402 * It should be safe to call the allocator here without 26403 * worrying about being locked for DVMA mapping because 26404 * the address we're passed is already a DVMA mapping 26405 * 26406 * We are also not going to worry about semaphore ownership 26407 * in the dump buffer. Dumping is single threaded at present. 26408 */ 26409 26410 wr_pktp = NULL; 26411 26412 dma_resid = wr_bp->b_bcount; 26413 oblkno = blkno; 26414 26415 if (!(NOT_DEVBSIZE(un))) { 26416 nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE); 26417 } 26418 26419 while (dma_resid != 0) { 26420 26421 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26422 wr_bp->b_flags &= ~B_ERROR; 26423 26424 if (un->un_partial_dma_supported == 1) { 26425 blkno = oblkno + 26426 ((wr_bp->b_bcount - dma_resid) / 26427 un->un_tgt_blocksize); 26428 nblk = dma_resid / un->un_tgt_blocksize; 26429 26430 if (wr_pktp) { 26431 /* 26432 * Partial DMA transfers after initial transfer 26433 */ 26434 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 26435 blkno, nblk); 26436 } else { 26437 /* Initial transfer */ 26438 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26439 un->un_pkt_flags, NULL_FUNC, NULL, 26440 blkno, nblk); 26441 } 26442 } else { 26443 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26444 0, NULL_FUNC, NULL, blkno, nblk); 26445 } 26446 26447 if (rval == 0) { 26448 /* We were given a SCSI packet, continue. */ 26449 break; 26450 } 26451 26452 if (i == 0) { 26453 if (wr_bp->b_flags & B_ERROR) { 26454 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26455 "no resources for dumping; " 26456 "error code: 0x%x, retrying", 26457 geterror(wr_bp)); 26458 } else { 26459 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26460 "no resources for dumping; retrying"); 26461 } 26462 } else if (i != (SD_NDUMP_RETRIES - 1)) { 26463 if (wr_bp->b_flags & B_ERROR) { 26464 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26465 "no resources for dumping; error code: " 26466 "0x%x, retrying\n", geterror(wr_bp)); 26467 } 26468 } else { 26469 if (wr_bp->b_flags & B_ERROR) { 26470 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26471 "no resources for dumping; " 26472 "error code: 0x%x, retries failed, " 26473 "giving up.\n", geterror(wr_bp)); 26474 } else { 26475 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26476 "no resources for dumping; " 26477 "retries failed, giving up.\n"); 26478 } 26479 mutex_enter(SD_MUTEX(un)); 26480 Restore_state(un); 26481 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 26482 mutex_exit(SD_MUTEX(un)); 26483 scsi_free_consistent_buf(wr_bp); 26484 } else { 26485 mutex_exit(SD_MUTEX(un)); 26486 } 26487 return (EIO); 26488 } 26489 drv_usecwait(10000); 26490 } 26491 26492 if (un->un_partial_dma_supported == 1) { 26493 /* 26494 * save the resid from PARTIAL_DMA 26495 */ 26496 dma_resid = wr_pktp->pkt_resid; 26497 if (dma_resid != 0) 26498 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 26499 wr_pktp->pkt_resid = 0; 26500 } else { 26501 dma_resid = 0; 26502 } 26503 26504 /* SunBug 1222170 */ 26505 wr_pktp->pkt_flags = FLAG_NOINTR; 26506 26507 err = EIO; 26508 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26509 26510 /* 26511 * Scsi_poll returns 0 (success) if the command completes and 26512 * the status block is STATUS_GOOD. We should only check 26513 * errors if this condition is not true. Even then we should 26514 * send our own request sense packet only if we have a check 26515 * condition and auto request sense has not been performed by 26516 * the hba. 26517 */ 26518 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 26519 26520 if ((sd_scsi_poll(un, wr_pktp) == 0) && 26521 (wr_pktp->pkt_resid == 0)) { 26522 err = SD_SUCCESS; 26523 break; 26524 } 26525 26526 /* 26527 * Check CMD_DEV_GONE 1st, give up if device is gone. 26528 */ 26529 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 26530 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26531 "Error while dumping state...Device is gone\n"); 26532 break; 26533 } 26534 26535 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26536 SD_INFO(SD_LOG_DUMP, un, 26537 "sddump: write failed with CHECK, try # %d\n", i); 26538 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26539 (void) sd_send_polled_RQS(un); 26540 } 26541 26542 continue; 26543 } 26544 26545 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26546 int reset_retval = 0; 26547 26548 SD_INFO(SD_LOG_DUMP, un, 26549 "sddump: write failed with BUSY, try # %d\n", i); 26550 26551 if (un->un_f_lun_reset_enabled == TRUE) { 26552 reset_retval = scsi_reset(SD_ADDRESS(un), 26553 RESET_LUN); 26554 } 26555 if (reset_retval == 0) { 26556 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26557 } 26558 (void) sd_send_polled_RQS(un); 26559 26560 } else { 26561 SD_INFO(SD_LOG_DUMP, un, 26562 "sddump: write failed with 0x%x, try # %d\n", 26563 SD_GET_PKT_STATUS(wr_pktp), i); 26564 mutex_enter(SD_MUTEX(un)); 26565 sd_reset_target(un, wr_pktp); 26566 mutex_exit(SD_MUTEX(un)); 26567 } 26568 26569 /* 26570 * If we are not getting anywhere with lun/target resets, 26571 * let's reset the bus. 26572 */ 26573 if (i == SD_NDUMP_RETRIES/2) { 26574 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26575 (void) sd_send_polled_RQS(un); 26576 } 26577 } 26578 } 26579 26580 scsi_destroy_pkt(wr_pktp); 26581 mutex_enter(SD_MUTEX(un)); 26582 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26583 mutex_exit(SD_MUTEX(un)); 26584 scsi_free_consistent_buf(wr_bp); 26585 } else { 26586 mutex_exit(SD_MUTEX(un)); 26587 } 26588 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26589 return (err); 26590 } 26591 26592 /* 26593 * Function: sd_scsi_poll() 26594 * 26595 * Description: This is a wrapper for the scsi_poll call. 26596 * 26597 * Arguments: sd_lun - The unit structure 26598 * scsi_pkt - The scsi packet being sent to the device. 26599 * 26600 * Return Code: 0 - Command completed successfully with good status 26601 * -1 - Command failed. This could indicate a check condition 26602 * or other status value requiring recovery action. 26603 * 26604 * NOTE: This code is only called off sddump(). 26605 */ 26606 26607 static int 26608 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26609 { 26610 int status; 26611 26612 ASSERT(un != NULL); 26613 ASSERT(!mutex_owned(SD_MUTEX(un))); 26614 ASSERT(pktp != NULL); 26615 26616 status = SD_SUCCESS; 26617 26618 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26619 pktp->pkt_flags |= un->un_tagflags; 26620 pktp->pkt_flags &= ~FLAG_NODISCON; 26621 } 26622 26623 status = sd_ddi_scsi_poll(pktp); 26624 /* 26625 * Scsi_poll returns 0 (success) if the command completes and the 26626 * status block is STATUS_GOOD. We should only check errors if this 26627 * condition is not true. Even then we should send our own request 26628 * sense packet only if we have a check condition and auto 26629 * request sense has not been performed by the hba. 26630 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26631 */ 26632 if ((status != SD_SUCCESS) && 26633 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26634 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26635 (pktp->pkt_reason != CMD_DEV_GONE)) 26636 (void) sd_send_polled_RQS(un); 26637 26638 return (status); 26639 } 26640 26641 /* 26642 * Function: sd_send_polled_RQS() 26643 * 26644 * Description: This sends the request sense command to a device. 26645 * 26646 * Arguments: sd_lun - The unit structure 26647 * 26648 * Return Code: 0 - Command completed successfully with good status 26649 * -1 - Command failed. 26650 * 26651 */ 26652 26653 static int 26654 sd_send_polled_RQS(struct sd_lun *un) 26655 { 26656 int ret_val; 26657 struct scsi_pkt *rqs_pktp; 26658 struct buf *rqs_bp; 26659 26660 ASSERT(un != NULL); 26661 ASSERT(!mutex_owned(SD_MUTEX(un))); 26662 26663 ret_val = SD_SUCCESS; 26664 26665 rqs_pktp = un->un_rqs_pktp; 26666 rqs_bp = un->un_rqs_bp; 26667 26668 mutex_enter(SD_MUTEX(un)); 26669 26670 if (un->un_sense_isbusy) { 26671 ret_val = SD_FAILURE; 26672 mutex_exit(SD_MUTEX(un)); 26673 return (ret_val); 26674 } 26675 26676 /* 26677 * If the request sense buffer (and packet) is not in use, 26678 * let's set the un_sense_isbusy and send our packet 26679 */ 26680 un->un_sense_isbusy = 1; 26681 rqs_pktp->pkt_resid = 0; 26682 rqs_pktp->pkt_reason = 0; 26683 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26684 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26685 26686 mutex_exit(SD_MUTEX(un)); 26687 26688 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26689 " 0x%p\n", rqs_bp->b_un.b_addr); 26690 26691 /* 26692 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26693 * axle - it has a call into us! 26694 */ 26695 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26696 SD_INFO(SD_LOG_COMMON, un, 26697 "sd_send_polled_RQS: RQS failed\n"); 26698 } 26699 26700 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26701 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26702 26703 mutex_enter(SD_MUTEX(un)); 26704 un->un_sense_isbusy = 0; 26705 mutex_exit(SD_MUTEX(un)); 26706 26707 return (ret_val); 26708 } 26709 26710 /* 26711 * Defines needed for localized version of the scsi_poll routine. 26712 */ 26713 #define CSEC 10000 /* usecs */ 26714 #define SEC_TO_CSEC (1000000/CSEC) 26715 26716 /* 26717 * Function: sd_ddi_scsi_poll() 26718 * 26719 * Description: Localized version of the scsi_poll routine. The purpose is to 26720 * send a scsi_pkt to a device as a polled command. This version 26721 * is to ensure more robust handling of transport errors. 26722 * Specifically this routine cures not ready, coming ready 26723 * transition for power up and reset of sonoma's. This can take 26724 * up to 45 seconds for power-on and 20 seconds for reset of a 26725 * sonoma lun. 26726 * 26727 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26728 * 26729 * Return Code: 0 - Command completed successfully with good status 26730 * -1 - Command failed. 26731 * 26732 * NOTE: This code is almost identical to scsi_poll, however before 6668774 can 26733 * be fixed (removing this code), we need to determine how to handle the 26734 * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump(). 26735 * 26736 * NOTE: This code is only called off sddump(). 26737 */ 26738 static int 26739 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26740 { 26741 int rval = -1; 26742 int savef; 26743 long savet; 26744 void (*savec)(); 26745 int timeout; 26746 int busy_count; 26747 int poll_delay; 26748 int rc; 26749 uint8_t *sensep; 26750 struct scsi_arq_status *arqstat; 26751 extern int do_polled_io; 26752 26753 ASSERT(pkt->pkt_scbp); 26754 26755 /* 26756 * save old flags.. 26757 */ 26758 savef = pkt->pkt_flags; 26759 savec = pkt->pkt_comp; 26760 savet = pkt->pkt_time; 26761 26762 pkt->pkt_flags |= FLAG_NOINTR; 26763 26764 /* 26765 * XXX there is nothing in the SCSA spec that states that we should not 26766 * do a callback for polled cmds; however, removing this will break sd 26767 * and probably other target drivers 26768 */ 26769 pkt->pkt_comp = NULL; 26770 26771 /* 26772 * we don't like a polled command without timeout. 26773 * 60 seconds seems long enough. 26774 */ 26775 if (pkt->pkt_time == 0) 26776 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26777 26778 /* 26779 * Send polled cmd. 26780 * 26781 * We do some error recovery for various errors. Tran_busy, 26782 * queue full, and non-dispatched commands are retried every 10 msec. 26783 * as they are typically transient failures. Busy status and Not 26784 * Ready are retried every second as this status takes a while to 26785 * change. 26786 */ 26787 timeout = pkt->pkt_time * SEC_TO_CSEC; 26788 26789 for (busy_count = 0; busy_count < timeout; busy_count++) { 26790 /* 26791 * Initialize pkt status variables. 26792 */ 26793 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26794 26795 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26796 if (rc != TRAN_BUSY) { 26797 /* Transport failed - give up. */ 26798 break; 26799 } else { 26800 /* Transport busy - try again. */ 26801 poll_delay = 1 * CSEC; /* 10 msec. */ 26802 } 26803 } else { 26804 /* 26805 * Transport accepted - check pkt status. 26806 */ 26807 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26808 if ((pkt->pkt_reason == CMD_CMPLT) && 26809 (rc == STATUS_CHECK) && 26810 (pkt->pkt_state & STATE_ARQ_DONE)) { 26811 arqstat = 26812 (struct scsi_arq_status *)(pkt->pkt_scbp); 26813 sensep = (uint8_t *)&arqstat->sts_sensedata; 26814 } else { 26815 sensep = NULL; 26816 } 26817 26818 if ((pkt->pkt_reason == CMD_CMPLT) && 26819 (rc == STATUS_GOOD)) { 26820 /* No error - we're done */ 26821 rval = 0; 26822 break; 26823 26824 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26825 /* Lost connection - give up */ 26826 break; 26827 26828 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26829 (pkt->pkt_state == 0)) { 26830 /* Pkt not dispatched - try again. */ 26831 poll_delay = 1 * CSEC; /* 10 msec. */ 26832 26833 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26834 (rc == STATUS_QFULL)) { 26835 /* Queue full - try again. */ 26836 poll_delay = 1 * CSEC; /* 10 msec. */ 26837 26838 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26839 (rc == STATUS_BUSY)) { 26840 /* Busy - try again. */ 26841 poll_delay = 100 * CSEC; /* 1 sec. */ 26842 busy_count += (SEC_TO_CSEC - 1); 26843 26844 } else if ((sensep != NULL) && 26845 (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) { 26846 /* 26847 * Unit Attention - try again. 26848 * Pretend it took 1 sec. 26849 * NOTE: 'continue' avoids poll_delay 26850 */ 26851 busy_count += (SEC_TO_CSEC - 1); 26852 continue; 26853 26854 } else if ((sensep != NULL) && 26855 (scsi_sense_key(sensep) == KEY_NOT_READY) && 26856 (scsi_sense_asc(sensep) == 0x04) && 26857 (scsi_sense_ascq(sensep) == 0x01)) { 26858 /* 26859 * Not ready -> ready - try again. 26860 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 26861 * ...same as STATUS_BUSY 26862 */ 26863 poll_delay = 100 * CSEC; /* 1 sec. */ 26864 busy_count += (SEC_TO_CSEC - 1); 26865 26866 } else { 26867 /* BAD status - give up. */ 26868 break; 26869 } 26870 } 26871 26872 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 26873 !do_polled_io) { 26874 delay(drv_usectohz(poll_delay)); 26875 } else { 26876 /* we busy wait during cpr_dump or interrupt threads */ 26877 drv_usecwait(poll_delay); 26878 } 26879 } 26880 26881 pkt->pkt_flags = savef; 26882 pkt->pkt_comp = savec; 26883 pkt->pkt_time = savet; 26884 26885 /* return on error */ 26886 if (rval) 26887 return (rval); 26888 26889 /* 26890 * This is not a performance critical code path. 26891 * 26892 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 26893 * issues associated with looking at DMA memory prior to 26894 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 26895 */ 26896 scsi_sync_pkt(pkt); 26897 return (0); 26898 } 26899 26900 26901 26902 /* 26903 * Function: sd_persistent_reservation_in_read_keys 26904 * 26905 * Description: This routine is the driver entry point for handling CD-ROM 26906 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26907 * by sending the SCSI-3 PRIN commands to the device. 26908 * Processes the read keys command response by copying the 26909 * reservation key information into the user provided buffer. 26910 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26911 * 26912 * Arguments: un - Pointer to soft state struct for the target. 26913 * usrp - user provided pointer to multihost Persistent In Read 26914 * Keys structure (mhioc_inkeys_t) 26915 * flag - this argument is a pass through to ddi_copyxxx() 26916 * directly from the mode argument of ioctl(). 26917 * 26918 * Return Code: 0 - Success 26919 * EACCES 26920 * ENOTSUP 26921 * errno return code from sd_send_scsi_cmd() 26922 * 26923 * Context: Can sleep. Does not return until command is completed. 26924 */ 26925 26926 static int 26927 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26928 mhioc_inkeys_t *usrp, int flag) 26929 { 26930 #ifdef _MULTI_DATAMODEL 26931 struct mhioc_key_list32 li32; 26932 #endif 26933 sd_prin_readkeys_t *in; 26934 mhioc_inkeys_t *ptr; 26935 mhioc_key_list_t li; 26936 uchar_t *data_bufp = NULL; 26937 int data_len = 0; 26938 int rval = 0; 26939 size_t copysz = 0; 26940 sd_ssc_t *ssc; 26941 26942 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26943 return (EINVAL); 26944 } 26945 bzero(&li, sizeof (mhioc_key_list_t)); 26946 26947 ssc = sd_ssc_init(un); 26948 26949 /* 26950 * Get the listsize from user 26951 */ 26952 #ifdef _MULTI_DATAMODEL 26953 switch (ddi_model_convert_from(flag & FMODELS)) { 26954 case DDI_MODEL_ILP32: 26955 copysz = sizeof (struct mhioc_key_list32); 26956 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26957 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26958 "sd_persistent_reservation_in_read_keys: " 26959 "failed ddi_copyin: mhioc_key_list32_t\n"); 26960 rval = EFAULT; 26961 goto done; 26962 } 26963 li.listsize = li32.listsize; 26964 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26965 break; 26966 26967 case DDI_MODEL_NONE: 26968 copysz = sizeof (mhioc_key_list_t); 26969 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26970 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26971 "sd_persistent_reservation_in_read_keys: " 26972 "failed ddi_copyin: mhioc_key_list_t\n"); 26973 rval = EFAULT; 26974 goto done; 26975 } 26976 break; 26977 } 26978 26979 #else /* ! _MULTI_DATAMODEL */ 26980 copysz = sizeof (mhioc_key_list_t); 26981 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26982 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26983 "sd_persistent_reservation_in_read_keys: " 26984 "failed ddi_copyin: mhioc_key_list_t\n"); 26985 rval = EFAULT; 26986 goto done; 26987 } 26988 #endif 26989 26990 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26991 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26992 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26993 26994 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 26995 data_len, data_bufp); 26996 if (rval != 0) { 26997 if (rval == EIO) 26998 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26999 else 27000 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 27001 goto done; 27002 } 27003 in = (sd_prin_readkeys_t *)data_bufp; 27004 ptr->generation = BE_32(in->generation); 27005 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 27006 27007 /* 27008 * Return the min(listsize, listlen) keys 27009 */ 27010 #ifdef _MULTI_DATAMODEL 27011 27012 switch (ddi_model_convert_from(flag & FMODELS)) { 27013 case DDI_MODEL_ILP32: 27014 li32.listlen = li.listlen; 27015 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 27016 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27017 "sd_persistent_reservation_in_read_keys: " 27018 "failed ddi_copyout: mhioc_key_list32_t\n"); 27019 rval = EFAULT; 27020 goto done; 27021 } 27022 break; 27023 27024 case DDI_MODEL_NONE: 27025 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 27026 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27027 "sd_persistent_reservation_in_read_keys: " 27028 "failed ddi_copyout: mhioc_key_list_t\n"); 27029 rval = EFAULT; 27030 goto done; 27031 } 27032 break; 27033 } 27034 27035 #else /* ! _MULTI_DATAMODEL */ 27036 27037 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 27038 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27039 "sd_persistent_reservation_in_read_keys: " 27040 "failed ddi_copyout: mhioc_key_list_t\n"); 27041 rval = EFAULT; 27042 goto done; 27043 } 27044 27045 #endif /* _MULTI_DATAMODEL */ 27046 27047 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 27048 li.listsize * MHIOC_RESV_KEY_SIZE); 27049 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 27050 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27051 "sd_persistent_reservation_in_read_keys: " 27052 "failed ddi_copyout: keylist\n"); 27053 rval = EFAULT; 27054 } 27055 done: 27056 sd_ssc_fini(ssc); 27057 kmem_free(data_bufp, data_len); 27058 return (rval); 27059 } 27060 27061 27062 /* 27063 * Function: sd_persistent_reservation_in_read_resv 27064 * 27065 * Description: This routine is the driver entry point for handling CD-ROM 27066 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 27067 * by sending the SCSI-3 PRIN commands to the device. 27068 * Process the read persistent reservations command response by 27069 * copying the reservation information into the user provided 27070 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 27071 * 27072 * Arguments: un - Pointer to soft state struct for the target. 27073 * usrp - user provided pointer to multihost Persistent In Read 27074 * Keys structure (mhioc_inkeys_t) 27075 * flag - this argument is a pass through to ddi_copyxxx() 27076 * directly from the mode argument of ioctl(). 27077 * 27078 * Return Code: 0 - Success 27079 * EACCES 27080 * ENOTSUP 27081 * errno return code from sd_send_scsi_cmd() 27082 * 27083 * Context: Can sleep. Does not return until command is completed. 27084 */ 27085 27086 static int 27087 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 27088 mhioc_inresvs_t *usrp, int flag) 27089 { 27090 #ifdef _MULTI_DATAMODEL 27091 struct mhioc_resv_desc_list32 resvlist32; 27092 #endif 27093 sd_prin_readresv_t *in; 27094 mhioc_inresvs_t *ptr; 27095 sd_readresv_desc_t *readresv_ptr; 27096 mhioc_resv_desc_list_t resvlist; 27097 mhioc_resv_desc_t resvdesc; 27098 uchar_t *data_bufp = NULL; 27099 int data_len; 27100 int rval = 0; 27101 int i; 27102 size_t copysz = 0; 27103 mhioc_resv_desc_t *bufp; 27104 sd_ssc_t *ssc; 27105 27106 if ((ptr = usrp) == NULL) { 27107 return (EINVAL); 27108 } 27109 27110 ssc = sd_ssc_init(un); 27111 27112 /* 27113 * Get the listsize from user 27114 */ 27115 #ifdef _MULTI_DATAMODEL 27116 switch (ddi_model_convert_from(flag & FMODELS)) { 27117 case DDI_MODEL_ILP32: 27118 copysz = sizeof (struct mhioc_resv_desc_list32); 27119 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 27120 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27121 "sd_persistent_reservation_in_read_resv: " 27122 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 27123 rval = EFAULT; 27124 goto done; 27125 } 27126 resvlist.listsize = resvlist32.listsize; 27127 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 27128 break; 27129 27130 case DDI_MODEL_NONE: 27131 copysz = sizeof (mhioc_resv_desc_list_t); 27132 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 27133 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27134 "sd_persistent_reservation_in_read_resv: " 27135 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 27136 rval = EFAULT; 27137 goto done; 27138 } 27139 break; 27140 } 27141 #else /* ! _MULTI_DATAMODEL */ 27142 copysz = sizeof (mhioc_resv_desc_list_t); 27143 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 27144 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27145 "sd_persistent_reservation_in_read_resv: " 27146 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 27147 rval = EFAULT; 27148 goto done; 27149 } 27150 #endif /* ! _MULTI_DATAMODEL */ 27151 27152 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 27153 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 27154 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 27155 27156 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV, 27157 data_len, data_bufp); 27158 if (rval != 0) { 27159 if (rval == EIO) 27160 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 27161 else 27162 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 27163 goto done; 27164 } 27165 in = (sd_prin_readresv_t *)data_bufp; 27166 ptr->generation = BE_32(in->generation); 27167 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 27168 27169 /* 27170 * Return the min(listsize, listlen( keys 27171 */ 27172 #ifdef _MULTI_DATAMODEL 27173 27174 switch (ddi_model_convert_from(flag & FMODELS)) { 27175 case DDI_MODEL_ILP32: 27176 resvlist32.listlen = resvlist.listlen; 27177 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 27178 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27179 "sd_persistent_reservation_in_read_resv: " 27180 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 27181 rval = EFAULT; 27182 goto done; 27183 } 27184 break; 27185 27186 case DDI_MODEL_NONE: 27187 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 27188 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27189 "sd_persistent_reservation_in_read_resv: " 27190 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 27191 rval = EFAULT; 27192 goto done; 27193 } 27194 break; 27195 } 27196 27197 #else /* ! _MULTI_DATAMODEL */ 27198 27199 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 27200 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27201 "sd_persistent_reservation_in_read_resv: " 27202 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 27203 rval = EFAULT; 27204 goto done; 27205 } 27206 27207 #endif /* ! _MULTI_DATAMODEL */ 27208 27209 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 27210 bufp = resvlist.list; 27211 copysz = sizeof (mhioc_resv_desc_t); 27212 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 27213 i++, readresv_ptr++, bufp++) { 27214 27215 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 27216 MHIOC_RESV_KEY_SIZE); 27217 resvdesc.type = readresv_ptr->type; 27218 resvdesc.scope = readresv_ptr->scope; 27219 resvdesc.scope_specific_addr = 27220 BE_32(readresv_ptr->scope_specific_addr); 27221 27222 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 27223 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27224 "sd_persistent_reservation_in_read_resv: " 27225 "failed ddi_copyout: resvlist\n"); 27226 rval = EFAULT; 27227 goto done; 27228 } 27229 } 27230 done: 27231 sd_ssc_fini(ssc); 27232 /* only if data_bufp is allocated, we need to free it */ 27233 if (data_bufp) { 27234 kmem_free(data_bufp, data_len); 27235 } 27236 return (rval); 27237 } 27238 27239 27240 /* 27241 * Function: sr_change_blkmode() 27242 * 27243 * Description: This routine is the driver entry point for handling CD-ROM 27244 * block mode ioctl requests. Support for returning and changing 27245 * the current block size in use by the device is implemented. The 27246 * LBA size is changed via a MODE SELECT Block Descriptor. 27247 * 27248 * This routine issues a mode sense with an allocation length of 27249 * 12 bytes for the mode page header and a single block descriptor. 27250 * 27251 * Arguments: dev - the device 'dev_t' 27252 * cmd - the request type; one of CDROMGBLKMODE (get) or 27253 * CDROMSBLKMODE (set) 27254 * data - current block size or requested block size 27255 * flag - this argument is a pass through to ddi_copyxxx() directly 27256 * from the mode argument of ioctl(). 27257 * 27258 * Return Code: the code returned by sd_send_scsi_cmd() 27259 * EINVAL if invalid arguments are provided 27260 * EFAULT if ddi_copyxxx() fails 27261 * ENXIO if fail ddi_get_soft_state 27262 * EIO if invalid mode sense block descriptor length 27263 * 27264 */ 27265 27266 static int 27267 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 27268 { 27269 struct sd_lun *un = NULL; 27270 struct mode_header *sense_mhp, *select_mhp; 27271 struct block_descriptor *sense_desc, *select_desc; 27272 int current_bsize; 27273 int rval = EINVAL; 27274 uchar_t *sense = NULL; 27275 uchar_t *select = NULL; 27276 sd_ssc_t *ssc; 27277 27278 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 27279 27280 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27281 return (ENXIO); 27282 } 27283 27284 /* 27285 * The block length is changed via the Mode Select block descriptor, the 27286 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 27287 * required as part of this routine. Therefore the mode sense allocation 27288 * length is specified to be the length of a mode page header and a 27289 * block descriptor. 27290 */ 27291 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27292 27293 ssc = sd_ssc_init(un); 27294 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 27295 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 27296 sd_ssc_fini(ssc); 27297 if (rval != 0) { 27298 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27299 "sr_change_blkmode: Mode Sense Failed\n"); 27300 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27301 return (rval); 27302 } 27303 27304 /* Check the block descriptor len to handle only 1 block descriptor */ 27305 sense_mhp = (struct mode_header *)sense; 27306 if ((sense_mhp->bdesc_length == 0) || 27307 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 27308 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27309 "sr_change_blkmode: Mode Sense returned invalid block" 27310 " descriptor length\n"); 27311 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27312 return (EIO); 27313 } 27314 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 27315 current_bsize = ((sense_desc->blksize_hi << 16) | 27316 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 27317 27318 /* Process command */ 27319 switch (cmd) { 27320 case CDROMGBLKMODE: 27321 /* Return the block size obtained during the mode sense */ 27322 if (ddi_copyout(¤t_bsize, (void *)data, 27323 sizeof (int), flag) != 0) 27324 rval = EFAULT; 27325 break; 27326 case CDROMSBLKMODE: 27327 /* Validate the requested block size */ 27328 switch (data) { 27329 case CDROM_BLK_512: 27330 case CDROM_BLK_1024: 27331 case CDROM_BLK_2048: 27332 case CDROM_BLK_2056: 27333 case CDROM_BLK_2336: 27334 case CDROM_BLK_2340: 27335 case CDROM_BLK_2352: 27336 case CDROM_BLK_2368: 27337 case CDROM_BLK_2448: 27338 case CDROM_BLK_2646: 27339 case CDROM_BLK_2647: 27340 break; 27341 default: 27342 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27343 "sr_change_blkmode: " 27344 "Block Size '%ld' Not Supported\n", data); 27345 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27346 return (EINVAL); 27347 } 27348 27349 /* 27350 * The current block size matches the requested block size so 27351 * there is no need to send the mode select to change the size 27352 */ 27353 if (current_bsize == data) { 27354 break; 27355 } 27356 27357 /* Build the select data for the requested block size */ 27358 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27359 select_mhp = (struct mode_header *)select; 27360 select_desc = 27361 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 27362 /* 27363 * The LBA size is changed via the block descriptor, so the 27364 * descriptor is built according to the user data 27365 */ 27366 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 27367 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 27368 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 27369 select_desc->blksize_lo = (char)((data) & 0x000000ff); 27370 27371 /* Send the mode select for the requested block size */ 27372 ssc = sd_ssc_init(un); 27373 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 27374 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27375 SD_PATH_STANDARD); 27376 sd_ssc_fini(ssc); 27377 if (rval != 0) { 27378 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27379 "sr_change_blkmode: Mode Select Failed\n"); 27380 /* 27381 * The mode select failed for the requested block size, 27382 * so reset the data for the original block size and 27383 * send it to the target. The error is indicated by the 27384 * return value for the failed mode select. 27385 */ 27386 select_desc->blksize_hi = sense_desc->blksize_hi; 27387 select_desc->blksize_mid = sense_desc->blksize_mid; 27388 select_desc->blksize_lo = sense_desc->blksize_lo; 27389 ssc = sd_ssc_init(un); 27390 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 27391 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27392 SD_PATH_STANDARD); 27393 sd_ssc_fini(ssc); 27394 } else { 27395 ASSERT(!mutex_owned(SD_MUTEX(un))); 27396 mutex_enter(SD_MUTEX(un)); 27397 sd_update_block_info(un, (uint32_t)data, 0); 27398 mutex_exit(SD_MUTEX(un)); 27399 } 27400 break; 27401 default: 27402 /* should not reach here, but check anyway */ 27403 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27404 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 27405 rval = EINVAL; 27406 break; 27407 } 27408 27409 if (select) { 27410 kmem_free(select, BUFLEN_CHG_BLK_MODE); 27411 } 27412 if (sense) { 27413 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27414 } 27415 return (rval); 27416 } 27417 27418 27419 /* 27420 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 27421 * implement driver support for getting and setting the CD speed. The command 27422 * set used will be based on the device type. If the device has not been 27423 * identified as MMC the Toshiba vendor specific mode page will be used. If 27424 * the device is MMC but does not support the Real Time Streaming feature 27425 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 27426 * be used to read the speed. 27427 */ 27428 27429 /* 27430 * Function: sr_change_speed() 27431 * 27432 * Description: This routine is the driver entry point for handling CD-ROM 27433 * drive speed ioctl requests for devices supporting the Toshiba 27434 * vendor specific drive speed mode page. Support for returning 27435 * and changing the current drive speed in use by the device is 27436 * implemented. 27437 * 27438 * Arguments: dev - the device 'dev_t' 27439 * cmd - the request type; one of CDROMGDRVSPEED (get) or 27440 * CDROMSDRVSPEED (set) 27441 * data - current drive speed or requested drive speed 27442 * flag - this argument is a pass through to ddi_copyxxx() directly 27443 * from the mode argument of ioctl(). 27444 * 27445 * Return Code: the code returned by sd_send_scsi_cmd() 27446 * EINVAL if invalid arguments are provided 27447 * EFAULT if ddi_copyxxx() fails 27448 * ENXIO if fail ddi_get_soft_state 27449 * EIO if invalid mode sense block descriptor length 27450 */ 27451 27452 static int 27453 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27454 { 27455 struct sd_lun *un = NULL; 27456 struct mode_header *sense_mhp, *select_mhp; 27457 struct mode_speed *sense_page, *select_page; 27458 int current_speed; 27459 int rval = EINVAL; 27460 int bd_len; 27461 uchar_t *sense = NULL; 27462 uchar_t *select = NULL; 27463 sd_ssc_t *ssc; 27464 27465 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27466 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27467 return (ENXIO); 27468 } 27469 27470 /* 27471 * Note: The drive speed is being modified here according to a Toshiba 27472 * vendor specific mode page (0x31). 27473 */ 27474 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27475 27476 ssc = sd_ssc_init(un); 27477 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 27478 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 27479 SD_PATH_STANDARD); 27480 sd_ssc_fini(ssc); 27481 if (rval != 0) { 27482 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27483 "sr_change_speed: Mode Sense Failed\n"); 27484 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27485 return (rval); 27486 } 27487 sense_mhp = (struct mode_header *)sense; 27488 27489 /* Check the block descriptor len to handle only 1 block descriptor */ 27490 bd_len = sense_mhp->bdesc_length; 27491 if (bd_len > MODE_BLK_DESC_LENGTH) { 27492 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27493 "sr_change_speed: Mode Sense returned invalid block " 27494 "descriptor length\n"); 27495 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27496 return (EIO); 27497 } 27498 27499 sense_page = (struct mode_speed *) 27500 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 27501 current_speed = sense_page->speed; 27502 27503 /* Process command */ 27504 switch (cmd) { 27505 case CDROMGDRVSPEED: 27506 /* Return the drive speed obtained during the mode sense */ 27507 if (current_speed == 0x2) { 27508 current_speed = CDROM_TWELVE_SPEED; 27509 } 27510 if (ddi_copyout(¤t_speed, (void *)data, 27511 sizeof (int), flag) != 0) { 27512 rval = EFAULT; 27513 } 27514 break; 27515 case CDROMSDRVSPEED: 27516 /* Validate the requested drive speed */ 27517 switch ((uchar_t)data) { 27518 case CDROM_TWELVE_SPEED: 27519 data = 0x2; 27520 /*FALLTHROUGH*/ 27521 case CDROM_NORMAL_SPEED: 27522 case CDROM_DOUBLE_SPEED: 27523 case CDROM_QUAD_SPEED: 27524 case CDROM_MAXIMUM_SPEED: 27525 break; 27526 default: 27527 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27528 "sr_change_speed: " 27529 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 27530 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27531 return (EINVAL); 27532 } 27533 27534 /* 27535 * The current drive speed matches the requested drive speed so 27536 * there is no need to send the mode select to change the speed 27537 */ 27538 if (current_speed == data) { 27539 break; 27540 } 27541 27542 /* Build the select data for the requested drive speed */ 27543 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27544 select_mhp = (struct mode_header *)select; 27545 select_mhp->bdesc_length = 0; 27546 select_page = 27547 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27548 select_page = 27549 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27550 select_page->mode_page.code = CDROM_MODE_SPEED; 27551 select_page->mode_page.length = 2; 27552 select_page->speed = (uchar_t)data; 27553 27554 /* Send the mode select for the requested block size */ 27555 ssc = sd_ssc_init(un); 27556 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27557 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27558 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27559 sd_ssc_fini(ssc); 27560 if (rval != 0) { 27561 /* 27562 * The mode select failed for the requested drive speed, 27563 * so reset the data for the original drive speed and 27564 * send it to the target. The error is indicated by the 27565 * return value for the failed mode select. 27566 */ 27567 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27568 "sr_drive_speed: Mode Select Failed\n"); 27569 select_page->speed = sense_page->speed; 27570 ssc = sd_ssc_init(un); 27571 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27572 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27573 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27574 sd_ssc_fini(ssc); 27575 } 27576 break; 27577 default: 27578 /* should not reach here, but check anyway */ 27579 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27580 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27581 rval = EINVAL; 27582 break; 27583 } 27584 27585 if (select) { 27586 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27587 } 27588 if (sense) { 27589 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27590 } 27591 27592 return (rval); 27593 } 27594 27595 27596 /* 27597 * Function: sr_atapi_change_speed() 27598 * 27599 * Description: This routine is the driver entry point for handling CD-ROM 27600 * drive speed ioctl requests for MMC devices that do not support 27601 * the Real Time Streaming feature (0x107). 27602 * 27603 * Note: This routine will use the SET SPEED command which may not 27604 * be supported by all devices. 27605 * 27606 * Arguments: dev- the device 'dev_t' 27607 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27608 * CDROMSDRVSPEED (set) 27609 * data- current drive speed or requested drive speed 27610 * flag- this argument is a pass through to ddi_copyxxx() directly 27611 * from the mode argument of ioctl(). 27612 * 27613 * Return Code: the code returned by sd_send_scsi_cmd() 27614 * EINVAL if invalid arguments are provided 27615 * EFAULT if ddi_copyxxx() fails 27616 * ENXIO if fail ddi_get_soft_state 27617 * EIO if invalid mode sense block descriptor length 27618 */ 27619 27620 static int 27621 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27622 { 27623 struct sd_lun *un; 27624 struct uscsi_cmd *com = NULL; 27625 struct mode_header_grp2 *sense_mhp; 27626 uchar_t *sense_page; 27627 uchar_t *sense = NULL; 27628 char cdb[CDB_GROUP5]; 27629 int bd_len; 27630 int current_speed = 0; 27631 int max_speed = 0; 27632 int rval; 27633 sd_ssc_t *ssc; 27634 27635 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27636 27637 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27638 return (ENXIO); 27639 } 27640 27641 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27642 27643 ssc = sd_ssc_init(un); 27644 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 27645 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27646 SD_PATH_STANDARD); 27647 sd_ssc_fini(ssc); 27648 if (rval != 0) { 27649 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27650 "sr_atapi_change_speed: Mode Sense Failed\n"); 27651 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27652 return (rval); 27653 } 27654 27655 /* Check the block descriptor len to handle only 1 block descriptor */ 27656 sense_mhp = (struct mode_header_grp2 *)sense; 27657 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27658 if (bd_len > MODE_BLK_DESC_LENGTH) { 27659 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27660 "sr_atapi_change_speed: Mode Sense returned invalid " 27661 "block descriptor length\n"); 27662 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27663 return (EIO); 27664 } 27665 27666 /* Calculate the current and maximum drive speeds */ 27667 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27668 current_speed = (sense_page[14] << 8) | sense_page[15]; 27669 max_speed = (sense_page[8] << 8) | sense_page[9]; 27670 27671 /* Process the command */ 27672 switch (cmd) { 27673 case CDROMGDRVSPEED: 27674 current_speed /= SD_SPEED_1X; 27675 if (ddi_copyout(¤t_speed, (void *)data, 27676 sizeof (int), flag) != 0) 27677 rval = EFAULT; 27678 break; 27679 case CDROMSDRVSPEED: 27680 /* Convert the speed code to KB/sec */ 27681 switch ((uchar_t)data) { 27682 case CDROM_NORMAL_SPEED: 27683 current_speed = SD_SPEED_1X; 27684 break; 27685 case CDROM_DOUBLE_SPEED: 27686 current_speed = 2 * SD_SPEED_1X; 27687 break; 27688 case CDROM_QUAD_SPEED: 27689 current_speed = 4 * SD_SPEED_1X; 27690 break; 27691 case CDROM_TWELVE_SPEED: 27692 current_speed = 12 * SD_SPEED_1X; 27693 break; 27694 case CDROM_MAXIMUM_SPEED: 27695 current_speed = 0xffff; 27696 break; 27697 default: 27698 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27699 "sr_atapi_change_speed: invalid drive speed %d\n", 27700 (uchar_t)data); 27701 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27702 return (EINVAL); 27703 } 27704 27705 /* Check the request against the drive's max speed. */ 27706 if (current_speed != 0xffff) { 27707 if (current_speed > max_speed) { 27708 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27709 return (EINVAL); 27710 } 27711 } 27712 27713 /* 27714 * Build and send the SET SPEED command 27715 * 27716 * Note: The SET SPEED (0xBB) command used in this routine is 27717 * obsolete per the SCSI MMC spec but still supported in the 27718 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27719 * therefore the command is still implemented in this routine. 27720 */ 27721 bzero(cdb, sizeof (cdb)); 27722 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27723 cdb[2] = (uchar_t)(current_speed >> 8); 27724 cdb[3] = (uchar_t)current_speed; 27725 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27726 com->uscsi_cdb = (caddr_t)cdb; 27727 com->uscsi_cdblen = CDB_GROUP5; 27728 com->uscsi_bufaddr = NULL; 27729 com->uscsi_buflen = 0; 27730 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27731 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 27732 break; 27733 default: 27734 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27735 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27736 rval = EINVAL; 27737 } 27738 27739 if (sense) { 27740 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27741 } 27742 if (com) { 27743 kmem_free(com, sizeof (*com)); 27744 } 27745 return (rval); 27746 } 27747 27748 27749 /* 27750 * Function: sr_pause_resume() 27751 * 27752 * Description: This routine is the driver entry point for handling CD-ROM 27753 * pause/resume ioctl requests. This only affects the audio play 27754 * operation. 27755 * 27756 * Arguments: dev - the device 'dev_t' 27757 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27758 * for setting the resume bit of the cdb. 27759 * 27760 * Return Code: the code returned by sd_send_scsi_cmd() 27761 * EINVAL if invalid mode specified 27762 * 27763 */ 27764 27765 static int 27766 sr_pause_resume(dev_t dev, int cmd) 27767 { 27768 struct sd_lun *un; 27769 struct uscsi_cmd *com; 27770 char cdb[CDB_GROUP1]; 27771 int rval; 27772 27773 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27774 return (ENXIO); 27775 } 27776 27777 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27778 bzero(cdb, CDB_GROUP1); 27779 cdb[0] = SCMD_PAUSE_RESUME; 27780 switch (cmd) { 27781 case CDROMRESUME: 27782 cdb[8] = 1; 27783 break; 27784 case CDROMPAUSE: 27785 cdb[8] = 0; 27786 break; 27787 default: 27788 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27789 " Command '%x' Not Supported\n", cmd); 27790 rval = EINVAL; 27791 goto done; 27792 } 27793 27794 com->uscsi_cdb = cdb; 27795 com->uscsi_cdblen = CDB_GROUP1; 27796 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27797 27798 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27799 SD_PATH_STANDARD); 27800 27801 done: 27802 kmem_free(com, sizeof (*com)); 27803 return (rval); 27804 } 27805 27806 27807 /* 27808 * Function: sr_play_msf() 27809 * 27810 * Description: This routine is the driver entry point for handling CD-ROM 27811 * ioctl requests to output the audio signals at the specified 27812 * starting address and continue the audio play until the specified 27813 * ending address (CDROMPLAYMSF) The address is in Minute Second 27814 * Frame (MSF) format. 27815 * 27816 * Arguments: dev - the device 'dev_t' 27817 * data - pointer to user provided audio msf structure, 27818 * specifying start/end addresses. 27819 * flag - this argument is a pass through to ddi_copyxxx() 27820 * directly from the mode argument of ioctl(). 27821 * 27822 * Return Code: the code returned by sd_send_scsi_cmd() 27823 * EFAULT if ddi_copyxxx() fails 27824 * ENXIO if fail ddi_get_soft_state 27825 * EINVAL if data pointer is NULL 27826 */ 27827 27828 static int 27829 sr_play_msf(dev_t dev, caddr_t data, int flag) 27830 { 27831 struct sd_lun *un; 27832 struct uscsi_cmd *com; 27833 struct cdrom_msf msf_struct; 27834 struct cdrom_msf *msf = &msf_struct; 27835 char cdb[CDB_GROUP1]; 27836 int rval; 27837 27838 if (data == NULL) { 27839 return (EINVAL); 27840 } 27841 27842 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27843 return (ENXIO); 27844 } 27845 27846 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27847 return (EFAULT); 27848 } 27849 27850 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27851 bzero(cdb, CDB_GROUP1); 27852 cdb[0] = SCMD_PLAYAUDIO_MSF; 27853 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27854 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27855 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27856 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27857 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27858 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27859 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27860 } else { 27861 cdb[3] = msf->cdmsf_min0; 27862 cdb[4] = msf->cdmsf_sec0; 27863 cdb[5] = msf->cdmsf_frame0; 27864 cdb[6] = msf->cdmsf_min1; 27865 cdb[7] = msf->cdmsf_sec1; 27866 cdb[8] = msf->cdmsf_frame1; 27867 } 27868 com->uscsi_cdb = cdb; 27869 com->uscsi_cdblen = CDB_GROUP1; 27870 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27871 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27872 SD_PATH_STANDARD); 27873 kmem_free(com, sizeof (*com)); 27874 return (rval); 27875 } 27876 27877 27878 /* 27879 * Function: sr_play_trkind() 27880 * 27881 * Description: This routine is the driver entry point for handling CD-ROM 27882 * ioctl requests to output the audio signals at the specified 27883 * starting address and continue the audio play until the specified 27884 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27885 * format. 27886 * 27887 * Arguments: dev - the device 'dev_t' 27888 * data - pointer to user provided audio track/index structure, 27889 * specifying start/end addresses. 27890 * flag - this argument is a pass through to ddi_copyxxx() 27891 * directly from the mode argument of ioctl(). 27892 * 27893 * Return Code: the code returned by sd_send_scsi_cmd() 27894 * EFAULT if ddi_copyxxx() fails 27895 * ENXIO if fail ddi_get_soft_state 27896 * EINVAL if data pointer is NULL 27897 */ 27898 27899 static int 27900 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27901 { 27902 struct cdrom_ti ti_struct; 27903 struct cdrom_ti *ti = &ti_struct; 27904 struct uscsi_cmd *com = NULL; 27905 char cdb[CDB_GROUP1]; 27906 int rval; 27907 27908 if (data == NULL) { 27909 return (EINVAL); 27910 } 27911 27912 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27913 return (EFAULT); 27914 } 27915 27916 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27917 bzero(cdb, CDB_GROUP1); 27918 cdb[0] = SCMD_PLAYAUDIO_TI; 27919 cdb[4] = ti->cdti_trk0; 27920 cdb[5] = ti->cdti_ind0; 27921 cdb[7] = ti->cdti_trk1; 27922 cdb[8] = ti->cdti_ind1; 27923 com->uscsi_cdb = cdb; 27924 com->uscsi_cdblen = CDB_GROUP1; 27925 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27926 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27927 SD_PATH_STANDARD); 27928 kmem_free(com, sizeof (*com)); 27929 return (rval); 27930 } 27931 27932 27933 /* 27934 * Function: sr_read_all_subcodes() 27935 * 27936 * Description: This routine is the driver entry point for handling CD-ROM 27937 * ioctl requests to return raw subcode data while the target is 27938 * playing audio (CDROMSUBCODE). 27939 * 27940 * Arguments: dev - the device 'dev_t' 27941 * data - pointer to user provided cdrom subcode structure, 27942 * specifying the transfer length and address. 27943 * flag - this argument is a pass through to ddi_copyxxx() 27944 * directly from the mode argument of ioctl(). 27945 * 27946 * Return Code: the code returned by sd_send_scsi_cmd() 27947 * EFAULT if ddi_copyxxx() fails 27948 * ENXIO if fail ddi_get_soft_state 27949 * EINVAL if data pointer is NULL 27950 */ 27951 27952 static int 27953 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27954 { 27955 struct sd_lun *un = NULL; 27956 struct uscsi_cmd *com = NULL; 27957 struct cdrom_subcode *subcode = NULL; 27958 int rval; 27959 size_t buflen; 27960 char cdb[CDB_GROUP5]; 27961 27962 #ifdef _MULTI_DATAMODEL 27963 /* To support ILP32 applications in an LP64 world */ 27964 struct cdrom_subcode32 cdrom_subcode32; 27965 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27966 #endif 27967 if (data == NULL) { 27968 return (EINVAL); 27969 } 27970 27971 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27972 return (ENXIO); 27973 } 27974 27975 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27976 27977 #ifdef _MULTI_DATAMODEL 27978 switch (ddi_model_convert_from(flag & FMODELS)) { 27979 case DDI_MODEL_ILP32: 27980 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27981 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27982 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27983 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27984 return (EFAULT); 27985 } 27986 /* Convert the ILP32 uscsi data from the application to LP64 */ 27987 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27988 break; 27989 case DDI_MODEL_NONE: 27990 if (ddi_copyin(data, subcode, 27991 sizeof (struct cdrom_subcode), flag)) { 27992 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27993 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27994 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27995 return (EFAULT); 27996 } 27997 break; 27998 } 27999 #else /* ! _MULTI_DATAMODEL */ 28000 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 28001 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28002 "sr_read_all_subcodes: ddi_copyin Failed\n"); 28003 kmem_free(subcode, sizeof (struct cdrom_subcode)); 28004 return (EFAULT); 28005 } 28006 #endif /* _MULTI_DATAMODEL */ 28007 28008 /* 28009 * Since MMC-2 expects max 3 bytes for length, check if the 28010 * length input is greater than 3 bytes 28011 */ 28012 if ((subcode->cdsc_length & 0xFF000000) != 0) { 28013 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28014 "sr_read_all_subcodes: " 28015 "cdrom transfer length too large: %d (limit %d)\n", 28016 subcode->cdsc_length, 0xFFFFFF); 28017 kmem_free(subcode, sizeof (struct cdrom_subcode)); 28018 return (EINVAL); 28019 } 28020 28021 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 28022 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28023 bzero(cdb, CDB_GROUP5); 28024 28025 if (un->un_f_mmc_cap == TRUE) { 28026 cdb[0] = (char)SCMD_READ_CD; 28027 cdb[2] = (char)0xff; 28028 cdb[3] = (char)0xff; 28029 cdb[4] = (char)0xff; 28030 cdb[5] = (char)0xff; 28031 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 28032 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 28033 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 28034 cdb[10] = 1; 28035 } else { 28036 /* 28037 * Note: A vendor specific command (0xDF) is being used here to 28038 * request a read of all subcodes. 28039 */ 28040 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 28041 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 28042 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 28043 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 28044 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 28045 } 28046 com->uscsi_cdb = cdb; 28047 com->uscsi_cdblen = CDB_GROUP5; 28048 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 28049 com->uscsi_buflen = buflen; 28050 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28051 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28052 SD_PATH_STANDARD); 28053 kmem_free(subcode, sizeof (struct cdrom_subcode)); 28054 kmem_free(com, sizeof (*com)); 28055 return (rval); 28056 } 28057 28058 28059 /* 28060 * Function: sr_read_subchannel() 28061 * 28062 * Description: This routine is the driver entry point for handling CD-ROM 28063 * ioctl requests to return the Q sub-channel data of the CD 28064 * current position block. (CDROMSUBCHNL) The data includes the 28065 * track number, index number, absolute CD-ROM address (LBA or MSF 28066 * format per the user) , track relative CD-ROM address (LBA or MSF 28067 * format per the user), control data and audio status. 28068 * 28069 * Arguments: dev - the device 'dev_t' 28070 * data - pointer to user provided cdrom sub-channel structure 28071 * flag - this argument is a pass through to ddi_copyxxx() 28072 * directly from the mode argument of ioctl(). 28073 * 28074 * Return Code: the code returned by sd_send_scsi_cmd() 28075 * EFAULT if ddi_copyxxx() fails 28076 * ENXIO if fail ddi_get_soft_state 28077 * EINVAL if data pointer is NULL 28078 */ 28079 28080 static int 28081 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 28082 { 28083 struct sd_lun *un; 28084 struct uscsi_cmd *com; 28085 struct cdrom_subchnl subchanel; 28086 struct cdrom_subchnl *subchnl = &subchanel; 28087 char cdb[CDB_GROUP1]; 28088 caddr_t buffer; 28089 int rval; 28090 28091 if (data == NULL) { 28092 return (EINVAL); 28093 } 28094 28095 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28096 (un->un_state == SD_STATE_OFFLINE)) { 28097 return (ENXIO); 28098 } 28099 28100 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 28101 return (EFAULT); 28102 } 28103 28104 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 28105 bzero(cdb, CDB_GROUP1); 28106 cdb[0] = SCMD_READ_SUBCHANNEL; 28107 /* Set the MSF bit based on the user requested address format */ 28108 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 28109 /* 28110 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 28111 * returned 28112 */ 28113 cdb[2] = 0x40; 28114 /* 28115 * Set byte 3 to specify the return data format. A value of 0x01 28116 * indicates that the CD-ROM current position should be returned. 28117 */ 28118 cdb[3] = 0x01; 28119 cdb[8] = 0x10; 28120 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28121 com->uscsi_cdb = cdb; 28122 com->uscsi_cdblen = CDB_GROUP1; 28123 com->uscsi_bufaddr = buffer; 28124 com->uscsi_buflen = 16; 28125 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28126 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28127 SD_PATH_STANDARD); 28128 if (rval != 0) { 28129 kmem_free(buffer, 16); 28130 kmem_free(com, sizeof (*com)); 28131 return (rval); 28132 } 28133 28134 /* Process the returned Q sub-channel data */ 28135 subchnl->cdsc_audiostatus = buffer[1]; 28136 subchnl->cdsc_adr = (buffer[5] & 0xF0) >> 4; 28137 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 28138 subchnl->cdsc_trk = buffer[6]; 28139 subchnl->cdsc_ind = buffer[7]; 28140 if (subchnl->cdsc_format & CDROM_LBA) { 28141 subchnl->cdsc_absaddr.lba = 28142 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 28143 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 28144 subchnl->cdsc_reladdr.lba = 28145 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 28146 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 28147 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 28148 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 28149 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 28150 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 28151 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 28152 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 28153 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 28154 } else { 28155 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 28156 subchnl->cdsc_absaddr.msf.second = buffer[10]; 28157 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 28158 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 28159 subchnl->cdsc_reladdr.msf.second = buffer[14]; 28160 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 28161 } 28162 kmem_free(buffer, 16); 28163 kmem_free(com, sizeof (*com)); 28164 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 28165 != 0) { 28166 return (EFAULT); 28167 } 28168 return (rval); 28169 } 28170 28171 28172 /* 28173 * Function: sr_read_tocentry() 28174 * 28175 * Description: This routine is the driver entry point for handling CD-ROM 28176 * ioctl requests to read from the Table of Contents (TOC) 28177 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 28178 * fields, the starting address (LBA or MSF format per the user) 28179 * and the data mode if the user specified track is a data track. 28180 * 28181 * Note: The READ HEADER (0x44) command used in this routine is 28182 * obsolete per the SCSI MMC spec but still supported in the 28183 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 28184 * therefore the command is still implemented in this routine. 28185 * 28186 * Arguments: dev - the device 'dev_t' 28187 * data - pointer to user provided toc entry structure, 28188 * specifying the track # and the address format 28189 * (LBA or MSF). 28190 * flag - this argument is a pass through to ddi_copyxxx() 28191 * directly from the mode argument of ioctl(). 28192 * 28193 * Return Code: the code returned by sd_send_scsi_cmd() 28194 * EFAULT if ddi_copyxxx() fails 28195 * ENXIO if fail ddi_get_soft_state 28196 * EINVAL if data pointer is NULL 28197 */ 28198 28199 static int 28200 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 28201 { 28202 struct sd_lun *un = NULL; 28203 struct uscsi_cmd *com; 28204 struct cdrom_tocentry toc_entry; 28205 struct cdrom_tocentry *entry = &toc_entry; 28206 caddr_t buffer; 28207 int rval; 28208 char cdb[CDB_GROUP1]; 28209 28210 if (data == NULL) { 28211 return (EINVAL); 28212 } 28213 28214 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28215 (un->un_state == SD_STATE_OFFLINE)) { 28216 return (ENXIO); 28217 } 28218 28219 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 28220 return (EFAULT); 28221 } 28222 28223 /* Validate the requested track and address format */ 28224 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 28225 return (EINVAL); 28226 } 28227 28228 if (entry->cdte_track == 0) { 28229 return (EINVAL); 28230 } 28231 28232 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 28233 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28234 bzero(cdb, CDB_GROUP1); 28235 28236 cdb[0] = SCMD_READ_TOC; 28237 /* Set the MSF bit based on the user requested address format */ 28238 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 28239 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 28240 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 28241 } else { 28242 cdb[6] = entry->cdte_track; 28243 } 28244 28245 /* 28246 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 28247 * (4 byte TOC response header + 8 byte track descriptor) 28248 */ 28249 cdb[8] = 12; 28250 com->uscsi_cdb = cdb; 28251 com->uscsi_cdblen = CDB_GROUP1; 28252 com->uscsi_bufaddr = buffer; 28253 com->uscsi_buflen = 0x0C; 28254 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 28255 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28256 SD_PATH_STANDARD); 28257 if (rval != 0) { 28258 kmem_free(buffer, 12); 28259 kmem_free(com, sizeof (*com)); 28260 return (rval); 28261 } 28262 28263 /* Process the toc entry */ 28264 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 28265 entry->cdte_ctrl = (buffer[5] & 0x0F); 28266 if (entry->cdte_format & CDROM_LBA) { 28267 entry->cdte_addr.lba = 28268 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 28269 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 28270 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 28271 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 28272 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 28273 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 28274 /* 28275 * Send a READ TOC command using the LBA address format to get 28276 * the LBA for the track requested so it can be used in the 28277 * READ HEADER request 28278 * 28279 * Note: The MSF bit of the READ HEADER command specifies the 28280 * output format. The block address specified in that command 28281 * must be in LBA format. 28282 */ 28283 cdb[1] = 0; 28284 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28285 SD_PATH_STANDARD); 28286 if (rval != 0) { 28287 kmem_free(buffer, 12); 28288 kmem_free(com, sizeof (*com)); 28289 return (rval); 28290 } 28291 } else { 28292 entry->cdte_addr.msf.minute = buffer[9]; 28293 entry->cdte_addr.msf.second = buffer[10]; 28294 entry->cdte_addr.msf.frame = buffer[11]; 28295 /* 28296 * Send a READ TOC command using the LBA address format to get 28297 * the LBA for the track requested so it can be used in the 28298 * READ HEADER request 28299 * 28300 * Note: The MSF bit of the READ HEADER command specifies the 28301 * output format. The block address specified in that command 28302 * must be in LBA format. 28303 */ 28304 cdb[1] = 0; 28305 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28306 SD_PATH_STANDARD); 28307 if (rval != 0) { 28308 kmem_free(buffer, 12); 28309 kmem_free(com, sizeof (*com)); 28310 return (rval); 28311 } 28312 } 28313 28314 /* 28315 * Build and send the READ HEADER command to determine the data mode of 28316 * the user specified track. 28317 */ 28318 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 28319 (entry->cdte_track != CDROM_LEADOUT)) { 28320 bzero(cdb, CDB_GROUP1); 28321 cdb[0] = SCMD_READ_HEADER; 28322 cdb[2] = buffer[8]; 28323 cdb[3] = buffer[9]; 28324 cdb[4] = buffer[10]; 28325 cdb[5] = buffer[11]; 28326 cdb[8] = 0x08; 28327 com->uscsi_buflen = 0x08; 28328 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28329 SD_PATH_STANDARD); 28330 if (rval == 0) { 28331 entry->cdte_datamode = buffer[0]; 28332 } else { 28333 /* 28334 * READ HEADER command failed, since this is 28335 * obsoleted in one spec, its better to return 28336 * -1 for an invlid track so that we can still 28337 * receive the rest of the TOC data. 28338 */ 28339 entry->cdte_datamode = (uchar_t)-1; 28340 } 28341 } else { 28342 entry->cdte_datamode = (uchar_t)-1; 28343 } 28344 28345 kmem_free(buffer, 12); 28346 kmem_free(com, sizeof (*com)); 28347 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 28348 return (EFAULT); 28349 28350 return (rval); 28351 } 28352 28353 28354 /* 28355 * Function: sr_read_tochdr() 28356 * 28357 * Description: This routine is the driver entry point for handling CD-ROM 28358 * ioctl requests to read the Table of Contents (TOC) header 28359 * (CDROMREADTOHDR). The TOC header consists of the disk starting 28360 * and ending track numbers 28361 * 28362 * Arguments: dev - the device 'dev_t' 28363 * data - pointer to user provided toc header structure, 28364 * specifying the starting and ending track numbers. 28365 * flag - this argument is a pass through to ddi_copyxxx() 28366 * directly from the mode argument of ioctl(). 28367 * 28368 * Return Code: the code returned by sd_send_scsi_cmd() 28369 * EFAULT if ddi_copyxxx() fails 28370 * ENXIO if fail ddi_get_soft_state 28371 * EINVAL if data pointer is NULL 28372 */ 28373 28374 static int 28375 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 28376 { 28377 struct sd_lun *un; 28378 struct uscsi_cmd *com; 28379 struct cdrom_tochdr toc_header; 28380 struct cdrom_tochdr *hdr = &toc_header; 28381 char cdb[CDB_GROUP1]; 28382 int rval; 28383 caddr_t buffer; 28384 28385 if (data == NULL) { 28386 return (EINVAL); 28387 } 28388 28389 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28390 (un->un_state == SD_STATE_OFFLINE)) { 28391 return (ENXIO); 28392 } 28393 28394 buffer = kmem_zalloc(4, KM_SLEEP); 28395 bzero(cdb, CDB_GROUP1); 28396 cdb[0] = SCMD_READ_TOC; 28397 /* 28398 * Specifying a track number of 0x00 in the READ TOC command indicates 28399 * that the TOC header should be returned 28400 */ 28401 cdb[6] = 0x00; 28402 /* 28403 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 28404 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 28405 */ 28406 cdb[8] = 0x04; 28407 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28408 com->uscsi_cdb = cdb; 28409 com->uscsi_cdblen = CDB_GROUP1; 28410 com->uscsi_bufaddr = buffer; 28411 com->uscsi_buflen = 0x04; 28412 com->uscsi_timeout = 300; 28413 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28414 28415 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28416 SD_PATH_STANDARD); 28417 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 28418 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 28419 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 28420 } else { 28421 hdr->cdth_trk0 = buffer[2]; 28422 hdr->cdth_trk1 = buffer[3]; 28423 } 28424 kmem_free(buffer, 4); 28425 kmem_free(com, sizeof (*com)); 28426 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 28427 return (EFAULT); 28428 } 28429 return (rval); 28430 } 28431 28432 28433 /* 28434 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 28435 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 28436 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 28437 * digital audio and extended architecture digital audio. These modes are 28438 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 28439 * MMC specs. 28440 * 28441 * In addition to support for the various data formats these routines also 28442 * include support for devices that implement only the direct access READ 28443 * commands (0x08, 0x28), devices that implement the READ_CD commands 28444 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 28445 * READ CDXA commands (0xD8, 0xDB) 28446 */ 28447 28448 /* 28449 * Function: sr_read_mode1() 28450 * 28451 * Description: This routine is the driver entry point for handling CD-ROM 28452 * ioctl read mode1 requests (CDROMREADMODE1). 28453 * 28454 * Arguments: dev - the device 'dev_t' 28455 * data - pointer to user provided cd read structure specifying 28456 * the lba buffer address and length. 28457 * flag - this argument is a pass through to ddi_copyxxx() 28458 * directly from the mode argument of ioctl(). 28459 * 28460 * Return Code: the code returned by sd_send_scsi_cmd() 28461 * EFAULT if ddi_copyxxx() fails 28462 * ENXIO if fail ddi_get_soft_state 28463 * EINVAL if data pointer is NULL 28464 */ 28465 28466 static int 28467 sr_read_mode1(dev_t dev, caddr_t data, int flag) 28468 { 28469 struct sd_lun *un; 28470 struct cdrom_read mode1_struct; 28471 struct cdrom_read *mode1 = &mode1_struct; 28472 int rval; 28473 sd_ssc_t *ssc; 28474 28475 #ifdef _MULTI_DATAMODEL 28476 /* To support ILP32 applications in an LP64 world */ 28477 struct cdrom_read32 cdrom_read32; 28478 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28479 #endif /* _MULTI_DATAMODEL */ 28480 28481 if (data == NULL) { 28482 return (EINVAL); 28483 } 28484 28485 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28486 (un->un_state == SD_STATE_OFFLINE)) { 28487 return (ENXIO); 28488 } 28489 28490 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28491 "sd_read_mode1: entry: un:0x%p\n", un); 28492 28493 #ifdef _MULTI_DATAMODEL 28494 switch (ddi_model_convert_from(flag & FMODELS)) { 28495 case DDI_MODEL_ILP32: 28496 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28497 return (EFAULT); 28498 } 28499 /* Convert the ILP32 uscsi data from the application to LP64 */ 28500 cdrom_read32tocdrom_read(cdrd32, mode1); 28501 break; 28502 case DDI_MODEL_NONE: 28503 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28504 return (EFAULT); 28505 } 28506 } 28507 #else /* ! _MULTI_DATAMODEL */ 28508 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28509 return (EFAULT); 28510 } 28511 #endif /* _MULTI_DATAMODEL */ 28512 28513 ssc = sd_ssc_init(un); 28514 rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr, 28515 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 28516 sd_ssc_fini(ssc); 28517 28518 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28519 "sd_read_mode1: exit: un:0x%p\n", un); 28520 28521 return (rval); 28522 } 28523 28524 28525 /* 28526 * Function: sr_read_cd_mode2() 28527 * 28528 * Description: This routine is the driver entry point for handling CD-ROM 28529 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28530 * support the READ CD (0xBE) command or the 1st generation 28531 * READ CD (0xD4) command. 28532 * 28533 * Arguments: dev - the device 'dev_t' 28534 * data - pointer to user provided cd read structure specifying 28535 * the lba buffer address and length. 28536 * flag - this argument is a pass through to ddi_copyxxx() 28537 * directly from the mode argument of ioctl(). 28538 * 28539 * Return Code: the code returned by sd_send_scsi_cmd() 28540 * EFAULT if ddi_copyxxx() fails 28541 * ENXIO if fail ddi_get_soft_state 28542 * EINVAL if data pointer is NULL 28543 */ 28544 28545 static int 28546 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28547 { 28548 struct sd_lun *un; 28549 struct uscsi_cmd *com; 28550 struct cdrom_read mode2_struct; 28551 struct cdrom_read *mode2 = &mode2_struct; 28552 uchar_t cdb[CDB_GROUP5]; 28553 int nblocks; 28554 int rval; 28555 #ifdef _MULTI_DATAMODEL 28556 /* To support ILP32 applications in an LP64 world */ 28557 struct cdrom_read32 cdrom_read32; 28558 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28559 #endif /* _MULTI_DATAMODEL */ 28560 28561 if (data == NULL) { 28562 return (EINVAL); 28563 } 28564 28565 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28566 (un->un_state == SD_STATE_OFFLINE)) { 28567 return (ENXIO); 28568 } 28569 28570 #ifdef _MULTI_DATAMODEL 28571 switch (ddi_model_convert_from(flag & FMODELS)) { 28572 case DDI_MODEL_ILP32: 28573 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28574 return (EFAULT); 28575 } 28576 /* Convert the ILP32 uscsi data from the application to LP64 */ 28577 cdrom_read32tocdrom_read(cdrd32, mode2); 28578 break; 28579 case DDI_MODEL_NONE: 28580 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28581 return (EFAULT); 28582 } 28583 break; 28584 } 28585 28586 #else /* ! _MULTI_DATAMODEL */ 28587 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28588 return (EFAULT); 28589 } 28590 #endif /* _MULTI_DATAMODEL */ 28591 28592 bzero(cdb, sizeof (cdb)); 28593 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28594 /* Read command supported by 1st generation atapi drives */ 28595 cdb[0] = SCMD_READ_CDD4; 28596 } else { 28597 /* Universal CD Access Command */ 28598 cdb[0] = SCMD_READ_CD; 28599 } 28600 28601 /* 28602 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28603 */ 28604 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28605 28606 /* set the start address */ 28607 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28608 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28609 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28610 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28611 28612 /* set the transfer length */ 28613 nblocks = mode2->cdread_buflen / 2336; 28614 cdb[6] = (uchar_t)(nblocks >> 16); 28615 cdb[7] = (uchar_t)(nblocks >> 8); 28616 cdb[8] = (uchar_t)nblocks; 28617 28618 /* set the filter bits */ 28619 cdb[9] = CDROM_READ_CD_USERDATA; 28620 28621 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28622 com->uscsi_cdb = (caddr_t)cdb; 28623 com->uscsi_cdblen = sizeof (cdb); 28624 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28625 com->uscsi_buflen = mode2->cdread_buflen; 28626 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28627 28628 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28629 SD_PATH_STANDARD); 28630 kmem_free(com, sizeof (*com)); 28631 return (rval); 28632 } 28633 28634 28635 /* 28636 * Function: sr_read_mode2() 28637 * 28638 * Description: This routine is the driver entry point for handling CD-ROM 28639 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28640 * do not support the READ CD (0xBE) command. 28641 * 28642 * Arguments: dev - the device 'dev_t' 28643 * data - pointer to user provided cd read structure specifying 28644 * the lba buffer address and length. 28645 * flag - this argument is a pass through to ddi_copyxxx() 28646 * directly from the mode argument of ioctl(). 28647 * 28648 * Return Code: the code returned by sd_send_scsi_cmd() 28649 * EFAULT if ddi_copyxxx() fails 28650 * ENXIO if fail ddi_get_soft_state 28651 * EINVAL if data pointer is NULL 28652 * EIO if fail to reset block size 28653 * EAGAIN if commands are in progress in the driver 28654 */ 28655 28656 static int 28657 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28658 { 28659 struct sd_lun *un; 28660 struct cdrom_read mode2_struct; 28661 struct cdrom_read *mode2 = &mode2_struct; 28662 int rval; 28663 uint32_t restore_blksize; 28664 struct uscsi_cmd *com; 28665 uchar_t cdb[CDB_GROUP0]; 28666 int nblocks; 28667 28668 #ifdef _MULTI_DATAMODEL 28669 /* To support ILP32 applications in an LP64 world */ 28670 struct cdrom_read32 cdrom_read32; 28671 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28672 #endif /* _MULTI_DATAMODEL */ 28673 28674 if (data == NULL) { 28675 return (EINVAL); 28676 } 28677 28678 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28679 (un->un_state == SD_STATE_OFFLINE)) { 28680 return (ENXIO); 28681 } 28682 28683 /* 28684 * Because this routine will update the device and driver block size 28685 * being used we want to make sure there are no commands in progress. 28686 * If commands are in progress the user will have to try again. 28687 * 28688 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28689 * in sdioctl to protect commands from sdioctl through to the top of 28690 * sd_uscsi_strategy. See sdioctl for details. 28691 */ 28692 mutex_enter(SD_MUTEX(un)); 28693 if (un->un_ncmds_in_driver != 1) { 28694 mutex_exit(SD_MUTEX(un)); 28695 return (EAGAIN); 28696 } 28697 mutex_exit(SD_MUTEX(un)); 28698 28699 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28700 "sd_read_mode2: entry: un:0x%p\n", un); 28701 28702 #ifdef _MULTI_DATAMODEL 28703 switch (ddi_model_convert_from(flag & FMODELS)) { 28704 case DDI_MODEL_ILP32: 28705 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28706 return (EFAULT); 28707 } 28708 /* Convert the ILP32 uscsi data from the application to LP64 */ 28709 cdrom_read32tocdrom_read(cdrd32, mode2); 28710 break; 28711 case DDI_MODEL_NONE: 28712 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28713 return (EFAULT); 28714 } 28715 break; 28716 } 28717 #else /* ! _MULTI_DATAMODEL */ 28718 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28719 return (EFAULT); 28720 } 28721 #endif /* _MULTI_DATAMODEL */ 28722 28723 /* Store the current target block size for restoration later */ 28724 restore_blksize = un->un_tgt_blocksize; 28725 28726 /* Change the device and soft state target block size to 2336 */ 28727 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28728 rval = EIO; 28729 goto done; 28730 } 28731 28732 28733 bzero(cdb, sizeof (cdb)); 28734 28735 /* set READ operation */ 28736 cdb[0] = SCMD_READ; 28737 28738 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28739 mode2->cdread_lba >>= 2; 28740 28741 /* set the start address */ 28742 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28743 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28744 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28745 28746 /* set the transfer length */ 28747 nblocks = mode2->cdread_buflen / 2336; 28748 cdb[4] = (uchar_t)nblocks & 0xFF; 28749 28750 /* build command */ 28751 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28752 com->uscsi_cdb = (caddr_t)cdb; 28753 com->uscsi_cdblen = sizeof (cdb); 28754 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28755 com->uscsi_buflen = mode2->cdread_buflen; 28756 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28757 28758 /* 28759 * Issue SCSI command with user space address for read buffer. 28760 * 28761 * This sends the command through main channel in the driver. 28762 * 28763 * Since this is accessed via an IOCTL call, we go through the 28764 * standard path, so that if the device was powered down, then 28765 * it would be 'awakened' to handle the command. 28766 */ 28767 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28768 SD_PATH_STANDARD); 28769 28770 kmem_free(com, sizeof (*com)); 28771 28772 /* Restore the device and soft state target block size */ 28773 if (sr_sector_mode(dev, restore_blksize) != 0) { 28774 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28775 "can't do switch back to mode 1\n"); 28776 /* 28777 * If sd_send_scsi_READ succeeded we still need to report 28778 * an error because we failed to reset the block size 28779 */ 28780 if (rval == 0) { 28781 rval = EIO; 28782 } 28783 } 28784 28785 done: 28786 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28787 "sd_read_mode2: exit: un:0x%p\n", un); 28788 28789 return (rval); 28790 } 28791 28792 28793 /* 28794 * Function: sr_sector_mode() 28795 * 28796 * Description: This utility function is used by sr_read_mode2 to set the target 28797 * block size based on the user specified size. This is a legacy 28798 * implementation based upon a vendor specific mode page 28799 * 28800 * Arguments: dev - the device 'dev_t' 28801 * data - flag indicating if block size is being set to 2336 or 28802 * 512. 28803 * 28804 * Return Code: the code returned by sd_send_scsi_cmd() 28805 * EFAULT if ddi_copyxxx() fails 28806 * ENXIO if fail ddi_get_soft_state 28807 * EINVAL if data pointer is NULL 28808 */ 28809 28810 static int 28811 sr_sector_mode(dev_t dev, uint32_t blksize) 28812 { 28813 struct sd_lun *un; 28814 uchar_t *sense; 28815 uchar_t *select; 28816 int rval; 28817 sd_ssc_t *ssc; 28818 28819 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28820 (un->un_state == SD_STATE_OFFLINE)) { 28821 return (ENXIO); 28822 } 28823 28824 sense = kmem_zalloc(20, KM_SLEEP); 28825 28826 /* Note: This is a vendor specific mode page (0x81) */ 28827 ssc = sd_ssc_init(un); 28828 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81, 28829 SD_PATH_STANDARD); 28830 sd_ssc_fini(ssc); 28831 if (rval != 0) { 28832 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28833 "sr_sector_mode: Mode Sense failed\n"); 28834 kmem_free(sense, 20); 28835 return (rval); 28836 } 28837 select = kmem_zalloc(20, KM_SLEEP); 28838 select[3] = 0x08; 28839 select[10] = ((blksize >> 8) & 0xff); 28840 select[11] = (blksize & 0xff); 28841 select[12] = 0x01; 28842 select[13] = 0x06; 28843 select[14] = sense[14]; 28844 select[15] = sense[15]; 28845 if (blksize == SD_MODE2_BLKSIZE) { 28846 select[14] |= 0x01; 28847 } 28848 28849 ssc = sd_ssc_init(un); 28850 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20, 28851 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28852 sd_ssc_fini(ssc); 28853 if (rval != 0) { 28854 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28855 "sr_sector_mode: Mode Select failed\n"); 28856 } else { 28857 /* 28858 * Only update the softstate block size if we successfully 28859 * changed the device block mode. 28860 */ 28861 mutex_enter(SD_MUTEX(un)); 28862 sd_update_block_info(un, blksize, 0); 28863 mutex_exit(SD_MUTEX(un)); 28864 } 28865 kmem_free(sense, 20); 28866 kmem_free(select, 20); 28867 return (rval); 28868 } 28869 28870 28871 /* 28872 * Function: sr_read_cdda() 28873 * 28874 * Description: This routine is the driver entry point for handling CD-ROM 28875 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28876 * the target supports CDDA these requests are handled via a vendor 28877 * specific command (0xD8) If the target does not support CDDA 28878 * these requests are handled via the READ CD command (0xBE). 28879 * 28880 * Arguments: dev - the device 'dev_t' 28881 * data - pointer to user provided CD-DA structure specifying 28882 * the track starting address, transfer length, and 28883 * subcode options. 28884 * flag - this argument is a pass through to ddi_copyxxx() 28885 * directly from the mode argument of ioctl(). 28886 * 28887 * Return Code: the code returned by sd_send_scsi_cmd() 28888 * EFAULT if ddi_copyxxx() fails 28889 * ENXIO if fail ddi_get_soft_state 28890 * EINVAL if invalid arguments are provided 28891 * ENOTTY 28892 */ 28893 28894 static int 28895 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28896 { 28897 struct sd_lun *un; 28898 struct uscsi_cmd *com; 28899 struct cdrom_cdda *cdda; 28900 int rval; 28901 size_t buflen; 28902 char cdb[CDB_GROUP5]; 28903 28904 #ifdef _MULTI_DATAMODEL 28905 /* To support ILP32 applications in an LP64 world */ 28906 struct cdrom_cdda32 cdrom_cdda32; 28907 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28908 #endif /* _MULTI_DATAMODEL */ 28909 28910 if (data == NULL) { 28911 return (EINVAL); 28912 } 28913 28914 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28915 return (ENXIO); 28916 } 28917 28918 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28919 28920 #ifdef _MULTI_DATAMODEL 28921 switch (ddi_model_convert_from(flag & FMODELS)) { 28922 case DDI_MODEL_ILP32: 28923 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28924 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28925 "sr_read_cdda: ddi_copyin Failed\n"); 28926 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28927 return (EFAULT); 28928 } 28929 /* Convert the ILP32 uscsi data from the application to LP64 */ 28930 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28931 break; 28932 case DDI_MODEL_NONE: 28933 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28934 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28935 "sr_read_cdda: ddi_copyin Failed\n"); 28936 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28937 return (EFAULT); 28938 } 28939 break; 28940 } 28941 #else /* ! _MULTI_DATAMODEL */ 28942 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28943 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28944 "sr_read_cdda: ddi_copyin Failed\n"); 28945 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28946 return (EFAULT); 28947 } 28948 #endif /* _MULTI_DATAMODEL */ 28949 28950 /* 28951 * Since MMC-2 expects max 3 bytes for length, check if the 28952 * length input is greater than 3 bytes 28953 */ 28954 if ((cdda->cdda_length & 0xFF000000) != 0) { 28955 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28956 "cdrom transfer length too large: %d (limit %d)\n", 28957 cdda->cdda_length, 0xFFFFFF); 28958 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28959 return (EINVAL); 28960 } 28961 28962 switch (cdda->cdda_subcode) { 28963 case CDROM_DA_NO_SUBCODE: 28964 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28965 break; 28966 case CDROM_DA_SUBQ: 28967 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28968 break; 28969 case CDROM_DA_ALL_SUBCODE: 28970 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28971 break; 28972 case CDROM_DA_SUBCODE_ONLY: 28973 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28974 break; 28975 default: 28976 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28977 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28978 cdda->cdda_subcode); 28979 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28980 return (EINVAL); 28981 } 28982 28983 /* Build and send the command */ 28984 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28985 bzero(cdb, CDB_GROUP5); 28986 28987 if (un->un_f_cfg_cdda == TRUE) { 28988 cdb[0] = (char)SCMD_READ_CD; 28989 cdb[1] = 0x04; 28990 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28991 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28992 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28993 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28994 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28995 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28996 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28997 cdb[9] = 0x10; 28998 switch (cdda->cdda_subcode) { 28999 case CDROM_DA_NO_SUBCODE : 29000 cdb[10] = 0x0; 29001 break; 29002 case CDROM_DA_SUBQ : 29003 cdb[10] = 0x2; 29004 break; 29005 case CDROM_DA_ALL_SUBCODE : 29006 cdb[10] = 0x1; 29007 break; 29008 case CDROM_DA_SUBCODE_ONLY : 29009 /* FALLTHROUGH */ 29010 default : 29011 kmem_free(cdda, sizeof (struct cdrom_cdda)); 29012 kmem_free(com, sizeof (*com)); 29013 return (ENOTTY); 29014 } 29015 } else { 29016 cdb[0] = (char)SCMD_READ_CDDA; 29017 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 29018 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 29019 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 29020 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 29021 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 29022 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 29023 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 29024 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 29025 cdb[10] = cdda->cdda_subcode; 29026 } 29027 29028 com->uscsi_cdb = cdb; 29029 com->uscsi_cdblen = CDB_GROUP5; 29030 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 29031 com->uscsi_buflen = buflen; 29032 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29033 29034 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 29035 SD_PATH_STANDARD); 29036 29037 kmem_free(cdda, sizeof (struct cdrom_cdda)); 29038 kmem_free(com, sizeof (*com)); 29039 return (rval); 29040 } 29041 29042 29043 /* 29044 * Function: sr_read_cdxa() 29045 * 29046 * Description: This routine is the driver entry point for handling CD-ROM 29047 * ioctl requests to return CD-XA (Extended Architecture) data. 29048 * (CDROMCDXA). 29049 * 29050 * Arguments: dev - the device 'dev_t' 29051 * data - pointer to user provided CD-XA structure specifying 29052 * the data starting address, transfer length, and format 29053 * flag - this argument is a pass through to ddi_copyxxx() 29054 * directly from the mode argument of ioctl(). 29055 * 29056 * Return Code: the code returned by sd_send_scsi_cmd() 29057 * EFAULT if ddi_copyxxx() fails 29058 * ENXIO if fail ddi_get_soft_state 29059 * EINVAL if data pointer is NULL 29060 */ 29061 29062 static int 29063 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 29064 { 29065 struct sd_lun *un; 29066 struct uscsi_cmd *com; 29067 struct cdrom_cdxa *cdxa; 29068 int rval; 29069 size_t buflen; 29070 char cdb[CDB_GROUP5]; 29071 uchar_t read_flags; 29072 29073 #ifdef _MULTI_DATAMODEL 29074 /* To support ILP32 applications in an LP64 world */ 29075 struct cdrom_cdxa32 cdrom_cdxa32; 29076 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 29077 #endif /* _MULTI_DATAMODEL */ 29078 29079 if (data == NULL) { 29080 return (EINVAL); 29081 } 29082 29083 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 29084 return (ENXIO); 29085 } 29086 29087 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 29088 29089 #ifdef _MULTI_DATAMODEL 29090 switch (ddi_model_convert_from(flag & FMODELS)) { 29091 case DDI_MODEL_ILP32: 29092 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 29093 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29094 return (EFAULT); 29095 } 29096 /* 29097 * Convert the ILP32 uscsi data from the 29098 * application to LP64 for internal use. 29099 */ 29100 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 29101 break; 29102 case DDI_MODEL_NONE: 29103 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 29104 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29105 return (EFAULT); 29106 } 29107 break; 29108 } 29109 #else /* ! _MULTI_DATAMODEL */ 29110 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 29111 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29112 return (EFAULT); 29113 } 29114 #endif /* _MULTI_DATAMODEL */ 29115 29116 /* 29117 * Since MMC-2 expects max 3 bytes for length, check if the 29118 * length input is greater than 3 bytes 29119 */ 29120 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 29121 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 29122 "cdrom transfer length too large: %d (limit %d)\n", 29123 cdxa->cdxa_length, 0xFFFFFF); 29124 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29125 return (EINVAL); 29126 } 29127 29128 switch (cdxa->cdxa_format) { 29129 case CDROM_XA_DATA: 29130 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 29131 read_flags = 0x10; 29132 break; 29133 case CDROM_XA_SECTOR_DATA: 29134 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 29135 read_flags = 0xf8; 29136 break; 29137 case CDROM_XA_DATA_W_ERROR: 29138 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 29139 read_flags = 0xfc; 29140 break; 29141 default: 29142 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29143 "sr_read_cdxa: Format '0x%x' Not Supported\n", 29144 cdxa->cdxa_format); 29145 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29146 return (EINVAL); 29147 } 29148 29149 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29150 bzero(cdb, CDB_GROUP5); 29151 if (un->un_f_mmc_cap == TRUE) { 29152 cdb[0] = (char)SCMD_READ_CD; 29153 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 29154 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 29155 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 29156 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 29157 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 29158 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 29159 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 29160 cdb[9] = (char)read_flags; 29161 } else { 29162 /* 29163 * Note: A vendor specific command (0xDB) is being used her to 29164 * request a read of all subcodes. 29165 */ 29166 cdb[0] = (char)SCMD_READ_CDXA; 29167 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 29168 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 29169 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 29170 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 29171 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 29172 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 29173 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 29174 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 29175 cdb[10] = cdxa->cdxa_format; 29176 } 29177 com->uscsi_cdb = cdb; 29178 com->uscsi_cdblen = CDB_GROUP5; 29179 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 29180 com->uscsi_buflen = buflen; 29181 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29182 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 29183 SD_PATH_STANDARD); 29184 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29185 kmem_free(com, sizeof (*com)); 29186 return (rval); 29187 } 29188 29189 29190 /* 29191 * Function: sr_eject() 29192 * 29193 * Description: This routine is the driver entry point for handling CD-ROM 29194 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 29195 * 29196 * Arguments: dev - the device 'dev_t' 29197 * 29198 * Return Code: the code returned by sd_send_scsi_cmd() 29199 */ 29200 29201 static int 29202 sr_eject(dev_t dev) 29203 { 29204 struct sd_lun *un; 29205 int rval; 29206 sd_ssc_t *ssc; 29207 29208 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29209 (un->un_state == SD_STATE_OFFLINE)) { 29210 return (ENXIO); 29211 } 29212 29213 /* 29214 * To prevent race conditions with the eject 29215 * command, keep track of an eject command as 29216 * it progresses. If we are already handling 29217 * an eject command in the driver for the given 29218 * unit and another request to eject is received 29219 * immediately return EAGAIN so we don't lose 29220 * the command if the current eject command fails. 29221 */ 29222 mutex_enter(SD_MUTEX(un)); 29223 if (un->un_f_ejecting == TRUE) { 29224 mutex_exit(SD_MUTEX(un)); 29225 return (EAGAIN); 29226 } 29227 un->un_f_ejecting = TRUE; 29228 mutex_exit(SD_MUTEX(un)); 29229 29230 ssc = sd_ssc_init(un); 29231 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 29232 SD_PATH_STANDARD); 29233 sd_ssc_fini(ssc); 29234 29235 if (rval != 0) { 29236 mutex_enter(SD_MUTEX(un)); 29237 un->un_f_ejecting = FALSE; 29238 mutex_exit(SD_MUTEX(un)); 29239 return (rval); 29240 } 29241 29242 ssc = sd_ssc_init(un); 29243 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 29244 SD_TARGET_EJECT, SD_PATH_STANDARD); 29245 sd_ssc_fini(ssc); 29246 29247 if (rval == 0) { 29248 mutex_enter(SD_MUTEX(un)); 29249 sr_ejected(un); 29250 un->un_mediastate = DKIO_EJECTED; 29251 un->un_f_ejecting = FALSE; 29252 cv_broadcast(&un->un_state_cv); 29253 mutex_exit(SD_MUTEX(un)); 29254 } else { 29255 mutex_enter(SD_MUTEX(un)); 29256 un->un_f_ejecting = FALSE; 29257 mutex_exit(SD_MUTEX(un)); 29258 } 29259 return (rval); 29260 } 29261 29262 29263 /* 29264 * Function: sr_ejected() 29265 * 29266 * Description: This routine updates the soft state structure to invalidate the 29267 * geometry information after the media has been ejected or a 29268 * media eject has been detected. 29269 * 29270 * Arguments: un - driver soft state (unit) structure 29271 */ 29272 29273 static void 29274 sr_ejected(struct sd_lun *un) 29275 { 29276 struct sd_errstats *stp; 29277 29278 ASSERT(un != NULL); 29279 ASSERT(mutex_owned(SD_MUTEX(un))); 29280 29281 un->un_f_blockcount_is_valid = FALSE; 29282 un->un_f_tgt_blocksize_is_valid = FALSE; 29283 mutex_exit(SD_MUTEX(un)); 29284 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 29285 mutex_enter(SD_MUTEX(un)); 29286 29287 if (un->un_errstats != NULL) { 29288 stp = (struct sd_errstats *)un->un_errstats->ks_data; 29289 stp->sd_capacity.value.ui64 = 0; 29290 } 29291 } 29292 29293 29294 /* 29295 * Function: sr_check_wp() 29296 * 29297 * Description: This routine checks the write protection of a removable 29298 * media disk and hotpluggable devices via the write protect bit of 29299 * the Mode Page Header device specific field. Some devices choke 29300 * on unsupported mode page. In order to workaround this issue, 29301 * this routine has been implemented to use 0x3f mode page(request 29302 * for all pages) for all device types. 29303 * 29304 * Arguments: dev - the device 'dev_t' 29305 * 29306 * Return Code: int indicating if the device is write protected (1) or not (0) 29307 * 29308 * Context: Kernel thread. 29309 * 29310 */ 29311 29312 static int 29313 sr_check_wp(dev_t dev) 29314 { 29315 struct sd_lun *un; 29316 uchar_t device_specific; 29317 uchar_t *sense; 29318 int hdrlen; 29319 int rval = FALSE; 29320 int status; 29321 sd_ssc_t *ssc; 29322 29323 /* 29324 * Note: The return codes for this routine should be reworked to 29325 * properly handle the case of a NULL softstate. 29326 */ 29327 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 29328 return (FALSE); 29329 } 29330 29331 if (un->un_f_cfg_is_atapi == TRUE) { 29332 /* 29333 * The mode page contents are not required; set the allocation 29334 * length for the mode page header only 29335 */ 29336 hdrlen = MODE_HEADER_LENGTH_GRP2; 29337 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29338 ssc = sd_ssc_init(un); 29339 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen, 29340 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 29341 sd_ssc_fini(ssc); 29342 if (status != 0) 29343 goto err_exit; 29344 device_specific = 29345 ((struct mode_header_grp2 *)sense)->device_specific; 29346 } else { 29347 hdrlen = MODE_HEADER_LENGTH; 29348 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29349 ssc = sd_ssc_init(un); 29350 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen, 29351 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 29352 sd_ssc_fini(ssc); 29353 if (status != 0) 29354 goto err_exit; 29355 device_specific = 29356 ((struct mode_header *)sense)->device_specific; 29357 } 29358 29359 29360 /* 29361 * Write protect mode sense failed; not all disks 29362 * understand this query. Return FALSE assuming that 29363 * these devices are not writable. 29364 */ 29365 if (device_specific & WRITE_PROTECT) { 29366 rval = TRUE; 29367 } 29368 29369 err_exit: 29370 kmem_free(sense, hdrlen); 29371 return (rval); 29372 } 29373 29374 /* 29375 * Function: sr_volume_ctrl() 29376 * 29377 * Description: This routine is the driver entry point for handling CD-ROM 29378 * audio output volume ioctl requests. (CDROMVOLCTRL) 29379 * 29380 * Arguments: dev - the device 'dev_t' 29381 * data - pointer to user audio volume control structure 29382 * flag - this argument is a pass through to ddi_copyxxx() 29383 * directly from the mode argument of ioctl(). 29384 * 29385 * Return Code: the code returned by sd_send_scsi_cmd() 29386 * EFAULT if ddi_copyxxx() fails 29387 * ENXIO if fail ddi_get_soft_state 29388 * EINVAL if data pointer is NULL 29389 * 29390 */ 29391 29392 static int 29393 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 29394 { 29395 struct sd_lun *un; 29396 struct cdrom_volctrl volume; 29397 struct cdrom_volctrl *vol = &volume; 29398 uchar_t *sense_page; 29399 uchar_t *select_page; 29400 uchar_t *sense; 29401 uchar_t *select; 29402 int sense_buflen; 29403 int select_buflen; 29404 int rval; 29405 sd_ssc_t *ssc; 29406 29407 if (data == NULL) { 29408 return (EINVAL); 29409 } 29410 29411 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29412 (un->un_state == SD_STATE_OFFLINE)) { 29413 return (ENXIO); 29414 } 29415 29416 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 29417 return (EFAULT); 29418 } 29419 29420 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29421 struct mode_header_grp2 *sense_mhp; 29422 struct mode_header_grp2 *select_mhp; 29423 int bd_len; 29424 29425 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 29426 select_buflen = MODE_HEADER_LENGTH_GRP2 + 29427 MODEPAGE_AUDIO_CTRL_LEN; 29428 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29429 select = kmem_zalloc(select_buflen, KM_SLEEP); 29430 ssc = sd_ssc_init(un); 29431 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 29432 sense_buflen, MODEPAGE_AUDIO_CTRL, 29433 SD_PATH_STANDARD); 29434 sd_ssc_fini(ssc); 29435 29436 if (rval != 0) { 29437 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 29438 "sr_volume_ctrl: Mode Sense Failed\n"); 29439 kmem_free(sense, sense_buflen); 29440 kmem_free(select, select_buflen); 29441 return (rval); 29442 } 29443 sense_mhp = (struct mode_header_grp2 *)sense; 29444 select_mhp = (struct mode_header_grp2 *)select; 29445 bd_len = (sense_mhp->bdesc_length_hi << 8) | 29446 sense_mhp->bdesc_length_lo; 29447 if (bd_len > MODE_BLK_DESC_LENGTH) { 29448 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29449 "sr_volume_ctrl: Mode Sense returned invalid " 29450 "block descriptor length\n"); 29451 kmem_free(sense, sense_buflen); 29452 kmem_free(select, select_buflen); 29453 return (EIO); 29454 } 29455 sense_page = (uchar_t *) 29456 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 29457 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 29458 select_mhp->length_msb = 0; 29459 select_mhp->length_lsb = 0; 29460 select_mhp->bdesc_length_hi = 0; 29461 select_mhp->bdesc_length_lo = 0; 29462 } else { 29463 struct mode_header *sense_mhp, *select_mhp; 29464 29465 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29466 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29467 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29468 select = kmem_zalloc(select_buflen, KM_SLEEP); 29469 ssc = sd_ssc_init(un); 29470 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 29471 sense_buflen, MODEPAGE_AUDIO_CTRL, 29472 SD_PATH_STANDARD); 29473 sd_ssc_fini(ssc); 29474 29475 if (rval != 0) { 29476 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29477 "sr_volume_ctrl: Mode Sense Failed\n"); 29478 kmem_free(sense, sense_buflen); 29479 kmem_free(select, select_buflen); 29480 return (rval); 29481 } 29482 sense_mhp = (struct mode_header *)sense; 29483 select_mhp = (struct mode_header *)select; 29484 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 29485 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29486 "sr_volume_ctrl: Mode Sense returned invalid " 29487 "block descriptor length\n"); 29488 kmem_free(sense, sense_buflen); 29489 kmem_free(select, select_buflen); 29490 return (EIO); 29491 } 29492 sense_page = (uchar_t *) 29493 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 29494 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 29495 select_mhp->length = 0; 29496 select_mhp->bdesc_length = 0; 29497 } 29498 /* 29499 * Note: An audio control data structure could be created and overlayed 29500 * on the following in place of the array indexing method implemented. 29501 */ 29502 29503 /* Build the select data for the user volume data */ 29504 select_page[0] = MODEPAGE_AUDIO_CTRL; 29505 select_page[1] = 0xE; 29506 /* Set the immediate bit */ 29507 select_page[2] = 0x04; 29508 /* Zero out reserved fields */ 29509 select_page[3] = 0x00; 29510 select_page[4] = 0x00; 29511 /* Return sense data for fields not to be modified */ 29512 select_page[5] = sense_page[5]; 29513 select_page[6] = sense_page[6]; 29514 select_page[7] = sense_page[7]; 29515 /* Set the user specified volume levels for channel 0 and 1 */ 29516 select_page[8] = 0x01; 29517 select_page[9] = vol->channel0; 29518 select_page[10] = 0x02; 29519 select_page[11] = vol->channel1; 29520 /* Channel 2 and 3 are currently unsupported so return the sense data */ 29521 select_page[12] = sense_page[12]; 29522 select_page[13] = sense_page[13]; 29523 select_page[14] = sense_page[14]; 29524 select_page[15] = sense_page[15]; 29525 29526 ssc = sd_ssc_init(un); 29527 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29528 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select, 29529 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29530 } else { 29531 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 29532 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29533 } 29534 sd_ssc_fini(ssc); 29535 29536 kmem_free(sense, sense_buflen); 29537 kmem_free(select, select_buflen); 29538 return (rval); 29539 } 29540 29541 29542 /* 29543 * Function: sr_read_sony_session_offset() 29544 * 29545 * Description: This routine is the driver entry point for handling CD-ROM 29546 * ioctl requests for session offset information. (CDROMREADOFFSET) 29547 * The address of the first track in the last session of a 29548 * multi-session CD-ROM is returned 29549 * 29550 * Note: This routine uses a vendor specific key value in the 29551 * command control field without implementing any vendor check here 29552 * or in the ioctl routine. 29553 * 29554 * Arguments: dev - the device 'dev_t' 29555 * data - pointer to an int to hold the requested address 29556 * flag - this argument is a pass through to ddi_copyxxx() 29557 * directly from the mode argument of ioctl(). 29558 * 29559 * Return Code: the code returned by sd_send_scsi_cmd() 29560 * EFAULT if ddi_copyxxx() fails 29561 * ENXIO if fail ddi_get_soft_state 29562 * EINVAL if data pointer is NULL 29563 */ 29564 29565 static int 29566 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29567 { 29568 struct sd_lun *un; 29569 struct uscsi_cmd *com; 29570 caddr_t buffer; 29571 char cdb[CDB_GROUP1]; 29572 int session_offset = 0; 29573 int rval; 29574 29575 if (data == NULL) { 29576 return (EINVAL); 29577 } 29578 29579 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29580 (un->un_state == SD_STATE_OFFLINE)) { 29581 return (ENXIO); 29582 } 29583 29584 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29585 bzero(cdb, CDB_GROUP1); 29586 cdb[0] = SCMD_READ_TOC; 29587 /* 29588 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29589 * (4 byte TOC response header + 8 byte response data) 29590 */ 29591 cdb[8] = SONY_SESSION_OFFSET_LEN; 29592 /* Byte 9 is the control byte. A vendor specific value is used */ 29593 cdb[9] = SONY_SESSION_OFFSET_KEY; 29594 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29595 com->uscsi_cdb = cdb; 29596 com->uscsi_cdblen = CDB_GROUP1; 29597 com->uscsi_bufaddr = buffer; 29598 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29599 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29600 29601 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 29602 SD_PATH_STANDARD); 29603 if (rval != 0) { 29604 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29605 kmem_free(com, sizeof (*com)); 29606 return (rval); 29607 } 29608 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29609 session_offset = 29610 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29611 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29612 /* 29613 * Offset returned offset in current lbasize block's. Convert to 29614 * 2k block's to return to the user 29615 */ 29616 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29617 session_offset >>= 2; 29618 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29619 session_offset >>= 1; 29620 } 29621 } 29622 29623 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29624 rval = EFAULT; 29625 } 29626 29627 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29628 kmem_free(com, sizeof (*com)); 29629 return (rval); 29630 } 29631 29632 29633 /* 29634 * Function: sd_wm_cache_constructor() 29635 * 29636 * Description: Cache Constructor for the wmap cache for the read/modify/write 29637 * devices. 29638 * 29639 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29640 * un - sd_lun structure for the device. 29641 * flag - the km flags passed to constructor 29642 * 29643 * Return Code: 0 on success. 29644 * -1 on failure. 29645 */ 29646 29647 /*ARGSUSED*/ 29648 static int 29649 sd_wm_cache_constructor(void *wm, void *un, int flags) 29650 { 29651 bzero(wm, sizeof (struct sd_w_map)); 29652 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29653 return (0); 29654 } 29655 29656 29657 /* 29658 * Function: sd_wm_cache_destructor() 29659 * 29660 * Description: Cache destructor for the wmap cache for the read/modify/write 29661 * devices. 29662 * 29663 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29664 * un - sd_lun structure for the device. 29665 */ 29666 /*ARGSUSED*/ 29667 static void 29668 sd_wm_cache_destructor(void *wm, void *un) 29669 { 29670 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29671 } 29672 29673 29674 /* 29675 * Function: sd_range_lock() 29676 * 29677 * Description: Lock the range of blocks specified as parameter to ensure 29678 * that read, modify write is atomic and no other i/o writes 29679 * to the same location. The range is specified in terms 29680 * of start and end blocks. Block numbers are the actual 29681 * media block numbers and not system. 29682 * 29683 * Arguments: un - sd_lun structure for the device. 29684 * startb - The starting block number 29685 * endb - The end block number 29686 * typ - type of i/o - simple/read_modify_write 29687 * 29688 * Return Code: wm - pointer to the wmap structure. 29689 * 29690 * Context: This routine can sleep. 29691 */ 29692 29693 static struct sd_w_map * 29694 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29695 { 29696 struct sd_w_map *wmp = NULL; 29697 struct sd_w_map *sl_wmp = NULL; 29698 struct sd_w_map *tmp_wmp; 29699 wm_state state = SD_WM_CHK_LIST; 29700 29701 29702 ASSERT(un != NULL); 29703 ASSERT(!mutex_owned(SD_MUTEX(un))); 29704 29705 mutex_enter(SD_MUTEX(un)); 29706 29707 while (state != SD_WM_DONE) { 29708 29709 switch (state) { 29710 case SD_WM_CHK_LIST: 29711 /* 29712 * This is the starting state. Check the wmap list 29713 * to see if the range is currently available. 29714 */ 29715 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29716 /* 29717 * If this is a simple write and no rmw 29718 * i/o is pending then try to lock the 29719 * range as the range should be available. 29720 */ 29721 state = SD_WM_LOCK_RANGE; 29722 } else { 29723 tmp_wmp = sd_get_range(un, startb, endb); 29724 if (tmp_wmp != NULL) { 29725 if ((wmp != NULL) && ONLIST(un, wmp)) { 29726 /* 29727 * Should not keep onlist wmps 29728 * while waiting this macro 29729 * will also do wmp = NULL; 29730 */ 29731 FREE_ONLIST_WMAP(un, wmp); 29732 } 29733 /* 29734 * sl_wmp is the wmap on which wait 29735 * is done, since the tmp_wmp points 29736 * to the inuse wmap, set sl_wmp to 29737 * tmp_wmp and change the state to sleep 29738 */ 29739 sl_wmp = tmp_wmp; 29740 state = SD_WM_WAIT_MAP; 29741 } else { 29742 state = SD_WM_LOCK_RANGE; 29743 } 29744 29745 } 29746 break; 29747 29748 case SD_WM_LOCK_RANGE: 29749 ASSERT(un->un_wm_cache); 29750 /* 29751 * The range need to be locked, try to get a wmap. 29752 * First attempt it with NO_SLEEP, want to avoid a sleep 29753 * if possible as we will have to release the sd mutex 29754 * if we have to sleep. 29755 */ 29756 if (wmp == NULL) 29757 wmp = kmem_cache_alloc(un->un_wm_cache, 29758 KM_NOSLEEP); 29759 if (wmp == NULL) { 29760 mutex_exit(SD_MUTEX(un)); 29761 _NOTE(DATA_READABLE_WITHOUT_LOCK 29762 (sd_lun::un_wm_cache)) 29763 wmp = kmem_cache_alloc(un->un_wm_cache, 29764 KM_SLEEP); 29765 mutex_enter(SD_MUTEX(un)); 29766 /* 29767 * we released the mutex so recheck and go to 29768 * check list state. 29769 */ 29770 state = SD_WM_CHK_LIST; 29771 } else { 29772 /* 29773 * We exit out of state machine since we 29774 * have the wmap. Do the housekeeping first. 29775 * place the wmap on the wmap list if it is not 29776 * on it already and then set the state to done. 29777 */ 29778 wmp->wm_start = startb; 29779 wmp->wm_end = endb; 29780 wmp->wm_flags = typ | SD_WM_BUSY; 29781 if (typ & SD_WTYPE_RMW) { 29782 un->un_rmw_count++; 29783 } 29784 /* 29785 * If not already on the list then link 29786 */ 29787 if (!ONLIST(un, wmp)) { 29788 wmp->wm_next = un->un_wm; 29789 wmp->wm_prev = NULL; 29790 if (wmp->wm_next) 29791 wmp->wm_next->wm_prev = wmp; 29792 un->un_wm = wmp; 29793 } 29794 state = SD_WM_DONE; 29795 } 29796 break; 29797 29798 case SD_WM_WAIT_MAP: 29799 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29800 /* 29801 * Wait is done on sl_wmp, which is set in the 29802 * check_list state. 29803 */ 29804 sl_wmp->wm_wanted_count++; 29805 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29806 sl_wmp->wm_wanted_count--; 29807 /* 29808 * We can reuse the memory from the completed sl_wmp 29809 * lock range for our new lock, but only if noone is 29810 * waiting for it. 29811 */ 29812 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29813 if (sl_wmp->wm_wanted_count == 0) { 29814 if (wmp != NULL) { 29815 CHK_N_FREEWMP(un, wmp); 29816 } 29817 wmp = sl_wmp; 29818 } 29819 sl_wmp = NULL; 29820 /* 29821 * After waking up, need to recheck for availability of 29822 * range. 29823 */ 29824 state = SD_WM_CHK_LIST; 29825 break; 29826 29827 default: 29828 panic("sd_range_lock: " 29829 "Unknown state %d in sd_range_lock", state); 29830 /*NOTREACHED*/ 29831 } /* switch(state) */ 29832 29833 } /* while(state != SD_WM_DONE) */ 29834 29835 mutex_exit(SD_MUTEX(un)); 29836 29837 ASSERT(wmp != NULL); 29838 29839 return (wmp); 29840 } 29841 29842 29843 /* 29844 * Function: sd_get_range() 29845 * 29846 * Description: Find if there any overlapping I/O to this one 29847 * Returns the write-map of 1st such I/O, NULL otherwise. 29848 * 29849 * Arguments: un - sd_lun structure for the device. 29850 * startb - The starting block number 29851 * endb - The end block number 29852 * 29853 * Return Code: wm - pointer to the wmap structure. 29854 */ 29855 29856 static struct sd_w_map * 29857 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29858 { 29859 struct sd_w_map *wmp; 29860 29861 ASSERT(un != NULL); 29862 29863 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29864 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29865 continue; 29866 } 29867 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29868 break; 29869 } 29870 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29871 break; 29872 } 29873 } 29874 29875 return (wmp); 29876 } 29877 29878 29879 /* 29880 * Function: sd_free_inlist_wmap() 29881 * 29882 * Description: Unlink and free a write map struct. 29883 * 29884 * Arguments: un - sd_lun structure for the device. 29885 * wmp - sd_w_map which needs to be unlinked. 29886 */ 29887 29888 static void 29889 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29890 { 29891 ASSERT(un != NULL); 29892 29893 if (un->un_wm == wmp) { 29894 un->un_wm = wmp->wm_next; 29895 } else { 29896 wmp->wm_prev->wm_next = wmp->wm_next; 29897 } 29898 29899 if (wmp->wm_next) { 29900 wmp->wm_next->wm_prev = wmp->wm_prev; 29901 } 29902 29903 wmp->wm_next = wmp->wm_prev = NULL; 29904 29905 kmem_cache_free(un->un_wm_cache, wmp); 29906 } 29907 29908 29909 /* 29910 * Function: sd_range_unlock() 29911 * 29912 * Description: Unlock the range locked by wm. 29913 * Free write map if nobody else is waiting on it. 29914 * 29915 * Arguments: un - sd_lun structure for the device. 29916 * wmp - sd_w_map which needs to be unlinked. 29917 */ 29918 29919 static void 29920 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29921 { 29922 ASSERT(un != NULL); 29923 ASSERT(wm != NULL); 29924 ASSERT(!mutex_owned(SD_MUTEX(un))); 29925 29926 mutex_enter(SD_MUTEX(un)); 29927 29928 if (wm->wm_flags & SD_WTYPE_RMW) { 29929 un->un_rmw_count--; 29930 } 29931 29932 if (wm->wm_wanted_count) { 29933 wm->wm_flags = 0; 29934 /* 29935 * Broadcast that the wmap is available now. 29936 */ 29937 cv_broadcast(&wm->wm_avail); 29938 } else { 29939 /* 29940 * If no one is waiting on the map, it should be free'ed. 29941 */ 29942 sd_free_inlist_wmap(un, wm); 29943 } 29944 29945 mutex_exit(SD_MUTEX(un)); 29946 } 29947 29948 29949 /* 29950 * Function: sd_read_modify_write_task 29951 * 29952 * Description: Called from a taskq thread to initiate the write phase of 29953 * a read-modify-write request. This is used for targets where 29954 * un->un_sys_blocksize != un->un_tgt_blocksize. 29955 * 29956 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29957 * 29958 * Context: Called under taskq thread context. 29959 */ 29960 29961 static void 29962 sd_read_modify_write_task(void *arg) 29963 { 29964 struct sd_mapblocksize_info *bsp; 29965 struct buf *bp; 29966 struct sd_xbuf *xp; 29967 struct sd_lun *un; 29968 29969 bp = arg; /* The bp is given in arg */ 29970 ASSERT(bp != NULL); 29971 29972 /* Get the pointer to the layer-private data struct */ 29973 xp = SD_GET_XBUF(bp); 29974 ASSERT(xp != NULL); 29975 bsp = xp->xb_private; 29976 ASSERT(bsp != NULL); 29977 29978 un = SD_GET_UN(bp); 29979 ASSERT(un != NULL); 29980 ASSERT(!mutex_owned(SD_MUTEX(un))); 29981 29982 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29983 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29984 29985 /* 29986 * This is the write phase of a read-modify-write request, called 29987 * under the context of a taskq thread in response to the completion 29988 * of the read portion of the rmw request completing under interrupt 29989 * context. The write request must be sent from here down the iostart 29990 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29991 * we use the layer index saved in the layer-private data area. 29992 */ 29993 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29994 29995 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29996 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29997 } 29998 29999 30000 /* 30001 * Function: sddump_do_read_of_rmw() 30002 * 30003 * Description: This routine will be called from sddump, If sddump is called 30004 * with an I/O which not aligned on device blocksize boundary 30005 * then the write has to be converted to read-modify-write. 30006 * Do the read part here in order to keep sddump simple. 30007 * Note - That the sd_mutex is held across the call to this 30008 * routine. 30009 * 30010 * Arguments: un - sd_lun 30011 * blkno - block number in terms of media block size. 30012 * nblk - number of blocks. 30013 * bpp - pointer to pointer to the buf structure. On return 30014 * from this function, *bpp points to the valid buffer 30015 * to which the write has to be done. 30016 * 30017 * Return Code: 0 for success or errno-type return code 30018 */ 30019 30020 static int 30021 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 30022 struct buf **bpp) 30023 { 30024 int err; 30025 int i; 30026 int rval; 30027 struct buf *bp; 30028 struct scsi_pkt *pkt = NULL; 30029 uint32_t target_blocksize; 30030 30031 ASSERT(un != NULL); 30032 ASSERT(mutex_owned(SD_MUTEX(un))); 30033 30034 target_blocksize = un->un_tgt_blocksize; 30035 30036 mutex_exit(SD_MUTEX(un)); 30037 30038 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 30039 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 30040 if (bp == NULL) { 30041 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30042 "no resources for dumping; giving up"); 30043 err = ENOMEM; 30044 goto done; 30045 } 30046 30047 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 30048 blkno, nblk); 30049 if (rval != 0) { 30050 scsi_free_consistent_buf(bp); 30051 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30052 "no resources for dumping; giving up"); 30053 err = ENOMEM; 30054 goto done; 30055 } 30056 30057 pkt->pkt_flags |= FLAG_NOINTR; 30058 30059 err = EIO; 30060 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 30061 30062 /* 30063 * Scsi_poll returns 0 (success) if the command completes and 30064 * the status block is STATUS_GOOD. We should only check 30065 * errors if this condition is not true. Even then we should 30066 * send our own request sense packet only if we have a check 30067 * condition and auto request sense has not been performed by 30068 * the hba. 30069 */ 30070 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 30071 30072 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 30073 err = 0; 30074 break; 30075 } 30076 30077 /* 30078 * Check CMD_DEV_GONE 1st, give up if device is gone, 30079 * no need to read RQS data. 30080 */ 30081 if (pkt->pkt_reason == CMD_DEV_GONE) { 30082 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30083 "Error while dumping state with rmw..." 30084 "Device is gone\n"); 30085 break; 30086 } 30087 30088 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 30089 SD_INFO(SD_LOG_DUMP, un, 30090 "sddump: read failed with CHECK, try # %d\n", i); 30091 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 30092 (void) sd_send_polled_RQS(un); 30093 } 30094 30095 continue; 30096 } 30097 30098 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 30099 int reset_retval = 0; 30100 30101 SD_INFO(SD_LOG_DUMP, un, 30102 "sddump: read failed with BUSY, try # %d\n", i); 30103 30104 if (un->un_f_lun_reset_enabled == TRUE) { 30105 reset_retval = scsi_reset(SD_ADDRESS(un), 30106 RESET_LUN); 30107 } 30108 if (reset_retval == 0) { 30109 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 30110 } 30111 (void) sd_send_polled_RQS(un); 30112 30113 } else { 30114 SD_INFO(SD_LOG_DUMP, un, 30115 "sddump: read failed with 0x%x, try # %d\n", 30116 SD_GET_PKT_STATUS(pkt), i); 30117 mutex_enter(SD_MUTEX(un)); 30118 sd_reset_target(un, pkt); 30119 mutex_exit(SD_MUTEX(un)); 30120 } 30121 30122 /* 30123 * If we are not getting anywhere with lun/target resets, 30124 * let's reset the bus. 30125 */ 30126 if (i > SD_NDUMP_RETRIES/2) { 30127 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 30128 (void) sd_send_polled_RQS(un); 30129 } 30130 30131 } 30132 scsi_destroy_pkt(pkt); 30133 30134 if (err != 0) { 30135 scsi_free_consistent_buf(bp); 30136 *bpp = NULL; 30137 } else { 30138 *bpp = bp; 30139 } 30140 30141 done: 30142 mutex_enter(SD_MUTEX(un)); 30143 return (err); 30144 } 30145 30146 30147 /* 30148 * Function: sd_failfast_flushq 30149 * 30150 * Description: Take all bp's on the wait queue that have B_FAILFAST set 30151 * in b_flags and move them onto the failfast queue, then kick 30152 * off a thread to return all bp's on the failfast queue to 30153 * their owners with an error set. 30154 * 30155 * Arguments: un - pointer to the soft state struct for the instance. 30156 * 30157 * Context: may execute in interrupt context. 30158 */ 30159 30160 static void 30161 sd_failfast_flushq(struct sd_lun *un) 30162 { 30163 struct buf *bp; 30164 struct buf *next_waitq_bp; 30165 struct buf *prev_waitq_bp = NULL; 30166 30167 ASSERT(un != NULL); 30168 ASSERT(mutex_owned(SD_MUTEX(un))); 30169 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 30170 ASSERT(un->un_failfast_bp == NULL); 30171 30172 SD_TRACE(SD_LOG_IO_FAILFAST, un, 30173 "sd_failfast_flushq: entry: un:0x%p\n", un); 30174 30175 /* 30176 * Check if we should flush all bufs when entering failfast state, or 30177 * just those with B_FAILFAST set. 30178 */ 30179 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 30180 /* 30181 * Move *all* bp's on the wait queue to the failfast flush 30182 * queue, including those that do NOT have B_FAILFAST set. 30183 */ 30184 if (un->un_failfast_headp == NULL) { 30185 ASSERT(un->un_failfast_tailp == NULL); 30186 un->un_failfast_headp = un->un_waitq_headp; 30187 } else { 30188 ASSERT(un->un_failfast_tailp != NULL); 30189 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 30190 } 30191 30192 un->un_failfast_tailp = un->un_waitq_tailp; 30193 30194 /* update kstat for each bp moved out of the waitq */ 30195 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 30196 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 30197 } 30198 30199 /* empty the waitq */ 30200 un->un_waitq_headp = un->un_waitq_tailp = NULL; 30201 30202 } else { 30203 /* 30204 * Go thru the wait queue, pick off all entries with 30205 * B_FAILFAST set, and move these onto the failfast queue. 30206 */ 30207 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 30208 /* 30209 * Save the pointer to the next bp on the wait queue, 30210 * so we get to it on the next iteration of this loop. 30211 */ 30212 next_waitq_bp = bp->av_forw; 30213 30214 /* 30215 * If this bp from the wait queue does NOT have 30216 * B_FAILFAST set, just move on to the next element 30217 * in the wait queue. Note, this is the only place 30218 * where it is correct to set prev_waitq_bp. 30219 */ 30220 if ((bp->b_flags & B_FAILFAST) == 0) { 30221 prev_waitq_bp = bp; 30222 continue; 30223 } 30224 30225 /* 30226 * Remove the bp from the wait queue. 30227 */ 30228 if (bp == un->un_waitq_headp) { 30229 /* The bp is the first element of the waitq. */ 30230 un->un_waitq_headp = next_waitq_bp; 30231 if (un->un_waitq_headp == NULL) { 30232 /* The wait queue is now empty */ 30233 un->un_waitq_tailp = NULL; 30234 } 30235 } else { 30236 /* 30237 * The bp is either somewhere in the middle 30238 * or at the end of the wait queue. 30239 */ 30240 ASSERT(un->un_waitq_headp != NULL); 30241 ASSERT(prev_waitq_bp != NULL); 30242 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 30243 == 0); 30244 if (bp == un->un_waitq_tailp) { 30245 /* bp is the last entry on the waitq. */ 30246 ASSERT(next_waitq_bp == NULL); 30247 un->un_waitq_tailp = prev_waitq_bp; 30248 } 30249 prev_waitq_bp->av_forw = next_waitq_bp; 30250 } 30251 bp->av_forw = NULL; 30252 30253 /* 30254 * update kstat since the bp is moved out of 30255 * the waitq 30256 */ 30257 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 30258 30259 /* 30260 * Now put the bp onto the failfast queue. 30261 */ 30262 if (un->un_failfast_headp == NULL) { 30263 /* failfast queue is currently empty */ 30264 ASSERT(un->un_failfast_tailp == NULL); 30265 un->un_failfast_headp = 30266 un->un_failfast_tailp = bp; 30267 } else { 30268 /* Add the bp to the end of the failfast q */ 30269 ASSERT(un->un_failfast_tailp != NULL); 30270 ASSERT(un->un_failfast_tailp->b_flags & 30271 B_FAILFAST); 30272 un->un_failfast_tailp->av_forw = bp; 30273 un->un_failfast_tailp = bp; 30274 } 30275 } 30276 } 30277 30278 /* 30279 * Now return all bp's on the failfast queue to their owners. 30280 */ 30281 while ((bp = un->un_failfast_headp) != NULL) { 30282 30283 un->un_failfast_headp = bp->av_forw; 30284 if (un->un_failfast_headp == NULL) { 30285 un->un_failfast_tailp = NULL; 30286 } 30287 30288 /* 30289 * We want to return the bp with a failure error code, but 30290 * we do not want a call to sd_start_cmds() to occur here, 30291 * so use sd_return_failed_command_no_restart() instead of 30292 * sd_return_failed_command(). 30293 */ 30294 sd_return_failed_command_no_restart(un, bp, EIO); 30295 } 30296 30297 /* Flush the xbuf queues if required. */ 30298 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 30299 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 30300 } 30301 30302 SD_TRACE(SD_LOG_IO_FAILFAST, un, 30303 "sd_failfast_flushq: exit: un:0x%p\n", un); 30304 } 30305 30306 30307 /* 30308 * Function: sd_failfast_flushq_callback 30309 * 30310 * Description: Return TRUE if the given bp meets the criteria for failfast 30311 * flushing. Used with ddi_xbuf_flushq(9F). 30312 * 30313 * Arguments: bp - ptr to buf struct to be examined. 30314 * 30315 * Context: Any 30316 */ 30317 30318 static int 30319 sd_failfast_flushq_callback(struct buf *bp) 30320 { 30321 /* 30322 * Return TRUE if (1) we want to flush ALL bufs when the failfast 30323 * state is entered; OR (2) the given bp has B_FAILFAST set. 30324 */ 30325 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 30326 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 30327 } 30328 30329 30330 30331 /* 30332 * Function: sd_setup_next_xfer 30333 * 30334 * Description: Prepare next I/O operation using DMA_PARTIAL 30335 * 30336 */ 30337 30338 static int 30339 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 30340 struct scsi_pkt *pkt, struct sd_xbuf *xp) 30341 { 30342 ssize_t num_blks_not_xfered; 30343 daddr_t strt_blk_num; 30344 ssize_t bytes_not_xfered; 30345 int rval; 30346 30347 ASSERT(pkt->pkt_resid == 0); 30348 30349 /* 30350 * Calculate next block number and amount to be transferred. 30351 * 30352 * How much data NOT transfered to the HBA yet. 30353 */ 30354 bytes_not_xfered = xp->xb_dma_resid; 30355 30356 /* 30357 * figure how many blocks NOT transfered to the HBA yet. 30358 */ 30359 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 30360 30361 /* 30362 * set starting block number to the end of what WAS transfered. 30363 */ 30364 strt_blk_num = xp->xb_blkno + 30365 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 30366 30367 /* 30368 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 30369 * will call scsi_initpkt with NULL_FUNC so we do not have to release 30370 * the disk mutex here. 30371 */ 30372 rval = sd_setup_next_rw_pkt(un, pkt, bp, 30373 strt_blk_num, num_blks_not_xfered); 30374 30375 if (rval == 0) { 30376 30377 /* 30378 * Success. 30379 * 30380 * Adjust things if there are still more blocks to be 30381 * transfered. 30382 */ 30383 xp->xb_dma_resid = pkt->pkt_resid; 30384 pkt->pkt_resid = 0; 30385 30386 return (1); 30387 } 30388 30389 /* 30390 * There's really only one possible return value from 30391 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 30392 * returns NULL. 30393 */ 30394 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 30395 30396 bp->b_resid = bp->b_bcount; 30397 bp->b_flags |= B_ERROR; 30398 30399 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30400 "Error setting up next portion of DMA transfer\n"); 30401 30402 return (0); 30403 } 30404 30405 /* 30406 * Function: sd_panic_for_res_conflict 30407 * 30408 * Description: Call panic with a string formatted with "Reservation Conflict" 30409 * and a human readable identifier indicating the SD instance 30410 * that experienced the reservation conflict. 30411 * 30412 * Arguments: un - pointer to the soft state struct for the instance. 30413 * 30414 * Context: may execute in interrupt context. 30415 */ 30416 30417 #define SD_RESV_CONFLICT_FMT_LEN 40 30418 void 30419 sd_panic_for_res_conflict(struct sd_lun *un) 30420 { 30421 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 30422 char path_str[MAXPATHLEN]; 30423 30424 (void) snprintf(panic_str, sizeof (panic_str), 30425 "Reservation Conflict\nDisk: %s", 30426 ddi_pathname(SD_DEVINFO(un), path_str)); 30427 30428 panic(panic_str); 30429 } 30430 30431 /* 30432 * Note: The following sd_faultinjection_ioctl( ) routines implement 30433 * driver support for handling fault injection for error analysis 30434 * causing faults in multiple layers of the driver. 30435 * 30436 */ 30437 30438 #ifdef SD_FAULT_INJECTION 30439 static uint_t sd_fault_injection_on = 0; 30440 30441 /* 30442 * Function: sd_faultinjection_ioctl() 30443 * 30444 * Description: This routine is the driver entry point for handling 30445 * faultinjection ioctls to inject errors into the 30446 * layer model 30447 * 30448 * Arguments: cmd - the ioctl cmd received 30449 * arg - the arguments from user and returns 30450 */ 30451 30452 static void 30453 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) 30454 { 30455 uint_t i = 0; 30456 uint_t rval; 30457 30458 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 30459 30460 mutex_enter(SD_MUTEX(un)); 30461 30462 switch (cmd) { 30463 case SDIOCRUN: 30464 /* Allow pushed faults to be injected */ 30465 SD_INFO(SD_LOG_SDTEST, un, 30466 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 30467 30468 sd_fault_injection_on = 1; 30469 30470 SD_INFO(SD_LOG_IOERR, un, 30471 "sd_faultinjection_ioctl: run finished\n"); 30472 break; 30473 30474 case SDIOCSTART: 30475 /* Start Injection Session */ 30476 SD_INFO(SD_LOG_SDTEST, un, 30477 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 30478 30479 sd_fault_injection_on = 0; 30480 un->sd_injection_mask = 0xFFFFFFFF; 30481 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30482 un->sd_fi_fifo_pkt[i] = NULL; 30483 un->sd_fi_fifo_xb[i] = NULL; 30484 un->sd_fi_fifo_un[i] = NULL; 30485 un->sd_fi_fifo_arq[i] = NULL; 30486 } 30487 un->sd_fi_fifo_start = 0; 30488 un->sd_fi_fifo_end = 0; 30489 30490 mutex_enter(&(un->un_fi_mutex)); 30491 un->sd_fi_log[0] = '\0'; 30492 un->sd_fi_buf_len = 0; 30493 mutex_exit(&(un->un_fi_mutex)); 30494 30495 SD_INFO(SD_LOG_IOERR, un, 30496 "sd_faultinjection_ioctl: start finished\n"); 30497 break; 30498 30499 case SDIOCSTOP: 30500 /* Stop Injection Session */ 30501 SD_INFO(SD_LOG_SDTEST, un, 30502 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 30503 sd_fault_injection_on = 0; 30504 un->sd_injection_mask = 0x0; 30505 30506 /* Empty stray or unuseds structs from fifo */ 30507 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30508 if (un->sd_fi_fifo_pkt[i] != NULL) { 30509 kmem_free(un->sd_fi_fifo_pkt[i], 30510 sizeof (struct sd_fi_pkt)); 30511 } 30512 if (un->sd_fi_fifo_xb[i] != NULL) { 30513 kmem_free(un->sd_fi_fifo_xb[i], 30514 sizeof (struct sd_fi_xb)); 30515 } 30516 if (un->sd_fi_fifo_un[i] != NULL) { 30517 kmem_free(un->sd_fi_fifo_un[i], 30518 sizeof (struct sd_fi_un)); 30519 } 30520 if (un->sd_fi_fifo_arq[i] != NULL) { 30521 kmem_free(un->sd_fi_fifo_arq[i], 30522 sizeof (struct sd_fi_arq)); 30523 } 30524 un->sd_fi_fifo_pkt[i] = NULL; 30525 un->sd_fi_fifo_un[i] = NULL; 30526 un->sd_fi_fifo_xb[i] = NULL; 30527 un->sd_fi_fifo_arq[i] = NULL; 30528 } 30529 un->sd_fi_fifo_start = 0; 30530 un->sd_fi_fifo_end = 0; 30531 30532 SD_INFO(SD_LOG_IOERR, un, 30533 "sd_faultinjection_ioctl: stop finished\n"); 30534 break; 30535 30536 case SDIOCINSERTPKT: 30537 /* Store a packet struct to be pushed onto fifo */ 30538 SD_INFO(SD_LOG_SDTEST, un, 30539 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30540 30541 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30542 30543 sd_fault_injection_on = 0; 30544 30545 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30546 if (un->sd_fi_fifo_pkt[i] != NULL) { 30547 kmem_free(un->sd_fi_fifo_pkt[i], 30548 sizeof (struct sd_fi_pkt)); 30549 } 30550 if (arg != NULL) { 30551 un->sd_fi_fifo_pkt[i] = 30552 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30553 if (un->sd_fi_fifo_pkt[i] == NULL) { 30554 /* Alloc failed don't store anything */ 30555 break; 30556 } 30557 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30558 sizeof (struct sd_fi_pkt), 0); 30559 if (rval == -1) { 30560 kmem_free(un->sd_fi_fifo_pkt[i], 30561 sizeof (struct sd_fi_pkt)); 30562 un->sd_fi_fifo_pkt[i] = NULL; 30563 } 30564 } else { 30565 SD_INFO(SD_LOG_IOERR, un, 30566 "sd_faultinjection_ioctl: pkt null\n"); 30567 } 30568 break; 30569 30570 case SDIOCINSERTXB: 30571 /* Store a xb struct to be pushed onto fifo */ 30572 SD_INFO(SD_LOG_SDTEST, un, 30573 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30574 30575 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30576 30577 sd_fault_injection_on = 0; 30578 30579 if (un->sd_fi_fifo_xb[i] != NULL) { 30580 kmem_free(un->sd_fi_fifo_xb[i], 30581 sizeof (struct sd_fi_xb)); 30582 un->sd_fi_fifo_xb[i] = NULL; 30583 } 30584 if (arg != NULL) { 30585 un->sd_fi_fifo_xb[i] = 30586 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30587 if (un->sd_fi_fifo_xb[i] == NULL) { 30588 /* Alloc failed don't store anything */ 30589 break; 30590 } 30591 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30592 sizeof (struct sd_fi_xb), 0); 30593 30594 if (rval == -1) { 30595 kmem_free(un->sd_fi_fifo_xb[i], 30596 sizeof (struct sd_fi_xb)); 30597 un->sd_fi_fifo_xb[i] = NULL; 30598 } 30599 } else { 30600 SD_INFO(SD_LOG_IOERR, un, 30601 "sd_faultinjection_ioctl: xb null\n"); 30602 } 30603 break; 30604 30605 case SDIOCINSERTUN: 30606 /* Store a un struct to be pushed onto fifo */ 30607 SD_INFO(SD_LOG_SDTEST, un, 30608 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30609 30610 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30611 30612 sd_fault_injection_on = 0; 30613 30614 if (un->sd_fi_fifo_un[i] != NULL) { 30615 kmem_free(un->sd_fi_fifo_un[i], 30616 sizeof (struct sd_fi_un)); 30617 un->sd_fi_fifo_un[i] = NULL; 30618 } 30619 if (arg != NULL) { 30620 un->sd_fi_fifo_un[i] = 30621 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30622 if (un->sd_fi_fifo_un[i] == NULL) { 30623 /* Alloc failed don't store anything */ 30624 break; 30625 } 30626 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30627 sizeof (struct sd_fi_un), 0); 30628 if (rval == -1) { 30629 kmem_free(un->sd_fi_fifo_un[i], 30630 sizeof (struct sd_fi_un)); 30631 un->sd_fi_fifo_un[i] = NULL; 30632 } 30633 30634 } else { 30635 SD_INFO(SD_LOG_IOERR, un, 30636 "sd_faultinjection_ioctl: un null\n"); 30637 } 30638 30639 break; 30640 30641 case SDIOCINSERTARQ: 30642 /* Store a arq struct to be pushed onto fifo */ 30643 SD_INFO(SD_LOG_SDTEST, un, 30644 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30645 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30646 30647 sd_fault_injection_on = 0; 30648 30649 if (un->sd_fi_fifo_arq[i] != NULL) { 30650 kmem_free(un->sd_fi_fifo_arq[i], 30651 sizeof (struct sd_fi_arq)); 30652 un->sd_fi_fifo_arq[i] = NULL; 30653 } 30654 if (arg != NULL) { 30655 un->sd_fi_fifo_arq[i] = 30656 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30657 if (un->sd_fi_fifo_arq[i] == NULL) { 30658 /* Alloc failed don't store anything */ 30659 break; 30660 } 30661 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30662 sizeof (struct sd_fi_arq), 0); 30663 if (rval == -1) { 30664 kmem_free(un->sd_fi_fifo_arq[i], 30665 sizeof (struct sd_fi_arq)); 30666 un->sd_fi_fifo_arq[i] = NULL; 30667 } 30668 30669 } else { 30670 SD_INFO(SD_LOG_IOERR, un, 30671 "sd_faultinjection_ioctl: arq null\n"); 30672 } 30673 30674 break; 30675 30676 case SDIOCPUSH: 30677 /* Push stored xb, pkt, un, and arq onto fifo */ 30678 sd_fault_injection_on = 0; 30679 30680 if (arg != NULL) { 30681 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30682 if (rval != -1 && 30683 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30684 un->sd_fi_fifo_end += i; 30685 } 30686 } else { 30687 SD_INFO(SD_LOG_IOERR, un, 30688 "sd_faultinjection_ioctl: push arg null\n"); 30689 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30690 un->sd_fi_fifo_end++; 30691 } 30692 } 30693 SD_INFO(SD_LOG_IOERR, un, 30694 "sd_faultinjection_ioctl: push to end=%d\n", 30695 un->sd_fi_fifo_end); 30696 break; 30697 30698 case SDIOCRETRIEVE: 30699 /* Return buffer of log from Injection session */ 30700 SD_INFO(SD_LOG_SDTEST, un, 30701 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30702 30703 sd_fault_injection_on = 0; 30704 30705 mutex_enter(&(un->un_fi_mutex)); 30706 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30707 un->sd_fi_buf_len+1, 0); 30708 mutex_exit(&(un->un_fi_mutex)); 30709 30710 if (rval == -1) { 30711 /* 30712 * arg is possibly invalid setting 30713 * it to NULL for return 30714 */ 30715 arg = NULL; 30716 } 30717 break; 30718 } 30719 30720 mutex_exit(SD_MUTEX(un)); 30721 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: exit\n"); 30722 } 30723 30724 30725 /* 30726 * Function: sd_injection_log() 30727 * 30728 * Description: This routine adds buff to the already existing injection log 30729 * for retrieval via faultinjection_ioctl for use in fault 30730 * detection and recovery 30731 * 30732 * Arguments: buf - the string to add to the log 30733 */ 30734 30735 static void 30736 sd_injection_log(char *buf, struct sd_lun *un) 30737 { 30738 uint_t len; 30739 30740 ASSERT(un != NULL); 30741 ASSERT(buf != NULL); 30742 30743 mutex_enter(&(un->un_fi_mutex)); 30744 30745 len = min(strlen(buf), 255); 30746 /* Add logged value to Injection log to be returned later */ 30747 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30748 uint_t offset = strlen((char *)un->sd_fi_log); 30749 char *destp = (char *)un->sd_fi_log + offset; 30750 int i; 30751 for (i = 0; i < len; i++) { 30752 *destp++ = *buf++; 30753 } 30754 un->sd_fi_buf_len += len; 30755 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30756 } 30757 30758 mutex_exit(&(un->un_fi_mutex)); 30759 } 30760 30761 30762 /* 30763 * Function: sd_faultinjection() 30764 * 30765 * Description: This routine takes the pkt and changes its 30766 * content based on error injection scenerio. 30767 * 30768 * Arguments: pktp - packet to be changed 30769 */ 30770 30771 static void 30772 sd_faultinjection(struct scsi_pkt *pktp) 30773 { 30774 uint_t i; 30775 struct sd_fi_pkt *fi_pkt; 30776 struct sd_fi_xb *fi_xb; 30777 struct sd_fi_un *fi_un; 30778 struct sd_fi_arq *fi_arq; 30779 struct buf *bp; 30780 struct sd_xbuf *xb; 30781 struct sd_lun *un; 30782 30783 ASSERT(pktp != NULL); 30784 30785 /* pull bp xb and un from pktp */ 30786 bp = (struct buf *)pktp->pkt_private; 30787 xb = SD_GET_XBUF(bp); 30788 un = SD_GET_UN(bp); 30789 30790 ASSERT(un != NULL); 30791 30792 mutex_enter(SD_MUTEX(un)); 30793 30794 SD_TRACE(SD_LOG_SDTEST, un, 30795 "sd_faultinjection: entry Injection from sdintr\n"); 30796 30797 /* if injection is off return */ 30798 if (sd_fault_injection_on == 0 || 30799 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30800 mutex_exit(SD_MUTEX(un)); 30801 return; 30802 } 30803 30804 SD_INFO(SD_LOG_SDTEST, un, 30805 "sd_faultinjection: is working for copying\n"); 30806 30807 /* take next set off fifo */ 30808 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30809 30810 fi_pkt = un->sd_fi_fifo_pkt[i]; 30811 fi_xb = un->sd_fi_fifo_xb[i]; 30812 fi_un = un->sd_fi_fifo_un[i]; 30813 fi_arq = un->sd_fi_fifo_arq[i]; 30814 30815 30816 /* set variables accordingly */ 30817 /* set pkt if it was on fifo */ 30818 if (fi_pkt != NULL) { 30819 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30820 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30821 if (fi_pkt->pkt_cdbp != 0xff) 30822 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30823 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30824 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30825 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30826 30827 } 30828 /* set xb if it was on fifo */ 30829 if (fi_xb != NULL) { 30830 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30831 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30832 if (fi_xb->xb_retry_count != 0) 30833 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30834 SD_CONDSET(xb, xb, xb_victim_retry_count, 30835 "xb_victim_retry_count"); 30836 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30837 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30838 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30839 30840 /* copy in block data from sense */ 30841 /* 30842 * if (fi_xb->xb_sense_data[0] != -1) { 30843 * bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30844 * SENSE_LENGTH); 30845 * } 30846 */ 30847 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH); 30848 30849 /* copy in extended sense codes */ 30850 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30851 xb, es_code, "es_code"); 30852 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30853 xb, es_key, "es_key"); 30854 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30855 xb, es_add_code, "es_add_code"); 30856 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30857 xb, es_qual_code, "es_qual_code"); 30858 struct scsi_extended_sense *esp; 30859 esp = (struct scsi_extended_sense *)xb->xb_sense_data; 30860 esp->es_class = CLASS_EXTENDED_SENSE; 30861 } 30862 30863 /* set un if it was on fifo */ 30864 if (fi_un != NULL) { 30865 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30866 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30867 SD_CONDSET(un, un, un_reset_retry_count, 30868 "un_reset_retry_count"); 30869 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30870 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30871 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30872 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30873 "un_f_allow_bus_device_reset"); 30874 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30875 30876 } 30877 30878 /* copy in auto request sense if it was on fifo */ 30879 if (fi_arq != NULL) { 30880 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30881 } 30882 30883 /* free structs */ 30884 if (un->sd_fi_fifo_pkt[i] != NULL) { 30885 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30886 } 30887 if (un->sd_fi_fifo_xb[i] != NULL) { 30888 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30889 } 30890 if (un->sd_fi_fifo_un[i] != NULL) { 30891 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30892 } 30893 if (un->sd_fi_fifo_arq[i] != NULL) { 30894 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30895 } 30896 30897 /* 30898 * kmem_free does not gurantee to set to NULL 30899 * since we uses these to determine if we set 30900 * values or not lets confirm they are always 30901 * NULL after free 30902 */ 30903 un->sd_fi_fifo_pkt[i] = NULL; 30904 un->sd_fi_fifo_un[i] = NULL; 30905 un->sd_fi_fifo_xb[i] = NULL; 30906 un->sd_fi_fifo_arq[i] = NULL; 30907 30908 un->sd_fi_fifo_start++; 30909 30910 mutex_exit(SD_MUTEX(un)); 30911 30912 SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30913 } 30914 30915 #endif /* SD_FAULT_INJECTION */ 30916 30917 /* 30918 * This routine is invoked in sd_unit_attach(). Before calling it, the 30919 * properties in conf file should be processed already, and "hotpluggable" 30920 * property was processed also. 30921 * 30922 * The sd driver distinguishes 3 different type of devices: removable media, 30923 * non-removable media, and hotpluggable. Below the differences are defined: 30924 * 30925 * 1. Device ID 30926 * 30927 * The device ID of a device is used to identify this device. Refer to 30928 * ddi_devid_register(9F). 30929 * 30930 * For a non-removable media disk device which can provide 0x80 or 0x83 30931 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30932 * device ID is created to identify this device. For other non-removable 30933 * media devices, a default device ID is created only if this device has 30934 * at least 2 alter cylinders. Otherwise, this device has no devid. 30935 * 30936 * ------------------------------------------------------- 30937 * removable media hotpluggable | Can Have Device ID 30938 * ------------------------------------------------------- 30939 * false false | Yes 30940 * false true | Yes 30941 * true x | No 30942 * ------------------------------------------------------ 30943 * 30944 * 30945 * 2. SCSI group 4 commands 30946 * 30947 * In SCSI specs, only some commands in group 4 command set can use 30948 * 8-byte addresses that can be used to access >2TB storage spaces. 30949 * Other commands have no such capability. Without supporting group4, 30950 * it is impossible to make full use of storage spaces of a disk with 30951 * capacity larger than 2TB. 30952 * 30953 * ----------------------------------------------- 30954 * removable media hotpluggable LP64 | Group 30955 * ----------------------------------------------- 30956 * false false false | 1 30957 * false false true | 4 30958 * false true false | 1 30959 * false true true | 4 30960 * true x x | 5 30961 * ----------------------------------------------- 30962 * 30963 * 30964 * 3. Check for VTOC Label 30965 * 30966 * If a direct-access disk has no EFI label, sd will check if it has a 30967 * valid VTOC label. Now, sd also does that check for removable media 30968 * and hotpluggable devices. 30969 * 30970 * -------------------------------------------------------------- 30971 * Direct-Access removable media hotpluggable | Check Label 30972 * ------------------------------------------------------------- 30973 * false false false | No 30974 * false false true | No 30975 * false true false | Yes 30976 * false true true | Yes 30977 * true x x | Yes 30978 * -------------------------------------------------------------- 30979 * 30980 * 30981 * 4. Building default VTOC label 30982 * 30983 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30984 * If those devices have no valid VTOC label, sd(7d) will attempt to 30985 * create default VTOC for them. Currently sd creates default VTOC label 30986 * for all devices on x86 platform (VTOC_16), but only for removable 30987 * media devices on SPARC (VTOC_8). 30988 * 30989 * ----------------------------------------------------------- 30990 * removable media hotpluggable platform | Default Label 30991 * ----------------------------------------------------------- 30992 * false false sparc | No 30993 * false true x86 | Yes 30994 * false true sparc | Yes 30995 * true x x | Yes 30996 * ---------------------------------------------------------- 30997 * 30998 * 30999 * 5. Supported blocksizes of target devices 31000 * 31001 * Sd supports non-512-byte blocksize for removable media devices only. 31002 * For other devices, only 512-byte blocksize is supported. This may be 31003 * changed in near future because some RAID devices require non-512-byte 31004 * blocksize 31005 * 31006 * ----------------------------------------------------------- 31007 * removable media hotpluggable | non-512-byte blocksize 31008 * ----------------------------------------------------------- 31009 * false false | No 31010 * false true | No 31011 * true x | Yes 31012 * ----------------------------------------------------------- 31013 * 31014 * 31015 * 6. Automatic mount & unmount 31016 * 31017 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 31018 * if a device is removable media device. It return 1 for removable media 31019 * devices, and 0 for others. 31020 * 31021 * The automatic mounting subsystem should distinguish between the types 31022 * of devices and apply automounting policies to each. 31023 * 31024 * 31025 * 7. fdisk partition management 31026 * 31027 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 31028 * just supports fdisk partitions on x86 platform. On sparc platform, sd 31029 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 31030 * fdisk partitions on both x86 and SPARC platform. 31031 * 31032 * ----------------------------------------------------------- 31033 * platform removable media USB/1394 | fdisk supported 31034 * ----------------------------------------------------------- 31035 * x86 X X | true 31036 * ------------------------------------------------------------ 31037 * sparc X X | false 31038 * ------------------------------------------------------------ 31039 * 31040 * 31041 * 8. MBOOT/MBR 31042 * 31043 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 31044 * read/write mboot for removable media devices on sparc platform. 31045 * 31046 * ----------------------------------------------------------- 31047 * platform removable media USB/1394 | mboot supported 31048 * ----------------------------------------------------------- 31049 * x86 X X | true 31050 * ------------------------------------------------------------ 31051 * sparc false false | false 31052 * sparc false true | true 31053 * sparc true false | true 31054 * sparc true true | true 31055 * ------------------------------------------------------------ 31056 * 31057 * 31058 * 9. error handling during opening device 31059 * 31060 * If failed to open a disk device, an errno is returned. For some kinds 31061 * of errors, different errno is returned depending on if this device is 31062 * a removable media device. This brings USB/1394 hard disks in line with 31063 * expected hard disk behavior. It is not expected that this breaks any 31064 * application. 31065 * 31066 * ------------------------------------------------------ 31067 * removable media hotpluggable | errno 31068 * ------------------------------------------------------ 31069 * false false | EIO 31070 * false true | EIO 31071 * true x | ENXIO 31072 * ------------------------------------------------------ 31073 * 31074 * 31075 * 11. ioctls: DKIOCEJECT, CDROMEJECT 31076 * 31077 * These IOCTLs are applicable only to removable media devices. 31078 * 31079 * ----------------------------------------------------------- 31080 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 31081 * ----------------------------------------------------------- 31082 * false false | No 31083 * false true | No 31084 * true x | Yes 31085 * ----------------------------------------------------------- 31086 * 31087 * 31088 * 12. Kstats for partitions 31089 * 31090 * sd creates partition kstat for non-removable media devices. USB and 31091 * Firewire hard disks now have partition kstats 31092 * 31093 * ------------------------------------------------------ 31094 * removable media hotpluggable | kstat 31095 * ------------------------------------------------------ 31096 * false false | Yes 31097 * false true | Yes 31098 * true x | No 31099 * ------------------------------------------------------ 31100 * 31101 * 31102 * 13. Removable media & hotpluggable properties 31103 * 31104 * Sd driver creates a "removable-media" property for removable media 31105 * devices. Parent nexus drivers create a "hotpluggable" property if 31106 * it supports hotplugging. 31107 * 31108 * --------------------------------------------------------------------- 31109 * removable media hotpluggable | "removable-media" " hotpluggable" 31110 * --------------------------------------------------------------------- 31111 * false false | No No 31112 * false true | No Yes 31113 * true false | Yes No 31114 * true true | Yes Yes 31115 * --------------------------------------------------------------------- 31116 * 31117 * 31118 * 14. Power Management 31119 * 31120 * sd only power manages removable media devices or devices that support 31121 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 31122 * 31123 * A parent nexus that supports hotplugging can also set "pm-capable" 31124 * if the disk can be power managed. 31125 * 31126 * ------------------------------------------------------------ 31127 * removable media hotpluggable pm-capable | power manage 31128 * ------------------------------------------------------------ 31129 * false false false | No 31130 * false false true | Yes 31131 * false true false | No 31132 * false true true | Yes 31133 * true x x | Yes 31134 * ------------------------------------------------------------ 31135 * 31136 * USB and firewire hard disks can now be power managed independently 31137 * of the framebuffer 31138 * 31139 * 31140 * 15. Support for USB disks with capacity larger than 1TB 31141 * 31142 * Currently, sd doesn't permit a fixed disk device with capacity 31143 * larger than 1TB to be used in a 32-bit operating system environment. 31144 * However, sd doesn't do that for removable media devices. Instead, it 31145 * assumes that removable media devices cannot have a capacity larger 31146 * than 1TB. Therefore, using those devices on 32-bit system is partially 31147 * supported, which can cause some unexpected results. 31148 * 31149 * --------------------------------------------------------------------- 31150 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 31151 * --------------------------------------------------------------------- 31152 * false false | true | no 31153 * false true | true | no 31154 * true false | true | Yes 31155 * true true | true | Yes 31156 * --------------------------------------------------------------------- 31157 * 31158 * 31159 * 16. Check write-protection at open time 31160 * 31161 * When a removable media device is being opened for writing without NDELAY 31162 * flag, sd will check if this device is writable. If attempting to open 31163 * without NDELAY flag a write-protected device, this operation will abort. 31164 * 31165 * ------------------------------------------------------------ 31166 * removable media USB/1394 | WP Check 31167 * ------------------------------------------------------------ 31168 * false false | No 31169 * false true | No 31170 * true false | Yes 31171 * true true | Yes 31172 * ------------------------------------------------------------ 31173 * 31174 * 31175 * 17. syslog when corrupted VTOC is encountered 31176 * 31177 * Currently, if an invalid VTOC is encountered, sd only print syslog 31178 * for fixed SCSI disks. 31179 * ------------------------------------------------------------ 31180 * removable media USB/1394 | print syslog 31181 * ------------------------------------------------------------ 31182 * false false | Yes 31183 * false true | No 31184 * true false | No 31185 * true true | No 31186 * ------------------------------------------------------------ 31187 */ 31188 static void 31189 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 31190 { 31191 int pm_cap; 31192 31193 ASSERT(un->un_sd); 31194 ASSERT(un->un_sd->sd_inq); 31195 31196 /* 31197 * Enable SYNC CACHE support for all devices. 31198 */ 31199 un->un_f_sync_cache_supported = TRUE; 31200 31201 /* 31202 * Set the sync cache required flag to false. 31203 * This would ensure that there is no SYNC CACHE 31204 * sent when there are no writes 31205 */ 31206 un->un_f_sync_cache_required = FALSE; 31207 31208 if (un->un_sd->sd_inq->inq_rmb) { 31209 /* 31210 * The media of this device is removable. And for this kind 31211 * of devices, it is possible to change medium after opening 31212 * devices. Thus we should support this operation. 31213 */ 31214 un->un_f_has_removable_media = TRUE; 31215 31216 /* 31217 * support non-512-byte blocksize of removable media devices 31218 */ 31219 un->un_f_non_devbsize_supported = TRUE; 31220 31221 /* 31222 * Assume that all removable media devices support DOOR_LOCK 31223 */ 31224 un->un_f_doorlock_supported = TRUE; 31225 31226 /* 31227 * For a removable media device, it is possible to be opened 31228 * with NDELAY flag when there is no media in drive, in this 31229 * case we don't care if device is writable. But if without 31230 * NDELAY flag, we need to check if media is write-protected. 31231 */ 31232 un->un_f_chk_wp_open = TRUE; 31233 31234 /* 31235 * need to start a SCSI watch thread to monitor media state, 31236 * when media is being inserted or ejected, notify syseventd. 31237 */ 31238 un->un_f_monitor_media_state = TRUE; 31239 31240 /* 31241 * Some devices don't support START_STOP_UNIT command. 31242 * Therefore, we'd better check if a device supports it 31243 * before sending it. 31244 */ 31245 un->un_f_check_start_stop = TRUE; 31246 31247 /* 31248 * support eject media ioctl: 31249 * FDEJECT, DKIOCEJECT, CDROMEJECT 31250 */ 31251 un->un_f_eject_media_supported = TRUE; 31252 31253 /* 31254 * Because many removable-media devices don't support 31255 * LOG_SENSE, we couldn't use this command to check if 31256 * a removable media device support power-management. 31257 * We assume that they support power-management via 31258 * START_STOP_UNIT command and can be spun up and down 31259 * without limitations. 31260 */ 31261 un->un_f_pm_supported = TRUE; 31262 31263 /* 31264 * Need to create a zero length (Boolean) property 31265 * removable-media for the removable media devices. 31266 * Note that the return value of the property is not being 31267 * checked, since if unable to create the property 31268 * then do not want the attach to fail altogether. Consistent 31269 * with other property creation in attach. 31270 */ 31271 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 31272 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 31273 31274 } else { 31275 /* 31276 * create device ID for device 31277 */ 31278 un->un_f_devid_supported = TRUE; 31279 31280 /* 31281 * Spin up non-removable-media devices once it is attached 31282 */ 31283 un->un_f_attach_spinup = TRUE; 31284 31285 /* 31286 * According to SCSI specification, Sense data has two kinds of 31287 * format: fixed format, and descriptor format. At present, we 31288 * don't support descriptor format sense data for removable 31289 * media. 31290 */ 31291 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 31292 un->un_f_descr_format_supported = TRUE; 31293 } 31294 31295 /* 31296 * kstats are created only for non-removable media devices. 31297 * 31298 * Set this in sd.conf to 0 in order to disable kstats. The 31299 * default is 1, so they are enabled by default. 31300 */ 31301 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 31302 SD_DEVINFO(un), DDI_PROP_DONTPASS, 31303 "enable-partition-kstats", 1)); 31304 31305 /* 31306 * Check if HBA has set the "pm-capable" property. 31307 * If "pm-capable" exists and is non-zero then we can 31308 * power manage the device without checking the start/stop 31309 * cycle count log sense page. 31310 * 31311 * If "pm-capable" exists and is set to be false (0), 31312 * then we should not power manage the device. 31313 * 31314 * If "pm-capable" doesn't exist then pm_cap will 31315 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 31316 * sd will check the start/stop cycle count log sense page 31317 * and power manage the device if the cycle count limit has 31318 * not been exceeded. 31319 */ 31320 pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 31321 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 31322 if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) { 31323 un->un_f_log_sense_supported = TRUE; 31324 if (!un->un_f_power_condition_disabled && 31325 SD_INQUIRY(un)->inq_ansi == 6) { 31326 un->un_f_power_condition_supported = TRUE; 31327 } 31328 } else { 31329 /* 31330 * pm-capable property exists. 31331 * 31332 * Convert "TRUE" values for pm_cap to 31333 * SD_PM_CAPABLE_IS_TRUE to make it easier to check 31334 * later. "TRUE" values are any values defined in 31335 * inquiry.h. 31336 */ 31337 if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) { 31338 un->un_f_log_sense_supported = FALSE; 31339 } else { 31340 /* SD_PM_CAPABLE_IS_TRUE case */ 31341 un->un_f_pm_supported = TRUE; 31342 if (!un->un_f_power_condition_disabled && 31343 SD_PM_CAPABLE_IS_SPC_4(pm_cap)) { 31344 un->un_f_power_condition_supported = 31345 TRUE; 31346 } 31347 if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) { 31348 un->un_f_log_sense_supported = TRUE; 31349 un->un_f_pm_log_sense_smart = 31350 SD_PM_CAP_SMART_LOG(pm_cap); 31351 } 31352 } 31353 31354 SD_INFO(SD_LOG_ATTACH_DETACH, un, 31355 "sd_unit_attach: un:0x%p pm-capable " 31356 "property set to %d.\n", un, un->un_f_pm_supported); 31357 } 31358 } 31359 31360 if (un->un_f_is_hotpluggable) { 31361 31362 /* 31363 * Have to watch hotpluggable devices as well, since 31364 * that's the only way for userland applications to 31365 * detect hot removal while device is busy/mounted. 31366 */ 31367 un->un_f_monitor_media_state = TRUE; 31368 31369 un->un_f_check_start_stop = TRUE; 31370 31371 } 31372 } 31373 31374 /* 31375 * sd_tg_rdwr: 31376 * Provides rdwr access for cmlb via sd_tgops. The start_block is 31377 * in sys block size, req_length in bytes. 31378 * 31379 */ 31380 static int 31381 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 31382 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 31383 { 31384 struct sd_lun *un; 31385 int path_flag = (int)(uintptr_t)tg_cookie; 31386 char *dkl = NULL; 31387 diskaddr_t real_addr = start_block; 31388 diskaddr_t first_byte, end_block; 31389 31390 size_t buffer_size = reqlength; 31391 int rval = 0; 31392 diskaddr_t cap; 31393 uint32_t lbasize; 31394 sd_ssc_t *ssc; 31395 31396 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 31397 if (un == NULL) 31398 return (ENXIO); 31399 31400 if (cmd != TG_READ && cmd != TG_WRITE) 31401 return (EINVAL); 31402 31403 ssc = sd_ssc_init(un); 31404 mutex_enter(SD_MUTEX(un)); 31405 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 31406 mutex_exit(SD_MUTEX(un)); 31407 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 31408 &lbasize, path_flag); 31409 if (rval != 0) 31410 goto done1; 31411 mutex_enter(SD_MUTEX(un)); 31412 sd_update_block_info(un, lbasize, cap); 31413 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 31414 mutex_exit(SD_MUTEX(un)); 31415 rval = EIO; 31416 goto done; 31417 } 31418 } 31419 31420 if (NOT_DEVBSIZE(un)) { 31421 /* 31422 * sys_blocksize != tgt_blocksize, need to re-adjust 31423 * blkno and save the index to beginning of dk_label 31424 */ 31425 first_byte = SD_SYSBLOCKS2BYTES(start_block); 31426 real_addr = first_byte / un->un_tgt_blocksize; 31427 31428 end_block = (first_byte + reqlength + 31429 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 31430 31431 /* round up buffer size to multiple of target block size */ 31432 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 31433 31434 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 31435 "label_addr: 0x%x allocation size: 0x%x\n", 31436 real_addr, buffer_size); 31437 31438 if (((first_byte % un->un_tgt_blocksize) != 0) || 31439 (reqlength % un->un_tgt_blocksize) != 0) 31440 /* the request is not aligned */ 31441 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 31442 } 31443 31444 /* 31445 * The MMC standard allows READ CAPACITY to be 31446 * inaccurate by a bounded amount (in the interest of 31447 * response latency). As a result, failed READs are 31448 * commonplace (due to the reading of metadata and not 31449 * data). Depending on the per-Vendor/drive Sense data, 31450 * the failed READ can cause many (unnecessary) retries. 31451 */ 31452 31453 if (ISCD(un) && (cmd == TG_READ) && 31454 (un->un_f_blockcount_is_valid == TRUE) && 31455 ((start_block == (un->un_blockcount - 1))|| 31456 (start_block == (un->un_blockcount - 2)))) { 31457 path_flag = SD_PATH_DIRECT_PRIORITY; 31458 } 31459 31460 mutex_exit(SD_MUTEX(un)); 31461 if (cmd == TG_READ) { 31462 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr, 31463 buffer_size, real_addr, path_flag); 31464 if (dkl != NULL) 31465 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 31466 real_addr), bufaddr, reqlength); 31467 } else { 31468 if (dkl) { 31469 rval = sd_send_scsi_READ(ssc, dkl, buffer_size, 31470 real_addr, path_flag); 31471 if (rval) { 31472 goto done1; 31473 } 31474 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 31475 real_addr), reqlength); 31476 } 31477 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr, 31478 buffer_size, real_addr, path_flag); 31479 } 31480 31481 done1: 31482 if (dkl != NULL) 31483 kmem_free(dkl, buffer_size); 31484 31485 if (rval != 0) { 31486 if (rval == EIO) 31487 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 31488 else 31489 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31490 } 31491 done: 31492 sd_ssc_fini(ssc); 31493 return (rval); 31494 } 31495 31496 31497 static int 31498 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 31499 { 31500 31501 struct sd_lun *un; 31502 diskaddr_t cap; 31503 uint32_t lbasize; 31504 int path_flag = (int)(uintptr_t)tg_cookie; 31505 int ret = 0; 31506 31507 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 31508 if (un == NULL) 31509 return (ENXIO); 31510 31511 switch (cmd) { 31512 case TG_GETPHYGEOM: 31513 case TG_GETVIRTGEOM: 31514 case TG_GETCAPACITY: 31515 case TG_GETBLOCKSIZE: 31516 mutex_enter(SD_MUTEX(un)); 31517 31518 if ((un->un_f_blockcount_is_valid == TRUE) && 31519 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 31520 cap = un->un_blockcount; 31521 lbasize = un->un_tgt_blocksize; 31522 mutex_exit(SD_MUTEX(un)); 31523 } else { 31524 sd_ssc_t *ssc; 31525 mutex_exit(SD_MUTEX(un)); 31526 ssc = sd_ssc_init(un); 31527 ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 31528 &lbasize, path_flag); 31529 if (ret != 0) { 31530 if (ret == EIO) 31531 sd_ssc_assessment(ssc, 31532 SD_FMT_STATUS_CHECK); 31533 else 31534 sd_ssc_assessment(ssc, 31535 SD_FMT_IGNORE); 31536 sd_ssc_fini(ssc); 31537 return (ret); 31538 } 31539 sd_ssc_fini(ssc); 31540 mutex_enter(SD_MUTEX(un)); 31541 sd_update_block_info(un, lbasize, cap); 31542 if ((un->un_f_blockcount_is_valid == FALSE) || 31543 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 31544 mutex_exit(SD_MUTEX(un)); 31545 return (EIO); 31546 } 31547 mutex_exit(SD_MUTEX(un)); 31548 } 31549 31550 if (cmd == TG_GETCAPACITY) { 31551 *(diskaddr_t *)arg = cap; 31552 return (0); 31553 } 31554 31555 if (cmd == TG_GETBLOCKSIZE) { 31556 *(uint32_t *)arg = lbasize; 31557 return (0); 31558 } 31559 31560 if (cmd == TG_GETPHYGEOM) 31561 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 31562 cap, lbasize, path_flag); 31563 else 31564 /* TG_GETVIRTGEOM */ 31565 ret = sd_get_virtual_geometry(un, 31566 (cmlb_geom_t *)arg, cap, lbasize); 31567 31568 return (ret); 31569 31570 case TG_GETATTR: 31571 mutex_enter(SD_MUTEX(un)); 31572 ((tg_attribute_t *)arg)->media_is_writable = 31573 un->un_f_mmc_writable_media; 31574 ((tg_attribute_t *)arg)->media_is_solid_state = 31575 un->un_f_is_solid_state; 31576 ((tg_attribute_t *)arg)->media_is_rotational = 31577 un->un_f_is_rotational; 31578 mutex_exit(SD_MUTEX(un)); 31579 return (0); 31580 default: 31581 return (ENOTTY); 31582 31583 } 31584 } 31585 31586 /* 31587 * Function: sd_ssc_ereport_post 31588 * 31589 * Description: Will be called when SD driver need to post an ereport. 31590 * 31591 * Context: Kernel thread or interrupt context. 31592 */ 31593 31594 #define DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown" 31595 31596 static void 31597 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess) 31598 { 31599 int uscsi_path_instance = 0; 31600 uchar_t uscsi_pkt_reason; 31601 uint32_t uscsi_pkt_state; 31602 uint32_t uscsi_pkt_statistics; 31603 uint64_t uscsi_ena; 31604 uchar_t op_code; 31605 uint8_t *sensep; 31606 union scsi_cdb *cdbp; 31607 uint_t cdblen = 0; 31608 uint_t senlen = 0; 31609 struct sd_lun *un; 31610 dev_info_t *dip; 31611 char *devid; 31612 int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON | 31613 SSC_FLAGS_INVALID_STATUS | 31614 SSC_FLAGS_INVALID_SENSE | 31615 SSC_FLAGS_INVALID_DATA; 31616 char assessment[16]; 31617 31618 ASSERT(ssc != NULL); 31619 ASSERT(ssc->ssc_uscsi_cmd != NULL); 31620 ASSERT(ssc->ssc_uscsi_info != NULL); 31621 31622 un = ssc->ssc_un; 31623 ASSERT(un != NULL); 31624 31625 dip = un->un_sd->sd_dev; 31626 31627 /* 31628 * Get the devid: 31629 * devid will only be passed to non-transport error reports. 31630 */ 31631 devid = DEVI(dip)->devi_devid_str; 31632 31633 /* 31634 * If we are syncing or dumping, the command will not be executed 31635 * so we bypass this situation. 31636 */ 31637 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 31638 (un->un_state == SD_STATE_DUMPING)) 31639 return; 31640 31641 uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason; 31642 uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance; 31643 uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state; 31644 uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics; 31645 uscsi_ena = ssc->ssc_uscsi_info->ui_ena; 31646 31647 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 31648 cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb; 31649 31650 /* In rare cases, EG:DOORLOCK, the cdb could be NULL */ 31651 if (cdbp == NULL) { 31652 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 31653 "sd_ssc_ereport_post meet empty cdb\n"); 31654 return; 31655 } 31656 31657 op_code = cdbp->scc_cmd; 31658 31659 cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen; 31660 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 31661 ssc->ssc_uscsi_cmd->uscsi_rqresid); 31662 31663 if (senlen > 0) 31664 ASSERT(sensep != NULL); 31665 31666 /* 31667 * Initialize drv_assess to corresponding values. 31668 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending 31669 * on the sense-key returned back. 31670 */ 31671 switch (drv_assess) { 31672 case SD_FM_DRV_RECOVERY: 31673 (void) sprintf(assessment, "%s", "recovered"); 31674 break; 31675 case SD_FM_DRV_RETRY: 31676 (void) sprintf(assessment, "%s", "retry"); 31677 break; 31678 case SD_FM_DRV_NOTICE: 31679 (void) sprintf(assessment, "%s", "info"); 31680 break; 31681 case SD_FM_DRV_FATAL: 31682 default: 31683 (void) sprintf(assessment, "%s", "unknown"); 31684 } 31685 /* 31686 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered 31687 * command, we will post ereport.io.scsi.cmd.disk.recovered. 31688 * driver-assessment will always be "recovered" here. 31689 */ 31690 if (drv_assess == SD_FM_DRV_RECOVERY) { 31691 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL, 31692 "cmd.disk.recovered", uscsi_ena, devid, NULL, 31693 DDI_NOSLEEP, NULL, 31694 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31695 DEVID_IF_KNOWN(devid), 31696 "driver-assessment", DATA_TYPE_STRING, assessment, 31697 "op-code", DATA_TYPE_UINT8, op_code, 31698 "cdb", DATA_TYPE_UINT8_ARRAY, 31699 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31700 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31701 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31702 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31703 NULL); 31704 return; 31705 } 31706 31707 /* 31708 * If there is un-expected/un-decodable data, we should post 31709 * ereport.io.scsi.cmd.disk.dev.uderr. 31710 * driver-assessment will be set based on parameter drv_assess. 31711 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back. 31712 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered. 31713 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered. 31714 * SSC_FLAGS_INVALID_DATA - invalid data sent back. 31715 */ 31716 if (ssc->ssc_flags & ssc_invalid_flags) { 31717 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) { 31718 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31719 NULL, "cmd.disk.dev.uderr", uscsi_ena, devid, 31720 NULL, DDI_NOSLEEP, NULL, 31721 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31722 DEVID_IF_KNOWN(devid), 31723 "driver-assessment", DATA_TYPE_STRING, 31724 drv_assess == SD_FM_DRV_FATAL ? 31725 "fail" : assessment, 31726 "op-code", DATA_TYPE_UINT8, op_code, 31727 "cdb", DATA_TYPE_UINT8_ARRAY, 31728 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31729 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31730 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31731 "pkt-stats", DATA_TYPE_UINT32, 31732 uscsi_pkt_statistics, 31733 "stat-code", DATA_TYPE_UINT8, 31734 ssc->ssc_uscsi_cmd->uscsi_status, 31735 "un-decode-info", DATA_TYPE_STRING, 31736 ssc->ssc_info, 31737 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31738 senlen, sensep, 31739 NULL); 31740 } else { 31741 /* 31742 * For other type of invalid data, the 31743 * un-decode-value field would be empty because the 31744 * un-decodable content could be seen from upper 31745 * level payload or inside un-decode-info. 31746 */ 31747 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31748 NULL, 31749 "cmd.disk.dev.uderr", uscsi_ena, devid, 31750 NULL, DDI_NOSLEEP, NULL, 31751 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31752 DEVID_IF_KNOWN(devid), 31753 "driver-assessment", DATA_TYPE_STRING, 31754 drv_assess == SD_FM_DRV_FATAL ? 31755 "fail" : assessment, 31756 "op-code", DATA_TYPE_UINT8, op_code, 31757 "cdb", DATA_TYPE_UINT8_ARRAY, 31758 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31759 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31760 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31761 "pkt-stats", DATA_TYPE_UINT32, 31762 uscsi_pkt_statistics, 31763 "stat-code", DATA_TYPE_UINT8, 31764 ssc->ssc_uscsi_cmd->uscsi_status, 31765 "un-decode-info", DATA_TYPE_STRING, 31766 ssc->ssc_info, 31767 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31768 0, NULL, 31769 NULL); 31770 } 31771 ssc->ssc_flags &= ~ssc_invalid_flags; 31772 return; 31773 } 31774 31775 if (uscsi_pkt_reason != CMD_CMPLT || 31776 (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) { 31777 /* 31778 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was 31779 * set inside sd_start_cmds due to errors(bad packet or 31780 * fatal transport error), we should take it as a 31781 * transport error, so we post ereport.io.scsi.cmd.disk.tran. 31782 * driver-assessment will be set based on drv_assess. 31783 * We will set devid to NULL because it is a transport 31784 * error. 31785 */ 31786 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT) 31787 ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT; 31788 31789 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL, 31790 "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL, 31791 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31792 DEVID_IF_KNOWN(devid), 31793 "driver-assessment", DATA_TYPE_STRING, 31794 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31795 "op-code", DATA_TYPE_UINT8, op_code, 31796 "cdb", DATA_TYPE_UINT8_ARRAY, 31797 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31798 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31799 "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state, 31800 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31801 NULL); 31802 } else { 31803 /* 31804 * If we got here, we have a completed command, and we need 31805 * to further investigate the sense data to see what kind 31806 * of ereport we should post. 31807 * No ereport is needed if sense-key is KEY_RECOVERABLE_ERROR 31808 * and asc/ascq is "ATA PASS-THROUGH INFORMATION AVAILABLE". 31809 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr if sense-key is 31810 * KEY_MEDIUM_ERROR. 31811 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise. 31812 * driver-assessment will be set based on the parameter 31813 * drv_assess. 31814 */ 31815 if (senlen > 0) { 31816 /* 31817 * Here we have sense data available. 31818 */ 31819 uint8_t sense_key = scsi_sense_key(sensep); 31820 uint8_t sense_asc = scsi_sense_asc(sensep); 31821 uint8_t sense_ascq = scsi_sense_ascq(sensep); 31822 31823 if (sense_key == KEY_RECOVERABLE_ERROR && 31824 sense_asc == 0x00 && sense_ascq == 0x1d) 31825 return; 31826 31827 if (sense_key == KEY_MEDIUM_ERROR) { 31828 /* 31829 * driver-assessment should be "fatal" if 31830 * drv_assess is SD_FM_DRV_FATAL. 31831 */ 31832 scsi_fm_ereport_post(un->un_sd, 31833 uscsi_path_instance, NULL, 31834 "cmd.disk.dev.rqs.merr", 31835 uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL, 31836 FM_VERSION, DATA_TYPE_UINT8, 31837 FM_EREPORT_VERS0, 31838 DEVID_IF_KNOWN(devid), 31839 "driver-assessment", 31840 DATA_TYPE_STRING, 31841 drv_assess == SD_FM_DRV_FATAL ? 31842 "fatal" : assessment, 31843 "op-code", 31844 DATA_TYPE_UINT8, op_code, 31845 "cdb", 31846 DATA_TYPE_UINT8_ARRAY, cdblen, 31847 ssc->ssc_uscsi_cmd->uscsi_cdb, 31848 "pkt-reason", 31849 DATA_TYPE_UINT8, uscsi_pkt_reason, 31850 "pkt-state", 31851 DATA_TYPE_UINT8, uscsi_pkt_state, 31852 "pkt-stats", 31853 DATA_TYPE_UINT32, 31854 uscsi_pkt_statistics, 31855 "stat-code", 31856 DATA_TYPE_UINT8, 31857 ssc->ssc_uscsi_cmd->uscsi_status, 31858 "key", 31859 DATA_TYPE_UINT8, 31860 scsi_sense_key(sensep), 31861 "asc", 31862 DATA_TYPE_UINT8, 31863 scsi_sense_asc(sensep), 31864 "ascq", 31865 DATA_TYPE_UINT8, 31866 scsi_sense_ascq(sensep), 31867 "sense-data", 31868 DATA_TYPE_UINT8_ARRAY, 31869 senlen, sensep, 31870 "lba", 31871 DATA_TYPE_UINT64, 31872 ssc->ssc_uscsi_info->ui_lba, 31873 NULL); 31874 } else { 31875 /* 31876 * if sense-key == 0x4(hardware 31877 * error), driver-assessment should 31878 * be "fatal" if drv_assess is 31879 * SD_FM_DRV_FATAL. 31880 */ 31881 scsi_fm_ereport_post(un->un_sd, 31882 uscsi_path_instance, NULL, 31883 "cmd.disk.dev.rqs.derr", 31884 uscsi_ena, devid, 31885 NULL, DDI_NOSLEEP, NULL, 31886 FM_VERSION, 31887 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31888 DEVID_IF_KNOWN(devid), 31889 "driver-assessment", 31890 DATA_TYPE_STRING, 31891 drv_assess == SD_FM_DRV_FATAL ? 31892 (sense_key == 0x4 ? 31893 "fatal" : "fail") : assessment, 31894 "op-code", 31895 DATA_TYPE_UINT8, op_code, 31896 "cdb", 31897 DATA_TYPE_UINT8_ARRAY, cdblen, 31898 ssc->ssc_uscsi_cmd->uscsi_cdb, 31899 "pkt-reason", 31900 DATA_TYPE_UINT8, uscsi_pkt_reason, 31901 "pkt-state", 31902 DATA_TYPE_UINT8, uscsi_pkt_state, 31903 "pkt-stats", 31904 DATA_TYPE_UINT32, 31905 uscsi_pkt_statistics, 31906 "stat-code", 31907 DATA_TYPE_UINT8, 31908 ssc->ssc_uscsi_cmd->uscsi_status, 31909 "key", 31910 DATA_TYPE_UINT8, 31911 scsi_sense_key(sensep), 31912 "asc", 31913 DATA_TYPE_UINT8, 31914 scsi_sense_asc(sensep), 31915 "ascq", 31916 DATA_TYPE_UINT8, 31917 scsi_sense_ascq(sensep), 31918 "sense-data", 31919 DATA_TYPE_UINT8_ARRAY, 31920 senlen, sensep, 31921 NULL); 31922 } 31923 } else { 31924 /* 31925 * For stat_code == STATUS_GOOD, this is not a 31926 * hardware error. 31927 */ 31928 if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) 31929 return; 31930 31931 /* 31932 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the 31933 * stat-code but with sense data unavailable. 31934 * driver-assessment will be set based on parameter 31935 * drv_assess. 31936 */ 31937 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31938 NULL, 31939 "cmd.disk.dev.serr", uscsi_ena, 31940 devid, NULL, DDI_NOSLEEP, NULL, 31941 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31942 DEVID_IF_KNOWN(devid), 31943 "driver-assessment", DATA_TYPE_STRING, 31944 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31945 "op-code", DATA_TYPE_UINT8, op_code, 31946 "cdb", 31947 DATA_TYPE_UINT8_ARRAY, 31948 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31949 "pkt-reason", 31950 DATA_TYPE_UINT8, uscsi_pkt_reason, 31951 "pkt-state", 31952 DATA_TYPE_UINT8, uscsi_pkt_state, 31953 "pkt-stats", 31954 DATA_TYPE_UINT32, uscsi_pkt_statistics, 31955 "stat-code", 31956 DATA_TYPE_UINT8, 31957 ssc->ssc_uscsi_cmd->uscsi_status, 31958 NULL); 31959 } 31960 } 31961 } 31962 31963 /* 31964 * Function: sd_ssc_extract_info 31965 * 31966 * Description: Extract information available to help generate ereport. 31967 * 31968 * Context: Kernel thread or interrupt context. 31969 */ 31970 static void 31971 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp, 31972 struct buf *bp, struct sd_xbuf *xp) 31973 { 31974 size_t senlen = 0; 31975 union scsi_cdb *cdbp; 31976 int path_instance; 31977 /* 31978 * Need scsi_cdb_size array to determine the cdb length. 31979 */ 31980 extern uchar_t scsi_cdb_size[]; 31981 31982 ASSERT(un != NULL); 31983 ASSERT(pktp != NULL); 31984 ASSERT(bp != NULL); 31985 ASSERT(xp != NULL); 31986 ASSERT(ssc != NULL); 31987 ASSERT(mutex_owned(SD_MUTEX(un))); 31988 31989 /* 31990 * Transfer the cdb buffer pointer here. 31991 */ 31992 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 31993 31994 ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)]; 31995 ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp; 31996 31997 /* 31998 * Transfer the sense data buffer pointer if sense data is available, 31999 * calculate the sense data length first. 32000 */ 32001 if ((xp->xb_sense_state & STATE_XARQ_DONE) || 32002 (xp->xb_sense_state & STATE_ARQ_DONE)) { 32003 /* 32004 * For arq case, we will enter here. 32005 */ 32006 if (xp->xb_sense_state & STATE_XARQ_DONE) { 32007 senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid; 32008 } else { 32009 senlen = SENSE_LENGTH; 32010 } 32011 } else { 32012 /* 32013 * For non-arq case, we will enter this branch. 32014 */ 32015 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK && 32016 (xp->xb_sense_state & STATE_XFERRED_DATA)) { 32017 senlen = SENSE_LENGTH - xp->xb_sense_resid; 32018 } 32019 32020 } 32021 32022 ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff); 32023 ssc->ssc_uscsi_cmd->uscsi_rqresid = 0; 32024 ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data; 32025 32026 ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 32027 32028 /* 32029 * Only transfer path_instance when scsi_pkt was properly allocated. 32030 */ 32031 path_instance = pktp->pkt_path_instance; 32032 if (scsi_pkt_allocated_correctly(pktp) && path_instance) 32033 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance; 32034 else 32035 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0; 32036 32037 /* 32038 * Copy in the other fields we may need when posting ereport. 32039 */ 32040 ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason; 32041 ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state; 32042 ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics; 32043 ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 32044 32045 /* 32046 * For partially read/write command, we will not create ena 32047 * in case of a successful command be reconized as recovered. 32048 */ 32049 if ((pktp->pkt_reason == CMD_CMPLT) && 32050 (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) && 32051 (senlen == 0)) { 32052 return; 32053 } 32054 32055 /* 32056 * To associate ereports of a single command execution flow, we 32057 * need a shared ena for a specific command. 32058 */ 32059 if (xp->xb_ena == 0) 32060 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1); 32061 ssc->ssc_uscsi_info->ui_ena = xp->xb_ena; 32062 } 32063 32064 32065 /* 32066 * Function: sd_check_bdc_vpd 32067 * 32068 * Description: Query the optional INQUIRY VPD page 0xb1. If the device 32069 * supports VPD page 0xb1, sd examines the MEDIUM ROTATION 32070 * RATE. 32071 * 32072 * Set the following based on RPM value: 32073 * = 0 device is not solid state, non-rotational 32074 * = 1 device is solid state, non-rotational 32075 * > 1 device is not solid state, rotational 32076 * 32077 * Context: Kernel thread or interrupt context. 32078 */ 32079 32080 static void 32081 sd_check_bdc_vpd(sd_ssc_t *ssc) 32082 { 32083 int rval = 0; 32084 uchar_t *inqb1 = NULL; 32085 size_t inqb1_len = MAX_INQUIRY_SIZE; 32086 size_t inqb1_resid = 0; 32087 struct sd_lun *un; 32088 32089 ASSERT(ssc != NULL); 32090 un = ssc->ssc_un; 32091 ASSERT(un != NULL); 32092 ASSERT(!mutex_owned(SD_MUTEX(un))); 32093 32094 mutex_enter(SD_MUTEX(un)); 32095 un->un_f_is_rotational = TRUE; 32096 un->un_f_is_solid_state = FALSE; 32097 32098 if (ISCD(un)) { 32099 mutex_exit(SD_MUTEX(un)); 32100 return; 32101 } 32102 32103 if (sd_check_vpd_page_support(ssc) == 0 && 32104 un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) { 32105 mutex_exit(SD_MUTEX(un)); 32106 /* collect page b1 data */ 32107 inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP); 32108 32109 rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len, 32110 0x01, 0xB1, &inqb1_resid); 32111 32112 if (rval == 0 && (inqb1_len - inqb1_resid > 5)) { 32113 SD_TRACE(SD_LOG_COMMON, un, 32114 "sd_check_bdc_vpd: \ 32115 successfully get VPD page: %x \ 32116 PAGE LENGTH: %x BYTE 4: %x \ 32117 BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4], 32118 inqb1[5]); 32119 32120 mutex_enter(SD_MUTEX(un)); 32121 /* 32122 * Check the MEDIUM ROTATION RATE. 32123 */ 32124 if (inqb1[4] == 0) { 32125 if (inqb1[5] == 0) { 32126 un->un_f_is_rotational = FALSE; 32127 } else if (inqb1[5] == 1) { 32128 un->un_f_is_rotational = FALSE; 32129 un->un_f_is_solid_state = TRUE; 32130 /* 32131 * Solid state drives don't need 32132 * disksort. 32133 */ 32134 un->un_f_disksort_disabled = TRUE; 32135 } 32136 } 32137 mutex_exit(SD_MUTEX(un)); 32138 } else if (rval != 0) { 32139 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 32140 } 32141 32142 kmem_free(inqb1, inqb1_len); 32143 } else { 32144 mutex_exit(SD_MUTEX(un)); 32145 } 32146 } 32147 32148 /* 32149 * Function: sd_check_emulation_mode 32150 * 32151 * Description: Check whether the SSD is at emulation mode 32152 * by issuing READ_CAPACITY_16 to see whether 32153 * we can get physical block size of the drive. 32154 * 32155 * Context: Kernel thread or interrupt context. 32156 */ 32157 32158 static void 32159 sd_check_emulation_mode(sd_ssc_t *ssc) 32160 { 32161 int rval = 0; 32162 uint64_t capacity; 32163 uint_t lbasize; 32164 uint_t pbsize; 32165 int i; 32166 int devid_len; 32167 struct sd_lun *un; 32168 32169 ASSERT(ssc != NULL); 32170 un = ssc->ssc_un; 32171 ASSERT(un != NULL); 32172 ASSERT(!mutex_owned(SD_MUTEX(un))); 32173 32174 mutex_enter(SD_MUTEX(un)); 32175 if (ISCD(un)) { 32176 mutex_exit(SD_MUTEX(un)); 32177 return; 32178 } 32179 32180 if (un->un_f_descr_format_supported) { 32181 mutex_exit(SD_MUTEX(un)); 32182 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, 32183 &pbsize, SD_PATH_DIRECT); 32184 mutex_enter(SD_MUTEX(un)); 32185 32186 if (rval != 0) { 32187 un->un_phy_blocksize = DEV_BSIZE; 32188 } else { 32189 if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) { 32190 un->un_phy_blocksize = DEV_BSIZE; 32191 } else if (pbsize > un->un_phy_blocksize) { 32192 /* 32193 * Don't reset the physical blocksize 32194 * unless we've detected a larger value. 32195 */ 32196 un->un_phy_blocksize = pbsize; 32197 } 32198 } 32199 } 32200 32201 for (i = 0; i < sd_flash_dev_table_size; i++) { 32202 devid_len = (int)strlen(sd_flash_dev_table[i]); 32203 if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len) 32204 == SD_SUCCESS) { 32205 un->un_phy_blocksize = SSD_SECSIZE; 32206 if (un->un_f_is_solid_state && 32207 un->un_phy_blocksize != un->un_tgt_blocksize) 32208 un->un_f_enable_rmw = TRUE; 32209 } 32210 } 32211 32212 mutex_exit(SD_MUTEX(un)); 32213 } 32214