xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 0ccf9e790d232720597416743840df88825a9317)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kstat.h>
43 #include <sys/vtrace.h>
44 #include <sys/note.h>
45 #include <sys/thread.h>
46 #include <sys/proc.h>
47 #include <sys/efi_partition.h>
48 #include <sys/var.h>
49 #include <sys/aio_req.h>
50 
51 #ifdef __lock_lint
52 #define	_LP64
53 #define	__amd64
54 #endif
55 
56 #if (defined(__fibre))
57 /* Note: is there a leadville version of the following? */
58 #include <sys/fc4/fcal_linkapp.h>
59 #endif
60 #include <sys/taskq.h>
61 #include <sys/uuid.h>
62 #include <sys/byteorder.h>
63 #include <sys/sdt.h>
64 
65 #include "sd_xbuf.h"
66 
67 #include <sys/scsi/targets/sddef.h>
68 
69 
70 /*
71  * Loadable module info.
72  */
73 #if (defined(__fibre))
74 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
75 char _depends_on[]	= "misc/scsi drv/fcp";
76 #else
77 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
78 char _depends_on[]	= "misc/scsi";
79 #endif
80 
81 /*
82  * Define the interconnect type, to allow the driver to distinguish
83  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
84  *
85  * This is really for backward compatability. In the future, the driver
86  * should actually check the "interconnect-type" property as reported by
87  * the HBA; however at present this property is not defined by all HBAs,
88  * so we will use this #define (1) to permit the driver to run in
89  * backward-compatability mode; and (2) to print a notification message
90  * if an FC HBA does not support the "interconnect-type" property.  The
91  * behavior of the driver will be to assume parallel SCSI behaviors unless
92  * the "interconnect-type" property is defined by the HBA **AND** has a
93  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
94  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
95  * Channel behaviors (as per the old ssd).  (Note that the
96  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
97  * will result in the driver assuming parallel SCSI behaviors.)
98  *
99  * (see common/sys/scsi/impl/services.h)
100  *
101  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
102  * since some FC HBAs may already support that, and there is some code in
103  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
104  * default would confuse that code, and besides things should work fine
105  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
106  * "interconnect_type" property.
107  *
108  * Notes for off-by-1 workaround:
109  * -----------------------------
110  *
111  *    SCSI READ_CAPACITY command returns the LBA number of the
112  *    last logical block, but sd once treated this number as
113  *    disks' capacity on x86 platform. And LBAs are addressed
114  *    based 0. So the last block was lost on x86 platform.
115  *
116  *    Now, we remove this workaround. In order for present sd
117  *    driver to work with disks which are labeled/partitioned
118  *    via previous sd, we add workaround as follows:
119  *
120  *    1) Locate backup EFI label: sd searchs the next to last
121  *       block for backup EFI label if it can't find it on the
122  *       last block;
123  *    2) Calculate geometry: refer to sd_convert_geometry(), If
124  *       capacity increasing by 1 causes disks' capacity to cross
125  *       over the limits in table CHS_values, geometry info will
126  *       change. This will raise an issue: In case that primary
127  *       VTOC label is destroyed, format commandline can restore
128  *       it via backup VTOC labels. And format locates backup VTOC
129  *       labels by use of geometry from sd driver. So changing
130  *       geometry will prevent format from finding backup VTOC
131  *       labels. To eliminate this side effect for compatibility,
132  *       sd uses (capacity -1) to calculate geometry;
133  *    3) 1TB disks: VTOC uses 32-bit signed int, thus sd doesn't
134  *       support VTOC for a disk which has more than DK_MAX_BLOCKS
135  *       LBAs. However, for exactly 1TB disk, it was treated as
136  *       (1T - 512)B in the past, and could have VTOC. To overcome
137  *       this, if an exactly 1TB disk has solaris fdisk partition,
138  *       it will be allowed to work with sd.
139  */
140 #if (defined(__fibre))
141 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
142 #else
143 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
144 #endif
145 
146 /*
147  * The name of the driver, established from the module name in _init.
148  */
149 static	char *sd_label			= NULL;
150 
151 /*
152  * Driver name is unfortunately prefixed on some driver.conf properties.
153  */
154 #if (defined(__fibre))
155 #define	sd_max_xfer_size		ssd_max_xfer_size
156 #define	sd_config_list			ssd_config_list
157 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
158 static	char *sd_config_list		= "ssd-config-list";
159 #else
160 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
161 static	char *sd_config_list		= "sd-config-list";
162 #endif
163 
164 /*
165  * Driver global variables
166  */
167 
168 #if (defined(__fibre))
169 /*
170  * These #defines are to avoid namespace collisions that occur because this
171  * code is currently used to compile two seperate driver modules: sd and ssd.
172  * All global variables need to be treated this way (even if declared static)
173  * in order to allow the debugger to resolve the names properly.
174  * It is anticipated that in the near future the ssd module will be obsoleted,
175  * at which time this namespace issue should go away.
176  */
177 #define	sd_state			ssd_state
178 #define	sd_io_time			ssd_io_time
179 #define	sd_failfast_enable		ssd_failfast_enable
180 #define	sd_ua_retry_count		ssd_ua_retry_count
181 #define	sd_report_pfa			ssd_report_pfa
182 #define	sd_max_throttle			ssd_max_throttle
183 #define	sd_min_throttle			ssd_min_throttle
184 #define	sd_rot_delay			ssd_rot_delay
185 
186 #define	sd_retry_on_reservation_conflict	\
187 					ssd_retry_on_reservation_conflict
188 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
189 #define	sd_resv_conflict_name		ssd_resv_conflict_name
190 
191 #define	sd_component_mask		ssd_component_mask
192 #define	sd_level_mask			ssd_level_mask
193 #define	sd_debug_un			ssd_debug_un
194 #define	sd_error_level			ssd_error_level
195 
196 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
197 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
198 
199 #define	sd_tr				ssd_tr
200 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
201 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
202 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
203 #define	sd_check_media_time		ssd_check_media_time
204 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
205 #define	sd_label_mutex			ssd_label_mutex
206 #define	sd_detach_mutex			ssd_detach_mutex
207 #define	sd_log_buf			ssd_log_buf
208 #define	sd_log_mutex			ssd_log_mutex
209 
210 #define	sd_disk_table			ssd_disk_table
211 #define	sd_disk_table_size		ssd_disk_table_size
212 #define	sd_sense_mutex			ssd_sense_mutex
213 #define	sd_cdbtab			ssd_cdbtab
214 
215 #define	sd_cb_ops			ssd_cb_ops
216 #define	sd_ops				ssd_ops
217 #define	sd_additional_codes		ssd_additional_codes
218 
219 #define	sd_minor_data			ssd_minor_data
220 #define	sd_minor_data_efi		ssd_minor_data_efi
221 
222 #define	sd_tq				ssd_tq
223 #define	sd_wmr_tq			ssd_wmr_tq
224 #define	sd_taskq_name			ssd_taskq_name
225 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
226 #define	sd_taskq_minalloc		ssd_taskq_minalloc
227 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
228 
229 #define	sd_dump_format_string		ssd_dump_format_string
230 
231 #define	sd_iostart_chain		ssd_iostart_chain
232 #define	sd_iodone_chain			ssd_iodone_chain
233 
234 #define	sd_pm_idletime			ssd_pm_idletime
235 
236 #define	sd_force_pm_supported		ssd_force_pm_supported
237 
238 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
239 
240 #endif
241 
242 
243 #ifdef	SDDEBUG
244 int	sd_force_pm_supported		= 0;
245 #endif	/* SDDEBUG */
246 
247 void *sd_state				= NULL;
248 int sd_io_time				= SD_IO_TIME;
249 int sd_failfast_enable			= 1;
250 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
251 int sd_report_pfa			= 1;
252 int sd_max_throttle			= SD_MAX_THROTTLE;
253 int sd_min_throttle			= SD_MIN_THROTTLE;
254 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
255 int sd_qfull_throttle_enable		= TRUE;
256 
257 int sd_retry_on_reservation_conflict	= 1;
258 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
259 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
260 
261 static int sd_dtype_optical_bind	= -1;
262 
263 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
264 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
265 
266 /*
267  * Global data for debug logging. To enable debug printing, sd_component_mask
268  * and sd_level_mask should be set to the desired bit patterns as outlined in
269  * sddef.h.
270  */
271 uint_t	sd_component_mask		= 0x0;
272 uint_t	sd_level_mask			= 0x0;
273 struct	sd_lun *sd_debug_un		= NULL;
274 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
275 
276 /* Note: these may go away in the future... */
277 static uint32_t	sd_xbuf_active_limit	= 512;
278 static uint32_t sd_xbuf_reserve_limit	= 16;
279 
280 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
281 
282 /*
283  * Timer value used to reset the throttle after it has been reduced
284  * (typically in response to TRAN_BUSY or STATUS_QFULL)
285  */
286 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
287 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
288 
289 /*
290  * Interval value associated with the media change scsi watch.
291  */
292 static int sd_check_media_time		= 3000000;
293 
294 /*
295  * Wait value used for in progress operations during a DDI_SUSPEND
296  */
297 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
298 
299 /*
300  * sd_label_mutex protects a static buffer used in the disk label
301  * component of the driver
302  */
303 static kmutex_t sd_label_mutex;
304 
305 /*
306  * sd_detach_mutex protects un_layer_count, un_detach_count, and
307  * un_opens_in_progress in the sd_lun structure.
308  */
309 static kmutex_t sd_detach_mutex;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
312 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
313 
314 /*
315  * Global buffer and mutex for debug logging
316  */
317 static char	sd_log_buf[1024];
318 static kmutex_t	sd_log_mutex;
319 
320 
321 /*
322  * "Smart" Probe Caching structs, globals, #defines, etc.
323  * For parallel scsi and non-self-identify device only.
324  */
325 
326 /*
327  * The following resources and routines are implemented to support
328  * "smart" probing, which caches the scsi_probe() results in an array,
329  * in order to help avoid long probe times.
330  */
331 struct sd_scsi_probe_cache {
332 	struct	sd_scsi_probe_cache	*next;
333 	dev_info_t	*pdip;
334 	int		cache[NTARGETS_WIDE];
335 };
336 
337 static kmutex_t	sd_scsi_probe_cache_mutex;
338 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
339 
340 /*
341  * Really we only need protection on the head of the linked list, but
342  * better safe than sorry.
343  */
344 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
345     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
346 
347 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
348     sd_scsi_probe_cache_head))
349 
350 
351 /*
352  * Vendor specific data name property declarations
353  */
354 
355 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
356 
357 static sd_tunables seagate_properties = {
358 	SEAGATE_THROTTLE_VALUE,
359 	0,
360 	0,
361 	0,
362 	0,
363 	0,
364 	0,
365 	0,
366 	0
367 };
368 
369 
370 static sd_tunables fujitsu_properties = {
371 	FUJITSU_THROTTLE_VALUE,
372 	0,
373 	0,
374 	0,
375 	0,
376 	0,
377 	0,
378 	0,
379 	0
380 };
381 
382 static sd_tunables ibm_properties = {
383 	IBM_THROTTLE_VALUE,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	0,
390 	0,
391 	0
392 };
393 
394 static sd_tunables purple_properties = {
395 	PURPLE_THROTTLE_VALUE,
396 	0,
397 	0,
398 	PURPLE_BUSY_RETRIES,
399 	PURPLE_RESET_RETRY_COUNT,
400 	PURPLE_RESERVE_RELEASE_TIME,
401 	0,
402 	0,
403 	0
404 };
405 
406 static sd_tunables sve_properties = {
407 	SVE_THROTTLE_VALUE,
408 	0,
409 	0,
410 	SVE_BUSY_RETRIES,
411 	SVE_RESET_RETRY_COUNT,
412 	SVE_RESERVE_RELEASE_TIME,
413 	SVE_MIN_THROTTLE_VALUE,
414 	SVE_DISKSORT_DISABLED_FLAG,
415 	0
416 };
417 
418 static sd_tunables maserati_properties = {
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	0,
425 	0,
426 	MASERATI_DISKSORT_DISABLED_FLAG,
427 	MASERATI_LUN_RESET_ENABLED_FLAG
428 };
429 
430 static sd_tunables pirus_properties = {
431 	PIRUS_THROTTLE_VALUE,
432 	0,
433 	PIRUS_NRR_COUNT,
434 	PIRUS_BUSY_RETRIES,
435 	PIRUS_RESET_RETRY_COUNT,
436 	0,
437 	PIRUS_MIN_THROTTLE_VALUE,
438 	PIRUS_DISKSORT_DISABLED_FLAG,
439 	PIRUS_LUN_RESET_ENABLED_FLAG
440 };
441 
442 #endif
443 
444 #if (defined(__sparc) && !defined(__fibre)) || \
445 	(defined(__i386) || defined(__amd64))
446 
447 
448 static sd_tunables elite_properties = {
449 	ELITE_THROTTLE_VALUE,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0,
456 	0,
457 	0
458 };
459 
460 static sd_tunables st31200n_properties = {
461 	ST31200N_THROTTLE_VALUE,
462 	0,
463 	0,
464 	0,
465 	0,
466 	0,
467 	0,
468 	0,
469 	0
470 };
471 
472 #endif /* Fibre or not */
473 
474 static sd_tunables lsi_properties_scsi = {
475 	LSI_THROTTLE_VALUE,
476 	0,
477 	LSI_NOTREADY_RETRIES,
478 	0,
479 	0,
480 	0,
481 	0,
482 	0,
483 	0
484 };
485 
486 static sd_tunables symbios_properties = {
487 	SYMBIOS_THROTTLE_VALUE,
488 	0,
489 	SYMBIOS_NOTREADY_RETRIES,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0
496 };
497 
498 static sd_tunables lsi_properties = {
499 	0,
500 	0,
501 	LSI_NOTREADY_RETRIES,
502 	0,
503 	0,
504 	0,
505 	0,
506 	0,
507 	0
508 };
509 
510 static sd_tunables lsi_oem_properties = {
511 	0,
512 	0,
513 	LSI_OEM_NOTREADY_RETRIES,
514 	0,
515 	0,
516 	0,
517 	0,
518 	0,
519 	0
520 };
521 
522 
523 
524 #if (defined(SD_PROP_TST))
525 
526 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
527 #define	SD_TST_THROTTLE_VAL	16
528 #define	SD_TST_NOTREADY_VAL	12
529 #define	SD_TST_BUSY_VAL		60
530 #define	SD_TST_RST_RETRY_VAL	36
531 #define	SD_TST_RSV_REL_TIME	60
532 
533 static sd_tunables tst_properties = {
534 	SD_TST_THROTTLE_VAL,
535 	SD_TST_CTYPE_VAL,
536 	SD_TST_NOTREADY_VAL,
537 	SD_TST_BUSY_VAL,
538 	SD_TST_RST_RETRY_VAL,
539 	SD_TST_RSV_REL_TIME,
540 	0,
541 	0,
542 	0
543 };
544 #endif
545 
546 /* This is similiar to the ANSI toupper implementation */
547 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
548 
549 /*
550  * Static Driver Configuration Table
551  *
552  * This is the table of disks which need throttle adjustment (or, perhaps
553  * something else as defined by the flags at a future time.)  device_id
554  * is a string consisting of concatenated vid (vendor), pid (product/model)
555  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
556  * the parts of the string are as defined by the sizes in the scsi_inquiry
557  * structure.  Device type is searched as far as the device_id string is
558  * defined.  Flags defines which values are to be set in the driver from the
559  * properties list.
560  *
561  * Entries below which begin and end with a "*" are a special case.
562  * These do not have a specific vendor, and the string which follows
563  * can appear anywhere in the 16 byte PID portion of the inquiry data.
564  *
565  * Entries below which begin and end with a " " (blank) are a special
566  * case. The comparison function will treat multiple consecutive blanks
567  * as equivalent to a single blank. For example, this causes a
568  * sd_disk_table entry of " NEC CDROM " to match a device's id string
569  * of  "NEC       CDROM".
570  *
571  * Note: The MD21 controller type has been obsoleted.
572  *	 ST318202F is a Legacy device
573  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
574  *	 made with an FC connection. The entries here are a legacy.
575  */
576 static sd_disk_config_t sd_disk_table[] = {
577 #if defined(__fibre) || defined(__i386) || defined(__amd64)
578 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
592 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
599 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
600 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
601 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
603 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
604 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
605 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
621 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
622 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
623 			SD_CONF_BSET_BSY_RETRY_COUNT|
624 			SD_CONF_BSET_RST_RETRIES|
625 			SD_CONF_BSET_RSV_REL_TIME,
626 		&purple_properties },
627 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
628 		SD_CONF_BSET_BSY_RETRY_COUNT|
629 		SD_CONF_BSET_RST_RETRIES|
630 		SD_CONF_BSET_RSV_REL_TIME|
631 		SD_CONF_BSET_MIN_THROTTLE|
632 		SD_CONF_BSET_DISKSORT_DISABLED,
633 		&sve_properties },
634 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
635 			SD_CONF_BSET_BSY_RETRY_COUNT|
636 			SD_CONF_BSET_RST_RETRIES|
637 			SD_CONF_BSET_RSV_REL_TIME,
638 		&purple_properties },
639 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
640 		SD_CONF_BSET_LUN_RESET_ENABLED,
641 		&maserati_properties },
642 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
643 		SD_CONF_BSET_NRR_COUNT|
644 		SD_CONF_BSET_BSY_RETRY_COUNT|
645 		SD_CONF_BSET_RST_RETRIES|
646 		SD_CONF_BSET_MIN_THROTTLE|
647 		SD_CONF_BSET_DISKSORT_DISABLED|
648 		SD_CONF_BSET_LUN_RESET_ENABLED,
649 		&pirus_properties },
650 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
651 		SD_CONF_BSET_NRR_COUNT|
652 		SD_CONF_BSET_BSY_RETRY_COUNT|
653 		SD_CONF_BSET_RST_RETRIES|
654 		SD_CONF_BSET_MIN_THROTTLE|
655 		SD_CONF_BSET_DISKSORT_DISABLED|
656 		SD_CONF_BSET_LUN_RESET_ENABLED,
657 		&pirus_properties },
658 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
659 		SD_CONF_BSET_NRR_COUNT|
660 		SD_CONF_BSET_BSY_RETRY_COUNT|
661 		SD_CONF_BSET_RST_RETRIES|
662 		SD_CONF_BSET_MIN_THROTTLE|
663 		SD_CONF_BSET_DISKSORT_DISABLED|
664 		SD_CONF_BSET_LUN_RESET_ENABLED,
665 		&pirus_properties },
666 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
667 		SD_CONF_BSET_NRR_COUNT|
668 		SD_CONF_BSET_BSY_RETRY_COUNT|
669 		SD_CONF_BSET_RST_RETRIES|
670 		SD_CONF_BSET_MIN_THROTTLE|
671 		SD_CONF_BSET_DISKSORT_DISABLED|
672 		SD_CONF_BSET_LUN_RESET_ENABLED,
673 		&pirus_properties },
674 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
675 		SD_CONF_BSET_NRR_COUNT|
676 		SD_CONF_BSET_BSY_RETRY_COUNT|
677 		SD_CONF_BSET_RST_RETRIES|
678 		SD_CONF_BSET_MIN_THROTTLE|
679 		SD_CONF_BSET_DISKSORT_DISABLED|
680 		SD_CONF_BSET_LUN_RESET_ENABLED,
681 		&pirus_properties },
682 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
683 		SD_CONF_BSET_NRR_COUNT|
684 		SD_CONF_BSET_BSY_RETRY_COUNT|
685 		SD_CONF_BSET_RST_RETRIES|
686 		SD_CONF_BSET_MIN_THROTTLE|
687 		SD_CONF_BSET_DISKSORT_DISABLED|
688 		SD_CONF_BSET_LUN_RESET_ENABLED,
689 		&pirus_properties },
690 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
691 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
692 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
693 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
694 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
695 #endif /* fibre or NON-sparc platforms */
696 #if ((defined(__sparc) && !defined(__fibre)) ||\
697 	(defined(__i386) || defined(__amd64)))
698 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
699 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
700 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
701 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
702 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
703 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
704 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
705 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
706 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
707 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
710 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
711 	    &symbios_properties },
712 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
713 	    &lsi_properties_scsi },
714 #if defined(__i386) || defined(__amd64)
715 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
716 				    | SD_CONF_BSET_READSUB_BCD
717 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
718 				    | SD_CONF_BSET_NO_READ_HEADER
719 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
720 
721 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
722 				    | SD_CONF_BSET_READSUB_BCD
723 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
724 				    | SD_CONF_BSET_NO_READ_HEADER
725 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
726 #endif /* __i386 || __amd64 */
727 #endif /* sparc NON-fibre or NON-sparc platforms */
728 
729 #if (defined(SD_PROP_TST))
730 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
731 				| SD_CONF_BSET_CTYPE
732 				| SD_CONF_BSET_NRR_COUNT
733 				| SD_CONF_BSET_FAB_DEVID
734 				| SD_CONF_BSET_NOCACHE
735 				| SD_CONF_BSET_BSY_RETRY_COUNT
736 				| SD_CONF_BSET_PLAYMSF_BCD
737 				| SD_CONF_BSET_READSUB_BCD
738 				| SD_CONF_BSET_READ_TOC_TRK_BCD
739 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
740 				| SD_CONF_BSET_NO_READ_HEADER
741 				| SD_CONF_BSET_READ_CD_XD4
742 				| SD_CONF_BSET_RST_RETRIES
743 				| SD_CONF_BSET_RSV_REL_TIME
744 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
745 #endif
746 };
747 
748 static const int sd_disk_table_size =
749 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
750 
751 
752 /*
753  * Return codes of sd_uselabel().
754  */
755 #define	SD_LABEL_IS_VALID		0
756 #define	SD_LABEL_IS_INVALID		1
757 
758 #define	SD_INTERCONNECT_PARALLEL	0
759 #define	SD_INTERCONNECT_FABRIC		1
760 #define	SD_INTERCONNECT_FIBRE		2
761 #define	SD_INTERCONNECT_SSA		3
762 #define	SD_IS_PARALLEL_SCSI(un)		\
763 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
764 
765 /*
766  * Definitions used by device id registration routines
767  */
768 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
769 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
770 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
771 #define	WD_NODE			7	/* the whole disk minor */
772 
773 static kmutex_t sd_sense_mutex = {0};
774 
775 /*
776  * Macros for updates of the driver state
777  */
778 #define	New_state(un, s)        \
779 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
780 #define	Restore_state(un)	\
781 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
782 
783 static struct sd_cdbinfo sd_cdbtab[] = {
784 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
785 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
786 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
787 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
788 };
789 
790 /*
791  * Specifies the number of seconds that must have elapsed since the last
792  * cmd. has completed for a device to be declared idle to the PM framework.
793  */
794 static int sd_pm_idletime = 1;
795 
796 /*
797  * Internal function prototypes
798  */
799 
800 #if (defined(__fibre))
801 /*
802  * These #defines are to avoid namespace collisions that occur because this
803  * code is currently used to compile two seperate driver modules: sd and ssd.
804  * All function names need to be treated this way (even if declared static)
805  * in order to allow the debugger to resolve the names properly.
806  * It is anticipated that in the near future the ssd module will be obsoleted,
807  * at which time this ugliness should go away.
808  */
809 #define	sd_log_trace			ssd_log_trace
810 #define	sd_log_info			ssd_log_info
811 #define	sd_log_err			ssd_log_err
812 #define	sdprobe				ssdprobe
813 #define	sdinfo				ssdinfo
814 #define	sd_prop_op			ssd_prop_op
815 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
816 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
817 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
818 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
819 #define	sd_spin_up_unit			ssd_spin_up_unit
820 #define	sd_enable_descr_sense		ssd_enable_descr_sense
821 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
822 #define	sd_set_mmc_caps			ssd_set_mmc_caps
823 #define	sd_read_unit_properties		ssd_read_unit_properties
824 #define	sd_process_sdconf_file		ssd_process_sdconf_file
825 #define	sd_process_sdconf_table		ssd_process_sdconf_table
826 #define	sd_sdconf_id_match		ssd_sdconf_id_match
827 #define	sd_blank_cmp			ssd_blank_cmp
828 #define	sd_chk_vers1_data		ssd_chk_vers1_data
829 #define	sd_set_vers1_properties		ssd_set_vers1_properties
830 #define	sd_validate_geometry		ssd_validate_geometry
831 
832 #if defined(_SUNOS_VTOC_16)
833 #define	sd_convert_geometry		ssd_convert_geometry
834 #endif
835 
836 #define	sd_resync_geom_caches		ssd_resync_geom_caches
837 #define	sd_read_fdisk			ssd_read_fdisk
838 #define	sd_get_physical_geometry	ssd_get_physical_geometry
839 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
840 #define	sd_update_block_info		ssd_update_block_info
841 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
842 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
843 #define	sd_validate_efi			ssd_validate_efi
844 #define	sd_use_efi			ssd_use_efi
845 #define	sd_uselabel			ssd_uselabel
846 #define	sd_build_default_label		ssd_build_default_label
847 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
848 #define	sd_inq_fill			ssd_inq_fill
849 #define	sd_register_devid		ssd_register_devid
850 #define	sd_get_devid_block		ssd_get_devid_block
851 #define	sd_get_devid			ssd_get_devid
852 #define	sd_create_devid			ssd_create_devid
853 #define	sd_write_deviceid		ssd_write_deviceid
854 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
855 #define	sd_setup_pm			ssd_setup_pm
856 #define	sd_create_pm_components		ssd_create_pm_components
857 #define	sd_ddi_suspend			ssd_ddi_suspend
858 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
859 #define	sd_ddi_resume			ssd_ddi_resume
860 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
861 #define	sdpower				ssdpower
862 #define	sdattach			ssdattach
863 #define	sddetach			ssddetach
864 #define	sd_unit_attach			ssd_unit_attach
865 #define	sd_unit_detach			ssd_unit_detach
866 #define	sd_set_unit_attributes		ssd_set_unit_attributes
867 #define	sd_create_minor_nodes		ssd_create_minor_nodes
868 #define	sd_create_errstats		ssd_create_errstats
869 #define	sd_set_errstats			ssd_set_errstats
870 #define	sd_set_pstats			ssd_set_pstats
871 #define	sddump				ssddump
872 #define	sd_scsi_poll			ssd_scsi_poll
873 #define	sd_send_polled_RQS		ssd_send_polled_RQS
874 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
875 #define	sd_init_event_callbacks		ssd_init_event_callbacks
876 #define	sd_event_callback		ssd_event_callback
877 #define	sd_cache_control		ssd_cache_control
878 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
879 #define	sd_make_device			ssd_make_device
880 #define	sdopen				ssdopen
881 #define	sdclose				ssdclose
882 #define	sd_ready_and_valid		ssd_ready_and_valid
883 #define	sdmin				ssdmin
884 #define	sdread				ssdread
885 #define	sdwrite				ssdwrite
886 #define	sdaread				ssdaread
887 #define	sdawrite			ssdawrite
888 #define	sdstrategy			ssdstrategy
889 #define	sdioctl				ssdioctl
890 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
891 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
892 #define	sd_checksum_iostart		ssd_checksum_iostart
893 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
894 #define	sd_pm_iostart			ssd_pm_iostart
895 #define	sd_core_iostart			ssd_core_iostart
896 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
897 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
898 #define	sd_checksum_iodone		ssd_checksum_iodone
899 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
900 #define	sd_pm_iodone			ssd_pm_iodone
901 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
902 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
903 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
904 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
905 #define	sd_buf_iodone			ssd_buf_iodone
906 #define	sd_uscsi_strategy		ssd_uscsi_strategy
907 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
908 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
909 #define	sd_uscsi_iodone			ssd_uscsi_iodone
910 #define	sd_xbuf_strategy		ssd_xbuf_strategy
911 #define	sd_xbuf_init			ssd_xbuf_init
912 #define	sd_pm_entry			ssd_pm_entry
913 #define	sd_pm_exit			ssd_pm_exit
914 
915 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
916 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
917 
918 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
919 #define	sdintr				ssdintr
920 #define	sd_start_cmds			ssd_start_cmds
921 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
922 #define	sd_bioclone_alloc		ssd_bioclone_alloc
923 #define	sd_bioclone_free		ssd_bioclone_free
924 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
925 #define	sd_shadow_buf_free		ssd_shadow_buf_free
926 #define	sd_print_transport_rejected_message	\
927 					ssd_print_transport_rejected_message
928 #define	sd_retry_command		ssd_retry_command
929 #define	sd_set_retry_bp			ssd_set_retry_bp
930 #define	sd_send_request_sense_command	ssd_send_request_sense_command
931 #define	sd_start_retry_command		ssd_start_retry_command
932 #define	sd_start_direct_priority_command	\
933 					ssd_start_direct_priority_command
934 #define	sd_return_failed_command	ssd_return_failed_command
935 #define	sd_return_failed_command_no_restart	\
936 					ssd_return_failed_command_no_restart
937 #define	sd_return_command		ssd_return_command
938 #define	sd_sync_with_callback		ssd_sync_with_callback
939 #define	sdrunout			ssdrunout
940 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
941 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
942 #define	sd_reduce_throttle		ssd_reduce_throttle
943 #define	sd_restore_throttle		ssd_restore_throttle
944 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
945 #define	sd_init_cdb_limits		ssd_init_cdb_limits
946 #define	sd_pkt_status_good		ssd_pkt_status_good
947 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
948 #define	sd_pkt_status_busy		ssd_pkt_status_busy
949 #define	sd_pkt_status_reservation_conflict	\
950 					ssd_pkt_status_reservation_conflict
951 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
952 #define	sd_handle_request_sense		ssd_handle_request_sense
953 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
954 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
955 #define	sd_validate_sense_data		ssd_validate_sense_data
956 #define	sd_decode_sense			ssd_decode_sense
957 #define	sd_print_sense_msg		ssd_print_sense_msg
958 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
959 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
960 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
961 #define	sd_sense_key_medium_or_hardware_error	\
962 					ssd_sense_key_medium_or_hardware_error
963 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
964 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
965 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
966 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
967 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
968 #define	sd_sense_key_default		ssd_sense_key_default
969 #define	sd_print_retry_msg		ssd_print_retry_msg
970 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
971 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
972 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
973 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
974 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
975 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
976 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
977 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
978 #define	sd_pkt_reason_default		ssd_pkt_reason_default
979 #define	sd_reset_target			ssd_reset_target
980 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
981 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
982 #define	sd_taskq_create			ssd_taskq_create
983 #define	sd_taskq_delete			ssd_taskq_delete
984 #define	sd_media_change_task		ssd_media_change_task
985 #define	sd_handle_mchange		ssd_handle_mchange
986 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
987 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
988 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
989 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
990 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
991 					sd_send_scsi_feature_GET_CONFIGURATION
992 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
993 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
994 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
995 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
996 					ssd_send_scsi_PERSISTENT_RESERVE_IN
997 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
998 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
999 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1000 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1001 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1002 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1003 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1004 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1005 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1006 #define	sd_alloc_rqs			ssd_alloc_rqs
1007 #define	sd_free_rqs			ssd_free_rqs
1008 #define	sd_dump_memory			ssd_dump_memory
1009 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
1010 #define	sd_get_media_info		ssd_get_media_info
1011 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1012 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
1013 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
1014 #define	sd_dkio_get_partition		ssd_dkio_get_partition
1015 #define	sd_dkio_set_partition		ssd_dkio_set_partition
1016 #define	sd_dkio_partition		ssd_dkio_partition
1017 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
1018 #define	sd_dkio_get_efi			ssd_dkio_get_efi
1019 #define	sd_build_user_vtoc		ssd_build_user_vtoc
1020 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
1021 #define	sd_dkio_set_efi			ssd_dkio_set_efi
1022 #define	sd_build_label_vtoc		ssd_build_label_vtoc
1023 #define	sd_write_label			ssd_write_label
1024 #define	sd_clear_vtoc			ssd_clear_vtoc
1025 #define	sd_clear_efi			ssd_clear_efi
1026 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1027 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1028 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1029 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
1030 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1031 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1032 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1033 #define	sd_check_mhd			ssd_check_mhd
1034 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1035 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1036 #define	sd_sname			ssd_sname
1037 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1038 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1039 #define	sd_take_ownership		ssd_take_ownership
1040 #define	sd_reserve_release		ssd_reserve_release
1041 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1042 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1043 #define	sd_persistent_reservation_in_read_keys	\
1044 					ssd_persistent_reservation_in_read_keys
1045 #define	sd_persistent_reservation_in_read_resv	\
1046 					ssd_persistent_reservation_in_read_resv
1047 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1048 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1049 #define	sd_mhdioc_release		ssd_mhdioc_release
1050 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1051 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1052 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1053 #define	sr_change_blkmode		ssr_change_blkmode
1054 #define	sr_change_speed			ssr_change_speed
1055 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1056 #define	sr_pause_resume			ssr_pause_resume
1057 #define	sr_play_msf			ssr_play_msf
1058 #define	sr_play_trkind			ssr_play_trkind
1059 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1060 #define	sr_read_subchannel		ssr_read_subchannel
1061 #define	sr_read_tocentry		ssr_read_tocentry
1062 #define	sr_read_tochdr			ssr_read_tochdr
1063 #define	sr_read_cdda			ssr_read_cdda
1064 #define	sr_read_cdxa			ssr_read_cdxa
1065 #define	sr_read_mode1			ssr_read_mode1
1066 #define	sr_read_mode2			ssr_read_mode2
1067 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1068 #define	sr_sector_mode			ssr_sector_mode
1069 #define	sr_eject			ssr_eject
1070 #define	sr_ejected			ssr_ejected
1071 #define	sr_check_wp			ssr_check_wp
1072 #define	sd_check_media			ssd_check_media
1073 #define	sd_media_watch_cb		ssd_media_watch_cb
1074 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1075 #define	sr_volume_ctrl			ssr_volume_ctrl
1076 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1077 #define	sd_log_page_supported		ssd_log_page_supported
1078 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1079 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1080 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1081 #define	sd_range_lock			ssd_range_lock
1082 #define	sd_get_range			ssd_get_range
1083 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1084 #define	sd_range_unlock			ssd_range_unlock
1085 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1086 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1087 
1088 #define	sd_iostart_chain		ssd_iostart_chain
1089 #define	sd_iodone_chain			ssd_iodone_chain
1090 #define	sd_initpkt_map			ssd_initpkt_map
1091 #define	sd_destroypkt_map		ssd_destroypkt_map
1092 #define	sd_chain_type_map		ssd_chain_type_map
1093 #define	sd_chain_index_map		ssd_chain_index_map
1094 
1095 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1096 #define	sd_failfast_flushq		ssd_failfast_flushq
1097 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1098 
1099 #define	sd_is_lsi			ssd_is_lsi
1100 
1101 #endif	/* #if (defined(__fibre)) */
1102 
1103 
1104 int _init(void);
1105 int _fini(void);
1106 int _info(struct modinfo *modinfop);
1107 
1108 /*PRINTFLIKE3*/
1109 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1110 /*PRINTFLIKE3*/
1111 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1112 /*PRINTFLIKE3*/
1113 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1114 
1115 static int sdprobe(dev_info_t *devi);
1116 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1117     void **result);
1118 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1119     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1120 
1121 /*
1122  * Smart probe for parallel scsi
1123  */
1124 static void sd_scsi_probe_cache_init(void);
1125 static void sd_scsi_probe_cache_fini(void);
1126 static void sd_scsi_clear_probe_cache(void);
1127 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1128 
1129 static int	sd_spin_up_unit(struct sd_lun *un);
1130 #ifdef _LP64
1131 static void	sd_enable_descr_sense(struct sd_lun *un);
1132 static void	sd_reenable_dsense_task(void *arg);
1133 #endif /* _LP64 */
1134 
1135 static void	sd_set_mmc_caps(struct sd_lun *un);
1136 
1137 static void sd_read_unit_properties(struct sd_lun *un);
1138 static int  sd_process_sdconf_file(struct sd_lun *un);
1139 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1140     int *data_list, sd_tunables *values);
1141 static void sd_process_sdconf_table(struct sd_lun *un);
1142 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1143 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1144 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1145 	int list_len, char *dataname_ptr);
1146 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1147     sd_tunables *prop_list);
1148 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1149 
1150 #if defined(_SUNOS_VTOC_16)
1151 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1152 #endif
1153 
1154 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1155 	int path_flag);
1156 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1157 	int path_flag);
1158 static void sd_get_physical_geometry(struct sd_lun *un,
1159 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1160 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1161 	int lbasize);
1162 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1163 static void sd_swap_efi_gpt(efi_gpt_t *);
1164 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1165 static int sd_validate_efi(efi_gpt_t *);
1166 static int sd_use_efi(struct sd_lun *, int);
1167 static void sd_build_default_label(struct sd_lun *un);
1168 
1169 #if defined(_FIRMWARE_NEEDS_FDISK)
1170 static int  sd_has_max_chs_vals(struct ipart *fdp);
1171 #endif
1172 static void sd_inq_fill(char *p, int l, char *s);
1173 
1174 
1175 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1176     int reservation_flag);
1177 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1178 static int  sd_get_devid(struct sd_lun *un);
1179 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1180 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1181 static int  sd_write_deviceid(struct sd_lun *un);
1182 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1183 static int  sd_check_vpd_page_support(struct sd_lun *un);
1184 
1185 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1186 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1187 
1188 static int  sd_ddi_suspend(dev_info_t *devi);
1189 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1190 static int  sd_ddi_resume(dev_info_t *devi);
1191 static int  sd_ddi_pm_resume(struct sd_lun *un);
1192 static int  sdpower(dev_info_t *devi, int component, int level);
1193 
1194 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1195 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1196 static int  sd_unit_attach(dev_info_t *devi);
1197 static int  sd_unit_detach(dev_info_t *devi);
1198 
1199 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1200 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1201 static void sd_create_errstats(struct sd_lun *un, int instance);
1202 static void sd_set_errstats(struct sd_lun *un);
1203 static void sd_set_pstats(struct sd_lun *un);
1204 
1205 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1206 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1207 static int  sd_send_polled_RQS(struct sd_lun *un);
1208 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1209 
1210 #if (defined(__fibre))
1211 /*
1212  * Event callbacks (photon)
1213  */
1214 static void sd_init_event_callbacks(struct sd_lun *un);
1215 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1216 #endif
1217 
1218 /*
1219  * Defines for sd_cache_control
1220  */
1221 
1222 #define	SD_CACHE_ENABLE		1
1223 #define	SD_CACHE_DISABLE	0
1224 #define	SD_CACHE_NOCHANGE	-1
1225 
1226 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1227 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1228 static dev_t sd_make_device(dev_info_t *devi);
1229 
1230 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1231 	uint64_t capacity);
1232 
1233 /*
1234  * Driver entry point functions.
1235  */
1236 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1237 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1238 static int  sd_ready_and_valid(struct sd_lun *un);
1239 
1240 static void sdmin(struct buf *bp);
1241 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1242 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1243 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1244 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1245 
1246 static int sdstrategy(struct buf *bp);
1247 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1248 
1249 /*
1250  * Function prototypes for layering functions in the iostart chain.
1251  */
1252 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1253 	struct buf *bp);
1254 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1255 	struct buf *bp);
1256 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1257 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1258 	struct buf *bp);
1259 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1260 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1261 
1262 /*
1263  * Function prototypes for layering functions in the iodone chain.
1264  */
1265 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1266 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1267 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1268 	struct buf *bp);
1269 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1270 	struct buf *bp);
1271 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1272 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1273 	struct buf *bp);
1274 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1275 
1276 /*
1277  * Prototypes for functions to support buf(9S) based IO.
1278  */
1279 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1280 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1281 static void sd_destroypkt_for_buf(struct buf *);
1282 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1283 	struct buf *bp, int flags,
1284 	int (*callback)(caddr_t), caddr_t callback_arg,
1285 	diskaddr_t lba, uint32_t blockcount);
1286 #if defined(__i386) || defined(__amd64)
1287 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1288 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1289 #endif /* defined(__i386) || defined(__amd64) */
1290 
1291 /*
1292  * Prototypes for functions to support USCSI IO.
1293  */
1294 static int sd_uscsi_strategy(struct buf *bp);
1295 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1296 static void sd_destroypkt_for_uscsi(struct buf *);
1297 
1298 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1299 	uchar_t chain_type, void *pktinfop);
1300 
1301 static int  sd_pm_entry(struct sd_lun *un);
1302 static void sd_pm_exit(struct sd_lun *un);
1303 
1304 static void sd_pm_idletimeout_handler(void *arg);
1305 
1306 /*
1307  * sd_core internal functions (used at the sd_core_io layer).
1308  */
1309 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1310 static void sdintr(struct scsi_pkt *pktp);
1311 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1312 
1313 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1314 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1315 	int path_flag);
1316 
1317 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1318 	daddr_t blkno, int (*func)(struct buf *));
1319 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1320 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1321 static void sd_bioclone_free(struct buf *bp);
1322 static void sd_shadow_buf_free(struct buf *bp);
1323 
1324 static void sd_print_transport_rejected_message(struct sd_lun *un,
1325 	struct sd_xbuf *xp, int code);
1326 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1327     void *arg, int code);
1328 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1329     void *arg, int code);
1330 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1331     void *arg, int code);
1332 
1333 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1334 	int retry_check_flag,
1335 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1336 		int c),
1337 	void *user_arg, int failure_code,  clock_t retry_delay,
1338 	void (*statp)(kstat_io_t *));
1339 
1340 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1341 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1342 
1343 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1344 	struct scsi_pkt *pktp);
1345 static void sd_start_retry_command(void *arg);
1346 static void sd_start_direct_priority_command(void *arg);
1347 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1348 	int errcode);
1349 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1350 	struct buf *bp, int errcode);
1351 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1352 static void sd_sync_with_callback(struct sd_lun *un);
1353 static int sdrunout(caddr_t arg);
1354 
1355 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1356 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1357 
1358 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1359 static void sd_restore_throttle(void *arg);
1360 
1361 static void sd_init_cdb_limits(struct sd_lun *un);
1362 
1363 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1364 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1365 
1366 /*
1367  * Error handling functions
1368  */
1369 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1370 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1374 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 
1378 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1379 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1380 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp);
1384 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1385 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 
1387 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1388 	void *arg, int code);
1389 
1390 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1391 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1392 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1393 	uint8_t *sense_datap,
1394 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1395 static void sd_sense_key_not_ready(struct sd_lun *un,
1396 	uint8_t *sense_datap,
1397 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1398 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1399 	uint8_t *sense_datap,
1400 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1401 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1402 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1403 static void sd_sense_key_unit_attention(struct sd_lun *un,
1404 	uint8_t *sense_datap,
1405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1406 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1407 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1408 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1409 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1410 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1411 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1412 static void sd_sense_key_default(struct sd_lun *un,
1413 	uint8_t *sense_datap,
1414 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1415 
1416 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1417 	void *arg, int flag);
1418 
1419 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1420 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1424 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1425 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1426 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1427 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1428 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1429 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1430 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1431 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1432 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1433 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1434 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1435 
1436 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1437 
1438 static void sd_start_stop_unit_callback(void *arg);
1439 static void sd_start_stop_unit_task(void *arg);
1440 
1441 static void sd_taskq_create(void);
1442 static void sd_taskq_delete(void);
1443 static void sd_media_change_task(void *arg);
1444 
1445 static int sd_handle_mchange(struct sd_lun *un);
1446 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1447 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1448 	uint32_t *lbap, int path_flag);
1449 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1450 	uint32_t *lbap, int path_flag);
1451 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1452 	int path_flag);
1453 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1454 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1455 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1456 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1457 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1458 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1459 	uchar_t usr_cmd, uchar_t *usr_bufp);
1460 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1461 	struct dk_callback *dkc);
1462 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1463 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1464 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1465 	uchar_t *bufaddr, uint_t buflen);
1466 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1467 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1468 	uchar_t *bufaddr, uint_t buflen, char feature);
1469 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1470 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1471 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1472 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1473 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1474 	size_t buflen, daddr_t start_block, int path_flag);
1475 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1476 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1477 	path_flag)
1478 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1479 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1480 	path_flag)
1481 
1482 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1483 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1484 	uint16_t param_ptr, int path_flag);
1485 
1486 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1487 static void sd_free_rqs(struct sd_lun *un);
1488 
1489 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1490 	uchar_t *data, int len, int fmt);
1491 static void sd_panic_for_res_conflict(struct sd_lun *un);
1492 
1493 /*
1494  * Disk Ioctl Function Prototypes
1495  */
1496 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1497 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1498 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1499 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1500 	int geom_validated);
1501 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1502 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1503 	int geom_validated);
1504 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1505 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1506 	int geom_validated);
1507 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1508 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1509 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1510 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1511 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1512 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1513 static int sd_write_label(dev_t dev);
1514 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1515 static void sd_clear_vtoc(struct sd_lun *un);
1516 static void sd_clear_efi(struct sd_lun *un);
1517 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1518 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1519 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1520 static void sd_setup_default_geometry(struct sd_lun *un);
1521 #if defined(__i386) || defined(__amd64)
1522 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1523 #endif
1524 
1525 /*
1526  * Multi-host Ioctl Prototypes
1527  */
1528 static int sd_check_mhd(dev_t dev, int interval);
1529 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1530 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1531 static char *sd_sname(uchar_t status);
1532 static void sd_mhd_resvd_recover(void *arg);
1533 static void sd_resv_reclaim_thread();
1534 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1535 static int sd_reserve_release(dev_t dev, int cmd);
1536 static void sd_rmv_resv_reclaim_req(dev_t dev);
1537 static void sd_mhd_reset_notify_cb(caddr_t arg);
1538 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1539 	mhioc_inkeys_t *usrp, int flag);
1540 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1541 	mhioc_inresvs_t *usrp, int flag);
1542 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1543 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1544 static int sd_mhdioc_release(dev_t dev);
1545 static int sd_mhdioc_register_devid(dev_t dev);
1546 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1547 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1548 
1549 /*
1550  * SCSI removable prototypes
1551  */
1552 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1553 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1554 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1555 static int sr_pause_resume(dev_t dev, int mode);
1556 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1557 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1558 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1559 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1560 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1561 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1562 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1563 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1564 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1565 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1566 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1567 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1568 static int sr_eject(dev_t dev);
1569 static void sr_ejected(register struct sd_lun *un);
1570 static int sr_check_wp(dev_t dev);
1571 static int sd_check_media(dev_t dev, enum dkio_state state);
1572 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1573 static void sd_delayed_cv_broadcast(void *arg);
1574 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1575 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1576 
1577 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1578 
1579 /*
1580  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1581  */
1582 static void sd_check_for_writable_cd(struct sd_lun *un);
1583 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1584 static void sd_wm_cache_destructor(void *wm, void *un);
1585 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1586 	daddr_t endb, ushort_t typ);
1587 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1588 	daddr_t endb);
1589 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1590 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1591 static void sd_read_modify_write_task(void * arg);
1592 static int
1593 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1594 	struct buf **bpp);
1595 
1596 
1597 /*
1598  * Function prototypes for failfast support.
1599  */
1600 static void sd_failfast_flushq(struct sd_lun *un);
1601 static int sd_failfast_flushq_callback(struct buf *bp);
1602 
1603 /*
1604  * Function prototypes to check for lsi devices
1605  */
1606 static void sd_is_lsi(struct sd_lun *un);
1607 
1608 /*
1609  * Function prototypes for x86 support
1610  */
1611 #if defined(__i386) || defined(__amd64)
1612 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1613 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1614 #endif
1615 
1616 /*
1617  * Constants for failfast support:
1618  *
1619  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1620  * failfast processing being performed.
1621  *
1622  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1623  * failfast processing on all bufs with B_FAILFAST set.
1624  */
1625 
1626 #define	SD_FAILFAST_INACTIVE		0
1627 #define	SD_FAILFAST_ACTIVE		1
1628 
1629 /*
1630  * Bitmask to control behavior of buf(9S) flushes when a transition to
1631  * the failfast state occurs. Optional bits include:
1632  *
1633  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1634  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1635  * be flushed.
1636  *
1637  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1638  * driver, in addition to the regular wait queue. This includes the xbuf
1639  * queues. When clear, only the driver's wait queue will be flushed.
1640  */
1641 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1642 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1643 
1644 /*
1645  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1646  * to flush all queues within the driver.
1647  */
1648 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1649 
1650 
1651 /*
1652  * SD Testing Fault Injection
1653  */
1654 #ifdef SD_FAULT_INJECTION
1655 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1656 static void sd_faultinjection(struct scsi_pkt *pktp);
1657 static void sd_injection_log(char *buf, struct sd_lun *un);
1658 #endif
1659 
1660 /*
1661  * Device driver ops vector
1662  */
1663 static struct cb_ops sd_cb_ops = {
1664 	sdopen,			/* open */
1665 	sdclose,		/* close */
1666 	sdstrategy,		/* strategy */
1667 	nodev,			/* print */
1668 	sddump,			/* dump */
1669 	sdread,			/* read */
1670 	sdwrite,		/* write */
1671 	sdioctl,		/* ioctl */
1672 	nodev,			/* devmap */
1673 	nodev,			/* mmap */
1674 	nodev,			/* segmap */
1675 	nochpoll,		/* poll */
1676 	sd_prop_op,		/* cb_prop_op */
1677 	0,			/* streamtab  */
1678 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1679 	CB_REV,			/* cb_rev */
1680 	sdaread, 		/* async I/O read entry point */
1681 	sdawrite		/* async I/O write entry point */
1682 };
1683 
1684 static struct dev_ops sd_ops = {
1685 	DEVO_REV,		/* devo_rev, */
1686 	0,			/* refcnt  */
1687 	sdinfo,			/* info */
1688 	nulldev,		/* identify */
1689 	sdprobe,		/* probe */
1690 	sdattach,		/* attach */
1691 	sddetach,		/* detach */
1692 	nodev,			/* reset */
1693 	&sd_cb_ops,		/* driver operations */
1694 	NULL,			/* bus operations */
1695 	sdpower			/* power */
1696 };
1697 
1698 
1699 /*
1700  * This is the loadable module wrapper.
1701  */
1702 #include <sys/modctl.h>
1703 
1704 static struct modldrv modldrv = {
1705 	&mod_driverops,		/* Type of module. This one is a driver */
1706 	SD_MODULE_NAME,		/* Module name. */
1707 	&sd_ops			/* driver ops */
1708 };
1709 
1710 
1711 static struct modlinkage modlinkage = {
1712 	MODREV_1,
1713 	&modldrv,
1714 	NULL
1715 };
1716 
1717 
1718 static struct scsi_asq_key_strings sd_additional_codes[] = {
1719 	0x81, 0, "Logical Unit is Reserved",
1720 	0x85, 0, "Audio Address Not Valid",
1721 	0xb6, 0, "Media Load Mechanism Failed",
1722 	0xB9, 0, "Audio Play Operation Aborted",
1723 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1724 	0x53, 2, "Medium removal prevented",
1725 	0x6f, 0, "Authentication failed during key exchange",
1726 	0x6f, 1, "Key not present",
1727 	0x6f, 2, "Key not established",
1728 	0x6f, 3, "Read without proper authentication",
1729 	0x6f, 4, "Mismatched region to this logical unit",
1730 	0x6f, 5, "Region reset count error",
1731 	0xffff, 0x0, NULL
1732 };
1733 
1734 
1735 /*
1736  * Struct for passing printing information for sense data messages
1737  */
1738 struct sd_sense_info {
1739 	int	ssi_severity;
1740 	int	ssi_pfa_flag;
1741 };
1742 
1743 /*
1744  * Table of function pointers for iostart-side routines. Seperate "chains"
1745  * of layered function calls are formed by placing the function pointers
1746  * sequentially in the desired order. Functions are called according to an
1747  * incrementing table index ordering. The last function in each chain must
1748  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1749  * in the sd_iodone_chain[] array.
1750  *
1751  * Note: It may seem more natural to organize both the iostart and iodone
1752  * functions together, into an array of structures (or some similar
1753  * organization) with a common index, rather than two seperate arrays which
1754  * must be maintained in synchronization. The purpose of this division is
1755  * to achiece improved performance: individual arrays allows for more
1756  * effective cache line utilization on certain platforms.
1757  */
1758 
1759 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1760 
1761 
1762 static sd_chain_t sd_iostart_chain[] = {
1763 
1764 	/* Chain for buf IO for disk drive targets (PM enabled) */
1765 	sd_mapblockaddr_iostart,	/* Index: 0 */
1766 	sd_pm_iostart,			/* Index: 1 */
1767 	sd_core_iostart,		/* Index: 2 */
1768 
1769 	/* Chain for buf IO for disk drive targets (PM disabled) */
1770 	sd_mapblockaddr_iostart,	/* Index: 3 */
1771 	sd_core_iostart,		/* Index: 4 */
1772 
1773 	/* Chain for buf IO for removable-media targets (PM enabled) */
1774 	sd_mapblockaddr_iostart,	/* Index: 5 */
1775 	sd_mapblocksize_iostart,	/* Index: 6 */
1776 	sd_pm_iostart,			/* Index: 7 */
1777 	sd_core_iostart,		/* Index: 8 */
1778 
1779 	/* Chain for buf IO for removable-media targets (PM disabled) */
1780 	sd_mapblockaddr_iostart,	/* Index: 9 */
1781 	sd_mapblocksize_iostart,	/* Index: 10 */
1782 	sd_core_iostart,		/* Index: 11 */
1783 
1784 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1785 	sd_mapblockaddr_iostart,	/* Index: 12 */
1786 	sd_checksum_iostart,		/* Index: 13 */
1787 	sd_pm_iostart,			/* Index: 14 */
1788 	sd_core_iostart,		/* Index: 15 */
1789 
1790 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1791 	sd_mapblockaddr_iostart,	/* Index: 16 */
1792 	sd_checksum_iostart,		/* Index: 17 */
1793 	sd_core_iostart,		/* Index: 18 */
1794 
1795 	/* Chain for USCSI commands (all targets) */
1796 	sd_pm_iostart,			/* Index: 19 */
1797 	sd_core_iostart,		/* Index: 20 */
1798 
1799 	/* Chain for checksumming USCSI commands (all targets) */
1800 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1801 	sd_pm_iostart,			/* Index: 22 */
1802 	sd_core_iostart,		/* Index: 23 */
1803 
1804 	/* Chain for "direct" USCSI commands (all targets) */
1805 	sd_core_iostart,		/* Index: 24 */
1806 
1807 	/* Chain for "direct priority" USCSI commands (all targets) */
1808 	sd_core_iostart,		/* Index: 25 */
1809 };
1810 
1811 /*
1812  * Macros to locate the first function of each iostart chain in the
1813  * sd_iostart_chain[] array. These are located by the index in the array.
1814  */
1815 #define	SD_CHAIN_DISK_IOSTART			0
1816 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1817 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1818 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1819 #define	SD_CHAIN_CHKSUM_IOSTART			12
1820 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1821 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1822 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1823 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1824 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1825 
1826 
1827 /*
1828  * Table of function pointers for the iodone-side routines for the driver-
1829  * internal layering mechanism.  The calling sequence for iodone routines
1830  * uses a decrementing table index, so the last routine called in a chain
1831  * must be at the lowest array index location for that chain.  The last
1832  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1833  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1834  * of the functions in an iodone side chain must correspond to the ordering
1835  * of the iostart routines for that chain.  Note that there is no iodone
1836  * side routine that corresponds to sd_core_iostart(), so there is no
1837  * entry in the table for this.
1838  */
1839 
1840 static sd_chain_t sd_iodone_chain[] = {
1841 
1842 	/* Chain for buf IO for disk drive targets (PM enabled) */
1843 	sd_buf_iodone,			/* Index: 0 */
1844 	sd_mapblockaddr_iodone,		/* Index: 1 */
1845 	sd_pm_iodone,			/* Index: 2 */
1846 
1847 	/* Chain for buf IO for disk drive targets (PM disabled) */
1848 	sd_buf_iodone,			/* Index: 3 */
1849 	sd_mapblockaddr_iodone,		/* Index: 4 */
1850 
1851 	/* Chain for buf IO for removable-media targets (PM enabled) */
1852 	sd_buf_iodone,			/* Index: 5 */
1853 	sd_mapblockaddr_iodone,		/* Index: 6 */
1854 	sd_mapblocksize_iodone,		/* Index: 7 */
1855 	sd_pm_iodone,			/* Index: 8 */
1856 
1857 	/* Chain for buf IO for removable-media targets (PM disabled) */
1858 	sd_buf_iodone,			/* Index: 9 */
1859 	sd_mapblockaddr_iodone,		/* Index: 10 */
1860 	sd_mapblocksize_iodone,		/* Index: 11 */
1861 
1862 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1863 	sd_buf_iodone,			/* Index: 12 */
1864 	sd_mapblockaddr_iodone,		/* Index: 13 */
1865 	sd_checksum_iodone,		/* Index: 14 */
1866 	sd_pm_iodone,			/* Index: 15 */
1867 
1868 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1869 	sd_buf_iodone,			/* Index: 16 */
1870 	sd_mapblockaddr_iodone,		/* Index: 17 */
1871 	sd_checksum_iodone,		/* Index: 18 */
1872 
1873 	/* Chain for USCSI commands (non-checksum targets) */
1874 	sd_uscsi_iodone,		/* Index: 19 */
1875 	sd_pm_iodone,			/* Index: 20 */
1876 
1877 	/* Chain for USCSI commands (checksum targets) */
1878 	sd_uscsi_iodone,		/* Index: 21 */
1879 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1880 	sd_pm_iodone,			/* Index: 22 */
1881 
1882 	/* Chain for "direct" USCSI commands (all targets) */
1883 	sd_uscsi_iodone,		/* Index: 24 */
1884 
1885 	/* Chain for "direct priority" USCSI commands (all targets) */
1886 	sd_uscsi_iodone,		/* Index: 25 */
1887 };
1888 
1889 
1890 /*
1891  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1892  * each iodone-side chain. These are located by the array index, but as the
1893  * iodone side functions are called in a decrementing-index order, the
1894  * highest index number in each chain must be specified (as these correspond
1895  * to the first function in the iodone chain that will be called by the core
1896  * at IO completion time).
1897  */
1898 
1899 #define	SD_CHAIN_DISK_IODONE			2
1900 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1901 #define	SD_CHAIN_RMMEDIA_IODONE			8
1902 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1903 #define	SD_CHAIN_CHKSUM_IODONE			15
1904 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1905 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1906 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1907 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1908 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1909 
1910 
1911 
1912 
1913 /*
1914  * Array to map a layering chain index to the appropriate initpkt routine.
1915  * The redundant entries are present so that the index used for accessing
1916  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1917  * with this table as well.
1918  */
1919 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1920 
1921 static sd_initpkt_t	sd_initpkt_map[] = {
1922 
1923 	/* Chain for buf IO for disk drive targets (PM enabled) */
1924 	sd_initpkt_for_buf,		/* Index: 0 */
1925 	sd_initpkt_for_buf,		/* Index: 1 */
1926 	sd_initpkt_for_buf,		/* Index: 2 */
1927 
1928 	/* Chain for buf IO for disk drive targets (PM disabled) */
1929 	sd_initpkt_for_buf,		/* Index: 3 */
1930 	sd_initpkt_for_buf,		/* Index: 4 */
1931 
1932 	/* Chain for buf IO for removable-media targets (PM enabled) */
1933 	sd_initpkt_for_buf,		/* Index: 5 */
1934 	sd_initpkt_for_buf,		/* Index: 6 */
1935 	sd_initpkt_for_buf,		/* Index: 7 */
1936 	sd_initpkt_for_buf,		/* Index: 8 */
1937 
1938 	/* Chain for buf IO for removable-media targets (PM disabled) */
1939 	sd_initpkt_for_buf,		/* Index: 9 */
1940 	sd_initpkt_for_buf,		/* Index: 10 */
1941 	sd_initpkt_for_buf,		/* Index: 11 */
1942 
1943 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1944 	sd_initpkt_for_buf,		/* Index: 12 */
1945 	sd_initpkt_for_buf,		/* Index: 13 */
1946 	sd_initpkt_for_buf,		/* Index: 14 */
1947 	sd_initpkt_for_buf,		/* Index: 15 */
1948 
1949 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1950 	sd_initpkt_for_buf,		/* Index: 16 */
1951 	sd_initpkt_for_buf,		/* Index: 17 */
1952 	sd_initpkt_for_buf,		/* Index: 18 */
1953 
1954 	/* Chain for USCSI commands (non-checksum targets) */
1955 	sd_initpkt_for_uscsi,		/* Index: 19 */
1956 	sd_initpkt_for_uscsi,		/* Index: 20 */
1957 
1958 	/* Chain for USCSI commands (checksum targets) */
1959 	sd_initpkt_for_uscsi,		/* Index: 21 */
1960 	sd_initpkt_for_uscsi,		/* Index: 22 */
1961 	sd_initpkt_for_uscsi,		/* Index: 22 */
1962 
1963 	/* Chain for "direct" USCSI commands (all targets) */
1964 	sd_initpkt_for_uscsi,		/* Index: 24 */
1965 
1966 	/* Chain for "direct priority" USCSI commands (all targets) */
1967 	sd_initpkt_for_uscsi,		/* Index: 25 */
1968 
1969 };
1970 
1971 
1972 /*
1973  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1974  * The redundant entries are present so that the index used for accessing
1975  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1976  * with this table as well.
1977  */
1978 typedef void (*sd_destroypkt_t)(struct buf *);
1979 
1980 static sd_destroypkt_t	sd_destroypkt_map[] = {
1981 
1982 	/* Chain for buf IO for disk drive targets (PM enabled) */
1983 	sd_destroypkt_for_buf,		/* Index: 0 */
1984 	sd_destroypkt_for_buf,		/* Index: 1 */
1985 	sd_destroypkt_for_buf,		/* Index: 2 */
1986 
1987 	/* Chain for buf IO for disk drive targets (PM disabled) */
1988 	sd_destroypkt_for_buf,		/* Index: 3 */
1989 	sd_destroypkt_for_buf,		/* Index: 4 */
1990 
1991 	/* Chain for buf IO for removable-media targets (PM enabled) */
1992 	sd_destroypkt_for_buf,		/* Index: 5 */
1993 	sd_destroypkt_for_buf,		/* Index: 6 */
1994 	sd_destroypkt_for_buf,		/* Index: 7 */
1995 	sd_destroypkt_for_buf,		/* Index: 8 */
1996 
1997 	/* Chain for buf IO for removable-media targets (PM disabled) */
1998 	sd_destroypkt_for_buf,		/* Index: 9 */
1999 	sd_destroypkt_for_buf,		/* Index: 10 */
2000 	sd_destroypkt_for_buf,		/* Index: 11 */
2001 
2002 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2003 	sd_destroypkt_for_buf,		/* Index: 12 */
2004 	sd_destroypkt_for_buf,		/* Index: 13 */
2005 	sd_destroypkt_for_buf,		/* Index: 14 */
2006 	sd_destroypkt_for_buf,		/* Index: 15 */
2007 
2008 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2009 	sd_destroypkt_for_buf,		/* Index: 16 */
2010 	sd_destroypkt_for_buf,		/* Index: 17 */
2011 	sd_destroypkt_for_buf,		/* Index: 18 */
2012 
2013 	/* Chain for USCSI commands (non-checksum targets) */
2014 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2015 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2016 
2017 	/* Chain for USCSI commands (checksum targets) */
2018 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2019 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2020 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2021 
2022 	/* Chain for "direct" USCSI commands (all targets) */
2023 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2024 
2025 	/* Chain for "direct priority" USCSI commands (all targets) */
2026 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2027 
2028 };
2029 
2030 
2031 
2032 /*
2033  * Array to map a layering chain index to the appropriate chain "type".
2034  * The chain type indicates a specific property/usage of the chain.
2035  * The redundant entries are present so that the index used for accessing
2036  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2037  * with this table as well.
2038  */
2039 
2040 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2041 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2042 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2043 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2044 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2045 						/* (for error recovery) */
2046 
2047 static int sd_chain_type_map[] = {
2048 
2049 	/* Chain for buf IO for disk drive targets (PM enabled) */
2050 	SD_CHAIN_BUFIO,			/* Index: 0 */
2051 	SD_CHAIN_BUFIO,			/* Index: 1 */
2052 	SD_CHAIN_BUFIO,			/* Index: 2 */
2053 
2054 	/* Chain for buf IO for disk drive targets (PM disabled) */
2055 	SD_CHAIN_BUFIO,			/* Index: 3 */
2056 	SD_CHAIN_BUFIO,			/* Index: 4 */
2057 
2058 	/* Chain for buf IO for removable-media targets (PM enabled) */
2059 	SD_CHAIN_BUFIO,			/* Index: 5 */
2060 	SD_CHAIN_BUFIO,			/* Index: 6 */
2061 	SD_CHAIN_BUFIO,			/* Index: 7 */
2062 	SD_CHAIN_BUFIO,			/* Index: 8 */
2063 
2064 	/* Chain for buf IO for removable-media targets (PM disabled) */
2065 	SD_CHAIN_BUFIO,			/* Index: 9 */
2066 	SD_CHAIN_BUFIO,			/* Index: 10 */
2067 	SD_CHAIN_BUFIO,			/* Index: 11 */
2068 
2069 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2070 	SD_CHAIN_BUFIO,			/* Index: 12 */
2071 	SD_CHAIN_BUFIO,			/* Index: 13 */
2072 	SD_CHAIN_BUFIO,			/* Index: 14 */
2073 	SD_CHAIN_BUFIO,			/* Index: 15 */
2074 
2075 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2076 	SD_CHAIN_BUFIO,			/* Index: 16 */
2077 	SD_CHAIN_BUFIO,			/* Index: 17 */
2078 	SD_CHAIN_BUFIO,			/* Index: 18 */
2079 
2080 	/* Chain for USCSI commands (non-checksum targets) */
2081 	SD_CHAIN_USCSI,			/* Index: 19 */
2082 	SD_CHAIN_USCSI,			/* Index: 20 */
2083 
2084 	/* Chain for USCSI commands (checksum targets) */
2085 	SD_CHAIN_USCSI,			/* Index: 21 */
2086 	SD_CHAIN_USCSI,			/* Index: 22 */
2087 	SD_CHAIN_USCSI,			/* Index: 22 */
2088 
2089 	/* Chain for "direct" USCSI commands (all targets) */
2090 	SD_CHAIN_DIRECT,		/* Index: 24 */
2091 
2092 	/* Chain for "direct priority" USCSI commands (all targets) */
2093 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2094 };
2095 
2096 
2097 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2098 #define	SD_IS_BUFIO(xp)			\
2099 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2100 
2101 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2102 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2103 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2104 
2105 
2106 
2107 /*
2108  * Struct, array, and macros to map a specific chain to the appropriate
2109  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2110  *
2111  * The sd_chain_index_map[] array is used at attach time to set the various
2112  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2113  * chain to be used with the instance. This allows different instances to use
2114  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2115  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2116  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2117  * dynamically & without the use of locking; and (2) a layer may update the
2118  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2119  * to allow for deferred processing of an IO within the same chain from a
2120  * different execution context.
2121  */
2122 
2123 struct sd_chain_index {
2124 	int	sci_iostart_index;
2125 	int	sci_iodone_index;
2126 };
2127 
2128 static struct sd_chain_index	sd_chain_index_map[] = {
2129 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2130 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2131 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2132 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2133 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2134 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2135 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2136 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2137 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2138 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2139 };
2140 
2141 
2142 /*
2143  * The following are indexes into the sd_chain_index_map[] array.
2144  */
2145 
2146 /* un->un_buf_chain_type must be set to one of these */
2147 #define	SD_CHAIN_INFO_DISK		0
2148 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2149 #define	SD_CHAIN_INFO_RMMEDIA		2
2150 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2151 #define	SD_CHAIN_INFO_CHKSUM		4
2152 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2153 
2154 /* un->un_uscsi_chain_type must be set to one of these */
2155 #define	SD_CHAIN_INFO_USCSI_CMD		6
2156 /* USCSI with PM disabled is the same as DIRECT */
2157 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2158 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2159 
2160 /* un->un_direct_chain_type must be set to one of these */
2161 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2162 
2163 /* un->un_priority_chain_type must be set to one of these */
2164 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2165 
2166 /* size for devid inquiries */
2167 #define	MAX_INQUIRY_SIZE		0xF0
2168 
2169 /*
2170  * Macros used by functions to pass a given buf(9S) struct along to the
2171  * next function in the layering chain for further processing.
2172  *
2173  * In the following macros, passing more than three arguments to the called
2174  * routines causes the optimizer for the SPARC compiler to stop doing tail
2175  * call elimination which results in significant performance degradation.
2176  */
2177 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2178 	((*(sd_iostart_chain[index]))(index, un, bp))
2179 
2180 #define	SD_BEGIN_IODONE(index, un, bp)	\
2181 	((*(sd_iodone_chain[index]))(index, un, bp))
2182 
2183 #define	SD_NEXT_IOSTART(index, un, bp)				\
2184 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2185 
2186 #define	SD_NEXT_IODONE(index, un, bp)				\
2187 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2188 
2189 /*
2190  *    Function: _init
2191  *
2192  * Description: This is the driver _init(9E) entry point.
2193  *
2194  * Return Code: Returns the value from mod_install(9F) or
2195  *		ddi_soft_state_init(9F) as appropriate.
2196  *
2197  *     Context: Called when driver module loaded.
2198  */
2199 
2200 int
2201 _init(void)
2202 {
2203 	int	err;
2204 
2205 	/* establish driver name from module name */
2206 	sd_label = mod_modname(&modlinkage);
2207 
2208 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2209 		SD_MAXUNIT);
2210 
2211 	if (err != 0) {
2212 		return (err);
2213 	}
2214 
2215 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2216 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2217 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2218 
2219 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2220 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2221 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2222 
2223 	/*
2224 	 * it's ok to init here even for fibre device
2225 	 */
2226 	sd_scsi_probe_cache_init();
2227 
2228 	/*
2229 	 * Creating taskq before mod_install ensures that all callers (threads)
2230 	 * that enter the module after a successfull mod_install encounter
2231 	 * a valid taskq.
2232 	 */
2233 	sd_taskq_create();
2234 
2235 	err = mod_install(&modlinkage);
2236 	if (err != 0) {
2237 		/* delete taskq if install fails */
2238 		sd_taskq_delete();
2239 
2240 		mutex_destroy(&sd_detach_mutex);
2241 		mutex_destroy(&sd_log_mutex);
2242 		mutex_destroy(&sd_label_mutex);
2243 
2244 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2245 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2246 		cv_destroy(&sd_tr.srq_inprocess_cv);
2247 
2248 		sd_scsi_probe_cache_fini();
2249 
2250 		ddi_soft_state_fini(&sd_state);
2251 		return (err);
2252 	}
2253 
2254 	return (err);
2255 }
2256 
2257 
2258 /*
2259  *    Function: _fini
2260  *
2261  * Description: This is the driver _fini(9E) entry point.
2262  *
2263  * Return Code: Returns the value from mod_remove(9F)
2264  *
2265  *     Context: Called when driver module is unloaded.
2266  */
2267 
2268 int
2269 _fini(void)
2270 {
2271 	int err;
2272 
2273 	if ((err = mod_remove(&modlinkage)) != 0) {
2274 		return (err);
2275 	}
2276 
2277 	sd_taskq_delete();
2278 
2279 	mutex_destroy(&sd_detach_mutex);
2280 	mutex_destroy(&sd_log_mutex);
2281 	mutex_destroy(&sd_label_mutex);
2282 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2283 
2284 	sd_scsi_probe_cache_fini();
2285 
2286 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2287 	cv_destroy(&sd_tr.srq_inprocess_cv);
2288 
2289 	ddi_soft_state_fini(&sd_state);
2290 
2291 	return (err);
2292 }
2293 
2294 
2295 /*
2296  *    Function: _info
2297  *
2298  * Description: This is the driver _info(9E) entry point.
2299  *
2300  *   Arguments: modinfop - pointer to the driver modinfo structure
2301  *
2302  * Return Code: Returns the value from mod_info(9F).
2303  *
2304  *     Context: Kernel thread context
2305  */
2306 
2307 int
2308 _info(struct modinfo *modinfop)
2309 {
2310 	return (mod_info(&modlinkage, modinfop));
2311 }
2312 
2313 
2314 /*
2315  * The following routines implement the driver message logging facility.
2316  * They provide component- and level- based debug output filtering.
2317  * Output may also be restricted to messages for a single instance by
2318  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2319  * to NULL, then messages for all instances are printed.
2320  *
2321  * These routines have been cloned from each other due to the language
2322  * constraints of macros and variable argument list processing.
2323  */
2324 
2325 
2326 /*
2327  *    Function: sd_log_err
2328  *
2329  * Description: This routine is called by the SD_ERROR macro for debug
2330  *		logging of error conditions.
2331  *
2332  *   Arguments: comp - driver component being logged
2333  *		dev  - pointer to driver info structure
2334  *		fmt  - error string and format to be logged
2335  */
2336 
2337 static void
2338 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2339 {
2340 	va_list		ap;
2341 	dev_info_t	*dev;
2342 
2343 	ASSERT(un != NULL);
2344 	dev = SD_DEVINFO(un);
2345 	ASSERT(dev != NULL);
2346 
2347 	/*
2348 	 * Filter messages based on the global component and level masks.
2349 	 * Also print if un matches the value of sd_debug_un, or if
2350 	 * sd_debug_un is set to NULL.
2351 	 */
2352 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2353 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2354 		mutex_enter(&sd_log_mutex);
2355 		va_start(ap, fmt);
2356 		(void) vsprintf(sd_log_buf, fmt, ap);
2357 		va_end(ap);
2358 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2359 		mutex_exit(&sd_log_mutex);
2360 	}
2361 #ifdef SD_FAULT_INJECTION
2362 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2363 	if (un->sd_injection_mask & comp) {
2364 		mutex_enter(&sd_log_mutex);
2365 		va_start(ap, fmt);
2366 		(void) vsprintf(sd_log_buf, fmt, ap);
2367 		va_end(ap);
2368 		sd_injection_log(sd_log_buf, un);
2369 		mutex_exit(&sd_log_mutex);
2370 	}
2371 #endif
2372 }
2373 
2374 
2375 /*
2376  *    Function: sd_log_info
2377  *
2378  * Description: This routine is called by the SD_INFO macro for debug
2379  *		logging of general purpose informational conditions.
2380  *
2381  *   Arguments: comp - driver component being logged
2382  *		dev  - pointer to driver info structure
2383  *		fmt  - info string and format to be logged
2384  */
2385 
2386 static void
2387 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2388 {
2389 	va_list		ap;
2390 	dev_info_t	*dev;
2391 
2392 	ASSERT(un != NULL);
2393 	dev = SD_DEVINFO(un);
2394 	ASSERT(dev != NULL);
2395 
2396 	/*
2397 	 * Filter messages based on the global component and level masks.
2398 	 * Also print if un matches the value of sd_debug_un, or if
2399 	 * sd_debug_un is set to NULL.
2400 	 */
2401 	if ((sd_component_mask & component) &&
2402 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2403 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2404 		mutex_enter(&sd_log_mutex);
2405 		va_start(ap, fmt);
2406 		(void) vsprintf(sd_log_buf, fmt, ap);
2407 		va_end(ap);
2408 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2409 		mutex_exit(&sd_log_mutex);
2410 	}
2411 #ifdef SD_FAULT_INJECTION
2412 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2413 	if (un->sd_injection_mask & component) {
2414 		mutex_enter(&sd_log_mutex);
2415 		va_start(ap, fmt);
2416 		(void) vsprintf(sd_log_buf, fmt, ap);
2417 		va_end(ap);
2418 		sd_injection_log(sd_log_buf, un);
2419 		mutex_exit(&sd_log_mutex);
2420 	}
2421 #endif
2422 }
2423 
2424 
2425 /*
2426  *    Function: sd_log_trace
2427  *
2428  * Description: This routine is called by the SD_TRACE macro for debug
2429  *		logging of trace conditions (i.e. function entry/exit).
2430  *
2431  *   Arguments: comp - driver component being logged
2432  *		dev  - pointer to driver info structure
2433  *		fmt  - trace string and format to be logged
2434  */
2435 
2436 static void
2437 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2438 {
2439 	va_list		ap;
2440 	dev_info_t	*dev;
2441 
2442 	ASSERT(un != NULL);
2443 	dev = SD_DEVINFO(un);
2444 	ASSERT(dev != NULL);
2445 
2446 	/*
2447 	 * Filter messages based on the global component and level masks.
2448 	 * Also print if un matches the value of sd_debug_un, or if
2449 	 * sd_debug_un is set to NULL.
2450 	 */
2451 	if ((sd_component_mask & component) &&
2452 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2453 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2454 		mutex_enter(&sd_log_mutex);
2455 		va_start(ap, fmt);
2456 		(void) vsprintf(sd_log_buf, fmt, ap);
2457 		va_end(ap);
2458 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2459 		mutex_exit(&sd_log_mutex);
2460 	}
2461 #ifdef SD_FAULT_INJECTION
2462 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2463 	if (un->sd_injection_mask & component) {
2464 		mutex_enter(&sd_log_mutex);
2465 		va_start(ap, fmt);
2466 		(void) vsprintf(sd_log_buf, fmt, ap);
2467 		va_end(ap);
2468 		sd_injection_log(sd_log_buf, un);
2469 		mutex_exit(&sd_log_mutex);
2470 	}
2471 #endif
2472 }
2473 
2474 
2475 /*
2476  *    Function: sdprobe
2477  *
2478  * Description: This is the driver probe(9e) entry point function.
2479  *
2480  *   Arguments: devi - opaque device info handle
2481  *
2482  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2483  *              DDI_PROBE_FAILURE: If the probe failed.
2484  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2485  *				   but may be present in the future.
2486  */
2487 
2488 static int
2489 sdprobe(dev_info_t *devi)
2490 {
2491 	struct scsi_device	*devp;
2492 	int			rval;
2493 	int			instance;
2494 
2495 	/*
2496 	 * if it wasn't for pln, sdprobe could actually be nulldev
2497 	 * in the "__fibre" case.
2498 	 */
2499 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2500 		return (DDI_PROBE_DONTCARE);
2501 	}
2502 
2503 	devp = ddi_get_driver_private(devi);
2504 
2505 	if (devp == NULL) {
2506 		/* Ooops... nexus driver is mis-configured... */
2507 		return (DDI_PROBE_FAILURE);
2508 	}
2509 
2510 	instance = ddi_get_instance(devi);
2511 
2512 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2513 		return (DDI_PROBE_PARTIAL);
2514 	}
2515 
2516 	/*
2517 	 * Call the SCSA utility probe routine to see if we actually
2518 	 * have a target at this SCSI nexus.
2519 	 */
2520 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2521 	case SCSIPROBE_EXISTS:
2522 		switch (devp->sd_inq->inq_dtype) {
2523 		case DTYPE_DIRECT:
2524 			rval = DDI_PROBE_SUCCESS;
2525 			break;
2526 		case DTYPE_RODIRECT:
2527 			/* CDs etc. Can be removable media */
2528 			rval = DDI_PROBE_SUCCESS;
2529 			break;
2530 		case DTYPE_OPTICAL:
2531 			/*
2532 			 * Rewritable optical driver HP115AA
2533 			 * Can also be removable media
2534 			 */
2535 
2536 			/*
2537 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2538 			 * pre solaris 9 sparc sd behavior is required
2539 			 *
2540 			 * If first time through and sd_dtype_optical_bind
2541 			 * has not been set in /etc/system check properties
2542 			 */
2543 
2544 			if (sd_dtype_optical_bind  < 0) {
2545 			    sd_dtype_optical_bind = ddi_prop_get_int
2546 				(DDI_DEV_T_ANY,	devi,	0,
2547 				"optical-device-bind",	1);
2548 			}
2549 
2550 			if (sd_dtype_optical_bind == 0) {
2551 				rval = DDI_PROBE_FAILURE;
2552 			} else {
2553 				rval = DDI_PROBE_SUCCESS;
2554 			}
2555 			break;
2556 
2557 		case DTYPE_NOTPRESENT:
2558 		default:
2559 			rval = DDI_PROBE_FAILURE;
2560 			break;
2561 		}
2562 		break;
2563 	default:
2564 		rval = DDI_PROBE_PARTIAL;
2565 		break;
2566 	}
2567 
2568 	/*
2569 	 * This routine checks for resource allocation prior to freeing,
2570 	 * so it will take care of the "smart probing" case where a
2571 	 * scsi_probe() may or may not have been issued and will *not*
2572 	 * free previously-freed resources.
2573 	 */
2574 	scsi_unprobe(devp);
2575 	return (rval);
2576 }
2577 
2578 
2579 /*
2580  *    Function: sdinfo
2581  *
2582  * Description: This is the driver getinfo(9e) entry point function.
2583  * 		Given the device number, return the devinfo pointer from
2584  *		the scsi_device structure or the instance number
2585  *		associated with the dev_t.
2586  *
2587  *   Arguments: dip     - pointer to device info structure
2588  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2589  *			  DDI_INFO_DEVT2INSTANCE)
2590  *		arg     - driver dev_t
2591  *		resultp - user buffer for request response
2592  *
2593  * Return Code: DDI_SUCCESS
2594  *              DDI_FAILURE
2595  */
2596 /* ARGSUSED */
2597 static int
2598 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2599 {
2600 	struct sd_lun	*un;
2601 	dev_t		dev;
2602 	int		instance;
2603 	int		error;
2604 
2605 	switch (infocmd) {
2606 	case DDI_INFO_DEVT2DEVINFO:
2607 		dev = (dev_t)arg;
2608 		instance = SDUNIT(dev);
2609 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2610 			return (DDI_FAILURE);
2611 		}
2612 		*result = (void *) SD_DEVINFO(un);
2613 		error = DDI_SUCCESS;
2614 		break;
2615 	case DDI_INFO_DEVT2INSTANCE:
2616 		dev = (dev_t)arg;
2617 		instance = SDUNIT(dev);
2618 		*result = (void *)(uintptr_t)instance;
2619 		error = DDI_SUCCESS;
2620 		break;
2621 	default:
2622 		error = DDI_FAILURE;
2623 	}
2624 	return (error);
2625 }
2626 
2627 /*
2628  *    Function: sd_prop_op
2629  *
2630  * Description: This is the driver prop_op(9e) entry point function.
2631  *		Return the number of blocks for the partition in question
2632  *		or forward the request to the property facilities.
2633  *
2634  *   Arguments: dev       - device number
2635  *		dip       - pointer to device info structure
2636  *		prop_op   - property operator
2637  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2638  *		name      - pointer to property name
2639  *		valuep    - pointer or address of the user buffer
2640  *		lengthp   - property length
2641  *
2642  * Return Code: DDI_PROP_SUCCESS
2643  *              DDI_PROP_NOT_FOUND
2644  *              DDI_PROP_UNDEFINED
2645  *              DDI_PROP_NO_MEMORY
2646  *              DDI_PROP_BUF_TOO_SMALL
2647  */
2648 
2649 static int
2650 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2651 	char *name, caddr_t valuep, int *lengthp)
2652 {
2653 	int		instance = ddi_get_instance(dip);
2654 	struct sd_lun	*un;
2655 	uint64_t	nblocks64;
2656 
2657 	/*
2658 	 * Our dynamic properties are all device specific and size oriented.
2659 	 * Requests issued under conditions where size is valid are passed
2660 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2661 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2662 	 */
2663 	un = ddi_get_soft_state(sd_state, instance);
2664 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2665 	    (un->un_f_geometry_is_valid == FALSE)) {
2666 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2667 		    name, valuep, lengthp));
2668 	} else {
2669 		/* get nblocks value */
2670 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2671 		mutex_enter(SD_MUTEX(un));
2672 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2673 		mutex_exit(SD_MUTEX(un));
2674 
2675 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2676 		    name, valuep, lengthp, nblocks64));
2677 	}
2678 }
2679 
2680 /*
2681  * The following functions are for smart probing:
2682  * sd_scsi_probe_cache_init()
2683  * sd_scsi_probe_cache_fini()
2684  * sd_scsi_clear_probe_cache()
2685  * sd_scsi_probe_with_cache()
2686  */
2687 
2688 /*
2689  *    Function: sd_scsi_probe_cache_init
2690  *
2691  * Description: Initializes the probe response cache mutex and head pointer.
2692  *
2693  *     Context: Kernel thread context
2694  */
2695 
2696 static void
2697 sd_scsi_probe_cache_init(void)
2698 {
2699 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2700 	sd_scsi_probe_cache_head = NULL;
2701 }
2702 
2703 
2704 /*
2705  *    Function: sd_scsi_probe_cache_fini
2706  *
2707  * Description: Frees all resources associated with the probe response cache.
2708  *
2709  *     Context: Kernel thread context
2710  */
2711 
2712 static void
2713 sd_scsi_probe_cache_fini(void)
2714 {
2715 	struct sd_scsi_probe_cache *cp;
2716 	struct sd_scsi_probe_cache *ncp;
2717 
2718 	/* Clean up our smart probing linked list */
2719 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2720 		ncp = cp->next;
2721 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2722 	}
2723 	sd_scsi_probe_cache_head = NULL;
2724 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2725 }
2726 
2727 
2728 /*
2729  *    Function: sd_scsi_clear_probe_cache
2730  *
2731  * Description: This routine clears the probe response cache. This is
2732  *		done when open() returns ENXIO so that when deferred
2733  *		attach is attempted (possibly after a device has been
2734  *		turned on) we will retry the probe. Since we don't know
2735  *		which target we failed to open, we just clear the
2736  *		entire cache.
2737  *
2738  *     Context: Kernel thread context
2739  */
2740 
2741 static void
2742 sd_scsi_clear_probe_cache(void)
2743 {
2744 	struct sd_scsi_probe_cache	*cp;
2745 	int				i;
2746 
2747 	mutex_enter(&sd_scsi_probe_cache_mutex);
2748 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2749 		/*
2750 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2751 		 * force probing to be performed the next time
2752 		 * sd_scsi_probe_with_cache is called.
2753 		 */
2754 		for (i = 0; i < NTARGETS_WIDE; i++) {
2755 			cp->cache[i] = SCSIPROBE_EXISTS;
2756 		}
2757 	}
2758 	mutex_exit(&sd_scsi_probe_cache_mutex);
2759 }
2760 
2761 
2762 /*
2763  *    Function: sd_scsi_probe_with_cache
2764  *
2765  * Description: This routine implements support for a scsi device probe
2766  *		with cache. The driver maintains a cache of the target
2767  *		responses to scsi probes. If we get no response from a
2768  *		target during a probe inquiry, we remember that, and we
2769  *		avoid additional calls to scsi_probe on non-zero LUNs
2770  *		on the same target until the cache is cleared. By doing
2771  *		so we avoid the 1/4 sec selection timeout for nonzero
2772  *		LUNs. lun0 of a target is always probed.
2773  *
2774  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2775  *              waitfunc - indicates what the allocator routines should
2776  *			   do when resources are not available. This value
2777  *			   is passed on to scsi_probe() when that routine
2778  *			   is called.
2779  *
2780  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2781  *		otherwise the value returned by scsi_probe(9F).
2782  *
2783  *     Context: Kernel thread context
2784  */
2785 
2786 static int
2787 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2788 {
2789 	struct sd_scsi_probe_cache	*cp;
2790 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2791 	int		lun, tgt;
2792 
2793 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2794 	    SCSI_ADDR_PROP_LUN, 0);
2795 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2796 	    SCSI_ADDR_PROP_TARGET, -1);
2797 
2798 	/* Make sure caching enabled and target in range */
2799 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2800 		/* do it the old way (no cache) */
2801 		return (scsi_probe(devp, waitfn));
2802 	}
2803 
2804 	mutex_enter(&sd_scsi_probe_cache_mutex);
2805 
2806 	/* Find the cache for this scsi bus instance */
2807 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2808 		if (cp->pdip == pdip) {
2809 			break;
2810 		}
2811 	}
2812 
2813 	/* If we can't find a cache for this pdip, create one */
2814 	if (cp == NULL) {
2815 		int i;
2816 
2817 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2818 		    KM_SLEEP);
2819 		cp->pdip = pdip;
2820 		cp->next = sd_scsi_probe_cache_head;
2821 		sd_scsi_probe_cache_head = cp;
2822 		for (i = 0; i < NTARGETS_WIDE; i++) {
2823 			cp->cache[i] = SCSIPROBE_EXISTS;
2824 		}
2825 	}
2826 
2827 	mutex_exit(&sd_scsi_probe_cache_mutex);
2828 
2829 	/* Recompute the cache for this target if LUN zero */
2830 	if (lun == 0) {
2831 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2832 	}
2833 
2834 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2835 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2836 		return (SCSIPROBE_NORESP);
2837 	}
2838 
2839 	/* Do the actual probe; save & return the result */
2840 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2841 }
2842 
2843 
2844 /*
2845  *    Function: sd_spin_up_unit
2846  *
2847  * Description: Issues the following commands to spin-up the device:
2848  *		START STOP UNIT, and INQUIRY.
2849  *
2850  *   Arguments: un - driver soft state (unit) structure
2851  *
2852  * Return Code: 0 - success
2853  *		EIO - failure
2854  *		EACCES - reservation conflict
2855  *
2856  *     Context: Kernel thread context
2857  */
2858 
2859 static int
2860 sd_spin_up_unit(struct sd_lun *un)
2861 {
2862 	size_t	resid		= 0;
2863 	int	has_conflict	= FALSE;
2864 	uchar_t *bufaddr;
2865 
2866 	ASSERT(un != NULL);
2867 
2868 	/*
2869 	 * Send a throwaway START UNIT command.
2870 	 *
2871 	 * If we fail on this, we don't care presently what precisely
2872 	 * is wrong.  EMC's arrays will also fail this with a check
2873 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2874 	 * we don't want to fail the attach because it may become
2875 	 * "active" later.
2876 	 */
2877 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2878 	    == EACCES)
2879 		has_conflict = TRUE;
2880 
2881 	/*
2882 	 * Send another INQUIRY command to the target. This is necessary for
2883 	 * non-removable media direct access devices because their INQUIRY data
2884 	 * may not be fully qualified until they are spun up (perhaps via the
2885 	 * START command above).  Note: This seems to be needed for some
2886 	 * legacy devices only.) The INQUIRY command should succeed even if a
2887 	 * Reservation Conflict is present.
2888 	 */
2889 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2890 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2891 		kmem_free(bufaddr, SUN_INQSIZE);
2892 		return (EIO);
2893 	}
2894 
2895 	/*
2896 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2897 	 * Note that this routine does not return a failure here even if the
2898 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2899 	 */
2900 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2901 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2902 	}
2903 
2904 	kmem_free(bufaddr, SUN_INQSIZE);
2905 
2906 	/* If we hit a reservation conflict above, tell the caller. */
2907 	if (has_conflict == TRUE) {
2908 		return (EACCES);
2909 	}
2910 
2911 	return (0);
2912 }
2913 
2914 #ifdef _LP64
2915 /*
2916  *    Function: sd_enable_descr_sense
2917  *
2918  * Description: This routine attempts to select descriptor sense format
2919  *		using the Control mode page.  Devices that support 64 bit
2920  *		LBAs (for >2TB luns) should also implement descriptor
2921  *		sense data so we will call this function whenever we see
2922  *		a lun larger than 2TB.  If for some reason the device
2923  *		supports 64 bit LBAs but doesn't support descriptor sense
2924  *		presumably the mode select will fail.  Everything will
2925  *		continue to work normally except that we will not get
2926  *		complete sense data for commands that fail with an LBA
2927  *		larger than 32 bits.
2928  *
2929  *   Arguments: un - driver soft state (unit) structure
2930  *
2931  *     Context: Kernel thread context only
2932  */
2933 
2934 static void
2935 sd_enable_descr_sense(struct sd_lun *un)
2936 {
2937 	uchar_t			*header;
2938 	struct mode_control_scsi3 *ctrl_bufp;
2939 	size_t			buflen;
2940 	size_t			bd_len;
2941 
2942 	/*
2943 	 * Read MODE SENSE page 0xA, Control Mode Page
2944 	 */
2945 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2946 	    sizeof (struct mode_control_scsi3);
2947 	header = kmem_zalloc(buflen, KM_SLEEP);
2948 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2949 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2950 		SD_ERROR(SD_LOG_COMMON, un,
2951 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2952 		goto eds_exit;
2953 	}
2954 
2955 	/*
2956 	 * Determine size of Block Descriptors in order to locate
2957 	 * the mode page data. ATAPI devices return 0, SCSI devices
2958 	 * should return MODE_BLK_DESC_LENGTH.
2959 	 */
2960 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2961 
2962 	ctrl_bufp = (struct mode_control_scsi3 *)
2963 	    (header + MODE_HEADER_LENGTH + bd_len);
2964 
2965 	/*
2966 	 * Clear PS bit for MODE SELECT
2967 	 */
2968 	ctrl_bufp->mode_page.ps = 0;
2969 
2970 	/*
2971 	 * Set D_SENSE to enable descriptor sense format.
2972 	 */
2973 	ctrl_bufp->d_sense = 1;
2974 
2975 	/*
2976 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2977 	 */
2978 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2979 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2980 		SD_INFO(SD_LOG_COMMON, un,
2981 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2982 		goto eds_exit;
2983 	}
2984 
2985 eds_exit:
2986 	kmem_free(header, buflen);
2987 }
2988 
2989 /*
2990  *    Function: sd_reenable_dsense_task
2991  *
2992  * Description: Re-enable descriptor sense after device or bus reset
2993  *
2994  *     Context: Executes in a taskq() thread context
2995  */
2996 static void
2997 sd_reenable_dsense_task(void *arg)
2998 {
2999 	struct	sd_lun	*un = arg;
3000 
3001 	ASSERT(un != NULL);
3002 	sd_enable_descr_sense(un);
3003 }
3004 #endif /* _LP64 */
3005 
3006 /*
3007  *    Function: sd_set_mmc_caps
3008  *
3009  * Description: This routine determines if the device is MMC compliant and if
3010  *		the device supports CDDA via a mode sense of the CDVD
3011  *		capabilities mode page. Also checks if the device is a
3012  *		dvdram writable device.
3013  *
3014  *   Arguments: un - driver soft state (unit) structure
3015  *
3016  *     Context: Kernel thread context only
3017  */
3018 
3019 static void
3020 sd_set_mmc_caps(struct sd_lun *un)
3021 {
3022 	struct mode_header_grp2		*sense_mhp;
3023 	uchar_t				*sense_page;
3024 	caddr_t				buf;
3025 	int				bd_len;
3026 	int				status;
3027 	struct uscsi_cmd		com;
3028 	int				rtn;
3029 	uchar_t				*out_data_rw, *out_data_hd;
3030 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3031 
3032 	ASSERT(un != NULL);
3033 
3034 	/*
3035 	 * The flags which will be set in this function are - mmc compliant,
3036 	 * dvdram writable device, cdda support. Initialize them to FALSE
3037 	 * and if a capability is detected - it will be set to TRUE.
3038 	 */
3039 	un->un_f_mmc_cap = FALSE;
3040 	un->un_f_dvdram_writable_device = FALSE;
3041 	un->un_f_cfg_cdda = FALSE;
3042 
3043 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3044 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3045 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3046 
3047 	if (status != 0) {
3048 		/* command failed; just return */
3049 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3050 		return;
3051 	}
3052 	/*
3053 	 * If the mode sense request for the CDROM CAPABILITIES
3054 	 * page (0x2A) succeeds the device is assumed to be MMC.
3055 	 */
3056 	un->un_f_mmc_cap = TRUE;
3057 
3058 	/* Get to the page data */
3059 	sense_mhp = (struct mode_header_grp2 *)buf;
3060 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3061 	    sense_mhp->bdesc_length_lo;
3062 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3063 		/*
3064 		 * We did not get back the expected block descriptor
3065 		 * length so we cannot determine if the device supports
3066 		 * CDDA. However, we still indicate the device is MMC
3067 		 * according to the successful response to the page
3068 		 * 0x2A mode sense request.
3069 		 */
3070 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3071 		    "sd_set_mmc_caps: Mode Sense returned "
3072 		    "invalid block descriptor length\n");
3073 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3074 		return;
3075 	}
3076 
3077 	/* See if read CDDA is supported */
3078 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3079 	    bd_len);
3080 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3081 
3082 	/* See if writing DVD RAM is supported. */
3083 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3084 	if (un->un_f_dvdram_writable_device == TRUE) {
3085 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3086 		return;
3087 	}
3088 
3089 	/*
3090 	 * If the device presents DVD or CD capabilities in the mode
3091 	 * page, we can return here since a RRD will not have
3092 	 * these capabilities.
3093 	 */
3094 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3095 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3096 		return;
3097 	}
3098 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3099 
3100 	/*
3101 	 * If un->un_f_dvdram_writable_device is still FALSE,
3102 	 * check for a Removable Rigid Disk (RRD).  A RRD
3103 	 * device is identified by the features RANDOM_WRITABLE and
3104 	 * HARDWARE_DEFECT_MANAGEMENT.
3105 	 */
3106 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3107 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3108 
3109 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3110 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3111 	    RANDOM_WRITABLE);
3112 	if (rtn != 0) {
3113 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3114 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3115 		return;
3116 	}
3117 
3118 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3119 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3120 
3121 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3122 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3123 	    HARDWARE_DEFECT_MANAGEMENT);
3124 	if (rtn == 0) {
3125 		/*
3126 		 * We have good information, check for random writable
3127 		 * and hardware defect features.
3128 		 */
3129 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3130 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3131 			un->un_f_dvdram_writable_device = TRUE;
3132 		}
3133 	}
3134 
3135 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3136 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3137 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3138 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3139 }
3140 
3141 /*
3142  *    Function: sd_check_for_writable_cd
3143  *
3144  * Description: This routine determines if the media in the device is
3145  *		writable or not. It uses the get configuration command (0x46)
3146  *		to determine if the media is writable
3147  *
3148  *   Arguments: un - driver soft state (unit) structure
3149  *
3150  *     Context: Never called at interrupt context.
3151  */
3152 
3153 static void
3154 sd_check_for_writable_cd(struct sd_lun *un)
3155 {
3156 	struct uscsi_cmd		com;
3157 	uchar_t				*out_data;
3158 	uchar_t				*rqbuf;
3159 	int				rtn;
3160 	uchar_t				*out_data_rw, *out_data_hd;
3161 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3162 	struct mode_header_grp2		*sense_mhp;
3163 	uchar_t				*sense_page;
3164 	caddr_t				buf;
3165 	int				bd_len;
3166 	int				status;
3167 
3168 	ASSERT(un != NULL);
3169 	ASSERT(mutex_owned(SD_MUTEX(un)));
3170 
3171 	/*
3172 	 * Initialize the writable media to false, if configuration info.
3173 	 * tells us otherwise then only we will set it.
3174 	 */
3175 	un->un_f_mmc_writable_media = FALSE;
3176 	mutex_exit(SD_MUTEX(un));
3177 
3178 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3179 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3180 
3181 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3182 	    out_data, SD_PROFILE_HEADER_LEN);
3183 
3184 	mutex_enter(SD_MUTEX(un));
3185 	if (rtn == 0) {
3186 		/*
3187 		 * We have good information, check for writable DVD.
3188 		 */
3189 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3190 			un->un_f_mmc_writable_media = TRUE;
3191 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3192 			kmem_free(rqbuf, SENSE_LENGTH);
3193 			return;
3194 		}
3195 	}
3196 
3197 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3198 	kmem_free(rqbuf, SENSE_LENGTH);
3199 
3200 	/*
3201 	 * Determine if this is a RRD type device.
3202 	 */
3203 	mutex_exit(SD_MUTEX(un));
3204 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3205 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3206 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3207 	mutex_enter(SD_MUTEX(un));
3208 	if (status != 0) {
3209 		/* command failed; just return */
3210 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3211 		return;
3212 	}
3213 
3214 	/* Get to the page data */
3215 	sense_mhp = (struct mode_header_grp2 *)buf;
3216 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3217 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3218 		/*
3219 		 * We did not get back the expected block descriptor length so
3220 		 * we cannot check the mode page.
3221 		 */
3222 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3223 		    "sd_check_for_writable_cd: Mode Sense returned "
3224 		    "invalid block descriptor length\n");
3225 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3226 		return;
3227 	}
3228 
3229 	/*
3230 	 * If the device presents DVD or CD capabilities in the mode
3231 	 * page, we can return here since a RRD device will not have
3232 	 * these capabilities.
3233 	 */
3234 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3235 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3236 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3237 		return;
3238 	}
3239 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3240 
3241 	/*
3242 	 * If un->un_f_mmc_writable_media is still FALSE,
3243 	 * check for RRD type media.  A RRD device is identified
3244 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3245 	 */
3246 	mutex_exit(SD_MUTEX(un));
3247 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3248 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3249 
3250 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3251 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3252 	    RANDOM_WRITABLE);
3253 	if (rtn != 0) {
3254 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3255 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3256 		mutex_enter(SD_MUTEX(un));
3257 		return;
3258 	}
3259 
3260 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3261 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3262 
3263 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3264 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3265 	    HARDWARE_DEFECT_MANAGEMENT);
3266 	mutex_enter(SD_MUTEX(un));
3267 	if (rtn == 0) {
3268 		/*
3269 		 * We have good information, check for random writable
3270 		 * and hardware defect features as current.
3271 		 */
3272 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3273 		    (out_data_rw[10] & 0x1) &&
3274 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3275 		    (out_data_hd[10] & 0x1)) {
3276 			un->un_f_mmc_writable_media = TRUE;
3277 		}
3278 	}
3279 
3280 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3281 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3282 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3283 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3284 }
3285 
3286 /*
3287  *    Function: sd_read_unit_properties
3288  *
3289  * Description: The following implements a property lookup mechanism.
3290  *		Properties for particular disks (keyed on vendor, model
3291  *		and rev numbers) are sought in the sd.conf file via
3292  *		sd_process_sdconf_file(), and if not found there, are
3293  *		looked for in a list hardcoded in this driver via
3294  *		sd_process_sdconf_table() Once located the properties
3295  *		are used to update the driver unit structure.
3296  *
3297  *   Arguments: un - driver soft state (unit) structure
3298  */
3299 
3300 static void
3301 sd_read_unit_properties(struct sd_lun *un)
3302 {
3303 	/*
3304 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3305 	 * the "sd-config-list" property (from the sd.conf file) or if
3306 	 * there was not a match for the inquiry vid/pid. If this event
3307 	 * occurs the static driver configuration table is searched for
3308 	 * a match.
3309 	 */
3310 	ASSERT(un != NULL);
3311 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3312 		sd_process_sdconf_table(un);
3313 	}
3314 
3315 	/* check for LSI device */
3316 	sd_is_lsi(un);
3317 
3318 
3319 }
3320 
3321 
3322 /*
3323  *    Function: sd_process_sdconf_file
3324  *
3325  * Description: Use ddi_getlongprop to obtain the properties from the
3326  *		driver's config file (ie, sd.conf) and update the driver
3327  *		soft state structure accordingly.
3328  *
3329  *   Arguments: un - driver soft state (unit) structure
3330  *
3331  * Return Code: SD_SUCCESS - The properties were successfully set according
3332  *			     to the driver configuration file.
3333  *		SD_FAILURE - The driver config list was not obtained or
3334  *			     there was no vid/pid match. This indicates that
3335  *			     the static config table should be used.
3336  *
3337  * The config file has a property, "sd-config-list", which consists of
3338  * one or more duplets as follows:
3339  *
3340  *  sd-config-list=
3341  *	<duplet>,
3342  *	[<duplet>,]
3343  *	[<duplet>];
3344  *
3345  * The structure of each duplet is as follows:
3346  *
3347  *  <duplet>:= <vid+pid>,<data-property-name_list>
3348  *
3349  * The first entry of the duplet is the device ID string (the concatenated
3350  * vid & pid; not to be confused with a device_id).  This is defined in
3351  * the same way as in the sd_disk_table.
3352  *
3353  * The second part of the duplet is a string that identifies a
3354  * data-property-name-list. The data-property-name-list is defined as
3355  * follows:
3356  *
3357  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3358  *
3359  * The syntax of <data-property-name> depends on the <version> field.
3360  *
3361  * If version = SD_CONF_VERSION_1 we have the following syntax:
3362  *
3363  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3364  *
3365  * where the prop0 value will be used to set prop0 if bit0 set in the
3366  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3367  *
3368  */
3369 
3370 static int
3371 sd_process_sdconf_file(struct sd_lun *un)
3372 {
3373 	char	*config_list = NULL;
3374 	int	config_list_len;
3375 	int	len;
3376 	int	dupletlen = 0;
3377 	char	*vidptr;
3378 	int	vidlen;
3379 	char	*dnlist_ptr;
3380 	char	*dataname_ptr;
3381 	int	dnlist_len;
3382 	int	dataname_len;
3383 	int	*data_list;
3384 	int	data_list_len;
3385 	int	rval = SD_FAILURE;
3386 	int	i;
3387 
3388 	ASSERT(un != NULL);
3389 
3390 	/* Obtain the configuration list associated with the .conf file */
3391 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3392 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3393 	    != DDI_PROP_SUCCESS) {
3394 		return (SD_FAILURE);
3395 	}
3396 
3397 	/*
3398 	 * Compare vids in each duplet to the inquiry vid - if a match is
3399 	 * made, get the data value and update the soft state structure
3400 	 * accordingly.
3401 	 *
3402 	 * Note: This algorithm is complex and difficult to maintain. It should
3403 	 * be replaced with a more robust implementation.
3404 	 */
3405 	for (len = config_list_len, vidptr = config_list; len > 0;
3406 	    vidptr += dupletlen, len -= dupletlen) {
3407 		/*
3408 		 * Note: The assumption here is that each vid entry is on
3409 		 * a unique line from its associated duplet.
3410 		 */
3411 		vidlen = dupletlen = (int)strlen(vidptr);
3412 		if ((vidlen == 0) ||
3413 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3414 			dupletlen++;
3415 			continue;
3416 		}
3417 
3418 		/*
3419 		 * dnlist contains 1 or more blank separated
3420 		 * data-property-name entries
3421 		 */
3422 		dnlist_ptr = vidptr + vidlen + 1;
3423 		dnlist_len = (int)strlen(dnlist_ptr);
3424 		dupletlen += dnlist_len + 2;
3425 
3426 		/*
3427 		 * Set a pointer for the first data-property-name
3428 		 * entry in the list
3429 		 */
3430 		dataname_ptr = dnlist_ptr;
3431 		dataname_len = 0;
3432 
3433 		/*
3434 		 * Loop through all data-property-name entries in the
3435 		 * data-property-name-list setting the properties for each.
3436 		 */
3437 		while (dataname_len < dnlist_len) {
3438 			int version;
3439 
3440 			/*
3441 			 * Determine the length of the current
3442 			 * data-property-name entry by indexing until a
3443 			 * blank or NULL is encountered. When the space is
3444 			 * encountered reset it to a NULL for compliance
3445 			 * with ddi_getlongprop().
3446 			 */
3447 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3448 			    (dataname_ptr[i] != '\0')); i++) {
3449 				;
3450 			}
3451 
3452 			dataname_len += i;
3453 			/* If not null terminated, Make it so */
3454 			if (dataname_ptr[i] == ' ') {
3455 				dataname_ptr[i] = '\0';
3456 			}
3457 			dataname_len++;
3458 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3459 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3460 			    vidptr, dataname_ptr);
3461 
3462 			/* Get the data list */
3463 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3464 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3465 			    != DDI_PROP_SUCCESS) {
3466 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3467 				    "sd_process_sdconf_file: data property (%s)"
3468 				    " has no value\n", dataname_ptr);
3469 				dataname_ptr = dnlist_ptr + dataname_len;
3470 				continue;
3471 			}
3472 
3473 			version = data_list[0];
3474 
3475 			if (version == SD_CONF_VERSION_1) {
3476 				sd_tunables values;
3477 
3478 				/* Set the properties */
3479 				if (sd_chk_vers1_data(un, data_list[1],
3480 				    &data_list[2], data_list_len, dataname_ptr)
3481 				    == SD_SUCCESS) {
3482 					sd_get_tunables_from_conf(un,
3483 					    data_list[1], &data_list[2],
3484 					    &values);
3485 					sd_set_vers1_properties(un,
3486 					    data_list[1], &values);
3487 					rval = SD_SUCCESS;
3488 				} else {
3489 					rval = SD_FAILURE;
3490 				}
3491 			} else {
3492 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3493 				    "data property %s version 0x%x is invalid.",
3494 				    dataname_ptr, version);
3495 				rval = SD_FAILURE;
3496 			}
3497 			kmem_free(data_list, data_list_len);
3498 			dataname_ptr = dnlist_ptr + dataname_len;
3499 		}
3500 	}
3501 
3502 	/* free up the memory allocated by ddi_getlongprop */
3503 	if (config_list) {
3504 		kmem_free(config_list, config_list_len);
3505 	}
3506 
3507 	return (rval);
3508 }
3509 
3510 /*
3511  *    Function: sd_get_tunables_from_conf()
3512  *
3513  *
3514  *    This function reads the data list from the sd.conf file and pulls
3515  *    the values that can have numeric values as arguments and places
3516  *    the values in the apropriate sd_tunables member.
3517  *    Since the order of the data list members varies across platforms
3518  *    This function reads them from the data list in a platform specific
3519  *    order and places them into the correct sd_tunable member that is
3520  *    a consistant across all platforms.
3521  */
3522 static void
3523 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3524     sd_tunables *values)
3525 {
3526 	int i;
3527 	int mask;
3528 
3529 	bzero(values, sizeof (sd_tunables));
3530 
3531 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3532 
3533 		mask = 1 << i;
3534 		if (mask > flags) {
3535 			break;
3536 		}
3537 
3538 		switch (mask & flags) {
3539 		case 0:	/* This mask bit not set in flags */
3540 			continue;
3541 		case SD_CONF_BSET_THROTTLE:
3542 			values->sdt_throttle = data_list[i];
3543 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3544 			    "sd_get_tunables_from_conf: throttle = %d\n",
3545 			    values->sdt_throttle);
3546 			break;
3547 		case SD_CONF_BSET_CTYPE:
3548 			values->sdt_ctype = data_list[i];
3549 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3550 			    "sd_get_tunables_from_conf: ctype = %d\n",
3551 			    values->sdt_ctype);
3552 			break;
3553 		case SD_CONF_BSET_NRR_COUNT:
3554 			values->sdt_not_rdy_retries = data_list[i];
3555 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3556 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3557 			    values->sdt_not_rdy_retries);
3558 			break;
3559 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3560 			values->sdt_busy_retries = data_list[i];
3561 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3562 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3563 			    values->sdt_busy_retries);
3564 			break;
3565 		case SD_CONF_BSET_RST_RETRIES:
3566 			values->sdt_reset_retries = data_list[i];
3567 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3568 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3569 			    values->sdt_reset_retries);
3570 			break;
3571 		case SD_CONF_BSET_RSV_REL_TIME:
3572 			values->sdt_reserv_rel_time = data_list[i];
3573 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3574 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3575 			    values->sdt_reserv_rel_time);
3576 			break;
3577 		case SD_CONF_BSET_MIN_THROTTLE:
3578 			values->sdt_min_throttle = data_list[i];
3579 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3580 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3581 			    values->sdt_min_throttle);
3582 			break;
3583 		case SD_CONF_BSET_DISKSORT_DISABLED:
3584 			values->sdt_disk_sort_dis = data_list[i];
3585 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3586 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3587 			    values->sdt_disk_sort_dis);
3588 			break;
3589 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3590 			values->sdt_lun_reset_enable = data_list[i];
3591 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3592 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3593 			    "\n", values->sdt_lun_reset_enable);
3594 			break;
3595 		}
3596 	}
3597 }
3598 
3599 /*
3600  *    Function: sd_process_sdconf_table
3601  *
3602  * Description: Search the static configuration table for a match on the
3603  *		inquiry vid/pid and update the driver soft state structure
3604  *		according to the table property values for the device.
3605  *
3606  *		The form of a configuration table entry is:
3607  *		  <vid+pid>,<flags>,<property-data>
3608  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3609  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3610  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3611  *
3612  *   Arguments: un - driver soft state (unit) structure
3613  */
3614 
3615 static void
3616 sd_process_sdconf_table(struct sd_lun *un)
3617 {
3618 	char	*id = NULL;
3619 	int	table_index;
3620 	int	idlen;
3621 
3622 	ASSERT(un != NULL);
3623 	for (table_index = 0; table_index < sd_disk_table_size;
3624 	    table_index++) {
3625 		id = sd_disk_table[table_index].device_id;
3626 		idlen = strlen(id);
3627 		if (idlen == 0) {
3628 			continue;
3629 		}
3630 
3631 		/*
3632 		 * The static configuration table currently does not
3633 		 * implement version 10 properties. Additionally,
3634 		 * multiple data-property-name entries are not
3635 		 * implemented in the static configuration table.
3636 		 */
3637 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3638 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3639 			    "sd_process_sdconf_table: disk %s\n", id);
3640 			sd_set_vers1_properties(un,
3641 			    sd_disk_table[table_index].flags,
3642 			    sd_disk_table[table_index].properties);
3643 			break;
3644 		}
3645 	}
3646 }
3647 
3648 
3649 /*
3650  *    Function: sd_sdconf_id_match
3651  *
3652  * Description: This local function implements a case sensitive vid/pid
3653  *		comparison as well as the boundary cases of wild card and
3654  *		multiple blanks.
3655  *
3656  *		Note: An implicit assumption made here is that the scsi
3657  *		inquiry structure will always keep the vid, pid and
3658  *		revision strings in consecutive sequence, so they can be
3659  *		read as a single string. If this assumption is not the
3660  *		case, a separate string, to be used for the check, needs
3661  *		to be built with these strings concatenated.
3662  *
3663  *   Arguments: un - driver soft state (unit) structure
3664  *		id - table or config file vid/pid
3665  *		idlen  - length of the vid/pid (bytes)
3666  *
3667  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3668  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3669  */
3670 
3671 static int
3672 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3673 {
3674 	struct scsi_inquiry	*sd_inq;
3675 	int 			rval = SD_SUCCESS;
3676 
3677 	ASSERT(un != NULL);
3678 	sd_inq = un->un_sd->sd_inq;
3679 	ASSERT(id != NULL);
3680 
3681 	/*
3682 	 * We use the inq_vid as a pointer to a buffer containing the
3683 	 * vid and pid and use the entire vid/pid length of the table
3684 	 * entry for the comparison. This works because the inq_pid
3685 	 * data member follows inq_vid in the scsi_inquiry structure.
3686 	 */
3687 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3688 		/*
3689 		 * The user id string is compared to the inquiry vid/pid
3690 		 * using a case insensitive comparison and ignoring
3691 		 * multiple spaces.
3692 		 */
3693 		rval = sd_blank_cmp(un, id, idlen);
3694 		if (rval != SD_SUCCESS) {
3695 			/*
3696 			 * User id strings that start and end with a "*"
3697 			 * are a special case. These do not have a
3698 			 * specific vendor, and the product string can
3699 			 * appear anywhere in the 16 byte PID portion of
3700 			 * the inquiry data. This is a simple strstr()
3701 			 * type search for the user id in the inquiry data.
3702 			 */
3703 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3704 				char	*pidptr = &id[1];
3705 				int	i;
3706 				int	j;
3707 				int	pidstrlen = idlen - 2;
3708 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3709 				    pidstrlen;
3710 
3711 				if (j < 0) {
3712 					return (SD_FAILURE);
3713 				}
3714 				for (i = 0; i < j; i++) {
3715 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3716 					    pidptr, pidstrlen) == 0) {
3717 						rval = SD_SUCCESS;
3718 						break;
3719 					}
3720 				}
3721 			}
3722 		}
3723 	}
3724 	return (rval);
3725 }
3726 
3727 
3728 /*
3729  *    Function: sd_blank_cmp
3730  *
3731  * Description: If the id string starts and ends with a space, treat
3732  *		multiple consecutive spaces as equivalent to a single
3733  *		space. For example, this causes a sd_disk_table entry
3734  *		of " NEC CDROM " to match a device's id string of
3735  *		"NEC       CDROM".
3736  *
3737  *		Note: The success exit condition for this routine is if
3738  *		the pointer to the table entry is '\0' and the cnt of
3739  *		the inquiry length is zero. This will happen if the inquiry
3740  *		string returned by the device is padded with spaces to be
3741  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3742  *		SCSI spec states that the inquiry string is to be padded with
3743  *		spaces.
3744  *
3745  *   Arguments: un - driver soft state (unit) structure
3746  *		id - table or config file vid/pid
3747  *		idlen  - length of the vid/pid (bytes)
3748  *
3749  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3750  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3751  */
3752 
3753 static int
3754 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3755 {
3756 	char		*p1;
3757 	char		*p2;
3758 	int		cnt;
3759 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3760 	    sizeof (SD_INQUIRY(un)->inq_pid);
3761 
3762 	ASSERT(un != NULL);
3763 	p2 = un->un_sd->sd_inq->inq_vid;
3764 	ASSERT(id != NULL);
3765 	p1 = id;
3766 
3767 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3768 		/*
3769 		 * Note: string p1 is terminated by a NUL but string p2
3770 		 * isn't.  The end of p2 is determined by cnt.
3771 		 */
3772 		for (;;) {
3773 			/* skip over any extra blanks in both strings */
3774 			while ((*p1 != '\0') && (*p1 == ' ')) {
3775 				p1++;
3776 			}
3777 			while ((cnt != 0) && (*p2 == ' ')) {
3778 				p2++;
3779 				cnt--;
3780 			}
3781 
3782 			/* compare the two strings */
3783 			if ((cnt == 0) ||
3784 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3785 				break;
3786 			}
3787 			while ((cnt > 0) &&
3788 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3789 				p1++;
3790 				p2++;
3791 				cnt--;
3792 			}
3793 		}
3794 	}
3795 
3796 	/* return SD_SUCCESS if both strings match */
3797 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3798 }
3799 
3800 
3801 /*
3802  *    Function: sd_chk_vers1_data
3803  *
3804  * Description: Verify the version 1 device properties provided by the
3805  *		user via the configuration file
3806  *
3807  *   Arguments: un	     - driver soft state (unit) structure
3808  *		flags	     - integer mask indicating properties to be set
3809  *		prop_list    - integer list of property values
3810  *		list_len     - length of user provided data
3811  *
3812  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3813  *		SD_FAILURE - Indicates the user provided data is invalid
3814  */
3815 
3816 static int
3817 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3818     int list_len, char *dataname_ptr)
3819 {
3820 	int i;
3821 	int mask = 1;
3822 	int index = 0;
3823 
3824 	ASSERT(un != NULL);
3825 
3826 	/* Check for a NULL property name and list */
3827 	if (dataname_ptr == NULL) {
3828 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3829 		    "sd_chk_vers1_data: NULL data property name.");
3830 		return (SD_FAILURE);
3831 	}
3832 	if (prop_list == NULL) {
3833 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3834 		    "sd_chk_vers1_data: %s NULL data property list.",
3835 		    dataname_ptr);
3836 		return (SD_FAILURE);
3837 	}
3838 
3839 	/* Display a warning if undefined bits are set in the flags */
3840 	if (flags & ~SD_CONF_BIT_MASK) {
3841 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3842 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3843 		    "Properties not set.",
3844 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3845 		return (SD_FAILURE);
3846 	}
3847 
3848 	/*
3849 	 * Verify the length of the list by identifying the highest bit set
3850 	 * in the flags and validating that the property list has a length
3851 	 * up to the index of this bit.
3852 	 */
3853 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3854 		if (flags & mask) {
3855 			index++;
3856 		}
3857 		mask = 1 << i;
3858 	}
3859 	if ((list_len / sizeof (int)) < (index + 2)) {
3860 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3861 		    "sd_chk_vers1_data: "
3862 		    "Data property list %s size is incorrect. "
3863 		    "Properties not set.", dataname_ptr);
3864 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3865 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3866 		return (SD_FAILURE);
3867 	}
3868 	return (SD_SUCCESS);
3869 }
3870 
3871 
3872 /*
3873  *    Function: sd_set_vers1_properties
3874  *
3875  * Description: Set version 1 device properties based on a property list
3876  *		retrieved from the driver configuration file or static
3877  *		configuration table. Version 1 properties have the format:
3878  *
3879  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3880  *
3881  *		where the prop0 value will be used to set prop0 if bit0
3882  *		is set in the flags
3883  *
3884  *   Arguments: un	     - driver soft state (unit) structure
3885  *		flags	     - integer mask indicating properties to be set
3886  *		prop_list    - integer list of property values
3887  */
3888 
3889 static void
3890 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3891 {
3892 	ASSERT(un != NULL);
3893 
3894 	/*
3895 	 * Set the flag to indicate cache is to be disabled. An attempt
3896 	 * to disable the cache via sd_cache_control() will be made
3897 	 * later during attach once the basic initialization is complete.
3898 	 */
3899 	if (flags & SD_CONF_BSET_NOCACHE) {
3900 		un->un_f_opt_disable_cache = TRUE;
3901 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3902 		    "sd_set_vers1_properties: caching disabled flag set\n");
3903 	}
3904 
3905 	/* CD-specific configuration parameters */
3906 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3907 		un->un_f_cfg_playmsf_bcd = TRUE;
3908 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3909 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3910 	}
3911 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3912 		un->un_f_cfg_readsub_bcd = TRUE;
3913 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3914 		    "sd_set_vers1_properties: readsub_bcd set\n");
3915 	}
3916 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3917 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3918 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3919 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3920 	}
3921 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3922 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3923 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3924 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3925 	}
3926 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3927 		un->un_f_cfg_no_read_header = TRUE;
3928 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3929 			    "sd_set_vers1_properties: no_read_header set\n");
3930 	}
3931 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3932 		un->un_f_cfg_read_cd_xd4 = TRUE;
3933 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3934 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3935 	}
3936 
3937 	/* Support for devices which do not have valid/unique serial numbers */
3938 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3939 		un->un_f_opt_fab_devid = TRUE;
3940 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3941 		    "sd_set_vers1_properties: fab_devid bit set\n");
3942 	}
3943 
3944 	/* Support for user throttle configuration */
3945 	if (flags & SD_CONF_BSET_THROTTLE) {
3946 		ASSERT(prop_list != NULL);
3947 		un->un_saved_throttle = un->un_throttle =
3948 		    prop_list->sdt_throttle;
3949 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3950 		    "sd_set_vers1_properties: throttle set to %d\n",
3951 		    prop_list->sdt_throttle);
3952 	}
3953 
3954 	/* Set the per disk retry count according to the conf file or table. */
3955 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3956 		ASSERT(prop_list != NULL);
3957 		if (prop_list->sdt_not_rdy_retries) {
3958 			un->un_notready_retry_count =
3959 				prop_list->sdt_not_rdy_retries;
3960 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3961 			    "sd_set_vers1_properties: not ready retry count"
3962 			    " set to %d\n", un->un_notready_retry_count);
3963 		}
3964 	}
3965 
3966 	/* The controller type is reported for generic disk driver ioctls */
3967 	if (flags & SD_CONF_BSET_CTYPE) {
3968 		ASSERT(prop_list != NULL);
3969 		switch (prop_list->sdt_ctype) {
3970 		case CTYPE_CDROM:
3971 			un->un_ctype = prop_list->sdt_ctype;
3972 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3973 			    "sd_set_vers1_properties: ctype set to "
3974 			    "CTYPE_CDROM\n");
3975 			break;
3976 		case CTYPE_CCS:
3977 			un->un_ctype = prop_list->sdt_ctype;
3978 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3979 				"sd_set_vers1_properties: ctype set to "
3980 				"CTYPE_CCS\n");
3981 			break;
3982 		case CTYPE_ROD:		/* RW optical */
3983 			un->un_ctype = prop_list->sdt_ctype;
3984 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3985 			    "sd_set_vers1_properties: ctype set to "
3986 			    "CTYPE_ROD\n");
3987 			break;
3988 		default:
3989 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3990 			    "sd_set_vers1_properties: Could not set "
3991 			    "invalid ctype value (%d)",
3992 			    prop_list->sdt_ctype);
3993 		}
3994 	}
3995 
3996 	/* Purple failover timeout */
3997 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3998 		ASSERT(prop_list != NULL);
3999 		un->un_busy_retry_count =
4000 			prop_list->sdt_busy_retries;
4001 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4002 		    "sd_set_vers1_properties: "
4003 		    "busy retry count set to %d\n",
4004 		    un->un_busy_retry_count);
4005 	}
4006 
4007 	/* Purple reset retry count */
4008 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4009 		ASSERT(prop_list != NULL);
4010 		un->un_reset_retry_count =
4011 			prop_list->sdt_reset_retries;
4012 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4013 		    "sd_set_vers1_properties: "
4014 		    "reset retry count set to %d\n",
4015 		    un->un_reset_retry_count);
4016 	}
4017 
4018 	/* Purple reservation release timeout */
4019 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4020 		ASSERT(prop_list != NULL);
4021 		un->un_reserve_release_time =
4022 			prop_list->sdt_reserv_rel_time;
4023 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4024 		    "sd_set_vers1_properties: "
4025 		    "reservation release timeout set to %d\n",
4026 		    un->un_reserve_release_time);
4027 	}
4028 
4029 	/*
4030 	 * Driver flag telling the driver to verify that no commands are pending
4031 	 * for a device before issuing a Test Unit Ready. This is a workaround
4032 	 * for a firmware bug in some Seagate eliteI drives.
4033 	 */
4034 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4035 		un->un_f_cfg_tur_check = TRUE;
4036 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4037 		    "sd_set_vers1_properties: tur queue check set\n");
4038 	}
4039 
4040 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4041 		un->un_min_throttle = prop_list->sdt_min_throttle;
4042 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043 		    "sd_set_vers1_properties: min throttle set to %d\n",
4044 		    un->un_min_throttle);
4045 	}
4046 
4047 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4048 		un->un_f_disksort_disabled =
4049 		    (prop_list->sdt_disk_sort_dis != 0) ?
4050 		    TRUE : FALSE;
4051 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4052 		    "sd_set_vers1_properties: disksort disabled "
4053 		    "flag set to %d\n",
4054 		    prop_list->sdt_disk_sort_dis);
4055 	}
4056 
4057 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4058 		un->un_f_lun_reset_enabled =
4059 		    (prop_list->sdt_lun_reset_enable != 0) ?
4060 		    TRUE : FALSE;
4061 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4062 		    "sd_set_vers1_properties: lun reset enabled "
4063 		    "flag set to %d\n",
4064 		    prop_list->sdt_lun_reset_enable);
4065 	}
4066 
4067 	/*
4068 	 * Validate the throttle values.
4069 	 * If any of the numbers are invalid, set everything to defaults.
4070 	 */
4071 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4072 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4073 	    (un->un_min_throttle > un->un_throttle)) {
4074 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4075 		un->un_min_throttle = sd_min_throttle;
4076 	}
4077 }
4078 
4079 /*
4080  *   Function: sd_is_lsi()
4081  *
4082  *   Description: Check for lsi devices, step throught the static device
4083  *	table to match vid/pid.
4084  *
4085  *   Args: un - ptr to sd_lun
4086  *
4087  *   Notes:  When creating new LSI property, need to add the new LSI property
4088  *		to this function.
4089  */
4090 static void
4091 sd_is_lsi(struct sd_lun *un)
4092 {
4093 	char	*id = NULL;
4094 	int	table_index;
4095 	int	idlen;
4096 	void	*prop;
4097 
4098 	ASSERT(un != NULL);
4099 	for (table_index = 0; table_index < sd_disk_table_size;
4100 	    table_index++) {
4101 		id = sd_disk_table[table_index].device_id;
4102 		idlen = strlen(id);
4103 		if (idlen == 0) {
4104 			continue;
4105 		}
4106 
4107 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4108 			prop = sd_disk_table[table_index].properties;
4109 			if (prop == &lsi_properties ||
4110 			    prop == &lsi_oem_properties ||
4111 			    prop == &lsi_properties_scsi ||
4112 			    prop == &symbios_properties) {
4113 				un->un_f_cfg_is_lsi = TRUE;
4114 			}
4115 			break;
4116 		}
4117 	}
4118 }
4119 
4120 
4121 /*
4122  * The following routines support reading and interpretation of disk labels,
4123  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4124  * fdisk tables.
4125  */
4126 
4127 /*
4128  *    Function: sd_validate_geometry
4129  *
4130  * Description: Read the label from the disk (if present). Update the unit's
4131  *		geometry and vtoc information from the data in the label.
4132  *		Verify that the label is valid.
4133  *
4134  *   Arguments: un - driver soft state (unit) structure
4135  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4136  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4137  *			to use the USCSI "direct" chain and bypass the normal
4138  *			command waitq.
4139  *
4140  * Return Code: 0 - Successful completion
4141  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4142  *			  un->un_blockcount; or label on disk is corrupted
4143  *			  or unreadable.
4144  *		EACCES  - Reservation conflict at the device.
4145  *		ENOMEM  - Resource allocation error
4146  *		ENOTSUP - geometry not applicable
4147  *
4148  *     Context: Kernel thread only (can sleep).
4149  */
4150 
4151 static int
4152 sd_validate_geometry(struct sd_lun *un, int path_flag)
4153 {
4154 	static	char		labelstring[128];
4155 	static	char		buf[256];
4156 	char	*label		= NULL;
4157 	int	label_error = 0;
4158 	int	gvalid		= un->un_f_geometry_is_valid;
4159 	int	lbasize;
4160 	uint_t	capacity;
4161 	int	count;
4162 
4163 	ASSERT(un != NULL);
4164 	ASSERT(mutex_owned(SD_MUTEX(un)));
4165 
4166 	/*
4167 	 * If the required values are not valid, then try getting them
4168 	 * once via read capacity. If that fails, then fail this call.
4169 	 * This is necessary with the new mpxio failover behavior in
4170 	 * the T300 where we can get an attach for the inactive path
4171 	 * before the active path. The inactive path fails commands with
4172 	 * sense data of 02,04,88 which happens to the read capacity
4173 	 * before mpxio has had sufficient knowledge to know if it should
4174 	 * force a fail over or not. (Which it won't do at attach anyhow).
4175 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4176 	 * un_blockcount won't be valid.
4177 	 */
4178 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4179 	    (un->un_f_blockcount_is_valid != TRUE)) {
4180 		uint64_t	cap;
4181 		uint32_t	lbasz;
4182 		int		rval;
4183 
4184 		mutex_exit(SD_MUTEX(un));
4185 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4186 		    &lbasz, SD_PATH_DIRECT);
4187 		mutex_enter(SD_MUTEX(un));
4188 		if (rval == 0) {
4189 			/*
4190 			 * The following relies on
4191 			 * sd_send_scsi_READ_CAPACITY never
4192 			 * returning 0 for capacity and/or lbasize.
4193 			 */
4194 			sd_update_block_info(un, lbasz, cap);
4195 		}
4196 
4197 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4198 		    (un->un_f_blockcount_is_valid != TRUE)) {
4199 			return (EINVAL);
4200 		}
4201 	}
4202 
4203 	/*
4204 	 * Copy the lbasize and capacity so that if they're reset while we're
4205 	 * not holding the SD_MUTEX, we will continue to use valid values
4206 	 * after the SD_MUTEX is reacquired. (4119659)
4207 	 */
4208 	lbasize  = un->un_tgt_blocksize;
4209 	capacity = un->un_blockcount;
4210 
4211 #if defined(_SUNOS_VTOC_16)
4212 	/*
4213 	 * Set up the "whole disk" fdisk partition; this should always
4214 	 * exist, regardless of whether the disk contains an fdisk table
4215 	 * or vtoc.
4216 	 */
4217 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4218 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4219 #endif
4220 
4221 	/*
4222 	 * Refresh the logical and physical geometry caches.
4223 	 * (data from MODE SENSE format/rigid disk geometry pages,
4224 	 * and scsi_ifgetcap("geometry").
4225 	 */
4226 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4227 
4228 	label_error = sd_use_efi(un, path_flag);
4229 	if (label_error == 0) {
4230 		/* found a valid EFI label */
4231 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4232 			"sd_validate_geometry: found EFI label\n");
4233 		un->un_solaris_offset = 0;
4234 		un->un_solaris_size = capacity;
4235 		return (ENOTSUP);
4236 	}
4237 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4238 		if (label_error == ESRCH) {
4239 			/*
4240 			 * they've configured a LUN over 1TB, but used
4241 			 * format.dat to restrict format's view of the
4242 			 * capacity to be under 1TB
4243 			 */
4244 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4245 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4246 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4247 "size to be < 1TB or relabel the disk with an EFI label");
4248 		} else {
4249 			/* unlabeled disk over 1TB */
4250 #if defined(__i386) || defined(__amd64)
4251 			/*
4252 			 * Refer to comments on off-by-1 at the head of the file
4253 			 * A 1TB disk was treated as (1T - 512)B in the past,
4254 			 * thus, it might have valid solaris partition. We
4255 			 * will return ENOTSUP later only if this disk has no
4256 			 * valid solaris partition.
4257 			 */
4258 			if ((un->un_tgt_blocksize != un->un_sys_blocksize) ||
4259 			    (un->un_blockcount - 1 > DK_MAX_BLOCKS) ||
4260 			    un->un_f_has_removable_media ||
4261 			    un->un_f_is_hotpluggable)
4262 #endif
4263 				return (ENOTSUP);
4264 		}
4265 	}
4266 	label_error = 0;
4267 
4268 	/*
4269 	 * at this point it is either labeled with a VTOC or it is
4270 	 * under 1TB (<= 1TB actually for off-by-1)
4271 	 */
4272 	if (un->un_f_vtoc_label_supported) {
4273 		struct	dk_label *dkl;
4274 		offset_t dkl1;
4275 		offset_t label_addr, real_addr;
4276 		int	rval;
4277 		size_t	buffer_size;
4278 
4279 		/*
4280 		 * Note: This will set up un->un_solaris_size and
4281 		 * un->un_solaris_offset.
4282 		 */
4283 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4284 		case SD_CMD_RESERVATION_CONFLICT:
4285 			ASSERT(mutex_owned(SD_MUTEX(un)));
4286 			return (EACCES);
4287 		case SD_CMD_FAILURE:
4288 			ASSERT(mutex_owned(SD_MUTEX(un)));
4289 			return (ENOMEM);
4290 		}
4291 
4292 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4293 
4294 #if defined(__i386) || defined(__amd64)
4295 			/*
4296 			 * Refer to comments on off-by-1 at the head of the file
4297 			 * This is for 1TB disk only. Since that there is no
4298 			 * solaris partitions, return ENOTSUP as we do for
4299 			 * >1TB disk.
4300 			 */
4301 			if (un->un_blockcount > DK_MAX_BLOCKS)
4302 				return (ENOTSUP);
4303 #endif
4304 			/*
4305 			 * Found fdisk table but no Solaris partition entry,
4306 			 * so don't call sd_uselabel() and don't create
4307 			 * a default label.
4308 			 */
4309 			label_error = 0;
4310 			un->un_f_geometry_is_valid = TRUE;
4311 			goto no_solaris_partition;
4312 		}
4313 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4314 
4315 #if defined(__i386) || defined(__amd64)
4316 		/*
4317 		 * Refer to comments on off-by-1 at the head of the file
4318 		 * Now, this 1TB disk has valid solaris partition. It
4319 		 * must be created by previous sd driver, we have to
4320 		 * treat it as (1T-512)B.
4321 		 */
4322 		if (un->un_blockcount > DK_MAX_BLOCKS) {
4323 			un->un_f_capacity_adjusted = 1;
4324 			un->un_blockcount = DK_MAX_BLOCKS;
4325 			un->un_map[P0_RAW_DISK].dkl_nblk  = DK_MAX_BLOCKS;
4326 
4327 			/*
4328 			 * Refer to sd_read_fdisk, when there is no
4329 			 * fdisk partition table, un_solaris_size is
4330 			 * set to disk's capacity. In this case, we
4331 			 * need to adjust it
4332 			 */
4333 			if (un->un_solaris_size > DK_MAX_BLOCKS)
4334 				un->un_solaris_size = DK_MAX_BLOCKS;
4335 			sd_resync_geom_caches(un, DK_MAX_BLOCKS,
4336 			    lbasize, path_flag);
4337 		}
4338 #endif
4339 
4340 		/*
4341 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4342 		 * blkno and save the index to beginning of dk_label
4343 		 */
4344 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4345 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4346 		    sizeof (struct dk_label));
4347 
4348 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4349 		    "label_addr: 0x%x allocation size: 0x%x\n",
4350 		    label_addr, buffer_size);
4351 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4352 		if (dkl == NULL) {
4353 			return (ENOMEM);
4354 		}
4355 
4356 		mutex_exit(SD_MUTEX(un));
4357 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4358 		    path_flag);
4359 		mutex_enter(SD_MUTEX(un));
4360 
4361 		switch (rval) {
4362 		case 0:
4363 			/*
4364 			 * sd_uselabel will establish that the geometry
4365 			 * is valid.
4366 			 * For sys_blocksize != tgt_blocksize, need
4367 			 * to index into the beginning of dk_label
4368 			 */
4369 			dkl1 = (daddr_t)dkl
4370 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4371 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4372 			    path_flag) != SD_LABEL_IS_VALID) {
4373 				label_error = EINVAL;
4374 			}
4375 			break;
4376 		case EACCES:
4377 			label_error = EACCES;
4378 			break;
4379 		default:
4380 			label_error = EINVAL;
4381 			break;
4382 		}
4383 
4384 		kmem_free(dkl, buffer_size);
4385 
4386 #if defined(_SUNOS_VTOC_8)
4387 		label = (char *)un->un_asciilabel;
4388 #elif defined(_SUNOS_VTOC_16)
4389 		label = (char *)un->un_vtoc.v_asciilabel;
4390 #else
4391 #error "No VTOC format defined."
4392 #endif
4393 	}
4394 
4395 	/*
4396 	 * If a valid label was not found, AND if no reservation conflict
4397 	 * was detected, then go ahead and create a default label (4069506).
4398 	 */
4399 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4400 		if (un->un_f_geometry_is_valid == FALSE) {
4401 			sd_build_default_label(un);
4402 		}
4403 		label_error = 0;
4404 	}
4405 
4406 no_solaris_partition:
4407 	if ((!un->un_f_has_removable_media ||
4408 	    (un->un_f_has_removable_media &&
4409 		un->un_mediastate == DKIO_EJECTED)) &&
4410 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4411 		/*
4412 		 * Print out a message indicating who and what we are.
4413 		 * We do this only when we happen to really validate the
4414 		 * geometry. We may call sd_validate_geometry() at other
4415 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4416 		 * don't want to print the label.
4417 		 * If the geometry is valid, print the label string,
4418 		 * else print vendor and product info, if available
4419 		 */
4420 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4421 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4422 		} else {
4423 			mutex_enter(&sd_label_mutex);
4424 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4425 			    labelstring);
4426 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4427 			    &labelstring[64]);
4428 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4429 			    labelstring, &labelstring[64]);
4430 			if (un->un_f_blockcount_is_valid == TRUE) {
4431 				(void) sprintf(&buf[strlen(buf)],
4432 				    ", %llu %u byte blocks\n",
4433 				    (longlong_t)un->un_blockcount,
4434 				    un->un_tgt_blocksize);
4435 			} else {
4436 				(void) sprintf(&buf[strlen(buf)],
4437 				    ", (unknown capacity)\n");
4438 			}
4439 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4440 			mutex_exit(&sd_label_mutex);
4441 		}
4442 	}
4443 
4444 #if defined(_SUNOS_VTOC_16)
4445 	/*
4446 	 * If we have valid geometry, set up the remaining fdisk partitions.
4447 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4448 	 * we set it to an entirely bogus value.
4449 	 */
4450 	for (count = 0; count < FD_NUMPART; count++) {
4451 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4452 		un->un_map[FDISK_P1 + count].dkl_nblk =
4453 		    un->un_fmap[count].fmap_nblk;
4454 
4455 		un->un_offset[FDISK_P1 + count] =
4456 		    un->un_fmap[count].fmap_start;
4457 	}
4458 #endif
4459 
4460 	for (count = 0; count < NDKMAP; count++) {
4461 #if defined(_SUNOS_VTOC_8)
4462 		struct dk_map *lp  = &un->un_map[count];
4463 		un->un_offset[count] =
4464 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4465 #elif defined(_SUNOS_VTOC_16)
4466 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4467 
4468 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4469 #else
4470 #error "No VTOC format defined."
4471 #endif
4472 	}
4473 
4474 	return (label_error);
4475 }
4476 
4477 
4478 #if defined(_SUNOS_VTOC_16)
4479 /*
4480  * Macro: MAX_BLKS
4481  *
4482  *	This macro is used for table entries where we need to have the largest
4483  *	possible sector value for that head & SPT (sectors per track)
4484  *	combination.  Other entries for some smaller disk sizes are set by
4485  *	convention to match those used by X86 BIOS usage.
4486  */
4487 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4488 
4489 /*
4490  *    Function: sd_convert_geometry
4491  *
4492  * Description: Convert physical geometry into a dk_geom structure. In
4493  *		other words, make sure we don't wrap 16-bit values.
4494  *		e.g. converting from geom_cache to dk_geom
4495  *
4496  *     Context: Kernel thread only
4497  */
4498 static void
4499 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4500 {
4501 	int i;
4502 	static const struct chs_values {
4503 		uint_t max_cap;		/* Max Capacity for this HS. */
4504 		uint_t nhead;		/* Heads to use. */
4505 		uint_t nsect;		/* SPT to use. */
4506 	} CHS_values[] = {
4507 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4508 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4509 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4510 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4511 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4512 	};
4513 
4514 	/* Unlabeled SCSI floppy device */
4515 	if (capacity <= 0x1000) {
4516 		un_g->dkg_nhead = 2;
4517 		un_g->dkg_ncyl = 80;
4518 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4519 		return;
4520 	}
4521 
4522 	/*
4523 	 * For all devices we calculate cylinders using the
4524 	 * heads and sectors we assign based on capacity of the
4525 	 * device.  The table is designed to be compatible with the
4526 	 * way other operating systems lay out fdisk tables for X86
4527 	 * and to insure that the cylinders never exceed 65535 to
4528 	 * prevent problems with X86 ioctls that report geometry.
4529 	 * We use SPT that are multiples of 63, since other OSes that
4530 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4531 	 * we make do by using multiples of 63 SPT.
4532 	 *
4533 	 * Note than capacities greater than or equal to 1TB will simply
4534 	 * get the largest geometry from the table. This should be okay
4535 	 * since disks this large shouldn't be using CHS values anyway.
4536 	 */
4537 	for (i = 0; CHS_values[i].max_cap < capacity &&
4538 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4539 		;
4540 
4541 	un_g->dkg_nhead = CHS_values[i].nhead;
4542 	un_g->dkg_nsect = CHS_values[i].nsect;
4543 }
4544 #endif
4545 
4546 
4547 /*
4548  *    Function: sd_resync_geom_caches
4549  *
4550  * Description: (Re)initialize both geometry caches: the virtual geometry
4551  *		information is extracted from the HBA (the "geometry"
4552  *		capability), and the physical geometry cache data is
4553  *		generated by issuing MODE SENSE commands.
4554  *
4555  *   Arguments: un - driver soft state (unit) structure
4556  *		capacity - disk capacity in #blocks
4557  *		lbasize - disk block size in bytes
4558  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4559  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4560  *			to use the USCSI "direct" chain and bypass the normal
4561  *			command waitq.
4562  *
4563  *     Context: Kernel thread only (can sleep).
4564  */
4565 
4566 static void
4567 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4568 	int path_flag)
4569 {
4570 	struct 	geom_cache 	pgeom;
4571 	struct 	geom_cache	*pgeom_p = &pgeom;
4572 	int 	spc;
4573 	unsigned short nhead;
4574 	unsigned short nsect;
4575 
4576 	ASSERT(un != NULL);
4577 	ASSERT(mutex_owned(SD_MUTEX(un)));
4578 
4579 	/*
4580 	 * Ask the controller for its logical geometry.
4581 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4582 	 * then the lgeom cache will be invalid.
4583 	 */
4584 	sd_get_virtual_geometry(un, capacity, lbasize);
4585 
4586 	/*
4587 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4588 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4589 	 */
4590 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4591 		/*
4592 		 * Note: Perhaps this needs to be more adaptive? The rationale
4593 		 * is that, if there's no HBA geometry from the HBA driver, any
4594 		 * guess is good, since this is the physical geometry. If MODE
4595 		 * SENSE fails this gives a max cylinder size for non-LBA access
4596 		 */
4597 		nhead = 255;
4598 		nsect = 63;
4599 	} else {
4600 		nhead = un->un_lgeom.g_nhead;
4601 		nsect = un->un_lgeom.g_nsect;
4602 	}
4603 
4604 	if (ISCD(un)) {
4605 		pgeom_p->g_nhead = 1;
4606 		pgeom_p->g_nsect = nsect * nhead;
4607 	} else {
4608 		pgeom_p->g_nhead = nhead;
4609 		pgeom_p->g_nsect = nsect;
4610 	}
4611 
4612 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4613 	pgeom_p->g_capacity = capacity;
4614 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4615 	pgeom_p->g_acyl = 0;
4616 
4617 	/*
4618 	 * Retrieve fresh geometry data from the hardware, stash it
4619 	 * here temporarily before we rebuild the incore label.
4620 	 *
4621 	 * We want to use the MODE SENSE commands to derive the
4622 	 * physical geometry of the device, but if either command
4623 	 * fails, the logical geometry is used as the fallback for
4624 	 * disk label geometry.
4625 	 */
4626 	mutex_exit(SD_MUTEX(un));
4627 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4628 	mutex_enter(SD_MUTEX(un));
4629 
4630 	/*
4631 	 * Now update the real copy while holding the mutex. This
4632 	 * way the global copy is never in an inconsistent state.
4633 	 */
4634 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4635 
4636 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4637 	    "(cached from lgeom)\n");
4638 	SD_INFO(SD_LOG_COMMON, un,
4639 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4640 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4641 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4642 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4643 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4644 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4645 	    un->un_pgeom.g_rpm);
4646 }
4647 
4648 
4649 /*
4650  *    Function: sd_read_fdisk
4651  *
4652  * Description: utility routine to read the fdisk table.
4653  *
4654  *   Arguments: un - driver soft state (unit) structure
4655  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4656  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4657  *			to use the USCSI "direct" chain and bypass the normal
4658  *			command waitq.
4659  *
4660  * Return Code: SD_CMD_SUCCESS
4661  *		SD_CMD_FAILURE
4662  *
4663  *     Context: Kernel thread only (can sleep).
4664  */
4665 /* ARGSUSED */
4666 static int
4667 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4668 {
4669 #if defined(_NO_FDISK_PRESENT)
4670 
4671 	un->un_solaris_offset = 0;
4672 	un->un_solaris_size = capacity;
4673 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4674 	return (SD_CMD_SUCCESS);
4675 
4676 #elif defined(_FIRMWARE_NEEDS_FDISK)
4677 
4678 	struct ipart	*fdp;
4679 	struct mboot	*mbp;
4680 	struct ipart	fdisk[FD_NUMPART];
4681 	int		i;
4682 	char		sigbuf[2];
4683 	caddr_t		bufp;
4684 	int		uidx;
4685 	int		rval;
4686 	int		lba = 0;
4687 	uint_t		solaris_offset;	/* offset to solaris part. */
4688 	daddr_t		solaris_size;	/* size of solaris partition */
4689 	uint32_t	blocksize;
4690 
4691 	ASSERT(un != NULL);
4692 	ASSERT(mutex_owned(SD_MUTEX(un)));
4693 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4694 
4695 	blocksize = un->un_tgt_blocksize;
4696 
4697 	/*
4698 	 * Start off assuming no fdisk table
4699 	 */
4700 	solaris_offset = 0;
4701 	solaris_size   = capacity;
4702 
4703 	mutex_exit(SD_MUTEX(un));
4704 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4705 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4706 	mutex_enter(SD_MUTEX(un));
4707 
4708 	if (rval != 0) {
4709 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4710 		    "sd_read_fdisk: fdisk read err\n");
4711 		kmem_free(bufp, blocksize);
4712 		return (SD_CMD_FAILURE);
4713 	}
4714 
4715 	mbp = (struct mboot *)bufp;
4716 
4717 	/*
4718 	 * The fdisk table does not begin on a 4-byte boundary within the
4719 	 * master boot record, so we copy it to an aligned structure to avoid
4720 	 * alignment exceptions on some processors.
4721 	 */
4722 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4723 
4724 	/*
4725 	 * Check for lba support before verifying sig; sig might not be
4726 	 * there, say on a blank disk, but the max_chs mark may still
4727 	 * be present.
4728 	 *
4729 	 * Note: LBA support and BEFs are an x86-only concept but this
4730 	 * code should work OK on SPARC as well.
4731 	 */
4732 
4733 	/*
4734 	 * First, check for lba-access-ok on root node (or prom root node)
4735 	 * if present there, don't need to search fdisk table.
4736 	 */
4737 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4738 	    "lba-access-ok", 0) != 0) {
4739 		/* All drives do LBA; don't search fdisk table */
4740 		lba = 1;
4741 	} else {
4742 		/* Okay, look for mark in fdisk table */
4743 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4744 			/* accumulate "lba" value from all partitions */
4745 			lba = (lba || sd_has_max_chs_vals(fdp));
4746 		}
4747 	}
4748 
4749 	if (lba != 0) {
4750 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4751 
4752 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4753 		    "lba-access-ok", 0) == 0) {
4754 			/* not found; create it */
4755 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4756 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4757 			    DDI_PROP_SUCCESS) {
4758 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4759 				    "sd_read_fdisk: Can't create lba property "
4760 				    "for instance %d\n",
4761 				    ddi_get_instance(SD_DEVINFO(un)));
4762 			}
4763 		}
4764 	}
4765 
4766 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4767 
4768 	/*
4769 	 * Endian-independent signature check
4770 	 */
4771 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4772 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4773 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4774 		    "sd_read_fdisk: no fdisk\n");
4775 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4776 		rval = SD_CMD_SUCCESS;
4777 		goto done;
4778 	}
4779 
4780 #ifdef SDDEBUG
4781 	if (sd_level_mask & SD_LOGMASK_INFO) {
4782 		fdp = fdisk;
4783 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4784 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4785 		    "numsect         sysid       bootid\n");
4786 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4787 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4788 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4789 			    i, fdp->relsect, fdp->numsect,
4790 			    fdp->systid, fdp->bootid);
4791 		}
4792 	}
4793 #endif
4794 
4795 	/*
4796 	 * Try to find the unix partition
4797 	 */
4798 	uidx = -1;
4799 	solaris_offset = 0;
4800 	solaris_size   = 0;
4801 
4802 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4803 		int	relsect;
4804 		int	numsect;
4805 
4806 		if (fdp->numsect == 0) {
4807 			un->un_fmap[i].fmap_start = 0;
4808 			un->un_fmap[i].fmap_nblk  = 0;
4809 			continue;
4810 		}
4811 
4812 		/*
4813 		 * Data in the fdisk table is little-endian.
4814 		 */
4815 		relsect = LE_32(fdp->relsect);
4816 		numsect = LE_32(fdp->numsect);
4817 
4818 		un->un_fmap[i].fmap_start = relsect;
4819 		un->un_fmap[i].fmap_nblk  = numsect;
4820 
4821 		if (fdp->systid != SUNIXOS &&
4822 		    fdp->systid != SUNIXOS2 &&
4823 		    fdp->systid != EFI_PMBR) {
4824 			continue;
4825 		}
4826 
4827 		/*
4828 		 * use the last active solaris partition id found
4829 		 * (there should only be 1 active partition id)
4830 		 *
4831 		 * if there are no active solaris partition id
4832 		 * then use the first inactive solaris partition id
4833 		 */
4834 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4835 			uidx = i;
4836 			solaris_offset = relsect;
4837 			solaris_size   = numsect;
4838 		}
4839 	}
4840 
4841 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4842 	    un->un_solaris_offset, un->un_solaris_size);
4843 
4844 	rval = SD_CMD_SUCCESS;
4845 
4846 done:
4847 
4848 	/*
4849 	 * Clear the VTOC info, only if the Solaris partition entry
4850 	 * has moved, changed size, been deleted, or if the size of
4851 	 * the partition is too small to even fit the label sector.
4852 	 */
4853 	if ((un->un_solaris_offset != solaris_offset) ||
4854 	    (un->un_solaris_size != solaris_size) ||
4855 	    solaris_size <= DK_LABEL_LOC) {
4856 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4857 			solaris_offset, solaris_size);
4858 		bzero(&un->un_g, sizeof (struct dk_geom));
4859 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4860 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4861 		un->un_f_geometry_is_valid = FALSE;
4862 	}
4863 	un->un_solaris_offset = solaris_offset;
4864 	un->un_solaris_size = solaris_size;
4865 	kmem_free(bufp, blocksize);
4866 	return (rval);
4867 
4868 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4869 #error "fdisk table presence undetermined for this platform."
4870 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4871 }
4872 
4873 
4874 /*
4875  *    Function: sd_get_physical_geometry
4876  *
4877  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4878  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4879  *		target, and use this information to initialize the physical
4880  *		geometry cache specified by pgeom_p.
4881  *
4882  *		MODE SENSE is an optional command, so failure in this case
4883  *		does not necessarily denote an error. We want to use the
4884  *		MODE SENSE commands to derive the physical geometry of the
4885  *		device, but if either command fails, the logical geometry is
4886  *		used as the fallback for disk label geometry.
4887  *
4888  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4889  *		have already been initialized for the current target and
4890  *		that the current values be passed as args so that we don't
4891  *		end up ever trying to use -1 as a valid value. This could
4892  *		happen if either value is reset while we're not holding
4893  *		the mutex.
4894  *
4895  *   Arguments: un - driver soft state (unit) structure
4896  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4897  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4898  *			to use the USCSI "direct" chain and bypass the normal
4899  *			command waitq.
4900  *
4901  *     Context: Kernel thread only (can sleep).
4902  */
4903 
4904 static void
4905 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4906 	int capacity, int lbasize, int path_flag)
4907 {
4908 	struct	mode_format	*page3p;
4909 	struct	mode_geometry	*page4p;
4910 	struct	mode_header	*headerp;
4911 	int	sector_size;
4912 	int	nsect;
4913 	int	nhead;
4914 	int	ncyl;
4915 	int	intrlv;
4916 	int	spc;
4917 	int	modesense_capacity;
4918 	int	rpm;
4919 	int	bd_len;
4920 	int	mode_header_length;
4921 	uchar_t	*p3bufp;
4922 	uchar_t	*p4bufp;
4923 	int	cdbsize;
4924 
4925 	ASSERT(un != NULL);
4926 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4927 
4928 	if (un->un_f_blockcount_is_valid != TRUE) {
4929 		return;
4930 	}
4931 
4932 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4933 		return;
4934 	}
4935 
4936 	if (lbasize == 0) {
4937 		if (ISCD(un)) {
4938 			lbasize = 2048;
4939 		} else {
4940 			lbasize = un->un_sys_blocksize;
4941 		}
4942 	}
4943 	pgeom_p->g_secsize = (unsigned short)lbasize;
4944 
4945 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4946 
4947 	/*
4948 	 * Retrieve MODE SENSE page 3 - Format Device Page
4949 	 */
4950 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4951 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4952 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4953 	    != 0) {
4954 		SD_ERROR(SD_LOG_COMMON, un,
4955 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4956 		goto page3_exit;
4957 	}
4958 
4959 	/*
4960 	 * Determine size of Block Descriptors in order to locate the mode
4961 	 * page data.  ATAPI devices return 0, SCSI devices should return
4962 	 * MODE_BLK_DESC_LENGTH.
4963 	 */
4964 	headerp = (struct mode_header *)p3bufp;
4965 	if (un->un_f_cfg_is_atapi == TRUE) {
4966 		struct mode_header_grp2 *mhp =
4967 		    (struct mode_header_grp2 *)headerp;
4968 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4969 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4970 	} else {
4971 		mode_header_length = MODE_HEADER_LENGTH;
4972 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4973 	}
4974 
4975 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4976 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4977 		    "received unexpected bd_len of %d, page3\n", bd_len);
4978 		goto page3_exit;
4979 	}
4980 
4981 	page3p = (struct mode_format *)
4982 	    ((caddr_t)headerp + mode_header_length + bd_len);
4983 
4984 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4985 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4986 		    "mode sense pg3 code mismatch %d\n",
4987 		    page3p->mode_page.code);
4988 		goto page3_exit;
4989 	}
4990 
4991 	/*
4992 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4993 	 * complete successfully; otherwise, revert to the logical geometry.
4994 	 * So, we need to save everything in temporary variables.
4995 	 */
4996 	sector_size = BE_16(page3p->data_bytes_sect);
4997 
4998 	/*
4999 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5000 	 */
5001 	if (sector_size == 0) {
5002 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
5003 	} else {
5004 		sector_size &= ~(un->un_sys_blocksize - 1);
5005 	}
5006 
5007 	nsect  = BE_16(page3p->sect_track);
5008 	intrlv = BE_16(page3p->interleave);
5009 
5010 	SD_INFO(SD_LOG_COMMON, un,
5011 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5012 	SD_INFO(SD_LOG_COMMON, un,
5013 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5014 	    page3p->mode_page.code, nsect, sector_size);
5015 	SD_INFO(SD_LOG_COMMON, un,
5016 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5017 	    BE_16(page3p->track_skew),
5018 	    BE_16(page3p->cylinder_skew));
5019 
5020 
5021 	/*
5022 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5023 	 */
5024 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5025 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
5026 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
5027 	    != 0) {
5028 		SD_ERROR(SD_LOG_COMMON, un,
5029 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5030 		goto page4_exit;
5031 	}
5032 
5033 	/*
5034 	 * Determine size of Block Descriptors in order to locate the mode
5035 	 * page data.  ATAPI devices return 0, SCSI devices should return
5036 	 * MODE_BLK_DESC_LENGTH.
5037 	 */
5038 	headerp = (struct mode_header *)p4bufp;
5039 	if (un->un_f_cfg_is_atapi == TRUE) {
5040 		struct mode_header_grp2 *mhp =
5041 		    (struct mode_header_grp2 *)headerp;
5042 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5043 	} else {
5044 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5045 	}
5046 
5047 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5048 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5049 		    "received unexpected bd_len of %d, page4\n", bd_len);
5050 		goto page4_exit;
5051 	}
5052 
5053 	page4p = (struct mode_geometry *)
5054 	    ((caddr_t)headerp + mode_header_length + bd_len);
5055 
5056 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5057 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5058 		    "mode sense pg4 code mismatch %d\n",
5059 		    page4p->mode_page.code);
5060 		goto page4_exit;
5061 	}
5062 
5063 	/*
5064 	 * Stash the data now, after we know that both commands completed.
5065 	 */
5066 
5067 	mutex_enter(SD_MUTEX(un));
5068 
5069 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5070 	spc   = nhead * nsect;
5071 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5072 	rpm   = BE_16(page4p->rpm);
5073 
5074 	modesense_capacity = spc * ncyl;
5075 
5076 	SD_INFO(SD_LOG_COMMON, un,
5077 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5078 	SD_INFO(SD_LOG_COMMON, un,
5079 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5080 	SD_INFO(SD_LOG_COMMON, un,
5081 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5082 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5083 	    (void *)pgeom_p, capacity);
5084 
5085 	/*
5086 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5087 	 * the product of C * H * S returned by MODE SENSE >= that returned
5088 	 * by read capacity. This is an idiosyncrasy of the original x86
5089 	 * disk subsystem.
5090 	 */
5091 	if (modesense_capacity >= capacity) {
5092 		SD_INFO(SD_LOG_COMMON, un,
5093 		    "sd_get_physical_geometry: adjusting acyl; "
5094 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5095 		    (modesense_capacity - capacity + spc - 1) / spc);
5096 		if (sector_size != 0) {
5097 			/* 1243403: NEC D38x7 drives don't support sec size */
5098 			pgeom_p->g_secsize = (unsigned short)sector_size;
5099 		}
5100 		pgeom_p->g_nsect    = (unsigned short)nsect;
5101 		pgeom_p->g_nhead    = (unsigned short)nhead;
5102 		pgeom_p->g_capacity = capacity;
5103 		pgeom_p->g_acyl	    =
5104 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5105 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5106 	}
5107 
5108 	pgeom_p->g_rpm    = (unsigned short)rpm;
5109 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5110 
5111 	SD_INFO(SD_LOG_COMMON, un,
5112 	    "sd_get_physical_geometry: mode sense geometry:\n");
5113 	SD_INFO(SD_LOG_COMMON, un,
5114 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5115 	    nsect, sector_size, intrlv);
5116 	SD_INFO(SD_LOG_COMMON, un,
5117 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5118 	    nhead, ncyl, rpm, modesense_capacity);
5119 	SD_INFO(SD_LOG_COMMON, un,
5120 	    "sd_get_physical_geometry: (cached)\n");
5121 	SD_INFO(SD_LOG_COMMON, un,
5122 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5123 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5124 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5125 	SD_INFO(SD_LOG_COMMON, un,
5126 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5127 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5128 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5129 
5130 	mutex_exit(SD_MUTEX(un));
5131 
5132 page4_exit:
5133 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5134 page3_exit:
5135 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5136 }
5137 
5138 
5139 /*
5140  *    Function: sd_get_virtual_geometry
5141  *
5142  * Description: Ask the controller to tell us about the target device.
5143  *
5144  *   Arguments: un - pointer to softstate
5145  *		capacity - disk capacity in #blocks
5146  *		lbasize - disk block size in bytes
5147  *
5148  *     Context: Kernel thread only
5149  */
5150 
5151 static void
5152 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5153 {
5154 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5155 	uint_t	geombuf;
5156 	int	spc;
5157 
5158 	ASSERT(un != NULL);
5159 	ASSERT(mutex_owned(SD_MUTEX(un)));
5160 
5161 	mutex_exit(SD_MUTEX(un));
5162 
5163 	/* Set sector size, and total number of sectors */
5164 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5165 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5166 
5167 	/* Let the HBA tell us its geometry */
5168 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5169 
5170 	mutex_enter(SD_MUTEX(un));
5171 
5172 	/* A value of -1 indicates an undefined "geometry" property */
5173 	if (geombuf == (-1)) {
5174 		return;
5175 	}
5176 
5177 	/* Initialize the logical geometry cache. */
5178 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5179 	lgeom_p->g_nsect   = geombuf & 0xffff;
5180 	lgeom_p->g_secsize = un->un_sys_blocksize;
5181 
5182 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5183 
5184 	/*
5185 	 * Note: The driver originally converted the capacity value from
5186 	 * target blocks to system blocks. However, the capacity value passed
5187 	 * to this routine is already in terms of system blocks (this scaling
5188 	 * is done when the READ CAPACITY command is issued and processed).
5189 	 * This 'error' may have gone undetected because the usage of g_ncyl
5190 	 * (which is based upon g_capacity) is very limited within the driver
5191 	 */
5192 	lgeom_p->g_capacity = capacity;
5193 
5194 	/*
5195 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5196 	 * hba may return zero values if the device has been removed.
5197 	 */
5198 	if (spc == 0) {
5199 		lgeom_p->g_ncyl = 0;
5200 	} else {
5201 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5202 	}
5203 	lgeom_p->g_acyl = 0;
5204 
5205 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5206 	SD_INFO(SD_LOG_COMMON, un,
5207 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5208 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5209 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5210 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5211 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5212 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5213 }
5214 
5215 
5216 /*
5217  *    Function: sd_update_block_info
5218  *
5219  * Description: Calculate a byte count to sector count bitshift value
5220  *		from sector size.
5221  *
5222  *   Arguments: un: unit struct.
5223  *		lbasize: new target sector size
5224  *		capacity: new target capacity, ie. block count
5225  *
5226  *     Context: Kernel thread context
5227  */
5228 
5229 static void
5230 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5231 {
5232 	if (lbasize != 0) {
5233 		un->un_tgt_blocksize = lbasize;
5234 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5235 	}
5236 
5237 	if (capacity != 0) {
5238 		un->un_blockcount		= capacity;
5239 		un->un_f_blockcount_is_valid	= TRUE;
5240 	}
5241 }
5242 
5243 
5244 static void
5245 sd_swap_efi_gpt(efi_gpt_t *e)
5246 {
5247 	_NOTE(ASSUMING_PROTECTED(*e))
5248 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5249 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5250 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5251 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5252 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5253 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5254 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5255 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5256 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5257 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5258 	e->efi_gpt_NumberOfPartitionEntries =
5259 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5260 	e->efi_gpt_SizeOfPartitionEntry =
5261 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5262 	e->efi_gpt_PartitionEntryArrayCRC32 =
5263 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5264 }
5265 
5266 static void
5267 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5268 {
5269 	int i;
5270 
5271 	_NOTE(ASSUMING_PROTECTED(*p))
5272 	for (i = 0; i < nparts; i++) {
5273 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5274 		    p[i].efi_gpe_PartitionTypeGUID);
5275 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5276 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5277 		/* PartitionAttrs */
5278 	}
5279 }
5280 
5281 static int
5282 sd_validate_efi(efi_gpt_t *labp)
5283 {
5284 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5285 		return (EINVAL);
5286 	/* at least 96 bytes in this version of the spec. */
5287 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5288 	    labp->efi_gpt_HeaderSize)
5289 		return (EINVAL);
5290 	/* this should be 128 bytes */
5291 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5292 		return (EINVAL);
5293 	return (0);
5294 }
5295 
5296 static int
5297 sd_use_efi(struct sd_lun *un, int path_flag)
5298 {
5299 	int		i;
5300 	int		rval = 0;
5301 	efi_gpe_t	*partitions;
5302 	uchar_t		*buf;
5303 	uint_t		lbasize;
5304 	uint64_t	cap;
5305 	uint_t		nparts;
5306 	diskaddr_t	gpe_lba;
5307 
5308 	ASSERT(mutex_owned(SD_MUTEX(un)));
5309 	lbasize = un->un_tgt_blocksize;
5310 
5311 	mutex_exit(SD_MUTEX(un));
5312 
5313 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5314 
5315 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5316 		rval = EINVAL;
5317 		goto done_err;
5318 	}
5319 
5320 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5321 	if (rval) {
5322 		goto done_err;
5323 	}
5324 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5325 		/* not ours */
5326 		rval = ESRCH;
5327 		goto done_err;
5328 	}
5329 
5330 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5331 	if (rval) {
5332 		goto done_err;
5333 	}
5334 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5335 
5336 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5337 		/*
5338 		 * Couldn't read the primary, try the backup.  Our
5339 		 * capacity at this point could be based on CHS, so
5340 		 * check what the device reports.
5341 		 */
5342 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5343 		    path_flag);
5344 		if (rval) {
5345 			goto done_err;
5346 		}
5347 
5348 		/*
5349 		 * The MMC standard allows READ CAPACITY to be
5350 		 * inaccurate by a bounded amount (in the interest of
5351 		 * response latency).  As a result, failed READs are
5352 		 * commonplace (due to the reading of metadata and not
5353 		 * data). Depending on the per-Vendor/drive Sense data,
5354 		 * the failed READ can cause many (unnecessary) retries.
5355 		 */
5356 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5357 		    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5358 			path_flag)) != 0) {
5359 				goto done_err;
5360 		}
5361 
5362 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5363 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5364 
5365 			/*
5366 			 * Refer to comments related to off-by-1 at the
5367 			 * header of this file. Search the next to last
5368 			 * block for backup EFI label.
5369 			 */
5370 			if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5371 			    cap - 2, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5372 				path_flag)) != 0) {
5373 					goto done_err;
5374 			}
5375 			sd_swap_efi_gpt((efi_gpt_t *)buf);
5376 			if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5377 				goto done_err;
5378 		}
5379 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5380 		    "primary label corrupt; using backup\n");
5381 	}
5382 
5383 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5384 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5385 
5386 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5387 	    path_flag);
5388 	if (rval) {
5389 		goto done_err;
5390 	}
5391 	partitions = (efi_gpe_t *)buf;
5392 
5393 	if (nparts > MAXPART) {
5394 		nparts = MAXPART;
5395 	}
5396 	sd_swap_efi_gpe(nparts, partitions);
5397 
5398 	mutex_enter(SD_MUTEX(un));
5399 
5400 	/* Fill in partition table. */
5401 	for (i = 0; i < nparts; i++) {
5402 		if (partitions->efi_gpe_StartingLBA != 0 ||
5403 		    partitions->efi_gpe_EndingLBA != 0) {
5404 			un->un_map[i].dkl_cylno =
5405 			    partitions->efi_gpe_StartingLBA;
5406 			un->un_map[i].dkl_nblk =
5407 			    partitions->efi_gpe_EndingLBA -
5408 			    partitions->efi_gpe_StartingLBA + 1;
5409 			un->un_offset[i] =
5410 			    partitions->efi_gpe_StartingLBA;
5411 		}
5412 		if (i == WD_NODE) {
5413 			/*
5414 			 * minor number 7 corresponds to the whole disk
5415 			 */
5416 			un->un_map[i].dkl_cylno = 0;
5417 			un->un_map[i].dkl_nblk = un->un_blockcount;
5418 			un->un_offset[i] = 0;
5419 		}
5420 		partitions++;
5421 	}
5422 	un->un_solaris_offset = 0;
5423 	un->un_solaris_size = cap;
5424 	un->un_f_geometry_is_valid = TRUE;
5425 
5426 	/* clear the vtoc label */
5427 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5428 
5429 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5430 	return (0);
5431 
5432 done_err:
5433 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5434 	mutex_enter(SD_MUTEX(un));
5435 	/*
5436 	 * if we didn't find something that could look like a VTOC
5437 	 * and the disk is over 1TB, we know there isn't a valid label.
5438 	 * Otherwise let sd_uselabel decide what to do.  We only
5439 	 * want to invalidate this if we're certain the label isn't
5440 	 * valid because sd_prop_op will now fail, which in turn
5441 	 * causes things like opens and stats on the partition to fail.
5442 	 */
5443 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5444 		un->un_f_geometry_is_valid = FALSE;
5445 	}
5446 	return (rval);
5447 }
5448 
5449 
5450 /*
5451  *    Function: sd_uselabel
5452  *
5453  * Description: Validate the disk label and update the relevant data (geometry,
5454  *		partition, vtoc, and capacity data) in the sd_lun struct.
5455  *		Marks the geometry of the unit as being valid.
5456  *
5457  *   Arguments: un: unit struct.
5458  *		dk_label: disk label
5459  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5460  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5461  *			to use the USCSI "direct" chain and bypass the normal
5462  *			command waitq.
5463  *
5464  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5465  *		partition, vtoc, and capacity data are good.
5466  *
5467  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5468  *		label; or computed capacity does not jibe with capacity
5469  *		reported from the READ CAPACITY command.
5470  *
5471  *     Context: Kernel thread only (can sleep).
5472  */
5473 
5474 static int
5475 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5476 {
5477 	short	*sp;
5478 	short	sum;
5479 	short	count;
5480 	int	label_error = SD_LABEL_IS_VALID;
5481 	int	i;
5482 	int	capacity;
5483 	int	part_end;
5484 	int	track_capacity;
5485 	int	err;
5486 #if defined(_SUNOS_VTOC_16)
5487 	struct	dkl_partition	*vpartp;
5488 #endif
5489 	ASSERT(un != NULL);
5490 	ASSERT(mutex_owned(SD_MUTEX(un)));
5491 
5492 	/* Validate the magic number of the label. */
5493 	if (labp->dkl_magic != DKL_MAGIC) {
5494 #if defined(__sparc)
5495 		if ((un->un_state == SD_STATE_NORMAL) &&
5496 			un->un_f_vtoc_errlog_supported) {
5497 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5498 			    "Corrupt label; wrong magic number\n");
5499 		}
5500 #endif
5501 		return (SD_LABEL_IS_INVALID);
5502 	}
5503 
5504 	/* Validate the checksum of the label. */
5505 	sp  = (short *)labp;
5506 	sum = 0;
5507 	count = sizeof (struct dk_label) / sizeof (short);
5508 	while (count--)	 {
5509 		sum ^= *sp++;
5510 	}
5511 
5512 	if (sum != 0) {
5513 #if	defined(_SUNOS_VTOC_16)
5514 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5515 #elif defined(_SUNOS_VTOC_8)
5516 		if ((un->un_state == SD_STATE_NORMAL) &&
5517 		    un->un_f_vtoc_errlog_supported) {
5518 #endif
5519 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5520 			    "Corrupt label - label checksum failed\n");
5521 		}
5522 		return (SD_LABEL_IS_INVALID);
5523 	}
5524 
5525 
5526 	/*
5527 	 * Fill in geometry structure with data from label.
5528 	 */
5529 	bzero(&un->un_g, sizeof (struct dk_geom));
5530 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5531 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5532 	un->un_g.dkg_bcyl   = 0;
5533 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5534 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5535 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5536 
5537 #if defined(_SUNOS_VTOC_8)
5538 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5539 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5540 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5541 #endif
5542 #if defined(_SUNOS_VTOC_16)
5543 	un->un_dkg_skew = labp->dkl_skew;
5544 #endif
5545 
5546 #if defined(__i386) || defined(__amd64)
5547 	un->un_g.dkg_apc = labp->dkl_apc;
5548 #endif
5549 
5550 	/*
5551 	 * Currently we rely on the values in the label being accurate. If
5552 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5553 	 *
5554 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5555 	 * although this command is optional in SCSI-2.
5556 	 */
5557 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5558 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5559 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5560 
5561 	/*
5562 	 * The Read and Write reinstruct values may not be valid
5563 	 * for older disks.
5564 	 */
5565 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5566 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5567 
5568 	/* Fill in partition table. */
5569 #if defined(_SUNOS_VTOC_8)
5570 	for (i = 0; i < NDKMAP; i++) {
5571 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5572 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5573 	}
5574 #endif
5575 #if  defined(_SUNOS_VTOC_16)
5576 	vpartp		= labp->dkl_vtoc.v_part;
5577 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5578 
5579 	/* Prevent divide by zero */
5580 	if (track_capacity == 0) {
5581 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5582 		    "Corrupt label - zero nhead or nsect value\n");
5583 
5584 		return (SD_LABEL_IS_INVALID);
5585 	}
5586 
5587 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5588 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5589 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5590 	}
5591 #endif
5592 
5593 	/* Fill in VTOC Structure. */
5594 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5595 #if defined(_SUNOS_VTOC_8)
5596 	/*
5597 	 * The 8-slice vtoc does not include the ascii label; save it into
5598 	 * the device's soft state structure here.
5599 	 */
5600 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5601 #endif
5602 
5603 	/* Now look for a valid capacity. */
5604 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5605 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5606 
5607 	if (un->un_g.dkg_acyl) {
5608 #if defined(__i386) || defined(__amd64)
5609 		/* we may have > 1 alts cylinder */
5610 		capacity += (track_capacity * un->un_g.dkg_acyl);
5611 #else
5612 		capacity += track_capacity;
5613 #endif
5614 	}
5615 
5616 	/*
5617 	 * Force check here to ensure the computed capacity is valid.
5618 	 * If capacity is zero, it indicates an invalid label and
5619 	 * we should abort updating the relevant data then.
5620 	 */
5621 	if (capacity == 0) {
5622 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5623 		    "Corrupt label - no valid capacity could be retrieved\n");
5624 
5625 		return (SD_LABEL_IS_INVALID);
5626 	}
5627 
5628 	/* Mark the geometry as valid. */
5629 	un->un_f_geometry_is_valid = TRUE;
5630 
5631 	/*
5632 	 * At this point, un->un_blockcount should contain valid data from
5633 	 * the READ CAPACITY command.
5634 	 */
5635 	if (un->un_f_blockcount_is_valid != TRUE) {
5636 		/*
5637 		 * We have a situation where the target didn't give us a good
5638 		 * READ CAPACITY value, yet there appears to be a valid label.
5639 		 * In this case, we'll fake the capacity.
5640 		 */
5641 		un->un_blockcount = capacity;
5642 		un->un_f_blockcount_is_valid = TRUE;
5643 		goto done;
5644 	}
5645 
5646 
5647 	if ((capacity <= un->un_blockcount) ||
5648 	    (un->un_state != SD_STATE_NORMAL)) {
5649 #if defined(_SUNOS_VTOC_8)
5650 		/*
5651 		 * We can't let this happen on drives that are subdivided
5652 		 * into logical disks (i.e., that have an fdisk table).
5653 		 * The un_blockcount field should always hold the full media
5654 		 * size in sectors, period.  This code would overwrite
5655 		 * un_blockcount with the size of the Solaris fdisk partition.
5656 		 */
5657 		SD_ERROR(SD_LOG_COMMON, un,
5658 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5659 		    capacity, un->un_blockcount);
5660 		un->un_blockcount = capacity;
5661 		un->un_f_blockcount_is_valid = TRUE;
5662 #endif	/* defined(_SUNOS_VTOC_8) */
5663 		goto done;
5664 	}
5665 
5666 	if (ISCD(un)) {
5667 		/* For CDROMs, we trust that the data in the label is OK. */
5668 #if defined(_SUNOS_VTOC_8)
5669 		for (i = 0; i < NDKMAP; i++) {
5670 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5671 			    labp->dkl_map[i].dkl_cylno +
5672 			    labp->dkl_map[i].dkl_nblk  - 1;
5673 
5674 			if ((labp->dkl_map[i].dkl_nblk) &&
5675 			    (part_end > un->un_blockcount)) {
5676 				un->un_f_geometry_is_valid = FALSE;
5677 				break;
5678 			}
5679 		}
5680 #endif
5681 #if defined(_SUNOS_VTOC_16)
5682 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5683 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5684 			part_end = vpartp->p_start + vpartp->p_size;
5685 			if ((vpartp->p_size > 0) &&
5686 			    (part_end > un->un_blockcount)) {
5687 				un->un_f_geometry_is_valid = FALSE;
5688 				break;
5689 			}
5690 		}
5691 #endif
5692 	} else {
5693 		uint64_t t_capacity;
5694 		uint32_t t_lbasize;
5695 
5696 		mutex_exit(SD_MUTEX(un));
5697 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5698 		    path_flag);
5699 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5700 		mutex_enter(SD_MUTEX(un));
5701 
5702 		if (err == 0) {
5703 			sd_update_block_info(un, t_lbasize, t_capacity);
5704 		}
5705 
5706 		if (capacity > un->un_blockcount) {
5707 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5708 			    "Corrupt label - bad geometry\n");
5709 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5710 			    "Label says %u blocks; Drive says %llu blocks\n",
5711 			    capacity, (unsigned long long)un->un_blockcount);
5712 			un->un_f_geometry_is_valid = FALSE;
5713 			label_error = SD_LABEL_IS_INVALID;
5714 		}
5715 	}
5716 
5717 done:
5718 
5719 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5720 	SD_INFO(SD_LOG_COMMON, un,
5721 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5722 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5723 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5724 	SD_INFO(SD_LOG_COMMON, un,
5725 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5726 	    un->un_tgt_blocksize, un->un_blockcount,
5727 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5728 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5729 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5730 
5731 	ASSERT(mutex_owned(SD_MUTEX(un)));
5732 
5733 	return (label_error);
5734 }
5735 
5736 
5737 /*
5738  *    Function: sd_build_default_label
5739  *
5740  * Description: Generate a default label for those devices that do not have
5741  *		one, e.g., new media, removable cartridges, etc..
5742  *
5743  *     Context: Kernel thread only
5744  */
5745 
5746 static void
5747 sd_build_default_label(struct sd_lun *un)
5748 {
5749 #if defined(_SUNOS_VTOC_16)
5750 	uint_t	phys_spc;
5751 	uint_t	disksize;
5752 	struct	dk_geom un_g;
5753 	uint64_t capacity;
5754 #endif
5755 
5756 	ASSERT(un != NULL);
5757 	ASSERT(mutex_owned(SD_MUTEX(un)));
5758 
5759 #if defined(_SUNOS_VTOC_8)
5760 	/*
5761 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5762 	 * only. This may be a valid check for VTOC_16 as well.
5763 	 * Once we understand why there is this difference between SPARC and
5764 	 * x86 platform, we could remove this legacy check.
5765 	 */
5766 	ASSERT(un->un_f_default_vtoc_supported);
5767 #endif
5768 
5769 	bzero(&un->un_g, sizeof (struct dk_geom));
5770 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5771 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5772 
5773 #if defined(_SUNOS_VTOC_8)
5774 
5775 	/*
5776 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5777 	 * But it is still necessary to set up various geometry information,
5778 	 * and we are doing this here.
5779 	 */
5780 
5781 	/*
5782 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5783 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5784 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5785 	 * equal to C*H*S values.  This will cause some truncation of size due
5786 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5787 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5788 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5789 	 */
5790 	if (ISCD(un)) {
5791 		/*
5792 		 * Preserve the old behavior for non-writable
5793 		 * medias. Since dkg_nsect is a ushort, it
5794 		 * will lose bits as cdroms have more than
5795 		 * 65536 sectors. So if we recalculate
5796 		 * capacity, it will become much shorter.
5797 		 * But the dkg_* information is not
5798 		 * used for CDROMs so it is OK. But for
5799 		 * Writable CDs we need this information
5800 		 * to be valid (for newfs say). So we
5801 		 * make nsect and nhead > 1 that way
5802 		 * nsect can still stay within ushort limit
5803 		 * without losing any bits.
5804 		 */
5805 		if (un->un_f_mmc_writable_media == TRUE) {
5806 			un->un_g.dkg_nhead = 64;
5807 			un->un_g.dkg_nsect = 32;
5808 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5809 			un->un_blockcount = un->un_g.dkg_ncyl *
5810 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5811 		} else {
5812 			un->un_g.dkg_ncyl  = 1;
5813 			un->un_g.dkg_nhead = 1;
5814 			un->un_g.dkg_nsect = un->un_blockcount;
5815 		}
5816 	} else {
5817 		if (un->un_blockcount <= 0x1000) {
5818 			/* unlabeled SCSI floppy device */
5819 			un->un_g.dkg_nhead = 2;
5820 			un->un_g.dkg_ncyl = 80;
5821 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5822 		} else if (un->un_blockcount <= 0x200000) {
5823 			un->un_g.dkg_nhead = 64;
5824 			un->un_g.dkg_nsect = 32;
5825 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5826 		} else {
5827 			un->un_g.dkg_nhead = 255;
5828 			un->un_g.dkg_nsect = 63;
5829 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5830 		}
5831 		un->un_blockcount =
5832 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5833 	}
5834 
5835 	un->un_g.dkg_acyl	= 0;
5836 	un->un_g.dkg_bcyl	= 0;
5837 	un->un_g.dkg_rpm	= 200;
5838 	un->un_asciilabel[0]	= '\0';
5839 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5840 
5841 	un->un_map[0].dkl_cylno = 0;
5842 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5843 	un->un_map[2].dkl_cylno = 0;
5844 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5845 
5846 #elif defined(_SUNOS_VTOC_16)
5847 
5848 	if (un->un_solaris_size == 0) {
5849 		/*
5850 		 * Got fdisk table but no solaris entry therefore
5851 		 * don't create a default label
5852 		 */
5853 		un->un_f_geometry_is_valid = TRUE;
5854 		return;
5855 	}
5856 
5857 	/*
5858 	 * For CDs we continue to use the physical geometry to calculate
5859 	 * number of cylinders. All other devices must convert the
5860 	 * physical geometry (geom_cache) to values that will fit
5861 	 * in a dk_geom structure.
5862 	 */
5863 	if (ISCD(un)) {
5864 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5865 	} else {
5866 		/* Convert physical geometry to disk geometry */
5867 		bzero(&un_g, sizeof (struct dk_geom));
5868 
5869 		/*
5870 		 * Refer to comments related to off-by-1 at the
5871 		 * header of this file.
5872 		 * Before caculating geometry, capacity should be
5873 		 * decreased by 1. That un_f_capacity_adjusted is
5874 		 * TRUE means that we are treating a 1TB disk as
5875 		 * (1T - 512)B. And the capacity of disks is already
5876 		 * decreased by 1.
5877 		 */
5878 		if (!un->un_f_capacity_adjusted &&
5879 		    !un->un_f_has_removable_media &&
5880 		    !un->un_f_is_hotpluggable &&
5881 			un->un_tgt_blocksize == un->un_sys_blocksize)
5882 			capacity = un->un_blockcount - 1;
5883 		else
5884 			capacity = un->un_blockcount;
5885 
5886 		sd_convert_geometry(capacity, &un_g);
5887 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5888 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5889 	}
5890 
5891 	ASSERT(phys_spc != 0);
5892 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5893 	un->un_g.dkg_acyl = DK_ACYL;
5894 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5895 	disksize = un->un_g.dkg_ncyl * phys_spc;
5896 
5897 	if (ISCD(un)) {
5898 		/*
5899 		 * CD's don't use the "heads * sectors * cyls"-type of
5900 		 * geometry, but instead use the entire capacity of the media.
5901 		 */
5902 		disksize = un->un_solaris_size;
5903 		un->un_g.dkg_nhead = 1;
5904 		un->un_g.dkg_nsect = 1;
5905 		un->un_g.dkg_rpm =
5906 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5907 
5908 		un->un_vtoc.v_part[0].p_start = 0;
5909 		un->un_vtoc.v_part[0].p_size  = disksize;
5910 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5911 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5912 
5913 		un->un_map[0].dkl_cylno = 0;
5914 		un->un_map[0].dkl_nblk  = disksize;
5915 		un->un_offset[0] = 0;
5916 
5917 	} else {
5918 		/*
5919 		 * Hard disks and removable media cartridges
5920 		 */
5921 		un->un_g.dkg_rpm =
5922 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5923 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5924 
5925 		/* Add boot slice */
5926 		un->un_vtoc.v_part[8].p_start = 0;
5927 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5928 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5929 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5930 
5931 		un->un_map[8].dkl_cylno = 0;
5932 		un->un_map[8].dkl_nblk  = phys_spc;
5933 		un->un_offset[8] = 0;
5934 	}
5935 
5936 	un->un_g.dkg_apc = 0;
5937 	un->un_vtoc.v_nparts = V_NUMPAR;
5938 	un->un_vtoc.v_version = V_VERSION;
5939 
5940 	/* Add backup slice */
5941 	un->un_vtoc.v_part[2].p_start = 0;
5942 	un->un_vtoc.v_part[2].p_size  = disksize;
5943 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5944 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5945 
5946 	un->un_map[2].dkl_cylno = 0;
5947 	un->un_map[2].dkl_nblk  = disksize;
5948 	un->un_offset[2] = 0;
5949 
5950 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5951 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5952 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5953 
5954 #else
5955 #error "No VTOC format defined."
5956 #endif
5957 
5958 	un->un_g.dkg_read_reinstruct  = 0;
5959 	un->un_g.dkg_write_reinstruct = 0;
5960 
5961 	un->un_g.dkg_intrlv = 1;
5962 
5963 	un->un_vtoc.v_sanity  = VTOC_SANE;
5964 
5965 	un->un_f_geometry_is_valid = TRUE;
5966 
5967 	SD_INFO(SD_LOG_COMMON, un,
5968 	    "sd_build_default_label: Default label created: "
5969 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5970 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5971 	    un->un_g.dkg_nsect, un->un_blockcount);
5972 }
5973 
5974 
5975 #if defined(_FIRMWARE_NEEDS_FDISK)
5976 /*
5977  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5978  */
5979 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5980 #define	LBA_MAX_CYL	(1022 & 0xFF)
5981 #define	LBA_MAX_HEAD	(254)
5982 
5983 
5984 /*
5985  *    Function: sd_has_max_chs_vals
5986  *
5987  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5988  *
5989  *   Arguments: fdp - ptr to CHS info
5990  *
5991  * Return Code: True or false
5992  *
5993  *     Context: Any.
5994  */
5995 
5996 static int
5997 sd_has_max_chs_vals(struct ipart *fdp)
5998 {
5999 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
6000 	    (fdp->beghead == LBA_MAX_HEAD)	&&
6001 	    (fdp->begsect == LBA_MAX_SECT)	&&
6002 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
6003 	    (fdp->endhead == LBA_MAX_HEAD)	&&
6004 	    (fdp->endsect == LBA_MAX_SECT));
6005 }
6006 #endif
6007 
6008 
6009 /*
6010  *    Function: sd_inq_fill
6011  *
6012  * Description: Print a piece of inquiry data, cleaned up for non-printable
6013  *		characters and stopping at the first space character after
6014  *		the beginning of the passed string;
6015  *
6016  *   Arguments: p - source string
6017  *		l - maximum length to copy
6018  *		s - destination string
6019  *
6020  *     Context: Any.
6021  */
6022 
6023 static void
6024 sd_inq_fill(char *p, int l, char *s)
6025 {
6026 	unsigned i = 0;
6027 	char c;
6028 
6029 	while (i++ < l) {
6030 		if ((c = *p++) < ' ' || c >= 0x7F) {
6031 			c = '*';
6032 		} else if (i != 1 && c == ' ') {
6033 			break;
6034 		}
6035 		*s++ = c;
6036 	}
6037 	*s++ = 0;
6038 }
6039 
6040 
6041 /*
6042  *    Function: sd_register_devid
6043  *
6044  * Description: This routine will obtain the device id information from the
6045  *		target, obtain the serial number, and register the device
6046  *		id with the ddi framework.
6047  *
6048  *   Arguments: devi - the system's dev_info_t for the device.
6049  *		un - driver soft state (unit) structure
6050  *		reservation_flag - indicates if a reservation conflict
6051  *		occurred during attach
6052  *
6053  *     Context: Kernel Thread
6054  */
6055 static void
6056 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
6057 {
6058 	int		rval		= 0;
6059 	uchar_t		*inq80		= NULL;
6060 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
6061 	size_t		inq80_resid	= 0;
6062 	uchar_t		*inq83		= NULL;
6063 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
6064 	size_t		inq83_resid	= 0;
6065 
6066 	ASSERT(un != NULL);
6067 	ASSERT(mutex_owned(SD_MUTEX(un)));
6068 	ASSERT((SD_DEVINFO(un)) == devi);
6069 
6070 	/*
6071 	 * This is the case of antiquated Sun disk drives that have the
6072 	 * FAB_DEVID property set in the disk_table.  These drives
6073 	 * manage the devid's by storing them in last 2 available sectors
6074 	 * on the drive and have them fabricated by the ddi layer by calling
6075 	 * ddi_devid_init and passing the DEVID_FAB flag.
6076 	 */
6077 	if (un->un_f_opt_fab_devid == TRUE) {
6078 		/*
6079 		 * Depending on EINVAL isn't reliable, since a reserved disk
6080 		 * may result in invalid geometry, so check to make sure a
6081 		 * reservation conflict did not occur during attach.
6082 		 */
6083 		if ((sd_get_devid(un) == EINVAL) &&
6084 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
6085 			/*
6086 			 * The devid is invalid AND there is no reservation
6087 			 * conflict.  Fabricate a new devid.
6088 			 */
6089 			(void) sd_create_devid(un);
6090 		}
6091 
6092 		/* Register the devid if it exists */
6093 		if (un->un_devid != NULL) {
6094 			(void) ddi_devid_register(SD_DEVINFO(un),
6095 			    un->un_devid);
6096 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6097 			    "sd_register_devid: Devid Fabricated\n");
6098 		}
6099 		return;
6100 	}
6101 
6102 	/*
6103 	 * We check the availibility of the World Wide Name (0x83) and Unit
6104 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
6105 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
6106 	 * 0x83 is availible, that is the best choice.  Our next choice is
6107 	 * 0x80.  If neither are availible, we munge the devid from the device
6108 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
6109 	 * to fabricate a devid for non-Sun qualified disks.
6110 	 */
6111 	if (sd_check_vpd_page_support(un) == 0) {
6112 		/* collect page 80 data if available */
6113 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
6114 
6115 			mutex_exit(SD_MUTEX(un));
6116 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
6117 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
6118 			    0x01, 0x80, &inq80_resid);
6119 
6120 			if (rval != 0) {
6121 				kmem_free(inq80, inq80_len);
6122 				inq80 = NULL;
6123 				inq80_len = 0;
6124 			}
6125 			mutex_enter(SD_MUTEX(un));
6126 		}
6127 
6128 		/* collect page 83 data if available */
6129 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
6130 			mutex_exit(SD_MUTEX(un));
6131 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6132 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6133 			    0x01, 0x83, &inq83_resid);
6134 
6135 			if (rval != 0) {
6136 				kmem_free(inq83, inq83_len);
6137 				inq83 = NULL;
6138 				inq83_len = 0;
6139 			}
6140 			mutex_enter(SD_MUTEX(un));
6141 		}
6142 	}
6143 
6144 	/* encode best devid possible based on data available */
6145 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6146 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6147 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6148 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6149 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6150 
6151 		/* devid successfully encoded, register devid */
6152 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6153 
6154 	} else {
6155 		/*
6156 		 * Unable to encode a devid based on data available.
6157 		 * This is not a Sun qualified disk.  Older Sun disk
6158 		 * drives that have the SD_FAB_DEVID property
6159 		 * set in the disk_table and non Sun qualified
6160 		 * disks are treated in the same manner.  These
6161 		 * drives manage the devid's by storing them in
6162 		 * last 2 available sectors on the drive and
6163 		 * have them fabricated by the ddi layer by
6164 		 * calling ddi_devid_init and passing the
6165 		 * DEVID_FAB flag.
6166 		 * Create a fabricate devid only if there's no
6167 		 * fabricate devid existed.
6168 		 */
6169 		if (sd_get_devid(un) == EINVAL) {
6170 			(void) sd_create_devid(un);
6171 			un->un_f_opt_fab_devid = TRUE;
6172 		}
6173 
6174 		/* Register the devid if it exists */
6175 		if (un->un_devid != NULL) {
6176 			(void) ddi_devid_register(SD_DEVINFO(un),
6177 			    un->un_devid);
6178 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6179 			    "sd_register_devid: devid fabricated using "
6180 			    "ddi framework\n");
6181 		}
6182 	}
6183 
6184 	/* clean up resources */
6185 	if (inq80 != NULL) {
6186 		kmem_free(inq80, inq80_len);
6187 	}
6188 	if (inq83 != NULL) {
6189 		kmem_free(inq83, inq83_len);
6190 	}
6191 }
6192 
6193 static daddr_t
6194 sd_get_devid_block(struct sd_lun *un)
6195 {
6196 	daddr_t			spc, blk, head, cyl;
6197 
6198 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6199 		/* this geometry doesn't allow us to write a devid */
6200 		if (un->un_g.dkg_acyl < 2) {
6201 			return (-1);
6202 		}
6203 
6204 		/*
6205 		 * Subtract 2 guarantees that the next to last cylinder
6206 		 * is used
6207 		 */
6208 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6209 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6210 		head = un->un_g.dkg_nhead - 1;
6211 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6212 		    (head * un->un_g.dkg_nsect) + 1;
6213 	} else {
6214 		if (un->un_reserved != -1) {
6215 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6216 		} else {
6217 			return (-1);
6218 		}
6219 	}
6220 	return (blk);
6221 }
6222 
6223 /*
6224  *    Function: sd_get_devid
6225  *
6226  * Description: This routine will return 0 if a valid device id has been
6227  *		obtained from the target and stored in the soft state. If a
6228  *		valid device id has not been previously read and stored, a
6229  *		read attempt will be made.
6230  *
6231  *   Arguments: un - driver soft state (unit) structure
6232  *
6233  * Return Code: 0 if we successfully get the device id
6234  *
6235  *     Context: Kernel Thread
6236  */
6237 
6238 static int
6239 sd_get_devid(struct sd_lun *un)
6240 {
6241 	struct dk_devid		*dkdevid;
6242 	ddi_devid_t		tmpid;
6243 	uint_t			*ip;
6244 	size_t			sz;
6245 	daddr_t			blk;
6246 	int			status;
6247 	int			chksum;
6248 	int			i;
6249 	size_t			buffer_size;
6250 
6251 	ASSERT(un != NULL);
6252 	ASSERT(mutex_owned(SD_MUTEX(un)));
6253 
6254 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6255 	    un);
6256 
6257 	if (un->un_devid != NULL) {
6258 		return (0);
6259 	}
6260 
6261 	blk = sd_get_devid_block(un);
6262 	if (blk < 0)
6263 		return (EINVAL);
6264 
6265 	/*
6266 	 * Read and verify device id, stored in the reserved cylinders at the
6267 	 * end of the disk. Backup label is on the odd sectors of the last
6268 	 * track of the last cylinder. Device id will be on track of the next
6269 	 * to last cylinder.
6270 	 */
6271 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6272 	mutex_exit(SD_MUTEX(un));
6273 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6274 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6275 	    SD_PATH_DIRECT);
6276 	if (status != 0) {
6277 		goto error;
6278 	}
6279 
6280 	/* Validate the revision */
6281 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6282 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6283 		status = EINVAL;
6284 		goto error;
6285 	}
6286 
6287 	/* Calculate the checksum */
6288 	chksum = 0;
6289 	ip = (uint_t *)dkdevid;
6290 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6291 	    i++) {
6292 		chksum ^= ip[i];
6293 	}
6294 
6295 	/* Compare the checksums */
6296 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6297 		status = EINVAL;
6298 		goto error;
6299 	}
6300 
6301 	/* Validate the device id */
6302 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6303 		status = EINVAL;
6304 		goto error;
6305 	}
6306 
6307 	/*
6308 	 * Store the device id in the driver soft state
6309 	 */
6310 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6311 	tmpid = kmem_alloc(sz, KM_SLEEP);
6312 
6313 	mutex_enter(SD_MUTEX(un));
6314 
6315 	un->un_devid = tmpid;
6316 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6317 
6318 	kmem_free(dkdevid, buffer_size);
6319 
6320 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6321 
6322 	return (status);
6323 error:
6324 	mutex_enter(SD_MUTEX(un));
6325 	kmem_free(dkdevid, buffer_size);
6326 	return (status);
6327 }
6328 
6329 
6330 /*
6331  *    Function: sd_create_devid
6332  *
6333  * Description: This routine will fabricate the device id and write it
6334  *		to the disk.
6335  *
6336  *   Arguments: un - driver soft state (unit) structure
6337  *
6338  * Return Code: value of the fabricated device id
6339  *
6340  *     Context: Kernel Thread
6341  */
6342 
6343 static ddi_devid_t
6344 sd_create_devid(struct sd_lun *un)
6345 {
6346 	ASSERT(un != NULL);
6347 
6348 	/* Fabricate the devid */
6349 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6350 	    == DDI_FAILURE) {
6351 		return (NULL);
6352 	}
6353 
6354 	/* Write the devid to disk */
6355 	if (sd_write_deviceid(un) != 0) {
6356 		ddi_devid_free(un->un_devid);
6357 		un->un_devid = NULL;
6358 	}
6359 
6360 	return (un->un_devid);
6361 }
6362 
6363 
6364 /*
6365  *    Function: sd_write_deviceid
6366  *
6367  * Description: This routine will write the device id to the disk
6368  *		reserved sector.
6369  *
6370  *   Arguments: un - driver soft state (unit) structure
6371  *
6372  * Return Code: EINVAL
6373  *		value returned by sd_send_scsi_cmd
6374  *
6375  *     Context: Kernel Thread
6376  */
6377 
6378 static int
6379 sd_write_deviceid(struct sd_lun *un)
6380 {
6381 	struct dk_devid		*dkdevid;
6382 	daddr_t			blk;
6383 	uint_t			*ip, chksum;
6384 	int			status;
6385 	int			i;
6386 
6387 	ASSERT(mutex_owned(SD_MUTEX(un)));
6388 
6389 	blk = sd_get_devid_block(un);
6390 	if (blk < 0)
6391 		return (-1);
6392 	mutex_exit(SD_MUTEX(un));
6393 
6394 	/* Allocate the buffer */
6395 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6396 
6397 	/* Fill in the revision */
6398 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6399 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6400 
6401 	/* Copy in the device id */
6402 	mutex_enter(SD_MUTEX(un));
6403 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6404 	    ddi_devid_sizeof(un->un_devid));
6405 	mutex_exit(SD_MUTEX(un));
6406 
6407 	/* Calculate the checksum */
6408 	chksum = 0;
6409 	ip = (uint_t *)dkdevid;
6410 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6411 	    i++) {
6412 		chksum ^= ip[i];
6413 	}
6414 
6415 	/* Fill-in checksum */
6416 	DKD_FORMCHKSUM(chksum, dkdevid);
6417 
6418 	/* Write the reserved sector */
6419 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6420 	    SD_PATH_DIRECT);
6421 
6422 	kmem_free(dkdevid, un->un_sys_blocksize);
6423 
6424 	mutex_enter(SD_MUTEX(un));
6425 	return (status);
6426 }
6427 
6428 
6429 /*
6430  *    Function: sd_check_vpd_page_support
6431  *
6432  * Description: This routine sends an inquiry command with the EVPD bit set and
6433  *		a page code of 0x00 to the device. It is used to determine which
6434  *		vital product pages are availible to find the devid. We are
6435  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6436  *		device does not support that command.
6437  *
6438  *   Arguments: un  - driver soft state (unit) structure
6439  *
6440  * Return Code: 0 - success
6441  *		1 - check condition
6442  *
6443  *     Context: This routine can sleep.
6444  */
6445 
6446 static int
6447 sd_check_vpd_page_support(struct sd_lun *un)
6448 {
6449 	uchar_t	*page_list	= NULL;
6450 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6451 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6452 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6453 	int    	rval		= 0;
6454 	int	counter;
6455 
6456 	ASSERT(un != NULL);
6457 	ASSERT(mutex_owned(SD_MUTEX(un)));
6458 
6459 	mutex_exit(SD_MUTEX(un));
6460 
6461 	/*
6462 	 * We'll set the page length to the maximum to save figuring it out
6463 	 * with an additional call.
6464 	 */
6465 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6466 
6467 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6468 	    page_code, NULL);
6469 
6470 	mutex_enter(SD_MUTEX(un));
6471 
6472 	/*
6473 	 * Now we must validate that the device accepted the command, as some
6474 	 * drives do not support it.  If the drive does support it, we will
6475 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6476 	 * not, we return -1.
6477 	 */
6478 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6479 		/* Loop to find one of the 2 pages we need */
6480 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6481 
6482 		/*
6483 		 * Pages are returned in ascending order, and 0x83 is what we
6484 		 * are hoping for.
6485 		 */
6486 		while ((page_list[counter] <= 0x83) &&
6487 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6488 		    VPD_HEAD_OFFSET))) {
6489 			/*
6490 			 * Add 3 because page_list[3] is the number of
6491 			 * pages minus 3
6492 			 */
6493 
6494 			switch (page_list[counter]) {
6495 			case 0x00:
6496 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6497 				break;
6498 			case 0x80:
6499 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6500 				break;
6501 			case 0x81:
6502 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6503 				break;
6504 			case 0x82:
6505 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6506 				break;
6507 			case 0x83:
6508 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6509 				break;
6510 			}
6511 			counter++;
6512 		}
6513 
6514 	} else {
6515 		rval = -1;
6516 
6517 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6518 		    "sd_check_vpd_page_support: This drive does not implement "
6519 		    "VPD pages.\n");
6520 	}
6521 
6522 	kmem_free(page_list, page_length);
6523 
6524 	return (rval);
6525 }
6526 
6527 
6528 /*
6529  *    Function: sd_setup_pm
6530  *
6531  * Description: Initialize Power Management on the device
6532  *
6533  *     Context: Kernel Thread
6534  */
6535 
6536 static void
6537 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6538 {
6539 	uint_t	log_page_size;
6540 	uchar_t	*log_page_data;
6541 	int	rval;
6542 
6543 	/*
6544 	 * Since we are called from attach, holding a mutex for
6545 	 * un is unnecessary. Because some of the routines called
6546 	 * from here require SD_MUTEX to not be held, assert this
6547 	 * right up front.
6548 	 */
6549 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6550 	/*
6551 	 * Since the sd device does not have the 'reg' property,
6552 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6553 	 * The following code is to tell cpr that this device
6554 	 * DOES need to be suspended and resumed.
6555 	 */
6556 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6557 	    "pm-hardware-state", "needs-suspend-resume");
6558 
6559 	/*
6560 	 * This complies with the new power management framework
6561 	 * for certain desktop machines. Create the pm_components
6562 	 * property as a string array property.
6563 	 */
6564 	if (un->un_f_pm_supported) {
6565 		/*
6566 		 * not all devices have a motor, try it first.
6567 		 * some devices may return ILLEGAL REQUEST, some
6568 		 * will hang
6569 		 * The following START_STOP_UNIT is used to check if target
6570 		 * device has a motor.
6571 		 */
6572 		un->un_f_start_stop_supported = TRUE;
6573 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6574 		    SD_PATH_DIRECT) != 0) {
6575 			un->un_f_start_stop_supported = FALSE;
6576 		}
6577 
6578 		/*
6579 		 * create pm properties anyways otherwise the parent can't
6580 		 * go to sleep
6581 		 */
6582 		(void) sd_create_pm_components(devi, un);
6583 		un->un_f_pm_is_enabled = TRUE;
6584 		return;
6585 	}
6586 
6587 	if (!un->un_f_log_sense_supported) {
6588 		un->un_power_level = SD_SPINDLE_ON;
6589 		un->un_f_pm_is_enabled = FALSE;
6590 		return;
6591 	}
6592 
6593 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6594 
6595 #ifdef	SDDEBUG
6596 	if (sd_force_pm_supported) {
6597 		/* Force a successful result */
6598 		rval = 1;
6599 	}
6600 #endif
6601 
6602 	/*
6603 	 * If the start-stop cycle counter log page is not supported
6604 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6605 	 * then we should not create the pm_components property.
6606 	 */
6607 	if (rval == -1) {
6608 		/*
6609 		 * Error.
6610 		 * Reading log sense failed, most likely this is
6611 		 * an older drive that does not support log sense.
6612 		 * If this fails auto-pm is not supported.
6613 		 */
6614 		un->un_power_level = SD_SPINDLE_ON;
6615 		un->un_f_pm_is_enabled = FALSE;
6616 
6617 	} else if (rval == 0) {
6618 		/*
6619 		 * Page not found.
6620 		 * The start stop cycle counter is implemented as page
6621 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6622 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6623 		 */
6624 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6625 			/*
6626 			 * Page found, use this one.
6627 			 */
6628 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6629 			un->un_f_pm_is_enabled = TRUE;
6630 		} else {
6631 			/*
6632 			 * Error or page not found.
6633 			 * auto-pm is not supported for this device.
6634 			 */
6635 			un->un_power_level = SD_SPINDLE_ON;
6636 			un->un_f_pm_is_enabled = FALSE;
6637 		}
6638 	} else {
6639 		/*
6640 		 * Page found, use it.
6641 		 */
6642 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6643 		un->un_f_pm_is_enabled = TRUE;
6644 	}
6645 
6646 
6647 	if (un->un_f_pm_is_enabled == TRUE) {
6648 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6649 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6650 
6651 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6652 		    log_page_size, un->un_start_stop_cycle_page,
6653 		    0x01, 0, SD_PATH_DIRECT);
6654 #ifdef	SDDEBUG
6655 		if (sd_force_pm_supported) {
6656 			/* Force a successful result */
6657 			rval = 0;
6658 		}
6659 #endif
6660 
6661 		/*
6662 		 * If the Log sense for Page( Start/stop cycle counter page)
6663 		 * succeeds, then power managment is supported and we can
6664 		 * enable auto-pm.
6665 		 */
6666 		if (rval == 0)  {
6667 			(void) sd_create_pm_components(devi, un);
6668 		} else {
6669 			un->un_power_level = SD_SPINDLE_ON;
6670 			un->un_f_pm_is_enabled = FALSE;
6671 		}
6672 
6673 		kmem_free(log_page_data, log_page_size);
6674 	}
6675 }
6676 
6677 
6678 /*
6679  *    Function: sd_create_pm_components
6680  *
6681  * Description: Initialize PM property.
6682  *
6683  *     Context: Kernel thread context
6684  */
6685 
6686 static void
6687 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6688 {
6689 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6690 
6691 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6692 
6693 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6694 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6695 		/*
6696 		 * When components are initially created they are idle,
6697 		 * power up any non-removables.
6698 		 * Note: the return value of pm_raise_power can't be used
6699 		 * for determining if PM should be enabled for this device.
6700 		 * Even if you check the return values and remove this
6701 		 * property created above, the PM framework will not honor the
6702 		 * change after the first call to pm_raise_power. Hence,
6703 		 * removal of that property does not help if pm_raise_power
6704 		 * fails. In the case of removable media, the start/stop
6705 		 * will fail if the media is not present.
6706 		 */
6707 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6708 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6709 			mutex_enter(SD_MUTEX(un));
6710 			un->un_power_level = SD_SPINDLE_ON;
6711 			mutex_enter(&un->un_pm_mutex);
6712 			/* Set to on and not busy. */
6713 			un->un_pm_count = 0;
6714 		} else {
6715 			mutex_enter(SD_MUTEX(un));
6716 			un->un_power_level = SD_SPINDLE_OFF;
6717 			mutex_enter(&un->un_pm_mutex);
6718 			/* Set to off. */
6719 			un->un_pm_count = -1;
6720 		}
6721 		mutex_exit(&un->un_pm_mutex);
6722 		mutex_exit(SD_MUTEX(un));
6723 	} else {
6724 		un->un_power_level = SD_SPINDLE_ON;
6725 		un->un_f_pm_is_enabled = FALSE;
6726 	}
6727 }
6728 
6729 
6730 /*
6731  *    Function: sd_ddi_suspend
6732  *
6733  * Description: Performs system power-down operations. This includes
6734  *		setting the drive state to indicate its suspended so
6735  *		that no new commands will be accepted. Also, wait for
6736  *		all commands that are in transport or queued to a timer
6737  *		for retry to complete. All timeout threads are cancelled.
6738  *
6739  * Return Code: DDI_FAILURE or DDI_SUCCESS
6740  *
6741  *     Context: Kernel thread context
6742  */
6743 
6744 static int
6745 sd_ddi_suspend(dev_info_t *devi)
6746 {
6747 	struct	sd_lun	*un;
6748 	clock_t		wait_cmds_complete;
6749 
6750 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6751 	if (un == NULL) {
6752 		return (DDI_FAILURE);
6753 	}
6754 
6755 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6756 
6757 	mutex_enter(SD_MUTEX(un));
6758 
6759 	/* Return success if the device is already suspended. */
6760 	if (un->un_state == SD_STATE_SUSPENDED) {
6761 		mutex_exit(SD_MUTEX(un));
6762 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6763 		    "device already suspended, exiting\n");
6764 		return (DDI_SUCCESS);
6765 	}
6766 
6767 	/* Return failure if the device is being used by HA */
6768 	if (un->un_resvd_status &
6769 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6770 		mutex_exit(SD_MUTEX(un));
6771 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6772 		    "device in use by HA, exiting\n");
6773 		return (DDI_FAILURE);
6774 	}
6775 
6776 	/*
6777 	 * Return failure if the device is in a resource wait
6778 	 * or power changing state.
6779 	 */
6780 	if ((un->un_state == SD_STATE_RWAIT) ||
6781 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6782 		mutex_exit(SD_MUTEX(un));
6783 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6784 		    "device in resource wait state, exiting\n");
6785 		return (DDI_FAILURE);
6786 	}
6787 
6788 
6789 	un->un_save_state = un->un_last_state;
6790 	New_state(un, SD_STATE_SUSPENDED);
6791 
6792 	/*
6793 	 * Wait for all commands that are in transport or queued to a timer
6794 	 * for retry to complete.
6795 	 *
6796 	 * While waiting, no new commands will be accepted or sent because of
6797 	 * the new state we set above.
6798 	 *
6799 	 * Wait till current operation has completed. If we are in the resource
6800 	 * wait state (with an intr outstanding) then we need to wait till the
6801 	 * intr completes and starts the next cmd. We want to wait for
6802 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6803 	 */
6804 	wait_cmds_complete = ddi_get_lbolt() +
6805 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6806 
6807 	while (un->un_ncmds_in_transport != 0) {
6808 		/*
6809 		 * Fail if commands do not finish in the specified time.
6810 		 */
6811 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6812 		    wait_cmds_complete) == -1) {
6813 			/*
6814 			 * Undo the state changes made above. Everything
6815 			 * must go back to it's original value.
6816 			 */
6817 			Restore_state(un);
6818 			un->un_last_state = un->un_save_state;
6819 			/* Wake up any threads that might be waiting. */
6820 			cv_broadcast(&un->un_suspend_cv);
6821 			mutex_exit(SD_MUTEX(un));
6822 			SD_ERROR(SD_LOG_IO_PM, un,
6823 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6824 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6825 			return (DDI_FAILURE);
6826 		}
6827 	}
6828 
6829 	/*
6830 	 * Cancel SCSI watch thread and timeouts, if any are active
6831 	 */
6832 
6833 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6834 		opaque_t temp_token = un->un_swr_token;
6835 		mutex_exit(SD_MUTEX(un));
6836 		scsi_watch_suspend(temp_token);
6837 		mutex_enter(SD_MUTEX(un));
6838 	}
6839 
6840 	if (un->un_reset_throttle_timeid != NULL) {
6841 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6842 		un->un_reset_throttle_timeid = NULL;
6843 		mutex_exit(SD_MUTEX(un));
6844 		(void) untimeout(temp_id);
6845 		mutex_enter(SD_MUTEX(un));
6846 	}
6847 
6848 	if (un->un_dcvb_timeid != NULL) {
6849 		timeout_id_t temp_id = un->un_dcvb_timeid;
6850 		un->un_dcvb_timeid = NULL;
6851 		mutex_exit(SD_MUTEX(un));
6852 		(void) untimeout(temp_id);
6853 		mutex_enter(SD_MUTEX(un));
6854 	}
6855 
6856 	mutex_enter(&un->un_pm_mutex);
6857 	if (un->un_pm_timeid != NULL) {
6858 		timeout_id_t temp_id = un->un_pm_timeid;
6859 		un->un_pm_timeid = NULL;
6860 		mutex_exit(&un->un_pm_mutex);
6861 		mutex_exit(SD_MUTEX(un));
6862 		(void) untimeout(temp_id);
6863 		mutex_enter(SD_MUTEX(un));
6864 	} else {
6865 		mutex_exit(&un->un_pm_mutex);
6866 	}
6867 
6868 	if (un->un_retry_timeid != NULL) {
6869 		timeout_id_t temp_id = un->un_retry_timeid;
6870 		un->un_retry_timeid = NULL;
6871 		mutex_exit(SD_MUTEX(un));
6872 		(void) untimeout(temp_id);
6873 		mutex_enter(SD_MUTEX(un));
6874 	}
6875 
6876 	if (un->un_direct_priority_timeid != NULL) {
6877 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6878 		un->un_direct_priority_timeid = NULL;
6879 		mutex_exit(SD_MUTEX(un));
6880 		(void) untimeout(temp_id);
6881 		mutex_enter(SD_MUTEX(un));
6882 	}
6883 
6884 	if (un->un_f_is_fibre == TRUE) {
6885 		/*
6886 		 * Remove callbacks for insert and remove events
6887 		 */
6888 		if (un->un_insert_event != NULL) {
6889 			mutex_exit(SD_MUTEX(un));
6890 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6891 			mutex_enter(SD_MUTEX(un));
6892 			un->un_insert_event = NULL;
6893 		}
6894 
6895 		if (un->un_remove_event != NULL) {
6896 			mutex_exit(SD_MUTEX(un));
6897 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6898 			mutex_enter(SD_MUTEX(un));
6899 			un->un_remove_event = NULL;
6900 		}
6901 	}
6902 
6903 	mutex_exit(SD_MUTEX(un));
6904 
6905 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6906 
6907 	return (DDI_SUCCESS);
6908 }
6909 
6910 
6911 /*
6912  *    Function: sd_ddi_pm_suspend
6913  *
6914  * Description: Set the drive state to low power.
6915  *		Someone else is required to actually change the drive
6916  *		power level.
6917  *
6918  *   Arguments: un - driver soft state (unit) structure
6919  *
6920  * Return Code: DDI_FAILURE or DDI_SUCCESS
6921  *
6922  *     Context: Kernel thread context
6923  */
6924 
6925 static int
6926 sd_ddi_pm_suspend(struct sd_lun *un)
6927 {
6928 	ASSERT(un != NULL);
6929 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6930 
6931 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6932 	mutex_enter(SD_MUTEX(un));
6933 
6934 	/*
6935 	 * Exit if power management is not enabled for this device, or if
6936 	 * the device is being used by HA.
6937 	 */
6938 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6939 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6940 		mutex_exit(SD_MUTEX(un));
6941 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6942 		return (DDI_SUCCESS);
6943 	}
6944 
6945 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6946 	    un->un_ncmds_in_driver);
6947 
6948 	/*
6949 	 * See if the device is not busy, ie.:
6950 	 *    - we have no commands in the driver for this device
6951 	 *    - not waiting for resources
6952 	 */
6953 	if ((un->un_ncmds_in_driver == 0) &&
6954 	    (un->un_state != SD_STATE_RWAIT)) {
6955 		/*
6956 		 * The device is not busy, so it is OK to go to low power state.
6957 		 * Indicate low power, but rely on someone else to actually
6958 		 * change it.
6959 		 */
6960 		mutex_enter(&un->un_pm_mutex);
6961 		un->un_pm_count = -1;
6962 		mutex_exit(&un->un_pm_mutex);
6963 		un->un_power_level = SD_SPINDLE_OFF;
6964 	}
6965 
6966 	mutex_exit(SD_MUTEX(un));
6967 
6968 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6969 
6970 	return (DDI_SUCCESS);
6971 }
6972 
6973 
6974 /*
6975  *    Function: sd_ddi_resume
6976  *
6977  * Description: Performs system power-up operations..
6978  *
6979  * Return Code: DDI_SUCCESS
6980  *		DDI_FAILURE
6981  *
6982  *     Context: Kernel thread context
6983  */
6984 
6985 static int
6986 sd_ddi_resume(dev_info_t *devi)
6987 {
6988 	struct	sd_lun	*un;
6989 
6990 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6991 	if (un == NULL) {
6992 		return (DDI_FAILURE);
6993 	}
6994 
6995 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6996 
6997 	mutex_enter(SD_MUTEX(un));
6998 	Restore_state(un);
6999 
7000 	/*
7001 	 * Restore the state which was saved to give the
7002 	 * the right state in un_last_state
7003 	 */
7004 	un->un_last_state = un->un_save_state;
7005 	/*
7006 	 * Note: throttle comes back at full.
7007 	 * Also note: this MUST be done before calling pm_raise_power
7008 	 * otherwise the system can get hung in biowait. The scenario where
7009 	 * this'll happen is under cpr suspend. Writing of the system
7010 	 * state goes through sddump, which writes 0 to un_throttle. If
7011 	 * writing the system state then fails, example if the partition is
7012 	 * too small, then cpr attempts a resume. If throttle isn't restored
7013 	 * from the saved value until after calling pm_raise_power then
7014 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
7015 	 * in biowait.
7016 	 */
7017 	un->un_throttle = un->un_saved_throttle;
7018 
7019 	/*
7020 	 * The chance of failure is very rare as the only command done in power
7021 	 * entry point is START command when you transition from 0->1 or
7022 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
7023 	 * which suspend was done. Ignore the return value as the resume should
7024 	 * not be failed. In the case of removable media the media need not be
7025 	 * inserted and hence there is a chance that raise power will fail with
7026 	 * media not present.
7027 	 */
7028 	if (un->un_f_attach_spinup) {
7029 		mutex_exit(SD_MUTEX(un));
7030 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
7031 		mutex_enter(SD_MUTEX(un));
7032 	}
7033 
7034 	/*
7035 	 * Don't broadcast to the suspend cv and therefore possibly
7036 	 * start I/O until after power has been restored.
7037 	 */
7038 	cv_broadcast(&un->un_suspend_cv);
7039 	cv_broadcast(&un->un_state_cv);
7040 
7041 	/* restart thread */
7042 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
7043 		scsi_watch_resume(un->un_swr_token);
7044 	}
7045 
7046 #if (defined(__fibre))
7047 	if (un->un_f_is_fibre == TRUE) {
7048 		/*
7049 		 * Add callbacks for insert and remove events
7050 		 */
7051 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7052 			sd_init_event_callbacks(un);
7053 		}
7054 	}
7055 #endif
7056 
7057 	/*
7058 	 * Transport any pending commands to the target.
7059 	 *
7060 	 * If this is a low-activity device commands in queue will have to wait
7061 	 * until new commands come in, which may take awhile. Also, we
7062 	 * specifically don't check un_ncmds_in_transport because we know that
7063 	 * there really are no commands in progress after the unit was
7064 	 * suspended and we could have reached the throttle level, been
7065 	 * suspended, and have no new commands coming in for awhile. Highly
7066 	 * unlikely, but so is the low-activity disk scenario.
7067 	 */
7068 	ddi_xbuf_dispatch(un->un_xbuf_attr);
7069 
7070 	sd_start_cmds(un, NULL);
7071 	mutex_exit(SD_MUTEX(un));
7072 
7073 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
7074 
7075 	return (DDI_SUCCESS);
7076 }
7077 
7078 
7079 /*
7080  *    Function: sd_ddi_pm_resume
7081  *
7082  * Description: Set the drive state to powered on.
7083  *		Someone else is required to actually change the drive
7084  *		power level.
7085  *
7086  *   Arguments: un - driver soft state (unit) structure
7087  *
7088  * Return Code: DDI_SUCCESS
7089  *
7090  *     Context: Kernel thread context
7091  */
7092 
7093 static int
7094 sd_ddi_pm_resume(struct sd_lun *un)
7095 {
7096 	ASSERT(un != NULL);
7097 
7098 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7099 	mutex_enter(SD_MUTEX(un));
7100 	un->un_power_level = SD_SPINDLE_ON;
7101 
7102 	ASSERT(!mutex_owned(&un->un_pm_mutex));
7103 	mutex_enter(&un->un_pm_mutex);
7104 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
7105 		un->un_pm_count++;
7106 		ASSERT(un->un_pm_count == 0);
7107 		/*
7108 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
7109 		 * un_suspend_cv is for a system resume, not a power management
7110 		 * device resume. (4297749)
7111 		 *	 cv_broadcast(&un->un_suspend_cv);
7112 		 */
7113 	}
7114 	mutex_exit(&un->un_pm_mutex);
7115 	mutex_exit(SD_MUTEX(un));
7116 
7117 	return (DDI_SUCCESS);
7118 }
7119 
7120 
7121 /*
7122  *    Function: sd_pm_idletimeout_handler
7123  *
7124  * Description: A timer routine that's active only while a device is busy.
7125  *		The purpose is to extend slightly the pm framework's busy
7126  *		view of the device to prevent busy/idle thrashing for
7127  *		back-to-back commands. Do this by comparing the current time
7128  *		to the time at which the last command completed and when the
7129  *		difference is greater than sd_pm_idletime, call
7130  *		pm_idle_component. In addition to indicating idle to the pm
7131  *		framework, update the chain type to again use the internal pm
7132  *		layers of the driver.
7133  *
7134  *   Arguments: arg - driver soft state (unit) structure
7135  *
7136  *     Context: Executes in a timeout(9F) thread context
7137  */
7138 
7139 static void
7140 sd_pm_idletimeout_handler(void *arg)
7141 {
7142 	struct sd_lun *un = arg;
7143 
7144 	time_t	now;
7145 
7146 	mutex_enter(&sd_detach_mutex);
7147 	if (un->un_detach_count != 0) {
7148 		/* Abort if the instance is detaching */
7149 		mutex_exit(&sd_detach_mutex);
7150 		return;
7151 	}
7152 	mutex_exit(&sd_detach_mutex);
7153 
7154 	now = ddi_get_time();
7155 	/*
7156 	 * Grab both mutexes, in the proper order, since we're accessing
7157 	 * both PM and softstate variables.
7158 	 */
7159 	mutex_enter(SD_MUTEX(un));
7160 	mutex_enter(&un->un_pm_mutex);
7161 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7162 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7163 		/*
7164 		 * Update the chain types.
7165 		 * This takes affect on the next new command received.
7166 		 */
7167 		if (un->un_f_non_devbsize_supported) {
7168 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7169 		} else {
7170 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7171 		}
7172 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7173 
7174 		SD_TRACE(SD_LOG_IO_PM, un,
7175 		    "sd_pm_idletimeout_handler: idling device\n");
7176 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7177 		un->un_pm_idle_timeid = NULL;
7178 	} else {
7179 		un->un_pm_idle_timeid =
7180 			timeout(sd_pm_idletimeout_handler, un,
7181 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7182 	}
7183 	mutex_exit(&un->un_pm_mutex);
7184 	mutex_exit(SD_MUTEX(un));
7185 }
7186 
7187 
7188 /*
7189  *    Function: sd_pm_timeout_handler
7190  *
7191  * Description: Callback to tell framework we are idle.
7192  *
7193  *     Context: timeout(9f) thread context.
7194  */
7195 
7196 static void
7197 sd_pm_timeout_handler(void *arg)
7198 {
7199 	struct sd_lun *un = arg;
7200 
7201 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7202 	mutex_enter(&un->un_pm_mutex);
7203 	un->un_pm_timeid = NULL;
7204 	mutex_exit(&un->un_pm_mutex);
7205 }
7206 
7207 
7208 /*
7209  *    Function: sdpower
7210  *
7211  * Description: PM entry point.
7212  *
7213  * Return Code: DDI_SUCCESS
7214  *		DDI_FAILURE
7215  *
7216  *     Context: Kernel thread context
7217  */
7218 
7219 static int
7220 sdpower(dev_info_t *devi, int component, int level)
7221 {
7222 	struct sd_lun	*un;
7223 	int		instance;
7224 	int		rval = DDI_SUCCESS;
7225 	uint_t		i, log_page_size, maxcycles, ncycles;
7226 	uchar_t		*log_page_data;
7227 	int		log_sense_page;
7228 	int		medium_present;
7229 	time_t		intvlp;
7230 	dev_t		dev;
7231 	struct pm_trans_data	sd_pm_tran_data;
7232 	uchar_t		save_state;
7233 	int		sval;
7234 	uchar_t		state_before_pm;
7235 	int		got_semaphore_here;
7236 
7237 	instance = ddi_get_instance(devi);
7238 
7239 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7240 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7241 	    component != 0) {
7242 		return (DDI_FAILURE);
7243 	}
7244 
7245 	dev = sd_make_device(SD_DEVINFO(un));
7246 
7247 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7248 
7249 	/*
7250 	 * Must synchronize power down with close.
7251 	 * Attempt to decrement/acquire the open/close semaphore,
7252 	 * but do NOT wait on it. If it's not greater than zero,
7253 	 * ie. it can't be decremented without waiting, then
7254 	 * someone else, either open or close, already has it
7255 	 * and the try returns 0. Use that knowledge here to determine
7256 	 * if it's OK to change the device power level.
7257 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7258 	 * here.
7259 	 */
7260 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7261 
7262 	mutex_enter(SD_MUTEX(un));
7263 
7264 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7265 	    un->un_ncmds_in_driver);
7266 
7267 	/*
7268 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7269 	 * already being processed in the driver, or if the semaphore was
7270 	 * not gotten here it indicates an open or close is being processed.
7271 	 * At the same time somebody is requesting to go low power which
7272 	 * can't happen, therefore we need to return failure.
7273 	 */
7274 	if ((level == SD_SPINDLE_OFF) &&
7275 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7276 		mutex_exit(SD_MUTEX(un));
7277 
7278 		if (got_semaphore_here != 0) {
7279 			sema_v(&un->un_semoclose);
7280 		}
7281 		SD_TRACE(SD_LOG_IO_PM, un,
7282 		    "sdpower: exit, device has queued cmds.\n");
7283 		return (DDI_FAILURE);
7284 	}
7285 
7286 	/*
7287 	 * if it is OFFLINE that means the disk is completely dead
7288 	 * in our case we have to put the disk in on or off by sending commands
7289 	 * Of course that will fail anyway so return back here.
7290 	 *
7291 	 * Power changes to a device that's OFFLINE or SUSPENDED
7292 	 * are not allowed.
7293 	 */
7294 	if ((un->un_state == SD_STATE_OFFLINE) ||
7295 	    (un->un_state == SD_STATE_SUSPENDED)) {
7296 		mutex_exit(SD_MUTEX(un));
7297 
7298 		if (got_semaphore_here != 0) {
7299 			sema_v(&un->un_semoclose);
7300 		}
7301 		SD_TRACE(SD_LOG_IO_PM, un,
7302 		    "sdpower: exit, device is off-line.\n");
7303 		return (DDI_FAILURE);
7304 	}
7305 
7306 	/*
7307 	 * Change the device's state to indicate it's power level
7308 	 * is being changed. Do this to prevent a power off in the
7309 	 * middle of commands, which is especially bad on devices
7310 	 * that are really powered off instead of just spun down.
7311 	 */
7312 	state_before_pm = un->un_state;
7313 	un->un_state = SD_STATE_PM_CHANGING;
7314 
7315 	mutex_exit(SD_MUTEX(un));
7316 
7317 	/*
7318 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7319 	 * bypass the following checking, otherwise, check the log
7320 	 * sense information for this device
7321 	 */
7322 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7323 		/*
7324 		 * Get the log sense information to understand whether the
7325 		 * the powercycle counts have gone beyond the threshhold.
7326 		 */
7327 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7328 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7329 
7330 		mutex_enter(SD_MUTEX(un));
7331 		log_sense_page = un->un_start_stop_cycle_page;
7332 		mutex_exit(SD_MUTEX(un));
7333 
7334 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7335 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7336 #ifdef	SDDEBUG
7337 		if (sd_force_pm_supported) {
7338 			/* Force a successful result */
7339 			rval = 0;
7340 		}
7341 #endif
7342 		if (rval != 0) {
7343 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7344 			    "Log Sense Failed\n");
7345 			kmem_free(log_page_data, log_page_size);
7346 			/* Cannot support power management on those drives */
7347 
7348 			if (got_semaphore_here != 0) {
7349 				sema_v(&un->un_semoclose);
7350 			}
7351 			/*
7352 			 * On exit put the state back to it's original value
7353 			 * and broadcast to anyone waiting for the power
7354 			 * change completion.
7355 			 */
7356 			mutex_enter(SD_MUTEX(un));
7357 			un->un_state = state_before_pm;
7358 			cv_broadcast(&un->un_suspend_cv);
7359 			mutex_exit(SD_MUTEX(un));
7360 			SD_TRACE(SD_LOG_IO_PM, un,
7361 			    "sdpower: exit, Log Sense Failed.\n");
7362 			return (DDI_FAILURE);
7363 		}
7364 
7365 		/*
7366 		 * From the page data - Convert the essential information to
7367 		 * pm_trans_data
7368 		 */
7369 		maxcycles =
7370 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7371 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7372 
7373 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7374 
7375 		ncycles =
7376 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7377 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7378 
7379 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7380 
7381 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7382 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7383 			    log_page_data[8+i];
7384 		}
7385 
7386 		kmem_free(log_page_data, log_page_size);
7387 
7388 		/*
7389 		 * Call pm_trans_check routine to get the Ok from
7390 		 * the global policy
7391 		 */
7392 
7393 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7394 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7395 
7396 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7397 #ifdef	SDDEBUG
7398 		if (sd_force_pm_supported) {
7399 			/* Force a successful result */
7400 			rval = 1;
7401 		}
7402 #endif
7403 		switch (rval) {
7404 		case 0:
7405 			/*
7406 			 * Not Ok to Power cycle or error in parameters passed
7407 			 * Would have given the advised time to consider power
7408 			 * cycle. Based on the new intvlp parameter we are
7409 			 * supposed to pretend we are busy so that pm framework
7410 			 * will never call our power entry point. Because of
7411 			 * that install a timeout handler and wait for the
7412 			 * recommended time to elapse so that power management
7413 			 * can be effective again.
7414 			 *
7415 			 * To effect this behavior, call pm_busy_component to
7416 			 * indicate to the framework this device is busy.
7417 			 * By not adjusting un_pm_count the rest of PM in
7418 			 * the driver will function normally, and independant
7419 			 * of this but because the framework is told the device
7420 			 * is busy it won't attempt powering down until it gets
7421 			 * a matching idle. The timeout handler sends this.
7422 			 * Note: sd_pm_entry can't be called here to do this
7423 			 * because sdpower may have been called as a result
7424 			 * of a call to pm_raise_power from within sd_pm_entry.
7425 			 *
7426 			 * If a timeout handler is already active then
7427 			 * don't install another.
7428 			 */
7429 			mutex_enter(&un->un_pm_mutex);
7430 			if (un->un_pm_timeid == NULL) {
7431 				un->un_pm_timeid =
7432 				    timeout(sd_pm_timeout_handler,
7433 				    un, intvlp * drv_usectohz(1000000));
7434 				mutex_exit(&un->un_pm_mutex);
7435 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7436 			} else {
7437 				mutex_exit(&un->un_pm_mutex);
7438 			}
7439 			if (got_semaphore_here != 0) {
7440 				sema_v(&un->un_semoclose);
7441 			}
7442 			/*
7443 			 * On exit put the state back to it's original value
7444 			 * and broadcast to anyone waiting for the power
7445 			 * change completion.
7446 			 */
7447 			mutex_enter(SD_MUTEX(un));
7448 			un->un_state = state_before_pm;
7449 			cv_broadcast(&un->un_suspend_cv);
7450 			mutex_exit(SD_MUTEX(un));
7451 
7452 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7453 			    "trans check Failed, not ok to power cycle.\n");
7454 			return (DDI_FAILURE);
7455 
7456 		case -1:
7457 			if (got_semaphore_here != 0) {
7458 				sema_v(&un->un_semoclose);
7459 			}
7460 			/*
7461 			 * On exit put the state back to it's original value
7462 			 * and broadcast to anyone waiting for the power
7463 			 * change completion.
7464 			 */
7465 			mutex_enter(SD_MUTEX(un));
7466 			un->un_state = state_before_pm;
7467 			cv_broadcast(&un->un_suspend_cv);
7468 			mutex_exit(SD_MUTEX(un));
7469 			SD_TRACE(SD_LOG_IO_PM, un,
7470 			    "sdpower: exit, trans check command Failed.\n");
7471 			return (DDI_FAILURE);
7472 		}
7473 	}
7474 
7475 	if (level == SD_SPINDLE_OFF) {
7476 		/*
7477 		 * Save the last state... if the STOP FAILS we need it
7478 		 * for restoring
7479 		 */
7480 		mutex_enter(SD_MUTEX(un));
7481 		save_state = un->un_last_state;
7482 		/*
7483 		 * There must not be any cmds. getting processed
7484 		 * in the driver when we get here. Power to the
7485 		 * device is potentially going off.
7486 		 */
7487 		ASSERT(un->un_ncmds_in_driver == 0);
7488 		mutex_exit(SD_MUTEX(un));
7489 
7490 		/*
7491 		 * For now suspend the device completely before spindle is
7492 		 * turned off
7493 		 */
7494 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7495 			if (got_semaphore_here != 0) {
7496 				sema_v(&un->un_semoclose);
7497 			}
7498 			/*
7499 			 * On exit put the state back to it's original value
7500 			 * and broadcast to anyone waiting for the power
7501 			 * change completion.
7502 			 */
7503 			mutex_enter(SD_MUTEX(un));
7504 			un->un_state = state_before_pm;
7505 			cv_broadcast(&un->un_suspend_cv);
7506 			mutex_exit(SD_MUTEX(un));
7507 			SD_TRACE(SD_LOG_IO_PM, un,
7508 			    "sdpower: exit, PM suspend Failed.\n");
7509 			return (DDI_FAILURE);
7510 		}
7511 	}
7512 
7513 	/*
7514 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7515 	 * close, or strategy. Dump no long uses this routine, it uses it's
7516 	 * own code so it can be done in polled mode.
7517 	 */
7518 
7519 	medium_present = TRUE;
7520 
7521 	/*
7522 	 * When powering up, issue a TUR in case the device is at unit
7523 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7524 	 * a deadlock on un_pm_busy_cv will occur.
7525 	 */
7526 	if (level == SD_SPINDLE_ON) {
7527 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7528 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7529 	}
7530 
7531 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7532 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7533 
7534 	sval = sd_send_scsi_START_STOP_UNIT(un,
7535 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7536 	    SD_PATH_DIRECT);
7537 	/* Command failed, check for media present. */
7538 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7539 		medium_present = FALSE;
7540 	}
7541 
7542 	/*
7543 	 * The conditions of interest here are:
7544 	 *   if a spindle off with media present fails,
7545 	 *	then restore the state and return an error.
7546 	 *   else if a spindle on fails,
7547 	 *	then return an error (there's no state to restore).
7548 	 * In all other cases we setup for the new state
7549 	 * and return success.
7550 	 */
7551 	switch (level) {
7552 	case SD_SPINDLE_OFF:
7553 		if ((medium_present == TRUE) && (sval != 0)) {
7554 			/* The stop command from above failed */
7555 			rval = DDI_FAILURE;
7556 			/*
7557 			 * The stop command failed, and we have media
7558 			 * present. Put the level back by calling the
7559 			 * sd_pm_resume() and set the state back to
7560 			 * it's previous value.
7561 			 */
7562 			(void) sd_ddi_pm_resume(un);
7563 			mutex_enter(SD_MUTEX(un));
7564 			un->un_last_state = save_state;
7565 			mutex_exit(SD_MUTEX(un));
7566 			break;
7567 		}
7568 		/*
7569 		 * The stop command from above succeeded.
7570 		 */
7571 		if (un->un_f_monitor_media_state) {
7572 			/*
7573 			 * Terminate watch thread in case of removable media
7574 			 * devices going into low power state. This is as per
7575 			 * the requirements of pm framework, otherwise commands
7576 			 * will be generated for the device (through watch
7577 			 * thread), even when the device is in low power state.
7578 			 */
7579 			mutex_enter(SD_MUTEX(un));
7580 			un->un_f_watcht_stopped = FALSE;
7581 			if (un->un_swr_token != NULL) {
7582 				opaque_t temp_token = un->un_swr_token;
7583 				un->un_f_watcht_stopped = TRUE;
7584 				un->un_swr_token = NULL;
7585 				mutex_exit(SD_MUTEX(un));
7586 				(void) scsi_watch_request_terminate(temp_token,
7587 				    SCSI_WATCH_TERMINATE_WAIT);
7588 			} else {
7589 				mutex_exit(SD_MUTEX(un));
7590 			}
7591 		}
7592 		break;
7593 
7594 	default:	/* The level requested is spindle on... */
7595 		/*
7596 		 * Legacy behavior: return success on a failed spinup
7597 		 * if there is no media in the drive.
7598 		 * Do this by looking at medium_present here.
7599 		 */
7600 		if ((sval != 0) && medium_present) {
7601 			/* The start command from above failed */
7602 			rval = DDI_FAILURE;
7603 			break;
7604 		}
7605 		/*
7606 		 * The start command from above succeeded
7607 		 * Resume the devices now that we have
7608 		 * started the disks
7609 		 */
7610 		(void) sd_ddi_pm_resume(un);
7611 
7612 		/*
7613 		 * Resume the watch thread since it was suspended
7614 		 * when the device went into low power mode.
7615 		 */
7616 		if (un->un_f_monitor_media_state) {
7617 			mutex_enter(SD_MUTEX(un));
7618 			if (un->un_f_watcht_stopped == TRUE) {
7619 				opaque_t temp_token;
7620 
7621 				un->un_f_watcht_stopped = FALSE;
7622 				mutex_exit(SD_MUTEX(un));
7623 				temp_token = scsi_watch_request_submit(
7624 				    SD_SCSI_DEVP(un),
7625 				    sd_check_media_time,
7626 				    SENSE_LENGTH, sd_media_watch_cb,
7627 				    (caddr_t)dev);
7628 				mutex_enter(SD_MUTEX(un));
7629 				un->un_swr_token = temp_token;
7630 			}
7631 			mutex_exit(SD_MUTEX(un));
7632 		}
7633 	}
7634 	if (got_semaphore_here != 0) {
7635 		sema_v(&un->un_semoclose);
7636 	}
7637 	/*
7638 	 * On exit put the state back to it's original value
7639 	 * and broadcast to anyone waiting for the power
7640 	 * change completion.
7641 	 */
7642 	mutex_enter(SD_MUTEX(un));
7643 	un->un_state = state_before_pm;
7644 	cv_broadcast(&un->un_suspend_cv);
7645 	mutex_exit(SD_MUTEX(un));
7646 
7647 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7648 
7649 	return (rval);
7650 }
7651 
7652 
7653 
7654 /*
7655  *    Function: sdattach
7656  *
7657  * Description: Driver's attach(9e) entry point function.
7658  *
7659  *   Arguments: devi - opaque device info handle
7660  *		cmd  - attach  type
7661  *
7662  * Return Code: DDI_SUCCESS
7663  *		DDI_FAILURE
7664  *
7665  *     Context: Kernel thread context
7666  */
7667 
7668 static int
7669 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7670 {
7671 	switch (cmd) {
7672 	case DDI_ATTACH:
7673 		return (sd_unit_attach(devi));
7674 	case DDI_RESUME:
7675 		return (sd_ddi_resume(devi));
7676 	default:
7677 		break;
7678 	}
7679 	return (DDI_FAILURE);
7680 }
7681 
7682 
7683 /*
7684  *    Function: sddetach
7685  *
7686  * Description: Driver's detach(9E) entry point function.
7687  *
7688  *   Arguments: devi - opaque device info handle
7689  *		cmd  - detach  type
7690  *
7691  * Return Code: DDI_SUCCESS
7692  *		DDI_FAILURE
7693  *
7694  *     Context: Kernel thread context
7695  */
7696 
7697 static int
7698 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7699 {
7700 	switch (cmd) {
7701 	case DDI_DETACH:
7702 		return (sd_unit_detach(devi));
7703 	case DDI_SUSPEND:
7704 		return (sd_ddi_suspend(devi));
7705 	default:
7706 		break;
7707 	}
7708 	return (DDI_FAILURE);
7709 }
7710 
7711 
7712 /*
7713  *     Function: sd_sync_with_callback
7714  *
7715  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7716  *		 state while the callback routine is active.
7717  *
7718  *    Arguments: un: softstate structure for the instance
7719  *
7720  *	Context: Kernel thread context
7721  */
7722 
7723 static void
7724 sd_sync_with_callback(struct sd_lun *un)
7725 {
7726 	ASSERT(un != NULL);
7727 
7728 	mutex_enter(SD_MUTEX(un));
7729 
7730 	ASSERT(un->un_in_callback >= 0);
7731 
7732 	while (un->un_in_callback > 0) {
7733 		mutex_exit(SD_MUTEX(un));
7734 		delay(2);
7735 		mutex_enter(SD_MUTEX(un));
7736 	}
7737 
7738 	mutex_exit(SD_MUTEX(un));
7739 }
7740 
7741 /*
7742  *    Function: sd_unit_attach
7743  *
7744  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7745  *		the soft state structure for the device and performs
7746  *		all necessary structure and device initializations.
7747  *
7748  *   Arguments: devi: the system's dev_info_t for the device.
7749  *
7750  * Return Code: DDI_SUCCESS if attach is successful.
7751  *		DDI_FAILURE if any part of the attach fails.
7752  *
7753  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7754  *		Kernel thread context only.  Can sleep.
7755  */
7756 
7757 static int
7758 sd_unit_attach(dev_info_t *devi)
7759 {
7760 	struct	scsi_device	*devp;
7761 	struct	sd_lun		*un;
7762 	char			*variantp;
7763 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7764 	int	instance;
7765 	int	rval;
7766 	int	wc_enabled;
7767 	uint64_t	capacity;
7768 	uint_t		lbasize;
7769 
7770 	/*
7771 	 * Retrieve the target driver's private data area. This was set
7772 	 * up by the HBA.
7773 	 */
7774 	devp = ddi_get_driver_private(devi);
7775 
7776 	/*
7777 	 * Since we have no idea what state things were left in by the last
7778 	 * user of the device, set up some 'default' settings, ie. turn 'em
7779 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7780 	 * Do this before the scsi_probe, which sends an inquiry.
7781 	 * This is a fix for bug (4430280).
7782 	 * Of special importance is wide-xfer. The drive could have been left
7783 	 * in wide transfer mode by the last driver to communicate with it,
7784 	 * this includes us. If that's the case, and if the following is not
7785 	 * setup properly or we don't re-negotiate with the drive prior to
7786 	 * transferring data to/from the drive, it causes bus parity errors,
7787 	 * data overruns, and unexpected interrupts. This first occurred when
7788 	 * the fix for bug (4378686) was made.
7789 	 */
7790 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7791 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7792 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7793 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7794 
7795 	/*
7796 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7797 	 * This call will allocate and fill in the scsi_inquiry structure
7798 	 * and point the sd_inq member of the scsi_device structure to it.
7799 	 * If the attach succeeds, then this memory will not be de-allocated
7800 	 * (via scsi_unprobe()) until the instance is detached.
7801 	 */
7802 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7803 		goto probe_failed;
7804 	}
7805 
7806 	/*
7807 	 * Check the device type as specified in the inquiry data and
7808 	 * claim it if it is of a type that we support.
7809 	 */
7810 	switch (devp->sd_inq->inq_dtype) {
7811 	case DTYPE_DIRECT:
7812 		break;
7813 	case DTYPE_RODIRECT:
7814 		break;
7815 	case DTYPE_OPTICAL:
7816 		break;
7817 	case DTYPE_NOTPRESENT:
7818 	default:
7819 		/* Unsupported device type; fail the attach. */
7820 		goto probe_failed;
7821 	}
7822 
7823 	/*
7824 	 * Allocate the soft state structure for this unit.
7825 	 *
7826 	 * We rely upon this memory being set to all zeroes by
7827 	 * ddi_soft_state_zalloc().  We assume that any member of the
7828 	 * soft state structure that is not explicitly initialized by
7829 	 * this routine will have a value of zero.
7830 	 */
7831 	instance = ddi_get_instance(devp->sd_dev);
7832 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7833 		goto probe_failed;
7834 	}
7835 
7836 	/*
7837 	 * Retrieve a pointer to the newly-allocated soft state.
7838 	 *
7839 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7840 	 * was successful, unless something has gone horribly wrong and the
7841 	 * ddi's soft state internals are corrupt (in which case it is
7842 	 * probably better to halt here than just fail the attach....)
7843 	 */
7844 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7845 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7846 		    instance);
7847 		/*NOTREACHED*/
7848 	}
7849 
7850 	/*
7851 	 * Link the back ptr of the driver soft state to the scsi_device
7852 	 * struct for this lun.
7853 	 * Save a pointer to the softstate in the driver-private area of
7854 	 * the scsi_device struct.
7855 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7856 	 * we first set un->un_sd below.
7857 	 */
7858 	un->un_sd = devp;
7859 	devp->sd_private = (opaque_t)un;
7860 
7861 	/*
7862 	 * The following must be after devp is stored in the soft state struct.
7863 	 */
7864 #ifdef SDDEBUG
7865 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7866 	    "%s_unit_attach: un:0x%p instance:%d\n",
7867 	    ddi_driver_name(devi), un, instance);
7868 #endif
7869 
7870 	/*
7871 	 * Set up the device type and node type (for the minor nodes).
7872 	 * By default we assume that the device can at least support the
7873 	 * Common Command Set. Call it a CD-ROM if it reports itself
7874 	 * as a RODIRECT device.
7875 	 */
7876 	switch (devp->sd_inq->inq_dtype) {
7877 	case DTYPE_RODIRECT:
7878 		un->un_node_type = DDI_NT_CD_CHAN;
7879 		un->un_ctype	 = CTYPE_CDROM;
7880 		break;
7881 	case DTYPE_OPTICAL:
7882 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7883 		un->un_ctype	 = CTYPE_ROD;
7884 		break;
7885 	default:
7886 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7887 		un->un_ctype	 = CTYPE_CCS;
7888 		break;
7889 	}
7890 
7891 	/*
7892 	 * Try to read the interconnect type from the HBA.
7893 	 *
7894 	 * Note: This driver is currently compiled as two binaries, a parallel
7895 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7896 	 * differences are determined at compile time. In the future a single
7897 	 * binary will be provided and the inteconnect type will be used to
7898 	 * differentiate between fibre and parallel scsi behaviors. At that time
7899 	 * it will be necessary for all fibre channel HBAs to support this
7900 	 * property.
7901 	 *
7902 	 * set un_f_is_fiber to TRUE ( default fiber )
7903 	 */
7904 	un->un_f_is_fibre = TRUE;
7905 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7906 	case INTERCONNECT_SSA:
7907 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7908 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7909 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7910 		break;
7911 	case INTERCONNECT_PARALLEL:
7912 		un->un_f_is_fibre = FALSE;
7913 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7914 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7915 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7916 		break;
7917 	case INTERCONNECT_FIBRE:
7918 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7919 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7920 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7921 		break;
7922 	case INTERCONNECT_FABRIC:
7923 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7924 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7925 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7926 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7927 		break;
7928 	default:
7929 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7930 		/*
7931 		 * The HBA does not support the "interconnect-type" property
7932 		 * (or did not provide a recognized type).
7933 		 *
7934 		 * Note: This will be obsoleted when a single fibre channel
7935 		 * and parallel scsi driver is delivered. In the meantime the
7936 		 * interconnect type will be set to the platform default.If that
7937 		 * type is not parallel SCSI, it means that we should be
7938 		 * assuming "ssd" semantics. However, here this also means that
7939 		 * the FC HBA is not supporting the "interconnect-type" property
7940 		 * like we expect it to, so log this occurrence.
7941 		 */
7942 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7943 		if (!SD_IS_PARALLEL_SCSI(un)) {
7944 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7945 			    "sd_unit_attach: un:0x%p Assuming "
7946 			    "INTERCONNECT_FIBRE\n", un);
7947 		} else {
7948 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7949 			    "sd_unit_attach: un:0x%p Assuming "
7950 			    "INTERCONNECT_PARALLEL\n", un);
7951 			un->un_f_is_fibre = FALSE;
7952 		}
7953 #else
7954 		/*
7955 		 * Note: This source will be implemented when a single fibre
7956 		 * channel and parallel scsi driver is delivered. The default
7957 		 * will be to assume that if a device does not support the
7958 		 * "interconnect-type" property it is a parallel SCSI HBA and
7959 		 * we will set the interconnect type for parallel scsi.
7960 		 */
7961 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7962 		un->un_f_is_fibre = FALSE;
7963 #endif
7964 		break;
7965 	}
7966 
7967 	if (un->un_f_is_fibre == TRUE) {
7968 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7969 			SCSI_VERSION_3) {
7970 			switch (un->un_interconnect_type) {
7971 			case SD_INTERCONNECT_FIBRE:
7972 			case SD_INTERCONNECT_SSA:
7973 				un->un_node_type = DDI_NT_BLOCK_WWN;
7974 				break;
7975 			default:
7976 				break;
7977 			}
7978 		}
7979 	}
7980 
7981 	/*
7982 	 * Initialize the Request Sense command for the target
7983 	 */
7984 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7985 		goto alloc_rqs_failed;
7986 	}
7987 
7988 	/*
7989 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7990 	 * with seperate binary for sd and ssd.
7991 	 *
7992 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7993 	 * The hardcoded values will go away when Sparc uses 1 binary
7994 	 * for sd and ssd.  This hardcoded values need to match
7995 	 * SD_RETRY_COUNT in sddef.h
7996 	 * The value used is base on interconnect type.
7997 	 * fibre = 3, parallel = 5
7998 	 */
7999 #if defined(__i386) || defined(__amd64)
8000 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
8001 #else
8002 	un->un_retry_count = SD_RETRY_COUNT;
8003 #endif
8004 
8005 	/*
8006 	 * Set the per disk retry count to the default number of retries
8007 	 * for disks and CDROMs. This value can be overridden by the
8008 	 * disk property list or an entry in sd.conf.
8009 	 */
8010 	un->un_notready_retry_count =
8011 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
8012 			: DISK_NOT_READY_RETRY_COUNT(un);
8013 
8014 	/*
8015 	 * Set the busy retry count to the default value of un_retry_count.
8016 	 * This can be overridden by entries in sd.conf or the device
8017 	 * config table.
8018 	 */
8019 	un->un_busy_retry_count = un->un_retry_count;
8020 
8021 	/*
8022 	 * Init the reset threshold for retries.  This number determines
8023 	 * how many retries must be performed before a reset can be issued
8024 	 * (for certain error conditions). This can be overridden by entries
8025 	 * in sd.conf or the device config table.
8026 	 */
8027 	un->un_reset_retry_count = (un->un_retry_count / 2);
8028 
8029 	/*
8030 	 * Set the victim_retry_count to the default un_retry_count
8031 	 */
8032 	un->un_victim_retry_count = (2 * un->un_retry_count);
8033 
8034 	/*
8035 	 * Set the reservation release timeout to the default value of
8036 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
8037 	 * device config table.
8038 	 */
8039 	un->un_reserve_release_time = 5;
8040 
8041 	/*
8042 	 * Set up the default maximum transfer size. Note that this may
8043 	 * get updated later in the attach, when setting up default wide
8044 	 * operations for disks.
8045 	 */
8046 #if defined(__i386) || defined(__amd64)
8047 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
8048 #else
8049 	un->un_max_xfer_size = (uint_t)maxphys;
8050 #endif
8051 
8052 	/*
8053 	 * Get "allow bus device reset" property (defaults to "enabled" if
8054 	 * the property was not defined). This is to disable bus resets for
8055 	 * certain kinds of error recovery. Note: In the future when a run-time
8056 	 * fibre check is available the soft state flag should default to
8057 	 * enabled.
8058 	 */
8059 	if (un->un_f_is_fibre == TRUE) {
8060 		un->un_f_allow_bus_device_reset = TRUE;
8061 	} else {
8062 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8063 			"allow-bus-device-reset", 1) != 0) {
8064 			un->un_f_allow_bus_device_reset = TRUE;
8065 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8066 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
8067 				un);
8068 		} else {
8069 			un->un_f_allow_bus_device_reset = FALSE;
8070 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8071 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
8072 				un);
8073 		}
8074 	}
8075 
8076 	/*
8077 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
8078 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
8079 	 *
8080 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
8081 	 * property. The new "variant" property with a value of "atapi" has been
8082 	 * introduced so that future 'variants' of standard SCSI behavior (like
8083 	 * atapi) could be specified by the underlying HBA drivers by supplying
8084 	 * a new value for the "variant" property, instead of having to define a
8085 	 * new property.
8086 	 */
8087 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
8088 		un->un_f_cfg_is_atapi = TRUE;
8089 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8090 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
8091 	}
8092 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
8093 	    &variantp) == DDI_PROP_SUCCESS) {
8094 		if (strcmp(variantp, "atapi") == 0) {
8095 			un->un_f_cfg_is_atapi = TRUE;
8096 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8097 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
8098 		}
8099 		ddi_prop_free(variantp);
8100 	}
8101 
8102 	un->un_cmd_timeout	= SD_IO_TIME;
8103 
8104 	/* Info on current states, statuses, etc. (Updated frequently) */
8105 	un->un_state		= SD_STATE_NORMAL;
8106 	un->un_last_state	= SD_STATE_NORMAL;
8107 
8108 	/* Control & status info for command throttling */
8109 	un->un_throttle		= sd_max_throttle;
8110 	un->un_saved_throttle	= sd_max_throttle;
8111 	un->un_min_throttle	= sd_min_throttle;
8112 
8113 	if (un->un_f_is_fibre == TRUE) {
8114 		un->un_f_use_adaptive_throttle = TRUE;
8115 	} else {
8116 		un->un_f_use_adaptive_throttle = FALSE;
8117 	}
8118 
8119 	/* Removable media support. */
8120 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
8121 	un->un_mediastate		= DKIO_NONE;
8122 	un->un_specified_mediastate	= DKIO_NONE;
8123 
8124 	/* CVs for suspend/resume (PM or DR) */
8125 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
8126 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
8127 
8128 	/* Power management support. */
8129 	un->un_power_level = SD_SPINDLE_UNINIT;
8130 
8131 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8132 	un->un_f_wcc_inprog = 0;
8133 
8134 	/*
8135 	 * The open/close semaphore is used to serialize threads executing
8136 	 * in the driver's open & close entry point routines for a given
8137 	 * instance.
8138 	 */
8139 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8140 
8141 	/*
8142 	 * The conf file entry and softstate variable is a forceful override,
8143 	 * meaning a non-zero value must be entered to change the default.
8144 	 */
8145 	un->un_f_disksort_disabled = FALSE;
8146 
8147 	/*
8148 	 * Retrieve the properties from the static driver table or the driver
8149 	 * configuration file (.conf) for this unit and update the soft state
8150 	 * for the device as needed for the indicated properties.
8151 	 * Note: the property configuration needs to occur here as some of the
8152 	 * following routines may have dependancies on soft state flags set
8153 	 * as part of the driver property configuration.
8154 	 */
8155 	sd_read_unit_properties(un);
8156 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8157 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8158 
8159 	/*
8160 	 * Only if a device has "hotpluggable" property, it is
8161 	 * treated as hotpluggable device. Otherwise, it is
8162 	 * regarded as non-hotpluggable one.
8163 	 */
8164 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8165 	    -1) != -1) {
8166 		un->un_f_is_hotpluggable = TRUE;
8167 	}
8168 
8169 	/*
8170 	 * set unit's attributes(flags) according to "hotpluggable" and
8171 	 * RMB bit in INQUIRY data.
8172 	 */
8173 	sd_set_unit_attributes(un, devi);
8174 
8175 	/*
8176 	 * By default, we mark the capacity, lbasize, and geometry
8177 	 * as invalid. Only if we successfully read a valid capacity
8178 	 * will we update the un_blockcount and un_tgt_blocksize with the
8179 	 * valid values (the geometry will be validated later).
8180 	 */
8181 	un->un_f_blockcount_is_valid	= FALSE;
8182 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8183 	un->un_f_geometry_is_valid	= FALSE;
8184 
8185 	/*
8186 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8187 	 * otherwise.
8188 	 */
8189 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8190 	un->un_blockcount = 0;
8191 
8192 	/*
8193 	 * Set up the per-instance info needed to determine the correct
8194 	 * CDBs and other info for issuing commands to the target.
8195 	 */
8196 	sd_init_cdb_limits(un);
8197 
8198 	/*
8199 	 * Set up the IO chains to use, based upon the target type.
8200 	 */
8201 	if (un->un_f_non_devbsize_supported) {
8202 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8203 	} else {
8204 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8205 	}
8206 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8207 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8208 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8209 
8210 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8211 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8212 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8213 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8214 
8215 
8216 	if (ISCD(un)) {
8217 		un->un_additional_codes = sd_additional_codes;
8218 	} else {
8219 		un->un_additional_codes = NULL;
8220 	}
8221 
8222 	/*
8223 	 * Create the kstats here so they can be available for attach-time
8224 	 * routines that send commands to the unit (either polled or via
8225 	 * sd_send_scsi_cmd).
8226 	 *
8227 	 * Note: This is a critical sequence that needs to be maintained:
8228 	 *	1) Instantiate the kstats here, before any routines using the
8229 	 *	   iopath (i.e. sd_send_scsi_cmd).
8230 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8231 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8232 	 *	   sd_register_devid(), and sd_cache_control().
8233 	 */
8234 
8235 	un->un_stats = kstat_create(sd_label, instance,
8236 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8237 	if (un->un_stats != NULL) {
8238 		un->un_stats->ks_lock = SD_MUTEX(un);
8239 		kstat_install(un->un_stats);
8240 	}
8241 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8242 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8243 
8244 	sd_create_errstats(un, instance);
8245 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8246 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8247 
8248 	/*
8249 	 * The following if/else code was relocated here from below as part
8250 	 * of the fix for bug (4430280). However with the default setup added
8251 	 * on entry to this routine, it's no longer absolutely necessary for
8252 	 * this to be before the call to sd_spin_up_unit.
8253 	 */
8254 	if (SD_IS_PARALLEL_SCSI(un)) {
8255 		/*
8256 		 * If SCSI-2 tagged queueing is supported by the target
8257 		 * and by the host adapter then we will enable it.
8258 		 */
8259 		un->un_tagflags = 0;
8260 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8261 		    (devp->sd_inq->inq_cmdque) &&
8262 		    (un->un_f_arq_enabled == TRUE)) {
8263 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8264 			    1, 1) == 1) {
8265 				un->un_tagflags = FLAG_STAG;
8266 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8267 				    "sd_unit_attach: un:0x%p tag queueing "
8268 				    "enabled\n", un);
8269 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8270 			    "untagged-qing", 0) == 1) {
8271 				un->un_f_opt_queueing = TRUE;
8272 				un->un_saved_throttle = un->un_throttle =
8273 				    min(un->un_throttle, 3);
8274 			} else {
8275 				un->un_f_opt_queueing = FALSE;
8276 				un->un_saved_throttle = un->un_throttle = 1;
8277 			}
8278 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8279 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8280 			/* The Host Adapter supports internal queueing. */
8281 			un->un_f_opt_queueing = TRUE;
8282 			un->un_saved_throttle = un->un_throttle =
8283 			    min(un->un_throttle, 3);
8284 		} else {
8285 			un->un_f_opt_queueing = FALSE;
8286 			un->un_saved_throttle = un->un_throttle = 1;
8287 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8288 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8289 		}
8290 
8291 
8292 		/* Setup or tear down default wide operations for disks */
8293 
8294 		/*
8295 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8296 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8297 		 * system and be set to different values. In the future this
8298 		 * code may need to be updated when the ssd module is
8299 		 * obsoleted and removed from the system. (4299588)
8300 		 */
8301 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8302 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8303 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8304 			    1, 1) == 1) {
8305 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8306 				    "sd_unit_attach: un:0x%p Wide Transfer "
8307 				    "enabled\n", un);
8308 			}
8309 
8310 			/*
8311 			 * If tagged queuing has also been enabled, then
8312 			 * enable large xfers
8313 			 */
8314 			if (un->un_saved_throttle == sd_max_throttle) {
8315 				un->un_max_xfer_size =
8316 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8317 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8318 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8319 				    "sd_unit_attach: un:0x%p max transfer "
8320 				    "size=0x%x\n", un, un->un_max_xfer_size);
8321 			}
8322 		} else {
8323 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8324 			    0, 1) == 1) {
8325 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8326 				    "sd_unit_attach: un:0x%p "
8327 				    "Wide Transfer disabled\n", un);
8328 			}
8329 		}
8330 	} else {
8331 		un->un_tagflags = FLAG_STAG;
8332 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8333 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8334 	}
8335 
8336 	/*
8337 	 * If this target supports LUN reset, try to enable it.
8338 	 */
8339 	if (un->un_f_lun_reset_enabled) {
8340 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8341 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8342 			    "un:0x%p lun_reset capability set\n", un);
8343 		} else {
8344 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8345 			    "un:0x%p lun-reset capability not set\n", un);
8346 		}
8347 	}
8348 
8349 	/*
8350 	 * At this point in the attach, we have enough info in the
8351 	 * soft state to be able to issue commands to the target.
8352 	 *
8353 	 * All command paths used below MUST issue their commands as
8354 	 * SD_PATH_DIRECT. This is important as intermediate layers
8355 	 * are not all initialized yet (such as PM).
8356 	 */
8357 
8358 	/*
8359 	 * Send a TEST UNIT READY command to the device. This should clear
8360 	 * any outstanding UNIT ATTENTION that may be present.
8361 	 *
8362 	 * Note: Don't check for success, just track if there is a reservation,
8363 	 * this is a throw away command to clear any unit attentions.
8364 	 *
8365 	 * Note: This MUST be the first command issued to the target during
8366 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8367 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8368 	 * with attempts at spinning up a device with no media.
8369 	 */
8370 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8371 		reservation_flag = SD_TARGET_IS_RESERVED;
8372 	}
8373 
8374 	/*
8375 	 * If the device is NOT a removable media device, attempt to spin
8376 	 * it up (using the START_STOP_UNIT command) and read its capacity
8377 	 * (using the READ CAPACITY command).  Note, however, that either
8378 	 * of these could fail and in some cases we would continue with
8379 	 * the attach despite the failure (see below).
8380 	 */
8381 	if (un->un_f_descr_format_supported) {
8382 		switch (sd_spin_up_unit(un)) {
8383 		case 0:
8384 			/*
8385 			 * Spin-up was successful; now try to read the
8386 			 * capacity.  If successful then save the results
8387 			 * and mark the capacity & lbasize as valid.
8388 			 */
8389 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8390 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8391 
8392 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8393 			    &lbasize, SD_PATH_DIRECT)) {
8394 			case 0: {
8395 				if (capacity > DK_MAX_BLOCKS) {
8396 #ifdef _LP64
8397 					if (capacity + 1 >
8398 					    SD_GROUP1_MAX_ADDRESS) {
8399 						/*
8400 						 * Enable descriptor format
8401 						 * sense data so that we can
8402 						 * get 64 bit sense data
8403 						 * fields.
8404 						 */
8405 						sd_enable_descr_sense(un);
8406 					}
8407 #else
8408 					/* 32-bit kernels can't handle this */
8409 					scsi_log(SD_DEVINFO(un),
8410 					    sd_label, CE_WARN,
8411 					    "disk has %llu blocks, which "
8412 					    "is too large for a 32-bit "
8413 					    "kernel", capacity);
8414 
8415 #if defined(__i386) || defined(__amd64)
8416 					/*
8417 					 * Refer to comments related to off-by-1
8418 					 * at the header of this file.
8419 					 * 1TB disk was treated as (1T - 512)B
8420 					 * in the past, so that it might has
8421 					 * valid VTOC and solaris partitions,
8422 					 * we have to allow it to continue to
8423 					 * work.
8424 					 */
8425 					if (capacity -1 > DK_MAX_BLOCKS)
8426 #endif
8427 					goto spinup_failed;
8428 #endif
8429 				}
8430 
8431 				/*
8432 				 * Here it's not necessary to check the case:
8433 				 * the capacity of the device is bigger than
8434 				 * what the max hba cdb can support. Because
8435 				 * sd_send_scsi_READ_CAPACITY will retrieve
8436 				 * the capacity by sending USCSI command, which
8437 				 * is constrained by the max hba cdb. Actually,
8438 				 * sd_send_scsi_READ_CAPACITY will return
8439 				 * EINVAL when using bigger cdb than required
8440 				 * cdb length. Will handle this case in
8441 				 * "case EINVAL".
8442 				 */
8443 
8444 				/*
8445 				 * The following relies on
8446 				 * sd_send_scsi_READ_CAPACITY never
8447 				 * returning 0 for capacity and/or lbasize.
8448 				 */
8449 				sd_update_block_info(un, lbasize, capacity);
8450 
8451 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8452 				    "sd_unit_attach: un:0x%p capacity = %ld "
8453 				    "blocks; lbasize= %ld.\n", un,
8454 				    un->un_blockcount, un->un_tgt_blocksize);
8455 
8456 				break;
8457 			}
8458 			case EINVAL:
8459 				/*
8460 				 * In the case where the max-cdb-length property
8461 				 * is smaller than the required CDB length for
8462 				 * a SCSI device, a target driver can fail to
8463 				 * attach to that device.
8464 				 */
8465 				scsi_log(SD_DEVINFO(un),
8466 				    sd_label, CE_WARN,
8467 				    "disk capacity is too large "
8468 				    "for current cdb length");
8469 				goto spinup_failed;
8470 			case EACCES:
8471 				/*
8472 				 * Should never get here if the spin-up
8473 				 * succeeded, but code it in anyway.
8474 				 * From here, just continue with the attach...
8475 				 */
8476 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8477 				    "sd_unit_attach: un:0x%p "
8478 				    "sd_send_scsi_READ_CAPACITY "
8479 				    "returned reservation conflict\n", un);
8480 				reservation_flag = SD_TARGET_IS_RESERVED;
8481 				break;
8482 			default:
8483 				/*
8484 				 * Likewise, should never get here if the
8485 				 * spin-up succeeded. Just continue with
8486 				 * the attach...
8487 				 */
8488 				break;
8489 			}
8490 			break;
8491 		case EACCES:
8492 			/*
8493 			 * Device is reserved by another host.  In this case
8494 			 * we could not spin it up or read the capacity, but
8495 			 * we continue with the attach anyway.
8496 			 */
8497 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8498 			    "sd_unit_attach: un:0x%p spin-up reservation "
8499 			    "conflict.\n", un);
8500 			reservation_flag = SD_TARGET_IS_RESERVED;
8501 			break;
8502 		default:
8503 			/* Fail the attach if the spin-up failed. */
8504 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8505 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8506 			goto spinup_failed;
8507 		}
8508 	}
8509 
8510 	/*
8511 	 * Check to see if this is a MMC drive
8512 	 */
8513 	if (ISCD(un)) {
8514 		sd_set_mmc_caps(un);
8515 	}
8516 
8517 	/*
8518 	 * Create the minor nodes for the device.
8519 	 * Note: If we want to support fdisk on both sparc and intel, this will
8520 	 * have to separate out the notion that VTOC8 is always sparc, and
8521 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8522 	 * type will have to be determined at run-time, and the fdisk
8523 	 * partitioning will have to have been read & set up before we
8524 	 * create the minor nodes. (any other inits (such as kstats) that
8525 	 * also ought to be done before creating the minor nodes?) (Doesn't
8526 	 * setting up the minor nodes kind of imply that we're ready to
8527 	 * handle an open from userland?)
8528 	 */
8529 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8530 		goto create_minor_nodes_failed;
8531 	}
8532 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8533 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8534 
8535 	/*
8536 	 * Add a zero-length attribute to tell the world we support
8537 	 * kernel ioctls (for layered drivers)
8538 	 */
8539 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8540 	    DDI_KERNEL_IOCTL, NULL, 0);
8541 
8542 	/*
8543 	 * Add a boolean property to tell the world we support
8544 	 * the B_FAILFAST flag (for layered drivers)
8545 	 */
8546 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8547 	    "ddi-failfast-supported", NULL, 0);
8548 
8549 	/*
8550 	 * Initialize power management
8551 	 */
8552 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8553 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8554 	sd_setup_pm(un, devi);
8555 	if (un->un_f_pm_is_enabled == FALSE) {
8556 		/*
8557 		 * For performance, point to a jump table that does
8558 		 * not include pm.
8559 		 * The direct and priority chains don't change with PM.
8560 		 *
8561 		 * Note: this is currently done based on individual device
8562 		 * capabilities. When an interface for determining system
8563 		 * power enabled state becomes available, or when additional
8564 		 * layers are added to the command chain, these values will
8565 		 * have to be re-evaluated for correctness.
8566 		 */
8567 		if (un->un_f_non_devbsize_supported) {
8568 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8569 		} else {
8570 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8571 		}
8572 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8573 	}
8574 
8575 	/*
8576 	 * This property is set to 0 by HA software to avoid retries
8577 	 * on a reserved disk. (The preferred property name is
8578 	 * "retry-on-reservation-conflict") (1189689)
8579 	 *
8580 	 * Note: The use of a global here can have unintended consequences. A
8581 	 * per instance variable is preferrable to match the capabilities of
8582 	 * different underlying hba's (4402600)
8583 	 */
8584 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8585 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8586 	    sd_retry_on_reservation_conflict);
8587 	if (sd_retry_on_reservation_conflict != 0) {
8588 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8589 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8590 		    sd_retry_on_reservation_conflict);
8591 	}
8592 
8593 	/* Set up options for QFULL handling. */
8594 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8595 	    "qfull-retries", -1)) != -1) {
8596 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8597 		    rval, 1);
8598 	}
8599 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8600 	    "qfull-retry-interval", -1)) != -1) {
8601 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8602 		    rval, 1);
8603 	}
8604 
8605 	/*
8606 	 * This just prints a message that announces the existence of the
8607 	 * device. The message is always printed in the system logfile, but
8608 	 * only appears on the console if the system is booted with the
8609 	 * -v (verbose) argument.
8610 	 */
8611 	ddi_report_dev(devi);
8612 
8613 	/*
8614 	 * The framework calls driver attach routines single-threaded
8615 	 * for a given instance.  However we still acquire SD_MUTEX here
8616 	 * because this required for calling the sd_validate_geometry()
8617 	 * and sd_register_devid() functions.
8618 	 */
8619 	mutex_enter(SD_MUTEX(un));
8620 	un->un_f_geometry_is_valid = FALSE;
8621 	un->un_mediastate = DKIO_NONE;
8622 	un->un_reserved = -1;
8623 
8624 	/*
8625 	 * Read and validate the device's geometry (ie, disk label)
8626 	 * A new unformatted drive will not have a valid geometry, but
8627 	 * the driver needs to successfully attach to this device so
8628 	 * the drive can be formatted via ioctls.
8629 	 */
8630 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8631 	    ENOTSUP)) &&
8632 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8633 		/*
8634 		 * We found a small disk with an EFI label on it;
8635 		 * we need to fix up the minor nodes accordingly.
8636 		 */
8637 		ddi_remove_minor_node(devi, "h");
8638 		ddi_remove_minor_node(devi, "h,raw");
8639 		(void) ddi_create_minor_node(devi, "wd",
8640 		    S_IFBLK,
8641 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8642 		    un->un_node_type, NULL);
8643 		(void) ddi_create_minor_node(devi, "wd,raw",
8644 		    S_IFCHR,
8645 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8646 		    un->un_node_type, NULL);
8647 	}
8648 #if defined(__i386) || defined(__amd64)
8649 	else if (un->un_f_capacity_adjusted == 1) {
8650 		/*
8651 		 * Refer to comments related to off-by-1 at the
8652 		 * header of this file.
8653 		 * Adjust minor node for 1TB disk.
8654 		 */
8655 		ddi_remove_minor_node(devi, "wd");
8656 		ddi_remove_minor_node(devi, "wd,raw");
8657 		(void) ddi_create_minor_node(devi, "h",
8658 		    S_IFBLK,
8659 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8660 		    un->un_node_type, NULL);
8661 		(void) ddi_create_minor_node(devi, "h,raw",
8662 		    S_IFCHR,
8663 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8664 		    un->un_node_type, NULL);
8665 	}
8666 #endif
8667 	/*
8668 	 * Read and initialize the devid for the unit.
8669 	 */
8670 	ASSERT(un->un_errstats != NULL);
8671 	if (un->un_f_devid_supported) {
8672 		sd_register_devid(un, devi, reservation_flag);
8673 	}
8674 	mutex_exit(SD_MUTEX(un));
8675 
8676 #if (defined(__fibre))
8677 	/*
8678 	 * Register callbacks for fibre only.  You can't do this soley
8679 	 * on the basis of the devid_type because this is hba specific.
8680 	 * We need to query our hba capabilities to find out whether to
8681 	 * register or not.
8682 	 */
8683 	if (un->un_f_is_fibre) {
8684 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8685 		sd_init_event_callbacks(un);
8686 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8687 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8688 	    }
8689 	}
8690 #endif
8691 
8692 	if (un->un_f_opt_disable_cache == TRUE) {
8693 		/*
8694 		 * Disable both read cache and write cache.  This is
8695 		 * the historic behavior of the keywords in the config file.
8696 		 */
8697 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8698 		    0) {
8699 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8700 			    "sd_unit_attach: un:0x%p Could not disable "
8701 			    "caching", un);
8702 			goto devid_failed;
8703 		}
8704 	}
8705 
8706 	/*
8707 	 * Check the value of the WCE bit now and
8708 	 * set un_f_write_cache_enabled accordingly.
8709 	 */
8710 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8711 	mutex_enter(SD_MUTEX(un));
8712 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8713 	mutex_exit(SD_MUTEX(un));
8714 
8715 	/*
8716 	 * Set the pstat and error stat values here, so data obtained during the
8717 	 * previous attach-time routines is available.
8718 	 *
8719 	 * Note: This is a critical sequence that needs to be maintained:
8720 	 *	1) Instantiate the kstats before any routines using the iopath
8721 	 *	   (i.e. sd_send_scsi_cmd).
8722 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8723 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8724 	 *	   sd_register_devid(), and sd_cache_control().
8725 	 */
8726 	if (un->un_f_pkstats_enabled) {
8727 		sd_set_pstats(un);
8728 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8729 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8730 	}
8731 
8732 	sd_set_errstats(un);
8733 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8734 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8735 
8736 	/*
8737 	 * Find out what type of reservation this disk supports.
8738 	 */
8739 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8740 	case 0:
8741 		/*
8742 		 * SCSI-3 reservations are supported.
8743 		 */
8744 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8745 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8746 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8747 		break;
8748 	case ENOTSUP:
8749 		/*
8750 		 * The PERSISTENT RESERVE IN command would not be recognized by
8751 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8752 		 */
8753 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8754 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8755 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8756 		break;
8757 	default:
8758 		/*
8759 		 * default to SCSI-3 reservations
8760 		 */
8761 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8762 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8763 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8764 		break;
8765 	}
8766 
8767 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8768 	    "sd_unit_attach: un:0x%p exit success\n", un);
8769 
8770 	return (DDI_SUCCESS);
8771 
8772 	/*
8773 	 * An error occurred during the attach; clean up & return failure.
8774 	 */
8775 
8776 devid_failed:
8777 
8778 setup_pm_failed:
8779 	ddi_remove_minor_node(devi, NULL);
8780 
8781 create_minor_nodes_failed:
8782 	/*
8783 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8784 	 */
8785 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8786 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8787 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8788 
8789 	if (un->un_f_is_fibre == FALSE) {
8790 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8791 	}
8792 
8793 spinup_failed:
8794 
8795 	mutex_enter(SD_MUTEX(un));
8796 
8797 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8798 	if (un->un_direct_priority_timeid != NULL) {
8799 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8800 		un->un_direct_priority_timeid = NULL;
8801 		mutex_exit(SD_MUTEX(un));
8802 		(void) untimeout(temp_id);
8803 		mutex_enter(SD_MUTEX(un));
8804 	}
8805 
8806 	/* Cancel any pending start/stop timeouts */
8807 	if (un->un_startstop_timeid != NULL) {
8808 		timeout_id_t temp_id = un->un_startstop_timeid;
8809 		un->un_startstop_timeid = NULL;
8810 		mutex_exit(SD_MUTEX(un));
8811 		(void) untimeout(temp_id);
8812 		mutex_enter(SD_MUTEX(un));
8813 	}
8814 
8815 	/* Cancel any pending reset-throttle timeouts */
8816 	if (un->un_reset_throttle_timeid != NULL) {
8817 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8818 		un->un_reset_throttle_timeid = NULL;
8819 		mutex_exit(SD_MUTEX(un));
8820 		(void) untimeout(temp_id);
8821 		mutex_enter(SD_MUTEX(un));
8822 	}
8823 
8824 	/* Cancel any pending retry timeouts */
8825 	if (un->un_retry_timeid != NULL) {
8826 		timeout_id_t temp_id = un->un_retry_timeid;
8827 		un->un_retry_timeid = NULL;
8828 		mutex_exit(SD_MUTEX(un));
8829 		(void) untimeout(temp_id);
8830 		mutex_enter(SD_MUTEX(un));
8831 	}
8832 
8833 	/* Cancel any pending delayed cv broadcast timeouts */
8834 	if (un->un_dcvb_timeid != NULL) {
8835 		timeout_id_t temp_id = un->un_dcvb_timeid;
8836 		un->un_dcvb_timeid = NULL;
8837 		mutex_exit(SD_MUTEX(un));
8838 		(void) untimeout(temp_id);
8839 		mutex_enter(SD_MUTEX(un));
8840 	}
8841 
8842 	mutex_exit(SD_MUTEX(un));
8843 
8844 	/* There should not be any in-progress I/O so ASSERT this check */
8845 	ASSERT(un->un_ncmds_in_transport == 0);
8846 	ASSERT(un->un_ncmds_in_driver == 0);
8847 
8848 	/* Do not free the softstate if the callback routine is active */
8849 	sd_sync_with_callback(un);
8850 
8851 	/*
8852 	 * Partition stats apparently are not used with removables. These would
8853 	 * not have been created during attach, so no need to clean them up...
8854 	 */
8855 	if (un->un_stats != NULL) {
8856 		kstat_delete(un->un_stats);
8857 		un->un_stats = NULL;
8858 	}
8859 	if (un->un_errstats != NULL) {
8860 		kstat_delete(un->un_errstats);
8861 		un->un_errstats = NULL;
8862 	}
8863 
8864 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8865 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8866 
8867 	ddi_prop_remove_all(devi);
8868 	sema_destroy(&un->un_semoclose);
8869 	cv_destroy(&un->un_state_cv);
8870 
8871 getrbuf_failed:
8872 
8873 	sd_free_rqs(un);
8874 
8875 alloc_rqs_failed:
8876 
8877 	devp->sd_private = NULL;
8878 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8879 
8880 get_softstate_failed:
8881 	/*
8882 	 * Note: the man pages are unclear as to whether or not doing a
8883 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8884 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8885 	 * ddi_get_soft_state() fails.  The implication seems to be
8886 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8887 	 */
8888 	ddi_soft_state_free(sd_state, instance);
8889 
8890 probe_failed:
8891 	scsi_unprobe(devp);
8892 #ifdef SDDEBUG
8893 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8894 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8895 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8896 		    (void *)un);
8897 	}
8898 #endif
8899 	return (DDI_FAILURE);
8900 }
8901 
8902 
8903 /*
8904  *    Function: sd_unit_detach
8905  *
8906  * Description: Performs DDI_DETACH processing for sddetach().
8907  *
8908  * Return Code: DDI_SUCCESS
8909  *		DDI_FAILURE
8910  *
8911  *     Context: Kernel thread context
8912  */
8913 
8914 static int
8915 sd_unit_detach(dev_info_t *devi)
8916 {
8917 	struct scsi_device	*devp;
8918 	struct sd_lun		*un;
8919 	int			i;
8920 	dev_t			dev;
8921 	int			instance = ddi_get_instance(devi);
8922 
8923 	mutex_enter(&sd_detach_mutex);
8924 
8925 	/*
8926 	 * Fail the detach for any of the following:
8927 	 *  - Unable to get the sd_lun struct for the instance
8928 	 *  - A layered driver has an outstanding open on the instance
8929 	 *  - Another thread is already detaching this instance
8930 	 *  - Another thread is currently performing an open
8931 	 */
8932 	devp = ddi_get_driver_private(devi);
8933 	if ((devp == NULL) ||
8934 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8935 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8936 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8937 		mutex_exit(&sd_detach_mutex);
8938 		return (DDI_FAILURE);
8939 	}
8940 
8941 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8942 
8943 	/*
8944 	 * Mark this instance as currently in a detach, to inhibit any
8945 	 * opens from a layered driver.
8946 	 */
8947 	un->un_detach_count++;
8948 	mutex_exit(&sd_detach_mutex);
8949 
8950 	dev = sd_make_device(SD_DEVINFO(un));
8951 
8952 	_NOTE(COMPETING_THREADS_NOW);
8953 
8954 	mutex_enter(SD_MUTEX(un));
8955 
8956 	/*
8957 	 * Fail the detach if there are any outstanding layered
8958 	 * opens on this device.
8959 	 */
8960 	for (i = 0; i < NDKMAP; i++) {
8961 		if (un->un_ocmap.lyropen[i] != 0) {
8962 			goto err_notclosed;
8963 		}
8964 	}
8965 
8966 	/*
8967 	 * Verify there are NO outstanding commands issued to this device.
8968 	 * ie, un_ncmds_in_transport == 0.
8969 	 * It's possible to have outstanding commands through the physio
8970 	 * code path, even though everything's closed.
8971 	 */
8972 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8973 	    (un->un_direct_priority_timeid != NULL) ||
8974 	    (un->un_state == SD_STATE_RWAIT)) {
8975 		mutex_exit(SD_MUTEX(un));
8976 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8977 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8978 		goto err_stillbusy;
8979 	}
8980 
8981 	/*
8982 	 * If we have the device reserved, release the reservation.
8983 	 */
8984 	if ((un->un_resvd_status & SD_RESERVE) &&
8985 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8986 		mutex_exit(SD_MUTEX(un));
8987 		/*
8988 		 * Note: sd_reserve_release sends a command to the device
8989 		 * via the sd_ioctlcmd() path, and can sleep.
8990 		 */
8991 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8992 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8993 			    "sd_dr_detach: Cannot release reservation \n");
8994 		}
8995 	} else {
8996 		mutex_exit(SD_MUTEX(un));
8997 	}
8998 
8999 	/*
9000 	 * Untimeout any reserve recover, throttle reset, restart unit
9001 	 * and delayed broadcast timeout threads. Protect the timeout pointer
9002 	 * from getting nulled by their callback functions.
9003 	 */
9004 	mutex_enter(SD_MUTEX(un));
9005 	if (un->un_resvd_timeid != NULL) {
9006 		timeout_id_t temp_id = un->un_resvd_timeid;
9007 		un->un_resvd_timeid = NULL;
9008 		mutex_exit(SD_MUTEX(un));
9009 		(void) untimeout(temp_id);
9010 		mutex_enter(SD_MUTEX(un));
9011 	}
9012 
9013 	if (un->un_reset_throttle_timeid != NULL) {
9014 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9015 		un->un_reset_throttle_timeid = NULL;
9016 		mutex_exit(SD_MUTEX(un));
9017 		(void) untimeout(temp_id);
9018 		mutex_enter(SD_MUTEX(un));
9019 	}
9020 
9021 	if (un->un_startstop_timeid != NULL) {
9022 		timeout_id_t temp_id = un->un_startstop_timeid;
9023 		un->un_startstop_timeid = NULL;
9024 		mutex_exit(SD_MUTEX(un));
9025 		(void) untimeout(temp_id);
9026 		mutex_enter(SD_MUTEX(un));
9027 	}
9028 
9029 	if (un->un_dcvb_timeid != NULL) {
9030 		timeout_id_t temp_id = un->un_dcvb_timeid;
9031 		un->un_dcvb_timeid = NULL;
9032 		mutex_exit(SD_MUTEX(un));
9033 		(void) untimeout(temp_id);
9034 	} else {
9035 		mutex_exit(SD_MUTEX(un));
9036 	}
9037 
9038 	/* Remove any pending reservation reclaim requests for this device */
9039 	sd_rmv_resv_reclaim_req(dev);
9040 
9041 	mutex_enter(SD_MUTEX(un));
9042 
9043 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
9044 	if (un->un_direct_priority_timeid != NULL) {
9045 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9046 		un->un_direct_priority_timeid = NULL;
9047 		mutex_exit(SD_MUTEX(un));
9048 		(void) untimeout(temp_id);
9049 		mutex_enter(SD_MUTEX(un));
9050 	}
9051 
9052 	/* Cancel any active multi-host disk watch thread requests */
9053 	if (un->un_mhd_token != NULL) {
9054 		mutex_exit(SD_MUTEX(un));
9055 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
9056 		if (scsi_watch_request_terminate(un->un_mhd_token,
9057 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9058 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9059 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
9060 			/*
9061 			 * Note: We are returning here after having removed
9062 			 * some driver timeouts above. This is consistent with
9063 			 * the legacy implementation but perhaps the watch
9064 			 * terminate call should be made with the wait flag set.
9065 			 */
9066 			goto err_stillbusy;
9067 		}
9068 		mutex_enter(SD_MUTEX(un));
9069 		un->un_mhd_token = NULL;
9070 	}
9071 
9072 	if (un->un_swr_token != NULL) {
9073 		mutex_exit(SD_MUTEX(un));
9074 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
9075 		if (scsi_watch_request_terminate(un->un_swr_token,
9076 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9077 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9078 			    "sd_dr_detach: Cannot cancel swr watch request\n");
9079 			/*
9080 			 * Note: We are returning here after having removed
9081 			 * some driver timeouts above. This is consistent with
9082 			 * the legacy implementation but perhaps the watch
9083 			 * terminate call should be made with the wait flag set.
9084 			 */
9085 			goto err_stillbusy;
9086 		}
9087 		mutex_enter(SD_MUTEX(un));
9088 		un->un_swr_token = NULL;
9089 	}
9090 
9091 	mutex_exit(SD_MUTEX(un));
9092 
9093 	/*
9094 	 * Clear any scsi_reset_notifies. We clear the reset notifies
9095 	 * if we have not registered one.
9096 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
9097 	 */
9098 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
9099 	    sd_mhd_reset_notify_cb, (caddr_t)un);
9100 
9101 	/*
9102 	 * protect the timeout pointers from getting nulled by
9103 	 * their callback functions during the cancellation process.
9104 	 * In such a scenario untimeout can be invoked with a null value.
9105 	 */
9106 	_NOTE(NO_COMPETING_THREADS_NOW);
9107 
9108 	mutex_enter(&un->un_pm_mutex);
9109 	if (un->un_pm_idle_timeid != NULL) {
9110 		timeout_id_t temp_id = un->un_pm_idle_timeid;
9111 		un->un_pm_idle_timeid = NULL;
9112 		mutex_exit(&un->un_pm_mutex);
9113 
9114 		/*
9115 		 * Timeout is active; cancel it.
9116 		 * Note that it'll never be active on a device
9117 		 * that does not support PM therefore we don't
9118 		 * have to check before calling pm_idle_component.
9119 		 */
9120 		(void) untimeout(temp_id);
9121 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9122 		mutex_enter(&un->un_pm_mutex);
9123 	}
9124 
9125 	/*
9126 	 * Check whether there is already a timeout scheduled for power
9127 	 * management. If yes then don't lower the power here, that's.
9128 	 * the timeout handler's job.
9129 	 */
9130 	if (un->un_pm_timeid != NULL) {
9131 		timeout_id_t temp_id = un->un_pm_timeid;
9132 		un->un_pm_timeid = NULL;
9133 		mutex_exit(&un->un_pm_mutex);
9134 		/*
9135 		 * Timeout is active; cancel it.
9136 		 * Note that it'll never be active on a device
9137 		 * that does not support PM therefore we don't
9138 		 * have to check before calling pm_idle_component.
9139 		 */
9140 		(void) untimeout(temp_id);
9141 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9142 
9143 	} else {
9144 		mutex_exit(&un->un_pm_mutex);
9145 		if ((un->un_f_pm_is_enabled == TRUE) &&
9146 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
9147 		    DDI_SUCCESS)) {
9148 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9149 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
9150 			/*
9151 			 * Fix for bug: 4297749, item # 13
9152 			 * The above test now includes a check to see if PM is
9153 			 * supported by this device before call
9154 			 * pm_lower_power().
9155 			 * Note, the following is not dead code. The call to
9156 			 * pm_lower_power above will generate a call back into
9157 			 * our sdpower routine which might result in a timeout
9158 			 * handler getting activated. Therefore the following
9159 			 * code is valid and necessary.
9160 			 */
9161 			mutex_enter(&un->un_pm_mutex);
9162 			if (un->un_pm_timeid != NULL) {
9163 				timeout_id_t temp_id = un->un_pm_timeid;
9164 				un->un_pm_timeid = NULL;
9165 				mutex_exit(&un->un_pm_mutex);
9166 				(void) untimeout(temp_id);
9167 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9168 			} else {
9169 				mutex_exit(&un->un_pm_mutex);
9170 			}
9171 		}
9172 	}
9173 
9174 	/*
9175 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9176 	 * Relocated here from above to be after the call to
9177 	 * pm_lower_power, which was getting errors.
9178 	 */
9179 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9180 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9181 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9182 
9183 	if (un->un_f_is_fibre == FALSE) {
9184 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9185 	}
9186 
9187 	/*
9188 	 * Remove any event callbacks, fibre only
9189 	 */
9190 	if (un->un_f_is_fibre == TRUE) {
9191 		if ((un->un_insert_event != NULL) &&
9192 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9193 				DDI_SUCCESS)) {
9194 			/*
9195 			 * Note: We are returning here after having done
9196 			 * substantial cleanup above. This is consistent
9197 			 * with the legacy implementation but this may not
9198 			 * be the right thing to do.
9199 			 */
9200 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9201 				"sd_dr_detach: Cannot cancel insert event\n");
9202 			goto err_remove_event;
9203 		}
9204 		un->un_insert_event = NULL;
9205 
9206 		if ((un->un_remove_event != NULL) &&
9207 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9208 				DDI_SUCCESS)) {
9209 			/*
9210 			 * Note: We are returning here after having done
9211 			 * substantial cleanup above. This is consistent
9212 			 * with the legacy implementation but this may not
9213 			 * be the right thing to do.
9214 			 */
9215 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9216 				"sd_dr_detach: Cannot cancel remove event\n");
9217 			goto err_remove_event;
9218 		}
9219 		un->un_remove_event = NULL;
9220 	}
9221 
9222 	/* Do not free the softstate if the callback routine is active */
9223 	sd_sync_with_callback(un);
9224 
9225 	/*
9226 	 * Hold the detach mutex here, to make sure that no other threads ever
9227 	 * can access a (partially) freed soft state structure.
9228 	 */
9229 	mutex_enter(&sd_detach_mutex);
9230 
9231 	/*
9232 	 * Clean up the soft state struct.
9233 	 * Cleanup is done in reverse order of allocs/inits.
9234 	 * At this point there should be no competing threads anymore.
9235 	 */
9236 
9237 	/* Unregister and free device id. */
9238 	ddi_devid_unregister(devi);
9239 	if (un->un_devid) {
9240 		ddi_devid_free(un->un_devid);
9241 		un->un_devid = NULL;
9242 	}
9243 
9244 	/*
9245 	 * Destroy wmap cache if it exists.
9246 	 */
9247 	if (un->un_wm_cache != NULL) {
9248 		kmem_cache_destroy(un->un_wm_cache);
9249 		un->un_wm_cache = NULL;
9250 	}
9251 
9252 	/* Remove minor nodes */
9253 	ddi_remove_minor_node(devi, NULL);
9254 
9255 	/*
9256 	 * kstat cleanup is done in detach for all device types (4363169).
9257 	 * We do not want to fail detach if the device kstats are not deleted
9258 	 * since there is a confusion about the devo_refcnt for the device.
9259 	 * We just delete the kstats and let detach complete successfully.
9260 	 */
9261 	if (un->un_stats != NULL) {
9262 		kstat_delete(un->un_stats);
9263 		un->un_stats = NULL;
9264 	}
9265 	if (un->un_errstats != NULL) {
9266 		kstat_delete(un->un_errstats);
9267 		un->un_errstats = NULL;
9268 	}
9269 
9270 	/* Remove partition stats */
9271 	if (un->un_f_pkstats_enabled) {
9272 		for (i = 0; i < NSDMAP; i++) {
9273 			if (un->un_pstats[i] != NULL) {
9274 				kstat_delete(un->un_pstats[i]);
9275 				un->un_pstats[i] = NULL;
9276 			}
9277 		}
9278 	}
9279 
9280 	/* Remove xbuf registration */
9281 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9282 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9283 
9284 	/* Remove driver properties */
9285 	ddi_prop_remove_all(devi);
9286 
9287 	mutex_destroy(&un->un_pm_mutex);
9288 	cv_destroy(&un->un_pm_busy_cv);
9289 
9290 	cv_destroy(&un->un_wcc_cv);
9291 
9292 	/* Open/close semaphore */
9293 	sema_destroy(&un->un_semoclose);
9294 
9295 	/* Removable media condvar. */
9296 	cv_destroy(&un->un_state_cv);
9297 
9298 	/* Suspend/resume condvar. */
9299 	cv_destroy(&un->un_suspend_cv);
9300 	cv_destroy(&un->un_disk_busy_cv);
9301 
9302 	sd_free_rqs(un);
9303 
9304 	/* Free up soft state */
9305 	devp->sd_private = NULL;
9306 	bzero(un, sizeof (struct sd_lun));
9307 	ddi_soft_state_free(sd_state, instance);
9308 
9309 	mutex_exit(&sd_detach_mutex);
9310 
9311 	/* This frees up the INQUIRY data associated with the device. */
9312 	scsi_unprobe(devp);
9313 
9314 	return (DDI_SUCCESS);
9315 
9316 err_notclosed:
9317 	mutex_exit(SD_MUTEX(un));
9318 
9319 err_stillbusy:
9320 	_NOTE(NO_COMPETING_THREADS_NOW);
9321 
9322 err_remove_event:
9323 	mutex_enter(&sd_detach_mutex);
9324 	un->un_detach_count--;
9325 	mutex_exit(&sd_detach_mutex);
9326 
9327 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9328 	return (DDI_FAILURE);
9329 }
9330 
9331 
9332 /*
9333  * Driver minor node structure and data table
9334  */
9335 struct driver_minor_data {
9336 	char	*name;
9337 	minor_t	minor;
9338 	int	type;
9339 };
9340 
9341 static struct driver_minor_data sd_minor_data[] = {
9342 	{"a", 0, S_IFBLK},
9343 	{"b", 1, S_IFBLK},
9344 	{"c", 2, S_IFBLK},
9345 	{"d", 3, S_IFBLK},
9346 	{"e", 4, S_IFBLK},
9347 	{"f", 5, S_IFBLK},
9348 	{"g", 6, S_IFBLK},
9349 	{"h", 7, S_IFBLK},
9350 #if defined(_SUNOS_VTOC_16)
9351 	{"i", 8, S_IFBLK},
9352 	{"j", 9, S_IFBLK},
9353 	{"k", 10, S_IFBLK},
9354 	{"l", 11, S_IFBLK},
9355 	{"m", 12, S_IFBLK},
9356 	{"n", 13, S_IFBLK},
9357 	{"o", 14, S_IFBLK},
9358 	{"p", 15, S_IFBLK},
9359 #endif			/* defined(_SUNOS_VTOC_16) */
9360 #if defined(_FIRMWARE_NEEDS_FDISK)
9361 	{"q", 16, S_IFBLK},
9362 	{"r", 17, S_IFBLK},
9363 	{"s", 18, S_IFBLK},
9364 	{"t", 19, S_IFBLK},
9365 	{"u", 20, S_IFBLK},
9366 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9367 	{"a,raw", 0, S_IFCHR},
9368 	{"b,raw", 1, S_IFCHR},
9369 	{"c,raw", 2, S_IFCHR},
9370 	{"d,raw", 3, S_IFCHR},
9371 	{"e,raw", 4, S_IFCHR},
9372 	{"f,raw", 5, S_IFCHR},
9373 	{"g,raw", 6, S_IFCHR},
9374 	{"h,raw", 7, S_IFCHR},
9375 #if defined(_SUNOS_VTOC_16)
9376 	{"i,raw", 8, S_IFCHR},
9377 	{"j,raw", 9, S_IFCHR},
9378 	{"k,raw", 10, S_IFCHR},
9379 	{"l,raw", 11, S_IFCHR},
9380 	{"m,raw", 12, S_IFCHR},
9381 	{"n,raw", 13, S_IFCHR},
9382 	{"o,raw", 14, S_IFCHR},
9383 	{"p,raw", 15, S_IFCHR},
9384 #endif			/* defined(_SUNOS_VTOC_16) */
9385 #if defined(_FIRMWARE_NEEDS_FDISK)
9386 	{"q,raw", 16, S_IFCHR},
9387 	{"r,raw", 17, S_IFCHR},
9388 	{"s,raw", 18, S_IFCHR},
9389 	{"t,raw", 19, S_IFCHR},
9390 	{"u,raw", 20, S_IFCHR},
9391 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9392 	{0}
9393 };
9394 
9395 static struct driver_minor_data sd_minor_data_efi[] = {
9396 	{"a", 0, S_IFBLK},
9397 	{"b", 1, S_IFBLK},
9398 	{"c", 2, S_IFBLK},
9399 	{"d", 3, S_IFBLK},
9400 	{"e", 4, S_IFBLK},
9401 	{"f", 5, S_IFBLK},
9402 	{"g", 6, S_IFBLK},
9403 	{"wd", 7, S_IFBLK},
9404 #if defined(_FIRMWARE_NEEDS_FDISK)
9405 	{"q", 16, S_IFBLK},
9406 	{"r", 17, S_IFBLK},
9407 	{"s", 18, S_IFBLK},
9408 	{"t", 19, S_IFBLK},
9409 	{"u", 20, S_IFBLK},
9410 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9411 	{"a,raw", 0, S_IFCHR},
9412 	{"b,raw", 1, S_IFCHR},
9413 	{"c,raw", 2, S_IFCHR},
9414 	{"d,raw", 3, S_IFCHR},
9415 	{"e,raw", 4, S_IFCHR},
9416 	{"f,raw", 5, S_IFCHR},
9417 	{"g,raw", 6, S_IFCHR},
9418 	{"wd,raw", 7, S_IFCHR},
9419 #if defined(_FIRMWARE_NEEDS_FDISK)
9420 	{"q,raw", 16, S_IFCHR},
9421 	{"r,raw", 17, S_IFCHR},
9422 	{"s,raw", 18, S_IFCHR},
9423 	{"t,raw", 19, S_IFCHR},
9424 	{"u,raw", 20, S_IFCHR},
9425 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9426 	{0}
9427 };
9428 
9429 
9430 /*
9431  *    Function: sd_create_minor_nodes
9432  *
9433  * Description: Create the minor device nodes for the instance.
9434  *
9435  *   Arguments: un - driver soft state (unit) structure
9436  *		devi - pointer to device info structure
9437  *
9438  * Return Code: DDI_SUCCESS
9439  *		DDI_FAILURE
9440  *
9441  *     Context: Kernel thread context
9442  */
9443 
9444 static int
9445 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9446 {
9447 	struct driver_minor_data	*dmdp;
9448 	struct scsi_device		*devp;
9449 	int				instance;
9450 	char				name[48];
9451 
9452 	ASSERT(un != NULL);
9453 	devp = ddi_get_driver_private(devi);
9454 	instance = ddi_get_instance(devp->sd_dev);
9455 
9456 	/*
9457 	 * Create all the minor nodes for this target.
9458 	 */
9459 	if (un->un_blockcount > DK_MAX_BLOCKS)
9460 		dmdp = sd_minor_data_efi;
9461 	else
9462 		dmdp = sd_minor_data;
9463 	while (dmdp->name != NULL) {
9464 
9465 		(void) sprintf(name, "%s", dmdp->name);
9466 
9467 		if (ddi_create_minor_node(devi, name, dmdp->type,
9468 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9469 		    un->un_node_type, NULL) == DDI_FAILURE) {
9470 			/*
9471 			 * Clean up any nodes that may have been created, in
9472 			 * case this fails in the middle of the loop.
9473 			 */
9474 			ddi_remove_minor_node(devi, NULL);
9475 			return (DDI_FAILURE);
9476 		}
9477 		dmdp++;
9478 	}
9479 
9480 	return (DDI_SUCCESS);
9481 }
9482 
9483 
9484 /*
9485  *    Function: sd_create_errstats
9486  *
9487  * Description: This routine instantiates the device error stats.
9488  *
9489  *		Note: During attach the stats are instantiated first so they are
9490  *		available for attach-time routines that utilize the driver
9491  *		iopath to send commands to the device. The stats are initialized
9492  *		separately so data obtained during some attach-time routines is
9493  *		available. (4362483)
9494  *
9495  *   Arguments: un - driver soft state (unit) structure
9496  *		instance - driver instance
9497  *
9498  *     Context: Kernel thread context
9499  */
9500 
9501 static void
9502 sd_create_errstats(struct sd_lun *un, int instance)
9503 {
9504 	struct	sd_errstats	*stp;
9505 	char	kstatmodule_err[KSTAT_STRLEN];
9506 	char	kstatname[KSTAT_STRLEN];
9507 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9508 
9509 	ASSERT(un != NULL);
9510 
9511 	if (un->un_errstats != NULL) {
9512 		return;
9513 	}
9514 
9515 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9516 	    "%serr", sd_label);
9517 	(void) snprintf(kstatname, sizeof (kstatname),
9518 	    "%s%d,err", sd_label, instance);
9519 
9520 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9521 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9522 
9523 	if (un->un_errstats == NULL) {
9524 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9525 		    "sd_create_errstats: Failed kstat_create\n");
9526 		return;
9527 	}
9528 
9529 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9530 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9531 	    KSTAT_DATA_UINT32);
9532 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9533 	    KSTAT_DATA_UINT32);
9534 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9535 	    KSTAT_DATA_UINT32);
9536 	kstat_named_init(&stp->sd_vid,		"Vendor",
9537 	    KSTAT_DATA_CHAR);
9538 	kstat_named_init(&stp->sd_pid,		"Product",
9539 	    KSTAT_DATA_CHAR);
9540 	kstat_named_init(&stp->sd_revision,	"Revision",
9541 	    KSTAT_DATA_CHAR);
9542 	kstat_named_init(&stp->sd_serial,	"Serial No",
9543 	    KSTAT_DATA_CHAR);
9544 	kstat_named_init(&stp->sd_capacity,	"Size",
9545 	    KSTAT_DATA_ULONGLONG);
9546 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9547 	    KSTAT_DATA_UINT32);
9548 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9549 	    KSTAT_DATA_UINT32);
9550 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9551 	    KSTAT_DATA_UINT32);
9552 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9553 	    KSTAT_DATA_UINT32);
9554 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9555 	    KSTAT_DATA_UINT32);
9556 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9557 	    KSTAT_DATA_UINT32);
9558 
9559 	un->un_errstats->ks_private = un;
9560 	un->un_errstats->ks_update  = nulldev;
9561 
9562 	kstat_install(un->un_errstats);
9563 }
9564 
9565 
9566 /*
9567  *    Function: sd_set_errstats
9568  *
9569  * Description: This routine sets the value of the vendor id, product id,
9570  *		revision, serial number, and capacity device error stats.
9571  *
9572  *		Note: During attach the stats are instantiated first so they are
9573  *		available for attach-time routines that utilize the driver
9574  *		iopath to send commands to the device. The stats are initialized
9575  *		separately so data obtained during some attach-time routines is
9576  *		available. (4362483)
9577  *
9578  *   Arguments: un - driver soft state (unit) structure
9579  *
9580  *     Context: Kernel thread context
9581  */
9582 
9583 static void
9584 sd_set_errstats(struct sd_lun *un)
9585 {
9586 	struct	sd_errstats	*stp;
9587 
9588 	ASSERT(un != NULL);
9589 	ASSERT(un->un_errstats != NULL);
9590 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9591 	ASSERT(stp != NULL);
9592 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9593 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9594 	(void) strncpy(stp->sd_revision.value.c,
9595 	    un->un_sd->sd_inq->inq_revision, 4);
9596 
9597 	/*
9598 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9599 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9600 	 * (4376302))
9601 	 */
9602 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9603 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9604 		    sizeof (SD_INQUIRY(un)->inq_serial));
9605 	}
9606 
9607 	if (un->un_f_blockcount_is_valid != TRUE) {
9608 		/*
9609 		 * Set capacity error stat to 0 for no media. This ensures
9610 		 * a valid capacity is displayed in response to 'iostat -E'
9611 		 * when no media is present in the device.
9612 		 */
9613 		stp->sd_capacity.value.ui64 = 0;
9614 	} else {
9615 		/*
9616 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9617 		 * capacity.
9618 		 *
9619 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9620 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9621 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9622 		 */
9623 		stp->sd_capacity.value.ui64 = (uint64_t)
9624 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9625 	}
9626 }
9627 
9628 
9629 /*
9630  *    Function: sd_set_pstats
9631  *
9632  * Description: This routine instantiates and initializes the partition
9633  *              stats for each partition with more than zero blocks.
9634  *		(4363169)
9635  *
9636  *   Arguments: un - driver soft state (unit) structure
9637  *
9638  *     Context: Kernel thread context
9639  */
9640 
9641 static void
9642 sd_set_pstats(struct sd_lun *un)
9643 {
9644 	char	kstatname[KSTAT_STRLEN];
9645 	int	instance;
9646 	int	i;
9647 
9648 	ASSERT(un != NULL);
9649 
9650 	instance = ddi_get_instance(SD_DEVINFO(un));
9651 
9652 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9653 	for (i = 0; i < NSDMAP; i++) {
9654 		if ((un->un_pstats[i] == NULL) &&
9655 		    (un->un_map[i].dkl_nblk != 0)) {
9656 			(void) snprintf(kstatname, sizeof (kstatname),
9657 			    "%s%d,%s", sd_label, instance,
9658 			    sd_minor_data[i].name);
9659 			un->un_pstats[i] = kstat_create(sd_label,
9660 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9661 			    1, KSTAT_FLAG_PERSISTENT);
9662 			if (un->un_pstats[i] != NULL) {
9663 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9664 				kstat_install(un->un_pstats[i]);
9665 			}
9666 		}
9667 	}
9668 }
9669 
9670 
9671 #if (defined(__fibre))
9672 /*
9673  *    Function: sd_init_event_callbacks
9674  *
9675  * Description: This routine initializes the insertion and removal event
9676  *		callbacks. (fibre only)
9677  *
9678  *   Arguments: un - driver soft state (unit) structure
9679  *
9680  *     Context: Kernel thread context
9681  */
9682 
9683 static void
9684 sd_init_event_callbacks(struct sd_lun *un)
9685 {
9686 	ASSERT(un != NULL);
9687 
9688 	if ((un->un_insert_event == NULL) &&
9689 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9690 	    &un->un_insert_event) == DDI_SUCCESS)) {
9691 		/*
9692 		 * Add the callback for an insertion event
9693 		 */
9694 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9695 		    un->un_insert_event, sd_event_callback, (void *)un,
9696 		    &(un->un_insert_cb_id));
9697 	}
9698 
9699 	if ((un->un_remove_event == NULL) &&
9700 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9701 	    &un->un_remove_event) == DDI_SUCCESS)) {
9702 		/*
9703 		 * Add the callback for a removal event
9704 		 */
9705 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9706 		    un->un_remove_event, sd_event_callback, (void *)un,
9707 		    &(un->un_remove_cb_id));
9708 	}
9709 }
9710 
9711 
9712 /*
9713  *    Function: sd_event_callback
9714  *
9715  * Description: This routine handles insert/remove events (photon). The
9716  *		state is changed to OFFLINE which can be used to supress
9717  *		error msgs. (fibre only)
9718  *
9719  *   Arguments: un - driver soft state (unit) structure
9720  *
9721  *     Context: Callout thread context
9722  */
9723 /* ARGSUSED */
9724 static void
9725 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9726     void *bus_impldata)
9727 {
9728 	struct sd_lun *un = (struct sd_lun *)arg;
9729 
9730 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9731 	if (event == un->un_insert_event) {
9732 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9733 		mutex_enter(SD_MUTEX(un));
9734 		if (un->un_state == SD_STATE_OFFLINE) {
9735 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9736 				un->un_state = un->un_last_state;
9737 			} else {
9738 				/*
9739 				 * We have gone through SUSPEND/RESUME while
9740 				 * we were offline. Restore the last state
9741 				 */
9742 				un->un_state = un->un_save_state;
9743 			}
9744 		}
9745 		mutex_exit(SD_MUTEX(un));
9746 
9747 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9748 	} else if (event == un->un_remove_event) {
9749 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9750 		mutex_enter(SD_MUTEX(un));
9751 		/*
9752 		 * We need to handle an event callback that occurs during
9753 		 * the suspend operation, since we don't prevent it.
9754 		 */
9755 		if (un->un_state != SD_STATE_OFFLINE) {
9756 			if (un->un_state != SD_STATE_SUSPENDED) {
9757 				New_state(un, SD_STATE_OFFLINE);
9758 			} else {
9759 				un->un_last_state = SD_STATE_OFFLINE;
9760 			}
9761 		}
9762 		mutex_exit(SD_MUTEX(un));
9763 	} else {
9764 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9765 		    "!Unknown event\n");
9766 	}
9767 
9768 }
9769 #endif
9770 
9771 /*
9772  *    Function: sd_cache_control()
9773  *
9774  * Description: This routine is the driver entry point for setting
9775  *		read and write caching by modifying the WCE (write cache
9776  *		enable) and RCD (read cache disable) bits of mode
9777  *		page 8 (MODEPAGE_CACHING).
9778  *
9779  *   Arguments: un - driver soft state (unit) structure
9780  *		rcd_flag - flag for controlling the read cache
9781  *		wce_flag - flag for controlling the write cache
9782  *
9783  * Return Code: EIO
9784  *		code returned by sd_send_scsi_MODE_SENSE and
9785  *		sd_send_scsi_MODE_SELECT
9786  *
9787  *     Context: Kernel Thread
9788  */
9789 
9790 static int
9791 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
9792 {
9793 	struct mode_caching	*mode_caching_page;
9794 	uchar_t			*header;
9795 	size_t			buflen;
9796 	int			hdrlen;
9797 	int			bd_len;
9798 	int			rval = 0;
9799 	struct mode_header_grp2	*mhp;
9800 
9801 	ASSERT(un != NULL);
9802 
9803 	/*
9804 	 * Do a test unit ready, otherwise a mode sense may not work if this
9805 	 * is the first command sent to the device after boot.
9806 	 */
9807 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9808 
9809 	if (un->un_f_cfg_is_atapi == TRUE) {
9810 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9811 	} else {
9812 		hdrlen = MODE_HEADER_LENGTH;
9813 	}
9814 
9815 	/*
9816 	 * Allocate memory for the retrieved mode page and its headers.  Set
9817 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9818 	 * we get all of the mode sense data otherwise, the mode select
9819 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9820 	 */
9821 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9822 		sizeof (struct mode_cache_scsi3);
9823 
9824 	header = kmem_zalloc(buflen, KM_SLEEP);
9825 
9826 	/* Get the information from the device. */
9827 	if (un->un_f_cfg_is_atapi == TRUE) {
9828 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9829 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9830 	} else {
9831 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9832 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9833 	}
9834 	if (rval != 0) {
9835 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9836 		    "sd_cache_control: Mode Sense Failed\n");
9837 		kmem_free(header, buflen);
9838 		return (rval);
9839 	}
9840 
9841 	/*
9842 	 * Determine size of Block Descriptors in order to locate
9843 	 * the mode page data. ATAPI devices return 0, SCSI devices
9844 	 * should return MODE_BLK_DESC_LENGTH.
9845 	 */
9846 	if (un->un_f_cfg_is_atapi == TRUE) {
9847 		mhp	= (struct mode_header_grp2 *)header;
9848 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9849 	} else {
9850 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9851 	}
9852 
9853 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9854 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9855 		    "sd_cache_control: Mode Sense returned invalid "
9856 		    "block descriptor length\n");
9857 		kmem_free(header, buflen);
9858 		return (EIO);
9859 	}
9860 
9861 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9862 
9863 	/* Check the relevant bits on successful mode sense. */
9864 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9865 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9866 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9867 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9868 
9869 		size_t sbuflen;
9870 		uchar_t save_pg;
9871 
9872 		/*
9873 		 * Construct select buffer length based on the
9874 		 * length of the sense data returned.
9875 		 */
9876 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
9877 				sizeof (struct mode_page) +
9878 				(int)mode_caching_page->mode_page.length;
9879 
9880 		/*
9881 		 * Set the caching bits as requested.
9882 		 */
9883 		if (rcd_flag == SD_CACHE_ENABLE)
9884 			mode_caching_page->rcd = 0;
9885 		else if (rcd_flag == SD_CACHE_DISABLE)
9886 			mode_caching_page->rcd = 1;
9887 
9888 		if (wce_flag == SD_CACHE_ENABLE)
9889 			mode_caching_page->wce = 1;
9890 		else if (wce_flag == SD_CACHE_DISABLE)
9891 			mode_caching_page->wce = 0;
9892 
9893 		/*
9894 		 * Save the page if the mode sense says the
9895 		 * drive supports it.
9896 		 */
9897 		save_pg = mode_caching_page->mode_page.ps ?
9898 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9899 
9900 		/* Clear reserved bits before mode select. */
9901 		mode_caching_page->mode_page.ps = 0;
9902 
9903 		/*
9904 		 * Clear out mode header for mode select.
9905 		 * The rest of the retrieved page will be reused.
9906 		 */
9907 		bzero(header, hdrlen);
9908 
9909 		if (un->un_f_cfg_is_atapi == TRUE) {
9910 			mhp = (struct mode_header_grp2 *)header;
9911 			mhp->bdesc_length_hi = bd_len >> 8;
9912 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9913 		} else {
9914 			((struct mode_header *)header)->bdesc_length = bd_len;
9915 		}
9916 
9917 		/* Issue mode select to change the cache settings */
9918 		if (un->un_f_cfg_is_atapi == TRUE) {
9919 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9920 			    sbuflen, save_pg, SD_PATH_DIRECT);
9921 		} else {
9922 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9923 			    sbuflen, save_pg, SD_PATH_DIRECT);
9924 		}
9925 	}
9926 
9927 	kmem_free(header, buflen);
9928 	return (rval);
9929 }
9930 
9931 
9932 /*
9933  *    Function: sd_get_write_cache_enabled()
9934  *
9935  * Description: This routine is the driver entry point for determining if
9936  *		write caching is enabled.  It examines the WCE (write cache
9937  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9938  *
9939  *   Arguments: un - driver soft state (unit) structure
9940  *   		is_enabled - pointer to int where write cache enabled state
9941  *   			is returned (non-zero -> write cache enabled)
9942  *
9943  *
9944  * Return Code: EIO
9945  *		code returned by sd_send_scsi_MODE_SENSE
9946  *
9947  *     Context: Kernel Thread
9948  *
9949  * NOTE: If ioctl is added to disable write cache, this sequence should
9950  * be followed so that no locking is required for accesses to
9951  * un->un_f_write_cache_enabled:
9952  * 	do mode select to clear wce
9953  * 	do synchronize cache to flush cache
9954  * 	set un->un_f_write_cache_enabled = FALSE
9955  *
9956  * Conversely, an ioctl to enable the write cache should be done
9957  * in this order:
9958  * 	set un->un_f_write_cache_enabled = TRUE
9959  * 	do mode select to set wce
9960  */
9961 
9962 static int
9963 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
9964 {
9965 	struct mode_caching	*mode_caching_page;
9966 	uchar_t			*header;
9967 	size_t			buflen;
9968 	int			hdrlen;
9969 	int			bd_len;
9970 	int			rval = 0;
9971 
9972 	ASSERT(un != NULL);
9973 	ASSERT(is_enabled != NULL);
9974 
9975 	/* in case of error, flag as enabled */
9976 	*is_enabled = TRUE;
9977 
9978 	/*
9979 	 * Do a test unit ready, otherwise a mode sense may not work if this
9980 	 * is the first command sent to the device after boot.
9981 	 */
9982 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9983 
9984 	if (un->un_f_cfg_is_atapi == TRUE) {
9985 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9986 	} else {
9987 		hdrlen = MODE_HEADER_LENGTH;
9988 	}
9989 
9990 	/*
9991 	 * Allocate memory for the retrieved mode page and its headers.  Set
9992 	 * a pointer to the page itself.
9993 	 */
9994 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9995 	header = kmem_zalloc(buflen, KM_SLEEP);
9996 
9997 	/* Get the information from the device. */
9998 	if (un->un_f_cfg_is_atapi == TRUE) {
9999 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10000 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10001 	} else {
10002 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10003 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10004 	}
10005 	if (rval != 0) {
10006 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10007 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
10008 		kmem_free(header, buflen);
10009 		return (rval);
10010 	}
10011 
10012 	/*
10013 	 * Determine size of Block Descriptors in order to locate
10014 	 * the mode page data. ATAPI devices return 0, SCSI devices
10015 	 * should return MODE_BLK_DESC_LENGTH.
10016 	 */
10017 	if (un->un_f_cfg_is_atapi == TRUE) {
10018 		struct mode_header_grp2	*mhp;
10019 		mhp	= (struct mode_header_grp2 *)header;
10020 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10021 	} else {
10022 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10023 	}
10024 
10025 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10026 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10027 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
10028 		    "block descriptor length\n");
10029 		kmem_free(header, buflen);
10030 		return (EIO);
10031 	}
10032 
10033 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10034 	*is_enabled = mode_caching_page->wce;
10035 
10036 	kmem_free(header, buflen);
10037 	return (0);
10038 }
10039 
10040 
10041 /*
10042  *    Function: sd_make_device
10043  *
10044  * Description: Utility routine to return the Solaris device number from
10045  *		the data in the device's dev_info structure.
10046  *
10047  * Return Code: The Solaris device number
10048  *
10049  *     Context: Any
10050  */
10051 
10052 static dev_t
10053 sd_make_device(dev_info_t *devi)
10054 {
10055 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
10056 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
10057 }
10058 
10059 
10060 /*
10061  *    Function: sd_pm_entry
10062  *
10063  * Description: Called at the start of a new command to manage power
10064  *		and busy status of a device. This includes determining whether
10065  *		the current power state of the device is sufficient for
10066  *		performing the command or whether it must be changed.
10067  *		The PM framework is notified appropriately.
10068  *		Only with a return status of DDI_SUCCESS will the
10069  *		component be busy to the framework.
10070  *
10071  *		All callers of sd_pm_entry must check the return status
10072  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
10073  *		of DDI_FAILURE indicates the device failed to power up.
10074  *		In this case un_pm_count has been adjusted so the result
10075  *		on exit is still powered down, ie. count is less than 0.
10076  *		Calling sd_pm_exit with this count value hits an ASSERT.
10077  *
10078  * Return Code: DDI_SUCCESS or DDI_FAILURE
10079  *
10080  *     Context: Kernel thread context.
10081  */
10082 
10083 static int
10084 sd_pm_entry(struct sd_lun *un)
10085 {
10086 	int return_status = DDI_SUCCESS;
10087 
10088 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10089 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10090 
10091 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
10092 
10093 	if (un->un_f_pm_is_enabled == FALSE) {
10094 		SD_TRACE(SD_LOG_IO_PM, un,
10095 		    "sd_pm_entry: exiting, PM not enabled\n");
10096 		return (return_status);
10097 	}
10098 
10099 	/*
10100 	 * Just increment a counter if PM is enabled. On the transition from
10101 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
10102 	 * the count with each IO and mark the device as idle when the count
10103 	 * hits 0.
10104 	 *
10105 	 * If the count is less than 0 the device is powered down. If a powered
10106 	 * down device is successfully powered up then the count must be
10107 	 * incremented to reflect the power up. Note that it'll get incremented
10108 	 * a second time to become busy.
10109 	 *
10110 	 * Because the following has the potential to change the device state
10111 	 * and must release the un_pm_mutex to do so, only one thread can be
10112 	 * allowed through at a time.
10113 	 */
10114 
10115 	mutex_enter(&un->un_pm_mutex);
10116 	while (un->un_pm_busy == TRUE) {
10117 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
10118 	}
10119 	un->un_pm_busy = TRUE;
10120 
10121 	if (un->un_pm_count < 1) {
10122 
10123 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
10124 
10125 		/*
10126 		 * Indicate we are now busy so the framework won't attempt to
10127 		 * power down the device. This call will only fail if either
10128 		 * we passed a bad component number or the device has no
10129 		 * components. Neither of these should ever happen.
10130 		 */
10131 		mutex_exit(&un->un_pm_mutex);
10132 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
10133 		ASSERT(return_status == DDI_SUCCESS);
10134 
10135 		mutex_enter(&un->un_pm_mutex);
10136 
10137 		if (un->un_pm_count < 0) {
10138 			mutex_exit(&un->un_pm_mutex);
10139 
10140 			SD_TRACE(SD_LOG_IO_PM, un,
10141 			    "sd_pm_entry: power up component\n");
10142 
10143 			/*
10144 			 * pm_raise_power will cause sdpower to be called
10145 			 * which brings the device power level to the
10146 			 * desired state, ON in this case. If successful,
10147 			 * un_pm_count and un_power_level will be updated
10148 			 * appropriately.
10149 			 */
10150 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
10151 			    SD_SPINDLE_ON);
10152 
10153 			mutex_enter(&un->un_pm_mutex);
10154 
10155 			if (return_status != DDI_SUCCESS) {
10156 				/*
10157 				 * Power up failed.
10158 				 * Idle the device and adjust the count
10159 				 * so the result on exit is that we're
10160 				 * still powered down, ie. count is less than 0.
10161 				 */
10162 				SD_TRACE(SD_LOG_IO_PM, un,
10163 				    "sd_pm_entry: power up failed,"
10164 				    " idle the component\n");
10165 
10166 				(void) pm_idle_component(SD_DEVINFO(un), 0);
10167 				un->un_pm_count--;
10168 			} else {
10169 				/*
10170 				 * Device is powered up, verify the
10171 				 * count is non-negative.
10172 				 * This is debug only.
10173 				 */
10174 				ASSERT(un->un_pm_count == 0);
10175 			}
10176 		}
10177 
10178 		if (return_status == DDI_SUCCESS) {
10179 			/*
10180 			 * For performance, now that the device has been tagged
10181 			 * as busy, and it's known to be powered up, update the
10182 			 * chain types to use jump tables that do not include
10183 			 * pm. This significantly lowers the overhead and
10184 			 * therefore improves performance.
10185 			 */
10186 
10187 			mutex_exit(&un->un_pm_mutex);
10188 			mutex_enter(SD_MUTEX(un));
10189 			SD_TRACE(SD_LOG_IO_PM, un,
10190 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
10191 			    un->un_uscsi_chain_type);
10192 
10193 			if (un->un_f_non_devbsize_supported) {
10194 				un->un_buf_chain_type =
10195 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10196 			} else {
10197 				un->un_buf_chain_type =
10198 				    SD_CHAIN_INFO_DISK_NO_PM;
10199 			}
10200 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10201 
10202 			SD_TRACE(SD_LOG_IO_PM, un,
10203 			    "             changed  uscsi_chain_type to   %d\n",
10204 			    un->un_uscsi_chain_type);
10205 			mutex_exit(SD_MUTEX(un));
10206 			mutex_enter(&un->un_pm_mutex);
10207 
10208 			if (un->un_pm_idle_timeid == NULL) {
10209 				/* 300 ms. */
10210 				un->un_pm_idle_timeid =
10211 				    timeout(sd_pm_idletimeout_handler, un,
10212 				    (drv_usectohz((clock_t)300000)));
10213 				/*
10214 				 * Include an extra call to busy which keeps the
10215 				 * device busy with-respect-to the PM layer
10216 				 * until the timer fires, at which time it'll
10217 				 * get the extra idle call.
10218 				 */
10219 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10220 			}
10221 		}
10222 	}
10223 	un->un_pm_busy = FALSE;
10224 	/* Next... */
10225 	cv_signal(&un->un_pm_busy_cv);
10226 
10227 	un->un_pm_count++;
10228 
10229 	SD_TRACE(SD_LOG_IO_PM, un,
10230 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10231 
10232 	mutex_exit(&un->un_pm_mutex);
10233 
10234 	return (return_status);
10235 }
10236 
10237 
10238 /*
10239  *    Function: sd_pm_exit
10240  *
10241  * Description: Called at the completion of a command to manage busy
10242  *		status for the device. If the device becomes idle the
10243  *		PM framework is notified.
10244  *
10245  *     Context: Kernel thread context
10246  */
10247 
10248 static void
10249 sd_pm_exit(struct sd_lun *un)
10250 {
10251 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10252 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10253 
10254 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10255 
10256 	/*
10257 	 * After attach the following flag is only read, so don't
10258 	 * take the penalty of acquiring a mutex for it.
10259 	 */
10260 	if (un->un_f_pm_is_enabled == TRUE) {
10261 
10262 		mutex_enter(&un->un_pm_mutex);
10263 		un->un_pm_count--;
10264 
10265 		SD_TRACE(SD_LOG_IO_PM, un,
10266 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10267 
10268 		ASSERT(un->un_pm_count >= 0);
10269 		if (un->un_pm_count == 0) {
10270 			mutex_exit(&un->un_pm_mutex);
10271 
10272 			SD_TRACE(SD_LOG_IO_PM, un,
10273 			    "sd_pm_exit: idle component\n");
10274 
10275 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10276 
10277 		} else {
10278 			mutex_exit(&un->un_pm_mutex);
10279 		}
10280 	}
10281 
10282 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10283 }
10284 
10285 
10286 /*
10287  *    Function: sdopen
10288  *
10289  * Description: Driver's open(9e) entry point function.
10290  *
10291  *   Arguments: dev_i   - pointer to device number
10292  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10293  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10294  *		cred_p  - user credential pointer
10295  *
10296  * Return Code: EINVAL
10297  *		ENXIO
10298  *		EIO
10299  *		EROFS
10300  *		EBUSY
10301  *
10302  *     Context: Kernel thread context
10303  */
10304 /* ARGSUSED */
10305 static int
10306 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10307 {
10308 	struct sd_lun	*un;
10309 	int		nodelay;
10310 	int		part;
10311 	uint64_t	partmask;
10312 	int		instance;
10313 	dev_t		dev;
10314 	int		rval = EIO;
10315 
10316 	/* Validate the open type */
10317 	if (otyp >= OTYPCNT) {
10318 		return (EINVAL);
10319 	}
10320 
10321 	dev = *dev_p;
10322 	instance = SDUNIT(dev);
10323 	mutex_enter(&sd_detach_mutex);
10324 
10325 	/*
10326 	 * Fail the open if there is no softstate for the instance, or
10327 	 * if another thread somewhere is trying to detach the instance.
10328 	 */
10329 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10330 	    (un->un_detach_count != 0)) {
10331 		mutex_exit(&sd_detach_mutex);
10332 		/*
10333 		 * The probe cache only needs to be cleared when open (9e) fails
10334 		 * with ENXIO (4238046).
10335 		 */
10336 		/*
10337 		 * un-conditionally clearing probe cache is ok with
10338 		 * separate sd/ssd binaries
10339 		 * x86 platform can be an issue with both parallel
10340 		 * and fibre in 1 binary
10341 		 */
10342 		sd_scsi_clear_probe_cache();
10343 		return (ENXIO);
10344 	}
10345 
10346 	/*
10347 	 * The un_layer_count is to prevent another thread in specfs from
10348 	 * trying to detach the instance, which can happen when we are
10349 	 * called from a higher-layer driver instead of thru specfs.
10350 	 * This will not be needed when DDI provides a layered driver
10351 	 * interface that allows specfs to know that an instance is in
10352 	 * use by a layered driver & should not be detached.
10353 	 *
10354 	 * Note: the semantics for layered driver opens are exactly one
10355 	 * close for every open.
10356 	 */
10357 	if (otyp == OTYP_LYR) {
10358 		un->un_layer_count++;
10359 	}
10360 
10361 	/*
10362 	 * Keep a count of the current # of opens in progress. This is because
10363 	 * some layered drivers try to call us as a regular open. This can
10364 	 * cause problems that we cannot prevent, however by keeping this count
10365 	 * we can at least keep our open and detach routines from racing against
10366 	 * each other under such conditions.
10367 	 */
10368 	un->un_opens_in_progress++;
10369 	mutex_exit(&sd_detach_mutex);
10370 
10371 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10372 	part	 = SDPART(dev);
10373 	partmask = 1 << part;
10374 
10375 	/*
10376 	 * We use a semaphore here in order to serialize
10377 	 * open and close requests on the device.
10378 	 */
10379 	sema_p(&un->un_semoclose);
10380 
10381 	mutex_enter(SD_MUTEX(un));
10382 
10383 	/*
10384 	 * All device accesses go thru sdstrategy() where we check
10385 	 * on suspend status but there could be a scsi_poll command,
10386 	 * which bypasses sdstrategy(), so we need to check pm
10387 	 * status.
10388 	 */
10389 
10390 	if (!nodelay) {
10391 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10392 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10393 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10394 		}
10395 
10396 		mutex_exit(SD_MUTEX(un));
10397 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10398 			rval = EIO;
10399 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10400 			    "sdopen: sd_pm_entry failed\n");
10401 			goto open_failed_with_pm;
10402 		}
10403 		mutex_enter(SD_MUTEX(un));
10404 	}
10405 
10406 	/* check for previous exclusive open */
10407 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10408 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10409 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10410 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10411 
10412 	if (un->un_exclopen & (partmask)) {
10413 		goto excl_open_fail;
10414 	}
10415 
10416 	if (flag & FEXCL) {
10417 		int i;
10418 		if (un->un_ocmap.lyropen[part]) {
10419 			goto excl_open_fail;
10420 		}
10421 		for (i = 0; i < (OTYPCNT - 1); i++) {
10422 			if (un->un_ocmap.regopen[i] & (partmask)) {
10423 				goto excl_open_fail;
10424 			}
10425 		}
10426 	}
10427 
10428 	/*
10429 	 * Check the write permission if this is a removable media device,
10430 	 * NDELAY has not been set, and writable permission is requested.
10431 	 *
10432 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10433 	 * attempt will fail with EIO as part of the I/O processing. This is a
10434 	 * more permissive implementation that allows the open to succeed and
10435 	 * WRITE attempts to fail when appropriate.
10436 	 */
10437 	if (un->un_f_chk_wp_open) {
10438 		if ((flag & FWRITE) && (!nodelay)) {
10439 			mutex_exit(SD_MUTEX(un));
10440 			/*
10441 			 * Defer the check for write permission on writable
10442 			 * DVD drive till sdstrategy and will not fail open even
10443 			 * if FWRITE is set as the device can be writable
10444 			 * depending upon the media and the media can change
10445 			 * after the call to open().
10446 			 */
10447 			if (un->un_f_dvdram_writable_device == FALSE) {
10448 				if (ISCD(un) || sr_check_wp(dev)) {
10449 				rval = EROFS;
10450 				mutex_enter(SD_MUTEX(un));
10451 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10452 				    "write to cd or write protected media\n");
10453 				goto open_fail;
10454 				}
10455 			}
10456 			mutex_enter(SD_MUTEX(un));
10457 		}
10458 	}
10459 
10460 	/*
10461 	 * If opening in NDELAY/NONBLOCK mode, just return.
10462 	 * Check if disk is ready and has a valid geometry later.
10463 	 */
10464 	if (!nodelay) {
10465 		mutex_exit(SD_MUTEX(un));
10466 		rval = sd_ready_and_valid(un);
10467 		mutex_enter(SD_MUTEX(un));
10468 		/*
10469 		 * Fail if device is not ready or if the number of disk
10470 		 * blocks is zero or negative for non CD devices.
10471 		 */
10472 		if ((rval != SD_READY_VALID) ||
10473 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10474 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10475 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10476 			    "device not ready or invalid disk block value\n");
10477 			goto open_fail;
10478 		}
10479 #if defined(__i386) || defined(__amd64)
10480 	} else {
10481 		uchar_t *cp;
10482 		/*
10483 		 * x86 requires special nodelay handling, so that p0 is
10484 		 * always defined and accessible.
10485 		 * Invalidate geometry only if device is not already open.
10486 		 */
10487 		cp = &un->un_ocmap.chkd[0];
10488 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10489 			if (*cp != (uchar_t)0) {
10490 			    break;
10491 			}
10492 			cp++;
10493 		}
10494 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10495 			un->un_f_geometry_is_valid = FALSE;
10496 		}
10497 
10498 #endif
10499 	}
10500 
10501 	if (otyp == OTYP_LYR) {
10502 		un->un_ocmap.lyropen[part]++;
10503 	} else {
10504 		un->un_ocmap.regopen[otyp] |= partmask;
10505 	}
10506 
10507 	/* Set up open and exclusive open flags */
10508 	if (flag & FEXCL) {
10509 		un->un_exclopen |= (partmask);
10510 	}
10511 
10512 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10513 	    "open of part %d type %d\n", part, otyp);
10514 
10515 	mutex_exit(SD_MUTEX(un));
10516 	if (!nodelay) {
10517 		sd_pm_exit(un);
10518 	}
10519 
10520 	sema_v(&un->un_semoclose);
10521 
10522 	mutex_enter(&sd_detach_mutex);
10523 	un->un_opens_in_progress--;
10524 	mutex_exit(&sd_detach_mutex);
10525 
10526 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10527 	return (DDI_SUCCESS);
10528 
10529 excl_open_fail:
10530 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10531 	rval = EBUSY;
10532 
10533 open_fail:
10534 	mutex_exit(SD_MUTEX(un));
10535 
10536 	/*
10537 	 * On a failed open we must exit the pm management.
10538 	 */
10539 	if (!nodelay) {
10540 		sd_pm_exit(un);
10541 	}
10542 open_failed_with_pm:
10543 	sema_v(&un->un_semoclose);
10544 
10545 	mutex_enter(&sd_detach_mutex);
10546 	un->un_opens_in_progress--;
10547 	if (otyp == OTYP_LYR) {
10548 		un->un_layer_count--;
10549 	}
10550 	mutex_exit(&sd_detach_mutex);
10551 
10552 	return (rval);
10553 }
10554 
10555 
10556 /*
10557  *    Function: sdclose
10558  *
10559  * Description: Driver's close(9e) entry point function.
10560  *
10561  *   Arguments: dev    - device number
10562  *		flag   - file status flag, informational only
10563  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10564  *		cred_p - user credential pointer
10565  *
10566  * Return Code: ENXIO
10567  *
10568  *     Context: Kernel thread context
10569  */
10570 /* ARGSUSED */
10571 static int
10572 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10573 {
10574 	struct sd_lun	*un;
10575 	uchar_t		*cp;
10576 	int		part;
10577 	int		nodelay;
10578 	int		rval = 0;
10579 
10580 	/* Validate the open type */
10581 	if (otyp >= OTYPCNT) {
10582 		return (ENXIO);
10583 	}
10584 
10585 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10586 		return (ENXIO);
10587 	}
10588 
10589 	part = SDPART(dev);
10590 	nodelay = flag & (FNDELAY | FNONBLOCK);
10591 
10592 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10593 	    "sdclose: close of part %d type %d\n", part, otyp);
10594 
10595 	/*
10596 	 * We use a semaphore here in order to serialize
10597 	 * open and close requests on the device.
10598 	 */
10599 	sema_p(&un->un_semoclose);
10600 
10601 	mutex_enter(SD_MUTEX(un));
10602 
10603 	/* Don't proceed if power is being changed. */
10604 	while (un->un_state == SD_STATE_PM_CHANGING) {
10605 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10606 	}
10607 
10608 	if (un->un_exclopen & (1 << part)) {
10609 		un->un_exclopen &= ~(1 << part);
10610 	}
10611 
10612 	/* Update the open partition map */
10613 	if (otyp == OTYP_LYR) {
10614 		un->un_ocmap.lyropen[part] -= 1;
10615 	} else {
10616 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10617 	}
10618 
10619 	cp = &un->un_ocmap.chkd[0];
10620 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10621 		if (*cp != NULL) {
10622 			break;
10623 		}
10624 		cp++;
10625 	}
10626 
10627 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10628 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10629 
10630 		/*
10631 		 * We avoid persistance upon the last close, and set
10632 		 * the throttle back to the maximum.
10633 		 */
10634 		un->un_throttle = un->un_saved_throttle;
10635 
10636 		if (un->un_state == SD_STATE_OFFLINE) {
10637 			if (un->un_f_is_fibre == FALSE) {
10638 				scsi_log(SD_DEVINFO(un), sd_label,
10639 					CE_WARN, "offline\n");
10640 			}
10641 			un->un_f_geometry_is_valid = FALSE;
10642 
10643 		} else {
10644 			/*
10645 			 * Flush any outstanding writes in NVRAM cache.
10646 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10647 			 * cmd, it may not work for non-Pluto devices.
10648 			 * SYNCHRONIZE CACHE is not required for removables,
10649 			 * except DVD-RAM drives.
10650 			 *
10651 			 * Also note: because SYNCHRONIZE CACHE is currently
10652 			 * the only command issued here that requires the
10653 			 * drive be powered up, only do the power up before
10654 			 * sending the Sync Cache command. If additional
10655 			 * commands are added which require a powered up
10656 			 * drive, the following sequence may have to change.
10657 			 *
10658 			 * And finally, note that parallel SCSI on SPARC
10659 			 * only issues a Sync Cache to DVD-RAM, a newly
10660 			 * supported device.
10661 			 */
10662 #if defined(__i386) || defined(__amd64)
10663 			if (un->un_f_sync_cache_supported ||
10664 			    un->un_f_dvdram_writable_device == TRUE) {
10665 #else
10666 			if (un->un_f_dvdram_writable_device == TRUE) {
10667 #endif
10668 				mutex_exit(SD_MUTEX(un));
10669 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10670 					rval =
10671 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10672 					    NULL);
10673 					/* ignore error if not supported */
10674 					if (rval == ENOTSUP) {
10675 						rval = 0;
10676 					} else if (rval != 0) {
10677 						rval = EIO;
10678 					}
10679 					sd_pm_exit(un);
10680 				} else {
10681 					rval = EIO;
10682 				}
10683 				mutex_enter(SD_MUTEX(un));
10684 			}
10685 
10686 			/*
10687 			 * For devices which supports DOOR_LOCK, send an ALLOW
10688 			 * MEDIA REMOVAL command, but don't get upset if it
10689 			 * fails. We need to raise the power of the drive before
10690 			 * we can call sd_send_scsi_DOORLOCK()
10691 			 */
10692 			if (un->un_f_doorlock_supported) {
10693 				mutex_exit(SD_MUTEX(un));
10694 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10695 					rval = sd_send_scsi_DOORLOCK(un,
10696 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10697 
10698 					sd_pm_exit(un);
10699 					if (ISCD(un) && (rval != 0) &&
10700 					    (nodelay != 0)) {
10701 						rval = ENXIO;
10702 					}
10703 				} else {
10704 					rval = EIO;
10705 				}
10706 				mutex_enter(SD_MUTEX(un));
10707 			}
10708 
10709 			/*
10710 			 * If a device has removable media, invalidate all
10711 			 * parameters related to media, such as geometry,
10712 			 * blocksize, and blockcount.
10713 			 */
10714 			if (un->un_f_has_removable_media) {
10715 				sr_ejected(un);
10716 			}
10717 
10718 			/*
10719 			 * Destroy the cache (if it exists) which was
10720 			 * allocated for the write maps since this is
10721 			 * the last close for this media.
10722 			 */
10723 			if (un->un_wm_cache) {
10724 				/*
10725 				 * Check if there are pending commands.
10726 				 * and if there are give a warning and
10727 				 * do not destroy the cache.
10728 				 */
10729 				if (un->un_ncmds_in_driver > 0) {
10730 					scsi_log(SD_DEVINFO(un),
10731 					    sd_label, CE_WARN,
10732 					    "Unable to clean up memory "
10733 					    "because of pending I/O\n");
10734 				} else {
10735 					kmem_cache_destroy(
10736 					    un->un_wm_cache);
10737 					un->un_wm_cache = NULL;
10738 				}
10739 			}
10740 		}
10741 	}
10742 
10743 	mutex_exit(SD_MUTEX(un));
10744 	sema_v(&un->un_semoclose);
10745 
10746 	if (otyp == OTYP_LYR) {
10747 		mutex_enter(&sd_detach_mutex);
10748 		/*
10749 		 * The detach routine may run when the layer count
10750 		 * drops to zero.
10751 		 */
10752 		un->un_layer_count--;
10753 		mutex_exit(&sd_detach_mutex);
10754 	}
10755 
10756 	return (rval);
10757 }
10758 
10759 
10760 /*
10761  *    Function: sd_ready_and_valid
10762  *
10763  * Description: Test if device is ready and has a valid geometry.
10764  *
10765  *   Arguments: dev - device number
10766  *		un  - driver soft state (unit) structure
10767  *
10768  * Return Code: SD_READY_VALID		ready and valid label
10769  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10770  *		SD_NOT_READY_VALID	not ready, no label
10771  *
10772  *     Context: Never called at interrupt context.
10773  */
10774 
10775 static int
10776 sd_ready_and_valid(struct sd_lun *un)
10777 {
10778 	struct sd_errstats	*stp;
10779 	uint64_t		capacity;
10780 	uint_t			lbasize;
10781 	int			rval = SD_READY_VALID;
10782 	char			name_str[48];
10783 
10784 	ASSERT(un != NULL);
10785 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10786 
10787 	mutex_enter(SD_MUTEX(un));
10788 	/*
10789 	 * If a device has removable media, we must check if media is
10790 	 * ready when checking if this device is ready and valid.
10791 	 */
10792 	if (un->un_f_has_removable_media) {
10793 		mutex_exit(SD_MUTEX(un));
10794 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10795 			rval = SD_NOT_READY_VALID;
10796 			mutex_enter(SD_MUTEX(un));
10797 			goto done;
10798 		}
10799 
10800 		mutex_enter(SD_MUTEX(un));
10801 		if ((un->un_f_geometry_is_valid == FALSE) ||
10802 		    (un->un_f_blockcount_is_valid == FALSE) ||
10803 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10804 
10805 			/* capacity has to be read every open. */
10806 			mutex_exit(SD_MUTEX(un));
10807 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10808 			    &lbasize, SD_PATH_DIRECT) != 0) {
10809 				mutex_enter(SD_MUTEX(un));
10810 				un->un_f_geometry_is_valid = FALSE;
10811 				rval = SD_NOT_READY_VALID;
10812 				goto done;
10813 			} else {
10814 				mutex_enter(SD_MUTEX(un));
10815 				sd_update_block_info(un, lbasize, capacity);
10816 			}
10817 		}
10818 
10819 		/*
10820 		 * Check if the media in the device is writable or not.
10821 		 */
10822 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10823 			sd_check_for_writable_cd(un);
10824 		}
10825 
10826 	} else {
10827 		/*
10828 		 * Do a test unit ready to clear any unit attention from non-cd
10829 		 * devices.
10830 		 */
10831 		mutex_exit(SD_MUTEX(un));
10832 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10833 		mutex_enter(SD_MUTEX(un));
10834 	}
10835 
10836 
10837 	/*
10838 	 * If this is a non 512 block device, allocate space for
10839 	 * the wmap cache. This is being done here since every time
10840 	 * a media is changed this routine will be called and the
10841 	 * block size is a function of media rather than device.
10842 	 */
10843 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10844 		if (!(un->un_wm_cache)) {
10845 			(void) snprintf(name_str, sizeof (name_str),
10846 			    "%s%d_cache",
10847 			    ddi_driver_name(SD_DEVINFO(un)),
10848 			    ddi_get_instance(SD_DEVINFO(un)));
10849 			un->un_wm_cache = kmem_cache_create(
10850 			    name_str, sizeof (struct sd_w_map),
10851 			    8, sd_wm_cache_constructor,
10852 			    sd_wm_cache_destructor, NULL,
10853 			    (void *)un, NULL, 0);
10854 			if (!(un->un_wm_cache)) {
10855 					rval = ENOMEM;
10856 					goto done;
10857 			}
10858 		}
10859 	}
10860 
10861 	if (un->un_state == SD_STATE_NORMAL) {
10862 		/*
10863 		 * If the target is not yet ready here (defined by a TUR
10864 		 * failure), invalidate the geometry and print an 'offline'
10865 		 * message. This is a legacy message, as the state of the
10866 		 * target is not actually changed to SD_STATE_OFFLINE.
10867 		 *
10868 		 * If the TUR fails for EACCES (Reservation Conflict), it
10869 		 * means there actually is nothing wrong with the target that
10870 		 * would require invalidating the geometry, so continue in
10871 		 * that case as if the TUR was successful.
10872 		 */
10873 		int err;
10874 
10875 		mutex_exit(SD_MUTEX(un));
10876 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10877 		mutex_enter(SD_MUTEX(un));
10878 
10879 		if ((err != 0) && (err != EACCES)) {
10880 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10881 			    "offline\n");
10882 			un->un_f_geometry_is_valid = FALSE;
10883 			rval = SD_NOT_READY_VALID;
10884 			goto done;
10885 		}
10886 	}
10887 
10888 	if (un->un_f_format_in_progress == FALSE) {
10889 		/*
10890 		 * Note: sd_validate_geometry may return TRUE, but that does
10891 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10892 		 */
10893 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10894 		if (rval == ENOTSUP) {
10895 			if (un->un_f_geometry_is_valid == TRUE)
10896 				rval = 0;
10897 			else {
10898 				rval = SD_READY_NOT_VALID;
10899 				goto done;
10900 			}
10901 		}
10902 		if (rval != 0) {
10903 			/*
10904 			 * We don't check the validity of geometry for
10905 			 * CDROMs. Also we assume we have a good label
10906 			 * even if sd_validate_geometry returned ENOMEM.
10907 			 */
10908 			if (!ISCD(un) && rval != ENOMEM) {
10909 				rval = SD_NOT_READY_VALID;
10910 				goto done;
10911 			}
10912 		}
10913 	}
10914 
10915 	/*
10916 	 * If this device supports DOOR_LOCK command, try and send
10917 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10918 	 * if it fails. For a CD, however, it is an error
10919 	 */
10920 	if (un->un_f_doorlock_supported) {
10921 		mutex_exit(SD_MUTEX(un));
10922 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10923 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10924 			rval = SD_NOT_READY_VALID;
10925 			mutex_enter(SD_MUTEX(un));
10926 			goto done;
10927 		}
10928 		mutex_enter(SD_MUTEX(un));
10929 	}
10930 
10931 	/* The state has changed, inform the media watch routines */
10932 	un->un_mediastate = DKIO_INSERTED;
10933 	cv_broadcast(&un->un_state_cv);
10934 	rval = SD_READY_VALID;
10935 
10936 done:
10937 
10938 	/*
10939 	 * Initialize the capacity kstat value, if no media previously
10940 	 * (capacity kstat is 0) and a media has been inserted
10941 	 * (un_blockcount > 0).
10942 	 */
10943 	if (un->un_errstats != NULL) {
10944 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10945 		if ((stp->sd_capacity.value.ui64 == 0) &&
10946 		    (un->un_f_blockcount_is_valid == TRUE)) {
10947 			stp->sd_capacity.value.ui64 =
10948 			    (uint64_t)((uint64_t)un->un_blockcount *
10949 			    un->un_sys_blocksize);
10950 		}
10951 	}
10952 
10953 	mutex_exit(SD_MUTEX(un));
10954 	return (rval);
10955 }
10956 
10957 
10958 /*
10959  *    Function: sdmin
10960  *
10961  * Description: Routine to limit the size of a data transfer. Used in
10962  *		conjunction with physio(9F).
10963  *
10964  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10965  *
10966  *     Context: Kernel thread context.
10967  */
10968 
10969 static void
10970 sdmin(struct buf *bp)
10971 {
10972 	struct sd_lun	*un;
10973 	int		instance;
10974 
10975 	instance = SDUNIT(bp->b_edev);
10976 
10977 	un = ddi_get_soft_state(sd_state, instance);
10978 	ASSERT(un != NULL);
10979 
10980 	if (bp->b_bcount > un->un_max_xfer_size) {
10981 		bp->b_bcount = un->un_max_xfer_size;
10982 	}
10983 }
10984 
10985 
10986 /*
10987  *    Function: sdread
10988  *
10989  * Description: Driver's read(9e) entry point function.
10990  *
10991  *   Arguments: dev   - device number
10992  *		uio   - structure pointer describing where data is to be stored
10993  *			in user's space
10994  *		cred_p  - user credential pointer
10995  *
10996  * Return Code: ENXIO
10997  *		EIO
10998  *		EINVAL
10999  *		value returned by physio
11000  *
11001  *     Context: Kernel thread context.
11002  */
11003 /* ARGSUSED */
11004 static int
11005 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
11006 {
11007 	struct sd_lun	*un = NULL;
11008 	int		secmask;
11009 	int		err;
11010 
11011 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11012 		return (ENXIO);
11013 	}
11014 
11015 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11016 
11017 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11018 		mutex_enter(SD_MUTEX(un));
11019 		/*
11020 		 * Because the call to sd_ready_and_valid will issue I/O we
11021 		 * must wait here if either the device is suspended or
11022 		 * if it's power level is changing.
11023 		 */
11024 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11025 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11026 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11027 		}
11028 		un->un_ncmds_in_driver++;
11029 		mutex_exit(SD_MUTEX(un));
11030 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11031 			mutex_enter(SD_MUTEX(un));
11032 			un->un_ncmds_in_driver--;
11033 			ASSERT(un->un_ncmds_in_driver >= 0);
11034 			mutex_exit(SD_MUTEX(un));
11035 			return (EIO);
11036 		}
11037 		mutex_enter(SD_MUTEX(un));
11038 		un->un_ncmds_in_driver--;
11039 		ASSERT(un->un_ncmds_in_driver >= 0);
11040 		mutex_exit(SD_MUTEX(un));
11041 	}
11042 
11043 	/*
11044 	 * Read requests are restricted to multiples of the system block size.
11045 	 */
11046 	secmask = un->un_sys_blocksize - 1;
11047 
11048 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11049 		SD_ERROR(SD_LOG_READ_WRITE, un,
11050 		    "sdread: file offset not modulo %d\n",
11051 		    un->un_sys_blocksize);
11052 		err = EINVAL;
11053 	} else if (uio->uio_iov->iov_len & (secmask)) {
11054 		SD_ERROR(SD_LOG_READ_WRITE, un,
11055 		    "sdread: transfer length not modulo %d\n",
11056 		    un->un_sys_blocksize);
11057 		err = EINVAL;
11058 	} else {
11059 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
11060 	}
11061 	return (err);
11062 }
11063 
11064 
11065 /*
11066  *    Function: sdwrite
11067  *
11068  * Description: Driver's write(9e) entry point function.
11069  *
11070  *   Arguments: dev   - device number
11071  *		uio   - structure pointer describing where data is stored in
11072  *			user's space
11073  *		cred_p  - user credential pointer
11074  *
11075  * Return Code: ENXIO
11076  *		EIO
11077  *		EINVAL
11078  *		value returned by physio
11079  *
11080  *     Context: Kernel thread context.
11081  */
11082 /* ARGSUSED */
11083 static int
11084 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11085 {
11086 	struct sd_lun	*un = NULL;
11087 	int		secmask;
11088 	int		err;
11089 
11090 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11091 		return (ENXIO);
11092 	}
11093 
11094 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11095 
11096 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11097 		mutex_enter(SD_MUTEX(un));
11098 		/*
11099 		 * Because the call to sd_ready_and_valid will issue I/O we
11100 		 * must wait here if either the device is suspended or
11101 		 * if it's power level is changing.
11102 		 */
11103 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11104 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11105 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11106 		}
11107 		un->un_ncmds_in_driver++;
11108 		mutex_exit(SD_MUTEX(un));
11109 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11110 			mutex_enter(SD_MUTEX(un));
11111 			un->un_ncmds_in_driver--;
11112 			ASSERT(un->un_ncmds_in_driver >= 0);
11113 			mutex_exit(SD_MUTEX(un));
11114 			return (EIO);
11115 		}
11116 		mutex_enter(SD_MUTEX(un));
11117 		un->un_ncmds_in_driver--;
11118 		ASSERT(un->un_ncmds_in_driver >= 0);
11119 		mutex_exit(SD_MUTEX(un));
11120 	}
11121 
11122 	/*
11123 	 * Write requests are restricted to multiples of the system block size.
11124 	 */
11125 	secmask = un->un_sys_blocksize - 1;
11126 
11127 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11128 		SD_ERROR(SD_LOG_READ_WRITE, un,
11129 		    "sdwrite: file offset not modulo %d\n",
11130 		    un->un_sys_blocksize);
11131 		err = EINVAL;
11132 	} else if (uio->uio_iov->iov_len & (secmask)) {
11133 		SD_ERROR(SD_LOG_READ_WRITE, un,
11134 		    "sdwrite: transfer length not modulo %d\n",
11135 		    un->un_sys_blocksize);
11136 		err = EINVAL;
11137 	} else {
11138 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11139 	}
11140 	return (err);
11141 }
11142 
11143 
11144 /*
11145  *    Function: sdaread
11146  *
11147  * Description: Driver's aread(9e) entry point function.
11148  *
11149  *   Arguments: dev   - device number
11150  *		aio   - structure pointer describing where data is to be stored
11151  *		cred_p  - user credential pointer
11152  *
11153  * Return Code: ENXIO
11154  *		EIO
11155  *		EINVAL
11156  *		value returned by aphysio
11157  *
11158  *     Context: Kernel thread context.
11159  */
11160 /* ARGSUSED */
11161 static int
11162 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11163 {
11164 	struct sd_lun	*un = NULL;
11165 	struct uio	*uio = aio->aio_uio;
11166 	int		secmask;
11167 	int		err;
11168 
11169 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11170 		return (ENXIO);
11171 	}
11172 
11173 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11174 
11175 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11176 		mutex_enter(SD_MUTEX(un));
11177 		/*
11178 		 * Because the call to sd_ready_and_valid will issue I/O we
11179 		 * must wait here if either the device is suspended or
11180 		 * if it's power level is changing.
11181 		 */
11182 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11183 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11184 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11185 		}
11186 		un->un_ncmds_in_driver++;
11187 		mutex_exit(SD_MUTEX(un));
11188 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11189 			mutex_enter(SD_MUTEX(un));
11190 			un->un_ncmds_in_driver--;
11191 			ASSERT(un->un_ncmds_in_driver >= 0);
11192 			mutex_exit(SD_MUTEX(un));
11193 			return (EIO);
11194 		}
11195 		mutex_enter(SD_MUTEX(un));
11196 		un->un_ncmds_in_driver--;
11197 		ASSERT(un->un_ncmds_in_driver >= 0);
11198 		mutex_exit(SD_MUTEX(un));
11199 	}
11200 
11201 	/*
11202 	 * Read requests are restricted to multiples of the system block size.
11203 	 */
11204 	secmask = un->un_sys_blocksize - 1;
11205 
11206 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11207 		SD_ERROR(SD_LOG_READ_WRITE, un,
11208 		    "sdaread: file offset not modulo %d\n",
11209 		    un->un_sys_blocksize);
11210 		err = EINVAL;
11211 	} else if (uio->uio_iov->iov_len & (secmask)) {
11212 		SD_ERROR(SD_LOG_READ_WRITE, un,
11213 		    "sdaread: transfer length not modulo %d\n",
11214 		    un->un_sys_blocksize);
11215 		err = EINVAL;
11216 	} else {
11217 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11218 	}
11219 	return (err);
11220 }
11221 
11222 
11223 /*
11224  *    Function: sdawrite
11225  *
11226  * Description: Driver's awrite(9e) entry point function.
11227  *
11228  *   Arguments: dev   - device number
11229  *		aio   - structure pointer describing where data is stored
11230  *		cred_p  - user credential pointer
11231  *
11232  * Return Code: ENXIO
11233  *		EIO
11234  *		EINVAL
11235  *		value returned by aphysio
11236  *
11237  *     Context: Kernel thread context.
11238  */
11239 /* ARGSUSED */
11240 static int
11241 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11242 {
11243 	struct sd_lun	*un = NULL;
11244 	struct uio	*uio = aio->aio_uio;
11245 	int		secmask;
11246 	int		err;
11247 
11248 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11249 		return (ENXIO);
11250 	}
11251 
11252 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11253 
11254 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11255 		mutex_enter(SD_MUTEX(un));
11256 		/*
11257 		 * Because the call to sd_ready_and_valid will issue I/O we
11258 		 * must wait here if either the device is suspended or
11259 		 * if it's power level is changing.
11260 		 */
11261 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11262 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11263 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11264 		}
11265 		un->un_ncmds_in_driver++;
11266 		mutex_exit(SD_MUTEX(un));
11267 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11268 			mutex_enter(SD_MUTEX(un));
11269 			un->un_ncmds_in_driver--;
11270 			ASSERT(un->un_ncmds_in_driver >= 0);
11271 			mutex_exit(SD_MUTEX(un));
11272 			return (EIO);
11273 		}
11274 		mutex_enter(SD_MUTEX(un));
11275 		un->un_ncmds_in_driver--;
11276 		ASSERT(un->un_ncmds_in_driver >= 0);
11277 		mutex_exit(SD_MUTEX(un));
11278 	}
11279 
11280 	/*
11281 	 * Write requests are restricted to multiples of the system block size.
11282 	 */
11283 	secmask = un->un_sys_blocksize - 1;
11284 
11285 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11286 		SD_ERROR(SD_LOG_READ_WRITE, un,
11287 		    "sdawrite: file offset not modulo %d\n",
11288 		    un->un_sys_blocksize);
11289 		err = EINVAL;
11290 	} else if (uio->uio_iov->iov_len & (secmask)) {
11291 		SD_ERROR(SD_LOG_READ_WRITE, un,
11292 		    "sdawrite: transfer length not modulo %d\n",
11293 		    un->un_sys_blocksize);
11294 		err = EINVAL;
11295 	} else {
11296 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11297 	}
11298 	return (err);
11299 }
11300 
11301 
11302 
11303 
11304 
11305 /*
11306  * Driver IO processing follows the following sequence:
11307  *
11308  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11309  *         |                |                     ^
11310  *         v                v                     |
11311  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11312  *         |                |                     |                   |
11313  *         v                |                     |                   |
11314  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11315  *         |                |                     ^                   ^
11316  *         v                v                     |                   |
11317  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11318  *         |                |                     |                   |
11319  *     +---+                |                     +------------+      +-------+
11320  *     |                    |                                  |              |
11321  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11322  *     |                    v                                  |              |
11323  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11324  *     |                    |                                  ^              |
11325  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11326  *     |                    v                                  |              |
11327  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11328  *     |                    |                                  ^              |
11329  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11330  *     |                    v                                  |              |
11331  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11332  *     |                    |                                  ^              |
11333  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11334  *     |                    v                                  |              |
11335  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11336  *     |                    |                                  ^              |
11337  *     |                    |                                  |              |
11338  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11339  *                          |                           ^
11340  *                          v                           |
11341  *                   sd_core_iostart()                  |
11342  *                          |                           |
11343  *                          |                           +------>(*destroypkt)()
11344  *                          +-> sd_start_cmds() <-+     |           |
11345  *                          |                     |     |           v
11346  *                          |                     |     |  scsi_destroy_pkt(9F)
11347  *                          |                     |     |
11348  *                          +->(*initpkt)()       +- sdintr()
11349  *                          |  |                        |  |
11350  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11351  *                          |  +-> scsi_setup_cdb(9F)   |
11352  *                          |                           |
11353  *                          +--> scsi_transport(9F)     |
11354  *                                     |                |
11355  *                                     +----> SCSA ---->+
11356  *
11357  *
11358  * This code is based upon the following presumtions:
11359  *
11360  *   - iostart and iodone functions operate on buf(9S) structures. These
11361  *     functions perform the necessary operations on the buf(9S) and pass
11362  *     them along to the next function in the chain by using the macros
11363  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11364  *     (for iodone side functions).
11365  *
11366  *   - The iostart side functions may sleep. The iodone side functions
11367  *     are called under interrupt context and may NOT sleep. Therefore
11368  *     iodone side functions also may not call iostart side functions.
11369  *     (NOTE: iostart side functions should NOT sleep for memory, as
11370  *     this could result in deadlock.)
11371  *
11372  *   - An iostart side function may call its corresponding iodone side
11373  *     function directly (if necessary).
11374  *
11375  *   - In the event of an error, an iostart side function can return a buf(9S)
11376  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11377  *     b_error in the usual way of course).
11378  *
11379  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11380  *     requests to the iostart side functions.  The iostart side functions in
11381  *     this case would be called under the context of a taskq thread, so it's
11382  *     OK for them to block/sleep/spin in this case.
11383  *
11384  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11385  *     pass them along to the next function in the chain.  The corresponding
11386  *     iodone side functions must coalesce the "shadow" bufs and return
11387  *     the "original" buf to the next higher layer.
11388  *
11389  *   - The b_private field of the buf(9S) struct holds a pointer to
11390  *     an sd_xbuf struct, which contains information needed to
11391  *     construct the scsi_pkt for the command.
11392  *
11393  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11394  *     layer must acquire & release the SD_MUTEX(un) as needed.
11395  */
11396 
11397 
11398 /*
11399  * Create taskq for all targets in the system. This is created at
11400  * _init(9E) and destroyed at _fini(9E).
11401  *
11402  * Note: here we set the minalloc to a reasonably high number to ensure that
11403  * we will have an adequate supply of task entries available at interrupt time.
11404  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11405  * sd_create_taskq().  Since we do not want to sleep for allocations at
11406  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11407  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11408  * requests any one instant in time.
11409  */
11410 #define	SD_TASKQ_NUMTHREADS	8
11411 #define	SD_TASKQ_MINALLOC	256
11412 #define	SD_TASKQ_MAXALLOC	256
11413 
11414 static taskq_t	*sd_tq = NULL;
11415 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11416 
11417 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11418 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11419 
11420 /*
11421  * The following task queue is being created for the write part of
11422  * read-modify-write of non-512 block size devices.
11423  * Limit the number of threads to 1 for now. This number has been choosen
11424  * considering the fact that it applies only to dvd ram drives/MO drives
11425  * currently. Performance for which is not main criteria at this stage.
11426  * Note: It needs to be explored if we can use a single taskq in future
11427  */
11428 #define	SD_WMR_TASKQ_NUMTHREADS	1
11429 static taskq_t	*sd_wmr_tq = NULL;
11430 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11431 
11432 /*
11433  *    Function: sd_taskq_create
11434  *
11435  * Description: Create taskq thread(s) and preallocate task entries
11436  *
11437  * Return Code: Returns a pointer to the allocated taskq_t.
11438  *
11439  *     Context: Can sleep. Requires blockable context.
11440  *
11441  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11442  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11443  *		- taskq_create() will block for memory, also it will panic
11444  *		  if it cannot create the requested number of threads.
11445  *		- Currently taskq_create() creates threads that cannot be
11446  *		  swapped.
11447  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11448  *		  supply of taskq entries at interrupt time (ie, so that we
11449  *		  do not have to sleep for memory)
11450  */
11451 
11452 static void
11453 sd_taskq_create(void)
11454 {
11455 	char	taskq_name[TASKQ_NAMELEN];
11456 
11457 	ASSERT(sd_tq == NULL);
11458 	ASSERT(sd_wmr_tq == NULL);
11459 
11460 	(void) snprintf(taskq_name, sizeof (taskq_name),
11461 	    "%s_drv_taskq", sd_label);
11462 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11463 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11464 	    TASKQ_PREPOPULATE));
11465 
11466 	(void) snprintf(taskq_name, sizeof (taskq_name),
11467 	    "%s_rmw_taskq", sd_label);
11468 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11469 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11470 	    TASKQ_PREPOPULATE));
11471 }
11472 
11473 
11474 /*
11475  *    Function: sd_taskq_delete
11476  *
11477  * Description: Complementary cleanup routine for sd_taskq_create().
11478  *
11479  *     Context: Kernel thread context.
11480  */
11481 
11482 static void
11483 sd_taskq_delete(void)
11484 {
11485 	ASSERT(sd_tq != NULL);
11486 	ASSERT(sd_wmr_tq != NULL);
11487 	taskq_destroy(sd_tq);
11488 	taskq_destroy(sd_wmr_tq);
11489 	sd_tq = NULL;
11490 	sd_wmr_tq = NULL;
11491 }
11492 
11493 
11494 /*
11495  *    Function: sdstrategy
11496  *
11497  * Description: Driver's strategy (9E) entry point function.
11498  *
11499  *   Arguments: bp - pointer to buf(9S)
11500  *
11501  * Return Code: Always returns zero
11502  *
11503  *     Context: Kernel thread context.
11504  */
11505 
11506 static int
11507 sdstrategy(struct buf *bp)
11508 {
11509 	struct sd_lun *un;
11510 
11511 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11512 	if (un == NULL) {
11513 		bioerror(bp, EIO);
11514 		bp->b_resid = bp->b_bcount;
11515 		biodone(bp);
11516 		return (0);
11517 	}
11518 	/* As was done in the past, fail new cmds. if state is dumping. */
11519 	if (un->un_state == SD_STATE_DUMPING) {
11520 		bioerror(bp, ENXIO);
11521 		bp->b_resid = bp->b_bcount;
11522 		biodone(bp);
11523 		return (0);
11524 	}
11525 
11526 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11527 
11528 	/*
11529 	 * Commands may sneak in while we released the mutex in
11530 	 * DDI_SUSPEND, we should block new commands. However, old
11531 	 * commands that are still in the driver at this point should
11532 	 * still be allowed to drain.
11533 	 */
11534 	mutex_enter(SD_MUTEX(un));
11535 	/*
11536 	 * Must wait here if either the device is suspended or
11537 	 * if it's power level is changing.
11538 	 */
11539 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11540 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11541 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11542 	}
11543 
11544 	un->un_ncmds_in_driver++;
11545 
11546 	/*
11547 	 * atapi: Since we are running the CD for now in PIO mode we need to
11548 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11549 	 * the HBA's init_pkt routine.
11550 	 */
11551 	if (un->un_f_cfg_is_atapi == TRUE) {
11552 		mutex_exit(SD_MUTEX(un));
11553 		bp_mapin(bp);
11554 		mutex_enter(SD_MUTEX(un));
11555 	}
11556 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11557 	    un->un_ncmds_in_driver);
11558 
11559 	mutex_exit(SD_MUTEX(un));
11560 
11561 	/*
11562 	 * This will (eventually) allocate the sd_xbuf area and
11563 	 * call sd_xbuf_strategy().  We just want to return the
11564 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11565 	 * imized tail call which saves us a stack frame.
11566 	 */
11567 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11568 }
11569 
11570 
11571 /*
11572  *    Function: sd_xbuf_strategy
11573  *
11574  * Description: Function for initiating IO operations via the
11575  *		ddi_xbuf_qstrategy() mechanism.
11576  *
11577  *     Context: Kernel thread context.
11578  */
11579 
11580 static void
11581 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11582 {
11583 	struct sd_lun *un = arg;
11584 
11585 	ASSERT(bp != NULL);
11586 	ASSERT(xp != NULL);
11587 	ASSERT(un != NULL);
11588 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11589 
11590 	/*
11591 	 * Initialize the fields in the xbuf and save a pointer to the
11592 	 * xbuf in bp->b_private.
11593 	 */
11594 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11595 
11596 	/* Send the buf down the iostart chain */
11597 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11598 }
11599 
11600 
11601 /*
11602  *    Function: sd_xbuf_init
11603  *
11604  * Description: Prepare the given sd_xbuf struct for use.
11605  *
11606  *   Arguments: un - ptr to softstate
11607  *		bp - ptr to associated buf(9S)
11608  *		xp - ptr to associated sd_xbuf
11609  *		chain_type - IO chain type to use:
11610  *			SD_CHAIN_NULL
11611  *			SD_CHAIN_BUFIO
11612  *			SD_CHAIN_USCSI
11613  *			SD_CHAIN_DIRECT
11614  *			SD_CHAIN_DIRECT_PRIORITY
11615  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11616  *			initialization; may be NULL if none.
11617  *
11618  *     Context: Kernel thread context
11619  */
11620 
11621 static void
11622 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11623 	uchar_t chain_type, void *pktinfop)
11624 {
11625 	int index;
11626 
11627 	ASSERT(un != NULL);
11628 	ASSERT(bp != NULL);
11629 	ASSERT(xp != NULL);
11630 
11631 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11632 	    bp, chain_type);
11633 
11634 	xp->xb_un	= un;
11635 	xp->xb_pktp	= NULL;
11636 	xp->xb_pktinfo	= pktinfop;
11637 	xp->xb_private	= bp->b_private;
11638 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11639 
11640 	/*
11641 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11642 	 * upon the specified chain type to use.
11643 	 */
11644 	switch (chain_type) {
11645 	case SD_CHAIN_NULL:
11646 		/*
11647 		 * Fall thru to just use the values for the buf type, even
11648 		 * tho for the NULL chain these values will never be used.
11649 		 */
11650 		/* FALLTHRU */
11651 	case SD_CHAIN_BUFIO:
11652 		index = un->un_buf_chain_type;
11653 		break;
11654 	case SD_CHAIN_USCSI:
11655 		index = un->un_uscsi_chain_type;
11656 		break;
11657 	case SD_CHAIN_DIRECT:
11658 		index = un->un_direct_chain_type;
11659 		break;
11660 	case SD_CHAIN_DIRECT_PRIORITY:
11661 		index = un->un_priority_chain_type;
11662 		break;
11663 	default:
11664 		/* We're really broken if we ever get here... */
11665 		panic("sd_xbuf_init: illegal chain type!");
11666 		/*NOTREACHED*/
11667 	}
11668 
11669 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11670 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11671 
11672 	/*
11673 	 * It might be a bit easier to simply bzero the entire xbuf above,
11674 	 * but it turns out that since we init a fair number of members anyway,
11675 	 * we save a fair number cycles by doing explicit assignment of zero.
11676 	 */
11677 	xp->xb_pkt_flags	= 0;
11678 	xp->xb_dma_resid	= 0;
11679 	xp->xb_retry_count	= 0;
11680 	xp->xb_victim_retry_count = 0;
11681 	xp->xb_ua_retry_count	= 0;
11682 	xp->xb_sense_bp		= NULL;
11683 	xp->xb_sense_status	= 0;
11684 	xp->xb_sense_state	= 0;
11685 	xp->xb_sense_resid	= 0;
11686 
11687 	bp->b_private	= xp;
11688 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11689 	bp->b_resid	= 0;
11690 	bp->av_forw	= NULL;
11691 	bp->av_back	= NULL;
11692 	bioerror(bp, 0);
11693 
11694 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11695 }
11696 
11697 
11698 /*
11699  *    Function: sd_uscsi_strategy
11700  *
11701  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11702  *
11703  *   Arguments: bp - buf struct ptr
11704  *
11705  * Return Code: Always returns 0
11706  *
11707  *     Context: Kernel thread context
11708  */
11709 
11710 static int
11711 sd_uscsi_strategy(struct buf *bp)
11712 {
11713 	struct sd_lun		*un;
11714 	struct sd_uscsi_info	*uip;
11715 	struct sd_xbuf		*xp;
11716 	uchar_t			chain_type;
11717 
11718 	ASSERT(bp != NULL);
11719 
11720 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11721 	if (un == NULL) {
11722 		bioerror(bp, EIO);
11723 		bp->b_resid = bp->b_bcount;
11724 		biodone(bp);
11725 		return (0);
11726 	}
11727 
11728 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11729 
11730 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11731 
11732 	mutex_enter(SD_MUTEX(un));
11733 	/*
11734 	 * atapi: Since we are running the CD for now in PIO mode we need to
11735 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11736 	 * the HBA's init_pkt routine.
11737 	 */
11738 	if (un->un_f_cfg_is_atapi == TRUE) {
11739 		mutex_exit(SD_MUTEX(un));
11740 		bp_mapin(bp);
11741 		mutex_enter(SD_MUTEX(un));
11742 	}
11743 	un->un_ncmds_in_driver++;
11744 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11745 	    un->un_ncmds_in_driver);
11746 	mutex_exit(SD_MUTEX(un));
11747 
11748 	/*
11749 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11750 	 */
11751 	ASSERT(bp->b_private != NULL);
11752 	uip = (struct sd_uscsi_info *)bp->b_private;
11753 
11754 	switch (uip->ui_flags) {
11755 	case SD_PATH_DIRECT:
11756 		chain_type = SD_CHAIN_DIRECT;
11757 		break;
11758 	case SD_PATH_DIRECT_PRIORITY:
11759 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11760 		break;
11761 	default:
11762 		chain_type = SD_CHAIN_USCSI;
11763 		break;
11764 	}
11765 
11766 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11767 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11768 
11769 	/* Use the index obtained within xbuf_init */
11770 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11771 
11772 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11773 
11774 	return (0);
11775 }
11776 
11777 
11778 /*
11779  * These routines perform raw i/o operations.
11780  */
11781 /*ARGSUSED*/
11782 static void
11783 sduscsimin(struct buf *bp)
11784 {
11785 	/*
11786 	 * do not break up because the CDB count would then
11787 	 * be incorrect and data underruns would result (incomplete
11788 	 * read/writes which would be retried and then failed, see
11789 	 * sdintr().
11790 	 */
11791 }
11792 
11793 
11794 
11795 /*
11796  *    Function: sd_send_scsi_cmd
11797  *
11798  * Description: Runs a USCSI command for user (when called thru sdioctl),
11799  *		or for the driver
11800  *
11801  *   Arguments: dev - the dev_t for the device
11802  *		incmd - ptr to a valid uscsi_cmd struct
11803  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11804  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11805  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11806  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11807  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11808  *			to use the USCSI "direct" chain and bypass the normal
11809  *			command waitq.
11810  *
11811  * Return Code: 0 -  successful completion of the given command
11812  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11813  *		ENXIO  - soft state not found for specified dev
11814  *		EINVAL
11815  *		EFAULT - copyin/copyout error
11816  *		return code of biowait(9F) or physio(9F):
11817  *			EIO - IO error, caller may check incmd->uscsi_status
11818  *			ENXIO
11819  *			EACCES - reservation conflict
11820  *
11821  *     Context: Waits for command to complete. Can sleep.
11822  */
11823 
11824 static int
11825 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11826 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11827 	int path_flag)
11828 {
11829 	struct sd_uscsi_info	*uip;
11830 	struct uscsi_cmd	*uscmd;
11831 	struct sd_lun	*un;
11832 	struct buf	*bp;
11833 	int	rval;
11834 	int	flags;
11835 
11836 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11837 	if (un == NULL) {
11838 		return (ENXIO);
11839 	}
11840 
11841 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11842 
11843 #ifdef SDDEBUG
11844 	switch (dataspace) {
11845 	case UIO_USERSPACE:
11846 		SD_TRACE(SD_LOG_IO, un,
11847 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11848 		break;
11849 	case UIO_SYSSPACE:
11850 		SD_TRACE(SD_LOG_IO, un,
11851 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11852 		break;
11853 	default:
11854 		SD_TRACE(SD_LOG_IO, un,
11855 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11856 		break;
11857 	}
11858 #endif
11859 
11860 	/*
11861 	 * Perform resets directly; no need to generate a command to do it.
11862 	 */
11863 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11864 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11865 		    RESET_ALL : RESET_TARGET;
11866 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11867 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11868 			/* Reset attempt was unsuccessful */
11869 			SD_TRACE(SD_LOG_IO, un,
11870 			    "sd_send_scsi_cmd: reset: failure\n");
11871 			return (EIO);
11872 		}
11873 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11874 		return (0);
11875 	}
11876 
11877 	/* Perfunctory sanity check... */
11878 	if (incmd->uscsi_cdblen <= 0) {
11879 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11880 		    "invalid uscsi_cdblen, returning EINVAL\n");
11881 		return (EINVAL);
11882 	} else if (incmd->uscsi_cdblen > un->un_max_hba_cdb) {
11883 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11884 		    "unsupported uscsi_cdblen, returning EINVAL\n");
11885 		return (EINVAL);
11886 	}
11887 
11888 	/*
11889 	 * In order to not worry about where the uscsi structure came from
11890 	 * (or where the cdb it points to came from) we're going to make
11891 	 * kmem_alloc'd copies of them here. This will also allow reference
11892 	 * to the data they contain long after this process has gone to
11893 	 * sleep and its kernel stack has been unmapped, etc.
11894 	 *
11895 	 * First get some memory for the uscsi_cmd struct and copy the
11896 	 * contents of the given uscsi_cmd struct into it.
11897 	 */
11898 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11899 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11900 
11901 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11902 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11903 
11904 	/*
11905 	 * Now get some space for the CDB, and copy the given CDB into
11906 	 * it. Use ddi_copyin() in case the data is in user space.
11907 	 */
11908 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11909 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11910 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11911 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11912 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11913 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11914 		return (EFAULT);
11915 	}
11916 
11917 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11918 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11919 
11920 	bp = getrbuf(KM_SLEEP);
11921 
11922 	/*
11923 	 * Allocate an sd_uscsi_info struct and fill it with the info
11924 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11925 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11926 	 * since we allocate the buf here in this function, we do not
11927 	 * need to preserve the prior contents of b_private.
11928 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11929 	 */
11930 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11931 	uip->ui_flags = path_flag;
11932 	uip->ui_cmdp  = uscmd;
11933 	bp->b_private = uip;
11934 
11935 	/*
11936 	 * Initialize Request Sense buffering, if requested.
11937 	 */
11938 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11939 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11940 		/*
11941 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11942 		 * buffer, but we replace this with a kernel buffer that
11943 		 * we allocate to use with the sense data. The sense data
11944 		 * (if present) gets copied into this new buffer before the
11945 		 * command is completed.  Then we copy the sense data from
11946 		 * our allocated buf into the caller's buffer below. Note
11947 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11948 		 * below to perform the copy back to the caller's buf.
11949 		 */
11950 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11951 		if (rqbufspace == UIO_USERSPACE) {
11952 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11953 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11954 		} else {
11955 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11956 			uscmd->uscsi_rqlen   = rlen;
11957 			uscmd->uscsi_rqresid = rlen;
11958 		}
11959 	} else {
11960 		uscmd->uscsi_rqbuf = NULL;
11961 		uscmd->uscsi_rqlen   = 0;
11962 		uscmd->uscsi_rqresid = 0;
11963 	}
11964 
11965 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11966 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11967 
11968 	if (un->un_f_is_fibre == FALSE) {
11969 		/*
11970 		 * Force asynchronous mode, if necessary.  Doing this here
11971 		 * has the unfortunate effect of running other queued
11972 		 * commands async also, but since the main purpose of this
11973 		 * capability is downloading new drive firmware, we can
11974 		 * probably live with it.
11975 		 */
11976 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11977 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11978 				== 1) {
11979 				if (scsi_ifsetcap(SD_ADDRESS(un),
11980 					    "synchronous", 0, 1) == 1) {
11981 					SD_TRACE(SD_LOG_IO, un,
11982 					"sd_send_scsi_cmd: forced async ok\n");
11983 				} else {
11984 					SD_TRACE(SD_LOG_IO, un,
11985 					"sd_send_scsi_cmd:\
11986 					forced async failed\n");
11987 					rval = EINVAL;
11988 					goto done;
11989 				}
11990 			}
11991 		}
11992 
11993 		/*
11994 		 * Re-enable synchronous mode, if requested
11995 		 */
11996 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11997 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11998 				== 0) {
11999 				int i = scsi_ifsetcap(SD_ADDRESS(un),
12000 						"synchronous", 1, 1);
12001 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12002 					"re-enabled sync %s\n",
12003 					(i == 1) ? "ok" : "failed");
12004 			}
12005 		}
12006 	}
12007 
12008 	/*
12009 	 * Commands sent with priority are intended for error recovery
12010 	 * situations, and do not have retries performed.
12011 	 */
12012 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12013 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12014 	}
12015 
12016 	/*
12017 	 * If we're going to do actual I/O, let physio do all the right things
12018 	 */
12019 	if (uscmd->uscsi_buflen != 0) {
12020 		struct iovec	aiov;
12021 		struct uio	auio;
12022 		struct uio	*uio = &auio;
12023 
12024 		bzero(&auio, sizeof (struct uio));
12025 		bzero(&aiov, sizeof (struct iovec));
12026 		aiov.iov_base = uscmd->uscsi_bufaddr;
12027 		aiov.iov_len  = uscmd->uscsi_buflen;
12028 		uio->uio_iov  = &aiov;
12029 
12030 		uio->uio_iovcnt  = 1;
12031 		uio->uio_resid   = uscmd->uscsi_buflen;
12032 		uio->uio_segflg  = dataspace;
12033 
12034 		/*
12035 		 * physio() will block here until the command completes....
12036 		 */
12037 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
12038 
12039 		rval = physio(sd_uscsi_strategy, bp, dev,
12040 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
12041 		    sduscsimin, uio);
12042 
12043 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12044 		    "returned from physio with 0x%x\n", rval);
12045 
12046 	} else {
12047 		/*
12048 		 * We have to mimic what physio would do here! Argh!
12049 		 */
12050 		bp->b_flags  = B_BUSY |
12051 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
12052 		bp->b_edev   = dev;
12053 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
12054 		bp->b_bcount = 0;
12055 		bp->b_blkno  = 0;
12056 
12057 		SD_TRACE(SD_LOG_IO, un,
12058 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
12059 
12060 		(void) sd_uscsi_strategy(bp);
12061 
12062 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
12063 
12064 		rval = biowait(bp);
12065 
12066 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12067 		    "returned from  biowait with 0x%x\n", rval);
12068 	}
12069 
12070 done:
12071 
12072 #ifdef SDDEBUG
12073 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12074 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12075 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12076 	if (uscmd->uscsi_bufaddr != NULL) {
12077 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12078 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12079 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12080 		if (dataspace == UIO_SYSSPACE) {
12081 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12082 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12083 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12084 		}
12085 	}
12086 #endif
12087 
12088 	/*
12089 	 * Get the status and residual to return to the caller.
12090 	 */
12091 	incmd->uscsi_status = uscmd->uscsi_status;
12092 	incmd->uscsi_resid  = uscmd->uscsi_resid;
12093 
12094 	/*
12095 	 * If the caller wants sense data, copy back whatever sense data
12096 	 * we may have gotten, and update the relevant rqsense info.
12097 	 */
12098 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12099 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12100 
12101 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
12102 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
12103 
12104 		/* Update the Request Sense status and resid */
12105 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
12106 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
12107 
12108 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12109 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
12110 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
12111 
12112 		/* Copy out the sense data for user processes */
12113 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
12114 			int flags =
12115 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
12116 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
12117 			    rqlen, flags) != 0) {
12118 				rval = EFAULT;
12119 			}
12120 			/*
12121 			 * Note: Can't touch incmd->uscsi_rqbuf so use
12122 			 * uscmd->uscsi_rqbuf instead. They're the same.
12123 			 */
12124 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12125 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
12126 			    incmd->uscsi_rqbuf, rqlen);
12127 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
12128 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
12129 		}
12130 	}
12131 
12132 	/*
12133 	 * Free allocated resources and return; mapout the buf in case it was
12134 	 * mapped in by a lower layer.
12135 	 */
12136 	bp_mapout(bp);
12137 	freerbuf(bp);
12138 	kmem_free(uip, sizeof (struct sd_uscsi_info));
12139 	if (uscmd->uscsi_rqbuf != NULL) {
12140 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
12141 	}
12142 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
12143 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
12144 
12145 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
12146 
12147 	return (rval);
12148 }
12149 
12150 
12151 /*
12152  *    Function: sd_buf_iodone
12153  *
12154  * Description: Frees the sd_xbuf & returns the buf to its originator.
12155  *
12156  *     Context: May be called from interrupt context.
12157  */
12158 /* ARGSUSED */
12159 static void
12160 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12161 {
12162 	struct sd_xbuf *xp;
12163 
12164 	ASSERT(un != NULL);
12165 	ASSERT(bp != NULL);
12166 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12167 
12168 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12169 
12170 	xp = SD_GET_XBUF(bp);
12171 	ASSERT(xp != NULL);
12172 
12173 	mutex_enter(SD_MUTEX(un));
12174 
12175 	/*
12176 	 * Grab time when the cmd completed.
12177 	 * This is used for determining if the system has been
12178 	 * idle long enough to make it idle to the PM framework.
12179 	 * This is for lowering the overhead, and therefore improving
12180 	 * performance per I/O operation.
12181 	 */
12182 	un->un_pm_idle_time = ddi_get_time();
12183 
12184 	un->un_ncmds_in_driver--;
12185 	ASSERT(un->un_ncmds_in_driver >= 0);
12186 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12187 	    un->un_ncmds_in_driver);
12188 
12189 	mutex_exit(SD_MUTEX(un));
12190 
12191 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12192 	biodone(bp);				/* bp is gone after this */
12193 
12194 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12195 }
12196 
12197 
12198 /*
12199  *    Function: sd_uscsi_iodone
12200  *
12201  * Description: Frees the sd_xbuf & returns the buf to its originator.
12202  *
12203  *     Context: May be called from interrupt context.
12204  */
12205 /* ARGSUSED */
12206 static void
12207 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12208 {
12209 	struct sd_xbuf *xp;
12210 
12211 	ASSERT(un != NULL);
12212 	ASSERT(bp != NULL);
12213 
12214 	xp = SD_GET_XBUF(bp);
12215 	ASSERT(xp != NULL);
12216 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12217 
12218 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12219 
12220 	bp->b_private = xp->xb_private;
12221 
12222 	mutex_enter(SD_MUTEX(un));
12223 
12224 	/*
12225 	 * Grab time when the cmd completed.
12226 	 * This is used for determining if the system has been
12227 	 * idle long enough to make it idle to the PM framework.
12228 	 * This is for lowering the overhead, and therefore improving
12229 	 * performance per I/O operation.
12230 	 */
12231 	un->un_pm_idle_time = ddi_get_time();
12232 
12233 	un->un_ncmds_in_driver--;
12234 	ASSERT(un->un_ncmds_in_driver >= 0);
12235 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12236 	    un->un_ncmds_in_driver);
12237 
12238 	mutex_exit(SD_MUTEX(un));
12239 
12240 	kmem_free(xp, sizeof (struct sd_xbuf));
12241 	biodone(bp);
12242 
12243 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12244 }
12245 
12246 
12247 /*
12248  *    Function: sd_mapblockaddr_iostart
12249  *
12250  * Description: Verify request lies withing the partition limits for
12251  *		the indicated minor device.  Issue "overrun" buf if
12252  *		request would exceed partition range.  Converts
12253  *		partition-relative block address to absolute.
12254  *
12255  *     Context: Can sleep
12256  *
12257  *      Issues: This follows what the old code did, in terms of accessing
12258  *		some of the partition info in the unit struct without holding
12259  *		the mutext.  This is a general issue, if the partition info
12260  *		can be altered while IO is in progress... as soon as we send
12261  *		a buf, its partitioning can be invalid before it gets to the
12262  *		device.  Probably the right fix is to move partitioning out
12263  *		of the driver entirely.
12264  */
12265 
12266 static void
12267 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12268 {
12269 	daddr_t	nblocks;	/* #blocks in the given partition */
12270 	daddr_t	blocknum;	/* Block number specified by the buf */
12271 	size_t	requested_nblocks;
12272 	size_t	available_nblocks;
12273 	int	partition;
12274 	diskaddr_t	partition_offset;
12275 	struct sd_xbuf *xp;
12276 
12277 
12278 	ASSERT(un != NULL);
12279 	ASSERT(bp != NULL);
12280 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12281 
12282 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12283 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12284 
12285 	xp = SD_GET_XBUF(bp);
12286 	ASSERT(xp != NULL);
12287 
12288 	/*
12289 	 * If the geometry is not indicated as valid, attempt to access
12290 	 * the unit & verify the geometry/label. This can be the case for
12291 	 * removable-media devices, of if the device was opened in
12292 	 * NDELAY/NONBLOCK mode.
12293 	 */
12294 	if ((un->un_f_geometry_is_valid != TRUE) &&
12295 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12296 		/*
12297 		 * For removable devices it is possible to start an I/O
12298 		 * without a media by opening the device in nodelay mode.
12299 		 * Also for writable CDs there can be many scenarios where
12300 		 * there is no geometry yet but volume manager is trying to
12301 		 * issue a read() just because it can see TOC on the CD. So
12302 		 * do not print a message for removables.
12303 		 */
12304 		if (!un->un_f_has_removable_media) {
12305 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12306 			    "i/o to invalid geometry\n");
12307 		}
12308 		bioerror(bp, EIO);
12309 		bp->b_resid = bp->b_bcount;
12310 		SD_BEGIN_IODONE(index, un, bp);
12311 		return;
12312 	}
12313 
12314 	partition = SDPART(bp->b_edev);
12315 
12316 	/* #blocks in partition */
12317 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12318 
12319 	/* Use of a local variable potentially improves performance slightly */
12320 	partition_offset = un->un_offset[partition];
12321 
12322 	/*
12323 	 * blocknum is the starting block number of the request. At this
12324 	 * point it is still relative to the start of the minor device.
12325 	 */
12326 	blocknum = xp->xb_blkno;
12327 
12328 	/*
12329 	 * Legacy: If the starting block number is one past the last block
12330 	 * in the partition, do not set B_ERROR in the buf.
12331 	 */
12332 	if (blocknum == nblocks)  {
12333 		goto error_exit;
12334 	}
12335 
12336 	/*
12337 	 * Confirm that the first block of the request lies within the
12338 	 * partition limits. Also the requested number of bytes must be
12339 	 * a multiple of the system block size.
12340 	 */
12341 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12342 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12343 		bp->b_flags |= B_ERROR;
12344 		goto error_exit;
12345 	}
12346 
12347 	/*
12348 	 * If the requsted # blocks exceeds the available # blocks, that
12349 	 * is an overrun of the partition.
12350 	 */
12351 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12352 	available_nblocks = (size_t)(nblocks - blocknum);
12353 	ASSERT(nblocks >= blocknum);
12354 
12355 	if (requested_nblocks > available_nblocks) {
12356 		/*
12357 		 * Allocate an "overrun" buf to allow the request to proceed
12358 		 * for the amount of space available in the partition. The
12359 		 * amount not transferred will be added into the b_resid
12360 		 * when the operation is complete. The overrun buf
12361 		 * replaces the original buf here, and the original buf
12362 		 * is saved inside the overrun buf, for later use.
12363 		 */
12364 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12365 		    (offset_t)(requested_nblocks - available_nblocks));
12366 		size_t count = bp->b_bcount - resid;
12367 		/*
12368 		 * Note: count is an unsigned entity thus it'll NEVER
12369 		 * be less than 0 so ASSERT the original values are
12370 		 * correct.
12371 		 */
12372 		ASSERT(bp->b_bcount >= resid);
12373 
12374 		bp = sd_bioclone_alloc(bp, count, blocknum,
12375 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12376 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12377 		ASSERT(xp != NULL);
12378 	}
12379 
12380 	/* At this point there should be no residual for this buf. */
12381 	ASSERT(bp->b_resid == 0);
12382 
12383 	/* Convert the block number to an absolute address. */
12384 	xp->xb_blkno += partition_offset;
12385 
12386 	SD_NEXT_IOSTART(index, un, bp);
12387 
12388 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12389 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12390 
12391 	return;
12392 
12393 error_exit:
12394 	bp->b_resid = bp->b_bcount;
12395 	SD_BEGIN_IODONE(index, un, bp);
12396 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12397 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12398 }
12399 
12400 
12401 /*
12402  *    Function: sd_mapblockaddr_iodone
12403  *
12404  * Description: Completion-side processing for partition management.
12405  *
12406  *     Context: May be called under interrupt context
12407  */
12408 
12409 static void
12410 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12411 {
12412 	/* int	partition; */	/* Not used, see below. */
12413 	ASSERT(un != NULL);
12414 	ASSERT(bp != NULL);
12415 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12416 
12417 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12418 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12419 
12420 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12421 		/*
12422 		 * We have an "overrun" buf to deal with...
12423 		 */
12424 		struct sd_xbuf	*xp;
12425 		struct buf	*obp;	/* ptr to the original buf */
12426 
12427 		xp = SD_GET_XBUF(bp);
12428 		ASSERT(xp != NULL);
12429 
12430 		/* Retrieve the pointer to the original buf */
12431 		obp = (struct buf *)xp->xb_private;
12432 		ASSERT(obp != NULL);
12433 
12434 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12435 		bioerror(obp, bp->b_error);
12436 
12437 		sd_bioclone_free(bp);
12438 
12439 		/*
12440 		 * Get back the original buf.
12441 		 * Note that since the restoration of xb_blkno below
12442 		 * was removed, the sd_xbuf is not needed.
12443 		 */
12444 		bp = obp;
12445 		/*
12446 		 * xp = SD_GET_XBUF(bp);
12447 		 * ASSERT(xp != NULL);
12448 		 */
12449 	}
12450 
12451 	/*
12452 	 * Convert sd->xb_blkno back to a minor-device relative value.
12453 	 * Note: this has been commented out, as it is not needed in the
12454 	 * current implementation of the driver (ie, since this function
12455 	 * is at the top of the layering chains, so the info will be
12456 	 * discarded) and it is in the "hot" IO path.
12457 	 *
12458 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12459 	 * xp->xb_blkno -= un->un_offset[partition];
12460 	 */
12461 
12462 	SD_NEXT_IODONE(index, un, bp);
12463 
12464 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12465 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12466 }
12467 
12468 
12469 /*
12470  *    Function: sd_mapblocksize_iostart
12471  *
12472  * Description: Convert between system block size (un->un_sys_blocksize)
12473  *		and target block size (un->un_tgt_blocksize).
12474  *
12475  *     Context: Can sleep to allocate resources.
12476  *
12477  * Assumptions: A higher layer has already performed any partition validation,
12478  *		and converted the xp->xb_blkno to an absolute value relative
12479  *		to the start of the device.
12480  *
12481  *		It is also assumed that the higher layer has implemented
12482  *		an "overrun" mechanism for the case where the request would
12483  *		read/write beyond the end of a partition.  In this case we
12484  *		assume (and ASSERT) that bp->b_resid == 0.
12485  *
12486  *		Note: The implementation for this routine assumes the target
12487  *		block size remains constant between allocation and transport.
12488  */
12489 
12490 static void
12491 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12492 {
12493 	struct sd_mapblocksize_info	*bsp;
12494 	struct sd_xbuf			*xp;
12495 	offset_t first_byte;
12496 	daddr_t	start_block, end_block;
12497 	daddr_t	request_bytes;
12498 	ushort_t is_aligned = FALSE;
12499 
12500 	ASSERT(un != NULL);
12501 	ASSERT(bp != NULL);
12502 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12503 	ASSERT(bp->b_resid == 0);
12504 
12505 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12506 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12507 
12508 	/*
12509 	 * For a non-writable CD, a write request is an error
12510 	 */
12511 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12512 	    (un->un_f_mmc_writable_media == FALSE)) {
12513 		bioerror(bp, EIO);
12514 		bp->b_resid = bp->b_bcount;
12515 		SD_BEGIN_IODONE(index, un, bp);
12516 		return;
12517 	}
12518 
12519 	/*
12520 	 * We do not need a shadow buf if the device is using
12521 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12522 	 * In this case there is no layer-private data block allocated.
12523 	 */
12524 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12525 	    (bp->b_bcount == 0)) {
12526 		goto done;
12527 	}
12528 
12529 #if defined(__i386) || defined(__amd64)
12530 	/* We do not support non-block-aligned transfers for ROD devices */
12531 	ASSERT(!ISROD(un));
12532 #endif
12533 
12534 	xp = SD_GET_XBUF(bp);
12535 	ASSERT(xp != NULL);
12536 
12537 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12538 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12539 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12540 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12541 	    "request start block:0x%x\n", xp->xb_blkno);
12542 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12543 	    "request len:0x%x\n", bp->b_bcount);
12544 
12545 	/*
12546 	 * Allocate the layer-private data area for the mapblocksize layer.
12547 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12548 	 * struct to store the pointer to their layer-private data block, but
12549 	 * each layer also has the responsibility of restoring the prior
12550 	 * contents of xb_private before returning the buf/xbuf to the
12551 	 * higher layer that sent it.
12552 	 *
12553 	 * Here we save the prior contents of xp->xb_private into the
12554 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12555 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12556 	 * the layer-private area and returning the buf/xbuf to the layer
12557 	 * that sent it.
12558 	 *
12559 	 * Note that here we use kmem_zalloc for the allocation as there are
12560 	 * parts of the mapblocksize code that expect certain fields to be
12561 	 * zero unless explicitly set to a required value.
12562 	 */
12563 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12564 	bsp->mbs_oprivate = xp->xb_private;
12565 	xp->xb_private = bsp;
12566 
12567 	/*
12568 	 * This treats the data on the disk (target) as an array of bytes.
12569 	 * first_byte is the byte offset, from the beginning of the device,
12570 	 * to the location of the request. This is converted from a
12571 	 * un->un_sys_blocksize block address to a byte offset, and then back
12572 	 * to a block address based upon a un->un_tgt_blocksize block size.
12573 	 *
12574 	 * xp->xb_blkno should be absolute upon entry into this function,
12575 	 * but, but it is based upon partitions that use the "system"
12576 	 * block size. It must be adjusted to reflect the block size of
12577 	 * the target.
12578 	 *
12579 	 * Note that end_block is actually the block that follows the last
12580 	 * block of the request, but that's what is needed for the computation.
12581 	 */
12582 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12583 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12584 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12585 	    un->un_tgt_blocksize;
12586 
12587 	/* request_bytes is rounded up to a multiple of the target block size */
12588 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12589 
12590 	/*
12591 	 * See if the starting address of the request and the request
12592 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12593 	 * then we do not need to allocate a shadow buf to handle the request.
12594 	 */
12595 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12596 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12597 		is_aligned = TRUE;
12598 	}
12599 
12600 	if ((bp->b_flags & B_READ) == 0) {
12601 		/*
12602 		 * Lock the range for a write operation. An aligned request is
12603 		 * considered a simple write; otherwise the request must be a
12604 		 * read-modify-write.
12605 		 */
12606 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12607 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12608 	}
12609 
12610 	/*
12611 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12612 	 * where the READ command is generated for a read-modify-write. (The
12613 	 * write phase is deferred until after the read completes.)
12614 	 */
12615 	if (is_aligned == FALSE) {
12616 
12617 		struct sd_mapblocksize_info	*shadow_bsp;
12618 		struct sd_xbuf	*shadow_xp;
12619 		struct buf	*shadow_bp;
12620 
12621 		/*
12622 		 * Allocate the shadow buf and it associated xbuf. Note that
12623 		 * after this call the xb_blkno value in both the original
12624 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12625 		 * same: absolute relative to the start of the device, and
12626 		 * adjusted for the target block size. The b_blkno in the
12627 		 * shadow buf will also be set to this value. We should never
12628 		 * change b_blkno in the original bp however.
12629 		 *
12630 		 * Note also that the shadow buf will always need to be a
12631 		 * READ command, regardless of whether the incoming command
12632 		 * is a READ or a WRITE.
12633 		 */
12634 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12635 		    xp->xb_blkno,
12636 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12637 
12638 		shadow_xp = SD_GET_XBUF(shadow_bp);
12639 
12640 		/*
12641 		 * Allocate the layer-private data for the shadow buf.
12642 		 * (No need to preserve xb_private in the shadow xbuf.)
12643 		 */
12644 		shadow_xp->xb_private = shadow_bsp =
12645 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12646 
12647 		/*
12648 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12649 		 * to figure out where the start of the user data is (based upon
12650 		 * the system block size) in the data returned by the READ
12651 		 * command (which will be based upon the target blocksize). Note
12652 		 * that this is only really used if the request is unaligned.
12653 		 */
12654 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12655 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12656 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12657 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12658 
12659 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12660 
12661 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12662 
12663 		/* Transfer the wmap (if any) to the shadow buf */
12664 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12665 		bsp->mbs_wmp = NULL;
12666 
12667 		/*
12668 		 * The shadow buf goes on from here in place of the
12669 		 * original buf.
12670 		 */
12671 		shadow_bsp->mbs_orig_bp = bp;
12672 		bp = shadow_bp;
12673 	}
12674 
12675 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12676 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12677 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12678 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12679 	    request_bytes);
12680 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12681 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12682 
12683 done:
12684 	SD_NEXT_IOSTART(index, un, bp);
12685 
12686 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12687 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12688 }
12689 
12690 
12691 /*
12692  *    Function: sd_mapblocksize_iodone
12693  *
12694  * Description: Completion side processing for block-size mapping.
12695  *
12696  *     Context: May be called under interrupt context
12697  */
12698 
12699 static void
12700 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12701 {
12702 	struct sd_mapblocksize_info	*bsp;
12703 	struct sd_xbuf	*xp;
12704 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12705 	struct buf	*orig_bp;	/* ptr to the original buf */
12706 	offset_t	shadow_end;
12707 	offset_t	request_end;
12708 	offset_t	shadow_start;
12709 	ssize_t		copy_offset;
12710 	size_t		copy_length;
12711 	size_t		shortfall;
12712 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12713 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12714 
12715 	ASSERT(un != NULL);
12716 	ASSERT(bp != NULL);
12717 
12718 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12719 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12720 
12721 	/*
12722 	 * There is no shadow buf or layer-private data if the target is
12723 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12724 	 */
12725 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12726 	    (bp->b_bcount == 0)) {
12727 		goto exit;
12728 	}
12729 
12730 	xp = SD_GET_XBUF(bp);
12731 	ASSERT(xp != NULL);
12732 
12733 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12734 	bsp = xp->xb_private;
12735 
12736 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12737 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12738 
12739 	if (is_write) {
12740 		/*
12741 		 * For a WRITE request we must free up the block range that
12742 		 * we have locked up.  This holds regardless of whether this is
12743 		 * an aligned write request or a read-modify-write request.
12744 		 */
12745 		sd_range_unlock(un, bsp->mbs_wmp);
12746 		bsp->mbs_wmp = NULL;
12747 	}
12748 
12749 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12750 		/*
12751 		 * An aligned read or write command will have no shadow buf;
12752 		 * there is not much else to do with it.
12753 		 */
12754 		goto done;
12755 	}
12756 
12757 	orig_bp = bsp->mbs_orig_bp;
12758 	ASSERT(orig_bp != NULL);
12759 	orig_xp = SD_GET_XBUF(orig_bp);
12760 	ASSERT(orig_xp != NULL);
12761 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12762 
12763 	if (!is_write && has_wmap) {
12764 		/*
12765 		 * A READ with a wmap means this is the READ phase of a
12766 		 * read-modify-write. If an error occurred on the READ then
12767 		 * we do not proceed with the WRITE phase or copy any data.
12768 		 * Just release the write maps and return with an error.
12769 		 */
12770 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12771 			orig_bp->b_resid = orig_bp->b_bcount;
12772 			bioerror(orig_bp, bp->b_error);
12773 			sd_range_unlock(un, bsp->mbs_wmp);
12774 			goto freebuf_done;
12775 		}
12776 	}
12777 
12778 	/*
12779 	 * Here is where we set up to copy the data from the shadow buf
12780 	 * into the space associated with the original buf.
12781 	 *
12782 	 * To deal with the conversion between block sizes, these
12783 	 * computations treat the data as an array of bytes, with the
12784 	 * first byte (byte 0) corresponding to the first byte in the
12785 	 * first block on the disk.
12786 	 */
12787 
12788 	/*
12789 	 * shadow_start and shadow_len indicate the location and size of
12790 	 * the data returned with the shadow IO request.
12791 	 */
12792 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12793 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12794 
12795 	/*
12796 	 * copy_offset gives the offset (in bytes) from the start of the first
12797 	 * block of the READ request to the beginning of the data.  We retrieve
12798 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12799 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12800 	 * data to be copied (in bytes).
12801 	 */
12802 	copy_offset  = bsp->mbs_copy_offset;
12803 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12804 	copy_length  = orig_bp->b_bcount;
12805 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12806 
12807 	/*
12808 	 * Set up the resid and error fields of orig_bp as appropriate.
12809 	 */
12810 	if (shadow_end >= request_end) {
12811 		/* We got all the requested data; set resid to zero */
12812 		orig_bp->b_resid = 0;
12813 	} else {
12814 		/*
12815 		 * We failed to get enough data to fully satisfy the original
12816 		 * request. Just copy back whatever data we got and set
12817 		 * up the residual and error code as required.
12818 		 *
12819 		 * 'shortfall' is the amount by which the data received with the
12820 		 * shadow buf has "fallen short" of the requested amount.
12821 		 */
12822 		shortfall = (size_t)(request_end - shadow_end);
12823 
12824 		if (shortfall > orig_bp->b_bcount) {
12825 			/*
12826 			 * We did not get enough data to even partially
12827 			 * fulfill the original request.  The residual is
12828 			 * equal to the amount requested.
12829 			 */
12830 			orig_bp->b_resid = orig_bp->b_bcount;
12831 		} else {
12832 			/*
12833 			 * We did not get all the data that we requested
12834 			 * from the device, but we will try to return what
12835 			 * portion we did get.
12836 			 */
12837 			orig_bp->b_resid = shortfall;
12838 		}
12839 		ASSERT(copy_length >= orig_bp->b_resid);
12840 		copy_length  -= orig_bp->b_resid;
12841 	}
12842 
12843 	/* Propagate the error code from the shadow buf to the original buf */
12844 	bioerror(orig_bp, bp->b_error);
12845 
12846 	if (is_write) {
12847 		goto freebuf_done;	/* No data copying for a WRITE */
12848 	}
12849 
12850 	if (has_wmap) {
12851 		/*
12852 		 * This is a READ command from the READ phase of a
12853 		 * read-modify-write request. We have to copy the data given
12854 		 * by the user OVER the data returned by the READ command,
12855 		 * then convert the command from a READ to a WRITE and send
12856 		 * it back to the target.
12857 		 */
12858 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12859 		    copy_length);
12860 
12861 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12862 
12863 		/*
12864 		 * Dispatch the WRITE command to the taskq thread, which
12865 		 * will in turn send the command to the target. When the
12866 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12867 		 * will get called again as part of the iodone chain
12868 		 * processing for it. Note that we will still be dealing
12869 		 * with the shadow buf at that point.
12870 		 */
12871 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12872 		    KM_NOSLEEP) != 0) {
12873 			/*
12874 			 * Dispatch was successful so we are done. Return
12875 			 * without going any higher up the iodone chain. Do
12876 			 * not free up any layer-private data until after the
12877 			 * WRITE completes.
12878 			 */
12879 			return;
12880 		}
12881 
12882 		/*
12883 		 * Dispatch of the WRITE command failed; set up the error
12884 		 * condition and send this IO back up the iodone chain.
12885 		 */
12886 		bioerror(orig_bp, EIO);
12887 		orig_bp->b_resid = orig_bp->b_bcount;
12888 
12889 	} else {
12890 		/*
12891 		 * This is a regular READ request (ie, not a RMW). Copy the
12892 		 * data from the shadow buf into the original buf. The
12893 		 * copy_offset compensates for any "misalignment" between the
12894 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12895 		 * original buf (with its un->un_sys_blocksize blocks).
12896 		 */
12897 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12898 		    copy_length);
12899 	}
12900 
12901 freebuf_done:
12902 
12903 	/*
12904 	 * At this point we still have both the shadow buf AND the original
12905 	 * buf to deal with, as well as the layer-private data area in each.
12906 	 * Local variables are as follows:
12907 	 *
12908 	 * bp -- points to shadow buf
12909 	 * xp -- points to xbuf of shadow buf
12910 	 * bsp -- points to layer-private data area of shadow buf
12911 	 * orig_bp -- points to original buf
12912 	 *
12913 	 * First free the shadow buf and its associated xbuf, then free the
12914 	 * layer-private data area from the shadow buf. There is no need to
12915 	 * restore xb_private in the shadow xbuf.
12916 	 */
12917 	sd_shadow_buf_free(bp);
12918 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12919 
12920 	/*
12921 	 * Now update the local variables to point to the original buf, xbuf,
12922 	 * and layer-private area.
12923 	 */
12924 	bp = orig_bp;
12925 	xp = SD_GET_XBUF(bp);
12926 	ASSERT(xp != NULL);
12927 	ASSERT(xp == orig_xp);
12928 	bsp = xp->xb_private;
12929 	ASSERT(bsp != NULL);
12930 
12931 done:
12932 	/*
12933 	 * Restore xb_private to whatever it was set to by the next higher
12934 	 * layer in the chain, then free the layer-private data area.
12935 	 */
12936 	xp->xb_private = bsp->mbs_oprivate;
12937 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12938 
12939 exit:
12940 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12941 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12942 
12943 	SD_NEXT_IODONE(index, un, bp);
12944 }
12945 
12946 
12947 /*
12948  *    Function: sd_checksum_iostart
12949  *
12950  * Description: A stub function for a layer that's currently not used.
12951  *		For now just a placeholder.
12952  *
12953  *     Context: Kernel thread context
12954  */
12955 
12956 static void
12957 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12958 {
12959 	ASSERT(un != NULL);
12960 	ASSERT(bp != NULL);
12961 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12962 	SD_NEXT_IOSTART(index, un, bp);
12963 }
12964 
12965 
12966 /*
12967  *    Function: sd_checksum_iodone
12968  *
12969  * Description: A stub function for a layer that's currently not used.
12970  *		For now just a placeholder.
12971  *
12972  *     Context: May be called under interrupt context
12973  */
12974 
12975 static void
12976 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12977 {
12978 	ASSERT(un != NULL);
12979 	ASSERT(bp != NULL);
12980 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12981 	SD_NEXT_IODONE(index, un, bp);
12982 }
12983 
12984 
12985 /*
12986  *    Function: sd_checksum_uscsi_iostart
12987  *
12988  * Description: A stub function for a layer that's currently not used.
12989  *		For now just a placeholder.
12990  *
12991  *     Context: Kernel thread context
12992  */
12993 
12994 static void
12995 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12996 {
12997 	ASSERT(un != NULL);
12998 	ASSERT(bp != NULL);
12999 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13000 	SD_NEXT_IOSTART(index, un, bp);
13001 }
13002 
13003 
13004 /*
13005  *    Function: sd_checksum_uscsi_iodone
13006  *
13007  * Description: A stub function for a layer that's currently not used.
13008  *		For now just a placeholder.
13009  *
13010  *     Context: May be called under interrupt context
13011  */
13012 
13013 static void
13014 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13015 {
13016 	ASSERT(un != NULL);
13017 	ASSERT(bp != NULL);
13018 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13019 	SD_NEXT_IODONE(index, un, bp);
13020 }
13021 
13022 
13023 /*
13024  *    Function: sd_pm_iostart
13025  *
13026  * Description: iostart-side routine for Power mangement.
13027  *
13028  *     Context: Kernel thread context
13029  */
13030 
13031 static void
13032 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13033 {
13034 	ASSERT(un != NULL);
13035 	ASSERT(bp != NULL);
13036 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13037 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13038 
13039 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13040 
13041 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13042 		/*
13043 		 * Set up to return the failed buf back up the 'iodone'
13044 		 * side of the calling chain.
13045 		 */
13046 		bioerror(bp, EIO);
13047 		bp->b_resid = bp->b_bcount;
13048 
13049 		SD_BEGIN_IODONE(index, un, bp);
13050 
13051 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13052 		return;
13053 	}
13054 
13055 	SD_NEXT_IOSTART(index, un, bp);
13056 
13057 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13058 }
13059 
13060 
13061 /*
13062  *    Function: sd_pm_iodone
13063  *
13064  * Description: iodone-side routine for power mangement.
13065  *
13066  *     Context: may be called from interrupt context
13067  */
13068 
13069 static void
13070 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13071 {
13072 	ASSERT(un != NULL);
13073 	ASSERT(bp != NULL);
13074 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13075 
13076 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13077 
13078 	/*
13079 	 * After attach the following flag is only read, so don't
13080 	 * take the penalty of acquiring a mutex for it.
13081 	 */
13082 	if (un->un_f_pm_is_enabled == TRUE) {
13083 		sd_pm_exit(un);
13084 	}
13085 
13086 	SD_NEXT_IODONE(index, un, bp);
13087 
13088 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13089 }
13090 
13091 
13092 /*
13093  *    Function: sd_core_iostart
13094  *
13095  * Description: Primary driver function for enqueuing buf(9S) structs from
13096  *		the system and initiating IO to the target device
13097  *
13098  *     Context: Kernel thread context. Can sleep.
13099  *
13100  * Assumptions:  - The given xp->xb_blkno is absolute
13101  *		   (ie, relative to the start of the device).
13102  *		 - The IO is to be done using the native blocksize of
13103  *		   the device, as specified in un->un_tgt_blocksize.
13104  */
13105 /* ARGSUSED */
13106 static void
13107 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13108 {
13109 	struct sd_xbuf *xp;
13110 
13111 	ASSERT(un != NULL);
13112 	ASSERT(bp != NULL);
13113 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13114 	ASSERT(bp->b_resid == 0);
13115 
13116 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13117 
13118 	xp = SD_GET_XBUF(bp);
13119 	ASSERT(xp != NULL);
13120 
13121 	mutex_enter(SD_MUTEX(un));
13122 
13123 	/*
13124 	 * If we are currently in the failfast state, fail any new IO
13125 	 * that has B_FAILFAST set, then return.
13126 	 */
13127 	if ((bp->b_flags & B_FAILFAST) &&
13128 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13129 		mutex_exit(SD_MUTEX(un));
13130 		bioerror(bp, EIO);
13131 		bp->b_resid = bp->b_bcount;
13132 		SD_BEGIN_IODONE(index, un, bp);
13133 		return;
13134 	}
13135 
13136 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13137 		/*
13138 		 * Priority command -- transport it immediately.
13139 		 *
13140 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13141 		 * because all direct priority commands should be associated
13142 		 * with error recovery actions which we don't want to retry.
13143 		 */
13144 		sd_start_cmds(un, bp);
13145 	} else {
13146 		/*
13147 		 * Normal command -- add it to the wait queue, then start
13148 		 * transporting commands from the wait queue.
13149 		 */
13150 		sd_add_buf_to_waitq(un, bp);
13151 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13152 		sd_start_cmds(un, NULL);
13153 	}
13154 
13155 	mutex_exit(SD_MUTEX(un));
13156 
13157 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13158 }
13159 
13160 
13161 /*
13162  *    Function: sd_init_cdb_limits
13163  *
13164  * Description: This is to handle scsi_pkt initialization differences
13165  *		between the driver platforms.
13166  *
13167  *		Legacy behaviors:
13168  *
13169  *		If the block number or the sector count exceeds the
13170  *		capabilities of a Group 0 command, shift over to a
13171  *		Group 1 command. We don't blindly use Group 1
13172  *		commands because a) some drives (CDC Wren IVs) get a
13173  *		bit confused, and b) there is probably a fair amount
13174  *		of speed difference for a target to receive and decode
13175  *		a 10 byte command instead of a 6 byte command.
13176  *
13177  *		The xfer time difference of 6 vs 10 byte CDBs is
13178  *		still significant so this code is still worthwhile.
13179  *		10 byte CDBs are very inefficient with the fas HBA driver
13180  *		and older disks. Each CDB byte took 1 usec with some
13181  *		popular disks.
13182  *
13183  *     Context: Must be called at attach time
13184  */
13185 
13186 static void
13187 sd_init_cdb_limits(struct sd_lun *un)
13188 {
13189 	int hba_cdb_limit;
13190 
13191 	/*
13192 	 * Use CDB_GROUP1 commands for most devices except for
13193 	 * parallel SCSI fixed drives in which case we get better
13194 	 * performance using CDB_GROUP0 commands (where applicable).
13195 	 */
13196 	un->un_mincdb = SD_CDB_GROUP1;
13197 #if !defined(__fibre)
13198 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13199 	    !un->un_f_has_removable_media) {
13200 		un->un_mincdb = SD_CDB_GROUP0;
13201 	}
13202 #endif
13203 
13204 	/*
13205 	 * Try to read the max-cdb-length supported by HBA.
13206 	 */
13207 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13208 	if (0 >= un->un_max_hba_cdb) {
13209 		un->un_max_hba_cdb = CDB_GROUP4;
13210 		hba_cdb_limit = SD_CDB_GROUP4;
13211 	} else if (0 < un->un_max_hba_cdb &&
13212 	    un->un_max_hba_cdb < CDB_GROUP1) {
13213 		hba_cdb_limit = SD_CDB_GROUP0;
13214 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13215 	    un->un_max_hba_cdb < CDB_GROUP5) {
13216 		hba_cdb_limit = SD_CDB_GROUP1;
13217 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13218 	    un->un_max_hba_cdb < CDB_GROUP4) {
13219 		hba_cdb_limit = SD_CDB_GROUP5;
13220 	} else {
13221 		hba_cdb_limit = SD_CDB_GROUP4;
13222 	}
13223 
13224 	/*
13225 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13226 	 * commands for fixed disks unless we are building for a 32 bit
13227 	 * kernel.
13228 	 */
13229 #ifdef _LP64
13230 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13231 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13232 #else
13233 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13234 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13235 #endif
13236 
13237 	/*
13238 	 * x86 systems require the PKT_DMA_PARTIAL flag
13239 	 */
13240 #if defined(__x86)
13241 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13242 #else
13243 	un->un_pkt_flags = 0;
13244 #endif
13245 
13246 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13247 	    ? sizeof (struct scsi_arq_status) : 1);
13248 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13249 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13250 }
13251 
13252 
13253 /*
13254  *    Function: sd_initpkt_for_buf
13255  *
13256  * Description: Allocate and initialize for transport a scsi_pkt struct,
13257  *		based upon the info specified in the given buf struct.
13258  *
13259  *		Assumes the xb_blkno in the request is absolute (ie,
13260  *		relative to the start of the device (NOT partition!).
13261  *		Also assumes that the request is using the native block
13262  *		size of the device (as returned by the READ CAPACITY
13263  *		command).
13264  *
13265  * Return Code: SD_PKT_ALLOC_SUCCESS
13266  *		SD_PKT_ALLOC_FAILURE
13267  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13268  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13269  *
13270  *     Context: Kernel thread and may be called from software interrupt context
13271  *		as part of a sdrunout callback. This function may not block or
13272  *		call routines that block
13273  */
13274 
13275 static int
13276 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13277 {
13278 	struct sd_xbuf	*xp;
13279 	struct scsi_pkt *pktp = NULL;
13280 	struct sd_lun	*un;
13281 	size_t		blockcount;
13282 	daddr_t		startblock;
13283 	int		rval;
13284 	int		cmd_flags;
13285 
13286 	ASSERT(bp != NULL);
13287 	ASSERT(pktpp != NULL);
13288 	xp = SD_GET_XBUF(bp);
13289 	ASSERT(xp != NULL);
13290 	un = SD_GET_UN(bp);
13291 	ASSERT(un != NULL);
13292 	ASSERT(mutex_owned(SD_MUTEX(un)));
13293 	ASSERT(bp->b_resid == 0);
13294 
13295 	SD_TRACE(SD_LOG_IO_CORE, un,
13296 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13297 
13298 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13299 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13300 		/*
13301 		 * Already have a scsi_pkt -- just need DMA resources.
13302 		 * We must recompute the CDB in case the mapping returns
13303 		 * a nonzero pkt_resid.
13304 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13305 		 * that is being retried, the unmap/remap of the DMA resouces
13306 		 * will result in the entire transfer starting over again
13307 		 * from the very first block.
13308 		 */
13309 		ASSERT(xp->xb_pktp != NULL);
13310 		pktp = xp->xb_pktp;
13311 	} else {
13312 		pktp = NULL;
13313 	}
13314 #endif /* __i386 || __amd64 */
13315 
13316 	startblock = xp->xb_blkno;	/* Absolute block num. */
13317 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13318 
13319 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13320 
13321 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13322 
13323 #else
13324 
13325 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13326 
13327 #endif
13328 
13329 	/*
13330 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13331 	 * call scsi_init_pkt, and build the CDB.
13332 	 */
13333 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13334 	    cmd_flags, sdrunout, (caddr_t)un,
13335 	    startblock, blockcount);
13336 
13337 	if (rval == 0) {
13338 		/*
13339 		 * Success.
13340 		 *
13341 		 * If partial DMA is being used and required for this transfer.
13342 		 * set it up here.
13343 		 */
13344 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13345 		    (pktp->pkt_resid != 0)) {
13346 
13347 			/*
13348 			 * Save the CDB length and pkt_resid for the
13349 			 * next xfer
13350 			 */
13351 			xp->xb_dma_resid = pktp->pkt_resid;
13352 
13353 			/* rezero resid */
13354 			pktp->pkt_resid = 0;
13355 
13356 		} else {
13357 			xp->xb_dma_resid = 0;
13358 		}
13359 
13360 		pktp->pkt_flags = un->un_tagflags;
13361 		pktp->pkt_time  = un->un_cmd_timeout;
13362 		pktp->pkt_comp  = sdintr;
13363 
13364 		pktp->pkt_private = bp;
13365 		*pktpp = pktp;
13366 
13367 		SD_TRACE(SD_LOG_IO_CORE, un,
13368 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13369 
13370 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13371 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13372 #endif
13373 
13374 		return (SD_PKT_ALLOC_SUCCESS);
13375 
13376 	}
13377 
13378 	/*
13379 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13380 	 * from sd_setup_rw_pkt.
13381 	 */
13382 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13383 
13384 	if (rval == SD_PKT_ALLOC_FAILURE) {
13385 		*pktpp = NULL;
13386 		/*
13387 		 * Set the driver state to RWAIT to indicate the driver
13388 		 * is waiting on resource allocations. The driver will not
13389 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13390 		 */
13391 		New_state(un, SD_STATE_RWAIT);
13392 
13393 		SD_ERROR(SD_LOG_IO_CORE, un,
13394 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13395 
13396 		if ((bp->b_flags & B_ERROR) != 0) {
13397 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13398 		}
13399 		return (SD_PKT_ALLOC_FAILURE);
13400 	} else {
13401 		/*
13402 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13403 		 *
13404 		 * This should never happen.  Maybe someone messed with the
13405 		 * kernel's minphys?
13406 		 */
13407 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13408 		    "Request rejected: too large for CDB: "
13409 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13410 		SD_ERROR(SD_LOG_IO_CORE, un,
13411 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13412 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13413 
13414 	}
13415 }
13416 
13417 
13418 /*
13419  *    Function: sd_destroypkt_for_buf
13420  *
13421  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13422  *
13423  *     Context: Kernel thread or interrupt context
13424  */
13425 
13426 static void
13427 sd_destroypkt_for_buf(struct buf *bp)
13428 {
13429 	ASSERT(bp != NULL);
13430 	ASSERT(SD_GET_UN(bp) != NULL);
13431 
13432 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13433 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13434 
13435 	ASSERT(SD_GET_PKTP(bp) != NULL);
13436 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13437 
13438 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13439 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13440 }
13441 
13442 /*
13443  *    Function: sd_setup_rw_pkt
13444  *
13445  * Description: Determines appropriate CDB group for the requested LBA
13446  *		and transfer length, calls scsi_init_pkt, and builds
13447  *		the CDB.  Do not use for partial DMA transfers except
13448  *		for the initial transfer since the CDB size must
13449  *		remain constant.
13450  *
13451  *     Context: Kernel thread and may be called from software interrupt
13452  *		context as part of a sdrunout callback. This function may not
13453  *		block or call routines that block
13454  */
13455 
13456 
13457 int
13458 sd_setup_rw_pkt(struct sd_lun *un,
13459     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13460     int (*callback)(caddr_t), caddr_t callback_arg,
13461     diskaddr_t lba, uint32_t blockcount)
13462 {
13463 	struct scsi_pkt *return_pktp;
13464 	union scsi_cdb *cdbp;
13465 	struct sd_cdbinfo *cp = NULL;
13466 	int i;
13467 
13468 	/*
13469 	 * See which size CDB to use, based upon the request.
13470 	 */
13471 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13472 
13473 		/*
13474 		 * Check lba and block count against sd_cdbtab limits.
13475 		 * In the partial DMA case, we have to use the same size
13476 		 * CDB for all the transfers.  Check lba + blockcount
13477 		 * against the max LBA so we know that segment of the
13478 		 * transfer can use the CDB we select.
13479 		 */
13480 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13481 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13482 
13483 			/*
13484 			 * The command will fit into the CDB type
13485 			 * specified by sd_cdbtab[i].
13486 			 */
13487 			cp = sd_cdbtab + i;
13488 
13489 			/*
13490 			 * Call scsi_init_pkt so we can fill in the
13491 			 * CDB.
13492 			 */
13493 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13494 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13495 			    flags, callback, callback_arg);
13496 
13497 			if (return_pktp != NULL) {
13498 
13499 				/*
13500 				 * Return new value of pkt
13501 				 */
13502 				*pktpp = return_pktp;
13503 
13504 				/*
13505 				 * To be safe, zero the CDB insuring there is
13506 				 * no leftover data from a previous command.
13507 				 */
13508 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13509 
13510 				/*
13511 				 * Handle partial DMA mapping
13512 				 */
13513 				if (return_pktp->pkt_resid != 0) {
13514 
13515 					/*
13516 					 * Not going to xfer as many blocks as
13517 					 * originally expected
13518 					 */
13519 					blockcount -=
13520 					    SD_BYTES2TGTBLOCKS(un,
13521 						return_pktp->pkt_resid);
13522 				}
13523 
13524 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13525 
13526 				/*
13527 				 * Set command byte based on the CDB
13528 				 * type we matched.
13529 				 */
13530 				cdbp->scc_cmd = cp->sc_grpmask |
13531 				    ((bp->b_flags & B_READ) ?
13532 					SCMD_READ : SCMD_WRITE);
13533 
13534 				SD_FILL_SCSI1_LUN(un, return_pktp);
13535 
13536 				/*
13537 				 * Fill in LBA and length
13538 				 */
13539 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13540 				    (cp->sc_grpcode == CDB_GROUP4) ||
13541 				    (cp->sc_grpcode == CDB_GROUP0) ||
13542 				    (cp->sc_grpcode == CDB_GROUP5));
13543 
13544 				if (cp->sc_grpcode == CDB_GROUP1) {
13545 					FORMG1ADDR(cdbp, lba);
13546 					FORMG1COUNT(cdbp, blockcount);
13547 					return (0);
13548 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13549 					FORMG4LONGADDR(cdbp, lba);
13550 					FORMG4COUNT(cdbp, blockcount);
13551 					return (0);
13552 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13553 					FORMG0ADDR(cdbp, lba);
13554 					FORMG0COUNT(cdbp, blockcount);
13555 					return (0);
13556 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13557 					FORMG5ADDR(cdbp, lba);
13558 					FORMG5COUNT(cdbp, blockcount);
13559 					return (0);
13560 				}
13561 
13562 				/*
13563 				 * It should be impossible to not match one
13564 				 * of the CDB types above, so we should never
13565 				 * reach this point.  Set the CDB command byte
13566 				 * to test-unit-ready to avoid writing
13567 				 * to somewhere we don't intend.
13568 				 */
13569 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13570 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13571 			} else {
13572 				/*
13573 				 * Couldn't get scsi_pkt
13574 				 */
13575 				return (SD_PKT_ALLOC_FAILURE);
13576 			}
13577 		}
13578 	}
13579 
13580 	/*
13581 	 * None of the available CDB types were suitable.  This really
13582 	 * should never happen:  on a 64 bit system we support
13583 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13584 	 * and on a 32 bit system we will refuse to bind to a device
13585 	 * larger than 2TB so addresses will never be larger than 32 bits.
13586 	 */
13587 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13588 }
13589 
13590 #if defined(__i386) || defined(__amd64)
13591 /*
13592  *    Function: sd_setup_next_rw_pkt
13593  *
13594  * Description: Setup packet for partial DMA transfers, except for the
13595  * 		initial transfer.  sd_setup_rw_pkt should be used for
13596  *		the initial transfer.
13597  *
13598  *     Context: Kernel thread and may be called from interrupt context.
13599  */
13600 
13601 int
13602 sd_setup_next_rw_pkt(struct sd_lun *un,
13603     struct scsi_pkt *pktp, struct buf *bp,
13604     diskaddr_t lba, uint32_t blockcount)
13605 {
13606 	uchar_t com;
13607 	union scsi_cdb *cdbp;
13608 	uchar_t cdb_group_id;
13609 
13610 	ASSERT(pktp != NULL);
13611 	ASSERT(pktp->pkt_cdbp != NULL);
13612 
13613 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13614 	com = cdbp->scc_cmd;
13615 	cdb_group_id = CDB_GROUPID(com);
13616 
13617 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13618 	    (cdb_group_id == CDB_GROUPID_1) ||
13619 	    (cdb_group_id == CDB_GROUPID_4) ||
13620 	    (cdb_group_id == CDB_GROUPID_5));
13621 
13622 	/*
13623 	 * Move pkt to the next portion of the xfer.
13624 	 * func is NULL_FUNC so we do not have to release
13625 	 * the disk mutex here.
13626 	 */
13627 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13628 	    NULL_FUNC, NULL) == pktp) {
13629 		/* Success.  Handle partial DMA */
13630 		if (pktp->pkt_resid != 0) {
13631 			blockcount -=
13632 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13633 		}
13634 
13635 		cdbp->scc_cmd = com;
13636 		SD_FILL_SCSI1_LUN(un, pktp);
13637 		if (cdb_group_id == CDB_GROUPID_1) {
13638 			FORMG1ADDR(cdbp, lba);
13639 			FORMG1COUNT(cdbp, blockcount);
13640 			return (0);
13641 		} else if (cdb_group_id == CDB_GROUPID_4) {
13642 			FORMG4LONGADDR(cdbp, lba);
13643 			FORMG4COUNT(cdbp, blockcount);
13644 			return (0);
13645 		} else if (cdb_group_id == CDB_GROUPID_0) {
13646 			FORMG0ADDR(cdbp, lba);
13647 			FORMG0COUNT(cdbp, blockcount);
13648 			return (0);
13649 		} else if (cdb_group_id == CDB_GROUPID_5) {
13650 			FORMG5ADDR(cdbp, lba);
13651 			FORMG5COUNT(cdbp, blockcount);
13652 			return (0);
13653 		}
13654 
13655 		/* Unreachable */
13656 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13657 	}
13658 
13659 	/*
13660 	 * Error setting up next portion of cmd transfer.
13661 	 * Something is definitely very wrong and this
13662 	 * should not happen.
13663 	 */
13664 	return (SD_PKT_ALLOC_FAILURE);
13665 }
13666 #endif /* defined(__i386) || defined(__amd64) */
13667 
13668 /*
13669  *    Function: sd_initpkt_for_uscsi
13670  *
13671  * Description: Allocate and initialize for transport a scsi_pkt struct,
13672  *		based upon the info specified in the given uscsi_cmd struct.
13673  *
13674  * Return Code: SD_PKT_ALLOC_SUCCESS
13675  *		SD_PKT_ALLOC_FAILURE
13676  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13677  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13678  *
13679  *     Context: Kernel thread and may be called from software interrupt context
13680  *		as part of a sdrunout callback. This function may not block or
13681  *		call routines that block
13682  */
13683 
13684 static int
13685 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13686 {
13687 	struct uscsi_cmd *uscmd;
13688 	struct sd_xbuf	*xp;
13689 	struct scsi_pkt	*pktp;
13690 	struct sd_lun	*un;
13691 	uint32_t	flags = 0;
13692 
13693 	ASSERT(bp != NULL);
13694 	ASSERT(pktpp != NULL);
13695 	xp = SD_GET_XBUF(bp);
13696 	ASSERT(xp != NULL);
13697 	un = SD_GET_UN(bp);
13698 	ASSERT(un != NULL);
13699 	ASSERT(mutex_owned(SD_MUTEX(un)));
13700 
13701 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13702 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13703 	ASSERT(uscmd != NULL);
13704 
13705 	SD_TRACE(SD_LOG_IO_CORE, un,
13706 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13707 
13708 	/*
13709 	 * Allocate the scsi_pkt for the command.
13710 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13711 	 *	 during scsi_init_pkt time and will continue to use the
13712 	 *	 same path as long as the same scsi_pkt is used without
13713 	 *	 intervening scsi_dma_free(). Since uscsi command does
13714 	 *	 not call scsi_dmafree() before retry failed command, it
13715 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13716 	 *	 set such that scsi_vhci can use other available path for
13717 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13718 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13719 	 */
13720 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13721 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13722 	    sizeof (struct scsi_arq_status), 0,
13723 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13724 	    sdrunout, (caddr_t)un);
13725 
13726 	if (pktp == NULL) {
13727 		*pktpp = NULL;
13728 		/*
13729 		 * Set the driver state to RWAIT to indicate the driver
13730 		 * is waiting on resource allocations. The driver will not
13731 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13732 		 */
13733 		New_state(un, SD_STATE_RWAIT);
13734 
13735 		SD_ERROR(SD_LOG_IO_CORE, un,
13736 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13737 
13738 		if ((bp->b_flags & B_ERROR) != 0) {
13739 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13740 		}
13741 		return (SD_PKT_ALLOC_FAILURE);
13742 	}
13743 
13744 	/*
13745 	 * We do not do DMA breakup for USCSI commands, so return failure
13746 	 * here if all the needed DMA resources were not allocated.
13747 	 */
13748 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13749 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13750 		scsi_destroy_pkt(pktp);
13751 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13752 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13753 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13754 	}
13755 
13756 	/* Init the cdb from the given uscsi struct */
13757 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13758 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13759 
13760 	SD_FILL_SCSI1_LUN(un, pktp);
13761 
13762 	/*
13763 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13764 	 * for listing of the supported flags.
13765 	 */
13766 
13767 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13768 		flags |= FLAG_SILENT;
13769 	}
13770 
13771 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13772 		flags |= FLAG_DIAGNOSE;
13773 	}
13774 
13775 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13776 		flags |= FLAG_ISOLATE;
13777 	}
13778 
13779 	if (un->un_f_is_fibre == FALSE) {
13780 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13781 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13782 		}
13783 	}
13784 
13785 	/*
13786 	 * Set the pkt flags here so we save time later.
13787 	 * Note: These flags are NOT in the uscsi man page!!!
13788 	 */
13789 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13790 		flags |= FLAG_HEAD;
13791 	}
13792 
13793 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13794 		flags |= FLAG_NOINTR;
13795 	}
13796 
13797 	/*
13798 	 * For tagged queueing, things get a bit complicated.
13799 	 * Check first for head of queue and last for ordered queue.
13800 	 * If neither head nor order, use the default driver tag flags.
13801 	 */
13802 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13803 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13804 			flags |= FLAG_HTAG;
13805 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13806 			flags |= FLAG_OTAG;
13807 		} else {
13808 			flags |= un->un_tagflags & FLAG_TAGMASK;
13809 		}
13810 	}
13811 
13812 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13813 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13814 	}
13815 
13816 	pktp->pkt_flags = flags;
13817 
13818 	/* Copy the caller's CDB into the pkt... */
13819 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13820 
13821 	if (uscmd->uscsi_timeout == 0) {
13822 		pktp->pkt_time = un->un_uscsi_timeout;
13823 	} else {
13824 		pktp->pkt_time = uscmd->uscsi_timeout;
13825 	}
13826 
13827 	/* need it later to identify USCSI request in sdintr */
13828 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13829 
13830 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13831 
13832 	pktp->pkt_private = bp;
13833 	pktp->pkt_comp = sdintr;
13834 	*pktpp = pktp;
13835 
13836 	SD_TRACE(SD_LOG_IO_CORE, un,
13837 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13838 
13839 	return (SD_PKT_ALLOC_SUCCESS);
13840 }
13841 
13842 
13843 /*
13844  *    Function: sd_destroypkt_for_uscsi
13845  *
13846  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13847  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13848  *		struct.
13849  *
13850  *     Context: May be called under interrupt context
13851  */
13852 
13853 static void
13854 sd_destroypkt_for_uscsi(struct buf *bp)
13855 {
13856 	struct uscsi_cmd *uscmd;
13857 	struct sd_xbuf	*xp;
13858 	struct scsi_pkt	*pktp;
13859 	struct sd_lun	*un;
13860 
13861 	ASSERT(bp != NULL);
13862 	xp = SD_GET_XBUF(bp);
13863 	ASSERT(xp != NULL);
13864 	un = SD_GET_UN(bp);
13865 	ASSERT(un != NULL);
13866 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13867 	pktp = SD_GET_PKTP(bp);
13868 	ASSERT(pktp != NULL);
13869 
13870 	SD_TRACE(SD_LOG_IO_CORE, un,
13871 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13872 
13873 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13874 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13875 	ASSERT(uscmd != NULL);
13876 
13877 	/* Save the status and the residual into the uscsi_cmd struct */
13878 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13879 	uscmd->uscsi_resid  = bp->b_resid;
13880 
13881 	/*
13882 	 * If enabled, copy any saved sense data into the area specified
13883 	 * by the uscsi command.
13884 	 */
13885 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13886 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13887 		/*
13888 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13889 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13890 		 */
13891 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13892 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13893 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13894 	}
13895 
13896 	/* We are done with the scsi_pkt; free it now */
13897 	ASSERT(SD_GET_PKTP(bp) != NULL);
13898 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13899 
13900 	SD_TRACE(SD_LOG_IO_CORE, un,
13901 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13902 }
13903 
13904 
13905 /*
13906  *    Function: sd_bioclone_alloc
13907  *
13908  * Description: Allocate a buf(9S) and init it as per the given buf
13909  *		and the various arguments.  The associated sd_xbuf
13910  *		struct is (nearly) duplicated.  The struct buf *bp
13911  *		argument is saved in new_xp->xb_private.
13912  *
13913  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13914  *		datalen - size of data area for the shadow bp
13915  *		blkno - starting LBA
13916  *		func - function pointer for b_iodone in the shadow buf. (May
13917  *			be NULL if none.)
13918  *
13919  * Return Code: Pointer to allocates buf(9S) struct
13920  *
13921  *     Context: Can sleep.
13922  */
13923 
13924 static struct buf *
13925 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13926 	daddr_t blkno, int (*func)(struct buf *))
13927 {
13928 	struct	sd_lun	*un;
13929 	struct	sd_xbuf	*xp;
13930 	struct	sd_xbuf	*new_xp;
13931 	struct	buf	*new_bp;
13932 
13933 	ASSERT(bp != NULL);
13934 	xp = SD_GET_XBUF(bp);
13935 	ASSERT(xp != NULL);
13936 	un = SD_GET_UN(bp);
13937 	ASSERT(un != NULL);
13938 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13939 
13940 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13941 	    NULL, KM_SLEEP);
13942 
13943 	new_bp->b_lblkno	= blkno;
13944 
13945 	/*
13946 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13947 	 * original xbuf into it.
13948 	 */
13949 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13950 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13951 
13952 	/*
13953 	 * The given bp is automatically saved in the xb_private member
13954 	 * of the new xbuf.  Callers are allowed to depend on this.
13955 	 */
13956 	new_xp->xb_private = bp;
13957 
13958 	new_bp->b_private  = new_xp;
13959 
13960 	return (new_bp);
13961 }
13962 
13963 /*
13964  *    Function: sd_shadow_buf_alloc
13965  *
13966  * Description: Allocate a buf(9S) and init it as per the given buf
13967  *		and the various arguments.  The associated sd_xbuf
13968  *		struct is (nearly) duplicated.  The struct buf *bp
13969  *		argument is saved in new_xp->xb_private.
13970  *
13971  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13972  *		datalen - size of data area for the shadow bp
13973  *		bflags - B_READ or B_WRITE (pseudo flag)
13974  *		blkno - starting LBA
13975  *		func - function pointer for b_iodone in the shadow buf. (May
13976  *			be NULL if none.)
13977  *
13978  * Return Code: Pointer to allocates buf(9S) struct
13979  *
13980  *     Context: Can sleep.
13981  */
13982 
13983 static struct buf *
13984 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13985 	daddr_t blkno, int (*func)(struct buf *))
13986 {
13987 	struct	sd_lun	*un;
13988 	struct	sd_xbuf	*xp;
13989 	struct	sd_xbuf	*new_xp;
13990 	struct	buf	*new_bp;
13991 
13992 	ASSERT(bp != NULL);
13993 	xp = SD_GET_XBUF(bp);
13994 	ASSERT(xp != NULL);
13995 	un = SD_GET_UN(bp);
13996 	ASSERT(un != NULL);
13997 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13998 
13999 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14000 		bp_mapin(bp);
14001 	}
14002 
14003 	bflags &= (B_READ | B_WRITE);
14004 #if defined(__i386) || defined(__amd64)
14005 	new_bp = getrbuf(KM_SLEEP);
14006 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14007 	new_bp->b_bcount = datalen;
14008 	new_bp->b_flags = bflags |
14009 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14010 #else
14011 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14012 	    datalen, bflags, SLEEP_FUNC, NULL);
14013 #endif
14014 	new_bp->av_forw	= NULL;
14015 	new_bp->av_back	= NULL;
14016 	new_bp->b_dev	= bp->b_dev;
14017 	new_bp->b_blkno	= blkno;
14018 	new_bp->b_iodone = func;
14019 	new_bp->b_edev	= bp->b_edev;
14020 	new_bp->b_resid	= 0;
14021 
14022 	/* We need to preserve the B_FAILFAST flag */
14023 	if (bp->b_flags & B_FAILFAST) {
14024 		new_bp->b_flags |= B_FAILFAST;
14025 	}
14026 
14027 	/*
14028 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14029 	 * original xbuf into it.
14030 	 */
14031 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14032 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14033 
14034 	/* Need later to copy data between the shadow buf & original buf! */
14035 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14036 
14037 	/*
14038 	 * The given bp is automatically saved in the xb_private member
14039 	 * of the new xbuf.  Callers are allowed to depend on this.
14040 	 */
14041 	new_xp->xb_private = bp;
14042 
14043 	new_bp->b_private  = new_xp;
14044 
14045 	return (new_bp);
14046 }
14047 
14048 /*
14049  *    Function: sd_bioclone_free
14050  *
14051  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14052  *		in the larger than partition operation.
14053  *
14054  *     Context: May be called under interrupt context
14055  */
14056 
14057 static void
14058 sd_bioclone_free(struct buf *bp)
14059 {
14060 	struct sd_xbuf	*xp;
14061 
14062 	ASSERT(bp != NULL);
14063 	xp = SD_GET_XBUF(bp);
14064 	ASSERT(xp != NULL);
14065 
14066 	/*
14067 	 * Call bp_mapout() before freeing the buf,  in case a lower
14068 	 * layer or HBA  had done a bp_mapin().  we must do this here
14069 	 * as we are the "originator" of the shadow buf.
14070 	 */
14071 	bp_mapout(bp);
14072 
14073 	/*
14074 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14075 	 * never gets confused by a stale value in this field. (Just a little
14076 	 * extra defensiveness here.)
14077 	 */
14078 	bp->b_iodone = NULL;
14079 
14080 	freerbuf(bp);
14081 
14082 	kmem_free(xp, sizeof (struct sd_xbuf));
14083 }
14084 
14085 /*
14086  *    Function: sd_shadow_buf_free
14087  *
14088  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14089  *
14090  *     Context: May be called under interrupt context
14091  */
14092 
14093 static void
14094 sd_shadow_buf_free(struct buf *bp)
14095 {
14096 	struct sd_xbuf	*xp;
14097 
14098 	ASSERT(bp != NULL);
14099 	xp = SD_GET_XBUF(bp);
14100 	ASSERT(xp != NULL);
14101 
14102 #if defined(__sparc)
14103 	/*
14104 	 * Call bp_mapout() before freeing the buf,  in case a lower
14105 	 * layer or HBA  had done a bp_mapin().  we must do this here
14106 	 * as we are the "originator" of the shadow buf.
14107 	 */
14108 	bp_mapout(bp);
14109 #endif
14110 
14111 	/*
14112 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14113 	 * never gets confused by a stale value in this field. (Just a little
14114 	 * extra defensiveness here.)
14115 	 */
14116 	bp->b_iodone = NULL;
14117 
14118 #if defined(__i386) || defined(__amd64)
14119 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14120 	freerbuf(bp);
14121 #else
14122 	scsi_free_consistent_buf(bp);
14123 #endif
14124 
14125 	kmem_free(xp, sizeof (struct sd_xbuf));
14126 }
14127 
14128 
14129 /*
14130  *    Function: sd_print_transport_rejected_message
14131  *
14132  * Description: This implements the ludicrously complex rules for printing
14133  *		a "transport rejected" message.  This is to address the
14134  *		specific problem of having a flood of this error message
14135  *		produced when a failover occurs.
14136  *
14137  *     Context: Any.
14138  */
14139 
14140 static void
14141 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14142 	int code)
14143 {
14144 	ASSERT(un != NULL);
14145 	ASSERT(mutex_owned(SD_MUTEX(un)));
14146 	ASSERT(xp != NULL);
14147 
14148 	/*
14149 	 * Print the "transport rejected" message under the following
14150 	 * conditions:
14151 	 *
14152 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14153 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14154 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14155 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14156 	 *   scsi_transport(9F) (which indicates that the target might have
14157 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14158 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14159 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14160 	 *   from scsi_transport().
14161 	 *
14162 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14163 	 * the preceeding cases in order for the message to be printed.
14164 	 */
14165 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
14166 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14167 		    (code != TRAN_FATAL_ERROR) ||
14168 		    (un->un_tran_fatal_count == 1)) {
14169 			switch (code) {
14170 			case TRAN_BADPKT:
14171 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14172 				    "transport rejected bad packet\n");
14173 				break;
14174 			case TRAN_FATAL_ERROR:
14175 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14176 				    "transport rejected fatal error\n");
14177 				break;
14178 			default:
14179 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14180 				    "transport rejected (%d)\n", code);
14181 				break;
14182 			}
14183 		}
14184 	}
14185 }
14186 
14187 
14188 /*
14189  *    Function: sd_add_buf_to_waitq
14190  *
14191  * Description: Add the given buf(9S) struct to the wait queue for the
14192  *		instance.  If sorting is enabled, then the buf is added
14193  *		to the queue via an elevator sort algorithm (a la
14194  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14195  *		If sorting is not enabled, then the buf is just added
14196  *		to the end of the wait queue.
14197  *
14198  * Return Code: void
14199  *
14200  *     Context: Does not sleep/block, therefore technically can be called
14201  *		from any context.  However if sorting is enabled then the
14202  *		execution time is indeterminate, and may take long if
14203  *		the wait queue grows large.
14204  */
14205 
14206 static void
14207 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14208 {
14209 	struct buf *ap;
14210 
14211 	ASSERT(bp != NULL);
14212 	ASSERT(un != NULL);
14213 	ASSERT(mutex_owned(SD_MUTEX(un)));
14214 
14215 	/* If the queue is empty, add the buf as the only entry & return. */
14216 	if (un->un_waitq_headp == NULL) {
14217 		ASSERT(un->un_waitq_tailp == NULL);
14218 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14219 		bp->av_forw = NULL;
14220 		return;
14221 	}
14222 
14223 	ASSERT(un->un_waitq_tailp != NULL);
14224 
14225 	/*
14226 	 * If sorting is disabled, just add the buf to the tail end of
14227 	 * the wait queue and return.
14228 	 */
14229 	if (un->un_f_disksort_disabled) {
14230 		un->un_waitq_tailp->av_forw = bp;
14231 		un->un_waitq_tailp = bp;
14232 		bp->av_forw = NULL;
14233 		return;
14234 	}
14235 
14236 	/*
14237 	 * Sort thru the list of requests currently on the wait queue
14238 	 * and add the new buf request at the appropriate position.
14239 	 *
14240 	 * The un->un_waitq_headp is an activity chain pointer on which
14241 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14242 	 * first queue holds those requests which are positioned after
14243 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14244 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14245 	 * Thus we implement a one way scan, retracting after reaching
14246 	 * the end of the drive to the first request on the second
14247 	 * queue, at which time it becomes the first queue.
14248 	 * A one-way scan is natural because of the way UNIX read-ahead
14249 	 * blocks are allocated.
14250 	 *
14251 	 * If we lie after the first request, then we must locate the
14252 	 * second request list and add ourselves to it.
14253 	 */
14254 	ap = un->un_waitq_headp;
14255 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14256 		while (ap->av_forw != NULL) {
14257 			/*
14258 			 * Look for an "inversion" in the (normally
14259 			 * ascending) block numbers. This indicates
14260 			 * the start of the second request list.
14261 			 */
14262 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14263 				/*
14264 				 * Search the second request list for the
14265 				 * first request at a larger block number.
14266 				 * We go before that; however if there is
14267 				 * no such request, we go at the end.
14268 				 */
14269 				do {
14270 					if (SD_GET_BLKNO(bp) <
14271 					    SD_GET_BLKNO(ap->av_forw)) {
14272 						goto insert;
14273 					}
14274 					ap = ap->av_forw;
14275 				} while (ap->av_forw != NULL);
14276 				goto insert;		/* after last */
14277 			}
14278 			ap = ap->av_forw;
14279 		}
14280 
14281 		/*
14282 		 * No inversions... we will go after the last, and
14283 		 * be the first request in the second request list.
14284 		 */
14285 		goto insert;
14286 	}
14287 
14288 	/*
14289 	 * Request is at/after the current request...
14290 	 * sort in the first request list.
14291 	 */
14292 	while (ap->av_forw != NULL) {
14293 		/*
14294 		 * We want to go after the current request (1) if
14295 		 * there is an inversion after it (i.e. it is the end
14296 		 * of the first request list), or (2) if the next
14297 		 * request is a larger block no. than our request.
14298 		 */
14299 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14300 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14301 			goto insert;
14302 		}
14303 		ap = ap->av_forw;
14304 	}
14305 
14306 	/*
14307 	 * Neither a second list nor a larger request, therefore
14308 	 * we go at the end of the first list (which is the same
14309 	 * as the end of the whole schebang).
14310 	 */
14311 insert:
14312 	bp->av_forw = ap->av_forw;
14313 	ap->av_forw = bp;
14314 
14315 	/*
14316 	 * If we inserted onto the tail end of the waitq, make sure the
14317 	 * tail pointer is updated.
14318 	 */
14319 	if (ap == un->un_waitq_tailp) {
14320 		un->un_waitq_tailp = bp;
14321 	}
14322 }
14323 
14324 
14325 /*
14326  *    Function: sd_start_cmds
14327  *
14328  * Description: Remove and transport cmds from the driver queues.
14329  *
14330  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14331  *
14332  *		immed_bp - ptr to a buf to be transported immediately. Only
14333  *		the immed_bp is transported; bufs on the waitq are not
14334  *		processed and the un_retry_bp is not checked.  If immed_bp is
14335  *		NULL, then normal queue processing is performed.
14336  *
14337  *     Context: May be called from kernel thread context, interrupt context,
14338  *		or runout callback context. This function may not block or
14339  *		call routines that block.
14340  */
14341 
14342 static void
14343 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14344 {
14345 	struct	sd_xbuf	*xp;
14346 	struct	buf	*bp;
14347 	void	(*statp)(kstat_io_t *);
14348 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14349 	void	(*saved_statp)(kstat_io_t *);
14350 #endif
14351 	int	rval;
14352 
14353 	ASSERT(un != NULL);
14354 	ASSERT(mutex_owned(SD_MUTEX(un)));
14355 	ASSERT(un->un_ncmds_in_transport >= 0);
14356 	ASSERT(un->un_throttle >= 0);
14357 
14358 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14359 
14360 	do {
14361 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14362 		saved_statp = NULL;
14363 #endif
14364 
14365 		/*
14366 		 * If we are syncing or dumping, fail the command to
14367 		 * avoid recursively calling back into scsi_transport().
14368 		 * The dump I/O itself uses a separate code path so this
14369 		 * only prevents non-dump I/O from being sent while dumping.
14370 		 * File system sync takes place before dumping begins.
14371 		 * During panic, filesystem I/O is allowed provided
14372 		 * un_in_callback is <= 1.  This is to prevent recursion
14373 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14374 		 * sd_start_cmds and so on.  See panic.c for more information
14375 		 * about the states the system can be in during panic.
14376 		 */
14377 		if ((un->un_state == SD_STATE_DUMPING) ||
14378 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14379 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14380 			    "sd_start_cmds: panicking\n");
14381 			goto exit;
14382 		}
14383 
14384 		if ((bp = immed_bp) != NULL) {
14385 			/*
14386 			 * We have a bp that must be transported immediately.
14387 			 * It's OK to transport the immed_bp here without doing
14388 			 * the throttle limit check because the immed_bp is
14389 			 * always used in a retry/recovery case. This means
14390 			 * that we know we are not at the throttle limit by
14391 			 * virtue of the fact that to get here we must have
14392 			 * already gotten a command back via sdintr(). This also
14393 			 * relies on (1) the command on un_retry_bp preventing
14394 			 * further commands from the waitq from being issued;
14395 			 * and (2) the code in sd_retry_command checking the
14396 			 * throttle limit before issuing a delayed or immediate
14397 			 * retry. This holds even if the throttle limit is
14398 			 * currently ratcheted down from its maximum value.
14399 			 */
14400 			statp = kstat_runq_enter;
14401 			if (bp == un->un_retry_bp) {
14402 				ASSERT((un->un_retry_statp == NULL) ||
14403 				    (un->un_retry_statp == kstat_waitq_enter) ||
14404 				    (un->un_retry_statp ==
14405 				    kstat_runq_back_to_waitq));
14406 				/*
14407 				 * If the waitq kstat was incremented when
14408 				 * sd_set_retry_bp() queued this bp for a retry,
14409 				 * then we must set up statp so that the waitq
14410 				 * count will get decremented correctly below.
14411 				 * Also we must clear un->un_retry_statp to
14412 				 * ensure that we do not act on a stale value
14413 				 * in this field.
14414 				 */
14415 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14416 				    (un->un_retry_statp ==
14417 				    kstat_runq_back_to_waitq)) {
14418 					statp = kstat_waitq_to_runq;
14419 				}
14420 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14421 				saved_statp = un->un_retry_statp;
14422 #endif
14423 				un->un_retry_statp = NULL;
14424 
14425 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14426 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14427 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14428 				    un, un->un_retry_bp, un->un_throttle,
14429 				    un->un_ncmds_in_transport);
14430 			} else {
14431 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14432 				    "processing priority bp:0x%p\n", bp);
14433 			}
14434 
14435 		} else if ((bp = un->un_waitq_headp) != NULL) {
14436 			/*
14437 			 * A command on the waitq is ready to go, but do not
14438 			 * send it if:
14439 			 *
14440 			 * (1) the throttle limit has been reached, or
14441 			 * (2) a retry is pending, or
14442 			 * (3) a START_STOP_UNIT callback pending, or
14443 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14444 			 *	command is pending.
14445 			 *
14446 			 * For all of these conditions, IO processing will
14447 			 * restart after the condition is cleared.
14448 			 */
14449 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14450 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14451 				    "sd_start_cmds: exiting, "
14452 				    "throttle limit reached!\n");
14453 				goto exit;
14454 			}
14455 			if (un->un_retry_bp != NULL) {
14456 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14457 				    "sd_start_cmds: exiting, retry pending!\n");
14458 				goto exit;
14459 			}
14460 			if (un->un_startstop_timeid != NULL) {
14461 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14462 				    "sd_start_cmds: exiting, "
14463 				    "START_STOP pending!\n");
14464 				goto exit;
14465 			}
14466 			if (un->un_direct_priority_timeid != NULL) {
14467 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14468 				    "sd_start_cmds: exiting, "
14469 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14470 				goto exit;
14471 			}
14472 
14473 			/* Dequeue the command */
14474 			un->un_waitq_headp = bp->av_forw;
14475 			if (un->un_waitq_headp == NULL) {
14476 				un->un_waitq_tailp = NULL;
14477 			}
14478 			bp->av_forw = NULL;
14479 			statp = kstat_waitq_to_runq;
14480 			SD_TRACE(SD_LOG_IO_CORE, un,
14481 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14482 
14483 		} else {
14484 			/* No work to do so bail out now */
14485 			SD_TRACE(SD_LOG_IO_CORE, un,
14486 			    "sd_start_cmds: no more work, exiting!\n");
14487 			goto exit;
14488 		}
14489 
14490 		/*
14491 		 * Reset the state to normal. This is the mechanism by which
14492 		 * the state transitions from either SD_STATE_RWAIT or
14493 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14494 		 * If state is SD_STATE_PM_CHANGING then this command is
14495 		 * part of the device power control and the state must
14496 		 * not be put back to normal. Doing so would would
14497 		 * allow new commands to proceed when they shouldn't,
14498 		 * the device may be going off.
14499 		 */
14500 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14501 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14502 			New_state(un, SD_STATE_NORMAL);
14503 		    }
14504 
14505 		xp = SD_GET_XBUF(bp);
14506 		ASSERT(xp != NULL);
14507 
14508 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14509 		/*
14510 		 * Allocate the scsi_pkt if we need one, or attach DMA
14511 		 * resources if we have a scsi_pkt that needs them. The
14512 		 * latter should only occur for commands that are being
14513 		 * retried.
14514 		 */
14515 		if ((xp->xb_pktp == NULL) ||
14516 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14517 #else
14518 		if (xp->xb_pktp == NULL) {
14519 #endif
14520 			/*
14521 			 * There is no scsi_pkt allocated for this buf. Call
14522 			 * the initpkt function to allocate & init one.
14523 			 *
14524 			 * The scsi_init_pkt runout callback functionality is
14525 			 * implemented as follows:
14526 			 *
14527 			 * 1) The initpkt function always calls
14528 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14529 			 *    callback routine.
14530 			 * 2) A successful packet allocation is initialized and
14531 			 *    the I/O is transported.
14532 			 * 3) The I/O associated with an allocation resource
14533 			 *    failure is left on its queue to be retried via
14534 			 *    runout or the next I/O.
14535 			 * 4) The I/O associated with a DMA error is removed
14536 			 *    from the queue and failed with EIO. Processing of
14537 			 *    the transport queues is also halted to be
14538 			 *    restarted via runout or the next I/O.
14539 			 * 5) The I/O associated with a CDB size or packet
14540 			 *    size error is removed from the queue and failed
14541 			 *    with EIO. Processing of the transport queues is
14542 			 *    continued.
14543 			 *
14544 			 * Note: there is no interface for canceling a runout
14545 			 * callback. To prevent the driver from detaching or
14546 			 * suspending while a runout is pending the driver
14547 			 * state is set to SD_STATE_RWAIT
14548 			 *
14549 			 * Note: using the scsi_init_pkt callback facility can
14550 			 * result in an I/O request persisting at the head of
14551 			 * the list which cannot be satisfied even after
14552 			 * multiple retries. In the future the driver may
14553 			 * implement some kind of maximum runout count before
14554 			 * failing an I/O.
14555 			 *
14556 			 * Note: the use of funcp below may seem superfluous,
14557 			 * but it helps warlock figure out the correct
14558 			 * initpkt function calls (see [s]sd.wlcmd).
14559 			 */
14560 			struct scsi_pkt	*pktp;
14561 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14562 
14563 			ASSERT(bp != un->un_rqs_bp);
14564 
14565 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14566 			switch ((*funcp)(bp, &pktp)) {
14567 			case  SD_PKT_ALLOC_SUCCESS:
14568 				xp->xb_pktp = pktp;
14569 				SD_TRACE(SD_LOG_IO_CORE, un,
14570 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14571 				    pktp);
14572 				goto got_pkt;
14573 
14574 			case SD_PKT_ALLOC_FAILURE:
14575 				/*
14576 				 * Temporary (hopefully) resource depletion.
14577 				 * Since retries and RQS commands always have a
14578 				 * scsi_pkt allocated, these cases should never
14579 				 * get here. So the only cases this needs to
14580 				 * handle is a bp from the waitq (which we put
14581 				 * back onto the waitq for sdrunout), or a bp
14582 				 * sent as an immed_bp (which we just fail).
14583 				 */
14584 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14585 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14586 
14587 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14588 
14589 				if (bp == immed_bp) {
14590 					/*
14591 					 * If SD_XB_DMA_FREED is clear, then
14592 					 * this is a failure to allocate a
14593 					 * scsi_pkt, and we must fail the
14594 					 * command.
14595 					 */
14596 					if ((xp->xb_pkt_flags &
14597 					    SD_XB_DMA_FREED) == 0) {
14598 						break;
14599 					}
14600 
14601 					/*
14602 					 * If this immediate command is NOT our
14603 					 * un_retry_bp, then we must fail it.
14604 					 */
14605 					if (bp != un->un_retry_bp) {
14606 						break;
14607 					}
14608 
14609 					/*
14610 					 * We get here if this cmd is our
14611 					 * un_retry_bp that was DMAFREED, but
14612 					 * scsi_init_pkt() failed to reallocate
14613 					 * DMA resources when we attempted to
14614 					 * retry it. This can happen when an
14615 					 * mpxio failover is in progress, but
14616 					 * we don't want to just fail the
14617 					 * command in this case.
14618 					 *
14619 					 * Use timeout(9F) to restart it after
14620 					 * a 100ms delay.  We don't want to
14621 					 * let sdrunout() restart it, because
14622 					 * sdrunout() is just supposed to start
14623 					 * commands that are sitting on the
14624 					 * wait queue.  The un_retry_bp stays
14625 					 * set until the command completes, but
14626 					 * sdrunout can be called many times
14627 					 * before that happens.  Since sdrunout
14628 					 * cannot tell if the un_retry_bp is
14629 					 * already in the transport, it could
14630 					 * end up calling scsi_transport() for
14631 					 * the un_retry_bp multiple times.
14632 					 *
14633 					 * Also: don't schedule the callback
14634 					 * if some other callback is already
14635 					 * pending.
14636 					 */
14637 					if (un->un_retry_statp == NULL) {
14638 						/*
14639 						 * restore the kstat pointer to
14640 						 * keep kstat counts coherent
14641 						 * when we do retry the command.
14642 						 */
14643 						un->un_retry_statp =
14644 						    saved_statp;
14645 					}
14646 
14647 					if ((un->un_startstop_timeid == NULL) &&
14648 					    (un->un_retry_timeid == NULL) &&
14649 					    (un->un_direct_priority_timeid ==
14650 					    NULL)) {
14651 
14652 						un->un_retry_timeid =
14653 						    timeout(
14654 						    sd_start_retry_command,
14655 						    un, SD_RESTART_TIMEOUT);
14656 					}
14657 					goto exit;
14658 				}
14659 
14660 #else
14661 				if (bp == immed_bp) {
14662 					break;	/* Just fail the command */
14663 				}
14664 #endif
14665 
14666 				/* Add the buf back to the head of the waitq */
14667 				bp->av_forw = un->un_waitq_headp;
14668 				un->un_waitq_headp = bp;
14669 				if (un->un_waitq_tailp == NULL) {
14670 					un->un_waitq_tailp = bp;
14671 				}
14672 				goto exit;
14673 
14674 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14675 				/*
14676 				 * HBA DMA resource failure. Fail the command
14677 				 * and continue processing of the queues.
14678 				 */
14679 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14680 				    "sd_start_cmds: "
14681 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14682 				break;
14683 
14684 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14685 				/*
14686 				 * Note:x86: Partial DMA mapping not supported
14687 				 * for USCSI commands, and all the needed DMA
14688 				 * resources were not allocated.
14689 				 */
14690 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14691 				    "sd_start_cmds: "
14692 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14693 				break;
14694 
14695 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14696 				/*
14697 				 * Note:x86: Request cannot fit into CDB based
14698 				 * on lba and len.
14699 				 */
14700 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14701 				    "sd_start_cmds: "
14702 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14703 				break;
14704 
14705 			default:
14706 				/* Should NEVER get here! */
14707 				panic("scsi_initpkt error");
14708 				/*NOTREACHED*/
14709 			}
14710 
14711 			/*
14712 			 * Fatal error in allocating a scsi_pkt for this buf.
14713 			 * Update kstats & return the buf with an error code.
14714 			 * We must use sd_return_failed_command_no_restart() to
14715 			 * avoid a recursive call back into sd_start_cmds().
14716 			 * However this also means that we must keep processing
14717 			 * the waitq here in order to avoid stalling.
14718 			 */
14719 			if (statp == kstat_waitq_to_runq) {
14720 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14721 			}
14722 			sd_return_failed_command_no_restart(un, bp, EIO);
14723 			if (bp == immed_bp) {
14724 				/* immed_bp is gone by now, so clear this */
14725 				immed_bp = NULL;
14726 			}
14727 			continue;
14728 		}
14729 got_pkt:
14730 		if (bp == immed_bp) {
14731 			/* goto the head of the class.... */
14732 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14733 		}
14734 
14735 		un->un_ncmds_in_transport++;
14736 		SD_UPDATE_KSTATS(un, statp, bp);
14737 
14738 		/*
14739 		 * Call scsi_transport() to send the command to the target.
14740 		 * According to SCSA architecture, we must drop the mutex here
14741 		 * before calling scsi_transport() in order to avoid deadlock.
14742 		 * Note that the scsi_pkt's completion routine can be executed
14743 		 * (from interrupt context) even before the call to
14744 		 * scsi_transport() returns.
14745 		 */
14746 		SD_TRACE(SD_LOG_IO_CORE, un,
14747 		    "sd_start_cmds: calling scsi_transport()\n");
14748 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14749 
14750 		mutex_exit(SD_MUTEX(un));
14751 		rval = scsi_transport(xp->xb_pktp);
14752 		mutex_enter(SD_MUTEX(un));
14753 
14754 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14755 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14756 
14757 		switch (rval) {
14758 		case TRAN_ACCEPT:
14759 			/* Clear this with every pkt accepted by the HBA */
14760 			un->un_tran_fatal_count = 0;
14761 			break;	/* Success; try the next cmd (if any) */
14762 
14763 		case TRAN_BUSY:
14764 			un->un_ncmds_in_transport--;
14765 			ASSERT(un->un_ncmds_in_transport >= 0);
14766 
14767 			/*
14768 			 * Don't retry request sense, the sense data
14769 			 * is lost when another request is sent.
14770 			 * Free up the rqs buf and retry
14771 			 * the original failed cmd.  Update kstat.
14772 			 */
14773 			if (bp == un->un_rqs_bp) {
14774 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14775 				bp = sd_mark_rqs_idle(un, xp);
14776 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14777 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14778 					kstat_waitq_enter);
14779 				goto exit;
14780 			}
14781 
14782 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14783 			/*
14784 			 * Free the DMA resources for the  scsi_pkt. This will
14785 			 * allow mpxio to select another path the next time
14786 			 * we call scsi_transport() with this scsi_pkt.
14787 			 * See sdintr() for the rationalization behind this.
14788 			 */
14789 			if ((un->un_f_is_fibre == TRUE) &&
14790 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14791 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14792 				scsi_dmafree(xp->xb_pktp);
14793 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14794 			}
14795 #endif
14796 
14797 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14798 				/*
14799 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14800 				 * are for error recovery situations. These do
14801 				 * not use the normal command waitq, so if they
14802 				 * get a TRAN_BUSY we cannot put them back onto
14803 				 * the waitq for later retry. One possible
14804 				 * problem is that there could already be some
14805 				 * other command on un_retry_bp that is waiting
14806 				 * for this one to complete, so we would be
14807 				 * deadlocked if we put this command back onto
14808 				 * the waitq for later retry (since un_retry_bp
14809 				 * must complete before the driver gets back to
14810 				 * commands on the waitq).
14811 				 *
14812 				 * To avoid deadlock we must schedule a callback
14813 				 * that will restart this command after a set
14814 				 * interval.  This should keep retrying for as
14815 				 * long as the underlying transport keeps
14816 				 * returning TRAN_BUSY (just like for other
14817 				 * commands).  Use the same timeout interval as
14818 				 * for the ordinary TRAN_BUSY retry.
14819 				 */
14820 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14821 				    "sd_start_cmds: scsi_transport() returned "
14822 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14823 
14824 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14825 				un->un_direct_priority_timeid =
14826 				    timeout(sd_start_direct_priority_command,
14827 				    bp, SD_BSY_TIMEOUT / 500);
14828 
14829 				goto exit;
14830 			}
14831 
14832 			/*
14833 			 * For TRAN_BUSY, we want to reduce the throttle value,
14834 			 * unless we are retrying a command.
14835 			 */
14836 			if (bp != un->un_retry_bp) {
14837 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14838 			}
14839 
14840 			/*
14841 			 * Set up the bp to be tried again 10 ms later.
14842 			 * Note:x86: Is there a timeout value in the sd_lun
14843 			 * for this condition?
14844 			 */
14845 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14846 				kstat_runq_back_to_waitq);
14847 			goto exit;
14848 
14849 		case TRAN_FATAL_ERROR:
14850 			un->un_tran_fatal_count++;
14851 			/* FALLTHRU */
14852 
14853 		case TRAN_BADPKT:
14854 		default:
14855 			un->un_ncmds_in_transport--;
14856 			ASSERT(un->un_ncmds_in_transport >= 0);
14857 
14858 			/*
14859 			 * If this is our REQUEST SENSE command with a
14860 			 * transport error, we must get back the pointers
14861 			 * to the original buf, and mark the REQUEST
14862 			 * SENSE command as "available".
14863 			 */
14864 			if (bp == un->un_rqs_bp) {
14865 				bp = sd_mark_rqs_idle(un, xp);
14866 				xp = SD_GET_XBUF(bp);
14867 			} else {
14868 				/*
14869 				 * Legacy behavior: do not update transport
14870 				 * error count for request sense commands.
14871 				 */
14872 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14873 			}
14874 
14875 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14876 			sd_print_transport_rejected_message(un, xp, rval);
14877 
14878 			/*
14879 			 * We must use sd_return_failed_command_no_restart() to
14880 			 * avoid a recursive call back into sd_start_cmds().
14881 			 * However this also means that we must keep processing
14882 			 * the waitq here in order to avoid stalling.
14883 			 */
14884 			sd_return_failed_command_no_restart(un, bp, EIO);
14885 
14886 			/*
14887 			 * Notify any threads waiting in sd_ddi_suspend() that
14888 			 * a command completion has occurred.
14889 			 */
14890 			if (un->un_state == SD_STATE_SUSPENDED) {
14891 				cv_broadcast(&un->un_disk_busy_cv);
14892 			}
14893 
14894 			if (bp == immed_bp) {
14895 				/* immed_bp is gone by now, so clear this */
14896 				immed_bp = NULL;
14897 			}
14898 			break;
14899 		}
14900 
14901 	} while (immed_bp == NULL);
14902 
14903 exit:
14904 	ASSERT(mutex_owned(SD_MUTEX(un)));
14905 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14906 }
14907 
14908 
14909 /*
14910  *    Function: sd_return_command
14911  *
14912  * Description: Returns a command to its originator (with or without an
14913  *		error).  Also starts commands waiting to be transported
14914  *		to the target.
14915  *
14916  *     Context: May be called from interrupt, kernel, or timeout context
14917  */
14918 
14919 static void
14920 sd_return_command(struct sd_lun *un, struct buf *bp)
14921 {
14922 	struct sd_xbuf *xp;
14923 #if defined(__i386) || defined(__amd64)
14924 	struct scsi_pkt *pktp;
14925 #endif
14926 
14927 	ASSERT(bp != NULL);
14928 	ASSERT(un != NULL);
14929 	ASSERT(mutex_owned(SD_MUTEX(un)));
14930 	ASSERT(bp != un->un_rqs_bp);
14931 	xp = SD_GET_XBUF(bp);
14932 	ASSERT(xp != NULL);
14933 
14934 #if defined(__i386) || defined(__amd64)
14935 	pktp = SD_GET_PKTP(bp);
14936 #endif
14937 
14938 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14939 
14940 #if defined(__i386) || defined(__amd64)
14941 	/*
14942 	 * Note:x86: check for the "sdrestart failed" case.
14943 	 */
14944 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14945 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14946 		(xp->xb_pktp->pkt_resid == 0)) {
14947 
14948 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14949 			/*
14950 			 * Successfully set up next portion of cmd
14951 			 * transfer, try sending it
14952 			 */
14953 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14954 			    NULL, NULL, 0, (clock_t)0, NULL);
14955 			sd_start_cmds(un, NULL);
14956 			return;	/* Note:x86: need a return here? */
14957 		}
14958 	}
14959 #endif
14960 
14961 	/*
14962 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14963 	 * can happen if upon being re-tried the failfast bp either
14964 	 * succeeded or encountered another error (possibly even a different
14965 	 * error than the one that precipitated the failfast state, but in
14966 	 * that case it would have had to exhaust retries as well). Regardless,
14967 	 * this should not occur whenever the instance is in the active
14968 	 * failfast state.
14969 	 */
14970 	if (bp == un->un_failfast_bp) {
14971 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14972 		un->un_failfast_bp = NULL;
14973 	}
14974 
14975 	/*
14976 	 * Clear the failfast state upon successful completion of ANY cmd.
14977 	 */
14978 	if (bp->b_error == 0) {
14979 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14980 	}
14981 
14982 	/*
14983 	 * This is used if the command was retried one or more times. Show that
14984 	 * we are done with it, and allow processing of the waitq to resume.
14985 	 */
14986 	if (bp == un->un_retry_bp) {
14987 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14988 		    "sd_return_command: un:0x%p: "
14989 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14990 		un->un_retry_bp = NULL;
14991 		un->un_retry_statp = NULL;
14992 	}
14993 
14994 	SD_UPDATE_RDWR_STATS(un, bp);
14995 	SD_UPDATE_PARTITION_STATS(un, bp);
14996 
14997 	switch (un->un_state) {
14998 	case SD_STATE_SUSPENDED:
14999 		/*
15000 		 * Notify any threads waiting in sd_ddi_suspend() that
15001 		 * a command completion has occurred.
15002 		 */
15003 		cv_broadcast(&un->un_disk_busy_cv);
15004 		break;
15005 	default:
15006 		sd_start_cmds(un, NULL);
15007 		break;
15008 	}
15009 
15010 	/* Return this command up the iodone chain to its originator. */
15011 	mutex_exit(SD_MUTEX(un));
15012 
15013 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15014 	xp->xb_pktp = NULL;
15015 
15016 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15017 
15018 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15019 	mutex_enter(SD_MUTEX(un));
15020 
15021 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15022 }
15023 
15024 
15025 /*
15026  *    Function: sd_return_failed_command
15027  *
15028  * Description: Command completion when an error occurred.
15029  *
15030  *     Context: May be called from interrupt context
15031  */
15032 
15033 static void
15034 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15035 {
15036 	ASSERT(bp != NULL);
15037 	ASSERT(un != NULL);
15038 	ASSERT(mutex_owned(SD_MUTEX(un)));
15039 
15040 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15041 	    "sd_return_failed_command: entry\n");
15042 
15043 	/*
15044 	 * b_resid could already be nonzero due to a partial data
15045 	 * transfer, so do not change it here.
15046 	 */
15047 	SD_BIOERROR(bp, errcode);
15048 
15049 	sd_return_command(un, bp);
15050 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15051 	    "sd_return_failed_command: exit\n");
15052 }
15053 
15054 
15055 /*
15056  *    Function: sd_return_failed_command_no_restart
15057  *
15058  * Description: Same as sd_return_failed_command, but ensures that no
15059  *		call back into sd_start_cmds will be issued.
15060  *
15061  *     Context: May be called from interrupt context
15062  */
15063 
15064 static void
15065 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15066 	int errcode)
15067 {
15068 	struct sd_xbuf *xp;
15069 
15070 	ASSERT(bp != NULL);
15071 	ASSERT(un != NULL);
15072 	ASSERT(mutex_owned(SD_MUTEX(un)));
15073 	xp = SD_GET_XBUF(bp);
15074 	ASSERT(xp != NULL);
15075 	ASSERT(errcode != 0);
15076 
15077 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15078 	    "sd_return_failed_command_no_restart: entry\n");
15079 
15080 	/*
15081 	 * b_resid could already be nonzero due to a partial data
15082 	 * transfer, so do not change it here.
15083 	 */
15084 	SD_BIOERROR(bp, errcode);
15085 
15086 	/*
15087 	 * If this is the failfast bp, clear it. This can happen if the
15088 	 * failfast bp encounterd a fatal error when we attempted to
15089 	 * re-try it (such as a scsi_transport(9F) failure).  However
15090 	 * we should NOT be in an active failfast state if the failfast
15091 	 * bp is not NULL.
15092 	 */
15093 	if (bp == un->un_failfast_bp) {
15094 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15095 		un->un_failfast_bp = NULL;
15096 	}
15097 
15098 	if (bp == un->un_retry_bp) {
15099 		/*
15100 		 * This command was retried one or more times. Show that we are
15101 		 * done with it, and allow processing of the waitq to resume.
15102 		 */
15103 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15104 		    "sd_return_failed_command_no_restart: "
15105 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15106 		un->un_retry_bp = NULL;
15107 		un->un_retry_statp = NULL;
15108 	}
15109 
15110 	SD_UPDATE_RDWR_STATS(un, bp);
15111 	SD_UPDATE_PARTITION_STATS(un, bp);
15112 
15113 	mutex_exit(SD_MUTEX(un));
15114 
15115 	if (xp->xb_pktp != NULL) {
15116 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15117 		xp->xb_pktp = NULL;
15118 	}
15119 
15120 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15121 
15122 	mutex_enter(SD_MUTEX(un));
15123 
15124 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15125 	    "sd_return_failed_command_no_restart: exit\n");
15126 }
15127 
15128 
15129 /*
15130  *    Function: sd_retry_command
15131  *
15132  * Description: queue up a command for retry, or (optionally) fail it
15133  *		if retry counts are exhausted.
15134  *
15135  *   Arguments: un - Pointer to the sd_lun struct for the target.
15136  *
15137  *		bp - Pointer to the buf for the command to be retried.
15138  *
15139  *		retry_check_flag - Flag to see which (if any) of the retry
15140  *		   counts should be decremented/checked. If the indicated
15141  *		   retry count is exhausted, then the command will not be
15142  *		   retried; it will be failed instead. This should use a
15143  *		   value equal to one of the following:
15144  *
15145  *			SD_RETRIES_NOCHECK
15146  *			SD_RESD_RETRIES_STANDARD
15147  *			SD_RETRIES_VICTIM
15148  *
15149  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15150  *		   if the check should be made to see of FLAG_ISOLATE is set
15151  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15152  *		   not retried, it is simply failed.
15153  *
15154  *		user_funcp - Ptr to function to call before dispatching the
15155  *		   command. May be NULL if no action needs to be performed.
15156  *		   (Primarily intended for printing messages.)
15157  *
15158  *		user_arg - Optional argument to be passed along to
15159  *		   the user_funcp call.
15160  *
15161  *		failure_code - errno return code to set in the bp if the
15162  *		   command is going to be failed.
15163  *
15164  *		retry_delay - Retry delay interval in (clock_t) units. May
15165  *		   be zero which indicates that the retry should be retried
15166  *		   immediately (ie, without an intervening delay).
15167  *
15168  *		statp - Ptr to kstat function to be updated if the command
15169  *		   is queued for a delayed retry. May be NULL if no kstat
15170  *		   update is desired.
15171  *
15172  *     Context: May be called from interupt context.
15173  */
15174 
15175 static void
15176 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15177 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15178 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15179 	void (*statp)(kstat_io_t *))
15180 {
15181 	struct sd_xbuf	*xp;
15182 	struct scsi_pkt	*pktp;
15183 
15184 	ASSERT(un != NULL);
15185 	ASSERT(mutex_owned(SD_MUTEX(un)));
15186 	ASSERT(bp != NULL);
15187 	xp = SD_GET_XBUF(bp);
15188 	ASSERT(xp != NULL);
15189 	pktp = SD_GET_PKTP(bp);
15190 	ASSERT(pktp != NULL);
15191 
15192 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15193 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15194 
15195 	/*
15196 	 * If we are syncing or dumping, fail the command to avoid
15197 	 * recursively calling back into scsi_transport().
15198 	 */
15199 	if (ddi_in_panic()) {
15200 		goto fail_command_no_log;
15201 	}
15202 
15203 	/*
15204 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15205 	 * log an error and fail the command.
15206 	 */
15207 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15208 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15209 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15210 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15211 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15212 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15213 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15214 		goto fail_command;
15215 	}
15216 
15217 	/*
15218 	 * If we are suspended, then put the command onto head of the
15219 	 * wait queue since we don't want to start more commands.
15220 	 */
15221 	switch (un->un_state) {
15222 	case SD_STATE_SUSPENDED:
15223 	case SD_STATE_DUMPING:
15224 		bp->av_forw = un->un_waitq_headp;
15225 		un->un_waitq_headp = bp;
15226 		if (un->un_waitq_tailp == NULL) {
15227 			un->un_waitq_tailp = bp;
15228 		}
15229 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15230 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15231 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15232 		return;
15233 	default:
15234 		break;
15235 	}
15236 
15237 	/*
15238 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15239 	 * is set; if it is then we do not want to retry the command.
15240 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15241 	 */
15242 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15243 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15244 			goto fail_command;
15245 		}
15246 	}
15247 
15248 
15249 	/*
15250 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15251 	 * command timeout or a selection timeout has occurred. This means
15252 	 * that we were unable to establish an kind of communication with
15253 	 * the target, and subsequent retries and/or commands are likely
15254 	 * to encounter similar results and take a long time to complete.
15255 	 *
15256 	 * If this is a failfast error condition, we need to update the
15257 	 * failfast state, even if this bp does not have B_FAILFAST set.
15258 	 */
15259 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15260 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15261 			ASSERT(un->un_failfast_bp == NULL);
15262 			/*
15263 			 * If we are already in the active failfast state, and
15264 			 * another failfast error condition has been detected,
15265 			 * then fail this command if it has B_FAILFAST set.
15266 			 * If B_FAILFAST is clear, then maintain the legacy
15267 			 * behavior of retrying heroically, even tho this will
15268 			 * take a lot more time to fail the command.
15269 			 */
15270 			if (bp->b_flags & B_FAILFAST) {
15271 				goto fail_command;
15272 			}
15273 		} else {
15274 			/*
15275 			 * We're not in the active failfast state, but we
15276 			 * have a failfast error condition, so we must begin
15277 			 * transition to the next state. We do this regardless
15278 			 * of whether or not this bp has B_FAILFAST set.
15279 			 */
15280 			if (un->un_failfast_bp == NULL) {
15281 				/*
15282 				 * This is the first bp to meet a failfast
15283 				 * condition so save it on un_failfast_bp &
15284 				 * do normal retry processing. Do not enter
15285 				 * active failfast state yet. This marks
15286 				 * entry into the "failfast pending" state.
15287 				 */
15288 				un->un_failfast_bp = bp;
15289 
15290 			} else if (un->un_failfast_bp == bp) {
15291 				/*
15292 				 * This is the second time *this* bp has
15293 				 * encountered a failfast error condition,
15294 				 * so enter active failfast state & flush
15295 				 * queues as appropriate.
15296 				 */
15297 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15298 				un->un_failfast_bp = NULL;
15299 				sd_failfast_flushq(un);
15300 
15301 				/*
15302 				 * Fail this bp now if B_FAILFAST set;
15303 				 * otherwise continue with retries. (It would
15304 				 * be pretty ironic if this bp succeeded on a
15305 				 * subsequent retry after we just flushed all
15306 				 * the queues).
15307 				 */
15308 				if (bp->b_flags & B_FAILFAST) {
15309 					goto fail_command;
15310 				}
15311 
15312 #if !defined(lint) && !defined(__lint)
15313 			} else {
15314 				/*
15315 				 * If neither of the preceeding conditionals
15316 				 * was true, it means that there is some
15317 				 * *other* bp that has met an inital failfast
15318 				 * condition and is currently either being
15319 				 * retried or is waiting to be retried. In
15320 				 * that case we should perform normal retry
15321 				 * processing on *this* bp, since there is a
15322 				 * chance that the current failfast condition
15323 				 * is transient and recoverable. If that does
15324 				 * not turn out to be the case, then retries
15325 				 * will be cleared when the wait queue is
15326 				 * flushed anyway.
15327 				 */
15328 #endif
15329 			}
15330 		}
15331 	} else {
15332 		/*
15333 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15334 		 * likely were able to at least establish some level of
15335 		 * communication with the target and subsequent commands
15336 		 * and/or retries are likely to get through to the target,
15337 		 * In this case we want to be aggressive about clearing
15338 		 * the failfast state. Note that this does not affect
15339 		 * the "failfast pending" condition.
15340 		 */
15341 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15342 	}
15343 
15344 
15345 	/*
15346 	 * Check the specified retry count to see if we can still do
15347 	 * any retries with this pkt before we should fail it.
15348 	 */
15349 	switch (retry_check_flag & SD_RETRIES_MASK) {
15350 	case SD_RETRIES_VICTIM:
15351 		/*
15352 		 * Check the victim retry count. If exhausted, then fall
15353 		 * thru & check against the standard retry count.
15354 		 */
15355 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15356 			/* Increment count & proceed with the retry */
15357 			xp->xb_victim_retry_count++;
15358 			break;
15359 		}
15360 		/* Victim retries exhausted, fall back to std. retries... */
15361 		/* FALLTHRU */
15362 
15363 	case SD_RETRIES_STANDARD:
15364 		if (xp->xb_retry_count >= un->un_retry_count) {
15365 			/* Retries exhausted, fail the command */
15366 			SD_TRACE(SD_LOG_IO_CORE, un,
15367 			    "sd_retry_command: retries exhausted!\n");
15368 			/*
15369 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15370 			 * commands with nonzero pkt_resid.
15371 			 */
15372 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15373 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15374 			    (pktp->pkt_resid != 0)) {
15375 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15376 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15377 					SD_UPDATE_B_RESID(bp, pktp);
15378 				}
15379 			}
15380 			goto fail_command;
15381 		}
15382 		xp->xb_retry_count++;
15383 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15384 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15385 		break;
15386 
15387 	case SD_RETRIES_UA:
15388 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15389 			/* Retries exhausted, fail the command */
15390 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15391 			    "Unit Attention retries exhausted. "
15392 			    "Check the target.\n");
15393 			goto fail_command;
15394 		}
15395 		xp->xb_ua_retry_count++;
15396 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15397 		    "sd_retry_command: retry count:%d\n",
15398 			xp->xb_ua_retry_count);
15399 		break;
15400 
15401 	case SD_RETRIES_BUSY:
15402 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15403 			/* Retries exhausted, fail the command */
15404 			SD_TRACE(SD_LOG_IO_CORE, un,
15405 			    "sd_retry_command: retries exhausted!\n");
15406 			goto fail_command;
15407 		}
15408 		xp->xb_retry_count++;
15409 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15410 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15411 		break;
15412 
15413 	case SD_RETRIES_NOCHECK:
15414 	default:
15415 		/* No retry count to check. Just proceed with the retry */
15416 		break;
15417 	}
15418 
15419 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15420 
15421 	/*
15422 	 * If we were given a zero timeout, we must attempt to retry the
15423 	 * command immediately (ie, without a delay).
15424 	 */
15425 	if (retry_delay == 0) {
15426 		/*
15427 		 * Check some limiting conditions to see if we can actually
15428 		 * do the immediate retry.  If we cannot, then we must
15429 		 * fall back to queueing up a delayed retry.
15430 		 */
15431 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15432 			/*
15433 			 * We are at the throttle limit for the target,
15434 			 * fall back to delayed retry.
15435 			 */
15436 			retry_delay = SD_BSY_TIMEOUT;
15437 			statp = kstat_waitq_enter;
15438 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15439 			    "sd_retry_command: immed. retry hit "
15440 			    "throttle!\n");
15441 		} else {
15442 			/*
15443 			 * We're clear to proceed with the immediate retry.
15444 			 * First call the user-provided function (if any)
15445 			 */
15446 			if (user_funcp != NULL) {
15447 				(*user_funcp)(un, bp, user_arg,
15448 				    SD_IMMEDIATE_RETRY_ISSUED);
15449 #ifdef __lock_lint
15450 				sd_print_incomplete_msg(un, bp, user_arg,
15451 				    SD_IMMEDIATE_RETRY_ISSUED);
15452 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15453 				    SD_IMMEDIATE_RETRY_ISSUED);
15454 				sd_print_sense_failed_msg(un, bp, user_arg,
15455 				    SD_IMMEDIATE_RETRY_ISSUED);
15456 #endif
15457 			}
15458 
15459 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15460 			    "sd_retry_command: issuing immediate retry\n");
15461 
15462 			/*
15463 			 * Call sd_start_cmds() to transport the command to
15464 			 * the target.
15465 			 */
15466 			sd_start_cmds(un, bp);
15467 
15468 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15469 			    "sd_retry_command exit\n");
15470 			return;
15471 		}
15472 	}
15473 
15474 	/*
15475 	 * Set up to retry the command after a delay.
15476 	 * First call the user-provided function (if any)
15477 	 */
15478 	if (user_funcp != NULL) {
15479 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15480 	}
15481 
15482 	sd_set_retry_bp(un, bp, retry_delay, statp);
15483 
15484 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15485 	return;
15486 
15487 fail_command:
15488 
15489 	if (user_funcp != NULL) {
15490 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15491 	}
15492 
15493 fail_command_no_log:
15494 
15495 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15496 	    "sd_retry_command: returning failed command\n");
15497 
15498 	sd_return_failed_command(un, bp, failure_code);
15499 
15500 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15501 }
15502 
15503 
15504 /*
15505  *    Function: sd_set_retry_bp
15506  *
15507  * Description: Set up the given bp for retry.
15508  *
15509  *   Arguments: un - ptr to associated softstate
15510  *		bp - ptr to buf(9S) for the command
15511  *		retry_delay - time interval before issuing retry (may be 0)
15512  *		statp - optional pointer to kstat function
15513  *
15514  *     Context: May be called under interrupt context
15515  */
15516 
15517 static void
15518 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15519 	void (*statp)(kstat_io_t *))
15520 {
15521 	ASSERT(un != NULL);
15522 	ASSERT(mutex_owned(SD_MUTEX(un)));
15523 	ASSERT(bp != NULL);
15524 
15525 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15526 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15527 
15528 	/*
15529 	 * Indicate that the command is being retried. This will not allow any
15530 	 * other commands on the wait queue to be transported to the target
15531 	 * until this command has been completed (success or failure). The
15532 	 * "retry command" is not transported to the target until the given
15533 	 * time delay expires, unless the user specified a 0 retry_delay.
15534 	 *
15535 	 * Note: the timeout(9F) callback routine is what actually calls
15536 	 * sd_start_cmds() to transport the command, with the exception of a
15537 	 * zero retry_delay. The only current implementor of a zero retry delay
15538 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15539 	 */
15540 	if (un->un_retry_bp == NULL) {
15541 		ASSERT(un->un_retry_statp == NULL);
15542 		un->un_retry_bp = bp;
15543 
15544 		/*
15545 		 * If the user has not specified a delay the command should
15546 		 * be queued and no timeout should be scheduled.
15547 		 */
15548 		if (retry_delay == 0) {
15549 			/*
15550 			 * Save the kstat pointer that will be used in the
15551 			 * call to SD_UPDATE_KSTATS() below, so that
15552 			 * sd_start_cmds() can correctly decrement the waitq
15553 			 * count when it is time to transport this command.
15554 			 */
15555 			un->un_retry_statp = statp;
15556 			goto done;
15557 		}
15558 	}
15559 
15560 	if (un->un_retry_bp == bp) {
15561 		/*
15562 		 * Save the kstat pointer that will be used in the call to
15563 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15564 		 * correctly decrement the waitq count when it is time to
15565 		 * transport this command.
15566 		 */
15567 		un->un_retry_statp = statp;
15568 
15569 		/*
15570 		 * Schedule a timeout if:
15571 		 *   1) The user has specified a delay.
15572 		 *   2) There is not a START_STOP_UNIT callback pending.
15573 		 *
15574 		 * If no delay has been specified, then it is up to the caller
15575 		 * to ensure that IO processing continues without stalling.
15576 		 * Effectively, this means that the caller will issue the
15577 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15578 		 * callback does this after the START STOP UNIT command has
15579 		 * completed. In either of these cases we should not schedule
15580 		 * a timeout callback here.  Also don't schedule the timeout if
15581 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15582 		 */
15583 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15584 		    (un->un_direct_priority_timeid == NULL)) {
15585 			un->un_retry_timeid =
15586 			    timeout(sd_start_retry_command, un, retry_delay);
15587 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15588 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15589 			    " bp:0x%p un_retry_timeid:0x%p\n",
15590 			    un, bp, un->un_retry_timeid);
15591 		}
15592 	} else {
15593 		/*
15594 		 * We only get in here if there is already another command
15595 		 * waiting to be retried.  In this case, we just put the
15596 		 * given command onto the wait queue, so it can be transported
15597 		 * after the current retry command has completed.
15598 		 *
15599 		 * Also we have to make sure that if the command at the head
15600 		 * of the wait queue is the un_failfast_bp, that we do not
15601 		 * put ahead of it any other commands that are to be retried.
15602 		 */
15603 		if ((un->un_failfast_bp != NULL) &&
15604 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15605 			/*
15606 			 * Enqueue this command AFTER the first command on
15607 			 * the wait queue (which is also un_failfast_bp).
15608 			 */
15609 			bp->av_forw = un->un_waitq_headp->av_forw;
15610 			un->un_waitq_headp->av_forw = bp;
15611 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15612 				un->un_waitq_tailp = bp;
15613 			}
15614 		} else {
15615 			/* Enqueue this command at the head of the waitq. */
15616 			bp->av_forw = un->un_waitq_headp;
15617 			un->un_waitq_headp = bp;
15618 			if (un->un_waitq_tailp == NULL) {
15619 				un->un_waitq_tailp = bp;
15620 			}
15621 		}
15622 
15623 		if (statp == NULL) {
15624 			statp = kstat_waitq_enter;
15625 		}
15626 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15627 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15628 	}
15629 
15630 done:
15631 	if (statp != NULL) {
15632 		SD_UPDATE_KSTATS(un, statp, bp);
15633 	}
15634 
15635 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15636 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15637 }
15638 
15639 
15640 /*
15641  *    Function: sd_start_retry_command
15642  *
15643  * Description: Start the command that has been waiting on the target's
15644  *		retry queue.  Called from timeout(9F) context after the
15645  *		retry delay interval has expired.
15646  *
15647  *   Arguments: arg - pointer to associated softstate for the device.
15648  *
15649  *     Context: timeout(9F) thread context.  May not sleep.
15650  */
15651 
15652 static void
15653 sd_start_retry_command(void *arg)
15654 {
15655 	struct sd_lun *un = arg;
15656 
15657 	ASSERT(un != NULL);
15658 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15659 
15660 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15661 	    "sd_start_retry_command: entry\n");
15662 
15663 	mutex_enter(SD_MUTEX(un));
15664 
15665 	un->un_retry_timeid = NULL;
15666 
15667 	if (un->un_retry_bp != NULL) {
15668 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15669 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15670 		    un, un->un_retry_bp);
15671 		sd_start_cmds(un, un->un_retry_bp);
15672 	}
15673 
15674 	mutex_exit(SD_MUTEX(un));
15675 
15676 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15677 	    "sd_start_retry_command: exit\n");
15678 }
15679 
15680 
15681 /*
15682  *    Function: sd_start_direct_priority_command
15683  *
15684  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15685  *		received TRAN_BUSY when we called scsi_transport() to send it
15686  *		to the underlying HBA. This function is called from timeout(9F)
15687  *		context after the delay interval has expired.
15688  *
15689  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15690  *
15691  *     Context: timeout(9F) thread context.  May not sleep.
15692  */
15693 
15694 static void
15695 sd_start_direct_priority_command(void *arg)
15696 {
15697 	struct buf	*priority_bp = arg;
15698 	struct sd_lun	*un;
15699 
15700 	ASSERT(priority_bp != NULL);
15701 	un = SD_GET_UN(priority_bp);
15702 	ASSERT(un != NULL);
15703 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15704 
15705 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15706 	    "sd_start_direct_priority_command: entry\n");
15707 
15708 	mutex_enter(SD_MUTEX(un));
15709 	un->un_direct_priority_timeid = NULL;
15710 	sd_start_cmds(un, priority_bp);
15711 	mutex_exit(SD_MUTEX(un));
15712 
15713 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15714 	    "sd_start_direct_priority_command: exit\n");
15715 }
15716 
15717 
15718 /*
15719  *    Function: sd_send_request_sense_command
15720  *
15721  * Description: Sends a REQUEST SENSE command to the target
15722  *
15723  *     Context: May be called from interrupt context.
15724  */
15725 
15726 static void
15727 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15728 	struct scsi_pkt *pktp)
15729 {
15730 	ASSERT(bp != NULL);
15731 	ASSERT(un != NULL);
15732 	ASSERT(mutex_owned(SD_MUTEX(un)));
15733 
15734 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15735 	    "entry: buf:0x%p\n", bp);
15736 
15737 	/*
15738 	 * If we are syncing or dumping, then fail the command to avoid a
15739 	 * recursive callback into scsi_transport(). Also fail the command
15740 	 * if we are suspended (legacy behavior).
15741 	 */
15742 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15743 	    (un->un_state == SD_STATE_DUMPING)) {
15744 		sd_return_failed_command(un, bp, EIO);
15745 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15746 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15747 		return;
15748 	}
15749 
15750 	/*
15751 	 * Retry the failed command and don't issue the request sense if:
15752 	 *    1) the sense buf is busy
15753 	 *    2) we have 1 or more outstanding commands on the target
15754 	 *    (the sense data will be cleared or invalidated any way)
15755 	 *
15756 	 * Note: There could be an issue with not checking a retry limit here,
15757 	 * the problem is determining which retry limit to check.
15758 	 */
15759 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15760 		/* Don't retry if the command is flagged as non-retryable */
15761 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15762 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15763 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15764 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15765 			    "sd_send_request_sense_command: "
15766 			    "at full throttle, retrying exit\n");
15767 		} else {
15768 			sd_return_failed_command(un, bp, EIO);
15769 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15770 			    "sd_send_request_sense_command: "
15771 			    "at full throttle, non-retryable exit\n");
15772 		}
15773 		return;
15774 	}
15775 
15776 	sd_mark_rqs_busy(un, bp);
15777 	sd_start_cmds(un, un->un_rqs_bp);
15778 
15779 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15780 	    "sd_send_request_sense_command: exit\n");
15781 }
15782 
15783 
15784 /*
15785  *    Function: sd_mark_rqs_busy
15786  *
15787  * Description: Indicate that the request sense bp for this instance is
15788  *		in use.
15789  *
15790  *     Context: May be called under interrupt context
15791  */
15792 
15793 static void
15794 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15795 {
15796 	struct sd_xbuf	*sense_xp;
15797 
15798 	ASSERT(un != NULL);
15799 	ASSERT(bp != NULL);
15800 	ASSERT(mutex_owned(SD_MUTEX(un)));
15801 	ASSERT(un->un_sense_isbusy == 0);
15802 
15803 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15804 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15805 
15806 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15807 	ASSERT(sense_xp != NULL);
15808 
15809 	SD_INFO(SD_LOG_IO, un,
15810 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15811 
15812 	ASSERT(sense_xp->xb_pktp != NULL);
15813 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15814 	    == (FLAG_SENSING | FLAG_HEAD));
15815 
15816 	un->un_sense_isbusy = 1;
15817 	un->un_rqs_bp->b_resid = 0;
15818 	sense_xp->xb_pktp->pkt_resid  = 0;
15819 	sense_xp->xb_pktp->pkt_reason = 0;
15820 
15821 	/* So we can get back the bp at interrupt time! */
15822 	sense_xp->xb_sense_bp = bp;
15823 
15824 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15825 
15826 	/*
15827 	 * Mark this buf as awaiting sense data. (This is already set in
15828 	 * the pkt_flags for the RQS packet.)
15829 	 */
15830 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15831 
15832 	sense_xp->xb_retry_count	= 0;
15833 	sense_xp->xb_victim_retry_count = 0;
15834 	sense_xp->xb_ua_retry_count	= 0;
15835 	sense_xp->xb_dma_resid  = 0;
15836 
15837 	/* Clean up the fields for auto-request sense */
15838 	sense_xp->xb_sense_status = 0;
15839 	sense_xp->xb_sense_state  = 0;
15840 	sense_xp->xb_sense_resid  = 0;
15841 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15842 
15843 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15844 }
15845 
15846 
15847 /*
15848  *    Function: sd_mark_rqs_idle
15849  *
15850  * Description: SD_MUTEX must be held continuously through this routine
15851  *		to prevent reuse of the rqs struct before the caller can
15852  *		complete it's processing.
15853  *
15854  * Return Code: Pointer to the RQS buf
15855  *
15856  *     Context: May be called under interrupt context
15857  */
15858 
15859 static struct buf *
15860 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15861 {
15862 	struct buf *bp;
15863 	ASSERT(un != NULL);
15864 	ASSERT(sense_xp != NULL);
15865 	ASSERT(mutex_owned(SD_MUTEX(un)));
15866 	ASSERT(un->un_sense_isbusy != 0);
15867 
15868 	un->un_sense_isbusy = 0;
15869 	bp = sense_xp->xb_sense_bp;
15870 	sense_xp->xb_sense_bp = NULL;
15871 
15872 	/* This pkt is no longer interested in getting sense data */
15873 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15874 
15875 	return (bp);
15876 }
15877 
15878 
15879 
15880 /*
15881  *    Function: sd_alloc_rqs
15882  *
15883  * Description: Set up the unit to receive auto request sense data
15884  *
15885  * Return Code: DDI_SUCCESS or DDI_FAILURE
15886  *
15887  *     Context: Called under attach(9E) context
15888  */
15889 
15890 static int
15891 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15892 {
15893 	struct sd_xbuf *xp;
15894 
15895 	ASSERT(un != NULL);
15896 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15897 	ASSERT(un->un_rqs_bp == NULL);
15898 	ASSERT(un->un_rqs_pktp == NULL);
15899 
15900 	/*
15901 	 * First allocate the required buf and scsi_pkt structs, then set up
15902 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15903 	 */
15904 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15905 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15906 	if (un->un_rqs_bp == NULL) {
15907 		return (DDI_FAILURE);
15908 	}
15909 
15910 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15911 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15912 
15913 	if (un->un_rqs_pktp == NULL) {
15914 		sd_free_rqs(un);
15915 		return (DDI_FAILURE);
15916 	}
15917 
15918 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15919 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15920 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15921 
15922 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15923 
15924 	/* Set up the other needed members in the ARQ scsi_pkt. */
15925 	un->un_rqs_pktp->pkt_comp   = sdintr;
15926 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15927 	un->un_rqs_pktp->pkt_flags |=
15928 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15929 
15930 	/*
15931 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15932 	 * provide any intpkt, destroypkt routines as we take care of
15933 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15934 	 */
15935 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15936 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15937 	xp->xb_pktp = un->un_rqs_pktp;
15938 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15939 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15940 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15941 
15942 	/*
15943 	 * Save the pointer to the request sense private bp so it can
15944 	 * be retrieved in sdintr.
15945 	 */
15946 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15947 	ASSERT(un->un_rqs_bp->b_private == xp);
15948 
15949 	/*
15950 	 * See if the HBA supports auto-request sense for the specified
15951 	 * target/lun. If it does, then try to enable it (if not already
15952 	 * enabled).
15953 	 *
15954 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15955 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15956 	 * return success.  However, in both of these cases ARQ is always
15957 	 * enabled and scsi_ifgetcap will always return true. The best approach
15958 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15959 	 *
15960 	 * The 3rd case is the HBA (adp) always return enabled on
15961 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15962 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15963 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15964 	 */
15965 
15966 	if (un->un_f_is_fibre == TRUE) {
15967 		un->un_f_arq_enabled = TRUE;
15968 	} else {
15969 #if defined(__i386) || defined(__amd64)
15970 		/*
15971 		 * Circumvent the Adaptec bug, remove this code when
15972 		 * the bug is fixed
15973 		 */
15974 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15975 #endif
15976 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15977 		case 0:
15978 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15979 				"sd_alloc_rqs: HBA supports ARQ\n");
15980 			/*
15981 			 * ARQ is supported by this HBA but currently is not
15982 			 * enabled. Attempt to enable it and if successful then
15983 			 * mark this instance as ARQ enabled.
15984 			 */
15985 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15986 				== 1) {
15987 				/* Successfully enabled ARQ in the HBA */
15988 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15989 					"sd_alloc_rqs: ARQ enabled\n");
15990 				un->un_f_arq_enabled = TRUE;
15991 			} else {
15992 				/* Could not enable ARQ in the HBA */
15993 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15994 				"sd_alloc_rqs: failed ARQ enable\n");
15995 				un->un_f_arq_enabled = FALSE;
15996 			}
15997 			break;
15998 		case 1:
15999 			/*
16000 			 * ARQ is supported by this HBA and is already enabled.
16001 			 * Just mark ARQ as enabled for this instance.
16002 			 */
16003 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16004 				"sd_alloc_rqs: ARQ already enabled\n");
16005 			un->un_f_arq_enabled = TRUE;
16006 			break;
16007 		default:
16008 			/*
16009 			 * ARQ is not supported by this HBA; disable it for this
16010 			 * instance.
16011 			 */
16012 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16013 				"sd_alloc_rqs: HBA does not support ARQ\n");
16014 			un->un_f_arq_enabled = FALSE;
16015 			break;
16016 		}
16017 	}
16018 
16019 	return (DDI_SUCCESS);
16020 }
16021 
16022 
16023 /*
16024  *    Function: sd_free_rqs
16025  *
16026  * Description: Cleanup for the pre-instance RQS command.
16027  *
16028  *     Context: Kernel thread context
16029  */
16030 
16031 static void
16032 sd_free_rqs(struct sd_lun *un)
16033 {
16034 	ASSERT(un != NULL);
16035 
16036 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16037 
16038 	/*
16039 	 * If consistent memory is bound to a scsi_pkt, the pkt
16040 	 * has to be destroyed *before* freeing the consistent memory.
16041 	 * Don't change the sequence of this operations.
16042 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16043 	 * after it was freed in scsi_free_consistent_buf().
16044 	 */
16045 	if (un->un_rqs_pktp != NULL) {
16046 		scsi_destroy_pkt(un->un_rqs_pktp);
16047 		un->un_rqs_pktp = NULL;
16048 	}
16049 
16050 	if (un->un_rqs_bp != NULL) {
16051 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
16052 		scsi_free_consistent_buf(un->un_rqs_bp);
16053 		un->un_rqs_bp = NULL;
16054 	}
16055 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16056 }
16057 
16058 
16059 
16060 /*
16061  *    Function: sd_reduce_throttle
16062  *
16063  * Description: Reduces the maximun # of outstanding commands on a
16064  *		target to the current number of outstanding commands.
16065  *		Queues a tiemout(9F) callback to restore the limit
16066  *		after a specified interval has elapsed.
16067  *		Typically used when we get a TRAN_BUSY return code
16068  *		back from scsi_transport().
16069  *
16070  *   Arguments: un - ptr to the sd_lun softstate struct
16071  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16072  *
16073  *     Context: May be called from interrupt context
16074  */
16075 
16076 static void
16077 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16078 {
16079 	ASSERT(un != NULL);
16080 	ASSERT(mutex_owned(SD_MUTEX(un)));
16081 	ASSERT(un->un_ncmds_in_transport >= 0);
16082 
16083 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16084 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16085 	    un, un->un_throttle, un->un_ncmds_in_transport);
16086 
16087 	if (un->un_throttle > 1) {
16088 		if (un->un_f_use_adaptive_throttle == TRUE) {
16089 			switch (throttle_type) {
16090 			case SD_THROTTLE_TRAN_BUSY:
16091 				if (un->un_busy_throttle == 0) {
16092 					un->un_busy_throttle = un->un_throttle;
16093 				}
16094 				break;
16095 			case SD_THROTTLE_QFULL:
16096 				un->un_busy_throttle = 0;
16097 				break;
16098 			default:
16099 				ASSERT(FALSE);
16100 			}
16101 
16102 			if (un->un_ncmds_in_transport > 0) {
16103 			    un->un_throttle = un->un_ncmds_in_transport;
16104 			}
16105 
16106 		} else {
16107 			if (un->un_ncmds_in_transport == 0) {
16108 				un->un_throttle = 1;
16109 			} else {
16110 				un->un_throttle = un->un_ncmds_in_transport;
16111 			}
16112 		}
16113 	}
16114 
16115 	/* Reschedule the timeout if none is currently active */
16116 	if (un->un_reset_throttle_timeid == NULL) {
16117 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16118 		    un, SD_THROTTLE_RESET_INTERVAL);
16119 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16120 		    "sd_reduce_throttle: timeout scheduled!\n");
16121 	}
16122 
16123 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16124 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16125 }
16126 
16127 
16128 
16129 /*
16130  *    Function: sd_restore_throttle
16131  *
16132  * Description: Callback function for timeout(9F).  Resets the current
16133  *		value of un->un_throttle to its default.
16134  *
16135  *   Arguments: arg - pointer to associated softstate for the device.
16136  *
16137  *     Context: May be called from interrupt context
16138  */
16139 
16140 static void
16141 sd_restore_throttle(void *arg)
16142 {
16143 	struct sd_lun	*un = arg;
16144 
16145 	ASSERT(un != NULL);
16146 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16147 
16148 	mutex_enter(SD_MUTEX(un));
16149 
16150 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16151 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16152 
16153 	un->un_reset_throttle_timeid = NULL;
16154 
16155 	if (un->un_f_use_adaptive_throttle == TRUE) {
16156 		/*
16157 		 * If un_busy_throttle is nonzero, then it contains the
16158 		 * value that un_throttle was when we got a TRAN_BUSY back
16159 		 * from scsi_transport(). We want to revert back to this
16160 		 * value.
16161 		 *
16162 		 * In the QFULL case, the throttle limit will incrementally
16163 		 * increase until it reaches max throttle.
16164 		 */
16165 		if (un->un_busy_throttle > 0) {
16166 			un->un_throttle = un->un_busy_throttle;
16167 			un->un_busy_throttle = 0;
16168 		} else {
16169 			/*
16170 			 * increase throttle by 10% open gate slowly, schedule
16171 			 * another restore if saved throttle has not been
16172 			 * reached
16173 			 */
16174 			short throttle;
16175 			if (sd_qfull_throttle_enable) {
16176 				throttle = un->un_throttle +
16177 				    max((un->un_throttle / 10), 1);
16178 				un->un_throttle =
16179 				    (throttle < un->un_saved_throttle) ?
16180 				    throttle : un->un_saved_throttle;
16181 				if (un->un_throttle < un->un_saved_throttle) {
16182 				    un->un_reset_throttle_timeid =
16183 					timeout(sd_restore_throttle,
16184 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
16185 				}
16186 			}
16187 		}
16188 
16189 		/*
16190 		 * If un_throttle has fallen below the low-water mark, we
16191 		 * restore the maximum value here (and allow it to ratchet
16192 		 * down again if necessary).
16193 		 */
16194 		if (un->un_throttle < un->un_min_throttle) {
16195 			un->un_throttle = un->un_saved_throttle;
16196 		}
16197 	} else {
16198 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16199 		    "restoring limit from 0x%x to 0x%x\n",
16200 		    un->un_throttle, un->un_saved_throttle);
16201 		un->un_throttle = un->un_saved_throttle;
16202 	}
16203 
16204 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16205 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16206 
16207 	sd_start_cmds(un, NULL);
16208 
16209 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16210 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16211 	    un, un->un_throttle);
16212 
16213 	mutex_exit(SD_MUTEX(un));
16214 
16215 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16216 }
16217 
16218 /*
16219  *    Function: sdrunout
16220  *
16221  * Description: Callback routine for scsi_init_pkt when a resource allocation
16222  *		fails.
16223  *
16224  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16225  *		soft state instance.
16226  *
16227  * Return Code: The scsi_init_pkt routine allows for the callback function to
16228  *		return a 0 indicating the callback should be rescheduled or a 1
16229  *		indicating not to reschedule. This routine always returns 1
16230  *		because the driver always provides a callback function to
16231  *		scsi_init_pkt. This results in a callback always being scheduled
16232  *		(via the scsi_init_pkt callback implementation) if a resource
16233  *		failure occurs.
16234  *
16235  *     Context: This callback function may not block or call routines that block
16236  *
16237  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16238  *		request persisting at the head of the list which cannot be
16239  *		satisfied even after multiple retries. In the future the driver
16240  *		may implement some time of maximum runout count before failing
16241  *		an I/O.
16242  */
16243 
16244 static int
16245 sdrunout(caddr_t arg)
16246 {
16247 	struct sd_lun	*un = (struct sd_lun *)arg;
16248 
16249 	ASSERT(un != NULL);
16250 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16251 
16252 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16253 
16254 	mutex_enter(SD_MUTEX(un));
16255 	sd_start_cmds(un, NULL);
16256 	mutex_exit(SD_MUTEX(un));
16257 	/*
16258 	 * This callback routine always returns 1 (i.e. do not reschedule)
16259 	 * because we always specify sdrunout as the callback handler for
16260 	 * scsi_init_pkt inside the call to sd_start_cmds.
16261 	 */
16262 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16263 	return (1);
16264 }
16265 
16266 
16267 /*
16268  *    Function: sdintr
16269  *
16270  * Description: Completion callback routine for scsi_pkt(9S) structs
16271  *		sent to the HBA driver via scsi_transport(9F).
16272  *
16273  *     Context: Interrupt context
16274  */
16275 
16276 static void
16277 sdintr(struct scsi_pkt *pktp)
16278 {
16279 	struct buf	*bp;
16280 	struct sd_xbuf	*xp;
16281 	struct sd_lun	*un;
16282 
16283 	ASSERT(pktp != NULL);
16284 	bp = (struct buf *)pktp->pkt_private;
16285 	ASSERT(bp != NULL);
16286 	xp = SD_GET_XBUF(bp);
16287 	ASSERT(xp != NULL);
16288 	ASSERT(xp->xb_pktp != NULL);
16289 	un = SD_GET_UN(bp);
16290 	ASSERT(un != NULL);
16291 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16292 
16293 #ifdef SD_FAULT_INJECTION
16294 
16295 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16296 	/* SD FaultInjection */
16297 	sd_faultinjection(pktp);
16298 
16299 #endif /* SD_FAULT_INJECTION */
16300 
16301 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16302 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16303 
16304 	mutex_enter(SD_MUTEX(un));
16305 
16306 	/* Reduce the count of the #commands currently in transport */
16307 	un->un_ncmds_in_transport--;
16308 	ASSERT(un->un_ncmds_in_transport >= 0);
16309 
16310 	/* Increment counter to indicate that the callback routine is active */
16311 	un->un_in_callback++;
16312 
16313 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16314 
16315 #ifdef	SDDEBUG
16316 	if (bp == un->un_retry_bp) {
16317 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16318 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16319 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16320 	}
16321 #endif
16322 
16323 	/*
16324 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16325 	 */
16326 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16327 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16328 			    "Device is gone\n");
16329 		sd_return_failed_command(un, bp, EIO);
16330 		goto exit;
16331 	}
16332 
16333 	/*
16334 	 * First see if the pkt has auto-request sense data with it....
16335 	 * Look at the packet state first so we don't take a performance
16336 	 * hit looking at the arq enabled flag unless absolutely necessary.
16337 	 */
16338 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16339 	    (un->un_f_arq_enabled == TRUE)) {
16340 		/*
16341 		 * The HBA did an auto request sense for this command so check
16342 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16343 		 * driver command that should not be retried.
16344 		 */
16345 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16346 			/*
16347 			 * Save the relevant sense info into the xp for the
16348 			 * original cmd.
16349 			 */
16350 			struct scsi_arq_status *asp;
16351 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16352 			xp->xb_sense_status =
16353 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16354 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16355 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16356 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16357 			    min(sizeof (struct scsi_extended_sense),
16358 			    SENSE_LENGTH));
16359 
16360 			/* fail the command */
16361 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16362 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16363 			sd_return_failed_command(un, bp, EIO);
16364 			goto exit;
16365 		}
16366 
16367 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16368 		/*
16369 		 * We want to either retry or fail this command, so free
16370 		 * the DMA resources here.  If we retry the command then
16371 		 * the DMA resources will be reallocated in sd_start_cmds().
16372 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16373 		 * causes the *entire* transfer to start over again from the
16374 		 * beginning of the request, even for PARTIAL chunks that
16375 		 * have already transferred successfully.
16376 		 */
16377 		if ((un->un_f_is_fibre == TRUE) &&
16378 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16379 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16380 			scsi_dmafree(pktp);
16381 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16382 		}
16383 #endif
16384 
16385 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16386 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16387 
16388 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16389 		goto exit;
16390 	}
16391 
16392 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16393 	if (pktp->pkt_flags & FLAG_SENSING)  {
16394 		/* This pktp is from the unit's REQUEST_SENSE command */
16395 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16396 		    "sdintr: sd_handle_request_sense\n");
16397 		sd_handle_request_sense(un, bp, xp, pktp);
16398 		goto exit;
16399 	}
16400 
16401 	/*
16402 	 * Check to see if the command successfully completed as requested;
16403 	 * this is the most common case (and also the hot performance path).
16404 	 *
16405 	 * Requirements for successful completion are:
16406 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16407 	 * In addition:
16408 	 * - A residual of zero indicates successful completion no matter what
16409 	 *   the command is.
16410 	 * - If the residual is not zero and the command is not a read or
16411 	 *   write, then it's still defined as successful completion. In other
16412 	 *   words, if the command is a read or write the residual must be
16413 	 *   zero for successful completion.
16414 	 * - If the residual is not zero and the command is a read or
16415 	 *   write, and it's a USCSICMD, then it's still defined as
16416 	 *   successful completion.
16417 	 */
16418 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16419 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16420 
16421 		/*
16422 		 * Since this command is returned with a good status, we
16423 		 * can reset the count for Sonoma failover.
16424 		 */
16425 		un->un_sonoma_failure_count = 0;
16426 
16427 		/*
16428 		 * Return all USCSI commands on good status
16429 		 */
16430 		if (pktp->pkt_resid == 0) {
16431 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16432 			    "sdintr: returning command for resid == 0\n");
16433 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16434 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16435 			SD_UPDATE_B_RESID(bp, pktp);
16436 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16437 			    "sdintr: returning command for resid != 0\n");
16438 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16439 			SD_UPDATE_B_RESID(bp, pktp);
16440 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16441 				"sdintr: returning uscsi command\n");
16442 		} else {
16443 			goto not_successful;
16444 		}
16445 		sd_return_command(un, bp);
16446 
16447 		/*
16448 		 * Decrement counter to indicate that the callback routine
16449 		 * is done.
16450 		 */
16451 		un->un_in_callback--;
16452 		ASSERT(un->un_in_callback >= 0);
16453 		mutex_exit(SD_MUTEX(un));
16454 
16455 		return;
16456 	}
16457 
16458 not_successful:
16459 
16460 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16461 	/*
16462 	 * The following is based upon knowledge of the underlying transport
16463 	 * and its use of DMA resources.  This code should be removed when
16464 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16465 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16466 	 * and sd_start_cmds().
16467 	 *
16468 	 * Free any DMA resources associated with this command if there
16469 	 * is a chance it could be retried or enqueued for later retry.
16470 	 * If we keep the DMA binding then mpxio cannot reissue the
16471 	 * command on another path whenever a path failure occurs.
16472 	 *
16473 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16474 	 * causes the *entire* transfer to start over again from the
16475 	 * beginning of the request, even for PARTIAL chunks that
16476 	 * have already transferred successfully.
16477 	 *
16478 	 * This is only done for non-uscsi commands (and also skipped for the
16479 	 * driver's internal RQS command). Also just do this for Fibre Channel
16480 	 * devices as these are the only ones that support mpxio.
16481 	 */
16482 	if ((un->un_f_is_fibre == TRUE) &&
16483 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16484 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16485 		scsi_dmafree(pktp);
16486 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16487 	}
16488 #endif
16489 
16490 	/*
16491 	 * The command did not successfully complete as requested so check
16492 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16493 	 * driver command that should not be retried so just return. If
16494 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16495 	 */
16496 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16497 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16498 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16499 		/*
16500 		 * Issue a request sense if a check condition caused the error
16501 		 * (we handle the auto request sense case above), otherwise
16502 		 * just fail the command.
16503 		 */
16504 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16505 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16506 			sd_send_request_sense_command(un, bp, pktp);
16507 		} else {
16508 			sd_return_failed_command(un, bp, EIO);
16509 		}
16510 		goto exit;
16511 	}
16512 
16513 	/*
16514 	 * The command did not successfully complete as requested so process
16515 	 * the error, retry, and/or attempt recovery.
16516 	 */
16517 	switch (pktp->pkt_reason) {
16518 	case CMD_CMPLT:
16519 		switch (SD_GET_PKT_STATUS(pktp)) {
16520 		case STATUS_GOOD:
16521 			/*
16522 			 * The command completed successfully with a non-zero
16523 			 * residual
16524 			 */
16525 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16526 			    "sdintr: STATUS_GOOD \n");
16527 			sd_pkt_status_good(un, bp, xp, pktp);
16528 			break;
16529 
16530 		case STATUS_CHECK:
16531 		case STATUS_TERMINATED:
16532 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16533 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16534 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16535 			break;
16536 
16537 		case STATUS_BUSY:
16538 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16539 			    "sdintr: STATUS_BUSY\n");
16540 			sd_pkt_status_busy(un, bp, xp, pktp);
16541 			break;
16542 
16543 		case STATUS_RESERVATION_CONFLICT:
16544 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16545 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16546 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16547 			break;
16548 
16549 		case STATUS_QFULL:
16550 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16551 			    "sdintr: STATUS_QFULL\n");
16552 			sd_pkt_status_qfull(un, bp, xp, pktp);
16553 			break;
16554 
16555 		case STATUS_MET:
16556 		case STATUS_INTERMEDIATE:
16557 		case STATUS_SCSI2:
16558 		case STATUS_INTERMEDIATE_MET:
16559 		case STATUS_ACA_ACTIVE:
16560 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16561 			    "Unexpected SCSI status received: 0x%x\n",
16562 			    SD_GET_PKT_STATUS(pktp));
16563 			sd_return_failed_command(un, bp, EIO);
16564 			break;
16565 
16566 		default:
16567 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16568 			    "Invalid SCSI status received: 0x%x\n",
16569 			    SD_GET_PKT_STATUS(pktp));
16570 			sd_return_failed_command(un, bp, EIO);
16571 			break;
16572 
16573 		}
16574 		break;
16575 
16576 	case CMD_INCOMPLETE:
16577 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16578 		    "sdintr:  CMD_INCOMPLETE\n");
16579 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16580 		break;
16581 	case CMD_TRAN_ERR:
16582 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16583 		    "sdintr: CMD_TRAN_ERR\n");
16584 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16585 		break;
16586 	case CMD_RESET:
16587 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16588 		    "sdintr: CMD_RESET \n");
16589 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16590 		break;
16591 	case CMD_ABORTED:
16592 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16593 		    "sdintr: CMD_ABORTED \n");
16594 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16595 		break;
16596 	case CMD_TIMEOUT:
16597 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16598 		    "sdintr: CMD_TIMEOUT\n");
16599 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16600 		break;
16601 	case CMD_UNX_BUS_FREE:
16602 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16603 		    "sdintr: CMD_UNX_BUS_FREE \n");
16604 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16605 		break;
16606 	case CMD_TAG_REJECT:
16607 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16608 		    "sdintr: CMD_TAG_REJECT\n");
16609 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16610 		break;
16611 	default:
16612 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16613 		    "sdintr: default\n");
16614 		sd_pkt_reason_default(un, bp, xp, pktp);
16615 		break;
16616 	}
16617 
16618 exit:
16619 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16620 
16621 	/* Decrement counter to indicate that the callback routine is done. */
16622 	un->un_in_callback--;
16623 	ASSERT(un->un_in_callback >= 0);
16624 
16625 	/*
16626 	 * At this point, the pkt has been dispatched, ie, it is either
16627 	 * being re-tried or has been returned to its caller and should
16628 	 * not be referenced.
16629 	 */
16630 
16631 	mutex_exit(SD_MUTEX(un));
16632 }
16633 
16634 
16635 /*
16636  *    Function: sd_print_incomplete_msg
16637  *
16638  * Description: Prints the error message for a CMD_INCOMPLETE error.
16639  *
16640  *   Arguments: un - ptr to associated softstate for the device.
16641  *		bp - ptr to the buf(9S) for the command.
16642  *		arg - message string ptr
16643  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16644  *			or SD_NO_RETRY_ISSUED.
16645  *
16646  *     Context: May be called under interrupt context
16647  */
16648 
16649 static void
16650 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16651 {
16652 	struct scsi_pkt	*pktp;
16653 	char	*msgp;
16654 	char	*cmdp = arg;
16655 
16656 	ASSERT(un != NULL);
16657 	ASSERT(mutex_owned(SD_MUTEX(un)));
16658 	ASSERT(bp != NULL);
16659 	ASSERT(arg != NULL);
16660 	pktp = SD_GET_PKTP(bp);
16661 	ASSERT(pktp != NULL);
16662 
16663 	switch (code) {
16664 	case SD_DELAYED_RETRY_ISSUED:
16665 	case SD_IMMEDIATE_RETRY_ISSUED:
16666 		msgp = "retrying";
16667 		break;
16668 	case SD_NO_RETRY_ISSUED:
16669 	default:
16670 		msgp = "giving up";
16671 		break;
16672 	}
16673 
16674 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16675 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16676 		    "incomplete %s- %s\n", cmdp, msgp);
16677 	}
16678 }
16679 
16680 
16681 
16682 /*
16683  *    Function: sd_pkt_status_good
16684  *
16685  * Description: Processing for a STATUS_GOOD code in pkt_status.
16686  *
16687  *     Context: May be called under interrupt context
16688  */
16689 
16690 static void
16691 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16692 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16693 {
16694 	char	*cmdp;
16695 
16696 	ASSERT(un != NULL);
16697 	ASSERT(mutex_owned(SD_MUTEX(un)));
16698 	ASSERT(bp != NULL);
16699 	ASSERT(xp != NULL);
16700 	ASSERT(pktp != NULL);
16701 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16702 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16703 	ASSERT(pktp->pkt_resid != 0);
16704 
16705 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16706 
16707 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16708 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16709 	case SCMD_READ:
16710 		cmdp = "read";
16711 		break;
16712 	case SCMD_WRITE:
16713 		cmdp = "write";
16714 		break;
16715 	default:
16716 		SD_UPDATE_B_RESID(bp, pktp);
16717 		sd_return_command(un, bp);
16718 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16719 		return;
16720 	}
16721 
16722 	/*
16723 	 * See if we can retry the read/write, preferrably immediately.
16724 	 * If retries are exhaused, then sd_retry_command() will update
16725 	 * the b_resid count.
16726 	 */
16727 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16728 	    cmdp, EIO, (clock_t)0, NULL);
16729 
16730 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16731 }
16732 
16733 
16734 
16735 
16736 
16737 /*
16738  *    Function: sd_handle_request_sense
16739  *
16740  * Description: Processing for non-auto Request Sense command.
16741  *
16742  *   Arguments: un - ptr to associated softstate
16743  *		sense_bp - ptr to buf(9S) for the RQS command
16744  *		sense_xp - ptr to the sd_xbuf for the RQS command
16745  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16746  *
16747  *     Context: May be called under interrupt context
16748  */
16749 
16750 static void
16751 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16752 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16753 {
16754 	struct buf	*cmd_bp;	/* buf for the original command */
16755 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16756 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16757 
16758 	ASSERT(un != NULL);
16759 	ASSERT(mutex_owned(SD_MUTEX(un)));
16760 	ASSERT(sense_bp != NULL);
16761 	ASSERT(sense_xp != NULL);
16762 	ASSERT(sense_pktp != NULL);
16763 
16764 	/*
16765 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16766 	 * RQS command and not the original command.
16767 	 */
16768 	ASSERT(sense_pktp == un->un_rqs_pktp);
16769 	ASSERT(sense_bp   == un->un_rqs_bp);
16770 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16771 	    (FLAG_SENSING | FLAG_HEAD));
16772 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16773 	    FLAG_SENSING) == FLAG_SENSING);
16774 
16775 	/* These are the bp, xp, and pktp for the original command */
16776 	cmd_bp = sense_xp->xb_sense_bp;
16777 	cmd_xp = SD_GET_XBUF(cmd_bp);
16778 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16779 
16780 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16781 		/*
16782 		 * The REQUEST SENSE command failed.  Release the REQUEST
16783 		 * SENSE command for re-use, get back the bp for the original
16784 		 * command, and attempt to re-try the original command if
16785 		 * FLAG_DIAGNOSE is not set in the original packet.
16786 		 */
16787 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16788 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16789 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16790 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16791 			    NULL, NULL, EIO, (clock_t)0, NULL);
16792 			return;
16793 		}
16794 	}
16795 
16796 	/*
16797 	 * Save the relevant sense info into the xp for the original cmd.
16798 	 *
16799 	 * Note: if the request sense failed the state info will be zero
16800 	 * as set in sd_mark_rqs_busy()
16801 	 */
16802 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16803 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16804 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16805 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16806 
16807 	/*
16808 	 *  Free up the RQS command....
16809 	 *  NOTE:
16810 	 *	Must do this BEFORE calling sd_validate_sense_data!
16811 	 *	sd_validate_sense_data may return the original command in
16812 	 *	which case the pkt will be freed and the flags can no
16813 	 *	longer be touched.
16814 	 *	SD_MUTEX is held through this process until the command
16815 	 *	is dispatched based upon the sense data, so there are
16816 	 *	no race conditions.
16817 	 */
16818 	(void) sd_mark_rqs_idle(un, sense_xp);
16819 
16820 	/*
16821 	 * For a retryable command see if we have valid sense data, if so then
16822 	 * turn it over to sd_decode_sense() to figure out the right course of
16823 	 * action. Just fail a non-retryable command.
16824 	 */
16825 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16826 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16827 		    SD_SENSE_DATA_IS_VALID) {
16828 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16829 		}
16830 	} else {
16831 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16832 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16833 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16834 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16835 		sd_return_failed_command(un, cmd_bp, EIO);
16836 	}
16837 }
16838 
16839 
16840 
16841 
16842 /*
16843  *    Function: sd_handle_auto_request_sense
16844  *
16845  * Description: Processing for auto-request sense information.
16846  *
16847  *   Arguments: un - ptr to associated softstate
16848  *		bp - ptr to buf(9S) for the command
16849  *		xp - ptr to the sd_xbuf for the command
16850  *		pktp - ptr to the scsi_pkt(9S) for the command
16851  *
16852  *     Context: May be called under interrupt context
16853  */
16854 
16855 static void
16856 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16857 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16858 {
16859 	struct scsi_arq_status *asp;
16860 
16861 	ASSERT(un != NULL);
16862 	ASSERT(mutex_owned(SD_MUTEX(un)));
16863 	ASSERT(bp != NULL);
16864 	ASSERT(xp != NULL);
16865 	ASSERT(pktp != NULL);
16866 	ASSERT(pktp != un->un_rqs_pktp);
16867 	ASSERT(bp   != un->un_rqs_bp);
16868 
16869 	/*
16870 	 * For auto-request sense, we get a scsi_arq_status back from
16871 	 * the HBA, with the sense data in the sts_sensedata member.
16872 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16873 	 */
16874 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16875 
16876 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16877 		/*
16878 		 * The auto REQUEST SENSE failed; see if we can re-try
16879 		 * the original command.
16880 		 */
16881 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16882 		    "auto request sense failed (reason=%s)\n",
16883 		    scsi_rname(asp->sts_rqpkt_reason));
16884 
16885 		sd_reset_target(un, pktp);
16886 
16887 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16888 		    NULL, NULL, EIO, (clock_t)0, NULL);
16889 		return;
16890 	}
16891 
16892 	/* Save the relevant sense info into the xp for the original cmd. */
16893 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16894 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16895 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16896 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16897 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16898 
16899 	/*
16900 	 * See if we have valid sense data, if so then turn it over to
16901 	 * sd_decode_sense() to figure out the right course of action.
16902 	 */
16903 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16904 		sd_decode_sense(un, bp, xp, pktp);
16905 	}
16906 }
16907 
16908 
16909 /*
16910  *    Function: sd_print_sense_failed_msg
16911  *
16912  * Description: Print log message when RQS has failed.
16913  *
16914  *   Arguments: un - ptr to associated softstate
16915  *		bp - ptr to buf(9S) for the command
16916  *		arg - generic message string ptr
16917  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16918  *			or SD_NO_RETRY_ISSUED
16919  *
16920  *     Context: May be called from interrupt context
16921  */
16922 
16923 static void
16924 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16925 	int code)
16926 {
16927 	char	*msgp = arg;
16928 
16929 	ASSERT(un != NULL);
16930 	ASSERT(mutex_owned(SD_MUTEX(un)));
16931 	ASSERT(bp != NULL);
16932 
16933 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16934 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16935 	}
16936 }
16937 
16938 
16939 /*
16940  *    Function: sd_validate_sense_data
16941  *
16942  * Description: Check the given sense data for validity.
16943  *		If the sense data is not valid, the command will
16944  *		be either failed or retried!
16945  *
16946  * Return Code: SD_SENSE_DATA_IS_INVALID
16947  *		SD_SENSE_DATA_IS_VALID
16948  *
16949  *     Context: May be called from interrupt context
16950  */
16951 
16952 static int
16953 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16954 {
16955 	struct scsi_extended_sense *esp;
16956 	struct	scsi_pkt *pktp;
16957 	size_t	actual_len;
16958 	char	*msgp = NULL;
16959 
16960 	ASSERT(un != NULL);
16961 	ASSERT(mutex_owned(SD_MUTEX(un)));
16962 	ASSERT(bp != NULL);
16963 	ASSERT(bp != un->un_rqs_bp);
16964 	ASSERT(xp != NULL);
16965 
16966 	pktp = SD_GET_PKTP(bp);
16967 	ASSERT(pktp != NULL);
16968 
16969 	/*
16970 	 * Check the status of the RQS command (auto or manual).
16971 	 */
16972 	switch (xp->xb_sense_status & STATUS_MASK) {
16973 	case STATUS_GOOD:
16974 		break;
16975 
16976 	case STATUS_RESERVATION_CONFLICT:
16977 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16978 		return (SD_SENSE_DATA_IS_INVALID);
16979 
16980 	case STATUS_BUSY:
16981 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16982 		    "Busy Status on REQUEST SENSE\n");
16983 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16984 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16985 		return (SD_SENSE_DATA_IS_INVALID);
16986 
16987 	case STATUS_QFULL:
16988 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16989 		    "QFULL Status on REQUEST SENSE\n");
16990 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16991 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16992 		return (SD_SENSE_DATA_IS_INVALID);
16993 
16994 	case STATUS_CHECK:
16995 	case STATUS_TERMINATED:
16996 		msgp = "Check Condition on REQUEST SENSE\n";
16997 		goto sense_failed;
16998 
16999 	default:
17000 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17001 		goto sense_failed;
17002 	}
17003 
17004 	/*
17005 	 * See if we got the minimum required amount of sense data.
17006 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17007 	 * or less.
17008 	 */
17009 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
17010 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17011 	    (actual_len == 0)) {
17012 		msgp = "Request Sense couldn't get sense data\n";
17013 		goto sense_failed;
17014 	}
17015 
17016 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17017 		msgp = "Not enough sense information\n";
17018 		goto sense_failed;
17019 	}
17020 
17021 	/*
17022 	 * We require the extended sense data
17023 	 */
17024 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17025 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17026 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17027 			static char tmp[8];
17028 			static char buf[148];
17029 			char *p = (char *)(xp->xb_sense_data);
17030 			int i;
17031 
17032 			mutex_enter(&sd_sense_mutex);
17033 			(void) strcpy(buf, "undecodable sense information:");
17034 			for (i = 0; i < actual_len; i++) {
17035 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17036 				(void) strcpy(&buf[strlen(buf)], tmp);
17037 			}
17038 			i = strlen(buf);
17039 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17040 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
17041 			mutex_exit(&sd_sense_mutex);
17042 		}
17043 		/* Note: Legacy behavior, fail the command with no retry */
17044 		sd_return_failed_command(un, bp, EIO);
17045 		return (SD_SENSE_DATA_IS_INVALID);
17046 	}
17047 
17048 	/*
17049 	 * Check that es_code is valid (es_class concatenated with es_code
17050 	 * make up the "response code" field.  es_class will always be 7, so
17051 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17052 	 * format.
17053 	 */
17054 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17055 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17056 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17057 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17058 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17059 		goto sense_failed;
17060 	}
17061 
17062 	return (SD_SENSE_DATA_IS_VALID);
17063 
17064 sense_failed:
17065 	/*
17066 	 * If the request sense failed (for whatever reason), attempt
17067 	 * to retry the original command.
17068 	 */
17069 #if defined(__i386) || defined(__amd64)
17070 	/*
17071 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17072 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17073 	 * for both SCSI/FC.
17074 	 * The SD_RETRY_DELAY value need to be adjusted here
17075 	 * when SD_RETRY_DELAY change in sddef.h
17076 	 */
17077 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17078 	    sd_print_sense_failed_msg, msgp, EIO,
17079 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17080 #else
17081 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17082 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17083 #endif
17084 
17085 	return (SD_SENSE_DATA_IS_INVALID);
17086 }
17087 
17088 
17089 
17090 /*
17091  *    Function: sd_decode_sense
17092  *
17093  * Description: Take recovery action(s) when SCSI Sense Data is received.
17094  *
17095  *     Context: Interrupt context.
17096  */
17097 
17098 static void
17099 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17100 	struct scsi_pkt *pktp)
17101 {
17102 	uint8_t sense_key;
17103 
17104 	ASSERT(un != NULL);
17105 	ASSERT(mutex_owned(SD_MUTEX(un)));
17106 	ASSERT(bp != NULL);
17107 	ASSERT(bp != un->un_rqs_bp);
17108 	ASSERT(xp != NULL);
17109 	ASSERT(pktp != NULL);
17110 
17111 	sense_key = scsi_sense_key(xp->xb_sense_data);
17112 
17113 	switch (sense_key) {
17114 	case KEY_NO_SENSE:
17115 		sd_sense_key_no_sense(un, bp, xp, pktp);
17116 		break;
17117 	case KEY_RECOVERABLE_ERROR:
17118 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17119 		    bp, xp, pktp);
17120 		break;
17121 	case KEY_NOT_READY:
17122 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17123 		    bp, xp, pktp);
17124 		break;
17125 	case KEY_MEDIUM_ERROR:
17126 	case KEY_HARDWARE_ERROR:
17127 		sd_sense_key_medium_or_hardware_error(un,
17128 		    xp->xb_sense_data, bp, xp, pktp);
17129 		break;
17130 	case KEY_ILLEGAL_REQUEST:
17131 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17132 		break;
17133 	case KEY_UNIT_ATTENTION:
17134 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17135 		    bp, xp, pktp);
17136 		break;
17137 	case KEY_WRITE_PROTECT:
17138 	case KEY_VOLUME_OVERFLOW:
17139 	case KEY_MISCOMPARE:
17140 		sd_sense_key_fail_command(un, bp, xp, pktp);
17141 		break;
17142 	case KEY_BLANK_CHECK:
17143 		sd_sense_key_blank_check(un, bp, xp, pktp);
17144 		break;
17145 	case KEY_ABORTED_COMMAND:
17146 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17147 		break;
17148 	case KEY_VENDOR_UNIQUE:
17149 	case KEY_COPY_ABORTED:
17150 	case KEY_EQUAL:
17151 	case KEY_RESERVED:
17152 	default:
17153 		sd_sense_key_default(un, xp->xb_sense_data,
17154 		    bp, xp, pktp);
17155 		break;
17156 	}
17157 }
17158 
17159 
17160 /*
17161  *    Function: sd_dump_memory
17162  *
17163  * Description: Debug logging routine to print the contents of a user provided
17164  *		buffer. The output of the buffer is broken up into 256 byte
17165  *		segments due to a size constraint of the scsi_log.
17166  *		implementation.
17167  *
17168  *   Arguments: un - ptr to softstate
17169  *		comp - component mask
17170  *		title - "title" string to preceed data when printed
17171  *		data - ptr to data block to be printed
17172  *		len - size of data block to be printed
17173  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17174  *
17175  *     Context: May be called from interrupt context
17176  */
17177 
17178 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17179 
17180 static char *sd_dump_format_string[] = {
17181 		" 0x%02x",
17182 		" %c"
17183 };
17184 
17185 static void
17186 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17187     int len, int fmt)
17188 {
17189 	int	i, j;
17190 	int	avail_count;
17191 	int	start_offset;
17192 	int	end_offset;
17193 	size_t	entry_len;
17194 	char	*bufp;
17195 	char	*local_buf;
17196 	char	*format_string;
17197 
17198 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17199 
17200 	/*
17201 	 * In the debug version of the driver, this function is called from a
17202 	 * number of places which are NOPs in the release driver.
17203 	 * The debug driver therefore has additional methods of filtering
17204 	 * debug output.
17205 	 */
17206 #ifdef SDDEBUG
17207 	/*
17208 	 * In the debug version of the driver we can reduce the amount of debug
17209 	 * messages by setting sd_error_level to something other than
17210 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17211 	 * sd_component_mask.
17212 	 */
17213 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17214 	    (sd_error_level != SCSI_ERR_ALL)) {
17215 		return;
17216 	}
17217 	if (((sd_component_mask & comp) == 0) ||
17218 	    (sd_error_level != SCSI_ERR_ALL)) {
17219 		return;
17220 	}
17221 #else
17222 	if (sd_error_level != SCSI_ERR_ALL) {
17223 		return;
17224 	}
17225 #endif
17226 
17227 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17228 	bufp = local_buf;
17229 	/*
17230 	 * Available length is the length of local_buf[], minus the
17231 	 * length of the title string, minus one for the ":", minus
17232 	 * one for the newline, minus one for the NULL terminator.
17233 	 * This gives the #bytes available for holding the printed
17234 	 * values from the given data buffer.
17235 	 */
17236 	if (fmt == SD_LOG_HEX) {
17237 		format_string = sd_dump_format_string[0];
17238 	} else /* SD_LOG_CHAR */ {
17239 		format_string = sd_dump_format_string[1];
17240 	}
17241 	/*
17242 	 * Available count is the number of elements from the given
17243 	 * data buffer that we can fit into the available length.
17244 	 * This is based upon the size of the format string used.
17245 	 * Make one entry and find it's size.
17246 	 */
17247 	(void) sprintf(bufp, format_string, data[0]);
17248 	entry_len = strlen(bufp);
17249 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17250 
17251 	j = 0;
17252 	while (j < len) {
17253 		bufp = local_buf;
17254 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17255 		start_offset = j;
17256 
17257 		end_offset = start_offset + avail_count;
17258 
17259 		(void) sprintf(bufp, "%s:", title);
17260 		bufp += strlen(bufp);
17261 		for (i = start_offset; ((i < end_offset) && (j < len));
17262 		    i++, j++) {
17263 			(void) sprintf(bufp, format_string, data[i]);
17264 			bufp += entry_len;
17265 		}
17266 		(void) sprintf(bufp, "\n");
17267 
17268 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17269 	}
17270 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17271 }
17272 
17273 /*
17274  *    Function: sd_print_sense_msg
17275  *
17276  * Description: Log a message based upon the given sense data.
17277  *
17278  *   Arguments: un - ptr to associated softstate
17279  *		bp - ptr to buf(9S) for the command
17280  *		arg - ptr to associate sd_sense_info struct
17281  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17282  *			or SD_NO_RETRY_ISSUED
17283  *
17284  *     Context: May be called from interrupt context
17285  */
17286 
17287 static void
17288 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17289 {
17290 	struct sd_xbuf	*xp;
17291 	struct scsi_pkt	*pktp;
17292 	uint8_t *sensep;
17293 	daddr_t request_blkno;
17294 	diskaddr_t err_blkno;
17295 	int severity;
17296 	int pfa_flag;
17297 	extern struct scsi_key_strings scsi_cmds[];
17298 
17299 	ASSERT(un != NULL);
17300 	ASSERT(mutex_owned(SD_MUTEX(un)));
17301 	ASSERT(bp != NULL);
17302 	xp = SD_GET_XBUF(bp);
17303 	ASSERT(xp != NULL);
17304 	pktp = SD_GET_PKTP(bp);
17305 	ASSERT(pktp != NULL);
17306 	ASSERT(arg != NULL);
17307 
17308 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17309 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17310 
17311 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17312 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17313 		severity = SCSI_ERR_RETRYABLE;
17314 	}
17315 
17316 	/* Use absolute block number for the request block number */
17317 	request_blkno = xp->xb_blkno;
17318 
17319 	/*
17320 	 * Now try to get the error block number from the sense data
17321 	 */
17322 	sensep = xp->xb_sense_data;
17323 
17324 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17325 		(uint64_t *)&err_blkno)) {
17326 		/*
17327 		 * We retrieved the error block number from the information
17328 		 * portion of the sense data.
17329 		 *
17330 		 * For USCSI commands we are better off using the error
17331 		 * block no. as the requested block no. (This is the best
17332 		 * we can estimate.)
17333 		 */
17334 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17335 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17336 			request_blkno = err_blkno;
17337 		}
17338 	} else {
17339 		/*
17340 		 * Without the es_valid bit set (for fixed format) or an
17341 		 * information descriptor (for descriptor format) we cannot
17342 		 * be certain of the error blkno, so just use the
17343 		 * request_blkno.
17344 		 */
17345 		err_blkno = (diskaddr_t)request_blkno;
17346 	}
17347 
17348 	/*
17349 	 * The following will log the buffer contents for the release driver
17350 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17351 	 * level is set to verbose.
17352 	 */
17353 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17354 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17355 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17356 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17357 
17358 	if (pfa_flag == FALSE) {
17359 		/* This is normally only set for USCSI */
17360 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17361 			return;
17362 		}
17363 
17364 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17365 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17366 		    (severity < sd_error_level))) {
17367 			return;
17368 		}
17369 	}
17370 
17371 	/*
17372 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17373 	 */
17374 	if ((SD_IS_LSI(un)) &&
17375 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17376 	    (scsi_sense_asc(sensep) == 0x94) &&
17377 	    (scsi_sense_ascq(sensep) == 0x01)) {
17378 		un->un_sonoma_failure_count++;
17379 		if (un->un_sonoma_failure_count > 1) {
17380 			return;
17381 		}
17382 	}
17383 
17384 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17385 	    request_blkno, err_blkno, scsi_cmds,
17386 	    (struct scsi_extended_sense *)sensep,
17387 	    un->un_additional_codes, NULL);
17388 }
17389 
17390 /*
17391  *    Function: sd_sense_key_no_sense
17392  *
17393  * Description: Recovery action when sense data was not received.
17394  *
17395  *     Context: May be called from interrupt context
17396  */
17397 
17398 static void
17399 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17400 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17401 {
17402 	struct sd_sense_info	si;
17403 
17404 	ASSERT(un != NULL);
17405 	ASSERT(mutex_owned(SD_MUTEX(un)));
17406 	ASSERT(bp != NULL);
17407 	ASSERT(xp != NULL);
17408 	ASSERT(pktp != NULL);
17409 
17410 	si.ssi_severity = SCSI_ERR_FATAL;
17411 	si.ssi_pfa_flag = FALSE;
17412 
17413 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17414 
17415 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17416 		&si, EIO, (clock_t)0, NULL);
17417 }
17418 
17419 
17420 /*
17421  *    Function: sd_sense_key_recoverable_error
17422  *
17423  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17424  *
17425  *     Context: May be called from interrupt context
17426  */
17427 
17428 static void
17429 sd_sense_key_recoverable_error(struct sd_lun *un,
17430 	uint8_t *sense_datap,
17431 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17432 {
17433 	struct sd_sense_info	si;
17434 	uint8_t asc = scsi_sense_asc(sense_datap);
17435 
17436 	ASSERT(un != NULL);
17437 	ASSERT(mutex_owned(SD_MUTEX(un)));
17438 	ASSERT(bp != NULL);
17439 	ASSERT(xp != NULL);
17440 	ASSERT(pktp != NULL);
17441 
17442 	/*
17443 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17444 	 */
17445 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17446 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17447 		si.ssi_severity = SCSI_ERR_INFO;
17448 		si.ssi_pfa_flag = TRUE;
17449 	} else {
17450 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17451 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17452 		si.ssi_severity = SCSI_ERR_RECOVERED;
17453 		si.ssi_pfa_flag = FALSE;
17454 	}
17455 
17456 	if (pktp->pkt_resid == 0) {
17457 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17458 		sd_return_command(un, bp);
17459 		return;
17460 	}
17461 
17462 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17463 	    &si, EIO, (clock_t)0, NULL);
17464 }
17465 
17466 
17467 
17468 
17469 /*
17470  *    Function: sd_sense_key_not_ready
17471  *
17472  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17473  *
17474  *     Context: May be called from interrupt context
17475  */
17476 
17477 static void
17478 sd_sense_key_not_ready(struct sd_lun *un,
17479 	uint8_t *sense_datap,
17480 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17481 {
17482 	struct sd_sense_info	si;
17483 	uint8_t asc = scsi_sense_asc(sense_datap);
17484 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17485 
17486 	ASSERT(un != NULL);
17487 	ASSERT(mutex_owned(SD_MUTEX(un)));
17488 	ASSERT(bp != NULL);
17489 	ASSERT(xp != NULL);
17490 	ASSERT(pktp != NULL);
17491 
17492 	si.ssi_severity = SCSI_ERR_FATAL;
17493 	si.ssi_pfa_flag = FALSE;
17494 
17495 	/*
17496 	 * Update error stats after first NOT READY error. Disks may have
17497 	 * been powered down and may need to be restarted.  For CDROMs,
17498 	 * report NOT READY errors only if media is present.
17499 	 */
17500 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17501 	    (xp->xb_retry_count > 0)) {
17502 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17503 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17504 	}
17505 
17506 	/*
17507 	 * Just fail if the "not ready" retry limit has been reached.
17508 	 */
17509 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17510 		/* Special check for error message printing for removables. */
17511 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17512 		    (ascq >= 0x04)) {
17513 			si.ssi_severity = SCSI_ERR_ALL;
17514 		}
17515 		goto fail_command;
17516 	}
17517 
17518 	/*
17519 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17520 	 * what to do.
17521 	 */
17522 	switch (asc) {
17523 	case 0x04:	/* LOGICAL UNIT NOT READY */
17524 		/*
17525 		 * disk drives that don't spin up result in a very long delay
17526 		 * in format without warning messages. We will log a message
17527 		 * if the error level is set to verbose.
17528 		 */
17529 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17530 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17531 			    "logical unit not ready, resetting disk\n");
17532 		}
17533 
17534 		/*
17535 		 * There are different requirements for CDROMs and disks for
17536 		 * the number of retries.  If a CD-ROM is giving this, it is
17537 		 * probably reading TOC and is in the process of getting
17538 		 * ready, so we should keep on trying for a long time to make
17539 		 * sure that all types of media are taken in account (for
17540 		 * some media the drive takes a long time to read TOC).  For
17541 		 * disks we do not want to retry this too many times as this
17542 		 * can cause a long hang in format when the drive refuses to
17543 		 * spin up (a very common failure).
17544 		 */
17545 		switch (ascq) {
17546 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17547 			/*
17548 			 * Disk drives frequently refuse to spin up which
17549 			 * results in a very long hang in format without
17550 			 * warning messages.
17551 			 *
17552 			 * Note: This code preserves the legacy behavior of
17553 			 * comparing xb_retry_count against zero for fibre
17554 			 * channel targets instead of comparing against the
17555 			 * un_reset_retry_count value.  The reason for this
17556 			 * discrepancy has been so utterly lost beneath the
17557 			 * Sands of Time that even Indiana Jones could not
17558 			 * find it.
17559 			 */
17560 			if (un->un_f_is_fibre == TRUE) {
17561 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17562 					(xp->xb_retry_count > 0)) &&
17563 					(un->un_startstop_timeid == NULL)) {
17564 					scsi_log(SD_DEVINFO(un), sd_label,
17565 					CE_WARN, "logical unit not ready, "
17566 					"resetting disk\n");
17567 					sd_reset_target(un, pktp);
17568 				}
17569 			} else {
17570 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17571 					(xp->xb_retry_count >
17572 					un->un_reset_retry_count)) &&
17573 					(un->un_startstop_timeid == NULL)) {
17574 					scsi_log(SD_DEVINFO(un), sd_label,
17575 					CE_WARN, "logical unit not ready, "
17576 					"resetting disk\n");
17577 					sd_reset_target(un, pktp);
17578 				}
17579 			}
17580 			break;
17581 
17582 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17583 			/*
17584 			 * If the target is in the process of becoming
17585 			 * ready, just proceed with the retry. This can
17586 			 * happen with CD-ROMs that take a long time to
17587 			 * read TOC after a power cycle or reset.
17588 			 */
17589 			goto do_retry;
17590 
17591 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17592 			break;
17593 
17594 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17595 			/*
17596 			 * Retries cannot help here so just fail right away.
17597 			 */
17598 			goto fail_command;
17599 
17600 		case 0x88:
17601 			/*
17602 			 * Vendor-unique code for T3/T4: it indicates a
17603 			 * path problem in a mutipathed config, but as far as
17604 			 * the target driver is concerned it equates to a fatal
17605 			 * error, so we should just fail the command right away
17606 			 * (without printing anything to the console). If this
17607 			 * is not a T3/T4, fall thru to the default recovery
17608 			 * action.
17609 			 * T3/T4 is FC only, don't need to check is_fibre
17610 			 */
17611 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17612 				sd_return_failed_command(un, bp, EIO);
17613 				return;
17614 			}
17615 			/* FALLTHRU */
17616 
17617 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17618 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17619 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17620 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17621 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17622 		default:    /* Possible future codes in SCSI spec? */
17623 			/*
17624 			 * For removable-media devices, do not retry if
17625 			 * ASCQ > 2 as these result mostly from USCSI commands
17626 			 * on MMC devices issued to check status of an
17627 			 * operation initiated in immediate mode.  Also for
17628 			 * ASCQ >= 4 do not print console messages as these
17629 			 * mainly represent a user-initiated operation
17630 			 * instead of a system failure.
17631 			 */
17632 			if (un->un_f_has_removable_media) {
17633 				si.ssi_severity = SCSI_ERR_ALL;
17634 				goto fail_command;
17635 			}
17636 			break;
17637 		}
17638 
17639 		/*
17640 		 * As part of our recovery attempt for the NOT READY
17641 		 * condition, we issue a START STOP UNIT command. However
17642 		 * we want to wait for a short delay before attempting this
17643 		 * as there may still be more commands coming back from the
17644 		 * target with the check condition. To do this we use
17645 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17646 		 * the delay interval expires. (sd_start_stop_unit_callback()
17647 		 * dispatches sd_start_stop_unit_task(), which will issue
17648 		 * the actual START STOP UNIT command. The delay interval
17649 		 * is one-half of the delay that we will use to retry the
17650 		 * command that generated the NOT READY condition.
17651 		 *
17652 		 * Note that we could just dispatch sd_start_stop_unit_task()
17653 		 * from here and allow it to sleep for the delay interval,
17654 		 * but then we would be tying up the taskq thread
17655 		 * uncesessarily for the duration of the delay.
17656 		 *
17657 		 * Do not issue the START STOP UNIT if the current command
17658 		 * is already a START STOP UNIT.
17659 		 */
17660 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17661 			break;
17662 		}
17663 
17664 		/*
17665 		 * Do not schedule the timeout if one is already pending.
17666 		 */
17667 		if (un->un_startstop_timeid != NULL) {
17668 			SD_INFO(SD_LOG_ERROR, un,
17669 			    "sd_sense_key_not_ready: restart already issued to"
17670 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17671 			    ddi_get_instance(SD_DEVINFO(un)));
17672 			break;
17673 		}
17674 
17675 		/*
17676 		 * Schedule the START STOP UNIT command, then queue the command
17677 		 * for a retry.
17678 		 *
17679 		 * Note: A timeout is not scheduled for this retry because we
17680 		 * want the retry to be serial with the START_STOP_UNIT. The
17681 		 * retry will be started when the START_STOP_UNIT is completed
17682 		 * in sd_start_stop_unit_task.
17683 		 */
17684 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17685 		    un, SD_BSY_TIMEOUT / 2);
17686 		xp->xb_retry_count++;
17687 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17688 		return;
17689 
17690 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17691 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17692 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17693 			    "unit does not respond to selection\n");
17694 		}
17695 		break;
17696 
17697 	case 0x3A:	/* MEDIUM NOT PRESENT */
17698 		if (sd_error_level >= SCSI_ERR_FATAL) {
17699 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17700 			    "Caddy not inserted in drive\n");
17701 		}
17702 
17703 		sr_ejected(un);
17704 		un->un_mediastate = DKIO_EJECTED;
17705 		/* The state has changed, inform the media watch routines */
17706 		cv_broadcast(&un->un_state_cv);
17707 		/* Just fail if no media is present in the drive. */
17708 		goto fail_command;
17709 
17710 	default:
17711 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17712 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17713 			    "Unit not Ready. Additional sense code 0x%x\n",
17714 			    asc);
17715 		}
17716 		break;
17717 	}
17718 
17719 do_retry:
17720 
17721 	/*
17722 	 * Retry the command, as some targets may report NOT READY for
17723 	 * several seconds after being reset.
17724 	 */
17725 	xp->xb_retry_count++;
17726 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17727 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17728 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17729 
17730 	return;
17731 
17732 fail_command:
17733 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17734 	sd_return_failed_command(un, bp, EIO);
17735 }
17736 
17737 
17738 
17739 /*
17740  *    Function: sd_sense_key_medium_or_hardware_error
17741  *
17742  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17743  *		sense key.
17744  *
17745  *     Context: May be called from interrupt context
17746  */
17747 
17748 static void
17749 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17750 	uint8_t *sense_datap,
17751 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17752 {
17753 	struct sd_sense_info	si;
17754 	uint8_t sense_key = scsi_sense_key(sense_datap);
17755 	uint8_t asc = scsi_sense_asc(sense_datap);
17756 
17757 	ASSERT(un != NULL);
17758 	ASSERT(mutex_owned(SD_MUTEX(un)));
17759 	ASSERT(bp != NULL);
17760 	ASSERT(xp != NULL);
17761 	ASSERT(pktp != NULL);
17762 
17763 	si.ssi_severity = SCSI_ERR_FATAL;
17764 	si.ssi_pfa_flag = FALSE;
17765 
17766 	if (sense_key == KEY_MEDIUM_ERROR) {
17767 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17768 	}
17769 
17770 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17771 
17772 	if ((un->un_reset_retry_count != 0) &&
17773 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17774 		mutex_exit(SD_MUTEX(un));
17775 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17776 		if (un->un_f_allow_bus_device_reset == TRUE) {
17777 
17778 			boolean_t try_resetting_target = B_TRUE;
17779 
17780 			/*
17781 			 * We need to be able to handle specific ASC when we are
17782 			 * handling a KEY_HARDWARE_ERROR. In particular
17783 			 * taking the default action of resetting the target may
17784 			 * not be the appropriate way to attempt recovery.
17785 			 * Resetting a target because of a single LUN failure
17786 			 * victimizes all LUNs on that target.
17787 			 *
17788 			 * This is true for the LSI arrays, if an LSI
17789 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17790 			 * should trust it.
17791 			 */
17792 
17793 			if (sense_key == KEY_HARDWARE_ERROR) {
17794 				switch (asc) {
17795 				case 0x84:
17796 					if (SD_IS_LSI(un)) {
17797 						try_resetting_target = B_FALSE;
17798 					}
17799 					break;
17800 				default:
17801 					break;
17802 				}
17803 			}
17804 
17805 			if (try_resetting_target == B_TRUE) {
17806 				int reset_retval = 0;
17807 				if (un->un_f_lun_reset_enabled == TRUE) {
17808 					SD_TRACE(SD_LOG_IO_CORE, un,
17809 					    "sd_sense_key_medium_or_hardware_"
17810 					    "error: issuing RESET_LUN\n");
17811 					reset_retval =
17812 					    scsi_reset(SD_ADDRESS(un),
17813 					    RESET_LUN);
17814 				}
17815 				if (reset_retval == 0) {
17816 					SD_TRACE(SD_LOG_IO_CORE, un,
17817 					    "sd_sense_key_medium_or_hardware_"
17818 					    "error: issuing RESET_TARGET\n");
17819 					(void) scsi_reset(SD_ADDRESS(un),
17820 					    RESET_TARGET);
17821 				}
17822 			}
17823 		}
17824 		mutex_enter(SD_MUTEX(un));
17825 	}
17826 
17827 	/*
17828 	 * This really ought to be a fatal error, but we will retry anyway
17829 	 * as some drives report this as a spurious error.
17830 	 */
17831 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17832 	    &si, EIO, (clock_t)0, NULL);
17833 }
17834 
17835 
17836 
17837 /*
17838  *    Function: sd_sense_key_illegal_request
17839  *
17840  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17841  *
17842  *     Context: May be called from interrupt context
17843  */
17844 
17845 static void
17846 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17847 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17848 {
17849 	struct sd_sense_info	si;
17850 
17851 	ASSERT(un != NULL);
17852 	ASSERT(mutex_owned(SD_MUTEX(un)));
17853 	ASSERT(bp != NULL);
17854 	ASSERT(xp != NULL);
17855 	ASSERT(pktp != NULL);
17856 
17857 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17858 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17859 
17860 	si.ssi_severity = SCSI_ERR_INFO;
17861 	si.ssi_pfa_flag = FALSE;
17862 
17863 	/* Pointless to retry if the target thinks it's an illegal request */
17864 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17865 	sd_return_failed_command(un, bp, EIO);
17866 }
17867 
17868 
17869 
17870 
17871 /*
17872  *    Function: sd_sense_key_unit_attention
17873  *
17874  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17875  *
17876  *     Context: May be called from interrupt context
17877  */
17878 
17879 static void
17880 sd_sense_key_unit_attention(struct sd_lun *un,
17881 	uint8_t *sense_datap,
17882 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17883 {
17884 	/*
17885 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17886 	 * like Sonoma can return UNIT ATTENTION close to a minute
17887 	 * under certain conditions.
17888 	 */
17889 	int	retry_check_flag = SD_RETRIES_UA;
17890 	boolean_t	kstat_updated = B_FALSE;
17891 	struct	sd_sense_info		si;
17892 	uint8_t asc = scsi_sense_asc(sense_datap);
17893 
17894 	ASSERT(un != NULL);
17895 	ASSERT(mutex_owned(SD_MUTEX(un)));
17896 	ASSERT(bp != NULL);
17897 	ASSERT(xp != NULL);
17898 	ASSERT(pktp != NULL);
17899 
17900 	si.ssi_severity = SCSI_ERR_INFO;
17901 	si.ssi_pfa_flag = FALSE;
17902 
17903 
17904 	switch (asc) {
17905 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17906 		if (sd_report_pfa != 0) {
17907 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17908 			si.ssi_pfa_flag = TRUE;
17909 			retry_check_flag = SD_RETRIES_STANDARD;
17910 			goto do_retry;
17911 		}
17912 
17913 		break;
17914 
17915 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17916 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17917 			un->un_resvd_status |=
17918 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17919 		}
17920 #ifdef _LP64
17921 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
17922 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
17923 			    un, KM_NOSLEEP) == 0) {
17924 				/*
17925 				 * If we can't dispatch the task we'll just
17926 				 * live without descriptor sense.  We can
17927 				 * try again on the next "unit attention"
17928 				 */
17929 				SD_ERROR(SD_LOG_ERROR, un,
17930 				    "sd_sense_key_unit_attention: "
17931 				    "Could not dispatch "
17932 				    "sd_reenable_dsense_task\n");
17933 			}
17934 		}
17935 #endif /* _LP64 */
17936 		/* FALLTHRU */
17937 
17938 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17939 		if (!un->un_f_has_removable_media) {
17940 			break;
17941 		}
17942 
17943 		/*
17944 		 * When we get a unit attention from a removable-media device,
17945 		 * it may be in a state that will take a long time to recover
17946 		 * (e.g., from a reset).  Since we are executing in interrupt
17947 		 * context here, we cannot wait around for the device to come
17948 		 * back. So hand this command off to sd_media_change_task()
17949 		 * for deferred processing under taskq thread context. (Note
17950 		 * that the command still may be failed if a problem is
17951 		 * encountered at a later time.)
17952 		 */
17953 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17954 		    KM_NOSLEEP) == 0) {
17955 			/*
17956 			 * Cannot dispatch the request so fail the command.
17957 			 */
17958 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17959 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17960 			si.ssi_severity = SCSI_ERR_FATAL;
17961 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17962 			sd_return_failed_command(un, bp, EIO);
17963 		}
17964 
17965 		/*
17966 		 * If failed to dispatch sd_media_change_task(), we already
17967 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17968 		 * we should update kstat later if it encounters an error. So,
17969 		 * we update kstat_updated flag here.
17970 		 */
17971 		kstat_updated = B_TRUE;
17972 
17973 		/*
17974 		 * Either the command has been successfully dispatched to a
17975 		 * task Q for retrying, or the dispatch failed. In either case
17976 		 * do NOT retry again by calling sd_retry_command. This sets up
17977 		 * two retries of the same command and when one completes and
17978 		 * frees the resources the other will access freed memory,
17979 		 * a bad thing.
17980 		 */
17981 		return;
17982 
17983 	default:
17984 		break;
17985 	}
17986 
17987 	/*
17988 	 * Update kstat if we haven't done that.
17989 	 */
17990 	if (!kstat_updated) {
17991 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17992 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17993 	}
17994 
17995 do_retry:
17996 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17997 	    EIO, SD_UA_RETRY_DELAY, NULL);
17998 }
17999 
18000 
18001 
18002 /*
18003  *    Function: sd_sense_key_fail_command
18004  *
18005  * Description: Use to fail a command when we don't like the sense key that
18006  *		was returned.
18007  *
18008  *     Context: May be called from interrupt context
18009  */
18010 
18011 static void
18012 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18013 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18014 {
18015 	struct sd_sense_info	si;
18016 
18017 	ASSERT(un != NULL);
18018 	ASSERT(mutex_owned(SD_MUTEX(un)));
18019 	ASSERT(bp != NULL);
18020 	ASSERT(xp != NULL);
18021 	ASSERT(pktp != NULL);
18022 
18023 	si.ssi_severity = SCSI_ERR_FATAL;
18024 	si.ssi_pfa_flag = FALSE;
18025 
18026 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18027 	sd_return_failed_command(un, bp, EIO);
18028 }
18029 
18030 
18031 
18032 /*
18033  *    Function: sd_sense_key_blank_check
18034  *
18035  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18036  *		Has no monetary connotation.
18037  *
18038  *     Context: May be called from interrupt context
18039  */
18040 
18041 static void
18042 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18043 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18044 {
18045 	struct sd_sense_info	si;
18046 
18047 	ASSERT(un != NULL);
18048 	ASSERT(mutex_owned(SD_MUTEX(un)));
18049 	ASSERT(bp != NULL);
18050 	ASSERT(xp != NULL);
18051 	ASSERT(pktp != NULL);
18052 
18053 	/*
18054 	 * Blank check is not fatal for removable devices, therefore
18055 	 * it does not require a console message.
18056 	 */
18057 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18058 	    SCSI_ERR_FATAL;
18059 	si.ssi_pfa_flag = FALSE;
18060 
18061 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18062 	sd_return_failed_command(un, bp, EIO);
18063 }
18064 
18065 
18066 
18067 
18068 /*
18069  *    Function: sd_sense_key_aborted_command
18070  *
18071  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18072  *
18073  *     Context: May be called from interrupt context
18074  */
18075 
18076 static void
18077 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18078 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18079 {
18080 	struct sd_sense_info	si;
18081 
18082 	ASSERT(un != NULL);
18083 	ASSERT(mutex_owned(SD_MUTEX(un)));
18084 	ASSERT(bp != NULL);
18085 	ASSERT(xp != NULL);
18086 	ASSERT(pktp != NULL);
18087 
18088 	si.ssi_severity = SCSI_ERR_FATAL;
18089 	si.ssi_pfa_flag = FALSE;
18090 
18091 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18092 
18093 	/*
18094 	 * This really ought to be a fatal error, but we will retry anyway
18095 	 * as some drives report this as a spurious error.
18096 	 */
18097 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18098 	    &si, EIO, (clock_t)0, NULL);
18099 }
18100 
18101 
18102 
18103 /*
18104  *    Function: sd_sense_key_default
18105  *
18106  * Description: Default recovery action for several SCSI sense keys (basically
18107  *		attempts a retry).
18108  *
18109  *     Context: May be called from interrupt context
18110  */
18111 
18112 static void
18113 sd_sense_key_default(struct sd_lun *un,
18114 	uint8_t *sense_datap,
18115 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18116 {
18117 	struct sd_sense_info	si;
18118 	uint8_t sense_key = scsi_sense_key(sense_datap);
18119 
18120 	ASSERT(un != NULL);
18121 	ASSERT(mutex_owned(SD_MUTEX(un)));
18122 	ASSERT(bp != NULL);
18123 	ASSERT(xp != NULL);
18124 	ASSERT(pktp != NULL);
18125 
18126 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18127 
18128 	/*
18129 	 * Undecoded sense key.	Attempt retries and hope that will fix
18130 	 * the problem.  Otherwise, we're dead.
18131 	 */
18132 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18133 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18134 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18135 	}
18136 
18137 	si.ssi_severity = SCSI_ERR_FATAL;
18138 	si.ssi_pfa_flag = FALSE;
18139 
18140 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18141 	    &si, EIO, (clock_t)0, NULL);
18142 }
18143 
18144 
18145 
18146 /*
18147  *    Function: sd_print_retry_msg
18148  *
18149  * Description: Print a message indicating the retry action being taken.
18150  *
18151  *   Arguments: un - ptr to associated softstate
18152  *		bp - ptr to buf(9S) for the command
18153  *		arg - not used.
18154  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18155  *			or SD_NO_RETRY_ISSUED
18156  *
18157  *     Context: May be called from interrupt context
18158  */
18159 /* ARGSUSED */
18160 static void
18161 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18162 {
18163 	struct sd_xbuf	*xp;
18164 	struct scsi_pkt *pktp;
18165 	char *reasonp;
18166 	char *msgp;
18167 
18168 	ASSERT(un != NULL);
18169 	ASSERT(mutex_owned(SD_MUTEX(un)));
18170 	ASSERT(bp != NULL);
18171 	pktp = SD_GET_PKTP(bp);
18172 	ASSERT(pktp != NULL);
18173 	xp = SD_GET_XBUF(bp);
18174 	ASSERT(xp != NULL);
18175 
18176 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18177 	mutex_enter(&un->un_pm_mutex);
18178 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18179 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18180 	    (pktp->pkt_flags & FLAG_SILENT)) {
18181 		mutex_exit(&un->un_pm_mutex);
18182 		goto update_pkt_reason;
18183 	}
18184 	mutex_exit(&un->un_pm_mutex);
18185 
18186 	/*
18187 	 * Suppress messages if they are all the same pkt_reason; with
18188 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18189 	 * If we are in panic, then suppress the retry messages.
18190 	 */
18191 	switch (flag) {
18192 	case SD_NO_RETRY_ISSUED:
18193 		msgp = "giving up";
18194 		break;
18195 	case SD_IMMEDIATE_RETRY_ISSUED:
18196 	case SD_DELAYED_RETRY_ISSUED:
18197 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18198 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18199 		    (sd_error_level != SCSI_ERR_ALL))) {
18200 			return;
18201 		}
18202 		msgp = "retrying command";
18203 		break;
18204 	default:
18205 		goto update_pkt_reason;
18206 	}
18207 
18208 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18209 	    scsi_rname(pktp->pkt_reason));
18210 
18211 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18212 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18213 
18214 update_pkt_reason:
18215 	/*
18216 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18217 	 * This is to prevent multiple console messages for the same failure
18218 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18219 	 * when the command is retried successfully because there still may be
18220 	 * more commands coming back with the same value of pktp->pkt_reason.
18221 	 */
18222 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18223 		un->un_last_pkt_reason = pktp->pkt_reason;
18224 	}
18225 }
18226 
18227 
18228 /*
18229  *    Function: sd_print_cmd_incomplete_msg
18230  *
18231  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18232  *
18233  *   Arguments: un - ptr to associated softstate
18234  *		bp - ptr to buf(9S) for the command
18235  *		arg - passed to sd_print_retry_msg()
18236  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18237  *			or SD_NO_RETRY_ISSUED
18238  *
18239  *     Context: May be called from interrupt context
18240  */
18241 
18242 static void
18243 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18244 	int code)
18245 {
18246 	dev_info_t	*dip;
18247 
18248 	ASSERT(un != NULL);
18249 	ASSERT(mutex_owned(SD_MUTEX(un)));
18250 	ASSERT(bp != NULL);
18251 
18252 	switch (code) {
18253 	case SD_NO_RETRY_ISSUED:
18254 		/* Command was failed. Someone turned off this target? */
18255 		if (un->un_state != SD_STATE_OFFLINE) {
18256 			/*
18257 			 * Suppress message if we are detaching and
18258 			 * device has been disconnected
18259 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18260 			 * private interface and not part of the DDI
18261 			 */
18262 			dip = un->un_sd->sd_dev;
18263 			if (!(DEVI_IS_DETACHING(dip) &&
18264 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18265 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18266 				"disk not responding to selection\n");
18267 			}
18268 			New_state(un, SD_STATE_OFFLINE);
18269 		}
18270 		break;
18271 
18272 	case SD_DELAYED_RETRY_ISSUED:
18273 	case SD_IMMEDIATE_RETRY_ISSUED:
18274 	default:
18275 		/* Command was successfully queued for retry */
18276 		sd_print_retry_msg(un, bp, arg, code);
18277 		break;
18278 	}
18279 }
18280 
18281 
18282 /*
18283  *    Function: sd_pkt_reason_cmd_incomplete
18284  *
18285  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18286  *
18287  *     Context: May be called from interrupt context
18288  */
18289 
18290 static void
18291 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18292 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18293 {
18294 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18295 
18296 	ASSERT(un != NULL);
18297 	ASSERT(mutex_owned(SD_MUTEX(un)));
18298 	ASSERT(bp != NULL);
18299 	ASSERT(xp != NULL);
18300 	ASSERT(pktp != NULL);
18301 
18302 	/* Do not do a reset if selection did not complete */
18303 	/* Note: Should this not just check the bit? */
18304 	if (pktp->pkt_state != STATE_GOT_BUS) {
18305 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18306 		sd_reset_target(un, pktp);
18307 	}
18308 
18309 	/*
18310 	 * If the target was not successfully selected, then set
18311 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18312 	 * with the target, and further retries and/or commands are
18313 	 * likely to take a long time.
18314 	 */
18315 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18316 		flag |= SD_RETRIES_FAILFAST;
18317 	}
18318 
18319 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18320 
18321 	sd_retry_command(un, bp, flag,
18322 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18323 }
18324 
18325 
18326 
18327 /*
18328  *    Function: sd_pkt_reason_cmd_tran_err
18329  *
18330  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18331  *
18332  *     Context: May be called from interrupt context
18333  */
18334 
18335 static void
18336 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18337 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18338 {
18339 	ASSERT(un != NULL);
18340 	ASSERT(mutex_owned(SD_MUTEX(un)));
18341 	ASSERT(bp != NULL);
18342 	ASSERT(xp != NULL);
18343 	ASSERT(pktp != NULL);
18344 
18345 	/*
18346 	 * Do not reset if we got a parity error, or if
18347 	 * selection did not complete.
18348 	 */
18349 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18350 	/* Note: Should this not just check the bit for pkt_state? */
18351 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18352 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18353 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18354 		sd_reset_target(un, pktp);
18355 	}
18356 
18357 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18358 
18359 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18360 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18361 }
18362 
18363 
18364 
18365 /*
18366  *    Function: sd_pkt_reason_cmd_reset
18367  *
18368  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18369  *
18370  *     Context: May be called from interrupt context
18371  */
18372 
18373 static void
18374 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18375 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18376 {
18377 	ASSERT(un != NULL);
18378 	ASSERT(mutex_owned(SD_MUTEX(un)));
18379 	ASSERT(bp != NULL);
18380 	ASSERT(xp != NULL);
18381 	ASSERT(pktp != NULL);
18382 
18383 	/* The target may still be running the command, so try to reset. */
18384 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18385 	sd_reset_target(un, pktp);
18386 
18387 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18388 
18389 	/*
18390 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18391 	 * reset because another target on this bus caused it. The target
18392 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18393 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18394 	 */
18395 
18396 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18397 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18398 }
18399 
18400 
18401 
18402 
18403 /*
18404  *    Function: sd_pkt_reason_cmd_aborted
18405  *
18406  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18407  *
18408  *     Context: May be called from interrupt context
18409  */
18410 
18411 static void
18412 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18413 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18414 {
18415 	ASSERT(un != NULL);
18416 	ASSERT(mutex_owned(SD_MUTEX(un)));
18417 	ASSERT(bp != NULL);
18418 	ASSERT(xp != NULL);
18419 	ASSERT(pktp != NULL);
18420 
18421 	/* The target may still be running the command, so try to reset. */
18422 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18423 	sd_reset_target(un, pktp);
18424 
18425 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18426 
18427 	/*
18428 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18429 	 * aborted because another target on this bus caused it. The target
18430 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18431 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18432 	 */
18433 
18434 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18435 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18436 }
18437 
18438 
18439 
18440 /*
18441  *    Function: sd_pkt_reason_cmd_timeout
18442  *
18443  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18444  *
18445  *     Context: May be called from interrupt context
18446  */
18447 
18448 static void
18449 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18450 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18451 {
18452 	ASSERT(un != NULL);
18453 	ASSERT(mutex_owned(SD_MUTEX(un)));
18454 	ASSERT(bp != NULL);
18455 	ASSERT(xp != NULL);
18456 	ASSERT(pktp != NULL);
18457 
18458 
18459 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18460 	sd_reset_target(un, pktp);
18461 
18462 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18463 
18464 	/*
18465 	 * A command timeout indicates that we could not establish
18466 	 * communication with the target, so set SD_RETRIES_FAILFAST
18467 	 * as further retries/commands are likely to take a long time.
18468 	 */
18469 	sd_retry_command(un, bp,
18470 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18471 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18472 }
18473 
18474 
18475 
18476 /*
18477  *    Function: sd_pkt_reason_cmd_unx_bus_free
18478  *
18479  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18480  *
18481  *     Context: May be called from interrupt context
18482  */
18483 
18484 static void
18485 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18486 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18487 {
18488 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18489 
18490 	ASSERT(un != NULL);
18491 	ASSERT(mutex_owned(SD_MUTEX(un)));
18492 	ASSERT(bp != NULL);
18493 	ASSERT(xp != NULL);
18494 	ASSERT(pktp != NULL);
18495 
18496 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18497 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18498 
18499 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18500 	    sd_print_retry_msg : NULL;
18501 
18502 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18503 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18504 }
18505 
18506 
18507 /*
18508  *    Function: sd_pkt_reason_cmd_tag_reject
18509  *
18510  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18511  *
18512  *     Context: May be called from interrupt context
18513  */
18514 
18515 static void
18516 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18517 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18518 {
18519 	ASSERT(un != NULL);
18520 	ASSERT(mutex_owned(SD_MUTEX(un)));
18521 	ASSERT(bp != NULL);
18522 	ASSERT(xp != NULL);
18523 	ASSERT(pktp != NULL);
18524 
18525 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18526 	pktp->pkt_flags = 0;
18527 	un->un_tagflags = 0;
18528 	if (un->un_f_opt_queueing == TRUE) {
18529 		un->un_throttle = min(un->un_throttle, 3);
18530 	} else {
18531 		un->un_throttle = 1;
18532 	}
18533 	mutex_exit(SD_MUTEX(un));
18534 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18535 	mutex_enter(SD_MUTEX(un));
18536 
18537 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18538 
18539 	/* Legacy behavior not to check retry counts here. */
18540 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18541 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18542 }
18543 
18544 
18545 /*
18546  *    Function: sd_pkt_reason_default
18547  *
18548  * Description: Default recovery actions for SCSA pkt_reason values that
18549  *		do not have more explicit recovery actions.
18550  *
18551  *     Context: May be called from interrupt context
18552  */
18553 
18554 static void
18555 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18556 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18557 {
18558 	ASSERT(un != NULL);
18559 	ASSERT(mutex_owned(SD_MUTEX(un)));
18560 	ASSERT(bp != NULL);
18561 	ASSERT(xp != NULL);
18562 	ASSERT(pktp != NULL);
18563 
18564 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18565 	sd_reset_target(un, pktp);
18566 
18567 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18568 
18569 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18570 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18571 }
18572 
18573 
18574 
18575 /*
18576  *    Function: sd_pkt_status_check_condition
18577  *
18578  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18579  *
18580  *     Context: May be called from interrupt context
18581  */
18582 
18583 static void
18584 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18585 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18586 {
18587 	ASSERT(un != NULL);
18588 	ASSERT(mutex_owned(SD_MUTEX(un)));
18589 	ASSERT(bp != NULL);
18590 	ASSERT(xp != NULL);
18591 	ASSERT(pktp != NULL);
18592 
18593 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18594 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18595 
18596 	/*
18597 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18598 	 * command will be retried after the request sense). Otherwise, retry
18599 	 * the command. Note: we are issuing the request sense even though the
18600 	 * retry limit may have been reached for the failed command.
18601 	 */
18602 	if (un->un_f_arq_enabled == FALSE) {
18603 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18604 		    "no ARQ, sending request sense command\n");
18605 		sd_send_request_sense_command(un, bp, pktp);
18606 	} else {
18607 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18608 		    "ARQ,retrying request sense command\n");
18609 #if defined(__i386) || defined(__amd64)
18610 		/*
18611 		 * The SD_RETRY_DELAY value need to be adjusted here
18612 		 * when SD_RETRY_DELAY change in sddef.h
18613 		 */
18614 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18615 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18616 			NULL);
18617 #else
18618 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18619 		    EIO, SD_RETRY_DELAY, NULL);
18620 #endif
18621 	}
18622 
18623 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18624 }
18625 
18626 
18627 /*
18628  *    Function: sd_pkt_status_busy
18629  *
18630  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18631  *
18632  *     Context: May be called from interrupt context
18633  */
18634 
18635 static void
18636 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18637 	struct scsi_pkt *pktp)
18638 {
18639 	ASSERT(un != NULL);
18640 	ASSERT(mutex_owned(SD_MUTEX(un)));
18641 	ASSERT(bp != NULL);
18642 	ASSERT(xp != NULL);
18643 	ASSERT(pktp != NULL);
18644 
18645 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18646 	    "sd_pkt_status_busy: entry\n");
18647 
18648 	/* If retries are exhausted, just fail the command. */
18649 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18650 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18651 		    "device busy too long\n");
18652 		sd_return_failed_command(un, bp, EIO);
18653 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18654 		    "sd_pkt_status_busy: exit\n");
18655 		return;
18656 	}
18657 	xp->xb_retry_count++;
18658 
18659 	/*
18660 	 * Try to reset the target. However, we do not want to perform
18661 	 * more than one reset if the device continues to fail. The reset
18662 	 * will be performed when the retry count reaches the reset
18663 	 * threshold.  This threshold should be set such that at least
18664 	 * one retry is issued before the reset is performed.
18665 	 */
18666 	if (xp->xb_retry_count ==
18667 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18668 		int rval = 0;
18669 		mutex_exit(SD_MUTEX(un));
18670 		if (un->un_f_allow_bus_device_reset == TRUE) {
18671 			/*
18672 			 * First try to reset the LUN; if we cannot then
18673 			 * try to reset the target.
18674 			 */
18675 			if (un->un_f_lun_reset_enabled == TRUE) {
18676 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18677 				    "sd_pkt_status_busy: RESET_LUN\n");
18678 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18679 			}
18680 			if (rval == 0) {
18681 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18682 				    "sd_pkt_status_busy: RESET_TARGET\n");
18683 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18684 			}
18685 		}
18686 		if (rval == 0) {
18687 			/*
18688 			 * If the RESET_LUN and/or RESET_TARGET failed,
18689 			 * try RESET_ALL
18690 			 */
18691 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18692 			    "sd_pkt_status_busy: RESET_ALL\n");
18693 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18694 		}
18695 		mutex_enter(SD_MUTEX(un));
18696 		if (rval == 0) {
18697 			/*
18698 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18699 			 * At this point we give up & fail the command.
18700 			 */
18701 			sd_return_failed_command(un, bp, EIO);
18702 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18703 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18704 			return;
18705 		}
18706 	}
18707 
18708 	/*
18709 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18710 	 * we have already checked the retry counts above.
18711 	 */
18712 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18713 	    EIO, SD_BSY_TIMEOUT, NULL);
18714 
18715 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18716 	    "sd_pkt_status_busy: exit\n");
18717 }
18718 
18719 
18720 /*
18721  *    Function: sd_pkt_status_reservation_conflict
18722  *
18723  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18724  *		command status.
18725  *
18726  *     Context: May be called from interrupt context
18727  */
18728 
18729 static void
18730 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18731 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18732 {
18733 	ASSERT(un != NULL);
18734 	ASSERT(mutex_owned(SD_MUTEX(un)));
18735 	ASSERT(bp != NULL);
18736 	ASSERT(xp != NULL);
18737 	ASSERT(pktp != NULL);
18738 
18739 	/*
18740 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18741 	 * conflict could be due to various reasons like incorrect keys, not
18742 	 * registered or not reserved etc. So, we return EACCES to the caller.
18743 	 */
18744 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18745 		int cmd = SD_GET_PKT_OPCODE(pktp);
18746 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18747 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18748 			sd_return_failed_command(un, bp, EACCES);
18749 			return;
18750 		}
18751 	}
18752 
18753 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18754 
18755 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18756 		if (sd_failfast_enable != 0) {
18757 			/* By definition, we must panic here.... */
18758 			sd_panic_for_res_conflict(un);
18759 			/*NOTREACHED*/
18760 		}
18761 		SD_ERROR(SD_LOG_IO, un,
18762 		    "sd_handle_resv_conflict: Disk Reserved\n");
18763 		sd_return_failed_command(un, bp, EACCES);
18764 		return;
18765 	}
18766 
18767 	/*
18768 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18769 	 * property is set (default is 1). Retries will not succeed
18770 	 * on a disk reserved by another initiator. HA systems
18771 	 * may reset this via sd.conf to avoid these retries.
18772 	 *
18773 	 * Note: The legacy return code for this failure is EIO, however EACCES
18774 	 * seems more appropriate for a reservation conflict.
18775 	 */
18776 	if (sd_retry_on_reservation_conflict == 0) {
18777 		SD_ERROR(SD_LOG_IO, un,
18778 		    "sd_handle_resv_conflict: Device Reserved\n");
18779 		sd_return_failed_command(un, bp, EIO);
18780 		return;
18781 	}
18782 
18783 	/*
18784 	 * Retry the command if we can.
18785 	 *
18786 	 * Note: The legacy return code for this failure is EIO, however EACCES
18787 	 * seems more appropriate for a reservation conflict.
18788 	 */
18789 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18790 	    (clock_t)2, NULL);
18791 }
18792 
18793 
18794 
18795 /*
18796  *    Function: sd_pkt_status_qfull
18797  *
18798  * Description: Handle a QUEUE FULL condition from the target.  This can
18799  *		occur if the HBA does not handle the queue full condition.
18800  *		(Basically this means third-party HBAs as Sun HBAs will
18801  *		handle the queue full condition.)  Note that if there are
18802  *		some commands already in the transport, then the queue full
18803  *		has occurred because the queue for this nexus is actually
18804  *		full. If there are no commands in the transport, then the
18805  *		queue full is resulting from some other initiator or lun
18806  *		consuming all the resources at the target.
18807  *
18808  *     Context: May be called from interrupt context
18809  */
18810 
18811 static void
18812 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18813 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18814 {
18815 	ASSERT(un != NULL);
18816 	ASSERT(mutex_owned(SD_MUTEX(un)));
18817 	ASSERT(bp != NULL);
18818 	ASSERT(xp != NULL);
18819 	ASSERT(pktp != NULL);
18820 
18821 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18822 	    "sd_pkt_status_qfull: entry\n");
18823 
18824 	/*
18825 	 * Just lower the QFULL throttle and retry the command.  Note that
18826 	 * we do not limit the number of retries here.
18827 	 */
18828 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18829 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18830 	    SD_RESTART_TIMEOUT, NULL);
18831 
18832 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18833 	    "sd_pkt_status_qfull: exit\n");
18834 }
18835 
18836 
18837 /*
18838  *    Function: sd_reset_target
18839  *
18840  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18841  *		RESET_TARGET, or RESET_ALL.
18842  *
18843  *     Context: May be called under interrupt context.
18844  */
18845 
18846 static void
18847 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18848 {
18849 	int rval = 0;
18850 
18851 	ASSERT(un != NULL);
18852 	ASSERT(mutex_owned(SD_MUTEX(un)));
18853 	ASSERT(pktp != NULL);
18854 
18855 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18856 
18857 	/*
18858 	 * No need to reset if the transport layer has already done so.
18859 	 */
18860 	if ((pktp->pkt_statistics &
18861 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18862 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18863 		    "sd_reset_target: no reset\n");
18864 		return;
18865 	}
18866 
18867 	mutex_exit(SD_MUTEX(un));
18868 
18869 	if (un->un_f_allow_bus_device_reset == TRUE) {
18870 		if (un->un_f_lun_reset_enabled == TRUE) {
18871 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18872 			    "sd_reset_target: RESET_LUN\n");
18873 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18874 		}
18875 		if (rval == 0) {
18876 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18877 			    "sd_reset_target: RESET_TARGET\n");
18878 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18879 		}
18880 	}
18881 
18882 	if (rval == 0) {
18883 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18884 		    "sd_reset_target: RESET_ALL\n");
18885 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18886 	}
18887 
18888 	mutex_enter(SD_MUTEX(un));
18889 
18890 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18891 }
18892 
18893 
18894 /*
18895  *    Function: sd_media_change_task
18896  *
18897  * Description: Recovery action for CDROM to become available.
18898  *
18899  *     Context: Executes in a taskq() thread context
18900  */
18901 
18902 static void
18903 sd_media_change_task(void *arg)
18904 {
18905 	struct	scsi_pkt	*pktp = arg;
18906 	struct	sd_lun		*un;
18907 	struct	buf		*bp;
18908 	struct	sd_xbuf		*xp;
18909 	int	err		= 0;
18910 	int	retry_count	= 0;
18911 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18912 	struct	sd_sense_info	si;
18913 
18914 	ASSERT(pktp != NULL);
18915 	bp = (struct buf *)pktp->pkt_private;
18916 	ASSERT(bp != NULL);
18917 	xp = SD_GET_XBUF(bp);
18918 	ASSERT(xp != NULL);
18919 	un = SD_GET_UN(bp);
18920 	ASSERT(un != NULL);
18921 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18922 	ASSERT(un->un_f_monitor_media_state);
18923 
18924 	si.ssi_severity = SCSI_ERR_INFO;
18925 	si.ssi_pfa_flag = FALSE;
18926 
18927 	/*
18928 	 * When a reset is issued on a CDROM, it takes a long time to
18929 	 * recover. First few attempts to read capacity and other things
18930 	 * related to handling unit attention fail (with a ASC 0x4 and
18931 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18932 	 * to limit the retries in other cases of genuine failures like
18933 	 * no media in drive.
18934 	 */
18935 	while (retry_count++ < retry_limit) {
18936 		if ((err = sd_handle_mchange(un)) == 0) {
18937 			break;
18938 		}
18939 		if (err == EAGAIN) {
18940 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18941 		}
18942 		/* Sleep for 0.5 sec. & try again */
18943 		delay(drv_usectohz(500000));
18944 	}
18945 
18946 	/*
18947 	 * Dispatch (retry or fail) the original command here,
18948 	 * along with appropriate console messages....
18949 	 *
18950 	 * Must grab the mutex before calling sd_retry_command,
18951 	 * sd_print_sense_msg and sd_return_failed_command.
18952 	 */
18953 	mutex_enter(SD_MUTEX(un));
18954 	if (err != SD_CMD_SUCCESS) {
18955 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18956 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18957 		si.ssi_severity = SCSI_ERR_FATAL;
18958 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18959 		sd_return_failed_command(un, bp, EIO);
18960 	} else {
18961 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18962 		    &si, EIO, (clock_t)0, NULL);
18963 	}
18964 	mutex_exit(SD_MUTEX(un));
18965 }
18966 
18967 
18968 
18969 /*
18970  *    Function: sd_handle_mchange
18971  *
18972  * Description: Perform geometry validation & other recovery when CDROM
18973  *		has been removed from drive.
18974  *
18975  * Return Code: 0 for success
18976  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18977  *		sd_send_scsi_READ_CAPACITY()
18978  *
18979  *     Context: Executes in a taskq() thread context
18980  */
18981 
18982 static int
18983 sd_handle_mchange(struct sd_lun *un)
18984 {
18985 	uint64_t	capacity;
18986 	uint32_t	lbasize;
18987 	int		rval;
18988 
18989 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18990 	ASSERT(un->un_f_monitor_media_state);
18991 
18992 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18993 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18994 		return (rval);
18995 	}
18996 
18997 	mutex_enter(SD_MUTEX(un));
18998 	sd_update_block_info(un, lbasize, capacity);
18999 
19000 	if (un->un_errstats != NULL) {
19001 		struct	sd_errstats *stp =
19002 		    (struct sd_errstats *)un->un_errstats->ks_data;
19003 		stp->sd_capacity.value.ui64 = (uint64_t)
19004 		    ((uint64_t)un->un_blockcount *
19005 		    (uint64_t)un->un_tgt_blocksize);
19006 	}
19007 
19008 	/*
19009 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19010 	 * valid geometry.
19011 	 */
19012 	un->un_f_geometry_is_valid = FALSE;
19013 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
19014 	if (un->un_f_geometry_is_valid == FALSE) {
19015 		mutex_exit(SD_MUTEX(un));
19016 		return (EIO);
19017 	}
19018 
19019 	mutex_exit(SD_MUTEX(un));
19020 
19021 	/*
19022 	 * Try to lock the door
19023 	 */
19024 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19025 	    SD_PATH_DIRECT_PRIORITY));
19026 }
19027 
19028 
19029 /*
19030  *    Function: sd_send_scsi_DOORLOCK
19031  *
19032  * Description: Issue the scsi DOOR LOCK command
19033  *
19034  *   Arguments: un    - pointer to driver soft state (unit) structure for
19035  *			this target.
19036  *		flag  - SD_REMOVAL_ALLOW
19037  *			SD_REMOVAL_PREVENT
19038  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19039  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19040  *			to use the USCSI "direct" chain and bypass the normal
19041  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19042  *			command is issued as part of an error recovery action.
19043  *
19044  * Return Code: 0   - Success
19045  *		errno return code from sd_send_scsi_cmd()
19046  *
19047  *     Context: Can sleep.
19048  */
19049 
19050 static int
19051 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
19052 {
19053 	union scsi_cdb		cdb;
19054 	struct uscsi_cmd	ucmd_buf;
19055 	struct scsi_extended_sense	sense_buf;
19056 	int			status;
19057 
19058 	ASSERT(un != NULL);
19059 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19060 
19061 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19062 
19063 	/* already determined doorlock is not supported, fake success */
19064 	if (un->un_f_doorlock_supported == FALSE) {
19065 		return (0);
19066 	}
19067 
19068 	bzero(&cdb, sizeof (cdb));
19069 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19070 
19071 	cdb.scc_cmd = SCMD_DOORLOCK;
19072 	cdb.cdb_opaque[4] = (uchar_t)flag;
19073 
19074 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19075 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19076 	ucmd_buf.uscsi_bufaddr	= NULL;
19077 	ucmd_buf.uscsi_buflen	= 0;
19078 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19079 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19080 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19081 	ucmd_buf.uscsi_timeout	= 15;
19082 
19083 	SD_TRACE(SD_LOG_IO, un,
19084 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
19085 
19086 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19087 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19088 
19089 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19090 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19091 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19092 		/* fake success and skip subsequent doorlock commands */
19093 		un->un_f_doorlock_supported = FALSE;
19094 		return (0);
19095 	}
19096 
19097 	return (status);
19098 }
19099 
19100 /*
19101  *    Function: sd_send_scsi_READ_CAPACITY
19102  *
19103  * Description: This routine uses the scsi READ CAPACITY command to determine
19104  *		the device capacity in number of blocks and the device native
19105  *		block size. If this function returns a failure, then the
19106  *		values in *capp and *lbap are undefined.  If the capacity
19107  *		returned is 0xffffffff then the lun is too large for a
19108  *		normal READ CAPACITY command and the results of a
19109  *		READ CAPACITY 16 will be used instead.
19110  *
19111  *   Arguments: un   - ptr to soft state struct for the target
19112  *		capp - ptr to unsigned 64-bit variable to receive the
19113  *			capacity value from the command.
19114  *		lbap - ptr to unsigned 32-bit varaible to receive the
19115  *			block size value from the command
19116  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19117  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19118  *			to use the USCSI "direct" chain and bypass the normal
19119  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19120  *			command is issued as part of an error recovery action.
19121  *
19122  * Return Code: 0   - Success
19123  *		EIO - IO error
19124  *		EACCES - Reservation conflict detected
19125  *		EAGAIN - Device is becoming ready
19126  *		errno return code from sd_send_scsi_cmd()
19127  *
19128  *     Context: Can sleep.  Blocks until command completes.
19129  */
19130 
19131 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19132 
19133 static int
19134 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19135 	int path_flag)
19136 {
19137 	struct	scsi_extended_sense	sense_buf;
19138 	struct	uscsi_cmd	ucmd_buf;
19139 	union	scsi_cdb	cdb;
19140 	uint32_t		*capacity_buf;
19141 	uint64_t		capacity;
19142 	uint32_t		lbasize;
19143 	int			status;
19144 
19145 	ASSERT(un != NULL);
19146 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19147 	ASSERT(capp != NULL);
19148 	ASSERT(lbap != NULL);
19149 
19150 	SD_TRACE(SD_LOG_IO, un,
19151 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19152 
19153 	/*
19154 	 * First send a READ_CAPACITY command to the target.
19155 	 * (This command is mandatory under SCSI-2.)
19156 	 *
19157 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19158 	 * Medium Indicator bit is cleared.  The address field must be
19159 	 * zero if the PMI bit is zero.
19160 	 */
19161 	bzero(&cdb, sizeof (cdb));
19162 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19163 
19164 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19165 
19166 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19167 
19168 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19169 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19170 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19171 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19172 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19173 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19174 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19175 	ucmd_buf.uscsi_timeout	= 60;
19176 
19177 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19178 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19179 
19180 	switch (status) {
19181 	case 0:
19182 		/* Return failure if we did not get valid capacity data. */
19183 		if (ucmd_buf.uscsi_resid != 0) {
19184 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19185 			return (EIO);
19186 		}
19187 
19188 		/*
19189 		 * Read capacity and block size from the READ CAPACITY 10 data.
19190 		 * This data may be adjusted later due to device specific
19191 		 * issues.
19192 		 *
19193 		 * According to the SCSI spec, the READ CAPACITY 10
19194 		 * command returns the following:
19195 		 *
19196 		 *  bytes 0-3: Maximum logical block address available.
19197 		 *		(MSB in byte:0 & LSB in byte:3)
19198 		 *
19199 		 *  bytes 4-7: Block length in bytes
19200 		 *		(MSB in byte:4 & LSB in byte:7)
19201 		 *
19202 		 */
19203 		capacity = BE_32(capacity_buf[0]);
19204 		lbasize = BE_32(capacity_buf[1]);
19205 
19206 		/*
19207 		 * Done with capacity_buf
19208 		 */
19209 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19210 
19211 		/*
19212 		 * if the reported capacity is set to all 0xf's, then
19213 		 * this disk is too large and requires SBC-2 commands.
19214 		 * Reissue the request using READ CAPACITY 16.
19215 		 */
19216 		if (capacity == 0xffffffff) {
19217 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19218 			    &lbasize, path_flag);
19219 			if (status != 0) {
19220 				return (status);
19221 			}
19222 		}
19223 		break;	/* Success! */
19224 	case EIO:
19225 		switch (ucmd_buf.uscsi_status) {
19226 		case STATUS_RESERVATION_CONFLICT:
19227 			status = EACCES;
19228 			break;
19229 		case STATUS_CHECK:
19230 			/*
19231 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19232 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19233 			 */
19234 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19235 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19236 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19237 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19238 				return (EAGAIN);
19239 			}
19240 			break;
19241 		default:
19242 			break;
19243 		}
19244 		/* FALLTHRU */
19245 	default:
19246 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19247 		return (status);
19248 	}
19249 
19250 	/*
19251 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19252 	 * (2352 and 0 are common) so for these devices always force the value
19253 	 * to 2048 as required by the ATAPI specs.
19254 	 */
19255 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19256 		lbasize = 2048;
19257 	}
19258 
19259 	/*
19260 	 * Get the maximum LBA value from the READ CAPACITY data.
19261 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19262 	 * was cleared when issuing the command. This means that the LBA
19263 	 * returned from the device is the LBA of the last logical block
19264 	 * on the logical unit.  The actual logical block count will be
19265 	 * this value plus one.
19266 	 *
19267 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19268 	 * so scale the capacity value to reflect this.
19269 	 */
19270 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19271 
19272 #if defined(__i386) || defined(__amd64)
19273 	/*
19274 	 * Refer to comments related to off-by-1 at the
19275 	 * header of this file.
19276 	 * Treat 1TB disk as (1T - 512)B.
19277 	 */
19278 	if (un->un_f_capacity_adjusted == 1)
19279 	    capacity = DK_MAX_BLOCKS;
19280 #endif
19281 
19282 	/*
19283 	 * Copy the values from the READ CAPACITY command into the space
19284 	 * provided by the caller.
19285 	 */
19286 	*capp = capacity;
19287 	*lbap = lbasize;
19288 
19289 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19290 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19291 
19292 	/*
19293 	 * Both the lbasize and capacity from the device must be nonzero,
19294 	 * otherwise we assume that the values are not valid and return
19295 	 * failure to the caller. (4203735)
19296 	 */
19297 	if ((capacity == 0) || (lbasize == 0)) {
19298 		return (EIO);
19299 	}
19300 
19301 	return (0);
19302 }
19303 
19304 /*
19305  *    Function: sd_send_scsi_READ_CAPACITY_16
19306  *
19307  * Description: This routine uses the scsi READ CAPACITY 16 command to
19308  *		determine the device capacity in number of blocks and the
19309  *		device native block size.  If this function returns a failure,
19310  *		then the values in *capp and *lbap are undefined.
19311  *		This routine should always be called by
19312  *		sd_send_scsi_READ_CAPACITY which will appy any device
19313  *		specific adjustments to capacity and lbasize.
19314  *
19315  *   Arguments: un   - ptr to soft state struct for the target
19316  *		capp - ptr to unsigned 64-bit variable to receive the
19317  *			capacity value from the command.
19318  *		lbap - ptr to unsigned 32-bit varaible to receive the
19319  *			block size value from the command
19320  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19321  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19322  *			to use the USCSI "direct" chain and bypass the normal
19323  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19324  *			this command is issued as part of an error recovery
19325  *			action.
19326  *
19327  * Return Code: 0   - Success
19328  *		EIO - IO error
19329  *		EACCES - Reservation conflict detected
19330  *		EAGAIN - Device is becoming ready
19331  *		errno return code from sd_send_scsi_cmd()
19332  *
19333  *     Context: Can sleep.  Blocks until command completes.
19334  */
19335 
19336 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19337 
19338 static int
19339 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19340 	uint32_t *lbap, int path_flag)
19341 {
19342 	struct	scsi_extended_sense	sense_buf;
19343 	struct	uscsi_cmd	ucmd_buf;
19344 	union	scsi_cdb	cdb;
19345 	uint64_t		*capacity16_buf;
19346 	uint64_t		capacity;
19347 	uint32_t		lbasize;
19348 	int			status;
19349 
19350 	ASSERT(un != NULL);
19351 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19352 	ASSERT(capp != NULL);
19353 	ASSERT(lbap != NULL);
19354 
19355 	SD_TRACE(SD_LOG_IO, un,
19356 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19357 
19358 	/*
19359 	 * First send a READ_CAPACITY_16 command to the target.
19360 	 *
19361 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19362 	 * Medium Indicator bit is cleared.  The address field must be
19363 	 * zero if the PMI bit is zero.
19364 	 */
19365 	bzero(&cdb, sizeof (cdb));
19366 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19367 
19368 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19369 
19370 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19371 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19372 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19373 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19374 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19375 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19376 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19377 	ucmd_buf.uscsi_timeout	= 60;
19378 
19379 	/*
19380 	 * Read Capacity (16) is a Service Action In command.  One
19381 	 * command byte (0x9E) is overloaded for multiple operations,
19382 	 * with the second CDB byte specifying the desired operation
19383 	 */
19384 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19385 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19386 
19387 	/*
19388 	 * Fill in allocation length field
19389 	 */
19390 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19391 
19392 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19393 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19394 
19395 	switch (status) {
19396 	case 0:
19397 		/* Return failure if we did not get valid capacity data. */
19398 		if (ucmd_buf.uscsi_resid > 20) {
19399 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19400 			return (EIO);
19401 		}
19402 
19403 		/*
19404 		 * Read capacity and block size from the READ CAPACITY 10 data.
19405 		 * This data may be adjusted later due to device specific
19406 		 * issues.
19407 		 *
19408 		 * According to the SCSI spec, the READ CAPACITY 10
19409 		 * command returns the following:
19410 		 *
19411 		 *  bytes 0-7: Maximum logical block address available.
19412 		 *		(MSB in byte:0 & LSB in byte:7)
19413 		 *
19414 		 *  bytes 8-11: Block length in bytes
19415 		 *		(MSB in byte:8 & LSB in byte:11)
19416 		 *
19417 		 */
19418 		capacity = BE_64(capacity16_buf[0]);
19419 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19420 
19421 		/*
19422 		 * Done with capacity16_buf
19423 		 */
19424 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19425 
19426 		/*
19427 		 * if the reported capacity is set to all 0xf's, then
19428 		 * this disk is too large.  This could only happen with
19429 		 * a device that supports LBAs larger than 64 bits which
19430 		 * are not defined by any current T10 standards.
19431 		 */
19432 		if (capacity == 0xffffffffffffffff) {
19433 			return (EIO);
19434 		}
19435 		break;	/* Success! */
19436 	case EIO:
19437 		switch (ucmd_buf.uscsi_status) {
19438 		case STATUS_RESERVATION_CONFLICT:
19439 			status = EACCES;
19440 			break;
19441 		case STATUS_CHECK:
19442 			/*
19443 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19444 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19445 			 */
19446 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19447 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19448 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19449 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19450 				return (EAGAIN);
19451 			}
19452 			break;
19453 		default:
19454 			break;
19455 		}
19456 		/* FALLTHRU */
19457 	default:
19458 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19459 		return (status);
19460 	}
19461 
19462 	*capp = capacity;
19463 	*lbap = lbasize;
19464 
19465 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19466 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19467 
19468 	return (0);
19469 }
19470 
19471 
19472 /*
19473  *    Function: sd_send_scsi_START_STOP_UNIT
19474  *
19475  * Description: Issue a scsi START STOP UNIT command to the target.
19476  *
19477  *   Arguments: un    - pointer to driver soft state (unit) structure for
19478  *			this target.
19479  *		flag  - SD_TARGET_START
19480  *			SD_TARGET_STOP
19481  *			SD_TARGET_EJECT
19482  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19483  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19484  *			to use the USCSI "direct" chain and bypass the normal
19485  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19486  *			command is issued as part of an error recovery action.
19487  *
19488  * Return Code: 0   - Success
19489  *		EIO - IO error
19490  *		EACCES - Reservation conflict detected
19491  *		ENXIO  - Not Ready, medium not present
19492  *		errno return code from sd_send_scsi_cmd()
19493  *
19494  *     Context: Can sleep.
19495  */
19496 
19497 static int
19498 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19499 {
19500 	struct	scsi_extended_sense	sense_buf;
19501 	union scsi_cdb		cdb;
19502 	struct uscsi_cmd	ucmd_buf;
19503 	int			status;
19504 
19505 	ASSERT(un != NULL);
19506 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19507 
19508 	SD_TRACE(SD_LOG_IO, un,
19509 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19510 
19511 	if (un->un_f_check_start_stop &&
19512 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19513 	    (un->un_f_start_stop_supported != TRUE)) {
19514 		return (0);
19515 	}
19516 
19517 	bzero(&cdb, sizeof (cdb));
19518 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19519 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19520 
19521 	cdb.scc_cmd = SCMD_START_STOP;
19522 	cdb.cdb_opaque[4] = (uchar_t)flag;
19523 
19524 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19525 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19526 	ucmd_buf.uscsi_bufaddr	= NULL;
19527 	ucmd_buf.uscsi_buflen	= 0;
19528 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19529 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19530 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19531 	ucmd_buf.uscsi_timeout	= 200;
19532 
19533 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19534 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19535 
19536 	switch (status) {
19537 	case 0:
19538 		break;	/* Success! */
19539 	case EIO:
19540 		switch (ucmd_buf.uscsi_status) {
19541 		case STATUS_RESERVATION_CONFLICT:
19542 			status = EACCES;
19543 			break;
19544 		case STATUS_CHECK:
19545 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19546 				switch (scsi_sense_key(
19547 						(uint8_t *)&sense_buf)) {
19548 				case KEY_ILLEGAL_REQUEST:
19549 					status = ENOTSUP;
19550 					break;
19551 				case KEY_NOT_READY:
19552 					if (scsi_sense_asc(
19553 						    (uint8_t *)&sense_buf)
19554 					    == 0x3A) {
19555 						status = ENXIO;
19556 					}
19557 					break;
19558 				default:
19559 					break;
19560 				}
19561 			}
19562 			break;
19563 		default:
19564 			break;
19565 		}
19566 		break;
19567 	default:
19568 		break;
19569 	}
19570 
19571 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19572 
19573 	return (status);
19574 }
19575 
19576 
19577 /*
19578  *    Function: sd_start_stop_unit_callback
19579  *
19580  * Description: timeout(9F) callback to begin recovery process for a
19581  *		device that has spun down.
19582  *
19583  *   Arguments: arg - pointer to associated softstate struct.
19584  *
19585  *     Context: Executes in a timeout(9F) thread context
19586  */
19587 
19588 static void
19589 sd_start_stop_unit_callback(void *arg)
19590 {
19591 	struct sd_lun	*un = arg;
19592 	ASSERT(un != NULL);
19593 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19594 
19595 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19596 
19597 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19598 }
19599 
19600 
19601 /*
19602  *    Function: sd_start_stop_unit_task
19603  *
19604  * Description: Recovery procedure when a drive is spun down.
19605  *
19606  *   Arguments: arg - pointer to associated softstate struct.
19607  *
19608  *     Context: Executes in a taskq() thread context
19609  */
19610 
19611 static void
19612 sd_start_stop_unit_task(void *arg)
19613 {
19614 	struct sd_lun	*un = arg;
19615 
19616 	ASSERT(un != NULL);
19617 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19618 
19619 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19620 
19621 	/*
19622 	 * Some unformatted drives report not ready error, no need to
19623 	 * restart if format has been initiated.
19624 	 */
19625 	mutex_enter(SD_MUTEX(un));
19626 	if (un->un_f_format_in_progress == TRUE) {
19627 		mutex_exit(SD_MUTEX(un));
19628 		return;
19629 	}
19630 	mutex_exit(SD_MUTEX(un));
19631 
19632 	/*
19633 	 * When a START STOP command is issued from here, it is part of a
19634 	 * failure recovery operation and must be issued before any other
19635 	 * commands, including any pending retries. Thus it must be sent
19636 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19637 	 * succeeds or not, we will start I/O after the attempt.
19638 	 */
19639 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19640 	    SD_PATH_DIRECT_PRIORITY);
19641 
19642 	/*
19643 	 * The above call blocks until the START_STOP_UNIT command completes.
19644 	 * Now that it has completed, we must re-try the original IO that
19645 	 * received the NOT READY condition in the first place. There are
19646 	 * three possible conditions here:
19647 	 *
19648 	 *  (1) The original IO is on un_retry_bp.
19649 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19650 	 *	is NULL.
19651 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19652 	 *	points to some other, unrelated bp.
19653 	 *
19654 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19655 	 * as the argument. If un_retry_bp is NULL, this will initiate
19656 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19657 	 * then this will process the bp on un_retry_bp. That may or may not
19658 	 * be the original IO, but that does not matter: the important thing
19659 	 * is to keep the IO processing going at this point.
19660 	 *
19661 	 * Note: This is a very specific error recovery sequence associated
19662 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19663 	 * serialize the I/O with completion of the spin-up.
19664 	 */
19665 	mutex_enter(SD_MUTEX(un));
19666 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19667 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19668 	    un, un->un_retry_bp);
19669 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19670 	sd_start_cmds(un, un->un_retry_bp);
19671 	mutex_exit(SD_MUTEX(un));
19672 
19673 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19674 }
19675 
19676 
19677 /*
19678  *    Function: sd_send_scsi_INQUIRY
19679  *
19680  * Description: Issue the scsi INQUIRY command.
19681  *
19682  *   Arguments: un
19683  *		bufaddr
19684  *		buflen
19685  *		evpd
19686  *		page_code
19687  *		page_length
19688  *
19689  * Return Code: 0   - Success
19690  *		errno return code from sd_send_scsi_cmd()
19691  *
19692  *     Context: Can sleep. Does not return until command is completed.
19693  */
19694 
19695 static int
19696 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19697 	uchar_t evpd, uchar_t page_code, size_t *residp)
19698 {
19699 	union scsi_cdb		cdb;
19700 	struct uscsi_cmd	ucmd_buf;
19701 	int			status;
19702 
19703 	ASSERT(un != NULL);
19704 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19705 	ASSERT(bufaddr != NULL);
19706 
19707 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19708 
19709 	bzero(&cdb, sizeof (cdb));
19710 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19711 	bzero(bufaddr, buflen);
19712 
19713 	cdb.scc_cmd = SCMD_INQUIRY;
19714 	cdb.cdb_opaque[1] = evpd;
19715 	cdb.cdb_opaque[2] = page_code;
19716 	FORMG0COUNT(&cdb, buflen);
19717 
19718 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19719 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19720 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19721 	ucmd_buf.uscsi_buflen	= buflen;
19722 	ucmd_buf.uscsi_rqbuf	= NULL;
19723 	ucmd_buf.uscsi_rqlen	= 0;
19724 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19725 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19726 
19727 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19728 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19729 
19730 	if ((status == 0) && (residp != NULL)) {
19731 		*residp = ucmd_buf.uscsi_resid;
19732 	}
19733 
19734 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19735 
19736 	return (status);
19737 }
19738 
19739 
19740 /*
19741  *    Function: sd_send_scsi_TEST_UNIT_READY
19742  *
19743  * Description: Issue the scsi TEST UNIT READY command.
19744  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19745  *		prevent retrying failed commands. Use this when the intent
19746  *		is either to check for device readiness, to clear a Unit
19747  *		Attention, or to clear any outstanding sense data.
19748  *		However under specific conditions the expected behavior
19749  *		is for retries to bring a device ready, so use the flag
19750  *		with caution.
19751  *
19752  *   Arguments: un
19753  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19754  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19755  *			0: dont check for media present, do retries on cmd.
19756  *
19757  * Return Code: 0   - Success
19758  *		EIO - IO error
19759  *		EACCES - Reservation conflict detected
19760  *		ENXIO  - Not Ready, medium not present
19761  *		errno return code from sd_send_scsi_cmd()
19762  *
19763  *     Context: Can sleep. Does not return until command is completed.
19764  */
19765 
19766 static int
19767 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19768 {
19769 	struct	scsi_extended_sense	sense_buf;
19770 	union scsi_cdb		cdb;
19771 	struct uscsi_cmd	ucmd_buf;
19772 	int			status;
19773 
19774 	ASSERT(un != NULL);
19775 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19776 
19777 	SD_TRACE(SD_LOG_IO, un,
19778 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19779 
19780 	/*
19781 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19782 	 * timeouts when they receive a TUR and the queue is not empty. Check
19783 	 * the configuration flag set during attach (indicating the drive has
19784 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19785 	 * TUR. If there are
19786 	 * pending commands return success, this is a bit arbitrary but is ok
19787 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19788 	 * configurations.
19789 	 */
19790 	if (un->un_f_cfg_tur_check == TRUE) {
19791 		mutex_enter(SD_MUTEX(un));
19792 		if (un->un_ncmds_in_transport != 0) {
19793 			mutex_exit(SD_MUTEX(un));
19794 			return (0);
19795 		}
19796 		mutex_exit(SD_MUTEX(un));
19797 	}
19798 
19799 	bzero(&cdb, sizeof (cdb));
19800 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19801 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19802 
19803 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19804 
19805 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19806 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19807 	ucmd_buf.uscsi_bufaddr	= NULL;
19808 	ucmd_buf.uscsi_buflen	= 0;
19809 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19810 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19811 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19812 
19813 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19814 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19815 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19816 	}
19817 	ucmd_buf.uscsi_timeout	= 60;
19818 
19819 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19820 	    UIO_SYSSPACE, UIO_SYSSPACE,
19821 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19822 
19823 	switch (status) {
19824 	case 0:
19825 		break;	/* Success! */
19826 	case EIO:
19827 		switch (ucmd_buf.uscsi_status) {
19828 		case STATUS_RESERVATION_CONFLICT:
19829 			status = EACCES;
19830 			break;
19831 		case STATUS_CHECK:
19832 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19833 				break;
19834 			}
19835 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19836 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19837 				KEY_NOT_READY) &&
19838 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
19839 				status = ENXIO;
19840 			}
19841 			break;
19842 		default:
19843 			break;
19844 		}
19845 		break;
19846 	default:
19847 		break;
19848 	}
19849 
19850 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19851 
19852 	return (status);
19853 }
19854 
19855 
19856 /*
19857  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19858  *
19859  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19860  *
19861  *   Arguments: un
19862  *
19863  * Return Code: 0   - Success
19864  *		EACCES
19865  *		ENOTSUP
19866  *		errno return code from sd_send_scsi_cmd()
19867  *
19868  *     Context: Can sleep. Does not return until command is completed.
19869  */
19870 
19871 static int
19872 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19873 	uint16_t data_len, uchar_t *data_bufp)
19874 {
19875 	struct scsi_extended_sense	sense_buf;
19876 	union scsi_cdb		cdb;
19877 	struct uscsi_cmd	ucmd_buf;
19878 	int			status;
19879 	int			no_caller_buf = FALSE;
19880 
19881 	ASSERT(un != NULL);
19882 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19883 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19884 
19885 	SD_TRACE(SD_LOG_IO, un,
19886 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19887 
19888 	bzero(&cdb, sizeof (cdb));
19889 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19890 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19891 	if (data_bufp == NULL) {
19892 		/* Allocate a default buf if the caller did not give one */
19893 		ASSERT(data_len == 0);
19894 		data_len  = MHIOC_RESV_KEY_SIZE;
19895 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19896 		no_caller_buf = TRUE;
19897 	}
19898 
19899 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19900 	cdb.cdb_opaque[1] = usr_cmd;
19901 	FORMG1COUNT(&cdb, data_len);
19902 
19903 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19904 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19905 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19906 	ucmd_buf.uscsi_buflen	= data_len;
19907 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19908 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19909 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19910 	ucmd_buf.uscsi_timeout	= 60;
19911 
19912 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19913 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19914 
19915 	switch (status) {
19916 	case 0:
19917 		break;	/* Success! */
19918 	case EIO:
19919 		switch (ucmd_buf.uscsi_status) {
19920 		case STATUS_RESERVATION_CONFLICT:
19921 			status = EACCES;
19922 			break;
19923 		case STATUS_CHECK:
19924 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19925 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19926 				KEY_ILLEGAL_REQUEST)) {
19927 				status = ENOTSUP;
19928 			}
19929 			break;
19930 		default:
19931 			break;
19932 		}
19933 		break;
19934 	default:
19935 		break;
19936 	}
19937 
19938 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19939 
19940 	if (no_caller_buf == TRUE) {
19941 		kmem_free(data_bufp, data_len);
19942 	}
19943 
19944 	return (status);
19945 }
19946 
19947 
19948 /*
19949  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19950  *
19951  * Description: This routine is the driver entry point for handling CD-ROM
19952  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19953  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19954  *		device.
19955  *
19956  *   Arguments: un  -   Pointer to soft state struct for the target.
19957  *		usr_cmd SCSI-3 reservation facility command (one of
19958  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19959  *			SD_SCSI3_PREEMPTANDABORT)
19960  *		usr_bufp - user provided pointer register, reserve descriptor or
19961  *			preempt and abort structure (mhioc_register_t,
19962  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19963  *
19964  * Return Code: 0   - Success
19965  *		EACCES
19966  *		ENOTSUP
19967  *		errno return code from sd_send_scsi_cmd()
19968  *
19969  *     Context: Can sleep. Does not return until command is completed.
19970  */
19971 
19972 static int
19973 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19974 	uchar_t	*usr_bufp)
19975 {
19976 	struct scsi_extended_sense	sense_buf;
19977 	union scsi_cdb		cdb;
19978 	struct uscsi_cmd	ucmd_buf;
19979 	int			status;
19980 	uchar_t			data_len = sizeof (sd_prout_t);
19981 	sd_prout_t		*prp;
19982 
19983 	ASSERT(un != NULL);
19984 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19985 	ASSERT(data_len == 24);	/* required by scsi spec */
19986 
19987 	SD_TRACE(SD_LOG_IO, un,
19988 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19989 
19990 	if (usr_bufp == NULL) {
19991 		return (EINVAL);
19992 	}
19993 
19994 	bzero(&cdb, sizeof (cdb));
19995 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19996 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19997 	prp = kmem_zalloc(data_len, KM_SLEEP);
19998 
19999 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20000 	cdb.cdb_opaque[1] = usr_cmd;
20001 	FORMG1COUNT(&cdb, data_len);
20002 
20003 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20004 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20005 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20006 	ucmd_buf.uscsi_buflen	= data_len;
20007 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20008 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20009 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20010 	ucmd_buf.uscsi_timeout	= 60;
20011 
20012 	switch (usr_cmd) {
20013 	case SD_SCSI3_REGISTER: {
20014 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20015 
20016 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20017 		bcopy(ptr->newkey.key, prp->service_key,
20018 		    MHIOC_RESV_KEY_SIZE);
20019 		prp->aptpl = ptr->aptpl;
20020 		break;
20021 	}
20022 	case SD_SCSI3_RESERVE:
20023 	case SD_SCSI3_RELEASE: {
20024 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20025 
20026 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20027 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20028 		cdb.cdb_opaque[2] = ptr->type;
20029 		break;
20030 	}
20031 	case SD_SCSI3_PREEMPTANDABORT: {
20032 		mhioc_preemptandabort_t *ptr =
20033 		    (mhioc_preemptandabort_t *)usr_bufp;
20034 
20035 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20036 		bcopy(ptr->victim_key.key, prp->service_key,
20037 		    MHIOC_RESV_KEY_SIZE);
20038 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20039 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20040 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20041 		break;
20042 	}
20043 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20044 	{
20045 		mhioc_registerandignorekey_t *ptr;
20046 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20047 		bcopy(ptr->newkey.key,
20048 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20049 		prp->aptpl = ptr->aptpl;
20050 		break;
20051 	}
20052 	default:
20053 		ASSERT(FALSE);
20054 		break;
20055 	}
20056 
20057 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20058 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20059 
20060 	switch (status) {
20061 	case 0:
20062 		break;	/* Success! */
20063 	case EIO:
20064 		switch (ucmd_buf.uscsi_status) {
20065 		case STATUS_RESERVATION_CONFLICT:
20066 			status = EACCES;
20067 			break;
20068 		case STATUS_CHECK:
20069 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20070 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20071 				KEY_ILLEGAL_REQUEST)) {
20072 				status = ENOTSUP;
20073 			}
20074 			break;
20075 		default:
20076 			break;
20077 		}
20078 		break;
20079 	default:
20080 		break;
20081 	}
20082 
20083 	kmem_free(prp, data_len);
20084 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20085 	return (status);
20086 }
20087 
20088 
20089 /*
20090  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20091  *
20092  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20093  *
20094  *   Arguments: un - pointer to the target's soft state struct
20095  *
20096  * Return Code: 0 - success
20097  *		errno-type error code
20098  *
20099  *     Context: kernel thread context only.
20100  */
20101 
20102 static int
20103 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20104 {
20105 	struct sd_uscsi_info	*uip;
20106 	struct uscsi_cmd	*uscmd;
20107 	union scsi_cdb		*cdb;
20108 	struct buf		*bp;
20109 	int			rval = 0;
20110 
20111 	SD_TRACE(SD_LOG_IO, un,
20112 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20113 
20114 	ASSERT(un != NULL);
20115 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20116 
20117 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20118 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20119 
20120 	/*
20121 	 * First get some memory for the uscsi_cmd struct and cdb
20122 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20123 	 */
20124 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20125 	uscmd->uscsi_cdblen = CDB_GROUP1;
20126 	uscmd->uscsi_cdb = (caddr_t)cdb;
20127 	uscmd->uscsi_bufaddr = NULL;
20128 	uscmd->uscsi_buflen = 0;
20129 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20130 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20131 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20132 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20133 	uscmd->uscsi_timeout = sd_io_time;
20134 
20135 	/*
20136 	 * Allocate an sd_uscsi_info struct and fill it with the info
20137 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20138 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20139 	 * since we allocate the buf here in this function, we do not
20140 	 * need to preserve the prior contents of b_private.
20141 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20142 	 */
20143 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20144 	uip->ui_flags = SD_PATH_DIRECT;
20145 	uip->ui_cmdp  = uscmd;
20146 
20147 	bp = getrbuf(KM_SLEEP);
20148 	bp->b_private = uip;
20149 
20150 	/*
20151 	 * Setup buffer to carry uscsi request.
20152 	 */
20153 	bp->b_flags  = B_BUSY;
20154 	bp->b_bcount = 0;
20155 	bp->b_blkno  = 0;
20156 
20157 	if (dkc != NULL) {
20158 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20159 		uip->ui_dkc = *dkc;
20160 	}
20161 
20162 	bp->b_edev = SD_GET_DEV(un);
20163 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20164 
20165 	(void) sd_uscsi_strategy(bp);
20166 
20167 	/*
20168 	 * If synchronous request, wait for completion
20169 	 * If async just return and let b_iodone callback
20170 	 * cleanup.
20171 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20172 	 * but it was also incremented in sd_uscsi_strategy(), so
20173 	 * we should be ok.
20174 	 */
20175 	if (dkc == NULL) {
20176 		(void) biowait(bp);
20177 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20178 	}
20179 
20180 	return (rval);
20181 }
20182 
20183 
20184 static int
20185 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20186 {
20187 	struct sd_uscsi_info *uip;
20188 	struct uscsi_cmd *uscmd;
20189 	uint8_t *sense_buf;
20190 	struct sd_lun *un;
20191 	int status;
20192 
20193 	uip = (struct sd_uscsi_info *)(bp->b_private);
20194 	ASSERT(uip != NULL);
20195 
20196 	uscmd = uip->ui_cmdp;
20197 	ASSERT(uscmd != NULL);
20198 
20199 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20200 	ASSERT(sense_buf != NULL);
20201 
20202 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20203 	ASSERT(un != NULL);
20204 
20205 	status = geterror(bp);
20206 	switch (status) {
20207 	case 0:
20208 		break;	/* Success! */
20209 	case EIO:
20210 		switch (uscmd->uscsi_status) {
20211 		case STATUS_RESERVATION_CONFLICT:
20212 			/* Ignore reservation conflict */
20213 			status = 0;
20214 			goto done;
20215 
20216 		case STATUS_CHECK:
20217 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20218 			    (scsi_sense_key(sense_buf) ==
20219 				KEY_ILLEGAL_REQUEST)) {
20220 				/* Ignore Illegal Request error */
20221 				mutex_enter(SD_MUTEX(un));
20222 				un->un_f_sync_cache_supported = FALSE;
20223 				mutex_exit(SD_MUTEX(un));
20224 				status = ENOTSUP;
20225 				goto done;
20226 			}
20227 			break;
20228 		default:
20229 			break;
20230 		}
20231 		/* FALLTHRU */
20232 	default:
20233 		/* Ignore error if the media is not present */
20234 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
20235 			status = 0;
20236 			goto done;
20237 		}
20238 		/* If we reach this, we had an error */
20239 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20240 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20241 		break;
20242 	}
20243 
20244 done:
20245 	if (uip->ui_dkc.dkc_callback != NULL) {
20246 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20247 	}
20248 
20249 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20250 	freerbuf(bp);
20251 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20252 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20253 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20254 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20255 
20256 	return (status);
20257 }
20258 
20259 
20260 /*
20261  *    Function: sd_send_scsi_GET_CONFIGURATION
20262  *
20263  * Description: Issues the get configuration command to the device.
20264  *		Called from sd_check_for_writable_cd & sd_get_media_info
20265  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20266  *   Arguments: un
20267  *		ucmdbuf
20268  *		rqbuf
20269  *		rqbuflen
20270  *		bufaddr
20271  *		buflen
20272  *
20273  * Return Code: 0   - Success
20274  *		errno return code from sd_send_scsi_cmd()
20275  *
20276  *     Context: Can sleep. Does not return until command is completed.
20277  *
20278  */
20279 
20280 static int
20281 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20282 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20283 {
20284 	char	cdb[CDB_GROUP1];
20285 	int	status;
20286 
20287 	ASSERT(un != NULL);
20288 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20289 	ASSERT(bufaddr != NULL);
20290 	ASSERT(ucmdbuf != NULL);
20291 	ASSERT(rqbuf != NULL);
20292 
20293 	SD_TRACE(SD_LOG_IO, un,
20294 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20295 
20296 	bzero(cdb, sizeof (cdb));
20297 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20298 	bzero(rqbuf, rqbuflen);
20299 	bzero(bufaddr, buflen);
20300 
20301 	/*
20302 	 * Set up cdb field for the get configuration command.
20303 	 */
20304 	cdb[0] = SCMD_GET_CONFIGURATION;
20305 	cdb[1] = 0x02;  /* Requested Type */
20306 	cdb[8] = SD_PROFILE_HEADER_LEN;
20307 	ucmdbuf->uscsi_cdb = cdb;
20308 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20309 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20310 	ucmdbuf->uscsi_buflen = buflen;
20311 	ucmdbuf->uscsi_timeout = sd_io_time;
20312 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20313 	ucmdbuf->uscsi_rqlen = rqbuflen;
20314 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20315 
20316 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20317 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20318 
20319 	switch (status) {
20320 	case 0:
20321 		break;  /* Success! */
20322 	case EIO:
20323 		switch (ucmdbuf->uscsi_status) {
20324 		case STATUS_RESERVATION_CONFLICT:
20325 			status = EACCES;
20326 			break;
20327 		default:
20328 			break;
20329 		}
20330 		break;
20331 	default:
20332 		break;
20333 	}
20334 
20335 	if (status == 0) {
20336 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20337 		    "sd_send_scsi_GET_CONFIGURATION: data",
20338 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20339 	}
20340 
20341 	SD_TRACE(SD_LOG_IO, un,
20342 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20343 
20344 	return (status);
20345 }
20346 
20347 /*
20348  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20349  *
20350  * Description: Issues the get configuration command to the device to
20351  *              retrieve a specfic feature. Called from
20352  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20353  *   Arguments: un
20354  *              ucmdbuf
20355  *              rqbuf
20356  *              rqbuflen
20357  *              bufaddr
20358  *              buflen
20359  *		feature
20360  *
20361  * Return Code: 0   - Success
20362  *              errno return code from sd_send_scsi_cmd()
20363  *
20364  *     Context: Can sleep. Does not return until command is completed.
20365  *
20366  */
20367 static int
20368 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20369 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20370 	uchar_t *bufaddr, uint_t buflen, char feature)
20371 {
20372 	char    cdb[CDB_GROUP1];
20373 	int	status;
20374 
20375 	ASSERT(un != NULL);
20376 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20377 	ASSERT(bufaddr != NULL);
20378 	ASSERT(ucmdbuf != NULL);
20379 	ASSERT(rqbuf != NULL);
20380 
20381 	SD_TRACE(SD_LOG_IO, un,
20382 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20383 
20384 	bzero(cdb, sizeof (cdb));
20385 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20386 	bzero(rqbuf, rqbuflen);
20387 	bzero(bufaddr, buflen);
20388 
20389 	/*
20390 	 * Set up cdb field for the get configuration command.
20391 	 */
20392 	cdb[0] = SCMD_GET_CONFIGURATION;
20393 	cdb[1] = 0x02;  /* Requested Type */
20394 	cdb[3] = feature;
20395 	cdb[8] = buflen;
20396 	ucmdbuf->uscsi_cdb = cdb;
20397 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20398 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20399 	ucmdbuf->uscsi_buflen = buflen;
20400 	ucmdbuf->uscsi_timeout = sd_io_time;
20401 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20402 	ucmdbuf->uscsi_rqlen = rqbuflen;
20403 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20404 
20405 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20406 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20407 
20408 	switch (status) {
20409 	case 0:
20410 		break;  /* Success! */
20411 	case EIO:
20412 		switch (ucmdbuf->uscsi_status) {
20413 		case STATUS_RESERVATION_CONFLICT:
20414 			status = EACCES;
20415 			break;
20416 		default:
20417 			break;
20418 		}
20419 		break;
20420 	default:
20421 		break;
20422 	}
20423 
20424 	if (status == 0) {
20425 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20426 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20427 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20428 	}
20429 
20430 	SD_TRACE(SD_LOG_IO, un,
20431 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20432 
20433 	return (status);
20434 }
20435 
20436 
20437 /*
20438  *    Function: sd_send_scsi_MODE_SENSE
20439  *
20440  * Description: Utility function for issuing a scsi MODE SENSE command.
20441  *		Note: This routine uses a consistent implementation for Group0,
20442  *		Group1, and Group2 commands across all platforms. ATAPI devices
20443  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20444  *
20445  *   Arguments: un - pointer to the softstate struct for the target.
20446  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20447  *			  CDB_GROUP[1|2] (10 byte).
20448  *		bufaddr - buffer for page data retrieved from the target.
20449  *		buflen - size of page to be retrieved.
20450  *		page_code - page code of data to be retrieved from the target.
20451  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20452  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20453  *			to use the USCSI "direct" chain and bypass the normal
20454  *			command waitq.
20455  *
20456  * Return Code: 0   - Success
20457  *		errno return code from sd_send_scsi_cmd()
20458  *
20459  *     Context: Can sleep. Does not return until command is completed.
20460  */
20461 
20462 static int
20463 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20464 	size_t buflen,  uchar_t page_code, int path_flag)
20465 {
20466 	struct	scsi_extended_sense	sense_buf;
20467 	union scsi_cdb		cdb;
20468 	struct uscsi_cmd	ucmd_buf;
20469 	int			status;
20470 	int			headlen;
20471 
20472 	ASSERT(un != NULL);
20473 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20474 	ASSERT(bufaddr != NULL);
20475 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20476 	    (cdbsize == CDB_GROUP2));
20477 
20478 	SD_TRACE(SD_LOG_IO, un,
20479 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20480 
20481 	bzero(&cdb, sizeof (cdb));
20482 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20483 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20484 	bzero(bufaddr, buflen);
20485 
20486 	if (cdbsize == CDB_GROUP0) {
20487 		cdb.scc_cmd = SCMD_MODE_SENSE;
20488 		cdb.cdb_opaque[2] = page_code;
20489 		FORMG0COUNT(&cdb, buflen);
20490 		headlen = MODE_HEADER_LENGTH;
20491 	} else {
20492 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20493 		cdb.cdb_opaque[2] = page_code;
20494 		FORMG1COUNT(&cdb, buflen);
20495 		headlen = MODE_HEADER_LENGTH_GRP2;
20496 	}
20497 
20498 	ASSERT(headlen <= buflen);
20499 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20500 
20501 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20502 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20503 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20504 	ucmd_buf.uscsi_buflen	= buflen;
20505 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20506 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20507 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20508 	ucmd_buf.uscsi_timeout	= 60;
20509 
20510 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20511 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20512 
20513 	switch (status) {
20514 	case 0:
20515 		/*
20516 		 * sr_check_wp() uses 0x3f page code and check the header of
20517 		 * mode page to determine if target device is write-protected.
20518 		 * But some USB devices return 0 bytes for 0x3f page code. For
20519 		 * this case, make sure that mode page header is returned at
20520 		 * least.
20521 		 */
20522 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
20523 			status = EIO;
20524 		break;	/* Success! */
20525 	case EIO:
20526 		switch (ucmd_buf.uscsi_status) {
20527 		case STATUS_RESERVATION_CONFLICT:
20528 			status = EACCES;
20529 			break;
20530 		default:
20531 			break;
20532 		}
20533 		break;
20534 	default:
20535 		break;
20536 	}
20537 
20538 	if (status == 0) {
20539 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20540 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20541 	}
20542 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20543 
20544 	return (status);
20545 }
20546 
20547 
20548 /*
20549  *    Function: sd_send_scsi_MODE_SELECT
20550  *
20551  * Description: Utility function for issuing a scsi MODE SELECT command.
20552  *		Note: This routine uses a consistent implementation for Group0,
20553  *		Group1, and Group2 commands across all platforms. ATAPI devices
20554  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20555  *
20556  *   Arguments: un - pointer to the softstate struct for the target.
20557  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20558  *			  CDB_GROUP[1|2] (10 byte).
20559  *		bufaddr - buffer for page data retrieved from the target.
20560  *		buflen - size of page to be retrieved.
20561  *		save_page - boolean to determin if SP bit should be set.
20562  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20563  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20564  *			to use the USCSI "direct" chain and bypass the normal
20565  *			command waitq.
20566  *
20567  * Return Code: 0   - Success
20568  *		errno return code from sd_send_scsi_cmd()
20569  *
20570  *     Context: Can sleep. Does not return until command is completed.
20571  */
20572 
20573 static int
20574 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20575 	size_t buflen,  uchar_t save_page, int path_flag)
20576 {
20577 	struct	scsi_extended_sense	sense_buf;
20578 	union scsi_cdb		cdb;
20579 	struct uscsi_cmd	ucmd_buf;
20580 	int			status;
20581 
20582 	ASSERT(un != NULL);
20583 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20584 	ASSERT(bufaddr != NULL);
20585 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20586 	    (cdbsize == CDB_GROUP2));
20587 
20588 	SD_TRACE(SD_LOG_IO, un,
20589 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20590 
20591 	bzero(&cdb, sizeof (cdb));
20592 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20593 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20594 
20595 	/* Set the PF bit for many third party drives */
20596 	cdb.cdb_opaque[1] = 0x10;
20597 
20598 	/* Set the savepage(SP) bit if given */
20599 	if (save_page == SD_SAVE_PAGE) {
20600 		cdb.cdb_opaque[1] |= 0x01;
20601 	}
20602 
20603 	if (cdbsize == CDB_GROUP0) {
20604 		cdb.scc_cmd = SCMD_MODE_SELECT;
20605 		FORMG0COUNT(&cdb, buflen);
20606 	} else {
20607 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20608 		FORMG1COUNT(&cdb, buflen);
20609 	}
20610 
20611 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20612 
20613 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20614 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20615 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20616 	ucmd_buf.uscsi_buflen	= buflen;
20617 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20618 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20619 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20620 	ucmd_buf.uscsi_timeout	= 60;
20621 
20622 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20623 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20624 
20625 	switch (status) {
20626 	case 0:
20627 		break;	/* Success! */
20628 	case EIO:
20629 		switch (ucmd_buf.uscsi_status) {
20630 		case STATUS_RESERVATION_CONFLICT:
20631 			status = EACCES;
20632 			break;
20633 		default:
20634 			break;
20635 		}
20636 		break;
20637 	default:
20638 		break;
20639 	}
20640 
20641 	if (status == 0) {
20642 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20643 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20644 	}
20645 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20646 
20647 	return (status);
20648 }
20649 
20650 
20651 /*
20652  *    Function: sd_send_scsi_RDWR
20653  *
20654  * Description: Issue a scsi READ or WRITE command with the given parameters.
20655  *
20656  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20657  *		cmd:	 SCMD_READ or SCMD_WRITE
20658  *		bufaddr: Address of caller's buffer to receive the RDWR data
20659  *		buflen:  Length of caller's buffer receive the RDWR data.
20660  *		start_block: Block number for the start of the RDWR operation.
20661  *			 (Assumes target-native block size.)
20662  *		residp:  Pointer to variable to receive the redisual of the
20663  *			 RDWR operation (may be NULL of no residual requested).
20664  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20665  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20666  *			to use the USCSI "direct" chain and bypass the normal
20667  *			command waitq.
20668  *
20669  * Return Code: 0   - Success
20670  *		errno return code from sd_send_scsi_cmd()
20671  *
20672  *     Context: Can sleep. Does not return until command is completed.
20673  */
20674 
20675 static int
20676 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20677 	size_t buflen, daddr_t start_block, int path_flag)
20678 {
20679 	struct	scsi_extended_sense	sense_buf;
20680 	union scsi_cdb		cdb;
20681 	struct uscsi_cmd	ucmd_buf;
20682 	uint32_t		block_count;
20683 	int			status;
20684 	int			cdbsize;
20685 	uchar_t			flag;
20686 
20687 	ASSERT(un != NULL);
20688 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20689 	ASSERT(bufaddr != NULL);
20690 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20691 
20692 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20693 
20694 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20695 		return (EINVAL);
20696 	}
20697 
20698 	mutex_enter(SD_MUTEX(un));
20699 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20700 	mutex_exit(SD_MUTEX(un));
20701 
20702 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20703 
20704 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20705 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20706 	    bufaddr, buflen, start_block, block_count);
20707 
20708 	bzero(&cdb, sizeof (cdb));
20709 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20710 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20711 
20712 	/* Compute CDB size to use */
20713 	if (start_block > 0xffffffff)
20714 		cdbsize = CDB_GROUP4;
20715 	else if ((start_block & 0xFFE00000) ||
20716 	    (un->un_f_cfg_is_atapi == TRUE))
20717 		cdbsize = CDB_GROUP1;
20718 	else
20719 		cdbsize = CDB_GROUP0;
20720 
20721 	switch (cdbsize) {
20722 	case CDB_GROUP0:	/* 6-byte CDBs */
20723 		cdb.scc_cmd = cmd;
20724 		FORMG0ADDR(&cdb, start_block);
20725 		FORMG0COUNT(&cdb, block_count);
20726 		break;
20727 	case CDB_GROUP1:	/* 10-byte CDBs */
20728 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20729 		FORMG1ADDR(&cdb, start_block);
20730 		FORMG1COUNT(&cdb, block_count);
20731 		break;
20732 	case CDB_GROUP4:	/* 16-byte CDBs */
20733 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20734 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20735 		FORMG4COUNT(&cdb, block_count);
20736 		break;
20737 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20738 	default:
20739 		/* All others reserved */
20740 		return (EINVAL);
20741 	}
20742 
20743 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20744 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20745 
20746 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20747 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20748 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20749 	ucmd_buf.uscsi_buflen	= buflen;
20750 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20751 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20752 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20753 	ucmd_buf.uscsi_timeout	= 60;
20754 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20755 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20756 	switch (status) {
20757 	case 0:
20758 		break;	/* Success! */
20759 	case EIO:
20760 		switch (ucmd_buf.uscsi_status) {
20761 		case STATUS_RESERVATION_CONFLICT:
20762 			status = EACCES;
20763 			break;
20764 		default:
20765 			break;
20766 		}
20767 		break;
20768 	default:
20769 		break;
20770 	}
20771 
20772 	if (status == 0) {
20773 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20774 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20775 	}
20776 
20777 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20778 
20779 	return (status);
20780 }
20781 
20782 
20783 /*
20784  *    Function: sd_send_scsi_LOG_SENSE
20785  *
20786  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20787  *
20788  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20789  *
20790  * Return Code: 0   - Success
20791  *		errno return code from sd_send_scsi_cmd()
20792  *
20793  *     Context: Can sleep. Does not return until command is completed.
20794  */
20795 
20796 static int
20797 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20798 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20799 	int path_flag)
20800 
20801 {
20802 	struct	scsi_extended_sense	sense_buf;
20803 	union scsi_cdb		cdb;
20804 	struct uscsi_cmd	ucmd_buf;
20805 	int			status;
20806 
20807 	ASSERT(un != NULL);
20808 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20809 
20810 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20811 
20812 	bzero(&cdb, sizeof (cdb));
20813 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20814 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20815 
20816 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20817 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20818 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20819 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20820 	FORMG1COUNT(&cdb, buflen);
20821 
20822 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20823 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20824 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20825 	ucmd_buf.uscsi_buflen	= buflen;
20826 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20827 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20828 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20829 	ucmd_buf.uscsi_timeout	= 60;
20830 
20831 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20832 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20833 
20834 	switch (status) {
20835 	case 0:
20836 		break;
20837 	case EIO:
20838 		switch (ucmd_buf.uscsi_status) {
20839 		case STATUS_RESERVATION_CONFLICT:
20840 			status = EACCES;
20841 			break;
20842 		case STATUS_CHECK:
20843 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20844 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20845 				KEY_ILLEGAL_REQUEST) &&
20846 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
20847 				/*
20848 				 * ASC 0x24: INVALID FIELD IN CDB
20849 				 */
20850 				switch (page_code) {
20851 				case START_STOP_CYCLE_PAGE:
20852 					/*
20853 					 * The start stop cycle counter is
20854 					 * implemented as page 0x31 in earlier
20855 					 * generation disks. In new generation
20856 					 * disks the start stop cycle counter is
20857 					 * implemented as page 0xE. To properly
20858 					 * handle this case if an attempt for
20859 					 * log page 0xE is made and fails we
20860 					 * will try again using page 0x31.
20861 					 *
20862 					 * Network storage BU committed to
20863 					 * maintain the page 0x31 for this
20864 					 * purpose and will not have any other
20865 					 * page implemented with page code 0x31
20866 					 * until all disks transition to the
20867 					 * standard page.
20868 					 */
20869 					mutex_enter(SD_MUTEX(un));
20870 					un->un_start_stop_cycle_page =
20871 					    START_STOP_CYCLE_VU_PAGE;
20872 					cdb.cdb_opaque[2] =
20873 					    (char)(page_control << 6) |
20874 					    un->un_start_stop_cycle_page;
20875 					mutex_exit(SD_MUTEX(un));
20876 					status = sd_send_scsi_cmd(
20877 					    SD_GET_DEV(un), &ucmd_buf,
20878 					    UIO_SYSSPACE, UIO_SYSSPACE,
20879 					    UIO_SYSSPACE, path_flag);
20880 
20881 					break;
20882 				case TEMPERATURE_PAGE:
20883 					status = ENOTTY;
20884 					break;
20885 				default:
20886 					break;
20887 				}
20888 			}
20889 			break;
20890 		default:
20891 			break;
20892 		}
20893 		break;
20894 	default:
20895 		break;
20896 	}
20897 
20898 	if (status == 0) {
20899 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20900 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20901 	}
20902 
20903 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20904 
20905 	return (status);
20906 }
20907 
20908 
20909 /*
20910  *    Function: sdioctl
20911  *
20912  * Description: Driver's ioctl(9e) entry point function.
20913  *
20914  *   Arguments: dev     - device number
20915  *		cmd     - ioctl operation to be performed
20916  *		arg     - user argument, contains data to be set or reference
20917  *			  parameter for get
20918  *		flag    - bit flag, indicating open settings, 32/64 bit type
20919  *		cred_p  - user credential pointer
20920  *		rval_p  - calling process return value (OPT)
20921  *
20922  * Return Code: EINVAL
20923  *		ENOTTY
20924  *		ENXIO
20925  *		EIO
20926  *		EFAULT
20927  *		ENOTSUP
20928  *		EPERM
20929  *
20930  *     Context: Called from the device switch at normal priority.
20931  */
20932 
20933 static int
20934 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20935 {
20936 	struct sd_lun	*un = NULL;
20937 	int		geom_validated = FALSE;
20938 	int		err = 0;
20939 	int		i = 0;
20940 	cred_t		*cr;
20941 
20942 	/*
20943 	 * All device accesses go thru sdstrategy where we check on suspend
20944 	 * status
20945 	 */
20946 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20947 		return (ENXIO);
20948 	}
20949 
20950 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20951 
20952 	/*
20953 	 * Moved this wait from sd_uscsi_strategy to here for
20954 	 * reasons of deadlock prevention. Internal driver commands,
20955 	 * specifically those to change a devices power level, result
20956 	 * in a call to sd_uscsi_strategy.
20957 	 */
20958 	mutex_enter(SD_MUTEX(un));
20959 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20960 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20961 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20962 	}
20963 	/*
20964 	 * Twiddling the counter here protects commands from now
20965 	 * through to the top of sd_uscsi_strategy. Without the
20966 	 * counter inc. a power down, for example, could get in
20967 	 * after the above check for state is made and before
20968 	 * execution gets to the top of sd_uscsi_strategy.
20969 	 * That would cause problems.
20970 	 */
20971 	un->un_ncmds_in_driver++;
20972 
20973 	if ((un->un_f_geometry_is_valid == FALSE) &&
20974 	    (flag & (FNDELAY | FNONBLOCK))) {
20975 		switch (cmd) {
20976 		case CDROMPAUSE:
20977 		case CDROMRESUME:
20978 		case CDROMPLAYMSF:
20979 		case CDROMPLAYTRKIND:
20980 		case CDROMREADTOCHDR:
20981 		case CDROMREADTOCENTRY:
20982 		case CDROMSTOP:
20983 		case CDROMSTART:
20984 		case CDROMVOLCTRL:
20985 		case CDROMSUBCHNL:
20986 		case CDROMREADMODE2:
20987 		case CDROMREADMODE1:
20988 		case CDROMREADOFFSET:
20989 		case CDROMSBLKMODE:
20990 		case CDROMGBLKMODE:
20991 		case CDROMGDRVSPEED:
20992 		case CDROMSDRVSPEED:
20993 		case CDROMCDDA:
20994 		case CDROMCDXA:
20995 		case CDROMSUBCODE:
20996 			if (!ISCD(un)) {
20997 				un->un_ncmds_in_driver--;
20998 				ASSERT(un->un_ncmds_in_driver >= 0);
20999 				mutex_exit(SD_MUTEX(un));
21000 				return (ENOTTY);
21001 			}
21002 			break;
21003 		case FDEJECT:
21004 		case DKIOCEJECT:
21005 		case CDROMEJECT:
21006 			if (!un->un_f_eject_media_supported) {
21007 				un->un_ncmds_in_driver--;
21008 				ASSERT(un->un_ncmds_in_driver >= 0);
21009 				mutex_exit(SD_MUTEX(un));
21010 				return (ENOTTY);
21011 			}
21012 			break;
21013 		case DKIOCSVTOC:
21014 		case DKIOCSETEFI:
21015 		case DKIOCSMBOOT:
21016 		case DKIOCFLUSHWRITECACHE:
21017 			mutex_exit(SD_MUTEX(un));
21018 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
21019 			if (err != 0) {
21020 				mutex_enter(SD_MUTEX(un));
21021 				un->un_ncmds_in_driver--;
21022 				ASSERT(un->un_ncmds_in_driver >= 0);
21023 				mutex_exit(SD_MUTEX(un));
21024 				return (EIO);
21025 			}
21026 			mutex_enter(SD_MUTEX(un));
21027 			/* FALLTHROUGH */
21028 		case DKIOCREMOVABLE:
21029 		case DKIOCHOTPLUGGABLE:
21030 		case DKIOCINFO:
21031 		case DKIOCGMEDIAINFO:
21032 		case MHIOCENFAILFAST:
21033 		case MHIOCSTATUS:
21034 		case MHIOCTKOWN:
21035 		case MHIOCRELEASE:
21036 		case MHIOCGRP_INKEYS:
21037 		case MHIOCGRP_INRESV:
21038 		case MHIOCGRP_REGISTER:
21039 		case MHIOCGRP_RESERVE:
21040 		case MHIOCGRP_PREEMPTANDABORT:
21041 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21042 		case CDROMCLOSETRAY:
21043 		case USCSICMD:
21044 			goto skip_ready_valid;
21045 		default:
21046 			break;
21047 		}
21048 
21049 		mutex_exit(SD_MUTEX(un));
21050 		err = sd_ready_and_valid(un);
21051 		mutex_enter(SD_MUTEX(un));
21052 		if (err == SD_READY_NOT_VALID) {
21053 			switch (cmd) {
21054 			case DKIOCGAPART:
21055 			case DKIOCGGEOM:
21056 			case DKIOCSGEOM:
21057 			case DKIOCGVTOC:
21058 			case DKIOCSVTOC:
21059 			case DKIOCSAPART:
21060 			case DKIOCG_PHYGEOM:
21061 			case DKIOCG_VIRTGEOM:
21062 				err = ENOTSUP;
21063 				un->un_ncmds_in_driver--;
21064 				ASSERT(un->un_ncmds_in_driver >= 0);
21065 				mutex_exit(SD_MUTEX(un));
21066 				return (err);
21067 			}
21068 		}
21069 		if (err != SD_READY_VALID) {
21070 			switch (cmd) {
21071 			case DKIOCSTATE:
21072 			case CDROMGDRVSPEED:
21073 			case CDROMSDRVSPEED:
21074 			case FDEJECT:	/* for eject command */
21075 			case DKIOCEJECT:
21076 			case CDROMEJECT:
21077 			case DKIOCGETEFI:
21078 			case DKIOCSGEOM:
21079 			case DKIOCREMOVABLE:
21080 			case DKIOCHOTPLUGGABLE:
21081 			case DKIOCSAPART:
21082 			case DKIOCSETEFI:
21083 				break;
21084 			default:
21085 				if (un->un_f_has_removable_media) {
21086 					err = ENXIO;
21087 				} else {
21088 					/* Do not map EACCES to EIO */
21089 					if (err != EACCES)
21090 						err = EIO;
21091 				}
21092 				un->un_ncmds_in_driver--;
21093 				ASSERT(un->un_ncmds_in_driver >= 0);
21094 				mutex_exit(SD_MUTEX(un));
21095 				return (err);
21096 			}
21097 		}
21098 		geom_validated = TRUE;
21099 	}
21100 	if ((un->un_f_geometry_is_valid == TRUE) &&
21101 	    (un->un_solaris_size > 0)) {
21102 		/*
21103 		 * the "geometry_is_valid" flag could be true if we
21104 		 * have an fdisk table but no Solaris partition
21105 		 */
21106 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
21107 			/* it is EFI, so return ENOTSUP for these */
21108 			switch (cmd) {
21109 			case DKIOCGAPART:
21110 			case DKIOCGGEOM:
21111 			case DKIOCGVTOC:
21112 			case DKIOCSVTOC:
21113 			case DKIOCSAPART:
21114 				err = ENOTSUP;
21115 				un->un_ncmds_in_driver--;
21116 				ASSERT(un->un_ncmds_in_driver >= 0);
21117 				mutex_exit(SD_MUTEX(un));
21118 				return (err);
21119 			}
21120 		}
21121 	}
21122 
21123 skip_ready_valid:
21124 	mutex_exit(SD_MUTEX(un));
21125 
21126 	switch (cmd) {
21127 	case DKIOCINFO:
21128 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21129 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21130 		break;
21131 
21132 	case DKIOCGMEDIAINFO:
21133 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21134 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21135 		break;
21136 
21137 	case DKIOCGGEOM:
21138 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21139 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21140 		    geom_validated);
21141 		break;
21142 
21143 	case DKIOCSGEOM:
21144 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21145 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21146 		break;
21147 
21148 	case DKIOCGAPART:
21149 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21150 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21151 		    geom_validated);
21152 		break;
21153 
21154 	case DKIOCSAPART:
21155 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21156 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21157 		break;
21158 
21159 	case DKIOCGVTOC:
21160 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21161 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21162 		    geom_validated);
21163 		break;
21164 
21165 	case DKIOCGETEFI:
21166 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21167 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21168 		break;
21169 
21170 	case DKIOCPARTITION:
21171 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21172 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21173 		break;
21174 
21175 	case DKIOCSVTOC:
21176 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21177 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21178 		break;
21179 
21180 	case DKIOCSETEFI:
21181 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21182 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21183 		break;
21184 
21185 	case DKIOCGMBOOT:
21186 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21187 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21188 		break;
21189 
21190 	case DKIOCSMBOOT:
21191 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21192 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21193 		break;
21194 
21195 	case DKIOCLOCK:
21196 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21197 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21198 		    SD_PATH_STANDARD);
21199 		break;
21200 
21201 	case DKIOCUNLOCK:
21202 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21203 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21204 		    SD_PATH_STANDARD);
21205 		break;
21206 
21207 	case DKIOCSTATE: {
21208 		enum dkio_state		state;
21209 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21210 
21211 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21212 			err = EFAULT;
21213 		} else {
21214 			err = sd_check_media(dev, state);
21215 			if (err == 0) {
21216 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21217 				    sizeof (int), flag) != 0)
21218 					err = EFAULT;
21219 			}
21220 		}
21221 		break;
21222 	}
21223 
21224 	case DKIOCREMOVABLE:
21225 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21226 		/*
21227 		 * At present, vold only does automount for removable-media
21228 		 * devices, in order not to break current applications, we
21229 		 * still let hopluggable devices pretend to be removable media
21230 		 * devices for vold. In the near future, once vold is EOL'ed,
21231 		 * we should remove this workaround.
21232 		 */
21233 		if (un->un_f_has_removable_media || un->un_f_is_hotpluggable) {
21234 			i = 1;
21235 		} else {
21236 			i = 0;
21237 		}
21238 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21239 			err = EFAULT;
21240 		} else {
21241 			err = 0;
21242 		}
21243 		break;
21244 
21245 	case DKIOCHOTPLUGGABLE:
21246 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21247 		if (un->un_f_is_hotpluggable) {
21248 			i = 1;
21249 		} else {
21250 			i = 0;
21251 		}
21252 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21253 			err = EFAULT;
21254 		} else {
21255 			err = 0;
21256 		}
21257 		break;
21258 
21259 	case DKIOCGTEMPERATURE:
21260 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21261 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21262 		break;
21263 
21264 	case MHIOCENFAILFAST:
21265 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21266 		if ((err = drv_priv(cred_p)) == 0) {
21267 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21268 		}
21269 		break;
21270 
21271 	case MHIOCTKOWN:
21272 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21273 		if ((err = drv_priv(cred_p)) == 0) {
21274 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21275 		}
21276 		break;
21277 
21278 	case MHIOCRELEASE:
21279 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21280 		if ((err = drv_priv(cred_p)) == 0) {
21281 			err = sd_mhdioc_release(dev);
21282 		}
21283 		break;
21284 
21285 	case MHIOCSTATUS:
21286 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21287 		if ((err = drv_priv(cred_p)) == 0) {
21288 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21289 			case 0:
21290 				err = 0;
21291 				break;
21292 			case EACCES:
21293 				*rval_p = 1;
21294 				err = 0;
21295 				break;
21296 			default:
21297 				err = EIO;
21298 				break;
21299 			}
21300 		}
21301 		break;
21302 
21303 	case MHIOCQRESERVE:
21304 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21305 		if ((err = drv_priv(cred_p)) == 0) {
21306 			err = sd_reserve_release(dev, SD_RESERVE);
21307 		}
21308 		break;
21309 
21310 	case MHIOCREREGISTERDEVID:
21311 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21312 		if (drv_priv(cred_p) == EPERM) {
21313 			err = EPERM;
21314 		} else if (!un->un_f_devid_supported) {
21315 			err = ENOTTY;
21316 		} else {
21317 			err = sd_mhdioc_register_devid(dev);
21318 		}
21319 		break;
21320 
21321 	case MHIOCGRP_INKEYS:
21322 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21323 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21324 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21325 				err = ENOTSUP;
21326 			} else {
21327 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21328 				    flag);
21329 			}
21330 		}
21331 		break;
21332 
21333 	case MHIOCGRP_INRESV:
21334 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21335 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21336 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21337 				err = ENOTSUP;
21338 			} else {
21339 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21340 			}
21341 		}
21342 		break;
21343 
21344 	case MHIOCGRP_REGISTER:
21345 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21346 		if ((err = drv_priv(cred_p)) != EPERM) {
21347 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21348 				err = ENOTSUP;
21349 			} else if (arg != NULL) {
21350 				mhioc_register_t reg;
21351 				if (ddi_copyin((void *)arg, &reg,
21352 				    sizeof (mhioc_register_t), flag) != 0) {
21353 					err = EFAULT;
21354 				} else {
21355 					err =
21356 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21357 					    un, SD_SCSI3_REGISTER,
21358 					    (uchar_t *)&reg);
21359 				}
21360 			}
21361 		}
21362 		break;
21363 
21364 	case MHIOCGRP_RESERVE:
21365 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21366 		if ((err = drv_priv(cred_p)) != EPERM) {
21367 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21368 				err = ENOTSUP;
21369 			} else if (arg != NULL) {
21370 				mhioc_resv_desc_t resv_desc;
21371 				if (ddi_copyin((void *)arg, &resv_desc,
21372 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21373 					err = EFAULT;
21374 				} else {
21375 					err =
21376 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21377 					    un, SD_SCSI3_RESERVE,
21378 					    (uchar_t *)&resv_desc);
21379 				}
21380 			}
21381 		}
21382 		break;
21383 
21384 	case MHIOCGRP_PREEMPTANDABORT:
21385 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21386 		if ((err = drv_priv(cred_p)) != EPERM) {
21387 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21388 				err = ENOTSUP;
21389 			} else if (arg != NULL) {
21390 				mhioc_preemptandabort_t preempt_abort;
21391 				if (ddi_copyin((void *)arg, &preempt_abort,
21392 				    sizeof (mhioc_preemptandabort_t),
21393 				    flag) != 0) {
21394 					err = EFAULT;
21395 				} else {
21396 					err =
21397 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21398 					    un, SD_SCSI3_PREEMPTANDABORT,
21399 					    (uchar_t *)&preempt_abort);
21400 				}
21401 			}
21402 		}
21403 		break;
21404 
21405 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21406 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21407 		if ((err = drv_priv(cred_p)) != EPERM) {
21408 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21409 				err = ENOTSUP;
21410 			} else if (arg != NULL) {
21411 				mhioc_registerandignorekey_t r_and_i;
21412 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21413 				    sizeof (mhioc_registerandignorekey_t),
21414 				    flag) != 0) {
21415 					err = EFAULT;
21416 				} else {
21417 					err =
21418 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21419 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21420 					    (uchar_t *)&r_and_i);
21421 				}
21422 			}
21423 		}
21424 		break;
21425 
21426 	case USCSICMD:
21427 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21428 		cr = ddi_get_cred();
21429 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21430 			err = EPERM;
21431 		} else {
21432 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21433 		}
21434 		break;
21435 
21436 	case CDROMPAUSE:
21437 	case CDROMRESUME:
21438 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21439 		if (!ISCD(un)) {
21440 			err = ENOTTY;
21441 		} else {
21442 			err = sr_pause_resume(dev, cmd);
21443 		}
21444 		break;
21445 
21446 	case CDROMPLAYMSF:
21447 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21448 		if (!ISCD(un)) {
21449 			err = ENOTTY;
21450 		} else {
21451 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21452 		}
21453 		break;
21454 
21455 	case CDROMPLAYTRKIND:
21456 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21457 #if defined(__i386) || defined(__amd64)
21458 		/*
21459 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21460 		 */
21461 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21462 #else
21463 		if (!ISCD(un)) {
21464 #endif
21465 			err = ENOTTY;
21466 		} else {
21467 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21468 		}
21469 		break;
21470 
21471 	case CDROMREADTOCHDR:
21472 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21473 		if (!ISCD(un)) {
21474 			err = ENOTTY;
21475 		} else {
21476 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21477 		}
21478 		break;
21479 
21480 	case CDROMREADTOCENTRY:
21481 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21482 		if (!ISCD(un)) {
21483 			err = ENOTTY;
21484 		} else {
21485 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21486 		}
21487 		break;
21488 
21489 	case CDROMSTOP:
21490 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21491 		if (!ISCD(un)) {
21492 			err = ENOTTY;
21493 		} else {
21494 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21495 			    SD_PATH_STANDARD);
21496 		}
21497 		break;
21498 
21499 	case CDROMSTART:
21500 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21501 		if (!ISCD(un)) {
21502 			err = ENOTTY;
21503 		} else {
21504 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21505 			    SD_PATH_STANDARD);
21506 		}
21507 		break;
21508 
21509 	case CDROMCLOSETRAY:
21510 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21511 		if (!ISCD(un)) {
21512 			err = ENOTTY;
21513 		} else {
21514 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21515 			    SD_PATH_STANDARD);
21516 		}
21517 		break;
21518 
21519 	case FDEJECT:	/* for eject command */
21520 	case DKIOCEJECT:
21521 	case CDROMEJECT:
21522 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21523 		if (!un->un_f_eject_media_supported) {
21524 			err = ENOTTY;
21525 		} else {
21526 			err = sr_eject(dev);
21527 		}
21528 		break;
21529 
21530 	case CDROMVOLCTRL:
21531 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21532 		if (!ISCD(un)) {
21533 			err = ENOTTY;
21534 		} else {
21535 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21536 		}
21537 		break;
21538 
21539 	case CDROMSUBCHNL:
21540 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21541 		if (!ISCD(un)) {
21542 			err = ENOTTY;
21543 		} else {
21544 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21545 		}
21546 		break;
21547 
21548 	case CDROMREADMODE2:
21549 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21550 		if (!ISCD(un)) {
21551 			err = ENOTTY;
21552 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21553 			/*
21554 			 * If the drive supports READ CD, use that instead of
21555 			 * switching the LBA size via a MODE SELECT
21556 			 * Block Descriptor
21557 			 */
21558 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21559 		} else {
21560 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21561 		}
21562 		break;
21563 
21564 	case CDROMREADMODE1:
21565 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21566 		if (!ISCD(un)) {
21567 			err = ENOTTY;
21568 		} else {
21569 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21570 		}
21571 		break;
21572 
21573 	case CDROMREADOFFSET:
21574 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21575 		if (!ISCD(un)) {
21576 			err = ENOTTY;
21577 		} else {
21578 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21579 			    flag);
21580 		}
21581 		break;
21582 
21583 	case CDROMSBLKMODE:
21584 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21585 		/*
21586 		 * There is no means of changing block size in case of atapi
21587 		 * drives, thus return ENOTTY if drive type is atapi
21588 		 */
21589 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21590 			err = ENOTTY;
21591 		} else if (un->un_f_mmc_cap == TRUE) {
21592 
21593 			/*
21594 			 * MMC Devices do not support changing the
21595 			 * logical block size
21596 			 *
21597 			 * Note: EINVAL is being returned instead of ENOTTY to
21598 			 * maintain consistancy with the original mmc
21599 			 * driver update.
21600 			 */
21601 			err = EINVAL;
21602 		} else {
21603 			mutex_enter(SD_MUTEX(un));
21604 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21605 			    (un->un_ncmds_in_transport > 0)) {
21606 				mutex_exit(SD_MUTEX(un));
21607 				err = EINVAL;
21608 			} else {
21609 				mutex_exit(SD_MUTEX(un));
21610 				err = sr_change_blkmode(dev, cmd, arg, flag);
21611 			}
21612 		}
21613 		break;
21614 
21615 	case CDROMGBLKMODE:
21616 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21617 		if (!ISCD(un)) {
21618 			err = ENOTTY;
21619 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21620 		    (un->un_f_blockcount_is_valid != FALSE)) {
21621 			/*
21622 			 * Drive is an ATAPI drive so return target block
21623 			 * size for ATAPI drives since we cannot change the
21624 			 * blocksize on ATAPI drives. Used primarily to detect
21625 			 * if an ATAPI cdrom is present.
21626 			 */
21627 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21628 			    sizeof (int), flag) != 0) {
21629 				err = EFAULT;
21630 			} else {
21631 				err = 0;
21632 			}
21633 
21634 		} else {
21635 			/*
21636 			 * Drive supports changing block sizes via a Mode
21637 			 * Select.
21638 			 */
21639 			err = sr_change_blkmode(dev, cmd, arg, flag);
21640 		}
21641 		break;
21642 
21643 	case CDROMGDRVSPEED:
21644 	case CDROMSDRVSPEED:
21645 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21646 		if (!ISCD(un)) {
21647 			err = ENOTTY;
21648 		} else if (un->un_f_mmc_cap == TRUE) {
21649 			/*
21650 			 * Note: In the future the driver implementation
21651 			 * for getting and
21652 			 * setting cd speed should entail:
21653 			 * 1) If non-mmc try the Toshiba mode page
21654 			 *    (sr_change_speed)
21655 			 * 2) If mmc but no support for Real Time Streaming try
21656 			 *    the SET CD SPEED (0xBB) command
21657 			 *   (sr_atapi_change_speed)
21658 			 * 3) If mmc and support for Real Time Streaming
21659 			 *    try the GET PERFORMANCE and SET STREAMING
21660 			 *    commands (not yet implemented, 4380808)
21661 			 */
21662 			/*
21663 			 * As per recent MMC spec, CD-ROM speed is variable
21664 			 * and changes with LBA. Since there is no such
21665 			 * things as drive speed now, fail this ioctl.
21666 			 *
21667 			 * Note: EINVAL is returned for consistancy of original
21668 			 * implementation which included support for getting
21669 			 * the drive speed of mmc devices but not setting
21670 			 * the drive speed. Thus EINVAL would be returned
21671 			 * if a set request was made for an mmc device.
21672 			 * We no longer support get or set speed for
21673 			 * mmc but need to remain consistant with regard
21674 			 * to the error code returned.
21675 			 */
21676 			err = EINVAL;
21677 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21678 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21679 		} else {
21680 			err = sr_change_speed(dev, cmd, arg, flag);
21681 		}
21682 		break;
21683 
21684 	case CDROMCDDA:
21685 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21686 		if (!ISCD(un)) {
21687 			err = ENOTTY;
21688 		} else {
21689 			err = sr_read_cdda(dev, (void *)arg, flag);
21690 		}
21691 		break;
21692 
21693 	case CDROMCDXA:
21694 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21695 		if (!ISCD(un)) {
21696 			err = ENOTTY;
21697 		} else {
21698 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21699 		}
21700 		break;
21701 
21702 	case CDROMSUBCODE:
21703 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21704 		if (!ISCD(un)) {
21705 			err = ENOTTY;
21706 		} else {
21707 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21708 		}
21709 		break;
21710 
21711 	case DKIOCPARTINFO: {
21712 		/*
21713 		 * Return parameters describing the selected disk slice.
21714 		 * Note: this ioctl is for the intel platform only
21715 		 */
21716 #if defined(__i386) || defined(__amd64)
21717 		int part;
21718 
21719 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21720 		part = SDPART(dev);
21721 
21722 		/* don't check un_solaris_size for pN */
21723 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21724 			err = EIO;
21725 		} else {
21726 			struct part_info p;
21727 
21728 			p.p_start = (daddr_t)un->un_offset[part];
21729 			p.p_length = (int)un->un_map[part].dkl_nblk;
21730 #ifdef _MULTI_DATAMODEL
21731 			switch (ddi_model_convert_from(flag & FMODELS)) {
21732 			case DDI_MODEL_ILP32:
21733 			{
21734 				struct part_info32 p32;
21735 
21736 				p32.p_start = (daddr32_t)p.p_start;
21737 				p32.p_length = p.p_length;
21738 				if (ddi_copyout(&p32, (void *)arg,
21739 				    sizeof (p32), flag))
21740 					err = EFAULT;
21741 				break;
21742 			}
21743 
21744 			case DDI_MODEL_NONE:
21745 			{
21746 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21747 				    flag))
21748 					err = EFAULT;
21749 				break;
21750 			}
21751 			}
21752 #else /* ! _MULTI_DATAMODEL */
21753 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21754 				err = EFAULT;
21755 #endif /* _MULTI_DATAMODEL */
21756 		}
21757 #else
21758 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21759 		err = ENOTTY;
21760 #endif
21761 		break;
21762 	}
21763 
21764 	case DKIOCG_PHYGEOM: {
21765 		/* Return the driver's notion of the media physical geometry */
21766 #if defined(__i386) || defined(__amd64)
21767 		uint64_t	capacity;
21768 		struct dk_geom	disk_geom;
21769 		struct dk_geom	*dkgp = &disk_geom;
21770 
21771 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21772 		mutex_enter(SD_MUTEX(un));
21773 
21774 		if (un->un_g.dkg_nhead != 0 &&
21775 		    un->un_g.dkg_nsect != 0) {
21776 			/*
21777 			 * We succeeded in getting a geometry, but
21778 			 * right now it is being reported as just the
21779 			 * Solaris fdisk partition, just like for
21780 			 * DKIOCGGEOM. We need to change that to be
21781 			 * correct for the entire disk now.
21782 			 */
21783 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21784 			dkgp->dkg_acyl = 0;
21785 			dkgp->dkg_ncyl = un->un_blockcount /
21786 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21787 		} else {
21788 			bzero(dkgp, sizeof (struct dk_geom));
21789 			/*
21790 			 * This disk does not have a Solaris VTOC
21791 			 * so we must present a physical geometry
21792 			 * that will remain consistent regardless
21793 			 * of how the disk is used. This will ensure
21794 			 * that the geometry does not change regardless
21795 			 * of the fdisk partition type (ie. EFI, FAT32,
21796 			 * Solaris, etc).
21797 			 */
21798 			if (ISCD(un)) {
21799 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21800 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21801 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21802 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21803 			} else {
21804 				/*
21805 				 * Invalid un_blockcount can generate invalid
21806 				 * dk_geom and may result in division by zero
21807 				 * system failure. Should make sure blockcount
21808 				 * is valid before using it here.
21809 				 */
21810 				if (un->un_f_blockcount_is_valid == FALSE) {
21811 					mutex_exit(SD_MUTEX(un));
21812 					err = EIO;
21813 
21814 					break;
21815 				}
21816 
21817 				/*
21818 				 * Refer to comments related to off-by-1 at the
21819 				 * header of this file
21820 				 */
21821 				if (!un->un_f_capacity_adjusted &&
21822 					!un->un_f_has_removable_media &&
21823 				    !un->un_f_is_hotpluggable &&
21824 					(un->un_tgt_blocksize ==
21825 					un->un_sys_blocksize))
21826 					capacity = un->un_blockcount - 1;
21827 				else
21828 					capacity = un->un_blockcount;
21829 
21830 				sd_convert_geometry(capacity, dkgp);
21831 				dkgp->dkg_acyl = 0;
21832 				dkgp->dkg_ncyl = capacity /
21833 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21834 			}
21835 		}
21836 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21837 
21838 		if (ddi_copyout(dkgp, (void *)arg,
21839 		    sizeof (struct dk_geom), flag)) {
21840 			mutex_exit(SD_MUTEX(un));
21841 			err = EFAULT;
21842 		} else {
21843 			mutex_exit(SD_MUTEX(un));
21844 			err = 0;
21845 		}
21846 #else
21847 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21848 		err = ENOTTY;
21849 #endif
21850 		break;
21851 	}
21852 
21853 	case DKIOCG_VIRTGEOM: {
21854 		/* Return the driver's notion of the media's logical geometry */
21855 #if defined(__i386) || defined(__amd64)
21856 		struct dk_geom	disk_geom;
21857 		struct dk_geom	*dkgp = &disk_geom;
21858 
21859 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21860 		mutex_enter(SD_MUTEX(un));
21861 		/*
21862 		 * If there is no HBA geometry available, or
21863 		 * if the HBA returned us something that doesn't
21864 		 * really fit into an Int 13/function 8 geometry
21865 		 * result, just fail the ioctl.  See PSARC 1998/313.
21866 		 */
21867 		if (un->un_lgeom.g_nhead == 0 ||
21868 		    un->un_lgeom.g_nsect == 0 ||
21869 		    un->un_lgeom.g_ncyl > 1024) {
21870 			mutex_exit(SD_MUTEX(un));
21871 			err = EINVAL;
21872 		} else {
21873 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21874 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21875 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21876 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21877 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21878 
21879 			if (ddi_copyout(dkgp, (void *)arg,
21880 			    sizeof (struct dk_geom), flag)) {
21881 				mutex_exit(SD_MUTEX(un));
21882 				err = EFAULT;
21883 			} else {
21884 				mutex_exit(SD_MUTEX(un));
21885 				err = 0;
21886 			}
21887 		}
21888 #else
21889 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21890 		err = ENOTTY;
21891 #endif
21892 		break;
21893 	}
21894 #ifdef SDDEBUG
21895 /* RESET/ABORTS testing ioctls */
21896 	case DKIOCRESET: {
21897 		int	reset_level;
21898 
21899 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21900 			err = EFAULT;
21901 		} else {
21902 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21903 			    "reset_level = 0x%lx\n", reset_level);
21904 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21905 				err = 0;
21906 			} else {
21907 				err = EIO;
21908 			}
21909 		}
21910 		break;
21911 	}
21912 
21913 	case DKIOCABORT:
21914 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21915 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21916 			err = 0;
21917 		} else {
21918 			err = EIO;
21919 		}
21920 		break;
21921 #endif
21922 
21923 #ifdef SD_FAULT_INJECTION
21924 /* SDIOC FaultInjection testing ioctls */
21925 	case SDIOCSTART:
21926 	case SDIOCSTOP:
21927 	case SDIOCINSERTPKT:
21928 	case SDIOCINSERTXB:
21929 	case SDIOCINSERTUN:
21930 	case SDIOCINSERTARQ:
21931 	case SDIOCPUSH:
21932 	case SDIOCRETRIEVE:
21933 	case SDIOCRUN:
21934 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21935 		    "SDIOC detected cmd:0x%X:\n", cmd);
21936 		/* call error generator */
21937 		sd_faultinjection_ioctl(cmd, arg, un);
21938 		err = 0;
21939 		break;
21940 
21941 #endif /* SD_FAULT_INJECTION */
21942 
21943 	case DKIOCFLUSHWRITECACHE:
21944 		{
21945 			struct dk_callback *dkc = (struct dk_callback *)arg;
21946 
21947 			mutex_enter(SD_MUTEX(un));
21948 			if (!un->un_f_sync_cache_supported ||
21949 			    !un->un_f_write_cache_enabled) {
21950 				err = un->un_f_sync_cache_supported ?
21951 					0 : ENOTSUP;
21952 				mutex_exit(SD_MUTEX(un));
21953 				if ((flag & FKIOCTL) && dkc != NULL &&
21954 				    dkc->dkc_callback != NULL) {
21955 					(*dkc->dkc_callback)(dkc->dkc_cookie,
21956 					    err);
21957 					/*
21958 					 * Did callback and reported error.
21959 					 * Since we did a callback, ioctl
21960 					 * should return 0.
21961 					 */
21962 					err = 0;
21963 				}
21964 				break;
21965 			}
21966 			mutex_exit(SD_MUTEX(un));
21967 
21968 			if ((flag & FKIOCTL) && dkc != NULL &&
21969 			    dkc->dkc_callback != NULL) {
21970 				/* async SYNC CACHE request */
21971 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
21972 			} else {
21973 				/* synchronous SYNC CACHE request */
21974 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
21975 			}
21976 		}
21977 		break;
21978 
21979 	case DKIOCGETWCE: {
21980 
21981 		int wce;
21982 
21983 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
21984 			break;
21985 		}
21986 
21987 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
21988 			err = EFAULT;
21989 		}
21990 		break;
21991 	}
21992 
21993 	case DKIOCSETWCE: {
21994 
21995 		int wce, sync_supported;
21996 
21997 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
21998 			err = EFAULT;
21999 			break;
22000 		}
22001 
22002 		/*
22003 		 * Synchronize multiple threads trying to enable
22004 		 * or disable the cache via the un_f_wcc_cv
22005 		 * condition variable.
22006 		 */
22007 		mutex_enter(SD_MUTEX(un));
22008 
22009 		/*
22010 		 * Don't allow the cache to be enabled if the
22011 		 * config file has it disabled.
22012 		 */
22013 		if (un->un_f_opt_disable_cache && wce) {
22014 			mutex_exit(SD_MUTEX(un));
22015 			err = EINVAL;
22016 			break;
22017 		}
22018 
22019 		/*
22020 		 * Wait for write cache change in progress
22021 		 * bit to be clear before proceeding.
22022 		 */
22023 		while (un->un_f_wcc_inprog)
22024 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22025 
22026 		un->un_f_wcc_inprog = 1;
22027 
22028 		if (un->un_f_write_cache_enabled && wce == 0) {
22029 			/*
22030 			 * Disable the write cache.  Don't clear
22031 			 * un_f_write_cache_enabled until after
22032 			 * the mode select and flush are complete.
22033 			 */
22034 			sync_supported = un->un_f_sync_cache_supported;
22035 			mutex_exit(SD_MUTEX(un));
22036 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22037 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
22038 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22039 			}
22040 
22041 			mutex_enter(SD_MUTEX(un));
22042 			if (err == 0) {
22043 				un->un_f_write_cache_enabled = 0;
22044 			}
22045 
22046 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22047 			/*
22048 			 * Set un_f_write_cache_enabled first, so there is
22049 			 * no window where the cache is enabled, but the
22050 			 * bit says it isn't.
22051 			 */
22052 			un->un_f_write_cache_enabled = 1;
22053 			mutex_exit(SD_MUTEX(un));
22054 
22055 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22056 				SD_CACHE_ENABLE);
22057 
22058 			mutex_enter(SD_MUTEX(un));
22059 
22060 			if (err) {
22061 				un->un_f_write_cache_enabled = 0;
22062 			}
22063 		}
22064 
22065 		un->un_f_wcc_inprog = 0;
22066 		cv_broadcast(&un->un_wcc_cv);
22067 		mutex_exit(SD_MUTEX(un));
22068 		break;
22069 	}
22070 
22071 	default:
22072 		err = ENOTTY;
22073 		break;
22074 	}
22075 	mutex_enter(SD_MUTEX(un));
22076 	un->un_ncmds_in_driver--;
22077 	ASSERT(un->un_ncmds_in_driver >= 0);
22078 	mutex_exit(SD_MUTEX(un));
22079 
22080 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22081 	return (err);
22082 }
22083 
22084 
22085 /*
22086  *    Function: sd_uscsi_ioctl
22087  *
22088  * Description: This routine is the driver entry point for handling USCSI ioctl
22089  *		requests (USCSICMD).
22090  *
22091  *   Arguments: dev	- the device number
22092  *		arg	- user provided scsi command
22093  *		flag	- this argument is a pass through to ddi_copyxxx()
22094  *			  directly from the mode argument of ioctl().
22095  *
22096  * Return Code: code returned by sd_send_scsi_cmd
22097  *		ENXIO
22098  *		EFAULT
22099  *		EAGAIN
22100  */
22101 
22102 static int
22103 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
22104 {
22105 #ifdef _MULTI_DATAMODEL
22106 	/*
22107 	 * For use when a 32 bit app makes a call into a
22108 	 * 64 bit ioctl
22109 	 */
22110 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
22111 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
22112 	model_t			model;
22113 #endif /* _MULTI_DATAMODEL */
22114 	struct uscsi_cmd	*scmd = NULL;
22115 	struct sd_lun		*un = NULL;
22116 	enum uio_seg		uioseg;
22117 	char			cdb[CDB_GROUP0];
22118 	int			rval = 0;
22119 
22120 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22121 		return (ENXIO);
22122 	}
22123 
22124 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
22125 
22126 	scmd = (struct uscsi_cmd *)
22127 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
22128 
22129 #ifdef _MULTI_DATAMODEL
22130 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
22131 	case DDI_MODEL_ILP32:
22132 	{
22133 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
22134 			rval = EFAULT;
22135 			goto done;
22136 		}
22137 		/*
22138 		 * Convert the ILP32 uscsi data from the
22139 		 * application to LP64 for internal use.
22140 		 */
22141 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
22142 		break;
22143 	}
22144 	case DDI_MODEL_NONE:
22145 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22146 			rval = EFAULT;
22147 			goto done;
22148 		}
22149 		break;
22150 	}
22151 #else /* ! _MULTI_DATAMODEL */
22152 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22153 		rval = EFAULT;
22154 		goto done;
22155 	}
22156 #endif /* _MULTI_DATAMODEL */
22157 
22158 	scmd->uscsi_flags &= ~USCSI_NOINTR;
22159 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
22160 	if (un->un_f_format_in_progress == TRUE) {
22161 		rval = EAGAIN;
22162 		goto done;
22163 	}
22164 
22165 	/*
22166 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
22167 	 * we will have a valid cdb[0] to test.
22168 	 */
22169 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
22170 	    (cdb[0] == SCMD_FORMAT)) {
22171 		SD_TRACE(SD_LOG_IOCTL, un,
22172 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22173 		mutex_enter(SD_MUTEX(un));
22174 		un->un_f_format_in_progress = TRUE;
22175 		mutex_exit(SD_MUTEX(un));
22176 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22177 		    SD_PATH_STANDARD);
22178 		mutex_enter(SD_MUTEX(un));
22179 		un->un_f_format_in_progress = FALSE;
22180 		mutex_exit(SD_MUTEX(un));
22181 	} else {
22182 		SD_TRACE(SD_LOG_IOCTL, un,
22183 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22184 		/*
22185 		 * It's OK to fall into here even if the ddi_copyin()
22186 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
22187 		 * does this same copyin and will return the EFAULT
22188 		 * if it fails.
22189 		 */
22190 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22191 		    SD_PATH_STANDARD);
22192 	}
22193 #ifdef _MULTI_DATAMODEL
22194 	switch (model) {
22195 	case DDI_MODEL_ILP32:
22196 		/*
22197 		 * Convert back to ILP32 before copyout to the
22198 		 * application
22199 		 */
22200 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
22201 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
22202 			if (rval != 0) {
22203 				rval = EFAULT;
22204 			}
22205 		}
22206 		break;
22207 	case DDI_MODEL_NONE:
22208 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22209 			if (rval != 0) {
22210 				rval = EFAULT;
22211 			}
22212 		}
22213 		break;
22214 	}
22215 #else /* ! _MULTI_DATAMODE */
22216 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22217 		if (rval != 0) {
22218 			rval = EFAULT;
22219 		}
22220 	}
22221 #endif /* _MULTI_DATAMODE */
22222 done:
22223 	kmem_free(scmd, sizeof (struct uscsi_cmd));
22224 
22225 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
22226 
22227 	return (rval);
22228 }
22229 
22230 
22231 /*
22232  *    Function: sd_dkio_ctrl_info
22233  *
22234  * Description: This routine is the driver entry point for handling controller
22235  *		information ioctl requests (DKIOCINFO).
22236  *
22237  *   Arguments: dev  - the device number
22238  *		arg  - pointer to user provided dk_cinfo structure
22239  *		       specifying the controller type and attributes.
22240  *		flag - this argument is a pass through to ddi_copyxxx()
22241  *		       directly from the mode argument of ioctl().
22242  *
22243  * Return Code: 0
22244  *		EFAULT
22245  *		ENXIO
22246  */
22247 
22248 static int
22249 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22250 {
22251 	struct sd_lun	*un = NULL;
22252 	struct dk_cinfo	*info;
22253 	dev_info_t	*pdip;
22254 	int		lun, tgt;
22255 
22256 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22257 		return (ENXIO);
22258 	}
22259 
22260 	info = (struct dk_cinfo *)
22261 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22262 
22263 	switch (un->un_ctype) {
22264 	case CTYPE_CDROM:
22265 		info->dki_ctype = DKC_CDROM;
22266 		break;
22267 	default:
22268 		info->dki_ctype = DKC_SCSI_CCS;
22269 		break;
22270 	}
22271 	pdip = ddi_get_parent(SD_DEVINFO(un));
22272 	info->dki_cnum = ddi_get_instance(pdip);
22273 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22274 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22275 	} else {
22276 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22277 		    DK_DEVLEN - 1);
22278 	}
22279 
22280 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22281 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22282 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22283 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22284 
22285 	/* Unit Information */
22286 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22287 	info->dki_slave = ((tgt << 3) | lun);
22288 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22289 	    DK_DEVLEN - 1);
22290 	info->dki_flags = DKI_FMTVOL;
22291 	info->dki_partition = SDPART(dev);
22292 
22293 	/* Max Transfer size of this device in blocks */
22294 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22295 	info->dki_addr = 0;
22296 	info->dki_space = 0;
22297 	info->dki_prio = 0;
22298 	info->dki_vec = 0;
22299 
22300 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22301 		kmem_free(info, sizeof (struct dk_cinfo));
22302 		return (EFAULT);
22303 	} else {
22304 		kmem_free(info, sizeof (struct dk_cinfo));
22305 		return (0);
22306 	}
22307 }
22308 
22309 
22310 /*
22311  *    Function: sd_get_media_info
22312  *
22313  * Description: This routine is the driver entry point for handling ioctl
22314  *		requests for the media type or command set profile used by the
22315  *		drive to operate on the media (DKIOCGMEDIAINFO).
22316  *
22317  *   Arguments: dev	- the device number
22318  *		arg	- pointer to user provided dk_minfo structure
22319  *			  specifying the media type, logical block size and
22320  *			  drive capacity.
22321  *		flag	- this argument is a pass through to ddi_copyxxx()
22322  *			  directly from the mode argument of ioctl().
22323  *
22324  * Return Code: 0
22325  *		EACCESS
22326  *		EFAULT
22327  *		ENXIO
22328  *		EIO
22329  */
22330 
22331 static int
22332 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22333 {
22334 	struct sd_lun		*un = NULL;
22335 	struct uscsi_cmd	com;
22336 	struct scsi_inquiry	*sinq;
22337 	struct dk_minfo		media_info;
22338 	u_longlong_t		media_capacity;
22339 	uint64_t		capacity;
22340 	uint_t			lbasize;
22341 	uchar_t			*out_data;
22342 	uchar_t			*rqbuf;
22343 	int			rval = 0;
22344 	int			rtn;
22345 
22346 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22347 	    (un->un_state == SD_STATE_OFFLINE)) {
22348 		return (ENXIO);
22349 	}
22350 
22351 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22352 
22353 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22354 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22355 
22356 	/* Issue a TUR to determine if the drive is ready with media present */
22357 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22358 	if (rval == ENXIO) {
22359 		goto done;
22360 	}
22361 
22362 	/* Now get configuration data */
22363 	if (ISCD(un)) {
22364 		media_info.dki_media_type = DK_CDROM;
22365 
22366 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22367 		if (un->un_f_mmc_cap == TRUE) {
22368 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22369 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22370 
22371 			if (rtn) {
22372 				/*
22373 				 * Failed for other than an illegal request
22374 				 * or command not supported
22375 				 */
22376 				if ((com.uscsi_status == STATUS_CHECK) &&
22377 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22378 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22379 					    (rqbuf[12] != 0x20)) {
22380 						rval = EIO;
22381 						goto done;
22382 					}
22383 				}
22384 			} else {
22385 				/*
22386 				 * The GET CONFIGURATION command succeeded
22387 				 * so set the media type according to the
22388 				 * returned data
22389 				 */
22390 				media_info.dki_media_type = out_data[6];
22391 				media_info.dki_media_type <<= 8;
22392 				media_info.dki_media_type |= out_data[7];
22393 			}
22394 		}
22395 	} else {
22396 		/*
22397 		 * The profile list is not available, so we attempt to identify
22398 		 * the media type based on the inquiry data
22399 		 */
22400 		sinq = un->un_sd->sd_inq;
22401 		if (sinq->inq_qual == 0) {
22402 			/* This is a direct access device */
22403 			media_info.dki_media_type = DK_FIXED_DISK;
22404 
22405 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22406 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22407 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22408 					media_info.dki_media_type = DK_ZIP;
22409 				} else if (
22410 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22411 					media_info.dki_media_type = DK_JAZ;
22412 				}
22413 			}
22414 		} else {
22415 			/* Not a CD or direct access so return unknown media */
22416 			media_info.dki_media_type = DK_UNKNOWN;
22417 		}
22418 	}
22419 
22420 	/* Now read the capacity so we can provide the lbasize and capacity */
22421 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22422 	    SD_PATH_DIRECT)) {
22423 	case 0:
22424 		break;
22425 	case EACCES:
22426 		rval = EACCES;
22427 		goto done;
22428 	default:
22429 		rval = EIO;
22430 		goto done;
22431 	}
22432 
22433 	media_info.dki_lbsize = lbasize;
22434 	media_capacity = capacity;
22435 
22436 	/*
22437 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22438 	 * un->un_sys_blocksize chunks. So we need to convert it into
22439 	 * cap.lbasize chunks.
22440 	 */
22441 	media_capacity *= un->un_sys_blocksize;
22442 	media_capacity /= lbasize;
22443 	media_info.dki_capacity = media_capacity;
22444 
22445 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22446 		rval = EFAULT;
22447 		/* Put goto. Anybody might add some code below in future */
22448 		goto done;
22449 	}
22450 done:
22451 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22452 	kmem_free(rqbuf, SENSE_LENGTH);
22453 	return (rval);
22454 }
22455 
22456 
22457 /*
22458  *    Function: sd_dkio_get_geometry
22459  *
22460  * Description: This routine is the driver entry point for handling user
22461  *		requests to get the device geometry (DKIOCGGEOM).
22462  *
22463  *   Arguments: dev  - the device number
22464  *		arg  - pointer to user provided dk_geom structure specifying
22465  *			the controller's notion of the current geometry.
22466  *		flag - this argument is a pass through to ddi_copyxxx()
22467  *		       directly from the mode argument of ioctl().
22468  *		geom_validated - flag indicating if the device geometry has been
22469  *				 previously validated in the sdioctl routine.
22470  *
22471  * Return Code: 0
22472  *		EFAULT
22473  *		ENXIO
22474  *		EIO
22475  */
22476 
22477 static int
22478 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22479 {
22480 	struct sd_lun	*un = NULL;
22481 	struct dk_geom	*tmp_geom = NULL;
22482 	int		rval = 0;
22483 
22484 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22485 		return (ENXIO);
22486 	}
22487 
22488 	if (geom_validated == FALSE) {
22489 		/*
22490 		 * sd_validate_geometry does not spin a disk up
22491 		 * if it was spun down. We need to make sure it
22492 		 * is ready.
22493 		 */
22494 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22495 			return (rval);
22496 		}
22497 		mutex_enter(SD_MUTEX(un));
22498 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22499 		mutex_exit(SD_MUTEX(un));
22500 	}
22501 	if (rval)
22502 		return (rval);
22503 
22504 	/*
22505 	 * It is possible that un_solaris_size is 0(uninitialized)
22506 	 * after sd_unit_attach. Reservation conflict may cause the
22507 	 * above situation. Thus, the zero check of un_solaris_size
22508 	 * should occur after the sd_validate_geometry() call.
22509 	 */
22510 #if defined(__i386) || defined(__amd64)
22511 	if (un->un_solaris_size == 0) {
22512 		return (EIO);
22513 	}
22514 #endif
22515 
22516 	/*
22517 	 * Make a local copy of the soft state geometry to avoid some potential
22518 	 * race conditions associated with holding the mutex and updating the
22519 	 * write_reinstruct value
22520 	 */
22521 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22522 	mutex_enter(SD_MUTEX(un));
22523 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22524 	mutex_exit(SD_MUTEX(un));
22525 
22526 	if (tmp_geom->dkg_write_reinstruct == 0) {
22527 		tmp_geom->dkg_write_reinstruct =
22528 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22529 		    sd_rot_delay) / (int)60000);
22530 	}
22531 
22532 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22533 	    flag);
22534 	if (rval != 0) {
22535 		rval = EFAULT;
22536 	}
22537 
22538 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22539 	return (rval);
22540 
22541 }
22542 
22543 
22544 /*
22545  *    Function: sd_dkio_set_geometry
22546  *
22547  * Description: This routine is the driver entry point for handling user
22548  *		requests to set the device geometry (DKIOCSGEOM). The actual
22549  *		device geometry is not updated, just the driver "notion" of it.
22550  *
22551  *   Arguments: dev  - the device number
22552  *		arg  - pointer to user provided dk_geom structure used to set
22553  *			the controller's notion of the current geometry.
22554  *		flag - this argument is a pass through to ddi_copyxxx()
22555  *		       directly from the mode argument of ioctl().
22556  *
22557  * Return Code: 0
22558  *		EFAULT
22559  *		ENXIO
22560  *		EIO
22561  */
22562 
22563 static int
22564 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22565 {
22566 	struct sd_lun	*un = NULL;
22567 	struct dk_geom	*tmp_geom;
22568 	struct dk_map	*lp;
22569 	int		rval = 0;
22570 	int		i;
22571 
22572 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22573 		return (ENXIO);
22574 	}
22575 
22576 	/*
22577 	 * Make sure there is no reservation conflict on the lun.
22578 	 */
22579 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22580 		return (EACCES);
22581 	}
22582 
22583 #if defined(__i386) || defined(__amd64)
22584 	if (un->un_solaris_size == 0) {
22585 		return (EIO);
22586 	}
22587 #endif
22588 
22589 	/*
22590 	 * We need to copy the user specified geometry into local
22591 	 * storage and then update the softstate. We don't want to hold
22592 	 * the mutex and copyin directly from the user to the soft state
22593 	 */
22594 	tmp_geom = (struct dk_geom *)
22595 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22596 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22597 	if (rval != 0) {
22598 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22599 		return (EFAULT);
22600 	}
22601 
22602 	mutex_enter(SD_MUTEX(un));
22603 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22604 	for (i = 0; i < NDKMAP; i++) {
22605 		lp  = &un->un_map[i];
22606 		un->un_offset[i] =
22607 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22608 #if defined(__i386) || defined(__amd64)
22609 		un->un_offset[i] += un->un_solaris_offset;
22610 #endif
22611 	}
22612 	un->un_f_geometry_is_valid = FALSE;
22613 	mutex_exit(SD_MUTEX(un));
22614 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22615 
22616 	return (rval);
22617 }
22618 
22619 
22620 /*
22621  *    Function: sd_dkio_get_partition
22622  *
22623  * Description: This routine is the driver entry point for handling user
22624  *		requests to get the partition table (DKIOCGAPART).
22625  *
22626  *   Arguments: dev  - the device number
22627  *		arg  - pointer to user provided dk_allmap structure specifying
22628  *			the controller's notion of the current partition table.
22629  *		flag - this argument is a pass through to ddi_copyxxx()
22630  *		       directly from the mode argument of ioctl().
22631  *		geom_validated - flag indicating if the device geometry has been
22632  *				 previously validated in the sdioctl routine.
22633  *
22634  * Return Code: 0
22635  *		EFAULT
22636  *		ENXIO
22637  *		EIO
22638  */
22639 
22640 static int
22641 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22642 {
22643 	struct sd_lun	*un = NULL;
22644 	int		rval = 0;
22645 	int		size;
22646 
22647 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22648 		return (ENXIO);
22649 	}
22650 
22651 	/*
22652 	 * Make sure the geometry is valid before getting the partition
22653 	 * information.
22654 	 */
22655 	mutex_enter(SD_MUTEX(un));
22656 	if (geom_validated == FALSE) {
22657 		/*
22658 		 * sd_validate_geometry does not spin a disk up
22659 		 * if it was spun down. We need to make sure it
22660 		 * is ready before validating the geometry.
22661 		 */
22662 		mutex_exit(SD_MUTEX(un));
22663 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22664 			return (rval);
22665 		}
22666 		mutex_enter(SD_MUTEX(un));
22667 
22668 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22669 			mutex_exit(SD_MUTEX(un));
22670 			return (rval);
22671 		}
22672 	}
22673 	mutex_exit(SD_MUTEX(un));
22674 
22675 	/*
22676 	 * It is possible that un_solaris_size is 0(uninitialized)
22677 	 * after sd_unit_attach. Reservation conflict may cause the
22678 	 * above situation. Thus, the zero check of un_solaris_size
22679 	 * should occur after the sd_validate_geometry() call.
22680 	 */
22681 #if defined(__i386) || defined(__amd64)
22682 	if (un->un_solaris_size == 0) {
22683 		return (EIO);
22684 	}
22685 #endif
22686 
22687 #ifdef _MULTI_DATAMODEL
22688 	switch (ddi_model_convert_from(flag & FMODELS)) {
22689 	case DDI_MODEL_ILP32: {
22690 		struct dk_map32 dk_map32[NDKMAP];
22691 		int		i;
22692 
22693 		for (i = 0; i < NDKMAP; i++) {
22694 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22695 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22696 		}
22697 		size = NDKMAP * sizeof (struct dk_map32);
22698 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22699 		if (rval != 0) {
22700 			rval = EFAULT;
22701 		}
22702 		break;
22703 	}
22704 	case DDI_MODEL_NONE:
22705 		size = NDKMAP * sizeof (struct dk_map);
22706 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22707 		if (rval != 0) {
22708 			rval = EFAULT;
22709 		}
22710 		break;
22711 	}
22712 #else /* ! _MULTI_DATAMODEL */
22713 	size = NDKMAP * sizeof (struct dk_map);
22714 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22715 	if (rval != 0) {
22716 		rval = EFAULT;
22717 	}
22718 #endif /* _MULTI_DATAMODEL */
22719 	return (rval);
22720 }
22721 
22722 
22723 /*
22724  *    Function: sd_dkio_set_partition
22725  *
22726  * Description: This routine is the driver entry point for handling user
22727  *		requests to set the partition table (DKIOCSAPART). The actual
22728  *		device partition is not updated.
22729  *
22730  *   Arguments: dev  - the device number
22731  *		arg  - pointer to user provided dk_allmap structure used to set
22732  *			the controller's notion of the partition table.
22733  *		flag - this argument is a pass through to ddi_copyxxx()
22734  *		       directly from the mode argument of ioctl().
22735  *
22736  * Return Code: 0
22737  *		EINVAL
22738  *		EFAULT
22739  *		ENXIO
22740  *		EIO
22741  */
22742 
22743 static int
22744 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22745 {
22746 	struct sd_lun	*un = NULL;
22747 	struct dk_map	dk_map[NDKMAP];
22748 	struct dk_map	*lp;
22749 	int		rval = 0;
22750 	int		size;
22751 	int		i;
22752 #if defined(_SUNOS_VTOC_16)
22753 	struct dkl_partition	*vp;
22754 #endif
22755 
22756 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22757 		return (ENXIO);
22758 	}
22759 
22760 	/*
22761 	 * Set the map for all logical partitions.  We lock
22762 	 * the priority just to make sure an interrupt doesn't
22763 	 * come in while the map is half updated.
22764 	 */
22765 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22766 	mutex_enter(SD_MUTEX(un));
22767 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22768 		mutex_exit(SD_MUTEX(un));
22769 		return (ENOTSUP);
22770 	}
22771 	mutex_exit(SD_MUTEX(un));
22772 
22773 	/*
22774 	 * Make sure there is no reservation conflict on the lun.
22775 	 */
22776 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22777 		return (EACCES);
22778 	}
22779 
22780 #if defined(__i386) || defined(__amd64)
22781 	if (un->un_solaris_size == 0) {
22782 		return (EIO);
22783 	}
22784 #endif
22785 
22786 #ifdef _MULTI_DATAMODEL
22787 	switch (ddi_model_convert_from(flag & FMODELS)) {
22788 	case DDI_MODEL_ILP32: {
22789 		struct dk_map32 dk_map32[NDKMAP];
22790 
22791 		size = NDKMAP * sizeof (struct dk_map32);
22792 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22793 		if (rval != 0) {
22794 			return (EFAULT);
22795 		}
22796 		for (i = 0; i < NDKMAP; i++) {
22797 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22798 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22799 		}
22800 		break;
22801 	}
22802 	case DDI_MODEL_NONE:
22803 		size = NDKMAP * sizeof (struct dk_map);
22804 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22805 		if (rval != 0) {
22806 			return (EFAULT);
22807 		}
22808 		break;
22809 	}
22810 #else /* ! _MULTI_DATAMODEL */
22811 	size = NDKMAP * sizeof (struct dk_map);
22812 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22813 	if (rval != 0) {
22814 		return (EFAULT);
22815 	}
22816 #endif /* _MULTI_DATAMODEL */
22817 
22818 	mutex_enter(SD_MUTEX(un));
22819 	/* Note: The size used in this bcopy is set based upon the data model */
22820 	bcopy(dk_map, un->un_map, size);
22821 #if defined(_SUNOS_VTOC_16)
22822 	vp = (struct dkl_partition *)&(un->un_vtoc);
22823 #endif	/* defined(_SUNOS_VTOC_16) */
22824 	for (i = 0; i < NDKMAP; i++) {
22825 		lp  = &un->un_map[i];
22826 		un->un_offset[i] =
22827 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22828 #if defined(_SUNOS_VTOC_16)
22829 		vp->p_start = un->un_offset[i];
22830 		vp->p_size = lp->dkl_nblk;
22831 		vp++;
22832 #endif	/* defined(_SUNOS_VTOC_16) */
22833 #if defined(__i386) || defined(__amd64)
22834 		un->un_offset[i] += un->un_solaris_offset;
22835 #endif
22836 	}
22837 	mutex_exit(SD_MUTEX(un));
22838 	return (rval);
22839 }
22840 
22841 
22842 /*
22843  *    Function: sd_dkio_get_vtoc
22844  *
22845  * Description: This routine is the driver entry point for handling user
22846  *		requests to get the current volume table of contents
22847  *		(DKIOCGVTOC).
22848  *
22849  *   Arguments: dev  - the device number
22850  *		arg  - pointer to user provided vtoc structure specifying
22851  *			the current vtoc.
22852  *		flag - this argument is a pass through to ddi_copyxxx()
22853  *		       directly from the mode argument of ioctl().
22854  *		geom_validated - flag indicating if the device geometry has been
22855  *				 previously validated in the sdioctl routine.
22856  *
22857  * Return Code: 0
22858  *		EFAULT
22859  *		ENXIO
22860  *		EIO
22861  */
22862 
22863 static int
22864 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22865 {
22866 	struct sd_lun	*un = NULL;
22867 #if defined(_SUNOS_VTOC_8)
22868 	struct vtoc	user_vtoc;
22869 #endif	/* defined(_SUNOS_VTOC_8) */
22870 	int		rval = 0;
22871 
22872 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22873 		return (ENXIO);
22874 	}
22875 
22876 	mutex_enter(SD_MUTEX(un));
22877 	if (geom_validated == FALSE) {
22878 		/*
22879 		 * sd_validate_geometry does not spin a disk up
22880 		 * if it was spun down. We need to make sure it
22881 		 * is ready.
22882 		 */
22883 		mutex_exit(SD_MUTEX(un));
22884 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22885 			return (rval);
22886 		}
22887 		mutex_enter(SD_MUTEX(un));
22888 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22889 			mutex_exit(SD_MUTEX(un));
22890 			return (rval);
22891 		}
22892 	}
22893 
22894 #if defined(_SUNOS_VTOC_8)
22895 	sd_build_user_vtoc(un, &user_vtoc);
22896 	mutex_exit(SD_MUTEX(un));
22897 
22898 #ifdef _MULTI_DATAMODEL
22899 	switch (ddi_model_convert_from(flag & FMODELS)) {
22900 	case DDI_MODEL_ILP32: {
22901 		struct vtoc32 user_vtoc32;
22902 
22903 		vtoctovtoc32(user_vtoc, user_vtoc32);
22904 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22905 		    sizeof (struct vtoc32), flag)) {
22906 			return (EFAULT);
22907 		}
22908 		break;
22909 	}
22910 
22911 	case DDI_MODEL_NONE:
22912 		if (ddi_copyout(&user_vtoc, (void *)arg,
22913 		    sizeof (struct vtoc), flag)) {
22914 			return (EFAULT);
22915 		}
22916 		break;
22917 	}
22918 #else /* ! _MULTI_DATAMODEL */
22919 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22920 		return (EFAULT);
22921 	}
22922 #endif /* _MULTI_DATAMODEL */
22923 
22924 #elif defined(_SUNOS_VTOC_16)
22925 	mutex_exit(SD_MUTEX(un));
22926 
22927 #ifdef _MULTI_DATAMODEL
22928 	/*
22929 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22930 	 * 32-bit to maintain compatibility with existing on-disk
22931 	 * structures.  Thus, we need to convert the structure when copying
22932 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22933 	 * program.  If the target is a 32-bit program, then no conversion
22934 	 * is necessary.
22935 	 */
22936 	/* LINTED: logical expression always true: op "||" */
22937 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22938 	switch (ddi_model_convert_from(flag & FMODELS)) {
22939 	case DDI_MODEL_ILP32:
22940 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22941 		    sizeof (un->un_vtoc), flag)) {
22942 			return (EFAULT);
22943 		}
22944 		break;
22945 
22946 	case DDI_MODEL_NONE: {
22947 		struct vtoc user_vtoc;
22948 
22949 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22950 		if (ddi_copyout(&user_vtoc, (void *)arg,
22951 		    sizeof (struct vtoc), flag)) {
22952 			return (EFAULT);
22953 		}
22954 		break;
22955 	}
22956 	}
22957 #else /* ! _MULTI_DATAMODEL */
22958 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22959 	    flag)) {
22960 		return (EFAULT);
22961 	}
22962 #endif /* _MULTI_DATAMODEL */
22963 #else
22964 #error "No VTOC format defined."
22965 #endif
22966 
22967 	return (rval);
22968 }
22969 
22970 static int
22971 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22972 {
22973 	struct sd_lun	*un = NULL;
22974 	dk_efi_t	user_efi;
22975 	int		rval = 0;
22976 	void		*buffer;
22977 
22978 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22979 		return (ENXIO);
22980 
22981 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22982 		return (EFAULT);
22983 
22984 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22985 
22986 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22987 	    (user_efi.dki_length > un->un_max_xfer_size))
22988 		return (EINVAL);
22989 
22990 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22991 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22992 	    user_efi.dki_lba, SD_PATH_DIRECT);
22993 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22994 	    user_efi.dki_length, flag) != 0)
22995 		rval = EFAULT;
22996 
22997 	kmem_free(buffer, user_efi.dki_length);
22998 	return (rval);
22999 }
23000 
23001 /*
23002  *    Function: sd_build_user_vtoc
23003  *
23004  * Description: This routine populates a pass by reference variable with the
23005  *		current volume table of contents.
23006  *
23007  *   Arguments: un - driver soft state (unit) structure
23008  *		user_vtoc - pointer to vtoc structure to be populated
23009  */
23010 
23011 static void
23012 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23013 {
23014 	struct dk_map2		*lpart;
23015 	struct dk_map		*lmap;
23016 	struct partition	*vpart;
23017 	int			nblks;
23018 	int			i;
23019 
23020 	ASSERT(mutex_owned(SD_MUTEX(un)));
23021 
23022 	/*
23023 	 * Return vtoc structure fields in the provided VTOC area, addressed
23024 	 * by *vtoc.
23025 	 */
23026 	bzero(user_vtoc, sizeof (struct vtoc));
23027 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
23028 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
23029 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
23030 	user_vtoc->v_sanity	= VTOC_SANE;
23031 	user_vtoc->v_version	= un->un_vtoc.v_version;
23032 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
23033 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
23034 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
23035 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
23036 	    sizeof (un->un_vtoc.v_reserved));
23037 	/*
23038 	 * Convert partitioning information.
23039 	 *
23040 	 * Note the conversion from starting cylinder number
23041 	 * to starting sector number.
23042 	 */
23043 	lmap = un->un_map;
23044 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
23045 	vpart = user_vtoc->v_part;
23046 
23047 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23048 
23049 	for (i = 0; i < V_NUMPAR; i++) {
23050 		vpart->p_tag	= lpart->p_tag;
23051 		vpart->p_flag	= lpart->p_flag;
23052 		vpart->p_start	= lmap->dkl_cylno * nblks;
23053 		vpart->p_size	= lmap->dkl_nblk;
23054 		lmap++;
23055 		lpart++;
23056 		vpart++;
23057 
23058 		/* (4364927) */
23059 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
23060 	}
23061 
23062 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
23063 }
23064 
23065 static int
23066 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
23067 {
23068 	struct sd_lun		*un = NULL;
23069 	struct partition64	p64;
23070 	int			rval = 0;
23071 	uint_t			nparts;
23072 	efi_gpe_t		*partitions;
23073 	efi_gpt_t		*buffer;
23074 	diskaddr_t		gpe_lba;
23075 
23076 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23077 		return (ENXIO);
23078 	}
23079 
23080 	if (ddi_copyin((const void *)arg, &p64,
23081 	    sizeof (struct partition64), flag)) {
23082 		return (EFAULT);
23083 	}
23084 
23085 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
23086 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
23087 		1, SD_PATH_DIRECT);
23088 	if (rval != 0)
23089 		goto done_error;
23090 
23091 	sd_swap_efi_gpt(buffer);
23092 
23093 	if ((rval = sd_validate_efi(buffer)) != 0)
23094 		goto done_error;
23095 
23096 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
23097 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
23098 	if (p64.p_partno > nparts) {
23099 		/* couldn't find it */
23100 		rval = ESRCH;
23101 		goto done_error;
23102 	}
23103 	/*
23104 	 * if we're dealing with a partition that's out of the normal
23105 	 * 16K block, adjust accordingly
23106 	 */
23107 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
23108 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
23109 			gpe_lba, SD_PATH_DIRECT);
23110 	if (rval) {
23111 		goto done_error;
23112 	}
23113 	partitions = (efi_gpe_t *)buffer;
23114 
23115 	sd_swap_efi_gpe(nparts, partitions);
23116 
23117 	partitions += p64.p_partno;
23118 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
23119 	    sizeof (struct uuid));
23120 	p64.p_start = partitions->efi_gpe_StartingLBA;
23121 	p64.p_size = partitions->efi_gpe_EndingLBA -
23122 			p64.p_start + 1;
23123 
23124 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
23125 		rval = EFAULT;
23126 
23127 done_error:
23128 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
23129 	return (rval);
23130 }
23131 
23132 
23133 /*
23134  *    Function: sd_dkio_set_vtoc
23135  *
23136  * Description: This routine is the driver entry point for handling user
23137  *		requests to set the current volume table of contents
23138  *		(DKIOCSVTOC).
23139  *
23140  *   Arguments: dev  - the device number
23141  *		arg  - pointer to user provided vtoc structure used to set the
23142  *			current vtoc.
23143  *		flag - this argument is a pass through to ddi_copyxxx()
23144  *		       directly from the mode argument of ioctl().
23145  *
23146  * Return Code: 0
23147  *		EFAULT
23148  *		ENXIO
23149  *		EINVAL
23150  *		ENOTSUP
23151  */
23152 
23153 static int
23154 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
23155 {
23156 	struct sd_lun	*un = NULL;
23157 	struct vtoc	user_vtoc;
23158 	int		rval = 0;
23159 
23160 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23161 		return (ENXIO);
23162 	}
23163 
23164 #if defined(__i386) || defined(__amd64)
23165 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
23166 		return (EINVAL);
23167 	}
23168 #endif
23169 
23170 #ifdef _MULTI_DATAMODEL
23171 	switch (ddi_model_convert_from(flag & FMODELS)) {
23172 	case DDI_MODEL_ILP32: {
23173 		struct vtoc32 user_vtoc32;
23174 
23175 		if (ddi_copyin((const void *)arg, &user_vtoc32,
23176 		    sizeof (struct vtoc32), flag)) {
23177 			return (EFAULT);
23178 		}
23179 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23180 		break;
23181 	}
23182 
23183 	case DDI_MODEL_NONE:
23184 		if (ddi_copyin((const void *)arg, &user_vtoc,
23185 		    sizeof (struct vtoc), flag)) {
23186 			return (EFAULT);
23187 		}
23188 		break;
23189 	}
23190 #else /* ! _MULTI_DATAMODEL */
23191 	if (ddi_copyin((const void *)arg, &user_vtoc,
23192 	    sizeof (struct vtoc), flag)) {
23193 		return (EFAULT);
23194 	}
23195 #endif /* _MULTI_DATAMODEL */
23196 
23197 	mutex_enter(SD_MUTEX(un));
23198 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23199 		mutex_exit(SD_MUTEX(un));
23200 		return (ENOTSUP);
23201 	}
23202 	if (un->un_g.dkg_ncyl == 0) {
23203 		mutex_exit(SD_MUTEX(un));
23204 		return (EINVAL);
23205 	}
23206 
23207 	mutex_exit(SD_MUTEX(un));
23208 	sd_clear_efi(un);
23209 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23210 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23211 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23212 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23213 	    un->un_node_type, NULL);
23214 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23215 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23216 	    un->un_node_type, NULL);
23217 	mutex_enter(SD_MUTEX(un));
23218 
23219 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23220 		if ((rval = sd_write_label(dev)) == 0) {
23221 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23222 			    != 0) {
23223 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23224 				    "sd_dkio_set_vtoc: "
23225 				    "Failed validate geometry\n");
23226 			}
23227 		}
23228 	}
23229 
23230 	/*
23231 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23232 	 * devid anyway, what can it hurt? Also preserve the device id by
23233 	 * writing to the disk acyl for the case where a devid has been
23234 	 * fabricated.
23235 	 */
23236 	if (un->un_f_devid_supported &&
23237 	    (un->un_f_opt_fab_devid == TRUE)) {
23238 		if (un->un_devid == NULL) {
23239 			sd_register_devid(un, SD_DEVINFO(un),
23240 			    SD_TARGET_IS_UNRESERVED);
23241 		} else {
23242 			/*
23243 			 * The device id for this disk has been
23244 			 * fabricated. Fabricated device id's are
23245 			 * managed by storing them in the last 2
23246 			 * available sectors on the drive. The device
23247 			 * id must be preserved by writing it back out
23248 			 * to this location.
23249 			 */
23250 			if (sd_write_deviceid(un) != 0) {
23251 				ddi_devid_free(un->un_devid);
23252 				un->un_devid = NULL;
23253 			}
23254 		}
23255 	}
23256 	mutex_exit(SD_MUTEX(un));
23257 	return (rval);
23258 }
23259 
23260 
23261 /*
23262  *    Function: sd_build_label_vtoc
23263  *
23264  * Description: This routine updates the driver soft state current volume table
23265  *		of contents based on a user specified vtoc.
23266  *
23267  *   Arguments: un - driver soft state (unit) structure
23268  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23269  *			    to update the driver soft state.
23270  *
23271  * Return Code: 0
23272  *		EINVAL
23273  */
23274 
23275 static int
23276 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23277 {
23278 	struct dk_map		*lmap;
23279 	struct partition	*vpart;
23280 	int			nblks;
23281 #if defined(_SUNOS_VTOC_8)
23282 	int			ncyl;
23283 	struct dk_map2		*lpart;
23284 #endif	/* defined(_SUNOS_VTOC_8) */
23285 	int			i;
23286 
23287 	ASSERT(mutex_owned(SD_MUTEX(un)));
23288 
23289 	/* Sanity-check the vtoc */
23290 	if (user_vtoc->v_sanity != VTOC_SANE ||
23291 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23292 	    user_vtoc->v_nparts != V_NUMPAR) {
23293 		return (EINVAL);
23294 	}
23295 
23296 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23297 	if (nblks == 0) {
23298 		return (EINVAL);
23299 	}
23300 
23301 #if defined(_SUNOS_VTOC_8)
23302 	vpart = user_vtoc->v_part;
23303 	for (i = 0; i < V_NUMPAR; i++) {
23304 		if ((vpart->p_start % nblks) != 0) {
23305 			return (EINVAL);
23306 		}
23307 		ncyl = vpart->p_start / nblks;
23308 		ncyl += vpart->p_size / nblks;
23309 		if ((vpart->p_size % nblks) != 0) {
23310 			ncyl++;
23311 		}
23312 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23313 			return (EINVAL);
23314 		}
23315 		vpart++;
23316 	}
23317 #endif	/* defined(_SUNOS_VTOC_8) */
23318 
23319 	/* Put appropriate vtoc structure fields into the disk label */
23320 #if defined(_SUNOS_VTOC_16)
23321 	/*
23322 	 * The vtoc is always a 32bit data structure to maintain the
23323 	 * on-disk format. Convert "in place" instead of bcopying it.
23324 	 */
23325 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23326 
23327 	/*
23328 	 * in the 16-slice vtoc, starting sectors are expressed in
23329 	 * numbers *relative* to the start of the Solaris fdisk partition.
23330 	 */
23331 	lmap = un->un_map;
23332 	vpart = user_vtoc->v_part;
23333 
23334 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23335 		lmap->dkl_cylno = vpart->p_start / nblks;
23336 		lmap->dkl_nblk = vpart->p_size;
23337 	}
23338 
23339 #elif defined(_SUNOS_VTOC_8)
23340 
23341 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23342 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23343 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23344 
23345 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23346 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23347 
23348 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23349 
23350 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23351 
23352 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23353 	    sizeof (un->un_vtoc.v_reserved));
23354 
23355 	/*
23356 	 * Note the conversion from starting sector number
23357 	 * to starting cylinder number.
23358 	 * Return error if division results in a remainder.
23359 	 */
23360 	lmap = un->un_map;
23361 	lpart = un->un_vtoc.v_part;
23362 	vpart = user_vtoc->v_part;
23363 
23364 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23365 		lpart->p_tag  = vpart->p_tag;
23366 		lpart->p_flag = vpart->p_flag;
23367 		lmap->dkl_cylno = vpart->p_start / nblks;
23368 		lmap->dkl_nblk = vpart->p_size;
23369 
23370 		lmap++;
23371 		lpart++;
23372 		vpart++;
23373 
23374 		/* (4387723) */
23375 #ifdef _LP64
23376 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23377 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23378 		} else {
23379 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23380 		}
23381 #else
23382 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23383 #endif
23384 	}
23385 
23386 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23387 #else
23388 #error "No VTOC format defined."
23389 #endif
23390 	return (0);
23391 }
23392 
23393 /*
23394  *    Function: sd_clear_efi
23395  *
23396  * Description: This routine clears all EFI labels.
23397  *
23398  *   Arguments: un - driver soft state (unit) structure
23399  *
23400  * Return Code: void
23401  */
23402 
23403 static void
23404 sd_clear_efi(struct sd_lun *un)
23405 {
23406 	efi_gpt_t	*gpt;
23407 	uint_t		lbasize;
23408 	uint64_t	cap;
23409 	int rval;
23410 
23411 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23412 
23413 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23414 
23415 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23416 		goto done;
23417 	}
23418 
23419 	sd_swap_efi_gpt(gpt);
23420 	rval = sd_validate_efi(gpt);
23421 	if (rval == 0) {
23422 		/* clear primary */
23423 		bzero(gpt, sizeof (efi_gpt_t));
23424 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23425 			SD_PATH_DIRECT))) {
23426 			SD_INFO(SD_LOG_IO_PARTITION, un,
23427 				"sd_clear_efi: clear primary label failed\n");
23428 		}
23429 	}
23430 	/* the backup */
23431 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23432 	    SD_PATH_DIRECT);
23433 	if (rval) {
23434 		goto done;
23435 	}
23436 	/*
23437 	 * The MMC standard allows READ CAPACITY to be
23438 	 * inaccurate by a bounded amount (in the interest of
23439 	 * response latency).  As a result, failed READs are
23440 	 * commonplace (due to the reading of metadata and not
23441 	 * data). Depending on the per-Vendor/drive Sense data,
23442 	 * the failed READ can cause many (unnecessary) retries.
23443 	 */
23444 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23445 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23446 		SD_PATH_DIRECT)) != 0) {
23447 		goto done;
23448 	}
23449 	sd_swap_efi_gpt(gpt);
23450 	rval = sd_validate_efi(gpt);
23451 	if (rval == 0) {
23452 		/* clear backup */
23453 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23454 			cap-1);
23455 		bzero(gpt, sizeof (efi_gpt_t));
23456 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23457 		    cap-1, SD_PATH_DIRECT))) {
23458 			SD_INFO(SD_LOG_IO_PARTITION, un,
23459 				"sd_clear_efi: clear backup label failed\n");
23460 		}
23461 	} else {
23462 		/*
23463 		 * Refer to comments related to off-by-1 at the
23464 		 * header of this file
23465 		 */
23466 		if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23467 		    cap - 2, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23468 			SD_PATH_DIRECT)) != 0) {
23469 			goto done;
23470 		}
23471 		sd_swap_efi_gpt(gpt);
23472 		rval = sd_validate_efi(gpt);
23473 		if (rval == 0) {
23474 			/* clear legacy backup EFI label */
23475 			SD_TRACE(SD_LOG_IOCTL, un,
23476 			    "sd_clear_efi clear backup@%lu\n", cap-2);
23477 			bzero(gpt, sizeof (efi_gpt_t));
23478 			if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23479 			    cap-2, SD_PATH_DIRECT))) {
23480 				SD_INFO(SD_LOG_IO_PARTITION,
23481 				    un, "sd_clear_efi: "
23482 				    " clear legacy backup label failed\n");
23483 			}
23484 		}
23485 	}
23486 
23487 done:
23488 	kmem_free(gpt, sizeof (efi_gpt_t));
23489 }
23490 
23491 /*
23492  *    Function: sd_set_vtoc
23493  *
23494  * Description: This routine writes data to the appropriate positions
23495  *
23496  *   Arguments: un - driver soft state (unit) structure
23497  *              dkl  - the data to be written
23498  *
23499  * Return: void
23500  */
23501 
23502 static int
23503 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23504 {
23505 	void			*shadow_buf;
23506 	uint_t			label_addr;
23507 	int			sec;
23508 	int			blk;
23509 	int			head;
23510 	int			cyl;
23511 	int			rval;
23512 
23513 #if defined(__i386) || defined(__amd64)
23514 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23515 #else
23516 	/* Write the primary label at block 0 of the solaris partition. */
23517 	label_addr = 0;
23518 #endif
23519 
23520 	if (NOT_DEVBSIZE(un)) {
23521 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23522 		/*
23523 		 * Read the target's first block.
23524 		 */
23525 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23526 		    un->un_tgt_blocksize, label_addr,
23527 		    SD_PATH_STANDARD)) != 0) {
23528 			goto exit;
23529 		}
23530 		/*
23531 		 * Copy the contents of the label into the shadow buffer
23532 		 * which is of the size of target block size.
23533 		 */
23534 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23535 	}
23536 
23537 	/* Write the primary label */
23538 	if (NOT_DEVBSIZE(un)) {
23539 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23540 		    label_addr, SD_PATH_STANDARD);
23541 	} else {
23542 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23543 		    label_addr, SD_PATH_STANDARD);
23544 	}
23545 	if (rval != 0) {
23546 		return (rval);
23547 	}
23548 
23549 	/*
23550 	 * Calculate where the backup labels go.  They are always on
23551 	 * the last alternate cylinder, but some older drives put them
23552 	 * on head 2 instead of the last head.	They are always on the
23553 	 * first 5 odd sectors of the appropriate track.
23554 	 *
23555 	 * We have no choice at this point, but to believe that the
23556 	 * disk label is valid.	 Use the geometry of the disk
23557 	 * as described in the label.
23558 	 */
23559 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23560 	head = dkl->dkl_nhead - 1;
23561 
23562 	/*
23563 	 * Write and verify the backup labels. Make sure we don't try to
23564 	 * write past the last cylinder.
23565 	 */
23566 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23567 		blk = (daddr_t)(
23568 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23569 		    (head * dkl->dkl_nsect) + sec);
23570 #if defined(__i386) || defined(__amd64)
23571 		blk += un->un_solaris_offset;
23572 #endif
23573 		if (NOT_DEVBSIZE(un)) {
23574 			uint64_t	tblk;
23575 			/*
23576 			 * Need to read the block first for read modify write.
23577 			 */
23578 			tblk = (uint64_t)blk;
23579 			blk = (int)((tblk * un->un_sys_blocksize) /
23580 			    un->un_tgt_blocksize);
23581 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23582 			    un->un_tgt_blocksize, blk,
23583 			    SD_PATH_STANDARD)) != 0) {
23584 				goto exit;
23585 			}
23586 			/*
23587 			 * Modify the shadow buffer with the label.
23588 			 */
23589 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23590 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23591 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23592 		} else {
23593 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23594 			    blk, SD_PATH_STANDARD);
23595 			SD_INFO(SD_LOG_IO_PARTITION, un,
23596 			"sd_set_vtoc: wrote backup label %d\n", blk);
23597 		}
23598 		if (rval != 0) {
23599 			goto exit;
23600 		}
23601 	}
23602 exit:
23603 	if (NOT_DEVBSIZE(un)) {
23604 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23605 	}
23606 	return (rval);
23607 }
23608 
23609 /*
23610  *    Function: sd_clear_vtoc
23611  *
23612  * Description: This routine clears out the VTOC labels.
23613  *
23614  *   Arguments: un - driver soft state (unit) structure
23615  *
23616  * Return: void
23617  */
23618 
23619 static void
23620 sd_clear_vtoc(struct sd_lun *un)
23621 {
23622 	struct dk_label		*dkl;
23623 
23624 	mutex_exit(SD_MUTEX(un));
23625 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23626 	mutex_enter(SD_MUTEX(un));
23627 	/*
23628 	 * sd_set_vtoc uses these fields in order to figure out
23629 	 * where to overwrite the backup labels
23630 	 */
23631 	dkl->dkl_apc    = un->un_g.dkg_apc;
23632 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23633 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23634 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23635 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23636 	mutex_exit(SD_MUTEX(un));
23637 	(void) sd_set_vtoc(un, dkl);
23638 	kmem_free(dkl, sizeof (struct dk_label));
23639 
23640 	mutex_enter(SD_MUTEX(un));
23641 }
23642 
23643 /*
23644  *    Function: sd_write_label
23645  *
23646  * Description: This routine will validate and write the driver soft state vtoc
23647  *		contents to the device.
23648  *
23649  *   Arguments: dev - the device number
23650  *
23651  * Return Code: the code returned by sd_send_scsi_cmd()
23652  *		0
23653  *		EINVAL
23654  *		ENXIO
23655  *		ENOMEM
23656  */
23657 
23658 static int
23659 sd_write_label(dev_t dev)
23660 {
23661 	struct sd_lun		*un;
23662 	struct dk_label		*dkl;
23663 	short			sum;
23664 	short			*sp;
23665 	int			i;
23666 	int			rval;
23667 
23668 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23669 	    (un->un_state == SD_STATE_OFFLINE)) {
23670 		return (ENXIO);
23671 	}
23672 	ASSERT(mutex_owned(SD_MUTEX(un)));
23673 	mutex_exit(SD_MUTEX(un));
23674 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23675 	mutex_enter(SD_MUTEX(un));
23676 
23677 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23678 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23679 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23680 	dkl->dkl_apc	= un->un_g.dkg_apc;
23681 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23682 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23683 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23684 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23685 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23686 
23687 #if defined(_SUNOS_VTOC_8)
23688 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23689 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23690 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23691 	for (i = 0; i < NDKMAP; i++) {
23692 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23693 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23694 	}
23695 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23696 #elif defined(_SUNOS_VTOC_16)
23697 	dkl->dkl_skew	= un->un_dkg_skew;
23698 #else
23699 #error "No VTOC format defined."
23700 #endif
23701 
23702 	dkl->dkl_magic			= DKL_MAGIC;
23703 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23704 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23705 
23706 	/* Construct checksum for the new disk label */
23707 	sum = 0;
23708 	sp = (short *)dkl;
23709 	i = sizeof (struct dk_label) / sizeof (short);
23710 	while (i--) {
23711 		sum ^= *sp++;
23712 	}
23713 	dkl->dkl_cksum = sum;
23714 
23715 	mutex_exit(SD_MUTEX(un));
23716 
23717 	rval = sd_set_vtoc(un, dkl);
23718 exit:
23719 	kmem_free(dkl, sizeof (struct dk_label));
23720 	mutex_enter(SD_MUTEX(un));
23721 	return (rval);
23722 }
23723 
23724 static int
23725 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23726 {
23727 	struct sd_lun	*un = NULL;
23728 	dk_efi_t	user_efi;
23729 	int		rval = 0;
23730 	void		*buffer;
23731 
23732 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23733 		return (ENXIO);
23734 
23735 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23736 		return (EFAULT);
23737 
23738 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23739 
23740 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23741 	    (user_efi.dki_length > un->un_max_xfer_size))
23742 		return (EINVAL);
23743 
23744 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23745 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23746 		rval = EFAULT;
23747 	} else {
23748 		/*
23749 		 * let's clear the vtoc labels and clear the softstate
23750 		 * vtoc.
23751 		 */
23752 		mutex_enter(SD_MUTEX(un));
23753 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23754 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23755 				"sd_dkio_set_efi: CLEAR VTOC\n");
23756 			sd_clear_vtoc(un);
23757 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23758 			mutex_exit(SD_MUTEX(un));
23759 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23760 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23761 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23762 			    S_IFBLK,
23763 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23764 			    un->un_node_type, NULL);
23765 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23766 			    S_IFCHR,
23767 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23768 			    un->un_node_type, NULL);
23769 		} else
23770 			mutex_exit(SD_MUTEX(un));
23771 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23772 		    user_efi.dki_lba, SD_PATH_DIRECT);
23773 		if (rval == 0) {
23774 			mutex_enter(SD_MUTEX(un));
23775 			un->un_f_geometry_is_valid = FALSE;
23776 			mutex_exit(SD_MUTEX(un));
23777 		}
23778 	}
23779 	kmem_free(buffer, user_efi.dki_length);
23780 	return (rval);
23781 }
23782 
23783 /*
23784  *    Function: sd_dkio_get_mboot
23785  *
23786  * Description: This routine is the driver entry point for handling user
23787  *		requests to get the current device mboot (DKIOCGMBOOT)
23788  *
23789  *   Arguments: dev  - the device number
23790  *		arg  - pointer to user provided mboot structure specifying
23791  *			the current mboot.
23792  *		flag - this argument is a pass through to ddi_copyxxx()
23793  *		       directly from the mode argument of ioctl().
23794  *
23795  * Return Code: 0
23796  *		EINVAL
23797  *		EFAULT
23798  *		ENXIO
23799  */
23800 
23801 static int
23802 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23803 {
23804 	struct sd_lun	*un;
23805 	struct mboot	*mboot;
23806 	int		rval;
23807 	size_t		buffer_size;
23808 
23809 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23810 	    (un->un_state == SD_STATE_OFFLINE)) {
23811 		return (ENXIO);
23812 	}
23813 
23814 	if (!un->un_f_mboot_supported || arg == NULL) {
23815 		return (EINVAL);
23816 	}
23817 
23818 	/*
23819 	 * Read the mboot block, located at absolute block 0 on the target.
23820 	 */
23821 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23822 
23823 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23824 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23825 
23826 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23827 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23828 	    SD_PATH_STANDARD)) == 0) {
23829 		if (ddi_copyout(mboot, (void *)arg,
23830 		    sizeof (struct mboot), flag) != 0) {
23831 			rval = EFAULT;
23832 		}
23833 	}
23834 	kmem_free(mboot, buffer_size);
23835 	return (rval);
23836 }
23837 
23838 
23839 /*
23840  *    Function: sd_dkio_set_mboot
23841  *
23842  * Description: This routine is the driver entry point for handling user
23843  *		requests to validate and set the device master boot
23844  *		(DKIOCSMBOOT).
23845  *
23846  *   Arguments: dev  - the device number
23847  *		arg  - pointer to user provided mboot structure used to set the
23848  *			master boot.
23849  *		flag - this argument is a pass through to ddi_copyxxx()
23850  *		       directly from the mode argument of ioctl().
23851  *
23852  * Return Code: 0
23853  *		EINVAL
23854  *		EFAULT
23855  *		ENXIO
23856  */
23857 
23858 static int
23859 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23860 {
23861 	struct sd_lun	*un = NULL;
23862 	struct mboot	*mboot = NULL;
23863 	int		rval;
23864 	ushort_t	magic;
23865 
23866 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23867 		return (ENXIO);
23868 	}
23869 
23870 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23871 
23872 	if (!un->un_f_mboot_supported) {
23873 		return (EINVAL);
23874 	}
23875 
23876 	if (arg == NULL) {
23877 		return (EINVAL);
23878 	}
23879 
23880 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23881 
23882 	if (ddi_copyin((const void *)arg, mboot,
23883 	    sizeof (struct mboot), flag) != 0) {
23884 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23885 		return (EFAULT);
23886 	}
23887 
23888 	/* Is this really a master boot record? */
23889 	magic = LE_16(mboot->signature);
23890 	if (magic != MBB_MAGIC) {
23891 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23892 		return (EINVAL);
23893 	}
23894 
23895 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23896 	    SD_PATH_STANDARD);
23897 
23898 	mutex_enter(SD_MUTEX(un));
23899 #if defined(__i386) || defined(__amd64)
23900 	if (rval == 0) {
23901 		/*
23902 		 * mboot has been written successfully.
23903 		 * update the fdisk and vtoc tables in memory
23904 		 */
23905 		rval = sd_update_fdisk_and_vtoc(un);
23906 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23907 			mutex_exit(SD_MUTEX(un));
23908 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23909 			return (rval);
23910 		}
23911 	}
23912 
23913 	/*
23914 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23915 	 * Also preserve the device id by writing to the disk acyl for the case
23916 	 * where a devid has been fabricated.
23917 	 */
23918 	if (un->un_f_devid_supported && un->un_f_opt_fab_devid) {
23919 		if (un->un_devid == NULL) {
23920 			sd_register_devid(un, SD_DEVINFO(un),
23921 			    SD_TARGET_IS_UNRESERVED);
23922 		} else {
23923 			/*
23924 			 * The device id for this disk has been
23925 			 * fabricated. Fabricated device id's are
23926 			 * managed by storing them in the last 2
23927 			 * available sectors on the drive. The device
23928 			 * id must be preserved by writing it back out
23929 			 * to this location.
23930 			 */
23931 			if (sd_write_deviceid(un) != 0) {
23932 				ddi_devid_free(un->un_devid);
23933 				un->un_devid = NULL;
23934 			}
23935 		}
23936 	}
23937 
23938 #ifdef __lock_lint
23939 	sd_setup_default_geometry(un);
23940 #endif
23941 
23942 #else
23943 	if (rval == 0) {
23944 		/*
23945 		 * mboot has been written successfully.
23946 		 * set up the default geometry and VTOC
23947 		 */
23948 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23949 			sd_setup_default_geometry(un);
23950 	}
23951 #endif
23952 	mutex_exit(SD_MUTEX(un));
23953 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23954 	return (rval);
23955 }
23956 
23957 
23958 /*
23959  *    Function: sd_setup_default_geometry
23960  *
23961  * Description: This local utility routine sets the default geometry as part of
23962  *		setting the device mboot.
23963  *
23964  *   Arguments: un - driver soft state (unit) structure
23965  *
23966  * Note: This may be redundant with sd_build_default_label.
23967  */
23968 
23969 static void
23970 sd_setup_default_geometry(struct sd_lun *un)
23971 {
23972 	/* zero out the soft state geometry and partition table. */
23973 	bzero(&un->un_g, sizeof (struct dk_geom));
23974 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23975 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23976 	un->un_asciilabel[0] = '\0';
23977 
23978 	/*
23979 	 * For the rpm, we use the minimum for the disk.
23980 	 * For the head, cyl and number of sector per track,
23981 	 * if the capacity <= 1GB, head = 64, sect = 32.
23982 	 * else head = 255, sect 63
23983 	 * Note: the capacity should be equal to C*H*S values.
23984 	 * This will cause some truncation of size due to
23985 	 * round off errors. For CD-ROMs, this truncation can
23986 	 * have adverse side effects, so returning ncyl and
23987 	 * nhead as 1. The nsect will overflow for most of
23988 	 * CD-ROMs as nsect is of type ushort.
23989 	 */
23990 	if (ISCD(un)) {
23991 		un->un_g.dkg_ncyl = 1;
23992 		un->un_g.dkg_nhead = 1;
23993 		un->un_g.dkg_nsect = un->un_blockcount;
23994 	} else {
23995 		if (un->un_blockcount <= 0x1000) {
23996 			/* Needed for unlabeled SCSI floppies. */
23997 			un->un_g.dkg_nhead = 2;
23998 			un->un_g.dkg_ncyl = 80;
23999 			un->un_g.dkg_pcyl = 80;
24000 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
24001 		} else if (un->un_blockcount <= 0x200000) {
24002 			un->un_g.dkg_nhead = 64;
24003 			un->un_g.dkg_nsect = 32;
24004 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
24005 		} else {
24006 			un->un_g.dkg_nhead = 255;
24007 			un->un_g.dkg_nsect = 63;
24008 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
24009 		}
24010 		un->un_blockcount = un->un_g.dkg_ncyl *
24011 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
24012 	}
24013 	un->un_g.dkg_acyl = 0;
24014 	un->un_g.dkg_bcyl = 0;
24015 	un->un_g.dkg_intrlv = 1;
24016 	un->un_g.dkg_rpm = 200;
24017 	un->un_g.dkg_read_reinstruct = 0;
24018 	un->un_g.dkg_write_reinstruct = 0;
24019 	if (un->un_g.dkg_pcyl == 0) {
24020 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
24021 	}
24022 
24023 	un->un_map['a'-'a'].dkl_cylno = 0;
24024 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
24025 	un->un_map['c'-'a'].dkl_cylno = 0;
24026 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
24027 	un->un_f_geometry_is_valid = FALSE;
24028 }
24029 
24030 
24031 #if defined(__i386) || defined(__amd64)
24032 /*
24033  *    Function: sd_update_fdisk_and_vtoc
24034  *
24035  * Description: This local utility routine updates the device fdisk and vtoc
24036  *		as part of setting the device mboot.
24037  *
24038  *   Arguments: un - driver soft state (unit) structure
24039  *
24040  * Return Code: 0 for success or errno-type return code.
24041  *
24042  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
24043  *		these did exist seperately in x86 sd.c!!!
24044  */
24045 
24046 static int
24047 sd_update_fdisk_and_vtoc(struct sd_lun *un)
24048 {
24049 	static char	labelstring[128];
24050 	static char	buf[256];
24051 	char		*label = 0;
24052 	int		count;
24053 	int		label_rc = 0;
24054 	int		gvalid = un->un_f_geometry_is_valid;
24055 	int		fdisk_rval;
24056 	int		lbasize;
24057 	int		capacity;
24058 
24059 	ASSERT(mutex_owned(SD_MUTEX(un)));
24060 
24061 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
24062 		return (EINVAL);
24063 	}
24064 
24065 	if (un->un_f_blockcount_is_valid == FALSE) {
24066 		return (EINVAL);
24067 	}
24068 
24069 #if defined(_SUNOS_VTOC_16)
24070 	/*
24071 	 * Set up the "whole disk" fdisk partition; this should always
24072 	 * exist, regardless of whether the disk contains an fdisk table
24073 	 * or vtoc.
24074 	 */
24075 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
24076 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
24077 #endif	/* defined(_SUNOS_VTOC_16) */
24078 
24079 	/*
24080 	 * copy the lbasize and capacity so that if they're
24081 	 * reset while we're not holding the SD_MUTEX(un), we will
24082 	 * continue to use valid values after the SD_MUTEX(un) is
24083 	 * reacquired.
24084 	 */
24085 	lbasize  = un->un_tgt_blocksize;
24086 	capacity = un->un_blockcount;
24087 
24088 	/*
24089 	 * refresh the logical and physical geometry caches.
24090 	 * (data from mode sense format/rigid disk geometry pages,
24091 	 * and scsi_ifgetcap("geometry").
24092 	 */
24093 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
24094 
24095 	/*
24096 	 * Only DIRECT ACCESS devices will have Sun labels.
24097 	 * CD's supposedly have a Sun label, too
24098 	 */
24099 	if (un->un_f_vtoc_label_supported) {
24100 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
24101 		    SD_PATH_DIRECT);
24102 		if (fdisk_rval == SD_CMD_FAILURE) {
24103 			ASSERT(mutex_owned(SD_MUTEX(un)));
24104 			return (EIO);
24105 		}
24106 
24107 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
24108 			ASSERT(mutex_owned(SD_MUTEX(un)));
24109 			return (EACCES);
24110 		}
24111 
24112 		if (un->un_solaris_size <= DK_LABEL_LOC) {
24113 			/*
24114 			 * Found fdisk table but no Solaris partition entry,
24115 			 * so don't call sd_uselabel() and don't create
24116 			 * a default label.
24117 			 */
24118 			label_rc = 0;
24119 			un->un_f_geometry_is_valid = TRUE;
24120 			goto no_solaris_partition;
24121 		}
24122 
24123 #if defined(_SUNOS_VTOC_8)
24124 		label = (char *)un->un_asciilabel;
24125 #elif defined(_SUNOS_VTOC_16)
24126 		label = (char *)un->un_vtoc.v_asciilabel;
24127 #else
24128 #error "No VTOC format defined."
24129 #endif
24130 	} else if (capacity < 0) {
24131 		ASSERT(mutex_owned(SD_MUTEX(un)));
24132 		return (EINVAL);
24133 	}
24134 
24135 	/*
24136 	 * For Removable media We reach here if we have found a
24137 	 * SOLARIS PARTITION.
24138 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
24139 	 * PARTITION has changed from the previous one, hence we will setup a
24140 	 * default VTOC in this case.
24141 	 */
24142 	if (un->un_f_geometry_is_valid == FALSE) {
24143 		sd_build_default_label(un);
24144 		label_rc = 0;
24145 	}
24146 
24147 no_solaris_partition:
24148 	if ((!un->un_f_has_removable_media ||
24149 	    (un->un_f_has_removable_media &&
24150 	    un->un_mediastate == DKIO_EJECTED)) &&
24151 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
24152 		/*
24153 		 * Print out a message indicating who and what we are.
24154 		 * We do this only when we happen to really validate the
24155 		 * geometry. We may call sd_validate_geometry() at other
24156 		 * times, ioctl()'s like Get VTOC in which case we
24157 		 * don't want to print the label.
24158 		 * If the geometry is valid, print the label string,
24159 		 * else print vendor and product info, if available
24160 		 */
24161 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
24162 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
24163 		} else {
24164 			mutex_enter(&sd_label_mutex);
24165 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
24166 			    labelstring);
24167 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
24168 			    &labelstring[64]);
24169 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
24170 			    labelstring, &labelstring[64]);
24171 			if (un->un_f_blockcount_is_valid == TRUE) {
24172 				(void) sprintf(&buf[strlen(buf)],
24173 				    ", %" PRIu64 " %u byte blocks\n",
24174 				    un->un_blockcount,
24175 				    un->un_tgt_blocksize);
24176 			} else {
24177 				(void) sprintf(&buf[strlen(buf)],
24178 				    ", (unknown capacity)\n");
24179 			}
24180 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
24181 			mutex_exit(&sd_label_mutex);
24182 		}
24183 	}
24184 
24185 #if defined(_SUNOS_VTOC_16)
24186 	/*
24187 	 * If we have valid geometry, set up the remaining fdisk partitions.
24188 	 * Note that dkl_cylno is not used for the fdisk map entries, so
24189 	 * we set it to an entirely bogus value.
24190 	 */
24191 	for (count = 0; count < FD_NUMPART; count++) {
24192 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
24193 		un->un_map[FDISK_P1 + count].dkl_nblk =
24194 		    un->un_fmap[count].fmap_nblk;
24195 		un->un_offset[FDISK_P1 + count] =
24196 		    un->un_fmap[count].fmap_start;
24197 	}
24198 #endif
24199 
24200 	for (count = 0; count < NDKMAP; count++) {
24201 #if defined(_SUNOS_VTOC_8)
24202 		struct dk_map *lp  = &un->un_map[count];
24203 		un->un_offset[count] =
24204 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24205 #elif defined(_SUNOS_VTOC_16)
24206 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24207 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24208 #else
24209 #error "No VTOC format defined."
24210 #endif
24211 	}
24212 
24213 	ASSERT(mutex_owned(SD_MUTEX(un)));
24214 	return (label_rc);
24215 }
24216 #endif
24217 
24218 
24219 /*
24220  *    Function: sd_check_media
24221  *
24222  * Description: This utility routine implements the functionality for the
24223  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24224  *		driver state changes from that specified by the user
24225  *		(inserted or ejected). For example, if the user specifies
24226  *		DKIO_EJECTED and the current media state is inserted this
24227  *		routine will immediately return DKIO_INSERTED. However, if the
24228  *		current media state is not inserted the user thread will be
24229  *		blocked until the drive state changes. If DKIO_NONE is specified
24230  *		the user thread will block until a drive state change occurs.
24231  *
24232  *   Arguments: dev  - the device number
24233  *		state  - user pointer to a dkio_state, updated with the current
24234  *			drive state at return.
24235  *
24236  * Return Code: ENXIO
24237  *		EIO
24238  *		EAGAIN
24239  *		EINTR
24240  */
24241 
24242 static int
24243 sd_check_media(dev_t dev, enum dkio_state state)
24244 {
24245 	struct sd_lun		*un = NULL;
24246 	enum dkio_state		prev_state;
24247 	opaque_t		token = NULL;
24248 	int			rval = 0;
24249 
24250 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24251 		return (ENXIO);
24252 	}
24253 
24254 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24255 
24256 	mutex_enter(SD_MUTEX(un));
24257 
24258 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24259 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24260 
24261 	prev_state = un->un_mediastate;
24262 
24263 	/* is there anything to do? */
24264 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24265 		/*
24266 		 * submit the request to the scsi_watch service;
24267 		 * scsi_media_watch_cb() does the real work
24268 		 */
24269 		mutex_exit(SD_MUTEX(un));
24270 
24271 		/*
24272 		 * This change handles the case where a scsi watch request is
24273 		 * added to a device that is powered down. To accomplish this
24274 		 * we power up the device before adding the scsi watch request,
24275 		 * since the scsi watch sends a TUR directly to the device
24276 		 * which the device cannot handle if it is powered down.
24277 		 */
24278 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24279 			mutex_enter(SD_MUTEX(un));
24280 			goto done;
24281 		}
24282 
24283 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24284 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24285 		    (caddr_t)dev);
24286 
24287 		sd_pm_exit(un);
24288 
24289 		mutex_enter(SD_MUTEX(un));
24290 		if (token == NULL) {
24291 			rval = EAGAIN;
24292 			goto done;
24293 		}
24294 
24295 		/*
24296 		 * This is a special case IOCTL that doesn't return
24297 		 * until the media state changes. Routine sdpower
24298 		 * knows about and handles this so don't count it
24299 		 * as an active cmd in the driver, which would
24300 		 * keep the device busy to the pm framework.
24301 		 * If the count isn't decremented the device can't
24302 		 * be powered down.
24303 		 */
24304 		un->un_ncmds_in_driver--;
24305 		ASSERT(un->un_ncmds_in_driver >= 0);
24306 
24307 		/*
24308 		 * if a prior request had been made, this will be the same
24309 		 * token, as scsi_watch was designed that way.
24310 		 */
24311 		un->un_swr_token = token;
24312 		un->un_specified_mediastate = state;
24313 
24314 		/*
24315 		 * now wait for media change
24316 		 * we will not be signalled unless mediastate == state but it is
24317 		 * still better to test for this condition, since there is a
24318 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24319 		 */
24320 		SD_TRACE(SD_LOG_COMMON, un,
24321 		    "sd_check_media: waiting for media state change\n");
24322 		while (un->un_mediastate == state) {
24323 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24324 				SD_TRACE(SD_LOG_COMMON, un,
24325 				    "sd_check_media: waiting for media state "
24326 				    "was interrupted\n");
24327 				un->un_ncmds_in_driver++;
24328 				rval = EINTR;
24329 				goto done;
24330 			}
24331 			SD_TRACE(SD_LOG_COMMON, un,
24332 			    "sd_check_media: received signal, state=%x\n",
24333 			    un->un_mediastate);
24334 		}
24335 		/*
24336 		 * Inc the counter to indicate the device once again
24337 		 * has an active outstanding cmd.
24338 		 */
24339 		un->un_ncmds_in_driver++;
24340 	}
24341 
24342 	/* invalidate geometry */
24343 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24344 		sr_ejected(un);
24345 	}
24346 
24347 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24348 		uint64_t	capacity;
24349 		uint_t		lbasize;
24350 
24351 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24352 		mutex_exit(SD_MUTEX(un));
24353 		/*
24354 		 * Since the following routines use SD_PATH_DIRECT, we must
24355 		 * call PM directly before the upcoming disk accesses. This
24356 		 * may cause the disk to be power/spin up.
24357 		 */
24358 
24359 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24360 			rval = sd_send_scsi_READ_CAPACITY(un,
24361 			    &capacity,
24362 			    &lbasize, SD_PATH_DIRECT);
24363 			if (rval != 0) {
24364 				sd_pm_exit(un);
24365 				mutex_enter(SD_MUTEX(un));
24366 				goto done;
24367 			}
24368 		} else {
24369 			rval = EIO;
24370 			mutex_enter(SD_MUTEX(un));
24371 			goto done;
24372 		}
24373 		mutex_enter(SD_MUTEX(un));
24374 
24375 		sd_update_block_info(un, lbasize, capacity);
24376 
24377 		un->un_f_geometry_is_valid	= FALSE;
24378 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24379 
24380 		mutex_exit(SD_MUTEX(un));
24381 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24382 		    SD_PATH_DIRECT);
24383 		sd_pm_exit(un);
24384 
24385 		mutex_enter(SD_MUTEX(un));
24386 	}
24387 done:
24388 	un->un_f_watcht_stopped = FALSE;
24389 	if (un->un_swr_token) {
24390 		/*
24391 		 * Use of this local token and the mutex ensures that we avoid
24392 		 * some race conditions associated with terminating the
24393 		 * scsi watch.
24394 		 */
24395 		token = un->un_swr_token;
24396 		un->un_swr_token = (opaque_t)NULL;
24397 		mutex_exit(SD_MUTEX(un));
24398 		(void) scsi_watch_request_terminate(token,
24399 		    SCSI_WATCH_TERMINATE_WAIT);
24400 		mutex_enter(SD_MUTEX(un));
24401 	}
24402 
24403 	/*
24404 	 * Update the capacity kstat value, if no media previously
24405 	 * (capacity kstat is 0) and a media has been inserted
24406 	 * (un_f_blockcount_is_valid == TRUE)
24407 	 */
24408 	if (un->un_errstats) {
24409 		struct sd_errstats	*stp = NULL;
24410 
24411 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24412 		if ((stp->sd_capacity.value.ui64 == 0) &&
24413 		    (un->un_f_blockcount_is_valid == TRUE)) {
24414 			stp->sd_capacity.value.ui64 =
24415 			    (uint64_t)((uint64_t)un->un_blockcount *
24416 			    un->un_sys_blocksize);
24417 		}
24418 	}
24419 	mutex_exit(SD_MUTEX(un));
24420 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24421 	return (rval);
24422 }
24423 
24424 
24425 /*
24426  *    Function: sd_delayed_cv_broadcast
24427  *
24428  * Description: Delayed cv_broadcast to allow for target to recover from media
24429  *		insertion.
24430  *
24431  *   Arguments: arg - driver soft state (unit) structure
24432  */
24433 
24434 static void
24435 sd_delayed_cv_broadcast(void *arg)
24436 {
24437 	struct sd_lun *un = arg;
24438 
24439 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24440 
24441 	mutex_enter(SD_MUTEX(un));
24442 	un->un_dcvb_timeid = NULL;
24443 	cv_broadcast(&un->un_state_cv);
24444 	mutex_exit(SD_MUTEX(un));
24445 }
24446 
24447 
24448 /*
24449  *    Function: sd_media_watch_cb
24450  *
24451  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24452  *		routine processes the TUR sense data and updates the driver
24453  *		state if a transition has occurred. The user thread
24454  *		(sd_check_media) is then signalled.
24455  *
24456  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24457  *			among multiple watches that share this callback function
24458  *		resultp - scsi watch facility result packet containing scsi
24459  *			  packet, status byte and sense data
24460  *
24461  * Return Code: 0 for success, -1 for failure
24462  */
24463 
24464 static int
24465 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24466 {
24467 	struct sd_lun			*un;
24468 	struct scsi_status		*statusp = resultp->statusp;
24469 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
24470 	enum dkio_state			state = DKIO_NONE;
24471 	dev_t				dev = (dev_t)arg;
24472 	uchar_t				actual_sense_length;
24473 	uint8_t				skey, asc, ascq;
24474 
24475 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24476 		return (-1);
24477 	}
24478 	actual_sense_length = resultp->actual_sense_length;
24479 
24480 	mutex_enter(SD_MUTEX(un));
24481 	SD_TRACE(SD_LOG_COMMON, un,
24482 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24483 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24484 
24485 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24486 		un->un_mediastate = DKIO_DEV_GONE;
24487 		cv_broadcast(&un->un_state_cv);
24488 		mutex_exit(SD_MUTEX(un));
24489 
24490 		return (0);
24491 	}
24492 
24493 	/*
24494 	 * If there was a check condition then sensep points to valid sense data
24495 	 * If status was not a check condition but a reservation or busy status
24496 	 * then the new state is DKIO_NONE
24497 	 */
24498 	if (sensep != NULL) {
24499 		skey = scsi_sense_key(sensep);
24500 		asc = scsi_sense_asc(sensep);
24501 		ascq = scsi_sense_ascq(sensep);
24502 
24503 		SD_INFO(SD_LOG_COMMON, un,
24504 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24505 		    skey, asc, ascq);
24506 		/* This routine only uses up to 13 bytes of sense data. */
24507 		if (actual_sense_length >= 13) {
24508 			if (skey == KEY_UNIT_ATTENTION) {
24509 				if (asc == 0x28) {
24510 					state = DKIO_INSERTED;
24511 				}
24512 			} else {
24513 				/*
24514 				 * if 02/04/02  means that the host
24515 				 * should send start command. Explicitly
24516 				 * leave the media state as is
24517 				 * (inserted) as the media is inserted
24518 				 * and host has stopped device for PM
24519 				 * reasons. Upon next true read/write
24520 				 * to this media will bring the
24521 				 * device to the right state good for
24522 				 * media access.
24523 				 */
24524 				if ((skey == KEY_NOT_READY) &&
24525 				    (asc == 0x3a)) {
24526 					state = DKIO_EJECTED;
24527 				}
24528 
24529 				/*
24530 				 * If the drivge is busy with an operation
24531 				 * or long write, keep the media in an
24532 				 * inserted state.
24533 				 */
24534 
24535 				if ((skey == KEY_NOT_READY) &&
24536 				    (asc == 0x04) &&
24537 				    ((ascq == 0x02) ||
24538 				    (ascq == 0x07) ||
24539 				    (ascq == 0x08))) {
24540 					state = DKIO_INSERTED;
24541 				}
24542 			}
24543 		}
24544 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24545 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24546 		state = DKIO_INSERTED;
24547 	}
24548 
24549 	SD_TRACE(SD_LOG_COMMON, un,
24550 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24551 	    state, un->un_specified_mediastate);
24552 
24553 	/*
24554 	 * now signal the waiting thread if this is *not* the specified state;
24555 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24556 	 * to recover
24557 	 */
24558 	if (state != un->un_specified_mediastate) {
24559 		un->un_mediastate = state;
24560 		if (state == DKIO_INSERTED) {
24561 			/*
24562 			 * delay the signal to give the drive a chance
24563 			 * to do what it apparently needs to do
24564 			 */
24565 			SD_TRACE(SD_LOG_COMMON, un,
24566 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24567 			if (un->un_dcvb_timeid == NULL) {
24568 				un->un_dcvb_timeid =
24569 				    timeout(sd_delayed_cv_broadcast, un,
24570 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24571 			}
24572 		} else {
24573 			SD_TRACE(SD_LOG_COMMON, un,
24574 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24575 			cv_broadcast(&un->un_state_cv);
24576 		}
24577 	}
24578 	mutex_exit(SD_MUTEX(un));
24579 	return (0);
24580 }
24581 
24582 
24583 /*
24584  *    Function: sd_dkio_get_temp
24585  *
24586  * Description: This routine is the driver entry point for handling ioctl
24587  *		requests to get the disk temperature.
24588  *
24589  *   Arguments: dev  - the device number
24590  *		arg  - pointer to user provided dk_temperature structure.
24591  *		flag - this argument is a pass through to ddi_copyxxx()
24592  *		       directly from the mode argument of ioctl().
24593  *
24594  * Return Code: 0
24595  *		EFAULT
24596  *		ENXIO
24597  *		EAGAIN
24598  */
24599 
24600 static int
24601 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24602 {
24603 	struct sd_lun		*un = NULL;
24604 	struct dk_temperature	*dktemp = NULL;
24605 	uchar_t			*temperature_page;
24606 	int			rval = 0;
24607 	int			path_flag = SD_PATH_STANDARD;
24608 
24609 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24610 		return (ENXIO);
24611 	}
24612 
24613 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24614 
24615 	/* copyin the disk temp argument to get the user flags */
24616 	if (ddi_copyin((void *)arg, dktemp,
24617 	    sizeof (struct dk_temperature), flag) != 0) {
24618 		rval = EFAULT;
24619 		goto done;
24620 	}
24621 
24622 	/* Initialize the temperature to invalid. */
24623 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24624 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24625 
24626 	/*
24627 	 * Note: Investigate removing the "bypass pm" semantic.
24628 	 * Can we just bypass PM always?
24629 	 */
24630 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24631 		path_flag = SD_PATH_DIRECT;
24632 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24633 		mutex_enter(&un->un_pm_mutex);
24634 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24635 			/*
24636 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24637 			 * in low power mode, we can not wake it up, Need to
24638 			 * return EAGAIN.
24639 			 */
24640 			mutex_exit(&un->un_pm_mutex);
24641 			rval = EAGAIN;
24642 			goto done;
24643 		} else {
24644 			/*
24645 			 * Indicate to PM the device is busy. This is required
24646 			 * to avoid a race - i.e. the ioctl is issuing a
24647 			 * command and the pm framework brings down the device
24648 			 * to low power mode (possible power cut-off on some
24649 			 * platforms).
24650 			 */
24651 			mutex_exit(&un->un_pm_mutex);
24652 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24653 				rval = EAGAIN;
24654 				goto done;
24655 			}
24656 		}
24657 	}
24658 
24659 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24660 
24661 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24662 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24663 		goto done2;
24664 	}
24665 
24666 	/*
24667 	 * For the current temperature verify that the parameter length is 0x02
24668 	 * and the parameter code is 0x00
24669 	 */
24670 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24671 	    (temperature_page[5] == 0x00)) {
24672 		if (temperature_page[9] == 0xFF) {
24673 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24674 		} else {
24675 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24676 		}
24677 	}
24678 
24679 	/*
24680 	 * For the reference temperature verify that the parameter
24681 	 * length is 0x02 and the parameter code is 0x01
24682 	 */
24683 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24684 	    (temperature_page[11] == 0x01)) {
24685 		if (temperature_page[15] == 0xFF) {
24686 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24687 		} else {
24688 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24689 		}
24690 	}
24691 
24692 	/* Do the copyout regardless of the temperature commands status. */
24693 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24694 	    flag) != 0) {
24695 		rval = EFAULT;
24696 	}
24697 
24698 done2:
24699 	if (path_flag == SD_PATH_DIRECT) {
24700 		sd_pm_exit(un);
24701 	}
24702 
24703 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24704 done:
24705 	if (dktemp != NULL) {
24706 		kmem_free(dktemp, sizeof (struct dk_temperature));
24707 	}
24708 
24709 	return (rval);
24710 }
24711 
24712 
24713 /*
24714  *    Function: sd_log_page_supported
24715  *
24716  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24717  *		supported log pages.
24718  *
24719  *   Arguments: un -
24720  *		log_page -
24721  *
24722  * Return Code: -1 - on error (log sense is optional and may not be supported).
24723  *		0  - log page not found.
24724  *  		1  - log page found.
24725  */
24726 
24727 static int
24728 sd_log_page_supported(struct sd_lun *un, int log_page)
24729 {
24730 	uchar_t *log_page_data;
24731 	int	i;
24732 	int	match = 0;
24733 	int	log_size;
24734 
24735 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24736 
24737 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24738 	    SD_PATH_DIRECT) != 0) {
24739 		SD_ERROR(SD_LOG_COMMON, un,
24740 		    "sd_log_page_supported: failed log page retrieval\n");
24741 		kmem_free(log_page_data, 0xFF);
24742 		return (-1);
24743 	}
24744 	log_size = log_page_data[3];
24745 
24746 	/*
24747 	 * The list of supported log pages start from the fourth byte. Check
24748 	 * until we run out of log pages or a match is found.
24749 	 */
24750 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24751 		if (log_page_data[i] == log_page) {
24752 			match++;
24753 		}
24754 	}
24755 	kmem_free(log_page_data, 0xFF);
24756 	return (match);
24757 }
24758 
24759 
24760 /*
24761  *    Function: sd_mhdioc_failfast
24762  *
24763  * Description: This routine is the driver entry point for handling ioctl
24764  *		requests to enable/disable the multihost failfast option.
24765  *		(MHIOCENFAILFAST)
24766  *
24767  *   Arguments: dev	- the device number
24768  *		arg	- user specified probing interval.
24769  *		flag	- this argument is a pass through to ddi_copyxxx()
24770  *			  directly from the mode argument of ioctl().
24771  *
24772  * Return Code: 0
24773  *		EFAULT
24774  *		ENXIO
24775  */
24776 
24777 static int
24778 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24779 {
24780 	struct sd_lun	*un = NULL;
24781 	int		mh_time;
24782 	int		rval = 0;
24783 
24784 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24785 		return (ENXIO);
24786 	}
24787 
24788 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24789 		return (EFAULT);
24790 
24791 	if (mh_time) {
24792 		mutex_enter(SD_MUTEX(un));
24793 		un->un_resvd_status |= SD_FAILFAST;
24794 		mutex_exit(SD_MUTEX(un));
24795 		/*
24796 		 * If mh_time is INT_MAX, then this ioctl is being used for
24797 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24798 		 */
24799 		if (mh_time != INT_MAX) {
24800 			rval = sd_check_mhd(dev, mh_time);
24801 		}
24802 	} else {
24803 		(void) sd_check_mhd(dev, 0);
24804 		mutex_enter(SD_MUTEX(un));
24805 		un->un_resvd_status &= ~SD_FAILFAST;
24806 		mutex_exit(SD_MUTEX(un));
24807 	}
24808 	return (rval);
24809 }
24810 
24811 
24812 /*
24813  *    Function: sd_mhdioc_takeown
24814  *
24815  * Description: This routine is the driver entry point for handling ioctl
24816  *		requests to forcefully acquire exclusive access rights to the
24817  *		multihost disk (MHIOCTKOWN).
24818  *
24819  *   Arguments: dev	- the device number
24820  *		arg	- user provided structure specifying the delay
24821  *			  parameters in milliseconds
24822  *		flag	- this argument is a pass through to ddi_copyxxx()
24823  *			  directly from the mode argument of ioctl().
24824  *
24825  * Return Code: 0
24826  *		EFAULT
24827  *		ENXIO
24828  */
24829 
24830 static int
24831 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24832 {
24833 	struct sd_lun		*un = NULL;
24834 	struct mhioctkown	*tkown = NULL;
24835 	int			rval = 0;
24836 
24837 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24838 		return (ENXIO);
24839 	}
24840 
24841 	if (arg != NULL) {
24842 		tkown = (struct mhioctkown *)
24843 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24844 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24845 		if (rval != 0) {
24846 			rval = EFAULT;
24847 			goto error;
24848 		}
24849 	}
24850 
24851 	rval = sd_take_ownership(dev, tkown);
24852 	mutex_enter(SD_MUTEX(un));
24853 	if (rval == 0) {
24854 		un->un_resvd_status |= SD_RESERVE;
24855 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24856 			sd_reinstate_resv_delay =
24857 			    tkown->reinstate_resv_delay * 1000;
24858 		} else {
24859 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24860 		}
24861 		/*
24862 		 * Give the scsi_watch routine interval set by
24863 		 * the MHIOCENFAILFAST ioctl precedence here.
24864 		 */
24865 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24866 			mutex_exit(SD_MUTEX(un));
24867 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24868 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24869 			    "sd_mhdioc_takeown : %d\n",
24870 			    sd_reinstate_resv_delay);
24871 		} else {
24872 			mutex_exit(SD_MUTEX(un));
24873 		}
24874 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24875 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24876 	} else {
24877 		un->un_resvd_status &= ~SD_RESERVE;
24878 		mutex_exit(SD_MUTEX(un));
24879 	}
24880 
24881 error:
24882 	if (tkown != NULL) {
24883 		kmem_free(tkown, sizeof (struct mhioctkown));
24884 	}
24885 	return (rval);
24886 }
24887 
24888 
24889 /*
24890  *    Function: sd_mhdioc_release
24891  *
24892  * Description: This routine is the driver entry point for handling ioctl
24893  *		requests to release exclusive access rights to the multihost
24894  *		disk (MHIOCRELEASE).
24895  *
24896  *   Arguments: dev	- the device number
24897  *
24898  * Return Code: 0
24899  *		ENXIO
24900  */
24901 
24902 static int
24903 sd_mhdioc_release(dev_t dev)
24904 {
24905 	struct sd_lun		*un = NULL;
24906 	timeout_id_t		resvd_timeid_save;
24907 	int			resvd_status_save;
24908 	int			rval = 0;
24909 
24910 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24911 		return (ENXIO);
24912 	}
24913 
24914 	mutex_enter(SD_MUTEX(un));
24915 	resvd_status_save = un->un_resvd_status;
24916 	un->un_resvd_status &=
24917 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24918 	if (un->un_resvd_timeid) {
24919 		resvd_timeid_save = un->un_resvd_timeid;
24920 		un->un_resvd_timeid = NULL;
24921 		mutex_exit(SD_MUTEX(un));
24922 		(void) untimeout(resvd_timeid_save);
24923 	} else {
24924 		mutex_exit(SD_MUTEX(un));
24925 	}
24926 
24927 	/*
24928 	 * destroy any pending timeout thread that may be attempting to
24929 	 * reinstate reservation on this device.
24930 	 */
24931 	sd_rmv_resv_reclaim_req(dev);
24932 
24933 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24934 		mutex_enter(SD_MUTEX(un));
24935 		if ((un->un_mhd_token) &&
24936 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24937 			mutex_exit(SD_MUTEX(un));
24938 			(void) sd_check_mhd(dev, 0);
24939 		} else {
24940 			mutex_exit(SD_MUTEX(un));
24941 		}
24942 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24943 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24944 	} else {
24945 		/*
24946 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24947 		 */
24948 		mutex_enter(SD_MUTEX(un));
24949 		un->un_resvd_status = resvd_status_save;
24950 		mutex_exit(SD_MUTEX(un));
24951 	}
24952 	return (rval);
24953 }
24954 
24955 
24956 /*
24957  *    Function: sd_mhdioc_register_devid
24958  *
24959  * Description: This routine is the driver entry point for handling ioctl
24960  *		requests to register the device id (MHIOCREREGISTERDEVID).
24961  *
24962  *		Note: The implementation for this ioctl has been updated to
24963  *		be consistent with the original PSARC case (1999/357)
24964  *		(4375899, 4241671, 4220005)
24965  *
24966  *   Arguments: dev	- the device number
24967  *
24968  * Return Code: 0
24969  *		ENXIO
24970  */
24971 
24972 static int
24973 sd_mhdioc_register_devid(dev_t dev)
24974 {
24975 	struct sd_lun	*un = NULL;
24976 	int		rval = 0;
24977 
24978 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24979 		return (ENXIO);
24980 	}
24981 
24982 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24983 
24984 	mutex_enter(SD_MUTEX(un));
24985 
24986 	/* If a devid already exists, de-register it */
24987 	if (un->un_devid != NULL) {
24988 		ddi_devid_unregister(SD_DEVINFO(un));
24989 		/*
24990 		 * After unregister devid, needs to free devid memory
24991 		 */
24992 		ddi_devid_free(un->un_devid);
24993 		un->un_devid = NULL;
24994 	}
24995 
24996 	/* Check for reservation conflict */
24997 	mutex_exit(SD_MUTEX(un));
24998 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24999 	mutex_enter(SD_MUTEX(un));
25000 
25001 	switch (rval) {
25002 	case 0:
25003 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
25004 		break;
25005 	case EACCES:
25006 		break;
25007 	default:
25008 		rval = EIO;
25009 	}
25010 
25011 	mutex_exit(SD_MUTEX(un));
25012 	return (rval);
25013 }
25014 
25015 
25016 /*
25017  *    Function: sd_mhdioc_inkeys
25018  *
25019  * Description: This routine is the driver entry point for handling ioctl
25020  *		requests to issue the SCSI-3 Persistent In Read Keys command
25021  *		to the device (MHIOCGRP_INKEYS).
25022  *
25023  *   Arguments: dev	- the device number
25024  *		arg	- user provided in_keys structure
25025  *		flag	- this argument is a pass through to ddi_copyxxx()
25026  *			  directly from the mode argument of ioctl().
25027  *
25028  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
25029  *		ENXIO
25030  *		EFAULT
25031  */
25032 
25033 static int
25034 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
25035 {
25036 	struct sd_lun		*un;
25037 	mhioc_inkeys_t		inkeys;
25038 	int			rval = 0;
25039 
25040 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25041 		return (ENXIO);
25042 	}
25043 
25044 #ifdef _MULTI_DATAMODEL
25045 	switch (ddi_model_convert_from(flag & FMODELS)) {
25046 	case DDI_MODEL_ILP32: {
25047 		struct mhioc_inkeys32	inkeys32;
25048 
25049 		if (ddi_copyin(arg, &inkeys32,
25050 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
25051 			return (EFAULT);
25052 		}
25053 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
25054 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25055 		    &inkeys, flag)) != 0) {
25056 			return (rval);
25057 		}
25058 		inkeys32.generation = inkeys.generation;
25059 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
25060 		    flag) != 0) {
25061 			return (EFAULT);
25062 		}
25063 		break;
25064 	}
25065 	case DDI_MODEL_NONE:
25066 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
25067 		    flag) != 0) {
25068 			return (EFAULT);
25069 		}
25070 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25071 		    &inkeys, flag)) != 0) {
25072 			return (rval);
25073 		}
25074 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
25075 		    flag) != 0) {
25076 			return (EFAULT);
25077 		}
25078 		break;
25079 	}
25080 
25081 #else /* ! _MULTI_DATAMODEL */
25082 
25083 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
25084 		return (EFAULT);
25085 	}
25086 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
25087 	if (rval != 0) {
25088 		return (rval);
25089 	}
25090 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
25091 		return (EFAULT);
25092 	}
25093 
25094 #endif /* _MULTI_DATAMODEL */
25095 
25096 	return (rval);
25097 }
25098 
25099 
25100 /*
25101  *    Function: sd_mhdioc_inresv
25102  *
25103  * Description: This routine is the driver entry point for handling ioctl
25104  *		requests to issue the SCSI-3 Persistent In Read Reservations
25105  *		command to the device (MHIOCGRP_INKEYS).
25106  *
25107  *   Arguments: dev	- the device number
25108  *		arg	- user provided in_resv structure
25109  *		flag	- this argument is a pass through to ddi_copyxxx()
25110  *			  directly from the mode argument of ioctl().
25111  *
25112  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
25113  *		ENXIO
25114  *		EFAULT
25115  */
25116 
25117 static int
25118 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
25119 {
25120 	struct sd_lun		*un;
25121 	mhioc_inresvs_t		inresvs;
25122 	int			rval = 0;
25123 
25124 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25125 		return (ENXIO);
25126 	}
25127 
25128 #ifdef _MULTI_DATAMODEL
25129 
25130 	switch (ddi_model_convert_from(flag & FMODELS)) {
25131 	case DDI_MODEL_ILP32: {
25132 		struct mhioc_inresvs32	inresvs32;
25133 
25134 		if (ddi_copyin(arg, &inresvs32,
25135 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25136 			return (EFAULT);
25137 		}
25138 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
25139 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25140 		    &inresvs, flag)) != 0) {
25141 			return (rval);
25142 		}
25143 		inresvs32.generation = inresvs.generation;
25144 		if (ddi_copyout(&inresvs32, arg,
25145 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25146 			return (EFAULT);
25147 		}
25148 		break;
25149 	}
25150 	case DDI_MODEL_NONE:
25151 		if (ddi_copyin(arg, &inresvs,
25152 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25153 			return (EFAULT);
25154 		}
25155 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25156 		    &inresvs, flag)) != 0) {
25157 			return (rval);
25158 		}
25159 		if (ddi_copyout(&inresvs, arg,
25160 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25161 			return (EFAULT);
25162 		}
25163 		break;
25164 	}
25165 
25166 #else /* ! _MULTI_DATAMODEL */
25167 
25168 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
25169 		return (EFAULT);
25170 	}
25171 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
25172 	if (rval != 0) {
25173 		return (rval);
25174 	}
25175 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
25176 		return (EFAULT);
25177 	}
25178 
25179 #endif /* ! _MULTI_DATAMODEL */
25180 
25181 	return (rval);
25182 }
25183 
25184 
25185 /*
25186  * The following routines support the clustering functionality described below
25187  * and implement lost reservation reclaim functionality.
25188  *
25189  * Clustering
25190  * ----------
25191  * The clustering code uses two different, independent forms of SCSI
25192  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
25193  * Persistent Group Reservations. For any particular disk, it will use either
25194  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
25195  *
25196  * SCSI-2
25197  * The cluster software takes ownership of a multi-hosted disk by issuing the
25198  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
25199  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
25200  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
25201  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
25202  * meaning of failfast is that if the driver (on this host) ever encounters the
25203  * scsi error return code RESERVATION_CONFLICT from the device, it should
25204  * immediately panic the host. The motivation for this ioctl is that if this
25205  * host does encounter reservation conflict, the underlying cause is that some
25206  * other host of the cluster has decided that this host is no longer in the
25207  * cluster and has seized control of the disks for itself. Since this host is no
25208  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25209  * does two things:
25210  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25211  *      error to panic the host
25212  *      (b) it sets up a periodic timer to test whether this host still has
25213  *      "access" (in that no other host has reserved the device):  if the
25214  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25215  *      purpose of that periodic timer is to handle scenarios where the host is
25216  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25217  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25218  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25219  * the device itself.
25220  *
25221  * SCSI-3 PGR
25222  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25223  * facility is supported through the shared multihost disk ioctls
25224  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25225  * MHIOCGRP_PREEMPTANDABORT)
25226  *
25227  * Reservation Reclaim:
25228  * --------------------
25229  * To support the lost reservation reclaim operations this driver creates a
25230  * single thread to handle reinstating reservations on all devices that have
25231  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25232  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25233  * and the reservation reclaim thread loops through the requests to regain the
25234  * lost reservations.
25235  */
25236 
25237 /*
25238  *    Function: sd_check_mhd()
25239  *
25240  * Description: This function sets up and submits a scsi watch request or
25241  *		terminates an existing watch request. This routine is used in
25242  *		support of reservation reclaim.
25243  *
25244  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25245  *			 among multiple watches that share the callback function
25246  *		interval - the number of microseconds specifying the watch
25247  *			   interval for issuing TEST UNIT READY commands. If
25248  *			   set to 0 the watch should be terminated. If the
25249  *			   interval is set to 0 and if the device is required
25250  *			   to hold reservation while disabling failfast, the
25251  *			   watch is restarted with an interval of
25252  *			   reinstate_resv_delay.
25253  *
25254  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25255  *		ENXIO      - Indicates an invalid device was specified
25256  *		EAGAIN     - Unable to submit the scsi watch request
25257  */
25258 
25259 static int
25260 sd_check_mhd(dev_t dev, int interval)
25261 {
25262 	struct sd_lun	*un;
25263 	opaque_t	token;
25264 
25265 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25266 		return (ENXIO);
25267 	}
25268 
25269 	/* is this a watch termination request? */
25270 	if (interval == 0) {
25271 		mutex_enter(SD_MUTEX(un));
25272 		/* if there is an existing watch task then terminate it */
25273 		if (un->un_mhd_token) {
25274 			token = un->un_mhd_token;
25275 			un->un_mhd_token = NULL;
25276 			mutex_exit(SD_MUTEX(un));
25277 			(void) scsi_watch_request_terminate(token,
25278 			    SCSI_WATCH_TERMINATE_WAIT);
25279 			mutex_enter(SD_MUTEX(un));
25280 		} else {
25281 			mutex_exit(SD_MUTEX(un));
25282 			/*
25283 			 * Note: If we return here we don't check for the
25284 			 * failfast case. This is the original legacy
25285 			 * implementation but perhaps we should be checking
25286 			 * the failfast case.
25287 			 */
25288 			return (0);
25289 		}
25290 		/*
25291 		 * If the device is required to hold reservation while
25292 		 * disabling failfast, we need to restart the scsi_watch
25293 		 * routine with an interval of reinstate_resv_delay.
25294 		 */
25295 		if (un->un_resvd_status & SD_RESERVE) {
25296 			interval = sd_reinstate_resv_delay/1000;
25297 		} else {
25298 			/* no failfast so bail */
25299 			mutex_exit(SD_MUTEX(un));
25300 			return (0);
25301 		}
25302 		mutex_exit(SD_MUTEX(un));
25303 	}
25304 
25305 	/*
25306 	 * adjust minimum time interval to 1 second,
25307 	 * and convert from msecs to usecs
25308 	 */
25309 	if (interval > 0 && interval < 1000) {
25310 		interval = 1000;
25311 	}
25312 	interval *= 1000;
25313 
25314 	/*
25315 	 * submit the request to the scsi_watch service
25316 	 */
25317 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25318 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25319 	if (token == NULL) {
25320 		return (EAGAIN);
25321 	}
25322 
25323 	/*
25324 	 * save token for termination later on
25325 	 */
25326 	mutex_enter(SD_MUTEX(un));
25327 	un->un_mhd_token = token;
25328 	mutex_exit(SD_MUTEX(un));
25329 	return (0);
25330 }
25331 
25332 
25333 /*
25334  *    Function: sd_mhd_watch_cb()
25335  *
25336  * Description: This function is the call back function used by the scsi watch
25337  *		facility. The scsi watch facility sends the "Test Unit Ready"
25338  *		and processes the status. If applicable (i.e. a "Unit Attention"
25339  *		status and automatic "Request Sense" not used) the scsi watch
25340  *		facility will send a "Request Sense" and retrieve the sense data
25341  *		to be passed to this callback function. In either case the
25342  *		automatic "Request Sense" or the facility submitting one, this
25343  *		callback is passed the status and sense data.
25344  *
25345  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25346  *			among multiple watches that share this callback function
25347  *		resultp - scsi watch facility result packet containing scsi
25348  *			  packet, status byte and sense data
25349  *
25350  * Return Code: 0 - continue the watch task
25351  *		non-zero - terminate the watch task
25352  */
25353 
25354 static int
25355 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25356 {
25357 	struct sd_lun			*un;
25358 	struct scsi_status		*statusp;
25359 	uint8_t				*sensep;
25360 	struct scsi_pkt			*pkt;
25361 	uchar_t				actual_sense_length;
25362 	dev_t  				dev = (dev_t)arg;
25363 
25364 	ASSERT(resultp != NULL);
25365 	statusp			= resultp->statusp;
25366 	sensep			= (uint8_t *)resultp->sensep;
25367 	pkt			= resultp->pkt;
25368 	actual_sense_length	= resultp->actual_sense_length;
25369 
25370 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25371 		return (ENXIO);
25372 	}
25373 
25374 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25375 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25376 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25377 
25378 	/* Begin processing of the status and/or sense data */
25379 	if (pkt->pkt_reason != CMD_CMPLT) {
25380 		/* Handle the incomplete packet */
25381 		sd_mhd_watch_incomplete(un, pkt);
25382 		return (0);
25383 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25384 		if (*((unsigned char *)statusp)
25385 		    == STATUS_RESERVATION_CONFLICT) {
25386 			/*
25387 			 * Handle a reservation conflict by panicking if
25388 			 * configured for failfast or by logging the conflict
25389 			 * and updating the reservation status
25390 			 */
25391 			mutex_enter(SD_MUTEX(un));
25392 			if ((un->un_resvd_status & SD_FAILFAST) &&
25393 			    (sd_failfast_enable)) {
25394 				sd_panic_for_res_conflict(un);
25395 				/*NOTREACHED*/
25396 			}
25397 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25398 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25399 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25400 			mutex_exit(SD_MUTEX(un));
25401 		}
25402 	}
25403 
25404 	if (sensep != NULL) {
25405 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25406 			mutex_enter(SD_MUTEX(un));
25407 			if ((scsi_sense_asc(sensep) ==
25408 			    SD_SCSI_RESET_SENSE_CODE) &&
25409 			    (un->un_resvd_status & SD_RESERVE)) {
25410 				/*
25411 				 * The additional sense code indicates a power
25412 				 * on or bus device reset has occurred; update
25413 				 * the reservation status.
25414 				 */
25415 				un->un_resvd_status |=
25416 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25417 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25418 				    "sd_mhd_watch_cb: Lost Reservation\n");
25419 			}
25420 		} else {
25421 			return (0);
25422 		}
25423 	} else {
25424 		mutex_enter(SD_MUTEX(un));
25425 	}
25426 
25427 	if ((un->un_resvd_status & SD_RESERVE) &&
25428 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25429 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25430 			/*
25431 			 * A reset occurred in between the last probe and this
25432 			 * one so if a timeout is pending cancel it.
25433 			 */
25434 			if (un->un_resvd_timeid) {
25435 				timeout_id_t temp_id = un->un_resvd_timeid;
25436 				un->un_resvd_timeid = NULL;
25437 				mutex_exit(SD_MUTEX(un));
25438 				(void) untimeout(temp_id);
25439 				mutex_enter(SD_MUTEX(un));
25440 			}
25441 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25442 		}
25443 		if (un->un_resvd_timeid == 0) {
25444 			/* Schedule a timeout to handle the lost reservation */
25445 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25446 			    (void *)dev,
25447 			    drv_usectohz(sd_reinstate_resv_delay));
25448 		}
25449 	}
25450 	mutex_exit(SD_MUTEX(un));
25451 	return (0);
25452 }
25453 
25454 
25455 /*
25456  *    Function: sd_mhd_watch_incomplete()
25457  *
25458  * Description: This function is used to find out why a scsi pkt sent by the
25459  *		scsi watch facility was not completed. Under some scenarios this
25460  *		routine will return. Otherwise it will send a bus reset to see
25461  *		if the drive is still online.
25462  *
25463  *   Arguments: un  - driver soft state (unit) structure
25464  *		pkt - incomplete scsi pkt
25465  */
25466 
25467 static void
25468 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25469 {
25470 	int	be_chatty;
25471 	int	perr;
25472 
25473 	ASSERT(pkt != NULL);
25474 	ASSERT(un != NULL);
25475 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25476 	perr		= (pkt->pkt_statistics & STAT_PERR);
25477 
25478 	mutex_enter(SD_MUTEX(un));
25479 	if (un->un_state == SD_STATE_DUMPING) {
25480 		mutex_exit(SD_MUTEX(un));
25481 		return;
25482 	}
25483 
25484 	switch (pkt->pkt_reason) {
25485 	case CMD_UNX_BUS_FREE:
25486 		/*
25487 		 * If we had a parity error that caused the target to drop BSY*,
25488 		 * don't be chatty about it.
25489 		 */
25490 		if (perr && be_chatty) {
25491 			be_chatty = 0;
25492 		}
25493 		break;
25494 	case CMD_TAG_REJECT:
25495 		/*
25496 		 * The SCSI-2 spec states that a tag reject will be sent by the
25497 		 * target if tagged queuing is not supported. A tag reject may
25498 		 * also be sent during certain initialization periods or to
25499 		 * control internal resources. For the latter case the target
25500 		 * may also return Queue Full.
25501 		 *
25502 		 * If this driver receives a tag reject from a target that is
25503 		 * going through an init period or controlling internal
25504 		 * resources tagged queuing will be disabled. This is a less
25505 		 * than optimal behavior but the driver is unable to determine
25506 		 * the target state and assumes tagged queueing is not supported
25507 		 */
25508 		pkt->pkt_flags = 0;
25509 		un->un_tagflags = 0;
25510 
25511 		if (un->un_f_opt_queueing == TRUE) {
25512 			un->un_throttle = min(un->un_throttle, 3);
25513 		} else {
25514 			un->un_throttle = 1;
25515 		}
25516 		mutex_exit(SD_MUTEX(un));
25517 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25518 		mutex_enter(SD_MUTEX(un));
25519 		break;
25520 	case CMD_INCOMPLETE:
25521 		/*
25522 		 * The transport stopped with an abnormal state, fallthrough and
25523 		 * reset the target and/or bus unless selection did not complete
25524 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25525 		 * go through a target/bus reset
25526 		 */
25527 		if (pkt->pkt_state == STATE_GOT_BUS) {
25528 			break;
25529 		}
25530 		/*FALLTHROUGH*/
25531 
25532 	case CMD_TIMEOUT:
25533 	default:
25534 		/*
25535 		 * The lun may still be running the command, so a lun reset
25536 		 * should be attempted. If the lun reset fails or cannot be
25537 		 * issued, than try a target reset. Lastly try a bus reset.
25538 		 */
25539 		if ((pkt->pkt_statistics &
25540 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25541 			int reset_retval = 0;
25542 			mutex_exit(SD_MUTEX(un));
25543 			if (un->un_f_allow_bus_device_reset == TRUE) {
25544 				if (un->un_f_lun_reset_enabled == TRUE) {
25545 					reset_retval =
25546 					    scsi_reset(SD_ADDRESS(un),
25547 					    RESET_LUN);
25548 				}
25549 				if (reset_retval == 0) {
25550 					reset_retval =
25551 					    scsi_reset(SD_ADDRESS(un),
25552 					    RESET_TARGET);
25553 				}
25554 			}
25555 			if (reset_retval == 0) {
25556 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25557 			}
25558 			mutex_enter(SD_MUTEX(un));
25559 		}
25560 		break;
25561 	}
25562 
25563 	/* A device/bus reset has occurred; update the reservation status. */
25564 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25565 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25566 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25567 			un->un_resvd_status |=
25568 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25569 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25570 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25571 		}
25572 	}
25573 
25574 	/*
25575 	 * The disk has been turned off; Update the device state.
25576 	 *
25577 	 * Note: Should we be offlining the disk here?
25578 	 */
25579 	if (pkt->pkt_state == STATE_GOT_BUS) {
25580 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25581 		    "Disk not responding to selection\n");
25582 		if (un->un_state != SD_STATE_OFFLINE) {
25583 			New_state(un, SD_STATE_OFFLINE);
25584 		}
25585 	} else if (be_chatty) {
25586 		/*
25587 		 * suppress messages if they are all the same pkt reason;
25588 		 * with TQ, many (up to 256) are returned with the same
25589 		 * pkt_reason
25590 		 */
25591 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25592 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25593 			    "sd_mhd_watch_incomplete: "
25594 			    "SCSI transport failed: reason '%s'\n",
25595 			    scsi_rname(pkt->pkt_reason));
25596 		}
25597 	}
25598 	un->un_last_pkt_reason = pkt->pkt_reason;
25599 	mutex_exit(SD_MUTEX(un));
25600 }
25601 
25602 
25603 /*
25604  *    Function: sd_sname()
25605  *
25606  * Description: This is a simple little routine to return a string containing
25607  *		a printable description of command status byte for use in
25608  *		logging.
25609  *
25610  *   Arguments: status - pointer to a status byte
25611  *
25612  * Return Code: char * - string containing status description.
25613  */
25614 
25615 static char *
25616 sd_sname(uchar_t status)
25617 {
25618 	switch (status & STATUS_MASK) {
25619 	case STATUS_GOOD:
25620 		return ("good status");
25621 	case STATUS_CHECK:
25622 		return ("check condition");
25623 	case STATUS_MET:
25624 		return ("condition met");
25625 	case STATUS_BUSY:
25626 		return ("busy");
25627 	case STATUS_INTERMEDIATE:
25628 		return ("intermediate");
25629 	case STATUS_INTERMEDIATE_MET:
25630 		return ("intermediate - condition met");
25631 	case STATUS_RESERVATION_CONFLICT:
25632 		return ("reservation_conflict");
25633 	case STATUS_TERMINATED:
25634 		return ("command terminated");
25635 	case STATUS_QFULL:
25636 		return ("queue full");
25637 	default:
25638 		return ("<unknown status>");
25639 	}
25640 }
25641 
25642 
25643 /*
25644  *    Function: sd_mhd_resvd_recover()
25645  *
25646  * Description: This function adds a reservation entry to the
25647  *		sd_resv_reclaim_request list and signals the reservation
25648  *		reclaim thread that there is work pending. If the reservation
25649  *		reclaim thread has not been previously created this function
25650  *		will kick it off.
25651  *
25652  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25653  *			among multiple watches that share this callback function
25654  *
25655  *     Context: This routine is called by timeout() and is run in interrupt
25656  *		context. It must not sleep or call other functions which may
25657  *		sleep.
25658  */
25659 
25660 static void
25661 sd_mhd_resvd_recover(void *arg)
25662 {
25663 	dev_t			dev = (dev_t)arg;
25664 	struct sd_lun		*un;
25665 	struct sd_thr_request	*sd_treq = NULL;
25666 	struct sd_thr_request	*sd_cur = NULL;
25667 	struct sd_thr_request	*sd_prev = NULL;
25668 	int			already_there = 0;
25669 
25670 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25671 		return;
25672 	}
25673 
25674 	mutex_enter(SD_MUTEX(un));
25675 	un->un_resvd_timeid = NULL;
25676 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25677 		/*
25678 		 * There was a reset so don't issue the reserve, allow the
25679 		 * sd_mhd_watch_cb callback function to notice this and
25680 		 * reschedule the timeout for reservation.
25681 		 */
25682 		mutex_exit(SD_MUTEX(un));
25683 		return;
25684 	}
25685 	mutex_exit(SD_MUTEX(un));
25686 
25687 	/*
25688 	 * Add this device to the sd_resv_reclaim_request list and the
25689 	 * sd_resv_reclaim_thread should take care of the rest.
25690 	 *
25691 	 * Note: We can't sleep in this context so if the memory allocation
25692 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25693 	 * reschedule the timeout for reservation.  (4378460)
25694 	 */
25695 	sd_treq = (struct sd_thr_request *)
25696 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25697 	if (sd_treq == NULL) {
25698 		return;
25699 	}
25700 
25701 	sd_treq->sd_thr_req_next = NULL;
25702 	sd_treq->dev = dev;
25703 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25704 	if (sd_tr.srq_thr_req_head == NULL) {
25705 		sd_tr.srq_thr_req_head = sd_treq;
25706 	} else {
25707 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25708 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25709 			if (sd_cur->dev == dev) {
25710 				/*
25711 				 * already in Queue so don't log
25712 				 * another request for the device
25713 				 */
25714 				already_there = 1;
25715 				break;
25716 			}
25717 			sd_prev = sd_cur;
25718 		}
25719 		if (!already_there) {
25720 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25721 			    "logging request for %lx\n", dev);
25722 			sd_prev->sd_thr_req_next = sd_treq;
25723 		} else {
25724 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25725 		}
25726 	}
25727 
25728 	/*
25729 	 * Create a kernel thread to do the reservation reclaim and free up this
25730 	 * thread. We cannot block this thread while we go away to do the
25731 	 * reservation reclaim
25732 	 */
25733 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25734 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25735 		    sd_resv_reclaim_thread, NULL,
25736 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25737 
25738 	/* Tell the reservation reclaim thread that it has work to do */
25739 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25740 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25741 }
25742 
25743 /*
25744  *    Function: sd_resv_reclaim_thread()
25745  *
25746  * Description: This function implements the reservation reclaim operations
25747  *
25748  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25749  *		      among multiple watches that share this callback function
25750  */
25751 
25752 static void
25753 sd_resv_reclaim_thread()
25754 {
25755 	struct sd_lun		*un;
25756 	struct sd_thr_request	*sd_mhreq;
25757 
25758 	/* Wait for work */
25759 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25760 	if (sd_tr.srq_thr_req_head == NULL) {
25761 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25762 		    &sd_tr.srq_resv_reclaim_mutex);
25763 	}
25764 
25765 	/* Loop while we have work */
25766 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25767 		un = ddi_get_soft_state(sd_state,
25768 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25769 		if (un == NULL) {
25770 			/*
25771 			 * softstate structure is NULL so just
25772 			 * dequeue the request and continue
25773 			 */
25774 			sd_tr.srq_thr_req_head =
25775 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25776 			kmem_free(sd_tr.srq_thr_cur_req,
25777 			    sizeof (struct sd_thr_request));
25778 			continue;
25779 		}
25780 
25781 		/* dequeue the request */
25782 		sd_mhreq = sd_tr.srq_thr_cur_req;
25783 		sd_tr.srq_thr_req_head =
25784 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25785 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25786 
25787 		/*
25788 		 * Reclaim reservation only if SD_RESERVE is still set. There
25789 		 * may have been a call to MHIOCRELEASE before we got here.
25790 		 */
25791 		mutex_enter(SD_MUTEX(un));
25792 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25793 			/*
25794 			 * Note: The SD_LOST_RESERVE flag is cleared before
25795 			 * reclaiming the reservation. If this is done after the
25796 			 * call to sd_reserve_release a reservation loss in the
25797 			 * window between pkt completion of reserve cmd and
25798 			 * mutex_enter below may not be recognized
25799 			 */
25800 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25801 			mutex_exit(SD_MUTEX(un));
25802 
25803 			if (sd_reserve_release(sd_mhreq->dev,
25804 			    SD_RESERVE) == 0) {
25805 				mutex_enter(SD_MUTEX(un));
25806 				un->un_resvd_status |= SD_RESERVE;
25807 				mutex_exit(SD_MUTEX(un));
25808 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25809 				    "sd_resv_reclaim_thread: "
25810 				    "Reservation Recovered\n");
25811 			} else {
25812 				mutex_enter(SD_MUTEX(un));
25813 				un->un_resvd_status |= SD_LOST_RESERVE;
25814 				mutex_exit(SD_MUTEX(un));
25815 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25816 				    "sd_resv_reclaim_thread: Failed "
25817 				    "Reservation Recovery\n");
25818 			}
25819 		} else {
25820 			mutex_exit(SD_MUTEX(un));
25821 		}
25822 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25823 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25824 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25825 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25826 		/*
25827 		 * wakeup the destroy thread if anyone is waiting on
25828 		 * us to complete.
25829 		 */
25830 		cv_signal(&sd_tr.srq_inprocess_cv);
25831 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25832 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25833 	}
25834 
25835 	/*
25836 	 * cleanup the sd_tr structure now that this thread will not exist
25837 	 */
25838 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25839 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25840 	sd_tr.srq_resv_reclaim_thread = NULL;
25841 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25842 	thread_exit();
25843 }
25844 
25845 
25846 /*
25847  *    Function: sd_rmv_resv_reclaim_req()
25848  *
25849  * Description: This function removes any pending reservation reclaim requests
25850  *		for the specified device.
25851  *
25852  *   Arguments: dev - the device 'dev_t'
25853  */
25854 
25855 static void
25856 sd_rmv_resv_reclaim_req(dev_t dev)
25857 {
25858 	struct sd_thr_request *sd_mhreq;
25859 	struct sd_thr_request *sd_prev;
25860 
25861 	/* Remove a reservation reclaim request from the list */
25862 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25863 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25864 		/*
25865 		 * We are attempting to reinstate reservation for
25866 		 * this device. We wait for sd_reserve_release()
25867 		 * to return before we return.
25868 		 */
25869 		cv_wait(&sd_tr.srq_inprocess_cv,
25870 		    &sd_tr.srq_resv_reclaim_mutex);
25871 	} else {
25872 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25873 		if (sd_mhreq && sd_mhreq->dev == dev) {
25874 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25875 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25876 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25877 			return;
25878 		}
25879 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25880 			if (sd_mhreq && sd_mhreq->dev == dev) {
25881 				break;
25882 			}
25883 			sd_prev = sd_mhreq;
25884 		}
25885 		if (sd_mhreq != NULL) {
25886 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25887 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25888 		}
25889 	}
25890 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25891 }
25892 
25893 
25894 /*
25895  *    Function: sd_mhd_reset_notify_cb()
25896  *
25897  * Description: This is a call back function for scsi_reset_notify. This
25898  *		function updates the softstate reserved status and logs the
25899  *		reset. The driver scsi watch facility callback function
25900  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25901  *		will reclaim the reservation.
25902  *
25903  *   Arguments: arg  - driver soft state (unit) structure
25904  */
25905 
25906 static void
25907 sd_mhd_reset_notify_cb(caddr_t arg)
25908 {
25909 	struct sd_lun *un = (struct sd_lun *)arg;
25910 
25911 	mutex_enter(SD_MUTEX(un));
25912 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25913 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25914 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25915 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25916 	}
25917 	mutex_exit(SD_MUTEX(un));
25918 }
25919 
25920 
25921 /*
25922  *    Function: sd_take_ownership()
25923  *
25924  * Description: This routine implements an algorithm to achieve a stable
25925  *		reservation on disks which don't implement priority reserve,
25926  *		and makes sure that other host lose re-reservation attempts.
25927  *		This algorithm contains of a loop that keeps issuing the RESERVE
25928  *		for some period of time (min_ownership_delay, default 6 seconds)
25929  *		During that loop, it looks to see if there has been a bus device
25930  *		reset or bus reset (both of which cause an existing reservation
25931  *		to be lost). If the reservation is lost issue RESERVE until a
25932  *		period of min_ownership_delay with no resets has gone by, or
25933  *		until max_ownership_delay has expired. This loop ensures that
25934  *		the host really did manage to reserve the device, in spite of
25935  *		resets. The looping for min_ownership_delay (default six
25936  *		seconds) is important to early generation clustering products,
25937  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25938  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25939  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25940  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25941  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25942  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25943  *		no longer "owns" the disk and will have panicked itself.  Thus,
25944  *		the host issuing the MHIOCTKOWN is assured (with timing
25945  *		dependencies) that by the time it actually starts to use the
25946  *		disk for real work, the old owner is no longer accessing it.
25947  *
25948  *		min_ownership_delay is the minimum amount of time for which the
25949  *		disk must be reserved continuously devoid of resets before the
25950  *		MHIOCTKOWN ioctl will return success.
25951  *
25952  *		max_ownership_delay indicates the amount of time by which the
25953  *		take ownership should succeed or timeout with an error.
25954  *
25955  *   Arguments: dev - the device 'dev_t'
25956  *		*p  - struct containing timing info.
25957  *
25958  * Return Code: 0 for success or error code
25959  */
25960 
25961 static int
25962 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25963 {
25964 	struct sd_lun	*un;
25965 	int		rval;
25966 	int		err;
25967 	int		reservation_count   = 0;
25968 	int		min_ownership_delay =  6000000; /* in usec */
25969 	int		max_ownership_delay = 30000000; /* in usec */
25970 	clock_t		start_time;	/* starting time of this algorithm */
25971 	clock_t		end_time;	/* time limit for giving up */
25972 	clock_t		ownership_time;	/* time limit for stable ownership */
25973 	clock_t		current_time;
25974 	clock_t		previous_current_time;
25975 
25976 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25977 		return (ENXIO);
25978 	}
25979 
25980 	/*
25981 	 * Attempt a device reservation. A priority reservation is requested.
25982 	 */
25983 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25984 	    != SD_SUCCESS) {
25985 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25986 		    "sd_take_ownership: return(1)=%d\n", rval);
25987 		return (rval);
25988 	}
25989 
25990 	/* Update the softstate reserved status to indicate the reservation */
25991 	mutex_enter(SD_MUTEX(un));
25992 	un->un_resvd_status |= SD_RESERVE;
25993 	un->un_resvd_status &=
25994 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25995 	mutex_exit(SD_MUTEX(un));
25996 
25997 	if (p != NULL) {
25998 		if (p->min_ownership_delay != 0) {
25999 			min_ownership_delay = p->min_ownership_delay * 1000;
26000 		}
26001 		if (p->max_ownership_delay != 0) {
26002 			max_ownership_delay = p->max_ownership_delay * 1000;
26003 		}
26004 	}
26005 	SD_INFO(SD_LOG_IOCTL_MHD, un,
26006 	    "sd_take_ownership: min, max delays: %d, %d\n",
26007 	    min_ownership_delay, max_ownership_delay);
26008 
26009 	start_time = ddi_get_lbolt();
26010 	current_time	= start_time;
26011 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
26012 	end_time	= start_time + drv_usectohz(max_ownership_delay);
26013 
26014 	while (current_time - end_time < 0) {
26015 		delay(drv_usectohz(500000));
26016 
26017 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
26018 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
26019 				mutex_enter(SD_MUTEX(un));
26020 				rval = (un->un_resvd_status &
26021 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
26022 				mutex_exit(SD_MUTEX(un));
26023 				break;
26024 			}
26025 		}
26026 		previous_current_time = current_time;
26027 		current_time = ddi_get_lbolt();
26028 		mutex_enter(SD_MUTEX(un));
26029 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
26030 			ownership_time = ddi_get_lbolt() +
26031 			    drv_usectohz(min_ownership_delay);
26032 			reservation_count = 0;
26033 		} else {
26034 			reservation_count++;
26035 		}
26036 		un->un_resvd_status |= SD_RESERVE;
26037 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
26038 		mutex_exit(SD_MUTEX(un));
26039 
26040 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26041 		    "sd_take_ownership: ticks for loop iteration=%ld, "
26042 		    "reservation=%s\n", (current_time - previous_current_time),
26043 		    reservation_count ? "ok" : "reclaimed");
26044 
26045 		if (current_time - ownership_time >= 0 &&
26046 		    reservation_count >= 4) {
26047 			rval = 0; /* Achieved a stable ownership */
26048 			break;
26049 		}
26050 		if (current_time - end_time >= 0) {
26051 			rval = EACCES; /* No ownership in max possible time */
26052 			break;
26053 		}
26054 	}
26055 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
26056 	    "sd_take_ownership: return(2)=%d\n", rval);
26057 	return (rval);
26058 }
26059 
26060 
26061 /*
26062  *    Function: sd_reserve_release()
26063  *
26064  * Description: This function builds and sends scsi RESERVE, RELEASE, and
26065  *		PRIORITY RESERVE commands based on a user specified command type
26066  *
26067  *   Arguments: dev - the device 'dev_t'
26068  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
26069  *		      SD_RESERVE, SD_RELEASE
26070  *
26071  * Return Code: 0 or Error Code
26072  */
26073 
26074 static int
26075 sd_reserve_release(dev_t dev, int cmd)
26076 {
26077 	struct uscsi_cmd	*com = NULL;
26078 	struct sd_lun		*un = NULL;
26079 	char			cdb[CDB_GROUP0];
26080 	int			rval;
26081 
26082 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
26083 	    (cmd == SD_PRIORITY_RESERVE));
26084 
26085 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26086 		return (ENXIO);
26087 	}
26088 
26089 	/* instantiate and initialize the command and cdb */
26090 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26091 	bzero(cdb, CDB_GROUP0);
26092 	com->uscsi_flags   = USCSI_SILENT;
26093 	com->uscsi_timeout = un->un_reserve_release_time;
26094 	com->uscsi_cdblen  = CDB_GROUP0;
26095 	com->uscsi_cdb	   = cdb;
26096 	if (cmd == SD_RELEASE) {
26097 		cdb[0] = SCMD_RELEASE;
26098 	} else {
26099 		cdb[0] = SCMD_RESERVE;
26100 	}
26101 
26102 	/* Send the command. */
26103 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26104 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26105 
26106 	/*
26107 	 * "break" a reservation that is held by another host, by issuing a
26108 	 * reset if priority reserve is desired, and we could not get the
26109 	 * device.
26110 	 */
26111 	if ((cmd == SD_PRIORITY_RESERVE) &&
26112 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26113 		/*
26114 		 * First try to reset the LUN. If we cannot, then try a target
26115 		 * reset, followed by a bus reset if the target reset fails.
26116 		 */
26117 		int reset_retval = 0;
26118 		if (un->un_f_lun_reset_enabled == TRUE) {
26119 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
26120 		}
26121 		if (reset_retval == 0) {
26122 			/* The LUN reset either failed or was not issued */
26123 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26124 		}
26125 		if ((reset_retval == 0) &&
26126 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
26127 			rval = EIO;
26128 			kmem_free(com, sizeof (*com));
26129 			return (rval);
26130 		}
26131 
26132 		bzero(com, sizeof (struct uscsi_cmd));
26133 		com->uscsi_flags   = USCSI_SILENT;
26134 		com->uscsi_cdb	   = cdb;
26135 		com->uscsi_cdblen  = CDB_GROUP0;
26136 		com->uscsi_timeout = 5;
26137 
26138 		/*
26139 		 * Reissue the last reserve command, this time without request
26140 		 * sense.  Assume that it is just a regular reserve command.
26141 		 */
26142 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26143 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26144 	}
26145 
26146 	/* Return an error if still getting a reservation conflict. */
26147 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26148 		rval = EACCES;
26149 	}
26150 
26151 	kmem_free(com, sizeof (*com));
26152 	return (rval);
26153 }
26154 
26155 
26156 #define	SD_NDUMP_RETRIES	12
26157 /*
26158  *	System Crash Dump routine
26159  */
26160 
26161 static int
26162 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
26163 {
26164 	int		instance;
26165 	int		partition;
26166 	int		i;
26167 	int		err;
26168 	struct sd_lun	*un;
26169 	struct dk_map	*lp;
26170 	struct scsi_pkt *wr_pktp;
26171 	struct buf	*wr_bp;
26172 	struct buf	wr_buf;
26173 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
26174 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
26175 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
26176 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
26177 	size_t		io_start_offset;
26178 	int		doing_rmw = FALSE;
26179 	int		rval;
26180 #if defined(__i386) || defined(__amd64)
26181 	ssize_t dma_resid;
26182 	daddr_t oblkno;
26183 #endif
26184 
26185 	instance = SDUNIT(dev);
26186 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
26187 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
26188 		return (ENXIO);
26189 	}
26190 
26191 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
26192 
26193 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
26194 
26195 	partition = SDPART(dev);
26196 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
26197 
26198 	/* Validate blocks to dump at against partition size. */
26199 	lp = &un->un_map[partition];
26200 	if ((blkno + nblk) > lp->dkl_nblk) {
26201 		SD_TRACE(SD_LOG_DUMP, un,
26202 		    "sddump: dump range larger than partition: "
26203 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
26204 		    blkno, nblk, lp->dkl_nblk);
26205 		return (EINVAL);
26206 	}
26207 
26208 	mutex_enter(&un->un_pm_mutex);
26209 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26210 		struct scsi_pkt *start_pktp;
26211 
26212 		mutex_exit(&un->un_pm_mutex);
26213 
26214 		/*
26215 		 * use pm framework to power on HBA 1st
26216 		 */
26217 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26218 
26219 		/*
26220 		 * Dump no long uses sdpower to power on a device, it's
26221 		 * in-line here so it can be done in polled mode.
26222 		 */
26223 
26224 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26225 
26226 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26227 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26228 
26229 		if (start_pktp == NULL) {
26230 			/* We were not given a SCSI packet, fail. */
26231 			return (EIO);
26232 		}
26233 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26234 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26235 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26236 		start_pktp->pkt_flags = FLAG_NOINTR;
26237 
26238 		mutex_enter(SD_MUTEX(un));
26239 		SD_FILL_SCSI1_LUN(un, start_pktp);
26240 		mutex_exit(SD_MUTEX(un));
26241 		/*
26242 		 * Scsi_poll returns 0 (success) if the command completes and
26243 		 * the status block is STATUS_GOOD.
26244 		 */
26245 		if (sd_scsi_poll(un, start_pktp) != 0) {
26246 			scsi_destroy_pkt(start_pktp);
26247 			return (EIO);
26248 		}
26249 		scsi_destroy_pkt(start_pktp);
26250 		(void) sd_ddi_pm_resume(un);
26251 	} else {
26252 		mutex_exit(&un->un_pm_mutex);
26253 	}
26254 
26255 	mutex_enter(SD_MUTEX(un));
26256 	un->un_throttle = 0;
26257 
26258 	/*
26259 	 * The first time through, reset the specific target device.
26260 	 * However, when cpr calls sddump we know that sd is in a
26261 	 * a good state so no bus reset is required.
26262 	 * Clear sense data via Request Sense cmd.
26263 	 * In sddump we don't care about allow_bus_device_reset anymore
26264 	 */
26265 
26266 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26267 	    (un->un_state != SD_STATE_DUMPING)) {
26268 
26269 		New_state(un, SD_STATE_DUMPING);
26270 
26271 		if (un->un_f_is_fibre == FALSE) {
26272 			mutex_exit(SD_MUTEX(un));
26273 			/*
26274 			 * Attempt a bus reset for parallel scsi.
26275 			 *
26276 			 * Note: A bus reset is required because on some host
26277 			 * systems (i.e. E420R) a bus device reset is
26278 			 * insufficient to reset the state of the target.
26279 			 *
26280 			 * Note: Don't issue the reset for fibre-channel,
26281 			 * because this tends to hang the bus (loop) for
26282 			 * too long while everyone is logging out and in
26283 			 * and the deadman timer for dumping will fire
26284 			 * before the dump is complete.
26285 			 */
26286 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26287 				mutex_enter(SD_MUTEX(un));
26288 				Restore_state(un);
26289 				mutex_exit(SD_MUTEX(un));
26290 				return (EIO);
26291 			}
26292 
26293 			/* Delay to give the device some recovery time. */
26294 			drv_usecwait(10000);
26295 
26296 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26297 				SD_INFO(SD_LOG_DUMP, un,
26298 					"sddump: sd_send_polled_RQS failed\n");
26299 			}
26300 			mutex_enter(SD_MUTEX(un));
26301 		}
26302 	}
26303 
26304 	/*
26305 	 * Convert the partition-relative block number to a
26306 	 * disk physical block number.
26307 	 */
26308 	blkno += un->un_offset[partition];
26309 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26310 
26311 
26312 	/*
26313 	 * Check if the device has a non-512 block size.
26314 	 */
26315 	wr_bp = NULL;
26316 	if (NOT_DEVBSIZE(un)) {
26317 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26318 		tgt_byte_count = nblk * un->un_sys_blocksize;
26319 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26320 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26321 			doing_rmw = TRUE;
26322 			/*
26323 			 * Calculate the block number and number of block
26324 			 * in terms of the media block size.
26325 			 */
26326 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26327 			tgt_nblk =
26328 			    ((tgt_byte_offset + tgt_byte_count +
26329 				(un->un_tgt_blocksize - 1)) /
26330 				un->un_tgt_blocksize) - tgt_blkno;
26331 
26332 			/*
26333 			 * Invoke the routine which is going to do read part
26334 			 * of read-modify-write.
26335 			 * Note that this routine returns a pointer to
26336 			 * a valid bp in wr_bp.
26337 			 */
26338 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26339 			    &wr_bp);
26340 			if (err) {
26341 				mutex_exit(SD_MUTEX(un));
26342 				return (err);
26343 			}
26344 			/*
26345 			 * Offset is being calculated as -
26346 			 * (original block # * system block size) -
26347 			 * (new block # * target block size)
26348 			 */
26349 			io_start_offset =
26350 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26351 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26352 
26353 			ASSERT((io_start_offset >= 0) &&
26354 			    (io_start_offset < un->un_tgt_blocksize));
26355 			/*
26356 			 * Do the modify portion of read modify write.
26357 			 */
26358 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26359 			    (size_t)nblk * un->un_sys_blocksize);
26360 		} else {
26361 			doing_rmw = FALSE;
26362 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26363 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26364 		}
26365 
26366 		/* Convert blkno and nblk to target blocks */
26367 		blkno = tgt_blkno;
26368 		nblk = tgt_nblk;
26369 	} else {
26370 		wr_bp = &wr_buf;
26371 		bzero(wr_bp, sizeof (struct buf));
26372 		wr_bp->b_flags		= B_BUSY;
26373 		wr_bp->b_un.b_addr	= addr;
26374 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26375 		wr_bp->b_resid		= 0;
26376 	}
26377 
26378 	mutex_exit(SD_MUTEX(un));
26379 
26380 	/*
26381 	 * Obtain a SCSI packet for the write command.
26382 	 * It should be safe to call the allocator here without
26383 	 * worrying about being locked for DVMA mapping because
26384 	 * the address we're passed is already a DVMA mapping
26385 	 *
26386 	 * We are also not going to worry about semaphore ownership
26387 	 * in the dump buffer. Dumping is single threaded at present.
26388 	 */
26389 
26390 	wr_pktp = NULL;
26391 
26392 #if defined(__i386) || defined(__amd64)
26393 	dma_resid = wr_bp->b_bcount;
26394 	oblkno = blkno;
26395 	while (dma_resid != 0) {
26396 #endif
26397 
26398 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26399 		wr_bp->b_flags &= ~B_ERROR;
26400 
26401 #if defined(__i386) || defined(__amd64)
26402 		blkno = oblkno +
26403 			((wr_bp->b_bcount - dma_resid) /
26404 			    un->un_tgt_blocksize);
26405 		nblk = dma_resid / un->un_tgt_blocksize;
26406 
26407 		if (wr_pktp) {
26408 			/* Partial DMA transfers after initial transfer */
26409 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26410 			    blkno, nblk);
26411 		} else {
26412 			/* Initial transfer */
26413 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26414 			    un->un_pkt_flags, NULL_FUNC, NULL,
26415 			    blkno, nblk);
26416 		}
26417 #else
26418 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26419 		    0, NULL_FUNC, NULL, blkno, nblk);
26420 #endif
26421 
26422 		if (rval == 0) {
26423 			/* We were given a SCSI packet, continue. */
26424 			break;
26425 		}
26426 
26427 		if (i == 0) {
26428 			if (wr_bp->b_flags & B_ERROR) {
26429 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26430 				    "no resources for dumping; "
26431 				    "error code: 0x%x, retrying",
26432 				    geterror(wr_bp));
26433 			} else {
26434 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26435 				    "no resources for dumping; retrying");
26436 			}
26437 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26438 			if (wr_bp->b_flags & B_ERROR) {
26439 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26440 				    "no resources for dumping; error code: "
26441 				    "0x%x, retrying\n", geterror(wr_bp));
26442 			}
26443 		} else {
26444 			if (wr_bp->b_flags & B_ERROR) {
26445 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26446 				    "no resources for dumping; "
26447 				    "error code: 0x%x, retries failed, "
26448 				    "giving up.\n", geterror(wr_bp));
26449 			} else {
26450 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26451 				    "no resources for dumping; "
26452 				    "retries failed, giving up.\n");
26453 			}
26454 			mutex_enter(SD_MUTEX(un));
26455 			Restore_state(un);
26456 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26457 				mutex_exit(SD_MUTEX(un));
26458 				scsi_free_consistent_buf(wr_bp);
26459 			} else {
26460 				mutex_exit(SD_MUTEX(un));
26461 			}
26462 			return (EIO);
26463 		}
26464 		drv_usecwait(10000);
26465 	}
26466 
26467 #if defined(__i386) || defined(__amd64)
26468 	/*
26469 	 * save the resid from PARTIAL_DMA
26470 	 */
26471 	dma_resid = wr_pktp->pkt_resid;
26472 	if (dma_resid != 0)
26473 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26474 	wr_pktp->pkt_resid = 0;
26475 #endif
26476 
26477 	/* SunBug 1222170 */
26478 	wr_pktp->pkt_flags = FLAG_NOINTR;
26479 
26480 	err = EIO;
26481 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26482 
26483 		/*
26484 		 * Scsi_poll returns 0 (success) if the command completes and
26485 		 * the status block is STATUS_GOOD.  We should only check
26486 		 * errors if this condition is not true.  Even then we should
26487 		 * send our own request sense packet only if we have a check
26488 		 * condition and auto request sense has not been performed by
26489 		 * the hba.
26490 		 */
26491 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26492 
26493 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26494 		    (wr_pktp->pkt_resid == 0)) {
26495 			err = SD_SUCCESS;
26496 			break;
26497 		}
26498 
26499 		/*
26500 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26501 		 */
26502 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26503 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26504 			    "Device is gone\n");
26505 			break;
26506 		}
26507 
26508 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26509 			SD_INFO(SD_LOG_DUMP, un,
26510 			    "sddump: write failed with CHECK, try # %d\n", i);
26511 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26512 				(void) sd_send_polled_RQS(un);
26513 			}
26514 
26515 			continue;
26516 		}
26517 
26518 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26519 			int reset_retval = 0;
26520 
26521 			SD_INFO(SD_LOG_DUMP, un,
26522 			    "sddump: write failed with BUSY, try # %d\n", i);
26523 
26524 			if (un->un_f_lun_reset_enabled == TRUE) {
26525 				reset_retval = scsi_reset(SD_ADDRESS(un),
26526 				    RESET_LUN);
26527 			}
26528 			if (reset_retval == 0) {
26529 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26530 			}
26531 			(void) sd_send_polled_RQS(un);
26532 
26533 		} else {
26534 			SD_INFO(SD_LOG_DUMP, un,
26535 			    "sddump: write failed with 0x%x, try # %d\n",
26536 			    SD_GET_PKT_STATUS(wr_pktp), i);
26537 			mutex_enter(SD_MUTEX(un));
26538 			sd_reset_target(un, wr_pktp);
26539 			mutex_exit(SD_MUTEX(un));
26540 		}
26541 
26542 		/*
26543 		 * If we are not getting anywhere with lun/target resets,
26544 		 * let's reset the bus.
26545 		 */
26546 		if (i == SD_NDUMP_RETRIES/2) {
26547 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26548 			(void) sd_send_polled_RQS(un);
26549 		}
26550 
26551 	}
26552 #if defined(__i386) || defined(__amd64)
26553 	}	/* dma_resid */
26554 #endif
26555 
26556 	scsi_destroy_pkt(wr_pktp);
26557 	mutex_enter(SD_MUTEX(un));
26558 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26559 		mutex_exit(SD_MUTEX(un));
26560 		scsi_free_consistent_buf(wr_bp);
26561 	} else {
26562 		mutex_exit(SD_MUTEX(un));
26563 	}
26564 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26565 	return (err);
26566 }
26567 
26568 /*
26569  *    Function: sd_scsi_poll()
26570  *
26571  * Description: This is a wrapper for the scsi_poll call.
26572  *
26573  *   Arguments: sd_lun - The unit structure
26574  *              scsi_pkt - The scsi packet being sent to the device.
26575  *
26576  * Return Code: 0 - Command completed successfully with good status
26577  *             -1 - Command failed.  This could indicate a check condition
26578  *                  or other status value requiring recovery action.
26579  *
26580  */
26581 
26582 static int
26583 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26584 {
26585 	int status;
26586 
26587 	ASSERT(un != NULL);
26588 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26589 	ASSERT(pktp != NULL);
26590 
26591 	status = SD_SUCCESS;
26592 
26593 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26594 		pktp->pkt_flags |= un->un_tagflags;
26595 		pktp->pkt_flags &= ~FLAG_NODISCON;
26596 	}
26597 
26598 	status = sd_ddi_scsi_poll(pktp);
26599 	/*
26600 	 * Scsi_poll returns 0 (success) if the command completes and the
26601 	 * status block is STATUS_GOOD.  We should only check errors if this
26602 	 * condition is not true.  Even then we should send our own request
26603 	 * sense packet only if we have a check condition and auto
26604 	 * request sense has not been performed by the hba.
26605 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26606 	 */
26607 	if ((status != SD_SUCCESS) &&
26608 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26609 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26610 	    (pktp->pkt_reason != CMD_DEV_GONE))
26611 		(void) sd_send_polled_RQS(un);
26612 
26613 	return (status);
26614 }
26615 
26616 /*
26617  *    Function: sd_send_polled_RQS()
26618  *
26619  * Description: This sends the request sense command to a device.
26620  *
26621  *   Arguments: sd_lun - The unit structure
26622  *
26623  * Return Code: 0 - Command completed successfully with good status
26624  *             -1 - Command failed.
26625  *
26626  */
26627 
26628 static int
26629 sd_send_polled_RQS(struct sd_lun *un)
26630 {
26631 	int	ret_val;
26632 	struct	scsi_pkt	*rqs_pktp;
26633 	struct	buf		*rqs_bp;
26634 
26635 	ASSERT(un != NULL);
26636 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26637 
26638 	ret_val = SD_SUCCESS;
26639 
26640 	rqs_pktp = un->un_rqs_pktp;
26641 	rqs_bp	 = un->un_rqs_bp;
26642 
26643 	mutex_enter(SD_MUTEX(un));
26644 
26645 	if (un->un_sense_isbusy) {
26646 		ret_val = SD_FAILURE;
26647 		mutex_exit(SD_MUTEX(un));
26648 		return (ret_val);
26649 	}
26650 
26651 	/*
26652 	 * If the request sense buffer (and packet) is not in use,
26653 	 * let's set the un_sense_isbusy and send our packet
26654 	 */
26655 	un->un_sense_isbusy 	= 1;
26656 	rqs_pktp->pkt_resid  	= 0;
26657 	rqs_pktp->pkt_reason 	= 0;
26658 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26659 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26660 
26661 	mutex_exit(SD_MUTEX(un));
26662 
26663 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26664 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26665 
26666 	/*
26667 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26668 	 * axle - it has a call into us!
26669 	 */
26670 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26671 		SD_INFO(SD_LOG_COMMON, un,
26672 		    "sd_send_polled_RQS: RQS failed\n");
26673 	}
26674 
26675 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26676 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26677 
26678 	mutex_enter(SD_MUTEX(un));
26679 	un->un_sense_isbusy = 0;
26680 	mutex_exit(SD_MUTEX(un));
26681 
26682 	return (ret_val);
26683 }
26684 
26685 /*
26686  * Defines needed for localized version of the scsi_poll routine.
26687  */
26688 #define	SD_CSEC		10000			/* usecs */
26689 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26690 
26691 
26692 /*
26693  *    Function: sd_ddi_scsi_poll()
26694  *
26695  * Description: Localized version of the scsi_poll routine.  The purpose is to
26696  *		send a scsi_pkt to a device as a polled command.  This version
26697  *		is to ensure more robust handling of transport errors.
26698  *		Specifically this routine cures not ready, coming ready
26699  *		transition for power up and reset of sonoma's.  This can take
26700  *		up to 45 seconds for power-on and 20 seconds for reset of a
26701  * 		sonoma lun.
26702  *
26703  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26704  *
26705  * Return Code: 0 - Command completed successfully with good status
26706  *             -1 - Command failed.
26707  *
26708  */
26709 
26710 static int
26711 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26712 {
26713 	int busy_count;
26714 	int timeout;
26715 	int rval = SD_FAILURE;
26716 	int savef;
26717 	uint8_t *sensep;
26718 	long savet;
26719 	void (*savec)();
26720 	/*
26721 	 * The following is defined in machdep.c and is used in determining if
26722 	 * the scsi transport system will do polled I/O instead of interrupt
26723 	 * I/O when called from xx_dump().
26724 	 */
26725 	extern int do_polled_io;
26726 
26727 	/*
26728 	 * save old flags in pkt, to restore at end
26729 	 */
26730 	savef = pkt->pkt_flags;
26731 	savec = pkt->pkt_comp;
26732 	savet = pkt->pkt_time;
26733 
26734 	pkt->pkt_flags |= FLAG_NOINTR;
26735 
26736 	/*
26737 	 * XXX there is nothing in the SCSA spec that states that we should not
26738 	 * do a callback for polled cmds; however, removing this will break sd
26739 	 * and probably other target drivers
26740 	 */
26741 	pkt->pkt_comp = NULL;
26742 
26743 	/*
26744 	 * we don't like a polled command without timeout.
26745 	 * 60 seconds seems long enough.
26746 	 */
26747 	if (pkt->pkt_time == 0) {
26748 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26749 	}
26750 
26751 	/*
26752 	 * Send polled cmd.
26753 	 *
26754 	 * We do some error recovery for various errors.  Tran_busy,
26755 	 * queue full, and non-dispatched commands are retried every 10 msec.
26756 	 * as they are typically transient failures.  Busy status and Not
26757 	 * Ready are retried every second as this status takes a while to
26758 	 * change.  Unit attention is retried for pkt_time (60) times
26759 	 * with no delay.
26760 	 */
26761 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26762 
26763 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26764 		int rc;
26765 		int poll_delay;
26766 
26767 		/*
26768 		 * Initialize pkt status variables.
26769 		 */
26770 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26771 
26772 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26773 			if (rc != TRAN_BUSY) {
26774 				/* Transport failed - give up. */
26775 				break;
26776 			} else {
26777 				/* Transport busy - try again. */
26778 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26779 			}
26780 		} else {
26781 			/*
26782 			 * Transport accepted - check pkt status.
26783 			 */
26784 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26785 			if (pkt->pkt_reason == CMD_CMPLT &&
26786 			    rc == STATUS_CHECK &&
26787 			    pkt->pkt_state & STATE_ARQ_DONE) {
26788 				struct scsi_arq_status *arqstat =
26789 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26790 
26791 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26792 			} else {
26793 				sensep = NULL;
26794 			}
26795 
26796 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26797 			    (rc == STATUS_GOOD)) {
26798 				/* No error - we're done */
26799 				rval = SD_SUCCESS;
26800 				break;
26801 
26802 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26803 				/* Lost connection - give up */
26804 				break;
26805 
26806 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26807 			    (pkt->pkt_state == 0)) {
26808 				/* Pkt not dispatched - try again. */
26809 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26810 
26811 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26812 			    (rc == STATUS_QFULL)) {
26813 				/* Queue full - try again. */
26814 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26815 
26816 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26817 			    (rc == STATUS_BUSY)) {
26818 				/* Busy - try again. */
26819 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26820 				busy_count += (SD_SEC_TO_CSEC - 1);
26821 
26822 			} else if ((sensep != NULL) &&
26823 			    (scsi_sense_key(sensep) ==
26824 				KEY_UNIT_ATTENTION)) {
26825 				/* Unit Attention - try again */
26826 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26827 				continue;
26828 
26829 			} else if ((sensep != NULL) &&
26830 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26831 			    (scsi_sense_asc(sensep) == 0x04) &&
26832 			    (scsi_sense_ascq(sensep) == 0x01)) {
26833 				/* Not ready -> ready - try again. */
26834 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26835 				busy_count += (SD_SEC_TO_CSEC - 1);
26836 
26837 			} else {
26838 				/* BAD status - give up. */
26839 				break;
26840 			}
26841 		}
26842 
26843 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26844 		    !do_polled_io) {
26845 			delay(drv_usectohz(poll_delay));
26846 		} else {
26847 			/* we busy wait during cpr_dump or interrupt threads */
26848 			drv_usecwait(poll_delay);
26849 		}
26850 	}
26851 
26852 	pkt->pkt_flags = savef;
26853 	pkt->pkt_comp = savec;
26854 	pkt->pkt_time = savet;
26855 	return (rval);
26856 }
26857 
26858 
26859 /*
26860  *    Function: sd_persistent_reservation_in_read_keys
26861  *
26862  * Description: This routine is the driver entry point for handling CD-ROM
26863  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26864  *		by sending the SCSI-3 PRIN commands to the device.
26865  *		Processes the read keys command response by copying the
26866  *		reservation key information into the user provided buffer.
26867  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26868  *
26869  *   Arguments: un   -  Pointer to soft state struct for the target.
26870  *		usrp -	user provided pointer to multihost Persistent In Read
26871  *			Keys structure (mhioc_inkeys_t)
26872  *		flag -	this argument is a pass through to ddi_copyxxx()
26873  *			directly from the mode argument of ioctl().
26874  *
26875  * Return Code: 0   - Success
26876  *		EACCES
26877  *		ENOTSUP
26878  *		errno return code from sd_send_scsi_cmd()
26879  *
26880  *     Context: Can sleep. Does not return until command is completed.
26881  */
26882 
26883 static int
26884 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26885     mhioc_inkeys_t *usrp, int flag)
26886 {
26887 #ifdef _MULTI_DATAMODEL
26888 	struct mhioc_key_list32	li32;
26889 #endif
26890 	sd_prin_readkeys_t	*in;
26891 	mhioc_inkeys_t		*ptr;
26892 	mhioc_key_list_t	li;
26893 	uchar_t			*data_bufp;
26894 	int 			data_len;
26895 	int			rval;
26896 	size_t			copysz;
26897 
26898 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26899 		return (EINVAL);
26900 	}
26901 	bzero(&li, sizeof (mhioc_key_list_t));
26902 
26903 	/*
26904 	 * Get the listsize from user
26905 	 */
26906 #ifdef _MULTI_DATAMODEL
26907 
26908 	switch (ddi_model_convert_from(flag & FMODELS)) {
26909 	case DDI_MODEL_ILP32:
26910 		copysz = sizeof (struct mhioc_key_list32);
26911 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26912 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26913 			    "sd_persistent_reservation_in_read_keys: "
26914 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26915 			rval = EFAULT;
26916 			goto done;
26917 		}
26918 		li.listsize = li32.listsize;
26919 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26920 		break;
26921 
26922 	case DDI_MODEL_NONE:
26923 		copysz = sizeof (mhioc_key_list_t);
26924 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26925 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26926 			    "sd_persistent_reservation_in_read_keys: "
26927 			    "failed ddi_copyin: mhioc_key_list_t\n");
26928 			rval = EFAULT;
26929 			goto done;
26930 		}
26931 		break;
26932 	}
26933 
26934 #else /* ! _MULTI_DATAMODEL */
26935 	copysz = sizeof (mhioc_key_list_t);
26936 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26937 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26938 		    "sd_persistent_reservation_in_read_keys: "
26939 		    "failed ddi_copyin: mhioc_key_list_t\n");
26940 		rval = EFAULT;
26941 		goto done;
26942 	}
26943 #endif
26944 
26945 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26946 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26947 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26948 
26949 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26950 	    data_len, data_bufp)) != 0) {
26951 		goto done;
26952 	}
26953 	in = (sd_prin_readkeys_t *)data_bufp;
26954 	ptr->generation = BE_32(in->generation);
26955 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26956 
26957 	/*
26958 	 * Return the min(listsize, listlen) keys
26959 	 */
26960 #ifdef _MULTI_DATAMODEL
26961 
26962 	switch (ddi_model_convert_from(flag & FMODELS)) {
26963 	case DDI_MODEL_ILP32:
26964 		li32.listlen = li.listlen;
26965 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26966 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26967 			    "sd_persistent_reservation_in_read_keys: "
26968 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26969 			rval = EFAULT;
26970 			goto done;
26971 		}
26972 		break;
26973 
26974 	case DDI_MODEL_NONE:
26975 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26976 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26977 			    "sd_persistent_reservation_in_read_keys: "
26978 			    "failed ddi_copyout: mhioc_key_list_t\n");
26979 			rval = EFAULT;
26980 			goto done;
26981 		}
26982 		break;
26983 	}
26984 
26985 #else /* ! _MULTI_DATAMODEL */
26986 
26987 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26988 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26989 		    "sd_persistent_reservation_in_read_keys: "
26990 		    "failed ddi_copyout: mhioc_key_list_t\n");
26991 		rval = EFAULT;
26992 		goto done;
26993 	}
26994 
26995 #endif /* _MULTI_DATAMODEL */
26996 
26997 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26998 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26999 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
27000 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27001 		    "sd_persistent_reservation_in_read_keys: "
27002 		    "failed ddi_copyout: keylist\n");
27003 		rval = EFAULT;
27004 	}
27005 done:
27006 	kmem_free(data_bufp, data_len);
27007 	return (rval);
27008 }
27009 
27010 
27011 /*
27012  *    Function: sd_persistent_reservation_in_read_resv
27013  *
27014  * Description: This routine is the driver entry point for handling CD-ROM
27015  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
27016  *		by sending the SCSI-3 PRIN commands to the device.
27017  *		Process the read persistent reservations command response by
27018  *		copying the reservation information into the user provided
27019  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
27020  *
27021  *   Arguments: un   -  Pointer to soft state struct for the target.
27022  *		usrp -	user provided pointer to multihost Persistent In Read
27023  *			Keys structure (mhioc_inkeys_t)
27024  *		flag -	this argument is a pass through to ddi_copyxxx()
27025  *			directly from the mode argument of ioctl().
27026  *
27027  * Return Code: 0   - Success
27028  *		EACCES
27029  *		ENOTSUP
27030  *		errno return code from sd_send_scsi_cmd()
27031  *
27032  *     Context: Can sleep. Does not return until command is completed.
27033  */
27034 
27035 static int
27036 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
27037     mhioc_inresvs_t *usrp, int flag)
27038 {
27039 #ifdef _MULTI_DATAMODEL
27040 	struct mhioc_resv_desc_list32 resvlist32;
27041 #endif
27042 	sd_prin_readresv_t	*in;
27043 	mhioc_inresvs_t		*ptr;
27044 	sd_readresv_desc_t	*readresv_ptr;
27045 	mhioc_resv_desc_list_t	resvlist;
27046 	mhioc_resv_desc_t 	resvdesc;
27047 	uchar_t			*data_bufp;
27048 	int 			data_len;
27049 	int			rval;
27050 	int			i;
27051 	size_t			copysz;
27052 	mhioc_resv_desc_t	*bufp;
27053 
27054 	if ((ptr = usrp) == NULL) {
27055 		return (EINVAL);
27056 	}
27057 
27058 	/*
27059 	 * Get the listsize from user
27060 	 */
27061 #ifdef _MULTI_DATAMODEL
27062 	switch (ddi_model_convert_from(flag & FMODELS)) {
27063 	case DDI_MODEL_ILP32:
27064 		copysz = sizeof (struct mhioc_resv_desc_list32);
27065 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
27066 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27067 			    "sd_persistent_reservation_in_read_resv: "
27068 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27069 			rval = EFAULT;
27070 			goto done;
27071 		}
27072 		resvlist.listsize = resvlist32.listsize;
27073 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
27074 		break;
27075 
27076 	case DDI_MODEL_NONE:
27077 		copysz = sizeof (mhioc_resv_desc_list_t);
27078 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27079 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27080 			    "sd_persistent_reservation_in_read_resv: "
27081 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27082 			rval = EFAULT;
27083 			goto done;
27084 		}
27085 		break;
27086 	}
27087 #else /* ! _MULTI_DATAMODEL */
27088 	copysz = sizeof (mhioc_resv_desc_list_t);
27089 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27090 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27091 		    "sd_persistent_reservation_in_read_resv: "
27092 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27093 		rval = EFAULT;
27094 		goto done;
27095 	}
27096 #endif /* ! _MULTI_DATAMODEL */
27097 
27098 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
27099 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
27100 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27101 
27102 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
27103 	    data_len, data_bufp)) != 0) {
27104 		goto done;
27105 	}
27106 	in = (sd_prin_readresv_t *)data_bufp;
27107 	ptr->generation = BE_32(in->generation);
27108 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
27109 
27110 	/*
27111 	 * Return the min(listsize, listlen( keys
27112 	 */
27113 #ifdef _MULTI_DATAMODEL
27114 
27115 	switch (ddi_model_convert_from(flag & FMODELS)) {
27116 	case DDI_MODEL_ILP32:
27117 		resvlist32.listlen = resvlist.listlen;
27118 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
27119 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27120 			    "sd_persistent_reservation_in_read_resv: "
27121 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27122 			rval = EFAULT;
27123 			goto done;
27124 		}
27125 		break;
27126 
27127 	case DDI_MODEL_NONE:
27128 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27129 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27130 			    "sd_persistent_reservation_in_read_resv: "
27131 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27132 			rval = EFAULT;
27133 			goto done;
27134 		}
27135 		break;
27136 	}
27137 
27138 #else /* ! _MULTI_DATAMODEL */
27139 
27140 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27141 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27142 		    "sd_persistent_reservation_in_read_resv: "
27143 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27144 		rval = EFAULT;
27145 		goto done;
27146 	}
27147 
27148 #endif /* ! _MULTI_DATAMODEL */
27149 
27150 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
27151 	bufp = resvlist.list;
27152 	copysz = sizeof (mhioc_resv_desc_t);
27153 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
27154 	    i++, readresv_ptr++, bufp++) {
27155 
27156 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
27157 		    MHIOC_RESV_KEY_SIZE);
27158 		resvdesc.type  = readresv_ptr->type;
27159 		resvdesc.scope = readresv_ptr->scope;
27160 		resvdesc.scope_specific_addr =
27161 		    BE_32(readresv_ptr->scope_specific_addr);
27162 
27163 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
27164 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27165 			    "sd_persistent_reservation_in_read_resv: "
27166 			    "failed ddi_copyout: resvlist\n");
27167 			rval = EFAULT;
27168 			goto done;
27169 		}
27170 	}
27171 done:
27172 	kmem_free(data_bufp, data_len);
27173 	return (rval);
27174 }
27175 
27176 
27177 /*
27178  *    Function: sr_change_blkmode()
27179  *
27180  * Description: This routine is the driver entry point for handling CD-ROM
27181  *		block mode ioctl requests. Support for returning and changing
27182  *		the current block size in use by the device is implemented. The
27183  *		LBA size is changed via a MODE SELECT Block Descriptor.
27184  *
27185  *		This routine issues a mode sense with an allocation length of
27186  *		12 bytes for the mode page header and a single block descriptor.
27187  *
27188  *   Arguments: dev - the device 'dev_t'
27189  *		cmd - the request type; one of CDROMGBLKMODE (get) or
27190  *		      CDROMSBLKMODE (set)
27191  *		data - current block size or requested block size
27192  *		flag - this argument is a pass through to ddi_copyxxx() directly
27193  *		       from the mode argument of ioctl().
27194  *
27195  * Return Code: the code returned by sd_send_scsi_cmd()
27196  *		EINVAL if invalid arguments are provided
27197  *		EFAULT if ddi_copyxxx() fails
27198  *		ENXIO if fail ddi_get_soft_state
27199  *		EIO if invalid mode sense block descriptor length
27200  *
27201  */
27202 
27203 static int
27204 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
27205 {
27206 	struct sd_lun			*un = NULL;
27207 	struct mode_header		*sense_mhp, *select_mhp;
27208 	struct block_descriptor		*sense_desc, *select_desc;
27209 	int				current_bsize;
27210 	int				rval = EINVAL;
27211 	uchar_t				*sense = NULL;
27212 	uchar_t				*select = NULL;
27213 
27214 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27215 
27216 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27217 		return (ENXIO);
27218 	}
27219 
27220 	/*
27221 	 * The block length is changed via the Mode Select block descriptor, the
27222 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27223 	 * required as part of this routine. Therefore the mode sense allocation
27224 	 * length is specified to be the length of a mode page header and a
27225 	 * block descriptor.
27226 	 */
27227 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27228 
27229 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27230 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27231 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27232 		    "sr_change_blkmode: Mode Sense Failed\n");
27233 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27234 		return (rval);
27235 	}
27236 
27237 	/* Check the block descriptor len to handle only 1 block descriptor */
27238 	sense_mhp = (struct mode_header *)sense;
27239 	if ((sense_mhp->bdesc_length == 0) ||
27240 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27241 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27242 		    "sr_change_blkmode: Mode Sense returned invalid block"
27243 		    " descriptor length\n");
27244 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27245 		return (EIO);
27246 	}
27247 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27248 	current_bsize = ((sense_desc->blksize_hi << 16) |
27249 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27250 
27251 	/* Process command */
27252 	switch (cmd) {
27253 	case CDROMGBLKMODE:
27254 		/* Return the block size obtained during the mode sense */
27255 		if (ddi_copyout(&current_bsize, (void *)data,
27256 		    sizeof (int), flag) != 0)
27257 			rval = EFAULT;
27258 		break;
27259 	case CDROMSBLKMODE:
27260 		/* Validate the requested block size */
27261 		switch (data) {
27262 		case CDROM_BLK_512:
27263 		case CDROM_BLK_1024:
27264 		case CDROM_BLK_2048:
27265 		case CDROM_BLK_2056:
27266 		case CDROM_BLK_2336:
27267 		case CDROM_BLK_2340:
27268 		case CDROM_BLK_2352:
27269 		case CDROM_BLK_2368:
27270 		case CDROM_BLK_2448:
27271 		case CDROM_BLK_2646:
27272 		case CDROM_BLK_2647:
27273 			break;
27274 		default:
27275 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27276 			    "sr_change_blkmode: "
27277 			    "Block Size '%ld' Not Supported\n", data);
27278 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27279 			return (EINVAL);
27280 		}
27281 
27282 		/*
27283 		 * The current block size matches the requested block size so
27284 		 * there is no need to send the mode select to change the size
27285 		 */
27286 		if (current_bsize == data) {
27287 			break;
27288 		}
27289 
27290 		/* Build the select data for the requested block size */
27291 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27292 		select_mhp = (struct mode_header *)select;
27293 		select_desc =
27294 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27295 		/*
27296 		 * The LBA size is changed via the block descriptor, so the
27297 		 * descriptor is built according to the user data
27298 		 */
27299 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27300 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27301 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27302 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27303 
27304 		/* Send the mode select for the requested block size */
27305 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27306 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27307 		    SD_PATH_STANDARD)) != 0) {
27308 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27309 			    "sr_change_blkmode: Mode Select Failed\n");
27310 			/*
27311 			 * The mode select failed for the requested block size,
27312 			 * so reset the data for the original block size and
27313 			 * send it to the target. The error is indicated by the
27314 			 * return value for the failed mode select.
27315 			 */
27316 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27317 			select_desc->blksize_mid = sense_desc->blksize_mid;
27318 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27319 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27320 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27321 			    SD_PATH_STANDARD);
27322 		} else {
27323 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27324 			mutex_enter(SD_MUTEX(un));
27325 			sd_update_block_info(un, (uint32_t)data, 0);
27326 
27327 			mutex_exit(SD_MUTEX(un));
27328 		}
27329 		break;
27330 	default:
27331 		/* should not reach here, but check anyway */
27332 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27333 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27334 		rval = EINVAL;
27335 		break;
27336 	}
27337 
27338 	if (select) {
27339 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27340 	}
27341 	if (sense) {
27342 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27343 	}
27344 	return (rval);
27345 }
27346 
27347 
27348 /*
27349  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27350  * implement driver support for getting and setting the CD speed. The command
27351  * set used will be based on the device type. If the device has not been
27352  * identified as MMC the Toshiba vendor specific mode page will be used. If
27353  * the device is MMC but does not support the Real Time Streaming feature
27354  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27355  * be used to read the speed.
27356  */
27357 
27358 /*
27359  *    Function: sr_change_speed()
27360  *
27361  * Description: This routine is the driver entry point for handling CD-ROM
27362  *		drive speed ioctl requests for devices supporting the Toshiba
27363  *		vendor specific drive speed mode page. Support for returning
27364  *		and changing the current drive speed in use by the device is
27365  *		implemented.
27366  *
27367  *   Arguments: dev - the device 'dev_t'
27368  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27369  *		      CDROMSDRVSPEED (set)
27370  *		data - current drive speed or requested drive speed
27371  *		flag - this argument is a pass through to ddi_copyxxx() directly
27372  *		       from the mode argument of ioctl().
27373  *
27374  * Return Code: the code returned by sd_send_scsi_cmd()
27375  *		EINVAL if invalid arguments are provided
27376  *		EFAULT if ddi_copyxxx() fails
27377  *		ENXIO if fail ddi_get_soft_state
27378  *		EIO if invalid mode sense block descriptor length
27379  */
27380 
27381 static int
27382 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27383 {
27384 	struct sd_lun			*un = NULL;
27385 	struct mode_header		*sense_mhp, *select_mhp;
27386 	struct mode_speed		*sense_page, *select_page;
27387 	int				current_speed;
27388 	int				rval = EINVAL;
27389 	int				bd_len;
27390 	uchar_t				*sense = NULL;
27391 	uchar_t				*select = NULL;
27392 
27393 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27394 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27395 		return (ENXIO);
27396 	}
27397 
27398 	/*
27399 	 * Note: The drive speed is being modified here according to a Toshiba
27400 	 * vendor specific mode page (0x31).
27401 	 */
27402 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27403 
27404 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27405 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27406 		SD_PATH_STANDARD)) != 0) {
27407 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27408 		    "sr_change_speed: Mode Sense Failed\n");
27409 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27410 		return (rval);
27411 	}
27412 	sense_mhp  = (struct mode_header *)sense;
27413 
27414 	/* Check the block descriptor len to handle only 1 block descriptor */
27415 	bd_len = sense_mhp->bdesc_length;
27416 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27417 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27418 		    "sr_change_speed: Mode Sense returned invalid block "
27419 		    "descriptor length\n");
27420 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27421 		return (EIO);
27422 	}
27423 
27424 	sense_page = (struct mode_speed *)
27425 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27426 	current_speed = sense_page->speed;
27427 
27428 	/* Process command */
27429 	switch (cmd) {
27430 	case CDROMGDRVSPEED:
27431 		/* Return the drive speed obtained during the mode sense */
27432 		if (current_speed == 0x2) {
27433 			current_speed = CDROM_TWELVE_SPEED;
27434 		}
27435 		if (ddi_copyout(&current_speed, (void *)data,
27436 		    sizeof (int), flag) != 0) {
27437 			rval = EFAULT;
27438 		}
27439 		break;
27440 	case CDROMSDRVSPEED:
27441 		/* Validate the requested drive speed */
27442 		switch ((uchar_t)data) {
27443 		case CDROM_TWELVE_SPEED:
27444 			data = 0x2;
27445 			/*FALLTHROUGH*/
27446 		case CDROM_NORMAL_SPEED:
27447 		case CDROM_DOUBLE_SPEED:
27448 		case CDROM_QUAD_SPEED:
27449 		case CDROM_MAXIMUM_SPEED:
27450 			break;
27451 		default:
27452 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27453 			    "sr_change_speed: "
27454 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27455 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27456 			return (EINVAL);
27457 		}
27458 
27459 		/*
27460 		 * The current drive speed matches the requested drive speed so
27461 		 * there is no need to send the mode select to change the speed
27462 		 */
27463 		if (current_speed == data) {
27464 			break;
27465 		}
27466 
27467 		/* Build the select data for the requested drive speed */
27468 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27469 		select_mhp = (struct mode_header *)select;
27470 		select_mhp->bdesc_length = 0;
27471 		select_page =
27472 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27473 		select_page =
27474 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27475 		select_page->mode_page.code = CDROM_MODE_SPEED;
27476 		select_page->mode_page.length = 2;
27477 		select_page->speed = (uchar_t)data;
27478 
27479 		/* Send the mode select for the requested block size */
27480 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27481 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27482 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27483 			/*
27484 			 * The mode select failed for the requested drive speed,
27485 			 * so reset the data for the original drive speed and
27486 			 * send it to the target. The error is indicated by the
27487 			 * return value for the failed mode select.
27488 			 */
27489 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27490 			    "sr_drive_speed: Mode Select Failed\n");
27491 			select_page->speed = sense_page->speed;
27492 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27493 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27494 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27495 		}
27496 		break;
27497 	default:
27498 		/* should not reach here, but check anyway */
27499 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27500 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27501 		rval = EINVAL;
27502 		break;
27503 	}
27504 
27505 	if (select) {
27506 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27507 	}
27508 	if (sense) {
27509 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27510 	}
27511 
27512 	return (rval);
27513 }
27514 
27515 
27516 /*
27517  *    Function: sr_atapi_change_speed()
27518  *
27519  * Description: This routine is the driver entry point for handling CD-ROM
27520  *		drive speed ioctl requests for MMC devices that do not support
27521  *		the Real Time Streaming feature (0x107).
27522  *
27523  *		Note: This routine will use the SET SPEED command which may not
27524  *		be supported by all devices.
27525  *
27526  *   Arguments: dev- the device 'dev_t'
27527  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27528  *		     CDROMSDRVSPEED (set)
27529  *		data- current drive speed or requested drive speed
27530  *		flag- this argument is a pass through to ddi_copyxxx() directly
27531  *		      from the mode argument of ioctl().
27532  *
27533  * Return Code: the code returned by sd_send_scsi_cmd()
27534  *		EINVAL if invalid arguments are provided
27535  *		EFAULT if ddi_copyxxx() fails
27536  *		ENXIO if fail ddi_get_soft_state
27537  *		EIO if invalid mode sense block descriptor length
27538  */
27539 
27540 static int
27541 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27542 {
27543 	struct sd_lun			*un;
27544 	struct uscsi_cmd		*com = NULL;
27545 	struct mode_header_grp2		*sense_mhp;
27546 	uchar_t				*sense_page;
27547 	uchar_t				*sense = NULL;
27548 	char				cdb[CDB_GROUP5];
27549 	int				bd_len;
27550 	int				current_speed = 0;
27551 	int				max_speed = 0;
27552 	int				rval;
27553 
27554 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27555 
27556 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27557 		return (ENXIO);
27558 	}
27559 
27560 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27561 
27562 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27563 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27564 	    SD_PATH_STANDARD)) != 0) {
27565 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27566 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27567 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27568 		return (rval);
27569 	}
27570 
27571 	/* Check the block descriptor len to handle only 1 block descriptor */
27572 	sense_mhp = (struct mode_header_grp2 *)sense;
27573 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27574 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27575 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27576 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27577 		    "block descriptor length\n");
27578 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27579 		return (EIO);
27580 	}
27581 
27582 	/* Calculate the current and maximum drive speeds */
27583 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27584 	current_speed = (sense_page[14] << 8) | sense_page[15];
27585 	max_speed = (sense_page[8] << 8) | sense_page[9];
27586 
27587 	/* Process the command */
27588 	switch (cmd) {
27589 	case CDROMGDRVSPEED:
27590 		current_speed /= SD_SPEED_1X;
27591 		if (ddi_copyout(&current_speed, (void *)data,
27592 		    sizeof (int), flag) != 0)
27593 			rval = EFAULT;
27594 		break;
27595 	case CDROMSDRVSPEED:
27596 		/* Convert the speed code to KB/sec */
27597 		switch ((uchar_t)data) {
27598 		case CDROM_NORMAL_SPEED:
27599 			current_speed = SD_SPEED_1X;
27600 			break;
27601 		case CDROM_DOUBLE_SPEED:
27602 			current_speed = 2 * SD_SPEED_1X;
27603 			break;
27604 		case CDROM_QUAD_SPEED:
27605 			current_speed = 4 * SD_SPEED_1X;
27606 			break;
27607 		case CDROM_TWELVE_SPEED:
27608 			current_speed = 12 * SD_SPEED_1X;
27609 			break;
27610 		case CDROM_MAXIMUM_SPEED:
27611 			current_speed = 0xffff;
27612 			break;
27613 		default:
27614 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27615 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27616 			    (uchar_t)data);
27617 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27618 			return (EINVAL);
27619 		}
27620 
27621 		/* Check the request against the drive's max speed. */
27622 		if (current_speed != 0xffff) {
27623 			if (current_speed > max_speed) {
27624 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27625 				return (EINVAL);
27626 			}
27627 		}
27628 
27629 		/*
27630 		 * Build and send the SET SPEED command
27631 		 *
27632 		 * Note: The SET SPEED (0xBB) command used in this routine is
27633 		 * obsolete per the SCSI MMC spec but still supported in the
27634 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27635 		 * therefore the command is still implemented in this routine.
27636 		 */
27637 		bzero(cdb, sizeof (cdb));
27638 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27639 		cdb[2] = (uchar_t)(current_speed >> 8);
27640 		cdb[3] = (uchar_t)current_speed;
27641 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27642 		com->uscsi_cdb	   = (caddr_t)cdb;
27643 		com->uscsi_cdblen  = CDB_GROUP5;
27644 		com->uscsi_bufaddr = NULL;
27645 		com->uscsi_buflen  = 0;
27646 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27647 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
27648 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27649 		break;
27650 	default:
27651 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27652 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27653 		rval = EINVAL;
27654 	}
27655 
27656 	if (sense) {
27657 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27658 	}
27659 	if (com) {
27660 		kmem_free(com, sizeof (*com));
27661 	}
27662 	return (rval);
27663 }
27664 
27665 
27666 /*
27667  *    Function: sr_pause_resume()
27668  *
27669  * Description: This routine is the driver entry point for handling CD-ROM
27670  *		pause/resume ioctl requests. This only affects the audio play
27671  *		operation.
27672  *
27673  *   Arguments: dev - the device 'dev_t'
27674  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27675  *		      for setting the resume bit of the cdb.
27676  *
27677  * Return Code: the code returned by sd_send_scsi_cmd()
27678  *		EINVAL if invalid mode specified
27679  *
27680  */
27681 
27682 static int
27683 sr_pause_resume(dev_t dev, int cmd)
27684 {
27685 	struct sd_lun		*un;
27686 	struct uscsi_cmd	*com;
27687 	char			cdb[CDB_GROUP1];
27688 	int			rval;
27689 
27690 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27691 		return (ENXIO);
27692 	}
27693 
27694 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27695 	bzero(cdb, CDB_GROUP1);
27696 	cdb[0] = SCMD_PAUSE_RESUME;
27697 	switch (cmd) {
27698 	case CDROMRESUME:
27699 		cdb[8] = 1;
27700 		break;
27701 	case CDROMPAUSE:
27702 		cdb[8] = 0;
27703 		break;
27704 	default:
27705 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27706 		    " Command '%x' Not Supported\n", cmd);
27707 		rval = EINVAL;
27708 		goto done;
27709 	}
27710 
27711 	com->uscsi_cdb    = cdb;
27712 	com->uscsi_cdblen = CDB_GROUP1;
27713 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27714 
27715 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27716 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27717 
27718 done:
27719 	kmem_free(com, sizeof (*com));
27720 	return (rval);
27721 }
27722 
27723 
27724 /*
27725  *    Function: sr_play_msf()
27726  *
27727  * Description: This routine is the driver entry point for handling CD-ROM
27728  *		ioctl requests to output the audio signals at the specified
27729  *		starting address and continue the audio play until the specified
27730  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27731  *		Frame (MSF) format.
27732  *
27733  *   Arguments: dev	- the device 'dev_t'
27734  *		data	- pointer to user provided audio msf structure,
27735  *		          specifying start/end addresses.
27736  *		flag	- this argument is a pass through to ddi_copyxxx()
27737  *		          directly from the mode argument of ioctl().
27738  *
27739  * Return Code: the code returned by sd_send_scsi_cmd()
27740  *		EFAULT if ddi_copyxxx() fails
27741  *		ENXIO if fail ddi_get_soft_state
27742  *		EINVAL if data pointer is NULL
27743  */
27744 
27745 static int
27746 sr_play_msf(dev_t dev, caddr_t data, int flag)
27747 {
27748 	struct sd_lun		*un;
27749 	struct uscsi_cmd	*com;
27750 	struct cdrom_msf	msf_struct;
27751 	struct cdrom_msf	*msf = &msf_struct;
27752 	char			cdb[CDB_GROUP1];
27753 	int			rval;
27754 
27755 	if (data == NULL) {
27756 		return (EINVAL);
27757 	}
27758 
27759 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27760 		return (ENXIO);
27761 	}
27762 
27763 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27764 		return (EFAULT);
27765 	}
27766 
27767 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27768 	bzero(cdb, CDB_GROUP1);
27769 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27770 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27771 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27772 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27773 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27774 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27775 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27776 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27777 	} else {
27778 		cdb[3] = msf->cdmsf_min0;
27779 		cdb[4] = msf->cdmsf_sec0;
27780 		cdb[5] = msf->cdmsf_frame0;
27781 		cdb[6] = msf->cdmsf_min1;
27782 		cdb[7] = msf->cdmsf_sec1;
27783 		cdb[8] = msf->cdmsf_frame1;
27784 	}
27785 	com->uscsi_cdb    = cdb;
27786 	com->uscsi_cdblen = CDB_GROUP1;
27787 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27788 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27789 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27790 	kmem_free(com, sizeof (*com));
27791 	return (rval);
27792 }
27793 
27794 
27795 /*
27796  *    Function: sr_play_trkind()
27797  *
27798  * Description: This routine is the driver entry point for handling CD-ROM
27799  *		ioctl requests to output the audio signals at the specified
27800  *		starting address and continue the audio play until the specified
27801  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27802  *		format.
27803  *
27804  *   Arguments: dev	- the device 'dev_t'
27805  *		data	- pointer to user provided audio track/index structure,
27806  *		          specifying start/end addresses.
27807  *		flag	- this argument is a pass through to ddi_copyxxx()
27808  *		          directly from the mode argument of ioctl().
27809  *
27810  * Return Code: the code returned by sd_send_scsi_cmd()
27811  *		EFAULT if ddi_copyxxx() fails
27812  *		ENXIO if fail ddi_get_soft_state
27813  *		EINVAL if data pointer is NULL
27814  */
27815 
27816 static int
27817 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27818 {
27819 	struct cdrom_ti		ti_struct;
27820 	struct cdrom_ti		*ti = &ti_struct;
27821 	struct uscsi_cmd	*com = NULL;
27822 	char			cdb[CDB_GROUP1];
27823 	int			rval;
27824 
27825 	if (data == NULL) {
27826 		return (EINVAL);
27827 	}
27828 
27829 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27830 		return (EFAULT);
27831 	}
27832 
27833 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27834 	bzero(cdb, CDB_GROUP1);
27835 	cdb[0] = SCMD_PLAYAUDIO_TI;
27836 	cdb[4] = ti->cdti_trk0;
27837 	cdb[5] = ti->cdti_ind0;
27838 	cdb[7] = ti->cdti_trk1;
27839 	cdb[8] = ti->cdti_ind1;
27840 	com->uscsi_cdb    = cdb;
27841 	com->uscsi_cdblen = CDB_GROUP1;
27842 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27843 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27844 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27845 	kmem_free(com, sizeof (*com));
27846 	return (rval);
27847 }
27848 
27849 
27850 /*
27851  *    Function: sr_read_all_subcodes()
27852  *
27853  * Description: This routine is the driver entry point for handling CD-ROM
27854  *		ioctl requests to return raw subcode data while the target is
27855  *		playing audio (CDROMSUBCODE).
27856  *
27857  *   Arguments: dev	- the device 'dev_t'
27858  *		data	- pointer to user provided cdrom subcode structure,
27859  *		          specifying the transfer length and address.
27860  *		flag	- this argument is a pass through to ddi_copyxxx()
27861  *		          directly from the mode argument of ioctl().
27862  *
27863  * Return Code: the code returned by sd_send_scsi_cmd()
27864  *		EFAULT if ddi_copyxxx() fails
27865  *		ENXIO if fail ddi_get_soft_state
27866  *		EINVAL if data pointer is NULL
27867  */
27868 
27869 static int
27870 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27871 {
27872 	struct sd_lun		*un = NULL;
27873 	struct uscsi_cmd	*com = NULL;
27874 	struct cdrom_subcode	*subcode = NULL;
27875 	int			rval;
27876 	size_t			buflen;
27877 	char			cdb[CDB_GROUP5];
27878 
27879 #ifdef _MULTI_DATAMODEL
27880 	/* To support ILP32 applications in an LP64 world */
27881 	struct cdrom_subcode32		cdrom_subcode32;
27882 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27883 #endif
27884 	if (data == NULL) {
27885 		return (EINVAL);
27886 	}
27887 
27888 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27889 		return (ENXIO);
27890 	}
27891 
27892 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27893 
27894 #ifdef _MULTI_DATAMODEL
27895 	switch (ddi_model_convert_from(flag & FMODELS)) {
27896 	case DDI_MODEL_ILP32:
27897 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27898 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27899 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27900 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27901 			return (EFAULT);
27902 		}
27903 		/* Convert the ILP32 uscsi data from the application to LP64 */
27904 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27905 		break;
27906 	case DDI_MODEL_NONE:
27907 		if (ddi_copyin(data, subcode,
27908 		    sizeof (struct cdrom_subcode), flag)) {
27909 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27910 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27911 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27912 			return (EFAULT);
27913 		}
27914 		break;
27915 	}
27916 #else /* ! _MULTI_DATAMODEL */
27917 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27918 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27919 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27920 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27921 		return (EFAULT);
27922 	}
27923 #endif /* _MULTI_DATAMODEL */
27924 
27925 	/*
27926 	 * Since MMC-2 expects max 3 bytes for length, check if the
27927 	 * length input is greater than 3 bytes
27928 	 */
27929 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27930 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27931 		    "sr_read_all_subcodes: "
27932 		    "cdrom transfer length too large: %d (limit %d)\n",
27933 		    subcode->cdsc_length, 0xFFFFFF);
27934 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27935 		return (EINVAL);
27936 	}
27937 
27938 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27939 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27940 	bzero(cdb, CDB_GROUP5);
27941 
27942 	if (un->un_f_mmc_cap == TRUE) {
27943 		cdb[0] = (char)SCMD_READ_CD;
27944 		cdb[2] = (char)0xff;
27945 		cdb[3] = (char)0xff;
27946 		cdb[4] = (char)0xff;
27947 		cdb[5] = (char)0xff;
27948 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27949 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27950 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27951 		cdb[10] = 1;
27952 	} else {
27953 		/*
27954 		 * Note: A vendor specific command (0xDF) is being used her to
27955 		 * request a read of all subcodes.
27956 		 */
27957 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27958 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27959 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27960 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27961 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27962 	}
27963 	com->uscsi_cdb	   = cdb;
27964 	com->uscsi_cdblen  = CDB_GROUP5;
27965 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27966 	com->uscsi_buflen  = buflen;
27967 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27968 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27969 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27970 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27971 	kmem_free(com, sizeof (*com));
27972 	return (rval);
27973 }
27974 
27975 
27976 /*
27977  *    Function: sr_read_subchannel()
27978  *
27979  * Description: This routine is the driver entry point for handling CD-ROM
27980  *		ioctl requests to return the Q sub-channel data of the CD
27981  *		current position block. (CDROMSUBCHNL) The data includes the
27982  *		track number, index number, absolute CD-ROM address (LBA or MSF
27983  *		format per the user) , track relative CD-ROM address (LBA or MSF
27984  *		format per the user), control data and audio status.
27985  *
27986  *   Arguments: dev	- the device 'dev_t'
27987  *		data	- pointer to user provided cdrom sub-channel structure
27988  *		flag	- this argument is a pass through to ddi_copyxxx()
27989  *		          directly from the mode argument of ioctl().
27990  *
27991  * Return Code: the code returned by sd_send_scsi_cmd()
27992  *		EFAULT if ddi_copyxxx() fails
27993  *		ENXIO if fail ddi_get_soft_state
27994  *		EINVAL if data pointer is NULL
27995  */
27996 
27997 static int
27998 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27999 {
28000 	struct sd_lun		*un;
28001 	struct uscsi_cmd	*com;
28002 	struct cdrom_subchnl	subchanel;
28003 	struct cdrom_subchnl	*subchnl = &subchanel;
28004 	char			cdb[CDB_GROUP1];
28005 	caddr_t			buffer;
28006 	int			rval;
28007 
28008 	if (data == NULL) {
28009 		return (EINVAL);
28010 	}
28011 
28012 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28013 	    (un->un_state == SD_STATE_OFFLINE)) {
28014 		return (ENXIO);
28015 	}
28016 
28017 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
28018 		return (EFAULT);
28019 	}
28020 
28021 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
28022 	bzero(cdb, CDB_GROUP1);
28023 	cdb[0] = SCMD_READ_SUBCHANNEL;
28024 	/* Set the MSF bit based on the user requested address format */
28025 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
28026 	/*
28027 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
28028 	 * returned
28029 	 */
28030 	cdb[2] = 0x40;
28031 	/*
28032 	 * Set byte 3 to specify the return data format. A value of 0x01
28033 	 * indicates that the CD-ROM current position should be returned.
28034 	 */
28035 	cdb[3] = 0x01;
28036 	cdb[8] = 0x10;
28037 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28038 	com->uscsi_cdb	   = cdb;
28039 	com->uscsi_cdblen  = CDB_GROUP1;
28040 	com->uscsi_bufaddr = buffer;
28041 	com->uscsi_buflen  = 16;
28042 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28043 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28044 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28045 	if (rval != 0) {
28046 		kmem_free(buffer, 16);
28047 		kmem_free(com, sizeof (*com));
28048 		return (rval);
28049 	}
28050 
28051 	/* Process the returned Q sub-channel data */
28052 	subchnl->cdsc_audiostatus = buffer[1];
28053 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
28054 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
28055 	subchnl->cdsc_trk	= buffer[6];
28056 	subchnl->cdsc_ind	= buffer[7];
28057 	if (subchnl->cdsc_format & CDROM_LBA) {
28058 		subchnl->cdsc_absaddr.lba =
28059 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28060 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28061 		subchnl->cdsc_reladdr.lba =
28062 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
28063 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
28064 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
28065 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
28066 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
28067 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
28068 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
28069 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
28070 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
28071 	} else {
28072 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
28073 		subchnl->cdsc_absaddr.msf.second = buffer[10];
28074 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
28075 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
28076 		subchnl->cdsc_reladdr.msf.second = buffer[14];
28077 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
28078 	}
28079 	kmem_free(buffer, 16);
28080 	kmem_free(com, sizeof (*com));
28081 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
28082 	    != 0) {
28083 		return (EFAULT);
28084 	}
28085 	return (rval);
28086 }
28087 
28088 
28089 /*
28090  *    Function: sr_read_tocentry()
28091  *
28092  * Description: This routine is the driver entry point for handling CD-ROM
28093  *		ioctl requests to read from the Table of Contents (TOC)
28094  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
28095  *		fields, the starting address (LBA or MSF format per the user)
28096  *		and the data mode if the user specified track is a data track.
28097  *
28098  *		Note: The READ HEADER (0x44) command used in this routine is
28099  *		obsolete per the SCSI MMC spec but still supported in the
28100  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28101  *		therefore the command is still implemented in this routine.
28102  *
28103  *   Arguments: dev	- the device 'dev_t'
28104  *		data	- pointer to user provided toc entry structure,
28105  *			  specifying the track # and the address format
28106  *			  (LBA or MSF).
28107  *		flag	- this argument is a pass through to ddi_copyxxx()
28108  *		          directly from the mode argument of ioctl().
28109  *
28110  * Return Code: the code returned by sd_send_scsi_cmd()
28111  *		EFAULT if ddi_copyxxx() fails
28112  *		ENXIO if fail ddi_get_soft_state
28113  *		EINVAL if data pointer is NULL
28114  */
28115 
28116 static int
28117 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
28118 {
28119 	struct sd_lun		*un = NULL;
28120 	struct uscsi_cmd	*com;
28121 	struct cdrom_tocentry	toc_entry;
28122 	struct cdrom_tocentry	*entry = &toc_entry;
28123 	caddr_t			buffer;
28124 	int			rval;
28125 	char			cdb[CDB_GROUP1];
28126 
28127 	if (data == NULL) {
28128 		return (EINVAL);
28129 	}
28130 
28131 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28132 	    (un->un_state == SD_STATE_OFFLINE)) {
28133 		return (ENXIO);
28134 	}
28135 
28136 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
28137 		return (EFAULT);
28138 	}
28139 
28140 	/* Validate the requested track and address format */
28141 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
28142 		return (EINVAL);
28143 	}
28144 
28145 	if (entry->cdte_track == 0) {
28146 		return (EINVAL);
28147 	}
28148 
28149 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
28150 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28151 	bzero(cdb, CDB_GROUP1);
28152 
28153 	cdb[0] = SCMD_READ_TOC;
28154 	/* Set the MSF bit based on the user requested address format  */
28155 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
28156 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28157 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
28158 	} else {
28159 		cdb[6] = entry->cdte_track;
28160 	}
28161 
28162 	/*
28163 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28164 	 * (4 byte TOC response header + 8 byte track descriptor)
28165 	 */
28166 	cdb[8] = 12;
28167 	com->uscsi_cdb	   = cdb;
28168 	com->uscsi_cdblen  = CDB_GROUP1;
28169 	com->uscsi_bufaddr = buffer;
28170 	com->uscsi_buflen  = 0x0C;
28171 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
28172 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28173 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28174 	if (rval != 0) {
28175 		kmem_free(buffer, 12);
28176 		kmem_free(com, sizeof (*com));
28177 		return (rval);
28178 	}
28179 
28180 	/* Process the toc entry */
28181 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
28182 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
28183 	if (entry->cdte_format & CDROM_LBA) {
28184 		entry->cdte_addr.lba =
28185 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28186 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28187 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
28188 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
28189 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
28190 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
28191 		/*
28192 		 * Send a READ TOC command using the LBA address format to get
28193 		 * the LBA for the track requested so it can be used in the
28194 		 * READ HEADER request
28195 		 *
28196 		 * Note: The MSF bit of the READ HEADER command specifies the
28197 		 * output format. The block address specified in that command
28198 		 * must be in LBA format.
28199 		 */
28200 		cdb[1] = 0;
28201 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28202 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28203 		if (rval != 0) {
28204 			kmem_free(buffer, 12);
28205 			kmem_free(com, sizeof (*com));
28206 			return (rval);
28207 		}
28208 	} else {
28209 		entry->cdte_addr.msf.minute	= buffer[9];
28210 		entry->cdte_addr.msf.second	= buffer[10];
28211 		entry->cdte_addr.msf.frame	= buffer[11];
28212 		/*
28213 		 * Send a READ TOC command using the LBA address format to get
28214 		 * the LBA for the track requested so it can be used in the
28215 		 * READ HEADER request
28216 		 *
28217 		 * Note: The MSF bit of the READ HEADER command specifies the
28218 		 * output format. The block address specified in that command
28219 		 * must be in LBA format.
28220 		 */
28221 		cdb[1] = 0;
28222 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28223 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28224 		if (rval != 0) {
28225 			kmem_free(buffer, 12);
28226 			kmem_free(com, sizeof (*com));
28227 			return (rval);
28228 		}
28229 	}
28230 
28231 	/*
28232 	 * Build and send the READ HEADER command to determine the data mode of
28233 	 * the user specified track.
28234 	 */
28235 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28236 	    (entry->cdte_track != CDROM_LEADOUT)) {
28237 		bzero(cdb, CDB_GROUP1);
28238 		cdb[0] = SCMD_READ_HEADER;
28239 		cdb[2] = buffer[8];
28240 		cdb[3] = buffer[9];
28241 		cdb[4] = buffer[10];
28242 		cdb[5] = buffer[11];
28243 		cdb[8] = 0x08;
28244 		com->uscsi_buflen = 0x08;
28245 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28246 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28247 		if (rval == 0) {
28248 			entry->cdte_datamode = buffer[0];
28249 		} else {
28250 			/*
28251 			 * READ HEADER command failed, since this is
28252 			 * obsoleted in one spec, its better to return
28253 			 * -1 for an invlid track so that we can still
28254 			 * recieve the rest of the TOC data.
28255 			 */
28256 			entry->cdte_datamode = (uchar_t)-1;
28257 		}
28258 	} else {
28259 		entry->cdte_datamode = (uchar_t)-1;
28260 	}
28261 
28262 	kmem_free(buffer, 12);
28263 	kmem_free(com, sizeof (*com));
28264 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28265 		return (EFAULT);
28266 
28267 	return (rval);
28268 }
28269 
28270 
28271 /*
28272  *    Function: sr_read_tochdr()
28273  *
28274  * Description: This routine is the driver entry point for handling CD-ROM
28275  * 		ioctl requests to read the Table of Contents (TOC) header
28276  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28277  *		and ending track numbers
28278  *
28279  *   Arguments: dev	- the device 'dev_t'
28280  *		data	- pointer to user provided toc header structure,
28281  *			  specifying the starting and ending track numbers.
28282  *		flag	- this argument is a pass through to ddi_copyxxx()
28283  *			  directly from the mode argument of ioctl().
28284  *
28285  * Return Code: the code returned by sd_send_scsi_cmd()
28286  *		EFAULT if ddi_copyxxx() fails
28287  *		ENXIO if fail ddi_get_soft_state
28288  *		EINVAL if data pointer is NULL
28289  */
28290 
28291 static int
28292 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28293 {
28294 	struct sd_lun		*un;
28295 	struct uscsi_cmd	*com;
28296 	struct cdrom_tochdr	toc_header;
28297 	struct cdrom_tochdr	*hdr = &toc_header;
28298 	char			cdb[CDB_GROUP1];
28299 	int			rval;
28300 	caddr_t			buffer;
28301 
28302 	if (data == NULL) {
28303 		return (EINVAL);
28304 	}
28305 
28306 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28307 	    (un->un_state == SD_STATE_OFFLINE)) {
28308 		return (ENXIO);
28309 	}
28310 
28311 	buffer = kmem_zalloc(4, KM_SLEEP);
28312 	bzero(cdb, CDB_GROUP1);
28313 	cdb[0] = SCMD_READ_TOC;
28314 	/*
28315 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28316 	 * that the TOC header should be returned
28317 	 */
28318 	cdb[6] = 0x00;
28319 	/*
28320 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28321 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28322 	 */
28323 	cdb[8] = 0x04;
28324 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28325 	com->uscsi_cdb	   = cdb;
28326 	com->uscsi_cdblen  = CDB_GROUP1;
28327 	com->uscsi_bufaddr = buffer;
28328 	com->uscsi_buflen  = 0x04;
28329 	com->uscsi_timeout = 300;
28330 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28331 
28332 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28333 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28334 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28335 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28336 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28337 	} else {
28338 		hdr->cdth_trk0 = buffer[2];
28339 		hdr->cdth_trk1 = buffer[3];
28340 	}
28341 	kmem_free(buffer, 4);
28342 	kmem_free(com, sizeof (*com));
28343 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28344 		return (EFAULT);
28345 	}
28346 	return (rval);
28347 }
28348 
28349 
28350 /*
28351  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28352  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28353  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28354  * digital audio and extended architecture digital audio. These modes are
28355  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28356  * MMC specs.
28357  *
28358  * In addition to support for the various data formats these routines also
28359  * include support for devices that implement only the direct access READ
28360  * commands (0x08, 0x28), devices that implement the READ_CD commands
28361  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28362  * READ CDXA commands (0xD8, 0xDB)
28363  */
28364 
28365 /*
28366  *    Function: sr_read_mode1()
28367  *
28368  * Description: This routine is the driver entry point for handling CD-ROM
28369  *		ioctl read mode1 requests (CDROMREADMODE1).
28370  *
28371  *   Arguments: dev	- the device 'dev_t'
28372  *		data	- pointer to user provided cd read structure specifying
28373  *			  the lba buffer address and length.
28374  *		flag	- this argument is a pass through to ddi_copyxxx()
28375  *			  directly from the mode argument of ioctl().
28376  *
28377  * Return Code: the code returned by sd_send_scsi_cmd()
28378  *		EFAULT if ddi_copyxxx() fails
28379  *		ENXIO if fail ddi_get_soft_state
28380  *		EINVAL if data pointer is NULL
28381  */
28382 
28383 static int
28384 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28385 {
28386 	struct sd_lun		*un;
28387 	struct cdrom_read	mode1_struct;
28388 	struct cdrom_read	*mode1 = &mode1_struct;
28389 	int			rval;
28390 #ifdef _MULTI_DATAMODEL
28391 	/* To support ILP32 applications in an LP64 world */
28392 	struct cdrom_read32	cdrom_read32;
28393 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28394 #endif /* _MULTI_DATAMODEL */
28395 
28396 	if (data == NULL) {
28397 		return (EINVAL);
28398 	}
28399 
28400 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28401 	    (un->un_state == SD_STATE_OFFLINE)) {
28402 		return (ENXIO);
28403 	}
28404 
28405 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28406 	    "sd_read_mode1: entry: un:0x%p\n", un);
28407 
28408 #ifdef _MULTI_DATAMODEL
28409 	switch (ddi_model_convert_from(flag & FMODELS)) {
28410 	case DDI_MODEL_ILP32:
28411 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28412 			return (EFAULT);
28413 		}
28414 		/* Convert the ILP32 uscsi data from the application to LP64 */
28415 		cdrom_read32tocdrom_read(cdrd32, mode1);
28416 		break;
28417 	case DDI_MODEL_NONE:
28418 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28419 			return (EFAULT);
28420 		}
28421 	}
28422 #else /* ! _MULTI_DATAMODEL */
28423 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28424 		return (EFAULT);
28425 	}
28426 #endif /* _MULTI_DATAMODEL */
28427 
28428 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28429 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28430 
28431 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28432 	    "sd_read_mode1: exit: un:0x%p\n", un);
28433 
28434 	return (rval);
28435 }
28436 
28437 
28438 /*
28439  *    Function: sr_read_cd_mode2()
28440  *
28441  * Description: This routine is the driver entry point for handling CD-ROM
28442  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28443  *		support the READ CD (0xBE) command or the 1st generation
28444  *		READ CD (0xD4) command.
28445  *
28446  *   Arguments: dev	- the device 'dev_t'
28447  *		data	- pointer to user provided cd read structure specifying
28448  *			  the lba buffer address and length.
28449  *		flag	- this argument is a pass through to ddi_copyxxx()
28450  *			  directly from the mode argument of ioctl().
28451  *
28452  * Return Code: the code returned by sd_send_scsi_cmd()
28453  *		EFAULT if ddi_copyxxx() fails
28454  *		ENXIO if fail ddi_get_soft_state
28455  *		EINVAL if data pointer is NULL
28456  */
28457 
28458 static int
28459 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28460 {
28461 	struct sd_lun		*un;
28462 	struct uscsi_cmd	*com;
28463 	struct cdrom_read	mode2_struct;
28464 	struct cdrom_read	*mode2 = &mode2_struct;
28465 	uchar_t			cdb[CDB_GROUP5];
28466 	int			nblocks;
28467 	int			rval;
28468 #ifdef _MULTI_DATAMODEL
28469 	/*  To support ILP32 applications in an LP64 world */
28470 	struct cdrom_read32	cdrom_read32;
28471 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28472 #endif /* _MULTI_DATAMODEL */
28473 
28474 	if (data == NULL) {
28475 		return (EINVAL);
28476 	}
28477 
28478 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28479 	    (un->un_state == SD_STATE_OFFLINE)) {
28480 		return (ENXIO);
28481 	}
28482 
28483 #ifdef _MULTI_DATAMODEL
28484 	switch (ddi_model_convert_from(flag & FMODELS)) {
28485 	case DDI_MODEL_ILP32:
28486 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28487 			return (EFAULT);
28488 		}
28489 		/* Convert the ILP32 uscsi data from the application to LP64 */
28490 		cdrom_read32tocdrom_read(cdrd32, mode2);
28491 		break;
28492 	case DDI_MODEL_NONE:
28493 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28494 			return (EFAULT);
28495 		}
28496 		break;
28497 	}
28498 
28499 #else /* ! _MULTI_DATAMODEL */
28500 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28501 		return (EFAULT);
28502 	}
28503 #endif /* _MULTI_DATAMODEL */
28504 
28505 	bzero(cdb, sizeof (cdb));
28506 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28507 		/* Read command supported by 1st generation atapi drives */
28508 		cdb[0] = SCMD_READ_CDD4;
28509 	} else {
28510 		/* Universal CD Access Command */
28511 		cdb[0] = SCMD_READ_CD;
28512 	}
28513 
28514 	/*
28515 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28516 	 */
28517 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28518 
28519 	/* set the start address */
28520 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28521 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28522 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28523 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28524 
28525 	/* set the transfer length */
28526 	nblocks = mode2->cdread_buflen / 2336;
28527 	cdb[6] = (uchar_t)(nblocks >> 16);
28528 	cdb[7] = (uchar_t)(nblocks >> 8);
28529 	cdb[8] = (uchar_t)nblocks;
28530 
28531 	/* set the filter bits */
28532 	cdb[9] = CDROM_READ_CD_USERDATA;
28533 
28534 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28535 	com->uscsi_cdb = (caddr_t)cdb;
28536 	com->uscsi_cdblen = sizeof (cdb);
28537 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28538 	com->uscsi_buflen = mode2->cdread_buflen;
28539 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28540 
28541 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28542 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28543 	kmem_free(com, sizeof (*com));
28544 	return (rval);
28545 }
28546 
28547 
28548 /*
28549  *    Function: sr_read_mode2()
28550  *
28551  * Description: This routine is the driver entry point for handling CD-ROM
28552  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28553  *		do not support the READ CD (0xBE) command.
28554  *
28555  *   Arguments: dev	- the device 'dev_t'
28556  *		data	- pointer to user provided cd read structure specifying
28557  *			  the lba buffer address and length.
28558  *		flag	- this argument is a pass through to ddi_copyxxx()
28559  *			  directly from the mode argument of ioctl().
28560  *
28561  * Return Code: the code returned by sd_send_scsi_cmd()
28562  *		EFAULT if ddi_copyxxx() fails
28563  *		ENXIO if fail ddi_get_soft_state
28564  *		EINVAL if data pointer is NULL
28565  *		EIO if fail to reset block size
28566  *		EAGAIN if commands are in progress in the driver
28567  */
28568 
28569 static int
28570 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28571 {
28572 	struct sd_lun		*un;
28573 	struct cdrom_read	mode2_struct;
28574 	struct cdrom_read	*mode2 = &mode2_struct;
28575 	int			rval;
28576 	uint32_t		restore_blksize;
28577 	struct uscsi_cmd	*com;
28578 	uchar_t			cdb[CDB_GROUP0];
28579 	int			nblocks;
28580 
28581 #ifdef _MULTI_DATAMODEL
28582 	/* To support ILP32 applications in an LP64 world */
28583 	struct cdrom_read32	cdrom_read32;
28584 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28585 #endif /* _MULTI_DATAMODEL */
28586 
28587 	if (data == NULL) {
28588 		return (EINVAL);
28589 	}
28590 
28591 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28592 	    (un->un_state == SD_STATE_OFFLINE)) {
28593 		return (ENXIO);
28594 	}
28595 
28596 	/*
28597 	 * Because this routine will update the device and driver block size
28598 	 * being used we want to make sure there are no commands in progress.
28599 	 * If commands are in progress the user will have to try again.
28600 	 *
28601 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28602 	 * in sdioctl to protect commands from sdioctl through to the top of
28603 	 * sd_uscsi_strategy. See sdioctl for details.
28604 	 */
28605 	mutex_enter(SD_MUTEX(un));
28606 	if (un->un_ncmds_in_driver != 1) {
28607 		mutex_exit(SD_MUTEX(un));
28608 		return (EAGAIN);
28609 	}
28610 	mutex_exit(SD_MUTEX(un));
28611 
28612 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28613 	    "sd_read_mode2: entry: un:0x%p\n", un);
28614 
28615 #ifdef _MULTI_DATAMODEL
28616 	switch (ddi_model_convert_from(flag & FMODELS)) {
28617 	case DDI_MODEL_ILP32:
28618 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28619 			return (EFAULT);
28620 		}
28621 		/* Convert the ILP32 uscsi data from the application to LP64 */
28622 		cdrom_read32tocdrom_read(cdrd32, mode2);
28623 		break;
28624 	case DDI_MODEL_NONE:
28625 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28626 			return (EFAULT);
28627 		}
28628 		break;
28629 	}
28630 #else /* ! _MULTI_DATAMODEL */
28631 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28632 		return (EFAULT);
28633 	}
28634 #endif /* _MULTI_DATAMODEL */
28635 
28636 	/* Store the current target block size for restoration later */
28637 	restore_blksize = un->un_tgt_blocksize;
28638 
28639 	/* Change the device and soft state target block size to 2336 */
28640 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28641 		rval = EIO;
28642 		goto done;
28643 	}
28644 
28645 
28646 	bzero(cdb, sizeof (cdb));
28647 
28648 	/* set READ operation */
28649 	cdb[0] = SCMD_READ;
28650 
28651 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28652 	mode2->cdread_lba >>= 2;
28653 
28654 	/* set the start address */
28655 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28656 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28657 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28658 
28659 	/* set the transfer length */
28660 	nblocks = mode2->cdread_buflen / 2336;
28661 	cdb[4] = (uchar_t)nblocks & 0xFF;
28662 
28663 	/* build command */
28664 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28665 	com->uscsi_cdb = (caddr_t)cdb;
28666 	com->uscsi_cdblen = sizeof (cdb);
28667 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28668 	com->uscsi_buflen = mode2->cdread_buflen;
28669 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28670 
28671 	/*
28672 	 * Issue SCSI command with user space address for read buffer.
28673 	 *
28674 	 * This sends the command through main channel in the driver.
28675 	 *
28676 	 * Since this is accessed via an IOCTL call, we go through the
28677 	 * standard path, so that if the device was powered down, then
28678 	 * it would be 'awakened' to handle the command.
28679 	 */
28680 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28681 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28682 
28683 	kmem_free(com, sizeof (*com));
28684 
28685 	/* Restore the device and soft state target block size */
28686 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28687 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28688 		    "can't do switch back to mode 1\n");
28689 		/*
28690 		 * If sd_send_scsi_READ succeeded we still need to report
28691 		 * an error because we failed to reset the block size
28692 		 */
28693 		if (rval == 0) {
28694 			rval = EIO;
28695 		}
28696 	}
28697 
28698 done:
28699 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28700 	    "sd_read_mode2: exit: un:0x%p\n", un);
28701 
28702 	return (rval);
28703 }
28704 
28705 
28706 /*
28707  *    Function: sr_sector_mode()
28708  *
28709  * Description: This utility function is used by sr_read_mode2 to set the target
28710  *		block size based on the user specified size. This is a legacy
28711  *		implementation based upon a vendor specific mode page
28712  *
28713  *   Arguments: dev	- the device 'dev_t'
28714  *		data	- flag indicating if block size is being set to 2336 or
28715  *			  512.
28716  *
28717  * Return Code: the code returned by sd_send_scsi_cmd()
28718  *		EFAULT if ddi_copyxxx() fails
28719  *		ENXIO if fail ddi_get_soft_state
28720  *		EINVAL if data pointer is NULL
28721  */
28722 
28723 static int
28724 sr_sector_mode(dev_t dev, uint32_t blksize)
28725 {
28726 	struct sd_lun	*un;
28727 	uchar_t		*sense;
28728 	uchar_t		*select;
28729 	int		rval;
28730 
28731 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28732 	    (un->un_state == SD_STATE_OFFLINE)) {
28733 		return (ENXIO);
28734 	}
28735 
28736 	sense = kmem_zalloc(20, KM_SLEEP);
28737 
28738 	/* Note: This is a vendor specific mode page (0x81) */
28739 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28740 	    SD_PATH_STANDARD)) != 0) {
28741 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28742 		    "sr_sector_mode: Mode Sense failed\n");
28743 		kmem_free(sense, 20);
28744 		return (rval);
28745 	}
28746 	select = kmem_zalloc(20, KM_SLEEP);
28747 	select[3] = 0x08;
28748 	select[10] = ((blksize >> 8) & 0xff);
28749 	select[11] = (blksize & 0xff);
28750 	select[12] = 0x01;
28751 	select[13] = 0x06;
28752 	select[14] = sense[14];
28753 	select[15] = sense[15];
28754 	if (blksize == SD_MODE2_BLKSIZE) {
28755 		select[14] |= 0x01;
28756 	}
28757 
28758 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28759 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28760 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28761 		    "sr_sector_mode: Mode Select failed\n");
28762 	} else {
28763 		/*
28764 		 * Only update the softstate block size if we successfully
28765 		 * changed the device block mode.
28766 		 */
28767 		mutex_enter(SD_MUTEX(un));
28768 		sd_update_block_info(un, blksize, 0);
28769 		mutex_exit(SD_MUTEX(un));
28770 	}
28771 	kmem_free(sense, 20);
28772 	kmem_free(select, 20);
28773 	return (rval);
28774 }
28775 
28776 
28777 /*
28778  *    Function: sr_read_cdda()
28779  *
28780  * Description: This routine is the driver entry point for handling CD-ROM
28781  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28782  *		the target supports CDDA these requests are handled via a vendor
28783  *		specific command (0xD8) If the target does not support CDDA
28784  *		these requests are handled via the READ CD command (0xBE).
28785  *
28786  *   Arguments: dev	- the device 'dev_t'
28787  *		data	- pointer to user provided CD-DA structure specifying
28788  *			  the track starting address, transfer length, and
28789  *			  subcode options.
28790  *		flag	- this argument is a pass through to ddi_copyxxx()
28791  *			  directly from the mode argument of ioctl().
28792  *
28793  * Return Code: the code returned by sd_send_scsi_cmd()
28794  *		EFAULT if ddi_copyxxx() fails
28795  *		ENXIO if fail ddi_get_soft_state
28796  *		EINVAL if invalid arguments are provided
28797  *		ENOTTY
28798  */
28799 
28800 static int
28801 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28802 {
28803 	struct sd_lun			*un;
28804 	struct uscsi_cmd		*com;
28805 	struct cdrom_cdda		*cdda;
28806 	int				rval;
28807 	size_t				buflen;
28808 	char				cdb[CDB_GROUP5];
28809 
28810 #ifdef _MULTI_DATAMODEL
28811 	/* To support ILP32 applications in an LP64 world */
28812 	struct cdrom_cdda32	cdrom_cdda32;
28813 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28814 #endif /* _MULTI_DATAMODEL */
28815 
28816 	if (data == NULL) {
28817 		return (EINVAL);
28818 	}
28819 
28820 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28821 		return (ENXIO);
28822 	}
28823 
28824 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28825 
28826 #ifdef _MULTI_DATAMODEL
28827 	switch (ddi_model_convert_from(flag & FMODELS)) {
28828 	case DDI_MODEL_ILP32:
28829 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28830 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28831 			    "sr_read_cdda: ddi_copyin Failed\n");
28832 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28833 			return (EFAULT);
28834 		}
28835 		/* Convert the ILP32 uscsi data from the application to LP64 */
28836 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28837 		break;
28838 	case DDI_MODEL_NONE:
28839 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28840 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28841 			    "sr_read_cdda: ddi_copyin Failed\n");
28842 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28843 			return (EFAULT);
28844 		}
28845 		break;
28846 	}
28847 #else /* ! _MULTI_DATAMODEL */
28848 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28849 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28850 		    "sr_read_cdda: ddi_copyin Failed\n");
28851 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28852 		return (EFAULT);
28853 	}
28854 #endif /* _MULTI_DATAMODEL */
28855 
28856 	/*
28857 	 * Since MMC-2 expects max 3 bytes for length, check if the
28858 	 * length input is greater than 3 bytes
28859 	 */
28860 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28861 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28862 		    "cdrom transfer length too large: %d (limit %d)\n",
28863 		    cdda->cdda_length, 0xFFFFFF);
28864 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28865 		return (EINVAL);
28866 	}
28867 
28868 	switch (cdda->cdda_subcode) {
28869 	case CDROM_DA_NO_SUBCODE:
28870 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28871 		break;
28872 	case CDROM_DA_SUBQ:
28873 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28874 		break;
28875 	case CDROM_DA_ALL_SUBCODE:
28876 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28877 		break;
28878 	case CDROM_DA_SUBCODE_ONLY:
28879 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28880 		break;
28881 	default:
28882 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28883 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28884 		    cdda->cdda_subcode);
28885 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28886 		return (EINVAL);
28887 	}
28888 
28889 	/* Build and send the command */
28890 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28891 	bzero(cdb, CDB_GROUP5);
28892 
28893 	if (un->un_f_cfg_cdda == TRUE) {
28894 		cdb[0] = (char)SCMD_READ_CD;
28895 		cdb[1] = 0x04;
28896 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28897 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28898 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28899 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28900 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28901 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28902 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28903 		cdb[9] = 0x10;
28904 		switch (cdda->cdda_subcode) {
28905 		case CDROM_DA_NO_SUBCODE :
28906 			cdb[10] = 0x0;
28907 			break;
28908 		case CDROM_DA_SUBQ :
28909 			cdb[10] = 0x2;
28910 			break;
28911 		case CDROM_DA_ALL_SUBCODE :
28912 			cdb[10] = 0x1;
28913 			break;
28914 		case CDROM_DA_SUBCODE_ONLY :
28915 			/* FALLTHROUGH */
28916 		default :
28917 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28918 			kmem_free(com, sizeof (*com));
28919 			return (ENOTTY);
28920 		}
28921 	} else {
28922 		cdb[0] = (char)SCMD_READ_CDDA;
28923 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28924 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28925 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28926 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28927 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28928 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28929 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28930 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28931 		cdb[10] = cdda->cdda_subcode;
28932 	}
28933 
28934 	com->uscsi_cdb = cdb;
28935 	com->uscsi_cdblen = CDB_GROUP5;
28936 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28937 	com->uscsi_buflen = buflen;
28938 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28939 
28940 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28941 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28942 
28943 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28944 	kmem_free(com, sizeof (*com));
28945 	return (rval);
28946 }
28947 
28948 
28949 /*
28950  *    Function: sr_read_cdxa()
28951  *
28952  * Description: This routine is the driver entry point for handling CD-ROM
28953  *		ioctl requests to return CD-XA (Extended Architecture) data.
28954  *		(CDROMCDXA).
28955  *
28956  *   Arguments: dev	- the device 'dev_t'
28957  *		data	- pointer to user provided CD-XA structure specifying
28958  *			  the data starting address, transfer length, and format
28959  *		flag	- this argument is a pass through to ddi_copyxxx()
28960  *			  directly from the mode argument of ioctl().
28961  *
28962  * Return Code: the code returned by sd_send_scsi_cmd()
28963  *		EFAULT if ddi_copyxxx() fails
28964  *		ENXIO if fail ddi_get_soft_state
28965  *		EINVAL if data pointer is NULL
28966  */
28967 
28968 static int
28969 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28970 {
28971 	struct sd_lun		*un;
28972 	struct uscsi_cmd	*com;
28973 	struct cdrom_cdxa	*cdxa;
28974 	int			rval;
28975 	size_t			buflen;
28976 	char			cdb[CDB_GROUP5];
28977 	uchar_t			read_flags;
28978 
28979 #ifdef _MULTI_DATAMODEL
28980 	/* To support ILP32 applications in an LP64 world */
28981 	struct cdrom_cdxa32		cdrom_cdxa32;
28982 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28983 #endif /* _MULTI_DATAMODEL */
28984 
28985 	if (data == NULL) {
28986 		return (EINVAL);
28987 	}
28988 
28989 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28990 		return (ENXIO);
28991 	}
28992 
28993 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28994 
28995 #ifdef _MULTI_DATAMODEL
28996 	switch (ddi_model_convert_from(flag & FMODELS)) {
28997 	case DDI_MODEL_ILP32:
28998 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28999 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29000 			return (EFAULT);
29001 		}
29002 		/*
29003 		 * Convert the ILP32 uscsi data from the
29004 		 * application to LP64 for internal use.
29005 		 */
29006 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
29007 		break;
29008 	case DDI_MODEL_NONE:
29009 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29010 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29011 			return (EFAULT);
29012 		}
29013 		break;
29014 	}
29015 #else /* ! _MULTI_DATAMODEL */
29016 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29017 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29018 		return (EFAULT);
29019 	}
29020 #endif /* _MULTI_DATAMODEL */
29021 
29022 	/*
29023 	 * Since MMC-2 expects max 3 bytes for length, check if the
29024 	 * length input is greater than 3 bytes
29025 	 */
29026 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
29027 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
29028 		    "cdrom transfer length too large: %d (limit %d)\n",
29029 		    cdxa->cdxa_length, 0xFFFFFF);
29030 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29031 		return (EINVAL);
29032 	}
29033 
29034 	switch (cdxa->cdxa_format) {
29035 	case CDROM_XA_DATA:
29036 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
29037 		read_flags = 0x10;
29038 		break;
29039 	case CDROM_XA_SECTOR_DATA:
29040 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
29041 		read_flags = 0xf8;
29042 		break;
29043 	case CDROM_XA_DATA_W_ERROR:
29044 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
29045 		read_flags = 0xfc;
29046 		break;
29047 	default:
29048 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29049 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
29050 		    cdxa->cdxa_format);
29051 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29052 		return (EINVAL);
29053 	}
29054 
29055 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29056 	bzero(cdb, CDB_GROUP5);
29057 	if (un->un_f_mmc_cap == TRUE) {
29058 		cdb[0] = (char)SCMD_READ_CD;
29059 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29060 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29061 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29062 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29063 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29064 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29065 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
29066 		cdb[9] = (char)read_flags;
29067 	} else {
29068 		/*
29069 		 * Note: A vendor specific command (0xDB) is being used her to
29070 		 * request a read of all subcodes.
29071 		 */
29072 		cdb[0] = (char)SCMD_READ_CDXA;
29073 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29074 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29075 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29076 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29077 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
29078 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29079 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29080 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
29081 		cdb[10] = cdxa->cdxa_format;
29082 	}
29083 	com->uscsi_cdb	   = cdb;
29084 	com->uscsi_cdblen  = CDB_GROUP5;
29085 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
29086 	com->uscsi_buflen  = buflen;
29087 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29088 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29089 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29090 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29091 	kmem_free(com, sizeof (*com));
29092 	return (rval);
29093 }
29094 
29095 
29096 /*
29097  *    Function: sr_eject()
29098  *
29099  * Description: This routine is the driver entry point for handling CD-ROM
29100  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
29101  *
29102  *   Arguments: dev	- the device 'dev_t'
29103  *
29104  * Return Code: the code returned by sd_send_scsi_cmd()
29105  */
29106 
29107 static int
29108 sr_eject(dev_t dev)
29109 {
29110 	struct sd_lun	*un;
29111 	int		rval;
29112 
29113 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29114 	    (un->un_state == SD_STATE_OFFLINE)) {
29115 		return (ENXIO);
29116 	}
29117 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
29118 	    SD_PATH_STANDARD)) != 0) {
29119 		return (rval);
29120 	}
29121 
29122 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
29123 	    SD_PATH_STANDARD);
29124 
29125 	if (rval == 0) {
29126 		mutex_enter(SD_MUTEX(un));
29127 		sr_ejected(un);
29128 		un->un_mediastate = DKIO_EJECTED;
29129 		cv_broadcast(&un->un_state_cv);
29130 		mutex_exit(SD_MUTEX(un));
29131 	}
29132 	return (rval);
29133 }
29134 
29135 
29136 /*
29137  *    Function: sr_ejected()
29138  *
29139  * Description: This routine updates the soft state structure to invalidate the
29140  *		geometry information after the media has been ejected or a
29141  *		media eject has been detected.
29142  *
29143  *   Arguments: un - driver soft state (unit) structure
29144  */
29145 
29146 static void
29147 sr_ejected(struct sd_lun *un)
29148 {
29149 	struct sd_errstats *stp;
29150 
29151 	ASSERT(un != NULL);
29152 	ASSERT(mutex_owned(SD_MUTEX(un)));
29153 
29154 	un->un_f_blockcount_is_valid	= FALSE;
29155 	un->un_f_tgt_blocksize_is_valid	= FALSE;
29156 	un->un_f_geometry_is_valid	= FALSE;
29157 
29158 	if (un->un_errstats != NULL) {
29159 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
29160 		stp->sd_capacity.value.ui64 = 0;
29161 	}
29162 }
29163 
29164 
29165 /*
29166  *    Function: sr_check_wp()
29167  *
29168  * Description: This routine checks the write protection of a removable
29169  *      media disk and hotpluggable devices via the write protect bit of
29170  *      the Mode Page Header device specific field. Some devices choke
29171  *      on unsupported mode page. In order to workaround this issue,
29172  *      this routine has been implemented to use 0x3f mode page(request
29173  *      for all pages) for all device types.
29174  *
29175  *   Arguments: dev		- the device 'dev_t'
29176  *
29177  * Return Code: int indicating if the device is write protected (1) or not (0)
29178  *
29179  *     Context: Kernel thread.
29180  *
29181  */
29182 
29183 static int
29184 sr_check_wp(dev_t dev)
29185 {
29186 	struct sd_lun	*un;
29187 	uchar_t		device_specific;
29188 	uchar_t		*sense;
29189 	int		hdrlen;
29190 	int		rval = FALSE;
29191 
29192 	/*
29193 	 * Note: The return codes for this routine should be reworked to
29194 	 * properly handle the case of a NULL softstate.
29195 	 */
29196 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29197 		return (FALSE);
29198 	}
29199 
29200 	if (un->un_f_cfg_is_atapi == TRUE) {
29201 		/*
29202 		 * The mode page contents are not required; set the allocation
29203 		 * length for the mode page header only
29204 		 */
29205 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29206 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29207 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29208 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29209 			goto err_exit;
29210 		device_specific =
29211 		    ((struct mode_header_grp2 *)sense)->device_specific;
29212 	} else {
29213 		hdrlen = MODE_HEADER_LENGTH;
29214 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29215 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29216 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29217 			goto err_exit;
29218 		device_specific =
29219 		    ((struct mode_header *)sense)->device_specific;
29220 	}
29221 
29222 	/*
29223 	 * Write protect mode sense failed; not all disks
29224 	 * understand this query. Return FALSE assuming that
29225 	 * these devices are not writable.
29226 	 */
29227 	if (device_specific & WRITE_PROTECT) {
29228 		rval = TRUE;
29229 	}
29230 
29231 err_exit:
29232 	kmem_free(sense, hdrlen);
29233 	return (rval);
29234 }
29235 
29236 /*
29237  *    Function: sr_volume_ctrl()
29238  *
29239  * Description: This routine is the driver entry point for handling CD-ROM
29240  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29241  *
29242  *   Arguments: dev	- the device 'dev_t'
29243  *		data	- pointer to user audio volume control structure
29244  *		flag	- this argument is a pass through to ddi_copyxxx()
29245  *			  directly from the mode argument of ioctl().
29246  *
29247  * Return Code: the code returned by sd_send_scsi_cmd()
29248  *		EFAULT if ddi_copyxxx() fails
29249  *		ENXIO if fail ddi_get_soft_state
29250  *		EINVAL if data pointer is NULL
29251  *
29252  */
29253 
29254 static int
29255 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29256 {
29257 	struct sd_lun		*un;
29258 	struct cdrom_volctrl    volume;
29259 	struct cdrom_volctrl    *vol = &volume;
29260 	uchar_t			*sense_page;
29261 	uchar_t			*select_page;
29262 	uchar_t			*sense;
29263 	uchar_t			*select;
29264 	int			sense_buflen;
29265 	int			select_buflen;
29266 	int			rval;
29267 
29268 	if (data == NULL) {
29269 		return (EINVAL);
29270 	}
29271 
29272 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29273 	    (un->un_state == SD_STATE_OFFLINE)) {
29274 		return (ENXIO);
29275 	}
29276 
29277 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29278 		return (EFAULT);
29279 	}
29280 
29281 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29282 		struct mode_header_grp2		*sense_mhp;
29283 		struct mode_header_grp2		*select_mhp;
29284 		int				bd_len;
29285 
29286 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29287 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29288 		    MODEPAGE_AUDIO_CTRL_LEN;
29289 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29290 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29291 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29292 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29293 		    SD_PATH_STANDARD)) != 0) {
29294 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29295 			    "sr_volume_ctrl: Mode Sense Failed\n");
29296 			kmem_free(sense, sense_buflen);
29297 			kmem_free(select, select_buflen);
29298 			return (rval);
29299 		}
29300 		sense_mhp = (struct mode_header_grp2 *)sense;
29301 		select_mhp = (struct mode_header_grp2 *)select;
29302 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29303 		    sense_mhp->bdesc_length_lo;
29304 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29305 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29306 			    "sr_volume_ctrl: Mode Sense returned invalid "
29307 			    "block descriptor length\n");
29308 			kmem_free(sense, sense_buflen);
29309 			kmem_free(select, select_buflen);
29310 			return (EIO);
29311 		}
29312 		sense_page = (uchar_t *)
29313 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29314 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29315 		select_mhp->length_msb = 0;
29316 		select_mhp->length_lsb = 0;
29317 		select_mhp->bdesc_length_hi = 0;
29318 		select_mhp->bdesc_length_lo = 0;
29319 	} else {
29320 		struct mode_header		*sense_mhp, *select_mhp;
29321 
29322 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29323 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29324 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29325 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29326 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29327 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29328 		    SD_PATH_STANDARD)) != 0) {
29329 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29330 			    "sr_volume_ctrl: Mode Sense Failed\n");
29331 			kmem_free(sense, sense_buflen);
29332 			kmem_free(select, select_buflen);
29333 			return (rval);
29334 		}
29335 		sense_mhp  = (struct mode_header *)sense;
29336 		select_mhp = (struct mode_header *)select;
29337 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29338 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29339 			    "sr_volume_ctrl: Mode Sense returned invalid "
29340 			    "block descriptor length\n");
29341 			kmem_free(sense, sense_buflen);
29342 			kmem_free(select, select_buflen);
29343 			return (EIO);
29344 		}
29345 		sense_page = (uchar_t *)
29346 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29347 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29348 		select_mhp->length = 0;
29349 		select_mhp->bdesc_length = 0;
29350 	}
29351 	/*
29352 	 * Note: An audio control data structure could be created and overlayed
29353 	 * on the following in place of the array indexing method implemented.
29354 	 */
29355 
29356 	/* Build the select data for the user volume data */
29357 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29358 	select_page[1] = 0xE;
29359 	/* Set the immediate bit */
29360 	select_page[2] = 0x04;
29361 	/* Zero out reserved fields */
29362 	select_page[3] = 0x00;
29363 	select_page[4] = 0x00;
29364 	/* Return sense data for fields not to be modified */
29365 	select_page[5] = sense_page[5];
29366 	select_page[6] = sense_page[6];
29367 	select_page[7] = sense_page[7];
29368 	/* Set the user specified volume levels for channel 0 and 1 */
29369 	select_page[8] = 0x01;
29370 	select_page[9] = vol->channel0;
29371 	select_page[10] = 0x02;
29372 	select_page[11] = vol->channel1;
29373 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29374 	select_page[12] = sense_page[12];
29375 	select_page[13] = sense_page[13];
29376 	select_page[14] = sense_page[14];
29377 	select_page[15] = sense_page[15];
29378 
29379 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29380 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29381 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29382 	} else {
29383 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29384 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29385 	}
29386 
29387 	kmem_free(sense, sense_buflen);
29388 	kmem_free(select, select_buflen);
29389 	return (rval);
29390 }
29391 
29392 
29393 /*
29394  *    Function: sr_read_sony_session_offset()
29395  *
29396  * Description: This routine is the driver entry point for handling CD-ROM
29397  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29398  *		The address of the first track in the last session of a
29399  *		multi-session CD-ROM is returned
29400  *
29401  *		Note: This routine uses a vendor specific key value in the
29402  *		command control field without implementing any vendor check here
29403  *		or in the ioctl routine.
29404  *
29405  *   Arguments: dev	- the device 'dev_t'
29406  *		data	- pointer to an int to hold the requested address
29407  *		flag	- this argument is a pass through to ddi_copyxxx()
29408  *			  directly from the mode argument of ioctl().
29409  *
29410  * Return Code: the code returned by sd_send_scsi_cmd()
29411  *		EFAULT if ddi_copyxxx() fails
29412  *		ENXIO if fail ddi_get_soft_state
29413  *		EINVAL if data pointer is NULL
29414  */
29415 
29416 static int
29417 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29418 {
29419 	struct sd_lun		*un;
29420 	struct uscsi_cmd	*com;
29421 	caddr_t			buffer;
29422 	char			cdb[CDB_GROUP1];
29423 	int			session_offset = 0;
29424 	int			rval;
29425 
29426 	if (data == NULL) {
29427 		return (EINVAL);
29428 	}
29429 
29430 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29431 	    (un->un_state == SD_STATE_OFFLINE)) {
29432 		return (ENXIO);
29433 	}
29434 
29435 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29436 	bzero(cdb, CDB_GROUP1);
29437 	cdb[0] = SCMD_READ_TOC;
29438 	/*
29439 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29440 	 * (4 byte TOC response header + 8 byte response data)
29441 	 */
29442 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29443 	/* Byte 9 is the control byte. A vendor specific value is used */
29444 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29445 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29446 	com->uscsi_cdb = cdb;
29447 	com->uscsi_cdblen = CDB_GROUP1;
29448 	com->uscsi_bufaddr = buffer;
29449 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29450 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29451 
29452 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29453 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29454 	if (rval != 0) {
29455 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29456 		kmem_free(com, sizeof (*com));
29457 		return (rval);
29458 	}
29459 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29460 		session_offset =
29461 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29462 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29463 		/*
29464 		 * Offset returned offset in current lbasize block's. Convert to
29465 		 * 2k block's to return to the user
29466 		 */
29467 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29468 			session_offset >>= 2;
29469 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29470 			session_offset >>= 1;
29471 		}
29472 	}
29473 
29474 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29475 		rval = EFAULT;
29476 	}
29477 
29478 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29479 	kmem_free(com, sizeof (*com));
29480 	return (rval);
29481 }
29482 
29483 
29484 /*
29485  *    Function: sd_wm_cache_constructor()
29486  *
29487  * Description: Cache Constructor for the wmap cache for the read/modify/write
29488  * 		devices.
29489  *
29490  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29491  *		un	- sd_lun structure for the device.
29492  *		flag	- the km flags passed to constructor
29493  *
29494  * Return Code: 0 on success.
29495  *		-1 on failure.
29496  */
29497 
29498 /*ARGSUSED*/
29499 static int
29500 sd_wm_cache_constructor(void *wm, void *un, int flags)
29501 {
29502 	bzero(wm, sizeof (struct sd_w_map));
29503 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29504 	return (0);
29505 }
29506 
29507 
29508 /*
29509  *    Function: sd_wm_cache_destructor()
29510  *
29511  * Description: Cache destructor for the wmap cache for the read/modify/write
29512  * 		devices.
29513  *
29514  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29515  *		un	- sd_lun structure for the device.
29516  */
29517 /*ARGSUSED*/
29518 static void
29519 sd_wm_cache_destructor(void *wm, void *un)
29520 {
29521 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29522 }
29523 
29524 
29525 /*
29526  *    Function: sd_range_lock()
29527  *
29528  * Description: Lock the range of blocks specified as parameter to ensure
29529  *		that read, modify write is atomic and no other i/o writes
29530  *		to the same location. The range is specified in terms
29531  *		of start and end blocks. Block numbers are the actual
29532  *		media block numbers and not system.
29533  *
29534  *   Arguments: un	- sd_lun structure for the device.
29535  *		startb - The starting block number
29536  *		endb - The end block number
29537  *		typ - type of i/o - simple/read_modify_write
29538  *
29539  * Return Code: wm  - pointer to the wmap structure.
29540  *
29541  *     Context: This routine can sleep.
29542  */
29543 
29544 static struct sd_w_map *
29545 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29546 {
29547 	struct sd_w_map *wmp = NULL;
29548 	struct sd_w_map *sl_wmp = NULL;
29549 	struct sd_w_map *tmp_wmp;
29550 	wm_state state = SD_WM_CHK_LIST;
29551 
29552 
29553 	ASSERT(un != NULL);
29554 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29555 
29556 	mutex_enter(SD_MUTEX(un));
29557 
29558 	while (state != SD_WM_DONE) {
29559 
29560 		switch (state) {
29561 		case SD_WM_CHK_LIST:
29562 			/*
29563 			 * This is the starting state. Check the wmap list
29564 			 * to see if the range is currently available.
29565 			 */
29566 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29567 				/*
29568 				 * If this is a simple write and no rmw
29569 				 * i/o is pending then try to lock the
29570 				 * range as the range should be available.
29571 				 */
29572 				state = SD_WM_LOCK_RANGE;
29573 			} else {
29574 				tmp_wmp = sd_get_range(un, startb, endb);
29575 				if (tmp_wmp != NULL) {
29576 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29577 						/*
29578 						 * Should not keep onlist wmps
29579 						 * while waiting this macro
29580 						 * will also do wmp = NULL;
29581 						 */
29582 						FREE_ONLIST_WMAP(un, wmp);
29583 					}
29584 					/*
29585 					 * sl_wmp is the wmap on which wait
29586 					 * is done, since the tmp_wmp points
29587 					 * to the inuse wmap, set sl_wmp to
29588 					 * tmp_wmp and change the state to sleep
29589 					 */
29590 					sl_wmp = tmp_wmp;
29591 					state = SD_WM_WAIT_MAP;
29592 				} else {
29593 					state = SD_WM_LOCK_RANGE;
29594 				}
29595 
29596 			}
29597 			break;
29598 
29599 		case SD_WM_LOCK_RANGE:
29600 			ASSERT(un->un_wm_cache);
29601 			/*
29602 			 * The range need to be locked, try to get a wmap.
29603 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29604 			 * if possible as we will have to release the sd mutex
29605 			 * if we have to sleep.
29606 			 */
29607 			if (wmp == NULL)
29608 				wmp = kmem_cache_alloc(un->un_wm_cache,
29609 				    KM_NOSLEEP);
29610 			if (wmp == NULL) {
29611 				mutex_exit(SD_MUTEX(un));
29612 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29613 				    (sd_lun::un_wm_cache))
29614 				wmp = kmem_cache_alloc(un->un_wm_cache,
29615 				    KM_SLEEP);
29616 				mutex_enter(SD_MUTEX(un));
29617 				/*
29618 				 * we released the mutex so recheck and go to
29619 				 * check list state.
29620 				 */
29621 				state = SD_WM_CHK_LIST;
29622 			} else {
29623 				/*
29624 				 * We exit out of state machine since we
29625 				 * have the wmap. Do the housekeeping first.
29626 				 * place the wmap on the wmap list if it is not
29627 				 * on it already and then set the state to done.
29628 				 */
29629 				wmp->wm_start = startb;
29630 				wmp->wm_end = endb;
29631 				wmp->wm_flags = typ | SD_WM_BUSY;
29632 				if (typ & SD_WTYPE_RMW) {
29633 					un->un_rmw_count++;
29634 				}
29635 				/*
29636 				 * If not already on the list then link
29637 				 */
29638 				if (!ONLIST(un, wmp)) {
29639 					wmp->wm_next = un->un_wm;
29640 					wmp->wm_prev = NULL;
29641 					if (wmp->wm_next)
29642 						wmp->wm_next->wm_prev = wmp;
29643 					un->un_wm = wmp;
29644 				}
29645 				state = SD_WM_DONE;
29646 			}
29647 			break;
29648 
29649 		case SD_WM_WAIT_MAP:
29650 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29651 			/*
29652 			 * Wait is done on sl_wmp, which is set in the
29653 			 * check_list state.
29654 			 */
29655 			sl_wmp->wm_wanted_count++;
29656 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29657 			sl_wmp->wm_wanted_count--;
29658 			/*
29659 			 * We can reuse the memory from the completed sl_wmp
29660 			 * lock range for our new lock, but only if noone is
29661 			 * waiting for it.
29662 			 */
29663 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29664 			if (sl_wmp->wm_wanted_count == 0) {
29665 				if (wmp != NULL)
29666 					CHK_N_FREEWMP(un, wmp);
29667 				wmp = sl_wmp;
29668 			}
29669 			sl_wmp = NULL;
29670 			/*
29671 			 * After waking up, need to recheck for availability of
29672 			 * range.
29673 			 */
29674 			state = SD_WM_CHK_LIST;
29675 			break;
29676 
29677 		default:
29678 			panic("sd_range_lock: "
29679 			    "Unknown state %d in sd_range_lock", state);
29680 			/*NOTREACHED*/
29681 		} /* switch(state) */
29682 
29683 	} /* while(state != SD_WM_DONE) */
29684 
29685 	mutex_exit(SD_MUTEX(un));
29686 
29687 	ASSERT(wmp != NULL);
29688 
29689 	return (wmp);
29690 }
29691 
29692 
29693 /*
29694  *    Function: sd_get_range()
29695  *
29696  * Description: Find if there any overlapping I/O to this one
29697  *		Returns the write-map of 1st such I/O, NULL otherwise.
29698  *
29699  *   Arguments: un	- sd_lun structure for the device.
29700  *		startb - The starting block number
29701  *		endb - The end block number
29702  *
29703  * Return Code: wm  - pointer to the wmap structure.
29704  */
29705 
29706 static struct sd_w_map *
29707 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29708 {
29709 	struct sd_w_map *wmp;
29710 
29711 	ASSERT(un != NULL);
29712 
29713 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29714 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29715 			continue;
29716 		}
29717 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29718 			break;
29719 		}
29720 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29721 			break;
29722 		}
29723 	}
29724 
29725 	return (wmp);
29726 }
29727 
29728 
29729 /*
29730  *    Function: sd_free_inlist_wmap()
29731  *
29732  * Description: Unlink and free a write map struct.
29733  *
29734  *   Arguments: un      - sd_lun structure for the device.
29735  *		wmp	- sd_w_map which needs to be unlinked.
29736  */
29737 
29738 static void
29739 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29740 {
29741 	ASSERT(un != NULL);
29742 
29743 	if (un->un_wm == wmp) {
29744 		un->un_wm = wmp->wm_next;
29745 	} else {
29746 		wmp->wm_prev->wm_next = wmp->wm_next;
29747 	}
29748 
29749 	if (wmp->wm_next) {
29750 		wmp->wm_next->wm_prev = wmp->wm_prev;
29751 	}
29752 
29753 	wmp->wm_next = wmp->wm_prev = NULL;
29754 
29755 	kmem_cache_free(un->un_wm_cache, wmp);
29756 }
29757 
29758 
29759 /*
29760  *    Function: sd_range_unlock()
29761  *
29762  * Description: Unlock the range locked by wm.
29763  *		Free write map if nobody else is waiting on it.
29764  *
29765  *   Arguments: un      - sd_lun structure for the device.
29766  *              wmp     - sd_w_map which needs to be unlinked.
29767  */
29768 
29769 static void
29770 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29771 {
29772 	ASSERT(un != NULL);
29773 	ASSERT(wm != NULL);
29774 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29775 
29776 	mutex_enter(SD_MUTEX(un));
29777 
29778 	if (wm->wm_flags & SD_WTYPE_RMW) {
29779 		un->un_rmw_count--;
29780 	}
29781 
29782 	if (wm->wm_wanted_count) {
29783 		wm->wm_flags = 0;
29784 		/*
29785 		 * Broadcast that the wmap is available now.
29786 		 */
29787 		cv_broadcast(&wm->wm_avail);
29788 	} else {
29789 		/*
29790 		 * If no one is waiting on the map, it should be free'ed.
29791 		 */
29792 		sd_free_inlist_wmap(un, wm);
29793 	}
29794 
29795 	mutex_exit(SD_MUTEX(un));
29796 }
29797 
29798 
29799 /*
29800  *    Function: sd_read_modify_write_task
29801  *
29802  * Description: Called from a taskq thread to initiate the write phase of
29803  *		a read-modify-write request.  This is used for targets where
29804  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29805  *
29806  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29807  *
29808  *     Context: Called under taskq thread context.
29809  */
29810 
29811 static void
29812 sd_read_modify_write_task(void *arg)
29813 {
29814 	struct sd_mapblocksize_info	*bsp;
29815 	struct buf	*bp;
29816 	struct sd_xbuf	*xp;
29817 	struct sd_lun	*un;
29818 
29819 	bp = arg;	/* The bp is given in arg */
29820 	ASSERT(bp != NULL);
29821 
29822 	/* Get the pointer to the layer-private data struct */
29823 	xp = SD_GET_XBUF(bp);
29824 	ASSERT(xp != NULL);
29825 	bsp = xp->xb_private;
29826 	ASSERT(bsp != NULL);
29827 
29828 	un = SD_GET_UN(bp);
29829 	ASSERT(un != NULL);
29830 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29831 
29832 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29833 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29834 
29835 	/*
29836 	 * This is the write phase of a read-modify-write request, called
29837 	 * under the context of a taskq thread in response to the completion
29838 	 * of the read portion of the rmw request completing under interrupt
29839 	 * context. The write request must be sent from here down the iostart
29840 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29841 	 * we use the layer index saved in the layer-private data area.
29842 	 */
29843 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29844 
29845 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29846 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29847 }
29848 
29849 
29850 /*
29851  *    Function: sddump_do_read_of_rmw()
29852  *
29853  * Description: This routine will be called from sddump, If sddump is called
29854  *		with an I/O which not aligned on device blocksize boundary
29855  *		then the write has to be converted to read-modify-write.
29856  *		Do the read part here in order to keep sddump simple.
29857  *		Note - That the sd_mutex is held across the call to this
29858  *		routine.
29859  *
29860  *   Arguments: un	- sd_lun
29861  *		blkno	- block number in terms of media block size.
29862  *		nblk	- number of blocks.
29863  *		bpp	- pointer to pointer to the buf structure. On return
29864  *			from this function, *bpp points to the valid buffer
29865  *			to which the write has to be done.
29866  *
29867  * Return Code: 0 for success or errno-type return code
29868  */
29869 
29870 static int
29871 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29872 	struct buf **bpp)
29873 {
29874 	int err;
29875 	int i;
29876 	int rval;
29877 	struct buf *bp;
29878 	struct scsi_pkt *pkt = NULL;
29879 	uint32_t target_blocksize;
29880 
29881 	ASSERT(un != NULL);
29882 	ASSERT(mutex_owned(SD_MUTEX(un)));
29883 
29884 	target_blocksize = un->un_tgt_blocksize;
29885 
29886 	mutex_exit(SD_MUTEX(un));
29887 
29888 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29889 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29890 	if (bp == NULL) {
29891 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29892 		    "no resources for dumping; giving up");
29893 		err = ENOMEM;
29894 		goto done;
29895 	}
29896 
29897 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29898 	    blkno, nblk);
29899 	if (rval != 0) {
29900 		scsi_free_consistent_buf(bp);
29901 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29902 		    "no resources for dumping; giving up");
29903 		err = ENOMEM;
29904 		goto done;
29905 	}
29906 
29907 	pkt->pkt_flags |= FLAG_NOINTR;
29908 
29909 	err = EIO;
29910 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29911 
29912 		/*
29913 		 * Scsi_poll returns 0 (success) if the command completes and
29914 		 * the status block is STATUS_GOOD.  We should only check
29915 		 * errors if this condition is not true.  Even then we should
29916 		 * send our own request sense packet only if we have a check
29917 		 * condition and auto request sense has not been performed by
29918 		 * the hba.
29919 		 */
29920 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29921 
29922 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29923 			err = 0;
29924 			break;
29925 		}
29926 
29927 		/*
29928 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29929 		 * no need to read RQS data.
29930 		 */
29931 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29932 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29933 			    "Device is gone\n");
29934 			break;
29935 		}
29936 
29937 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29938 			SD_INFO(SD_LOG_DUMP, un,
29939 			    "sddump: read failed with CHECK, try # %d\n", i);
29940 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29941 				(void) sd_send_polled_RQS(un);
29942 			}
29943 
29944 			continue;
29945 		}
29946 
29947 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29948 			int reset_retval = 0;
29949 
29950 			SD_INFO(SD_LOG_DUMP, un,
29951 			    "sddump: read failed with BUSY, try # %d\n", i);
29952 
29953 			if (un->un_f_lun_reset_enabled == TRUE) {
29954 				reset_retval = scsi_reset(SD_ADDRESS(un),
29955 				    RESET_LUN);
29956 			}
29957 			if (reset_retval == 0) {
29958 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29959 			}
29960 			(void) sd_send_polled_RQS(un);
29961 
29962 		} else {
29963 			SD_INFO(SD_LOG_DUMP, un,
29964 			    "sddump: read failed with 0x%x, try # %d\n",
29965 			    SD_GET_PKT_STATUS(pkt), i);
29966 			mutex_enter(SD_MUTEX(un));
29967 			sd_reset_target(un, pkt);
29968 			mutex_exit(SD_MUTEX(un));
29969 		}
29970 
29971 		/*
29972 		 * If we are not getting anywhere with lun/target resets,
29973 		 * let's reset the bus.
29974 		 */
29975 		if (i > SD_NDUMP_RETRIES/2) {
29976 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29977 			(void) sd_send_polled_RQS(un);
29978 		}
29979 
29980 	}
29981 	scsi_destroy_pkt(pkt);
29982 
29983 	if (err != 0) {
29984 		scsi_free_consistent_buf(bp);
29985 		*bpp = NULL;
29986 	} else {
29987 		*bpp = bp;
29988 	}
29989 
29990 done:
29991 	mutex_enter(SD_MUTEX(un));
29992 	return (err);
29993 }
29994 
29995 
29996 /*
29997  *    Function: sd_failfast_flushq
29998  *
29999  * Description: Take all bp's on the wait queue that have B_FAILFAST set
30000  *		in b_flags and move them onto the failfast queue, then kick
30001  *		off a thread to return all bp's on the failfast queue to
30002  *		their owners with an error set.
30003  *
30004  *   Arguments: un - pointer to the soft state struct for the instance.
30005  *
30006  *     Context: may execute in interrupt context.
30007  */
30008 
30009 static void
30010 sd_failfast_flushq(struct sd_lun *un)
30011 {
30012 	struct buf *bp;
30013 	struct buf *next_waitq_bp;
30014 	struct buf *prev_waitq_bp = NULL;
30015 
30016 	ASSERT(un != NULL);
30017 	ASSERT(mutex_owned(SD_MUTEX(un)));
30018 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
30019 	ASSERT(un->un_failfast_bp == NULL);
30020 
30021 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30022 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
30023 
30024 	/*
30025 	 * Check if we should flush all bufs when entering failfast state, or
30026 	 * just those with B_FAILFAST set.
30027 	 */
30028 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
30029 		/*
30030 		 * Move *all* bp's on the wait queue to the failfast flush
30031 		 * queue, including those that do NOT have B_FAILFAST set.
30032 		 */
30033 		if (un->un_failfast_headp == NULL) {
30034 			ASSERT(un->un_failfast_tailp == NULL);
30035 			un->un_failfast_headp = un->un_waitq_headp;
30036 		} else {
30037 			ASSERT(un->un_failfast_tailp != NULL);
30038 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
30039 		}
30040 
30041 		un->un_failfast_tailp = un->un_waitq_tailp;
30042 
30043 		/* update kstat for each bp moved out of the waitq */
30044 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
30045 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30046 		}
30047 
30048 		/* empty the waitq */
30049 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
30050 
30051 	} else {
30052 		/*
30053 		 * Go thru the wait queue, pick off all entries with
30054 		 * B_FAILFAST set, and move these onto the failfast queue.
30055 		 */
30056 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
30057 			/*
30058 			 * Save the pointer to the next bp on the wait queue,
30059 			 * so we get to it on the next iteration of this loop.
30060 			 */
30061 			next_waitq_bp = bp->av_forw;
30062 
30063 			/*
30064 			 * If this bp from the wait queue does NOT have
30065 			 * B_FAILFAST set, just move on to the next element
30066 			 * in the wait queue. Note, this is the only place
30067 			 * where it is correct to set prev_waitq_bp.
30068 			 */
30069 			if ((bp->b_flags & B_FAILFAST) == 0) {
30070 				prev_waitq_bp = bp;
30071 				continue;
30072 			}
30073 
30074 			/*
30075 			 * Remove the bp from the wait queue.
30076 			 */
30077 			if (bp == un->un_waitq_headp) {
30078 				/* The bp is the first element of the waitq. */
30079 				un->un_waitq_headp = next_waitq_bp;
30080 				if (un->un_waitq_headp == NULL) {
30081 					/* The wait queue is now empty */
30082 					un->un_waitq_tailp = NULL;
30083 				}
30084 			} else {
30085 				/*
30086 				 * The bp is either somewhere in the middle
30087 				 * or at the end of the wait queue.
30088 				 */
30089 				ASSERT(un->un_waitq_headp != NULL);
30090 				ASSERT(prev_waitq_bp != NULL);
30091 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
30092 				    == 0);
30093 				if (bp == un->un_waitq_tailp) {
30094 					/* bp is the last entry on the waitq. */
30095 					ASSERT(next_waitq_bp == NULL);
30096 					un->un_waitq_tailp = prev_waitq_bp;
30097 				}
30098 				prev_waitq_bp->av_forw = next_waitq_bp;
30099 			}
30100 			bp->av_forw = NULL;
30101 
30102 			/*
30103 			 * update kstat since the bp is moved out of
30104 			 * the waitq
30105 			 */
30106 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30107 
30108 			/*
30109 			 * Now put the bp onto the failfast queue.
30110 			 */
30111 			if (un->un_failfast_headp == NULL) {
30112 				/* failfast queue is currently empty */
30113 				ASSERT(un->un_failfast_tailp == NULL);
30114 				un->un_failfast_headp =
30115 				    un->un_failfast_tailp = bp;
30116 			} else {
30117 				/* Add the bp to the end of the failfast q */
30118 				ASSERT(un->un_failfast_tailp != NULL);
30119 				ASSERT(un->un_failfast_tailp->b_flags &
30120 				    B_FAILFAST);
30121 				un->un_failfast_tailp->av_forw = bp;
30122 				un->un_failfast_tailp = bp;
30123 			}
30124 		}
30125 	}
30126 
30127 	/*
30128 	 * Now return all bp's on the failfast queue to their owners.
30129 	 */
30130 	while ((bp = un->un_failfast_headp) != NULL) {
30131 
30132 		un->un_failfast_headp = bp->av_forw;
30133 		if (un->un_failfast_headp == NULL) {
30134 			un->un_failfast_tailp = NULL;
30135 		}
30136 
30137 		/*
30138 		 * We want to return the bp with a failure error code, but
30139 		 * we do not want a call to sd_start_cmds() to occur here,
30140 		 * so use sd_return_failed_command_no_restart() instead of
30141 		 * sd_return_failed_command().
30142 		 */
30143 		sd_return_failed_command_no_restart(un, bp, EIO);
30144 	}
30145 
30146 	/* Flush the xbuf queues if required. */
30147 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
30148 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
30149 	}
30150 
30151 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30152 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
30153 }
30154 
30155 
30156 /*
30157  *    Function: sd_failfast_flushq_callback
30158  *
30159  * Description: Return TRUE if the given bp meets the criteria for failfast
30160  *		flushing. Used with ddi_xbuf_flushq(9F).
30161  *
30162  *   Arguments: bp - ptr to buf struct to be examined.
30163  *
30164  *     Context: Any
30165  */
30166 
30167 static int
30168 sd_failfast_flushq_callback(struct buf *bp)
30169 {
30170 	/*
30171 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
30172 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
30173 	 */
30174 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
30175 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
30176 }
30177 
30178 
30179 
30180 #if defined(__i386) || defined(__amd64)
30181 /*
30182  * Function: sd_setup_next_xfer
30183  *
30184  * Description: Prepare next I/O operation using DMA_PARTIAL
30185  *
30186  */
30187 
30188 static int
30189 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30190     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30191 {
30192 	ssize_t	num_blks_not_xfered;
30193 	daddr_t	strt_blk_num;
30194 	ssize_t	bytes_not_xfered;
30195 	int	rval;
30196 
30197 	ASSERT(pkt->pkt_resid == 0);
30198 
30199 	/*
30200 	 * Calculate next block number and amount to be transferred.
30201 	 *
30202 	 * How much data NOT transfered to the HBA yet.
30203 	 */
30204 	bytes_not_xfered = xp->xb_dma_resid;
30205 
30206 	/*
30207 	 * figure how many blocks NOT transfered to the HBA yet.
30208 	 */
30209 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30210 
30211 	/*
30212 	 * set starting block number to the end of what WAS transfered.
30213 	 */
30214 	strt_blk_num = xp->xb_blkno +
30215 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30216 
30217 	/*
30218 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30219 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30220 	 * the disk mutex here.
30221 	 */
30222 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30223 	    strt_blk_num, num_blks_not_xfered);
30224 
30225 	if (rval == 0) {
30226 
30227 		/*
30228 		 * Success.
30229 		 *
30230 		 * Adjust things if there are still more blocks to be
30231 		 * transfered.
30232 		 */
30233 		xp->xb_dma_resid = pkt->pkt_resid;
30234 		pkt->pkt_resid = 0;
30235 
30236 		return (1);
30237 	}
30238 
30239 	/*
30240 	 * There's really only one possible return value from
30241 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30242 	 * returns NULL.
30243 	 */
30244 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30245 
30246 	bp->b_resid = bp->b_bcount;
30247 	bp->b_flags |= B_ERROR;
30248 
30249 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30250 	    "Error setting up next portion of DMA transfer\n");
30251 
30252 	return (0);
30253 }
30254 #endif
30255 
30256 /*
30257  *    Function: sd_panic_for_res_conflict
30258  *
30259  * Description: Call panic with a string formated with "Reservation Conflict"
30260  *		and a human readable identifier indicating the SD instance
30261  *		that experienced the reservation conflict.
30262  *
30263  *   Arguments: un - pointer to the soft state struct for the instance.
30264  *
30265  *     Context: may execute in interrupt context.
30266  */
30267 
30268 #define	SD_RESV_CONFLICT_FMT_LEN 40
30269 void
30270 sd_panic_for_res_conflict(struct sd_lun *un)
30271 {
30272 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30273 	char path_str[MAXPATHLEN];
30274 
30275 	(void) snprintf(panic_str, sizeof (panic_str),
30276 	    "Reservation Conflict\nDisk: %s",
30277 	    ddi_pathname(SD_DEVINFO(un), path_str));
30278 
30279 	panic(panic_str);
30280 }
30281 
30282 /*
30283  * Note: The following sd_faultinjection_ioctl( ) routines implement
30284  * driver support for handling fault injection for error analysis
30285  * causing faults in multiple layers of the driver.
30286  *
30287  */
30288 
30289 #ifdef SD_FAULT_INJECTION
30290 static uint_t   sd_fault_injection_on = 0;
30291 
30292 /*
30293  *    Function: sd_faultinjection_ioctl()
30294  *
30295  * Description: This routine is the driver entry point for handling
30296  *              faultinjection ioctls to inject errors into the
30297  *              layer model
30298  *
30299  *   Arguments: cmd	- the ioctl cmd recieved
30300  *		arg	- the arguments from user and returns
30301  */
30302 
30303 static void
30304 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30305 
30306 	uint_t i;
30307 	uint_t rval;
30308 
30309 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30310 
30311 	mutex_enter(SD_MUTEX(un));
30312 
30313 	switch (cmd) {
30314 	case SDIOCRUN:
30315 		/* Allow pushed faults to be injected */
30316 		SD_INFO(SD_LOG_SDTEST, un,
30317 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30318 
30319 		sd_fault_injection_on = 1;
30320 
30321 		SD_INFO(SD_LOG_IOERR, un,
30322 		    "sd_faultinjection_ioctl: run finished\n");
30323 		break;
30324 
30325 	case SDIOCSTART:
30326 		/* Start Injection Session */
30327 		SD_INFO(SD_LOG_SDTEST, un,
30328 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30329 
30330 		sd_fault_injection_on = 0;
30331 		un->sd_injection_mask = 0xFFFFFFFF;
30332 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30333 			un->sd_fi_fifo_pkt[i] = NULL;
30334 			un->sd_fi_fifo_xb[i] = NULL;
30335 			un->sd_fi_fifo_un[i] = NULL;
30336 			un->sd_fi_fifo_arq[i] = NULL;
30337 		}
30338 		un->sd_fi_fifo_start = 0;
30339 		un->sd_fi_fifo_end = 0;
30340 
30341 		mutex_enter(&(un->un_fi_mutex));
30342 		un->sd_fi_log[0] = '\0';
30343 		un->sd_fi_buf_len = 0;
30344 		mutex_exit(&(un->un_fi_mutex));
30345 
30346 		SD_INFO(SD_LOG_IOERR, un,
30347 		    "sd_faultinjection_ioctl: start finished\n");
30348 		break;
30349 
30350 	case SDIOCSTOP:
30351 		/* Stop Injection Session */
30352 		SD_INFO(SD_LOG_SDTEST, un,
30353 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30354 		sd_fault_injection_on = 0;
30355 		un->sd_injection_mask = 0x0;
30356 
30357 		/* Empty stray or unuseds structs from fifo */
30358 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30359 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30360 				kmem_free(un->sd_fi_fifo_pkt[i],
30361 				    sizeof (struct sd_fi_pkt));
30362 			}
30363 			if (un->sd_fi_fifo_xb[i] != NULL) {
30364 				kmem_free(un->sd_fi_fifo_xb[i],
30365 				    sizeof (struct sd_fi_xb));
30366 			}
30367 			if (un->sd_fi_fifo_un[i] != NULL) {
30368 				kmem_free(un->sd_fi_fifo_un[i],
30369 				    sizeof (struct sd_fi_un));
30370 			}
30371 			if (un->sd_fi_fifo_arq[i] != NULL) {
30372 				kmem_free(un->sd_fi_fifo_arq[i],
30373 				    sizeof (struct sd_fi_arq));
30374 			}
30375 			un->sd_fi_fifo_pkt[i] = NULL;
30376 			un->sd_fi_fifo_un[i] = NULL;
30377 			un->sd_fi_fifo_xb[i] = NULL;
30378 			un->sd_fi_fifo_arq[i] = NULL;
30379 		}
30380 		un->sd_fi_fifo_start = 0;
30381 		un->sd_fi_fifo_end = 0;
30382 
30383 		SD_INFO(SD_LOG_IOERR, un,
30384 		    "sd_faultinjection_ioctl: stop finished\n");
30385 		break;
30386 
30387 	case SDIOCINSERTPKT:
30388 		/* Store a packet struct to be pushed onto fifo */
30389 		SD_INFO(SD_LOG_SDTEST, un,
30390 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30391 
30392 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30393 
30394 		sd_fault_injection_on = 0;
30395 
30396 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30397 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30398 			kmem_free(un->sd_fi_fifo_pkt[i],
30399 			    sizeof (struct sd_fi_pkt));
30400 		}
30401 		if (arg != NULL) {
30402 			un->sd_fi_fifo_pkt[i] =
30403 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30404 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30405 				/* Alloc failed don't store anything */
30406 				break;
30407 			}
30408 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30409 			    sizeof (struct sd_fi_pkt), 0);
30410 			if (rval == -1) {
30411 				kmem_free(un->sd_fi_fifo_pkt[i],
30412 				    sizeof (struct sd_fi_pkt));
30413 				un->sd_fi_fifo_pkt[i] = NULL;
30414 			}
30415 		} else {
30416 			SD_INFO(SD_LOG_IOERR, un,
30417 			    "sd_faultinjection_ioctl: pkt null\n");
30418 		}
30419 		break;
30420 
30421 	case SDIOCINSERTXB:
30422 		/* Store a xb struct to be pushed onto fifo */
30423 		SD_INFO(SD_LOG_SDTEST, un,
30424 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30425 
30426 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30427 
30428 		sd_fault_injection_on = 0;
30429 
30430 		if (un->sd_fi_fifo_xb[i] != NULL) {
30431 			kmem_free(un->sd_fi_fifo_xb[i],
30432 			    sizeof (struct sd_fi_xb));
30433 			un->sd_fi_fifo_xb[i] = NULL;
30434 		}
30435 		if (arg != NULL) {
30436 			un->sd_fi_fifo_xb[i] =
30437 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30438 			if (un->sd_fi_fifo_xb[i] == NULL) {
30439 				/* Alloc failed don't store anything */
30440 				break;
30441 			}
30442 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30443 			    sizeof (struct sd_fi_xb), 0);
30444 
30445 			if (rval == -1) {
30446 				kmem_free(un->sd_fi_fifo_xb[i],
30447 				    sizeof (struct sd_fi_xb));
30448 				un->sd_fi_fifo_xb[i] = NULL;
30449 			}
30450 		} else {
30451 			SD_INFO(SD_LOG_IOERR, un,
30452 			    "sd_faultinjection_ioctl: xb null\n");
30453 		}
30454 		break;
30455 
30456 	case SDIOCINSERTUN:
30457 		/* Store a un struct to be pushed onto fifo */
30458 		SD_INFO(SD_LOG_SDTEST, un,
30459 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30460 
30461 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30462 
30463 		sd_fault_injection_on = 0;
30464 
30465 		if (un->sd_fi_fifo_un[i] != NULL) {
30466 			kmem_free(un->sd_fi_fifo_un[i],
30467 			    sizeof (struct sd_fi_un));
30468 			un->sd_fi_fifo_un[i] = NULL;
30469 		}
30470 		if (arg != NULL) {
30471 			un->sd_fi_fifo_un[i] =
30472 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30473 			if (un->sd_fi_fifo_un[i] == NULL) {
30474 				/* Alloc failed don't store anything */
30475 				break;
30476 			}
30477 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30478 			    sizeof (struct sd_fi_un), 0);
30479 			if (rval == -1) {
30480 				kmem_free(un->sd_fi_fifo_un[i],
30481 				    sizeof (struct sd_fi_un));
30482 				un->sd_fi_fifo_un[i] = NULL;
30483 			}
30484 
30485 		} else {
30486 			SD_INFO(SD_LOG_IOERR, un,
30487 			    "sd_faultinjection_ioctl: un null\n");
30488 		}
30489 
30490 		break;
30491 
30492 	case SDIOCINSERTARQ:
30493 		/* Store a arq struct to be pushed onto fifo */
30494 		SD_INFO(SD_LOG_SDTEST, un,
30495 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30496 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30497 
30498 		sd_fault_injection_on = 0;
30499 
30500 		if (un->sd_fi_fifo_arq[i] != NULL) {
30501 			kmem_free(un->sd_fi_fifo_arq[i],
30502 			    sizeof (struct sd_fi_arq));
30503 			un->sd_fi_fifo_arq[i] = NULL;
30504 		}
30505 		if (arg != NULL) {
30506 			un->sd_fi_fifo_arq[i] =
30507 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30508 			if (un->sd_fi_fifo_arq[i] == NULL) {
30509 				/* Alloc failed don't store anything */
30510 				break;
30511 			}
30512 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30513 			    sizeof (struct sd_fi_arq), 0);
30514 			if (rval == -1) {
30515 				kmem_free(un->sd_fi_fifo_arq[i],
30516 				    sizeof (struct sd_fi_arq));
30517 				un->sd_fi_fifo_arq[i] = NULL;
30518 			}
30519 
30520 		} else {
30521 			SD_INFO(SD_LOG_IOERR, un,
30522 			    "sd_faultinjection_ioctl: arq null\n");
30523 		}
30524 
30525 		break;
30526 
30527 	case SDIOCPUSH:
30528 		/* Push stored xb, pkt, un, and arq onto fifo */
30529 		sd_fault_injection_on = 0;
30530 
30531 		if (arg != NULL) {
30532 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30533 			if (rval != -1 &&
30534 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30535 				un->sd_fi_fifo_end += i;
30536 			}
30537 		} else {
30538 			SD_INFO(SD_LOG_IOERR, un,
30539 			    "sd_faultinjection_ioctl: push arg null\n");
30540 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30541 				un->sd_fi_fifo_end++;
30542 			}
30543 		}
30544 		SD_INFO(SD_LOG_IOERR, un,
30545 		    "sd_faultinjection_ioctl: push to end=%d\n",
30546 		    un->sd_fi_fifo_end);
30547 		break;
30548 
30549 	case SDIOCRETRIEVE:
30550 		/* Return buffer of log from Injection session */
30551 		SD_INFO(SD_LOG_SDTEST, un,
30552 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30553 
30554 		sd_fault_injection_on = 0;
30555 
30556 		mutex_enter(&(un->un_fi_mutex));
30557 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30558 		    un->sd_fi_buf_len+1, 0);
30559 		mutex_exit(&(un->un_fi_mutex));
30560 
30561 		if (rval == -1) {
30562 			/*
30563 			 * arg is possibly invalid setting
30564 			 * it to NULL for return
30565 			 */
30566 			arg = NULL;
30567 		}
30568 		break;
30569 	}
30570 
30571 	mutex_exit(SD_MUTEX(un));
30572 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30573 			    " exit\n");
30574 }
30575 
30576 
30577 /*
30578  *    Function: sd_injection_log()
30579  *
30580  * Description: This routine adds buff to the already existing injection log
30581  *              for retrieval via faultinjection_ioctl for use in fault
30582  *              detection and recovery
30583  *
30584  *   Arguments: buf - the string to add to the log
30585  */
30586 
30587 static void
30588 sd_injection_log(char *buf, struct sd_lun *un)
30589 {
30590 	uint_t len;
30591 
30592 	ASSERT(un != NULL);
30593 	ASSERT(buf != NULL);
30594 
30595 	mutex_enter(&(un->un_fi_mutex));
30596 
30597 	len = min(strlen(buf), 255);
30598 	/* Add logged value to Injection log to be returned later */
30599 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30600 		uint_t	offset = strlen((char *)un->sd_fi_log);
30601 		char *destp = (char *)un->sd_fi_log + offset;
30602 		int i;
30603 		for (i = 0; i < len; i++) {
30604 			*destp++ = *buf++;
30605 		}
30606 		un->sd_fi_buf_len += len;
30607 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30608 	}
30609 
30610 	mutex_exit(&(un->un_fi_mutex));
30611 }
30612 
30613 
30614 /*
30615  *    Function: sd_faultinjection()
30616  *
30617  * Description: This routine takes the pkt and changes its
30618  *		content based on error injection scenerio.
30619  *
30620  *   Arguments: pktp	- packet to be changed
30621  */
30622 
30623 static void
30624 sd_faultinjection(struct scsi_pkt *pktp)
30625 {
30626 	uint_t i;
30627 	struct sd_fi_pkt *fi_pkt;
30628 	struct sd_fi_xb *fi_xb;
30629 	struct sd_fi_un *fi_un;
30630 	struct sd_fi_arq *fi_arq;
30631 	struct buf *bp;
30632 	struct sd_xbuf *xb;
30633 	struct sd_lun *un;
30634 
30635 	ASSERT(pktp != NULL);
30636 
30637 	/* pull bp xb and un from pktp */
30638 	bp = (struct buf *)pktp->pkt_private;
30639 	xb = SD_GET_XBUF(bp);
30640 	un = SD_GET_UN(bp);
30641 
30642 	ASSERT(un != NULL);
30643 
30644 	mutex_enter(SD_MUTEX(un));
30645 
30646 	SD_TRACE(SD_LOG_SDTEST, un,
30647 	    "sd_faultinjection: entry Injection from sdintr\n");
30648 
30649 	/* if injection is off return */
30650 	if (sd_fault_injection_on == 0 ||
30651 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30652 		mutex_exit(SD_MUTEX(un));
30653 		return;
30654 	}
30655 
30656 
30657 	/* take next set off fifo */
30658 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30659 
30660 	fi_pkt = un->sd_fi_fifo_pkt[i];
30661 	fi_xb = un->sd_fi_fifo_xb[i];
30662 	fi_un = un->sd_fi_fifo_un[i];
30663 	fi_arq = un->sd_fi_fifo_arq[i];
30664 
30665 
30666 	/* set variables accordingly */
30667 	/* set pkt if it was on fifo */
30668 	if (fi_pkt != NULL) {
30669 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30670 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30671 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30672 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30673 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30674 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30675 
30676 	}
30677 
30678 	/* set xb if it was on fifo */
30679 	if (fi_xb != NULL) {
30680 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30681 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30682 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30683 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30684 		    "xb_victim_retry_count");
30685 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30686 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30687 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30688 
30689 		/* copy in block data from sense */
30690 		if (fi_xb->xb_sense_data[0] != -1) {
30691 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30692 			    SENSE_LENGTH);
30693 		}
30694 
30695 		/* copy in extended sense codes */
30696 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30697 		    "es_code");
30698 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30699 		    "es_key");
30700 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30701 		    "es_add_code");
30702 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30703 		    es_qual_code, "es_qual_code");
30704 	}
30705 
30706 	/* set un if it was on fifo */
30707 	if (fi_un != NULL) {
30708 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30709 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30710 		SD_CONDSET(un, un, un_reset_retry_count,
30711 		    "un_reset_retry_count");
30712 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30713 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30714 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30715 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30716 		    "un_f_geometry_is_valid");
30717 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30718 		    "un_f_allow_bus_device_reset");
30719 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30720 
30721 	}
30722 
30723 	/* copy in auto request sense if it was on fifo */
30724 	if (fi_arq != NULL) {
30725 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30726 	}
30727 
30728 	/* free structs */
30729 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30730 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30731 	}
30732 	if (un->sd_fi_fifo_xb[i] != NULL) {
30733 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30734 	}
30735 	if (un->sd_fi_fifo_un[i] != NULL) {
30736 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30737 	}
30738 	if (un->sd_fi_fifo_arq[i] != NULL) {
30739 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30740 	}
30741 
30742 	/*
30743 	 * kmem_free does not gurantee to set to NULL
30744 	 * since we uses these to determine if we set
30745 	 * values or not lets confirm they are always
30746 	 * NULL after free
30747 	 */
30748 	un->sd_fi_fifo_pkt[i] = NULL;
30749 	un->sd_fi_fifo_un[i] = NULL;
30750 	un->sd_fi_fifo_xb[i] = NULL;
30751 	un->sd_fi_fifo_arq[i] = NULL;
30752 
30753 	un->sd_fi_fifo_start++;
30754 
30755 	mutex_exit(SD_MUTEX(un));
30756 
30757 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30758 }
30759 
30760 #endif /* SD_FAULT_INJECTION */
30761 
30762 /*
30763  * This routine is invoked in sd_unit_attach(). Before calling it, the
30764  * properties in conf file should be processed already, and "hotpluggable"
30765  * property was processed also.
30766  *
30767  * The sd driver distinguishes 3 different type of devices: removable media,
30768  * non-removable media, and hotpluggable. Below the differences are defined:
30769  *
30770  * 1. Device ID
30771  *
30772  *     The device ID of a device is used to identify this device. Refer to
30773  *     ddi_devid_register(9F).
30774  *
30775  *     For a non-removable media disk device which can provide 0x80 or 0x83
30776  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30777  *     device ID is created to identify this device. For other non-removable
30778  *     media devices, a default device ID is created only if this device has
30779  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30780  *
30781  *     -------------------------------------------------------
30782  *     removable media   hotpluggable  | Can Have Device ID
30783  *     -------------------------------------------------------
30784  *         false             false     |     Yes
30785  *         false             true      |     Yes
30786  *         true                x       |     No
30787  *     ------------------------------------------------------
30788  *
30789  *
30790  * 2. SCSI group 4 commands
30791  *
30792  *     In SCSI specs, only some commands in group 4 command set can use
30793  *     8-byte addresses that can be used to access >2TB storage spaces.
30794  *     Other commands have no such capability. Without supporting group4,
30795  *     it is impossible to make full use of storage spaces of a disk with
30796  *     capacity larger than 2TB.
30797  *
30798  *     -----------------------------------------------
30799  *     removable media   hotpluggable   LP64  |  Group
30800  *     -----------------------------------------------
30801  *           false          false       false |   1
30802  *           false          false       true  |   4
30803  *           false          true        false |   1
30804  *           false          true        true  |   4
30805  *           true             x           x   |   5
30806  *     -----------------------------------------------
30807  *
30808  *
30809  * 3. Check for VTOC Label
30810  *
30811  *     If a direct-access disk has no EFI label, sd will check if it has a
30812  *     valid VTOC label. Now, sd also does that check for removable media
30813  *     and hotpluggable devices.
30814  *
30815  *     --------------------------------------------------------------
30816  *     Direct-Access   removable media    hotpluggable |  Check Label
30817  *     -------------------------------------------------------------
30818  *         false          false           false        |   No
30819  *         false          false           true         |   No
30820  *         false          true            false        |   Yes
30821  *         false          true            true         |   Yes
30822  *         true            x                x          |   Yes
30823  *     --------------------------------------------------------------
30824  *
30825  *
30826  * 4. Building default VTOC label
30827  *
30828  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30829  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30830  *     create default VTOC for them. Currently sd creates default VTOC label
30831  *     for all devices on x86 platform (VTOC_16), but only for removable
30832  *     media devices on SPARC (VTOC_8).
30833  *
30834  *     -----------------------------------------------------------
30835  *       removable media hotpluggable platform   |   Default Label
30836  *     -----------------------------------------------------------
30837  *             false          false    sparc     |     No
30838  *             false          true      x86      |     Yes
30839  *             false          true     sparc     |     Yes
30840  *             true             x        x       |     Yes
30841  *     ----------------------------------------------------------
30842  *
30843  *
30844  * 5. Supported blocksizes of target devices
30845  *
30846  *     Sd supports non-512-byte blocksize for removable media devices only.
30847  *     For other devices, only 512-byte blocksize is supported. This may be
30848  *     changed in near future because some RAID devices require non-512-byte
30849  *     blocksize
30850  *
30851  *     -----------------------------------------------------------
30852  *     removable media    hotpluggable    | non-512-byte blocksize
30853  *     -----------------------------------------------------------
30854  *           false          false         |   No
30855  *           false          true          |   No
30856  *           true             x           |   Yes
30857  *     -----------------------------------------------------------
30858  *
30859  *
30860  * 6. Automatic mount & unmount (i.e. vold)
30861  *
30862  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30863  *     if a device is removable media device. It return 1 for removable media
30864  *     devices, and 0 for others.
30865  *
30866  *     Vold treats a device as removable one only if DKIOREMOVABLE returns 1.
30867  *     And it does automounting only for removable media devices. In order to
30868  *     preserve users' experience and let vold continue to do automounting for
30869  *     USB disk devices, DKIOCREMOVABLE ioctl still returns 1 for USB/1394 disk
30870  *     devices.
30871  *
30872  *      ------------------------------------------------------
30873  *       removable media    hotpluggable   |  automatic mount
30874  *      ------------------------------------------------------
30875  *             false          false        |   No
30876  *             false          true         |   Yes
30877  *             true             x          |   Yes
30878  *      ------------------------------------------------------
30879  *
30880  *
30881  * 7. fdisk partition management
30882  *
30883  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30884  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30885  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30886  *     fdisk partitions on both x86 and SPARC platform.
30887  *
30888  *     -----------------------------------------------------------
30889  *       platform   removable media  USB/1394  |  fdisk supported
30890  *     -----------------------------------------------------------
30891  *        x86         X               X        |       true
30892  *     ------------------------------------------------------------
30893  *        sparc       X               X        |       false
30894  *     ------------------------------------------------------------
30895  *
30896  *
30897  * 8. MBOOT/MBR
30898  *
30899  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30900  *     read/write mboot for removable media devices on sparc platform.
30901  *
30902  *     -----------------------------------------------------------
30903  *       platform   removable media  USB/1394  |  mboot supported
30904  *     -----------------------------------------------------------
30905  *        x86         X               X        |       true
30906  *     ------------------------------------------------------------
30907  *        sparc      false           false     |       false
30908  *        sparc      false           true      |       true
30909  *        sparc      true            false     |       true
30910  *        sparc      true            true      |       true
30911  *     ------------------------------------------------------------
30912  *
30913  *
30914  * 9.  error handling during opening device
30915  *
30916  *     If failed to open a disk device, an errno is returned. For some kinds
30917  *     of errors, different errno is returned depending on if this device is
30918  *     a removable media device. This brings USB/1394 hard disks in line with
30919  *     expected hard disk behavior. It is not expected that this breaks any
30920  *     application.
30921  *
30922  *     ------------------------------------------------------
30923  *       removable media    hotpluggable   |  errno
30924  *     ------------------------------------------------------
30925  *             false          false        |   EIO
30926  *             false          true         |   EIO
30927  *             true             x          |   ENXIO
30928  *     ------------------------------------------------------
30929  *
30930  *
30931  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30932  *
30933  *     These IOCTLs are applicable only to removable media devices.
30934  *
30935  *     -----------------------------------------------------------
30936  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30937  *     -----------------------------------------------------------
30938  *             false          false        |     No
30939  *             false          true         |     No
30940  *             true            x           |     Yes
30941  *     -----------------------------------------------------------
30942  *
30943  *
30944  * 12. Kstats for partitions
30945  *
30946  *     sd creates partition kstat for non-removable media devices. USB and
30947  *     Firewire hard disks now have partition kstats
30948  *
30949  *      ------------------------------------------------------
30950  *       removable media    hotplugable    |   kstat
30951  *      ------------------------------------------------------
30952  *             false          false        |    Yes
30953  *             false          true         |    Yes
30954  *             true             x          |    No
30955  *       ------------------------------------------------------
30956  *
30957  *
30958  * 13. Removable media & hotpluggable properties
30959  *
30960  *     Sd driver creates a "removable-media" property for removable media
30961  *     devices. Parent nexus drivers create a "hotpluggable" property if
30962  *     it supports hotplugging.
30963  *
30964  *     ---------------------------------------------------------------------
30965  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30966  *     ---------------------------------------------------------------------
30967  *       false            false       |    No                   No
30968  *       false            true        |    No                   Yes
30969  *       true             false       |    Yes                  No
30970  *       true             true        |    Yes                  Yes
30971  *     ---------------------------------------------------------------------
30972  *
30973  *
30974  * 14. Power Management
30975  *
30976  *     sd only power manages removable media devices or devices that support
30977  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30978  *
30979  *     A parent nexus that supports hotplugging can also set "pm-capable"
30980  *     if the disk can be power managed.
30981  *
30982  *     ------------------------------------------------------------
30983  *       removable media hotpluggable pm-capable  |   power manage
30984  *     ------------------------------------------------------------
30985  *             false          false     false     |     No
30986  *             false          false     true      |     Yes
30987  *             false          true      false     |     No
30988  *             false          true      true      |     Yes
30989  *             true             x        x        |     Yes
30990  *     ------------------------------------------------------------
30991  *
30992  *      USB and firewire hard disks can now be power managed independently
30993  *      of the framebuffer
30994  *
30995  *
30996  * 15. Support for USB disks with capacity larger than 1TB
30997  *
30998  *     Currently, sd doesn't permit a fixed disk device with capacity
30999  *     larger than 1TB to be used in a 32-bit operating system environment.
31000  *     However, sd doesn't do that for removable media devices. Instead, it
31001  *     assumes that removable media devices cannot have a capacity larger
31002  *     than 1TB. Therefore, using those devices on 32-bit system is partially
31003  *     supported, which can cause some unexpected results.
31004  *
31005  *     ---------------------------------------------------------------------
31006  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
31007  *     ---------------------------------------------------------------------
31008  *             false          false  |   true         |     no
31009  *             false          true   |   true         |     no
31010  *             true           false  |   true         |     Yes
31011  *             true           true   |   true         |     Yes
31012  *     ---------------------------------------------------------------------
31013  *
31014  *
31015  * 16. Check write-protection at open time
31016  *
31017  *     When a removable media device is being opened for writing without NDELAY
31018  *     flag, sd will check if this device is writable. If attempting to open
31019  *     without NDELAY flag a write-protected device, this operation will abort.
31020  *
31021  *     ------------------------------------------------------------
31022  *       removable media    USB/1394   |   WP Check
31023  *     ------------------------------------------------------------
31024  *             false          false    |     No
31025  *             false          true     |     No
31026  *             true           false    |     Yes
31027  *             true           true     |     Yes
31028  *     ------------------------------------------------------------
31029  *
31030  *
31031  * 17. syslog when corrupted VTOC is encountered
31032  *
31033  *      Currently, if an invalid VTOC is encountered, sd only print syslog
31034  *      for fixed SCSI disks.
31035  *     ------------------------------------------------------------
31036  *       removable media    USB/1394   |   print syslog
31037  *     ------------------------------------------------------------
31038  *             false          false    |     Yes
31039  *             false          true     |     No
31040  *             true           false    |     No
31041  *             true           true     |     No
31042  *     ------------------------------------------------------------
31043  */
31044 static void
31045 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
31046 {
31047 	int	pm_capable_prop;
31048 
31049 	ASSERT(un->un_sd);
31050 	ASSERT(un->un_sd->sd_inq);
31051 
31052 #if defined(_SUNOS_VTOC_16)
31053 	/*
31054 	 * For VTOC_16 devices, the default label will be created for all
31055 	 * devices. (see sd_build_default_label)
31056 	 */
31057 	un->un_f_default_vtoc_supported = TRUE;
31058 #endif
31059 
31060 	if (un->un_sd->sd_inq->inq_rmb) {
31061 		/*
31062 		 * The media of this device is removable. And for this kind
31063 		 * of devices, it is possible to change medium after openning
31064 		 * devices. Thus we should support this operation.
31065 		 */
31066 		un->un_f_has_removable_media = TRUE;
31067 
31068 #if defined(_SUNOS_VTOC_8)
31069 		/*
31070 		 * Note: currently, for VTOC_8 devices, default label is
31071 		 * created for removable and hotpluggable devices only.
31072 		 */
31073 		un->un_f_default_vtoc_supported = TRUE;
31074 #endif
31075 		/*
31076 		 * support non-512-byte blocksize of removable media devices
31077 		 */
31078 		un->un_f_non_devbsize_supported = TRUE;
31079 
31080 		/*
31081 		 * Assume that all removable media devices support DOOR_LOCK
31082 		 */
31083 		un->un_f_doorlock_supported = TRUE;
31084 
31085 		/*
31086 		 * For a removable media device, it is possible to be opened
31087 		 * with NDELAY flag when there is no media in drive, in this
31088 		 * case we don't care if device is writable. But if without
31089 		 * NDELAY flag, we need to check if media is write-protected.
31090 		 */
31091 		un->un_f_chk_wp_open = TRUE;
31092 
31093 		/*
31094 		 * need to start a SCSI watch thread to monitor media state,
31095 		 * when media is being inserted or ejected, notify syseventd.
31096 		 */
31097 		un->un_f_monitor_media_state = TRUE;
31098 
31099 		/*
31100 		 * Some devices don't support START_STOP_UNIT command.
31101 		 * Therefore, we'd better check if a device supports it
31102 		 * before sending it.
31103 		 */
31104 		un->un_f_check_start_stop = TRUE;
31105 
31106 		/*
31107 		 * support eject media ioctl:
31108 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
31109 		 */
31110 		un->un_f_eject_media_supported = TRUE;
31111 
31112 		/*
31113 		 * Because many removable-media devices don't support
31114 		 * LOG_SENSE, we couldn't use this command to check if
31115 		 * a removable media device support power-management.
31116 		 * We assume that they support power-management via
31117 		 * START_STOP_UNIT command and can be spun up and down
31118 		 * without limitations.
31119 		 */
31120 		un->un_f_pm_supported = TRUE;
31121 
31122 		/*
31123 		 * Need to create a zero length (Boolean) property
31124 		 * removable-media for the removable media devices.
31125 		 * Note that the return value of the property is not being
31126 		 * checked, since if unable to create the property
31127 		 * then do not want the attach to fail altogether. Consistent
31128 		 * with other property creation in attach.
31129 		 */
31130 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
31131 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
31132 
31133 	} else {
31134 		/*
31135 		 * create device ID for device
31136 		 */
31137 		un->un_f_devid_supported = TRUE;
31138 
31139 		/*
31140 		 * Spin up non-removable-media devices once it is attached
31141 		 */
31142 		un->un_f_attach_spinup = TRUE;
31143 
31144 		/*
31145 		 * According to SCSI specification, Sense data has two kinds of
31146 		 * format: fixed format, and descriptor format. At present, we
31147 		 * don't support descriptor format sense data for removable
31148 		 * media.
31149 		 */
31150 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31151 			un->un_f_descr_format_supported = TRUE;
31152 		}
31153 
31154 		/*
31155 		 * kstats are created only for non-removable media devices.
31156 		 *
31157 		 * Set this in sd.conf to 0 in order to disable kstats.  The
31158 		 * default is 1, so they are enabled by default.
31159 		 */
31160 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
31161 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
31162 			"enable-partition-kstats", 1));
31163 
31164 		/*
31165 		 * Check if HBA has set the "pm-capable" property.
31166 		 * If "pm-capable" exists and is non-zero then we can
31167 		 * power manage the device without checking the start/stop
31168 		 * cycle count log sense page.
31169 		 *
31170 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31171 		 * then we should not power manage the device.
31172 		 *
31173 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31174 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31175 		 * sd will check the start/stop cycle count log sense page
31176 		 * and power manage the device if the cycle count limit has
31177 		 * not been exceeded.
31178 		 */
31179 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31180 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31181 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31182 			un->un_f_log_sense_supported = TRUE;
31183 		} else {
31184 			/*
31185 			 * pm-capable property exists.
31186 			 *
31187 			 * Convert "TRUE" values for pm_capable_prop to
31188 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31189 			 * later. "TRUE" values are any values except
31190 			 * SD_PM_CAPABLE_FALSE (0) and
31191 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31192 			 */
31193 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31194 				un->un_f_log_sense_supported = FALSE;
31195 			} else {
31196 				un->un_f_pm_supported = TRUE;
31197 			}
31198 
31199 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31200 			    "sd_unit_attach: un:0x%p pm-capable "
31201 			    "property set to %d.\n", un, un->un_f_pm_supported);
31202 		}
31203 	}
31204 
31205 	if (un->un_f_is_hotpluggable) {
31206 #if defined(_SUNOS_VTOC_8)
31207 		/*
31208 		 * Note: currently, for VTOC_8 devices, default label is
31209 		 * created for removable and hotpluggable devices only.
31210 		 */
31211 		un->un_f_default_vtoc_supported = TRUE;
31212 #endif
31213 
31214 		/*
31215 		 * Temporarily, let hotpluggable devices pretend to be
31216 		 * removable-media devices for vold.
31217 		 */
31218 		un->un_f_monitor_media_state = TRUE;
31219 
31220 		un->un_f_check_start_stop = TRUE;
31221 
31222 	}
31223 
31224 	/*
31225 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31226 	 * labels.
31227 	 */
31228 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31229 	    (un->un_sd->sd_inq->inq_rmb)) {
31230 		/*
31231 		 * Direct access devices have disk label
31232 		 */
31233 		un->un_f_vtoc_label_supported = TRUE;
31234 	}
31235 
31236 	/*
31237 	 * Fdisk partitions are supported for all direct access devices on
31238 	 * x86 platform, and just for removable media and hotpluggable
31239 	 * devices on SPARC platform. Later, we will set the following flag
31240 	 * to FALSE if current device is not removable media or hotpluggable
31241 	 * device and if sd works on SAPRC platform.
31242 	 */
31243 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31244 		un->un_f_mboot_supported = TRUE;
31245 	}
31246 
31247 	if (!un->un_f_is_hotpluggable &&
31248 	    !un->un_sd->sd_inq->inq_rmb) {
31249 
31250 #if defined(_SUNOS_VTOC_8)
31251 		/*
31252 		 * Don't support fdisk on fixed disk
31253 		 */
31254 		un->un_f_mboot_supported = FALSE;
31255 #endif
31256 
31257 		/*
31258 		 * Fixed disk support SYNC CACHE
31259 		 */
31260 		un->un_f_sync_cache_supported = TRUE;
31261 
31262 		/*
31263 		 * For fixed disk, if its VTOC is not valid, we will write
31264 		 * errlog into system log
31265 		 */
31266 		if (un->un_f_vtoc_label_supported)
31267 			un->un_f_vtoc_errlog_supported = TRUE;
31268 	}
31269 }
31270