xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 2acef22db7808606888f8f92715629ff3ba555b9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
29  */
30 /*
31  * Copyright 2011 cyril.galibern@opensvc.com
32  */
33 
34 /*
35  * SCSI disk target driver.
36  */
37 #include <sys/scsi/scsi.h>
38 #include <sys/dkbad.h>
39 #include <sys/dklabel.h>
40 #include <sys/dkio.h>
41 #include <sys/fdio.h>
42 #include <sys/cdio.h>
43 #include <sys/mhd.h>
44 #include <sys/vtoc.h>
45 #include <sys/dktp/fdisk.h>
46 #include <sys/kstat.h>
47 #include <sys/vtrace.h>
48 #include <sys/note.h>
49 #include <sys/thread.h>
50 #include <sys/proc.h>
51 #include <sys/efi_partition.h>
52 #include <sys/var.h>
53 #include <sys/aio_req.h>
54 
55 #ifdef __lock_lint
56 #define	_LP64
57 #define	__amd64
58 #endif
59 
60 #if (defined(__fibre))
61 /* Note: is there a leadville version of the following? */
62 #include <sys/fc4/fcal_linkapp.h>
63 #endif
64 #include <sys/taskq.h>
65 #include <sys/uuid.h>
66 #include <sys/byteorder.h>
67 #include <sys/sdt.h>
68 
69 #include "sd_xbuf.h"
70 
71 #include <sys/scsi/targets/sddef.h>
72 #include <sys/cmlb.h>
73 #include <sys/sysevent/eventdefs.h>
74 #include <sys/sysevent/dev.h>
75 
76 #include <sys/fm/protocol.h>
77 
78 /*
79  * Loadable module info.
80  */
81 #if (defined(__fibre))
82 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
83 #else /* !__fibre */
84 #define	SD_MODULE_NAME	"SCSI Disk Driver"
85 #endif /* !__fibre */
86 
87 /*
88  * Define the interconnect type, to allow the driver to distinguish
89  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
90  *
91  * This is really for backward compatibility. In the future, the driver
92  * should actually check the "interconnect-type" property as reported by
93  * the HBA; however at present this property is not defined by all HBAs,
94  * so we will use this #define (1) to permit the driver to run in
95  * backward-compatibility mode; and (2) to print a notification message
96  * if an FC HBA does not support the "interconnect-type" property.  The
97  * behavior of the driver will be to assume parallel SCSI behaviors unless
98  * the "interconnect-type" property is defined by the HBA **AND** has a
99  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
100  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
101  * Channel behaviors (as per the old ssd).  (Note that the
102  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
103  * will result in the driver assuming parallel SCSI behaviors.)
104  *
105  * (see common/sys/scsi/impl/services.h)
106  *
107  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
108  * since some FC HBAs may already support that, and there is some code in
109  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
110  * default would confuse that code, and besides things should work fine
111  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
112  * "interconnect_type" property.
113  *
114  */
115 #if (defined(__fibre))
116 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
117 #else
118 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
119 #endif
120 
121 /*
122  * The name of the driver, established from the module name in _init.
123  */
124 static	char *sd_label			= NULL;
125 
126 /*
127  * Driver name is unfortunately prefixed on some driver.conf properties.
128  */
129 #if (defined(__fibre))
130 #define	sd_max_xfer_size		ssd_max_xfer_size
131 #define	sd_config_list			ssd_config_list
132 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
133 static	char *sd_config_list		= "ssd-config-list";
134 #else
135 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
136 static	char *sd_config_list		= "sd-config-list";
137 #endif
138 
139 /*
140  * Driver global variables
141  */
142 
143 #if (defined(__fibre))
144 /*
145  * These #defines are to avoid namespace collisions that occur because this
146  * code is currently used to compile two separate driver modules: sd and ssd.
147  * All global variables need to be treated this way (even if declared static)
148  * in order to allow the debugger to resolve the names properly.
149  * It is anticipated that in the near future the ssd module will be obsoleted,
150  * at which time this namespace issue should go away.
151  */
152 #define	sd_state			ssd_state
153 #define	sd_io_time			ssd_io_time
154 #define	sd_failfast_enable		ssd_failfast_enable
155 #define	sd_ua_retry_count		ssd_ua_retry_count
156 #define	sd_report_pfa			ssd_report_pfa
157 #define	sd_max_throttle			ssd_max_throttle
158 #define	sd_min_throttle			ssd_min_throttle
159 #define	sd_rot_delay			ssd_rot_delay
160 
161 #define	sd_retry_on_reservation_conflict	\
162 					ssd_retry_on_reservation_conflict
163 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
164 #define	sd_resv_conflict_name		ssd_resv_conflict_name
165 
166 #define	sd_component_mask		ssd_component_mask
167 #define	sd_level_mask			ssd_level_mask
168 #define	sd_debug_un			ssd_debug_un
169 #define	sd_error_level			ssd_error_level
170 
171 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
172 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
173 
174 #define	sd_tr				ssd_tr
175 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
176 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
177 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
178 #define	sd_check_media_time		ssd_check_media_time
179 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
180 #define	sd_label_mutex			ssd_label_mutex
181 #define	sd_detach_mutex			ssd_detach_mutex
182 #define	sd_log_buf			ssd_log_buf
183 #define	sd_log_mutex			ssd_log_mutex
184 
185 #define	sd_disk_table			ssd_disk_table
186 #define	sd_disk_table_size		ssd_disk_table_size
187 #define	sd_sense_mutex			ssd_sense_mutex
188 #define	sd_cdbtab			ssd_cdbtab
189 
190 #define	sd_cb_ops			ssd_cb_ops
191 #define	sd_ops				ssd_ops
192 #define	sd_additional_codes		ssd_additional_codes
193 #define	sd_tgops			ssd_tgops
194 
195 #define	sd_minor_data			ssd_minor_data
196 #define	sd_minor_data_efi		ssd_minor_data_efi
197 
198 #define	sd_tq				ssd_tq
199 #define	sd_wmr_tq			ssd_wmr_tq
200 #define	sd_taskq_name			ssd_taskq_name
201 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
202 #define	sd_taskq_minalloc		ssd_taskq_minalloc
203 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
204 
205 #define	sd_dump_format_string		ssd_dump_format_string
206 
207 #define	sd_iostart_chain		ssd_iostart_chain
208 #define	sd_iodone_chain			ssd_iodone_chain
209 
210 #define	sd_pm_idletime			ssd_pm_idletime
211 
212 #define	sd_force_pm_supported		ssd_force_pm_supported
213 
214 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
215 
216 #define	sd_ssc_init			ssd_ssc_init
217 #define	sd_ssc_send			ssd_ssc_send
218 #define	sd_ssc_fini			ssd_ssc_fini
219 #define	sd_ssc_assessment		ssd_ssc_assessment
220 #define	sd_ssc_post			ssd_ssc_post
221 #define	sd_ssc_print			ssd_ssc_print
222 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
223 #define	sd_ssc_set_info			ssd_ssc_set_info
224 #define	sd_ssc_extract_info		ssd_ssc_extract_info
225 
226 #endif
227 
228 #ifdef	SDDEBUG
229 int	sd_force_pm_supported		= 0;
230 #endif	/* SDDEBUG */
231 
232 void *sd_state				= NULL;
233 int sd_io_time				= SD_IO_TIME;
234 int sd_failfast_enable			= 1;
235 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
236 int sd_report_pfa			= 1;
237 int sd_max_throttle			= SD_MAX_THROTTLE;
238 int sd_min_throttle			= SD_MIN_THROTTLE;
239 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
240 int sd_qfull_throttle_enable		= TRUE;
241 
242 int sd_retry_on_reservation_conflict	= 1;
243 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
244 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
245 
246 static int sd_dtype_optical_bind	= -1;
247 
248 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
249 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
250 
251 /*
252  * Global data for debug logging. To enable debug printing, sd_component_mask
253  * and sd_level_mask should be set to the desired bit patterns as outlined in
254  * sddef.h.
255  */
256 uint_t	sd_component_mask		= 0x0;
257 uint_t	sd_level_mask			= 0x0;
258 struct	sd_lun *sd_debug_un		= NULL;
259 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
260 
261 /* Note: these may go away in the future... */
262 static uint32_t	sd_xbuf_active_limit	= 512;
263 static uint32_t sd_xbuf_reserve_limit	= 16;
264 
265 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
266 
267 /*
268  * Timer value used to reset the throttle after it has been reduced
269  * (typically in response to TRAN_BUSY or STATUS_QFULL)
270  */
271 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
272 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
273 
274 /*
275  * Interval value associated with the media change scsi watch.
276  */
277 static int sd_check_media_time		= 3000000;
278 
279 /*
280  * Wait value used for in progress operations during a DDI_SUSPEND
281  */
282 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
283 
284 /*
285  * sd_label_mutex protects a static buffer used in the disk label
286  * component of the driver
287  */
288 static kmutex_t sd_label_mutex;
289 
290 /*
291  * sd_detach_mutex protects un_layer_count, un_detach_count, and
292  * un_opens_in_progress in the sd_lun structure.
293  */
294 static kmutex_t sd_detach_mutex;
295 
296 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
297 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
298 
299 /*
300  * Global buffer and mutex for debug logging
301  */
302 static char	sd_log_buf[1024];
303 static kmutex_t	sd_log_mutex;
304 
305 /*
306  * Structs and globals for recording attached lun information.
307  * This maintains a chain. Each node in the chain represents a SCSI controller.
308  * The structure records the number of luns attached to each target connected
309  * with the controller.
310  * For parallel scsi device only.
311  */
312 struct sd_scsi_hba_tgt_lun {
313 	struct sd_scsi_hba_tgt_lun	*next;
314 	dev_info_t			*pdip;
315 	int				nlun[NTARGETS_WIDE];
316 };
317 
318 /*
319  * Flag to indicate the lun is attached or detached
320  */
321 #define	SD_SCSI_LUN_ATTACH	0
322 #define	SD_SCSI_LUN_DETACH	1
323 
324 static kmutex_t	sd_scsi_target_lun_mutex;
325 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
326 
327 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
328     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
329 
330 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
331     sd_scsi_target_lun_head))
332 
333 /*
334  * "Smart" Probe Caching structs, globals, #defines, etc.
335  * For parallel scsi and non-self-identify device only.
336  */
337 
338 /*
339  * The following resources and routines are implemented to support
340  * "smart" probing, which caches the scsi_probe() results in an array,
341  * in order to help avoid long probe times.
342  */
343 struct sd_scsi_probe_cache {
344 	struct	sd_scsi_probe_cache	*next;
345 	dev_info_t	*pdip;
346 	int		cache[NTARGETS_WIDE];
347 };
348 
349 static kmutex_t	sd_scsi_probe_cache_mutex;
350 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
351 
352 /*
353  * Really we only need protection on the head of the linked list, but
354  * better safe than sorry.
355  */
356 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
357     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
358 
359 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
360     sd_scsi_probe_cache_head))
361 
362 /*
363  * Power attribute table
364  */
365 static sd_power_attr_ss sd_pwr_ss = {
366 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
367 	{0, 100},
368 	{30, 0},
369 	{20000, 0}
370 };
371 
372 static sd_power_attr_pc sd_pwr_pc = {
373 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
374 		"3=active", NULL },
375 	{0, 0, 0, 100},
376 	{90, 90, 20, 0},
377 	{15000, 15000, 1000, 0}
378 };
379 
380 /*
381  * Power level to power condition
382  */
383 static int sd_pl2pc[] = {
384 	SD_TARGET_START_VALID,
385 	SD_TARGET_STANDBY,
386 	SD_TARGET_IDLE,
387 	SD_TARGET_ACTIVE
388 };
389 
390 /*
391  * Vendor specific data name property declarations
392  */
393 
394 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
395 
396 static sd_tunables seagate_properties = {
397 	SEAGATE_THROTTLE_VALUE,
398 	0,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0
406 };
407 
408 
409 static sd_tunables fujitsu_properties = {
410 	FUJITSU_THROTTLE_VALUE,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0
419 };
420 
421 static sd_tunables ibm_properties = {
422 	IBM_THROTTLE_VALUE,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0
431 };
432 
433 static sd_tunables purple_properties = {
434 	PURPLE_THROTTLE_VALUE,
435 	0,
436 	0,
437 	PURPLE_BUSY_RETRIES,
438 	PURPLE_RESET_RETRY_COUNT,
439 	PURPLE_RESERVE_RELEASE_TIME,
440 	0,
441 	0,
442 	0
443 };
444 
445 static sd_tunables sve_properties = {
446 	SVE_THROTTLE_VALUE,
447 	0,
448 	0,
449 	SVE_BUSY_RETRIES,
450 	SVE_RESET_RETRY_COUNT,
451 	SVE_RESERVE_RELEASE_TIME,
452 	SVE_MIN_THROTTLE_VALUE,
453 	SVE_DISKSORT_DISABLED_FLAG,
454 	0
455 };
456 
457 static sd_tunables maserati_properties = {
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	MASERATI_DISKSORT_DISABLED_FLAG,
466 	MASERATI_LUN_RESET_ENABLED_FLAG
467 };
468 
469 static sd_tunables pirus_properties = {
470 	PIRUS_THROTTLE_VALUE,
471 	0,
472 	PIRUS_NRR_COUNT,
473 	PIRUS_BUSY_RETRIES,
474 	PIRUS_RESET_RETRY_COUNT,
475 	0,
476 	PIRUS_MIN_THROTTLE_VALUE,
477 	PIRUS_DISKSORT_DISABLED_FLAG,
478 	PIRUS_LUN_RESET_ENABLED_FLAG
479 };
480 
481 #endif
482 
483 #if (defined(__sparc) && !defined(__fibre)) || \
484 	(defined(__i386) || defined(__amd64))
485 
486 
487 static sd_tunables elite_properties = {
488 	ELITE_THROTTLE_VALUE,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0
497 };
498 
499 static sd_tunables st31200n_properties = {
500 	ST31200N_THROTTLE_VALUE,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0,
506 	0,
507 	0,
508 	0
509 };
510 
511 #endif /* Fibre or not */
512 
513 static sd_tunables lsi_properties_scsi = {
514 	LSI_THROTTLE_VALUE,
515 	0,
516 	LSI_NOTREADY_RETRIES,
517 	0,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0
523 };
524 
525 static sd_tunables symbios_properties = {
526 	SYMBIOS_THROTTLE_VALUE,
527 	0,
528 	SYMBIOS_NOTREADY_RETRIES,
529 	0,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0
535 };
536 
537 static sd_tunables lsi_properties = {
538 	0,
539 	0,
540 	LSI_NOTREADY_RETRIES,
541 	0,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0
547 };
548 
549 static sd_tunables lsi_oem_properties = {
550 	0,
551 	0,
552 	LSI_OEM_NOTREADY_RETRIES,
553 	0,
554 	0,
555 	0,
556 	0,
557 	0,
558 	0,
559 	1
560 };
561 
562 
563 
564 #if (defined(SD_PROP_TST))
565 
566 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
567 #define	SD_TST_THROTTLE_VAL	16
568 #define	SD_TST_NOTREADY_VAL	12
569 #define	SD_TST_BUSY_VAL		60
570 #define	SD_TST_RST_RETRY_VAL	36
571 #define	SD_TST_RSV_REL_TIME	60
572 
573 static sd_tunables tst_properties = {
574 	SD_TST_THROTTLE_VAL,
575 	SD_TST_CTYPE_VAL,
576 	SD_TST_NOTREADY_VAL,
577 	SD_TST_BUSY_VAL,
578 	SD_TST_RST_RETRY_VAL,
579 	SD_TST_RSV_REL_TIME,
580 	0,
581 	0,
582 	0
583 };
584 #endif
585 
586 /* This is similar to the ANSI toupper implementation */
587 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
588 
589 /*
590  * Static Driver Configuration Table
591  *
592  * This is the table of disks which need throttle adjustment (or, perhaps
593  * something else as defined by the flags at a future time.)  device_id
594  * is a string consisting of concatenated vid (vendor), pid (product/model)
595  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
596  * the parts of the string are as defined by the sizes in the scsi_inquiry
597  * structure.  Device type is searched as far as the device_id string is
598  * defined.  Flags defines which values are to be set in the driver from the
599  * properties list.
600  *
601  * Entries below which begin and end with a "*" are a special case.
602  * These do not have a specific vendor, and the string which follows
603  * can appear anywhere in the 16 byte PID portion of the inquiry data.
604  *
605  * Entries below which begin and end with a " " (blank) are a special
606  * case. The comparison function will treat multiple consecutive blanks
607  * as equivalent to a single blank. For example, this causes a
608  * sd_disk_table entry of " NEC CDROM " to match a device's id string
609  * of  "NEC       CDROM".
610  *
611  * Note: The MD21 controller type has been obsoleted.
612  *	 ST318202F is a Legacy device
613  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
614  *	 made with an FC connection. The entries here are a legacy.
615  */
616 static sd_disk_config_t sd_disk_table[] = {
617 #if defined(__fibre) || defined(__i386) || defined(__amd64)
618 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
628 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
629 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
630 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
631 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
632 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
633 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
637 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
638 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
639 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
640 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
641 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
642 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
643 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
644 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
645 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
665 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
666 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
667 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
668 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
669 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
670 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
671 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
672 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
673 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
674 			SD_CONF_BSET_BSY_RETRY_COUNT|
675 			SD_CONF_BSET_RST_RETRIES|
676 			SD_CONF_BSET_RSV_REL_TIME,
677 		&purple_properties },
678 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_RSV_REL_TIME|
682 		SD_CONF_BSET_MIN_THROTTLE|
683 		SD_CONF_BSET_DISKSORT_DISABLED,
684 		&sve_properties },
685 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
686 			SD_CONF_BSET_BSY_RETRY_COUNT|
687 			SD_CONF_BSET_RST_RETRIES|
688 			SD_CONF_BSET_RSV_REL_TIME,
689 		&purple_properties },
690 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&maserati_properties },
693 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
710 		SD_CONF_BSET_NRR_COUNT|
711 		SD_CONF_BSET_BSY_RETRY_COUNT|
712 		SD_CONF_BSET_RST_RETRIES|
713 		SD_CONF_BSET_MIN_THROTTLE|
714 		SD_CONF_BSET_DISKSORT_DISABLED|
715 		SD_CONF_BSET_LUN_RESET_ENABLED,
716 		&pirus_properties },
717 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
718 		SD_CONF_BSET_NRR_COUNT|
719 		SD_CONF_BSET_BSY_RETRY_COUNT|
720 		SD_CONF_BSET_RST_RETRIES|
721 		SD_CONF_BSET_MIN_THROTTLE|
722 		SD_CONF_BSET_DISKSORT_DISABLED|
723 		SD_CONF_BSET_LUN_RESET_ENABLED,
724 		&pirus_properties },
725 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
726 		SD_CONF_BSET_NRR_COUNT|
727 		SD_CONF_BSET_BSY_RETRY_COUNT|
728 		SD_CONF_BSET_RST_RETRIES|
729 		SD_CONF_BSET_MIN_THROTTLE|
730 		SD_CONF_BSET_DISKSORT_DISABLED|
731 		SD_CONF_BSET_LUN_RESET_ENABLED,
732 		&pirus_properties },
733 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
734 		SD_CONF_BSET_NRR_COUNT|
735 		SD_CONF_BSET_BSY_RETRY_COUNT|
736 		SD_CONF_BSET_RST_RETRIES|
737 		SD_CONF_BSET_MIN_THROTTLE|
738 		SD_CONF_BSET_DISKSORT_DISABLED|
739 		SD_CONF_BSET_LUN_RESET_ENABLED,
740 		&pirus_properties },
741 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
742 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
743 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
744 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
745 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
746 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
747 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
748 #endif /* fibre or NON-sparc platforms */
749 #if ((defined(__sparc) && !defined(__fibre)) ||\
750 	(defined(__i386) || defined(__amd64)))
751 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
752 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
753 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
754 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
755 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
756 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
759 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
760 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
761 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
762 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
763 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
764 	    &symbios_properties },
765 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
766 	    &lsi_properties_scsi },
767 #if defined(__i386) || defined(__amd64)
768 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
769 				    | SD_CONF_BSET_READSUB_BCD
770 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
771 				    | SD_CONF_BSET_NO_READ_HEADER
772 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
773 
774 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
775 				    | SD_CONF_BSET_READSUB_BCD
776 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
777 				    | SD_CONF_BSET_NO_READ_HEADER
778 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
779 #endif /* __i386 || __amd64 */
780 #endif /* sparc NON-fibre or NON-sparc platforms */
781 
782 #if (defined(SD_PROP_TST))
783 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
784 				| SD_CONF_BSET_CTYPE
785 				| SD_CONF_BSET_NRR_COUNT
786 				| SD_CONF_BSET_FAB_DEVID
787 				| SD_CONF_BSET_NOCACHE
788 				| SD_CONF_BSET_BSY_RETRY_COUNT
789 				| SD_CONF_BSET_PLAYMSF_BCD
790 				| SD_CONF_BSET_READSUB_BCD
791 				| SD_CONF_BSET_READ_TOC_TRK_BCD
792 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
793 				| SD_CONF_BSET_NO_READ_HEADER
794 				| SD_CONF_BSET_READ_CD_XD4
795 				| SD_CONF_BSET_RST_RETRIES
796 				| SD_CONF_BSET_RSV_REL_TIME
797 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
798 #endif
799 };
800 
801 static const int sd_disk_table_size =
802 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
803 
804 /*
805  * Emulation mode disk drive VID/PID table
806  */
807 static char sd_flash_dev_table[][25] = {
808 	"ATA     MARVELL SD88SA02",
809 	"MARVELL SD88SA02",
810 	"TOSHIBA THNSNV05",
811 };
812 
813 static const int sd_flash_dev_table_size =
814 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
815 
816 #define	SD_INTERCONNECT_PARALLEL	0
817 #define	SD_INTERCONNECT_FABRIC		1
818 #define	SD_INTERCONNECT_FIBRE		2
819 #define	SD_INTERCONNECT_SSA		3
820 #define	SD_INTERCONNECT_SATA		4
821 #define	SD_INTERCONNECT_SAS		5
822 
823 #define	SD_IS_PARALLEL_SCSI(un)		\
824 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
825 #define	SD_IS_SERIAL(un)		\
826 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
827 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
828 
829 /*
830  * Definitions used by device id registration routines
831  */
832 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
833 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
834 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
835 
836 static kmutex_t sd_sense_mutex = {0};
837 
838 /*
839  * Macros for updates of the driver state
840  */
841 #define	New_state(un, s)        \
842 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
843 #define	Restore_state(un)	\
844 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
845 
846 static struct sd_cdbinfo sd_cdbtab[] = {
847 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
848 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
849 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
850 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
851 };
852 
853 /*
854  * Specifies the number of seconds that must have elapsed since the last
855  * cmd. has completed for a device to be declared idle to the PM framework.
856  */
857 static int sd_pm_idletime = 1;
858 
859 /*
860  * Internal function prototypes
861  */
862 
863 #if (defined(__fibre))
864 /*
865  * These #defines are to avoid namespace collisions that occur because this
866  * code is currently used to compile two separate driver modules: sd and ssd.
867  * All function names need to be treated this way (even if declared static)
868  * in order to allow the debugger to resolve the names properly.
869  * It is anticipated that in the near future the ssd module will be obsoleted,
870  * at which time this ugliness should go away.
871  */
872 #define	sd_log_trace			ssd_log_trace
873 #define	sd_log_info			ssd_log_info
874 #define	sd_log_err			ssd_log_err
875 #define	sdprobe				ssdprobe
876 #define	sdinfo				ssdinfo
877 #define	sd_prop_op			ssd_prop_op
878 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
879 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
880 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
881 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
882 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
883 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
884 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
885 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
886 #define	sd_spin_up_unit			ssd_spin_up_unit
887 #define	sd_enable_descr_sense		ssd_enable_descr_sense
888 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
889 #define	sd_set_mmc_caps			ssd_set_mmc_caps
890 #define	sd_read_unit_properties		ssd_read_unit_properties
891 #define	sd_process_sdconf_file		ssd_process_sdconf_file
892 #define	sd_process_sdconf_table		ssd_process_sdconf_table
893 #define	sd_sdconf_id_match		ssd_sdconf_id_match
894 #define	sd_blank_cmp			ssd_blank_cmp
895 #define	sd_chk_vers1_data		ssd_chk_vers1_data
896 #define	sd_set_vers1_properties		ssd_set_vers1_properties
897 #define	sd_check_solid_state		ssd_check_solid_state
898 #define	sd_check_emulation_mode		ssd_check_emulation_mode
899 
900 #define	sd_get_physical_geometry	ssd_get_physical_geometry
901 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
902 #define	sd_update_block_info		ssd_update_block_info
903 #define	sd_register_devid		ssd_register_devid
904 #define	sd_get_devid			ssd_get_devid
905 #define	sd_create_devid			ssd_create_devid
906 #define	sd_write_deviceid		ssd_write_deviceid
907 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
908 #define	sd_setup_pm			ssd_setup_pm
909 #define	sd_create_pm_components		ssd_create_pm_components
910 #define	sd_ddi_suspend			ssd_ddi_suspend
911 #define	sd_ddi_resume			ssd_ddi_resume
912 #define	sd_pm_state_change		ssd_pm_state_change
913 #define	sdpower				ssdpower
914 #define	sdattach			ssdattach
915 #define	sddetach			ssddetach
916 #define	sd_unit_attach			ssd_unit_attach
917 #define	sd_unit_detach			ssd_unit_detach
918 #define	sd_set_unit_attributes		ssd_set_unit_attributes
919 #define	sd_create_errstats		ssd_create_errstats
920 #define	sd_set_errstats			ssd_set_errstats
921 #define	sd_set_pstats			ssd_set_pstats
922 #define	sddump				ssddump
923 #define	sd_scsi_poll			ssd_scsi_poll
924 #define	sd_send_polled_RQS		ssd_send_polled_RQS
925 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
926 #define	sd_init_event_callbacks		ssd_init_event_callbacks
927 #define	sd_event_callback		ssd_event_callback
928 #define	sd_cache_control		ssd_cache_control
929 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
930 #define	sd_get_nv_sup			ssd_get_nv_sup
931 #define	sd_make_device			ssd_make_device
932 #define	sdopen				ssdopen
933 #define	sdclose				ssdclose
934 #define	sd_ready_and_valid		ssd_ready_and_valid
935 #define	sdmin				ssdmin
936 #define	sdread				ssdread
937 #define	sdwrite				ssdwrite
938 #define	sdaread				ssdaread
939 #define	sdawrite			ssdawrite
940 #define	sdstrategy			ssdstrategy
941 #define	sdioctl				ssdioctl
942 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
943 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
944 #define	sd_checksum_iostart		ssd_checksum_iostart
945 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
946 #define	sd_pm_iostart			ssd_pm_iostart
947 #define	sd_core_iostart			ssd_core_iostart
948 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
949 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
950 #define	sd_checksum_iodone		ssd_checksum_iodone
951 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
952 #define	sd_pm_iodone			ssd_pm_iodone
953 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
954 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
955 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
956 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
957 #define	sd_buf_iodone			ssd_buf_iodone
958 #define	sd_uscsi_strategy		ssd_uscsi_strategy
959 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
960 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
961 #define	sd_uscsi_iodone			ssd_uscsi_iodone
962 #define	sd_xbuf_strategy		ssd_xbuf_strategy
963 #define	sd_xbuf_init			ssd_xbuf_init
964 #define	sd_pm_entry			ssd_pm_entry
965 #define	sd_pm_exit			ssd_pm_exit
966 
967 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
968 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
969 
970 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
971 #define	sdintr				ssdintr
972 #define	sd_start_cmds			ssd_start_cmds
973 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
974 #define	sd_bioclone_alloc		ssd_bioclone_alloc
975 #define	sd_bioclone_free		ssd_bioclone_free
976 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
977 #define	sd_shadow_buf_free		ssd_shadow_buf_free
978 #define	sd_print_transport_rejected_message	\
979 					ssd_print_transport_rejected_message
980 #define	sd_retry_command		ssd_retry_command
981 #define	sd_set_retry_bp			ssd_set_retry_bp
982 #define	sd_send_request_sense_command	ssd_send_request_sense_command
983 #define	sd_start_retry_command		ssd_start_retry_command
984 #define	sd_start_direct_priority_command	\
985 					ssd_start_direct_priority_command
986 #define	sd_return_failed_command	ssd_return_failed_command
987 #define	sd_return_failed_command_no_restart	\
988 					ssd_return_failed_command_no_restart
989 #define	sd_return_command		ssd_return_command
990 #define	sd_sync_with_callback		ssd_sync_with_callback
991 #define	sdrunout			ssdrunout
992 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
993 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
994 #define	sd_reduce_throttle		ssd_reduce_throttle
995 #define	sd_restore_throttle		ssd_restore_throttle
996 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
997 #define	sd_init_cdb_limits		ssd_init_cdb_limits
998 #define	sd_pkt_status_good		ssd_pkt_status_good
999 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
1000 #define	sd_pkt_status_busy		ssd_pkt_status_busy
1001 #define	sd_pkt_status_reservation_conflict	\
1002 					ssd_pkt_status_reservation_conflict
1003 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
1004 #define	sd_handle_request_sense		ssd_handle_request_sense
1005 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1006 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1007 #define	sd_validate_sense_data		ssd_validate_sense_data
1008 #define	sd_decode_sense			ssd_decode_sense
1009 #define	sd_print_sense_msg		ssd_print_sense_msg
1010 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1011 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1012 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1013 #define	sd_sense_key_medium_or_hardware_error	\
1014 					ssd_sense_key_medium_or_hardware_error
1015 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1016 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1017 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1018 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1019 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1020 #define	sd_sense_key_default		ssd_sense_key_default
1021 #define	sd_print_retry_msg		ssd_print_retry_msg
1022 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1023 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1024 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1025 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1026 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1027 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1028 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1029 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1030 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1031 #define	sd_reset_target			ssd_reset_target
1032 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1033 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1034 #define	sd_taskq_create			ssd_taskq_create
1035 #define	sd_taskq_delete			ssd_taskq_delete
1036 #define	sd_target_change_task		ssd_target_change_task
1037 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1038 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1039 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1040 #define	sd_media_change_task		ssd_media_change_task
1041 #define	sd_handle_mchange		ssd_handle_mchange
1042 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1043 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1044 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1045 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1046 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1047 					sd_send_scsi_feature_GET_CONFIGURATION
1048 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1049 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1050 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1051 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1052 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1053 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1054 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1055 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1056 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1057 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1058 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1059 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1060 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1061 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1062 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1063 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1064 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1065 #define	sd_alloc_rqs			ssd_alloc_rqs
1066 #define	sd_free_rqs			ssd_free_rqs
1067 #define	sd_dump_memory			ssd_dump_memory
1068 #define	sd_get_media_info_com		ssd_get_media_info_com
1069 #define	sd_get_media_info		ssd_get_media_info
1070 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1071 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1072 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1073 #define	sd_strtok_r			ssd_strtok_r
1074 #define	sd_set_properties		ssd_set_properties
1075 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1076 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1077 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1078 #define	sd_check_mhd			ssd_check_mhd
1079 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1080 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1081 #define	sd_sname			ssd_sname
1082 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1083 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1084 #define	sd_take_ownership		ssd_take_ownership
1085 #define	sd_reserve_release		ssd_reserve_release
1086 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1087 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1088 #define	sd_persistent_reservation_in_read_keys	\
1089 					ssd_persistent_reservation_in_read_keys
1090 #define	sd_persistent_reservation_in_read_resv	\
1091 					ssd_persistent_reservation_in_read_resv
1092 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1093 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1094 #define	sd_mhdioc_release		ssd_mhdioc_release
1095 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1096 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1097 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1098 #define	sr_change_blkmode		ssr_change_blkmode
1099 #define	sr_change_speed			ssr_change_speed
1100 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1101 #define	sr_pause_resume			ssr_pause_resume
1102 #define	sr_play_msf			ssr_play_msf
1103 #define	sr_play_trkind			ssr_play_trkind
1104 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1105 #define	sr_read_subchannel		ssr_read_subchannel
1106 #define	sr_read_tocentry		ssr_read_tocentry
1107 #define	sr_read_tochdr			ssr_read_tochdr
1108 #define	sr_read_cdda			ssr_read_cdda
1109 #define	sr_read_cdxa			ssr_read_cdxa
1110 #define	sr_read_mode1			ssr_read_mode1
1111 #define	sr_read_mode2			ssr_read_mode2
1112 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1113 #define	sr_sector_mode			ssr_sector_mode
1114 #define	sr_eject			ssr_eject
1115 #define	sr_ejected			ssr_ejected
1116 #define	sr_check_wp			ssr_check_wp
1117 #define	sd_watch_request_submit		ssd_watch_request_submit
1118 #define	sd_check_media			ssd_check_media
1119 #define	sd_media_watch_cb		ssd_media_watch_cb
1120 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1121 #define	sr_volume_ctrl			ssr_volume_ctrl
1122 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1123 #define	sd_log_page_supported		ssd_log_page_supported
1124 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1125 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1126 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1127 #define	sd_range_lock			ssd_range_lock
1128 #define	sd_get_range			ssd_get_range
1129 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1130 #define	sd_range_unlock			ssd_range_unlock
1131 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1132 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1133 
1134 #define	sd_iostart_chain		ssd_iostart_chain
1135 #define	sd_iodone_chain			ssd_iodone_chain
1136 #define	sd_initpkt_map			ssd_initpkt_map
1137 #define	sd_destroypkt_map		ssd_destroypkt_map
1138 #define	sd_chain_type_map		ssd_chain_type_map
1139 #define	sd_chain_index_map		ssd_chain_index_map
1140 
1141 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1142 #define	sd_failfast_flushq		ssd_failfast_flushq
1143 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1144 
1145 #define	sd_is_lsi			ssd_is_lsi
1146 #define	sd_tg_rdwr			ssd_tg_rdwr
1147 #define	sd_tg_getinfo			ssd_tg_getinfo
1148 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1149 
1150 #endif	/* #if (defined(__fibre)) */
1151 
1152 
1153 int _init(void);
1154 int _fini(void);
1155 int _info(struct modinfo *modinfop);
1156 
1157 /*PRINTFLIKE3*/
1158 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1159 /*PRINTFLIKE3*/
1160 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1161 /*PRINTFLIKE3*/
1162 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1163 
1164 static int sdprobe(dev_info_t *devi);
1165 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1166     void **result);
1167 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1168     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1169 
1170 /*
1171  * Smart probe for parallel scsi
1172  */
1173 static void sd_scsi_probe_cache_init(void);
1174 static void sd_scsi_probe_cache_fini(void);
1175 static void sd_scsi_clear_probe_cache(void);
1176 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1177 
1178 /*
1179  * Attached luns on target for parallel scsi
1180  */
1181 static void sd_scsi_target_lun_init(void);
1182 static void sd_scsi_target_lun_fini(void);
1183 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1184 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1185 
1186 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1187 
1188 /*
1189  * Using sd_ssc_init to establish sd_ssc_t struct
1190  * Using sd_ssc_send to send uscsi internal command
1191  * Using sd_ssc_fini to free sd_ssc_t struct
1192  */
1193 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1194 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1195     int flag, enum uio_seg dataspace, int path_flag);
1196 static void sd_ssc_fini(sd_ssc_t *ssc);
1197 
1198 /*
1199  * Using sd_ssc_assessment to set correct type-of-assessment
1200  * Using sd_ssc_post to post ereport & system log
1201  *       sd_ssc_post will call sd_ssc_print to print system log
1202  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1203  */
1204 static void sd_ssc_assessment(sd_ssc_t *ssc,
1205     enum sd_type_assessment tp_assess);
1206 
1207 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1208 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1209 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1210     enum sd_driver_assessment drv_assess);
1211 
1212 /*
1213  * Using sd_ssc_set_info to mark an un-decodable-data error.
1214  * Using sd_ssc_extract_info to transfer information from internal
1215  *       data structures to sd_ssc_t.
1216  */
1217 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1218     const char *fmt, ...);
1219 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1220     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1221 
1222 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1223     enum uio_seg dataspace, int path_flag);
1224 
1225 #ifdef _LP64
1226 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1227 static void	sd_reenable_dsense_task(void *arg);
1228 #endif /* _LP64 */
1229 
1230 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1231 
1232 static void sd_read_unit_properties(struct sd_lun *un);
1233 static int  sd_process_sdconf_file(struct sd_lun *un);
1234 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1235 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1236 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1237 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1238     int *data_list, sd_tunables *values);
1239 static void sd_process_sdconf_table(struct sd_lun *un);
1240 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1241 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1242 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1243 	int list_len, char *dataname_ptr);
1244 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1245     sd_tunables *prop_list);
1246 
1247 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1248     int reservation_flag);
1249 static int  sd_get_devid(sd_ssc_t *ssc);
1250 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1251 static int  sd_write_deviceid(sd_ssc_t *ssc);
1252 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1253 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1254 
1255 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1256 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1257 
1258 static int  sd_ddi_suspend(dev_info_t *devi);
1259 static int  sd_ddi_resume(dev_info_t *devi);
1260 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1261 static int  sdpower(dev_info_t *devi, int component, int level);
1262 
1263 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1264 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1265 static int  sd_unit_attach(dev_info_t *devi);
1266 static int  sd_unit_detach(dev_info_t *devi);
1267 
1268 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1269 static void sd_create_errstats(struct sd_lun *un, int instance);
1270 static void sd_set_errstats(struct sd_lun *un);
1271 static void sd_set_pstats(struct sd_lun *un);
1272 
1273 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1274 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1275 static int  sd_send_polled_RQS(struct sd_lun *un);
1276 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1277 
1278 #if (defined(__fibre))
1279 /*
1280  * Event callbacks (photon)
1281  */
1282 static void sd_init_event_callbacks(struct sd_lun *un);
1283 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1284 #endif
1285 
1286 /*
1287  * Defines for sd_cache_control
1288  */
1289 
1290 #define	SD_CACHE_ENABLE		1
1291 #define	SD_CACHE_DISABLE	0
1292 #define	SD_CACHE_NOCHANGE	-1
1293 
1294 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1295 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1296 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1297 static dev_t sd_make_device(dev_info_t *devi);
1298 static void  sd_check_solid_state(sd_ssc_t *ssc);
1299 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1300 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1301 	uint64_t capacity);
1302 
1303 /*
1304  * Driver entry point functions.
1305  */
1306 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1307 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1308 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1309 
1310 static void sdmin(struct buf *bp);
1311 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1312 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1313 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1314 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1315 
1316 static int sdstrategy(struct buf *bp);
1317 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1318 
1319 /*
1320  * Function prototypes for layering functions in the iostart chain.
1321  */
1322 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1323 	struct buf *bp);
1324 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1325 	struct buf *bp);
1326 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1327 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1328 	struct buf *bp);
1329 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1330 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1331 
1332 /*
1333  * Function prototypes for layering functions in the iodone chain.
1334  */
1335 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1336 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1337 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1338 	struct buf *bp);
1339 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1340 	struct buf *bp);
1341 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1342 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1343 	struct buf *bp);
1344 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1345 
1346 /*
1347  * Prototypes for functions to support buf(9S) based IO.
1348  */
1349 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1350 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1351 static void sd_destroypkt_for_buf(struct buf *);
1352 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1353 	struct buf *bp, int flags,
1354 	int (*callback)(caddr_t), caddr_t callback_arg,
1355 	diskaddr_t lba, uint32_t blockcount);
1356 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1357 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1358 
1359 /*
1360  * Prototypes for functions to support USCSI IO.
1361  */
1362 static int sd_uscsi_strategy(struct buf *bp);
1363 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1364 static void sd_destroypkt_for_uscsi(struct buf *);
1365 
1366 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1367 	uchar_t chain_type, void *pktinfop);
1368 
1369 static int  sd_pm_entry(struct sd_lun *un);
1370 static void sd_pm_exit(struct sd_lun *un);
1371 
1372 static void sd_pm_idletimeout_handler(void *arg);
1373 
1374 /*
1375  * sd_core internal functions (used at the sd_core_io layer).
1376  */
1377 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1378 static void sdintr(struct scsi_pkt *pktp);
1379 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1380 
1381 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1382 	enum uio_seg dataspace, int path_flag);
1383 
1384 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1385 	daddr_t blkno, int (*func)(struct buf *));
1386 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1387 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1388 static void sd_bioclone_free(struct buf *bp);
1389 static void sd_shadow_buf_free(struct buf *bp);
1390 
1391 static void sd_print_transport_rejected_message(struct sd_lun *un,
1392 	struct sd_xbuf *xp, int code);
1393 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1394     void *arg, int code);
1395 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1396     void *arg, int code);
1397 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1398     void *arg, int code);
1399 
1400 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1401 	int retry_check_flag,
1402 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1403 		int c),
1404 	void *user_arg, int failure_code,  clock_t retry_delay,
1405 	void (*statp)(kstat_io_t *));
1406 
1407 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1408 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1409 
1410 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1411 	struct scsi_pkt *pktp);
1412 static void sd_start_retry_command(void *arg);
1413 static void sd_start_direct_priority_command(void *arg);
1414 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1415 	int errcode);
1416 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1417 	struct buf *bp, int errcode);
1418 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1419 static void sd_sync_with_callback(struct sd_lun *un);
1420 static int sdrunout(caddr_t arg);
1421 
1422 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1423 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1424 
1425 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1426 static void sd_restore_throttle(void *arg);
1427 
1428 static void sd_init_cdb_limits(struct sd_lun *un);
1429 
1430 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 
1433 /*
1434  * Error handling functions
1435  */
1436 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1441 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 
1445 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1446 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1448 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1449 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1450 	struct sd_xbuf *xp, size_t actual_len);
1451 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1452 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1453 
1454 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1455 	void *arg, int code);
1456 
1457 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1458 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1459 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1460 	uint8_t *sense_datap,
1461 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1462 static void sd_sense_key_not_ready(struct sd_lun *un,
1463 	uint8_t *sense_datap,
1464 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1466 	uint8_t *sense_datap,
1467 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1468 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1469 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1470 static void sd_sense_key_unit_attention(struct sd_lun *un,
1471 	uint8_t *sense_datap,
1472 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1478 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 static void sd_sense_key_default(struct sd_lun *un,
1480 	uint8_t *sense_datap,
1481 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1482 
1483 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1484 	void *arg, int flag);
1485 
1486 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1487 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1488 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1489 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1490 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1491 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1492 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1493 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1494 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1495 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1496 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1497 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1498 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1499 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1500 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1501 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1502 
1503 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1504 
1505 static void sd_start_stop_unit_callback(void *arg);
1506 static void sd_start_stop_unit_task(void *arg);
1507 
1508 static void sd_taskq_create(void);
1509 static void sd_taskq_delete(void);
1510 static void sd_target_change_task(void *arg);
1511 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1512 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1513 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1514 static void sd_media_change_task(void *arg);
1515 
1516 static int sd_handle_mchange(struct sd_lun *un);
1517 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1518 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1519 	uint32_t *lbap, int path_flag);
1520 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1521 	uint32_t *lbap, uint32_t *psp, int path_flag);
1522 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1523 	int flag, int path_flag);
1524 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1525 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1526 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1527 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1528 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1529 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1530 	uchar_t usr_cmd, uchar_t *usr_bufp);
1531 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1532 	struct dk_callback *dkc);
1533 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1534 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1535 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1536 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1537 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1538 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1539 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1540 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1541 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1542 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1543 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1544 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1545 	size_t buflen, daddr_t start_block, int path_flag);
1546 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1547 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1548 	path_flag)
1549 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1550 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1551 	path_flag)
1552 
1553 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1554 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1555 	uint16_t param_ptr, int path_flag);
1556 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1557 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1558 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1559 
1560 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1561 static void sd_free_rqs(struct sd_lun *un);
1562 
1563 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1564 	uchar_t *data, int len, int fmt);
1565 static void sd_panic_for_res_conflict(struct sd_lun *un);
1566 
1567 /*
1568  * Disk Ioctl Function Prototypes
1569  */
1570 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1571 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1572 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1573 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1574 
1575 /*
1576  * Multi-host Ioctl Prototypes
1577  */
1578 static int sd_check_mhd(dev_t dev, int interval);
1579 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1580 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1581 static char *sd_sname(uchar_t status);
1582 static void sd_mhd_resvd_recover(void *arg);
1583 static void sd_resv_reclaim_thread();
1584 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1585 static int sd_reserve_release(dev_t dev, int cmd);
1586 static void sd_rmv_resv_reclaim_req(dev_t dev);
1587 static void sd_mhd_reset_notify_cb(caddr_t arg);
1588 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1589 	mhioc_inkeys_t *usrp, int flag);
1590 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1591 	mhioc_inresvs_t *usrp, int flag);
1592 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1593 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1594 static int sd_mhdioc_release(dev_t dev);
1595 static int sd_mhdioc_register_devid(dev_t dev);
1596 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1597 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1598 
1599 /*
1600  * SCSI removable prototypes
1601  */
1602 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1603 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1604 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1605 static int sr_pause_resume(dev_t dev, int mode);
1606 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1607 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1616 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1617 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1618 static int sr_eject(dev_t dev);
1619 static void sr_ejected(register struct sd_lun *un);
1620 static int sr_check_wp(dev_t dev);
1621 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1622 static int sd_check_media(dev_t dev, enum dkio_state state);
1623 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1624 static void sd_delayed_cv_broadcast(void *arg);
1625 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1626 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1627 
1628 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1629 
1630 /*
1631  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1632  */
1633 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1634 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1635 static void sd_wm_cache_destructor(void *wm, void *un);
1636 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1637 	daddr_t endb, ushort_t typ);
1638 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1639 	daddr_t endb);
1640 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1641 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1642 static void sd_read_modify_write_task(void * arg);
1643 static int
1644 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1645 	struct buf **bpp);
1646 
1647 
1648 /*
1649  * Function prototypes for failfast support.
1650  */
1651 static void sd_failfast_flushq(struct sd_lun *un);
1652 static int sd_failfast_flushq_callback(struct buf *bp);
1653 
1654 /*
1655  * Function prototypes to check for lsi devices
1656  */
1657 static void sd_is_lsi(struct sd_lun *un);
1658 
1659 /*
1660  * Function prototypes for partial DMA support
1661  */
1662 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1663 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1664 
1665 
1666 /* Function prototypes for cmlb */
1667 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1668     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1669 
1670 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1671 
1672 /*
1673  * For printing RMW warning message timely
1674  */
1675 static void sd_rmw_msg_print_handler(void *arg);
1676 
1677 /*
1678  * Constants for failfast support:
1679  *
1680  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1681  * failfast processing being performed.
1682  *
1683  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1684  * failfast processing on all bufs with B_FAILFAST set.
1685  */
1686 
1687 #define	SD_FAILFAST_INACTIVE		0
1688 #define	SD_FAILFAST_ACTIVE		1
1689 
1690 /*
1691  * Bitmask to control behavior of buf(9S) flushes when a transition to
1692  * the failfast state occurs. Optional bits include:
1693  *
1694  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1695  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1696  * be flushed.
1697  *
1698  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1699  * driver, in addition to the regular wait queue. This includes the xbuf
1700  * queues. When clear, only the driver's wait queue will be flushed.
1701  */
1702 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1703 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1704 
1705 /*
1706  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1707  * to flush all queues within the driver.
1708  */
1709 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1710 
1711 
1712 /*
1713  * SD Testing Fault Injection
1714  */
1715 #ifdef SD_FAULT_INJECTION
1716 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1717 static void sd_faultinjection(struct scsi_pkt *pktp);
1718 static void sd_injection_log(char *buf, struct sd_lun *un);
1719 #endif
1720 
1721 /*
1722  * Device driver ops vector
1723  */
1724 static struct cb_ops sd_cb_ops = {
1725 	sdopen,			/* open */
1726 	sdclose,		/* close */
1727 	sdstrategy,		/* strategy */
1728 	nodev,			/* print */
1729 	sddump,			/* dump */
1730 	sdread,			/* read */
1731 	sdwrite,		/* write */
1732 	sdioctl,		/* ioctl */
1733 	nodev,			/* devmap */
1734 	nodev,			/* mmap */
1735 	nodev,			/* segmap */
1736 	nochpoll,		/* poll */
1737 	sd_prop_op,		/* cb_prop_op */
1738 	0,			/* streamtab  */
1739 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1740 	CB_REV,			/* cb_rev */
1741 	sdaread, 		/* async I/O read entry point */
1742 	sdawrite		/* async I/O write entry point */
1743 };
1744 
1745 struct dev_ops sd_ops = {
1746 	DEVO_REV,		/* devo_rev, */
1747 	0,			/* refcnt  */
1748 	sdinfo,			/* info */
1749 	nulldev,		/* identify */
1750 	sdprobe,		/* probe */
1751 	sdattach,		/* attach */
1752 	sddetach,		/* detach */
1753 	nodev,			/* reset */
1754 	&sd_cb_ops,		/* driver operations */
1755 	NULL,			/* bus operations */
1756 	sdpower,		/* power */
1757 	ddi_quiesce_not_needed,		/* quiesce */
1758 };
1759 
1760 /*
1761  * This is the loadable module wrapper.
1762  */
1763 #include <sys/modctl.h>
1764 
1765 #ifndef XPV_HVM_DRIVER
1766 static struct modldrv modldrv = {
1767 	&mod_driverops,		/* Type of module. This one is a driver */
1768 	SD_MODULE_NAME,		/* Module name. */
1769 	&sd_ops			/* driver ops */
1770 };
1771 
1772 static struct modlinkage modlinkage = {
1773 	MODREV_1, &modldrv, NULL
1774 };
1775 
1776 #else /* XPV_HVM_DRIVER */
1777 static struct modlmisc modlmisc = {
1778 	&mod_miscops,		/* Type of module. This one is a misc */
1779 	"HVM " SD_MODULE_NAME,		/* Module name. */
1780 };
1781 
1782 static struct modlinkage modlinkage = {
1783 	MODREV_1, &modlmisc, NULL
1784 };
1785 
1786 #endif /* XPV_HVM_DRIVER */
1787 
1788 static cmlb_tg_ops_t sd_tgops = {
1789 	TG_DK_OPS_VERSION_1,
1790 	sd_tg_rdwr,
1791 	sd_tg_getinfo
1792 };
1793 
1794 static struct scsi_asq_key_strings sd_additional_codes[] = {
1795 	0x81, 0, "Logical Unit is Reserved",
1796 	0x85, 0, "Audio Address Not Valid",
1797 	0xb6, 0, "Media Load Mechanism Failed",
1798 	0xB9, 0, "Audio Play Operation Aborted",
1799 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1800 	0x53, 2, "Medium removal prevented",
1801 	0x6f, 0, "Authentication failed during key exchange",
1802 	0x6f, 1, "Key not present",
1803 	0x6f, 2, "Key not established",
1804 	0x6f, 3, "Read without proper authentication",
1805 	0x6f, 4, "Mismatched region to this logical unit",
1806 	0x6f, 5, "Region reset count error",
1807 	0xffff, 0x0, NULL
1808 };
1809 
1810 
1811 /*
1812  * Struct for passing printing information for sense data messages
1813  */
1814 struct sd_sense_info {
1815 	int	ssi_severity;
1816 	int	ssi_pfa_flag;
1817 };
1818 
1819 /*
1820  * Table of function pointers for iostart-side routines. Separate "chains"
1821  * of layered function calls are formed by placing the function pointers
1822  * sequentially in the desired order. Functions are called according to an
1823  * incrementing table index ordering. The last function in each chain must
1824  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1825  * in the sd_iodone_chain[] array.
1826  *
1827  * Note: It may seem more natural to organize both the iostart and iodone
1828  * functions together, into an array of structures (or some similar
1829  * organization) with a common index, rather than two separate arrays which
1830  * must be maintained in synchronization. The purpose of this division is
1831  * to achieve improved performance: individual arrays allows for more
1832  * effective cache line utilization on certain platforms.
1833  */
1834 
1835 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1836 
1837 
1838 static sd_chain_t sd_iostart_chain[] = {
1839 
1840 	/* Chain for buf IO for disk drive targets (PM enabled) */
1841 	sd_mapblockaddr_iostart,	/* Index: 0 */
1842 	sd_pm_iostart,			/* Index: 1 */
1843 	sd_core_iostart,		/* Index: 2 */
1844 
1845 	/* Chain for buf IO for disk drive targets (PM disabled) */
1846 	sd_mapblockaddr_iostart,	/* Index: 3 */
1847 	sd_core_iostart,		/* Index: 4 */
1848 
1849 	/*
1850 	 * Chain for buf IO for removable-media or large sector size
1851 	 * disk drive targets with RMW needed (PM enabled)
1852 	 */
1853 	sd_mapblockaddr_iostart,	/* Index: 5 */
1854 	sd_mapblocksize_iostart,	/* Index: 6 */
1855 	sd_pm_iostart,			/* Index: 7 */
1856 	sd_core_iostart,		/* Index: 8 */
1857 
1858 	/*
1859 	 * Chain for buf IO for removable-media or large sector size
1860 	 * disk drive targets with RMW needed (PM disabled)
1861 	 */
1862 	sd_mapblockaddr_iostart,	/* Index: 9 */
1863 	sd_mapblocksize_iostart,	/* Index: 10 */
1864 	sd_core_iostart,		/* Index: 11 */
1865 
1866 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1867 	sd_mapblockaddr_iostart,	/* Index: 12 */
1868 	sd_checksum_iostart,		/* Index: 13 */
1869 	sd_pm_iostart,			/* Index: 14 */
1870 	sd_core_iostart,		/* Index: 15 */
1871 
1872 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1873 	sd_mapblockaddr_iostart,	/* Index: 16 */
1874 	sd_checksum_iostart,		/* Index: 17 */
1875 	sd_core_iostart,		/* Index: 18 */
1876 
1877 	/* Chain for USCSI commands (all targets) */
1878 	sd_pm_iostart,			/* Index: 19 */
1879 	sd_core_iostart,		/* Index: 20 */
1880 
1881 	/* Chain for checksumming USCSI commands (all targets) */
1882 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1883 	sd_pm_iostart,			/* Index: 22 */
1884 	sd_core_iostart,		/* Index: 23 */
1885 
1886 	/* Chain for "direct" USCSI commands (all targets) */
1887 	sd_core_iostart,		/* Index: 24 */
1888 
1889 	/* Chain for "direct priority" USCSI commands (all targets) */
1890 	sd_core_iostart,		/* Index: 25 */
1891 
1892 	/*
1893 	 * Chain for buf IO for large sector size disk drive targets
1894 	 * with RMW needed with checksumming (PM enabled)
1895 	 */
1896 	sd_mapblockaddr_iostart,	/* Index: 26 */
1897 	sd_mapblocksize_iostart,	/* Index: 27 */
1898 	sd_checksum_iostart,		/* Index: 28 */
1899 	sd_pm_iostart,			/* Index: 29 */
1900 	sd_core_iostart,		/* Index: 30 */
1901 
1902 	/*
1903 	 * Chain for buf IO for large sector size disk drive targets
1904 	 * with RMW needed with checksumming (PM disabled)
1905 	 */
1906 	sd_mapblockaddr_iostart,	/* Index: 31 */
1907 	sd_mapblocksize_iostart,	/* Index: 32 */
1908 	sd_checksum_iostart,		/* Index: 33 */
1909 	sd_core_iostart,		/* Index: 34 */
1910 
1911 };
1912 
1913 /*
1914  * Macros to locate the first function of each iostart chain in the
1915  * sd_iostart_chain[] array. These are located by the index in the array.
1916  */
1917 #define	SD_CHAIN_DISK_IOSTART			0
1918 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1919 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1920 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1921 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1922 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1923 #define	SD_CHAIN_CHKSUM_IOSTART			12
1924 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1925 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1926 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1927 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1928 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1929 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1930 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1931 
1932 
1933 /*
1934  * Table of function pointers for the iodone-side routines for the driver-
1935  * internal layering mechanism.  The calling sequence for iodone routines
1936  * uses a decrementing table index, so the last routine called in a chain
1937  * must be at the lowest array index location for that chain.  The last
1938  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1939  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1940  * of the functions in an iodone side chain must correspond to the ordering
1941  * of the iostart routines for that chain.  Note that there is no iodone
1942  * side routine that corresponds to sd_core_iostart(), so there is no
1943  * entry in the table for this.
1944  */
1945 
1946 static sd_chain_t sd_iodone_chain[] = {
1947 
1948 	/* Chain for buf IO for disk drive targets (PM enabled) */
1949 	sd_buf_iodone,			/* Index: 0 */
1950 	sd_mapblockaddr_iodone,		/* Index: 1 */
1951 	sd_pm_iodone,			/* Index: 2 */
1952 
1953 	/* Chain for buf IO for disk drive targets (PM disabled) */
1954 	sd_buf_iodone,			/* Index: 3 */
1955 	sd_mapblockaddr_iodone,		/* Index: 4 */
1956 
1957 	/*
1958 	 * Chain for buf IO for removable-media or large sector size
1959 	 * disk drive targets with RMW needed (PM enabled)
1960 	 */
1961 	sd_buf_iodone,			/* Index: 5 */
1962 	sd_mapblockaddr_iodone,		/* Index: 6 */
1963 	sd_mapblocksize_iodone,		/* Index: 7 */
1964 	sd_pm_iodone,			/* Index: 8 */
1965 
1966 	/*
1967 	 * Chain for buf IO for removable-media or large sector size
1968 	 * disk drive targets with RMW needed (PM disabled)
1969 	 */
1970 	sd_buf_iodone,			/* Index: 9 */
1971 	sd_mapblockaddr_iodone,		/* Index: 10 */
1972 	sd_mapblocksize_iodone,		/* Index: 11 */
1973 
1974 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1975 	sd_buf_iodone,			/* Index: 12 */
1976 	sd_mapblockaddr_iodone,		/* Index: 13 */
1977 	sd_checksum_iodone,		/* Index: 14 */
1978 	sd_pm_iodone,			/* Index: 15 */
1979 
1980 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1981 	sd_buf_iodone,			/* Index: 16 */
1982 	sd_mapblockaddr_iodone,		/* Index: 17 */
1983 	sd_checksum_iodone,		/* Index: 18 */
1984 
1985 	/* Chain for USCSI commands (non-checksum targets) */
1986 	sd_uscsi_iodone,		/* Index: 19 */
1987 	sd_pm_iodone,			/* Index: 20 */
1988 
1989 	/* Chain for USCSI commands (checksum targets) */
1990 	sd_uscsi_iodone,		/* Index: 21 */
1991 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1992 	sd_pm_iodone,			/* Index: 22 */
1993 
1994 	/* Chain for "direct" USCSI commands (all targets) */
1995 	sd_uscsi_iodone,		/* Index: 24 */
1996 
1997 	/* Chain for "direct priority" USCSI commands (all targets) */
1998 	sd_uscsi_iodone,		/* Index: 25 */
1999 
2000 	/*
2001 	 * Chain for buf IO for large sector size disk drive targets
2002 	 * with checksumming (PM enabled)
2003 	 */
2004 	sd_buf_iodone,			/* Index: 26 */
2005 	sd_mapblockaddr_iodone,		/* Index: 27 */
2006 	sd_mapblocksize_iodone,		/* Index: 28 */
2007 	sd_checksum_iodone,		/* Index: 29 */
2008 	sd_pm_iodone,			/* Index: 30 */
2009 
2010 	/*
2011 	 * Chain for buf IO for large sector size disk drive targets
2012 	 * with checksumming (PM disabled)
2013 	 */
2014 	sd_buf_iodone,			/* Index: 31 */
2015 	sd_mapblockaddr_iodone,		/* Index: 32 */
2016 	sd_mapblocksize_iodone,		/* Index: 33 */
2017 	sd_checksum_iodone,		/* Index: 34 */
2018 };
2019 
2020 
2021 /*
2022  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2023  * each iodone-side chain. These are located by the array index, but as the
2024  * iodone side functions are called in a decrementing-index order, the
2025  * highest index number in each chain must be specified (as these correspond
2026  * to the first function in the iodone chain that will be called by the core
2027  * at IO completion time).
2028  */
2029 
2030 #define	SD_CHAIN_DISK_IODONE			2
2031 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2032 #define	SD_CHAIN_RMMEDIA_IODONE			8
2033 #define	SD_CHAIN_MSS_DISK_IODONE		8
2034 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2035 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2036 #define	SD_CHAIN_CHKSUM_IODONE			15
2037 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2038 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2039 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2040 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2041 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2042 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2043 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2044 
2045 
2046 
2047 /*
2048  * Array to map a layering chain index to the appropriate initpkt routine.
2049  * The redundant entries are present so that the index used for accessing
2050  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2051  * with this table as well.
2052  */
2053 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2054 
2055 static sd_initpkt_t	sd_initpkt_map[] = {
2056 
2057 	/* Chain for buf IO for disk drive targets (PM enabled) */
2058 	sd_initpkt_for_buf,		/* Index: 0 */
2059 	sd_initpkt_for_buf,		/* Index: 1 */
2060 	sd_initpkt_for_buf,		/* Index: 2 */
2061 
2062 	/* Chain for buf IO for disk drive targets (PM disabled) */
2063 	sd_initpkt_for_buf,		/* Index: 3 */
2064 	sd_initpkt_for_buf,		/* Index: 4 */
2065 
2066 	/*
2067 	 * Chain for buf IO for removable-media or large sector size
2068 	 * disk drive targets (PM enabled)
2069 	 */
2070 	sd_initpkt_for_buf,		/* Index: 5 */
2071 	sd_initpkt_for_buf,		/* Index: 6 */
2072 	sd_initpkt_for_buf,		/* Index: 7 */
2073 	sd_initpkt_for_buf,		/* Index: 8 */
2074 
2075 	/*
2076 	 * Chain for buf IO for removable-media or large sector size
2077 	 * disk drive targets (PM disabled)
2078 	 */
2079 	sd_initpkt_for_buf,		/* Index: 9 */
2080 	sd_initpkt_for_buf,		/* Index: 10 */
2081 	sd_initpkt_for_buf,		/* Index: 11 */
2082 
2083 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2084 	sd_initpkt_for_buf,		/* Index: 12 */
2085 	sd_initpkt_for_buf,		/* Index: 13 */
2086 	sd_initpkt_for_buf,		/* Index: 14 */
2087 	sd_initpkt_for_buf,		/* Index: 15 */
2088 
2089 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2090 	sd_initpkt_for_buf,		/* Index: 16 */
2091 	sd_initpkt_for_buf,		/* Index: 17 */
2092 	sd_initpkt_for_buf,		/* Index: 18 */
2093 
2094 	/* Chain for USCSI commands (non-checksum targets) */
2095 	sd_initpkt_for_uscsi,		/* Index: 19 */
2096 	sd_initpkt_for_uscsi,		/* Index: 20 */
2097 
2098 	/* Chain for USCSI commands (checksum targets) */
2099 	sd_initpkt_for_uscsi,		/* Index: 21 */
2100 	sd_initpkt_for_uscsi,		/* Index: 22 */
2101 	sd_initpkt_for_uscsi,		/* Index: 22 */
2102 
2103 	/* Chain for "direct" USCSI commands (all targets) */
2104 	sd_initpkt_for_uscsi,		/* Index: 24 */
2105 
2106 	/* Chain for "direct priority" USCSI commands (all targets) */
2107 	sd_initpkt_for_uscsi,		/* Index: 25 */
2108 
2109 	/*
2110 	 * Chain for buf IO for large sector size disk drive targets
2111 	 * with checksumming (PM enabled)
2112 	 */
2113 	sd_initpkt_for_buf,		/* Index: 26 */
2114 	sd_initpkt_for_buf,		/* Index: 27 */
2115 	sd_initpkt_for_buf,		/* Index: 28 */
2116 	sd_initpkt_for_buf,		/* Index: 29 */
2117 	sd_initpkt_for_buf,		/* Index: 30 */
2118 
2119 	/*
2120 	 * Chain for buf IO for large sector size disk drive targets
2121 	 * with checksumming (PM disabled)
2122 	 */
2123 	sd_initpkt_for_buf,		/* Index: 31 */
2124 	sd_initpkt_for_buf,		/* Index: 32 */
2125 	sd_initpkt_for_buf,		/* Index: 33 */
2126 	sd_initpkt_for_buf,		/* Index: 34 */
2127 };
2128 
2129 
2130 /*
2131  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2132  * The redundant entries are present so that the index used for accessing
2133  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2134  * with this table as well.
2135  */
2136 typedef void (*sd_destroypkt_t)(struct buf *);
2137 
2138 static sd_destroypkt_t	sd_destroypkt_map[] = {
2139 
2140 	/* Chain for buf IO for disk drive targets (PM enabled) */
2141 	sd_destroypkt_for_buf,		/* Index: 0 */
2142 	sd_destroypkt_for_buf,		/* Index: 1 */
2143 	sd_destroypkt_for_buf,		/* Index: 2 */
2144 
2145 	/* Chain for buf IO for disk drive targets (PM disabled) */
2146 	sd_destroypkt_for_buf,		/* Index: 3 */
2147 	sd_destroypkt_for_buf,		/* Index: 4 */
2148 
2149 	/*
2150 	 * Chain for buf IO for removable-media or large sector size
2151 	 * disk drive targets (PM enabled)
2152 	 */
2153 	sd_destroypkt_for_buf,		/* Index: 5 */
2154 	sd_destroypkt_for_buf,		/* Index: 6 */
2155 	sd_destroypkt_for_buf,		/* Index: 7 */
2156 	sd_destroypkt_for_buf,		/* Index: 8 */
2157 
2158 	/*
2159 	 * Chain for buf IO for removable-media or large sector size
2160 	 * disk drive targets (PM disabled)
2161 	 */
2162 	sd_destroypkt_for_buf,		/* Index: 9 */
2163 	sd_destroypkt_for_buf,		/* Index: 10 */
2164 	sd_destroypkt_for_buf,		/* Index: 11 */
2165 
2166 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2167 	sd_destroypkt_for_buf,		/* Index: 12 */
2168 	sd_destroypkt_for_buf,		/* Index: 13 */
2169 	sd_destroypkt_for_buf,		/* Index: 14 */
2170 	sd_destroypkt_for_buf,		/* Index: 15 */
2171 
2172 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2173 	sd_destroypkt_for_buf,		/* Index: 16 */
2174 	sd_destroypkt_for_buf,		/* Index: 17 */
2175 	sd_destroypkt_for_buf,		/* Index: 18 */
2176 
2177 	/* Chain for USCSI commands (non-checksum targets) */
2178 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2179 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2180 
2181 	/* Chain for USCSI commands (checksum targets) */
2182 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2183 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2184 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2185 
2186 	/* Chain for "direct" USCSI commands (all targets) */
2187 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2188 
2189 	/* Chain for "direct priority" USCSI commands (all targets) */
2190 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2191 
2192 	/*
2193 	 * Chain for buf IO for large sector size disk drive targets
2194 	 * with checksumming (PM disabled)
2195 	 */
2196 	sd_destroypkt_for_buf,		/* Index: 26 */
2197 	sd_destroypkt_for_buf,		/* Index: 27 */
2198 	sd_destroypkt_for_buf,		/* Index: 28 */
2199 	sd_destroypkt_for_buf,		/* Index: 29 */
2200 	sd_destroypkt_for_buf,		/* Index: 30 */
2201 
2202 	/*
2203 	 * Chain for buf IO for large sector size disk drive targets
2204 	 * with checksumming (PM enabled)
2205 	 */
2206 	sd_destroypkt_for_buf,		/* Index: 31 */
2207 	sd_destroypkt_for_buf,		/* Index: 32 */
2208 	sd_destroypkt_for_buf,		/* Index: 33 */
2209 	sd_destroypkt_for_buf,		/* Index: 34 */
2210 };
2211 
2212 
2213 
2214 /*
2215  * Array to map a layering chain index to the appropriate chain "type".
2216  * The chain type indicates a specific property/usage of the chain.
2217  * The redundant entries are present so that the index used for accessing
2218  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2219  * with this table as well.
2220  */
2221 
2222 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2223 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2224 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2225 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2226 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2227 						/* (for error recovery) */
2228 
2229 static int sd_chain_type_map[] = {
2230 
2231 	/* Chain for buf IO for disk drive targets (PM enabled) */
2232 	SD_CHAIN_BUFIO,			/* Index: 0 */
2233 	SD_CHAIN_BUFIO,			/* Index: 1 */
2234 	SD_CHAIN_BUFIO,			/* Index: 2 */
2235 
2236 	/* Chain for buf IO for disk drive targets (PM disabled) */
2237 	SD_CHAIN_BUFIO,			/* Index: 3 */
2238 	SD_CHAIN_BUFIO,			/* Index: 4 */
2239 
2240 	/*
2241 	 * Chain for buf IO for removable-media or large sector size
2242 	 * disk drive targets (PM enabled)
2243 	 */
2244 	SD_CHAIN_BUFIO,			/* Index: 5 */
2245 	SD_CHAIN_BUFIO,			/* Index: 6 */
2246 	SD_CHAIN_BUFIO,			/* Index: 7 */
2247 	SD_CHAIN_BUFIO,			/* Index: 8 */
2248 
2249 	/*
2250 	 * Chain for buf IO for removable-media or large sector size
2251 	 * disk drive targets (PM disabled)
2252 	 */
2253 	SD_CHAIN_BUFIO,			/* Index: 9 */
2254 	SD_CHAIN_BUFIO,			/* Index: 10 */
2255 	SD_CHAIN_BUFIO,			/* Index: 11 */
2256 
2257 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2258 	SD_CHAIN_BUFIO,			/* Index: 12 */
2259 	SD_CHAIN_BUFIO,			/* Index: 13 */
2260 	SD_CHAIN_BUFIO,			/* Index: 14 */
2261 	SD_CHAIN_BUFIO,			/* Index: 15 */
2262 
2263 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2264 	SD_CHAIN_BUFIO,			/* Index: 16 */
2265 	SD_CHAIN_BUFIO,			/* Index: 17 */
2266 	SD_CHAIN_BUFIO,			/* Index: 18 */
2267 
2268 	/* Chain for USCSI commands (non-checksum targets) */
2269 	SD_CHAIN_USCSI,			/* Index: 19 */
2270 	SD_CHAIN_USCSI,			/* Index: 20 */
2271 
2272 	/* Chain for USCSI commands (checksum targets) */
2273 	SD_CHAIN_USCSI,			/* Index: 21 */
2274 	SD_CHAIN_USCSI,			/* Index: 22 */
2275 	SD_CHAIN_USCSI,			/* Index: 23 */
2276 
2277 	/* Chain for "direct" USCSI commands (all targets) */
2278 	SD_CHAIN_DIRECT,		/* Index: 24 */
2279 
2280 	/* Chain for "direct priority" USCSI commands (all targets) */
2281 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2282 
2283 	/*
2284 	 * Chain for buf IO for large sector size disk drive targets
2285 	 * with checksumming (PM enabled)
2286 	 */
2287 	SD_CHAIN_BUFIO,			/* Index: 26 */
2288 	SD_CHAIN_BUFIO,			/* Index: 27 */
2289 	SD_CHAIN_BUFIO,			/* Index: 28 */
2290 	SD_CHAIN_BUFIO,			/* Index: 29 */
2291 	SD_CHAIN_BUFIO,			/* Index: 30 */
2292 
2293 	/*
2294 	 * Chain for buf IO for large sector size disk drive targets
2295 	 * with checksumming (PM disabled)
2296 	 */
2297 	SD_CHAIN_BUFIO,			/* Index: 31 */
2298 	SD_CHAIN_BUFIO,			/* Index: 32 */
2299 	SD_CHAIN_BUFIO,			/* Index: 33 */
2300 	SD_CHAIN_BUFIO,			/* Index: 34 */
2301 };
2302 
2303 
2304 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2305 #define	SD_IS_BUFIO(xp)			\
2306 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2307 
2308 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2309 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2310 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2311 
2312 
2313 
2314 /*
2315  * Struct, array, and macros to map a specific chain to the appropriate
2316  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2317  *
2318  * The sd_chain_index_map[] array is used at attach time to set the various
2319  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2320  * chain to be used with the instance. This allows different instances to use
2321  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2322  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2323  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2324  * dynamically & without the use of locking; and (2) a layer may update the
2325  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2326  * to allow for deferred processing of an IO within the same chain from a
2327  * different execution context.
2328  */
2329 
2330 struct sd_chain_index {
2331 	int	sci_iostart_index;
2332 	int	sci_iodone_index;
2333 };
2334 
2335 static struct sd_chain_index	sd_chain_index_map[] = {
2336 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2337 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2338 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2339 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2340 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2341 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2342 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2343 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2344 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2345 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2346 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2347 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2348 
2349 };
2350 
2351 
2352 /*
2353  * The following are indexes into the sd_chain_index_map[] array.
2354  */
2355 
2356 /* un->un_buf_chain_type must be set to one of these */
2357 #define	SD_CHAIN_INFO_DISK		0
2358 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2359 #define	SD_CHAIN_INFO_RMMEDIA		2
2360 #define	SD_CHAIN_INFO_MSS_DISK		2
2361 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2362 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2363 #define	SD_CHAIN_INFO_CHKSUM		4
2364 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2365 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2366 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2367 
2368 /* un->un_uscsi_chain_type must be set to one of these */
2369 #define	SD_CHAIN_INFO_USCSI_CMD		6
2370 /* USCSI with PM disabled is the same as DIRECT */
2371 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2372 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2373 
2374 /* un->un_direct_chain_type must be set to one of these */
2375 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2376 
2377 /* un->un_priority_chain_type must be set to one of these */
2378 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2379 
2380 /* size for devid inquiries */
2381 #define	MAX_INQUIRY_SIZE		0xF0
2382 
2383 /*
2384  * Macros used by functions to pass a given buf(9S) struct along to the
2385  * next function in the layering chain for further processing.
2386  *
2387  * In the following macros, passing more than three arguments to the called
2388  * routines causes the optimizer for the SPARC compiler to stop doing tail
2389  * call elimination which results in significant performance degradation.
2390  */
2391 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2392 	((*(sd_iostart_chain[index]))(index, un, bp))
2393 
2394 #define	SD_BEGIN_IODONE(index, un, bp)	\
2395 	((*(sd_iodone_chain[index]))(index, un, bp))
2396 
2397 #define	SD_NEXT_IOSTART(index, un, bp)				\
2398 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2399 
2400 #define	SD_NEXT_IODONE(index, un, bp)				\
2401 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2402 
2403 /*
2404  *    Function: _init
2405  *
2406  * Description: This is the driver _init(9E) entry point.
2407  *
2408  * Return Code: Returns the value from mod_install(9F) or
2409  *		ddi_soft_state_init(9F) as appropriate.
2410  *
2411  *     Context: Called when driver module loaded.
2412  */
2413 
2414 int
2415 _init(void)
2416 {
2417 	int	err;
2418 
2419 	/* establish driver name from module name */
2420 	sd_label = (char *)mod_modname(&modlinkage);
2421 
2422 #ifndef XPV_HVM_DRIVER
2423 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2424 	    SD_MAXUNIT);
2425 	if (err != 0) {
2426 		return (err);
2427 	}
2428 
2429 #else /* XPV_HVM_DRIVER */
2430 	/* Remove the leading "hvm_" from the module name */
2431 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2432 	sd_label += strlen("hvm_");
2433 
2434 #endif /* XPV_HVM_DRIVER */
2435 
2436 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2437 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2438 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2439 
2440 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2441 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2442 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2443 
2444 	/*
2445 	 * it's ok to init here even for fibre device
2446 	 */
2447 	sd_scsi_probe_cache_init();
2448 
2449 	sd_scsi_target_lun_init();
2450 
2451 	/*
2452 	 * Creating taskq before mod_install ensures that all callers (threads)
2453 	 * that enter the module after a successful mod_install encounter
2454 	 * a valid taskq.
2455 	 */
2456 	sd_taskq_create();
2457 
2458 	err = mod_install(&modlinkage);
2459 	if (err != 0) {
2460 		/* delete taskq if install fails */
2461 		sd_taskq_delete();
2462 
2463 		mutex_destroy(&sd_detach_mutex);
2464 		mutex_destroy(&sd_log_mutex);
2465 		mutex_destroy(&sd_label_mutex);
2466 
2467 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2468 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2469 		cv_destroy(&sd_tr.srq_inprocess_cv);
2470 
2471 		sd_scsi_probe_cache_fini();
2472 
2473 		sd_scsi_target_lun_fini();
2474 
2475 #ifndef XPV_HVM_DRIVER
2476 		ddi_soft_state_fini(&sd_state);
2477 #endif /* !XPV_HVM_DRIVER */
2478 		return (err);
2479 	}
2480 
2481 	return (err);
2482 }
2483 
2484 
2485 /*
2486  *    Function: _fini
2487  *
2488  * Description: This is the driver _fini(9E) entry point.
2489  *
2490  * Return Code: Returns the value from mod_remove(9F)
2491  *
2492  *     Context: Called when driver module is unloaded.
2493  */
2494 
2495 int
2496 _fini(void)
2497 {
2498 	int err;
2499 
2500 	if ((err = mod_remove(&modlinkage)) != 0) {
2501 		return (err);
2502 	}
2503 
2504 	sd_taskq_delete();
2505 
2506 	mutex_destroy(&sd_detach_mutex);
2507 	mutex_destroy(&sd_log_mutex);
2508 	mutex_destroy(&sd_label_mutex);
2509 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2510 
2511 	sd_scsi_probe_cache_fini();
2512 
2513 	sd_scsi_target_lun_fini();
2514 
2515 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2516 	cv_destroy(&sd_tr.srq_inprocess_cv);
2517 
2518 #ifndef XPV_HVM_DRIVER
2519 	ddi_soft_state_fini(&sd_state);
2520 #endif /* !XPV_HVM_DRIVER */
2521 
2522 	return (err);
2523 }
2524 
2525 
2526 /*
2527  *    Function: _info
2528  *
2529  * Description: This is the driver _info(9E) entry point.
2530  *
2531  *   Arguments: modinfop - pointer to the driver modinfo structure
2532  *
2533  * Return Code: Returns the value from mod_info(9F).
2534  *
2535  *     Context: Kernel thread context
2536  */
2537 
2538 int
2539 _info(struct modinfo *modinfop)
2540 {
2541 	return (mod_info(&modlinkage, modinfop));
2542 }
2543 
2544 
2545 /*
2546  * The following routines implement the driver message logging facility.
2547  * They provide component- and level- based debug output filtering.
2548  * Output may also be restricted to messages for a single instance by
2549  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2550  * to NULL, then messages for all instances are printed.
2551  *
2552  * These routines have been cloned from each other due to the language
2553  * constraints of macros and variable argument list processing.
2554  */
2555 
2556 
2557 /*
2558  *    Function: sd_log_err
2559  *
2560  * Description: This routine is called by the SD_ERROR macro for debug
2561  *		logging of error conditions.
2562  *
2563  *   Arguments: comp - driver component being logged
2564  *		dev  - pointer to driver info structure
2565  *		fmt  - error string and format to be logged
2566  */
2567 
2568 static void
2569 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2570 {
2571 	va_list		ap;
2572 	dev_info_t	*dev;
2573 
2574 	ASSERT(un != NULL);
2575 	dev = SD_DEVINFO(un);
2576 	ASSERT(dev != NULL);
2577 
2578 	/*
2579 	 * Filter messages based on the global component and level masks.
2580 	 * Also print if un matches the value of sd_debug_un, or if
2581 	 * sd_debug_un is set to NULL.
2582 	 */
2583 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2584 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2585 		mutex_enter(&sd_log_mutex);
2586 		va_start(ap, fmt);
2587 		(void) vsprintf(sd_log_buf, fmt, ap);
2588 		va_end(ap);
2589 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2590 		mutex_exit(&sd_log_mutex);
2591 	}
2592 #ifdef SD_FAULT_INJECTION
2593 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2594 	if (un->sd_injection_mask & comp) {
2595 		mutex_enter(&sd_log_mutex);
2596 		va_start(ap, fmt);
2597 		(void) vsprintf(sd_log_buf, fmt, ap);
2598 		va_end(ap);
2599 		sd_injection_log(sd_log_buf, un);
2600 		mutex_exit(&sd_log_mutex);
2601 	}
2602 #endif
2603 }
2604 
2605 
2606 /*
2607  *    Function: sd_log_info
2608  *
2609  * Description: This routine is called by the SD_INFO macro for debug
2610  *		logging of general purpose informational conditions.
2611  *
2612  *   Arguments: comp - driver component being logged
2613  *		dev  - pointer to driver info structure
2614  *		fmt  - info string and format to be logged
2615  */
2616 
2617 static void
2618 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2619 {
2620 	va_list		ap;
2621 	dev_info_t	*dev;
2622 
2623 	ASSERT(un != NULL);
2624 	dev = SD_DEVINFO(un);
2625 	ASSERT(dev != NULL);
2626 
2627 	/*
2628 	 * Filter messages based on the global component and level masks.
2629 	 * Also print if un matches the value of sd_debug_un, or if
2630 	 * sd_debug_un is set to NULL.
2631 	 */
2632 	if ((sd_component_mask & component) &&
2633 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2634 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2635 		mutex_enter(&sd_log_mutex);
2636 		va_start(ap, fmt);
2637 		(void) vsprintf(sd_log_buf, fmt, ap);
2638 		va_end(ap);
2639 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2640 		mutex_exit(&sd_log_mutex);
2641 	}
2642 #ifdef SD_FAULT_INJECTION
2643 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2644 	if (un->sd_injection_mask & component) {
2645 		mutex_enter(&sd_log_mutex);
2646 		va_start(ap, fmt);
2647 		(void) vsprintf(sd_log_buf, fmt, ap);
2648 		va_end(ap);
2649 		sd_injection_log(sd_log_buf, un);
2650 		mutex_exit(&sd_log_mutex);
2651 	}
2652 #endif
2653 }
2654 
2655 
2656 /*
2657  *    Function: sd_log_trace
2658  *
2659  * Description: This routine is called by the SD_TRACE macro for debug
2660  *		logging of trace conditions (i.e. function entry/exit).
2661  *
2662  *   Arguments: comp - driver component being logged
2663  *		dev  - pointer to driver info structure
2664  *		fmt  - trace string and format to be logged
2665  */
2666 
2667 static void
2668 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2669 {
2670 	va_list		ap;
2671 	dev_info_t	*dev;
2672 
2673 	ASSERT(un != NULL);
2674 	dev = SD_DEVINFO(un);
2675 	ASSERT(dev != NULL);
2676 
2677 	/*
2678 	 * Filter messages based on the global component and level masks.
2679 	 * Also print if un matches the value of sd_debug_un, or if
2680 	 * sd_debug_un is set to NULL.
2681 	 */
2682 	if ((sd_component_mask & component) &&
2683 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2684 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2685 		mutex_enter(&sd_log_mutex);
2686 		va_start(ap, fmt);
2687 		(void) vsprintf(sd_log_buf, fmt, ap);
2688 		va_end(ap);
2689 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2690 		mutex_exit(&sd_log_mutex);
2691 	}
2692 #ifdef SD_FAULT_INJECTION
2693 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2694 	if (un->sd_injection_mask & component) {
2695 		mutex_enter(&sd_log_mutex);
2696 		va_start(ap, fmt);
2697 		(void) vsprintf(sd_log_buf, fmt, ap);
2698 		va_end(ap);
2699 		sd_injection_log(sd_log_buf, un);
2700 		mutex_exit(&sd_log_mutex);
2701 	}
2702 #endif
2703 }
2704 
2705 
2706 /*
2707  *    Function: sdprobe
2708  *
2709  * Description: This is the driver probe(9e) entry point function.
2710  *
2711  *   Arguments: devi - opaque device info handle
2712  *
2713  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2714  *              DDI_PROBE_FAILURE: If the probe failed.
2715  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2716  *				   but may be present in the future.
2717  */
2718 
2719 static int
2720 sdprobe(dev_info_t *devi)
2721 {
2722 	struct scsi_device	*devp;
2723 	int			rval;
2724 #ifndef XPV_HVM_DRIVER
2725 	int			instance = ddi_get_instance(devi);
2726 #endif /* !XPV_HVM_DRIVER */
2727 
2728 	/*
2729 	 * if it wasn't for pln, sdprobe could actually be nulldev
2730 	 * in the "__fibre" case.
2731 	 */
2732 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2733 		return (DDI_PROBE_DONTCARE);
2734 	}
2735 
2736 	devp = ddi_get_driver_private(devi);
2737 
2738 	if (devp == NULL) {
2739 		/* Ooops... nexus driver is mis-configured... */
2740 		return (DDI_PROBE_FAILURE);
2741 	}
2742 
2743 #ifndef XPV_HVM_DRIVER
2744 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2745 		return (DDI_PROBE_PARTIAL);
2746 	}
2747 #endif /* !XPV_HVM_DRIVER */
2748 
2749 	/*
2750 	 * Call the SCSA utility probe routine to see if we actually
2751 	 * have a target at this SCSI nexus.
2752 	 */
2753 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2754 	case SCSIPROBE_EXISTS:
2755 		switch (devp->sd_inq->inq_dtype) {
2756 		case DTYPE_DIRECT:
2757 			rval = DDI_PROBE_SUCCESS;
2758 			break;
2759 		case DTYPE_RODIRECT:
2760 			/* CDs etc. Can be removable media */
2761 			rval = DDI_PROBE_SUCCESS;
2762 			break;
2763 		case DTYPE_OPTICAL:
2764 			/*
2765 			 * Rewritable optical driver HP115AA
2766 			 * Can also be removable media
2767 			 */
2768 
2769 			/*
2770 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2771 			 * pre solaris 9 sparc sd behavior is required
2772 			 *
2773 			 * If first time through and sd_dtype_optical_bind
2774 			 * has not been set in /etc/system check properties
2775 			 */
2776 
2777 			if (sd_dtype_optical_bind  < 0) {
2778 				sd_dtype_optical_bind = ddi_prop_get_int
2779 				    (DDI_DEV_T_ANY, devi, 0,
2780 				    "optical-device-bind", 1);
2781 			}
2782 
2783 			if (sd_dtype_optical_bind == 0) {
2784 				rval = DDI_PROBE_FAILURE;
2785 			} else {
2786 				rval = DDI_PROBE_SUCCESS;
2787 			}
2788 			break;
2789 
2790 		case DTYPE_NOTPRESENT:
2791 		default:
2792 			rval = DDI_PROBE_FAILURE;
2793 			break;
2794 		}
2795 		break;
2796 	default:
2797 		rval = DDI_PROBE_PARTIAL;
2798 		break;
2799 	}
2800 
2801 	/*
2802 	 * This routine checks for resource allocation prior to freeing,
2803 	 * so it will take care of the "smart probing" case where a
2804 	 * scsi_probe() may or may not have been issued and will *not*
2805 	 * free previously-freed resources.
2806 	 */
2807 	scsi_unprobe(devp);
2808 	return (rval);
2809 }
2810 
2811 
2812 /*
2813  *    Function: sdinfo
2814  *
2815  * Description: This is the driver getinfo(9e) entry point function.
2816  * 		Given the device number, return the devinfo pointer from
2817  *		the scsi_device structure or the instance number
2818  *		associated with the dev_t.
2819  *
2820  *   Arguments: dip     - pointer to device info structure
2821  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2822  *			  DDI_INFO_DEVT2INSTANCE)
2823  *		arg     - driver dev_t
2824  *		resultp - user buffer for request response
2825  *
2826  * Return Code: DDI_SUCCESS
2827  *              DDI_FAILURE
2828  */
2829 /* ARGSUSED */
2830 static int
2831 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2832 {
2833 	struct sd_lun	*un;
2834 	dev_t		dev;
2835 	int		instance;
2836 	int		error;
2837 
2838 	switch (infocmd) {
2839 	case DDI_INFO_DEVT2DEVINFO:
2840 		dev = (dev_t)arg;
2841 		instance = SDUNIT(dev);
2842 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2843 			return (DDI_FAILURE);
2844 		}
2845 		*result = (void *) SD_DEVINFO(un);
2846 		error = DDI_SUCCESS;
2847 		break;
2848 	case DDI_INFO_DEVT2INSTANCE:
2849 		dev = (dev_t)arg;
2850 		instance = SDUNIT(dev);
2851 		*result = (void *)(uintptr_t)instance;
2852 		error = DDI_SUCCESS;
2853 		break;
2854 	default:
2855 		error = DDI_FAILURE;
2856 	}
2857 	return (error);
2858 }
2859 
2860 /*
2861  *    Function: sd_prop_op
2862  *
2863  * Description: This is the driver prop_op(9e) entry point function.
2864  *		Return the number of blocks for the partition in question
2865  *		or forward the request to the property facilities.
2866  *
2867  *   Arguments: dev       - device number
2868  *		dip       - pointer to device info structure
2869  *		prop_op   - property operator
2870  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2871  *		name      - pointer to property name
2872  *		valuep    - pointer or address of the user buffer
2873  *		lengthp   - property length
2874  *
2875  * Return Code: DDI_PROP_SUCCESS
2876  *              DDI_PROP_NOT_FOUND
2877  *              DDI_PROP_UNDEFINED
2878  *              DDI_PROP_NO_MEMORY
2879  *              DDI_PROP_BUF_TOO_SMALL
2880  */
2881 
2882 static int
2883 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2884 	char *name, caddr_t valuep, int *lengthp)
2885 {
2886 	struct sd_lun	*un;
2887 
2888 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2889 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2890 		    name, valuep, lengthp));
2891 
2892 	return (cmlb_prop_op(un->un_cmlbhandle,
2893 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2894 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2895 }
2896 
2897 /*
2898  * The following functions are for smart probing:
2899  * sd_scsi_probe_cache_init()
2900  * sd_scsi_probe_cache_fini()
2901  * sd_scsi_clear_probe_cache()
2902  * sd_scsi_probe_with_cache()
2903  */
2904 
2905 /*
2906  *    Function: sd_scsi_probe_cache_init
2907  *
2908  * Description: Initializes the probe response cache mutex and head pointer.
2909  *
2910  *     Context: Kernel thread context
2911  */
2912 
2913 static void
2914 sd_scsi_probe_cache_init(void)
2915 {
2916 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2917 	sd_scsi_probe_cache_head = NULL;
2918 }
2919 
2920 
2921 /*
2922  *    Function: sd_scsi_probe_cache_fini
2923  *
2924  * Description: Frees all resources associated with the probe response cache.
2925  *
2926  *     Context: Kernel thread context
2927  */
2928 
2929 static void
2930 sd_scsi_probe_cache_fini(void)
2931 {
2932 	struct sd_scsi_probe_cache *cp;
2933 	struct sd_scsi_probe_cache *ncp;
2934 
2935 	/* Clean up our smart probing linked list */
2936 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2937 		ncp = cp->next;
2938 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2939 	}
2940 	sd_scsi_probe_cache_head = NULL;
2941 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2942 }
2943 
2944 
2945 /*
2946  *    Function: sd_scsi_clear_probe_cache
2947  *
2948  * Description: This routine clears the probe response cache. This is
2949  *		done when open() returns ENXIO so that when deferred
2950  *		attach is attempted (possibly after a device has been
2951  *		turned on) we will retry the probe. Since we don't know
2952  *		which target we failed to open, we just clear the
2953  *		entire cache.
2954  *
2955  *     Context: Kernel thread context
2956  */
2957 
2958 static void
2959 sd_scsi_clear_probe_cache(void)
2960 {
2961 	struct sd_scsi_probe_cache	*cp;
2962 	int				i;
2963 
2964 	mutex_enter(&sd_scsi_probe_cache_mutex);
2965 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2966 		/*
2967 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2968 		 * force probing to be performed the next time
2969 		 * sd_scsi_probe_with_cache is called.
2970 		 */
2971 		for (i = 0; i < NTARGETS_WIDE; i++) {
2972 			cp->cache[i] = SCSIPROBE_EXISTS;
2973 		}
2974 	}
2975 	mutex_exit(&sd_scsi_probe_cache_mutex);
2976 }
2977 
2978 
2979 /*
2980  *    Function: sd_scsi_probe_with_cache
2981  *
2982  * Description: This routine implements support for a scsi device probe
2983  *		with cache. The driver maintains a cache of the target
2984  *		responses to scsi probes. If we get no response from a
2985  *		target during a probe inquiry, we remember that, and we
2986  *		avoid additional calls to scsi_probe on non-zero LUNs
2987  *		on the same target until the cache is cleared. By doing
2988  *		so we avoid the 1/4 sec selection timeout for nonzero
2989  *		LUNs. lun0 of a target is always probed.
2990  *
2991  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2992  *              waitfunc - indicates what the allocator routines should
2993  *			   do when resources are not available. This value
2994  *			   is passed on to scsi_probe() when that routine
2995  *			   is called.
2996  *
2997  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2998  *		otherwise the value returned by scsi_probe(9F).
2999  *
3000  *     Context: Kernel thread context
3001  */
3002 
3003 static int
3004 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3005 {
3006 	struct sd_scsi_probe_cache	*cp;
3007 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3008 	int		lun, tgt;
3009 
3010 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3011 	    SCSI_ADDR_PROP_LUN, 0);
3012 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3013 	    SCSI_ADDR_PROP_TARGET, -1);
3014 
3015 	/* Make sure caching enabled and target in range */
3016 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3017 		/* do it the old way (no cache) */
3018 		return (scsi_probe(devp, waitfn));
3019 	}
3020 
3021 	mutex_enter(&sd_scsi_probe_cache_mutex);
3022 
3023 	/* Find the cache for this scsi bus instance */
3024 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3025 		if (cp->pdip == pdip) {
3026 			break;
3027 		}
3028 	}
3029 
3030 	/* If we can't find a cache for this pdip, create one */
3031 	if (cp == NULL) {
3032 		int i;
3033 
3034 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3035 		    KM_SLEEP);
3036 		cp->pdip = pdip;
3037 		cp->next = sd_scsi_probe_cache_head;
3038 		sd_scsi_probe_cache_head = cp;
3039 		for (i = 0; i < NTARGETS_WIDE; i++) {
3040 			cp->cache[i] = SCSIPROBE_EXISTS;
3041 		}
3042 	}
3043 
3044 	mutex_exit(&sd_scsi_probe_cache_mutex);
3045 
3046 	/* Recompute the cache for this target if LUN zero */
3047 	if (lun == 0) {
3048 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3049 	}
3050 
3051 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3052 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3053 		return (SCSIPROBE_NORESP);
3054 	}
3055 
3056 	/* Do the actual probe; save & return the result */
3057 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3058 }
3059 
3060 
3061 /*
3062  *    Function: sd_scsi_target_lun_init
3063  *
3064  * Description: Initializes the attached lun chain mutex and head pointer.
3065  *
3066  *     Context: Kernel thread context
3067  */
3068 
3069 static void
3070 sd_scsi_target_lun_init(void)
3071 {
3072 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3073 	sd_scsi_target_lun_head = NULL;
3074 }
3075 
3076 
3077 /*
3078  *    Function: sd_scsi_target_lun_fini
3079  *
3080  * Description: Frees all resources associated with the attached lun
3081  *              chain
3082  *
3083  *     Context: Kernel thread context
3084  */
3085 
3086 static void
3087 sd_scsi_target_lun_fini(void)
3088 {
3089 	struct sd_scsi_hba_tgt_lun	*cp;
3090 	struct sd_scsi_hba_tgt_lun	*ncp;
3091 
3092 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3093 		ncp = cp->next;
3094 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3095 	}
3096 	sd_scsi_target_lun_head = NULL;
3097 	mutex_destroy(&sd_scsi_target_lun_mutex);
3098 }
3099 
3100 
3101 /*
3102  *    Function: sd_scsi_get_target_lun_count
3103  *
3104  * Description: This routine will check in the attached lun chain to see
3105  * 		how many luns are attached on the required SCSI controller
3106  * 		and target. Currently, some capabilities like tagged queue
3107  *		are supported per target based by HBA. So all luns in a
3108  *		target have the same capabilities. Based on this assumption,
3109  * 		sd should only set these capabilities once per target. This
3110  *		function is called when sd needs to decide how many luns
3111  *		already attached on a target.
3112  *
3113  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3114  *			  controller device.
3115  *              target	- The target ID on the controller's SCSI bus.
3116  *
3117  * Return Code: The number of luns attached on the required target and
3118  *		controller.
3119  *		-1 if target ID is not in parallel SCSI scope or the given
3120  * 		dip is not in the chain.
3121  *
3122  *     Context: Kernel thread context
3123  */
3124 
3125 static int
3126 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3127 {
3128 	struct sd_scsi_hba_tgt_lun	*cp;
3129 
3130 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3131 		return (-1);
3132 	}
3133 
3134 	mutex_enter(&sd_scsi_target_lun_mutex);
3135 
3136 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3137 		if (cp->pdip == dip) {
3138 			break;
3139 		}
3140 	}
3141 
3142 	mutex_exit(&sd_scsi_target_lun_mutex);
3143 
3144 	if (cp == NULL) {
3145 		return (-1);
3146 	}
3147 
3148 	return (cp->nlun[target]);
3149 }
3150 
3151 
3152 /*
3153  *    Function: sd_scsi_update_lun_on_target
3154  *
3155  * Description: This routine is used to update the attached lun chain when a
3156  *		lun is attached or detached on a target.
3157  *
3158  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3159  *                        controller device.
3160  *              target  - The target ID on the controller's SCSI bus.
3161  *		flag	- Indicate the lun is attached or detached.
3162  *
3163  *     Context: Kernel thread context
3164  */
3165 
3166 static void
3167 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3168 {
3169 	struct sd_scsi_hba_tgt_lun	*cp;
3170 
3171 	mutex_enter(&sd_scsi_target_lun_mutex);
3172 
3173 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3174 		if (cp->pdip == dip) {
3175 			break;
3176 		}
3177 	}
3178 
3179 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3180 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3181 		    KM_SLEEP);
3182 		cp->pdip = dip;
3183 		cp->next = sd_scsi_target_lun_head;
3184 		sd_scsi_target_lun_head = cp;
3185 	}
3186 
3187 	mutex_exit(&sd_scsi_target_lun_mutex);
3188 
3189 	if (cp != NULL) {
3190 		if (flag == SD_SCSI_LUN_ATTACH) {
3191 			cp->nlun[target] ++;
3192 		} else {
3193 			cp->nlun[target] --;
3194 		}
3195 	}
3196 }
3197 
3198 
3199 /*
3200  *    Function: sd_spin_up_unit
3201  *
3202  * Description: Issues the following commands to spin-up the device:
3203  *		START STOP UNIT, and INQUIRY.
3204  *
3205  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3206  *                      structure for this target.
3207  *
3208  * Return Code: 0 - success
3209  *		EIO - failure
3210  *		EACCES - reservation conflict
3211  *
3212  *     Context: Kernel thread context
3213  */
3214 
3215 static int
3216 sd_spin_up_unit(sd_ssc_t *ssc)
3217 {
3218 	size_t	resid		= 0;
3219 	int	has_conflict	= FALSE;
3220 	uchar_t *bufaddr;
3221 	int 	status;
3222 	struct sd_lun	*un;
3223 
3224 	ASSERT(ssc != NULL);
3225 	un = ssc->ssc_un;
3226 	ASSERT(un != NULL);
3227 
3228 	/*
3229 	 * Send a throwaway START UNIT command.
3230 	 *
3231 	 * If we fail on this, we don't care presently what precisely
3232 	 * is wrong.  EMC's arrays will also fail this with a check
3233 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3234 	 * we don't want to fail the attach because it may become
3235 	 * "active" later.
3236 	 * We don't know if power condition is supported or not at
3237 	 * this stage, use START STOP bit.
3238 	 */
3239 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3240 	    SD_TARGET_START, SD_PATH_DIRECT);
3241 
3242 	if (status != 0) {
3243 		if (status == EACCES)
3244 			has_conflict = TRUE;
3245 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3246 	}
3247 
3248 	/*
3249 	 * Send another INQUIRY command to the target. This is necessary for
3250 	 * non-removable media direct access devices because their INQUIRY data
3251 	 * may not be fully qualified until they are spun up (perhaps via the
3252 	 * START command above).  Note: This seems to be needed for some
3253 	 * legacy devices only.) The INQUIRY command should succeed even if a
3254 	 * Reservation Conflict is present.
3255 	 */
3256 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3257 
3258 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3259 	    != 0) {
3260 		kmem_free(bufaddr, SUN_INQSIZE);
3261 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3262 		return (EIO);
3263 	}
3264 
3265 	/*
3266 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3267 	 * Note that this routine does not return a failure here even if the
3268 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3269 	 */
3270 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3271 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3272 	}
3273 
3274 	kmem_free(bufaddr, SUN_INQSIZE);
3275 
3276 	/* If we hit a reservation conflict above, tell the caller. */
3277 	if (has_conflict == TRUE) {
3278 		return (EACCES);
3279 	}
3280 
3281 	return (0);
3282 }
3283 
3284 #ifdef _LP64
3285 /*
3286  *    Function: sd_enable_descr_sense
3287  *
3288  * Description: This routine attempts to select descriptor sense format
3289  *		using the Control mode page.  Devices that support 64 bit
3290  *		LBAs (for >2TB luns) should also implement descriptor
3291  *		sense data so we will call this function whenever we see
3292  *		a lun larger than 2TB.  If for some reason the device
3293  *		supports 64 bit LBAs but doesn't support descriptor sense
3294  *		presumably the mode select will fail.  Everything will
3295  *		continue to work normally except that we will not get
3296  *		complete sense data for commands that fail with an LBA
3297  *		larger than 32 bits.
3298  *
3299  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3300  *                      structure for this target.
3301  *
3302  *     Context: Kernel thread context only
3303  */
3304 
3305 static void
3306 sd_enable_descr_sense(sd_ssc_t *ssc)
3307 {
3308 	uchar_t			*header;
3309 	struct mode_control_scsi3 *ctrl_bufp;
3310 	size_t			buflen;
3311 	size_t			bd_len;
3312 	int			status;
3313 	struct sd_lun		*un;
3314 
3315 	ASSERT(ssc != NULL);
3316 	un = ssc->ssc_un;
3317 	ASSERT(un != NULL);
3318 
3319 	/*
3320 	 * Read MODE SENSE page 0xA, Control Mode Page
3321 	 */
3322 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3323 	    sizeof (struct mode_control_scsi3);
3324 	header = kmem_zalloc(buflen, KM_SLEEP);
3325 
3326 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3327 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3328 
3329 	if (status != 0) {
3330 		SD_ERROR(SD_LOG_COMMON, un,
3331 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3332 		goto eds_exit;
3333 	}
3334 
3335 	/*
3336 	 * Determine size of Block Descriptors in order to locate
3337 	 * the mode page data. ATAPI devices return 0, SCSI devices
3338 	 * should return MODE_BLK_DESC_LENGTH.
3339 	 */
3340 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3341 
3342 	/* Clear the mode data length field for MODE SELECT */
3343 	((struct mode_header *)header)->length = 0;
3344 
3345 	ctrl_bufp = (struct mode_control_scsi3 *)
3346 	    (header + MODE_HEADER_LENGTH + bd_len);
3347 
3348 	/*
3349 	 * If the page length is smaller than the expected value,
3350 	 * the target device doesn't support D_SENSE. Bail out here.
3351 	 */
3352 	if (ctrl_bufp->mode_page.length <
3353 	    sizeof (struct mode_control_scsi3) - 2) {
3354 		SD_ERROR(SD_LOG_COMMON, un,
3355 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3356 		goto eds_exit;
3357 	}
3358 
3359 	/*
3360 	 * Clear PS bit for MODE SELECT
3361 	 */
3362 	ctrl_bufp->mode_page.ps = 0;
3363 
3364 	/*
3365 	 * Set D_SENSE to enable descriptor sense format.
3366 	 */
3367 	ctrl_bufp->d_sense = 1;
3368 
3369 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3370 
3371 	/*
3372 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3373 	 */
3374 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3375 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3376 
3377 	if (status != 0) {
3378 		SD_INFO(SD_LOG_COMMON, un,
3379 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3380 	} else {
3381 		kmem_free(header, buflen);
3382 		return;
3383 	}
3384 
3385 eds_exit:
3386 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3387 	kmem_free(header, buflen);
3388 }
3389 
3390 /*
3391  *    Function: sd_reenable_dsense_task
3392  *
3393  * Description: Re-enable descriptor sense after device or bus reset
3394  *
3395  *     Context: Executes in a taskq() thread context
3396  */
3397 static void
3398 sd_reenable_dsense_task(void *arg)
3399 {
3400 	struct	sd_lun	*un = arg;
3401 	sd_ssc_t	*ssc;
3402 
3403 	ASSERT(un != NULL);
3404 
3405 	ssc = sd_ssc_init(un);
3406 	sd_enable_descr_sense(ssc);
3407 	sd_ssc_fini(ssc);
3408 }
3409 #endif /* _LP64 */
3410 
3411 /*
3412  *    Function: sd_set_mmc_caps
3413  *
3414  * Description: This routine determines if the device is MMC compliant and if
3415  *		the device supports CDDA via a mode sense of the CDVD
3416  *		capabilities mode page. Also checks if the device is a
3417  *		dvdram writable device.
3418  *
3419  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3420  *                      structure for this target.
3421  *
3422  *     Context: Kernel thread context only
3423  */
3424 
3425 static void
3426 sd_set_mmc_caps(sd_ssc_t *ssc)
3427 {
3428 	struct mode_header_grp2		*sense_mhp;
3429 	uchar_t				*sense_page;
3430 	caddr_t				buf;
3431 	int				bd_len;
3432 	int				status;
3433 	struct uscsi_cmd		com;
3434 	int				rtn;
3435 	uchar_t				*out_data_rw, *out_data_hd;
3436 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3437 	uchar_t				*out_data_gesn;
3438 	int				gesn_len;
3439 	struct sd_lun			*un;
3440 
3441 	ASSERT(ssc != NULL);
3442 	un = ssc->ssc_un;
3443 	ASSERT(un != NULL);
3444 
3445 	/*
3446 	 * The flags which will be set in this function are - mmc compliant,
3447 	 * dvdram writable device, cdda support. Initialize them to FALSE
3448 	 * and if a capability is detected - it will be set to TRUE.
3449 	 */
3450 	un->un_f_mmc_cap = FALSE;
3451 	un->un_f_dvdram_writable_device = FALSE;
3452 	un->un_f_cfg_cdda = FALSE;
3453 
3454 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3455 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3456 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3457 
3458 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3459 
3460 	if (status != 0) {
3461 		/* command failed; just return */
3462 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3463 		return;
3464 	}
3465 	/*
3466 	 * If the mode sense request for the CDROM CAPABILITIES
3467 	 * page (0x2A) succeeds the device is assumed to be MMC.
3468 	 */
3469 	un->un_f_mmc_cap = TRUE;
3470 
3471 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3472 	if (un->un_f_mmc_gesn_polling) {
3473 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3474 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3475 
3476 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3477 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3478 
3479 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3480 
3481 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3482 			un->un_f_mmc_gesn_polling = FALSE;
3483 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3484 			    "sd_set_mmc_caps: gesn not supported "
3485 			    "%d %x %x %x %x\n", rtn,
3486 			    out_data_gesn[0], out_data_gesn[1],
3487 			    out_data_gesn[2], out_data_gesn[3]);
3488 		}
3489 
3490 		kmem_free(out_data_gesn, gesn_len);
3491 	}
3492 
3493 	/* Get to the page data */
3494 	sense_mhp = (struct mode_header_grp2 *)buf;
3495 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3496 	    sense_mhp->bdesc_length_lo;
3497 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3498 		/*
3499 		 * We did not get back the expected block descriptor
3500 		 * length so we cannot determine if the device supports
3501 		 * CDDA. However, we still indicate the device is MMC
3502 		 * according to the successful response to the page
3503 		 * 0x2A mode sense request.
3504 		 */
3505 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3506 		    "sd_set_mmc_caps: Mode Sense returned "
3507 		    "invalid block descriptor length\n");
3508 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3509 		return;
3510 	}
3511 
3512 	/* See if read CDDA is supported */
3513 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3514 	    bd_len);
3515 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3516 
3517 	/* See if writing DVD RAM is supported. */
3518 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3519 	if (un->un_f_dvdram_writable_device == TRUE) {
3520 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3521 		return;
3522 	}
3523 
3524 	/*
3525 	 * If the device presents DVD or CD capabilities in the mode
3526 	 * page, we can return here since a RRD will not have
3527 	 * these capabilities.
3528 	 */
3529 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3530 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3531 		return;
3532 	}
3533 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3534 
3535 	/*
3536 	 * If un->un_f_dvdram_writable_device is still FALSE,
3537 	 * check for a Removable Rigid Disk (RRD).  A RRD
3538 	 * device is identified by the features RANDOM_WRITABLE and
3539 	 * HARDWARE_DEFECT_MANAGEMENT.
3540 	 */
3541 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3542 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3543 
3544 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3545 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3546 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3547 
3548 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3549 
3550 	if (rtn != 0) {
3551 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3552 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3553 		return;
3554 	}
3555 
3556 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3557 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3558 
3559 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3560 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3561 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3562 
3563 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3564 
3565 	if (rtn == 0) {
3566 		/*
3567 		 * We have good information, check for random writable
3568 		 * and hardware defect features.
3569 		 */
3570 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3571 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3572 			un->un_f_dvdram_writable_device = TRUE;
3573 		}
3574 	}
3575 
3576 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3577 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3578 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3579 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3580 }
3581 
3582 /*
3583  *    Function: sd_check_for_writable_cd
3584  *
3585  * Description: This routine determines if the media in the device is
3586  *		writable or not. It uses the get configuration command (0x46)
3587  *		to determine if the media is writable
3588  *
3589  *   Arguments: un - driver soft state (unit) structure
3590  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3591  *                           chain and the normal command waitq, or
3592  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3593  *                           "direct" chain and bypass the normal command
3594  *                           waitq.
3595  *
3596  *     Context: Never called at interrupt context.
3597  */
3598 
3599 static void
3600 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3601 {
3602 	struct uscsi_cmd		com;
3603 	uchar_t				*out_data;
3604 	uchar_t				*rqbuf;
3605 	int				rtn;
3606 	uchar_t				*out_data_rw, *out_data_hd;
3607 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3608 	struct mode_header_grp2		*sense_mhp;
3609 	uchar_t				*sense_page;
3610 	caddr_t				buf;
3611 	int				bd_len;
3612 	int				status;
3613 	struct sd_lun			*un;
3614 
3615 	ASSERT(ssc != NULL);
3616 	un = ssc->ssc_un;
3617 	ASSERT(un != NULL);
3618 	ASSERT(mutex_owned(SD_MUTEX(un)));
3619 
3620 	/*
3621 	 * Initialize the writable media to false, if configuration info.
3622 	 * tells us otherwise then only we will set it.
3623 	 */
3624 	un->un_f_mmc_writable_media = FALSE;
3625 	mutex_exit(SD_MUTEX(un));
3626 
3627 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3628 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3629 
3630 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3631 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3632 
3633 	if (rtn != 0)
3634 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3635 
3636 	mutex_enter(SD_MUTEX(un));
3637 	if (rtn == 0) {
3638 		/*
3639 		 * We have good information, check for writable DVD.
3640 		 */
3641 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3642 			un->un_f_mmc_writable_media = TRUE;
3643 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3644 			kmem_free(rqbuf, SENSE_LENGTH);
3645 			return;
3646 		}
3647 	}
3648 
3649 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3650 	kmem_free(rqbuf, SENSE_LENGTH);
3651 
3652 	/*
3653 	 * Determine if this is a RRD type device.
3654 	 */
3655 	mutex_exit(SD_MUTEX(un));
3656 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3657 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3658 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3659 
3660 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3661 
3662 	mutex_enter(SD_MUTEX(un));
3663 	if (status != 0) {
3664 		/* command failed; just return */
3665 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3666 		return;
3667 	}
3668 
3669 	/* Get to the page data */
3670 	sense_mhp = (struct mode_header_grp2 *)buf;
3671 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3672 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3673 		/*
3674 		 * We did not get back the expected block descriptor length so
3675 		 * we cannot check the mode page.
3676 		 */
3677 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3678 		    "sd_check_for_writable_cd: Mode Sense returned "
3679 		    "invalid block descriptor length\n");
3680 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3681 		return;
3682 	}
3683 
3684 	/*
3685 	 * If the device presents DVD or CD capabilities in the mode
3686 	 * page, we can return here since a RRD device will not have
3687 	 * these capabilities.
3688 	 */
3689 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3690 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3691 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3692 		return;
3693 	}
3694 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3695 
3696 	/*
3697 	 * If un->un_f_mmc_writable_media is still FALSE,
3698 	 * check for RRD type media.  A RRD device is identified
3699 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3700 	 */
3701 	mutex_exit(SD_MUTEX(un));
3702 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3703 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3704 
3705 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3706 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3707 	    RANDOM_WRITABLE, path_flag);
3708 
3709 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3710 	if (rtn != 0) {
3711 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3712 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3713 		mutex_enter(SD_MUTEX(un));
3714 		return;
3715 	}
3716 
3717 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3718 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3719 
3720 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3721 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3722 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3723 
3724 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3725 	mutex_enter(SD_MUTEX(un));
3726 	if (rtn == 0) {
3727 		/*
3728 		 * We have good information, check for random writable
3729 		 * and hardware defect features as current.
3730 		 */
3731 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3732 		    (out_data_rw[10] & 0x1) &&
3733 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3734 		    (out_data_hd[10] & 0x1)) {
3735 			un->un_f_mmc_writable_media = TRUE;
3736 		}
3737 	}
3738 
3739 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3740 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3741 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3742 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3743 }
3744 
3745 /*
3746  *    Function: sd_read_unit_properties
3747  *
3748  * Description: The following implements a property lookup mechanism.
3749  *		Properties for particular disks (keyed on vendor, model
3750  *		and rev numbers) are sought in the sd.conf file via
3751  *		sd_process_sdconf_file(), and if not found there, are
3752  *		looked for in a list hardcoded in this driver via
3753  *		sd_process_sdconf_table() Once located the properties
3754  *		are used to update the driver unit structure.
3755  *
3756  *   Arguments: un - driver soft state (unit) structure
3757  */
3758 
3759 static void
3760 sd_read_unit_properties(struct sd_lun *un)
3761 {
3762 	/*
3763 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3764 	 * the "sd-config-list" property (from the sd.conf file) or if
3765 	 * there was not a match for the inquiry vid/pid. If this event
3766 	 * occurs the static driver configuration table is searched for
3767 	 * a match.
3768 	 */
3769 	ASSERT(un != NULL);
3770 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3771 		sd_process_sdconf_table(un);
3772 	}
3773 
3774 	/* check for LSI device */
3775 	sd_is_lsi(un);
3776 
3777 
3778 }
3779 
3780 
3781 /*
3782  *    Function: sd_process_sdconf_file
3783  *
3784  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3785  *		driver's config file (ie, sd.conf) and update the driver
3786  *		soft state structure accordingly.
3787  *
3788  *   Arguments: un - driver soft state (unit) structure
3789  *
3790  * Return Code: SD_SUCCESS - The properties were successfully set according
3791  *			     to the driver configuration file.
3792  *		SD_FAILURE - The driver config list was not obtained or
3793  *			     there was no vid/pid match. This indicates that
3794  *			     the static config table should be used.
3795  *
3796  * The config file has a property, "sd-config-list". Currently we support
3797  * two kinds of formats. For both formats, the value of this property
3798  * is a list of duplets:
3799  *
3800  *  sd-config-list=
3801  *	<duplet>,
3802  *	[,<duplet>]*;
3803  *
3804  * For the improved format, where
3805  *
3806  *     <duplet>:= "<vid+pid>","<tunable-list>"
3807  *
3808  * and
3809  *
3810  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3811  *     <tunable> =        <name> : <value>
3812  *
3813  * The <vid+pid> is the string that is returned by the target device on a
3814  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3815  * to apply to all target devices with the specified <vid+pid>.
3816  *
3817  * Each <tunable> is a "<name> : <value>" pair.
3818  *
3819  * For the old format, the structure of each duplet is as follows:
3820  *
3821  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3822  *
3823  * The first entry of the duplet is the device ID string (the concatenated
3824  * vid & pid; not to be confused with a device_id).  This is defined in
3825  * the same way as in the sd_disk_table.
3826  *
3827  * The second part of the duplet is a string that identifies a
3828  * data-property-name-list. The data-property-name-list is defined as
3829  * follows:
3830  *
3831  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3832  *
3833  * The syntax of <data-property-name> depends on the <version> field.
3834  *
3835  * If version = SD_CONF_VERSION_1 we have the following syntax:
3836  *
3837  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3838  *
3839  * where the prop0 value will be used to set prop0 if bit0 set in the
3840  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3841  *
3842  */
3843 
3844 static int
3845 sd_process_sdconf_file(struct sd_lun *un)
3846 {
3847 	char	**config_list = NULL;
3848 	uint_t	nelements;
3849 	char	*vidptr;
3850 	int	vidlen;
3851 	char	*dnlist_ptr;
3852 	char	*dataname_ptr;
3853 	char	*dataname_lasts;
3854 	int	*data_list = NULL;
3855 	uint_t	data_list_len;
3856 	int	rval = SD_FAILURE;
3857 	int	i;
3858 
3859 	ASSERT(un != NULL);
3860 
3861 	/* Obtain the configuration list associated with the .conf file */
3862 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3863 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3864 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3865 		return (SD_FAILURE);
3866 	}
3867 
3868 	/*
3869 	 * Compare vids in each duplet to the inquiry vid - if a match is
3870 	 * made, get the data value and update the soft state structure
3871 	 * accordingly.
3872 	 *
3873 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3874 	 * otherwise.
3875 	 */
3876 	if (nelements & 1) {
3877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3878 		    "sd-config-list should show as pairs of strings.\n");
3879 		if (config_list)
3880 			ddi_prop_free(config_list);
3881 		return (SD_FAILURE);
3882 	}
3883 
3884 	for (i = 0; i < nelements; i += 2) {
3885 		/*
3886 		 * Note: The assumption here is that each vid entry is on
3887 		 * a unique line from its associated duplet.
3888 		 */
3889 		vidptr = config_list[i];
3890 		vidlen = (int)strlen(vidptr);
3891 		if (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS) {
3892 			continue;
3893 		}
3894 
3895 		/*
3896 		 * dnlist contains 1 or more blank separated
3897 		 * data-property-name entries
3898 		 */
3899 		dnlist_ptr = config_list[i + 1];
3900 
3901 		if (strchr(dnlist_ptr, ':') != NULL) {
3902 			/*
3903 			 * Decode the improved format sd-config-list.
3904 			 */
3905 			sd_nvpair_str_decode(un, dnlist_ptr);
3906 		} else {
3907 			/*
3908 			 * The old format sd-config-list, loop through all
3909 			 * data-property-name entries in the
3910 			 * data-property-name-list
3911 			 * setting the properties for each.
3912 			 */
3913 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3914 			    &dataname_lasts); dataname_ptr != NULL;
3915 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3916 			    &dataname_lasts)) {
3917 				int version;
3918 
3919 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3920 				    "sd_process_sdconf_file: disk:%s, "
3921 				    "data:%s\n", vidptr, dataname_ptr);
3922 
3923 				/* Get the data list */
3924 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3925 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3926 				    &data_list_len) != DDI_PROP_SUCCESS) {
3927 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3928 					    "sd_process_sdconf_file: data "
3929 					    "property (%s) has no value\n",
3930 					    dataname_ptr);
3931 					continue;
3932 				}
3933 
3934 				version = data_list[0];
3935 
3936 				if (version == SD_CONF_VERSION_1) {
3937 					sd_tunables values;
3938 
3939 					/* Set the properties */
3940 					if (sd_chk_vers1_data(un, data_list[1],
3941 					    &data_list[2], data_list_len,
3942 					    dataname_ptr) == SD_SUCCESS) {
3943 						sd_get_tunables_from_conf(un,
3944 						    data_list[1], &data_list[2],
3945 						    &values);
3946 						sd_set_vers1_properties(un,
3947 						    data_list[1], &values);
3948 						rval = SD_SUCCESS;
3949 					} else {
3950 						rval = SD_FAILURE;
3951 					}
3952 				} else {
3953 					scsi_log(SD_DEVINFO(un), sd_label,
3954 					    CE_WARN, "data property %s version "
3955 					    "0x%x is invalid.",
3956 					    dataname_ptr, version);
3957 					rval = SD_FAILURE;
3958 				}
3959 				if (data_list)
3960 					ddi_prop_free(data_list);
3961 			}
3962 		}
3963 	}
3964 
3965 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3966 	if (config_list) {
3967 		ddi_prop_free(config_list);
3968 	}
3969 
3970 	return (rval);
3971 }
3972 
3973 /*
3974  *    Function: sd_nvpair_str_decode()
3975  *
3976  * Description: Parse the improved format sd-config-list to get
3977  *    each entry of tunable, which includes a name-value pair.
3978  *    Then call sd_set_properties() to set the property.
3979  *
3980  *   Arguments: un - driver soft state (unit) structure
3981  *    nvpair_str - the tunable list
3982  */
3983 static void
3984 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3985 {
3986 	char	*nv, *name, *value, *token;
3987 	char	*nv_lasts, *v_lasts, *x_lasts;
3988 
3989 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3990 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3991 		token = sd_strtok_r(nv, ":", &v_lasts);
3992 		name  = sd_strtok_r(token, " \t", &x_lasts);
3993 		token = sd_strtok_r(NULL, ":", &v_lasts);
3994 		value = sd_strtok_r(token, " \t", &x_lasts);
3995 		if (name == NULL || value == NULL) {
3996 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3997 			    "sd_nvpair_str_decode: "
3998 			    "name or value is not valid!\n");
3999 		} else {
4000 			sd_set_properties(un, name, value);
4001 		}
4002 	}
4003 }
4004 
4005 /*
4006  *    Function: sd_strtok_r()
4007  *
4008  * Description: This function uses strpbrk and strspn to break
4009  *    string into tokens on sequentially subsequent calls. Return
4010  *    NULL when no non-separator characters remain. The first
4011  *    argument is NULL for subsequent calls.
4012  */
4013 static char *
4014 sd_strtok_r(char *string, const char *sepset, char **lasts)
4015 {
4016 	char	*q, *r;
4017 
4018 	/* First or subsequent call */
4019 	if (string == NULL)
4020 		string = *lasts;
4021 
4022 	if (string == NULL)
4023 		return (NULL);
4024 
4025 	/* Skip leading separators */
4026 	q = string + strspn(string, sepset);
4027 
4028 	if (*q == '\0')
4029 		return (NULL);
4030 
4031 	if ((r = strpbrk(q, sepset)) == NULL)
4032 		*lasts = NULL;
4033 	else {
4034 		*r = '\0';
4035 		*lasts = r + 1;
4036 	}
4037 	return (q);
4038 }
4039 
4040 /*
4041  *    Function: sd_set_properties()
4042  *
4043  * Description: Set device properties based on the improved
4044  *    format sd-config-list.
4045  *
4046  *   Arguments: un - driver soft state (unit) structure
4047  *    name  - supported tunable name
4048  *    value - tunable value
4049  */
4050 static void
4051 sd_set_properties(struct sd_lun *un, char *name, char *value)
4052 {
4053 	char	*endptr = NULL;
4054 	long	val = 0;
4055 
4056 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4057 		if (strcasecmp(value, "true") == 0) {
4058 			un->un_f_suppress_cache_flush = TRUE;
4059 		} else if (strcasecmp(value, "false") == 0) {
4060 			un->un_f_suppress_cache_flush = FALSE;
4061 		} else {
4062 			goto value_invalid;
4063 		}
4064 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4065 		    "suppress_cache_flush flag set to %d\n",
4066 		    un->un_f_suppress_cache_flush);
4067 		return;
4068 	}
4069 
4070 	if (strcasecmp(name, "controller-type") == 0) {
4071 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4072 			un->un_ctype = val;
4073 		} else {
4074 			goto value_invalid;
4075 		}
4076 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4077 		    "ctype set to %d\n", un->un_ctype);
4078 		return;
4079 	}
4080 
4081 	if (strcasecmp(name, "delay-busy") == 0) {
4082 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4083 			un->un_busy_timeout = drv_usectohz(val / 1000);
4084 		} else {
4085 			goto value_invalid;
4086 		}
4087 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4088 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4089 		return;
4090 	}
4091 
4092 	if (strcasecmp(name, "disksort") == 0) {
4093 		if (strcasecmp(value, "true") == 0) {
4094 			un->un_f_disksort_disabled = FALSE;
4095 		} else if (strcasecmp(value, "false") == 0) {
4096 			un->un_f_disksort_disabled = TRUE;
4097 		} else {
4098 			goto value_invalid;
4099 		}
4100 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4101 		    "disksort disabled flag set to %d\n",
4102 		    un->un_f_disksort_disabled);
4103 		return;
4104 	}
4105 
4106 	if (strcasecmp(name, "power-condition") == 0) {
4107 		if (strcasecmp(value, "true") == 0) {
4108 			un->un_f_power_condition_disabled = FALSE;
4109 		} else if (strcasecmp(value, "false") == 0) {
4110 			un->un_f_power_condition_disabled = TRUE;
4111 		} else {
4112 			goto value_invalid;
4113 		}
4114 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4115 		    "power condition disabled flag set to %d\n",
4116 		    un->un_f_power_condition_disabled);
4117 		return;
4118 	}
4119 
4120 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4121 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4122 			un->un_reserve_release_time = val;
4123 		} else {
4124 			goto value_invalid;
4125 		}
4126 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4127 		    "reservation release timeout set to %d\n",
4128 		    un->un_reserve_release_time);
4129 		return;
4130 	}
4131 
4132 	if (strcasecmp(name, "reset-lun") == 0) {
4133 		if (strcasecmp(value, "true") == 0) {
4134 			un->un_f_lun_reset_enabled = TRUE;
4135 		} else if (strcasecmp(value, "false") == 0) {
4136 			un->un_f_lun_reset_enabled = FALSE;
4137 		} else {
4138 			goto value_invalid;
4139 		}
4140 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4141 		    "lun reset enabled flag set to %d\n",
4142 		    un->un_f_lun_reset_enabled);
4143 		return;
4144 	}
4145 
4146 	if (strcasecmp(name, "retries-busy") == 0) {
4147 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4148 			un->un_busy_retry_count = val;
4149 		} else {
4150 			goto value_invalid;
4151 		}
4152 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4153 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4154 		return;
4155 	}
4156 
4157 	if (strcasecmp(name, "retries-timeout") == 0) {
4158 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4159 			un->un_retry_count = val;
4160 		} else {
4161 			goto value_invalid;
4162 		}
4163 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4164 		    "timeout retry count set to %d\n", un->un_retry_count);
4165 		return;
4166 	}
4167 
4168 	if (strcasecmp(name, "retries-notready") == 0) {
4169 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4170 			un->un_notready_retry_count = val;
4171 		} else {
4172 			goto value_invalid;
4173 		}
4174 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4175 		    "notready retry count set to %d\n",
4176 		    un->un_notready_retry_count);
4177 		return;
4178 	}
4179 
4180 	if (strcasecmp(name, "retries-reset") == 0) {
4181 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4182 			un->un_reset_retry_count = val;
4183 		} else {
4184 			goto value_invalid;
4185 		}
4186 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4187 		    "reset retry count set to %d\n",
4188 		    un->un_reset_retry_count);
4189 		return;
4190 	}
4191 
4192 	if (strcasecmp(name, "throttle-max") == 0) {
4193 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4194 			un->un_saved_throttle = un->un_throttle = val;
4195 		} else {
4196 			goto value_invalid;
4197 		}
4198 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4199 		    "throttle set to %d\n", un->un_throttle);
4200 	}
4201 
4202 	if (strcasecmp(name, "throttle-min") == 0) {
4203 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4204 			un->un_min_throttle = val;
4205 		} else {
4206 			goto value_invalid;
4207 		}
4208 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4209 		    "min throttle set to %d\n", un->un_min_throttle);
4210 	}
4211 
4212 	if (strcasecmp(name, "rmw-type") == 0) {
4213 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4214 			un->un_f_rmw_type = val;
4215 		} else {
4216 			goto value_invalid;
4217 		}
4218 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4219 		    "RMW type set to %d\n", un->un_f_rmw_type);
4220 	}
4221 
4222 	if (strcasecmp(name, "physical-block-size") == 0) {
4223 		if (ddi_strtol(value, &endptr, 0, &val) == 0 &&
4224 		    ISP2(val) && val >= un->un_tgt_blocksize &&
4225 		    val >= un->un_sys_blocksize) {
4226 			un->un_phy_blocksize = val;
4227 		} else {
4228 			goto value_invalid;
4229 		}
4230 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4231 		    "physical block size set to %d\n", un->un_phy_blocksize);
4232 	}
4233 
4234 	if (strcasecmp(name, "retries-victim") == 0) {
4235 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4236 			un->un_victim_retry_count = val;
4237 		} else {
4238 			goto value_invalid;
4239 		}
4240 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4241 		    "victim retry count set to %d\n",
4242 		    un->un_victim_retry_count);
4243 		return;
4244 	}
4245 
4246 	/*
4247 	 * Validate the throttle values.
4248 	 * If any of the numbers are invalid, set everything to defaults.
4249 	 */
4250 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4251 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4252 	    (un->un_min_throttle > un->un_throttle)) {
4253 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4254 		un->un_min_throttle = sd_min_throttle;
4255 	}
4256 
4257 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4258 		if (strcasecmp(value, "true") == 0) {
4259 			un->un_f_mmc_gesn_polling = TRUE;
4260 		} else if (strcasecmp(value, "false") == 0) {
4261 			un->un_f_mmc_gesn_polling = FALSE;
4262 		} else {
4263 			goto value_invalid;
4264 		}
4265 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4266 		    "mmc-gesn-polling set to %d\n",
4267 		    un->un_f_mmc_gesn_polling);
4268 	}
4269 
4270 	return;
4271 
4272 value_invalid:
4273 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4274 	    "value of prop %s is invalid\n", name);
4275 }
4276 
4277 /*
4278  *    Function: sd_get_tunables_from_conf()
4279  *
4280  *
4281  *    This function reads the data list from the sd.conf file and pulls
4282  *    the values that can have numeric values as arguments and places
4283  *    the values in the appropriate sd_tunables member.
4284  *    Since the order of the data list members varies across platforms
4285  *    This function reads them from the data list in a platform specific
4286  *    order and places them into the correct sd_tunable member that is
4287  *    consistent across all platforms.
4288  */
4289 static void
4290 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4291     sd_tunables *values)
4292 {
4293 	int i;
4294 	int mask;
4295 
4296 	bzero(values, sizeof (sd_tunables));
4297 
4298 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4299 
4300 		mask = 1 << i;
4301 		if (mask > flags) {
4302 			break;
4303 		}
4304 
4305 		switch (mask & flags) {
4306 		case 0:	/* This mask bit not set in flags */
4307 			continue;
4308 		case SD_CONF_BSET_THROTTLE:
4309 			values->sdt_throttle = data_list[i];
4310 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4311 			    "sd_get_tunables_from_conf: throttle = %d\n",
4312 			    values->sdt_throttle);
4313 			break;
4314 		case SD_CONF_BSET_CTYPE:
4315 			values->sdt_ctype = data_list[i];
4316 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4317 			    "sd_get_tunables_from_conf: ctype = %d\n",
4318 			    values->sdt_ctype);
4319 			break;
4320 		case SD_CONF_BSET_NRR_COUNT:
4321 			values->sdt_not_rdy_retries = data_list[i];
4322 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4323 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4324 			    values->sdt_not_rdy_retries);
4325 			break;
4326 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4327 			values->sdt_busy_retries = data_list[i];
4328 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4329 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4330 			    values->sdt_busy_retries);
4331 			break;
4332 		case SD_CONF_BSET_RST_RETRIES:
4333 			values->sdt_reset_retries = data_list[i];
4334 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4335 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4336 			    values->sdt_reset_retries);
4337 			break;
4338 		case SD_CONF_BSET_RSV_REL_TIME:
4339 			values->sdt_reserv_rel_time = data_list[i];
4340 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4341 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4342 			    values->sdt_reserv_rel_time);
4343 			break;
4344 		case SD_CONF_BSET_MIN_THROTTLE:
4345 			values->sdt_min_throttle = data_list[i];
4346 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4347 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4348 			    values->sdt_min_throttle);
4349 			break;
4350 		case SD_CONF_BSET_DISKSORT_DISABLED:
4351 			values->sdt_disk_sort_dis = data_list[i];
4352 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4353 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4354 			    values->sdt_disk_sort_dis);
4355 			break;
4356 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4357 			values->sdt_lun_reset_enable = data_list[i];
4358 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4359 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4360 			    "\n", values->sdt_lun_reset_enable);
4361 			break;
4362 		case SD_CONF_BSET_CACHE_IS_NV:
4363 			values->sdt_suppress_cache_flush = data_list[i];
4364 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4365 			    "sd_get_tunables_from_conf: \
4366 			    suppress_cache_flush = %d"
4367 			    "\n", values->sdt_suppress_cache_flush);
4368 			break;
4369 		case SD_CONF_BSET_PC_DISABLED:
4370 			values->sdt_disk_sort_dis = data_list[i];
4371 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4372 			    "sd_get_tunables_from_conf: power_condition_dis = "
4373 			    "%d\n", values->sdt_power_condition_dis);
4374 			break;
4375 		}
4376 	}
4377 }
4378 
4379 /*
4380  *    Function: sd_process_sdconf_table
4381  *
4382  * Description: Search the static configuration table for a match on the
4383  *		inquiry vid/pid and update the driver soft state structure
4384  *		according to the table property values for the device.
4385  *
4386  *		The form of a configuration table entry is:
4387  *		  <vid+pid>,<flags>,<property-data>
4388  *		  "SEAGATE ST42400N",1,0x40000,
4389  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4390  *
4391  *   Arguments: un - driver soft state (unit) structure
4392  */
4393 
4394 static void
4395 sd_process_sdconf_table(struct sd_lun *un)
4396 {
4397 	char	*id = NULL;
4398 	int	table_index;
4399 	int	idlen;
4400 
4401 	ASSERT(un != NULL);
4402 	for (table_index = 0; table_index < sd_disk_table_size;
4403 	    table_index++) {
4404 		id = sd_disk_table[table_index].device_id;
4405 		idlen = strlen(id);
4406 
4407 		/*
4408 		 * The static configuration table currently does not
4409 		 * implement version 10 properties. Additionally,
4410 		 * multiple data-property-name entries are not
4411 		 * implemented in the static configuration table.
4412 		 */
4413 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4414 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4415 			    "sd_process_sdconf_table: disk %s\n", id);
4416 			sd_set_vers1_properties(un,
4417 			    sd_disk_table[table_index].flags,
4418 			    sd_disk_table[table_index].properties);
4419 			break;
4420 		}
4421 	}
4422 }
4423 
4424 
4425 /*
4426  *    Function: sd_sdconf_id_match
4427  *
4428  * Description: This local function implements a case sensitive vid/pid
4429  *		comparison as well as the boundary cases of wild card and
4430  *		multiple blanks.
4431  *
4432  *		Note: An implicit assumption made here is that the scsi
4433  *		inquiry structure will always keep the vid, pid and
4434  *		revision strings in consecutive sequence, so they can be
4435  *		read as a single string. If this assumption is not the
4436  *		case, a separate string, to be used for the check, needs
4437  *		to be built with these strings concatenated.
4438  *
4439  *   Arguments: un - driver soft state (unit) structure
4440  *		id - table or config file vid/pid
4441  *		idlen  - length of the vid/pid (bytes)
4442  *
4443  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4444  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4445  */
4446 
4447 static int
4448 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4449 {
4450 	struct scsi_inquiry	*sd_inq;
4451 	int 			rval = SD_SUCCESS;
4452 
4453 	ASSERT(un != NULL);
4454 	sd_inq = un->un_sd->sd_inq;
4455 	ASSERT(id != NULL);
4456 
4457 	/*
4458 	 * We use the inq_vid as a pointer to a buffer containing the
4459 	 * vid and pid and use the entire vid/pid length of the table
4460 	 * entry for the comparison. This works because the inq_pid
4461 	 * data member follows inq_vid in the scsi_inquiry structure.
4462 	 */
4463 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4464 		/*
4465 		 * The user id string is compared to the inquiry vid/pid
4466 		 * using a case insensitive comparison and ignoring
4467 		 * multiple spaces.
4468 		 */
4469 		rval = sd_blank_cmp(un, id, idlen);
4470 		if (rval != SD_SUCCESS) {
4471 			/*
4472 			 * User id strings that start and end with a "*"
4473 			 * are a special case. These do not have a
4474 			 * specific vendor, and the product string can
4475 			 * appear anywhere in the 16 byte PID portion of
4476 			 * the inquiry data. This is a simple strstr()
4477 			 * type search for the user id in the inquiry data.
4478 			 */
4479 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4480 				char	*pidptr = &id[1];
4481 				int	i;
4482 				int	j;
4483 				int	pidstrlen = idlen - 2;
4484 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4485 				    pidstrlen;
4486 
4487 				if (j < 0) {
4488 					return (SD_FAILURE);
4489 				}
4490 				for (i = 0; i < j; i++) {
4491 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4492 					    pidptr, pidstrlen) == 0) {
4493 						rval = SD_SUCCESS;
4494 						break;
4495 					}
4496 				}
4497 			}
4498 		}
4499 	}
4500 	return (rval);
4501 }
4502 
4503 
4504 /*
4505  *    Function: sd_blank_cmp
4506  *
4507  * Description: If the id string starts and ends with a space, treat
4508  *		multiple consecutive spaces as equivalent to a single
4509  *		space. For example, this causes a sd_disk_table entry
4510  *		of " NEC CDROM " to match a device's id string of
4511  *		"NEC       CDROM".
4512  *
4513  *		Note: The success exit condition for this routine is if
4514  *		the pointer to the table entry is '\0' and the cnt of
4515  *		the inquiry length is zero. This will happen if the inquiry
4516  *		string returned by the device is padded with spaces to be
4517  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4518  *		SCSI spec states that the inquiry string is to be padded with
4519  *		spaces.
4520  *
4521  *   Arguments: un - driver soft state (unit) structure
4522  *		id - table or config file vid/pid
4523  *		idlen  - length of the vid/pid (bytes)
4524  *
4525  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4526  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4527  */
4528 
4529 static int
4530 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4531 {
4532 	char		*p1;
4533 	char		*p2;
4534 	int		cnt;
4535 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4536 	    sizeof (SD_INQUIRY(un)->inq_pid);
4537 
4538 	ASSERT(un != NULL);
4539 	p2 = un->un_sd->sd_inq->inq_vid;
4540 	ASSERT(id != NULL);
4541 	p1 = id;
4542 
4543 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4544 		/*
4545 		 * Note: string p1 is terminated by a NUL but string p2
4546 		 * isn't.  The end of p2 is determined by cnt.
4547 		 */
4548 		for (;;) {
4549 			/* skip over any extra blanks in both strings */
4550 			while ((*p1 != '\0') && (*p1 == ' ')) {
4551 				p1++;
4552 			}
4553 			while ((cnt != 0) && (*p2 == ' ')) {
4554 				p2++;
4555 				cnt--;
4556 			}
4557 
4558 			/* compare the two strings */
4559 			if ((cnt == 0) ||
4560 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4561 				break;
4562 			}
4563 			while ((cnt > 0) &&
4564 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4565 				p1++;
4566 				p2++;
4567 				cnt--;
4568 			}
4569 		}
4570 	}
4571 
4572 	/* return SD_SUCCESS if both strings match */
4573 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4574 }
4575 
4576 
4577 /*
4578  *    Function: sd_chk_vers1_data
4579  *
4580  * Description: Verify the version 1 device properties provided by the
4581  *		user via the configuration file
4582  *
4583  *   Arguments: un	     - driver soft state (unit) structure
4584  *		flags	     - integer mask indicating properties to be set
4585  *		prop_list    - integer list of property values
4586  *		list_len     - number of the elements
4587  *
4588  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4589  *		SD_FAILURE - Indicates the user provided data is invalid
4590  */
4591 
4592 static int
4593 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4594     int list_len, char *dataname_ptr)
4595 {
4596 	int i;
4597 	int mask = 1;
4598 	int index = 0;
4599 
4600 	ASSERT(un != NULL);
4601 
4602 	/* Check for a NULL property name and list */
4603 	if (dataname_ptr == NULL) {
4604 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4605 		    "sd_chk_vers1_data: NULL data property name.");
4606 		return (SD_FAILURE);
4607 	}
4608 	if (prop_list == NULL) {
4609 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4610 		    "sd_chk_vers1_data: %s NULL data property list.",
4611 		    dataname_ptr);
4612 		return (SD_FAILURE);
4613 	}
4614 
4615 	/* Display a warning if undefined bits are set in the flags */
4616 	if (flags & ~SD_CONF_BIT_MASK) {
4617 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4618 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4619 		    "Properties not set.",
4620 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4621 		return (SD_FAILURE);
4622 	}
4623 
4624 	/*
4625 	 * Verify the length of the list by identifying the highest bit set
4626 	 * in the flags and validating that the property list has a length
4627 	 * up to the index of this bit.
4628 	 */
4629 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4630 		if (flags & mask) {
4631 			index++;
4632 		}
4633 		mask = 1 << i;
4634 	}
4635 	if (list_len < (index + 2)) {
4636 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4637 		    "sd_chk_vers1_data: "
4638 		    "Data property list %s size is incorrect. "
4639 		    "Properties not set.", dataname_ptr);
4640 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4641 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4642 		return (SD_FAILURE);
4643 	}
4644 	return (SD_SUCCESS);
4645 }
4646 
4647 
4648 /*
4649  *    Function: sd_set_vers1_properties
4650  *
4651  * Description: Set version 1 device properties based on a property list
4652  *		retrieved from the driver configuration file or static
4653  *		configuration table. Version 1 properties have the format:
4654  *
4655  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4656  *
4657  *		where the prop0 value will be used to set prop0 if bit0
4658  *		is set in the flags
4659  *
4660  *   Arguments: un	     - driver soft state (unit) structure
4661  *		flags	     - integer mask indicating properties to be set
4662  *		prop_list    - integer list of property values
4663  */
4664 
4665 static void
4666 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4667 {
4668 	ASSERT(un != NULL);
4669 
4670 	/*
4671 	 * Set the flag to indicate cache is to be disabled. An attempt
4672 	 * to disable the cache via sd_cache_control() will be made
4673 	 * later during attach once the basic initialization is complete.
4674 	 */
4675 	if (flags & SD_CONF_BSET_NOCACHE) {
4676 		un->un_f_opt_disable_cache = TRUE;
4677 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4678 		    "sd_set_vers1_properties: caching disabled flag set\n");
4679 	}
4680 
4681 	/* CD-specific configuration parameters */
4682 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4683 		un->un_f_cfg_playmsf_bcd = TRUE;
4684 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4685 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4686 	}
4687 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4688 		un->un_f_cfg_readsub_bcd = TRUE;
4689 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4690 		    "sd_set_vers1_properties: readsub_bcd set\n");
4691 	}
4692 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4693 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4694 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4695 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4696 	}
4697 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4698 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4699 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4700 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4701 	}
4702 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4703 		un->un_f_cfg_no_read_header = TRUE;
4704 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4705 		    "sd_set_vers1_properties: no_read_header set\n");
4706 	}
4707 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4708 		un->un_f_cfg_read_cd_xd4 = TRUE;
4709 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4710 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4711 	}
4712 
4713 	/* Support for devices which do not have valid/unique serial numbers */
4714 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4715 		un->un_f_opt_fab_devid = TRUE;
4716 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4717 		    "sd_set_vers1_properties: fab_devid bit set\n");
4718 	}
4719 
4720 	/* Support for user throttle configuration */
4721 	if (flags & SD_CONF_BSET_THROTTLE) {
4722 		ASSERT(prop_list != NULL);
4723 		un->un_saved_throttle = un->un_throttle =
4724 		    prop_list->sdt_throttle;
4725 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4726 		    "sd_set_vers1_properties: throttle set to %d\n",
4727 		    prop_list->sdt_throttle);
4728 	}
4729 
4730 	/* Set the per disk retry count according to the conf file or table. */
4731 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4732 		ASSERT(prop_list != NULL);
4733 		if (prop_list->sdt_not_rdy_retries) {
4734 			un->un_notready_retry_count =
4735 			    prop_list->sdt_not_rdy_retries;
4736 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4737 			    "sd_set_vers1_properties: not ready retry count"
4738 			    " set to %d\n", un->un_notready_retry_count);
4739 		}
4740 	}
4741 
4742 	/* The controller type is reported for generic disk driver ioctls */
4743 	if (flags & SD_CONF_BSET_CTYPE) {
4744 		ASSERT(prop_list != NULL);
4745 		switch (prop_list->sdt_ctype) {
4746 		case CTYPE_CDROM:
4747 			un->un_ctype = prop_list->sdt_ctype;
4748 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4749 			    "sd_set_vers1_properties: ctype set to "
4750 			    "CTYPE_CDROM\n");
4751 			break;
4752 		case CTYPE_CCS:
4753 			un->un_ctype = prop_list->sdt_ctype;
4754 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4755 			    "sd_set_vers1_properties: ctype set to "
4756 			    "CTYPE_CCS\n");
4757 			break;
4758 		case CTYPE_ROD:		/* RW optical */
4759 			un->un_ctype = prop_list->sdt_ctype;
4760 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4761 			    "sd_set_vers1_properties: ctype set to "
4762 			    "CTYPE_ROD\n");
4763 			break;
4764 		default:
4765 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4766 			    "sd_set_vers1_properties: Could not set "
4767 			    "invalid ctype value (%d)",
4768 			    prop_list->sdt_ctype);
4769 		}
4770 	}
4771 
4772 	/* Purple failover timeout */
4773 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4774 		ASSERT(prop_list != NULL);
4775 		un->un_busy_retry_count =
4776 		    prop_list->sdt_busy_retries;
4777 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4778 		    "sd_set_vers1_properties: "
4779 		    "busy retry count set to %d\n",
4780 		    un->un_busy_retry_count);
4781 	}
4782 
4783 	/* Purple reset retry count */
4784 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4785 		ASSERT(prop_list != NULL);
4786 		un->un_reset_retry_count =
4787 		    prop_list->sdt_reset_retries;
4788 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4789 		    "sd_set_vers1_properties: "
4790 		    "reset retry count set to %d\n",
4791 		    un->un_reset_retry_count);
4792 	}
4793 
4794 	/* Purple reservation release timeout */
4795 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4796 		ASSERT(prop_list != NULL);
4797 		un->un_reserve_release_time =
4798 		    prop_list->sdt_reserv_rel_time;
4799 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4800 		    "sd_set_vers1_properties: "
4801 		    "reservation release timeout set to %d\n",
4802 		    un->un_reserve_release_time);
4803 	}
4804 
4805 	/*
4806 	 * Driver flag telling the driver to verify that no commands are pending
4807 	 * for a device before issuing a Test Unit Ready. This is a workaround
4808 	 * for a firmware bug in some Seagate eliteI drives.
4809 	 */
4810 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4811 		un->un_f_cfg_tur_check = TRUE;
4812 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4813 		    "sd_set_vers1_properties: tur queue check set\n");
4814 	}
4815 
4816 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4817 		un->un_min_throttle = prop_list->sdt_min_throttle;
4818 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4819 		    "sd_set_vers1_properties: min throttle set to %d\n",
4820 		    un->un_min_throttle);
4821 	}
4822 
4823 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4824 		un->un_f_disksort_disabled =
4825 		    (prop_list->sdt_disk_sort_dis != 0) ?
4826 		    TRUE : FALSE;
4827 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4828 		    "sd_set_vers1_properties: disksort disabled "
4829 		    "flag set to %d\n",
4830 		    prop_list->sdt_disk_sort_dis);
4831 	}
4832 
4833 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4834 		un->un_f_lun_reset_enabled =
4835 		    (prop_list->sdt_lun_reset_enable != 0) ?
4836 		    TRUE : FALSE;
4837 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4838 		    "sd_set_vers1_properties: lun reset enabled "
4839 		    "flag set to %d\n",
4840 		    prop_list->sdt_lun_reset_enable);
4841 	}
4842 
4843 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4844 		un->un_f_suppress_cache_flush =
4845 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4846 		    TRUE : FALSE;
4847 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4848 		    "sd_set_vers1_properties: suppress_cache_flush "
4849 		    "flag set to %d\n",
4850 		    prop_list->sdt_suppress_cache_flush);
4851 	}
4852 
4853 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4854 		un->un_f_power_condition_disabled =
4855 		    (prop_list->sdt_power_condition_dis != 0) ?
4856 		    TRUE : FALSE;
4857 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4858 		    "sd_set_vers1_properties: power_condition_disabled "
4859 		    "flag set to %d\n",
4860 		    prop_list->sdt_power_condition_dis);
4861 	}
4862 
4863 	/*
4864 	 * Validate the throttle values.
4865 	 * If any of the numbers are invalid, set everything to defaults.
4866 	 */
4867 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4868 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4869 	    (un->un_min_throttle > un->un_throttle)) {
4870 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4871 		un->un_min_throttle = sd_min_throttle;
4872 	}
4873 }
4874 
4875 /*
4876  *   Function: sd_is_lsi()
4877  *
4878  *   Description: Check for lsi devices, step through the static device
4879  *	table to match vid/pid.
4880  *
4881  *   Args: un - ptr to sd_lun
4882  *
4883  *   Notes:  When creating new LSI property, need to add the new LSI property
4884  *		to this function.
4885  */
4886 static void
4887 sd_is_lsi(struct sd_lun *un)
4888 {
4889 	char	*id = NULL;
4890 	int	table_index;
4891 	int	idlen;
4892 	void	*prop;
4893 
4894 	ASSERT(un != NULL);
4895 	for (table_index = 0; table_index < sd_disk_table_size;
4896 	    table_index++) {
4897 		id = sd_disk_table[table_index].device_id;
4898 		idlen = strlen(id);
4899 		if (idlen == 0) {
4900 			continue;
4901 		}
4902 
4903 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4904 			prop = sd_disk_table[table_index].properties;
4905 			if (prop == &lsi_properties ||
4906 			    prop == &lsi_oem_properties ||
4907 			    prop == &lsi_properties_scsi ||
4908 			    prop == &symbios_properties) {
4909 				un->un_f_cfg_is_lsi = TRUE;
4910 			}
4911 			break;
4912 		}
4913 	}
4914 }
4915 
4916 /*
4917  *    Function: sd_get_physical_geometry
4918  *
4919  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4920  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4921  *		target, and use this information to initialize the physical
4922  *		geometry cache specified by pgeom_p.
4923  *
4924  *		MODE SENSE is an optional command, so failure in this case
4925  *		does not necessarily denote an error. We want to use the
4926  *		MODE SENSE commands to derive the physical geometry of the
4927  *		device, but if either command fails, the logical geometry is
4928  *		used as the fallback for disk label geometry in cmlb.
4929  *
4930  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4931  *		have already been initialized for the current target and
4932  *		that the current values be passed as args so that we don't
4933  *		end up ever trying to use -1 as a valid value. This could
4934  *		happen if either value is reset while we're not holding
4935  *		the mutex.
4936  *
4937  *   Arguments: un - driver soft state (unit) structure
4938  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4939  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4940  *			to use the USCSI "direct" chain and bypass the normal
4941  *			command waitq.
4942  *
4943  *     Context: Kernel thread only (can sleep).
4944  */
4945 
4946 static int
4947 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4948 	diskaddr_t capacity, int lbasize, int path_flag)
4949 {
4950 	struct	mode_format	*page3p;
4951 	struct	mode_geometry	*page4p;
4952 	struct	mode_header	*headerp;
4953 	int	sector_size;
4954 	int	nsect;
4955 	int	nhead;
4956 	int	ncyl;
4957 	int	intrlv;
4958 	int	spc;
4959 	diskaddr_t	modesense_capacity;
4960 	int	rpm;
4961 	int	bd_len;
4962 	int	mode_header_length;
4963 	uchar_t	*p3bufp;
4964 	uchar_t	*p4bufp;
4965 	int	cdbsize;
4966 	int 	ret = EIO;
4967 	sd_ssc_t *ssc;
4968 	int	status;
4969 
4970 	ASSERT(un != NULL);
4971 
4972 	if (lbasize == 0) {
4973 		if (ISCD(un)) {
4974 			lbasize = 2048;
4975 		} else {
4976 			lbasize = un->un_sys_blocksize;
4977 		}
4978 	}
4979 	pgeom_p->g_secsize = (unsigned short)lbasize;
4980 
4981 	/*
4982 	 * If the unit is a cd/dvd drive MODE SENSE page three
4983 	 * and MODE SENSE page four are reserved (see SBC spec
4984 	 * and MMC spec). To prevent soft errors just return
4985 	 * using the default LBA size.
4986 	 */
4987 	if (ISCD(un))
4988 		return (ret);
4989 
4990 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4991 
4992 	/*
4993 	 * Retrieve MODE SENSE page 3 - Format Device Page
4994 	 */
4995 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4996 	ssc = sd_ssc_init(un);
4997 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4998 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4999 	if (status != 0) {
5000 		SD_ERROR(SD_LOG_COMMON, un,
5001 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5002 		goto page3_exit;
5003 	}
5004 
5005 	/*
5006 	 * Determine size of Block Descriptors in order to locate the mode
5007 	 * page data.  ATAPI devices return 0, SCSI devices should return
5008 	 * MODE_BLK_DESC_LENGTH.
5009 	 */
5010 	headerp = (struct mode_header *)p3bufp;
5011 	if (un->un_f_cfg_is_atapi == TRUE) {
5012 		struct mode_header_grp2 *mhp =
5013 		    (struct mode_header_grp2 *)headerp;
5014 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5015 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5016 	} else {
5017 		mode_header_length = MODE_HEADER_LENGTH;
5018 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5019 	}
5020 
5021 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5022 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5023 		    "sd_get_physical_geometry: received unexpected bd_len "
5024 		    "of %d, page3\n", bd_len);
5025 		status = EIO;
5026 		goto page3_exit;
5027 	}
5028 
5029 	page3p = (struct mode_format *)
5030 	    ((caddr_t)headerp + mode_header_length + bd_len);
5031 
5032 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5033 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5034 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5035 		    "%d\n", page3p->mode_page.code);
5036 		status = EIO;
5037 		goto page3_exit;
5038 	}
5039 
5040 	/*
5041 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5042 	 * complete successfully; otherwise, revert to the logical geometry.
5043 	 * So, we need to save everything in temporary variables.
5044 	 */
5045 	sector_size = BE_16(page3p->data_bytes_sect);
5046 
5047 	/*
5048 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5049 	 */
5050 	if (sector_size == 0) {
5051 		sector_size = un->un_sys_blocksize;
5052 	} else {
5053 		sector_size &= ~(un->un_sys_blocksize - 1);
5054 	}
5055 
5056 	nsect  = BE_16(page3p->sect_track);
5057 	intrlv = BE_16(page3p->interleave);
5058 
5059 	SD_INFO(SD_LOG_COMMON, un,
5060 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5061 	SD_INFO(SD_LOG_COMMON, un,
5062 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5063 	    page3p->mode_page.code, nsect, sector_size);
5064 	SD_INFO(SD_LOG_COMMON, un,
5065 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5066 	    BE_16(page3p->track_skew),
5067 	    BE_16(page3p->cylinder_skew));
5068 
5069 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5070 
5071 	/*
5072 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5073 	 */
5074 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5075 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5076 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5077 	if (status != 0) {
5078 		SD_ERROR(SD_LOG_COMMON, un,
5079 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5080 		goto page4_exit;
5081 	}
5082 
5083 	/*
5084 	 * Determine size of Block Descriptors in order to locate the mode
5085 	 * page data.  ATAPI devices return 0, SCSI devices should return
5086 	 * MODE_BLK_DESC_LENGTH.
5087 	 */
5088 	headerp = (struct mode_header *)p4bufp;
5089 	if (un->un_f_cfg_is_atapi == TRUE) {
5090 		struct mode_header_grp2 *mhp =
5091 		    (struct mode_header_grp2 *)headerp;
5092 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5093 	} else {
5094 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5095 	}
5096 
5097 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5098 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5099 		    "sd_get_physical_geometry: received unexpected bd_len of "
5100 		    "%d, page4\n", bd_len);
5101 		status = EIO;
5102 		goto page4_exit;
5103 	}
5104 
5105 	page4p = (struct mode_geometry *)
5106 	    ((caddr_t)headerp + mode_header_length + bd_len);
5107 
5108 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5109 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5110 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5111 		    "%d\n", page4p->mode_page.code);
5112 		status = EIO;
5113 		goto page4_exit;
5114 	}
5115 
5116 	/*
5117 	 * Stash the data now, after we know that both commands completed.
5118 	 */
5119 
5120 
5121 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5122 	spc   = nhead * nsect;
5123 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5124 	rpm   = BE_16(page4p->rpm);
5125 
5126 	modesense_capacity = spc * ncyl;
5127 
5128 	SD_INFO(SD_LOG_COMMON, un,
5129 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5130 	SD_INFO(SD_LOG_COMMON, un,
5131 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5132 	SD_INFO(SD_LOG_COMMON, un,
5133 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5134 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5135 	    (void *)pgeom_p, capacity);
5136 
5137 	/*
5138 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5139 	 * the product of C * H * S returned by MODE SENSE >= that returned
5140 	 * by read capacity. This is an idiosyncrasy of the original x86
5141 	 * disk subsystem.
5142 	 */
5143 	if (modesense_capacity >= capacity) {
5144 		SD_INFO(SD_LOG_COMMON, un,
5145 		    "sd_get_physical_geometry: adjusting acyl; "
5146 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5147 		    (modesense_capacity - capacity + spc - 1) / spc);
5148 		if (sector_size != 0) {
5149 			/* 1243403: NEC D38x7 drives don't support sec size */
5150 			pgeom_p->g_secsize = (unsigned short)sector_size;
5151 		}
5152 		pgeom_p->g_nsect    = (unsigned short)nsect;
5153 		pgeom_p->g_nhead    = (unsigned short)nhead;
5154 		pgeom_p->g_capacity = capacity;
5155 		pgeom_p->g_acyl	    =
5156 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5157 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5158 	}
5159 
5160 	pgeom_p->g_rpm    = (unsigned short)rpm;
5161 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5162 	ret = 0;
5163 
5164 	SD_INFO(SD_LOG_COMMON, un,
5165 	    "sd_get_physical_geometry: mode sense geometry:\n");
5166 	SD_INFO(SD_LOG_COMMON, un,
5167 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5168 	    nsect, sector_size, intrlv);
5169 	SD_INFO(SD_LOG_COMMON, un,
5170 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5171 	    nhead, ncyl, rpm, modesense_capacity);
5172 	SD_INFO(SD_LOG_COMMON, un,
5173 	    "sd_get_physical_geometry: (cached)\n");
5174 	SD_INFO(SD_LOG_COMMON, un,
5175 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5176 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5177 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5178 	SD_INFO(SD_LOG_COMMON, un,
5179 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5180 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5181 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5182 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5183 
5184 page4_exit:
5185 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5186 
5187 page3_exit:
5188 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5189 
5190 	if (status != 0) {
5191 		if (status == EIO) {
5192 			/*
5193 			 * Some disks do not support mode sense(6), we
5194 			 * should ignore this kind of error(sense key is
5195 			 * 0x5 - illegal request).
5196 			 */
5197 			uint8_t *sensep;
5198 			int senlen;
5199 
5200 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5201 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5202 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5203 
5204 			if (senlen > 0 &&
5205 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5206 				sd_ssc_assessment(ssc,
5207 				    SD_FMT_IGNORE_COMPROMISE);
5208 			} else {
5209 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5210 			}
5211 		} else {
5212 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5213 		}
5214 	}
5215 	sd_ssc_fini(ssc);
5216 	return (ret);
5217 }
5218 
5219 /*
5220  *    Function: sd_get_virtual_geometry
5221  *
5222  * Description: Ask the controller to tell us about the target device.
5223  *
5224  *   Arguments: un - pointer to softstate
5225  *		capacity - disk capacity in #blocks
5226  *		lbasize - disk block size in bytes
5227  *
5228  *     Context: Kernel thread only
5229  */
5230 
5231 static int
5232 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5233     diskaddr_t capacity, int lbasize)
5234 {
5235 	uint_t	geombuf;
5236 	int	spc;
5237 
5238 	ASSERT(un != NULL);
5239 
5240 	/* Set sector size, and total number of sectors */
5241 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5242 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5243 
5244 	/* Let the HBA tell us its geometry */
5245 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5246 
5247 	/* A value of -1 indicates an undefined "geometry" property */
5248 	if (geombuf == (-1)) {
5249 		return (EINVAL);
5250 	}
5251 
5252 	/* Initialize the logical geometry cache. */
5253 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5254 	lgeom_p->g_nsect   = geombuf & 0xffff;
5255 	lgeom_p->g_secsize = un->un_sys_blocksize;
5256 
5257 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5258 
5259 	/*
5260 	 * Note: The driver originally converted the capacity value from
5261 	 * target blocks to system blocks. However, the capacity value passed
5262 	 * to this routine is already in terms of system blocks (this scaling
5263 	 * is done when the READ CAPACITY command is issued and processed).
5264 	 * This 'error' may have gone undetected because the usage of g_ncyl
5265 	 * (which is based upon g_capacity) is very limited within the driver
5266 	 */
5267 	lgeom_p->g_capacity = capacity;
5268 
5269 	/*
5270 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5271 	 * hba may return zero values if the device has been removed.
5272 	 */
5273 	if (spc == 0) {
5274 		lgeom_p->g_ncyl = 0;
5275 	} else {
5276 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5277 	}
5278 	lgeom_p->g_acyl = 0;
5279 
5280 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5281 	return (0);
5282 
5283 }
5284 /*
5285  *    Function: sd_update_block_info
5286  *
5287  * Description: Calculate a byte count to sector count bitshift value
5288  *		from sector size.
5289  *
5290  *   Arguments: un: unit struct.
5291  *		lbasize: new target sector size
5292  *		capacity: new target capacity, ie. block count
5293  *
5294  *     Context: Kernel thread context
5295  */
5296 
5297 static void
5298 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5299 {
5300 	if (lbasize != 0) {
5301 		un->un_tgt_blocksize = lbasize;
5302 		un->un_f_tgt_blocksize_is_valid = TRUE;
5303 		if (!un->un_f_has_removable_media) {
5304 			un->un_sys_blocksize = lbasize;
5305 		}
5306 	}
5307 
5308 	if (capacity != 0) {
5309 		un->un_blockcount		= capacity;
5310 		un->un_f_blockcount_is_valid	= TRUE;
5311 
5312 		/*
5313 		 * The capacity has changed so update the errstats.
5314 		 */
5315 		if (un->un_errstats != NULL) {
5316 			struct sd_errstats *stp;
5317 
5318 			capacity *= un->un_sys_blocksize;
5319 			stp = (struct sd_errstats *)un->un_errstats->ks_data;
5320 			if (stp->sd_capacity.value.ui64 < capacity)
5321 				stp->sd_capacity.value.ui64 = capacity;
5322 		}
5323 	}
5324 }
5325 
5326 
5327 /*
5328  *    Function: sd_register_devid
5329  *
5330  * Description: This routine will obtain the device id information from the
5331  *		target, obtain the serial number, and register the device
5332  *		id with the ddi framework.
5333  *
5334  *   Arguments: devi - the system's dev_info_t for the device.
5335  *		un - driver soft state (unit) structure
5336  *		reservation_flag - indicates if a reservation conflict
5337  *		occurred during attach
5338  *
5339  *     Context: Kernel Thread
5340  */
5341 static void
5342 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5343 {
5344 	int		rval		= 0;
5345 	uchar_t		*inq80		= NULL;
5346 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5347 	size_t		inq80_resid	= 0;
5348 	uchar_t		*inq83		= NULL;
5349 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5350 	size_t		inq83_resid	= 0;
5351 	int		dlen, len;
5352 	char		*sn;
5353 	struct sd_lun	*un;
5354 
5355 	ASSERT(ssc != NULL);
5356 	un = ssc->ssc_un;
5357 	ASSERT(un != NULL);
5358 	ASSERT(mutex_owned(SD_MUTEX(un)));
5359 	ASSERT((SD_DEVINFO(un)) == devi);
5360 
5361 
5362 	/*
5363 	 * We check the availability of the World Wide Name (0x83) and Unit
5364 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5365 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5366 	 * 0x83 is available, that is the best choice.  Our next choice is
5367 	 * 0x80.  If neither are available, we munge the devid from the device
5368 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5369 	 * to fabricate a devid for non-Sun qualified disks.
5370 	 */
5371 	if (sd_check_vpd_page_support(ssc) == 0) {
5372 		/* collect page 80 data if available */
5373 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5374 
5375 			mutex_exit(SD_MUTEX(un));
5376 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5377 
5378 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5379 			    0x01, 0x80, &inq80_resid);
5380 
5381 			if (rval != 0) {
5382 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5383 				kmem_free(inq80, inq80_len);
5384 				inq80 = NULL;
5385 				inq80_len = 0;
5386 			} else if (ddi_prop_exists(
5387 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5388 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5389 			    INQUIRY_SERIAL_NO) == 0) {
5390 				/*
5391 				 * If we don't already have a serial number
5392 				 * property, do quick verify of data returned
5393 				 * and define property.
5394 				 */
5395 				dlen = inq80_len - inq80_resid;
5396 				len = (size_t)inq80[3];
5397 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5398 					/*
5399 					 * Ensure sn termination, skip leading
5400 					 * blanks, and create property
5401 					 * 'inquiry-serial-no'.
5402 					 */
5403 					sn = (char *)&inq80[4];
5404 					sn[len] = 0;
5405 					while (*sn && (*sn == ' '))
5406 						sn++;
5407 					if (*sn) {
5408 						(void) ddi_prop_update_string(
5409 						    DDI_DEV_T_NONE,
5410 						    SD_DEVINFO(un),
5411 						    INQUIRY_SERIAL_NO, sn);
5412 					}
5413 				}
5414 			}
5415 			mutex_enter(SD_MUTEX(un));
5416 		}
5417 
5418 		/* collect page 83 data if available */
5419 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5420 			mutex_exit(SD_MUTEX(un));
5421 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5422 
5423 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5424 			    0x01, 0x83, &inq83_resid);
5425 
5426 			if (rval != 0) {
5427 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5428 				kmem_free(inq83, inq83_len);
5429 				inq83 = NULL;
5430 				inq83_len = 0;
5431 			}
5432 			mutex_enter(SD_MUTEX(un));
5433 		}
5434 	}
5435 
5436 	/*
5437 	 * If transport has already registered a devid for this target
5438 	 * then that takes precedence over the driver's determination
5439 	 * of the devid.
5440 	 *
5441 	 * NOTE: The reason this check is done here instead of at the beginning
5442 	 * of the function is to allow the code above to create the
5443 	 * 'inquiry-serial-no' property.
5444 	 */
5445 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5446 		ASSERT(un->un_devid);
5447 		un->un_f_devid_transport_defined = TRUE;
5448 		goto cleanup; /* use devid registered by the transport */
5449 	}
5450 
5451 	/*
5452 	 * This is the case of antiquated Sun disk drives that have the
5453 	 * FAB_DEVID property set in the disk_table.  These drives
5454 	 * manage the devid's by storing them in last 2 available sectors
5455 	 * on the drive and have them fabricated by the ddi layer by calling
5456 	 * ddi_devid_init and passing the DEVID_FAB flag.
5457 	 */
5458 	if (un->un_f_opt_fab_devid == TRUE) {
5459 		/*
5460 		 * Depending on EINVAL isn't reliable, since a reserved disk
5461 		 * may result in invalid geometry, so check to make sure a
5462 		 * reservation conflict did not occur during attach.
5463 		 */
5464 		if ((sd_get_devid(ssc) == EINVAL) &&
5465 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5466 			/*
5467 			 * The devid is invalid AND there is no reservation
5468 			 * conflict.  Fabricate a new devid.
5469 			 */
5470 			(void) sd_create_devid(ssc);
5471 		}
5472 
5473 		/* Register the devid if it exists */
5474 		if (un->un_devid != NULL) {
5475 			(void) ddi_devid_register(SD_DEVINFO(un),
5476 			    un->un_devid);
5477 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5478 			    "sd_register_devid: Devid Fabricated\n");
5479 		}
5480 		goto cleanup;
5481 	}
5482 
5483 	/* encode best devid possible based on data available */
5484 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5485 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5486 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5487 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5488 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5489 
5490 		/* devid successfully encoded, register devid */
5491 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5492 
5493 	} else {
5494 		/*
5495 		 * Unable to encode a devid based on data available.
5496 		 * This is not a Sun qualified disk.  Older Sun disk
5497 		 * drives that have the SD_FAB_DEVID property
5498 		 * set in the disk_table and non Sun qualified
5499 		 * disks are treated in the same manner.  These
5500 		 * drives manage the devid's by storing them in
5501 		 * last 2 available sectors on the drive and
5502 		 * have them fabricated by the ddi layer by
5503 		 * calling ddi_devid_init and passing the
5504 		 * DEVID_FAB flag.
5505 		 * Create a fabricate devid only if there's no
5506 		 * fabricate devid existed.
5507 		 */
5508 		if (sd_get_devid(ssc) == EINVAL) {
5509 			(void) sd_create_devid(ssc);
5510 		}
5511 		un->un_f_opt_fab_devid = TRUE;
5512 
5513 		/* Register the devid if it exists */
5514 		if (un->un_devid != NULL) {
5515 			(void) ddi_devid_register(SD_DEVINFO(un),
5516 			    un->un_devid);
5517 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5518 			    "sd_register_devid: devid fabricated using "
5519 			    "ddi framework\n");
5520 		}
5521 	}
5522 
5523 cleanup:
5524 	/* clean up resources */
5525 	if (inq80 != NULL) {
5526 		kmem_free(inq80, inq80_len);
5527 	}
5528 	if (inq83 != NULL) {
5529 		kmem_free(inq83, inq83_len);
5530 	}
5531 }
5532 
5533 
5534 
5535 /*
5536  *    Function: sd_get_devid
5537  *
5538  * Description: This routine will return 0 if a valid device id has been
5539  *		obtained from the target and stored in the soft state. If a
5540  *		valid device id has not been previously read and stored, a
5541  *		read attempt will be made.
5542  *
5543  *   Arguments: un - driver soft state (unit) structure
5544  *
5545  * Return Code: 0 if we successfully get the device id
5546  *
5547  *     Context: Kernel Thread
5548  */
5549 
5550 static int
5551 sd_get_devid(sd_ssc_t *ssc)
5552 {
5553 	struct dk_devid		*dkdevid;
5554 	ddi_devid_t		tmpid;
5555 	uint_t			*ip;
5556 	size_t			sz;
5557 	diskaddr_t		blk;
5558 	int			status;
5559 	int			chksum;
5560 	int			i;
5561 	size_t			buffer_size;
5562 	struct sd_lun		*un;
5563 
5564 	ASSERT(ssc != NULL);
5565 	un = ssc->ssc_un;
5566 	ASSERT(un != NULL);
5567 	ASSERT(mutex_owned(SD_MUTEX(un)));
5568 
5569 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5570 	    un);
5571 
5572 	if (un->un_devid != NULL) {
5573 		return (0);
5574 	}
5575 
5576 	mutex_exit(SD_MUTEX(un));
5577 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5578 	    (void *)SD_PATH_DIRECT) != 0) {
5579 		mutex_enter(SD_MUTEX(un));
5580 		return (EINVAL);
5581 	}
5582 
5583 	/*
5584 	 * Read and verify device id, stored in the reserved cylinders at the
5585 	 * end of the disk. Backup label is on the odd sectors of the last
5586 	 * track of the last cylinder. Device id will be on track of the next
5587 	 * to last cylinder.
5588 	 */
5589 	mutex_enter(SD_MUTEX(un));
5590 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5591 	mutex_exit(SD_MUTEX(un));
5592 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5593 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5594 	    SD_PATH_DIRECT);
5595 
5596 	if (status != 0) {
5597 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5598 		goto error;
5599 	}
5600 
5601 	/* Validate the revision */
5602 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5603 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5604 		status = EINVAL;
5605 		goto error;
5606 	}
5607 
5608 	/* Calculate the checksum */
5609 	chksum = 0;
5610 	ip = (uint_t *)dkdevid;
5611 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5612 	    i++) {
5613 		chksum ^= ip[i];
5614 	}
5615 
5616 	/* Compare the checksums */
5617 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5618 		status = EINVAL;
5619 		goto error;
5620 	}
5621 
5622 	/* Validate the device id */
5623 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5624 		status = EINVAL;
5625 		goto error;
5626 	}
5627 
5628 	/*
5629 	 * Store the device id in the driver soft state
5630 	 */
5631 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5632 	tmpid = kmem_alloc(sz, KM_SLEEP);
5633 
5634 	mutex_enter(SD_MUTEX(un));
5635 
5636 	un->un_devid = tmpid;
5637 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5638 
5639 	kmem_free(dkdevid, buffer_size);
5640 
5641 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5642 
5643 	return (status);
5644 error:
5645 	mutex_enter(SD_MUTEX(un));
5646 	kmem_free(dkdevid, buffer_size);
5647 	return (status);
5648 }
5649 
5650 
5651 /*
5652  *    Function: sd_create_devid
5653  *
5654  * Description: This routine will fabricate the device id and write it
5655  *		to the disk.
5656  *
5657  *   Arguments: un - driver soft state (unit) structure
5658  *
5659  * Return Code: value of the fabricated device id
5660  *
5661  *     Context: Kernel Thread
5662  */
5663 
5664 static ddi_devid_t
5665 sd_create_devid(sd_ssc_t *ssc)
5666 {
5667 	struct sd_lun	*un;
5668 
5669 	ASSERT(ssc != NULL);
5670 	un = ssc->ssc_un;
5671 	ASSERT(un != NULL);
5672 
5673 	/* Fabricate the devid */
5674 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5675 	    == DDI_FAILURE) {
5676 		return (NULL);
5677 	}
5678 
5679 	/* Write the devid to disk */
5680 	if (sd_write_deviceid(ssc) != 0) {
5681 		ddi_devid_free(un->un_devid);
5682 		un->un_devid = NULL;
5683 	}
5684 
5685 	return (un->un_devid);
5686 }
5687 
5688 
5689 /*
5690  *    Function: sd_write_deviceid
5691  *
5692  * Description: This routine will write the device id to the disk
5693  *		reserved sector.
5694  *
5695  *   Arguments: un - driver soft state (unit) structure
5696  *
5697  * Return Code: EINVAL
5698  *		value returned by sd_send_scsi_cmd
5699  *
5700  *     Context: Kernel Thread
5701  */
5702 
5703 static int
5704 sd_write_deviceid(sd_ssc_t *ssc)
5705 {
5706 	struct dk_devid		*dkdevid;
5707 	uchar_t			*buf;
5708 	diskaddr_t		blk;
5709 	uint_t			*ip, chksum;
5710 	int			status;
5711 	int			i;
5712 	struct sd_lun		*un;
5713 
5714 	ASSERT(ssc != NULL);
5715 	un = ssc->ssc_un;
5716 	ASSERT(un != NULL);
5717 	ASSERT(mutex_owned(SD_MUTEX(un)));
5718 
5719 	mutex_exit(SD_MUTEX(un));
5720 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5721 	    (void *)SD_PATH_DIRECT) != 0) {
5722 		mutex_enter(SD_MUTEX(un));
5723 		return (-1);
5724 	}
5725 
5726 
5727 	/* Allocate the buffer */
5728 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5729 	dkdevid = (struct dk_devid *)buf;
5730 
5731 	/* Fill in the revision */
5732 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5733 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5734 
5735 	/* Copy in the device id */
5736 	mutex_enter(SD_MUTEX(un));
5737 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5738 	    ddi_devid_sizeof(un->un_devid));
5739 	mutex_exit(SD_MUTEX(un));
5740 
5741 	/* Calculate the checksum */
5742 	chksum = 0;
5743 	ip = (uint_t *)dkdevid;
5744 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5745 	    i++) {
5746 		chksum ^= ip[i];
5747 	}
5748 
5749 	/* Fill-in checksum */
5750 	DKD_FORMCHKSUM(chksum, dkdevid);
5751 
5752 	/* Write the reserved sector */
5753 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5754 	    SD_PATH_DIRECT);
5755 	if (status != 0)
5756 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5757 
5758 	kmem_free(buf, un->un_sys_blocksize);
5759 
5760 	mutex_enter(SD_MUTEX(un));
5761 	return (status);
5762 }
5763 
5764 
5765 /*
5766  *    Function: sd_check_vpd_page_support
5767  *
5768  * Description: This routine sends an inquiry command with the EVPD bit set and
5769  *		a page code of 0x00 to the device. It is used to determine which
5770  *		vital product pages are available to find the devid. We are
5771  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5772  *		the device does not support that command.
5773  *
5774  *   Arguments: un  - driver soft state (unit) structure
5775  *
5776  * Return Code: 0 - success
5777  *		1 - check condition
5778  *
5779  *     Context: This routine can sleep.
5780  */
5781 
5782 static int
5783 sd_check_vpd_page_support(sd_ssc_t *ssc)
5784 {
5785 	uchar_t	*page_list	= NULL;
5786 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5787 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5788 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5789 	int    	rval		= 0;
5790 	int	counter;
5791 	struct sd_lun		*un;
5792 
5793 	ASSERT(ssc != NULL);
5794 	un = ssc->ssc_un;
5795 	ASSERT(un != NULL);
5796 	ASSERT(mutex_owned(SD_MUTEX(un)));
5797 
5798 	mutex_exit(SD_MUTEX(un));
5799 
5800 	/*
5801 	 * We'll set the page length to the maximum to save figuring it out
5802 	 * with an additional call.
5803 	 */
5804 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5805 
5806 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5807 	    page_code, NULL);
5808 
5809 	if (rval != 0)
5810 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5811 
5812 	mutex_enter(SD_MUTEX(un));
5813 
5814 	/*
5815 	 * Now we must validate that the device accepted the command, as some
5816 	 * drives do not support it.  If the drive does support it, we will
5817 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5818 	 * not, we return -1.
5819 	 */
5820 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5821 		/* Loop to find one of the 2 pages we need */
5822 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5823 
5824 		/*
5825 		 * Pages are returned in ascending order, and 0x83 is what we
5826 		 * are hoping for.
5827 		 */
5828 		while ((page_list[counter] <= 0xB1) &&
5829 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5830 		    VPD_HEAD_OFFSET))) {
5831 			/*
5832 			 * Add 3 because page_list[3] is the number of
5833 			 * pages minus 3
5834 			 */
5835 
5836 			switch (page_list[counter]) {
5837 			case 0x00:
5838 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5839 				break;
5840 			case 0x80:
5841 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5842 				break;
5843 			case 0x81:
5844 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5845 				break;
5846 			case 0x82:
5847 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5848 				break;
5849 			case 0x83:
5850 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5851 				break;
5852 			case 0x86:
5853 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5854 				break;
5855 			case 0xB1:
5856 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5857 				break;
5858 			}
5859 			counter++;
5860 		}
5861 
5862 	} else {
5863 		rval = -1;
5864 
5865 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5866 		    "sd_check_vpd_page_support: This drive does not implement "
5867 		    "VPD pages.\n");
5868 	}
5869 
5870 	kmem_free(page_list, page_length);
5871 
5872 	return (rval);
5873 }
5874 
5875 
5876 /*
5877  *    Function: sd_setup_pm
5878  *
5879  * Description: Initialize Power Management on the device
5880  *
5881  *     Context: Kernel Thread
5882  */
5883 
5884 static void
5885 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5886 {
5887 	uint_t		log_page_size;
5888 	uchar_t		*log_page_data;
5889 	int		rval = 0;
5890 	struct sd_lun	*un;
5891 
5892 	ASSERT(ssc != NULL);
5893 	un = ssc->ssc_un;
5894 	ASSERT(un != NULL);
5895 
5896 	/*
5897 	 * Since we are called from attach, holding a mutex for
5898 	 * un is unnecessary. Because some of the routines called
5899 	 * from here require SD_MUTEX to not be held, assert this
5900 	 * right up front.
5901 	 */
5902 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5903 	/*
5904 	 * Since the sd device does not have the 'reg' property,
5905 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5906 	 * The following code is to tell cpr that this device
5907 	 * DOES need to be suspended and resumed.
5908 	 */
5909 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5910 	    "pm-hardware-state", "needs-suspend-resume");
5911 
5912 	/*
5913 	 * This complies with the new power management framework
5914 	 * for certain desktop machines. Create the pm_components
5915 	 * property as a string array property.
5916 	 * If un_f_pm_supported is TRUE, that means the disk
5917 	 * attached HBA has set the "pm-capable" property and
5918 	 * the value of this property is bigger than 0.
5919 	 */
5920 	if (un->un_f_pm_supported) {
5921 		/*
5922 		 * not all devices have a motor, try it first.
5923 		 * some devices may return ILLEGAL REQUEST, some
5924 		 * will hang
5925 		 * The following START_STOP_UNIT is used to check if target
5926 		 * device has a motor.
5927 		 */
5928 		un->un_f_start_stop_supported = TRUE;
5929 
5930 		if (un->un_f_power_condition_supported) {
5931 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5932 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5933 			    SD_PATH_DIRECT);
5934 			if (rval != 0) {
5935 				un->un_f_power_condition_supported = FALSE;
5936 			}
5937 		}
5938 		if (!un->un_f_power_condition_supported) {
5939 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5940 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5941 		}
5942 		if (rval != 0) {
5943 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5944 			un->un_f_start_stop_supported = FALSE;
5945 		}
5946 
5947 		/*
5948 		 * create pm properties anyways otherwise the parent can't
5949 		 * go to sleep
5950 		 */
5951 		un->un_f_pm_is_enabled = TRUE;
5952 		(void) sd_create_pm_components(devi, un);
5953 
5954 		/*
5955 		 * If it claims that log sense is supported, check it out.
5956 		 */
5957 		if (un->un_f_log_sense_supported) {
5958 			rval = sd_log_page_supported(ssc,
5959 			    START_STOP_CYCLE_PAGE);
5960 			if (rval == 1) {
5961 				/* Page found, use it. */
5962 				un->un_start_stop_cycle_page =
5963 				    START_STOP_CYCLE_PAGE;
5964 			} else {
5965 				/*
5966 				 * Page not found or log sense is not
5967 				 * supported.
5968 				 * Notice we do not check the old style
5969 				 * START_STOP_CYCLE_VU_PAGE because this
5970 				 * code path does not apply to old disks.
5971 				 */
5972 				un->un_f_log_sense_supported = FALSE;
5973 				un->un_f_pm_log_sense_smart = FALSE;
5974 			}
5975 		}
5976 
5977 		return;
5978 	}
5979 
5980 	/*
5981 	 * For the disk whose attached HBA has not set the "pm-capable"
5982 	 * property, check if it supports the power management.
5983 	 */
5984 	if (!un->un_f_log_sense_supported) {
5985 		un->un_power_level = SD_SPINDLE_ON;
5986 		un->un_f_pm_is_enabled = FALSE;
5987 		return;
5988 	}
5989 
5990 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5991 
5992 #ifdef	SDDEBUG
5993 	if (sd_force_pm_supported) {
5994 		/* Force a successful result */
5995 		rval = 1;
5996 	}
5997 #endif
5998 
5999 	/*
6000 	 * If the start-stop cycle counter log page is not supported
6001 	 * or if the pm-capable property is set to be false (0),
6002 	 * then we should not create the pm_components property.
6003 	 */
6004 	if (rval == -1) {
6005 		/*
6006 		 * Error.
6007 		 * Reading log sense failed, most likely this is
6008 		 * an older drive that does not support log sense.
6009 		 * If this fails auto-pm is not supported.
6010 		 */
6011 		un->un_power_level = SD_SPINDLE_ON;
6012 		un->un_f_pm_is_enabled = FALSE;
6013 
6014 	} else if (rval == 0) {
6015 		/*
6016 		 * Page not found.
6017 		 * The start stop cycle counter is implemented as page
6018 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6019 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6020 		 */
6021 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
6022 			/*
6023 			 * Page found, use this one.
6024 			 */
6025 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6026 			un->un_f_pm_is_enabled = TRUE;
6027 		} else {
6028 			/*
6029 			 * Error or page not found.
6030 			 * auto-pm is not supported for this device.
6031 			 */
6032 			un->un_power_level = SD_SPINDLE_ON;
6033 			un->un_f_pm_is_enabled = FALSE;
6034 		}
6035 	} else {
6036 		/*
6037 		 * Page found, use it.
6038 		 */
6039 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6040 		un->un_f_pm_is_enabled = TRUE;
6041 	}
6042 
6043 
6044 	if (un->un_f_pm_is_enabled == TRUE) {
6045 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6046 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6047 
6048 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6049 		    log_page_size, un->un_start_stop_cycle_page,
6050 		    0x01, 0, SD_PATH_DIRECT);
6051 
6052 		if (rval != 0) {
6053 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6054 		}
6055 
6056 #ifdef	SDDEBUG
6057 		if (sd_force_pm_supported) {
6058 			/* Force a successful result */
6059 			rval = 0;
6060 		}
6061 #endif
6062 
6063 		/*
6064 		 * If the Log sense for Page( Start/stop cycle counter page)
6065 		 * succeeds, then power management is supported and we can
6066 		 * enable auto-pm.
6067 		 */
6068 		if (rval == 0)  {
6069 			(void) sd_create_pm_components(devi, un);
6070 		} else {
6071 			un->un_power_level = SD_SPINDLE_ON;
6072 			un->un_f_pm_is_enabled = FALSE;
6073 		}
6074 
6075 		kmem_free(log_page_data, log_page_size);
6076 	}
6077 }
6078 
6079 
6080 /*
6081  *    Function: sd_create_pm_components
6082  *
6083  * Description: Initialize PM property.
6084  *
6085  *     Context: Kernel thread context
6086  */
6087 
6088 static void
6089 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6090 {
6091 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6092 
6093 	if (un->un_f_power_condition_supported) {
6094 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6095 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6096 		    != DDI_PROP_SUCCESS) {
6097 			un->un_power_level = SD_SPINDLE_ACTIVE;
6098 			un->un_f_pm_is_enabled = FALSE;
6099 			return;
6100 		}
6101 	} else {
6102 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6103 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6104 		    != DDI_PROP_SUCCESS) {
6105 			un->un_power_level = SD_SPINDLE_ON;
6106 			un->un_f_pm_is_enabled = FALSE;
6107 			return;
6108 		}
6109 	}
6110 	/*
6111 	 * When components are initially created they are idle,
6112 	 * power up any non-removables.
6113 	 * Note: the return value of pm_raise_power can't be used
6114 	 * for determining if PM should be enabled for this device.
6115 	 * Even if you check the return values and remove this
6116 	 * property created above, the PM framework will not honor the
6117 	 * change after the first call to pm_raise_power. Hence,
6118 	 * removal of that property does not help if pm_raise_power
6119 	 * fails. In the case of removable media, the start/stop
6120 	 * will fail if the media is not present.
6121 	 */
6122 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6123 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6124 		mutex_enter(SD_MUTEX(un));
6125 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6126 		mutex_enter(&un->un_pm_mutex);
6127 		/* Set to on and not busy. */
6128 		un->un_pm_count = 0;
6129 	} else {
6130 		mutex_enter(SD_MUTEX(un));
6131 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6132 		mutex_enter(&un->un_pm_mutex);
6133 		/* Set to off. */
6134 		un->un_pm_count = -1;
6135 	}
6136 	mutex_exit(&un->un_pm_mutex);
6137 	mutex_exit(SD_MUTEX(un));
6138 }
6139 
6140 
6141 /*
6142  *    Function: sd_ddi_suspend
6143  *
6144  * Description: Performs system power-down operations. This includes
6145  *		setting the drive state to indicate its suspended so
6146  *		that no new commands will be accepted. Also, wait for
6147  *		all commands that are in transport or queued to a timer
6148  *		for retry to complete. All timeout threads are cancelled.
6149  *
6150  * Return Code: DDI_FAILURE or DDI_SUCCESS
6151  *
6152  *     Context: Kernel thread context
6153  */
6154 
6155 static int
6156 sd_ddi_suspend(dev_info_t *devi)
6157 {
6158 	struct	sd_lun	*un;
6159 	clock_t		wait_cmds_complete;
6160 
6161 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6162 	if (un == NULL) {
6163 		return (DDI_FAILURE);
6164 	}
6165 
6166 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6167 
6168 	mutex_enter(SD_MUTEX(un));
6169 
6170 	/* Return success if the device is already suspended. */
6171 	if (un->un_state == SD_STATE_SUSPENDED) {
6172 		mutex_exit(SD_MUTEX(un));
6173 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6174 		    "device already suspended, exiting\n");
6175 		return (DDI_SUCCESS);
6176 	}
6177 
6178 	/* Return failure if the device is being used by HA */
6179 	if (un->un_resvd_status &
6180 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6181 		mutex_exit(SD_MUTEX(un));
6182 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6183 		    "device in use by HA, exiting\n");
6184 		return (DDI_FAILURE);
6185 	}
6186 
6187 	/*
6188 	 * Return failure if the device is in a resource wait
6189 	 * or power changing state.
6190 	 */
6191 	if ((un->un_state == SD_STATE_RWAIT) ||
6192 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6193 		mutex_exit(SD_MUTEX(un));
6194 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6195 		    "device in resource wait state, exiting\n");
6196 		return (DDI_FAILURE);
6197 	}
6198 
6199 
6200 	un->un_save_state = un->un_last_state;
6201 	New_state(un, SD_STATE_SUSPENDED);
6202 
6203 	/*
6204 	 * Wait for all commands that are in transport or queued to a timer
6205 	 * for retry to complete.
6206 	 *
6207 	 * While waiting, no new commands will be accepted or sent because of
6208 	 * the new state we set above.
6209 	 *
6210 	 * Wait till current operation has completed. If we are in the resource
6211 	 * wait state (with an intr outstanding) then we need to wait till the
6212 	 * intr completes and starts the next cmd. We want to wait for
6213 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6214 	 */
6215 	wait_cmds_complete = ddi_get_lbolt() +
6216 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6217 
6218 	while (un->un_ncmds_in_transport != 0) {
6219 		/*
6220 		 * Fail if commands do not finish in the specified time.
6221 		 */
6222 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6223 		    wait_cmds_complete) == -1) {
6224 			/*
6225 			 * Undo the state changes made above. Everything
6226 			 * must go back to it's original value.
6227 			 */
6228 			Restore_state(un);
6229 			un->un_last_state = un->un_save_state;
6230 			/* Wake up any threads that might be waiting. */
6231 			cv_broadcast(&un->un_suspend_cv);
6232 			mutex_exit(SD_MUTEX(un));
6233 			SD_ERROR(SD_LOG_IO_PM, un,
6234 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6235 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6236 			return (DDI_FAILURE);
6237 		}
6238 	}
6239 
6240 	/*
6241 	 * Cancel SCSI watch thread and timeouts, if any are active
6242 	 */
6243 
6244 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6245 		opaque_t temp_token = un->un_swr_token;
6246 		mutex_exit(SD_MUTEX(un));
6247 		scsi_watch_suspend(temp_token);
6248 		mutex_enter(SD_MUTEX(un));
6249 	}
6250 
6251 	if (un->un_reset_throttle_timeid != NULL) {
6252 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6253 		un->un_reset_throttle_timeid = NULL;
6254 		mutex_exit(SD_MUTEX(un));
6255 		(void) untimeout(temp_id);
6256 		mutex_enter(SD_MUTEX(un));
6257 	}
6258 
6259 	if (un->un_dcvb_timeid != NULL) {
6260 		timeout_id_t temp_id = un->un_dcvb_timeid;
6261 		un->un_dcvb_timeid = NULL;
6262 		mutex_exit(SD_MUTEX(un));
6263 		(void) untimeout(temp_id);
6264 		mutex_enter(SD_MUTEX(un));
6265 	}
6266 
6267 	mutex_enter(&un->un_pm_mutex);
6268 	if (un->un_pm_timeid != NULL) {
6269 		timeout_id_t temp_id = un->un_pm_timeid;
6270 		un->un_pm_timeid = NULL;
6271 		mutex_exit(&un->un_pm_mutex);
6272 		mutex_exit(SD_MUTEX(un));
6273 		(void) untimeout(temp_id);
6274 		mutex_enter(SD_MUTEX(un));
6275 	} else {
6276 		mutex_exit(&un->un_pm_mutex);
6277 	}
6278 
6279 	if (un->un_rmw_msg_timeid != NULL) {
6280 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6281 		un->un_rmw_msg_timeid = NULL;
6282 		mutex_exit(SD_MUTEX(un));
6283 		(void) untimeout(temp_id);
6284 		mutex_enter(SD_MUTEX(un));
6285 	}
6286 
6287 	if (un->un_retry_timeid != NULL) {
6288 		timeout_id_t temp_id = un->un_retry_timeid;
6289 		un->un_retry_timeid = NULL;
6290 		mutex_exit(SD_MUTEX(un));
6291 		(void) untimeout(temp_id);
6292 		mutex_enter(SD_MUTEX(un));
6293 
6294 		if (un->un_retry_bp != NULL) {
6295 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6296 			un->un_waitq_headp = un->un_retry_bp;
6297 			if (un->un_waitq_tailp == NULL) {
6298 				un->un_waitq_tailp = un->un_retry_bp;
6299 			}
6300 			un->un_retry_bp = NULL;
6301 			un->un_retry_statp = NULL;
6302 		}
6303 	}
6304 
6305 	if (un->un_direct_priority_timeid != NULL) {
6306 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6307 		un->un_direct_priority_timeid = NULL;
6308 		mutex_exit(SD_MUTEX(un));
6309 		(void) untimeout(temp_id);
6310 		mutex_enter(SD_MUTEX(un));
6311 	}
6312 
6313 	if (un->un_f_is_fibre == TRUE) {
6314 		/*
6315 		 * Remove callbacks for insert and remove events
6316 		 */
6317 		if (un->un_insert_event != NULL) {
6318 			mutex_exit(SD_MUTEX(un));
6319 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6320 			mutex_enter(SD_MUTEX(un));
6321 			un->un_insert_event = NULL;
6322 		}
6323 
6324 		if (un->un_remove_event != NULL) {
6325 			mutex_exit(SD_MUTEX(un));
6326 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6327 			mutex_enter(SD_MUTEX(un));
6328 			un->un_remove_event = NULL;
6329 		}
6330 	}
6331 
6332 	mutex_exit(SD_MUTEX(un));
6333 
6334 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6335 
6336 	return (DDI_SUCCESS);
6337 }
6338 
6339 
6340 /*
6341  *    Function: sd_ddi_resume
6342  *
6343  * Description: Performs system power-up operations..
6344  *
6345  * Return Code: DDI_SUCCESS
6346  *		DDI_FAILURE
6347  *
6348  *     Context: Kernel thread context
6349  */
6350 
6351 static int
6352 sd_ddi_resume(dev_info_t *devi)
6353 {
6354 	struct	sd_lun	*un;
6355 
6356 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6357 	if (un == NULL) {
6358 		return (DDI_FAILURE);
6359 	}
6360 
6361 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6362 
6363 	mutex_enter(SD_MUTEX(un));
6364 	Restore_state(un);
6365 
6366 	/*
6367 	 * Restore the state which was saved to give the
6368 	 * the right state in un_last_state
6369 	 */
6370 	un->un_last_state = un->un_save_state;
6371 	/*
6372 	 * Note: throttle comes back at full.
6373 	 * Also note: this MUST be done before calling pm_raise_power
6374 	 * otherwise the system can get hung in biowait. The scenario where
6375 	 * this'll happen is under cpr suspend. Writing of the system
6376 	 * state goes through sddump, which writes 0 to un_throttle. If
6377 	 * writing the system state then fails, example if the partition is
6378 	 * too small, then cpr attempts a resume. If throttle isn't restored
6379 	 * from the saved value until after calling pm_raise_power then
6380 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6381 	 * in biowait.
6382 	 */
6383 	un->un_throttle = un->un_saved_throttle;
6384 
6385 	/*
6386 	 * The chance of failure is very rare as the only command done in power
6387 	 * entry point is START command when you transition from 0->1 or
6388 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6389 	 * which suspend was done. Ignore the return value as the resume should
6390 	 * not be failed. In the case of removable media the media need not be
6391 	 * inserted and hence there is a chance that raise power will fail with
6392 	 * media not present.
6393 	 */
6394 	if (un->un_f_attach_spinup) {
6395 		mutex_exit(SD_MUTEX(un));
6396 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6397 		    SD_PM_STATE_ACTIVE(un));
6398 		mutex_enter(SD_MUTEX(un));
6399 	}
6400 
6401 	/*
6402 	 * Don't broadcast to the suspend cv and therefore possibly
6403 	 * start I/O until after power has been restored.
6404 	 */
6405 	cv_broadcast(&un->un_suspend_cv);
6406 	cv_broadcast(&un->un_state_cv);
6407 
6408 	/* restart thread */
6409 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6410 		scsi_watch_resume(un->un_swr_token);
6411 	}
6412 
6413 #if (defined(__fibre))
6414 	if (un->un_f_is_fibre == TRUE) {
6415 		/*
6416 		 * Add callbacks for insert and remove events
6417 		 */
6418 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6419 			sd_init_event_callbacks(un);
6420 		}
6421 	}
6422 #endif
6423 
6424 	/*
6425 	 * Transport any pending commands to the target.
6426 	 *
6427 	 * If this is a low-activity device commands in queue will have to wait
6428 	 * until new commands come in, which may take awhile. Also, we
6429 	 * specifically don't check un_ncmds_in_transport because we know that
6430 	 * there really are no commands in progress after the unit was
6431 	 * suspended and we could have reached the throttle level, been
6432 	 * suspended, and have no new commands coming in for awhile. Highly
6433 	 * unlikely, but so is the low-activity disk scenario.
6434 	 */
6435 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6436 
6437 	sd_start_cmds(un, NULL);
6438 	mutex_exit(SD_MUTEX(un));
6439 
6440 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6441 
6442 	return (DDI_SUCCESS);
6443 }
6444 
6445 
6446 /*
6447  *    Function: sd_pm_state_change
6448  *
6449  * Description: Change the driver power state.
6450  * 		Someone else is required to actually change the driver
6451  * 		power level.
6452  *
6453  *   Arguments: un - driver soft state (unit) structure
6454  *              level - the power level that is changed to
6455  *              flag - to decide how to change the power state
6456  *
6457  * Return Code: DDI_SUCCESS
6458  *
6459  *     Context: Kernel thread context
6460  */
6461 static int
6462 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6463 {
6464 	ASSERT(un != NULL);
6465 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6466 
6467 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6468 	mutex_enter(SD_MUTEX(un));
6469 
6470 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6471 		un->un_power_level = level;
6472 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6473 		mutex_enter(&un->un_pm_mutex);
6474 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6475 			un->un_pm_count++;
6476 			ASSERT(un->un_pm_count == 0);
6477 		}
6478 		mutex_exit(&un->un_pm_mutex);
6479 	} else {
6480 		/*
6481 		 * Exit if power management is not enabled for this device,
6482 		 * or if the device is being used by HA.
6483 		 */
6484 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6485 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6486 			mutex_exit(SD_MUTEX(un));
6487 			SD_TRACE(SD_LOG_POWER, un,
6488 			    "sd_pm_state_change: exiting\n");
6489 			return (DDI_FAILURE);
6490 		}
6491 
6492 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6493 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6494 
6495 		/*
6496 		 * See if the device is not busy, ie.:
6497 		 *    - we have no commands in the driver for this device
6498 		 *    - not waiting for resources
6499 		 */
6500 		if ((un->un_ncmds_in_driver == 0) &&
6501 		    (un->un_state != SD_STATE_RWAIT)) {
6502 			/*
6503 			 * The device is not busy, so it is OK to go to low
6504 			 * power state. Indicate low power, but rely on someone
6505 			 * else to actually change it.
6506 			 */
6507 			mutex_enter(&un->un_pm_mutex);
6508 			un->un_pm_count = -1;
6509 			mutex_exit(&un->un_pm_mutex);
6510 			un->un_power_level = level;
6511 		}
6512 	}
6513 
6514 	mutex_exit(SD_MUTEX(un));
6515 
6516 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6517 
6518 	return (DDI_SUCCESS);
6519 }
6520 
6521 
6522 /*
6523  *    Function: sd_pm_idletimeout_handler
6524  *
6525  * Description: A timer routine that's active only while a device is busy.
6526  *		The purpose is to extend slightly the pm framework's busy
6527  *		view of the device to prevent busy/idle thrashing for
6528  *		back-to-back commands. Do this by comparing the current time
6529  *		to the time at which the last command completed and when the
6530  *		difference is greater than sd_pm_idletime, call
6531  *		pm_idle_component. In addition to indicating idle to the pm
6532  *		framework, update the chain type to again use the internal pm
6533  *		layers of the driver.
6534  *
6535  *   Arguments: arg - driver soft state (unit) structure
6536  *
6537  *     Context: Executes in a timeout(9F) thread context
6538  */
6539 
6540 static void
6541 sd_pm_idletimeout_handler(void *arg)
6542 {
6543 	struct sd_lun *un = arg;
6544 
6545 	time_t	now;
6546 
6547 	mutex_enter(&sd_detach_mutex);
6548 	if (un->un_detach_count != 0) {
6549 		/* Abort if the instance is detaching */
6550 		mutex_exit(&sd_detach_mutex);
6551 		return;
6552 	}
6553 	mutex_exit(&sd_detach_mutex);
6554 
6555 	now = ddi_get_time();
6556 	/*
6557 	 * Grab both mutexes, in the proper order, since we're accessing
6558 	 * both PM and softstate variables.
6559 	 */
6560 	mutex_enter(SD_MUTEX(un));
6561 	mutex_enter(&un->un_pm_mutex);
6562 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6563 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6564 		/*
6565 		 * Update the chain types.
6566 		 * This takes affect on the next new command received.
6567 		 */
6568 		if (un->un_f_non_devbsize_supported) {
6569 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6570 		} else {
6571 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6572 		}
6573 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6574 
6575 		SD_TRACE(SD_LOG_IO_PM, un,
6576 		    "sd_pm_idletimeout_handler: idling device\n");
6577 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6578 		un->un_pm_idle_timeid = NULL;
6579 	} else {
6580 		un->un_pm_idle_timeid =
6581 		    timeout(sd_pm_idletimeout_handler, un,
6582 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6583 	}
6584 	mutex_exit(&un->un_pm_mutex);
6585 	mutex_exit(SD_MUTEX(un));
6586 }
6587 
6588 
6589 /*
6590  *    Function: sd_pm_timeout_handler
6591  *
6592  * Description: Callback to tell framework we are idle.
6593  *
6594  *     Context: timeout(9f) thread context.
6595  */
6596 
6597 static void
6598 sd_pm_timeout_handler(void *arg)
6599 {
6600 	struct sd_lun *un = arg;
6601 
6602 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6603 	mutex_enter(&un->un_pm_mutex);
6604 	un->un_pm_timeid = NULL;
6605 	mutex_exit(&un->un_pm_mutex);
6606 }
6607 
6608 
6609 /*
6610  *    Function: sdpower
6611  *
6612  * Description: PM entry point.
6613  *
6614  * Return Code: DDI_SUCCESS
6615  *		DDI_FAILURE
6616  *
6617  *     Context: Kernel thread context
6618  */
6619 
6620 static int
6621 sdpower(dev_info_t *devi, int component, int level)
6622 {
6623 	struct sd_lun	*un;
6624 	int		instance;
6625 	int		rval = DDI_SUCCESS;
6626 	uint_t		i, log_page_size, maxcycles, ncycles;
6627 	uchar_t		*log_page_data;
6628 	int		log_sense_page;
6629 	int		medium_present;
6630 	time_t		intvlp;
6631 	struct pm_trans_data	sd_pm_tran_data;
6632 	uchar_t		save_state;
6633 	int		sval;
6634 	uchar_t		state_before_pm;
6635 	int		got_semaphore_here;
6636 	sd_ssc_t	*ssc;
6637 	int	last_power_level;
6638 
6639 	instance = ddi_get_instance(devi);
6640 
6641 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6642 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6643 		return (DDI_FAILURE);
6644 	}
6645 
6646 	ssc = sd_ssc_init(un);
6647 
6648 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6649 
6650 	/*
6651 	 * Must synchronize power down with close.
6652 	 * Attempt to decrement/acquire the open/close semaphore,
6653 	 * but do NOT wait on it. If it's not greater than zero,
6654 	 * ie. it can't be decremented without waiting, then
6655 	 * someone else, either open or close, already has it
6656 	 * and the try returns 0. Use that knowledge here to determine
6657 	 * if it's OK to change the device power level.
6658 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6659 	 * here.
6660 	 */
6661 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6662 
6663 	mutex_enter(SD_MUTEX(un));
6664 
6665 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6666 	    un->un_ncmds_in_driver);
6667 
6668 	/*
6669 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6670 	 * already being processed in the driver, or if the semaphore was
6671 	 * not gotten here it indicates an open or close is being processed.
6672 	 * At the same time somebody is requesting to go to a lower power
6673 	 * that can't perform I/O, which can't happen, therefore we need to
6674 	 * return failure.
6675 	 */
6676 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6677 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6678 		mutex_exit(SD_MUTEX(un));
6679 
6680 		if (got_semaphore_here != 0) {
6681 			sema_v(&un->un_semoclose);
6682 		}
6683 		SD_TRACE(SD_LOG_IO_PM, un,
6684 		    "sdpower: exit, device has queued cmds.\n");
6685 
6686 		goto sdpower_failed;
6687 	}
6688 
6689 	/*
6690 	 * if it is OFFLINE that means the disk is completely dead
6691 	 * in our case we have to put the disk in on or off by sending commands
6692 	 * Of course that will fail anyway so return back here.
6693 	 *
6694 	 * Power changes to a device that's OFFLINE or SUSPENDED
6695 	 * are not allowed.
6696 	 */
6697 	if ((un->un_state == SD_STATE_OFFLINE) ||
6698 	    (un->un_state == SD_STATE_SUSPENDED)) {
6699 		mutex_exit(SD_MUTEX(un));
6700 
6701 		if (got_semaphore_here != 0) {
6702 			sema_v(&un->un_semoclose);
6703 		}
6704 		SD_TRACE(SD_LOG_IO_PM, un,
6705 		    "sdpower: exit, device is off-line.\n");
6706 
6707 		goto sdpower_failed;
6708 	}
6709 
6710 	/*
6711 	 * Change the device's state to indicate it's power level
6712 	 * is being changed. Do this to prevent a power off in the
6713 	 * middle of commands, which is especially bad on devices
6714 	 * that are really powered off instead of just spun down.
6715 	 */
6716 	state_before_pm = un->un_state;
6717 	un->un_state = SD_STATE_PM_CHANGING;
6718 
6719 	mutex_exit(SD_MUTEX(un));
6720 
6721 	/*
6722 	 * If log sense command is not supported, bypass the
6723 	 * following checking, otherwise, check the log sense
6724 	 * information for this device.
6725 	 */
6726 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6727 	    un->un_f_log_sense_supported) {
6728 		/*
6729 		 * Get the log sense information to understand whether the
6730 		 * the powercycle counts have gone beyond the threshhold.
6731 		 */
6732 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6733 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6734 
6735 		mutex_enter(SD_MUTEX(un));
6736 		log_sense_page = un->un_start_stop_cycle_page;
6737 		mutex_exit(SD_MUTEX(un));
6738 
6739 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6740 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6741 
6742 		if (rval != 0) {
6743 			if (rval == EIO)
6744 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6745 			else
6746 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6747 		}
6748 
6749 #ifdef	SDDEBUG
6750 		if (sd_force_pm_supported) {
6751 			/* Force a successful result */
6752 			rval = 0;
6753 		}
6754 #endif
6755 		if (rval != 0) {
6756 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6757 			    "Log Sense Failed\n");
6758 
6759 			kmem_free(log_page_data, log_page_size);
6760 			/* Cannot support power management on those drives */
6761 
6762 			if (got_semaphore_here != 0) {
6763 				sema_v(&un->un_semoclose);
6764 			}
6765 			/*
6766 			 * On exit put the state back to it's original value
6767 			 * and broadcast to anyone waiting for the power
6768 			 * change completion.
6769 			 */
6770 			mutex_enter(SD_MUTEX(un));
6771 			un->un_state = state_before_pm;
6772 			cv_broadcast(&un->un_suspend_cv);
6773 			mutex_exit(SD_MUTEX(un));
6774 			SD_TRACE(SD_LOG_IO_PM, un,
6775 			    "sdpower: exit, Log Sense Failed.\n");
6776 
6777 			goto sdpower_failed;
6778 		}
6779 
6780 		/*
6781 		 * From the page data - Convert the essential information to
6782 		 * pm_trans_data
6783 		 */
6784 		maxcycles =
6785 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6786 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6787 
6788 		ncycles =
6789 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6790 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6791 
6792 		if (un->un_f_pm_log_sense_smart) {
6793 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6794 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6795 			sd_pm_tran_data.un.smart_count.flag = 0;
6796 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6797 		} else {
6798 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6799 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6800 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6801 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6802 				    log_page_data[8+i];
6803 			}
6804 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6805 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6806 		}
6807 
6808 		kmem_free(log_page_data, log_page_size);
6809 
6810 		/*
6811 		 * Call pm_trans_check routine to get the Ok from
6812 		 * the global policy
6813 		 */
6814 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6815 #ifdef	SDDEBUG
6816 		if (sd_force_pm_supported) {
6817 			/* Force a successful result */
6818 			rval = 1;
6819 		}
6820 #endif
6821 		switch (rval) {
6822 		case 0:
6823 			/*
6824 			 * Not Ok to Power cycle or error in parameters passed
6825 			 * Would have given the advised time to consider power
6826 			 * cycle. Based on the new intvlp parameter we are
6827 			 * supposed to pretend we are busy so that pm framework
6828 			 * will never call our power entry point. Because of
6829 			 * that install a timeout handler and wait for the
6830 			 * recommended time to elapse so that power management
6831 			 * can be effective again.
6832 			 *
6833 			 * To effect this behavior, call pm_busy_component to
6834 			 * indicate to the framework this device is busy.
6835 			 * By not adjusting un_pm_count the rest of PM in
6836 			 * the driver will function normally, and independent
6837 			 * of this but because the framework is told the device
6838 			 * is busy it won't attempt powering down until it gets
6839 			 * a matching idle. The timeout handler sends this.
6840 			 * Note: sd_pm_entry can't be called here to do this
6841 			 * because sdpower may have been called as a result
6842 			 * of a call to pm_raise_power from within sd_pm_entry.
6843 			 *
6844 			 * If a timeout handler is already active then
6845 			 * don't install another.
6846 			 */
6847 			mutex_enter(&un->un_pm_mutex);
6848 			if (un->un_pm_timeid == NULL) {
6849 				un->un_pm_timeid =
6850 				    timeout(sd_pm_timeout_handler,
6851 				    un, intvlp * drv_usectohz(1000000));
6852 				mutex_exit(&un->un_pm_mutex);
6853 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6854 			} else {
6855 				mutex_exit(&un->un_pm_mutex);
6856 			}
6857 			if (got_semaphore_here != 0) {
6858 				sema_v(&un->un_semoclose);
6859 			}
6860 			/*
6861 			 * On exit put the state back to it's original value
6862 			 * and broadcast to anyone waiting for the power
6863 			 * change completion.
6864 			 */
6865 			mutex_enter(SD_MUTEX(un));
6866 			un->un_state = state_before_pm;
6867 			cv_broadcast(&un->un_suspend_cv);
6868 			mutex_exit(SD_MUTEX(un));
6869 
6870 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6871 			    "trans check Failed, not ok to power cycle.\n");
6872 
6873 			goto sdpower_failed;
6874 		case -1:
6875 			if (got_semaphore_here != 0) {
6876 				sema_v(&un->un_semoclose);
6877 			}
6878 			/*
6879 			 * On exit put the state back to it's original value
6880 			 * and broadcast to anyone waiting for the power
6881 			 * change completion.
6882 			 */
6883 			mutex_enter(SD_MUTEX(un));
6884 			un->un_state = state_before_pm;
6885 			cv_broadcast(&un->un_suspend_cv);
6886 			mutex_exit(SD_MUTEX(un));
6887 			SD_TRACE(SD_LOG_IO_PM, un,
6888 			    "sdpower: exit, trans check command Failed.\n");
6889 
6890 			goto sdpower_failed;
6891 		}
6892 	}
6893 
6894 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6895 		/*
6896 		 * Save the last state... if the STOP FAILS we need it
6897 		 * for restoring
6898 		 */
6899 		mutex_enter(SD_MUTEX(un));
6900 		save_state = un->un_last_state;
6901 		last_power_level = un->un_power_level;
6902 		/*
6903 		 * There must not be any cmds. getting processed
6904 		 * in the driver when we get here. Power to the
6905 		 * device is potentially going off.
6906 		 */
6907 		ASSERT(un->un_ncmds_in_driver == 0);
6908 		mutex_exit(SD_MUTEX(un));
6909 
6910 		/*
6911 		 * For now PM suspend the device completely before spindle is
6912 		 * turned off
6913 		 */
6914 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6915 		    == DDI_FAILURE) {
6916 			if (got_semaphore_here != 0) {
6917 				sema_v(&un->un_semoclose);
6918 			}
6919 			/*
6920 			 * On exit put the state back to it's original value
6921 			 * and broadcast to anyone waiting for the power
6922 			 * change completion.
6923 			 */
6924 			mutex_enter(SD_MUTEX(un));
6925 			un->un_state = state_before_pm;
6926 			un->un_power_level = last_power_level;
6927 			cv_broadcast(&un->un_suspend_cv);
6928 			mutex_exit(SD_MUTEX(un));
6929 			SD_TRACE(SD_LOG_IO_PM, un,
6930 			    "sdpower: exit, PM suspend Failed.\n");
6931 
6932 			goto sdpower_failed;
6933 		}
6934 	}
6935 
6936 	/*
6937 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6938 	 * close, or strategy. Dump no long uses this routine, it uses it's
6939 	 * own code so it can be done in polled mode.
6940 	 */
6941 
6942 	medium_present = TRUE;
6943 
6944 	/*
6945 	 * When powering up, issue a TUR in case the device is at unit
6946 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6947 	 * a deadlock on un_pm_busy_cv will occur.
6948 	 */
6949 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6950 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6951 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6952 		if (sval != 0)
6953 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6954 	}
6955 
6956 	if (un->un_f_power_condition_supported) {
6957 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6958 		    "IDLE", "ACTIVE"};
6959 		SD_TRACE(SD_LOG_IO_PM, un,
6960 		    "sdpower: sending \'%s\' power condition",
6961 		    pm_condition_name[level]);
6962 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6963 		    sd_pl2pc[level], SD_PATH_DIRECT);
6964 	} else {
6965 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6966 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6967 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6968 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6969 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6970 	}
6971 	if (sval != 0) {
6972 		if (sval == EIO)
6973 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6974 		else
6975 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6976 	}
6977 
6978 	/* Command failed, check for media present. */
6979 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6980 		medium_present = FALSE;
6981 	}
6982 
6983 	/*
6984 	 * The conditions of interest here are:
6985 	 *   if a spindle off with media present fails,
6986 	 *	then restore the state and return an error.
6987 	 *   else if a spindle on fails,
6988 	 *	then return an error (there's no state to restore).
6989 	 * In all other cases we setup for the new state
6990 	 * and return success.
6991 	 */
6992 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6993 		if ((medium_present == TRUE) && (sval != 0)) {
6994 			/* The stop command from above failed */
6995 			rval = DDI_FAILURE;
6996 			/*
6997 			 * The stop command failed, and we have media
6998 			 * present. Put the level back by calling the
6999 			 * sd_pm_resume() and set the state back to
7000 			 * it's previous value.
7001 			 */
7002 			(void) sd_pm_state_change(un, last_power_level,
7003 			    SD_PM_STATE_ROLLBACK);
7004 			mutex_enter(SD_MUTEX(un));
7005 			un->un_last_state = save_state;
7006 			mutex_exit(SD_MUTEX(un));
7007 		} else if (un->un_f_monitor_media_state) {
7008 			/*
7009 			 * The stop command from above succeeded.
7010 			 * Terminate watch thread in case of removable media
7011 			 * devices going into low power state. This is as per
7012 			 * the requirements of pm framework, otherwise commands
7013 			 * will be generated for the device (through watch
7014 			 * thread), even when the device is in low power state.
7015 			 */
7016 			mutex_enter(SD_MUTEX(un));
7017 			un->un_f_watcht_stopped = FALSE;
7018 			if (un->un_swr_token != NULL) {
7019 				opaque_t temp_token = un->un_swr_token;
7020 				un->un_f_watcht_stopped = TRUE;
7021 				un->un_swr_token = NULL;
7022 				mutex_exit(SD_MUTEX(un));
7023 				(void) scsi_watch_request_terminate(temp_token,
7024 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
7025 			} else {
7026 				mutex_exit(SD_MUTEX(un));
7027 			}
7028 		}
7029 	} else {
7030 		/*
7031 		 * The level requested is I/O capable.
7032 		 * Legacy behavior: return success on a failed spinup
7033 		 * if there is no media in the drive.
7034 		 * Do this by looking at medium_present here.
7035 		 */
7036 		if ((sval != 0) && medium_present) {
7037 			/* The start command from above failed */
7038 			rval = DDI_FAILURE;
7039 		} else {
7040 			/*
7041 			 * The start command from above succeeded
7042 			 * PM resume the devices now that we have
7043 			 * started the disks
7044 			 */
7045 			(void) sd_pm_state_change(un, level,
7046 			    SD_PM_STATE_CHANGE);
7047 
7048 			/*
7049 			 * Resume the watch thread since it was suspended
7050 			 * when the device went into low power mode.
7051 			 */
7052 			if (un->un_f_monitor_media_state) {
7053 				mutex_enter(SD_MUTEX(un));
7054 				if (un->un_f_watcht_stopped == TRUE) {
7055 					opaque_t temp_token;
7056 
7057 					un->un_f_watcht_stopped = FALSE;
7058 					mutex_exit(SD_MUTEX(un));
7059 					temp_token =
7060 					    sd_watch_request_submit(un);
7061 					mutex_enter(SD_MUTEX(un));
7062 					un->un_swr_token = temp_token;
7063 				}
7064 				mutex_exit(SD_MUTEX(un));
7065 			}
7066 		}
7067 	}
7068 
7069 	if (got_semaphore_here != 0) {
7070 		sema_v(&un->un_semoclose);
7071 	}
7072 	/*
7073 	 * On exit put the state back to it's original value
7074 	 * and broadcast to anyone waiting for the power
7075 	 * change completion.
7076 	 */
7077 	mutex_enter(SD_MUTEX(un));
7078 	un->un_state = state_before_pm;
7079 	cv_broadcast(&un->un_suspend_cv);
7080 	mutex_exit(SD_MUTEX(un));
7081 
7082 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7083 
7084 	sd_ssc_fini(ssc);
7085 	return (rval);
7086 
7087 sdpower_failed:
7088 
7089 	sd_ssc_fini(ssc);
7090 	return (DDI_FAILURE);
7091 }
7092 
7093 
7094 
7095 /*
7096  *    Function: sdattach
7097  *
7098  * Description: Driver's attach(9e) entry point function.
7099  *
7100  *   Arguments: devi - opaque device info handle
7101  *		cmd  - attach  type
7102  *
7103  * Return Code: DDI_SUCCESS
7104  *		DDI_FAILURE
7105  *
7106  *     Context: Kernel thread context
7107  */
7108 
7109 static int
7110 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7111 {
7112 	switch (cmd) {
7113 	case DDI_ATTACH:
7114 		return (sd_unit_attach(devi));
7115 	case DDI_RESUME:
7116 		return (sd_ddi_resume(devi));
7117 	default:
7118 		break;
7119 	}
7120 	return (DDI_FAILURE);
7121 }
7122 
7123 
7124 /*
7125  *    Function: sddetach
7126  *
7127  * Description: Driver's detach(9E) entry point function.
7128  *
7129  *   Arguments: devi - opaque device info handle
7130  *		cmd  - detach  type
7131  *
7132  * Return Code: DDI_SUCCESS
7133  *		DDI_FAILURE
7134  *
7135  *     Context: Kernel thread context
7136  */
7137 
7138 static int
7139 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7140 {
7141 	switch (cmd) {
7142 	case DDI_DETACH:
7143 		return (sd_unit_detach(devi));
7144 	case DDI_SUSPEND:
7145 		return (sd_ddi_suspend(devi));
7146 	default:
7147 		break;
7148 	}
7149 	return (DDI_FAILURE);
7150 }
7151 
7152 
7153 /*
7154  *     Function: sd_sync_with_callback
7155  *
7156  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7157  *		 state while the callback routine is active.
7158  *
7159  *    Arguments: un: softstate structure for the instance
7160  *
7161  *	Context: Kernel thread context
7162  */
7163 
7164 static void
7165 sd_sync_with_callback(struct sd_lun *un)
7166 {
7167 	ASSERT(un != NULL);
7168 
7169 	mutex_enter(SD_MUTEX(un));
7170 
7171 	ASSERT(un->un_in_callback >= 0);
7172 
7173 	while (un->un_in_callback > 0) {
7174 		mutex_exit(SD_MUTEX(un));
7175 		delay(2);
7176 		mutex_enter(SD_MUTEX(un));
7177 	}
7178 
7179 	mutex_exit(SD_MUTEX(un));
7180 }
7181 
7182 /*
7183  *    Function: sd_unit_attach
7184  *
7185  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7186  *		the soft state structure for the device and performs
7187  *		all necessary structure and device initializations.
7188  *
7189  *   Arguments: devi: the system's dev_info_t for the device.
7190  *
7191  * Return Code: DDI_SUCCESS if attach is successful.
7192  *		DDI_FAILURE if any part of the attach fails.
7193  *
7194  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7195  *		Kernel thread context only.  Can sleep.
7196  */
7197 
7198 static int
7199 sd_unit_attach(dev_info_t *devi)
7200 {
7201 	struct	scsi_device	*devp;
7202 	struct	sd_lun		*un;
7203 	char			*variantp;
7204 	char			name_str[48];
7205 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7206 	int	instance;
7207 	int	rval;
7208 	int	wc_enabled;
7209 	int	tgt;
7210 	uint64_t	capacity;
7211 	uint_t		lbasize = 0;
7212 	dev_info_t	*pdip = ddi_get_parent(devi);
7213 	int		offbyone = 0;
7214 	int		geom_label_valid = 0;
7215 	sd_ssc_t	*ssc;
7216 	int		status;
7217 	struct sd_fm_internal	*sfip = NULL;
7218 	int		max_xfer_size;
7219 
7220 	/*
7221 	 * Retrieve the target driver's private data area. This was set
7222 	 * up by the HBA.
7223 	 */
7224 	devp = ddi_get_driver_private(devi);
7225 
7226 	/*
7227 	 * Retrieve the target ID of the device.
7228 	 */
7229 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7230 	    SCSI_ADDR_PROP_TARGET, -1);
7231 
7232 	/*
7233 	 * Since we have no idea what state things were left in by the last
7234 	 * user of the device, set up some 'default' settings, ie. turn 'em
7235 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7236 	 * Do this before the scsi_probe, which sends an inquiry.
7237 	 * This is a fix for bug (4430280).
7238 	 * Of special importance is wide-xfer. The drive could have been left
7239 	 * in wide transfer mode by the last driver to communicate with it,
7240 	 * this includes us. If that's the case, and if the following is not
7241 	 * setup properly or we don't re-negotiate with the drive prior to
7242 	 * transferring data to/from the drive, it causes bus parity errors,
7243 	 * data overruns, and unexpected interrupts. This first occurred when
7244 	 * the fix for bug (4378686) was made.
7245 	 */
7246 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7247 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7248 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7249 
7250 	/*
7251 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7252 	 * on a target. Setting it per lun instance actually sets the
7253 	 * capability of this target, which affects those luns already
7254 	 * attached on the same target. So during attach, we can only disable
7255 	 * this capability only when no other lun has been attached on this
7256 	 * target. By doing this, we assume a target has the same tagged-qing
7257 	 * capability for every lun. The condition can be removed when HBA
7258 	 * is changed to support per lun based tagged-qing capability.
7259 	 */
7260 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7261 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7262 	}
7263 
7264 	/*
7265 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7266 	 * This call will allocate and fill in the scsi_inquiry structure
7267 	 * and point the sd_inq member of the scsi_device structure to it.
7268 	 * If the attach succeeds, then this memory will not be de-allocated
7269 	 * (via scsi_unprobe()) until the instance is detached.
7270 	 */
7271 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7272 		goto probe_failed;
7273 	}
7274 
7275 	/*
7276 	 * Check the device type as specified in the inquiry data and
7277 	 * claim it if it is of a type that we support.
7278 	 */
7279 	switch (devp->sd_inq->inq_dtype) {
7280 	case DTYPE_DIRECT:
7281 		break;
7282 	case DTYPE_RODIRECT:
7283 		break;
7284 	case DTYPE_OPTICAL:
7285 		break;
7286 	case DTYPE_NOTPRESENT:
7287 	default:
7288 		/* Unsupported device type; fail the attach. */
7289 		goto probe_failed;
7290 	}
7291 
7292 	/*
7293 	 * Allocate the soft state structure for this unit.
7294 	 *
7295 	 * We rely upon this memory being set to all zeroes by
7296 	 * ddi_soft_state_zalloc().  We assume that any member of the
7297 	 * soft state structure that is not explicitly initialized by
7298 	 * this routine will have a value of zero.
7299 	 */
7300 	instance = ddi_get_instance(devp->sd_dev);
7301 #ifndef XPV_HVM_DRIVER
7302 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7303 		goto probe_failed;
7304 	}
7305 #endif /* !XPV_HVM_DRIVER */
7306 
7307 	/*
7308 	 * Retrieve a pointer to the newly-allocated soft state.
7309 	 *
7310 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7311 	 * was successful, unless something has gone horribly wrong and the
7312 	 * ddi's soft state internals are corrupt (in which case it is
7313 	 * probably better to halt here than just fail the attach....)
7314 	 */
7315 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7316 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7317 		    instance);
7318 		/*NOTREACHED*/
7319 	}
7320 
7321 	/*
7322 	 * Link the back ptr of the driver soft state to the scsi_device
7323 	 * struct for this lun.
7324 	 * Save a pointer to the softstate in the driver-private area of
7325 	 * the scsi_device struct.
7326 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7327 	 * we first set un->un_sd below.
7328 	 */
7329 	un->un_sd = devp;
7330 	devp->sd_private = (opaque_t)un;
7331 
7332 	/*
7333 	 * The following must be after devp is stored in the soft state struct.
7334 	 */
7335 #ifdef SDDEBUG
7336 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7337 	    "%s_unit_attach: un:0x%p instance:%d\n",
7338 	    ddi_driver_name(devi), un, instance);
7339 #endif
7340 
7341 	/*
7342 	 * Set up the device type and node type (for the minor nodes).
7343 	 * By default we assume that the device can at least support the
7344 	 * Common Command Set. Call it a CD-ROM if it reports itself
7345 	 * as a RODIRECT device.
7346 	 */
7347 	switch (devp->sd_inq->inq_dtype) {
7348 	case DTYPE_RODIRECT:
7349 		un->un_node_type = DDI_NT_CD_CHAN;
7350 		un->un_ctype	 = CTYPE_CDROM;
7351 		break;
7352 	case DTYPE_OPTICAL:
7353 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7354 		un->un_ctype	 = CTYPE_ROD;
7355 		break;
7356 	default:
7357 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7358 		un->un_ctype	 = CTYPE_CCS;
7359 		break;
7360 	}
7361 
7362 	/*
7363 	 * Try to read the interconnect type from the HBA.
7364 	 *
7365 	 * Note: This driver is currently compiled as two binaries, a parallel
7366 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7367 	 * differences are determined at compile time. In the future a single
7368 	 * binary will be provided and the interconnect type will be used to
7369 	 * differentiate between fibre and parallel scsi behaviors. At that time
7370 	 * it will be necessary for all fibre channel HBAs to support this
7371 	 * property.
7372 	 *
7373 	 * set un_f_is_fiber to TRUE ( default fiber )
7374 	 */
7375 	un->un_f_is_fibre = TRUE;
7376 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7377 	case INTERCONNECT_SSA:
7378 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7379 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7380 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7381 		break;
7382 	case INTERCONNECT_PARALLEL:
7383 		un->un_f_is_fibre = FALSE;
7384 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7385 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7386 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7387 		break;
7388 	case INTERCONNECT_SAS:
7389 		un->un_f_is_fibre = FALSE;
7390 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7391 		un->un_node_type = DDI_NT_BLOCK_SAS;
7392 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7393 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7394 		break;
7395 	case INTERCONNECT_SATA:
7396 		un->un_f_is_fibre = FALSE;
7397 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7398 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7399 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7400 		break;
7401 	case INTERCONNECT_FIBRE:
7402 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7403 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7404 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7405 		break;
7406 	case INTERCONNECT_FABRIC:
7407 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7408 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7409 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7410 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7411 		break;
7412 	default:
7413 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7414 		/*
7415 		 * The HBA does not support the "interconnect-type" property
7416 		 * (or did not provide a recognized type).
7417 		 *
7418 		 * Note: This will be obsoleted when a single fibre channel
7419 		 * and parallel scsi driver is delivered. In the meantime the
7420 		 * interconnect type will be set to the platform default.If that
7421 		 * type is not parallel SCSI, it means that we should be
7422 		 * assuming "ssd" semantics. However, here this also means that
7423 		 * the FC HBA is not supporting the "interconnect-type" property
7424 		 * like we expect it to, so log this occurrence.
7425 		 */
7426 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7427 		if (!SD_IS_PARALLEL_SCSI(un)) {
7428 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7429 			    "sd_unit_attach: un:0x%p Assuming "
7430 			    "INTERCONNECT_FIBRE\n", un);
7431 		} else {
7432 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7433 			    "sd_unit_attach: un:0x%p Assuming "
7434 			    "INTERCONNECT_PARALLEL\n", un);
7435 			un->un_f_is_fibre = FALSE;
7436 		}
7437 #else
7438 		/*
7439 		 * Note: This source will be implemented when a single fibre
7440 		 * channel and parallel scsi driver is delivered. The default
7441 		 * will be to assume that if a device does not support the
7442 		 * "interconnect-type" property it is a parallel SCSI HBA and
7443 		 * we will set the interconnect type for parallel scsi.
7444 		 */
7445 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7446 		un->un_f_is_fibre = FALSE;
7447 #endif
7448 		break;
7449 	}
7450 
7451 	if (un->un_f_is_fibre == TRUE) {
7452 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7453 		    SCSI_VERSION_3) {
7454 			switch (un->un_interconnect_type) {
7455 			case SD_INTERCONNECT_FIBRE:
7456 			case SD_INTERCONNECT_SSA:
7457 				un->un_node_type = DDI_NT_BLOCK_WWN;
7458 				break;
7459 			default:
7460 				break;
7461 			}
7462 		}
7463 	}
7464 
7465 	/*
7466 	 * Initialize the Request Sense command for the target
7467 	 */
7468 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7469 		goto alloc_rqs_failed;
7470 	}
7471 
7472 	/*
7473 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7474 	 * with separate binary for sd and ssd.
7475 	 *
7476 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7477 	 * The hardcoded values will go away when Sparc uses 1 binary
7478 	 * for sd and ssd.  This hardcoded values need to match
7479 	 * SD_RETRY_COUNT in sddef.h
7480 	 * The value used is base on interconnect type.
7481 	 * fibre = 3, parallel = 5
7482 	 */
7483 #if defined(__i386) || defined(__amd64)
7484 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7485 #else
7486 	un->un_retry_count = SD_RETRY_COUNT;
7487 #endif
7488 
7489 	/*
7490 	 * Set the per disk retry count to the default number of retries
7491 	 * for disks and CDROMs. This value can be overridden by the
7492 	 * disk property list or an entry in sd.conf.
7493 	 */
7494 	un->un_notready_retry_count =
7495 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7496 	    : DISK_NOT_READY_RETRY_COUNT(un);
7497 
7498 	/*
7499 	 * Set the busy retry count to the default value of un_retry_count.
7500 	 * This can be overridden by entries in sd.conf or the device
7501 	 * config table.
7502 	 */
7503 	un->un_busy_retry_count = un->un_retry_count;
7504 
7505 	/*
7506 	 * Init the reset threshold for retries.  This number determines
7507 	 * how many retries must be performed before a reset can be issued
7508 	 * (for certain error conditions). This can be overridden by entries
7509 	 * in sd.conf or the device config table.
7510 	 */
7511 	un->un_reset_retry_count = (un->un_retry_count / 2);
7512 
7513 	/*
7514 	 * Set the victim_retry_count to the default un_retry_count
7515 	 */
7516 	un->un_victim_retry_count = (2 * un->un_retry_count);
7517 
7518 	/*
7519 	 * Set the reservation release timeout to the default value of
7520 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7521 	 * device config table.
7522 	 */
7523 	un->un_reserve_release_time = 5;
7524 
7525 	/*
7526 	 * Set up the default maximum transfer size. Note that this may
7527 	 * get updated later in the attach, when setting up default wide
7528 	 * operations for disks.
7529 	 */
7530 #if defined(__i386) || defined(__amd64)
7531 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7532 	un->un_partial_dma_supported = 1;
7533 #else
7534 	un->un_max_xfer_size = (uint_t)maxphys;
7535 #endif
7536 
7537 	/*
7538 	 * Get "allow bus device reset" property (defaults to "enabled" if
7539 	 * the property was not defined). This is to disable bus resets for
7540 	 * certain kinds of error recovery. Note: In the future when a run-time
7541 	 * fibre check is available the soft state flag should default to
7542 	 * enabled.
7543 	 */
7544 	if (un->un_f_is_fibre == TRUE) {
7545 		un->un_f_allow_bus_device_reset = TRUE;
7546 	} else {
7547 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7548 		    "allow-bus-device-reset", 1) != 0) {
7549 			un->un_f_allow_bus_device_reset = TRUE;
7550 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7551 			    "sd_unit_attach: un:0x%p Bus device reset "
7552 			    "enabled\n", un);
7553 		} else {
7554 			un->un_f_allow_bus_device_reset = FALSE;
7555 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7556 			    "sd_unit_attach: un:0x%p Bus device reset "
7557 			    "disabled\n", un);
7558 		}
7559 	}
7560 
7561 	/*
7562 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7563 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7564 	 *
7565 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7566 	 * property. The new "variant" property with a value of "atapi" has been
7567 	 * introduced so that future 'variants' of standard SCSI behavior (like
7568 	 * atapi) could be specified by the underlying HBA drivers by supplying
7569 	 * a new value for the "variant" property, instead of having to define a
7570 	 * new property.
7571 	 */
7572 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7573 		un->un_f_cfg_is_atapi = TRUE;
7574 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7575 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7576 	}
7577 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7578 	    &variantp) == DDI_PROP_SUCCESS) {
7579 		if (strcmp(variantp, "atapi") == 0) {
7580 			un->un_f_cfg_is_atapi = TRUE;
7581 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7582 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7583 		}
7584 		ddi_prop_free(variantp);
7585 	}
7586 
7587 	un->un_cmd_timeout	= SD_IO_TIME;
7588 
7589 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7590 
7591 	/* Info on current states, statuses, etc. (Updated frequently) */
7592 	un->un_state		= SD_STATE_NORMAL;
7593 	un->un_last_state	= SD_STATE_NORMAL;
7594 
7595 	/* Control & status info for command throttling */
7596 	un->un_throttle		= sd_max_throttle;
7597 	un->un_saved_throttle	= sd_max_throttle;
7598 	un->un_min_throttle	= sd_min_throttle;
7599 
7600 	if (un->un_f_is_fibre == TRUE) {
7601 		un->un_f_use_adaptive_throttle = TRUE;
7602 	} else {
7603 		un->un_f_use_adaptive_throttle = FALSE;
7604 	}
7605 
7606 	/* Removable media support. */
7607 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7608 	un->un_mediastate		= DKIO_NONE;
7609 	un->un_specified_mediastate	= DKIO_NONE;
7610 
7611 	/* CVs for suspend/resume (PM or DR) */
7612 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7613 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7614 
7615 	/* Power management support. */
7616 	un->un_power_level = SD_SPINDLE_UNINIT;
7617 
7618 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7619 	un->un_f_wcc_inprog = 0;
7620 
7621 	/*
7622 	 * The open/close semaphore is used to serialize threads executing
7623 	 * in the driver's open & close entry point routines for a given
7624 	 * instance.
7625 	 */
7626 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7627 
7628 	/*
7629 	 * The conf file entry and softstate variable is a forceful override,
7630 	 * meaning a non-zero value must be entered to change the default.
7631 	 */
7632 	un->un_f_disksort_disabled = FALSE;
7633 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7634 	un->un_f_enable_rmw = FALSE;
7635 
7636 	/*
7637 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7638 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7639 	 */
7640 	un->un_f_mmc_gesn_polling = TRUE;
7641 
7642 	/*
7643 	 * physical sector size defaults to DEV_BSIZE currently. We can
7644 	 * override this value via the driver configuration file so we must
7645 	 * set it before calling sd_read_unit_properties().
7646 	 */
7647 	un->un_phy_blocksize = DEV_BSIZE;
7648 
7649 	/*
7650 	 * Retrieve the properties from the static driver table or the driver
7651 	 * configuration file (.conf) for this unit and update the soft state
7652 	 * for the device as needed for the indicated properties.
7653 	 * Note: the property configuration needs to occur here as some of the
7654 	 * following routines may have dependencies on soft state flags set
7655 	 * as part of the driver property configuration.
7656 	 */
7657 	sd_read_unit_properties(un);
7658 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7659 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7660 
7661 	/*
7662 	 * Only if a device has "hotpluggable" property, it is
7663 	 * treated as hotpluggable device. Otherwise, it is
7664 	 * regarded as non-hotpluggable one.
7665 	 */
7666 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7667 	    -1) != -1) {
7668 		un->un_f_is_hotpluggable = TRUE;
7669 	}
7670 
7671 	/*
7672 	 * set unit's attributes(flags) according to "hotpluggable" and
7673 	 * RMB bit in INQUIRY data.
7674 	 */
7675 	sd_set_unit_attributes(un, devi);
7676 
7677 	/*
7678 	 * By default, we mark the capacity, lbasize, and geometry
7679 	 * as invalid. Only if we successfully read a valid capacity
7680 	 * will we update the un_blockcount and un_tgt_blocksize with the
7681 	 * valid values (the geometry will be validated later).
7682 	 */
7683 	un->un_f_blockcount_is_valid	= FALSE;
7684 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7685 
7686 	/*
7687 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7688 	 * otherwise.
7689 	 */
7690 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7691 	un->un_blockcount = 0;
7692 
7693 	/*
7694 	 * Set up the per-instance info needed to determine the correct
7695 	 * CDBs and other info for issuing commands to the target.
7696 	 */
7697 	sd_init_cdb_limits(un);
7698 
7699 	/*
7700 	 * Set up the IO chains to use, based upon the target type.
7701 	 */
7702 	if (un->un_f_non_devbsize_supported) {
7703 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7704 	} else {
7705 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7706 	}
7707 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7708 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7709 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7710 
7711 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7712 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7713 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7714 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7715 
7716 
7717 	if (ISCD(un)) {
7718 		un->un_additional_codes = sd_additional_codes;
7719 	} else {
7720 		un->un_additional_codes = NULL;
7721 	}
7722 
7723 	/*
7724 	 * Create the kstats here so they can be available for attach-time
7725 	 * routines that send commands to the unit (either polled or via
7726 	 * sd_send_scsi_cmd).
7727 	 *
7728 	 * Note: This is a critical sequence that needs to be maintained:
7729 	 *	1) Instantiate the kstats here, before any routines using the
7730 	 *	   iopath (i.e. sd_send_scsi_cmd).
7731 	 *	2) Instantiate and initialize the partition stats
7732 	 *	   (sd_set_pstats).
7733 	 *	3) Initialize the error stats (sd_set_errstats), following
7734 	 *	   sd_validate_geometry(),sd_register_devid(),
7735 	 *	   and sd_cache_control().
7736 	 */
7737 
7738 	un->un_stats = kstat_create(sd_label, instance,
7739 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7740 	if (un->un_stats != NULL) {
7741 		un->un_stats->ks_lock = SD_MUTEX(un);
7742 		kstat_install(un->un_stats);
7743 	}
7744 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7745 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7746 
7747 	sd_create_errstats(un, instance);
7748 	if (un->un_errstats == NULL) {
7749 		goto create_errstats_failed;
7750 	}
7751 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7752 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7753 
7754 	/*
7755 	 * The following if/else code was relocated here from below as part
7756 	 * of the fix for bug (4430280). However with the default setup added
7757 	 * on entry to this routine, it's no longer absolutely necessary for
7758 	 * this to be before the call to sd_spin_up_unit.
7759 	 */
7760 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7761 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7762 		    (devp->sd_inq->inq_ansi == 5)) &&
7763 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7764 
7765 		/*
7766 		 * If tagged queueing is supported by the target
7767 		 * and by the host adapter then we will enable it
7768 		 */
7769 		un->un_tagflags = 0;
7770 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7771 		    (un->un_f_arq_enabled == TRUE)) {
7772 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7773 			    1, 1) == 1) {
7774 				un->un_tagflags = FLAG_STAG;
7775 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7776 				    "sd_unit_attach: un:0x%p tag queueing "
7777 				    "enabled\n", un);
7778 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7779 			    "untagged-qing", 0) == 1) {
7780 				un->un_f_opt_queueing = TRUE;
7781 				un->un_saved_throttle = un->un_throttle =
7782 				    min(un->un_throttle, 3);
7783 			} else {
7784 				un->un_f_opt_queueing = FALSE;
7785 				un->un_saved_throttle = un->un_throttle = 1;
7786 			}
7787 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7788 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7789 			/* The Host Adapter supports internal queueing. */
7790 			un->un_f_opt_queueing = TRUE;
7791 			un->un_saved_throttle = un->un_throttle =
7792 			    min(un->un_throttle, 3);
7793 		} else {
7794 			un->un_f_opt_queueing = FALSE;
7795 			un->un_saved_throttle = un->un_throttle = 1;
7796 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7797 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7798 		}
7799 
7800 		/*
7801 		 * Enable large transfers for SATA/SAS drives
7802 		 */
7803 		if (SD_IS_SERIAL(un)) {
7804 			un->un_max_xfer_size =
7805 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7806 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7807 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7808 			    "sd_unit_attach: un:0x%p max transfer "
7809 			    "size=0x%x\n", un, un->un_max_xfer_size);
7810 
7811 		}
7812 
7813 		/* Setup or tear down default wide operations for disks */
7814 
7815 		/*
7816 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7817 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7818 		 * system and be set to different values. In the future this
7819 		 * code may need to be updated when the ssd module is
7820 		 * obsoleted and removed from the system. (4299588)
7821 		 */
7822 		if (SD_IS_PARALLEL_SCSI(un) &&
7823 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7824 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7825 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7826 			    1, 1) == 1) {
7827 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7828 				    "sd_unit_attach: un:0x%p Wide Transfer "
7829 				    "enabled\n", un);
7830 			}
7831 
7832 			/*
7833 			 * If tagged queuing has also been enabled, then
7834 			 * enable large xfers
7835 			 */
7836 			if (un->un_saved_throttle == sd_max_throttle) {
7837 				un->un_max_xfer_size =
7838 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7839 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7840 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7841 				    "sd_unit_attach: un:0x%p max transfer "
7842 				    "size=0x%x\n", un, un->un_max_xfer_size);
7843 			}
7844 		} else {
7845 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7846 			    0, 1) == 1) {
7847 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7848 				    "sd_unit_attach: un:0x%p "
7849 				    "Wide Transfer disabled\n", un);
7850 			}
7851 		}
7852 	} else {
7853 		un->un_tagflags = FLAG_STAG;
7854 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7855 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7856 	}
7857 
7858 	/*
7859 	 * If this target supports LUN reset, try to enable it.
7860 	 */
7861 	if (un->un_f_lun_reset_enabled) {
7862 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7863 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7864 			    "un:0x%p lun_reset capability set\n", un);
7865 		} else {
7866 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7867 			    "un:0x%p lun-reset capability not set\n", un);
7868 		}
7869 	}
7870 
7871 	/*
7872 	 * Adjust the maximum transfer size. This is to fix
7873 	 * the problem of partial DMA support on SPARC. Some
7874 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7875 	 * size, which requires partial DMA support on SPARC.
7876 	 * In the future the SPARC pci nexus driver may solve
7877 	 * the problem instead of this fix.
7878 	 */
7879 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7880 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7881 		/* We need DMA partial even on sparc to ensure sddump() works */
7882 		un->un_max_xfer_size = max_xfer_size;
7883 		if (un->un_partial_dma_supported == 0)
7884 			un->un_partial_dma_supported = 1;
7885 	}
7886 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7887 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7888 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7889 		    un->un_max_xfer_size) == 1) {
7890 			un->un_buf_breakup_supported = 1;
7891 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7892 			    "un:0x%p Buf breakup enabled\n", un);
7893 		}
7894 	}
7895 
7896 	/*
7897 	 * Set PKT_DMA_PARTIAL flag.
7898 	 */
7899 	if (un->un_partial_dma_supported == 1) {
7900 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7901 	} else {
7902 		un->un_pkt_flags = 0;
7903 	}
7904 
7905 	/* Initialize sd_ssc_t for internal uscsi commands */
7906 	ssc = sd_ssc_init(un);
7907 	scsi_fm_init(devp);
7908 
7909 	/*
7910 	 * Allocate memory for SCSI FMA stuffs.
7911 	 */
7912 	un->un_fm_private =
7913 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7914 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7915 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7916 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7917 	sfip->fm_ssc.ssc_un = un;
7918 
7919 	if (ISCD(un) ||
7920 	    un->un_f_has_removable_media ||
7921 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7922 		/*
7923 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7924 		 * Their log are unchanged.
7925 		 */
7926 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7927 	} else {
7928 		/*
7929 		 * If enter here, it should be non-CDROM and FM-capable
7930 		 * device, and it will not keep the old scsi_log as before
7931 		 * in /var/adm/messages. However, the property
7932 		 * "fm-scsi-log" will control whether the FM telemetry will
7933 		 * be logged in /var/adm/messages.
7934 		 */
7935 		int fm_scsi_log;
7936 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7937 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7938 
7939 		if (fm_scsi_log)
7940 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7941 		else
7942 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7943 	}
7944 
7945 	/*
7946 	 * At this point in the attach, we have enough info in the
7947 	 * soft state to be able to issue commands to the target.
7948 	 *
7949 	 * All command paths used below MUST issue their commands as
7950 	 * SD_PATH_DIRECT. This is important as intermediate layers
7951 	 * are not all initialized yet (such as PM).
7952 	 */
7953 
7954 	/*
7955 	 * Send a TEST UNIT READY command to the device. This should clear
7956 	 * any outstanding UNIT ATTENTION that may be present.
7957 	 *
7958 	 * Note: Don't check for success, just track if there is a reservation,
7959 	 * this is a throw away command to clear any unit attentions.
7960 	 *
7961 	 * Note: This MUST be the first command issued to the target during
7962 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7963 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7964 	 * with attempts at spinning up a device with no media.
7965 	 */
7966 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7967 	if (status != 0) {
7968 		if (status == EACCES)
7969 			reservation_flag = SD_TARGET_IS_RESERVED;
7970 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7971 	}
7972 
7973 	/*
7974 	 * If the device is NOT a removable media device, attempt to spin
7975 	 * it up (using the START_STOP_UNIT command) and read its capacity
7976 	 * (using the READ CAPACITY command).  Note, however, that either
7977 	 * of these could fail and in some cases we would continue with
7978 	 * the attach despite the failure (see below).
7979 	 */
7980 	if (un->un_f_descr_format_supported) {
7981 
7982 		switch (sd_spin_up_unit(ssc)) {
7983 		case 0:
7984 			/*
7985 			 * Spin-up was successful; now try to read the
7986 			 * capacity.  If successful then save the results
7987 			 * and mark the capacity & lbasize as valid.
7988 			 */
7989 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7990 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7991 
7992 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7993 			    &lbasize, SD_PATH_DIRECT);
7994 
7995 			switch (status) {
7996 			case 0: {
7997 				if (capacity > DK_MAX_BLOCKS) {
7998 #ifdef _LP64
7999 					if ((capacity + 1) >
8000 					    SD_GROUP1_MAX_ADDRESS) {
8001 						/*
8002 						 * Enable descriptor format
8003 						 * sense data so that we can
8004 						 * get 64 bit sense data
8005 						 * fields.
8006 						 */
8007 						sd_enable_descr_sense(ssc);
8008 					}
8009 #else
8010 					/* 32-bit kernels can't handle this */
8011 					scsi_log(SD_DEVINFO(un),
8012 					    sd_label, CE_WARN,
8013 					    "disk has %llu blocks, which "
8014 					    "is too large for a 32-bit "
8015 					    "kernel", capacity);
8016 
8017 #if defined(__i386) || defined(__amd64)
8018 					/*
8019 					 * 1TB disk was treated as (1T - 512)B
8020 					 * in the past, so that it might have
8021 					 * valid VTOC and solaris partitions,
8022 					 * we have to allow it to continue to
8023 					 * work.
8024 					 */
8025 					if (capacity -1 > DK_MAX_BLOCKS)
8026 #endif
8027 					goto spinup_failed;
8028 #endif
8029 				}
8030 
8031 				/*
8032 				 * Here it's not necessary to check the case:
8033 				 * the capacity of the device is bigger than
8034 				 * what the max hba cdb can support. Because
8035 				 * sd_send_scsi_READ_CAPACITY will retrieve
8036 				 * the capacity by sending USCSI command, which
8037 				 * is constrained by the max hba cdb. Actually,
8038 				 * sd_send_scsi_READ_CAPACITY will return
8039 				 * EINVAL when using bigger cdb than required
8040 				 * cdb length. Will handle this case in
8041 				 * "case EINVAL".
8042 				 */
8043 
8044 				/*
8045 				 * The following relies on
8046 				 * sd_send_scsi_READ_CAPACITY never
8047 				 * returning 0 for capacity and/or lbasize.
8048 				 */
8049 				sd_update_block_info(un, lbasize, capacity);
8050 
8051 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8052 				    "sd_unit_attach: un:0x%p capacity = %ld "
8053 				    "blocks; lbasize= %ld.\n", un,
8054 				    un->un_blockcount, un->un_tgt_blocksize);
8055 
8056 				break;
8057 			}
8058 			case EINVAL:
8059 				/*
8060 				 * In the case where the max-cdb-length property
8061 				 * is smaller than the required CDB length for
8062 				 * a SCSI device, a target driver can fail to
8063 				 * attach to that device.
8064 				 */
8065 				scsi_log(SD_DEVINFO(un),
8066 				    sd_label, CE_WARN,
8067 				    "disk capacity is too large "
8068 				    "for current cdb length");
8069 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8070 
8071 				goto spinup_failed;
8072 			case EACCES:
8073 				/*
8074 				 * Should never get here if the spin-up
8075 				 * succeeded, but code it in anyway.
8076 				 * From here, just continue with the attach...
8077 				 */
8078 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8079 				    "sd_unit_attach: un:0x%p "
8080 				    "sd_send_scsi_READ_CAPACITY "
8081 				    "returned reservation conflict\n", un);
8082 				reservation_flag = SD_TARGET_IS_RESERVED;
8083 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8084 				break;
8085 			default:
8086 				/*
8087 				 * Likewise, should never get here if the
8088 				 * spin-up succeeded. Just continue with
8089 				 * the attach...
8090 				 */
8091 				if (status == EIO)
8092 					sd_ssc_assessment(ssc,
8093 					    SD_FMT_STATUS_CHECK);
8094 				else
8095 					sd_ssc_assessment(ssc,
8096 					    SD_FMT_IGNORE);
8097 				break;
8098 			}
8099 			break;
8100 		case EACCES:
8101 			/*
8102 			 * Device is reserved by another host.  In this case
8103 			 * we could not spin it up or read the capacity, but
8104 			 * we continue with the attach anyway.
8105 			 */
8106 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8107 			    "sd_unit_attach: un:0x%p spin-up reservation "
8108 			    "conflict.\n", un);
8109 			reservation_flag = SD_TARGET_IS_RESERVED;
8110 			break;
8111 		default:
8112 			/* Fail the attach if the spin-up failed. */
8113 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8114 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8115 			goto spinup_failed;
8116 		}
8117 
8118 	}
8119 
8120 	/*
8121 	 * Check to see if this is a MMC drive
8122 	 */
8123 	if (ISCD(un)) {
8124 		sd_set_mmc_caps(ssc);
8125 	}
8126 
8127 	/*
8128 	 * Add a zero-length attribute to tell the world we support
8129 	 * kernel ioctls (for layered drivers)
8130 	 */
8131 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8132 	    DDI_KERNEL_IOCTL, NULL, 0);
8133 
8134 	/*
8135 	 * Add a boolean property to tell the world we support
8136 	 * the B_FAILFAST flag (for layered drivers)
8137 	 */
8138 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8139 	    "ddi-failfast-supported", NULL, 0);
8140 
8141 	/*
8142 	 * Initialize power management
8143 	 */
8144 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8145 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8146 	sd_setup_pm(ssc, devi);
8147 	if (un->un_f_pm_is_enabled == FALSE) {
8148 		/*
8149 		 * For performance, point to a jump table that does
8150 		 * not include pm.
8151 		 * The direct and priority chains don't change with PM.
8152 		 *
8153 		 * Note: this is currently done based on individual device
8154 		 * capabilities. When an interface for determining system
8155 		 * power enabled state becomes available, or when additional
8156 		 * layers are added to the command chain, these values will
8157 		 * have to be re-evaluated for correctness.
8158 		 */
8159 		if (un->un_f_non_devbsize_supported) {
8160 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8161 		} else {
8162 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8163 		}
8164 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8165 	}
8166 
8167 	/*
8168 	 * This property is set to 0 by HA software to avoid retries
8169 	 * on a reserved disk. (The preferred property name is
8170 	 * "retry-on-reservation-conflict") (1189689)
8171 	 *
8172 	 * Note: The use of a global here can have unintended consequences. A
8173 	 * per instance variable is preferable to match the capabilities of
8174 	 * different underlying hba's (4402600)
8175 	 */
8176 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8177 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8178 	    sd_retry_on_reservation_conflict);
8179 	if (sd_retry_on_reservation_conflict != 0) {
8180 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8181 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8182 		    sd_retry_on_reservation_conflict);
8183 	}
8184 
8185 	/* Set up options for QFULL handling. */
8186 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8187 	    "qfull-retries", -1)) != -1) {
8188 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8189 		    rval, 1);
8190 	}
8191 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8192 	    "qfull-retry-interval", -1)) != -1) {
8193 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8194 		    rval, 1);
8195 	}
8196 
8197 	/*
8198 	 * This just prints a message that announces the existence of the
8199 	 * device. The message is always printed in the system logfile, but
8200 	 * only appears on the console if the system is booted with the
8201 	 * -v (verbose) argument.
8202 	 */
8203 	ddi_report_dev(devi);
8204 
8205 	un->un_mediastate = DKIO_NONE;
8206 
8207 	/*
8208 	 * Check if this is a SSD(Solid State Drive).
8209 	 */
8210 	sd_check_solid_state(ssc);
8211 
8212 	/*
8213 	 * Check whether the drive is in emulation mode.
8214 	 */
8215 	sd_check_emulation_mode(ssc);
8216 
8217 	cmlb_alloc_handle(&un->un_cmlbhandle);
8218 
8219 #if defined(__i386) || defined(__amd64)
8220 	/*
8221 	 * On x86, compensate for off-by-1 legacy error
8222 	 */
8223 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8224 	    (lbasize == un->un_sys_blocksize))
8225 		offbyone = CMLB_OFF_BY_ONE;
8226 #endif
8227 
8228 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8229 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8230 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8231 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8232 	    (void *)SD_PATH_DIRECT) != 0) {
8233 		goto cmlb_attach_failed;
8234 	}
8235 
8236 
8237 	/*
8238 	 * Read and validate the device's geometry (ie, disk label)
8239 	 * A new unformatted drive will not have a valid geometry, but
8240 	 * the driver needs to successfully attach to this device so
8241 	 * the drive can be formatted via ioctls.
8242 	 */
8243 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8244 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8245 
8246 	mutex_enter(SD_MUTEX(un));
8247 
8248 	/*
8249 	 * Read and initialize the devid for the unit.
8250 	 */
8251 	if (un->un_f_devid_supported) {
8252 		sd_register_devid(ssc, devi, reservation_flag);
8253 	}
8254 	mutex_exit(SD_MUTEX(un));
8255 
8256 #if (defined(__fibre))
8257 	/*
8258 	 * Register callbacks for fibre only.  You can't do this solely
8259 	 * on the basis of the devid_type because this is hba specific.
8260 	 * We need to query our hba capabilities to find out whether to
8261 	 * register or not.
8262 	 */
8263 	if (un->un_f_is_fibre) {
8264 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8265 			sd_init_event_callbacks(un);
8266 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8267 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8268 			    un);
8269 		}
8270 	}
8271 #endif
8272 
8273 	if (un->un_f_opt_disable_cache == TRUE) {
8274 		/*
8275 		 * Disable both read cache and write cache.  This is
8276 		 * the historic behavior of the keywords in the config file.
8277 		 */
8278 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8279 		    0) {
8280 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8281 			    "sd_unit_attach: un:0x%p Could not disable "
8282 			    "caching", un);
8283 			goto devid_failed;
8284 		}
8285 	}
8286 
8287 	/*
8288 	 * Check the value of the WCE bit now and
8289 	 * set un_f_write_cache_enabled accordingly.
8290 	 */
8291 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8292 	mutex_enter(SD_MUTEX(un));
8293 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8294 	mutex_exit(SD_MUTEX(un));
8295 
8296 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8297 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8298 	    un->un_f_enable_rmw) {
8299 		if (!(un->un_wm_cache)) {
8300 			(void) snprintf(name_str, sizeof (name_str),
8301 			    "%s%d_cache",
8302 			    ddi_driver_name(SD_DEVINFO(un)),
8303 			    ddi_get_instance(SD_DEVINFO(un)));
8304 			un->un_wm_cache = kmem_cache_create(
8305 			    name_str, sizeof (struct sd_w_map),
8306 			    8, sd_wm_cache_constructor,
8307 			    sd_wm_cache_destructor, NULL,
8308 			    (void *)un, NULL, 0);
8309 			if (!(un->un_wm_cache)) {
8310 				goto wm_cache_failed;
8311 			}
8312 		}
8313 	}
8314 
8315 	/*
8316 	 * Check the value of the NV_SUP bit and set
8317 	 * un_f_suppress_cache_flush accordingly.
8318 	 */
8319 	sd_get_nv_sup(ssc);
8320 
8321 	/*
8322 	 * Find out what type of reservation this disk supports.
8323 	 */
8324 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8325 
8326 	switch (status) {
8327 	case 0:
8328 		/*
8329 		 * SCSI-3 reservations are supported.
8330 		 */
8331 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8332 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8333 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8334 		break;
8335 	case ENOTSUP:
8336 		/*
8337 		 * The PERSISTENT RESERVE IN command would not be recognized by
8338 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8339 		 */
8340 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8341 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8342 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8343 
8344 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8345 		break;
8346 	default:
8347 		/*
8348 		 * default to SCSI-3 reservations
8349 		 */
8350 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8351 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8352 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8353 
8354 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8355 		break;
8356 	}
8357 
8358 	/*
8359 	 * Set the pstat and error stat values here, so data obtained during the
8360 	 * previous attach-time routines is available.
8361 	 *
8362 	 * Note: This is a critical sequence that needs to be maintained:
8363 	 *	1) Instantiate the kstats before any routines using the iopath
8364 	 *	   (i.e. sd_send_scsi_cmd).
8365 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8366 	 *	   stats (sd_set_pstats)here, following
8367 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8368 	 *	   sd_cache_control().
8369 	 */
8370 
8371 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8372 		sd_set_pstats(un);
8373 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8374 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8375 	}
8376 
8377 	sd_set_errstats(un);
8378 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8379 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8380 
8381 
8382 	/*
8383 	 * After successfully attaching an instance, we record the information
8384 	 * of how many luns have been attached on the relative target and
8385 	 * controller for parallel SCSI. This information is used when sd tries
8386 	 * to set the tagged queuing capability in HBA.
8387 	 */
8388 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8389 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8390 	}
8391 
8392 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8393 	    "sd_unit_attach: un:0x%p exit success\n", un);
8394 
8395 	/* Uninitialize sd_ssc_t pointer */
8396 	sd_ssc_fini(ssc);
8397 
8398 	return (DDI_SUCCESS);
8399 
8400 	/*
8401 	 * An error occurred during the attach; clean up & return failure.
8402 	 */
8403 wm_cache_failed:
8404 devid_failed:
8405 
8406 setup_pm_failed:
8407 	ddi_remove_minor_node(devi, NULL);
8408 
8409 cmlb_attach_failed:
8410 	/*
8411 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8412 	 */
8413 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8414 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8415 
8416 	/*
8417 	 * Refer to the comments of setting tagged-qing in the beginning of
8418 	 * sd_unit_attach. We can only disable tagged queuing when there is
8419 	 * no lun attached on the target.
8420 	 */
8421 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8422 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8423 	}
8424 
8425 	if (un->un_f_is_fibre == FALSE) {
8426 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8427 	}
8428 
8429 spinup_failed:
8430 
8431 	/* Uninitialize sd_ssc_t pointer */
8432 	sd_ssc_fini(ssc);
8433 
8434 	mutex_enter(SD_MUTEX(un));
8435 
8436 	/* Deallocate SCSI FMA memory spaces */
8437 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8438 
8439 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8440 	if (un->un_direct_priority_timeid != NULL) {
8441 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8442 		un->un_direct_priority_timeid = NULL;
8443 		mutex_exit(SD_MUTEX(un));
8444 		(void) untimeout(temp_id);
8445 		mutex_enter(SD_MUTEX(un));
8446 	}
8447 
8448 	/* Cancel any pending start/stop timeouts */
8449 	if (un->un_startstop_timeid != NULL) {
8450 		timeout_id_t temp_id = un->un_startstop_timeid;
8451 		un->un_startstop_timeid = NULL;
8452 		mutex_exit(SD_MUTEX(un));
8453 		(void) untimeout(temp_id);
8454 		mutex_enter(SD_MUTEX(un));
8455 	}
8456 
8457 	/* Cancel any pending reset-throttle timeouts */
8458 	if (un->un_reset_throttle_timeid != NULL) {
8459 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8460 		un->un_reset_throttle_timeid = NULL;
8461 		mutex_exit(SD_MUTEX(un));
8462 		(void) untimeout(temp_id);
8463 		mutex_enter(SD_MUTEX(un));
8464 	}
8465 
8466 	/* Cancel rmw warning message timeouts */
8467 	if (un->un_rmw_msg_timeid != NULL) {
8468 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8469 		un->un_rmw_msg_timeid = NULL;
8470 		mutex_exit(SD_MUTEX(un));
8471 		(void) untimeout(temp_id);
8472 		mutex_enter(SD_MUTEX(un));
8473 	}
8474 
8475 	/* Cancel any pending retry timeouts */
8476 	if (un->un_retry_timeid != NULL) {
8477 		timeout_id_t temp_id = un->un_retry_timeid;
8478 		un->un_retry_timeid = NULL;
8479 		mutex_exit(SD_MUTEX(un));
8480 		(void) untimeout(temp_id);
8481 		mutex_enter(SD_MUTEX(un));
8482 	}
8483 
8484 	/* Cancel any pending delayed cv broadcast timeouts */
8485 	if (un->un_dcvb_timeid != NULL) {
8486 		timeout_id_t temp_id = un->un_dcvb_timeid;
8487 		un->un_dcvb_timeid = NULL;
8488 		mutex_exit(SD_MUTEX(un));
8489 		(void) untimeout(temp_id);
8490 		mutex_enter(SD_MUTEX(un));
8491 	}
8492 
8493 	mutex_exit(SD_MUTEX(un));
8494 
8495 	/* There should not be any in-progress I/O so ASSERT this check */
8496 	ASSERT(un->un_ncmds_in_transport == 0);
8497 	ASSERT(un->un_ncmds_in_driver == 0);
8498 
8499 	/* Do not free the softstate if the callback routine is active */
8500 	sd_sync_with_callback(un);
8501 
8502 	/*
8503 	 * Partition stats apparently are not used with removables. These would
8504 	 * not have been created during attach, so no need to clean them up...
8505 	 */
8506 	if (un->un_errstats != NULL) {
8507 		kstat_delete(un->un_errstats);
8508 		un->un_errstats = NULL;
8509 	}
8510 
8511 create_errstats_failed:
8512 
8513 	if (un->un_stats != NULL) {
8514 		kstat_delete(un->un_stats);
8515 		un->un_stats = NULL;
8516 	}
8517 
8518 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8519 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8520 
8521 	ddi_prop_remove_all(devi);
8522 	sema_destroy(&un->un_semoclose);
8523 	cv_destroy(&un->un_state_cv);
8524 
8525 getrbuf_failed:
8526 
8527 	sd_free_rqs(un);
8528 
8529 alloc_rqs_failed:
8530 
8531 	devp->sd_private = NULL;
8532 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8533 
8534 get_softstate_failed:
8535 	/*
8536 	 * Note: the man pages are unclear as to whether or not doing a
8537 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8538 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8539 	 * ddi_get_soft_state() fails.  The implication seems to be
8540 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8541 	 */
8542 #ifndef XPV_HVM_DRIVER
8543 	ddi_soft_state_free(sd_state, instance);
8544 #endif /* !XPV_HVM_DRIVER */
8545 
8546 probe_failed:
8547 	scsi_unprobe(devp);
8548 
8549 	return (DDI_FAILURE);
8550 }
8551 
8552 
8553 /*
8554  *    Function: sd_unit_detach
8555  *
8556  * Description: Performs DDI_DETACH processing for sddetach().
8557  *
8558  * Return Code: DDI_SUCCESS
8559  *		DDI_FAILURE
8560  *
8561  *     Context: Kernel thread context
8562  */
8563 
8564 static int
8565 sd_unit_detach(dev_info_t *devi)
8566 {
8567 	struct scsi_device	*devp;
8568 	struct sd_lun		*un;
8569 	int			i;
8570 	int			tgt;
8571 	dev_t			dev;
8572 	dev_info_t		*pdip = ddi_get_parent(devi);
8573 #ifndef XPV_HVM_DRIVER
8574 	int			instance = ddi_get_instance(devi);
8575 #endif /* !XPV_HVM_DRIVER */
8576 
8577 	mutex_enter(&sd_detach_mutex);
8578 
8579 	/*
8580 	 * Fail the detach for any of the following:
8581 	 *  - Unable to get the sd_lun struct for the instance
8582 	 *  - A layered driver has an outstanding open on the instance
8583 	 *  - Another thread is already detaching this instance
8584 	 *  - Another thread is currently performing an open
8585 	 */
8586 	devp = ddi_get_driver_private(devi);
8587 	if ((devp == NULL) ||
8588 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8589 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8590 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8591 		mutex_exit(&sd_detach_mutex);
8592 		return (DDI_FAILURE);
8593 	}
8594 
8595 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8596 
8597 	/*
8598 	 * Mark this instance as currently in a detach, to inhibit any
8599 	 * opens from a layered driver.
8600 	 */
8601 	un->un_detach_count++;
8602 	mutex_exit(&sd_detach_mutex);
8603 
8604 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8605 	    SCSI_ADDR_PROP_TARGET, -1);
8606 
8607 	dev = sd_make_device(SD_DEVINFO(un));
8608 
8609 #ifndef lint
8610 	_NOTE(COMPETING_THREADS_NOW);
8611 #endif
8612 
8613 	mutex_enter(SD_MUTEX(un));
8614 
8615 	/*
8616 	 * Fail the detach if there are any outstanding layered
8617 	 * opens on this device.
8618 	 */
8619 	for (i = 0; i < NDKMAP; i++) {
8620 		if (un->un_ocmap.lyropen[i] != 0) {
8621 			goto err_notclosed;
8622 		}
8623 	}
8624 
8625 	/*
8626 	 * Verify there are NO outstanding commands issued to this device.
8627 	 * ie, un_ncmds_in_transport == 0.
8628 	 * It's possible to have outstanding commands through the physio
8629 	 * code path, even though everything's closed.
8630 	 */
8631 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8632 	    (un->un_direct_priority_timeid != NULL) ||
8633 	    (un->un_state == SD_STATE_RWAIT)) {
8634 		mutex_exit(SD_MUTEX(un));
8635 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8636 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8637 		goto err_stillbusy;
8638 	}
8639 
8640 	/*
8641 	 * If we have the device reserved, release the reservation.
8642 	 */
8643 	if ((un->un_resvd_status & SD_RESERVE) &&
8644 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8645 		mutex_exit(SD_MUTEX(un));
8646 		/*
8647 		 * Note: sd_reserve_release sends a command to the device
8648 		 * via the sd_ioctlcmd() path, and can sleep.
8649 		 */
8650 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8651 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8652 			    "sd_dr_detach: Cannot release reservation \n");
8653 		}
8654 	} else {
8655 		mutex_exit(SD_MUTEX(un));
8656 	}
8657 
8658 	/*
8659 	 * Untimeout any reserve recover, throttle reset, restart unit
8660 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8661 	 * from getting nulled by their callback functions.
8662 	 */
8663 	mutex_enter(SD_MUTEX(un));
8664 	if (un->un_resvd_timeid != NULL) {
8665 		timeout_id_t temp_id = un->un_resvd_timeid;
8666 		un->un_resvd_timeid = NULL;
8667 		mutex_exit(SD_MUTEX(un));
8668 		(void) untimeout(temp_id);
8669 		mutex_enter(SD_MUTEX(un));
8670 	}
8671 
8672 	if (un->un_reset_throttle_timeid != NULL) {
8673 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8674 		un->un_reset_throttle_timeid = NULL;
8675 		mutex_exit(SD_MUTEX(un));
8676 		(void) untimeout(temp_id);
8677 		mutex_enter(SD_MUTEX(un));
8678 	}
8679 
8680 	if (un->un_startstop_timeid != NULL) {
8681 		timeout_id_t temp_id = un->un_startstop_timeid;
8682 		un->un_startstop_timeid = NULL;
8683 		mutex_exit(SD_MUTEX(un));
8684 		(void) untimeout(temp_id);
8685 		mutex_enter(SD_MUTEX(un));
8686 	}
8687 
8688 	if (un->un_rmw_msg_timeid != NULL) {
8689 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8690 		un->un_rmw_msg_timeid = NULL;
8691 		mutex_exit(SD_MUTEX(un));
8692 		(void) untimeout(temp_id);
8693 		mutex_enter(SD_MUTEX(un));
8694 	}
8695 
8696 	if (un->un_dcvb_timeid != NULL) {
8697 		timeout_id_t temp_id = un->un_dcvb_timeid;
8698 		un->un_dcvb_timeid = NULL;
8699 		mutex_exit(SD_MUTEX(un));
8700 		(void) untimeout(temp_id);
8701 	} else {
8702 		mutex_exit(SD_MUTEX(un));
8703 	}
8704 
8705 	/* Remove any pending reservation reclaim requests for this device */
8706 	sd_rmv_resv_reclaim_req(dev);
8707 
8708 	mutex_enter(SD_MUTEX(un));
8709 
8710 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8711 	if (un->un_direct_priority_timeid != NULL) {
8712 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8713 		un->un_direct_priority_timeid = NULL;
8714 		mutex_exit(SD_MUTEX(un));
8715 		(void) untimeout(temp_id);
8716 		mutex_enter(SD_MUTEX(un));
8717 	}
8718 
8719 	/* Cancel any active multi-host disk watch thread requests */
8720 	if (un->un_mhd_token != NULL) {
8721 		mutex_exit(SD_MUTEX(un));
8722 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8723 		if (scsi_watch_request_terminate(un->un_mhd_token,
8724 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8725 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8726 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8727 			/*
8728 			 * Note: We are returning here after having removed
8729 			 * some driver timeouts above. This is consistent with
8730 			 * the legacy implementation but perhaps the watch
8731 			 * terminate call should be made with the wait flag set.
8732 			 */
8733 			goto err_stillbusy;
8734 		}
8735 		mutex_enter(SD_MUTEX(un));
8736 		un->un_mhd_token = NULL;
8737 	}
8738 
8739 	if (un->un_swr_token != NULL) {
8740 		mutex_exit(SD_MUTEX(un));
8741 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8742 		if (scsi_watch_request_terminate(un->un_swr_token,
8743 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8744 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8745 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8746 			/*
8747 			 * Note: We are returning here after having removed
8748 			 * some driver timeouts above. This is consistent with
8749 			 * the legacy implementation but perhaps the watch
8750 			 * terminate call should be made with the wait flag set.
8751 			 */
8752 			goto err_stillbusy;
8753 		}
8754 		mutex_enter(SD_MUTEX(un));
8755 		un->un_swr_token = NULL;
8756 	}
8757 
8758 	mutex_exit(SD_MUTEX(un));
8759 
8760 	/*
8761 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8762 	 * if we have not registered one.
8763 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8764 	 */
8765 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8766 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8767 
8768 	/*
8769 	 * protect the timeout pointers from getting nulled by
8770 	 * their callback functions during the cancellation process.
8771 	 * In such a scenario untimeout can be invoked with a null value.
8772 	 */
8773 	_NOTE(NO_COMPETING_THREADS_NOW);
8774 
8775 	mutex_enter(&un->un_pm_mutex);
8776 	if (un->un_pm_idle_timeid != NULL) {
8777 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8778 		un->un_pm_idle_timeid = NULL;
8779 		mutex_exit(&un->un_pm_mutex);
8780 
8781 		/*
8782 		 * Timeout is active; cancel it.
8783 		 * Note that it'll never be active on a device
8784 		 * that does not support PM therefore we don't
8785 		 * have to check before calling pm_idle_component.
8786 		 */
8787 		(void) untimeout(temp_id);
8788 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8789 		mutex_enter(&un->un_pm_mutex);
8790 	}
8791 
8792 	/*
8793 	 * Check whether there is already a timeout scheduled for power
8794 	 * management. If yes then don't lower the power here, that's.
8795 	 * the timeout handler's job.
8796 	 */
8797 	if (un->un_pm_timeid != NULL) {
8798 		timeout_id_t temp_id = un->un_pm_timeid;
8799 		un->un_pm_timeid = NULL;
8800 		mutex_exit(&un->un_pm_mutex);
8801 		/*
8802 		 * Timeout is active; cancel it.
8803 		 * Note that it'll never be active on a device
8804 		 * that does not support PM therefore we don't
8805 		 * have to check before calling pm_idle_component.
8806 		 */
8807 		(void) untimeout(temp_id);
8808 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8809 
8810 	} else {
8811 		mutex_exit(&un->un_pm_mutex);
8812 		if ((un->un_f_pm_is_enabled == TRUE) &&
8813 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8814 		    != DDI_SUCCESS)) {
8815 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8816 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8817 			/*
8818 			 * Fix for bug: 4297749, item # 13
8819 			 * The above test now includes a check to see if PM is
8820 			 * supported by this device before call
8821 			 * pm_lower_power().
8822 			 * Note, the following is not dead code. The call to
8823 			 * pm_lower_power above will generate a call back into
8824 			 * our sdpower routine which might result in a timeout
8825 			 * handler getting activated. Therefore the following
8826 			 * code is valid and necessary.
8827 			 */
8828 			mutex_enter(&un->un_pm_mutex);
8829 			if (un->un_pm_timeid != NULL) {
8830 				timeout_id_t temp_id = un->un_pm_timeid;
8831 				un->un_pm_timeid = NULL;
8832 				mutex_exit(&un->un_pm_mutex);
8833 				(void) untimeout(temp_id);
8834 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8835 			} else {
8836 				mutex_exit(&un->un_pm_mutex);
8837 			}
8838 		}
8839 	}
8840 
8841 	/*
8842 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8843 	 * Relocated here from above to be after the call to
8844 	 * pm_lower_power, which was getting errors.
8845 	 */
8846 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8847 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8848 
8849 	/*
8850 	 * Currently, tagged queuing is supported per target based by HBA.
8851 	 * Setting this per lun instance actually sets the capability of this
8852 	 * target in HBA, which affects those luns already attached on the
8853 	 * same target. So during detach, we can only disable this capability
8854 	 * only when this is the only lun left on this target. By doing
8855 	 * this, we assume a target has the same tagged queuing capability
8856 	 * for every lun. The condition can be removed when HBA is changed to
8857 	 * support per lun based tagged queuing capability.
8858 	 */
8859 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8860 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8861 	}
8862 
8863 	if (un->un_f_is_fibre == FALSE) {
8864 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8865 	}
8866 
8867 	/*
8868 	 * Remove any event callbacks, fibre only
8869 	 */
8870 	if (un->un_f_is_fibre == TRUE) {
8871 		if ((un->un_insert_event != NULL) &&
8872 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8873 		    DDI_SUCCESS)) {
8874 			/*
8875 			 * Note: We are returning here after having done
8876 			 * substantial cleanup above. This is consistent
8877 			 * with the legacy implementation but this may not
8878 			 * be the right thing to do.
8879 			 */
8880 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8881 			    "sd_dr_detach: Cannot cancel insert event\n");
8882 			goto err_remove_event;
8883 		}
8884 		un->un_insert_event = NULL;
8885 
8886 		if ((un->un_remove_event != NULL) &&
8887 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8888 		    DDI_SUCCESS)) {
8889 			/*
8890 			 * Note: We are returning here after having done
8891 			 * substantial cleanup above. This is consistent
8892 			 * with the legacy implementation but this may not
8893 			 * be the right thing to do.
8894 			 */
8895 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8896 			    "sd_dr_detach: Cannot cancel remove event\n");
8897 			goto err_remove_event;
8898 		}
8899 		un->un_remove_event = NULL;
8900 	}
8901 
8902 	/* Do not free the softstate if the callback routine is active */
8903 	sd_sync_with_callback(un);
8904 
8905 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8906 	cmlb_free_handle(&un->un_cmlbhandle);
8907 
8908 	/*
8909 	 * Hold the detach mutex here, to make sure that no other threads ever
8910 	 * can access a (partially) freed soft state structure.
8911 	 */
8912 	mutex_enter(&sd_detach_mutex);
8913 
8914 	/*
8915 	 * Clean up the soft state struct.
8916 	 * Cleanup is done in reverse order of allocs/inits.
8917 	 * At this point there should be no competing threads anymore.
8918 	 */
8919 
8920 	scsi_fm_fini(devp);
8921 
8922 	/*
8923 	 * Deallocate memory for SCSI FMA.
8924 	 */
8925 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8926 
8927 	/*
8928 	 * Unregister and free device id if it was not registered
8929 	 * by the transport.
8930 	 */
8931 	if (un->un_f_devid_transport_defined == FALSE)
8932 		ddi_devid_unregister(devi);
8933 
8934 	/*
8935 	 * free the devid structure if allocated before (by ddi_devid_init()
8936 	 * or ddi_devid_get()).
8937 	 */
8938 	if (un->un_devid) {
8939 		ddi_devid_free(un->un_devid);
8940 		un->un_devid = NULL;
8941 	}
8942 
8943 	/*
8944 	 * Destroy wmap cache if it exists.
8945 	 */
8946 	if (un->un_wm_cache != NULL) {
8947 		kmem_cache_destroy(un->un_wm_cache);
8948 		un->un_wm_cache = NULL;
8949 	}
8950 
8951 	/*
8952 	 * kstat cleanup is done in detach for all device types (4363169).
8953 	 * We do not want to fail detach if the device kstats are not deleted
8954 	 * since there is a confusion about the devo_refcnt for the device.
8955 	 * We just delete the kstats and let detach complete successfully.
8956 	 */
8957 	if (un->un_stats != NULL) {
8958 		kstat_delete(un->un_stats);
8959 		un->un_stats = NULL;
8960 	}
8961 	if (un->un_errstats != NULL) {
8962 		kstat_delete(un->un_errstats);
8963 		un->un_errstats = NULL;
8964 	}
8965 
8966 	/* Remove partition stats */
8967 	if (un->un_f_pkstats_enabled) {
8968 		for (i = 0; i < NSDMAP; i++) {
8969 			if (un->un_pstats[i] != NULL) {
8970 				kstat_delete(un->un_pstats[i]);
8971 				un->un_pstats[i] = NULL;
8972 			}
8973 		}
8974 	}
8975 
8976 	/* Remove xbuf registration */
8977 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8978 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8979 
8980 	/* Remove driver properties */
8981 	ddi_prop_remove_all(devi);
8982 
8983 	mutex_destroy(&un->un_pm_mutex);
8984 	cv_destroy(&un->un_pm_busy_cv);
8985 
8986 	cv_destroy(&un->un_wcc_cv);
8987 
8988 	/* Open/close semaphore */
8989 	sema_destroy(&un->un_semoclose);
8990 
8991 	/* Removable media condvar. */
8992 	cv_destroy(&un->un_state_cv);
8993 
8994 	/* Suspend/resume condvar. */
8995 	cv_destroy(&un->un_suspend_cv);
8996 	cv_destroy(&un->un_disk_busy_cv);
8997 
8998 	sd_free_rqs(un);
8999 
9000 	/* Free up soft state */
9001 	devp->sd_private = NULL;
9002 
9003 	bzero(un, sizeof (struct sd_lun));
9004 #ifndef XPV_HVM_DRIVER
9005 	ddi_soft_state_free(sd_state, instance);
9006 #endif /* !XPV_HVM_DRIVER */
9007 
9008 	mutex_exit(&sd_detach_mutex);
9009 
9010 	/* This frees up the INQUIRY data associated with the device. */
9011 	scsi_unprobe(devp);
9012 
9013 	/*
9014 	 * After successfully detaching an instance, we update the information
9015 	 * of how many luns have been attached in the relative target and
9016 	 * controller for parallel SCSI. This information is used when sd tries
9017 	 * to set the tagged queuing capability in HBA.
9018 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9019 	 * check if the device is parallel SCSI. However, we don't need to
9020 	 * check here because we've already checked during attach. No device
9021 	 * that is not parallel SCSI is in the chain.
9022 	 */
9023 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9024 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9025 	}
9026 
9027 	return (DDI_SUCCESS);
9028 
9029 err_notclosed:
9030 	mutex_exit(SD_MUTEX(un));
9031 
9032 err_stillbusy:
9033 	_NOTE(NO_COMPETING_THREADS_NOW);
9034 
9035 err_remove_event:
9036 	mutex_enter(&sd_detach_mutex);
9037 	un->un_detach_count--;
9038 	mutex_exit(&sd_detach_mutex);
9039 
9040 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9041 	return (DDI_FAILURE);
9042 }
9043 
9044 
9045 /*
9046  *    Function: sd_create_errstats
9047  *
9048  * Description: This routine instantiates the device error stats.
9049  *
9050  *		Note: During attach the stats are instantiated first so they are
9051  *		available for attach-time routines that utilize the driver
9052  *		iopath to send commands to the device. The stats are initialized
9053  *		separately so data obtained during some attach-time routines is
9054  *		available. (4362483)
9055  *
9056  *   Arguments: un - driver soft state (unit) structure
9057  *		instance - driver instance
9058  *
9059  *     Context: Kernel thread context
9060  */
9061 
9062 static void
9063 sd_create_errstats(struct sd_lun *un, int instance)
9064 {
9065 	struct	sd_errstats	*stp;
9066 	char	kstatmodule_err[KSTAT_STRLEN];
9067 	char	kstatname[KSTAT_STRLEN];
9068 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9069 
9070 	ASSERT(un != NULL);
9071 
9072 	if (un->un_errstats != NULL) {
9073 		return;
9074 	}
9075 
9076 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9077 	    "%serr", sd_label);
9078 	(void) snprintf(kstatname, sizeof (kstatname),
9079 	    "%s%d,err", sd_label, instance);
9080 
9081 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9082 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9083 
9084 	if (un->un_errstats == NULL) {
9085 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9086 		    "sd_create_errstats: Failed kstat_create\n");
9087 		return;
9088 	}
9089 
9090 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9091 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9092 	    KSTAT_DATA_UINT32);
9093 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9094 	    KSTAT_DATA_UINT32);
9095 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9096 	    KSTAT_DATA_UINT32);
9097 	kstat_named_init(&stp->sd_vid,		"Vendor",
9098 	    KSTAT_DATA_CHAR);
9099 	kstat_named_init(&stp->sd_pid,		"Product",
9100 	    KSTAT_DATA_CHAR);
9101 	kstat_named_init(&stp->sd_revision,	"Revision",
9102 	    KSTAT_DATA_CHAR);
9103 	kstat_named_init(&stp->sd_serial,	"Serial No",
9104 	    KSTAT_DATA_CHAR);
9105 	kstat_named_init(&stp->sd_capacity,	"Size",
9106 	    KSTAT_DATA_ULONGLONG);
9107 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9108 	    KSTAT_DATA_UINT32);
9109 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9110 	    KSTAT_DATA_UINT32);
9111 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9112 	    KSTAT_DATA_UINT32);
9113 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9114 	    KSTAT_DATA_UINT32);
9115 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9116 	    KSTAT_DATA_UINT32);
9117 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9118 	    KSTAT_DATA_UINT32);
9119 
9120 	un->un_errstats->ks_private = un;
9121 	un->un_errstats->ks_update  = nulldev;
9122 
9123 	kstat_install(un->un_errstats);
9124 }
9125 
9126 
9127 /*
9128  *    Function: sd_set_errstats
9129  *
9130  * Description: This routine sets the value of the vendor id, product id,
9131  *		revision, serial number, and capacity device error stats.
9132  *
9133  *		Note: During attach the stats are instantiated first so they are
9134  *		available for attach-time routines that utilize the driver
9135  *		iopath to send commands to the device. The stats are initialized
9136  *		separately so data obtained during some attach-time routines is
9137  *		available. (4362483)
9138  *
9139  *   Arguments: un - driver soft state (unit) structure
9140  *
9141  *     Context: Kernel thread context
9142  */
9143 
9144 static void
9145 sd_set_errstats(struct sd_lun *un)
9146 {
9147 	struct	sd_errstats	*stp;
9148 	char 			*sn;
9149 
9150 	ASSERT(un != NULL);
9151 	ASSERT(un->un_errstats != NULL);
9152 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9153 	ASSERT(stp != NULL);
9154 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9155 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9156 	(void) strncpy(stp->sd_revision.value.c,
9157 	    un->un_sd->sd_inq->inq_revision, 4);
9158 
9159 	/*
9160 	 * All the errstats are persistent across detach/attach,
9161 	 * so reset all the errstats here in case of the hot
9162 	 * replacement of disk drives, except for not changed
9163 	 * Sun qualified drives.
9164 	 */
9165 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9166 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9167 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9168 		stp->sd_softerrs.value.ui32 = 0;
9169 		stp->sd_harderrs.value.ui32 = 0;
9170 		stp->sd_transerrs.value.ui32 = 0;
9171 		stp->sd_rq_media_err.value.ui32 = 0;
9172 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9173 		stp->sd_rq_nodev_err.value.ui32 = 0;
9174 		stp->sd_rq_recov_err.value.ui32 = 0;
9175 		stp->sd_rq_illrq_err.value.ui32 = 0;
9176 		stp->sd_rq_pfa_err.value.ui32 = 0;
9177 	}
9178 
9179 	/*
9180 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9181 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9182 	 * (4376302))
9183 	 */
9184 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9185 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9186 		    sizeof (SD_INQUIRY(un)->inq_serial));
9187 	} else {
9188 		/*
9189 		 * Set the "Serial No" kstat for non-Sun qualified drives
9190 		 */
9191 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9192 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9193 		    INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9194 			(void) strlcpy(stp->sd_serial.value.c, sn,
9195 			    sizeof (stp->sd_serial.value.c));
9196 			ddi_prop_free(sn);
9197 		}
9198 	}
9199 
9200 	if (un->un_f_blockcount_is_valid != TRUE) {
9201 		/*
9202 		 * Set capacity error stat to 0 for no media. This ensures
9203 		 * a valid capacity is displayed in response to 'iostat -E'
9204 		 * when no media is present in the device.
9205 		 */
9206 		stp->sd_capacity.value.ui64 = 0;
9207 	} else {
9208 		/*
9209 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9210 		 * capacity.
9211 		 *
9212 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9213 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9214 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9215 		 */
9216 		stp->sd_capacity.value.ui64 = (uint64_t)
9217 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9218 	}
9219 }
9220 
9221 
9222 /*
9223  *    Function: sd_set_pstats
9224  *
9225  * Description: This routine instantiates and initializes the partition
9226  *              stats for each partition with more than zero blocks.
9227  *		(4363169)
9228  *
9229  *   Arguments: un - driver soft state (unit) structure
9230  *
9231  *     Context: Kernel thread context
9232  */
9233 
9234 static void
9235 sd_set_pstats(struct sd_lun *un)
9236 {
9237 	char	kstatname[KSTAT_STRLEN];
9238 	int	instance;
9239 	int	i;
9240 	diskaddr_t	nblks = 0;
9241 	char	*partname = NULL;
9242 
9243 	ASSERT(un != NULL);
9244 
9245 	instance = ddi_get_instance(SD_DEVINFO(un));
9246 
9247 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9248 	for (i = 0; i < NSDMAP; i++) {
9249 
9250 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9251 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9252 			continue;
9253 		mutex_enter(SD_MUTEX(un));
9254 
9255 		if ((un->un_pstats[i] == NULL) &&
9256 		    (nblks != 0)) {
9257 
9258 			(void) snprintf(kstatname, sizeof (kstatname),
9259 			    "%s%d,%s", sd_label, instance,
9260 			    partname);
9261 
9262 			un->un_pstats[i] = kstat_create(sd_label,
9263 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9264 			    1, KSTAT_FLAG_PERSISTENT);
9265 			if (un->un_pstats[i] != NULL) {
9266 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9267 				kstat_install(un->un_pstats[i]);
9268 			}
9269 		}
9270 		mutex_exit(SD_MUTEX(un));
9271 	}
9272 }
9273 
9274 
9275 #if (defined(__fibre))
9276 /*
9277  *    Function: sd_init_event_callbacks
9278  *
9279  * Description: This routine initializes the insertion and removal event
9280  *		callbacks. (fibre only)
9281  *
9282  *   Arguments: un - driver soft state (unit) structure
9283  *
9284  *     Context: Kernel thread context
9285  */
9286 
9287 static void
9288 sd_init_event_callbacks(struct sd_lun *un)
9289 {
9290 	ASSERT(un != NULL);
9291 
9292 	if ((un->un_insert_event == NULL) &&
9293 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9294 	    &un->un_insert_event) == DDI_SUCCESS)) {
9295 		/*
9296 		 * Add the callback for an insertion event
9297 		 */
9298 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9299 		    un->un_insert_event, sd_event_callback, (void *)un,
9300 		    &(un->un_insert_cb_id));
9301 	}
9302 
9303 	if ((un->un_remove_event == NULL) &&
9304 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9305 	    &un->un_remove_event) == DDI_SUCCESS)) {
9306 		/*
9307 		 * Add the callback for a removal event
9308 		 */
9309 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9310 		    un->un_remove_event, sd_event_callback, (void *)un,
9311 		    &(un->un_remove_cb_id));
9312 	}
9313 }
9314 
9315 
9316 /*
9317  *    Function: sd_event_callback
9318  *
9319  * Description: This routine handles insert/remove events (photon). The
9320  *		state is changed to OFFLINE which can be used to supress
9321  *		error msgs. (fibre only)
9322  *
9323  *   Arguments: un - driver soft state (unit) structure
9324  *
9325  *     Context: Callout thread context
9326  */
9327 /* ARGSUSED */
9328 static void
9329 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9330     void *bus_impldata)
9331 {
9332 	struct sd_lun *un = (struct sd_lun *)arg;
9333 
9334 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9335 	if (event == un->un_insert_event) {
9336 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9337 		mutex_enter(SD_MUTEX(un));
9338 		if (un->un_state == SD_STATE_OFFLINE) {
9339 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9340 				un->un_state = un->un_last_state;
9341 			} else {
9342 				/*
9343 				 * We have gone through SUSPEND/RESUME while
9344 				 * we were offline. Restore the last state
9345 				 */
9346 				un->un_state = un->un_save_state;
9347 			}
9348 		}
9349 		mutex_exit(SD_MUTEX(un));
9350 
9351 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9352 	} else if (event == un->un_remove_event) {
9353 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9354 		mutex_enter(SD_MUTEX(un));
9355 		/*
9356 		 * We need to handle an event callback that occurs during
9357 		 * the suspend operation, since we don't prevent it.
9358 		 */
9359 		if (un->un_state != SD_STATE_OFFLINE) {
9360 			if (un->un_state != SD_STATE_SUSPENDED) {
9361 				New_state(un, SD_STATE_OFFLINE);
9362 			} else {
9363 				un->un_last_state = SD_STATE_OFFLINE;
9364 			}
9365 		}
9366 		mutex_exit(SD_MUTEX(un));
9367 	} else {
9368 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9369 		    "!Unknown event\n");
9370 	}
9371 
9372 }
9373 #endif
9374 
9375 /*
9376  *    Function: sd_cache_control()
9377  *
9378  * Description: This routine is the driver entry point for setting
9379  *		read and write caching by modifying the WCE (write cache
9380  *		enable) and RCD (read cache disable) bits of mode
9381  *		page 8 (MODEPAGE_CACHING).
9382  *
9383  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9384  *                      structure for this target.
9385  *		rcd_flag - flag for controlling the read cache
9386  *		wce_flag - flag for controlling the write cache
9387  *
9388  * Return Code: EIO
9389  *		code returned by sd_send_scsi_MODE_SENSE and
9390  *		sd_send_scsi_MODE_SELECT
9391  *
9392  *     Context: Kernel Thread
9393  */
9394 
9395 static int
9396 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9397 {
9398 	struct mode_caching	*mode_caching_page;
9399 	uchar_t			*header;
9400 	size_t			buflen;
9401 	int			hdrlen;
9402 	int			bd_len;
9403 	int			rval = 0;
9404 	struct mode_header_grp2	*mhp;
9405 	struct sd_lun		*un;
9406 	int			status;
9407 
9408 	ASSERT(ssc != NULL);
9409 	un = ssc->ssc_un;
9410 	ASSERT(un != NULL);
9411 
9412 	/*
9413 	 * Do a test unit ready, otherwise a mode sense may not work if this
9414 	 * is the first command sent to the device after boot.
9415 	 */
9416 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9417 	if (status != 0)
9418 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9419 
9420 	if (un->un_f_cfg_is_atapi == TRUE) {
9421 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9422 	} else {
9423 		hdrlen = MODE_HEADER_LENGTH;
9424 	}
9425 
9426 	/*
9427 	 * Allocate memory for the retrieved mode page and its headers.  Set
9428 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9429 	 * we get all of the mode sense data otherwise, the mode select
9430 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9431 	 */
9432 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9433 	    sizeof (struct mode_cache_scsi3);
9434 
9435 	header = kmem_zalloc(buflen, KM_SLEEP);
9436 
9437 	/* Get the information from the device. */
9438 	if (un->un_f_cfg_is_atapi == TRUE) {
9439 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9440 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9441 	} else {
9442 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9443 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9444 	}
9445 
9446 	if (rval != 0) {
9447 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9448 		    "sd_cache_control: Mode Sense Failed\n");
9449 		goto mode_sense_failed;
9450 	}
9451 
9452 	/*
9453 	 * Determine size of Block Descriptors in order to locate
9454 	 * the mode page data. ATAPI devices return 0, SCSI devices
9455 	 * should return MODE_BLK_DESC_LENGTH.
9456 	 */
9457 	if (un->un_f_cfg_is_atapi == TRUE) {
9458 		mhp	= (struct mode_header_grp2 *)header;
9459 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9460 	} else {
9461 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9462 	}
9463 
9464 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9465 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9466 		    "sd_cache_control: Mode Sense returned invalid block "
9467 		    "descriptor length\n");
9468 		rval = EIO;
9469 		goto mode_sense_failed;
9470 	}
9471 
9472 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9473 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9474 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9475 		    "sd_cache_control: Mode Sense caching page code mismatch "
9476 		    "%d\n", mode_caching_page->mode_page.code);
9477 		rval = EIO;
9478 		goto mode_sense_failed;
9479 	}
9480 
9481 	/* Check the relevant bits on successful mode sense. */
9482 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9483 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9484 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9485 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9486 
9487 		size_t sbuflen;
9488 		uchar_t save_pg;
9489 
9490 		/*
9491 		 * Construct select buffer length based on the
9492 		 * length of the sense data returned.
9493 		 */
9494 		sbuflen =  hdrlen + bd_len +
9495 		    sizeof (struct mode_page) +
9496 		    (int)mode_caching_page->mode_page.length;
9497 
9498 		/*
9499 		 * Set the caching bits as requested.
9500 		 */
9501 		if (rcd_flag == SD_CACHE_ENABLE)
9502 			mode_caching_page->rcd = 0;
9503 		else if (rcd_flag == SD_CACHE_DISABLE)
9504 			mode_caching_page->rcd = 1;
9505 
9506 		if (wce_flag == SD_CACHE_ENABLE)
9507 			mode_caching_page->wce = 1;
9508 		else if (wce_flag == SD_CACHE_DISABLE)
9509 			mode_caching_page->wce = 0;
9510 
9511 		/*
9512 		 * Save the page if the mode sense says the
9513 		 * drive supports it.
9514 		 */
9515 		save_pg = mode_caching_page->mode_page.ps ?
9516 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9517 
9518 		/* Clear reserved bits before mode select. */
9519 		mode_caching_page->mode_page.ps = 0;
9520 
9521 		/*
9522 		 * Clear out mode header for mode select.
9523 		 * The rest of the retrieved page will be reused.
9524 		 */
9525 		bzero(header, hdrlen);
9526 
9527 		if (un->un_f_cfg_is_atapi == TRUE) {
9528 			mhp = (struct mode_header_grp2 *)header;
9529 			mhp->bdesc_length_hi = bd_len >> 8;
9530 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9531 		} else {
9532 			((struct mode_header *)header)->bdesc_length = bd_len;
9533 		}
9534 
9535 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9536 
9537 		/* Issue mode select to change the cache settings */
9538 		if (un->un_f_cfg_is_atapi == TRUE) {
9539 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9540 			    sbuflen, save_pg, SD_PATH_DIRECT);
9541 		} else {
9542 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9543 			    sbuflen, save_pg, SD_PATH_DIRECT);
9544 		}
9545 
9546 	}
9547 
9548 
9549 mode_sense_failed:
9550 
9551 	kmem_free(header, buflen);
9552 
9553 	if (rval != 0) {
9554 		if (rval == EIO)
9555 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9556 		else
9557 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9558 	}
9559 	return (rval);
9560 }
9561 
9562 
9563 /*
9564  *    Function: sd_get_write_cache_enabled()
9565  *
9566  * Description: This routine is the driver entry point for determining if
9567  *		write caching is enabled.  It examines the WCE (write cache
9568  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9569  *
9570  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9571  *                      structure for this target.
9572  *		is_enabled - pointer to int where write cache enabled state
9573  *		is returned (non-zero -> write cache enabled)
9574  *
9575  *
9576  * Return Code: EIO
9577  *		code returned by sd_send_scsi_MODE_SENSE
9578  *
9579  *     Context: Kernel Thread
9580  *
9581  * NOTE: If ioctl is added to disable write cache, this sequence should
9582  * be followed so that no locking is required for accesses to
9583  * un->un_f_write_cache_enabled:
9584  * 	do mode select to clear wce
9585  * 	do synchronize cache to flush cache
9586  * 	set un->un_f_write_cache_enabled = FALSE
9587  *
9588  * Conversely, an ioctl to enable the write cache should be done
9589  * in this order:
9590  * 	set un->un_f_write_cache_enabled = TRUE
9591  * 	do mode select to set wce
9592  */
9593 
9594 static int
9595 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9596 {
9597 	struct mode_caching	*mode_caching_page;
9598 	uchar_t			*header;
9599 	size_t			buflen;
9600 	int			hdrlen;
9601 	int			bd_len;
9602 	int			rval = 0;
9603 	struct sd_lun		*un;
9604 	int			status;
9605 
9606 	ASSERT(ssc != NULL);
9607 	un = ssc->ssc_un;
9608 	ASSERT(un != NULL);
9609 	ASSERT(is_enabled != NULL);
9610 
9611 	/* in case of error, flag as enabled */
9612 	*is_enabled = TRUE;
9613 
9614 	/*
9615 	 * Do a test unit ready, otherwise a mode sense may not work if this
9616 	 * is the first command sent to the device after boot.
9617 	 */
9618 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9619 
9620 	if (status != 0)
9621 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9622 
9623 	if (un->un_f_cfg_is_atapi == TRUE) {
9624 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9625 	} else {
9626 		hdrlen = MODE_HEADER_LENGTH;
9627 	}
9628 
9629 	/*
9630 	 * Allocate memory for the retrieved mode page and its headers.  Set
9631 	 * a pointer to the page itself.
9632 	 */
9633 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9634 	header = kmem_zalloc(buflen, KM_SLEEP);
9635 
9636 	/* Get the information from the device. */
9637 	if (un->un_f_cfg_is_atapi == TRUE) {
9638 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9639 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9640 	} else {
9641 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9642 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9643 	}
9644 
9645 	if (rval != 0) {
9646 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9647 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9648 		goto mode_sense_failed;
9649 	}
9650 
9651 	/*
9652 	 * Determine size of Block Descriptors in order to locate
9653 	 * the mode page data. ATAPI devices return 0, SCSI devices
9654 	 * should return MODE_BLK_DESC_LENGTH.
9655 	 */
9656 	if (un->un_f_cfg_is_atapi == TRUE) {
9657 		struct mode_header_grp2	*mhp;
9658 		mhp	= (struct mode_header_grp2 *)header;
9659 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9660 	} else {
9661 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9662 	}
9663 
9664 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9665 		/* FMA should make upset complain here */
9666 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9667 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9668 		    "block descriptor length\n");
9669 		rval = EIO;
9670 		goto mode_sense_failed;
9671 	}
9672 
9673 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9674 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9675 		/* FMA could make upset complain here */
9676 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9677 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9678 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9679 		rval = EIO;
9680 		goto mode_sense_failed;
9681 	}
9682 	*is_enabled = mode_caching_page->wce;
9683 
9684 mode_sense_failed:
9685 	if (rval == 0) {
9686 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9687 	} else if (rval == EIO) {
9688 		/*
9689 		 * Some disks do not support mode sense(6), we
9690 		 * should ignore this kind of error(sense key is
9691 		 * 0x5 - illegal request).
9692 		 */
9693 		uint8_t *sensep;
9694 		int senlen;
9695 
9696 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9697 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9698 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9699 
9700 		if (senlen > 0 &&
9701 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9702 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9703 		} else {
9704 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9705 		}
9706 	} else {
9707 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9708 	}
9709 	kmem_free(header, buflen);
9710 	return (rval);
9711 }
9712 
9713 /*
9714  *    Function: sd_get_nv_sup()
9715  *
9716  * Description: This routine is the driver entry point for
9717  * determining whether non-volatile cache is supported. This
9718  * determination process works as follows:
9719  *
9720  * 1. sd first queries sd.conf on whether
9721  * suppress_cache_flush bit is set for this device.
9722  *
9723  * 2. if not there, then queries the internal disk table.
9724  *
9725  * 3. if either sd.conf or internal disk table specifies
9726  * cache flush be suppressed, we don't bother checking
9727  * NV_SUP bit.
9728  *
9729  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9730  * the optional INQUIRY VPD page 0x86. If the device
9731  * supports VPD page 0x86, sd examines the NV_SUP
9732  * (non-volatile cache support) bit in the INQUIRY VPD page
9733  * 0x86:
9734  *   o If NV_SUP bit is set, sd assumes the device has a
9735  *   non-volatile cache and set the
9736  *   un_f_sync_nv_supported to TRUE.
9737  *   o Otherwise cache is not non-volatile,
9738  *   un_f_sync_nv_supported is set to FALSE.
9739  *
9740  * Arguments: un - driver soft state (unit) structure
9741  *
9742  * Return Code:
9743  *
9744  *     Context: Kernel Thread
9745  */
9746 
9747 static void
9748 sd_get_nv_sup(sd_ssc_t *ssc)
9749 {
9750 	int		rval		= 0;
9751 	uchar_t		*inq86		= NULL;
9752 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9753 	size_t		inq86_resid	= 0;
9754 	struct		dk_callback *dkc;
9755 	struct sd_lun	*un;
9756 
9757 	ASSERT(ssc != NULL);
9758 	un = ssc->ssc_un;
9759 	ASSERT(un != NULL);
9760 
9761 	mutex_enter(SD_MUTEX(un));
9762 
9763 	/*
9764 	 * Be conservative on the device's support of
9765 	 * SYNC_NV bit: un_f_sync_nv_supported is
9766 	 * initialized to be false.
9767 	 */
9768 	un->un_f_sync_nv_supported = FALSE;
9769 
9770 	/*
9771 	 * If either sd.conf or internal disk table
9772 	 * specifies cache flush be suppressed, then
9773 	 * we don't bother checking NV_SUP bit.
9774 	 */
9775 	if (un->un_f_suppress_cache_flush == TRUE) {
9776 		mutex_exit(SD_MUTEX(un));
9777 		return;
9778 	}
9779 
9780 	if (sd_check_vpd_page_support(ssc) == 0 &&
9781 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9782 		mutex_exit(SD_MUTEX(un));
9783 		/* collect page 86 data if available */
9784 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9785 
9786 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9787 		    0x01, 0x86, &inq86_resid);
9788 
9789 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9790 			SD_TRACE(SD_LOG_COMMON, un,
9791 			    "sd_get_nv_sup: \
9792 			    successfully get VPD page: %x \
9793 			    PAGE LENGTH: %x BYTE 6: %x\n",
9794 			    inq86[1], inq86[3], inq86[6]);
9795 
9796 			mutex_enter(SD_MUTEX(un));
9797 			/*
9798 			 * check the value of NV_SUP bit: only if the device
9799 			 * reports NV_SUP bit to be 1, the
9800 			 * un_f_sync_nv_supported bit will be set to true.
9801 			 */
9802 			if (inq86[6] & SD_VPD_NV_SUP) {
9803 				un->un_f_sync_nv_supported = TRUE;
9804 			}
9805 			mutex_exit(SD_MUTEX(un));
9806 		} else if (rval != 0) {
9807 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9808 		}
9809 
9810 		kmem_free(inq86, inq86_len);
9811 	} else {
9812 		mutex_exit(SD_MUTEX(un));
9813 	}
9814 
9815 	/*
9816 	 * Send a SYNC CACHE command to check whether
9817 	 * SYNC_NV bit is supported. This command should have
9818 	 * un_f_sync_nv_supported set to correct value.
9819 	 */
9820 	mutex_enter(SD_MUTEX(un));
9821 	if (un->un_f_sync_nv_supported) {
9822 		mutex_exit(SD_MUTEX(un));
9823 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9824 		dkc->dkc_flag = FLUSH_VOLATILE;
9825 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9826 
9827 		/*
9828 		 * Send a TEST UNIT READY command to the device. This should
9829 		 * clear any outstanding UNIT ATTENTION that may be present.
9830 		 */
9831 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9832 		if (rval != 0)
9833 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9834 
9835 		kmem_free(dkc, sizeof (struct dk_callback));
9836 	} else {
9837 		mutex_exit(SD_MUTEX(un));
9838 	}
9839 
9840 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9841 	    un_f_suppress_cache_flush is set to %d\n",
9842 	    un->un_f_suppress_cache_flush);
9843 }
9844 
9845 /*
9846  *    Function: sd_make_device
9847  *
9848  * Description: Utility routine to return the Solaris device number from
9849  *		the data in the device's dev_info structure.
9850  *
9851  * Return Code: The Solaris device number
9852  *
9853  *     Context: Any
9854  */
9855 
9856 static dev_t
9857 sd_make_device(dev_info_t *devi)
9858 {
9859 	return (makedevice(ddi_driver_major(devi),
9860 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9861 }
9862 
9863 
9864 /*
9865  *    Function: sd_pm_entry
9866  *
9867  * Description: Called at the start of a new command to manage power
9868  *		and busy status of a device. This includes determining whether
9869  *		the current power state of the device is sufficient for
9870  *		performing the command or whether it must be changed.
9871  *		The PM framework is notified appropriately.
9872  *		Only with a return status of DDI_SUCCESS will the
9873  *		component be busy to the framework.
9874  *
9875  *		All callers of sd_pm_entry must check the return status
9876  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9877  *		of DDI_FAILURE indicates the device failed to power up.
9878  *		In this case un_pm_count has been adjusted so the result
9879  *		on exit is still powered down, ie. count is less than 0.
9880  *		Calling sd_pm_exit with this count value hits an ASSERT.
9881  *
9882  * Return Code: DDI_SUCCESS or DDI_FAILURE
9883  *
9884  *     Context: Kernel thread context.
9885  */
9886 
9887 static int
9888 sd_pm_entry(struct sd_lun *un)
9889 {
9890 	int return_status = DDI_SUCCESS;
9891 
9892 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9893 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9894 
9895 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9896 
9897 	if (un->un_f_pm_is_enabled == FALSE) {
9898 		SD_TRACE(SD_LOG_IO_PM, un,
9899 		    "sd_pm_entry: exiting, PM not enabled\n");
9900 		return (return_status);
9901 	}
9902 
9903 	/*
9904 	 * Just increment a counter if PM is enabled. On the transition from
9905 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9906 	 * the count with each IO and mark the device as idle when the count
9907 	 * hits 0.
9908 	 *
9909 	 * If the count is less than 0 the device is powered down. If a powered
9910 	 * down device is successfully powered up then the count must be
9911 	 * incremented to reflect the power up. Note that it'll get incremented
9912 	 * a second time to become busy.
9913 	 *
9914 	 * Because the following has the potential to change the device state
9915 	 * and must release the un_pm_mutex to do so, only one thread can be
9916 	 * allowed through at a time.
9917 	 */
9918 
9919 	mutex_enter(&un->un_pm_mutex);
9920 	while (un->un_pm_busy == TRUE) {
9921 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9922 	}
9923 	un->un_pm_busy = TRUE;
9924 
9925 	if (un->un_pm_count < 1) {
9926 
9927 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9928 
9929 		/*
9930 		 * Indicate we are now busy so the framework won't attempt to
9931 		 * power down the device. This call will only fail if either
9932 		 * we passed a bad component number or the device has no
9933 		 * components. Neither of these should ever happen.
9934 		 */
9935 		mutex_exit(&un->un_pm_mutex);
9936 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9937 		ASSERT(return_status == DDI_SUCCESS);
9938 
9939 		mutex_enter(&un->un_pm_mutex);
9940 
9941 		if (un->un_pm_count < 0) {
9942 			mutex_exit(&un->un_pm_mutex);
9943 
9944 			SD_TRACE(SD_LOG_IO_PM, un,
9945 			    "sd_pm_entry: power up component\n");
9946 
9947 			/*
9948 			 * pm_raise_power will cause sdpower to be called
9949 			 * which brings the device power level to the
9950 			 * desired state, If successful, un_pm_count and
9951 			 * un_power_level will be updated appropriately.
9952 			 */
9953 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9954 			    SD_PM_STATE_ACTIVE(un));
9955 
9956 			mutex_enter(&un->un_pm_mutex);
9957 
9958 			if (return_status != DDI_SUCCESS) {
9959 				/*
9960 				 * Power up failed.
9961 				 * Idle the device and adjust the count
9962 				 * so the result on exit is that we're
9963 				 * still powered down, ie. count is less than 0.
9964 				 */
9965 				SD_TRACE(SD_LOG_IO_PM, un,
9966 				    "sd_pm_entry: power up failed,"
9967 				    " idle the component\n");
9968 
9969 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9970 				un->un_pm_count--;
9971 			} else {
9972 				/*
9973 				 * Device is powered up, verify the
9974 				 * count is non-negative.
9975 				 * This is debug only.
9976 				 */
9977 				ASSERT(un->un_pm_count == 0);
9978 			}
9979 		}
9980 
9981 		if (return_status == DDI_SUCCESS) {
9982 			/*
9983 			 * For performance, now that the device has been tagged
9984 			 * as busy, and it's known to be powered up, update the
9985 			 * chain types to use jump tables that do not include
9986 			 * pm. This significantly lowers the overhead and
9987 			 * therefore improves performance.
9988 			 */
9989 
9990 			mutex_exit(&un->un_pm_mutex);
9991 			mutex_enter(SD_MUTEX(un));
9992 			SD_TRACE(SD_LOG_IO_PM, un,
9993 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9994 			    un->un_uscsi_chain_type);
9995 
9996 			if (un->un_f_non_devbsize_supported) {
9997 				un->un_buf_chain_type =
9998 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9999 			} else {
10000 				un->un_buf_chain_type =
10001 				    SD_CHAIN_INFO_DISK_NO_PM;
10002 			}
10003 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10004 
10005 			SD_TRACE(SD_LOG_IO_PM, un,
10006 			    "             changed  uscsi_chain_type to   %d\n",
10007 			    un->un_uscsi_chain_type);
10008 			mutex_exit(SD_MUTEX(un));
10009 			mutex_enter(&un->un_pm_mutex);
10010 
10011 			if (un->un_pm_idle_timeid == NULL) {
10012 				/* 300 ms. */
10013 				un->un_pm_idle_timeid =
10014 				    timeout(sd_pm_idletimeout_handler, un,
10015 				    (drv_usectohz((clock_t)300000)));
10016 				/*
10017 				 * Include an extra call to busy which keeps the
10018 				 * device busy with-respect-to the PM layer
10019 				 * until the timer fires, at which time it'll
10020 				 * get the extra idle call.
10021 				 */
10022 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10023 			}
10024 		}
10025 	}
10026 	un->un_pm_busy = FALSE;
10027 	/* Next... */
10028 	cv_signal(&un->un_pm_busy_cv);
10029 
10030 	un->un_pm_count++;
10031 
10032 	SD_TRACE(SD_LOG_IO_PM, un,
10033 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10034 
10035 	mutex_exit(&un->un_pm_mutex);
10036 
10037 	return (return_status);
10038 }
10039 
10040 
10041 /*
10042  *    Function: sd_pm_exit
10043  *
10044  * Description: Called at the completion of a command to manage busy
10045  *		status for the device. If the device becomes idle the
10046  *		PM framework is notified.
10047  *
10048  *     Context: Kernel thread context
10049  */
10050 
10051 static void
10052 sd_pm_exit(struct sd_lun *un)
10053 {
10054 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10055 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10056 
10057 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10058 
10059 	/*
10060 	 * After attach the following flag is only read, so don't
10061 	 * take the penalty of acquiring a mutex for it.
10062 	 */
10063 	if (un->un_f_pm_is_enabled == TRUE) {
10064 
10065 		mutex_enter(&un->un_pm_mutex);
10066 		un->un_pm_count--;
10067 
10068 		SD_TRACE(SD_LOG_IO_PM, un,
10069 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10070 
10071 		ASSERT(un->un_pm_count >= 0);
10072 		if (un->un_pm_count == 0) {
10073 			mutex_exit(&un->un_pm_mutex);
10074 
10075 			SD_TRACE(SD_LOG_IO_PM, un,
10076 			    "sd_pm_exit: idle component\n");
10077 
10078 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10079 
10080 		} else {
10081 			mutex_exit(&un->un_pm_mutex);
10082 		}
10083 	}
10084 
10085 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10086 }
10087 
10088 
10089 /*
10090  *    Function: sdopen
10091  *
10092  * Description: Driver's open(9e) entry point function.
10093  *
10094  *   Arguments: dev_i   - pointer to device number
10095  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10096  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10097  *		cred_p  - user credential pointer
10098  *
10099  * Return Code: EINVAL
10100  *		ENXIO
10101  *		EIO
10102  *		EROFS
10103  *		EBUSY
10104  *
10105  *     Context: Kernel thread context
10106  */
10107 /* ARGSUSED */
10108 static int
10109 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10110 {
10111 	struct sd_lun	*un;
10112 	int		nodelay;
10113 	int		part;
10114 	uint64_t	partmask;
10115 	int		instance;
10116 	dev_t		dev;
10117 	int		rval = EIO;
10118 	diskaddr_t	nblks = 0;
10119 	diskaddr_t	label_cap;
10120 
10121 	/* Validate the open type */
10122 	if (otyp >= OTYPCNT) {
10123 		return (EINVAL);
10124 	}
10125 
10126 	dev = *dev_p;
10127 	instance = SDUNIT(dev);
10128 	mutex_enter(&sd_detach_mutex);
10129 
10130 	/*
10131 	 * Fail the open if there is no softstate for the instance, or
10132 	 * if another thread somewhere is trying to detach the instance.
10133 	 */
10134 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10135 	    (un->un_detach_count != 0)) {
10136 		mutex_exit(&sd_detach_mutex);
10137 		/*
10138 		 * The probe cache only needs to be cleared when open (9e) fails
10139 		 * with ENXIO (4238046).
10140 		 */
10141 		/*
10142 		 * un-conditionally clearing probe cache is ok with
10143 		 * separate sd/ssd binaries
10144 		 * x86 platform can be an issue with both parallel
10145 		 * and fibre in 1 binary
10146 		 */
10147 		sd_scsi_clear_probe_cache();
10148 		return (ENXIO);
10149 	}
10150 
10151 	/*
10152 	 * The un_layer_count is to prevent another thread in specfs from
10153 	 * trying to detach the instance, which can happen when we are
10154 	 * called from a higher-layer driver instead of thru specfs.
10155 	 * This will not be needed when DDI provides a layered driver
10156 	 * interface that allows specfs to know that an instance is in
10157 	 * use by a layered driver & should not be detached.
10158 	 *
10159 	 * Note: the semantics for layered driver opens are exactly one
10160 	 * close for every open.
10161 	 */
10162 	if (otyp == OTYP_LYR) {
10163 		un->un_layer_count++;
10164 	}
10165 
10166 	/*
10167 	 * Keep a count of the current # of opens in progress. This is because
10168 	 * some layered drivers try to call us as a regular open. This can
10169 	 * cause problems that we cannot prevent, however by keeping this count
10170 	 * we can at least keep our open and detach routines from racing against
10171 	 * each other under such conditions.
10172 	 */
10173 	un->un_opens_in_progress++;
10174 	mutex_exit(&sd_detach_mutex);
10175 
10176 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10177 	part	 = SDPART(dev);
10178 	partmask = 1 << part;
10179 
10180 	/*
10181 	 * We use a semaphore here in order to serialize
10182 	 * open and close requests on the device.
10183 	 */
10184 	sema_p(&un->un_semoclose);
10185 
10186 	mutex_enter(SD_MUTEX(un));
10187 
10188 	/*
10189 	 * All device accesses go thru sdstrategy() where we check
10190 	 * on suspend status but there could be a scsi_poll command,
10191 	 * which bypasses sdstrategy(), so we need to check pm
10192 	 * status.
10193 	 */
10194 
10195 	if (!nodelay) {
10196 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10197 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10198 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10199 		}
10200 
10201 		mutex_exit(SD_MUTEX(un));
10202 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10203 			rval = EIO;
10204 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10205 			    "sdopen: sd_pm_entry failed\n");
10206 			goto open_failed_with_pm;
10207 		}
10208 		mutex_enter(SD_MUTEX(un));
10209 	}
10210 
10211 	/* check for previous exclusive open */
10212 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10213 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10214 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10215 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10216 
10217 	if (un->un_exclopen & (partmask)) {
10218 		goto excl_open_fail;
10219 	}
10220 
10221 	if (flag & FEXCL) {
10222 		int i;
10223 		if (un->un_ocmap.lyropen[part]) {
10224 			goto excl_open_fail;
10225 		}
10226 		for (i = 0; i < (OTYPCNT - 1); i++) {
10227 			if (un->un_ocmap.regopen[i] & (partmask)) {
10228 				goto excl_open_fail;
10229 			}
10230 		}
10231 	}
10232 
10233 	/*
10234 	 * Check the write permission if this is a removable media device,
10235 	 * NDELAY has not been set, and writable permission is requested.
10236 	 *
10237 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10238 	 * attempt will fail with EIO as part of the I/O processing. This is a
10239 	 * more permissive implementation that allows the open to succeed and
10240 	 * WRITE attempts to fail when appropriate.
10241 	 */
10242 	if (un->un_f_chk_wp_open) {
10243 		if ((flag & FWRITE) && (!nodelay)) {
10244 			mutex_exit(SD_MUTEX(un));
10245 			/*
10246 			 * Defer the check for write permission on writable
10247 			 * DVD drive till sdstrategy and will not fail open even
10248 			 * if FWRITE is set as the device can be writable
10249 			 * depending upon the media and the media can change
10250 			 * after the call to open().
10251 			 */
10252 			if (un->un_f_dvdram_writable_device == FALSE) {
10253 				if (ISCD(un) || sr_check_wp(dev)) {
10254 				rval = EROFS;
10255 				mutex_enter(SD_MUTEX(un));
10256 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10257 				    "write to cd or write protected media\n");
10258 				goto open_fail;
10259 				}
10260 			}
10261 			mutex_enter(SD_MUTEX(un));
10262 		}
10263 	}
10264 
10265 	/*
10266 	 * If opening in NDELAY/NONBLOCK mode, just return.
10267 	 * Check if disk is ready and has a valid geometry later.
10268 	 */
10269 	if (!nodelay) {
10270 		sd_ssc_t	*ssc;
10271 
10272 		mutex_exit(SD_MUTEX(un));
10273 		ssc = sd_ssc_init(un);
10274 		rval = sd_ready_and_valid(ssc, part);
10275 		sd_ssc_fini(ssc);
10276 		mutex_enter(SD_MUTEX(un));
10277 		/*
10278 		 * Fail if device is not ready or if the number of disk
10279 		 * blocks is zero or negative for non CD devices.
10280 		 */
10281 
10282 		nblks = 0;
10283 
10284 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10285 			/* if cmlb_partinfo fails, nblks remains 0 */
10286 			mutex_exit(SD_MUTEX(un));
10287 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10288 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10289 			mutex_enter(SD_MUTEX(un));
10290 		}
10291 
10292 		if ((rval != SD_READY_VALID) ||
10293 		    (!ISCD(un) && nblks <= 0)) {
10294 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10295 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10296 			    "device not ready or invalid disk block value\n");
10297 			goto open_fail;
10298 		}
10299 #if defined(__i386) || defined(__amd64)
10300 	} else {
10301 		uchar_t *cp;
10302 		/*
10303 		 * x86 requires special nodelay handling, so that p0 is
10304 		 * always defined and accessible.
10305 		 * Invalidate geometry only if device is not already open.
10306 		 */
10307 		cp = &un->un_ocmap.chkd[0];
10308 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10309 			if (*cp != (uchar_t)0) {
10310 				break;
10311 			}
10312 			cp++;
10313 		}
10314 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10315 			mutex_exit(SD_MUTEX(un));
10316 			cmlb_invalidate(un->un_cmlbhandle,
10317 			    (void *)SD_PATH_DIRECT);
10318 			mutex_enter(SD_MUTEX(un));
10319 		}
10320 
10321 #endif
10322 	}
10323 
10324 	if (otyp == OTYP_LYR) {
10325 		un->un_ocmap.lyropen[part]++;
10326 	} else {
10327 		un->un_ocmap.regopen[otyp] |= partmask;
10328 	}
10329 
10330 	/* Set up open and exclusive open flags */
10331 	if (flag & FEXCL) {
10332 		un->un_exclopen |= (partmask);
10333 	}
10334 
10335 	/*
10336 	 * If the lun is EFI labeled and lun capacity is greater than the
10337 	 * capacity contained in the label, log a sys-event to notify the
10338 	 * interested module.
10339 	 * To avoid an infinite loop of logging sys-event, we only log the
10340 	 * event when the lun is not opened in NDELAY mode. The event handler
10341 	 * should open the lun in NDELAY mode.
10342 	 */
10343 	if (!nodelay) {
10344 		mutex_exit(SD_MUTEX(un));
10345 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10346 		    (void*)SD_PATH_DIRECT) == 0) {
10347 			mutex_enter(SD_MUTEX(un));
10348 			if (un->un_f_blockcount_is_valid &&
10349 			    un->un_blockcount > label_cap &&
10350 			    un->un_f_expnevent == B_FALSE) {
10351 				un->un_f_expnevent = B_TRUE;
10352 				mutex_exit(SD_MUTEX(un));
10353 				sd_log_lun_expansion_event(un,
10354 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10355 				mutex_enter(SD_MUTEX(un));
10356 			}
10357 		} else {
10358 			mutex_enter(SD_MUTEX(un));
10359 		}
10360 	}
10361 
10362 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10363 	    "open of part %d type %d\n", part, otyp);
10364 
10365 	mutex_exit(SD_MUTEX(un));
10366 	if (!nodelay) {
10367 		sd_pm_exit(un);
10368 	}
10369 
10370 	sema_v(&un->un_semoclose);
10371 
10372 	mutex_enter(&sd_detach_mutex);
10373 	un->un_opens_in_progress--;
10374 	mutex_exit(&sd_detach_mutex);
10375 
10376 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10377 	return (DDI_SUCCESS);
10378 
10379 excl_open_fail:
10380 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10381 	rval = EBUSY;
10382 
10383 open_fail:
10384 	mutex_exit(SD_MUTEX(un));
10385 
10386 	/*
10387 	 * On a failed open we must exit the pm management.
10388 	 */
10389 	if (!nodelay) {
10390 		sd_pm_exit(un);
10391 	}
10392 open_failed_with_pm:
10393 	sema_v(&un->un_semoclose);
10394 
10395 	mutex_enter(&sd_detach_mutex);
10396 	un->un_opens_in_progress--;
10397 	if (otyp == OTYP_LYR) {
10398 		un->un_layer_count--;
10399 	}
10400 	mutex_exit(&sd_detach_mutex);
10401 
10402 	return (rval);
10403 }
10404 
10405 
10406 /*
10407  *    Function: sdclose
10408  *
10409  * Description: Driver's close(9e) entry point function.
10410  *
10411  *   Arguments: dev    - device number
10412  *		flag   - file status flag, informational only
10413  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10414  *		cred_p - user credential pointer
10415  *
10416  * Return Code: ENXIO
10417  *
10418  *     Context: Kernel thread context
10419  */
10420 /* ARGSUSED */
10421 static int
10422 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10423 {
10424 	struct sd_lun	*un;
10425 	uchar_t		*cp;
10426 	int		part;
10427 	int		nodelay;
10428 	int		rval = 0;
10429 
10430 	/* Validate the open type */
10431 	if (otyp >= OTYPCNT) {
10432 		return (ENXIO);
10433 	}
10434 
10435 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10436 		return (ENXIO);
10437 	}
10438 
10439 	part = SDPART(dev);
10440 	nodelay = flag & (FNDELAY | FNONBLOCK);
10441 
10442 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10443 	    "sdclose: close of part %d type %d\n", part, otyp);
10444 
10445 	/*
10446 	 * We use a semaphore here in order to serialize
10447 	 * open and close requests on the device.
10448 	 */
10449 	sema_p(&un->un_semoclose);
10450 
10451 	mutex_enter(SD_MUTEX(un));
10452 
10453 	/* Don't proceed if power is being changed. */
10454 	while (un->un_state == SD_STATE_PM_CHANGING) {
10455 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10456 	}
10457 
10458 	if (un->un_exclopen & (1 << part)) {
10459 		un->un_exclopen &= ~(1 << part);
10460 	}
10461 
10462 	/* Update the open partition map */
10463 	if (otyp == OTYP_LYR) {
10464 		un->un_ocmap.lyropen[part] -= 1;
10465 	} else {
10466 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10467 	}
10468 
10469 	cp = &un->un_ocmap.chkd[0];
10470 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10471 		if (*cp != NULL) {
10472 			break;
10473 		}
10474 		cp++;
10475 	}
10476 
10477 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10478 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10479 
10480 		/*
10481 		 * We avoid persistance upon the last close, and set
10482 		 * the throttle back to the maximum.
10483 		 */
10484 		un->un_throttle = un->un_saved_throttle;
10485 
10486 		if (un->un_state == SD_STATE_OFFLINE) {
10487 			if (un->un_f_is_fibre == FALSE) {
10488 				scsi_log(SD_DEVINFO(un), sd_label,
10489 				    CE_WARN, "offline\n");
10490 			}
10491 			mutex_exit(SD_MUTEX(un));
10492 			cmlb_invalidate(un->un_cmlbhandle,
10493 			    (void *)SD_PATH_DIRECT);
10494 			mutex_enter(SD_MUTEX(un));
10495 
10496 		} else {
10497 			/*
10498 			 * Flush any outstanding writes in NVRAM cache.
10499 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10500 			 * cmd, it may not work for non-Pluto devices.
10501 			 * SYNCHRONIZE CACHE is not required for removables,
10502 			 * except DVD-RAM drives.
10503 			 *
10504 			 * Also note: because SYNCHRONIZE CACHE is currently
10505 			 * the only command issued here that requires the
10506 			 * drive be powered up, only do the power up before
10507 			 * sending the Sync Cache command. If additional
10508 			 * commands are added which require a powered up
10509 			 * drive, the following sequence may have to change.
10510 			 *
10511 			 * And finally, note that parallel SCSI on SPARC
10512 			 * only issues a Sync Cache to DVD-RAM, a newly
10513 			 * supported device.
10514 			 */
10515 #if defined(__i386) || defined(__amd64)
10516 			if ((un->un_f_sync_cache_supported &&
10517 			    un->un_f_sync_cache_required) ||
10518 			    un->un_f_dvdram_writable_device == TRUE) {
10519 #else
10520 			if (un->un_f_dvdram_writable_device == TRUE) {
10521 #endif
10522 				mutex_exit(SD_MUTEX(un));
10523 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10524 					rval =
10525 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10526 					    NULL);
10527 					/* ignore error if not supported */
10528 					if (rval == ENOTSUP) {
10529 						rval = 0;
10530 					} else if (rval != 0) {
10531 						rval = EIO;
10532 					}
10533 					sd_pm_exit(un);
10534 				} else {
10535 					rval = EIO;
10536 				}
10537 				mutex_enter(SD_MUTEX(un));
10538 			}
10539 
10540 			/*
10541 			 * For devices which supports DOOR_LOCK, send an ALLOW
10542 			 * MEDIA REMOVAL command, but don't get upset if it
10543 			 * fails. We need to raise the power of the drive before
10544 			 * we can call sd_send_scsi_DOORLOCK()
10545 			 */
10546 			if (un->un_f_doorlock_supported) {
10547 				mutex_exit(SD_MUTEX(un));
10548 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10549 					sd_ssc_t	*ssc;
10550 
10551 					ssc = sd_ssc_init(un);
10552 					rval = sd_send_scsi_DOORLOCK(ssc,
10553 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10554 					if (rval != 0)
10555 						sd_ssc_assessment(ssc,
10556 						    SD_FMT_IGNORE);
10557 					sd_ssc_fini(ssc);
10558 
10559 					sd_pm_exit(un);
10560 					if (ISCD(un) && (rval != 0) &&
10561 					    (nodelay != 0)) {
10562 						rval = ENXIO;
10563 					}
10564 				} else {
10565 					rval = EIO;
10566 				}
10567 				mutex_enter(SD_MUTEX(un));
10568 			}
10569 
10570 			/*
10571 			 * If a device has removable media, invalidate all
10572 			 * parameters related to media, such as geometry,
10573 			 * blocksize, and blockcount.
10574 			 */
10575 			if (un->un_f_has_removable_media) {
10576 				sr_ejected(un);
10577 			}
10578 
10579 			/*
10580 			 * Destroy the cache (if it exists) which was
10581 			 * allocated for the write maps since this is
10582 			 * the last close for this media.
10583 			 */
10584 			if (un->un_wm_cache) {
10585 				/*
10586 				 * Check if there are pending commands.
10587 				 * and if there are give a warning and
10588 				 * do not destroy the cache.
10589 				 */
10590 				if (un->un_ncmds_in_driver > 0) {
10591 					scsi_log(SD_DEVINFO(un),
10592 					    sd_label, CE_WARN,
10593 					    "Unable to clean up memory "
10594 					    "because of pending I/O\n");
10595 				} else {
10596 					kmem_cache_destroy(
10597 					    un->un_wm_cache);
10598 					un->un_wm_cache = NULL;
10599 				}
10600 			}
10601 		}
10602 	}
10603 
10604 	mutex_exit(SD_MUTEX(un));
10605 	sema_v(&un->un_semoclose);
10606 
10607 	if (otyp == OTYP_LYR) {
10608 		mutex_enter(&sd_detach_mutex);
10609 		/*
10610 		 * The detach routine may run when the layer count
10611 		 * drops to zero.
10612 		 */
10613 		un->un_layer_count--;
10614 		mutex_exit(&sd_detach_mutex);
10615 	}
10616 
10617 	return (rval);
10618 }
10619 
10620 
10621 /*
10622  *    Function: sd_ready_and_valid
10623  *
10624  * Description: Test if device is ready and has a valid geometry.
10625  *
10626  *   Arguments: ssc - sd_ssc_t will contain un
10627  *		un  - driver soft state (unit) structure
10628  *
10629  * Return Code: SD_READY_VALID		ready and valid label
10630  *		SD_NOT_READY_VALID	not ready, no label
10631  *		SD_RESERVED_BY_OTHERS	reservation conflict
10632  *
10633  *     Context: Never called at interrupt context.
10634  */
10635 
10636 static int
10637 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10638 {
10639 	struct sd_errstats	*stp;
10640 	uint64_t		capacity;
10641 	uint_t			lbasize;
10642 	int			rval = SD_READY_VALID;
10643 	char			name_str[48];
10644 	boolean_t		is_valid;
10645 	struct sd_lun		*un;
10646 	int			status;
10647 
10648 	ASSERT(ssc != NULL);
10649 	un = ssc->ssc_un;
10650 	ASSERT(un != NULL);
10651 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10652 
10653 	mutex_enter(SD_MUTEX(un));
10654 	/*
10655 	 * If a device has removable media, we must check if media is
10656 	 * ready when checking if this device is ready and valid.
10657 	 */
10658 	if (un->un_f_has_removable_media) {
10659 		mutex_exit(SD_MUTEX(un));
10660 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10661 
10662 		if (status != 0) {
10663 			rval = SD_NOT_READY_VALID;
10664 			mutex_enter(SD_MUTEX(un));
10665 
10666 			/* Ignore all failed status for removalbe media */
10667 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10668 
10669 			goto done;
10670 		}
10671 
10672 		is_valid = SD_IS_VALID_LABEL(un);
10673 		mutex_enter(SD_MUTEX(un));
10674 		if (!is_valid ||
10675 		    (un->un_f_blockcount_is_valid == FALSE) ||
10676 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10677 
10678 			/* capacity has to be read every open. */
10679 			mutex_exit(SD_MUTEX(un));
10680 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10681 			    &lbasize, SD_PATH_DIRECT);
10682 
10683 			if (status != 0) {
10684 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10685 
10686 				cmlb_invalidate(un->un_cmlbhandle,
10687 				    (void *)SD_PATH_DIRECT);
10688 				mutex_enter(SD_MUTEX(un));
10689 				rval = SD_NOT_READY_VALID;
10690 
10691 				goto done;
10692 			} else {
10693 				mutex_enter(SD_MUTEX(un));
10694 				sd_update_block_info(un, lbasize, capacity);
10695 			}
10696 		}
10697 
10698 		/*
10699 		 * Check if the media in the device is writable or not.
10700 		 */
10701 		if (!is_valid && ISCD(un)) {
10702 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10703 		}
10704 
10705 	} else {
10706 		/*
10707 		 * Do a test unit ready to clear any unit attention from non-cd
10708 		 * devices.
10709 		 */
10710 		mutex_exit(SD_MUTEX(un));
10711 
10712 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10713 		if (status != 0) {
10714 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10715 		}
10716 
10717 		mutex_enter(SD_MUTEX(un));
10718 	}
10719 
10720 
10721 	/*
10722 	 * If this is a non 512 block device, allocate space for
10723 	 * the wmap cache. This is being done here since every time
10724 	 * a media is changed this routine will be called and the
10725 	 * block size is a function of media rather than device.
10726 	 */
10727 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10728 	    un->un_f_non_devbsize_supported) &&
10729 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10730 	    un->un_f_enable_rmw) {
10731 		if (!(un->un_wm_cache)) {
10732 			(void) snprintf(name_str, sizeof (name_str),
10733 			    "%s%d_cache",
10734 			    ddi_driver_name(SD_DEVINFO(un)),
10735 			    ddi_get_instance(SD_DEVINFO(un)));
10736 			un->un_wm_cache = kmem_cache_create(
10737 			    name_str, sizeof (struct sd_w_map),
10738 			    8, sd_wm_cache_constructor,
10739 			    sd_wm_cache_destructor, NULL,
10740 			    (void *)un, NULL, 0);
10741 			if (!(un->un_wm_cache)) {
10742 				rval = ENOMEM;
10743 				goto done;
10744 			}
10745 		}
10746 	}
10747 
10748 	if (un->un_state == SD_STATE_NORMAL) {
10749 		/*
10750 		 * If the target is not yet ready here (defined by a TUR
10751 		 * failure), invalidate the geometry and print an 'offline'
10752 		 * message. This is a legacy message, as the state of the
10753 		 * target is not actually changed to SD_STATE_OFFLINE.
10754 		 *
10755 		 * If the TUR fails for EACCES (Reservation Conflict),
10756 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10757 		 * reservation conflict. If the TUR fails for other
10758 		 * reasons, SD_NOT_READY_VALID will be returned.
10759 		 */
10760 		int err;
10761 
10762 		mutex_exit(SD_MUTEX(un));
10763 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10764 		mutex_enter(SD_MUTEX(un));
10765 
10766 		if (err != 0) {
10767 			mutex_exit(SD_MUTEX(un));
10768 			cmlb_invalidate(un->un_cmlbhandle,
10769 			    (void *)SD_PATH_DIRECT);
10770 			mutex_enter(SD_MUTEX(un));
10771 			if (err == EACCES) {
10772 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10773 				    "reservation conflict\n");
10774 				rval = SD_RESERVED_BY_OTHERS;
10775 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10776 			} else {
10777 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10778 				    "drive offline\n");
10779 				rval = SD_NOT_READY_VALID;
10780 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10781 			}
10782 			goto done;
10783 		}
10784 	}
10785 
10786 	if (un->un_f_format_in_progress == FALSE) {
10787 		mutex_exit(SD_MUTEX(un));
10788 
10789 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10790 		    (void *)SD_PATH_DIRECT);
10791 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10792 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10793 			rval = SD_NOT_READY_VALID;
10794 			mutex_enter(SD_MUTEX(un));
10795 
10796 			goto done;
10797 		}
10798 		if (un->un_f_pkstats_enabled) {
10799 			sd_set_pstats(un);
10800 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10801 			    "sd_ready_and_valid: un:0x%p pstats created and "
10802 			    "set\n", un);
10803 		}
10804 		mutex_enter(SD_MUTEX(un));
10805 	}
10806 
10807 	/*
10808 	 * If this device supports DOOR_LOCK command, try and send
10809 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10810 	 * if it fails. For a CD, however, it is an error
10811 	 */
10812 	if (un->un_f_doorlock_supported) {
10813 		mutex_exit(SD_MUTEX(un));
10814 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10815 		    SD_PATH_DIRECT);
10816 
10817 		if ((status != 0) && ISCD(un)) {
10818 			rval = SD_NOT_READY_VALID;
10819 			mutex_enter(SD_MUTEX(un));
10820 
10821 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10822 
10823 			goto done;
10824 		} else if (status != 0)
10825 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10826 		mutex_enter(SD_MUTEX(un));
10827 	}
10828 
10829 	/* The state has changed, inform the media watch routines */
10830 	un->un_mediastate = DKIO_INSERTED;
10831 	cv_broadcast(&un->un_state_cv);
10832 	rval = SD_READY_VALID;
10833 
10834 done:
10835 
10836 	/*
10837 	 * Initialize the capacity kstat value, if no media previously
10838 	 * (capacity kstat is 0) and a media has been inserted
10839 	 * (un_blockcount > 0).
10840 	 */
10841 	if (un->un_errstats != NULL) {
10842 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10843 		if ((stp->sd_capacity.value.ui64 == 0) &&
10844 		    (un->un_f_blockcount_is_valid == TRUE)) {
10845 			stp->sd_capacity.value.ui64 =
10846 			    (uint64_t)((uint64_t)un->un_blockcount *
10847 			    un->un_sys_blocksize);
10848 		}
10849 	}
10850 
10851 	mutex_exit(SD_MUTEX(un));
10852 	return (rval);
10853 }
10854 
10855 
10856 /*
10857  *    Function: sdmin
10858  *
10859  * Description: Routine to limit the size of a data transfer. Used in
10860  *		conjunction with physio(9F).
10861  *
10862  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10863  *
10864  *     Context: Kernel thread context.
10865  */
10866 
10867 static void
10868 sdmin(struct buf *bp)
10869 {
10870 	struct sd_lun	*un;
10871 	int		instance;
10872 
10873 	instance = SDUNIT(bp->b_edev);
10874 
10875 	un = ddi_get_soft_state(sd_state, instance);
10876 	ASSERT(un != NULL);
10877 
10878 	/*
10879 	 * We depend on buf breakup to restrict
10880 	 * IO size if it is enabled.
10881 	 */
10882 	if (un->un_buf_breakup_supported) {
10883 		return;
10884 	}
10885 
10886 	if (bp->b_bcount > un->un_max_xfer_size) {
10887 		bp->b_bcount = un->un_max_xfer_size;
10888 	}
10889 }
10890 
10891 
10892 /*
10893  *    Function: sdread
10894  *
10895  * Description: Driver's read(9e) entry point function.
10896  *
10897  *   Arguments: dev   - device number
10898  *		uio   - structure pointer describing where data is to be stored
10899  *			in user's space
10900  *		cred_p  - user credential pointer
10901  *
10902  * Return Code: ENXIO
10903  *		EIO
10904  *		EINVAL
10905  *		value returned by physio
10906  *
10907  *     Context: Kernel thread context.
10908  */
10909 /* ARGSUSED */
10910 static int
10911 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10912 {
10913 	struct sd_lun	*un = NULL;
10914 	int		secmask;
10915 	int		err = 0;
10916 	sd_ssc_t	*ssc;
10917 
10918 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10919 		return (ENXIO);
10920 	}
10921 
10922 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10923 
10924 
10925 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10926 		mutex_enter(SD_MUTEX(un));
10927 		/*
10928 		 * Because the call to sd_ready_and_valid will issue I/O we
10929 		 * must wait here if either the device is suspended or
10930 		 * if it's power level is changing.
10931 		 */
10932 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10933 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10934 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10935 		}
10936 		un->un_ncmds_in_driver++;
10937 		mutex_exit(SD_MUTEX(un));
10938 
10939 		/* Initialize sd_ssc_t for internal uscsi commands */
10940 		ssc = sd_ssc_init(un);
10941 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10942 			err = EIO;
10943 		} else {
10944 			err = 0;
10945 		}
10946 		sd_ssc_fini(ssc);
10947 
10948 		mutex_enter(SD_MUTEX(un));
10949 		un->un_ncmds_in_driver--;
10950 		ASSERT(un->un_ncmds_in_driver >= 0);
10951 		mutex_exit(SD_MUTEX(un));
10952 		if (err != 0)
10953 			return (err);
10954 	}
10955 
10956 	/*
10957 	 * Read requests are restricted to multiples of the system block size.
10958 	 */
10959 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10960 	    !un->un_f_enable_rmw)
10961 		secmask = un->un_tgt_blocksize - 1;
10962 	else
10963 		secmask = DEV_BSIZE - 1;
10964 
10965 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10966 		SD_ERROR(SD_LOG_READ_WRITE, un,
10967 		    "sdread: file offset not modulo %d\n",
10968 		    secmask + 1);
10969 		err = EINVAL;
10970 	} else if (uio->uio_iov->iov_len & (secmask)) {
10971 		SD_ERROR(SD_LOG_READ_WRITE, un,
10972 		    "sdread: transfer length not modulo %d\n",
10973 		    secmask + 1);
10974 		err = EINVAL;
10975 	} else {
10976 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10977 	}
10978 
10979 	return (err);
10980 }
10981 
10982 
10983 /*
10984  *    Function: sdwrite
10985  *
10986  * Description: Driver's write(9e) entry point function.
10987  *
10988  *   Arguments: dev   - device number
10989  *		uio   - structure pointer describing where data is stored in
10990  *			user's space
10991  *		cred_p  - user credential pointer
10992  *
10993  * Return Code: ENXIO
10994  *		EIO
10995  *		EINVAL
10996  *		value returned by physio
10997  *
10998  *     Context: Kernel thread context.
10999  */
11000 /* ARGSUSED */
11001 static int
11002 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11003 {
11004 	struct sd_lun	*un = NULL;
11005 	int		secmask;
11006 	int		err = 0;
11007 	sd_ssc_t	*ssc;
11008 
11009 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11010 		return (ENXIO);
11011 	}
11012 
11013 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11014 
11015 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11016 		mutex_enter(SD_MUTEX(un));
11017 		/*
11018 		 * Because the call to sd_ready_and_valid will issue I/O we
11019 		 * must wait here if either the device is suspended or
11020 		 * if it's power level is changing.
11021 		 */
11022 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11023 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11024 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11025 		}
11026 		un->un_ncmds_in_driver++;
11027 		mutex_exit(SD_MUTEX(un));
11028 
11029 		/* Initialize sd_ssc_t for internal uscsi commands */
11030 		ssc = sd_ssc_init(un);
11031 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11032 			err = EIO;
11033 		} else {
11034 			err = 0;
11035 		}
11036 		sd_ssc_fini(ssc);
11037 
11038 		mutex_enter(SD_MUTEX(un));
11039 		un->un_ncmds_in_driver--;
11040 		ASSERT(un->un_ncmds_in_driver >= 0);
11041 		mutex_exit(SD_MUTEX(un));
11042 		if (err != 0)
11043 			return (err);
11044 	}
11045 
11046 	/*
11047 	 * Write requests are restricted to multiples of the system block size.
11048 	 */
11049 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11050 	    !un->un_f_enable_rmw)
11051 		secmask = un->un_tgt_blocksize - 1;
11052 	else
11053 		secmask = DEV_BSIZE - 1;
11054 
11055 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11056 		SD_ERROR(SD_LOG_READ_WRITE, un,
11057 		    "sdwrite: file offset not modulo %d\n",
11058 		    secmask + 1);
11059 		err = EINVAL;
11060 	} else if (uio->uio_iov->iov_len & (secmask)) {
11061 		SD_ERROR(SD_LOG_READ_WRITE, un,
11062 		    "sdwrite: transfer length not modulo %d\n",
11063 		    secmask + 1);
11064 		err = EINVAL;
11065 	} else {
11066 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11067 	}
11068 
11069 	return (err);
11070 }
11071 
11072 
11073 /*
11074  *    Function: sdaread
11075  *
11076  * Description: Driver's aread(9e) entry point function.
11077  *
11078  *   Arguments: dev   - device number
11079  *		aio   - structure pointer describing where data is to be stored
11080  *		cred_p  - user credential pointer
11081  *
11082  * Return Code: ENXIO
11083  *		EIO
11084  *		EINVAL
11085  *		value returned by aphysio
11086  *
11087  *     Context: Kernel thread context.
11088  */
11089 /* ARGSUSED */
11090 static int
11091 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11092 {
11093 	struct sd_lun	*un = NULL;
11094 	struct uio	*uio = aio->aio_uio;
11095 	int		secmask;
11096 	int		err = 0;
11097 	sd_ssc_t	*ssc;
11098 
11099 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11100 		return (ENXIO);
11101 	}
11102 
11103 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11104 
11105 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11106 		mutex_enter(SD_MUTEX(un));
11107 		/*
11108 		 * Because the call to sd_ready_and_valid will issue I/O we
11109 		 * must wait here if either the device is suspended or
11110 		 * if it's power level is changing.
11111 		 */
11112 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11113 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11114 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11115 		}
11116 		un->un_ncmds_in_driver++;
11117 		mutex_exit(SD_MUTEX(un));
11118 
11119 		/* Initialize sd_ssc_t for internal uscsi commands */
11120 		ssc = sd_ssc_init(un);
11121 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11122 			err = EIO;
11123 		} else {
11124 			err = 0;
11125 		}
11126 		sd_ssc_fini(ssc);
11127 
11128 		mutex_enter(SD_MUTEX(un));
11129 		un->un_ncmds_in_driver--;
11130 		ASSERT(un->un_ncmds_in_driver >= 0);
11131 		mutex_exit(SD_MUTEX(un));
11132 		if (err != 0)
11133 			return (err);
11134 	}
11135 
11136 	/*
11137 	 * Read requests are restricted to multiples of the system block size.
11138 	 */
11139 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11140 	    !un->un_f_enable_rmw)
11141 		secmask = un->un_tgt_blocksize - 1;
11142 	else
11143 		secmask = DEV_BSIZE - 1;
11144 
11145 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11146 		SD_ERROR(SD_LOG_READ_WRITE, un,
11147 		    "sdaread: file offset not modulo %d\n",
11148 		    secmask + 1);
11149 		err = EINVAL;
11150 	} else if (uio->uio_iov->iov_len & (secmask)) {
11151 		SD_ERROR(SD_LOG_READ_WRITE, un,
11152 		    "sdaread: transfer length not modulo %d\n",
11153 		    secmask + 1);
11154 		err = EINVAL;
11155 	} else {
11156 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11157 	}
11158 
11159 	return (err);
11160 }
11161 
11162 
11163 /*
11164  *    Function: sdawrite
11165  *
11166  * Description: Driver's awrite(9e) entry point function.
11167  *
11168  *   Arguments: dev   - device number
11169  *		aio   - structure pointer describing where data is stored
11170  *		cred_p  - user credential pointer
11171  *
11172  * Return Code: ENXIO
11173  *		EIO
11174  *		EINVAL
11175  *		value returned by aphysio
11176  *
11177  *     Context: Kernel thread context.
11178  */
11179 /* ARGSUSED */
11180 static int
11181 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11182 {
11183 	struct sd_lun	*un = NULL;
11184 	struct uio	*uio = aio->aio_uio;
11185 	int		secmask;
11186 	int		err = 0;
11187 	sd_ssc_t	*ssc;
11188 
11189 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11190 		return (ENXIO);
11191 	}
11192 
11193 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11194 
11195 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11196 		mutex_enter(SD_MUTEX(un));
11197 		/*
11198 		 * Because the call to sd_ready_and_valid will issue I/O we
11199 		 * must wait here if either the device is suspended or
11200 		 * if it's power level is changing.
11201 		 */
11202 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11203 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11204 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11205 		}
11206 		un->un_ncmds_in_driver++;
11207 		mutex_exit(SD_MUTEX(un));
11208 
11209 		/* Initialize sd_ssc_t for internal uscsi commands */
11210 		ssc = sd_ssc_init(un);
11211 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11212 			err = EIO;
11213 		} else {
11214 			err = 0;
11215 		}
11216 		sd_ssc_fini(ssc);
11217 
11218 		mutex_enter(SD_MUTEX(un));
11219 		un->un_ncmds_in_driver--;
11220 		ASSERT(un->un_ncmds_in_driver >= 0);
11221 		mutex_exit(SD_MUTEX(un));
11222 		if (err != 0)
11223 			return (err);
11224 	}
11225 
11226 	/*
11227 	 * Write requests are restricted to multiples of the system block size.
11228 	 */
11229 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11230 	    !un->un_f_enable_rmw)
11231 		secmask = un->un_tgt_blocksize - 1;
11232 	else
11233 		secmask = DEV_BSIZE - 1;
11234 
11235 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11236 		SD_ERROR(SD_LOG_READ_WRITE, un,
11237 		    "sdawrite: file offset not modulo %d\n",
11238 		    secmask + 1);
11239 		err = EINVAL;
11240 	} else if (uio->uio_iov->iov_len & (secmask)) {
11241 		SD_ERROR(SD_LOG_READ_WRITE, un,
11242 		    "sdawrite: transfer length not modulo %d\n",
11243 		    secmask + 1);
11244 		err = EINVAL;
11245 	} else {
11246 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11247 	}
11248 
11249 	return (err);
11250 }
11251 
11252 
11253 
11254 
11255 
11256 /*
11257  * Driver IO processing follows the following sequence:
11258  *
11259  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11260  *         |                |                     ^
11261  *         v                v                     |
11262  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11263  *         |                |                     |                   |
11264  *         v                |                     |                   |
11265  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11266  *         |                |                     ^                   ^
11267  *         v                v                     |                   |
11268  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11269  *         |                |                     |                   |
11270  *     +---+                |                     +------------+      +-------+
11271  *     |                    |                                  |              |
11272  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11273  *     |                    v                                  |              |
11274  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11275  *     |                    |                                  ^              |
11276  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11277  *     |                    v                                  |              |
11278  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11279  *     |                    |                                  ^              |
11280  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11281  *     |                    v                                  |              |
11282  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11283  *     |                    |                                  ^              |
11284  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11285  *     |                    v                                  |              |
11286  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11287  *     |                    |                                  ^              |
11288  *     |                    |                                  |              |
11289  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11290  *                          |                           ^
11291  *                          v                           |
11292  *                   sd_core_iostart()                  |
11293  *                          |                           |
11294  *                          |                           +------>(*destroypkt)()
11295  *                          +-> sd_start_cmds() <-+     |           |
11296  *                          |                     |     |           v
11297  *                          |                     |     |  scsi_destroy_pkt(9F)
11298  *                          |                     |     |
11299  *                          +->(*initpkt)()       +- sdintr()
11300  *                          |  |                        |  |
11301  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11302  *                          |  +-> scsi_setup_cdb(9F)   |
11303  *                          |                           |
11304  *                          +--> scsi_transport(9F)     |
11305  *                                     |                |
11306  *                                     +----> SCSA ---->+
11307  *
11308  *
11309  * This code is based upon the following presumptions:
11310  *
11311  *   - iostart and iodone functions operate on buf(9S) structures. These
11312  *     functions perform the necessary operations on the buf(9S) and pass
11313  *     them along to the next function in the chain by using the macros
11314  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11315  *     (for iodone side functions).
11316  *
11317  *   - The iostart side functions may sleep. The iodone side functions
11318  *     are called under interrupt context and may NOT sleep. Therefore
11319  *     iodone side functions also may not call iostart side functions.
11320  *     (NOTE: iostart side functions should NOT sleep for memory, as
11321  *     this could result in deadlock.)
11322  *
11323  *   - An iostart side function may call its corresponding iodone side
11324  *     function directly (if necessary).
11325  *
11326  *   - In the event of an error, an iostart side function can return a buf(9S)
11327  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11328  *     b_error in the usual way of course).
11329  *
11330  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11331  *     requests to the iostart side functions.  The iostart side functions in
11332  *     this case would be called under the context of a taskq thread, so it's
11333  *     OK for them to block/sleep/spin in this case.
11334  *
11335  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11336  *     pass them along to the next function in the chain.  The corresponding
11337  *     iodone side functions must coalesce the "shadow" bufs and return
11338  *     the "original" buf to the next higher layer.
11339  *
11340  *   - The b_private field of the buf(9S) struct holds a pointer to
11341  *     an sd_xbuf struct, which contains information needed to
11342  *     construct the scsi_pkt for the command.
11343  *
11344  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11345  *     layer must acquire & release the SD_MUTEX(un) as needed.
11346  */
11347 
11348 
11349 /*
11350  * Create taskq for all targets in the system. This is created at
11351  * _init(9E) and destroyed at _fini(9E).
11352  *
11353  * Note: here we set the minalloc to a reasonably high number to ensure that
11354  * we will have an adequate supply of task entries available at interrupt time.
11355  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11356  * sd_create_taskq().  Since we do not want to sleep for allocations at
11357  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11358  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11359  * requests any one instant in time.
11360  */
11361 #define	SD_TASKQ_NUMTHREADS	8
11362 #define	SD_TASKQ_MINALLOC	256
11363 #define	SD_TASKQ_MAXALLOC	256
11364 
11365 static taskq_t	*sd_tq = NULL;
11366 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11367 
11368 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11369 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11370 
11371 /*
11372  * The following task queue is being created for the write part of
11373  * read-modify-write of non-512 block size devices.
11374  * Limit the number of threads to 1 for now. This number has been chosen
11375  * considering the fact that it applies only to dvd ram drives/MO drives
11376  * currently. Performance for which is not main criteria at this stage.
11377  * Note: It needs to be explored if we can use a single taskq in future
11378  */
11379 #define	SD_WMR_TASKQ_NUMTHREADS	1
11380 static taskq_t	*sd_wmr_tq = NULL;
11381 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11382 
11383 /*
11384  *    Function: sd_taskq_create
11385  *
11386  * Description: Create taskq thread(s) and preallocate task entries
11387  *
11388  * Return Code: Returns a pointer to the allocated taskq_t.
11389  *
11390  *     Context: Can sleep. Requires blockable context.
11391  *
11392  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11393  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11394  *		- taskq_create() will block for memory, also it will panic
11395  *		  if it cannot create the requested number of threads.
11396  *		- Currently taskq_create() creates threads that cannot be
11397  *		  swapped.
11398  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11399  *		  supply of taskq entries at interrupt time (ie, so that we
11400  *		  do not have to sleep for memory)
11401  */
11402 
11403 static void
11404 sd_taskq_create(void)
11405 {
11406 	char	taskq_name[TASKQ_NAMELEN];
11407 
11408 	ASSERT(sd_tq == NULL);
11409 	ASSERT(sd_wmr_tq == NULL);
11410 
11411 	(void) snprintf(taskq_name, sizeof (taskq_name),
11412 	    "%s_drv_taskq", sd_label);
11413 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11414 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11415 	    TASKQ_PREPOPULATE));
11416 
11417 	(void) snprintf(taskq_name, sizeof (taskq_name),
11418 	    "%s_rmw_taskq", sd_label);
11419 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11420 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11421 	    TASKQ_PREPOPULATE));
11422 }
11423 
11424 
11425 /*
11426  *    Function: sd_taskq_delete
11427  *
11428  * Description: Complementary cleanup routine for sd_taskq_create().
11429  *
11430  *     Context: Kernel thread context.
11431  */
11432 
11433 static void
11434 sd_taskq_delete(void)
11435 {
11436 	ASSERT(sd_tq != NULL);
11437 	ASSERT(sd_wmr_tq != NULL);
11438 	taskq_destroy(sd_tq);
11439 	taskq_destroy(sd_wmr_tq);
11440 	sd_tq = NULL;
11441 	sd_wmr_tq = NULL;
11442 }
11443 
11444 
11445 /*
11446  *    Function: sdstrategy
11447  *
11448  * Description: Driver's strategy (9E) entry point function.
11449  *
11450  *   Arguments: bp - pointer to buf(9S)
11451  *
11452  * Return Code: Always returns zero
11453  *
11454  *     Context: Kernel thread context.
11455  */
11456 
11457 static int
11458 sdstrategy(struct buf *bp)
11459 {
11460 	struct sd_lun *un;
11461 
11462 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11463 	if (un == NULL) {
11464 		bioerror(bp, EIO);
11465 		bp->b_resid = bp->b_bcount;
11466 		biodone(bp);
11467 		return (0);
11468 	}
11469 
11470 	/* As was done in the past, fail new cmds. if state is dumping. */
11471 	if (un->un_state == SD_STATE_DUMPING) {
11472 		bioerror(bp, ENXIO);
11473 		bp->b_resid = bp->b_bcount;
11474 		biodone(bp);
11475 		return (0);
11476 	}
11477 
11478 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11479 
11480 	/*
11481 	 * Commands may sneak in while we released the mutex in
11482 	 * DDI_SUSPEND, we should block new commands. However, old
11483 	 * commands that are still in the driver at this point should
11484 	 * still be allowed to drain.
11485 	 */
11486 	mutex_enter(SD_MUTEX(un));
11487 	/*
11488 	 * Must wait here if either the device is suspended or
11489 	 * if it's power level is changing.
11490 	 */
11491 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11492 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11493 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11494 	}
11495 
11496 	un->un_ncmds_in_driver++;
11497 
11498 	/*
11499 	 * atapi: Since we are running the CD for now in PIO mode we need to
11500 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11501 	 * the HBA's init_pkt routine.
11502 	 */
11503 	if (un->un_f_cfg_is_atapi == TRUE) {
11504 		mutex_exit(SD_MUTEX(un));
11505 		bp_mapin(bp);
11506 		mutex_enter(SD_MUTEX(un));
11507 	}
11508 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11509 	    un->un_ncmds_in_driver);
11510 
11511 	if (bp->b_flags & B_WRITE)
11512 		un->un_f_sync_cache_required = TRUE;
11513 
11514 	mutex_exit(SD_MUTEX(un));
11515 
11516 	/*
11517 	 * This will (eventually) allocate the sd_xbuf area and
11518 	 * call sd_xbuf_strategy().  We just want to return the
11519 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11520 	 * imized tail call which saves us a stack frame.
11521 	 */
11522 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11523 }
11524 
11525 
11526 /*
11527  *    Function: sd_xbuf_strategy
11528  *
11529  * Description: Function for initiating IO operations via the
11530  *		ddi_xbuf_qstrategy() mechanism.
11531  *
11532  *     Context: Kernel thread context.
11533  */
11534 
11535 static void
11536 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11537 {
11538 	struct sd_lun *un = arg;
11539 
11540 	ASSERT(bp != NULL);
11541 	ASSERT(xp != NULL);
11542 	ASSERT(un != NULL);
11543 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11544 
11545 	/*
11546 	 * Initialize the fields in the xbuf and save a pointer to the
11547 	 * xbuf in bp->b_private.
11548 	 */
11549 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11550 
11551 	/* Send the buf down the iostart chain */
11552 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11553 }
11554 
11555 
11556 /*
11557  *    Function: sd_xbuf_init
11558  *
11559  * Description: Prepare the given sd_xbuf struct for use.
11560  *
11561  *   Arguments: un - ptr to softstate
11562  *		bp - ptr to associated buf(9S)
11563  *		xp - ptr to associated sd_xbuf
11564  *		chain_type - IO chain type to use:
11565  *			SD_CHAIN_NULL
11566  *			SD_CHAIN_BUFIO
11567  *			SD_CHAIN_USCSI
11568  *			SD_CHAIN_DIRECT
11569  *			SD_CHAIN_DIRECT_PRIORITY
11570  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11571  *			initialization; may be NULL if none.
11572  *
11573  *     Context: Kernel thread context
11574  */
11575 
11576 static void
11577 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11578 	uchar_t chain_type, void *pktinfop)
11579 {
11580 	int index;
11581 
11582 	ASSERT(un != NULL);
11583 	ASSERT(bp != NULL);
11584 	ASSERT(xp != NULL);
11585 
11586 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11587 	    bp, chain_type);
11588 
11589 	xp->xb_un	= un;
11590 	xp->xb_pktp	= NULL;
11591 	xp->xb_pktinfo	= pktinfop;
11592 	xp->xb_private	= bp->b_private;
11593 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11594 
11595 	/*
11596 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11597 	 * upon the specified chain type to use.
11598 	 */
11599 	switch (chain_type) {
11600 	case SD_CHAIN_NULL:
11601 		/*
11602 		 * Fall thru to just use the values for the buf type, even
11603 		 * tho for the NULL chain these values will never be used.
11604 		 */
11605 		/* FALLTHRU */
11606 	case SD_CHAIN_BUFIO:
11607 		index = un->un_buf_chain_type;
11608 		if ((!un->un_f_has_removable_media) &&
11609 		    (un->un_tgt_blocksize != 0) &&
11610 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11611 		    un->un_f_enable_rmw)) {
11612 			int secmask = 0, blknomask = 0;
11613 			if (un->un_f_enable_rmw) {
11614 				blknomask =
11615 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11616 				secmask = un->un_phy_blocksize - 1;
11617 			} else {
11618 				blknomask =
11619 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11620 				secmask = un->un_tgt_blocksize - 1;
11621 			}
11622 
11623 			if ((bp->b_lblkno & (blknomask)) ||
11624 			    (bp->b_bcount & (secmask))) {
11625 				if ((un->un_f_rmw_type !=
11626 				    SD_RMW_TYPE_RETURN_ERROR) ||
11627 				    un->un_f_enable_rmw) {
11628 					if (un->un_f_pm_is_enabled == FALSE)
11629 						index =
11630 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11631 					else
11632 						index =
11633 						    SD_CHAIN_INFO_MSS_DISK;
11634 				}
11635 			}
11636 		}
11637 		break;
11638 	case SD_CHAIN_USCSI:
11639 		index = un->un_uscsi_chain_type;
11640 		break;
11641 	case SD_CHAIN_DIRECT:
11642 		index = un->un_direct_chain_type;
11643 		break;
11644 	case SD_CHAIN_DIRECT_PRIORITY:
11645 		index = un->un_priority_chain_type;
11646 		break;
11647 	default:
11648 		/* We're really broken if we ever get here... */
11649 		panic("sd_xbuf_init: illegal chain type!");
11650 		/*NOTREACHED*/
11651 	}
11652 
11653 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11654 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11655 
11656 	/*
11657 	 * It might be a bit easier to simply bzero the entire xbuf above,
11658 	 * but it turns out that since we init a fair number of members anyway,
11659 	 * we save a fair number cycles by doing explicit assignment of zero.
11660 	 */
11661 	xp->xb_pkt_flags	= 0;
11662 	xp->xb_dma_resid	= 0;
11663 	xp->xb_retry_count	= 0;
11664 	xp->xb_victim_retry_count = 0;
11665 	xp->xb_ua_retry_count	= 0;
11666 	xp->xb_nr_retry_count	= 0;
11667 	xp->xb_sense_bp		= NULL;
11668 	xp->xb_sense_status	= 0;
11669 	xp->xb_sense_state	= 0;
11670 	xp->xb_sense_resid	= 0;
11671 	xp->xb_ena		= 0;
11672 
11673 	bp->b_private	= xp;
11674 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11675 	bp->b_resid	= 0;
11676 	bp->av_forw	= NULL;
11677 	bp->av_back	= NULL;
11678 	bioerror(bp, 0);
11679 
11680 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11681 }
11682 
11683 
11684 /*
11685  *    Function: sd_uscsi_strategy
11686  *
11687  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11688  *
11689  *   Arguments: bp - buf struct ptr
11690  *
11691  * Return Code: Always returns 0
11692  *
11693  *     Context: Kernel thread context
11694  */
11695 
11696 static int
11697 sd_uscsi_strategy(struct buf *bp)
11698 {
11699 	struct sd_lun		*un;
11700 	struct sd_uscsi_info	*uip;
11701 	struct sd_xbuf		*xp;
11702 	uchar_t			chain_type;
11703 	uchar_t			cmd;
11704 
11705 	ASSERT(bp != NULL);
11706 
11707 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11708 	if (un == NULL) {
11709 		bioerror(bp, EIO);
11710 		bp->b_resid = bp->b_bcount;
11711 		biodone(bp);
11712 		return (0);
11713 	}
11714 
11715 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11716 
11717 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11718 
11719 	/*
11720 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11721 	 */
11722 	ASSERT(bp->b_private != NULL);
11723 	uip = (struct sd_uscsi_info *)bp->b_private;
11724 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11725 
11726 	mutex_enter(SD_MUTEX(un));
11727 	/*
11728 	 * atapi: Since we are running the CD for now in PIO mode we need to
11729 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11730 	 * the HBA's init_pkt routine.
11731 	 */
11732 	if (un->un_f_cfg_is_atapi == TRUE) {
11733 		mutex_exit(SD_MUTEX(un));
11734 		bp_mapin(bp);
11735 		mutex_enter(SD_MUTEX(un));
11736 	}
11737 	un->un_ncmds_in_driver++;
11738 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11739 	    un->un_ncmds_in_driver);
11740 
11741 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11742 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11743 		un->un_f_sync_cache_required = TRUE;
11744 
11745 	mutex_exit(SD_MUTEX(un));
11746 
11747 	switch (uip->ui_flags) {
11748 	case SD_PATH_DIRECT:
11749 		chain_type = SD_CHAIN_DIRECT;
11750 		break;
11751 	case SD_PATH_DIRECT_PRIORITY:
11752 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11753 		break;
11754 	default:
11755 		chain_type = SD_CHAIN_USCSI;
11756 		break;
11757 	}
11758 
11759 	/*
11760 	 * We may allocate extra buf for external USCSI commands. If the
11761 	 * application asks for bigger than 20-byte sense data via USCSI,
11762 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11763 	 */
11764 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11765 	    SENSE_LENGTH) {
11766 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11767 		    MAX_SENSE_LENGTH, KM_SLEEP);
11768 	} else {
11769 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11770 	}
11771 
11772 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11773 
11774 	/* Use the index obtained within xbuf_init */
11775 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11776 
11777 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11778 
11779 	return (0);
11780 }
11781 
11782 /*
11783  *    Function: sd_send_scsi_cmd
11784  *
11785  * Description: Runs a USCSI command for user (when called thru sdioctl),
11786  *		or for the driver
11787  *
11788  *   Arguments: dev - the dev_t for the device
11789  *		incmd - ptr to a valid uscsi_cmd struct
11790  *		flag - bit flag, indicating open settings, 32/64 bit type
11791  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11792  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11793  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11794  *			to use the USCSI "direct" chain and bypass the normal
11795  *			command waitq.
11796  *
11797  * Return Code: 0 -  successful completion of the given command
11798  *		EIO - scsi_uscsi_handle_command() failed
11799  *		ENXIO  - soft state not found for specified dev
11800  *		EINVAL
11801  *		EFAULT - copyin/copyout error
11802  *		return code of scsi_uscsi_handle_command():
11803  *			EIO
11804  *			ENXIO
11805  *			EACCES
11806  *
11807  *     Context: Waits for command to complete. Can sleep.
11808  */
11809 
11810 static int
11811 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11812 	enum uio_seg dataspace, int path_flag)
11813 {
11814 	struct sd_lun	*un;
11815 	sd_ssc_t	*ssc;
11816 	int		rval;
11817 
11818 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11819 	if (un == NULL) {
11820 		return (ENXIO);
11821 	}
11822 
11823 	/*
11824 	 * Using sd_ssc_send to handle uscsi cmd
11825 	 */
11826 	ssc = sd_ssc_init(un);
11827 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11828 	sd_ssc_fini(ssc);
11829 
11830 	return (rval);
11831 }
11832 
11833 /*
11834  *    Function: sd_ssc_init
11835  *
11836  * Description: Uscsi end-user call this function to initialize necessary
11837  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11838  *
11839  *              The return value of sd_send_scsi_cmd will be treated as a
11840  *              fault in various conditions. Even it is not Zero, some
11841  *              callers may ignore the return value. That is to say, we can
11842  *              not make an accurate assessment in sdintr, since if a
11843  *              command is failed in sdintr it does not mean the caller of
11844  *              sd_send_scsi_cmd will treat it as a real failure.
11845  *
11846  *              To avoid printing too many error logs for a failed uscsi
11847  *              packet that the caller may not treat it as a failure, the
11848  *              sd will keep silent for handling all uscsi commands.
11849  *
11850  *              During detach->attach and attach-open, for some types of
11851  *              problems, the driver should be providing information about
11852  *              the problem encountered. Device use USCSI_SILENT, which
11853  *              suppresses all driver information. The result is that no
11854  *              information about the problem is available. Being
11855  *              completely silent during this time is inappropriate. The
11856  *              driver needs a more selective filter than USCSI_SILENT, so
11857  *              that information related to faults is provided.
11858  *
11859  *              To make the accurate accessment, the caller  of
11860  *              sd_send_scsi_USCSI_CMD should take the ownership and
11861  *              get necessary information to print error messages.
11862  *
11863  *              If we want to print necessary info of uscsi command, we need to
11864  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11865  *              assessment. We use sd_ssc_init to alloc necessary
11866  *              structs for sending an uscsi command and we are also
11867  *              responsible for free the memory by calling
11868  *              sd_ssc_fini.
11869  *
11870  *              The calling secquences will look like:
11871  *              sd_ssc_init->
11872  *
11873  *                  ...
11874  *
11875  *                  sd_send_scsi_USCSI_CMD->
11876  *                      sd_ssc_send-> - - - sdintr
11877  *                  ...
11878  *
11879  *                  if we think the return value should be treated as a
11880  *                  failure, we make the accessment here and print out
11881  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11882  *
11883  *                  ...
11884  *
11885  *              sd_ssc_fini
11886  *
11887  *
11888  *   Arguments: un - pointer to driver soft state (unit) structure for this
11889  *                   target.
11890  *
11891  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11892  *                         uscsi_cmd and sd_uscsi_info.
11893  *                  NULL - if can not alloc memory for sd_ssc_t struct
11894  *
11895  *     Context: Kernel Thread.
11896  */
11897 static sd_ssc_t *
11898 sd_ssc_init(struct sd_lun *un)
11899 {
11900 	sd_ssc_t		*ssc;
11901 	struct uscsi_cmd	*ucmdp;
11902 	struct sd_uscsi_info	*uip;
11903 
11904 	ASSERT(un != NULL);
11905 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11906 
11907 	/*
11908 	 * Allocate sd_ssc_t structure
11909 	 */
11910 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11911 
11912 	/*
11913 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11914 	 */
11915 	ucmdp = scsi_uscsi_alloc();
11916 
11917 	/*
11918 	 * Allocate sd_uscsi_info structure
11919 	 */
11920 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11921 
11922 	ssc->ssc_uscsi_cmd = ucmdp;
11923 	ssc->ssc_uscsi_info = uip;
11924 	ssc->ssc_un = un;
11925 
11926 	return (ssc);
11927 }
11928 
11929 /*
11930  * Function: sd_ssc_fini
11931  *
11932  * Description: To free sd_ssc_t and it's hanging off
11933  *
11934  * Arguments: ssc - struct pointer of sd_ssc_t.
11935  */
11936 static void
11937 sd_ssc_fini(sd_ssc_t *ssc)
11938 {
11939 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11940 
11941 	if (ssc->ssc_uscsi_info != NULL) {
11942 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11943 		ssc->ssc_uscsi_info = NULL;
11944 	}
11945 
11946 	kmem_free(ssc, sizeof (sd_ssc_t));
11947 	ssc = NULL;
11948 }
11949 
11950 /*
11951  * Function: sd_ssc_send
11952  *
11953  * Description: Runs a USCSI command for user when called through sdioctl,
11954  *              or for the driver.
11955  *
11956  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11957  *                    sd_uscsi_info in.
11958  *		incmd - ptr to a valid uscsi_cmd struct
11959  *		flag - bit flag, indicating open settings, 32/64 bit type
11960  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11961  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11962  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11963  *			to use the USCSI "direct" chain and bypass the normal
11964  *			command waitq.
11965  *
11966  * Return Code: 0 -  successful completion of the given command
11967  *		EIO - scsi_uscsi_handle_command() failed
11968  *		ENXIO  - soft state not found for specified dev
11969  *		ECANCELED - command cancelled due to low power
11970  *		EINVAL
11971  *		EFAULT - copyin/copyout error
11972  *		return code of scsi_uscsi_handle_command():
11973  *			EIO
11974  *			ENXIO
11975  *			EACCES
11976  *
11977  *     Context: Kernel Thread;
11978  *              Waits for command to complete. Can sleep.
11979  */
11980 static int
11981 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11982 	enum uio_seg dataspace, int path_flag)
11983 {
11984 	struct sd_uscsi_info	*uip;
11985 	struct uscsi_cmd	*uscmd;
11986 	struct sd_lun		*un;
11987 	dev_t			dev;
11988 
11989 	int	format = 0;
11990 	int	rval;
11991 
11992 	ASSERT(ssc != NULL);
11993 	un = ssc->ssc_un;
11994 	ASSERT(un != NULL);
11995 	uscmd = ssc->ssc_uscsi_cmd;
11996 	ASSERT(uscmd != NULL);
11997 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11998 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11999 		/*
12000 		 * If enter here, it indicates that the previous uscsi
12001 		 * command has not been processed by sd_ssc_assessment.
12002 		 * This is violating our rules of FMA telemetry processing.
12003 		 * We should print out this message and the last undisposed
12004 		 * uscsi command.
12005 		 */
12006 		if (uscmd->uscsi_cdb != NULL) {
12007 			SD_INFO(SD_LOG_SDTEST, un,
12008 			    "sd_ssc_send is missing the alternative "
12009 			    "sd_ssc_assessment when running command 0x%x.\n",
12010 			    uscmd->uscsi_cdb[0]);
12011 		}
12012 		/*
12013 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
12014 		 * the initial status.
12015 		 */
12016 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12017 	}
12018 
12019 	/*
12020 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
12021 	 * followed to avoid missing FMA telemetries.
12022 	 */
12023 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
12024 
12025 	/*
12026 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
12027 	 * command immediately.
12028 	 */
12029 	mutex_enter(SD_MUTEX(un));
12030 	mutex_enter(&un->un_pm_mutex);
12031 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
12032 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
12033 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
12034 		    "un:0x%p is in low power\n", un);
12035 		mutex_exit(&un->un_pm_mutex);
12036 		mutex_exit(SD_MUTEX(un));
12037 		return (ECANCELED);
12038 	}
12039 	mutex_exit(&un->un_pm_mutex);
12040 	mutex_exit(SD_MUTEX(un));
12041 
12042 #ifdef SDDEBUG
12043 	switch (dataspace) {
12044 	case UIO_USERSPACE:
12045 		SD_TRACE(SD_LOG_IO, un,
12046 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12047 		break;
12048 	case UIO_SYSSPACE:
12049 		SD_TRACE(SD_LOG_IO, un,
12050 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12051 		break;
12052 	default:
12053 		SD_TRACE(SD_LOG_IO, un,
12054 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12055 		break;
12056 	}
12057 #endif
12058 
12059 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12060 	    SD_ADDRESS(un), &uscmd);
12061 	if (rval != 0) {
12062 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12063 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12064 		return (rval);
12065 	}
12066 
12067 	if ((uscmd->uscsi_cdb != NULL) &&
12068 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12069 		mutex_enter(SD_MUTEX(un));
12070 		un->un_f_format_in_progress = TRUE;
12071 		mutex_exit(SD_MUTEX(un));
12072 		format = 1;
12073 	}
12074 
12075 	/*
12076 	 * Allocate an sd_uscsi_info struct and fill it with the info
12077 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12078 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12079 	 * since we allocate the buf here in this function, we do not
12080 	 * need to preserve the prior contents of b_private.
12081 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12082 	 */
12083 	uip = ssc->ssc_uscsi_info;
12084 	uip->ui_flags = path_flag;
12085 	uip->ui_cmdp = uscmd;
12086 
12087 	/*
12088 	 * Commands sent with priority are intended for error recovery
12089 	 * situations, and do not have retries performed.
12090 	 */
12091 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12092 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12093 	}
12094 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12095 
12096 	dev = SD_GET_DEV(un);
12097 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12098 	    sd_uscsi_strategy, NULL, uip);
12099 
12100 	/*
12101 	 * mark ssc_flags right after handle_cmd to make sure
12102 	 * the uscsi has been sent
12103 	 */
12104 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12105 
12106 #ifdef SDDEBUG
12107 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12108 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12109 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12110 	if (uscmd->uscsi_bufaddr != NULL) {
12111 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12112 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12113 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12114 		if (dataspace == UIO_SYSSPACE) {
12115 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12116 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12117 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12118 		}
12119 	}
12120 #endif
12121 
12122 	if (format == 1) {
12123 		mutex_enter(SD_MUTEX(un));
12124 		un->un_f_format_in_progress = FALSE;
12125 		mutex_exit(SD_MUTEX(un));
12126 	}
12127 
12128 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12129 
12130 	return (rval);
12131 }
12132 
12133 /*
12134  *     Function: sd_ssc_print
12135  *
12136  * Description: Print information available to the console.
12137  *
12138  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12139  *                    sd_uscsi_info in.
12140  *            sd_severity - log level.
12141  *     Context: Kernel thread or interrupt context.
12142  */
12143 static void
12144 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12145 {
12146 	struct uscsi_cmd	*ucmdp;
12147 	struct scsi_device	*devp;
12148 	dev_info_t 		*devinfo;
12149 	uchar_t			*sensep;
12150 	int			senlen;
12151 	union scsi_cdb		*cdbp;
12152 	uchar_t			com;
12153 	extern struct scsi_key_strings scsi_cmds[];
12154 
12155 	ASSERT(ssc != NULL);
12156 	ASSERT(ssc->ssc_un != NULL);
12157 
12158 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12159 		return;
12160 	ucmdp = ssc->ssc_uscsi_cmd;
12161 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12162 	devinfo = SD_DEVINFO(ssc->ssc_un);
12163 	ASSERT(ucmdp != NULL);
12164 	ASSERT(devp != NULL);
12165 	ASSERT(devinfo != NULL);
12166 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12167 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12168 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12169 
12170 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12171 	if (cdbp == NULL)
12172 		return;
12173 	/* We don't print log if no sense data available. */
12174 	if (senlen == 0)
12175 		sensep = NULL;
12176 	com = cdbp->scc_cmd;
12177 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12178 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12179 }
12180 
12181 /*
12182  *     Function: sd_ssc_assessment
12183  *
12184  * Description: We use this function to make an assessment at the point
12185  *              where SD driver may encounter a potential error.
12186  *
12187  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12188  *                  sd_uscsi_info in.
12189  *            tp_assess - a hint of strategy for ereport posting.
12190  *            Possible values of tp_assess include:
12191  *                SD_FMT_IGNORE - we don't post any ereport because we're
12192  *                sure that it is ok to ignore the underlying problems.
12193  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12194  *                but it might be not correct to ignore the underlying hardware
12195  *                error.
12196  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12197  *                payload driver-assessment of value "fail" or
12198  *                "fatal"(depending on what information we have here). This
12199  *                assessment value is usually set when SD driver think there
12200  *                is a potential error occurred(Typically, when return value
12201  *                of the SCSI command is EIO).
12202  *                SD_FMT_STANDARD - we will post an ereport with the payload
12203  *                driver-assessment of value "info". This assessment value is
12204  *                set when the SCSI command returned successfully and with
12205  *                sense data sent back.
12206  *
12207  *     Context: Kernel thread.
12208  */
12209 static void
12210 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12211 {
12212 	int senlen = 0;
12213 	struct uscsi_cmd *ucmdp = NULL;
12214 	struct sd_lun *un;
12215 
12216 	ASSERT(ssc != NULL);
12217 	un = ssc->ssc_un;
12218 	ASSERT(un != NULL);
12219 	ucmdp = ssc->ssc_uscsi_cmd;
12220 	ASSERT(ucmdp != NULL);
12221 
12222 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12223 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12224 	} else {
12225 		/*
12226 		 * If enter here, it indicates that we have a wrong
12227 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12228 		 * both of which should be called in a pair in case of
12229 		 * loss of FMA telemetries.
12230 		 */
12231 		if (ucmdp->uscsi_cdb != NULL) {
12232 			SD_INFO(SD_LOG_SDTEST, un,
12233 			    "sd_ssc_assessment is missing the "
12234 			    "alternative sd_ssc_send when running 0x%x, "
12235 			    "or there are superfluous sd_ssc_assessment for "
12236 			    "the same sd_ssc_send.\n",
12237 			    ucmdp->uscsi_cdb[0]);
12238 		}
12239 		/*
12240 		 * Set the ssc_flags to the initial value to avoid passing
12241 		 * down dirty flags to the following sd_ssc_send function.
12242 		 */
12243 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12244 		return;
12245 	}
12246 
12247 	/*
12248 	 * Only handle an issued command which is waiting for assessment.
12249 	 * A command which is not issued will not have
12250 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12251 	 */
12252 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12253 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12254 		return;
12255 	} else {
12256 		/*
12257 		 * For an issued command, we should clear this flag in
12258 		 * order to make the sd_ssc_t structure be used off
12259 		 * multiple uscsi commands.
12260 		 */
12261 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12262 	}
12263 
12264 	/*
12265 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12266 	 * commands here. And we should clear the ssc_flags before return.
12267 	 */
12268 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12269 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12270 		return;
12271 	}
12272 
12273 	switch (tp_assess) {
12274 	case SD_FMT_IGNORE:
12275 	case SD_FMT_IGNORE_COMPROMISE:
12276 		break;
12277 	case SD_FMT_STATUS_CHECK:
12278 		/*
12279 		 * For a failed command(including the succeeded command
12280 		 * with invalid data sent back).
12281 		 */
12282 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12283 		break;
12284 	case SD_FMT_STANDARD:
12285 		/*
12286 		 * Always for the succeeded commands probably with sense
12287 		 * data sent back.
12288 		 * Limitation:
12289 		 *	We can only handle a succeeded command with sense
12290 		 *	data sent back when auto-request-sense is enabled.
12291 		 */
12292 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12293 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12294 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12295 		    (un->un_f_arq_enabled == TRUE) &&
12296 		    senlen > 0 &&
12297 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12298 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12299 		}
12300 		break;
12301 	default:
12302 		/*
12303 		 * Should not have other type of assessment.
12304 		 */
12305 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12306 		    "sd_ssc_assessment got wrong "
12307 		    "sd_type_assessment %d.\n", tp_assess);
12308 		break;
12309 	}
12310 	/*
12311 	 * Clear up the ssc_flags before return.
12312 	 */
12313 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12314 }
12315 
12316 /*
12317  *    Function: sd_ssc_post
12318  *
12319  * Description: 1. read the driver property to get fm-scsi-log flag.
12320  *              2. print log if fm_log_capable is non-zero.
12321  *              3. call sd_ssc_ereport_post to post ereport if possible.
12322  *
12323  *    Context: May be called from kernel thread or interrupt context.
12324  */
12325 static void
12326 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12327 {
12328 	struct sd_lun	*un;
12329 	int		sd_severity;
12330 
12331 	ASSERT(ssc != NULL);
12332 	un = ssc->ssc_un;
12333 	ASSERT(un != NULL);
12334 
12335 	/*
12336 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12337 	 * by directly called from sdintr context.
12338 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12339 	 * Clear the ssc_flags before return in case we've set
12340 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12341 	 * driver.
12342 	 */
12343 	if (ISCD(un) || un->un_f_has_removable_media) {
12344 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12345 		return;
12346 	}
12347 
12348 	switch (sd_assess) {
12349 		case SD_FM_DRV_FATAL:
12350 			sd_severity = SCSI_ERR_FATAL;
12351 			break;
12352 		case SD_FM_DRV_RECOVERY:
12353 			sd_severity = SCSI_ERR_RECOVERED;
12354 			break;
12355 		case SD_FM_DRV_RETRY:
12356 			sd_severity = SCSI_ERR_RETRYABLE;
12357 			break;
12358 		case SD_FM_DRV_NOTICE:
12359 			sd_severity = SCSI_ERR_INFO;
12360 			break;
12361 		default:
12362 			sd_severity = SCSI_ERR_UNKNOWN;
12363 	}
12364 	/* print log */
12365 	sd_ssc_print(ssc, sd_severity);
12366 
12367 	/* always post ereport */
12368 	sd_ssc_ereport_post(ssc, sd_assess);
12369 }
12370 
12371 /*
12372  *    Function: sd_ssc_set_info
12373  *
12374  * Description: Mark ssc_flags and set ssc_info which would be the
12375  *              payload of uderr ereport. This function will cause
12376  *              sd_ssc_ereport_post to post uderr ereport only.
12377  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12378  *              the function will also call SD_ERROR or scsi_log for a
12379  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12380  *
12381  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12382  *                  sd_uscsi_info in.
12383  *            ssc_flags - indicate the sub-category of a uderr.
12384  *            comp - this argument is meaningful only when
12385  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12386  *                   values include:
12387  *                   > 0, SD_ERROR is used with comp as the driver logging
12388  *                   component;
12389  *                   = 0, scsi-log is used to log error telemetries;
12390  *                   < 0, no log available for this telemetry.
12391  *
12392  *    Context: Kernel thread or interrupt context
12393  */
12394 static void
12395 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12396 {
12397 	va_list	ap;
12398 
12399 	ASSERT(ssc != NULL);
12400 	ASSERT(ssc->ssc_un != NULL);
12401 
12402 	ssc->ssc_flags |= ssc_flags;
12403 	va_start(ap, fmt);
12404 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12405 	va_end(ap);
12406 
12407 	/*
12408 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12409 	 * with invalid data sent back. For non-uscsi command, the
12410 	 * following code will be bypassed.
12411 	 */
12412 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12413 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12414 			/*
12415 			 * If the error belong to certain component and we
12416 			 * do not want it to show up on the console, we
12417 			 * will use SD_ERROR, otherwise scsi_log is
12418 			 * preferred.
12419 			 */
12420 			if (comp > 0) {
12421 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12422 			} else if (comp == 0) {
12423 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12424 				    CE_WARN, ssc->ssc_info);
12425 			}
12426 		}
12427 	}
12428 }
12429 
12430 /*
12431  *    Function: sd_buf_iodone
12432  *
12433  * Description: Frees the sd_xbuf & returns the buf to its originator.
12434  *
12435  *     Context: May be called from interrupt context.
12436  */
12437 /* ARGSUSED */
12438 static void
12439 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12440 {
12441 	struct sd_xbuf *xp;
12442 
12443 	ASSERT(un != NULL);
12444 	ASSERT(bp != NULL);
12445 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12446 
12447 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12448 
12449 	xp = SD_GET_XBUF(bp);
12450 	ASSERT(xp != NULL);
12451 
12452 	/* xbuf is gone after this */
12453 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12454 		mutex_enter(SD_MUTEX(un));
12455 
12456 		/*
12457 		 * Grab time when the cmd completed.
12458 		 * This is used for determining if the system has been
12459 		 * idle long enough to make it idle to the PM framework.
12460 		 * This is for lowering the overhead, and therefore improving
12461 		 * performance per I/O operation.
12462 		 */
12463 		un->un_pm_idle_time = ddi_get_time();
12464 
12465 		un->un_ncmds_in_driver--;
12466 		ASSERT(un->un_ncmds_in_driver >= 0);
12467 		SD_INFO(SD_LOG_IO, un,
12468 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12469 		    un->un_ncmds_in_driver);
12470 
12471 		mutex_exit(SD_MUTEX(un));
12472 	}
12473 
12474 	biodone(bp);				/* bp is gone after this */
12475 
12476 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12477 }
12478 
12479 
12480 /*
12481  *    Function: sd_uscsi_iodone
12482  *
12483  * Description: Frees the sd_xbuf & returns the buf to its originator.
12484  *
12485  *     Context: May be called from interrupt context.
12486  */
12487 /* ARGSUSED */
12488 static void
12489 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12490 {
12491 	struct sd_xbuf *xp;
12492 
12493 	ASSERT(un != NULL);
12494 	ASSERT(bp != NULL);
12495 
12496 	xp = SD_GET_XBUF(bp);
12497 	ASSERT(xp != NULL);
12498 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12499 
12500 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12501 
12502 	bp->b_private = xp->xb_private;
12503 
12504 	mutex_enter(SD_MUTEX(un));
12505 
12506 	/*
12507 	 * Grab time when the cmd completed.
12508 	 * This is used for determining if the system has been
12509 	 * idle long enough to make it idle to the PM framework.
12510 	 * This is for lowering the overhead, and therefore improving
12511 	 * performance per I/O operation.
12512 	 */
12513 	un->un_pm_idle_time = ddi_get_time();
12514 
12515 	un->un_ncmds_in_driver--;
12516 	ASSERT(un->un_ncmds_in_driver >= 0);
12517 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12518 	    un->un_ncmds_in_driver);
12519 
12520 	mutex_exit(SD_MUTEX(un));
12521 
12522 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12523 	    SENSE_LENGTH) {
12524 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12525 		    MAX_SENSE_LENGTH);
12526 	} else {
12527 		kmem_free(xp, sizeof (struct sd_xbuf));
12528 	}
12529 
12530 	biodone(bp);
12531 
12532 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12533 }
12534 
12535 
12536 /*
12537  *    Function: sd_mapblockaddr_iostart
12538  *
12539  * Description: Verify request lies within the partition limits for
12540  *		the indicated minor device.  Issue "overrun" buf if
12541  *		request would exceed partition range.  Converts
12542  *		partition-relative block address to absolute.
12543  *
12544  *              Upon exit of this function:
12545  *              1.I/O is aligned
12546  *                 xp->xb_blkno represents the absolute sector address
12547  *              2.I/O is misaligned
12548  *                 xp->xb_blkno represents the absolute logical block address
12549  *                 based on DEV_BSIZE. The logical block address will be
12550  *                 converted to physical sector address in sd_mapblocksize_\
12551  *                 iostart.
12552  *              3.I/O is misaligned but is aligned in "overrun" buf
12553  *                 xp->xb_blkno represents the absolute logical block address
12554  *                 based on DEV_BSIZE. The logical block address will be
12555  *                 converted to physical sector address in sd_mapblocksize_\
12556  *                 iostart. But no RMW will be issued in this case.
12557  *
12558  *     Context: Can sleep
12559  *
12560  *      Issues: This follows what the old code did, in terms of accessing
12561  *		some of the partition info in the unit struct without holding
12562  *		the mutext.  This is a general issue, if the partition info
12563  *		can be altered while IO is in progress... as soon as we send
12564  *		a buf, its partitioning can be invalid before it gets to the
12565  *		device.  Probably the right fix is to move partitioning out
12566  *		of the driver entirely.
12567  */
12568 
12569 static void
12570 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12571 {
12572 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12573 	daddr_t	blocknum;	/* Block number specified by the buf */
12574 	size_t	requested_nblocks;
12575 	size_t	available_nblocks;
12576 	int	partition;
12577 	diskaddr_t	partition_offset;
12578 	struct sd_xbuf *xp;
12579 	int secmask = 0, blknomask = 0;
12580 	ushort_t is_aligned = TRUE;
12581 
12582 	ASSERT(un != NULL);
12583 	ASSERT(bp != NULL);
12584 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12585 
12586 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12587 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12588 
12589 	xp = SD_GET_XBUF(bp);
12590 	ASSERT(xp != NULL);
12591 
12592 	/*
12593 	 * If the geometry is not indicated as valid, attempt to access
12594 	 * the unit & verify the geometry/label. This can be the case for
12595 	 * removable-media devices, of if the device was opened in
12596 	 * NDELAY/NONBLOCK mode.
12597 	 */
12598 	partition = SDPART(bp->b_edev);
12599 
12600 	if (!SD_IS_VALID_LABEL(un)) {
12601 		sd_ssc_t *ssc;
12602 		/*
12603 		 * Initialize sd_ssc_t for internal uscsi commands
12604 		 * In case of potential porformance issue, we need
12605 		 * to alloc memory only if there is invalid label
12606 		 */
12607 		ssc = sd_ssc_init(un);
12608 
12609 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12610 			/*
12611 			 * For removable devices it is possible to start an
12612 			 * I/O without a media by opening the device in nodelay
12613 			 * mode. Also for writable CDs there can be many
12614 			 * scenarios where there is no geometry yet but volume
12615 			 * manager is trying to issue a read() just because
12616 			 * it can see TOC on the CD. So do not print a message
12617 			 * for removables.
12618 			 */
12619 			if (!un->un_f_has_removable_media) {
12620 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12621 				    "i/o to invalid geometry\n");
12622 			}
12623 			bioerror(bp, EIO);
12624 			bp->b_resid = bp->b_bcount;
12625 			SD_BEGIN_IODONE(index, un, bp);
12626 
12627 			sd_ssc_fini(ssc);
12628 			return;
12629 		}
12630 		sd_ssc_fini(ssc);
12631 	}
12632 
12633 	nblocks = 0;
12634 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12635 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12636 
12637 	if (un->un_f_enable_rmw) {
12638 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12639 		secmask = un->un_phy_blocksize - 1;
12640 	} else {
12641 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12642 		secmask = un->un_tgt_blocksize - 1;
12643 	}
12644 
12645 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12646 		is_aligned = FALSE;
12647 	}
12648 
12649 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12650 		/*
12651 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12652 		 * Convert the logical block number to target's physical sector
12653 		 * number.
12654 		 */
12655 		if (is_aligned) {
12656 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12657 		} else {
12658 			/*
12659 			 * There is no RMW if we're just reading, so don't
12660 			 * warn or error out because of it.
12661 			 */
12662 			if (bp->b_flags & B_READ) {
12663 				/*EMPTY*/
12664 			} else if (!un->un_f_enable_rmw &&
12665 			    un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) {
12666 				bp->b_flags |= B_ERROR;
12667 				goto error_exit;
12668 			} else if (un->un_f_rmw_type == SD_RMW_TYPE_DEFAULT) {
12669 				mutex_enter(SD_MUTEX(un));
12670 				if (!un->un_f_enable_rmw &&
12671 				    un->un_rmw_msg_timeid == NULL) {
12672 					scsi_log(SD_DEVINFO(un), sd_label,
12673 					    CE_WARN, "I/O request is not "
12674 					    "aligned with %d disk sector size. "
12675 					    "It is handled through Read Modify "
12676 					    "Write but the performance is "
12677 					    "very low.\n",
12678 					    un->un_tgt_blocksize);
12679 					un->un_rmw_msg_timeid =
12680 					    timeout(sd_rmw_msg_print_handler,
12681 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12682 				} else {
12683 					un->un_rmw_incre_count ++;
12684 				}
12685 				mutex_exit(SD_MUTEX(un));
12686 			}
12687 
12688 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12689 			partition_offset = SD_TGT2SYSBLOCK(un,
12690 			    partition_offset);
12691 		}
12692 	}
12693 
12694 	/*
12695 	 * blocknum is the starting block number of the request. At this
12696 	 * point it is still relative to the start of the minor device.
12697 	 */
12698 	blocknum = xp->xb_blkno;
12699 
12700 	/*
12701 	 * Legacy: If the starting block number is one past the last block
12702 	 * in the partition, do not set B_ERROR in the buf.
12703 	 */
12704 	if (blocknum == nblocks)  {
12705 		goto error_exit;
12706 	}
12707 
12708 	/*
12709 	 * Confirm that the first block of the request lies within the
12710 	 * partition limits. Also the requested number of bytes must be
12711 	 * a multiple of the system block size.
12712 	 */
12713 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12714 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12715 		bp->b_flags |= B_ERROR;
12716 		goto error_exit;
12717 	}
12718 
12719 	/*
12720 	 * If the requsted # blocks exceeds the available # blocks, that
12721 	 * is an overrun of the partition.
12722 	 */
12723 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12724 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12725 	} else {
12726 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12727 	}
12728 
12729 	available_nblocks = (size_t)(nblocks - blocknum);
12730 	ASSERT(nblocks >= blocknum);
12731 
12732 	if (requested_nblocks > available_nblocks) {
12733 		size_t resid;
12734 
12735 		/*
12736 		 * Allocate an "overrun" buf to allow the request to proceed
12737 		 * for the amount of space available in the partition. The
12738 		 * amount not transferred will be added into the b_resid
12739 		 * when the operation is complete. The overrun buf
12740 		 * replaces the original buf here, and the original buf
12741 		 * is saved inside the overrun buf, for later use.
12742 		 */
12743 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12744 			resid = SD_TGTBLOCKS2BYTES(un,
12745 			    (offset_t)(requested_nblocks - available_nblocks));
12746 		} else {
12747 			resid = SD_SYSBLOCKS2BYTES(
12748 			    (offset_t)(requested_nblocks - available_nblocks));
12749 		}
12750 
12751 		size_t count = bp->b_bcount - resid;
12752 		/*
12753 		 * Note: count is an unsigned entity thus it'll NEVER
12754 		 * be less than 0 so ASSERT the original values are
12755 		 * correct.
12756 		 */
12757 		ASSERT(bp->b_bcount >= resid);
12758 
12759 		bp = sd_bioclone_alloc(bp, count, blocknum,
12760 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12761 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12762 		ASSERT(xp != NULL);
12763 	}
12764 
12765 	/* At this point there should be no residual for this buf. */
12766 	ASSERT(bp->b_resid == 0);
12767 
12768 	/* Convert the block number to an absolute address. */
12769 	xp->xb_blkno += partition_offset;
12770 
12771 	SD_NEXT_IOSTART(index, un, bp);
12772 
12773 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12774 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12775 
12776 	return;
12777 
12778 error_exit:
12779 	bp->b_resid = bp->b_bcount;
12780 	SD_BEGIN_IODONE(index, un, bp);
12781 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12782 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12783 }
12784 
12785 
12786 /*
12787  *    Function: sd_mapblockaddr_iodone
12788  *
12789  * Description: Completion-side processing for partition management.
12790  *
12791  *     Context: May be called under interrupt context
12792  */
12793 
12794 static void
12795 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12796 {
12797 	/* int	partition; */	/* Not used, see below. */
12798 	ASSERT(un != NULL);
12799 	ASSERT(bp != NULL);
12800 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12801 
12802 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12803 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12804 
12805 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12806 		/*
12807 		 * We have an "overrun" buf to deal with...
12808 		 */
12809 		struct sd_xbuf	*xp;
12810 		struct buf	*obp;	/* ptr to the original buf */
12811 
12812 		xp = SD_GET_XBUF(bp);
12813 		ASSERT(xp != NULL);
12814 
12815 		/* Retrieve the pointer to the original buf */
12816 		obp = (struct buf *)xp->xb_private;
12817 		ASSERT(obp != NULL);
12818 
12819 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12820 		bioerror(obp, bp->b_error);
12821 
12822 		sd_bioclone_free(bp);
12823 
12824 		/*
12825 		 * Get back the original buf.
12826 		 * Note that since the restoration of xb_blkno below
12827 		 * was removed, the sd_xbuf is not needed.
12828 		 */
12829 		bp = obp;
12830 		/*
12831 		 * xp = SD_GET_XBUF(bp);
12832 		 * ASSERT(xp != NULL);
12833 		 */
12834 	}
12835 
12836 	/*
12837 	 * Convert sd->xb_blkno back to a minor-device relative value.
12838 	 * Note: this has been commented out, as it is not needed in the
12839 	 * current implementation of the driver (ie, since this function
12840 	 * is at the top of the layering chains, so the info will be
12841 	 * discarded) and it is in the "hot" IO path.
12842 	 *
12843 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12844 	 * xp->xb_blkno -= un->un_offset[partition];
12845 	 */
12846 
12847 	SD_NEXT_IODONE(index, un, bp);
12848 
12849 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12850 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12851 }
12852 
12853 
12854 /*
12855  *    Function: sd_mapblocksize_iostart
12856  *
12857  * Description: Convert between system block size (un->un_sys_blocksize)
12858  *		and target block size (un->un_tgt_blocksize).
12859  *
12860  *     Context: Can sleep to allocate resources.
12861  *
12862  * Assumptions: A higher layer has already performed any partition validation,
12863  *		and converted the xp->xb_blkno to an absolute value relative
12864  *		to the start of the device.
12865  *
12866  *		It is also assumed that the higher layer has implemented
12867  *		an "overrun" mechanism for the case where the request would
12868  *		read/write beyond the end of a partition.  In this case we
12869  *		assume (and ASSERT) that bp->b_resid == 0.
12870  *
12871  *		Note: The implementation for this routine assumes the target
12872  *		block size remains constant between allocation and transport.
12873  */
12874 
12875 static void
12876 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12877 {
12878 	struct sd_mapblocksize_info	*bsp;
12879 	struct sd_xbuf			*xp;
12880 	offset_t first_byte;
12881 	daddr_t	start_block, end_block;
12882 	daddr_t	request_bytes;
12883 	ushort_t is_aligned = FALSE;
12884 
12885 	ASSERT(un != NULL);
12886 	ASSERT(bp != NULL);
12887 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12888 	ASSERT(bp->b_resid == 0);
12889 
12890 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12891 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12892 
12893 	/*
12894 	 * For a non-writable CD, a write request is an error
12895 	 */
12896 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12897 	    (un->un_f_mmc_writable_media == FALSE)) {
12898 		bioerror(bp, EIO);
12899 		bp->b_resid = bp->b_bcount;
12900 		SD_BEGIN_IODONE(index, un, bp);
12901 		return;
12902 	}
12903 
12904 	/*
12905 	 * We do not need a shadow buf if the device is using
12906 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12907 	 * In this case there is no layer-private data block allocated.
12908 	 */
12909 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12910 	    (bp->b_bcount == 0)) {
12911 		goto done;
12912 	}
12913 
12914 #if defined(__i386) || defined(__amd64)
12915 	/* We do not support non-block-aligned transfers for ROD devices */
12916 	ASSERT(!ISROD(un));
12917 #endif
12918 
12919 	xp = SD_GET_XBUF(bp);
12920 	ASSERT(xp != NULL);
12921 
12922 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12923 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12924 	    un->un_tgt_blocksize, DEV_BSIZE);
12925 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12926 	    "request start block:0x%x\n", xp->xb_blkno);
12927 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12928 	    "request len:0x%x\n", bp->b_bcount);
12929 
12930 	/*
12931 	 * Allocate the layer-private data area for the mapblocksize layer.
12932 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12933 	 * struct to store the pointer to their layer-private data block, but
12934 	 * each layer also has the responsibility of restoring the prior
12935 	 * contents of xb_private before returning the buf/xbuf to the
12936 	 * higher layer that sent it.
12937 	 *
12938 	 * Here we save the prior contents of xp->xb_private into the
12939 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12940 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12941 	 * the layer-private area and returning the buf/xbuf to the layer
12942 	 * that sent it.
12943 	 *
12944 	 * Note that here we use kmem_zalloc for the allocation as there are
12945 	 * parts of the mapblocksize code that expect certain fields to be
12946 	 * zero unless explicitly set to a required value.
12947 	 */
12948 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12949 	bsp->mbs_oprivate = xp->xb_private;
12950 	xp->xb_private = bsp;
12951 
12952 	/*
12953 	 * This treats the data on the disk (target) as an array of bytes.
12954 	 * first_byte is the byte offset, from the beginning of the device,
12955 	 * to the location of the request. This is converted from a
12956 	 * un->un_sys_blocksize block address to a byte offset, and then back
12957 	 * to a block address based upon a un->un_tgt_blocksize block size.
12958 	 *
12959 	 * xp->xb_blkno should be absolute upon entry into this function,
12960 	 * but, but it is based upon partitions that use the "system"
12961 	 * block size. It must be adjusted to reflect the block size of
12962 	 * the target.
12963 	 *
12964 	 * Note that end_block is actually the block that follows the last
12965 	 * block of the request, but that's what is needed for the computation.
12966 	 */
12967 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12968 	if (un->un_f_enable_rmw) {
12969 		start_block = xp->xb_blkno =
12970 		    (first_byte / un->un_phy_blocksize) *
12971 		    (un->un_phy_blocksize / DEV_BSIZE);
12972 		end_block   = ((first_byte + bp->b_bcount +
12973 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12974 		    (un->un_phy_blocksize / DEV_BSIZE);
12975 	} else {
12976 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12977 		end_block   = (first_byte + bp->b_bcount +
12978 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12979 	}
12980 
12981 	/* request_bytes is rounded up to a multiple of the target block size */
12982 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12983 
12984 	/*
12985 	 * See if the starting address of the request and the request
12986 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12987 	 * then we do not need to allocate a shadow buf to handle the request.
12988 	 */
12989 	if (un->un_f_enable_rmw) {
12990 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12991 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12992 			is_aligned = TRUE;
12993 		}
12994 	} else {
12995 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12996 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12997 			is_aligned = TRUE;
12998 		}
12999 	}
13000 
13001 	if ((bp->b_flags & B_READ) == 0) {
13002 		/*
13003 		 * Lock the range for a write operation. An aligned request is
13004 		 * considered a simple write; otherwise the request must be a
13005 		 * read-modify-write.
13006 		 */
13007 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
13008 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
13009 	}
13010 
13011 	/*
13012 	 * Alloc a shadow buf if the request is not aligned. Also, this is
13013 	 * where the READ command is generated for a read-modify-write. (The
13014 	 * write phase is deferred until after the read completes.)
13015 	 */
13016 	if (is_aligned == FALSE) {
13017 
13018 		struct sd_mapblocksize_info	*shadow_bsp;
13019 		struct sd_xbuf	*shadow_xp;
13020 		struct buf	*shadow_bp;
13021 
13022 		/*
13023 		 * Allocate the shadow buf and it associated xbuf. Note that
13024 		 * after this call the xb_blkno value in both the original
13025 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
13026 		 * same: absolute relative to the start of the device, and
13027 		 * adjusted for the target block size. The b_blkno in the
13028 		 * shadow buf will also be set to this value. We should never
13029 		 * change b_blkno in the original bp however.
13030 		 *
13031 		 * Note also that the shadow buf will always need to be a
13032 		 * READ command, regardless of whether the incoming command
13033 		 * is a READ or a WRITE.
13034 		 */
13035 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13036 		    xp->xb_blkno,
13037 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13038 
13039 		shadow_xp = SD_GET_XBUF(shadow_bp);
13040 
13041 		/*
13042 		 * Allocate the layer-private data for the shadow buf.
13043 		 * (No need to preserve xb_private in the shadow xbuf.)
13044 		 */
13045 		shadow_xp->xb_private = shadow_bsp =
13046 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13047 
13048 		/*
13049 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13050 		 * to figure out where the start of the user data is (based upon
13051 		 * the system block size) in the data returned by the READ
13052 		 * command (which will be based upon the target blocksize). Note
13053 		 * that this is only really used if the request is unaligned.
13054 		 */
13055 		if (un->un_f_enable_rmw) {
13056 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13057 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13058 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13059 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13060 		} else {
13061 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13062 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13063 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13064 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13065 		}
13066 
13067 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13068 
13069 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13070 
13071 		/* Transfer the wmap (if any) to the shadow buf */
13072 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13073 		bsp->mbs_wmp = NULL;
13074 
13075 		/*
13076 		 * The shadow buf goes on from here in place of the
13077 		 * original buf.
13078 		 */
13079 		shadow_bsp->mbs_orig_bp = bp;
13080 		bp = shadow_bp;
13081 	}
13082 
13083 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13084 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13085 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13086 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13087 	    request_bytes);
13088 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13089 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13090 
13091 done:
13092 	SD_NEXT_IOSTART(index, un, bp);
13093 
13094 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13095 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13096 }
13097 
13098 
13099 /*
13100  *    Function: sd_mapblocksize_iodone
13101  *
13102  * Description: Completion side processing for block-size mapping.
13103  *
13104  *     Context: May be called under interrupt context
13105  */
13106 
13107 static void
13108 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13109 {
13110 	struct sd_mapblocksize_info	*bsp;
13111 	struct sd_xbuf	*xp;
13112 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13113 	struct buf	*orig_bp;	/* ptr to the original buf */
13114 	offset_t	shadow_end;
13115 	offset_t	request_end;
13116 	offset_t	shadow_start;
13117 	ssize_t		copy_offset;
13118 	size_t		copy_length;
13119 	size_t		shortfall;
13120 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13121 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13122 
13123 	ASSERT(un != NULL);
13124 	ASSERT(bp != NULL);
13125 
13126 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13127 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13128 
13129 	/*
13130 	 * There is no shadow buf or layer-private data if the target is
13131 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13132 	 */
13133 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13134 	    (bp->b_bcount == 0)) {
13135 		goto exit;
13136 	}
13137 
13138 	xp = SD_GET_XBUF(bp);
13139 	ASSERT(xp != NULL);
13140 
13141 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13142 	bsp = xp->xb_private;
13143 
13144 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13145 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13146 
13147 	if (is_write) {
13148 		/*
13149 		 * For a WRITE request we must free up the block range that
13150 		 * we have locked up.  This holds regardless of whether this is
13151 		 * an aligned write request or a read-modify-write request.
13152 		 */
13153 		sd_range_unlock(un, bsp->mbs_wmp);
13154 		bsp->mbs_wmp = NULL;
13155 	}
13156 
13157 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13158 		/*
13159 		 * An aligned read or write command will have no shadow buf;
13160 		 * there is not much else to do with it.
13161 		 */
13162 		goto done;
13163 	}
13164 
13165 	orig_bp = bsp->mbs_orig_bp;
13166 	ASSERT(orig_bp != NULL);
13167 	orig_xp = SD_GET_XBUF(orig_bp);
13168 	ASSERT(orig_xp != NULL);
13169 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13170 
13171 	if (!is_write && has_wmap) {
13172 		/*
13173 		 * A READ with a wmap means this is the READ phase of a
13174 		 * read-modify-write. If an error occurred on the READ then
13175 		 * we do not proceed with the WRITE phase or copy any data.
13176 		 * Just release the write maps and return with an error.
13177 		 */
13178 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13179 			orig_bp->b_resid = orig_bp->b_bcount;
13180 			bioerror(orig_bp, bp->b_error);
13181 			sd_range_unlock(un, bsp->mbs_wmp);
13182 			goto freebuf_done;
13183 		}
13184 	}
13185 
13186 	/*
13187 	 * Here is where we set up to copy the data from the shadow buf
13188 	 * into the space associated with the original buf.
13189 	 *
13190 	 * To deal with the conversion between block sizes, these
13191 	 * computations treat the data as an array of bytes, with the
13192 	 * first byte (byte 0) corresponding to the first byte in the
13193 	 * first block on the disk.
13194 	 */
13195 
13196 	/*
13197 	 * shadow_start and shadow_len indicate the location and size of
13198 	 * the data returned with the shadow IO request.
13199 	 */
13200 	if (un->un_f_enable_rmw) {
13201 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13202 	} else {
13203 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13204 	}
13205 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13206 
13207 	/*
13208 	 * copy_offset gives the offset (in bytes) from the start of the first
13209 	 * block of the READ request to the beginning of the data.  We retrieve
13210 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13211 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13212 	 * data to be copied (in bytes).
13213 	 */
13214 	copy_offset  = bsp->mbs_copy_offset;
13215 	if (un->un_f_enable_rmw) {
13216 		ASSERT((copy_offset >= 0) &&
13217 		    (copy_offset < un->un_phy_blocksize));
13218 	} else {
13219 		ASSERT((copy_offset >= 0) &&
13220 		    (copy_offset < un->un_tgt_blocksize));
13221 	}
13222 
13223 	copy_length  = orig_bp->b_bcount;
13224 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13225 
13226 	/*
13227 	 * Set up the resid and error fields of orig_bp as appropriate.
13228 	 */
13229 	if (shadow_end >= request_end) {
13230 		/* We got all the requested data; set resid to zero */
13231 		orig_bp->b_resid = 0;
13232 	} else {
13233 		/*
13234 		 * We failed to get enough data to fully satisfy the original
13235 		 * request. Just copy back whatever data we got and set
13236 		 * up the residual and error code as required.
13237 		 *
13238 		 * 'shortfall' is the amount by which the data received with the
13239 		 * shadow buf has "fallen short" of the requested amount.
13240 		 */
13241 		shortfall = (size_t)(request_end - shadow_end);
13242 
13243 		if (shortfall > orig_bp->b_bcount) {
13244 			/*
13245 			 * We did not get enough data to even partially
13246 			 * fulfill the original request.  The residual is
13247 			 * equal to the amount requested.
13248 			 */
13249 			orig_bp->b_resid = orig_bp->b_bcount;
13250 		} else {
13251 			/*
13252 			 * We did not get all the data that we requested
13253 			 * from the device, but we will try to return what
13254 			 * portion we did get.
13255 			 */
13256 			orig_bp->b_resid = shortfall;
13257 		}
13258 		ASSERT(copy_length >= orig_bp->b_resid);
13259 		copy_length  -= orig_bp->b_resid;
13260 	}
13261 
13262 	/* Propagate the error code from the shadow buf to the original buf */
13263 	bioerror(orig_bp, bp->b_error);
13264 
13265 	if (is_write) {
13266 		goto freebuf_done;	/* No data copying for a WRITE */
13267 	}
13268 
13269 	if (has_wmap) {
13270 		/*
13271 		 * This is a READ command from the READ phase of a
13272 		 * read-modify-write request. We have to copy the data given
13273 		 * by the user OVER the data returned by the READ command,
13274 		 * then convert the command from a READ to a WRITE and send
13275 		 * it back to the target.
13276 		 */
13277 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13278 		    copy_length);
13279 
13280 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13281 
13282 		/*
13283 		 * Dispatch the WRITE command to the taskq thread, which
13284 		 * will in turn send the command to the target. When the
13285 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13286 		 * will get called again as part of the iodone chain
13287 		 * processing for it. Note that we will still be dealing
13288 		 * with the shadow buf at that point.
13289 		 */
13290 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13291 		    KM_NOSLEEP) != 0) {
13292 			/*
13293 			 * Dispatch was successful so we are done. Return
13294 			 * without going any higher up the iodone chain. Do
13295 			 * not free up any layer-private data until after the
13296 			 * WRITE completes.
13297 			 */
13298 			return;
13299 		}
13300 
13301 		/*
13302 		 * Dispatch of the WRITE command failed; set up the error
13303 		 * condition and send this IO back up the iodone chain.
13304 		 */
13305 		bioerror(orig_bp, EIO);
13306 		orig_bp->b_resid = orig_bp->b_bcount;
13307 
13308 	} else {
13309 		/*
13310 		 * This is a regular READ request (ie, not a RMW). Copy the
13311 		 * data from the shadow buf into the original buf. The
13312 		 * copy_offset compensates for any "misalignment" between the
13313 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13314 		 * original buf (with its un->un_sys_blocksize blocks).
13315 		 */
13316 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13317 		    copy_length);
13318 	}
13319 
13320 freebuf_done:
13321 
13322 	/*
13323 	 * At this point we still have both the shadow buf AND the original
13324 	 * buf to deal with, as well as the layer-private data area in each.
13325 	 * Local variables are as follows:
13326 	 *
13327 	 * bp -- points to shadow buf
13328 	 * xp -- points to xbuf of shadow buf
13329 	 * bsp -- points to layer-private data area of shadow buf
13330 	 * orig_bp -- points to original buf
13331 	 *
13332 	 * First free the shadow buf and its associated xbuf, then free the
13333 	 * layer-private data area from the shadow buf. There is no need to
13334 	 * restore xb_private in the shadow xbuf.
13335 	 */
13336 	sd_shadow_buf_free(bp);
13337 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13338 
13339 	/*
13340 	 * Now update the local variables to point to the original buf, xbuf,
13341 	 * and layer-private area.
13342 	 */
13343 	bp = orig_bp;
13344 	xp = SD_GET_XBUF(bp);
13345 	ASSERT(xp != NULL);
13346 	ASSERT(xp == orig_xp);
13347 	bsp = xp->xb_private;
13348 	ASSERT(bsp != NULL);
13349 
13350 done:
13351 	/*
13352 	 * Restore xb_private to whatever it was set to by the next higher
13353 	 * layer in the chain, then free the layer-private data area.
13354 	 */
13355 	xp->xb_private = bsp->mbs_oprivate;
13356 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13357 
13358 exit:
13359 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13360 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13361 
13362 	SD_NEXT_IODONE(index, un, bp);
13363 }
13364 
13365 
13366 /*
13367  *    Function: sd_checksum_iostart
13368  *
13369  * Description: A stub function for a layer that's currently not used.
13370  *		For now just a placeholder.
13371  *
13372  *     Context: Kernel thread context
13373  */
13374 
13375 static void
13376 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13377 {
13378 	ASSERT(un != NULL);
13379 	ASSERT(bp != NULL);
13380 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13381 	SD_NEXT_IOSTART(index, un, bp);
13382 }
13383 
13384 
13385 /*
13386  *    Function: sd_checksum_iodone
13387  *
13388  * Description: A stub function for a layer that's currently not used.
13389  *		For now just a placeholder.
13390  *
13391  *     Context: May be called under interrupt context
13392  */
13393 
13394 static void
13395 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13396 {
13397 	ASSERT(un != NULL);
13398 	ASSERT(bp != NULL);
13399 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13400 	SD_NEXT_IODONE(index, un, bp);
13401 }
13402 
13403 
13404 /*
13405  *    Function: sd_checksum_uscsi_iostart
13406  *
13407  * Description: A stub function for a layer that's currently not used.
13408  *		For now just a placeholder.
13409  *
13410  *     Context: Kernel thread context
13411  */
13412 
13413 static void
13414 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13415 {
13416 	ASSERT(un != NULL);
13417 	ASSERT(bp != NULL);
13418 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13419 	SD_NEXT_IOSTART(index, un, bp);
13420 }
13421 
13422 
13423 /*
13424  *    Function: sd_checksum_uscsi_iodone
13425  *
13426  * Description: A stub function for a layer that's currently not used.
13427  *		For now just a placeholder.
13428  *
13429  *     Context: May be called under interrupt context
13430  */
13431 
13432 static void
13433 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13434 {
13435 	ASSERT(un != NULL);
13436 	ASSERT(bp != NULL);
13437 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13438 	SD_NEXT_IODONE(index, un, bp);
13439 }
13440 
13441 
13442 /*
13443  *    Function: sd_pm_iostart
13444  *
13445  * Description: iostart-side routine for Power mangement.
13446  *
13447  *     Context: Kernel thread context
13448  */
13449 
13450 static void
13451 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13452 {
13453 	ASSERT(un != NULL);
13454 	ASSERT(bp != NULL);
13455 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13456 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13457 
13458 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13459 
13460 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13461 		/*
13462 		 * Set up to return the failed buf back up the 'iodone'
13463 		 * side of the calling chain.
13464 		 */
13465 		bioerror(bp, EIO);
13466 		bp->b_resid = bp->b_bcount;
13467 
13468 		SD_BEGIN_IODONE(index, un, bp);
13469 
13470 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13471 		return;
13472 	}
13473 
13474 	SD_NEXT_IOSTART(index, un, bp);
13475 
13476 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13477 }
13478 
13479 
13480 /*
13481  *    Function: sd_pm_iodone
13482  *
13483  * Description: iodone-side routine for power mangement.
13484  *
13485  *     Context: may be called from interrupt context
13486  */
13487 
13488 static void
13489 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13490 {
13491 	ASSERT(un != NULL);
13492 	ASSERT(bp != NULL);
13493 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13494 
13495 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13496 
13497 	/*
13498 	 * After attach the following flag is only read, so don't
13499 	 * take the penalty of acquiring a mutex for it.
13500 	 */
13501 	if (un->un_f_pm_is_enabled == TRUE) {
13502 		sd_pm_exit(un);
13503 	}
13504 
13505 	SD_NEXT_IODONE(index, un, bp);
13506 
13507 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13508 }
13509 
13510 
13511 /*
13512  *    Function: sd_core_iostart
13513  *
13514  * Description: Primary driver function for enqueuing buf(9S) structs from
13515  *		the system and initiating IO to the target device
13516  *
13517  *     Context: Kernel thread context. Can sleep.
13518  *
13519  * Assumptions:  - The given xp->xb_blkno is absolute
13520  *		   (ie, relative to the start of the device).
13521  *		 - The IO is to be done using the native blocksize of
13522  *		   the device, as specified in un->un_tgt_blocksize.
13523  */
13524 /* ARGSUSED */
13525 static void
13526 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13527 {
13528 	struct sd_xbuf *xp;
13529 
13530 	ASSERT(un != NULL);
13531 	ASSERT(bp != NULL);
13532 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13533 	ASSERT(bp->b_resid == 0);
13534 
13535 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13536 
13537 	xp = SD_GET_XBUF(bp);
13538 	ASSERT(xp != NULL);
13539 
13540 	mutex_enter(SD_MUTEX(un));
13541 
13542 	/*
13543 	 * If we are currently in the failfast state, fail any new IO
13544 	 * that has B_FAILFAST set, then return.
13545 	 */
13546 	if ((bp->b_flags & B_FAILFAST) &&
13547 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13548 		mutex_exit(SD_MUTEX(un));
13549 		bioerror(bp, EIO);
13550 		bp->b_resid = bp->b_bcount;
13551 		SD_BEGIN_IODONE(index, un, bp);
13552 		return;
13553 	}
13554 
13555 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13556 		/*
13557 		 * Priority command -- transport it immediately.
13558 		 *
13559 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13560 		 * because all direct priority commands should be associated
13561 		 * with error recovery actions which we don't want to retry.
13562 		 */
13563 		sd_start_cmds(un, bp);
13564 	} else {
13565 		/*
13566 		 * Normal command -- add it to the wait queue, then start
13567 		 * transporting commands from the wait queue.
13568 		 */
13569 		sd_add_buf_to_waitq(un, bp);
13570 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13571 		sd_start_cmds(un, NULL);
13572 	}
13573 
13574 	mutex_exit(SD_MUTEX(un));
13575 
13576 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13577 }
13578 
13579 
13580 /*
13581  *    Function: sd_init_cdb_limits
13582  *
13583  * Description: This is to handle scsi_pkt initialization differences
13584  *		between the driver platforms.
13585  *
13586  *		Legacy behaviors:
13587  *
13588  *		If the block number or the sector count exceeds the
13589  *		capabilities of a Group 0 command, shift over to a
13590  *		Group 1 command. We don't blindly use Group 1
13591  *		commands because a) some drives (CDC Wren IVs) get a
13592  *		bit confused, and b) there is probably a fair amount
13593  *		of speed difference for a target to receive and decode
13594  *		a 10 byte command instead of a 6 byte command.
13595  *
13596  *		The xfer time difference of 6 vs 10 byte CDBs is
13597  *		still significant so this code is still worthwhile.
13598  *		10 byte CDBs are very inefficient with the fas HBA driver
13599  *		and older disks. Each CDB byte took 1 usec with some
13600  *		popular disks.
13601  *
13602  *     Context: Must be called at attach time
13603  */
13604 
13605 static void
13606 sd_init_cdb_limits(struct sd_lun *un)
13607 {
13608 	int hba_cdb_limit;
13609 
13610 	/*
13611 	 * Use CDB_GROUP1 commands for most devices except for
13612 	 * parallel SCSI fixed drives in which case we get better
13613 	 * performance using CDB_GROUP0 commands (where applicable).
13614 	 */
13615 	un->un_mincdb = SD_CDB_GROUP1;
13616 #if !defined(__fibre)
13617 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13618 	    !un->un_f_has_removable_media) {
13619 		un->un_mincdb = SD_CDB_GROUP0;
13620 	}
13621 #endif
13622 
13623 	/*
13624 	 * Try to read the max-cdb-length supported by HBA.
13625 	 */
13626 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13627 	if (0 >= un->un_max_hba_cdb) {
13628 		un->un_max_hba_cdb = CDB_GROUP4;
13629 		hba_cdb_limit = SD_CDB_GROUP4;
13630 	} else if (0 < un->un_max_hba_cdb &&
13631 	    un->un_max_hba_cdb < CDB_GROUP1) {
13632 		hba_cdb_limit = SD_CDB_GROUP0;
13633 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13634 	    un->un_max_hba_cdb < CDB_GROUP5) {
13635 		hba_cdb_limit = SD_CDB_GROUP1;
13636 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13637 	    un->un_max_hba_cdb < CDB_GROUP4) {
13638 		hba_cdb_limit = SD_CDB_GROUP5;
13639 	} else {
13640 		hba_cdb_limit = SD_CDB_GROUP4;
13641 	}
13642 
13643 	/*
13644 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13645 	 * commands for fixed disks unless we are building for a 32 bit
13646 	 * kernel.
13647 	 */
13648 #ifdef _LP64
13649 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13650 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13651 #else
13652 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13653 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13654 #endif
13655 
13656 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13657 	    ? sizeof (struct scsi_arq_status) : 1);
13658 	if (!ISCD(un))
13659 		un->un_cmd_timeout = (ushort_t)sd_io_time;
13660 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13661 }
13662 
13663 
13664 /*
13665  *    Function: sd_initpkt_for_buf
13666  *
13667  * Description: Allocate and initialize for transport a scsi_pkt struct,
13668  *		based upon the info specified in the given buf struct.
13669  *
13670  *		Assumes the xb_blkno in the request is absolute (ie,
13671  *		relative to the start of the device (NOT partition!).
13672  *		Also assumes that the request is using the native block
13673  *		size of the device (as returned by the READ CAPACITY
13674  *		command).
13675  *
13676  * Return Code: SD_PKT_ALLOC_SUCCESS
13677  *		SD_PKT_ALLOC_FAILURE
13678  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13679  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13680  *
13681  *     Context: Kernel thread and may be called from software interrupt context
13682  *		as part of a sdrunout callback. This function may not block or
13683  *		call routines that block
13684  */
13685 
13686 static int
13687 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13688 {
13689 	struct sd_xbuf	*xp;
13690 	struct scsi_pkt *pktp = NULL;
13691 	struct sd_lun	*un;
13692 	size_t		blockcount;
13693 	daddr_t		startblock;
13694 	int		rval;
13695 	int		cmd_flags;
13696 
13697 	ASSERT(bp != NULL);
13698 	ASSERT(pktpp != NULL);
13699 	xp = SD_GET_XBUF(bp);
13700 	ASSERT(xp != NULL);
13701 	un = SD_GET_UN(bp);
13702 	ASSERT(un != NULL);
13703 	ASSERT(mutex_owned(SD_MUTEX(un)));
13704 	ASSERT(bp->b_resid == 0);
13705 
13706 	SD_TRACE(SD_LOG_IO_CORE, un,
13707 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13708 
13709 	mutex_exit(SD_MUTEX(un));
13710 
13711 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13712 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13713 		/*
13714 		 * Already have a scsi_pkt -- just need DMA resources.
13715 		 * We must recompute the CDB in case the mapping returns
13716 		 * a nonzero pkt_resid.
13717 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13718 		 * that is being retried, the unmap/remap of the DMA resouces
13719 		 * will result in the entire transfer starting over again
13720 		 * from the very first block.
13721 		 */
13722 		ASSERT(xp->xb_pktp != NULL);
13723 		pktp = xp->xb_pktp;
13724 	} else {
13725 		pktp = NULL;
13726 	}
13727 #endif /* __i386 || __amd64 */
13728 
13729 	startblock = xp->xb_blkno;	/* Absolute block num. */
13730 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13731 
13732 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13733 
13734 	/*
13735 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13736 	 * call scsi_init_pkt, and build the CDB.
13737 	 */
13738 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13739 	    cmd_flags, sdrunout, (caddr_t)un,
13740 	    startblock, blockcount);
13741 
13742 	if (rval == 0) {
13743 		/*
13744 		 * Success.
13745 		 *
13746 		 * If partial DMA is being used and required for this transfer.
13747 		 * set it up here.
13748 		 */
13749 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13750 		    (pktp->pkt_resid != 0)) {
13751 
13752 			/*
13753 			 * Save the CDB length and pkt_resid for the
13754 			 * next xfer
13755 			 */
13756 			xp->xb_dma_resid = pktp->pkt_resid;
13757 
13758 			/* rezero resid */
13759 			pktp->pkt_resid = 0;
13760 
13761 		} else {
13762 			xp->xb_dma_resid = 0;
13763 		}
13764 
13765 		pktp->pkt_flags = un->un_tagflags;
13766 		pktp->pkt_time  = un->un_cmd_timeout;
13767 		pktp->pkt_comp  = sdintr;
13768 
13769 		pktp->pkt_private = bp;
13770 		*pktpp = pktp;
13771 
13772 		SD_TRACE(SD_LOG_IO_CORE, un,
13773 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13774 
13775 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13776 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13777 #endif
13778 
13779 		mutex_enter(SD_MUTEX(un));
13780 		return (SD_PKT_ALLOC_SUCCESS);
13781 
13782 	}
13783 
13784 	/*
13785 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13786 	 * from sd_setup_rw_pkt.
13787 	 */
13788 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13789 
13790 	if (rval == SD_PKT_ALLOC_FAILURE) {
13791 		*pktpp = NULL;
13792 		/*
13793 		 * Set the driver state to RWAIT to indicate the driver
13794 		 * is waiting on resource allocations. The driver will not
13795 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13796 		 */
13797 		mutex_enter(SD_MUTEX(un));
13798 		New_state(un, SD_STATE_RWAIT);
13799 
13800 		SD_ERROR(SD_LOG_IO_CORE, un,
13801 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13802 
13803 		if ((bp->b_flags & B_ERROR) != 0) {
13804 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13805 		}
13806 		return (SD_PKT_ALLOC_FAILURE);
13807 	} else {
13808 		/*
13809 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13810 		 *
13811 		 * This should never happen.  Maybe someone messed with the
13812 		 * kernel's minphys?
13813 		 */
13814 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13815 		    "Request rejected: too large for CDB: "
13816 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13817 		SD_ERROR(SD_LOG_IO_CORE, un,
13818 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13819 		mutex_enter(SD_MUTEX(un));
13820 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13821 
13822 	}
13823 }
13824 
13825 
13826 /*
13827  *    Function: sd_destroypkt_for_buf
13828  *
13829  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13830  *
13831  *     Context: Kernel thread or interrupt context
13832  */
13833 
13834 static void
13835 sd_destroypkt_for_buf(struct buf *bp)
13836 {
13837 	ASSERT(bp != NULL);
13838 	ASSERT(SD_GET_UN(bp) != NULL);
13839 
13840 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13841 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13842 
13843 	ASSERT(SD_GET_PKTP(bp) != NULL);
13844 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13845 
13846 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13847 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13848 }
13849 
13850 /*
13851  *    Function: sd_setup_rw_pkt
13852  *
13853  * Description: Determines appropriate CDB group for the requested LBA
13854  *		and transfer length, calls scsi_init_pkt, and builds
13855  *		the CDB.  Do not use for partial DMA transfers except
13856  *		for the initial transfer since the CDB size must
13857  *		remain constant.
13858  *
13859  *     Context: Kernel thread and may be called from software interrupt
13860  *		context as part of a sdrunout callback. This function may not
13861  *		block or call routines that block
13862  */
13863 
13864 
13865 int
13866 sd_setup_rw_pkt(struct sd_lun *un,
13867     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13868     int (*callback)(caddr_t), caddr_t callback_arg,
13869     diskaddr_t lba, uint32_t blockcount)
13870 {
13871 	struct scsi_pkt *return_pktp;
13872 	union scsi_cdb *cdbp;
13873 	struct sd_cdbinfo *cp = NULL;
13874 	int i;
13875 
13876 	/*
13877 	 * See which size CDB to use, based upon the request.
13878 	 */
13879 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13880 
13881 		/*
13882 		 * Check lba and block count against sd_cdbtab limits.
13883 		 * In the partial DMA case, we have to use the same size
13884 		 * CDB for all the transfers.  Check lba + blockcount
13885 		 * against the max LBA so we know that segment of the
13886 		 * transfer can use the CDB we select.
13887 		 */
13888 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13889 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13890 
13891 			/*
13892 			 * The command will fit into the CDB type
13893 			 * specified by sd_cdbtab[i].
13894 			 */
13895 			cp = sd_cdbtab + i;
13896 
13897 			/*
13898 			 * Call scsi_init_pkt so we can fill in the
13899 			 * CDB.
13900 			 */
13901 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13902 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13903 			    flags, callback, callback_arg);
13904 
13905 			if (return_pktp != NULL) {
13906 
13907 				/*
13908 				 * Return new value of pkt
13909 				 */
13910 				*pktpp = return_pktp;
13911 
13912 				/*
13913 				 * To be safe, zero the CDB insuring there is
13914 				 * no leftover data from a previous command.
13915 				 */
13916 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13917 
13918 				/*
13919 				 * Handle partial DMA mapping
13920 				 */
13921 				if (return_pktp->pkt_resid != 0) {
13922 
13923 					/*
13924 					 * Not going to xfer as many blocks as
13925 					 * originally expected
13926 					 */
13927 					blockcount -=
13928 					    SD_BYTES2TGTBLOCKS(un,
13929 					    return_pktp->pkt_resid);
13930 				}
13931 
13932 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13933 
13934 				/*
13935 				 * Set command byte based on the CDB
13936 				 * type we matched.
13937 				 */
13938 				cdbp->scc_cmd = cp->sc_grpmask |
13939 				    ((bp->b_flags & B_READ) ?
13940 				    SCMD_READ : SCMD_WRITE);
13941 
13942 				SD_FILL_SCSI1_LUN(un, return_pktp);
13943 
13944 				/*
13945 				 * Fill in LBA and length
13946 				 */
13947 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13948 				    (cp->sc_grpcode == CDB_GROUP4) ||
13949 				    (cp->sc_grpcode == CDB_GROUP0) ||
13950 				    (cp->sc_grpcode == CDB_GROUP5));
13951 
13952 				if (cp->sc_grpcode == CDB_GROUP1) {
13953 					FORMG1ADDR(cdbp, lba);
13954 					FORMG1COUNT(cdbp, blockcount);
13955 					return (0);
13956 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13957 					FORMG4LONGADDR(cdbp, lba);
13958 					FORMG4COUNT(cdbp, blockcount);
13959 					return (0);
13960 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13961 					FORMG0ADDR(cdbp, lba);
13962 					FORMG0COUNT(cdbp, blockcount);
13963 					return (0);
13964 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13965 					FORMG5ADDR(cdbp, lba);
13966 					FORMG5COUNT(cdbp, blockcount);
13967 					return (0);
13968 				}
13969 
13970 				/*
13971 				 * It should be impossible to not match one
13972 				 * of the CDB types above, so we should never
13973 				 * reach this point.  Set the CDB command byte
13974 				 * to test-unit-ready to avoid writing
13975 				 * to somewhere we don't intend.
13976 				 */
13977 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13978 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13979 			} else {
13980 				/*
13981 				 * Couldn't get scsi_pkt
13982 				 */
13983 				return (SD_PKT_ALLOC_FAILURE);
13984 			}
13985 		}
13986 	}
13987 
13988 	/*
13989 	 * None of the available CDB types were suitable.  This really
13990 	 * should never happen:  on a 64 bit system we support
13991 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13992 	 * and on a 32 bit system we will refuse to bind to a device
13993 	 * larger than 2TB so addresses will never be larger than 32 bits.
13994 	 */
13995 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13996 }
13997 
13998 /*
13999  *    Function: sd_setup_next_rw_pkt
14000  *
14001  * Description: Setup packet for partial DMA transfers, except for the
14002  * 		initial transfer.  sd_setup_rw_pkt should be used for
14003  *		the initial transfer.
14004  *
14005  *     Context: Kernel thread and may be called from interrupt context.
14006  */
14007 
14008 int
14009 sd_setup_next_rw_pkt(struct sd_lun *un,
14010     struct scsi_pkt *pktp, struct buf *bp,
14011     diskaddr_t lba, uint32_t blockcount)
14012 {
14013 	uchar_t com;
14014 	union scsi_cdb *cdbp;
14015 	uchar_t cdb_group_id;
14016 
14017 	ASSERT(pktp != NULL);
14018 	ASSERT(pktp->pkt_cdbp != NULL);
14019 
14020 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
14021 	com = cdbp->scc_cmd;
14022 	cdb_group_id = CDB_GROUPID(com);
14023 
14024 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
14025 	    (cdb_group_id == CDB_GROUPID_1) ||
14026 	    (cdb_group_id == CDB_GROUPID_4) ||
14027 	    (cdb_group_id == CDB_GROUPID_5));
14028 
14029 	/*
14030 	 * Move pkt to the next portion of the xfer.
14031 	 * func is NULL_FUNC so we do not have to release
14032 	 * the disk mutex here.
14033 	 */
14034 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14035 	    NULL_FUNC, NULL) == pktp) {
14036 		/* Success.  Handle partial DMA */
14037 		if (pktp->pkt_resid != 0) {
14038 			blockcount -=
14039 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14040 		}
14041 
14042 		cdbp->scc_cmd = com;
14043 		SD_FILL_SCSI1_LUN(un, pktp);
14044 		if (cdb_group_id == CDB_GROUPID_1) {
14045 			FORMG1ADDR(cdbp, lba);
14046 			FORMG1COUNT(cdbp, blockcount);
14047 			return (0);
14048 		} else if (cdb_group_id == CDB_GROUPID_4) {
14049 			FORMG4LONGADDR(cdbp, lba);
14050 			FORMG4COUNT(cdbp, blockcount);
14051 			return (0);
14052 		} else if (cdb_group_id == CDB_GROUPID_0) {
14053 			FORMG0ADDR(cdbp, lba);
14054 			FORMG0COUNT(cdbp, blockcount);
14055 			return (0);
14056 		} else if (cdb_group_id == CDB_GROUPID_5) {
14057 			FORMG5ADDR(cdbp, lba);
14058 			FORMG5COUNT(cdbp, blockcount);
14059 			return (0);
14060 		}
14061 
14062 		/* Unreachable */
14063 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14064 	}
14065 
14066 	/*
14067 	 * Error setting up next portion of cmd transfer.
14068 	 * Something is definitely very wrong and this
14069 	 * should not happen.
14070 	 */
14071 	return (SD_PKT_ALLOC_FAILURE);
14072 }
14073 
14074 /*
14075  *    Function: sd_initpkt_for_uscsi
14076  *
14077  * Description: Allocate and initialize for transport a scsi_pkt struct,
14078  *		based upon the info specified in the given uscsi_cmd struct.
14079  *
14080  * Return Code: SD_PKT_ALLOC_SUCCESS
14081  *		SD_PKT_ALLOC_FAILURE
14082  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14083  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14084  *
14085  *     Context: Kernel thread and may be called from software interrupt context
14086  *		as part of a sdrunout callback. This function may not block or
14087  *		call routines that block
14088  */
14089 
14090 static int
14091 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14092 {
14093 	struct uscsi_cmd *uscmd;
14094 	struct sd_xbuf	*xp;
14095 	struct scsi_pkt	*pktp;
14096 	struct sd_lun	*un;
14097 	uint32_t	flags = 0;
14098 
14099 	ASSERT(bp != NULL);
14100 	ASSERT(pktpp != NULL);
14101 	xp = SD_GET_XBUF(bp);
14102 	ASSERT(xp != NULL);
14103 	un = SD_GET_UN(bp);
14104 	ASSERT(un != NULL);
14105 	ASSERT(mutex_owned(SD_MUTEX(un)));
14106 
14107 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14108 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14109 	ASSERT(uscmd != NULL);
14110 
14111 	SD_TRACE(SD_LOG_IO_CORE, un,
14112 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14113 
14114 	/*
14115 	 * Allocate the scsi_pkt for the command.
14116 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14117 	 *	 during scsi_init_pkt time and will continue to use the
14118 	 *	 same path as long as the same scsi_pkt is used without
14119 	 *	 intervening scsi_dma_free(). Since uscsi command does
14120 	 *	 not call scsi_dmafree() before retry failed command, it
14121 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14122 	 *	 set such that scsi_vhci can use other available path for
14123 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14124 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14125 	 */
14126 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14127 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14128 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14129 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14130 		    - sizeof (struct scsi_extended_sense)), 0,
14131 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14132 		    sdrunout, (caddr_t)un);
14133 	} else {
14134 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14135 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14136 		    sizeof (struct scsi_arq_status), 0,
14137 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14138 		    sdrunout, (caddr_t)un);
14139 	}
14140 
14141 	if (pktp == NULL) {
14142 		*pktpp = NULL;
14143 		/*
14144 		 * Set the driver state to RWAIT to indicate the driver
14145 		 * is waiting on resource allocations. The driver will not
14146 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14147 		 */
14148 		New_state(un, SD_STATE_RWAIT);
14149 
14150 		SD_ERROR(SD_LOG_IO_CORE, un,
14151 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14152 
14153 		if ((bp->b_flags & B_ERROR) != 0) {
14154 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14155 		}
14156 		return (SD_PKT_ALLOC_FAILURE);
14157 	}
14158 
14159 	/*
14160 	 * We do not do DMA breakup for USCSI commands, so return failure
14161 	 * here if all the needed DMA resources were not allocated.
14162 	 */
14163 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14164 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14165 		scsi_destroy_pkt(pktp);
14166 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14167 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14168 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14169 	}
14170 
14171 	/* Init the cdb from the given uscsi struct */
14172 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14173 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14174 
14175 	SD_FILL_SCSI1_LUN(un, pktp);
14176 
14177 	/*
14178 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14179 	 * for listing of the supported flags.
14180 	 */
14181 
14182 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14183 		flags |= FLAG_SILENT;
14184 	}
14185 
14186 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14187 		flags |= FLAG_DIAGNOSE;
14188 	}
14189 
14190 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14191 		flags |= FLAG_ISOLATE;
14192 	}
14193 
14194 	if (un->un_f_is_fibre == FALSE) {
14195 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14196 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14197 		}
14198 	}
14199 
14200 	/*
14201 	 * Set the pkt flags here so we save time later.
14202 	 * Note: These flags are NOT in the uscsi man page!!!
14203 	 */
14204 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14205 		flags |= FLAG_HEAD;
14206 	}
14207 
14208 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14209 		flags |= FLAG_NOINTR;
14210 	}
14211 
14212 	/*
14213 	 * For tagged queueing, things get a bit complicated.
14214 	 * Check first for head of queue and last for ordered queue.
14215 	 * If neither head nor order, use the default driver tag flags.
14216 	 */
14217 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14218 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14219 			flags |= FLAG_HTAG;
14220 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14221 			flags |= FLAG_OTAG;
14222 		} else {
14223 			flags |= un->un_tagflags & FLAG_TAGMASK;
14224 		}
14225 	}
14226 
14227 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14228 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14229 	}
14230 
14231 	pktp->pkt_flags = flags;
14232 
14233 	/* Transfer uscsi information to scsi_pkt */
14234 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14235 
14236 	/* Copy the caller's CDB into the pkt... */
14237 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14238 
14239 	if (uscmd->uscsi_timeout == 0) {
14240 		pktp->pkt_time = un->un_uscsi_timeout;
14241 	} else {
14242 		pktp->pkt_time = uscmd->uscsi_timeout;
14243 	}
14244 
14245 	/* need it later to identify USCSI request in sdintr */
14246 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14247 
14248 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14249 
14250 	pktp->pkt_private = bp;
14251 	pktp->pkt_comp = sdintr;
14252 	*pktpp = pktp;
14253 
14254 	SD_TRACE(SD_LOG_IO_CORE, un,
14255 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14256 
14257 	return (SD_PKT_ALLOC_SUCCESS);
14258 }
14259 
14260 
14261 /*
14262  *    Function: sd_destroypkt_for_uscsi
14263  *
14264  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14265  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14266  *		struct.
14267  *
14268  *     Context: May be called under interrupt context
14269  */
14270 
14271 static void
14272 sd_destroypkt_for_uscsi(struct buf *bp)
14273 {
14274 	struct uscsi_cmd *uscmd;
14275 	struct sd_xbuf	*xp;
14276 	struct scsi_pkt	*pktp;
14277 	struct sd_lun	*un;
14278 	struct sd_uscsi_info *suip;
14279 
14280 	ASSERT(bp != NULL);
14281 	xp = SD_GET_XBUF(bp);
14282 	ASSERT(xp != NULL);
14283 	un = SD_GET_UN(bp);
14284 	ASSERT(un != NULL);
14285 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14286 	pktp = SD_GET_PKTP(bp);
14287 	ASSERT(pktp != NULL);
14288 
14289 	SD_TRACE(SD_LOG_IO_CORE, un,
14290 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14291 
14292 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14293 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14294 	ASSERT(uscmd != NULL);
14295 
14296 	/* Save the status and the residual into the uscsi_cmd struct */
14297 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14298 	uscmd->uscsi_resid  = bp->b_resid;
14299 
14300 	/* Transfer scsi_pkt information to uscsi */
14301 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14302 
14303 	/*
14304 	 * If enabled, copy any saved sense data into the area specified
14305 	 * by the uscsi command.
14306 	 */
14307 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14308 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14309 		/*
14310 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14311 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14312 		 */
14313 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14314 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14315 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14316 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14317 			    MAX_SENSE_LENGTH);
14318 		} else {
14319 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14320 			    SENSE_LENGTH);
14321 		}
14322 	}
14323 	/*
14324 	 * The following assignments are for SCSI FMA.
14325 	 */
14326 	ASSERT(xp->xb_private != NULL);
14327 	suip = (struct sd_uscsi_info *)xp->xb_private;
14328 	suip->ui_pkt_reason = pktp->pkt_reason;
14329 	suip->ui_pkt_state = pktp->pkt_state;
14330 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14331 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14332 
14333 	/* We are done with the scsi_pkt; free it now */
14334 	ASSERT(SD_GET_PKTP(bp) != NULL);
14335 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14336 
14337 	SD_TRACE(SD_LOG_IO_CORE, un,
14338 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14339 }
14340 
14341 
14342 /*
14343  *    Function: sd_bioclone_alloc
14344  *
14345  * Description: Allocate a buf(9S) and init it as per the given buf
14346  *		and the various arguments.  The associated sd_xbuf
14347  *		struct is (nearly) duplicated.  The struct buf *bp
14348  *		argument is saved in new_xp->xb_private.
14349  *
14350  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14351  *		datalen - size of data area for the shadow bp
14352  *		blkno - starting LBA
14353  *		func - function pointer for b_iodone in the shadow buf. (May
14354  *			be NULL if none.)
14355  *
14356  * Return Code: Pointer to allocates buf(9S) struct
14357  *
14358  *     Context: Can sleep.
14359  */
14360 
14361 static struct buf *
14362 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14363 	daddr_t blkno, int (*func)(struct buf *))
14364 {
14365 	struct	sd_lun	*un;
14366 	struct	sd_xbuf	*xp;
14367 	struct	sd_xbuf	*new_xp;
14368 	struct	buf	*new_bp;
14369 
14370 	ASSERT(bp != NULL);
14371 	xp = SD_GET_XBUF(bp);
14372 	ASSERT(xp != NULL);
14373 	un = SD_GET_UN(bp);
14374 	ASSERT(un != NULL);
14375 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14376 
14377 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14378 	    NULL, KM_SLEEP);
14379 
14380 	new_bp->b_lblkno	= blkno;
14381 
14382 	/*
14383 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14384 	 * original xbuf into it.
14385 	 */
14386 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14387 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14388 
14389 	/*
14390 	 * The given bp is automatically saved in the xb_private member
14391 	 * of the new xbuf.  Callers are allowed to depend on this.
14392 	 */
14393 	new_xp->xb_private = bp;
14394 
14395 	new_bp->b_private  = new_xp;
14396 
14397 	return (new_bp);
14398 }
14399 
14400 /*
14401  *    Function: sd_shadow_buf_alloc
14402  *
14403  * Description: Allocate a buf(9S) and init it as per the given buf
14404  *		and the various arguments.  The associated sd_xbuf
14405  *		struct is (nearly) duplicated.  The struct buf *bp
14406  *		argument is saved in new_xp->xb_private.
14407  *
14408  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14409  *		datalen - size of data area for the shadow bp
14410  *		bflags - B_READ or B_WRITE (pseudo flag)
14411  *		blkno - starting LBA
14412  *		func - function pointer for b_iodone in the shadow buf. (May
14413  *			be NULL if none.)
14414  *
14415  * Return Code: Pointer to allocates buf(9S) struct
14416  *
14417  *     Context: Can sleep.
14418  */
14419 
14420 static struct buf *
14421 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14422 	daddr_t blkno, int (*func)(struct buf *))
14423 {
14424 	struct	sd_lun	*un;
14425 	struct	sd_xbuf	*xp;
14426 	struct	sd_xbuf	*new_xp;
14427 	struct	buf	*new_bp;
14428 
14429 	ASSERT(bp != NULL);
14430 	xp = SD_GET_XBUF(bp);
14431 	ASSERT(xp != NULL);
14432 	un = SD_GET_UN(bp);
14433 	ASSERT(un != NULL);
14434 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14435 
14436 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14437 		bp_mapin(bp);
14438 	}
14439 
14440 	bflags &= (B_READ | B_WRITE);
14441 #if defined(__i386) || defined(__amd64)
14442 	new_bp = getrbuf(KM_SLEEP);
14443 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14444 	new_bp->b_bcount = datalen;
14445 	new_bp->b_flags = bflags |
14446 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14447 #else
14448 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14449 	    datalen, bflags, SLEEP_FUNC, NULL);
14450 #endif
14451 	new_bp->av_forw	= NULL;
14452 	new_bp->av_back	= NULL;
14453 	new_bp->b_dev	= bp->b_dev;
14454 	new_bp->b_blkno	= blkno;
14455 	new_bp->b_iodone = func;
14456 	new_bp->b_edev	= bp->b_edev;
14457 	new_bp->b_resid	= 0;
14458 
14459 	/* We need to preserve the B_FAILFAST flag */
14460 	if (bp->b_flags & B_FAILFAST) {
14461 		new_bp->b_flags |= B_FAILFAST;
14462 	}
14463 
14464 	/*
14465 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14466 	 * original xbuf into it.
14467 	 */
14468 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14469 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14470 
14471 	/* Need later to copy data between the shadow buf & original buf! */
14472 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14473 
14474 	/*
14475 	 * The given bp is automatically saved in the xb_private member
14476 	 * of the new xbuf.  Callers are allowed to depend on this.
14477 	 */
14478 	new_xp->xb_private = bp;
14479 
14480 	new_bp->b_private  = new_xp;
14481 
14482 	return (new_bp);
14483 }
14484 
14485 /*
14486  *    Function: sd_bioclone_free
14487  *
14488  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14489  *		in the larger than partition operation.
14490  *
14491  *     Context: May be called under interrupt context
14492  */
14493 
14494 static void
14495 sd_bioclone_free(struct buf *bp)
14496 {
14497 	struct sd_xbuf	*xp;
14498 
14499 	ASSERT(bp != NULL);
14500 	xp = SD_GET_XBUF(bp);
14501 	ASSERT(xp != NULL);
14502 
14503 	/*
14504 	 * Call bp_mapout() before freeing the buf,  in case a lower
14505 	 * layer or HBA  had done a bp_mapin().  we must do this here
14506 	 * as we are the "originator" of the shadow buf.
14507 	 */
14508 	bp_mapout(bp);
14509 
14510 	/*
14511 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14512 	 * never gets confused by a stale value in this field. (Just a little
14513 	 * extra defensiveness here.)
14514 	 */
14515 	bp->b_iodone = NULL;
14516 
14517 	freerbuf(bp);
14518 
14519 	kmem_free(xp, sizeof (struct sd_xbuf));
14520 }
14521 
14522 /*
14523  *    Function: sd_shadow_buf_free
14524  *
14525  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14526  *
14527  *     Context: May be called under interrupt context
14528  */
14529 
14530 static void
14531 sd_shadow_buf_free(struct buf *bp)
14532 {
14533 	struct sd_xbuf	*xp;
14534 
14535 	ASSERT(bp != NULL);
14536 	xp = SD_GET_XBUF(bp);
14537 	ASSERT(xp != NULL);
14538 
14539 #if defined(__sparc)
14540 	/*
14541 	 * Call bp_mapout() before freeing the buf,  in case a lower
14542 	 * layer or HBA  had done a bp_mapin().  we must do this here
14543 	 * as we are the "originator" of the shadow buf.
14544 	 */
14545 	bp_mapout(bp);
14546 #endif
14547 
14548 	/*
14549 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14550 	 * never gets confused by a stale value in this field. (Just a little
14551 	 * extra defensiveness here.)
14552 	 */
14553 	bp->b_iodone = NULL;
14554 
14555 #if defined(__i386) || defined(__amd64)
14556 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14557 	freerbuf(bp);
14558 #else
14559 	scsi_free_consistent_buf(bp);
14560 #endif
14561 
14562 	kmem_free(xp, sizeof (struct sd_xbuf));
14563 }
14564 
14565 
14566 /*
14567  *    Function: sd_print_transport_rejected_message
14568  *
14569  * Description: This implements the ludicrously complex rules for printing
14570  *		a "transport rejected" message.  This is to address the
14571  *		specific problem of having a flood of this error message
14572  *		produced when a failover occurs.
14573  *
14574  *     Context: Any.
14575  */
14576 
14577 static void
14578 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14579 	int code)
14580 {
14581 	ASSERT(un != NULL);
14582 	ASSERT(mutex_owned(SD_MUTEX(un)));
14583 	ASSERT(xp != NULL);
14584 
14585 	/*
14586 	 * Print the "transport rejected" message under the following
14587 	 * conditions:
14588 	 *
14589 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14590 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14591 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14592 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14593 	 *   scsi_transport(9F) (which indicates that the target might have
14594 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14595 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14596 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14597 	 *   from scsi_transport().
14598 	 *
14599 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14600 	 * the preceeding cases in order for the message to be printed.
14601 	 */
14602 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14603 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14604 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14605 		    (code != TRAN_FATAL_ERROR) ||
14606 		    (un->un_tran_fatal_count == 1)) {
14607 			switch (code) {
14608 			case TRAN_BADPKT:
14609 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14610 				    "transport rejected bad packet\n");
14611 				break;
14612 			case TRAN_FATAL_ERROR:
14613 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14614 				    "transport rejected fatal error\n");
14615 				break;
14616 			default:
14617 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14618 				    "transport rejected (%d)\n", code);
14619 				break;
14620 			}
14621 		}
14622 	}
14623 }
14624 
14625 
14626 /*
14627  *    Function: sd_add_buf_to_waitq
14628  *
14629  * Description: Add the given buf(9S) struct to the wait queue for the
14630  *		instance.  If sorting is enabled, then the buf is added
14631  *		to the queue via an elevator sort algorithm (a la
14632  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14633  *		If sorting is not enabled, then the buf is just added
14634  *		to the end of the wait queue.
14635  *
14636  * Return Code: void
14637  *
14638  *     Context: Does not sleep/block, therefore technically can be called
14639  *		from any context.  However if sorting is enabled then the
14640  *		execution time is indeterminate, and may take long if
14641  *		the wait queue grows large.
14642  */
14643 
14644 static void
14645 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14646 {
14647 	struct buf *ap;
14648 
14649 	ASSERT(bp != NULL);
14650 	ASSERT(un != NULL);
14651 	ASSERT(mutex_owned(SD_MUTEX(un)));
14652 
14653 	/* If the queue is empty, add the buf as the only entry & return. */
14654 	if (un->un_waitq_headp == NULL) {
14655 		ASSERT(un->un_waitq_tailp == NULL);
14656 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14657 		bp->av_forw = NULL;
14658 		return;
14659 	}
14660 
14661 	ASSERT(un->un_waitq_tailp != NULL);
14662 
14663 	/*
14664 	 * If sorting is disabled, just add the buf to the tail end of
14665 	 * the wait queue and return.
14666 	 */
14667 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14668 		un->un_waitq_tailp->av_forw = bp;
14669 		un->un_waitq_tailp = bp;
14670 		bp->av_forw = NULL;
14671 		return;
14672 	}
14673 
14674 	/*
14675 	 * Sort thru the list of requests currently on the wait queue
14676 	 * and add the new buf request at the appropriate position.
14677 	 *
14678 	 * The un->un_waitq_headp is an activity chain pointer on which
14679 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14680 	 * first queue holds those requests which are positioned after
14681 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14682 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14683 	 * Thus we implement a one way scan, retracting after reaching
14684 	 * the end of the drive to the first request on the second
14685 	 * queue, at which time it becomes the first queue.
14686 	 * A one-way scan is natural because of the way UNIX read-ahead
14687 	 * blocks are allocated.
14688 	 *
14689 	 * If we lie after the first request, then we must locate the
14690 	 * second request list and add ourselves to it.
14691 	 */
14692 	ap = un->un_waitq_headp;
14693 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14694 		while (ap->av_forw != NULL) {
14695 			/*
14696 			 * Look for an "inversion" in the (normally
14697 			 * ascending) block numbers. This indicates
14698 			 * the start of the second request list.
14699 			 */
14700 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14701 				/*
14702 				 * Search the second request list for the
14703 				 * first request at a larger block number.
14704 				 * We go before that; however if there is
14705 				 * no such request, we go at the end.
14706 				 */
14707 				do {
14708 					if (SD_GET_BLKNO(bp) <
14709 					    SD_GET_BLKNO(ap->av_forw)) {
14710 						goto insert;
14711 					}
14712 					ap = ap->av_forw;
14713 				} while (ap->av_forw != NULL);
14714 				goto insert;		/* after last */
14715 			}
14716 			ap = ap->av_forw;
14717 		}
14718 
14719 		/*
14720 		 * No inversions... we will go after the last, and
14721 		 * be the first request in the second request list.
14722 		 */
14723 		goto insert;
14724 	}
14725 
14726 	/*
14727 	 * Request is at/after the current request...
14728 	 * sort in the first request list.
14729 	 */
14730 	while (ap->av_forw != NULL) {
14731 		/*
14732 		 * We want to go after the current request (1) if
14733 		 * there is an inversion after it (i.e. it is the end
14734 		 * of the first request list), or (2) if the next
14735 		 * request is a larger block no. than our request.
14736 		 */
14737 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14738 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14739 			goto insert;
14740 		}
14741 		ap = ap->av_forw;
14742 	}
14743 
14744 	/*
14745 	 * Neither a second list nor a larger request, therefore
14746 	 * we go at the end of the first list (which is the same
14747 	 * as the end of the whole schebang).
14748 	 */
14749 insert:
14750 	bp->av_forw = ap->av_forw;
14751 	ap->av_forw = bp;
14752 
14753 	/*
14754 	 * If we inserted onto the tail end of the waitq, make sure the
14755 	 * tail pointer is updated.
14756 	 */
14757 	if (ap == un->un_waitq_tailp) {
14758 		un->un_waitq_tailp = bp;
14759 	}
14760 }
14761 
14762 
14763 /*
14764  *    Function: sd_start_cmds
14765  *
14766  * Description: Remove and transport cmds from the driver queues.
14767  *
14768  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14769  *
14770  *		immed_bp - ptr to a buf to be transported immediately. Only
14771  *		the immed_bp is transported; bufs on the waitq are not
14772  *		processed and the un_retry_bp is not checked.  If immed_bp is
14773  *		NULL, then normal queue processing is performed.
14774  *
14775  *     Context: May be called from kernel thread context, interrupt context,
14776  *		or runout callback context. This function may not block or
14777  *		call routines that block.
14778  */
14779 
14780 static void
14781 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14782 {
14783 	struct	sd_xbuf	*xp;
14784 	struct	buf	*bp;
14785 	void	(*statp)(kstat_io_t *);
14786 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14787 	void	(*saved_statp)(kstat_io_t *);
14788 #endif
14789 	int	rval;
14790 	struct sd_fm_internal *sfip = NULL;
14791 
14792 	ASSERT(un != NULL);
14793 	ASSERT(mutex_owned(SD_MUTEX(un)));
14794 	ASSERT(un->un_ncmds_in_transport >= 0);
14795 	ASSERT(un->un_throttle >= 0);
14796 
14797 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14798 
14799 	do {
14800 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14801 		saved_statp = NULL;
14802 #endif
14803 
14804 		/*
14805 		 * If we are syncing or dumping, fail the command to
14806 		 * avoid recursively calling back into scsi_transport().
14807 		 * The dump I/O itself uses a separate code path so this
14808 		 * only prevents non-dump I/O from being sent while dumping.
14809 		 * File system sync takes place before dumping begins.
14810 		 * During panic, filesystem I/O is allowed provided
14811 		 * un_in_callback is <= 1.  This is to prevent recursion
14812 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14813 		 * sd_start_cmds and so on.  See panic.c for more information
14814 		 * about the states the system can be in during panic.
14815 		 */
14816 		if ((un->un_state == SD_STATE_DUMPING) ||
14817 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14818 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14819 			    "sd_start_cmds: panicking\n");
14820 			goto exit;
14821 		}
14822 
14823 		if ((bp = immed_bp) != NULL) {
14824 			/*
14825 			 * We have a bp that must be transported immediately.
14826 			 * It's OK to transport the immed_bp here without doing
14827 			 * the throttle limit check because the immed_bp is
14828 			 * always used in a retry/recovery case. This means
14829 			 * that we know we are not at the throttle limit by
14830 			 * virtue of the fact that to get here we must have
14831 			 * already gotten a command back via sdintr(). This also
14832 			 * relies on (1) the command on un_retry_bp preventing
14833 			 * further commands from the waitq from being issued;
14834 			 * and (2) the code in sd_retry_command checking the
14835 			 * throttle limit before issuing a delayed or immediate
14836 			 * retry. This holds even if the throttle limit is
14837 			 * currently ratcheted down from its maximum value.
14838 			 */
14839 			statp = kstat_runq_enter;
14840 			if (bp == un->un_retry_bp) {
14841 				ASSERT((un->un_retry_statp == NULL) ||
14842 				    (un->un_retry_statp == kstat_waitq_enter) ||
14843 				    (un->un_retry_statp ==
14844 				    kstat_runq_back_to_waitq));
14845 				/*
14846 				 * If the waitq kstat was incremented when
14847 				 * sd_set_retry_bp() queued this bp for a retry,
14848 				 * then we must set up statp so that the waitq
14849 				 * count will get decremented correctly below.
14850 				 * Also we must clear un->un_retry_statp to
14851 				 * ensure that we do not act on a stale value
14852 				 * in this field.
14853 				 */
14854 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14855 				    (un->un_retry_statp ==
14856 				    kstat_runq_back_to_waitq)) {
14857 					statp = kstat_waitq_to_runq;
14858 				}
14859 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14860 				saved_statp = un->un_retry_statp;
14861 #endif
14862 				un->un_retry_statp = NULL;
14863 
14864 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14865 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14866 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14867 				    un, un->un_retry_bp, un->un_throttle,
14868 				    un->un_ncmds_in_transport);
14869 			} else {
14870 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14871 				    "processing priority bp:0x%p\n", bp);
14872 			}
14873 
14874 		} else if ((bp = un->un_waitq_headp) != NULL) {
14875 			/*
14876 			 * A command on the waitq is ready to go, but do not
14877 			 * send it if:
14878 			 *
14879 			 * (1) the throttle limit has been reached, or
14880 			 * (2) a retry is pending, or
14881 			 * (3) a START_STOP_UNIT callback pending, or
14882 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14883 			 *	command is pending.
14884 			 *
14885 			 * For all of these conditions, IO processing will
14886 			 * restart after the condition is cleared.
14887 			 */
14888 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14889 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14890 				    "sd_start_cmds: exiting, "
14891 				    "throttle limit reached!\n");
14892 				goto exit;
14893 			}
14894 			if (un->un_retry_bp != NULL) {
14895 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14896 				    "sd_start_cmds: exiting, retry pending!\n");
14897 				goto exit;
14898 			}
14899 			if (un->un_startstop_timeid != NULL) {
14900 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14901 				    "sd_start_cmds: exiting, "
14902 				    "START_STOP pending!\n");
14903 				goto exit;
14904 			}
14905 			if (un->un_direct_priority_timeid != NULL) {
14906 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14907 				    "sd_start_cmds: exiting, "
14908 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14909 				goto exit;
14910 			}
14911 
14912 			/* Dequeue the command */
14913 			un->un_waitq_headp = bp->av_forw;
14914 			if (un->un_waitq_headp == NULL) {
14915 				un->un_waitq_tailp = NULL;
14916 			}
14917 			bp->av_forw = NULL;
14918 			statp = kstat_waitq_to_runq;
14919 			SD_TRACE(SD_LOG_IO_CORE, un,
14920 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14921 
14922 		} else {
14923 			/* No work to do so bail out now */
14924 			SD_TRACE(SD_LOG_IO_CORE, un,
14925 			    "sd_start_cmds: no more work, exiting!\n");
14926 			goto exit;
14927 		}
14928 
14929 		/*
14930 		 * Reset the state to normal. This is the mechanism by which
14931 		 * the state transitions from either SD_STATE_RWAIT or
14932 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14933 		 * If state is SD_STATE_PM_CHANGING then this command is
14934 		 * part of the device power control and the state must
14935 		 * not be put back to normal. Doing so would would
14936 		 * allow new commands to proceed when they shouldn't,
14937 		 * the device may be going off.
14938 		 */
14939 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14940 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14941 			New_state(un, SD_STATE_NORMAL);
14942 		}
14943 
14944 		xp = SD_GET_XBUF(bp);
14945 		ASSERT(xp != NULL);
14946 
14947 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14948 		/*
14949 		 * Allocate the scsi_pkt if we need one, or attach DMA
14950 		 * resources if we have a scsi_pkt that needs them. The
14951 		 * latter should only occur for commands that are being
14952 		 * retried.
14953 		 */
14954 		if ((xp->xb_pktp == NULL) ||
14955 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14956 #else
14957 		if (xp->xb_pktp == NULL) {
14958 #endif
14959 			/*
14960 			 * There is no scsi_pkt allocated for this buf. Call
14961 			 * the initpkt function to allocate & init one.
14962 			 *
14963 			 * The scsi_init_pkt runout callback functionality is
14964 			 * implemented as follows:
14965 			 *
14966 			 * 1) The initpkt function always calls
14967 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14968 			 *    callback routine.
14969 			 * 2) A successful packet allocation is initialized and
14970 			 *    the I/O is transported.
14971 			 * 3) The I/O associated with an allocation resource
14972 			 *    failure is left on its queue to be retried via
14973 			 *    runout or the next I/O.
14974 			 * 4) The I/O associated with a DMA error is removed
14975 			 *    from the queue and failed with EIO. Processing of
14976 			 *    the transport queues is also halted to be
14977 			 *    restarted via runout or the next I/O.
14978 			 * 5) The I/O associated with a CDB size or packet
14979 			 *    size error is removed from the queue and failed
14980 			 *    with EIO. Processing of the transport queues is
14981 			 *    continued.
14982 			 *
14983 			 * Note: there is no interface for canceling a runout
14984 			 * callback. To prevent the driver from detaching or
14985 			 * suspending while a runout is pending the driver
14986 			 * state is set to SD_STATE_RWAIT
14987 			 *
14988 			 * Note: using the scsi_init_pkt callback facility can
14989 			 * result in an I/O request persisting at the head of
14990 			 * the list which cannot be satisfied even after
14991 			 * multiple retries. In the future the driver may
14992 			 * implement some kind of maximum runout count before
14993 			 * failing an I/O.
14994 			 *
14995 			 * Note: the use of funcp below may seem superfluous,
14996 			 * but it helps warlock figure out the correct
14997 			 * initpkt function calls (see [s]sd.wlcmd).
14998 			 */
14999 			struct scsi_pkt	*pktp;
15000 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
15001 
15002 			ASSERT(bp != un->un_rqs_bp);
15003 
15004 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
15005 			switch ((*funcp)(bp, &pktp)) {
15006 			case  SD_PKT_ALLOC_SUCCESS:
15007 				xp->xb_pktp = pktp;
15008 				SD_TRACE(SD_LOG_IO_CORE, un,
15009 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
15010 				    pktp);
15011 				goto got_pkt;
15012 
15013 			case SD_PKT_ALLOC_FAILURE:
15014 				/*
15015 				 * Temporary (hopefully) resource depletion.
15016 				 * Since retries and RQS commands always have a
15017 				 * scsi_pkt allocated, these cases should never
15018 				 * get here. So the only cases this needs to
15019 				 * handle is a bp from the waitq (which we put
15020 				 * back onto the waitq for sdrunout), or a bp
15021 				 * sent as an immed_bp (which we just fail).
15022 				 */
15023 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15024 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
15025 
15026 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15027 
15028 				if (bp == immed_bp) {
15029 					/*
15030 					 * If SD_XB_DMA_FREED is clear, then
15031 					 * this is a failure to allocate a
15032 					 * scsi_pkt, and we must fail the
15033 					 * command.
15034 					 */
15035 					if ((xp->xb_pkt_flags &
15036 					    SD_XB_DMA_FREED) == 0) {
15037 						break;
15038 					}
15039 
15040 					/*
15041 					 * If this immediate command is NOT our
15042 					 * un_retry_bp, then we must fail it.
15043 					 */
15044 					if (bp != un->un_retry_bp) {
15045 						break;
15046 					}
15047 
15048 					/*
15049 					 * We get here if this cmd is our
15050 					 * un_retry_bp that was DMAFREED, but
15051 					 * scsi_init_pkt() failed to reallocate
15052 					 * DMA resources when we attempted to
15053 					 * retry it. This can happen when an
15054 					 * mpxio failover is in progress, but
15055 					 * we don't want to just fail the
15056 					 * command in this case.
15057 					 *
15058 					 * Use timeout(9F) to restart it after
15059 					 * a 100ms delay.  We don't want to
15060 					 * let sdrunout() restart it, because
15061 					 * sdrunout() is just supposed to start
15062 					 * commands that are sitting on the
15063 					 * wait queue.  The un_retry_bp stays
15064 					 * set until the command completes, but
15065 					 * sdrunout can be called many times
15066 					 * before that happens.  Since sdrunout
15067 					 * cannot tell if the un_retry_bp is
15068 					 * already in the transport, it could
15069 					 * end up calling scsi_transport() for
15070 					 * the un_retry_bp multiple times.
15071 					 *
15072 					 * Also: don't schedule the callback
15073 					 * if some other callback is already
15074 					 * pending.
15075 					 */
15076 					if (un->un_retry_statp == NULL) {
15077 						/*
15078 						 * restore the kstat pointer to
15079 						 * keep kstat counts coherent
15080 						 * when we do retry the command.
15081 						 */
15082 						un->un_retry_statp =
15083 						    saved_statp;
15084 					}
15085 
15086 					if ((un->un_startstop_timeid == NULL) &&
15087 					    (un->un_retry_timeid == NULL) &&
15088 					    (un->un_direct_priority_timeid ==
15089 					    NULL)) {
15090 
15091 						un->un_retry_timeid =
15092 						    timeout(
15093 						    sd_start_retry_command,
15094 						    un, SD_RESTART_TIMEOUT);
15095 					}
15096 					goto exit;
15097 				}
15098 
15099 #else
15100 				if (bp == immed_bp) {
15101 					break;	/* Just fail the command */
15102 				}
15103 #endif
15104 
15105 				/* Add the buf back to the head of the waitq */
15106 				bp->av_forw = un->un_waitq_headp;
15107 				un->un_waitq_headp = bp;
15108 				if (un->un_waitq_tailp == NULL) {
15109 					un->un_waitq_tailp = bp;
15110 				}
15111 				goto exit;
15112 
15113 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15114 				/*
15115 				 * HBA DMA resource failure. Fail the command
15116 				 * and continue processing of the queues.
15117 				 */
15118 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15119 				    "sd_start_cmds: "
15120 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15121 				break;
15122 
15123 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15124 				/*
15125 				 * Note:x86: Partial DMA mapping not supported
15126 				 * for USCSI commands, and all the needed DMA
15127 				 * resources were not allocated.
15128 				 */
15129 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15130 				    "sd_start_cmds: "
15131 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15132 				break;
15133 
15134 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15135 				/*
15136 				 * Note:x86: Request cannot fit into CDB based
15137 				 * on lba and len.
15138 				 */
15139 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15140 				    "sd_start_cmds: "
15141 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15142 				break;
15143 
15144 			default:
15145 				/* Should NEVER get here! */
15146 				panic("scsi_initpkt error");
15147 				/*NOTREACHED*/
15148 			}
15149 
15150 			/*
15151 			 * Fatal error in allocating a scsi_pkt for this buf.
15152 			 * Update kstats & return the buf with an error code.
15153 			 * We must use sd_return_failed_command_no_restart() to
15154 			 * avoid a recursive call back into sd_start_cmds().
15155 			 * However this also means that we must keep processing
15156 			 * the waitq here in order to avoid stalling.
15157 			 */
15158 			if (statp == kstat_waitq_to_runq) {
15159 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15160 			}
15161 			sd_return_failed_command_no_restart(un, bp, EIO);
15162 			if (bp == immed_bp) {
15163 				/* immed_bp is gone by now, so clear this */
15164 				immed_bp = NULL;
15165 			}
15166 			continue;
15167 		}
15168 got_pkt:
15169 		if (bp == immed_bp) {
15170 			/* goto the head of the class.... */
15171 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15172 		}
15173 
15174 		un->un_ncmds_in_transport++;
15175 		SD_UPDATE_KSTATS(un, statp, bp);
15176 
15177 		/*
15178 		 * Call scsi_transport() to send the command to the target.
15179 		 * According to SCSA architecture, we must drop the mutex here
15180 		 * before calling scsi_transport() in order to avoid deadlock.
15181 		 * Note that the scsi_pkt's completion routine can be executed
15182 		 * (from interrupt context) even before the call to
15183 		 * scsi_transport() returns.
15184 		 */
15185 		SD_TRACE(SD_LOG_IO_CORE, un,
15186 		    "sd_start_cmds: calling scsi_transport()\n");
15187 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15188 
15189 		mutex_exit(SD_MUTEX(un));
15190 		rval = scsi_transport(xp->xb_pktp);
15191 		mutex_enter(SD_MUTEX(un));
15192 
15193 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15194 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15195 
15196 		switch (rval) {
15197 		case TRAN_ACCEPT:
15198 			/* Clear this with every pkt accepted by the HBA */
15199 			un->un_tran_fatal_count = 0;
15200 			break;	/* Success; try the next cmd (if any) */
15201 
15202 		case TRAN_BUSY:
15203 			un->un_ncmds_in_transport--;
15204 			ASSERT(un->un_ncmds_in_transport >= 0);
15205 
15206 			/*
15207 			 * Don't retry request sense, the sense data
15208 			 * is lost when another request is sent.
15209 			 * Free up the rqs buf and retry
15210 			 * the original failed cmd.  Update kstat.
15211 			 */
15212 			if (bp == un->un_rqs_bp) {
15213 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15214 				bp = sd_mark_rqs_idle(un, xp);
15215 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15216 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15217 				    kstat_waitq_enter);
15218 				goto exit;
15219 			}
15220 
15221 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15222 			/*
15223 			 * Free the DMA resources for the  scsi_pkt. This will
15224 			 * allow mpxio to select another path the next time
15225 			 * we call scsi_transport() with this scsi_pkt.
15226 			 * See sdintr() for the rationalization behind this.
15227 			 */
15228 			if ((un->un_f_is_fibre == TRUE) &&
15229 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15230 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15231 				scsi_dmafree(xp->xb_pktp);
15232 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15233 			}
15234 #endif
15235 
15236 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15237 				/*
15238 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15239 				 * are for error recovery situations. These do
15240 				 * not use the normal command waitq, so if they
15241 				 * get a TRAN_BUSY we cannot put them back onto
15242 				 * the waitq for later retry. One possible
15243 				 * problem is that there could already be some
15244 				 * other command on un_retry_bp that is waiting
15245 				 * for this one to complete, so we would be
15246 				 * deadlocked if we put this command back onto
15247 				 * the waitq for later retry (since un_retry_bp
15248 				 * must complete before the driver gets back to
15249 				 * commands on the waitq).
15250 				 *
15251 				 * To avoid deadlock we must schedule a callback
15252 				 * that will restart this command after a set
15253 				 * interval.  This should keep retrying for as
15254 				 * long as the underlying transport keeps
15255 				 * returning TRAN_BUSY (just like for other
15256 				 * commands).  Use the same timeout interval as
15257 				 * for the ordinary TRAN_BUSY retry.
15258 				 */
15259 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15260 				    "sd_start_cmds: scsi_transport() returned "
15261 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15262 
15263 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15264 				un->un_direct_priority_timeid =
15265 				    timeout(sd_start_direct_priority_command,
15266 				    bp, un->un_busy_timeout / 500);
15267 
15268 				goto exit;
15269 			}
15270 
15271 			/*
15272 			 * For TRAN_BUSY, we want to reduce the throttle value,
15273 			 * unless we are retrying a command.
15274 			 */
15275 			if (bp != un->un_retry_bp) {
15276 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15277 			}
15278 
15279 			/*
15280 			 * Set up the bp to be tried again 10 ms later.
15281 			 * Note:x86: Is there a timeout value in the sd_lun
15282 			 * for this condition?
15283 			 */
15284 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15285 			    kstat_runq_back_to_waitq);
15286 			goto exit;
15287 
15288 		case TRAN_FATAL_ERROR:
15289 			un->un_tran_fatal_count++;
15290 			/* FALLTHRU */
15291 
15292 		case TRAN_BADPKT:
15293 		default:
15294 			un->un_ncmds_in_transport--;
15295 			ASSERT(un->un_ncmds_in_transport >= 0);
15296 
15297 			/*
15298 			 * If this is our REQUEST SENSE command with a
15299 			 * transport error, we must get back the pointers
15300 			 * to the original buf, and mark the REQUEST
15301 			 * SENSE command as "available".
15302 			 */
15303 			if (bp == un->un_rqs_bp) {
15304 				bp = sd_mark_rqs_idle(un, xp);
15305 				xp = SD_GET_XBUF(bp);
15306 			} else {
15307 				/*
15308 				 * Legacy behavior: do not update transport
15309 				 * error count for request sense commands.
15310 				 */
15311 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15312 			}
15313 
15314 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15315 			sd_print_transport_rejected_message(un, xp, rval);
15316 
15317 			/*
15318 			 * This command will be terminated by SD driver due
15319 			 * to a fatal transport error. We should post
15320 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15321 			 * of "fail" for any command to indicate this
15322 			 * situation.
15323 			 */
15324 			if (xp->xb_ena > 0) {
15325 				ASSERT(un->un_fm_private != NULL);
15326 				sfip = un->un_fm_private;
15327 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15328 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15329 				    xp->xb_pktp, bp, xp);
15330 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15331 			}
15332 
15333 			/*
15334 			 * We must use sd_return_failed_command_no_restart() to
15335 			 * avoid a recursive call back into sd_start_cmds().
15336 			 * However this also means that we must keep processing
15337 			 * the waitq here in order to avoid stalling.
15338 			 */
15339 			sd_return_failed_command_no_restart(un, bp, EIO);
15340 
15341 			/*
15342 			 * Notify any threads waiting in sd_ddi_suspend() that
15343 			 * a command completion has occurred.
15344 			 */
15345 			if (un->un_state == SD_STATE_SUSPENDED) {
15346 				cv_broadcast(&un->un_disk_busy_cv);
15347 			}
15348 
15349 			if (bp == immed_bp) {
15350 				/* immed_bp is gone by now, so clear this */
15351 				immed_bp = NULL;
15352 			}
15353 			break;
15354 		}
15355 
15356 	} while (immed_bp == NULL);
15357 
15358 exit:
15359 	ASSERT(mutex_owned(SD_MUTEX(un)));
15360 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15361 }
15362 
15363 
15364 /*
15365  *    Function: sd_return_command
15366  *
15367  * Description: Returns a command to its originator (with or without an
15368  *		error).  Also starts commands waiting to be transported
15369  *		to the target.
15370  *
15371  *     Context: May be called from interrupt, kernel, or timeout context
15372  */
15373 
15374 static void
15375 sd_return_command(struct sd_lun *un, struct buf *bp)
15376 {
15377 	struct sd_xbuf *xp;
15378 	struct scsi_pkt *pktp;
15379 	struct sd_fm_internal *sfip;
15380 
15381 	ASSERT(bp != NULL);
15382 	ASSERT(un != NULL);
15383 	ASSERT(mutex_owned(SD_MUTEX(un)));
15384 	ASSERT(bp != un->un_rqs_bp);
15385 	xp = SD_GET_XBUF(bp);
15386 	ASSERT(xp != NULL);
15387 
15388 	pktp = SD_GET_PKTP(bp);
15389 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15390 	ASSERT(sfip != NULL);
15391 
15392 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15393 
15394 	/*
15395 	 * Note: check for the "sdrestart failed" case.
15396 	 */
15397 	if ((un->un_partial_dma_supported == 1) &&
15398 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15399 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15400 	    (xp->xb_pktp->pkt_resid == 0)) {
15401 
15402 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15403 			/*
15404 			 * Successfully set up next portion of cmd
15405 			 * transfer, try sending it
15406 			 */
15407 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15408 			    NULL, NULL, 0, (clock_t)0, NULL);
15409 			sd_start_cmds(un, NULL);
15410 			return;	/* Note:x86: need a return here? */
15411 		}
15412 	}
15413 
15414 	/*
15415 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15416 	 * can happen if upon being re-tried the failfast bp either
15417 	 * succeeded or encountered another error (possibly even a different
15418 	 * error than the one that precipitated the failfast state, but in
15419 	 * that case it would have had to exhaust retries as well). Regardless,
15420 	 * this should not occur whenever the instance is in the active
15421 	 * failfast state.
15422 	 */
15423 	if (bp == un->un_failfast_bp) {
15424 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15425 		un->un_failfast_bp = NULL;
15426 	}
15427 
15428 	/*
15429 	 * Clear the failfast state upon successful completion of ANY cmd.
15430 	 */
15431 	if (bp->b_error == 0) {
15432 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15433 		/*
15434 		 * If this is a successful command, but used to be retried,
15435 		 * we will take it as a recovered command and post an
15436 		 * ereport with driver-assessment of "recovered".
15437 		 */
15438 		if (xp->xb_ena > 0) {
15439 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15440 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15441 		}
15442 	} else {
15443 		/*
15444 		 * If this is a failed non-USCSI command we will post an
15445 		 * ereport with driver-assessment set accordingly("fail" or
15446 		 * "fatal").
15447 		 */
15448 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15449 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15450 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15451 		}
15452 	}
15453 
15454 	/*
15455 	 * This is used if the command was retried one or more times. Show that
15456 	 * we are done with it, and allow processing of the waitq to resume.
15457 	 */
15458 	if (bp == un->un_retry_bp) {
15459 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15460 		    "sd_return_command: un:0x%p: "
15461 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15462 		un->un_retry_bp = NULL;
15463 		un->un_retry_statp = NULL;
15464 	}
15465 
15466 	SD_UPDATE_RDWR_STATS(un, bp);
15467 	SD_UPDATE_PARTITION_STATS(un, bp);
15468 
15469 	switch (un->un_state) {
15470 	case SD_STATE_SUSPENDED:
15471 		/*
15472 		 * Notify any threads waiting in sd_ddi_suspend() that
15473 		 * a command completion has occurred.
15474 		 */
15475 		cv_broadcast(&un->un_disk_busy_cv);
15476 		break;
15477 	default:
15478 		sd_start_cmds(un, NULL);
15479 		break;
15480 	}
15481 
15482 	/* Return this command up the iodone chain to its originator. */
15483 	mutex_exit(SD_MUTEX(un));
15484 
15485 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15486 	xp->xb_pktp = NULL;
15487 
15488 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15489 
15490 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15491 	mutex_enter(SD_MUTEX(un));
15492 
15493 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15494 }
15495 
15496 
15497 /*
15498  *    Function: sd_return_failed_command
15499  *
15500  * Description: Command completion when an error occurred.
15501  *
15502  *     Context: May be called from interrupt context
15503  */
15504 
15505 static void
15506 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15507 {
15508 	ASSERT(bp != NULL);
15509 	ASSERT(un != NULL);
15510 	ASSERT(mutex_owned(SD_MUTEX(un)));
15511 
15512 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15513 	    "sd_return_failed_command: entry\n");
15514 
15515 	/*
15516 	 * b_resid could already be nonzero due to a partial data
15517 	 * transfer, so do not change it here.
15518 	 */
15519 	SD_BIOERROR(bp, errcode);
15520 
15521 	sd_return_command(un, bp);
15522 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15523 	    "sd_return_failed_command: exit\n");
15524 }
15525 
15526 
15527 /*
15528  *    Function: sd_return_failed_command_no_restart
15529  *
15530  * Description: Same as sd_return_failed_command, but ensures that no
15531  *		call back into sd_start_cmds will be issued.
15532  *
15533  *     Context: May be called from interrupt context
15534  */
15535 
15536 static void
15537 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15538 	int errcode)
15539 {
15540 	struct sd_xbuf *xp;
15541 
15542 	ASSERT(bp != NULL);
15543 	ASSERT(un != NULL);
15544 	ASSERT(mutex_owned(SD_MUTEX(un)));
15545 	xp = SD_GET_XBUF(bp);
15546 	ASSERT(xp != NULL);
15547 	ASSERT(errcode != 0);
15548 
15549 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15550 	    "sd_return_failed_command_no_restart: entry\n");
15551 
15552 	/*
15553 	 * b_resid could already be nonzero due to a partial data
15554 	 * transfer, so do not change it here.
15555 	 */
15556 	SD_BIOERROR(bp, errcode);
15557 
15558 	/*
15559 	 * If this is the failfast bp, clear it. This can happen if the
15560 	 * failfast bp encounterd a fatal error when we attempted to
15561 	 * re-try it (such as a scsi_transport(9F) failure).  However
15562 	 * we should NOT be in an active failfast state if the failfast
15563 	 * bp is not NULL.
15564 	 */
15565 	if (bp == un->un_failfast_bp) {
15566 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15567 		un->un_failfast_bp = NULL;
15568 	}
15569 
15570 	if (bp == un->un_retry_bp) {
15571 		/*
15572 		 * This command was retried one or more times. Show that we are
15573 		 * done with it, and allow processing of the waitq to resume.
15574 		 */
15575 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15576 		    "sd_return_failed_command_no_restart: "
15577 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15578 		un->un_retry_bp = NULL;
15579 		un->un_retry_statp = NULL;
15580 	}
15581 
15582 	SD_UPDATE_RDWR_STATS(un, bp);
15583 	SD_UPDATE_PARTITION_STATS(un, bp);
15584 
15585 	mutex_exit(SD_MUTEX(un));
15586 
15587 	if (xp->xb_pktp != NULL) {
15588 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15589 		xp->xb_pktp = NULL;
15590 	}
15591 
15592 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15593 
15594 	mutex_enter(SD_MUTEX(un));
15595 
15596 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15597 	    "sd_return_failed_command_no_restart: exit\n");
15598 }
15599 
15600 
15601 /*
15602  *    Function: sd_retry_command
15603  *
15604  * Description: queue up a command for retry, or (optionally) fail it
15605  *		if retry counts are exhausted.
15606  *
15607  *   Arguments: un - Pointer to the sd_lun struct for the target.
15608  *
15609  *		bp - Pointer to the buf for the command to be retried.
15610  *
15611  *		retry_check_flag - Flag to see which (if any) of the retry
15612  *		   counts should be decremented/checked. If the indicated
15613  *		   retry count is exhausted, then the command will not be
15614  *		   retried; it will be failed instead. This should use a
15615  *		   value equal to one of the following:
15616  *
15617  *			SD_RETRIES_NOCHECK
15618  *			SD_RESD_RETRIES_STANDARD
15619  *			SD_RETRIES_VICTIM
15620  *
15621  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15622  *		   if the check should be made to see of FLAG_ISOLATE is set
15623  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15624  *		   not retried, it is simply failed.
15625  *
15626  *		user_funcp - Ptr to function to call before dispatching the
15627  *		   command. May be NULL if no action needs to be performed.
15628  *		   (Primarily intended for printing messages.)
15629  *
15630  *		user_arg - Optional argument to be passed along to
15631  *		   the user_funcp call.
15632  *
15633  *		failure_code - errno return code to set in the bp if the
15634  *		   command is going to be failed.
15635  *
15636  *		retry_delay - Retry delay interval in (clock_t) units. May
15637  *		   be zero which indicates that the retry should be retried
15638  *		   immediately (ie, without an intervening delay).
15639  *
15640  *		statp - Ptr to kstat function to be updated if the command
15641  *		   is queued for a delayed retry. May be NULL if no kstat
15642  *		   update is desired.
15643  *
15644  *     Context: May be called from interrupt context.
15645  */
15646 
15647 static void
15648 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15649 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15650 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15651 	void (*statp)(kstat_io_t *))
15652 {
15653 	struct sd_xbuf	*xp;
15654 	struct scsi_pkt	*pktp;
15655 	struct sd_fm_internal *sfip;
15656 
15657 	ASSERT(un != NULL);
15658 	ASSERT(mutex_owned(SD_MUTEX(un)));
15659 	ASSERT(bp != NULL);
15660 	xp = SD_GET_XBUF(bp);
15661 	ASSERT(xp != NULL);
15662 	pktp = SD_GET_PKTP(bp);
15663 	ASSERT(pktp != NULL);
15664 
15665 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15666 	ASSERT(sfip != NULL);
15667 
15668 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15669 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15670 
15671 	/*
15672 	 * If we are syncing or dumping, fail the command to avoid
15673 	 * recursively calling back into scsi_transport().
15674 	 */
15675 	if (ddi_in_panic()) {
15676 		goto fail_command_no_log;
15677 	}
15678 
15679 	/*
15680 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15681 	 * log an error and fail the command.
15682 	 */
15683 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15684 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15685 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15686 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15687 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15688 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15689 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15690 		goto fail_command;
15691 	}
15692 
15693 	/*
15694 	 * If we are suspended, then put the command onto head of the
15695 	 * wait queue since we don't want to start more commands, and
15696 	 * clear the un_retry_bp. Next time when we are resumed, will
15697 	 * handle the command in the wait queue.
15698 	 */
15699 	switch (un->un_state) {
15700 	case SD_STATE_SUSPENDED:
15701 	case SD_STATE_DUMPING:
15702 		bp->av_forw = un->un_waitq_headp;
15703 		un->un_waitq_headp = bp;
15704 		if (un->un_waitq_tailp == NULL) {
15705 			un->un_waitq_tailp = bp;
15706 		}
15707 		if (bp == un->un_retry_bp) {
15708 			un->un_retry_bp = NULL;
15709 			un->un_retry_statp = NULL;
15710 		}
15711 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15712 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15713 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15714 		return;
15715 	default:
15716 		break;
15717 	}
15718 
15719 	/*
15720 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15721 	 * is set; if it is then we do not want to retry the command.
15722 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15723 	 */
15724 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15725 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15726 			goto fail_command;
15727 		}
15728 	}
15729 
15730 
15731 	/*
15732 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15733 	 * command timeout or a selection timeout has occurred. This means
15734 	 * that we were unable to establish an kind of communication with
15735 	 * the target, and subsequent retries and/or commands are likely
15736 	 * to encounter similar results and take a long time to complete.
15737 	 *
15738 	 * If this is a failfast error condition, we need to update the
15739 	 * failfast state, even if this bp does not have B_FAILFAST set.
15740 	 */
15741 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15742 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15743 			ASSERT(un->un_failfast_bp == NULL);
15744 			/*
15745 			 * If we are already in the active failfast state, and
15746 			 * another failfast error condition has been detected,
15747 			 * then fail this command if it has B_FAILFAST set.
15748 			 * If B_FAILFAST is clear, then maintain the legacy
15749 			 * behavior of retrying heroically, even tho this will
15750 			 * take a lot more time to fail the command.
15751 			 */
15752 			if (bp->b_flags & B_FAILFAST) {
15753 				goto fail_command;
15754 			}
15755 		} else {
15756 			/*
15757 			 * We're not in the active failfast state, but we
15758 			 * have a failfast error condition, so we must begin
15759 			 * transition to the next state. We do this regardless
15760 			 * of whether or not this bp has B_FAILFAST set.
15761 			 */
15762 			if (un->un_failfast_bp == NULL) {
15763 				/*
15764 				 * This is the first bp to meet a failfast
15765 				 * condition so save it on un_failfast_bp &
15766 				 * do normal retry processing. Do not enter
15767 				 * active failfast state yet. This marks
15768 				 * entry into the "failfast pending" state.
15769 				 */
15770 				un->un_failfast_bp = bp;
15771 
15772 			} else if (un->un_failfast_bp == bp) {
15773 				/*
15774 				 * This is the second time *this* bp has
15775 				 * encountered a failfast error condition,
15776 				 * so enter active failfast state & flush
15777 				 * queues as appropriate.
15778 				 */
15779 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15780 				un->un_failfast_bp = NULL;
15781 				sd_failfast_flushq(un);
15782 
15783 				/*
15784 				 * Fail this bp now if B_FAILFAST set;
15785 				 * otherwise continue with retries. (It would
15786 				 * be pretty ironic if this bp succeeded on a
15787 				 * subsequent retry after we just flushed all
15788 				 * the queues).
15789 				 */
15790 				if (bp->b_flags & B_FAILFAST) {
15791 					goto fail_command;
15792 				}
15793 
15794 #if !defined(lint) && !defined(__lint)
15795 			} else {
15796 				/*
15797 				 * If neither of the preceeding conditionals
15798 				 * was true, it means that there is some
15799 				 * *other* bp that has met an inital failfast
15800 				 * condition and is currently either being
15801 				 * retried or is waiting to be retried. In
15802 				 * that case we should perform normal retry
15803 				 * processing on *this* bp, since there is a
15804 				 * chance that the current failfast condition
15805 				 * is transient and recoverable. If that does
15806 				 * not turn out to be the case, then retries
15807 				 * will be cleared when the wait queue is
15808 				 * flushed anyway.
15809 				 */
15810 #endif
15811 			}
15812 		}
15813 	} else {
15814 		/*
15815 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15816 		 * likely were able to at least establish some level of
15817 		 * communication with the target and subsequent commands
15818 		 * and/or retries are likely to get through to the target,
15819 		 * In this case we want to be aggressive about clearing
15820 		 * the failfast state. Note that this does not affect
15821 		 * the "failfast pending" condition.
15822 		 */
15823 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15824 	}
15825 
15826 
15827 	/*
15828 	 * Check the specified retry count to see if we can still do
15829 	 * any retries with this pkt before we should fail it.
15830 	 */
15831 	switch (retry_check_flag & SD_RETRIES_MASK) {
15832 	case SD_RETRIES_VICTIM:
15833 		/*
15834 		 * Check the victim retry count. If exhausted, then fall
15835 		 * thru & check against the standard retry count.
15836 		 */
15837 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15838 			/* Increment count & proceed with the retry */
15839 			xp->xb_victim_retry_count++;
15840 			break;
15841 		}
15842 		/* Victim retries exhausted, fall back to std. retries... */
15843 		/* FALLTHRU */
15844 
15845 	case SD_RETRIES_STANDARD:
15846 		if (xp->xb_retry_count >= un->un_retry_count) {
15847 			/* Retries exhausted, fail the command */
15848 			SD_TRACE(SD_LOG_IO_CORE, un,
15849 			    "sd_retry_command: retries exhausted!\n");
15850 			/*
15851 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15852 			 * commands with nonzero pkt_resid.
15853 			 */
15854 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15855 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15856 			    (pktp->pkt_resid != 0)) {
15857 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15858 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15859 					SD_UPDATE_B_RESID(bp, pktp);
15860 				}
15861 			}
15862 			goto fail_command;
15863 		}
15864 		xp->xb_retry_count++;
15865 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15866 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15867 		break;
15868 
15869 	case SD_RETRIES_UA:
15870 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15871 			/* Retries exhausted, fail the command */
15872 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15873 			    "Unit Attention retries exhausted. "
15874 			    "Check the target.\n");
15875 			goto fail_command;
15876 		}
15877 		xp->xb_ua_retry_count++;
15878 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15879 		    "sd_retry_command: retry count:%d\n",
15880 		    xp->xb_ua_retry_count);
15881 		break;
15882 
15883 	case SD_RETRIES_BUSY:
15884 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15885 			/* Retries exhausted, fail the command */
15886 			SD_TRACE(SD_LOG_IO_CORE, un,
15887 			    "sd_retry_command: retries exhausted!\n");
15888 			goto fail_command;
15889 		}
15890 		xp->xb_retry_count++;
15891 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15892 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15893 		break;
15894 
15895 	case SD_RETRIES_NOCHECK:
15896 	default:
15897 		/* No retry count to check. Just proceed with the retry */
15898 		break;
15899 	}
15900 
15901 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15902 
15903 	/*
15904 	 * If this is a non-USCSI command being retried
15905 	 * during execution last time, we should post an ereport with
15906 	 * driver-assessment of the value "retry".
15907 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15908 	 * hardware errors, we bypass ereport posting.
15909 	 */
15910 	if (failure_code != 0) {
15911 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15912 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15913 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15914 		}
15915 	}
15916 
15917 	/*
15918 	 * If we were given a zero timeout, we must attempt to retry the
15919 	 * command immediately (ie, without a delay).
15920 	 */
15921 	if (retry_delay == 0) {
15922 		/*
15923 		 * Check some limiting conditions to see if we can actually
15924 		 * do the immediate retry.  If we cannot, then we must
15925 		 * fall back to queueing up a delayed retry.
15926 		 */
15927 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15928 			/*
15929 			 * We are at the throttle limit for the target,
15930 			 * fall back to delayed retry.
15931 			 */
15932 			retry_delay = un->un_busy_timeout;
15933 			statp = kstat_waitq_enter;
15934 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15935 			    "sd_retry_command: immed. retry hit "
15936 			    "throttle!\n");
15937 		} else {
15938 			/*
15939 			 * We're clear to proceed with the immediate retry.
15940 			 * First call the user-provided function (if any)
15941 			 */
15942 			if (user_funcp != NULL) {
15943 				(*user_funcp)(un, bp, user_arg,
15944 				    SD_IMMEDIATE_RETRY_ISSUED);
15945 #ifdef __lock_lint
15946 				sd_print_incomplete_msg(un, bp, user_arg,
15947 				    SD_IMMEDIATE_RETRY_ISSUED);
15948 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15949 				    SD_IMMEDIATE_RETRY_ISSUED);
15950 				sd_print_sense_failed_msg(un, bp, user_arg,
15951 				    SD_IMMEDIATE_RETRY_ISSUED);
15952 #endif
15953 			}
15954 
15955 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15956 			    "sd_retry_command: issuing immediate retry\n");
15957 
15958 			/*
15959 			 * Call sd_start_cmds() to transport the command to
15960 			 * the target.
15961 			 */
15962 			sd_start_cmds(un, bp);
15963 
15964 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15965 			    "sd_retry_command exit\n");
15966 			return;
15967 		}
15968 	}
15969 
15970 	/*
15971 	 * Set up to retry the command after a delay.
15972 	 * First call the user-provided function (if any)
15973 	 */
15974 	if (user_funcp != NULL) {
15975 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15976 	}
15977 
15978 	sd_set_retry_bp(un, bp, retry_delay, statp);
15979 
15980 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15981 	return;
15982 
15983 fail_command:
15984 
15985 	if (user_funcp != NULL) {
15986 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15987 	}
15988 
15989 fail_command_no_log:
15990 
15991 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15992 	    "sd_retry_command: returning failed command\n");
15993 
15994 	sd_return_failed_command(un, bp, failure_code);
15995 
15996 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15997 }
15998 
15999 
16000 /*
16001  *    Function: sd_set_retry_bp
16002  *
16003  * Description: Set up the given bp for retry.
16004  *
16005  *   Arguments: un - ptr to associated softstate
16006  *		bp - ptr to buf(9S) for the command
16007  *		retry_delay - time interval before issuing retry (may be 0)
16008  *		statp - optional pointer to kstat function
16009  *
16010  *     Context: May be called under interrupt context
16011  */
16012 
16013 static void
16014 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
16015 	void (*statp)(kstat_io_t *))
16016 {
16017 	ASSERT(un != NULL);
16018 	ASSERT(mutex_owned(SD_MUTEX(un)));
16019 	ASSERT(bp != NULL);
16020 
16021 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16022 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
16023 
16024 	/*
16025 	 * Indicate that the command is being retried. This will not allow any
16026 	 * other commands on the wait queue to be transported to the target
16027 	 * until this command has been completed (success or failure). The
16028 	 * "retry command" is not transported to the target until the given
16029 	 * time delay expires, unless the user specified a 0 retry_delay.
16030 	 *
16031 	 * Note: the timeout(9F) callback routine is what actually calls
16032 	 * sd_start_cmds() to transport the command, with the exception of a
16033 	 * zero retry_delay. The only current implementor of a zero retry delay
16034 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
16035 	 */
16036 	if (un->un_retry_bp == NULL) {
16037 		ASSERT(un->un_retry_statp == NULL);
16038 		un->un_retry_bp = bp;
16039 
16040 		/*
16041 		 * If the user has not specified a delay the command should
16042 		 * be queued and no timeout should be scheduled.
16043 		 */
16044 		if (retry_delay == 0) {
16045 			/*
16046 			 * Save the kstat pointer that will be used in the
16047 			 * call to SD_UPDATE_KSTATS() below, so that
16048 			 * sd_start_cmds() can correctly decrement the waitq
16049 			 * count when it is time to transport this command.
16050 			 */
16051 			un->un_retry_statp = statp;
16052 			goto done;
16053 		}
16054 	}
16055 
16056 	if (un->un_retry_bp == bp) {
16057 		/*
16058 		 * Save the kstat pointer that will be used in the call to
16059 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16060 		 * correctly decrement the waitq count when it is time to
16061 		 * transport this command.
16062 		 */
16063 		un->un_retry_statp = statp;
16064 
16065 		/*
16066 		 * Schedule a timeout if:
16067 		 *   1) The user has specified a delay.
16068 		 *   2) There is not a START_STOP_UNIT callback pending.
16069 		 *
16070 		 * If no delay has been specified, then it is up to the caller
16071 		 * to ensure that IO processing continues without stalling.
16072 		 * Effectively, this means that the caller will issue the
16073 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16074 		 * callback does this after the START STOP UNIT command has
16075 		 * completed. In either of these cases we should not schedule
16076 		 * a timeout callback here.  Also don't schedule the timeout if
16077 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16078 		 */
16079 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16080 		    (un->un_direct_priority_timeid == NULL)) {
16081 			un->un_retry_timeid =
16082 			    timeout(sd_start_retry_command, un, retry_delay);
16083 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16084 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16085 			    " bp:0x%p un_retry_timeid:0x%p\n",
16086 			    un, bp, un->un_retry_timeid);
16087 		}
16088 	} else {
16089 		/*
16090 		 * We only get in here if there is already another command
16091 		 * waiting to be retried.  In this case, we just put the
16092 		 * given command onto the wait queue, so it can be transported
16093 		 * after the current retry command has completed.
16094 		 *
16095 		 * Also we have to make sure that if the command at the head
16096 		 * of the wait queue is the un_failfast_bp, that we do not
16097 		 * put ahead of it any other commands that are to be retried.
16098 		 */
16099 		if ((un->un_failfast_bp != NULL) &&
16100 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16101 			/*
16102 			 * Enqueue this command AFTER the first command on
16103 			 * the wait queue (which is also un_failfast_bp).
16104 			 */
16105 			bp->av_forw = un->un_waitq_headp->av_forw;
16106 			un->un_waitq_headp->av_forw = bp;
16107 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16108 				un->un_waitq_tailp = bp;
16109 			}
16110 		} else {
16111 			/* Enqueue this command at the head of the waitq. */
16112 			bp->av_forw = un->un_waitq_headp;
16113 			un->un_waitq_headp = bp;
16114 			if (un->un_waitq_tailp == NULL) {
16115 				un->un_waitq_tailp = bp;
16116 			}
16117 		}
16118 
16119 		if (statp == NULL) {
16120 			statp = kstat_waitq_enter;
16121 		}
16122 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16123 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16124 	}
16125 
16126 done:
16127 	if (statp != NULL) {
16128 		SD_UPDATE_KSTATS(un, statp, bp);
16129 	}
16130 
16131 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16132 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16133 }
16134 
16135 
16136 /*
16137  *    Function: sd_start_retry_command
16138  *
16139  * Description: Start the command that has been waiting on the target's
16140  *		retry queue.  Called from timeout(9F) context after the
16141  *		retry delay interval has expired.
16142  *
16143  *   Arguments: arg - pointer to associated softstate for the device.
16144  *
16145  *     Context: timeout(9F) thread context.  May not sleep.
16146  */
16147 
16148 static void
16149 sd_start_retry_command(void *arg)
16150 {
16151 	struct sd_lun *un = arg;
16152 
16153 	ASSERT(un != NULL);
16154 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16155 
16156 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16157 	    "sd_start_retry_command: entry\n");
16158 
16159 	mutex_enter(SD_MUTEX(un));
16160 
16161 	un->un_retry_timeid = NULL;
16162 
16163 	if (un->un_retry_bp != NULL) {
16164 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16165 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16166 		    un, un->un_retry_bp);
16167 		sd_start_cmds(un, un->un_retry_bp);
16168 	}
16169 
16170 	mutex_exit(SD_MUTEX(un));
16171 
16172 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16173 	    "sd_start_retry_command: exit\n");
16174 }
16175 
16176 /*
16177  *    Function: sd_rmw_msg_print_handler
16178  *
16179  * Description: If RMW mode is enabled and warning message is triggered
16180  *              print I/O count during a fixed interval.
16181  *
16182  *   Arguments: arg - pointer to associated softstate for the device.
16183  *
16184  *     Context: timeout(9F) thread context. May not sleep.
16185  */
16186 static void
16187 sd_rmw_msg_print_handler(void *arg)
16188 {
16189 	struct sd_lun *un = arg;
16190 
16191 	ASSERT(un != NULL);
16192 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16193 
16194 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16195 	    "sd_rmw_msg_print_handler: entry\n");
16196 
16197 	mutex_enter(SD_MUTEX(un));
16198 
16199 	if (un->un_rmw_incre_count > 0) {
16200 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16201 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16202 		    "sector size in %ld seconds. They are handled through "
16203 		    "Read Modify Write but the performance is very low!\n",
16204 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16205 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16206 		un->un_rmw_incre_count = 0;
16207 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16208 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16209 	} else {
16210 		un->un_rmw_msg_timeid = NULL;
16211 	}
16212 
16213 	mutex_exit(SD_MUTEX(un));
16214 
16215 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16216 	    "sd_rmw_msg_print_handler: exit\n");
16217 }
16218 
16219 /*
16220  *    Function: sd_start_direct_priority_command
16221  *
16222  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16223  *		received TRAN_BUSY when we called scsi_transport() to send it
16224  *		to the underlying HBA. This function is called from timeout(9F)
16225  *		context after the delay interval has expired.
16226  *
16227  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16228  *
16229  *     Context: timeout(9F) thread context.  May not sleep.
16230  */
16231 
16232 static void
16233 sd_start_direct_priority_command(void *arg)
16234 {
16235 	struct buf	*priority_bp = arg;
16236 	struct sd_lun	*un;
16237 
16238 	ASSERT(priority_bp != NULL);
16239 	un = SD_GET_UN(priority_bp);
16240 	ASSERT(un != NULL);
16241 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16242 
16243 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16244 	    "sd_start_direct_priority_command: entry\n");
16245 
16246 	mutex_enter(SD_MUTEX(un));
16247 	un->un_direct_priority_timeid = NULL;
16248 	sd_start_cmds(un, priority_bp);
16249 	mutex_exit(SD_MUTEX(un));
16250 
16251 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16252 	    "sd_start_direct_priority_command: exit\n");
16253 }
16254 
16255 
16256 /*
16257  *    Function: sd_send_request_sense_command
16258  *
16259  * Description: Sends a REQUEST SENSE command to the target
16260  *
16261  *     Context: May be called from interrupt context.
16262  */
16263 
16264 static void
16265 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16266 	struct scsi_pkt *pktp)
16267 {
16268 	ASSERT(bp != NULL);
16269 	ASSERT(un != NULL);
16270 	ASSERT(mutex_owned(SD_MUTEX(un)));
16271 
16272 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16273 	    "entry: buf:0x%p\n", bp);
16274 
16275 	/*
16276 	 * If we are syncing or dumping, then fail the command to avoid a
16277 	 * recursive callback into scsi_transport(). Also fail the command
16278 	 * if we are suspended (legacy behavior).
16279 	 */
16280 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16281 	    (un->un_state == SD_STATE_DUMPING)) {
16282 		sd_return_failed_command(un, bp, EIO);
16283 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16284 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16285 		return;
16286 	}
16287 
16288 	/*
16289 	 * Retry the failed command and don't issue the request sense if:
16290 	 *    1) the sense buf is busy
16291 	 *    2) we have 1 or more outstanding commands on the target
16292 	 *    (the sense data will be cleared or invalidated any way)
16293 	 *
16294 	 * Note: There could be an issue with not checking a retry limit here,
16295 	 * the problem is determining which retry limit to check.
16296 	 */
16297 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16298 		/* Don't retry if the command is flagged as non-retryable */
16299 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16300 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16301 			    NULL, NULL, 0, un->un_busy_timeout,
16302 			    kstat_waitq_enter);
16303 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16304 			    "sd_send_request_sense_command: "
16305 			    "at full throttle, retrying exit\n");
16306 		} else {
16307 			sd_return_failed_command(un, bp, EIO);
16308 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16309 			    "sd_send_request_sense_command: "
16310 			    "at full throttle, non-retryable exit\n");
16311 		}
16312 		return;
16313 	}
16314 
16315 	sd_mark_rqs_busy(un, bp);
16316 	sd_start_cmds(un, un->un_rqs_bp);
16317 
16318 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16319 	    "sd_send_request_sense_command: exit\n");
16320 }
16321 
16322 
16323 /*
16324  *    Function: sd_mark_rqs_busy
16325  *
16326  * Description: Indicate that the request sense bp for this instance is
16327  *		in use.
16328  *
16329  *     Context: May be called under interrupt context
16330  */
16331 
16332 static void
16333 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16334 {
16335 	struct sd_xbuf	*sense_xp;
16336 
16337 	ASSERT(un != NULL);
16338 	ASSERT(bp != NULL);
16339 	ASSERT(mutex_owned(SD_MUTEX(un)));
16340 	ASSERT(un->un_sense_isbusy == 0);
16341 
16342 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16343 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16344 
16345 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16346 	ASSERT(sense_xp != NULL);
16347 
16348 	SD_INFO(SD_LOG_IO, un,
16349 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16350 
16351 	ASSERT(sense_xp->xb_pktp != NULL);
16352 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16353 	    == (FLAG_SENSING | FLAG_HEAD));
16354 
16355 	un->un_sense_isbusy = 1;
16356 	un->un_rqs_bp->b_resid = 0;
16357 	sense_xp->xb_pktp->pkt_resid  = 0;
16358 	sense_xp->xb_pktp->pkt_reason = 0;
16359 
16360 	/* So we can get back the bp at interrupt time! */
16361 	sense_xp->xb_sense_bp = bp;
16362 
16363 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16364 
16365 	/*
16366 	 * Mark this buf as awaiting sense data. (This is already set in
16367 	 * the pkt_flags for the RQS packet.)
16368 	 */
16369 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16370 
16371 	/* Request sense down same path */
16372 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16373 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16374 		sense_xp->xb_pktp->pkt_path_instance =
16375 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16376 
16377 	sense_xp->xb_retry_count	= 0;
16378 	sense_xp->xb_victim_retry_count = 0;
16379 	sense_xp->xb_ua_retry_count	= 0;
16380 	sense_xp->xb_nr_retry_count 	= 0;
16381 	sense_xp->xb_dma_resid  = 0;
16382 
16383 	/* Clean up the fields for auto-request sense */
16384 	sense_xp->xb_sense_status = 0;
16385 	sense_xp->xb_sense_state  = 0;
16386 	sense_xp->xb_sense_resid  = 0;
16387 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16388 
16389 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16390 }
16391 
16392 
16393 /*
16394  *    Function: sd_mark_rqs_idle
16395  *
16396  * Description: SD_MUTEX must be held continuously through this routine
16397  *		to prevent reuse of the rqs struct before the caller can
16398  *		complete it's processing.
16399  *
16400  * Return Code: Pointer to the RQS buf
16401  *
16402  *     Context: May be called under interrupt context
16403  */
16404 
16405 static struct buf *
16406 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16407 {
16408 	struct buf *bp;
16409 	ASSERT(un != NULL);
16410 	ASSERT(sense_xp != NULL);
16411 	ASSERT(mutex_owned(SD_MUTEX(un)));
16412 	ASSERT(un->un_sense_isbusy != 0);
16413 
16414 	un->un_sense_isbusy = 0;
16415 	bp = sense_xp->xb_sense_bp;
16416 	sense_xp->xb_sense_bp = NULL;
16417 
16418 	/* This pkt is no longer interested in getting sense data */
16419 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16420 
16421 	return (bp);
16422 }
16423 
16424 
16425 
16426 /*
16427  *    Function: sd_alloc_rqs
16428  *
16429  * Description: Set up the unit to receive auto request sense data
16430  *
16431  * Return Code: DDI_SUCCESS or DDI_FAILURE
16432  *
16433  *     Context: Called under attach(9E) context
16434  */
16435 
16436 static int
16437 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16438 {
16439 	struct sd_xbuf *xp;
16440 
16441 	ASSERT(un != NULL);
16442 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16443 	ASSERT(un->un_rqs_bp == NULL);
16444 	ASSERT(un->un_rqs_pktp == NULL);
16445 
16446 	/*
16447 	 * First allocate the required buf and scsi_pkt structs, then set up
16448 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16449 	 */
16450 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16451 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16452 	if (un->un_rqs_bp == NULL) {
16453 		return (DDI_FAILURE);
16454 	}
16455 
16456 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16457 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16458 
16459 	if (un->un_rqs_pktp == NULL) {
16460 		sd_free_rqs(un);
16461 		return (DDI_FAILURE);
16462 	}
16463 
16464 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16465 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16466 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16467 
16468 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16469 
16470 	/* Set up the other needed members in the ARQ scsi_pkt. */
16471 	un->un_rqs_pktp->pkt_comp   = sdintr;
16472 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16473 	un->un_rqs_pktp->pkt_flags |=
16474 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16475 
16476 	/*
16477 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16478 	 * provide any intpkt, destroypkt routines as we take care of
16479 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16480 	 */
16481 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16482 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16483 	xp->xb_pktp = un->un_rqs_pktp;
16484 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16485 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16486 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16487 
16488 	/*
16489 	 * Save the pointer to the request sense private bp so it can
16490 	 * be retrieved in sdintr.
16491 	 */
16492 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16493 	ASSERT(un->un_rqs_bp->b_private == xp);
16494 
16495 	/*
16496 	 * See if the HBA supports auto-request sense for the specified
16497 	 * target/lun. If it does, then try to enable it (if not already
16498 	 * enabled).
16499 	 *
16500 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16501 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16502 	 * return success.  However, in both of these cases ARQ is always
16503 	 * enabled and scsi_ifgetcap will always return true. The best approach
16504 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16505 	 *
16506 	 * The 3rd case is the HBA (adp) always return enabled on
16507 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16508 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16509 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16510 	 */
16511 
16512 	if (un->un_f_is_fibre == TRUE) {
16513 		un->un_f_arq_enabled = TRUE;
16514 	} else {
16515 #if defined(__i386) || defined(__amd64)
16516 		/*
16517 		 * Circumvent the Adaptec bug, remove this code when
16518 		 * the bug is fixed
16519 		 */
16520 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16521 #endif
16522 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16523 		case 0:
16524 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16525 			    "sd_alloc_rqs: HBA supports ARQ\n");
16526 			/*
16527 			 * ARQ is supported by this HBA but currently is not
16528 			 * enabled. Attempt to enable it and if successful then
16529 			 * mark this instance as ARQ enabled.
16530 			 */
16531 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16532 			    == 1) {
16533 				/* Successfully enabled ARQ in the HBA */
16534 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16535 				    "sd_alloc_rqs: ARQ enabled\n");
16536 				un->un_f_arq_enabled = TRUE;
16537 			} else {
16538 				/* Could not enable ARQ in the HBA */
16539 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16540 				    "sd_alloc_rqs: failed ARQ enable\n");
16541 				un->un_f_arq_enabled = FALSE;
16542 			}
16543 			break;
16544 		case 1:
16545 			/*
16546 			 * ARQ is supported by this HBA and is already enabled.
16547 			 * Just mark ARQ as enabled for this instance.
16548 			 */
16549 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16550 			    "sd_alloc_rqs: ARQ already enabled\n");
16551 			un->un_f_arq_enabled = TRUE;
16552 			break;
16553 		default:
16554 			/*
16555 			 * ARQ is not supported by this HBA; disable it for this
16556 			 * instance.
16557 			 */
16558 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16559 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16560 			un->un_f_arq_enabled = FALSE;
16561 			break;
16562 		}
16563 	}
16564 
16565 	return (DDI_SUCCESS);
16566 }
16567 
16568 
16569 /*
16570  *    Function: sd_free_rqs
16571  *
16572  * Description: Cleanup for the pre-instance RQS command.
16573  *
16574  *     Context: Kernel thread context
16575  */
16576 
16577 static void
16578 sd_free_rqs(struct sd_lun *un)
16579 {
16580 	ASSERT(un != NULL);
16581 
16582 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16583 
16584 	/*
16585 	 * If consistent memory is bound to a scsi_pkt, the pkt
16586 	 * has to be destroyed *before* freeing the consistent memory.
16587 	 * Don't change the sequence of this operations.
16588 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16589 	 * after it was freed in scsi_free_consistent_buf().
16590 	 */
16591 	if (un->un_rqs_pktp != NULL) {
16592 		scsi_destroy_pkt(un->un_rqs_pktp);
16593 		un->un_rqs_pktp = NULL;
16594 	}
16595 
16596 	if (un->un_rqs_bp != NULL) {
16597 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16598 		if (xp != NULL) {
16599 			kmem_free(xp, sizeof (struct sd_xbuf));
16600 		}
16601 		scsi_free_consistent_buf(un->un_rqs_bp);
16602 		un->un_rqs_bp = NULL;
16603 	}
16604 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16605 }
16606 
16607 
16608 
16609 /*
16610  *    Function: sd_reduce_throttle
16611  *
16612  * Description: Reduces the maximum # of outstanding commands on a
16613  *		target to the current number of outstanding commands.
16614  *		Queues a tiemout(9F) callback to restore the limit
16615  *		after a specified interval has elapsed.
16616  *		Typically used when we get a TRAN_BUSY return code
16617  *		back from scsi_transport().
16618  *
16619  *   Arguments: un - ptr to the sd_lun softstate struct
16620  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16621  *
16622  *     Context: May be called from interrupt context
16623  */
16624 
16625 static void
16626 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16627 {
16628 	ASSERT(un != NULL);
16629 	ASSERT(mutex_owned(SD_MUTEX(un)));
16630 	ASSERT(un->un_ncmds_in_transport >= 0);
16631 
16632 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16633 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16634 	    un, un->un_throttle, un->un_ncmds_in_transport);
16635 
16636 	if (un->un_throttle > 1) {
16637 		if (un->un_f_use_adaptive_throttle == TRUE) {
16638 			switch (throttle_type) {
16639 			case SD_THROTTLE_TRAN_BUSY:
16640 				if (un->un_busy_throttle == 0) {
16641 					un->un_busy_throttle = un->un_throttle;
16642 				}
16643 				break;
16644 			case SD_THROTTLE_QFULL:
16645 				un->un_busy_throttle = 0;
16646 				break;
16647 			default:
16648 				ASSERT(FALSE);
16649 			}
16650 
16651 			if (un->un_ncmds_in_transport > 0) {
16652 				un->un_throttle = un->un_ncmds_in_transport;
16653 			}
16654 
16655 		} else {
16656 			if (un->un_ncmds_in_transport == 0) {
16657 				un->un_throttle = 1;
16658 			} else {
16659 				un->un_throttle = un->un_ncmds_in_transport;
16660 			}
16661 		}
16662 	}
16663 
16664 	/* Reschedule the timeout if none is currently active */
16665 	if (un->un_reset_throttle_timeid == NULL) {
16666 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16667 		    un, SD_THROTTLE_RESET_INTERVAL);
16668 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16669 		    "sd_reduce_throttle: timeout scheduled!\n");
16670 	}
16671 
16672 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16673 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16674 }
16675 
16676 
16677 
16678 /*
16679  *    Function: sd_restore_throttle
16680  *
16681  * Description: Callback function for timeout(9F).  Resets the current
16682  *		value of un->un_throttle to its default.
16683  *
16684  *   Arguments: arg - pointer to associated softstate for the device.
16685  *
16686  *     Context: May be called from interrupt context
16687  */
16688 
16689 static void
16690 sd_restore_throttle(void *arg)
16691 {
16692 	struct sd_lun	*un = arg;
16693 
16694 	ASSERT(un != NULL);
16695 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16696 
16697 	mutex_enter(SD_MUTEX(un));
16698 
16699 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16700 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16701 
16702 	un->un_reset_throttle_timeid = NULL;
16703 
16704 	if (un->un_f_use_adaptive_throttle == TRUE) {
16705 		/*
16706 		 * If un_busy_throttle is nonzero, then it contains the
16707 		 * value that un_throttle was when we got a TRAN_BUSY back
16708 		 * from scsi_transport(). We want to revert back to this
16709 		 * value.
16710 		 *
16711 		 * In the QFULL case, the throttle limit will incrementally
16712 		 * increase until it reaches max throttle.
16713 		 */
16714 		if (un->un_busy_throttle > 0) {
16715 			un->un_throttle = un->un_busy_throttle;
16716 			un->un_busy_throttle = 0;
16717 		} else {
16718 			/*
16719 			 * increase throttle by 10% open gate slowly, schedule
16720 			 * another restore if saved throttle has not been
16721 			 * reached
16722 			 */
16723 			short throttle;
16724 			if (sd_qfull_throttle_enable) {
16725 				throttle = un->un_throttle +
16726 				    max((un->un_throttle / 10), 1);
16727 				un->un_throttle =
16728 				    (throttle < un->un_saved_throttle) ?
16729 				    throttle : un->un_saved_throttle;
16730 				if (un->un_throttle < un->un_saved_throttle) {
16731 					un->un_reset_throttle_timeid =
16732 					    timeout(sd_restore_throttle,
16733 					    un,
16734 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16735 				}
16736 			}
16737 		}
16738 
16739 		/*
16740 		 * If un_throttle has fallen below the low-water mark, we
16741 		 * restore the maximum value here (and allow it to ratchet
16742 		 * down again if necessary).
16743 		 */
16744 		if (un->un_throttle < un->un_min_throttle) {
16745 			un->un_throttle = un->un_saved_throttle;
16746 		}
16747 	} else {
16748 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16749 		    "restoring limit from 0x%x to 0x%x\n",
16750 		    un->un_throttle, un->un_saved_throttle);
16751 		un->un_throttle = un->un_saved_throttle;
16752 	}
16753 
16754 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16755 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16756 
16757 	sd_start_cmds(un, NULL);
16758 
16759 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16760 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16761 	    un, un->un_throttle);
16762 
16763 	mutex_exit(SD_MUTEX(un));
16764 
16765 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16766 }
16767 
16768 /*
16769  *    Function: sdrunout
16770  *
16771  * Description: Callback routine for scsi_init_pkt when a resource allocation
16772  *		fails.
16773  *
16774  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16775  *		soft state instance.
16776  *
16777  * Return Code: The scsi_init_pkt routine allows for the callback function to
16778  *		return a 0 indicating the callback should be rescheduled or a 1
16779  *		indicating not to reschedule. This routine always returns 1
16780  *		because the driver always provides a callback function to
16781  *		scsi_init_pkt. This results in a callback always being scheduled
16782  *		(via the scsi_init_pkt callback implementation) if a resource
16783  *		failure occurs.
16784  *
16785  *     Context: This callback function may not block or call routines that block
16786  *
16787  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16788  *		request persisting at the head of the list which cannot be
16789  *		satisfied even after multiple retries. In the future the driver
16790  *		may implement some time of maximum runout count before failing
16791  *		an I/O.
16792  */
16793 
16794 static int
16795 sdrunout(caddr_t arg)
16796 {
16797 	struct sd_lun	*un = (struct sd_lun *)arg;
16798 
16799 	ASSERT(un != NULL);
16800 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16801 
16802 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16803 
16804 	mutex_enter(SD_MUTEX(un));
16805 	sd_start_cmds(un, NULL);
16806 	mutex_exit(SD_MUTEX(un));
16807 	/*
16808 	 * This callback routine always returns 1 (i.e. do not reschedule)
16809 	 * because we always specify sdrunout as the callback handler for
16810 	 * scsi_init_pkt inside the call to sd_start_cmds.
16811 	 */
16812 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16813 	return (1);
16814 }
16815 
16816 
16817 /*
16818  *    Function: sdintr
16819  *
16820  * Description: Completion callback routine for scsi_pkt(9S) structs
16821  *		sent to the HBA driver via scsi_transport(9F).
16822  *
16823  *     Context: Interrupt context
16824  */
16825 
16826 static void
16827 sdintr(struct scsi_pkt *pktp)
16828 {
16829 	struct buf	*bp;
16830 	struct sd_xbuf	*xp;
16831 	struct sd_lun	*un;
16832 	size_t		actual_len;
16833 	sd_ssc_t	*sscp;
16834 
16835 	ASSERT(pktp != NULL);
16836 	bp = (struct buf *)pktp->pkt_private;
16837 	ASSERT(bp != NULL);
16838 	xp = SD_GET_XBUF(bp);
16839 	ASSERT(xp != NULL);
16840 	ASSERT(xp->xb_pktp != NULL);
16841 	un = SD_GET_UN(bp);
16842 	ASSERT(un != NULL);
16843 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16844 
16845 #ifdef SD_FAULT_INJECTION
16846 
16847 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16848 	/* SD FaultInjection */
16849 	sd_faultinjection(pktp);
16850 
16851 #endif /* SD_FAULT_INJECTION */
16852 
16853 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16854 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16855 
16856 	mutex_enter(SD_MUTEX(un));
16857 
16858 	ASSERT(un->un_fm_private != NULL);
16859 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16860 	ASSERT(sscp != NULL);
16861 
16862 	/* Reduce the count of the #commands currently in transport */
16863 	un->un_ncmds_in_transport--;
16864 	ASSERT(un->un_ncmds_in_transport >= 0);
16865 
16866 	/* Increment counter to indicate that the callback routine is active */
16867 	un->un_in_callback++;
16868 
16869 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16870 
16871 #ifdef	SDDEBUG
16872 	if (bp == un->un_retry_bp) {
16873 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16874 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16875 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16876 	}
16877 #endif
16878 
16879 	/*
16880 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16881 	 * state if needed.
16882 	 */
16883 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16884 		/* Prevent multiple console messages for the same failure. */
16885 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16886 			un->un_last_pkt_reason = CMD_DEV_GONE;
16887 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16888 			    "Command failed to complete...Device is gone\n");
16889 		}
16890 		if (un->un_mediastate != DKIO_DEV_GONE) {
16891 			un->un_mediastate = DKIO_DEV_GONE;
16892 			cv_broadcast(&un->un_state_cv);
16893 		}
16894 		/*
16895 		 * If the command happens to be the REQUEST SENSE command,
16896 		 * free up the rqs buf and fail the original command.
16897 		 */
16898 		if (bp == un->un_rqs_bp) {
16899 			bp = sd_mark_rqs_idle(un, xp);
16900 		}
16901 		sd_return_failed_command(un, bp, EIO);
16902 		goto exit;
16903 	}
16904 
16905 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16906 		SD_TRACE(SD_LOG_COMMON, un,
16907 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16908 	}
16909 
16910 	/*
16911 	 * First see if the pkt has auto-request sense data with it....
16912 	 * Look at the packet state first so we don't take a performance
16913 	 * hit looking at the arq enabled flag unless absolutely necessary.
16914 	 */
16915 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16916 	    (un->un_f_arq_enabled == TRUE)) {
16917 		/*
16918 		 * The HBA did an auto request sense for this command so check
16919 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16920 		 * driver command that should not be retried.
16921 		 */
16922 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16923 			/*
16924 			 * Save the relevant sense info into the xp for the
16925 			 * original cmd.
16926 			 */
16927 			struct scsi_arq_status *asp;
16928 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16929 			xp->xb_sense_status =
16930 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16931 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16932 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16933 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16934 				actual_len = MAX_SENSE_LENGTH -
16935 				    xp->xb_sense_resid;
16936 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16937 				    MAX_SENSE_LENGTH);
16938 			} else {
16939 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16940 					actual_len = MAX_SENSE_LENGTH -
16941 					    xp->xb_sense_resid;
16942 				} else {
16943 					actual_len = SENSE_LENGTH -
16944 					    xp->xb_sense_resid;
16945 				}
16946 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16947 					if ((((struct uscsi_cmd *)
16948 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16949 					    actual_len) {
16950 						xp->xb_sense_resid =
16951 						    (((struct uscsi_cmd *)
16952 						    (xp->xb_pktinfo))->
16953 						    uscsi_rqlen) - actual_len;
16954 					} else {
16955 						xp->xb_sense_resid = 0;
16956 					}
16957 				}
16958 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16959 				    SENSE_LENGTH);
16960 			}
16961 
16962 			/* fail the command */
16963 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16964 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16965 			sd_return_failed_command(un, bp, EIO);
16966 			goto exit;
16967 		}
16968 
16969 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16970 		/*
16971 		 * We want to either retry or fail this command, so free
16972 		 * the DMA resources here.  If we retry the command then
16973 		 * the DMA resources will be reallocated in sd_start_cmds().
16974 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16975 		 * causes the *entire* transfer to start over again from the
16976 		 * beginning of the request, even for PARTIAL chunks that
16977 		 * have already transferred successfully.
16978 		 */
16979 		if ((un->un_f_is_fibre == TRUE) &&
16980 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16981 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16982 			scsi_dmafree(pktp);
16983 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16984 		}
16985 #endif
16986 
16987 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16988 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16989 
16990 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16991 		goto exit;
16992 	}
16993 
16994 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16995 	if (pktp->pkt_flags & FLAG_SENSING)  {
16996 		/* This pktp is from the unit's REQUEST_SENSE command */
16997 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16998 		    "sdintr: sd_handle_request_sense\n");
16999 		sd_handle_request_sense(un, bp, xp, pktp);
17000 		goto exit;
17001 	}
17002 
17003 	/*
17004 	 * Check to see if the command successfully completed as requested;
17005 	 * this is the most common case (and also the hot performance path).
17006 	 *
17007 	 * Requirements for successful completion are:
17008 	 * pkt_reason is CMD_CMPLT and packet status is status good.
17009 	 * In addition:
17010 	 * - A residual of zero indicates successful completion no matter what
17011 	 *   the command is.
17012 	 * - If the residual is not zero and the command is not a read or
17013 	 *   write, then it's still defined as successful completion. In other
17014 	 *   words, if the command is a read or write the residual must be
17015 	 *   zero for successful completion.
17016 	 * - If the residual is not zero and the command is a read or
17017 	 *   write, and it's a USCSICMD, then it's still defined as
17018 	 *   successful completion.
17019 	 */
17020 	if ((pktp->pkt_reason == CMD_CMPLT) &&
17021 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
17022 
17023 		/*
17024 		 * Since this command is returned with a good status, we
17025 		 * can reset the count for Sonoma failover.
17026 		 */
17027 		un->un_sonoma_failure_count = 0;
17028 
17029 		/*
17030 		 * Return all USCSI commands on good status
17031 		 */
17032 		if (pktp->pkt_resid == 0) {
17033 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17034 			    "sdintr: returning command for resid == 0\n");
17035 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17036 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17037 			SD_UPDATE_B_RESID(bp, pktp);
17038 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17039 			    "sdintr: returning command for resid != 0\n");
17040 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17041 			SD_UPDATE_B_RESID(bp, pktp);
17042 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17043 			    "sdintr: returning uscsi command\n");
17044 		} else {
17045 			goto not_successful;
17046 		}
17047 		sd_return_command(un, bp);
17048 
17049 		/*
17050 		 * Decrement counter to indicate that the callback routine
17051 		 * is done.
17052 		 */
17053 		un->un_in_callback--;
17054 		ASSERT(un->un_in_callback >= 0);
17055 		mutex_exit(SD_MUTEX(un));
17056 
17057 		return;
17058 	}
17059 
17060 not_successful:
17061 
17062 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17063 	/*
17064 	 * The following is based upon knowledge of the underlying transport
17065 	 * and its use of DMA resources.  This code should be removed when
17066 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17067 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17068 	 * and sd_start_cmds().
17069 	 *
17070 	 * Free any DMA resources associated with this command if there
17071 	 * is a chance it could be retried or enqueued for later retry.
17072 	 * If we keep the DMA binding then mpxio cannot reissue the
17073 	 * command on another path whenever a path failure occurs.
17074 	 *
17075 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17076 	 * causes the *entire* transfer to start over again from the
17077 	 * beginning of the request, even for PARTIAL chunks that
17078 	 * have already transferred successfully.
17079 	 *
17080 	 * This is only done for non-uscsi commands (and also skipped for the
17081 	 * driver's internal RQS command). Also just do this for Fibre Channel
17082 	 * devices as these are the only ones that support mpxio.
17083 	 */
17084 	if ((un->un_f_is_fibre == TRUE) &&
17085 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17086 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17087 		scsi_dmafree(pktp);
17088 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17089 	}
17090 #endif
17091 
17092 	/*
17093 	 * The command did not successfully complete as requested so check
17094 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17095 	 * driver command that should not be retried so just return. If
17096 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17097 	 */
17098 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17099 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17100 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17101 		/*
17102 		 * Issue a request sense if a check condition caused the error
17103 		 * (we handle the auto request sense case above), otherwise
17104 		 * just fail the command.
17105 		 */
17106 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17107 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17108 			sd_send_request_sense_command(un, bp, pktp);
17109 		} else {
17110 			sd_return_failed_command(un, bp, EIO);
17111 		}
17112 		goto exit;
17113 	}
17114 
17115 	/*
17116 	 * The command did not successfully complete as requested so process
17117 	 * the error, retry, and/or attempt recovery.
17118 	 */
17119 	switch (pktp->pkt_reason) {
17120 	case CMD_CMPLT:
17121 		switch (SD_GET_PKT_STATUS(pktp)) {
17122 		case STATUS_GOOD:
17123 			/*
17124 			 * The command completed successfully with a non-zero
17125 			 * residual
17126 			 */
17127 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17128 			    "sdintr: STATUS_GOOD \n");
17129 			sd_pkt_status_good(un, bp, xp, pktp);
17130 			break;
17131 
17132 		case STATUS_CHECK:
17133 		case STATUS_TERMINATED:
17134 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17135 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17136 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17137 			break;
17138 
17139 		case STATUS_BUSY:
17140 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17141 			    "sdintr: STATUS_BUSY\n");
17142 			sd_pkt_status_busy(un, bp, xp, pktp);
17143 			break;
17144 
17145 		case STATUS_RESERVATION_CONFLICT:
17146 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17147 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17148 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17149 			break;
17150 
17151 		case STATUS_QFULL:
17152 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17153 			    "sdintr: STATUS_QFULL\n");
17154 			sd_pkt_status_qfull(un, bp, xp, pktp);
17155 			break;
17156 
17157 		case STATUS_MET:
17158 		case STATUS_INTERMEDIATE:
17159 		case STATUS_SCSI2:
17160 		case STATUS_INTERMEDIATE_MET:
17161 		case STATUS_ACA_ACTIVE:
17162 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17163 			    "Unexpected SCSI status received: 0x%x\n",
17164 			    SD_GET_PKT_STATUS(pktp));
17165 			/*
17166 			 * Mark the ssc_flags when detected invalid status
17167 			 * code for non-USCSI command.
17168 			 */
17169 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17170 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17171 				    0, "stat-code");
17172 			}
17173 			sd_return_failed_command(un, bp, EIO);
17174 			break;
17175 
17176 		default:
17177 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17178 			    "Invalid SCSI status received: 0x%x\n",
17179 			    SD_GET_PKT_STATUS(pktp));
17180 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17181 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17182 				    0, "stat-code");
17183 			}
17184 			sd_return_failed_command(un, bp, EIO);
17185 			break;
17186 
17187 		}
17188 		break;
17189 
17190 	case CMD_INCOMPLETE:
17191 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17192 		    "sdintr:  CMD_INCOMPLETE\n");
17193 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17194 		break;
17195 	case CMD_TRAN_ERR:
17196 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17197 		    "sdintr: CMD_TRAN_ERR\n");
17198 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17199 		break;
17200 	case CMD_RESET:
17201 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17202 		    "sdintr: CMD_RESET \n");
17203 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17204 		break;
17205 	case CMD_ABORTED:
17206 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17207 		    "sdintr: CMD_ABORTED \n");
17208 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17209 		break;
17210 	case CMD_TIMEOUT:
17211 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17212 		    "sdintr: CMD_TIMEOUT\n");
17213 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17214 		break;
17215 	case CMD_UNX_BUS_FREE:
17216 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17217 		    "sdintr: CMD_UNX_BUS_FREE \n");
17218 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17219 		break;
17220 	case CMD_TAG_REJECT:
17221 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17222 		    "sdintr: CMD_TAG_REJECT\n");
17223 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17224 		break;
17225 	default:
17226 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17227 		    "sdintr: default\n");
17228 		/*
17229 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17230 		 */
17231 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17232 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17233 			    0, "pkt-reason");
17234 		}
17235 		sd_pkt_reason_default(un, bp, xp, pktp);
17236 		break;
17237 	}
17238 
17239 exit:
17240 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17241 
17242 	/* Decrement counter to indicate that the callback routine is done. */
17243 	un->un_in_callback--;
17244 	ASSERT(un->un_in_callback >= 0);
17245 
17246 	/*
17247 	 * At this point, the pkt has been dispatched, ie, it is either
17248 	 * being re-tried or has been returned to its caller and should
17249 	 * not be referenced.
17250 	 */
17251 
17252 	mutex_exit(SD_MUTEX(un));
17253 }
17254 
17255 
17256 /*
17257  *    Function: sd_print_incomplete_msg
17258  *
17259  * Description: Prints the error message for a CMD_INCOMPLETE error.
17260  *
17261  *   Arguments: un - ptr to associated softstate for the device.
17262  *		bp - ptr to the buf(9S) for the command.
17263  *		arg - message string ptr
17264  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17265  *			or SD_NO_RETRY_ISSUED.
17266  *
17267  *     Context: May be called under interrupt context
17268  */
17269 
17270 static void
17271 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17272 {
17273 	struct scsi_pkt	*pktp;
17274 	char	*msgp;
17275 	char	*cmdp = arg;
17276 
17277 	ASSERT(un != NULL);
17278 	ASSERT(mutex_owned(SD_MUTEX(un)));
17279 	ASSERT(bp != NULL);
17280 	ASSERT(arg != NULL);
17281 	pktp = SD_GET_PKTP(bp);
17282 	ASSERT(pktp != NULL);
17283 
17284 	switch (code) {
17285 	case SD_DELAYED_RETRY_ISSUED:
17286 	case SD_IMMEDIATE_RETRY_ISSUED:
17287 		msgp = "retrying";
17288 		break;
17289 	case SD_NO_RETRY_ISSUED:
17290 	default:
17291 		msgp = "giving up";
17292 		break;
17293 	}
17294 
17295 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17296 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17297 		    "incomplete %s- %s\n", cmdp, msgp);
17298 	}
17299 }
17300 
17301 
17302 
17303 /*
17304  *    Function: sd_pkt_status_good
17305  *
17306  * Description: Processing for a STATUS_GOOD code in pkt_status.
17307  *
17308  *     Context: May be called under interrupt context
17309  */
17310 
17311 static void
17312 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17313 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17314 {
17315 	char	*cmdp;
17316 
17317 	ASSERT(un != NULL);
17318 	ASSERT(mutex_owned(SD_MUTEX(un)));
17319 	ASSERT(bp != NULL);
17320 	ASSERT(xp != NULL);
17321 	ASSERT(pktp != NULL);
17322 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17323 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17324 	ASSERT(pktp->pkt_resid != 0);
17325 
17326 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17327 
17328 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17329 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17330 	case SCMD_READ:
17331 		cmdp = "read";
17332 		break;
17333 	case SCMD_WRITE:
17334 		cmdp = "write";
17335 		break;
17336 	default:
17337 		SD_UPDATE_B_RESID(bp, pktp);
17338 		sd_return_command(un, bp);
17339 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17340 		return;
17341 	}
17342 
17343 	/*
17344 	 * See if we can retry the read/write, preferrably immediately.
17345 	 * If retries are exhaused, then sd_retry_command() will update
17346 	 * the b_resid count.
17347 	 */
17348 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17349 	    cmdp, EIO, (clock_t)0, NULL);
17350 
17351 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17352 }
17353 
17354 
17355 
17356 
17357 
17358 /*
17359  *    Function: sd_handle_request_sense
17360  *
17361  * Description: Processing for non-auto Request Sense command.
17362  *
17363  *   Arguments: un - ptr to associated softstate
17364  *		sense_bp - ptr to buf(9S) for the RQS command
17365  *		sense_xp - ptr to the sd_xbuf for the RQS command
17366  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17367  *
17368  *     Context: May be called under interrupt context
17369  */
17370 
17371 static void
17372 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17373 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17374 {
17375 	struct buf	*cmd_bp;	/* buf for the original command */
17376 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17377 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17378 	size_t		actual_len;	/* actual sense data length */
17379 
17380 	ASSERT(un != NULL);
17381 	ASSERT(mutex_owned(SD_MUTEX(un)));
17382 	ASSERT(sense_bp != NULL);
17383 	ASSERT(sense_xp != NULL);
17384 	ASSERT(sense_pktp != NULL);
17385 
17386 	/*
17387 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17388 	 * RQS command and not the original command.
17389 	 */
17390 	ASSERT(sense_pktp == un->un_rqs_pktp);
17391 	ASSERT(sense_bp   == un->un_rqs_bp);
17392 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17393 	    (FLAG_SENSING | FLAG_HEAD));
17394 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17395 	    FLAG_SENSING) == FLAG_SENSING);
17396 
17397 	/* These are the bp, xp, and pktp for the original command */
17398 	cmd_bp = sense_xp->xb_sense_bp;
17399 	cmd_xp = SD_GET_XBUF(cmd_bp);
17400 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17401 
17402 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17403 		/*
17404 		 * The REQUEST SENSE command failed.  Release the REQUEST
17405 		 * SENSE command for re-use, get back the bp for the original
17406 		 * command, and attempt to re-try the original command if
17407 		 * FLAG_DIAGNOSE is not set in the original packet.
17408 		 */
17409 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17410 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17411 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17412 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17413 			    NULL, NULL, EIO, (clock_t)0, NULL);
17414 			return;
17415 		}
17416 	}
17417 
17418 	/*
17419 	 * Save the relevant sense info into the xp for the original cmd.
17420 	 *
17421 	 * Note: if the request sense failed the state info will be zero
17422 	 * as set in sd_mark_rqs_busy()
17423 	 */
17424 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17425 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17426 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17427 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17428 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17429 	    SENSE_LENGTH)) {
17430 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17431 		    MAX_SENSE_LENGTH);
17432 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17433 	} else {
17434 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17435 		    SENSE_LENGTH);
17436 		if (actual_len < SENSE_LENGTH) {
17437 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17438 		} else {
17439 			cmd_xp->xb_sense_resid = 0;
17440 		}
17441 	}
17442 
17443 	/*
17444 	 *  Free up the RQS command....
17445 	 *  NOTE:
17446 	 *	Must do this BEFORE calling sd_validate_sense_data!
17447 	 *	sd_validate_sense_data may return the original command in
17448 	 *	which case the pkt will be freed and the flags can no
17449 	 *	longer be touched.
17450 	 *	SD_MUTEX is held through this process until the command
17451 	 *	is dispatched based upon the sense data, so there are
17452 	 *	no race conditions.
17453 	 */
17454 	(void) sd_mark_rqs_idle(un, sense_xp);
17455 
17456 	/*
17457 	 * For a retryable command see if we have valid sense data, if so then
17458 	 * turn it over to sd_decode_sense() to figure out the right course of
17459 	 * action. Just fail a non-retryable command.
17460 	 */
17461 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17462 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17463 		    SD_SENSE_DATA_IS_VALID) {
17464 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17465 		}
17466 	} else {
17467 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17468 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17469 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17470 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17471 		sd_return_failed_command(un, cmd_bp, EIO);
17472 	}
17473 }
17474 
17475 
17476 
17477 
17478 /*
17479  *    Function: sd_handle_auto_request_sense
17480  *
17481  * Description: Processing for auto-request sense information.
17482  *
17483  *   Arguments: un - ptr to associated softstate
17484  *		bp - ptr to buf(9S) for the command
17485  *		xp - ptr to the sd_xbuf for the command
17486  *		pktp - ptr to the scsi_pkt(9S) for the command
17487  *
17488  *     Context: May be called under interrupt context
17489  */
17490 
17491 static void
17492 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17493 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17494 {
17495 	struct scsi_arq_status *asp;
17496 	size_t actual_len;
17497 
17498 	ASSERT(un != NULL);
17499 	ASSERT(mutex_owned(SD_MUTEX(un)));
17500 	ASSERT(bp != NULL);
17501 	ASSERT(xp != NULL);
17502 	ASSERT(pktp != NULL);
17503 	ASSERT(pktp != un->un_rqs_pktp);
17504 	ASSERT(bp   != un->un_rqs_bp);
17505 
17506 	/*
17507 	 * For auto-request sense, we get a scsi_arq_status back from
17508 	 * the HBA, with the sense data in the sts_sensedata member.
17509 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17510 	 */
17511 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17512 
17513 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17514 		/*
17515 		 * The auto REQUEST SENSE failed; see if we can re-try
17516 		 * the original command.
17517 		 */
17518 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17519 		    "auto request sense failed (reason=%s)\n",
17520 		    scsi_rname(asp->sts_rqpkt_reason));
17521 
17522 		sd_reset_target(un, pktp);
17523 
17524 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17525 		    NULL, NULL, EIO, (clock_t)0, NULL);
17526 		return;
17527 	}
17528 
17529 	/* Save the relevant sense info into the xp for the original cmd. */
17530 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17531 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17532 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17533 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17534 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17535 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17536 		    MAX_SENSE_LENGTH);
17537 	} else {
17538 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17539 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17540 		} else {
17541 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17542 		}
17543 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17544 			if ((((struct uscsi_cmd *)
17545 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17546 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17547 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17548 				    actual_len;
17549 			} else {
17550 				xp->xb_sense_resid = 0;
17551 			}
17552 		}
17553 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17554 	}
17555 
17556 	/*
17557 	 * See if we have valid sense data, if so then turn it over to
17558 	 * sd_decode_sense() to figure out the right course of action.
17559 	 */
17560 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17561 	    SD_SENSE_DATA_IS_VALID) {
17562 		sd_decode_sense(un, bp, xp, pktp);
17563 	}
17564 }
17565 
17566 
17567 /*
17568  *    Function: sd_print_sense_failed_msg
17569  *
17570  * Description: Print log message when RQS has failed.
17571  *
17572  *   Arguments: un - ptr to associated softstate
17573  *		bp - ptr to buf(9S) for the command
17574  *		arg - generic message string ptr
17575  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17576  *			or SD_NO_RETRY_ISSUED
17577  *
17578  *     Context: May be called from interrupt context
17579  */
17580 
17581 static void
17582 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17583 	int code)
17584 {
17585 	char	*msgp = arg;
17586 
17587 	ASSERT(un != NULL);
17588 	ASSERT(mutex_owned(SD_MUTEX(un)));
17589 	ASSERT(bp != NULL);
17590 
17591 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17592 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17593 	}
17594 }
17595 
17596 
17597 /*
17598  *    Function: sd_validate_sense_data
17599  *
17600  * Description: Check the given sense data for validity.
17601  *		If the sense data is not valid, the command will
17602  *		be either failed or retried!
17603  *
17604  * Return Code: SD_SENSE_DATA_IS_INVALID
17605  *		SD_SENSE_DATA_IS_VALID
17606  *
17607  *     Context: May be called from interrupt context
17608  */
17609 
17610 static int
17611 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17612 	size_t actual_len)
17613 {
17614 	struct scsi_extended_sense *esp;
17615 	struct	scsi_pkt *pktp;
17616 	char	*msgp = NULL;
17617 	sd_ssc_t *sscp;
17618 
17619 	ASSERT(un != NULL);
17620 	ASSERT(mutex_owned(SD_MUTEX(un)));
17621 	ASSERT(bp != NULL);
17622 	ASSERT(bp != un->un_rqs_bp);
17623 	ASSERT(xp != NULL);
17624 	ASSERT(un->un_fm_private != NULL);
17625 
17626 	pktp = SD_GET_PKTP(bp);
17627 	ASSERT(pktp != NULL);
17628 
17629 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17630 	ASSERT(sscp != NULL);
17631 
17632 	/*
17633 	 * Check the status of the RQS command (auto or manual).
17634 	 */
17635 	switch (xp->xb_sense_status & STATUS_MASK) {
17636 	case STATUS_GOOD:
17637 		break;
17638 
17639 	case STATUS_RESERVATION_CONFLICT:
17640 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17641 		return (SD_SENSE_DATA_IS_INVALID);
17642 
17643 	case STATUS_BUSY:
17644 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17645 		    "Busy Status on REQUEST SENSE\n");
17646 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17647 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17648 		return (SD_SENSE_DATA_IS_INVALID);
17649 
17650 	case STATUS_QFULL:
17651 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17652 		    "QFULL Status on REQUEST SENSE\n");
17653 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17654 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17655 		return (SD_SENSE_DATA_IS_INVALID);
17656 
17657 	case STATUS_CHECK:
17658 	case STATUS_TERMINATED:
17659 		msgp = "Check Condition on REQUEST SENSE\n";
17660 		goto sense_failed;
17661 
17662 	default:
17663 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17664 		goto sense_failed;
17665 	}
17666 
17667 	/*
17668 	 * See if we got the minimum required amount of sense data.
17669 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17670 	 * or less.
17671 	 */
17672 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17673 	    (actual_len == 0)) {
17674 		msgp = "Request Sense couldn't get sense data\n";
17675 		goto sense_failed;
17676 	}
17677 
17678 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17679 		msgp = "Not enough sense information\n";
17680 		/* Mark the ssc_flags for detecting invalid sense data */
17681 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17682 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17683 			    "sense-data");
17684 		}
17685 		goto sense_failed;
17686 	}
17687 
17688 	/*
17689 	 * We require the extended sense data
17690 	 */
17691 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17692 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17693 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17694 			static char tmp[8];
17695 			static char buf[148];
17696 			char *p = (char *)(xp->xb_sense_data);
17697 			int i;
17698 
17699 			mutex_enter(&sd_sense_mutex);
17700 			(void) strcpy(buf, "undecodable sense information:");
17701 			for (i = 0; i < actual_len; i++) {
17702 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17703 				(void) strcpy(&buf[strlen(buf)], tmp);
17704 			}
17705 			i = strlen(buf);
17706 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17707 
17708 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17709 				scsi_log(SD_DEVINFO(un), sd_label,
17710 				    CE_WARN, buf);
17711 			}
17712 			mutex_exit(&sd_sense_mutex);
17713 		}
17714 
17715 		/* Mark the ssc_flags for detecting invalid sense data */
17716 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17717 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17718 			    "sense-data");
17719 		}
17720 
17721 		/* Note: Legacy behavior, fail the command with no retry */
17722 		sd_return_failed_command(un, bp, EIO);
17723 		return (SD_SENSE_DATA_IS_INVALID);
17724 	}
17725 
17726 	/*
17727 	 * Check that es_code is valid (es_class concatenated with es_code
17728 	 * make up the "response code" field.  es_class will always be 7, so
17729 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17730 	 * format.
17731 	 */
17732 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17733 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17734 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17735 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17736 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17737 		/* Mark the ssc_flags for detecting invalid sense data */
17738 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17739 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17740 			    "sense-data");
17741 		}
17742 		goto sense_failed;
17743 	}
17744 
17745 	return (SD_SENSE_DATA_IS_VALID);
17746 
17747 sense_failed:
17748 	/*
17749 	 * If the request sense failed (for whatever reason), attempt
17750 	 * to retry the original command.
17751 	 */
17752 #if defined(__i386) || defined(__amd64)
17753 	/*
17754 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17755 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17756 	 * for both SCSI/FC.
17757 	 * The SD_RETRY_DELAY value need to be adjusted here
17758 	 * when SD_RETRY_DELAY change in sddef.h
17759 	 */
17760 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17761 	    sd_print_sense_failed_msg, msgp, EIO,
17762 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17763 #else
17764 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17765 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17766 #endif
17767 
17768 	return (SD_SENSE_DATA_IS_INVALID);
17769 }
17770 
17771 /*
17772  *    Function: sd_decode_sense
17773  *
17774  * Description: Take recovery action(s) when SCSI Sense Data is received.
17775  *
17776  *     Context: Interrupt context.
17777  */
17778 
17779 static void
17780 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17781 	struct scsi_pkt *pktp)
17782 {
17783 	uint8_t sense_key;
17784 
17785 	ASSERT(un != NULL);
17786 	ASSERT(mutex_owned(SD_MUTEX(un)));
17787 	ASSERT(bp != NULL);
17788 	ASSERT(bp != un->un_rqs_bp);
17789 	ASSERT(xp != NULL);
17790 	ASSERT(pktp != NULL);
17791 
17792 	sense_key = scsi_sense_key(xp->xb_sense_data);
17793 
17794 	switch (sense_key) {
17795 	case KEY_NO_SENSE:
17796 		sd_sense_key_no_sense(un, bp, xp, pktp);
17797 		break;
17798 	case KEY_RECOVERABLE_ERROR:
17799 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17800 		    bp, xp, pktp);
17801 		break;
17802 	case KEY_NOT_READY:
17803 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17804 		    bp, xp, pktp);
17805 		break;
17806 	case KEY_MEDIUM_ERROR:
17807 	case KEY_HARDWARE_ERROR:
17808 		sd_sense_key_medium_or_hardware_error(un,
17809 		    xp->xb_sense_data, bp, xp, pktp);
17810 		break;
17811 	case KEY_ILLEGAL_REQUEST:
17812 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17813 		break;
17814 	case KEY_UNIT_ATTENTION:
17815 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17816 		    bp, xp, pktp);
17817 		break;
17818 	case KEY_WRITE_PROTECT:
17819 	case KEY_VOLUME_OVERFLOW:
17820 	case KEY_MISCOMPARE:
17821 		sd_sense_key_fail_command(un, bp, xp, pktp);
17822 		break;
17823 	case KEY_BLANK_CHECK:
17824 		sd_sense_key_blank_check(un, bp, xp, pktp);
17825 		break;
17826 	case KEY_ABORTED_COMMAND:
17827 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17828 		break;
17829 	case KEY_VENDOR_UNIQUE:
17830 	case KEY_COPY_ABORTED:
17831 	case KEY_EQUAL:
17832 	case KEY_RESERVED:
17833 	default:
17834 		sd_sense_key_default(un, xp->xb_sense_data,
17835 		    bp, xp, pktp);
17836 		break;
17837 	}
17838 }
17839 
17840 
17841 /*
17842  *    Function: sd_dump_memory
17843  *
17844  * Description: Debug logging routine to print the contents of a user provided
17845  *		buffer. The output of the buffer is broken up into 256 byte
17846  *		segments due to a size constraint of the scsi_log.
17847  *		implementation.
17848  *
17849  *   Arguments: un - ptr to softstate
17850  *		comp - component mask
17851  *		title - "title" string to preceed data when printed
17852  *		data - ptr to data block to be printed
17853  *		len - size of data block to be printed
17854  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17855  *
17856  *     Context: May be called from interrupt context
17857  */
17858 
17859 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17860 
17861 static char *sd_dump_format_string[] = {
17862 		" 0x%02x",
17863 		" %c"
17864 };
17865 
17866 static void
17867 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17868     int len, int fmt)
17869 {
17870 	int	i, j;
17871 	int	avail_count;
17872 	int	start_offset;
17873 	int	end_offset;
17874 	size_t	entry_len;
17875 	char	*bufp;
17876 	char	*local_buf;
17877 	char	*format_string;
17878 
17879 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17880 
17881 	/*
17882 	 * In the debug version of the driver, this function is called from a
17883 	 * number of places which are NOPs in the release driver.
17884 	 * The debug driver therefore has additional methods of filtering
17885 	 * debug output.
17886 	 */
17887 #ifdef SDDEBUG
17888 	/*
17889 	 * In the debug version of the driver we can reduce the amount of debug
17890 	 * messages by setting sd_error_level to something other than
17891 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17892 	 * sd_component_mask.
17893 	 */
17894 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17895 	    (sd_error_level != SCSI_ERR_ALL)) {
17896 		return;
17897 	}
17898 	if (((sd_component_mask & comp) == 0) ||
17899 	    (sd_error_level != SCSI_ERR_ALL)) {
17900 		return;
17901 	}
17902 #else
17903 	if (sd_error_level != SCSI_ERR_ALL) {
17904 		return;
17905 	}
17906 #endif
17907 
17908 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17909 	bufp = local_buf;
17910 	/*
17911 	 * Available length is the length of local_buf[], minus the
17912 	 * length of the title string, minus one for the ":", minus
17913 	 * one for the newline, minus one for the NULL terminator.
17914 	 * This gives the #bytes available for holding the printed
17915 	 * values from the given data buffer.
17916 	 */
17917 	if (fmt == SD_LOG_HEX) {
17918 		format_string = sd_dump_format_string[0];
17919 	} else /* SD_LOG_CHAR */ {
17920 		format_string = sd_dump_format_string[1];
17921 	}
17922 	/*
17923 	 * Available count is the number of elements from the given
17924 	 * data buffer that we can fit into the available length.
17925 	 * This is based upon the size of the format string used.
17926 	 * Make one entry and find it's size.
17927 	 */
17928 	(void) sprintf(bufp, format_string, data[0]);
17929 	entry_len = strlen(bufp);
17930 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17931 
17932 	j = 0;
17933 	while (j < len) {
17934 		bufp = local_buf;
17935 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17936 		start_offset = j;
17937 
17938 		end_offset = start_offset + avail_count;
17939 
17940 		(void) sprintf(bufp, "%s:", title);
17941 		bufp += strlen(bufp);
17942 		for (i = start_offset; ((i < end_offset) && (j < len));
17943 		    i++, j++) {
17944 			(void) sprintf(bufp, format_string, data[i]);
17945 			bufp += entry_len;
17946 		}
17947 		(void) sprintf(bufp, "\n");
17948 
17949 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17950 	}
17951 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17952 }
17953 
17954 /*
17955  *    Function: sd_print_sense_msg
17956  *
17957  * Description: Log a message based upon the given sense data.
17958  *
17959  *   Arguments: un - ptr to associated softstate
17960  *		bp - ptr to buf(9S) for the command
17961  *		arg - ptr to associate sd_sense_info struct
17962  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17963  *			or SD_NO_RETRY_ISSUED
17964  *
17965  *     Context: May be called from interrupt context
17966  */
17967 
17968 static void
17969 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17970 {
17971 	struct sd_xbuf	*xp;
17972 	struct scsi_pkt	*pktp;
17973 	uint8_t *sensep;
17974 	daddr_t request_blkno;
17975 	diskaddr_t err_blkno;
17976 	int severity;
17977 	int pfa_flag;
17978 	extern struct scsi_key_strings scsi_cmds[];
17979 
17980 	ASSERT(un != NULL);
17981 	ASSERT(mutex_owned(SD_MUTEX(un)));
17982 	ASSERT(bp != NULL);
17983 	xp = SD_GET_XBUF(bp);
17984 	ASSERT(xp != NULL);
17985 	pktp = SD_GET_PKTP(bp);
17986 	ASSERT(pktp != NULL);
17987 	ASSERT(arg != NULL);
17988 
17989 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17990 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17991 
17992 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17993 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17994 		severity = SCSI_ERR_RETRYABLE;
17995 	}
17996 
17997 	/* Use absolute block number for the request block number */
17998 	request_blkno = xp->xb_blkno;
17999 
18000 	/*
18001 	 * Now try to get the error block number from the sense data
18002 	 */
18003 	sensep = xp->xb_sense_data;
18004 
18005 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
18006 	    (uint64_t *)&err_blkno)) {
18007 		/*
18008 		 * We retrieved the error block number from the information
18009 		 * portion of the sense data.
18010 		 *
18011 		 * For USCSI commands we are better off using the error
18012 		 * block no. as the requested block no. (This is the best
18013 		 * we can estimate.)
18014 		 */
18015 		if ((SD_IS_BUFIO(xp) == FALSE) &&
18016 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
18017 			request_blkno = err_blkno;
18018 		}
18019 	} else {
18020 		/*
18021 		 * Without the es_valid bit set (for fixed format) or an
18022 		 * information descriptor (for descriptor format) we cannot
18023 		 * be certain of the error blkno, so just use the
18024 		 * request_blkno.
18025 		 */
18026 		err_blkno = (diskaddr_t)request_blkno;
18027 	}
18028 
18029 	/*
18030 	 * The following will log the buffer contents for the release driver
18031 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
18032 	 * level is set to verbose.
18033 	 */
18034 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18035 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18036 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18037 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18038 
18039 	if (pfa_flag == FALSE) {
18040 		/* This is normally only set for USCSI */
18041 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18042 			return;
18043 		}
18044 
18045 		if ((SD_IS_BUFIO(xp) == TRUE) &&
18046 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18047 		    (severity < sd_error_level))) {
18048 			return;
18049 		}
18050 	}
18051 	/*
18052 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18053 	 */
18054 	if ((SD_IS_LSI(un)) &&
18055 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18056 	    (scsi_sense_asc(sensep) == 0x94) &&
18057 	    (scsi_sense_ascq(sensep) == 0x01)) {
18058 		un->un_sonoma_failure_count++;
18059 		if (un->un_sonoma_failure_count > 1) {
18060 			return;
18061 		}
18062 	}
18063 
18064 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18065 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18066 	    (pktp->pkt_resid == 0))) {
18067 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18068 		    request_blkno, err_blkno, scsi_cmds,
18069 		    (struct scsi_extended_sense *)sensep,
18070 		    un->un_additional_codes, NULL);
18071 	}
18072 }
18073 
18074 /*
18075  *    Function: sd_sense_key_no_sense
18076  *
18077  * Description: Recovery action when sense data was not received.
18078  *
18079  *     Context: May be called from interrupt context
18080  */
18081 
18082 static void
18083 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18084 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18085 {
18086 	struct sd_sense_info	si;
18087 
18088 	ASSERT(un != NULL);
18089 	ASSERT(mutex_owned(SD_MUTEX(un)));
18090 	ASSERT(bp != NULL);
18091 	ASSERT(xp != NULL);
18092 	ASSERT(pktp != NULL);
18093 
18094 	si.ssi_severity = SCSI_ERR_FATAL;
18095 	si.ssi_pfa_flag = FALSE;
18096 
18097 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18098 
18099 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18100 	    &si, EIO, (clock_t)0, NULL);
18101 }
18102 
18103 
18104 /*
18105  *    Function: sd_sense_key_recoverable_error
18106  *
18107  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18108  *
18109  *     Context: May be called from interrupt context
18110  */
18111 
18112 static void
18113 sd_sense_key_recoverable_error(struct sd_lun *un,
18114 	uint8_t *sense_datap,
18115 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18116 {
18117 	struct sd_sense_info	si;
18118 	uint8_t asc = scsi_sense_asc(sense_datap);
18119 
18120 	ASSERT(un != NULL);
18121 	ASSERT(mutex_owned(SD_MUTEX(un)));
18122 	ASSERT(bp != NULL);
18123 	ASSERT(xp != NULL);
18124 	ASSERT(pktp != NULL);
18125 
18126 	/*
18127 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18128 	 */
18129 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18130 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18131 		si.ssi_severity = SCSI_ERR_INFO;
18132 		si.ssi_pfa_flag = TRUE;
18133 	} else {
18134 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18135 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18136 		si.ssi_severity = SCSI_ERR_RECOVERED;
18137 		si.ssi_pfa_flag = FALSE;
18138 	}
18139 
18140 	if (pktp->pkt_resid == 0) {
18141 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18142 		sd_return_command(un, bp);
18143 		return;
18144 	}
18145 
18146 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18147 	    &si, EIO, (clock_t)0, NULL);
18148 }
18149 
18150 
18151 
18152 
18153 /*
18154  *    Function: sd_sense_key_not_ready
18155  *
18156  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18157  *
18158  *     Context: May be called from interrupt context
18159  */
18160 
18161 static void
18162 sd_sense_key_not_ready(struct sd_lun *un,
18163 	uint8_t *sense_datap,
18164 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18165 {
18166 	struct sd_sense_info	si;
18167 	uint8_t asc = scsi_sense_asc(sense_datap);
18168 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18169 
18170 	ASSERT(un != NULL);
18171 	ASSERT(mutex_owned(SD_MUTEX(un)));
18172 	ASSERT(bp != NULL);
18173 	ASSERT(xp != NULL);
18174 	ASSERT(pktp != NULL);
18175 
18176 	si.ssi_severity = SCSI_ERR_FATAL;
18177 	si.ssi_pfa_flag = FALSE;
18178 
18179 	/*
18180 	 * Update error stats after first NOT READY error. Disks may have
18181 	 * been powered down and may need to be restarted.  For CDROMs,
18182 	 * report NOT READY errors only if media is present.
18183 	 */
18184 	if ((ISCD(un) && (asc == 0x3A)) ||
18185 	    (xp->xb_nr_retry_count > 0)) {
18186 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18187 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18188 	}
18189 
18190 	/*
18191 	 * Just fail if the "not ready" retry limit has been reached.
18192 	 */
18193 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18194 		/* Special check for error message printing for removables. */
18195 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18196 		    (ascq >= 0x04)) {
18197 			si.ssi_severity = SCSI_ERR_ALL;
18198 		}
18199 		goto fail_command;
18200 	}
18201 
18202 	/*
18203 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18204 	 * what to do.
18205 	 */
18206 	switch (asc) {
18207 	case 0x04:	/* LOGICAL UNIT NOT READY */
18208 		/*
18209 		 * disk drives that don't spin up result in a very long delay
18210 		 * in format without warning messages. We will log a message
18211 		 * if the error level is set to verbose.
18212 		 */
18213 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18214 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18215 			    "logical unit not ready, resetting disk\n");
18216 		}
18217 
18218 		/*
18219 		 * There are different requirements for CDROMs and disks for
18220 		 * the number of retries.  If a CD-ROM is giving this, it is
18221 		 * probably reading TOC and is in the process of getting
18222 		 * ready, so we should keep on trying for a long time to make
18223 		 * sure that all types of media are taken in account (for
18224 		 * some media the drive takes a long time to read TOC).  For
18225 		 * disks we do not want to retry this too many times as this
18226 		 * can cause a long hang in format when the drive refuses to
18227 		 * spin up (a very common failure).
18228 		 */
18229 		switch (ascq) {
18230 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18231 			/*
18232 			 * Disk drives frequently refuse to spin up which
18233 			 * results in a very long hang in format without
18234 			 * warning messages.
18235 			 *
18236 			 * Note: This code preserves the legacy behavior of
18237 			 * comparing xb_nr_retry_count against zero for fibre
18238 			 * channel targets instead of comparing against the
18239 			 * un_reset_retry_count value.  The reason for this
18240 			 * discrepancy has been so utterly lost beneath the
18241 			 * Sands of Time that even Indiana Jones could not
18242 			 * find it.
18243 			 */
18244 			if (un->un_f_is_fibre == TRUE) {
18245 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18246 				    (xp->xb_nr_retry_count > 0)) &&
18247 				    (un->un_startstop_timeid == NULL)) {
18248 					scsi_log(SD_DEVINFO(un), sd_label,
18249 					    CE_WARN, "logical unit not ready, "
18250 					    "resetting disk\n");
18251 					sd_reset_target(un, pktp);
18252 				}
18253 			} else {
18254 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18255 				    (xp->xb_nr_retry_count >
18256 				    un->un_reset_retry_count)) &&
18257 				    (un->un_startstop_timeid == NULL)) {
18258 					scsi_log(SD_DEVINFO(un), sd_label,
18259 					    CE_WARN, "logical unit not ready, "
18260 					    "resetting disk\n");
18261 					sd_reset_target(un, pktp);
18262 				}
18263 			}
18264 			break;
18265 
18266 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18267 			/*
18268 			 * If the target is in the process of becoming
18269 			 * ready, just proceed with the retry. This can
18270 			 * happen with CD-ROMs that take a long time to
18271 			 * read TOC after a power cycle or reset.
18272 			 */
18273 			goto do_retry;
18274 
18275 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18276 			break;
18277 
18278 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18279 			/*
18280 			 * Retries cannot help here so just fail right away.
18281 			 */
18282 			goto fail_command;
18283 
18284 		case 0x88:
18285 			/*
18286 			 * Vendor-unique code for T3/T4: it indicates a
18287 			 * path problem in a mutipathed config, but as far as
18288 			 * the target driver is concerned it equates to a fatal
18289 			 * error, so we should just fail the command right away
18290 			 * (without printing anything to the console). If this
18291 			 * is not a T3/T4, fall thru to the default recovery
18292 			 * action.
18293 			 * T3/T4 is FC only, don't need to check is_fibre
18294 			 */
18295 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18296 				sd_return_failed_command(un, bp, EIO);
18297 				return;
18298 			}
18299 			/* FALLTHRU */
18300 
18301 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18302 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18303 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18304 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18305 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18306 		default:    /* Possible future codes in SCSI spec? */
18307 			/*
18308 			 * For removable-media devices, do not retry if
18309 			 * ASCQ > 2 as these result mostly from USCSI commands
18310 			 * on MMC devices issued to check status of an
18311 			 * operation initiated in immediate mode.  Also for
18312 			 * ASCQ >= 4 do not print console messages as these
18313 			 * mainly represent a user-initiated operation
18314 			 * instead of a system failure.
18315 			 */
18316 			if (un->un_f_has_removable_media) {
18317 				si.ssi_severity = SCSI_ERR_ALL;
18318 				goto fail_command;
18319 			}
18320 			break;
18321 		}
18322 
18323 		/*
18324 		 * As part of our recovery attempt for the NOT READY
18325 		 * condition, we issue a START STOP UNIT command. However
18326 		 * we want to wait for a short delay before attempting this
18327 		 * as there may still be more commands coming back from the
18328 		 * target with the check condition. To do this we use
18329 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18330 		 * the delay interval expires. (sd_start_stop_unit_callback()
18331 		 * dispatches sd_start_stop_unit_task(), which will issue
18332 		 * the actual START STOP UNIT command. The delay interval
18333 		 * is one-half of the delay that we will use to retry the
18334 		 * command that generated the NOT READY condition.
18335 		 *
18336 		 * Note that we could just dispatch sd_start_stop_unit_task()
18337 		 * from here and allow it to sleep for the delay interval,
18338 		 * but then we would be tying up the taskq thread
18339 		 * uncesessarily for the duration of the delay.
18340 		 *
18341 		 * Do not issue the START STOP UNIT if the current command
18342 		 * is already a START STOP UNIT.
18343 		 */
18344 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18345 			break;
18346 		}
18347 
18348 		/*
18349 		 * Do not schedule the timeout if one is already pending.
18350 		 */
18351 		if (un->un_startstop_timeid != NULL) {
18352 			SD_INFO(SD_LOG_ERROR, un,
18353 			    "sd_sense_key_not_ready: restart already issued to"
18354 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18355 			    ddi_get_instance(SD_DEVINFO(un)));
18356 			break;
18357 		}
18358 
18359 		/*
18360 		 * Schedule the START STOP UNIT command, then queue the command
18361 		 * for a retry.
18362 		 *
18363 		 * Note: A timeout is not scheduled for this retry because we
18364 		 * want the retry to be serial with the START_STOP_UNIT. The
18365 		 * retry will be started when the START_STOP_UNIT is completed
18366 		 * in sd_start_stop_unit_task.
18367 		 */
18368 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18369 		    un, un->un_busy_timeout / 2);
18370 		xp->xb_nr_retry_count++;
18371 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18372 		return;
18373 
18374 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18375 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18376 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18377 			    "unit does not respond to selection\n");
18378 		}
18379 		break;
18380 
18381 	case 0x3A:	/* MEDIUM NOT PRESENT */
18382 		if (sd_error_level >= SCSI_ERR_FATAL) {
18383 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18384 			    "Caddy not inserted in drive\n");
18385 		}
18386 
18387 		sr_ejected(un);
18388 		un->un_mediastate = DKIO_EJECTED;
18389 		/* The state has changed, inform the media watch routines */
18390 		cv_broadcast(&un->un_state_cv);
18391 		/* Just fail if no media is present in the drive. */
18392 		goto fail_command;
18393 
18394 	default:
18395 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18396 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18397 			    "Unit not Ready. Additional sense code 0x%x\n",
18398 			    asc);
18399 		}
18400 		break;
18401 	}
18402 
18403 do_retry:
18404 
18405 	/*
18406 	 * Retry the command, as some targets may report NOT READY for
18407 	 * several seconds after being reset.
18408 	 */
18409 	xp->xb_nr_retry_count++;
18410 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18411 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18412 	    &si, EIO, un->un_busy_timeout, NULL);
18413 
18414 	return;
18415 
18416 fail_command:
18417 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18418 	sd_return_failed_command(un, bp, EIO);
18419 }
18420 
18421 
18422 
18423 /*
18424  *    Function: sd_sense_key_medium_or_hardware_error
18425  *
18426  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18427  *		sense key.
18428  *
18429  *     Context: May be called from interrupt context
18430  */
18431 
18432 static void
18433 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18434 	uint8_t *sense_datap,
18435 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18436 {
18437 	struct sd_sense_info	si;
18438 	uint8_t sense_key = scsi_sense_key(sense_datap);
18439 	uint8_t asc = scsi_sense_asc(sense_datap);
18440 
18441 	ASSERT(un != NULL);
18442 	ASSERT(mutex_owned(SD_MUTEX(un)));
18443 	ASSERT(bp != NULL);
18444 	ASSERT(xp != NULL);
18445 	ASSERT(pktp != NULL);
18446 
18447 	si.ssi_severity = SCSI_ERR_FATAL;
18448 	si.ssi_pfa_flag = FALSE;
18449 
18450 	if (sense_key == KEY_MEDIUM_ERROR) {
18451 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18452 	}
18453 
18454 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18455 
18456 	if ((un->un_reset_retry_count != 0) &&
18457 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18458 		mutex_exit(SD_MUTEX(un));
18459 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18460 		if (un->un_f_allow_bus_device_reset == TRUE) {
18461 
18462 			boolean_t try_resetting_target = B_TRUE;
18463 
18464 			/*
18465 			 * We need to be able to handle specific ASC when we are
18466 			 * handling a KEY_HARDWARE_ERROR. In particular
18467 			 * taking the default action of resetting the target may
18468 			 * not be the appropriate way to attempt recovery.
18469 			 * Resetting a target because of a single LUN failure
18470 			 * victimizes all LUNs on that target.
18471 			 *
18472 			 * This is true for the LSI arrays, if an LSI
18473 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18474 			 * should trust it.
18475 			 */
18476 
18477 			if (sense_key == KEY_HARDWARE_ERROR) {
18478 				switch (asc) {
18479 				case 0x84:
18480 					if (SD_IS_LSI(un)) {
18481 						try_resetting_target = B_FALSE;
18482 					}
18483 					break;
18484 				default:
18485 					break;
18486 				}
18487 			}
18488 
18489 			if (try_resetting_target == B_TRUE) {
18490 				int reset_retval = 0;
18491 				if (un->un_f_lun_reset_enabled == TRUE) {
18492 					SD_TRACE(SD_LOG_IO_CORE, un,
18493 					    "sd_sense_key_medium_or_hardware_"
18494 					    "error: issuing RESET_LUN\n");
18495 					reset_retval =
18496 					    scsi_reset(SD_ADDRESS(un),
18497 					    RESET_LUN);
18498 				}
18499 				if (reset_retval == 0) {
18500 					SD_TRACE(SD_LOG_IO_CORE, un,
18501 					    "sd_sense_key_medium_or_hardware_"
18502 					    "error: issuing RESET_TARGET\n");
18503 					(void) scsi_reset(SD_ADDRESS(un),
18504 					    RESET_TARGET);
18505 				}
18506 			}
18507 		}
18508 		mutex_enter(SD_MUTEX(un));
18509 	}
18510 
18511 	/*
18512 	 * This really ought to be a fatal error, but we will retry anyway
18513 	 * as some drives report this as a spurious error.
18514 	 */
18515 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18516 	    &si, EIO, (clock_t)0, NULL);
18517 }
18518 
18519 
18520 
18521 /*
18522  *    Function: sd_sense_key_illegal_request
18523  *
18524  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18525  *
18526  *     Context: May be called from interrupt context
18527  */
18528 
18529 static void
18530 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18531 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18532 {
18533 	struct sd_sense_info	si;
18534 
18535 	ASSERT(un != NULL);
18536 	ASSERT(mutex_owned(SD_MUTEX(un)));
18537 	ASSERT(bp != NULL);
18538 	ASSERT(xp != NULL);
18539 	ASSERT(pktp != NULL);
18540 
18541 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18542 
18543 	si.ssi_severity = SCSI_ERR_INFO;
18544 	si.ssi_pfa_flag = FALSE;
18545 
18546 	/* Pointless to retry if the target thinks it's an illegal request */
18547 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18548 	sd_return_failed_command(un, bp, EIO);
18549 }
18550 
18551 
18552 
18553 
18554 /*
18555  *    Function: sd_sense_key_unit_attention
18556  *
18557  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18558  *
18559  *     Context: May be called from interrupt context
18560  */
18561 
18562 static void
18563 sd_sense_key_unit_attention(struct sd_lun *un,
18564 	uint8_t *sense_datap,
18565 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18566 {
18567 	/*
18568 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18569 	 * like Sonoma can return UNIT ATTENTION close to a minute
18570 	 * under certain conditions.
18571 	 */
18572 	int	retry_check_flag = SD_RETRIES_UA;
18573 	boolean_t	kstat_updated = B_FALSE;
18574 	struct	sd_sense_info		si;
18575 	uint8_t asc = scsi_sense_asc(sense_datap);
18576 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18577 
18578 	ASSERT(un != NULL);
18579 	ASSERT(mutex_owned(SD_MUTEX(un)));
18580 	ASSERT(bp != NULL);
18581 	ASSERT(xp != NULL);
18582 	ASSERT(pktp != NULL);
18583 
18584 	si.ssi_severity = SCSI_ERR_INFO;
18585 	si.ssi_pfa_flag = FALSE;
18586 
18587 
18588 	switch (asc) {
18589 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18590 		if (sd_report_pfa != 0) {
18591 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18592 			si.ssi_pfa_flag = TRUE;
18593 			retry_check_flag = SD_RETRIES_STANDARD;
18594 			goto do_retry;
18595 		}
18596 
18597 		break;
18598 
18599 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18600 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18601 			un->un_resvd_status |=
18602 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18603 		}
18604 #ifdef _LP64
18605 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18606 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18607 			    un, KM_NOSLEEP) == 0) {
18608 				/*
18609 				 * If we can't dispatch the task we'll just
18610 				 * live without descriptor sense.  We can
18611 				 * try again on the next "unit attention"
18612 				 */
18613 				SD_ERROR(SD_LOG_ERROR, un,
18614 				    "sd_sense_key_unit_attention: "
18615 				    "Could not dispatch "
18616 				    "sd_reenable_dsense_task\n");
18617 			}
18618 		}
18619 #endif /* _LP64 */
18620 		/* FALLTHRU */
18621 
18622 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18623 		if (!un->un_f_has_removable_media) {
18624 			break;
18625 		}
18626 
18627 		/*
18628 		 * When we get a unit attention from a removable-media device,
18629 		 * it may be in a state that will take a long time to recover
18630 		 * (e.g., from a reset).  Since we are executing in interrupt
18631 		 * context here, we cannot wait around for the device to come
18632 		 * back. So hand this command off to sd_media_change_task()
18633 		 * for deferred processing under taskq thread context. (Note
18634 		 * that the command still may be failed if a problem is
18635 		 * encountered at a later time.)
18636 		 */
18637 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18638 		    KM_NOSLEEP) == 0) {
18639 			/*
18640 			 * Cannot dispatch the request so fail the command.
18641 			 */
18642 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18643 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18644 			si.ssi_severity = SCSI_ERR_FATAL;
18645 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18646 			sd_return_failed_command(un, bp, EIO);
18647 		}
18648 
18649 		/*
18650 		 * If failed to dispatch sd_media_change_task(), we already
18651 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18652 		 * we should update kstat later if it encounters an error. So,
18653 		 * we update kstat_updated flag here.
18654 		 */
18655 		kstat_updated = B_TRUE;
18656 
18657 		/*
18658 		 * Either the command has been successfully dispatched to a
18659 		 * task Q for retrying, or the dispatch failed. In either case
18660 		 * do NOT retry again by calling sd_retry_command. This sets up
18661 		 * two retries of the same command and when one completes and
18662 		 * frees the resources the other will access freed memory,
18663 		 * a bad thing.
18664 		 */
18665 		return;
18666 
18667 	default:
18668 		break;
18669 	}
18670 
18671 	/*
18672 	 * ASC  ASCQ
18673 	 *  2A   09	Capacity data has changed
18674 	 *  2A   01	Mode parameters changed
18675 	 *  3F   0E	Reported luns data has changed
18676 	 * Arrays that support logical unit expansion should report
18677 	 * capacity changes(2Ah/09). Mode parameters changed and
18678 	 * reported luns data has changed are the approximation.
18679 	 */
18680 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18681 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18682 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18683 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18684 		    KM_NOSLEEP) == 0) {
18685 			SD_ERROR(SD_LOG_ERROR, un,
18686 			    "sd_sense_key_unit_attention: "
18687 			    "Could not dispatch sd_target_change_task\n");
18688 		}
18689 	}
18690 
18691 	/*
18692 	 * Update kstat if we haven't done that.
18693 	 */
18694 	if (!kstat_updated) {
18695 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18696 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18697 	}
18698 
18699 do_retry:
18700 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18701 	    EIO, SD_UA_RETRY_DELAY, NULL);
18702 }
18703 
18704 
18705 
18706 /*
18707  *    Function: sd_sense_key_fail_command
18708  *
18709  * Description: Use to fail a command when we don't like the sense key that
18710  *		was returned.
18711  *
18712  *     Context: May be called from interrupt context
18713  */
18714 
18715 static void
18716 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18717 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18718 {
18719 	struct sd_sense_info	si;
18720 
18721 	ASSERT(un != NULL);
18722 	ASSERT(mutex_owned(SD_MUTEX(un)));
18723 	ASSERT(bp != NULL);
18724 	ASSERT(xp != NULL);
18725 	ASSERT(pktp != NULL);
18726 
18727 	si.ssi_severity = SCSI_ERR_FATAL;
18728 	si.ssi_pfa_flag = FALSE;
18729 
18730 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18731 	sd_return_failed_command(un, bp, EIO);
18732 }
18733 
18734 
18735 
18736 /*
18737  *    Function: sd_sense_key_blank_check
18738  *
18739  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18740  *		Has no monetary connotation.
18741  *
18742  *     Context: May be called from interrupt context
18743  */
18744 
18745 static void
18746 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18747 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18748 {
18749 	struct sd_sense_info	si;
18750 
18751 	ASSERT(un != NULL);
18752 	ASSERT(mutex_owned(SD_MUTEX(un)));
18753 	ASSERT(bp != NULL);
18754 	ASSERT(xp != NULL);
18755 	ASSERT(pktp != NULL);
18756 
18757 	/*
18758 	 * Blank check is not fatal for removable devices, therefore
18759 	 * it does not require a console message.
18760 	 */
18761 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18762 	    SCSI_ERR_FATAL;
18763 	si.ssi_pfa_flag = FALSE;
18764 
18765 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18766 	sd_return_failed_command(un, bp, EIO);
18767 }
18768 
18769 
18770 
18771 
18772 /*
18773  *    Function: sd_sense_key_aborted_command
18774  *
18775  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18776  *
18777  *     Context: May be called from interrupt context
18778  */
18779 
18780 static void
18781 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18782 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18783 {
18784 	struct sd_sense_info	si;
18785 
18786 	ASSERT(un != NULL);
18787 	ASSERT(mutex_owned(SD_MUTEX(un)));
18788 	ASSERT(bp != NULL);
18789 	ASSERT(xp != NULL);
18790 	ASSERT(pktp != NULL);
18791 
18792 	si.ssi_severity = SCSI_ERR_FATAL;
18793 	si.ssi_pfa_flag = FALSE;
18794 
18795 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18796 
18797 	/*
18798 	 * This really ought to be a fatal error, but we will retry anyway
18799 	 * as some drives report this as a spurious error.
18800 	 */
18801 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18802 	    &si, EIO, drv_usectohz(100000), NULL);
18803 }
18804 
18805 
18806 
18807 /*
18808  *    Function: sd_sense_key_default
18809  *
18810  * Description: Default recovery action for several SCSI sense keys (basically
18811  *		attempts a retry).
18812  *
18813  *     Context: May be called from interrupt context
18814  */
18815 
18816 static void
18817 sd_sense_key_default(struct sd_lun *un,
18818 	uint8_t *sense_datap,
18819 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18820 {
18821 	struct sd_sense_info	si;
18822 	uint8_t sense_key = scsi_sense_key(sense_datap);
18823 
18824 	ASSERT(un != NULL);
18825 	ASSERT(mutex_owned(SD_MUTEX(un)));
18826 	ASSERT(bp != NULL);
18827 	ASSERT(xp != NULL);
18828 	ASSERT(pktp != NULL);
18829 
18830 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18831 
18832 	/*
18833 	 * Undecoded sense key.	Attempt retries and hope that will fix
18834 	 * the problem.  Otherwise, we're dead.
18835 	 */
18836 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18837 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18838 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18839 	}
18840 
18841 	si.ssi_severity = SCSI_ERR_FATAL;
18842 	si.ssi_pfa_flag = FALSE;
18843 
18844 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18845 	    &si, EIO, (clock_t)0, NULL);
18846 }
18847 
18848 
18849 
18850 /*
18851  *    Function: sd_print_retry_msg
18852  *
18853  * Description: Print a message indicating the retry action being taken.
18854  *
18855  *   Arguments: un - ptr to associated softstate
18856  *		bp - ptr to buf(9S) for the command
18857  *		arg - not used.
18858  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18859  *			or SD_NO_RETRY_ISSUED
18860  *
18861  *     Context: May be called from interrupt context
18862  */
18863 /* ARGSUSED */
18864 static void
18865 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18866 {
18867 	struct sd_xbuf	*xp;
18868 	struct scsi_pkt *pktp;
18869 	char *reasonp;
18870 	char *msgp;
18871 
18872 	ASSERT(un != NULL);
18873 	ASSERT(mutex_owned(SD_MUTEX(un)));
18874 	ASSERT(bp != NULL);
18875 	pktp = SD_GET_PKTP(bp);
18876 	ASSERT(pktp != NULL);
18877 	xp = SD_GET_XBUF(bp);
18878 	ASSERT(xp != NULL);
18879 
18880 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18881 	mutex_enter(&un->un_pm_mutex);
18882 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18883 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18884 	    (pktp->pkt_flags & FLAG_SILENT)) {
18885 		mutex_exit(&un->un_pm_mutex);
18886 		goto update_pkt_reason;
18887 	}
18888 	mutex_exit(&un->un_pm_mutex);
18889 
18890 	/*
18891 	 * Suppress messages if they are all the same pkt_reason; with
18892 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18893 	 * If we are in panic, then suppress the retry messages.
18894 	 */
18895 	switch (flag) {
18896 	case SD_NO_RETRY_ISSUED:
18897 		msgp = "giving up";
18898 		break;
18899 	case SD_IMMEDIATE_RETRY_ISSUED:
18900 	case SD_DELAYED_RETRY_ISSUED:
18901 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18902 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18903 		    (sd_error_level != SCSI_ERR_ALL))) {
18904 			return;
18905 		}
18906 		msgp = "retrying command";
18907 		break;
18908 	default:
18909 		goto update_pkt_reason;
18910 	}
18911 
18912 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18913 	    scsi_rname(pktp->pkt_reason));
18914 
18915 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18916 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18917 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18918 	}
18919 
18920 update_pkt_reason:
18921 	/*
18922 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18923 	 * This is to prevent multiple console messages for the same failure
18924 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18925 	 * when the command is retried successfully because there still may be
18926 	 * more commands coming back with the same value of pktp->pkt_reason.
18927 	 */
18928 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18929 		un->un_last_pkt_reason = pktp->pkt_reason;
18930 	}
18931 }
18932 
18933 
18934 /*
18935  *    Function: sd_print_cmd_incomplete_msg
18936  *
18937  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18938  *
18939  *   Arguments: un - ptr to associated softstate
18940  *		bp - ptr to buf(9S) for the command
18941  *		arg - passed to sd_print_retry_msg()
18942  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18943  *			or SD_NO_RETRY_ISSUED
18944  *
18945  *     Context: May be called from interrupt context
18946  */
18947 
18948 static void
18949 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18950 	int code)
18951 {
18952 	dev_info_t	*dip;
18953 
18954 	ASSERT(un != NULL);
18955 	ASSERT(mutex_owned(SD_MUTEX(un)));
18956 	ASSERT(bp != NULL);
18957 
18958 	switch (code) {
18959 	case SD_NO_RETRY_ISSUED:
18960 		/* Command was failed. Someone turned off this target? */
18961 		if (un->un_state != SD_STATE_OFFLINE) {
18962 			/*
18963 			 * Suppress message if we are detaching and
18964 			 * device has been disconnected
18965 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18966 			 * private interface and not part of the DDI
18967 			 */
18968 			dip = un->un_sd->sd_dev;
18969 			if (!(DEVI_IS_DETACHING(dip) &&
18970 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18971 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18972 				"disk not responding to selection\n");
18973 			}
18974 			New_state(un, SD_STATE_OFFLINE);
18975 		}
18976 		break;
18977 
18978 	case SD_DELAYED_RETRY_ISSUED:
18979 	case SD_IMMEDIATE_RETRY_ISSUED:
18980 	default:
18981 		/* Command was successfully queued for retry */
18982 		sd_print_retry_msg(un, bp, arg, code);
18983 		break;
18984 	}
18985 }
18986 
18987 
18988 /*
18989  *    Function: sd_pkt_reason_cmd_incomplete
18990  *
18991  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18992  *
18993  *     Context: May be called from interrupt context
18994  */
18995 
18996 static void
18997 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18998 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18999 {
19000 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
19001 
19002 	ASSERT(un != NULL);
19003 	ASSERT(mutex_owned(SD_MUTEX(un)));
19004 	ASSERT(bp != NULL);
19005 	ASSERT(xp != NULL);
19006 	ASSERT(pktp != NULL);
19007 
19008 	/* Do not do a reset if selection did not complete */
19009 	/* Note: Should this not just check the bit? */
19010 	if (pktp->pkt_state != STATE_GOT_BUS) {
19011 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19012 		sd_reset_target(un, pktp);
19013 	}
19014 
19015 	/*
19016 	 * If the target was not successfully selected, then set
19017 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
19018 	 * with the target, and further retries and/or commands are
19019 	 * likely to take a long time.
19020 	 */
19021 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
19022 		flag |= SD_RETRIES_FAILFAST;
19023 	}
19024 
19025 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19026 
19027 	sd_retry_command(un, bp, flag,
19028 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19029 }
19030 
19031 
19032 
19033 /*
19034  *    Function: sd_pkt_reason_cmd_tran_err
19035  *
19036  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19037  *
19038  *     Context: May be called from interrupt context
19039  */
19040 
19041 static void
19042 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19043 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19044 {
19045 	ASSERT(un != NULL);
19046 	ASSERT(mutex_owned(SD_MUTEX(un)));
19047 	ASSERT(bp != NULL);
19048 	ASSERT(xp != NULL);
19049 	ASSERT(pktp != NULL);
19050 
19051 	/*
19052 	 * Do not reset if we got a parity error, or if
19053 	 * selection did not complete.
19054 	 */
19055 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19056 	/* Note: Should this not just check the bit for pkt_state? */
19057 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19058 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19059 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19060 		sd_reset_target(un, pktp);
19061 	}
19062 
19063 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19064 
19065 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19066 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19067 }
19068 
19069 
19070 
19071 /*
19072  *    Function: sd_pkt_reason_cmd_reset
19073  *
19074  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19075  *
19076  *     Context: May be called from interrupt context
19077  */
19078 
19079 static void
19080 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19081 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19082 {
19083 	ASSERT(un != NULL);
19084 	ASSERT(mutex_owned(SD_MUTEX(un)));
19085 	ASSERT(bp != NULL);
19086 	ASSERT(xp != NULL);
19087 	ASSERT(pktp != NULL);
19088 
19089 	/* The target may still be running the command, so try to reset. */
19090 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19091 	sd_reset_target(un, pktp);
19092 
19093 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19094 
19095 	/*
19096 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19097 	 * reset because another target on this bus caused it. The target
19098 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19099 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19100 	 */
19101 
19102 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19103 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19104 }
19105 
19106 
19107 
19108 
19109 /*
19110  *    Function: sd_pkt_reason_cmd_aborted
19111  *
19112  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19113  *
19114  *     Context: May be called from interrupt context
19115  */
19116 
19117 static void
19118 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19119 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19120 {
19121 	ASSERT(un != NULL);
19122 	ASSERT(mutex_owned(SD_MUTEX(un)));
19123 	ASSERT(bp != NULL);
19124 	ASSERT(xp != NULL);
19125 	ASSERT(pktp != NULL);
19126 
19127 	/* The target may still be running the command, so try to reset. */
19128 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19129 	sd_reset_target(un, pktp);
19130 
19131 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19132 
19133 	/*
19134 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19135 	 * aborted because another target on this bus caused it. The target
19136 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19137 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19138 	 */
19139 
19140 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19141 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19142 }
19143 
19144 
19145 
19146 /*
19147  *    Function: sd_pkt_reason_cmd_timeout
19148  *
19149  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19150  *
19151  *     Context: May be called from interrupt context
19152  */
19153 
19154 static void
19155 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19156 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19157 {
19158 	ASSERT(un != NULL);
19159 	ASSERT(mutex_owned(SD_MUTEX(un)));
19160 	ASSERT(bp != NULL);
19161 	ASSERT(xp != NULL);
19162 	ASSERT(pktp != NULL);
19163 
19164 
19165 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19166 	sd_reset_target(un, pktp);
19167 
19168 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19169 
19170 	/*
19171 	 * A command timeout indicates that we could not establish
19172 	 * communication with the target, so set SD_RETRIES_FAILFAST
19173 	 * as further retries/commands are likely to take a long time.
19174 	 */
19175 	sd_retry_command(un, bp,
19176 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19177 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19178 }
19179 
19180 
19181 
19182 /*
19183  *    Function: sd_pkt_reason_cmd_unx_bus_free
19184  *
19185  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19186  *
19187  *     Context: May be called from interrupt context
19188  */
19189 
19190 static void
19191 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19192 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19193 {
19194 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19195 
19196 	ASSERT(un != NULL);
19197 	ASSERT(mutex_owned(SD_MUTEX(un)));
19198 	ASSERT(bp != NULL);
19199 	ASSERT(xp != NULL);
19200 	ASSERT(pktp != NULL);
19201 
19202 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19203 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19204 
19205 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19206 	    sd_print_retry_msg : NULL;
19207 
19208 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19209 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19210 }
19211 
19212 
19213 /*
19214  *    Function: sd_pkt_reason_cmd_tag_reject
19215  *
19216  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19217  *
19218  *     Context: May be called from interrupt context
19219  */
19220 
19221 static void
19222 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19223 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19224 {
19225 	ASSERT(un != NULL);
19226 	ASSERT(mutex_owned(SD_MUTEX(un)));
19227 	ASSERT(bp != NULL);
19228 	ASSERT(xp != NULL);
19229 	ASSERT(pktp != NULL);
19230 
19231 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19232 	pktp->pkt_flags = 0;
19233 	un->un_tagflags = 0;
19234 	if (un->un_f_opt_queueing == TRUE) {
19235 		un->un_throttle = min(un->un_throttle, 3);
19236 	} else {
19237 		un->un_throttle = 1;
19238 	}
19239 	mutex_exit(SD_MUTEX(un));
19240 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19241 	mutex_enter(SD_MUTEX(un));
19242 
19243 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19244 
19245 	/* Legacy behavior not to check retry counts here. */
19246 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19247 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19248 }
19249 
19250 
19251 /*
19252  *    Function: sd_pkt_reason_default
19253  *
19254  * Description: Default recovery actions for SCSA pkt_reason values that
19255  *		do not have more explicit recovery actions.
19256  *
19257  *     Context: May be called from interrupt context
19258  */
19259 
19260 static void
19261 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19262 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19263 {
19264 	ASSERT(un != NULL);
19265 	ASSERT(mutex_owned(SD_MUTEX(un)));
19266 	ASSERT(bp != NULL);
19267 	ASSERT(xp != NULL);
19268 	ASSERT(pktp != NULL);
19269 
19270 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19271 	sd_reset_target(un, pktp);
19272 
19273 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19274 
19275 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19276 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19277 }
19278 
19279 
19280 
19281 /*
19282  *    Function: sd_pkt_status_check_condition
19283  *
19284  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19285  *
19286  *     Context: May be called from interrupt context
19287  */
19288 
19289 static void
19290 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19291 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19292 {
19293 	ASSERT(un != NULL);
19294 	ASSERT(mutex_owned(SD_MUTEX(un)));
19295 	ASSERT(bp != NULL);
19296 	ASSERT(xp != NULL);
19297 	ASSERT(pktp != NULL);
19298 
19299 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19300 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19301 
19302 	/*
19303 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19304 	 * command will be retried after the request sense). Otherwise, retry
19305 	 * the command. Note: we are issuing the request sense even though the
19306 	 * retry limit may have been reached for the failed command.
19307 	 */
19308 	if (un->un_f_arq_enabled == FALSE) {
19309 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19310 		    "no ARQ, sending request sense command\n");
19311 		sd_send_request_sense_command(un, bp, pktp);
19312 	} else {
19313 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19314 		    "ARQ,retrying request sense command\n");
19315 #if defined(__i386) || defined(__amd64)
19316 		/*
19317 		 * The SD_RETRY_DELAY value need to be adjusted here
19318 		 * when SD_RETRY_DELAY change in sddef.h
19319 		 */
19320 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19321 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19322 		    NULL);
19323 #else
19324 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19325 		    EIO, SD_RETRY_DELAY, NULL);
19326 #endif
19327 	}
19328 
19329 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19330 }
19331 
19332 
19333 /*
19334  *    Function: sd_pkt_status_busy
19335  *
19336  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19337  *
19338  *     Context: May be called from interrupt context
19339  */
19340 
19341 static void
19342 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19343 	struct scsi_pkt *pktp)
19344 {
19345 	ASSERT(un != NULL);
19346 	ASSERT(mutex_owned(SD_MUTEX(un)));
19347 	ASSERT(bp != NULL);
19348 	ASSERT(xp != NULL);
19349 	ASSERT(pktp != NULL);
19350 
19351 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19352 	    "sd_pkt_status_busy: entry\n");
19353 
19354 	/* If retries are exhausted, just fail the command. */
19355 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19356 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19357 		    "device busy too long\n");
19358 		sd_return_failed_command(un, bp, EIO);
19359 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19360 		    "sd_pkt_status_busy: exit\n");
19361 		return;
19362 	}
19363 	xp->xb_retry_count++;
19364 
19365 	/*
19366 	 * Try to reset the target. However, we do not want to perform
19367 	 * more than one reset if the device continues to fail. The reset
19368 	 * will be performed when the retry count reaches the reset
19369 	 * threshold.  This threshold should be set such that at least
19370 	 * one retry is issued before the reset is performed.
19371 	 */
19372 	if (xp->xb_retry_count ==
19373 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19374 		int rval = 0;
19375 		mutex_exit(SD_MUTEX(un));
19376 		if (un->un_f_allow_bus_device_reset == TRUE) {
19377 			/*
19378 			 * First try to reset the LUN; if we cannot then
19379 			 * try to reset the target.
19380 			 */
19381 			if (un->un_f_lun_reset_enabled == TRUE) {
19382 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19383 				    "sd_pkt_status_busy: RESET_LUN\n");
19384 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19385 			}
19386 			if (rval == 0) {
19387 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19388 				    "sd_pkt_status_busy: RESET_TARGET\n");
19389 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19390 			}
19391 		}
19392 		if (rval == 0) {
19393 			/*
19394 			 * If the RESET_LUN and/or RESET_TARGET failed,
19395 			 * try RESET_ALL
19396 			 */
19397 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19398 			    "sd_pkt_status_busy: RESET_ALL\n");
19399 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19400 		}
19401 		mutex_enter(SD_MUTEX(un));
19402 		if (rval == 0) {
19403 			/*
19404 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19405 			 * At this point we give up & fail the command.
19406 			 */
19407 			sd_return_failed_command(un, bp, EIO);
19408 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19409 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19410 			return;
19411 		}
19412 	}
19413 
19414 	/*
19415 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19416 	 * we have already checked the retry counts above.
19417 	 */
19418 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19419 	    EIO, un->un_busy_timeout, NULL);
19420 
19421 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19422 	    "sd_pkt_status_busy: exit\n");
19423 }
19424 
19425 
19426 /*
19427  *    Function: sd_pkt_status_reservation_conflict
19428  *
19429  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19430  *		command status.
19431  *
19432  *     Context: May be called from interrupt context
19433  */
19434 
19435 static void
19436 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19437 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19438 {
19439 	ASSERT(un != NULL);
19440 	ASSERT(mutex_owned(SD_MUTEX(un)));
19441 	ASSERT(bp != NULL);
19442 	ASSERT(xp != NULL);
19443 	ASSERT(pktp != NULL);
19444 
19445 	/*
19446 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19447 	 * conflict could be due to various reasons like incorrect keys, not
19448 	 * registered or not reserved etc. So, we return EACCES to the caller.
19449 	 */
19450 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19451 		int cmd = SD_GET_PKT_OPCODE(pktp);
19452 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19453 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19454 			sd_return_failed_command(un, bp, EACCES);
19455 			return;
19456 		}
19457 	}
19458 
19459 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19460 
19461 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19462 		if (sd_failfast_enable != 0) {
19463 			/* By definition, we must panic here.... */
19464 			sd_panic_for_res_conflict(un);
19465 			/*NOTREACHED*/
19466 		}
19467 		SD_ERROR(SD_LOG_IO, un,
19468 		    "sd_handle_resv_conflict: Disk Reserved\n");
19469 		sd_return_failed_command(un, bp, EACCES);
19470 		return;
19471 	}
19472 
19473 	/*
19474 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19475 	 * property is set (default is 1). Retries will not succeed
19476 	 * on a disk reserved by another initiator. HA systems
19477 	 * may reset this via sd.conf to avoid these retries.
19478 	 *
19479 	 * Note: The legacy return code for this failure is EIO, however EACCES
19480 	 * seems more appropriate for a reservation conflict.
19481 	 */
19482 	if (sd_retry_on_reservation_conflict == 0) {
19483 		SD_ERROR(SD_LOG_IO, un,
19484 		    "sd_handle_resv_conflict: Device Reserved\n");
19485 		sd_return_failed_command(un, bp, EIO);
19486 		return;
19487 	}
19488 
19489 	/*
19490 	 * Retry the command if we can.
19491 	 *
19492 	 * Note: The legacy return code for this failure is EIO, however EACCES
19493 	 * seems more appropriate for a reservation conflict.
19494 	 */
19495 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19496 	    (clock_t)2, NULL);
19497 }
19498 
19499 
19500 
19501 /*
19502  *    Function: sd_pkt_status_qfull
19503  *
19504  * Description: Handle a QUEUE FULL condition from the target.  This can
19505  *		occur if the HBA does not handle the queue full condition.
19506  *		(Basically this means third-party HBAs as Sun HBAs will
19507  *		handle the queue full condition.)  Note that if there are
19508  *		some commands already in the transport, then the queue full
19509  *		has occurred because the queue for this nexus is actually
19510  *		full. If there are no commands in the transport, then the
19511  *		queue full is resulting from some other initiator or lun
19512  *		consuming all the resources at the target.
19513  *
19514  *     Context: May be called from interrupt context
19515  */
19516 
19517 static void
19518 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19519 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19520 {
19521 	ASSERT(un != NULL);
19522 	ASSERT(mutex_owned(SD_MUTEX(un)));
19523 	ASSERT(bp != NULL);
19524 	ASSERT(xp != NULL);
19525 	ASSERT(pktp != NULL);
19526 
19527 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19528 	    "sd_pkt_status_qfull: entry\n");
19529 
19530 	/*
19531 	 * Just lower the QFULL throttle and retry the command.  Note that
19532 	 * we do not limit the number of retries here.
19533 	 */
19534 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19535 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19536 	    SD_RESTART_TIMEOUT, NULL);
19537 
19538 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19539 	    "sd_pkt_status_qfull: exit\n");
19540 }
19541 
19542 
19543 /*
19544  *    Function: sd_reset_target
19545  *
19546  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19547  *		RESET_TARGET, or RESET_ALL.
19548  *
19549  *     Context: May be called under interrupt context.
19550  */
19551 
19552 static void
19553 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19554 {
19555 	int rval = 0;
19556 
19557 	ASSERT(un != NULL);
19558 	ASSERT(mutex_owned(SD_MUTEX(un)));
19559 	ASSERT(pktp != NULL);
19560 
19561 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19562 
19563 	/*
19564 	 * No need to reset if the transport layer has already done so.
19565 	 */
19566 	if ((pktp->pkt_statistics &
19567 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19568 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19569 		    "sd_reset_target: no reset\n");
19570 		return;
19571 	}
19572 
19573 	mutex_exit(SD_MUTEX(un));
19574 
19575 	if (un->un_f_allow_bus_device_reset == TRUE) {
19576 		if (un->un_f_lun_reset_enabled == TRUE) {
19577 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19578 			    "sd_reset_target: RESET_LUN\n");
19579 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19580 		}
19581 		if (rval == 0) {
19582 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19583 			    "sd_reset_target: RESET_TARGET\n");
19584 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19585 		}
19586 	}
19587 
19588 	if (rval == 0) {
19589 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19590 		    "sd_reset_target: RESET_ALL\n");
19591 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19592 	}
19593 
19594 	mutex_enter(SD_MUTEX(un));
19595 
19596 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19597 }
19598 
19599 /*
19600  *    Function: sd_target_change_task
19601  *
19602  * Description: Handle dynamic target change
19603  *
19604  *     Context: Executes in a taskq() thread context
19605  */
19606 static void
19607 sd_target_change_task(void *arg)
19608 {
19609 	struct sd_lun		*un = arg;
19610 	uint64_t		capacity;
19611 	diskaddr_t		label_cap;
19612 	uint_t			lbasize;
19613 	sd_ssc_t		*ssc;
19614 
19615 	ASSERT(un != NULL);
19616 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19617 
19618 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19619 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19620 		return;
19621 	}
19622 
19623 	ssc = sd_ssc_init(un);
19624 
19625 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19626 	    &lbasize, SD_PATH_DIRECT) != 0) {
19627 		SD_ERROR(SD_LOG_ERROR, un,
19628 		    "sd_target_change_task: fail to read capacity\n");
19629 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19630 		goto task_exit;
19631 	}
19632 
19633 	mutex_enter(SD_MUTEX(un));
19634 	if (capacity <= un->un_blockcount) {
19635 		mutex_exit(SD_MUTEX(un));
19636 		goto task_exit;
19637 	}
19638 
19639 	sd_update_block_info(un, lbasize, capacity);
19640 	mutex_exit(SD_MUTEX(un));
19641 
19642 	/*
19643 	 * If lun is EFI labeled and lun capacity is greater than the
19644 	 * capacity contained in the label, log a sys event.
19645 	 */
19646 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19647 	    (void*)SD_PATH_DIRECT) == 0) {
19648 		mutex_enter(SD_MUTEX(un));
19649 		if (un->un_f_blockcount_is_valid &&
19650 		    un->un_blockcount > label_cap) {
19651 			mutex_exit(SD_MUTEX(un));
19652 			sd_log_lun_expansion_event(un, KM_SLEEP);
19653 		} else {
19654 			mutex_exit(SD_MUTEX(un));
19655 		}
19656 	}
19657 
19658 task_exit:
19659 	sd_ssc_fini(ssc);
19660 }
19661 
19662 
19663 /*
19664  *    Function: sd_log_dev_status_event
19665  *
19666  * Description: Log EC_dev_status sysevent
19667  *
19668  *     Context: Never called from interrupt context
19669  */
19670 static void
19671 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19672 {
19673 	int err;
19674 	char			*path;
19675 	nvlist_t		*attr_list;
19676 
19677 	/* Allocate and build sysevent attribute list */
19678 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19679 	if (err != 0) {
19680 		SD_ERROR(SD_LOG_ERROR, un,
19681 		    "sd_log_dev_status_event: fail to allocate space\n");
19682 		return;
19683 	}
19684 
19685 	path = kmem_alloc(MAXPATHLEN, km_flag);
19686 	if (path == NULL) {
19687 		nvlist_free(attr_list);
19688 		SD_ERROR(SD_LOG_ERROR, un,
19689 		    "sd_log_dev_status_event: fail to allocate space\n");
19690 		return;
19691 	}
19692 	/*
19693 	 * Add path attribute to identify the lun.
19694 	 * We are using minor node 'a' as the sysevent attribute.
19695 	 */
19696 	(void) snprintf(path, MAXPATHLEN, "/devices");
19697 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19698 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19699 	    ":a");
19700 
19701 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19702 	if (err != 0) {
19703 		nvlist_free(attr_list);
19704 		kmem_free(path, MAXPATHLEN);
19705 		SD_ERROR(SD_LOG_ERROR, un,
19706 		    "sd_log_dev_status_event: fail to add attribute\n");
19707 		return;
19708 	}
19709 
19710 	/* Log dynamic lun expansion sysevent */
19711 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19712 	    esc, attr_list, NULL, km_flag);
19713 	if (err != DDI_SUCCESS) {
19714 		SD_ERROR(SD_LOG_ERROR, un,
19715 		    "sd_log_dev_status_event: fail to log sysevent\n");
19716 	}
19717 
19718 	nvlist_free(attr_list);
19719 	kmem_free(path, MAXPATHLEN);
19720 }
19721 
19722 
19723 /*
19724  *    Function: sd_log_lun_expansion_event
19725  *
19726  * Description: Log lun expansion sys event
19727  *
19728  *     Context: Never called from interrupt context
19729  */
19730 static void
19731 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19732 {
19733 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19734 }
19735 
19736 
19737 /*
19738  *    Function: sd_log_eject_request_event
19739  *
19740  * Description: Log eject request sysevent
19741  *
19742  *     Context: Never called from interrupt context
19743  */
19744 static void
19745 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19746 {
19747 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19748 }
19749 
19750 
19751 /*
19752  *    Function: sd_media_change_task
19753  *
19754  * Description: Recovery action for CDROM to become available.
19755  *
19756  *     Context: Executes in a taskq() thread context
19757  */
19758 
19759 static void
19760 sd_media_change_task(void *arg)
19761 {
19762 	struct	scsi_pkt	*pktp = arg;
19763 	struct	sd_lun		*un;
19764 	struct	buf		*bp;
19765 	struct	sd_xbuf		*xp;
19766 	int	err		= 0;
19767 	int	retry_count	= 0;
19768 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19769 	struct	sd_sense_info	si;
19770 
19771 	ASSERT(pktp != NULL);
19772 	bp = (struct buf *)pktp->pkt_private;
19773 	ASSERT(bp != NULL);
19774 	xp = SD_GET_XBUF(bp);
19775 	ASSERT(xp != NULL);
19776 	un = SD_GET_UN(bp);
19777 	ASSERT(un != NULL);
19778 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19779 	ASSERT(un->un_f_monitor_media_state);
19780 
19781 	si.ssi_severity = SCSI_ERR_INFO;
19782 	si.ssi_pfa_flag = FALSE;
19783 
19784 	/*
19785 	 * When a reset is issued on a CDROM, it takes a long time to
19786 	 * recover. First few attempts to read capacity and other things
19787 	 * related to handling unit attention fail (with a ASC 0x4 and
19788 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19789 	 * to limit the retries in other cases of genuine failures like
19790 	 * no media in drive.
19791 	 */
19792 	while (retry_count++ < retry_limit) {
19793 		if ((err = sd_handle_mchange(un)) == 0) {
19794 			break;
19795 		}
19796 		if (err == EAGAIN) {
19797 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19798 		}
19799 		/* Sleep for 0.5 sec. & try again */
19800 		delay(drv_usectohz(500000));
19801 	}
19802 
19803 	/*
19804 	 * Dispatch (retry or fail) the original command here,
19805 	 * along with appropriate console messages....
19806 	 *
19807 	 * Must grab the mutex before calling sd_retry_command,
19808 	 * sd_print_sense_msg and sd_return_failed_command.
19809 	 */
19810 	mutex_enter(SD_MUTEX(un));
19811 	if (err != SD_CMD_SUCCESS) {
19812 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19813 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19814 		si.ssi_severity = SCSI_ERR_FATAL;
19815 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19816 		sd_return_failed_command(un, bp, EIO);
19817 	} else {
19818 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19819 		    &si, EIO, (clock_t)0, NULL);
19820 	}
19821 	mutex_exit(SD_MUTEX(un));
19822 }
19823 
19824 
19825 
19826 /*
19827  *    Function: sd_handle_mchange
19828  *
19829  * Description: Perform geometry validation & other recovery when CDROM
19830  *		has been removed from drive.
19831  *
19832  * Return Code: 0 for success
19833  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19834  *		sd_send_scsi_READ_CAPACITY()
19835  *
19836  *     Context: Executes in a taskq() thread context
19837  */
19838 
19839 static int
19840 sd_handle_mchange(struct sd_lun *un)
19841 {
19842 	uint64_t	capacity;
19843 	uint32_t	lbasize;
19844 	int		rval;
19845 	sd_ssc_t	*ssc;
19846 
19847 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19848 	ASSERT(un->un_f_monitor_media_state);
19849 
19850 	ssc = sd_ssc_init(un);
19851 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19852 	    SD_PATH_DIRECT_PRIORITY);
19853 
19854 	if (rval != 0)
19855 		goto failed;
19856 
19857 	mutex_enter(SD_MUTEX(un));
19858 	sd_update_block_info(un, lbasize, capacity);
19859 
19860 	if (un->un_errstats != NULL) {
19861 		struct	sd_errstats *stp =
19862 		    (struct sd_errstats *)un->un_errstats->ks_data;
19863 		stp->sd_capacity.value.ui64 = (uint64_t)
19864 		    ((uint64_t)un->un_blockcount *
19865 		    (uint64_t)un->un_tgt_blocksize);
19866 	}
19867 
19868 	/*
19869 	 * Check if the media in the device is writable or not
19870 	 */
19871 	if (ISCD(un)) {
19872 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19873 	}
19874 
19875 	/*
19876 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19877 	 * valid geometry.
19878 	 */
19879 	mutex_exit(SD_MUTEX(un));
19880 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19881 
19882 
19883 	if (cmlb_validate(un->un_cmlbhandle, 0,
19884 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19885 		sd_ssc_fini(ssc);
19886 		return (EIO);
19887 	} else {
19888 		if (un->un_f_pkstats_enabled) {
19889 			sd_set_pstats(un);
19890 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19891 			    "sd_handle_mchange: un:0x%p pstats created and "
19892 			    "set\n", un);
19893 		}
19894 	}
19895 
19896 	/*
19897 	 * Try to lock the door
19898 	 */
19899 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19900 	    SD_PATH_DIRECT_PRIORITY);
19901 failed:
19902 	if (rval != 0)
19903 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19904 	sd_ssc_fini(ssc);
19905 	return (rval);
19906 }
19907 
19908 
19909 /*
19910  *    Function: sd_send_scsi_DOORLOCK
19911  *
19912  * Description: Issue the scsi DOOR LOCK command
19913  *
19914  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19915  *                      structure for this target.
19916  *		flag  - SD_REMOVAL_ALLOW
19917  *			SD_REMOVAL_PREVENT
19918  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19919  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19920  *			to use the USCSI "direct" chain and bypass the normal
19921  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19922  *			command is issued as part of an error recovery action.
19923  *
19924  * Return Code: 0   - Success
19925  *		errno return code from sd_ssc_send()
19926  *
19927  *     Context: Can sleep.
19928  */
19929 
19930 static int
19931 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19932 {
19933 	struct scsi_extended_sense	sense_buf;
19934 	union scsi_cdb		cdb;
19935 	struct uscsi_cmd	ucmd_buf;
19936 	int			status;
19937 	struct sd_lun		*un;
19938 
19939 	ASSERT(ssc != NULL);
19940 	un = ssc->ssc_un;
19941 	ASSERT(un != NULL);
19942 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19943 
19944 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19945 
19946 	/* already determined doorlock is not supported, fake success */
19947 	if (un->un_f_doorlock_supported == FALSE) {
19948 		return (0);
19949 	}
19950 
19951 	/*
19952 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19953 	 * ignore the command so we can complete the eject
19954 	 * operation.
19955 	 */
19956 	if (flag == SD_REMOVAL_PREVENT) {
19957 		mutex_enter(SD_MUTEX(un));
19958 		if (un->un_f_ejecting == TRUE) {
19959 			mutex_exit(SD_MUTEX(un));
19960 			return (EAGAIN);
19961 		}
19962 		mutex_exit(SD_MUTEX(un));
19963 	}
19964 
19965 	bzero(&cdb, sizeof (cdb));
19966 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19967 
19968 	cdb.scc_cmd = SCMD_DOORLOCK;
19969 	cdb.cdb_opaque[4] = (uchar_t)flag;
19970 
19971 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19972 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19973 	ucmd_buf.uscsi_bufaddr	= NULL;
19974 	ucmd_buf.uscsi_buflen	= 0;
19975 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19976 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19977 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19978 	ucmd_buf.uscsi_timeout	= 15;
19979 
19980 	SD_TRACE(SD_LOG_IO, un,
19981 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19982 
19983 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19984 	    UIO_SYSSPACE, path_flag);
19985 
19986 	if (status == 0)
19987 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19988 
19989 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19990 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19991 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19992 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19993 
19994 		/* fake success and skip subsequent doorlock commands */
19995 		un->un_f_doorlock_supported = FALSE;
19996 		return (0);
19997 	}
19998 
19999 	return (status);
20000 }
20001 
20002 /*
20003  *    Function: sd_send_scsi_READ_CAPACITY
20004  *
20005  * Description: This routine uses the scsi READ CAPACITY command to determine
20006  *		the device capacity in number of blocks and the device native
20007  *		block size. If this function returns a failure, then the
20008  *		values in *capp and *lbap are undefined.  If the capacity
20009  *		returned is 0xffffffff then the lun is too large for a
20010  *		normal READ CAPACITY command and the results of a
20011  *		READ CAPACITY 16 will be used instead.
20012  *
20013  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20014  *		capp - ptr to unsigned 64-bit variable to receive the
20015  *			capacity value from the command.
20016  *		lbap - ptr to unsigned 32-bit varaible to receive the
20017  *			block size value from the command
20018  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20019  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20020  *			to use the USCSI "direct" chain and bypass the normal
20021  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20022  *			command is issued as part of an error recovery action.
20023  *
20024  * Return Code: 0   - Success
20025  *		EIO - IO error
20026  *		EACCES - Reservation conflict detected
20027  *		EAGAIN - Device is becoming ready
20028  *		errno return code from sd_ssc_send()
20029  *
20030  *     Context: Can sleep.  Blocks until command completes.
20031  */
20032 
20033 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
20034 
20035 static int
20036 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20037 	int path_flag)
20038 {
20039 	struct	scsi_extended_sense	sense_buf;
20040 	struct	uscsi_cmd	ucmd_buf;
20041 	union	scsi_cdb	cdb;
20042 	uint32_t		*capacity_buf;
20043 	uint64_t		capacity;
20044 	uint32_t		lbasize;
20045 	uint32_t		pbsize;
20046 	int			status;
20047 	struct sd_lun		*un;
20048 
20049 	ASSERT(ssc != NULL);
20050 
20051 	un = ssc->ssc_un;
20052 	ASSERT(un != NULL);
20053 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20054 	ASSERT(capp != NULL);
20055 	ASSERT(lbap != NULL);
20056 
20057 	SD_TRACE(SD_LOG_IO, un,
20058 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20059 
20060 	/*
20061 	 * First send a READ_CAPACITY command to the target.
20062 	 * (This command is mandatory under SCSI-2.)
20063 	 *
20064 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20065 	 * Medium Indicator bit is cleared.  The address field must be
20066 	 * zero if the PMI bit is zero.
20067 	 */
20068 	bzero(&cdb, sizeof (cdb));
20069 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20070 
20071 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20072 
20073 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20074 
20075 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20076 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20077 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20078 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20079 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20080 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20081 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20082 	ucmd_buf.uscsi_timeout	= 60;
20083 
20084 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20085 	    UIO_SYSSPACE, path_flag);
20086 
20087 	switch (status) {
20088 	case 0:
20089 		/* Return failure if we did not get valid capacity data. */
20090 		if (ucmd_buf.uscsi_resid != 0) {
20091 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20092 			    "sd_send_scsi_READ_CAPACITY received invalid "
20093 			    "capacity data");
20094 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20095 			return (EIO);
20096 		}
20097 		/*
20098 		 * Read capacity and block size from the READ CAPACITY 10 data.
20099 		 * This data may be adjusted later due to device specific
20100 		 * issues.
20101 		 *
20102 		 * According to the SCSI spec, the READ CAPACITY 10
20103 		 * command returns the following:
20104 		 *
20105 		 *  bytes 0-3: Maximum logical block address available.
20106 		 *		(MSB in byte:0 & LSB in byte:3)
20107 		 *
20108 		 *  bytes 4-7: Block length in bytes
20109 		 *		(MSB in byte:4 & LSB in byte:7)
20110 		 *
20111 		 */
20112 		capacity = BE_32(capacity_buf[0]);
20113 		lbasize = BE_32(capacity_buf[1]);
20114 
20115 		/*
20116 		 * Done with capacity_buf
20117 		 */
20118 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20119 
20120 		/*
20121 		 * if the reported capacity is set to all 0xf's, then
20122 		 * this disk is too large and requires SBC-2 commands.
20123 		 * Reissue the request using READ CAPACITY 16.
20124 		 */
20125 		if (capacity == 0xffffffff) {
20126 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20127 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20128 			    &lbasize, &pbsize, path_flag);
20129 			if (status != 0) {
20130 				return (status);
20131 			} else {
20132 				goto rc16_done;
20133 			}
20134 		}
20135 		break;	/* Success! */
20136 	case EIO:
20137 		switch (ucmd_buf.uscsi_status) {
20138 		case STATUS_RESERVATION_CONFLICT:
20139 			status = EACCES;
20140 			break;
20141 		case STATUS_CHECK:
20142 			/*
20143 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20144 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20145 			 */
20146 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20147 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20148 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20149 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20150 				return (EAGAIN);
20151 			}
20152 			break;
20153 		default:
20154 			break;
20155 		}
20156 		/* FALLTHRU */
20157 	default:
20158 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20159 		return (status);
20160 	}
20161 
20162 	/*
20163 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20164 	 * (2352 and 0 are common) so for these devices always force the value
20165 	 * to 2048 as required by the ATAPI specs.
20166 	 */
20167 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20168 		lbasize = 2048;
20169 	}
20170 
20171 	/*
20172 	 * Get the maximum LBA value from the READ CAPACITY data.
20173 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20174 	 * was cleared when issuing the command. This means that the LBA
20175 	 * returned from the device is the LBA of the last logical block
20176 	 * on the logical unit.  The actual logical block count will be
20177 	 * this value plus one.
20178 	 */
20179 	capacity += 1;
20180 
20181 	/*
20182 	 * Currently, for removable media, the capacity is saved in terms
20183 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20184 	 */
20185 	if (un->un_f_has_removable_media)
20186 		capacity *= (lbasize / un->un_sys_blocksize);
20187 
20188 rc16_done:
20189 
20190 	/*
20191 	 * Copy the values from the READ CAPACITY command into the space
20192 	 * provided by the caller.
20193 	 */
20194 	*capp = capacity;
20195 	*lbap = lbasize;
20196 
20197 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20198 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20199 
20200 	/*
20201 	 * Both the lbasize and capacity from the device must be nonzero,
20202 	 * otherwise we assume that the values are not valid and return
20203 	 * failure to the caller. (4203735)
20204 	 */
20205 	if ((capacity == 0) || (lbasize == 0)) {
20206 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20207 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20208 		    "capacity %llu lbasize %d", capacity, lbasize);
20209 		return (EIO);
20210 	}
20211 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20212 	return (0);
20213 }
20214 
20215 /*
20216  *    Function: sd_send_scsi_READ_CAPACITY_16
20217  *
20218  * Description: This routine uses the scsi READ CAPACITY 16 command to
20219  *		determine the device capacity in number of blocks and the
20220  *		device native block size.  If this function returns a failure,
20221  *		then the values in *capp and *lbap are undefined.
20222  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20223  *              which will apply any device specific adjustments to capacity
20224  *              and lbasize. One exception is it is also called by
20225  *              sd_get_media_info_ext. In that function, there is no need to
20226  *              adjust the capacity and lbasize.
20227  *
20228  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20229  *		capp - ptr to unsigned 64-bit variable to receive the
20230  *			capacity value from the command.
20231  *		lbap - ptr to unsigned 32-bit varaible to receive the
20232  *			block size value from the command
20233  *              psp  - ptr to unsigned 32-bit variable to receive the
20234  *                      physical block size value from the command
20235  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20236  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20237  *			to use the USCSI "direct" chain and bypass the normal
20238  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20239  *			this command is issued as part of an error recovery
20240  *			action.
20241  *
20242  * Return Code: 0   - Success
20243  *		EIO - IO error
20244  *		EACCES - Reservation conflict detected
20245  *		EAGAIN - Device is becoming ready
20246  *		errno return code from sd_ssc_send()
20247  *
20248  *     Context: Can sleep.  Blocks until command completes.
20249  */
20250 
20251 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20252 
20253 static int
20254 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20255 	uint32_t *lbap, uint32_t *psp, int path_flag)
20256 {
20257 	struct	scsi_extended_sense	sense_buf;
20258 	struct	uscsi_cmd	ucmd_buf;
20259 	union	scsi_cdb	cdb;
20260 	uint64_t		*capacity16_buf;
20261 	uint64_t		capacity;
20262 	uint32_t		lbasize;
20263 	uint32_t		pbsize;
20264 	uint32_t		lbpb_exp;
20265 	int			status;
20266 	struct sd_lun		*un;
20267 
20268 	ASSERT(ssc != NULL);
20269 
20270 	un = ssc->ssc_un;
20271 	ASSERT(un != NULL);
20272 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20273 	ASSERT(capp != NULL);
20274 	ASSERT(lbap != NULL);
20275 
20276 	SD_TRACE(SD_LOG_IO, un,
20277 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20278 
20279 	/*
20280 	 * First send a READ_CAPACITY_16 command to the target.
20281 	 *
20282 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20283 	 * Medium Indicator bit is cleared.  The address field must be
20284 	 * zero if the PMI bit is zero.
20285 	 */
20286 	bzero(&cdb, sizeof (cdb));
20287 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20288 
20289 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20290 
20291 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20292 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20293 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20294 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20295 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20296 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20297 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20298 	ucmd_buf.uscsi_timeout	= 60;
20299 
20300 	/*
20301 	 * Read Capacity (16) is a Service Action In command.  One
20302 	 * command byte (0x9E) is overloaded for multiple operations,
20303 	 * with the second CDB byte specifying the desired operation
20304 	 */
20305 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20306 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20307 
20308 	/*
20309 	 * Fill in allocation length field
20310 	 */
20311 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20312 
20313 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20314 	    UIO_SYSSPACE, path_flag);
20315 
20316 	switch (status) {
20317 	case 0:
20318 		/* Return failure if we did not get valid capacity data. */
20319 		if (ucmd_buf.uscsi_resid > 20) {
20320 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20321 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20322 			    "capacity data");
20323 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20324 			return (EIO);
20325 		}
20326 
20327 		/*
20328 		 * Read capacity and block size from the READ CAPACITY 16 data.
20329 		 * This data may be adjusted later due to device specific
20330 		 * issues.
20331 		 *
20332 		 * According to the SCSI spec, the READ CAPACITY 16
20333 		 * command returns the following:
20334 		 *
20335 		 *  bytes 0-7: Maximum logical block address available.
20336 		 *		(MSB in byte:0 & LSB in byte:7)
20337 		 *
20338 		 *  bytes 8-11: Block length in bytes
20339 		 *		(MSB in byte:8 & LSB in byte:11)
20340 		 *
20341 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20342 		 */
20343 		capacity = BE_64(capacity16_buf[0]);
20344 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20345 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20346 
20347 		pbsize = lbasize << lbpb_exp;
20348 
20349 		/*
20350 		 * Done with capacity16_buf
20351 		 */
20352 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20353 
20354 		/*
20355 		 * if the reported capacity is set to all 0xf's, then
20356 		 * this disk is too large.  This could only happen with
20357 		 * a device that supports LBAs larger than 64 bits which
20358 		 * are not defined by any current T10 standards.
20359 		 */
20360 		if (capacity == 0xffffffffffffffff) {
20361 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20362 			    "disk is too large");
20363 			return (EIO);
20364 		}
20365 		break;	/* Success! */
20366 	case EIO:
20367 		switch (ucmd_buf.uscsi_status) {
20368 		case STATUS_RESERVATION_CONFLICT:
20369 			status = EACCES;
20370 			break;
20371 		case STATUS_CHECK:
20372 			/*
20373 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20374 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20375 			 */
20376 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20377 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20378 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20379 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20380 				return (EAGAIN);
20381 			}
20382 			break;
20383 		default:
20384 			break;
20385 		}
20386 		/* FALLTHRU */
20387 	default:
20388 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20389 		return (status);
20390 	}
20391 
20392 	/*
20393 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20394 	 * (2352 and 0 are common) so for these devices always force the value
20395 	 * to 2048 as required by the ATAPI specs.
20396 	 */
20397 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20398 		lbasize = 2048;
20399 	}
20400 
20401 	/*
20402 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20403 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20404 	 * was cleared when issuing the command. This means that the LBA
20405 	 * returned from the device is the LBA of the last logical block
20406 	 * on the logical unit.  The actual logical block count will be
20407 	 * this value plus one.
20408 	 */
20409 	capacity += 1;
20410 
20411 	/*
20412 	 * Currently, for removable media, the capacity is saved in terms
20413 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20414 	 */
20415 	if (un->un_f_has_removable_media)
20416 		capacity *= (lbasize / un->un_sys_blocksize);
20417 
20418 	*capp = capacity;
20419 	*lbap = lbasize;
20420 	*psp = pbsize;
20421 
20422 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20423 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20424 	    capacity, lbasize, pbsize);
20425 
20426 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20427 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20428 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20429 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20430 		return (EIO);
20431 	}
20432 
20433 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20434 	return (0);
20435 }
20436 
20437 
20438 /*
20439  *    Function: sd_send_scsi_START_STOP_UNIT
20440  *
20441  * Description: Issue a scsi START STOP UNIT command to the target.
20442  *
20443  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20444  *                       structure for this target.
20445  *      pc_flag - SD_POWER_CONDITION
20446  *                SD_START_STOP
20447  *		flag  - SD_TARGET_START
20448  *			SD_TARGET_STOP
20449  *			SD_TARGET_EJECT
20450  *			SD_TARGET_CLOSE
20451  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20452  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20453  *			to use the USCSI "direct" chain and bypass the normal
20454  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20455  *			command is issued as part of an error recovery action.
20456  *
20457  * Return Code: 0   - Success
20458  *		EIO - IO error
20459  *		EACCES - Reservation conflict detected
20460  *		ENXIO  - Not Ready, medium not present
20461  *		errno return code from sd_ssc_send()
20462  *
20463  *     Context: Can sleep.
20464  */
20465 
20466 static int
20467 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20468     int path_flag)
20469 {
20470 	struct	scsi_extended_sense	sense_buf;
20471 	union scsi_cdb		cdb;
20472 	struct uscsi_cmd	ucmd_buf;
20473 	int			status;
20474 	struct sd_lun		*un;
20475 
20476 	ASSERT(ssc != NULL);
20477 	un = ssc->ssc_un;
20478 	ASSERT(un != NULL);
20479 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20480 
20481 	SD_TRACE(SD_LOG_IO, un,
20482 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20483 
20484 	if (un->un_f_check_start_stop &&
20485 	    (pc_flag == SD_START_STOP) &&
20486 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20487 	    (un->un_f_start_stop_supported != TRUE)) {
20488 		return (0);
20489 	}
20490 
20491 	/*
20492 	 * If we are performing an eject operation and
20493 	 * we receive any command other than SD_TARGET_EJECT
20494 	 * we should immediately return.
20495 	 */
20496 	if (flag != SD_TARGET_EJECT) {
20497 		mutex_enter(SD_MUTEX(un));
20498 		if (un->un_f_ejecting == TRUE) {
20499 			mutex_exit(SD_MUTEX(un));
20500 			return (EAGAIN);
20501 		}
20502 		mutex_exit(SD_MUTEX(un));
20503 	}
20504 
20505 	bzero(&cdb, sizeof (cdb));
20506 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20507 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20508 
20509 	cdb.scc_cmd = SCMD_START_STOP;
20510 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20511 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20512 
20513 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20514 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20515 	ucmd_buf.uscsi_bufaddr	= NULL;
20516 	ucmd_buf.uscsi_buflen	= 0;
20517 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20518 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20519 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20520 	ucmd_buf.uscsi_timeout	= 200;
20521 
20522 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20523 	    UIO_SYSSPACE, path_flag);
20524 
20525 	switch (status) {
20526 	case 0:
20527 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20528 		break;	/* Success! */
20529 	case EIO:
20530 		switch (ucmd_buf.uscsi_status) {
20531 		case STATUS_RESERVATION_CONFLICT:
20532 			status = EACCES;
20533 			break;
20534 		case STATUS_CHECK:
20535 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20536 				switch (scsi_sense_key(
20537 				    (uint8_t *)&sense_buf)) {
20538 				case KEY_ILLEGAL_REQUEST:
20539 					status = ENOTSUP;
20540 					break;
20541 				case KEY_NOT_READY:
20542 					if (scsi_sense_asc(
20543 					    (uint8_t *)&sense_buf)
20544 					    == 0x3A) {
20545 						status = ENXIO;
20546 					}
20547 					break;
20548 				default:
20549 					break;
20550 				}
20551 			}
20552 			break;
20553 		default:
20554 			break;
20555 		}
20556 		break;
20557 	default:
20558 		break;
20559 	}
20560 
20561 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20562 
20563 	return (status);
20564 }
20565 
20566 
20567 /*
20568  *    Function: sd_start_stop_unit_callback
20569  *
20570  * Description: timeout(9F) callback to begin recovery process for a
20571  *		device that has spun down.
20572  *
20573  *   Arguments: arg - pointer to associated softstate struct.
20574  *
20575  *     Context: Executes in a timeout(9F) thread context
20576  */
20577 
20578 static void
20579 sd_start_stop_unit_callback(void *arg)
20580 {
20581 	struct sd_lun	*un = arg;
20582 	ASSERT(un != NULL);
20583 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20584 
20585 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20586 
20587 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20588 }
20589 
20590 
20591 /*
20592  *    Function: sd_start_stop_unit_task
20593  *
20594  * Description: Recovery procedure when a drive is spun down.
20595  *
20596  *   Arguments: arg - pointer to associated softstate struct.
20597  *
20598  *     Context: Executes in a taskq() thread context
20599  */
20600 
20601 static void
20602 sd_start_stop_unit_task(void *arg)
20603 {
20604 	struct sd_lun	*un = arg;
20605 	sd_ssc_t	*ssc;
20606 	int		power_level;
20607 	int		rval;
20608 
20609 	ASSERT(un != NULL);
20610 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20611 
20612 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20613 
20614 	/*
20615 	 * Some unformatted drives report not ready error, no need to
20616 	 * restart if format has been initiated.
20617 	 */
20618 	mutex_enter(SD_MUTEX(un));
20619 	if (un->un_f_format_in_progress == TRUE) {
20620 		mutex_exit(SD_MUTEX(un));
20621 		return;
20622 	}
20623 	mutex_exit(SD_MUTEX(un));
20624 
20625 	ssc = sd_ssc_init(un);
20626 	/*
20627 	 * When a START STOP command is issued from here, it is part of a
20628 	 * failure recovery operation and must be issued before any other
20629 	 * commands, including any pending retries. Thus it must be sent
20630 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20631 	 * succeeds or not, we will start I/O after the attempt.
20632 	 * If power condition is supported and the current power level
20633 	 * is capable of performing I/O, we should set the power condition
20634 	 * to that level. Otherwise, set the power condition to ACTIVE.
20635 	 */
20636 	if (un->un_f_power_condition_supported) {
20637 		mutex_enter(SD_MUTEX(un));
20638 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20639 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20640 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20641 		mutex_exit(SD_MUTEX(un));
20642 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20643 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20644 	} else {
20645 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20646 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20647 	}
20648 
20649 	if (rval != 0)
20650 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20651 	sd_ssc_fini(ssc);
20652 	/*
20653 	 * The above call blocks until the START_STOP_UNIT command completes.
20654 	 * Now that it has completed, we must re-try the original IO that
20655 	 * received the NOT READY condition in the first place. There are
20656 	 * three possible conditions here:
20657 	 *
20658 	 *  (1) The original IO is on un_retry_bp.
20659 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20660 	 *	is NULL.
20661 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20662 	 *	points to some other, unrelated bp.
20663 	 *
20664 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20665 	 * as the argument. If un_retry_bp is NULL, this will initiate
20666 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20667 	 * then this will process the bp on un_retry_bp. That may or may not
20668 	 * be the original IO, but that does not matter: the important thing
20669 	 * is to keep the IO processing going at this point.
20670 	 *
20671 	 * Note: This is a very specific error recovery sequence associated
20672 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20673 	 * serialize the I/O with completion of the spin-up.
20674 	 */
20675 	mutex_enter(SD_MUTEX(un));
20676 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20677 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20678 	    un, un->un_retry_bp);
20679 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20680 	sd_start_cmds(un, un->un_retry_bp);
20681 	mutex_exit(SD_MUTEX(un));
20682 
20683 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20684 }
20685 
20686 
20687 /*
20688  *    Function: sd_send_scsi_INQUIRY
20689  *
20690  * Description: Issue the scsi INQUIRY command.
20691  *
20692  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20693  *                      structure for this target.
20694  *		bufaddr
20695  *		buflen
20696  *		evpd
20697  *		page_code
20698  *		page_length
20699  *
20700  * Return Code: 0   - Success
20701  *		errno return code from sd_ssc_send()
20702  *
20703  *     Context: Can sleep. Does not return until command is completed.
20704  */
20705 
20706 static int
20707 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20708 	uchar_t evpd, uchar_t page_code, size_t *residp)
20709 {
20710 	union scsi_cdb		cdb;
20711 	struct uscsi_cmd	ucmd_buf;
20712 	int			status;
20713 	struct sd_lun		*un;
20714 
20715 	ASSERT(ssc != NULL);
20716 	un = ssc->ssc_un;
20717 	ASSERT(un != NULL);
20718 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20719 	ASSERT(bufaddr != NULL);
20720 
20721 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20722 
20723 	bzero(&cdb, sizeof (cdb));
20724 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20725 	bzero(bufaddr, buflen);
20726 
20727 	cdb.scc_cmd = SCMD_INQUIRY;
20728 	cdb.cdb_opaque[1] = evpd;
20729 	cdb.cdb_opaque[2] = page_code;
20730 	FORMG0COUNT(&cdb, buflen);
20731 
20732 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20733 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20734 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20735 	ucmd_buf.uscsi_buflen	= buflen;
20736 	ucmd_buf.uscsi_rqbuf	= NULL;
20737 	ucmd_buf.uscsi_rqlen	= 0;
20738 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20739 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20740 
20741 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20742 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20743 
20744 	/*
20745 	 * Only handle status == 0, the upper-level caller
20746 	 * will put different assessment based on the context.
20747 	 */
20748 	if (status == 0)
20749 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20750 
20751 	if ((status == 0) && (residp != NULL)) {
20752 		*residp = ucmd_buf.uscsi_resid;
20753 	}
20754 
20755 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20756 
20757 	return (status);
20758 }
20759 
20760 
20761 /*
20762  *    Function: sd_send_scsi_TEST_UNIT_READY
20763  *
20764  * Description: Issue the scsi TEST UNIT READY command.
20765  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20766  *		prevent retrying failed commands. Use this when the intent
20767  *		is either to check for device readiness, to clear a Unit
20768  *		Attention, or to clear any outstanding sense data.
20769  *		However under specific conditions the expected behavior
20770  *		is for retries to bring a device ready, so use the flag
20771  *		with caution.
20772  *
20773  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20774  *                      structure for this target.
20775  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20776  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20777  *			0: dont check for media present, do retries on cmd.
20778  *
20779  * Return Code: 0   - Success
20780  *		EIO - IO error
20781  *		EACCES - Reservation conflict detected
20782  *		ENXIO  - Not Ready, medium not present
20783  *		errno return code from sd_ssc_send()
20784  *
20785  *     Context: Can sleep. Does not return until command is completed.
20786  */
20787 
20788 static int
20789 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20790 {
20791 	struct	scsi_extended_sense	sense_buf;
20792 	union scsi_cdb		cdb;
20793 	struct uscsi_cmd	ucmd_buf;
20794 	int			status;
20795 	struct sd_lun		*un;
20796 
20797 	ASSERT(ssc != NULL);
20798 	un = ssc->ssc_un;
20799 	ASSERT(un != NULL);
20800 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20801 
20802 	SD_TRACE(SD_LOG_IO, un,
20803 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20804 
20805 	/*
20806 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20807 	 * timeouts when they receive a TUR and the queue is not empty. Check
20808 	 * the configuration flag set during attach (indicating the drive has
20809 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20810 	 * TUR. If there are
20811 	 * pending commands return success, this is a bit arbitrary but is ok
20812 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20813 	 * configurations.
20814 	 */
20815 	if (un->un_f_cfg_tur_check == TRUE) {
20816 		mutex_enter(SD_MUTEX(un));
20817 		if (un->un_ncmds_in_transport != 0) {
20818 			mutex_exit(SD_MUTEX(un));
20819 			return (0);
20820 		}
20821 		mutex_exit(SD_MUTEX(un));
20822 	}
20823 
20824 	bzero(&cdb, sizeof (cdb));
20825 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20826 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20827 
20828 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20829 
20830 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20831 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20832 	ucmd_buf.uscsi_bufaddr	= NULL;
20833 	ucmd_buf.uscsi_buflen	= 0;
20834 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20835 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20836 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20837 
20838 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20839 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20840 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20841 	}
20842 	ucmd_buf.uscsi_timeout	= 60;
20843 
20844 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20845 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20846 	    SD_PATH_STANDARD));
20847 
20848 	switch (status) {
20849 	case 0:
20850 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20851 		break;	/* Success! */
20852 	case EIO:
20853 		switch (ucmd_buf.uscsi_status) {
20854 		case STATUS_RESERVATION_CONFLICT:
20855 			status = EACCES;
20856 			break;
20857 		case STATUS_CHECK:
20858 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20859 				break;
20860 			}
20861 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20862 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20863 			    KEY_NOT_READY) &&
20864 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20865 				status = ENXIO;
20866 			}
20867 			break;
20868 		default:
20869 			break;
20870 		}
20871 		break;
20872 	default:
20873 		break;
20874 	}
20875 
20876 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20877 
20878 	return (status);
20879 }
20880 
20881 /*
20882  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20883  *
20884  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20885  *
20886  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20887  *                      structure for this target.
20888  *
20889  * Return Code: 0   - Success
20890  *		EACCES
20891  *		ENOTSUP
20892  *		errno return code from sd_ssc_send()
20893  *
20894  *     Context: Can sleep. Does not return until command is completed.
20895  */
20896 
20897 static int
20898 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20899 	uint16_t data_len, uchar_t *data_bufp)
20900 {
20901 	struct scsi_extended_sense	sense_buf;
20902 	union scsi_cdb		cdb;
20903 	struct uscsi_cmd	ucmd_buf;
20904 	int			status;
20905 	int			no_caller_buf = FALSE;
20906 	struct sd_lun		*un;
20907 
20908 	ASSERT(ssc != NULL);
20909 	un = ssc->ssc_un;
20910 	ASSERT(un != NULL);
20911 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20912 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20913 
20914 	SD_TRACE(SD_LOG_IO, un,
20915 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20916 
20917 	bzero(&cdb, sizeof (cdb));
20918 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20919 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20920 	if (data_bufp == NULL) {
20921 		/* Allocate a default buf if the caller did not give one */
20922 		ASSERT(data_len == 0);
20923 		data_len  = MHIOC_RESV_KEY_SIZE;
20924 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20925 		no_caller_buf = TRUE;
20926 	}
20927 
20928 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20929 	cdb.cdb_opaque[1] = usr_cmd;
20930 	FORMG1COUNT(&cdb, data_len);
20931 
20932 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20933 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20934 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20935 	ucmd_buf.uscsi_buflen	= data_len;
20936 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20937 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20938 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20939 	ucmd_buf.uscsi_timeout	= 60;
20940 
20941 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20942 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20943 
20944 	switch (status) {
20945 	case 0:
20946 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20947 
20948 		break;	/* Success! */
20949 	case EIO:
20950 		switch (ucmd_buf.uscsi_status) {
20951 		case STATUS_RESERVATION_CONFLICT:
20952 			status = EACCES;
20953 			break;
20954 		case STATUS_CHECK:
20955 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20956 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20957 			    KEY_ILLEGAL_REQUEST)) {
20958 				status = ENOTSUP;
20959 			}
20960 			break;
20961 		default:
20962 			break;
20963 		}
20964 		break;
20965 	default:
20966 		break;
20967 	}
20968 
20969 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20970 
20971 	if (no_caller_buf == TRUE) {
20972 		kmem_free(data_bufp, data_len);
20973 	}
20974 
20975 	return (status);
20976 }
20977 
20978 
20979 /*
20980  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20981  *
20982  * Description: This routine is the driver entry point for handling CD-ROM
20983  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20984  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20985  *		device.
20986  *
20987  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20988  *                      for the target.
20989  *		usr_cmd SCSI-3 reservation facility command (one of
20990  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20991  *			SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR)
20992  *		usr_bufp - user provided pointer register, reserve descriptor or
20993  *			preempt and abort structure (mhioc_register_t,
20994  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20995  *
20996  * Return Code: 0   - Success
20997  *		EACCES
20998  *		ENOTSUP
20999  *		errno return code from sd_ssc_send()
21000  *
21001  *     Context: Can sleep. Does not return until command is completed.
21002  */
21003 
21004 static int
21005 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
21006 	uchar_t	*usr_bufp)
21007 {
21008 	struct scsi_extended_sense	sense_buf;
21009 	union scsi_cdb		cdb;
21010 	struct uscsi_cmd	ucmd_buf;
21011 	int			status;
21012 	uchar_t			data_len = sizeof (sd_prout_t);
21013 	sd_prout_t		*prp;
21014 	struct sd_lun		*un;
21015 
21016 	ASSERT(ssc != NULL);
21017 	un = ssc->ssc_un;
21018 	ASSERT(un != NULL);
21019 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21020 	ASSERT(data_len == 24);	/* required by scsi spec */
21021 
21022 	SD_TRACE(SD_LOG_IO, un,
21023 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
21024 
21025 	if (usr_bufp == NULL) {
21026 		return (EINVAL);
21027 	}
21028 
21029 	bzero(&cdb, sizeof (cdb));
21030 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21031 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21032 	prp = kmem_zalloc(data_len, KM_SLEEP);
21033 
21034 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21035 	cdb.cdb_opaque[1] = usr_cmd;
21036 	FORMG1COUNT(&cdb, data_len);
21037 
21038 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21039 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21040 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
21041 	ucmd_buf.uscsi_buflen	= data_len;
21042 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21043 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21044 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21045 	ucmd_buf.uscsi_timeout	= 60;
21046 
21047 	switch (usr_cmd) {
21048 	case SD_SCSI3_REGISTER: {
21049 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21050 
21051 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21052 		bcopy(ptr->newkey.key, prp->service_key,
21053 		    MHIOC_RESV_KEY_SIZE);
21054 		prp->aptpl = ptr->aptpl;
21055 		break;
21056 	}
21057 	case SD_SCSI3_CLEAR: {
21058 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21059 
21060 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21061 		break;
21062 	}
21063 	case SD_SCSI3_RESERVE:
21064 	case SD_SCSI3_RELEASE: {
21065 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21066 
21067 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21068 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21069 		cdb.cdb_opaque[2] = ptr->type;
21070 		break;
21071 	}
21072 	case SD_SCSI3_PREEMPTANDABORT: {
21073 		mhioc_preemptandabort_t *ptr =
21074 		    (mhioc_preemptandabort_t *)usr_bufp;
21075 
21076 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21077 		bcopy(ptr->victim_key.key, prp->service_key,
21078 		    MHIOC_RESV_KEY_SIZE);
21079 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21080 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21081 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21082 		break;
21083 	}
21084 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21085 	{
21086 		mhioc_registerandignorekey_t *ptr;
21087 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21088 		bcopy(ptr->newkey.key,
21089 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21090 		prp->aptpl = ptr->aptpl;
21091 		break;
21092 	}
21093 	default:
21094 		ASSERT(FALSE);
21095 		break;
21096 	}
21097 
21098 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21099 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21100 
21101 	switch (status) {
21102 	case 0:
21103 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21104 		break;	/* Success! */
21105 	case EIO:
21106 		switch (ucmd_buf.uscsi_status) {
21107 		case STATUS_RESERVATION_CONFLICT:
21108 			status = EACCES;
21109 			break;
21110 		case STATUS_CHECK:
21111 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21112 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21113 			    KEY_ILLEGAL_REQUEST)) {
21114 				status = ENOTSUP;
21115 			}
21116 			break;
21117 		default:
21118 			break;
21119 		}
21120 		break;
21121 	default:
21122 		break;
21123 	}
21124 
21125 	kmem_free(prp, data_len);
21126 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21127 	return (status);
21128 }
21129 
21130 
21131 /*
21132  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21133  *
21134  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21135  *
21136  *   Arguments: un - pointer to the target's soft state struct
21137  *              dkc - pointer to the callback structure
21138  *
21139  * Return Code: 0 - success
21140  *		errno-type error code
21141  *
21142  *     Context: kernel thread context only.
21143  *
21144  *  _______________________________________________________________
21145  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21146  * |FLUSH_VOLATILE|              | operation                       |
21147  * |______________|______________|_________________________________|
21148  * | 0            | NULL         | Synchronous flush on both       |
21149  * |              |              | volatile and non-volatile cache |
21150  * |______________|______________|_________________________________|
21151  * | 1            | NULL         | Synchronous flush on volatile   |
21152  * |              |              | cache; disk drivers may suppress|
21153  * |              |              | flush if disk table indicates   |
21154  * |              |              | non-volatile cache              |
21155  * |______________|______________|_________________________________|
21156  * | 0            | !NULL        | Asynchronous flush on both      |
21157  * |              |              | volatile and non-volatile cache;|
21158  * |______________|______________|_________________________________|
21159  * | 1            | !NULL        | Asynchronous flush on volatile  |
21160  * |              |              | cache; disk drivers may suppress|
21161  * |              |              | flush if disk table indicates   |
21162  * |              |              | non-volatile cache              |
21163  * |______________|______________|_________________________________|
21164  *
21165  */
21166 
21167 static int
21168 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21169 {
21170 	struct sd_uscsi_info	*uip;
21171 	struct uscsi_cmd	*uscmd;
21172 	union scsi_cdb		*cdb;
21173 	struct buf		*bp;
21174 	int			rval = 0;
21175 	int			is_async;
21176 
21177 	SD_TRACE(SD_LOG_IO, un,
21178 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21179 
21180 	ASSERT(un != NULL);
21181 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21182 
21183 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21184 		is_async = FALSE;
21185 	} else {
21186 		is_async = TRUE;
21187 	}
21188 
21189 	mutex_enter(SD_MUTEX(un));
21190 	/* check whether cache flush should be suppressed */
21191 	if (un->un_f_suppress_cache_flush == TRUE) {
21192 		mutex_exit(SD_MUTEX(un));
21193 		/*
21194 		 * suppress the cache flush if the device is told to do
21195 		 * so by sd.conf or disk table
21196 		 */
21197 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21198 		    skip the cache flush since suppress_cache_flush is %d!\n",
21199 		    un->un_f_suppress_cache_flush);
21200 
21201 		if (is_async == TRUE) {
21202 			/* invoke callback for asynchronous flush */
21203 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21204 		}
21205 		return (rval);
21206 	}
21207 	mutex_exit(SD_MUTEX(un));
21208 
21209 	/*
21210 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21211 	 * set properly
21212 	 */
21213 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21214 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21215 
21216 	mutex_enter(SD_MUTEX(un));
21217 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21218 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21219 		/*
21220 		 * if the device supports SYNC_NV bit, turn on
21221 		 * the SYNC_NV bit to only flush volatile cache
21222 		 */
21223 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21224 	}
21225 	mutex_exit(SD_MUTEX(un));
21226 
21227 	/*
21228 	 * First get some memory for the uscsi_cmd struct and cdb
21229 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21230 	 */
21231 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21232 	uscmd->uscsi_cdblen = CDB_GROUP1;
21233 	uscmd->uscsi_cdb = (caddr_t)cdb;
21234 	uscmd->uscsi_bufaddr = NULL;
21235 	uscmd->uscsi_buflen = 0;
21236 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21237 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21238 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21239 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21240 	uscmd->uscsi_timeout = sd_io_time;
21241 
21242 	/*
21243 	 * Allocate an sd_uscsi_info struct and fill it with the info
21244 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21245 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21246 	 * since we allocate the buf here in this function, we do not
21247 	 * need to preserve the prior contents of b_private.
21248 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21249 	 */
21250 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21251 	uip->ui_flags = SD_PATH_DIRECT;
21252 	uip->ui_cmdp  = uscmd;
21253 
21254 	bp = getrbuf(KM_SLEEP);
21255 	bp->b_private = uip;
21256 
21257 	/*
21258 	 * Setup buffer to carry uscsi request.
21259 	 */
21260 	bp->b_flags  = B_BUSY;
21261 	bp->b_bcount = 0;
21262 	bp->b_blkno  = 0;
21263 
21264 	if (is_async == TRUE) {
21265 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21266 		uip->ui_dkc = *dkc;
21267 	}
21268 
21269 	bp->b_edev = SD_GET_DEV(un);
21270 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21271 
21272 	/*
21273 	 * Unset un_f_sync_cache_required flag
21274 	 */
21275 	mutex_enter(SD_MUTEX(un));
21276 	un->un_f_sync_cache_required = FALSE;
21277 	mutex_exit(SD_MUTEX(un));
21278 
21279 	(void) sd_uscsi_strategy(bp);
21280 
21281 	/*
21282 	 * If synchronous request, wait for completion
21283 	 * If async just return and let b_iodone callback
21284 	 * cleanup.
21285 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21286 	 * but it was also incremented in sd_uscsi_strategy(), so
21287 	 * we should be ok.
21288 	 */
21289 	if (is_async == FALSE) {
21290 		(void) biowait(bp);
21291 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21292 	}
21293 
21294 	return (rval);
21295 }
21296 
21297 
21298 static int
21299 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21300 {
21301 	struct sd_uscsi_info *uip;
21302 	struct uscsi_cmd *uscmd;
21303 	uint8_t *sense_buf;
21304 	struct sd_lun *un;
21305 	int status;
21306 	union scsi_cdb *cdb;
21307 
21308 	uip = (struct sd_uscsi_info *)(bp->b_private);
21309 	ASSERT(uip != NULL);
21310 
21311 	uscmd = uip->ui_cmdp;
21312 	ASSERT(uscmd != NULL);
21313 
21314 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21315 	ASSERT(sense_buf != NULL);
21316 
21317 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21318 	ASSERT(un != NULL);
21319 
21320 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21321 
21322 	status = geterror(bp);
21323 	switch (status) {
21324 	case 0:
21325 		break;	/* Success! */
21326 	case EIO:
21327 		switch (uscmd->uscsi_status) {
21328 		case STATUS_RESERVATION_CONFLICT:
21329 			/* Ignore reservation conflict */
21330 			status = 0;
21331 			goto done;
21332 
21333 		case STATUS_CHECK:
21334 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21335 			    (scsi_sense_key(sense_buf) ==
21336 			    KEY_ILLEGAL_REQUEST)) {
21337 				/* Ignore Illegal Request error */
21338 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21339 					mutex_enter(SD_MUTEX(un));
21340 					un->un_f_sync_nv_supported = FALSE;
21341 					mutex_exit(SD_MUTEX(un));
21342 					status = 0;
21343 					SD_TRACE(SD_LOG_IO, un,
21344 					    "un_f_sync_nv_supported \
21345 					    is set to false.\n");
21346 					goto done;
21347 				}
21348 
21349 				mutex_enter(SD_MUTEX(un));
21350 				un->un_f_sync_cache_supported = FALSE;
21351 				mutex_exit(SD_MUTEX(un));
21352 				SD_TRACE(SD_LOG_IO, un,
21353 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21354 				    un_f_sync_cache_supported set to false \
21355 				    with asc = %x, ascq = %x\n",
21356 				    scsi_sense_asc(sense_buf),
21357 				    scsi_sense_ascq(sense_buf));
21358 				status = ENOTSUP;
21359 				goto done;
21360 			}
21361 			break;
21362 		default:
21363 			break;
21364 		}
21365 		/* FALLTHRU */
21366 	default:
21367 		/*
21368 		 * Turn on the un_f_sync_cache_required flag
21369 		 * since the SYNC CACHE command failed
21370 		 */
21371 		mutex_enter(SD_MUTEX(un));
21372 		un->un_f_sync_cache_required = TRUE;
21373 		mutex_exit(SD_MUTEX(un));
21374 
21375 		/*
21376 		 * Don't log an error message if this device
21377 		 * has removable media.
21378 		 */
21379 		if (!un->un_f_has_removable_media) {
21380 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21381 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21382 		}
21383 		break;
21384 	}
21385 
21386 done:
21387 	if (uip->ui_dkc.dkc_callback != NULL) {
21388 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21389 	}
21390 
21391 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21392 	freerbuf(bp);
21393 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21394 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21395 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21396 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21397 
21398 	return (status);
21399 }
21400 
21401 
21402 /*
21403  *    Function: sd_send_scsi_GET_CONFIGURATION
21404  *
21405  * Description: Issues the get configuration command to the device.
21406  *		Called from sd_check_for_writable_cd & sd_get_media_info
21407  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21408  *   Arguments: ssc
21409  *		ucmdbuf
21410  *		rqbuf
21411  *		rqbuflen
21412  *		bufaddr
21413  *		buflen
21414  *		path_flag
21415  *
21416  * Return Code: 0   - Success
21417  *		errno return code from sd_ssc_send()
21418  *
21419  *     Context: Can sleep. Does not return until command is completed.
21420  *
21421  */
21422 
21423 static int
21424 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21425 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21426 	int path_flag)
21427 {
21428 	char	cdb[CDB_GROUP1];
21429 	int	status;
21430 	struct sd_lun	*un;
21431 
21432 	ASSERT(ssc != NULL);
21433 	un = ssc->ssc_un;
21434 	ASSERT(un != NULL);
21435 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21436 	ASSERT(bufaddr != NULL);
21437 	ASSERT(ucmdbuf != NULL);
21438 	ASSERT(rqbuf != NULL);
21439 
21440 	SD_TRACE(SD_LOG_IO, un,
21441 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21442 
21443 	bzero(cdb, sizeof (cdb));
21444 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21445 	bzero(rqbuf, rqbuflen);
21446 	bzero(bufaddr, buflen);
21447 
21448 	/*
21449 	 * Set up cdb field for the get configuration command.
21450 	 */
21451 	cdb[0] = SCMD_GET_CONFIGURATION;
21452 	cdb[1] = 0x02;  /* Requested Type */
21453 	cdb[8] = SD_PROFILE_HEADER_LEN;
21454 	ucmdbuf->uscsi_cdb = cdb;
21455 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21456 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21457 	ucmdbuf->uscsi_buflen = buflen;
21458 	ucmdbuf->uscsi_timeout = sd_io_time;
21459 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21460 	ucmdbuf->uscsi_rqlen = rqbuflen;
21461 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21462 
21463 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21464 	    UIO_SYSSPACE, path_flag);
21465 
21466 	switch (status) {
21467 	case 0:
21468 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21469 		break;  /* Success! */
21470 	case EIO:
21471 		switch (ucmdbuf->uscsi_status) {
21472 		case STATUS_RESERVATION_CONFLICT:
21473 			status = EACCES;
21474 			break;
21475 		default:
21476 			break;
21477 		}
21478 		break;
21479 	default:
21480 		break;
21481 	}
21482 
21483 	if (status == 0) {
21484 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21485 		    "sd_send_scsi_GET_CONFIGURATION: data",
21486 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21487 	}
21488 
21489 	SD_TRACE(SD_LOG_IO, un,
21490 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21491 
21492 	return (status);
21493 }
21494 
21495 /*
21496  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21497  *
21498  * Description: Issues the get configuration command to the device to
21499  *              retrieve a specific feature. Called from
21500  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21501  *   Arguments: ssc
21502  *              ucmdbuf
21503  *              rqbuf
21504  *              rqbuflen
21505  *              bufaddr
21506  *              buflen
21507  *		feature
21508  *
21509  * Return Code: 0   - Success
21510  *              errno return code from sd_ssc_send()
21511  *
21512  *     Context: Can sleep. Does not return until command is completed.
21513  *
21514  */
21515 static int
21516 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21517 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21518 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21519 {
21520 	char    cdb[CDB_GROUP1];
21521 	int	status;
21522 	struct sd_lun	*un;
21523 
21524 	ASSERT(ssc != NULL);
21525 	un = ssc->ssc_un;
21526 	ASSERT(un != NULL);
21527 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21528 	ASSERT(bufaddr != NULL);
21529 	ASSERT(ucmdbuf != NULL);
21530 	ASSERT(rqbuf != NULL);
21531 
21532 	SD_TRACE(SD_LOG_IO, un,
21533 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21534 
21535 	bzero(cdb, sizeof (cdb));
21536 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21537 	bzero(rqbuf, rqbuflen);
21538 	bzero(bufaddr, buflen);
21539 
21540 	/*
21541 	 * Set up cdb field for the get configuration command.
21542 	 */
21543 	cdb[0] = SCMD_GET_CONFIGURATION;
21544 	cdb[1] = 0x02;  /* Requested Type */
21545 	cdb[3] = feature;
21546 	cdb[8] = buflen;
21547 	ucmdbuf->uscsi_cdb = cdb;
21548 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21549 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21550 	ucmdbuf->uscsi_buflen = buflen;
21551 	ucmdbuf->uscsi_timeout = sd_io_time;
21552 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21553 	ucmdbuf->uscsi_rqlen = rqbuflen;
21554 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21555 
21556 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21557 	    UIO_SYSSPACE, path_flag);
21558 
21559 	switch (status) {
21560 	case 0:
21561 
21562 		break;  /* Success! */
21563 	case EIO:
21564 		switch (ucmdbuf->uscsi_status) {
21565 		case STATUS_RESERVATION_CONFLICT:
21566 			status = EACCES;
21567 			break;
21568 		default:
21569 			break;
21570 		}
21571 		break;
21572 	default:
21573 		break;
21574 	}
21575 
21576 	if (status == 0) {
21577 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21578 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21579 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21580 	}
21581 
21582 	SD_TRACE(SD_LOG_IO, un,
21583 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21584 
21585 	return (status);
21586 }
21587 
21588 
21589 /*
21590  *    Function: sd_send_scsi_MODE_SENSE
21591  *
21592  * Description: Utility function for issuing a scsi MODE SENSE command.
21593  *		Note: This routine uses a consistent implementation for Group0,
21594  *		Group1, and Group2 commands across all platforms. ATAPI devices
21595  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21596  *
21597  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21598  *                      structure for this target.
21599  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21600  *			  CDB_GROUP[1|2] (10 byte).
21601  *		bufaddr - buffer for page data retrieved from the target.
21602  *		buflen - size of page to be retrieved.
21603  *		page_code - page code of data to be retrieved from the target.
21604  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21605  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21606  *			to use the USCSI "direct" chain and bypass the normal
21607  *			command waitq.
21608  *
21609  * Return Code: 0   - Success
21610  *		errno return code from sd_ssc_send()
21611  *
21612  *     Context: Can sleep. Does not return until command is completed.
21613  */
21614 
21615 static int
21616 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21617 	size_t buflen,  uchar_t page_code, int path_flag)
21618 {
21619 	struct	scsi_extended_sense	sense_buf;
21620 	union scsi_cdb		cdb;
21621 	struct uscsi_cmd	ucmd_buf;
21622 	int			status;
21623 	int			headlen;
21624 	struct sd_lun		*un;
21625 
21626 	ASSERT(ssc != NULL);
21627 	un = ssc->ssc_un;
21628 	ASSERT(un != NULL);
21629 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21630 	ASSERT(bufaddr != NULL);
21631 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21632 	    (cdbsize == CDB_GROUP2));
21633 
21634 	SD_TRACE(SD_LOG_IO, un,
21635 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21636 
21637 	bzero(&cdb, sizeof (cdb));
21638 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21639 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21640 	bzero(bufaddr, buflen);
21641 
21642 	if (cdbsize == CDB_GROUP0) {
21643 		cdb.scc_cmd = SCMD_MODE_SENSE;
21644 		cdb.cdb_opaque[2] = page_code;
21645 		FORMG0COUNT(&cdb, buflen);
21646 		headlen = MODE_HEADER_LENGTH;
21647 	} else {
21648 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21649 		cdb.cdb_opaque[2] = page_code;
21650 		FORMG1COUNT(&cdb, buflen);
21651 		headlen = MODE_HEADER_LENGTH_GRP2;
21652 	}
21653 
21654 	ASSERT(headlen <= buflen);
21655 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21656 
21657 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21658 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21659 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21660 	ucmd_buf.uscsi_buflen	= buflen;
21661 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21662 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21663 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21664 	ucmd_buf.uscsi_timeout	= 60;
21665 
21666 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21667 	    UIO_SYSSPACE, path_flag);
21668 
21669 	switch (status) {
21670 	case 0:
21671 		/*
21672 		 * sr_check_wp() uses 0x3f page code and check the header of
21673 		 * mode page to determine if target device is write-protected.
21674 		 * But some USB devices return 0 bytes for 0x3f page code. For
21675 		 * this case, make sure that mode page header is returned at
21676 		 * least.
21677 		 */
21678 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21679 			status = EIO;
21680 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21681 			    "mode page header is not returned");
21682 		}
21683 		break;	/* Success! */
21684 	case EIO:
21685 		switch (ucmd_buf.uscsi_status) {
21686 		case STATUS_RESERVATION_CONFLICT:
21687 			status = EACCES;
21688 			break;
21689 		default:
21690 			break;
21691 		}
21692 		break;
21693 	default:
21694 		break;
21695 	}
21696 
21697 	if (status == 0) {
21698 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21699 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21700 	}
21701 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21702 
21703 	return (status);
21704 }
21705 
21706 
21707 /*
21708  *    Function: sd_send_scsi_MODE_SELECT
21709  *
21710  * Description: Utility function for issuing a scsi MODE SELECT command.
21711  *		Note: This routine uses a consistent implementation for Group0,
21712  *		Group1, and Group2 commands across all platforms. ATAPI devices
21713  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21714  *
21715  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21716  *                      structure for this target.
21717  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21718  *			  CDB_GROUP[1|2] (10 byte).
21719  *		bufaddr - buffer for page data retrieved from the target.
21720  *		buflen - size of page to be retrieved.
21721  *		save_page - boolean to determin if SP bit should be set.
21722  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21723  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21724  *			to use the USCSI "direct" chain and bypass the normal
21725  *			command waitq.
21726  *
21727  * Return Code: 0   - Success
21728  *		errno return code from sd_ssc_send()
21729  *
21730  *     Context: Can sleep. Does not return until command is completed.
21731  */
21732 
21733 static int
21734 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21735 	size_t buflen,  uchar_t save_page, int path_flag)
21736 {
21737 	struct	scsi_extended_sense	sense_buf;
21738 	union scsi_cdb		cdb;
21739 	struct uscsi_cmd	ucmd_buf;
21740 	int			status;
21741 	struct sd_lun		*un;
21742 
21743 	ASSERT(ssc != NULL);
21744 	un = ssc->ssc_un;
21745 	ASSERT(un != NULL);
21746 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21747 	ASSERT(bufaddr != NULL);
21748 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21749 	    (cdbsize == CDB_GROUP2));
21750 
21751 	SD_TRACE(SD_LOG_IO, un,
21752 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21753 
21754 	bzero(&cdb, sizeof (cdb));
21755 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21756 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21757 
21758 	/* Set the PF bit for many third party drives */
21759 	cdb.cdb_opaque[1] = 0x10;
21760 
21761 	/* Set the savepage(SP) bit if given */
21762 	if (save_page == SD_SAVE_PAGE) {
21763 		cdb.cdb_opaque[1] |= 0x01;
21764 	}
21765 
21766 	if (cdbsize == CDB_GROUP0) {
21767 		cdb.scc_cmd = SCMD_MODE_SELECT;
21768 		FORMG0COUNT(&cdb, buflen);
21769 	} else {
21770 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21771 		FORMG1COUNT(&cdb, buflen);
21772 	}
21773 
21774 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21775 
21776 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21777 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21778 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21779 	ucmd_buf.uscsi_buflen	= buflen;
21780 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21781 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21782 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21783 	ucmd_buf.uscsi_timeout	= 60;
21784 
21785 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21786 	    UIO_SYSSPACE, path_flag);
21787 
21788 	switch (status) {
21789 	case 0:
21790 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21791 		break;	/* Success! */
21792 	case EIO:
21793 		switch (ucmd_buf.uscsi_status) {
21794 		case STATUS_RESERVATION_CONFLICT:
21795 			status = EACCES;
21796 			break;
21797 		default:
21798 			break;
21799 		}
21800 		break;
21801 	default:
21802 		break;
21803 	}
21804 
21805 	if (status == 0) {
21806 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21807 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21808 	}
21809 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21810 
21811 	return (status);
21812 }
21813 
21814 
21815 /*
21816  *    Function: sd_send_scsi_RDWR
21817  *
21818  * Description: Issue a scsi READ or WRITE command with the given parameters.
21819  *
21820  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21821  *                      structure for this target.
21822  *		cmd:	 SCMD_READ or SCMD_WRITE
21823  *		bufaddr: Address of caller's buffer to receive the RDWR data
21824  *		buflen:  Length of caller's buffer receive the RDWR data.
21825  *		start_block: Block number for the start of the RDWR operation.
21826  *			 (Assumes target-native block size.)
21827  *		residp:  Pointer to variable to receive the redisual of the
21828  *			 RDWR operation (may be NULL of no residual requested).
21829  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21830  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21831  *			to use the USCSI "direct" chain and bypass the normal
21832  *			command waitq.
21833  *
21834  * Return Code: 0   - Success
21835  *		errno return code from sd_ssc_send()
21836  *
21837  *     Context: Can sleep. Does not return until command is completed.
21838  */
21839 
21840 static int
21841 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21842 	size_t buflen, daddr_t start_block, int path_flag)
21843 {
21844 	struct	scsi_extended_sense	sense_buf;
21845 	union scsi_cdb		cdb;
21846 	struct uscsi_cmd	ucmd_buf;
21847 	uint32_t		block_count;
21848 	int			status;
21849 	int			cdbsize;
21850 	uchar_t			flag;
21851 	struct sd_lun		*un;
21852 
21853 	ASSERT(ssc != NULL);
21854 	un = ssc->ssc_un;
21855 	ASSERT(un != NULL);
21856 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21857 	ASSERT(bufaddr != NULL);
21858 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21859 
21860 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21861 
21862 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21863 		return (EINVAL);
21864 	}
21865 
21866 	mutex_enter(SD_MUTEX(un));
21867 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21868 	mutex_exit(SD_MUTEX(un));
21869 
21870 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21871 
21872 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21873 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21874 	    bufaddr, buflen, start_block, block_count);
21875 
21876 	bzero(&cdb, sizeof (cdb));
21877 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21878 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21879 
21880 	/* Compute CDB size to use */
21881 	if (start_block > 0xffffffff)
21882 		cdbsize = CDB_GROUP4;
21883 	else if ((start_block & 0xFFE00000) ||
21884 	    (un->un_f_cfg_is_atapi == TRUE))
21885 		cdbsize = CDB_GROUP1;
21886 	else
21887 		cdbsize = CDB_GROUP0;
21888 
21889 	switch (cdbsize) {
21890 	case CDB_GROUP0:	/* 6-byte CDBs */
21891 		cdb.scc_cmd = cmd;
21892 		FORMG0ADDR(&cdb, start_block);
21893 		FORMG0COUNT(&cdb, block_count);
21894 		break;
21895 	case CDB_GROUP1:	/* 10-byte CDBs */
21896 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21897 		FORMG1ADDR(&cdb, start_block);
21898 		FORMG1COUNT(&cdb, block_count);
21899 		break;
21900 	case CDB_GROUP4:	/* 16-byte CDBs */
21901 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21902 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21903 		FORMG4COUNT(&cdb, block_count);
21904 		break;
21905 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21906 	default:
21907 		/* All others reserved */
21908 		return (EINVAL);
21909 	}
21910 
21911 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21912 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21913 
21914 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21915 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21916 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21917 	ucmd_buf.uscsi_buflen	= buflen;
21918 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21919 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21920 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21921 	ucmd_buf.uscsi_timeout	= 60;
21922 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21923 	    UIO_SYSSPACE, path_flag);
21924 
21925 	switch (status) {
21926 	case 0:
21927 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21928 		break;	/* Success! */
21929 	case EIO:
21930 		switch (ucmd_buf.uscsi_status) {
21931 		case STATUS_RESERVATION_CONFLICT:
21932 			status = EACCES;
21933 			break;
21934 		default:
21935 			break;
21936 		}
21937 		break;
21938 	default:
21939 		break;
21940 	}
21941 
21942 	if (status == 0) {
21943 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21944 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21945 	}
21946 
21947 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21948 
21949 	return (status);
21950 }
21951 
21952 
21953 /*
21954  *    Function: sd_send_scsi_LOG_SENSE
21955  *
21956  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21957  *
21958  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21959  *                      structure for this target.
21960  *
21961  * Return Code: 0   - Success
21962  *		errno return code from sd_ssc_send()
21963  *
21964  *     Context: Can sleep. Does not return until command is completed.
21965  */
21966 
21967 static int
21968 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21969 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21970 	int path_flag)
21971 
21972 {
21973 	struct scsi_extended_sense	sense_buf;
21974 	union scsi_cdb		cdb;
21975 	struct uscsi_cmd	ucmd_buf;
21976 	int			status;
21977 	struct sd_lun		*un;
21978 
21979 	ASSERT(ssc != NULL);
21980 	un = ssc->ssc_un;
21981 	ASSERT(un != NULL);
21982 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21983 
21984 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21985 
21986 	bzero(&cdb, sizeof (cdb));
21987 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21988 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21989 
21990 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21991 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21992 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21993 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21994 	FORMG1COUNT(&cdb, buflen);
21995 
21996 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21997 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21998 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21999 	ucmd_buf.uscsi_buflen	= buflen;
22000 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
22001 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
22002 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
22003 	ucmd_buf.uscsi_timeout	= 60;
22004 
22005 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22006 	    UIO_SYSSPACE, path_flag);
22007 
22008 	switch (status) {
22009 	case 0:
22010 		break;
22011 	case EIO:
22012 		switch (ucmd_buf.uscsi_status) {
22013 		case STATUS_RESERVATION_CONFLICT:
22014 			status = EACCES;
22015 			break;
22016 		case STATUS_CHECK:
22017 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
22018 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
22019 				KEY_ILLEGAL_REQUEST) &&
22020 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
22021 				/*
22022 				 * ASC 0x24: INVALID FIELD IN CDB
22023 				 */
22024 				switch (page_code) {
22025 				case START_STOP_CYCLE_PAGE:
22026 					/*
22027 					 * The start stop cycle counter is
22028 					 * implemented as page 0x31 in earlier
22029 					 * generation disks. In new generation
22030 					 * disks the start stop cycle counter is
22031 					 * implemented as page 0xE. To properly
22032 					 * handle this case if an attempt for
22033 					 * log page 0xE is made and fails we
22034 					 * will try again using page 0x31.
22035 					 *
22036 					 * Network storage BU committed to
22037 					 * maintain the page 0x31 for this
22038 					 * purpose and will not have any other
22039 					 * page implemented with page code 0x31
22040 					 * until all disks transition to the
22041 					 * standard page.
22042 					 */
22043 					mutex_enter(SD_MUTEX(un));
22044 					un->un_start_stop_cycle_page =
22045 					    START_STOP_CYCLE_VU_PAGE;
22046 					cdb.cdb_opaque[2] =
22047 					    (char)(page_control << 6) |
22048 					    un->un_start_stop_cycle_page;
22049 					mutex_exit(SD_MUTEX(un));
22050 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22051 					status = sd_ssc_send(
22052 					    ssc, &ucmd_buf, FKIOCTL,
22053 					    UIO_SYSSPACE, path_flag);
22054 
22055 					break;
22056 				case TEMPERATURE_PAGE:
22057 					status = ENOTTY;
22058 					break;
22059 				default:
22060 					break;
22061 				}
22062 			}
22063 			break;
22064 		default:
22065 			break;
22066 		}
22067 		break;
22068 	default:
22069 		break;
22070 	}
22071 
22072 	if (status == 0) {
22073 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22074 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22075 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22076 	}
22077 
22078 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22079 
22080 	return (status);
22081 }
22082 
22083 
22084 /*
22085  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22086  *
22087  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22088  *
22089  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22090  *                      structure for this target.
22091  *		bufaddr
22092  *		buflen
22093  *		class_req
22094  *
22095  * Return Code: 0   - Success
22096  *		errno return code from sd_ssc_send()
22097  *
22098  *     Context: Can sleep. Does not return until command is completed.
22099  */
22100 
22101 static int
22102 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22103 	size_t buflen, uchar_t class_req)
22104 {
22105 	union scsi_cdb		cdb;
22106 	struct uscsi_cmd	ucmd_buf;
22107 	int			status;
22108 	struct sd_lun		*un;
22109 
22110 	ASSERT(ssc != NULL);
22111 	un = ssc->ssc_un;
22112 	ASSERT(un != NULL);
22113 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22114 	ASSERT(bufaddr != NULL);
22115 
22116 	SD_TRACE(SD_LOG_IO, un,
22117 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22118 
22119 	bzero(&cdb, sizeof (cdb));
22120 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22121 	bzero(bufaddr, buflen);
22122 
22123 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22124 	cdb.cdb_opaque[1] = 1; /* polled */
22125 	cdb.cdb_opaque[4] = class_req;
22126 	FORMG1COUNT(&cdb, buflen);
22127 
22128 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22129 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22130 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22131 	ucmd_buf.uscsi_buflen	= buflen;
22132 	ucmd_buf.uscsi_rqbuf	= NULL;
22133 	ucmd_buf.uscsi_rqlen	= 0;
22134 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22135 	ucmd_buf.uscsi_timeout	= 60;
22136 
22137 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22138 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22139 
22140 	/*
22141 	 * Only handle status == 0, the upper-level caller
22142 	 * will put different assessment based on the context.
22143 	 */
22144 	if (status == 0) {
22145 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22146 
22147 		if (ucmd_buf.uscsi_resid != 0) {
22148 			status = EIO;
22149 		}
22150 	}
22151 
22152 	SD_TRACE(SD_LOG_IO, un,
22153 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22154 
22155 	return (status);
22156 }
22157 
22158 
22159 static boolean_t
22160 sd_gesn_media_data_valid(uchar_t *data)
22161 {
22162 	uint16_t			len;
22163 
22164 	len = (data[1] << 8) | data[0];
22165 	return ((len >= 6) &&
22166 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22167 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22168 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22169 }
22170 
22171 
22172 /*
22173  *    Function: sdioctl
22174  *
22175  * Description: Driver's ioctl(9e) entry point function.
22176  *
22177  *   Arguments: dev     - device number
22178  *		cmd     - ioctl operation to be performed
22179  *		arg     - user argument, contains data to be set or reference
22180  *			  parameter for get
22181  *		flag    - bit flag, indicating open settings, 32/64 bit type
22182  *		cred_p  - user credential pointer
22183  *		rval_p  - calling process return value (OPT)
22184  *
22185  * Return Code: EINVAL
22186  *		ENOTTY
22187  *		ENXIO
22188  *		EIO
22189  *		EFAULT
22190  *		ENOTSUP
22191  *		EPERM
22192  *
22193  *     Context: Called from the device switch at normal priority.
22194  */
22195 
22196 static int
22197 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22198 {
22199 	struct sd_lun	*un = NULL;
22200 	int		err = 0;
22201 	int		i = 0;
22202 	cred_t		*cr;
22203 	int		tmprval = EINVAL;
22204 	boolean_t	is_valid;
22205 	sd_ssc_t	*ssc;
22206 
22207 	/*
22208 	 * All device accesses go thru sdstrategy where we check on suspend
22209 	 * status
22210 	 */
22211 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22212 		return (ENXIO);
22213 	}
22214 
22215 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22216 
22217 	/* Initialize sd_ssc_t for internal uscsi commands */
22218 	ssc = sd_ssc_init(un);
22219 
22220 	is_valid = SD_IS_VALID_LABEL(un);
22221 
22222 	/*
22223 	 * Moved this wait from sd_uscsi_strategy to here for
22224 	 * reasons of deadlock prevention. Internal driver commands,
22225 	 * specifically those to change a devices power level, result
22226 	 * in a call to sd_uscsi_strategy.
22227 	 */
22228 	mutex_enter(SD_MUTEX(un));
22229 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22230 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22231 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22232 	}
22233 	/*
22234 	 * Twiddling the counter here protects commands from now
22235 	 * through to the top of sd_uscsi_strategy. Without the
22236 	 * counter inc. a power down, for example, could get in
22237 	 * after the above check for state is made and before
22238 	 * execution gets to the top of sd_uscsi_strategy.
22239 	 * That would cause problems.
22240 	 */
22241 	un->un_ncmds_in_driver++;
22242 
22243 	if (!is_valid &&
22244 	    (flag & (FNDELAY | FNONBLOCK))) {
22245 		switch (cmd) {
22246 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22247 		case DKIOCGVTOC:
22248 		case DKIOCGEXTVTOC:
22249 		case DKIOCGAPART:
22250 		case DKIOCPARTINFO:
22251 		case DKIOCEXTPARTINFO:
22252 		case DKIOCSGEOM:
22253 		case DKIOCSAPART:
22254 		case DKIOCGETEFI:
22255 		case DKIOCPARTITION:
22256 		case DKIOCSVTOC:
22257 		case DKIOCSEXTVTOC:
22258 		case DKIOCSETEFI:
22259 		case DKIOCGMBOOT:
22260 		case DKIOCSMBOOT:
22261 		case DKIOCG_PHYGEOM:
22262 		case DKIOCG_VIRTGEOM:
22263 #if defined(__i386) || defined(__amd64)
22264 		case DKIOCSETEXTPART:
22265 #endif
22266 			/* let cmlb handle it */
22267 			goto skip_ready_valid;
22268 
22269 		case CDROMPAUSE:
22270 		case CDROMRESUME:
22271 		case CDROMPLAYMSF:
22272 		case CDROMPLAYTRKIND:
22273 		case CDROMREADTOCHDR:
22274 		case CDROMREADTOCENTRY:
22275 		case CDROMSTOP:
22276 		case CDROMSTART:
22277 		case CDROMVOLCTRL:
22278 		case CDROMSUBCHNL:
22279 		case CDROMREADMODE2:
22280 		case CDROMREADMODE1:
22281 		case CDROMREADOFFSET:
22282 		case CDROMSBLKMODE:
22283 		case CDROMGBLKMODE:
22284 		case CDROMGDRVSPEED:
22285 		case CDROMSDRVSPEED:
22286 		case CDROMCDDA:
22287 		case CDROMCDXA:
22288 		case CDROMSUBCODE:
22289 			if (!ISCD(un)) {
22290 				un->un_ncmds_in_driver--;
22291 				ASSERT(un->un_ncmds_in_driver >= 0);
22292 				mutex_exit(SD_MUTEX(un));
22293 				err = ENOTTY;
22294 				goto done_without_assess;
22295 			}
22296 			break;
22297 		case FDEJECT:
22298 		case DKIOCEJECT:
22299 		case CDROMEJECT:
22300 			if (!un->un_f_eject_media_supported) {
22301 				un->un_ncmds_in_driver--;
22302 				ASSERT(un->un_ncmds_in_driver >= 0);
22303 				mutex_exit(SD_MUTEX(un));
22304 				err = ENOTTY;
22305 				goto done_without_assess;
22306 			}
22307 			break;
22308 		case DKIOCFLUSHWRITECACHE:
22309 			mutex_exit(SD_MUTEX(un));
22310 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22311 			if (err != 0) {
22312 				mutex_enter(SD_MUTEX(un));
22313 				un->un_ncmds_in_driver--;
22314 				ASSERT(un->un_ncmds_in_driver >= 0);
22315 				mutex_exit(SD_MUTEX(un));
22316 				err = EIO;
22317 				goto done_quick_assess;
22318 			}
22319 			mutex_enter(SD_MUTEX(un));
22320 			/* FALLTHROUGH */
22321 		case DKIOCREMOVABLE:
22322 		case DKIOCHOTPLUGGABLE:
22323 		case DKIOCINFO:
22324 		case DKIOCGMEDIAINFO:
22325 		case DKIOCGMEDIAINFOEXT:
22326 		case MHIOCENFAILFAST:
22327 		case MHIOCSTATUS:
22328 		case MHIOCTKOWN:
22329 		case MHIOCRELEASE:
22330 		case MHIOCGRP_INKEYS:
22331 		case MHIOCGRP_INRESV:
22332 		case MHIOCGRP_REGISTER:
22333 		case MHIOCGRP_CLEAR:
22334 		case MHIOCGRP_RESERVE:
22335 		case MHIOCGRP_PREEMPTANDABORT:
22336 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22337 		case CDROMCLOSETRAY:
22338 		case USCSICMD:
22339 			goto skip_ready_valid;
22340 		default:
22341 			break;
22342 		}
22343 
22344 		mutex_exit(SD_MUTEX(un));
22345 		err = sd_ready_and_valid(ssc, SDPART(dev));
22346 		mutex_enter(SD_MUTEX(un));
22347 
22348 		if (err != SD_READY_VALID) {
22349 			switch (cmd) {
22350 			case DKIOCSTATE:
22351 			case CDROMGDRVSPEED:
22352 			case CDROMSDRVSPEED:
22353 			case FDEJECT:	/* for eject command */
22354 			case DKIOCEJECT:
22355 			case CDROMEJECT:
22356 			case DKIOCREMOVABLE:
22357 			case DKIOCHOTPLUGGABLE:
22358 				break;
22359 			default:
22360 				if (un->un_f_has_removable_media) {
22361 					err = ENXIO;
22362 				} else {
22363 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22364 					if (err == SD_RESERVED_BY_OTHERS) {
22365 						err = EACCES;
22366 					} else {
22367 						err = EIO;
22368 					}
22369 				}
22370 				un->un_ncmds_in_driver--;
22371 				ASSERT(un->un_ncmds_in_driver >= 0);
22372 				mutex_exit(SD_MUTEX(un));
22373 
22374 				goto done_without_assess;
22375 			}
22376 		}
22377 	}
22378 
22379 skip_ready_valid:
22380 	mutex_exit(SD_MUTEX(un));
22381 
22382 	switch (cmd) {
22383 	case DKIOCINFO:
22384 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22385 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22386 		break;
22387 
22388 	case DKIOCGMEDIAINFO:
22389 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22390 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22391 		break;
22392 
22393 	case DKIOCGMEDIAINFOEXT:
22394 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22395 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22396 		break;
22397 
22398 	case DKIOCGGEOM:
22399 	case DKIOCGVTOC:
22400 	case DKIOCGEXTVTOC:
22401 	case DKIOCGAPART:
22402 	case DKIOCPARTINFO:
22403 	case DKIOCEXTPARTINFO:
22404 	case DKIOCSGEOM:
22405 	case DKIOCSAPART:
22406 	case DKIOCGETEFI:
22407 	case DKIOCPARTITION:
22408 	case DKIOCSVTOC:
22409 	case DKIOCSEXTVTOC:
22410 	case DKIOCSETEFI:
22411 	case DKIOCGMBOOT:
22412 	case DKIOCSMBOOT:
22413 	case DKIOCG_PHYGEOM:
22414 	case DKIOCG_VIRTGEOM:
22415 #if defined(__i386) || defined(__amd64)
22416 	case DKIOCSETEXTPART:
22417 #endif
22418 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22419 
22420 		/* TUR should spin up */
22421 
22422 		if (un->un_f_has_removable_media)
22423 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22424 			    SD_CHECK_FOR_MEDIA);
22425 
22426 		else
22427 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22428 
22429 		if (err != 0)
22430 			goto done_with_assess;
22431 
22432 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22433 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22434 
22435 		if ((err == 0) &&
22436 		    ((cmd == DKIOCSETEFI) ||
22437 		    (un->un_f_pkstats_enabled) &&
22438 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22439 		    cmd == DKIOCSEXTVTOC))) {
22440 
22441 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22442 			    (void *)SD_PATH_DIRECT);
22443 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22444 				sd_set_pstats(un);
22445 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22446 				    "sd_ioctl: un:0x%p pstats created and "
22447 				    "set\n", un);
22448 			}
22449 		}
22450 
22451 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22452 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22453 
22454 			mutex_enter(SD_MUTEX(un));
22455 			if (un->un_f_devid_supported &&
22456 			    (un->un_f_opt_fab_devid == TRUE)) {
22457 				if (un->un_devid == NULL) {
22458 					sd_register_devid(ssc, SD_DEVINFO(un),
22459 					    SD_TARGET_IS_UNRESERVED);
22460 				} else {
22461 					/*
22462 					 * The device id for this disk
22463 					 * has been fabricated. The
22464 					 * device id must be preserved
22465 					 * by writing it back out to
22466 					 * disk.
22467 					 */
22468 					if (sd_write_deviceid(ssc) != 0) {
22469 						ddi_devid_free(un->un_devid);
22470 						un->un_devid = NULL;
22471 					}
22472 				}
22473 			}
22474 			mutex_exit(SD_MUTEX(un));
22475 		}
22476 
22477 		break;
22478 
22479 	case DKIOCLOCK:
22480 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22481 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22482 		    SD_PATH_STANDARD);
22483 		goto done_with_assess;
22484 
22485 	case DKIOCUNLOCK:
22486 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22487 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22488 		    SD_PATH_STANDARD);
22489 		goto done_with_assess;
22490 
22491 	case DKIOCSTATE: {
22492 		enum dkio_state		state;
22493 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22494 
22495 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22496 			err = EFAULT;
22497 		} else {
22498 			err = sd_check_media(dev, state);
22499 			if (err == 0) {
22500 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22501 				    sizeof (int), flag) != 0)
22502 					err = EFAULT;
22503 			}
22504 		}
22505 		break;
22506 	}
22507 
22508 	case DKIOCREMOVABLE:
22509 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22510 		i = un->un_f_has_removable_media ? 1 : 0;
22511 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22512 			err = EFAULT;
22513 		} else {
22514 			err = 0;
22515 		}
22516 		break;
22517 
22518 	case DKIOCHOTPLUGGABLE:
22519 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22520 		i = un->un_f_is_hotpluggable ? 1 : 0;
22521 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22522 			err = EFAULT;
22523 		} else {
22524 			err = 0;
22525 		}
22526 		break;
22527 
22528 	case DKIOCREADONLY:
22529 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22530 		i = 0;
22531 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22532 		    (sr_check_wp(dev) != 0)) {
22533 			i = 1;
22534 		}
22535 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22536 			err = EFAULT;
22537 		} else {
22538 			err = 0;
22539 		}
22540 		break;
22541 
22542 	case DKIOCGTEMPERATURE:
22543 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22544 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22545 		break;
22546 
22547 	case MHIOCENFAILFAST:
22548 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22549 		if ((err = drv_priv(cred_p)) == 0) {
22550 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22551 		}
22552 		break;
22553 
22554 	case MHIOCTKOWN:
22555 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22556 		if ((err = drv_priv(cred_p)) == 0) {
22557 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22558 		}
22559 		break;
22560 
22561 	case MHIOCRELEASE:
22562 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22563 		if ((err = drv_priv(cred_p)) == 0) {
22564 			err = sd_mhdioc_release(dev);
22565 		}
22566 		break;
22567 
22568 	case MHIOCSTATUS:
22569 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22570 		if ((err = drv_priv(cred_p)) == 0) {
22571 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22572 			case 0:
22573 				err = 0;
22574 				break;
22575 			case EACCES:
22576 				*rval_p = 1;
22577 				err = 0;
22578 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22579 				break;
22580 			default:
22581 				err = EIO;
22582 				goto done_with_assess;
22583 			}
22584 		}
22585 		break;
22586 
22587 	case MHIOCQRESERVE:
22588 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22589 		if ((err = drv_priv(cred_p)) == 0) {
22590 			err = sd_reserve_release(dev, SD_RESERVE);
22591 		}
22592 		break;
22593 
22594 	case MHIOCREREGISTERDEVID:
22595 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22596 		if (drv_priv(cred_p) == EPERM) {
22597 			err = EPERM;
22598 		} else if (!un->un_f_devid_supported) {
22599 			err = ENOTTY;
22600 		} else {
22601 			err = sd_mhdioc_register_devid(dev);
22602 		}
22603 		break;
22604 
22605 	case MHIOCGRP_INKEYS:
22606 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22607 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22608 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22609 				err = ENOTSUP;
22610 			} else {
22611 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22612 				    flag);
22613 			}
22614 		}
22615 		break;
22616 
22617 	case MHIOCGRP_INRESV:
22618 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22619 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22620 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22621 				err = ENOTSUP;
22622 			} else {
22623 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22624 			}
22625 		}
22626 		break;
22627 
22628 	case MHIOCGRP_REGISTER:
22629 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22630 		if ((err = drv_priv(cred_p)) != EPERM) {
22631 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22632 				err = ENOTSUP;
22633 			} else if (arg != NULL) {
22634 				mhioc_register_t reg;
22635 				if (ddi_copyin((void *)arg, &reg,
22636 				    sizeof (mhioc_register_t), flag) != 0) {
22637 					err = EFAULT;
22638 				} else {
22639 					err =
22640 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22641 					    ssc, SD_SCSI3_REGISTER,
22642 					    (uchar_t *)&reg);
22643 					if (err != 0)
22644 						goto done_with_assess;
22645 				}
22646 			}
22647 		}
22648 		break;
22649 
22650 	case MHIOCGRP_CLEAR:
22651 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n");
22652 		if ((err = drv_priv(cred_p)) != EPERM) {
22653 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22654 				err = ENOTSUP;
22655 			} else if (arg != NULL) {
22656 				mhioc_register_t reg;
22657 				if (ddi_copyin((void *)arg, &reg,
22658 				    sizeof (mhioc_register_t), flag) != 0) {
22659 					err = EFAULT;
22660 				} else {
22661 					err =
22662 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22663 					    ssc, SD_SCSI3_CLEAR,
22664 					    (uchar_t *)&reg);
22665 					if (err != 0)
22666 						goto done_with_assess;
22667 				}
22668 			}
22669 		}
22670 		break;
22671 
22672 	case MHIOCGRP_RESERVE:
22673 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22674 		if ((err = drv_priv(cred_p)) != EPERM) {
22675 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22676 				err = ENOTSUP;
22677 			} else if (arg != NULL) {
22678 				mhioc_resv_desc_t resv_desc;
22679 				if (ddi_copyin((void *)arg, &resv_desc,
22680 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22681 					err = EFAULT;
22682 				} else {
22683 					err =
22684 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22685 					    ssc, SD_SCSI3_RESERVE,
22686 					    (uchar_t *)&resv_desc);
22687 					if (err != 0)
22688 						goto done_with_assess;
22689 				}
22690 			}
22691 		}
22692 		break;
22693 
22694 	case MHIOCGRP_PREEMPTANDABORT:
22695 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22696 		if ((err = drv_priv(cred_p)) != EPERM) {
22697 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22698 				err = ENOTSUP;
22699 			} else if (arg != NULL) {
22700 				mhioc_preemptandabort_t preempt_abort;
22701 				if (ddi_copyin((void *)arg, &preempt_abort,
22702 				    sizeof (mhioc_preemptandabort_t),
22703 				    flag) != 0) {
22704 					err = EFAULT;
22705 				} else {
22706 					err =
22707 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22708 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22709 					    (uchar_t *)&preempt_abort);
22710 					if (err != 0)
22711 						goto done_with_assess;
22712 				}
22713 			}
22714 		}
22715 		break;
22716 
22717 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22718 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22719 		if ((err = drv_priv(cred_p)) != EPERM) {
22720 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22721 				err = ENOTSUP;
22722 			} else if (arg != NULL) {
22723 				mhioc_registerandignorekey_t r_and_i;
22724 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22725 				    sizeof (mhioc_registerandignorekey_t),
22726 				    flag) != 0) {
22727 					err = EFAULT;
22728 				} else {
22729 					err =
22730 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22731 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22732 					    (uchar_t *)&r_and_i);
22733 					if (err != 0)
22734 						goto done_with_assess;
22735 				}
22736 			}
22737 		}
22738 		break;
22739 
22740 	case USCSICMD:
22741 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22742 		cr = ddi_get_cred();
22743 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22744 			err = EPERM;
22745 		} else {
22746 			enum uio_seg	uioseg;
22747 
22748 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22749 			    UIO_USERSPACE;
22750 			if (un->un_f_format_in_progress == TRUE) {
22751 				err = EAGAIN;
22752 				break;
22753 			}
22754 
22755 			err = sd_ssc_send(ssc,
22756 			    (struct uscsi_cmd *)arg,
22757 			    flag, uioseg, SD_PATH_STANDARD);
22758 			if (err != 0)
22759 				goto done_with_assess;
22760 			else
22761 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22762 		}
22763 		break;
22764 
22765 	case CDROMPAUSE:
22766 	case CDROMRESUME:
22767 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22768 		if (!ISCD(un)) {
22769 			err = ENOTTY;
22770 		} else {
22771 			err = sr_pause_resume(dev, cmd);
22772 		}
22773 		break;
22774 
22775 	case CDROMPLAYMSF:
22776 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22777 		if (!ISCD(un)) {
22778 			err = ENOTTY;
22779 		} else {
22780 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22781 		}
22782 		break;
22783 
22784 	case CDROMPLAYTRKIND:
22785 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22786 #if defined(__i386) || defined(__amd64)
22787 		/*
22788 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22789 		 */
22790 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22791 #else
22792 		if (!ISCD(un)) {
22793 #endif
22794 			err = ENOTTY;
22795 		} else {
22796 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22797 		}
22798 		break;
22799 
22800 	case CDROMREADTOCHDR:
22801 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22802 		if (!ISCD(un)) {
22803 			err = ENOTTY;
22804 		} else {
22805 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22806 		}
22807 		break;
22808 
22809 	case CDROMREADTOCENTRY:
22810 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22811 		if (!ISCD(un)) {
22812 			err = ENOTTY;
22813 		} else {
22814 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22815 		}
22816 		break;
22817 
22818 	case CDROMSTOP:
22819 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22820 		if (!ISCD(un)) {
22821 			err = ENOTTY;
22822 		} else {
22823 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22824 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22825 			goto done_with_assess;
22826 		}
22827 		break;
22828 
22829 	case CDROMSTART:
22830 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22831 		if (!ISCD(un)) {
22832 			err = ENOTTY;
22833 		} else {
22834 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22835 			    SD_TARGET_START, SD_PATH_STANDARD);
22836 			goto done_with_assess;
22837 		}
22838 		break;
22839 
22840 	case CDROMCLOSETRAY:
22841 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22842 		if (!ISCD(un)) {
22843 			err = ENOTTY;
22844 		} else {
22845 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22846 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22847 			goto done_with_assess;
22848 		}
22849 		break;
22850 
22851 	case FDEJECT:	/* for eject command */
22852 	case DKIOCEJECT:
22853 	case CDROMEJECT:
22854 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22855 		if (!un->un_f_eject_media_supported) {
22856 			err = ENOTTY;
22857 		} else {
22858 			err = sr_eject(dev);
22859 		}
22860 		break;
22861 
22862 	case CDROMVOLCTRL:
22863 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22864 		if (!ISCD(un)) {
22865 			err = ENOTTY;
22866 		} else {
22867 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22868 		}
22869 		break;
22870 
22871 	case CDROMSUBCHNL:
22872 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22873 		if (!ISCD(un)) {
22874 			err = ENOTTY;
22875 		} else {
22876 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22877 		}
22878 		break;
22879 
22880 	case CDROMREADMODE2:
22881 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22882 		if (!ISCD(un)) {
22883 			err = ENOTTY;
22884 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22885 			/*
22886 			 * If the drive supports READ CD, use that instead of
22887 			 * switching the LBA size via a MODE SELECT
22888 			 * Block Descriptor
22889 			 */
22890 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22891 		} else {
22892 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22893 		}
22894 		break;
22895 
22896 	case CDROMREADMODE1:
22897 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22898 		if (!ISCD(un)) {
22899 			err = ENOTTY;
22900 		} else {
22901 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22902 		}
22903 		break;
22904 
22905 	case CDROMREADOFFSET:
22906 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22907 		if (!ISCD(un)) {
22908 			err = ENOTTY;
22909 		} else {
22910 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22911 			    flag);
22912 		}
22913 		break;
22914 
22915 	case CDROMSBLKMODE:
22916 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22917 		/*
22918 		 * There is no means of changing block size in case of atapi
22919 		 * drives, thus return ENOTTY if drive type is atapi
22920 		 */
22921 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22922 			err = ENOTTY;
22923 		} else if (un->un_f_mmc_cap == TRUE) {
22924 
22925 			/*
22926 			 * MMC Devices do not support changing the
22927 			 * logical block size
22928 			 *
22929 			 * Note: EINVAL is being returned instead of ENOTTY to
22930 			 * maintain consistancy with the original mmc
22931 			 * driver update.
22932 			 */
22933 			err = EINVAL;
22934 		} else {
22935 			mutex_enter(SD_MUTEX(un));
22936 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22937 			    (un->un_ncmds_in_transport > 0)) {
22938 				mutex_exit(SD_MUTEX(un));
22939 				err = EINVAL;
22940 			} else {
22941 				mutex_exit(SD_MUTEX(un));
22942 				err = sr_change_blkmode(dev, cmd, arg, flag);
22943 			}
22944 		}
22945 		break;
22946 
22947 	case CDROMGBLKMODE:
22948 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22949 		if (!ISCD(un)) {
22950 			err = ENOTTY;
22951 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22952 		    (un->un_f_blockcount_is_valid != FALSE)) {
22953 			/*
22954 			 * Drive is an ATAPI drive so return target block
22955 			 * size for ATAPI drives since we cannot change the
22956 			 * blocksize on ATAPI drives. Used primarily to detect
22957 			 * if an ATAPI cdrom is present.
22958 			 */
22959 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22960 			    sizeof (int), flag) != 0) {
22961 				err = EFAULT;
22962 			} else {
22963 				err = 0;
22964 			}
22965 
22966 		} else {
22967 			/*
22968 			 * Drive supports changing block sizes via a Mode
22969 			 * Select.
22970 			 */
22971 			err = sr_change_blkmode(dev, cmd, arg, flag);
22972 		}
22973 		break;
22974 
22975 	case CDROMGDRVSPEED:
22976 	case CDROMSDRVSPEED:
22977 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22978 		if (!ISCD(un)) {
22979 			err = ENOTTY;
22980 		} else if (un->un_f_mmc_cap == TRUE) {
22981 			/*
22982 			 * Note: In the future the driver implementation
22983 			 * for getting and
22984 			 * setting cd speed should entail:
22985 			 * 1) If non-mmc try the Toshiba mode page
22986 			 *    (sr_change_speed)
22987 			 * 2) If mmc but no support for Real Time Streaming try
22988 			 *    the SET CD SPEED (0xBB) command
22989 			 *   (sr_atapi_change_speed)
22990 			 * 3) If mmc and support for Real Time Streaming
22991 			 *    try the GET PERFORMANCE and SET STREAMING
22992 			 *    commands (not yet implemented, 4380808)
22993 			 */
22994 			/*
22995 			 * As per recent MMC spec, CD-ROM speed is variable
22996 			 * and changes with LBA. Since there is no such
22997 			 * things as drive speed now, fail this ioctl.
22998 			 *
22999 			 * Note: EINVAL is returned for consistancy of original
23000 			 * implementation which included support for getting
23001 			 * the drive speed of mmc devices but not setting
23002 			 * the drive speed. Thus EINVAL would be returned
23003 			 * if a set request was made for an mmc device.
23004 			 * We no longer support get or set speed for
23005 			 * mmc but need to remain consistent with regard
23006 			 * to the error code returned.
23007 			 */
23008 			err = EINVAL;
23009 		} else if (un->un_f_cfg_is_atapi == TRUE) {
23010 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
23011 		} else {
23012 			err = sr_change_speed(dev, cmd, arg, flag);
23013 		}
23014 		break;
23015 
23016 	case CDROMCDDA:
23017 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
23018 		if (!ISCD(un)) {
23019 			err = ENOTTY;
23020 		} else {
23021 			err = sr_read_cdda(dev, (void *)arg, flag);
23022 		}
23023 		break;
23024 
23025 	case CDROMCDXA:
23026 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
23027 		if (!ISCD(un)) {
23028 			err = ENOTTY;
23029 		} else {
23030 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
23031 		}
23032 		break;
23033 
23034 	case CDROMSUBCODE:
23035 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
23036 		if (!ISCD(un)) {
23037 			err = ENOTTY;
23038 		} else {
23039 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
23040 		}
23041 		break;
23042 
23043 
23044 #ifdef SDDEBUG
23045 /* RESET/ABORTS testing ioctls */
23046 	case DKIOCRESET: {
23047 		int	reset_level;
23048 
23049 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
23050 			err = EFAULT;
23051 		} else {
23052 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
23053 			    "reset_level = 0x%lx\n", reset_level);
23054 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
23055 				err = 0;
23056 			} else {
23057 				err = EIO;
23058 			}
23059 		}
23060 		break;
23061 	}
23062 
23063 	case DKIOCABORT:
23064 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23065 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
23066 			err = 0;
23067 		} else {
23068 			err = EIO;
23069 		}
23070 		break;
23071 #endif
23072 
23073 #ifdef SD_FAULT_INJECTION
23074 /* SDIOC FaultInjection testing ioctls */
23075 	case SDIOCSTART:
23076 	case SDIOCSTOP:
23077 	case SDIOCINSERTPKT:
23078 	case SDIOCINSERTXB:
23079 	case SDIOCINSERTUN:
23080 	case SDIOCINSERTARQ:
23081 	case SDIOCPUSH:
23082 	case SDIOCRETRIEVE:
23083 	case SDIOCRUN:
23084 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23085 		    "SDIOC detected cmd:0x%X:\n", cmd);
23086 		/* call error generator */
23087 		sd_faultinjection_ioctl(cmd, arg, un);
23088 		err = 0;
23089 		break;
23090 
23091 #endif /* SD_FAULT_INJECTION */
23092 
23093 	case DKIOCFLUSHWRITECACHE:
23094 		{
23095 			struct dk_callback *dkc = (struct dk_callback *)arg;
23096 
23097 			mutex_enter(SD_MUTEX(un));
23098 			if (!un->un_f_sync_cache_supported ||
23099 			    !un->un_f_write_cache_enabled) {
23100 				err = un->un_f_sync_cache_supported ?
23101 				    0 : ENOTSUP;
23102 				mutex_exit(SD_MUTEX(un));
23103 				if ((flag & FKIOCTL) && dkc != NULL &&
23104 				    dkc->dkc_callback != NULL) {
23105 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23106 					    err);
23107 					/*
23108 					 * Did callback and reported error.
23109 					 * Since we did a callback, ioctl
23110 					 * should return 0.
23111 					 */
23112 					err = 0;
23113 				}
23114 				break;
23115 			}
23116 			mutex_exit(SD_MUTEX(un));
23117 
23118 			if ((flag & FKIOCTL) && dkc != NULL &&
23119 			    dkc->dkc_callback != NULL) {
23120 				/* async SYNC CACHE request */
23121 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23122 			} else {
23123 				/* synchronous SYNC CACHE request */
23124 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23125 			}
23126 		}
23127 		break;
23128 
23129 	case DKIOCGETWCE: {
23130 
23131 		int wce;
23132 
23133 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23134 			break;
23135 		}
23136 
23137 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23138 			err = EFAULT;
23139 		}
23140 		break;
23141 	}
23142 
23143 	case DKIOCSETWCE: {
23144 
23145 		int wce, sync_supported;
23146 		int cur_wce = 0;
23147 
23148 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23149 			err = EFAULT;
23150 			break;
23151 		}
23152 
23153 		/*
23154 		 * Synchronize multiple threads trying to enable
23155 		 * or disable the cache via the un_f_wcc_cv
23156 		 * condition variable.
23157 		 */
23158 		mutex_enter(SD_MUTEX(un));
23159 
23160 		/*
23161 		 * Don't allow the cache to be enabled if the
23162 		 * config file has it disabled.
23163 		 */
23164 		if (un->un_f_opt_disable_cache && wce) {
23165 			mutex_exit(SD_MUTEX(un));
23166 			err = EINVAL;
23167 			break;
23168 		}
23169 
23170 		/*
23171 		 * Wait for write cache change in progress
23172 		 * bit to be clear before proceeding.
23173 		 */
23174 		while (un->un_f_wcc_inprog)
23175 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23176 
23177 		un->un_f_wcc_inprog = 1;
23178 
23179 		mutex_exit(SD_MUTEX(un));
23180 
23181 		/*
23182 		 * Get the current write cache state
23183 		 */
23184 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23185 			mutex_enter(SD_MUTEX(un));
23186 			un->un_f_wcc_inprog = 0;
23187 			cv_broadcast(&un->un_wcc_cv);
23188 			mutex_exit(SD_MUTEX(un));
23189 			break;
23190 		}
23191 
23192 		mutex_enter(SD_MUTEX(un));
23193 		un->un_f_write_cache_enabled = (cur_wce != 0);
23194 
23195 		if (un->un_f_write_cache_enabled && wce == 0) {
23196 			/*
23197 			 * Disable the write cache.  Don't clear
23198 			 * un_f_write_cache_enabled until after
23199 			 * the mode select and flush are complete.
23200 			 */
23201 			sync_supported = un->un_f_sync_cache_supported;
23202 
23203 			/*
23204 			 * If cache flush is suppressed, we assume that the
23205 			 * controller firmware will take care of managing the
23206 			 * write cache for us: no need to explicitly
23207 			 * disable it.
23208 			 */
23209 			if (!un->un_f_suppress_cache_flush) {
23210 				mutex_exit(SD_MUTEX(un));
23211 				if ((err = sd_cache_control(ssc,
23212 				    SD_CACHE_NOCHANGE,
23213 				    SD_CACHE_DISABLE)) == 0 &&
23214 				    sync_supported) {
23215 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23216 					    NULL);
23217 				}
23218 			} else {
23219 				mutex_exit(SD_MUTEX(un));
23220 			}
23221 
23222 			mutex_enter(SD_MUTEX(un));
23223 			if (err == 0) {
23224 				un->un_f_write_cache_enabled = 0;
23225 			}
23226 
23227 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23228 			/*
23229 			 * Set un_f_write_cache_enabled first, so there is
23230 			 * no window where the cache is enabled, but the
23231 			 * bit says it isn't.
23232 			 */
23233 			un->un_f_write_cache_enabled = 1;
23234 
23235 			/*
23236 			 * If cache flush is suppressed, we assume that the
23237 			 * controller firmware will take care of managing the
23238 			 * write cache for us: no need to explicitly
23239 			 * enable it.
23240 			 */
23241 			if (!un->un_f_suppress_cache_flush) {
23242 				mutex_exit(SD_MUTEX(un));
23243 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23244 				    SD_CACHE_ENABLE);
23245 			} else {
23246 				mutex_exit(SD_MUTEX(un));
23247 			}
23248 
23249 			mutex_enter(SD_MUTEX(un));
23250 
23251 			if (err) {
23252 				un->un_f_write_cache_enabled = 0;
23253 			}
23254 		}
23255 
23256 		un->un_f_wcc_inprog = 0;
23257 		cv_broadcast(&un->un_wcc_cv);
23258 		mutex_exit(SD_MUTEX(un));
23259 		break;
23260 	}
23261 
23262 	default:
23263 		err = ENOTTY;
23264 		break;
23265 	}
23266 	mutex_enter(SD_MUTEX(un));
23267 	un->un_ncmds_in_driver--;
23268 	ASSERT(un->un_ncmds_in_driver >= 0);
23269 	mutex_exit(SD_MUTEX(un));
23270 
23271 
23272 done_without_assess:
23273 	sd_ssc_fini(ssc);
23274 
23275 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23276 	return (err);
23277 
23278 done_with_assess:
23279 	mutex_enter(SD_MUTEX(un));
23280 	un->un_ncmds_in_driver--;
23281 	ASSERT(un->un_ncmds_in_driver >= 0);
23282 	mutex_exit(SD_MUTEX(un));
23283 
23284 done_quick_assess:
23285 	if (err != 0)
23286 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23287 	/* Uninitialize sd_ssc_t pointer */
23288 	sd_ssc_fini(ssc);
23289 
23290 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23291 	return (err);
23292 }
23293 
23294 
23295 /*
23296  *    Function: sd_dkio_ctrl_info
23297  *
23298  * Description: This routine is the driver entry point for handling controller
23299  *		information ioctl requests (DKIOCINFO).
23300  *
23301  *   Arguments: dev  - the device number
23302  *		arg  - pointer to user provided dk_cinfo structure
23303  *		       specifying the controller type and attributes.
23304  *		flag - this argument is a pass through to ddi_copyxxx()
23305  *		       directly from the mode argument of ioctl().
23306  *
23307  * Return Code: 0
23308  *		EFAULT
23309  *		ENXIO
23310  */
23311 
23312 static int
23313 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23314 {
23315 	struct sd_lun	*un = NULL;
23316 	struct dk_cinfo	*info;
23317 	dev_info_t	*pdip;
23318 	int		lun, tgt;
23319 
23320 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23321 		return (ENXIO);
23322 	}
23323 
23324 	info = (struct dk_cinfo *)
23325 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23326 
23327 	switch (un->un_ctype) {
23328 	case CTYPE_CDROM:
23329 		info->dki_ctype = DKC_CDROM;
23330 		break;
23331 	default:
23332 		info->dki_ctype = DKC_SCSI_CCS;
23333 		break;
23334 	}
23335 	pdip = ddi_get_parent(SD_DEVINFO(un));
23336 	info->dki_cnum = ddi_get_instance(pdip);
23337 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23338 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23339 	} else {
23340 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23341 		    DK_DEVLEN - 1);
23342 	}
23343 
23344 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23345 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23346 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23347 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23348 
23349 	/* Unit Information */
23350 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23351 	info->dki_slave = ((tgt << 3) | lun);
23352 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23353 	    DK_DEVLEN - 1);
23354 	info->dki_flags = DKI_FMTVOL;
23355 	info->dki_partition = SDPART(dev);
23356 
23357 	/* Max Transfer size of this device in blocks */
23358 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23359 	info->dki_addr = 0;
23360 	info->dki_space = 0;
23361 	info->dki_prio = 0;
23362 	info->dki_vec = 0;
23363 
23364 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23365 		kmem_free(info, sizeof (struct dk_cinfo));
23366 		return (EFAULT);
23367 	} else {
23368 		kmem_free(info, sizeof (struct dk_cinfo));
23369 		return (0);
23370 	}
23371 }
23372 
23373 /*
23374  *    Function: sd_get_media_info_com
23375  *
23376  * Description: This routine returns the information required to populate
23377  *		the fields for the dk_minfo/dk_minfo_ext structures.
23378  *
23379  *   Arguments: dev		- the device number
23380  *		dki_media_type	- media_type
23381  *		dki_lbsize	- logical block size
23382  *		dki_capacity	- capacity in blocks
23383  *		dki_pbsize	- physical block size (if requested)
23384  *
23385  * Return Code: 0
23386  *		EACCESS
23387  *		EFAULT
23388  *		ENXIO
23389  *		EIO
23390  */
23391 static int
23392 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23393 	diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23394 {
23395 	struct sd_lun		*un = NULL;
23396 	struct uscsi_cmd	com;
23397 	struct scsi_inquiry	*sinq;
23398 	u_longlong_t		media_capacity;
23399 	uint64_t		capacity;
23400 	uint_t			lbasize;
23401 	uint_t			pbsize;
23402 	uchar_t			*out_data;
23403 	uchar_t			*rqbuf;
23404 	int			rval = 0;
23405 	int			rtn;
23406 	sd_ssc_t		*ssc;
23407 
23408 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23409 	    (un->un_state == SD_STATE_OFFLINE)) {
23410 		return (ENXIO);
23411 	}
23412 
23413 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23414 
23415 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23416 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23417 	ssc = sd_ssc_init(un);
23418 
23419 	/* Issue a TUR to determine if the drive is ready with media present */
23420 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23421 	if (rval == ENXIO) {
23422 		goto done;
23423 	} else if (rval != 0) {
23424 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23425 	}
23426 
23427 	/* Now get configuration data */
23428 	if (ISCD(un)) {
23429 		*dki_media_type = DK_CDROM;
23430 
23431 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23432 		if (un->un_f_mmc_cap == TRUE) {
23433 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23434 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23435 			    SD_PATH_STANDARD);
23436 
23437 			if (rtn) {
23438 				/*
23439 				 * We ignore all failures for CD and need to
23440 				 * put the assessment before processing code
23441 				 * to avoid missing assessment for FMA.
23442 				 */
23443 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23444 				/*
23445 				 * Failed for other than an illegal request
23446 				 * or command not supported
23447 				 */
23448 				if ((com.uscsi_status == STATUS_CHECK) &&
23449 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23450 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23451 					    (rqbuf[12] != 0x20)) {
23452 						rval = EIO;
23453 						goto no_assessment;
23454 					}
23455 				}
23456 			} else {
23457 				/*
23458 				 * The GET CONFIGURATION command succeeded
23459 				 * so set the media type according to the
23460 				 * returned data
23461 				 */
23462 				*dki_media_type = out_data[6];
23463 				*dki_media_type <<= 8;
23464 				*dki_media_type |= out_data[7];
23465 			}
23466 		}
23467 	} else {
23468 		/*
23469 		 * The profile list is not available, so we attempt to identify
23470 		 * the media type based on the inquiry data
23471 		 */
23472 		sinq = un->un_sd->sd_inq;
23473 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23474 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23475 			/* This is a direct access device  or optical disk */
23476 			*dki_media_type = DK_FIXED_DISK;
23477 
23478 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23479 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23480 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23481 					*dki_media_type = DK_ZIP;
23482 				} else if (
23483 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23484 					*dki_media_type = DK_JAZ;
23485 				}
23486 			}
23487 		} else {
23488 			/*
23489 			 * Not a CD, direct access or optical disk so return
23490 			 * unknown media
23491 			 */
23492 			*dki_media_type = DK_UNKNOWN;
23493 		}
23494 	}
23495 
23496 	/*
23497 	 * Now read the capacity so we can provide the lbasize,
23498 	 * pbsize and capacity.
23499 	 */
23500 	if (dki_pbsize && un->un_f_descr_format_supported) {
23501 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23502 		    &pbsize, SD_PATH_DIRECT);
23503 
23504 		/*
23505 		 * Override the physical blocksize if the instance already
23506 		 * has a larger value.
23507 		 */
23508 		pbsize = MAX(pbsize, un->un_phy_blocksize);
23509 	}
23510 
23511 	if (dki_pbsize == NULL || rval != 0 ||
23512 	    !un->un_f_descr_format_supported) {
23513 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23514 		    SD_PATH_DIRECT);
23515 
23516 		switch (rval) {
23517 		case 0:
23518 			if (un->un_f_enable_rmw &&
23519 			    un->un_phy_blocksize != 0) {
23520 				pbsize = un->un_phy_blocksize;
23521 			} else {
23522 				pbsize = lbasize;
23523 			}
23524 			media_capacity = capacity;
23525 
23526 			/*
23527 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23528 			 * un->un_sys_blocksize chunks. So we need to convert
23529 			 * it into cap.lbsize chunks.
23530 			 */
23531 			if (un->un_f_has_removable_media) {
23532 				media_capacity *= un->un_sys_blocksize;
23533 				media_capacity /= lbasize;
23534 			}
23535 			break;
23536 		case EACCES:
23537 			rval = EACCES;
23538 			goto done;
23539 		default:
23540 			rval = EIO;
23541 			goto done;
23542 		}
23543 	} else {
23544 		if (un->un_f_enable_rmw &&
23545 		    !ISP2(pbsize % DEV_BSIZE)) {
23546 			pbsize = SSD_SECSIZE;
23547 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23548 		    !ISP2(pbsize % DEV_BSIZE)) {
23549 			pbsize = lbasize = DEV_BSIZE;
23550 		}
23551 		media_capacity = capacity;
23552 	}
23553 
23554 	/*
23555 	 * If lun is expanded dynamically, update the un structure.
23556 	 */
23557 	mutex_enter(SD_MUTEX(un));
23558 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23559 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23560 	    (capacity > un->un_blockcount)) {
23561 		un->un_f_expnevent = B_FALSE;
23562 		sd_update_block_info(un, lbasize, capacity);
23563 	}
23564 	mutex_exit(SD_MUTEX(un));
23565 
23566 	*dki_lbsize = lbasize;
23567 	*dki_capacity = media_capacity;
23568 	if (dki_pbsize)
23569 		*dki_pbsize = pbsize;
23570 
23571 done:
23572 	if (rval != 0) {
23573 		if (rval == EIO)
23574 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23575 		else
23576 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23577 	}
23578 no_assessment:
23579 	sd_ssc_fini(ssc);
23580 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23581 	kmem_free(rqbuf, SENSE_LENGTH);
23582 	return (rval);
23583 }
23584 
23585 /*
23586  *    Function: sd_get_media_info
23587  *
23588  * Description: This routine is the driver entry point for handling ioctl
23589  *		requests for the media type or command set profile used by the
23590  *		drive to operate on the media (DKIOCGMEDIAINFO).
23591  *
23592  *   Arguments: dev	- the device number
23593  *		arg	- pointer to user provided dk_minfo structure
23594  *			  specifying the media type, logical block size and
23595  *			  drive capacity.
23596  *		flag	- this argument is a pass through to ddi_copyxxx()
23597  *			  directly from the mode argument of ioctl().
23598  *
23599  * Return Code: returns the value from sd_get_media_info_com
23600  */
23601 static int
23602 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23603 {
23604 	struct dk_minfo		mi;
23605 	int			rval;
23606 
23607 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23608 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23609 
23610 	if (rval)
23611 		return (rval);
23612 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23613 		rval = EFAULT;
23614 	return (rval);
23615 }
23616 
23617 /*
23618  *    Function: sd_get_media_info_ext
23619  *
23620  * Description: This routine is the driver entry point for handling ioctl
23621  *		requests for the media type or command set profile used by the
23622  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23623  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23624  *		of this ioctl contains both logical block size and physical
23625  *		block size.
23626  *
23627  *
23628  *   Arguments: dev	- the device number
23629  *		arg	- pointer to user provided dk_minfo_ext structure
23630  *			  specifying the media type, logical block size,
23631  *			  physical block size and disk capacity.
23632  *		flag	- this argument is a pass through to ddi_copyxxx()
23633  *			  directly from the mode argument of ioctl().
23634  *
23635  * Return Code: returns the value from sd_get_media_info_com
23636  */
23637 static int
23638 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23639 {
23640 	struct dk_minfo_ext	mie;
23641 	int			rval = 0;
23642 
23643 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23644 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23645 
23646 	if (rval)
23647 		return (rval);
23648 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23649 		rval = EFAULT;
23650 	return (rval);
23651 
23652 }
23653 
23654 /*
23655  *    Function: sd_watch_request_submit
23656  *
23657  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23658  *		depending on which is supported by device.
23659  */
23660 static opaque_t
23661 sd_watch_request_submit(struct sd_lun *un)
23662 {
23663 	dev_t			dev;
23664 
23665 	/* All submissions are unified to use same device number */
23666 	dev = sd_make_device(SD_DEVINFO(un));
23667 
23668 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23669 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23670 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23671 		    (caddr_t)dev));
23672 	} else {
23673 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23674 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23675 		    (caddr_t)dev));
23676 	}
23677 }
23678 
23679 
23680 /*
23681  *    Function: sd_check_media
23682  *
23683  * Description: This utility routine implements the functionality for the
23684  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23685  *		driver state changes from that specified by the user
23686  *		(inserted or ejected). For example, if the user specifies
23687  *		DKIO_EJECTED and the current media state is inserted this
23688  *		routine will immediately return DKIO_INSERTED. However, if the
23689  *		current media state is not inserted the user thread will be
23690  *		blocked until the drive state changes. If DKIO_NONE is specified
23691  *		the user thread will block until a drive state change occurs.
23692  *
23693  *   Arguments: dev  - the device number
23694  *		state  - user pointer to a dkio_state, updated with the current
23695  *			drive state at return.
23696  *
23697  * Return Code: ENXIO
23698  *		EIO
23699  *		EAGAIN
23700  *		EINTR
23701  */
23702 
23703 static int
23704 sd_check_media(dev_t dev, enum dkio_state state)
23705 {
23706 	struct sd_lun		*un = NULL;
23707 	enum dkio_state		prev_state;
23708 	opaque_t		token = NULL;
23709 	int			rval = 0;
23710 	sd_ssc_t		*ssc;
23711 
23712 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23713 		return (ENXIO);
23714 	}
23715 
23716 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23717 
23718 	ssc = sd_ssc_init(un);
23719 
23720 	mutex_enter(SD_MUTEX(un));
23721 
23722 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23723 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23724 
23725 	prev_state = un->un_mediastate;
23726 
23727 	/* is there anything to do? */
23728 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23729 		/*
23730 		 * submit the request to the scsi_watch service;
23731 		 * scsi_media_watch_cb() does the real work
23732 		 */
23733 		mutex_exit(SD_MUTEX(un));
23734 
23735 		/*
23736 		 * This change handles the case where a scsi watch request is
23737 		 * added to a device that is powered down. To accomplish this
23738 		 * we power up the device before adding the scsi watch request,
23739 		 * since the scsi watch sends a TUR directly to the device
23740 		 * which the device cannot handle if it is powered down.
23741 		 */
23742 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23743 			mutex_enter(SD_MUTEX(un));
23744 			goto done;
23745 		}
23746 
23747 		token = sd_watch_request_submit(un);
23748 
23749 		sd_pm_exit(un);
23750 
23751 		mutex_enter(SD_MUTEX(un));
23752 		if (token == NULL) {
23753 			rval = EAGAIN;
23754 			goto done;
23755 		}
23756 
23757 		/*
23758 		 * This is a special case IOCTL that doesn't return
23759 		 * until the media state changes. Routine sdpower
23760 		 * knows about and handles this so don't count it
23761 		 * as an active cmd in the driver, which would
23762 		 * keep the device busy to the pm framework.
23763 		 * If the count isn't decremented the device can't
23764 		 * be powered down.
23765 		 */
23766 		un->un_ncmds_in_driver--;
23767 		ASSERT(un->un_ncmds_in_driver >= 0);
23768 
23769 		/*
23770 		 * if a prior request had been made, this will be the same
23771 		 * token, as scsi_watch was designed that way.
23772 		 */
23773 		un->un_swr_token = token;
23774 		un->un_specified_mediastate = state;
23775 
23776 		/*
23777 		 * now wait for media change
23778 		 * we will not be signalled unless mediastate == state but it is
23779 		 * still better to test for this condition, since there is a
23780 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23781 		 */
23782 		SD_TRACE(SD_LOG_COMMON, un,
23783 		    "sd_check_media: waiting for media state change\n");
23784 		while (un->un_mediastate == state) {
23785 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23786 				SD_TRACE(SD_LOG_COMMON, un,
23787 				    "sd_check_media: waiting for media state "
23788 				    "was interrupted\n");
23789 				un->un_ncmds_in_driver++;
23790 				rval = EINTR;
23791 				goto done;
23792 			}
23793 			SD_TRACE(SD_LOG_COMMON, un,
23794 			    "sd_check_media: received signal, state=%x\n",
23795 			    un->un_mediastate);
23796 		}
23797 		/*
23798 		 * Inc the counter to indicate the device once again
23799 		 * has an active outstanding cmd.
23800 		 */
23801 		un->un_ncmds_in_driver++;
23802 	}
23803 
23804 	/* invalidate geometry */
23805 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23806 		sr_ejected(un);
23807 	}
23808 
23809 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23810 		uint64_t	capacity;
23811 		uint_t		lbasize;
23812 
23813 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23814 		mutex_exit(SD_MUTEX(un));
23815 		/*
23816 		 * Since the following routines use SD_PATH_DIRECT, we must
23817 		 * call PM directly before the upcoming disk accesses. This
23818 		 * may cause the disk to be power/spin up.
23819 		 */
23820 
23821 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23822 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23823 			    &capacity, &lbasize, SD_PATH_DIRECT);
23824 			if (rval != 0) {
23825 				sd_pm_exit(un);
23826 				if (rval == EIO)
23827 					sd_ssc_assessment(ssc,
23828 					    SD_FMT_STATUS_CHECK);
23829 				else
23830 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23831 				mutex_enter(SD_MUTEX(un));
23832 				goto done;
23833 			}
23834 		} else {
23835 			rval = EIO;
23836 			mutex_enter(SD_MUTEX(un));
23837 			goto done;
23838 		}
23839 		mutex_enter(SD_MUTEX(un));
23840 
23841 		sd_update_block_info(un, lbasize, capacity);
23842 
23843 		/*
23844 		 *  Check if the media in the device is writable or not
23845 		 */
23846 		if (ISCD(un)) {
23847 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23848 		}
23849 
23850 		mutex_exit(SD_MUTEX(un));
23851 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23852 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23853 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23854 			sd_set_pstats(un);
23855 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23856 			    "sd_check_media: un:0x%p pstats created and "
23857 			    "set\n", un);
23858 		}
23859 
23860 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23861 		    SD_PATH_DIRECT);
23862 
23863 		sd_pm_exit(un);
23864 
23865 		if (rval != 0) {
23866 			if (rval == EIO)
23867 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23868 			else
23869 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23870 		}
23871 
23872 		mutex_enter(SD_MUTEX(un));
23873 	}
23874 done:
23875 	sd_ssc_fini(ssc);
23876 	un->un_f_watcht_stopped = FALSE;
23877 	if (token != NULL && un->un_swr_token != NULL) {
23878 		/*
23879 		 * Use of this local token and the mutex ensures that we avoid
23880 		 * some race conditions associated with terminating the
23881 		 * scsi watch.
23882 		 */
23883 		token = un->un_swr_token;
23884 		mutex_exit(SD_MUTEX(un));
23885 		(void) scsi_watch_request_terminate(token,
23886 		    SCSI_WATCH_TERMINATE_WAIT);
23887 		if (scsi_watch_get_ref_count(token) == 0) {
23888 			mutex_enter(SD_MUTEX(un));
23889 			un->un_swr_token = (opaque_t)NULL;
23890 		} else {
23891 			mutex_enter(SD_MUTEX(un));
23892 		}
23893 	}
23894 
23895 	/*
23896 	 * Update the capacity kstat value, if no media previously
23897 	 * (capacity kstat is 0) and a media has been inserted
23898 	 * (un_f_blockcount_is_valid == TRUE)
23899 	 */
23900 	if (un->un_errstats) {
23901 		struct sd_errstats	*stp = NULL;
23902 
23903 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23904 		if ((stp->sd_capacity.value.ui64 == 0) &&
23905 		    (un->un_f_blockcount_is_valid == TRUE)) {
23906 			stp->sd_capacity.value.ui64 =
23907 			    (uint64_t)((uint64_t)un->un_blockcount *
23908 			    un->un_sys_blocksize);
23909 		}
23910 	}
23911 	mutex_exit(SD_MUTEX(un));
23912 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23913 	return (rval);
23914 }
23915 
23916 
23917 /*
23918  *    Function: sd_delayed_cv_broadcast
23919  *
23920  * Description: Delayed cv_broadcast to allow for target to recover from media
23921  *		insertion.
23922  *
23923  *   Arguments: arg - driver soft state (unit) structure
23924  */
23925 
23926 static void
23927 sd_delayed_cv_broadcast(void *arg)
23928 {
23929 	struct sd_lun *un = arg;
23930 
23931 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23932 
23933 	mutex_enter(SD_MUTEX(un));
23934 	un->un_dcvb_timeid = NULL;
23935 	cv_broadcast(&un->un_state_cv);
23936 	mutex_exit(SD_MUTEX(un));
23937 }
23938 
23939 
23940 /*
23941  *    Function: sd_media_watch_cb
23942  *
23943  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23944  *		routine processes the TUR sense data and updates the driver
23945  *		state if a transition has occurred. The user thread
23946  *		(sd_check_media) is then signalled.
23947  *
23948  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23949  *			among multiple watches that share this callback function
23950  *		resultp - scsi watch facility result packet containing scsi
23951  *			  packet, status byte and sense data
23952  *
23953  * Return Code: 0 for success, -1 for failure
23954  */
23955 
23956 static int
23957 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23958 {
23959 	struct sd_lun			*un;
23960 	struct scsi_status		*statusp = resultp->statusp;
23961 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23962 	enum dkio_state			state = DKIO_NONE;
23963 	dev_t				dev = (dev_t)arg;
23964 	uchar_t				actual_sense_length;
23965 	uint8_t				skey, asc, ascq;
23966 
23967 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23968 		return (-1);
23969 	}
23970 	actual_sense_length = resultp->actual_sense_length;
23971 
23972 	mutex_enter(SD_MUTEX(un));
23973 	SD_TRACE(SD_LOG_COMMON, un,
23974 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23975 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23976 
23977 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23978 		un->un_mediastate = DKIO_DEV_GONE;
23979 		cv_broadcast(&un->un_state_cv);
23980 		mutex_exit(SD_MUTEX(un));
23981 
23982 		return (0);
23983 	}
23984 
23985 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23986 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
23987 			if ((resultp->mmc_data[5] &
23988 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
23989 				state = DKIO_INSERTED;
23990 			} else {
23991 				state = DKIO_EJECTED;
23992 			}
23993 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
23994 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
23995 				sd_log_eject_request_event(un, KM_NOSLEEP);
23996 			}
23997 		}
23998 	} else if (sensep != NULL) {
23999 		/*
24000 		 * If there was a check condition then sensep points to valid
24001 		 * sense data. If status was not a check condition but a
24002 		 * reservation or busy status then the new state is DKIO_NONE.
24003 		 */
24004 		skey = scsi_sense_key(sensep);
24005 		asc = scsi_sense_asc(sensep);
24006 		ascq = scsi_sense_ascq(sensep);
24007 
24008 		SD_INFO(SD_LOG_COMMON, un,
24009 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24010 		    skey, asc, ascq);
24011 		/* This routine only uses up to 13 bytes of sense data. */
24012 		if (actual_sense_length >= 13) {
24013 			if (skey == KEY_UNIT_ATTENTION) {
24014 				if (asc == 0x28) {
24015 					state = DKIO_INSERTED;
24016 				}
24017 			} else if (skey == KEY_NOT_READY) {
24018 				/*
24019 				 * Sense data of 02/06/00 means that the
24020 				 * drive could not read the media (No
24021 				 * reference position found). In this case
24022 				 * to prevent a hang on the DKIOCSTATE IOCTL
24023 				 * we set the media state to DKIO_INSERTED.
24024 				 */
24025 				if (asc == 0x06 && ascq == 0x00)
24026 					state = DKIO_INSERTED;
24027 
24028 				/*
24029 				 * if 02/04/02  means that the host
24030 				 * should send start command. Explicitly
24031 				 * leave the media state as is
24032 				 * (inserted) as the media is inserted
24033 				 * and host has stopped device for PM
24034 				 * reasons. Upon next true read/write
24035 				 * to this media will bring the
24036 				 * device to the right state good for
24037 				 * media access.
24038 				 */
24039 				if (asc == 0x3a) {
24040 					state = DKIO_EJECTED;
24041 				} else {
24042 					/*
24043 					 * If the drive is busy with an
24044 					 * operation or long write, keep the
24045 					 * media in an inserted state.
24046 					 */
24047 
24048 					if ((asc == 0x04) &&
24049 					    ((ascq == 0x02) ||
24050 					    (ascq == 0x07) ||
24051 					    (ascq == 0x08))) {
24052 						state = DKIO_INSERTED;
24053 					}
24054 				}
24055 			} else if (skey == KEY_NO_SENSE) {
24056 				if ((asc == 0x00) && (ascq == 0x00)) {
24057 					/*
24058 					 * Sense Data 00/00/00 does not provide
24059 					 * any information about the state of
24060 					 * the media. Ignore it.
24061 					 */
24062 					mutex_exit(SD_MUTEX(un));
24063 					return (0);
24064 				}
24065 			}
24066 		}
24067 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24068 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24069 		state = DKIO_INSERTED;
24070 	}
24071 
24072 	SD_TRACE(SD_LOG_COMMON, un,
24073 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24074 	    state, un->un_specified_mediastate);
24075 
24076 	/*
24077 	 * now signal the waiting thread if this is *not* the specified state;
24078 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24079 	 * to recover
24080 	 */
24081 	if (state != un->un_specified_mediastate) {
24082 		un->un_mediastate = state;
24083 		if (state == DKIO_INSERTED) {
24084 			/*
24085 			 * delay the signal to give the drive a chance
24086 			 * to do what it apparently needs to do
24087 			 */
24088 			SD_TRACE(SD_LOG_COMMON, un,
24089 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24090 			if (un->un_dcvb_timeid == NULL) {
24091 				un->un_dcvb_timeid =
24092 				    timeout(sd_delayed_cv_broadcast, un,
24093 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24094 			}
24095 		} else {
24096 			SD_TRACE(SD_LOG_COMMON, un,
24097 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24098 			cv_broadcast(&un->un_state_cv);
24099 		}
24100 	}
24101 	mutex_exit(SD_MUTEX(un));
24102 	return (0);
24103 }
24104 
24105 
24106 /*
24107  *    Function: sd_dkio_get_temp
24108  *
24109  * Description: This routine is the driver entry point for handling ioctl
24110  *		requests to get the disk temperature.
24111  *
24112  *   Arguments: dev  - the device number
24113  *		arg  - pointer to user provided dk_temperature structure.
24114  *		flag - this argument is a pass through to ddi_copyxxx()
24115  *		       directly from the mode argument of ioctl().
24116  *
24117  * Return Code: 0
24118  *		EFAULT
24119  *		ENXIO
24120  *		EAGAIN
24121  */
24122 
24123 static int
24124 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24125 {
24126 	struct sd_lun		*un = NULL;
24127 	struct dk_temperature	*dktemp = NULL;
24128 	uchar_t			*temperature_page;
24129 	int			rval = 0;
24130 	int			path_flag = SD_PATH_STANDARD;
24131 	sd_ssc_t		*ssc;
24132 
24133 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24134 		return (ENXIO);
24135 	}
24136 
24137 	ssc = sd_ssc_init(un);
24138 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24139 
24140 	/* copyin the disk temp argument to get the user flags */
24141 	if (ddi_copyin((void *)arg, dktemp,
24142 	    sizeof (struct dk_temperature), flag) != 0) {
24143 		rval = EFAULT;
24144 		goto done;
24145 	}
24146 
24147 	/* Initialize the temperature to invalid. */
24148 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24149 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24150 
24151 	/*
24152 	 * Note: Investigate removing the "bypass pm" semantic.
24153 	 * Can we just bypass PM always?
24154 	 */
24155 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24156 		path_flag = SD_PATH_DIRECT;
24157 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24158 		mutex_enter(&un->un_pm_mutex);
24159 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24160 			/*
24161 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24162 			 * in low power mode, we can not wake it up, Need to
24163 			 * return EAGAIN.
24164 			 */
24165 			mutex_exit(&un->un_pm_mutex);
24166 			rval = EAGAIN;
24167 			goto done;
24168 		} else {
24169 			/*
24170 			 * Indicate to PM the device is busy. This is required
24171 			 * to avoid a race - i.e. the ioctl is issuing a
24172 			 * command and the pm framework brings down the device
24173 			 * to low power mode (possible power cut-off on some
24174 			 * platforms).
24175 			 */
24176 			mutex_exit(&un->un_pm_mutex);
24177 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24178 				rval = EAGAIN;
24179 				goto done;
24180 			}
24181 		}
24182 	}
24183 
24184 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24185 
24186 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24187 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24188 	if (rval != 0)
24189 		goto done2;
24190 
24191 	/*
24192 	 * For the current temperature verify that the parameter length is 0x02
24193 	 * and the parameter code is 0x00
24194 	 */
24195 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24196 	    (temperature_page[5] == 0x00)) {
24197 		if (temperature_page[9] == 0xFF) {
24198 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24199 		} else {
24200 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24201 		}
24202 	}
24203 
24204 	/*
24205 	 * For the reference temperature verify that the parameter
24206 	 * length is 0x02 and the parameter code is 0x01
24207 	 */
24208 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24209 	    (temperature_page[11] == 0x01)) {
24210 		if (temperature_page[15] == 0xFF) {
24211 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24212 		} else {
24213 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24214 		}
24215 	}
24216 
24217 	/* Do the copyout regardless of the temperature commands status. */
24218 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24219 	    flag) != 0) {
24220 		rval = EFAULT;
24221 		goto done1;
24222 	}
24223 
24224 done2:
24225 	if (rval != 0) {
24226 		if (rval == EIO)
24227 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24228 		else
24229 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24230 	}
24231 done1:
24232 	if (path_flag == SD_PATH_DIRECT) {
24233 		sd_pm_exit(un);
24234 	}
24235 
24236 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24237 done:
24238 	sd_ssc_fini(ssc);
24239 	if (dktemp != NULL) {
24240 		kmem_free(dktemp, sizeof (struct dk_temperature));
24241 	}
24242 
24243 	return (rval);
24244 }
24245 
24246 
24247 /*
24248  *    Function: sd_log_page_supported
24249  *
24250  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24251  *		supported log pages.
24252  *
24253  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24254  *                      structure for this target.
24255  *		log_page -
24256  *
24257  * Return Code: -1 - on error (log sense is optional and may not be supported).
24258  *		0  - log page not found.
24259  *  		1  - log page found.
24260  */
24261 
24262 static int
24263 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24264 {
24265 	uchar_t *log_page_data;
24266 	int	i;
24267 	int	match = 0;
24268 	int	log_size;
24269 	int	status = 0;
24270 	struct sd_lun	*un;
24271 
24272 	ASSERT(ssc != NULL);
24273 	un = ssc->ssc_un;
24274 	ASSERT(un != NULL);
24275 
24276 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24277 
24278 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24279 	    SD_PATH_DIRECT);
24280 
24281 	if (status != 0) {
24282 		if (status == EIO) {
24283 			/*
24284 			 * Some disks do not support log sense, we
24285 			 * should ignore this kind of error(sense key is
24286 			 * 0x5 - illegal request).
24287 			 */
24288 			uint8_t *sensep;
24289 			int senlen;
24290 
24291 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24292 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24293 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24294 
24295 			if (senlen > 0 &&
24296 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24297 				sd_ssc_assessment(ssc,
24298 				    SD_FMT_IGNORE_COMPROMISE);
24299 			} else {
24300 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24301 			}
24302 		} else {
24303 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24304 		}
24305 
24306 		SD_ERROR(SD_LOG_COMMON, un,
24307 		    "sd_log_page_supported: failed log page retrieval\n");
24308 		kmem_free(log_page_data, 0xFF);
24309 		return (-1);
24310 	}
24311 
24312 	log_size = log_page_data[3];
24313 
24314 	/*
24315 	 * The list of supported log pages start from the fourth byte. Check
24316 	 * until we run out of log pages or a match is found.
24317 	 */
24318 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24319 		if (log_page_data[i] == log_page) {
24320 			match++;
24321 		}
24322 	}
24323 	kmem_free(log_page_data, 0xFF);
24324 	return (match);
24325 }
24326 
24327 
24328 /*
24329  *    Function: sd_mhdioc_failfast
24330  *
24331  * Description: This routine is the driver entry point for handling ioctl
24332  *		requests to enable/disable the multihost failfast option.
24333  *		(MHIOCENFAILFAST)
24334  *
24335  *   Arguments: dev	- the device number
24336  *		arg	- user specified probing interval.
24337  *		flag	- this argument is a pass through to ddi_copyxxx()
24338  *			  directly from the mode argument of ioctl().
24339  *
24340  * Return Code: 0
24341  *		EFAULT
24342  *		ENXIO
24343  */
24344 
24345 static int
24346 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24347 {
24348 	struct sd_lun	*un = NULL;
24349 	int		mh_time;
24350 	int		rval = 0;
24351 
24352 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24353 		return (ENXIO);
24354 	}
24355 
24356 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24357 		return (EFAULT);
24358 
24359 	if (mh_time) {
24360 		mutex_enter(SD_MUTEX(un));
24361 		un->un_resvd_status |= SD_FAILFAST;
24362 		mutex_exit(SD_MUTEX(un));
24363 		/*
24364 		 * If mh_time is INT_MAX, then this ioctl is being used for
24365 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24366 		 */
24367 		if (mh_time != INT_MAX) {
24368 			rval = sd_check_mhd(dev, mh_time);
24369 		}
24370 	} else {
24371 		(void) sd_check_mhd(dev, 0);
24372 		mutex_enter(SD_MUTEX(un));
24373 		un->un_resvd_status &= ~SD_FAILFAST;
24374 		mutex_exit(SD_MUTEX(un));
24375 	}
24376 	return (rval);
24377 }
24378 
24379 
24380 /*
24381  *    Function: sd_mhdioc_takeown
24382  *
24383  * Description: This routine is the driver entry point for handling ioctl
24384  *		requests to forcefully acquire exclusive access rights to the
24385  *		multihost disk (MHIOCTKOWN).
24386  *
24387  *   Arguments: dev	- the device number
24388  *		arg	- user provided structure specifying the delay
24389  *			  parameters in milliseconds
24390  *		flag	- this argument is a pass through to ddi_copyxxx()
24391  *			  directly from the mode argument of ioctl().
24392  *
24393  * Return Code: 0
24394  *		EFAULT
24395  *		ENXIO
24396  */
24397 
24398 static int
24399 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24400 {
24401 	struct sd_lun		*un = NULL;
24402 	struct mhioctkown	*tkown = NULL;
24403 	int			rval = 0;
24404 
24405 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24406 		return (ENXIO);
24407 	}
24408 
24409 	if (arg != NULL) {
24410 		tkown = (struct mhioctkown *)
24411 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24412 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24413 		if (rval != 0) {
24414 			rval = EFAULT;
24415 			goto error;
24416 		}
24417 	}
24418 
24419 	rval = sd_take_ownership(dev, tkown);
24420 	mutex_enter(SD_MUTEX(un));
24421 	if (rval == 0) {
24422 		un->un_resvd_status |= SD_RESERVE;
24423 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24424 			sd_reinstate_resv_delay =
24425 			    tkown->reinstate_resv_delay * 1000;
24426 		} else {
24427 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24428 		}
24429 		/*
24430 		 * Give the scsi_watch routine interval set by
24431 		 * the MHIOCENFAILFAST ioctl precedence here.
24432 		 */
24433 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24434 			mutex_exit(SD_MUTEX(un));
24435 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24436 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24437 			    "sd_mhdioc_takeown : %d\n",
24438 			    sd_reinstate_resv_delay);
24439 		} else {
24440 			mutex_exit(SD_MUTEX(un));
24441 		}
24442 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24443 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24444 	} else {
24445 		un->un_resvd_status &= ~SD_RESERVE;
24446 		mutex_exit(SD_MUTEX(un));
24447 	}
24448 
24449 error:
24450 	if (tkown != NULL) {
24451 		kmem_free(tkown, sizeof (struct mhioctkown));
24452 	}
24453 	return (rval);
24454 }
24455 
24456 
24457 /*
24458  *    Function: sd_mhdioc_release
24459  *
24460  * Description: This routine is the driver entry point for handling ioctl
24461  *		requests to release exclusive access rights to the multihost
24462  *		disk (MHIOCRELEASE).
24463  *
24464  *   Arguments: dev	- the device number
24465  *
24466  * Return Code: 0
24467  *		ENXIO
24468  */
24469 
24470 static int
24471 sd_mhdioc_release(dev_t dev)
24472 {
24473 	struct sd_lun		*un = NULL;
24474 	timeout_id_t		resvd_timeid_save;
24475 	int			resvd_status_save;
24476 	int			rval = 0;
24477 
24478 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24479 		return (ENXIO);
24480 	}
24481 
24482 	mutex_enter(SD_MUTEX(un));
24483 	resvd_status_save = un->un_resvd_status;
24484 	un->un_resvd_status &=
24485 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24486 	if (un->un_resvd_timeid) {
24487 		resvd_timeid_save = un->un_resvd_timeid;
24488 		un->un_resvd_timeid = NULL;
24489 		mutex_exit(SD_MUTEX(un));
24490 		(void) untimeout(resvd_timeid_save);
24491 	} else {
24492 		mutex_exit(SD_MUTEX(un));
24493 	}
24494 
24495 	/*
24496 	 * destroy any pending timeout thread that may be attempting to
24497 	 * reinstate reservation on this device.
24498 	 */
24499 	sd_rmv_resv_reclaim_req(dev);
24500 
24501 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24502 		mutex_enter(SD_MUTEX(un));
24503 		if ((un->un_mhd_token) &&
24504 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24505 			mutex_exit(SD_MUTEX(un));
24506 			(void) sd_check_mhd(dev, 0);
24507 		} else {
24508 			mutex_exit(SD_MUTEX(un));
24509 		}
24510 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24511 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24512 	} else {
24513 		/*
24514 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24515 		 */
24516 		mutex_enter(SD_MUTEX(un));
24517 		un->un_resvd_status = resvd_status_save;
24518 		mutex_exit(SD_MUTEX(un));
24519 	}
24520 	return (rval);
24521 }
24522 
24523 
24524 /*
24525  *    Function: sd_mhdioc_register_devid
24526  *
24527  * Description: This routine is the driver entry point for handling ioctl
24528  *		requests to register the device id (MHIOCREREGISTERDEVID).
24529  *
24530  *		Note: The implementation for this ioctl has been updated to
24531  *		be consistent with the original PSARC case (1999/357)
24532  *		(4375899, 4241671, 4220005)
24533  *
24534  *   Arguments: dev	- the device number
24535  *
24536  * Return Code: 0
24537  *		ENXIO
24538  */
24539 
24540 static int
24541 sd_mhdioc_register_devid(dev_t dev)
24542 {
24543 	struct sd_lun	*un = NULL;
24544 	int		rval = 0;
24545 	sd_ssc_t	*ssc;
24546 
24547 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24548 		return (ENXIO);
24549 	}
24550 
24551 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24552 
24553 	mutex_enter(SD_MUTEX(un));
24554 
24555 	/* If a devid already exists, de-register it */
24556 	if (un->un_devid != NULL) {
24557 		ddi_devid_unregister(SD_DEVINFO(un));
24558 		/*
24559 		 * After unregister devid, needs to free devid memory
24560 		 */
24561 		ddi_devid_free(un->un_devid);
24562 		un->un_devid = NULL;
24563 	}
24564 
24565 	/* Check for reservation conflict */
24566 	mutex_exit(SD_MUTEX(un));
24567 	ssc = sd_ssc_init(un);
24568 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24569 	mutex_enter(SD_MUTEX(un));
24570 
24571 	switch (rval) {
24572 	case 0:
24573 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24574 		break;
24575 	case EACCES:
24576 		break;
24577 	default:
24578 		rval = EIO;
24579 	}
24580 
24581 	mutex_exit(SD_MUTEX(un));
24582 	if (rval != 0) {
24583 		if (rval == EIO)
24584 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24585 		else
24586 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24587 	}
24588 	sd_ssc_fini(ssc);
24589 	return (rval);
24590 }
24591 
24592 
24593 /*
24594  *    Function: sd_mhdioc_inkeys
24595  *
24596  * Description: This routine is the driver entry point for handling ioctl
24597  *		requests to issue the SCSI-3 Persistent In Read Keys command
24598  *		to the device (MHIOCGRP_INKEYS).
24599  *
24600  *   Arguments: dev	- the device number
24601  *		arg	- user provided in_keys structure
24602  *		flag	- this argument is a pass through to ddi_copyxxx()
24603  *			  directly from the mode argument of ioctl().
24604  *
24605  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24606  *		ENXIO
24607  *		EFAULT
24608  */
24609 
24610 static int
24611 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24612 {
24613 	struct sd_lun		*un;
24614 	mhioc_inkeys_t		inkeys;
24615 	int			rval = 0;
24616 
24617 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24618 		return (ENXIO);
24619 	}
24620 
24621 #ifdef _MULTI_DATAMODEL
24622 	switch (ddi_model_convert_from(flag & FMODELS)) {
24623 	case DDI_MODEL_ILP32: {
24624 		struct mhioc_inkeys32	inkeys32;
24625 
24626 		if (ddi_copyin(arg, &inkeys32,
24627 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24628 			return (EFAULT);
24629 		}
24630 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24631 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24632 		    &inkeys, flag)) != 0) {
24633 			return (rval);
24634 		}
24635 		inkeys32.generation = inkeys.generation;
24636 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24637 		    flag) != 0) {
24638 			return (EFAULT);
24639 		}
24640 		break;
24641 	}
24642 	case DDI_MODEL_NONE:
24643 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24644 		    flag) != 0) {
24645 			return (EFAULT);
24646 		}
24647 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24648 		    &inkeys, flag)) != 0) {
24649 			return (rval);
24650 		}
24651 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24652 		    flag) != 0) {
24653 			return (EFAULT);
24654 		}
24655 		break;
24656 	}
24657 
24658 #else /* ! _MULTI_DATAMODEL */
24659 
24660 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24661 		return (EFAULT);
24662 	}
24663 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24664 	if (rval != 0) {
24665 		return (rval);
24666 	}
24667 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24668 		return (EFAULT);
24669 	}
24670 
24671 #endif /* _MULTI_DATAMODEL */
24672 
24673 	return (rval);
24674 }
24675 
24676 
24677 /*
24678  *    Function: sd_mhdioc_inresv
24679  *
24680  * Description: This routine is the driver entry point for handling ioctl
24681  *		requests to issue the SCSI-3 Persistent In Read Reservations
24682  *		command to the device (MHIOCGRP_INKEYS).
24683  *
24684  *   Arguments: dev	- the device number
24685  *		arg	- user provided in_resv structure
24686  *		flag	- this argument is a pass through to ddi_copyxxx()
24687  *			  directly from the mode argument of ioctl().
24688  *
24689  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24690  *		ENXIO
24691  *		EFAULT
24692  */
24693 
24694 static int
24695 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24696 {
24697 	struct sd_lun		*un;
24698 	mhioc_inresvs_t		inresvs;
24699 	int			rval = 0;
24700 
24701 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24702 		return (ENXIO);
24703 	}
24704 
24705 #ifdef _MULTI_DATAMODEL
24706 
24707 	switch (ddi_model_convert_from(flag & FMODELS)) {
24708 	case DDI_MODEL_ILP32: {
24709 		struct mhioc_inresvs32	inresvs32;
24710 
24711 		if (ddi_copyin(arg, &inresvs32,
24712 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24713 			return (EFAULT);
24714 		}
24715 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24716 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24717 		    &inresvs, flag)) != 0) {
24718 			return (rval);
24719 		}
24720 		inresvs32.generation = inresvs.generation;
24721 		if (ddi_copyout(&inresvs32, arg,
24722 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24723 			return (EFAULT);
24724 		}
24725 		break;
24726 	}
24727 	case DDI_MODEL_NONE:
24728 		if (ddi_copyin(arg, &inresvs,
24729 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24730 			return (EFAULT);
24731 		}
24732 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24733 		    &inresvs, flag)) != 0) {
24734 			return (rval);
24735 		}
24736 		if (ddi_copyout(&inresvs, arg,
24737 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24738 			return (EFAULT);
24739 		}
24740 		break;
24741 	}
24742 
24743 #else /* ! _MULTI_DATAMODEL */
24744 
24745 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24746 		return (EFAULT);
24747 	}
24748 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24749 	if (rval != 0) {
24750 		return (rval);
24751 	}
24752 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24753 		return (EFAULT);
24754 	}
24755 
24756 #endif /* ! _MULTI_DATAMODEL */
24757 
24758 	return (rval);
24759 }
24760 
24761 
24762 /*
24763  * The following routines support the clustering functionality described below
24764  * and implement lost reservation reclaim functionality.
24765  *
24766  * Clustering
24767  * ----------
24768  * The clustering code uses two different, independent forms of SCSI
24769  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24770  * Persistent Group Reservations. For any particular disk, it will use either
24771  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24772  *
24773  * SCSI-2
24774  * The cluster software takes ownership of a multi-hosted disk by issuing the
24775  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24776  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24777  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24778  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24779  * driver. The meaning of failfast is that if the driver (on this host) ever
24780  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24781  * it should immediately panic the host. The motivation for this ioctl is that
24782  * if this host does encounter reservation conflict, the underlying cause is
24783  * that some other host of the cluster has decided that this host is no longer
24784  * in the cluster and has seized control of the disks for itself. Since this
24785  * host is no longer in the cluster, it ought to panic itself. The
24786  * MHIOCENFAILFAST ioctl does two things:
24787  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24788  *      error to panic the host
24789  *      (b) it sets up a periodic timer to test whether this host still has
24790  *      "access" (in that no other host has reserved the device):  if the
24791  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24792  *      purpose of that periodic timer is to handle scenarios where the host is
24793  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24794  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24795  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24796  * the device itself.
24797  *
24798  * SCSI-3 PGR
24799  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24800  * facility is supported through the shared multihost disk ioctls
24801  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24802  * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR)
24803  *
24804  * Reservation Reclaim:
24805  * --------------------
24806  * To support the lost reservation reclaim operations this driver creates a
24807  * single thread to handle reinstating reservations on all devices that have
24808  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24809  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24810  * and the reservation reclaim thread loops through the requests to regain the
24811  * lost reservations.
24812  */
24813 
24814 /*
24815  *    Function: sd_check_mhd()
24816  *
24817  * Description: This function sets up and submits a scsi watch request or
24818  *		terminates an existing watch request. This routine is used in
24819  *		support of reservation reclaim.
24820  *
24821  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24822  *			 among multiple watches that share the callback function
24823  *		interval - the number of microseconds specifying the watch
24824  *			   interval for issuing TEST UNIT READY commands. If
24825  *			   set to 0 the watch should be terminated. If the
24826  *			   interval is set to 0 and if the device is required
24827  *			   to hold reservation while disabling failfast, the
24828  *			   watch is restarted with an interval of
24829  *			   reinstate_resv_delay.
24830  *
24831  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24832  *		ENXIO      - Indicates an invalid device was specified
24833  *		EAGAIN     - Unable to submit the scsi watch request
24834  */
24835 
24836 static int
24837 sd_check_mhd(dev_t dev, int interval)
24838 {
24839 	struct sd_lun	*un;
24840 	opaque_t	token;
24841 
24842 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24843 		return (ENXIO);
24844 	}
24845 
24846 	/* is this a watch termination request? */
24847 	if (interval == 0) {
24848 		mutex_enter(SD_MUTEX(un));
24849 		/* if there is an existing watch task then terminate it */
24850 		if (un->un_mhd_token) {
24851 			token = un->un_mhd_token;
24852 			un->un_mhd_token = NULL;
24853 			mutex_exit(SD_MUTEX(un));
24854 			(void) scsi_watch_request_terminate(token,
24855 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24856 			mutex_enter(SD_MUTEX(un));
24857 		} else {
24858 			mutex_exit(SD_MUTEX(un));
24859 			/*
24860 			 * Note: If we return here we don't check for the
24861 			 * failfast case. This is the original legacy
24862 			 * implementation but perhaps we should be checking
24863 			 * the failfast case.
24864 			 */
24865 			return (0);
24866 		}
24867 		/*
24868 		 * If the device is required to hold reservation while
24869 		 * disabling failfast, we need to restart the scsi_watch
24870 		 * routine with an interval of reinstate_resv_delay.
24871 		 */
24872 		if (un->un_resvd_status & SD_RESERVE) {
24873 			interval = sd_reinstate_resv_delay/1000;
24874 		} else {
24875 			/* no failfast so bail */
24876 			mutex_exit(SD_MUTEX(un));
24877 			return (0);
24878 		}
24879 		mutex_exit(SD_MUTEX(un));
24880 	}
24881 
24882 	/*
24883 	 * adjust minimum time interval to 1 second,
24884 	 * and convert from msecs to usecs
24885 	 */
24886 	if (interval > 0 && interval < 1000) {
24887 		interval = 1000;
24888 	}
24889 	interval *= 1000;
24890 
24891 	/*
24892 	 * submit the request to the scsi_watch service
24893 	 */
24894 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24895 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24896 	if (token == NULL) {
24897 		return (EAGAIN);
24898 	}
24899 
24900 	/*
24901 	 * save token for termination later on
24902 	 */
24903 	mutex_enter(SD_MUTEX(un));
24904 	un->un_mhd_token = token;
24905 	mutex_exit(SD_MUTEX(un));
24906 	return (0);
24907 }
24908 
24909 
24910 /*
24911  *    Function: sd_mhd_watch_cb()
24912  *
24913  * Description: This function is the call back function used by the scsi watch
24914  *		facility. The scsi watch facility sends the "Test Unit Ready"
24915  *		and processes the status. If applicable (i.e. a "Unit Attention"
24916  *		status and automatic "Request Sense" not used) the scsi watch
24917  *		facility will send a "Request Sense" and retrieve the sense data
24918  *		to be passed to this callback function. In either case the
24919  *		automatic "Request Sense" or the facility submitting one, this
24920  *		callback is passed the status and sense data.
24921  *
24922  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24923  *			among multiple watches that share this callback function
24924  *		resultp - scsi watch facility result packet containing scsi
24925  *			  packet, status byte and sense data
24926  *
24927  * Return Code: 0 - continue the watch task
24928  *		non-zero - terminate the watch task
24929  */
24930 
24931 static int
24932 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24933 {
24934 	struct sd_lun			*un;
24935 	struct scsi_status		*statusp;
24936 	uint8_t				*sensep;
24937 	struct scsi_pkt			*pkt;
24938 	uchar_t				actual_sense_length;
24939 	dev_t  				dev = (dev_t)arg;
24940 
24941 	ASSERT(resultp != NULL);
24942 	statusp			= resultp->statusp;
24943 	sensep			= (uint8_t *)resultp->sensep;
24944 	pkt			= resultp->pkt;
24945 	actual_sense_length	= resultp->actual_sense_length;
24946 
24947 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24948 		return (ENXIO);
24949 	}
24950 
24951 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24952 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24953 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24954 
24955 	/* Begin processing of the status and/or sense data */
24956 	if (pkt->pkt_reason != CMD_CMPLT) {
24957 		/* Handle the incomplete packet */
24958 		sd_mhd_watch_incomplete(un, pkt);
24959 		return (0);
24960 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24961 		if (*((unsigned char *)statusp)
24962 		    == STATUS_RESERVATION_CONFLICT) {
24963 			/*
24964 			 * Handle a reservation conflict by panicking if
24965 			 * configured for failfast or by logging the conflict
24966 			 * and updating the reservation status
24967 			 */
24968 			mutex_enter(SD_MUTEX(un));
24969 			if ((un->un_resvd_status & SD_FAILFAST) &&
24970 			    (sd_failfast_enable)) {
24971 				sd_panic_for_res_conflict(un);
24972 				/*NOTREACHED*/
24973 			}
24974 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24975 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24976 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24977 			mutex_exit(SD_MUTEX(un));
24978 		}
24979 	}
24980 
24981 	if (sensep != NULL) {
24982 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24983 			mutex_enter(SD_MUTEX(un));
24984 			if ((scsi_sense_asc(sensep) ==
24985 			    SD_SCSI_RESET_SENSE_CODE) &&
24986 			    (un->un_resvd_status & SD_RESERVE)) {
24987 				/*
24988 				 * The additional sense code indicates a power
24989 				 * on or bus device reset has occurred; update
24990 				 * the reservation status.
24991 				 */
24992 				un->un_resvd_status |=
24993 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24994 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24995 				    "sd_mhd_watch_cb: Lost Reservation\n");
24996 			}
24997 		} else {
24998 			return (0);
24999 		}
25000 	} else {
25001 		mutex_enter(SD_MUTEX(un));
25002 	}
25003 
25004 	if ((un->un_resvd_status & SD_RESERVE) &&
25005 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25006 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25007 			/*
25008 			 * A reset occurred in between the last probe and this
25009 			 * one so if a timeout is pending cancel it.
25010 			 */
25011 			if (un->un_resvd_timeid) {
25012 				timeout_id_t temp_id = un->un_resvd_timeid;
25013 				un->un_resvd_timeid = NULL;
25014 				mutex_exit(SD_MUTEX(un));
25015 				(void) untimeout(temp_id);
25016 				mutex_enter(SD_MUTEX(un));
25017 			}
25018 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25019 		}
25020 		if (un->un_resvd_timeid == 0) {
25021 			/* Schedule a timeout to handle the lost reservation */
25022 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25023 			    (void *)dev,
25024 			    drv_usectohz(sd_reinstate_resv_delay));
25025 		}
25026 	}
25027 	mutex_exit(SD_MUTEX(un));
25028 	return (0);
25029 }
25030 
25031 
25032 /*
25033  *    Function: sd_mhd_watch_incomplete()
25034  *
25035  * Description: This function is used to find out why a scsi pkt sent by the
25036  *		scsi watch facility was not completed. Under some scenarios this
25037  *		routine will return. Otherwise it will send a bus reset to see
25038  *		if the drive is still online.
25039  *
25040  *   Arguments: un  - driver soft state (unit) structure
25041  *		pkt - incomplete scsi pkt
25042  */
25043 
25044 static void
25045 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25046 {
25047 	int	be_chatty;
25048 	int	perr;
25049 
25050 	ASSERT(pkt != NULL);
25051 	ASSERT(un != NULL);
25052 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25053 	perr		= (pkt->pkt_statistics & STAT_PERR);
25054 
25055 	mutex_enter(SD_MUTEX(un));
25056 	if (un->un_state == SD_STATE_DUMPING) {
25057 		mutex_exit(SD_MUTEX(un));
25058 		return;
25059 	}
25060 
25061 	switch (pkt->pkt_reason) {
25062 	case CMD_UNX_BUS_FREE:
25063 		/*
25064 		 * If we had a parity error that caused the target to drop BSY*,
25065 		 * don't be chatty about it.
25066 		 */
25067 		if (perr && be_chatty) {
25068 			be_chatty = 0;
25069 		}
25070 		break;
25071 	case CMD_TAG_REJECT:
25072 		/*
25073 		 * The SCSI-2 spec states that a tag reject will be sent by the
25074 		 * target if tagged queuing is not supported. A tag reject may
25075 		 * also be sent during certain initialization periods or to
25076 		 * control internal resources. For the latter case the target
25077 		 * may also return Queue Full.
25078 		 *
25079 		 * If this driver receives a tag reject from a target that is
25080 		 * going through an init period or controlling internal
25081 		 * resources tagged queuing will be disabled. This is a less
25082 		 * than optimal behavior but the driver is unable to determine
25083 		 * the target state and assumes tagged queueing is not supported
25084 		 */
25085 		pkt->pkt_flags = 0;
25086 		un->un_tagflags = 0;
25087 
25088 		if (un->un_f_opt_queueing == TRUE) {
25089 			un->un_throttle = min(un->un_throttle, 3);
25090 		} else {
25091 			un->un_throttle = 1;
25092 		}
25093 		mutex_exit(SD_MUTEX(un));
25094 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25095 		mutex_enter(SD_MUTEX(un));
25096 		break;
25097 	case CMD_INCOMPLETE:
25098 		/*
25099 		 * The transport stopped with an abnormal state, fallthrough and
25100 		 * reset the target and/or bus unless selection did not complete
25101 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25102 		 * go through a target/bus reset
25103 		 */
25104 		if (pkt->pkt_state == STATE_GOT_BUS) {
25105 			break;
25106 		}
25107 		/*FALLTHROUGH*/
25108 
25109 	case CMD_TIMEOUT:
25110 	default:
25111 		/*
25112 		 * The lun may still be running the command, so a lun reset
25113 		 * should be attempted. If the lun reset fails or cannot be
25114 		 * issued, than try a target reset. Lastly try a bus reset.
25115 		 */
25116 		if ((pkt->pkt_statistics &
25117 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25118 			int reset_retval = 0;
25119 			mutex_exit(SD_MUTEX(un));
25120 			if (un->un_f_allow_bus_device_reset == TRUE) {
25121 				if (un->un_f_lun_reset_enabled == TRUE) {
25122 					reset_retval =
25123 					    scsi_reset(SD_ADDRESS(un),
25124 					    RESET_LUN);
25125 				}
25126 				if (reset_retval == 0) {
25127 					reset_retval =
25128 					    scsi_reset(SD_ADDRESS(un),
25129 					    RESET_TARGET);
25130 				}
25131 			}
25132 			if (reset_retval == 0) {
25133 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25134 			}
25135 			mutex_enter(SD_MUTEX(un));
25136 		}
25137 		break;
25138 	}
25139 
25140 	/* A device/bus reset has occurred; update the reservation status. */
25141 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25142 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25143 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25144 			un->un_resvd_status |=
25145 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25146 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25147 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25148 		}
25149 	}
25150 
25151 	/*
25152 	 * The disk has been turned off; Update the device state.
25153 	 *
25154 	 * Note: Should we be offlining the disk here?
25155 	 */
25156 	if (pkt->pkt_state == STATE_GOT_BUS) {
25157 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25158 		    "Disk not responding to selection\n");
25159 		if (un->un_state != SD_STATE_OFFLINE) {
25160 			New_state(un, SD_STATE_OFFLINE);
25161 		}
25162 	} else if (be_chatty) {
25163 		/*
25164 		 * suppress messages if they are all the same pkt reason;
25165 		 * with TQ, many (up to 256) are returned with the same
25166 		 * pkt_reason
25167 		 */
25168 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25169 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25170 			    "sd_mhd_watch_incomplete: "
25171 			    "SCSI transport failed: reason '%s'\n",
25172 			    scsi_rname(pkt->pkt_reason));
25173 		}
25174 	}
25175 	un->un_last_pkt_reason = pkt->pkt_reason;
25176 	mutex_exit(SD_MUTEX(un));
25177 }
25178 
25179 
25180 /*
25181  *    Function: sd_sname()
25182  *
25183  * Description: This is a simple little routine to return a string containing
25184  *		a printable description of command status byte for use in
25185  *		logging.
25186  *
25187  *   Arguments: status - pointer to a status byte
25188  *
25189  * Return Code: char * - string containing status description.
25190  */
25191 
25192 static char *
25193 sd_sname(uchar_t status)
25194 {
25195 	switch (status & STATUS_MASK) {
25196 	case STATUS_GOOD:
25197 		return ("good status");
25198 	case STATUS_CHECK:
25199 		return ("check condition");
25200 	case STATUS_MET:
25201 		return ("condition met");
25202 	case STATUS_BUSY:
25203 		return ("busy");
25204 	case STATUS_INTERMEDIATE:
25205 		return ("intermediate");
25206 	case STATUS_INTERMEDIATE_MET:
25207 		return ("intermediate - condition met");
25208 	case STATUS_RESERVATION_CONFLICT:
25209 		return ("reservation_conflict");
25210 	case STATUS_TERMINATED:
25211 		return ("command terminated");
25212 	case STATUS_QFULL:
25213 		return ("queue full");
25214 	default:
25215 		return ("<unknown status>");
25216 	}
25217 }
25218 
25219 
25220 /*
25221  *    Function: sd_mhd_resvd_recover()
25222  *
25223  * Description: This function adds a reservation entry to the
25224  *		sd_resv_reclaim_request list and signals the reservation
25225  *		reclaim thread that there is work pending. If the reservation
25226  *		reclaim thread has not been previously created this function
25227  *		will kick it off.
25228  *
25229  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25230  *			among multiple watches that share this callback function
25231  *
25232  *     Context: This routine is called by timeout() and is run in interrupt
25233  *		context. It must not sleep or call other functions which may
25234  *		sleep.
25235  */
25236 
25237 static void
25238 sd_mhd_resvd_recover(void *arg)
25239 {
25240 	dev_t			dev = (dev_t)arg;
25241 	struct sd_lun		*un;
25242 	struct sd_thr_request	*sd_treq = NULL;
25243 	struct sd_thr_request	*sd_cur = NULL;
25244 	struct sd_thr_request	*sd_prev = NULL;
25245 	int			already_there = 0;
25246 
25247 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25248 		return;
25249 	}
25250 
25251 	mutex_enter(SD_MUTEX(un));
25252 	un->un_resvd_timeid = NULL;
25253 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25254 		/*
25255 		 * There was a reset so don't issue the reserve, allow the
25256 		 * sd_mhd_watch_cb callback function to notice this and
25257 		 * reschedule the timeout for reservation.
25258 		 */
25259 		mutex_exit(SD_MUTEX(un));
25260 		return;
25261 	}
25262 	mutex_exit(SD_MUTEX(un));
25263 
25264 	/*
25265 	 * Add this device to the sd_resv_reclaim_request list and the
25266 	 * sd_resv_reclaim_thread should take care of the rest.
25267 	 *
25268 	 * Note: We can't sleep in this context so if the memory allocation
25269 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25270 	 * reschedule the timeout for reservation.  (4378460)
25271 	 */
25272 	sd_treq = (struct sd_thr_request *)
25273 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25274 	if (sd_treq == NULL) {
25275 		return;
25276 	}
25277 
25278 	sd_treq->sd_thr_req_next = NULL;
25279 	sd_treq->dev = dev;
25280 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25281 	if (sd_tr.srq_thr_req_head == NULL) {
25282 		sd_tr.srq_thr_req_head = sd_treq;
25283 	} else {
25284 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25285 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25286 			if (sd_cur->dev == dev) {
25287 				/*
25288 				 * already in Queue so don't log
25289 				 * another request for the device
25290 				 */
25291 				already_there = 1;
25292 				break;
25293 			}
25294 			sd_prev = sd_cur;
25295 		}
25296 		if (!already_there) {
25297 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25298 			    "logging request for %lx\n", dev);
25299 			sd_prev->sd_thr_req_next = sd_treq;
25300 		} else {
25301 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25302 		}
25303 	}
25304 
25305 	/*
25306 	 * Create a kernel thread to do the reservation reclaim and free up this
25307 	 * thread. We cannot block this thread while we go away to do the
25308 	 * reservation reclaim
25309 	 */
25310 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25311 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25312 		    sd_resv_reclaim_thread, NULL,
25313 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25314 
25315 	/* Tell the reservation reclaim thread that it has work to do */
25316 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25317 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25318 }
25319 
25320 /*
25321  *    Function: sd_resv_reclaim_thread()
25322  *
25323  * Description: This function implements the reservation reclaim operations
25324  *
25325  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25326  *		      among multiple watches that share this callback function
25327  */
25328 
25329 static void
25330 sd_resv_reclaim_thread()
25331 {
25332 	struct sd_lun		*un;
25333 	struct sd_thr_request	*sd_mhreq;
25334 
25335 	/* Wait for work */
25336 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25337 	if (sd_tr.srq_thr_req_head == NULL) {
25338 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25339 		    &sd_tr.srq_resv_reclaim_mutex);
25340 	}
25341 
25342 	/* Loop while we have work */
25343 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25344 		un = ddi_get_soft_state(sd_state,
25345 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25346 		if (un == NULL) {
25347 			/*
25348 			 * softstate structure is NULL so just
25349 			 * dequeue the request and continue
25350 			 */
25351 			sd_tr.srq_thr_req_head =
25352 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25353 			kmem_free(sd_tr.srq_thr_cur_req,
25354 			    sizeof (struct sd_thr_request));
25355 			continue;
25356 		}
25357 
25358 		/* dequeue the request */
25359 		sd_mhreq = sd_tr.srq_thr_cur_req;
25360 		sd_tr.srq_thr_req_head =
25361 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25362 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25363 
25364 		/*
25365 		 * Reclaim reservation only if SD_RESERVE is still set. There
25366 		 * may have been a call to MHIOCRELEASE before we got here.
25367 		 */
25368 		mutex_enter(SD_MUTEX(un));
25369 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25370 			/*
25371 			 * Note: The SD_LOST_RESERVE flag is cleared before
25372 			 * reclaiming the reservation. If this is done after the
25373 			 * call to sd_reserve_release a reservation loss in the
25374 			 * window between pkt completion of reserve cmd and
25375 			 * mutex_enter below may not be recognized
25376 			 */
25377 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25378 			mutex_exit(SD_MUTEX(un));
25379 
25380 			if (sd_reserve_release(sd_mhreq->dev,
25381 			    SD_RESERVE) == 0) {
25382 				mutex_enter(SD_MUTEX(un));
25383 				un->un_resvd_status |= SD_RESERVE;
25384 				mutex_exit(SD_MUTEX(un));
25385 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25386 				    "sd_resv_reclaim_thread: "
25387 				    "Reservation Recovered\n");
25388 			} else {
25389 				mutex_enter(SD_MUTEX(un));
25390 				un->un_resvd_status |= SD_LOST_RESERVE;
25391 				mutex_exit(SD_MUTEX(un));
25392 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25393 				    "sd_resv_reclaim_thread: Failed "
25394 				    "Reservation Recovery\n");
25395 			}
25396 		} else {
25397 			mutex_exit(SD_MUTEX(un));
25398 		}
25399 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25400 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25401 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25402 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25403 		/*
25404 		 * wakeup the destroy thread if anyone is waiting on
25405 		 * us to complete.
25406 		 */
25407 		cv_signal(&sd_tr.srq_inprocess_cv);
25408 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25409 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25410 	}
25411 
25412 	/*
25413 	 * cleanup the sd_tr structure now that this thread will not exist
25414 	 */
25415 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25416 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25417 	sd_tr.srq_resv_reclaim_thread = NULL;
25418 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25419 	thread_exit();
25420 }
25421 
25422 
25423 /*
25424  *    Function: sd_rmv_resv_reclaim_req()
25425  *
25426  * Description: This function removes any pending reservation reclaim requests
25427  *		for the specified device.
25428  *
25429  *   Arguments: dev - the device 'dev_t'
25430  */
25431 
25432 static void
25433 sd_rmv_resv_reclaim_req(dev_t dev)
25434 {
25435 	struct sd_thr_request *sd_mhreq;
25436 	struct sd_thr_request *sd_prev;
25437 
25438 	/* Remove a reservation reclaim request from the list */
25439 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25440 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25441 		/*
25442 		 * We are attempting to reinstate reservation for
25443 		 * this device. We wait for sd_reserve_release()
25444 		 * to return before we return.
25445 		 */
25446 		cv_wait(&sd_tr.srq_inprocess_cv,
25447 		    &sd_tr.srq_resv_reclaim_mutex);
25448 	} else {
25449 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25450 		if (sd_mhreq && sd_mhreq->dev == dev) {
25451 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25452 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25453 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25454 			return;
25455 		}
25456 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25457 			if (sd_mhreq && sd_mhreq->dev == dev) {
25458 				break;
25459 			}
25460 			sd_prev = sd_mhreq;
25461 		}
25462 		if (sd_mhreq != NULL) {
25463 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25464 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25465 		}
25466 	}
25467 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25468 }
25469 
25470 
25471 /*
25472  *    Function: sd_mhd_reset_notify_cb()
25473  *
25474  * Description: This is a call back function for scsi_reset_notify. This
25475  *		function updates the softstate reserved status and logs the
25476  *		reset. The driver scsi watch facility callback function
25477  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25478  *		will reclaim the reservation.
25479  *
25480  *   Arguments: arg  - driver soft state (unit) structure
25481  */
25482 
25483 static void
25484 sd_mhd_reset_notify_cb(caddr_t arg)
25485 {
25486 	struct sd_lun *un = (struct sd_lun *)arg;
25487 
25488 	mutex_enter(SD_MUTEX(un));
25489 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25490 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25491 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25492 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25493 	}
25494 	mutex_exit(SD_MUTEX(un));
25495 }
25496 
25497 
25498 /*
25499  *    Function: sd_take_ownership()
25500  *
25501  * Description: This routine implements an algorithm to achieve a stable
25502  *		reservation on disks which don't implement priority reserve,
25503  *		and makes sure that other host lose re-reservation attempts.
25504  *		This algorithm contains of a loop that keeps issuing the RESERVE
25505  *		for some period of time (min_ownership_delay, default 6 seconds)
25506  *		During that loop, it looks to see if there has been a bus device
25507  *		reset or bus reset (both of which cause an existing reservation
25508  *		to be lost). If the reservation is lost issue RESERVE until a
25509  *		period of min_ownership_delay with no resets has gone by, or
25510  *		until max_ownership_delay has expired. This loop ensures that
25511  *		the host really did manage to reserve the device, in spite of
25512  *		resets. The looping for min_ownership_delay (default six
25513  *		seconds) is important to early generation clustering products,
25514  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25515  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25516  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25517  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25518  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25519  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25520  *		no longer "owns" the disk and will have panicked itself.  Thus,
25521  *		the host issuing the MHIOCTKOWN is assured (with timing
25522  *		dependencies) that by the time it actually starts to use the
25523  *		disk for real work, the old owner is no longer accessing it.
25524  *
25525  *		min_ownership_delay is the minimum amount of time for which the
25526  *		disk must be reserved continuously devoid of resets before the
25527  *		MHIOCTKOWN ioctl will return success.
25528  *
25529  *		max_ownership_delay indicates the amount of time by which the
25530  *		take ownership should succeed or timeout with an error.
25531  *
25532  *   Arguments: dev - the device 'dev_t'
25533  *		*p  - struct containing timing info.
25534  *
25535  * Return Code: 0 for success or error code
25536  */
25537 
25538 static int
25539 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25540 {
25541 	struct sd_lun	*un;
25542 	int		rval;
25543 	int		err;
25544 	int		reservation_count   = 0;
25545 	int		min_ownership_delay =  6000000; /* in usec */
25546 	int		max_ownership_delay = 30000000; /* in usec */
25547 	clock_t		start_time;	/* starting time of this algorithm */
25548 	clock_t		end_time;	/* time limit for giving up */
25549 	clock_t		ownership_time;	/* time limit for stable ownership */
25550 	clock_t		current_time;
25551 	clock_t		previous_current_time;
25552 
25553 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25554 		return (ENXIO);
25555 	}
25556 
25557 	/*
25558 	 * Attempt a device reservation. A priority reservation is requested.
25559 	 */
25560 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25561 	    != SD_SUCCESS) {
25562 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25563 		    "sd_take_ownership: return(1)=%d\n", rval);
25564 		return (rval);
25565 	}
25566 
25567 	/* Update the softstate reserved status to indicate the reservation */
25568 	mutex_enter(SD_MUTEX(un));
25569 	un->un_resvd_status |= SD_RESERVE;
25570 	un->un_resvd_status &=
25571 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25572 	mutex_exit(SD_MUTEX(un));
25573 
25574 	if (p != NULL) {
25575 		if (p->min_ownership_delay != 0) {
25576 			min_ownership_delay = p->min_ownership_delay * 1000;
25577 		}
25578 		if (p->max_ownership_delay != 0) {
25579 			max_ownership_delay = p->max_ownership_delay * 1000;
25580 		}
25581 	}
25582 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25583 	    "sd_take_ownership: min, max delays: %d, %d\n",
25584 	    min_ownership_delay, max_ownership_delay);
25585 
25586 	start_time = ddi_get_lbolt();
25587 	current_time	= start_time;
25588 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25589 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25590 
25591 	while (current_time - end_time < 0) {
25592 		delay(drv_usectohz(500000));
25593 
25594 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25595 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25596 				mutex_enter(SD_MUTEX(un));
25597 				rval = (un->un_resvd_status &
25598 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25599 				mutex_exit(SD_MUTEX(un));
25600 				break;
25601 			}
25602 		}
25603 		previous_current_time = current_time;
25604 		current_time = ddi_get_lbolt();
25605 		mutex_enter(SD_MUTEX(un));
25606 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25607 			ownership_time = ddi_get_lbolt() +
25608 			    drv_usectohz(min_ownership_delay);
25609 			reservation_count = 0;
25610 		} else {
25611 			reservation_count++;
25612 		}
25613 		un->un_resvd_status |= SD_RESERVE;
25614 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25615 		mutex_exit(SD_MUTEX(un));
25616 
25617 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25618 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25619 		    "reservation=%s\n", (current_time - previous_current_time),
25620 		    reservation_count ? "ok" : "reclaimed");
25621 
25622 		if (current_time - ownership_time >= 0 &&
25623 		    reservation_count >= 4) {
25624 			rval = 0; /* Achieved a stable ownership */
25625 			break;
25626 		}
25627 		if (current_time - end_time >= 0) {
25628 			rval = EACCES; /* No ownership in max possible time */
25629 			break;
25630 		}
25631 	}
25632 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25633 	    "sd_take_ownership: return(2)=%d\n", rval);
25634 	return (rval);
25635 }
25636 
25637 
25638 /*
25639  *    Function: sd_reserve_release()
25640  *
25641  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25642  *		PRIORITY RESERVE commands based on a user specified command type
25643  *
25644  *   Arguments: dev - the device 'dev_t'
25645  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25646  *		      SD_RESERVE, SD_RELEASE
25647  *
25648  * Return Code: 0 or Error Code
25649  */
25650 
25651 static int
25652 sd_reserve_release(dev_t dev, int cmd)
25653 {
25654 	struct uscsi_cmd	*com = NULL;
25655 	struct sd_lun		*un = NULL;
25656 	char			cdb[CDB_GROUP0];
25657 	int			rval;
25658 
25659 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25660 	    (cmd == SD_PRIORITY_RESERVE));
25661 
25662 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25663 		return (ENXIO);
25664 	}
25665 
25666 	/* instantiate and initialize the command and cdb */
25667 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25668 	bzero(cdb, CDB_GROUP0);
25669 	com->uscsi_flags   = USCSI_SILENT;
25670 	com->uscsi_timeout = un->un_reserve_release_time;
25671 	com->uscsi_cdblen  = CDB_GROUP0;
25672 	com->uscsi_cdb	   = cdb;
25673 	if (cmd == SD_RELEASE) {
25674 		cdb[0] = SCMD_RELEASE;
25675 	} else {
25676 		cdb[0] = SCMD_RESERVE;
25677 	}
25678 
25679 	/* Send the command. */
25680 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25681 	    SD_PATH_STANDARD);
25682 
25683 	/*
25684 	 * "break" a reservation that is held by another host, by issuing a
25685 	 * reset if priority reserve is desired, and we could not get the
25686 	 * device.
25687 	 */
25688 	if ((cmd == SD_PRIORITY_RESERVE) &&
25689 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25690 		/*
25691 		 * First try to reset the LUN. If we cannot, then try a target
25692 		 * reset, followed by a bus reset if the target reset fails.
25693 		 */
25694 		int reset_retval = 0;
25695 		if (un->un_f_lun_reset_enabled == TRUE) {
25696 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25697 		}
25698 		if (reset_retval == 0) {
25699 			/* The LUN reset either failed or was not issued */
25700 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25701 		}
25702 		if ((reset_retval == 0) &&
25703 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25704 			rval = EIO;
25705 			kmem_free(com, sizeof (*com));
25706 			return (rval);
25707 		}
25708 
25709 		bzero(com, sizeof (struct uscsi_cmd));
25710 		com->uscsi_flags   = USCSI_SILENT;
25711 		com->uscsi_cdb	   = cdb;
25712 		com->uscsi_cdblen  = CDB_GROUP0;
25713 		com->uscsi_timeout = 5;
25714 
25715 		/*
25716 		 * Reissue the last reserve command, this time without request
25717 		 * sense.  Assume that it is just a regular reserve command.
25718 		 */
25719 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25720 		    SD_PATH_STANDARD);
25721 	}
25722 
25723 	/* Return an error if still getting a reservation conflict. */
25724 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25725 		rval = EACCES;
25726 	}
25727 
25728 	kmem_free(com, sizeof (*com));
25729 	return (rval);
25730 }
25731 
25732 
25733 #define	SD_NDUMP_RETRIES	12
25734 /*
25735  *	System Crash Dump routine
25736  */
25737 
25738 static int
25739 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25740 {
25741 	int		instance;
25742 	int		partition;
25743 	int		i;
25744 	int		err;
25745 	struct sd_lun	*un;
25746 	struct scsi_pkt *wr_pktp;
25747 	struct buf	*wr_bp;
25748 	struct buf	wr_buf;
25749 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25750 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25751 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25752 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25753 	size_t		io_start_offset;
25754 	int		doing_rmw = FALSE;
25755 	int		rval;
25756 	ssize_t		dma_resid;
25757 	daddr_t		oblkno;
25758 	diskaddr_t	nblks = 0;
25759 	diskaddr_t	start_block;
25760 
25761 	instance = SDUNIT(dev);
25762 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25763 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25764 		return (ENXIO);
25765 	}
25766 
25767 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25768 
25769 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25770 
25771 	partition = SDPART(dev);
25772 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25773 
25774 	if (!(NOT_DEVBSIZE(un))) {
25775 		int secmask = 0;
25776 		int blknomask = 0;
25777 
25778 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25779 		secmask = un->un_tgt_blocksize - 1;
25780 
25781 		if (blkno & blknomask) {
25782 			SD_TRACE(SD_LOG_DUMP, un,
25783 			    "sddump: dump start block not modulo %d\n",
25784 			    un->un_tgt_blocksize);
25785 			return (EINVAL);
25786 		}
25787 
25788 		if ((nblk * DEV_BSIZE) & secmask) {
25789 			SD_TRACE(SD_LOG_DUMP, un,
25790 			    "sddump: dump length not modulo %d\n",
25791 			    un->un_tgt_blocksize);
25792 			return (EINVAL);
25793 		}
25794 
25795 	}
25796 
25797 	/* Validate blocks to dump at against partition size. */
25798 
25799 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25800 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25801 
25802 	if (NOT_DEVBSIZE(un)) {
25803 		if ((blkno + nblk) > nblks) {
25804 			SD_TRACE(SD_LOG_DUMP, un,
25805 			    "sddump: dump range larger than partition: "
25806 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25807 			    blkno, nblk, nblks);
25808 			return (EINVAL);
25809 		}
25810 	} else {
25811 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25812 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25813 			SD_TRACE(SD_LOG_DUMP, un,
25814 			    "sddump: dump range larger than partition: "
25815 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25816 			    blkno, nblk, nblks);
25817 			return (EINVAL);
25818 		}
25819 	}
25820 
25821 	mutex_enter(&un->un_pm_mutex);
25822 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25823 		struct scsi_pkt *start_pktp;
25824 
25825 		mutex_exit(&un->un_pm_mutex);
25826 
25827 		/*
25828 		 * use pm framework to power on HBA 1st
25829 		 */
25830 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25831 		    SD_PM_STATE_ACTIVE(un));
25832 
25833 		/*
25834 		 * Dump no long uses sdpower to power on a device, it's
25835 		 * in-line here so it can be done in polled mode.
25836 		 */
25837 
25838 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25839 
25840 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25841 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25842 
25843 		if (start_pktp == NULL) {
25844 			/* We were not given a SCSI packet, fail. */
25845 			return (EIO);
25846 		}
25847 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25848 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25849 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25850 		start_pktp->pkt_flags = FLAG_NOINTR;
25851 
25852 		mutex_enter(SD_MUTEX(un));
25853 		SD_FILL_SCSI1_LUN(un, start_pktp);
25854 		mutex_exit(SD_MUTEX(un));
25855 		/*
25856 		 * Scsi_poll returns 0 (success) if the command completes and
25857 		 * the status block is STATUS_GOOD.
25858 		 */
25859 		if (sd_scsi_poll(un, start_pktp) != 0) {
25860 			scsi_destroy_pkt(start_pktp);
25861 			return (EIO);
25862 		}
25863 		scsi_destroy_pkt(start_pktp);
25864 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25865 		    SD_PM_STATE_CHANGE);
25866 	} else {
25867 		mutex_exit(&un->un_pm_mutex);
25868 	}
25869 
25870 	mutex_enter(SD_MUTEX(un));
25871 	un->un_throttle = 0;
25872 
25873 	/*
25874 	 * The first time through, reset the specific target device.
25875 	 * However, when cpr calls sddump we know that sd is in a
25876 	 * a good state so no bus reset is required.
25877 	 * Clear sense data via Request Sense cmd.
25878 	 * In sddump we don't care about allow_bus_device_reset anymore
25879 	 */
25880 
25881 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25882 	    (un->un_state != SD_STATE_DUMPING)) {
25883 
25884 		New_state(un, SD_STATE_DUMPING);
25885 
25886 		if (un->un_f_is_fibre == FALSE) {
25887 			mutex_exit(SD_MUTEX(un));
25888 			/*
25889 			 * Attempt a bus reset for parallel scsi.
25890 			 *
25891 			 * Note: A bus reset is required because on some host
25892 			 * systems (i.e. E420R) a bus device reset is
25893 			 * insufficient to reset the state of the target.
25894 			 *
25895 			 * Note: Don't issue the reset for fibre-channel,
25896 			 * because this tends to hang the bus (loop) for
25897 			 * too long while everyone is logging out and in
25898 			 * and the deadman timer for dumping will fire
25899 			 * before the dump is complete.
25900 			 */
25901 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25902 				mutex_enter(SD_MUTEX(un));
25903 				Restore_state(un);
25904 				mutex_exit(SD_MUTEX(un));
25905 				return (EIO);
25906 			}
25907 
25908 			/* Delay to give the device some recovery time. */
25909 			drv_usecwait(10000);
25910 
25911 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25912 				SD_INFO(SD_LOG_DUMP, un,
25913 				    "sddump: sd_send_polled_RQS failed\n");
25914 			}
25915 			mutex_enter(SD_MUTEX(un));
25916 		}
25917 	}
25918 
25919 	/*
25920 	 * Convert the partition-relative block number to a
25921 	 * disk physical block number.
25922 	 */
25923 	if (NOT_DEVBSIZE(un)) {
25924 		blkno += start_block;
25925 	} else {
25926 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25927 		blkno += start_block;
25928 	}
25929 
25930 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25931 
25932 
25933 	/*
25934 	 * Check if the device has a non-512 block size.
25935 	 */
25936 	wr_bp = NULL;
25937 	if (NOT_DEVBSIZE(un)) {
25938 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25939 		tgt_byte_count = nblk * un->un_sys_blocksize;
25940 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25941 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25942 			doing_rmw = TRUE;
25943 			/*
25944 			 * Calculate the block number and number of block
25945 			 * in terms of the media block size.
25946 			 */
25947 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25948 			tgt_nblk =
25949 			    ((tgt_byte_offset + tgt_byte_count +
25950 			    (un->un_tgt_blocksize - 1)) /
25951 			    un->un_tgt_blocksize) - tgt_blkno;
25952 
25953 			/*
25954 			 * Invoke the routine which is going to do read part
25955 			 * of read-modify-write.
25956 			 * Note that this routine returns a pointer to
25957 			 * a valid bp in wr_bp.
25958 			 */
25959 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25960 			    &wr_bp);
25961 			if (err) {
25962 				mutex_exit(SD_MUTEX(un));
25963 				return (err);
25964 			}
25965 			/*
25966 			 * Offset is being calculated as -
25967 			 * (original block # * system block size) -
25968 			 * (new block # * target block size)
25969 			 */
25970 			io_start_offset =
25971 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25972 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25973 
25974 			ASSERT((io_start_offset >= 0) &&
25975 			    (io_start_offset < un->un_tgt_blocksize));
25976 			/*
25977 			 * Do the modify portion of read modify write.
25978 			 */
25979 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25980 			    (size_t)nblk * un->un_sys_blocksize);
25981 		} else {
25982 			doing_rmw = FALSE;
25983 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25984 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25985 		}
25986 
25987 		/* Convert blkno and nblk to target blocks */
25988 		blkno = tgt_blkno;
25989 		nblk = tgt_nblk;
25990 	} else {
25991 		wr_bp = &wr_buf;
25992 		bzero(wr_bp, sizeof (struct buf));
25993 		wr_bp->b_flags		= B_BUSY;
25994 		wr_bp->b_un.b_addr	= addr;
25995 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25996 		wr_bp->b_resid		= 0;
25997 	}
25998 
25999 	mutex_exit(SD_MUTEX(un));
26000 
26001 	/*
26002 	 * Obtain a SCSI packet for the write command.
26003 	 * It should be safe to call the allocator here without
26004 	 * worrying about being locked for DVMA mapping because
26005 	 * the address we're passed is already a DVMA mapping
26006 	 *
26007 	 * We are also not going to worry about semaphore ownership
26008 	 * in the dump buffer. Dumping is single threaded at present.
26009 	 */
26010 
26011 	wr_pktp = NULL;
26012 
26013 	dma_resid = wr_bp->b_bcount;
26014 	oblkno = blkno;
26015 
26016 	if (!(NOT_DEVBSIZE(un))) {
26017 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
26018 	}
26019 
26020 	while (dma_resid != 0) {
26021 
26022 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26023 		wr_bp->b_flags &= ~B_ERROR;
26024 
26025 		if (un->un_partial_dma_supported == 1) {
26026 			blkno = oblkno +
26027 			    ((wr_bp->b_bcount - dma_resid) /
26028 			    un->un_tgt_blocksize);
26029 			nblk = dma_resid / un->un_tgt_blocksize;
26030 
26031 			if (wr_pktp) {
26032 				/*
26033 				 * Partial DMA transfers after initial transfer
26034 				 */
26035 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26036 				    blkno, nblk);
26037 			} else {
26038 				/* Initial transfer */
26039 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26040 				    un->un_pkt_flags, NULL_FUNC, NULL,
26041 				    blkno, nblk);
26042 			}
26043 		} else {
26044 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26045 			    0, NULL_FUNC, NULL, blkno, nblk);
26046 		}
26047 
26048 		if (rval == 0) {
26049 			/* We were given a SCSI packet, continue. */
26050 			break;
26051 		}
26052 
26053 		if (i == 0) {
26054 			if (wr_bp->b_flags & B_ERROR) {
26055 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26056 				    "no resources for dumping; "
26057 				    "error code: 0x%x, retrying",
26058 				    geterror(wr_bp));
26059 			} else {
26060 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26061 				    "no resources for dumping; retrying");
26062 			}
26063 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26064 			if (wr_bp->b_flags & B_ERROR) {
26065 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26066 				    "no resources for dumping; error code: "
26067 				    "0x%x, retrying\n", geterror(wr_bp));
26068 			}
26069 		} else {
26070 			if (wr_bp->b_flags & B_ERROR) {
26071 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26072 				    "no resources for dumping; "
26073 				    "error code: 0x%x, retries failed, "
26074 				    "giving up.\n", geterror(wr_bp));
26075 			} else {
26076 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26077 				    "no resources for dumping; "
26078 				    "retries failed, giving up.\n");
26079 			}
26080 			mutex_enter(SD_MUTEX(un));
26081 			Restore_state(un);
26082 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26083 				mutex_exit(SD_MUTEX(un));
26084 				scsi_free_consistent_buf(wr_bp);
26085 			} else {
26086 				mutex_exit(SD_MUTEX(un));
26087 			}
26088 			return (EIO);
26089 		}
26090 		drv_usecwait(10000);
26091 	}
26092 
26093 	if (un->un_partial_dma_supported == 1) {
26094 		/*
26095 		 * save the resid from PARTIAL_DMA
26096 		 */
26097 		dma_resid = wr_pktp->pkt_resid;
26098 		if (dma_resid != 0)
26099 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26100 		wr_pktp->pkt_resid = 0;
26101 	} else {
26102 		dma_resid = 0;
26103 	}
26104 
26105 	/* SunBug 1222170 */
26106 	wr_pktp->pkt_flags = FLAG_NOINTR;
26107 
26108 	err = EIO;
26109 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26110 
26111 		/*
26112 		 * Scsi_poll returns 0 (success) if the command completes and
26113 		 * the status block is STATUS_GOOD.  We should only check
26114 		 * errors if this condition is not true.  Even then we should
26115 		 * send our own request sense packet only if we have a check
26116 		 * condition and auto request sense has not been performed by
26117 		 * the hba.
26118 		 */
26119 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26120 
26121 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26122 		    (wr_pktp->pkt_resid == 0)) {
26123 			err = SD_SUCCESS;
26124 			break;
26125 		}
26126 
26127 		/*
26128 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26129 		 */
26130 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26131 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26132 			    "Error while dumping state...Device is gone\n");
26133 			break;
26134 		}
26135 
26136 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26137 			SD_INFO(SD_LOG_DUMP, un,
26138 			    "sddump: write failed with CHECK, try # %d\n", i);
26139 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26140 				(void) sd_send_polled_RQS(un);
26141 			}
26142 
26143 			continue;
26144 		}
26145 
26146 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26147 			int reset_retval = 0;
26148 
26149 			SD_INFO(SD_LOG_DUMP, un,
26150 			    "sddump: write failed with BUSY, try # %d\n", i);
26151 
26152 			if (un->un_f_lun_reset_enabled == TRUE) {
26153 				reset_retval = scsi_reset(SD_ADDRESS(un),
26154 				    RESET_LUN);
26155 			}
26156 			if (reset_retval == 0) {
26157 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26158 			}
26159 			(void) sd_send_polled_RQS(un);
26160 
26161 		} else {
26162 			SD_INFO(SD_LOG_DUMP, un,
26163 			    "sddump: write failed with 0x%x, try # %d\n",
26164 			    SD_GET_PKT_STATUS(wr_pktp), i);
26165 			mutex_enter(SD_MUTEX(un));
26166 			sd_reset_target(un, wr_pktp);
26167 			mutex_exit(SD_MUTEX(un));
26168 		}
26169 
26170 		/*
26171 		 * If we are not getting anywhere with lun/target resets,
26172 		 * let's reset the bus.
26173 		 */
26174 		if (i == SD_NDUMP_RETRIES/2) {
26175 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26176 			(void) sd_send_polled_RQS(un);
26177 		}
26178 	}
26179 	}
26180 
26181 	scsi_destroy_pkt(wr_pktp);
26182 	mutex_enter(SD_MUTEX(un));
26183 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26184 		mutex_exit(SD_MUTEX(un));
26185 		scsi_free_consistent_buf(wr_bp);
26186 	} else {
26187 		mutex_exit(SD_MUTEX(un));
26188 	}
26189 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26190 	return (err);
26191 }
26192 
26193 /*
26194  *    Function: sd_scsi_poll()
26195  *
26196  * Description: This is a wrapper for the scsi_poll call.
26197  *
26198  *   Arguments: sd_lun - The unit structure
26199  *              scsi_pkt - The scsi packet being sent to the device.
26200  *
26201  * Return Code: 0 - Command completed successfully with good status
26202  *             -1 - Command failed.  This could indicate a check condition
26203  *                  or other status value requiring recovery action.
26204  *
26205  * NOTE: This code is only called off sddump().
26206  */
26207 
26208 static int
26209 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26210 {
26211 	int status;
26212 
26213 	ASSERT(un != NULL);
26214 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26215 	ASSERT(pktp != NULL);
26216 
26217 	status = SD_SUCCESS;
26218 
26219 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26220 		pktp->pkt_flags |= un->un_tagflags;
26221 		pktp->pkt_flags &= ~FLAG_NODISCON;
26222 	}
26223 
26224 	status = sd_ddi_scsi_poll(pktp);
26225 	/*
26226 	 * Scsi_poll returns 0 (success) if the command completes and the
26227 	 * status block is STATUS_GOOD.  We should only check errors if this
26228 	 * condition is not true.  Even then we should send our own request
26229 	 * sense packet only if we have a check condition and auto
26230 	 * request sense has not been performed by the hba.
26231 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26232 	 */
26233 	if ((status != SD_SUCCESS) &&
26234 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26235 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26236 	    (pktp->pkt_reason != CMD_DEV_GONE))
26237 		(void) sd_send_polled_RQS(un);
26238 
26239 	return (status);
26240 }
26241 
26242 /*
26243  *    Function: sd_send_polled_RQS()
26244  *
26245  * Description: This sends the request sense command to a device.
26246  *
26247  *   Arguments: sd_lun - The unit structure
26248  *
26249  * Return Code: 0 - Command completed successfully with good status
26250  *             -1 - Command failed.
26251  *
26252  */
26253 
26254 static int
26255 sd_send_polled_RQS(struct sd_lun *un)
26256 {
26257 	int	ret_val;
26258 	struct	scsi_pkt	*rqs_pktp;
26259 	struct	buf		*rqs_bp;
26260 
26261 	ASSERT(un != NULL);
26262 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26263 
26264 	ret_val = SD_SUCCESS;
26265 
26266 	rqs_pktp = un->un_rqs_pktp;
26267 	rqs_bp	 = un->un_rqs_bp;
26268 
26269 	mutex_enter(SD_MUTEX(un));
26270 
26271 	if (un->un_sense_isbusy) {
26272 		ret_val = SD_FAILURE;
26273 		mutex_exit(SD_MUTEX(un));
26274 		return (ret_val);
26275 	}
26276 
26277 	/*
26278 	 * If the request sense buffer (and packet) is not in use,
26279 	 * let's set the un_sense_isbusy and send our packet
26280 	 */
26281 	un->un_sense_isbusy 	= 1;
26282 	rqs_pktp->pkt_resid  	= 0;
26283 	rqs_pktp->pkt_reason 	= 0;
26284 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26285 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26286 
26287 	mutex_exit(SD_MUTEX(un));
26288 
26289 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26290 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26291 
26292 	/*
26293 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26294 	 * axle - it has a call into us!
26295 	 */
26296 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26297 		SD_INFO(SD_LOG_COMMON, un,
26298 		    "sd_send_polled_RQS: RQS failed\n");
26299 	}
26300 
26301 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26302 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26303 
26304 	mutex_enter(SD_MUTEX(un));
26305 	un->un_sense_isbusy = 0;
26306 	mutex_exit(SD_MUTEX(un));
26307 
26308 	return (ret_val);
26309 }
26310 
26311 /*
26312  * Defines needed for localized version of the scsi_poll routine.
26313  */
26314 #define	CSEC		10000			/* usecs */
26315 #define	SEC_TO_CSEC	(1000000/CSEC)
26316 
26317 /*
26318  *    Function: sd_ddi_scsi_poll()
26319  *
26320  * Description: Localized version of the scsi_poll routine.  The purpose is to
26321  *		send a scsi_pkt to a device as a polled command.  This version
26322  *		is to ensure more robust handling of transport errors.
26323  *		Specifically this routine cures not ready, coming ready
26324  *		transition for power up and reset of sonoma's.  This can take
26325  *		up to 45 seconds for power-on and 20 seconds for reset of a
26326  * 		sonoma lun.
26327  *
26328  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26329  *
26330  * Return Code: 0 - Command completed successfully with good status
26331  *             -1 - Command failed.
26332  *
26333  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26334  * be fixed (removing this code), we need to determine how to handle the
26335  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26336  *
26337  * NOTE: This code is only called off sddump().
26338  */
26339 static int
26340 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26341 {
26342 	int			rval = -1;
26343 	int			savef;
26344 	long			savet;
26345 	void			(*savec)();
26346 	int			timeout;
26347 	int			busy_count;
26348 	int			poll_delay;
26349 	int			rc;
26350 	uint8_t			*sensep;
26351 	struct scsi_arq_status	*arqstat;
26352 	extern int		do_polled_io;
26353 
26354 	ASSERT(pkt->pkt_scbp);
26355 
26356 	/*
26357 	 * save old flags..
26358 	 */
26359 	savef = pkt->pkt_flags;
26360 	savec = pkt->pkt_comp;
26361 	savet = pkt->pkt_time;
26362 
26363 	pkt->pkt_flags |= FLAG_NOINTR;
26364 
26365 	/*
26366 	 * XXX there is nothing in the SCSA spec that states that we should not
26367 	 * do a callback for polled cmds; however, removing this will break sd
26368 	 * and probably other target drivers
26369 	 */
26370 	pkt->pkt_comp = NULL;
26371 
26372 	/*
26373 	 * we don't like a polled command without timeout.
26374 	 * 60 seconds seems long enough.
26375 	 */
26376 	if (pkt->pkt_time == 0)
26377 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26378 
26379 	/*
26380 	 * Send polled cmd.
26381 	 *
26382 	 * We do some error recovery for various errors.  Tran_busy,
26383 	 * queue full, and non-dispatched commands are retried every 10 msec.
26384 	 * as they are typically transient failures.  Busy status and Not
26385 	 * Ready are retried every second as this status takes a while to
26386 	 * change.
26387 	 */
26388 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26389 
26390 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26391 		/*
26392 		 * Initialize pkt status variables.
26393 		 */
26394 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26395 
26396 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26397 			if (rc != TRAN_BUSY) {
26398 				/* Transport failed - give up. */
26399 				break;
26400 			} else {
26401 				/* Transport busy - try again. */
26402 				poll_delay = 1 * CSEC;		/* 10 msec. */
26403 			}
26404 		} else {
26405 			/*
26406 			 * Transport accepted - check pkt status.
26407 			 */
26408 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26409 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26410 			    (rc == STATUS_CHECK) &&
26411 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26412 				arqstat =
26413 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26414 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26415 			} else {
26416 				sensep = NULL;
26417 			}
26418 
26419 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26420 			    (rc == STATUS_GOOD)) {
26421 				/* No error - we're done */
26422 				rval = 0;
26423 				break;
26424 
26425 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26426 				/* Lost connection - give up */
26427 				break;
26428 
26429 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26430 			    (pkt->pkt_state == 0)) {
26431 				/* Pkt not dispatched - try again. */
26432 				poll_delay = 1 * CSEC;		/* 10 msec. */
26433 
26434 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26435 			    (rc == STATUS_QFULL)) {
26436 				/* Queue full - try again. */
26437 				poll_delay = 1 * CSEC;		/* 10 msec. */
26438 
26439 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26440 			    (rc == STATUS_BUSY)) {
26441 				/* Busy - try again. */
26442 				poll_delay = 100 * CSEC;	/* 1 sec. */
26443 				busy_count += (SEC_TO_CSEC - 1);
26444 
26445 			} else if ((sensep != NULL) &&
26446 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26447 				/*
26448 				 * Unit Attention - try again.
26449 				 * Pretend it took 1 sec.
26450 				 * NOTE: 'continue' avoids poll_delay
26451 				 */
26452 				busy_count += (SEC_TO_CSEC - 1);
26453 				continue;
26454 
26455 			} else if ((sensep != NULL) &&
26456 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26457 			    (scsi_sense_asc(sensep) == 0x04) &&
26458 			    (scsi_sense_ascq(sensep) == 0x01)) {
26459 				/*
26460 				 * Not ready -> ready - try again.
26461 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26462 				 * ...same as STATUS_BUSY
26463 				 */
26464 				poll_delay = 100 * CSEC;	/* 1 sec. */
26465 				busy_count += (SEC_TO_CSEC - 1);
26466 
26467 			} else {
26468 				/* BAD status - give up. */
26469 				break;
26470 			}
26471 		}
26472 
26473 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26474 		    !do_polled_io) {
26475 			delay(drv_usectohz(poll_delay));
26476 		} else {
26477 			/* we busy wait during cpr_dump or interrupt threads */
26478 			drv_usecwait(poll_delay);
26479 		}
26480 	}
26481 
26482 	pkt->pkt_flags = savef;
26483 	pkt->pkt_comp = savec;
26484 	pkt->pkt_time = savet;
26485 
26486 	/* return on error */
26487 	if (rval)
26488 		return (rval);
26489 
26490 	/*
26491 	 * This is not a performance critical code path.
26492 	 *
26493 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26494 	 * issues associated with looking at DMA memory prior to
26495 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26496 	 */
26497 	scsi_sync_pkt(pkt);
26498 	return (0);
26499 }
26500 
26501 
26502 
26503 /*
26504  *    Function: sd_persistent_reservation_in_read_keys
26505  *
26506  * Description: This routine is the driver entry point for handling CD-ROM
26507  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26508  *		by sending the SCSI-3 PRIN commands to the device.
26509  *		Processes the read keys command response by copying the
26510  *		reservation key information into the user provided buffer.
26511  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26512  *
26513  *   Arguments: un   -  Pointer to soft state struct for the target.
26514  *		usrp -	user provided pointer to multihost Persistent In Read
26515  *			Keys structure (mhioc_inkeys_t)
26516  *		flag -	this argument is a pass through to ddi_copyxxx()
26517  *			directly from the mode argument of ioctl().
26518  *
26519  * Return Code: 0   - Success
26520  *		EACCES
26521  *		ENOTSUP
26522  *		errno return code from sd_send_scsi_cmd()
26523  *
26524  *     Context: Can sleep. Does not return until command is completed.
26525  */
26526 
26527 static int
26528 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26529     mhioc_inkeys_t *usrp, int flag)
26530 {
26531 #ifdef _MULTI_DATAMODEL
26532 	struct mhioc_key_list32	li32;
26533 #endif
26534 	sd_prin_readkeys_t	*in;
26535 	mhioc_inkeys_t		*ptr;
26536 	mhioc_key_list_t	li;
26537 	uchar_t			*data_bufp;
26538 	int 			data_len;
26539 	int			rval = 0;
26540 	size_t			copysz;
26541 	sd_ssc_t		*ssc;
26542 
26543 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26544 		return (EINVAL);
26545 	}
26546 	bzero(&li, sizeof (mhioc_key_list_t));
26547 
26548 	ssc = sd_ssc_init(un);
26549 
26550 	/*
26551 	 * Get the listsize from user
26552 	 */
26553 #ifdef _MULTI_DATAMODEL
26554 
26555 	switch (ddi_model_convert_from(flag & FMODELS)) {
26556 	case DDI_MODEL_ILP32:
26557 		copysz = sizeof (struct mhioc_key_list32);
26558 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26559 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26560 			    "sd_persistent_reservation_in_read_keys: "
26561 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26562 			rval = EFAULT;
26563 			goto done;
26564 		}
26565 		li.listsize = li32.listsize;
26566 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26567 		break;
26568 
26569 	case DDI_MODEL_NONE:
26570 		copysz = sizeof (mhioc_key_list_t);
26571 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26572 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26573 			    "sd_persistent_reservation_in_read_keys: "
26574 			    "failed ddi_copyin: mhioc_key_list_t\n");
26575 			rval = EFAULT;
26576 			goto done;
26577 		}
26578 		break;
26579 	}
26580 
26581 #else /* ! _MULTI_DATAMODEL */
26582 	copysz = sizeof (mhioc_key_list_t);
26583 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26584 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26585 		    "sd_persistent_reservation_in_read_keys: "
26586 		    "failed ddi_copyin: mhioc_key_list_t\n");
26587 		rval = EFAULT;
26588 		goto done;
26589 	}
26590 #endif
26591 
26592 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26593 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26594 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26595 
26596 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26597 	    data_len, data_bufp);
26598 	if (rval != 0) {
26599 		if (rval == EIO)
26600 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26601 		else
26602 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26603 		goto done;
26604 	}
26605 	in = (sd_prin_readkeys_t *)data_bufp;
26606 	ptr->generation = BE_32(in->generation);
26607 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26608 
26609 	/*
26610 	 * Return the min(listsize, listlen) keys
26611 	 */
26612 #ifdef _MULTI_DATAMODEL
26613 
26614 	switch (ddi_model_convert_from(flag & FMODELS)) {
26615 	case DDI_MODEL_ILP32:
26616 		li32.listlen = li.listlen;
26617 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26618 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26619 			    "sd_persistent_reservation_in_read_keys: "
26620 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26621 			rval = EFAULT;
26622 			goto done;
26623 		}
26624 		break;
26625 
26626 	case DDI_MODEL_NONE:
26627 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26628 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26629 			    "sd_persistent_reservation_in_read_keys: "
26630 			    "failed ddi_copyout: mhioc_key_list_t\n");
26631 			rval = EFAULT;
26632 			goto done;
26633 		}
26634 		break;
26635 	}
26636 
26637 #else /* ! _MULTI_DATAMODEL */
26638 
26639 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26640 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26641 		    "sd_persistent_reservation_in_read_keys: "
26642 		    "failed ddi_copyout: mhioc_key_list_t\n");
26643 		rval = EFAULT;
26644 		goto done;
26645 	}
26646 
26647 #endif /* _MULTI_DATAMODEL */
26648 
26649 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26650 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26651 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26652 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26653 		    "sd_persistent_reservation_in_read_keys: "
26654 		    "failed ddi_copyout: keylist\n");
26655 		rval = EFAULT;
26656 	}
26657 done:
26658 	sd_ssc_fini(ssc);
26659 	kmem_free(data_bufp, data_len);
26660 	return (rval);
26661 }
26662 
26663 
26664 /*
26665  *    Function: sd_persistent_reservation_in_read_resv
26666  *
26667  * Description: This routine is the driver entry point for handling CD-ROM
26668  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26669  *		by sending the SCSI-3 PRIN commands to the device.
26670  *		Process the read persistent reservations command response by
26671  *		copying the reservation information into the user provided
26672  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26673  *
26674  *   Arguments: un   -  Pointer to soft state struct for the target.
26675  *		usrp -	user provided pointer to multihost Persistent In Read
26676  *			Keys structure (mhioc_inkeys_t)
26677  *		flag -	this argument is a pass through to ddi_copyxxx()
26678  *			directly from the mode argument of ioctl().
26679  *
26680  * Return Code: 0   - Success
26681  *		EACCES
26682  *		ENOTSUP
26683  *		errno return code from sd_send_scsi_cmd()
26684  *
26685  *     Context: Can sleep. Does not return until command is completed.
26686  */
26687 
26688 static int
26689 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26690     mhioc_inresvs_t *usrp, int flag)
26691 {
26692 #ifdef _MULTI_DATAMODEL
26693 	struct mhioc_resv_desc_list32 resvlist32;
26694 #endif
26695 	sd_prin_readresv_t	*in;
26696 	mhioc_inresvs_t		*ptr;
26697 	sd_readresv_desc_t	*readresv_ptr;
26698 	mhioc_resv_desc_list_t	resvlist;
26699 	mhioc_resv_desc_t 	resvdesc;
26700 	uchar_t			*data_bufp = NULL;
26701 	int 			data_len;
26702 	int			rval = 0;
26703 	int			i;
26704 	size_t			copysz;
26705 	mhioc_resv_desc_t	*bufp;
26706 	sd_ssc_t		*ssc;
26707 
26708 	if ((ptr = usrp) == NULL) {
26709 		return (EINVAL);
26710 	}
26711 
26712 	ssc = sd_ssc_init(un);
26713 
26714 	/*
26715 	 * Get the listsize from user
26716 	 */
26717 #ifdef _MULTI_DATAMODEL
26718 	switch (ddi_model_convert_from(flag & FMODELS)) {
26719 	case DDI_MODEL_ILP32:
26720 		copysz = sizeof (struct mhioc_resv_desc_list32);
26721 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26722 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26723 			    "sd_persistent_reservation_in_read_resv: "
26724 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26725 			rval = EFAULT;
26726 			goto done;
26727 		}
26728 		resvlist.listsize = resvlist32.listsize;
26729 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26730 		break;
26731 
26732 	case DDI_MODEL_NONE:
26733 		copysz = sizeof (mhioc_resv_desc_list_t);
26734 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26735 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26736 			    "sd_persistent_reservation_in_read_resv: "
26737 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26738 			rval = EFAULT;
26739 			goto done;
26740 		}
26741 		break;
26742 	}
26743 #else /* ! _MULTI_DATAMODEL */
26744 	copysz = sizeof (mhioc_resv_desc_list_t);
26745 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26746 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26747 		    "sd_persistent_reservation_in_read_resv: "
26748 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26749 		rval = EFAULT;
26750 		goto done;
26751 	}
26752 #endif /* ! _MULTI_DATAMODEL */
26753 
26754 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26755 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26756 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26757 
26758 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26759 	    data_len, data_bufp);
26760 	if (rval != 0) {
26761 		if (rval == EIO)
26762 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26763 		else
26764 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26765 		goto done;
26766 	}
26767 	in = (sd_prin_readresv_t *)data_bufp;
26768 	ptr->generation = BE_32(in->generation);
26769 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26770 
26771 	/*
26772 	 * Return the min(listsize, listlen( keys
26773 	 */
26774 #ifdef _MULTI_DATAMODEL
26775 
26776 	switch (ddi_model_convert_from(flag & FMODELS)) {
26777 	case DDI_MODEL_ILP32:
26778 		resvlist32.listlen = resvlist.listlen;
26779 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26780 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26781 			    "sd_persistent_reservation_in_read_resv: "
26782 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26783 			rval = EFAULT;
26784 			goto done;
26785 		}
26786 		break;
26787 
26788 	case DDI_MODEL_NONE:
26789 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26790 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26791 			    "sd_persistent_reservation_in_read_resv: "
26792 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26793 			rval = EFAULT;
26794 			goto done;
26795 		}
26796 		break;
26797 	}
26798 
26799 #else /* ! _MULTI_DATAMODEL */
26800 
26801 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26802 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26803 		    "sd_persistent_reservation_in_read_resv: "
26804 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26805 		rval = EFAULT;
26806 		goto done;
26807 	}
26808 
26809 #endif /* ! _MULTI_DATAMODEL */
26810 
26811 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26812 	bufp = resvlist.list;
26813 	copysz = sizeof (mhioc_resv_desc_t);
26814 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26815 	    i++, readresv_ptr++, bufp++) {
26816 
26817 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26818 		    MHIOC_RESV_KEY_SIZE);
26819 		resvdesc.type  = readresv_ptr->type;
26820 		resvdesc.scope = readresv_ptr->scope;
26821 		resvdesc.scope_specific_addr =
26822 		    BE_32(readresv_ptr->scope_specific_addr);
26823 
26824 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26825 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26826 			    "sd_persistent_reservation_in_read_resv: "
26827 			    "failed ddi_copyout: resvlist\n");
26828 			rval = EFAULT;
26829 			goto done;
26830 		}
26831 	}
26832 done:
26833 	sd_ssc_fini(ssc);
26834 	/* only if data_bufp is allocated, we need to free it */
26835 	if (data_bufp) {
26836 		kmem_free(data_bufp, data_len);
26837 	}
26838 	return (rval);
26839 }
26840 
26841 
26842 /*
26843  *    Function: sr_change_blkmode()
26844  *
26845  * Description: This routine is the driver entry point for handling CD-ROM
26846  *		block mode ioctl requests. Support for returning and changing
26847  *		the current block size in use by the device is implemented. The
26848  *		LBA size is changed via a MODE SELECT Block Descriptor.
26849  *
26850  *		This routine issues a mode sense with an allocation length of
26851  *		12 bytes for the mode page header and a single block descriptor.
26852  *
26853  *   Arguments: dev - the device 'dev_t'
26854  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26855  *		      CDROMSBLKMODE (set)
26856  *		data - current block size or requested block size
26857  *		flag - this argument is a pass through to ddi_copyxxx() directly
26858  *		       from the mode argument of ioctl().
26859  *
26860  * Return Code: the code returned by sd_send_scsi_cmd()
26861  *		EINVAL if invalid arguments are provided
26862  *		EFAULT if ddi_copyxxx() fails
26863  *		ENXIO if fail ddi_get_soft_state
26864  *		EIO if invalid mode sense block descriptor length
26865  *
26866  */
26867 
26868 static int
26869 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26870 {
26871 	struct sd_lun			*un = NULL;
26872 	struct mode_header		*sense_mhp, *select_mhp;
26873 	struct block_descriptor		*sense_desc, *select_desc;
26874 	int				current_bsize;
26875 	int				rval = EINVAL;
26876 	uchar_t				*sense = NULL;
26877 	uchar_t				*select = NULL;
26878 	sd_ssc_t			*ssc;
26879 
26880 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26881 
26882 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26883 		return (ENXIO);
26884 	}
26885 
26886 	/*
26887 	 * The block length is changed via the Mode Select block descriptor, the
26888 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26889 	 * required as part of this routine. Therefore the mode sense allocation
26890 	 * length is specified to be the length of a mode page header and a
26891 	 * block descriptor.
26892 	 */
26893 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26894 
26895 	ssc = sd_ssc_init(un);
26896 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26897 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26898 	sd_ssc_fini(ssc);
26899 	if (rval != 0) {
26900 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26901 		    "sr_change_blkmode: Mode Sense Failed\n");
26902 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26903 		return (rval);
26904 	}
26905 
26906 	/* Check the block descriptor len to handle only 1 block descriptor */
26907 	sense_mhp = (struct mode_header *)sense;
26908 	if ((sense_mhp->bdesc_length == 0) ||
26909 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26910 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26911 		    "sr_change_blkmode: Mode Sense returned invalid block"
26912 		    " descriptor length\n");
26913 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26914 		return (EIO);
26915 	}
26916 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26917 	current_bsize = ((sense_desc->blksize_hi << 16) |
26918 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26919 
26920 	/* Process command */
26921 	switch (cmd) {
26922 	case CDROMGBLKMODE:
26923 		/* Return the block size obtained during the mode sense */
26924 		if (ddi_copyout(&current_bsize, (void *)data,
26925 		    sizeof (int), flag) != 0)
26926 			rval = EFAULT;
26927 		break;
26928 	case CDROMSBLKMODE:
26929 		/* Validate the requested block size */
26930 		switch (data) {
26931 		case CDROM_BLK_512:
26932 		case CDROM_BLK_1024:
26933 		case CDROM_BLK_2048:
26934 		case CDROM_BLK_2056:
26935 		case CDROM_BLK_2336:
26936 		case CDROM_BLK_2340:
26937 		case CDROM_BLK_2352:
26938 		case CDROM_BLK_2368:
26939 		case CDROM_BLK_2448:
26940 		case CDROM_BLK_2646:
26941 		case CDROM_BLK_2647:
26942 			break;
26943 		default:
26944 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26945 			    "sr_change_blkmode: "
26946 			    "Block Size '%ld' Not Supported\n", data);
26947 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26948 			return (EINVAL);
26949 		}
26950 
26951 		/*
26952 		 * The current block size matches the requested block size so
26953 		 * there is no need to send the mode select to change the size
26954 		 */
26955 		if (current_bsize == data) {
26956 			break;
26957 		}
26958 
26959 		/* Build the select data for the requested block size */
26960 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26961 		select_mhp = (struct mode_header *)select;
26962 		select_desc =
26963 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26964 		/*
26965 		 * The LBA size is changed via the block descriptor, so the
26966 		 * descriptor is built according to the user data
26967 		 */
26968 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26969 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26970 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26971 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26972 
26973 		/* Send the mode select for the requested block size */
26974 		ssc = sd_ssc_init(un);
26975 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26976 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26977 		    SD_PATH_STANDARD);
26978 		sd_ssc_fini(ssc);
26979 		if (rval != 0) {
26980 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26981 			    "sr_change_blkmode: Mode Select Failed\n");
26982 			/*
26983 			 * The mode select failed for the requested block size,
26984 			 * so reset the data for the original block size and
26985 			 * send it to the target. The error is indicated by the
26986 			 * return value for the failed mode select.
26987 			 */
26988 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26989 			select_desc->blksize_mid = sense_desc->blksize_mid;
26990 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26991 			ssc = sd_ssc_init(un);
26992 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26993 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26994 			    SD_PATH_STANDARD);
26995 			sd_ssc_fini(ssc);
26996 		} else {
26997 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26998 			mutex_enter(SD_MUTEX(un));
26999 			sd_update_block_info(un, (uint32_t)data, 0);
27000 			mutex_exit(SD_MUTEX(un));
27001 		}
27002 		break;
27003 	default:
27004 		/* should not reach here, but check anyway */
27005 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27006 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27007 		rval = EINVAL;
27008 		break;
27009 	}
27010 
27011 	if (select) {
27012 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27013 	}
27014 	if (sense) {
27015 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27016 	}
27017 	return (rval);
27018 }
27019 
27020 
27021 /*
27022  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27023  * implement driver support for getting and setting the CD speed. The command
27024  * set used will be based on the device type. If the device has not been
27025  * identified as MMC the Toshiba vendor specific mode page will be used. If
27026  * the device is MMC but does not support the Real Time Streaming feature
27027  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27028  * be used to read the speed.
27029  */
27030 
27031 /*
27032  *    Function: sr_change_speed()
27033  *
27034  * Description: This routine is the driver entry point for handling CD-ROM
27035  *		drive speed ioctl requests for devices supporting the Toshiba
27036  *		vendor specific drive speed mode page. Support for returning
27037  *		and changing the current drive speed in use by the device is
27038  *		implemented.
27039  *
27040  *   Arguments: dev - the device 'dev_t'
27041  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27042  *		      CDROMSDRVSPEED (set)
27043  *		data - current drive speed or requested drive speed
27044  *		flag - this argument is a pass through to ddi_copyxxx() directly
27045  *		       from the mode argument of ioctl().
27046  *
27047  * Return Code: the code returned by sd_send_scsi_cmd()
27048  *		EINVAL if invalid arguments are provided
27049  *		EFAULT if ddi_copyxxx() fails
27050  *		ENXIO if fail ddi_get_soft_state
27051  *		EIO if invalid mode sense block descriptor length
27052  */
27053 
27054 static int
27055 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27056 {
27057 	struct sd_lun			*un = NULL;
27058 	struct mode_header		*sense_mhp, *select_mhp;
27059 	struct mode_speed		*sense_page, *select_page;
27060 	int				current_speed;
27061 	int				rval = EINVAL;
27062 	int				bd_len;
27063 	uchar_t				*sense = NULL;
27064 	uchar_t				*select = NULL;
27065 	sd_ssc_t			*ssc;
27066 
27067 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27068 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27069 		return (ENXIO);
27070 	}
27071 
27072 	/*
27073 	 * Note: The drive speed is being modified here according to a Toshiba
27074 	 * vendor specific mode page (0x31).
27075 	 */
27076 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27077 
27078 	ssc = sd_ssc_init(un);
27079 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27080 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27081 	    SD_PATH_STANDARD);
27082 	sd_ssc_fini(ssc);
27083 	if (rval != 0) {
27084 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27085 		    "sr_change_speed: Mode Sense Failed\n");
27086 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27087 		return (rval);
27088 	}
27089 	sense_mhp  = (struct mode_header *)sense;
27090 
27091 	/* Check the block descriptor len to handle only 1 block descriptor */
27092 	bd_len = sense_mhp->bdesc_length;
27093 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27094 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27095 		    "sr_change_speed: Mode Sense returned invalid block "
27096 		    "descriptor length\n");
27097 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27098 		return (EIO);
27099 	}
27100 
27101 	sense_page = (struct mode_speed *)
27102 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27103 	current_speed = sense_page->speed;
27104 
27105 	/* Process command */
27106 	switch (cmd) {
27107 	case CDROMGDRVSPEED:
27108 		/* Return the drive speed obtained during the mode sense */
27109 		if (current_speed == 0x2) {
27110 			current_speed = CDROM_TWELVE_SPEED;
27111 		}
27112 		if (ddi_copyout(&current_speed, (void *)data,
27113 		    sizeof (int), flag) != 0) {
27114 			rval = EFAULT;
27115 		}
27116 		break;
27117 	case CDROMSDRVSPEED:
27118 		/* Validate the requested drive speed */
27119 		switch ((uchar_t)data) {
27120 		case CDROM_TWELVE_SPEED:
27121 			data = 0x2;
27122 			/*FALLTHROUGH*/
27123 		case CDROM_NORMAL_SPEED:
27124 		case CDROM_DOUBLE_SPEED:
27125 		case CDROM_QUAD_SPEED:
27126 		case CDROM_MAXIMUM_SPEED:
27127 			break;
27128 		default:
27129 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27130 			    "sr_change_speed: "
27131 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27132 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27133 			return (EINVAL);
27134 		}
27135 
27136 		/*
27137 		 * The current drive speed matches the requested drive speed so
27138 		 * there is no need to send the mode select to change the speed
27139 		 */
27140 		if (current_speed == data) {
27141 			break;
27142 		}
27143 
27144 		/* Build the select data for the requested drive speed */
27145 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27146 		select_mhp = (struct mode_header *)select;
27147 		select_mhp->bdesc_length = 0;
27148 		select_page =
27149 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27150 		select_page =
27151 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27152 		select_page->mode_page.code = CDROM_MODE_SPEED;
27153 		select_page->mode_page.length = 2;
27154 		select_page->speed = (uchar_t)data;
27155 
27156 		/* Send the mode select for the requested block size */
27157 		ssc = sd_ssc_init(un);
27158 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27159 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27160 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27161 		sd_ssc_fini(ssc);
27162 		if (rval != 0) {
27163 			/*
27164 			 * The mode select failed for the requested drive speed,
27165 			 * so reset the data for the original drive speed and
27166 			 * send it to the target. The error is indicated by the
27167 			 * return value for the failed mode select.
27168 			 */
27169 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27170 			    "sr_drive_speed: Mode Select Failed\n");
27171 			select_page->speed = sense_page->speed;
27172 			ssc = sd_ssc_init(un);
27173 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27174 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27175 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27176 			sd_ssc_fini(ssc);
27177 		}
27178 		break;
27179 	default:
27180 		/* should not reach here, but check anyway */
27181 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27182 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27183 		rval = EINVAL;
27184 		break;
27185 	}
27186 
27187 	if (select) {
27188 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27189 	}
27190 	if (sense) {
27191 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27192 	}
27193 
27194 	return (rval);
27195 }
27196 
27197 
27198 /*
27199  *    Function: sr_atapi_change_speed()
27200  *
27201  * Description: This routine is the driver entry point for handling CD-ROM
27202  *		drive speed ioctl requests for MMC devices that do not support
27203  *		the Real Time Streaming feature (0x107).
27204  *
27205  *		Note: This routine will use the SET SPEED command which may not
27206  *		be supported by all devices.
27207  *
27208  *   Arguments: dev- the device 'dev_t'
27209  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27210  *		     CDROMSDRVSPEED (set)
27211  *		data- current drive speed or requested drive speed
27212  *		flag- this argument is a pass through to ddi_copyxxx() directly
27213  *		      from the mode argument of ioctl().
27214  *
27215  * Return Code: the code returned by sd_send_scsi_cmd()
27216  *		EINVAL if invalid arguments are provided
27217  *		EFAULT if ddi_copyxxx() fails
27218  *		ENXIO if fail ddi_get_soft_state
27219  *		EIO if invalid mode sense block descriptor length
27220  */
27221 
27222 static int
27223 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27224 {
27225 	struct sd_lun			*un;
27226 	struct uscsi_cmd		*com = NULL;
27227 	struct mode_header_grp2		*sense_mhp;
27228 	uchar_t				*sense_page;
27229 	uchar_t				*sense = NULL;
27230 	char				cdb[CDB_GROUP5];
27231 	int				bd_len;
27232 	int				current_speed = 0;
27233 	int				max_speed = 0;
27234 	int				rval;
27235 	sd_ssc_t			*ssc;
27236 
27237 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27238 
27239 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27240 		return (ENXIO);
27241 	}
27242 
27243 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27244 
27245 	ssc = sd_ssc_init(un);
27246 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27247 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27248 	    SD_PATH_STANDARD);
27249 	sd_ssc_fini(ssc);
27250 	if (rval != 0) {
27251 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27252 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27253 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27254 		return (rval);
27255 	}
27256 
27257 	/* Check the block descriptor len to handle only 1 block descriptor */
27258 	sense_mhp = (struct mode_header_grp2 *)sense;
27259 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27260 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27261 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27262 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27263 		    "block descriptor length\n");
27264 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27265 		return (EIO);
27266 	}
27267 
27268 	/* Calculate the current and maximum drive speeds */
27269 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27270 	current_speed = (sense_page[14] << 8) | sense_page[15];
27271 	max_speed = (sense_page[8] << 8) | sense_page[9];
27272 
27273 	/* Process the command */
27274 	switch (cmd) {
27275 	case CDROMGDRVSPEED:
27276 		current_speed /= SD_SPEED_1X;
27277 		if (ddi_copyout(&current_speed, (void *)data,
27278 		    sizeof (int), flag) != 0)
27279 			rval = EFAULT;
27280 		break;
27281 	case CDROMSDRVSPEED:
27282 		/* Convert the speed code to KB/sec */
27283 		switch ((uchar_t)data) {
27284 		case CDROM_NORMAL_SPEED:
27285 			current_speed = SD_SPEED_1X;
27286 			break;
27287 		case CDROM_DOUBLE_SPEED:
27288 			current_speed = 2 * SD_SPEED_1X;
27289 			break;
27290 		case CDROM_QUAD_SPEED:
27291 			current_speed = 4 * SD_SPEED_1X;
27292 			break;
27293 		case CDROM_TWELVE_SPEED:
27294 			current_speed = 12 * SD_SPEED_1X;
27295 			break;
27296 		case CDROM_MAXIMUM_SPEED:
27297 			current_speed = 0xffff;
27298 			break;
27299 		default:
27300 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27301 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27302 			    (uchar_t)data);
27303 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27304 			return (EINVAL);
27305 		}
27306 
27307 		/* Check the request against the drive's max speed. */
27308 		if (current_speed != 0xffff) {
27309 			if (current_speed > max_speed) {
27310 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27311 				return (EINVAL);
27312 			}
27313 		}
27314 
27315 		/*
27316 		 * Build and send the SET SPEED command
27317 		 *
27318 		 * Note: The SET SPEED (0xBB) command used in this routine is
27319 		 * obsolete per the SCSI MMC spec but still supported in the
27320 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27321 		 * therefore the command is still implemented in this routine.
27322 		 */
27323 		bzero(cdb, sizeof (cdb));
27324 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27325 		cdb[2] = (uchar_t)(current_speed >> 8);
27326 		cdb[3] = (uchar_t)current_speed;
27327 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27328 		com->uscsi_cdb	   = (caddr_t)cdb;
27329 		com->uscsi_cdblen  = CDB_GROUP5;
27330 		com->uscsi_bufaddr = NULL;
27331 		com->uscsi_buflen  = 0;
27332 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27333 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27334 		break;
27335 	default:
27336 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27337 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27338 		rval = EINVAL;
27339 	}
27340 
27341 	if (sense) {
27342 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27343 	}
27344 	if (com) {
27345 		kmem_free(com, sizeof (*com));
27346 	}
27347 	return (rval);
27348 }
27349 
27350 
27351 /*
27352  *    Function: sr_pause_resume()
27353  *
27354  * Description: This routine is the driver entry point for handling CD-ROM
27355  *		pause/resume ioctl requests. This only affects the audio play
27356  *		operation.
27357  *
27358  *   Arguments: dev - the device 'dev_t'
27359  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27360  *		      for setting the resume bit of the cdb.
27361  *
27362  * Return Code: the code returned by sd_send_scsi_cmd()
27363  *		EINVAL if invalid mode specified
27364  *
27365  */
27366 
27367 static int
27368 sr_pause_resume(dev_t dev, int cmd)
27369 {
27370 	struct sd_lun		*un;
27371 	struct uscsi_cmd	*com;
27372 	char			cdb[CDB_GROUP1];
27373 	int			rval;
27374 
27375 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27376 		return (ENXIO);
27377 	}
27378 
27379 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27380 	bzero(cdb, CDB_GROUP1);
27381 	cdb[0] = SCMD_PAUSE_RESUME;
27382 	switch (cmd) {
27383 	case CDROMRESUME:
27384 		cdb[8] = 1;
27385 		break;
27386 	case CDROMPAUSE:
27387 		cdb[8] = 0;
27388 		break;
27389 	default:
27390 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27391 		    " Command '%x' Not Supported\n", cmd);
27392 		rval = EINVAL;
27393 		goto done;
27394 	}
27395 
27396 	com->uscsi_cdb    = cdb;
27397 	com->uscsi_cdblen = CDB_GROUP1;
27398 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27399 
27400 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27401 	    SD_PATH_STANDARD);
27402 
27403 done:
27404 	kmem_free(com, sizeof (*com));
27405 	return (rval);
27406 }
27407 
27408 
27409 /*
27410  *    Function: sr_play_msf()
27411  *
27412  * Description: This routine is the driver entry point for handling CD-ROM
27413  *		ioctl requests to output the audio signals at the specified
27414  *		starting address and continue the audio play until the specified
27415  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27416  *		Frame (MSF) format.
27417  *
27418  *   Arguments: dev	- the device 'dev_t'
27419  *		data	- pointer to user provided audio msf structure,
27420  *		          specifying start/end addresses.
27421  *		flag	- this argument is a pass through to ddi_copyxxx()
27422  *		          directly from the mode argument of ioctl().
27423  *
27424  * Return Code: the code returned by sd_send_scsi_cmd()
27425  *		EFAULT if ddi_copyxxx() fails
27426  *		ENXIO if fail ddi_get_soft_state
27427  *		EINVAL if data pointer is NULL
27428  */
27429 
27430 static int
27431 sr_play_msf(dev_t dev, caddr_t data, int flag)
27432 {
27433 	struct sd_lun		*un;
27434 	struct uscsi_cmd	*com;
27435 	struct cdrom_msf	msf_struct;
27436 	struct cdrom_msf	*msf = &msf_struct;
27437 	char			cdb[CDB_GROUP1];
27438 	int			rval;
27439 
27440 	if (data == NULL) {
27441 		return (EINVAL);
27442 	}
27443 
27444 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27445 		return (ENXIO);
27446 	}
27447 
27448 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27449 		return (EFAULT);
27450 	}
27451 
27452 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27453 	bzero(cdb, CDB_GROUP1);
27454 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27455 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27456 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27457 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27458 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27459 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27460 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27461 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27462 	} else {
27463 		cdb[3] = msf->cdmsf_min0;
27464 		cdb[4] = msf->cdmsf_sec0;
27465 		cdb[5] = msf->cdmsf_frame0;
27466 		cdb[6] = msf->cdmsf_min1;
27467 		cdb[7] = msf->cdmsf_sec1;
27468 		cdb[8] = msf->cdmsf_frame1;
27469 	}
27470 	com->uscsi_cdb    = cdb;
27471 	com->uscsi_cdblen = CDB_GROUP1;
27472 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27473 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27474 	    SD_PATH_STANDARD);
27475 	kmem_free(com, sizeof (*com));
27476 	return (rval);
27477 }
27478 
27479 
27480 /*
27481  *    Function: sr_play_trkind()
27482  *
27483  * Description: This routine is the driver entry point for handling CD-ROM
27484  *		ioctl requests to output the audio signals at the specified
27485  *		starting address and continue the audio play until the specified
27486  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27487  *		format.
27488  *
27489  *   Arguments: dev	- the device 'dev_t'
27490  *		data	- pointer to user provided audio track/index structure,
27491  *		          specifying start/end addresses.
27492  *		flag	- this argument is a pass through to ddi_copyxxx()
27493  *		          directly from the mode argument of ioctl().
27494  *
27495  * Return Code: the code returned by sd_send_scsi_cmd()
27496  *		EFAULT if ddi_copyxxx() fails
27497  *		ENXIO if fail ddi_get_soft_state
27498  *		EINVAL if data pointer is NULL
27499  */
27500 
27501 static int
27502 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27503 {
27504 	struct cdrom_ti		ti_struct;
27505 	struct cdrom_ti		*ti = &ti_struct;
27506 	struct uscsi_cmd	*com = NULL;
27507 	char			cdb[CDB_GROUP1];
27508 	int			rval;
27509 
27510 	if (data == NULL) {
27511 		return (EINVAL);
27512 	}
27513 
27514 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27515 		return (EFAULT);
27516 	}
27517 
27518 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27519 	bzero(cdb, CDB_GROUP1);
27520 	cdb[0] = SCMD_PLAYAUDIO_TI;
27521 	cdb[4] = ti->cdti_trk0;
27522 	cdb[5] = ti->cdti_ind0;
27523 	cdb[7] = ti->cdti_trk1;
27524 	cdb[8] = ti->cdti_ind1;
27525 	com->uscsi_cdb    = cdb;
27526 	com->uscsi_cdblen = CDB_GROUP1;
27527 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27528 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27529 	    SD_PATH_STANDARD);
27530 	kmem_free(com, sizeof (*com));
27531 	return (rval);
27532 }
27533 
27534 
27535 /*
27536  *    Function: sr_read_all_subcodes()
27537  *
27538  * Description: This routine is the driver entry point for handling CD-ROM
27539  *		ioctl requests to return raw subcode data while the target is
27540  *		playing audio (CDROMSUBCODE).
27541  *
27542  *   Arguments: dev	- the device 'dev_t'
27543  *		data	- pointer to user provided cdrom subcode structure,
27544  *		          specifying the transfer length and address.
27545  *		flag	- this argument is a pass through to ddi_copyxxx()
27546  *		          directly from the mode argument of ioctl().
27547  *
27548  * Return Code: the code returned by sd_send_scsi_cmd()
27549  *		EFAULT if ddi_copyxxx() fails
27550  *		ENXIO if fail ddi_get_soft_state
27551  *		EINVAL if data pointer is NULL
27552  */
27553 
27554 static int
27555 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27556 {
27557 	struct sd_lun		*un = NULL;
27558 	struct uscsi_cmd	*com = NULL;
27559 	struct cdrom_subcode	*subcode = NULL;
27560 	int			rval;
27561 	size_t			buflen;
27562 	char			cdb[CDB_GROUP5];
27563 
27564 #ifdef _MULTI_DATAMODEL
27565 	/* To support ILP32 applications in an LP64 world */
27566 	struct cdrom_subcode32		cdrom_subcode32;
27567 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27568 #endif
27569 	if (data == NULL) {
27570 		return (EINVAL);
27571 	}
27572 
27573 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27574 		return (ENXIO);
27575 	}
27576 
27577 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27578 
27579 #ifdef _MULTI_DATAMODEL
27580 	switch (ddi_model_convert_from(flag & FMODELS)) {
27581 	case DDI_MODEL_ILP32:
27582 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27583 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27584 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27585 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27586 			return (EFAULT);
27587 		}
27588 		/* Convert the ILP32 uscsi data from the application to LP64 */
27589 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27590 		break;
27591 	case DDI_MODEL_NONE:
27592 		if (ddi_copyin(data, subcode,
27593 		    sizeof (struct cdrom_subcode), flag)) {
27594 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27595 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27596 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27597 			return (EFAULT);
27598 		}
27599 		break;
27600 	}
27601 #else /* ! _MULTI_DATAMODEL */
27602 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27603 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27604 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27605 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27606 		return (EFAULT);
27607 	}
27608 #endif /* _MULTI_DATAMODEL */
27609 
27610 	/*
27611 	 * Since MMC-2 expects max 3 bytes for length, check if the
27612 	 * length input is greater than 3 bytes
27613 	 */
27614 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27615 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27616 		    "sr_read_all_subcodes: "
27617 		    "cdrom transfer length too large: %d (limit %d)\n",
27618 		    subcode->cdsc_length, 0xFFFFFF);
27619 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27620 		return (EINVAL);
27621 	}
27622 
27623 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27624 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27625 	bzero(cdb, CDB_GROUP5);
27626 
27627 	if (un->un_f_mmc_cap == TRUE) {
27628 		cdb[0] = (char)SCMD_READ_CD;
27629 		cdb[2] = (char)0xff;
27630 		cdb[3] = (char)0xff;
27631 		cdb[4] = (char)0xff;
27632 		cdb[5] = (char)0xff;
27633 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27634 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27635 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27636 		cdb[10] = 1;
27637 	} else {
27638 		/*
27639 		 * Note: A vendor specific command (0xDF) is being used her to
27640 		 * request a read of all subcodes.
27641 		 */
27642 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27643 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27644 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27645 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27646 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27647 	}
27648 	com->uscsi_cdb	   = cdb;
27649 	com->uscsi_cdblen  = CDB_GROUP5;
27650 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27651 	com->uscsi_buflen  = buflen;
27652 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27653 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27654 	    SD_PATH_STANDARD);
27655 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27656 	kmem_free(com, sizeof (*com));
27657 	return (rval);
27658 }
27659 
27660 
27661 /*
27662  *    Function: sr_read_subchannel()
27663  *
27664  * Description: This routine is the driver entry point for handling CD-ROM
27665  *		ioctl requests to return the Q sub-channel data of the CD
27666  *		current position block. (CDROMSUBCHNL) The data includes the
27667  *		track number, index number, absolute CD-ROM address (LBA or MSF
27668  *		format per the user) , track relative CD-ROM address (LBA or MSF
27669  *		format per the user), control data and audio status.
27670  *
27671  *   Arguments: dev	- the device 'dev_t'
27672  *		data	- pointer to user provided cdrom sub-channel structure
27673  *		flag	- this argument is a pass through to ddi_copyxxx()
27674  *		          directly from the mode argument of ioctl().
27675  *
27676  * Return Code: the code returned by sd_send_scsi_cmd()
27677  *		EFAULT if ddi_copyxxx() fails
27678  *		ENXIO if fail ddi_get_soft_state
27679  *		EINVAL if data pointer is NULL
27680  */
27681 
27682 static int
27683 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27684 {
27685 	struct sd_lun		*un;
27686 	struct uscsi_cmd	*com;
27687 	struct cdrom_subchnl	subchanel;
27688 	struct cdrom_subchnl	*subchnl = &subchanel;
27689 	char			cdb[CDB_GROUP1];
27690 	caddr_t			buffer;
27691 	int			rval;
27692 
27693 	if (data == NULL) {
27694 		return (EINVAL);
27695 	}
27696 
27697 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27698 	    (un->un_state == SD_STATE_OFFLINE)) {
27699 		return (ENXIO);
27700 	}
27701 
27702 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27703 		return (EFAULT);
27704 	}
27705 
27706 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27707 	bzero(cdb, CDB_GROUP1);
27708 	cdb[0] = SCMD_READ_SUBCHANNEL;
27709 	/* Set the MSF bit based on the user requested address format */
27710 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27711 	/*
27712 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27713 	 * returned
27714 	 */
27715 	cdb[2] = 0x40;
27716 	/*
27717 	 * Set byte 3 to specify the return data format. A value of 0x01
27718 	 * indicates that the CD-ROM current position should be returned.
27719 	 */
27720 	cdb[3] = 0x01;
27721 	cdb[8] = 0x10;
27722 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27723 	com->uscsi_cdb	   = cdb;
27724 	com->uscsi_cdblen  = CDB_GROUP1;
27725 	com->uscsi_bufaddr = buffer;
27726 	com->uscsi_buflen  = 16;
27727 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27728 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27729 	    SD_PATH_STANDARD);
27730 	if (rval != 0) {
27731 		kmem_free(buffer, 16);
27732 		kmem_free(com, sizeof (*com));
27733 		return (rval);
27734 	}
27735 
27736 	/* Process the returned Q sub-channel data */
27737 	subchnl->cdsc_audiostatus = buffer[1];
27738 	subchnl->cdsc_adr	= (buffer[5] & 0xF0) >> 4;
27739 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27740 	subchnl->cdsc_trk	= buffer[6];
27741 	subchnl->cdsc_ind	= buffer[7];
27742 	if (subchnl->cdsc_format & CDROM_LBA) {
27743 		subchnl->cdsc_absaddr.lba =
27744 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27745 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27746 		subchnl->cdsc_reladdr.lba =
27747 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27748 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27749 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27750 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27751 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27752 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27753 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27754 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27755 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27756 	} else {
27757 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27758 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27759 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27760 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27761 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27762 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27763 	}
27764 	kmem_free(buffer, 16);
27765 	kmem_free(com, sizeof (*com));
27766 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27767 	    != 0) {
27768 		return (EFAULT);
27769 	}
27770 	return (rval);
27771 }
27772 
27773 
27774 /*
27775  *    Function: sr_read_tocentry()
27776  *
27777  * Description: This routine is the driver entry point for handling CD-ROM
27778  *		ioctl requests to read from the Table of Contents (TOC)
27779  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27780  *		fields, the starting address (LBA or MSF format per the user)
27781  *		and the data mode if the user specified track is a data track.
27782  *
27783  *		Note: The READ HEADER (0x44) command used in this routine is
27784  *		obsolete per the SCSI MMC spec but still supported in the
27785  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27786  *		therefore the command is still implemented in this routine.
27787  *
27788  *   Arguments: dev	- the device 'dev_t'
27789  *		data	- pointer to user provided toc entry structure,
27790  *			  specifying the track # and the address format
27791  *			  (LBA or MSF).
27792  *		flag	- this argument is a pass through to ddi_copyxxx()
27793  *		          directly from the mode argument of ioctl().
27794  *
27795  * Return Code: the code returned by sd_send_scsi_cmd()
27796  *		EFAULT if ddi_copyxxx() fails
27797  *		ENXIO if fail ddi_get_soft_state
27798  *		EINVAL if data pointer is NULL
27799  */
27800 
27801 static int
27802 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27803 {
27804 	struct sd_lun		*un = NULL;
27805 	struct uscsi_cmd	*com;
27806 	struct cdrom_tocentry	toc_entry;
27807 	struct cdrom_tocentry	*entry = &toc_entry;
27808 	caddr_t			buffer;
27809 	int			rval;
27810 	char			cdb[CDB_GROUP1];
27811 
27812 	if (data == NULL) {
27813 		return (EINVAL);
27814 	}
27815 
27816 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27817 	    (un->un_state == SD_STATE_OFFLINE)) {
27818 		return (ENXIO);
27819 	}
27820 
27821 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27822 		return (EFAULT);
27823 	}
27824 
27825 	/* Validate the requested track and address format */
27826 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27827 		return (EINVAL);
27828 	}
27829 
27830 	if (entry->cdte_track == 0) {
27831 		return (EINVAL);
27832 	}
27833 
27834 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27835 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27836 	bzero(cdb, CDB_GROUP1);
27837 
27838 	cdb[0] = SCMD_READ_TOC;
27839 	/* Set the MSF bit based on the user requested address format  */
27840 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27841 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27842 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27843 	} else {
27844 		cdb[6] = entry->cdte_track;
27845 	}
27846 
27847 	/*
27848 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27849 	 * (4 byte TOC response header + 8 byte track descriptor)
27850 	 */
27851 	cdb[8] = 12;
27852 	com->uscsi_cdb	   = cdb;
27853 	com->uscsi_cdblen  = CDB_GROUP1;
27854 	com->uscsi_bufaddr = buffer;
27855 	com->uscsi_buflen  = 0x0C;
27856 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27857 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27858 	    SD_PATH_STANDARD);
27859 	if (rval != 0) {
27860 		kmem_free(buffer, 12);
27861 		kmem_free(com, sizeof (*com));
27862 		return (rval);
27863 	}
27864 
27865 	/* Process the toc entry */
27866 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27867 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27868 	if (entry->cdte_format & CDROM_LBA) {
27869 		entry->cdte_addr.lba =
27870 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27871 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27872 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27873 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27874 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27875 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27876 		/*
27877 		 * Send a READ TOC command using the LBA address format to get
27878 		 * the LBA for the track requested so it can be used in the
27879 		 * READ HEADER request
27880 		 *
27881 		 * Note: The MSF bit of the READ HEADER command specifies the
27882 		 * output format. The block address specified in that command
27883 		 * must be in LBA format.
27884 		 */
27885 		cdb[1] = 0;
27886 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27887 		    SD_PATH_STANDARD);
27888 		if (rval != 0) {
27889 			kmem_free(buffer, 12);
27890 			kmem_free(com, sizeof (*com));
27891 			return (rval);
27892 		}
27893 	} else {
27894 		entry->cdte_addr.msf.minute	= buffer[9];
27895 		entry->cdte_addr.msf.second	= buffer[10];
27896 		entry->cdte_addr.msf.frame	= buffer[11];
27897 		/*
27898 		 * Send a READ TOC command using the LBA address format to get
27899 		 * the LBA for the track requested so it can be used in the
27900 		 * READ HEADER request
27901 		 *
27902 		 * Note: The MSF bit of the READ HEADER command specifies the
27903 		 * output format. The block address specified in that command
27904 		 * must be in LBA format.
27905 		 */
27906 		cdb[1] = 0;
27907 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27908 		    SD_PATH_STANDARD);
27909 		if (rval != 0) {
27910 			kmem_free(buffer, 12);
27911 			kmem_free(com, sizeof (*com));
27912 			return (rval);
27913 		}
27914 	}
27915 
27916 	/*
27917 	 * Build and send the READ HEADER command to determine the data mode of
27918 	 * the user specified track.
27919 	 */
27920 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27921 	    (entry->cdte_track != CDROM_LEADOUT)) {
27922 		bzero(cdb, CDB_GROUP1);
27923 		cdb[0] = SCMD_READ_HEADER;
27924 		cdb[2] = buffer[8];
27925 		cdb[3] = buffer[9];
27926 		cdb[4] = buffer[10];
27927 		cdb[5] = buffer[11];
27928 		cdb[8] = 0x08;
27929 		com->uscsi_buflen = 0x08;
27930 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27931 		    SD_PATH_STANDARD);
27932 		if (rval == 0) {
27933 			entry->cdte_datamode = buffer[0];
27934 		} else {
27935 			/*
27936 			 * READ HEADER command failed, since this is
27937 			 * obsoleted in one spec, its better to return
27938 			 * -1 for an invlid track so that we can still
27939 			 * receive the rest of the TOC data.
27940 			 */
27941 			entry->cdte_datamode = (uchar_t)-1;
27942 		}
27943 	} else {
27944 		entry->cdte_datamode = (uchar_t)-1;
27945 	}
27946 
27947 	kmem_free(buffer, 12);
27948 	kmem_free(com, sizeof (*com));
27949 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27950 		return (EFAULT);
27951 
27952 	return (rval);
27953 }
27954 
27955 
27956 /*
27957  *    Function: sr_read_tochdr()
27958  *
27959  * Description: This routine is the driver entry point for handling CD-ROM
27960  * 		ioctl requests to read the Table of Contents (TOC) header
27961  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27962  *		and ending track numbers
27963  *
27964  *   Arguments: dev	- the device 'dev_t'
27965  *		data	- pointer to user provided toc header structure,
27966  *			  specifying the starting and ending track numbers.
27967  *		flag	- this argument is a pass through to ddi_copyxxx()
27968  *			  directly from the mode argument of ioctl().
27969  *
27970  * Return Code: the code returned by sd_send_scsi_cmd()
27971  *		EFAULT if ddi_copyxxx() fails
27972  *		ENXIO if fail ddi_get_soft_state
27973  *		EINVAL if data pointer is NULL
27974  */
27975 
27976 static int
27977 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27978 {
27979 	struct sd_lun		*un;
27980 	struct uscsi_cmd	*com;
27981 	struct cdrom_tochdr	toc_header;
27982 	struct cdrom_tochdr	*hdr = &toc_header;
27983 	char			cdb[CDB_GROUP1];
27984 	int			rval;
27985 	caddr_t			buffer;
27986 
27987 	if (data == NULL) {
27988 		return (EINVAL);
27989 	}
27990 
27991 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27992 	    (un->un_state == SD_STATE_OFFLINE)) {
27993 		return (ENXIO);
27994 	}
27995 
27996 	buffer = kmem_zalloc(4, KM_SLEEP);
27997 	bzero(cdb, CDB_GROUP1);
27998 	cdb[0] = SCMD_READ_TOC;
27999 	/*
28000 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28001 	 * that the TOC header should be returned
28002 	 */
28003 	cdb[6] = 0x00;
28004 	/*
28005 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28006 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28007 	 */
28008 	cdb[8] = 0x04;
28009 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28010 	com->uscsi_cdb	   = cdb;
28011 	com->uscsi_cdblen  = CDB_GROUP1;
28012 	com->uscsi_bufaddr = buffer;
28013 	com->uscsi_buflen  = 0x04;
28014 	com->uscsi_timeout = 300;
28015 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28016 
28017 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28018 	    SD_PATH_STANDARD);
28019 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28020 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28021 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28022 	} else {
28023 		hdr->cdth_trk0 = buffer[2];
28024 		hdr->cdth_trk1 = buffer[3];
28025 	}
28026 	kmem_free(buffer, 4);
28027 	kmem_free(com, sizeof (*com));
28028 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28029 		return (EFAULT);
28030 	}
28031 	return (rval);
28032 }
28033 
28034 
28035 /*
28036  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28037  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28038  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28039  * digital audio and extended architecture digital audio. These modes are
28040  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28041  * MMC specs.
28042  *
28043  * In addition to support for the various data formats these routines also
28044  * include support for devices that implement only the direct access READ
28045  * commands (0x08, 0x28), devices that implement the READ_CD commands
28046  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28047  * READ CDXA commands (0xD8, 0xDB)
28048  */
28049 
28050 /*
28051  *    Function: sr_read_mode1()
28052  *
28053  * Description: This routine is the driver entry point for handling CD-ROM
28054  *		ioctl read mode1 requests (CDROMREADMODE1).
28055  *
28056  *   Arguments: dev	- the device 'dev_t'
28057  *		data	- pointer to user provided cd read structure specifying
28058  *			  the lba buffer address and length.
28059  *		flag	- this argument is a pass through to ddi_copyxxx()
28060  *			  directly from the mode argument of ioctl().
28061  *
28062  * Return Code: the code returned by sd_send_scsi_cmd()
28063  *		EFAULT if ddi_copyxxx() fails
28064  *		ENXIO if fail ddi_get_soft_state
28065  *		EINVAL if data pointer is NULL
28066  */
28067 
28068 static int
28069 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28070 {
28071 	struct sd_lun		*un;
28072 	struct cdrom_read	mode1_struct;
28073 	struct cdrom_read	*mode1 = &mode1_struct;
28074 	int			rval;
28075 	sd_ssc_t		*ssc;
28076 
28077 #ifdef _MULTI_DATAMODEL
28078 	/* To support ILP32 applications in an LP64 world */
28079 	struct cdrom_read32	cdrom_read32;
28080 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28081 #endif /* _MULTI_DATAMODEL */
28082 
28083 	if (data == NULL) {
28084 		return (EINVAL);
28085 	}
28086 
28087 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28088 	    (un->un_state == SD_STATE_OFFLINE)) {
28089 		return (ENXIO);
28090 	}
28091 
28092 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28093 	    "sd_read_mode1: entry: un:0x%p\n", un);
28094 
28095 #ifdef _MULTI_DATAMODEL
28096 	switch (ddi_model_convert_from(flag & FMODELS)) {
28097 	case DDI_MODEL_ILP32:
28098 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28099 			return (EFAULT);
28100 		}
28101 		/* Convert the ILP32 uscsi data from the application to LP64 */
28102 		cdrom_read32tocdrom_read(cdrd32, mode1);
28103 		break;
28104 	case DDI_MODEL_NONE:
28105 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28106 			return (EFAULT);
28107 		}
28108 	}
28109 #else /* ! _MULTI_DATAMODEL */
28110 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28111 		return (EFAULT);
28112 	}
28113 #endif /* _MULTI_DATAMODEL */
28114 
28115 	ssc = sd_ssc_init(un);
28116 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28117 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28118 	sd_ssc_fini(ssc);
28119 
28120 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28121 	    "sd_read_mode1: exit: un:0x%p\n", un);
28122 
28123 	return (rval);
28124 }
28125 
28126 
28127 /*
28128  *    Function: sr_read_cd_mode2()
28129  *
28130  * Description: This routine is the driver entry point for handling CD-ROM
28131  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28132  *		support the READ CD (0xBE) command or the 1st generation
28133  *		READ CD (0xD4) command.
28134  *
28135  *   Arguments: dev	- the device 'dev_t'
28136  *		data	- pointer to user provided cd read structure specifying
28137  *			  the lba buffer address and length.
28138  *		flag	- this argument is a pass through to ddi_copyxxx()
28139  *			  directly from the mode argument of ioctl().
28140  *
28141  * Return Code: the code returned by sd_send_scsi_cmd()
28142  *		EFAULT if ddi_copyxxx() fails
28143  *		ENXIO if fail ddi_get_soft_state
28144  *		EINVAL if data pointer is NULL
28145  */
28146 
28147 static int
28148 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28149 {
28150 	struct sd_lun		*un;
28151 	struct uscsi_cmd	*com;
28152 	struct cdrom_read	mode2_struct;
28153 	struct cdrom_read	*mode2 = &mode2_struct;
28154 	uchar_t			cdb[CDB_GROUP5];
28155 	int			nblocks;
28156 	int			rval;
28157 #ifdef _MULTI_DATAMODEL
28158 	/*  To support ILP32 applications in an LP64 world */
28159 	struct cdrom_read32	cdrom_read32;
28160 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28161 #endif /* _MULTI_DATAMODEL */
28162 
28163 	if (data == NULL) {
28164 		return (EINVAL);
28165 	}
28166 
28167 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28168 	    (un->un_state == SD_STATE_OFFLINE)) {
28169 		return (ENXIO);
28170 	}
28171 
28172 #ifdef _MULTI_DATAMODEL
28173 	switch (ddi_model_convert_from(flag & FMODELS)) {
28174 	case DDI_MODEL_ILP32:
28175 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28176 			return (EFAULT);
28177 		}
28178 		/* Convert the ILP32 uscsi data from the application to LP64 */
28179 		cdrom_read32tocdrom_read(cdrd32, mode2);
28180 		break;
28181 	case DDI_MODEL_NONE:
28182 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28183 			return (EFAULT);
28184 		}
28185 		break;
28186 	}
28187 
28188 #else /* ! _MULTI_DATAMODEL */
28189 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28190 		return (EFAULT);
28191 	}
28192 #endif /* _MULTI_DATAMODEL */
28193 
28194 	bzero(cdb, sizeof (cdb));
28195 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28196 		/* Read command supported by 1st generation atapi drives */
28197 		cdb[0] = SCMD_READ_CDD4;
28198 	} else {
28199 		/* Universal CD Access Command */
28200 		cdb[0] = SCMD_READ_CD;
28201 	}
28202 
28203 	/*
28204 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28205 	 */
28206 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28207 
28208 	/* set the start address */
28209 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28210 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28211 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28212 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28213 
28214 	/* set the transfer length */
28215 	nblocks = mode2->cdread_buflen / 2336;
28216 	cdb[6] = (uchar_t)(nblocks >> 16);
28217 	cdb[7] = (uchar_t)(nblocks >> 8);
28218 	cdb[8] = (uchar_t)nblocks;
28219 
28220 	/* set the filter bits */
28221 	cdb[9] = CDROM_READ_CD_USERDATA;
28222 
28223 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28224 	com->uscsi_cdb = (caddr_t)cdb;
28225 	com->uscsi_cdblen = sizeof (cdb);
28226 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28227 	com->uscsi_buflen = mode2->cdread_buflen;
28228 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28229 
28230 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28231 	    SD_PATH_STANDARD);
28232 	kmem_free(com, sizeof (*com));
28233 	return (rval);
28234 }
28235 
28236 
28237 /*
28238  *    Function: sr_read_mode2()
28239  *
28240  * Description: This routine is the driver entry point for handling CD-ROM
28241  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28242  *		do not support the READ CD (0xBE) command.
28243  *
28244  *   Arguments: dev	- the device 'dev_t'
28245  *		data	- pointer to user provided cd read structure specifying
28246  *			  the lba buffer address and length.
28247  *		flag	- this argument is a pass through to ddi_copyxxx()
28248  *			  directly from the mode argument of ioctl().
28249  *
28250  * Return Code: the code returned by sd_send_scsi_cmd()
28251  *		EFAULT if ddi_copyxxx() fails
28252  *		ENXIO if fail ddi_get_soft_state
28253  *		EINVAL if data pointer is NULL
28254  *		EIO if fail to reset block size
28255  *		EAGAIN if commands are in progress in the driver
28256  */
28257 
28258 static int
28259 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28260 {
28261 	struct sd_lun		*un;
28262 	struct cdrom_read	mode2_struct;
28263 	struct cdrom_read	*mode2 = &mode2_struct;
28264 	int			rval;
28265 	uint32_t		restore_blksize;
28266 	struct uscsi_cmd	*com;
28267 	uchar_t			cdb[CDB_GROUP0];
28268 	int			nblocks;
28269 
28270 #ifdef _MULTI_DATAMODEL
28271 	/* To support ILP32 applications in an LP64 world */
28272 	struct cdrom_read32	cdrom_read32;
28273 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28274 #endif /* _MULTI_DATAMODEL */
28275 
28276 	if (data == NULL) {
28277 		return (EINVAL);
28278 	}
28279 
28280 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28281 	    (un->un_state == SD_STATE_OFFLINE)) {
28282 		return (ENXIO);
28283 	}
28284 
28285 	/*
28286 	 * Because this routine will update the device and driver block size
28287 	 * being used we want to make sure there are no commands in progress.
28288 	 * If commands are in progress the user will have to try again.
28289 	 *
28290 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28291 	 * in sdioctl to protect commands from sdioctl through to the top of
28292 	 * sd_uscsi_strategy. See sdioctl for details.
28293 	 */
28294 	mutex_enter(SD_MUTEX(un));
28295 	if (un->un_ncmds_in_driver != 1) {
28296 		mutex_exit(SD_MUTEX(un));
28297 		return (EAGAIN);
28298 	}
28299 	mutex_exit(SD_MUTEX(un));
28300 
28301 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28302 	    "sd_read_mode2: entry: un:0x%p\n", un);
28303 
28304 #ifdef _MULTI_DATAMODEL
28305 	switch (ddi_model_convert_from(flag & FMODELS)) {
28306 	case DDI_MODEL_ILP32:
28307 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28308 			return (EFAULT);
28309 		}
28310 		/* Convert the ILP32 uscsi data from the application to LP64 */
28311 		cdrom_read32tocdrom_read(cdrd32, mode2);
28312 		break;
28313 	case DDI_MODEL_NONE:
28314 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28315 			return (EFAULT);
28316 		}
28317 		break;
28318 	}
28319 #else /* ! _MULTI_DATAMODEL */
28320 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28321 		return (EFAULT);
28322 	}
28323 #endif /* _MULTI_DATAMODEL */
28324 
28325 	/* Store the current target block size for restoration later */
28326 	restore_blksize = un->un_tgt_blocksize;
28327 
28328 	/* Change the device and soft state target block size to 2336 */
28329 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28330 		rval = EIO;
28331 		goto done;
28332 	}
28333 
28334 
28335 	bzero(cdb, sizeof (cdb));
28336 
28337 	/* set READ operation */
28338 	cdb[0] = SCMD_READ;
28339 
28340 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28341 	mode2->cdread_lba >>= 2;
28342 
28343 	/* set the start address */
28344 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28345 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28346 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28347 
28348 	/* set the transfer length */
28349 	nblocks = mode2->cdread_buflen / 2336;
28350 	cdb[4] = (uchar_t)nblocks & 0xFF;
28351 
28352 	/* build command */
28353 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28354 	com->uscsi_cdb = (caddr_t)cdb;
28355 	com->uscsi_cdblen = sizeof (cdb);
28356 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28357 	com->uscsi_buflen = mode2->cdread_buflen;
28358 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28359 
28360 	/*
28361 	 * Issue SCSI command with user space address for read buffer.
28362 	 *
28363 	 * This sends the command through main channel in the driver.
28364 	 *
28365 	 * Since this is accessed via an IOCTL call, we go through the
28366 	 * standard path, so that if the device was powered down, then
28367 	 * it would be 'awakened' to handle the command.
28368 	 */
28369 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28370 	    SD_PATH_STANDARD);
28371 
28372 	kmem_free(com, sizeof (*com));
28373 
28374 	/* Restore the device and soft state target block size */
28375 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28376 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28377 		    "can't do switch back to mode 1\n");
28378 		/*
28379 		 * If sd_send_scsi_READ succeeded we still need to report
28380 		 * an error because we failed to reset the block size
28381 		 */
28382 		if (rval == 0) {
28383 			rval = EIO;
28384 		}
28385 	}
28386 
28387 done:
28388 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28389 	    "sd_read_mode2: exit: un:0x%p\n", un);
28390 
28391 	return (rval);
28392 }
28393 
28394 
28395 /*
28396  *    Function: sr_sector_mode()
28397  *
28398  * Description: This utility function is used by sr_read_mode2 to set the target
28399  *		block size based on the user specified size. This is a legacy
28400  *		implementation based upon a vendor specific mode page
28401  *
28402  *   Arguments: dev	- the device 'dev_t'
28403  *		data	- flag indicating if block size is being set to 2336 or
28404  *			  512.
28405  *
28406  * Return Code: the code returned by sd_send_scsi_cmd()
28407  *		EFAULT if ddi_copyxxx() fails
28408  *		ENXIO if fail ddi_get_soft_state
28409  *		EINVAL if data pointer is NULL
28410  */
28411 
28412 static int
28413 sr_sector_mode(dev_t dev, uint32_t blksize)
28414 {
28415 	struct sd_lun	*un;
28416 	uchar_t		*sense;
28417 	uchar_t		*select;
28418 	int		rval;
28419 	sd_ssc_t	*ssc;
28420 
28421 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28422 	    (un->un_state == SD_STATE_OFFLINE)) {
28423 		return (ENXIO);
28424 	}
28425 
28426 	sense = kmem_zalloc(20, KM_SLEEP);
28427 
28428 	/* Note: This is a vendor specific mode page (0x81) */
28429 	ssc = sd_ssc_init(un);
28430 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28431 	    SD_PATH_STANDARD);
28432 	sd_ssc_fini(ssc);
28433 	if (rval != 0) {
28434 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28435 		    "sr_sector_mode: Mode Sense failed\n");
28436 		kmem_free(sense, 20);
28437 		return (rval);
28438 	}
28439 	select = kmem_zalloc(20, KM_SLEEP);
28440 	select[3] = 0x08;
28441 	select[10] = ((blksize >> 8) & 0xff);
28442 	select[11] = (blksize & 0xff);
28443 	select[12] = 0x01;
28444 	select[13] = 0x06;
28445 	select[14] = sense[14];
28446 	select[15] = sense[15];
28447 	if (blksize == SD_MODE2_BLKSIZE) {
28448 		select[14] |= 0x01;
28449 	}
28450 
28451 	ssc = sd_ssc_init(un);
28452 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28453 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28454 	sd_ssc_fini(ssc);
28455 	if (rval != 0) {
28456 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28457 		    "sr_sector_mode: Mode Select failed\n");
28458 	} else {
28459 		/*
28460 		 * Only update the softstate block size if we successfully
28461 		 * changed the device block mode.
28462 		 */
28463 		mutex_enter(SD_MUTEX(un));
28464 		sd_update_block_info(un, blksize, 0);
28465 		mutex_exit(SD_MUTEX(un));
28466 	}
28467 	kmem_free(sense, 20);
28468 	kmem_free(select, 20);
28469 	return (rval);
28470 }
28471 
28472 
28473 /*
28474  *    Function: sr_read_cdda()
28475  *
28476  * Description: This routine is the driver entry point for handling CD-ROM
28477  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28478  *		the target supports CDDA these requests are handled via a vendor
28479  *		specific command (0xD8) If the target does not support CDDA
28480  *		these requests are handled via the READ CD command (0xBE).
28481  *
28482  *   Arguments: dev	- the device 'dev_t'
28483  *		data	- pointer to user provided CD-DA structure specifying
28484  *			  the track starting address, transfer length, and
28485  *			  subcode options.
28486  *		flag	- this argument is a pass through to ddi_copyxxx()
28487  *			  directly from the mode argument of ioctl().
28488  *
28489  * Return Code: the code returned by sd_send_scsi_cmd()
28490  *		EFAULT if ddi_copyxxx() fails
28491  *		ENXIO if fail ddi_get_soft_state
28492  *		EINVAL if invalid arguments are provided
28493  *		ENOTTY
28494  */
28495 
28496 static int
28497 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28498 {
28499 	struct sd_lun			*un;
28500 	struct uscsi_cmd		*com;
28501 	struct cdrom_cdda		*cdda;
28502 	int				rval;
28503 	size_t				buflen;
28504 	char				cdb[CDB_GROUP5];
28505 
28506 #ifdef _MULTI_DATAMODEL
28507 	/* To support ILP32 applications in an LP64 world */
28508 	struct cdrom_cdda32	cdrom_cdda32;
28509 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28510 #endif /* _MULTI_DATAMODEL */
28511 
28512 	if (data == NULL) {
28513 		return (EINVAL);
28514 	}
28515 
28516 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28517 		return (ENXIO);
28518 	}
28519 
28520 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28521 
28522 #ifdef _MULTI_DATAMODEL
28523 	switch (ddi_model_convert_from(flag & FMODELS)) {
28524 	case DDI_MODEL_ILP32:
28525 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28526 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28527 			    "sr_read_cdda: ddi_copyin Failed\n");
28528 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28529 			return (EFAULT);
28530 		}
28531 		/* Convert the ILP32 uscsi data from the application to LP64 */
28532 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28533 		break;
28534 	case DDI_MODEL_NONE:
28535 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28536 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28537 			    "sr_read_cdda: ddi_copyin Failed\n");
28538 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28539 			return (EFAULT);
28540 		}
28541 		break;
28542 	}
28543 #else /* ! _MULTI_DATAMODEL */
28544 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28545 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28546 		    "sr_read_cdda: ddi_copyin Failed\n");
28547 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28548 		return (EFAULT);
28549 	}
28550 #endif /* _MULTI_DATAMODEL */
28551 
28552 	/*
28553 	 * Since MMC-2 expects max 3 bytes for length, check if the
28554 	 * length input is greater than 3 bytes
28555 	 */
28556 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28557 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28558 		    "cdrom transfer length too large: %d (limit %d)\n",
28559 		    cdda->cdda_length, 0xFFFFFF);
28560 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28561 		return (EINVAL);
28562 	}
28563 
28564 	switch (cdda->cdda_subcode) {
28565 	case CDROM_DA_NO_SUBCODE:
28566 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28567 		break;
28568 	case CDROM_DA_SUBQ:
28569 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28570 		break;
28571 	case CDROM_DA_ALL_SUBCODE:
28572 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28573 		break;
28574 	case CDROM_DA_SUBCODE_ONLY:
28575 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28576 		break;
28577 	default:
28578 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28579 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28580 		    cdda->cdda_subcode);
28581 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28582 		return (EINVAL);
28583 	}
28584 
28585 	/* Build and send the command */
28586 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28587 	bzero(cdb, CDB_GROUP5);
28588 
28589 	if (un->un_f_cfg_cdda == TRUE) {
28590 		cdb[0] = (char)SCMD_READ_CD;
28591 		cdb[1] = 0x04;
28592 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28593 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28594 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28595 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28596 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28597 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28598 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28599 		cdb[9] = 0x10;
28600 		switch (cdda->cdda_subcode) {
28601 		case CDROM_DA_NO_SUBCODE :
28602 			cdb[10] = 0x0;
28603 			break;
28604 		case CDROM_DA_SUBQ :
28605 			cdb[10] = 0x2;
28606 			break;
28607 		case CDROM_DA_ALL_SUBCODE :
28608 			cdb[10] = 0x1;
28609 			break;
28610 		case CDROM_DA_SUBCODE_ONLY :
28611 			/* FALLTHROUGH */
28612 		default :
28613 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28614 			kmem_free(com, sizeof (*com));
28615 			return (ENOTTY);
28616 		}
28617 	} else {
28618 		cdb[0] = (char)SCMD_READ_CDDA;
28619 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28620 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28621 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28622 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28623 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28624 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28625 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28626 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28627 		cdb[10] = cdda->cdda_subcode;
28628 	}
28629 
28630 	com->uscsi_cdb = cdb;
28631 	com->uscsi_cdblen = CDB_GROUP5;
28632 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28633 	com->uscsi_buflen = buflen;
28634 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28635 
28636 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28637 	    SD_PATH_STANDARD);
28638 
28639 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28640 	kmem_free(com, sizeof (*com));
28641 	return (rval);
28642 }
28643 
28644 
28645 /*
28646  *    Function: sr_read_cdxa()
28647  *
28648  * Description: This routine is the driver entry point for handling CD-ROM
28649  *		ioctl requests to return CD-XA (Extended Architecture) data.
28650  *		(CDROMCDXA).
28651  *
28652  *   Arguments: dev	- the device 'dev_t'
28653  *		data	- pointer to user provided CD-XA structure specifying
28654  *			  the data starting address, transfer length, and format
28655  *		flag	- this argument is a pass through to ddi_copyxxx()
28656  *			  directly from the mode argument of ioctl().
28657  *
28658  * Return Code: the code returned by sd_send_scsi_cmd()
28659  *		EFAULT if ddi_copyxxx() fails
28660  *		ENXIO if fail ddi_get_soft_state
28661  *		EINVAL if data pointer is NULL
28662  */
28663 
28664 static int
28665 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28666 {
28667 	struct sd_lun		*un;
28668 	struct uscsi_cmd	*com;
28669 	struct cdrom_cdxa	*cdxa;
28670 	int			rval;
28671 	size_t			buflen;
28672 	char			cdb[CDB_GROUP5];
28673 	uchar_t			read_flags;
28674 
28675 #ifdef _MULTI_DATAMODEL
28676 	/* To support ILP32 applications in an LP64 world */
28677 	struct cdrom_cdxa32		cdrom_cdxa32;
28678 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28679 #endif /* _MULTI_DATAMODEL */
28680 
28681 	if (data == NULL) {
28682 		return (EINVAL);
28683 	}
28684 
28685 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28686 		return (ENXIO);
28687 	}
28688 
28689 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28690 
28691 #ifdef _MULTI_DATAMODEL
28692 	switch (ddi_model_convert_from(flag & FMODELS)) {
28693 	case DDI_MODEL_ILP32:
28694 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28695 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28696 			return (EFAULT);
28697 		}
28698 		/*
28699 		 * Convert the ILP32 uscsi data from the
28700 		 * application to LP64 for internal use.
28701 		 */
28702 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28703 		break;
28704 	case DDI_MODEL_NONE:
28705 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28706 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28707 			return (EFAULT);
28708 		}
28709 		break;
28710 	}
28711 #else /* ! _MULTI_DATAMODEL */
28712 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28713 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28714 		return (EFAULT);
28715 	}
28716 #endif /* _MULTI_DATAMODEL */
28717 
28718 	/*
28719 	 * Since MMC-2 expects max 3 bytes for length, check if the
28720 	 * length input is greater than 3 bytes
28721 	 */
28722 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28723 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28724 		    "cdrom transfer length too large: %d (limit %d)\n",
28725 		    cdxa->cdxa_length, 0xFFFFFF);
28726 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28727 		return (EINVAL);
28728 	}
28729 
28730 	switch (cdxa->cdxa_format) {
28731 	case CDROM_XA_DATA:
28732 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28733 		read_flags = 0x10;
28734 		break;
28735 	case CDROM_XA_SECTOR_DATA:
28736 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28737 		read_flags = 0xf8;
28738 		break;
28739 	case CDROM_XA_DATA_W_ERROR:
28740 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28741 		read_flags = 0xfc;
28742 		break;
28743 	default:
28744 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28745 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28746 		    cdxa->cdxa_format);
28747 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28748 		return (EINVAL);
28749 	}
28750 
28751 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28752 	bzero(cdb, CDB_GROUP5);
28753 	if (un->un_f_mmc_cap == TRUE) {
28754 		cdb[0] = (char)SCMD_READ_CD;
28755 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28756 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28757 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28758 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28759 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28760 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28761 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28762 		cdb[9] = (char)read_flags;
28763 	} else {
28764 		/*
28765 		 * Note: A vendor specific command (0xDB) is being used her to
28766 		 * request a read of all subcodes.
28767 		 */
28768 		cdb[0] = (char)SCMD_READ_CDXA;
28769 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28770 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28771 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28772 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28773 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28774 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28775 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28776 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28777 		cdb[10] = cdxa->cdxa_format;
28778 	}
28779 	com->uscsi_cdb	   = cdb;
28780 	com->uscsi_cdblen  = CDB_GROUP5;
28781 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28782 	com->uscsi_buflen  = buflen;
28783 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28784 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28785 	    SD_PATH_STANDARD);
28786 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28787 	kmem_free(com, sizeof (*com));
28788 	return (rval);
28789 }
28790 
28791 
28792 /*
28793  *    Function: sr_eject()
28794  *
28795  * Description: This routine is the driver entry point for handling CD-ROM
28796  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28797  *
28798  *   Arguments: dev	- the device 'dev_t'
28799  *
28800  * Return Code: the code returned by sd_send_scsi_cmd()
28801  */
28802 
28803 static int
28804 sr_eject(dev_t dev)
28805 {
28806 	struct sd_lun	*un;
28807 	int		rval;
28808 	sd_ssc_t	*ssc;
28809 
28810 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28811 	    (un->un_state == SD_STATE_OFFLINE)) {
28812 		return (ENXIO);
28813 	}
28814 
28815 	/*
28816 	 * To prevent race conditions with the eject
28817 	 * command, keep track of an eject command as
28818 	 * it progresses. If we are already handling
28819 	 * an eject command in the driver for the given
28820 	 * unit and another request to eject is received
28821 	 * immediately return EAGAIN so we don't lose
28822 	 * the command if the current eject command fails.
28823 	 */
28824 	mutex_enter(SD_MUTEX(un));
28825 	if (un->un_f_ejecting == TRUE) {
28826 		mutex_exit(SD_MUTEX(un));
28827 		return (EAGAIN);
28828 	}
28829 	un->un_f_ejecting = TRUE;
28830 	mutex_exit(SD_MUTEX(un));
28831 
28832 	ssc = sd_ssc_init(un);
28833 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28834 	    SD_PATH_STANDARD);
28835 	sd_ssc_fini(ssc);
28836 
28837 	if (rval != 0) {
28838 		mutex_enter(SD_MUTEX(un));
28839 		un->un_f_ejecting = FALSE;
28840 		mutex_exit(SD_MUTEX(un));
28841 		return (rval);
28842 	}
28843 
28844 	ssc = sd_ssc_init(un);
28845 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28846 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28847 	sd_ssc_fini(ssc);
28848 
28849 	if (rval == 0) {
28850 		mutex_enter(SD_MUTEX(un));
28851 		sr_ejected(un);
28852 		un->un_mediastate = DKIO_EJECTED;
28853 		un->un_f_ejecting = FALSE;
28854 		cv_broadcast(&un->un_state_cv);
28855 		mutex_exit(SD_MUTEX(un));
28856 	} else {
28857 		mutex_enter(SD_MUTEX(un));
28858 		un->un_f_ejecting = FALSE;
28859 		mutex_exit(SD_MUTEX(un));
28860 	}
28861 	return (rval);
28862 }
28863 
28864 
28865 /*
28866  *    Function: sr_ejected()
28867  *
28868  * Description: This routine updates the soft state structure to invalidate the
28869  *		geometry information after the media has been ejected or a
28870  *		media eject has been detected.
28871  *
28872  *   Arguments: un - driver soft state (unit) structure
28873  */
28874 
28875 static void
28876 sr_ejected(struct sd_lun *un)
28877 {
28878 	struct sd_errstats *stp;
28879 
28880 	ASSERT(un != NULL);
28881 	ASSERT(mutex_owned(SD_MUTEX(un)));
28882 
28883 	un->un_f_blockcount_is_valid	= FALSE;
28884 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28885 	mutex_exit(SD_MUTEX(un));
28886 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28887 	mutex_enter(SD_MUTEX(un));
28888 
28889 	if (un->un_errstats != NULL) {
28890 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28891 		stp->sd_capacity.value.ui64 = 0;
28892 	}
28893 }
28894 
28895 
28896 /*
28897  *    Function: sr_check_wp()
28898  *
28899  * Description: This routine checks the write protection of a removable
28900  *      media disk and hotpluggable devices via the write protect bit of
28901  *      the Mode Page Header device specific field. Some devices choke
28902  *      on unsupported mode page. In order to workaround this issue,
28903  *      this routine has been implemented to use 0x3f mode page(request
28904  *      for all pages) for all device types.
28905  *
28906  *   Arguments: dev             - the device 'dev_t'
28907  *
28908  * Return Code: int indicating if the device is write protected (1) or not (0)
28909  *
28910  *     Context: Kernel thread.
28911  *
28912  */
28913 
28914 static int
28915 sr_check_wp(dev_t dev)
28916 {
28917 	struct sd_lun	*un;
28918 	uchar_t		device_specific;
28919 	uchar_t		*sense;
28920 	int		hdrlen;
28921 	int		rval = FALSE;
28922 	int		status;
28923 	sd_ssc_t	*ssc;
28924 
28925 	/*
28926 	 * Note: The return codes for this routine should be reworked to
28927 	 * properly handle the case of a NULL softstate.
28928 	 */
28929 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28930 		return (FALSE);
28931 	}
28932 
28933 	if (un->un_f_cfg_is_atapi == TRUE) {
28934 		/*
28935 		 * The mode page contents are not required; set the allocation
28936 		 * length for the mode page header only
28937 		 */
28938 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28939 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28940 		ssc = sd_ssc_init(un);
28941 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28942 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28943 		sd_ssc_fini(ssc);
28944 		if (status != 0)
28945 			goto err_exit;
28946 		device_specific =
28947 		    ((struct mode_header_grp2 *)sense)->device_specific;
28948 	} else {
28949 		hdrlen = MODE_HEADER_LENGTH;
28950 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28951 		ssc = sd_ssc_init(un);
28952 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28953 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28954 		sd_ssc_fini(ssc);
28955 		if (status != 0)
28956 			goto err_exit;
28957 		device_specific =
28958 		    ((struct mode_header *)sense)->device_specific;
28959 	}
28960 
28961 
28962 	/*
28963 	 * Write protect mode sense failed; not all disks
28964 	 * understand this query. Return FALSE assuming that
28965 	 * these devices are not writable.
28966 	 */
28967 	if (device_specific & WRITE_PROTECT) {
28968 		rval = TRUE;
28969 	}
28970 
28971 err_exit:
28972 	kmem_free(sense, hdrlen);
28973 	return (rval);
28974 }
28975 
28976 /*
28977  *    Function: sr_volume_ctrl()
28978  *
28979  * Description: This routine is the driver entry point for handling CD-ROM
28980  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28981  *
28982  *   Arguments: dev	- the device 'dev_t'
28983  *		data	- pointer to user audio volume control structure
28984  *		flag	- this argument is a pass through to ddi_copyxxx()
28985  *			  directly from the mode argument of ioctl().
28986  *
28987  * Return Code: the code returned by sd_send_scsi_cmd()
28988  *		EFAULT if ddi_copyxxx() fails
28989  *		ENXIO if fail ddi_get_soft_state
28990  *		EINVAL if data pointer is NULL
28991  *
28992  */
28993 
28994 static int
28995 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28996 {
28997 	struct sd_lun		*un;
28998 	struct cdrom_volctrl    volume;
28999 	struct cdrom_volctrl    *vol = &volume;
29000 	uchar_t			*sense_page;
29001 	uchar_t			*select_page;
29002 	uchar_t			*sense;
29003 	uchar_t			*select;
29004 	int			sense_buflen;
29005 	int			select_buflen;
29006 	int			rval;
29007 	sd_ssc_t		*ssc;
29008 
29009 	if (data == NULL) {
29010 		return (EINVAL);
29011 	}
29012 
29013 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29014 	    (un->un_state == SD_STATE_OFFLINE)) {
29015 		return (ENXIO);
29016 	}
29017 
29018 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29019 		return (EFAULT);
29020 	}
29021 
29022 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29023 		struct mode_header_grp2		*sense_mhp;
29024 		struct mode_header_grp2		*select_mhp;
29025 		int				bd_len;
29026 
29027 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29028 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29029 		    MODEPAGE_AUDIO_CTRL_LEN;
29030 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29031 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29032 		ssc = sd_ssc_init(un);
29033 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
29034 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29035 		    SD_PATH_STANDARD);
29036 		sd_ssc_fini(ssc);
29037 
29038 		if (rval != 0) {
29039 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29040 			    "sr_volume_ctrl: Mode Sense Failed\n");
29041 			kmem_free(sense, sense_buflen);
29042 			kmem_free(select, select_buflen);
29043 			return (rval);
29044 		}
29045 		sense_mhp = (struct mode_header_grp2 *)sense;
29046 		select_mhp = (struct mode_header_grp2 *)select;
29047 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29048 		    sense_mhp->bdesc_length_lo;
29049 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29050 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29051 			    "sr_volume_ctrl: Mode Sense returned invalid "
29052 			    "block descriptor length\n");
29053 			kmem_free(sense, sense_buflen);
29054 			kmem_free(select, select_buflen);
29055 			return (EIO);
29056 		}
29057 		sense_page = (uchar_t *)
29058 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29059 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29060 		select_mhp->length_msb = 0;
29061 		select_mhp->length_lsb = 0;
29062 		select_mhp->bdesc_length_hi = 0;
29063 		select_mhp->bdesc_length_lo = 0;
29064 	} else {
29065 		struct mode_header		*sense_mhp, *select_mhp;
29066 
29067 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29068 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29069 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29070 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29071 		ssc = sd_ssc_init(un);
29072 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29073 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29074 		    SD_PATH_STANDARD);
29075 		sd_ssc_fini(ssc);
29076 
29077 		if (rval != 0) {
29078 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29079 			    "sr_volume_ctrl: Mode Sense Failed\n");
29080 			kmem_free(sense, sense_buflen);
29081 			kmem_free(select, select_buflen);
29082 			return (rval);
29083 		}
29084 		sense_mhp  = (struct mode_header *)sense;
29085 		select_mhp = (struct mode_header *)select;
29086 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29087 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29088 			    "sr_volume_ctrl: Mode Sense returned invalid "
29089 			    "block descriptor length\n");
29090 			kmem_free(sense, sense_buflen);
29091 			kmem_free(select, select_buflen);
29092 			return (EIO);
29093 		}
29094 		sense_page = (uchar_t *)
29095 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29096 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29097 		select_mhp->length = 0;
29098 		select_mhp->bdesc_length = 0;
29099 	}
29100 	/*
29101 	 * Note: An audio control data structure could be created and overlayed
29102 	 * on the following in place of the array indexing method implemented.
29103 	 */
29104 
29105 	/* Build the select data for the user volume data */
29106 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29107 	select_page[1] = 0xE;
29108 	/* Set the immediate bit */
29109 	select_page[2] = 0x04;
29110 	/* Zero out reserved fields */
29111 	select_page[3] = 0x00;
29112 	select_page[4] = 0x00;
29113 	/* Return sense data for fields not to be modified */
29114 	select_page[5] = sense_page[5];
29115 	select_page[6] = sense_page[6];
29116 	select_page[7] = sense_page[7];
29117 	/* Set the user specified volume levels for channel 0 and 1 */
29118 	select_page[8] = 0x01;
29119 	select_page[9] = vol->channel0;
29120 	select_page[10] = 0x02;
29121 	select_page[11] = vol->channel1;
29122 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29123 	select_page[12] = sense_page[12];
29124 	select_page[13] = sense_page[13];
29125 	select_page[14] = sense_page[14];
29126 	select_page[15] = sense_page[15];
29127 
29128 	ssc = sd_ssc_init(un);
29129 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29130 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29131 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29132 	} else {
29133 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29134 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29135 	}
29136 	sd_ssc_fini(ssc);
29137 
29138 	kmem_free(sense, sense_buflen);
29139 	kmem_free(select, select_buflen);
29140 	return (rval);
29141 }
29142 
29143 
29144 /*
29145  *    Function: sr_read_sony_session_offset()
29146  *
29147  * Description: This routine is the driver entry point for handling CD-ROM
29148  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29149  *		The address of the first track in the last session of a
29150  *		multi-session CD-ROM is returned
29151  *
29152  *		Note: This routine uses a vendor specific key value in the
29153  *		command control field without implementing any vendor check here
29154  *		or in the ioctl routine.
29155  *
29156  *   Arguments: dev	- the device 'dev_t'
29157  *		data	- pointer to an int to hold the requested address
29158  *		flag	- this argument is a pass through to ddi_copyxxx()
29159  *			  directly from the mode argument of ioctl().
29160  *
29161  * Return Code: the code returned by sd_send_scsi_cmd()
29162  *		EFAULT if ddi_copyxxx() fails
29163  *		ENXIO if fail ddi_get_soft_state
29164  *		EINVAL if data pointer is NULL
29165  */
29166 
29167 static int
29168 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29169 {
29170 	struct sd_lun		*un;
29171 	struct uscsi_cmd	*com;
29172 	caddr_t			buffer;
29173 	char			cdb[CDB_GROUP1];
29174 	int			session_offset = 0;
29175 	int			rval;
29176 
29177 	if (data == NULL) {
29178 		return (EINVAL);
29179 	}
29180 
29181 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29182 	    (un->un_state == SD_STATE_OFFLINE)) {
29183 		return (ENXIO);
29184 	}
29185 
29186 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29187 	bzero(cdb, CDB_GROUP1);
29188 	cdb[0] = SCMD_READ_TOC;
29189 	/*
29190 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29191 	 * (4 byte TOC response header + 8 byte response data)
29192 	 */
29193 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29194 	/* Byte 9 is the control byte. A vendor specific value is used */
29195 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29196 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29197 	com->uscsi_cdb = cdb;
29198 	com->uscsi_cdblen = CDB_GROUP1;
29199 	com->uscsi_bufaddr = buffer;
29200 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29201 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29202 
29203 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29204 	    SD_PATH_STANDARD);
29205 	if (rval != 0) {
29206 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29207 		kmem_free(com, sizeof (*com));
29208 		return (rval);
29209 	}
29210 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29211 		session_offset =
29212 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29213 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29214 		/*
29215 		 * Offset returned offset in current lbasize block's. Convert to
29216 		 * 2k block's to return to the user
29217 		 */
29218 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29219 			session_offset >>= 2;
29220 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29221 			session_offset >>= 1;
29222 		}
29223 	}
29224 
29225 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29226 		rval = EFAULT;
29227 	}
29228 
29229 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29230 	kmem_free(com, sizeof (*com));
29231 	return (rval);
29232 }
29233 
29234 
29235 /*
29236  *    Function: sd_wm_cache_constructor()
29237  *
29238  * Description: Cache Constructor for the wmap cache for the read/modify/write
29239  * 		devices.
29240  *
29241  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29242  *		un	- sd_lun structure for the device.
29243  *		flag	- the km flags passed to constructor
29244  *
29245  * Return Code: 0 on success.
29246  *		-1 on failure.
29247  */
29248 
29249 /*ARGSUSED*/
29250 static int
29251 sd_wm_cache_constructor(void *wm, void *un, int flags)
29252 {
29253 	bzero(wm, sizeof (struct sd_w_map));
29254 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29255 	return (0);
29256 }
29257 
29258 
29259 /*
29260  *    Function: sd_wm_cache_destructor()
29261  *
29262  * Description: Cache destructor for the wmap cache for the read/modify/write
29263  * 		devices.
29264  *
29265  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29266  *		un	- sd_lun structure for the device.
29267  */
29268 /*ARGSUSED*/
29269 static void
29270 sd_wm_cache_destructor(void *wm, void *un)
29271 {
29272 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29273 }
29274 
29275 
29276 /*
29277  *    Function: sd_range_lock()
29278  *
29279  * Description: Lock the range of blocks specified as parameter to ensure
29280  *		that read, modify write is atomic and no other i/o writes
29281  *		to the same location. The range is specified in terms
29282  *		of start and end blocks. Block numbers are the actual
29283  *		media block numbers and not system.
29284  *
29285  *   Arguments: un	- sd_lun structure for the device.
29286  *		startb - The starting block number
29287  *		endb - The end block number
29288  *		typ - type of i/o - simple/read_modify_write
29289  *
29290  * Return Code: wm  - pointer to the wmap structure.
29291  *
29292  *     Context: This routine can sleep.
29293  */
29294 
29295 static struct sd_w_map *
29296 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29297 {
29298 	struct sd_w_map *wmp = NULL;
29299 	struct sd_w_map *sl_wmp = NULL;
29300 	struct sd_w_map *tmp_wmp;
29301 	wm_state state = SD_WM_CHK_LIST;
29302 
29303 
29304 	ASSERT(un != NULL);
29305 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29306 
29307 	mutex_enter(SD_MUTEX(un));
29308 
29309 	while (state != SD_WM_DONE) {
29310 
29311 		switch (state) {
29312 		case SD_WM_CHK_LIST:
29313 			/*
29314 			 * This is the starting state. Check the wmap list
29315 			 * to see if the range is currently available.
29316 			 */
29317 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29318 				/*
29319 				 * If this is a simple write and no rmw
29320 				 * i/o is pending then try to lock the
29321 				 * range as the range should be available.
29322 				 */
29323 				state = SD_WM_LOCK_RANGE;
29324 			} else {
29325 				tmp_wmp = sd_get_range(un, startb, endb);
29326 				if (tmp_wmp != NULL) {
29327 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29328 						/*
29329 						 * Should not keep onlist wmps
29330 						 * while waiting this macro
29331 						 * will also do wmp = NULL;
29332 						 */
29333 						FREE_ONLIST_WMAP(un, wmp);
29334 					}
29335 					/*
29336 					 * sl_wmp is the wmap on which wait
29337 					 * is done, since the tmp_wmp points
29338 					 * to the inuse wmap, set sl_wmp to
29339 					 * tmp_wmp and change the state to sleep
29340 					 */
29341 					sl_wmp = tmp_wmp;
29342 					state = SD_WM_WAIT_MAP;
29343 				} else {
29344 					state = SD_WM_LOCK_RANGE;
29345 				}
29346 
29347 			}
29348 			break;
29349 
29350 		case SD_WM_LOCK_RANGE:
29351 			ASSERT(un->un_wm_cache);
29352 			/*
29353 			 * The range need to be locked, try to get a wmap.
29354 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29355 			 * if possible as we will have to release the sd mutex
29356 			 * if we have to sleep.
29357 			 */
29358 			if (wmp == NULL)
29359 				wmp = kmem_cache_alloc(un->un_wm_cache,
29360 				    KM_NOSLEEP);
29361 			if (wmp == NULL) {
29362 				mutex_exit(SD_MUTEX(un));
29363 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29364 				    (sd_lun::un_wm_cache))
29365 				wmp = kmem_cache_alloc(un->un_wm_cache,
29366 				    KM_SLEEP);
29367 				mutex_enter(SD_MUTEX(un));
29368 				/*
29369 				 * we released the mutex so recheck and go to
29370 				 * check list state.
29371 				 */
29372 				state = SD_WM_CHK_LIST;
29373 			} else {
29374 				/*
29375 				 * We exit out of state machine since we
29376 				 * have the wmap. Do the housekeeping first.
29377 				 * place the wmap on the wmap list if it is not
29378 				 * on it already and then set the state to done.
29379 				 */
29380 				wmp->wm_start = startb;
29381 				wmp->wm_end = endb;
29382 				wmp->wm_flags = typ | SD_WM_BUSY;
29383 				if (typ & SD_WTYPE_RMW) {
29384 					un->un_rmw_count++;
29385 				}
29386 				/*
29387 				 * If not already on the list then link
29388 				 */
29389 				if (!ONLIST(un, wmp)) {
29390 					wmp->wm_next = un->un_wm;
29391 					wmp->wm_prev = NULL;
29392 					if (wmp->wm_next)
29393 						wmp->wm_next->wm_prev = wmp;
29394 					un->un_wm = wmp;
29395 				}
29396 				state = SD_WM_DONE;
29397 			}
29398 			break;
29399 
29400 		case SD_WM_WAIT_MAP:
29401 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29402 			/*
29403 			 * Wait is done on sl_wmp, which is set in the
29404 			 * check_list state.
29405 			 */
29406 			sl_wmp->wm_wanted_count++;
29407 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29408 			sl_wmp->wm_wanted_count--;
29409 			/*
29410 			 * We can reuse the memory from the completed sl_wmp
29411 			 * lock range for our new lock, but only if noone is
29412 			 * waiting for it.
29413 			 */
29414 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29415 			if (sl_wmp->wm_wanted_count == 0) {
29416 				if (wmp != NULL)
29417 					CHK_N_FREEWMP(un, wmp);
29418 				wmp = sl_wmp;
29419 			}
29420 			sl_wmp = NULL;
29421 			/*
29422 			 * After waking up, need to recheck for availability of
29423 			 * range.
29424 			 */
29425 			state = SD_WM_CHK_LIST;
29426 			break;
29427 
29428 		default:
29429 			panic("sd_range_lock: "
29430 			    "Unknown state %d in sd_range_lock", state);
29431 			/*NOTREACHED*/
29432 		} /* switch(state) */
29433 
29434 	} /* while(state != SD_WM_DONE) */
29435 
29436 	mutex_exit(SD_MUTEX(un));
29437 
29438 	ASSERT(wmp != NULL);
29439 
29440 	return (wmp);
29441 }
29442 
29443 
29444 /*
29445  *    Function: sd_get_range()
29446  *
29447  * Description: Find if there any overlapping I/O to this one
29448  *		Returns the write-map of 1st such I/O, NULL otherwise.
29449  *
29450  *   Arguments: un	- sd_lun structure for the device.
29451  *		startb - The starting block number
29452  *		endb - The end block number
29453  *
29454  * Return Code: wm  - pointer to the wmap structure.
29455  */
29456 
29457 static struct sd_w_map *
29458 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29459 {
29460 	struct sd_w_map *wmp;
29461 
29462 	ASSERT(un != NULL);
29463 
29464 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29465 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29466 			continue;
29467 		}
29468 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29469 			break;
29470 		}
29471 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29472 			break;
29473 		}
29474 	}
29475 
29476 	return (wmp);
29477 }
29478 
29479 
29480 /*
29481  *    Function: sd_free_inlist_wmap()
29482  *
29483  * Description: Unlink and free a write map struct.
29484  *
29485  *   Arguments: un      - sd_lun structure for the device.
29486  *		wmp	- sd_w_map which needs to be unlinked.
29487  */
29488 
29489 static void
29490 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29491 {
29492 	ASSERT(un != NULL);
29493 
29494 	if (un->un_wm == wmp) {
29495 		un->un_wm = wmp->wm_next;
29496 	} else {
29497 		wmp->wm_prev->wm_next = wmp->wm_next;
29498 	}
29499 
29500 	if (wmp->wm_next) {
29501 		wmp->wm_next->wm_prev = wmp->wm_prev;
29502 	}
29503 
29504 	wmp->wm_next = wmp->wm_prev = NULL;
29505 
29506 	kmem_cache_free(un->un_wm_cache, wmp);
29507 }
29508 
29509 
29510 /*
29511  *    Function: sd_range_unlock()
29512  *
29513  * Description: Unlock the range locked by wm.
29514  *		Free write map if nobody else is waiting on it.
29515  *
29516  *   Arguments: un      - sd_lun structure for the device.
29517  *              wmp     - sd_w_map which needs to be unlinked.
29518  */
29519 
29520 static void
29521 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29522 {
29523 	ASSERT(un != NULL);
29524 	ASSERT(wm != NULL);
29525 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29526 
29527 	mutex_enter(SD_MUTEX(un));
29528 
29529 	if (wm->wm_flags & SD_WTYPE_RMW) {
29530 		un->un_rmw_count--;
29531 	}
29532 
29533 	if (wm->wm_wanted_count) {
29534 		wm->wm_flags = 0;
29535 		/*
29536 		 * Broadcast that the wmap is available now.
29537 		 */
29538 		cv_broadcast(&wm->wm_avail);
29539 	} else {
29540 		/*
29541 		 * If no one is waiting on the map, it should be free'ed.
29542 		 */
29543 		sd_free_inlist_wmap(un, wm);
29544 	}
29545 
29546 	mutex_exit(SD_MUTEX(un));
29547 }
29548 
29549 
29550 /*
29551  *    Function: sd_read_modify_write_task
29552  *
29553  * Description: Called from a taskq thread to initiate the write phase of
29554  *		a read-modify-write request.  This is used for targets where
29555  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29556  *
29557  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29558  *
29559  *     Context: Called under taskq thread context.
29560  */
29561 
29562 static void
29563 sd_read_modify_write_task(void *arg)
29564 {
29565 	struct sd_mapblocksize_info	*bsp;
29566 	struct buf	*bp;
29567 	struct sd_xbuf	*xp;
29568 	struct sd_lun	*un;
29569 
29570 	bp = arg;	/* The bp is given in arg */
29571 	ASSERT(bp != NULL);
29572 
29573 	/* Get the pointer to the layer-private data struct */
29574 	xp = SD_GET_XBUF(bp);
29575 	ASSERT(xp != NULL);
29576 	bsp = xp->xb_private;
29577 	ASSERT(bsp != NULL);
29578 
29579 	un = SD_GET_UN(bp);
29580 	ASSERT(un != NULL);
29581 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29582 
29583 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29584 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29585 
29586 	/*
29587 	 * This is the write phase of a read-modify-write request, called
29588 	 * under the context of a taskq thread in response to the completion
29589 	 * of the read portion of the rmw request completing under interrupt
29590 	 * context. The write request must be sent from here down the iostart
29591 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29592 	 * we use the layer index saved in the layer-private data area.
29593 	 */
29594 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29595 
29596 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29597 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29598 }
29599 
29600 
29601 /*
29602  *    Function: sddump_do_read_of_rmw()
29603  *
29604  * Description: This routine will be called from sddump, If sddump is called
29605  *		with an I/O which not aligned on device blocksize boundary
29606  *		then the write has to be converted to read-modify-write.
29607  *		Do the read part here in order to keep sddump simple.
29608  *		Note - That the sd_mutex is held across the call to this
29609  *		routine.
29610  *
29611  *   Arguments: un	- sd_lun
29612  *		blkno	- block number in terms of media block size.
29613  *		nblk	- number of blocks.
29614  *		bpp	- pointer to pointer to the buf structure. On return
29615  *			from this function, *bpp points to the valid buffer
29616  *			to which the write has to be done.
29617  *
29618  * Return Code: 0 for success or errno-type return code
29619  */
29620 
29621 static int
29622 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29623 	struct buf **bpp)
29624 {
29625 	int err;
29626 	int i;
29627 	int rval;
29628 	struct buf *bp;
29629 	struct scsi_pkt *pkt = NULL;
29630 	uint32_t target_blocksize;
29631 
29632 	ASSERT(un != NULL);
29633 	ASSERT(mutex_owned(SD_MUTEX(un)));
29634 
29635 	target_blocksize = un->un_tgt_blocksize;
29636 
29637 	mutex_exit(SD_MUTEX(un));
29638 
29639 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29640 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29641 	if (bp == NULL) {
29642 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29643 		    "no resources for dumping; giving up");
29644 		err = ENOMEM;
29645 		goto done;
29646 	}
29647 
29648 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29649 	    blkno, nblk);
29650 	if (rval != 0) {
29651 		scsi_free_consistent_buf(bp);
29652 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29653 		    "no resources for dumping; giving up");
29654 		err = ENOMEM;
29655 		goto done;
29656 	}
29657 
29658 	pkt->pkt_flags |= FLAG_NOINTR;
29659 
29660 	err = EIO;
29661 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29662 
29663 		/*
29664 		 * Scsi_poll returns 0 (success) if the command completes and
29665 		 * the status block is STATUS_GOOD.  We should only check
29666 		 * errors if this condition is not true.  Even then we should
29667 		 * send our own request sense packet only if we have a check
29668 		 * condition and auto request sense has not been performed by
29669 		 * the hba.
29670 		 */
29671 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29672 
29673 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29674 			err = 0;
29675 			break;
29676 		}
29677 
29678 		/*
29679 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29680 		 * no need to read RQS data.
29681 		 */
29682 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29683 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29684 			    "Error while dumping state with rmw..."
29685 			    "Device is gone\n");
29686 			break;
29687 		}
29688 
29689 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29690 			SD_INFO(SD_LOG_DUMP, un,
29691 			    "sddump: read failed with CHECK, try # %d\n", i);
29692 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29693 				(void) sd_send_polled_RQS(un);
29694 			}
29695 
29696 			continue;
29697 		}
29698 
29699 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29700 			int reset_retval = 0;
29701 
29702 			SD_INFO(SD_LOG_DUMP, un,
29703 			    "sddump: read failed with BUSY, try # %d\n", i);
29704 
29705 			if (un->un_f_lun_reset_enabled == TRUE) {
29706 				reset_retval = scsi_reset(SD_ADDRESS(un),
29707 				    RESET_LUN);
29708 			}
29709 			if (reset_retval == 0) {
29710 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29711 			}
29712 			(void) sd_send_polled_RQS(un);
29713 
29714 		} else {
29715 			SD_INFO(SD_LOG_DUMP, un,
29716 			    "sddump: read failed with 0x%x, try # %d\n",
29717 			    SD_GET_PKT_STATUS(pkt), i);
29718 			mutex_enter(SD_MUTEX(un));
29719 			sd_reset_target(un, pkt);
29720 			mutex_exit(SD_MUTEX(un));
29721 		}
29722 
29723 		/*
29724 		 * If we are not getting anywhere with lun/target resets,
29725 		 * let's reset the bus.
29726 		 */
29727 		if (i > SD_NDUMP_RETRIES/2) {
29728 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29729 			(void) sd_send_polled_RQS(un);
29730 		}
29731 
29732 	}
29733 	scsi_destroy_pkt(pkt);
29734 
29735 	if (err != 0) {
29736 		scsi_free_consistent_buf(bp);
29737 		*bpp = NULL;
29738 	} else {
29739 		*bpp = bp;
29740 	}
29741 
29742 done:
29743 	mutex_enter(SD_MUTEX(un));
29744 	return (err);
29745 }
29746 
29747 
29748 /*
29749  *    Function: sd_failfast_flushq
29750  *
29751  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29752  *		in b_flags and move them onto the failfast queue, then kick
29753  *		off a thread to return all bp's on the failfast queue to
29754  *		their owners with an error set.
29755  *
29756  *   Arguments: un - pointer to the soft state struct for the instance.
29757  *
29758  *     Context: may execute in interrupt context.
29759  */
29760 
29761 static void
29762 sd_failfast_flushq(struct sd_lun *un)
29763 {
29764 	struct buf *bp;
29765 	struct buf *next_waitq_bp;
29766 	struct buf *prev_waitq_bp = NULL;
29767 
29768 	ASSERT(un != NULL);
29769 	ASSERT(mutex_owned(SD_MUTEX(un)));
29770 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29771 	ASSERT(un->un_failfast_bp == NULL);
29772 
29773 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29774 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29775 
29776 	/*
29777 	 * Check if we should flush all bufs when entering failfast state, or
29778 	 * just those with B_FAILFAST set.
29779 	 */
29780 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29781 		/*
29782 		 * Move *all* bp's on the wait queue to the failfast flush
29783 		 * queue, including those that do NOT have B_FAILFAST set.
29784 		 */
29785 		if (un->un_failfast_headp == NULL) {
29786 			ASSERT(un->un_failfast_tailp == NULL);
29787 			un->un_failfast_headp = un->un_waitq_headp;
29788 		} else {
29789 			ASSERT(un->un_failfast_tailp != NULL);
29790 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29791 		}
29792 
29793 		un->un_failfast_tailp = un->un_waitq_tailp;
29794 
29795 		/* update kstat for each bp moved out of the waitq */
29796 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29797 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29798 		}
29799 
29800 		/* empty the waitq */
29801 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29802 
29803 	} else {
29804 		/*
29805 		 * Go thru the wait queue, pick off all entries with
29806 		 * B_FAILFAST set, and move these onto the failfast queue.
29807 		 */
29808 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29809 			/*
29810 			 * Save the pointer to the next bp on the wait queue,
29811 			 * so we get to it on the next iteration of this loop.
29812 			 */
29813 			next_waitq_bp = bp->av_forw;
29814 
29815 			/*
29816 			 * If this bp from the wait queue does NOT have
29817 			 * B_FAILFAST set, just move on to the next element
29818 			 * in the wait queue. Note, this is the only place
29819 			 * where it is correct to set prev_waitq_bp.
29820 			 */
29821 			if ((bp->b_flags & B_FAILFAST) == 0) {
29822 				prev_waitq_bp = bp;
29823 				continue;
29824 			}
29825 
29826 			/*
29827 			 * Remove the bp from the wait queue.
29828 			 */
29829 			if (bp == un->un_waitq_headp) {
29830 				/* The bp is the first element of the waitq. */
29831 				un->un_waitq_headp = next_waitq_bp;
29832 				if (un->un_waitq_headp == NULL) {
29833 					/* The wait queue is now empty */
29834 					un->un_waitq_tailp = NULL;
29835 				}
29836 			} else {
29837 				/*
29838 				 * The bp is either somewhere in the middle
29839 				 * or at the end of the wait queue.
29840 				 */
29841 				ASSERT(un->un_waitq_headp != NULL);
29842 				ASSERT(prev_waitq_bp != NULL);
29843 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29844 				    == 0);
29845 				if (bp == un->un_waitq_tailp) {
29846 					/* bp is the last entry on the waitq. */
29847 					ASSERT(next_waitq_bp == NULL);
29848 					un->un_waitq_tailp = prev_waitq_bp;
29849 				}
29850 				prev_waitq_bp->av_forw = next_waitq_bp;
29851 			}
29852 			bp->av_forw = NULL;
29853 
29854 			/*
29855 			 * update kstat since the bp is moved out of
29856 			 * the waitq
29857 			 */
29858 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29859 
29860 			/*
29861 			 * Now put the bp onto the failfast queue.
29862 			 */
29863 			if (un->un_failfast_headp == NULL) {
29864 				/* failfast queue is currently empty */
29865 				ASSERT(un->un_failfast_tailp == NULL);
29866 				un->un_failfast_headp =
29867 				    un->un_failfast_tailp = bp;
29868 			} else {
29869 				/* Add the bp to the end of the failfast q */
29870 				ASSERT(un->un_failfast_tailp != NULL);
29871 				ASSERT(un->un_failfast_tailp->b_flags &
29872 				    B_FAILFAST);
29873 				un->un_failfast_tailp->av_forw = bp;
29874 				un->un_failfast_tailp = bp;
29875 			}
29876 		}
29877 	}
29878 
29879 	/*
29880 	 * Now return all bp's on the failfast queue to their owners.
29881 	 */
29882 	while ((bp = un->un_failfast_headp) != NULL) {
29883 
29884 		un->un_failfast_headp = bp->av_forw;
29885 		if (un->un_failfast_headp == NULL) {
29886 			un->un_failfast_tailp = NULL;
29887 		}
29888 
29889 		/*
29890 		 * We want to return the bp with a failure error code, but
29891 		 * we do not want a call to sd_start_cmds() to occur here,
29892 		 * so use sd_return_failed_command_no_restart() instead of
29893 		 * sd_return_failed_command().
29894 		 */
29895 		sd_return_failed_command_no_restart(un, bp, EIO);
29896 	}
29897 
29898 	/* Flush the xbuf queues if required. */
29899 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29900 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29901 	}
29902 
29903 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29904 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29905 }
29906 
29907 
29908 /*
29909  *    Function: sd_failfast_flushq_callback
29910  *
29911  * Description: Return TRUE if the given bp meets the criteria for failfast
29912  *		flushing. Used with ddi_xbuf_flushq(9F).
29913  *
29914  *   Arguments: bp - ptr to buf struct to be examined.
29915  *
29916  *     Context: Any
29917  */
29918 
29919 static int
29920 sd_failfast_flushq_callback(struct buf *bp)
29921 {
29922 	/*
29923 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29924 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29925 	 */
29926 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29927 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29928 }
29929 
29930 
29931 
29932 /*
29933  * Function: sd_setup_next_xfer
29934  *
29935  * Description: Prepare next I/O operation using DMA_PARTIAL
29936  *
29937  */
29938 
29939 static int
29940 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29941     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29942 {
29943 	ssize_t	num_blks_not_xfered;
29944 	daddr_t	strt_blk_num;
29945 	ssize_t	bytes_not_xfered;
29946 	int	rval;
29947 
29948 	ASSERT(pkt->pkt_resid == 0);
29949 
29950 	/*
29951 	 * Calculate next block number and amount to be transferred.
29952 	 *
29953 	 * How much data NOT transfered to the HBA yet.
29954 	 */
29955 	bytes_not_xfered = xp->xb_dma_resid;
29956 
29957 	/*
29958 	 * figure how many blocks NOT transfered to the HBA yet.
29959 	 */
29960 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29961 
29962 	/*
29963 	 * set starting block number to the end of what WAS transfered.
29964 	 */
29965 	strt_blk_num = xp->xb_blkno +
29966 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29967 
29968 	/*
29969 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29970 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29971 	 * the disk mutex here.
29972 	 */
29973 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29974 	    strt_blk_num, num_blks_not_xfered);
29975 
29976 	if (rval == 0) {
29977 
29978 		/*
29979 		 * Success.
29980 		 *
29981 		 * Adjust things if there are still more blocks to be
29982 		 * transfered.
29983 		 */
29984 		xp->xb_dma_resid = pkt->pkt_resid;
29985 		pkt->pkt_resid = 0;
29986 
29987 		return (1);
29988 	}
29989 
29990 	/*
29991 	 * There's really only one possible return value from
29992 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29993 	 * returns NULL.
29994 	 */
29995 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29996 
29997 	bp->b_resid = bp->b_bcount;
29998 	bp->b_flags |= B_ERROR;
29999 
30000 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30001 	    "Error setting up next portion of DMA transfer\n");
30002 
30003 	return (0);
30004 }
30005 
30006 /*
30007  *    Function: sd_panic_for_res_conflict
30008  *
30009  * Description: Call panic with a string formatted with "Reservation Conflict"
30010  *		and a human readable identifier indicating the SD instance
30011  *		that experienced the reservation conflict.
30012  *
30013  *   Arguments: un - pointer to the soft state struct for the instance.
30014  *
30015  *     Context: may execute in interrupt context.
30016  */
30017 
30018 #define	SD_RESV_CONFLICT_FMT_LEN 40
30019 void
30020 sd_panic_for_res_conflict(struct sd_lun *un)
30021 {
30022 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30023 	char path_str[MAXPATHLEN];
30024 
30025 	(void) snprintf(panic_str, sizeof (panic_str),
30026 	    "Reservation Conflict\nDisk: %s",
30027 	    ddi_pathname(SD_DEVINFO(un), path_str));
30028 
30029 	panic(panic_str);
30030 }
30031 
30032 /*
30033  * Note: The following sd_faultinjection_ioctl( ) routines implement
30034  * driver support for handling fault injection for error analysis
30035  * causing faults in multiple layers of the driver.
30036  *
30037  */
30038 
30039 #ifdef SD_FAULT_INJECTION
30040 static uint_t   sd_fault_injection_on = 0;
30041 
30042 /*
30043  *    Function: sd_faultinjection_ioctl()
30044  *
30045  * Description: This routine is the driver entry point for handling
30046  *              faultinjection ioctls to inject errors into the
30047  *              layer model
30048  *
30049  *   Arguments: cmd	- the ioctl cmd received
30050  *		arg	- the arguments from user and returns
30051  */
30052 
30053 static void
30054 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30055 
30056 	uint_t i = 0;
30057 	uint_t rval;
30058 
30059 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30060 
30061 	mutex_enter(SD_MUTEX(un));
30062 
30063 	switch (cmd) {
30064 	case SDIOCRUN:
30065 		/* Allow pushed faults to be injected */
30066 		SD_INFO(SD_LOG_SDTEST, un,
30067 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30068 
30069 		sd_fault_injection_on = 1;
30070 
30071 		SD_INFO(SD_LOG_IOERR, un,
30072 		    "sd_faultinjection_ioctl: run finished\n");
30073 		break;
30074 
30075 	case SDIOCSTART:
30076 		/* Start Injection Session */
30077 		SD_INFO(SD_LOG_SDTEST, un,
30078 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30079 
30080 		sd_fault_injection_on = 0;
30081 		un->sd_injection_mask = 0xFFFFFFFF;
30082 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30083 			un->sd_fi_fifo_pkt[i] = NULL;
30084 			un->sd_fi_fifo_xb[i] = NULL;
30085 			un->sd_fi_fifo_un[i] = NULL;
30086 			un->sd_fi_fifo_arq[i] = NULL;
30087 		}
30088 		un->sd_fi_fifo_start = 0;
30089 		un->sd_fi_fifo_end = 0;
30090 
30091 		mutex_enter(&(un->un_fi_mutex));
30092 		un->sd_fi_log[0] = '\0';
30093 		un->sd_fi_buf_len = 0;
30094 		mutex_exit(&(un->un_fi_mutex));
30095 
30096 		SD_INFO(SD_LOG_IOERR, un,
30097 		    "sd_faultinjection_ioctl: start finished\n");
30098 		break;
30099 
30100 	case SDIOCSTOP:
30101 		/* Stop Injection Session */
30102 		SD_INFO(SD_LOG_SDTEST, un,
30103 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30104 		sd_fault_injection_on = 0;
30105 		un->sd_injection_mask = 0x0;
30106 
30107 		/* Empty stray or unuseds structs from fifo */
30108 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30109 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30110 				kmem_free(un->sd_fi_fifo_pkt[i],
30111 				    sizeof (struct sd_fi_pkt));
30112 			}
30113 			if (un->sd_fi_fifo_xb[i] != NULL) {
30114 				kmem_free(un->sd_fi_fifo_xb[i],
30115 				    sizeof (struct sd_fi_xb));
30116 			}
30117 			if (un->sd_fi_fifo_un[i] != NULL) {
30118 				kmem_free(un->sd_fi_fifo_un[i],
30119 				    sizeof (struct sd_fi_un));
30120 			}
30121 			if (un->sd_fi_fifo_arq[i] != NULL) {
30122 				kmem_free(un->sd_fi_fifo_arq[i],
30123 				    sizeof (struct sd_fi_arq));
30124 			}
30125 			un->sd_fi_fifo_pkt[i] = NULL;
30126 			un->sd_fi_fifo_un[i] = NULL;
30127 			un->sd_fi_fifo_xb[i] = NULL;
30128 			un->sd_fi_fifo_arq[i] = NULL;
30129 		}
30130 		un->sd_fi_fifo_start = 0;
30131 		un->sd_fi_fifo_end = 0;
30132 
30133 		SD_INFO(SD_LOG_IOERR, un,
30134 		    "sd_faultinjection_ioctl: stop finished\n");
30135 		break;
30136 
30137 	case SDIOCINSERTPKT:
30138 		/* Store a packet struct to be pushed onto fifo */
30139 		SD_INFO(SD_LOG_SDTEST, un,
30140 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30141 
30142 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30143 
30144 		sd_fault_injection_on = 0;
30145 
30146 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30147 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30148 			kmem_free(un->sd_fi_fifo_pkt[i],
30149 			    sizeof (struct sd_fi_pkt));
30150 		}
30151 		if (arg != NULL) {
30152 			un->sd_fi_fifo_pkt[i] =
30153 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30154 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30155 				/* Alloc failed don't store anything */
30156 				break;
30157 			}
30158 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30159 			    sizeof (struct sd_fi_pkt), 0);
30160 			if (rval == -1) {
30161 				kmem_free(un->sd_fi_fifo_pkt[i],
30162 				    sizeof (struct sd_fi_pkt));
30163 				un->sd_fi_fifo_pkt[i] = NULL;
30164 			}
30165 		} else {
30166 			SD_INFO(SD_LOG_IOERR, un,
30167 			    "sd_faultinjection_ioctl: pkt null\n");
30168 		}
30169 		break;
30170 
30171 	case SDIOCINSERTXB:
30172 		/* Store a xb struct to be pushed onto fifo */
30173 		SD_INFO(SD_LOG_SDTEST, un,
30174 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30175 
30176 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30177 
30178 		sd_fault_injection_on = 0;
30179 
30180 		if (un->sd_fi_fifo_xb[i] != NULL) {
30181 			kmem_free(un->sd_fi_fifo_xb[i],
30182 			    sizeof (struct sd_fi_xb));
30183 			un->sd_fi_fifo_xb[i] = NULL;
30184 		}
30185 		if (arg != NULL) {
30186 			un->sd_fi_fifo_xb[i] =
30187 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30188 			if (un->sd_fi_fifo_xb[i] == NULL) {
30189 				/* Alloc failed don't store anything */
30190 				break;
30191 			}
30192 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30193 			    sizeof (struct sd_fi_xb), 0);
30194 
30195 			if (rval == -1) {
30196 				kmem_free(un->sd_fi_fifo_xb[i],
30197 				    sizeof (struct sd_fi_xb));
30198 				un->sd_fi_fifo_xb[i] = NULL;
30199 			}
30200 		} else {
30201 			SD_INFO(SD_LOG_IOERR, un,
30202 			    "sd_faultinjection_ioctl: xb null\n");
30203 		}
30204 		break;
30205 
30206 	case SDIOCINSERTUN:
30207 		/* Store a un struct to be pushed onto fifo */
30208 		SD_INFO(SD_LOG_SDTEST, un,
30209 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30210 
30211 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30212 
30213 		sd_fault_injection_on = 0;
30214 
30215 		if (un->sd_fi_fifo_un[i] != NULL) {
30216 			kmem_free(un->sd_fi_fifo_un[i],
30217 			    sizeof (struct sd_fi_un));
30218 			un->sd_fi_fifo_un[i] = NULL;
30219 		}
30220 		if (arg != NULL) {
30221 			un->sd_fi_fifo_un[i] =
30222 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30223 			if (un->sd_fi_fifo_un[i] == NULL) {
30224 				/* Alloc failed don't store anything */
30225 				break;
30226 			}
30227 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30228 			    sizeof (struct sd_fi_un), 0);
30229 			if (rval == -1) {
30230 				kmem_free(un->sd_fi_fifo_un[i],
30231 				    sizeof (struct sd_fi_un));
30232 				un->sd_fi_fifo_un[i] = NULL;
30233 			}
30234 
30235 		} else {
30236 			SD_INFO(SD_LOG_IOERR, un,
30237 			    "sd_faultinjection_ioctl: un null\n");
30238 		}
30239 
30240 		break;
30241 
30242 	case SDIOCINSERTARQ:
30243 		/* Store a arq struct to be pushed onto fifo */
30244 		SD_INFO(SD_LOG_SDTEST, un,
30245 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30246 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30247 
30248 		sd_fault_injection_on = 0;
30249 
30250 		if (un->sd_fi_fifo_arq[i] != NULL) {
30251 			kmem_free(un->sd_fi_fifo_arq[i],
30252 			    sizeof (struct sd_fi_arq));
30253 			un->sd_fi_fifo_arq[i] = NULL;
30254 		}
30255 		if (arg != NULL) {
30256 			un->sd_fi_fifo_arq[i] =
30257 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30258 			if (un->sd_fi_fifo_arq[i] == NULL) {
30259 				/* Alloc failed don't store anything */
30260 				break;
30261 			}
30262 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30263 			    sizeof (struct sd_fi_arq), 0);
30264 			if (rval == -1) {
30265 				kmem_free(un->sd_fi_fifo_arq[i],
30266 				    sizeof (struct sd_fi_arq));
30267 				un->sd_fi_fifo_arq[i] = NULL;
30268 			}
30269 
30270 		} else {
30271 			SD_INFO(SD_LOG_IOERR, un,
30272 			    "sd_faultinjection_ioctl: arq null\n");
30273 		}
30274 
30275 		break;
30276 
30277 	case SDIOCPUSH:
30278 		/* Push stored xb, pkt, un, and arq onto fifo */
30279 		sd_fault_injection_on = 0;
30280 
30281 		if (arg != NULL) {
30282 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30283 			if (rval != -1 &&
30284 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30285 				un->sd_fi_fifo_end += i;
30286 			}
30287 		} else {
30288 			SD_INFO(SD_LOG_IOERR, un,
30289 			    "sd_faultinjection_ioctl: push arg null\n");
30290 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30291 				un->sd_fi_fifo_end++;
30292 			}
30293 		}
30294 		SD_INFO(SD_LOG_IOERR, un,
30295 		    "sd_faultinjection_ioctl: push to end=%d\n",
30296 		    un->sd_fi_fifo_end);
30297 		break;
30298 
30299 	case SDIOCRETRIEVE:
30300 		/* Return buffer of log from Injection session */
30301 		SD_INFO(SD_LOG_SDTEST, un,
30302 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30303 
30304 		sd_fault_injection_on = 0;
30305 
30306 		mutex_enter(&(un->un_fi_mutex));
30307 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30308 		    un->sd_fi_buf_len+1, 0);
30309 		mutex_exit(&(un->un_fi_mutex));
30310 
30311 		if (rval == -1) {
30312 			/*
30313 			 * arg is possibly invalid setting
30314 			 * it to NULL for return
30315 			 */
30316 			arg = NULL;
30317 		}
30318 		break;
30319 	}
30320 
30321 	mutex_exit(SD_MUTEX(un));
30322 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30323 			    " exit\n");
30324 }
30325 
30326 
30327 /*
30328  *    Function: sd_injection_log()
30329  *
30330  * Description: This routine adds buff to the already existing injection log
30331  *              for retrieval via faultinjection_ioctl for use in fault
30332  *              detection and recovery
30333  *
30334  *   Arguments: buf - the string to add to the log
30335  */
30336 
30337 static void
30338 sd_injection_log(char *buf, struct sd_lun *un)
30339 {
30340 	uint_t len;
30341 
30342 	ASSERT(un != NULL);
30343 	ASSERT(buf != NULL);
30344 
30345 	mutex_enter(&(un->un_fi_mutex));
30346 
30347 	len = min(strlen(buf), 255);
30348 	/* Add logged value to Injection log to be returned later */
30349 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30350 		uint_t	offset = strlen((char *)un->sd_fi_log);
30351 		char *destp = (char *)un->sd_fi_log + offset;
30352 		int i;
30353 		for (i = 0; i < len; i++) {
30354 			*destp++ = *buf++;
30355 		}
30356 		un->sd_fi_buf_len += len;
30357 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30358 	}
30359 
30360 	mutex_exit(&(un->un_fi_mutex));
30361 }
30362 
30363 
30364 /*
30365  *    Function: sd_faultinjection()
30366  *
30367  * Description: This routine takes the pkt and changes its
30368  *		content based on error injection scenerio.
30369  *
30370  *   Arguments: pktp	- packet to be changed
30371  */
30372 
30373 static void
30374 sd_faultinjection(struct scsi_pkt *pktp)
30375 {
30376 	uint_t i;
30377 	struct sd_fi_pkt *fi_pkt;
30378 	struct sd_fi_xb *fi_xb;
30379 	struct sd_fi_un *fi_un;
30380 	struct sd_fi_arq *fi_arq;
30381 	struct buf *bp;
30382 	struct sd_xbuf *xb;
30383 	struct sd_lun *un;
30384 
30385 	ASSERT(pktp != NULL);
30386 
30387 	/* pull bp xb and un from pktp */
30388 	bp = (struct buf *)pktp->pkt_private;
30389 	xb = SD_GET_XBUF(bp);
30390 	un = SD_GET_UN(bp);
30391 
30392 	ASSERT(un != NULL);
30393 
30394 	mutex_enter(SD_MUTEX(un));
30395 
30396 	SD_TRACE(SD_LOG_SDTEST, un,
30397 	    "sd_faultinjection: entry Injection from sdintr\n");
30398 
30399 	/* if injection is off return */
30400 	if (sd_fault_injection_on == 0 ||
30401 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30402 		mutex_exit(SD_MUTEX(un));
30403 		return;
30404 	}
30405 
30406 	SD_INFO(SD_LOG_SDTEST, un,
30407 	    "sd_faultinjection: is working for copying\n");
30408 
30409 	/* take next set off fifo */
30410 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30411 
30412 	fi_pkt = un->sd_fi_fifo_pkt[i];
30413 	fi_xb = un->sd_fi_fifo_xb[i];
30414 	fi_un = un->sd_fi_fifo_un[i];
30415 	fi_arq = un->sd_fi_fifo_arq[i];
30416 
30417 
30418 	/* set variables accordingly */
30419 	/* set pkt if it was on fifo */
30420 	if (fi_pkt != NULL) {
30421 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30422 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30423 		if (fi_pkt->pkt_cdbp != 0xff)
30424 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30425 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30426 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30427 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30428 
30429 	}
30430 	/* set xb if it was on fifo */
30431 	if (fi_xb != NULL) {
30432 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30433 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30434 		if (fi_xb->xb_retry_count != 0)
30435 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30436 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30437 		    "xb_victim_retry_count");
30438 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30439 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30440 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30441 
30442 		/* copy in block data from sense */
30443 		/*
30444 		 * if (fi_xb->xb_sense_data[0] != -1) {
30445 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30446 		 *	SENSE_LENGTH);
30447 		 * }
30448 		 */
30449 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30450 
30451 		/* copy in extended sense codes */
30452 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30453 		    xb, es_code, "es_code");
30454 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30455 		    xb, es_key, "es_key");
30456 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30457 		    xb, es_add_code, "es_add_code");
30458 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30459 		    xb, es_qual_code, "es_qual_code");
30460 		struct scsi_extended_sense *esp;
30461 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30462 		esp->es_class = CLASS_EXTENDED_SENSE;
30463 	}
30464 
30465 	/* set un if it was on fifo */
30466 	if (fi_un != NULL) {
30467 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30468 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30469 		SD_CONDSET(un, un, un_reset_retry_count,
30470 		    "un_reset_retry_count");
30471 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30472 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30473 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30474 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30475 		    "un_f_allow_bus_device_reset");
30476 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30477 
30478 	}
30479 
30480 	/* copy in auto request sense if it was on fifo */
30481 	if (fi_arq != NULL) {
30482 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30483 	}
30484 
30485 	/* free structs */
30486 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30487 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30488 	}
30489 	if (un->sd_fi_fifo_xb[i] != NULL) {
30490 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30491 	}
30492 	if (un->sd_fi_fifo_un[i] != NULL) {
30493 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30494 	}
30495 	if (un->sd_fi_fifo_arq[i] != NULL) {
30496 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30497 	}
30498 
30499 	/*
30500 	 * kmem_free does not gurantee to set to NULL
30501 	 * since we uses these to determine if we set
30502 	 * values or not lets confirm they are always
30503 	 * NULL after free
30504 	 */
30505 	un->sd_fi_fifo_pkt[i] = NULL;
30506 	un->sd_fi_fifo_un[i] = NULL;
30507 	un->sd_fi_fifo_xb[i] = NULL;
30508 	un->sd_fi_fifo_arq[i] = NULL;
30509 
30510 	un->sd_fi_fifo_start++;
30511 
30512 	mutex_exit(SD_MUTEX(un));
30513 
30514 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30515 }
30516 
30517 #endif /* SD_FAULT_INJECTION */
30518 
30519 /*
30520  * This routine is invoked in sd_unit_attach(). Before calling it, the
30521  * properties in conf file should be processed already, and "hotpluggable"
30522  * property was processed also.
30523  *
30524  * The sd driver distinguishes 3 different type of devices: removable media,
30525  * non-removable media, and hotpluggable. Below the differences are defined:
30526  *
30527  * 1. Device ID
30528  *
30529  *     The device ID of a device is used to identify this device. Refer to
30530  *     ddi_devid_register(9F).
30531  *
30532  *     For a non-removable media disk device which can provide 0x80 or 0x83
30533  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30534  *     device ID is created to identify this device. For other non-removable
30535  *     media devices, a default device ID is created only if this device has
30536  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30537  *
30538  *     -------------------------------------------------------
30539  *     removable media   hotpluggable  | Can Have Device ID
30540  *     -------------------------------------------------------
30541  *         false             false     |     Yes
30542  *         false             true      |     Yes
30543  *         true                x       |     No
30544  *     ------------------------------------------------------
30545  *
30546  *
30547  * 2. SCSI group 4 commands
30548  *
30549  *     In SCSI specs, only some commands in group 4 command set can use
30550  *     8-byte addresses that can be used to access >2TB storage spaces.
30551  *     Other commands have no such capability. Without supporting group4,
30552  *     it is impossible to make full use of storage spaces of a disk with
30553  *     capacity larger than 2TB.
30554  *
30555  *     -----------------------------------------------
30556  *     removable media   hotpluggable   LP64  |  Group
30557  *     -----------------------------------------------
30558  *           false          false       false |   1
30559  *           false          false       true  |   4
30560  *           false          true        false |   1
30561  *           false          true        true  |   4
30562  *           true             x           x   |   5
30563  *     -----------------------------------------------
30564  *
30565  *
30566  * 3. Check for VTOC Label
30567  *
30568  *     If a direct-access disk has no EFI label, sd will check if it has a
30569  *     valid VTOC label. Now, sd also does that check for removable media
30570  *     and hotpluggable devices.
30571  *
30572  *     --------------------------------------------------------------
30573  *     Direct-Access   removable media    hotpluggable |  Check Label
30574  *     -------------------------------------------------------------
30575  *         false          false           false        |   No
30576  *         false          false           true         |   No
30577  *         false          true            false        |   Yes
30578  *         false          true            true         |   Yes
30579  *         true            x                x          |   Yes
30580  *     --------------------------------------------------------------
30581  *
30582  *
30583  * 4. Building default VTOC label
30584  *
30585  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30586  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30587  *     create default VTOC for them. Currently sd creates default VTOC label
30588  *     for all devices on x86 platform (VTOC_16), but only for removable
30589  *     media devices on SPARC (VTOC_8).
30590  *
30591  *     -----------------------------------------------------------
30592  *       removable media hotpluggable platform   |   Default Label
30593  *     -----------------------------------------------------------
30594  *             false          false    sparc     |     No
30595  *             false          true      x86      |     Yes
30596  *             false          true     sparc     |     Yes
30597  *             true             x        x       |     Yes
30598  *     ----------------------------------------------------------
30599  *
30600  *
30601  * 5. Supported blocksizes of target devices
30602  *
30603  *     Sd supports non-512-byte blocksize for removable media devices only.
30604  *     For other devices, only 512-byte blocksize is supported. This may be
30605  *     changed in near future because some RAID devices require non-512-byte
30606  *     blocksize
30607  *
30608  *     -----------------------------------------------------------
30609  *     removable media    hotpluggable    | non-512-byte blocksize
30610  *     -----------------------------------------------------------
30611  *           false          false         |   No
30612  *           false          true          |   No
30613  *           true             x           |   Yes
30614  *     -----------------------------------------------------------
30615  *
30616  *
30617  * 6. Automatic mount & unmount
30618  *
30619  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30620  *     if a device is removable media device. It return 1 for removable media
30621  *     devices, and 0 for others.
30622  *
30623  *     The automatic mounting subsystem should distinguish between the types
30624  *     of devices and apply automounting policies to each.
30625  *
30626  *
30627  * 7. fdisk partition management
30628  *
30629  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30630  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30631  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30632  *     fdisk partitions on both x86 and SPARC platform.
30633  *
30634  *     -----------------------------------------------------------
30635  *       platform   removable media  USB/1394  |  fdisk supported
30636  *     -----------------------------------------------------------
30637  *        x86         X               X        |       true
30638  *     ------------------------------------------------------------
30639  *        sparc       X               X        |       false
30640  *     ------------------------------------------------------------
30641  *
30642  *
30643  * 8. MBOOT/MBR
30644  *
30645  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30646  *     read/write mboot for removable media devices on sparc platform.
30647  *
30648  *     -----------------------------------------------------------
30649  *       platform   removable media  USB/1394  |  mboot supported
30650  *     -----------------------------------------------------------
30651  *        x86         X               X        |       true
30652  *     ------------------------------------------------------------
30653  *        sparc      false           false     |       false
30654  *        sparc      false           true      |       true
30655  *        sparc      true            false     |       true
30656  *        sparc      true            true      |       true
30657  *     ------------------------------------------------------------
30658  *
30659  *
30660  * 9.  error handling during opening device
30661  *
30662  *     If failed to open a disk device, an errno is returned. For some kinds
30663  *     of errors, different errno is returned depending on if this device is
30664  *     a removable media device. This brings USB/1394 hard disks in line with
30665  *     expected hard disk behavior. It is not expected that this breaks any
30666  *     application.
30667  *
30668  *     ------------------------------------------------------
30669  *       removable media    hotpluggable   |  errno
30670  *     ------------------------------------------------------
30671  *             false          false        |   EIO
30672  *             false          true         |   EIO
30673  *             true             x          |   ENXIO
30674  *     ------------------------------------------------------
30675  *
30676  *
30677  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30678  *
30679  *     These IOCTLs are applicable only to removable media devices.
30680  *
30681  *     -----------------------------------------------------------
30682  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30683  *     -----------------------------------------------------------
30684  *             false          false        |     No
30685  *             false          true         |     No
30686  *             true            x           |     Yes
30687  *     -----------------------------------------------------------
30688  *
30689  *
30690  * 12. Kstats for partitions
30691  *
30692  *     sd creates partition kstat for non-removable media devices. USB and
30693  *     Firewire hard disks now have partition kstats
30694  *
30695  *      ------------------------------------------------------
30696  *       removable media    hotpluggable   |   kstat
30697  *      ------------------------------------------------------
30698  *             false          false        |    Yes
30699  *             false          true         |    Yes
30700  *             true             x          |    No
30701  *       ------------------------------------------------------
30702  *
30703  *
30704  * 13. Removable media & hotpluggable properties
30705  *
30706  *     Sd driver creates a "removable-media" property for removable media
30707  *     devices. Parent nexus drivers create a "hotpluggable" property if
30708  *     it supports hotplugging.
30709  *
30710  *     ---------------------------------------------------------------------
30711  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30712  *     ---------------------------------------------------------------------
30713  *       false            false       |    No                   No
30714  *       false            true        |    No                   Yes
30715  *       true             false       |    Yes                  No
30716  *       true             true        |    Yes                  Yes
30717  *     ---------------------------------------------------------------------
30718  *
30719  *
30720  * 14. Power Management
30721  *
30722  *     sd only power manages removable media devices or devices that support
30723  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30724  *
30725  *     A parent nexus that supports hotplugging can also set "pm-capable"
30726  *     if the disk can be power managed.
30727  *
30728  *     ------------------------------------------------------------
30729  *       removable media hotpluggable pm-capable  |   power manage
30730  *     ------------------------------------------------------------
30731  *             false          false     false     |     No
30732  *             false          false     true      |     Yes
30733  *             false          true      false     |     No
30734  *             false          true      true      |     Yes
30735  *             true             x        x        |     Yes
30736  *     ------------------------------------------------------------
30737  *
30738  *      USB and firewire hard disks can now be power managed independently
30739  *      of the framebuffer
30740  *
30741  *
30742  * 15. Support for USB disks with capacity larger than 1TB
30743  *
30744  *     Currently, sd doesn't permit a fixed disk device with capacity
30745  *     larger than 1TB to be used in a 32-bit operating system environment.
30746  *     However, sd doesn't do that for removable media devices. Instead, it
30747  *     assumes that removable media devices cannot have a capacity larger
30748  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30749  *     supported, which can cause some unexpected results.
30750  *
30751  *     ---------------------------------------------------------------------
30752  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30753  *     ---------------------------------------------------------------------
30754  *             false          false  |   true         |     no
30755  *             false          true   |   true         |     no
30756  *             true           false  |   true         |     Yes
30757  *             true           true   |   true         |     Yes
30758  *     ---------------------------------------------------------------------
30759  *
30760  *
30761  * 16. Check write-protection at open time
30762  *
30763  *     When a removable media device is being opened for writing without NDELAY
30764  *     flag, sd will check if this device is writable. If attempting to open
30765  *     without NDELAY flag a write-protected device, this operation will abort.
30766  *
30767  *     ------------------------------------------------------------
30768  *       removable media    USB/1394   |   WP Check
30769  *     ------------------------------------------------------------
30770  *             false          false    |     No
30771  *             false          true     |     No
30772  *             true           false    |     Yes
30773  *             true           true     |     Yes
30774  *     ------------------------------------------------------------
30775  *
30776  *
30777  * 17. syslog when corrupted VTOC is encountered
30778  *
30779  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30780  *      for fixed SCSI disks.
30781  *     ------------------------------------------------------------
30782  *       removable media    USB/1394   |   print syslog
30783  *     ------------------------------------------------------------
30784  *             false          false    |     Yes
30785  *             false          true     |     No
30786  *             true           false    |     No
30787  *             true           true     |     No
30788  *     ------------------------------------------------------------
30789  */
30790 static void
30791 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30792 {
30793 	int	pm_cap;
30794 
30795 	ASSERT(un->un_sd);
30796 	ASSERT(un->un_sd->sd_inq);
30797 
30798 	/*
30799 	 * Enable SYNC CACHE support for all devices.
30800 	 */
30801 	un->un_f_sync_cache_supported = TRUE;
30802 
30803 	/*
30804 	 * Set the sync cache required flag to false.
30805 	 * This would ensure that there is no SYNC CACHE
30806 	 * sent when there are no writes
30807 	 */
30808 	un->un_f_sync_cache_required = FALSE;
30809 
30810 	if (un->un_sd->sd_inq->inq_rmb) {
30811 		/*
30812 		 * The media of this device is removable. And for this kind
30813 		 * of devices, it is possible to change medium after opening
30814 		 * devices. Thus we should support this operation.
30815 		 */
30816 		un->un_f_has_removable_media = TRUE;
30817 
30818 		/*
30819 		 * support non-512-byte blocksize of removable media devices
30820 		 */
30821 		un->un_f_non_devbsize_supported = TRUE;
30822 
30823 		/*
30824 		 * Assume that all removable media devices support DOOR_LOCK
30825 		 */
30826 		un->un_f_doorlock_supported = TRUE;
30827 
30828 		/*
30829 		 * For a removable media device, it is possible to be opened
30830 		 * with NDELAY flag when there is no media in drive, in this
30831 		 * case we don't care if device is writable. But if without
30832 		 * NDELAY flag, we need to check if media is write-protected.
30833 		 */
30834 		un->un_f_chk_wp_open = TRUE;
30835 
30836 		/*
30837 		 * need to start a SCSI watch thread to monitor media state,
30838 		 * when media is being inserted or ejected, notify syseventd.
30839 		 */
30840 		un->un_f_monitor_media_state = TRUE;
30841 
30842 		/*
30843 		 * Some devices don't support START_STOP_UNIT command.
30844 		 * Therefore, we'd better check if a device supports it
30845 		 * before sending it.
30846 		 */
30847 		un->un_f_check_start_stop = TRUE;
30848 
30849 		/*
30850 		 * support eject media ioctl:
30851 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30852 		 */
30853 		un->un_f_eject_media_supported = TRUE;
30854 
30855 		/*
30856 		 * Because many removable-media devices don't support
30857 		 * LOG_SENSE, we couldn't use this command to check if
30858 		 * a removable media device support power-management.
30859 		 * We assume that they support power-management via
30860 		 * START_STOP_UNIT command and can be spun up and down
30861 		 * without limitations.
30862 		 */
30863 		un->un_f_pm_supported = TRUE;
30864 
30865 		/*
30866 		 * Need to create a zero length (Boolean) property
30867 		 * removable-media for the removable media devices.
30868 		 * Note that the return value of the property is not being
30869 		 * checked, since if unable to create the property
30870 		 * then do not want the attach to fail altogether. Consistent
30871 		 * with other property creation in attach.
30872 		 */
30873 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30874 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30875 
30876 	} else {
30877 		/*
30878 		 * create device ID for device
30879 		 */
30880 		un->un_f_devid_supported = TRUE;
30881 
30882 		/*
30883 		 * Spin up non-removable-media devices once it is attached
30884 		 */
30885 		un->un_f_attach_spinup = TRUE;
30886 
30887 		/*
30888 		 * According to SCSI specification, Sense data has two kinds of
30889 		 * format: fixed format, and descriptor format. At present, we
30890 		 * don't support descriptor format sense data for removable
30891 		 * media.
30892 		 */
30893 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30894 			un->un_f_descr_format_supported = TRUE;
30895 		}
30896 
30897 		/*
30898 		 * kstats are created only for non-removable media devices.
30899 		 *
30900 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30901 		 * default is 1, so they are enabled by default.
30902 		 */
30903 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30904 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30905 		    "enable-partition-kstats", 1));
30906 
30907 		/*
30908 		 * Check if HBA has set the "pm-capable" property.
30909 		 * If "pm-capable" exists and is non-zero then we can
30910 		 * power manage the device without checking the start/stop
30911 		 * cycle count log sense page.
30912 		 *
30913 		 * If "pm-capable" exists and is set to be false (0),
30914 		 * then we should not power manage the device.
30915 		 *
30916 		 * If "pm-capable" doesn't exist then pm_cap will
30917 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30918 		 * sd will check the start/stop cycle count log sense page
30919 		 * and power manage the device if the cycle count limit has
30920 		 * not been exceeded.
30921 		 */
30922 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30923 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30924 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30925 			un->un_f_log_sense_supported = TRUE;
30926 			if (!un->un_f_power_condition_disabled &&
30927 			    SD_INQUIRY(un)->inq_ansi == 6) {
30928 				un->un_f_power_condition_supported = TRUE;
30929 			}
30930 		} else {
30931 			/*
30932 			 * pm-capable property exists.
30933 			 *
30934 			 * Convert "TRUE" values for pm_cap to
30935 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30936 			 * later. "TRUE" values are any values defined in
30937 			 * inquiry.h.
30938 			 */
30939 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30940 				un->un_f_log_sense_supported = FALSE;
30941 			} else {
30942 				/* SD_PM_CAPABLE_IS_TRUE case */
30943 				un->un_f_pm_supported = TRUE;
30944 				if (!un->un_f_power_condition_disabled &&
30945 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30946 					un->un_f_power_condition_supported =
30947 					    TRUE;
30948 				}
30949 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30950 					un->un_f_log_sense_supported = TRUE;
30951 					un->un_f_pm_log_sense_smart =
30952 					    SD_PM_CAP_SMART_LOG(pm_cap);
30953 				}
30954 			}
30955 
30956 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30957 			    "sd_unit_attach: un:0x%p pm-capable "
30958 			    "property set to %d.\n", un, un->un_f_pm_supported);
30959 		}
30960 	}
30961 
30962 	if (un->un_f_is_hotpluggable) {
30963 
30964 		/*
30965 		 * Have to watch hotpluggable devices as well, since
30966 		 * that's the only way for userland applications to
30967 		 * detect hot removal while device is busy/mounted.
30968 		 */
30969 		un->un_f_monitor_media_state = TRUE;
30970 
30971 		un->un_f_check_start_stop = TRUE;
30972 
30973 	}
30974 }
30975 
30976 /*
30977  * sd_tg_rdwr:
30978  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30979  * in sys block size, req_length in bytes.
30980  *
30981  */
30982 static int
30983 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30984     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30985 {
30986 	struct sd_lun *un;
30987 	int path_flag = (int)(uintptr_t)tg_cookie;
30988 	char *dkl = NULL;
30989 	diskaddr_t real_addr = start_block;
30990 	diskaddr_t first_byte, end_block;
30991 
30992 	size_t	buffer_size = reqlength;
30993 	int rval = 0;
30994 	diskaddr_t	cap;
30995 	uint32_t	lbasize;
30996 	sd_ssc_t	*ssc;
30997 
30998 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30999 	if (un == NULL)
31000 		return (ENXIO);
31001 
31002 	if (cmd != TG_READ && cmd != TG_WRITE)
31003 		return (EINVAL);
31004 
31005 	ssc = sd_ssc_init(un);
31006 	mutex_enter(SD_MUTEX(un));
31007 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
31008 		mutex_exit(SD_MUTEX(un));
31009 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31010 		    &lbasize, path_flag);
31011 		if (rval != 0)
31012 			goto done1;
31013 		mutex_enter(SD_MUTEX(un));
31014 		sd_update_block_info(un, lbasize, cap);
31015 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
31016 			mutex_exit(SD_MUTEX(un));
31017 			rval = EIO;
31018 			goto done;
31019 		}
31020 	}
31021 
31022 	if (NOT_DEVBSIZE(un)) {
31023 		/*
31024 		 * sys_blocksize != tgt_blocksize, need to re-adjust
31025 		 * blkno and save the index to beginning of dk_label
31026 		 */
31027 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
31028 		real_addr = first_byte / un->un_tgt_blocksize;
31029 
31030 		end_block = (first_byte + reqlength +
31031 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
31032 
31033 		/* round up buffer size to multiple of target block size */
31034 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
31035 
31036 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
31037 		    "label_addr: 0x%x allocation size: 0x%x\n",
31038 		    real_addr, buffer_size);
31039 
31040 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
31041 		    (reqlength % un->un_tgt_blocksize) != 0)
31042 			/* the request is not aligned */
31043 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
31044 	}
31045 
31046 	/*
31047 	 * The MMC standard allows READ CAPACITY to be
31048 	 * inaccurate by a bounded amount (in the interest of
31049 	 * response latency).  As a result, failed READs are
31050 	 * commonplace (due to the reading of metadata and not
31051 	 * data). Depending on the per-Vendor/drive Sense data,
31052 	 * the failed READ can cause many (unnecessary) retries.
31053 	 */
31054 
31055 	if (ISCD(un) && (cmd == TG_READ) &&
31056 	    (un->un_f_blockcount_is_valid == TRUE) &&
31057 	    ((start_block == (un->un_blockcount - 1))||
31058 	    (start_block == (un->un_blockcount - 2)))) {
31059 			path_flag = SD_PATH_DIRECT_PRIORITY;
31060 	}
31061 
31062 	mutex_exit(SD_MUTEX(un));
31063 	if (cmd == TG_READ) {
31064 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
31065 		    buffer_size, real_addr, path_flag);
31066 		if (dkl != NULL)
31067 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
31068 			    real_addr), bufaddr, reqlength);
31069 	} else {
31070 		if (dkl) {
31071 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31072 			    real_addr, path_flag);
31073 			if (rval) {
31074 				goto done1;
31075 			}
31076 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31077 			    real_addr), reqlength);
31078 		}
31079 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31080 		    buffer_size, real_addr, path_flag);
31081 	}
31082 
31083 done1:
31084 	if (dkl != NULL)
31085 		kmem_free(dkl, buffer_size);
31086 
31087 	if (rval != 0) {
31088 		if (rval == EIO)
31089 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31090 		else
31091 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31092 	}
31093 done:
31094 	sd_ssc_fini(ssc);
31095 	return (rval);
31096 }
31097 
31098 
31099 static int
31100 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31101 {
31102 
31103 	struct sd_lun *un;
31104 	diskaddr_t	cap;
31105 	uint32_t	lbasize;
31106 	int		path_flag = (int)(uintptr_t)tg_cookie;
31107 	int		ret = 0;
31108 
31109 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31110 	if (un == NULL)
31111 		return (ENXIO);
31112 
31113 	switch (cmd) {
31114 	case TG_GETPHYGEOM:
31115 	case TG_GETVIRTGEOM:
31116 	case TG_GETCAPACITY:
31117 	case TG_GETBLOCKSIZE:
31118 		mutex_enter(SD_MUTEX(un));
31119 
31120 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31121 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31122 			cap = un->un_blockcount;
31123 			lbasize = un->un_tgt_blocksize;
31124 			mutex_exit(SD_MUTEX(un));
31125 		} else {
31126 			sd_ssc_t	*ssc;
31127 			mutex_exit(SD_MUTEX(un));
31128 			ssc = sd_ssc_init(un);
31129 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31130 			    &lbasize, path_flag);
31131 			if (ret != 0) {
31132 				if (ret == EIO)
31133 					sd_ssc_assessment(ssc,
31134 					    SD_FMT_STATUS_CHECK);
31135 				else
31136 					sd_ssc_assessment(ssc,
31137 					    SD_FMT_IGNORE);
31138 				sd_ssc_fini(ssc);
31139 				return (ret);
31140 			}
31141 			sd_ssc_fini(ssc);
31142 			mutex_enter(SD_MUTEX(un));
31143 			sd_update_block_info(un, lbasize, cap);
31144 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31145 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31146 				mutex_exit(SD_MUTEX(un));
31147 				return (EIO);
31148 			}
31149 			mutex_exit(SD_MUTEX(un));
31150 		}
31151 
31152 		if (cmd == TG_GETCAPACITY) {
31153 			*(diskaddr_t *)arg = cap;
31154 			return (0);
31155 		}
31156 
31157 		if (cmd == TG_GETBLOCKSIZE) {
31158 			*(uint32_t *)arg = lbasize;
31159 			return (0);
31160 		}
31161 
31162 		if (cmd == TG_GETPHYGEOM)
31163 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31164 			    cap, lbasize, path_flag);
31165 		else
31166 			/* TG_GETVIRTGEOM */
31167 			ret = sd_get_virtual_geometry(un,
31168 			    (cmlb_geom_t *)arg, cap, lbasize);
31169 
31170 		return (ret);
31171 
31172 	case TG_GETATTR:
31173 		mutex_enter(SD_MUTEX(un));
31174 		((tg_attribute_t *)arg)->media_is_writable =
31175 		    un->un_f_mmc_writable_media;
31176 		((tg_attribute_t *)arg)->media_is_solid_state =
31177 		    un->un_f_is_solid_state;
31178 		mutex_exit(SD_MUTEX(un));
31179 		return (0);
31180 	default:
31181 		return (ENOTTY);
31182 
31183 	}
31184 }
31185 
31186 /*
31187  *    Function: sd_ssc_ereport_post
31188  *
31189  * Description: Will be called when SD driver need to post an ereport.
31190  *
31191  *    Context: Kernel thread or interrupt context.
31192  */
31193 
31194 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31195 
31196 static void
31197 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31198 {
31199 	int uscsi_path_instance = 0;
31200 	uchar_t	uscsi_pkt_reason;
31201 	uint32_t uscsi_pkt_state;
31202 	uint32_t uscsi_pkt_statistics;
31203 	uint64_t uscsi_ena;
31204 	uchar_t op_code;
31205 	uint8_t *sensep;
31206 	union scsi_cdb *cdbp;
31207 	uint_t cdblen = 0;
31208 	uint_t senlen = 0;
31209 	struct sd_lun *un;
31210 	dev_info_t *dip;
31211 	char *devid;
31212 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31213 	    SSC_FLAGS_INVALID_STATUS |
31214 	    SSC_FLAGS_INVALID_SENSE |
31215 	    SSC_FLAGS_INVALID_DATA;
31216 	char assessment[16];
31217 
31218 	ASSERT(ssc != NULL);
31219 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31220 	ASSERT(ssc->ssc_uscsi_info != NULL);
31221 
31222 	un = ssc->ssc_un;
31223 	ASSERT(un != NULL);
31224 
31225 	dip = un->un_sd->sd_dev;
31226 
31227 	/*
31228 	 * Get the devid:
31229 	 *	devid will only be passed to non-transport error reports.
31230 	 */
31231 	devid = DEVI(dip)->devi_devid_str;
31232 
31233 	/*
31234 	 * If we are syncing or dumping, the command will not be executed
31235 	 * so we bypass this situation.
31236 	 */
31237 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31238 	    (un->un_state == SD_STATE_DUMPING))
31239 		return;
31240 
31241 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31242 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31243 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31244 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31245 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31246 
31247 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31248 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31249 
31250 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31251 	if (cdbp == NULL) {
31252 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31253 		    "sd_ssc_ereport_post meet empty cdb\n");
31254 		return;
31255 	}
31256 
31257 	op_code = cdbp->scc_cmd;
31258 
31259 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31260 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31261 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31262 
31263 	if (senlen > 0)
31264 		ASSERT(sensep != NULL);
31265 
31266 	/*
31267 	 * Initialize drv_assess to corresponding values.
31268 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31269 	 * on the sense-key returned back.
31270 	 */
31271 	switch (drv_assess) {
31272 		case SD_FM_DRV_RECOVERY:
31273 			(void) sprintf(assessment, "%s", "recovered");
31274 			break;
31275 		case SD_FM_DRV_RETRY:
31276 			(void) sprintf(assessment, "%s", "retry");
31277 			break;
31278 		case SD_FM_DRV_NOTICE:
31279 			(void) sprintf(assessment, "%s", "info");
31280 			break;
31281 		case SD_FM_DRV_FATAL:
31282 		default:
31283 			(void) sprintf(assessment, "%s", "unknown");
31284 	}
31285 	/*
31286 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31287 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31288 	 * driver-assessment will always be "recovered" here.
31289 	 */
31290 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31291 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31292 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31293 		    DDI_NOSLEEP, NULL,
31294 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31295 		    DEVID_IF_KNOWN(devid),
31296 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31297 		    "op-code", DATA_TYPE_UINT8, op_code,
31298 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31299 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31300 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31301 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31302 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31303 		    NULL);
31304 		return;
31305 	}
31306 
31307 	/*
31308 	 * If there is un-expected/un-decodable data, we should post
31309 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31310 	 * driver-assessment will be set based on parameter drv_assess.
31311 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31312 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31313 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31314 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31315 	 */
31316 	if (ssc->ssc_flags & ssc_invalid_flags) {
31317 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31318 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31319 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31320 			    NULL, DDI_NOSLEEP, NULL,
31321 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31322 			    DEVID_IF_KNOWN(devid),
31323 			    "driver-assessment", DATA_TYPE_STRING,
31324 			    drv_assess == SD_FM_DRV_FATAL ?
31325 			    "fail" : assessment,
31326 			    "op-code", DATA_TYPE_UINT8, op_code,
31327 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31328 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31329 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31330 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31331 			    "pkt-stats", DATA_TYPE_UINT32,
31332 			    uscsi_pkt_statistics,
31333 			    "stat-code", DATA_TYPE_UINT8,
31334 			    ssc->ssc_uscsi_cmd->uscsi_status,
31335 			    "un-decode-info", DATA_TYPE_STRING,
31336 			    ssc->ssc_info,
31337 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31338 			    senlen, sensep,
31339 			    NULL);
31340 		} else {
31341 			/*
31342 			 * For other type of invalid data, the
31343 			 * un-decode-value field would be empty because the
31344 			 * un-decodable content could be seen from upper
31345 			 * level payload or inside un-decode-info.
31346 			 */
31347 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31348 			    NULL,
31349 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31350 			    NULL, DDI_NOSLEEP, NULL,
31351 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31352 			    DEVID_IF_KNOWN(devid),
31353 			    "driver-assessment", DATA_TYPE_STRING,
31354 			    drv_assess == SD_FM_DRV_FATAL ?
31355 			    "fail" : assessment,
31356 			    "op-code", DATA_TYPE_UINT8, op_code,
31357 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31358 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31359 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31360 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31361 			    "pkt-stats", DATA_TYPE_UINT32,
31362 			    uscsi_pkt_statistics,
31363 			    "stat-code", DATA_TYPE_UINT8,
31364 			    ssc->ssc_uscsi_cmd->uscsi_status,
31365 			    "un-decode-info", DATA_TYPE_STRING,
31366 			    ssc->ssc_info,
31367 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31368 			    0, NULL,
31369 			    NULL);
31370 		}
31371 		ssc->ssc_flags &= ~ssc_invalid_flags;
31372 		return;
31373 	}
31374 
31375 	if (uscsi_pkt_reason != CMD_CMPLT ||
31376 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31377 		/*
31378 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31379 		 * set inside sd_start_cmds due to errors(bad packet or
31380 		 * fatal transport error), we should take it as a
31381 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31382 		 * driver-assessment will be set based on drv_assess.
31383 		 * We will set devid to NULL because it is a transport
31384 		 * error.
31385 		 */
31386 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31387 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31388 
31389 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31390 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31391 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31392 		    DEVID_IF_KNOWN(devid),
31393 		    "driver-assessment", DATA_TYPE_STRING,
31394 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31395 		    "op-code", DATA_TYPE_UINT8, op_code,
31396 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31397 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31398 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31399 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31400 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31401 		    NULL);
31402 	} else {
31403 		/*
31404 		 * If we got here, we have a completed command, and we need
31405 		 * to further investigate the sense data to see what kind
31406 		 * of ereport we should post.
31407 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
31408 		 * if sense-key == 0x3.
31409 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31410 		 * driver-assessment will be set based on the parameter
31411 		 * drv_assess.
31412 		 */
31413 		if (senlen > 0) {
31414 			/*
31415 			 * Here we have sense data available.
31416 			 */
31417 			uint8_t sense_key;
31418 			sense_key = scsi_sense_key(sensep);
31419 			if (sense_key == 0x3) {
31420 				/*
31421 				 * sense-key == 0x3(medium error),
31422 				 * driver-assessment should be "fatal" if
31423 				 * drv_assess is SD_FM_DRV_FATAL.
31424 				 */
31425 				scsi_fm_ereport_post(un->un_sd,
31426 				    uscsi_path_instance, NULL,
31427 				    "cmd.disk.dev.rqs.merr",
31428 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31429 				    FM_VERSION, DATA_TYPE_UINT8,
31430 				    FM_EREPORT_VERS0,
31431 				    DEVID_IF_KNOWN(devid),
31432 				    "driver-assessment",
31433 				    DATA_TYPE_STRING,
31434 				    drv_assess == SD_FM_DRV_FATAL ?
31435 				    "fatal" : assessment,
31436 				    "op-code",
31437 				    DATA_TYPE_UINT8, op_code,
31438 				    "cdb",
31439 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31440 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31441 				    "pkt-reason",
31442 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31443 				    "pkt-state",
31444 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31445 				    "pkt-stats",
31446 				    DATA_TYPE_UINT32,
31447 				    uscsi_pkt_statistics,
31448 				    "stat-code",
31449 				    DATA_TYPE_UINT8,
31450 				    ssc->ssc_uscsi_cmd->uscsi_status,
31451 				    "key",
31452 				    DATA_TYPE_UINT8,
31453 				    scsi_sense_key(sensep),
31454 				    "asc",
31455 				    DATA_TYPE_UINT8,
31456 				    scsi_sense_asc(sensep),
31457 				    "ascq",
31458 				    DATA_TYPE_UINT8,
31459 				    scsi_sense_ascq(sensep),
31460 				    "sense-data",
31461 				    DATA_TYPE_UINT8_ARRAY,
31462 				    senlen, sensep,
31463 				    "lba",
31464 				    DATA_TYPE_UINT64,
31465 				    ssc->ssc_uscsi_info->ui_lba,
31466 				    NULL);
31467 				} else {
31468 					/*
31469 					 * if sense-key == 0x4(hardware
31470 					 * error), driver-assessment should
31471 					 * be "fatal" if drv_assess is
31472 					 * SD_FM_DRV_FATAL.
31473 					 */
31474 					scsi_fm_ereport_post(un->un_sd,
31475 					    uscsi_path_instance, NULL,
31476 					    "cmd.disk.dev.rqs.derr",
31477 					    uscsi_ena, devid,
31478 					    NULL, DDI_NOSLEEP, NULL,
31479 					    FM_VERSION,
31480 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31481 					    DEVID_IF_KNOWN(devid),
31482 					    "driver-assessment",
31483 					    DATA_TYPE_STRING,
31484 					    drv_assess == SD_FM_DRV_FATAL ?
31485 					    (sense_key == 0x4 ?
31486 					    "fatal" : "fail") : assessment,
31487 					    "op-code",
31488 					    DATA_TYPE_UINT8, op_code,
31489 					    "cdb",
31490 					    DATA_TYPE_UINT8_ARRAY, cdblen,
31491 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
31492 					    "pkt-reason",
31493 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
31494 					    "pkt-state",
31495 					    DATA_TYPE_UINT8, uscsi_pkt_state,
31496 					    "pkt-stats",
31497 					    DATA_TYPE_UINT32,
31498 					    uscsi_pkt_statistics,
31499 					    "stat-code",
31500 					    DATA_TYPE_UINT8,
31501 					    ssc->ssc_uscsi_cmd->uscsi_status,
31502 					    "key",
31503 					    DATA_TYPE_UINT8,
31504 					    scsi_sense_key(sensep),
31505 					    "asc",
31506 					    DATA_TYPE_UINT8,
31507 					    scsi_sense_asc(sensep),
31508 					    "ascq",
31509 					    DATA_TYPE_UINT8,
31510 					    scsi_sense_ascq(sensep),
31511 					    "sense-data",
31512 					    DATA_TYPE_UINT8_ARRAY,
31513 					    senlen, sensep,
31514 					    NULL);
31515 				}
31516 		} else {
31517 			/*
31518 			 * For stat_code == STATUS_GOOD, this is not a
31519 			 * hardware error.
31520 			 */
31521 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31522 				return;
31523 
31524 			/*
31525 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31526 			 * stat-code but with sense data unavailable.
31527 			 * driver-assessment will be set based on parameter
31528 			 * drv_assess.
31529 			 */
31530 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31531 			    NULL,
31532 			    "cmd.disk.dev.serr", uscsi_ena,
31533 			    devid, NULL, DDI_NOSLEEP, NULL,
31534 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31535 			    DEVID_IF_KNOWN(devid),
31536 			    "driver-assessment", DATA_TYPE_STRING,
31537 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31538 			    "op-code", DATA_TYPE_UINT8, op_code,
31539 			    "cdb",
31540 			    DATA_TYPE_UINT8_ARRAY,
31541 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31542 			    "pkt-reason",
31543 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31544 			    "pkt-state",
31545 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31546 			    "pkt-stats",
31547 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31548 			    "stat-code",
31549 			    DATA_TYPE_UINT8,
31550 			    ssc->ssc_uscsi_cmd->uscsi_status,
31551 			    NULL);
31552 		}
31553 	}
31554 }
31555 
31556 /*
31557  *     Function: sd_ssc_extract_info
31558  *
31559  * Description: Extract information available to help generate ereport.
31560  *
31561  *     Context: Kernel thread or interrupt context.
31562  */
31563 static void
31564 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31565     struct buf *bp, struct sd_xbuf *xp)
31566 {
31567 	size_t senlen = 0;
31568 	union scsi_cdb *cdbp;
31569 	int path_instance;
31570 	/*
31571 	 * Need scsi_cdb_size array to determine the cdb length.
31572 	 */
31573 	extern uchar_t	scsi_cdb_size[];
31574 
31575 	ASSERT(un != NULL);
31576 	ASSERT(pktp != NULL);
31577 	ASSERT(bp != NULL);
31578 	ASSERT(xp != NULL);
31579 	ASSERT(ssc != NULL);
31580 	ASSERT(mutex_owned(SD_MUTEX(un)));
31581 
31582 	/*
31583 	 * Transfer the cdb buffer pointer here.
31584 	 */
31585 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31586 
31587 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31588 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31589 
31590 	/*
31591 	 * Transfer the sense data buffer pointer if sense data is available,
31592 	 * calculate the sense data length first.
31593 	 */
31594 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31595 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31596 		/*
31597 		 * For arq case, we will enter here.
31598 		 */
31599 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31600 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31601 		} else {
31602 			senlen = SENSE_LENGTH;
31603 		}
31604 	} else {
31605 		/*
31606 		 * For non-arq case, we will enter this branch.
31607 		 */
31608 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31609 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31610 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31611 		}
31612 
31613 	}
31614 
31615 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31616 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31617 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31618 
31619 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31620 
31621 	/*
31622 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31623 	 */
31624 	path_instance = pktp->pkt_path_instance;
31625 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31626 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31627 	else
31628 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31629 
31630 	/*
31631 	 * Copy in the other fields we may need when posting ereport.
31632 	 */
31633 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31634 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31635 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31636 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31637 
31638 	/*
31639 	 * For partially read/write command, we will not create ena
31640 	 * in case of a successful command be reconized as recovered.
31641 	 */
31642 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31643 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31644 	    (senlen == 0)) {
31645 		return;
31646 	}
31647 
31648 	/*
31649 	 * To associate ereports of a single command execution flow, we
31650 	 * need a shared ena for a specific command.
31651 	 */
31652 	if (xp->xb_ena == 0)
31653 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31654 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31655 }
31656 
31657 
31658 /*
31659  *     Function: sd_check_solid_state
31660  *
31661  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31662  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31663  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31664  *              device is a solid state drive.
31665  *
31666  *     Context: Kernel thread or interrupt context.
31667  */
31668 
31669 static void
31670 sd_check_solid_state(sd_ssc_t *ssc)
31671 {
31672 	int		rval		= 0;
31673 	uchar_t		*inqb1		= NULL;
31674 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31675 	size_t		inqb1_resid	= 0;
31676 	struct sd_lun	*un;
31677 
31678 	ASSERT(ssc != NULL);
31679 	un = ssc->ssc_un;
31680 	ASSERT(un != NULL);
31681 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31682 
31683 	mutex_enter(SD_MUTEX(un));
31684 	un->un_f_is_solid_state = FALSE;
31685 
31686 	if (ISCD(un)) {
31687 		mutex_exit(SD_MUTEX(un));
31688 		return;
31689 	}
31690 
31691 	if (sd_check_vpd_page_support(ssc) == 0 &&
31692 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31693 		mutex_exit(SD_MUTEX(un));
31694 		/* collect page b1 data */
31695 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31696 
31697 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31698 		    0x01, 0xB1, &inqb1_resid);
31699 
31700 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31701 			SD_TRACE(SD_LOG_COMMON, un,
31702 			    "sd_check_solid_state: \
31703 			    successfully get VPD page: %x \
31704 			    PAGE LENGTH: %x BYTE 4: %x \
31705 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31706 			    inqb1[5]);
31707 
31708 			mutex_enter(SD_MUTEX(un));
31709 			/*
31710 			 * Check the MEDIUM ROTATION RATE. If it is set
31711 			 * to 1, the device is a solid state drive.
31712 			 */
31713 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31714 				un->un_f_is_solid_state = TRUE;
31715 				/* solid state drives don't need disksort */
31716 				un->un_f_disksort_disabled = TRUE;
31717 			}
31718 			mutex_exit(SD_MUTEX(un));
31719 		} else if (rval != 0) {
31720 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31721 		}
31722 
31723 		kmem_free(inqb1, inqb1_len);
31724 	} else {
31725 		mutex_exit(SD_MUTEX(un));
31726 	}
31727 }
31728 
31729 /*
31730  *	Function: sd_check_emulation_mode
31731  *
31732  *   Description: Check whether the SSD is at emulation mode
31733  *		  by issuing READ_CAPACITY_16 to see whether
31734  *		  we can get physical block size of the drive.
31735  *
31736  *	 Context: Kernel thread or interrupt context.
31737  */
31738 
31739 static void
31740 sd_check_emulation_mode(sd_ssc_t *ssc)
31741 {
31742 	int		rval = 0;
31743 	uint64_t	capacity;
31744 	uint_t		lbasize;
31745 	uint_t		pbsize;
31746 	int		i;
31747 	int		devid_len;
31748 	struct sd_lun	*un;
31749 
31750 	ASSERT(ssc != NULL);
31751 	un = ssc->ssc_un;
31752 	ASSERT(un != NULL);
31753 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31754 
31755 	mutex_enter(SD_MUTEX(un));
31756 	if (ISCD(un)) {
31757 		mutex_exit(SD_MUTEX(un));
31758 		return;
31759 	}
31760 
31761 	if (un->un_f_descr_format_supported) {
31762 		mutex_exit(SD_MUTEX(un));
31763 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31764 		    &pbsize, SD_PATH_DIRECT);
31765 		mutex_enter(SD_MUTEX(un));
31766 
31767 		if (rval != 0) {
31768 			un->un_phy_blocksize = DEV_BSIZE;
31769 		} else {
31770 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31771 				un->un_phy_blocksize = DEV_BSIZE;
31772 			} else if (pbsize > un->un_phy_blocksize) {
31773 				/*
31774 				 * Don't reset the physical blocksize
31775 				 * unless we've detected a larger value.
31776 				 */
31777 				un->un_phy_blocksize = pbsize;
31778 			}
31779 		}
31780 	}
31781 
31782 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31783 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31784 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31785 		    == SD_SUCCESS) {
31786 			un->un_phy_blocksize = SSD_SECSIZE;
31787 			if (un->un_f_is_solid_state &&
31788 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31789 				un->un_f_enable_rmw = TRUE;
31790 		}
31791 	}
31792 
31793 	mutex_exit(SD_MUTEX(un));
31794 }
31795