xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 26cf27f05670b1ca90e4a07802cba858cb358690)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * SCSI disk target driver.
31  */
32 
33 #include <sys/scsi/scsi.h>
34 #include <sys/dkbad.h>
35 #include <sys/dklabel.h>
36 #include <sys/dkio.h>
37 #include <sys/fdio.h>
38 #include <sys/cdio.h>
39 #include <sys/mhd.h>
40 #include <sys/vtoc.h>
41 #include <sys/dktp/fdisk.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kstat.h>
45 #include <sys/vtrace.h>
46 #include <sys/note.h>
47 #include <sys/thread.h>
48 #include <sys/proc.h>
49 #include <sys/efi_partition.h>
50 #include <sys/var.h>
51 #include <sys/aio_req.h>
52 #if (defined(__fibre))
53 /* Note: is there a leadville version of the following? */
54 #include <sys/fc4/fcal_linkapp.h>
55 #endif
56 #include <sys/taskq.h>
57 #include <sys/uuid.h>
58 #include <sys/byteorder.h>
59 #include <sys/sdt.h>
60 
61 #include "sd_xbuf.h"
62 
63 #include <sys/scsi/targets/sddef.h>
64 
65 
66 /*
67  * Loadable module info.
68  */
69 #if (defined(__fibre))
70 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
71 char _depends_on[]	= "misc/scsi drv/fcp";
72 #else
73 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi";
75 #endif
76 
77 /*
78  * Define the interconnect type, to allow the driver to distinguish
79  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
80  *
81  * This is really for backward compatability. In the future, the driver
82  * should actually check the "interconnect-type" property as reported by
83  * the HBA; however at present this property is not defined by all HBAs,
84  * so we will use this #define (1) to permit the driver to run in
85  * backward-compatability mode; and (2) to print a notification message
86  * if an FC HBA does not support the "interconnect-type" property.  The
87  * behavior of the driver will be to assume parallel SCSI behaviors unless
88  * the "interconnect-type" property is defined by the HBA **AND** has a
89  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
90  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
91  * Channel behaviors (as per the old ssd).  (Note that the
92  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
93  * will result in the driver assuming parallel SCSI behaviors.)
94  *
95  * (see common/sys/scsi/impl/services.h)
96  *
97  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
98  * since some FC HBAs may already support that, and there is some code in
99  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
100  * default would confuse that code, and besides things should work fine
101  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
102  * "interconnect_type" property.
103  */
104 #if (defined(__fibre))
105 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
106 #else
107 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
108 #endif
109 
110 /*
111  * The name of the driver, established from the module name in _init.
112  */
113 static	char *sd_label			= NULL;
114 
115 /*
116  * Driver name is unfortunately prefixed on some driver.conf properties.
117  */
118 #if (defined(__fibre))
119 #define	sd_max_xfer_size		ssd_max_xfer_size
120 #define	sd_config_list			ssd_config_list
121 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
122 static	char *sd_config_list		= "ssd-config-list";
123 #else
124 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
125 static	char *sd_config_list		= "sd-config-list";
126 #endif
127 
128 /*
129  * Driver global variables
130  */
131 
132 #if (defined(__fibre))
133 /*
134  * These #defines are to avoid namespace collisions that occur because this
135  * code is currently used to compile two seperate driver modules: sd and ssd.
136  * All global variables need to be treated this way (even if declared static)
137  * in order to allow the debugger to resolve the names properly.
138  * It is anticipated that in the near future the ssd module will be obsoleted,
139  * at which time this namespace issue should go away.
140  */
141 #define	sd_state			ssd_state
142 #define	sd_io_time			ssd_io_time
143 #define	sd_failfast_enable		ssd_failfast_enable
144 #define	sd_ua_retry_count		ssd_ua_retry_count
145 #define	sd_report_pfa			ssd_report_pfa
146 #define	sd_max_throttle			ssd_max_throttle
147 #define	sd_min_throttle			ssd_min_throttle
148 #define	sd_rot_delay			ssd_rot_delay
149 
150 #define	sd_retry_on_reservation_conflict	\
151 					ssd_retry_on_reservation_conflict
152 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
153 #define	sd_resv_conflict_name		ssd_resv_conflict_name
154 
155 #define	sd_component_mask		ssd_component_mask
156 #define	sd_level_mask			ssd_level_mask
157 #define	sd_debug_un			ssd_debug_un
158 #define	sd_error_level			ssd_error_level
159 
160 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
161 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
162 
163 #define	sd_tr				ssd_tr
164 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
165 #define	sd_check_media_time		ssd_check_media_time
166 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
167 #define	sd_label_mutex			ssd_label_mutex
168 #define	sd_detach_mutex			ssd_detach_mutex
169 #define	sd_log_buf			ssd_log_buf
170 #define	sd_log_mutex			ssd_log_mutex
171 
172 #define	sd_disk_table			ssd_disk_table
173 #define	sd_disk_table_size		ssd_disk_table_size
174 #define	sd_sense_mutex			ssd_sense_mutex
175 #define	sd_cdbtab			ssd_cdbtab
176 
177 #define	sd_cb_ops			ssd_cb_ops
178 #define	sd_ops				ssd_ops
179 #define	sd_additional_codes		ssd_additional_codes
180 
181 #define	sd_minor_data			ssd_minor_data
182 #define	sd_minor_data_efi		ssd_minor_data_efi
183 
184 #define	sd_tq				ssd_tq
185 #define	sd_wmr_tq			ssd_wmr_tq
186 #define	sd_taskq_name			ssd_taskq_name
187 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
188 #define	sd_taskq_minalloc		ssd_taskq_minalloc
189 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
190 
191 #define	sd_dump_format_string		ssd_dump_format_string
192 
193 #define	sd_iostart_chain		ssd_iostart_chain
194 #define	sd_iodone_chain			ssd_iodone_chain
195 
196 #define	sd_pm_idletime			ssd_pm_idletime
197 
198 #define	sd_force_pm_supported		ssd_force_pm_supported
199 
200 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
201 #endif
202 
203 
204 #ifdef	SDDEBUG
205 int	sd_force_pm_supported		= 0;
206 #endif	/* SDDEBUG */
207 
208 void *sd_state				= NULL;
209 int sd_io_time				= SD_IO_TIME;
210 int sd_failfast_enable			= 1;
211 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
212 int sd_report_pfa			= 1;
213 int sd_max_throttle			= SD_MAX_THROTTLE;
214 int sd_min_throttle			= SD_MIN_THROTTLE;
215 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
216 
217 int sd_retry_on_reservation_conflict	= 1;
218 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
219 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
220 
221 static int sd_dtype_optical_bind	= -1;
222 
223 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
224 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
225 
226 /*
227  * Global data for debug logging. To enable debug printing, sd_component_mask
228  * and sd_level_mask should be set to the desired bit patterns as outlined in
229  * sddef.h.
230  */
231 uint_t	sd_component_mask		= 0x0;
232 uint_t	sd_level_mask			= 0x0;
233 struct	sd_lun *sd_debug_un		= NULL;
234 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
235 
236 /* Note: these may go away in the future... */
237 static uint32_t	sd_xbuf_active_limit	= 512;
238 static uint32_t sd_xbuf_reserve_limit	= 16;
239 
240 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
241 
242 /*
243  * Timer value used to reset the throttle after it has been reduced
244  * (typically in response to TRAN_BUSY)
245  */
246 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
247 
248 /*
249  * Interval value associated with the media change scsi watch.
250  */
251 static int sd_check_media_time		= 3000000;
252 
253 /*
254  * Wait value used for in progress operations during a DDI_SUSPEND
255  */
256 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
257 
258 /*
259  * sd_label_mutex protects a static buffer used in the disk label
260  * component of the driver
261  */
262 static kmutex_t sd_label_mutex;
263 
264 /*
265  * sd_detach_mutex protects un_layer_count, un_detach_count, and
266  * un_opens_in_progress in the sd_lun structure.
267  */
268 static kmutex_t sd_detach_mutex;
269 
270 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
271 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
272 
273 /*
274  * Global buffer and mutex for debug logging
275  */
276 static char	sd_log_buf[1024];
277 static kmutex_t	sd_log_mutex;
278 
279 
280 /*
281  * "Smart" Probe Caching structs, globals, #defines, etc.
282  * For parallel scsi and non-self-identify device only.
283  */
284 
285 /*
286  * The following resources and routines are implemented to support
287  * "smart" probing, which caches the scsi_probe() results in an array,
288  * in order to help avoid long probe times.
289  */
290 struct sd_scsi_probe_cache {
291 	struct	sd_scsi_probe_cache	*next;
292 	dev_info_t	*pdip;
293 	int		cache[NTARGETS_WIDE];
294 };
295 
296 static kmutex_t	sd_scsi_probe_cache_mutex;
297 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
298 
299 /*
300  * Really we only need protection on the head of the linked list, but
301  * better safe than sorry.
302  */
303 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
304     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
305 
306 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
307     sd_scsi_probe_cache_head))
308 
309 
310 /*
311  * Vendor specific data name property declarations
312  */
313 
314 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
315 
316 static sd_tunables seagate_properties = {
317 	SEAGATE_THROTTLE_VALUE,
318 	0,
319 	0,
320 	0,
321 	0,
322 	0,
323 	0,
324 	0,
325 	0
326 };
327 
328 static sd_tunables lsi_properties = {
329 	0,
330 	0,
331 	LSI_NOTREADY_RETRIES,
332 	0,
333 	0,
334 	0,
335 	0,
336 	0,
337 	0
338 };
339 
340 static sd_tunables lsi_oem_properties = {
341 	0,
342 	0,
343 	LSI_OEM_NOTREADY_RETRIES,
344 	0,
345 	0,
346 	0,
347 	0,
348 	0,
349 	0
350 };
351 
352 static sd_tunables fujitsu_properties = {
353 	FUJITSU_THROTTLE_VALUE,
354 	0,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0
362 };
363 
364 static sd_tunables ibm_properties = {
365 	IBM_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 static sd_tunables purple_properties = {
377 	PURPLE_THROTTLE_VALUE,
378 	0,
379 	0,
380 	PURPLE_BUSY_RETRIES,
381 	PURPLE_RESET_RETRY_COUNT,
382 	PURPLE_RESERVE_RELEASE_TIME,
383 	0,
384 	0,
385 	0
386 };
387 
388 static sd_tunables sve_properties = {
389 	SVE_THROTTLE_VALUE,
390 	0,
391 	0,
392 	SVE_BUSY_RETRIES,
393 	SVE_RESET_RETRY_COUNT,
394 	SVE_RESERVE_RELEASE_TIME,
395 	SVE_MIN_THROTTLE_VALUE,
396 	SVE_DISKSORT_DISABLED_FLAG,
397 	0
398 };
399 
400 static sd_tunables maserati_properties = {
401 	0,
402 	0,
403 	0,
404 	0,
405 	0,
406 	0,
407 	0,
408 	MASERATI_DISKSORT_DISABLED_FLAG,
409 	MASERATI_LUN_RESET_ENABLED_FLAG
410 };
411 
412 static sd_tunables pirus_properties = {
413 	PIRUS_THROTTLE_VALUE,
414 	0,
415 	PIRUS_NRR_COUNT,
416 	PIRUS_BUSY_RETRIES,
417 	PIRUS_RESET_RETRY_COUNT,
418 	0,
419 	PIRUS_MIN_THROTTLE_VALUE,
420 	PIRUS_DISKSORT_DISABLED_FLAG,
421 	PIRUS_LUN_RESET_ENABLED_FLAG
422 };
423 
424 #endif
425 #if (defined(__sparc) && !defined(__fibre)) || \
426 	(defined(__i386) || defined(__amd64))
427 
428 static sd_tunables lsi_properties_scsi = {
429 	LSI_THROTTLE_VALUE,
430 	0,
431 	LSI_NOTREADY_RETRIES,
432 	0,
433 	0,
434 	0,
435 	0,
436 	0,
437 	0
438 };
439 
440 static sd_tunables elite_properties = {
441 	ELITE_THROTTLE_VALUE,
442 	0,
443 	0,
444 	0,
445 	0,
446 	0,
447 	0,
448 	0,
449 	0
450 };
451 
452 static sd_tunables st31200n_properties = {
453 	ST31200N_THROTTLE_VALUE,
454 	0,
455 	0,
456 	0,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0
462 };
463 
464 #endif /* Fibre or not */
465 
466 static sd_tunables symbios_properties = {
467 	SYMBIOS_THROTTLE_VALUE,
468 	0,
469 	SYMBIOS_NOTREADY_RETRIES,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0
476 };
477 
478 
479 
480 
481 #if (defined(SD_PROP_TST))
482 
483 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
484 #define	SD_TST_THROTTLE_VAL	16
485 #define	SD_TST_NOTREADY_VAL	12
486 #define	SD_TST_BUSY_VAL		60
487 #define	SD_TST_RST_RETRY_VAL	36
488 #define	SD_TST_RSV_REL_TIME	60
489 
490 static sd_tunables tst_properties = {
491 	SD_TST_THROTTLE_VAL,
492 	SD_TST_CTYPE_VAL,
493 	SD_TST_NOTREADY_VAL,
494 	SD_TST_BUSY_VAL,
495 	SD_TST_RST_RETRY_VAL,
496 	SD_TST_RSV_REL_TIME,
497 	0,
498 	0,
499 	0
500 };
501 #endif
502 
503 /* This is similiar to the ANSI toupper implementation */
504 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
505 
506 /*
507  * Static Driver Configuration Table
508  *
509  * This is the table of disks which need throttle adjustment (or, perhaps
510  * something else as defined by the flags at a future time.)  device_id
511  * is a string consisting of concatenated vid (vendor), pid (product/model)
512  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
513  * the parts of the string are as defined by the sizes in the scsi_inquiry
514  * structure.  Device type is searched as far as the device_id string is
515  * defined.  Flags defines which values are to be set in the driver from the
516  * properties list.
517  *
518  * Entries below which begin and end with a "*" are a special case.
519  * These do not have a specific vendor, and the string which follows
520  * can appear anywhere in the 16 byte PID portion of the inquiry data.
521  *
522  * Entries below which begin and end with a " " (blank) are a special
523  * case. The comparison function will treat multiple consecutive blanks
524  * as equivalent to a single blank. For example, this causes a
525  * sd_disk_table entry of " NEC CDROM " to match a device's id string
526  * of  "NEC       CDROM".
527  *
528  * Note: The MD21 controller type has been obsoleted.
529  *	 ST318202F is a Legacy device
530  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
531  *	 made with an FC connection. The entries here are a legacy.
532  */
533 static sd_disk_config_t sd_disk_table[] = {
534 #if defined(__fibre) || defined(__i386) || defined(__amd64)
535 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
536 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
537 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
538 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
539 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
540 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
541 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
542 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
543 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
544 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
545 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
546 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
547 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
548 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
549 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
550 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
551 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
552 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
553 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
554 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
555 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
556 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
557 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
558 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
559 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
560 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
561 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
562 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
563 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
564 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
565 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
566 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
567 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
568 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
569 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
570 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
571 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
572 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
573 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
574 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
575 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
576 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
577 			SD_CONF_BSET_BSY_RETRY_COUNT|
578 			SD_CONF_BSET_RST_RETRIES|
579 			SD_CONF_BSET_RSV_REL_TIME,
580 		&purple_properties },
581 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
582 		SD_CONF_BSET_BSY_RETRY_COUNT|
583 		SD_CONF_BSET_RST_RETRIES|
584 		SD_CONF_BSET_RSV_REL_TIME|
585 		SD_CONF_BSET_MIN_THROTTLE|
586 		SD_CONF_BSET_DISKSORT_DISABLED,
587 		&sve_properties },
588 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
589 			SD_CONF_BSET_BSY_RETRY_COUNT|
590 			SD_CONF_BSET_RST_RETRIES|
591 			SD_CONF_BSET_RSV_REL_TIME,
592 		&purple_properties },
593 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
594 		SD_CONF_BSET_LUN_RESET_ENABLED,
595 		&maserati_properties },
596 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
597 		SD_CONF_BSET_NRR_COUNT|
598 		SD_CONF_BSET_BSY_RETRY_COUNT|
599 		SD_CONF_BSET_RST_RETRIES|
600 		SD_CONF_BSET_MIN_THROTTLE|
601 		SD_CONF_BSET_DISKSORT_DISABLED|
602 		SD_CONF_BSET_LUN_RESET_ENABLED,
603 		&pirus_properties },
604 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
605 		SD_CONF_BSET_NRR_COUNT|
606 		SD_CONF_BSET_BSY_RETRY_COUNT|
607 		SD_CONF_BSET_RST_RETRIES|
608 		SD_CONF_BSET_MIN_THROTTLE|
609 		SD_CONF_BSET_DISKSORT_DISABLED|
610 		SD_CONF_BSET_LUN_RESET_ENABLED,
611 		&pirus_properties },
612 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
613 		SD_CONF_BSET_NRR_COUNT|
614 		SD_CONF_BSET_BSY_RETRY_COUNT|
615 		SD_CONF_BSET_RST_RETRIES|
616 		SD_CONF_BSET_MIN_THROTTLE|
617 		SD_CONF_BSET_DISKSORT_DISABLED|
618 		SD_CONF_BSET_LUN_RESET_ENABLED,
619 		&pirus_properties },
620 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
625 #endif /* fibre or NON-sparc platforms */
626 #if ((defined(__sparc) && !defined(__fibre)) ||\
627 	(defined(__i386) || defined(__amd64)))
628 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
629 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
630 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
631 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
632 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
633 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
634 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
635 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
636 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
637 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
638 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
639 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
640 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
641 	    &symbios_properties },
642 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
643 	    &lsi_properties_scsi },
644 #if defined(__i386) || defined(__amd64)
645 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
646 				    | SD_CONF_BSET_READSUB_BCD
647 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
648 				    | SD_CONF_BSET_NO_READ_HEADER
649 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
650 
651 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
652 				    | SD_CONF_BSET_READSUB_BCD
653 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
654 				    | SD_CONF_BSET_NO_READ_HEADER
655 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
656 #endif /* __i386 || __amd64 */
657 #endif /* sparc NON-fibre or NON-sparc platforms */
658 
659 #if (defined(SD_PROP_TST))
660 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
661 				| SD_CONF_BSET_CTYPE
662 				| SD_CONF_BSET_NRR_COUNT
663 				| SD_CONF_BSET_FAB_DEVID
664 				| SD_CONF_BSET_NOCACHE
665 				| SD_CONF_BSET_BSY_RETRY_COUNT
666 				| SD_CONF_BSET_PLAYMSF_BCD
667 				| SD_CONF_BSET_READSUB_BCD
668 				| SD_CONF_BSET_READ_TOC_TRK_BCD
669 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
670 				| SD_CONF_BSET_NO_READ_HEADER
671 				| SD_CONF_BSET_READ_CD_XD4
672 				| SD_CONF_BSET_RST_RETRIES
673 				| SD_CONF_BSET_RSV_REL_TIME
674 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
675 #endif
676 };
677 
678 static const int sd_disk_table_size =
679 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
680 
681 
682 /*
683  * Return codes of sd_uselabel().
684  */
685 #define	SD_LABEL_IS_VALID		0
686 #define	SD_LABEL_IS_INVALID		1
687 
688 #define	SD_INTERCONNECT_PARALLEL	0
689 #define	SD_INTERCONNECT_FABRIC		1
690 #define	SD_INTERCONNECT_FIBRE		2
691 #define	SD_INTERCONNECT_SSA		3
692 #define	SD_IS_PARALLEL_SCSI(un)		\
693 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
694 
695 /*
696  * Definitions used by device id registration routines
697  */
698 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
699 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
700 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
701 #define	WD_NODE			7	/* the whole disk minor */
702 
703 static kmutex_t sd_sense_mutex = {0};
704 
705 /*
706  * Macros for updates of the driver state
707  */
708 #define	New_state(un, s)        \
709 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
710 #define	Restore_state(un)	\
711 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
712 
713 static struct sd_cdbinfo sd_cdbtab[] = {
714 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
715 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
716 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
717 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
718 };
719 
720 /*
721  * Specifies the number of seconds that must have elapsed since the last
722  * cmd. has completed for a device to be declared idle to the PM framework.
723  */
724 static int sd_pm_idletime = 1;
725 
726 /*
727  * Internal function prototypes
728  */
729 
730 #if (defined(__fibre))
731 /*
732  * These #defines are to avoid namespace collisions that occur because this
733  * code is currently used to compile two seperate driver modules: sd and ssd.
734  * All function names need to be treated this way (even if declared static)
735  * in order to allow the debugger to resolve the names properly.
736  * It is anticipated that in the near future the ssd module will be obsoleted,
737  * at which time this ugliness should go away.
738  */
739 #define	sd_log_trace			ssd_log_trace
740 #define	sd_log_info			ssd_log_info
741 #define	sd_log_err			ssd_log_err
742 #define	sdprobe				ssdprobe
743 #define	sdinfo				ssdinfo
744 #define	sd_prop_op			ssd_prop_op
745 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
746 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
747 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
748 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
749 #define	sd_spin_up_unit			ssd_spin_up_unit
750 #define	sd_enable_descr_sense		ssd_enable_descr_sense
751 #define	sd_set_mmc_caps			ssd_set_mmc_caps
752 #define	sd_read_unit_properties		ssd_read_unit_properties
753 #define	sd_process_sdconf_file		ssd_process_sdconf_file
754 #define	sd_process_sdconf_table		ssd_process_sdconf_table
755 #define	sd_sdconf_id_match		ssd_sdconf_id_match
756 #define	sd_blank_cmp			ssd_blank_cmp
757 #define	sd_chk_vers1_data		ssd_chk_vers1_data
758 #define	sd_set_vers1_properties		ssd_set_vers1_properties
759 #define	sd_validate_geometry		ssd_validate_geometry
760 
761 #if defined(_SUNOS_VTOC_16)
762 #define	sd_convert_geometry		ssd_convert_geometry
763 #endif
764 
765 #define	sd_resync_geom_caches		ssd_resync_geom_caches
766 #define	sd_read_fdisk			ssd_read_fdisk
767 #define	sd_get_physical_geometry	ssd_get_physical_geometry
768 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
769 #define	sd_update_block_info		ssd_update_block_info
770 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
771 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
772 #define	sd_validate_efi			ssd_validate_efi
773 #define	sd_use_efi			ssd_use_efi
774 #define	sd_uselabel			ssd_uselabel
775 #define	sd_build_default_label		ssd_build_default_label
776 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
777 #define	sd_inq_fill			ssd_inq_fill
778 #define	sd_register_devid		ssd_register_devid
779 #define	sd_get_devid_block		ssd_get_devid_block
780 #define	sd_get_devid			ssd_get_devid
781 #define	sd_create_devid			ssd_create_devid
782 #define	sd_write_deviceid		ssd_write_deviceid
783 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
784 #define	sd_setup_pm			ssd_setup_pm
785 #define	sd_create_pm_components		ssd_create_pm_components
786 #define	sd_ddi_suspend			ssd_ddi_suspend
787 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
788 #define	sd_ddi_resume			ssd_ddi_resume
789 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
790 #define	sdpower				ssdpower
791 #define	sdattach			ssdattach
792 #define	sddetach			ssddetach
793 #define	sd_unit_attach			ssd_unit_attach
794 #define	sd_unit_detach			ssd_unit_detach
795 #define	sd_create_minor_nodes		ssd_create_minor_nodes
796 #define	sd_create_errstats		ssd_create_errstats
797 #define	sd_set_errstats			ssd_set_errstats
798 #define	sd_set_pstats			ssd_set_pstats
799 #define	sddump				ssddump
800 #define	sd_scsi_poll			ssd_scsi_poll
801 #define	sd_send_polled_RQS		ssd_send_polled_RQS
802 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
803 #define	sd_init_event_callbacks		ssd_init_event_callbacks
804 #define	sd_event_callback		ssd_event_callback
805 #define	sd_disable_caching		ssd_disable_caching
806 #define	sd_make_device			ssd_make_device
807 #define	sdopen				ssdopen
808 #define	sdclose				ssdclose
809 #define	sd_ready_and_valid		ssd_ready_and_valid
810 #define	sdmin				ssdmin
811 #define	sdread				ssdread
812 #define	sdwrite				ssdwrite
813 #define	sdaread				ssdaread
814 #define	sdawrite			ssdawrite
815 #define	sdstrategy			ssdstrategy
816 #define	sdioctl				ssdioctl
817 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
818 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
819 #define	sd_checksum_iostart		ssd_checksum_iostart
820 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
821 #define	sd_pm_iostart			ssd_pm_iostart
822 #define	sd_core_iostart			ssd_core_iostart
823 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
824 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
825 #define	sd_checksum_iodone		ssd_checksum_iodone
826 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
827 #define	sd_pm_iodone			ssd_pm_iodone
828 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
829 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
830 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
831 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
832 #define	sd_buf_iodone			ssd_buf_iodone
833 #define	sd_uscsi_strategy		ssd_uscsi_strategy
834 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
835 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
836 #define	sd_uscsi_iodone			ssd_uscsi_iodone
837 #define	sd_xbuf_strategy		ssd_xbuf_strategy
838 #define	sd_xbuf_init			ssd_xbuf_init
839 #define	sd_pm_entry			ssd_pm_entry
840 #define	sd_pm_exit			ssd_pm_exit
841 
842 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
843 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
844 
845 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
846 #define	sdintr				ssdintr
847 #define	sd_start_cmds			ssd_start_cmds
848 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
849 #define	sd_bioclone_alloc		ssd_bioclone_alloc
850 #define	sd_bioclone_free		ssd_bioclone_free
851 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
852 #define	sd_shadow_buf_free		ssd_shadow_buf_free
853 #define	sd_print_transport_rejected_message	\
854 					ssd_print_transport_rejected_message
855 #define	sd_retry_command		ssd_retry_command
856 #define	sd_set_retry_bp			ssd_set_retry_bp
857 #define	sd_send_request_sense_command	ssd_send_request_sense_command
858 #define	sd_start_retry_command		ssd_start_retry_command
859 #define	sd_start_direct_priority_command	\
860 					ssd_start_direct_priority_command
861 #define	sd_return_failed_command	ssd_return_failed_command
862 #define	sd_return_failed_command_no_restart	\
863 					ssd_return_failed_command_no_restart
864 #define	sd_return_command		ssd_return_command
865 #define	sd_sync_with_callback		ssd_sync_with_callback
866 #define	sdrunout			ssdrunout
867 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
868 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
869 #define	sd_reduce_throttle		ssd_reduce_throttle
870 #define	sd_restore_throttle		ssd_restore_throttle
871 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
872 #define	sd_init_cdb_limits		ssd_init_cdb_limits
873 #define	sd_pkt_status_good		ssd_pkt_status_good
874 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
875 #define	sd_pkt_status_busy		ssd_pkt_status_busy
876 #define	sd_pkt_status_reservation_conflict	\
877 					ssd_pkt_status_reservation_conflict
878 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
879 #define	sd_handle_request_sense		ssd_handle_request_sense
880 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
881 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
882 #define	sd_validate_sense_data		ssd_validate_sense_data
883 #define	sd_decode_sense			ssd_decode_sense
884 #define	sd_print_sense_msg		ssd_print_sense_msg
885 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
886 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
887 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
888 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
889 #define	sd_sense_key_medium_or_hardware_error	\
890 					ssd_sense_key_medium_or_hardware_error
891 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
892 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
893 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
894 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
895 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
896 #define	sd_sense_key_default		ssd_sense_key_default
897 #define	sd_print_retry_msg		ssd_print_retry_msg
898 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
899 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
900 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
901 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
902 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
903 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
904 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
905 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
906 #define	sd_pkt_reason_default		ssd_pkt_reason_default
907 #define	sd_reset_target			ssd_reset_target
908 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
909 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
910 #define	sd_taskq_create			ssd_taskq_create
911 #define	sd_taskq_delete			ssd_taskq_delete
912 #define	sd_media_change_task		ssd_media_change_task
913 #define	sd_handle_mchange		ssd_handle_mchange
914 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
915 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
916 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
917 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
918 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
919 					sd_send_scsi_feature_GET_CONFIGURATION
920 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
921 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
922 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
923 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
924 					ssd_send_scsi_PERSISTENT_RESERVE_IN
925 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
926 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
927 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
928 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
929 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
930 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
931 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
932 #define	sd_alloc_rqs			ssd_alloc_rqs
933 #define	sd_free_rqs			ssd_free_rqs
934 #define	sd_dump_memory			ssd_dump_memory
935 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
936 #define	sd_get_media_info		ssd_get_media_info
937 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
938 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
939 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
940 #define	sd_dkio_get_partition		ssd_dkio_get_partition
941 #define	sd_dkio_set_partition		ssd_dkio_set_partition
942 #define	sd_dkio_partition		ssd_dkio_partition
943 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
944 #define	sd_dkio_get_efi			ssd_dkio_get_efi
945 #define	sd_build_user_vtoc		ssd_build_user_vtoc
946 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
947 #define	sd_dkio_set_efi			ssd_dkio_set_efi
948 #define	sd_build_label_vtoc		ssd_build_label_vtoc
949 #define	sd_write_label			ssd_write_label
950 #define	sd_clear_vtoc			ssd_clear_vtoc
951 #define	sd_clear_efi			ssd_clear_efi
952 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
953 #define	sd_setup_next_xfer		ssd_setup_next_xfer
954 #define	sd_dkio_get_temp		ssd_dkio_get_temp
955 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
956 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
957 #define	sd_setup_default_geometry	ssd_setup_default_geometry
958 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
959 #define	sd_check_mhd			ssd_check_mhd
960 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
961 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
962 #define	sd_sname			ssd_sname
963 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
964 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
965 #define	sd_take_ownership		ssd_take_ownership
966 #define	sd_reserve_release		ssd_reserve_release
967 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
968 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
969 #define	sd_persistent_reservation_in_read_keys	\
970 					ssd_persistent_reservation_in_read_keys
971 #define	sd_persistent_reservation_in_read_resv	\
972 					ssd_persistent_reservation_in_read_resv
973 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
974 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
975 #define	sd_mhdioc_release		ssd_mhdioc_release
976 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
977 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
978 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
979 #define	sr_change_blkmode		ssr_change_blkmode
980 #define	sr_change_speed			ssr_change_speed
981 #define	sr_atapi_change_speed		ssr_atapi_change_speed
982 #define	sr_pause_resume			ssr_pause_resume
983 #define	sr_play_msf			ssr_play_msf
984 #define	sr_play_trkind			ssr_play_trkind
985 #define	sr_read_all_subcodes		ssr_read_all_subcodes
986 #define	sr_read_subchannel		ssr_read_subchannel
987 #define	sr_read_tocentry		ssr_read_tocentry
988 #define	sr_read_tochdr			ssr_read_tochdr
989 #define	sr_read_cdda			ssr_read_cdda
990 #define	sr_read_cdxa			ssr_read_cdxa
991 #define	sr_read_mode1			ssr_read_mode1
992 #define	sr_read_mode2			ssr_read_mode2
993 #define	sr_read_cd_mode2		ssr_read_cd_mode2
994 #define	sr_sector_mode			ssr_sector_mode
995 #define	sr_eject			ssr_eject
996 #define	sr_ejected			ssr_ejected
997 #define	sr_check_wp			ssr_check_wp
998 #define	sd_check_media			ssd_check_media
999 #define	sd_media_watch_cb		ssd_media_watch_cb
1000 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1001 #define	sr_volume_ctrl			ssr_volume_ctrl
1002 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1003 #define	sd_log_page_supported		ssd_log_page_supported
1004 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1005 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1006 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1007 #define	sd_range_lock			ssd_range_lock
1008 #define	sd_get_range			ssd_get_range
1009 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1010 #define	sd_range_unlock			ssd_range_unlock
1011 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1012 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1013 
1014 #define	sd_iostart_chain		ssd_iostart_chain
1015 #define	sd_iodone_chain			ssd_iodone_chain
1016 #define	sd_initpkt_map			ssd_initpkt_map
1017 #define	sd_destroypkt_map		ssd_destroypkt_map
1018 #define	sd_chain_type_map		ssd_chain_type_map
1019 #define	sd_chain_index_map		ssd_chain_index_map
1020 
1021 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1022 #define	sd_failfast_flushq		ssd_failfast_flushq
1023 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1024 
1025 #endif	/* #if (defined(__fibre)) */
1026 
1027 
1028 int _init(void);
1029 int _fini(void);
1030 int _info(struct modinfo *modinfop);
1031 
1032 /*PRINTFLIKE3*/
1033 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1034 /*PRINTFLIKE3*/
1035 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1036 /*PRINTFLIKE3*/
1037 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1038 
1039 static int sdprobe(dev_info_t *devi);
1040 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1041     void **result);
1042 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1043     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1044 
1045 /*
1046  * Smart probe for parallel scsi
1047  */
1048 static void sd_scsi_probe_cache_init(void);
1049 static void sd_scsi_probe_cache_fini(void);
1050 static void sd_scsi_clear_probe_cache(void);
1051 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1052 
1053 static int	sd_spin_up_unit(struct sd_lun *un);
1054 static void	sd_enable_descr_sense(struct sd_lun *un);
1055 static void	sd_set_mmc_caps(struct sd_lun *un);
1056 
1057 static void sd_read_unit_properties(struct sd_lun *un);
1058 static int  sd_process_sdconf_file(struct sd_lun *un);
1059 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1060     int *data_list, sd_tunables *values);
1061 static void sd_process_sdconf_table(struct sd_lun *un);
1062 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1063 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1064 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1065 	int list_len, char *dataname_ptr);
1066 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1067     sd_tunables *prop_list);
1068 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1069 
1070 #if defined(_SUNOS_VTOC_16)
1071 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1072 #endif
1073 
1074 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1075 	int path_flag);
1076 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1077 	int path_flag);
1078 static void sd_get_physical_geometry(struct sd_lun *un,
1079 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1080 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1081 	int lbasize);
1082 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1083 static void sd_swap_efi_gpt(efi_gpt_t *);
1084 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1085 static int sd_validate_efi(efi_gpt_t *);
1086 static int sd_use_efi(struct sd_lun *, int);
1087 static void sd_build_default_label(struct sd_lun *un);
1088 
1089 #if defined(_FIRMWARE_NEEDS_FDISK)
1090 static int  sd_has_max_chs_vals(struct ipart *fdp);
1091 #endif
1092 static void sd_inq_fill(char *p, int l, char *s);
1093 
1094 
1095 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1096     int reservation_flag);
1097 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1098 static int  sd_get_devid(struct sd_lun *un);
1099 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1100 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1101 static int  sd_write_deviceid(struct sd_lun *un);
1102 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1103 static int  sd_check_vpd_page_support(struct sd_lun *un);
1104 
1105 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1106 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1107 
1108 static int  sd_ddi_suspend(dev_info_t *devi);
1109 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1110 static int  sd_ddi_resume(dev_info_t *devi);
1111 static int  sd_ddi_pm_resume(struct sd_lun *un);
1112 static int  sdpower(dev_info_t *devi, int component, int level);
1113 
1114 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1115 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1116 static int  sd_unit_attach(dev_info_t *devi);
1117 static int  sd_unit_detach(dev_info_t *devi);
1118 
1119 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1120 static void sd_create_errstats(struct sd_lun *un, int instance);
1121 static void sd_set_errstats(struct sd_lun *un);
1122 static void sd_set_pstats(struct sd_lun *un);
1123 
1124 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1125 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1126 static int  sd_send_polled_RQS(struct sd_lun *un);
1127 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1128 
1129 #if (defined(__fibre))
1130 /*
1131  * Event callbacks (photon)
1132  */
1133 static void sd_init_event_callbacks(struct sd_lun *un);
1134 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1135 #endif
1136 
1137 
1138 static int   sd_disable_caching(struct sd_lun *un);
1139 static dev_t sd_make_device(dev_info_t *devi);
1140 
1141 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1142 	uint64_t capacity);
1143 
1144 /*
1145  * Driver entry point functions.
1146  */
1147 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1148 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1149 static int  sd_ready_and_valid(struct sd_lun *un);
1150 
1151 static void sdmin(struct buf *bp);
1152 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1153 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1154 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1155 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1156 
1157 static int sdstrategy(struct buf *bp);
1158 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1159 
1160 /*
1161  * Function prototypes for layering functions in the iostart chain.
1162  */
1163 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1164 	struct buf *bp);
1165 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1166 	struct buf *bp);
1167 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1168 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1169 	struct buf *bp);
1170 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1171 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1172 
1173 /*
1174  * Function prototypes for layering functions in the iodone chain.
1175  */
1176 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1177 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1178 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1179 	struct buf *bp);
1180 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1181 	struct buf *bp);
1182 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1183 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1184 	struct buf *bp);
1185 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1186 
1187 /*
1188  * Prototypes for functions to support buf(9S) based IO.
1189  */
1190 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1191 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1192 static void sd_destroypkt_for_buf(struct buf *);
1193 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1194 	struct buf *bp, int flags,
1195 	int (*callback)(caddr_t), caddr_t callback_arg,
1196 	diskaddr_t lba, uint32_t blockcount);
1197 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1198 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1199 
1200 /*
1201  * Prototypes for functions to support USCSI IO.
1202  */
1203 static int sd_uscsi_strategy(struct buf *bp);
1204 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1205 static void sd_destroypkt_for_uscsi(struct buf *);
1206 
1207 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1208 	uchar_t chain_type, void *pktinfop);
1209 
1210 static int  sd_pm_entry(struct sd_lun *un);
1211 static void sd_pm_exit(struct sd_lun *un);
1212 
1213 static void sd_pm_idletimeout_handler(void *arg);
1214 
1215 /*
1216  * sd_core internal functions (used at the sd_core_io layer).
1217  */
1218 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1219 static void sdintr(struct scsi_pkt *pktp);
1220 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1221 
1222 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1223 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1224 	int path_flag);
1225 
1226 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1227 	daddr_t blkno, int (*func)(struct buf *));
1228 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1229 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1230 static void sd_bioclone_free(struct buf *bp);
1231 static void sd_shadow_buf_free(struct buf *bp);
1232 
1233 static void sd_print_transport_rejected_message(struct sd_lun *un,
1234 	struct sd_xbuf *xp, int code);
1235 
1236 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1237 	int retry_check_flag,
1238 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1239 		int c),
1240 	void *user_arg, int failure_code,  clock_t retry_delay,
1241 	void (*statp)(kstat_io_t *));
1242 
1243 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1244 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1245 
1246 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1247 	struct scsi_pkt *pktp);
1248 static void sd_start_retry_command(void *arg);
1249 static void sd_start_direct_priority_command(void *arg);
1250 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1251 	int errcode);
1252 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1253 	struct buf *bp, int errcode);
1254 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1255 static void sd_sync_with_callback(struct sd_lun *un);
1256 static int sdrunout(caddr_t arg);
1257 
1258 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1259 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1260 
1261 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1262 static void sd_restore_throttle(void *arg);
1263 
1264 static void sd_init_cdb_limits(struct sd_lun *un);
1265 
1266 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1267 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1268 
1269 /*
1270  * Error handling functions
1271  */
1272 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1273 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1274 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1275 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1276 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1277 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1278 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1279 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1280 
1281 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1282 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1283 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1284 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1285 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1286 	struct sd_xbuf *xp);
1287 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1288 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1289 
1290 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1291 	void *arg, int code);
1292 static diskaddr_t sd_extract_sense_info_descr(
1293 	struct scsi_descr_sense_hdr *sdsp);
1294 
1295 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1296 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1297 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1298 	uint8_t asc,
1299 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1300 static void sd_sense_key_not_ready(struct sd_lun *un,
1301 	uint8_t asc, uint8_t ascq,
1302 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1303 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1304 	int sense_key, uint8_t asc,
1305 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1306 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1307 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1308 static void sd_sense_key_unit_attention(struct sd_lun *un,
1309 	uint8_t asc,
1310 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1311 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1312 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1313 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1314 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1315 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1316 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1317 static void sd_sense_key_default(struct sd_lun *un,
1318 	int sense_key,
1319 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1320 
1321 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1322 	void *arg, int flag);
1323 
1324 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1325 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1326 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1327 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1328 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1330 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1334 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 
1341 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1342 
1343 static void sd_start_stop_unit_callback(void *arg);
1344 static void sd_start_stop_unit_task(void *arg);
1345 
1346 static void sd_taskq_create(void);
1347 static void sd_taskq_delete(void);
1348 static void sd_media_change_task(void *arg);
1349 
1350 static int sd_handle_mchange(struct sd_lun *un);
1351 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1352 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1353 	uint32_t *lbap, int path_flag);
1354 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1355 	uint32_t *lbap, int path_flag);
1356 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1357 	int path_flag);
1358 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1359 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1360 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1361 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1362 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1363 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1364 	uchar_t usr_cmd, uchar_t *usr_bufp);
1365 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un);
1366 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1367 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1368 	uchar_t *bufaddr, uint_t buflen);
1369 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1370 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1371 	uchar_t *bufaddr, uint_t buflen, char feature);
1372 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1373 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1374 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1375 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1376 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1377 	size_t buflen, daddr_t start_block, int path_flag);
1378 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1379 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1380 	path_flag)
1381 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1382 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1383 	path_flag)
1384 
1385 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1386 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1387 	uint16_t param_ptr, int path_flag);
1388 
1389 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1390 static void sd_free_rqs(struct sd_lun *un);
1391 
1392 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1393 	uchar_t *data, int len, int fmt);
1394 
1395 /*
1396  * Disk Ioctl Function Prototypes
1397  */
1398 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1399 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1400 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1401 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1402 	int geom_validated);
1403 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1404 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1405 	int geom_validated);
1406 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1407 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1408 	int geom_validated);
1409 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1410 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1411 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1412 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1413 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1414 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1415 static int sd_write_label(dev_t dev);
1416 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1417 static void sd_clear_vtoc(struct sd_lun *un);
1418 static void sd_clear_efi(struct sd_lun *un);
1419 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1420 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1421 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1422 static void sd_setup_default_geometry(struct sd_lun *un);
1423 #if defined(__i386) || defined(__amd64)
1424 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1425 #endif
1426 
1427 /*
1428  * Multi-host Ioctl Prototypes
1429  */
1430 static int sd_check_mhd(dev_t dev, int interval);
1431 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1432 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1433 static char *sd_sname(uchar_t status);
1434 static void sd_mhd_resvd_recover(void *arg);
1435 static void sd_resv_reclaim_thread();
1436 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1437 static int sd_reserve_release(dev_t dev, int cmd);
1438 static void sd_rmv_resv_reclaim_req(dev_t dev);
1439 static void sd_mhd_reset_notify_cb(caddr_t arg);
1440 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1441 	mhioc_inkeys_t *usrp, int flag);
1442 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1443 	mhioc_inresvs_t *usrp, int flag);
1444 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1445 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1446 static int sd_mhdioc_release(dev_t dev);
1447 static int sd_mhdioc_register_devid(dev_t dev);
1448 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1449 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1450 
1451 /*
1452  * SCSI removable prototypes
1453  */
1454 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1455 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1456 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1457 static int sr_pause_resume(dev_t dev, int mode);
1458 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1459 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1460 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1461 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1462 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1463 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1464 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1465 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1466 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1467 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1468 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1469 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1470 static int sr_eject(dev_t dev);
1471 static void sr_ejected(register struct sd_lun *un);
1472 static int sr_check_wp(dev_t dev);
1473 static int sd_check_media(dev_t dev, enum dkio_state state);
1474 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1475 static void sd_delayed_cv_broadcast(void *arg);
1476 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1477 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1478 
1479 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1480 
1481 /*
1482  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1483  */
1484 static void sd_check_for_writable_cd(struct sd_lun *un);
1485 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1486 static void sd_wm_cache_destructor(void *wm, void *un);
1487 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1488 	daddr_t endb, ushort_t typ);
1489 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1490 	daddr_t endb);
1491 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1492 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1493 static void sd_read_modify_write_task(void * arg);
1494 static int
1495 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1496 	struct buf **bpp);
1497 
1498 
1499 /*
1500  * Function prototypes for failfast support.
1501  */
1502 static void sd_failfast_flushq(struct sd_lun *un);
1503 static int sd_failfast_flushq_callback(struct buf *bp);
1504 
1505 /*
1506  * Function prototypes for x86 support
1507  */
1508 #if defined(__i386) || defined(__amd64)
1509 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1510 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1511 #endif
1512 
1513 /*
1514  * Constants for failfast support:
1515  *
1516  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1517  * failfast processing being performed.
1518  *
1519  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1520  * failfast processing on all bufs with B_FAILFAST set.
1521  */
1522 
1523 #define	SD_FAILFAST_INACTIVE		0
1524 #define	SD_FAILFAST_ACTIVE		1
1525 
1526 /*
1527  * Bitmask to control behavior of buf(9S) flushes when a transition to
1528  * the failfast state occurs. Optional bits include:
1529  *
1530  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1531  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1532  * be flushed.
1533  *
1534  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1535  * driver, in addition to the regular wait queue. This includes the xbuf
1536  * queues. When clear, only the driver's wait queue will be flushed.
1537  */
1538 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1539 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1540 
1541 /*
1542  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1543  * to flush all queues within the driver.
1544  */
1545 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1546 
1547 
1548 /*
1549  * SD Testing Fault Injection
1550  */
1551 #ifdef SD_FAULT_INJECTION
1552 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1553 static void sd_faultinjection(struct scsi_pkt *pktp);
1554 static void sd_injection_log(char *buf, struct sd_lun *un);
1555 #endif
1556 
1557 /*
1558  * Device driver ops vector
1559  */
1560 static struct cb_ops sd_cb_ops = {
1561 	sdopen,			/* open */
1562 	sdclose,		/* close */
1563 	sdstrategy,		/* strategy */
1564 	nodev,			/* print */
1565 	sddump,			/* dump */
1566 	sdread,			/* read */
1567 	sdwrite,		/* write */
1568 	sdioctl,		/* ioctl */
1569 	nodev,			/* devmap */
1570 	nodev,			/* mmap */
1571 	nodev,			/* segmap */
1572 	nochpoll,		/* poll */
1573 	sd_prop_op,		/* cb_prop_op */
1574 	0,			/* streamtab  */
1575 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1576 	CB_REV,			/* cb_rev */
1577 	sdaread, 		/* async I/O read entry point */
1578 	sdawrite		/* async I/O write entry point */
1579 };
1580 
1581 static struct dev_ops sd_ops = {
1582 	DEVO_REV,		/* devo_rev, */
1583 	0,			/* refcnt  */
1584 	sdinfo,			/* info */
1585 	nulldev,		/* identify */
1586 	sdprobe,		/* probe */
1587 	sdattach,		/* attach */
1588 	sddetach,		/* detach */
1589 	nodev,			/* reset */
1590 	&sd_cb_ops,		/* driver operations */
1591 	NULL,			/* bus operations */
1592 	sdpower			/* power */
1593 };
1594 
1595 
1596 /*
1597  * This is the loadable module wrapper.
1598  */
1599 #include <sys/modctl.h>
1600 
1601 static struct modldrv modldrv = {
1602 	&mod_driverops,		/* Type of module. This one is a driver */
1603 	SD_MODULE_NAME,		/* Module name. */
1604 	&sd_ops			/* driver ops */
1605 };
1606 
1607 
1608 static struct modlinkage modlinkage = {
1609 	MODREV_1,
1610 	&modldrv,
1611 	NULL
1612 };
1613 
1614 
1615 static struct scsi_asq_key_strings sd_additional_codes[] = {
1616 	0x81, 0, "Logical Unit is Reserved",
1617 	0x85, 0, "Audio Address Not Valid",
1618 	0xb6, 0, "Media Load Mechanism Failed",
1619 	0xB9, 0, "Audio Play Operation Aborted",
1620 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1621 	0x53, 2, "Medium removal prevented",
1622 	0x6f, 0, "Authentication failed during key exchange",
1623 	0x6f, 1, "Key not present",
1624 	0x6f, 2, "Key not established",
1625 	0x6f, 3, "Read without proper authentication",
1626 	0x6f, 4, "Mismatched region to this logical unit",
1627 	0x6f, 5, "Region reset count error",
1628 	0xffff, 0x0, NULL
1629 };
1630 
1631 
1632 /*
1633  * Struct for passing printing information for sense data messages
1634  */
1635 struct sd_sense_info {
1636 	int	ssi_severity;
1637 	int	ssi_pfa_flag;
1638 };
1639 
1640 /*
1641  * Table of function pointers for iostart-side routines. Seperate "chains"
1642  * of layered function calls are formed by placing the function pointers
1643  * sequentially in the desired order. Functions are called according to an
1644  * incrementing table index ordering. The last function in each chain must
1645  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1646  * in the sd_iodone_chain[] array.
1647  *
1648  * Note: It may seem more natural to organize both the iostart and iodone
1649  * functions together, into an array of structures (or some similar
1650  * organization) with a common index, rather than two seperate arrays which
1651  * must be maintained in synchronization. The purpose of this division is
1652  * to achiece improved performance: individual arrays allows for more
1653  * effective cache line utilization on certain platforms.
1654  */
1655 
1656 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1657 
1658 
1659 static sd_chain_t sd_iostart_chain[] = {
1660 
1661 	/* Chain for buf IO for disk drive targets (PM enabled) */
1662 	sd_mapblockaddr_iostart,	/* Index: 0 */
1663 	sd_pm_iostart,			/* Index: 1 */
1664 	sd_core_iostart,		/* Index: 2 */
1665 
1666 	/* Chain for buf IO for disk drive targets (PM disabled) */
1667 	sd_mapblockaddr_iostart,	/* Index: 3 */
1668 	sd_core_iostart,		/* Index: 4 */
1669 
1670 	/* Chain for buf IO for removable-media targets (PM enabled) */
1671 	sd_mapblockaddr_iostart,	/* Index: 5 */
1672 	sd_mapblocksize_iostart,	/* Index: 6 */
1673 	sd_pm_iostart,			/* Index: 7 */
1674 	sd_core_iostart,		/* Index: 8 */
1675 
1676 	/* Chain for buf IO for removable-media targets (PM disabled) */
1677 	sd_mapblockaddr_iostart,	/* Index: 9 */
1678 	sd_mapblocksize_iostart,	/* Index: 10 */
1679 	sd_core_iostart,		/* Index: 11 */
1680 
1681 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1682 	sd_mapblockaddr_iostart,	/* Index: 12 */
1683 	sd_checksum_iostart,		/* Index: 13 */
1684 	sd_pm_iostart,			/* Index: 14 */
1685 	sd_core_iostart,		/* Index: 15 */
1686 
1687 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1688 	sd_mapblockaddr_iostart,	/* Index: 16 */
1689 	sd_checksum_iostart,		/* Index: 17 */
1690 	sd_core_iostart,		/* Index: 18 */
1691 
1692 	/* Chain for USCSI commands (all targets) */
1693 	sd_pm_iostart,			/* Index: 19 */
1694 	sd_core_iostart,		/* Index: 20 */
1695 
1696 	/* Chain for checksumming USCSI commands (all targets) */
1697 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1698 	sd_pm_iostart,			/* Index: 22 */
1699 	sd_core_iostart,		/* Index: 23 */
1700 
1701 	/* Chain for "direct" USCSI commands (all targets) */
1702 	sd_core_iostart,		/* Index: 24 */
1703 
1704 	/* Chain for "direct priority" USCSI commands (all targets) */
1705 	sd_core_iostart,		/* Index: 25 */
1706 };
1707 
1708 /*
1709  * Macros to locate the first function of each iostart chain in the
1710  * sd_iostart_chain[] array. These are located by the index in the array.
1711  */
1712 #define	SD_CHAIN_DISK_IOSTART			0
1713 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1714 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1715 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1716 #define	SD_CHAIN_CHKSUM_IOSTART			12
1717 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1718 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1719 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1720 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1721 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1722 
1723 
1724 /*
1725  * Table of function pointers for the iodone-side routines for the driver-
1726  * internal layering mechanism.  The calling sequence for iodone routines
1727  * uses a decrementing table index, so the last routine called in a chain
1728  * must be at the lowest array index location for that chain.  The last
1729  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1730  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1731  * of the functions in an iodone side chain must correspond to the ordering
1732  * of the iostart routines for that chain.  Note that there is no iodone
1733  * side routine that corresponds to sd_core_iostart(), so there is no
1734  * entry in the table for this.
1735  */
1736 
1737 static sd_chain_t sd_iodone_chain[] = {
1738 
1739 	/* Chain for buf IO for disk drive targets (PM enabled) */
1740 	sd_buf_iodone,			/* Index: 0 */
1741 	sd_mapblockaddr_iodone,		/* Index: 1 */
1742 	sd_pm_iodone,			/* Index: 2 */
1743 
1744 	/* Chain for buf IO for disk drive targets (PM disabled) */
1745 	sd_buf_iodone,			/* Index: 3 */
1746 	sd_mapblockaddr_iodone,		/* Index: 4 */
1747 
1748 	/* Chain for buf IO for removable-media targets (PM enabled) */
1749 	sd_buf_iodone,			/* Index: 5 */
1750 	sd_mapblockaddr_iodone,		/* Index: 6 */
1751 	sd_mapblocksize_iodone,		/* Index: 7 */
1752 	sd_pm_iodone,			/* Index: 8 */
1753 
1754 	/* Chain for buf IO for removable-media targets (PM disabled) */
1755 	sd_buf_iodone,			/* Index: 9 */
1756 	sd_mapblockaddr_iodone,		/* Index: 10 */
1757 	sd_mapblocksize_iodone,		/* Index: 11 */
1758 
1759 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1760 	sd_buf_iodone,			/* Index: 12 */
1761 	sd_mapblockaddr_iodone,		/* Index: 13 */
1762 	sd_checksum_iodone,		/* Index: 14 */
1763 	sd_pm_iodone,			/* Index: 15 */
1764 
1765 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1766 	sd_buf_iodone,			/* Index: 16 */
1767 	sd_mapblockaddr_iodone,		/* Index: 17 */
1768 	sd_checksum_iodone,		/* Index: 18 */
1769 
1770 	/* Chain for USCSI commands (non-checksum targets) */
1771 	sd_uscsi_iodone,		/* Index: 19 */
1772 	sd_pm_iodone,			/* Index: 20 */
1773 
1774 	/* Chain for USCSI commands (checksum targets) */
1775 	sd_uscsi_iodone,		/* Index: 21 */
1776 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1777 	sd_pm_iodone,			/* Index: 22 */
1778 
1779 	/* Chain for "direct" USCSI commands (all targets) */
1780 	sd_uscsi_iodone,		/* Index: 24 */
1781 
1782 	/* Chain for "direct priority" USCSI commands (all targets) */
1783 	sd_uscsi_iodone,		/* Index: 25 */
1784 };
1785 
1786 
1787 /*
1788  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1789  * each iodone-side chain. These are located by the array index, but as the
1790  * iodone side functions are called in a decrementing-index order, the
1791  * highest index number in each chain must be specified (as these correspond
1792  * to the first function in the iodone chain that will be called by the core
1793  * at IO completion time).
1794  */
1795 
1796 #define	SD_CHAIN_DISK_IODONE			2
1797 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1798 #define	SD_CHAIN_RMMEDIA_IODONE			8
1799 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1800 #define	SD_CHAIN_CHKSUM_IODONE			15
1801 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1802 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1803 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1804 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1805 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1806 
1807 
1808 
1809 
1810 /*
1811  * Array to map a layering chain index to the appropriate initpkt routine.
1812  * The redundant entries are present so that the index used for accessing
1813  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1814  * with this table as well.
1815  */
1816 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1817 
1818 static sd_initpkt_t	sd_initpkt_map[] = {
1819 
1820 	/* Chain for buf IO for disk drive targets (PM enabled) */
1821 	sd_initpkt_for_buf,		/* Index: 0 */
1822 	sd_initpkt_for_buf,		/* Index: 1 */
1823 	sd_initpkt_for_buf,		/* Index: 2 */
1824 
1825 	/* Chain for buf IO for disk drive targets (PM disabled) */
1826 	sd_initpkt_for_buf,		/* Index: 3 */
1827 	sd_initpkt_for_buf,		/* Index: 4 */
1828 
1829 	/* Chain for buf IO for removable-media targets (PM enabled) */
1830 	sd_initpkt_for_buf,		/* Index: 5 */
1831 	sd_initpkt_for_buf,		/* Index: 6 */
1832 	sd_initpkt_for_buf,		/* Index: 7 */
1833 	sd_initpkt_for_buf,		/* Index: 8 */
1834 
1835 	/* Chain for buf IO for removable-media targets (PM disabled) */
1836 	sd_initpkt_for_buf,		/* Index: 9 */
1837 	sd_initpkt_for_buf,		/* Index: 10 */
1838 	sd_initpkt_for_buf,		/* Index: 11 */
1839 
1840 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1841 	sd_initpkt_for_buf,		/* Index: 12 */
1842 	sd_initpkt_for_buf,		/* Index: 13 */
1843 	sd_initpkt_for_buf,		/* Index: 14 */
1844 	sd_initpkt_for_buf,		/* Index: 15 */
1845 
1846 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1847 	sd_initpkt_for_buf,		/* Index: 16 */
1848 	sd_initpkt_for_buf,		/* Index: 17 */
1849 	sd_initpkt_for_buf,		/* Index: 18 */
1850 
1851 	/* Chain for USCSI commands (non-checksum targets) */
1852 	sd_initpkt_for_uscsi,		/* Index: 19 */
1853 	sd_initpkt_for_uscsi,		/* Index: 20 */
1854 
1855 	/* Chain for USCSI commands (checksum targets) */
1856 	sd_initpkt_for_uscsi,		/* Index: 21 */
1857 	sd_initpkt_for_uscsi,		/* Index: 22 */
1858 	sd_initpkt_for_uscsi,		/* Index: 22 */
1859 
1860 	/* Chain for "direct" USCSI commands (all targets) */
1861 	sd_initpkt_for_uscsi,		/* Index: 24 */
1862 
1863 	/* Chain for "direct priority" USCSI commands (all targets) */
1864 	sd_initpkt_for_uscsi,		/* Index: 25 */
1865 
1866 };
1867 
1868 
1869 /*
1870  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1871  * The redundant entries are present so that the index used for accessing
1872  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1873  * with this table as well.
1874  */
1875 typedef void (*sd_destroypkt_t)(struct buf *);
1876 
1877 static sd_destroypkt_t	sd_destroypkt_map[] = {
1878 
1879 	/* Chain for buf IO for disk drive targets (PM enabled) */
1880 	sd_destroypkt_for_buf,		/* Index: 0 */
1881 	sd_destroypkt_for_buf,		/* Index: 1 */
1882 	sd_destroypkt_for_buf,		/* Index: 2 */
1883 
1884 	/* Chain for buf IO for disk drive targets (PM disabled) */
1885 	sd_destroypkt_for_buf,		/* Index: 3 */
1886 	sd_destroypkt_for_buf,		/* Index: 4 */
1887 
1888 	/* Chain for buf IO for removable-media targets (PM enabled) */
1889 	sd_destroypkt_for_buf,		/* Index: 5 */
1890 	sd_destroypkt_for_buf,		/* Index: 6 */
1891 	sd_destroypkt_for_buf,		/* Index: 7 */
1892 	sd_destroypkt_for_buf,		/* Index: 8 */
1893 
1894 	/* Chain for buf IO for removable-media targets (PM disabled) */
1895 	sd_destroypkt_for_buf,		/* Index: 9 */
1896 	sd_destroypkt_for_buf,		/* Index: 10 */
1897 	sd_destroypkt_for_buf,		/* Index: 11 */
1898 
1899 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1900 	sd_destroypkt_for_buf,		/* Index: 12 */
1901 	sd_destroypkt_for_buf,		/* Index: 13 */
1902 	sd_destroypkt_for_buf,		/* Index: 14 */
1903 	sd_destroypkt_for_buf,		/* Index: 15 */
1904 
1905 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1906 	sd_destroypkt_for_buf,		/* Index: 16 */
1907 	sd_destroypkt_for_buf,		/* Index: 17 */
1908 	sd_destroypkt_for_buf,		/* Index: 18 */
1909 
1910 	/* Chain for USCSI commands (non-checksum targets) */
1911 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1912 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1913 
1914 	/* Chain for USCSI commands (checksum targets) */
1915 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1916 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1917 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1918 
1919 	/* Chain for "direct" USCSI commands (all targets) */
1920 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1921 
1922 	/* Chain for "direct priority" USCSI commands (all targets) */
1923 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1924 
1925 };
1926 
1927 
1928 
1929 /*
1930  * Array to map a layering chain index to the appropriate chain "type".
1931  * The chain type indicates a specific property/usage of the chain.
1932  * The redundant entries are present so that the index used for accessing
1933  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1934  * with this table as well.
1935  */
1936 
1937 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1938 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1939 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1940 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1941 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1942 						/* (for error recovery) */
1943 
1944 static int sd_chain_type_map[] = {
1945 
1946 	/* Chain for buf IO for disk drive targets (PM enabled) */
1947 	SD_CHAIN_BUFIO,			/* Index: 0 */
1948 	SD_CHAIN_BUFIO,			/* Index: 1 */
1949 	SD_CHAIN_BUFIO,			/* Index: 2 */
1950 
1951 	/* Chain for buf IO for disk drive targets (PM disabled) */
1952 	SD_CHAIN_BUFIO,			/* Index: 3 */
1953 	SD_CHAIN_BUFIO,			/* Index: 4 */
1954 
1955 	/* Chain for buf IO for removable-media targets (PM enabled) */
1956 	SD_CHAIN_BUFIO,			/* Index: 5 */
1957 	SD_CHAIN_BUFIO,			/* Index: 6 */
1958 	SD_CHAIN_BUFIO,			/* Index: 7 */
1959 	SD_CHAIN_BUFIO,			/* Index: 8 */
1960 
1961 	/* Chain for buf IO for removable-media targets (PM disabled) */
1962 	SD_CHAIN_BUFIO,			/* Index: 9 */
1963 	SD_CHAIN_BUFIO,			/* Index: 10 */
1964 	SD_CHAIN_BUFIO,			/* Index: 11 */
1965 
1966 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1967 	SD_CHAIN_BUFIO,			/* Index: 12 */
1968 	SD_CHAIN_BUFIO,			/* Index: 13 */
1969 	SD_CHAIN_BUFIO,			/* Index: 14 */
1970 	SD_CHAIN_BUFIO,			/* Index: 15 */
1971 
1972 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1973 	SD_CHAIN_BUFIO,			/* Index: 16 */
1974 	SD_CHAIN_BUFIO,			/* Index: 17 */
1975 	SD_CHAIN_BUFIO,			/* Index: 18 */
1976 
1977 	/* Chain for USCSI commands (non-checksum targets) */
1978 	SD_CHAIN_USCSI,			/* Index: 19 */
1979 	SD_CHAIN_USCSI,			/* Index: 20 */
1980 
1981 	/* Chain for USCSI commands (checksum targets) */
1982 	SD_CHAIN_USCSI,			/* Index: 21 */
1983 	SD_CHAIN_USCSI,			/* Index: 22 */
1984 	SD_CHAIN_USCSI,			/* Index: 22 */
1985 
1986 	/* Chain for "direct" USCSI commands (all targets) */
1987 	SD_CHAIN_DIRECT,		/* Index: 24 */
1988 
1989 	/* Chain for "direct priority" USCSI commands (all targets) */
1990 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
1991 };
1992 
1993 
1994 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
1995 #define	SD_IS_BUFIO(xp)			\
1996 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
1997 
1998 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
1999 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2000 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2001 
2002 
2003 
2004 /*
2005  * Struct, array, and macros to map a specific chain to the appropriate
2006  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2007  *
2008  * The sd_chain_index_map[] array is used at attach time to set the various
2009  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2010  * chain to be used with the instance. This allows different instances to use
2011  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2012  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2013  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2014  * dynamically & without the use of locking; and (2) a layer may update the
2015  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2016  * to allow for deferred processing of an IO within the same chain from a
2017  * different execution context.
2018  */
2019 
2020 struct sd_chain_index {
2021 	int	sci_iostart_index;
2022 	int	sci_iodone_index;
2023 };
2024 
2025 static struct sd_chain_index	sd_chain_index_map[] = {
2026 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2027 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2028 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2029 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2030 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2031 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2032 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2033 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2034 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2035 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2036 };
2037 
2038 
2039 /*
2040  * The following are indexes into the sd_chain_index_map[] array.
2041  */
2042 
2043 /* un->un_buf_chain_type must be set to one of these */
2044 #define	SD_CHAIN_INFO_DISK		0
2045 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2046 #define	SD_CHAIN_INFO_RMMEDIA		2
2047 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2048 #define	SD_CHAIN_INFO_CHKSUM		4
2049 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2050 
2051 /* un->un_uscsi_chain_type must be set to one of these */
2052 #define	SD_CHAIN_INFO_USCSI_CMD		6
2053 /* USCSI with PM disabled is the same as DIRECT */
2054 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2055 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2056 
2057 /* un->un_direct_chain_type must be set to one of these */
2058 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2059 
2060 /* un->un_priority_chain_type must be set to one of these */
2061 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2062 
2063 /* size for devid inquiries */
2064 #define	MAX_INQUIRY_SIZE		0xF0
2065 
2066 /*
2067  * Macros used by functions to pass a given buf(9S) struct along to the
2068  * next function in the layering chain for further processing.
2069  *
2070  * In the following macros, passing more than three arguments to the called
2071  * routines causes the optimizer for the SPARC compiler to stop doing tail
2072  * call elimination which results in significant performance degradation.
2073  */
2074 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2075 	((*(sd_iostart_chain[index]))(index, un, bp))
2076 
2077 #define	SD_BEGIN_IODONE(index, un, bp)	\
2078 	((*(sd_iodone_chain[index]))(index, un, bp))
2079 
2080 #define	SD_NEXT_IOSTART(index, un, bp)				\
2081 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2082 
2083 #define	SD_NEXT_IODONE(index, un, bp)				\
2084 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2085 
2086 
2087 /*
2088  *    Function: _init
2089  *
2090  * Description: This is the driver _init(9E) entry point.
2091  *
2092  * Return Code: Returns the value from mod_install(9F) or
2093  *		ddi_soft_state_init(9F) as appropriate.
2094  *
2095  *     Context: Called when driver module loaded.
2096  */
2097 
2098 int
2099 _init(void)
2100 {
2101 	int	err;
2102 
2103 	/* establish driver name from module name */
2104 	sd_label = mod_modname(&modlinkage);
2105 
2106 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2107 		SD_MAXUNIT);
2108 
2109 	if (err != 0) {
2110 		return (err);
2111 	}
2112 
2113 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2114 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2115 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2116 
2117 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2118 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2119 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2120 
2121 	/*
2122 	 * it's ok to init here even for fibre device
2123 	 */
2124 	sd_scsi_probe_cache_init();
2125 
2126 	/*
2127 	 * Creating taskq before mod_install ensures that all callers (threads)
2128 	 * that enter the module after a successfull mod_install encounter
2129 	 * a valid taskq.
2130 	 */
2131 	sd_taskq_create();
2132 
2133 	err = mod_install(&modlinkage);
2134 	if (err != 0) {
2135 		/* delete taskq if install fails */
2136 		sd_taskq_delete();
2137 
2138 		mutex_destroy(&sd_detach_mutex);
2139 		mutex_destroy(&sd_log_mutex);
2140 		mutex_destroy(&sd_label_mutex);
2141 
2142 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2143 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2144 		cv_destroy(&sd_tr.srq_inprocess_cv);
2145 
2146 		sd_scsi_probe_cache_fini();
2147 
2148 		ddi_soft_state_fini(&sd_state);
2149 		return (err);
2150 	}
2151 
2152 	return (err);
2153 }
2154 
2155 
2156 /*
2157  *    Function: _fini
2158  *
2159  * Description: This is the driver _fini(9E) entry point.
2160  *
2161  * Return Code: Returns the value from mod_remove(9F)
2162  *
2163  *     Context: Called when driver module is unloaded.
2164  */
2165 
2166 int
2167 _fini(void)
2168 {
2169 	int err;
2170 
2171 	if ((err = mod_remove(&modlinkage)) != 0) {
2172 		return (err);
2173 	}
2174 
2175 	sd_taskq_delete();
2176 
2177 	mutex_destroy(&sd_detach_mutex);
2178 	mutex_destroy(&sd_log_mutex);
2179 	mutex_destroy(&sd_label_mutex);
2180 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2181 
2182 	sd_scsi_probe_cache_fini();
2183 
2184 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2185 	cv_destroy(&sd_tr.srq_inprocess_cv);
2186 
2187 	ddi_soft_state_fini(&sd_state);
2188 
2189 	return (err);
2190 }
2191 
2192 
2193 /*
2194  *    Function: _info
2195  *
2196  * Description: This is the driver _info(9E) entry point.
2197  *
2198  *   Arguments: modinfop - pointer to the driver modinfo structure
2199  *
2200  * Return Code: Returns the value from mod_info(9F).
2201  *
2202  *     Context: Kernel thread context
2203  */
2204 
2205 int
2206 _info(struct modinfo *modinfop)
2207 {
2208 	return (mod_info(&modlinkage, modinfop));
2209 }
2210 
2211 
2212 /*
2213  * The following routines implement the driver message logging facility.
2214  * They provide component- and level- based debug output filtering.
2215  * Output may also be restricted to messages for a single instance by
2216  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2217  * to NULL, then messages for all instances are printed.
2218  *
2219  * These routines have been cloned from each other due to the language
2220  * constraints of macros and variable argument list processing.
2221  */
2222 
2223 
2224 /*
2225  *    Function: sd_log_err
2226  *
2227  * Description: This routine is called by the SD_ERROR macro for debug
2228  *		logging of error conditions.
2229  *
2230  *   Arguments: comp - driver component being logged
2231  *		dev  - pointer to driver info structure
2232  *		fmt  - error string and format to be logged
2233  */
2234 
2235 static void
2236 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2237 {
2238 	va_list		ap;
2239 	dev_info_t	*dev;
2240 
2241 	ASSERT(un != NULL);
2242 	dev = SD_DEVINFO(un);
2243 	ASSERT(dev != NULL);
2244 
2245 	/*
2246 	 * Filter messages based on the global component and level masks.
2247 	 * Also print if un matches the value of sd_debug_un, or if
2248 	 * sd_debug_un is set to NULL.
2249 	 */
2250 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2251 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2252 		mutex_enter(&sd_log_mutex);
2253 		va_start(ap, fmt);
2254 		(void) vsprintf(sd_log_buf, fmt, ap);
2255 		va_end(ap);
2256 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2257 		mutex_exit(&sd_log_mutex);
2258 	}
2259 #ifdef SD_FAULT_INJECTION
2260 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2261 	if (un->sd_injection_mask & comp) {
2262 		mutex_enter(&sd_log_mutex);
2263 		va_start(ap, fmt);
2264 		(void) vsprintf(sd_log_buf, fmt, ap);
2265 		va_end(ap);
2266 		sd_injection_log(sd_log_buf, un);
2267 		mutex_exit(&sd_log_mutex);
2268 	}
2269 #endif
2270 }
2271 
2272 
2273 /*
2274  *    Function: sd_log_info
2275  *
2276  * Description: This routine is called by the SD_INFO macro for debug
2277  *		logging of general purpose informational conditions.
2278  *
2279  *   Arguments: comp - driver component being logged
2280  *		dev  - pointer to driver info structure
2281  *		fmt  - info string and format to be logged
2282  */
2283 
2284 static void
2285 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2286 {
2287 	va_list		ap;
2288 	dev_info_t	*dev;
2289 
2290 	ASSERT(un != NULL);
2291 	dev = SD_DEVINFO(un);
2292 	ASSERT(dev != NULL);
2293 
2294 	/*
2295 	 * Filter messages based on the global component and level masks.
2296 	 * Also print if un matches the value of sd_debug_un, or if
2297 	 * sd_debug_un is set to NULL.
2298 	 */
2299 	if ((sd_component_mask & component) &&
2300 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2301 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2302 		mutex_enter(&sd_log_mutex);
2303 		va_start(ap, fmt);
2304 		(void) vsprintf(sd_log_buf, fmt, ap);
2305 		va_end(ap);
2306 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2307 		mutex_exit(&sd_log_mutex);
2308 	}
2309 #ifdef SD_FAULT_INJECTION
2310 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2311 	if (un->sd_injection_mask & component) {
2312 		mutex_enter(&sd_log_mutex);
2313 		va_start(ap, fmt);
2314 		(void) vsprintf(sd_log_buf, fmt, ap);
2315 		va_end(ap);
2316 		sd_injection_log(sd_log_buf, un);
2317 		mutex_exit(&sd_log_mutex);
2318 	}
2319 #endif
2320 }
2321 
2322 
2323 /*
2324  *    Function: sd_log_trace
2325  *
2326  * Description: This routine is called by the SD_TRACE macro for debug
2327  *		logging of trace conditions (i.e. function entry/exit).
2328  *
2329  *   Arguments: comp - driver component being logged
2330  *		dev  - pointer to driver info structure
2331  *		fmt  - trace string and format to be logged
2332  */
2333 
2334 static void
2335 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2336 {
2337 	va_list		ap;
2338 	dev_info_t	*dev;
2339 
2340 	ASSERT(un != NULL);
2341 	dev = SD_DEVINFO(un);
2342 	ASSERT(dev != NULL);
2343 
2344 	/*
2345 	 * Filter messages based on the global component and level masks.
2346 	 * Also print if un matches the value of sd_debug_un, or if
2347 	 * sd_debug_un is set to NULL.
2348 	 */
2349 	if ((sd_component_mask & component) &&
2350 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2351 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2352 		mutex_enter(&sd_log_mutex);
2353 		va_start(ap, fmt);
2354 		(void) vsprintf(sd_log_buf, fmt, ap);
2355 		va_end(ap);
2356 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2357 		mutex_exit(&sd_log_mutex);
2358 	}
2359 #ifdef SD_FAULT_INJECTION
2360 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2361 	if (un->sd_injection_mask & component) {
2362 		mutex_enter(&sd_log_mutex);
2363 		va_start(ap, fmt);
2364 		(void) vsprintf(sd_log_buf, fmt, ap);
2365 		va_end(ap);
2366 		sd_injection_log(sd_log_buf, un);
2367 		mutex_exit(&sd_log_mutex);
2368 	}
2369 #endif
2370 }
2371 
2372 
2373 /*
2374  *    Function: sdprobe
2375  *
2376  * Description: This is the driver probe(9e) entry point function.
2377  *
2378  *   Arguments: devi - opaque device info handle
2379  *
2380  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2381  *              DDI_PROBE_FAILURE: If the probe failed.
2382  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2383  *				   but may be present in the future.
2384  */
2385 
2386 static int
2387 sdprobe(dev_info_t *devi)
2388 {
2389 	struct scsi_device	*devp;
2390 	int			rval;
2391 	int			instance;
2392 
2393 	/*
2394 	 * if it wasn't for pln, sdprobe could actually be nulldev
2395 	 * in the "__fibre" case.
2396 	 */
2397 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2398 		return (DDI_PROBE_DONTCARE);
2399 	}
2400 
2401 	devp = ddi_get_driver_private(devi);
2402 
2403 	if (devp == NULL) {
2404 		/* Ooops... nexus driver is mis-configured... */
2405 		return (DDI_PROBE_FAILURE);
2406 	}
2407 
2408 	instance = ddi_get_instance(devi);
2409 
2410 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2411 		return (DDI_PROBE_PARTIAL);
2412 	}
2413 
2414 	/*
2415 	 * Call the SCSA utility probe routine to see if we actually
2416 	 * have a target at this SCSI nexus.
2417 	 */
2418 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2419 	case SCSIPROBE_EXISTS:
2420 		switch (devp->sd_inq->inq_dtype) {
2421 		case DTYPE_DIRECT:
2422 			rval = DDI_PROBE_SUCCESS;
2423 			break;
2424 		case DTYPE_RODIRECT:
2425 			/* CDs etc. Can be removable media */
2426 			rval = DDI_PROBE_SUCCESS;
2427 			break;
2428 		case DTYPE_OPTICAL:
2429 			/*
2430 			 * Rewritable optical driver HP115AA
2431 			 * Can also be removable media
2432 			 */
2433 
2434 			/*
2435 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2436 			 * pre solaris 9 sparc sd behavior is required
2437 			 *
2438 			 * If first time through and sd_dtype_optical_bind
2439 			 * has not been set in /etc/system check properties
2440 			 */
2441 
2442 			if (sd_dtype_optical_bind  < 0) {
2443 			    sd_dtype_optical_bind = ddi_prop_get_int
2444 				(DDI_DEV_T_ANY,	devi,	0,
2445 				"optical-device-bind",	1);
2446 			}
2447 
2448 			if (sd_dtype_optical_bind == 0) {
2449 				rval = DDI_PROBE_FAILURE;
2450 			} else {
2451 				rval = DDI_PROBE_SUCCESS;
2452 			}
2453 			break;
2454 
2455 		case DTYPE_NOTPRESENT:
2456 		default:
2457 			rval = DDI_PROBE_FAILURE;
2458 			break;
2459 		}
2460 		break;
2461 	default:
2462 		rval = DDI_PROBE_PARTIAL;
2463 		break;
2464 	}
2465 
2466 	/*
2467 	 * This routine checks for resource allocation prior to freeing,
2468 	 * so it will take care of the "smart probing" case where a
2469 	 * scsi_probe() may or may not have been issued and will *not*
2470 	 * free previously-freed resources.
2471 	 */
2472 	scsi_unprobe(devp);
2473 	return (rval);
2474 }
2475 
2476 
2477 /*
2478  *    Function: sdinfo
2479  *
2480  * Description: This is the driver getinfo(9e) entry point function.
2481  * 		Given the device number, return the devinfo pointer from
2482  *		the scsi_device structure or the instance number
2483  *		associated with the dev_t.
2484  *
2485  *   Arguments: dip     - pointer to device info structure
2486  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2487  *			  DDI_INFO_DEVT2INSTANCE)
2488  *		arg     - driver dev_t
2489  *		resultp - user buffer for request response
2490  *
2491  * Return Code: DDI_SUCCESS
2492  *              DDI_FAILURE
2493  */
2494 /* ARGSUSED */
2495 static int
2496 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2497 {
2498 	struct sd_lun	*un;
2499 	dev_t		dev;
2500 	int		instance;
2501 	int		error;
2502 
2503 	switch (infocmd) {
2504 	case DDI_INFO_DEVT2DEVINFO:
2505 		dev = (dev_t)arg;
2506 		instance = SDUNIT(dev);
2507 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2508 			return (DDI_FAILURE);
2509 		}
2510 		*result = (void *) SD_DEVINFO(un);
2511 		error = DDI_SUCCESS;
2512 		break;
2513 	case DDI_INFO_DEVT2INSTANCE:
2514 		dev = (dev_t)arg;
2515 		instance = SDUNIT(dev);
2516 		*result = (void *)(uintptr_t)instance;
2517 		error = DDI_SUCCESS;
2518 		break;
2519 	default:
2520 		error = DDI_FAILURE;
2521 	}
2522 	return (error);
2523 }
2524 
2525 /*
2526  *    Function: sd_prop_op
2527  *
2528  * Description: This is the driver prop_op(9e) entry point function.
2529  *		Return the number of blocks for the partition in question
2530  *		or forward the request to the property facilities.
2531  *
2532  *   Arguments: dev       - device number
2533  *		dip       - pointer to device info structure
2534  *		prop_op   - property operator
2535  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2536  *		name      - pointer to property name
2537  *		valuep    - pointer or address of the user buffer
2538  *		lengthp   - property length
2539  *
2540  * Return Code: DDI_PROP_SUCCESS
2541  *              DDI_PROP_NOT_FOUND
2542  *              DDI_PROP_UNDEFINED
2543  *              DDI_PROP_NO_MEMORY
2544  *              DDI_PROP_BUF_TOO_SMALL
2545  */
2546 
2547 static int
2548 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2549 	char *name, caddr_t valuep, int *lengthp)
2550 {
2551 	int		instance = ddi_get_instance(dip);
2552 	struct sd_lun	*un;
2553 	uint64_t	nblocks64;
2554 
2555 	/*
2556 	 * Our dynamic properties are all device specific and size oriented.
2557 	 * Requests issued under conditions where size is valid are passed
2558 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2559 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2560 	 */
2561 	un = ddi_get_soft_state(sd_state, instance);
2562 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2563 	    (un->un_f_geometry_is_valid == FALSE)) {
2564 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2565 		    name, valuep, lengthp));
2566 	} else {
2567 		/* get nblocks value */
2568 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2569 		mutex_enter(SD_MUTEX(un));
2570 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2571 		mutex_exit(SD_MUTEX(un));
2572 
2573 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2574 		    name, valuep, lengthp, nblocks64));
2575 	}
2576 }
2577 
2578 /*
2579  * The following functions are for smart probing:
2580  * sd_scsi_probe_cache_init()
2581  * sd_scsi_probe_cache_fini()
2582  * sd_scsi_clear_probe_cache()
2583  * sd_scsi_probe_with_cache()
2584  */
2585 
2586 /*
2587  *    Function: sd_scsi_probe_cache_init
2588  *
2589  * Description: Initializes the probe response cache mutex and head pointer.
2590  *
2591  *     Context: Kernel thread context
2592  */
2593 
2594 static void
2595 sd_scsi_probe_cache_init(void)
2596 {
2597 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2598 	sd_scsi_probe_cache_head = NULL;
2599 }
2600 
2601 
2602 /*
2603  *    Function: sd_scsi_probe_cache_fini
2604  *
2605  * Description: Frees all resources associated with the probe response cache.
2606  *
2607  *     Context: Kernel thread context
2608  */
2609 
2610 static void
2611 sd_scsi_probe_cache_fini(void)
2612 {
2613 	struct sd_scsi_probe_cache *cp;
2614 	struct sd_scsi_probe_cache *ncp;
2615 
2616 	/* Clean up our smart probing linked list */
2617 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2618 		ncp = cp->next;
2619 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2620 	}
2621 	sd_scsi_probe_cache_head = NULL;
2622 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2623 }
2624 
2625 
2626 /*
2627  *    Function: sd_scsi_clear_probe_cache
2628  *
2629  * Description: This routine clears the probe response cache. This is
2630  *		done when open() returns ENXIO so that when deferred
2631  *		attach is attempted (possibly after a device has been
2632  *		turned on) we will retry the probe. Since we don't know
2633  *		which target we failed to open, we just clear the
2634  *		entire cache.
2635  *
2636  *     Context: Kernel thread context
2637  */
2638 
2639 static void
2640 sd_scsi_clear_probe_cache(void)
2641 {
2642 	struct sd_scsi_probe_cache	*cp;
2643 	int				i;
2644 
2645 	mutex_enter(&sd_scsi_probe_cache_mutex);
2646 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2647 		/*
2648 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2649 		 * force probing to be performed the next time
2650 		 * sd_scsi_probe_with_cache is called.
2651 		 */
2652 		for (i = 0; i < NTARGETS_WIDE; i++) {
2653 			cp->cache[i] = SCSIPROBE_EXISTS;
2654 		}
2655 	}
2656 	mutex_exit(&sd_scsi_probe_cache_mutex);
2657 }
2658 
2659 
2660 /*
2661  *    Function: sd_scsi_probe_with_cache
2662  *
2663  * Description: This routine implements support for a scsi device probe
2664  *		with cache. The driver maintains a cache of the target
2665  *		responses to scsi probes. If we get no response from a
2666  *		target during a probe inquiry, we remember that, and we
2667  *		avoid additional calls to scsi_probe on non-zero LUNs
2668  *		on the same target until the cache is cleared. By doing
2669  *		so we avoid the 1/4 sec selection timeout for nonzero
2670  *		LUNs. lun0 of a target is always probed.
2671  *
2672  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2673  *              waitfunc - indicates what the allocator routines should
2674  *			   do when resources are not available. This value
2675  *			   is passed on to scsi_probe() when that routine
2676  *			   is called.
2677  *
2678  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2679  *		otherwise the value returned by scsi_probe(9F).
2680  *
2681  *     Context: Kernel thread context
2682  */
2683 
2684 static int
2685 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2686 {
2687 	struct sd_scsi_probe_cache	*cp;
2688 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2689 	int		lun, tgt;
2690 
2691 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2692 	    SCSI_ADDR_PROP_LUN, 0);
2693 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2694 	    SCSI_ADDR_PROP_TARGET, -1);
2695 
2696 	/* Make sure caching enabled and target in range */
2697 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2698 		/* do it the old way (no cache) */
2699 		return (scsi_probe(devp, waitfn));
2700 	}
2701 
2702 	mutex_enter(&sd_scsi_probe_cache_mutex);
2703 
2704 	/* Find the cache for this scsi bus instance */
2705 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2706 		if (cp->pdip == pdip) {
2707 			break;
2708 		}
2709 	}
2710 
2711 	/* If we can't find a cache for this pdip, create one */
2712 	if (cp == NULL) {
2713 		int i;
2714 
2715 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2716 		    KM_SLEEP);
2717 		cp->pdip = pdip;
2718 		cp->next = sd_scsi_probe_cache_head;
2719 		sd_scsi_probe_cache_head = cp;
2720 		for (i = 0; i < NTARGETS_WIDE; i++) {
2721 			cp->cache[i] = SCSIPROBE_EXISTS;
2722 		}
2723 	}
2724 
2725 	mutex_exit(&sd_scsi_probe_cache_mutex);
2726 
2727 	/* Recompute the cache for this target if LUN zero */
2728 	if (lun == 0) {
2729 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2730 	}
2731 
2732 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2733 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2734 		return (SCSIPROBE_NORESP);
2735 	}
2736 
2737 	/* Do the actual probe; save & return the result */
2738 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2739 }
2740 
2741 
2742 /*
2743  *    Function: sd_spin_up_unit
2744  *
2745  * Description: Issues the following commands to spin-up the device:
2746  *		START STOP UNIT, and INQUIRY.
2747  *
2748  *   Arguments: un - driver soft state (unit) structure
2749  *
2750  * Return Code: 0 - success
2751  *		EIO - failure
2752  *		EACCES - reservation conflict
2753  *
2754  *     Context: Kernel thread context
2755  */
2756 
2757 static int
2758 sd_spin_up_unit(struct sd_lun *un)
2759 {
2760 	size_t	resid		= 0;
2761 	int	has_conflict	= FALSE;
2762 	uchar_t *bufaddr;
2763 
2764 	ASSERT(un != NULL);
2765 
2766 	/*
2767 	 * Send a throwaway START UNIT command.
2768 	 *
2769 	 * If we fail on this, we don't care presently what precisely
2770 	 * is wrong.  EMC's arrays will also fail this with a check
2771 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2772 	 * we don't want to fail the attach because it may become
2773 	 * "active" later.
2774 	 */
2775 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2776 	    == EACCES)
2777 		has_conflict = TRUE;
2778 
2779 	/*
2780 	 * Send another INQUIRY command to the target. This is necessary for
2781 	 * non-removable media direct access devices because their INQUIRY data
2782 	 * may not be fully qualified until they are spun up (perhaps via the
2783 	 * START command above).  Note: This seems to be needed for some
2784 	 * legacy devices only.) The INQUIRY command should succeed even if a
2785 	 * Reservation Conflict is present.
2786 	 */
2787 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2788 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2789 		kmem_free(bufaddr, SUN_INQSIZE);
2790 		return (EIO);
2791 	}
2792 
2793 	/*
2794 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2795 	 * Note that this routine does not return a failure here even if the
2796 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2797 	 */
2798 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2799 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2800 	}
2801 
2802 	kmem_free(bufaddr, SUN_INQSIZE);
2803 
2804 	/* If we hit a reservation conflict above, tell the caller. */
2805 	if (has_conflict == TRUE) {
2806 		return (EACCES);
2807 	}
2808 
2809 	return (0);
2810 }
2811 
2812 /*
2813  *    Function: sd_enable_descr_sense
2814  *
2815  * Description: This routine attempts to select descriptor sense format
2816  *		using the Control mode page.  Devices that support 64 bit
2817  *		LBAs (for >2TB luns) should also implement descriptor
2818  *		sense data so we will call this function whenever we see
2819  *		a lun larger than 2TB.  If for some reason the device
2820  *		supports 64 bit LBAs but doesn't support descriptor sense
2821  *		presumably the mode select will fail.  Everything will
2822  *		continue to work normally except that we will not get
2823  *		complete sense data for commands that fail with an LBA
2824  *		larger than 32 bits.
2825  *
2826  *   Arguments: un - driver soft state (unit) structure
2827  *
2828  *     Context: Kernel thread context only
2829  */
2830 
2831 static void
2832 sd_enable_descr_sense(struct sd_lun *un)
2833 {
2834 	uchar_t			*header;
2835 	struct mode_control_scsi3 *ctrl_bufp;
2836 	size_t			buflen;
2837 	size_t			bd_len;
2838 
2839 	/*
2840 	 * Read MODE SENSE page 0xA, Control Mode Page
2841 	 */
2842 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2843 	    sizeof (struct mode_control_scsi3);
2844 	header = kmem_zalloc(buflen, KM_SLEEP);
2845 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2846 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2847 		SD_ERROR(SD_LOG_COMMON, un,
2848 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2849 		goto eds_exit;
2850 	}
2851 
2852 	/*
2853 	 * Determine size of Block Descriptors in order to locate
2854 	 * the mode page data. ATAPI devices return 0, SCSI devices
2855 	 * should return MODE_BLK_DESC_LENGTH.
2856 	 */
2857 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2858 
2859 	ctrl_bufp = (struct mode_control_scsi3 *)
2860 	    (header + MODE_HEADER_LENGTH + bd_len);
2861 
2862 	/*
2863 	 * Clear PS bit for MODE SELECT
2864 	 */
2865 	ctrl_bufp->mode_page.ps = 0;
2866 
2867 	/*
2868 	 * Set D_SENSE to enable descriptor sense format.
2869 	 */
2870 	ctrl_bufp->d_sense = 1;
2871 
2872 	/*
2873 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2874 	 */
2875 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2876 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2877 		SD_INFO(SD_LOG_COMMON, un,
2878 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2879 		goto eds_exit;
2880 	}
2881 
2882 eds_exit:
2883 	kmem_free(header, buflen);
2884 }
2885 
2886 
2887 /*
2888  *    Function: sd_set_mmc_caps
2889  *
2890  * Description: This routine determines if the device is MMC compliant and if
2891  *		the device supports CDDA via a mode sense of the CDVD
2892  *		capabilities mode page. Also checks if the device is a
2893  *		dvdram writable device.
2894  *
2895  *   Arguments: un - driver soft state (unit) structure
2896  *
2897  *     Context: Kernel thread context only
2898  */
2899 
2900 static void
2901 sd_set_mmc_caps(struct sd_lun *un)
2902 {
2903 	struct mode_header_grp2		*sense_mhp;
2904 	uchar_t				*sense_page;
2905 	caddr_t				buf;
2906 	int				bd_len;
2907 	int				status;
2908 	struct uscsi_cmd		com;
2909 	int				rtn;
2910 	uchar_t				*out_data_rw, *out_data_hd;
2911 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2912 
2913 	ASSERT(un != NULL);
2914 
2915 	/*
2916 	 * The flags which will be set in this function are - mmc compliant,
2917 	 * dvdram writable device, cdda support. Initialize them to FALSE
2918 	 * and if a capability is detected - it will be set to TRUE.
2919 	 */
2920 	un->un_f_mmc_cap = FALSE;
2921 	un->un_f_dvdram_writable_device = FALSE;
2922 	un->un_f_cfg_cdda = FALSE;
2923 
2924 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2925 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2926 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2927 
2928 	if (status != 0) {
2929 		/* command failed; just return */
2930 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2931 		return;
2932 	}
2933 	/*
2934 	 * If the mode sense request for the CDROM CAPABILITIES
2935 	 * page (0x2A) succeeds the device is assumed to be MMC.
2936 	 */
2937 	un->un_f_mmc_cap = TRUE;
2938 
2939 	/* Get to the page data */
2940 	sense_mhp = (struct mode_header_grp2 *)buf;
2941 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
2942 	    sense_mhp->bdesc_length_lo;
2943 	if (bd_len > MODE_BLK_DESC_LENGTH) {
2944 		/*
2945 		 * We did not get back the expected block descriptor
2946 		 * length so we cannot determine if the device supports
2947 		 * CDDA. However, we still indicate the device is MMC
2948 		 * according to the successful response to the page
2949 		 * 0x2A mode sense request.
2950 		 */
2951 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
2952 		    "sd_set_mmc_caps: Mode Sense returned "
2953 		    "invalid block descriptor length\n");
2954 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2955 		return;
2956 	}
2957 
2958 	/* See if read CDDA is supported */
2959 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
2960 	    bd_len);
2961 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
2962 
2963 	/* See if writing DVD RAM is supported. */
2964 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
2965 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2966 	if (un->un_f_dvdram_writable_device == TRUE) {
2967 		return;
2968 	}
2969 
2970 	/*
2971 	 * If un->un_f_dvdram_writable_device is still FALSE,
2972 	 * check for Iomega RRD type device.  Iomega is identifying
2973 	 * their RRD type devices by the features RANDOM_WRITABLE and
2974 	 * HARDWARE_DEFECT_MANAGEMENT.
2975 	 */
2976 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
2977 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
2978 
2979 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
2980 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
2981 	    RANDOM_WRITABLE);
2982 	if (rtn != 0) {
2983 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
2984 		kmem_free(rqbuf_rw, SENSE_LENGTH);
2985 		return;
2986 	}
2987 
2988 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
2989 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
2990 
2991 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
2992 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
2993 	    HARDWARE_DEFECT_MANAGEMENT);
2994 	if (rtn == 0) {
2995 		/*
2996 		 * We have good information, check for random writable
2997 		 * and hardware defect features.
2998 		 */
2999 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3000 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3001 			un->un_f_dvdram_writable_device = TRUE;
3002 		}
3003 	}
3004 
3005 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3006 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3007 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3008 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3009 }
3010 
3011 /*
3012  *    Function: sd_check_for_writable_cd
3013  *
3014  * Description: This routine determines if the media in the device is
3015  *		writable or not. It uses the get configuration command (0x46)
3016  *		to determine if the media is writable
3017  *
3018  *   Arguments: un - driver soft state (unit) structure
3019  *
3020  *     Context: Never called at interrupt context.
3021  */
3022 
3023 static void
3024 sd_check_for_writable_cd(struct sd_lun *un)
3025 {
3026 	struct uscsi_cmd		com;
3027 	uchar_t				*out_data;
3028 	uchar_t				*rqbuf;
3029 	int				rtn;
3030 	uchar_t				*out_data_rw, *out_data_hd;
3031 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3032 
3033 	ASSERT(un != NULL);
3034 	ASSERT(mutex_owned(SD_MUTEX(un)));
3035 
3036 	/*
3037 	 * Initialize the writable media to false, if configuration info.
3038 	 * tells us otherwise then only we will set it.
3039 	 */
3040 	un->un_f_mmc_writable_media = FALSE;
3041 	mutex_exit(SD_MUTEX(un));
3042 
3043 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3044 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3045 
3046 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3047 	    out_data, SD_PROFILE_HEADER_LEN);
3048 
3049 	mutex_enter(SD_MUTEX(un));
3050 	if (rtn == 0) {
3051 		/*
3052 		 * We have good information, check for writable DVD.
3053 		 */
3054 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3055 			un->un_f_mmc_writable_media = TRUE;
3056 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3057 			kmem_free(rqbuf, SENSE_LENGTH);
3058 			return;
3059 		}
3060 	}
3061 
3062 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3063 	kmem_free(rqbuf, SENSE_LENGTH);
3064 
3065 	/*
3066 	 * If un->un_f_mmc_writable_media is still FALSE,
3067 	 * check for Iomega RRD type media.  Iomega is identifying
3068 	 * their RRD type devices by the features RANDOM_WRITABLE and
3069 	 * HARDWARE_DEFECT_MANAGEMENT.
3070 	 */
3071 	mutex_exit(SD_MUTEX(un));
3072 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3073 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3074 
3075 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3076 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3077 	    RANDOM_WRITABLE);
3078 	if (rtn != 0) {
3079 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3080 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3081 		mutex_enter(SD_MUTEX(un));
3082 		return;
3083 	}
3084 
3085 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3086 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3087 
3088 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3089 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3090 	    HARDWARE_DEFECT_MANAGEMENT);
3091 	mutex_enter(SD_MUTEX(un));
3092 	if (rtn == 0) {
3093 		/*
3094 		 * We have good information, check for random writable
3095 		 * and hardware defect features as current.
3096 		 */
3097 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3098 		    (out_data_rw[10] & 0x1) &&
3099 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3100 		    (out_data_hd[10] & 0x1)) {
3101 			un->un_f_mmc_writable_media = TRUE;
3102 		}
3103 	}
3104 
3105 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3106 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3107 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3108 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3109 }
3110 
3111 /*
3112  *    Function: sd_read_unit_properties
3113  *
3114  * Description: The following implements a property lookup mechanism.
3115  *		Properties for particular disks (keyed on vendor, model
3116  *		and rev numbers) are sought in the sd.conf file via
3117  *		sd_process_sdconf_file(), and if not found there, are
3118  *		looked for in a list hardcoded in this driver via
3119  *		sd_process_sdconf_table() Once located the properties
3120  *		are used to update the driver unit structure.
3121  *
3122  *   Arguments: un - driver soft state (unit) structure
3123  */
3124 
3125 static void
3126 sd_read_unit_properties(struct sd_lun *un)
3127 {
3128 	/*
3129 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3130 	 * the "sd-config-list" property (from the sd.conf file) or if
3131 	 * there was not a match for the inquiry vid/pid. If this event
3132 	 * occurs the static driver configuration table is searched for
3133 	 * a match.
3134 	 */
3135 	ASSERT(un != NULL);
3136 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3137 		sd_process_sdconf_table(un);
3138 	}
3139 
3140 	/*
3141 	 * Set this in sd.conf to 0 in order to disable kstats.  The default
3142 	 * is 1, so they are enabled by default.
3143 	 */
3144 	un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
3145 	    SD_DEVINFO(un), DDI_PROP_DONTPASS, "enable-partition-kstats", 1));
3146 }
3147 
3148 
3149 /*
3150  *    Function: sd_process_sdconf_file
3151  *
3152  * Description: Use ddi_getlongprop to obtain the properties from the
3153  *		driver's config file (ie, sd.conf) and update the driver
3154  *		soft state structure accordingly.
3155  *
3156  *   Arguments: un - driver soft state (unit) structure
3157  *
3158  * Return Code: SD_SUCCESS - The properties were successfully set according
3159  *			     to the driver configuration file.
3160  *		SD_FAILURE - The driver config list was not obtained or
3161  *			     there was no vid/pid match. This indicates that
3162  *			     the static config table should be used.
3163  *
3164  * The config file has a property, "sd-config-list", which consists of
3165  * one or more duplets as follows:
3166  *
3167  *  sd-config-list=
3168  *	<duplet>,
3169  *	[<duplet>,]
3170  *	[<duplet>];
3171  *
3172  * The structure of each duplet is as follows:
3173  *
3174  *  <duplet>:= <vid+pid>,<data-property-name_list>
3175  *
3176  * The first entry of the duplet is the device ID string (the concatenated
3177  * vid & pid; not to be confused with a device_id).  This is defined in
3178  * the same way as in the sd_disk_table.
3179  *
3180  * The second part of the duplet is a string that identifies a
3181  * data-property-name-list. The data-property-name-list is defined as
3182  * follows:
3183  *
3184  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3185  *
3186  * The syntax of <data-property-name> depends on the <version> field.
3187  *
3188  * If version = SD_CONF_VERSION_1 we have the following syntax:
3189  *
3190  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3191  *
3192  * where the prop0 value will be used to set prop0 if bit0 set in the
3193  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3194  *
3195  * If version = SD_CONF_VERSION_10 we have the following syntax:
3196  *
3197  * 	<data-property-name>:=<version>,<prop0>,<prop1>,<prop2>,<prop3>
3198  */
3199 
3200 static int
3201 sd_process_sdconf_file(struct sd_lun *un)
3202 {
3203 	char	*config_list = NULL;
3204 	int	config_list_len;
3205 	int	len;
3206 	int	dupletlen = 0;
3207 	char	*vidptr;
3208 	int	vidlen;
3209 	char	*dnlist_ptr;
3210 	char	*dataname_ptr;
3211 	int	dnlist_len;
3212 	int	dataname_len;
3213 	int	*data_list;
3214 	int	data_list_len;
3215 	int	rval = SD_FAILURE;
3216 	int	i;
3217 
3218 	ASSERT(un != NULL);
3219 
3220 	/* Obtain the configuration list associated with the .conf file */
3221 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3222 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3223 	    != DDI_PROP_SUCCESS) {
3224 		return (SD_FAILURE);
3225 	}
3226 
3227 	/*
3228 	 * Compare vids in each duplet to the inquiry vid - if a match is
3229 	 * made, get the data value and update the soft state structure
3230 	 * accordingly.
3231 	 *
3232 	 * Note: This algorithm is complex and difficult to maintain. It should
3233 	 * be replaced with a more robust implementation.
3234 	 */
3235 	for (len = config_list_len, vidptr = config_list; len > 0;
3236 	    vidptr += dupletlen, len -= dupletlen) {
3237 		/*
3238 		 * Note: The assumption here is that each vid entry is on
3239 		 * a unique line from its associated duplet.
3240 		 */
3241 		vidlen = dupletlen = (int)strlen(vidptr);
3242 		if ((vidlen == 0) ||
3243 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3244 			dupletlen++;
3245 			continue;
3246 		}
3247 
3248 		/*
3249 		 * dnlist contains 1 or more blank separated
3250 		 * data-property-name entries
3251 		 */
3252 		dnlist_ptr = vidptr + vidlen + 1;
3253 		dnlist_len = (int)strlen(dnlist_ptr);
3254 		dupletlen += dnlist_len + 2;
3255 
3256 		/*
3257 		 * Set a pointer for the first data-property-name
3258 		 * entry in the list
3259 		 */
3260 		dataname_ptr = dnlist_ptr;
3261 		dataname_len = 0;
3262 
3263 		/*
3264 		 * Loop through all data-property-name entries in the
3265 		 * data-property-name-list setting the properties for each.
3266 		 */
3267 		while (dataname_len < dnlist_len) {
3268 			int version;
3269 
3270 			/*
3271 			 * Determine the length of the current
3272 			 * data-property-name entry by indexing until a
3273 			 * blank or NULL is encountered. When the space is
3274 			 * encountered reset it to a NULL for compliance
3275 			 * with ddi_getlongprop().
3276 			 */
3277 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3278 			    (dataname_ptr[i] != '\0')); i++) {
3279 				;
3280 			}
3281 
3282 			dataname_len += i;
3283 			/* If not null terminated, Make it so */
3284 			if (dataname_ptr[i] == ' ') {
3285 				dataname_ptr[i] = '\0';
3286 			}
3287 			dataname_len++;
3288 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3289 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3290 			    vidptr, dataname_ptr);
3291 
3292 			/* Get the data list */
3293 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3294 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3295 			    != DDI_PROP_SUCCESS) {
3296 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3297 				    "sd_process_sdconf_file: data property (%s)"
3298 				    " has no value\n", dataname_ptr);
3299 				dataname_ptr = dnlist_ptr + dataname_len;
3300 				continue;
3301 			}
3302 
3303 			version = data_list[0];
3304 
3305 			if (version == SD_CONF_VERSION_1) {
3306 				sd_tunables values;
3307 
3308 				/* Set the properties */
3309 				if (sd_chk_vers1_data(un, data_list[1],
3310 				    &data_list[2], data_list_len, dataname_ptr)
3311 				    == SD_SUCCESS) {
3312 					sd_get_tunables_from_conf(un,
3313 					    data_list[1], &data_list[2],
3314 					    &values);
3315 					sd_set_vers1_properties(un,
3316 					    data_list[1], &values);
3317 					rval = SD_SUCCESS;
3318 				} else {
3319 					rval = SD_FAILURE;
3320 				}
3321 			} else {
3322 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3323 				    "data property %s version 0x%x is invalid.",
3324 				    dataname_ptr, version);
3325 				rval = SD_FAILURE;
3326 			}
3327 			kmem_free(data_list, data_list_len);
3328 			dataname_ptr = dnlist_ptr + dataname_len;
3329 		}
3330 	}
3331 
3332 	/* free up the memory allocated by ddi_getlongprop */
3333 	if (config_list) {
3334 		kmem_free(config_list, config_list_len);
3335 	}
3336 
3337 	return (rval);
3338 }
3339 
3340 /*
3341  *    Function: sd_get_tunables_from_conf()
3342  *
3343  *
3344  *    This function reads the data list from the sd.conf file and pulls
3345  *    the values that can have numeric values as arguments and places
3346  *    the values in the apropriate sd_tunables member.
3347  *    Since the order of the data list members varies across platforms
3348  *    This function reads them from the data list in a platform specific
3349  *    order and places them into the correct sd_tunable member that is
3350  *    a consistant across all platforms.
3351  */
3352 static void
3353 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3354     sd_tunables *values)
3355 {
3356 	int i;
3357 	int mask;
3358 
3359 	bzero(values, sizeof (sd_tunables));
3360 
3361 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3362 
3363 		mask = 1 << i;
3364 		if (mask > flags) {
3365 			break;
3366 		}
3367 
3368 		switch (mask & flags) {
3369 		case 0:	/* This mask bit not set in flags */
3370 			continue;
3371 		case SD_CONF_BSET_THROTTLE:
3372 			values->sdt_throttle = data_list[i];
3373 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3374 			    "sd_get_tunables_from_conf: throttle = %d\n",
3375 			    values->sdt_throttle);
3376 			break;
3377 		case SD_CONF_BSET_CTYPE:
3378 			values->sdt_ctype = data_list[i];
3379 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3380 			    "sd_get_tunables_from_conf: ctype = %d\n",
3381 			    values->sdt_ctype);
3382 			break;
3383 		case SD_CONF_BSET_NRR_COUNT:
3384 			values->sdt_not_rdy_retries = data_list[i];
3385 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3386 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3387 			    values->sdt_not_rdy_retries);
3388 			break;
3389 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3390 			values->sdt_busy_retries = data_list[i];
3391 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3392 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3393 			    values->sdt_busy_retries);
3394 			break;
3395 		case SD_CONF_BSET_RST_RETRIES:
3396 			values->sdt_reset_retries = data_list[i];
3397 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3398 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3399 			    values->sdt_reset_retries);
3400 			break;
3401 		case SD_CONF_BSET_RSV_REL_TIME:
3402 			values->sdt_reserv_rel_time = data_list[i];
3403 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3404 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3405 			    values->sdt_reserv_rel_time);
3406 			break;
3407 		case SD_CONF_BSET_MIN_THROTTLE:
3408 			values->sdt_min_throttle = data_list[i];
3409 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3410 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3411 			    values->sdt_min_throttle);
3412 			break;
3413 		case SD_CONF_BSET_DISKSORT_DISABLED:
3414 			values->sdt_disk_sort_dis = data_list[i];
3415 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3416 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3417 			    values->sdt_disk_sort_dis);
3418 			break;
3419 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3420 			values->sdt_lun_reset_enable = data_list[i];
3421 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3422 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3423 			    "\n", values->sdt_lun_reset_enable);
3424 			break;
3425 		}
3426 	}
3427 }
3428 
3429 /*
3430  *    Function: sd_process_sdconf_table
3431  *
3432  * Description: Search the static configuration table for a match on the
3433  *		inquiry vid/pid and update the driver soft state structure
3434  *		according to the table property values for the device.
3435  *
3436  *		The form of a configuration table entry is:
3437  *		  <vid+pid>,<flags>,<property-data>
3438  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3439  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3440  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3441  *
3442  *   Arguments: un - driver soft state (unit) structure
3443  */
3444 
3445 static void
3446 sd_process_sdconf_table(struct sd_lun *un)
3447 {
3448 	char	*id = NULL;
3449 	int	table_index;
3450 	int	idlen;
3451 
3452 	ASSERT(un != NULL);
3453 	for (table_index = 0; table_index < sd_disk_table_size;
3454 	    table_index++) {
3455 		id = sd_disk_table[table_index].device_id;
3456 		idlen = strlen(id);
3457 		if (idlen == 0) {
3458 			continue;
3459 		}
3460 
3461 		/*
3462 		 * The static configuration table currently does not
3463 		 * implement version 10 properties. Additionally,
3464 		 * multiple data-property-name entries are not
3465 		 * implemented in the static configuration table.
3466 		 */
3467 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3468 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3469 			    "sd_process_sdconf_table: disk %s\n", id);
3470 			sd_set_vers1_properties(un,
3471 			    sd_disk_table[table_index].flags,
3472 			    sd_disk_table[table_index].properties);
3473 			break;
3474 		}
3475 	}
3476 }
3477 
3478 
3479 /*
3480  *    Function: sd_sdconf_id_match
3481  *
3482  * Description: This local function implements a case sensitive vid/pid
3483  *		comparison as well as the boundary cases of wild card and
3484  *		multiple blanks.
3485  *
3486  *		Note: An implicit assumption made here is that the scsi
3487  *		inquiry structure will always keep the vid, pid and
3488  *		revision strings in consecutive sequence, so they can be
3489  *		read as a single string. If this assumption is not the
3490  *		case, a separate string, to be used for the check, needs
3491  *		to be built with these strings concatenated.
3492  *
3493  *   Arguments: un - driver soft state (unit) structure
3494  *		id - table or config file vid/pid
3495  *		idlen  - length of the vid/pid (bytes)
3496  *
3497  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3498  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3499  */
3500 
3501 static int
3502 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3503 {
3504 	struct scsi_inquiry	*sd_inq;
3505 	int 			rval = SD_SUCCESS;
3506 
3507 	ASSERT(un != NULL);
3508 	sd_inq = un->un_sd->sd_inq;
3509 	ASSERT(id != NULL);
3510 
3511 	/*
3512 	 * We use the inq_vid as a pointer to a buffer containing the
3513 	 * vid and pid and use the entire vid/pid length of the table
3514 	 * entry for the comparison. This works because the inq_pid
3515 	 * data member follows inq_vid in the scsi_inquiry structure.
3516 	 */
3517 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3518 		/*
3519 		 * The user id string is compared to the inquiry vid/pid
3520 		 * using a case insensitive comparison and ignoring
3521 		 * multiple spaces.
3522 		 */
3523 		rval = sd_blank_cmp(un, id, idlen);
3524 		if (rval != SD_SUCCESS) {
3525 			/*
3526 			 * User id strings that start and end with a "*"
3527 			 * are a special case. These do not have a
3528 			 * specific vendor, and the product string can
3529 			 * appear anywhere in the 16 byte PID portion of
3530 			 * the inquiry data. This is a simple strstr()
3531 			 * type search for the user id in the inquiry data.
3532 			 */
3533 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3534 				char	*pidptr = &id[1];
3535 				int	i;
3536 				int	j;
3537 				int	pidstrlen = idlen - 2;
3538 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3539 				    pidstrlen;
3540 
3541 				if (j < 0) {
3542 					return (SD_FAILURE);
3543 				}
3544 				for (i = 0; i < j; i++) {
3545 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3546 					    pidptr, pidstrlen) == 0) {
3547 						rval = SD_SUCCESS;
3548 						break;
3549 					}
3550 				}
3551 			}
3552 		}
3553 	}
3554 	return (rval);
3555 }
3556 
3557 
3558 /*
3559  *    Function: sd_blank_cmp
3560  *
3561  * Description: If the id string starts and ends with a space, treat
3562  *		multiple consecutive spaces as equivalent to a single
3563  *		space. For example, this causes a sd_disk_table entry
3564  *		of " NEC CDROM " to match a device's id string of
3565  *		"NEC       CDROM".
3566  *
3567  *		Note: The success exit condition for this routine is if
3568  *		the pointer to the table entry is '\0' and the cnt of
3569  *		the inquiry length is zero. This will happen if the inquiry
3570  *		string returned by the device is padded with spaces to be
3571  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3572  *		SCSI spec states that the inquiry string is to be padded with
3573  *		spaces.
3574  *
3575  *   Arguments: un - driver soft state (unit) structure
3576  *		id - table or config file vid/pid
3577  *		idlen  - length of the vid/pid (bytes)
3578  *
3579  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3580  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3581  */
3582 
3583 static int
3584 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3585 {
3586 	char		*p1;
3587 	char		*p2;
3588 	int		cnt;
3589 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3590 	    sizeof (SD_INQUIRY(un)->inq_pid);
3591 
3592 	ASSERT(un != NULL);
3593 	p2 = un->un_sd->sd_inq->inq_vid;
3594 	ASSERT(id != NULL);
3595 	p1 = id;
3596 
3597 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3598 		/*
3599 		 * Note: string p1 is terminated by a NUL but string p2
3600 		 * isn't.  The end of p2 is determined by cnt.
3601 		 */
3602 		for (;;) {
3603 			/* skip over any extra blanks in both strings */
3604 			while ((*p1 != '\0') && (*p1 == ' ')) {
3605 				p1++;
3606 			}
3607 			while ((cnt != 0) && (*p2 == ' ')) {
3608 				p2++;
3609 				cnt--;
3610 			}
3611 
3612 			/* compare the two strings */
3613 			if ((cnt == 0) ||
3614 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3615 				break;
3616 			}
3617 			while ((cnt > 0) &&
3618 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3619 				p1++;
3620 				p2++;
3621 				cnt--;
3622 			}
3623 		}
3624 	}
3625 
3626 	/* return SD_SUCCESS if both strings match */
3627 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3628 }
3629 
3630 
3631 /*
3632  *    Function: sd_chk_vers1_data
3633  *
3634  * Description: Verify the version 1 device properties provided by the
3635  *		user via the configuration file
3636  *
3637  *   Arguments: un	     - driver soft state (unit) structure
3638  *		flags	     - integer mask indicating properties to be set
3639  *		prop_list    - integer list of property values
3640  *		list_len     - length of user provided data
3641  *
3642  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3643  *		SD_FAILURE - Indicates the user provided data is invalid
3644  */
3645 
3646 static int
3647 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3648     int list_len, char *dataname_ptr)
3649 {
3650 	int i;
3651 	int mask = 1;
3652 	int index = 0;
3653 
3654 	ASSERT(un != NULL);
3655 
3656 	/* Check for a NULL property name and list */
3657 	if (dataname_ptr == NULL) {
3658 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3659 		    "sd_chk_vers1_data: NULL data property name.");
3660 		return (SD_FAILURE);
3661 	}
3662 	if (prop_list == NULL) {
3663 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3664 		    "sd_chk_vers1_data: %s NULL data property list.",
3665 		    dataname_ptr);
3666 		return (SD_FAILURE);
3667 	}
3668 
3669 	/* Display a warning if undefined bits are set in the flags */
3670 	if (flags & ~SD_CONF_BIT_MASK) {
3671 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3672 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3673 		    "Properties not set.",
3674 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3675 		return (SD_FAILURE);
3676 	}
3677 
3678 	/*
3679 	 * Verify the length of the list by identifying the highest bit set
3680 	 * in the flags and validating that the property list has a length
3681 	 * up to the index of this bit.
3682 	 */
3683 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3684 		if (flags & mask) {
3685 			index++;
3686 		}
3687 		mask = 1 << i;
3688 	}
3689 	if ((list_len / sizeof (int)) < (index + 2)) {
3690 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3691 		    "sd_chk_vers1_data: "
3692 		    "Data property list %s size is incorrect. "
3693 		    "Properties not set.", dataname_ptr);
3694 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3695 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3696 		return (SD_FAILURE);
3697 	}
3698 	return (SD_SUCCESS);
3699 }
3700 
3701 
3702 /*
3703  *    Function: sd_set_vers1_properties
3704  *
3705  * Description: Set version 1 device properties based on a property list
3706  *		retrieved from the driver configuration file or static
3707  *		configuration table. Version 1 properties have the format:
3708  *
3709  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3710  *
3711  *		where the prop0 value will be used to set prop0 if bit0
3712  *		is set in the flags
3713  *
3714  *   Arguments: un	     - driver soft state (unit) structure
3715  *		flags	     - integer mask indicating properties to be set
3716  *		prop_list    - integer list of property values
3717  */
3718 
3719 static void
3720 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3721 {
3722 	ASSERT(un != NULL);
3723 
3724 	/*
3725 	 * Set the flag to indicate cache is to be disabled. An attempt
3726 	 * to disable the cache via sd_disable_caching() will be made
3727 	 * later during attach once the basic initialization is complete.
3728 	 */
3729 	if (flags & SD_CONF_BSET_NOCACHE) {
3730 		un->un_f_opt_disable_cache = TRUE;
3731 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3732 		    "sd_set_vers1_properties: caching disabled flag set\n");
3733 	}
3734 
3735 	/* CD-specific configuration parameters */
3736 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3737 		un->un_f_cfg_playmsf_bcd = TRUE;
3738 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3739 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3740 	}
3741 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3742 		un->un_f_cfg_readsub_bcd = TRUE;
3743 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3744 		    "sd_set_vers1_properties: readsub_bcd set\n");
3745 	}
3746 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3747 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3748 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3749 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3750 	}
3751 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3752 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3753 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3754 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3755 	}
3756 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3757 		un->un_f_cfg_no_read_header = TRUE;
3758 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3759 			    "sd_set_vers1_properties: no_read_header set\n");
3760 	}
3761 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3762 		un->un_f_cfg_read_cd_xd4 = TRUE;
3763 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3764 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3765 	}
3766 
3767 	/* Support for devices which do not have valid/unique serial numbers */
3768 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3769 		un->un_f_opt_fab_devid = TRUE;
3770 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3771 		    "sd_set_vers1_properties: fab_devid bit set\n");
3772 	}
3773 
3774 	/* Support for user throttle configuration */
3775 	if (flags & SD_CONF_BSET_THROTTLE) {
3776 		ASSERT(prop_list != NULL);
3777 		un->un_saved_throttle = un->un_throttle =
3778 		    prop_list->sdt_throttle;
3779 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3780 		    "sd_set_vers1_properties: throttle set to %d\n",
3781 		    prop_list->sdt_throttle);
3782 	}
3783 
3784 	/* Set the per disk retry count according to the conf file or table. */
3785 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3786 		ASSERT(prop_list != NULL);
3787 		if (prop_list->sdt_not_rdy_retries) {
3788 			un->un_notready_retry_count =
3789 				prop_list->sdt_not_rdy_retries;
3790 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3791 			    "sd_set_vers1_properties: not ready retry count"
3792 			    " set to %d\n", un->un_notready_retry_count);
3793 		}
3794 	}
3795 
3796 	/* The controller type is reported for generic disk driver ioctls */
3797 	if (flags & SD_CONF_BSET_CTYPE) {
3798 		ASSERT(prop_list != NULL);
3799 		switch (prop_list->sdt_ctype) {
3800 		case CTYPE_CDROM:
3801 			un->un_ctype = prop_list->sdt_ctype;
3802 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3803 			    "sd_set_vers1_properties: ctype set to "
3804 			    "CTYPE_CDROM\n");
3805 			break;
3806 		case CTYPE_CCS:
3807 			un->un_ctype = prop_list->sdt_ctype;
3808 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3809 				"sd_set_vers1_properties: ctype set to "
3810 				"CTYPE_CCS\n");
3811 			break;
3812 		case CTYPE_ROD:		/* RW optical */
3813 			un->un_ctype = prop_list->sdt_ctype;
3814 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3815 			    "sd_set_vers1_properties: ctype set to "
3816 			    "CTYPE_ROD\n");
3817 			break;
3818 		default:
3819 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3820 			    "sd_set_vers1_properties: Could not set "
3821 			    "invalid ctype value (%d)",
3822 			    prop_list->sdt_ctype);
3823 		}
3824 	}
3825 
3826 	/* Purple failover timeout */
3827 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3828 		ASSERT(prop_list != NULL);
3829 		un->un_busy_retry_count =
3830 			prop_list->sdt_busy_retries;
3831 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3832 		    "sd_set_vers1_properties: "
3833 		    "busy retry count set to %d\n",
3834 		    un->un_busy_retry_count);
3835 	}
3836 
3837 	/* Purple reset retry count */
3838 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3839 		ASSERT(prop_list != NULL);
3840 		un->un_reset_retry_count =
3841 			prop_list->sdt_reset_retries;
3842 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3843 		    "sd_set_vers1_properties: "
3844 		    "reset retry count set to %d\n",
3845 		    un->un_reset_retry_count);
3846 	}
3847 
3848 	/* Purple reservation release timeout */
3849 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3850 		ASSERT(prop_list != NULL);
3851 		un->un_reserve_release_time =
3852 			prop_list->sdt_reserv_rel_time;
3853 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3854 		    "sd_set_vers1_properties: "
3855 		    "reservation release timeout set to %d\n",
3856 		    un->un_reserve_release_time);
3857 	}
3858 
3859 	/*
3860 	 * Driver flag telling the driver to verify that no commands are pending
3861 	 * for a device before issuing a Test Unit Ready. This is a workaround
3862 	 * for a firmware bug in some Seagate eliteI drives.
3863 	 */
3864 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3865 		un->un_f_cfg_tur_check = TRUE;
3866 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3867 		    "sd_set_vers1_properties: tur queue check set\n");
3868 	}
3869 
3870 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3871 		un->un_min_throttle = prop_list->sdt_min_throttle;
3872 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3873 		    "sd_set_vers1_properties: min throttle set to %d\n",
3874 		    un->un_min_throttle);
3875 	}
3876 
3877 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3878 		un->un_f_disksort_disabled =
3879 		    (prop_list->sdt_disk_sort_dis != 0) ?
3880 		    TRUE : FALSE;
3881 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3882 		    "sd_set_vers1_properties: disksort disabled "
3883 		    "flag set to %d\n",
3884 		    prop_list->sdt_disk_sort_dis);
3885 	}
3886 
3887 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
3888 		un->un_f_lun_reset_enabled =
3889 		    (prop_list->sdt_lun_reset_enable != 0) ?
3890 		    TRUE : FALSE;
3891 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3892 		    "sd_set_vers1_properties: lun reset enabled "
3893 		    "flag set to %d\n",
3894 		    prop_list->sdt_lun_reset_enable);
3895 	}
3896 
3897 	/*
3898 	 * Validate the throttle values.
3899 	 * If any of the numbers are invalid, set everything to defaults.
3900 	 */
3901 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3902 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3903 	    (un->un_min_throttle > un->un_throttle)) {
3904 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3905 		un->un_min_throttle = sd_min_throttle;
3906 	}
3907 }
3908 
3909 /*
3910  * The following routines support reading and interpretation of disk labels,
3911  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
3912  * fdisk tables.
3913  */
3914 
3915 /*
3916  *    Function: sd_validate_geometry
3917  *
3918  * Description: Read the label from the disk (if present). Update the unit's
3919  *		geometry and vtoc information from the data in the label.
3920  *		Verify that the label is valid.
3921  *
3922  *   Arguments: un - driver soft state (unit) structure
3923  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
3924  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
3925  *			to use the USCSI "direct" chain and bypass the normal
3926  *			command waitq.
3927  *
3928  * Return Code: 0 - Successful completion
3929  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
3930  *			  un->un_blockcount; or label on disk is corrupted
3931  *			  or unreadable.
3932  *		EACCES  - Reservation conflict at the device.
3933  *		ENOMEM  - Resource allocation error
3934  *		ENOTSUP - geometry not applicable
3935  *
3936  *     Context: Kernel thread only (can sleep).
3937  */
3938 
3939 static int
3940 sd_validate_geometry(struct sd_lun *un, int path_flag)
3941 {
3942 	static	char		labelstring[128];
3943 	static	char		buf[256];
3944 	char	*label		= NULL;
3945 	int	label_error	= 0;
3946 	int	gvalid		= un->un_f_geometry_is_valid;
3947 	int	lbasize;
3948 	uint_t	capacity;
3949 	int	count;
3950 
3951 	ASSERT(un != NULL);
3952 	ASSERT(mutex_owned(SD_MUTEX(un)));
3953 
3954 	/*
3955 	 * If the required values are not valid, then try getting them
3956 	 * once via read capacity. If that fails, then fail this call.
3957 	 * This is necessary with the new mpxio failover behavior in
3958 	 * the T300 where we can get an attach for the inactive path
3959 	 * before the active path. The inactive path fails commands with
3960 	 * sense data of 02,04,88 which happens to the read capacity
3961 	 * before mpxio has had sufficient knowledge to know if it should
3962 	 * force a fail over or not. (Which it won't do at attach anyhow).
3963 	 * If the read capacity at attach time fails, un_tgt_blocksize and
3964 	 * un_blockcount won't be valid.
3965 	 */
3966 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
3967 	    (un->un_f_blockcount_is_valid != TRUE)) {
3968 		uint64_t	cap;
3969 		uint32_t	lbasz;
3970 		int		rval;
3971 
3972 		mutex_exit(SD_MUTEX(un));
3973 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
3974 		    &lbasz, SD_PATH_DIRECT);
3975 		mutex_enter(SD_MUTEX(un));
3976 		if (rval == 0) {
3977 			/*
3978 			 * The following relies on
3979 			 * sd_send_scsi_READ_CAPACITY never
3980 			 * returning 0 for capacity and/or lbasize.
3981 			 */
3982 			sd_update_block_info(un, lbasz, cap);
3983 		}
3984 
3985 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
3986 		    (un->un_f_blockcount_is_valid != TRUE)) {
3987 			return (EINVAL);
3988 		}
3989 	}
3990 
3991 	/*
3992 	 * Copy the lbasize and capacity so that if they're reset while we're
3993 	 * not holding the SD_MUTEX, we will continue to use valid values
3994 	 * after the SD_MUTEX is reacquired. (4119659)
3995 	 */
3996 	lbasize  = un->un_tgt_blocksize;
3997 	capacity = un->un_blockcount;
3998 
3999 #if defined(_SUNOS_VTOC_16)
4000 	/*
4001 	 * Set up the "whole disk" fdisk partition; this should always
4002 	 * exist, regardless of whether the disk contains an fdisk table
4003 	 * or vtoc.
4004 	 */
4005 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4006 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4007 #endif
4008 
4009 	/*
4010 	 * Refresh the logical and physical geometry caches.
4011 	 * (data from MODE SENSE format/rigid disk geometry pages,
4012 	 * and scsi_ifgetcap("geometry").
4013 	 */
4014 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4015 
4016 	label_error = sd_use_efi(un, path_flag);
4017 	if (label_error == 0) {
4018 		/* found a valid EFI label */
4019 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4020 			"sd_validate_geometry: found EFI label\n");
4021 		un->un_solaris_offset = 0;
4022 		un->un_solaris_size = capacity;
4023 		return (ENOTSUP);
4024 	}
4025 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4026 		if (label_error == ESRCH) {
4027 			/*
4028 			 * they've configured a LUN over 1TB, but used
4029 			 * format.dat to restrict format's view of the
4030 			 * capacity to be under 1TB
4031 			 */
4032 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4033 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4034 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4035 "size to be < 1TB or relabel the disk with an EFI label");
4036 		} else {
4037 			/* unlabeled disk over 1TB */
4038 			return (ENOTSUP);
4039 		}
4040 	}
4041 	label_error = 0;
4042 
4043 	/*
4044 	 * at this point it is either labeled with a VTOC or it is
4045 	 * under 1TB
4046 	 */
4047 
4048 	/*
4049 	 * Only DIRECT ACCESS devices will have Sun labels.
4050 	 * CD's supposedly have a Sun label, too
4051 	 */
4052 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
4053 		struct	dk_label *dkl;
4054 		offset_t dkl1;
4055 		offset_t label_addr, real_addr;
4056 		int	rval;
4057 		size_t	buffer_size;
4058 
4059 		/*
4060 		 * Note: This will set up un->un_solaris_size and
4061 		 * un->un_solaris_offset.
4062 		 */
4063 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4064 		case SD_CMD_RESERVATION_CONFLICT:
4065 			ASSERT(mutex_owned(SD_MUTEX(un)));
4066 			return (EACCES);
4067 		case SD_CMD_FAILURE:
4068 			ASSERT(mutex_owned(SD_MUTEX(un)));
4069 			return (ENOMEM);
4070 		}
4071 
4072 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4073 			/*
4074 			 * Found fdisk table but no Solaris partition entry,
4075 			 * so don't call sd_uselabel() and don't create
4076 			 * a default label.
4077 			 */
4078 			label_error = 0;
4079 			un->un_f_geometry_is_valid = TRUE;
4080 			goto no_solaris_partition;
4081 		}
4082 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4083 
4084 		/*
4085 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4086 		 * blkno and save the index to beginning of dk_label
4087 		 */
4088 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4089 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4090 		    sizeof (struct dk_label));
4091 
4092 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4093 		    "label_addr: 0x%x allocation size: 0x%x\n",
4094 		    label_addr, buffer_size);
4095 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4096 		if (dkl == NULL) {
4097 			return (ENOMEM);
4098 		}
4099 
4100 		mutex_exit(SD_MUTEX(un));
4101 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4102 		    path_flag);
4103 		mutex_enter(SD_MUTEX(un));
4104 
4105 		switch (rval) {
4106 		case 0:
4107 			/*
4108 			 * sd_uselabel will establish that the geometry
4109 			 * is valid.
4110 			 * For sys_blocksize != tgt_blocksize, need
4111 			 * to index into the beginning of dk_label
4112 			 */
4113 			dkl1 = (daddr_t)dkl
4114 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4115 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4116 			    path_flag) != SD_LABEL_IS_VALID) {
4117 				label_error = EINVAL;
4118 			}
4119 			break;
4120 		case EACCES:
4121 			label_error = EACCES;
4122 			break;
4123 		default:
4124 			label_error = EINVAL;
4125 			break;
4126 		}
4127 
4128 		kmem_free(dkl, buffer_size);
4129 
4130 #if defined(_SUNOS_VTOC_8)
4131 		label = (char *)un->un_asciilabel;
4132 #elif defined(_SUNOS_VTOC_16)
4133 		label = (char *)un->un_vtoc.v_asciilabel;
4134 #else
4135 #error "No VTOC format defined."
4136 #endif
4137 	}
4138 
4139 	/*
4140 	 * If a valid label was not found, AND if no reservation conflict
4141 	 * was detected, then go ahead and create a default label (4069506).
4142 	 *
4143 	 * Note: currently, for VTOC_8 devices, the default label is created
4144 	 * for removables only.  For VTOC_16 devices, the default label will
4145 	 * be created for both removables and non-removables alike.
4146 	 * (see sd_build_default_label)
4147 	 */
4148 #if defined(_SUNOS_VTOC_8)
4149 	if (ISREMOVABLE(un) && (label_error != EACCES)) {
4150 #elif defined(_SUNOS_VTOC_16)
4151 	if (label_error != EACCES) {
4152 #endif
4153 		if (un->un_f_geometry_is_valid == FALSE) {
4154 			sd_build_default_label(un);
4155 		}
4156 		label_error = 0;
4157 	}
4158 
4159 no_solaris_partition:
4160 	if ((!ISREMOVABLE(un) ||
4161 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
4162 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
4163 		/*
4164 		 * Print out a message indicating who and what we are.
4165 		 * We do this only when we happen to really validate the
4166 		 * geometry. We may call sd_validate_geometry() at other
4167 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4168 		 * don't want to print the label.
4169 		 * If the geometry is valid, print the label string,
4170 		 * else print vendor and product info, if available
4171 		 */
4172 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4173 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4174 		} else {
4175 			mutex_enter(&sd_label_mutex);
4176 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4177 			    labelstring);
4178 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4179 			    &labelstring[64]);
4180 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4181 			    labelstring, &labelstring[64]);
4182 			if (un->un_f_blockcount_is_valid == TRUE) {
4183 				(void) sprintf(&buf[strlen(buf)],
4184 				    ", %llu %u byte blocks\n",
4185 				    (longlong_t)un->un_blockcount,
4186 				    un->un_tgt_blocksize);
4187 			} else {
4188 				(void) sprintf(&buf[strlen(buf)],
4189 				    ", (unknown capacity)\n");
4190 			}
4191 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4192 			mutex_exit(&sd_label_mutex);
4193 		}
4194 	}
4195 
4196 #if defined(_SUNOS_VTOC_16)
4197 	/*
4198 	 * If we have valid geometry, set up the remaining fdisk partitions.
4199 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4200 	 * we set it to an entirely bogus value.
4201 	 */
4202 	for (count = 0; count < FD_NUMPART; count++) {
4203 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4204 		un->un_map[FDISK_P1 + count].dkl_nblk =
4205 		    un->un_fmap[count].fmap_nblk;
4206 
4207 		un->un_offset[FDISK_P1 + count] =
4208 		    un->un_fmap[count].fmap_start;
4209 	}
4210 #endif
4211 
4212 	for (count = 0; count < NDKMAP; count++) {
4213 #if defined(_SUNOS_VTOC_8)
4214 		struct dk_map *lp  = &un->un_map[count];
4215 		un->un_offset[count] =
4216 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4217 #elif defined(_SUNOS_VTOC_16)
4218 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4219 
4220 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4221 #else
4222 #error "No VTOC format defined."
4223 #endif
4224 	}
4225 
4226 	return (label_error);
4227 }
4228 
4229 
4230 #if defined(_SUNOS_VTOC_16)
4231 /*
4232  * Macro: MAX_BLKS
4233  *
4234  *	This macro is used for table entries where we need to have the largest
4235  *	possible sector value for that head & SPT (sectors per track)
4236  *	combination.  Other entries for some smaller disk sizes are set by
4237  *	convention to match those used by X86 BIOS usage.
4238  */
4239 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4240 
4241 /*
4242  *    Function: sd_convert_geometry
4243  *
4244  * Description: Convert physical geometry into a dk_geom structure. In
4245  *		other words, make sure we don't wrap 16-bit values.
4246  *		e.g. converting from geom_cache to dk_geom
4247  *
4248  *     Context: Kernel thread only
4249  */
4250 static void
4251 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4252 {
4253 	int i;
4254 	static const struct chs_values {
4255 		uint_t max_cap;		/* Max Capacity for this HS. */
4256 		uint_t nhead;		/* Heads to use. */
4257 		uint_t nsect;		/* SPT to use. */
4258 	} CHS_values[] = {
4259 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4260 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4261 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4262 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4263 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4264 	};
4265 
4266 	/* Unlabeled SCSI floppy device */
4267 	if (capacity <= 0x1000) {
4268 		un_g->dkg_nhead = 2;
4269 		un_g->dkg_ncyl = 80;
4270 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4271 		return;
4272 	}
4273 
4274 	/*
4275 	 * For all devices we calculate cylinders using the
4276 	 * heads and sectors we assign based on capacity of the
4277 	 * device.  The table is designed to be compatible with the
4278 	 * way other operating systems lay out fdisk tables for X86
4279 	 * and to insure that the cylinders never exceed 65535 to
4280 	 * prevent problems with X86 ioctls that report geometry.
4281 	 * We use SPT that are multiples of 63, since other OSes that
4282 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4283 	 * we make do by using multiples of 63 SPT.
4284 	 *
4285 	 * Note than capacities greater than or equal to 1TB will simply
4286 	 * get the largest geometry from the table. This should be okay
4287 	 * since disks this large shouldn't be using CHS values anyway.
4288 	 */
4289 	for (i = 0; CHS_values[i].max_cap < capacity &&
4290 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4291 		;
4292 
4293 	un_g->dkg_nhead = CHS_values[i].nhead;
4294 	un_g->dkg_nsect = CHS_values[i].nsect;
4295 }
4296 #endif
4297 
4298 
4299 /*
4300  *    Function: sd_resync_geom_caches
4301  *
4302  * Description: (Re)initialize both geometry caches: the virtual geometry
4303  *		information is extracted from the HBA (the "geometry"
4304  *		capability), and the physical geometry cache data is
4305  *		generated by issuing MODE SENSE commands.
4306  *
4307  *   Arguments: un - driver soft state (unit) structure
4308  *		capacity - disk capacity in #blocks
4309  *		lbasize - disk block size in bytes
4310  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4311  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4312  *			to use the USCSI "direct" chain and bypass the normal
4313  *			command waitq.
4314  *
4315  *     Context: Kernel thread only (can sleep).
4316  */
4317 
4318 static void
4319 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4320 	int path_flag)
4321 {
4322 	struct 	geom_cache 	pgeom;
4323 	struct 	geom_cache	*pgeom_p = &pgeom;
4324 	int 	spc;
4325 	unsigned short nhead;
4326 	unsigned short nsect;
4327 
4328 	ASSERT(un != NULL);
4329 	ASSERT(mutex_owned(SD_MUTEX(un)));
4330 
4331 	/*
4332 	 * Ask the controller for its logical geometry.
4333 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4334 	 * then the lgeom cache will be invalid.
4335 	 */
4336 	sd_get_virtual_geometry(un, capacity, lbasize);
4337 
4338 	/*
4339 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4340 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4341 	 */
4342 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4343 		/*
4344 		 * Note: Perhaps this needs to be more adaptive? The rationale
4345 		 * is that, if there's no HBA geometry from the HBA driver, any
4346 		 * guess is good, since this is the physical geometry. If MODE
4347 		 * SENSE fails this gives a max cylinder size for non-LBA access
4348 		 */
4349 		nhead = 255;
4350 		nsect = 63;
4351 	} else {
4352 		nhead = un->un_lgeom.g_nhead;
4353 		nsect = un->un_lgeom.g_nsect;
4354 	}
4355 
4356 	if (ISCD(un)) {
4357 		pgeom_p->g_nhead = 1;
4358 		pgeom_p->g_nsect = nsect * nhead;
4359 	} else {
4360 		pgeom_p->g_nhead = nhead;
4361 		pgeom_p->g_nsect = nsect;
4362 	}
4363 
4364 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4365 	pgeom_p->g_capacity = capacity;
4366 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4367 	pgeom_p->g_acyl = 0;
4368 
4369 	/*
4370 	 * Retrieve fresh geometry data from the hardware, stash it
4371 	 * here temporarily before we rebuild the incore label.
4372 	 *
4373 	 * We want to use the MODE SENSE commands to derive the
4374 	 * physical geometry of the device, but if either command
4375 	 * fails, the logical geometry is used as the fallback for
4376 	 * disk label geometry.
4377 	 */
4378 	mutex_exit(SD_MUTEX(un));
4379 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4380 	mutex_enter(SD_MUTEX(un));
4381 
4382 	/*
4383 	 * Now update the real copy while holding the mutex. This
4384 	 * way the global copy is never in an inconsistent state.
4385 	 */
4386 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4387 
4388 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4389 	    "(cached from lgeom)\n");
4390 	SD_INFO(SD_LOG_COMMON, un,
4391 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4392 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4393 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4394 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4395 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4396 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4397 	    un->un_pgeom.g_rpm);
4398 }
4399 
4400 
4401 /*
4402  *    Function: sd_read_fdisk
4403  *
4404  * Description: utility routine to read the fdisk table.
4405  *
4406  *   Arguments: un - driver soft state (unit) structure
4407  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4408  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4409  *			to use the USCSI "direct" chain and bypass the normal
4410  *			command waitq.
4411  *
4412  * Return Code: SD_CMD_SUCCESS
4413  *		SD_CMD_FAILURE
4414  *
4415  *     Context: Kernel thread only (can sleep).
4416  */
4417 /* ARGSUSED */
4418 static int
4419 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4420 {
4421 #if defined(_NO_FDISK_PRESENT)
4422 
4423 	un->un_solaris_offset = 0;
4424 	un->un_solaris_size = capacity;
4425 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4426 	return (SD_CMD_SUCCESS);
4427 
4428 #elif defined(_FIRMWARE_NEEDS_FDISK)
4429 
4430 	struct ipart	*fdp;
4431 	struct mboot	*mbp;
4432 	struct ipart	fdisk[FD_NUMPART];
4433 	int		i;
4434 	char		sigbuf[2];
4435 	caddr_t		bufp;
4436 	int		uidx;
4437 	int		rval;
4438 	int		lba = 0;
4439 	uint_t		solaris_offset;	/* offset to solaris part. */
4440 	daddr_t		solaris_size;	/* size of solaris partition */
4441 	uint32_t	blocksize;
4442 
4443 	ASSERT(un != NULL);
4444 	ASSERT(mutex_owned(SD_MUTEX(un)));
4445 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4446 
4447 	blocksize = un->un_tgt_blocksize;
4448 
4449 	/*
4450 	 * Start off assuming no fdisk table
4451 	 */
4452 	solaris_offset = 0;
4453 	solaris_size   = capacity;
4454 
4455 	mutex_exit(SD_MUTEX(un));
4456 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4457 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4458 	mutex_enter(SD_MUTEX(un));
4459 
4460 	if (rval != 0) {
4461 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4462 		    "sd_read_fdisk: fdisk read err\n");
4463 		kmem_free(bufp, blocksize);
4464 		return (SD_CMD_FAILURE);
4465 	}
4466 
4467 	mbp = (struct mboot *)bufp;
4468 
4469 	/*
4470 	 * The fdisk table does not begin on a 4-byte boundary within the
4471 	 * master boot record, so we copy it to an aligned structure to avoid
4472 	 * alignment exceptions on some processors.
4473 	 */
4474 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4475 
4476 	/*
4477 	 * Check for lba support before verifying sig; sig might not be
4478 	 * there, say on a blank disk, but the max_chs mark may still
4479 	 * be present.
4480 	 *
4481 	 * Note: LBA support and BEFs are an x86-only concept but this
4482 	 * code should work OK on SPARC as well.
4483 	 */
4484 
4485 	/*
4486 	 * First, check for lba-access-ok on root node (or prom root node)
4487 	 * if present there, don't need to search fdisk table.
4488 	 */
4489 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4490 	    "lba-access-ok", 0) != 0) {
4491 		/* All drives do LBA; don't search fdisk table */
4492 		lba = 1;
4493 	} else {
4494 		/* Okay, look for mark in fdisk table */
4495 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4496 			/* accumulate "lba" value from all partitions */
4497 			lba = (lba || sd_has_max_chs_vals(fdp));
4498 		}
4499 	}
4500 
4501 	/*
4502 	 * Next, look for 'no-bef-lba-access' prop on parent.
4503 	 * Its presence means the realmode driver doesn't support
4504 	 * LBA, so the target driver shouldn't advertise it as ok.
4505 	 * This should be a temporary condition; one day all
4506 	 * BEFs should support the LBA access functions.
4507 	 */
4508 	if ((lba != 0) && (ddi_getprop(DDI_DEV_T_ANY,
4509 	    ddi_get_parent(SD_DEVINFO(un)), DDI_PROP_DONTPASS,
4510 	    "no-bef-lba-access", 0) != 0)) {
4511 		/* BEF doesn't support LBA; don't advertise it as ok */
4512 		lba = 0;
4513 	}
4514 
4515 	if (lba != 0) {
4516 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4517 
4518 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4519 		    "lba-access-ok", 0) == 0) {
4520 			/* not found; create it */
4521 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4522 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4523 			    DDI_PROP_SUCCESS) {
4524 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4525 				    "sd_read_fdisk: Can't create lba property "
4526 				    "for instance %d\n",
4527 				    ddi_get_instance(SD_DEVINFO(un)));
4528 			}
4529 		}
4530 	}
4531 
4532 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4533 
4534 	/*
4535 	 * Endian-independent signature check
4536 	 */
4537 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4538 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4539 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4540 		    "sd_read_fdisk: no fdisk\n");
4541 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4542 		rval = SD_CMD_SUCCESS;
4543 		goto done;
4544 	}
4545 
4546 #ifdef SDDEBUG
4547 	if (sd_level_mask & SD_LOGMASK_INFO) {
4548 		fdp = fdisk;
4549 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4550 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4551 		    "numsect         sysid       bootid\n");
4552 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4553 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4554 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4555 			    i, fdp->relsect, fdp->numsect,
4556 			    fdp->systid, fdp->bootid);
4557 		}
4558 	}
4559 #endif
4560 
4561 	/*
4562 	 * Try to find the unix partition
4563 	 */
4564 	uidx = -1;
4565 	solaris_offset = 0;
4566 	solaris_size   = 0;
4567 
4568 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4569 		int	relsect;
4570 		int	numsect;
4571 
4572 		if (fdp->numsect == 0) {
4573 			un->un_fmap[i].fmap_start = 0;
4574 			un->un_fmap[i].fmap_nblk  = 0;
4575 			continue;
4576 		}
4577 
4578 		/*
4579 		 * Data in the fdisk table is little-endian.
4580 		 */
4581 		relsect = LE_32(fdp->relsect);
4582 		numsect = LE_32(fdp->numsect);
4583 
4584 		un->un_fmap[i].fmap_start = relsect;
4585 		un->un_fmap[i].fmap_nblk  = numsect;
4586 
4587 		if (fdp->systid != SUNIXOS &&
4588 		    fdp->systid != SUNIXOS2 &&
4589 		    fdp->systid != EFI_PMBR) {
4590 			continue;
4591 		}
4592 
4593 		/*
4594 		 * use the last active solaris partition id found
4595 		 * (there should only be 1 active partition id)
4596 		 *
4597 		 * if there are no active solaris partition id
4598 		 * then use the first inactive solaris partition id
4599 		 */
4600 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4601 			uidx = i;
4602 			solaris_offset = relsect;
4603 			solaris_size   = numsect;
4604 		}
4605 	}
4606 
4607 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4608 	    un->un_solaris_offset, un->un_solaris_size);
4609 
4610 	rval = SD_CMD_SUCCESS;
4611 
4612 done:
4613 
4614 	/*
4615 	 * Clear the VTOC info, only if the Solaris partition entry
4616 	 * has moved, changed size, been deleted, or if the size of
4617 	 * the partition is too small to even fit the label sector.
4618 	 */
4619 	if ((un->un_solaris_offset != solaris_offset) ||
4620 	    (un->un_solaris_size != solaris_size) ||
4621 	    solaris_size <= DK_LABEL_LOC) {
4622 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4623 			solaris_offset, solaris_size);
4624 		bzero(&un->un_g, sizeof (struct dk_geom));
4625 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4626 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4627 		un->un_f_geometry_is_valid = FALSE;
4628 	}
4629 	un->un_solaris_offset = solaris_offset;
4630 	un->un_solaris_size = solaris_size;
4631 	kmem_free(bufp, blocksize);
4632 	return (rval);
4633 
4634 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4635 #error "fdisk table presence undetermined for this platform."
4636 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4637 }
4638 
4639 
4640 /*
4641  *    Function: sd_get_physical_geometry
4642  *
4643  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4644  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4645  *		target, and use this information to initialize the physical
4646  *		geometry cache specified by pgeom_p.
4647  *
4648  *		MODE SENSE is an optional command, so failure in this case
4649  *		does not necessarily denote an error. We want to use the
4650  *		MODE SENSE commands to derive the physical geometry of the
4651  *		device, but if either command fails, the logical geometry is
4652  *		used as the fallback for disk label geometry.
4653  *
4654  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4655  *		have already been initialized for the current target and
4656  *		that the current values be passed as args so that we don't
4657  *		end up ever trying to use -1 as a valid value. This could
4658  *		happen if either value is reset while we're not holding
4659  *		the mutex.
4660  *
4661  *   Arguments: un - driver soft state (unit) structure
4662  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4663  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4664  *			to use the USCSI "direct" chain and bypass the normal
4665  *			command waitq.
4666  *
4667  *     Context: Kernel thread only (can sleep).
4668  */
4669 
4670 static void
4671 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4672 	int capacity, int lbasize, int path_flag)
4673 {
4674 	struct	mode_format	*page3p;
4675 	struct	mode_geometry	*page4p;
4676 	struct	mode_header	*headerp;
4677 	int	sector_size;
4678 	int	nsect;
4679 	int	nhead;
4680 	int	ncyl;
4681 	int	intrlv;
4682 	int	spc;
4683 	int	modesense_capacity;
4684 	int	rpm;
4685 	int	bd_len;
4686 	int	mode_header_length;
4687 	uchar_t	*p3bufp;
4688 	uchar_t	*p4bufp;
4689 	int	cdbsize;
4690 
4691 	ASSERT(un != NULL);
4692 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4693 
4694 	if (un->un_f_blockcount_is_valid != TRUE) {
4695 		return;
4696 	}
4697 
4698 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4699 		return;
4700 	}
4701 
4702 	if (lbasize == 0) {
4703 		if (ISCD(un)) {
4704 			lbasize = 2048;
4705 		} else {
4706 			lbasize = un->un_sys_blocksize;
4707 		}
4708 	}
4709 	pgeom_p->g_secsize = (unsigned short)lbasize;
4710 
4711 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4712 
4713 	/*
4714 	 * Retrieve MODE SENSE page 3 - Format Device Page
4715 	 */
4716 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4717 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4718 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4719 	    != 0) {
4720 		SD_ERROR(SD_LOG_COMMON, un,
4721 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4722 		goto page3_exit;
4723 	}
4724 
4725 	/*
4726 	 * Determine size of Block Descriptors in order to locate the mode
4727 	 * page data.  ATAPI devices return 0, SCSI devices should return
4728 	 * MODE_BLK_DESC_LENGTH.
4729 	 */
4730 	headerp = (struct mode_header *)p3bufp;
4731 	if (un->un_f_cfg_is_atapi == TRUE) {
4732 		struct mode_header_grp2 *mhp =
4733 		    (struct mode_header_grp2 *)headerp;
4734 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4735 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4736 	} else {
4737 		mode_header_length = MODE_HEADER_LENGTH;
4738 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4739 	}
4740 
4741 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4742 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4743 		    "received unexpected bd_len of %d, page3\n", bd_len);
4744 		goto page3_exit;
4745 	}
4746 
4747 	page3p = (struct mode_format *)
4748 	    ((caddr_t)headerp + mode_header_length + bd_len);
4749 
4750 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4751 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4752 		    "mode sense pg3 code mismatch %d\n",
4753 		    page3p->mode_page.code);
4754 		goto page3_exit;
4755 	}
4756 
4757 	/*
4758 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4759 	 * complete successfully; otherwise, revert to the logical geometry.
4760 	 * So, we need to save everything in temporary variables.
4761 	 */
4762 	sector_size = BE_16(page3p->data_bytes_sect);
4763 
4764 	/*
4765 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4766 	 */
4767 	if (sector_size == 0) {
4768 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4769 	} else {
4770 		sector_size &= ~(un->un_sys_blocksize - 1);
4771 	}
4772 
4773 	nsect  = BE_16(page3p->sect_track);
4774 	intrlv = BE_16(page3p->interleave);
4775 
4776 	SD_INFO(SD_LOG_COMMON, un,
4777 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4778 	SD_INFO(SD_LOG_COMMON, un,
4779 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4780 	    page3p->mode_page.code, nsect, sector_size);
4781 	SD_INFO(SD_LOG_COMMON, un,
4782 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4783 	    BE_16(page3p->track_skew),
4784 	    BE_16(page3p->cylinder_skew));
4785 
4786 
4787 	/*
4788 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4789 	 */
4790 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4791 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4792 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4793 	    != 0) {
4794 		SD_ERROR(SD_LOG_COMMON, un,
4795 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4796 		goto page4_exit;
4797 	}
4798 
4799 	/*
4800 	 * Determine size of Block Descriptors in order to locate the mode
4801 	 * page data.  ATAPI devices return 0, SCSI devices should return
4802 	 * MODE_BLK_DESC_LENGTH.
4803 	 */
4804 	headerp = (struct mode_header *)p4bufp;
4805 	if (un->un_f_cfg_is_atapi == TRUE) {
4806 		struct mode_header_grp2 *mhp =
4807 		    (struct mode_header_grp2 *)headerp;
4808 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4809 	} else {
4810 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4811 	}
4812 
4813 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4814 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4815 		    "received unexpected bd_len of %d, page4\n", bd_len);
4816 		goto page4_exit;
4817 	}
4818 
4819 	page4p = (struct mode_geometry *)
4820 	    ((caddr_t)headerp + mode_header_length + bd_len);
4821 
4822 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4823 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4824 		    "mode sense pg4 code mismatch %d\n",
4825 		    page4p->mode_page.code);
4826 		goto page4_exit;
4827 	}
4828 
4829 	/*
4830 	 * Stash the data now, after we know that both commands completed.
4831 	 */
4832 
4833 	mutex_enter(SD_MUTEX(un));
4834 
4835 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4836 	spc   = nhead * nsect;
4837 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4838 	rpm   = BE_16(page4p->rpm);
4839 
4840 	modesense_capacity = spc * ncyl;
4841 
4842 	SD_INFO(SD_LOG_COMMON, un,
4843 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4844 	SD_INFO(SD_LOG_COMMON, un,
4845 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4846 	SD_INFO(SD_LOG_COMMON, un,
4847 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4848 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4849 	    (void *)pgeom_p, capacity);
4850 
4851 	/*
4852 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4853 	 * the product of C * H * S returned by MODE SENSE >= that returned
4854 	 * by read capacity. This is an idiosyncrasy of the original x86
4855 	 * disk subsystem.
4856 	 */
4857 	if (modesense_capacity >= capacity) {
4858 		SD_INFO(SD_LOG_COMMON, un,
4859 		    "sd_get_physical_geometry: adjusting acyl; "
4860 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4861 		    (modesense_capacity - capacity + spc - 1) / spc);
4862 		if (sector_size != 0) {
4863 			/* 1243403: NEC D38x7 drives don't support sec size */
4864 			pgeom_p->g_secsize = (unsigned short)sector_size;
4865 		}
4866 		pgeom_p->g_nsect    = (unsigned short)nsect;
4867 		pgeom_p->g_nhead    = (unsigned short)nhead;
4868 		pgeom_p->g_capacity = capacity;
4869 		pgeom_p->g_acyl	    =
4870 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4871 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4872 	}
4873 
4874 	pgeom_p->g_rpm    = (unsigned short)rpm;
4875 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4876 
4877 	SD_INFO(SD_LOG_COMMON, un,
4878 	    "sd_get_physical_geometry: mode sense geometry:\n");
4879 	SD_INFO(SD_LOG_COMMON, un,
4880 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4881 	    nsect, sector_size, intrlv);
4882 	SD_INFO(SD_LOG_COMMON, un,
4883 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4884 	    nhead, ncyl, rpm, modesense_capacity);
4885 	SD_INFO(SD_LOG_COMMON, un,
4886 	    "sd_get_physical_geometry: (cached)\n");
4887 	SD_INFO(SD_LOG_COMMON, un,
4888 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4889 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
4890 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4891 	SD_INFO(SD_LOG_COMMON, un,
4892 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4893 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
4894 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
4895 
4896 	mutex_exit(SD_MUTEX(un));
4897 
4898 page4_exit:
4899 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4900 page3_exit:
4901 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4902 }
4903 
4904 
4905 /*
4906  *    Function: sd_get_virtual_geometry
4907  *
4908  * Description: Ask the controller to tell us about the target device.
4909  *
4910  *   Arguments: un - pointer to softstate
4911  *		capacity - disk capacity in #blocks
4912  *		lbasize - disk block size in bytes
4913  *
4914  *     Context: Kernel thread only
4915  */
4916 
4917 static void
4918 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
4919 {
4920 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
4921 	uint_t	geombuf;
4922 	int	spc;
4923 
4924 	ASSERT(un != NULL);
4925 	ASSERT(mutex_owned(SD_MUTEX(un)));
4926 
4927 	mutex_exit(SD_MUTEX(un));
4928 
4929 	/* Set sector size, and total number of sectors */
4930 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4931 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4932 
4933 	/* Let the HBA tell us its geometry */
4934 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4935 
4936 	mutex_enter(SD_MUTEX(un));
4937 
4938 	/* A value of -1 indicates an undefined "geometry" property */
4939 	if (geombuf == (-1)) {
4940 		return;
4941 	}
4942 
4943 	/* Initialize the logical geometry cache. */
4944 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4945 	lgeom_p->g_nsect   = geombuf & 0xffff;
4946 	lgeom_p->g_secsize = un->un_sys_blocksize;
4947 
4948 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4949 
4950 	/*
4951 	 * Note: The driver originally converted the capacity value from
4952 	 * target blocks to system blocks. However, the capacity value passed
4953 	 * to this routine is already in terms of system blocks (this scaling
4954 	 * is done when the READ CAPACITY command is issued and processed).
4955 	 * This 'error' may have gone undetected because the usage of g_ncyl
4956 	 * (which is based upon g_capacity) is very limited within the driver
4957 	 */
4958 	lgeom_p->g_capacity = capacity;
4959 
4960 	/*
4961 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4962 	 * hba may return zero values if the device has been removed.
4963 	 */
4964 	if (spc == 0) {
4965 		lgeom_p->g_ncyl = 0;
4966 	} else {
4967 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4968 	}
4969 	lgeom_p->g_acyl = 0;
4970 
4971 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4972 	SD_INFO(SD_LOG_COMMON, un,
4973 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4974 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
4975 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
4976 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4977 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
4978 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
4979 }
4980 
4981 
4982 /*
4983  *    Function: sd_update_block_info
4984  *
4985  * Description: Calculate a byte count to sector count bitshift value
4986  *		from sector size.
4987  *
4988  *   Arguments: un: unit struct.
4989  *		lbasize: new target sector size
4990  *		capacity: new target capacity, ie. block count
4991  *
4992  *     Context: Kernel thread context
4993  */
4994 
4995 static void
4996 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4997 {
4998 	if (lbasize != 0) {
4999 		un->un_tgt_blocksize = lbasize;
5000 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5001 	}
5002 
5003 	if (capacity != 0) {
5004 		un->un_blockcount		= capacity;
5005 		un->un_f_blockcount_is_valid	= TRUE;
5006 	}
5007 }
5008 
5009 
5010 static void
5011 sd_swap_efi_gpt(efi_gpt_t *e)
5012 {
5013 	_NOTE(ASSUMING_PROTECTED(*e))
5014 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5015 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5016 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5017 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5018 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5019 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5020 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5021 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5022 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5023 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5024 	e->efi_gpt_NumberOfPartitionEntries =
5025 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5026 	e->efi_gpt_SizeOfPartitionEntry =
5027 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5028 	e->efi_gpt_PartitionEntryArrayCRC32 =
5029 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5030 }
5031 
5032 static void
5033 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5034 {
5035 	int i;
5036 
5037 	_NOTE(ASSUMING_PROTECTED(*p))
5038 	for (i = 0; i < nparts; i++) {
5039 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5040 		    p[i].efi_gpe_PartitionTypeGUID);
5041 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5042 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5043 		/* PartitionAttrs */
5044 	}
5045 }
5046 
5047 static int
5048 sd_validate_efi(efi_gpt_t *labp)
5049 {
5050 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5051 		return (EINVAL);
5052 	/* at least 96 bytes in this version of the spec. */
5053 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5054 	    labp->efi_gpt_HeaderSize)
5055 		return (EINVAL);
5056 	/* this should be 128 bytes */
5057 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5058 		return (EINVAL);
5059 	return (0);
5060 }
5061 
5062 static int
5063 sd_use_efi(struct sd_lun *un, int path_flag)
5064 {
5065 	int		i;
5066 	int		rval = 0;
5067 	efi_gpe_t	*partitions;
5068 	uchar_t		*buf;
5069 	uint_t		lbasize;
5070 	uint64_t	cap;
5071 	uint_t		nparts;
5072 	diskaddr_t	gpe_lba;
5073 
5074 	ASSERT(mutex_owned(SD_MUTEX(un)));
5075 	lbasize = un->un_tgt_blocksize;
5076 
5077 	mutex_exit(SD_MUTEX(un));
5078 
5079 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5080 
5081 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5082 		rval = EINVAL;
5083 		goto done_err;
5084 	}
5085 
5086 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5087 	if (rval) {
5088 		goto done_err;
5089 	}
5090 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5091 		/* not ours */
5092 		rval = ESRCH;
5093 		goto done_err;
5094 	}
5095 
5096 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5097 	if (rval) {
5098 		goto done_err;
5099 	}
5100 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5101 
5102 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5103 		/*
5104 		 * Couldn't read the primary, try the backup.  Our
5105 		 * capacity at this point could be based on CHS, so
5106 		 * check what the device reports.
5107 		 */
5108 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5109 		    path_flag);
5110 		if (rval) {
5111 			goto done_err;
5112 		}
5113 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5114 		    cap - 1, path_flag)) != 0) {
5115 			goto done_err;
5116 		}
5117 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5118 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5119 			goto done_err;
5120 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5121 		    "primary label corrupt; using backup\n");
5122 	}
5123 
5124 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5125 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5126 
5127 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5128 	    path_flag);
5129 	if (rval) {
5130 		goto done_err;
5131 	}
5132 	partitions = (efi_gpe_t *)buf;
5133 
5134 	if (nparts > MAXPART) {
5135 		nparts = MAXPART;
5136 	}
5137 	sd_swap_efi_gpe(nparts, partitions);
5138 
5139 	mutex_enter(SD_MUTEX(un));
5140 
5141 	/* Fill in partition table. */
5142 	for (i = 0; i < nparts; i++) {
5143 		if (partitions->efi_gpe_StartingLBA != 0 ||
5144 		    partitions->efi_gpe_EndingLBA != 0) {
5145 			un->un_map[i].dkl_cylno =
5146 			    partitions->efi_gpe_StartingLBA;
5147 			un->un_map[i].dkl_nblk =
5148 			    partitions->efi_gpe_EndingLBA -
5149 			    partitions->efi_gpe_StartingLBA + 1;
5150 			un->un_offset[i] =
5151 			    partitions->efi_gpe_StartingLBA;
5152 		}
5153 		if (i == WD_NODE) {
5154 			/*
5155 			 * minor number 7 corresponds to the whole disk
5156 			 */
5157 			un->un_map[i].dkl_cylno = 0;
5158 			un->un_map[i].dkl_nblk = un->un_blockcount;
5159 			un->un_offset[i] = 0;
5160 		}
5161 		partitions++;
5162 	}
5163 	un->un_solaris_offset = 0;
5164 	un->un_solaris_size = cap;
5165 	un->un_f_geometry_is_valid = TRUE;
5166 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5167 	return (0);
5168 
5169 done_err:
5170 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5171 	mutex_enter(SD_MUTEX(un));
5172 	/*
5173 	 * if we didn't find something that could look like a VTOC
5174 	 * and the disk is over 1TB, we know there isn't a valid label.
5175 	 * Otherwise let sd_uselabel decide what to do.  We only
5176 	 * want to invalidate this if we're certain the label isn't
5177 	 * valid because sd_prop_op will now fail, which in turn
5178 	 * causes things like opens and stats on the partition to fail.
5179 	 */
5180 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5181 		un->un_f_geometry_is_valid = FALSE;
5182 	}
5183 	return (rval);
5184 }
5185 
5186 
5187 /*
5188  *    Function: sd_uselabel
5189  *
5190  * Description: Validate the disk label and update the relevant data (geometry,
5191  *		partition, vtoc, and capacity data) in the sd_lun struct.
5192  *		Marks the geometry of the unit as being valid.
5193  *
5194  *   Arguments: un: unit struct.
5195  *		dk_label: disk label
5196  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5197  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5198  *			to use the USCSI "direct" chain and bypass the normal
5199  *			command waitq.
5200  *
5201  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5202  *		partition, vtoc, and capacity data are good.
5203  *
5204  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5205  *		label; or computed capacity does not jibe with capacity
5206  *		reported from the READ CAPACITY command.
5207  *
5208  *     Context: Kernel thread only (can sleep).
5209  */
5210 
5211 static int
5212 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5213 {
5214 	short	*sp;
5215 	short	sum;
5216 	short	count;
5217 	int	label_error = SD_LABEL_IS_VALID;
5218 	int	i;
5219 	int	capacity;
5220 	int	part_end;
5221 	int	track_capacity;
5222 	int	err;
5223 #if defined(_SUNOS_VTOC_16)
5224 	struct	dkl_partition	*vpartp;
5225 #endif
5226 	ASSERT(un != NULL);
5227 	ASSERT(mutex_owned(SD_MUTEX(un)));
5228 
5229 	/* Validate the magic number of the label. */
5230 	if (labp->dkl_magic != DKL_MAGIC) {
5231 #if defined(__sparc)
5232 		if ((un->un_state == SD_STATE_NORMAL) &&
5233 		    !ISREMOVABLE(un)) {
5234 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5235 			    "Corrupt label; wrong magic number\n");
5236 		}
5237 #endif
5238 		return (SD_LABEL_IS_INVALID);
5239 	}
5240 
5241 	/* Validate the checksum of the label. */
5242 	sp  = (short *)labp;
5243 	sum = 0;
5244 	count = sizeof (struct dk_label) / sizeof (short);
5245 	while (count--)	 {
5246 		sum ^= *sp++;
5247 	}
5248 
5249 	if (sum != 0) {
5250 #if defined(_SUNOS_VTOC_16)
5251 		if (un->un_state == SD_STATE_NORMAL && !ISCD(un)) {
5252 #elif defined(_SUNOS_VTOC_8)
5253 		if (un->un_state == SD_STATE_NORMAL && !ISREMOVABLE(un)) {
5254 #endif
5255 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5256 			    "Corrupt label - label checksum failed\n");
5257 		}
5258 		return (SD_LABEL_IS_INVALID);
5259 	}
5260 
5261 
5262 	/*
5263 	 * Fill in geometry structure with data from label.
5264 	 */
5265 	bzero(&un->un_g, sizeof (struct dk_geom));
5266 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5267 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5268 	un->un_g.dkg_bcyl   = 0;
5269 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5270 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5271 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5272 
5273 #if defined(_SUNOS_VTOC_8)
5274 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5275 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5276 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5277 #endif
5278 #if defined(_SUNOS_VTOC_16)
5279 	un->un_dkg_skew = labp->dkl_skew;
5280 #endif
5281 
5282 #if defined(__i386) || defined(__amd64)
5283 	un->un_g.dkg_apc = labp->dkl_apc;
5284 #endif
5285 
5286 	/*
5287 	 * Currently we rely on the values in the label being accurate. If
5288 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5289 	 *
5290 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5291 	 * although this command is optional in SCSI-2.
5292 	 */
5293 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5294 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5295 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5296 
5297 	/*
5298 	 * The Read and Write reinstruct values may not be valid
5299 	 * for older disks.
5300 	 */
5301 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5302 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5303 
5304 	/* Fill in partition table. */
5305 #if defined(_SUNOS_VTOC_8)
5306 	for (i = 0; i < NDKMAP; i++) {
5307 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5308 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5309 	}
5310 #endif
5311 #if  defined(_SUNOS_VTOC_16)
5312 	vpartp		= labp->dkl_vtoc.v_part;
5313 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5314 
5315 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5316 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5317 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5318 	}
5319 #endif
5320 
5321 	/* Fill in VTOC Structure. */
5322 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5323 #if defined(_SUNOS_VTOC_8)
5324 	/*
5325 	 * The 8-slice vtoc does not include the ascii label; save it into
5326 	 * the device's soft state structure here.
5327 	 */
5328 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5329 #endif
5330 
5331 	/* Mark the geometry as valid. */
5332 	un->un_f_geometry_is_valid = TRUE;
5333 
5334 	/* Now look for a valid capacity. */
5335 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5336 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5337 
5338 	if (un->un_g.dkg_acyl) {
5339 #if defined(__i386) || defined(__amd64)
5340 		/* we may have > 1 alts cylinder */
5341 		capacity += (track_capacity * un->un_g.dkg_acyl);
5342 #else
5343 		capacity += track_capacity;
5344 #endif
5345 	}
5346 
5347 	/*
5348 	 * At this point, un->un_blockcount should contain valid data from
5349 	 * the READ CAPACITY command.
5350 	 */
5351 	if (un->un_f_blockcount_is_valid != TRUE) {
5352 		/*
5353 		 * We have a situation where the target didn't give us a good
5354 		 * READ CAPACITY value, yet there appears to be a valid label.
5355 		 * In this case, we'll fake the capacity.
5356 		 */
5357 		un->un_blockcount = capacity;
5358 		un->un_f_blockcount_is_valid = TRUE;
5359 		goto done;
5360 	}
5361 
5362 
5363 	if ((capacity <= un->un_blockcount) ||
5364 	    (un->un_state != SD_STATE_NORMAL)) {
5365 #if defined(_SUNOS_VTOC_8)
5366 		/*
5367 		 * We can't let this happen on drives that are subdivided
5368 		 * into logical disks (i.e., that have an fdisk table).
5369 		 * The un_blockcount field should always hold the full media
5370 		 * size in sectors, period.  This code would overwrite
5371 		 * un_blockcount with the size of the Solaris fdisk partition.
5372 		 */
5373 		SD_ERROR(SD_LOG_COMMON, un,
5374 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5375 		    capacity, un->un_blockcount);
5376 		un->un_blockcount = capacity;
5377 		un->un_f_blockcount_is_valid = TRUE;
5378 #endif	/* defined(_SUNOS_VTOC_8) */
5379 		goto done;
5380 	}
5381 
5382 	if (ISCD(un)) {
5383 		/* For CDROMs, we trust that the data in the label is OK. */
5384 #if defined(_SUNOS_VTOC_8)
5385 		for (i = 0; i < NDKMAP; i++) {
5386 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5387 			    labp->dkl_map[i].dkl_cylno +
5388 			    labp->dkl_map[i].dkl_nblk  - 1;
5389 
5390 			if ((labp->dkl_map[i].dkl_nblk) &&
5391 			    (part_end > un->un_blockcount)) {
5392 				un->un_f_geometry_is_valid = FALSE;
5393 				break;
5394 			}
5395 		}
5396 #endif
5397 #if defined(_SUNOS_VTOC_16)
5398 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5399 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5400 			part_end = vpartp->p_start + vpartp->p_size;
5401 			if ((vpartp->p_size > 0) &&
5402 			    (part_end > un->un_blockcount)) {
5403 				un->un_f_geometry_is_valid = FALSE;
5404 				break;
5405 			}
5406 		}
5407 #endif
5408 	} else {
5409 		uint64_t t_capacity;
5410 		uint32_t t_lbasize;
5411 
5412 		mutex_exit(SD_MUTEX(un));
5413 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5414 		    path_flag);
5415 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5416 		mutex_enter(SD_MUTEX(un));
5417 
5418 		if (err == 0) {
5419 			sd_update_block_info(un, t_lbasize, t_capacity);
5420 		}
5421 
5422 		if (capacity > un->un_blockcount) {
5423 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5424 			    "Corrupt label - bad geometry\n");
5425 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5426 			    "Label says %u blocks; Drive says %llu blocks\n",
5427 			    capacity, (unsigned long long)un->un_blockcount);
5428 			un->un_f_geometry_is_valid = FALSE;
5429 			label_error = SD_LABEL_IS_INVALID;
5430 		}
5431 	}
5432 
5433 done:
5434 
5435 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5436 	SD_INFO(SD_LOG_COMMON, un,
5437 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5438 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5439 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5440 	SD_INFO(SD_LOG_COMMON, un,
5441 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5442 	    un->un_tgt_blocksize, un->un_blockcount,
5443 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5444 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5445 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5446 
5447 	ASSERT(mutex_owned(SD_MUTEX(un)));
5448 
5449 	return (label_error);
5450 }
5451 
5452 
5453 /*
5454  *    Function: sd_build_default_label
5455  *
5456  * Description: Generate a default label for those devices that do not have
5457  *		one, e.g., new media, removable cartridges, etc..
5458  *
5459  *     Context: Kernel thread only
5460  */
5461 
5462 static void
5463 sd_build_default_label(struct sd_lun *un)
5464 {
5465 #if defined(_SUNOS_VTOC_16)
5466 	uint_t	phys_spc;
5467 	uint_t	disksize;
5468 	struct	dk_geom un_g;
5469 #endif
5470 
5471 	ASSERT(un != NULL);
5472 	ASSERT(mutex_owned(SD_MUTEX(un)));
5473 
5474 #if defined(_SUNOS_VTOC_8)
5475 	/*
5476 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5477 	 * only. This may be a valid check for VTOC_16 as well.
5478 	 */
5479 	if (!ISREMOVABLE(un)) {
5480 		return;
5481 	}
5482 #endif
5483 
5484 	bzero(&un->un_g, sizeof (struct dk_geom));
5485 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5486 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5487 
5488 #if defined(_SUNOS_VTOC_8)
5489 
5490 	/*
5491 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5492 	 * But it is still necessary to set up various geometry information,
5493 	 * and we are doing this here.
5494 	 */
5495 
5496 	/*
5497 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5498 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5499 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5500 	 * equal to C*H*S values.  This will cause some truncation of size due
5501 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5502 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5503 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5504 	 */
5505 	if (ISCD(un)) {
5506 		/*
5507 		 * Preserve the old behavior for non-writable
5508 		 * medias. Since dkg_nsect is a ushort, it
5509 		 * will lose bits as cdroms have more than
5510 		 * 65536 sectors. So if we recalculate
5511 		 * capacity, it will become much shorter.
5512 		 * But the dkg_* information is not
5513 		 * used for CDROMs so it is OK. But for
5514 		 * Writable CDs we need this information
5515 		 * to be valid (for newfs say). So we
5516 		 * make nsect and nhead > 1 that way
5517 		 * nsect can still stay within ushort limit
5518 		 * without losing any bits.
5519 		 */
5520 		if (un->un_f_mmc_writable_media == TRUE) {
5521 			un->un_g.dkg_nhead = 64;
5522 			un->un_g.dkg_nsect = 32;
5523 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5524 			un->un_blockcount = un->un_g.dkg_ncyl *
5525 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5526 		} else {
5527 			un->un_g.dkg_ncyl  = 1;
5528 			un->un_g.dkg_nhead = 1;
5529 			un->un_g.dkg_nsect = un->un_blockcount;
5530 		}
5531 	} else {
5532 		if (un->un_blockcount <= 0x1000) {
5533 			/* unlabeled SCSI floppy device */
5534 			un->un_g.dkg_nhead = 2;
5535 			un->un_g.dkg_ncyl = 80;
5536 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5537 		} else if (un->un_blockcount <= 0x200000) {
5538 			un->un_g.dkg_nhead = 64;
5539 			un->un_g.dkg_nsect = 32;
5540 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5541 		} else {
5542 			un->un_g.dkg_nhead = 255;
5543 			un->un_g.dkg_nsect = 63;
5544 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5545 		}
5546 		un->un_blockcount =
5547 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5548 	}
5549 
5550 	un->un_g.dkg_acyl	= 0;
5551 	un->un_g.dkg_bcyl	= 0;
5552 	un->un_g.dkg_rpm	= 200;
5553 	un->un_asciilabel[0]	= '\0';
5554 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5555 
5556 	un->un_map[0].dkl_cylno = 0;
5557 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5558 	un->un_map[2].dkl_cylno = 0;
5559 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5560 
5561 #elif defined(_SUNOS_VTOC_16)
5562 
5563 	if (un->un_solaris_size == 0) {
5564 		/*
5565 		 * Got fdisk table but no solaris entry therefore
5566 		 * don't create a default label
5567 		 */
5568 		un->un_f_geometry_is_valid = TRUE;
5569 		return;
5570 	}
5571 
5572 	/*
5573 	 * For CDs we continue to use the physical geometry to calculate
5574 	 * number of cylinders. All other devices must convert the
5575 	 * physical geometry (geom_cache) to values that will fit
5576 	 * in a dk_geom structure.
5577 	 */
5578 	if (ISCD(un)) {
5579 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5580 	} else {
5581 		/* Convert physical geometry to disk geometry */
5582 		bzero(&un_g, sizeof (struct dk_geom));
5583 		sd_convert_geometry(un->un_blockcount, &un_g);
5584 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5585 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5586 	}
5587 
5588 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5589 	un->un_g.dkg_acyl = DK_ACYL;
5590 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5591 	disksize = un->un_g.dkg_ncyl * phys_spc;
5592 
5593 	if (ISCD(un)) {
5594 		/*
5595 		 * CD's don't use the "heads * sectors * cyls"-type of
5596 		 * geometry, but instead use the entire capacity of the media.
5597 		 */
5598 		disksize = un->un_solaris_size;
5599 		un->un_g.dkg_nhead = 1;
5600 		un->un_g.dkg_nsect = 1;
5601 		un->un_g.dkg_rpm =
5602 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5603 
5604 		un->un_vtoc.v_part[0].p_start = 0;
5605 		un->un_vtoc.v_part[0].p_size  = disksize;
5606 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5607 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5608 
5609 		un->un_map[0].dkl_cylno = 0;
5610 		un->un_map[0].dkl_nblk  = disksize;
5611 		un->un_offset[0] = 0;
5612 
5613 	} else {
5614 		/*
5615 		 * Hard disks and removable media cartridges
5616 		 */
5617 		un->un_g.dkg_rpm =
5618 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5619 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5620 
5621 		/* Add boot slice */
5622 		un->un_vtoc.v_part[8].p_start = 0;
5623 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5624 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5625 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5626 
5627 		un->un_map[8].dkl_cylno = 0;
5628 		un->un_map[8].dkl_nblk  = phys_spc;
5629 		un->un_offset[8] = 0;
5630 	}
5631 
5632 	un->un_g.dkg_apc = 0;
5633 	un->un_vtoc.v_nparts = V_NUMPAR;
5634 	un->un_vtoc.v_version = V_VERSION;
5635 
5636 	/* Add backup slice */
5637 	un->un_vtoc.v_part[2].p_start = 0;
5638 	un->un_vtoc.v_part[2].p_size  = disksize;
5639 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5640 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5641 
5642 	un->un_map[2].dkl_cylno = 0;
5643 	un->un_map[2].dkl_nblk  = disksize;
5644 	un->un_offset[2] = 0;
5645 
5646 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5647 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5648 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5649 
5650 #else
5651 #error "No VTOC format defined."
5652 #endif
5653 
5654 	un->un_g.dkg_read_reinstruct  = 0;
5655 	un->un_g.dkg_write_reinstruct = 0;
5656 
5657 	un->un_g.dkg_intrlv = 1;
5658 
5659 	un->un_vtoc.v_sanity  = VTOC_SANE;
5660 
5661 	un->un_f_geometry_is_valid = TRUE;
5662 
5663 	SD_INFO(SD_LOG_COMMON, un,
5664 	    "sd_build_default_label: Default label created: "
5665 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5666 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5667 	    un->un_g.dkg_nsect, un->un_blockcount);
5668 }
5669 
5670 
5671 #if defined(_FIRMWARE_NEEDS_FDISK)
5672 /*
5673  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5674  */
5675 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5676 #define	LBA_MAX_CYL	(1022 & 0xFF)
5677 #define	LBA_MAX_HEAD	(254)
5678 
5679 
5680 /*
5681  *    Function: sd_has_max_chs_vals
5682  *
5683  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5684  *
5685  *   Arguments: fdp - ptr to CHS info
5686  *
5687  * Return Code: True or false
5688  *
5689  *     Context: Any.
5690  */
5691 
5692 static int
5693 sd_has_max_chs_vals(struct ipart *fdp)
5694 {
5695 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5696 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5697 	    (fdp->begsect == LBA_MAX_SECT)	&&
5698 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5699 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5700 	    (fdp->endsect == LBA_MAX_SECT));
5701 }
5702 #endif
5703 
5704 
5705 /*
5706  *    Function: sd_inq_fill
5707  *
5708  * Description: Print a piece of inquiry data, cleaned up for non-printable
5709  *		characters and stopping at the first space character after
5710  *		the beginning of the passed string;
5711  *
5712  *   Arguments: p - source string
5713  *		l - maximum length to copy
5714  *		s - destination string
5715  *
5716  *     Context: Any.
5717  */
5718 
5719 static void
5720 sd_inq_fill(char *p, int l, char *s)
5721 {
5722 	unsigned i = 0;
5723 	char c;
5724 
5725 	while (i++ < l) {
5726 		if ((c = *p++) < ' ' || c >= 0x7F) {
5727 			c = '*';
5728 		} else if (i != 1 && c == ' ') {
5729 			break;
5730 		}
5731 		*s++ = c;
5732 	}
5733 	*s++ = 0;
5734 }
5735 
5736 
5737 /*
5738  *    Function: sd_register_devid
5739  *
5740  * Description: This routine will obtain the device id information from the
5741  *		target, obtain the serial number, and register the device
5742  *		id with the ddi framework.
5743  *
5744  *   Arguments: devi - the system's dev_info_t for the device.
5745  *		un - driver soft state (unit) structure
5746  *		reservation_flag - indicates if a reservation conflict
5747  *		occurred during attach
5748  *
5749  *     Context: Kernel Thread
5750  */
5751 static void
5752 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5753 {
5754 	int		rval		= 0;
5755 	uchar_t		*inq80		= NULL;
5756 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5757 	size_t		inq80_resid	= 0;
5758 	uchar_t		*inq83		= NULL;
5759 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5760 	size_t		inq83_resid	= 0;
5761 
5762 	ASSERT(un != NULL);
5763 	ASSERT(mutex_owned(SD_MUTEX(un)));
5764 	ASSERT((SD_DEVINFO(un)) == devi);
5765 
5766 	/*
5767 	 * This is the case of antiquated Sun disk drives that have the
5768 	 * FAB_DEVID property set in the disk_table.  These drives
5769 	 * manage the devid's by storing them in last 2 available sectors
5770 	 * on the drive and have them fabricated by the ddi layer by calling
5771 	 * ddi_devid_init and passing the DEVID_FAB flag.
5772 	 */
5773 	if (un->un_f_opt_fab_devid == TRUE) {
5774 		/*
5775 		 * Depending on EINVAL isn't reliable, since a reserved disk
5776 		 * may result in invalid geometry, so check to make sure a
5777 		 * reservation conflict did not occur during attach.
5778 		 */
5779 		if ((sd_get_devid(un) == EINVAL) &&
5780 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5781 			/*
5782 			 * The devid is invalid AND there is no reservation
5783 			 * conflict.  Fabricate a new devid.
5784 			 */
5785 			(void) sd_create_devid(un);
5786 		}
5787 
5788 		/* Register the devid if it exists */
5789 		if (un->un_devid != NULL) {
5790 			(void) ddi_devid_register(SD_DEVINFO(un),
5791 			    un->un_devid);
5792 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5793 			    "sd_register_devid: Devid Fabricated\n");
5794 		}
5795 		return;
5796 	}
5797 
5798 	/*
5799 	 * We check the availibility of the World Wide Name (0x83) and Unit
5800 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5801 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5802 	 * 0x83 is availible, that is the best choice.  Our next choice is
5803 	 * 0x80.  If neither are availible, we munge the devid from the device
5804 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5805 	 * to fabricate a devid for non-Sun qualified disks.
5806 	 */
5807 	if (sd_check_vpd_page_support(un) == 0) {
5808 		/* collect page 80 data if available */
5809 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5810 
5811 			mutex_exit(SD_MUTEX(un));
5812 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5813 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5814 			    0x01, 0x80, &inq80_resid);
5815 
5816 			if (rval != 0) {
5817 				kmem_free(inq80, inq80_len);
5818 				inq80 = NULL;
5819 				inq80_len = 0;
5820 			}
5821 			mutex_enter(SD_MUTEX(un));
5822 		}
5823 
5824 		/* collect page 83 data if available */
5825 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5826 
5827 			mutex_exit(SD_MUTEX(un));
5828 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5829 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
5830 			    0x01, 0x83, &inq83_resid);
5831 
5832 			if (rval != 0) {
5833 				kmem_free(inq83, inq83_len);
5834 				inq83 = NULL;
5835 				inq83_len = 0;
5836 			}
5837 			mutex_enter(SD_MUTEX(un));
5838 		}
5839 	}
5840 
5841 	/* encode best devid possible based on data available */
5842 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5843 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5844 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5845 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5846 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5847 
5848 		/* devid successfully encoded, register devid */
5849 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5850 
5851 	} else {
5852 		/*
5853 		 * Unable to encode a devid based on data available.
5854 		 * This is not a Sun qualified disk.  Older Sun disk
5855 		 * drives that have the SD_FAB_DEVID property
5856 		 * set in the disk_table and non Sun qualified
5857 		 * disks are treated in the same manner.  These
5858 		 * drives manage the devid's by storing them in
5859 		 * last 2 available sectors on the drive and
5860 		 * have them fabricated by the ddi layer by
5861 		 * calling ddi_devid_init and passing the
5862 		 * DEVID_FAB flag.
5863 		 * Create a fabricate devid only if there's no
5864 		 * fabricate devid existed.
5865 		 */
5866 		if (sd_get_devid(un) == EINVAL) {
5867 			(void) sd_create_devid(un);
5868 			un->un_f_opt_fab_devid = TRUE;
5869 		}
5870 
5871 		/* Register the devid if it exists */
5872 		if (un->un_devid != NULL) {
5873 			(void) ddi_devid_register(SD_DEVINFO(un),
5874 			    un->un_devid);
5875 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5876 			    "sd_register_devid: devid fabricated using "
5877 			    "ddi framework\n");
5878 		}
5879 	}
5880 
5881 	/* clean up resources */
5882 	if (inq80 != NULL) {
5883 		kmem_free(inq80, inq80_len);
5884 	}
5885 	if (inq83 != NULL) {
5886 		kmem_free(inq83, inq83_len);
5887 	}
5888 }
5889 
5890 static daddr_t
5891 sd_get_devid_block(struct sd_lun *un)
5892 {
5893 	daddr_t			spc, blk, head, cyl;
5894 
5895 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
5896 		/* this geometry doesn't allow us to write a devid */
5897 		if (un->un_g.dkg_acyl < 2) {
5898 			return (-1);
5899 		}
5900 
5901 		/*
5902 		 * Subtract 2 guarantees that the next to last cylinder
5903 		 * is used
5904 		 */
5905 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
5906 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5907 		head = un->un_g.dkg_nhead - 1;
5908 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
5909 		    (head * un->un_g.dkg_nsect) + 1;
5910 	} else {
5911 		if (un->un_reserved != -1) {
5912 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
5913 		} else {
5914 			return (-1);
5915 		}
5916 	}
5917 	return (blk);
5918 }
5919 
5920 /*
5921  *    Function: sd_get_devid
5922  *
5923  * Description: This routine will return 0 if a valid device id has been
5924  *		obtained from the target and stored in the soft state. If a
5925  *		valid device id has not been previously read and stored, a
5926  *		read attempt will be made.
5927  *
5928  *   Arguments: un - driver soft state (unit) structure
5929  *
5930  * Return Code: 0 if we successfully get the device id
5931  *
5932  *     Context: Kernel Thread
5933  */
5934 
5935 static int
5936 sd_get_devid(struct sd_lun *un)
5937 {
5938 	struct dk_devid		*dkdevid;
5939 	ddi_devid_t		tmpid;
5940 	uint_t			*ip;
5941 	size_t			sz;
5942 	daddr_t			blk;
5943 	int			status;
5944 	int			chksum;
5945 	int			i;
5946 	size_t			buffer_size;
5947 
5948 	ASSERT(un != NULL);
5949 	ASSERT(mutex_owned(SD_MUTEX(un)));
5950 
5951 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5952 	    un);
5953 
5954 	if (un->un_devid != NULL) {
5955 		return (0);
5956 	}
5957 
5958 	blk = sd_get_devid_block(un);
5959 	if (blk < 0)
5960 		return (EINVAL);
5961 
5962 	/*
5963 	 * Read and verify device id, stored in the reserved cylinders at the
5964 	 * end of the disk. Backup label is on the odd sectors of the last
5965 	 * track of the last cylinder. Device id will be on track of the next
5966 	 * to last cylinder.
5967 	 */
5968 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5969 	mutex_exit(SD_MUTEX(un));
5970 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5971 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
5972 	    SD_PATH_DIRECT);
5973 	if (status != 0) {
5974 		goto error;
5975 	}
5976 
5977 	/* Validate the revision */
5978 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5979 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5980 		status = EINVAL;
5981 		goto error;
5982 	}
5983 
5984 	/* Calculate the checksum */
5985 	chksum = 0;
5986 	ip = (uint_t *)dkdevid;
5987 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5988 	    i++) {
5989 		chksum ^= ip[i];
5990 	}
5991 
5992 	/* Compare the checksums */
5993 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5994 		status = EINVAL;
5995 		goto error;
5996 	}
5997 
5998 	/* Validate the device id */
5999 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6000 		status = EINVAL;
6001 		goto error;
6002 	}
6003 
6004 	/*
6005 	 * Store the device id in the driver soft state
6006 	 */
6007 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6008 	tmpid = kmem_alloc(sz, KM_SLEEP);
6009 
6010 	mutex_enter(SD_MUTEX(un));
6011 
6012 	un->un_devid = tmpid;
6013 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6014 
6015 	kmem_free(dkdevid, buffer_size);
6016 
6017 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6018 
6019 	return (status);
6020 error:
6021 	mutex_enter(SD_MUTEX(un));
6022 	kmem_free(dkdevid, buffer_size);
6023 	return (status);
6024 }
6025 
6026 
6027 /*
6028  *    Function: sd_create_devid
6029  *
6030  * Description: This routine will fabricate the device id and write it
6031  *		to the disk.
6032  *
6033  *   Arguments: un - driver soft state (unit) structure
6034  *
6035  * Return Code: value of the fabricated device id
6036  *
6037  *     Context: Kernel Thread
6038  */
6039 
6040 static ddi_devid_t
6041 sd_create_devid(struct sd_lun *un)
6042 {
6043 	ASSERT(un != NULL);
6044 
6045 	/* Fabricate the devid */
6046 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6047 	    == DDI_FAILURE) {
6048 		return (NULL);
6049 	}
6050 
6051 	/* Write the devid to disk */
6052 	if (sd_write_deviceid(un) != 0) {
6053 		ddi_devid_free(un->un_devid);
6054 		un->un_devid = NULL;
6055 	}
6056 
6057 	return (un->un_devid);
6058 }
6059 
6060 
6061 /*
6062  *    Function: sd_write_deviceid
6063  *
6064  * Description: This routine will write the device id to the disk
6065  *		reserved sector.
6066  *
6067  *   Arguments: un - driver soft state (unit) structure
6068  *
6069  * Return Code: EINVAL
6070  *		value returned by sd_send_scsi_cmd
6071  *
6072  *     Context: Kernel Thread
6073  */
6074 
6075 static int
6076 sd_write_deviceid(struct sd_lun *un)
6077 {
6078 	struct dk_devid		*dkdevid;
6079 	daddr_t			blk;
6080 	uint_t			*ip, chksum;
6081 	int			status;
6082 	int			i;
6083 
6084 	ASSERT(mutex_owned(SD_MUTEX(un)));
6085 
6086 	blk = sd_get_devid_block(un);
6087 	if (blk < 0)
6088 		return (-1);
6089 	mutex_exit(SD_MUTEX(un));
6090 
6091 	/* Allocate the buffer */
6092 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6093 
6094 	/* Fill in the revision */
6095 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6096 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6097 
6098 	/* Copy in the device id */
6099 	mutex_enter(SD_MUTEX(un));
6100 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6101 	    ddi_devid_sizeof(un->un_devid));
6102 	mutex_exit(SD_MUTEX(un));
6103 
6104 	/* Calculate the checksum */
6105 	chksum = 0;
6106 	ip = (uint_t *)dkdevid;
6107 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6108 	    i++) {
6109 		chksum ^= ip[i];
6110 	}
6111 
6112 	/* Fill-in checksum */
6113 	DKD_FORMCHKSUM(chksum, dkdevid);
6114 
6115 	/* Write the reserved sector */
6116 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6117 	    SD_PATH_DIRECT);
6118 
6119 	kmem_free(dkdevid, un->un_sys_blocksize);
6120 
6121 	mutex_enter(SD_MUTEX(un));
6122 	return (status);
6123 }
6124 
6125 
6126 /*
6127  *    Function: sd_check_vpd_page_support
6128  *
6129  * Description: This routine sends an inquiry command with the EVPD bit set and
6130  *		a page code of 0x00 to the device. It is used to determine which
6131  *		vital product pages are availible to find the devid. We are
6132  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6133  *		device does not support that command.
6134  *
6135  *   Arguments: un  - driver soft state (unit) structure
6136  *
6137  * Return Code: 0 - success
6138  *		1 - check condition
6139  *
6140  *     Context: This routine can sleep.
6141  */
6142 
6143 static int
6144 sd_check_vpd_page_support(struct sd_lun *un)
6145 {
6146 	uchar_t	*page_list	= NULL;
6147 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6148 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6149 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6150 	int    	rval		= 0;
6151 	int	counter;
6152 
6153 	ASSERT(un != NULL);
6154 	ASSERT(mutex_owned(SD_MUTEX(un)));
6155 
6156 	mutex_exit(SD_MUTEX(un));
6157 
6158 	/*
6159 	 * We'll set the page length to the maximum to save figuring it out
6160 	 * with an additional call.
6161 	 */
6162 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6163 
6164 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6165 	    page_code, NULL);
6166 
6167 	mutex_enter(SD_MUTEX(un));
6168 
6169 	/*
6170 	 * Now we must validate that the device accepted the command, as some
6171 	 * drives do not support it.  If the drive does support it, we will
6172 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6173 	 * not, we return -1.
6174 	 */
6175 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6176 		/* Loop to find one of the 2 pages we need */
6177 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6178 
6179 		/*
6180 		 * Pages are returned in ascending order, and 0x83 is what we
6181 		 * are hoping for.
6182 		 */
6183 		while ((page_list[counter] <= 0x83) &&
6184 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6185 		    VPD_HEAD_OFFSET))) {
6186 			/*
6187 			 * Add 3 because page_list[3] is the number of
6188 			 * pages minus 3
6189 			 */
6190 
6191 			switch (page_list[counter]) {
6192 			case 0x00:
6193 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6194 				break;
6195 			case 0x80:
6196 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6197 				break;
6198 			case 0x81:
6199 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6200 				break;
6201 			case 0x82:
6202 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6203 				break;
6204 			case 0x83:
6205 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6206 				break;
6207 			}
6208 			counter++;
6209 		}
6210 
6211 	} else {
6212 		rval = -1;
6213 
6214 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6215 		    "sd_check_vpd_page_support: This drive does not implement "
6216 		    "VPD pages.\n");
6217 	}
6218 
6219 	kmem_free(page_list, page_length);
6220 
6221 	return (rval);
6222 }
6223 
6224 
6225 /*
6226  *    Function: sd_setup_pm
6227  *
6228  * Description: Initialize Power Management on the device
6229  *
6230  *     Context: Kernel Thread
6231  */
6232 
6233 static void
6234 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6235 {
6236 	uint_t	log_page_size;
6237 	uchar_t	*log_page_data;
6238 	int	rval;
6239 
6240 	/*
6241 	 * Since we are called from attach, holding a mutex for
6242 	 * un is unnecessary. Because some of the routines called
6243 	 * from here require SD_MUTEX to not be held, assert this
6244 	 * right up front.
6245 	 */
6246 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6247 	/*
6248 	 * Since the sd device does not have the 'reg' property,
6249 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6250 	 * The following code is to tell cpr that this device
6251 	 * DOES need to be suspended and resumed.
6252 	 */
6253 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6254 	    "pm-hardware-state", "needs-suspend-resume");
6255 
6256 	/*
6257 	 * Check if HBA has set the "pm-capable" property.
6258 	 * If "pm-capable" exists and is non-zero then we can
6259 	 * power manage the device without checking the start/stop
6260 	 * cycle count log sense page.
6261 	 *
6262 	 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
6263 	 * then we should not power manage the device.
6264 	 *
6265 	 * If "pm-capable" doesn't exist then un->un_pm_capable_prop will
6266 	 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case, sd will
6267 	 * check the start/stop cycle count log sense page and power manage
6268 	 * the device if the cycle count limit has not been exceeded.
6269 	 */
6270 	un->un_pm_capable_prop =
6271 	    ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6272 		"pm-capable", SD_PM_CAPABLE_UNDEFINED);
6273 	if (un->un_pm_capable_prop != SD_PM_CAPABLE_UNDEFINED) {
6274 		/*
6275 		 * pm-capable property exists.
6276 		 *
6277 		 * Convert "TRUE" values for un_pm_capable_prop to
6278 		 * SD_PM_CAPABLE_TRUE (1) to make it easier to check later.
6279 		 * "TRUE" values are any values except SD_PM_CAPABLE_FALSE (0)
6280 		 *  and SD_PM_CAPABLE_UNDEFINED (-1)
6281 		 */
6282 		if (un->un_pm_capable_prop != SD_PM_CAPABLE_FALSE) {
6283 			un->un_pm_capable_prop = SD_PM_CAPABLE_TRUE;
6284 		}
6285 
6286 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6287 		    "sd_unit_attach: un:0x%p pm-capable "
6288 		    "property set to %d.\n", un, un->un_pm_capable_prop);
6289 	}
6290 
6291 	/*
6292 	 * This complies with the new power management framework
6293 	 * for certain desktop machines. Create the pm_components
6294 	 * property as a string array property.
6295 	 *
6296 	 * If this is a removable device or if the pm-capable property
6297 	 * is SD_PM_CAPABLE_TRUE (1) then we should create the
6298 	 * pm_components property without checking for the existance of
6299 	 * the start-stop cycle counter log page
6300 	 */
6301 	if (ISREMOVABLE(un) ||
6302 	    un->un_pm_capable_prop == SD_PM_CAPABLE_TRUE) {
6303 		/*
6304 		 * not all devices have a motor, try it first.
6305 		 * some devices may return ILLEGAL REQUEST, some
6306 		 * will hang
6307 		 */
6308 		un->un_f_start_stop_supported = TRUE;
6309 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6310 		    SD_PATH_DIRECT) != 0) {
6311 			un->un_f_start_stop_supported = FALSE;
6312 		}
6313 
6314 		/*
6315 		 * create pm properties anyways otherwise the parent can't
6316 		 * go to sleep
6317 		 */
6318 		(void) sd_create_pm_components(devi, un);
6319 		un->un_f_pm_is_enabled = TRUE;
6320 
6321 		/*
6322 		 * Need to create a zero length (Boolean) property
6323 		 * removable-media for the removable media devices.
6324 		 * Note that the return value of the property is not being
6325 		 * checked, since if unable to create the property
6326 		 * then do not want the attach to fail altogether. Consistent
6327 		 * with other property creation in attach.
6328 		 */
6329 		if (ISREMOVABLE(un)) {
6330 			(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
6331 			    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
6332 		}
6333 		return;
6334 	}
6335 
6336 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6337 
6338 #ifdef	SDDEBUG
6339 	if (sd_force_pm_supported) {
6340 		/* Force a successful result */
6341 		rval = 1;
6342 	}
6343 #endif
6344 
6345 	/*
6346 	 * If the start-stop cycle counter log page is not supported
6347 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6348 	 * then we should not create the pm_components property.
6349 	 */
6350 	if (rval == -1 || un->un_pm_capable_prop == SD_PM_CAPABLE_FALSE) {
6351 		/*
6352 		 * Error.
6353 		 * Reading log sense failed, most likely this is
6354 		 * an older drive that does not support log sense.
6355 		 * If this fails auto-pm is not supported.
6356 		 */
6357 		un->un_power_level = SD_SPINDLE_ON;
6358 		un->un_f_pm_is_enabled = FALSE;
6359 
6360 	} else if (rval == 0) {
6361 		/*
6362 		 * Page not found.
6363 		 * The start stop cycle counter is implemented as page
6364 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6365 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6366 		 */
6367 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6368 			/*
6369 			 * Page found, use this one.
6370 			 */
6371 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6372 			un->un_f_pm_is_enabled = TRUE;
6373 		} else {
6374 			/*
6375 			 * Error or page not found.
6376 			 * auto-pm is not supported for this device.
6377 			 */
6378 			un->un_power_level = SD_SPINDLE_ON;
6379 			un->un_f_pm_is_enabled = FALSE;
6380 		}
6381 	} else {
6382 		/*
6383 		 * Page found, use it.
6384 		 */
6385 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6386 		un->un_f_pm_is_enabled = TRUE;
6387 	}
6388 
6389 
6390 	if (un->un_f_pm_is_enabled == TRUE) {
6391 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6392 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6393 
6394 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6395 		    log_page_size, un->un_start_stop_cycle_page,
6396 		    0x01, 0, SD_PATH_DIRECT);
6397 #ifdef	SDDEBUG
6398 		if (sd_force_pm_supported) {
6399 			/* Force a successful result */
6400 			rval = 0;
6401 		}
6402 #endif
6403 
6404 		/*
6405 		 * If the Log sense for Page( Start/stop cycle counter page)
6406 		 * succeeds, then power managment is supported and we can
6407 		 * enable auto-pm.
6408 		 */
6409 		if (rval == 0)  {
6410 			(void) sd_create_pm_components(devi, un);
6411 		} else {
6412 			un->un_power_level = SD_SPINDLE_ON;
6413 			un->un_f_pm_is_enabled = FALSE;
6414 		}
6415 
6416 		kmem_free(log_page_data, log_page_size);
6417 	}
6418 }
6419 
6420 
6421 /*
6422  *    Function: sd_create_pm_components
6423  *
6424  * Description: Initialize PM property.
6425  *
6426  *     Context: Kernel thread context
6427  */
6428 
6429 static void
6430 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6431 {
6432 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6433 
6434 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6435 
6436 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6437 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6438 		/*
6439 		 * When components are initially created they are idle,
6440 		 * power up any non-removables.
6441 		 * Note: the return value of pm_raise_power can't be used
6442 		 * for determining if PM should be enabled for this device.
6443 		 * Even if you check the return values and remove this
6444 		 * property created above, the PM framework will not honor the
6445 		 * change after the first call to pm_raise_power. Hence,
6446 		 * removal of that property does not help if pm_raise_power
6447 		 * fails. In the case of removable media, the start/stop
6448 		 * will fail if the media is not present.
6449 		 */
6450 		if ((!ISREMOVABLE(un)) && (pm_raise_power(SD_DEVINFO(un), 0,
6451 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6452 			mutex_enter(SD_MUTEX(un));
6453 			un->un_power_level = SD_SPINDLE_ON;
6454 			mutex_enter(&un->un_pm_mutex);
6455 			/* Set to on and not busy. */
6456 			un->un_pm_count = 0;
6457 		} else {
6458 			mutex_enter(SD_MUTEX(un));
6459 			un->un_power_level = SD_SPINDLE_OFF;
6460 			mutex_enter(&un->un_pm_mutex);
6461 			/* Set to off. */
6462 			un->un_pm_count = -1;
6463 		}
6464 		mutex_exit(&un->un_pm_mutex);
6465 		mutex_exit(SD_MUTEX(un));
6466 	} else {
6467 		un->un_power_level = SD_SPINDLE_ON;
6468 		un->un_f_pm_is_enabled = FALSE;
6469 	}
6470 }
6471 
6472 
6473 /*
6474  *    Function: sd_ddi_suspend
6475  *
6476  * Description: Performs system power-down operations. This includes
6477  *		setting the drive state to indicate its suspended so
6478  *		that no new commands will be accepted. Also, wait for
6479  *		all commands that are in transport or queued to a timer
6480  *		for retry to complete. All timeout threads are cancelled.
6481  *
6482  * Return Code: DDI_FAILURE or DDI_SUCCESS
6483  *
6484  *     Context: Kernel thread context
6485  */
6486 
6487 static int
6488 sd_ddi_suspend(dev_info_t *devi)
6489 {
6490 	struct	sd_lun	*un;
6491 	clock_t		wait_cmds_complete;
6492 
6493 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6494 	if (un == NULL) {
6495 		return (DDI_FAILURE);
6496 	}
6497 
6498 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6499 
6500 	mutex_enter(SD_MUTEX(un));
6501 
6502 	/* Return success if the device is already suspended. */
6503 	if (un->un_state == SD_STATE_SUSPENDED) {
6504 		mutex_exit(SD_MUTEX(un));
6505 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6506 		    "device already suspended, exiting\n");
6507 		return (DDI_SUCCESS);
6508 	}
6509 
6510 	/* Return failure if the device is being used by HA */
6511 	if (un->un_resvd_status &
6512 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6513 		mutex_exit(SD_MUTEX(un));
6514 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6515 		    "device in use by HA, exiting\n");
6516 		return (DDI_FAILURE);
6517 	}
6518 
6519 	/*
6520 	 * Return failure if the device is in a resource wait
6521 	 * or power changing state.
6522 	 */
6523 	if ((un->un_state == SD_STATE_RWAIT) ||
6524 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6525 		mutex_exit(SD_MUTEX(un));
6526 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6527 		    "device in resource wait state, exiting\n");
6528 		return (DDI_FAILURE);
6529 	}
6530 
6531 
6532 	un->un_save_state = un->un_last_state;
6533 	New_state(un, SD_STATE_SUSPENDED);
6534 
6535 	/*
6536 	 * Wait for all commands that are in transport or queued to a timer
6537 	 * for retry to complete.
6538 	 *
6539 	 * While waiting, no new commands will be accepted or sent because of
6540 	 * the new state we set above.
6541 	 *
6542 	 * Wait till current operation has completed. If we are in the resource
6543 	 * wait state (with an intr outstanding) then we need to wait till the
6544 	 * intr completes and starts the next cmd. We want to wait for
6545 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6546 	 */
6547 	wait_cmds_complete = ddi_get_lbolt() +
6548 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6549 
6550 	while (un->un_ncmds_in_transport != 0) {
6551 		/*
6552 		 * Fail if commands do not finish in the specified time.
6553 		 */
6554 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6555 		    wait_cmds_complete) == -1) {
6556 			/*
6557 			 * Undo the state changes made above. Everything
6558 			 * must go back to it's original value.
6559 			 */
6560 			Restore_state(un);
6561 			un->un_last_state = un->un_save_state;
6562 			/* Wake up any threads that might be waiting. */
6563 			cv_broadcast(&un->un_suspend_cv);
6564 			mutex_exit(SD_MUTEX(un));
6565 			SD_ERROR(SD_LOG_IO_PM, un,
6566 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6567 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6568 			return (DDI_FAILURE);
6569 		}
6570 	}
6571 
6572 	/*
6573 	 * Cancel SCSI watch thread and timeouts, if any are active
6574 	 */
6575 
6576 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6577 		opaque_t temp_token = un->un_swr_token;
6578 		mutex_exit(SD_MUTEX(un));
6579 		scsi_watch_suspend(temp_token);
6580 		mutex_enter(SD_MUTEX(un));
6581 	}
6582 
6583 	if (un->un_reset_throttle_timeid != NULL) {
6584 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6585 		un->un_reset_throttle_timeid = NULL;
6586 		mutex_exit(SD_MUTEX(un));
6587 		(void) untimeout(temp_id);
6588 		mutex_enter(SD_MUTEX(un));
6589 	}
6590 
6591 	if (un->un_dcvb_timeid != NULL) {
6592 		timeout_id_t temp_id = un->un_dcvb_timeid;
6593 		un->un_dcvb_timeid = NULL;
6594 		mutex_exit(SD_MUTEX(un));
6595 		(void) untimeout(temp_id);
6596 		mutex_enter(SD_MUTEX(un));
6597 	}
6598 
6599 	mutex_enter(&un->un_pm_mutex);
6600 	if (un->un_pm_timeid != NULL) {
6601 		timeout_id_t temp_id = un->un_pm_timeid;
6602 		un->un_pm_timeid = NULL;
6603 		mutex_exit(&un->un_pm_mutex);
6604 		mutex_exit(SD_MUTEX(un));
6605 		(void) untimeout(temp_id);
6606 		mutex_enter(SD_MUTEX(un));
6607 	} else {
6608 		mutex_exit(&un->un_pm_mutex);
6609 	}
6610 
6611 	if (un->un_retry_timeid != NULL) {
6612 		timeout_id_t temp_id = un->un_retry_timeid;
6613 		un->un_retry_timeid = NULL;
6614 		mutex_exit(SD_MUTEX(un));
6615 		(void) untimeout(temp_id);
6616 		mutex_enter(SD_MUTEX(un));
6617 	}
6618 
6619 	if (un->un_direct_priority_timeid != NULL) {
6620 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6621 		un->un_direct_priority_timeid = NULL;
6622 		mutex_exit(SD_MUTEX(un));
6623 		(void) untimeout(temp_id);
6624 		mutex_enter(SD_MUTEX(un));
6625 	}
6626 
6627 	if (un->un_f_is_fibre == TRUE) {
6628 		/*
6629 		 * Remove callbacks for insert and remove events
6630 		 */
6631 		if (un->un_insert_event != NULL) {
6632 			mutex_exit(SD_MUTEX(un));
6633 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6634 			mutex_enter(SD_MUTEX(un));
6635 			un->un_insert_event = NULL;
6636 		}
6637 
6638 		if (un->un_remove_event != NULL) {
6639 			mutex_exit(SD_MUTEX(un));
6640 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6641 			mutex_enter(SD_MUTEX(un));
6642 			un->un_remove_event = NULL;
6643 		}
6644 	}
6645 
6646 	mutex_exit(SD_MUTEX(un));
6647 
6648 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6649 
6650 	return (DDI_SUCCESS);
6651 }
6652 
6653 
6654 /*
6655  *    Function: sd_ddi_pm_suspend
6656  *
6657  * Description: Set the drive state to low power.
6658  *		Someone else is required to actually change the drive
6659  *		power level.
6660  *
6661  *   Arguments: un - driver soft state (unit) structure
6662  *
6663  * Return Code: DDI_FAILURE or DDI_SUCCESS
6664  *
6665  *     Context: Kernel thread context
6666  */
6667 
6668 static int
6669 sd_ddi_pm_suspend(struct sd_lun *un)
6670 {
6671 	ASSERT(un != NULL);
6672 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6673 
6674 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6675 	mutex_enter(SD_MUTEX(un));
6676 
6677 	/*
6678 	 * Exit if power management is not enabled for this device, or if
6679 	 * the device is being used by HA.
6680 	 */
6681 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6682 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6683 		mutex_exit(SD_MUTEX(un));
6684 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6685 		return (DDI_SUCCESS);
6686 	}
6687 
6688 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6689 	    un->un_ncmds_in_driver);
6690 
6691 	/*
6692 	 * See if the device is not busy, ie.:
6693 	 *    - we have no commands in the driver for this device
6694 	 *    - not waiting for resources
6695 	 */
6696 	if ((un->un_ncmds_in_driver == 0) &&
6697 	    (un->un_state != SD_STATE_RWAIT)) {
6698 		/*
6699 		 * The device is not busy, so it is OK to go to low power state.
6700 		 * Indicate low power, but rely on someone else to actually
6701 		 * change it.
6702 		 */
6703 		mutex_enter(&un->un_pm_mutex);
6704 		un->un_pm_count = -1;
6705 		mutex_exit(&un->un_pm_mutex);
6706 		un->un_power_level = SD_SPINDLE_OFF;
6707 	}
6708 
6709 	mutex_exit(SD_MUTEX(un));
6710 
6711 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6712 
6713 	return (DDI_SUCCESS);
6714 }
6715 
6716 
6717 /*
6718  *    Function: sd_ddi_resume
6719  *
6720  * Description: Performs system power-up operations..
6721  *
6722  * Return Code: DDI_SUCCESS
6723  *		DDI_FAILURE
6724  *
6725  *     Context: Kernel thread context
6726  */
6727 
6728 static int
6729 sd_ddi_resume(dev_info_t *devi)
6730 {
6731 	struct	sd_lun	*un;
6732 
6733 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6734 	if (un == NULL) {
6735 		return (DDI_FAILURE);
6736 	}
6737 
6738 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6739 
6740 	mutex_enter(SD_MUTEX(un));
6741 	Restore_state(un);
6742 
6743 	/*
6744 	 * Restore the state which was saved to give the
6745 	 * the right state in un_last_state
6746 	 */
6747 	un->un_last_state = un->un_save_state;
6748 	/*
6749 	 * Note: throttle comes back at full.
6750 	 * Also note: this MUST be done before calling pm_raise_power
6751 	 * otherwise the system can get hung in biowait. The scenario where
6752 	 * this'll happen is under cpr suspend. Writing of the system
6753 	 * state goes through sddump, which writes 0 to un_throttle. If
6754 	 * writing the system state then fails, example if the partition is
6755 	 * too small, then cpr attempts a resume. If throttle isn't restored
6756 	 * from the saved value until after calling pm_raise_power then
6757 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6758 	 * in biowait.
6759 	 */
6760 	un->un_throttle = un->un_saved_throttle;
6761 
6762 	/*
6763 	 * The chance of failure is very rare as the only command done in power
6764 	 * entry point is START command when you transition from 0->1 or
6765 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6766 	 * which suspend was done. Ignore the return value as the resume should
6767 	 * not be failed. In the case of removable media the media need not be
6768 	 * inserted and hence there is a chance that raise power will fail with
6769 	 * media not present.
6770 	 */
6771 	if (!ISREMOVABLE(un)) {
6772 		mutex_exit(SD_MUTEX(un));
6773 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6774 		mutex_enter(SD_MUTEX(un));
6775 	}
6776 
6777 	/*
6778 	 * Don't broadcast to the suspend cv and therefore possibly
6779 	 * start I/O until after power has been restored.
6780 	 */
6781 	cv_broadcast(&un->un_suspend_cv);
6782 	cv_broadcast(&un->un_state_cv);
6783 
6784 	/* restart thread */
6785 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6786 		scsi_watch_resume(un->un_swr_token);
6787 	}
6788 
6789 #if (defined(__fibre))
6790 	if (un->un_f_is_fibre == TRUE) {
6791 		/*
6792 		 * Add callbacks for insert and remove events
6793 		 */
6794 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6795 			sd_init_event_callbacks(un);
6796 		}
6797 	}
6798 #endif
6799 
6800 	/*
6801 	 * Transport any pending commands to the target.
6802 	 *
6803 	 * If this is a low-activity device commands in queue will have to wait
6804 	 * until new commands come in, which may take awhile. Also, we
6805 	 * specifically don't check un_ncmds_in_transport because we know that
6806 	 * there really are no commands in progress after the unit was
6807 	 * suspended and we could have reached the throttle level, been
6808 	 * suspended, and have no new commands coming in for awhile. Highly
6809 	 * unlikely, but so is the low-activity disk scenario.
6810 	 */
6811 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6812 
6813 	sd_start_cmds(un, NULL);
6814 	mutex_exit(SD_MUTEX(un));
6815 
6816 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6817 
6818 	return (DDI_SUCCESS);
6819 }
6820 
6821 
6822 /*
6823  *    Function: sd_ddi_pm_resume
6824  *
6825  * Description: Set the drive state to powered on.
6826  *		Someone else is required to actually change the drive
6827  *		power level.
6828  *
6829  *   Arguments: un - driver soft state (unit) structure
6830  *
6831  * Return Code: DDI_SUCCESS
6832  *
6833  *     Context: Kernel thread context
6834  */
6835 
6836 static int
6837 sd_ddi_pm_resume(struct sd_lun *un)
6838 {
6839 	ASSERT(un != NULL);
6840 
6841 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6842 	mutex_enter(SD_MUTEX(un));
6843 	un->un_power_level = SD_SPINDLE_ON;
6844 
6845 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6846 	mutex_enter(&un->un_pm_mutex);
6847 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6848 		un->un_pm_count++;
6849 		ASSERT(un->un_pm_count == 0);
6850 		/*
6851 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6852 		 * un_suspend_cv is for a system resume, not a power management
6853 		 * device resume. (4297749)
6854 		 *	 cv_broadcast(&un->un_suspend_cv);
6855 		 */
6856 	}
6857 	mutex_exit(&un->un_pm_mutex);
6858 	mutex_exit(SD_MUTEX(un));
6859 
6860 	return (DDI_SUCCESS);
6861 }
6862 
6863 
6864 /*
6865  *    Function: sd_pm_idletimeout_handler
6866  *
6867  * Description: A timer routine that's active only while a device is busy.
6868  *		The purpose is to extend slightly the pm framework's busy
6869  *		view of the device to prevent busy/idle thrashing for
6870  *		back-to-back commands. Do this by comparing the current time
6871  *		to the time at which the last command completed and when the
6872  *		difference is greater than sd_pm_idletime, call
6873  *		pm_idle_component. In addition to indicating idle to the pm
6874  *		framework, update the chain type to again use the internal pm
6875  *		layers of the driver.
6876  *
6877  *   Arguments: arg - driver soft state (unit) structure
6878  *
6879  *     Context: Executes in a timeout(9F) thread context
6880  */
6881 
6882 static void
6883 sd_pm_idletimeout_handler(void *arg)
6884 {
6885 	struct sd_lun *un = arg;
6886 
6887 	time_t	now;
6888 
6889 	mutex_enter(&sd_detach_mutex);
6890 	if (un->un_detach_count != 0) {
6891 		/* Abort if the instance is detaching */
6892 		mutex_exit(&sd_detach_mutex);
6893 		return;
6894 	}
6895 	mutex_exit(&sd_detach_mutex);
6896 
6897 	now = ddi_get_time();
6898 	/*
6899 	 * Grab both mutexes, in the proper order, since we're accessing
6900 	 * both PM and softstate variables.
6901 	 */
6902 	mutex_enter(SD_MUTEX(un));
6903 	mutex_enter(&un->un_pm_mutex);
6904 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6905 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6906 		/*
6907 		 * Update the chain types.
6908 		 * This takes affect on the next new command received.
6909 		 */
6910 		if (ISREMOVABLE(un)) {
6911 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6912 		} else {
6913 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6914 		}
6915 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6916 
6917 		SD_TRACE(SD_LOG_IO_PM, un,
6918 		    "sd_pm_idletimeout_handler: idling device\n");
6919 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6920 		un->un_pm_idle_timeid = NULL;
6921 	} else {
6922 		un->un_pm_idle_timeid =
6923 			timeout(sd_pm_idletimeout_handler, un,
6924 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
6925 	}
6926 	mutex_exit(&un->un_pm_mutex);
6927 	mutex_exit(SD_MUTEX(un));
6928 }
6929 
6930 
6931 /*
6932  *    Function: sd_pm_timeout_handler
6933  *
6934  * Description: Callback to tell framework we are idle.
6935  *
6936  *     Context: timeout(9f) thread context.
6937  */
6938 
6939 static void
6940 sd_pm_timeout_handler(void *arg)
6941 {
6942 	struct sd_lun *un = arg;
6943 
6944 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6945 	mutex_enter(&un->un_pm_mutex);
6946 	un->un_pm_timeid = NULL;
6947 	mutex_exit(&un->un_pm_mutex);
6948 }
6949 
6950 
6951 /*
6952  *    Function: sdpower
6953  *
6954  * Description: PM entry point.
6955  *
6956  * Return Code: DDI_SUCCESS
6957  *		DDI_FAILURE
6958  *
6959  *     Context: Kernel thread context
6960  */
6961 
6962 static int
6963 sdpower(dev_info_t *devi, int component, int level)
6964 {
6965 	struct sd_lun	*un;
6966 	int		instance;
6967 	int		rval = DDI_SUCCESS;
6968 	uint_t		i, log_page_size, maxcycles, ncycles;
6969 	uchar_t		*log_page_data;
6970 	int		log_sense_page;
6971 	int		medium_present;
6972 	time_t		intvlp;
6973 	dev_t		dev;
6974 	struct pm_trans_data	sd_pm_tran_data;
6975 	uchar_t		save_state;
6976 	int		sval;
6977 	uchar_t		state_before_pm;
6978 	int		got_semaphore_here;
6979 
6980 	instance = ddi_get_instance(devi);
6981 
6982 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6983 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6984 	    component != 0) {
6985 		return (DDI_FAILURE);
6986 	}
6987 
6988 	dev = sd_make_device(SD_DEVINFO(un));
6989 
6990 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6991 
6992 	/*
6993 	 * Must synchronize power down with close.
6994 	 * Attempt to decrement/acquire the open/close semaphore,
6995 	 * but do NOT wait on it. If it's not greater than zero,
6996 	 * ie. it can't be decremented without waiting, then
6997 	 * someone else, either open or close, already has it
6998 	 * and the try returns 0. Use that knowledge here to determine
6999 	 * if it's OK to change the device power level.
7000 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7001 	 * here.
7002 	 */
7003 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7004 
7005 	mutex_enter(SD_MUTEX(un));
7006 
7007 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7008 	    un->un_ncmds_in_driver);
7009 
7010 	/*
7011 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7012 	 * already being processed in the driver, or if the semaphore was
7013 	 * not gotten here it indicates an open or close is being processed.
7014 	 * At the same time somebody is requesting to go low power which
7015 	 * can't happen, therefore we need to return failure.
7016 	 */
7017 	if ((level == SD_SPINDLE_OFF) &&
7018 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7019 		mutex_exit(SD_MUTEX(un));
7020 
7021 		if (got_semaphore_here != 0) {
7022 			sema_v(&un->un_semoclose);
7023 		}
7024 		SD_TRACE(SD_LOG_IO_PM, un,
7025 		    "sdpower: exit, device has queued cmds.\n");
7026 		return (DDI_FAILURE);
7027 	}
7028 
7029 	/*
7030 	 * if it is OFFLINE that means the disk is completely dead
7031 	 * in our case we have to put the disk in on or off by sending commands
7032 	 * Of course that will fail anyway so return back here.
7033 	 *
7034 	 * Power changes to a device that's OFFLINE or SUSPENDED
7035 	 * are not allowed.
7036 	 */
7037 	if ((un->un_state == SD_STATE_OFFLINE) ||
7038 	    (un->un_state == SD_STATE_SUSPENDED)) {
7039 		mutex_exit(SD_MUTEX(un));
7040 
7041 		if (got_semaphore_here != 0) {
7042 			sema_v(&un->un_semoclose);
7043 		}
7044 		SD_TRACE(SD_LOG_IO_PM, un,
7045 		    "sdpower: exit, device is off-line.\n");
7046 		return (DDI_FAILURE);
7047 	}
7048 
7049 	/*
7050 	 * Change the device's state to indicate it's power level
7051 	 * is being changed. Do this to prevent a power off in the
7052 	 * middle of commands, which is especially bad on devices
7053 	 * that are really powered off instead of just spun down.
7054 	 */
7055 	state_before_pm = un->un_state;
7056 	un->un_state = SD_STATE_PM_CHANGING;
7057 
7058 	mutex_exit(SD_MUTEX(un));
7059 
7060 	/*
7061 	 * Bypass checking the log sense information for removables
7062 	 * and devices for which the HBA set the pm-capable property.
7063 	 * If un->un_pm_capable_prop is SD_PM_CAPABLE_UNDEFINED (-1)
7064 	 * then the HBA did not create the property.
7065 	 */
7066 	if ((level == SD_SPINDLE_OFF) && (!ISREMOVABLE(un)) &&
7067 	    un->un_pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
7068 		/*
7069 		 * Get the log sense information to understand whether the
7070 		 * the powercycle counts have gone beyond the threshhold.
7071 		 */
7072 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7073 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7074 
7075 		mutex_enter(SD_MUTEX(un));
7076 		log_sense_page = un->un_start_stop_cycle_page;
7077 		mutex_exit(SD_MUTEX(un));
7078 
7079 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7080 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7081 #ifdef	SDDEBUG
7082 		if (sd_force_pm_supported) {
7083 			/* Force a successful result */
7084 			rval = 0;
7085 		}
7086 #endif
7087 		if (rval != 0) {
7088 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7089 			    "Log Sense Failed\n");
7090 			kmem_free(log_page_data, log_page_size);
7091 			/* Cannot support power management on those drives */
7092 
7093 			if (got_semaphore_here != 0) {
7094 				sema_v(&un->un_semoclose);
7095 			}
7096 			/*
7097 			 * On exit put the state back to it's original value
7098 			 * and broadcast to anyone waiting for the power
7099 			 * change completion.
7100 			 */
7101 			mutex_enter(SD_MUTEX(un));
7102 			un->un_state = state_before_pm;
7103 			cv_broadcast(&un->un_suspend_cv);
7104 			mutex_exit(SD_MUTEX(un));
7105 			SD_TRACE(SD_LOG_IO_PM, un,
7106 			    "sdpower: exit, Log Sense Failed.\n");
7107 			return (DDI_FAILURE);
7108 		}
7109 
7110 		/*
7111 		 * From the page data - Convert the essential information to
7112 		 * pm_trans_data
7113 		 */
7114 		maxcycles =
7115 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7116 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7117 
7118 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7119 
7120 		ncycles =
7121 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7122 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7123 
7124 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7125 
7126 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7127 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7128 			    log_page_data[8+i];
7129 		}
7130 
7131 		kmem_free(log_page_data, log_page_size);
7132 
7133 		/*
7134 		 * Call pm_trans_check routine to get the Ok from
7135 		 * the global policy
7136 		 */
7137 
7138 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7139 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7140 
7141 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7142 #ifdef	SDDEBUG
7143 		if (sd_force_pm_supported) {
7144 			/* Force a successful result */
7145 			rval = 1;
7146 		}
7147 #endif
7148 		switch (rval) {
7149 		case 0:
7150 			/*
7151 			 * Not Ok to Power cycle or error in parameters passed
7152 			 * Would have given the advised time to consider power
7153 			 * cycle. Based on the new intvlp parameter we are
7154 			 * supposed to pretend we are busy so that pm framework
7155 			 * will never call our power entry point. Because of
7156 			 * that install a timeout handler and wait for the
7157 			 * recommended time to elapse so that power management
7158 			 * can be effective again.
7159 			 *
7160 			 * To effect this behavior, call pm_busy_component to
7161 			 * indicate to the framework this device is busy.
7162 			 * By not adjusting un_pm_count the rest of PM in
7163 			 * the driver will function normally, and independant
7164 			 * of this but because the framework is told the device
7165 			 * is busy it won't attempt powering down until it gets
7166 			 * a matching idle. The timeout handler sends this.
7167 			 * Note: sd_pm_entry can't be called here to do this
7168 			 * because sdpower may have been called as a result
7169 			 * of a call to pm_raise_power from within sd_pm_entry.
7170 			 *
7171 			 * If a timeout handler is already active then
7172 			 * don't install another.
7173 			 */
7174 			mutex_enter(&un->un_pm_mutex);
7175 			if (un->un_pm_timeid == NULL) {
7176 				un->un_pm_timeid =
7177 				    timeout(sd_pm_timeout_handler,
7178 				    un, intvlp * drv_usectohz(1000000));
7179 				mutex_exit(&un->un_pm_mutex);
7180 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7181 			} else {
7182 				mutex_exit(&un->un_pm_mutex);
7183 			}
7184 			if (got_semaphore_here != 0) {
7185 				sema_v(&un->un_semoclose);
7186 			}
7187 			/*
7188 			 * On exit put the state back to it's original value
7189 			 * and broadcast to anyone waiting for the power
7190 			 * change completion.
7191 			 */
7192 			mutex_enter(SD_MUTEX(un));
7193 			un->un_state = state_before_pm;
7194 			cv_broadcast(&un->un_suspend_cv);
7195 			mutex_exit(SD_MUTEX(un));
7196 
7197 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7198 			    "trans check Failed, not ok to power cycle.\n");
7199 			return (DDI_FAILURE);
7200 
7201 		case -1:
7202 			if (got_semaphore_here != 0) {
7203 				sema_v(&un->un_semoclose);
7204 			}
7205 			/*
7206 			 * On exit put the state back to it's original value
7207 			 * and broadcast to anyone waiting for the power
7208 			 * change completion.
7209 			 */
7210 			mutex_enter(SD_MUTEX(un));
7211 			un->un_state = state_before_pm;
7212 			cv_broadcast(&un->un_suspend_cv);
7213 			mutex_exit(SD_MUTEX(un));
7214 			SD_TRACE(SD_LOG_IO_PM, un,
7215 			    "sdpower: exit, trans check command Failed.\n");
7216 			return (DDI_FAILURE);
7217 		}
7218 	}
7219 
7220 	if (level == SD_SPINDLE_OFF) {
7221 		/*
7222 		 * Save the last state... if the STOP FAILS we need it
7223 		 * for restoring
7224 		 */
7225 		mutex_enter(SD_MUTEX(un));
7226 		save_state = un->un_last_state;
7227 		/*
7228 		 * There must not be any cmds. getting processed
7229 		 * in the driver when we get here. Power to the
7230 		 * device is potentially going off.
7231 		 */
7232 		ASSERT(un->un_ncmds_in_driver == 0);
7233 		mutex_exit(SD_MUTEX(un));
7234 
7235 		/*
7236 		 * For now suspend the device completely before spindle is
7237 		 * turned off
7238 		 */
7239 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7240 			if (got_semaphore_here != 0) {
7241 				sema_v(&un->un_semoclose);
7242 			}
7243 			/*
7244 			 * On exit put the state back to it's original value
7245 			 * and broadcast to anyone waiting for the power
7246 			 * change completion.
7247 			 */
7248 			mutex_enter(SD_MUTEX(un));
7249 			un->un_state = state_before_pm;
7250 			cv_broadcast(&un->un_suspend_cv);
7251 			mutex_exit(SD_MUTEX(un));
7252 			SD_TRACE(SD_LOG_IO_PM, un,
7253 			    "sdpower: exit, PM suspend Failed.\n");
7254 			return (DDI_FAILURE);
7255 		}
7256 	}
7257 
7258 	/*
7259 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7260 	 * close, or strategy. Dump no long uses this routine, it uses it's
7261 	 * own code so it can be done in polled mode.
7262 	 */
7263 
7264 	medium_present = TRUE;
7265 
7266 	/*
7267 	 * When powering up, issue a TUR in case the device is at unit
7268 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7269 	 * a deadlock on un_pm_busy_cv will occur.
7270 	 */
7271 	if (level == SD_SPINDLE_ON) {
7272 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7273 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7274 	}
7275 
7276 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7277 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7278 
7279 	sval = sd_send_scsi_START_STOP_UNIT(un,
7280 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7281 	    SD_PATH_DIRECT);
7282 	/* Command failed, check for media present. */
7283 	if ((sval == ENXIO) && ISREMOVABLE(un)) {
7284 		medium_present = FALSE;
7285 	}
7286 
7287 	/*
7288 	 * The conditions of interest here are:
7289 	 *   if a spindle off with media present fails,
7290 	 *	then restore the state and return an error.
7291 	 *   else if a spindle on fails,
7292 	 *	then return an error (there's no state to restore).
7293 	 * In all other cases we setup for the new state
7294 	 * and return success.
7295 	 */
7296 	switch (level) {
7297 	case SD_SPINDLE_OFF:
7298 		if ((medium_present == TRUE) && (sval != 0)) {
7299 			/* The stop command from above failed */
7300 			rval = DDI_FAILURE;
7301 			/*
7302 			 * The stop command failed, and we have media
7303 			 * present. Put the level back by calling the
7304 			 * sd_pm_resume() and set the state back to
7305 			 * it's previous value.
7306 			 */
7307 			(void) sd_ddi_pm_resume(un);
7308 			mutex_enter(SD_MUTEX(un));
7309 			un->un_last_state = save_state;
7310 			mutex_exit(SD_MUTEX(un));
7311 			break;
7312 		}
7313 		/*
7314 		 * The stop command from above succeeded.
7315 		 */
7316 		if (ISREMOVABLE(un)) {
7317 			/*
7318 			 * Terminate watch thread in case of removable media
7319 			 * devices going into low power state. This is as per
7320 			 * the requirements of pm framework, otherwise commands
7321 			 * will be generated for the device (through watch
7322 			 * thread), even when the device is in low power state.
7323 			 */
7324 			mutex_enter(SD_MUTEX(un));
7325 			un->un_f_watcht_stopped = FALSE;
7326 			if (un->un_swr_token != NULL) {
7327 				opaque_t temp_token = un->un_swr_token;
7328 				un->un_f_watcht_stopped = TRUE;
7329 				un->un_swr_token = NULL;
7330 				mutex_exit(SD_MUTEX(un));
7331 				(void) scsi_watch_request_terminate(temp_token,
7332 				    SCSI_WATCH_TERMINATE_WAIT);
7333 			} else {
7334 				mutex_exit(SD_MUTEX(un));
7335 			}
7336 		}
7337 		break;
7338 
7339 	default:	/* The level requested is spindle on... */
7340 		/*
7341 		 * Legacy behavior: return success on a failed spinup
7342 		 * if there is no media in the drive.
7343 		 * Do this by looking at medium_present here.
7344 		 */
7345 		if ((sval != 0) && medium_present) {
7346 			/* The start command from above failed */
7347 			rval = DDI_FAILURE;
7348 			break;
7349 		}
7350 		/*
7351 		 * The start command from above succeeded
7352 		 * Resume the devices now that we have
7353 		 * started the disks
7354 		 */
7355 		(void) sd_ddi_pm_resume(un);
7356 
7357 		/*
7358 		 * Resume the watch thread since it was suspended
7359 		 * when the device went into low power mode.
7360 		 */
7361 		if (ISREMOVABLE(un)) {
7362 			mutex_enter(SD_MUTEX(un));
7363 			if (un->un_f_watcht_stopped == TRUE) {
7364 				opaque_t temp_token;
7365 
7366 				un->un_f_watcht_stopped = FALSE;
7367 				mutex_exit(SD_MUTEX(un));
7368 				temp_token = scsi_watch_request_submit(
7369 				    SD_SCSI_DEVP(un),
7370 				    sd_check_media_time,
7371 				    SENSE_LENGTH, sd_media_watch_cb,
7372 				    (caddr_t)dev);
7373 				mutex_enter(SD_MUTEX(un));
7374 				un->un_swr_token = temp_token;
7375 			}
7376 			mutex_exit(SD_MUTEX(un));
7377 		}
7378 	}
7379 	if (got_semaphore_here != 0) {
7380 		sema_v(&un->un_semoclose);
7381 	}
7382 	/*
7383 	 * On exit put the state back to it's original value
7384 	 * and broadcast to anyone waiting for the power
7385 	 * change completion.
7386 	 */
7387 	mutex_enter(SD_MUTEX(un));
7388 	un->un_state = state_before_pm;
7389 	cv_broadcast(&un->un_suspend_cv);
7390 	mutex_exit(SD_MUTEX(un));
7391 
7392 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7393 
7394 	return (rval);
7395 }
7396 
7397 
7398 
7399 /*
7400  *    Function: sdattach
7401  *
7402  * Description: Driver's attach(9e) entry point function.
7403  *
7404  *   Arguments: devi - opaque device info handle
7405  *		cmd  - attach  type
7406  *
7407  * Return Code: DDI_SUCCESS
7408  *		DDI_FAILURE
7409  *
7410  *     Context: Kernel thread context
7411  */
7412 
7413 static int
7414 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7415 {
7416 	switch (cmd) {
7417 	case DDI_ATTACH:
7418 		return (sd_unit_attach(devi));
7419 	case DDI_RESUME:
7420 		return (sd_ddi_resume(devi));
7421 	default:
7422 		break;
7423 	}
7424 	return (DDI_FAILURE);
7425 }
7426 
7427 
7428 /*
7429  *    Function: sddetach
7430  *
7431  * Description: Driver's detach(9E) entry point function.
7432  *
7433  *   Arguments: devi - opaque device info handle
7434  *		cmd  - detach  type
7435  *
7436  * Return Code: DDI_SUCCESS
7437  *		DDI_FAILURE
7438  *
7439  *     Context: Kernel thread context
7440  */
7441 
7442 static int
7443 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7444 {
7445 	switch (cmd) {
7446 	case DDI_DETACH:
7447 		return (sd_unit_detach(devi));
7448 	case DDI_SUSPEND:
7449 		return (sd_ddi_suspend(devi));
7450 	default:
7451 		break;
7452 	}
7453 	return (DDI_FAILURE);
7454 }
7455 
7456 
7457 /*
7458  *     Function: sd_sync_with_callback
7459  *
7460  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7461  *		 state while the callback routine is active.
7462  *
7463  *    Arguments: un: softstate structure for the instance
7464  *
7465  *	Context: Kernel thread context
7466  */
7467 
7468 static void
7469 sd_sync_with_callback(struct sd_lun *un)
7470 {
7471 	ASSERT(un != NULL);
7472 
7473 	mutex_enter(SD_MUTEX(un));
7474 
7475 	ASSERT(un->un_in_callback >= 0);
7476 
7477 	while (un->un_in_callback > 0) {
7478 		mutex_exit(SD_MUTEX(un));
7479 		delay(2);
7480 		mutex_enter(SD_MUTEX(un));
7481 	}
7482 
7483 	mutex_exit(SD_MUTEX(un));
7484 }
7485 
7486 /*
7487  *    Function: sd_unit_attach
7488  *
7489  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7490  *		the soft state structure for the device and performs
7491  *		all necessary structure and device initializations.
7492  *
7493  *   Arguments: devi: the system's dev_info_t for the device.
7494  *
7495  * Return Code: DDI_SUCCESS if attach is successful.
7496  *		DDI_FAILURE if any part of the attach fails.
7497  *
7498  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7499  *		Kernel thread context only.  Can sleep.
7500  */
7501 
7502 static int
7503 sd_unit_attach(dev_info_t *devi)
7504 {
7505 	struct	scsi_device	*devp;
7506 	struct	sd_lun		*un;
7507 	char			*variantp;
7508 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7509 	int	instance;
7510 	int	rval;
7511 	uint64_t	capacity;
7512 	uint_t		lbasize;
7513 
7514 	/*
7515 	 * Retrieve the target driver's private data area. This was set
7516 	 * up by the HBA.
7517 	 */
7518 	devp = ddi_get_driver_private(devi);
7519 
7520 	/*
7521 	 * Since we have no idea what state things were left in by the last
7522 	 * user of the device, set up some 'default' settings, ie. turn 'em
7523 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7524 	 * Do this before the scsi_probe, which sends an inquiry.
7525 	 * This is a fix for bug (4430280).
7526 	 * Of special importance is wide-xfer. The drive could have been left
7527 	 * in wide transfer mode by the last driver to communicate with it,
7528 	 * this includes us. If that's the case, and if the following is not
7529 	 * setup properly or we don't re-negotiate with the drive prior to
7530 	 * transferring data to/from the drive, it causes bus parity errors,
7531 	 * data overruns, and unexpected interrupts. This first occurred when
7532 	 * the fix for bug (4378686) was made.
7533 	 */
7534 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7535 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7536 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7537 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7538 
7539 	/*
7540 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7541 	 * This call will allocate and fill in the scsi_inquiry structure
7542 	 * and point the sd_inq member of the scsi_device structure to it.
7543 	 * If the attach succeeds, then this memory will not be de-allocated
7544 	 * (via scsi_unprobe()) until the instance is detached.
7545 	 */
7546 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7547 		goto probe_failed;
7548 	}
7549 
7550 	/*
7551 	 * Check the device type as specified in the inquiry data and
7552 	 * claim it if it is of a type that we support.
7553 	 */
7554 	switch (devp->sd_inq->inq_dtype) {
7555 	case DTYPE_DIRECT:
7556 		break;
7557 	case DTYPE_RODIRECT:
7558 		break;
7559 	case DTYPE_OPTICAL:
7560 		break;
7561 	case DTYPE_NOTPRESENT:
7562 	default:
7563 		/* Unsupported device type; fail the attach. */
7564 		goto probe_failed;
7565 	}
7566 
7567 	/*
7568 	 * Allocate the soft state structure for this unit.
7569 	 *
7570 	 * We rely upon this memory being set to all zeroes by
7571 	 * ddi_soft_state_zalloc().  We assume that any member of the
7572 	 * soft state structure that is not explicitly initialized by
7573 	 * this routine will have a value of zero.
7574 	 */
7575 	instance = ddi_get_instance(devp->sd_dev);
7576 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7577 		goto probe_failed;
7578 	}
7579 
7580 	/*
7581 	 * Retrieve a pointer to the newly-allocated soft state.
7582 	 *
7583 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7584 	 * was successful, unless something has gone horribly wrong and the
7585 	 * ddi's soft state internals are corrupt (in which case it is
7586 	 * probably better to halt here than just fail the attach....)
7587 	 */
7588 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7589 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7590 		    instance);
7591 		/*NOTREACHED*/
7592 	}
7593 
7594 	/*
7595 	 * Link the back ptr of the driver soft state to the scsi_device
7596 	 * struct for this lun.
7597 	 * Save a pointer to the softstate in the driver-private area of
7598 	 * the scsi_device struct.
7599 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7600 	 * we first set un->un_sd below.
7601 	 */
7602 	un->un_sd = devp;
7603 	devp->sd_private = (opaque_t)un;
7604 
7605 	/*
7606 	 * The following must be after devp is stored in the soft state struct.
7607 	 */
7608 #ifdef SDDEBUG
7609 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7610 	    "%s_unit_attach: un:0x%p instance:%d\n",
7611 	    ddi_driver_name(devi), un, instance);
7612 #endif
7613 
7614 	/*
7615 	 * Set up the device type and node type (for the minor nodes).
7616 	 * By default we assume that the device can at least support the
7617 	 * Common Command Set. Call it a CD-ROM if it reports itself
7618 	 * as a RODIRECT device.
7619 	 */
7620 	switch (devp->sd_inq->inq_dtype) {
7621 	case DTYPE_RODIRECT:
7622 		un->un_node_type = DDI_NT_CD_CHAN;
7623 		un->un_ctype	 = CTYPE_CDROM;
7624 		break;
7625 	case DTYPE_OPTICAL:
7626 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7627 		un->un_ctype	 = CTYPE_ROD;
7628 		break;
7629 	default:
7630 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7631 		un->un_ctype	 = CTYPE_CCS;
7632 		break;
7633 	}
7634 
7635 	/*
7636 	 * Try to read the interconnect type from the HBA.
7637 	 *
7638 	 * Note: This driver is currently compiled as two binaries, a parallel
7639 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7640 	 * differences are determined at compile time. In the future a single
7641 	 * binary will be provided and the inteconnect type will be used to
7642 	 * differentiate between fibre and parallel scsi behaviors. At that time
7643 	 * it will be necessary for all fibre channel HBAs to support this
7644 	 * property.
7645 	 *
7646 	 * set un_f_is_fiber to TRUE ( default fiber )
7647 	 */
7648 	un->un_f_is_fibre = TRUE;
7649 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7650 	case INTERCONNECT_SSA:
7651 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7652 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7653 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7654 		break;
7655 	case INTERCONNECT_PARALLEL:
7656 		un->un_f_is_fibre = FALSE;
7657 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7658 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7659 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7660 		break;
7661 	case INTERCONNECT_FIBRE:
7662 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7663 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7664 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7665 		break;
7666 	case INTERCONNECT_FABRIC:
7667 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7668 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7669 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7670 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7671 		break;
7672 	default:
7673 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7674 		/*
7675 		 * The HBA does not support the "interconnect-type" property
7676 		 * (or did not provide a recognized type).
7677 		 *
7678 		 * Note: This will be obsoleted when a single fibre channel
7679 		 * and parallel scsi driver is delivered. In the meantime the
7680 		 * interconnect type will be set to the platform default.If that
7681 		 * type is not parallel SCSI, it means that we should be
7682 		 * assuming "ssd" semantics. However, here this also means that
7683 		 * the FC HBA is not supporting the "interconnect-type" property
7684 		 * like we expect it to, so log this occurrence.
7685 		 */
7686 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7687 		if (!SD_IS_PARALLEL_SCSI(un)) {
7688 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7689 			    "sd_unit_attach: un:0x%p Assuming "
7690 			    "INTERCONNECT_FIBRE\n", un);
7691 		} else {
7692 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7693 			    "sd_unit_attach: un:0x%p Assuming "
7694 			    "INTERCONNECT_PARALLEL\n", un);
7695 			un->un_f_is_fibre = FALSE;
7696 		}
7697 #else
7698 		/*
7699 		 * Note: This source will be implemented when a single fibre
7700 		 * channel and parallel scsi driver is delivered. The default
7701 		 * will be to assume that if a device does not support the
7702 		 * "interconnect-type" property it is a parallel SCSI HBA and
7703 		 * we will set the interconnect type for parallel scsi.
7704 		 */
7705 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7706 		un->un_f_is_fibre = FALSE;
7707 #endif
7708 		break;
7709 	}
7710 
7711 	if (un->un_f_is_fibre == TRUE) {
7712 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7713 			SCSI_VERSION_3) {
7714 			switch (un->un_interconnect_type) {
7715 			case SD_INTERCONNECT_FIBRE:
7716 			case SD_INTERCONNECT_SSA:
7717 				un->un_node_type = DDI_NT_BLOCK_WWN;
7718 				break;
7719 			default:
7720 				break;
7721 			}
7722 		}
7723 	}
7724 
7725 	/*
7726 	 * Initialize the Request Sense command for the target
7727 	 */
7728 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7729 		goto alloc_rqs_failed;
7730 	}
7731 
7732 	/*
7733 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7734 	 * with seperate binary for sd and ssd.
7735 	 *
7736 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7737 	 * The hardcoded values will go away when Sparc uses 1 binary
7738 	 * for sd and ssd.  This hardcoded values need to match
7739 	 * SD_RETRY_COUNT in sddef.h
7740 	 * The value used is base on interconnect type.
7741 	 * fibre = 3, parallel = 5
7742 	 */
7743 #if defined(__i386) || defined(__amd64)
7744 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7745 #else
7746 	un->un_retry_count = SD_RETRY_COUNT;
7747 #endif
7748 
7749 	/*
7750 	 * Set the per disk retry count to the default number of retries
7751 	 * for disks and CDROMs. This value can be overridden by the
7752 	 * disk property list or an entry in sd.conf.
7753 	 */
7754 	un->un_notready_retry_count =
7755 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7756 			: DISK_NOT_READY_RETRY_COUNT(un);
7757 
7758 	/*
7759 	 * Set the busy retry count to the default value of un_retry_count.
7760 	 * This can be overridden by entries in sd.conf or the device
7761 	 * config table.
7762 	 */
7763 	un->un_busy_retry_count = un->un_retry_count;
7764 
7765 	/*
7766 	 * Init the reset threshold for retries.  This number determines
7767 	 * how many retries must be performed before a reset can be issued
7768 	 * (for certain error conditions). This can be overridden by entries
7769 	 * in sd.conf or the device config table.
7770 	 */
7771 	un->un_reset_retry_count = (un->un_retry_count / 2);
7772 
7773 	/*
7774 	 * Set the victim_retry_count to the default un_retry_count
7775 	 */
7776 	un->un_victim_retry_count = (2 * un->un_retry_count);
7777 
7778 	/*
7779 	 * Set the reservation release timeout to the default value of
7780 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7781 	 * device config table.
7782 	 */
7783 	un->un_reserve_release_time = 5;
7784 
7785 	/*
7786 	 * Set up the default maximum transfer size. Note that this may
7787 	 * get updated later in the attach, when setting up default wide
7788 	 * operations for disks.
7789 	 */
7790 #if defined(__i386) || defined(__amd64)
7791 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7792 #else
7793 	un->un_max_xfer_size = (uint_t)maxphys;
7794 #endif
7795 
7796 	/*
7797 	 * Get "allow bus device reset" property (defaults to "enabled" if
7798 	 * the property was not defined). This is to disable bus resets for
7799 	 * certain kinds of error recovery. Note: In the future when a run-time
7800 	 * fibre check is available the soft state flag should default to
7801 	 * enabled.
7802 	 */
7803 	if (un->un_f_is_fibre == TRUE) {
7804 		un->un_f_allow_bus_device_reset = TRUE;
7805 	} else {
7806 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7807 			"allow-bus-device-reset", 1) != 0) {
7808 			un->un_f_allow_bus_device_reset = TRUE;
7809 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7810 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7811 				un);
7812 		} else {
7813 			un->un_f_allow_bus_device_reset = FALSE;
7814 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7815 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7816 				un);
7817 		}
7818 	}
7819 
7820 	/*
7821 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7822 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7823 	 *
7824 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7825 	 * property. The new "variant" property with a value of "atapi" has been
7826 	 * introduced so that future 'variants' of standard SCSI behavior (like
7827 	 * atapi) could be specified by the underlying HBA drivers by supplying
7828 	 * a new value for the "variant" property, instead of having to define a
7829 	 * new property.
7830 	 */
7831 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7832 		un->un_f_cfg_is_atapi = TRUE;
7833 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7834 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7835 	}
7836 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7837 	    &variantp) == DDI_PROP_SUCCESS) {
7838 		if (strcmp(variantp, "atapi") == 0) {
7839 			un->un_f_cfg_is_atapi = TRUE;
7840 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7841 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7842 		}
7843 		ddi_prop_free(variantp);
7844 	}
7845 
7846 	/*
7847 	 * Assume doorlock commands are supported. If not, the first
7848 	 * call to sd_send_scsi_DOORLOCK() will set to FALSE
7849 	 */
7850 	un->un_f_doorlock_supported = TRUE;
7851 
7852 	un->un_cmd_timeout	= SD_IO_TIME;
7853 
7854 	/* Info on current states, statuses, etc. (Updated frequently) */
7855 	un->un_state		= SD_STATE_NORMAL;
7856 	un->un_last_state	= SD_STATE_NORMAL;
7857 
7858 	/* Control & status info for command throttling */
7859 	un->un_throttle		= sd_max_throttle;
7860 	un->un_saved_throttle	= sd_max_throttle;
7861 	un->un_min_throttle	= sd_min_throttle;
7862 
7863 	if (un->un_f_is_fibre == TRUE) {
7864 		un->un_f_use_adaptive_throttle = TRUE;
7865 	} else {
7866 		un->un_f_use_adaptive_throttle = FALSE;
7867 	}
7868 
7869 	/* Removable media support. */
7870 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7871 	un->un_mediastate		= DKIO_NONE;
7872 	un->un_specified_mediastate	= DKIO_NONE;
7873 
7874 	/* CVs for suspend/resume (PM or DR) */
7875 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7876 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7877 
7878 	/* Power management support. */
7879 	un->un_power_level = SD_SPINDLE_UNINIT;
7880 
7881 	/*
7882 	 * The open/close semaphore is used to serialize threads executing
7883 	 * in the driver's open & close entry point routines for a given
7884 	 * instance.
7885 	 */
7886 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7887 
7888 	/*
7889 	 * The conf file entry and softstate variable is a forceful override,
7890 	 * meaning a non-zero value must be entered to change the default.
7891 	 */
7892 	un->un_f_disksort_disabled = FALSE;
7893 
7894 	/*
7895 	 * Retrieve the properties from the static driver table or the driver
7896 	 * configuration file (.conf) for this unit and update the soft state
7897 	 * for the device as needed for the indicated properties.
7898 	 * Note: the property configuration needs to occur here as some of the
7899 	 * following routines may have dependancies on soft state flags set
7900 	 * as part of the driver property configuration.
7901 	 */
7902 	sd_read_unit_properties(un);
7903 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7904 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7905 
7906 	/*
7907 	 * By default, we mark the capacity, lbazize, and geometry
7908 	 * as invalid. Only if we successfully read a valid capacity
7909 	 * will we update the un_blockcount and un_tgt_blocksize with the
7910 	 * valid values (the geometry will be validated later).
7911 	 */
7912 	un->un_f_blockcount_is_valid	= FALSE;
7913 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7914 	un->un_f_geometry_is_valid	= FALSE;
7915 
7916 	/*
7917 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7918 	 * otherwise.
7919 	 */
7920 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7921 	un->un_blockcount = 0;
7922 
7923 	/*
7924 	 * Set up the per-instance info needed to determine the correct
7925 	 * CDBs and other info for issuing commands to the target.
7926 	 */
7927 	sd_init_cdb_limits(un);
7928 
7929 	/*
7930 	 * Set up the IO chains to use, based upon the target type.
7931 	 */
7932 	if (ISREMOVABLE(un)) {
7933 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7934 	} else {
7935 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7936 	}
7937 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7938 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7939 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7940 
7941 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7942 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7943 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7944 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7945 
7946 
7947 	if (ISCD(un)) {
7948 		un->un_additional_codes = sd_additional_codes;
7949 	} else {
7950 		un->un_additional_codes = NULL;
7951 	}
7952 
7953 	/*
7954 	 * Create the kstats here so they can be available for attach-time
7955 	 * routines that send commands to the unit (either polled or via
7956 	 * sd_send_scsi_cmd).
7957 	 *
7958 	 * Note: This is a critical sequence that needs to be maintained:
7959 	 *	1) Instantiate the kstats here, before any routines using the
7960 	 *	   iopath (i.e. sd_send_scsi_cmd).
7961 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7962 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
7963 	 *	   sd_register_devid(), and sd_disable_caching().
7964 	 */
7965 
7966 	un->un_stats = kstat_create(sd_label, instance,
7967 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7968 	if (un->un_stats != NULL) {
7969 		un->un_stats->ks_lock = SD_MUTEX(un);
7970 		kstat_install(un->un_stats);
7971 	}
7972 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7973 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7974 
7975 	sd_create_errstats(un, instance);
7976 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7977 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7978 
7979 	/*
7980 	 * The following if/else code was relocated here from below as part
7981 	 * of the fix for bug (4430280). However with the default setup added
7982 	 * on entry to this routine, it's no longer absolutely necessary for
7983 	 * this to be before the call to sd_spin_up_unit.
7984 	 */
7985 	if (SD_IS_PARALLEL_SCSI(un)) {
7986 		/*
7987 		 * If SCSI-2 tagged queueing is supported by the target
7988 		 * and by the host adapter then we will enable it.
7989 		 */
7990 		un->un_tagflags = 0;
7991 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7992 		    (devp->sd_inq->inq_cmdque) &&
7993 		    (un->un_f_arq_enabled == TRUE)) {
7994 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7995 			    1, 1) == 1) {
7996 				un->un_tagflags = FLAG_STAG;
7997 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7998 				    "sd_unit_attach: un:0x%p tag queueing "
7999 				    "enabled\n", un);
8000 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8001 			    "untagged-qing", 0) == 1) {
8002 				un->un_f_opt_queueing = TRUE;
8003 				un->un_saved_throttle = un->un_throttle =
8004 				    min(un->un_throttle, 3);
8005 			} else {
8006 				un->un_f_opt_queueing = FALSE;
8007 				un->un_saved_throttle = un->un_throttle = 1;
8008 			}
8009 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8010 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8011 			/* The Host Adapter supports internal queueing. */
8012 			un->un_f_opt_queueing = TRUE;
8013 			un->un_saved_throttle = un->un_throttle =
8014 			    min(un->un_throttle, 3);
8015 		} else {
8016 			un->un_f_opt_queueing = FALSE;
8017 			un->un_saved_throttle = un->un_throttle = 1;
8018 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8019 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8020 		}
8021 
8022 
8023 		/* Setup or tear down default wide operations for disks */
8024 
8025 		/*
8026 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8027 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8028 		 * system and be set to different values. In the future this
8029 		 * code may need to be updated when the ssd module is
8030 		 * obsoleted and removed from the system. (4299588)
8031 		 */
8032 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8033 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8034 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8035 			    1, 1) == 1) {
8036 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8037 				    "sd_unit_attach: un:0x%p Wide Transfer "
8038 				    "enabled\n", un);
8039 			}
8040 
8041 			/*
8042 			 * If tagged queuing has also been enabled, then
8043 			 * enable large xfers
8044 			 */
8045 			if (un->un_saved_throttle == sd_max_throttle) {
8046 				un->un_max_xfer_size =
8047 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8048 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8049 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8050 				    "sd_unit_attach: un:0x%p max transfer "
8051 				    "size=0x%x\n", un, un->un_max_xfer_size);
8052 			}
8053 		} else {
8054 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8055 			    0, 1) == 1) {
8056 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8057 				    "sd_unit_attach: un:0x%p "
8058 				    "Wide Transfer disabled\n", un);
8059 			}
8060 		}
8061 	} else {
8062 		un->un_tagflags = FLAG_STAG;
8063 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8064 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8065 	}
8066 
8067 	/*
8068 	 * If this target supports LUN reset, try to enable it.
8069 	 */
8070 	if (un->un_f_lun_reset_enabled) {
8071 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8072 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8073 			    "un:0x%p lun_reset capability set\n", un);
8074 		} else {
8075 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8076 			    "un:0x%p lun-reset capability not set\n", un);
8077 		}
8078 	}
8079 
8080 	/*
8081 	 * At this point in the attach, we have enough info in the
8082 	 * soft state to be able to issue commands to the target.
8083 	 *
8084 	 * All command paths used below MUST issue their commands as
8085 	 * SD_PATH_DIRECT. This is important as intermediate layers
8086 	 * are not all initialized yet (such as PM).
8087 	 */
8088 
8089 	/*
8090 	 * Send a TEST UNIT READY command to the device. This should clear
8091 	 * any outstanding UNIT ATTENTION that may be present.
8092 	 *
8093 	 * Note: Don't check for success, just track if there is a reservation,
8094 	 * this is a throw away command to clear any unit attentions.
8095 	 *
8096 	 * Note: This MUST be the first command issued to the target during
8097 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8098 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8099 	 * with attempts at spinning up a device with no media.
8100 	 */
8101 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8102 		reservation_flag = SD_TARGET_IS_RESERVED;
8103 	}
8104 
8105 	/*
8106 	 * If the device is NOT a removable media device, attempt to spin
8107 	 * it up (using the START_STOP_UNIT command) and read its capacity
8108 	 * (using the READ CAPACITY command).  Note, however, that either
8109 	 * of these could fail and in some cases we would continue with
8110 	 * the attach despite the failure (see below).
8111 	 */
8112 	if (devp->sd_inq->inq_dtype == DTYPE_DIRECT && !ISREMOVABLE(un)) {
8113 		switch (sd_spin_up_unit(un)) {
8114 		case 0:
8115 			/*
8116 			 * Spin-up was successful; now try to read the
8117 			 * capacity.  If successful then save the results
8118 			 * and mark the capacity & lbasize as valid.
8119 			 */
8120 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8121 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8122 
8123 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8124 			    &lbasize, SD_PATH_DIRECT)) {
8125 			case 0: {
8126 				if (capacity > DK_MAX_BLOCKS) {
8127 #ifdef _LP64
8128 					/*
8129 					 * Enable descriptor format sense data
8130 					 * so that we can get 64 bit sense
8131 					 * data fields.
8132 					 */
8133 					sd_enable_descr_sense(un);
8134 #else
8135 					/* 32-bit kernels can't handle this */
8136 					scsi_log(SD_DEVINFO(un),
8137 					    sd_label, CE_WARN,
8138 					    "disk has %llu blocks, which "
8139 					    "is too large for a 32-bit "
8140 					    "kernel", capacity);
8141 					goto spinup_failed;
8142 #endif
8143 				}
8144 				/*
8145 				 * The following relies on
8146 				 * sd_send_scsi_READ_CAPACITY never
8147 				 * returning 0 for capacity and/or lbasize.
8148 				 */
8149 				sd_update_block_info(un, lbasize, capacity);
8150 
8151 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8152 				    "sd_unit_attach: un:0x%p capacity = %ld "
8153 				    "blocks; lbasize= %ld.\n", un,
8154 				    un->un_blockcount, un->un_tgt_blocksize);
8155 
8156 				break;
8157 			}
8158 			case EACCES:
8159 				/*
8160 				 * Should never get here if the spin-up
8161 				 * succeeded, but code it in anyway.
8162 				 * From here, just continue with the attach...
8163 				 */
8164 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8165 				    "sd_unit_attach: un:0x%p "
8166 				    "sd_send_scsi_READ_CAPACITY "
8167 				    "returned reservation conflict\n", un);
8168 				reservation_flag = SD_TARGET_IS_RESERVED;
8169 				break;
8170 			default:
8171 				/*
8172 				 * Likewise, should never get here if the
8173 				 * spin-up succeeded. Just continue with
8174 				 * the attach...
8175 				 */
8176 				break;
8177 			}
8178 			break;
8179 		case EACCES:
8180 			/*
8181 			 * Device is reserved by another host.  In this case
8182 			 * we could not spin it up or read the capacity, but
8183 			 * we continue with the attach anyway.
8184 			 */
8185 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8186 			    "sd_unit_attach: un:0x%p spin-up reservation "
8187 			    "conflict.\n", un);
8188 			reservation_flag = SD_TARGET_IS_RESERVED;
8189 			break;
8190 		default:
8191 			/* Fail the attach if the spin-up failed. */
8192 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8193 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8194 			goto spinup_failed;
8195 		}
8196 	}
8197 
8198 	/*
8199 	 * Check to see if this is a MMC drive
8200 	 */
8201 	if (ISCD(un)) {
8202 		sd_set_mmc_caps(un);
8203 	}
8204 
8205 	/*
8206 	 * Create the minor nodes for the device.
8207 	 * Note: If we want to support fdisk on both sparc and intel, this will
8208 	 * have to separate out the notion that VTOC8 is always sparc, and
8209 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8210 	 * type will have to be determined at run-time, and the fdisk
8211 	 * partitioning will have to have been read & set up before we
8212 	 * create the minor nodes. (any other inits (such as kstats) that
8213 	 * also ought to be done before creating the minor nodes?) (Doesn't
8214 	 * setting up the minor nodes kind of imply that we're ready to
8215 	 * handle an open from userland?)
8216 	 */
8217 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8218 		goto create_minor_nodes_failed;
8219 	}
8220 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8221 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8222 
8223 	/*
8224 	 * Add a zero-length attribute to tell the world we support
8225 	 * kernel ioctls (for layered drivers)
8226 	 */
8227 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8228 	    DDI_KERNEL_IOCTL, NULL, 0);
8229 
8230 	/*
8231 	 * Add a boolean property to tell the world we support
8232 	 * the B_FAILFAST flag (for layered drivers)
8233 	 */
8234 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8235 	    "ddi-failfast-supported", NULL, 0);
8236 
8237 	/*
8238 	 * Initialize power management
8239 	 */
8240 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8241 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8242 	sd_setup_pm(un, devi);
8243 	if (un->un_f_pm_is_enabled == FALSE) {
8244 		/*
8245 		 * For performance, point to a jump table that does
8246 		 * not include pm.
8247 		 * The direct and priority chains don't change with PM.
8248 		 *
8249 		 * Note: this is currently done based on individual device
8250 		 * capabilities. When an interface for determining system
8251 		 * power enabled state becomes available, or when additional
8252 		 * layers are added to the command chain, these values will
8253 		 * have to be re-evaluated for correctness.
8254 		 */
8255 		if (ISREMOVABLE(un)) {
8256 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8257 		} else {
8258 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8259 		}
8260 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8261 	}
8262 
8263 	/*
8264 	 * This property is set to 0 by HA software to avoid retries
8265 	 * on a reserved disk. (The preferred property name is
8266 	 * "retry-on-reservation-conflict") (1189689)
8267 	 *
8268 	 * Note: The use of a global here can have unintended consequences. A
8269 	 * per instance variable is preferrable to match the capabilities of
8270 	 * different underlying hba's (4402600)
8271 	 */
8272 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8273 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8274 	    sd_retry_on_reservation_conflict);
8275 	if (sd_retry_on_reservation_conflict != 0) {
8276 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8277 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8278 		    sd_retry_on_reservation_conflict);
8279 	}
8280 
8281 	/* Set up options for QFULL handling. */
8282 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8283 	    "qfull-retries", -1)) != -1) {
8284 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8285 		    rval, 1);
8286 	}
8287 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8288 	    "qfull-retry-interval", -1)) != -1) {
8289 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8290 		    rval, 1);
8291 	}
8292 
8293 	/*
8294 	 * This just prints a message that announces the existence of the
8295 	 * device. The message is always printed in the system logfile, but
8296 	 * only appears on the console if the system is booted with the
8297 	 * -v (verbose) argument.
8298 	 */
8299 	ddi_report_dev(devi);
8300 
8301 	/*
8302 	 * The framework calls driver attach routines single-threaded
8303 	 * for a given instance.  However we still acquire SD_MUTEX here
8304 	 * because this required for calling the sd_validate_geometry()
8305 	 * and sd_register_devid() functions.
8306 	 */
8307 	mutex_enter(SD_MUTEX(un));
8308 	un->un_f_geometry_is_valid = FALSE;
8309 	un->un_mediastate = DKIO_NONE;
8310 	un->un_reserved = -1;
8311 	if (!ISREMOVABLE(un)) {
8312 		/*
8313 		 * Read and validate the device's geometry (ie, disk label)
8314 		 * A new unformatted drive will not have a valid geometry, but
8315 		 * the driver needs to successfully attach to this device so
8316 		 * the drive can be formatted via ioctls.
8317 		 */
8318 		if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8319 		    ENOTSUP)) &&
8320 		    (un->un_blockcount < DK_MAX_BLOCKS)) {
8321 			/*
8322 			 * We found a small disk with an EFI label on it;
8323 			 * we need to fix up the minor nodes accordingly.
8324 			 */
8325 			ddi_remove_minor_node(devi, "h");
8326 			ddi_remove_minor_node(devi, "h,raw");
8327 			(void) ddi_create_minor_node(devi, "wd",
8328 			    S_IFBLK,
8329 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8330 			    un->un_node_type, NULL);
8331 			(void) ddi_create_minor_node(devi, "wd,raw",
8332 			    S_IFCHR,
8333 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8334 			    un->un_node_type, NULL);
8335 		}
8336 	}
8337 
8338 	/*
8339 	 * Read and initialize the devid for the unit.
8340 	 */
8341 	ASSERT(un->un_errstats != NULL);
8342 	if (!ISREMOVABLE(un)) {
8343 		sd_register_devid(un, devi, reservation_flag);
8344 	}
8345 	mutex_exit(SD_MUTEX(un));
8346 
8347 #if (defined(__fibre))
8348 	/*
8349 	 * Register callbacks for fibre only.  You can't do this soley
8350 	 * on the basis of the devid_type because this is hba specific.
8351 	 * We need to query our hba capabilities to find out whether to
8352 	 * register or not.
8353 	 */
8354 	if (un->un_f_is_fibre) {
8355 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8356 		sd_init_event_callbacks(un);
8357 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8358 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8359 	    }
8360 	}
8361 #endif
8362 
8363 	if (un->un_f_opt_disable_cache == TRUE) {
8364 		if (sd_disable_caching(un) != 0) {
8365 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8366 			    "sd_unit_attach: un:0x%p Could not disable "
8367 			    "caching", un);
8368 			goto devid_failed;
8369 		}
8370 	}
8371 
8372 	/*
8373 	 * Set the pstat and error stat values here, so data obtained during the
8374 	 * previous attach-time routines is available.
8375 	 *
8376 	 * Note: This is a critical sequence that needs to be maintained:
8377 	 *	1) Instantiate the kstats before any routines using the iopath
8378 	 *	   (i.e. sd_send_scsi_cmd).
8379 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8380 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8381 	 *	   sd_register_devid(), and sd_disable_caching().
8382 	 */
8383 	if (!ISREMOVABLE(un) && (un->un_f_pkstats_enabled == TRUE)) {
8384 		sd_set_pstats(un);
8385 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8386 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8387 	}
8388 
8389 	sd_set_errstats(un);
8390 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8391 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8392 
8393 	/*
8394 	 * Find out what type of reservation this disk supports.
8395 	 */
8396 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8397 	case 0:
8398 		/*
8399 		 * SCSI-3 reservations are supported.
8400 		 */
8401 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8402 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8403 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8404 		break;
8405 	case ENOTSUP:
8406 		/*
8407 		 * The PERSISTENT RESERVE IN command would not be recognized by
8408 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8409 		 */
8410 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8411 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8412 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8413 		break;
8414 	default:
8415 		/*
8416 		 * default to SCSI-3 reservations
8417 		 */
8418 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8419 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8420 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8421 		break;
8422 	}
8423 
8424 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8425 	    "sd_unit_attach: un:0x%p exit success\n", un);
8426 
8427 	return (DDI_SUCCESS);
8428 
8429 	/*
8430 	 * An error occurred during the attach; clean up & return failure.
8431 	 */
8432 
8433 devid_failed:
8434 
8435 setup_pm_failed:
8436 	ddi_remove_minor_node(devi, NULL);
8437 
8438 create_minor_nodes_failed:
8439 	/*
8440 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8441 	 */
8442 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8443 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8444 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8445 
8446 	if (un->un_f_is_fibre == FALSE) {
8447 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8448 	}
8449 
8450 spinup_failed:
8451 
8452 	mutex_enter(SD_MUTEX(un));
8453 
8454 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8455 	if (un->un_direct_priority_timeid != NULL) {
8456 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8457 		un->un_direct_priority_timeid = NULL;
8458 		mutex_exit(SD_MUTEX(un));
8459 		(void) untimeout(temp_id);
8460 		mutex_enter(SD_MUTEX(un));
8461 	}
8462 
8463 	/* Cancel any pending start/stop timeouts */
8464 	if (un->un_startstop_timeid != NULL) {
8465 		timeout_id_t temp_id = un->un_startstop_timeid;
8466 		un->un_startstop_timeid = NULL;
8467 		mutex_exit(SD_MUTEX(un));
8468 		(void) untimeout(temp_id);
8469 		mutex_enter(SD_MUTEX(un));
8470 	}
8471 
8472 	mutex_exit(SD_MUTEX(un));
8473 
8474 	/* There should not be any in-progress I/O so ASSERT this check */
8475 	ASSERT(un->un_ncmds_in_transport == 0);
8476 	ASSERT(un->un_ncmds_in_driver == 0);
8477 
8478 	/* Do not free the softstate if the callback routine is active */
8479 	sd_sync_with_callback(un);
8480 
8481 	/*
8482 	 * Partition stats apparently are not used with removables. These would
8483 	 * not have been created during attach, so no need to clean them up...
8484 	 */
8485 	if (un->un_stats != NULL) {
8486 		kstat_delete(un->un_stats);
8487 		un->un_stats = NULL;
8488 	}
8489 	if (un->un_errstats != NULL) {
8490 		kstat_delete(un->un_errstats);
8491 		un->un_errstats = NULL;
8492 	}
8493 
8494 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8495 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8496 
8497 	ddi_prop_remove_all(devi);
8498 	sema_destroy(&un->un_semoclose);
8499 	cv_destroy(&un->un_state_cv);
8500 
8501 getrbuf_failed:
8502 
8503 	sd_free_rqs(un);
8504 
8505 alloc_rqs_failed:
8506 
8507 	devp->sd_private = NULL;
8508 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8509 
8510 get_softstate_failed:
8511 	/*
8512 	 * Note: the man pages are unclear as to whether or not doing a
8513 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8514 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8515 	 * ddi_get_soft_state() fails.  The implication seems to be
8516 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8517 	 */
8518 	ddi_soft_state_free(sd_state, instance);
8519 
8520 probe_failed:
8521 	scsi_unprobe(devp);
8522 #ifdef SDDEBUG
8523 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8524 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8525 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8526 		    (void *)un);
8527 	}
8528 #endif
8529 	return (DDI_FAILURE);
8530 }
8531 
8532 
8533 /*
8534  *    Function: sd_unit_detach
8535  *
8536  * Description: Performs DDI_DETACH processing for sddetach().
8537  *
8538  * Return Code: DDI_SUCCESS
8539  *		DDI_FAILURE
8540  *
8541  *     Context: Kernel thread context
8542  */
8543 
8544 static int
8545 sd_unit_detach(dev_info_t *devi)
8546 {
8547 	struct scsi_device	*devp;
8548 	struct sd_lun		*un;
8549 	int			i;
8550 	dev_t			dev;
8551 #if !(defined(__i386) || defined(__amd64)) && !defined(__fibre)
8552 	int			reset_retval;
8553 #endif
8554 	int			instance = ddi_get_instance(devi);
8555 
8556 	mutex_enter(&sd_detach_mutex);
8557 
8558 	/*
8559 	 * Fail the detach for any of the following:
8560 	 *  - Unable to get the sd_lun struct for the instance
8561 	 *  - A layered driver has an outstanding open on the instance
8562 	 *  - Another thread is already detaching this instance
8563 	 *  - Another thread is currently performing an open
8564 	 */
8565 	devp = ddi_get_driver_private(devi);
8566 	if ((devp == NULL) ||
8567 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8568 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8569 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8570 		mutex_exit(&sd_detach_mutex);
8571 		return (DDI_FAILURE);
8572 	}
8573 
8574 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8575 
8576 	/*
8577 	 * Mark this instance as currently in a detach, to inhibit any
8578 	 * opens from a layered driver.
8579 	 */
8580 	un->un_detach_count++;
8581 	mutex_exit(&sd_detach_mutex);
8582 
8583 	dev = sd_make_device(SD_DEVINFO(un));
8584 
8585 	_NOTE(COMPETING_THREADS_NOW);
8586 
8587 	mutex_enter(SD_MUTEX(un));
8588 
8589 	/*
8590 	 * Fail the detach if there are any outstanding layered
8591 	 * opens on this device.
8592 	 */
8593 	for (i = 0; i < NDKMAP; i++) {
8594 		if (un->un_ocmap.lyropen[i] != 0) {
8595 			goto err_notclosed;
8596 		}
8597 	}
8598 
8599 	/*
8600 	 * Verify there are NO outstanding commands issued to this device.
8601 	 * ie, un_ncmds_in_transport == 0.
8602 	 * It's possible to have outstanding commands through the physio
8603 	 * code path, even though everything's closed.
8604 	 */
8605 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8606 	    (un->un_direct_priority_timeid != NULL) ||
8607 	    (un->un_state == SD_STATE_RWAIT)) {
8608 		mutex_exit(SD_MUTEX(un));
8609 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8610 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8611 		goto err_stillbusy;
8612 	}
8613 
8614 	/*
8615 	 * If we have the device reserved, release the reservation.
8616 	 */
8617 	if ((un->un_resvd_status & SD_RESERVE) &&
8618 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8619 		mutex_exit(SD_MUTEX(un));
8620 		/*
8621 		 * Note: sd_reserve_release sends a command to the device
8622 		 * via the sd_ioctlcmd() path, and can sleep.
8623 		 */
8624 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8625 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8626 			    "sd_dr_detach: Cannot release reservation \n");
8627 		}
8628 	} else {
8629 		mutex_exit(SD_MUTEX(un));
8630 	}
8631 
8632 	/*
8633 	 * Untimeout any reserve recover, throttle reset, restart unit
8634 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8635 	 * from getting nulled by their callback functions.
8636 	 */
8637 	mutex_enter(SD_MUTEX(un));
8638 	if (un->un_resvd_timeid != NULL) {
8639 		timeout_id_t temp_id = un->un_resvd_timeid;
8640 		un->un_resvd_timeid = NULL;
8641 		mutex_exit(SD_MUTEX(un));
8642 		(void) untimeout(temp_id);
8643 		mutex_enter(SD_MUTEX(un));
8644 	}
8645 
8646 	if (un->un_reset_throttle_timeid != NULL) {
8647 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8648 		un->un_reset_throttle_timeid = NULL;
8649 		mutex_exit(SD_MUTEX(un));
8650 		(void) untimeout(temp_id);
8651 		mutex_enter(SD_MUTEX(un));
8652 	}
8653 
8654 	if (un->un_startstop_timeid != NULL) {
8655 		timeout_id_t temp_id = un->un_startstop_timeid;
8656 		un->un_startstop_timeid = NULL;
8657 		mutex_exit(SD_MUTEX(un));
8658 		(void) untimeout(temp_id);
8659 		mutex_enter(SD_MUTEX(un));
8660 	}
8661 
8662 	if (un->un_dcvb_timeid != NULL) {
8663 		timeout_id_t temp_id = un->un_dcvb_timeid;
8664 		un->un_dcvb_timeid = NULL;
8665 		mutex_exit(SD_MUTEX(un));
8666 		(void) untimeout(temp_id);
8667 	} else {
8668 		mutex_exit(SD_MUTEX(un));
8669 	}
8670 
8671 	/* Remove any pending reservation reclaim requests for this device */
8672 	sd_rmv_resv_reclaim_req(dev);
8673 
8674 	mutex_enter(SD_MUTEX(un));
8675 
8676 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8677 	if (un->un_direct_priority_timeid != NULL) {
8678 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8679 		un->un_direct_priority_timeid = NULL;
8680 		mutex_exit(SD_MUTEX(un));
8681 		(void) untimeout(temp_id);
8682 		mutex_enter(SD_MUTEX(un));
8683 	}
8684 
8685 	/* Cancel any active multi-host disk watch thread requests */
8686 	if (un->un_mhd_token != NULL) {
8687 		mutex_exit(SD_MUTEX(un));
8688 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8689 		if (scsi_watch_request_terminate(un->un_mhd_token,
8690 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8691 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8692 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8693 			/*
8694 			 * Note: We are returning here after having removed
8695 			 * some driver timeouts above. This is consistent with
8696 			 * the legacy implementation but perhaps the watch
8697 			 * terminate call should be made with the wait flag set.
8698 			 */
8699 			goto err_stillbusy;
8700 		}
8701 		mutex_enter(SD_MUTEX(un));
8702 		un->un_mhd_token = NULL;
8703 	}
8704 
8705 	if (un->un_swr_token != NULL) {
8706 		mutex_exit(SD_MUTEX(un));
8707 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8708 		if (scsi_watch_request_terminate(un->un_swr_token,
8709 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8710 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8711 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8712 			/*
8713 			 * Note: We are returning here after having removed
8714 			 * some driver timeouts above. This is consistent with
8715 			 * the legacy implementation but perhaps the watch
8716 			 * terminate call should be made with the wait flag set.
8717 			 */
8718 			goto err_stillbusy;
8719 		}
8720 		mutex_enter(SD_MUTEX(un));
8721 		un->un_swr_token = NULL;
8722 	}
8723 
8724 	mutex_exit(SD_MUTEX(un));
8725 
8726 	/*
8727 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8728 	 * if we have not registered one.
8729 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8730 	 */
8731 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8732 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8733 
8734 
8735 
8736 #if defined(__i386) || defined(__amd64)
8737 	/*
8738 	 * Gratuitous bus resets sometimes cause an otherwise
8739 	 * okay ATA/ATAPI bus to hang. This is due the lack of
8740 	 * a clear spec of how resets should be implemented by ATA
8741 	 * disk drives.
8742 	 */
8743 #elif !defined(__fibre)		/* "#else if" does NOT work! */
8744 	/*
8745 	 * Reset target/bus.
8746 	 *
8747 	 * Note: This is a legacy workaround for Elite III dual-port drives that
8748 	 * will not come online after an aborted detach and subsequent re-attach
8749 	 * It should be removed when the Elite III FW is fixed, or the drives
8750 	 * are no longer supported.
8751 	 */
8752 	if (un->un_f_cfg_is_atapi == FALSE) {
8753 		reset_retval = 0;
8754 
8755 		/* If the device is in low power mode don't reset it */
8756 
8757 		mutex_enter(&un->un_pm_mutex);
8758 		if (!SD_DEVICE_IS_IN_LOW_POWER(un)) {
8759 			/*
8760 			 * First try a LUN reset if we can, then move on to a
8761 			 * target reset if needed; swat the bus as a last
8762 			 * resort.
8763 			 */
8764 			mutex_exit(&un->un_pm_mutex);
8765 			if (un->un_f_allow_bus_device_reset == TRUE) {
8766 				if (un->un_f_lun_reset_enabled == TRUE) {
8767 					reset_retval =
8768 					    scsi_reset(SD_ADDRESS(un),
8769 					    RESET_LUN);
8770 				}
8771 				if (reset_retval == 0) {
8772 					reset_retval =
8773 					    scsi_reset(SD_ADDRESS(un),
8774 					    RESET_TARGET);
8775 				}
8776 			}
8777 			if (reset_retval == 0) {
8778 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
8779 			}
8780 		} else {
8781 			mutex_exit(&un->un_pm_mutex);
8782 		}
8783 	}
8784 #endif
8785 
8786 	/*
8787 	 * protect the timeout pointers from getting nulled by
8788 	 * their callback functions during the cancellation process.
8789 	 * In such a scenario untimeout can be invoked with a null value.
8790 	 */
8791 	_NOTE(NO_COMPETING_THREADS_NOW);
8792 
8793 	mutex_enter(&un->un_pm_mutex);
8794 	if (un->un_pm_idle_timeid != NULL) {
8795 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8796 		un->un_pm_idle_timeid = NULL;
8797 		mutex_exit(&un->un_pm_mutex);
8798 
8799 		/*
8800 		 * Timeout is active; cancel it.
8801 		 * Note that it'll never be active on a device
8802 		 * that does not support PM therefore we don't
8803 		 * have to check before calling pm_idle_component.
8804 		 */
8805 		(void) untimeout(temp_id);
8806 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8807 		mutex_enter(&un->un_pm_mutex);
8808 	}
8809 
8810 	/*
8811 	 * Check whether there is already a timeout scheduled for power
8812 	 * management. If yes then don't lower the power here, that's.
8813 	 * the timeout handler's job.
8814 	 */
8815 	if (un->un_pm_timeid != NULL) {
8816 		timeout_id_t temp_id = un->un_pm_timeid;
8817 		un->un_pm_timeid = NULL;
8818 		mutex_exit(&un->un_pm_mutex);
8819 		/*
8820 		 * Timeout is active; cancel it.
8821 		 * Note that it'll never be active on a device
8822 		 * that does not support PM therefore we don't
8823 		 * have to check before calling pm_idle_component.
8824 		 */
8825 		(void) untimeout(temp_id);
8826 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8827 
8828 	} else {
8829 		mutex_exit(&un->un_pm_mutex);
8830 		if ((un->un_f_pm_is_enabled == TRUE) &&
8831 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8832 		    DDI_SUCCESS)) {
8833 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8834 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8835 			/*
8836 			 * Fix for bug: 4297749, item # 13
8837 			 * The above test now includes a check to see if PM is
8838 			 * supported by this device before call
8839 			 * pm_lower_power().
8840 			 * Note, the following is not dead code. The call to
8841 			 * pm_lower_power above will generate a call back into
8842 			 * our sdpower routine which might result in a timeout
8843 			 * handler getting activated. Therefore the following
8844 			 * code is valid and necessary.
8845 			 */
8846 			mutex_enter(&un->un_pm_mutex);
8847 			if (un->un_pm_timeid != NULL) {
8848 				timeout_id_t temp_id = un->un_pm_timeid;
8849 				un->un_pm_timeid = NULL;
8850 				mutex_exit(&un->un_pm_mutex);
8851 				(void) untimeout(temp_id);
8852 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8853 			} else {
8854 				mutex_exit(&un->un_pm_mutex);
8855 			}
8856 		}
8857 	}
8858 
8859 	/*
8860 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8861 	 * Relocated here from above to be after the call to
8862 	 * pm_lower_power, which was getting errors.
8863 	 */
8864 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8865 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8866 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8867 
8868 	if (un->un_f_is_fibre == FALSE) {
8869 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8870 	}
8871 
8872 	/*
8873 	 * Remove any event callbacks, fibre only
8874 	 */
8875 	if (un->un_f_is_fibre == TRUE) {
8876 		if ((un->un_insert_event != NULL) &&
8877 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
8878 				DDI_SUCCESS)) {
8879 			/*
8880 			 * Note: We are returning here after having done
8881 			 * substantial cleanup above. This is consistent
8882 			 * with the legacy implementation but this may not
8883 			 * be the right thing to do.
8884 			 */
8885 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8886 				"sd_dr_detach: Cannot cancel insert event\n");
8887 			goto err_remove_event;
8888 		}
8889 		un->un_insert_event = NULL;
8890 
8891 		if ((un->un_remove_event != NULL) &&
8892 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
8893 				DDI_SUCCESS)) {
8894 			/*
8895 			 * Note: We are returning here after having done
8896 			 * substantial cleanup above. This is consistent
8897 			 * with the legacy implementation but this may not
8898 			 * be the right thing to do.
8899 			 */
8900 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8901 				"sd_dr_detach: Cannot cancel remove event\n");
8902 			goto err_remove_event;
8903 		}
8904 		un->un_remove_event = NULL;
8905 	}
8906 
8907 	/* Do not free the softstate if the callback routine is active */
8908 	sd_sync_with_callback(un);
8909 
8910 	/*
8911 	 * Hold the detach mutex here, to make sure that no other threads ever
8912 	 * can access a (partially) freed soft state structure.
8913 	 */
8914 	mutex_enter(&sd_detach_mutex);
8915 
8916 	/*
8917 	 * Clean up the soft state struct.
8918 	 * Cleanup is done in reverse order of allocs/inits.
8919 	 * At this point there should be no competing threads anymore.
8920 	 */
8921 
8922 	/* Unregister and free device id. */
8923 	ddi_devid_unregister(devi);
8924 	if (un->un_devid) {
8925 		ddi_devid_free(un->un_devid);
8926 		un->un_devid = NULL;
8927 	}
8928 
8929 	/*
8930 	 * Destroy wmap cache if it exists.
8931 	 */
8932 	if (un->un_wm_cache != NULL) {
8933 		kmem_cache_destroy(un->un_wm_cache);
8934 		un->un_wm_cache = NULL;
8935 	}
8936 
8937 	/* Remove minor nodes */
8938 	ddi_remove_minor_node(devi, NULL);
8939 
8940 	/*
8941 	 * kstat cleanup is done in detach for all device types (4363169).
8942 	 * We do not want to fail detach if the device kstats are not deleted
8943 	 * since there is a confusion about the devo_refcnt for the device.
8944 	 * We just delete the kstats and let detach complete successfully.
8945 	 */
8946 	if (un->un_stats != NULL) {
8947 		kstat_delete(un->un_stats);
8948 		un->un_stats = NULL;
8949 	}
8950 	if (un->un_errstats != NULL) {
8951 		kstat_delete(un->un_errstats);
8952 		un->un_errstats = NULL;
8953 	}
8954 
8955 	/* Remove partition stats (not created for removables) */
8956 	if (!ISREMOVABLE(un)) {
8957 		for (i = 0; i < NSDMAP; i++) {
8958 			if (un->un_pstats[i] != NULL) {
8959 				kstat_delete(un->un_pstats[i]);
8960 				un->un_pstats[i] = NULL;
8961 			}
8962 		}
8963 	}
8964 
8965 	/* Remove xbuf registration */
8966 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8967 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8968 
8969 	/* Remove driver properties */
8970 	ddi_prop_remove_all(devi);
8971 
8972 	mutex_destroy(&un->un_pm_mutex);
8973 	cv_destroy(&un->un_pm_busy_cv);
8974 
8975 	/* Open/close semaphore */
8976 	sema_destroy(&un->un_semoclose);
8977 
8978 	/* Removable media condvar. */
8979 	cv_destroy(&un->un_state_cv);
8980 
8981 	/* Suspend/resume condvar. */
8982 	cv_destroy(&un->un_suspend_cv);
8983 	cv_destroy(&un->un_disk_busy_cv);
8984 
8985 	sd_free_rqs(un);
8986 
8987 	/* Free up soft state */
8988 	devp->sd_private = NULL;
8989 	bzero(un, sizeof (struct sd_lun));
8990 	ddi_soft_state_free(sd_state, instance);
8991 
8992 	mutex_exit(&sd_detach_mutex);
8993 
8994 	/* This frees up the INQUIRY data associated with the device. */
8995 	scsi_unprobe(devp);
8996 
8997 	return (DDI_SUCCESS);
8998 
8999 err_notclosed:
9000 	mutex_exit(SD_MUTEX(un));
9001 
9002 err_stillbusy:
9003 	_NOTE(NO_COMPETING_THREADS_NOW);
9004 
9005 err_remove_event:
9006 	mutex_enter(&sd_detach_mutex);
9007 	un->un_detach_count--;
9008 	mutex_exit(&sd_detach_mutex);
9009 
9010 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9011 	return (DDI_FAILURE);
9012 }
9013 
9014 
9015 /*
9016  * Driver minor node structure and data table
9017  */
9018 struct driver_minor_data {
9019 	char	*name;
9020 	minor_t	minor;
9021 	int	type;
9022 };
9023 
9024 static struct driver_minor_data sd_minor_data[] = {
9025 	{"a", 0, S_IFBLK},
9026 	{"b", 1, S_IFBLK},
9027 	{"c", 2, S_IFBLK},
9028 	{"d", 3, S_IFBLK},
9029 	{"e", 4, S_IFBLK},
9030 	{"f", 5, S_IFBLK},
9031 	{"g", 6, S_IFBLK},
9032 	{"h", 7, S_IFBLK},
9033 #if defined(_SUNOS_VTOC_16)
9034 	{"i", 8, S_IFBLK},
9035 	{"j", 9, S_IFBLK},
9036 	{"k", 10, S_IFBLK},
9037 	{"l", 11, S_IFBLK},
9038 	{"m", 12, S_IFBLK},
9039 	{"n", 13, S_IFBLK},
9040 	{"o", 14, S_IFBLK},
9041 	{"p", 15, S_IFBLK},
9042 #endif			/* defined(_SUNOS_VTOC_16) */
9043 #if defined(_FIRMWARE_NEEDS_FDISK)
9044 	{"q", 16, S_IFBLK},
9045 	{"r", 17, S_IFBLK},
9046 	{"s", 18, S_IFBLK},
9047 	{"t", 19, S_IFBLK},
9048 	{"u", 20, S_IFBLK},
9049 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9050 	{"a,raw", 0, S_IFCHR},
9051 	{"b,raw", 1, S_IFCHR},
9052 	{"c,raw", 2, S_IFCHR},
9053 	{"d,raw", 3, S_IFCHR},
9054 	{"e,raw", 4, S_IFCHR},
9055 	{"f,raw", 5, S_IFCHR},
9056 	{"g,raw", 6, S_IFCHR},
9057 	{"h,raw", 7, S_IFCHR},
9058 #if defined(_SUNOS_VTOC_16)
9059 	{"i,raw", 8, S_IFCHR},
9060 	{"j,raw", 9, S_IFCHR},
9061 	{"k,raw", 10, S_IFCHR},
9062 	{"l,raw", 11, S_IFCHR},
9063 	{"m,raw", 12, S_IFCHR},
9064 	{"n,raw", 13, S_IFCHR},
9065 	{"o,raw", 14, S_IFCHR},
9066 	{"p,raw", 15, S_IFCHR},
9067 #endif			/* defined(_SUNOS_VTOC_16) */
9068 #if defined(_FIRMWARE_NEEDS_FDISK)
9069 	{"q,raw", 16, S_IFCHR},
9070 	{"r,raw", 17, S_IFCHR},
9071 	{"s,raw", 18, S_IFCHR},
9072 	{"t,raw", 19, S_IFCHR},
9073 	{"u,raw", 20, S_IFCHR},
9074 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9075 	{0}
9076 };
9077 
9078 static struct driver_minor_data sd_minor_data_efi[] = {
9079 	{"a", 0, S_IFBLK},
9080 	{"b", 1, S_IFBLK},
9081 	{"c", 2, S_IFBLK},
9082 	{"d", 3, S_IFBLK},
9083 	{"e", 4, S_IFBLK},
9084 	{"f", 5, S_IFBLK},
9085 	{"g", 6, S_IFBLK},
9086 	{"wd", 7, S_IFBLK},
9087 #if defined(_FIRMWARE_NEEDS_FDISK)
9088 	{"q", 16, S_IFBLK},
9089 	{"r", 17, S_IFBLK},
9090 	{"s", 18, S_IFBLK},
9091 	{"t", 19, S_IFBLK},
9092 	{"u", 20, S_IFBLK},
9093 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9094 	{"a,raw", 0, S_IFCHR},
9095 	{"b,raw", 1, S_IFCHR},
9096 	{"c,raw", 2, S_IFCHR},
9097 	{"d,raw", 3, S_IFCHR},
9098 	{"e,raw", 4, S_IFCHR},
9099 	{"f,raw", 5, S_IFCHR},
9100 	{"g,raw", 6, S_IFCHR},
9101 	{"wd,raw", 7, S_IFCHR},
9102 #if defined(_FIRMWARE_NEEDS_FDISK)
9103 	{"q,raw", 16, S_IFCHR},
9104 	{"r,raw", 17, S_IFCHR},
9105 	{"s,raw", 18, S_IFCHR},
9106 	{"t,raw", 19, S_IFCHR},
9107 	{"u,raw", 20, S_IFCHR},
9108 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9109 	{0}
9110 };
9111 
9112 
9113 /*
9114  *    Function: sd_create_minor_nodes
9115  *
9116  * Description: Create the minor device nodes for the instance.
9117  *
9118  *   Arguments: un - driver soft state (unit) structure
9119  *		devi - pointer to device info structure
9120  *
9121  * Return Code: DDI_SUCCESS
9122  *		DDI_FAILURE
9123  *
9124  *     Context: Kernel thread context
9125  */
9126 
9127 static int
9128 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9129 {
9130 	struct driver_minor_data	*dmdp;
9131 	struct scsi_device		*devp;
9132 	int				instance;
9133 	char				name[48];
9134 
9135 	ASSERT(un != NULL);
9136 	devp = ddi_get_driver_private(devi);
9137 	instance = ddi_get_instance(devp->sd_dev);
9138 
9139 	/*
9140 	 * Create all the minor nodes for this target.
9141 	 */
9142 	if (un->un_blockcount > DK_MAX_BLOCKS)
9143 		dmdp = sd_minor_data_efi;
9144 	else
9145 		dmdp = sd_minor_data;
9146 	while (dmdp->name != NULL) {
9147 
9148 		(void) sprintf(name, "%s", dmdp->name);
9149 
9150 		if (ddi_create_minor_node(devi, name, dmdp->type,
9151 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9152 		    un->un_node_type, NULL) == DDI_FAILURE) {
9153 			/*
9154 			 * Clean up any nodes that may have been created, in
9155 			 * case this fails in the middle of the loop.
9156 			 */
9157 			ddi_remove_minor_node(devi, NULL);
9158 			return (DDI_FAILURE);
9159 		}
9160 		dmdp++;
9161 	}
9162 
9163 	return (DDI_SUCCESS);
9164 }
9165 
9166 
9167 /*
9168  *    Function: sd_create_errstats
9169  *
9170  * Description: This routine instantiates the device error stats.
9171  *
9172  *		Note: During attach the stats are instantiated first so they are
9173  *		available for attach-time routines that utilize the driver
9174  *		iopath to send commands to the device. The stats are initialized
9175  *		separately so data obtained during some attach-time routines is
9176  *		available. (4362483)
9177  *
9178  *   Arguments: un - driver soft state (unit) structure
9179  *		instance - driver instance
9180  *
9181  *     Context: Kernel thread context
9182  */
9183 
9184 static void
9185 sd_create_errstats(struct sd_lun *un, int instance)
9186 {
9187 	struct	sd_errstats	*stp;
9188 	char	kstatmodule_err[KSTAT_STRLEN];
9189 	char	kstatname[KSTAT_STRLEN];
9190 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9191 
9192 	ASSERT(un != NULL);
9193 
9194 	if (un->un_errstats != NULL) {
9195 		return;
9196 	}
9197 
9198 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9199 	    "%serr", sd_label);
9200 	(void) snprintf(kstatname, sizeof (kstatname),
9201 	    "%s%d,err", sd_label, instance);
9202 
9203 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9204 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9205 
9206 	if (un->un_errstats == NULL) {
9207 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9208 		    "sd_create_errstats: Failed kstat_create\n");
9209 		return;
9210 	}
9211 
9212 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9213 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9214 	    KSTAT_DATA_UINT32);
9215 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9216 	    KSTAT_DATA_UINT32);
9217 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9218 	    KSTAT_DATA_UINT32);
9219 	kstat_named_init(&stp->sd_vid,		"Vendor",
9220 	    KSTAT_DATA_CHAR);
9221 	kstat_named_init(&stp->sd_pid,		"Product",
9222 	    KSTAT_DATA_CHAR);
9223 	kstat_named_init(&stp->sd_revision,	"Revision",
9224 	    KSTAT_DATA_CHAR);
9225 	kstat_named_init(&stp->sd_serial,	"Serial No",
9226 	    KSTAT_DATA_CHAR);
9227 	kstat_named_init(&stp->sd_capacity,	"Size",
9228 	    KSTAT_DATA_ULONGLONG);
9229 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9230 	    KSTAT_DATA_UINT32);
9231 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9232 	    KSTAT_DATA_UINT32);
9233 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9234 	    KSTAT_DATA_UINT32);
9235 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9236 	    KSTAT_DATA_UINT32);
9237 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9238 	    KSTAT_DATA_UINT32);
9239 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9240 	    KSTAT_DATA_UINT32);
9241 
9242 	un->un_errstats->ks_private = un;
9243 	un->un_errstats->ks_update  = nulldev;
9244 
9245 	kstat_install(un->un_errstats);
9246 }
9247 
9248 
9249 /*
9250  *    Function: sd_set_errstats
9251  *
9252  * Description: This routine sets the value of the vendor id, product id,
9253  *		revision, serial number, and capacity device error stats.
9254  *
9255  *		Note: During attach the stats are instantiated first so they are
9256  *		available for attach-time routines that utilize the driver
9257  *		iopath to send commands to the device. The stats are initialized
9258  *		separately so data obtained during some attach-time routines is
9259  *		available. (4362483)
9260  *
9261  *   Arguments: un - driver soft state (unit) structure
9262  *
9263  *     Context: Kernel thread context
9264  */
9265 
9266 static void
9267 sd_set_errstats(struct sd_lun *un)
9268 {
9269 	struct	sd_errstats	*stp;
9270 
9271 	ASSERT(un != NULL);
9272 	ASSERT(un->un_errstats != NULL);
9273 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9274 	ASSERT(stp != NULL);
9275 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9276 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9277 	(void) strncpy(stp->sd_revision.value.c,
9278 	    un->un_sd->sd_inq->inq_revision, 4);
9279 
9280 	/*
9281 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9282 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9283 	 * (4376302))
9284 	 */
9285 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9286 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9287 		    sizeof (SD_INQUIRY(un)->inq_serial));
9288 	}
9289 
9290 	if (un->un_f_blockcount_is_valid != TRUE) {
9291 		/*
9292 		 * Set capacity error stat to 0 for no media. This ensures
9293 		 * a valid capacity is displayed in response to 'iostat -E'
9294 		 * when no media is present in the device.
9295 		 */
9296 		stp->sd_capacity.value.ui64 = 0;
9297 	} else {
9298 		/*
9299 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9300 		 * capacity.
9301 		 *
9302 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9303 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9304 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9305 		 */
9306 		stp->sd_capacity.value.ui64 = (uint64_t)
9307 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9308 	}
9309 }
9310 
9311 
9312 /*
9313  *    Function: sd_set_pstats
9314  *
9315  * Description: This routine instantiates and initializes the partition
9316  *              stats for each partition with more than zero blocks.
9317  *		(4363169)
9318  *
9319  *   Arguments: un - driver soft state (unit) structure
9320  *
9321  *     Context: Kernel thread context
9322  */
9323 
9324 static void
9325 sd_set_pstats(struct sd_lun *un)
9326 {
9327 	char	kstatname[KSTAT_STRLEN];
9328 	int	instance;
9329 	int	i;
9330 
9331 	ASSERT(un != NULL);
9332 
9333 	instance = ddi_get_instance(SD_DEVINFO(un));
9334 
9335 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9336 	for (i = 0; i < NSDMAP; i++) {
9337 		if ((un->un_pstats[i] == NULL) &&
9338 		    (un->un_map[i].dkl_nblk != 0)) {
9339 			(void) snprintf(kstatname, sizeof (kstatname),
9340 			    "%s%d,%s", sd_label, instance,
9341 			    sd_minor_data[i].name);
9342 			un->un_pstats[i] = kstat_create(sd_label,
9343 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9344 			    1, KSTAT_FLAG_PERSISTENT);
9345 			if (un->un_pstats[i] != NULL) {
9346 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9347 				kstat_install(un->un_pstats[i]);
9348 			}
9349 		}
9350 	}
9351 }
9352 
9353 
9354 #if (defined(__fibre))
9355 /*
9356  *    Function: sd_init_event_callbacks
9357  *
9358  * Description: This routine initializes the insertion and removal event
9359  *		callbacks. (fibre only)
9360  *
9361  *   Arguments: un - driver soft state (unit) structure
9362  *
9363  *     Context: Kernel thread context
9364  */
9365 
9366 static void
9367 sd_init_event_callbacks(struct sd_lun *un)
9368 {
9369 	ASSERT(un != NULL);
9370 
9371 	if ((un->un_insert_event == NULL) &&
9372 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9373 	    &un->un_insert_event) == DDI_SUCCESS)) {
9374 		/*
9375 		 * Add the callback for an insertion event
9376 		 */
9377 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9378 		    un->un_insert_event, sd_event_callback, (void *)un,
9379 		    &(un->un_insert_cb_id));
9380 	}
9381 
9382 	if ((un->un_remove_event == NULL) &&
9383 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9384 	    &un->un_remove_event) == DDI_SUCCESS)) {
9385 		/*
9386 		 * Add the callback for a removal event
9387 		 */
9388 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9389 		    un->un_remove_event, sd_event_callback, (void *)un,
9390 		    &(un->un_remove_cb_id));
9391 	}
9392 }
9393 
9394 
9395 /*
9396  *    Function: sd_event_callback
9397  *
9398  * Description: This routine handles insert/remove events (photon). The
9399  *		state is changed to OFFLINE which can be used to supress
9400  *		error msgs. (fibre only)
9401  *
9402  *   Arguments: un - driver soft state (unit) structure
9403  *
9404  *     Context: Callout thread context
9405  */
9406 /* ARGSUSED */
9407 static void
9408 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9409     void *bus_impldata)
9410 {
9411 	struct sd_lun *un = (struct sd_lun *)arg;
9412 
9413 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9414 	if (event == un->un_insert_event) {
9415 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9416 		mutex_enter(SD_MUTEX(un));
9417 		if (un->un_state == SD_STATE_OFFLINE) {
9418 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9419 				un->un_state = un->un_last_state;
9420 			} else {
9421 				/*
9422 				 * We have gone through SUSPEND/RESUME while
9423 				 * we were offline. Restore the last state
9424 				 */
9425 				un->un_state = un->un_save_state;
9426 			}
9427 		}
9428 		mutex_exit(SD_MUTEX(un));
9429 
9430 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9431 	} else if (event == un->un_remove_event) {
9432 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9433 		mutex_enter(SD_MUTEX(un));
9434 		/*
9435 		 * We need to handle an event callback that occurs during
9436 		 * the suspend operation, since we don't prevent it.
9437 		 */
9438 		if (un->un_state != SD_STATE_OFFLINE) {
9439 			if (un->un_state != SD_STATE_SUSPENDED) {
9440 				New_state(un, SD_STATE_OFFLINE);
9441 			} else {
9442 				un->un_last_state = SD_STATE_OFFLINE;
9443 			}
9444 		}
9445 		mutex_exit(SD_MUTEX(un));
9446 	} else {
9447 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9448 		    "!Unknown event\n");
9449 	}
9450 
9451 }
9452 #endif
9453 
9454 
9455 /*
9456  *    Function: sd_disable_caching()
9457  *
9458  * Description: This routine is the driver entry point for disabling
9459  *		read and write caching by modifying the WCE (write cache
9460  *		enable) and RCD (read cache disable) bits of mode
9461  *		page 8 (MODEPAGE_CACHING).
9462  *
9463  *   Arguments: un - driver soft state (unit) structure
9464  *
9465  * Return Code: EIO
9466  *		code returned by sd_send_scsi_MODE_SENSE and
9467  *		sd_send_scsi_MODE_SELECT
9468  *
9469  *     Context: Kernel Thread
9470  */
9471 
9472 static int
9473 sd_disable_caching(struct sd_lun *un)
9474 {
9475 	struct mode_caching	*mode_caching_page;
9476 	uchar_t			*header;
9477 	size_t			buflen;
9478 	int			hdrlen;
9479 	int			bd_len;
9480 	int			rval = 0;
9481 
9482 	ASSERT(un != NULL);
9483 
9484 	/*
9485 	 * Do a test unit ready, otherwise a mode sense may not work if this
9486 	 * is the first command sent to the device after boot.
9487 	 */
9488 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9489 
9490 	if (un->un_f_cfg_is_atapi == TRUE) {
9491 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9492 	} else {
9493 		hdrlen = MODE_HEADER_LENGTH;
9494 	}
9495 
9496 	/*
9497 	 * Allocate memory for the retrieved mode page and its headers.  Set
9498 	 * a pointer to the page itself.
9499 	 */
9500 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9501 	header = kmem_zalloc(buflen, KM_SLEEP);
9502 
9503 	/* Get the information from the device. */
9504 	if (un->un_f_cfg_is_atapi == TRUE) {
9505 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9506 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9507 	} else {
9508 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9509 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9510 	}
9511 	if (rval != 0) {
9512 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9513 		    "sd_disable_caching: Mode Sense Failed\n");
9514 		kmem_free(header, buflen);
9515 		return (rval);
9516 	}
9517 
9518 	/*
9519 	 * Determine size of Block Descriptors in order to locate
9520 	 * the mode page data. ATAPI devices return 0, SCSI devices
9521 	 * should return MODE_BLK_DESC_LENGTH.
9522 	 */
9523 	if (un->un_f_cfg_is_atapi == TRUE) {
9524 		struct mode_header_grp2	*mhp;
9525 		mhp	= (struct mode_header_grp2 *)header;
9526 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9527 	} else {
9528 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9529 	}
9530 
9531 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9532 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9533 		    "sd_disable_caching: Mode Sense returned invalid "
9534 		    "block descriptor length\n");
9535 		kmem_free(header, buflen);
9536 		return (EIO);
9537 	}
9538 
9539 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9540 
9541 	/* Check the relevant bits on successful mode sense. */
9542 	if ((mode_caching_page->wce) || !(mode_caching_page->rcd)) {
9543 		/*
9544 		 * Read or write caching is enabled.  Disable both of them.
9545 		 */
9546 		mode_caching_page->wce = 0;
9547 		mode_caching_page->rcd = 1;
9548 
9549 		/* Clear reserved bits before mode select. */
9550 		mode_caching_page->mode_page.ps = 0;
9551 
9552 		/*
9553 		 * Clear out mode header for mode select.
9554 		 * The rest of the retrieved page will be reused.
9555 		 */
9556 		bzero(header, hdrlen);
9557 
9558 		/* Change the cache page to disable all caching. */
9559 		if (un->un_f_cfg_is_atapi == TRUE) {
9560 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9561 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9562 		} else {
9563 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9564 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9565 		}
9566 	}
9567 
9568 	kmem_free(header, buflen);
9569 	return (rval);
9570 }
9571 
9572 
9573 /*
9574  *    Function: sd_make_device
9575  *
9576  * Description: Utility routine to return the Solaris device number from
9577  *		the data in the device's dev_info structure.
9578  *
9579  * Return Code: The Solaris device number
9580  *
9581  *     Context: Any
9582  */
9583 
9584 static dev_t
9585 sd_make_device(dev_info_t *devi)
9586 {
9587 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9588 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9589 }
9590 
9591 
9592 /*
9593  *    Function: sd_pm_entry
9594  *
9595  * Description: Called at the start of a new command to manage power
9596  *		and busy status of a device. This includes determining whether
9597  *		the current power state of the device is sufficient for
9598  *		performing the command or whether it must be changed.
9599  *		The PM framework is notified appropriately.
9600  *		Only with a return status of DDI_SUCCESS will the
9601  *		component be busy to the framework.
9602  *
9603  *		All callers of sd_pm_entry must check the return status
9604  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9605  *		of DDI_FAILURE indicates the device failed to power up.
9606  *		In this case un_pm_count has been adjusted so the result
9607  *		on exit is still powered down, ie. count is less than 0.
9608  *		Calling sd_pm_exit with this count value hits an ASSERT.
9609  *
9610  * Return Code: DDI_SUCCESS or DDI_FAILURE
9611  *
9612  *     Context: Kernel thread context.
9613  */
9614 
9615 static int
9616 sd_pm_entry(struct sd_lun *un)
9617 {
9618 	int return_status = DDI_SUCCESS;
9619 
9620 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9621 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9622 
9623 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9624 
9625 	if (un->un_f_pm_is_enabled == FALSE) {
9626 		SD_TRACE(SD_LOG_IO_PM, un,
9627 		    "sd_pm_entry: exiting, PM not enabled\n");
9628 		return (return_status);
9629 	}
9630 
9631 	/*
9632 	 * Just increment a counter if PM is enabled. On the transition from
9633 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9634 	 * the count with each IO and mark the device as idle when the count
9635 	 * hits 0.
9636 	 *
9637 	 * If the count is less than 0 the device is powered down. If a powered
9638 	 * down device is successfully powered up then the count must be
9639 	 * incremented to reflect the power up. Note that it'll get incremented
9640 	 * a second time to become busy.
9641 	 *
9642 	 * Because the following has the potential to change the device state
9643 	 * and must release the un_pm_mutex to do so, only one thread can be
9644 	 * allowed through at a time.
9645 	 */
9646 
9647 	mutex_enter(&un->un_pm_mutex);
9648 	while (un->un_pm_busy == TRUE) {
9649 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9650 	}
9651 	un->un_pm_busy = TRUE;
9652 
9653 	if (un->un_pm_count < 1) {
9654 
9655 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9656 
9657 		/*
9658 		 * Indicate we are now busy so the framework won't attempt to
9659 		 * power down the device. This call will only fail if either
9660 		 * we passed a bad component number or the device has no
9661 		 * components. Neither of these should ever happen.
9662 		 */
9663 		mutex_exit(&un->un_pm_mutex);
9664 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9665 		ASSERT(return_status == DDI_SUCCESS);
9666 
9667 		mutex_enter(&un->un_pm_mutex);
9668 
9669 		if (un->un_pm_count < 0) {
9670 			mutex_exit(&un->un_pm_mutex);
9671 
9672 			SD_TRACE(SD_LOG_IO_PM, un,
9673 			    "sd_pm_entry: power up component\n");
9674 
9675 			/*
9676 			 * pm_raise_power will cause sdpower to be called
9677 			 * which brings the device power level to the
9678 			 * desired state, ON in this case. If successful,
9679 			 * un_pm_count and un_power_level will be updated
9680 			 * appropriately.
9681 			 */
9682 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9683 			    SD_SPINDLE_ON);
9684 
9685 			mutex_enter(&un->un_pm_mutex);
9686 
9687 			if (return_status != DDI_SUCCESS) {
9688 				/*
9689 				 * Power up failed.
9690 				 * Idle the device and adjust the count
9691 				 * so the result on exit is that we're
9692 				 * still powered down, ie. count is less than 0.
9693 				 */
9694 				SD_TRACE(SD_LOG_IO_PM, un,
9695 				    "sd_pm_entry: power up failed,"
9696 				    " idle the component\n");
9697 
9698 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9699 				un->un_pm_count--;
9700 			} else {
9701 				/*
9702 				 * Device is powered up, verify the
9703 				 * count is non-negative.
9704 				 * This is debug only.
9705 				 */
9706 				ASSERT(un->un_pm_count == 0);
9707 			}
9708 		}
9709 
9710 		if (return_status == DDI_SUCCESS) {
9711 			/*
9712 			 * For performance, now that the device has been tagged
9713 			 * as busy, and it's known to be powered up, update the
9714 			 * chain types to use jump tables that do not include
9715 			 * pm. This significantly lowers the overhead and
9716 			 * therefore improves performance.
9717 			 */
9718 
9719 			mutex_exit(&un->un_pm_mutex);
9720 			mutex_enter(SD_MUTEX(un));
9721 			SD_TRACE(SD_LOG_IO_PM, un,
9722 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9723 			    un->un_uscsi_chain_type);
9724 
9725 			if (ISREMOVABLE(un)) {
9726 				un->un_buf_chain_type =
9727 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9728 			} else {
9729 				un->un_buf_chain_type =
9730 				    SD_CHAIN_INFO_DISK_NO_PM;
9731 			}
9732 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9733 
9734 			SD_TRACE(SD_LOG_IO_PM, un,
9735 			    "             changed  uscsi_chain_type to   %d\n",
9736 			    un->un_uscsi_chain_type);
9737 			mutex_exit(SD_MUTEX(un));
9738 			mutex_enter(&un->un_pm_mutex);
9739 
9740 			if (un->un_pm_idle_timeid == NULL) {
9741 				/* 300 ms. */
9742 				un->un_pm_idle_timeid =
9743 				    timeout(sd_pm_idletimeout_handler, un,
9744 				    (drv_usectohz((clock_t)300000)));
9745 				/*
9746 				 * Include an extra call to busy which keeps the
9747 				 * device busy with-respect-to the PM layer
9748 				 * until the timer fires, at which time it'll
9749 				 * get the extra idle call.
9750 				 */
9751 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9752 			}
9753 		}
9754 	}
9755 	un->un_pm_busy = FALSE;
9756 	/* Next... */
9757 	cv_signal(&un->un_pm_busy_cv);
9758 
9759 	un->un_pm_count++;
9760 
9761 	SD_TRACE(SD_LOG_IO_PM, un,
9762 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9763 
9764 	mutex_exit(&un->un_pm_mutex);
9765 
9766 	return (return_status);
9767 }
9768 
9769 
9770 /*
9771  *    Function: sd_pm_exit
9772  *
9773  * Description: Called at the completion of a command to manage busy
9774  *		status for the device. If the device becomes idle the
9775  *		PM framework is notified.
9776  *
9777  *     Context: Kernel thread context
9778  */
9779 
9780 static void
9781 sd_pm_exit(struct sd_lun *un)
9782 {
9783 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9784 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9785 
9786 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9787 
9788 	/*
9789 	 * After attach the following flag is only read, so don't
9790 	 * take the penalty of acquiring a mutex for it.
9791 	 */
9792 	if (un->un_f_pm_is_enabled == TRUE) {
9793 
9794 		mutex_enter(&un->un_pm_mutex);
9795 		un->un_pm_count--;
9796 
9797 		SD_TRACE(SD_LOG_IO_PM, un,
9798 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9799 
9800 		ASSERT(un->un_pm_count >= 0);
9801 		if (un->un_pm_count == 0) {
9802 			mutex_exit(&un->un_pm_mutex);
9803 
9804 			SD_TRACE(SD_LOG_IO_PM, un,
9805 			    "sd_pm_exit: idle component\n");
9806 
9807 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9808 
9809 		} else {
9810 			mutex_exit(&un->un_pm_mutex);
9811 		}
9812 	}
9813 
9814 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9815 }
9816 
9817 
9818 /*
9819  *    Function: sdopen
9820  *
9821  * Description: Driver's open(9e) entry point function.
9822  *
9823  *   Arguments: dev_i   - pointer to device number
9824  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9825  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9826  *		cred_p  - user credential pointer
9827  *
9828  * Return Code: EINVAL
9829  *		ENXIO
9830  *		EIO
9831  *		EROFS
9832  *		EBUSY
9833  *
9834  *     Context: Kernel thread context
9835  */
9836 /* ARGSUSED */
9837 static int
9838 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9839 {
9840 	struct sd_lun	*un;
9841 	int		nodelay;
9842 	int		part;
9843 	int		partmask;
9844 	int		instance;
9845 	dev_t		dev;
9846 	int		rval = EIO;
9847 
9848 	/* Validate the open type */
9849 	if (otyp >= OTYPCNT) {
9850 		return (EINVAL);
9851 	}
9852 
9853 	dev = *dev_p;
9854 	instance = SDUNIT(dev);
9855 	mutex_enter(&sd_detach_mutex);
9856 
9857 	/*
9858 	 * Fail the open if there is no softstate for the instance, or
9859 	 * if another thread somewhere is trying to detach the instance.
9860 	 */
9861 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9862 	    (un->un_detach_count != 0)) {
9863 		mutex_exit(&sd_detach_mutex);
9864 		/*
9865 		 * The probe cache only needs to be cleared when open (9e) fails
9866 		 * with ENXIO (4238046).
9867 		 */
9868 		/*
9869 		 * un-conditionally clearing probe cache is ok with
9870 		 * separate sd/ssd binaries
9871 		 * x86 platform can be an issue with both parallel
9872 		 * and fibre in 1 binary
9873 		 */
9874 		sd_scsi_clear_probe_cache();
9875 		return (ENXIO);
9876 	}
9877 
9878 	/*
9879 	 * The un_layer_count is to prevent another thread in specfs from
9880 	 * trying to detach the instance, which can happen when we are
9881 	 * called from a higher-layer driver instead of thru specfs.
9882 	 * This will not be needed when DDI provides a layered driver
9883 	 * interface that allows specfs to know that an instance is in
9884 	 * use by a layered driver & should not be detached.
9885 	 *
9886 	 * Note: the semantics for layered driver opens are exactly one
9887 	 * close for every open.
9888 	 */
9889 	if (otyp == OTYP_LYR) {
9890 		un->un_layer_count++;
9891 	}
9892 
9893 	/*
9894 	 * Keep a count of the current # of opens in progress. This is because
9895 	 * some layered drivers try to call us as a regular open. This can
9896 	 * cause problems that we cannot prevent, however by keeping this count
9897 	 * we can at least keep our open and detach routines from racing against
9898 	 * each other under such conditions.
9899 	 */
9900 	un->un_opens_in_progress++;
9901 	mutex_exit(&sd_detach_mutex);
9902 
9903 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9904 	part	 = SDPART(dev);
9905 	partmask = 1 << part;
9906 
9907 	/*
9908 	 * We use a semaphore here in order to serialize
9909 	 * open and close requests on the device.
9910 	 */
9911 	sema_p(&un->un_semoclose);
9912 
9913 	mutex_enter(SD_MUTEX(un));
9914 
9915 	/*
9916 	 * All device accesses go thru sdstrategy() where we check
9917 	 * on suspend status but there could be a scsi_poll command,
9918 	 * which bypasses sdstrategy(), so we need to check pm
9919 	 * status.
9920 	 */
9921 
9922 	if (!nodelay) {
9923 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9924 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9925 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9926 		}
9927 
9928 		mutex_exit(SD_MUTEX(un));
9929 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9930 			rval = EIO;
9931 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9932 			    "sdopen: sd_pm_entry failed\n");
9933 			goto open_failed_with_pm;
9934 		}
9935 		mutex_enter(SD_MUTEX(un));
9936 	}
9937 
9938 	/* check for previous exclusive open */
9939 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9940 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9941 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9942 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9943 
9944 	if (un->un_exclopen & (partmask)) {
9945 		goto excl_open_fail;
9946 	}
9947 
9948 	if (flag & FEXCL) {
9949 		int i;
9950 		if (un->un_ocmap.lyropen[part]) {
9951 			goto excl_open_fail;
9952 		}
9953 		for (i = 0; i < (OTYPCNT - 1); i++) {
9954 			if (un->un_ocmap.regopen[i] & (partmask)) {
9955 				goto excl_open_fail;
9956 			}
9957 		}
9958 	}
9959 
9960 	/*
9961 	 * Check the write permission if this is a removable media device,
9962 	 * NDELAY has not been set, and writable permission is requested.
9963 	 *
9964 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9965 	 * attempt will fail with EIO as part of the I/O processing. This is a
9966 	 * more permissive implementation that allows the open to succeed and
9967 	 * WRITE attempts to fail when appropriate.
9968 	 */
9969 	if (ISREMOVABLE(un)) {
9970 		if ((flag & FWRITE) && (!nodelay)) {
9971 			mutex_exit(SD_MUTEX(un));
9972 			/*
9973 			 * Defer the check for write permission on writable
9974 			 * DVD drive till sdstrategy and will not fail open even
9975 			 * if FWRITE is set as the device can be writable
9976 			 * depending upon the media and the media can change
9977 			 * after the call to open().
9978 			 */
9979 			if (un->un_f_dvdram_writable_device == FALSE) {
9980 				if (ISCD(un) || sr_check_wp(dev)) {
9981 				rval = EROFS;
9982 				mutex_enter(SD_MUTEX(un));
9983 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9984 				    "write to cd or write protected media\n");
9985 				goto open_fail;
9986 				}
9987 			}
9988 			mutex_enter(SD_MUTEX(un));
9989 		}
9990 	}
9991 
9992 	/*
9993 	 * If opening in NDELAY/NONBLOCK mode, just return.
9994 	 * Check if disk is ready and has a valid geometry later.
9995 	 */
9996 	if (!nodelay) {
9997 		mutex_exit(SD_MUTEX(un));
9998 		rval = sd_ready_and_valid(un);
9999 		mutex_enter(SD_MUTEX(un));
10000 		/*
10001 		 * Fail if device is not ready or if the number of disk
10002 		 * blocks is zero or negative for non CD devices.
10003 		 */
10004 		if ((rval != SD_READY_VALID) ||
10005 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10006 			if (ISREMOVABLE(un)) {
10007 				rval = ENXIO;
10008 			} else {
10009 				rval = EIO;
10010 			}
10011 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10012 			    "device not ready or invalid disk block value\n");
10013 			goto open_fail;
10014 		}
10015 #if defined(__i386) || defined(__amd64)
10016 	} else {
10017 		uchar_t *cp;
10018 		/*
10019 		 * x86 requires special nodelay handling, so that p0 is
10020 		 * always defined and accessible.
10021 		 * Invalidate geometry only if device is not already open.
10022 		 */
10023 		cp = &un->un_ocmap.chkd[0];
10024 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10025 			if (*cp != (uchar_t)0) {
10026 			    break;
10027 			}
10028 			cp++;
10029 		}
10030 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10031 			un->un_f_geometry_is_valid = FALSE;
10032 		}
10033 
10034 #endif
10035 	}
10036 
10037 	if (otyp == OTYP_LYR) {
10038 		un->un_ocmap.lyropen[part]++;
10039 	} else {
10040 		un->un_ocmap.regopen[otyp] |= partmask;
10041 	}
10042 
10043 	/* Set up open and exclusive open flags */
10044 	if (flag & FEXCL) {
10045 		un->un_exclopen |= (partmask);
10046 	}
10047 
10048 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10049 	    "open of part %d type %d\n", part, otyp);
10050 
10051 	mutex_exit(SD_MUTEX(un));
10052 	if (!nodelay) {
10053 		sd_pm_exit(un);
10054 	}
10055 
10056 	sema_v(&un->un_semoclose);
10057 
10058 	mutex_enter(&sd_detach_mutex);
10059 	un->un_opens_in_progress--;
10060 	mutex_exit(&sd_detach_mutex);
10061 
10062 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10063 	return (DDI_SUCCESS);
10064 
10065 excl_open_fail:
10066 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10067 	rval = EBUSY;
10068 
10069 open_fail:
10070 	mutex_exit(SD_MUTEX(un));
10071 
10072 	/*
10073 	 * On a failed open we must exit the pm management.
10074 	 */
10075 	if (!nodelay) {
10076 		sd_pm_exit(un);
10077 	}
10078 open_failed_with_pm:
10079 	sema_v(&un->un_semoclose);
10080 
10081 	mutex_enter(&sd_detach_mutex);
10082 	un->un_opens_in_progress--;
10083 	if (otyp == OTYP_LYR) {
10084 		un->un_layer_count--;
10085 	}
10086 	mutex_exit(&sd_detach_mutex);
10087 
10088 	return (rval);
10089 }
10090 
10091 
10092 /*
10093  *    Function: sdclose
10094  *
10095  * Description: Driver's close(9e) entry point function.
10096  *
10097  *   Arguments: dev    - device number
10098  *		flag   - file status flag, informational only
10099  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10100  *		cred_p - user credential pointer
10101  *
10102  * Return Code: ENXIO
10103  *
10104  *     Context: Kernel thread context
10105  */
10106 /* ARGSUSED */
10107 static int
10108 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10109 {
10110 	struct sd_lun	*un;
10111 	uchar_t		*cp;
10112 	int		part;
10113 	int		nodelay;
10114 	int		rval = 0;
10115 
10116 	/* Validate the open type */
10117 	if (otyp >= OTYPCNT) {
10118 		return (ENXIO);
10119 	}
10120 
10121 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10122 		return (ENXIO);
10123 	}
10124 
10125 	part = SDPART(dev);
10126 	nodelay = flag & (FNDELAY | FNONBLOCK);
10127 
10128 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10129 	    "sdclose: close of part %d type %d\n", part, otyp);
10130 
10131 	/*
10132 	 * We use a semaphore here in order to serialize
10133 	 * open and close requests on the device.
10134 	 */
10135 	sema_p(&un->un_semoclose);
10136 
10137 	mutex_enter(SD_MUTEX(un));
10138 
10139 	/* Don't proceed if power is being changed. */
10140 	while (un->un_state == SD_STATE_PM_CHANGING) {
10141 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10142 	}
10143 
10144 	if (un->un_exclopen & (1 << part)) {
10145 		un->un_exclopen &= ~(1 << part);
10146 	}
10147 
10148 	/* Update the open partition map */
10149 	if (otyp == OTYP_LYR) {
10150 		un->un_ocmap.lyropen[part] -= 1;
10151 	} else {
10152 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10153 	}
10154 
10155 	cp = &un->un_ocmap.chkd[0];
10156 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10157 		if (*cp != NULL) {
10158 			break;
10159 		}
10160 		cp++;
10161 	}
10162 
10163 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10164 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10165 
10166 		/*
10167 		 * We avoid persistance upon the last close, and set
10168 		 * the throttle back to the maximum.
10169 		 */
10170 		un->un_throttle = un->un_saved_throttle;
10171 
10172 		if (un->un_state == SD_STATE_OFFLINE) {
10173 			if (un->un_f_is_fibre == FALSE) {
10174 				scsi_log(SD_DEVINFO(un), sd_label,
10175 					CE_WARN, "offline\n");
10176 			}
10177 			un->un_f_geometry_is_valid = FALSE;
10178 
10179 		} else {
10180 			/*
10181 			 * Flush any outstanding writes in NVRAM cache.
10182 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10183 			 * cmd, it may not work for non-Pluto devices.
10184 			 * SYNCHRONIZE CACHE is not required for removables,
10185 			 * except DVD-RAM drives.
10186 			 *
10187 			 * Also note: because SYNCHRONIZE CACHE is currently
10188 			 * the only command issued here that requires the
10189 			 * drive be powered up, only do the power up before
10190 			 * sending the Sync Cache command. If additional
10191 			 * commands are added which require a powered up
10192 			 * drive, the following sequence may have to change.
10193 			 *
10194 			 * And finally, note that parallel SCSI on SPARC
10195 			 * only issues a Sync Cache to DVD-RAM, a newly
10196 			 * supported device.
10197 			 */
10198 #if defined(__i386) || defined(__amd64)
10199 			if (!ISREMOVABLE(un) ||
10200 			    un->un_f_dvdram_writable_device == TRUE) {
10201 #else
10202 			if (un->un_f_dvdram_writable_device == TRUE) {
10203 #endif
10204 				mutex_exit(SD_MUTEX(un));
10205 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10206 					if (sd_send_scsi_SYNCHRONIZE_CACHE(un)
10207 					    != 0) {
10208 						rval = EIO;
10209 					}
10210 					sd_pm_exit(un);
10211 				} else {
10212 					rval = EIO;
10213 				}
10214 				mutex_enter(SD_MUTEX(un));
10215 			}
10216 
10217 			/*
10218 			 * For removable media devices, send an ALLOW MEDIA
10219 			 * REMOVAL command, but don't get upset if it fails.
10220 			 * Also invalidate the geometry. We need to raise
10221 			 * the power of the drive before we can call
10222 			 * sd_send_scsi_DOORLOCK()
10223 			 */
10224 			if (ISREMOVABLE(un)) {
10225 				mutex_exit(SD_MUTEX(un));
10226 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10227 					rval = sd_send_scsi_DOORLOCK(un,
10228 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10229 
10230 					sd_pm_exit(un);
10231 					if (ISCD(un) && (rval != 0) &&
10232 					    (nodelay != 0)) {
10233 						rval = ENXIO;
10234 					}
10235 				} else {
10236 					rval = EIO;
10237 				}
10238 				mutex_enter(SD_MUTEX(un));
10239 
10240 				sr_ejected(un);
10241 				/*
10242 				 * Destroy the cache (if it exists) which was
10243 				 * allocated for the write maps since this is
10244 				 * the last close for this media.
10245 				 */
10246 				if (un->un_wm_cache) {
10247 					/*
10248 					 * Check if there are pending commands.
10249 					 * and if there are give a warning and
10250 					 * do not destroy the cache.
10251 					 */
10252 					if (un->un_ncmds_in_driver > 0) {
10253 						scsi_log(SD_DEVINFO(un),
10254 						    sd_label, CE_WARN,
10255 						    "Unable to clean up memory "
10256 						    "because of pending I/O\n");
10257 					} else {
10258 						kmem_cache_destroy(
10259 						    un->un_wm_cache);
10260 						un->un_wm_cache = NULL;
10261 					}
10262 				}
10263 			}
10264 		}
10265 	}
10266 
10267 	mutex_exit(SD_MUTEX(un));
10268 	sema_v(&un->un_semoclose);
10269 
10270 	if (otyp == OTYP_LYR) {
10271 		mutex_enter(&sd_detach_mutex);
10272 		/*
10273 		 * The detach routine may run when the layer count
10274 		 * drops to zero.
10275 		 */
10276 		un->un_layer_count--;
10277 		mutex_exit(&sd_detach_mutex);
10278 	}
10279 
10280 	return (rval);
10281 }
10282 
10283 
10284 /*
10285  *    Function: sd_ready_and_valid
10286  *
10287  * Description: Test if device is ready and has a valid geometry.
10288  *
10289  *   Arguments: dev - device number
10290  *		un  - driver soft state (unit) structure
10291  *
10292  * Return Code: SD_READY_VALID		ready and valid label
10293  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10294  *		SD_NOT_READY_VALID	not ready, no label
10295  *
10296  *     Context: Never called at interrupt context.
10297  */
10298 
10299 static int
10300 sd_ready_and_valid(struct sd_lun *un)
10301 {
10302 	struct sd_errstats	*stp;
10303 	uint64_t		capacity;
10304 	uint_t			lbasize;
10305 	int			rval = SD_READY_VALID;
10306 	char			name_str[48];
10307 
10308 	ASSERT(un != NULL);
10309 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10310 
10311 	mutex_enter(SD_MUTEX(un));
10312 	if (ISREMOVABLE(un)) {
10313 		mutex_exit(SD_MUTEX(un));
10314 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10315 			rval = SD_NOT_READY_VALID;
10316 			mutex_enter(SD_MUTEX(un));
10317 			goto done;
10318 		}
10319 
10320 		mutex_enter(SD_MUTEX(un));
10321 		if ((un->un_f_geometry_is_valid == FALSE) ||
10322 		    (un->un_f_blockcount_is_valid == FALSE) ||
10323 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10324 
10325 			/* capacity has to be read every open. */
10326 			mutex_exit(SD_MUTEX(un));
10327 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10328 			    &lbasize, SD_PATH_DIRECT) != 0) {
10329 				mutex_enter(SD_MUTEX(un));
10330 				un->un_f_geometry_is_valid = FALSE;
10331 				rval = SD_NOT_READY_VALID;
10332 				goto done;
10333 			} else {
10334 				mutex_enter(SD_MUTEX(un));
10335 				sd_update_block_info(un, lbasize, capacity);
10336 			}
10337 		}
10338 
10339 		/*
10340 		 * If this is a non 512 block device, allocate space for
10341 		 * the wmap cache. This is being done here since every time
10342 		 * a media is changed this routine will be called and the
10343 		 * block size is a function of media rather than device.
10344 		 */
10345 		if (NOT_DEVBSIZE(un)) {
10346 			if (!(un->un_wm_cache)) {
10347 				(void) snprintf(name_str, sizeof (name_str),
10348 				    "%s%d_cache",
10349 				    ddi_driver_name(SD_DEVINFO(un)),
10350 				    ddi_get_instance(SD_DEVINFO(un)));
10351 				un->un_wm_cache = kmem_cache_create(
10352 				    name_str, sizeof (struct sd_w_map),
10353 				    8, sd_wm_cache_constructor,
10354 				    sd_wm_cache_destructor, NULL,
10355 				    (void *)un, NULL, 0);
10356 				if (!(un->un_wm_cache)) {
10357 					rval = ENOMEM;
10358 					goto done;
10359 				}
10360 			}
10361 		}
10362 
10363 		/*
10364 		 * Check if the media in the device is writable or not.
10365 		 */
10366 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10367 			sd_check_for_writable_cd(un);
10368 		}
10369 
10370 	} else {
10371 		/*
10372 		 * Do a test unit ready to clear any unit attention from non-cd
10373 		 * devices.
10374 		 */
10375 		mutex_exit(SD_MUTEX(un));
10376 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10377 		mutex_enter(SD_MUTEX(un));
10378 	}
10379 
10380 
10381 	if (un->un_state == SD_STATE_NORMAL) {
10382 		/*
10383 		 * If the target is not yet ready here (defined by a TUR
10384 		 * failure), invalidate the geometry and print an 'offline'
10385 		 * message. This is a legacy message, as the state of the
10386 		 * target is not actually changed to SD_STATE_OFFLINE.
10387 		 *
10388 		 * If the TUR fails for EACCES (Reservation Conflict), it
10389 		 * means there actually is nothing wrong with the target that
10390 		 * would require invalidating the geometry, so continue in
10391 		 * that case as if the TUR was successful.
10392 		 */
10393 		int err;
10394 
10395 		mutex_exit(SD_MUTEX(un));
10396 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10397 		mutex_enter(SD_MUTEX(un));
10398 
10399 		if ((err != 0) && (err != EACCES)) {
10400 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10401 			    "offline\n");
10402 			un->un_f_geometry_is_valid = FALSE;
10403 			rval = SD_NOT_READY_VALID;
10404 			goto done;
10405 		}
10406 	}
10407 
10408 	if (un->un_f_format_in_progress == FALSE) {
10409 		/*
10410 		 * Note: sd_validate_geometry may return TRUE, but that does
10411 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10412 		 */
10413 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10414 		if (rval == ENOTSUP) {
10415 			if (un->un_f_geometry_is_valid == TRUE)
10416 				rval = 0;
10417 			else {
10418 				rval = SD_READY_NOT_VALID;
10419 				goto done;
10420 			}
10421 		}
10422 		if (rval != 0) {
10423 			/*
10424 			 * We don't check the validity of geometry for
10425 			 * CDROMs. Also we assume we have a good label
10426 			 * even if sd_validate_geometry returned ENOMEM.
10427 			 */
10428 			if (!ISCD(un) && rval != ENOMEM) {
10429 				rval = SD_NOT_READY_VALID;
10430 				goto done;
10431 			}
10432 		}
10433 	}
10434 
10435 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10436 	/*
10437 	 * check to see if this disk is write protected, if it is and we have
10438 	 * not set read-only, then fail
10439 	 */
10440 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10441 		New_state(un, SD_STATE_CLOSED);
10442 		goto done;
10443 	}
10444 #endif
10445 
10446 	/*
10447 	 * If this is a removable media device, try and send
10448 	 * a PREVENT MEDIA REMOVAL command, but don't get upset
10449 	 * if it fails. For a CD, however, it is an error
10450 	 */
10451 	if (ISREMOVABLE(un)) {
10452 		mutex_exit(SD_MUTEX(un));
10453 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10454 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10455 			rval = SD_NOT_READY_VALID;
10456 			mutex_enter(SD_MUTEX(un));
10457 			goto done;
10458 		}
10459 		mutex_enter(SD_MUTEX(un));
10460 	}
10461 
10462 	/* The state has changed, inform the media watch routines */
10463 	un->un_mediastate = DKIO_INSERTED;
10464 	cv_broadcast(&un->un_state_cv);
10465 	rval = SD_READY_VALID;
10466 
10467 done:
10468 
10469 	/*
10470 	 * Initialize the capacity kstat value, if no media previously
10471 	 * (capacity kstat is 0) and a media has been inserted
10472 	 * (un_blockcount > 0).
10473 	 * This is a more generic way then checking for ISREMOVABLE.
10474 	 */
10475 	if (un->un_errstats != NULL) {
10476 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10477 		if ((stp->sd_capacity.value.ui64 == 0) &&
10478 		    (un->un_f_blockcount_is_valid == TRUE)) {
10479 			stp->sd_capacity.value.ui64 =
10480 			    (uint64_t)((uint64_t)un->un_blockcount *
10481 			    un->un_sys_blocksize);
10482 		}
10483 	}
10484 
10485 	mutex_exit(SD_MUTEX(un));
10486 	return (rval);
10487 }
10488 
10489 
10490 /*
10491  *    Function: sdmin
10492  *
10493  * Description: Routine to limit the size of a data transfer. Used in
10494  *		conjunction with physio(9F).
10495  *
10496  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10497  *
10498  *     Context: Kernel thread context.
10499  */
10500 
10501 static void
10502 sdmin(struct buf *bp)
10503 {
10504 	struct sd_lun	*un;
10505 	int		instance;
10506 
10507 	instance = SDUNIT(bp->b_edev);
10508 
10509 	un = ddi_get_soft_state(sd_state, instance);
10510 	ASSERT(un != NULL);
10511 
10512 	if (bp->b_bcount > un->un_max_xfer_size) {
10513 		bp->b_bcount = un->un_max_xfer_size;
10514 	}
10515 }
10516 
10517 
10518 /*
10519  *    Function: sdread
10520  *
10521  * Description: Driver's read(9e) entry point function.
10522  *
10523  *   Arguments: dev   - device number
10524  *		uio   - structure pointer describing where data is to be stored
10525  *			in user's space
10526  *		cred_p  - user credential pointer
10527  *
10528  * Return Code: ENXIO
10529  *		EIO
10530  *		EINVAL
10531  *		value returned by physio
10532  *
10533  *     Context: Kernel thread context.
10534  */
10535 /* ARGSUSED */
10536 static int
10537 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10538 {
10539 	struct sd_lun	*un = NULL;
10540 	int		secmask;
10541 	int		err;
10542 
10543 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10544 		return (ENXIO);
10545 	}
10546 
10547 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10548 
10549 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10550 		mutex_enter(SD_MUTEX(un));
10551 		/*
10552 		 * Because the call to sd_ready_and_valid will issue I/O we
10553 		 * must wait here if either the device is suspended or
10554 		 * if it's power level is changing.
10555 		 */
10556 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10557 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10558 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10559 		}
10560 		un->un_ncmds_in_driver++;
10561 		mutex_exit(SD_MUTEX(un));
10562 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10563 			mutex_enter(SD_MUTEX(un));
10564 			un->un_ncmds_in_driver--;
10565 			ASSERT(un->un_ncmds_in_driver >= 0);
10566 			mutex_exit(SD_MUTEX(un));
10567 			return (EIO);
10568 		}
10569 		mutex_enter(SD_MUTEX(un));
10570 		un->un_ncmds_in_driver--;
10571 		ASSERT(un->un_ncmds_in_driver >= 0);
10572 		mutex_exit(SD_MUTEX(un));
10573 	}
10574 
10575 	/*
10576 	 * Read requests are restricted to multiples of the system block size.
10577 	 */
10578 	secmask = un->un_sys_blocksize - 1;
10579 
10580 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10581 		SD_ERROR(SD_LOG_READ_WRITE, un,
10582 		    "sdread: file offset not modulo %d\n",
10583 		    un->un_sys_blocksize);
10584 		err = EINVAL;
10585 	} else if (uio->uio_iov->iov_len & (secmask)) {
10586 		SD_ERROR(SD_LOG_READ_WRITE, un,
10587 		    "sdread: transfer length not modulo %d\n",
10588 		    un->un_sys_blocksize);
10589 		err = EINVAL;
10590 	} else {
10591 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10592 	}
10593 	return (err);
10594 }
10595 
10596 
10597 /*
10598  *    Function: sdwrite
10599  *
10600  * Description: Driver's write(9e) entry point function.
10601  *
10602  *   Arguments: dev   - device number
10603  *		uio   - structure pointer describing where data is stored in
10604  *			user's space
10605  *		cred_p  - user credential pointer
10606  *
10607  * Return Code: ENXIO
10608  *		EIO
10609  *		EINVAL
10610  *		value returned by physio
10611  *
10612  *     Context: Kernel thread context.
10613  */
10614 /* ARGSUSED */
10615 static int
10616 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10617 {
10618 	struct sd_lun	*un = NULL;
10619 	int		secmask;
10620 	int		err;
10621 
10622 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10623 		return (ENXIO);
10624 	}
10625 
10626 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10627 
10628 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10629 		mutex_enter(SD_MUTEX(un));
10630 		/*
10631 		 * Because the call to sd_ready_and_valid will issue I/O we
10632 		 * must wait here if either the device is suspended or
10633 		 * if it's power level is changing.
10634 		 */
10635 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10636 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10637 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10638 		}
10639 		un->un_ncmds_in_driver++;
10640 		mutex_exit(SD_MUTEX(un));
10641 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10642 			mutex_enter(SD_MUTEX(un));
10643 			un->un_ncmds_in_driver--;
10644 			ASSERT(un->un_ncmds_in_driver >= 0);
10645 			mutex_exit(SD_MUTEX(un));
10646 			return (EIO);
10647 		}
10648 		mutex_enter(SD_MUTEX(un));
10649 		un->un_ncmds_in_driver--;
10650 		ASSERT(un->un_ncmds_in_driver >= 0);
10651 		mutex_exit(SD_MUTEX(un));
10652 	}
10653 
10654 	/*
10655 	 * Write requests are restricted to multiples of the system block size.
10656 	 */
10657 	secmask = un->un_sys_blocksize - 1;
10658 
10659 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10660 		SD_ERROR(SD_LOG_READ_WRITE, un,
10661 		    "sdwrite: file offset not modulo %d\n",
10662 		    un->un_sys_blocksize);
10663 		err = EINVAL;
10664 	} else if (uio->uio_iov->iov_len & (secmask)) {
10665 		SD_ERROR(SD_LOG_READ_WRITE, un,
10666 		    "sdwrite: transfer length not modulo %d\n",
10667 		    un->un_sys_blocksize);
10668 		err = EINVAL;
10669 	} else {
10670 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10671 	}
10672 	return (err);
10673 }
10674 
10675 
10676 /*
10677  *    Function: sdaread
10678  *
10679  * Description: Driver's aread(9e) entry point function.
10680  *
10681  *   Arguments: dev   - device number
10682  *		aio   - structure pointer describing where data is to be stored
10683  *		cred_p  - user credential pointer
10684  *
10685  * Return Code: ENXIO
10686  *		EIO
10687  *		EINVAL
10688  *		value returned by aphysio
10689  *
10690  *     Context: Kernel thread context.
10691  */
10692 /* ARGSUSED */
10693 static int
10694 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10695 {
10696 	struct sd_lun	*un = NULL;
10697 	struct uio	*uio = aio->aio_uio;
10698 	int		secmask;
10699 	int		err;
10700 
10701 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10702 		return (ENXIO);
10703 	}
10704 
10705 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10706 
10707 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10708 		mutex_enter(SD_MUTEX(un));
10709 		/*
10710 		 * Because the call to sd_ready_and_valid will issue I/O we
10711 		 * must wait here if either the device is suspended or
10712 		 * if it's power level is changing.
10713 		 */
10714 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10715 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10716 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10717 		}
10718 		un->un_ncmds_in_driver++;
10719 		mutex_exit(SD_MUTEX(un));
10720 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10721 			mutex_enter(SD_MUTEX(un));
10722 			un->un_ncmds_in_driver--;
10723 			ASSERT(un->un_ncmds_in_driver >= 0);
10724 			mutex_exit(SD_MUTEX(un));
10725 			return (EIO);
10726 		}
10727 		mutex_enter(SD_MUTEX(un));
10728 		un->un_ncmds_in_driver--;
10729 		ASSERT(un->un_ncmds_in_driver >= 0);
10730 		mutex_exit(SD_MUTEX(un));
10731 	}
10732 
10733 	/*
10734 	 * Read requests are restricted to multiples of the system block size.
10735 	 */
10736 	secmask = un->un_sys_blocksize - 1;
10737 
10738 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10739 		SD_ERROR(SD_LOG_READ_WRITE, un,
10740 		    "sdaread: file offset not modulo %d\n",
10741 		    un->un_sys_blocksize);
10742 		err = EINVAL;
10743 	} else if (uio->uio_iov->iov_len & (secmask)) {
10744 		SD_ERROR(SD_LOG_READ_WRITE, un,
10745 		    "sdaread: transfer length not modulo %d\n",
10746 		    un->un_sys_blocksize);
10747 		err = EINVAL;
10748 	} else {
10749 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10750 	}
10751 	return (err);
10752 }
10753 
10754 
10755 /*
10756  *    Function: sdawrite
10757  *
10758  * Description: Driver's awrite(9e) entry point function.
10759  *
10760  *   Arguments: dev   - device number
10761  *		aio   - structure pointer describing where data is stored
10762  *		cred_p  - user credential pointer
10763  *
10764  * Return Code: ENXIO
10765  *		EIO
10766  *		EINVAL
10767  *		value returned by aphysio
10768  *
10769  *     Context: Kernel thread context.
10770  */
10771 /* ARGSUSED */
10772 static int
10773 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10774 {
10775 	struct sd_lun	*un = NULL;
10776 	struct uio	*uio = aio->aio_uio;
10777 	int		secmask;
10778 	int		err;
10779 
10780 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10781 		return (ENXIO);
10782 	}
10783 
10784 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10785 
10786 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10787 		mutex_enter(SD_MUTEX(un));
10788 		/*
10789 		 * Because the call to sd_ready_and_valid will issue I/O we
10790 		 * must wait here if either the device is suspended or
10791 		 * if it's power level is changing.
10792 		 */
10793 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10794 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10795 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10796 		}
10797 		un->un_ncmds_in_driver++;
10798 		mutex_exit(SD_MUTEX(un));
10799 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10800 			mutex_enter(SD_MUTEX(un));
10801 			un->un_ncmds_in_driver--;
10802 			ASSERT(un->un_ncmds_in_driver >= 0);
10803 			mutex_exit(SD_MUTEX(un));
10804 			return (EIO);
10805 		}
10806 		mutex_enter(SD_MUTEX(un));
10807 		un->un_ncmds_in_driver--;
10808 		ASSERT(un->un_ncmds_in_driver >= 0);
10809 		mutex_exit(SD_MUTEX(un));
10810 	}
10811 
10812 	/*
10813 	 * Write requests are restricted to multiples of the system block size.
10814 	 */
10815 	secmask = un->un_sys_blocksize - 1;
10816 
10817 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10818 		SD_ERROR(SD_LOG_READ_WRITE, un,
10819 		    "sdawrite: file offset not modulo %d\n",
10820 		    un->un_sys_blocksize);
10821 		err = EINVAL;
10822 	} else if (uio->uio_iov->iov_len & (secmask)) {
10823 		SD_ERROR(SD_LOG_READ_WRITE, un,
10824 		    "sdawrite: transfer length not modulo %d\n",
10825 		    un->un_sys_blocksize);
10826 		err = EINVAL;
10827 	} else {
10828 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10829 	}
10830 	return (err);
10831 }
10832 
10833 
10834 
10835 
10836 
10837 /*
10838  * Driver IO processing follows the following sequence:
10839  *
10840  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10841  *         |                |                     ^
10842  *         v                v                     |
10843  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10844  *         |                |                     |                   |
10845  *         v                |                     |                   |
10846  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10847  *         |                |                     ^                   ^
10848  *         v                v                     |                   |
10849  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10850  *         |                |                     |                   |
10851  *     +---+                |                     +------------+      +-------+
10852  *     |                    |                                  |              |
10853  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10854  *     |                    v                                  |              |
10855  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10856  *     |                    |                                  ^              |
10857  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10858  *     |                    v                                  |              |
10859  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10860  *     |                    |                                  ^              |
10861  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10862  *     |                    v                                  |              |
10863  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10864  *     |                    |                                  ^              |
10865  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10866  *     |                    v                                  |              |
10867  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10868  *     |                    |                                  ^              |
10869  *     |                    |                                  |              |
10870  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10871  *                          |                           ^
10872  *                          v                           |
10873  *                   sd_core_iostart()                  |
10874  *                          |                           |
10875  *                          |                           +------>(*destroypkt)()
10876  *                          +-> sd_start_cmds() <-+     |           |
10877  *                          |                     |     |           v
10878  *                          |                     |     |  scsi_destroy_pkt(9F)
10879  *                          |                     |     |
10880  *                          +->(*initpkt)()       +- sdintr()
10881  *                          |  |                        |  |
10882  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10883  *                          |  +-> scsi_setup_cdb(9F)   |
10884  *                          |                           |
10885  *                          +--> scsi_transport(9F)     |
10886  *                                     |                |
10887  *                                     +----> SCSA ---->+
10888  *
10889  *
10890  * This code is based upon the following presumtions:
10891  *
10892  *   - iostart and iodone functions operate on buf(9S) structures. These
10893  *     functions perform the necessary operations on the buf(9S) and pass
10894  *     them along to the next function in the chain by using the macros
10895  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10896  *     (for iodone side functions).
10897  *
10898  *   - The iostart side functions may sleep. The iodone side functions
10899  *     are called under interrupt context and may NOT sleep. Therefore
10900  *     iodone side functions also may not call iostart side functions.
10901  *     (NOTE: iostart side functions should NOT sleep for memory, as
10902  *     this could result in deadlock.)
10903  *
10904  *   - An iostart side function may call its corresponding iodone side
10905  *     function directly (if necessary).
10906  *
10907  *   - In the event of an error, an iostart side function can return a buf(9S)
10908  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10909  *     b_error in the usual way of course).
10910  *
10911  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10912  *     requests to the iostart side functions.  The iostart side functions in
10913  *     this case would be called under the context of a taskq thread, so it's
10914  *     OK for them to block/sleep/spin in this case.
10915  *
10916  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10917  *     pass them along to the next function in the chain.  The corresponding
10918  *     iodone side functions must coalesce the "shadow" bufs and return
10919  *     the "original" buf to the next higher layer.
10920  *
10921  *   - The b_private field of the buf(9S) struct holds a pointer to
10922  *     an sd_xbuf struct, which contains information needed to
10923  *     construct the scsi_pkt for the command.
10924  *
10925  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10926  *     layer must acquire & release the SD_MUTEX(un) as needed.
10927  */
10928 
10929 
10930 /*
10931  * Create taskq for all targets in the system. This is created at
10932  * _init(9E) and destroyed at _fini(9E).
10933  *
10934  * Note: here we set the minalloc to a reasonably high number to ensure that
10935  * we will have an adequate supply of task entries available at interrupt time.
10936  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10937  * sd_create_taskq().  Since we do not want to sleep for allocations at
10938  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10939  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10940  * requests any one instant in time.
10941  */
10942 #define	SD_TASKQ_NUMTHREADS	8
10943 #define	SD_TASKQ_MINALLOC	256
10944 #define	SD_TASKQ_MAXALLOC	256
10945 
10946 static taskq_t	*sd_tq = NULL;
10947 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10948 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10949 
10950 /*
10951  * The following task queue is being created for the write part of
10952  * read-modify-write of non-512 block size devices.
10953  * Limit the number of threads to 1 for now. This number has been choosen
10954  * considering the fact that it applies only to dvd ram drives/MO drives
10955  * currently. Performance for which is not main criteria at this stage.
10956  * Note: It needs to be explored if we can use a single taskq in future
10957  */
10958 #define	SD_WMR_TASKQ_NUMTHREADS	1
10959 static taskq_t	*sd_wmr_tq = NULL;
10960 
10961 /*
10962  *    Function: sd_taskq_create
10963  *
10964  * Description: Create taskq thread(s) and preallocate task entries
10965  *
10966  * Return Code: Returns a pointer to the allocated taskq_t.
10967  *
10968  *     Context: Can sleep. Requires blockable context.
10969  *
10970  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10971  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10972  *		- taskq_create() will block for memory, also it will panic
10973  *		  if it cannot create the requested number of threads.
10974  *		- Currently taskq_create() creates threads that cannot be
10975  *		  swapped.
10976  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10977  *		  supply of taskq entries at interrupt time (ie, so that we
10978  *		  do not have to sleep for memory)
10979  */
10980 
10981 static void
10982 sd_taskq_create(void)
10983 {
10984 	char	taskq_name[TASKQ_NAMELEN];
10985 
10986 	ASSERT(sd_tq == NULL);
10987 	ASSERT(sd_wmr_tq == NULL);
10988 
10989 	(void) snprintf(taskq_name, sizeof (taskq_name),
10990 	    "%s_drv_taskq", sd_label);
10991 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10992 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10993 	    TASKQ_PREPOPULATE));
10994 
10995 	(void) snprintf(taskq_name, sizeof (taskq_name),
10996 	    "%s_rmw_taskq", sd_label);
10997 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10998 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10999 	    TASKQ_PREPOPULATE));
11000 }
11001 
11002 
11003 /*
11004  *    Function: sd_taskq_delete
11005  *
11006  * Description: Complementary cleanup routine for sd_taskq_create().
11007  *
11008  *     Context: Kernel thread context.
11009  */
11010 
11011 static void
11012 sd_taskq_delete(void)
11013 {
11014 	ASSERT(sd_tq != NULL);
11015 	ASSERT(sd_wmr_tq != NULL);
11016 	taskq_destroy(sd_tq);
11017 	taskq_destroy(sd_wmr_tq);
11018 	sd_tq = NULL;
11019 	sd_wmr_tq = NULL;
11020 }
11021 
11022 
11023 /*
11024  *    Function: sdstrategy
11025  *
11026  * Description: Driver's strategy (9E) entry point function.
11027  *
11028  *   Arguments: bp - pointer to buf(9S)
11029  *
11030  * Return Code: Always returns zero
11031  *
11032  *     Context: Kernel thread context.
11033  */
11034 
11035 static int
11036 sdstrategy(struct buf *bp)
11037 {
11038 	struct sd_lun *un;
11039 
11040 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11041 	if (un == NULL) {
11042 		bioerror(bp, EIO);
11043 		bp->b_resid = bp->b_bcount;
11044 		biodone(bp);
11045 		return (0);
11046 	}
11047 	/* As was done in the past, fail new cmds. if state is dumping. */
11048 	if (un->un_state == SD_STATE_DUMPING) {
11049 		bioerror(bp, ENXIO);
11050 		bp->b_resid = bp->b_bcount;
11051 		biodone(bp);
11052 		return (0);
11053 	}
11054 
11055 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11056 
11057 	/*
11058 	 * Commands may sneak in while we released the mutex in
11059 	 * DDI_SUSPEND, we should block new commands. However, old
11060 	 * commands that are still in the driver at this point should
11061 	 * still be allowed to drain.
11062 	 */
11063 	mutex_enter(SD_MUTEX(un));
11064 	/*
11065 	 * Must wait here if either the device is suspended or
11066 	 * if it's power level is changing.
11067 	 */
11068 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11069 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11070 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11071 	}
11072 
11073 	un->un_ncmds_in_driver++;
11074 
11075 	/*
11076 	 * atapi: Since we are running the CD for now in PIO mode we need to
11077 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11078 	 * the HBA's init_pkt routine.
11079 	 */
11080 	if (un->un_f_cfg_is_atapi == TRUE) {
11081 		mutex_exit(SD_MUTEX(un));
11082 		bp_mapin(bp);
11083 		mutex_enter(SD_MUTEX(un));
11084 	}
11085 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11086 	    un->un_ncmds_in_driver);
11087 
11088 	mutex_exit(SD_MUTEX(un));
11089 
11090 	/*
11091 	 * This will (eventually) allocate the sd_xbuf area and
11092 	 * call sd_xbuf_strategy().  We just want to return the
11093 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11094 	 * imized tail call which saves us a stack frame.
11095 	 */
11096 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11097 }
11098 
11099 
11100 /*
11101  *    Function: sd_xbuf_strategy
11102  *
11103  * Description: Function for initiating IO operations via the
11104  *		ddi_xbuf_qstrategy() mechanism.
11105  *
11106  *     Context: Kernel thread context.
11107  */
11108 
11109 static void
11110 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11111 {
11112 	struct sd_lun *un = arg;
11113 
11114 	ASSERT(bp != NULL);
11115 	ASSERT(xp != NULL);
11116 	ASSERT(un != NULL);
11117 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11118 
11119 	/*
11120 	 * Initialize the fields in the xbuf and save a pointer to the
11121 	 * xbuf in bp->b_private.
11122 	 */
11123 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11124 
11125 	/* Send the buf down the iostart chain */
11126 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11127 }
11128 
11129 
11130 /*
11131  *    Function: sd_xbuf_init
11132  *
11133  * Description: Prepare the given sd_xbuf struct for use.
11134  *
11135  *   Arguments: un - ptr to softstate
11136  *		bp - ptr to associated buf(9S)
11137  *		xp - ptr to associated sd_xbuf
11138  *		chain_type - IO chain type to use:
11139  *			SD_CHAIN_NULL
11140  *			SD_CHAIN_BUFIO
11141  *			SD_CHAIN_USCSI
11142  *			SD_CHAIN_DIRECT
11143  *			SD_CHAIN_DIRECT_PRIORITY
11144  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11145  *			initialization; may be NULL if none.
11146  *
11147  *     Context: Kernel thread context
11148  */
11149 
11150 static void
11151 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11152 	uchar_t chain_type, void *pktinfop)
11153 {
11154 	int index;
11155 
11156 	ASSERT(un != NULL);
11157 	ASSERT(bp != NULL);
11158 	ASSERT(xp != NULL);
11159 
11160 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11161 	    bp, chain_type);
11162 
11163 	xp->xb_un	= un;
11164 	xp->xb_pktp	= NULL;
11165 	xp->xb_pktinfo	= pktinfop;
11166 	xp->xb_private	= bp->b_private;
11167 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11168 
11169 	/*
11170 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11171 	 * upon the specified chain type to use.
11172 	 */
11173 	switch (chain_type) {
11174 	case SD_CHAIN_NULL:
11175 		/*
11176 		 * Fall thru to just use the values for the buf type, even
11177 		 * tho for the NULL chain these values will never be used.
11178 		 */
11179 		/* FALLTHRU */
11180 	case SD_CHAIN_BUFIO:
11181 		index = un->un_buf_chain_type;
11182 		break;
11183 	case SD_CHAIN_USCSI:
11184 		index = un->un_uscsi_chain_type;
11185 		break;
11186 	case SD_CHAIN_DIRECT:
11187 		index = un->un_direct_chain_type;
11188 		break;
11189 	case SD_CHAIN_DIRECT_PRIORITY:
11190 		index = un->un_priority_chain_type;
11191 		break;
11192 	default:
11193 		/* We're really broken if we ever get here... */
11194 		panic("sd_xbuf_init: illegal chain type!");
11195 		/*NOTREACHED*/
11196 	}
11197 
11198 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11199 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11200 
11201 	/*
11202 	 * It might be a bit easier to simply bzero the entire xbuf above,
11203 	 * but it turns out that since we init a fair number of members anyway,
11204 	 * we save a fair number cycles by doing explicit assignment of zero.
11205 	 */
11206 	xp->xb_pkt_flags	= 0;
11207 	xp->xb_dma_resid	= 0;
11208 	xp->xb_retry_count	= 0;
11209 	xp->xb_victim_retry_count = 0;
11210 	xp->xb_ua_retry_count	= 0;
11211 	xp->xb_sense_bp		= NULL;
11212 	xp->xb_sense_status	= 0;
11213 	xp->xb_sense_state	= 0;
11214 	xp->xb_sense_resid	= 0;
11215 
11216 	bp->b_private	= xp;
11217 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11218 	bp->b_resid	= 0;
11219 	bp->av_forw	= NULL;
11220 	bp->av_back	= NULL;
11221 	bioerror(bp, 0);
11222 
11223 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11224 }
11225 
11226 
11227 /*
11228  *    Function: sd_uscsi_strategy
11229  *
11230  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11231  *
11232  *   Arguments: bp - buf struct ptr
11233  *
11234  * Return Code: Always returns 0
11235  *
11236  *     Context: Kernel thread context
11237  */
11238 
11239 static int
11240 sd_uscsi_strategy(struct buf *bp)
11241 {
11242 	struct sd_lun		*un;
11243 	struct sd_uscsi_info	*uip;
11244 	struct sd_xbuf		*xp;
11245 	uchar_t			chain_type;
11246 
11247 	ASSERT(bp != NULL);
11248 
11249 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11250 	if (un == NULL) {
11251 		bioerror(bp, EIO);
11252 		bp->b_resid = bp->b_bcount;
11253 		biodone(bp);
11254 		return (0);
11255 	}
11256 
11257 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11258 
11259 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11260 
11261 	mutex_enter(SD_MUTEX(un));
11262 	/*
11263 	 * atapi: Since we are running the CD for now in PIO mode we need to
11264 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11265 	 * the HBA's init_pkt routine.
11266 	 */
11267 	if (un->un_f_cfg_is_atapi == TRUE) {
11268 		mutex_exit(SD_MUTEX(un));
11269 		bp_mapin(bp);
11270 		mutex_enter(SD_MUTEX(un));
11271 	}
11272 	un->un_ncmds_in_driver++;
11273 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11274 	    un->un_ncmds_in_driver);
11275 	mutex_exit(SD_MUTEX(un));
11276 
11277 	/*
11278 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11279 	 */
11280 	ASSERT(bp->b_private != NULL);
11281 	uip = (struct sd_uscsi_info *)bp->b_private;
11282 
11283 	switch (uip->ui_flags) {
11284 	case SD_PATH_DIRECT:
11285 		chain_type = SD_CHAIN_DIRECT;
11286 		break;
11287 	case SD_PATH_DIRECT_PRIORITY:
11288 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11289 		break;
11290 	default:
11291 		chain_type = SD_CHAIN_USCSI;
11292 		break;
11293 	}
11294 
11295 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11296 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11297 
11298 	/* Use the index obtained within xbuf_init */
11299 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11300 
11301 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11302 
11303 	return (0);
11304 }
11305 
11306 
11307 /*
11308  * These routines perform raw i/o operations.
11309  */
11310 /*ARGSUSED*/
11311 static void
11312 sduscsimin(struct buf *bp)
11313 {
11314 	/*
11315 	 * do not break up because the CDB count would then
11316 	 * be incorrect and data underruns would result (incomplete
11317 	 * read/writes which would be retried and then failed, see
11318 	 * sdintr().
11319 	 */
11320 }
11321 
11322 
11323 
11324 /*
11325  *    Function: sd_send_scsi_cmd
11326  *
11327  * Description: Runs a USCSI command for user (when called thru sdioctl),
11328  *		or for the driver
11329  *
11330  *   Arguments: dev - the dev_t for the device
11331  *		incmd - ptr to a valid uscsi_cmd struct
11332  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11333  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11334  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11335  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11336  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11337  *			to use the USCSI "direct" chain and bypass the normal
11338  *			command waitq.
11339  *
11340  * Return Code: 0 -  successful completion of the given command
11341  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11342  *		ENXIO  - soft state not found for specified dev
11343  *		EINVAL
11344  *		EFAULT - copyin/copyout error
11345  *		return code of biowait(9F) or physio(9F):
11346  *			EIO - IO error, caller may check incmd->uscsi_status
11347  *			ENXIO
11348  *			EACCES - reservation conflict
11349  *
11350  *     Context: Waits for command to complete. Can sleep.
11351  */
11352 
11353 static int
11354 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11355 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11356 	int path_flag)
11357 {
11358 	struct sd_uscsi_info	*uip;
11359 	struct uscsi_cmd	*uscmd;
11360 	struct sd_lun	*un;
11361 	struct buf	*bp;
11362 	int	rval;
11363 	int	flags;
11364 
11365 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11366 	if (un == NULL) {
11367 		return (ENXIO);
11368 	}
11369 
11370 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11371 
11372 #ifdef SDDEBUG
11373 	switch (dataspace) {
11374 	case UIO_USERSPACE:
11375 		SD_TRACE(SD_LOG_IO, un,
11376 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11377 		break;
11378 	case UIO_SYSSPACE:
11379 		SD_TRACE(SD_LOG_IO, un,
11380 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11381 		break;
11382 	default:
11383 		SD_TRACE(SD_LOG_IO, un,
11384 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11385 		break;
11386 	}
11387 #endif
11388 
11389 	/*
11390 	 * Perform resets directly; no need to generate a command to do it.
11391 	 */
11392 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11393 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11394 		    RESET_ALL : RESET_TARGET;
11395 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11396 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11397 			/* Reset attempt was unsuccessful */
11398 			SD_TRACE(SD_LOG_IO, un,
11399 			    "sd_send_scsi_cmd: reset: failure\n");
11400 			return (EIO);
11401 		}
11402 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11403 		return (0);
11404 	}
11405 
11406 	/* Perfunctory sanity check... */
11407 	if (incmd->uscsi_cdblen <= 0) {
11408 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11409 		    "invalid uscsi_cdblen, returning EINVAL\n");
11410 		return (EINVAL);
11411 	}
11412 
11413 	/*
11414 	 * In order to not worry about where the uscsi structure came from
11415 	 * (or where the cdb it points to came from) we're going to make
11416 	 * kmem_alloc'd copies of them here. This will also allow reference
11417 	 * to the data they contain long after this process has gone to
11418 	 * sleep and its kernel stack has been unmapped, etc.
11419 	 *
11420 	 * First get some memory for the uscsi_cmd struct and copy the
11421 	 * contents of the given uscsi_cmd struct into it.
11422 	 */
11423 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11424 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11425 
11426 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11427 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11428 
11429 	/*
11430 	 * Now get some space for the CDB, and copy the given CDB into
11431 	 * it. Use ddi_copyin() in case the data is in user space.
11432 	 */
11433 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11434 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11435 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11436 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11437 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11438 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11439 		return (EFAULT);
11440 	}
11441 
11442 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11443 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11444 
11445 	bp = getrbuf(KM_SLEEP);
11446 
11447 	/*
11448 	 * Allocate an sd_uscsi_info struct and fill it with the info
11449 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11450 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11451 	 * since we allocate the buf here in this function, we do not
11452 	 * need to preserve the prior contents of b_private.
11453 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11454 	 */
11455 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11456 	uip->ui_flags = path_flag;
11457 	uip->ui_cmdp  = uscmd;
11458 	bp->b_private = uip;
11459 
11460 	/*
11461 	 * Initialize Request Sense buffering, if requested.
11462 	 */
11463 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11464 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11465 		/*
11466 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11467 		 * buffer, but we replace this with a kernel buffer that
11468 		 * we allocate to use with the sense data. The sense data
11469 		 * (if present) gets copied into this new buffer before the
11470 		 * command is completed.  Then we copy the sense data from
11471 		 * our allocated buf into the caller's buffer below. Note
11472 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11473 		 * below to perform the copy back to the caller's buf.
11474 		 */
11475 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11476 		if (rqbufspace == UIO_USERSPACE) {
11477 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11478 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11479 		} else {
11480 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11481 			uscmd->uscsi_rqlen   = rlen;
11482 			uscmd->uscsi_rqresid = rlen;
11483 		}
11484 	} else {
11485 		uscmd->uscsi_rqbuf = NULL;
11486 		uscmd->uscsi_rqlen   = 0;
11487 		uscmd->uscsi_rqresid = 0;
11488 	}
11489 
11490 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11491 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11492 
11493 	if (un->un_f_is_fibre == FALSE) {
11494 		/*
11495 		 * Force asynchronous mode, if necessary.  Doing this here
11496 		 * has the unfortunate effect of running other queued
11497 		 * commands async also, but since the main purpose of this
11498 		 * capability is downloading new drive firmware, we can
11499 		 * probably live with it.
11500 		 */
11501 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11502 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11503 				== 1) {
11504 				if (scsi_ifsetcap(SD_ADDRESS(un),
11505 					    "synchronous", 0, 1) == 1) {
11506 					SD_TRACE(SD_LOG_IO, un,
11507 					"sd_send_scsi_cmd: forced async ok\n");
11508 				} else {
11509 					SD_TRACE(SD_LOG_IO, un,
11510 					"sd_send_scsi_cmd:\
11511 					forced async failed\n");
11512 					rval = EINVAL;
11513 					goto done;
11514 				}
11515 			}
11516 		}
11517 
11518 		/*
11519 		 * Re-enable synchronous mode, if requested
11520 		 */
11521 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11522 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11523 				== 0) {
11524 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11525 						"synchronous", 1, 1);
11526 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11527 					"re-enabled sync %s\n",
11528 					(i == 1) ? "ok" : "failed");
11529 			}
11530 		}
11531 	}
11532 
11533 	/*
11534 	 * Commands sent with priority are intended for error recovery
11535 	 * situations, and do not have retries performed.
11536 	 */
11537 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11538 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11539 	}
11540 
11541 	/*
11542 	 * If we're going to do actual I/O, let physio do all the right things
11543 	 */
11544 	if (uscmd->uscsi_buflen != 0) {
11545 		struct iovec	aiov;
11546 		struct uio	auio;
11547 		struct uio	*uio = &auio;
11548 
11549 		bzero(&auio, sizeof (struct uio));
11550 		bzero(&aiov, sizeof (struct iovec));
11551 		aiov.iov_base = uscmd->uscsi_bufaddr;
11552 		aiov.iov_len  = uscmd->uscsi_buflen;
11553 		uio->uio_iov  = &aiov;
11554 
11555 		uio->uio_iovcnt  = 1;
11556 		uio->uio_resid   = uscmd->uscsi_buflen;
11557 		uio->uio_segflg  = dataspace;
11558 
11559 		/*
11560 		 * physio() will block here until the command completes....
11561 		 */
11562 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11563 
11564 		rval = physio(sd_uscsi_strategy, bp, dev,
11565 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11566 		    sduscsimin, uio);
11567 
11568 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11569 		    "returned from physio with 0x%x\n", rval);
11570 
11571 	} else {
11572 		/*
11573 		 * We have to mimic what physio would do here! Argh!
11574 		 */
11575 		bp->b_flags  = B_BUSY |
11576 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11577 		bp->b_edev   = dev;
11578 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11579 		bp->b_bcount = 0;
11580 		bp->b_blkno  = 0;
11581 
11582 		SD_TRACE(SD_LOG_IO, un,
11583 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11584 
11585 		(void) sd_uscsi_strategy(bp);
11586 
11587 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11588 
11589 		rval = biowait(bp);
11590 
11591 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11592 		    "returned from  biowait with 0x%x\n", rval);
11593 	}
11594 
11595 done:
11596 
11597 #ifdef SDDEBUG
11598 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11599 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11600 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11601 	if (uscmd->uscsi_bufaddr != NULL) {
11602 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11603 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11604 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11605 		if (dataspace == UIO_SYSSPACE) {
11606 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11607 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11608 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11609 		}
11610 	}
11611 #endif
11612 
11613 	/*
11614 	 * Get the status and residual to return to the caller.
11615 	 */
11616 	incmd->uscsi_status = uscmd->uscsi_status;
11617 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11618 
11619 	/*
11620 	 * If the caller wants sense data, copy back whatever sense data
11621 	 * we may have gotten, and update the relevant rqsense info.
11622 	 */
11623 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11624 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11625 
11626 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11627 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11628 
11629 		/* Update the Request Sense status and resid */
11630 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11631 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11632 
11633 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11634 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11635 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11636 
11637 		/* Copy out the sense data for user processes */
11638 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11639 			int flags =
11640 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11641 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11642 			    rqlen, flags) != 0) {
11643 				rval = EFAULT;
11644 			}
11645 			/*
11646 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11647 			 * uscmd->uscsi_rqbuf instead. They're the same.
11648 			 */
11649 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11650 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11651 			    incmd->uscsi_rqbuf, rqlen);
11652 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11653 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11654 		}
11655 	}
11656 
11657 	/*
11658 	 * Free allocated resources and return; mapout the buf in case it was
11659 	 * mapped in by a lower layer.
11660 	 */
11661 	bp_mapout(bp);
11662 	freerbuf(bp);
11663 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11664 	if (uscmd->uscsi_rqbuf != NULL) {
11665 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11666 	}
11667 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11668 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11669 
11670 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11671 
11672 	return (rval);
11673 }
11674 
11675 
11676 /*
11677  *    Function: sd_buf_iodone
11678  *
11679  * Description: Frees the sd_xbuf & returns the buf to its originator.
11680  *
11681  *     Context: May be called from interrupt context.
11682  */
11683 /* ARGSUSED */
11684 static void
11685 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11686 {
11687 	struct sd_xbuf *xp;
11688 
11689 	ASSERT(un != NULL);
11690 	ASSERT(bp != NULL);
11691 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11692 
11693 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11694 
11695 	xp = SD_GET_XBUF(bp);
11696 	ASSERT(xp != NULL);
11697 
11698 	mutex_enter(SD_MUTEX(un));
11699 
11700 	/*
11701 	 * Grab time when the cmd completed.
11702 	 * This is used for determining if the system has been
11703 	 * idle long enough to make it idle to the PM framework.
11704 	 * This is for lowering the overhead, and therefore improving
11705 	 * performance per I/O operation.
11706 	 */
11707 	un->un_pm_idle_time = ddi_get_time();
11708 
11709 	un->un_ncmds_in_driver--;
11710 	ASSERT(un->un_ncmds_in_driver >= 0);
11711 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11712 	    un->un_ncmds_in_driver);
11713 
11714 	mutex_exit(SD_MUTEX(un));
11715 
11716 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11717 	biodone(bp);				/* bp is gone after this */
11718 
11719 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11720 }
11721 
11722 
11723 /*
11724  *    Function: sd_uscsi_iodone
11725  *
11726  * Description: Frees the sd_xbuf & returns the buf to its originator.
11727  *
11728  *     Context: May be called from interrupt context.
11729  */
11730 /* ARGSUSED */
11731 static void
11732 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11733 {
11734 	struct sd_xbuf *xp;
11735 
11736 	ASSERT(un != NULL);
11737 	ASSERT(bp != NULL);
11738 
11739 	xp = SD_GET_XBUF(bp);
11740 	ASSERT(xp != NULL);
11741 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11742 
11743 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11744 
11745 	mutex_enter(SD_MUTEX(un));
11746 
11747 	/*
11748 	 * Grab time when the cmd completed.
11749 	 * This is used for determining if the system has been
11750 	 * idle long enough to make it idle to the PM framework.
11751 	 * This is for lowering the overhead, and therefore improving
11752 	 * performance per I/O operation.
11753 	 */
11754 	un->un_pm_idle_time = ddi_get_time();
11755 
11756 	un->un_ncmds_in_driver--;
11757 	ASSERT(un->un_ncmds_in_driver >= 0);
11758 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11759 	    un->un_ncmds_in_driver);
11760 
11761 	mutex_exit(SD_MUTEX(un));
11762 
11763 	kmem_free(xp, sizeof (struct sd_xbuf));
11764 	biodone(bp);
11765 
11766 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11767 }
11768 
11769 
11770 /*
11771  *    Function: sd_mapblockaddr_iostart
11772  *
11773  * Description: Verify request lies withing the partition limits for
11774  *		the indicated minor device.  Issue "overrun" buf if
11775  *		request would exceed partition range.  Converts
11776  *		partition-relative block address to absolute.
11777  *
11778  *     Context: Can sleep
11779  *
11780  *      Issues: This follows what the old code did, in terms of accessing
11781  *		some of the partition info in the unit struct without holding
11782  *		the mutext.  This is a general issue, if the partition info
11783  *		can be altered while IO is in progress... as soon as we send
11784  *		a buf, its partitioning can be invalid before it gets to the
11785  *		device.  Probably the right fix is to move partitioning out
11786  *		of the driver entirely.
11787  */
11788 
11789 static void
11790 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11791 {
11792 	daddr_t	nblocks;	/* #blocks in the given partition */
11793 	daddr_t	blocknum;	/* Block number specified by the buf */
11794 	size_t	requested_nblocks;
11795 	size_t	available_nblocks;
11796 	int	partition;
11797 	diskaddr_t	partition_offset;
11798 	struct sd_xbuf *xp;
11799 
11800 
11801 	ASSERT(un != NULL);
11802 	ASSERT(bp != NULL);
11803 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11804 
11805 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11806 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11807 
11808 	xp = SD_GET_XBUF(bp);
11809 	ASSERT(xp != NULL);
11810 
11811 	/*
11812 	 * If the geometry is not indicated as valid, attempt to access
11813 	 * the unit & verify the geometry/label. This can be the case for
11814 	 * removable-media devices, of if the device was opened in
11815 	 * NDELAY/NONBLOCK mode.
11816 	 */
11817 	if ((un->un_f_geometry_is_valid != TRUE) &&
11818 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
11819 		/*
11820 		 * For removable devices it is possible to start an I/O
11821 		 * without a media by opening the device in nodelay mode.
11822 		 * Also for writable CDs there can be many scenarios where
11823 		 * there is no geometry yet but volume manager is trying to
11824 		 * issue a read() just because it can see TOC on the CD. So
11825 		 * do not print a message for removables.
11826 		 */
11827 		if (!ISREMOVABLE(un)) {
11828 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11829 			    "i/o to invalid geometry\n");
11830 		}
11831 		bioerror(bp, EIO);
11832 		bp->b_resid = bp->b_bcount;
11833 		SD_BEGIN_IODONE(index, un, bp);
11834 		return;
11835 	}
11836 
11837 	partition = SDPART(bp->b_edev);
11838 
11839 	/* #blocks in partition */
11840 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
11841 
11842 	/* Use of a local variable potentially improves performance slightly */
11843 	partition_offset = un->un_offset[partition];
11844 
11845 	/*
11846 	 * blocknum is the starting block number of the request. At this
11847 	 * point it is still relative to the start of the minor device.
11848 	 */
11849 	blocknum = xp->xb_blkno;
11850 
11851 	/*
11852 	 * Legacy: If the starting block number is one past the last block
11853 	 * in the partition, do not set B_ERROR in the buf.
11854 	 */
11855 	if (blocknum == nblocks)  {
11856 		goto error_exit;
11857 	}
11858 
11859 	/*
11860 	 * Confirm that the first block of the request lies within the
11861 	 * partition limits. Also the requested number of bytes must be
11862 	 * a multiple of the system block size.
11863 	 */
11864 	if ((blocknum < 0) || (blocknum >= nblocks) ||
11865 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
11866 		bp->b_flags |= B_ERROR;
11867 		goto error_exit;
11868 	}
11869 
11870 	/*
11871 	 * If the requsted # blocks exceeds the available # blocks, that
11872 	 * is an overrun of the partition.
11873 	 */
11874 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
11875 	available_nblocks = (size_t)(nblocks - blocknum);
11876 	ASSERT(nblocks >= blocknum);
11877 
11878 	if (requested_nblocks > available_nblocks) {
11879 		/*
11880 		 * Allocate an "overrun" buf to allow the request to proceed
11881 		 * for the amount of space available in the partition. The
11882 		 * amount not transferred will be added into the b_resid
11883 		 * when the operation is complete. The overrun buf
11884 		 * replaces the original buf here, and the original buf
11885 		 * is saved inside the overrun buf, for later use.
11886 		 */
11887 		size_t resid = SD_SYSBLOCKS2BYTES(un,
11888 		    (offset_t)(requested_nblocks - available_nblocks));
11889 		size_t count = bp->b_bcount - resid;
11890 		/*
11891 		 * Note: count is an unsigned entity thus it'll NEVER
11892 		 * be less than 0 so ASSERT the original values are
11893 		 * correct.
11894 		 */
11895 		ASSERT(bp->b_bcount >= resid);
11896 
11897 		bp = sd_bioclone_alloc(bp, count, blocknum,
11898 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
11899 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
11900 		ASSERT(xp != NULL);
11901 	}
11902 
11903 	/* At this point there should be no residual for this buf. */
11904 	ASSERT(bp->b_resid == 0);
11905 
11906 	/* Convert the block number to an absolute address. */
11907 	xp->xb_blkno += partition_offset;
11908 
11909 	SD_NEXT_IOSTART(index, un, bp);
11910 
11911 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11912 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
11913 
11914 	return;
11915 
11916 error_exit:
11917 	bp->b_resid = bp->b_bcount;
11918 	SD_BEGIN_IODONE(index, un, bp);
11919 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11920 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
11921 }
11922 
11923 
11924 /*
11925  *    Function: sd_mapblockaddr_iodone
11926  *
11927  * Description: Completion-side processing for partition management.
11928  *
11929  *     Context: May be called under interrupt context
11930  */
11931 
11932 static void
11933 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
11934 {
11935 	/* int	partition; */	/* Not used, see below. */
11936 	ASSERT(un != NULL);
11937 	ASSERT(bp != NULL);
11938 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11939 
11940 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11941 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
11942 
11943 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
11944 		/*
11945 		 * We have an "overrun" buf to deal with...
11946 		 */
11947 		struct sd_xbuf	*xp;
11948 		struct buf	*obp;	/* ptr to the original buf */
11949 
11950 		xp = SD_GET_XBUF(bp);
11951 		ASSERT(xp != NULL);
11952 
11953 		/* Retrieve the pointer to the original buf */
11954 		obp = (struct buf *)xp->xb_private;
11955 		ASSERT(obp != NULL);
11956 
11957 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
11958 		bioerror(obp, bp->b_error);
11959 
11960 		sd_bioclone_free(bp);
11961 
11962 		/*
11963 		 * Get back the original buf.
11964 		 * Note that since the restoration of xb_blkno below
11965 		 * was removed, the sd_xbuf is not needed.
11966 		 */
11967 		bp = obp;
11968 		/*
11969 		 * xp = SD_GET_XBUF(bp);
11970 		 * ASSERT(xp != NULL);
11971 		 */
11972 	}
11973 
11974 	/*
11975 	 * Convert sd->xb_blkno back to a minor-device relative value.
11976 	 * Note: this has been commented out, as it is not needed in the
11977 	 * current implementation of the driver (ie, since this function
11978 	 * is at the top of the layering chains, so the info will be
11979 	 * discarded) and it is in the "hot" IO path.
11980 	 *
11981 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
11982 	 * xp->xb_blkno -= un->un_offset[partition];
11983 	 */
11984 
11985 	SD_NEXT_IODONE(index, un, bp);
11986 
11987 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11988 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
11989 }
11990 
11991 
11992 /*
11993  *    Function: sd_mapblocksize_iostart
11994  *
11995  * Description: Convert between system block size (un->un_sys_blocksize)
11996  *		and target block size (un->un_tgt_blocksize).
11997  *
11998  *     Context: Can sleep to allocate resources.
11999  *
12000  * Assumptions: A higher layer has already performed any partition validation,
12001  *		and converted the xp->xb_blkno to an absolute value relative
12002  *		to the start of the device.
12003  *
12004  *		It is also assumed that the higher layer has implemented
12005  *		an "overrun" mechanism for the case where the request would
12006  *		read/write beyond the end of a partition.  In this case we
12007  *		assume (and ASSERT) that bp->b_resid == 0.
12008  *
12009  *		Note: The implementation for this routine assumes the target
12010  *		block size remains constant between allocation and transport.
12011  */
12012 
12013 static void
12014 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12015 {
12016 	struct sd_mapblocksize_info	*bsp;
12017 	struct sd_xbuf			*xp;
12018 	offset_t first_byte;
12019 	daddr_t	start_block, end_block;
12020 	daddr_t	request_bytes;
12021 	ushort_t is_aligned = FALSE;
12022 
12023 	ASSERT(un != NULL);
12024 	ASSERT(bp != NULL);
12025 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12026 	ASSERT(bp->b_resid == 0);
12027 
12028 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12029 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12030 
12031 	/*
12032 	 * For a non-writable CD, a write request is an error
12033 	 */
12034 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12035 	    (un->un_f_mmc_writable_media == FALSE)) {
12036 		bioerror(bp, EIO);
12037 		bp->b_resid = bp->b_bcount;
12038 		SD_BEGIN_IODONE(index, un, bp);
12039 		return;
12040 	}
12041 
12042 	/*
12043 	 * We do not need a shadow buf if the device is using
12044 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12045 	 * In this case there is no layer-private data block allocated.
12046 	 */
12047 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12048 	    (bp->b_bcount == 0)) {
12049 		goto done;
12050 	}
12051 
12052 #if defined(__i386) || defined(__amd64)
12053 	/* We do not support non-block-aligned transfers for ROD devices */
12054 	ASSERT(!ISROD(un));
12055 #endif
12056 
12057 	xp = SD_GET_XBUF(bp);
12058 	ASSERT(xp != NULL);
12059 
12060 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12061 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12062 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12063 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12064 	    "request start block:0x%x\n", xp->xb_blkno);
12065 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12066 	    "request len:0x%x\n", bp->b_bcount);
12067 
12068 	/*
12069 	 * Allocate the layer-private data area for the mapblocksize layer.
12070 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12071 	 * struct to store the pointer to their layer-private data block, but
12072 	 * each layer also has the responsibility of restoring the prior
12073 	 * contents of xb_private before returning the buf/xbuf to the
12074 	 * higher layer that sent it.
12075 	 *
12076 	 * Here we save the prior contents of xp->xb_private into the
12077 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12078 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12079 	 * the layer-private area and returning the buf/xbuf to the layer
12080 	 * that sent it.
12081 	 *
12082 	 * Note that here we use kmem_zalloc for the allocation as there are
12083 	 * parts of the mapblocksize code that expect certain fields to be
12084 	 * zero unless explicitly set to a required value.
12085 	 */
12086 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12087 	bsp->mbs_oprivate = xp->xb_private;
12088 	xp->xb_private = bsp;
12089 
12090 	/*
12091 	 * This treats the data on the disk (target) as an array of bytes.
12092 	 * first_byte is the byte offset, from the beginning of the device,
12093 	 * to the location of the request. This is converted from a
12094 	 * un->un_sys_blocksize block address to a byte offset, and then back
12095 	 * to a block address based upon a un->un_tgt_blocksize block size.
12096 	 *
12097 	 * xp->xb_blkno should be absolute upon entry into this function,
12098 	 * but, but it is based upon partitions that use the "system"
12099 	 * block size. It must be adjusted to reflect the block size of
12100 	 * the target.
12101 	 *
12102 	 * Note that end_block is actually the block that follows the last
12103 	 * block of the request, but that's what is needed for the computation.
12104 	 */
12105 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12106 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12107 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12108 	    un->un_tgt_blocksize;
12109 
12110 	/* request_bytes is rounded up to a multiple of the target block size */
12111 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12112 
12113 	/*
12114 	 * See if the starting address of the request and the request
12115 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12116 	 * then we do not need to allocate a shadow buf to handle the request.
12117 	 */
12118 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12119 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12120 		is_aligned = TRUE;
12121 	}
12122 
12123 	if ((bp->b_flags & B_READ) == 0) {
12124 		/*
12125 		 * Lock the range for a write operation. An aligned request is
12126 		 * considered a simple write; otherwise the request must be a
12127 		 * read-modify-write.
12128 		 */
12129 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12130 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12131 	}
12132 
12133 	/*
12134 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12135 	 * where the READ command is generated for a read-modify-write. (The
12136 	 * write phase is deferred until after the read completes.)
12137 	 */
12138 	if (is_aligned == FALSE) {
12139 
12140 		struct sd_mapblocksize_info	*shadow_bsp;
12141 		struct sd_xbuf	*shadow_xp;
12142 		struct buf	*shadow_bp;
12143 
12144 		/*
12145 		 * Allocate the shadow buf and it associated xbuf. Note that
12146 		 * after this call the xb_blkno value in both the original
12147 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12148 		 * same: absolute relative to the start of the device, and
12149 		 * adjusted for the target block size. The b_blkno in the
12150 		 * shadow buf will also be set to this value. We should never
12151 		 * change b_blkno in the original bp however.
12152 		 *
12153 		 * Note also that the shadow buf will always need to be a
12154 		 * READ command, regardless of whether the incoming command
12155 		 * is a READ or a WRITE.
12156 		 */
12157 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12158 		    xp->xb_blkno,
12159 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12160 
12161 		shadow_xp = SD_GET_XBUF(shadow_bp);
12162 
12163 		/*
12164 		 * Allocate the layer-private data for the shadow buf.
12165 		 * (No need to preserve xb_private in the shadow xbuf.)
12166 		 */
12167 		shadow_xp->xb_private = shadow_bsp =
12168 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12169 
12170 		/*
12171 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12172 		 * to figure out where the start of the user data is (based upon
12173 		 * the system block size) in the data returned by the READ
12174 		 * command (which will be based upon the target blocksize). Note
12175 		 * that this is only really used if the request is unaligned.
12176 		 */
12177 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12178 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12179 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12180 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12181 
12182 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12183 
12184 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12185 
12186 		/* Transfer the wmap (if any) to the shadow buf */
12187 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12188 		bsp->mbs_wmp = NULL;
12189 
12190 		/*
12191 		 * The shadow buf goes on from here in place of the
12192 		 * original buf.
12193 		 */
12194 		shadow_bsp->mbs_orig_bp = bp;
12195 		bp = shadow_bp;
12196 	}
12197 
12198 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12199 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12200 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12201 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12202 	    request_bytes);
12203 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12204 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12205 
12206 done:
12207 	SD_NEXT_IOSTART(index, un, bp);
12208 
12209 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12210 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12211 }
12212 
12213 
12214 /*
12215  *    Function: sd_mapblocksize_iodone
12216  *
12217  * Description: Completion side processing for block-size mapping.
12218  *
12219  *     Context: May be called under interrupt context
12220  */
12221 
12222 static void
12223 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12224 {
12225 	struct sd_mapblocksize_info	*bsp;
12226 	struct sd_xbuf	*xp;
12227 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12228 	struct buf	*orig_bp;	/* ptr to the original buf */
12229 	offset_t	shadow_end;
12230 	offset_t	request_end;
12231 	offset_t	shadow_start;
12232 	ssize_t		copy_offset;
12233 	size_t		copy_length;
12234 	size_t		shortfall;
12235 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12236 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12237 
12238 	ASSERT(un != NULL);
12239 	ASSERT(bp != NULL);
12240 
12241 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12242 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12243 
12244 	/*
12245 	 * There is no shadow buf or layer-private data if the target is
12246 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12247 	 */
12248 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12249 	    (bp->b_bcount == 0)) {
12250 		goto exit;
12251 	}
12252 
12253 	xp = SD_GET_XBUF(bp);
12254 	ASSERT(xp != NULL);
12255 
12256 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12257 	bsp = xp->xb_private;
12258 
12259 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12260 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12261 
12262 	if (is_write) {
12263 		/*
12264 		 * For a WRITE request we must free up the block range that
12265 		 * we have locked up.  This holds regardless of whether this is
12266 		 * an aligned write request or a read-modify-write request.
12267 		 */
12268 		sd_range_unlock(un, bsp->mbs_wmp);
12269 		bsp->mbs_wmp = NULL;
12270 	}
12271 
12272 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12273 		/*
12274 		 * An aligned read or write command will have no shadow buf;
12275 		 * there is not much else to do with it.
12276 		 */
12277 		goto done;
12278 	}
12279 
12280 	orig_bp = bsp->mbs_orig_bp;
12281 	ASSERT(orig_bp != NULL);
12282 	orig_xp = SD_GET_XBUF(orig_bp);
12283 	ASSERT(orig_xp != NULL);
12284 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12285 
12286 	if (!is_write && has_wmap) {
12287 		/*
12288 		 * A READ with a wmap means this is the READ phase of a
12289 		 * read-modify-write. If an error occurred on the READ then
12290 		 * we do not proceed with the WRITE phase or copy any data.
12291 		 * Just release the write maps and return with an error.
12292 		 */
12293 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12294 			orig_bp->b_resid = orig_bp->b_bcount;
12295 			bioerror(orig_bp, bp->b_error);
12296 			sd_range_unlock(un, bsp->mbs_wmp);
12297 			goto freebuf_done;
12298 		}
12299 	}
12300 
12301 	/*
12302 	 * Here is where we set up to copy the data from the shadow buf
12303 	 * into the space associated with the original buf.
12304 	 *
12305 	 * To deal with the conversion between block sizes, these
12306 	 * computations treat the data as an array of bytes, with the
12307 	 * first byte (byte 0) corresponding to the first byte in the
12308 	 * first block on the disk.
12309 	 */
12310 
12311 	/*
12312 	 * shadow_start and shadow_len indicate the location and size of
12313 	 * the data returned with the shadow IO request.
12314 	 */
12315 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12316 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12317 
12318 	/*
12319 	 * copy_offset gives the offset (in bytes) from the start of the first
12320 	 * block of the READ request to the beginning of the data.  We retrieve
12321 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12322 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12323 	 * data to be copied (in bytes).
12324 	 */
12325 	copy_offset  = bsp->mbs_copy_offset;
12326 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12327 	copy_length  = orig_bp->b_bcount;
12328 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12329 
12330 	/*
12331 	 * Set up the resid and error fields of orig_bp as appropriate.
12332 	 */
12333 	if (shadow_end >= request_end) {
12334 		/* We got all the requested data; set resid to zero */
12335 		orig_bp->b_resid = 0;
12336 	} else {
12337 		/*
12338 		 * We failed to get enough data to fully satisfy the original
12339 		 * request. Just copy back whatever data we got and set
12340 		 * up the residual and error code as required.
12341 		 *
12342 		 * 'shortfall' is the amount by which the data received with the
12343 		 * shadow buf has "fallen short" of the requested amount.
12344 		 */
12345 		shortfall = (size_t)(request_end - shadow_end);
12346 
12347 		if (shortfall > orig_bp->b_bcount) {
12348 			/*
12349 			 * We did not get enough data to even partially
12350 			 * fulfill the original request.  The residual is
12351 			 * equal to the amount requested.
12352 			 */
12353 			orig_bp->b_resid = orig_bp->b_bcount;
12354 		} else {
12355 			/*
12356 			 * We did not get all the data that we requested
12357 			 * from the device, but we will try to return what
12358 			 * portion we did get.
12359 			 */
12360 			orig_bp->b_resid = shortfall;
12361 		}
12362 		ASSERT(copy_length >= orig_bp->b_resid);
12363 		copy_length  -= orig_bp->b_resid;
12364 	}
12365 
12366 	/* Propagate the error code from the shadow buf to the original buf */
12367 	bioerror(orig_bp, bp->b_error);
12368 
12369 	if (is_write) {
12370 		goto freebuf_done;	/* No data copying for a WRITE */
12371 	}
12372 
12373 	if (has_wmap) {
12374 		/*
12375 		 * This is a READ command from the READ phase of a
12376 		 * read-modify-write request. We have to copy the data given
12377 		 * by the user OVER the data returned by the READ command,
12378 		 * then convert the command from a READ to a WRITE and send
12379 		 * it back to the target.
12380 		 */
12381 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12382 		    copy_length);
12383 
12384 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12385 
12386 		/*
12387 		 * Dispatch the WRITE command to the taskq thread, which
12388 		 * will in turn send the command to the target. When the
12389 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12390 		 * will get called again as part of the iodone chain
12391 		 * processing for it. Note that we will still be dealing
12392 		 * with the shadow buf at that point.
12393 		 */
12394 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12395 		    KM_NOSLEEP) != 0) {
12396 			/*
12397 			 * Dispatch was successful so we are done. Return
12398 			 * without going any higher up the iodone chain. Do
12399 			 * not free up any layer-private data until after the
12400 			 * WRITE completes.
12401 			 */
12402 			return;
12403 		}
12404 
12405 		/*
12406 		 * Dispatch of the WRITE command failed; set up the error
12407 		 * condition and send this IO back up the iodone chain.
12408 		 */
12409 		bioerror(orig_bp, EIO);
12410 		orig_bp->b_resid = orig_bp->b_bcount;
12411 
12412 	} else {
12413 		/*
12414 		 * This is a regular READ request (ie, not a RMW). Copy the
12415 		 * data from the shadow buf into the original buf. The
12416 		 * copy_offset compensates for any "misalignment" between the
12417 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12418 		 * original buf (with its un->un_sys_blocksize blocks).
12419 		 */
12420 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12421 		    copy_length);
12422 	}
12423 
12424 freebuf_done:
12425 
12426 	/*
12427 	 * At this point we still have both the shadow buf AND the original
12428 	 * buf to deal with, as well as the layer-private data area in each.
12429 	 * Local variables are as follows:
12430 	 *
12431 	 * bp -- points to shadow buf
12432 	 * xp -- points to xbuf of shadow buf
12433 	 * bsp -- points to layer-private data area of shadow buf
12434 	 * orig_bp -- points to original buf
12435 	 *
12436 	 * First free the shadow buf and its associated xbuf, then free the
12437 	 * layer-private data area from the shadow buf. There is no need to
12438 	 * restore xb_private in the shadow xbuf.
12439 	 */
12440 	sd_shadow_buf_free(bp);
12441 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12442 
12443 	/*
12444 	 * Now update the local variables to point to the original buf, xbuf,
12445 	 * and layer-private area.
12446 	 */
12447 	bp = orig_bp;
12448 	xp = SD_GET_XBUF(bp);
12449 	ASSERT(xp != NULL);
12450 	ASSERT(xp == orig_xp);
12451 	bsp = xp->xb_private;
12452 	ASSERT(bsp != NULL);
12453 
12454 done:
12455 	/*
12456 	 * Restore xb_private to whatever it was set to by the next higher
12457 	 * layer in the chain, then free the layer-private data area.
12458 	 */
12459 	xp->xb_private = bsp->mbs_oprivate;
12460 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12461 
12462 exit:
12463 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12464 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12465 
12466 	SD_NEXT_IODONE(index, un, bp);
12467 }
12468 
12469 
12470 /*
12471  *    Function: sd_checksum_iostart
12472  *
12473  * Description: A stub function for a layer that's currently not used.
12474  *		For now just a placeholder.
12475  *
12476  *     Context: Kernel thread context
12477  */
12478 
12479 static void
12480 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12481 {
12482 	ASSERT(un != NULL);
12483 	ASSERT(bp != NULL);
12484 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12485 	SD_NEXT_IOSTART(index, un, bp);
12486 }
12487 
12488 
12489 /*
12490  *    Function: sd_checksum_iodone
12491  *
12492  * Description: A stub function for a layer that's currently not used.
12493  *		For now just a placeholder.
12494  *
12495  *     Context: May be called under interrupt context
12496  */
12497 
12498 static void
12499 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12500 {
12501 	ASSERT(un != NULL);
12502 	ASSERT(bp != NULL);
12503 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12504 	SD_NEXT_IODONE(index, un, bp);
12505 }
12506 
12507 
12508 /*
12509  *    Function: sd_checksum_uscsi_iostart
12510  *
12511  * Description: A stub function for a layer that's currently not used.
12512  *		For now just a placeholder.
12513  *
12514  *     Context: Kernel thread context
12515  */
12516 
12517 static void
12518 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12519 {
12520 	ASSERT(un != NULL);
12521 	ASSERT(bp != NULL);
12522 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12523 	SD_NEXT_IOSTART(index, un, bp);
12524 }
12525 
12526 
12527 /*
12528  *    Function: sd_checksum_uscsi_iodone
12529  *
12530  * Description: A stub function for a layer that's currently not used.
12531  *		For now just a placeholder.
12532  *
12533  *     Context: May be called under interrupt context
12534  */
12535 
12536 static void
12537 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12538 {
12539 	ASSERT(un != NULL);
12540 	ASSERT(bp != NULL);
12541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12542 	SD_NEXT_IODONE(index, un, bp);
12543 }
12544 
12545 
12546 /*
12547  *    Function: sd_pm_iostart
12548  *
12549  * Description: iostart-side routine for Power mangement.
12550  *
12551  *     Context: Kernel thread context
12552  */
12553 
12554 static void
12555 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12556 {
12557 	ASSERT(un != NULL);
12558 	ASSERT(bp != NULL);
12559 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12560 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12561 
12562 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12563 
12564 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12565 		/*
12566 		 * Set up to return the failed buf back up the 'iodone'
12567 		 * side of the calling chain.
12568 		 */
12569 		bioerror(bp, EIO);
12570 		bp->b_resid = bp->b_bcount;
12571 
12572 		SD_BEGIN_IODONE(index, un, bp);
12573 
12574 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12575 		return;
12576 	}
12577 
12578 	SD_NEXT_IOSTART(index, un, bp);
12579 
12580 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12581 }
12582 
12583 
12584 /*
12585  *    Function: sd_pm_iodone
12586  *
12587  * Description: iodone-side routine for power mangement.
12588  *
12589  *     Context: may be called from interrupt context
12590  */
12591 
12592 static void
12593 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12594 {
12595 	ASSERT(un != NULL);
12596 	ASSERT(bp != NULL);
12597 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12598 
12599 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12600 
12601 	/*
12602 	 * After attach the following flag is only read, so don't
12603 	 * take the penalty of acquiring a mutex for it.
12604 	 */
12605 	if (un->un_f_pm_is_enabled == TRUE) {
12606 		sd_pm_exit(un);
12607 	}
12608 
12609 	SD_NEXT_IODONE(index, un, bp);
12610 
12611 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12612 }
12613 
12614 
12615 /*
12616  *    Function: sd_core_iostart
12617  *
12618  * Description: Primary driver function for enqueuing buf(9S) structs from
12619  *		the system and initiating IO to the target device
12620  *
12621  *     Context: Kernel thread context. Can sleep.
12622  *
12623  * Assumptions:  - The given xp->xb_blkno is absolute
12624  *		   (ie, relative to the start of the device).
12625  *		 - The IO is to be done using the native blocksize of
12626  *		   the device, as specified in un->un_tgt_blocksize.
12627  */
12628 /* ARGSUSED */
12629 static void
12630 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12631 {
12632 	struct sd_xbuf *xp;
12633 
12634 	ASSERT(un != NULL);
12635 	ASSERT(bp != NULL);
12636 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12637 	ASSERT(bp->b_resid == 0);
12638 
12639 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12640 
12641 	xp = SD_GET_XBUF(bp);
12642 	ASSERT(xp != NULL);
12643 
12644 	mutex_enter(SD_MUTEX(un));
12645 
12646 	/*
12647 	 * If we are currently in the failfast state, fail any new IO
12648 	 * that has B_FAILFAST set, then return.
12649 	 */
12650 	if ((bp->b_flags & B_FAILFAST) &&
12651 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12652 		mutex_exit(SD_MUTEX(un));
12653 		bioerror(bp, EIO);
12654 		bp->b_resid = bp->b_bcount;
12655 		SD_BEGIN_IODONE(index, un, bp);
12656 		return;
12657 	}
12658 
12659 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12660 		/*
12661 		 * Priority command -- transport it immediately.
12662 		 *
12663 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12664 		 * because all direct priority commands should be associated
12665 		 * with error recovery actions which we don't want to retry.
12666 		 */
12667 		sd_start_cmds(un, bp);
12668 	} else {
12669 		/*
12670 		 * Normal command -- add it to the wait queue, then start
12671 		 * transporting commands from the wait queue.
12672 		 */
12673 		sd_add_buf_to_waitq(un, bp);
12674 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12675 		sd_start_cmds(un, NULL);
12676 	}
12677 
12678 	mutex_exit(SD_MUTEX(un));
12679 
12680 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12681 }
12682 
12683 
12684 /*
12685  *    Function: sd_init_cdb_limits
12686  *
12687  * Description: This is to handle scsi_pkt initialization differences
12688  *		between the driver platforms.
12689  *
12690  *		Legacy behaviors:
12691  *
12692  *		If the block number or the sector count exceeds the
12693  *		capabilities of a Group 0 command, shift over to a
12694  *		Group 1 command. We don't blindly use Group 1
12695  *		commands because a) some drives (CDC Wren IVs) get a
12696  *		bit confused, and b) there is probably a fair amount
12697  *		of speed difference for a target to receive and decode
12698  *		a 10 byte command instead of a 6 byte command.
12699  *
12700  *		The xfer time difference of 6 vs 10 byte CDBs is
12701  *		still significant so this code is still worthwhile.
12702  *		10 byte CDBs are very inefficient with the fas HBA driver
12703  *		and older disks. Each CDB byte took 1 usec with some
12704  *		popular disks.
12705  *
12706  *     Context: Must be called at attach time
12707  */
12708 
12709 static void
12710 sd_init_cdb_limits(struct sd_lun *un)
12711 {
12712 	/*
12713 	 * Use CDB_GROUP1 commands for most devices except for
12714 	 * parallel SCSI fixed drives in which case we get better
12715 	 * performance using CDB_GROUP0 commands (where applicable).
12716 	 */
12717 	un->un_mincdb = SD_CDB_GROUP1;
12718 #if !defined(__fibre)
12719 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12720 	    !ISREMOVABLE(un)) {
12721 		un->un_mincdb = SD_CDB_GROUP0;
12722 	}
12723 #endif
12724 
12725 	/*
12726 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12727 	 * commands for fixed disks unless we are building for a 32 bit
12728 	 * kernel.
12729 	 */
12730 #ifdef _LP64
12731 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP4;
12732 #else
12733 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP1;
12734 #endif
12735 
12736 	/*
12737 	 * x86 systems require the PKT_DMA_PARTIAL flag
12738 	 */
12739 #if defined(__x86)
12740 	un->un_pkt_flags = PKT_DMA_PARTIAL;
12741 #else
12742 	un->un_pkt_flags = 0;
12743 #endif
12744 
12745 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12746 	    ? sizeof (struct scsi_arq_status) : 1);
12747 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12748 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12749 }
12750 
12751 
12752 /*
12753  *    Function: sd_initpkt_for_buf
12754  *
12755  * Description: Allocate and initialize for transport a scsi_pkt struct,
12756  *		based upon the info specified in the given buf struct.
12757  *
12758  *		Assumes the xb_blkno in the request is absolute (ie,
12759  *		relative to the start of the device (NOT partition!).
12760  *		Also assumes that the request is using the native block
12761  *		size of the device (as returned by the READ CAPACITY
12762  *		command).
12763  *
12764  * Return Code: SD_PKT_ALLOC_SUCCESS
12765  *		SD_PKT_ALLOC_FAILURE
12766  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12767  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12768  *
12769  *     Context: Kernel thread and may be called from software interrupt context
12770  *		as part of a sdrunout callback. This function may not block or
12771  *		call routines that block
12772  */
12773 
12774 static int
12775 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12776 {
12777 	struct sd_xbuf	*xp;
12778 	struct scsi_pkt *pktp = NULL;
12779 	struct sd_lun	*un;
12780 	size_t		blockcount;
12781 	daddr_t		startblock;
12782 	int		rval;
12783 	int		cmd_flags;
12784 
12785 	ASSERT(bp != NULL);
12786 	ASSERT(pktpp != NULL);
12787 	xp = SD_GET_XBUF(bp);
12788 	ASSERT(xp != NULL);
12789 	un = SD_GET_UN(bp);
12790 	ASSERT(un != NULL);
12791 	ASSERT(mutex_owned(SD_MUTEX(un)));
12792 	ASSERT(bp->b_resid == 0);
12793 
12794 	SD_TRACE(SD_LOG_IO_CORE, un,
12795 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12796 
12797 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12798 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12799 		/*
12800 		 * Already have a scsi_pkt -- just need DMA resources.
12801 		 * We must recompute the CDB in case the mapping returns
12802 		 * a nonzero pkt_resid.
12803 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12804 		 * that is being retried, the unmap/remap of the DMA resouces
12805 		 * will result in the entire transfer starting over again
12806 		 * from the very first block.
12807 		 */
12808 		ASSERT(xp->xb_pktp != NULL);
12809 		pktp = xp->xb_pktp;
12810 	} else {
12811 		pktp = NULL;
12812 	}
12813 #endif /* __i386 || __amd64 */
12814 
12815 	startblock = xp->xb_blkno;	/* Absolute block num. */
12816 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12817 
12818 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12819 
12820 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12821 
12822 #else
12823 
12824 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
12825 
12826 #endif
12827 
12828 	/*
12829 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12830 	 * call scsi_init_pkt, and build the CDB.
12831 	 */
12832 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12833 	    cmd_flags, sdrunout, (caddr_t)un,
12834 	    startblock, blockcount);
12835 
12836 	if (rval == 0) {
12837 		/*
12838 		 * Success.
12839 		 *
12840 		 * If partial DMA is being used and required for this transfer.
12841 		 * set it up here.
12842 		 */
12843 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
12844 		    (pktp->pkt_resid != 0)) {
12845 
12846 			/*
12847 			 * Save the CDB length and pkt_resid for the
12848 			 * next xfer
12849 			 */
12850 			xp->xb_dma_resid = pktp->pkt_resid;
12851 
12852 			/* rezero resid */
12853 			pktp->pkt_resid = 0;
12854 
12855 		} else {
12856 			xp->xb_dma_resid = 0;
12857 		}
12858 
12859 		pktp->pkt_flags = un->un_tagflags;
12860 		pktp->pkt_time  = un->un_cmd_timeout;
12861 		pktp->pkt_comp  = sdintr;
12862 
12863 		pktp->pkt_private = bp;
12864 		*pktpp = pktp;
12865 
12866 		SD_TRACE(SD_LOG_IO_CORE, un,
12867 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
12868 
12869 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12870 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
12871 #endif
12872 
12873 		return (SD_PKT_ALLOC_SUCCESS);
12874 
12875 	}
12876 
12877 	/*
12878 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
12879 	 * from sd_setup_rw_pkt.
12880 	 */
12881 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
12882 
12883 	if (rval == SD_PKT_ALLOC_FAILURE) {
12884 		*pktpp = NULL;
12885 		/*
12886 		 * Set the driver state to RWAIT to indicate the driver
12887 		 * is waiting on resource allocations. The driver will not
12888 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12889 		 */
12890 		New_state(un, SD_STATE_RWAIT);
12891 
12892 		SD_ERROR(SD_LOG_IO_CORE, un,
12893 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
12894 
12895 		if ((bp->b_flags & B_ERROR) != 0) {
12896 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12897 		}
12898 		return (SD_PKT_ALLOC_FAILURE);
12899 	} else {
12900 		/*
12901 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12902 		 *
12903 		 * This should never happen.  Maybe someone messed with the
12904 		 * kernel's minphys?
12905 		 */
12906 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12907 		    "Request rejected: too large for CDB: "
12908 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
12909 		SD_ERROR(SD_LOG_IO_CORE, un,
12910 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
12911 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12912 
12913 	}
12914 }
12915 
12916 
12917 /*
12918  *    Function: sd_destroypkt_for_buf
12919  *
12920  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
12921  *
12922  *     Context: Kernel thread or interrupt context
12923  */
12924 
12925 static void
12926 sd_destroypkt_for_buf(struct buf *bp)
12927 {
12928 	ASSERT(bp != NULL);
12929 	ASSERT(SD_GET_UN(bp) != NULL);
12930 
12931 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
12932 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
12933 
12934 	ASSERT(SD_GET_PKTP(bp) != NULL);
12935 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12936 
12937 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
12938 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
12939 }
12940 
12941 /*
12942  *    Function: sd_setup_rw_pkt
12943  *
12944  * Description: Determines appropriate CDB group for the requested LBA
12945  *		and transfer length, calls scsi_init_pkt, and builds
12946  *		the CDB.  Do not use for partial DMA transfers except
12947  *		for the initial transfer since the CDB size must
12948  *		remain constant.
12949  *
12950  *     Context: Kernel thread and may be called from software interrupt
12951  *		context as part of a sdrunout callback. This function may not
12952  *		block or call routines that block
12953  */
12954 
12955 
12956 int
12957 sd_setup_rw_pkt(struct sd_lun *un,
12958     struct scsi_pkt **pktpp, struct buf *bp, int flags,
12959     int (*callback)(caddr_t), caddr_t callback_arg,
12960     diskaddr_t lba, uint32_t blockcount)
12961 {
12962 	struct scsi_pkt *return_pktp;
12963 	union scsi_cdb *cdbp;
12964 	struct sd_cdbinfo *cp = NULL;
12965 	int i;
12966 
12967 	/*
12968 	 * See which size CDB to use, based upon the request.
12969 	 */
12970 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
12971 
12972 		/*
12973 		 * Check lba and block count against sd_cdbtab limits.
12974 		 * In the partial DMA case, we have to use the same size
12975 		 * CDB for all the transfers.  Check lba + blockcount
12976 		 * against the max LBA so we know that segment of the
12977 		 * transfer can use the CDB we select.
12978 		 */
12979 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
12980 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
12981 
12982 			/*
12983 			 * The command will fit into the CDB type
12984 			 * specified by sd_cdbtab[i].
12985 			 */
12986 			cp = sd_cdbtab + i;
12987 
12988 			/*
12989 			 * Call scsi_init_pkt so we can fill in the
12990 			 * CDB.
12991 			 */
12992 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
12993 			    bp, cp->sc_grpcode, un->un_status_len, 0,
12994 			    flags, callback, callback_arg);
12995 
12996 			if (return_pktp != NULL) {
12997 
12998 				/*
12999 				 * Return new value of pkt
13000 				 */
13001 				*pktpp = return_pktp;
13002 
13003 				/*
13004 				 * To be safe, zero the CDB insuring there is
13005 				 * no leftover data from a previous command.
13006 				 */
13007 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13008 
13009 				/*
13010 				 * Handle partial DMA mapping
13011 				 */
13012 				if (return_pktp->pkt_resid != 0) {
13013 
13014 					/*
13015 					 * Not going to xfer as many blocks as
13016 					 * originally expected
13017 					 */
13018 					blockcount -=
13019 					    SD_BYTES2TGTBLOCKS(un,
13020 						return_pktp->pkt_resid);
13021 				}
13022 
13023 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13024 
13025 				/*
13026 				 * Set command byte based on the CDB
13027 				 * type we matched.
13028 				 */
13029 				cdbp->scc_cmd = cp->sc_grpmask |
13030 				    ((bp->b_flags & B_READ) ?
13031 					SCMD_READ : SCMD_WRITE);
13032 
13033 				SD_FILL_SCSI1_LUN(un, return_pktp);
13034 
13035 				/*
13036 				 * Fill in LBA and length
13037 				 */
13038 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13039 				    (cp->sc_grpcode == CDB_GROUP4) ||
13040 				    (cp->sc_grpcode == CDB_GROUP0) ||
13041 				    (cp->sc_grpcode == CDB_GROUP5));
13042 
13043 				if (cp->sc_grpcode == CDB_GROUP1) {
13044 					FORMG1ADDR(cdbp, lba);
13045 					FORMG1COUNT(cdbp, blockcount);
13046 					return (0);
13047 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13048 					FORMG4LONGADDR(cdbp, lba);
13049 					FORMG4COUNT(cdbp, blockcount);
13050 					return (0);
13051 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13052 					FORMG0ADDR(cdbp, lba);
13053 					FORMG0COUNT(cdbp, blockcount);
13054 					return (0);
13055 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13056 					FORMG5ADDR(cdbp, lba);
13057 					FORMG5COUNT(cdbp, blockcount);
13058 					return (0);
13059 				}
13060 
13061 				/*
13062 				 * It should be impossible to not match one
13063 				 * of the CDB types above, so we should never
13064 				 * reach this point.  Set the CDB command byte
13065 				 * to test-unit-ready to avoid writing
13066 				 * to somewhere we don't intend.
13067 				 */
13068 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13069 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13070 			} else {
13071 				/*
13072 				 * Couldn't get scsi_pkt
13073 				 */
13074 				return (SD_PKT_ALLOC_FAILURE);
13075 			}
13076 		}
13077 	}
13078 
13079 	/*
13080 	 * None of the available CDB types were suitable.  This really
13081 	 * should never happen:  on a 64 bit system we support
13082 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13083 	 * and on a 32 bit system we will refuse to bind to a device
13084 	 * larger than 2TB so addresses will never be larger than 32 bits.
13085 	 */
13086 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13087 }
13088 
13089 /*
13090  *    Function: sd_setup_next_rw_pkt
13091  *
13092  * Description: Setup packet for partial DMA transfers, except for the
13093  * 		initial transfer.  sd_setup_rw_pkt should be used for
13094  *		the initial transfer.
13095  *
13096  *     Context: Kernel thread and may be called from interrupt context.
13097  */
13098 
13099 int
13100 sd_setup_next_rw_pkt(struct sd_lun *un,
13101     struct scsi_pkt *pktp, struct buf *bp,
13102     diskaddr_t lba, uint32_t blockcount)
13103 {
13104 	uchar_t com;
13105 	union scsi_cdb *cdbp;
13106 	uchar_t cdb_group_id;
13107 
13108 	ASSERT(pktp != NULL);
13109 	ASSERT(pktp->pkt_cdbp != NULL);
13110 
13111 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13112 	com = cdbp->scc_cmd;
13113 	cdb_group_id = CDB_GROUPID(com);
13114 
13115 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13116 	    (cdb_group_id == CDB_GROUPID_1) ||
13117 	    (cdb_group_id == CDB_GROUPID_4) ||
13118 	    (cdb_group_id == CDB_GROUPID_5));
13119 
13120 	/*
13121 	 * Move pkt to the next portion of the xfer.
13122 	 * func is NULL_FUNC so we do not have to release
13123 	 * the disk mutex here.
13124 	 */
13125 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13126 	    NULL_FUNC, NULL) == pktp) {
13127 		/* Success.  Handle partial DMA */
13128 		if (pktp->pkt_resid != 0) {
13129 			blockcount -=
13130 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13131 		}
13132 
13133 		cdbp->scc_cmd = com;
13134 		SD_FILL_SCSI1_LUN(un, pktp);
13135 		if (cdb_group_id == CDB_GROUPID_1) {
13136 			FORMG1ADDR(cdbp, lba);
13137 			FORMG1COUNT(cdbp, blockcount);
13138 			return (0);
13139 		} else if (cdb_group_id == CDB_GROUPID_4) {
13140 			FORMG4LONGADDR(cdbp, lba);
13141 			FORMG4COUNT(cdbp, blockcount);
13142 			return (0);
13143 		} else if (cdb_group_id == CDB_GROUPID_0) {
13144 			FORMG0ADDR(cdbp, lba);
13145 			FORMG0COUNT(cdbp, blockcount);
13146 			return (0);
13147 		} else if (cdb_group_id == CDB_GROUPID_5) {
13148 			FORMG5ADDR(cdbp, lba);
13149 			FORMG5COUNT(cdbp, blockcount);
13150 			return (0);
13151 		}
13152 
13153 		/* Unreachable */
13154 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13155 	}
13156 
13157 	/*
13158 	 * Error setting up next portion of cmd transfer.
13159 	 * Something is definitely very wrong and this
13160 	 * should not happen.
13161 	 */
13162 	return (SD_PKT_ALLOC_FAILURE);
13163 }
13164 
13165 /*
13166  *    Function: sd_initpkt_for_uscsi
13167  *
13168  * Description: Allocate and initialize for transport a scsi_pkt struct,
13169  *		based upon the info specified in the given uscsi_cmd struct.
13170  *
13171  * Return Code: SD_PKT_ALLOC_SUCCESS
13172  *		SD_PKT_ALLOC_FAILURE
13173  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13174  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13175  *
13176  *     Context: Kernel thread and may be called from software interrupt context
13177  *		as part of a sdrunout callback. This function may not block or
13178  *		call routines that block
13179  */
13180 
13181 static int
13182 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13183 {
13184 	struct uscsi_cmd *uscmd;
13185 	struct sd_xbuf	*xp;
13186 	struct scsi_pkt	*pktp;
13187 	struct sd_lun	*un;
13188 	uint32_t	flags = 0;
13189 
13190 	ASSERT(bp != NULL);
13191 	ASSERT(pktpp != NULL);
13192 	xp = SD_GET_XBUF(bp);
13193 	ASSERT(xp != NULL);
13194 	un = SD_GET_UN(bp);
13195 	ASSERT(un != NULL);
13196 	ASSERT(mutex_owned(SD_MUTEX(un)));
13197 
13198 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13199 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13200 	ASSERT(uscmd != NULL);
13201 
13202 	SD_TRACE(SD_LOG_IO_CORE, un,
13203 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13204 
13205 	/* Allocate the scsi_pkt for the command. */
13206 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13207 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13208 	    sizeof (struct scsi_arq_status), 0, un->un_pkt_flags,
13209 	    sdrunout, (caddr_t)un);
13210 
13211 	if (pktp == NULL) {
13212 		*pktpp = NULL;
13213 		/*
13214 		 * Set the driver state to RWAIT to indicate the driver
13215 		 * is waiting on resource allocations. The driver will not
13216 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13217 		 */
13218 		New_state(un, SD_STATE_RWAIT);
13219 
13220 		SD_ERROR(SD_LOG_IO_CORE, un,
13221 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13222 
13223 		if ((bp->b_flags & B_ERROR) != 0) {
13224 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13225 		}
13226 		return (SD_PKT_ALLOC_FAILURE);
13227 	}
13228 
13229 	/*
13230 	 * We do not do DMA breakup for USCSI commands, so return failure
13231 	 * here if all the needed DMA resources were not allocated.
13232 	 */
13233 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13234 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13235 		scsi_destroy_pkt(pktp);
13236 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13237 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13238 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13239 	}
13240 
13241 	/* Init the cdb from the given uscsi struct */
13242 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13243 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13244 
13245 	SD_FILL_SCSI1_LUN(un, pktp);
13246 
13247 	/*
13248 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13249 	 * for listing of the supported flags.
13250 	 */
13251 
13252 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13253 		flags |= FLAG_SILENT;
13254 	}
13255 
13256 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13257 		flags |= FLAG_DIAGNOSE;
13258 	}
13259 
13260 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13261 		flags |= FLAG_ISOLATE;
13262 	}
13263 
13264 	if (un->un_f_is_fibre == FALSE) {
13265 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13266 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13267 		}
13268 	}
13269 
13270 	/*
13271 	 * Set the pkt flags here so we save time later.
13272 	 * Note: These flags are NOT in the uscsi man page!!!
13273 	 */
13274 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13275 		flags |= FLAG_HEAD;
13276 	}
13277 
13278 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13279 		flags |= FLAG_NOINTR;
13280 	}
13281 
13282 	/*
13283 	 * For tagged queueing, things get a bit complicated.
13284 	 * Check first for head of queue and last for ordered queue.
13285 	 * If neither head nor order, use the default driver tag flags.
13286 	 */
13287 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13288 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13289 			flags |= FLAG_HTAG;
13290 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13291 			flags |= FLAG_OTAG;
13292 		} else {
13293 			flags |= un->un_tagflags & FLAG_TAGMASK;
13294 		}
13295 	}
13296 
13297 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13298 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13299 	}
13300 
13301 	pktp->pkt_flags = flags;
13302 
13303 	/* Copy the caller's CDB into the pkt... */
13304 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13305 
13306 	if (uscmd->uscsi_timeout == 0) {
13307 		pktp->pkt_time = un->un_uscsi_timeout;
13308 	} else {
13309 		pktp->pkt_time = uscmd->uscsi_timeout;
13310 	}
13311 
13312 	/* need it later to identify USCSI request in sdintr */
13313 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13314 
13315 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13316 
13317 	pktp->pkt_private = bp;
13318 	pktp->pkt_comp = sdintr;
13319 	*pktpp = pktp;
13320 
13321 	SD_TRACE(SD_LOG_IO_CORE, un,
13322 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13323 
13324 	return (SD_PKT_ALLOC_SUCCESS);
13325 }
13326 
13327 
13328 /*
13329  *    Function: sd_destroypkt_for_uscsi
13330  *
13331  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13332  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13333  *		struct.
13334  *
13335  *     Context: May be called under interrupt context
13336  */
13337 
13338 static void
13339 sd_destroypkt_for_uscsi(struct buf *bp)
13340 {
13341 	struct uscsi_cmd *uscmd;
13342 	struct sd_xbuf	*xp;
13343 	struct scsi_pkt	*pktp;
13344 	struct sd_lun	*un;
13345 
13346 	ASSERT(bp != NULL);
13347 	xp = SD_GET_XBUF(bp);
13348 	ASSERT(xp != NULL);
13349 	un = SD_GET_UN(bp);
13350 	ASSERT(un != NULL);
13351 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13352 	pktp = SD_GET_PKTP(bp);
13353 	ASSERT(pktp != NULL);
13354 
13355 	SD_TRACE(SD_LOG_IO_CORE, un,
13356 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13357 
13358 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13359 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13360 	ASSERT(uscmd != NULL);
13361 
13362 	/* Save the status and the residual into the uscsi_cmd struct */
13363 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13364 	uscmd->uscsi_resid  = bp->b_resid;
13365 
13366 	/*
13367 	 * If enabled, copy any saved sense data into the area specified
13368 	 * by the uscsi command.
13369 	 */
13370 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13371 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13372 		/*
13373 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13374 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13375 		 */
13376 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13377 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13378 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13379 	}
13380 
13381 	/* We are done with the scsi_pkt; free it now */
13382 	ASSERT(SD_GET_PKTP(bp) != NULL);
13383 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13384 
13385 	SD_TRACE(SD_LOG_IO_CORE, un,
13386 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13387 }
13388 
13389 
13390 /*
13391  *    Function: sd_bioclone_alloc
13392  *
13393  * Description: Allocate a buf(9S) and init it as per the given buf
13394  *		and the various arguments.  The associated sd_xbuf
13395  *		struct is (nearly) duplicated.  The struct buf *bp
13396  *		argument is saved in new_xp->xb_private.
13397  *
13398  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13399  *		datalen - size of data area for the shadow bp
13400  *		blkno - starting LBA
13401  *		func - function pointer for b_iodone in the shadow buf. (May
13402  *			be NULL if none.)
13403  *
13404  * Return Code: Pointer to allocates buf(9S) struct
13405  *
13406  *     Context: Can sleep.
13407  */
13408 
13409 static struct buf *
13410 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13411 	daddr_t blkno, int (*func)(struct buf *))
13412 {
13413 	struct	sd_lun	*un;
13414 	struct	sd_xbuf	*xp;
13415 	struct	sd_xbuf	*new_xp;
13416 	struct	buf	*new_bp;
13417 
13418 	ASSERT(bp != NULL);
13419 	xp = SD_GET_XBUF(bp);
13420 	ASSERT(xp != NULL);
13421 	un = SD_GET_UN(bp);
13422 	ASSERT(un != NULL);
13423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13424 
13425 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13426 	    NULL, KM_SLEEP);
13427 
13428 	new_bp->b_lblkno	= blkno;
13429 
13430 	/*
13431 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13432 	 * original xbuf into it.
13433 	 */
13434 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13435 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13436 
13437 	/*
13438 	 * The given bp is automatically saved in the xb_private member
13439 	 * of the new xbuf.  Callers are allowed to depend on this.
13440 	 */
13441 	new_xp->xb_private = bp;
13442 
13443 	new_bp->b_private  = new_xp;
13444 
13445 	return (new_bp);
13446 }
13447 
13448 /*
13449  *    Function: sd_shadow_buf_alloc
13450  *
13451  * Description: Allocate a buf(9S) and init it as per the given buf
13452  *		and the various arguments.  The associated sd_xbuf
13453  *		struct is (nearly) duplicated.  The struct buf *bp
13454  *		argument is saved in new_xp->xb_private.
13455  *
13456  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13457  *		datalen - size of data area for the shadow bp
13458  *		bflags - B_READ or B_WRITE (pseudo flag)
13459  *		blkno - starting LBA
13460  *		func - function pointer for b_iodone in the shadow buf. (May
13461  *			be NULL if none.)
13462  *
13463  * Return Code: Pointer to allocates buf(9S) struct
13464  *
13465  *     Context: Can sleep.
13466  */
13467 
13468 static struct buf *
13469 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13470 	daddr_t blkno, int (*func)(struct buf *))
13471 {
13472 	struct	sd_lun	*un;
13473 	struct	sd_xbuf	*xp;
13474 	struct	sd_xbuf	*new_xp;
13475 	struct	buf	*new_bp;
13476 
13477 	ASSERT(bp != NULL);
13478 	xp = SD_GET_XBUF(bp);
13479 	ASSERT(xp != NULL);
13480 	un = SD_GET_UN(bp);
13481 	ASSERT(un != NULL);
13482 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13483 
13484 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13485 		bp_mapin(bp);
13486 	}
13487 
13488 	bflags &= (B_READ | B_WRITE);
13489 #if defined(__i386) || defined(__amd64)
13490 	new_bp = getrbuf(KM_SLEEP);
13491 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13492 	new_bp->b_bcount = datalen;
13493 	new_bp->b_flags	= bp->b_flags | bflags;
13494 #else
13495 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13496 	    datalen, bflags, SLEEP_FUNC, NULL);
13497 #endif
13498 	new_bp->av_forw	= NULL;
13499 	new_bp->av_back	= NULL;
13500 	new_bp->b_dev	= bp->b_dev;
13501 	new_bp->b_blkno	= blkno;
13502 	new_bp->b_iodone = func;
13503 	new_bp->b_edev	= bp->b_edev;
13504 	new_bp->b_resid	= 0;
13505 
13506 	/* We need to preserve the B_FAILFAST flag */
13507 	if (bp->b_flags & B_FAILFAST) {
13508 		new_bp->b_flags |= B_FAILFAST;
13509 	}
13510 
13511 	/*
13512 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13513 	 * original xbuf into it.
13514 	 */
13515 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13516 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13517 
13518 	/* Need later to copy data between the shadow buf & original buf! */
13519 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13520 
13521 	/*
13522 	 * The given bp is automatically saved in the xb_private member
13523 	 * of the new xbuf.  Callers are allowed to depend on this.
13524 	 */
13525 	new_xp->xb_private = bp;
13526 
13527 	new_bp->b_private  = new_xp;
13528 
13529 	return (new_bp);
13530 }
13531 
13532 /*
13533  *    Function: sd_bioclone_free
13534  *
13535  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13536  *		in the larger than partition operation.
13537  *
13538  *     Context: May be called under interrupt context
13539  */
13540 
13541 static void
13542 sd_bioclone_free(struct buf *bp)
13543 {
13544 	struct sd_xbuf	*xp;
13545 
13546 	ASSERT(bp != NULL);
13547 	xp = SD_GET_XBUF(bp);
13548 	ASSERT(xp != NULL);
13549 
13550 	/*
13551 	 * Call bp_mapout() before freeing the buf,  in case a lower
13552 	 * layer or HBA  had done a bp_mapin().  we must do this here
13553 	 * as we are the "originator" of the shadow buf.
13554 	 */
13555 	bp_mapout(bp);
13556 
13557 	/*
13558 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13559 	 * never gets confused by a stale value in this field. (Just a little
13560 	 * extra defensiveness here.)
13561 	 */
13562 	bp->b_iodone = NULL;
13563 
13564 	freerbuf(bp);
13565 
13566 	kmem_free(xp, sizeof (struct sd_xbuf));
13567 }
13568 
13569 /*
13570  *    Function: sd_shadow_buf_free
13571  *
13572  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13573  *
13574  *     Context: May be called under interrupt context
13575  */
13576 
13577 static void
13578 sd_shadow_buf_free(struct buf *bp)
13579 {
13580 	struct sd_xbuf	*xp;
13581 
13582 	ASSERT(bp != NULL);
13583 	xp = SD_GET_XBUF(bp);
13584 	ASSERT(xp != NULL);
13585 
13586 #if defined(__sparc)
13587 	/*
13588 	 * Call bp_mapout() before freeing the buf,  in case a lower
13589 	 * layer or HBA  had done a bp_mapin().  we must do this here
13590 	 * as we are the "originator" of the shadow buf.
13591 	 */
13592 	bp_mapout(bp);
13593 #endif
13594 
13595 	/*
13596 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13597 	 * never gets confused by a stale value in this field. (Just a little
13598 	 * extra defensiveness here.)
13599 	 */
13600 	bp->b_iodone = NULL;
13601 
13602 #if defined(__i386) || defined(__amd64)
13603 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13604 	freerbuf(bp);
13605 #else
13606 	scsi_free_consistent_buf(bp);
13607 #endif
13608 
13609 	kmem_free(xp, sizeof (struct sd_xbuf));
13610 }
13611 
13612 
13613 /*
13614  *    Function: sd_print_transport_rejected_message
13615  *
13616  * Description: This implements the ludicrously complex rules for printing
13617  *		a "transport rejected" message.  This is to address the
13618  *		specific problem of having a flood of this error message
13619  *		produced when a failover occurs.
13620  *
13621  *     Context: Any.
13622  */
13623 
13624 static void
13625 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13626 	int code)
13627 {
13628 	ASSERT(un != NULL);
13629 	ASSERT(mutex_owned(SD_MUTEX(un)));
13630 	ASSERT(xp != NULL);
13631 
13632 	/*
13633 	 * Print the "transport rejected" message under the following
13634 	 * conditions:
13635 	 *
13636 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13637 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13638 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13639 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13640 	 *   scsi_transport(9F) (which indicates that the target might have
13641 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13642 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13643 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13644 	 *   from scsi_transport().
13645 	 *
13646 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13647 	 * the preceeding cases in order for the message to be printed.
13648 	 */
13649 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13650 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13651 		    (code != TRAN_FATAL_ERROR) ||
13652 		    (un->un_tran_fatal_count == 1)) {
13653 			switch (code) {
13654 			case TRAN_BADPKT:
13655 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13656 				    "transport rejected bad packet\n");
13657 				break;
13658 			case TRAN_FATAL_ERROR:
13659 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13660 				    "transport rejected fatal error\n");
13661 				break;
13662 			default:
13663 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13664 				    "transport rejected (%d)\n", code);
13665 				break;
13666 			}
13667 		}
13668 	}
13669 }
13670 
13671 
13672 /*
13673  *    Function: sd_add_buf_to_waitq
13674  *
13675  * Description: Add the given buf(9S) struct to the wait queue for the
13676  *		instance.  If sorting is enabled, then the buf is added
13677  *		to the queue via an elevator sort algorithm (a la
13678  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13679  *		If sorting is not enabled, then the buf is just added
13680  *		to the end of the wait queue.
13681  *
13682  * Return Code: void
13683  *
13684  *     Context: Does not sleep/block, therefore technically can be called
13685  *		from any context.  However if sorting is enabled then the
13686  *		execution time is indeterminate, and may take long if
13687  *		the wait queue grows large.
13688  */
13689 
13690 static void
13691 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13692 {
13693 	struct buf *ap;
13694 
13695 	ASSERT(bp != NULL);
13696 	ASSERT(un != NULL);
13697 	ASSERT(mutex_owned(SD_MUTEX(un)));
13698 
13699 	/* If the queue is empty, add the buf as the only entry & return. */
13700 	if (un->un_waitq_headp == NULL) {
13701 		ASSERT(un->un_waitq_tailp == NULL);
13702 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13703 		bp->av_forw = NULL;
13704 		return;
13705 	}
13706 
13707 	ASSERT(un->un_waitq_tailp != NULL);
13708 
13709 	/*
13710 	 * If sorting is disabled, just add the buf to the tail end of
13711 	 * the wait queue and return.
13712 	 */
13713 	if (un->un_f_disksort_disabled) {
13714 		un->un_waitq_tailp->av_forw = bp;
13715 		un->un_waitq_tailp = bp;
13716 		bp->av_forw = NULL;
13717 		return;
13718 	}
13719 
13720 	/*
13721 	 * Sort thru the list of requests currently on the wait queue
13722 	 * and add the new buf request at the appropriate position.
13723 	 *
13724 	 * The un->un_waitq_headp is an activity chain pointer on which
13725 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13726 	 * first queue holds those requests which are positioned after
13727 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13728 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13729 	 * Thus we implement a one way scan, retracting after reaching
13730 	 * the end of the drive to the first request on the second
13731 	 * queue, at which time it becomes the first queue.
13732 	 * A one-way scan is natural because of the way UNIX read-ahead
13733 	 * blocks are allocated.
13734 	 *
13735 	 * If we lie after the first request, then we must locate the
13736 	 * second request list and add ourselves to it.
13737 	 */
13738 	ap = un->un_waitq_headp;
13739 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13740 		while (ap->av_forw != NULL) {
13741 			/*
13742 			 * Look for an "inversion" in the (normally
13743 			 * ascending) block numbers. This indicates
13744 			 * the start of the second request list.
13745 			 */
13746 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13747 				/*
13748 				 * Search the second request list for the
13749 				 * first request at a larger block number.
13750 				 * We go before that; however if there is
13751 				 * no such request, we go at the end.
13752 				 */
13753 				do {
13754 					if (SD_GET_BLKNO(bp) <
13755 					    SD_GET_BLKNO(ap->av_forw)) {
13756 						goto insert;
13757 					}
13758 					ap = ap->av_forw;
13759 				} while (ap->av_forw != NULL);
13760 				goto insert;		/* after last */
13761 			}
13762 			ap = ap->av_forw;
13763 		}
13764 
13765 		/*
13766 		 * No inversions... we will go after the last, and
13767 		 * be the first request in the second request list.
13768 		 */
13769 		goto insert;
13770 	}
13771 
13772 	/*
13773 	 * Request is at/after the current request...
13774 	 * sort in the first request list.
13775 	 */
13776 	while (ap->av_forw != NULL) {
13777 		/*
13778 		 * We want to go after the current request (1) if
13779 		 * there is an inversion after it (i.e. it is the end
13780 		 * of the first request list), or (2) if the next
13781 		 * request is a larger block no. than our request.
13782 		 */
13783 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13784 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13785 			goto insert;
13786 		}
13787 		ap = ap->av_forw;
13788 	}
13789 
13790 	/*
13791 	 * Neither a second list nor a larger request, therefore
13792 	 * we go at the end of the first list (which is the same
13793 	 * as the end of the whole schebang).
13794 	 */
13795 insert:
13796 	bp->av_forw = ap->av_forw;
13797 	ap->av_forw = bp;
13798 
13799 	/*
13800 	 * If we inserted onto the tail end of the waitq, make sure the
13801 	 * tail pointer is updated.
13802 	 */
13803 	if (ap == un->un_waitq_tailp) {
13804 		un->un_waitq_tailp = bp;
13805 	}
13806 }
13807 
13808 
13809 /*
13810  *    Function: sd_start_cmds
13811  *
13812  * Description: Remove and transport cmds from the driver queues.
13813  *
13814  *   Arguments: un - pointer to the unit (soft state) struct for the target.
13815  *
13816  *		immed_bp - ptr to a buf to be transported immediately. Only
13817  *		the immed_bp is transported; bufs on the waitq are not
13818  *		processed and the un_retry_bp is not checked.  If immed_bp is
13819  *		NULL, then normal queue processing is performed.
13820  *
13821  *     Context: May be called from kernel thread context, interrupt context,
13822  *		or runout callback context. This function may not block or
13823  *		call routines that block.
13824  */
13825 
13826 static void
13827 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
13828 {
13829 	struct	sd_xbuf	*xp;
13830 	struct	buf	*bp;
13831 	void	(*statp)(kstat_io_t *);
13832 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13833 	void	(*saved_statp)(kstat_io_t *);
13834 #endif
13835 	int	rval;
13836 
13837 	ASSERT(un != NULL);
13838 	ASSERT(mutex_owned(SD_MUTEX(un)));
13839 	ASSERT(un->un_ncmds_in_transport >= 0);
13840 	ASSERT(un->un_throttle >= 0);
13841 
13842 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
13843 
13844 	do {
13845 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13846 		saved_statp = NULL;
13847 #endif
13848 
13849 		/*
13850 		 * If we are syncing or dumping, fail the command to
13851 		 * avoid recursively calling back into scsi_transport().
13852 		 */
13853 		if (ddi_in_panic()) {
13854 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13855 			    "sd_start_cmds: panicking\n");
13856 			goto exit;
13857 		}
13858 
13859 		if ((bp = immed_bp) != NULL) {
13860 			/*
13861 			 * We have a bp that must be transported immediately.
13862 			 * It's OK to transport the immed_bp here without doing
13863 			 * the throttle limit check because the immed_bp is
13864 			 * always used in a retry/recovery case. This means
13865 			 * that we know we are not at the throttle limit by
13866 			 * virtue of the fact that to get here we must have
13867 			 * already gotten a command back via sdintr(). This also
13868 			 * relies on (1) the command on un_retry_bp preventing
13869 			 * further commands from the waitq from being issued;
13870 			 * and (2) the code in sd_retry_command checking the
13871 			 * throttle limit before issuing a delayed or immediate
13872 			 * retry. This holds even if the throttle limit is
13873 			 * currently ratcheted down from its maximum value.
13874 			 */
13875 			statp = kstat_runq_enter;
13876 			if (bp == un->un_retry_bp) {
13877 				ASSERT((un->un_retry_statp == NULL) ||
13878 				    (un->un_retry_statp == kstat_waitq_enter) ||
13879 				    (un->un_retry_statp ==
13880 				    kstat_runq_back_to_waitq));
13881 				/*
13882 				 * If the waitq kstat was incremented when
13883 				 * sd_set_retry_bp() queued this bp for a retry,
13884 				 * then we must set up statp so that the waitq
13885 				 * count will get decremented correctly below.
13886 				 * Also we must clear un->un_retry_statp to
13887 				 * ensure that we do not act on a stale value
13888 				 * in this field.
13889 				 */
13890 				if ((un->un_retry_statp == kstat_waitq_enter) ||
13891 				    (un->un_retry_statp ==
13892 				    kstat_runq_back_to_waitq)) {
13893 					statp = kstat_waitq_to_runq;
13894 				}
13895 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13896 				saved_statp = un->un_retry_statp;
13897 #endif
13898 				un->un_retry_statp = NULL;
13899 
13900 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13901 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
13902 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
13903 				    un, un->un_retry_bp, un->un_throttle,
13904 				    un->un_ncmds_in_transport);
13905 			} else {
13906 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
13907 				    "processing priority bp:0x%p\n", bp);
13908 			}
13909 
13910 		} else if ((bp = un->un_waitq_headp) != NULL) {
13911 			/*
13912 			 * A command on the waitq is ready to go, but do not
13913 			 * send it if:
13914 			 *
13915 			 * (1) the throttle limit has been reached, or
13916 			 * (2) a retry is pending, or
13917 			 * (3) a START_STOP_UNIT callback pending, or
13918 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
13919 			 *	command is pending.
13920 			 *
13921 			 * For all of these conditions, IO processing will
13922 			 * restart after the condition is cleared.
13923 			 */
13924 			if (un->un_ncmds_in_transport >= un->un_throttle) {
13925 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13926 				    "sd_start_cmds: exiting, "
13927 				    "throttle limit reached!\n");
13928 				goto exit;
13929 			}
13930 			if (un->un_retry_bp != NULL) {
13931 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13932 				    "sd_start_cmds: exiting, retry pending!\n");
13933 				goto exit;
13934 			}
13935 			if (un->un_startstop_timeid != NULL) {
13936 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13937 				    "sd_start_cmds: exiting, "
13938 				    "START_STOP pending!\n");
13939 				goto exit;
13940 			}
13941 			if (un->un_direct_priority_timeid != NULL) {
13942 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13943 				    "sd_start_cmds: exiting, "
13944 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
13945 				goto exit;
13946 			}
13947 
13948 			/* Dequeue the command */
13949 			un->un_waitq_headp = bp->av_forw;
13950 			if (un->un_waitq_headp == NULL) {
13951 				un->un_waitq_tailp = NULL;
13952 			}
13953 			bp->av_forw = NULL;
13954 			statp = kstat_waitq_to_runq;
13955 			SD_TRACE(SD_LOG_IO_CORE, un,
13956 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
13957 
13958 		} else {
13959 			/* No work to do so bail out now */
13960 			SD_TRACE(SD_LOG_IO_CORE, un,
13961 			    "sd_start_cmds: no more work, exiting!\n");
13962 			goto exit;
13963 		}
13964 
13965 		/*
13966 		 * Reset the state to normal. This is the mechanism by which
13967 		 * the state transitions from either SD_STATE_RWAIT or
13968 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13969 		 * If state is SD_STATE_PM_CHANGING then this command is
13970 		 * part of the device power control and the state must
13971 		 * not be put back to normal. Doing so would would
13972 		 * allow new commands to proceed when they shouldn't,
13973 		 * the device may be going off.
13974 		 */
13975 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13976 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13977 			New_state(un, SD_STATE_NORMAL);
13978 		    }
13979 
13980 		xp = SD_GET_XBUF(bp);
13981 		ASSERT(xp != NULL);
13982 
13983 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13984 		/*
13985 		 * Allocate the scsi_pkt if we need one, or attach DMA
13986 		 * resources if we have a scsi_pkt that needs them. The
13987 		 * latter should only occur for commands that are being
13988 		 * retried.
13989 		 */
13990 		if ((xp->xb_pktp == NULL) ||
13991 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13992 #else
13993 		if (xp->xb_pktp == NULL) {
13994 #endif
13995 			/*
13996 			 * There is no scsi_pkt allocated for this buf. Call
13997 			 * the initpkt function to allocate & init one.
13998 			 *
13999 			 * The scsi_init_pkt runout callback functionality is
14000 			 * implemented as follows:
14001 			 *
14002 			 * 1) The initpkt function always calls
14003 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14004 			 *    callback routine.
14005 			 * 2) A successful packet allocation is initialized and
14006 			 *    the I/O is transported.
14007 			 * 3) The I/O associated with an allocation resource
14008 			 *    failure is left on its queue to be retried via
14009 			 *    runout or the next I/O.
14010 			 * 4) The I/O associated with a DMA error is removed
14011 			 *    from the queue and failed with EIO. Processing of
14012 			 *    the transport queues is also halted to be
14013 			 *    restarted via runout or the next I/O.
14014 			 * 5) The I/O associated with a CDB size or packet
14015 			 *    size error is removed from the queue and failed
14016 			 *    with EIO. Processing of the transport queues is
14017 			 *    continued.
14018 			 *
14019 			 * Note: there is no interface for canceling a runout
14020 			 * callback. To prevent the driver from detaching or
14021 			 * suspending while a runout is pending the driver
14022 			 * state is set to SD_STATE_RWAIT
14023 			 *
14024 			 * Note: using the scsi_init_pkt callback facility can
14025 			 * result in an I/O request persisting at the head of
14026 			 * the list which cannot be satisfied even after
14027 			 * multiple retries. In the future the driver may
14028 			 * implement some kind of maximum runout count before
14029 			 * failing an I/O.
14030 			 *
14031 			 * Note: the use of funcp below may seem superfluous,
14032 			 * but it helps warlock figure out the correct
14033 			 * initpkt function calls (see [s]sd.wlcmd).
14034 			 */
14035 			struct scsi_pkt	*pktp;
14036 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14037 
14038 			ASSERT(bp != un->un_rqs_bp);
14039 
14040 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14041 			switch ((*funcp)(bp, &pktp)) {
14042 			case  SD_PKT_ALLOC_SUCCESS:
14043 				xp->xb_pktp = pktp;
14044 				SD_TRACE(SD_LOG_IO_CORE, un,
14045 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14046 				    pktp);
14047 				goto got_pkt;
14048 
14049 			case SD_PKT_ALLOC_FAILURE:
14050 				/*
14051 				 * Temporary (hopefully) resource depletion.
14052 				 * Since retries and RQS commands always have a
14053 				 * scsi_pkt allocated, these cases should never
14054 				 * get here. So the only cases this needs to
14055 				 * handle is a bp from the waitq (which we put
14056 				 * back onto the waitq for sdrunout), or a bp
14057 				 * sent as an immed_bp (which we just fail).
14058 				 */
14059 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14060 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14061 
14062 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14063 
14064 				if (bp == immed_bp) {
14065 					/*
14066 					 * If SD_XB_DMA_FREED is clear, then
14067 					 * this is a failure to allocate a
14068 					 * scsi_pkt, and we must fail the
14069 					 * command.
14070 					 */
14071 					if ((xp->xb_pkt_flags &
14072 					    SD_XB_DMA_FREED) == 0) {
14073 						break;
14074 					}
14075 
14076 					/*
14077 					 * If this immediate command is NOT our
14078 					 * un_retry_bp, then we must fail it.
14079 					 */
14080 					if (bp != un->un_retry_bp) {
14081 						break;
14082 					}
14083 
14084 					/*
14085 					 * We get here if this cmd is our
14086 					 * un_retry_bp that was DMAFREED, but
14087 					 * scsi_init_pkt() failed to reallocate
14088 					 * DMA resources when we attempted to
14089 					 * retry it. This can happen when an
14090 					 * mpxio failover is in progress, but
14091 					 * we don't want to just fail the
14092 					 * command in this case.
14093 					 *
14094 					 * Use timeout(9F) to restart it after
14095 					 * a 100ms delay.  We don't want to
14096 					 * let sdrunout() restart it, because
14097 					 * sdrunout() is just supposed to start
14098 					 * commands that are sitting on the
14099 					 * wait queue.  The un_retry_bp stays
14100 					 * set until the command completes, but
14101 					 * sdrunout can be called many times
14102 					 * before that happens.  Since sdrunout
14103 					 * cannot tell if the un_retry_bp is
14104 					 * already in the transport, it could
14105 					 * end up calling scsi_transport() for
14106 					 * the un_retry_bp multiple times.
14107 					 *
14108 					 * Also: don't schedule the callback
14109 					 * if some other callback is already
14110 					 * pending.
14111 					 */
14112 					if (un->un_retry_statp == NULL) {
14113 						/*
14114 						 * restore the kstat pointer to
14115 						 * keep kstat counts coherent
14116 						 * when we do retry the command.
14117 						 */
14118 						un->un_retry_statp =
14119 						    saved_statp;
14120 					}
14121 
14122 					if ((un->un_startstop_timeid == NULL) &&
14123 					    (un->un_retry_timeid == NULL) &&
14124 					    (un->un_direct_priority_timeid ==
14125 					    NULL)) {
14126 
14127 						un->un_retry_timeid =
14128 						    timeout(
14129 						    sd_start_retry_command,
14130 						    un, SD_RESTART_TIMEOUT);
14131 					}
14132 					goto exit;
14133 				}
14134 
14135 #else
14136 				if (bp == immed_bp) {
14137 					break;	/* Just fail the command */
14138 				}
14139 #endif
14140 
14141 				/* Add the buf back to the head of the waitq */
14142 				bp->av_forw = un->un_waitq_headp;
14143 				un->un_waitq_headp = bp;
14144 				if (un->un_waitq_tailp == NULL) {
14145 					un->un_waitq_tailp = bp;
14146 				}
14147 				goto exit;
14148 
14149 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14150 				/*
14151 				 * HBA DMA resource failure. Fail the command
14152 				 * and continue processing of the queues.
14153 				 */
14154 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14155 				    "sd_start_cmds: "
14156 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14157 				break;
14158 
14159 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14160 				/*
14161 				 * Note:x86: Partial DMA mapping not supported
14162 				 * for USCSI commands, and all the needed DMA
14163 				 * resources were not allocated.
14164 				 */
14165 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14166 				    "sd_start_cmds: "
14167 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14168 				break;
14169 
14170 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14171 				/*
14172 				 * Note:x86: Request cannot fit into CDB based
14173 				 * on lba and len.
14174 				 */
14175 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14176 				    "sd_start_cmds: "
14177 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14178 				break;
14179 
14180 			default:
14181 				/* Should NEVER get here! */
14182 				panic("scsi_initpkt error");
14183 				/*NOTREACHED*/
14184 			}
14185 
14186 			/*
14187 			 * Fatal error in allocating a scsi_pkt for this buf.
14188 			 * Update kstats & return the buf with an error code.
14189 			 * We must use sd_return_failed_command_no_restart() to
14190 			 * avoid a recursive call back into sd_start_cmds().
14191 			 * However this also means that we must keep processing
14192 			 * the waitq here in order to avoid stalling.
14193 			 */
14194 			if (statp == kstat_waitq_to_runq) {
14195 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14196 			}
14197 			sd_return_failed_command_no_restart(un, bp, EIO);
14198 			if (bp == immed_bp) {
14199 				/* immed_bp is gone by now, so clear this */
14200 				immed_bp = NULL;
14201 			}
14202 			continue;
14203 		}
14204 got_pkt:
14205 		if (bp == immed_bp) {
14206 			/* goto the head of the class.... */
14207 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14208 		}
14209 
14210 		un->un_ncmds_in_transport++;
14211 		SD_UPDATE_KSTATS(un, statp, bp);
14212 
14213 		/*
14214 		 * Call scsi_transport() to send the command to the target.
14215 		 * According to SCSA architecture, we must drop the mutex here
14216 		 * before calling scsi_transport() in order to avoid deadlock.
14217 		 * Note that the scsi_pkt's completion routine can be executed
14218 		 * (from interrupt context) even before the call to
14219 		 * scsi_transport() returns.
14220 		 */
14221 		SD_TRACE(SD_LOG_IO_CORE, un,
14222 		    "sd_start_cmds: calling scsi_transport()\n");
14223 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14224 
14225 		mutex_exit(SD_MUTEX(un));
14226 		rval = scsi_transport(xp->xb_pktp);
14227 		mutex_enter(SD_MUTEX(un));
14228 
14229 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14230 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14231 
14232 		switch (rval) {
14233 		case TRAN_ACCEPT:
14234 			/* Clear this with every pkt accepted by the HBA */
14235 			un->un_tran_fatal_count = 0;
14236 			break;	/* Success; try the next cmd (if any) */
14237 
14238 		case TRAN_BUSY:
14239 			un->un_ncmds_in_transport--;
14240 			ASSERT(un->un_ncmds_in_transport >= 0);
14241 
14242 			/*
14243 			 * Don't retry request sense, the sense data
14244 			 * is lost when another request is sent.
14245 			 * Free up the rqs buf and retry
14246 			 * the original failed cmd.  Update kstat.
14247 			 */
14248 			if (bp == un->un_rqs_bp) {
14249 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14250 				bp = sd_mark_rqs_idle(un, xp);
14251 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14252 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14253 					kstat_waitq_enter);
14254 				goto exit;
14255 			}
14256 
14257 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14258 			/*
14259 			 * Free the DMA resources for the  scsi_pkt. This will
14260 			 * allow mpxio to select another path the next time
14261 			 * we call scsi_transport() with this scsi_pkt.
14262 			 * See sdintr() for the rationalization behind this.
14263 			 */
14264 			if ((un->un_f_is_fibre == TRUE) &&
14265 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14266 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14267 				scsi_dmafree(xp->xb_pktp);
14268 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14269 			}
14270 #endif
14271 
14272 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14273 				/*
14274 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14275 				 * are for error recovery situations. These do
14276 				 * not use the normal command waitq, so if they
14277 				 * get a TRAN_BUSY we cannot put them back onto
14278 				 * the waitq for later retry. One possible
14279 				 * problem is that there could already be some
14280 				 * other command on un_retry_bp that is waiting
14281 				 * for this one to complete, so we would be
14282 				 * deadlocked if we put this command back onto
14283 				 * the waitq for later retry (since un_retry_bp
14284 				 * must complete before the driver gets back to
14285 				 * commands on the waitq).
14286 				 *
14287 				 * To avoid deadlock we must schedule a callback
14288 				 * that will restart this command after a set
14289 				 * interval.  This should keep retrying for as
14290 				 * long as the underlying transport keeps
14291 				 * returning TRAN_BUSY (just like for other
14292 				 * commands).  Use the same timeout interval as
14293 				 * for the ordinary TRAN_BUSY retry.
14294 				 */
14295 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14296 				    "sd_start_cmds: scsi_transport() returned "
14297 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14298 
14299 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14300 				un->un_direct_priority_timeid =
14301 				    timeout(sd_start_direct_priority_command,
14302 				    bp, SD_BSY_TIMEOUT / 500);
14303 
14304 				goto exit;
14305 			}
14306 
14307 			/*
14308 			 * For TRAN_BUSY, we want to reduce the throttle value,
14309 			 * unless we are retrying a command.
14310 			 */
14311 			if (bp != un->un_retry_bp) {
14312 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14313 			}
14314 
14315 			/*
14316 			 * Set up the bp to be tried again 10 ms later.
14317 			 * Note:x86: Is there a timeout value in the sd_lun
14318 			 * for this condition?
14319 			 */
14320 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14321 				kstat_runq_back_to_waitq);
14322 			goto exit;
14323 
14324 		case TRAN_FATAL_ERROR:
14325 			un->un_tran_fatal_count++;
14326 			/* FALLTHRU */
14327 
14328 		case TRAN_BADPKT:
14329 		default:
14330 			un->un_ncmds_in_transport--;
14331 			ASSERT(un->un_ncmds_in_transport >= 0);
14332 
14333 			/*
14334 			 * If this is our REQUEST SENSE command with a
14335 			 * transport error, we must get back the pointers
14336 			 * to the original buf, and mark the REQUEST
14337 			 * SENSE command as "available".
14338 			 */
14339 			if (bp == un->un_rqs_bp) {
14340 				bp = sd_mark_rqs_idle(un, xp);
14341 				xp = SD_GET_XBUF(bp);
14342 			} else {
14343 				/*
14344 				 * Legacy behavior: do not update transport
14345 				 * error count for request sense commands.
14346 				 */
14347 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14348 			}
14349 
14350 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14351 			sd_print_transport_rejected_message(un, xp, rval);
14352 
14353 			/*
14354 			 * We must use sd_return_failed_command_no_restart() to
14355 			 * avoid a recursive call back into sd_start_cmds().
14356 			 * However this also means that we must keep processing
14357 			 * the waitq here in order to avoid stalling.
14358 			 */
14359 			sd_return_failed_command_no_restart(un, bp, EIO);
14360 
14361 			/*
14362 			 * Notify any threads waiting in sd_ddi_suspend() that
14363 			 * a command completion has occurred.
14364 			 */
14365 			if (un->un_state == SD_STATE_SUSPENDED) {
14366 				cv_broadcast(&un->un_disk_busy_cv);
14367 			}
14368 
14369 			if (bp == immed_bp) {
14370 				/* immed_bp is gone by now, so clear this */
14371 				immed_bp = NULL;
14372 			}
14373 			break;
14374 		}
14375 
14376 	} while (immed_bp == NULL);
14377 
14378 exit:
14379 	ASSERT(mutex_owned(SD_MUTEX(un)));
14380 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14381 }
14382 
14383 
14384 /*
14385  *    Function: sd_return_command
14386  *
14387  * Description: Returns a command to its originator (with or without an
14388  *		error).  Also starts commands waiting to be transported
14389  *		to the target.
14390  *
14391  *     Context: May be called from interrupt, kernel, or timeout context
14392  */
14393 
14394 static void
14395 sd_return_command(struct sd_lun *un, struct buf *bp)
14396 {
14397 	struct sd_xbuf *xp;
14398 #if defined(__i386) || defined(__amd64)
14399 	struct scsi_pkt *pktp;
14400 #endif
14401 
14402 	ASSERT(bp != NULL);
14403 	ASSERT(un != NULL);
14404 	ASSERT(mutex_owned(SD_MUTEX(un)));
14405 	ASSERT(bp != un->un_rqs_bp);
14406 	xp = SD_GET_XBUF(bp);
14407 	ASSERT(xp != NULL);
14408 
14409 #if defined(__i386) || defined(__amd64)
14410 	pktp = SD_GET_PKTP(bp);
14411 #endif
14412 
14413 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14414 
14415 #if defined(__i386) || defined(__amd64)
14416 	/*
14417 	 * Note:x86: check for the "sdrestart failed" case.
14418 	 */
14419 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14420 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14421 		(xp->xb_pktp->pkt_resid == 0)) {
14422 
14423 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14424 			/*
14425 			 * Successfully set up next portion of cmd
14426 			 * transfer, try sending it
14427 			 */
14428 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14429 			    NULL, NULL, 0, (clock_t)0, NULL);
14430 			sd_start_cmds(un, NULL);
14431 			return;	/* Note:x86: need a return here? */
14432 		}
14433 	}
14434 #endif
14435 
14436 	/*
14437 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14438 	 * can happen if upon being re-tried the failfast bp either
14439 	 * succeeded or encountered another error (possibly even a different
14440 	 * error than the one that precipitated the failfast state, but in
14441 	 * that case it would have had to exhaust retries as well). Regardless,
14442 	 * this should not occur whenever the instance is in the active
14443 	 * failfast state.
14444 	 */
14445 	if (bp == un->un_failfast_bp) {
14446 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14447 		un->un_failfast_bp = NULL;
14448 	}
14449 
14450 	/*
14451 	 * Clear the failfast state upon successful completion of ANY cmd.
14452 	 */
14453 	if (bp->b_error == 0) {
14454 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14455 	}
14456 
14457 	/*
14458 	 * This is used if the command was retried one or more times. Show that
14459 	 * we are done with it, and allow processing of the waitq to resume.
14460 	 */
14461 	if (bp == un->un_retry_bp) {
14462 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14463 		    "sd_return_command: un:0x%p: "
14464 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14465 		un->un_retry_bp = NULL;
14466 		un->un_retry_statp = NULL;
14467 	}
14468 
14469 	SD_UPDATE_RDWR_STATS(un, bp);
14470 	SD_UPDATE_PARTITION_STATS(un, bp);
14471 
14472 	switch (un->un_state) {
14473 	case SD_STATE_SUSPENDED:
14474 		/*
14475 		 * Notify any threads waiting in sd_ddi_suspend() that
14476 		 * a command completion has occurred.
14477 		 */
14478 		cv_broadcast(&un->un_disk_busy_cv);
14479 		break;
14480 	default:
14481 		sd_start_cmds(un, NULL);
14482 		break;
14483 	}
14484 
14485 	/* Return this command up the iodone chain to its originator. */
14486 	mutex_exit(SD_MUTEX(un));
14487 
14488 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14489 	xp->xb_pktp = NULL;
14490 
14491 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14492 
14493 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14494 	mutex_enter(SD_MUTEX(un));
14495 
14496 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14497 }
14498 
14499 
14500 /*
14501  *    Function: sd_return_failed_command
14502  *
14503  * Description: Command completion when an error occurred.
14504  *
14505  *     Context: May be called from interrupt context
14506  */
14507 
14508 static void
14509 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14510 {
14511 	ASSERT(bp != NULL);
14512 	ASSERT(un != NULL);
14513 	ASSERT(mutex_owned(SD_MUTEX(un)));
14514 
14515 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14516 	    "sd_return_failed_command: entry\n");
14517 
14518 	/*
14519 	 * b_resid could already be nonzero due to a partial data
14520 	 * transfer, so do not change it here.
14521 	 */
14522 	SD_BIOERROR(bp, errcode);
14523 
14524 	sd_return_command(un, bp);
14525 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14526 	    "sd_return_failed_command: exit\n");
14527 }
14528 
14529 
14530 /*
14531  *    Function: sd_return_failed_command_no_restart
14532  *
14533  * Description: Same as sd_return_failed_command, but ensures that no
14534  *		call back into sd_start_cmds will be issued.
14535  *
14536  *     Context: May be called from interrupt context
14537  */
14538 
14539 static void
14540 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14541 	int errcode)
14542 {
14543 	struct sd_xbuf *xp;
14544 
14545 	ASSERT(bp != NULL);
14546 	ASSERT(un != NULL);
14547 	ASSERT(mutex_owned(SD_MUTEX(un)));
14548 	xp = SD_GET_XBUF(bp);
14549 	ASSERT(xp != NULL);
14550 	ASSERT(errcode != 0);
14551 
14552 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14553 	    "sd_return_failed_command_no_restart: entry\n");
14554 
14555 	/*
14556 	 * b_resid could already be nonzero due to a partial data
14557 	 * transfer, so do not change it here.
14558 	 */
14559 	SD_BIOERROR(bp, errcode);
14560 
14561 	/*
14562 	 * If this is the failfast bp, clear it. This can happen if the
14563 	 * failfast bp encounterd a fatal error when we attempted to
14564 	 * re-try it (such as a scsi_transport(9F) failure).  However
14565 	 * we should NOT be in an active failfast state if the failfast
14566 	 * bp is not NULL.
14567 	 */
14568 	if (bp == un->un_failfast_bp) {
14569 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14570 		un->un_failfast_bp = NULL;
14571 	}
14572 
14573 	if (bp == un->un_retry_bp) {
14574 		/*
14575 		 * This command was retried one or more times. Show that we are
14576 		 * done with it, and allow processing of the waitq to resume.
14577 		 */
14578 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14579 		    "sd_return_failed_command_no_restart: "
14580 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14581 		un->un_retry_bp = NULL;
14582 		un->un_retry_statp = NULL;
14583 	}
14584 
14585 	SD_UPDATE_RDWR_STATS(un, bp);
14586 	SD_UPDATE_PARTITION_STATS(un, bp);
14587 
14588 	mutex_exit(SD_MUTEX(un));
14589 
14590 	if (xp->xb_pktp != NULL) {
14591 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14592 		xp->xb_pktp = NULL;
14593 	}
14594 
14595 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14596 
14597 	mutex_enter(SD_MUTEX(un));
14598 
14599 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14600 	    "sd_return_failed_command_no_restart: exit\n");
14601 }
14602 
14603 
14604 /*
14605  *    Function: sd_retry_command
14606  *
14607  * Description: queue up a command for retry, or (optionally) fail it
14608  *		if retry counts are exhausted.
14609  *
14610  *   Arguments: un - Pointer to the sd_lun struct for the target.
14611  *
14612  *		bp - Pointer to the buf for the command to be retried.
14613  *
14614  *		retry_check_flag - Flag to see which (if any) of the retry
14615  *		   counts should be decremented/checked. If the indicated
14616  *		   retry count is exhausted, then the command will not be
14617  *		   retried; it will be failed instead. This should use a
14618  *		   value equal to one of the following:
14619  *
14620  *			SD_RETRIES_NOCHECK
14621  *			SD_RESD_RETRIES_STANDARD
14622  *			SD_RETRIES_VICTIM
14623  *
14624  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14625  *		   if the check should be made to see of FLAG_ISOLATE is set
14626  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14627  *		   not retried, it is simply failed.
14628  *
14629  *		user_funcp - Ptr to function to call before dispatching the
14630  *		   command. May be NULL if no action needs to be performed.
14631  *		   (Primarily intended for printing messages.)
14632  *
14633  *		user_arg - Optional argument to be passed along to
14634  *		   the user_funcp call.
14635  *
14636  *		failure_code - errno return code to set in the bp if the
14637  *		   command is going to be failed.
14638  *
14639  *		retry_delay - Retry delay interval in (clock_t) units. May
14640  *		   be zero which indicates that the retry should be retried
14641  *		   immediately (ie, without an intervening delay).
14642  *
14643  *		statp - Ptr to kstat function to be updated if the command
14644  *		   is queued for a delayed retry. May be NULL if no kstat
14645  *		   update is desired.
14646  *
14647  *     Context: May be called from interupt context.
14648  */
14649 
14650 static void
14651 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14652 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14653 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14654 	void (*statp)(kstat_io_t *))
14655 {
14656 	struct sd_xbuf	*xp;
14657 	struct scsi_pkt	*pktp;
14658 
14659 	ASSERT(un != NULL);
14660 	ASSERT(mutex_owned(SD_MUTEX(un)));
14661 	ASSERT(bp != NULL);
14662 	xp = SD_GET_XBUF(bp);
14663 	ASSERT(xp != NULL);
14664 	pktp = SD_GET_PKTP(bp);
14665 	ASSERT(pktp != NULL);
14666 
14667 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14668 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14669 
14670 	/*
14671 	 * If we are syncing or dumping, fail the command to avoid
14672 	 * recursively calling back into scsi_transport().
14673 	 */
14674 	if (ddi_in_panic()) {
14675 		goto fail_command_no_log;
14676 	}
14677 
14678 	/*
14679 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14680 	 * log an error and fail the command.
14681 	 */
14682 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14683 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14684 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14685 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14686 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14687 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14688 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14689 		goto fail_command;
14690 	}
14691 
14692 	/*
14693 	 * If we are suspended, then put the command onto head of the
14694 	 * wait queue since we don't want to start more commands.
14695 	 */
14696 	switch (un->un_state) {
14697 	case SD_STATE_SUSPENDED:
14698 	case SD_STATE_DUMPING:
14699 		bp->av_forw = un->un_waitq_headp;
14700 		un->un_waitq_headp = bp;
14701 		if (un->un_waitq_tailp == NULL) {
14702 			un->un_waitq_tailp = bp;
14703 		}
14704 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14705 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14706 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14707 		return;
14708 	default:
14709 		break;
14710 	}
14711 
14712 	/*
14713 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14714 	 * is set; if it is then we do not want to retry the command.
14715 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14716 	 */
14717 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14718 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14719 			goto fail_command;
14720 		}
14721 	}
14722 
14723 
14724 	/*
14725 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14726 	 * command timeout or a selection timeout has occurred. This means
14727 	 * that we were unable to establish an kind of communication with
14728 	 * the target, and subsequent retries and/or commands are likely
14729 	 * to encounter similar results and take a long time to complete.
14730 	 *
14731 	 * If this is a failfast error condition, we need to update the
14732 	 * failfast state, even if this bp does not have B_FAILFAST set.
14733 	 */
14734 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
14735 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
14736 			ASSERT(un->un_failfast_bp == NULL);
14737 			/*
14738 			 * If we are already in the active failfast state, and
14739 			 * another failfast error condition has been detected,
14740 			 * then fail this command if it has B_FAILFAST set.
14741 			 * If B_FAILFAST is clear, then maintain the legacy
14742 			 * behavior of retrying heroically, even tho this will
14743 			 * take a lot more time to fail the command.
14744 			 */
14745 			if (bp->b_flags & B_FAILFAST) {
14746 				goto fail_command;
14747 			}
14748 		} else {
14749 			/*
14750 			 * We're not in the active failfast state, but we
14751 			 * have a failfast error condition, so we must begin
14752 			 * transition to the next state. We do this regardless
14753 			 * of whether or not this bp has B_FAILFAST set.
14754 			 */
14755 			if (un->un_failfast_bp == NULL) {
14756 				/*
14757 				 * This is the first bp to meet a failfast
14758 				 * condition so save it on un_failfast_bp &
14759 				 * do normal retry processing. Do not enter
14760 				 * active failfast state yet. This marks
14761 				 * entry into the "failfast pending" state.
14762 				 */
14763 				un->un_failfast_bp = bp;
14764 
14765 			} else if (un->un_failfast_bp == bp) {
14766 				/*
14767 				 * This is the second time *this* bp has
14768 				 * encountered a failfast error condition,
14769 				 * so enter active failfast state & flush
14770 				 * queues as appropriate.
14771 				 */
14772 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
14773 				un->un_failfast_bp = NULL;
14774 				sd_failfast_flushq(un);
14775 
14776 				/*
14777 				 * Fail this bp now if B_FAILFAST set;
14778 				 * otherwise continue with retries. (It would
14779 				 * be pretty ironic if this bp succeeded on a
14780 				 * subsequent retry after we just flushed all
14781 				 * the queues).
14782 				 */
14783 				if (bp->b_flags & B_FAILFAST) {
14784 					goto fail_command;
14785 				}
14786 
14787 #if !defined(lint) && !defined(__lint)
14788 			} else {
14789 				/*
14790 				 * If neither of the preceeding conditionals
14791 				 * was true, it means that there is some
14792 				 * *other* bp that has met an inital failfast
14793 				 * condition and is currently either being
14794 				 * retried or is waiting to be retried. In
14795 				 * that case we should perform normal retry
14796 				 * processing on *this* bp, since there is a
14797 				 * chance that the current failfast condition
14798 				 * is transient and recoverable. If that does
14799 				 * not turn out to be the case, then retries
14800 				 * will be cleared when the wait queue is
14801 				 * flushed anyway.
14802 				 */
14803 #endif
14804 			}
14805 		}
14806 	} else {
14807 		/*
14808 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
14809 		 * likely were able to at least establish some level of
14810 		 * communication with the target and subsequent commands
14811 		 * and/or retries are likely to get through to the target,
14812 		 * In this case we want to be aggressive about clearing
14813 		 * the failfast state. Note that this does not affect
14814 		 * the "failfast pending" condition.
14815 		 */
14816 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14817 	}
14818 
14819 
14820 	/*
14821 	 * Check the specified retry count to see if we can still do
14822 	 * any retries with this pkt before we should fail it.
14823 	 */
14824 	switch (retry_check_flag & SD_RETRIES_MASK) {
14825 	case SD_RETRIES_VICTIM:
14826 		/*
14827 		 * Check the victim retry count. If exhausted, then fall
14828 		 * thru & check against the standard retry count.
14829 		 */
14830 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
14831 			/* Increment count & proceed with the retry */
14832 			xp->xb_victim_retry_count++;
14833 			break;
14834 		}
14835 		/* Victim retries exhausted, fall back to std. retries... */
14836 		/* FALLTHRU */
14837 
14838 	case SD_RETRIES_STANDARD:
14839 		if (xp->xb_retry_count >= un->un_retry_count) {
14840 			/* Retries exhausted, fail the command */
14841 			SD_TRACE(SD_LOG_IO_CORE, un,
14842 			    "sd_retry_command: retries exhausted!\n");
14843 			/*
14844 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
14845 			 * commands with nonzero pkt_resid.
14846 			 */
14847 			if ((pktp->pkt_reason == CMD_CMPLT) &&
14848 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
14849 			    (pktp->pkt_resid != 0)) {
14850 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
14851 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
14852 					SD_UPDATE_B_RESID(bp, pktp);
14853 				}
14854 			}
14855 			goto fail_command;
14856 		}
14857 		xp->xb_retry_count++;
14858 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14859 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
14860 		break;
14861 
14862 	case SD_RETRIES_UA:
14863 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
14864 			/* Retries exhausted, fail the command */
14865 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14866 			    "Unit Attention retries exhausted. "
14867 			    "Check the target.\n");
14868 			goto fail_command;
14869 		}
14870 		xp->xb_ua_retry_count++;
14871 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14872 		    "sd_retry_command: retry count:%d\n",
14873 			xp->xb_ua_retry_count);
14874 		break;
14875 
14876 	case SD_RETRIES_BUSY:
14877 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
14878 			/* Retries exhausted, fail the command */
14879 			SD_TRACE(SD_LOG_IO_CORE, un,
14880 			    "sd_retry_command: retries exhausted!\n");
14881 			goto fail_command;
14882 		}
14883 		xp->xb_retry_count++;
14884 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14885 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
14886 		break;
14887 
14888 	case SD_RETRIES_NOCHECK:
14889 	default:
14890 		/* No retry count to check. Just proceed with the retry */
14891 		break;
14892 	}
14893 
14894 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14895 
14896 	/*
14897 	 * If we were given a zero timeout, we must attempt to retry the
14898 	 * command immediately (ie, without a delay).
14899 	 */
14900 	if (retry_delay == 0) {
14901 		/*
14902 		 * Check some limiting conditions to see if we can actually
14903 		 * do the immediate retry.  If we cannot, then we must
14904 		 * fall back to queueing up a delayed retry.
14905 		 */
14906 		if (un->un_ncmds_in_transport >= un->un_throttle) {
14907 			/*
14908 			 * We are at the throttle limit for the target,
14909 			 * fall back to delayed retry.
14910 			 */
14911 			retry_delay = SD_BSY_TIMEOUT;
14912 			statp = kstat_waitq_enter;
14913 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14914 			    "sd_retry_command: immed. retry hit throttle!\n");
14915 		} else {
14916 			/*
14917 			 * We're clear to proceed with the immediate retry.
14918 			 * First call the user-provided function (if any)
14919 			 */
14920 			if (user_funcp != NULL) {
14921 				(*user_funcp)(un, bp, user_arg,
14922 				    SD_IMMEDIATE_RETRY_ISSUED);
14923 			}
14924 
14925 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14926 			    "sd_retry_command: issuing immediate retry\n");
14927 
14928 			/*
14929 			 * Call sd_start_cmds() to transport the command to
14930 			 * the target.
14931 			 */
14932 			sd_start_cmds(un, bp);
14933 
14934 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14935 			    "sd_retry_command exit\n");
14936 			return;
14937 		}
14938 	}
14939 
14940 	/*
14941 	 * Set up to retry the command after a delay.
14942 	 * First call the user-provided function (if any)
14943 	 */
14944 	if (user_funcp != NULL) {
14945 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
14946 	}
14947 
14948 	sd_set_retry_bp(un, bp, retry_delay, statp);
14949 
14950 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14951 	return;
14952 
14953 fail_command:
14954 
14955 	if (user_funcp != NULL) {
14956 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14957 	}
14958 
14959 fail_command_no_log:
14960 
14961 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14962 	    "sd_retry_command: returning failed command\n");
14963 
14964 	sd_return_failed_command(un, bp, failure_code);
14965 
14966 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14967 }
14968 
14969 
14970 /*
14971  *    Function: sd_set_retry_bp
14972  *
14973  * Description: Set up the given bp for retry.
14974  *
14975  *   Arguments: un - ptr to associated softstate
14976  *		bp - ptr to buf(9S) for the command
14977  *		retry_delay - time interval before issuing retry (may be 0)
14978  *		statp - optional pointer to kstat function
14979  *
14980  *     Context: May be called under interrupt context
14981  */
14982 
14983 static void
14984 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14985 	void (*statp)(kstat_io_t *))
14986 {
14987 	ASSERT(un != NULL);
14988 	ASSERT(mutex_owned(SD_MUTEX(un)));
14989 	ASSERT(bp != NULL);
14990 
14991 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14992 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14993 
14994 	/*
14995 	 * Indicate that the command is being retried. This will not allow any
14996 	 * other commands on the wait queue to be transported to the target
14997 	 * until this command has been completed (success or failure). The
14998 	 * "retry command" is not transported to the target until the given
14999 	 * time delay expires, unless the user specified a 0 retry_delay.
15000 	 *
15001 	 * Note: the timeout(9F) callback routine is what actually calls
15002 	 * sd_start_cmds() to transport the command, with the exception of a
15003 	 * zero retry_delay. The only current implementor of a zero retry delay
15004 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15005 	 */
15006 	if (un->un_retry_bp == NULL) {
15007 		ASSERT(un->un_retry_statp == NULL);
15008 		un->un_retry_bp = bp;
15009 
15010 		/*
15011 		 * If the user has not specified a delay the command should
15012 		 * be queued and no timeout should be scheduled.
15013 		 */
15014 		if (retry_delay == 0) {
15015 			/*
15016 			 * Save the kstat pointer that will be used in the
15017 			 * call to SD_UPDATE_KSTATS() below, so that
15018 			 * sd_start_cmds() can correctly decrement the waitq
15019 			 * count when it is time to transport this command.
15020 			 */
15021 			un->un_retry_statp = statp;
15022 			goto done;
15023 		}
15024 	}
15025 
15026 	if (un->un_retry_bp == bp) {
15027 		/*
15028 		 * Save the kstat pointer that will be used in the call to
15029 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15030 		 * correctly decrement the waitq count when it is time to
15031 		 * transport this command.
15032 		 */
15033 		un->un_retry_statp = statp;
15034 
15035 		/*
15036 		 * Schedule a timeout if:
15037 		 *   1) The user has specified a delay.
15038 		 *   2) There is not a START_STOP_UNIT callback pending.
15039 		 *
15040 		 * If no delay has been specified, then it is up to the caller
15041 		 * to ensure that IO processing continues without stalling.
15042 		 * Effectively, this means that the caller will issue the
15043 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15044 		 * callback does this after the START STOP UNIT command has
15045 		 * completed. In either of these cases we should not schedule
15046 		 * a timeout callback here.  Also don't schedule the timeout if
15047 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15048 		 */
15049 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15050 		    (un->un_direct_priority_timeid == NULL)) {
15051 			un->un_retry_timeid =
15052 			    timeout(sd_start_retry_command, un, retry_delay);
15053 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15054 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15055 			    " bp:0x%p un_retry_timeid:0x%p\n",
15056 			    un, bp, un->un_retry_timeid);
15057 		}
15058 	} else {
15059 		/*
15060 		 * We only get in here if there is already another command
15061 		 * waiting to be retried.  In this case, we just put the
15062 		 * given command onto the wait queue, so it can be transported
15063 		 * after the current retry command has completed.
15064 		 *
15065 		 * Also we have to make sure that if the command at the head
15066 		 * of the wait queue is the un_failfast_bp, that we do not
15067 		 * put ahead of it any other commands that are to be retried.
15068 		 */
15069 		if ((un->un_failfast_bp != NULL) &&
15070 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15071 			/*
15072 			 * Enqueue this command AFTER the first command on
15073 			 * the wait queue (which is also un_failfast_bp).
15074 			 */
15075 			bp->av_forw = un->un_waitq_headp->av_forw;
15076 			un->un_waitq_headp->av_forw = bp;
15077 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15078 				un->un_waitq_tailp = bp;
15079 			}
15080 		} else {
15081 			/* Enqueue this command at the head of the waitq. */
15082 			bp->av_forw = un->un_waitq_headp;
15083 			un->un_waitq_headp = bp;
15084 			if (un->un_waitq_tailp == NULL) {
15085 				un->un_waitq_tailp = bp;
15086 			}
15087 		}
15088 
15089 		if (statp == NULL) {
15090 			statp = kstat_waitq_enter;
15091 		}
15092 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15093 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15094 	}
15095 
15096 done:
15097 	if (statp != NULL) {
15098 		SD_UPDATE_KSTATS(un, statp, bp);
15099 	}
15100 
15101 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15102 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15103 }
15104 
15105 
15106 /*
15107  *    Function: sd_start_retry_command
15108  *
15109  * Description: Start the command that has been waiting on the target's
15110  *		retry queue.  Called from timeout(9F) context after the
15111  *		retry delay interval has expired.
15112  *
15113  *   Arguments: arg - pointer to associated softstate for the device.
15114  *
15115  *     Context: timeout(9F) thread context.  May not sleep.
15116  */
15117 
15118 static void
15119 sd_start_retry_command(void *arg)
15120 {
15121 	struct sd_lun *un = arg;
15122 
15123 	ASSERT(un != NULL);
15124 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15125 
15126 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15127 	    "sd_start_retry_command: entry\n");
15128 
15129 	mutex_enter(SD_MUTEX(un));
15130 
15131 	un->un_retry_timeid = NULL;
15132 
15133 	if (un->un_retry_bp != NULL) {
15134 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15135 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15136 		    un, un->un_retry_bp);
15137 		sd_start_cmds(un, un->un_retry_bp);
15138 	}
15139 
15140 	mutex_exit(SD_MUTEX(un));
15141 
15142 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15143 	    "sd_start_retry_command: exit\n");
15144 }
15145 
15146 
15147 /*
15148  *    Function: sd_start_direct_priority_command
15149  *
15150  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15151  *		received TRAN_BUSY when we called scsi_transport() to send it
15152  *		to the underlying HBA. This function is called from timeout(9F)
15153  *		context after the delay interval has expired.
15154  *
15155  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15156  *
15157  *     Context: timeout(9F) thread context.  May not sleep.
15158  */
15159 
15160 static void
15161 sd_start_direct_priority_command(void *arg)
15162 {
15163 	struct buf	*priority_bp = arg;
15164 	struct sd_lun	*un;
15165 
15166 	ASSERT(priority_bp != NULL);
15167 	un = SD_GET_UN(priority_bp);
15168 	ASSERT(un != NULL);
15169 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15170 
15171 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15172 	    "sd_start_direct_priority_command: entry\n");
15173 
15174 	mutex_enter(SD_MUTEX(un));
15175 	un->un_direct_priority_timeid = NULL;
15176 	sd_start_cmds(un, priority_bp);
15177 	mutex_exit(SD_MUTEX(un));
15178 
15179 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15180 	    "sd_start_direct_priority_command: exit\n");
15181 }
15182 
15183 
15184 /*
15185  *    Function: sd_send_request_sense_command
15186  *
15187  * Description: Sends a REQUEST SENSE command to the target
15188  *
15189  *     Context: May be called from interrupt context.
15190  */
15191 
15192 static void
15193 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15194 	struct scsi_pkt *pktp)
15195 {
15196 	ASSERT(bp != NULL);
15197 	ASSERT(un != NULL);
15198 	ASSERT(mutex_owned(SD_MUTEX(un)));
15199 
15200 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15201 	    "entry: buf:0x%p\n", bp);
15202 
15203 	/*
15204 	 * If we are syncing or dumping, then fail the command to avoid a
15205 	 * recursive callback into scsi_transport(). Also fail the command
15206 	 * if we are suspended (legacy behavior).
15207 	 */
15208 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15209 	    (un->un_state == SD_STATE_DUMPING)) {
15210 		sd_return_failed_command(un, bp, EIO);
15211 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15212 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15213 		return;
15214 	}
15215 
15216 	/*
15217 	 * Retry the failed command and don't issue the request sense if:
15218 	 *    1) the sense buf is busy
15219 	 *    2) we have 1 or more outstanding commands on the target
15220 	 *    (the sense data will be cleared or invalidated any way)
15221 	 *
15222 	 * Note: There could be an issue with not checking a retry limit here,
15223 	 * the problem is determining which retry limit to check.
15224 	 */
15225 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15226 		/* Don't retry if the command is flagged as non-retryable */
15227 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15228 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15229 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15230 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15231 			    "sd_send_request_sense_command: "
15232 			    "at full throttle, retrying exit\n");
15233 		} else {
15234 			sd_return_failed_command(un, bp, EIO);
15235 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15236 			    "sd_send_request_sense_command: "
15237 			    "at full throttle, non-retryable exit\n");
15238 		}
15239 		return;
15240 	}
15241 
15242 	sd_mark_rqs_busy(un, bp);
15243 	sd_start_cmds(un, un->un_rqs_bp);
15244 
15245 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15246 	    "sd_send_request_sense_command: exit\n");
15247 }
15248 
15249 
15250 /*
15251  *    Function: sd_mark_rqs_busy
15252  *
15253  * Description: Indicate that the request sense bp for this instance is
15254  *		in use.
15255  *
15256  *     Context: May be called under interrupt context
15257  */
15258 
15259 static void
15260 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15261 {
15262 	struct sd_xbuf	*sense_xp;
15263 
15264 	ASSERT(un != NULL);
15265 	ASSERT(bp != NULL);
15266 	ASSERT(mutex_owned(SD_MUTEX(un)));
15267 	ASSERT(un->un_sense_isbusy == 0);
15268 
15269 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15270 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15271 
15272 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15273 	ASSERT(sense_xp != NULL);
15274 
15275 	SD_INFO(SD_LOG_IO, un,
15276 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15277 
15278 	ASSERT(sense_xp->xb_pktp != NULL);
15279 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15280 	    == (FLAG_SENSING | FLAG_HEAD));
15281 
15282 	un->un_sense_isbusy = 1;
15283 	un->un_rqs_bp->b_resid = 0;
15284 	sense_xp->xb_pktp->pkt_resid  = 0;
15285 	sense_xp->xb_pktp->pkt_reason = 0;
15286 
15287 	/* So we can get back the bp at interrupt time! */
15288 	sense_xp->xb_sense_bp = bp;
15289 
15290 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15291 
15292 	/*
15293 	 * Mark this buf as awaiting sense data. (This is already set in
15294 	 * the pkt_flags for the RQS packet.)
15295 	 */
15296 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15297 
15298 	sense_xp->xb_retry_count	= 0;
15299 	sense_xp->xb_victim_retry_count = 0;
15300 	sense_xp->xb_ua_retry_count	= 0;
15301 	sense_xp->xb_dma_resid  = 0;
15302 
15303 	/* Clean up the fields for auto-request sense */
15304 	sense_xp->xb_sense_status = 0;
15305 	sense_xp->xb_sense_state  = 0;
15306 	sense_xp->xb_sense_resid  = 0;
15307 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15308 
15309 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15310 }
15311 
15312 
15313 /*
15314  *    Function: sd_mark_rqs_idle
15315  *
15316  * Description: SD_MUTEX must be held continuously through this routine
15317  *		to prevent reuse of the rqs struct before the caller can
15318  *		complete it's processing.
15319  *
15320  * Return Code: Pointer to the RQS buf
15321  *
15322  *     Context: May be called under interrupt context
15323  */
15324 
15325 static struct buf *
15326 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15327 {
15328 	struct buf *bp;
15329 	ASSERT(un != NULL);
15330 	ASSERT(sense_xp != NULL);
15331 	ASSERT(mutex_owned(SD_MUTEX(un)));
15332 	ASSERT(un->un_sense_isbusy != 0);
15333 
15334 	un->un_sense_isbusy = 0;
15335 	bp = sense_xp->xb_sense_bp;
15336 	sense_xp->xb_sense_bp = NULL;
15337 
15338 	/* This pkt is no longer interested in getting sense data */
15339 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15340 
15341 	return (bp);
15342 }
15343 
15344 
15345 
15346 /*
15347  *    Function: sd_alloc_rqs
15348  *
15349  * Description: Set up the unit to receive auto request sense data
15350  *
15351  * Return Code: DDI_SUCCESS or DDI_FAILURE
15352  *
15353  *     Context: Called under attach(9E) context
15354  */
15355 
15356 static int
15357 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15358 {
15359 	struct sd_xbuf *xp;
15360 
15361 	ASSERT(un != NULL);
15362 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15363 	ASSERT(un->un_rqs_bp == NULL);
15364 	ASSERT(un->un_rqs_pktp == NULL);
15365 
15366 	/*
15367 	 * First allocate the required buf and scsi_pkt structs, then set up
15368 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15369 	 */
15370 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15371 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15372 	if (un->un_rqs_bp == NULL) {
15373 		return (DDI_FAILURE);
15374 	}
15375 
15376 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15377 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15378 
15379 	if (un->un_rqs_pktp == NULL) {
15380 		sd_free_rqs(un);
15381 		return (DDI_FAILURE);
15382 	}
15383 
15384 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15385 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15386 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15387 
15388 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15389 
15390 	/* Set up the other needed members in the ARQ scsi_pkt. */
15391 	un->un_rqs_pktp->pkt_comp   = sdintr;
15392 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15393 	un->un_rqs_pktp->pkt_flags |=
15394 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15395 
15396 	/*
15397 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15398 	 * provide any intpkt, destroypkt routines as we take care of
15399 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15400 	 */
15401 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15402 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15403 	xp->xb_pktp = un->un_rqs_pktp;
15404 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15405 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15406 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15407 
15408 	/*
15409 	 * Save the pointer to the request sense private bp so it can
15410 	 * be retrieved in sdintr.
15411 	 */
15412 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15413 	ASSERT(un->un_rqs_bp->b_private == xp);
15414 
15415 	/*
15416 	 * See if the HBA supports auto-request sense for the specified
15417 	 * target/lun. If it does, then try to enable it (if not already
15418 	 * enabled).
15419 	 *
15420 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15421 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15422 	 * return success.  However, in both of these cases ARQ is always
15423 	 * enabled and scsi_ifgetcap will always return true. The best approach
15424 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15425 	 *
15426 	 * The 3rd case is the HBA (adp) always return enabled on
15427 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15428 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15429 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15430 	 */
15431 
15432 	if (un->un_f_is_fibre == TRUE) {
15433 		un->un_f_arq_enabled = TRUE;
15434 	} else {
15435 #if defined(__i386) || defined(__amd64)
15436 		/*
15437 		 * Circumvent the Adaptec bug, remove this code when
15438 		 * the bug is fixed
15439 		 */
15440 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15441 #endif
15442 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15443 		case 0:
15444 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15445 				"sd_alloc_rqs: HBA supports ARQ\n");
15446 			/*
15447 			 * ARQ is supported by this HBA but currently is not
15448 			 * enabled. Attempt to enable it and if successful then
15449 			 * mark this instance as ARQ enabled.
15450 			 */
15451 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15452 				== 1) {
15453 				/* Successfully enabled ARQ in the HBA */
15454 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15455 					"sd_alloc_rqs: ARQ enabled\n");
15456 				un->un_f_arq_enabled = TRUE;
15457 			} else {
15458 				/* Could not enable ARQ in the HBA */
15459 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15460 				"sd_alloc_rqs: failed ARQ enable\n");
15461 				un->un_f_arq_enabled = FALSE;
15462 			}
15463 			break;
15464 		case 1:
15465 			/*
15466 			 * ARQ is supported by this HBA and is already enabled.
15467 			 * Just mark ARQ as enabled for this instance.
15468 			 */
15469 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15470 				"sd_alloc_rqs: ARQ already enabled\n");
15471 			un->un_f_arq_enabled = TRUE;
15472 			break;
15473 		default:
15474 			/*
15475 			 * ARQ is not supported by this HBA; disable it for this
15476 			 * instance.
15477 			 */
15478 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15479 				"sd_alloc_rqs: HBA does not support ARQ\n");
15480 			un->un_f_arq_enabled = FALSE;
15481 			break;
15482 		}
15483 	}
15484 
15485 	return (DDI_SUCCESS);
15486 }
15487 
15488 
15489 /*
15490  *    Function: sd_free_rqs
15491  *
15492  * Description: Cleanup for the pre-instance RQS command.
15493  *
15494  *     Context: Kernel thread context
15495  */
15496 
15497 static void
15498 sd_free_rqs(struct sd_lun *un)
15499 {
15500 	ASSERT(un != NULL);
15501 
15502 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15503 
15504 	/*
15505 	 * If consistent memory is bound to a scsi_pkt, the pkt
15506 	 * has to be destroyed *before* freeing the consistent memory.
15507 	 * Don't change the sequence of this operations.
15508 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15509 	 * after it was freed in scsi_free_consistent_buf().
15510 	 */
15511 	if (un->un_rqs_pktp != NULL) {
15512 		scsi_destroy_pkt(un->un_rqs_pktp);
15513 		un->un_rqs_pktp = NULL;
15514 	}
15515 
15516 	if (un->un_rqs_bp != NULL) {
15517 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15518 		scsi_free_consistent_buf(un->un_rqs_bp);
15519 		un->un_rqs_bp = NULL;
15520 	}
15521 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15522 }
15523 
15524 
15525 
15526 /*
15527  *    Function: sd_reduce_throttle
15528  *
15529  * Description: Reduces the maximun # of outstanding commands on a
15530  *		target to the current number of outstanding commands.
15531  *		Queues a tiemout(9F) callback to restore the limit
15532  *		after a specified interval has elapsed.
15533  *		Typically used when we get a TRAN_BUSY return code
15534  *		back from scsi_transport().
15535  *
15536  *   Arguments: un - ptr to the sd_lun softstate struct
15537  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15538  *
15539  *     Context: May be called from interrupt context
15540  */
15541 
15542 static void
15543 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15544 {
15545 	ASSERT(un != NULL);
15546 	ASSERT(mutex_owned(SD_MUTEX(un)));
15547 	ASSERT(un->un_ncmds_in_transport >= 0);
15548 
15549 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15550 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15551 	    un, un->un_throttle, un->un_ncmds_in_transport);
15552 
15553 	if (un->un_throttle > 1) {
15554 		if (un->un_f_use_adaptive_throttle == TRUE) {
15555 			switch (throttle_type) {
15556 			case SD_THROTTLE_TRAN_BUSY:
15557 				if (un->un_busy_throttle == 0) {
15558 					un->un_busy_throttle = un->un_throttle;
15559 				}
15560 				break;
15561 			case SD_THROTTLE_QFULL:
15562 				un->un_busy_throttle = 0;
15563 				break;
15564 			default:
15565 				ASSERT(FALSE);
15566 			}
15567 
15568 			if (un->un_ncmds_in_transport > 0) {
15569 				un->un_throttle = un->un_ncmds_in_transport;
15570 			}
15571 		} else {
15572 			if (un->un_ncmds_in_transport == 0) {
15573 				un->un_throttle = 1;
15574 			} else {
15575 				un->un_throttle = un->un_ncmds_in_transport;
15576 			}
15577 		}
15578 	}
15579 
15580 	/* Reschedule the timeout if none is currently active */
15581 	if (un->un_reset_throttle_timeid == NULL) {
15582 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15583 		    un, sd_reset_throttle_timeout);
15584 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15585 		    "sd_reduce_throttle: timeout scheduled!\n");
15586 	}
15587 
15588 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15589 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15590 }
15591 
15592 
15593 
15594 /*
15595  *    Function: sd_restore_throttle
15596  *
15597  * Description: Callback function for timeout(9F).  Resets the current
15598  *		value of un->un_throttle to its default.
15599  *
15600  *   Arguments: arg - pointer to associated softstate for the device.
15601  *
15602  *     Context: May be called from interrupt context
15603  */
15604 
15605 static void
15606 sd_restore_throttle(void *arg)
15607 {
15608 	struct sd_lun	*un = arg;
15609 
15610 	ASSERT(un != NULL);
15611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15612 
15613 	mutex_enter(SD_MUTEX(un));
15614 
15615 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15616 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15617 
15618 	un->un_reset_throttle_timeid = NULL;
15619 
15620 	if (un->un_f_use_adaptive_throttle == TRUE) {
15621 		/*
15622 		 * If un_busy_throttle is nonzero, then it contains the
15623 		 * value that un_throttle was when we got a TRAN_BUSY back
15624 		 * from scsi_transport(). We want to revert back to this
15625 		 * value.
15626 		 */
15627 		if (un->un_busy_throttle > 0) {
15628 			un->un_throttle = un->un_busy_throttle;
15629 			un->un_busy_throttle = 0;
15630 		}
15631 
15632 		/*
15633 		 * If un_throttle has fallen below the low-water mark, we
15634 		 * restore the maximum value here (and allow it to ratchet
15635 		 * down again if necessary).
15636 		 */
15637 		if (un->un_throttle < un->un_min_throttle) {
15638 			un->un_throttle = un->un_saved_throttle;
15639 		}
15640 	} else {
15641 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15642 		    "restoring limit from 0x%x to 0x%x\n",
15643 		    un->un_throttle, un->un_saved_throttle);
15644 		un->un_throttle = un->un_saved_throttle;
15645 	}
15646 
15647 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15648 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15649 
15650 	sd_start_cmds(un, NULL);
15651 
15652 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15653 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15654 	    un, un->un_throttle);
15655 
15656 	mutex_exit(SD_MUTEX(un));
15657 
15658 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15659 }
15660 
15661 /*
15662  *    Function: sdrunout
15663  *
15664  * Description: Callback routine for scsi_init_pkt when a resource allocation
15665  *		fails.
15666  *
15667  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15668  *		soft state instance.
15669  *
15670  * Return Code: The scsi_init_pkt routine allows for the callback function to
15671  *		return a 0 indicating the callback should be rescheduled or a 1
15672  *		indicating not to reschedule. This routine always returns 1
15673  *		because the driver always provides a callback function to
15674  *		scsi_init_pkt. This results in a callback always being scheduled
15675  *		(via the scsi_init_pkt callback implementation) if a resource
15676  *		failure occurs.
15677  *
15678  *     Context: This callback function may not block or call routines that block
15679  *
15680  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15681  *		request persisting at the head of the list which cannot be
15682  *		satisfied even after multiple retries. In the future the driver
15683  *		may implement some time of maximum runout count before failing
15684  *		an I/O.
15685  */
15686 
15687 static int
15688 sdrunout(caddr_t arg)
15689 {
15690 	struct sd_lun	*un = (struct sd_lun *)arg;
15691 
15692 	ASSERT(un != NULL);
15693 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15694 
15695 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15696 
15697 	mutex_enter(SD_MUTEX(un));
15698 	sd_start_cmds(un, NULL);
15699 	mutex_exit(SD_MUTEX(un));
15700 	/*
15701 	 * This callback routine always returns 1 (i.e. do not reschedule)
15702 	 * because we always specify sdrunout as the callback handler for
15703 	 * scsi_init_pkt inside the call to sd_start_cmds.
15704 	 */
15705 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
15706 	return (1);
15707 }
15708 
15709 
15710 /*
15711  *    Function: sdintr
15712  *
15713  * Description: Completion callback routine for scsi_pkt(9S) structs
15714  *		sent to the HBA driver via scsi_transport(9F).
15715  *
15716  *     Context: Interrupt context
15717  */
15718 
15719 static void
15720 sdintr(struct scsi_pkt *pktp)
15721 {
15722 	struct buf	*bp;
15723 	struct sd_xbuf	*xp;
15724 	struct sd_lun	*un;
15725 
15726 	ASSERT(pktp != NULL);
15727 	bp = (struct buf *)pktp->pkt_private;
15728 	ASSERT(bp != NULL);
15729 	xp = SD_GET_XBUF(bp);
15730 	ASSERT(xp != NULL);
15731 	ASSERT(xp->xb_pktp != NULL);
15732 	un = SD_GET_UN(bp);
15733 	ASSERT(un != NULL);
15734 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15735 
15736 #ifdef SD_FAULT_INJECTION
15737 
15738 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
15739 	/* SD FaultInjection */
15740 	sd_faultinjection(pktp);
15741 
15742 #endif /* SD_FAULT_INJECTION */
15743 
15744 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
15745 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
15746 
15747 	mutex_enter(SD_MUTEX(un));
15748 
15749 	/* Reduce the count of the #commands currently in transport */
15750 	un->un_ncmds_in_transport--;
15751 	ASSERT(un->un_ncmds_in_transport >= 0);
15752 
15753 	/* Increment counter to indicate that the callback routine is active */
15754 	un->un_in_callback++;
15755 
15756 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15757 
15758 #ifdef	SDDEBUG
15759 	if (bp == un->un_retry_bp) {
15760 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
15761 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
15762 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
15763 	}
15764 #endif
15765 
15766 	/*
15767 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
15768 	 */
15769 	if (pktp->pkt_reason == CMD_DEV_GONE) {
15770 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15771 			    "Device is gone\n");
15772 		sd_return_failed_command(un, bp, EIO);
15773 		goto exit;
15774 	}
15775 
15776 	/*
15777 	 * First see if the pkt has auto-request sense data with it....
15778 	 * Look at the packet state first so we don't take a performance
15779 	 * hit looking at the arq enabled flag unless absolutely necessary.
15780 	 */
15781 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
15782 	    (un->un_f_arq_enabled == TRUE)) {
15783 		/*
15784 		 * The HBA did an auto request sense for this command so check
15785 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15786 		 * driver command that should not be retried.
15787 		 */
15788 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15789 			/*
15790 			 * Save the relevant sense info into the xp for the
15791 			 * original cmd.
15792 			 */
15793 			struct scsi_arq_status *asp;
15794 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15795 			xp->xb_sense_status =
15796 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
15797 			xp->xb_sense_state  = asp->sts_rqpkt_state;
15798 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15799 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15800 			    min(sizeof (struct scsi_extended_sense),
15801 			    SENSE_LENGTH));
15802 
15803 			/* fail the command */
15804 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15805 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
15806 			sd_return_failed_command(un, bp, EIO);
15807 			goto exit;
15808 		}
15809 
15810 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15811 		/*
15812 		 * We want to either retry or fail this command, so free
15813 		 * the DMA resources here.  If we retry the command then
15814 		 * the DMA resources will be reallocated in sd_start_cmds().
15815 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
15816 		 * causes the *entire* transfer to start over again from the
15817 		 * beginning of the request, even for PARTIAL chunks that
15818 		 * have already transferred successfully.
15819 		 */
15820 		if ((un->un_f_is_fibre == TRUE) &&
15821 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15822 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15823 			scsi_dmafree(pktp);
15824 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15825 		}
15826 #endif
15827 
15828 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15829 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
15830 
15831 		sd_handle_auto_request_sense(un, bp, xp, pktp);
15832 		goto exit;
15833 	}
15834 
15835 	/* Next see if this is the REQUEST SENSE pkt for the instance */
15836 	if (pktp->pkt_flags & FLAG_SENSING)  {
15837 		/* This pktp is from the unit's REQUEST_SENSE command */
15838 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15839 		    "sdintr: sd_handle_request_sense\n");
15840 		sd_handle_request_sense(un, bp, xp, pktp);
15841 		goto exit;
15842 	}
15843 
15844 	/*
15845 	 * Check to see if the command successfully completed as requested;
15846 	 * this is the most common case (and also the hot performance path).
15847 	 *
15848 	 * Requirements for successful completion are:
15849 	 * pkt_reason is CMD_CMPLT and packet status is status good.
15850 	 * In addition:
15851 	 * - A residual of zero indicates successful completion no matter what
15852 	 *   the command is.
15853 	 * - If the residual is not zero and the command is not a read or
15854 	 *   write, then it's still defined as successful completion. In other
15855 	 *   words, if the command is a read or write the residual must be
15856 	 *   zero for successful completion.
15857 	 * - If the residual is not zero and the command is a read or
15858 	 *   write, and it's a USCSICMD, then it's still defined as
15859 	 *   successful completion.
15860 	 */
15861 	if ((pktp->pkt_reason == CMD_CMPLT) &&
15862 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
15863 
15864 		/*
15865 		 * Since this command is returned with a good status, we
15866 		 * can reset the count for Sonoma failover.
15867 		 */
15868 		un->un_sonoma_failure_count = 0;
15869 
15870 		/*
15871 		 * Return all USCSI commands on good status
15872 		 */
15873 		if (pktp->pkt_resid == 0) {
15874 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15875 			    "sdintr: returning command for resid == 0\n");
15876 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
15877 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
15878 			SD_UPDATE_B_RESID(bp, pktp);
15879 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15880 			    "sdintr: returning command for resid != 0\n");
15881 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15882 			SD_UPDATE_B_RESID(bp, pktp);
15883 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15884 				"sdintr: returning uscsi command\n");
15885 		} else {
15886 			goto not_successful;
15887 		}
15888 		sd_return_command(un, bp);
15889 
15890 		/*
15891 		 * Decrement counter to indicate that the callback routine
15892 		 * is done.
15893 		 */
15894 		un->un_in_callback--;
15895 		ASSERT(un->un_in_callback >= 0);
15896 		mutex_exit(SD_MUTEX(un));
15897 
15898 		return;
15899 	}
15900 
15901 not_successful:
15902 
15903 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15904 	/*
15905 	 * The following is based upon knowledge of the underlying transport
15906 	 * and its use of DMA resources.  This code should be removed when
15907 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15908 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15909 	 * and sd_start_cmds().
15910 	 *
15911 	 * Free any DMA resources associated with this command if there
15912 	 * is a chance it could be retried or enqueued for later retry.
15913 	 * If we keep the DMA binding then mpxio cannot reissue the
15914 	 * command on another path whenever a path failure occurs.
15915 	 *
15916 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15917 	 * causes the *entire* transfer to start over again from the
15918 	 * beginning of the request, even for PARTIAL chunks that
15919 	 * have already transferred successfully.
15920 	 *
15921 	 * This is only done for non-uscsi commands (and also skipped for the
15922 	 * driver's internal RQS command). Also just do this for Fibre Channel
15923 	 * devices as these are the only ones that support mpxio.
15924 	 */
15925 	if ((un->un_f_is_fibre == TRUE) &&
15926 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15927 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15928 		scsi_dmafree(pktp);
15929 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15930 	}
15931 #endif
15932 
15933 	/*
15934 	 * The command did not successfully complete as requested so check
15935 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15936 	 * driver command that should not be retried so just return. If
15937 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15938 	 */
15939 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15940 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15941 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15942 		/*
15943 		 * Issue a request sense if a check condition caused the error
15944 		 * (we handle the auto request sense case above), otherwise
15945 		 * just fail the command.
15946 		 */
15947 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15948 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15949 			sd_send_request_sense_command(un, bp, pktp);
15950 		} else {
15951 			sd_return_failed_command(un, bp, EIO);
15952 		}
15953 		goto exit;
15954 	}
15955 
15956 	/*
15957 	 * The command did not successfully complete as requested so process
15958 	 * the error, retry, and/or attempt recovery.
15959 	 */
15960 	switch (pktp->pkt_reason) {
15961 	case CMD_CMPLT:
15962 		switch (SD_GET_PKT_STATUS(pktp)) {
15963 		case STATUS_GOOD:
15964 			/*
15965 			 * The command completed successfully with a non-zero
15966 			 * residual
15967 			 */
15968 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15969 			    "sdintr: STATUS_GOOD \n");
15970 			sd_pkt_status_good(un, bp, xp, pktp);
15971 			break;
15972 
15973 		case STATUS_CHECK:
15974 		case STATUS_TERMINATED:
15975 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15976 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15977 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15978 			break;
15979 
15980 		case STATUS_BUSY:
15981 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15982 			    "sdintr: STATUS_BUSY\n");
15983 			sd_pkt_status_busy(un, bp, xp, pktp);
15984 			break;
15985 
15986 		case STATUS_RESERVATION_CONFLICT:
15987 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15988 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15989 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15990 			break;
15991 
15992 		case STATUS_QFULL:
15993 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15994 			    "sdintr: STATUS_QFULL\n");
15995 			sd_pkt_status_qfull(un, bp, xp, pktp);
15996 			break;
15997 
15998 		case STATUS_MET:
15999 		case STATUS_INTERMEDIATE:
16000 		case STATUS_SCSI2:
16001 		case STATUS_INTERMEDIATE_MET:
16002 		case STATUS_ACA_ACTIVE:
16003 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16004 			    "Unexpected SCSI status received: 0x%x\n",
16005 			    SD_GET_PKT_STATUS(pktp));
16006 			sd_return_failed_command(un, bp, EIO);
16007 			break;
16008 
16009 		default:
16010 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16011 			    "Invalid SCSI status received: 0x%x\n",
16012 			    SD_GET_PKT_STATUS(pktp));
16013 			sd_return_failed_command(un, bp, EIO);
16014 			break;
16015 
16016 		}
16017 		break;
16018 
16019 	case CMD_INCOMPLETE:
16020 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16021 		    "sdintr:  CMD_INCOMPLETE\n");
16022 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16023 		break;
16024 	case CMD_TRAN_ERR:
16025 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16026 		    "sdintr: CMD_TRAN_ERR\n");
16027 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16028 		break;
16029 	case CMD_RESET:
16030 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16031 		    "sdintr: CMD_RESET \n");
16032 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16033 		break;
16034 	case CMD_ABORTED:
16035 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16036 		    "sdintr: CMD_ABORTED \n");
16037 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16038 		break;
16039 	case CMD_TIMEOUT:
16040 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16041 		    "sdintr: CMD_TIMEOUT\n");
16042 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16043 		break;
16044 	case CMD_UNX_BUS_FREE:
16045 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16046 		    "sdintr: CMD_UNX_BUS_FREE \n");
16047 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16048 		break;
16049 	case CMD_TAG_REJECT:
16050 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16051 		    "sdintr: CMD_TAG_REJECT\n");
16052 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16053 		break;
16054 	default:
16055 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16056 		    "sdintr: default\n");
16057 		sd_pkt_reason_default(un, bp, xp, pktp);
16058 		break;
16059 	}
16060 
16061 exit:
16062 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16063 
16064 	/* Decrement counter to indicate that the callback routine is done. */
16065 	un->un_in_callback--;
16066 	ASSERT(un->un_in_callback >= 0);
16067 
16068 	/*
16069 	 * At this point, the pkt has been dispatched, ie, it is either
16070 	 * being re-tried or has been returned to its caller and should
16071 	 * not be referenced.
16072 	 */
16073 
16074 	mutex_exit(SD_MUTEX(un));
16075 }
16076 
16077 
16078 /*
16079  *    Function: sd_print_incomplete_msg
16080  *
16081  * Description: Prints the error message for a CMD_INCOMPLETE error.
16082  *
16083  *   Arguments: un - ptr to associated softstate for the device.
16084  *		bp - ptr to the buf(9S) for the command.
16085  *		arg - message string ptr
16086  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16087  *			or SD_NO_RETRY_ISSUED.
16088  *
16089  *     Context: May be called under interrupt context
16090  */
16091 
16092 static void
16093 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16094 {
16095 	struct scsi_pkt	*pktp;
16096 	char	*msgp;
16097 	char	*cmdp = arg;
16098 
16099 	ASSERT(un != NULL);
16100 	ASSERT(mutex_owned(SD_MUTEX(un)));
16101 	ASSERT(bp != NULL);
16102 	ASSERT(arg != NULL);
16103 	pktp = SD_GET_PKTP(bp);
16104 	ASSERT(pktp != NULL);
16105 
16106 	switch (code) {
16107 	case SD_DELAYED_RETRY_ISSUED:
16108 	case SD_IMMEDIATE_RETRY_ISSUED:
16109 		msgp = "retrying";
16110 		break;
16111 	case SD_NO_RETRY_ISSUED:
16112 	default:
16113 		msgp = "giving up";
16114 		break;
16115 	}
16116 
16117 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16118 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16119 		    "incomplete %s- %s\n", cmdp, msgp);
16120 	}
16121 }
16122 
16123 
16124 
16125 /*
16126  *    Function: sd_pkt_status_good
16127  *
16128  * Description: Processing for a STATUS_GOOD code in pkt_status.
16129  *
16130  *     Context: May be called under interrupt context
16131  */
16132 
16133 static void
16134 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16135 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16136 {
16137 	char	*cmdp;
16138 
16139 	ASSERT(un != NULL);
16140 	ASSERT(mutex_owned(SD_MUTEX(un)));
16141 	ASSERT(bp != NULL);
16142 	ASSERT(xp != NULL);
16143 	ASSERT(pktp != NULL);
16144 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16145 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16146 	ASSERT(pktp->pkt_resid != 0);
16147 
16148 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16149 
16150 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16151 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16152 	case SCMD_READ:
16153 		cmdp = "read";
16154 		break;
16155 	case SCMD_WRITE:
16156 		cmdp = "write";
16157 		break;
16158 	default:
16159 		SD_UPDATE_B_RESID(bp, pktp);
16160 		sd_return_command(un, bp);
16161 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16162 		return;
16163 	}
16164 
16165 	/*
16166 	 * See if we can retry the read/write, preferrably immediately.
16167 	 * If retries are exhaused, then sd_retry_command() will update
16168 	 * the b_resid count.
16169 	 */
16170 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16171 	    cmdp, EIO, (clock_t)0, NULL);
16172 
16173 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16174 }
16175 
16176 
16177 
16178 
16179 
16180 /*
16181  *    Function: sd_handle_request_sense
16182  *
16183  * Description: Processing for non-auto Request Sense command.
16184  *
16185  *   Arguments: un - ptr to associated softstate
16186  *		sense_bp - ptr to buf(9S) for the RQS command
16187  *		sense_xp - ptr to the sd_xbuf for the RQS command
16188  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16189  *
16190  *     Context: May be called under interrupt context
16191  */
16192 
16193 static void
16194 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16195 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16196 {
16197 	struct buf	*cmd_bp;	/* buf for the original command */
16198 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16199 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16200 
16201 	ASSERT(un != NULL);
16202 	ASSERT(mutex_owned(SD_MUTEX(un)));
16203 	ASSERT(sense_bp != NULL);
16204 	ASSERT(sense_xp != NULL);
16205 	ASSERT(sense_pktp != NULL);
16206 
16207 	/*
16208 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16209 	 * RQS command and not the original command.
16210 	 */
16211 	ASSERT(sense_pktp == un->un_rqs_pktp);
16212 	ASSERT(sense_bp   == un->un_rqs_bp);
16213 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16214 	    (FLAG_SENSING | FLAG_HEAD));
16215 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16216 	    FLAG_SENSING) == FLAG_SENSING);
16217 
16218 	/* These are the bp, xp, and pktp for the original command */
16219 	cmd_bp = sense_xp->xb_sense_bp;
16220 	cmd_xp = SD_GET_XBUF(cmd_bp);
16221 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16222 
16223 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16224 		/*
16225 		 * The REQUEST SENSE command failed.  Release the REQUEST
16226 		 * SENSE command for re-use, get back the bp for the original
16227 		 * command, and attempt to re-try the original command if
16228 		 * FLAG_DIAGNOSE is not set in the original packet.
16229 		 */
16230 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16231 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16232 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16233 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16234 			    NULL, NULL, EIO, (clock_t)0, NULL);
16235 			return;
16236 		}
16237 	}
16238 
16239 	/*
16240 	 * Save the relevant sense info into the xp for the original cmd.
16241 	 *
16242 	 * Note: if the request sense failed the state info will be zero
16243 	 * as set in sd_mark_rqs_busy()
16244 	 */
16245 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16246 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16247 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16248 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16249 
16250 	/*
16251 	 *  Free up the RQS command....
16252 	 *  NOTE:
16253 	 *	Must do this BEFORE calling sd_validate_sense_data!
16254 	 *	sd_validate_sense_data may return the original command in
16255 	 *	which case the pkt will be freed and the flags can no
16256 	 *	longer be touched.
16257 	 *	SD_MUTEX is held through this process until the command
16258 	 *	is dispatched based upon the sense data, so there are
16259 	 *	no race conditions.
16260 	 */
16261 	(void) sd_mark_rqs_idle(un, sense_xp);
16262 
16263 	/*
16264 	 * For a retryable command see if we have valid sense data, if so then
16265 	 * turn it over to sd_decode_sense() to figure out the right course of
16266 	 * action. Just fail a non-retryable command.
16267 	 */
16268 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16269 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16270 		    SD_SENSE_DATA_IS_VALID) {
16271 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16272 		}
16273 	} else {
16274 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16275 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16276 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16277 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16278 		sd_return_failed_command(un, cmd_bp, EIO);
16279 	}
16280 }
16281 
16282 
16283 
16284 
16285 /*
16286  *    Function: sd_handle_auto_request_sense
16287  *
16288  * Description: Processing for auto-request sense information.
16289  *
16290  *   Arguments: un - ptr to associated softstate
16291  *		bp - ptr to buf(9S) for the command
16292  *		xp - ptr to the sd_xbuf for the command
16293  *		pktp - ptr to the scsi_pkt(9S) for the command
16294  *
16295  *     Context: May be called under interrupt context
16296  */
16297 
16298 static void
16299 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16300 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16301 {
16302 	struct scsi_arq_status *asp;
16303 
16304 	ASSERT(un != NULL);
16305 	ASSERT(mutex_owned(SD_MUTEX(un)));
16306 	ASSERT(bp != NULL);
16307 	ASSERT(xp != NULL);
16308 	ASSERT(pktp != NULL);
16309 	ASSERT(pktp != un->un_rqs_pktp);
16310 	ASSERT(bp   != un->un_rqs_bp);
16311 
16312 	/*
16313 	 * For auto-request sense, we get a scsi_arq_status back from
16314 	 * the HBA, with the sense data in the sts_sensedata member.
16315 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16316 	 */
16317 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16318 
16319 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16320 		/*
16321 		 * The auto REQUEST SENSE failed; see if we can re-try
16322 		 * the original command.
16323 		 */
16324 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16325 		    "auto request sense failed (reason=%s)\n",
16326 		    scsi_rname(asp->sts_rqpkt_reason));
16327 
16328 		sd_reset_target(un, pktp);
16329 
16330 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16331 		    NULL, NULL, EIO, (clock_t)0, NULL);
16332 		return;
16333 	}
16334 
16335 	/* Save the relevant sense info into the xp for the original cmd. */
16336 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16337 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16338 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16339 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16340 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16341 
16342 	/*
16343 	 * See if we have valid sense data, if so then turn it over to
16344 	 * sd_decode_sense() to figure out the right course of action.
16345 	 */
16346 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16347 		sd_decode_sense(un, bp, xp, pktp);
16348 	}
16349 }
16350 
16351 
16352 /*
16353  *    Function: sd_print_sense_failed_msg
16354  *
16355  * Description: Print log message when RQS has failed.
16356  *
16357  *   Arguments: un - ptr to associated softstate
16358  *		bp - ptr to buf(9S) for the command
16359  *		arg - generic message string ptr
16360  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16361  *			or SD_NO_RETRY_ISSUED
16362  *
16363  *     Context: May be called from interrupt context
16364  */
16365 
16366 static void
16367 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16368 	int code)
16369 {
16370 	char	*msgp = arg;
16371 
16372 	ASSERT(un != NULL);
16373 	ASSERT(mutex_owned(SD_MUTEX(un)));
16374 	ASSERT(bp != NULL);
16375 
16376 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16377 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16378 	}
16379 }
16380 
16381 
16382 /*
16383  *    Function: sd_validate_sense_data
16384  *
16385  * Description: Check the given sense data for validity.
16386  *		If the sense data is not valid, the command will
16387  *		be either failed or retried!
16388  *
16389  * Return Code: SD_SENSE_DATA_IS_INVALID
16390  *		SD_SENSE_DATA_IS_VALID
16391  *
16392  *     Context: May be called from interrupt context
16393  */
16394 
16395 static int
16396 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16397 {
16398 	struct scsi_extended_sense *esp;
16399 	struct	scsi_pkt *pktp;
16400 	size_t	actual_len;
16401 	char	*msgp = NULL;
16402 
16403 	ASSERT(un != NULL);
16404 	ASSERT(mutex_owned(SD_MUTEX(un)));
16405 	ASSERT(bp != NULL);
16406 	ASSERT(bp != un->un_rqs_bp);
16407 	ASSERT(xp != NULL);
16408 
16409 	pktp = SD_GET_PKTP(bp);
16410 	ASSERT(pktp != NULL);
16411 
16412 	/*
16413 	 * Check the status of the RQS command (auto or manual).
16414 	 */
16415 	switch (xp->xb_sense_status & STATUS_MASK) {
16416 	case STATUS_GOOD:
16417 		break;
16418 
16419 	case STATUS_RESERVATION_CONFLICT:
16420 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16421 		return (SD_SENSE_DATA_IS_INVALID);
16422 
16423 	case STATUS_BUSY:
16424 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16425 		    "Busy Status on REQUEST SENSE\n");
16426 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16427 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16428 		return (SD_SENSE_DATA_IS_INVALID);
16429 
16430 	case STATUS_QFULL:
16431 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16432 		    "QFULL Status on REQUEST SENSE\n");
16433 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16434 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16435 		return (SD_SENSE_DATA_IS_INVALID);
16436 
16437 	case STATUS_CHECK:
16438 	case STATUS_TERMINATED:
16439 		msgp = "Check Condition on REQUEST SENSE\n";
16440 		goto sense_failed;
16441 
16442 	default:
16443 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16444 		goto sense_failed;
16445 	}
16446 
16447 	/*
16448 	 * See if we got the minimum required amount of sense data.
16449 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16450 	 * or less.
16451 	 */
16452 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16453 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16454 	    (actual_len == 0)) {
16455 		msgp = "Request Sense couldn't get sense data\n";
16456 		goto sense_failed;
16457 	}
16458 
16459 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16460 		msgp = "Not enough sense information\n";
16461 		goto sense_failed;
16462 	}
16463 
16464 	/*
16465 	 * We require the extended sense data
16466 	 */
16467 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16468 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16469 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16470 			static char tmp[8];
16471 			static char buf[148];
16472 			char *p = (char *)(xp->xb_sense_data);
16473 			int i;
16474 
16475 			mutex_enter(&sd_sense_mutex);
16476 			(void) strcpy(buf, "undecodable sense information:");
16477 			for (i = 0; i < actual_len; i++) {
16478 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16479 				(void) strcpy(&buf[strlen(buf)], tmp);
16480 			}
16481 			i = strlen(buf);
16482 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16483 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16484 			mutex_exit(&sd_sense_mutex);
16485 		}
16486 		/* Note: Legacy behavior, fail the command with no retry */
16487 		sd_return_failed_command(un, bp, EIO);
16488 		return (SD_SENSE_DATA_IS_INVALID);
16489 	}
16490 
16491 	/*
16492 	 * Check that es_code is valid (es_class concatenated with es_code
16493 	 * make up the "response code" field.  es_class will always be 7, so
16494 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16495 	 * format.
16496 	 */
16497 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16498 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16499 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16500 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16501 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16502 		goto sense_failed;
16503 	}
16504 
16505 	return (SD_SENSE_DATA_IS_VALID);
16506 
16507 sense_failed:
16508 	/*
16509 	 * If the request sense failed (for whatever reason), attempt
16510 	 * to retry the original command.
16511 	 */
16512 #if defined(__i386) || defined(__amd64)
16513 	/*
16514 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16515 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16516 	 * for both SCSI/FC.
16517 	 * The SD_RETRY_DELAY value need to be adjusted here
16518 	 * when SD_RETRY_DELAY change in sddef.h
16519 	 */
16520 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16521 	    sd_print_sense_failed_msg, msgp, EIO,
16522 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16523 #else
16524 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16525 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16526 #endif
16527 
16528 	return (SD_SENSE_DATA_IS_INVALID);
16529 }
16530 
16531 
16532 
16533 /*
16534  *    Function: sd_decode_sense
16535  *
16536  * Description: Take recovery action(s) when SCSI Sense Data is received.
16537  *
16538  *     Context: Interrupt context.
16539  */
16540 
16541 static void
16542 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16543 	struct scsi_pkt *pktp)
16544 {
16545 	struct scsi_extended_sense *esp;
16546 	struct scsi_descr_sense_hdr *sdsp;
16547 	uint8_t asc, ascq, sense_key;
16548 
16549 	ASSERT(un != NULL);
16550 	ASSERT(mutex_owned(SD_MUTEX(un)));
16551 	ASSERT(bp != NULL);
16552 	ASSERT(bp != un->un_rqs_bp);
16553 	ASSERT(xp != NULL);
16554 	ASSERT(pktp != NULL);
16555 
16556 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16557 
16558 	switch (esp->es_code) {
16559 	case CODE_FMT_DESCR_CURRENT:
16560 	case CODE_FMT_DESCR_DEFERRED:
16561 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16562 		sense_key = sdsp->ds_key;
16563 		asc = sdsp->ds_add_code;
16564 		ascq = sdsp->ds_qual_code;
16565 		break;
16566 	case CODE_FMT_VENDOR_SPECIFIC:
16567 	case CODE_FMT_FIXED_CURRENT:
16568 	case CODE_FMT_FIXED_DEFERRED:
16569 	default:
16570 		sense_key = esp->es_key;
16571 		asc = esp->es_add_code;
16572 		ascq = esp->es_qual_code;
16573 		break;
16574 	}
16575 
16576 	switch (sense_key) {
16577 	case KEY_NO_SENSE:
16578 		sd_sense_key_no_sense(un, bp, xp, pktp);
16579 		break;
16580 	case KEY_RECOVERABLE_ERROR:
16581 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16582 		break;
16583 	case KEY_NOT_READY:
16584 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16585 		break;
16586 	case KEY_MEDIUM_ERROR:
16587 	case KEY_HARDWARE_ERROR:
16588 		sd_sense_key_medium_or_hardware_error(un,
16589 		    sense_key, asc, bp, xp, pktp);
16590 		break;
16591 	case KEY_ILLEGAL_REQUEST:
16592 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16593 		break;
16594 	case KEY_UNIT_ATTENTION:
16595 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16596 		break;
16597 	case KEY_WRITE_PROTECT:
16598 	case KEY_VOLUME_OVERFLOW:
16599 	case KEY_MISCOMPARE:
16600 		sd_sense_key_fail_command(un, bp, xp, pktp);
16601 		break;
16602 	case KEY_BLANK_CHECK:
16603 		sd_sense_key_blank_check(un, bp, xp, pktp);
16604 		break;
16605 	case KEY_ABORTED_COMMAND:
16606 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16607 		break;
16608 	case KEY_VENDOR_UNIQUE:
16609 	case KEY_COPY_ABORTED:
16610 	case KEY_EQUAL:
16611 	case KEY_RESERVED:
16612 	default:
16613 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16614 		break;
16615 	}
16616 }
16617 
16618 
16619 /*
16620  *    Function: sd_dump_memory
16621  *
16622  * Description: Debug logging routine to print the contents of a user provided
16623  *		buffer. The output of the buffer is broken up into 256 byte
16624  *		segments due to a size constraint of the scsi_log.
16625  *		implementation.
16626  *
16627  *   Arguments: un - ptr to softstate
16628  *		comp - component mask
16629  *		title - "title" string to preceed data when printed
16630  *		data - ptr to data block to be printed
16631  *		len - size of data block to be printed
16632  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16633  *
16634  *     Context: May be called from interrupt context
16635  */
16636 
16637 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16638 
16639 static char *sd_dump_format_string[] = {
16640 		" 0x%02x",
16641 		" %c"
16642 };
16643 
16644 static void
16645 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16646     int len, int fmt)
16647 {
16648 	int	i, j;
16649 	int	avail_count;
16650 	int	start_offset;
16651 	int	end_offset;
16652 	size_t	entry_len;
16653 	char	*bufp;
16654 	char	*local_buf;
16655 	char	*format_string;
16656 
16657 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
16658 
16659 	/*
16660 	 * In the debug version of the driver, this function is called from a
16661 	 * number of places which are NOPs in the release driver.
16662 	 * The debug driver therefore has additional methods of filtering
16663 	 * debug output.
16664 	 */
16665 #ifdef SDDEBUG
16666 	/*
16667 	 * In the debug version of the driver we can reduce the amount of debug
16668 	 * messages by setting sd_error_level to something other than
16669 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
16670 	 * sd_component_mask.
16671 	 */
16672 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
16673 	    (sd_error_level != SCSI_ERR_ALL)) {
16674 		return;
16675 	}
16676 	if (((sd_component_mask & comp) == 0) ||
16677 	    (sd_error_level != SCSI_ERR_ALL)) {
16678 		return;
16679 	}
16680 #else
16681 	if (sd_error_level != SCSI_ERR_ALL) {
16682 		return;
16683 	}
16684 #endif
16685 
16686 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
16687 	bufp = local_buf;
16688 	/*
16689 	 * Available length is the length of local_buf[], minus the
16690 	 * length of the title string, minus one for the ":", minus
16691 	 * one for the newline, minus one for the NULL terminator.
16692 	 * This gives the #bytes available for holding the printed
16693 	 * values from the given data buffer.
16694 	 */
16695 	if (fmt == SD_LOG_HEX) {
16696 		format_string = sd_dump_format_string[0];
16697 	} else /* SD_LOG_CHAR */ {
16698 		format_string = sd_dump_format_string[1];
16699 	}
16700 	/*
16701 	 * Available count is the number of elements from the given
16702 	 * data buffer that we can fit into the available length.
16703 	 * This is based upon the size of the format string used.
16704 	 * Make one entry and find it's size.
16705 	 */
16706 	(void) sprintf(bufp, format_string, data[0]);
16707 	entry_len = strlen(bufp);
16708 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
16709 
16710 	j = 0;
16711 	while (j < len) {
16712 		bufp = local_buf;
16713 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
16714 		start_offset = j;
16715 
16716 		end_offset = start_offset + avail_count;
16717 
16718 		(void) sprintf(bufp, "%s:", title);
16719 		bufp += strlen(bufp);
16720 		for (i = start_offset; ((i < end_offset) && (j < len));
16721 		    i++, j++) {
16722 			(void) sprintf(bufp, format_string, data[i]);
16723 			bufp += entry_len;
16724 		}
16725 		(void) sprintf(bufp, "\n");
16726 
16727 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
16728 	}
16729 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
16730 }
16731 
16732 /*
16733  *    Function: sd_print_sense_msg
16734  *
16735  * Description: Log a message based upon the given sense data.
16736  *
16737  *   Arguments: un - ptr to associated softstate
16738  *		bp - ptr to buf(9S) for the command
16739  *		arg - ptr to associate sd_sense_info struct
16740  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16741  *			or SD_NO_RETRY_ISSUED
16742  *
16743  *     Context: May be called from interrupt context
16744  */
16745 
16746 static void
16747 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16748 {
16749 	struct sd_xbuf	*xp;
16750 	struct scsi_pkt	*pktp;
16751 	struct scsi_extended_sense *sensep;
16752 	daddr_t request_blkno;
16753 	diskaddr_t err_blkno;
16754 	int severity;
16755 	int pfa_flag;
16756 	int fixed_format = TRUE;
16757 	extern struct scsi_key_strings scsi_cmds[];
16758 
16759 	ASSERT(un != NULL);
16760 	ASSERT(mutex_owned(SD_MUTEX(un)));
16761 	ASSERT(bp != NULL);
16762 	xp = SD_GET_XBUF(bp);
16763 	ASSERT(xp != NULL);
16764 	pktp = SD_GET_PKTP(bp);
16765 	ASSERT(pktp != NULL);
16766 	ASSERT(arg != NULL);
16767 
16768 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
16769 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
16770 
16771 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
16772 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
16773 		severity = SCSI_ERR_RETRYABLE;
16774 	}
16775 
16776 	/* Use absolute block number for the request block number */
16777 	request_blkno = xp->xb_blkno;
16778 
16779 	/*
16780 	 * Now try to get the error block number from the sense data
16781 	 */
16782 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
16783 	switch (sensep->es_code) {
16784 	case CODE_FMT_DESCR_CURRENT:
16785 	case CODE_FMT_DESCR_DEFERRED:
16786 		err_blkno =
16787 		    sd_extract_sense_info_descr(
16788 			(struct scsi_descr_sense_hdr *)sensep);
16789 		fixed_format = FALSE;
16790 		break;
16791 	case CODE_FMT_FIXED_CURRENT:
16792 	case CODE_FMT_FIXED_DEFERRED:
16793 	case CODE_FMT_VENDOR_SPECIFIC:
16794 	default:
16795 		/*
16796 		 * With the es_valid bit set, we assume that the error
16797 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
16798 		 * greater than 0xffffffff then the target *should* have used
16799 		 * a descriptor sense format (or it shouldn't have set
16800 		 * the es_valid bit), and we may as well ignore the
16801 		 * 32-bit value.
16802 		 */
16803 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
16804 			err_blkno = (diskaddr_t)
16805 			    ((sensep->es_info_1 << 24) |
16806 			    (sensep->es_info_2 << 16) |
16807 			    (sensep->es_info_3 << 8)  |
16808 			    (sensep->es_info_4));
16809 		} else {
16810 			err_blkno = (diskaddr_t)-1;
16811 		}
16812 		break;
16813 	}
16814 
16815 	if (err_blkno == (diskaddr_t)-1) {
16816 		/*
16817 		 * Without the es_valid bit set (for fixed format) or an
16818 		 * information descriptor (for descriptor format) we cannot
16819 		 * be certain of the error blkno, so just use the
16820 		 * request_blkno.
16821 		 */
16822 		err_blkno = (diskaddr_t)request_blkno;
16823 	} else {
16824 		/*
16825 		 * We retrieved the error block number from the information
16826 		 * portion of the sense data.
16827 		 *
16828 		 * For USCSI commands we are better off using the error
16829 		 * block no. as the requested block no. (This is the best
16830 		 * we can estimate.)
16831 		 */
16832 		if ((SD_IS_BUFIO(xp) == FALSE) &&
16833 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
16834 			request_blkno = err_blkno;
16835 		}
16836 	}
16837 
16838 	/*
16839 	 * The following will log the buffer contents for the release driver
16840 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
16841 	 * level is set to verbose.
16842 	 */
16843 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
16844 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16845 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
16846 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
16847 
16848 	if (pfa_flag == FALSE) {
16849 		/* This is normally only set for USCSI */
16850 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
16851 			return;
16852 		}
16853 
16854 		if ((SD_IS_BUFIO(xp) == TRUE) &&
16855 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
16856 		    (severity < sd_error_level))) {
16857 			return;
16858 		}
16859 	}
16860 
16861 	/*
16862 	 * If the data is fixed format then check for Sonoma Failover,
16863 	 * and keep a count of how many failed I/O's.  We should not have
16864 	 * to worry about Sonoma returning descriptor format sense data,
16865 	 * and asc/ascq are in a different location in descriptor format.
16866 	 */
16867 	if (fixed_format &&
16868 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
16869 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
16870 		un->un_sonoma_failure_count++;
16871 		if (un->un_sonoma_failure_count > 1) {
16872 			return;
16873 		}
16874 	}
16875 
16876 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
16877 	    request_blkno, err_blkno, scsi_cmds, sensep,
16878 	    un->un_additional_codes, NULL);
16879 }
16880 
16881 /*
16882  *    Function: sd_extract_sense_info_descr
16883  *
16884  * Description: Retrieve "information" field from descriptor format
16885  *              sense data.  Iterates through each sense descriptor
16886  *              looking for the information descriptor and returns
16887  *              the information field from that descriptor.
16888  *
16889  *     Context: May be called from interrupt context
16890  */
16891 
16892 static diskaddr_t
16893 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
16894 {
16895 	diskaddr_t result;
16896 	uint8_t *descr_offset;
16897 	int valid_sense_length;
16898 	struct scsi_information_sense_descr *isd;
16899 
16900 	/*
16901 	 * Initialize result to -1 indicating there is no information
16902 	 * descriptor
16903 	 */
16904 	result = (diskaddr_t)-1;
16905 
16906 	/*
16907 	 * The first descriptor will immediately follow the header
16908 	 */
16909 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
16910 
16911 	/*
16912 	 * Calculate the amount of valid sense data
16913 	 */
16914 	valid_sense_length =
16915 	    min((sizeof (struct scsi_descr_sense_hdr) +
16916 	    sdsp->ds_addl_sense_length),
16917 	    SENSE_LENGTH);
16918 
16919 	/*
16920 	 * Iterate through the list of descriptors, stopping when we
16921 	 * run out of sense data
16922 	 */
16923 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
16924 	    (uint8_t *)sdsp + valid_sense_length) {
16925 		/*
16926 		 * Check if this is an information descriptor.  We can
16927 		 * use the scsi_information_sense_descr structure as a
16928 		 * template sense the first two fields are always the
16929 		 * same
16930 		 */
16931 		isd = (struct scsi_information_sense_descr *)descr_offset;
16932 		if (isd->isd_descr_type == DESCR_INFORMATION) {
16933 			/*
16934 			 * Found an information descriptor.  Copy the
16935 			 * information field.  There will only be one
16936 			 * information descriptor so we can stop looking.
16937 			 */
16938 			result =
16939 			    (((diskaddr_t)isd->isd_information[0] << 56) |
16940 				((diskaddr_t)isd->isd_information[1] << 48) |
16941 				((diskaddr_t)isd->isd_information[2] << 40) |
16942 				((diskaddr_t)isd->isd_information[3] << 32) |
16943 				((diskaddr_t)isd->isd_information[4] << 24) |
16944 				((diskaddr_t)isd->isd_information[5] << 16) |
16945 				((diskaddr_t)isd->isd_information[6] << 8)  |
16946 				((diskaddr_t)isd->isd_information[7]));
16947 			break;
16948 		}
16949 
16950 		/*
16951 		 * Get pointer to the next descriptor.  The "additional
16952 		 * length" field holds the length of the descriptor except
16953 		 * for the "type" and "additional length" fields, so
16954 		 * we need to add 2 to get the total length.
16955 		 */
16956 		descr_offset += (isd->isd_addl_length + 2);
16957 	}
16958 
16959 	return (result);
16960 }
16961 
16962 /*
16963  *    Function: sd_sense_key_no_sense
16964  *
16965  * Description: Recovery action when sense data was not received.
16966  *
16967  *     Context: May be called from interrupt context
16968  */
16969 
16970 static void
16971 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
16972 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16973 {
16974 	struct sd_sense_info	si;
16975 
16976 	ASSERT(un != NULL);
16977 	ASSERT(mutex_owned(SD_MUTEX(un)));
16978 	ASSERT(bp != NULL);
16979 	ASSERT(xp != NULL);
16980 	ASSERT(pktp != NULL);
16981 
16982 	si.ssi_severity = SCSI_ERR_FATAL;
16983 	si.ssi_pfa_flag = FALSE;
16984 
16985 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16986 
16987 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16988 		&si, EIO, (clock_t)0, NULL);
16989 }
16990 
16991 
16992 /*
16993  *    Function: sd_sense_key_recoverable_error
16994  *
16995  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
16996  *
16997  *     Context: May be called from interrupt context
16998  */
16999 
17000 static void
17001 sd_sense_key_recoverable_error(struct sd_lun *un,
17002 	uint8_t asc,
17003 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17004 {
17005 	struct sd_sense_info	si;
17006 
17007 	ASSERT(un != NULL);
17008 	ASSERT(mutex_owned(SD_MUTEX(un)));
17009 	ASSERT(bp != NULL);
17010 	ASSERT(xp != NULL);
17011 	ASSERT(pktp != NULL);
17012 
17013 	/*
17014 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17015 	 */
17016 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17017 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17018 		si.ssi_severity = SCSI_ERR_INFO;
17019 		si.ssi_pfa_flag = TRUE;
17020 	} else {
17021 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17022 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17023 		si.ssi_severity = SCSI_ERR_RECOVERED;
17024 		si.ssi_pfa_flag = FALSE;
17025 	}
17026 
17027 	if (pktp->pkt_resid == 0) {
17028 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17029 		sd_return_command(un, bp);
17030 		return;
17031 	}
17032 
17033 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17034 	    &si, EIO, (clock_t)0, NULL);
17035 }
17036 
17037 
17038 
17039 
17040 /*
17041  *    Function: sd_sense_key_not_ready
17042  *
17043  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17044  *
17045  *     Context: May be called from interrupt context
17046  */
17047 
17048 static void
17049 sd_sense_key_not_ready(struct sd_lun *un,
17050 	uint8_t asc, uint8_t ascq,
17051 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17052 {
17053 	struct sd_sense_info	si;
17054 
17055 	ASSERT(un != NULL);
17056 	ASSERT(mutex_owned(SD_MUTEX(un)));
17057 	ASSERT(bp != NULL);
17058 	ASSERT(xp != NULL);
17059 	ASSERT(pktp != NULL);
17060 
17061 	si.ssi_severity = SCSI_ERR_FATAL;
17062 	si.ssi_pfa_flag = FALSE;
17063 
17064 	/*
17065 	 * Update error stats after first NOT READY error. Disks may have
17066 	 * been powered down and may need to be restarted.  For CDROMs,
17067 	 * report NOT READY errors only if media is present.
17068 	 */
17069 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17070 	    (xp->xb_retry_count > 0)) {
17071 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17072 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17073 	}
17074 
17075 	/*
17076 	 * Just fail if the "not ready" retry limit has been reached.
17077 	 */
17078 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17079 		/* Special check for error message printing for removables. */
17080 		if ((ISREMOVABLE(un)) && (asc == 0x04) &&
17081 		    (ascq >= 0x04)) {
17082 			si.ssi_severity = SCSI_ERR_ALL;
17083 		}
17084 		goto fail_command;
17085 	}
17086 
17087 	/*
17088 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17089 	 * what to do.
17090 	 */
17091 	switch (asc) {
17092 	case 0x04:	/* LOGICAL UNIT NOT READY */
17093 		/*
17094 		 * disk drives that don't spin up result in a very long delay
17095 		 * in format without warning messages. We will log a message
17096 		 * if the error level is set to verbose.
17097 		 */
17098 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17099 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17100 			    "logical unit not ready, resetting disk\n");
17101 		}
17102 
17103 		/*
17104 		 * There are different requirements for CDROMs and disks for
17105 		 * the number of retries.  If a CD-ROM is giving this, it is
17106 		 * probably reading TOC and is in the process of getting
17107 		 * ready, so we should keep on trying for a long time to make
17108 		 * sure that all types of media are taken in account (for
17109 		 * some media the drive takes a long time to read TOC).  For
17110 		 * disks we do not want to retry this too many times as this
17111 		 * can cause a long hang in format when the drive refuses to
17112 		 * spin up (a very common failure).
17113 		 */
17114 		switch (ascq) {
17115 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17116 			/*
17117 			 * Disk drives frequently refuse to spin up which
17118 			 * results in a very long hang in format without
17119 			 * warning messages.
17120 			 *
17121 			 * Note: This code preserves the legacy behavior of
17122 			 * comparing xb_retry_count against zero for fibre
17123 			 * channel targets instead of comparing against the
17124 			 * un_reset_retry_count value.  The reason for this
17125 			 * discrepancy has been so utterly lost beneath the
17126 			 * Sands of Time that even Indiana Jones could not
17127 			 * find it.
17128 			 */
17129 			if (un->un_f_is_fibre == TRUE) {
17130 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17131 					(xp->xb_retry_count > 0)) &&
17132 					(un->un_startstop_timeid == NULL)) {
17133 					scsi_log(SD_DEVINFO(un), sd_label,
17134 					CE_WARN, "logical unit not ready, "
17135 					"resetting disk\n");
17136 					sd_reset_target(un, pktp);
17137 				}
17138 			} else {
17139 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17140 					(xp->xb_retry_count >
17141 					un->un_reset_retry_count)) &&
17142 					(un->un_startstop_timeid == NULL)) {
17143 					scsi_log(SD_DEVINFO(un), sd_label,
17144 					CE_WARN, "logical unit not ready, "
17145 					"resetting disk\n");
17146 					sd_reset_target(un, pktp);
17147 				}
17148 			}
17149 			break;
17150 
17151 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17152 			/*
17153 			 * If the target is in the process of becoming
17154 			 * ready, just proceed with the retry. This can
17155 			 * happen with CD-ROMs that take a long time to
17156 			 * read TOC after a power cycle or reset.
17157 			 */
17158 			goto do_retry;
17159 
17160 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17161 			break;
17162 
17163 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17164 			/*
17165 			 * Retries cannot help here so just fail right away.
17166 			 */
17167 			goto fail_command;
17168 
17169 		case 0x88:
17170 			/*
17171 			 * Vendor-unique code for T3/T4: it indicates a
17172 			 * path problem in a mutipathed config, but as far as
17173 			 * the target driver is concerned it equates to a fatal
17174 			 * error, so we should just fail the command right away
17175 			 * (without printing anything to the console). If this
17176 			 * is not a T3/T4, fall thru to the default recovery
17177 			 * action.
17178 			 * T3/T4 is FC only, don't need to check is_fibre
17179 			 */
17180 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17181 				sd_return_failed_command(un, bp, EIO);
17182 				return;
17183 			}
17184 			/* FALLTHRU */
17185 
17186 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17187 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17188 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17189 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17190 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17191 		default:    /* Possible future codes in SCSI spec? */
17192 			/*
17193 			 * For removable-media devices, do not retry if
17194 			 * ASCQ > 2 as these result mostly from USCSI commands
17195 			 * on MMC devices issued to check status of an
17196 			 * operation initiated in immediate mode.  Also for
17197 			 * ASCQ >= 4 do not print console messages as these
17198 			 * mainly represent a user-initiated operation
17199 			 * instead of a system failure.
17200 			 */
17201 			if (ISREMOVABLE(un)) {
17202 				si.ssi_severity = SCSI_ERR_ALL;
17203 				goto fail_command;
17204 			}
17205 			break;
17206 		}
17207 
17208 		/*
17209 		 * As part of our recovery attempt for the NOT READY
17210 		 * condition, we issue a START STOP UNIT command. However
17211 		 * we want to wait for a short delay before attempting this
17212 		 * as there may still be more commands coming back from the
17213 		 * target with the check condition. To do this we use
17214 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17215 		 * the delay interval expires. (sd_start_stop_unit_callback()
17216 		 * dispatches sd_start_stop_unit_task(), which will issue
17217 		 * the actual START STOP UNIT command. The delay interval
17218 		 * is one-half of the delay that we will use to retry the
17219 		 * command that generated the NOT READY condition.
17220 		 *
17221 		 * Note that we could just dispatch sd_start_stop_unit_task()
17222 		 * from here and allow it to sleep for the delay interval,
17223 		 * but then we would be tying up the taskq thread
17224 		 * uncesessarily for the duration of the delay.
17225 		 *
17226 		 * Do not issue the START STOP UNIT if the current command
17227 		 * is already a START STOP UNIT.
17228 		 */
17229 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17230 			break;
17231 		}
17232 
17233 		/*
17234 		 * Do not schedule the timeout if one is already pending.
17235 		 */
17236 		if (un->un_startstop_timeid != NULL) {
17237 			SD_INFO(SD_LOG_ERROR, un,
17238 			    "sd_sense_key_not_ready: restart already issued to"
17239 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17240 			    ddi_get_instance(SD_DEVINFO(un)));
17241 			break;
17242 		}
17243 
17244 		/*
17245 		 * Schedule the START STOP UNIT command, then queue the command
17246 		 * for a retry.
17247 		 *
17248 		 * Note: A timeout is not scheduled for this retry because we
17249 		 * want the retry to be serial with the START_STOP_UNIT. The
17250 		 * retry will be started when the START_STOP_UNIT is completed
17251 		 * in sd_start_stop_unit_task.
17252 		 */
17253 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17254 		    un, SD_BSY_TIMEOUT / 2);
17255 		xp->xb_retry_count++;
17256 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17257 		return;
17258 
17259 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17260 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17261 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17262 			    "unit does not respond to selection\n");
17263 		}
17264 		break;
17265 
17266 	case 0x3A:	/* MEDIUM NOT PRESENT */
17267 		if (sd_error_level >= SCSI_ERR_FATAL) {
17268 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17269 			    "Caddy not inserted in drive\n");
17270 		}
17271 
17272 		sr_ejected(un);
17273 		un->un_mediastate = DKIO_EJECTED;
17274 		/* The state has changed, inform the media watch routines */
17275 		cv_broadcast(&un->un_state_cv);
17276 		/* Just fail if no media is present in the drive. */
17277 		goto fail_command;
17278 
17279 	default:
17280 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17281 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17282 			    "Unit not Ready. Additional sense code 0x%x\n",
17283 			    asc);
17284 		}
17285 		break;
17286 	}
17287 
17288 do_retry:
17289 
17290 	/*
17291 	 * Retry the command, as some targets may report NOT READY for
17292 	 * several seconds after being reset.
17293 	 */
17294 	xp->xb_retry_count++;
17295 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17296 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17297 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17298 
17299 	return;
17300 
17301 fail_command:
17302 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17303 	sd_return_failed_command(un, bp, EIO);
17304 }
17305 
17306 
17307 
17308 /*
17309  *    Function: sd_sense_key_medium_or_hardware_error
17310  *
17311  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17312  *		sense key.
17313  *
17314  *     Context: May be called from interrupt context
17315  */
17316 
17317 static void
17318 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17319 	int sense_key, uint8_t asc,
17320 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17321 {
17322 	struct sd_sense_info	si;
17323 
17324 	ASSERT(un != NULL);
17325 	ASSERT(mutex_owned(SD_MUTEX(un)));
17326 	ASSERT(bp != NULL);
17327 	ASSERT(xp != NULL);
17328 	ASSERT(pktp != NULL);
17329 
17330 	si.ssi_severity = SCSI_ERR_FATAL;
17331 	si.ssi_pfa_flag = FALSE;
17332 
17333 	if (sense_key == KEY_MEDIUM_ERROR) {
17334 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17335 	}
17336 
17337 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17338 
17339 	if ((un->un_reset_retry_count != 0) &&
17340 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17341 		mutex_exit(SD_MUTEX(un));
17342 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17343 		if (un->un_f_allow_bus_device_reset == TRUE) {
17344 
17345 			boolean_t try_resetting_target = B_TRUE;
17346 
17347 			/*
17348 			 * We need to be able to handle specific ASC when we are
17349 			 * handling a KEY_HARDWARE_ERROR. In particular
17350 			 * taking the default action of resetting the target may
17351 			 * not be the appropriate way to attempt recovery.
17352 			 * Resetting a target because of a single LUN failure
17353 			 * victimizes all LUNs on that target.
17354 			 *
17355 			 * This is true for the LSI arrays, if an LSI
17356 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17357 			 * should trust it.
17358 			 */
17359 
17360 			if (sense_key == KEY_HARDWARE_ERROR) {
17361 				switch (asc) {
17362 				case 0x84:
17363 					if (SD_IS_LSI(un)) {
17364 						try_resetting_target = B_FALSE;
17365 					}
17366 					break;
17367 				default:
17368 					break;
17369 				}
17370 			}
17371 
17372 			if (try_resetting_target == B_TRUE) {
17373 				int reset_retval = 0;
17374 				if (un->un_f_lun_reset_enabled == TRUE) {
17375 					SD_TRACE(SD_LOG_IO_CORE, un,
17376 					    "sd_sense_key_medium_or_hardware_"
17377 					    "error: issuing RESET_LUN\n");
17378 					reset_retval =
17379 					    scsi_reset(SD_ADDRESS(un),
17380 					    RESET_LUN);
17381 				}
17382 				if (reset_retval == 0) {
17383 					SD_TRACE(SD_LOG_IO_CORE, un,
17384 					    "sd_sense_key_medium_or_hardware_"
17385 					    "error: issuing RESET_TARGET\n");
17386 					(void) scsi_reset(SD_ADDRESS(un),
17387 					    RESET_TARGET);
17388 				}
17389 			}
17390 		}
17391 		mutex_enter(SD_MUTEX(un));
17392 	}
17393 
17394 	/*
17395 	 * This really ought to be a fatal error, but we will retry anyway
17396 	 * as some drives report this as a spurious error.
17397 	 */
17398 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17399 	    &si, EIO, (clock_t)0, NULL);
17400 }
17401 
17402 
17403 
17404 /*
17405  *    Function: sd_sense_key_illegal_request
17406  *
17407  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17408  *
17409  *     Context: May be called from interrupt context
17410  */
17411 
17412 static void
17413 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17414 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17415 {
17416 	struct sd_sense_info	si;
17417 
17418 	ASSERT(un != NULL);
17419 	ASSERT(mutex_owned(SD_MUTEX(un)));
17420 	ASSERT(bp != NULL);
17421 	ASSERT(xp != NULL);
17422 	ASSERT(pktp != NULL);
17423 
17424 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17425 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17426 
17427 	si.ssi_severity = SCSI_ERR_INFO;
17428 	si.ssi_pfa_flag = FALSE;
17429 
17430 	/* Pointless to retry if the target thinks it's an illegal request */
17431 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17432 	sd_return_failed_command(un, bp, EIO);
17433 }
17434 
17435 
17436 
17437 
17438 /*
17439  *    Function: sd_sense_key_unit_attention
17440  *
17441  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17442  *
17443  *     Context: May be called from interrupt context
17444  */
17445 
17446 static void
17447 sd_sense_key_unit_attention(struct sd_lun *un,
17448 	uint8_t asc,
17449 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17450 {
17451 	/*
17452 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17453 	 * like Sonoma can return UNIT ATTENTION close to a minute
17454 	 * under certain conditions.
17455 	 */
17456 	int	retry_check_flag = SD_RETRIES_UA;
17457 	struct	sd_sense_info		si;
17458 
17459 	ASSERT(un != NULL);
17460 	ASSERT(mutex_owned(SD_MUTEX(un)));
17461 	ASSERT(bp != NULL);
17462 	ASSERT(xp != NULL);
17463 	ASSERT(pktp != NULL);
17464 
17465 	si.ssi_severity = SCSI_ERR_INFO;
17466 	si.ssi_pfa_flag = FALSE;
17467 
17468 
17469 	switch (asc) {
17470 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17471 		if (sd_report_pfa != 0) {
17472 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17473 			si.ssi_pfa_flag = TRUE;
17474 			retry_check_flag = SD_RETRIES_STANDARD;
17475 			goto do_retry;
17476 		}
17477 		break;
17478 
17479 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17480 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17481 			un->un_resvd_status |=
17482 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17483 		}
17484 		/* FALLTHRU */
17485 
17486 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17487 		if (!ISREMOVABLE(un)) {
17488 			break;
17489 		}
17490 
17491 		/*
17492 		 * When we get a unit attention from a removable-media device,
17493 		 * it may be in a state that will take a long time to recover
17494 		 * (e.g., from a reset).  Since we are executing in interrupt
17495 		 * context here, we cannot wait around for the device to come
17496 		 * back. So hand this command off to sd_media_change_task()
17497 		 * for deferred processing under taskq thread context. (Note
17498 		 * that the command still may be failed if a problem is
17499 		 * encountered at a later time.)
17500 		 */
17501 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17502 		    KM_NOSLEEP) == 0) {
17503 			/*
17504 			 * Cannot dispatch the request so fail the command.
17505 			 */
17506 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17507 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17508 			si.ssi_severity = SCSI_ERR_FATAL;
17509 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17510 			sd_return_failed_command(un, bp, EIO);
17511 		}
17512 		/*
17513 		 * Either the command has been successfully dispatched to a
17514 		 * task Q for retrying, or the dispatch failed. In either case
17515 		 * do NOT retry again by calling sd_retry_command. This sets up
17516 		 * two retries of the same command and when one completes and
17517 		 * frees the resources the other will access freed memory,
17518 		 * a bad thing.
17519 		 */
17520 		return;
17521 
17522 	default:
17523 		break;
17524 	}
17525 
17526 	if (!ISREMOVABLE(un)) {
17527 		/*
17528 		 * Do not update these here for removables. For removables
17529 		 * these stats are updated (1) above if we failed to dispatch
17530 		 * sd_media_change_task(), or (2) sd_media_change_task() may
17531 		 * update these later if it encounters an error.
17532 		 */
17533 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17534 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17535 	}
17536 
17537 do_retry:
17538 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17539 	    EIO, SD_UA_RETRY_DELAY, NULL);
17540 }
17541 
17542 
17543 
17544 /*
17545  *    Function: sd_sense_key_fail_command
17546  *
17547  * Description: Use to fail a command when we don't like the sense key that
17548  *		was returned.
17549  *
17550  *     Context: May be called from interrupt context
17551  */
17552 
17553 static void
17554 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17555 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17556 {
17557 	struct sd_sense_info	si;
17558 
17559 	ASSERT(un != NULL);
17560 	ASSERT(mutex_owned(SD_MUTEX(un)));
17561 	ASSERT(bp != NULL);
17562 	ASSERT(xp != NULL);
17563 	ASSERT(pktp != NULL);
17564 
17565 	si.ssi_severity = SCSI_ERR_FATAL;
17566 	si.ssi_pfa_flag = FALSE;
17567 
17568 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17569 	sd_return_failed_command(un, bp, EIO);
17570 }
17571 
17572 
17573 
17574 /*
17575  *    Function: sd_sense_key_blank_check
17576  *
17577  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17578  *		Has no monetary connotation.
17579  *
17580  *     Context: May be called from interrupt context
17581  */
17582 
17583 static void
17584 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17585 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17586 {
17587 	struct sd_sense_info	si;
17588 
17589 	ASSERT(un != NULL);
17590 	ASSERT(mutex_owned(SD_MUTEX(un)));
17591 	ASSERT(bp != NULL);
17592 	ASSERT(xp != NULL);
17593 	ASSERT(pktp != NULL);
17594 
17595 	/*
17596 	 * Blank check is not fatal for removable devices, therefore
17597 	 * it does not require a console message.
17598 	 */
17599 	si.ssi_severity = (ISREMOVABLE(un)) ? SCSI_ERR_ALL : SCSI_ERR_FATAL;
17600 	si.ssi_pfa_flag = FALSE;
17601 
17602 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17603 	sd_return_failed_command(un, bp, EIO);
17604 }
17605 
17606 
17607 
17608 
17609 /*
17610  *    Function: sd_sense_key_aborted_command
17611  *
17612  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17613  *
17614  *     Context: May be called from interrupt context
17615  */
17616 
17617 static void
17618 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17619 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17620 {
17621 	struct sd_sense_info	si;
17622 
17623 	ASSERT(un != NULL);
17624 	ASSERT(mutex_owned(SD_MUTEX(un)));
17625 	ASSERT(bp != NULL);
17626 	ASSERT(xp != NULL);
17627 	ASSERT(pktp != NULL);
17628 
17629 	si.ssi_severity = SCSI_ERR_FATAL;
17630 	si.ssi_pfa_flag = FALSE;
17631 
17632 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17633 
17634 	/*
17635 	 * This really ought to be a fatal error, but we will retry anyway
17636 	 * as some drives report this as a spurious error.
17637 	 */
17638 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17639 	    &si, EIO, (clock_t)0, NULL);
17640 }
17641 
17642 
17643 
17644 /*
17645  *    Function: sd_sense_key_default
17646  *
17647  * Description: Default recovery action for several SCSI sense keys (basically
17648  *		attempts a retry).
17649  *
17650  *     Context: May be called from interrupt context
17651  */
17652 
17653 static void
17654 sd_sense_key_default(struct sd_lun *un,
17655 	int sense_key,
17656 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17657 {
17658 	struct sd_sense_info	si;
17659 
17660 	ASSERT(un != NULL);
17661 	ASSERT(mutex_owned(SD_MUTEX(un)));
17662 	ASSERT(bp != NULL);
17663 	ASSERT(xp != NULL);
17664 	ASSERT(pktp != NULL);
17665 
17666 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17667 
17668 	/*
17669 	 * Undecoded sense key.	Attempt retries and hope that will fix
17670 	 * the problem.  Otherwise, we're dead.
17671 	 */
17672 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17673 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17674 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17675 	}
17676 
17677 	si.ssi_severity = SCSI_ERR_FATAL;
17678 	si.ssi_pfa_flag = FALSE;
17679 
17680 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17681 	    &si, EIO, (clock_t)0, NULL);
17682 }
17683 
17684 
17685 
17686 /*
17687  *    Function: sd_print_retry_msg
17688  *
17689  * Description: Print a message indicating the retry action being taken.
17690  *
17691  *   Arguments: un - ptr to associated softstate
17692  *		bp - ptr to buf(9S) for the command
17693  *		arg - not used.
17694  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17695  *			or SD_NO_RETRY_ISSUED
17696  *
17697  *     Context: May be called from interrupt context
17698  */
17699 /* ARGSUSED */
17700 static void
17701 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
17702 {
17703 	struct sd_xbuf	*xp;
17704 	struct scsi_pkt *pktp;
17705 	char *reasonp;
17706 	char *msgp;
17707 
17708 	ASSERT(un != NULL);
17709 	ASSERT(mutex_owned(SD_MUTEX(un)));
17710 	ASSERT(bp != NULL);
17711 	pktp = SD_GET_PKTP(bp);
17712 	ASSERT(pktp != NULL);
17713 	xp = SD_GET_XBUF(bp);
17714 	ASSERT(xp != NULL);
17715 
17716 	ASSERT(!mutex_owned(&un->un_pm_mutex));
17717 	mutex_enter(&un->un_pm_mutex);
17718 	if ((un->un_state == SD_STATE_SUSPENDED) ||
17719 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
17720 	    (pktp->pkt_flags & FLAG_SILENT)) {
17721 		mutex_exit(&un->un_pm_mutex);
17722 		goto update_pkt_reason;
17723 	}
17724 	mutex_exit(&un->un_pm_mutex);
17725 
17726 	/*
17727 	 * Suppress messages if they are all the same pkt_reason; with
17728 	 * TQ, many (up to 256) are returned with the same pkt_reason.
17729 	 * If we are in panic, then suppress the retry messages.
17730 	 */
17731 	switch (flag) {
17732 	case SD_NO_RETRY_ISSUED:
17733 		msgp = "giving up";
17734 		break;
17735 	case SD_IMMEDIATE_RETRY_ISSUED:
17736 	case SD_DELAYED_RETRY_ISSUED:
17737 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
17738 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
17739 		    (sd_error_level != SCSI_ERR_ALL))) {
17740 			return;
17741 		}
17742 		msgp = "retrying command";
17743 		break;
17744 	default:
17745 		goto update_pkt_reason;
17746 	}
17747 
17748 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
17749 	    scsi_rname(pktp->pkt_reason));
17750 
17751 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17752 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
17753 
17754 update_pkt_reason:
17755 	/*
17756 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
17757 	 * This is to prevent multiple console messages for the same failure
17758 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
17759 	 * when the command is retried successfully because there still may be
17760 	 * more commands coming back with the same value of pktp->pkt_reason.
17761 	 */
17762 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
17763 		un->un_last_pkt_reason = pktp->pkt_reason;
17764 	}
17765 }
17766 
17767 
17768 /*
17769  *    Function: sd_print_cmd_incomplete_msg
17770  *
17771  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
17772  *
17773  *   Arguments: un - ptr to associated softstate
17774  *		bp - ptr to buf(9S) for the command
17775  *		arg - passed to sd_print_retry_msg()
17776  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17777  *			or SD_NO_RETRY_ISSUED
17778  *
17779  *     Context: May be called from interrupt context
17780  */
17781 
17782 static void
17783 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
17784 	int code)
17785 {
17786 	dev_info_t	*dip;
17787 
17788 	ASSERT(un != NULL);
17789 	ASSERT(mutex_owned(SD_MUTEX(un)));
17790 	ASSERT(bp != NULL);
17791 
17792 	switch (code) {
17793 	case SD_NO_RETRY_ISSUED:
17794 		/* Command was failed. Someone turned off this target? */
17795 		if (un->un_state != SD_STATE_OFFLINE) {
17796 			/*
17797 			 * Suppress message if we are detaching and
17798 			 * device has been disconnected
17799 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
17800 			 * private interface and not part of the DDI
17801 			 */
17802 			dip = un->un_sd->sd_dev;
17803 			if (!(DEVI_IS_DETACHING(dip) &&
17804 			    DEVI_IS_DEVICE_REMOVED(dip))) {
17805 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17806 				"disk not responding to selection\n");
17807 			}
17808 			New_state(un, SD_STATE_OFFLINE);
17809 		}
17810 		break;
17811 
17812 	case SD_DELAYED_RETRY_ISSUED:
17813 	case SD_IMMEDIATE_RETRY_ISSUED:
17814 	default:
17815 		/* Command was successfully queued for retry */
17816 		sd_print_retry_msg(un, bp, arg, code);
17817 		break;
17818 	}
17819 }
17820 
17821 
17822 /*
17823  *    Function: sd_pkt_reason_cmd_incomplete
17824  *
17825  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
17826  *
17827  *     Context: May be called from interrupt context
17828  */
17829 
17830 static void
17831 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
17832 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17833 {
17834 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
17835 
17836 	ASSERT(un != NULL);
17837 	ASSERT(mutex_owned(SD_MUTEX(un)));
17838 	ASSERT(bp != NULL);
17839 	ASSERT(xp != NULL);
17840 	ASSERT(pktp != NULL);
17841 
17842 	/* Do not do a reset if selection did not complete */
17843 	/* Note: Should this not just check the bit? */
17844 	if (pktp->pkt_state != STATE_GOT_BUS) {
17845 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17846 		sd_reset_target(un, pktp);
17847 	}
17848 
17849 	/*
17850 	 * If the target was not successfully selected, then set
17851 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
17852 	 * with the target, and further retries and/or commands are
17853 	 * likely to take a long time.
17854 	 */
17855 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
17856 		flag |= SD_RETRIES_FAILFAST;
17857 	}
17858 
17859 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17860 
17861 	sd_retry_command(un, bp, flag,
17862 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17863 }
17864 
17865 
17866 
17867 /*
17868  *    Function: sd_pkt_reason_cmd_tran_err
17869  *
17870  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
17871  *
17872  *     Context: May be called from interrupt context
17873  */
17874 
17875 static void
17876 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
17877 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17878 {
17879 	ASSERT(un != NULL);
17880 	ASSERT(mutex_owned(SD_MUTEX(un)));
17881 	ASSERT(bp != NULL);
17882 	ASSERT(xp != NULL);
17883 	ASSERT(pktp != NULL);
17884 
17885 	/*
17886 	 * Do not reset if we got a parity error, or if
17887 	 * selection did not complete.
17888 	 */
17889 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17890 	/* Note: Should this not just check the bit for pkt_state? */
17891 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
17892 	    (pktp->pkt_state != STATE_GOT_BUS)) {
17893 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17894 		sd_reset_target(un, pktp);
17895 	}
17896 
17897 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17898 
17899 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17900 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17901 }
17902 
17903 
17904 
17905 /*
17906  *    Function: sd_pkt_reason_cmd_reset
17907  *
17908  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
17909  *
17910  *     Context: May be called from interrupt context
17911  */
17912 
17913 static void
17914 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
17915 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17916 {
17917 	ASSERT(un != NULL);
17918 	ASSERT(mutex_owned(SD_MUTEX(un)));
17919 	ASSERT(bp != NULL);
17920 	ASSERT(xp != NULL);
17921 	ASSERT(pktp != NULL);
17922 
17923 	/* The target may still be running the command, so try to reset. */
17924 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17925 	sd_reset_target(un, pktp);
17926 
17927 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17928 
17929 	/*
17930 	 * If pkt_reason is CMD_RESET chances are that this pkt got
17931 	 * reset because another target on this bus caused it. The target
17932 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17933 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17934 	 */
17935 
17936 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17937 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17938 }
17939 
17940 
17941 
17942 
17943 /*
17944  *    Function: sd_pkt_reason_cmd_aborted
17945  *
17946  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
17947  *
17948  *     Context: May be called from interrupt context
17949  */
17950 
17951 static void
17952 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
17953 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17954 {
17955 	ASSERT(un != NULL);
17956 	ASSERT(mutex_owned(SD_MUTEX(un)));
17957 	ASSERT(bp != NULL);
17958 	ASSERT(xp != NULL);
17959 	ASSERT(pktp != NULL);
17960 
17961 	/* The target may still be running the command, so try to reset. */
17962 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17963 	sd_reset_target(un, pktp);
17964 
17965 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17966 
17967 	/*
17968 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17969 	 * aborted because another target on this bus caused it. The target
17970 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17971 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17972 	 */
17973 
17974 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17975 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17976 }
17977 
17978 
17979 
17980 /*
17981  *    Function: sd_pkt_reason_cmd_timeout
17982  *
17983  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17984  *
17985  *     Context: May be called from interrupt context
17986  */
17987 
17988 static void
17989 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17990 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17991 {
17992 	ASSERT(un != NULL);
17993 	ASSERT(mutex_owned(SD_MUTEX(un)));
17994 	ASSERT(bp != NULL);
17995 	ASSERT(xp != NULL);
17996 	ASSERT(pktp != NULL);
17997 
17998 
17999 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18000 	sd_reset_target(un, pktp);
18001 
18002 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18003 
18004 	/*
18005 	 * A command timeout indicates that we could not establish
18006 	 * communication with the target, so set SD_RETRIES_FAILFAST
18007 	 * as further retries/commands are likely to take a long time.
18008 	 */
18009 	sd_retry_command(un, bp,
18010 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18011 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18012 }
18013 
18014 
18015 
18016 /*
18017  *    Function: sd_pkt_reason_cmd_unx_bus_free
18018  *
18019  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18020  *
18021  *     Context: May be called from interrupt context
18022  */
18023 
18024 static void
18025 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18026 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18027 {
18028 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18029 
18030 	ASSERT(un != NULL);
18031 	ASSERT(mutex_owned(SD_MUTEX(un)));
18032 	ASSERT(bp != NULL);
18033 	ASSERT(xp != NULL);
18034 	ASSERT(pktp != NULL);
18035 
18036 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18037 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18038 
18039 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18040 	    sd_print_retry_msg : NULL;
18041 
18042 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18043 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18044 }
18045 
18046 
18047 /*
18048  *    Function: sd_pkt_reason_cmd_tag_reject
18049  *
18050  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18051  *
18052  *     Context: May be called from interrupt context
18053  */
18054 
18055 static void
18056 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18057 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18058 {
18059 	ASSERT(un != NULL);
18060 	ASSERT(mutex_owned(SD_MUTEX(un)));
18061 	ASSERT(bp != NULL);
18062 	ASSERT(xp != NULL);
18063 	ASSERT(pktp != NULL);
18064 
18065 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18066 	pktp->pkt_flags = 0;
18067 	un->un_tagflags = 0;
18068 	if (un->un_f_opt_queueing == TRUE) {
18069 		un->un_throttle = min(un->un_throttle, 3);
18070 	} else {
18071 		un->un_throttle = 1;
18072 	}
18073 	mutex_exit(SD_MUTEX(un));
18074 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18075 	mutex_enter(SD_MUTEX(un));
18076 
18077 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18078 
18079 	/* Legacy behavior not to check retry counts here. */
18080 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18081 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18082 }
18083 
18084 
18085 /*
18086  *    Function: sd_pkt_reason_default
18087  *
18088  * Description: Default recovery actions for SCSA pkt_reason values that
18089  *		do not have more explicit recovery actions.
18090  *
18091  *     Context: May be called from interrupt context
18092  */
18093 
18094 static void
18095 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18096 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18097 {
18098 	ASSERT(un != NULL);
18099 	ASSERT(mutex_owned(SD_MUTEX(un)));
18100 	ASSERT(bp != NULL);
18101 	ASSERT(xp != NULL);
18102 	ASSERT(pktp != NULL);
18103 
18104 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18105 	sd_reset_target(un, pktp);
18106 
18107 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18108 
18109 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18110 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18111 }
18112 
18113 
18114 
18115 /*
18116  *    Function: sd_pkt_status_check_condition
18117  *
18118  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18119  *
18120  *     Context: May be called from interrupt context
18121  */
18122 
18123 static void
18124 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18125 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18126 {
18127 	ASSERT(un != NULL);
18128 	ASSERT(mutex_owned(SD_MUTEX(un)));
18129 	ASSERT(bp != NULL);
18130 	ASSERT(xp != NULL);
18131 	ASSERT(pktp != NULL);
18132 
18133 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18134 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18135 
18136 	/*
18137 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18138 	 * command will be retried after the request sense). Otherwise, retry
18139 	 * the command. Note: we are issuing the request sense even though the
18140 	 * retry limit may have been reached for the failed command.
18141 	 */
18142 	if (un->un_f_arq_enabled == FALSE) {
18143 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18144 		    "no ARQ, sending request sense command\n");
18145 		sd_send_request_sense_command(un, bp, pktp);
18146 	} else {
18147 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18148 		    "ARQ,retrying request sense command\n");
18149 #if defined(__i386) || defined(__amd64)
18150 		/*
18151 		 * The SD_RETRY_DELAY value need to be adjusted here
18152 		 * when SD_RETRY_DELAY change in sddef.h
18153 		 */
18154 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 0,
18155 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18156 			NULL);
18157 #else
18158 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18159 		    0, SD_RETRY_DELAY, NULL);
18160 #endif
18161 	}
18162 
18163 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18164 }
18165 
18166 
18167 /*
18168  *    Function: sd_pkt_status_busy
18169  *
18170  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18171  *
18172  *     Context: May be called from interrupt context
18173  */
18174 
18175 static void
18176 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18177 	struct scsi_pkt *pktp)
18178 {
18179 	ASSERT(un != NULL);
18180 	ASSERT(mutex_owned(SD_MUTEX(un)));
18181 	ASSERT(bp != NULL);
18182 	ASSERT(xp != NULL);
18183 	ASSERT(pktp != NULL);
18184 
18185 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18186 	    "sd_pkt_status_busy: entry\n");
18187 
18188 	/* If retries are exhausted, just fail the command. */
18189 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18190 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18191 		    "device busy too long\n");
18192 		sd_return_failed_command(un, bp, EIO);
18193 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18194 		    "sd_pkt_status_busy: exit\n");
18195 		return;
18196 	}
18197 	xp->xb_retry_count++;
18198 
18199 	/*
18200 	 * Try to reset the target. However, we do not want to perform
18201 	 * more than one reset if the device continues to fail. The reset
18202 	 * will be performed when the retry count reaches the reset
18203 	 * threshold.  This threshold should be set such that at least
18204 	 * one retry is issued before the reset is performed.
18205 	 */
18206 	if (xp->xb_retry_count ==
18207 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18208 		int rval = 0;
18209 		mutex_exit(SD_MUTEX(un));
18210 		if (un->un_f_allow_bus_device_reset == TRUE) {
18211 			/*
18212 			 * First try to reset the LUN; if we cannot then
18213 			 * try to reset the target.
18214 			 */
18215 			if (un->un_f_lun_reset_enabled == TRUE) {
18216 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18217 				    "sd_pkt_status_busy: RESET_LUN\n");
18218 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18219 			}
18220 			if (rval == 0) {
18221 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18222 				    "sd_pkt_status_busy: RESET_TARGET\n");
18223 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18224 			}
18225 		}
18226 		if (rval == 0) {
18227 			/*
18228 			 * If the RESET_LUN and/or RESET_TARGET failed,
18229 			 * try RESET_ALL
18230 			 */
18231 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18232 			    "sd_pkt_status_busy: RESET_ALL\n");
18233 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18234 		}
18235 		mutex_enter(SD_MUTEX(un));
18236 		if (rval == 0) {
18237 			/*
18238 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18239 			 * At this point we give up & fail the command.
18240 			 */
18241 			sd_return_failed_command(un, bp, EIO);
18242 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18243 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18244 			return;
18245 		}
18246 	}
18247 
18248 	/*
18249 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18250 	 * we have already checked the retry counts above.
18251 	 */
18252 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18253 	    EIO, SD_BSY_TIMEOUT, NULL);
18254 
18255 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18256 	    "sd_pkt_status_busy: exit\n");
18257 }
18258 
18259 
18260 /*
18261  *    Function: sd_pkt_status_reservation_conflict
18262  *
18263  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18264  *		command status.
18265  *
18266  *     Context: May be called from interrupt context
18267  */
18268 
18269 static void
18270 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18271 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18272 {
18273 	ASSERT(un != NULL);
18274 	ASSERT(mutex_owned(SD_MUTEX(un)));
18275 	ASSERT(bp != NULL);
18276 	ASSERT(xp != NULL);
18277 	ASSERT(pktp != NULL);
18278 
18279 	/*
18280 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18281 	 * conflict could be due to various reasons like incorrect keys, not
18282 	 * registered or not reserved etc. So, we return EACCES to the caller.
18283 	 */
18284 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18285 		int cmd = SD_GET_PKT_OPCODE(pktp);
18286 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18287 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18288 			sd_return_failed_command(un, bp, EACCES);
18289 			return;
18290 		}
18291 	}
18292 
18293 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18294 
18295 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18296 		if (sd_failfast_enable != 0) {
18297 			/* By definition, we must panic here.... */
18298 			panic("Reservation Conflict");
18299 			/*NOTREACHED*/
18300 		}
18301 		SD_ERROR(SD_LOG_IO, un,
18302 		    "sd_handle_resv_conflict: Disk Reserved\n");
18303 		sd_return_failed_command(un, bp, EACCES);
18304 		return;
18305 	}
18306 
18307 	/*
18308 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18309 	 * property is set (default is 1). Retries will not succeed
18310 	 * on a disk reserved by another initiator. HA systems
18311 	 * may reset this via sd.conf to avoid these retries.
18312 	 *
18313 	 * Note: The legacy return code for this failure is EIO, however EACCES
18314 	 * seems more appropriate for a reservation conflict.
18315 	 */
18316 	if (sd_retry_on_reservation_conflict == 0) {
18317 		SD_ERROR(SD_LOG_IO, un,
18318 		    "sd_handle_resv_conflict: Device Reserved\n");
18319 		sd_return_failed_command(un, bp, EIO);
18320 		return;
18321 	}
18322 
18323 	/*
18324 	 * Retry the command if we can.
18325 	 *
18326 	 * Note: The legacy return code for this failure is EIO, however EACCES
18327 	 * seems more appropriate for a reservation conflict.
18328 	 */
18329 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18330 	    (clock_t)2, NULL);
18331 }
18332 
18333 
18334 
18335 /*
18336  *    Function: sd_pkt_status_qfull
18337  *
18338  * Description: Handle a QUEUE FULL condition from the target.  This can
18339  *		occur if the HBA does not handle the queue full condition.
18340  *		(Basically this means third-party HBAs as Sun HBAs will
18341  *		handle the queue full condition.)  Note that if there are
18342  *		some commands already in the transport, then the queue full
18343  *		has occurred because the queue for this nexus is actually
18344  *		full. If there are no commands in the transport, then the
18345  *		queue full is resulting from some other initiator or lun
18346  *		consuming all the resources at the target.
18347  *
18348  *     Context: May be called from interrupt context
18349  */
18350 
18351 static void
18352 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18353 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18354 {
18355 	ASSERT(un != NULL);
18356 	ASSERT(mutex_owned(SD_MUTEX(un)));
18357 	ASSERT(bp != NULL);
18358 	ASSERT(xp != NULL);
18359 	ASSERT(pktp != NULL);
18360 
18361 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18362 	    "sd_pkt_status_qfull: entry\n");
18363 
18364 	/*
18365 	 * Just lower the QFULL throttle and retry the command.  Note that
18366 	 * we do not limit the number of retries here.
18367 	 */
18368 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18369 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18370 	    SD_RESTART_TIMEOUT, NULL);
18371 
18372 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18373 	    "sd_pkt_status_qfull: exit\n");
18374 }
18375 
18376 
18377 /*
18378  *    Function: sd_reset_target
18379  *
18380  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18381  *		RESET_TARGET, or RESET_ALL.
18382  *
18383  *     Context: May be called under interrupt context.
18384  */
18385 
18386 static void
18387 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18388 {
18389 	int rval = 0;
18390 
18391 	ASSERT(un != NULL);
18392 	ASSERT(mutex_owned(SD_MUTEX(un)));
18393 	ASSERT(pktp != NULL);
18394 
18395 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18396 
18397 	/*
18398 	 * No need to reset if the transport layer has already done so.
18399 	 */
18400 	if ((pktp->pkt_statistics &
18401 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18402 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18403 		    "sd_reset_target: no reset\n");
18404 		return;
18405 	}
18406 
18407 	mutex_exit(SD_MUTEX(un));
18408 
18409 	if (un->un_f_allow_bus_device_reset == TRUE) {
18410 		if (un->un_f_lun_reset_enabled == TRUE) {
18411 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18412 			    "sd_reset_target: RESET_LUN\n");
18413 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18414 		}
18415 		if (rval == 0) {
18416 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18417 			    "sd_reset_target: RESET_TARGET\n");
18418 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18419 		}
18420 	}
18421 
18422 	if (rval == 0) {
18423 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18424 		    "sd_reset_target: RESET_ALL\n");
18425 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18426 	}
18427 
18428 	mutex_enter(SD_MUTEX(un));
18429 
18430 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18431 }
18432 
18433 
18434 /*
18435  *    Function: sd_media_change_task
18436  *
18437  * Description: Recovery action for CDROM to become available.
18438  *
18439  *     Context: Executes in a taskq() thread context
18440  */
18441 
18442 static void
18443 sd_media_change_task(void *arg)
18444 {
18445 	struct	scsi_pkt	*pktp = arg;
18446 	struct	sd_lun		*un;
18447 	struct	buf		*bp;
18448 	struct	sd_xbuf		*xp;
18449 	int	err		= 0;
18450 	int	retry_count	= 0;
18451 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18452 	struct	sd_sense_info	si;
18453 
18454 	ASSERT(pktp != NULL);
18455 	bp = (struct buf *)pktp->pkt_private;
18456 	ASSERT(bp != NULL);
18457 	xp = SD_GET_XBUF(bp);
18458 	ASSERT(xp != NULL);
18459 	un = SD_GET_UN(bp);
18460 	ASSERT(un != NULL);
18461 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18462 	ASSERT(ISREMOVABLE(un));
18463 
18464 	si.ssi_severity = SCSI_ERR_INFO;
18465 	si.ssi_pfa_flag = FALSE;
18466 
18467 	/*
18468 	 * When a reset is issued on a CDROM, it takes a long time to
18469 	 * recover. First few attempts to read capacity and other things
18470 	 * related to handling unit attention fail (with a ASC 0x4 and
18471 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18472 	 * to limit the retries in other cases of genuine failures like
18473 	 * no media in drive.
18474 	 */
18475 	while (retry_count++ < retry_limit) {
18476 		if ((err = sd_handle_mchange(un)) == 0) {
18477 			break;
18478 		}
18479 		if (err == EAGAIN) {
18480 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18481 		}
18482 		/* Sleep for 0.5 sec. & try again */
18483 		delay(drv_usectohz(500000));
18484 	}
18485 
18486 	/*
18487 	 * Dispatch (retry or fail) the original command here,
18488 	 * along with appropriate console messages....
18489 	 *
18490 	 * Must grab the mutex before calling sd_retry_command,
18491 	 * sd_print_sense_msg and sd_return_failed_command.
18492 	 */
18493 	mutex_enter(SD_MUTEX(un));
18494 	if (err != SD_CMD_SUCCESS) {
18495 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18496 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18497 		si.ssi_severity = SCSI_ERR_FATAL;
18498 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18499 		sd_return_failed_command(un, bp, EIO);
18500 	} else {
18501 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18502 		    &si, EIO, (clock_t)0, NULL);
18503 	}
18504 	mutex_exit(SD_MUTEX(un));
18505 }
18506 
18507 
18508 
18509 /*
18510  *    Function: sd_handle_mchange
18511  *
18512  * Description: Perform geometry validation & other recovery when CDROM
18513  *		has been removed from drive.
18514  *
18515  * Return Code: 0 for success
18516  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18517  *		sd_send_scsi_READ_CAPACITY()
18518  *
18519  *     Context: Executes in a taskq() thread context
18520  */
18521 
18522 static int
18523 sd_handle_mchange(struct sd_lun *un)
18524 {
18525 	uint64_t	capacity;
18526 	uint32_t	lbasize;
18527 	int		rval;
18528 
18529 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18530 	ASSERT(ISREMOVABLE(un));
18531 
18532 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18533 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18534 		return (rval);
18535 	}
18536 
18537 	mutex_enter(SD_MUTEX(un));
18538 	sd_update_block_info(un, lbasize, capacity);
18539 
18540 	if (un->un_errstats != NULL) {
18541 		struct	sd_errstats *stp =
18542 		    (struct sd_errstats *)un->un_errstats->ks_data;
18543 		stp->sd_capacity.value.ui64 = (uint64_t)
18544 		    ((uint64_t)un->un_blockcount *
18545 		    (uint64_t)un->un_tgt_blocksize);
18546 	}
18547 
18548 	/*
18549 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18550 	 * valid geometry.
18551 	 */
18552 	un->un_f_geometry_is_valid = FALSE;
18553 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18554 	if (un->un_f_geometry_is_valid == FALSE) {
18555 		mutex_exit(SD_MUTEX(un));
18556 		return (EIO);
18557 	}
18558 
18559 	mutex_exit(SD_MUTEX(un));
18560 
18561 	/*
18562 	 * Try to lock the door
18563 	 */
18564 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18565 	    SD_PATH_DIRECT_PRIORITY));
18566 }
18567 
18568 
18569 /*
18570  *    Function: sd_send_scsi_DOORLOCK
18571  *
18572  * Description: Issue the scsi DOOR LOCK command
18573  *
18574  *   Arguments: un    - pointer to driver soft state (unit) structure for
18575  *			this target.
18576  *		flag  - SD_REMOVAL_ALLOW
18577  *			SD_REMOVAL_PREVENT
18578  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18579  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18580  *			to use the USCSI "direct" chain and bypass the normal
18581  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18582  *			command is issued as part of an error recovery action.
18583  *
18584  * Return Code: 0   - Success
18585  *		errno return code from sd_send_scsi_cmd()
18586  *
18587  *     Context: Can sleep.
18588  */
18589 
18590 static int
18591 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18592 {
18593 	union scsi_cdb		cdb;
18594 	struct uscsi_cmd	ucmd_buf;
18595 	struct scsi_extended_sense	sense_buf;
18596 	int			status;
18597 
18598 	ASSERT(un != NULL);
18599 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18600 
18601 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18602 
18603 	/* already determined doorlock is not supported, fake success */
18604 	if (un->un_f_doorlock_supported == FALSE) {
18605 		return (0);
18606 	}
18607 
18608 	bzero(&cdb, sizeof (cdb));
18609 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18610 
18611 	cdb.scc_cmd = SCMD_DOORLOCK;
18612 	cdb.cdb_opaque[4] = (uchar_t)flag;
18613 
18614 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18615 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18616 	ucmd_buf.uscsi_bufaddr	= NULL;
18617 	ucmd_buf.uscsi_buflen	= 0;
18618 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18619 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18620 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18621 	ucmd_buf.uscsi_timeout	= 15;
18622 
18623 	SD_TRACE(SD_LOG_IO, un,
18624 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18625 
18626 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18627 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18628 
18629 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18630 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18631 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18632 		/* fake success and skip subsequent doorlock commands */
18633 		un->un_f_doorlock_supported = FALSE;
18634 		return (0);
18635 	}
18636 
18637 	return (status);
18638 }
18639 
18640 
18641 /*
18642  *    Function: sd_send_scsi_READ_CAPACITY
18643  *
18644  * Description: This routine uses the scsi READ CAPACITY command to determine
18645  *		the device capacity in number of blocks and the device native
18646  *		block size. If this function returns a failure, then the
18647  *		values in *capp and *lbap are undefined.  If the capacity
18648  *		returned is 0xffffffff then the lun is too large for a
18649  *		normal READ CAPACITY command and the results of a
18650  *		READ CAPACITY 16 will be used instead.
18651  *
18652  *   Arguments: un   - ptr to soft state struct for the target
18653  *		capp - ptr to unsigned 64-bit variable to receive the
18654  *			capacity value from the command.
18655  *		lbap - ptr to unsigned 32-bit varaible to receive the
18656  *			block size value from the command
18657  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18658  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18659  *			to use the USCSI "direct" chain and bypass the normal
18660  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18661  *			command is issued as part of an error recovery action.
18662  *
18663  * Return Code: 0   - Success
18664  *		EIO - IO error
18665  *		EACCES - Reservation conflict detected
18666  *		EAGAIN - Device is becoming ready
18667  *		errno return code from sd_send_scsi_cmd()
18668  *
18669  *     Context: Can sleep.  Blocks until command completes.
18670  */
18671 
18672 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
18673 
18674 static int
18675 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
18676 	int path_flag)
18677 {
18678 	struct	scsi_extended_sense	sense_buf;
18679 	struct	uscsi_cmd	ucmd_buf;
18680 	union	scsi_cdb	cdb;
18681 	uint32_t		*capacity_buf;
18682 	uint64_t		capacity;
18683 	uint32_t		lbasize;
18684 	int			status;
18685 
18686 	ASSERT(un != NULL);
18687 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18688 	ASSERT(capp != NULL);
18689 	ASSERT(lbap != NULL);
18690 
18691 	SD_TRACE(SD_LOG_IO, un,
18692 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18693 
18694 	/*
18695 	 * First send a READ_CAPACITY command to the target.
18696 	 * (This command is mandatory under SCSI-2.)
18697 	 *
18698 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
18699 	 * Medium Indicator bit is cleared.  The address field must be
18700 	 * zero if the PMI bit is zero.
18701 	 */
18702 	bzero(&cdb, sizeof (cdb));
18703 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18704 
18705 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
18706 
18707 	cdb.scc_cmd = SCMD_READ_CAPACITY;
18708 
18709 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18710 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18711 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
18712 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
18713 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18714 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18715 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18716 	ucmd_buf.uscsi_timeout	= 60;
18717 
18718 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18719 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18720 
18721 	switch (status) {
18722 	case 0:
18723 		/* Return failure if we did not get valid capacity data. */
18724 		if (ucmd_buf.uscsi_resid != 0) {
18725 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18726 			return (EIO);
18727 		}
18728 
18729 		/*
18730 		 * Read capacity and block size from the READ CAPACITY 10 data.
18731 		 * This data may be adjusted later due to device specific
18732 		 * issues.
18733 		 *
18734 		 * According to the SCSI spec, the READ CAPACITY 10
18735 		 * command returns the following:
18736 		 *
18737 		 *  bytes 0-3: Maximum logical block address available.
18738 		 *		(MSB in byte:0 & LSB in byte:3)
18739 		 *
18740 		 *  bytes 4-7: Block length in bytes
18741 		 *		(MSB in byte:4 & LSB in byte:7)
18742 		 *
18743 		 */
18744 		capacity = BE_32(capacity_buf[0]);
18745 		lbasize = BE_32(capacity_buf[1]);
18746 
18747 		/*
18748 		 * Done with capacity_buf
18749 		 */
18750 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18751 
18752 		/*
18753 		 * if the reported capacity is set to all 0xf's, then
18754 		 * this disk is too large and requires SBC-2 commands.
18755 		 * Reissue the request using READ CAPACITY 16.
18756 		 */
18757 		if (capacity == 0xffffffff) {
18758 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18759 			    &lbasize, path_flag);
18760 			if (status != 0) {
18761 				return (status);
18762 			}
18763 		}
18764 		break;	/* Success! */
18765 	case EIO:
18766 		switch (ucmd_buf.uscsi_status) {
18767 		case STATUS_RESERVATION_CONFLICT:
18768 			status = EACCES;
18769 			break;
18770 		case STATUS_CHECK:
18771 			/*
18772 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18773 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18774 			 */
18775 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18776 			    (sense_buf.es_add_code  == 0x04) &&
18777 			    (sense_buf.es_qual_code == 0x01)) {
18778 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18779 				return (EAGAIN);
18780 			}
18781 			break;
18782 		default:
18783 			break;
18784 		}
18785 		/* FALLTHRU */
18786 	default:
18787 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18788 		return (status);
18789 	}
18790 
18791 	/*
18792 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18793 	 * (2352 and 0 are common) so for these devices always force the value
18794 	 * to 2048 as required by the ATAPI specs.
18795 	 */
18796 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18797 		lbasize = 2048;
18798 	}
18799 
18800 	/*
18801 	 * Get the maximum LBA value from the READ CAPACITY data.
18802 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18803 	 * was cleared when issuing the command. This means that the LBA
18804 	 * returned from the device is the LBA of the last logical block
18805 	 * on the logical unit.  The actual logical block count will be
18806 	 * this value plus one.
18807 	 *
18808 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18809 	 * so scale the capacity value to reflect this.
18810 	 */
18811 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18812 
18813 #if defined(__i386) || defined(__amd64)
18814 	/*
18815 	 * On x86, compensate for off-by-1 error (number of sectors on
18816 	 * media)  (1175930)
18817 	 */
18818 	if (!ISREMOVABLE(un) && (lbasize == un->un_sys_blocksize)) {
18819 		capacity -= 1;
18820 	}
18821 #endif
18822 
18823 	/*
18824 	 * Copy the values from the READ CAPACITY command into the space
18825 	 * provided by the caller.
18826 	 */
18827 	*capp = capacity;
18828 	*lbap = lbasize;
18829 
18830 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
18831 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18832 
18833 	/*
18834 	 * Both the lbasize and capacity from the device must be nonzero,
18835 	 * otherwise we assume that the values are not valid and return
18836 	 * failure to the caller. (4203735)
18837 	 */
18838 	if ((capacity == 0) || (lbasize == 0)) {
18839 		return (EIO);
18840 	}
18841 
18842 	return (0);
18843 }
18844 
18845 /*
18846  *    Function: sd_send_scsi_READ_CAPACITY_16
18847  *
18848  * Description: This routine uses the scsi READ CAPACITY 16 command to
18849  *		determine the device capacity in number of blocks and the
18850  *		device native block size.  If this function returns a failure,
18851  *		then the values in *capp and *lbap are undefined.
18852  *		This routine should always be called by
18853  *		sd_send_scsi_READ_CAPACITY which will appy any device
18854  *		specific adjustments to capacity and lbasize.
18855  *
18856  *   Arguments: un   - ptr to soft state struct for the target
18857  *		capp - ptr to unsigned 64-bit variable to receive the
18858  *			capacity value from the command.
18859  *		lbap - ptr to unsigned 32-bit varaible to receive the
18860  *			block size value from the command
18861  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18862  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18863  *			to use the USCSI "direct" chain and bypass the normal
18864  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
18865  *			this command is issued as part of an error recovery
18866  *			action.
18867  *
18868  * Return Code: 0   - Success
18869  *		EIO - IO error
18870  *		EACCES - Reservation conflict detected
18871  *		EAGAIN - Device is becoming ready
18872  *		errno return code from sd_send_scsi_cmd()
18873  *
18874  *     Context: Can sleep.  Blocks until command completes.
18875  */
18876 
18877 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
18878 
18879 static int
18880 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
18881 	uint32_t *lbap, int path_flag)
18882 {
18883 	struct	scsi_extended_sense	sense_buf;
18884 	struct	uscsi_cmd	ucmd_buf;
18885 	union	scsi_cdb	cdb;
18886 	uint64_t		*capacity16_buf;
18887 	uint64_t		capacity;
18888 	uint32_t		lbasize;
18889 	int			status;
18890 
18891 	ASSERT(un != NULL);
18892 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18893 	ASSERT(capp != NULL);
18894 	ASSERT(lbap != NULL);
18895 
18896 	SD_TRACE(SD_LOG_IO, un,
18897 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18898 
18899 	/*
18900 	 * First send a READ_CAPACITY_16 command to the target.
18901 	 *
18902 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
18903 	 * Medium Indicator bit is cleared.  The address field must be
18904 	 * zero if the PMI bit is zero.
18905 	 */
18906 	bzero(&cdb, sizeof (cdb));
18907 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18908 
18909 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
18910 
18911 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18912 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
18913 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
18914 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
18915 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18916 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18917 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18918 	ucmd_buf.uscsi_timeout	= 60;
18919 
18920 	/*
18921 	 * Read Capacity (16) is a Service Action In command.  One
18922 	 * command byte (0x9E) is overloaded for multiple operations,
18923 	 * with the second CDB byte specifying the desired operation
18924 	 */
18925 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
18926 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
18927 
18928 	/*
18929 	 * Fill in allocation length field
18930 	 */
18931 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
18932 
18933 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18934 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18935 
18936 	switch (status) {
18937 	case 0:
18938 		/* Return failure if we did not get valid capacity data. */
18939 		if (ucmd_buf.uscsi_resid > 20) {
18940 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18941 			return (EIO);
18942 		}
18943 
18944 		/*
18945 		 * Read capacity and block size from the READ CAPACITY 10 data.
18946 		 * This data may be adjusted later due to device specific
18947 		 * issues.
18948 		 *
18949 		 * According to the SCSI spec, the READ CAPACITY 10
18950 		 * command returns the following:
18951 		 *
18952 		 *  bytes 0-7: Maximum logical block address available.
18953 		 *		(MSB in byte:0 & LSB in byte:7)
18954 		 *
18955 		 *  bytes 8-11: Block length in bytes
18956 		 *		(MSB in byte:8 & LSB in byte:11)
18957 		 *
18958 		 */
18959 		capacity = BE_64(capacity16_buf[0]);
18960 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18961 
18962 		/*
18963 		 * Done with capacity16_buf
18964 		 */
18965 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18966 
18967 		/*
18968 		 * if the reported capacity is set to all 0xf's, then
18969 		 * this disk is too large.  This could only happen with
18970 		 * a device that supports LBAs larger than 64 bits which
18971 		 * are not defined by any current T10 standards.
18972 		 */
18973 		if (capacity == 0xffffffffffffffff) {
18974 			return (EIO);
18975 		}
18976 		break;	/* Success! */
18977 	case EIO:
18978 		switch (ucmd_buf.uscsi_status) {
18979 		case STATUS_RESERVATION_CONFLICT:
18980 			status = EACCES;
18981 			break;
18982 		case STATUS_CHECK:
18983 			/*
18984 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18985 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18986 			 */
18987 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18988 			    (sense_buf.es_add_code  == 0x04) &&
18989 			    (sense_buf.es_qual_code == 0x01)) {
18990 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18991 				return (EAGAIN);
18992 			}
18993 			break;
18994 		default:
18995 			break;
18996 		}
18997 		/* FALLTHRU */
18998 	default:
18999 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19000 		return (status);
19001 	}
19002 
19003 	*capp = capacity;
19004 	*lbap = lbasize;
19005 
19006 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19007 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19008 
19009 	return (0);
19010 }
19011 
19012 
19013 /*
19014  *    Function: sd_send_scsi_START_STOP_UNIT
19015  *
19016  * Description: Issue a scsi START STOP UNIT command to the target.
19017  *
19018  *   Arguments: un    - pointer to driver soft state (unit) structure for
19019  *			this target.
19020  *		flag  - SD_TARGET_START
19021  *			SD_TARGET_STOP
19022  *			SD_TARGET_EJECT
19023  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19024  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19025  *			to use the USCSI "direct" chain and bypass the normal
19026  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19027  *			command is issued as part of an error recovery action.
19028  *
19029  * Return Code: 0   - Success
19030  *		EIO - IO error
19031  *		EACCES - Reservation conflict detected
19032  *		ENXIO  - Not Ready, medium not present
19033  *		errno return code from sd_send_scsi_cmd()
19034  *
19035  *     Context: Can sleep.
19036  */
19037 
19038 static int
19039 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19040 {
19041 	struct	scsi_extended_sense	sense_buf;
19042 	union scsi_cdb		cdb;
19043 	struct uscsi_cmd	ucmd_buf;
19044 	int			status;
19045 
19046 	ASSERT(un != NULL);
19047 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19048 
19049 	SD_TRACE(SD_LOG_IO, un,
19050 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19051 
19052 	if (ISREMOVABLE(un) &&
19053 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19054 	    (un->un_f_start_stop_supported != TRUE)) {
19055 		return (0);
19056 	}
19057 
19058 	bzero(&cdb, sizeof (cdb));
19059 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19060 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19061 
19062 	cdb.scc_cmd = SCMD_START_STOP;
19063 	cdb.cdb_opaque[4] = (uchar_t)flag;
19064 
19065 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19066 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19067 	ucmd_buf.uscsi_bufaddr	= NULL;
19068 	ucmd_buf.uscsi_buflen	= 0;
19069 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19070 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19071 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19072 	ucmd_buf.uscsi_timeout	= 200;
19073 
19074 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19075 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19076 
19077 	switch (status) {
19078 	case 0:
19079 		break;	/* Success! */
19080 	case EIO:
19081 		switch (ucmd_buf.uscsi_status) {
19082 		case STATUS_RESERVATION_CONFLICT:
19083 			status = EACCES;
19084 			break;
19085 		case STATUS_CHECK:
19086 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19087 				switch (sense_buf.es_key) {
19088 				case KEY_ILLEGAL_REQUEST:
19089 					status = ENOTSUP;
19090 					break;
19091 				case KEY_NOT_READY:
19092 					if (sense_buf.es_add_code == 0x3A) {
19093 						status = ENXIO;
19094 					}
19095 					break;
19096 				default:
19097 					break;
19098 				}
19099 			}
19100 			break;
19101 		default:
19102 			break;
19103 		}
19104 		break;
19105 	default:
19106 		break;
19107 	}
19108 
19109 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19110 
19111 	return (status);
19112 }
19113 
19114 
19115 /*
19116  *    Function: sd_start_stop_unit_callback
19117  *
19118  * Description: timeout(9F) callback to begin recovery process for a
19119  *		device that has spun down.
19120  *
19121  *   Arguments: arg - pointer to associated softstate struct.
19122  *
19123  *     Context: Executes in a timeout(9F) thread context
19124  */
19125 
19126 static void
19127 sd_start_stop_unit_callback(void *arg)
19128 {
19129 	struct sd_lun	*un = arg;
19130 	ASSERT(un != NULL);
19131 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19132 
19133 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19134 
19135 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19136 }
19137 
19138 
19139 /*
19140  *    Function: sd_start_stop_unit_task
19141  *
19142  * Description: Recovery procedure when a drive is spun down.
19143  *
19144  *   Arguments: arg - pointer to associated softstate struct.
19145  *
19146  *     Context: Executes in a taskq() thread context
19147  */
19148 
19149 static void
19150 sd_start_stop_unit_task(void *arg)
19151 {
19152 	struct sd_lun	*un = arg;
19153 
19154 	ASSERT(un != NULL);
19155 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19156 
19157 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19158 
19159 	/*
19160 	 * Some unformatted drives report not ready error, no need to
19161 	 * restart if format has been initiated.
19162 	 */
19163 	mutex_enter(SD_MUTEX(un));
19164 	if (un->un_f_format_in_progress == TRUE) {
19165 		mutex_exit(SD_MUTEX(un));
19166 		return;
19167 	}
19168 	mutex_exit(SD_MUTEX(un));
19169 
19170 	/*
19171 	 * When a START STOP command is issued from here, it is part of a
19172 	 * failure recovery operation and must be issued before any other
19173 	 * commands, including any pending retries. Thus it must be sent
19174 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19175 	 * succeeds or not, we will start I/O after the attempt.
19176 	 */
19177 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19178 	    SD_PATH_DIRECT_PRIORITY);
19179 
19180 	/*
19181 	 * The above call blocks until the START_STOP_UNIT command completes.
19182 	 * Now that it has completed, we must re-try the original IO that
19183 	 * received the NOT READY condition in the first place. There are
19184 	 * three possible conditions here:
19185 	 *
19186 	 *  (1) The original IO is on un_retry_bp.
19187 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19188 	 *	is NULL.
19189 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19190 	 *	points to some other, unrelated bp.
19191 	 *
19192 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19193 	 * as the argument. If un_retry_bp is NULL, this will initiate
19194 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19195 	 * then this will process the bp on un_retry_bp. That may or may not
19196 	 * be the original IO, but that does not matter: the important thing
19197 	 * is to keep the IO processing going at this point.
19198 	 *
19199 	 * Note: This is a very specific error recovery sequence associated
19200 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19201 	 * serialize the I/O with completion of the spin-up.
19202 	 */
19203 	mutex_enter(SD_MUTEX(un));
19204 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19205 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19206 	    un, un->un_retry_bp);
19207 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19208 	sd_start_cmds(un, un->un_retry_bp);
19209 	mutex_exit(SD_MUTEX(un));
19210 
19211 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19212 }
19213 
19214 
19215 /*
19216  *    Function: sd_send_scsi_INQUIRY
19217  *
19218  * Description: Issue the scsi INQUIRY command.
19219  *
19220  *   Arguments: un
19221  *		bufaddr
19222  *		buflen
19223  *		evpd
19224  *		page_code
19225  *		page_length
19226  *
19227  * Return Code: 0   - Success
19228  *		errno return code from sd_send_scsi_cmd()
19229  *
19230  *     Context: Can sleep. Does not return until command is completed.
19231  */
19232 
19233 static int
19234 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19235 	uchar_t evpd, uchar_t page_code, size_t *residp)
19236 {
19237 	union scsi_cdb		cdb;
19238 	struct uscsi_cmd	ucmd_buf;
19239 	int			status;
19240 
19241 	ASSERT(un != NULL);
19242 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19243 	ASSERT(bufaddr != NULL);
19244 
19245 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19246 
19247 	bzero(&cdb, sizeof (cdb));
19248 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19249 	bzero(bufaddr, buflen);
19250 
19251 	cdb.scc_cmd = SCMD_INQUIRY;
19252 	cdb.cdb_opaque[1] = evpd;
19253 	cdb.cdb_opaque[2] = page_code;
19254 	FORMG0COUNT(&cdb, buflen);
19255 
19256 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19257 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19258 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19259 	ucmd_buf.uscsi_buflen	= buflen;
19260 	ucmd_buf.uscsi_rqbuf	= NULL;
19261 	ucmd_buf.uscsi_rqlen	= 0;
19262 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19263 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19264 
19265 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19266 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19267 
19268 	if ((status == 0) && (residp != NULL)) {
19269 		*residp = ucmd_buf.uscsi_resid;
19270 	}
19271 
19272 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19273 
19274 	return (status);
19275 }
19276 
19277 
19278 /*
19279  *    Function: sd_send_scsi_TEST_UNIT_READY
19280  *
19281  * Description: Issue the scsi TEST UNIT READY command.
19282  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19283  *		prevent retrying failed commands. Use this when the intent
19284  *		is either to check for device readiness, to clear a Unit
19285  *		Attention, or to clear any outstanding sense data.
19286  *		However under specific conditions the expected behavior
19287  *		is for retries to bring a device ready, so use the flag
19288  *		with caution.
19289  *
19290  *   Arguments: un
19291  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19292  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19293  *			0: dont check for media present, do retries on cmd.
19294  *
19295  * Return Code: 0   - Success
19296  *		EIO - IO error
19297  *		EACCES - Reservation conflict detected
19298  *		ENXIO  - Not Ready, medium not present
19299  *		errno return code from sd_send_scsi_cmd()
19300  *
19301  *     Context: Can sleep. Does not return until command is completed.
19302  */
19303 
19304 static int
19305 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19306 {
19307 	struct	scsi_extended_sense	sense_buf;
19308 	union scsi_cdb		cdb;
19309 	struct uscsi_cmd	ucmd_buf;
19310 	int			status;
19311 
19312 	ASSERT(un != NULL);
19313 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19314 
19315 	SD_TRACE(SD_LOG_IO, un,
19316 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19317 
19318 	/*
19319 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19320 	 * timeouts when they receive a TUR and the queue is not empty. Check
19321 	 * the configuration flag set during attach (indicating the drive has
19322 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19323 	 * TUR. If there are
19324 	 * pending commands return success, this is a bit arbitrary but is ok
19325 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19326 	 * configurations.
19327 	 */
19328 	if (un->un_f_cfg_tur_check == TRUE) {
19329 		mutex_enter(SD_MUTEX(un));
19330 		if (un->un_ncmds_in_transport != 0) {
19331 			mutex_exit(SD_MUTEX(un));
19332 			return (0);
19333 		}
19334 		mutex_exit(SD_MUTEX(un));
19335 	}
19336 
19337 	bzero(&cdb, sizeof (cdb));
19338 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19339 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19340 
19341 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19342 
19343 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19344 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19345 	ucmd_buf.uscsi_bufaddr	= NULL;
19346 	ucmd_buf.uscsi_buflen	= 0;
19347 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19348 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19349 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19350 
19351 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19352 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19353 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19354 	}
19355 	ucmd_buf.uscsi_timeout	= 60;
19356 
19357 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19358 	    UIO_SYSSPACE, UIO_SYSSPACE,
19359 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19360 
19361 	switch (status) {
19362 	case 0:
19363 		break;	/* Success! */
19364 	case EIO:
19365 		switch (ucmd_buf.uscsi_status) {
19366 		case STATUS_RESERVATION_CONFLICT:
19367 			status = EACCES;
19368 			break;
19369 		case STATUS_CHECK:
19370 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19371 				break;
19372 			}
19373 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19374 			    (sense_buf.es_key == KEY_NOT_READY) &&
19375 			    (sense_buf.es_add_code == 0x3A)) {
19376 				status = ENXIO;
19377 			}
19378 			break;
19379 		default:
19380 			break;
19381 		}
19382 		break;
19383 	default:
19384 		break;
19385 	}
19386 
19387 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19388 
19389 	return (status);
19390 }
19391 
19392 
19393 /*
19394  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19395  *
19396  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19397  *
19398  *   Arguments: un
19399  *
19400  * Return Code: 0   - Success
19401  *		EACCES
19402  *		ENOTSUP
19403  *		errno return code from sd_send_scsi_cmd()
19404  *
19405  *     Context: Can sleep. Does not return until command is completed.
19406  */
19407 
19408 static int
19409 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19410 	uint16_t data_len, uchar_t *data_bufp)
19411 {
19412 	struct scsi_extended_sense	sense_buf;
19413 	union scsi_cdb		cdb;
19414 	struct uscsi_cmd	ucmd_buf;
19415 	int			status;
19416 	int			no_caller_buf = FALSE;
19417 
19418 	ASSERT(un != NULL);
19419 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19420 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19421 
19422 	SD_TRACE(SD_LOG_IO, un,
19423 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19424 
19425 	bzero(&cdb, sizeof (cdb));
19426 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19427 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19428 	if (data_bufp == NULL) {
19429 		/* Allocate a default buf if the caller did not give one */
19430 		ASSERT(data_len == 0);
19431 		data_len  = MHIOC_RESV_KEY_SIZE;
19432 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19433 		no_caller_buf = TRUE;
19434 	}
19435 
19436 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19437 	cdb.cdb_opaque[1] = usr_cmd;
19438 	FORMG1COUNT(&cdb, data_len);
19439 
19440 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19441 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19442 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19443 	ucmd_buf.uscsi_buflen	= data_len;
19444 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19445 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19446 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19447 	ucmd_buf.uscsi_timeout	= 60;
19448 
19449 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19450 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19451 
19452 	switch (status) {
19453 	case 0:
19454 		break;	/* Success! */
19455 	case EIO:
19456 		switch (ucmd_buf.uscsi_status) {
19457 		case STATUS_RESERVATION_CONFLICT:
19458 			status = EACCES;
19459 			break;
19460 		case STATUS_CHECK:
19461 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19462 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19463 				status = ENOTSUP;
19464 			}
19465 			break;
19466 		default:
19467 			break;
19468 		}
19469 		break;
19470 	default:
19471 		break;
19472 	}
19473 
19474 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19475 
19476 	if (no_caller_buf == TRUE) {
19477 		kmem_free(data_bufp, data_len);
19478 	}
19479 
19480 	return (status);
19481 }
19482 
19483 
19484 /*
19485  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19486  *
19487  * Description: This routine is the driver entry point for handling CD-ROM
19488  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19489  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19490  *		device.
19491  *
19492  *   Arguments: un  -   Pointer to soft state struct for the target.
19493  *		usr_cmd SCSI-3 reservation facility command (one of
19494  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19495  *			SD_SCSI3_PREEMPTANDABORT)
19496  *		usr_bufp - user provided pointer register, reserve descriptor or
19497  *			preempt and abort structure (mhioc_register_t,
19498  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19499  *
19500  * Return Code: 0   - Success
19501  *		EACCES
19502  *		ENOTSUP
19503  *		errno return code from sd_send_scsi_cmd()
19504  *
19505  *     Context: Can sleep. Does not return until command is completed.
19506  */
19507 
19508 static int
19509 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19510 	uchar_t	*usr_bufp)
19511 {
19512 	struct scsi_extended_sense	sense_buf;
19513 	union scsi_cdb		cdb;
19514 	struct uscsi_cmd	ucmd_buf;
19515 	int			status;
19516 	uchar_t			data_len = sizeof (sd_prout_t);
19517 	sd_prout_t		*prp;
19518 
19519 	ASSERT(un != NULL);
19520 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19521 	ASSERT(data_len == 24);	/* required by scsi spec */
19522 
19523 	SD_TRACE(SD_LOG_IO, un,
19524 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19525 
19526 	if (usr_bufp == NULL) {
19527 		return (EINVAL);
19528 	}
19529 
19530 	bzero(&cdb, sizeof (cdb));
19531 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19532 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19533 	prp = kmem_zalloc(data_len, KM_SLEEP);
19534 
19535 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19536 	cdb.cdb_opaque[1] = usr_cmd;
19537 	FORMG1COUNT(&cdb, data_len);
19538 
19539 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19540 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19541 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19542 	ucmd_buf.uscsi_buflen	= data_len;
19543 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19544 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19545 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19546 	ucmd_buf.uscsi_timeout	= 60;
19547 
19548 	switch (usr_cmd) {
19549 	case SD_SCSI3_REGISTER: {
19550 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19551 
19552 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19553 		bcopy(ptr->newkey.key, prp->service_key,
19554 		    MHIOC_RESV_KEY_SIZE);
19555 		prp->aptpl = ptr->aptpl;
19556 		break;
19557 	}
19558 	case SD_SCSI3_RESERVE:
19559 	case SD_SCSI3_RELEASE: {
19560 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19561 
19562 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19563 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19564 		cdb.cdb_opaque[2] = ptr->type;
19565 		break;
19566 	}
19567 	case SD_SCSI3_PREEMPTANDABORT: {
19568 		mhioc_preemptandabort_t *ptr =
19569 		    (mhioc_preemptandabort_t *)usr_bufp;
19570 
19571 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19572 		bcopy(ptr->victim_key.key, prp->service_key,
19573 		    MHIOC_RESV_KEY_SIZE);
19574 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19575 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19576 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19577 		break;
19578 	}
19579 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19580 	{
19581 		mhioc_registerandignorekey_t *ptr;
19582 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19583 		bcopy(ptr->newkey.key,
19584 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19585 		prp->aptpl = ptr->aptpl;
19586 		break;
19587 	}
19588 	default:
19589 		ASSERT(FALSE);
19590 		break;
19591 	}
19592 
19593 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19594 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19595 
19596 	switch (status) {
19597 	case 0:
19598 		break;	/* Success! */
19599 	case EIO:
19600 		switch (ucmd_buf.uscsi_status) {
19601 		case STATUS_RESERVATION_CONFLICT:
19602 			status = EACCES;
19603 			break;
19604 		case STATUS_CHECK:
19605 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19606 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19607 				status = ENOTSUP;
19608 			}
19609 			break;
19610 		default:
19611 			break;
19612 		}
19613 		break;
19614 	default:
19615 		break;
19616 	}
19617 
19618 	kmem_free(prp, data_len);
19619 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19620 	return (status);
19621 }
19622 
19623 
19624 /*
19625  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19626  *
19627  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19628  *
19629  *   Arguments: un - pointer to the target's soft state struct
19630  *
19631  * Return Code: 0 - success
19632  *		errno-type error code
19633  *
19634  *     Context: kernel thread context only.
19635  */
19636 
19637 static int
19638 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un)
19639 {
19640 	struct	scsi_extended_sense	sense_buf;
19641 	union scsi_cdb		cdb;
19642 	struct uscsi_cmd	ucmd_buf;
19643 	int			status;
19644 
19645 	ASSERT(un != NULL);
19646 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19647 
19648 	SD_TRACE(SD_LOG_IO, un,
19649 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19650 
19651 	bzero(&cdb, sizeof (cdb));
19652 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19653 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19654 
19655 	cdb.scc_cmd = SCMD_SYNCHRONIZE_CACHE;
19656 
19657 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19658 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19659 	ucmd_buf.uscsi_bufaddr	= NULL;
19660 	ucmd_buf.uscsi_buflen	= 0;
19661 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19662 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19663 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19664 	ucmd_buf.uscsi_timeout	= 240;
19665 
19666 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19667 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19668 
19669 	switch (status) {
19670 	case 0:
19671 		break;	/* Success! */
19672 	case EIO:
19673 		switch (ucmd_buf.uscsi_status) {
19674 		case STATUS_RESERVATION_CONFLICT:
19675 			/* Ignore reservation conflict */
19676 			status = 0;
19677 			goto done;
19678 
19679 		case STATUS_CHECK:
19680 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19681 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19682 				/* Ignore Illegal Request error */
19683 				status = 0;
19684 				goto done;
19685 			}
19686 			break;
19687 		default:
19688 			break;
19689 		}
19690 		/* FALLTHRU */
19691 	default:
19692 		/* Ignore error if the media is not present. */
19693 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
19694 			status = 0;
19695 			goto done;
19696 		}
19697 		/* If we reach this, we had an error */
19698 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19699 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19700 		break;
19701 	}
19702 
19703 done:
19704 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: exit\n");
19705 
19706 	return (status);
19707 }
19708 
19709 
19710 /*
19711  *    Function: sd_send_scsi_GET_CONFIGURATION
19712  *
19713  * Description: Issues the get configuration command to the device.
19714  *		Called from sd_check_for_writable_cd & sd_get_media_info
19715  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19716  *   Arguments: un
19717  *		ucmdbuf
19718  *		rqbuf
19719  *		rqbuflen
19720  *		bufaddr
19721  *		buflen
19722  *
19723  * Return Code: 0   - Success
19724  *		errno return code from sd_send_scsi_cmd()
19725  *
19726  *     Context: Can sleep. Does not return until command is completed.
19727  *
19728  */
19729 
19730 static int
19731 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19732 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
19733 {
19734 	char	cdb[CDB_GROUP1];
19735 	int	status;
19736 
19737 	ASSERT(un != NULL);
19738 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19739 	ASSERT(bufaddr != NULL);
19740 	ASSERT(ucmdbuf != NULL);
19741 	ASSERT(rqbuf != NULL);
19742 
19743 	SD_TRACE(SD_LOG_IO, un,
19744 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19745 
19746 	bzero(cdb, sizeof (cdb));
19747 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19748 	bzero(rqbuf, rqbuflen);
19749 	bzero(bufaddr, buflen);
19750 
19751 	/*
19752 	 * Set up cdb field for the get configuration command.
19753 	 */
19754 	cdb[0] = SCMD_GET_CONFIGURATION;
19755 	cdb[1] = 0x02;  /* Requested Type */
19756 	cdb[8] = SD_PROFILE_HEADER_LEN;
19757 	ucmdbuf->uscsi_cdb = cdb;
19758 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19759 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19760 	ucmdbuf->uscsi_buflen = buflen;
19761 	ucmdbuf->uscsi_timeout = sd_io_time;
19762 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19763 	ucmdbuf->uscsi_rqlen = rqbuflen;
19764 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19765 
19766 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19767 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19768 
19769 	switch (status) {
19770 	case 0:
19771 		break;  /* Success! */
19772 	case EIO:
19773 		switch (ucmdbuf->uscsi_status) {
19774 		case STATUS_RESERVATION_CONFLICT:
19775 			status = EACCES;
19776 			break;
19777 		default:
19778 			break;
19779 		}
19780 		break;
19781 	default:
19782 		break;
19783 	}
19784 
19785 	if (status == 0) {
19786 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19787 		    "sd_send_scsi_GET_CONFIGURATION: data",
19788 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19789 	}
19790 
19791 	SD_TRACE(SD_LOG_IO, un,
19792 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19793 
19794 	return (status);
19795 }
19796 
19797 /*
19798  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19799  *
19800  * Description: Issues the get configuration command to the device to
19801  *              retrieve a specfic feature. Called from
19802  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19803  *   Arguments: un
19804  *              ucmdbuf
19805  *              rqbuf
19806  *              rqbuflen
19807  *              bufaddr
19808  *              buflen
19809  *		feature
19810  *
19811  * Return Code: 0   - Success
19812  *              errno return code from sd_send_scsi_cmd()
19813  *
19814  *     Context: Can sleep. Does not return until command is completed.
19815  *
19816  */
19817 static int
19818 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19819 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19820 	uchar_t *bufaddr, uint_t buflen, char feature)
19821 {
19822 	char    cdb[CDB_GROUP1];
19823 	int	status;
19824 
19825 	ASSERT(un != NULL);
19826 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19827 	ASSERT(bufaddr != NULL);
19828 	ASSERT(ucmdbuf != NULL);
19829 	ASSERT(rqbuf != NULL);
19830 
19831 	SD_TRACE(SD_LOG_IO, un,
19832 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19833 
19834 	bzero(cdb, sizeof (cdb));
19835 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19836 	bzero(rqbuf, rqbuflen);
19837 	bzero(bufaddr, buflen);
19838 
19839 	/*
19840 	 * Set up cdb field for the get configuration command.
19841 	 */
19842 	cdb[0] = SCMD_GET_CONFIGURATION;
19843 	cdb[1] = 0x02;  /* Requested Type */
19844 	cdb[3] = feature;
19845 	cdb[8] = buflen;
19846 	ucmdbuf->uscsi_cdb = cdb;
19847 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19848 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19849 	ucmdbuf->uscsi_buflen = buflen;
19850 	ucmdbuf->uscsi_timeout = sd_io_time;
19851 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19852 	ucmdbuf->uscsi_rqlen = rqbuflen;
19853 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19854 
19855 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19856 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19857 
19858 	switch (status) {
19859 	case 0:
19860 		break;  /* Success! */
19861 	case EIO:
19862 		switch (ucmdbuf->uscsi_status) {
19863 		case STATUS_RESERVATION_CONFLICT:
19864 			status = EACCES;
19865 			break;
19866 		default:
19867 			break;
19868 		}
19869 		break;
19870 	default:
19871 		break;
19872 	}
19873 
19874 	if (status == 0) {
19875 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19876 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19877 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19878 	}
19879 
19880 	SD_TRACE(SD_LOG_IO, un,
19881 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19882 
19883 	return (status);
19884 }
19885 
19886 
19887 /*
19888  *    Function: sd_send_scsi_MODE_SENSE
19889  *
19890  * Description: Utility function for issuing a scsi MODE SENSE command.
19891  *		Note: This routine uses a consistent implementation for Group0,
19892  *		Group1, and Group2 commands across all platforms. ATAPI devices
19893  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19894  *
19895  *   Arguments: un - pointer to the softstate struct for the target.
19896  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19897  *			  CDB_GROUP[1|2] (10 byte).
19898  *		bufaddr - buffer for page data retrieved from the target.
19899  *		buflen - size of page to be retrieved.
19900  *		page_code - page code of data to be retrieved from the target.
19901  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19902  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19903  *			to use the USCSI "direct" chain and bypass the normal
19904  *			command waitq.
19905  *
19906  * Return Code: 0   - Success
19907  *		errno return code from sd_send_scsi_cmd()
19908  *
19909  *     Context: Can sleep. Does not return until command is completed.
19910  */
19911 
19912 static int
19913 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19914 	size_t buflen,  uchar_t page_code, int path_flag)
19915 {
19916 	struct	scsi_extended_sense	sense_buf;
19917 	union scsi_cdb		cdb;
19918 	struct uscsi_cmd	ucmd_buf;
19919 	int			status;
19920 
19921 	ASSERT(un != NULL);
19922 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19923 	ASSERT(bufaddr != NULL);
19924 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19925 	    (cdbsize == CDB_GROUP2));
19926 
19927 	SD_TRACE(SD_LOG_IO, un,
19928 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19929 
19930 	bzero(&cdb, sizeof (cdb));
19931 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19932 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19933 	bzero(bufaddr, buflen);
19934 
19935 	if (cdbsize == CDB_GROUP0) {
19936 		cdb.scc_cmd = SCMD_MODE_SENSE;
19937 		cdb.cdb_opaque[2] = page_code;
19938 		FORMG0COUNT(&cdb, buflen);
19939 	} else {
19940 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19941 		cdb.cdb_opaque[2] = page_code;
19942 		FORMG1COUNT(&cdb, buflen);
19943 	}
19944 
19945 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19946 
19947 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19948 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19949 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19950 	ucmd_buf.uscsi_buflen	= buflen;
19951 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19952 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19953 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19954 	ucmd_buf.uscsi_timeout	= 60;
19955 
19956 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19957 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19958 
19959 	switch (status) {
19960 	case 0:
19961 		break;	/* Success! */
19962 	case EIO:
19963 		switch (ucmd_buf.uscsi_status) {
19964 		case STATUS_RESERVATION_CONFLICT:
19965 			status = EACCES;
19966 			break;
19967 		default:
19968 			break;
19969 		}
19970 		break;
19971 	default:
19972 		break;
19973 	}
19974 
19975 	if (status == 0) {
19976 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19977 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19978 	}
19979 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19980 
19981 	return (status);
19982 }
19983 
19984 
19985 /*
19986  *    Function: sd_send_scsi_MODE_SELECT
19987  *
19988  * Description: Utility function for issuing a scsi MODE SELECT command.
19989  *		Note: This routine uses a consistent implementation for Group0,
19990  *		Group1, and Group2 commands across all platforms. ATAPI devices
19991  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19992  *
19993  *   Arguments: un - pointer to the softstate struct for the target.
19994  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19995  *			  CDB_GROUP[1|2] (10 byte).
19996  *		bufaddr - buffer for page data retrieved from the target.
19997  *		buflen - size of page to be retrieved.
19998  *		save_page - boolean to determin if SP bit should be set.
19999  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20000  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20001  *			to use the USCSI "direct" chain and bypass the normal
20002  *			command waitq.
20003  *
20004  * Return Code: 0   - Success
20005  *		errno return code from sd_send_scsi_cmd()
20006  *
20007  *     Context: Can sleep. Does not return until command is completed.
20008  */
20009 
20010 static int
20011 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20012 	size_t buflen,  uchar_t save_page, int path_flag)
20013 {
20014 	struct	scsi_extended_sense	sense_buf;
20015 	union scsi_cdb		cdb;
20016 	struct uscsi_cmd	ucmd_buf;
20017 	int			status;
20018 
20019 	ASSERT(un != NULL);
20020 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20021 	ASSERT(bufaddr != NULL);
20022 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20023 	    (cdbsize == CDB_GROUP2));
20024 
20025 	SD_TRACE(SD_LOG_IO, un,
20026 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20027 
20028 	bzero(&cdb, sizeof (cdb));
20029 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20030 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20031 
20032 	/* Set the PF bit for many third party drives */
20033 	cdb.cdb_opaque[1] = 0x10;
20034 
20035 	/* Set the savepage(SP) bit if given */
20036 	if (save_page == SD_SAVE_PAGE) {
20037 		cdb.cdb_opaque[1] |= 0x01;
20038 	}
20039 
20040 	if (cdbsize == CDB_GROUP0) {
20041 		cdb.scc_cmd = SCMD_MODE_SELECT;
20042 		FORMG0COUNT(&cdb, buflen);
20043 	} else {
20044 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20045 		FORMG1COUNT(&cdb, buflen);
20046 	}
20047 
20048 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20049 
20050 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20051 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20052 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20053 	ucmd_buf.uscsi_buflen	= buflen;
20054 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20055 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20056 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20057 	ucmd_buf.uscsi_timeout	= 60;
20058 
20059 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20060 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20061 
20062 	switch (status) {
20063 	case 0:
20064 		break;	/* Success! */
20065 	case EIO:
20066 		switch (ucmd_buf.uscsi_status) {
20067 		case STATUS_RESERVATION_CONFLICT:
20068 			status = EACCES;
20069 			break;
20070 		default:
20071 			break;
20072 		}
20073 		break;
20074 	default:
20075 		break;
20076 	}
20077 
20078 	if (status == 0) {
20079 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20080 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20081 	}
20082 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20083 
20084 	return (status);
20085 }
20086 
20087 
20088 /*
20089  *    Function: sd_send_scsi_RDWR
20090  *
20091  * Description: Issue a scsi READ or WRITE command with the given parameters.
20092  *
20093  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20094  *		cmd:	 SCMD_READ or SCMD_WRITE
20095  *		bufaddr: Address of caller's buffer to receive the RDWR data
20096  *		buflen:  Length of caller's buffer receive the RDWR data.
20097  *		start_block: Block number for the start of the RDWR operation.
20098  *			 (Assumes target-native block size.)
20099  *		residp:  Pointer to variable to receive the redisual of the
20100  *			 RDWR operation (may be NULL of no residual requested).
20101  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20102  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20103  *			to use the USCSI "direct" chain and bypass the normal
20104  *			command waitq.
20105  *
20106  * Return Code: 0   - Success
20107  *		errno return code from sd_send_scsi_cmd()
20108  *
20109  *     Context: Can sleep. Does not return until command is completed.
20110  */
20111 
20112 static int
20113 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20114 	size_t buflen, daddr_t start_block, int path_flag)
20115 {
20116 	struct	scsi_extended_sense	sense_buf;
20117 	union scsi_cdb		cdb;
20118 	struct uscsi_cmd	ucmd_buf;
20119 	uint32_t		block_count;
20120 	int			status;
20121 	int			cdbsize;
20122 	uchar_t			flag;
20123 
20124 	ASSERT(un != NULL);
20125 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20126 	ASSERT(bufaddr != NULL);
20127 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20128 
20129 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20130 
20131 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20132 		return (EINVAL);
20133 	}
20134 
20135 	mutex_enter(SD_MUTEX(un));
20136 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20137 	mutex_exit(SD_MUTEX(un));
20138 
20139 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20140 
20141 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20142 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20143 	    bufaddr, buflen, start_block, block_count);
20144 
20145 	bzero(&cdb, sizeof (cdb));
20146 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20147 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20148 
20149 	/* Compute CDB size to use */
20150 	if (start_block > 0xffffffff)
20151 		cdbsize = CDB_GROUP4;
20152 	else if ((start_block & 0xFFE00000) ||
20153 	    (un->un_f_cfg_is_atapi == TRUE))
20154 		cdbsize = CDB_GROUP1;
20155 	else
20156 		cdbsize = CDB_GROUP0;
20157 
20158 	switch (cdbsize) {
20159 	case CDB_GROUP0:	/* 6-byte CDBs */
20160 		cdb.scc_cmd = cmd;
20161 		FORMG0ADDR(&cdb, start_block);
20162 		FORMG0COUNT(&cdb, block_count);
20163 		break;
20164 	case CDB_GROUP1:	/* 10-byte CDBs */
20165 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20166 		FORMG1ADDR(&cdb, start_block);
20167 		FORMG1COUNT(&cdb, block_count);
20168 		break;
20169 	case CDB_GROUP4:	/* 16-byte CDBs */
20170 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20171 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20172 		FORMG4COUNT(&cdb, block_count);
20173 		break;
20174 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20175 	default:
20176 		/* All others reserved */
20177 		return (EINVAL);
20178 	}
20179 
20180 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20181 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20182 
20183 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20184 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20185 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20186 	ucmd_buf.uscsi_buflen	= buflen;
20187 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20188 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20189 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20190 	ucmd_buf.uscsi_timeout	= 60;
20191 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20192 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20193 	switch (status) {
20194 	case 0:
20195 		break;	/* Success! */
20196 	case EIO:
20197 		switch (ucmd_buf.uscsi_status) {
20198 		case STATUS_RESERVATION_CONFLICT:
20199 			status = EACCES;
20200 			break;
20201 		default:
20202 			break;
20203 		}
20204 		break;
20205 	default:
20206 		break;
20207 	}
20208 
20209 	if (status == 0) {
20210 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20211 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20212 	}
20213 
20214 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20215 
20216 	return (status);
20217 }
20218 
20219 
20220 /*
20221  *    Function: sd_send_scsi_LOG_SENSE
20222  *
20223  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20224  *
20225  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20226  *
20227  * Return Code: 0   - Success
20228  *		errno return code from sd_send_scsi_cmd()
20229  *
20230  *     Context: Can sleep. Does not return until command is completed.
20231  */
20232 
20233 static int
20234 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20235 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20236 	int path_flag)
20237 
20238 {
20239 	struct	scsi_extended_sense	sense_buf;
20240 	union scsi_cdb		cdb;
20241 	struct uscsi_cmd	ucmd_buf;
20242 	int			status;
20243 
20244 	ASSERT(un != NULL);
20245 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20246 
20247 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20248 
20249 	bzero(&cdb, sizeof (cdb));
20250 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20251 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20252 
20253 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20254 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20255 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20256 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20257 	FORMG1COUNT(&cdb, buflen);
20258 
20259 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20260 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20261 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20262 	ucmd_buf.uscsi_buflen	= buflen;
20263 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20264 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20265 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20266 	ucmd_buf.uscsi_timeout	= 60;
20267 
20268 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20269 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20270 
20271 	switch (status) {
20272 	case 0:
20273 		break;
20274 	case EIO:
20275 		switch (ucmd_buf.uscsi_status) {
20276 		case STATUS_RESERVATION_CONFLICT:
20277 			status = EACCES;
20278 			break;
20279 		case STATUS_CHECK:
20280 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20281 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20282 			    (sense_buf.es_add_code == 0x24)) {
20283 				/*
20284 				 * ASC 0x24: INVALID FIELD IN CDB
20285 				 */
20286 				switch (page_code) {
20287 				case START_STOP_CYCLE_PAGE:
20288 					/*
20289 					 * The start stop cycle counter is
20290 					 * implemented as page 0x31 in earlier
20291 					 * generation disks. In new generation
20292 					 * disks the start stop cycle counter is
20293 					 * implemented as page 0xE. To properly
20294 					 * handle this case if an attempt for
20295 					 * log page 0xE is made and fails we
20296 					 * will try again using page 0x31.
20297 					 *
20298 					 * Network storage BU committed to
20299 					 * maintain the page 0x31 for this
20300 					 * purpose and will not have any other
20301 					 * page implemented with page code 0x31
20302 					 * until all disks transition to the
20303 					 * standard page.
20304 					 */
20305 					mutex_enter(SD_MUTEX(un));
20306 					un->un_start_stop_cycle_page =
20307 					    START_STOP_CYCLE_VU_PAGE;
20308 					cdb.cdb_opaque[2] =
20309 					    (char)(page_control << 6) |
20310 					    un->un_start_stop_cycle_page;
20311 					mutex_exit(SD_MUTEX(un));
20312 					status = sd_send_scsi_cmd(
20313 					    SD_GET_DEV(un), &ucmd_buf,
20314 					    UIO_SYSSPACE, UIO_SYSSPACE,
20315 					    UIO_SYSSPACE, path_flag);
20316 
20317 					break;
20318 				case TEMPERATURE_PAGE:
20319 					status = ENOTTY;
20320 					break;
20321 				default:
20322 					break;
20323 				}
20324 			}
20325 			break;
20326 		default:
20327 			break;
20328 		}
20329 		break;
20330 	default:
20331 		break;
20332 	}
20333 
20334 	if (status == 0) {
20335 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20336 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20337 	}
20338 
20339 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20340 
20341 	return (status);
20342 }
20343 
20344 
20345 /*
20346  *    Function: sdioctl
20347  *
20348  * Description: Driver's ioctl(9e) entry point function.
20349  *
20350  *   Arguments: dev     - device number
20351  *		cmd     - ioctl operation to be performed
20352  *		arg     - user argument, contains data to be set or reference
20353  *			  parameter for get
20354  *		flag    - bit flag, indicating open settings, 32/64 bit type
20355  *		cred_p  - user credential pointer
20356  *		rval_p  - calling process return value (OPT)
20357  *
20358  * Return Code: EINVAL
20359  *		ENOTTY
20360  *		ENXIO
20361  *		EIO
20362  *		EFAULT
20363  *		ENOTSUP
20364  *		EPERM
20365  *
20366  *     Context: Called from the device switch at normal priority.
20367  */
20368 
20369 static int
20370 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20371 {
20372 	struct sd_lun	*un = NULL;
20373 	int		geom_validated = FALSE;
20374 	int		err = 0;
20375 	int		i = 0;
20376 	cred_t		*cr;
20377 
20378 	/*
20379 	 * All device accesses go thru sdstrategy where we check on suspend
20380 	 * status
20381 	 */
20382 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20383 		return (ENXIO);
20384 	}
20385 
20386 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20387 
20388 	/*
20389 	 * Moved this wait from sd_uscsi_strategy to here for
20390 	 * reasons of deadlock prevention. Internal driver commands,
20391 	 * specifically those to change a devices power level, result
20392 	 * in a call to sd_uscsi_strategy.
20393 	 */
20394 	mutex_enter(SD_MUTEX(un));
20395 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20396 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20397 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20398 	}
20399 	/*
20400 	 * Twiddling the counter here protects commands from now
20401 	 * through to the top of sd_uscsi_strategy. Without the
20402 	 * counter inc. a power down, for example, could get in
20403 	 * after the above check for state is made and before
20404 	 * execution gets to the top of sd_uscsi_strategy.
20405 	 * That would cause problems.
20406 	 */
20407 	un->un_ncmds_in_driver++;
20408 
20409 	if ((un->un_f_geometry_is_valid == FALSE) &&
20410 	    (flag & (FNDELAY | FNONBLOCK))) {
20411 		switch (cmd) {
20412 		case CDROMPAUSE:
20413 		case CDROMRESUME:
20414 		case CDROMPLAYMSF:
20415 		case CDROMPLAYTRKIND:
20416 		case CDROMREADTOCHDR:
20417 		case CDROMREADTOCENTRY:
20418 		case CDROMSTOP:
20419 		case CDROMSTART:
20420 		case CDROMVOLCTRL:
20421 		case CDROMSUBCHNL:
20422 		case CDROMREADMODE2:
20423 		case CDROMREADMODE1:
20424 		case CDROMREADOFFSET:
20425 		case CDROMSBLKMODE:
20426 		case CDROMGBLKMODE:
20427 		case CDROMGDRVSPEED:
20428 		case CDROMSDRVSPEED:
20429 		case CDROMCDDA:
20430 		case CDROMCDXA:
20431 		case CDROMSUBCODE:
20432 			if (!ISCD(un)) {
20433 				un->un_ncmds_in_driver--;
20434 				ASSERT(un->un_ncmds_in_driver >= 0);
20435 				mutex_exit(SD_MUTEX(un));
20436 				return (ENOTTY);
20437 			}
20438 			break;
20439 		case FDEJECT:
20440 		case DKIOCEJECT:
20441 		case CDROMEJECT:
20442 			if (!ISREMOVABLE(un)) {
20443 				un->un_ncmds_in_driver--;
20444 				ASSERT(un->un_ncmds_in_driver >= 0);
20445 				mutex_exit(SD_MUTEX(un));
20446 				return (ENOTTY);
20447 			}
20448 			break;
20449 		case DKIOCSVTOC:
20450 		case DKIOCSETEFI:
20451 		case DKIOCSMBOOT:
20452 			mutex_exit(SD_MUTEX(un));
20453 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20454 			if (err != 0) {
20455 				mutex_enter(SD_MUTEX(un));
20456 				un->un_ncmds_in_driver--;
20457 				ASSERT(un->un_ncmds_in_driver >= 0);
20458 				mutex_exit(SD_MUTEX(un));
20459 				return (EIO);
20460 			}
20461 			mutex_enter(SD_MUTEX(un));
20462 			/* FALLTHROUGH */
20463 		case DKIOCREMOVABLE:
20464 		case DKIOCINFO:
20465 		case DKIOCGMEDIAINFO:
20466 		case MHIOCENFAILFAST:
20467 		case MHIOCSTATUS:
20468 		case MHIOCTKOWN:
20469 		case MHIOCRELEASE:
20470 		case MHIOCGRP_INKEYS:
20471 		case MHIOCGRP_INRESV:
20472 		case MHIOCGRP_REGISTER:
20473 		case MHIOCGRP_RESERVE:
20474 		case MHIOCGRP_PREEMPTANDABORT:
20475 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20476 		case CDROMCLOSETRAY:
20477 		case USCSICMD:
20478 			goto skip_ready_valid;
20479 		default:
20480 			break;
20481 		}
20482 
20483 		mutex_exit(SD_MUTEX(un));
20484 		err = sd_ready_and_valid(un);
20485 		mutex_enter(SD_MUTEX(un));
20486 		if (err == SD_READY_NOT_VALID) {
20487 			switch (cmd) {
20488 			case DKIOCGAPART:
20489 			case DKIOCGGEOM:
20490 			case DKIOCSGEOM:
20491 			case DKIOCGVTOC:
20492 			case DKIOCSVTOC:
20493 			case DKIOCSAPART:
20494 			case DKIOCG_PHYGEOM:
20495 			case DKIOCG_VIRTGEOM:
20496 				err = ENOTSUP;
20497 				un->un_ncmds_in_driver--;
20498 				ASSERT(un->un_ncmds_in_driver >= 0);
20499 				mutex_exit(SD_MUTEX(un));
20500 				return (err);
20501 			}
20502 		}
20503 		if (err != SD_READY_VALID) {
20504 			switch (cmd) {
20505 			case DKIOCSTATE:
20506 			case CDROMGDRVSPEED:
20507 			case CDROMSDRVSPEED:
20508 			case FDEJECT:	/* for eject command */
20509 			case DKIOCEJECT:
20510 			case CDROMEJECT:
20511 			case DKIOCGETEFI:
20512 			case DKIOCSGEOM:
20513 			case DKIOCREMOVABLE:
20514 			case DKIOCSAPART:
20515 			case DKIOCSETEFI:
20516 				break;
20517 			default:
20518 				if (ISREMOVABLE(un)) {
20519 					err = ENXIO;
20520 				} else {
20521 					/* Do not map EACCES to EIO */
20522 					if (err != EACCES)
20523 						err = EIO;
20524 				}
20525 				un->un_ncmds_in_driver--;
20526 				ASSERT(un->un_ncmds_in_driver >= 0);
20527 				mutex_exit(SD_MUTEX(un));
20528 				return (err);
20529 			}
20530 		}
20531 		geom_validated = TRUE;
20532 	}
20533 	if ((un->un_f_geometry_is_valid == TRUE) &&
20534 	    (un->un_solaris_size > 0)) {
20535 		/*
20536 		 * the "geometry_is_valid" flag could be true if we
20537 		 * have an fdisk table but no Solaris partition
20538 		 */
20539 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20540 			/* it is EFI, so return ENOTSUP for these */
20541 			switch (cmd) {
20542 			case DKIOCGAPART:
20543 			case DKIOCGGEOM:
20544 			case DKIOCGVTOC:
20545 			case DKIOCSVTOC:
20546 			case DKIOCSAPART:
20547 				err = ENOTSUP;
20548 				un->un_ncmds_in_driver--;
20549 				ASSERT(un->un_ncmds_in_driver >= 0);
20550 				mutex_exit(SD_MUTEX(un));
20551 				return (err);
20552 			}
20553 		}
20554 	}
20555 
20556 skip_ready_valid:
20557 	mutex_exit(SD_MUTEX(un));
20558 
20559 	switch (cmd) {
20560 	case DKIOCINFO:
20561 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20562 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20563 		break;
20564 
20565 	case DKIOCGMEDIAINFO:
20566 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20567 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20568 		break;
20569 
20570 	case DKIOCGGEOM:
20571 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
20572 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
20573 		    geom_validated);
20574 		break;
20575 
20576 	case DKIOCSGEOM:
20577 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
20578 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
20579 		break;
20580 
20581 	case DKIOCGAPART:
20582 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
20583 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
20584 		    geom_validated);
20585 		break;
20586 
20587 	case DKIOCSAPART:
20588 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
20589 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
20590 		break;
20591 
20592 	case DKIOCGVTOC:
20593 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
20594 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
20595 		    geom_validated);
20596 		break;
20597 
20598 	case DKIOCGETEFI:
20599 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
20600 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
20601 		break;
20602 
20603 	case DKIOCPARTITION:
20604 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
20605 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
20606 		break;
20607 
20608 	case DKIOCSVTOC:
20609 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
20610 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
20611 		break;
20612 
20613 	case DKIOCSETEFI:
20614 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
20615 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
20616 		break;
20617 
20618 	case DKIOCGMBOOT:
20619 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
20620 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
20621 		break;
20622 
20623 	case DKIOCSMBOOT:
20624 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
20625 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
20626 		break;
20627 
20628 	case DKIOCLOCK:
20629 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20630 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20631 		    SD_PATH_STANDARD);
20632 		break;
20633 
20634 	case DKIOCUNLOCK:
20635 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20636 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20637 		    SD_PATH_STANDARD);
20638 		break;
20639 
20640 	case DKIOCSTATE: {
20641 		enum dkio_state		state;
20642 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20643 
20644 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20645 			err = EFAULT;
20646 		} else {
20647 			err = sd_check_media(dev, state);
20648 			if (err == 0) {
20649 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20650 				    sizeof (int), flag) != 0)
20651 					err = EFAULT;
20652 			}
20653 		}
20654 		break;
20655 	}
20656 
20657 	case DKIOCREMOVABLE:
20658 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20659 		if (ISREMOVABLE(un)) {
20660 			i = 1;
20661 		} else {
20662 			i = 0;
20663 		}
20664 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20665 			err = EFAULT;
20666 		} else {
20667 			err = 0;
20668 		}
20669 		break;
20670 
20671 	case DKIOCGTEMPERATURE:
20672 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20673 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20674 		break;
20675 
20676 	case MHIOCENFAILFAST:
20677 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20678 		if ((err = drv_priv(cred_p)) == 0) {
20679 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20680 		}
20681 		break;
20682 
20683 	case MHIOCTKOWN:
20684 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20685 		if ((err = drv_priv(cred_p)) == 0) {
20686 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20687 		}
20688 		break;
20689 
20690 	case MHIOCRELEASE:
20691 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20692 		if ((err = drv_priv(cred_p)) == 0) {
20693 			err = sd_mhdioc_release(dev);
20694 		}
20695 		break;
20696 
20697 	case MHIOCSTATUS:
20698 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20699 		if ((err = drv_priv(cred_p)) == 0) {
20700 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20701 			case 0:
20702 				err = 0;
20703 				break;
20704 			case EACCES:
20705 				*rval_p = 1;
20706 				err = 0;
20707 				break;
20708 			default:
20709 				err = EIO;
20710 				break;
20711 			}
20712 		}
20713 		break;
20714 
20715 	case MHIOCQRESERVE:
20716 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20717 		if ((err = drv_priv(cred_p)) == 0) {
20718 			err = sd_reserve_release(dev, SD_RESERVE);
20719 		}
20720 		break;
20721 
20722 	case MHIOCREREGISTERDEVID:
20723 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20724 		if (drv_priv(cred_p) == EPERM) {
20725 			err = EPERM;
20726 		} else if (ISREMOVABLE(un) || ISCD(un)) {
20727 			err = ENOTTY;
20728 		} else {
20729 			err = sd_mhdioc_register_devid(dev);
20730 		}
20731 		break;
20732 
20733 	case MHIOCGRP_INKEYS:
20734 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20735 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20736 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20737 				err = ENOTSUP;
20738 			} else {
20739 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20740 				    flag);
20741 			}
20742 		}
20743 		break;
20744 
20745 	case MHIOCGRP_INRESV:
20746 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20747 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20748 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20749 				err = ENOTSUP;
20750 			} else {
20751 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20752 			}
20753 		}
20754 		break;
20755 
20756 	case MHIOCGRP_REGISTER:
20757 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20758 		if ((err = drv_priv(cred_p)) != EPERM) {
20759 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20760 				err = ENOTSUP;
20761 			} else if (arg != NULL) {
20762 				mhioc_register_t reg;
20763 				if (ddi_copyin((void *)arg, &reg,
20764 				    sizeof (mhioc_register_t), flag) != 0) {
20765 					err = EFAULT;
20766 				} else {
20767 					err =
20768 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20769 					    un, SD_SCSI3_REGISTER,
20770 					    (uchar_t *)&reg);
20771 				}
20772 			}
20773 		}
20774 		break;
20775 
20776 	case MHIOCGRP_RESERVE:
20777 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20778 		if ((err = drv_priv(cred_p)) != EPERM) {
20779 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20780 				err = ENOTSUP;
20781 			} else if (arg != NULL) {
20782 				mhioc_resv_desc_t resv_desc;
20783 				if (ddi_copyin((void *)arg, &resv_desc,
20784 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20785 					err = EFAULT;
20786 				} else {
20787 					err =
20788 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20789 					    un, SD_SCSI3_RESERVE,
20790 					    (uchar_t *)&resv_desc);
20791 				}
20792 			}
20793 		}
20794 		break;
20795 
20796 	case MHIOCGRP_PREEMPTANDABORT:
20797 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20798 		if ((err = drv_priv(cred_p)) != EPERM) {
20799 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20800 				err = ENOTSUP;
20801 			} else if (arg != NULL) {
20802 				mhioc_preemptandabort_t preempt_abort;
20803 				if (ddi_copyin((void *)arg, &preempt_abort,
20804 				    sizeof (mhioc_preemptandabort_t),
20805 				    flag) != 0) {
20806 					err = EFAULT;
20807 				} else {
20808 					err =
20809 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20810 					    un, SD_SCSI3_PREEMPTANDABORT,
20811 					    (uchar_t *)&preempt_abort);
20812 				}
20813 			}
20814 		}
20815 		break;
20816 
20817 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20818 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20819 		if ((err = drv_priv(cred_p)) != EPERM) {
20820 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20821 				err = ENOTSUP;
20822 			} else if (arg != NULL) {
20823 				mhioc_registerandignorekey_t r_and_i;
20824 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20825 				    sizeof (mhioc_registerandignorekey_t),
20826 				    flag) != 0) {
20827 					err = EFAULT;
20828 				} else {
20829 					err =
20830 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20831 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20832 					    (uchar_t *)&r_and_i);
20833 				}
20834 			}
20835 		}
20836 		break;
20837 
20838 	case USCSICMD:
20839 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20840 		cr = ddi_get_cred();
20841 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20842 			err = EPERM;
20843 		} else {
20844 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
20845 		}
20846 		break;
20847 
20848 	case CDROMPAUSE:
20849 	case CDROMRESUME:
20850 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20851 		if (!ISCD(un)) {
20852 			err = ENOTTY;
20853 		} else {
20854 			err = sr_pause_resume(dev, cmd);
20855 		}
20856 		break;
20857 
20858 	case CDROMPLAYMSF:
20859 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20860 		if (!ISCD(un)) {
20861 			err = ENOTTY;
20862 		} else {
20863 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20864 		}
20865 		break;
20866 
20867 	case CDROMPLAYTRKIND:
20868 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20869 #if defined(__i386) || defined(__amd64)
20870 		/*
20871 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20872 		 */
20873 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20874 #else
20875 		if (!ISCD(un)) {
20876 #endif
20877 			err = ENOTTY;
20878 		} else {
20879 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20880 		}
20881 		break;
20882 
20883 	case CDROMREADTOCHDR:
20884 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20885 		if (!ISCD(un)) {
20886 			err = ENOTTY;
20887 		} else {
20888 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20889 		}
20890 		break;
20891 
20892 	case CDROMREADTOCENTRY:
20893 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20894 		if (!ISCD(un)) {
20895 			err = ENOTTY;
20896 		} else {
20897 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20898 		}
20899 		break;
20900 
20901 	case CDROMSTOP:
20902 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20903 		if (!ISCD(un)) {
20904 			err = ENOTTY;
20905 		} else {
20906 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20907 			    SD_PATH_STANDARD);
20908 		}
20909 		break;
20910 
20911 	case CDROMSTART:
20912 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20913 		if (!ISCD(un)) {
20914 			err = ENOTTY;
20915 		} else {
20916 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20917 			    SD_PATH_STANDARD);
20918 		}
20919 		break;
20920 
20921 	case CDROMCLOSETRAY:
20922 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20923 		if (!ISCD(un)) {
20924 			err = ENOTTY;
20925 		} else {
20926 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20927 			    SD_PATH_STANDARD);
20928 		}
20929 		break;
20930 
20931 	case FDEJECT:	/* for eject command */
20932 	case DKIOCEJECT:
20933 	case CDROMEJECT:
20934 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20935 		if (!ISREMOVABLE(un)) {
20936 			err = ENOTTY;
20937 		} else {
20938 			err = sr_eject(dev);
20939 		}
20940 		break;
20941 
20942 	case CDROMVOLCTRL:
20943 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20944 		if (!ISCD(un)) {
20945 			err = ENOTTY;
20946 		} else {
20947 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20948 		}
20949 		break;
20950 
20951 	case CDROMSUBCHNL:
20952 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20953 		if (!ISCD(un)) {
20954 			err = ENOTTY;
20955 		} else {
20956 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20957 		}
20958 		break;
20959 
20960 	case CDROMREADMODE2:
20961 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20962 		if (!ISCD(un)) {
20963 			err = ENOTTY;
20964 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20965 			/*
20966 			 * If the drive supports READ CD, use that instead of
20967 			 * switching the LBA size via a MODE SELECT
20968 			 * Block Descriptor
20969 			 */
20970 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20971 		} else {
20972 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20973 		}
20974 		break;
20975 
20976 	case CDROMREADMODE1:
20977 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20978 		if (!ISCD(un)) {
20979 			err = ENOTTY;
20980 		} else {
20981 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20982 		}
20983 		break;
20984 
20985 	case CDROMREADOFFSET:
20986 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20987 		if (!ISCD(un)) {
20988 			err = ENOTTY;
20989 		} else {
20990 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20991 			    flag);
20992 		}
20993 		break;
20994 
20995 	case CDROMSBLKMODE:
20996 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20997 		/*
20998 		 * There is no means of changing block size in case of atapi
20999 		 * drives, thus return ENOTTY if drive type is atapi
21000 		 */
21001 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21002 			err = ENOTTY;
21003 		} else if (un->un_f_mmc_cap == TRUE) {
21004 
21005 			/*
21006 			 * MMC Devices do not support changing the
21007 			 * logical block size
21008 			 *
21009 			 * Note: EINVAL is being returned instead of ENOTTY to
21010 			 * maintain consistancy with the original mmc
21011 			 * driver update.
21012 			 */
21013 			err = EINVAL;
21014 		} else {
21015 			mutex_enter(SD_MUTEX(un));
21016 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21017 			    (un->un_ncmds_in_transport > 0)) {
21018 				mutex_exit(SD_MUTEX(un));
21019 				err = EINVAL;
21020 			} else {
21021 				mutex_exit(SD_MUTEX(un));
21022 				err = sr_change_blkmode(dev, cmd, arg, flag);
21023 			}
21024 		}
21025 		break;
21026 
21027 	case CDROMGBLKMODE:
21028 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21029 		if (!ISCD(un)) {
21030 			err = ENOTTY;
21031 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21032 		    (un->un_f_blockcount_is_valid != FALSE)) {
21033 			/*
21034 			 * Drive is an ATAPI drive so return target block
21035 			 * size for ATAPI drives since we cannot change the
21036 			 * blocksize on ATAPI drives. Used primarily to detect
21037 			 * if an ATAPI cdrom is present.
21038 			 */
21039 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21040 			    sizeof (int), flag) != 0) {
21041 				err = EFAULT;
21042 			} else {
21043 				err = 0;
21044 			}
21045 
21046 		} else {
21047 			/*
21048 			 * Drive supports changing block sizes via a Mode
21049 			 * Select.
21050 			 */
21051 			err = sr_change_blkmode(dev, cmd, arg, flag);
21052 		}
21053 		break;
21054 
21055 	case CDROMGDRVSPEED:
21056 	case CDROMSDRVSPEED:
21057 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21058 		if (!ISCD(un)) {
21059 			err = ENOTTY;
21060 		} else if (un->un_f_mmc_cap == TRUE) {
21061 			/*
21062 			 * Note: In the future the driver implementation
21063 			 * for getting and
21064 			 * setting cd speed should entail:
21065 			 * 1) If non-mmc try the Toshiba mode page
21066 			 *    (sr_change_speed)
21067 			 * 2) If mmc but no support for Real Time Streaming try
21068 			 *    the SET CD SPEED (0xBB) command
21069 			 *   (sr_atapi_change_speed)
21070 			 * 3) If mmc and support for Real Time Streaming
21071 			 *    try the GET PERFORMANCE and SET STREAMING
21072 			 *    commands (not yet implemented, 4380808)
21073 			 */
21074 			/*
21075 			 * As per recent MMC spec, CD-ROM speed is variable
21076 			 * and changes with LBA. Since there is no such
21077 			 * things as drive speed now, fail this ioctl.
21078 			 *
21079 			 * Note: EINVAL is returned for consistancy of original
21080 			 * implementation which included support for getting
21081 			 * the drive speed of mmc devices but not setting
21082 			 * the drive speed. Thus EINVAL would be returned
21083 			 * if a set request was made for an mmc device.
21084 			 * We no longer support get or set speed for
21085 			 * mmc but need to remain consistant with regard
21086 			 * to the error code returned.
21087 			 */
21088 			err = EINVAL;
21089 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21090 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21091 		} else {
21092 			err = sr_change_speed(dev, cmd, arg, flag);
21093 		}
21094 		break;
21095 
21096 	case CDROMCDDA:
21097 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21098 		if (!ISCD(un)) {
21099 			err = ENOTTY;
21100 		} else {
21101 			err = sr_read_cdda(dev, (void *)arg, flag);
21102 		}
21103 		break;
21104 
21105 	case CDROMCDXA:
21106 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21107 		if (!ISCD(un)) {
21108 			err = ENOTTY;
21109 		} else {
21110 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21111 		}
21112 		break;
21113 
21114 	case CDROMSUBCODE:
21115 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21116 		if (!ISCD(un)) {
21117 			err = ENOTTY;
21118 		} else {
21119 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21120 		}
21121 		break;
21122 
21123 	case DKIOCPARTINFO: {
21124 		/*
21125 		 * Return parameters describing the selected disk slice.
21126 		 * Note: this ioctl is for the intel platform only
21127 		 */
21128 #if defined(__i386) || defined(__amd64)
21129 		int part;
21130 
21131 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21132 		part = SDPART(dev);
21133 
21134 		/* don't check un_solaris_size for pN */
21135 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21136 			err = EIO;
21137 		} else {
21138 			struct part_info p;
21139 
21140 			p.p_start = (daddr_t)un->un_offset[part];
21141 			p.p_length = (int)un->un_map[part].dkl_nblk;
21142 #ifdef _MULTI_DATAMODEL
21143 			switch (ddi_model_convert_from(flag & FMODELS)) {
21144 			case DDI_MODEL_ILP32:
21145 			{
21146 				struct part_info32 p32;
21147 
21148 				p32.p_start = (daddr32_t)p.p_start;
21149 				p32.p_length = p.p_length;
21150 				if (ddi_copyout(&p32, (void *)arg,
21151 				    sizeof (p32), flag))
21152 					err = EFAULT;
21153 				break;
21154 			}
21155 
21156 			case DDI_MODEL_NONE:
21157 			{
21158 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21159 				    flag))
21160 					err = EFAULT;
21161 				break;
21162 			}
21163 			}
21164 #else /* ! _MULTI_DATAMODEL */
21165 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21166 				err = EFAULT;
21167 #endif /* _MULTI_DATAMODEL */
21168 		}
21169 #else
21170 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21171 		err = ENOTTY;
21172 #endif
21173 		break;
21174 	}
21175 
21176 	case DKIOCG_PHYGEOM: {
21177 		/* Return the driver's notion of the media physical geometry */
21178 #if defined(__i386) || defined(__amd64)
21179 		struct dk_geom	disk_geom;
21180 		struct dk_geom	*dkgp = &disk_geom;
21181 
21182 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21183 		mutex_enter(SD_MUTEX(un));
21184 
21185 		if (un->un_g.dkg_nhead != 0 &&
21186 		    un->un_g.dkg_nsect != 0) {
21187 			/*
21188 			 * We succeeded in getting a geometry, but
21189 			 * right now it is being reported as just the
21190 			 * Solaris fdisk partition, just like for
21191 			 * DKIOCGGEOM. We need to change that to be
21192 			 * correct for the entire disk now.
21193 			 */
21194 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21195 			dkgp->dkg_acyl = 0;
21196 			dkgp->dkg_ncyl = un->un_blockcount /
21197 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21198 		} else {
21199 			bzero(dkgp, sizeof (struct dk_geom));
21200 			/*
21201 			 * This disk does not have a Solaris VTOC
21202 			 * so we must present a physical geometry
21203 			 * that will remain consistent regardless
21204 			 * of how the disk is used. This will ensure
21205 			 * that the geometry does not change regardless
21206 			 * of the fdisk partition type (ie. EFI, FAT32,
21207 			 * Solaris, etc).
21208 			 */
21209 			if (ISCD(un)) {
21210 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21211 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21212 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21213 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21214 			} else {
21215 				sd_convert_geometry(un->un_blockcount, dkgp);
21216 				dkgp->dkg_acyl = 0;
21217 				dkgp->dkg_ncyl = un->un_blockcount /
21218 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21219 			}
21220 		}
21221 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21222 
21223 		if (ddi_copyout(dkgp, (void *)arg,
21224 		    sizeof (struct dk_geom), flag)) {
21225 			mutex_exit(SD_MUTEX(un));
21226 			err = EFAULT;
21227 		} else {
21228 			mutex_exit(SD_MUTEX(un));
21229 			err = 0;
21230 		}
21231 #else
21232 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21233 		err = ENOTTY;
21234 #endif
21235 		break;
21236 	}
21237 
21238 	case DKIOCG_VIRTGEOM: {
21239 		/* Return the driver's notion of the media's logical geometry */
21240 #if defined(__i386) || defined(__amd64)
21241 		struct dk_geom	disk_geom;
21242 		struct dk_geom	*dkgp = &disk_geom;
21243 
21244 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21245 		mutex_enter(SD_MUTEX(un));
21246 		/*
21247 		 * If there is no HBA geometry available, or
21248 		 * if the HBA returned us something that doesn't
21249 		 * really fit into an Int 13/function 8 geometry
21250 		 * result, just fail the ioctl.  See PSARC 1998/313.
21251 		 */
21252 		if (un->un_lgeom.g_nhead == 0 ||
21253 		    un->un_lgeom.g_nsect == 0 ||
21254 		    un->un_lgeom.g_ncyl > 1024) {
21255 			mutex_exit(SD_MUTEX(un));
21256 			err = EINVAL;
21257 		} else {
21258 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21259 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21260 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21261 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21262 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21263 
21264 			if (ddi_copyout(dkgp, (void *)arg,
21265 			    sizeof (struct dk_geom), flag)) {
21266 				mutex_exit(SD_MUTEX(un));
21267 				err = EFAULT;
21268 			} else {
21269 				mutex_exit(SD_MUTEX(un));
21270 				err = 0;
21271 			}
21272 		}
21273 #else
21274 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21275 		err = ENOTTY;
21276 #endif
21277 		break;
21278 	}
21279 #ifdef SDDEBUG
21280 /* RESET/ABORTS testing ioctls */
21281 	case DKIOCRESET: {
21282 		int	reset_level;
21283 
21284 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21285 			err = EFAULT;
21286 		} else {
21287 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21288 			    "reset_level = 0x%lx\n", reset_level);
21289 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21290 				err = 0;
21291 			} else {
21292 				err = EIO;
21293 			}
21294 		}
21295 		break;
21296 	}
21297 
21298 	case DKIOCABORT:
21299 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21300 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21301 			err = 0;
21302 		} else {
21303 			err = EIO;
21304 		}
21305 		break;
21306 #endif
21307 
21308 #ifdef SD_FAULT_INJECTION
21309 /* SDIOC FaultInjection testing ioctls */
21310 	case SDIOCSTART:
21311 	case SDIOCSTOP:
21312 	case SDIOCINSERTPKT:
21313 	case SDIOCINSERTXB:
21314 	case SDIOCINSERTUN:
21315 	case SDIOCINSERTARQ:
21316 	case SDIOCPUSH:
21317 	case SDIOCRETRIEVE:
21318 	case SDIOCRUN:
21319 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21320 		    "SDIOC detected cmd:0x%X:\n", cmd);
21321 		/* call error generator */
21322 		sd_faultinjection_ioctl(cmd, arg, un);
21323 		err = 0;
21324 		break;
21325 
21326 #endif /* SD_FAULT_INJECTION */
21327 
21328 	default:
21329 		err = ENOTTY;
21330 		break;
21331 	}
21332 	mutex_enter(SD_MUTEX(un));
21333 	un->un_ncmds_in_driver--;
21334 	ASSERT(un->un_ncmds_in_driver >= 0);
21335 	mutex_exit(SD_MUTEX(un));
21336 
21337 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21338 	return (err);
21339 }
21340 
21341 
21342 /*
21343  *    Function: sd_uscsi_ioctl
21344  *
21345  * Description: This routine is the driver entry point for handling USCSI ioctl
21346  *		requests (USCSICMD).
21347  *
21348  *   Arguments: dev	- the device number
21349  *		arg	- user provided scsi command
21350  *		flag	- this argument is a pass through to ddi_copyxxx()
21351  *			  directly from the mode argument of ioctl().
21352  *
21353  * Return Code: code returned by sd_send_scsi_cmd
21354  *		ENXIO
21355  *		EFAULT
21356  *		EAGAIN
21357  */
21358 
21359 static int
21360 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21361 {
21362 #ifdef _MULTI_DATAMODEL
21363 	/*
21364 	 * For use when a 32 bit app makes a call into a
21365 	 * 64 bit ioctl
21366 	 */
21367 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21368 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21369 	model_t			model;
21370 #endif /* _MULTI_DATAMODEL */
21371 	struct uscsi_cmd	*scmd = NULL;
21372 	struct sd_lun		*un = NULL;
21373 	enum uio_seg		uioseg;
21374 	char			cdb[CDB_GROUP0];
21375 	int			rval = 0;
21376 
21377 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21378 		return (ENXIO);
21379 	}
21380 
21381 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21382 
21383 	scmd = (struct uscsi_cmd *)
21384 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21385 
21386 #ifdef _MULTI_DATAMODEL
21387 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21388 	case DDI_MODEL_ILP32:
21389 	{
21390 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21391 			rval = EFAULT;
21392 			goto done;
21393 		}
21394 		/*
21395 		 * Convert the ILP32 uscsi data from the
21396 		 * application to LP64 for internal use.
21397 		 */
21398 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21399 		break;
21400 	}
21401 	case DDI_MODEL_NONE:
21402 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21403 			rval = EFAULT;
21404 			goto done;
21405 		}
21406 		break;
21407 	}
21408 #else /* ! _MULTI_DATAMODEL */
21409 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21410 		rval = EFAULT;
21411 		goto done;
21412 	}
21413 #endif /* _MULTI_DATAMODEL */
21414 
21415 	scmd->uscsi_flags &= ~USCSI_NOINTR;
21416 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
21417 	if (un->un_f_format_in_progress == TRUE) {
21418 		rval = EAGAIN;
21419 		goto done;
21420 	}
21421 
21422 	/*
21423 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
21424 	 * we will have a valid cdb[0] to test.
21425 	 */
21426 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
21427 	    (cdb[0] == SCMD_FORMAT)) {
21428 		SD_TRACE(SD_LOG_IOCTL, un,
21429 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21430 		mutex_enter(SD_MUTEX(un));
21431 		un->un_f_format_in_progress = TRUE;
21432 		mutex_exit(SD_MUTEX(un));
21433 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21434 		    SD_PATH_STANDARD);
21435 		mutex_enter(SD_MUTEX(un));
21436 		un->un_f_format_in_progress = FALSE;
21437 		mutex_exit(SD_MUTEX(un));
21438 	} else {
21439 		SD_TRACE(SD_LOG_IOCTL, un,
21440 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21441 		/*
21442 		 * It's OK to fall into here even if the ddi_copyin()
21443 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
21444 		 * does this same copyin and will return the EFAULT
21445 		 * if it fails.
21446 		 */
21447 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21448 		    SD_PATH_STANDARD);
21449 	}
21450 #ifdef _MULTI_DATAMODEL
21451 	switch (model) {
21452 	case DDI_MODEL_ILP32:
21453 		/*
21454 		 * Convert back to ILP32 before copyout to the
21455 		 * application
21456 		 */
21457 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
21458 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
21459 			if (rval != 0) {
21460 				rval = EFAULT;
21461 			}
21462 		}
21463 		break;
21464 	case DDI_MODEL_NONE:
21465 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21466 			if (rval != 0) {
21467 				rval = EFAULT;
21468 			}
21469 		}
21470 		break;
21471 	}
21472 #else /* ! _MULTI_DATAMODE */
21473 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21474 		if (rval != 0) {
21475 			rval = EFAULT;
21476 		}
21477 	}
21478 #endif /* _MULTI_DATAMODE */
21479 done:
21480 	kmem_free(scmd, sizeof (struct uscsi_cmd));
21481 
21482 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
21483 
21484 	return (rval);
21485 }
21486 
21487 
21488 /*
21489  *    Function: sd_dkio_ctrl_info
21490  *
21491  * Description: This routine is the driver entry point for handling controller
21492  *		information ioctl requests (DKIOCINFO).
21493  *
21494  *   Arguments: dev  - the device number
21495  *		arg  - pointer to user provided dk_cinfo structure
21496  *		       specifying the controller type and attributes.
21497  *		flag - this argument is a pass through to ddi_copyxxx()
21498  *		       directly from the mode argument of ioctl().
21499  *
21500  * Return Code: 0
21501  *		EFAULT
21502  *		ENXIO
21503  */
21504 
21505 static int
21506 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
21507 {
21508 	struct sd_lun	*un = NULL;
21509 	struct dk_cinfo	*info;
21510 	dev_info_t	*pdip;
21511 	int		lun, tgt;
21512 
21513 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21514 		return (ENXIO);
21515 	}
21516 
21517 	info = (struct dk_cinfo *)
21518 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
21519 
21520 	switch (un->un_ctype) {
21521 	case CTYPE_CDROM:
21522 		info->dki_ctype = DKC_CDROM;
21523 		break;
21524 	default:
21525 		info->dki_ctype = DKC_SCSI_CCS;
21526 		break;
21527 	}
21528 	pdip = ddi_get_parent(SD_DEVINFO(un));
21529 	info->dki_cnum = ddi_get_instance(pdip);
21530 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
21531 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
21532 	} else {
21533 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
21534 		    DK_DEVLEN - 1);
21535 	}
21536 
21537 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21538 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
21539 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21540 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
21541 
21542 	/* Unit Information */
21543 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
21544 	info->dki_slave = ((tgt << 3) | lun);
21545 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
21546 	    DK_DEVLEN - 1);
21547 	info->dki_flags = DKI_FMTVOL;
21548 	info->dki_partition = SDPART(dev);
21549 
21550 	/* Max Transfer size of this device in blocks */
21551 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
21552 	info->dki_addr = 0;
21553 	info->dki_space = 0;
21554 	info->dki_prio = 0;
21555 	info->dki_vec = 0;
21556 
21557 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
21558 		kmem_free(info, sizeof (struct dk_cinfo));
21559 		return (EFAULT);
21560 	} else {
21561 		kmem_free(info, sizeof (struct dk_cinfo));
21562 		return (0);
21563 	}
21564 }
21565 
21566 
21567 /*
21568  *    Function: sd_get_media_info
21569  *
21570  * Description: This routine is the driver entry point for handling ioctl
21571  *		requests for the media type or command set profile used by the
21572  *		drive to operate on the media (DKIOCGMEDIAINFO).
21573  *
21574  *   Arguments: dev	- the device number
21575  *		arg	- pointer to user provided dk_minfo structure
21576  *			  specifying the media type, logical block size and
21577  *			  drive capacity.
21578  *		flag	- this argument is a pass through to ddi_copyxxx()
21579  *			  directly from the mode argument of ioctl().
21580  *
21581  * Return Code: 0
21582  *		EACCESS
21583  *		EFAULT
21584  *		ENXIO
21585  *		EIO
21586  */
21587 
21588 static int
21589 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
21590 {
21591 	struct sd_lun		*un = NULL;
21592 	struct uscsi_cmd	com;
21593 	struct scsi_inquiry	*sinq;
21594 	struct dk_minfo		media_info;
21595 	u_longlong_t		media_capacity;
21596 	uint64_t		capacity;
21597 	uint_t			lbasize;
21598 	uchar_t			*out_data;
21599 	uchar_t			*rqbuf;
21600 	int			rval = 0;
21601 	int			rtn;
21602 
21603 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
21604 	    (un->un_state == SD_STATE_OFFLINE)) {
21605 		return (ENXIO);
21606 	}
21607 
21608 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
21609 
21610 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
21611 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21612 
21613 	/* Issue a TUR to determine if the drive is ready with media present */
21614 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
21615 	if (rval == ENXIO) {
21616 		goto done;
21617 	}
21618 
21619 	/* Now get configuration data */
21620 	if (ISCD(un)) {
21621 		media_info.dki_media_type = DK_CDROM;
21622 
21623 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
21624 		if (un->un_f_mmc_cap == TRUE) {
21625 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
21626 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
21627 
21628 			if (rtn) {
21629 				/*
21630 				 * Failed for other than an illegal request
21631 				 * or command not supported
21632 				 */
21633 				if ((com.uscsi_status == STATUS_CHECK) &&
21634 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
21635 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
21636 					    (rqbuf[12] != 0x20)) {
21637 						rval = EIO;
21638 						goto done;
21639 					}
21640 				}
21641 			} else {
21642 				/*
21643 				 * The GET CONFIGURATION command succeeded
21644 				 * so set the media type according to the
21645 				 * returned data
21646 				 */
21647 				media_info.dki_media_type = out_data[6];
21648 				media_info.dki_media_type <<= 8;
21649 				media_info.dki_media_type |= out_data[7];
21650 			}
21651 		}
21652 	} else {
21653 		/*
21654 		 * The profile list is not available, so we attempt to identify
21655 		 * the media type based on the inquiry data
21656 		 */
21657 		sinq = un->un_sd->sd_inq;
21658 		if (sinq->inq_qual == 0) {
21659 			/* This is a direct access device */
21660 			media_info.dki_media_type = DK_FIXED_DISK;
21661 
21662 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
21663 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
21664 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
21665 					media_info.dki_media_type = DK_ZIP;
21666 				} else if (
21667 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
21668 					media_info.dki_media_type = DK_JAZ;
21669 				}
21670 			}
21671 		} else {
21672 			/* Not a CD or direct access so return unknown media */
21673 			media_info.dki_media_type = DK_UNKNOWN;
21674 		}
21675 	}
21676 
21677 	/* Now read the capacity so we can provide the lbasize and capacity */
21678 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21679 	    SD_PATH_DIRECT)) {
21680 	case 0:
21681 		break;
21682 	case EACCES:
21683 		rval = EACCES;
21684 		goto done;
21685 	default:
21686 		rval = EIO;
21687 		goto done;
21688 	}
21689 
21690 	media_info.dki_lbsize = lbasize;
21691 	media_capacity = capacity;
21692 
21693 	/*
21694 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21695 	 * un->un_sys_blocksize chunks. So we need to convert it into
21696 	 * cap.lbasize chunks.
21697 	 */
21698 	media_capacity *= un->un_sys_blocksize;
21699 	media_capacity /= lbasize;
21700 	media_info.dki_capacity = media_capacity;
21701 
21702 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21703 		rval = EFAULT;
21704 		/* Put goto. Anybody might add some code below in future */
21705 		goto done;
21706 	}
21707 done:
21708 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21709 	kmem_free(rqbuf, SENSE_LENGTH);
21710 	return (rval);
21711 }
21712 
21713 
21714 /*
21715  *    Function: sd_dkio_get_geometry
21716  *
21717  * Description: This routine is the driver entry point for handling user
21718  *		requests to get the device geometry (DKIOCGGEOM).
21719  *
21720  *   Arguments: dev  - the device number
21721  *		arg  - pointer to user provided dk_geom structure specifying
21722  *			the controller's notion of the current geometry.
21723  *		flag - this argument is a pass through to ddi_copyxxx()
21724  *		       directly from the mode argument of ioctl().
21725  *		geom_validated - flag indicating if the device geometry has been
21726  *				 previously validated in the sdioctl routine.
21727  *
21728  * Return Code: 0
21729  *		EFAULT
21730  *		ENXIO
21731  *		EIO
21732  */
21733 
21734 static int
21735 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
21736 {
21737 	struct sd_lun	*un = NULL;
21738 	struct dk_geom	*tmp_geom = NULL;
21739 	int		rval = 0;
21740 
21741 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21742 		return (ENXIO);
21743 	}
21744 
21745 #if defined(__i386) || defined(__amd64)
21746 	if (un->un_solaris_size == 0) {
21747 		return (EIO);
21748 	}
21749 #endif
21750 	if (geom_validated == FALSE) {
21751 		/*
21752 		 * sd_validate_geometry does not spin a disk up
21753 		 * if it was spun down. We need to make sure it
21754 		 * is ready.
21755 		 */
21756 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
21757 			return (rval);
21758 		}
21759 		mutex_enter(SD_MUTEX(un));
21760 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
21761 		mutex_exit(SD_MUTEX(un));
21762 	}
21763 	if (rval)
21764 		return (rval);
21765 
21766 	/*
21767 	 * Make a local copy of the soft state geometry to avoid some potential
21768 	 * race conditions associated with holding the mutex and updating the
21769 	 * write_reinstruct value
21770 	 */
21771 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21772 	mutex_enter(SD_MUTEX(un));
21773 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
21774 	mutex_exit(SD_MUTEX(un));
21775 
21776 	if (tmp_geom->dkg_write_reinstruct == 0) {
21777 		tmp_geom->dkg_write_reinstruct =
21778 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
21779 		    sd_rot_delay) / (int)60000);
21780 	}
21781 
21782 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
21783 	    flag);
21784 	if (rval != 0) {
21785 		rval = EFAULT;
21786 	}
21787 
21788 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21789 	return (rval);
21790 
21791 }
21792 
21793 
21794 /*
21795  *    Function: sd_dkio_set_geometry
21796  *
21797  * Description: This routine is the driver entry point for handling user
21798  *		requests to set the device geometry (DKIOCSGEOM). The actual
21799  *		device geometry is not updated, just the driver "notion" of it.
21800  *
21801  *   Arguments: dev  - the device number
21802  *		arg  - pointer to user provided dk_geom structure used to set
21803  *			the controller's notion of the current geometry.
21804  *		flag - this argument is a pass through to ddi_copyxxx()
21805  *		       directly from the mode argument of ioctl().
21806  *
21807  * Return Code: 0
21808  *		EFAULT
21809  *		ENXIO
21810  *		EIO
21811  */
21812 
21813 static int
21814 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
21815 {
21816 	struct sd_lun	*un = NULL;
21817 	struct dk_geom	*tmp_geom;
21818 	struct dk_map	*lp;
21819 	int		rval = 0;
21820 	int		i;
21821 
21822 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21823 		return (ENXIO);
21824 	}
21825 
21826 #if defined(__i386) || defined(__amd64)
21827 	if (un->un_solaris_size == 0) {
21828 		return (EIO);
21829 	}
21830 #endif
21831 	/*
21832 	 * We need to copy the user specified geometry into local
21833 	 * storage and then update the softstate. We don't want to hold
21834 	 * the mutex and copyin directly from the user to the soft state
21835 	 */
21836 	tmp_geom = (struct dk_geom *)
21837 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21838 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
21839 	if (rval != 0) {
21840 		kmem_free(tmp_geom, sizeof (struct dk_geom));
21841 		return (EFAULT);
21842 	}
21843 
21844 	mutex_enter(SD_MUTEX(un));
21845 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
21846 	for (i = 0; i < NDKMAP; i++) {
21847 		lp  = &un->un_map[i];
21848 		un->un_offset[i] =
21849 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
21850 #if defined(__i386) || defined(__amd64)
21851 		un->un_offset[i] += un->un_solaris_offset;
21852 #endif
21853 	}
21854 	un->un_f_geometry_is_valid = FALSE;
21855 	mutex_exit(SD_MUTEX(un));
21856 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21857 
21858 	return (rval);
21859 }
21860 
21861 
21862 /*
21863  *    Function: sd_dkio_get_partition
21864  *
21865  * Description: This routine is the driver entry point for handling user
21866  *		requests to get the partition table (DKIOCGAPART).
21867  *
21868  *   Arguments: dev  - the device number
21869  *		arg  - pointer to user provided dk_allmap structure specifying
21870  *			the controller's notion of the current partition table.
21871  *		flag - this argument is a pass through to ddi_copyxxx()
21872  *		       directly from the mode argument of ioctl().
21873  *		geom_validated - flag indicating if the device geometry has been
21874  *				 previously validated in the sdioctl routine.
21875  *
21876  * Return Code: 0
21877  *		EFAULT
21878  *		ENXIO
21879  *		EIO
21880  */
21881 
21882 static int
21883 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
21884 {
21885 	struct sd_lun	*un = NULL;
21886 	int		rval = 0;
21887 	int		size;
21888 
21889 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21890 		return (ENXIO);
21891 	}
21892 
21893 #if defined(__i386) || defined(__amd64)
21894 	if (un->un_solaris_size == 0) {
21895 		return (EIO);
21896 	}
21897 #endif
21898 	/*
21899 	 * Make sure the geometry is valid before getting the partition
21900 	 * information.
21901 	 */
21902 	mutex_enter(SD_MUTEX(un));
21903 	if (geom_validated == FALSE) {
21904 		/*
21905 		 * sd_validate_geometry does not spin a disk up
21906 		 * if it was spun down. We need to make sure it
21907 		 * is ready before validating the geometry.
21908 		 */
21909 		mutex_exit(SD_MUTEX(un));
21910 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
21911 			return (rval);
21912 		}
21913 		mutex_enter(SD_MUTEX(un));
21914 
21915 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
21916 			mutex_exit(SD_MUTEX(un));
21917 			return (rval);
21918 		}
21919 	}
21920 	mutex_exit(SD_MUTEX(un));
21921 
21922 #ifdef _MULTI_DATAMODEL
21923 	switch (ddi_model_convert_from(flag & FMODELS)) {
21924 	case DDI_MODEL_ILP32: {
21925 		struct dk_map32 dk_map32[NDKMAP];
21926 		int		i;
21927 
21928 		for (i = 0; i < NDKMAP; i++) {
21929 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
21930 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
21931 		}
21932 		size = NDKMAP * sizeof (struct dk_map32);
21933 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
21934 		if (rval != 0) {
21935 			rval = EFAULT;
21936 		}
21937 		break;
21938 	}
21939 	case DDI_MODEL_NONE:
21940 		size = NDKMAP * sizeof (struct dk_map);
21941 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
21942 		if (rval != 0) {
21943 			rval = EFAULT;
21944 		}
21945 		break;
21946 	}
21947 #else /* ! _MULTI_DATAMODEL */
21948 	size = NDKMAP * sizeof (struct dk_map);
21949 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
21950 	if (rval != 0) {
21951 		rval = EFAULT;
21952 	}
21953 #endif /* _MULTI_DATAMODEL */
21954 	return (rval);
21955 }
21956 
21957 
21958 /*
21959  *    Function: sd_dkio_set_partition
21960  *
21961  * Description: This routine is the driver entry point for handling user
21962  *		requests to set the partition table (DKIOCSAPART). The actual
21963  *		device partition is not updated.
21964  *
21965  *   Arguments: dev  - the device number
21966  *		arg  - pointer to user provided dk_allmap structure used to set
21967  *			the controller's notion of the partition table.
21968  *		flag - this argument is a pass through to ddi_copyxxx()
21969  *		       directly from the mode argument of ioctl().
21970  *
21971  * Return Code: 0
21972  *		EINVAL
21973  *		EFAULT
21974  *		ENXIO
21975  *		EIO
21976  */
21977 
21978 static int
21979 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
21980 {
21981 	struct sd_lun	*un = NULL;
21982 	struct dk_map	dk_map[NDKMAP];
21983 	struct dk_map	*lp;
21984 	int		rval = 0;
21985 	int		size;
21986 	int		i;
21987 #if defined(_SUNOS_VTOC_16)
21988 	struct dkl_partition	*vp;
21989 #endif
21990 
21991 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21992 		return (ENXIO);
21993 	}
21994 
21995 	/*
21996 	 * Set the map for all logical partitions.  We lock
21997 	 * the priority just to make sure an interrupt doesn't
21998 	 * come in while the map is half updated.
21999 	 */
22000 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22001 	mutex_enter(SD_MUTEX(un));
22002 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22003 		mutex_exit(SD_MUTEX(un));
22004 		return (ENOTSUP);
22005 	}
22006 	mutex_exit(SD_MUTEX(un));
22007 	if (un->un_solaris_size == 0) {
22008 		return (EIO);
22009 	}
22010 
22011 #ifdef _MULTI_DATAMODEL
22012 	switch (ddi_model_convert_from(flag & FMODELS)) {
22013 	case DDI_MODEL_ILP32: {
22014 		struct dk_map32 dk_map32[NDKMAP];
22015 
22016 		size = NDKMAP * sizeof (struct dk_map32);
22017 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22018 		if (rval != 0) {
22019 			return (EFAULT);
22020 		}
22021 		for (i = 0; i < NDKMAP; i++) {
22022 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22023 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22024 		}
22025 		break;
22026 	}
22027 	case DDI_MODEL_NONE:
22028 		size = NDKMAP * sizeof (struct dk_map);
22029 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22030 		if (rval != 0) {
22031 			return (EFAULT);
22032 		}
22033 		break;
22034 	}
22035 #else /* ! _MULTI_DATAMODEL */
22036 	size = NDKMAP * sizeof (struct dk_map);
22037 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22038 	if (rval != 0) {
22039 		return (EFAULT);
22040 	}
22041 #endif /* _MULTI_DATAMODEL */
22042 
22043 	mutex_enter(SD_MUTEX(un));
22044 	/* Note: The size used in this bcopy is set based upon the data model */
22045 	bcopy(dk_map, un->un_map, size);
22046 #if defined(_SUNOS_VTOC_16)
22047 	vp = (struct dkl_partition *)&(un->un_vtoc);
22048 #endif	/* defined(_SUNOS_VTOC_16) */
22049 	for (i = 0; i < NDKMAP; i++) {
22050 		lp  = &un->un_map[i];
22051 		un->un_offset[i] =
22052 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22053 #if defined(_SUNOS_VTOC_16)
22054 		vp->p_start = un->un_offset[i];
22055 		vp->p_size = lp->dkl_nblk;
22056 		vp++;
22057 #endif	/* defined(_SUNOS_VTOC_16) */
22058 #if defined(__i386) || defined(__amd64)
22059 		un->un_offset[i] += un->un_solaris_offset;
22060 #endif
22061 	}
22062 	mutex_exit(SD_MUTEX(un));
22063 	return (rval);
22064 }
22065 
22066 
22067 /*
22068  *    Function: sd_dkio_get_vtoc
22069  *
22070  * Description: This routine is the driver entry point for handling user
22071  *		requests to get the current volume table of contents
22072  *		(DKIOCGVTOC).
22073  *
22074  *   Arguments: dev  - the device number
22075  *		arg  - pointer to user provided vtoc structure specifying
22076  *			the current vtoc.
22077  *		flag - this argument is a pass through to ddi_copyxxx()
22078  *		       directly from the mode argument of ioctl().
22079  *		geom_validated - flag indicating if the device geometry has been
22080  *				 previously validated in the sdioctl routine.
22081  *
22082  * Return Code: 0
22083  *		EFAULT
22084  *		ENXIO
22085  *		EIO
22086  */
22087 
22088 static int
22089 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22090 {
22091 	struct sd_lun	*un = NULL;
22092 #if defined(_SUNOS_VTOC_8)
22093 	struct vtoc	user_vtoc;
22094 #endif	/* defined(_SUNOS_VTOC_8) */
22095 	int		rval = 0;
22096 
22097 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22098 		return (ENXIO);
22099 	}
22100 
22101 	mutex_enter(SD_MUTEX(un));
22102 	if (geom_validated == FALSE) {
22103 		/*
22104 		 * sd_validate_geometry does not spin a disk up
22105 		 * if it was spun down. We need to make sure it
22106 		 * is ready.
22107 		 */
22108 		mutex_exit(SD_MUTEX(un));
22109 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22110 			return (rval);
22111 		}
22112 		mutex_enter(SD_MUTEX(un));
22113 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22114 			mutex_exit(SD_MUTEX(un));
22115 			return (rval);
22116 		}
22117 	}
22118 
22119 #if defined(_SUNOS_VTOC_8)
22120 	sd_build_user_vtoc(un, &user_vtoc);
22121 	mutex_exit(SD_MUTEX(un));
22122 
22123 #ifdef _MULTI_DATAMODEL
22124 	switch (ddi_model_convert_from(flag & FMODELS)) {
22125 	case DDI_MODEL_ILP32: {
22126 		struct vtoc32 user_vtoc32;
22127 
22128 		vtoctovtoc32(user_vtoc, user_vtoc32);
22129 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22130 		    sizeof (struct vtoc32), flag)) {
22131 			return (EFAULT);
22132 		}
22133 		break;
22134 	}
22135 
22136 	case DDI_MODEL_NONE:
22137 		if (ddi_copyout(&user_vtoc, (void *)arg,
22138 		    sizeof (struct vtoc), flag)) {
22139 			return (EFAULT);
22140 		}
22141 		break;
22142 	}
22143 #else /* ! _MULTI_DATAMODEL */
22144 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22145 		return (EFAULT);
22146 	}
22147 #endif /* _MULTI_DATAMODEL */
22148 
22149 #elif defined(_SUNOS_VTOC_16)
22150 	mutex_exit(SD_MUTEX(un));
22151 
22152 #ifdef _MULTI_DATAMODEL
22153 	/*
22154 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22155 	 * 32-bit to maintain compatibility with existing on-disk
22156 	 * structures.  Thus, we need to convert the structure when copying
22157 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22158 	 * program.  If the target is a 32-bit program, then no conversion
22159 	 * is necessary.
22160 	 */
22161 	/* LINTED: logical expression always true: op "||" */
22162 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22163 	switch (ddi_model_convert_from(flag & FMODELS)) {
22164 	case DDI_MODEL_ILP32:
22165 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22166 		    sizeof (un->un_vtoc), flag)) {
22167 			return (EFAULT);
22168 		}
22169 		break;
22170 
22171 	case DDI_MODEL_NONE: {
22172 		struct vtoc user_vtoc;
22173 
22174 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22175 		if (ddi_copyout(&user_vtoc, (void *)arg,
22176 		    sizeof (struct vtoc), flag)) {
22177 			return (EFAULT);
22178 		}
22179 		break;
22180 	}
22181 	}
22182 #else /* ! _MULTI_DATAMODEL */
22183 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22184 	    flag)) {
22185 		return (EFAULT);
22186 	}
22187 #endif /* _MULTI_DATAMODEL */
22188 #else
22189 #error "No VTOC format defined."
22190 #endif
22191 
22192 	return (rval);
22193 }
22194 
22195 static int
22196 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22197 {
22198 	struct sd_lun	*un = NULL;
22199 	dk_efi_t	user_efi;
22200 	int		rval = 0;
22201 	void		*buffer;
22202 
22203 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22204 		return (ENXIO);
22205 
22206 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22207 		return (EFAULT);
22208 
22209 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22210 
22211 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22212 	    (user_efi.dki_length > un->un_max_xfer_size))
22213 		return (EINVAL);
22214 
22215 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22216 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22217 	    user_efi.dki_lba, SD_PATH_DIRECT);
22218 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22219 	    user_efi.dki_length, flag) != 0)
22220 		rval = EFAULT;
22221 
22222 	kmem_free(buffer, user_efi.dki_length);
22223 	return (rval);
22224 }
22225 
22226 /*
22227  *    Function: sd_build_user_vtoc
22228  *
22229  * Description: This routine populates a pass by reference variable with the
22230  *		current volume table of contents.
22231  *
22232  *   Arguments: un - driver soft state (unit) structure
22233  *		user_vtoc - pointer to vtoc structure to be populated
22234  */
22235 
22236 static void
22237 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22238 {
22239 	struct dk_map2		*lpart;
22240 	struct dk_map		*lmap;
22241 	struct partition	*vpart;
22242 	int			nblks;
22243 	int			i;
22244 
22245 	ASSERT(mutex_owned(SD_MUTEX(un)));
22246 
22247 	/*
22248 	 * Return vtoc structure fields in the provided VTOC area, addressed
22249 	 * by *vtoc.
22250 	 */
22251 	bzero(user_vtoc, sizeof (struct vtoc));
22252 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22253 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22254 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22255 	user_vtoc->v_sanity	= VTOC_SANE;
22256 	user_vtoc->v_version	= un->un_vtoc.v_version;
22257 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22258 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22259 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22260 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22261 	    sizeof (un->un_vtoc.v_reserved));
22262 	/*
22263 	 * Convert partitioning information.
22264 	 *
22265 	 * Note the conversion from starting cylinder number
22266 	 * to starting sector number.
22267 	 */
22268 	lmap = un->un_map;
22269 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22270 	vpart = user_vtoc->v_part;
22271 
22272 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22273 
22274 	for (i = 0; i < V_NUMPAR; i++) {
22275 		vpart->p_tag	= lpart->p_tag;
22276 		vpart->p_flag	= lpart->p_flag;
22277 		vpart->p_start	= lmap->dkl_cylno * nblks;
22278 		vpart->p_size	= lmap->dkl_nblk;
22279 		lmap++;
22280 		lpart++;
22281 		vpart++;
22282 
22283 		/* (4364927) */
22284 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22285 	}
22286 
22287 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22288 }
22289 
22290 static int
22291 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22292 {
22293 	struct sd_lun		*un = NULL;
22294 	struct partition64	p64;
22295 	int			rval = 0;
22296 	uint_t			nparts;
22297 	efi_gpe_t		*partitions;
22298 	efi_gpt_t		*buffer;
22299 	diskaddr_t		gpe_lba;
22300 
22301 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22302 		return (ENXIO);
22303 	}
22304 
22305 	if (ddi_copyin((const void *)arg, &p64,
22306 	    sizeof (struct partition64), flag)) {
22307 		return (EFAULT);
22308 	}
22309 
22310 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22311 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22312 		1, SD_PATH_DIRECT);
22313 	if (rval != 0)
22314 		goto done_error;
22315 
22316 	sd_swap_efi_gpt(buffer);
22317 
22318 	if ((rval = sd_validate_efi(buffer)) != 0)
22319 		goto done_error;
22320 
22321 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22322 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22323 	if (p64.p_partno > nparts) {
22324 		/* couldn't find it */
22325 		rval = ESRCH;
22326 		goto done_error;
22327 	}
22328 	/*
22329 	 * if we're dealing with a partition that's out of the normal
22330 	 * 16K block, adjust accordingly
22331 	 */
22332 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22333 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22334 			gpe_lba, SD_PATH_DIRECT);
22335 	if (rval) {
22336 		goto done_error;
22337 	}
22338 	partitions = (efi_gpe_t *)buffer;
22339 
22340 	sd_swap_efi_gpe(nparts, partitions);
22341 
22342 	partitions += p64.p_partno;
22343 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22344 	    sizeof (struct uuid));
22345 	p64.p_start = partitions->efi_gpe_StartingLBA;
22346 	p64.p_size = partitions->efi_gpe_EndingLBA -
22347 			p64.p_start + 1;
22348 
22349 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22350 		rval = EFAULT;
22351 
22352 done_error:
22353 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22354 	return (rval);
22355 }
22356 
22357 
22358 /*
22359  *    Function: sd_dkio_set_vtoc
22360  *
22361  * Description: This routine is the driver entry point for handling user
22362  *		requests to set the current volume table of contents
22363  *		(DKIOCSVTOC).
22364  *
22365  *   Arguments: dev  - the device number
22366  *		arg  - pointer to user provided vtoc structure used to set the
22367  *			current vtoc.
22368  *		flag - this argument is a pass through to ddi_copyxxx()
22369  *		       directly from the mode argument of ioctl().
22370  *
22371  * Return Code: 0
22372  *		EFAULT
22373  *		ENXIO
22374  *		EINVAL
22375  *		ENOTSUP
22376  */
22377 
22378 static int
22379 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22380 {
22381 	struct sd_lun	*un = NULL;
22382 	struct vtoc	user_vtoc;
22383 	int		rval = 0;
22384 
22385 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22386 		return (ENXIO);
22387 	}
22388 
22389 #if defined(__i386) || defined(__amd64)
22390 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22391 		return (EINVAL);
22392 	}
22393 #endif
22394 
22395 #ifdef _MULTI_DATAMODEL
22396 	switch (ddi_model_convert_from(flag & FMODELS)) {
22397 	case DDI_MODEL_ILP32: {
22398 		struct vtoc32 user_vtoc32;
22399 
22400 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22401 		    sizeof (struct vtoc32), flag)) {
22402 			return (EFAULT);
22403 		}
22404 		vtoc32tovtoc(user_vtoc32, user_vtoc);
22405 		break;
22406 	}
22407 
22408 	case DDI_MODEL_NONE:
22409 		if (ddi_copyin((const void *)arg, &user_vtoc,
22410 		    sizeof (struct vtoc), flag)) {
22411 			return (EFAULT);
22412 		}
22413 		break;
22414 	}
22415 #else /* ! _MULTI_DATAMODEL */
22416 	if (ddi_copyin((const void *)arg, &user_vtoc,
22417 	    sizeof (struct vtoc), flag)) {
22418 		return (EFAULT);
22419 	}
22420 #endif /* _MULTI_DATAMODEL */
22421 
22422 	mutex_enter(SD_MUTEX(un));
22423 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22424 		mutex_exit(SD_MUTEX(un));
22425 		return (ENOTSUP);
22426 	}
22427 	if (un->un_g.dkg_ncyl == 0) {
22428 		mutex_exit(SD_MUTEX(un));
22429 		return (EINVAL);
22430 	}
22431 
22432 	mutex_exit(SD_MUTEX(un));
22433 	sd_clear_efi(un);
22434 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
22435 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
22436 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
22437 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22438 	    un->un_node_type, NULL);
22439 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
22440 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22441 	    un->un_node_type, NULL);
22442 	mutex_enter(SD_MUTEX(un));
22443 
22444 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
22445 		if ((rval = sd_write_label(dev)) == 0) {
22446 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
22447 			    != 0) {
22448 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
22449 				    "sd_dkio_set_vtoc: "
22450 				    "Failed validate geometry\n");
22451 			}
22452 		}
22453 	}
22454 
22455 	/*
22456 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
22457 	 * devid anyway, what can it hurt? Also preserve the device id by
22458 	 * writing to the disk acyl for the case where a devid has been
22459 	 * fabricated.
22460 	 */
22461 	if (!ISREMOVABLE(un) && !ISCD(un) &&
22462 	    (un->un_f_opt_fab_devid == TRUE)) {
22463 		if (un->un_devid == NULL) {
22464 			sd_register_devid(un, SD_DEVINFO(un),
22465 			    SD_TARGET_IS_UNRESERVED);
22466 		} else {
22467 			/*
22468 			 * The device id for this disk has been
22469 			 * fabricated. Fabricated device id's are
22470 			 * managed by storing them in the last 2
22471 			 * available sectors on the drive. The device
22472 			 * id must be preserved by writing it back out
22473 			 * to this location.
22474 			 */
22475 			if (sd_write_deviceid(un) != 0) {
22476 				ddi_devid_free(un->un_devid);
22477 				un->un_devid = NULL;
22478 			}
22479 		}
22480 	}
22481 	mutex_exit(SD_MUTEX(un));
22482 	return (rval);
22483 }
22484 
22485 
22486 /*
22487  *    Function: sd_build_label_vtoc
22488  *
22489  * Description: This routine updates the driver soft state current volume table
22490  *		of contents based on a user specified vtoc.
22491  *
22492  *   Arguments: un - driver soft state (unit) structure
22493  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
22494  *			    to update the driver soft state.
22495  *
22496  * Return Code: 0
22497  *		EINVAL
22498  */
22499 
22500 static int
22501 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22502 {
22503 	struct dk_map		*lmap;
22504 	struct partition	*vpart;
22505 	int			nblks;
22506 #if defined(_SUNOS_VTOC_8)
22507 	int			ncyl;
22508 	struct dk_map2		*lpart;
22509 #endif	/* defined(_SUNOS_VTOC_8) */
22510 	int			i;
22511 
22512 	ASSERT(mutex_owned(SD_MUTEX(un)));
22513 
22514 	/* Sanity-check the vtoc */
22515 	if (user_vtoc->v_sanity != VTOC_SANE ||
22516 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
22517 	    user_vtoc->v_nparts != V_NUMPAR) {
22518 		return (EINVAL);
22519 	}
22520 
22521 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22522 	if (nblks == 0) {
22523 		return (EINVAL);
22524 	}
22525 
22526 #if defined(_SUNOS_VTOC_8)
22527 	vpart = user_vtoc->v_part;
22528 	for (i = 0; i < V_NUMPAR; i++) {
22529 		if ((vpart->p_start % nblks) != 0) {
22530 			return (EINVAL);
22531 		}
22532 		ncyl = vpart->p_start / nblks;
22533 		ncyl += vpart->p_size / nblks;
22534 		if ((vpart->p_size % nblks) != 0) {
22535 			ncyl++;
22536 		}
22537 		if (ncyl > (int)un->un_g.dkg_ncyl) {
22538 			return (EINVAL);
22539 		}
22540 		vpart++;
22541 	}
22542 #endif	/* defined(_SUNOS_VTOC_8) */
22543 
22544 	/* Put appropriate vtoc structure fields into the disk label */
22545 #if defined(_SUNOS_VTOC_16)
22546 	/*
22547 	 * The vtoc is always a 32bit data structure to maintain the
22548 	 * on-disk format. Convert "in place" instead of bcopying it.
22549 	 */
22550 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
22551 
22552 	/*
22553 	 * in the 16-slice vtoc, starting sectors are expressed in
22554 	 * numbers *relative* to the start of the Solaris fdisk partition.
22555 	 */
22556 	lmap = un->un_map;
22557 	vpart = user_vtoc->v_part;
22558 
22559 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
22560 		lmap->dkl_cylno = vpart->p_start / nblks;
22561 		lmap->dkl_nblk = vpart->p_size;
22562 	}
22563 
22564 #elif defined(_SUNOS_VTOC_8)
22565 
22566 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
22567 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
22568 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
22569 
22570 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
22571 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
22572 
22573 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
22574 
22575 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
22576 
22577 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
22578 	    sizeof (un->un_vtoc.v_reserved));
22579 
22580 	/*
22581 	 * Note the conversion from starting sector number
22582 	 * to starting cylinder number.
22583 	 * Return error if division results in a remainder.
22584 	 */
22585 	lmap = un->un_map;
22586 	lpart = un->un_vtoc.v_part;
22587 	vpart = user_vtoc->v_part;
22588 
22589 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
22590 		lpart->p_tag  = vpart->p_tag;
22591 		lpart->p_flag = vpart->p_flag;
22592 		lmap->dkl_cylno = vpart->p_start / nblks;
22593 		lmap->dkl_nblk = vpart->p_size;
22594 
22595 		lmap++;
22596 		lpart++;
22597 		vpart++;
22598 
22599 		/* (4387723) */
22600 #ifdef _LP64
22601 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
22602 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
22603 		} else {
22604 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22605 		}
22606 #else
22607 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22608 #endif
22609 	}
22610 
22611 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
22612 #else
22613 #error "No VTOC format defined."
22614 #endif
22615 	return (0);
22616 }
22617 
22618 /*
22619  *    Function: sd_clear_efi
22620  *
22621  * Description: This routine clears all EFI labels.
22622  *
22623  *   Arguments: un - driver soft state (unit) structure
22624  *
22625  * Return Code: void
22626  */
22627 
22628 static void
22629 sd_clear_efi(struct sd_lun *un)
22630 {
22631 	efi_gpt_t	*gpt;
22632 	uint_t		lbasize;
22633 	uint64_t	cap;
22634 	int rval;
22635 
22636 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22637 
22638 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
22639 
22640 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
22641 		goto done;
22642 	}
22643 
22644 	sd_swap_efi_gpt(gpt);
22645 	rval = sd_validate_efi(gpt);
22646 	if (rval == 0) {
22647 		/* clear primary */
22648 		bzero(gpt, sizeof (efi_gpt_t));
22649 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
22650 			SD_PATH_DIRECT))) {
22651 			SD_INFO(SD_LOG_IO_PARTITION, un,
22652 				"sd_clear_efi: clear primary label failed\n");
22653 		}
22654 	}
22655 	/* the backup */
22656 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
22657 	    SD_PATH_DIRECT);
22658 	if (rval) {
22659 		goto done;
22660 	}
22661 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
22662 	    cap - 1, SD_PATH_DIRECT)) != 0) {
22663 		goto done;
22664 	}
22665 	sd_swap_efi_gpt(gpt);
22666 	rval = sd_validate_efi(gpt);
22667 	if (rval == 0) {
22668 		/* clear backup */
22669 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
22670 			cap-1);
22671 		bzero(gpt, sizeof (efi_gpt_t));
22672 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
22673 		    cap-1, SD_PATH_DIRECT))) {
22674 			SD_INFO(SD_LOG_IO_PARTITION, un,
22675 				"sd_clear_efi: clear backup label failed\n");
22676 		}
22677 	}
22678 
22679 done:
22680 	kmem_free(gpt, sizeof (efi_gpt_t));
22681 }
22682 
22683 /*
22684  *    Function: sd_set_vtoc
22685  *
22686  * Description: This routine writes data to the appropriate positions
22687  *
22688  *   Arguments: un - driver soft state (unit) structure
22689  *              dkl  - the data to be written
22690  *
22691  * Return: void
22692  */
22693 
22694 static int
22695 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
22696 {
22697 	void			*shadow_buf;
22698 	uint_t			label_addr;
22699 	int			sec;
22700 	int			blk;
22701 	int			head;
22702 	int			cyl;
22703 	int			rval;
22704 
22705 #if defined(__i386) || defined(__amd64)
22706 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
22707 #else
22708 	/* Write the primary label at block 0 of the solaris partition. */
22709 	label_addr = 0;
22710 #endif
22711 
22712 	if (NOT_DEVBSIZE(un)) {
22713 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
22714 		/*
22715 		 * Read the target's first block.
22716 		 */
22717 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
22718 		    un->un_tgt_blocksize, label_addr,
22719 		    SD_PATH_STANDARD)) != 0) {
22720 			goto exit;
22721 		}
22722 		/*
22723 		 * Copy the contents of the label into the shadow buffer
22724 		 * which is of the size of target block size.
22725 		 */
22726 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22727 	}
22728 
22729 	/* Write the primary label */
22730 	if (NOT_DEVBSIZE(un)) {
22731 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
22732 		    label_addr, SD_PATH_STANDARD);
22733 	} else {
22734 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22735 		    label_addr, SD_PATH_STANDARD);
22736 	}
22737 	if (rval != 0) {
22738 		return (rval);
22739 	}
22740 
22741 	/*
22742 	 * Calculate where the backup labels go.  They are always on
22743 	 * the last alternate cylinder, but some older drives put them
22744 	 * on head 2 instead of the last head.	They are always on the
22745 	 * first 5 odd sectors of the appropriate track.
22746 	 *
22747 	 * We have no choice at this point, but to believe that the
22748 	 * disk label is valid.	 Use the geometry of the disk
22749 	 * as described in the label.
22750 	 */
22751 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
22752 	head = dkl->dkl_nhead - 1;
22753 
22754 	/*
22755 	 * Write and verify the backup labels. Make sure we don't try to
22756 	 * write past the last cylinder.
22757 	 */
22758 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
22759 		blk = (daddr_t)(
22760 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
22761 		    (head * dkl->dkl_nsect) + sec);
22762 #if defined(__i386) || defined(__amd64)
22763 		blk += un->un_solaris_offset;
22764 #endif
22765 		if (NOT_DEVBSIZE(un)) {
22766 			uint64_t	tblk;
22767 			/*
22768 			 * Need to read the block first for read modify write.
22769 			 */
22770 			tblk = (uint64_t)blk;
22771 			blk = (int)((tblk * un->un_sys_blocksize) /
22772 			    un->un_tgt_blocksize);
22773 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
22774 			    un->un_tgt_blocksize, blk,
22775 			    SD_PATH_STANDARD)) != 0) {
22776 				goto exit;
22777 			}
22778 			/*
22779 			 * Modify the shadow buffer with the label.
22780 			 */
22781 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22782 			rval = sd_send_scsi_WRITE(un, shadow_buf,
22783 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
22784 		} else {
22785 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22786 			    blk, SD_PATH_STANDARD);
22787 			SD_INFO(SD_LOG_IO_PARTITION, un,
22788 			"sd_set_vtoc: wrote backup label %d\n", blk);
22789 		}
22790 		if (rval != 0) {
22791 			goto exit;
22792 		}
22793 	}
22794 exit:
22795 	if (NOT_DEVBSIZE(un)) {
22796 		kmem_free(shadow_buf, un->un_tgt_blocksize);
22797 	}
22798 	return (rval);
22799 }
22800 
22801 /*
22802  *    Function: sd_clear_vtoc
22803  *
22804  * Description: This routine clears out the VTOC labels.
22805  *
22806  *   Arguments: un - driver soft state (unit) structure
22807  *
22808  * Return: void
22809  */
22810 
22811 static void
22812 sd_clear_vtoc(struct sd_lun *un)
22813 {
22814 	struct dk_label		*dkl;
22815 
22816 	mutex_exit(SD_MUTEX(un));
22817 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
22818 	mutex_enter(SD_MUTEX(un));
22819 	/*
22820 	 * sd_set_vtoc uses these fields in order to figure out
22821 	 * where to overwrite the backup labels
22822 	 */
22823 	dkl->dkl_apc    = un->un_g.dkg_apc;
22824 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
22825 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
22826 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
22827 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
22828 	mutex_exit(SD_MUTEX(un));
22829 	(void) sd_set_vtoc(un, dkl);
22830 	kmem_free(dkl, sizeof (struct dk_label));
22831 
22832 	mutex_enter(SD_MUTEX(un));
22833 }
22834 
22835 /*
22836  *    Function: sd_write_label
22837  *
22838  * Description: This routine will validate and write the driver soft state vtoc
22839  *		contents to the device.
22840  *
22841  *   Arguments: dev - the device number
22842  *
22843  * Return Code: the code returned by sd_send_scsi_cmd()
22844  *		0
22845  *		EINVAL
22846  *		ENXIO
22847  *		ENOMEM
22848  */
22849 
22850 static int
22851 sd_write_label(dev_t dev)
22852 {
22853 	struct sd_lun		*un;
22854 	struct dk_label		*dkl;
22855 	short			sum;
22856 	short			*sp;
22857 	int			i;
22858 	int			rval;
22859 
22860 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
22861 	    (un->un_state == SD_STATE_OFFLINE)) {
22862 		return (ENXIO);
22863 	}
22864 	ASSERT(mutex_owned(SD_MUTEX(un)));
22865 	mutex_exit(SD_MUTEX(un));
22866 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
22867 	mutex_enter(SD_MUTEX(un));
22868 
22869 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
22870 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
22871 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
22872 	dkl->dkl_apc	= un->un_g.dkg_apc;
22873 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
22874 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
22875 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
22876 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
22877 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
22878 
22879 #if defined(_SUNOS_VTOC_8)
22880 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
22881 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
22882 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
22883 	for (i = 0; i < NDKMAP; i++) {
22884 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
22885 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22886 	}
22887 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
22888 #elif defined(_SUNOS_VTOC_16)
22889 	dkl->dkl_skew	= un->un_dkg_skew;
22890 #else
22891 #error "No VTOC format defined."
22892 #endif
22893 
22894 	dkl->dkl_magic			= DKL_MAGIC;
22895 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
22896 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
22897 
22898 	/* Construct checksum for the new disk label */
22899 	sum = 0;
22900 	sp = (short *)dkl;
22901 	i = sizeof (struct dk_label) / sizeof (short);
22902 	while (i--) {
22903 		sum ^= *sp++;
22904 	}
22905 	dkl->dkl_cksum = sum;
22906 
22907 	mutex_exit(SD_MUTEX(un));
22908 
22909 	rval = sd_set_vtoc(un, dkl);
22910 exit:
22911 	kmem_free(dkl, sizeof (struct dk_label));
22912 	mutex_enter(SD_MUTEX(un));
22913 	return (rval);
22914 }
22915 
22916 static int
22917 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
22918 {
22919 	struct sd_lun	*un = NULL;
22920 	dk_efi_t	user_efi;
22921 	int		rval = 0;
22922 	void		*buffer;
22923 
22924 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22925 		return (ENXIO);
22926 
22927 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22928 		return (EFAULT);
22929 
22930 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22931 
22932 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22933 	    (user_efi.dki_length > un->un_max_xfer_size))
22934 		return (EINVAL);
22935 
22936 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22937 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
22938 		rval = EFAULT;
22939 	} else {
22940 		/*
22941 		 * let's clear the vtoc labels and clear the softstate
22942 		 * vtoc.
22943 		 */
22944 		mutex_enter(SD_MUTEX(un));
22945 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
22946 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22947 				"sd_dkio_set_efi: CLEAR VTOC\n");
22948 			sd_clear_vtoc(un);
22949 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
22950 			mutex_exit(SD_MUTEX(un));
22951 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
22952 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
22953 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
22954 			    S_IFBLK,
22955 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22956 			    un->un_node_type, NULL);
22957 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
22958 			    S_IFCHR,
22959 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22960 			    un->un_node_type, NULL);
22961 		} else
22962 			mutex_exit(SD_MUTEX(un));
22963 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
22964 		    user_efi.dki_lba, SD_PATH_DIRECT);
22965 		if (rval == 0) {
22966 			mutex_enter(SD_MUTEX(un));
22967 			un->un_f_geometry_is_valid = FALSE;
22968 			mutex_exit(SD_MUTEX(un));
22969 		}
22970 	}
22971 	kmem_free(buffer, user_efi.dki_length);
22972 	return (rval);
22973 }
22974 
22975 /*
22976  *    Function: sd_dkio_get_mboot
22977  *
22978  * Description: This routine is the driver entry point for handling user
22979  *		requests to get the current device mboot (DKIOCGMBOOT)
22980  *
22981  *   Arguments: dev  - the device number
22982  *		arg  - pointer to user provided mboot structure specifying
22983  *			the current mboot.
22984  *		flag - this argument is a pass through to ddi_copyxxx()
22985  *		       directly from the mode argument of ioctl().
22986  *
22987  * Return Code: 0
22988  *		EINVAL
22989  *		EFAULT
22990  *		ENXIO
22991  */
22992 
22993 static int
22994 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
22995 {
22996 	struct sd_lun	*un;
22997 	struct mboot	*mboot;
22998 	int		rval;
22999 	size_t		buffer_size;
23000 
23001 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23002 	    (un->un_state == SD_STATE_OFFLINE)) {
23003 		return (ENXIO);
23004 	}
23005 
23006 #if defined(_SUNOS_VTOC_8)
23007 	if ((!ISREMOVABLE(un)) || (arg == NULL)) {
23008 #elif defined(_SUNOS_VTOC_16)
23009 	if (arg == NULL) {
23010 #endif
23011 		return (EINVAL);
23012 	}
23013 
23014 	/*
23015 	 * Read the mboot block, located at absolute block 0 on the target.
23016 	 */
23017 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23018 
23019 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23020 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23021 
23022 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23023 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23024 	    SD_PATH_STANDARD)) == 0) {
23025 		if (ddi_copyout(mboot, (void *)arg,
23026 		    sizeof (struct mboot), flag) != 0) {
23027 			rval = EFAULT;
23028 		}
23029 	}
23030 	kmem_free(mboot, buffer_size);
23031 	return (rval);
23032 }
23033 
23034 
23035 /*
23036  *    Function: sd_dkio_set_mboot
23037  *
23038  * Description: This routine is the driver entry point for handling user
23039  *		requests to validate and set the device master boot
23040  *		(DKIOCSMBOOT).
23041  *
23042  *   Arguments: dev  - the device number
23043  *		arg  - pointer to user provided mboot structure used to set the
23044  *			master boot.
23045  *		flag - this argument is a pass through to ddi_copyxxx()
23046  *		       directly from the mode argument of ioctl().
23047  *
23048  * Return Code: 0
23049  *		EINVAL
23050  *		EFAULT
23051  *		ENXIO
23052  */
23053 
23054 static int
23055 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23056 {
23057 	struct sd_lun	*un = NULL;
23058 	struct mboot	*mboot = NULL;
23059 	int		rval;
23060 	ushort_t	magic;
23061 
23062 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23063 		return (ENXIO);
23064 	}
23065 
23066 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23067 
23068 #if defined(_SUNOS_VTOC_8)
23069 	if (!ISREMOVABLE(un)) {
23070 		return (EINVAL);
23071 	}
23072 #endif
23073 
23074 	if (arg == NULL) {
23075 		return (EINVAL);
23076 	}
23077 
23078 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23079 
23080 	if (ddi_copyin((const void *)arg, mboot,
23081 	    sizeof (struct mboot), flag) != 0) {
23082 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23083 		return (EFAULT);
23084 	}
23085 
23086 	/* Is this really a master boot record? */
23087 	magic = LE_16(mboot->signature);
23088 	if (magic != MBB_MAGIC) {
23089 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23090 		return (EINVAL);
23091 	}
23092 
23093 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23094 	    SD_PATH_STANDARD);
23095 
23096 	mutex_enter(SD_MUTEX(un));
23097 #if defined(__i386) || defined(__amd64)
23098 	if (rval == 0) {
23099 		/*
23100 		 * mboot has been written successfully.
23101 		 * update the fdisk and vtoc tables in memory
23102 		 */
23103 		rval = sd_update_fdisk_and_vtoc(un);
23104 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23105 			mutex_exit(SD_MUTEX(un));
23106 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23107 			return (rval);
23108 		}
23109 	}
23110 
23111 	/*
23112 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23113 	 * Also preserve the device id by writing to the disk acyl for the case
23114 	 * where a devid has been fabricated.
23115 	 */
23116 	if (!ISREMOVABLE(un) && !ISCD(un) &&
23117 	    (un->un_f_opt_fab_devid == TRUE)) {
23118 		if (un->un_devid == NULL) {
23119 			sd_register_devid(un, SD_DEVINFO(un),
23120 			    SD_TARGET_IS_UNRESERVED);
23121 		} else {
23122 			/*
23123 			 * The device id for this disk has been
23124 			 * fabricated. Fabricated device id's are
23125 			 * managed by storing them in the last 2
23126 			 * available sectors on the drive. The device
23127 			 * id must be preserved by writing it back out
23128 			 * to this location.
23129 			 */
23130 			if (sd_write_deviceid(un) != 0) {
23131 				ddi_devid_free(un->un_devid);
23132 				un->un_devid = NULL;
23133 			}
23134 		}
23135 	}
23136 #else
23137 	if (rval == 0) {
23138 		/*
23139 		 * mboot has been written successfully.
23140 		 * set up the default geometry and VTOC
23141 		 */
23142 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23143 			sd_setup_default_geometry(un);
23144 	}
23145 #endif
23146 	mutex_exit(SD_MUTEX(un));
23147 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23148 	return (rval);
23149 }
23150 
23151 
23152 /*
23153  *    Function: sd_setup_default_geometry
23154  *
23155  * Description: This local utility routine sets the default geometry as part of
23156  *		setting the device mboot.
23157  *
23158  *   Arguments: un - driver soft state (unit) structure
23159  *
23160  * Note: This may be redundant with sd_build_default_label.
23161  */
23162 
23163 static void
23164 sd_setup_default_geometry(struct sd_lun *un)
23165 {
23166 	/* zero out the soft state geometry and partition table. */
23167 	bzero(&un->un_g, sizeof (struct dk_geom));
23168 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23169 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23170 	un->un_asciilabel[0] = '\0';
23171 
23172 	/*
23173 	 * For the rpm, we use the minimum for the disk.
23174 	 * For the head, cyl and number of sector per track,
23175 	 * if the capacity <= 1GB, head = 64, sect = 32.
23176 	 * else head = 255, sect 63
23177 	 * Note: the capacity should be equal to C*H*S values.
23178 	 * This will cause some truncation of size due to
23179 	 * round off errors. For CD-ROMs, this truncation can
23180 	 * have adverse side effects, so returning ncyl and
23181 	 * nhead as 1. The nsect will overflow for most of
23182 	 * CD-ROMs as nsect is of type ushort.
23183 	 */
23184 	if (ISCD(un)) {
23185 		un->un_g.dkg_ncyl = 1;
23186 		un->un_g.dkg_nhead = 1;
23187 		un->un_g.dkg_nsect = un->un_blockcount;
23188 	} else {
23189 		if (un->un_blockcount <= 0x1000) {
23190 			/* Needed for unlabeled SCSI floppies. */
23191 			un->un_g.dkg_nhead = 2;
23192 			un->un_g.dkg_ncyl = 80;
23193 			un->un_g.dkg_pcyl = 80;
23194 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23195 		} else if (un->un_blockcount <= 0x200000) {
23196 			un->un_g.dkg_nhead = 64;
23197 			un->un_g.dkg_nsect = 32;
23198 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23199 		} else {
23200 			un->un_g.dkg_nhead = 255;
23201 			un->un_g.dkg_nsect = 63;
23202 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23203 		}
23204 		un->un_blockcount = un->un_g.dkg_ncyl *
23205 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23206 	}
23207 	un->un_g.dkg_acyl = 0;
23208 	un->un_g.dkg_bcyl = 0;
23209 	un->un_g.dkg_intrlv = 1;
23210 	un->un_g.dkg_rpm = 200;
23211 	un->un_g.dkg_read_reinstruct = 0;
23212 	un->un_g.dkg_write_reinstruct = 0;
23213 	if (un->un_g.dkg_pcyl == 0) {
23214 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23215 	}
23216 
23217 	un->un_map['a'-'a'].dkl_cylno = 0;
23218 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23219 	un->un_map['c'-'a'].dkl_cylno = 0;
23220 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23221 	un->un_f_geometry_is_valid = FALSE;
23222 }
23223 
23224 
23225 #if defined(__i386) || defined(__amd64)
23226 /*
23227  *    Function: sd_update_fdisk_and_vtoc
23228  *
23229  * Description: This local utility routine updates the device fdisk and vtoc
23230  *		as part of setting the device mboot.
23231  *
23232  *   Arguments: un - driver soft state (unit) structure
23233  *
23234  * Return Code: 0 for success or errno-type return code.
23235  *
23236  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23237  *		these did exist seperately in x86 sd.c!!!
23238  */
23239 
23240 static int
23241 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23242 {
23243 	static char	labelstring[128];
23244 	static char	buf[256];
23245 	char		*label = 0;
23246 	int		count;
23247 	int		label_rc = 0;
23248 	int		gvalid = un->un_f_geometry_is_valid;
23249 	int		fdisk_rval;
23250 	int		lbasize;
23251 	int		capacity;
23252 
23253 	ASSERT(mutex_owned(SD_MUTEX(un)));
23254 
23255 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23256 		return (EINVAL);
23257 	}
23258 
23259 	if (un->un_f_blockcount_is_valid == FALSE) {
23260 		return (EINVAL);
23261 	}
23262 
23263 #if defined(_SUNOS_VTOC_16)
23264 	/*
23265 	 * Set up the "whole disk" fdisk partition; this should always
23266 	 * exist, regardless of whether the disk contains an fdisk table
23267 	 * or vtoc.
23268 	 */
23269 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23270 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23271 #endif	/* defined(_SUNOS_VTOC_16) */
23272 
23273 	/*
23274 	 * copy the lbasize and capacity so that if they're
23275 	 * reset while we're not holding the SD_MUTEX(un), we will
23276 	 * continue to use valid values after the SD_MUTEX(un) is
23277 	 * reacquired.
23278 	 */
23279 	lbasize  = un->un_tgt_blocksize;
23280 	capacity = un->un_blockcount;
23281 
23282 	/*
23283 	 * refresh the logical and physical geometry caches.
23284 	 * (data from mode sense format/rigid disk geometry pages,
23285 	 * and scsi_ifgetcap("geometry").
23286 	 */
23287 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23288 
23289 	/*
23290 	 * Only DIRECT ACCESS devices will have Sun labels.
23291 	 * CD's supposedly have a Sun label, too
23292 	 */
23293 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
23294 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23295 		    SD_PATH_DIRECT);
23296 		if (fdisk_rval == SD_CMD_FAILURE) {
23297 			ASSERT(mutex_owned(SD_MUTEX(un)));
23298 			return (EIO);
23299 		}
23300 
23301 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23302 			ASSERT(mutex_owned(SD_MUTEX(un)));
23303 			return (EACCES);
23304 		}
23305 
23306 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23307 			/*
23308 			 * Found fdisk table but no Solaris partition entry,
23309 			 * so don't call sd_uselabel() and don't create
23310 			 * a default label.
23311 			 */
23312 			label_rc = 0;
23313 			un->un_f_geometry_is_valid = TRUE;
23314 			goto no_solaris_partition;
23315 		}
23316 
23317 #if defined(_SUNOS_VTOC_8)
23318 		label = (char *)un->un_asciilabel;
23319 #elif defined(_SUNOS_VTOC_16)
23320 		label = (char *)un->un_vtoc.v_asciilabel;
23321 #else
23322 #error "No VTOC format defined."
23323 #endif
23324 	} else if (capacity < 0) {
23325 		ASSERT(mutex_owned(SD_MUTEX(un)));
23326 		return (EINVAL);
23327 	}
23328 
23329 	/*
23330 	 * For Removable media We reach here if we have found a
23331 	 * SOLARIS PARTITION.
23332 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23333 	 * PARTITION has changed from the previous one, hence we will setup a
23334 	 * default VTOC in this case.
23335 	 */
23336 	if (un->un_f_geometry_is_valid == FALSE) {
23337 		sd_build_default_label(un);
23338 		label_rc = 0;
23339 	}
23340 
23341 no_solaris_partition:
23342 	if ((!ISREMOVABLE(un) ||
23343 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
23344 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
23345 		/*
23346 		 * Print out a message indicating who and what we are.
23347 		 * We do this only when we happen to really validate the
23348 		 * geometry. We may call sd_validate_geometry() at other
23349 		 * times, ioctl()'s like Get VTOC in which case we
23350 		 * don't want to print the label.
23351 		 * If the geometry is valid, print the label string,
23352 		 * else print vendor and product info, if available
23353 		 */
23354 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23355 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23356 		} else {
23357 			mutex_enter(&sd_label_mutex);
23358 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23359 			    labelstring);
23360 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23361 			    &labelstring[64]);
23362 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23363 			    labelstring, &labelstring[64]);
23364 			if (un->un_f_blockcount_is_valid == TRUE) {
23365 				(void) sprintf(&buf[strlen(buf)],
23366 				    ", %" PRIu64 " %u byte blocks\n",
23367 				    un->un_blockcount,
23368 				    un->un_tgt_blocksize);
23369 			} else {
23370 				(void) sprintf(&buf[strlen(buf)],
23371 				    ", (unknown capacity)\n");
23372 			}
23373 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23374 			mutex_exit(&sd_label_mutex);
23375 		}
23376 	}
23377 
23378 #if defined(_SUNOS_VTOC_16)
23379 	/*
23380 	 * If we have valid geometry, set up the remaining fdisk partitions.
23381 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23382 	 * we set it to an entirely bogus value.
23383 	 */
23384 	for (count = 0; count < FD_NUMPART; count++) {
23385 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23386 		un->un_map[FDISK_P1 + count].dkl_nblk =
23387 		    un->un_fmap[count].fmap_nblk;
23388 		un->un_offset[FDISK_P1 + count] =
23389 		    un->un_fmap[count].fmap_start;
23390 	}
23391 #endif
23392 
23393 	for (count = 0; count < NDKMAP; count++) {
23394 #if defined(_SUNOS_VTOC_8)
23395 		struct dk_map *lp  = &un->un_map[count];
23396 		un->un_offset[count] =
23397 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23398 #elif defined(_SUNOS_VTOC_16)
23399 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
23400 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
23401 #else
23402 #error "No VTOC format defined."
23403 #endif
23404 	}
23405 
23406 	ASSERT(mutex_owned(SD_MUTEX(un)));
23407 	return (label_rc);
23408 }
23409 #endif
23410 
23411 
23412 /*
23413  *    Function: sd_check_media
23414  *
23415  * Description: This utility routine implements the functionality for the
23416  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23417  *		driver state changes from that specified by the user
23418  *		(inserted or ejected). For example, if the user specifies
23419  *		DKIO_EJECTED and the current media state is inserted this
23420  *		routine will immediately return DKIO_INSERTED. However, if the
23421  *		current media state is not inserted the user thread will be
23422  *		blocked until the drive state changes. If DKIO_NONE is specified
23423  *		the user thread will block until a drive state change occurs.
23424  *
23425  *   Arguments: dev  - the device number
23426  *		state  - user pointer to a dkio_state, updated with the current
23427  *			drive state at return.
23428  *
23429  * Return Code: ENXIO
23430  *		EIO
23431  *		EAGAIN
23432  *		EINTR
23433  */
23434 
23435 static int
23436 sd_check_media(dev_t dev, enum dkio_state state)
23437 {
23438 	struct sd_lun		*un = NULL;
23439 	enum dkio_state		prev_state;
23440 	opaque_t		token = NULL;
23441 	int			rval = 0;
23442 
23443 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23444 		return (ENXIO);
23445 	}
23446 
23447 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23448 
23449 	mutex_enter(SD_MUTEX(un));
23450 
23451 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23452 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23453 
23454 	prev_state = un->un_mediastate;
23455 
23456 	/* is there anything to do? */
23457 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23458 		/*
23459 		 * submit the request to the scsi_watch service;
23460 		 * scsi_media_watch_cb() does the real work
23461 		 */
23462 		mutex_exit(SD_MUTEX(un));
23463 
23464 		/*
23465 		 * This change handles the case where a scsi watch request is
23466 		 * added to a device that is powered down. To accomplish this
23467 		 * we power up the device before adding the scsi watch request,
23468 		 * since the scsi watch sends a TUR directly to the device
23469 		 * which the device cannot handle if it is powered down.
23470 		 */
23471 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23472 			mutex_enter(SD_MUTEX(un));
23473 			goto done;
23474 		}
23475 
23476 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23477 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23478 		    (caddr_t)dev);
23479 
23480 		sd_pm_exit(un);
23481 
23482 		mutex_enter(SD_MUTEX(un));
23483 		if (token == NULL) {
23484 			rval = EAGAIN;
23485 			goto done;
23486 		}
23487 
23488 		/*
23489 		 * This is a special case IOCTL that doesn't return
23490 		 * until the media state changes. Routine sdpower
23491 		 * knows about and handles this so don't count it
23492 		 * as an active cmd in the driver, which would
23493 		 * keep the device busy to the pm framework.
23494 		 * If the count isn't decremented the device can't
23495 		 * be powered down.
23496 		 */
23497 		un->un_ncmds_in_driver--;
23498 		ASSERT(un->un_ncmds_in_driver >= 0);
23499 
23500 		/*
23501 		 * if a prior request had been made, this will be the same
23502 		 * token, as scsi_watch was designed that way.
23503 		 */
23504 		un->un_swr_token = token;
23505 		un->un_specified_mediastate = state;
23506 
23507 		/*
23508 		 * now wait for media change
23509 		 * we will not be signalled unless mediastate == state but it is
23510 		 * still better to test for this condition, since there is a
23511 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23512 		 */
23513 		SD_TRACE(SD_LOG_COMMON, un,
23514 		    "sd_check_media: waiting for media state change\n");
23515 		while (un->un_mediastate == state) {
23516 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23517 				SD_TRACE(SD_LOG_COMMON, un,
23518 				    "sd_check_media: waiting for media state "
23519 				    "was interrupted\n");
23520 				un->un_ncmds_in_driver++;
23521 				rval = EINTR;
23522 				goto done;
23523 			}
23524 			SD_TRACE(SD_LOG_COMMON, un,
23525 			    "sd_check_media: received signal, state=%x\n",
23526 			    un->un_mediastate);
23527 		}
23528 		/*
23529 		 * Inc the counter to indicate the device once again
23530 		 * has an active outstanding cmd.
23531 		 */
23532 		un->un_ncmds_in_driver++;
23533 	}
23534 
23535 	/* invalidate geometry */
23536 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23537 		sr_ejected(un);
23538 	}
23539 
23540 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23541 		uint64_t	capacity;
23542 		uint_t		lbasize;
23543 
23544 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23545 		mutex_exit(SD_MUTEX(un));
23546 		/*
23547 		 * Since the following routines use SD_PATH_DIRECT, we must
23548 		 * call PM directly before the upcoming disk accesses. This
23549 		 * may cause the disk to be power/spin up.
23550 		 */
23551 
23552 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23553 			rval = sd_send_scsi_READ_CAPACITY(un,
23554 			    &capacity,
23555 			    &lbasize, SD_PATH_DIRECT);
23556 			if (rval != 0) {
23557 				sd_pm_exit(un);
23558 				mutex_enter(SD_MUTEX(un));
23559 				goto done;
23560 			}
23561 		} else {
23562 			rval = EIO;
23563 			mutex_enter(SD_MUTEX(un));
23564 			goto done;
23565 		}
23566 		mutex_enter(SD_MUTEX(un));
23567 
23568 		sd_update_block_info(un, lbasize, capacity);
23569 
23570 		un->un_f_geometry_is_valid	= FALSE;
23571 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
23572 
23573 		mutex_exit(SD_MUTEX(un));
23574 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
23575 		    SD_PATH_DIRECT);
23576 		sd_pm_exit(un);
23577 
23578 		mutex_enter(SD_MUTEX(un));
23579 	}
23580 done:
23581 	un->un_f_watcht_stopped = FALSE;
23582 	if (un->un_swr_token) {
23583 		/*
23584 		 * Use of this local token and the mutex ensures that we avoid
23585 		 * some race conditions associated with terminating the
23586 		 * scsi watch.
23587 		 */
23588 		token = un->un_swr_token;
23589 		un->un_swr_token = (opaque_t)NULL;
23590 		mutex_exit(SD_MUTEX(un));
23591 		(void) scsi_watch_request_terminate(token,
23592 		    SCSI_WATCH_TERMINATE_WAIT);
23593 		mutex_enter(SD_MUTEX(un));
23594 	}
23595 
23596 	/*
23597 	 * Update the capacity kstat value, if no media previously
23598 	 * (capacity kstat is 0) and a media has been inserted
23599 	 * (un_f_blockcount_is_valid == TRUE)
23600 	 * This is a more generic way then checking for ISREMOVABLE.
23601 	 */
23602 	if (un->un_errstats) {
23603 		struct sd_errstats	*stp = NULL;
23604 
23605 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23606 		if ((stp->sd_capacity.value.ui64 == 0) &&
23607 		    (un->un_f_blockcount_is_valid == TRUE)) {
23608 			stp->sd_capacity.value.ui64 =
23609 			    (uint64_t)((uint64_t)un->un_blockcount *
23610 			    un->un_sys_blocksize);
23611 		}
23612 	}
23613 	mutex_exit(SD_MUTEX(un));
23614 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23615 	return (rval);
23616 }
23617 
23618 
23619 /*
23620  *    Function: sd_delayed_cv_broadcast
23621  *
23622  * Description: Delayed cv_broadcast to allow for target to recover from media
23623  *		insertion.
23624  *
23625  *   Arguments: arg - driver soft state (unit) structure
23626  */
23627 
23628 static void
23629 sd_delayed_cv_broadcast(void *arg)
23630 {
23631 	struct sd_lun *un = arg;
23632 
23633 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23634 
23635 	mutex_enter(SD_MUTEX(un));
23636 	un->un_dcvb_timeid = NULL;
23637 	cv_broadcast(&un->un_state_cv);
23638 	mutex_exit(SD_MUTEX(un));
23639 }
23640 
23641 
23642 /*
23643  *    Function: sd_media_watch_cb
23644  *
23645  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23646  *		routine processes the TUR sense data and updates the driver
23647  *		state if a transition has occurred. The user thread
23648  *		(sd_check_media) is then signalled.
23649  *
23650  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23651  *			among multiple watches that share this callback function
23652  *		resultp - scsi watch facility result packet containing scsi
23653  *			  packet, status byte and sense data
23654  *
23655  * Return Code: 0 for success, -1 for failure
23656  */
23657 
23658 static int
23659 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23660 {
23661 	struct sd_lun			*un;
23662 	struct scsi_status		*statusp = resultp->statusp;
23663 	struct scsi_extended_sense	*sensep = resultp->sensep;
23664 	enum dkio_state			state = DKIO_NONE;
23665 	dev_t				dev = (dev_t)arg;
23666 	uchar_t				actual_sense_length;
23667 
23668 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23669 		return (-1);
23670 	}
23671 	actual_sense_length = resultp->actual_sense_length;
23672 
23673 	mutex_enter(SD_MUTEX(un));
23674 	SD_TRACE(SD_LOG_COMMON, un,
23675 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23676 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23677 
23678 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23679 		un->un_mediastate = DKIO_DEV_GONE;
23680 		printf("sd_media_watch_cb: dev gone\n");
23681 		cv_broadcast(&un->un_state_cv);
23682 		mutex_exit(SD_MUTEX(un));
23683 
23684 		return (0);
23685 	}
23686 
23687 	/*
23688 	 * If there was a check condition then sensep points to valid sense data
23689 	 * If status was not a check condition but a reservation or busy status
23690 	 * then the new state is DKIO_NONE
23691 	 */
23692 	if (sensep != NULL) {
23693 		SD_INFO(SD_LOG_COMMON, un,
23694 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23695 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
23696 		/* This routine only uses up to 13 bytes of sense data. */
23697 		if (actual_sense_length >= 13) {
23698 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
23699 				if (sensep->es_add_code == 0x28) {
23700 					state = DKIO_INSERTED;
23701 				}
23702 			} else {
23703 				/*
23704 				 * if 02/04/02  means that the host
23705 				 * should send start command. Explicitly
23706 				 * leave the media state as is
23707 				 * (inserted) as the media is inserted
23708 				 * and host has stopped device for PM
23709 				 * reasons. Upon next true read/write
23710 				 * to this media will bring the
23711 				 * device to the right state good for
23712 				 * media access.
23713 				 */
23714 				if ((sensep->es_key == KEY_NOT_READY) &&
23715 				    (sensep->es_add_code == 0x3a)) {
23716 					state = DKIO_EJECTED;
23717 				}
23718 
23719 				/*
23720 				 * If the drivge is busy with an operation
23721 				 * or long write, keep the media in an
23722 				 * inserted state.
23723 				 */
23724 
23725 				if ((sensep->es_key == KEY_NOT_READY) &&
23726 				    (sensep->es_add_code == 0x04) &&
23727 				    ((sensep->es_qual_code == 0x02) ||
23728 				    (sensep->es_qual_code == 0x07) ||
23729 				    (sensep->es_qual_code == 0x08))) {
23730 					state = DKIO_INSERTED;
23731 				}
23732 			}
23733 		}
23734 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23735 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23736 		state = DKIO_INSERTED;
23737 	}
23738 
23739 	SD_TRACE(SD_LOG_COMMON, un,
23740 	    "sd_media_watch_cb: state=%x, specified=%x\n",
23741 	    state, un->un_specified_mediastate);
23742 
23743 	/*
23744 	 * now signal the waiting thread if this is *not* the specified state;
23745 	 * delay the signal if the state is DKIO_INSERTED to allow the target
23746 	 * to recover
23747 	 */
23748 	if (state != un->un_specified_mediastate) {
23749 		un->un_mediastate = state;
23750 		if (state == DKIO_INSERTED) {
23751 			/*
23752 			 * delay the signal to give the drive a chance
23753 			 * to do what it apparently needs to do
23754 			 */
23755 			SD_TRACE(SD_LOG_COMMON, un,
23756 			    "sd_media_watch_cb: delayed cv_broadcast\n");
23757 			if (un->un_dcvb_timeid == NULL) {
23758 				un->un_dcvb_timeid =
23759 				    timeout(sd_delayed_cv_broadcast, un,
23760 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
23761 			}
23762 		} else {
23763 			SD_TRACE(SD_LOG_COMMON, un,
23764 			    "sd_media_watch_cb: immediate cv_broadcast\n");
23765 			cv_broadcast(&un->un_state_cv);
23766 		}
23767 	}
23768 	mutex_exit(SD_MUTEX(un));
23769 	return (0);
23770 }
23771 
23772 
23773 /*
23774  *    Function: sd_dkio_get_temp
23775  *
23776  * Description: This routine is the driver entry point for handling ioctl
23777  *		requests to get the disk temperature.
23778  *
23779  *   Arguments: dev  - the device number
23780  *		arg  - pointer to user provided dk_temperature structure.
23781  *		flag - this argument is a pass through to ddi_copyxxx()
23782  *		       directly from the mode argument of ioctl().
23783  *
23784  * Return Code: 0
23785  *		EFAULT
23786  *		ENXIO
23787  *		EAGAIN
23788  */
23789 
23790 static int
23791 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
23792 {
23793 	struct sd_lun		*un = NULL;
23794 	struct dk_temperature	*dktemp = NULL;
23795 	uchar_t			*temperature_page;
23796 	int			rval = 0;
23797 	int			path_flag = SD_PATH_STANDARD;
23798 
23799 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23800 		return (ENXIO);
23801 	}
23802 
23803 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23804 
23805 	/* copyin the disk temp argument to get the user flags */
23806 	if (ddi_copyin((void *)arg, dktemp,
23807 	    sizeof (struct dk_temperature), flag) != 0) {
23808 		rval = EFAULT;
23809 		goto done;
23810 	}
23811 
23812 	/* Initialize the temperature to invalid. */
23813 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23814 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23815 
23816 	/*
23817 	 * Note: Investigate removing the "bypass pm" semantic.
23818 	 * Can we just bypass PM always?
23819 	 */
23820 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23821 		path_flag = SD_PATH_DIRECT;
23822 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23823 		mutex_enter(&un->un_pm_mutex);
23824 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23825 			/*
23826 			 * If DKT_BYPASS_PM is set, and the drive happens to be
23827 			 * in low power mode, we can not wake it up, Need to
23828 			 * return EAGAIN.
23829 			 */
23830 			mutex_exit(&un->un_pm_mutex);
23831 			rval = EAGAIN;
23832 			goto done;
23833 		} else {
23834 			/*
23835 			 * Indicate to PM the device is busy. This is required
23836 			 * to avoid a race - i.e. the ioctl is issuing a
23837 			 * command and the pm framework brings down the device
23838 			 * to low power mode (possible power cut-off on some
23839 			 * platforms).
23840 			 */
23841 			mutex_exit(&un->un_pm_mutex);
23842 			if (sd_pm_entry(un) != DDI_SUCCESS) {
23843 				rval = EAGAIN;
23844 				goto done;
23845 			}
23846 		}
23847 	}
23848 
23849 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
23850 
23851 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
23852 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
23853 		goto done2;
23854 	}
23855 
23856 	/*
23857 	 * For the current temperature verify that the parameter length is 0x02
23858 	 * and the parameter code is 0x00
23859 	 */
23860 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
23861 	    (temperature_page[5] == 0x00)) {
23862 		if (temperature_page[9] == 0xFF) {
23863 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23864 		} else {
23865 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
23866 		}
23867 	}
23868 
23869 	/*
23870 	 * For the reference temperature verify that the parameter
23871 	 * length is 0x02 and the parameter code is 0x01
23872 	 */
23873 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
23874 	    (temperature_page[11] == 0x01)) {
23875 		if (temperature_page[15] == 0xFF) {
23876 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23877 		} else {
23878 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23879 		}
23880 	}
23881 
23882 	/* Do the copyout regardless of the temperature commands status. */
23883 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23884 	    flag) != 0) {
23885 		rval = EFAULT;
23886 	}
23887 
23888 done2:
23889 	if (path_flag == SD_PATH_DIRECT) {
23890 		sd_pm_exit(un);
23891 	}
23892 
23893 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
23894 done:
23895 	if (dktemp != NULL) {
23896 		kmem_free(dktemp, sizeof (struct dk_temperature));
23897 	}
23898 
23899 	return (rval);
23900 }
23901 
23902 
23903 /*
23904  *    Function: sd_log_page_supported
23905  *
23906  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
23907  *		supported log pages.
23908  *
23909  *   Arguments: un -
23910  *		log_page -
23911  *
23912  * Return Code: -1 - on error (log sense is optional and may not be supported).
23913  *		0  - log page not found.
23914  *  		1  - log page found.
23915  */
23916 
23917 static int
23918 sd_log_page_supported(struct sd_lun *un, int log_page)
23919 {
23920 	uchar_t *log_page_data;
23921 	int	i;
23922 	int	match = 0;
23923 	int	log_size;
23924 
23925 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23926 
23927 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
23928 	    SD_PATH_DIRECT) != 0) {
23929 		SD_ERROR(SD_LOG_COMMON, un,
23930 		    "sd_log_page_supported: failed log page retrieval\n");
23931 		kmem_free(log_page_data, 0xFF);
23932 		return (-1);
23933 	}
23934 	log_size = log_page_data[3];
23935 
23936 	/*
23937 	 * The list of supported log pages start from the fourth byte. Check
23938 	 * until we run out of log pages or a match is found.
23939 	 */
23940 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23941 		if (log_page_data[i] == log_page) {
23942 			match++;
23943 		}
23944 	}
23945 	kmem_free(log_page_data, 0xFF);
23946 	return (match);
23947 }
23948 
23949 
23950 /*
23951  *    Function: sd_mhdioc_failfast
23952  *
23953  * Description: This routine is the driver entry point for handling ioctl
23954  *		requests to enable/disable the multihost failfast option.
23955  *		(MHIOCENFAILFAST)
23956  *
23957  *   Arguments: dev	- the device number
23958  *		arg	- user specified probing interval.
23959  *		flag	- this argument is a pass through to ddi_copyxxx()
23960  *			  directly from the mode argument of ioctl().
23961  *
23962  * Return Code: 0
23963  *		EFAULT
23964  *		ENXIO
23965  */
23966 
23967 static int
23968 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23969 {
23970 	struct sd_lun	*un = NULL;
23971 	int		mh_time;
23972 	int		rval = 0;
23973 
23974 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23975 		return (ENXIO);
23976 	}
23977 
23978 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
23979 		return (EFAULT);
23980 
23981 	if (mh_time) {
23982 		mutex_enter(SD_MUTEX(un));
23983 		un->un_resvd_status |= SD_FAILFAST;
23984 		mutex_exit(SD_MUTEX(un));
23985 		/*
23986 		 * If mh_time is INT_MAX, then this ioctl is being used for
23987 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
23988 		 */
23989 		if (mh_time != INT_MAX) {
23990 			rval = sd_check_mhd(dev, mh_time);
23991 		}
23992 	} else {
23993 		(void) sd_check_mhd(dev, 0);
23994 		mutex_enter(SD_MUTEX(un));
23995 		un->un_resvd_status &= ~SD_FAILFAST;
23996 		mutex_exit(SD_MUTEX(un));
23997 	}
23998 	return (rval);
23999 }
24000 
24001 
24002 /*
24003  *    Function: sd_mhdioc_takeown
24004  *
24005  * Description: This routine is the driver entry point for handling ioctl
24006  *		requests to forcefully acquire exclusive access rights to the
24007  *		multihost disk (MHIOCTKOWN).
24008  *
24009  *   Arguments: dev	- the device number
24010  *		arg	- user provided structure specifying the delay
24011  *			  parameters in milliseconds
24012  *		flag	- this argument is a pass through to ddi_copyxxx()
24013  *			  directly from the mode argument of ioctl().
24014  *
24015  * Return Code: 0
24016  *		EFAULT
24017  *		ENXIO
24018  */
24019 
24020 static int
24021 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24022 {
24023 	struct sd_lun		*un = NULL;
24024 	struct mhioctkown	*tkown = NULL;
24025 	int			rval = 0;
24026 
24027 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24028 		return (ENXIO);
24029 	}
24030 
24031 	if (arg != NULL) {
24032 		tkown = (struct mhioctkown *)
24033 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24034 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24035 		if (rval != 0) {
24036 			rval = EFAULT;
24037 			goto error;
24038 		}
24039 	}
24040 
24041 	rval = sd_take_ownership(dev, tkown);
24042 	mutex_enter(SD_MUTEX(un));
24043 	if (rval == 0) {
24044 		un->un_resvd_status |= SD_RESERVE;
24045 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24046 			sd_reinstate_resv_delay =
24047 			    tkown->reinstate_resv_delay * 1000;
24048 		} else {
24049 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24050 		}
24051 		/*
24052 		 * Give the scsi_watch routine interval set by
24053 		 * the MHIOCENFAILFAST ioctl precedence here.
24054 		 */
24055 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24056 			mutex_exit(SD_MUTEX(un));
24057 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24058 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24059 			    "sd_mhdioc_takeown : %d\n",
24060 			    sd_reinstate_resv_delay);
24061 		} else {
24062 			mutex_exit(SD_MUTEX(un));
24063 		}
24064 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24065 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24066 	} else {
24067 		un->un_resvd_status &= ~SD_RESERVE;
24068 		mutex_exit(SD_MUTEX(un));
24069 	}
24070 
24071 error:
24072 	if (tkown != NULL) {
24073 		kmem_free(tkown, sizeof (struct mhioctkown));
24074 	}
24075 	return (rval);
24076 }
24077 
24078 
24079 /*
24080  *    Function: sd_mhdioc_release
24081  *
24082  * Description: This routine is the driver entry point for handling ioctl
24083  *		requests to release exclusive access rights to the multihost
24084  *		disk (MHIOCRELEASE).
24085  *
24086  *   Arguments: dev	- the device number
24087  *
24088  * Return Code: 0
24089  *		ENXIO
24090  */
24091 
24092 static int
24093 sd_mhdioc_release(dev_t dev)
24094 {
24095 	struct sd_lun		*un = NULL;
24096 	timeout_id_t		resvd_timeid_save;
24097 	int			resvd_status_save;
24098 	int			rval = 0;
24099 
24100 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24101 		return (ENXIO);
24102 	}
24103 
24104 	mutex_enter(SD_MUTEX(un));
24105 	resvd_status_save = un->un_resvd_status;
24106 	un->un_resvd_status &=
24107 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24108 	if (un->un_resvd_timeid) {
24109 		resvd_timeid_save = un->un_resvd_timeid;
24110 		un->un_resvd_timeid = NULL;
24111 		mutex_exit(SD_MUTEX(un));
24112 		(void) untimeout(resvd_timeid_save);
24113 	} else {
24114 		mutex_exit(SD_MUTEX(un));
24115 	}
24116 
24117 	/*
24118 	 * destroy any pending timeout thread that may be attempting to
24119 	 * reinstate reservation on this device.
24120 	 */
24121 	sd_rmv_resv_reclaim_req(dev);
24122 
24123 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24124 		mutex_enter(SD_MUTEX(un));
24125 		if ((un->un_mhd_token) &&
24126 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24127 			mutex_exit(SD_MUTEX(un));
24128 			(void) sd_check_mhd(dev, 0);
24129 		} else {
24130 			mutex_exit(SD_MUTEX(un));
24131 		}
24132 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24133 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24134 	} else {
24135 		/*
24136 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24137 		 */
24138 		mutex_enter(SD_MUTEX(un));
24139 		un->un_resvd_status = resvd_status_save;
24140 		mutex_exit(SD_MUTEX(un));
24141 	}
24142 	return (rval);
24143 }
24144 
24145 
24146 /*
24147  *    Function: sd_mhdioc_register_devid
24148  *
24149  * Description: This routine is the driver entry point for handling ioctl
24150  *		requests to register the device id (MHIOCREREGISTERDEVID).
24151  *
24152  *		Note: The implementation for this ioctl has been updated to
24153  *		be consistent with the original PSARC case (1999/357)
24154  *		(4375899, 4241671, 4220005)
24155  *
24156  *   Arguments: dev	- the device number
24157  *
24158  * Return Code: 0
24159  *		ENXIO
24160  */
24161 
24162 static int
24163 sd_mhdioc_register_devid(dev_t dev)
24164 {
24165 	struct sd_lun	*un = NULL;
24166 	int		rval = 0;
24167 
24168 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24169 		return (ENXIO);
24170 	}
24171 
24172 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24173 
24174 	mutex_enter(SD_MUTEX(un));
24175 
24176 	/* If a devid already exists, de-register it */
24177 	if (un->un_devid != NULL) {
24178 		ddi_devid_unregister(SD_DEVINFO(un));
24179 		/*
24180 		 * After unregister devid, needs to free devid memory
24181 		 */
24182 		ddi_devid_free(un->un_devid);
24183 		un->un_devid = NULL;
24184 	}
24185 
24186 	/* Check for reservation conflict */
24187 	mutex_exit(SD_MUTEX(un));
24188 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24189 	mutex_enter(SD_MUTEX(un));
24190 
24191 	switch (rval) {
24192 	case 0:
24193 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24194 		break;
24195 	case EACCES:
24196 		break;
24197 	default:
24198 		rval = EIO;
24199 	}
24200 
24201 	mutex_exit(SD_MUTEX(un));
24202 	return (rval);
24203 }
24204 
24205 
24206 /*
24207  *    Function: sd_mhdioc_inkeys
24208  *
24209  * Description: This routine is the driver entry point for handling ioctl
24210  *		requests to issue the SCSI-3 Persistent In Read Keys command
24211  *		to the device (MHIOCGRP_INKEYS).
24212  *
24213  *   Arguments: dev	- the device number
24214  *		arg	- user provided in_keys structure
24215  *		flag	- this argument is a pass through to ddi_copyxxx()
24216  *			  directly from the mode argument of ioctl().
24217  *
24218  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24219  *		ENXIO
24220  *		EFAULT
24221  */
24222 
24223 static int
24224 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24225 {
24226 	struct sd_lun		*un;
24227 	mhioc_inkeys_t		inkeys;
24228 	int			rval = 0;
24229 
24230 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24231 		return (ENXIO);
24232 	}
24233 
24234 #ifdef _MULTI_DATAMODEL
24235 	switch (ddi_model_convert_from(flag & FMODELS)) {
24236 	case DDI_MODEL_ILP32: {
24237 		struct mhioc_inkeys32	inkeys32;
24238 
24239 		if (ddi_copyin(arg, &inkeys32,
24240 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24241 			return (EFAULT);
24242 		}
24243 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24244 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24245 		    &inkeys, flag)) != 0) {
24246 			return (rval);
24247 		}
24248 		inkeys32.generation = inkeys.generation;
24249 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24250 		    flag) != 0) {
24251 			return (EFAULT);
24252 		}
24253 		break;
24254 	}
24255 	case DDI_MODEL_NONE:
24256 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24257 		    flag) != 0) {
24258 			return (EFAULT);
24259 		}
24260 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24261 		    &inkeys, flag)) != 0) {
24262 			return (rval);
24263 		}
24264 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24265 		    flag) != 0) {
24266 			return (EFAULT);
24267 		}
24268 		break;
24269 	}
24270 
24271 #else /* ! _MULTI_DATAMODEL */
24272 
24273 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24274 		return (EFAULT);
24275 	}
24276 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24277 	if (rval != 0) {
24278 		return (rval);
24279 	}
24280 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24281 		return (EFAULT);
24282 	}
24283 
24284 #endif /* _MULTI_DATAMODEL */
24285 
24286 	return (rval);
24287 }
24288 
24289 
24290 /*
24291  *    Function: sd_mhdioc_inresv
24292  *
24293  * Description: This routine is the driver entry point for handling ioctl
24294  *		requests to issue the SCSI-3 Persistent In Read Reservations
24295  *		command to the device (MHIOCGRP_INKEYS).
24296  *
24297  *   Arguments: dev	- the device number
24298  *		arg	- user provided in_resv structure
24299  *		flag	- this argument is a pass through to ddi_copyxxx()
24300  *			  directly from the mode argument of ioctl().
24301  *
24302  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24303  *		ENXIO
24304  *		EFAULT
24305  */
24306 
24307 static int
24308 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24309 {
24310 	struct sd_lun		*un;
24311 	mhioc_inresvs_t		inresvs;
24312 	int			rval = 0;
24313 
24314 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24315 		return (ENXIO);
24316 	}
24317 
24318 #ifdef _MULTI_DATAMODEL
24319 
24320 	switch (ddi_model_convert_from(flag & FMODELS)) {
24321 	case DDI_MODEL_ILP32: {
24322 		struct mhioc_inresvs32	inresvs32;
24323 
24324 		if (ddi_copyin(arg, &inresvs32,
24325 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24326 			return (EFAULT);
24327 		}
24328 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24329 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24330 		    &inresvs, flag)) != 0) {
24331 			return (rval);
24332 		}
24333 		inresvs32.generation = inresvs.generation;
24334 		if (ddi_copyout(&inresvs32, arg,
24335 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24336 			return (EFAULT);
24337 		}
24338 		break;
24339 	}
24340 	case DDI_MODEL_NONE:
24341 		if (ddi_copyin(arg, &inresvs,
24342 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24343 			return (EFAULT);
24344 		}
24345 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24346 		    &inresvs, flag)) != 0) {
24347 			return (rval);
24348 		}
24349 		if (ddi_copyout(&inresvs, arg,
24350 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24351 			return (EFAULT);
24352 		}
24353 		break;
24354 	}
24355 
24356 #else /* ! _MULTI_DATAMODEL */
24357 
24358 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24359 		return (EFAULT);
24360 	}
24361 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24362 	if (rval != 0) {
24363 		return (rval);
24364 	}
24365 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24366 		return (EFAULT);
24367 	}
24368 
24369 #endif /* ! _MULTI_DATAMODEL */
24370 
24371 	return (rval);
24372 }
24373 
24374 
24375 /*
24376  * The following routines support the clustering functionality described below
24377  * and implement lost reservation reclaim functionality.
24378  *
24379  * Clustering
24380  * ----------
24381  * The clustering code uses two different, independent forms of SCSI
24382  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24383  * Persistent Group Reservations. For any particular disk, it will use either
24384  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24385  *
24386  * SCSI-2
24387  * The cluster software takes ownership of a multi-hosted disk by issuing the
24388  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24389  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24390  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24391  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24392  * meaning of failfast is that if the driver (on this host) ever encounters the
24393  * scsi error return code RESERVATION_CONFLICT from the device, it should
24394  * immediately panic the host. The motivation for this ioctl is that if this
24395  * host does encounter reservation conflict, the underlying cause is that some
24396  * other host of the cluster has decided that this host is no longer in the
24397  * cluster and has seized control of the disks for itself. Since this host is no
24398  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
24399  * does two things:
24400  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24401  *      error to panic the host
24402  *      (b) it sets up a periodic timer to test whether this host still has
24403  *      "access" (in that no other host has reserved the device):  if the
24404  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24405  *      purpose of that periodic timer is to handle scenarios where the host is
24406  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24407  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24408  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24409  * the device itself.
24410  *
24411  * SCSI-3 PGR
24412  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24413  * facility is supported through the shared multihost disk ioctls
24414  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24415  * MHIOCGRP_PREEMPTANDABORT)
24416  *
24417  * Reservation Reclaim:
24418  * --------------------
24419  * To support the lost reservation reclaim operations this driver creates a
24420  * single thread to handle reinstating reservations on all devices that have
24421  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24422  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24423  * and the reservation reclaim thread loops through the requests to regain the
24424  * lost reservations.
24425  */
24426 
24427 /*
24428  *    Function: sd_check_mhd()
24429  *
24430  * Description: This function sets up and submits a scsi watch request or
24431  *		terminates an existing watch request. This routine is used in
24432  *		support of reservation reclaim.
24433  *
24434  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24435  *			 among multiple watches that share the callback function
24436  *		interval - the number of microseconds specifying the watch
24437  *			   interval for issuing TEST UNIT READY commands. If
24438  *			   set to 0 the watch should be terminated. If the
24439  *			   interval is set to 0 and if the device is required
24440  *			   to hold reservation while disabling failfast, the
24441  *			   watch is restarted with an interval of
24442  *			   reinstate_resv_delay.
24443  *
24444  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24445  *		ENXIO      - Indicates an invalid device was specified
24446  *		EAGAIN     - Unable to submit the scsi watch request
24447  */
24448 
24449 static int
24450 sd_check_mhd(dev_t dev, int interval)
24451 {
24452 	struct sd_lun	*un;
24453 	opaque_t	token;
24454 
24455 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24456 		return (ENXIO);
24457 	}
24458 
24459 	/* is this a watch termination request? */
24460 	if (interval == 0) {
24461 		mutex_enter(SD_MUTEX(un));
24462 		/* if there is an existing watch task then terminate it */
24463 		if (un->un_mhd_token) {
24464 			token = un->un_mhd_token;
24465 			un->un_mhd_token = NULL;
24466 			mutex_exit(SD_MUTEX(un));
24467 			(void) scsi_watch_request_terminate(token,
24468 			    SCSI_WATCH_TERMINATE_WAIT);
24469 			mutex_enter(SD_MUTEX(un));
24470 		} else {
24471 			mutex_exit(SD_MUTEX(un));
24472 			/*
24473 			 * Note: If we return here we don't check for the
24474 			 * failfast case. This is the original legacy
24475 			 * implementation but perhaps we should be checking
24476 			 * the failfast case.
24477 			 */
24478 			return (0);
24479 		}
24480 		/*
24481 		 * If the device is required to hold reservation while
24482 		 * disabling failfast, we need to restart the scsi_watch
24483 		 * routine with an interval of reinstate_resv_delay.
24484 		 */
24485 		if (un->un_resvd_status & SD_RESERVE) {
24486 			interval = sd_reinstate_resv_delay/1000;
24487 		} else {
24488 			/* no failfast so bail */
24489 			mutex_exit(SD_MUTEX(un));
24490 			return (0);
24491 		}
24492 		mutex_exit(SD_MUTEX(un));
24493 	}
24494 
24495 	/*
24496 	 * adjust minimum time interval to 1 second,
24497 	 * and convert from msecs to usecs
24498 	 */
24499 	if (interval > 0 && interval < 1000) {
24500 		interval = 1000;
24501 	}
24502 	interval *= 1000;
24503 
24504 	/*
24505 	 * submit the request to the scsi_watch service
24506 	 */
24507 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24508 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24509 	if (token == NULL) {
24510 		return (EAGAIN);
24511 	}
24512 
24513 	/*
24514 	 * save token for termination later on
24515 	 */
24516 	mutex_enter(SD_MUTEX(un));
24517 	un->un_mhd_token = token;
24518 	mutex_exit(SD_MUTEX(un));
24519 	return (0);
24520 }
24521 
24522 
24523 /*
24524  *    Function: sd_mhd_watch_cb()
24525  *
24526  * Description: This function is the call back function used by the scsi watch
24527  *		facility. The scsi watch facility sends the "Test Unit Ready"
24528  *		and processes the status. If applicable (i.e. a "Unit Attention"
24529  *		status and automatic "Request Sense" not used) the scsi watch
24530  *		facility will send a "Request Sense" and retrieve the sense data
24531  *		to be passed to this callback function. In either case the
24532  *		automatic "Request Sense" or the facility submitting one, this
24533  *		callback is passed the status and sense data.
24534  *
24535  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24536  *			among multiple watches that share this callback function
24537  *		resultp - scsi watch facility result packet containing scsi
24538  *			  packet, status byte and sense data
24539  *
24540  * Return Code: 0 - continue the watch task
24541  *		non-zero - terminate the watch task
24542  */
24543 
24544 static int
24545 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24546 {
24547 	struct sd_lun			*un;
24548 	struct scsi_status		*statusp;
24549 	struct scsi_extended_sense	*sensep;
24550 	struct scsi_pkt			*pkt;
24551 	uchar_t				actual_sense_length;
24552 	dev_t  				dev = (dev_t)arg;
24553 
24554 	ASSERT(resultp != NULL);
24555 	statusp			= resultp->statusp;
24556 	sensep			= resultp->sensep;
24557 	pkt			= resultp->pkt;
24558 	actual_sense_length	= resultp->actual_sense_length;
24559 
24560 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24561 		return (ENXIO);
24562 	}
24563 
24564 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24565 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24566 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24567 
24568 	/* Begin processing of the status and/or sense data */
24569 	if (pkt->pkt_reason != CMD_CMPLT) {
24570 		/* Handle the incomplete packet */
24571 		sd_mhd_watch_incomplete(un, pkt);
24572 		return (0);
24573 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24574 		if (*((unsigned char *)statusp)
24575 		    == STATUS_RESERVATION_CONFLICT) {
24576 			/*
24577 			 * Handle a reservation conflict by panicking if
24578 			 * configured for failfast or by logging the conflict
24579 			 * and updating the reservation status
24580 			 */
24581 			mutex_enter(SD_MUTEX(un));
24582 			if ((un->un_resvd_status & SD_FAILFAST) &&
24583 			    (sd_failfast_enable)) {
24584 				panic("Reservation Conflict");
24585 				/*NOTREACHED*/
24586 			}
24587 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24588 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24589 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24590 			mutex_exit(SD_MUTEX(un));
24591 		}
24592 	}
24593 
24594 	if (sensep != NULL) {
24595 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24596 			mutex_enter(SD_MUTEX(un));
24597 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
24598 			    (un->un_resvd_status & SD_RESERVE)) {
24599 				/*
24600 				 * The additional sense code indicates a power
24601 				 * on or bus device reset has occurred; update
24602 				 * the reservation status.
24603 				 */
24604 				un->un_resvd_status |=
24605 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24606 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24607 				    "sd_mhd_watch_cb: Lost Reservation\n");
24608 			}
24609 		} else {
24610 			return (0);
24611 		}
24612 	} else {
24613 		mutex_enter(SD_MUTEX(un));
24614 	}
24615 
24616 	if ((un->un_resvd_status & SD_RESERVE) &&
24617 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24618 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24619 			/*
24620 			 * A reset occurred in between the last probe and this
24621 			 * one so if a timeout is pending cancel it.
24622 			 */
24623 			if (un->un_resvd_timeid) {
24624 				timeout_id_t temp_id = un->un_resvd_timeid;
24625 				un->un_resvd_timeid = NULL;
24626 				mutex_exit(SD_MUTEX(un));
24627 				(void) untimeout(temp_id);
24628 				mutex_enter(SD_MUTEX(un));
24629 			}
24630 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24631 		}
24632 		if (un->un_resvd_timeid == 0) {
24633 			/* Schedule a timeout to handle the lost reservation */
24634 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24635 			    (void *)dev,
24636 			    drv_usectohz(sd_reinstate_resv_delay));
24637 		}
24638 	}
24639 	mutex_exit(SD_MUTEX(un));
24640 	return (0);
24641 }
24642 
24643 
24644 /*
24645  *    Function: sd_mhd_watch_incomplete()
24646  *
24647  * Description: This function is used to find out why a scsi pkt sent by the
24648  *		scsi watch facility was not completed. Under some scenarios this
24649  *		routine will return. Otherwise it will send a bus reset to see
24650  *		if the drive is still online.
24651  *
24652  *   Arguments: un  - driver soft state (unit) structure
24653  *		pkt - incomplete scsi pkt
24654  */
24655 
24656 static void
24657 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24658 {
24659 	int	be_chatty;
24660 	int	perr;
24661 
24662 	ASSERT(pkt != NULL);
24663 	ASSERT(un != NULL);
24664 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24665 	perr		= (pkt->pkt_statistics & STAT_PERR);
24666 
24667 	mutex_enter(SD_MUTEX(un));
24668 	if (un->un_state == SD_STATE_DUMPING) {
24669 		mutex_exit(SD_MUTEX(un));
24670 		return;
24671 	}
24672 
24673 	switch (pkt->pkt_reason) {
24674 	case CMD_UNX_BUS_FREE:
24675 		/*
24676 		 * If we had a parity error that caused the target to drop BSY*,
24677 		 * don't be chatty about it.
24678 		 */
24679 		if (perr && be_chatty) {
24680 			be_chatty = 0;
24681 		}
24682 		break;
24683 	case CMD_TAG_REJECT:
24684 		/*
24685 		 * The SCSI-2 spec states that a tag reject will be sent by the
24686 		 * target if tagged queuing is not supported. A tag reject may
24687 		 * also be sent during certain initialization periods or to
24688 		 * control internal resources. For the latter case the target
24689 		 * may also return Queue Full.
24690 		 *
24691 		 * If this driver receives a tag reject from a target that is
24692 		 * going through an init period or controlling internal
24693 		 * resources tagged queuing will be disabled. This is a less
24694 		 * than optimal behavior but the driver is unable to determine
24695 		 * the target state and assumes tagged queueing is not supported
24696 		 */
24697 		pkt->pkt_flags = 0;
24698 		un->un_tagflags = 0;
24699 
24700 		if (un->un_f_opt_queueing == TRUE) {
24701 			un->un_throttle = min(un->un_throttle, 3);
24702 		} else {
24703 			un->un_throttle = 1;
24704 		}
24705 		mutex_exit(SD_MUTEX(un));
24706 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
24707 		mutex_enter(SD_MUTEX(un));
24708 		break;
24709 	case CMD_INCOMPLETE:
24710 		/*
24711 		 * The transport stopped with an abnormal state, fallthrough and
24712 		 * reset the target and/or bus unless selection did not complete
24713 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
24714 		 * go through a target/bus reset
24715 		 */
24716 		if (pkt->pkt_state == STATE_GOT_BUS) {
24717 			break;
24718 		}
24719 		/*FALLTHROUGH*/
24720 
24721 	case CMD_TIMEOUT:
24722 	default:
24723 		/*
24724 		 * The lun may still be running the command, so a lun reset
24725 		 * should be attempted. If the lun reset fails or cannot be
24726 		 * issued, than try a target reset. Lastly try a bus reset.
24727 		 */
24728 		if ((pkt->pkt_statistics &
24729 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
24730 			int reset_retval = 0;
24731 			mutex_exit(SD_MUTEX(un));
24732 			if (un->un_f_allow_bus_device_reset == TRUE) {
24733 				if (un->un_f_lun_reset_enabled == TRUE) {
24734 					reset_retval =
24735 					    scsi_reset(SD_ADDRESS(un),
24736 					    RESET_LUN);
24737 				}
24738 				if (reset_retval == 0) {
24739 					reset_retval =
24740 					    scsi_reset(SD_ADDRESS(un),
24741 					    RESET_TARGET);
24742 				}
24743 			}
24744 			if (reset_retval == 0) {
24745 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24746 			}
24747 			mutex_enter(SD_MUTEX(un));
24748 		}
24749 		break;
24750 	}
24751 
24752 	/* A device/bus reset has occurred; update the reservation status. */
24753 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24754 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24755 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24756 			un->un_resvd_status |=
24757 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24758 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24759 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24760 		}
24761 	}
24762 
24763 	/*
24764 	 * The disk has been turned off; Update the device state.
24765 	 *
24766 	 * Note: Should we be offlining the disk here?
24767 	 */
24768 	if (pkt->pkt_state == STATE_GOT_BUS) {
24769 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24770 		    "Disk not responding to selection\n");
24771 		if (un->un_state != SD_STATE_OFFLINE) {
24772 			New_state(un, SD_STATE_OFFLINE);
24773 		}
24774 	} else if (be_chatty) {
24775 		/*
24776 		 * suppress messages if they are all the same pkt reason;
24777 		 * with TQ, many (up to 256) are returned with the same
24778 		 * pkt_reason
24779 		 */
24780 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24781 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24782 			    "sd_mhd_watch_incomplete: "
24783 			    "SCSI transport failed: reason '%s'\n",
24784 			    scsi_rname(pkt->pkt_reason));
24785 		}
24786 	}
24787 	un->un_last_pkt_reason = pkt->pkt_reason;
24788 	mutex_exit(SD_MUTEX(un));
24789 }
24790 
24791 
24792 /*
24793  *    Function: sd_sname()
24794  *
24795  * Description: This is a simple little routine to return a string containing
24796  *		a printable description of command status byte for use in
24797  *		logging.
24798  *
24799  *   Arguments: status - pointer to a status byte
24800  *
24801  * Return Code: char * - string containing status description.
24802  */
24803 
24804 static char *
24805 sd_sname(uchar_t status)
24806 {
24807 	switch (status & STATUS_MASK) {
24808 	case STATUS_GOOD:
24809 		return ("good status");
24810 	case STATUS_CHECK:
24811 		return ("check condition");
24812 	case STATUS_MET:
24813 		return ("condition met");
24814 	case STATUS_BUSY:
24815 		return ("busy");
24816 	case STATUS_INTERMEDIATE:
24817 		return ("intermediate");
24818 	case STATUS_INTERMEDIATE_MET:
24819 		return ("intermediate - condition met");
24820 	case STATUS_RESERVATION_CONFLICT:
24821 		return ("reservation_conflict");
24822 	case STATUS_TERMINATED:
24823 		return ("command terminated");
24824 	case STATUS_QFULL:
24825 		return ("queue full");
24826 	default:
24827 		return ("<unknown status>");
24828 	}
24829 }
24830 
24831 
24832 /*
24833  *    Function: sd_mhd_resvd_recover()
24834  *
24835  * Description: This function adds a reservation entry to the
24836  *		sd_resv_reclaim_request list and signals the reservation
24837  *		reclaim thread that there is work pending. If the reservation
24838  *		reclaim thread has not been previously created this function
24839  *		will kick it off.
24840  *
24841  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24842  *			among multiple watches that share this callback function
24843  *
24844  *     Context: This routine is called by timeout() and is run in interrupt
24845  *		context. It must not sleep or call other functions which may
24846  *		sleep.
24847  */
24848 
24849 static void
24850 sd_mhd_resvd_recover(void *arg)
24851 {
24852 	dev_t			dev = (dev_t)arg;
24853 	struct sd_lun		*un;
24854 	struct sd_thr_request	*sd_treq = NULL;
24855 	struct sd_thr_request	*sd_cur = NULL;
24856 	struct sd_thr_request	*sd_prev = NULL;
24857 	int			already_there = 0;
24858 
24859 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24860 		return;
24861 	}
24862 
24863 	mutex_enter(SD_MUTEX(un));
24864 	un->un_resvd_timeid = NULL;
24865 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24866 		/*
24867 		 * There was a reset so don't issue the reserve, allow the
24868 		 * sd_mhd_watch_cb callback function to notice this and
24869 		 * reschedule the timeout for reservation.
24870 		 */
24871 		mutex_exit(SD_MUTEX(un));
24872 		return;
24873 	}
24874 	mutex_exit(SD_MUTEX(un));
24875 
24876 	/*
24877 	 * Add this device to the sd_resv_reclaim_request list and the
24878 	 * sd_resv_reclaim_thread should take care of the rest.
24879 	 *
24880 	 * Note: We can't sleep in this context so if the memory allocation
24881 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24882 	 * reschedule the timeout for reservation.  (4378460)
24883 	 */
24884 	sd_treq = (struct sd_thr_request *)
24885 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24886 	if (sd_treq == NULL) {
24887 		return;
24888 	}
24889 
24890 	sd_treq->sd_thr_req_next = NULL;
24891 	sd_treq->dev = dev;
24892 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24893 	if (sd_tr.srq_thr_req_head == NULL) {
24894 		sd_tr.srq_thr_req_head = sd_treq;
24895 	} else {
24896 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24897 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24898 			if (sd_cur->dev == dev) {
24899 				/*
24900 				 * already in Queue so don't log
24901 				 * another request for the device
24902 				 */
24903 				already_there = 1;
24904 				break;
24905 			}
24906 			sd_prev = sd_cur;
24907 		}
24908 		if (!already_there) {
24909 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24910 			    "logging request for %lx\n", dev);
24911 			sd_prev->sd_thr_req_next = sd_treq;
24912 		} else {
24913 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24914 		}
24915 	}
24916 
24917 	/*
24918 	 * Create a kernel thread to do the reservation reclaim and free up this
24919 	 * thread. We cannot block this thread while we go away to do the
24920 	 * reservation reclaim
24921 	 */
24922 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24923 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24924 		    sd_resv_reclaim_thread, NULL,
24925 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24926 
24927 	/* Tell the reservation reclaim thread that it has work to do */
24928 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24929 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24930 }
24931 
24932 /*
24933  *    Function: sd_resv_reclaim_thread()
24934  *
24935  * Description: This function implements the reservation reclaim operations
24936  *
24937  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24938  *		      among multiple watches that share this callback function
24939  */
24940 
24941 static void
24942 sd_resv_reclaim_thread()
24943 {
24944 	struct sd_lun		*un;
24945 	struct sd_thr_request	*sd_mhreq;
24946 
24947 	/* Wait for work */
24948 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24949 	if (sd_tr.srq_thr_req_head == NULL) {
24950 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24951 		    &sd_tr.srq_resv_reclaim_mutex);
24952 	}
24953 
24954 	/* Loop while we have work */
24955 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24956 		un = ddi_get_soft_state(sd_state,
24957 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24958 		if (un == NULL) {
24959 			/*
24960 			 * softstate structure is NULL so just
24961 			 * dequeue the request and continue
24962 			 */
24963 			sd_tr.srq_thr_req_head =
24964 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24965 			kmem_free(sd_tr.srq_thr_cur_req,
24966 			    sizeof (struct sd_thr_request));
24967 			continue;
24968 		}
24969 
24970 		/* dequeue the request */
24971 		sd_mhreq = sd_tr.srq_thr_cur_req;
24972 		sd_tr.srq_thr_req_head =
24973 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24974 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24975 
24976 		/*
24977 		 * Reclaim reservation only if SD_RESERVE is still set. There
24978 		 * may have been a call to MHIOCRELEASE before we got here.
24979 		 */
24980 		mutex_enter(SD_MUTEX(un));
24981 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24982 			/*
24983 			 * Note: The SD_LOST_RESERVE flag is cleared before
24984 			 * reclaiming the reservation. If this is done after the
24985 			 * call to sd_reserve_release a reservation loss in the
24986 			 * window between pkt completion of reserve cmd and
24987 			 * mutex_enter below may not be recognized
24988 			 */
24989 			un->un_resvd_status &= ~SD_LOST_RESERVE;
24990 			mutex_exit(SD_MUTEX(un));
24991 
24992 			if (sd_reserve_release(sd_mhreq->dev,
24993 			    SD_RESERVE) == 0) {
24994 				mutex_enter(SD_MUTEX(un));
24995 				un->un_resvd_status |= SD_RESERVE;
24996 				mutex_exit(SD_MUTEX(un));
24997 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24998 				    "sd_resv_reclaim_thread: "
24999 				    "Reservation Recovered\n");
25000 			} else {
25001 				mutex_enter(SD_MUTEX(un));
25002 				un->un_resvd_status |= SD_LOST_RESERVE;
25003 				mutex_exit(SD_MUTEX(un));
25004 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25005 				    "sd_resv_reclaim_thread: Failed "
25006 				    "Reservation Recovery\n");
25007 			}
25008 		} else {
25009 			mutex_exit(SD_MUTEX(un));
25010 		}
25011 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25012 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25013 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25014 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25015 		/*
25016 		 * wakeup the destroy thread if anyone is waiting on
25017 		 * us to complete.
25018 		 */
25019 		cv_signal(&sd_tr.srq_inprocess_cv);
25020 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25021 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25022 	}
25023 
25024 	/*
25025 	 * cleanup the sd_tr structure now that this thread will not exist
25026 	 */
25027 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25028 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25029 	sd_tr.srq_resv_reclaim_thread = NULL;
25030 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25031 	thread_exit();
25032 }
25033 
25034 
25035 /*
25036  *    Function: sd_rmv_resv_reclaim_req()
25037  *
25038  * Description: This function removes any pending reservation reclaim requests
25039  *		for the specified device.
25040  *
25041  *   Arguments: dev - the device 'dev_t'
25042  */
25043 
25044 static void
25045 sd_rmv_resv_reclaim_req(dev_t dev)
25046 {
25047 	struct sd_thr_request *sd_mhreq;
25048 	struct sd_thr_request *sd_prev;
25049 
25050 	/* Remove a reservation reclaim request from the list */
25051 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25052 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25053 		/*
25054 		 * We are attempting to reinstate reservation for
25055 		 * this device. We wait for sd_reserve_release()
25056 		 * to return before we return.
25057 		 */
25058 		cv_wait(&sd_tr.srq_inprocess_cv,
25059 		    &sd_tr.srq_resv_reclaim_mutex);
25060 	} else {
25061 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25062 		if (sd_mhreq && sd_mhreq->dev == dev) {
25063 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25064 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25065 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25066 			return;
25067 		}
25068 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25069 			if (sd_mhreq && sd_mhreq->dev == dev) {
25070 				break;
25071 			}
25072 			sd_prev = sd_mhreq;
25073 		}
25074 		if (sd_mhreq != NULL) {
25075 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25076 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25077 		}
25078 	}
25079 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25080 }
25081 
25082 
25083 /*
25084  *    Function: sd_mhd_reset_notify_cb()
25085  *
25086  * Description: This is a call back function for scsi_reset_notify. This
25087  *		function updates the softstate reserved status and logs the
25088  *		reset. The driver scsi watch facility callback function
25089  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25090  *		will reclaim the reservation.
25091  *
25092  *   Arguments: arg  - driver soft state (unit) structure
25093  */
25094 
25095 static void
25096 sd_mhd_reset_notify_cb(caddr_t arg)
25097 {
25098 	struct sd_lun *un = (struct sd_lun *)arg;
25099 
25100 	mutex_enter(SD_MUTEX(un));
25101 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25102 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25103 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25104 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25105 	}
25106 	mutex_exit(SD_MUTEX(un));
25107 }
25108 
25109 
25110 /*
25111  *    Function: sd_take_ownership()
25112  *
25113  * Description: This routine implements an algorithm to achieve a stable
25114  *		reservation on disks which don't implement priority reserve,
25115  *		and makes sure that other host lose re-reservation attempts.
25116  *		This algorithm contains of a loop that keeps issuing the RESERVE
25117  *		for some period of time (min_ownership_delay, default 6 seconds)
25118  *		During that loop, it looks to see if there has been a bus device
25119  *		reset or bus reset (both of which cause an existing reservation
25120  *		to be lost). If the reservation is lost issue RESERVE until a
25121  *		period of min_ownership_delay with no resets has gone by, or
25122  *		until max_ownership_delay has expired. This loop ensures that
25123  *		the host really did manage to reserve the device, in spite of
25124  *		resets. The looping for min_ownership_delay (default six
25125  *		seconds) is important to early generation clustering products,
25126  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25127  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25128  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25129  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25130  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25131  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25132  *		no longer "owns" the disk and will have panicked itself.  Thus,
25133  *		the host issuing the MHIOCTKOWN is assured (with timing
25134  *		dependencies) that by the time it actually starts to use the
25135  *		disk for real work, the old owner is no longer accessing it.
25136  *
25137  *		min_ownership_delay is the minimum amount of time for which the
25138  *		disk must be reserved continuously devoid of resets before the
25139  *		MHIOCTKOWN ioctl will return success.
25140  *
25141  *		max_ownership_delay indicates the amount of time by which the
25142  *		take ownership should succeed or timeout with an error.
25143  *
25144  *   Arguments: dev - the device 'dev_t'
25145  *		*p  - struct containing timing info.
25146  *
25147  * Return Code: 0 for success or error code
25148  */
25149 
25150 static int
25151 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25152 {
25153 	struct sd_lun	*un;
25154 	int		rval;
25155 	int		err;
25156 	int		reservation_count   = 0;
25157 	int		min_ownership_delay =  6000000; /* in usec */
25158 	int		max_ownership_delay = 30000000; /* in usec */
25159 	clock_t		start_time;	/* starting time of this algorithm */
25160 	clock_t		end_time;	/* time limit for giving up */
25161 	clock_t		ownership_time;	/* time limit for stable ownership */
25162 	clock_t		current_time;
25163 	clock_t		previous_current_time;
25164 
25165 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25166 		return (ENXIO);
25167 	}
25168 
25169 	/*
25170 	 * Attempt a device reservation. A priority reservation is requested.
25171 	 */
25172 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25173 	    != SD_SUCCESS) {
25174 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25175 		    "sd_take_ownership: return(1)=%d\n", rval);
25176 		return (rval);
25177 	}
25178 
25179 	/* Update the softstate reserved status to indicate the reservation */
25180 	mutex_enter(SD_MUTEX(un));
25181 	un->un_resvd_status |= SD_RESERVE;
25182 	un->un_resvd_status &=
25183 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25184 	mutex_exit(SD_MUTEX(un));
25185 
25186 	if (p != NULL) {
25187 		if (p->min_ownership_delay != 0) {
25188 			min_ownership_delay = p->min_ownership_delay * 1000;
25189 		}
25190 		if (p->max_ownership_delay != 0) {
25191 			max_ownership_delay = p->max_ownership_delay * 1000;
25192 		}
25193 	}
25194 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25195 	    "sd_take_ownership: min, max delays: %d, %d\n",
25196 	    min_ownership_delay, max_ownership_delay);
25197 
25198 	start_time = ddi_get_lbolt();
25199 	current_time	= start_time;
25200 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25201 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25202 
25203 	while (current_time - end_time < 0) {
25204 		delay(drv_usectohz(500000));
25205 
25206 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25207 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25208 				mutex_enter(SD_MUTEX(un));
25209 				rval = (un->un_resvd_status &
25210 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25211 				mutex_exit(SD_MUTEX(un));
25212 				break;
25213 			}
25214 		}
25215 		previous_current_time = current_time;
25216 		current_time = ddi_get_lbolt();
25217 		mutex_enter(SD_MUTEX(un));
25218 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25219 			ownership_time = ddi_get_lbolt() +
25220 			    drv_usectohz(min_ownership_delay);
25221 			reservation_count = 0;
25222 		} else {
25223 			reservation_count++;
25224 		}
25225 		un->un_resvd_status |= SD_RESERVE;
25226 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25227 		mutex_exit(SD_MUTEX(un));
25228 
25229 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25230 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25231 		    "reservation=%s\n", (current_time - previous_current_time),
25232 		    reservation_count ? "ok" : "reclaimed");
25233 
25234 		if (current_time - ownership_time >= 0 &&
25235 		    reservation_count >= 4) {
25236 			rval = 0; /* Achieved a stable ownership */
25237 			break;
25238 		}
25239 		if (current_time - end_time >= 0) {
25240 			rval = EACCES; /* No ownership in max possible time */
25241 			break;
25242 		}
25243 	}
25244 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25245 	    "sd_take_ownership: return(2)=%d\n", rval);
25246 	return (rval);
25247 }
25248 
25249 
25250 /*
25251  *    Function: sd_reserve_release()
25252  *
25253  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25254  *		PRIORITY RESERVE commands based on a user specified command type
25255  *
25256  *   Arguments: dev - the device 'dev_t'
25257  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25258  *		      SD_RESERVE, SD_RELEASE
25259  *
25260  * Return Code: 0 or Error Code
25261  */
25262 
25263 static int
25264 sd_reserve_release(dev_t dev, int cmd)
25265 {
25266 	struct uscsi_cmd	*com = NULL;
25267 	struct sd_lun		*un = NULL;
25268 	char			cdb[CDB_GROUP0];
25269 	int			rval;
25270 
25271 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25272 	    (cmd == SD_PRIORITY_RESERVE));
25273 
25274 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25275 		return (ENXIO);
25276 	}
25277 
25278 	/* instantiate and initialize the command and cdb */
25279 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25280 	bzero(cdb, CDB_GROUP0);
25281 	com->uscsi_flags   = USCSI_SILENT;
25282 	com->uscsi_timeout = un->un_reserve_release_time;
25283 	com->uscsi_cdblen  = CDB_GROUP0;
25284 	com->uscsi_cdb	   = cdb;
25285 	if (cmd == SD_RELEASE) {
25286 		cdb[0] = SCMD_RELEASE;
25287 	} else {
25288 		cdb[0] = SCMD_RESERVE;
25289 	}
25290 
25291 	/* Send the command. */
25292 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25293 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25294 
25295 	/*
25296 	 * "break" a reservation that is held by another host, by issuing a
25297 	 * reset if priority reserve is desired, and we could not get the
25298 	 * device.
25299 	 */
25300 	if ((cmd == SD_PRIORITY_RESERVE) &&
25301 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25302 		/*
25303 		 * First try to reset the LUN. If we cannot, then try a target
25304 		 * reset, followed by a bus reset if the target reset fails.
25305 		 */
25306 		int reset_retval = 0;
25307 		if (un->un_f_lun_reset_enabled == TRUE) {
25308 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25309 		}
25310 		if (reset_retval == 0) {
25311 			/* The LUN reset either failed or was not issued */
25312 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25313 		}
25314 		if ((reset_retval == 0) &&
25315 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25316 			rval = EIO;
25317 			kmem_free(com, sizeof (*com));
25318 			return (rval);
25319 		}
25320 
25321 		bzero(com, sizeof (struct uscsi_cmd));
25322 		com->uscsi_flags   = USCSI_SILENT;
25323 		com->uscsi_cdb	   = cdb;
25324 		com->uscsi_cdblen  = CDB_GROUP0;
25325 		com->uscsi_timeout = 5;
25326 
25327 		/*
25328 		 * Reissue the last reserve command, this time without request
25329 		 * sense.  Assume that it is just a regular reserve command.
25330 		 */
25331 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25332 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25333 	}
25334 
25335 	/* Return an error if still getting a reservation conflict. */
25336 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25337 		rval = EACCES;
25338 	}
25339 
25340 	kmem_free(com, sizeof (*com));
25341 	return (rval);
25342 }
25343 
25344 
25345 #define	SD_NDUMP_RETRIES	12
25346 /*
25347  *	System Crash Dump routine
25348  */
25349 
25350 static int
25351 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25352 {
25353 	int		instance;
25354 	int		partition;
25355 	int		i;
25356 	int		err;
25357 	struct sd_lun	*un;
25358 	struct dk_map	*lp;
25359 	struct scsi_pkt *wr_pktp;
25360 	struct buf	*wr_bp;
25361 	struct buf	wr_buf;
25362 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25363 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25364 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25365 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25366 	size_t		io_start_offset;
25367 	int		doing_rmw = FALSE;
25368 	int		rval;
25369 #if defined(__i386) || defined(__amd64)
25370 	ssize_t dma_resid;
25371 	daddr_t oblkno;
25372 #endif
25373 
25374 	instance = SDUNIT(dev);
25375 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25376 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25377 		return (ENXIO);
25378 	}
25379 
25380 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25381 
25382 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25383 
25384 	partition = SDPART(dev);
25385 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25386 
25387 	/* Validate blocks to dump at against partition size. */
25388 	lp = &un->un_map[partition];
25389 	if ((blkno + nblk) > lp->dkl_nblk) {
25390 		SD_TRACE(SD_LOG_DUMP, un,
25391 		    "sddump: dump range larger than partition: "
25392 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25393 		    blkno, nblk, lp->dkl_nblk);
25394 		return (EINVAL);
25395 	}
25396 
25397 	mutex_enter(&un->un_pm_mutex);
25398 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25399 		struct scsi_pkt *start_pktp;
25400 
25401 		mutex_exit(&un->un_pm_mutex);
25402 
25403 		/*
25404 		 * use pm framework to power on HBA 1st
25405 		 */
25406 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
25407 
25408 		/*
25409 		 * Dump no long uses sdpower to power on a device, it's
25410 		 * in-line here so it can be done in polled mode.
25411 		 */
25412 
25413 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25414 
25415 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25416 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25417 
25418 		if (start_pktp == NULL) {
25419 			/* We were not given a SCSI packet, fail. */
25420 			return (EIO);
25421 		}
25422 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25423 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25424 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25425 		start_pktp->pkt_flags = FLAG_NOINTR;
25426 
25427 		mutex_enter(SD_MUTEX(un));
25428 		SD_FILL_SCSI1_LUN(un, start_pktp);
25429 		mutex_exit(SD_MUTEX(un));
25430 		/*
25431 		 * Scsi_poll returns 0 (success) if the command completes and
25432 		 * the status block is STATUS_GOOD.
25433 		 */
25434 		if (sd_scsi_poll(un, start_pktp) != 0) {
25435 			scsi_destroy_pkt(start_pktp);
25436 			return (EIO);
25437 		}
25438 		scsi_destroy_pkt(start_pktp);
25439 		(void) sd_ddi_pm_resume(un);
25440 	} else {
25441 		mutex_exit(&un->un_pm_mutex);
25442 	}
25443 
25444 	mutex_enter(SD_MUTEX(un));
25445 	un->un_throttle = 0;
25446 
25447 	/*
25448 	 * The first time through, reset the specific target device.
25449 	 * However, when cpr calls sddump we know that sd is in a
25450 	 * a good state so no bus reset is required.
25451 	 * Clear sense data via Request Sense cmd.
25452 	 * In sddump we don't care about allow_bus_device_reset anymore
25453 	 */
25454 
25455 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25456 	    (un->un_state != SD_STATE_DUMPING)) {
25457 
25458 		New_state(un, SD_STATE_DUMPING);
25459 
25460 		if (un->un_f_is_fibre == FALSE) {
25461 			mutex_exit(SD_MUTEX(un));
25462 			/*
25463 			 * Attempt a bus reset for parallel scsi.
25464 			 *
25465 			 * Note: A bus reset is required because on some host
25466 			 * systems (i.e. E420R) a bus device reset is
25467 			 * insufficient to reset the state of the target.
25468 			 *
25469 			 * Note: Don't issue the reset for fibre-channel,
25470 			 * because this tends to hang the bus (loop) for
25471 			 * too long while everyone is logging out and in
25472 			 * and the deadman timer for dumping will fire
25473 			 * before the dump is complete.
25474 			 */
25475 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25476 				mutex_enter(SD_MUTEX(un));
25477 				Restore_state(un);
25478 				mutex_exit(SD_MUTEX(un));
25479 				return (EIO);
25480 			}
25481 
25482 			/* Delay to give the device some recovery time. */
25483 			drv_usecwait(10000);
25484 
25485 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25486 				SD_INFO(SD_LOG_DUMP, un,
25487 					"sddump: sd_send_polled_RQS failed\n");
25488 			}
25489 			mutex_enter(SD_MUTEX(un));
25490 		}
25491 	}
25492 
25493 	/*
25494 	 * Convert the partition-relative block number to a
25495 	 * disk physical block number.
25496 	 */
25497 	blkno += un->un_offset[partition];
25498 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25499 
25500 
25501 	/*
25502 	 * Check if the device has a non-512 block size.
25503 	 */
25504 	wr_bp = NULL;
25505 	if (NOT_DEVBSIZE(un)) {
25506 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25507 		tgt_byte_count = nblk * un->un_sys_blocksize;
25508 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25509 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25510 			doing_rmw = TRUE;
25511 			/*
25512 			 * Calculate the block number and number of block
25513 			 * in terms of the media block size.
25514 			 */
25515 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25516 			tgt_nblk =
25517 			    ((tgt_byte_offset + tgt_byte_count +
25518 				(un->un_tgt_blocksize - 1)) /
25519 				un->un_tgt_blocksize) - tgt_blkno;
25520 
25521 			/*
25522 			 * Invoke the routine which is going to do read part
25523 			 * of read-modify-write.
25524 			 * Note that this routine returns a pointer to
25525 			 * a valid bp in wr_bp.
25526 			 */
25527 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25528 			    &wr_bp);
25529 			if (err) {
25530 				mutex_exit(SD_MUTEX(un));
25531 				return (err);
25532 			}
25533 			/*
25534 			 * Offset is being calculated as -
25535 			 * (original block # * system block size) -
25536 			 * (new block # * target block size)
25537 			 */
25538 			io_start_offset =
25539 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25540 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25541 
25542 			ASSERT((io_start_offset >= 0) &&
25543 			    (io_start_offset < un->un_tgt_blocksize));
25544 			/*
25545 			 * Do the modify portion of read modify write.
25546 			 */
25547 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25548 			    (size_t)nblk * un->un_sys_blocksize);
25549 		} else {
25550 			doing_rmw = FALSE;
25551 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25552 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25553 		}
25554 
25555 		/* Convert blkno and nblk to target blocks */
25556 		blkno = tgt_blkno;
25557 		nblk = tgt_nblk;
25558 	} else {
25559 		wr_bp = &wr_buf;
25560 		bzero(wr_bp, sizeof (struct buf));
25561 		wr_bp->b_flags		= B_BUSY;
25562 		wr_bp->b_un.b_addr	= addr;
25563 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25564 		wr_bp->b_resid		= 0;
25565 	}
25566 
25567 	mutex_exit(SD_MUTEX(un));
25568 
25569 	/*
25570 	 * Obtain a SCSI packet for the write command.
25571 	 * It should be safe to call the allocator here without
25572 	 * worrying about being locked for DVMA mapping because
25573 	 * the address we're passed is already a DVMA mapping
25574 	 *
25575 	 * We are also not going to worry about semaphore ownership
25576 	 * in the dump buffer. Dumping is single threaded at present.
25577 	 */
25578 
25579 	wr_pktp = NULL;
25580 
25581 #if defined(__i386) || defined(__amd64)
25582 	dma_resid = wr_bp->b_bcount;
25583 	oblkno = blkno;
25584 	while (dma_resid != 0) {
25585 #endif
25586 
25587 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25588 		wr_bp->b_flags &= ~B_ERROR;
25589 
25590 #if defined(__i386) || defined(__amd64)
25591 		blkno = oblkno +
25592 			((wr_bp->b_bcount - dma_resid) /
25593 			    un->un_tgt_blocksize);
25594 		nblk = dma_resid / un->un_tgt_blocksize;
25595 
25596 		if (wr_pktp) {
25597 			/* Partial DMA transfers after initial transfer */
25598 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25599 			    blkno, nblk);
25600 		} else {
25601 			/* Initial transfer */
25602 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25603 			    un->un_pkt_flags, NULL_FUNC, NULL,
25604 			    blkno, nblk);
25605 		}
25606 #else
25607 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25608 		    0, NULL_FUNC, NULL, blkno, nblk);
25609 #endif
25610 
25611 		if (rval == 0) {
25612 			/* We were given a SCSI packet, continue. */
25613 			break;
25614 		}
25615 
25616 		if (i == 0) {
25617 			if (wr_bp->b_flags & B_ERROR) {
25618 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25619 				    "no resources for dumping; "
25620 				    "error code: 0x%x, retrying",
25621 				    geterror(wr_bp));
25622 			} else {
25623 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25624 				    "no resources for dumping; retrying");
25625 			}
25626 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25627 			if (wr_bp->b_flags & B_ERROR) {
25628 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25629 				    "no resources for dumping; error code: "
25630 				    "0x%x, retrying\n", geterror(wr_bp));
25631 			}
25632 		} else {
25633 			if (wr_bp->b_flags & B_ERROR) {
25634 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25635 				    "no resources for dumping; "
25636 				    "error code: 0x%x, retries failed, "
25637 				    "giving up.\n", geterror(wr_bp));
25638 			} else {
25639 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25640 				    "no resources for dumping; "
25641 				    "retries failed, giving up.\n");
25642 			}
25643 			mutex_enter(SD_MUTEX(un));
25644 			Restore_state(un);
25645 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
25646 				mutex_exit(SD_MUTEX(un));
25647 				scsi_free_consistent_buf(wr_bp);
25648 			} else {
25649 				mutex_exit(SD_MUTEX(un));
25650 			}
25651 			return (EIO);
25652 		}
25653 		drv_usecwait(10000);
25654 	}
25655 
25656 #if defined(__i386) || defined(__amd64)
25657 	/*
25658 	 * save the resid from PARTIAL_DMA
25659 	 */
25660 	dma_resid = wr_pktp->pkt_resid;
25661 	if (dma_resid != 0)
25662 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
25663 	wr_pktp->pkt_resid = 0;
25664 #endif
25665 
25666 	/* SunBug 1222170 */
25667 	wr_pktp->pkt_flags = FLAG_NOINTR;
25668 
25669 	err = EIO;
25670 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25671 
25672 		/*
25673 		 * Scsi_poll returns 0 (success) if the command completes and
25674 		 * the status block is STATUS_GOOD.  We should only check
25675 		 * errors if this condition is not true.  Even then we should
25676 		 * send our own request sense packet only if we have a check
25677 		 * condition and auto request sense has not been performed by
25678 		 * the hba.
25679 		 */
25680 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
25681 
25682 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
25683 		    (wr_pktp->pkt_resid == 0)) {
25684 			err = SD_SUCCESS;
25685 			break;
25686 		}
25687 
25688 		/*
25689 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
25690 		 */
25691 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
25692 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25693 			    "Device is gone\n");
25694 			break;
25695 		}
25696 
25697 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
25698 			SD_INFO(SD_LOG_DUMP, un,
25699 			    "sddump: write failed with CHECK, try # %d\n", i);
25700 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
25701 				(void) sd_send_polled_RQS(un);
25702 			}
25703 
25704 			continue;
25705 		}
25706 
25707 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
25708 			int reset_retval = 0;
25709 
25710 			SD_INFO(SD_LOG_DUMP, un,
25711 			    "sddump: write failed with BUSY, try # %d\n", i);
25712 
25713 			if (un->un_f_lun_reset_enabled == TRUE) {
25714 				reset_retval = scsi_reset(SD_ADDRESS(un),
25715 				    RESET_LUN);
25716 			}
25717 			if (reset_retval == 0) {
25718 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25719 			}
25720 			(void) sd_send_polled_RQS(un);
25721 
25722 		} else {
25723 			SD_INFO(SD_LOG_DUMP, un,
25724 			    "sddump: write failed with 0x%x, try # %d\n",
25725 			    SD_GET_PKT_STATUS(wr_pktp), i);
25726 			mutex_enter(SD_MUTEX(un));
25727 			sd_reset_target(un, wr_pktp);
25728 			mutex_exit(SD_MUTEX(un));
25729 		}
25730 
25731 		/*
25732 		 * If we are not getting anywhere with lun/target resets,
25733 		 * let's reset the bus.
25734 		 */
25735 		if (i == SD_NDUMP_RETRIES/2) {
25736 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25737 			(void) sd_send_polled_RQS(un);
25738 		}
25739 
25740 	}
25741 #if defined(__i386) || defined(__amd64)
25742 	}	/* dma_resid */
25743 #endif
25744 
25745 	scsi_destroy_pkt(wr_pktp);
25746 	mutex_enter(SD_MUTEX(un));
25747 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25748 		mutex_exit(SD_MUTEX(un));
25749 		scsi_free_consistent_buf(wr_bp);
25750 	} else {
25751 		mutex_exit(SD_MUTEX(un));
25752 	}
25753 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25754 	return (err);
25755 }
25756 
25757 /*
25758  *    Function: sd_scsi_poll()
25759  *
25760  * Description: This is a wrapper for the scsi_poll call.
25761  *
25762  *   Arguments: sd_lun - The unit structure
25763  *              scsi_pkt - The scsi packet being sent to the device.
25764  *
25765  * Return Code: 0 - Command completed successfully with good status
25766  *             -1 - Command failed.  This could indicate a check condition
25767  *                  or other status value requiring recovery action.
25768  *
25769  */
25770 
25771 static int
25772 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25773 {
25774 	int status;
25775 
25776 	ASSERT(un != NULL);
25777 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25778 	ASSERT(pktp != NULL);
25779 
25780 	status = SD_SUCCESS;
25781 
25782 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25783 		pktp->pkt_flags |= un->un_tagflags;
25784 		pktp->pkt_flags &= ~FLAG_NODISCON;
25785 	}
25786 
25787 	status = sd_ddi_scsi_poll(pktp);
25788 	/*
25789 	 * Scsi_poll returns 0 (success) if the command completes and the
25790 	 * status block is STATUS_GOOD.  We should only check errors if this
25791 	 * condition is not true.  Even then we should send our own request
25792 	 * sense packet only if we have a check condition and auto
25793 	 * request sense has not been performed by the hba.
25794 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25795 	 */
25796 	if ((status != SD_SUCCESS) &&
25797 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25798 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25799 	    (pktp->pkt_reason != CMD_DEV_GONE))
25800 		(void) sd_send_polled_RQS(un);
25801 
25802 	return (status);
25803 }
25804 
25805 /*
25806  *    Function: sd_send_polled_RQS()
25807  *
25808  * Description: This sends the request sense command to a device.
25809  *
25810  *   Arguments: sd_lun - The unit structure
25811  *
25812  * Return Code: 0 - Command completed successfully with good status
25813  *             -1 - Command failed.
25814  *
25815  */
25816 
25817 static int
25818 sd_send_polled_RQS(struct sd_lun *un)
25819 {
25820 	int	ret_val;
25821 	struct	scsi_pkt	*rqs_pktp;
25822 	struct	buf		*rqs_bp;
25823 
25824 	ASSERT(un != NULL);
25825 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25826 
25827 	ret_val = SD_SUCCESS;
25828 
25829 	rqs_pktp = un->un_rqs_pktp;
25830 	rqs_bp	 = un->un_rqs_bp;
25831 
25832 	mutex_enter(SD_MUTEX(un));
25833 
25834 	if (un->un_sense_isbusy) {
25835 		ret_val = SD_FAILURE;
25836 		mutex_exit(SD_MUTEX(un));
25837 		return (ret_val);
25838 	}
25839 
25840 	/*
25841 	 * If the request sense buffer (and packet) is not in use,
25842 	 * let's set the un_sense_isbusy and send our packet
25843 	 */
25844 	un->un_sense_isbusy 	= 1;
25845 	rqs_pktp->pkt_resid  	= 0;
25846 	rqs_pktp->pkt_reason 	= 0;
25847 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25848 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25849 
25850 	mutex_exit(SD_MUTEX(un));
25851 
25852 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25853 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25854 
25855 	/*
25856 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25857 	 * axle - it has a call into us!
25858 	 */
25859 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25860 		SD_INFO(SD_LOG_COMMON, un,
25861 		    "sd_send_polled_RQS: RQS failed\n");
25862 	}
25863 
25864 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25865 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25866 
25867 	mutex_enter(SD_MUTEX(un));
25868 	un->un_sense_isbusy = 0;
25869 	mutex_exit(SD_MUTEX(un));
25870 
25871 	return (ret_val);
25872 }
25873 
25874 /*
25875  * Defines needed for localized version of the scsi_poll routine.
25876  */
25877 #define	SD_CSEC		10000			/* usecs */
25878 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
25879 
25880 
25881 /*
25882  *    Function: sd_ddi_scsi_poll()
25883  *
25884  * Description: Localized version of the scsi_poll routine.  The purpose is to
25885  *		send a scsi_pkt to a device as a polled command.  This version
25886  *		is to ensure more robust handling of transport errors.
25887  *		Specifically this routine cures not ready, coming ready
25888  *		transition for power up and reset of sonoma's.  This can take
25889  *		up to 45 seconds for power-on and 20 seconds for reset of a
25890  * 		sonoma lun.
25891  *
25892  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25893  *
25894  * Return Code: 0 - Command completed successfully with good status
25895  *             -1 - Command failed.
25896  *
25897  */
25898 
25899 static int
25900 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25901 {
25902 	int busy_count;
25903 	int timeout;
25904 	int rval = SD_FAILURE;
25905 	int savef;
25906 	struct scsi_extended_sense *sensep;
25907 	long savet;
25908 	void (*savec)();
25909 	/*
25910 	 * The following is defined in machdep.c and is used in determining if
25911 	 * the scsi transport system will do polled I/O instead of interrupt
25912 	 * I/O when called from xx_dump().
25913 	 */
25914 	extern int do_polled_io;
25915 
25916 	/*
25917 	 * save old flags in pkt, to restore at end
25918 	 */
25919 	savef = pkt->pkt_flags;
25920 	savec = pkt->pkt_comp;
25921 	savet = pkt->pkt_time;
25922 
25923 	pkt->pkt_flags |= FLAG_NOINTR;
25924 
25925 	/*
25926 	 * XXX there is nothing in the SCSA spec that states that we should not
25927 	 * do a callback for polled cmds; however, removing this will break sd
25928 	 * and probably other target drivers
25929 	 */
25930 	pkt->pkt_comp = NULL;
25931 
25932 	/*
25933 	 * we don't like a polled command without timeout.
25934 	 * 60 seconds seems long enough.
25935 	 */
25936 	if (pkt->pkt_time == 0) {
25937 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25938 	}
25939 
25940 	/*
25941 	 * Send polled cmd.
25942 	 *
25943 	 * We do some error recovery for various errors.  Tran_busy,
25944 	 * queue full, and non-dispatched commands are retried every 10 msec.
25945 	 * as they are typically transient failures.  Busy status and Not
25946 	 * Ready are retried every second as this status takes a while to
25947 	 * change.  Unit attention is retried for pkt_time (60) times
25948 	 * with no delay.
25949 	 */
25950 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
25951 
25952 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25953 		int rc;
25954 		int poll_delay;
25955 
25956 		/*
25957 		 * Initialize pkt status variables.
25958 		 */
25959 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25960 
25961 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25962 			if (rc != TRAN_BUSY) {
25963 				/* Transport failed - give up. */
25964 				break;
25965 			} else {
25966 				/* Transport busy - try again. */
25967 				poll_delay = 1 * SD_CSEC; /* 10 msec */
25968 			}
25969 		} else {
25970 			/*
25971 			 * Transport accepted - check pkt status.
25972 			 */
25973 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
25974 			if (pkt->pkt_reason == CMD_CMPLT &&
25975 			    rc == STATUS_CHECK &&
25976 			    pkt->pkt_state & STATE_ARQ_DONE) {
25977 				struct scsi_arq_status *arqstat =
25978 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
25979 
25980 				sensep = &arqstat->sts_sensedata;
25981 			} else {
25982 				sensep = NULL;
25983 			}
25984 
25985 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25986 			    (rc == STATUS_GOOD)) {
25987 				/* No error - we're done */
25988 				rval = SD_SUCCESS;
25989 				break;
25990 
25991 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
25992 				/* Lost connection - give up */
25993 				break;
25994 
25995 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
25996 			    (pkt->pkt_state == 0)) {
25997 				/* Pkt not dispatched - try again. */
25998 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
25999 
26000 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26001 			    (rc == STATUS_QFULL)) {
26002 				/* Queue full - try again. */
26003 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26004 
26005 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26006 			    (rc == STATUS_BUSY)) {
26007 				/* Busy - try again. */
26008 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26009 				busy_count += (SD_SEC_TO_CSEC - 1);
26010 
26011 			} else if ((sensep != NULL) &&
26012 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26013 				/* Unit Attention - try again */
26014 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26015 				continue;
26016 
26017 			} else if ((sensep != NULL) &&
26018 			    (sensep->es_key == KEY_NOT_READY) &&
26019 			    (sensep->es_add_code == 0x04) &&
26020 			    (sensep->es_qual_code == 0x01)) {
26021 				/* Not ready -> ready - try again. */
26022 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26023 				busy_count += (SD_SEC_TO_CSEC - 1);
26024 
26025 			} else {
26026 				/* BAD status - give up. */
26027 				break;
26028 			}
26029 		}
26030 
26031 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26032 		    !do_polled_io) {
26033 			delay(drv_usectohz(poll_delay));
26034 		} else {
26035 			/* we busy wait during cpr_dump or interrupt threads */
26036 			drv_usecwait(poll_delay);
26037 		}
26038 	}
26039 
26040 	pkt->pkt_flags = savef;
26041 	pkt->pkt_comp = savec;
26042 	pkt->pkt_time = savet;
26043 	return (rval);
26044 }
26045 
26046 
26047 /*
26048  *    Function: sd_persistent_reservation_in_read_keys
26049  *
26050  * Description: This routine is the driver entry point for handling CD-ROM
26051  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26052  *		by sending the SCSI-3 PRIN commands to the device.
26053  *		Processes the read keys command response by copying the
26054  *		reservation key information into the user provided buffer.
26055  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26056  *
26057  *   Arguments: un   -  Pointer to soft state struct for the target.
26058  *		usrp -	user provided pointer to multihost Persistent In Read
26059  *			Keys structure (mhioc_inkeys_t)
26060  *		flag -	this argument is a pass through to ddi_copyxxx()
26061  *			directly from the mode argument of ioctl().
26062  *
26063  * Return Code: 0   - Success
26064  *		EACCES
26065  *		ENOTSUP
26066  *		errno return code from sd_send_scsi_cmd()
26067  *
26068  *     Context: Can sleep. Does not return until command is completed.
26069  */
26070 
26071 static int
26072 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26073     mhioc_inkeys_t *usrp, int flag)
26074 {
26075 #ifdef _MULTI_DATAMODEL
26076 	struct mhioc_key_list32	li32;
26077 #endif
26078 	sd_prin_readkeys_t	*in;
26079 	mhioc_inkeys_t		*ptr;
26080 	mhioc_key_list_t	li;
26081 	uchar_t			*data_bufp;
26082 	int 			data_len;
26083 	int			rval;
26084 	size_t			copysz;
26085 
26086 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26087 		return (EINVAL);
26088 	}
26089 	bzero(&li, sizeof (mhioc_key_list_t));
26090 
26091 	/*
26092 	 * Get the listsize from user
26093 	 */
26094 #ifdef _MULTI_DATAMODEL
26095 
26096 	switch (ddi_model_convert_from(flag & FMODELS)) {
26097 	case DDI_MODEL_ILP32:
26098 		copysz = sizeof (struct mhioc_key_list32);
26099 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26100 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26101 			    "sd_persistent_reservation_in_read_keys: "
26102 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26103 			rval = EFAULT;
26104 			goto done;
26105 		}
26106 		li.listsize = li32.listsize;
26107 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26108 		break;
26109 
26110 	case DDI_MODEL_NONE:
26111 		copysz = sizeof (mhioc_key_list_t);
26112 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26113 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26114 			    "sd_persistent_reservation_in_read_keys: "
26115 			    "failed ddi_copyin: mhioc_key_list_t\n");
26116 			rval = EFAULT;
26117 			goto done;
26118 		}
26119 		break;
26120 	}
26121 
26122 #else /* ! _MULTI_DATAMODEL */
26123 	copysz = sizeof (mhioc_key_list_t);
26124 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26125 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26126 		    "sd_persistent_reservation_in_read_keys: "
26127 		    "failed ddi_copyin: mhioc_key_list_t\n");
26128 		rval = EFAULT;
26129 		goto done;
26130 	}
26131 #endif
26132 
26133 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26134 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26135 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26136 
26137 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26138 	    data_len, data_bufp)) != 0) {
26139 		goto done;
26140 	}
26141 	in = (sd_prin_readkeys_t *)data_bufp;
26142 	ptr->generation = BE_32(in->generation);
26143 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26144 
26145 	/*
26146 	 * Return the min(listsize, listlen) keys
26147 	 */
26148 #ifdef _MULTI_DATAMODEL
26149 
26150 	switch (ddi_model_convert_from(flag & FMODELS)) {
26151 	case DDI_MODEL_ILP32:
26152 		li32.listlen = li.listlen;
26153 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26154 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26155 			    "sd_persistent_reservation_in_read_keys: "
26156 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26157 			rval = EFAULT;
26158 			goto done;
26159 		}
26160 		break;
26161 
26162 	case DDI_MODEL_NONE:
26163 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26164 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26165 			    "sd_persistent_reservation_in_read_keys: "
26166 			    "failed ddi_copyout: mhioc_key_list_t\n");
26167 			rval = EFAULT;
26168 			goto done;
26169 		}
26170 		break;
26171 	}
26172 
26173 #else /* ! _MULTI_DATAMODEL */
26174 
26175 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26176 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26177 		    "sd_persistent_reservation_in_read_keys: "
26178 		    "failed ddi_copyout: mhioc_key_list_t\n");
26179 		rval = EFAULT;
26180 		goto done;
26181 	}
26182 
26183 #endif /* _MULTI_DATAMODEL */
26184 
26185 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26186 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26187 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26188 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26189 		    "sd_persistent_reservation_in_read_keys: "
26190 		    "failed ddi_copyout: keylist\n");
26191 		rval = EFAULT;
26192 	}
26193 done:
26194 	kmem_free(data_bufp, data_len);
26195 	return (rval);
26196 }
26197 
26198 
26199 /*
26200  *    Function: sd_persistent_reservation_in_read_resv
26201  *
26202  * Description: This routine is the driver entry point for handling CD-ROM
26203  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26204  *		by sending the SCSI-3 PRIN commands to the device.
26205  *		Process the read persistent reservations command response by
26206  *		copying the reservation information into the user provided
26207  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26208  *
26209  *   Arguments: un   -  Pointer to soft state struct for the target.
26210  *		usrp -	user provided pointer to multihost Persistent In Read
26211  *			Keys structure (mhioc_inkeys_t)
26212  *		flag -	this argument is a pass through to ddi_copyxxx()
26213  *			directly from the mode argument of ioctl().
26214  *
26215  * Return Code: 0   - Success
26216  *		EACCES
26217  *		ENOTSUP
26218  *		errno return code from sd_send_scsi_cmd()
26219  *
26220  *     Context: Can sleep. Does not return until command is completed.
26221  */
26222 
26223 static int
26224 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26225     mhioc_inresvs_t *usrp, int flag)
26226 {
26227 #ifdef _MULTI_DATAMODEL
26228 	struct mhioc_resv_desc_list32 resvlist32;
26229 #endif
26230 	sd_prin_readresv_t	*in;
26231 	mhioc_inresvs_t		*ptr;
26232 	sd_readresv_desc_t	*readresv_ptr;
26233 	mhioc_resv_desc_list_t	resvlist;
26234 	mhioc_resv_desc_t 	resvdesc;
26235 	uchar_t			*data_bufp;
26236 	int 			data_len;
26237 	int			rval;
26238 	int			i;
26239 	size_t			copysz;
26240 	mhioc_resv_desc_t	*bufp;
26241 
26242 	if ((ptr = usrp) == NULL) {
26243 		return (EINVAL);
26244 	}
26245 
26246 	/*
26247 	 * Get the listsize from user
26248 	 */
26249 #ifdef _MULTI_DATAMODEL
26250 	switch (ddi_model_convert_from(flag & FMODELS)) {
26251 	case DDI_MODEL_ILP32:
26252 		copysz = sizeof (struct mhioc_resv_desc_list32);
26253 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26254 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26255 			    "sd_persistent_reservation_in_read_resv: "
26256 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26257 			rval = EFAULT;
26258 			goto done;
26259 		}
26260 		resvlist.listsize = resvlist32.listsize;
26261 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26262 		break;
26263 
26264 	case DDI_MODEL_NONE:
26265 		copysz = sizeof (mhioc_resv_desc_list_t);
26266 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26267 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26268 			    "sd_persistent_reservation_in_read_resv: "
26269 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26270 			rval = EFAULT;
26271 			goto done;
26272 		}
26273 		break;
26274 	}
26275 #else /* ! _MULTI_DATAMODEL */
26276 	copysz = sizeof (mhioc_resv_desc_list_t);
26277 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26278 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26279 		    "sd_persistent_reservation_in_read_resv: "
26280 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26281 		rval = EFAULT;
26282 		goto done;
26283 	}
26284 #endif /* ! _MULTI_DATAMODEL */
26285 
26286 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26287 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26288 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26289 
26290 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26291 	    data_len, data_bufp)) != 0) {
26292 		goto done;
26293 	}
26294 	in = (sd_prin_readresv_t *)data_bufp;
26295 	ptr->generation = BE_32(in->generation);
26296 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26297 
26298 	/*
26299 	 * Return the min(listsize, listlen( keys
26300 	 */
26301 #ifdef _MULTI_DATAMODEL
26302 
26303 	switch (ddi_model_convert_from(flag & FMODELS)) {
26304 	case DDI_MODEL_ILP32:
26305 		resvlist32.listlen = resvlist.listlen;
26306 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26307 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26308 			    "sd_persistent_reservation_in_read_resv: "
26309 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26310 			rval = EFAULT;
26311 			goto done;
26312 		}
26313 		break;
26314 
26315 	case DDI_MODEL_NONE:
26316 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26317 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26318 			    "sd_persistent_reservation_in_read_resv: "
26319 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26320 			rval = EFAULT;
26321 			goto done;
26322 		}
26323 		break;
26324 	}
26325 
26326 #else /* ! _MULTI_DATAMODEL */
26327 
26328 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26329 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26330 		    "sd_persistent_reservation_in_read_resv: "
26331 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26332 		rval = EFAULT;
26333 		goto done;
26334 	}
26335 
26336 #endif /* ! _MULTI_DATAMODEL */
26337 
26338 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26339 	bufp = resvlist.list;
26340 	copysz = sizeof (mhioc_resv_desc_t);
26341 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26342 	    i++, readresv_ptr++, bufp++) {
26343 
26344 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26345 		    MHIOC_RESV_KEY_SIZE);
26346 		resvdesc.type  = readresv_ptr->type;
26347 		resvdesc.scope = readresv_ptr->scope;
26348 		resvdesc.scope_specific_addr =
26349 		    BE_32(readresv_ptr->scope_specific_addr);
26350 
26351 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26352 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26353 			    "sd_persistent_reservation_in_read_resv: "
26354 			    "failed ddi_copyout: resvlist\n");
26355 			rval = EFAULT;
26356 			goto done;
26357 		}
26358 	}
26359 done:
26360 	kmem_free(data_bufp, data_len);
26361 	return (rval);
26362 }
26363 
26364 
26365 /*
26366  *    Function: sr_change_blkmode()
26367  *
26368  * Description: This routine is the driver entry point for handling CD-ROM
26369  *		block mode ioctl requests. Support for returning and changing
26370  *		the current block size in use by the device is implemented. The
26371  *		LBA size is changed via a MODE SELECT Block Descriptor.
26372  *
26373  *		This routine issues a mode sense with an allocation length of
26374  *		12 bytes for the mode page header and a single block descriptor.
26375  *
26376  *   Arguments: dev - the device 'dev_t'
26377  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26378  *		      CDROMSBLKMODE (set)
26379  *		data - current block size or requested block size
26380  *		flag - this argument is a pass through to ddi_copyxxx() directly
26381  *		       from the mode argument of ioctl().
26382  *
26383  * Return Code: the code returned by sd_send_scsi_cmd()
26384  *		EINVAL if invalid arguments are provided
26385  *		EFAULT if ddi_copyxxx() fails
26386  *		ENXIO if fail ddi_get_soft_state
26387  *		EIO if invalid mode sense block descriptor length
26388  *
26389  */
26390 
26391 static int
26392 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26393 {
26394 	struct sd_lun			*un = NULL;
26395 	struct mode_header		*sense_mhp, *select_mhp;
26396 	struct block_descriptor		*sense_desc, *select_desc;
26397 	int				current_bsize;
26398 	int				rval = EINVAL;
26399 	uchar_t				*sense = NULL;
26400 	uchar_t				*select = NULL;
26401 
26402 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26403 
26404 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26405 		return (ENXIO);
26406 	}
26407 
26408 	/*
26409 	 * The block length is changed via the Mode Select block descriptor, the
26410 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26411 	 * required as part of this routine. Therefore the mode sense allocation
26412 	 * length is specified to be the length of a mode page header and a
26413 	 * block descriptor.
26414 	 */
26415 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26416 
26417 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26418 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
26419 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26420 		    "sr_change_blkmode: Mode Sense Failed\n");
26421 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26422 		return (rval);
26423 	}
26424 
26425 	/* Check the block descriptor len to handle only 1 block descriptor */
26426 	sense_mhp = (struct mode_header *)sense;
26427 	if ((sense_mhp->bdesc_length == 0) ||
26428 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26429 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26430 		    "sr_change_blkmode: Mode Sense returned invalid block"
26431 		    " descriptor length\n");
26432 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26433 		return (EIO);
26434 	}
26435 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26436 	current_bsize = ((sense_desc->blksize_hi << 16) |
26437 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26438 
26439 	/* Process command */
26440 	switch (cmd) {
26441 	case CDROMGBLKMODE:
26442 		/* Return the block size obtained during the mode sense */
26443 		if (ddi_copyout(&current_bsize, (void *)data,
26444 		    sizeof (int), flag) != 0)
26445 			rval = EFAULT;
26446 		break;
26447 	case CDROMSBLKMODE:
26448 		/* Validate the requested block size */
26449 		switch (data) {
26450 		case CDROM_BLK_512:
26451 		case CDROM_BLK_1024:
26452 		case CDROM_BLK_2048:
26453 		case CDROM_BLK_2056:
26454 		case CDROM_BLK_2336:
26455 		case CDROM_BLK_2340:
26456 		case CDROM_BLK_2352:
26457 		case CDROM_BLK_2368:
26458 		case CDROM_BLK_2448:
26459 		case CDROM_BLK_2646:
26460 		case CDROM_BLK_2647:
26461 			break;
26462 		default:
26463 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26464 			    "sr_change_blkmode: "
26465 			    "Block Size '%ld' Not Supported\n", data);
26466 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26467 			return (EINVAL);
26468 		}
26469 
26470 		/*
26471 		 * The current block size matches the requested block size so
26472 		 * there is no need to send the mode select to change the size
26473 		 */
26474 		if (current_bsize == data) {
26475 			break;
26476 		}
26477 
26478 		/* Build the select data for the requested block size */
26479 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26480 		select_mhp = (struct mode_header *)select;
26481 		select_desc =
26482 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26483 		/*
26484 		 * The LBA size is changed via the block descriptor, so the
26485 		 * descriptor is built according to the user data
26486 		 */
26487 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26488 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26489 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26490 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26491 
26492 		/* Send the mode select for the requested block size */
26493 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26494 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26495 		    SD_PATH_STANDARD)) != 0) {
26496 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26497 			    "sr_change_blkmode: Mode Select Failed\n");
26498 			/*
26499 			 * The mode select failed for the requested block size,
26500 			 * so reset the data for the original block size and
26501 			 * send it to the target. The error is indicated by the
26502 			 * return value for the failed mode select.
26503 			 */
26504 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26505 			select_desc->blksize_mid = sense_desc->blksize_mid;
26506 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26507 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26508 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26509 			    SD_PATH_STANDARD);
26510 		} else {
26511 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26512 			mutex_enter(SD_MUTEX(un));
26513 			sd_update_block_info(un, (uint32_t)data, 0);
26514 
26515 			mutex_exit(SD_MUTEX(un));
26516 		}
26517 		break;
26518 	default:
26519 		/* should not reach here, but check anyway */
26520 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26521 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26522 		rval = EINVAL;
26523 		break;
26524 	}
26525 
26526 	if (select) {
26527 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26528 	}
26529 	if (sense) {
26530 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26531 	}
26532 	return (rval);
26533 }
26534 
26535 
26536 /*
26537  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26538  * implement driver support for getting and setting the CD speed. The command
26539  * set used will be based on the device type. If the device has not been
26540  * identified as MMC the Toshiba vendor specific mode page will be used. If
26541  * the device is MMC but does not support the Real Time Streaming feature
26542  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26543  * be used to read the speed.
26544  */
26545 
26546 /*
26547  *    Function: sr_change_speed()
26548  *
26549  * Description: This routine is the driver entry point for handling CD-ROM
26550  *		drive speed ioctl requests for devices supporting the Toshiba
26551  *		vendor specific drive speed mode page. Support for returning
26552  *		and changing the current drive speed in use by the device is
26553  *		implemented.
26554  *
26555  *   Arguments: dev - the device 'dev_t'
26556  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26557  *		      CDROMSDRVSPEED (set)
26558  *		data - current drive speed or requested drive speed
26559  *		flag - this argument is a pass through to ddi_copyxxx() directly
26560  *		       from the mode argument of ioctl().
26561  *
26562  * Return Code: the code returned by sd_send_scsi_cmd()
26563  *		EINVAL if invalid arguments are provided
26564  *		EFAULT if ddi_copyxxx() fails
26565  *		ENXIO if fail ddi_get_soft_state
26566  *		EIO if invalid mode sense block descriptor length
26567  */
26568 
26569 static int
26570 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26571 {
26572 	struct sd_lun			*un = NULL;
26573 	struct mode_header		*sense_mhp, *select_mhp;
26574 	struct mode_speed		*sense_page, *select_page;
26575 	int				current_speed;
26576 	int				rval = EINVAL;
26577 	int				bd_len;
26578 	uchar_t				*sense = NULL;
26579 	uchar_t				*select = NULL;
26580 
26581 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26582 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26583 		return (ENXIO);
26584 	}
26585 
26586 	/*
26587 	 * Note: The drive speed is being modified here according to a Toshiba
26588 	 * vendor specific mode page (0x31).
26589 	 */
26590 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26591 
26592 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26593 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
26594 	    SD_PATH_STANDARD)) != 0) {
26595 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26596 		    "sr_change_speed: Mode Sense Failed\n");
26597 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26598 		return (rval);
26599 	}
26600 	sense_mhp  = (struct mode_header *)sense;
26601 
26602 	/* Check the block descriptor len to handle only 1 block descriptor */
26603 	bd_len = sense_mhp->bdesc_length;
26604 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26605 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26606 		    "sr_change_speed: Mode Sense returned invalid block "
26607 		    "descriptor length\n");
26608 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26609 		return (EIO);
26610 	}
26611 
26612 	sense_page = (struct mode_speed *)
26613 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26614 	current_speed = sense_page->speed;
26615 
26616 	/* Process command */
26617 	switch (cmd) {
26618 	case CDROMGDRVSPEED:
26619 		/* Return the drive speed obtained during the mode sense */
26620 		if (current_speed == 0x2) {
26621 			current_speed = CDROM_TWELVE_SPEED;
26622 		}
26623 		if (ddi_copyout(&current_speed, (void *)data,
26624 		    sizeof (int), flag) != 0) {
26625 			rval = EFAULT;
26626 		}
26627 		break;
26628 	case CDROMSDRVSPEED:
26629 		/* Validate the requested drive speed */
26630 		switch ((uchar_t)data) {
26631 		case CDROM_TWELVE_SPEED:
26632 			data = 0x2;
26633 			/*FALLTHROUGH*/
26634 		case CDROM_NORMAL_SPEED:
26635 		case CDROM_DOUBLE_SPEED:
26636 		case CDROM_QUAD_SPEED:
26637 		case CDROM_MAXIMUM_SPEED:
26638 			break;
26639 		default:
26640 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26641 			    "sr_change_speed: "
26642 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
26643 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26644 			return (EINVAL);
26645 		}
26646 
26647 		/*
26648 		 * The current drive speed matches the requested drive speed so
26649 		 * there is no need to send the mode select to change the speed
26650 		 */
26651 		if (current_speed == data) {
26652 			break;
26653 		}
26654 
26655 		/* Build the select data for the requested drive speed */
26656 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26657 		select_mhp = (struct mode_header *)select;
26658 		select_mhp->bdesc_length = 0;
26659 		select_page =
26660 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26661 		select_page =
26662 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26663 		select_page->mode_page.code = CDROM_MODE_SPEED;
26664 		select_page->mode_page.length = 2;
26665 		select_page->speed = (uchar_t)data;
26666 
26667 		/* Send the mode select for the requested block size */
26668 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26669 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26670 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
26671 			/*
26672 			 * The mode select failed for the requested drive speed,
26673 			 * so reset the data for the original drive speed and
26674 			 * send it to the target. The error is indicated by the
26675 			 * return value for the failed mode select.
26676 			 */
26677 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26678 			    "sr_drive_speed: Mode Select Failed\n");
26679 			select_page->speed = sense_page->speed;
26680 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26681 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26682 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26683 		}
26684 		break;
26685 	default:
26686 		/* should not reach here, but check anyway */
26687 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26688 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26689 		rval = EINVAL;
26690 		break;
26691 	}
26692 
26693 	if (select) {
26694 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26695 	}
26696 	if (sense) {
26697 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26698 	}
26699 
26700 	return (rval);
26701 }
26702 
26703 
26704 /*
26705  *    Function: sr_atapi_change_speed()
26706  *
26707  * Description: This routine is the driver entry point for handling CD-ROM
26708  *		drive speed ioctl requests for MMC devices that do not support
26709  *		the Real Time Streaming feature (0x107).
26710  *
26711  *		Note: This routine will use the SET SPEED command which may not
26712  *		be supported by all devices.
26713  *
26714  *   Arguments: dev- the device 'dev_t'
26715  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26716  *		     CDROMSDRVSPEED (set)
26717  *		data- current drive speed or requested drive speed
26718  *		flag- this argument is a pass through to ddi_copyxxx() directly
26719  *		      from the mode argument of ioctl().
26720  *
26721  * Return Code: the code returned by sd_send_scsi_cmd()
26722  *		EINVAL if invalid arguments are provided
26723  *		EFAULT if ddi_copyxxx() fails
26724  *		ENXIO if fail ddi_get_soft_state
26725  *		EIO if invalid mode sense block descriptor length
26726  */
26727 
26728 static int
26729 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26730 {
26731 	struct sd_lun			*un;
26732 	struct uscsi_cmd		*com = NULL;
26733 	struct mode_header_grp2		*sense_mhp;
26734 	uchar_t				*sense_page;
26735 	uchar_t				*sense = NULL;
26736 	char				cdb[CDB_GROUP5];
26737 	int				bd_len;
26738 	int				current_speed = 0;
26739 	int				max_speed = 0;
26740 	int				rval;
26741 
26742 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26743 
26744 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26745 		return (ENXIO);
26746 	}
26747 
26748 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26749 
26750 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26751 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26752 	    SD_PATH_STANDARD)) != 0) {
26753 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26754 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26755 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26756 		return (rval);
26757 	}
26758 
26759 	/* Check the block descriptor len to handle only 1 block descriptor */
26760 	sense_mhp = (struct mode_header_grp2 *)sense;
26761 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26762 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26763 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26764 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26765 		    "block descriptor length\n");
26766 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26767 		return (EIO);
26768 	}
26769 
26770 	/* Calculate the current and maximum drive speeds */
26771 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26772 	current_speed = (sense_page[14] << 8) | sense_page[15];
26773 	max_speed = (sense_page[8] << 8) | sense_page[9];
26774 
26775 	/* Process the command */
26776 	switch (cmd) {
26777 	case CDROMGDRVSPEED:
26778 		current_speed /= SD_SPEED_1X;
26779 		if (ddi_copyout(&current_speed, (void *)data,
26780 		    sizeof (int), flag) != 0)
26781 			rval = EFAULT;
26782 		break;
26783 	case CDROMSDRVSPEED:
26784 		/* Convert the speed code to KB/sec */
26785 		switch ((uchar_t)data) {
26786 		case CDROM_NORMAL_SPEED:
26787 			current_speed = SD_SPEED_1X;
26788 			break;
26789 		case CDROM_DOUBLE_SPEED:
26790 			current_speed = 2 * SD_SPEED_1X;
26791 			break;
26792 		case CDROM_QUAD_SPEED:
26793 			current_speed = 4 * SD_SPEED_1X;
26794 			break;
26795 		case CDROM_TWELVE_SPEED:
26796 			current_speed = 12 * SD_SPEED_1X;
26797 			break;
26798 		case CDROM_MAXIMUM_SPEED:
26799 			current_speed = 0xffff;
26800 			break;
26801 		default:
26802 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26803 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26804 			    (uchar_t)data);
26805 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26806 			return (EINVAL);
26807 		}
26808 
26809 		/* Check the request against the drive's max speed. */
26810 		if (current_speed != 0xffff) {
26811 			if (current_speed > max_speed) {
26812 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26813 				return (EINVAL);
26814 			}
26815 		}
26816 
26817 		/*
26818 		 * Build and send the SET SPEED command
26819 		 *
26820 		 * Note: The SET SPEED (0xBB) command used in this routine is
26821 		 * obsolete per the SCSI MMC spec but still supported in the
26822 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26823 		 * therefore the command is still implemented in this routine.
26824 		 */
26825 		bzero(cdb, sizeof (cdb));
26826 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26827 		cdb[2] = (uchar_t)(current_speed >> 8);
26828 		cdb[3] = (uchar_t)current_speed;
26829 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26830 		com->uscsi_cdb	   = (caddr_t)cdb;
26831 		com->uscsi_cdblen  = CDB_GROUP5;
26832 		com->uscsi_bufaddr = NULL;
26833 		com->uscsi_buflen  = 0;
26834 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26835 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
26836 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26837 		break;
26838 	default:
26839 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26840 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26841 		rval = EINVAL;
26842 	}
26843 
26844 	if (sense) {
26845 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26846 	}
26847 	if (com) {
26848 		kmem_free(com, sizeof (*com));
26849 	}
26850 	return (rval);
26851 }
26852 
26853 
26854 /*
26855  *    Function: sr_pause_resume()
26856  *
26857  * Description: This routine is the driver entry point for handling CD-ROM
26858  *		pause/resume ioctl requests. This only affects the audio play
26859  *		operation.
26860  *
26861  *   Arguments: dev - the device 'dev_t'
26862  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26863  *		      for setting the resume bit of the cdb.
26864  *
26865  * Return Code: the code returned by sd_send_scsi_cmd()
26866  *		EINVAL if invalid mode specified
26867  *
26868  */
26869 
26870 static int
26871 sr_pause_resume(dev_t dev, int cmd)
26872 {
26873 	struct sd_lun		*un;
26874 	struct uscsi_cmd	*com;
26875 	char			cdb[CDB_GROUP1];
26876 	int			rval;
26877 
26878 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26879 		return (ENXIO);
26880 	}
26881 
26882 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26883 	bzero(cdb, CDB_GROUP1);
26884 	cdb[0] = SCMD_PAUSE_RESUME;
26885 	switch (cmd) {
26886 	case CDROMRESUME:
26887 		cdb[8] = 1;
26888 		break;
26889 	case CDROMPAUSE:
26890 		cdb[8] = 0;
26891 		break;
26892 	default:
26893 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26894 		    " Command '%x' Not Supported\n", cmd);
26895 		rval = EINVAL;
26896 		goto done;
26897 	}
26898 
26899 	com->uscsi_cdb    = cdb;
26900 	com->uscsi_cdblen = CDB_GROUP1;
26901 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26902 
26903 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26904 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26905 
26906 done:
26907 	kmem_free(com, sizeof (*com));
26908 	return (rval);
26909 }
26910 
26911 
26912 /*
26913  *    Function: sr_play_msf()
26914  *
26915  * Description: This routine is the driver entry point for handling CD-ROM
26916  *		ioctl requests to output the audio signals at the specified
26917  *		starting address and continue the audio play until the specified
26918  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26919  *		Frame (MSF) format.
26920  *
26921  *   Arguments: dev	- the device 'dev_t'
26922  *		data	- pointer to user provided audio msf structure,
26923  *		          specifying start/end addresses.
26924  *		flag	- this argument is a pass through to ddi_copyxxx()
26925  *		          directly from the mode argument of ioctl().
26926  *
26927  * Return Code: the code returned by sd_send_scsi_cmd()
26928  *		EFAULT if ddi_copyxxx() fails
26929  *		ENXIO if fail ddi_get_soft_state
26930  *		EINVAL if data pointer is NULL
26931  */
26932 
26933 static int
26934 sr_play_msf(dev_t dev, caddr_t data, int flag)
26935 {
26936 	struct sd_lun		*un;
26937 	struct uscsi_cmd	*com;
26938 	struct cdrom_msf	msf_struct;
26939 	struct cdrom_msf	*msf = &msf_struct;
26940 	char			cdb[CDB_GROUP1];
26941 	int			rval;
26942 
26943 	if (data == NULL) {
26944 		return (EINVAL);
26945 	}
26946 
26947 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26948 		return (ENXIO);
26949 	}
26950 
26951 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26952 		return (EFAULT);
26953 	}
26954 
26955 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26956 	bzero(cdb, CDB_GROUP1);
26957 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26958 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26959 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26960 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26961 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26962 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26963 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26964 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26965 	} else {
26966 		cdb[3] = msf->cdmsf_min0;
26967 		cdb[4] = msf->cdmsf_sec0;
26968 		cdb[5] = msf->cdmsf_frame0;
26969 		cdb[6] = msf->cdmsf_min1;
26970 		cdb[7] = msf->cdmsf_sec1;
26971 		cdb[8] = msf->cdmsf_frame1;
26972 	}
26973 	com->uscsi_cdb    = cdb;
26974 	com->uscsi_cdblen = CDB_GROUP1;
26975 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26976 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26977 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26978 	kmem_free(com, sizeof (*com));
26979 	return (rval);
26980 }
26981 
26982 
26983 /*
26984  *    Function: sr_play_trkind()
26985  *
26986  * Description: This routine is the driver entry point for handling CD-ROM
26987  *		ioctl requests to output the audio signals at the specified
26988  *		starting address and continue the audio play until the specified
26989  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
26990  *		format.
26991  *
26992  *   Arguments: dev	- the device 'dev_t'
26993  *		data	- pointer to user provided audio track/index structure,
26994  *		          specifying start/end addresses.
26995  *		flag	- this argument is a pass through to ddi_copyxxx()
26996  *		          directly from the mode argument of ioctl().
26997  *
26998  * Return Code: the code returned by sd_send_scsi_cmd()
26999  *		EFAULT if ddi_copyxxx() fails
27000  *		ENXIO if fail ddi_get_soft_state
27001  *		EINVAL if data pointer is NULL
27002  */
27003 
27004 static int
27005 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27006 {
27007 	struct cdrom_ti		ti_struct;
27008 	struct cdrom_ti		*ti = &ti_struct;
27009 	struct uscsi_cmd	*com = NULL;
27010 	char			cdb[CDB_GROUP1];
27011 	int			rval;
27012 
27013 	if (data == NULL) {
27014 		return (EINVAL);
27015 	}
27016 
27017 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27018 		return (EFAULT);
27019 	}
27020 
27021 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27022 	bzero(cdb, CDB_GROUP1);
27023 	cdb[0] = SCMD_PLAYAUDIO_TI;
27024 	cdb[4] = ti->cdti_trk0;
27025 	cdb[5] = ti->cdti_ind0;
27026 	cdb[7] = ti->cdti_trk1;
27027 	cdb[8] = ti->cdti_ind1;
27028 	com->uscsi_cdb    = cdb;
27029 	com->uscsi_cdblen = CDB_GROUP1;
27030 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27031 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27032 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27033 	kmem_free(com, sizeof (*com));
27034 	return (rval);
27035 }
27036 
27037 
27038 /*
27039  *    Function: sr_read_all_subcodes()
27040  *
27041  * Description: This routine is the driver entry point for handling CD-ROM
27042  *		ioctl requests to return raw subcode data while the target is
27043  *		playing audio (CDROMSUBCODE).
27044  *
27045  *   Arguments: dev	- the device 'dev_t'
27046  *		data	- pointer to user provided cdrom subcode structure,
27047  *		          specifying the transfer length and address.
27048  *		flag	- this argument is a pass through to ddi_copyxxx()
27049  *		          directly from the mode argument of ioctl().
27050  *
27051  * Return Code: the code returned by sd_send_scsi_cmd()
27052  *		EFAULT if ddi_copyxxx() fails
27053  *		ENXIO if fail ddi_get_soft_state
27054  *		EINVAL if data pointer is NULL
27055  */
27056 
27057 static int
27058 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27059 {
27060 	struct sd_lun		*un = NULL;
27061 	struct uscsi_cmd	*com = NULL;
27062 	struct cdrom_subcode	*subcode = NULL;
27063 	int			rval;
27064 	size_t			buflen;
27065 	char			cdb[CDB_GROUP5];
27066 
27067 #ifdef _MULTI_DATAMODEL
27068 	/* To support ILP32 applications in an LP64 world */
27069 	struct cdrom_subcode32		cdrom_subcode32;
27070 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27071 #endif
27072 	if (data == NULL) {
27073 		return (EINVAL);
27074 	}
27075 
27076 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27077 		return (ENXIO);
27078 	}
27079 
27080 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27081 
27082 #ifdef _MULTI_DATAMODEL
27083 	switch (ddi_model_convert_from(flag & FMODELS)) {
27084 	case DDI_MODEL_ILP32:
27085 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27086 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27087 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27088 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27089 			return (EFAULT);
27090 		}
27091 		/* Convert the ILP32 uscsi data from the application to LP64 */
27092 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27093 		break;
27094 	case DDI_MODEL_NONE:
27095 		if (ddi_copyin(data, subcode,
27096 		    sizeof (struct cdrom_subcode), flag)) {
27097 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27098 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27099 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27100 			return (EFAULT);
27101 		}
27102 		break;
27103 	}
27104 #else /* ! _MULTI_DATAMODEL */
27105 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27106 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27107 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27108 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27109 		return (EFAULT);
27110 	}
27111 #endif /* _MULTI_DATAMODEL */
27112 
27113 	/*
27114 	 * Since MMC-2 expects max 3 bytes for length, check if the
27115 	 * length input is greater than 3 bytes
27116 	 */
27117 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27118 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27119 		    "sr_read_all_subcodes: "
27120 		    "cdrom transfer length too large: %d (limit %d)\n",
27121 		    subcode->cdsc_length, 0xFFFFFF);
27122 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27123 		return (EINVAL);
27124 	}
27125 
27126 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27127 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27128 	bzero(cdb, CDB_GROUP5);
27129 
27130 	if (un->un_f_mmc_cap == TRUE) {
27131 		cdb[0] = (char)SCMD_READ_CD;
27132 		cdb[2] = (char)0xff;
27133 		cdb[3] = (char)0xff;
27134 		cdb[4] = (char)0xff;
27135 		cdb[5] = (char)0xff;
27136 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27137 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27138 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27139 		cdb[10] = 1;
27140 	} else {
27141 		/*
27142 		 * Note: A vendor specific command (0xDF) is being used her to
27143 		 * request a read of all subcodes.
27144 		 */
27145 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27146 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27147 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27148 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27149 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27150 	}
27151 	com->uscsi_cdb	   = cdb;
27152 	com->uscsi_cdblen  = CDB_GROUP5;
27153 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27154 	com->uscsi_buflen  = buflen;
27155 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27156 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27157 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27158 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27159 	kmem_free(com, sizeof (*com));
27160 	return (rval);
27161 }
27162 
27163 
27164 /*
27165  *    Function: sr_read_subchannel()
27166  *
27167  * Description: This routine is the driver entry point for handling CD-ROM
27168  *		ioctl requests to return the Q sub-channel data of the CD
27169  *		current position block. (CDROMSUBCHNL) The data includes the
27170  *		track number, index number, absolute CD-ROM address (LBA or MSF
27171  *		format per the user) , track relative CD-ROM address (LBA or MSF
27172  *		format per the user), control data and audio status.
27173  *
27174  *   Arguments: dev	- the device 'dev_t'
27175  *		data	- pointer to user provided cdrom sub-channel structure
27176  *		flag	- this argument is a pass through to ddi_copyxxx()
27177  *		          directly from the mode argument of ioctl().
27178  *
27179  * Return Code: the code returned by sd_send_scsi_cmd()
27180  *		EFAULT if ddi_copyxxx() fails
27181  *		ENXIO if fail ddi_get_soft_state
27182  *		EINVAL if data pointer is NULL
27183  */
27184 
27185 static int
27186 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27187 {
27188 	struct sd_lun		*un;
27189 	struct uscsi_cmd	*com;
27190 	struct cdrom_subchnl	subchanel;
27191 	struct cdrom_subchnl	*subchnl = &subchanel;
27192 	char			cdb[CDB_GROUP1];
27193 	caddr_t			buffer;
27194 	int			rval;
27195 
27196 	if (data == NULL) {
27197 		return (EINVAL);
27198 	}
27199 
27200 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27201 	    (un->un_state == SD_STATE_OFFLINE)) {
27202 		return (ENXIO);
27203 	}
27204 
27205 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27206 		return (EFAULT);
27207 	}
27208 
27209 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27210 	bzero(cdb, CDB_GROUP1);
27211 	cdb[0] = SCMD_READ_SUBCHANNEL;
27212 	/* Set the MSF bit based on the user requested address format */
27213 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27214 	/*
27215 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27216 	 * returned
27217 	 */
27218 	cdb[2] = 0x40;
27219 	/*
27220 	 * Set byte 3 to specify the return data format. A value of 0x01
27221 	 * indicates that the CD-ROM current position should be returned.
27222 	 */
27223 	cdb[3] = 0x01;
27224 	cdb[8] = 0x10;
27225 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27226 	com->uscsi_cdb	   = cdb;
27227 	com->uscsi_cdblen  = CDB_GROUP1;
27228 	com->uscsi_bufaddr = buffer;
27229 	com->uscsi_buflen  = 16;
27230 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27231 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27232 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27233 	if (rval != 0) {
27234 		kmem_free(buffer, 16);
27235 		kmem_free(com, sizeof (*com));
27236 		return (rval);
27237 	}
27238 
27239 	/* Process the returned Q sub-channel data */
27240 	subchnl->cdsc_audiostatus = buffer[1];
27241 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27242 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27243 	subchnl->cdsc_trk	= buffer[6];
27244 	subchnl->cdsc_ind	= buffer[7];
27245 	if (subchnl->cdsc_format & CDROM_LBA) {
27246 		subchnl->cdsc_absaddr.lba =
27247 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27248 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27249 		subchnl->cdsc_reladdr.lba =
27250 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27251 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27252 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27253 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27254 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27255 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27256 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27257 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27258 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27259 	} else {
27260 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27261 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27262 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27263 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27264 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27265 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27266 	}
27267 	kmem_free(buffer, 16);
27268 	kmem_free(com, sizeof (*com));
27269 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27270 	    != 0) {
27271 		return (EFAULT);
27272 	}
27273 	return (rval);
27274 }
27275 
27276 
27277 /*
27278  *    Function: sr_read_tocentry()
27279  *
27280  * Description: This routine is the driver entry point for handling CD-ROM
27281  *		ioctl requests to read from the Table of Contents (TOC)
27282  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27283  *		fields, the starting address (LBA or MSF format per the user)
27284  *		and the data mode if the user specified track is a data track.
27285  *
27286  *		Note: The READ HEADER (0x44) command used in this routine is
27287  *		obsolete per the SCSI MMC spec but still supported in the
27288  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27289  *		therefore the command is still implemented in this routine.
27290  *
27291  *   Arguments: dev	- the device 'dev_t'
27292  *		data	- pointer to user provided toc entry structure,
27293  *			  specifying the track # and the address format
27294  *			  (LBA or MSF).
27295  *		flag	- this argument is a pass through to ddi_copyxxx()
27296  *		          directly from the mode argument of ioctl().
27297  *
27298  * Return Code: the code returned by sd_send_scsi_cmd()
27299  *		EFAULT if ddi_copyxxx() fails
27300  *		ENXIO if fail ddi_get_soft_state
27301  *		EINVAL if data pointer is NULL
27302  */
27303 
27304 static int
27305 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27306 {
27307 	struct sd_lun		*un = NULL;
27308 	struct uscsi_cmd	*com;
27309 	struct cdrom_tocentry	toc_entry;
27310 	struct cdrom_tocentry	*entry = &toc_entry;
27311 	caddr_t			buffer;
27312 	int			rval;
27313 	char			cdb[CDB_GROUP1];
27314 
27315 	if (data == NULL) {
27316 		return (EINVAL);
27317 	}
27318 
27319 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27320 	    (un->un_state == SD_STATE_OFFLINE)) {
27321 		return (ENXIO);
27322 	}
27323 
27324 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27325 		return (EFAULT);
27326 	}
27327 
27328 	/* Validate the requested track and address format */
27329 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27330 		return (EINVAL);
27331 	}
27332 
27333 	if (entry->cdte_track == 0) {
27334 		return (EINVAL);
27335 	}
27336 
27337 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27338 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27339 	bzero(cdb, CDB_GROUP1);
27340 
27341 	cdb[0] = SCMD_READ_TOC;
27342 	/* Set the MSF bit based on the user requested address format  */
27343 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27344 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27345 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27346 	} else {
27347 		cdb[6] = entry->cdte_track;
27348 	}
27349 
27350 	/*
27351 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27352 	 * (4 byte TOC response header + 8 byte track descriptor)
27353 	 */
27354 	cdb[8] = 12;
27355 	com->uscsi_cdb	   = cdb;
27356 	com->uscsi_cdblen  = CDB_GROUP1;
27357 	com->uscsi_bufaddr = buffer;
27358 	com->uscsi_buflen  = 0x0C;
27359 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27360 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27361 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27362 	if (rval != 0) {
27363 		kmem_free(buffer, 12);
27364 		kmem_free(com, sizeof (*com));
27365 		return (rval);
27366 	}
27367 
27368 	/* Process the toc entry */
27369 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27370 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27371 	if (entry->cdte_format & CDROM_LBA) {
27372 		entry->cdte_addr.lba =
27373 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27374 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27375 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27376 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27377 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27378 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27379 		/*
27380 		 * Send a READ TOC command using the LBA address format to get
27381 		 * the LBA for the track requested so it can be used in the
27382 		 * READ HEADER request
27383 		 *
27384 		 * Note: The MSF bit of the READ HEADER command specifies the
27385 		 * output format. The block address specified in that command
27386 		 * must be in LBA format.
27387 		 */
27388 		cdb[1] = 0;
27389 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27390 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27391 		if (rval != 0) {
27392 			kmem_free(buffer, 12);
27393 			kmem_free(com, sizeof (*com));
27394 			return (rval);
27395 		}
27396 	} else {
27397 		entry->cdte_addr.msf.minute	= buffer[9];
27398 		entry->cdte_addr.msf.second	= buffer[10];
27399 		entry->cdte_addr.msf.frame	= buffer[11];
27400 		/*
27401 		 * Send a READ TOC command using the LBA address format to get
27402 		 * the LBA for the track requested so it can be used in the
27403 		 * READ HEADER request
27404 		 *
27405 		 * Note: The MSF bit of the READ HEADER command specifies the
27406 		 * output format. The block address specified in that command
27407 		 * must be in LBA format.
27408 		 */
27409 		cdb[1] = 0;
27410 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27411 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27412 		if (rval != 0) {
27413 			kmem_free(buffer, 12);
27414 			kmem_free(com, sizeof (*com));
27415 			return (rval);
27416 		}
27417 	}
27418 
27419 	/*
27420 	 * Build and send the READ HEADER command to determine the data mode of
27421 	 * the user specified track.
27422 	 */
27423 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27424 	    (entry->cdte_track != CDROM_LEADOUT)) {
27425 		bzero(cdb, CDB_GROUP1);
27426 		cdb[0] = SCMD_READ_HEADER;
27427 		cdb[2] = buffer[8];
27428 		cdb[3] = buffer[9];
27429 		cdb[4] = buffer[10];
27430 		cdb[5] = buffer[11];
27431 		cdb[8] = 0x08;
27432 		com->uscsi_buflen = 0x08;
27433 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27434 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27435 		if (rval == 0) {
27436 			entry->cdte_datamode = buffer[0];
27437 		} else {
27438 			/*
27439 			 * READ HEADER command failed, since this is
27440 			 * obsoleted in one spec, its better to return
27441 			 * -1 for an invlid track so that we can still
27442 			 * recieve the rest of the TOC data.
27443 			 */
27444 			entry->cdte_datamode = (uchar_t)-1;
27445 		}
27446 	} else {
27447 		entry->cdte_datamode = (uchar_t)-1;
27448 	}
27449 
27450 	kmem_free(buffer, 12);
27451 	kmem_free(com, sizeof (*com));
27452 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27453 		return (EFAULT);
27454 
27455 	return (rval);
27456 }
27457 
27458 
27459 /*
27460  *    Function: sr_read_tochdr()
27461  *
27462  * Description: This routine is the driver entry point for handling CD-ROM
27463  * 		ioctl requests to read the Table of Contents (TOC) header
27464  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27465  *		and ending track numbers
27466  *
27467  *   Arguments: dev	- the device 'dev_t'
27468  *		data	- pointer to user provided toc header structure,
27469  *			  specifying the starting and ending track numbers.
27470  *		flag	- this argument is a pass through to ddi_copyxxx()
27471  *			  directly from the mode argument of ioctl().
27472  *
27473  * Return Code: the code returned by sd_send_scsi_cmd()
27474  *		EFAULT if ddi_copyxxx() fails
27475  *		ENXIO if fail ddi_get_soft_state
27476  *		EINVAL if data pointer is NULL
27477  */
27478 
27479 static int
27480 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27481 {
27482 	struct sd_lun		*un;
27483 	struct uscsi_cmd	*com;
27484 	struct cdrom_tochdr	toc_header;
27485 	struct cdrom_tochdr	*hdr = &toc_header;
27486 	char			cdb[CDB_GROUP1];
27487 	int			rval;
27488 	caddr_t			buffer;
27489 
27490 	if (data == NULL) {
27491 		return (EINVAL);
27492 	}
27493 
27494 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27495 	    (un->un_state == SD_STATE_OFFLINE)) {
27496 		return (ENXIO);
27497 	}
27498 
27499 	buffer = kmem_zalloc(4, KM_SLEEP);
27500 	bzero(cdb, CDB_GROUP1);
27501 	cdb[0] = SCMD_READ_TOC;
27502 	/*
27503 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27504 	 * that the TOC header should be returned
27505 	 */
27506 	cdb[6] = 0x00;
27507 	/*
27508 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27509 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27510 	 */
27511 	cdb[8] = 0x04;
27512 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27513 	com->uscsi_cdb	   = cdb;
27514 	com->uscsi_cdblen  = CDB_GROUP1;
27515 	com->uscsi_bufaddr = buffer;
27516 	com->uscsi_buflen  = 0x04;
27517 	com->uscsi_timeout = 300;
27518 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27519 
27520 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27521 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27522 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27523 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27524 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27525 	} else {
27526 		hdr->cdth_trk0 = buffer[2];
27527 		hdr->cdth_trk1 = buffer[3];
27528 	}
27529 	kmem_free(buffer, 4);
27530 	kmem_free(com, sizeof (*com));
27531 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27532 		return (EFAULT);
27533 	}
27534 	return (rval);
27535 }
27536 
27537 
27538 /*
27539  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27540  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27541  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27542  * digital audio and extended architecture digital audio. These modes are
27543  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27544  * MMC specs.
27545  *
27546  * In addition to support for the various data formats these routines also
27547  * include support for devices that implement only the direct access READ
27548  * commands (0x08, 0x28), devices that implement the READ_CD commands
27549  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27550  * READ CDXA commands (0xD8, 0xDB)
27551  */
27552 
27553 /*
27554  *    Function: sr_read_mode1()
27555  *
27556  * Description: This routine is the driver entry point for handling CD-ROM
27557  *		ioctl read mode1 requests (CDROMREADMODE1).
27558  *
27559  *   Arguments: dev	- the device 'dev_t'
27560  *		data	- pointer to user provided cd read structure specifying
27561  *			  the lba buffer address and length.
27562  *		flag	- this argument is a pass through to ddi_copyxxx()
27563  *			  directly from the mode argument of ioctl().
27564  *
27565  * Return Code: the code returned by sd_send_scsi_cmd()
27566  *		EFAULT if ddi_copyxxx() fails
27567  *		ENXIO if fail ddi_get_soft_state
27568  *		EINVAL if data pointer is NULL
27569  */
27570 
27571 static int
27572 sr_read_mode1(dev_t dev, caddr_t data, int flag)
27573 {
27574 	struct sd_lun		*un;
27575 	struct cdrom_read	mode1_struct;
27576 	struct cdrom_read	*mode1 = &mode1_struct;
27577 	int			rval;
27578 #ifdef _MULTI_DATAMODEL
27579 	/* To support ILP32 applications in an LP64 world */
27580 	struct cdrom_read32	cdrom_read32;
27581 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27582 #endif /* _MULTI_DATAMODEL */
27583 
27584 	if (data == NULL) {
27585 		return (EINVAL);
27586 	}
27587 
27588 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27589 	    (un->un_state == SD_STATE_OFFLINE)) {
27590 		return (ENXIO);
27591 	}
27592 
27593 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27594 	    "sd_read_mode1: entry: un:0x%p\n", un);
27595 
27596 #ifdef _MULTI_DATAMODEL
27597 	switch (ddi_model_convert_from(flag & FMODELS)) {
27598 	case DDI_MODEL_ILP32:
27599 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27600 			return (EFAULT);
27601 		}
27602 		/* Convert the ILP32 uscsi data from the application to LP64 */
27603 		cdrom_read32tocdrom_read(cdrd32, mode1);
27604 		break;
27605 	case DDI_MODEL_NONE:
27606 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27607 			return (EFAULT);
27608 		}
27609 	}
27610 #else /* ! _MULTI_DATAMODEL */
27611 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27612 		return (EFAULT);
27613 	}
27614 #endif /* _MULTI_DATAMODEL */
27615 
27616 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
27617 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
27618 
27619 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27620 	    "sd_read_mode1: exit: un:0x%p\n", un);
27621 
27622 	return (rval);
27623 }
27624 
27625 
27626 /*
27627  *    Function: sr_read_cd_mode2()
27628  *
27629  * Description: This routine is the driver entry point for handling CD-ROM
27630  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27631  *		support the READ CD (0xBE) command or the 1st generation
27632  *		READ CD (0xD4) command.
27633  *
27634  *   Arguments: dev	- the device 'dev_t'
27635  *		data	- pointer to user provided cd read structure specifying
27636  *			  the lba buffer address and length.
27637  *		flag	- this argument is a pass through to ddi_copyxxx()
27638  *			  directly from the mode argument of ioctl().
27639  *
27640  * Return Code: the code returned by sd_send_scsi_cmd()
27641  *		EFAULT if ddi_copyxxx() fails
27642  *		ENXIO if fail ddi_get_soft_state
27643  *		EINVAL if data pointer is NULL
27644  */
27645 
27646 static int
27647 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
27648 {
27649 	struct sd_lun		*un;
27650 	struct uscsi_cmd	*com;
27651 	struct cdrom_read	mode2_struct;
27652 	struct cdrom_read	*mode2 = &mode2_struct;
27653 	uchar_t			cdb[CDB_GROUP5];
27654 	int			nblocks;
27655 	int			rval;
27656 #ifdef _MULTI_DATAMODEL
27657 	/*  To support ILP32 applications in an LP64 world */
27658 	struct cdrom_read32	cdrom_read32;
27659 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27660 #endif /* _MULTI_DATAMODEL */
27661 
27662 	if (data == NULL) {
27663 		return (EINVAL);
27664 	}
27665 
27666 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27667 	    (un->un_state == SD_STATE_OFFLINE)) {
27668 		return (ENXIO);
27669 	}
27670 
27671 #ifdef _MULTI_DATAMODEL
27672 	switch (ddi_model_convert_from(flag & FMODELS)) {
27673 	case DDI_MODEL_ILP32:
27674 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27675 			return (EFAULT);
27676 		}
27677 		/* Convert the ILP32 uscsi data from the application to LP64 */
27678 		cdrom_read32tocdrom_read(cdrd32, mode2);
27679 		break;
27680 	case DDI_MODEL_NONE:
27681 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27682 			return (EFAULT);
27683 		}
27684 		break;
27685 	}
27686 
27687 #else /* ! _MULTI_DATAMODEL */
27688 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27689 		return (EFAULT);
27690 	}
27691 #endif /* _MULTI_DATAMODEL */
27692 
27693 	bzero(cdb, sizeof (cdb));
27694 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27695 		/* Read command supported by 1st generation atapi drives */
27696 		cdb[0] = SCMD_READ_CDD4;
27697 	} else {
27698 		/* Universal CD Access Command */
27699 		cdb[0] = SCMD_READ_CD;
27700 	}
27701 
27702 	/*
27703 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27704 	 */
27705 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27706 
27707 	/* set the start address */
27708 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27709 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27710 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27711 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27712 
27713 	/* set the transfer length */
27714 	nblocks = mode2->cdread_buflen / 2336;
27715 	cdb[6] = (uchar_t)(nblocks >> 16);
27716 	cdb[7] = (uchar_t)(nblocks >> 8);
27717 	cdb[8] = (uchar_t)nblocks;
27718 
27719 	/* set the filter bits */
27720 	cdb[9] = CDROM_READ_CD_USERDATA;
27721 
27722 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27723 	com->uscsi_cdb = (caddr_t)cdb;
27724 	com->uscsi_cdblen = sizeof (cdb);
27725 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27726 	com->uscsi_buflen = mode2->cdread_buflen;
27727 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27728 
27729 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27730 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27731 	kmem_free(com, sizeof (*com));
27732 	return (rval);
27733 }
27734 
27735 
27736 /*
27737  *    Function: sr_read_mode2()
27738  *
27739  * Description: This routine is the driver entry point for handling CD-ROM
27740  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27741  *		do not support the READ CD (0xBE) command.
27742  *
27743  *   Arguments: dev	- the device 'dev_t'
27744  *		data	- pointer to user provided cd read structure specifying
27745  *			  the lba buffer address and length.
27746  *		flag	- this argument is a pass through to ddi_copyxxx()
27747  *			  directly from the mode argument of ioctl().
27748  *
27749  * Return Code: the code returned by sd_send_scsi_cmd()
27750  *		EFAULT if ddi_copyxxx() fails
27751  *		ENXIO if fail ddi_get_soft_state
27752  *		EINVAL if data pointer is NULL
27753  *		EIO if fail to reset block size
27754  *		EAGAIN if commands are in progress in the driver
27755  */
27756 
27757 static int
27758 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27759 {
27760 	struct sd_lun		*un;
27761 	struct cdrom_read	mode2_struct;
27762 	struct cdrom_read	*mode2 = &mode2_struct;
27763 	int			rval;
27764 	uint32_t		restore_blksize;
27765 	struct uscsi_cmd	*com;
27766 	uchar_t			cdb[CDB_GROUP0];
27767 	int			nblocks;
27768 
27769 #ifdef _MULTI_DATAMODEL
27770 	/* To support ILP32 applications in an LP64 world */
27771 	struct cdrom_read32	cdrom_read32;
27772 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27773 #endif /* _MULTI_DATAMODEL */
27774 
27775 	if (data == NULL) {
27776 		return (EINVAL);
27777 	}
27778 
27779 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27780 	    (un->un_state == SD_STATE_OFFLINE)) {
27781 		return (ENXIO);
27782 	}
27783 
27784 	/*
27785 	 * Because this routine will update the device and driver block size
27786 	 * being used we want to make sure there are no commands in progress.
27787 	 * If commands are in progress the user will have to try again.
27788 	 *
27789 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27790 	 * in sdioctl to protect commands from sdioctl through to the top of
27791 	 * sd_uscsi_strategy. See sdioctl for details.
27792 	 */
27793 	mutex_enter(SD_MUTEX(un));
27794 	if (un->un_ncmds_in_driver != 1) {
27795 		mutex_exit(SD_MUTEX(un));
27796 		return (EAGAIN);
27797 	}
27798 	mutex_exit(SD_MUTEX(un));
27799 
27800 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27801 	    "sd_read_mode2: entry: un:0x%p\n", un);
27802 
27803 #ifdef _MULTI_DATAMODEL
27804 	switch (ddi_model_convert_from(flag & FMODELS)) {
27805 	case DDI_MODEL_ILP32:
27806 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27807 			return (EFAULT);
27808 		}
27809 		/* Convert the ILP32 uscsi data from the application to LP64 */
27810 		cdrom_read32tocdrom_read(cdrd32, mode2);
27811 		break;
27812 	case DDI_MODEL_NONE:
27813 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27814 			return (EFAULT);
27815 		}
27816 		break;
27817 	}
27818 #else /* ! _MULTI_DATAMODEL */
27819 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27820 		return (EFAULT);
27821 	}
27822 #endif /* _MULTI_DATAMODEL */
27823 
27824 	/* Store the current target block size for restoration later */
27825 	restore_blksize = un->un_tgt_blocksize;
27826 
27827 	/* Change the device and soft state target block size to 2336 */
27828 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27829 		rval = EIO;
27830 		goto done;
27831 	}
27832 
27833 
27834 	bzero(cdb, sizeof (cdb));
27835 
27836 	/* set READ operation */
27837 	cdb[0] = SCMD_READ;
27838 
27839 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27840 	mode2->cdread_lba >>= 2;
27841 
27842 	/* set the start address */
27843 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27844 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27845 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27846 
27847 	/* set the transfer length */
27848 	nblocks = mode2->cdread_buflen / 2336;
27849 	cdb[4] = (uchar_t)nblocks & 0xFF;
27850 
27851 	/* build command */
27852 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27853 	com->uscsi_cdb = (caddr_t)cdb;
27854 	com->uscsi_cdblen = sizeof (cdb);
27855 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27856 	com->uscsi_buflen = mode2->cdread_buflen;
27857 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27858 
27859 	/*
27860 	 * Issue SCSI command with user space address for read buffer.
27861 	 *
27862 	 * This sends the command through main channel in the driver.
27863 	 *
27864 	 * Since this is accessed via an IOCTL call, we go through the
27865 	 * standard path, so that if the device was powered down, then
27866 	 * it would be 'awakened' to handle the command.
27867 	 */
27868 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27869 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27870 
27871 	kmem_free(com, sizeof (*com));
27872 
27873 	/* Restore the device and soft state target block size */
27874 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27875 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27876 		    "can't do switch back to mode 1\n");
27877 		/*
27878 		 * If sd_send_scsi_READ succeeded we still need to report
27879 		 * an error because we failed to reset the block size
27880 		 */
27881 		if (rval == 0) {
27882 			rval = EIO;
27883 		}
27884 	}
27885 
27886 done:
27887 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27888 	    "sd_read_mode2: exit: un:0x%p\n", un);
27889 
27890 	return (rval);
27891 }
27892 
27893 
27894 /*
27895  *    Function: sr_sector_mode()
27896  *
27897  * Description: This utility function is used by sr_read_mode2 to set the target
27898  *		block size based on the user specified size. This is a legacy
27899  *		implementation based upon a vendor specific mode page
27900  *
27901  *   Arguments: dev	- the device 'dev_t'
27902  *		data	- flag indicating if block size is being set to 2336 or
27903  *			  512.
27904  *
27905  * Return Code: the code returned by sd_send_scsi_cmd()
27906  *		EFAULT if ddi_copyxxx() fails
27907  *		ENXIO if fail ddi_get_soft_state
27908  *		EINVAL if data pointer is NULL
27909  */
27910 
27911 static int
27912 sr_sector_mode(dev_t dev, uint32_t blksize)
27913 {
27914 	struct sd_lun	*un;
27915 	uchar_t		*sense;
27916 	uchar_t		*select;
27917 	int		rval;
27918 
27919 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27920 	    (un->un_state == SD_STATE_OFFLINE)) {
27921 		return (ENXIO);
27922 	}
27923 
27924 	sense = kmem_zalloc(20, KM_SLEEP);
27925 
27926 	/* Note: This is a vendor specific mode page (0x81) */
27927 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
27928 	    SD_PATH_STANDARD)) != 0) {
27929 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27930 		    "sr_sector_mode: Mode Sense failed\n");
27931 		kmem_free(sense, 20);
27932 		return (rval);
27933 	}
27934 	select = kmem_zalloc(20, KM_SLEEP);
27935 	select[3] = 0x08;
27936 	select[10] = ((blksize >> 8) & 0xff);
27937 	select[11] = (blksize & 0xff);
27938 	select[12] = 0x01;
27939 	select[13] = 0x06;
27940 	select[14] = sense[14];
27941 	select[15] = sense[15];
27942 	if (blksize == SD_MODE2_BLKSIZE) {
27943 		select[14] |= 0x01;
27944 	}
27945 
27946 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
27947 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27948 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27949 		    "sr_sector_mode: Mode Select failed\n");
27950 	} else {
27951 		/*
27952 		 * Only update the softstate block size if we successfully
27953 		 * changed the device block mode.
27954 		 */
27955 		mutex_enter(SD_MUTEX(un));
27956 		sd_update_block_info(un, blksize, 0);
27957 		mutex_exit(SD_MUTEX(un));
27958 	}
27959 	kmem_free(sense, 20);
27960 	kmem_free(select, 20);
27961 	return (rval);
27962 }
27963 
27964 
27965 /*
27966  *    Function: sr_read_cdda()
27967  *
27968  * Description: This routine is the driver entry point for handling CD-ROM
27969  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27970  *		the target supports CDDA these requests are handled via a vendor
27971  *		specific command (0xD8) If the target does not support CDDA
27972  *		these requests are handled via the READ CD command (0xBE).
27973  *
27974  *   Arguments: dev	- the device 'dev_t'
27975  *		data	- pointer to user provided CD-DA structure specifying
27976  *			  the track starting address, transfer length, and
27977  *			  subcode options.
27978  *		flag	- this argument is a pass through to ddi_copyxxx()
27979  *			  directly from the mode argument of ioctl().
27980  *
27981  * Return Code: the code returned by sd_send_scsi_cmd()
27982  *		EFAULT if ddi_copyxxx() fails
27983  *		ENXIO if fail ddi_get_soft_state
27984  *		EINVAL if invalid arguments are provided
27985  *		ENOTTY
27986  */
27987 
27988 static int
27989 sr_read_cdda(dev_t dev, caddr_t data, int flag)
27990 {
27991 	struct sd_lun			*un;
27992 	struct uscsi_cmd		*com;
27993 	struct cdrom_cdda		*cdda;
27994 	int				rval;
27995 	size_t				buflen;
27996 	char				cdb[CDB_GROUP5];
27997 
27998 #ifdef _MULTI_DATAMODEL
27999 	/* To support ILP32 applications in an LP64 world */
28000 	struct cdrom_cdda32	cdrom_cdda32;
28001 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28002 #endif /* _MULTI_DATAMODEL */
28003 
28004 	if (data == NULL) {
28005 		return (EINVAL);
28006 	}
28007 
28008 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28009 		return (ENXIO);
28010 	}
28011 
28012 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28013 
28014 #ifdef _MULTI_DATAMODEL
28015 	switch (ddi_model_convert_from(flag & FMODELS)) {
28016 	case DDI_MODEL_ILP32:
28017 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28018 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28019 			    "sr_read_cdda: ddi_copyin Failed\n");
28020 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28021 			return (EFAULT);
28022 		}
28023 		/* Convert the ILP32 uscsi data from the application to LP64 */
28024 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28025 		break;
28026 	case DDI_MODEL_NONE:
28027 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28028 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28029 			    "sr_read_cdda: ddi_copyin Failed\n");
28030 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28031 			return (EFAULT);
28032 		}
28033 		break;
28034 	}
28035 #else /* ! _MULTI_DATAMODEL */
28036 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28037 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28038 		    "sr_read_cdda: ddi_copyin Failed\n");
28039 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28040 		return (EFAULT);
28041 	}
28042 #endif /* _MULTI_DATAMODEL */
28043 
28044 	/*
28045 	 * Since MMC-2 expects max 3 bytes for length, check if the
28046 	 * length input is greater than 3 bytes
28047 	 */
28048 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28049 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28050 		    "cdrom transfer length too large: %d (limit %d)\n",
28051 		    cdda->cdda_length, 0xFFFFFF);
28052 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28053 		return (EINVAL);
28054 	}
28055 
28056 	switch (cdda->cdda_subcode) {
28057 	case CDROM_DA_NO_SUBCODE:
28058 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28059 		break;
28060 	case CDROM_DA_SUBQ:
28061 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28062 		break;
28063 	case CDROM_DA_ALL_SUBCODE:
28064 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28065 		break;
28066 	case CDROM_DA_SUBCODE_ONLY:
28067 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28068 		break;
28069 	default:
28070 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28071 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28072 		    cdda->cdda_subcode);
28073 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28074 		return (EINVAL);
28075 	}
28076 
28077 	/* Build and send the command */
28078 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28079 	bzero(cdb, CDB_GROUP5);
28080 
28081 	if (un->un_f_cfg_cdda == TRUE) {
28082 		cdb[0] = (char)SCMD_READ_CD;
28083 		cdb[1] = 0x04;
28084 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28085 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28086 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28087 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28088 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28089 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28090 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28091 		cdb[9] = 0x10;
28092 		switch (cdda->cdda_subcode) {
28093 		case CDROM_DA_NO_SUBCODE :
28094 			cdb[10] = 0x0;
28095 			break;
28096 		case CDROM_DA_SUBQ :
28097 			cdb[10] = 0x2;
28098 			break;
28099 		case CDROM_DA_ALL_SUBCODE :
28100 			cdb[10] = 0x1;
28101 			break;
28102 		case CDROM_DA_SUBCODE_ONLY :
28103 			/* FALLTHROUGH */
28104 		default :
28105 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28106 			kmem_free(com, sizeof (*com));
28107 			return (ENOTTY);
28108 		}
28109 	} else {
28110 		cdb[0] = (char)SCMD_READ_CDDA;
28111 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28112 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28113 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28114 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28115 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28116 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28117 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28118 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28119 		cdb[10] = cdda->cdda_subcode;
28120 	}
28121 
28122 	com->uscsi_cdb = cdb;
28123 	com->uscsi_cdblen = CDB_GROUP5;
28124 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28125 	com->uscsi_buflen = buflen;
28126 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28127 
28128 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28129 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28130 
28131 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28132 	kmem_free(com, sizeof (*com));
28133 	return (rval);
28134 }
28135 
28136 
28137 /*
28138  *    Function: sr_read_cdxa()
28139  *
28140  * Description: This routine is the driver entry point for handling CD-ROM
28141  *		ioctl requests to return CD-XA (Extended Architecture) data.
28142  *		(CDROMCDXA).
28143  *
28144  *   Arguments: dev	- the device 'dev_t'
28145  *		data	- pointer to user provided CD-XA structure specifying
28146  *			  the data starting address, transfer length, and format
28147  *		flag	- this argument is a pass through to ddi_copyxxx()
28148  *			  directly from the mode argument of ioctl().
28149  *
28150  * Return Code: the code returned by sd_send_scsi_cmd()
28151  *		EFAULT if ddi_copyxxx() fails
28152  *		ENXIO if fail ddi_get_soft_state
28153  *		EINVAL if data pointer is NULL
28154  */
28155 
28156 static int
28157 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28158 {
28159 	struct sd_lun		*un;
28160 	struct uscsi_cmd	*com;
28161 	struct cdrom_cdxa	*cdxa;
28162 	int			rval;
28163 	size_t			buflen;
28164 	char			cdb[CDB_GROUP5];
28165 	uchar_t			read_flags;
28166 
28167 #ifdef _MULTI_DATAMODEL
28168 	/* To support ILP32 applications in an LP64 world */
28169 	struct cdrom_cdxa32		cdrom_cdxa32;
28170 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28171 #endif /* _MULTI_DATAMODEL */
28172 
28173 	if (data == NULL) {
28174 		return (EINVAL);
28175 	}
28176 
28177 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28178 		return (ENXIO);
28179 	}
28180 
28181 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28182 
28183 #ifdef _MULTI_DATAMODEL
28184 	switch (ddi_model_convert_from(flag & FMODELS)) {
28185 	case DDI_MODEL_ILP32:
28186 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28187 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28188 			return (EFAULT);
28189 		}
28190 		/*
28191 		 * Convert the ILP32 uscsi data from the
28192 		 * application to LP64 for internal use.
28193 		 */
28194 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28195 		break;
28196 	case DDI_MODEL_NONE:
28197 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28198 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28199 			return (EFAULT);
28200 		}
28201 		break;
28202 	}
28203 #else /* ! _MULTI_DATAMODEL */
28204 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28205 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28206 		return (EFAULT);
28207 	}
28208 #endif /* _MULTI_DATAMODEL */
28209 
28210 	/*
28211 	 * Since MMC-2 expects max 3 bytes for length, check if the
28212 	 * length input is greater than 3 bytes
28213 	 */
28214 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28215 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28216 		    "cdrom transfer length too large: %d (limit %d)\n",
28217 		    cdxa->cdxa_length, 0xFFFFFF);
28218 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28219 		return (EINVAL);
28220 	}
28221 
28222 	switch (cdxa->cdxa_format) {
28223 	case CDROM_XA_DATA:
28224 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28225 		read_flags = 0x10;
28226 		break;
28227 	case CDROM_XA_SECTOR_DATA:
28228 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28229 		read_flags = 0xf8;
28230 		break;
28231 	case CDROM_XA_DATA_W_ERROR:
28232 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28233 		read_flags = 0xfc;
28234 		break;
28235 	default:
28236 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28237 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28238 		    cdxa->cdxa_format);
28239 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28240 		return (EINVAL);
28241 	}
28242 
28243 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28244 	bzero(cdb, CDB_GROUP5);
28245 	if (un->un_f_mmc_cap == TRUE) {
28246 		cdb[0] = (char)SCMD_READ_CD;
28247 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28248 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28249 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28250 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28251 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28252 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28253 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28254 		cdb[9] = (char)read_flags;
28255 	} else {
28256 		/*
28257 		 * Note: A vendor specific command (0xDB) is being used her to
28258 		 * request a read of all subcodes.
28259 		 */
28260 		cdb[0] = (char)SCMD_READ_CDXA;
28261 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28262 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28263 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28264 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28265 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28266 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28267 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28268 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28269 		cdb[10] = cdxa->cdxa_format;
28270 	}
28271 	com->uscsi_cdb	   = cdb;
28272 	com->uscsi_cdblen  = CDB_GROUP5;
28273 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28274 	com->uscsi_buflen  = buflen;
28275 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28276 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28277 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28278 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28279 	kmem_free(com, sizeof (*com));
28280 	return (rval);
28281 }
28282 
28283 
28284 /*
28285  *    Function: sr_eject()
28286  *
28287  * Description: This routine is the driver entry point for handling CD-ROM
28288  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28289  *
28290  *   Arguments: dev	- the device 'dev_t'
28291  *
28292  * Return Code: the code returned by sd_send_scsi_cmd()
28293  */
28294 
28295 static int
28296 sr_eject(dev_t dev)
28297 {
28298 	struct sd_lun	*un;
28299 	int		rval;
28300 
28301 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28302 	    (un->un_state == SD_STATE_OFFLINE)) {
28303 		return (ENXIO);
28304 	}
28305 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28306 	    SD_PATH_STANDARD)) != 0) {
28307 		return (rval);
28308 	}
28309 
28310 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28311 	    SD_PATH_STANDARD);
28312 
28313 	if (rval == 0) {
28314 		mutex_enter(SD_MUTEX(un));
28315 		sr_ejected(un);
28316 		un->un_mediastate = DKIO_EJECTED;
28317 		cv_broadcast(&un->un_state_cv);
28318 		mutex_exit(SD_MUTEX(un));
28319 	}
28320 	return (rval);
28321 }
28322 
28323 
28324 /*
28325  *    Function: sr_ejected()
28326  *
28327  * Description: This routine updates the soft state structure to invalidate the
28328  *		geometry information after the media has been ejected or a
28329  *		media eject has been detected.
28330  *
28331  *   Arguments: un - driver soft state (unit) structure
28332  */
28333 
28334 static void
28335 sr_ejected(struct sd_lun *un)
28336 {
28337 	struct sd_errstats *stp;
28338 
28339 	ASSERT(un != NULL);
28340 	ASSERT(mutex_owned(SD_MUTEX(un)));
28341 
28342 	un->un_f_blockcount_is_valid	= FALSE;
28343 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28344 	un->un_f_geometry_is_valid	= FALSE;
28345 
28346 	if (un->un_errstats != NULL) {
28347 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28348 		stp->sd_capacity.value.ui64 = 0;
28349 	}
28350 }
28351 
28352 
28353 /*
28354  *    Function: sr_check_wp()
28355  *
28356  * Description: This routine checks the write protection of a removable media
28357  *		disk via the write protect bit of the Mode Page Header device
28358  *		specific field.  This routine has been implemented to use the
28359  *		error recovery mode page for all device types.
28360  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28361  *
28362  *   Arguments: dev		- the device 'dev_t'
28363  *
28364  * Return Code: int indicating if the device is write protected (1) or not (0)
28365  *
28366  *     Context: Kernel thread.
28367  *
28368  */
28369 
28370 static int
28371 sr_check_wp(dev_t dev)
28372 {
28373 	struct sd_lun	*un;
28374 	uchar_t		device_specific;
28375 	uchar_t		*sense;
28376 	int		hdrlen;
28377 	int		rval;
28378 	int		retry_flag = FALSE;
28379 
28380 	/*
28381 	 * Note: The return codes for this routine should be reworked to
28382 	 * properly handle the case of a NULL softstate.
28383 	 */
28384 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28385 		return (FALSE);
28386 	}
28387 
28388 	if (un->un_f_cfg_is_atapi == TRUE) {
28389 		retry_flag = TRUE;
28390 	}
28391 
28392 retry:
28393 	if (un->un_f_cfg_is_atapi == TRUE) {
28394 		/*
28395 		 * The mode page contents are not required; set the allocation
28396 		 * length for the mode page header only
28397 		 */
28398 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28399 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28400 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
28401 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28402 		device_specific =
28403 		    ((struct mode_header_grp2 *)sense)->device_specific;
28404 	} else {
28405 		hdrlen = MODE_HEADER_LENGTH;
28406 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28407 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
28408 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28409 		device_specific =
28410 		    ((struct mode_header *)sense)->device_specific;
28411 	}
28412 
28413 	if (rval != 0) {
28414 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
28415 			/*
28416 			 * For an Atapi Zip drive, observed the drive
28417 			 * reporting check condition for the first attempt.
28418 			 * Sense data indicating power on or bus device/reset.
28419 			 * Hence in case of failure need to try at least once
28420 			 * for Atapi devices.
28421 			 */
28422 			retry_flag = FALSE;
28423 			kmem_free(sense, hdrlen);
28424 			goto retry;
28425 		} else {
28426 			/*
28427 			 * Write protect mode sense failed; not all disks
28428 			 * understand this query. Return FALSE assuming that
28429 			 * these devices are not writable.
28430 			 */
28431 			rval = FALSE;
28432 		}
28433 	} else {
28434 		if (device_specific & WRITE_PROTECT) {
28435 			rval = TRUE;
28436 		} else {
28437 			rval = FALSE;
28438 		}
28439 	}
28440 	kmem_free(sense, hdrlen);
28441 	return (rval);
28442 }
28443 
28444 
28445 /*
28446  *    Function: sr_volume_ctrl()
28447  *
28448  * Description: This routine is the driver entry point for handling CD-ROM
28449  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28450  *
28451  *   Arguments: dev	- the device 'dev_t'
28452  *		data	- pointer to user audio volume control structure
28453  *		flag	- this argument is a pass through to ddi_copyxxx()
28454  *			  directly from the mode argument of ioctl().
28455  *
28456  * Return Code: the code returned by sd_send_scsi_cmd()
28457  *		EFAULT if ddi_copyxxx() fails
28458  *		ENXIO if fail ddi_get_soft_state
28459  *		EINVAL if data pointer is NULL
28460  *
28461  */
28462 
28463 static int
28464 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28465 {
28466 	struct sd_lun		*un;
28467 	struct cdrom_volctrl    volume;
28468 	struct cdrom_volctrl    *vol = &volume;
28469 	uchar_t			*sense_page;
28470 	uchar_t			*select_page;
28471 	uchar_t			*sense;
28472 	uchar_t			*select;
28473 	int			sense_buflen;
28474 	int			select_buflen;
28475 	int			rval;
28476 
28477 	if (data == NULL) {
28478 		return (EINVAL);
28479 	}
28480 
28481 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28482 	    (un->un_state == SD_STATE_OFFLINE)) {
28483 		return (ENXIO);
28484 	}
28485 
28486 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28487 		return (EFAULT);
28488 	}
28489 
28490 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28491 		struct mode_header_grp2		*sense_mhp;
28492 		struct mode_header_grp2		*select_mhp;
28493 		int				bd_len;
28494 
28495 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28496 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28497 		    MODEPAGE_AUDIO_CTRL_LEN;
28498 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28499 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28500 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
28501 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28502 		    SD_PATH_STANDARD)) != 0) {
28503 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28504 			    "sr_volume_ctrl: Mode Sense Failed\n");
28505 			kmem_free(sense, sense_buflen);
28506 			kmem_free(select, select_buflen);
28507 			return (rval);
28508 		}
28509 		sense_mhp = (struct mode_header_grp2 *)sense;
28510 		select_mhp = (struct mode_header_grp2 *)select;
28511 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28512 		    sense_mhp->bdesc_length_lo;
28513 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28514 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28515 			    "sr_volume_ctrl: Mode Sense returned invalid "
28516 			    "block descriptor length\n");
28517 			kmem_free(sense, sense_buflen);
28518 			kmem_free(select, select_buflen);
28519 			return (EIO);
28520 		}
28521 		sense_page = (uchar_t *)
28522 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28523 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28524 		select_mhp->length_msb = 0;
28525 		select_mhp->length_lsb = 0;
28526 		select_mhp->bdesc_length_hi = 0;
28527 		select_mhp->bdesc_length_lo = 0;
28528 	} else {
28529 		struct mode_header		*sense_mhp, *select_mhp;
28530 
28531 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28532 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28533 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28534 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28535 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
28536 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28537 		    SD_PATH_STANDARD)) != 0) {
28538 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28539 			    "sr_volume_ctrl: Mode Sense Failed\n");
28540 			kmem_free(sense, sense_buflen);
28541 			kmem_free(select, select_buflen);
28542 			return (rval);
28543 		}
28544 		sense_mhp  = (struct mode_header *)sense;
28545 		select_mhp = (struct mode_header *)select;
28546 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
28547 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28548 			    "sr_volume_ctrl: Mode Sense returned invalid "
28549 			    "block descriptor length\n");
28550 			kmem_free(sense, sense_buflen);
28551 			kmem_free(select, select_buflen);
28552 			return (EIO);
28553 		}
28554 		sense_page = (uchar_t *)
28555 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
28556 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
28557 		select_mhp->length = 0;
28558 		select_mhp->bdesc_length = 0;
28559 	}
28560 	/*
28561 	 * Note: An audio control data structure could be created and overlayed
28562 	 * on the following in place of the array indexing method implemented.
28563 	 */
28564 
28565 	/* Build the select data for the user volume data */
28566 	select_page[0] = MODEPAGE_AUDIO_CTRL;
28567 	select_page[1] = 0xE;
28568 	/* Set the immediate bit */
28569 	select_page[2] = 0x04;
28570 	/* Zero out reserved fields */
28571 	select_page[3] = 0x00;
28572 	select_page[4] = 0x00;
28573 	/* Return sense data for fields not to be modified */
28574 	select_page[5] = sense_page[5];
28575 	select_page[6] = sense_page[6];
28576 	select_page[7] = sense_page[7];
28577 	/* Set the user specified volume levels for channel 0 and 1 */
28578 	select_page[8] = 0x01;
28579 	select_page[9] = vol->channel0;
28580 	select_page[10] = 0x02;
28581 	select_page[11] = vol->channel1;
28582 	/* Channel 2 and 3 are currently unsupported so return the sense data */
28583 	select_page[12] = sense_page[12];
28584 	select_page[13] = sense_page[13];
28585 	select_page[14] = sense_page[14];
28586 	select_page[15] = sense_page[15];
28587 
28588 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28589 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
28590 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28591 	} else {
28592 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
28593 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28594 	}
28595 
28596 	kmem_free(sense, sense_buflen);
28597 	kmem_free(select, select_buflen);
28598 	return (rval);
28599 }
28600 
28601 
28602 /*
28603  *    Function: sr_read_sony_session_offset()
28604  *
28605  * Description: This routine is the driver entry point for handling CD-ROM
28606  *		ioctl requests for session offset information. (CDROMREADOFFSET)
28607  *		The address of the first track in the last session of a
28608  *		multi-session CD-ROM is returned
28609  *
28610  *		Note: This routine uses a vendor specific key value in the
28611  *		command control field without implementing any vendor check here
28612  *		or in the ioctl routine.
28613  *
28614  *   Arguments: dev	- the device 'dev_t'
28615  *		data	- pointer to an int to hold the requested address
28616  *		flag	- this argument is a pass through to ddi_copyxxx()
28617  *			  directly from the mode argument of ioctl().
28618  *
28619  * Return Code: the code returned by sd_send_scsi_cmd()
28620  *		EFAULT if ddi_copyxxx() fails
28621  *		ENXIO if fail ddi_get_soft_state
28622  *		EINVAL if data pointer is NULL
28623  */
28624 
28625 static int
28626 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
28627 {
28628 	struct sd_lun		*un;
28629 	struct uscsi_cmd	*com;
28630 	caddr_t			buffer;
28631 	char			cdb[CDB_GROUP1];
28632 	int			session_offset = 0;
28633 	int			rval;
28634 
28635 	if (data == NULL) {
28636 		return (EINVAL);
28637 	}
28638 
28639 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28640 	    (un->un_state == SD_STATE_OFFLINE)) {
28641 		return (ENXIO);
28642 	}
28643 
28644 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28645 	bzero(cdb, CDB_GROUP1);
28646 	cdb[0] = SCMD_READ_TOC;
28647 	/*
28648 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28649 	 * (4 byte TOC response header + 8 byte response data)
28650 	 */
28651 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28652 	/* Byte 9 is the control byte. A vendor specific value is used */
28653 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28654 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28655 	com->uscsi_cdb = cdb;
28656 	com->uscsi_cdblen = CDB_GROUP1;
28657 	com->uscsi_bufaddr = buffer;
28658 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28659 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28660 
28661 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28662 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28663 	if (rval != 0) {
28664 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28665 		kmem_free(com, sizeof (*com));
28666 		return (rval);
28667 	}
28668 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28669 		session_offset =
28670 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28671 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28672 		/*
28673 		 * Offset returned offset in current lbasize block's. Convert to
28674 		 * 2k block's to return to the user
28675 		 */
28676 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28677 			session_offset >>= 2;
28678 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28679 			session_offset >>= 1;
28680 		}
28681 	}
28682 
28683 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28684 		rval = EFAULT;
28685 	}
28686 
28687 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28688 	kmem_free(com, sizeof (*com));
28689 	return (rval);
28690 }
28691 
28692 
28693 /*
28694  *    Function: sd_wm_cache_constructor()
28695  *
28696  * Description: Cache Constructor for the wmap cache for the read/modify/write
28697  * 		devices.
28698  *
28699  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28700  *		un	- sd_lun structure for the device.
28701  *		flag	- the km flags passed to constructor
28702  *
28703  * Return Code: 0 on success.
28704  *		-1 on failure.
28705  */
28706 
28707 /*ARGSUSED*/
28708 static int
28709 sd_wm_cache_constructor(void *wm, void *un, int flags)
28710 {
28711 	bzero(wm, sizeof (struct sd_w_map));
28712 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28713 	return (0);
28714 }
28715 
28716 
28717 /*
28718  *    Function: sd_wm_cache_destructor()
28719  *
28720  * Description: Cache destructor for the wmap cache for the read/modify/write
28721  * 		devices.
28722  *
28723  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28724  *		un	- sd_lun structure for the device.
28725  */
28726 /*ARGSUSED*/
28727 static void
28728 sd_wm_cache_destructor(void *wm, void *un)
28729 {
28730 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28731 }
28732 
28733 
28734 /*
28735  *    Function: sd_range_lock()
28736  *
28737  * Description: Lock the range of blocks specified as parameter to ensure
28738  *		that read, modify write is atomic and no other i/o writes
28739  *		to the same location. The range is specified in terms
28740  *		of start and end blocks. Block numbers are the actual
28741  *		media block numbers and not system.
28742  *
28743  *   Arguments: un	- sd_lun structure for the device.
28744  *		startb - The starting block number
28745  *		endb - The end block number
28746  *		typ - type of i/o - simple/read_modify_write
28747  *
28748  * Return Code: wm  - pointer to the wmap structure.
28749  *
28750  *     Context: This routine can sleep.
28751  */
28752 
28753 static struct sd_w_map *
28754 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28755 {
28756 	struct sd_w_map *wmp = NULL;
28757 	struct sd_w_map *sl_wmp = NULL;
28758 	struct sd_w_map *tmp_wmp;
28759 	wm_state state = SD_WM_CHK_LIST;
28760 
28761 
28762 	ASSERT(un != NULL);
28763 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28764 
28765 	mutex_enter(SD_MUTEX(un));
28766 
28767 	while (state != SD_WM_DONE) {
28768 
28769 		switch (state) {
28770 		case SD_WM_CHK_LIST:
28771 			/*
28772 			 * This is the starting state. Check the wmap list
28773 			 * to see if the range is currently available.
28774 			 */
28775 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28776 				/*
28777 				 * If this is a simple write and no rmw
28778 				 * i/o is pending then try to lock the
28779 				 * range as the range should be available.
28780 				 */
28781 				state = SD_WM_LOCK_RANGE;
28782 			} else {
28783 				tmp_wmp = sd_get_range(un, startb, endb);
28784 				if (tmp_wmp != NULL) {
28785 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28786 						/*
28787 						 * Should not keep onlist wmps
28788 						 * while waiting this macro
28789 						 * will also do wmp = NULL;
28790 						 */
28791 						FREE_ONLIST_WMAP(un, wmp);
28792 					}
28793 					/*
28794 					 * sl_wmp is the wmap on which wait
28795 					 * is done, since the tmp_wmp points
28796 					 * to the inuse wmap, set sl_wmp to
28797 					 * tmp_wmp and change the state to sleep
28798 					 */
28799 					sl_wmp = tmp_wmp;
28800 					state = SD_WM_WAIT_MAP;
28801 				} else {
28802 					state = SD_WM_LOCK_RANGE;
28803 				}
28804 
28805 			}
28806 			break;
28807 
28808 		case SD_WM_LOCK_RANGE:
28809 			ASSERT(un->un_wm_cache);
28810 			/*
28811 			 * The range need to be locked, try to get a wmap.
28812 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28813 			 * if possible as we will have to release the sd mutex
28814 			 * if we have to sleep.
28815 			 */
28816 			if (wmp == NULL)
28817 				wmp = kmem_cache_alloc(un->un_wm_cache,
28818 				    KM_NOSLEEP);
28819 			if (wmp == NULL) {
28820 				mutex_exit(SD_MUTEX(un));
28821 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28822 				    (sd_lun::un_wm_cache))
28823 				wmp = kmem_cache_alloc(un->un_wm_cache,
28824 				    KM_SLEEP);
28825 				mutex_enter(SD_MUTEX(un));
28826 				/*
28827 				 * we released the mutex so recheck and go to
28828 				 * check list state.
28829 				 */
28830 				state = SD_WM_CHK_LIST;
28831 			} else {
28832 				/*
28833 				 * We exit out of state machine since we
28834 				 * have the wmap. Do the housekeeping first.
28835 				 * place the wmap on the wmap list if it is not
28836 				 * on it already and then set the state to done.
28837 				 */
28838 				wmp->wm_start = startb;
28839 				wmp->wm_end = endb;
28840 				wmp->wm_flags = typ | SD_WM_BUSY;
28841 				if (typ & SD_WTYPE_RMW) {
28842 					un->un_rmw_count++;
28843 				}
28844 				/*
28845 				 * If not already on the list then link
28846 				 */
28847 				if (!ONLIST(un, wmp)) {
28848 					wmp->wm_next = un->un_wm;
28849 					wmp->wm_prev = NULL;
28850 					if (wmp->wm_next)
28851 						wmp->wm_next->wm_prev = wmp;
28852 					un->un_wm = wmp;
28853 				}
28854 				state = SD_WM_DONE;
28855 			}
28856 			break;
28857 
28858 		case SD_WM_WAIT_MAP:
28859 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28860 			/*
28861 			 * Wait is done on sl_wmp, which is set in the
28862 			 * check_list state.
28863 			 */
28864 			sl_wmp->wm_wanted_count++;
28865 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28866 			sl_wmp->wm_wanted_count--;
28867 			if (!(sl_wmp->wm_flags & SD_WM_BUSY)) {
28868 				if (wmp != NULL)
28869 					CHK_N_FREEWMP(un, wmp);
28870 				wmp = sl_wmp;
28871 			}
28872 			sl_wmp = NULL;
28873 			/*
28874 			 * After waking up, need to recheck for availability of
28875 			 * range.
28876 			 */
28877 			state = SD_WM_CHK_LIST;
28878 			break;
28879 
28880 		default:
28881 			panic("sd_range_lock: "
28882 			    "Unknown state %d in sd_range_lock", state);
28883 			/*NOTREACHED*/
28884 		} /* switch(state) */
28885 
28886 	} /* while(state != SD_WM_DONE) */
28887 
28888 	mutex_exit(SD_MUTEX(un));
28889 
28890 	ASSERT(wmp != NULL);
28891 
28892 	return (wmp);
28893 }
28894 
28895 
28896 /*
28897  *    Function: sd_get_range()
28898  *
28899  * Description: Find if there any overlapping I/O to this one
28900  *		Returns the write-map of 1st such I/O, NULL otherwise.
28901  *
28902  *   Arguments: un	- sd_lun structure for the device.
28903  *		startb - The starting block number
28904  *		endb - The end block number
28905  *
28906  * Return Code: wm  - pointer to the wmap structure.
28907  */
28908 
28909 static struct sd_w_map *
28910 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28911 {
28912 	struct sd_w_map *wmp;
28913 
28914 	ASSERT(un != NULL);
28915 
28916 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28917 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28918 			continue;
28919 		}
28920 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28921 			break;
28922 		}
28923 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28924 			break;
28925 		}
28926 	}
28927 
28928 	return (wmp);
28929 }
28930 
28931 
28932 /*
28933  *    Function: sd_free_inlist_wmap()
28934  *
28935  * Description: Unlink and free a write map struct.
28936  *
28937  *   Arguments: un      - sd_lun structure for the device.
28938  *		wmp	- sd_w_map which needs to be unlinked.
28939  */
28940 
28941 static void
28942 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28943 {
28944 	ASSERT(un != NULL);
28945 
28946 	if (un->un_wm == wmp) {
28947 		un->un_wm = wmp->wm_next;
28948 	} else {
28949 		wmp->wm_prev->wm_next = wmp->wm_next;
28950 	}
28951 
28952 	if (wmp->wm_next) {
28953 		wmp->wm_next->wm_prev = wmp->wm_prev;
28954 	}
28955 
28956 	wmp->wm_next = wmp->wm_prev = NULL;
28957 
28958 	kmem_cache_free(un->un_wm_cache, wmp);
28959 }
28960 
28961 
28962 /*
28963  *    Function: sd_range_unlock()
28964  *
28965  * Description: Unlock the range locked by wm.
28966  *		Free write map if nobody else is waiting on it.
28967  *
28968  *   Arguments: un      - sd_lun structure for the device.
28969  *              wmp     - sd_w_map which needs to be unlinked.
28970  */
28971 
28972 static void
28973 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
28974 {
28975 	ASSERT(un != NULL);
28976 	ASSERT(wm != NULL);
28977 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28978 
28979 	mutex_enter(SD_MUTEX(un));
28980 
28981 	if (wm->wm_flags & SD_WTYPE_RMW) {
28982 		un->un_rmw_count--;
28983 	}
28984 
28985 	if (wm->wm_wanted_count) {
28986 		wm->wm_flags = 0;
28987 		/*
28988 		 * Broadcast that the wmap is available now.
28989 		 */
28990 		cv_broadcast(&wm->wm_avail);
28991 	} else {
28992 		/*
28993 		 * If no one is waiting on the map, it should be free'ed.
28994 		 */
28995 		sd_free_inlist_wmap(un, wm);
28996 	}
28997 
28998 	mutex_exit(SD_MUTEX(un));
28999 }
29000 
29001 
29002 /*
29003  *    Function: sd_read_modify_write_task
29004  *
29005  * Description: Called from a taskq thread to initiate the write phase of
29006  *		a read-modify-write request.  This is used for targets where
29007  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29008  *
29009  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29010  *
29011  *     Context: Called under taskq thread context.
29012  */
29013 
29014 static void
29015 sd_read_modify_write_task(void *arg)
29016 {
29017 	struct sd_mapblocksize_info	*bsp;
29018 	struct buf	*bp;
29019 	struct sd_xbuf	*xp;
29020 	struct sd_lun	*un;
29021 
29022 	bp = arg;	/* The bp is given in arg */
29023 	ASSERT(bp != NULL);
29024 
29025 	/* Get the pointer to the layer-private data struct */
29026 	xp = SD_GET_XBUF(bp);
29027 	ASSERT(xp != NULL);
29028 	bsp = xp->xb_private;
29029 	ASSERT(bsp != NULL);
29030 
29031 	un = SD_GET_UN(bp);
29032 	ASSERT(un != NULL);
29033 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29034 
29035 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29036 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29037 
29038 	/*
29039 	 * This is the write phase of a read-modify-write request, called
29040 	 * under the context of a taskq thread in response to the completion
29041 	 * of the read portion of the rmw request completing under interrupt
29042 	 * context. The write request must be sent from here down the iostart
29043 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29044 	 * we use the layer index saved in the layer-private data area.
29045 	 */
29046 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29047 
29048 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29049 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29050 }
29051 
29052 
29053 /*
29054  *    Function: sddump_do_read_of_rmw()
29055  *
29056  * Description: This routine will be called from sddump, If sddump is called
29057  *		with an I/O which not aligned on device blocksize boundary
29058  *		then the write has to be converted to read-modify-write.
29059  *		Do the read part here in order to keep sddump simple.
29060  *		Note - That the sd_mutex is held across the call to this
29061  *		routine.
29062  *
29063  *   Arguments: un	- sd_lun
29064  *		blkno	- block number in terms of media block size.
29065  *		nblk	- number of blocks.
29066  *		bpp	- pointer to pointer to the buf structure. On return
29067  *			from this function, *bpp points to the valid buffer
29068  *			to which the write has to be done.
29069  *
29070  * Return Code: 0 for success or errno-type return code
29071  */
29072 
29073 static int
29074 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29075 	struct buf **bpp)
29076 {
29077 	int err;
29078 	int i;
29079 	int rval;
29080 	struct buf *bp;
29081 	struct scsi_pkt *pkt = NULL;
29082 	uint32_t target_blocksize;
29083 
29084 	ASSERT(un != NULL);
29085 	ASSERT(mutex_owned(SD_MUTEX(un)));
29086 
29087 	target_blocksize = un->un_tgt_blocksize;
29088 
29089 	mutex_exit(SD_MUTEX(un));
29090 
29091 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29092 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29093 	if (bp == NULL) {
29094 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29095 		    "no resources for dumping; giving up");
29096 		err = ENOMEM;
29097 		goto done;
29098 	}
29099 
29100 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29101 	    blkno, nblk);
29102 	if (rval != 0) {
29103 		scsi_free_consistent_buf(bp);
29104 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29105 		    "no resources for dumping; giving up");
29106 		err = ENOMEM;
29107 		goto done;
29108 	}
29109 
29110 	pkt->pkt_flags |= FLAG_NOINTR;
29111 
29112 	err = EIO;
29113 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29114 
29115 		/*
29116 		 * Scsi_poll returns 0 (success) if the command completes and
29117 		 * the status block is STATUS_GOOD.  We should only check
29118 		 * errors if this condition is not true.  Even then we should
29119 		 * send our own request sense packet only if we have a check
29120 		 * condition and auto request sense has not been performed by
29121 		 * the hba.
29122 		 */
29123 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29124 
29125 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29126 			err = 0;
29127 			break;
29128 		}
29129 
29130 		/*
29131 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29132 		 * no need to read RQS data.
29133 		 */
29134 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29135 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29136 			    "Device is gone\n");
29137 			break;
29138 		}
29139 
29140 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29141 			SD_INFO(SD_LOG_DUMP, un,
29142 			    "sddump: read failed with CHECK, try # %d\n", i);
29143 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29144 				(void) sd_send_polled_RQS(un);
29145 			}
29146 
29147 			continue;
29148 		}
29149 
29150 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29151 			int reset_retval = 0;
29152 
29153 			SD_INFO(SD_LOG_DUMP, un,
29154 			    "sddump: read failed with BUSY, try # %d\n", i);
29155 
29156 			if (un->un_f_lun_reset_enabled == TRUE) {
29157 				reset_retval = scsi_reset(SD_ADDRESS(un),
29158 				    RESET_LUN);
29159 			}
29160 			if (reset_retval == 0) {
29161 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29162 			}
29163 			(void) sd_send_polled_RQS(un);
29164 
29165 		} else {
29166 			SD_INFO(SD_LOG_DUMP, un,
29167 			    "sddump: read failed with 0x%x, try # %d\n",
29168 			    SD_GET_PKT_STATUS(pkt), i);
29169 			mutex_enter(SD_MUTEX(un));
29170 			sd_reset_target(un, pkt);
29171 			mutex_exit(SD_MUTEX(un));
29172 		}
29173 
29174 		/*
29175 		 * If we are not getting anywhere with lun/target resets,
29176 		 * let's reset the bus.
29177 		 */
29178 		if (i > SD_NDUMP_RETRIES/2) {
29179 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29180 			(void) sd_send_polled_RQS(un);
29181 		}
29182 
29183 	}
29184 	scsi_destroy_pkt(pkt);
29185 
29186 	if (err != 0) {
29187 		scsi_free_consistent_buf(bp);
29188 		*bpp = NULL;
29189 	} else {
29190 		*bpp = bp;
29191 	}
29192 
29193 done:
29194 	mutex_enter(SD_MUTEX(un));
29195 	return (err);
29196 }
29197 
29198 
29199 /*
29200  *    Function: sd_failfast_flushq
29201  *
29202  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29203  *		in b_flags and move them onto the failfast queue, then kick
29204  *		off a thread to return all bp's on the failfast queue to
29205  *		their owners with an error set.
29206  *
29207  *   Arguments: un - pointer to the soft state struct for the instance.
29208  *
29209  *     Context: may execute in interrupt context.
29210  */
29211 
29212 static void
29213 sd_failfast_flushq(struct sd_lun *un)
29214 {
29215 	struct buf *bp;
29216 	struct buf *next_waitq_bp;
29217 	struct buf *prev_waitq_bp = NULL;
29218 
29219 	ASSERT(un != NULL);
29220 	ASSERT(mutex_owned(SD_MUTEX(un)));
29221 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29222 	ASSERT(un->un_failfast_bp == NULL);
29223 
29224 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29225 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29226 
29227 	/*
29228 	 * Check if we should flush all bufs when entering failfast state, or
29229 	 * just those with B_FAILFAST set.
29230 	 */
29231 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29232 		/*
29233 		 * Move *all* bp's on the wait queue to the failfast flush
29234 		 * queue, including those that do NOT have B_FAILFAST set.
29235 		 */
29236 		if (un->un_failfast_headp == NULL) {
29237 			ASSERT(un->un_failfast_tailp == NULL);
29238 			un->un_failfast_headp = un->un_waitq_headp;
29239 		} else {
29240 			ASSERT(un->un_failfast_tailp != NULL);
29241 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29242 		}
29243 
29244 		un->un_failfast_tailp = un->un_waitq_tailp;
29245 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29246 
29247 	} else {
29248 		/*
29249 		 * Go thru the wait queue, pick off all entries with
29250 		 * B_FAILFAST set, and move these onto the failfast queue.
29251 		 */
29252 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29253 			/*
29254 			 * Save the pointer to the next bp on the wait queue,
29255 			 * so we get to it on the next iteration of this loop.
29256 			 */
29257 			next_waitq_bp = bp->av_forw;
29258 
29259 			/*
29260 			 * If this bp from the wait queue does NOT have
29261 			 * B_FAILFAST set, just move on to the next element
29262 			 * in the wait queue. Note, this is the only place
29263 			 * where it is correct to set prev_waitq_bp.
29264 			 */
29265 			if ((bp->b_flags & B_FAILFAST) == 0) {
29266 				prev_waitq_bp = bp;
29267 				continue;
29268 			}
29269 
29270 			/*
29271 			 * Remove the bp from the wait queue.
29272 			 */
29273 			if (bp == un->un_waitq_headp) {
29274 				/* The bp is the first element of the waitq. */
29275 				un->un_waitq_headp = next_waitq_bp;
29276 				if (un->un_waitq_headp == NULL) {
29277 					/* The wait queue is now empty */
29278 					un->un_waitq_tailp = NULL;
29279 				}
29280 			} else {
29281 				/*
29282 				 * The bp is either somewhere in the middle
29283 				 * or at the end of the wait queue.
29284 				 */
29285 				ASSERT(un->un_waitq_headp != NULL);
29286 				ASSERT(prev_waitq_bp != NULL);
29287 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29288 				    == 0);
29289 				if (bp == un->un_waitq_tailp) {
29290 					/* bp is the last entry on the waitq. */
29291 					ASSERT(next_waitq_bp == NULL);
29292 					un->un_waitq_tailp = prev_waitq_bp;
29293 				}
29294 				prev_waitq_bp->av_forw = next_waitq_bp;
29295 			}
29296 			bp->av_forw = NULL;
29297 
29298 			/*
29299 			 * Now put the bp onto the failfast queue.
29300 			 */
29301 			if (un->un_failfast_headp == NULL) {
29302 				/* failfast queue is currently empty */
29303 				ASSERT(un->un_failfast_tailp == NULL);
29304 				un->un_failfast_headp =
29305 				    un->un_failfast_tailp = bp;
29306 			} else {
29307 				/* Add the bp to the end of the failfast q */
29308 				ASSERT(un->un_failfast_tailp != NULL);
29309 				ASSERT(un->un_failfast_tailp->b_flags &
29310 				    B_FAILFAST);
29311 				un->un_failfast_tailp->av_forw = bp;
29312 				un->un_failfast_tailp = bp;
29313 			}
29314 		}
29315 	}
29316 
29317 	/*
29318 	 * Now return all bp's on the failfast queue to their owners.
29319 	 */
29320 	while ((bp = un->un_failfast_headp) != NULL) {
29321 
29322 		un->un_failfast_headp = bp->av_forw;
29323 		if (un->un_failfast_headp == NULL) {
29324 			un->un_failfast_tailp = NULL;
29325 		}
29326 
29327 		/*
29328 		 * We want to return the bp with a failure error code, but
29329 		 * we do not want a call to sd_start_cmds() to occur here,
29330 		 * so use sd_return_failed_command_no_restart() instead of
29331 		 * sd_return_failed_command().
29332 		 */
29333 		sd_return_failed_command_no_restart(un, bp, EIO);
29334 	}
29335 
29336 	/* Flush the xbuf queues if required. */
29337 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29338 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29339 	}
29340 
29341 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29342 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29343 }
29344 
29345 
29346 /*
29347  *    Function: sd_failfast_flushq_callback
29348  *
29349  * Description: Return TRUE if the given bp meets the criteria for failfast
29350  *		flushing. Used with ddi_xbuf_flushq(9F).
29351  *
29352  *   Arguments: bp - ptr to buf struct to be examined.
29353  *
29354  *     Context: Any
29355  */
29356 
29357 static int
29358 sd_failfast_flushq_callback(struct buf *bp)
29359 {
29360 	/*
29361 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29362 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29363 	 */
29364 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29365 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29366 }
29367 
29368 
29369 #if defined(__i386) || defined(__amd64)
29370 /*
29371  * Function: sd_setup_next_xfer
29372  *
29373  * Description: Prepare next I/O operation using DMA_PARTIAL
29374  *
29375  */
29376 
29377 static int
29378 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29379     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29380 {
29381 	ssize_t	num_blks_not_xfered;
29382 	daddr_t	strt_blk_num;
29383 	ssize_t	bytes_not_xfered;
29384 	int	rval;
29385 
29386 	ASSERT(pkt->pkt_resid == 0);
29387 
29388 	/*
29389 	 * Calculate next block number and amount to be transferred.
29390 	 *
29391 	 * How much data NOT transfered to the HBA yet.
29392 	 */
29393 	bytes_not_xfered = xp->xb_dma_resid;
29394 
29395 	/*
29396 	 * figure how many blocks NOT transfered to the HBA yet.
29397 	 */
29398 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29399 
29400 	/*
29401 	 * set starting block number to the end of what WAS transfered.
29402 	 */
29403 	strt_blk_num = xp->xb_blkno +
29404 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29405 
29406 	/*
29407 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29408 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29409 	 * the disk mutex here.
29410 	 */
29411 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29412 	    strt_blk_num, num_blks_not_xfered);
29413 
29414 	if (rval == 0) {
29415 
29416 		/*
29417 		 * Success.
29418 		 *
29419 		 * Adjust things if there are still more blocks to be
29420 		 * transfered.
29421 		 */
29422 		xp->xb_dma_resid = pkt->pkt_resid;
29423 		pkt->pkt_resid = 0;
29424 
29425 		return (1);
29426 	}
29427 
29428 	/*
29429 	 * There's really only one possible return value from
29430 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29431 	 * returns NULL.
29432 	 */
29433 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29434 
29435 	bp->b_resid = bp->b_bcount;
29436 	bp->b_flags |= B_ERROR;
29437 
29438 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29439 	    "Error setting up next portion of DMA transfer\n");
29440 
29441 	return (0);
29442 }
29443 #endif
29444 
29445 /*
29446  * Note: The following sd_faultinjection_ioctl( ) routines implement
29447  * driver support for handling fault injection for error analysis
29448  * causing faults in multiple layers of the driver.
29449  *
29450  */
29451 
29452 #ifdef SD_FAULT_INJECTION
29453 static uint_t   sd_fault_injection_on = 0;
29454 
29455 /*
29456  *    Function: sd_faultinjection_ioctl()
29457  *
29458  * Description: This routine is the driver entry point for handling
29459  *              faultinjection ioctls to inject errors into the
29460  *              layer model
29461  *
29462  *   Arguments: cmd	- the ioctl cmd recieved
29463  *		arg	- the arguments from user and returns
29464  */
29465 
29466 static void
29467 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29468 
29469 	uint_t i;
29470 	uint_t rval;
29471 
29472 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29473 
29474 	mutex_enter(SD_MUTEX(un));
29475 
29476 	switch (cmd) {
29477 	case SDIOCRUN:
29478 		/* Allow pushed faults to be injected */
29479 		SD_INFO(SD_LOG_SDTEST, un,
29480 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29481 
29482 		sd_fault_injection_on = 1;
29483 
29484 		SD_INFO(SD_LOG_IOERR, un,
29485 		    "sd_faultinjection_ioctl: run finished\n");
29486 		break;
29487 
29488 	case SDIOCSTART:
29489 		/* Start Injection Session */
29490 		SD_INFO(SD_LOG_SDTEST, un,
29491 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29492 
29493 		sd_fault_injection_on = 0;
29494 		un->sd_injection_mask = 0xFFFFFFFF;
29495 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29496 			un->sd_fi_fifo_pkt[i] = NULL;
29497 			un->sd_fi_fifo_xb[i] = NULL;
29498 			un->sd_fi_fifo_un[i] = NULL;
29499 			un->sd_fi_fifo_arq[i] = NULL;
29500 		}
29501 		un->sd_fi_fifo_start = 0;
29502 		un->sd_fi_fifo_end = 0;
29503 
29504 		mutex_enter(&(un->un_fi_mutex));
29505 		un->sd_fi_log[0] = '\0';
29506 		un->sd_fi_buf_len = 0;
29507 		mutex_exit(&(un->un_fi_mutex));
29508 
29509 		SD_INFO(SD_LOG_IOERR, un,
29510 		    "sd_faultinjection_ioctl: start finished\n");
29511 		break;
29512 
29513 	case SDIOCSTOP:
29514 		/* Stop Injection Session */
29515 		SD_INFO(SD_LOG_SDTEST, un,
29516 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
29517 		sd_fault_injection_on = 0;
29518 		un->sd_injection_mask = 0x0;
29519 
29520 		/* Empty stray or unuseds structs from fifo */
29521 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29522 			if (un->sd_fi_fifo_pkt[i] != NULL) {
29523 				kmem_free(un->sd_fi_fifo_pkt[i],
29524 				    sizeof (struct sd_fi_pkt));
29525 			}
29526 			if (un->sd_fi_fifo_xb[i] != NULL) {
29527 				kmem_free(un->sd_fi_fifo_xb[i],
29528 				    sizeof (struct sd_fi_xb));
29529 			}
29530 			if (un->sd_fi_fifo_un[i] != NULL) {
29531 				kmem_free(un->sd_fi_fifo_un[i],
29532 				    sizeof (struct sd_fi_un));
29533 			}
29534 			if (un->sd_fi_fifo_arq[i] != NULL) {
29535 				kmem_free(un->sd_fi_fifo_arq[i],
29536 				    sizeof (struct sd_fi_arq));
29537 			}
29538 			un->sd_fi_fifo_pkt[i] = NULL;
29539 			un->sd_fi_fifo_un[i] = NULL;
29540 			un->sd_fi_fifo_xb[i] = NULL;
29541 			un->sd_fi_fifo_arq[i] = NULL;
29542 		}
29543 		un->sd_fi_fifo_start = 0;
29544 		un->sd_fi_fifo_end = 0;
29545 
29546 		SD_INFO(SD_LOG_IOERR, un,
29547 		    "sd_faultinjection_ioctl: stop finished\n");
29548 		break;
29549 
29550 	case SDIOCINSERTPKT:
29551 		/* Store a packet struct to be pushed onto fifo */
29552 		SD_INFO(SD_LOG_SDTEST, un,
29553 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
29554 
29555 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29556 
29557 		sd_fault_injection_on = 0;
29558 
29559 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
29560 		if (un->sd_fi_fifo_pkt[i] != NULL) {
29561 			kmem_free(un->sd_fi_fifo_pkt[i],
29562 			    sizeof (struct sd_fi_pkt));
29563 		}
29564 		if (arg != NULL) {
29565 			un->sd_fi_fifo_pkt[i] =
29566 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
29567 			if (un->sd_fi_fifo_pkt[i] == NULL) {
29568 				/* Alloc failed don't store anything */
29569 				break;
29570 			}
29571 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
29572 			    sizeof (struct sd_fi_pkt), 0);
29573 			if (rval == -1) {
29574 				kmem_free(un->sd_fi_fifo_pkt[i],
29575 				    sizeof (struct sd_fi_pkt));
29576 				un->sd_fi_fifo_pkt[i] = NULL;
29577 			}
29578 		} else {
29579 			SD_INFO(SD_LOG_IOERR, un,
29580 			    "sd_faultinjection_ioctl: pkt null\n");
29581 		}
29582 		break;
29583 
29584 	case SDIOCINSERTXB:
29585 		/* Store a xb struct to be pushed onto fifo */
29586 		SD_INFO(SD_LOG_SDTEST, un,
29587 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29588 
29589 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29590 
29591 		sd_fault_injection_on = 0;
29592 
29593 		if (un->sd_fi_fifo_xb[i] != NULL) {
29594 			kmem_free(un->sd_fi_fifo_xb[i],
29595 			    sizeof (struct sd_fi_xb));
29596 			un->sd_fi_fifo_xb[i] = NULL;
29597 		}
29598 		if (arg != NULL) {
29599 			un->sd_fi_fifo_xb[i] =
29600 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29601 			if (un->sd_fi_fifo_xb[i] == NULL) {
29602 				/* Alloc failed don't store anything */
29603 				break;
29604 			}
29605 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29606 			    sizeof (struct sd_fi_xb), 0);
29607 
29608 			if (rval == -1) {
29609 				kmem_free(un->sd_fi_fifo_xb[i],
29610 				    sizeof (struct sd_fi_xb));
29611 				un->sd_fi_fifo_xb[i] = NULL;
29612 			}
29613 		} else {
29614 			SD_INFO(SD_LOG_IOERR, un,
29615 			    "sd_faultinjection_ioctl: xb null\n");
29616 		}
29617 		break;
29618 
29619 	case SDIOCINSERTUN:
29620 		/* Store a un struct to be pushed onto fifo */
29621 		SD_INFO(SD_LOG_SDTEST, un,
29622 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29623 
29624 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29625 
29626 		sd_fault_injection_on = 0;
29627 
29628 		if (un->sd_fi_fifo_un[i] != NULL) {
29629 			kmem_free(un->sd_fi_fifo_un[i],
29630 			    sizeof (struct sd_fi_un));
29631 			un->sd_fi_fifo_un[i] = NULL;
29632 		}
29633 		if (arg != NULL) {
29634 			un->sd_fi_fifo_un[i] =
29635 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29636 			if (un->sd_fi_fifo_un[i] == NULL) {
29637 				/* Alloc failed don't store anything */
29638 				break;
29639 			}
29640 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29641 			    sizeof (struct sd_fi_un), 0);
29642 			if (rval == -1) {
29643 				kmem_free(un->sd_fi_fifo_un[i],
29644 				    sizeof (struct sd_fi_un));
29645 				un->sd_fi_fifo_un[i] = NULL;
29646 			}
29647 
29648 		} else {
29649 			SD_INFO(SD_LOG_IOERR, un,
29650 			    "sd_faultinjection_ioctl: un null\n");
29651 		}
29652 
29653 		break;
29654 
29655 	case SDIOCINSERTARQ:
29656 		/* Store a arq struct to be pushed onto fifo */
29657 		SD_INFO(SD_LOG_SDTEST, un,
29658 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29659 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29660 
29661 		sd_fault_injection_on = 0;
29662 
29663 		if (un->sd_fi_fifo_arq[i] != NULL) {
29664 			kmem_free(un->sd_fi_fifo_arq[i],
29665 			    sizeof (struct sd_fi_arq));
29666 			un->sd_fi_fifo_arq[i] = NULL;
29667 		}
29668 		if (arg != NULL) {
29669 			un->sd_fi_fifo_arq[i] =
29670 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29671 			if (un->sd_fi_fifo_arq[i] == NULL) {
29672 				/* Alloc failed don't store anything */
29673 				break;
29674 			}
29675 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29676 			    sizeof (struct sd_fi_arq), 0);
29677 			if (rval == -1) {
29678 				kmem_free(un->sd_fi_fifo_arq[i],
29679 				    sizeof (struct sd_fi_arq));
29680 				un->sd_fi_fifo_arq[i] = NULL;
29681 			}
29682 
29683 		} else {
29684 			SD_INFO(SD_LOG_IOERR, un,
29685 			    "sd_faultinjection_ioctl: arq null\n");
29686 		}
29687 
29688 		break;
29689 
29690 	case SDIOCPUSH:
29691 		/* Push stored xb, pkt, un, and arq onto fifo */
29692 		sd_fault_injection_on = 0;
29693 
29694 		if (arg != NULL) {
29695 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29696 			if (rval != -1 &&
29697 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29698 				un->sd_fi_fifo_end += i;
29699 			}
29700 		} else {
29701 			SD_INFO(SD_LOG_IOERR, un,
29702 			    "sd_faultinjection_ioctl: push arg null\n");
29703 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29704 				un->sd_fi_fifo_end++;
29705 			}
29706 		}
29707 		SD_INFO(SD_LOG_IOERR, un,
29708 		    "sd_faultinjection_ioctl: push to end=%d\n",
29709 		    un->sd_fi_fifo_end);
29710 		break;
29711 
29712 	case SDIOCRETRIEVE:
29713 		/* Return buffer of log from Injection session */
29714 		SD_INFO(SD_LOG_SDTEST, un,
29715 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29716 
29717 		sd_fault_injection_on = 0;
29718 
29719 		mutex_enter(&(un->un_fi_mutex));
29720 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29721 		    un->sd_fi_buf_len+1, 0);
29722 		mutex_exit(&(un->un_fi_mutex));
29723 
29724 		if (rval == -1) {
29725 			/*
29726 			 * arg is possibly invalid setting
29727 			 * it to NULL for return
29728 			 */
29729 			arg = NULL;
29730 		}
29731 		break;
29732 	}
29733 
29734 	mutex_exit(SD_MUTEX(un));
29735 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29736 			    " exit\n");
29737 }
29738 
29739 
29740 /*
29741  *    Function: sd_injection_log()
29742  *
29743  * Description: This routine adds buff to the already existing injection log
29744  *              for retrieval via faultinjection_ioctl for use in fault
29745  *              detection and recovery
29746  *
29747  *   Arguments: buf - the string to add to the log
29748  */
29749 
29750 static void
29751 sd_injection_log(char *buf, struct sd_lun *un)
29752 {
29753 	uint_t len;
29754 
29755 	ASSERT(un != NULL);
29756 	ASSERT(buf != NULL);
29757 
29758 	mutex_enter(&(un->un_fi_mutex));
29759 
29760 	len = min(strlen(buf), 255);
29761 	/* Add logged value to Injection log to be returned later */
29762 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29763 		uint_t	offset = strlen((char *)un->sd_fi_log);
29764 		char *destp = (char *)un->sd_fi_log + offset;
29765 		int i;
29766 		for (i = 0; i < len; i++) {
29767 			*destp++ = *buf++;
29768 		}
29769 		un->sd_fi_buf_len += len;
29770 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29771 	}
29772 
29773 	mutex_exit(&(un->un_fi_mutex));
29774 }
29775 
29776 
29777 /*
29778  *    Function: sd_faultinjection()
29779  *
29780  * Description: This routine takes the pkt and changes its
29781  *		content based on error injection scenerio.
29782  *
29783  *   Arguments: pktp	- packet to be changed
29784  */
29785 
29786 static void
29787 sd_faultinjection(struct scsi_pkt *pktp)
29788 {
29789 	uint_t i;
29790 	struct sd_fi_pkt *fi_pkt;
29791 	struct sd_fi_xb *fi_xb;
29792 	struct sd_fi_un *fi_un;
29793 	struct sd_fi_arq *fi_arq;
29794 	struct buf *bp;
29795 	struct sd_xbuf *xb;
29796 	struct sd_lun *un;
29797 
29798 	ASSERT(pktp != NULL);
29799 
29800 	/* pull bp xb and un from pktp */
29801 	bp = (struct buf *)pktp->pkt_private;
29802 	xb = SD_GET_XBUF(bp);
29803 	un = SD_GET_UN(bp);
29804 
29805 	ASSERT(un != NULL);
29806 
29807 	mutex_enter(SD_MUTEX(un));
29808 
29809 	SD_TRACE(SD_LOG_SDTEST, un,
29810 	    "sd_faultinjection: entry Injection from sdintr\n");
29811 
29812 	/* if injection is off return */
29813 	if (sd_fault_injection_on == 0 ||
29814 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29815 		mutex_exit(SD_MUTEX(un));
29816 		return;
29817 	}
29818 
29819 
29820 	/* take next set off fifo */
29821 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29822 
29823 	fi_pkt = un->sd_fi_fifo_pkt[i];
29824 	fi_xb = un->sd_fi_fifo_xb[i];
29825 	fi_un = un->sd_fi_fifo_un[i];
29826 	fi_arq = un->sd_fi_fifo_arq[i];
29827 
29828 
29829 	/* set variables accordingly */
29830 	/* set pkt if it was on fifo */
29831 	if (fi_pkt != NULL) {
29832 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29833 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29834 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29835 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29836 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29837 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29838 
29839 	}
29840 
29841 	/* set xb if it was on fifo */
29842 	if (fi_xb != NULL) {
29843 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29844 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29845 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29846 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29847 		    "xb_victim_retry_count");
29848 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29849 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29850 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29851 
29852 		/* copy in block data from sense */
29853 		if (fi_xb->xb_sense_data[0] != -1) {
29854 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29855 			    SENSE_LENGTH);
29856 		}
29857 
29858 		/* copy in extended sense codes */
29859 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
29860 		    "es_code");
29861 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
29862 		    "es_key");
29863 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
29864 		    "es_add_code");
29865 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
29866 		    es_qual_code, "es_qual_code");
29867 	}
29868 
29869 	/* set un if it was on fifo */
29870 	if (fi_un != NULL) {
29871 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29872 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29873 		SD_CONDSET(un, un, un_reset_retry_count,
29874 		    "un_reset_retry_count");
29875 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29876 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29877 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29878 		SD_CONDSET(un, un, un_f_geometry_is_valid,
29879 		    "un_f_geometry_is_valid");
29880 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29881 		    "un_f_allow_bus_device_reset");
29882 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29883 
29884 	}
29885 
29886 	/* copy in auto request sense if it was on fifo */
29887 	if (fi_arq != NULL) {
29888 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29889 	}
29890 
29891 	/* free structs */
29892 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29893 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29894 	}
29895 	if (un->sd_fi_fifo_xb[i] != NULL) {
29896 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29897 	}
29898 	if (un->sd_fi_fifo_un[i] != NULL) {
29899 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29900 	}
29901 	if (un->sd_fi_fifo_arq[i] != NULL) {
29902 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29903 	}
29904 
29905 	/*
29906 	 * kmem_free does not gurantee to set to NULL
29907 	 * since we uses these to determine if we set
29908 	 * values or not lets confirm they are always
29909 	 * NULL after free
29910 	 */
29911 	un->sd_fi_fifo_pkt[i] = NULL;
29912 	un->sd_fi_fifo_un[i] = NULL;
29913 	un->sd_fi_fifo_xb[i] = NULL;
29914 	un->sd_fi_fifo_arq[i] = NULL;
29915 
29916 	un->sd_fi_fifo_start++;
29917 
29918 	mutex_exit(SD_MUTEX(un));
29919 
29920 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29921 }
29922 
29923 #endif /* SD_FAULT_INJECTION */
29924