xref: /illumos-gate/usr/src/uts/common/io/scsi/impl/scsi_subr.c (revision 9ffca3735a6d60d1994f185af63e16705e87d2c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/scsi/scsi.h>
28 #include <sys/file.h>
29 
30 /*
31  * Utility SCSI routines
32  */
33 
34 /*
35  * Polling support routines
36  */
37 
38 extern uintptr_t scsi_callback_id;
39 
40 extern uchar_t scsi_cdb_size[];
41 
42 /*
43  * Common buffer for scsi_log
44  */
45 
46 extern kmutex_t scsi_log_mutex;
47 static char scsi_log_buffer[MAXPATHLEN + 1];
48 
49 
50 #define	A_TO_TRAN(ap)	(ap->a_hba_tran)
51 #define	P_TO_TRAN(pkt)	((pkt)->pkt_address.a_hba_tran)
52 #define	P_TO_ADDR(pkt)	(&((pkt)->pkt_address))
53 
54 #define	CSEC		10000			/* usecs */
55 #define	SEC_TO_CSEC	(1000000/CSEC)
56 
57 extern ddi_dma_attr_t scsi_alloc_attr;
58 
59 /*PRINTFLIKE4*/
60 static void impl_scsi_log(dev_info_t *dev, char *label, uint_t level,
61     const char *fmt, ...) __KPRINTFLIKE(4);
62 /*PRINTFLIKE4*/
63 static void v_scsi_log(dev_info_t *dev, char *label, uint_t level,
64     const char *fmt, va_list ap) __KVPRINTFLIKE(4);
65 
66 static int
67 scsi_get_next_descr(uint8_t *sdsp,
68     int sense_buf_len, struct scsi_descr_template **descrpp);
69 
70 #define	DESCR_GOOD	0
71 #define	DESCR_PARTIAL	1
72 #define	DESCR_END	2
73 
74 static int
75 scsi_validate_descr(struct scsi_descr_sense_hdr *sdsp,
76     int valid_sense_length, struct scsi_descr_template *descrp);
77 
78 int
79 scsi_poll(struct scsi_pkt *pkt)
80 {
81 	int			rval = -1;
82 	int			savef;
83 	long			savet;
84 	void			(*savec)();
85 	int			timeout;
86 	int			busy_count;
87 	int			poll_delay;
88 	int			rc;
89 	uint8_t			*sensep;
90 	struct scsi_arq_status	*arqstat;
91 	extern int		do_polled_io;
92 
93 	ASSERT(pkt->pkt_scbp);
94 
95 	/*
96 	 * save old flags..
97 	 */
98 	savef = pkt->pkt_flags;
99 	savec = pkt->pkt_comp;
100 	savet = pkt->pkt_time;
101 
102 	pkt->pkt_flags |= FLAG_NOINTR;
103 
104 	/*
105 	 * XXX there is nothing in the SCSA spec that states that we should not
106 	 * do a callback for polled cmds; however, removing this will break sd
107 	 * and probably other target drivers
108 	 */
109 	pkt->pkt_comp = NULL;
110 
111 	/*
112 	 * we don't like a polled command without timeout.
113 	 * 60 seconds seems long enough.
114 	 */
115 	if (pkt->pkt_time == 0)
116 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
117 
118 	/*
119 	 * Send polled cmd.
120 	 *
121 	 * We do some error recovery for various errors.  Tran_busy,
122 	 * queue full, and non-dispatched commands are retried every 10 msec.
123 	 * as they are typically transient failures.  Busy status and Not
124 	 * Ready are retried every second as this status takes a while to
125 	 * change.
126 	 */
127 	timeout = pkt->pkt_time * SEC_TO_CSEC;
128 
129 	for (busy_count = 0; busy_count < timeout; busy_count++) {
130 		/*
131 		 * Initialize pkt status variables.
132 		 */
133 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
134 
135 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
136 			if (rc != TRAN_BUSY) {
137 				/* Transport failed - give up. */
138 				break;
139 			} else {
140 				/* Transport busy - try again. */
141 				poll_delay = 1 * CSEC;		/* 10 msec. */
142 			}
143 		} else {
144 			/*
145 			 * Transport accepted - check pkt status.
146 			 */
147 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
148 			if ((pkt->pkt_reason == CMD_CMPLT) &&
149 			    (rc == STATUS_CHECK) &&
150 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
151 				arqstat =
152 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
153 				sensep = (uint8_t *)&arqstat->sts_sensedata;
154 			} else {
155 				sensep = NULL;
156 			}
157 
158 			if ((pkt->pkt_reason == CMD_CMPLT) &&
159 			    (rc == STATUS_GOOD)) {
160 				/* No error - we're done */
161 				rval = 0;
162 				break;
163 
164 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
165 				/* Lost connection - give up */
166 				break;
167 
168 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
169 			    (pkt->pkt_state == 0)) {
170 				/* Pkt not dispatched - try again. */
171 				poll_delay = 1 * CSEC;		/* 10 msec. */
172 
173 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
174 			    (rc == STATUS_QFULL)) {
175 				/* Queue full - try again. */
176 				poll_delay = 1 * CSEC;		/* 10 msec. */
177 
178 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
179 			    (rc == STATUS_BUSY)) {
180 				/* Busy - try again. */
181 				poll_delay = 100 * CSEC;	/* 1 sec. */
182 				busy_count += (SEC_TO_CSEC - 1);
183 
184 			} else if ((sensep != NULL) &&
185 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
186 			    (scsi_sense_asc(sensep) == 0x04) &&
187 			    (scsi_sense_ascq(sensep) == 0x01)) {
188 				/*
189 				 * Not ready -> ready - try again.
190 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
191 				 * ...same as STATUS_BUSY
192 				 */
193 				poll_delay = 100 * CSEC;	/* 1 sec. */
194 				busy_count += (SEC_TO_CSEC - 1);
195 
196 			} else {
197 				/* BAD status - give up. */
198 				break;
199 			}
200 		}
201 
202 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
203 		    !do_polled_io) {
204 			delay(drv_usectohz(poll_delay));
205 		} else {
206 			/* we busy wait during cpr_dump or interrupt threads */
207 			drv_usecwait(poll_delay);
208 		}
209 	}
210 
211 	pkt->pkt_flags = savef;
212 	pkt->pkt_comp = savec;
213 	pkt->pkt_time = savet;
214 
215 	/* return on error */
216 	if (rval)
217 		return (rval);
218 
219 	/*
220 	 * This is not a performance critical code path.
221 	 *
222 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
223 	 * issues associated with looking at DMA memory prior to
224 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
225 	 */
226 	scsi_sync_pkt(pkt);
227 	return (0);
228 }
229 
230 /*
231  * Command packaging routines.
232  *
233  * makecom_g*() are original routines and scsi_setup_cdb()
234  * is the new and preferred routine.
235  */
236 
237 /*
238  * These routines put LUN information in CDB byte 1 bits 7-5.
239  * This was required in SCSI-1. SCSI-2 allowed it but it preferred
240  * sending LUN information as part of IDENTIFY message.
241  * This is not allowed in SCSI-3.
242  */
243 
244 void
245 makecom_g0(struct scsi_pkt *pkt, struct scsi_device *devp,
246     int flag, int cmd, int addr, int cnt)
247 {
248 	MAKECOM_G0(pkt, devp, flag, cmd, addr, (uchar_t)cnt);
249 }
250 
251 void
252 makecom_g0_s(struct scsi_pkt *pkt, struct scsi_device *devp,
253     int flag, int cmd, int cnt, int fixbit)
254 {
255 	MAKECOM_G0_S(pkt, devp, flag, cmd, cnt, (uchar_t)fixbit);
256 }
257 
258 void
259 makecom_g1(struct scsi_pkt *pkt, struct scsi_device *devp,
260     int flag, int cmd, int addr, int cnt)
261 {
262 	MAKECOM_G1(pkt, devp, flag, cmd, addr, cnt);
263 }
264 
265 void
266 makecom_g5(struct scsi_pkt *pkt, struct scsi_device *devp,
267     int flag, int cmd, int addr, int cnt)
268 {
269 	MAKECOM_G5(pkt, devp, flag, cmd, addr, cnt);
270 }
271 
272 /*
273  * Following routine does not put LUN information in CDB.
274  * This interface must be used for SCSI-2 targets having
275  * more than 8 LUNs or a SCSI-3 target.
276  */
277 int
278 scsi_setup_cdb(union scsi_cdb *cdbp, uchar_t cmd, uint_t addr, uint_t cnt,
279     uint_t addtl_cdb_data)
280 {
281 	uint_t	addr_cnt;
282 
283 	cdbp->scc_cmd = cmd;
284 
285 	switch (CDB_GROUPID(cmd)) {
286 		case CDB_GROUPID_0:
287 			/*
288 			 * The following calculation is to take care of
289 			 * the fact that format of some 6 bytes tape
290 			 * command is different (compare 6 bytes disk and
291 			 * tape read commands).
292 			 */
293 			addr_cnt = (addr << 8) + cnt;
294 			addr = (addr_cnt & 0x1fffff00) >> 8;
295 			cnt = addr_cnt & 0xff;
296 			FORMG0ADDR(cdbp, addr);
297 			FORMG0COUNT(cdbp, cnt);
298 			break;
299 
300 		case CDB_GROUPID_1:
301 		case CDB_GROUPID_2:
302 			FORMG1ADDR(cdbp, addr);
303 			FORMG1COUNT(cdbp, cnt);
304 			break;
305 
306 		case CDB_GROUPID_4:
307 			FORMG4ADDR(cdbp, addr);
308 			FORMG4COUNT(cdbp, cnt);
309 			FORMG4ADDTL(cdbp, addtl_cdb_data);
310 			break;
311 
312 		case CDB_GROUPID_5:
313 			FORMG5ADDR(cdbp, addr);
314 			FORMG5COUNT(cdbp, cnt);
315 			break;
316 
317 		default:
318 			return (0);
319 	}
320 
321 	return (1);
322 }
323 
324 
325 /*
326  * Common iopbmap data area packet allocation routines
327  */
328 
329 struct scsi_pkt *
330 get_pktiopb(struct scsi_address *ap, caddr_t *datap, int cdblen, int statuslen,
331     int datalen, int readflag, int (*func)())
332 {
333 	scsi_hba_tran_t	*tran = A_TO_TRAN(ap);
334 	dev_info_t	*pdip = tran->tran_hba_dip;
335 	struct scsi_pkt	*pkt = NULL;
336 	struct buf	local;
337 	size_t		rlen;
338 
339 	if (!datap)
340 		return (pkt);
341 	*datap = (caddr_t)0;
342 	bzero((caddr_t)&local, sizeof (struct buf));
343 
344 	/*
345 	 * use i_ddi_mem_alloc() for now until we have an interface to allocate
346 	 * memory for DMA which doesn't require a DMA handle. ddi_iopb_alloc()
347 	 * is obsolete and we want more flexibility in controlling the DMA
348 	 * address constraints.
349 	 */
350 	if (i_ddi_mem_alloc(pdip, &scsi_alloc_attr, datalen,
351 	    ((func == SLEEP_FUNC) ? 1 : 0), 0, NULL, &local.b_un.b_addr, &rlen,
352 	    NULL) != DDI_SUCCESS) {
353 		return (pkt);
354 	}
355 	if (readflag)
356 		local.b_flags = B_READ;
357 	local.b_bcount = datalen;
358 	pkt = (*tran->tran_init_pkt) (ap, NULL, &local,
359 	    cdblen, statuslen, 0, PKT_CONSISTENT,
360 	    (func == SLEEP_FUNC) ? SLEEP_FUNC : NULL_FUNC, NULL);
361 	if (!pkt) {
362 		i_ddi_mem_free(local.b_un.b_addr, NULL);
363 		if (func != NULL_FUNC) {
364 			ddi_set_callback(func, NULL, &scsi_callback_id);
365 		}
366 	} else {
367 		*datap = local.b_un.b_addr;
368 	}
369 	return (pkt);
370 }
371 
372 /*
373  *  Equivalent deallocation wrapper
374  */
375 
376 void
377 free_pktiopb(struct scsi_pkt *pkt, caddr_t datap, int datalen)
378 {
379 	register struct scsi_address	*ap = P_TO_ADDR(pkt);
380 	register scsi_hba_tran_t	*tran = A_TO_TRAN(ap);
381 
382 	(*tran->tran_destroy_pkt)(ap, pkt);
383 	if (datap && datalen) {
384 		i_ddi_mem_free(datap, NULL);
385 	}
386 	if (scsi_callback_id != 0) {
387 		ddi_run_callback(&scsi_callback_id);
388 	}
389 }
390 
391 /*
392  * Common naming functions
393  */
394 
395 static char scsi_tmpname[64];
396 
397 char *
398 scsi_dname(int dtyp)
399 {
400 	static char *dnames[] = {
401 		"Direct Access",
402 		"Sequential Access",
403 		"Printer",
404 		"Processor",
405 		"Write-Once/Read-Many",
406 		"Read-Only Direct Access",
407 		"Scanner",
408 		"Optical",
409 		"Changer",
410 		"Communications",
411 		"Array Controller"
412 	};
413 
414 	if ((dtyp & DTYPE_MASK) <= DTYPE_COMM) {
415 		return (dnames[dtyp&DTYPE_MASK]);
416 	} else if (dtyp == DTYPE_NOTPRESENT) {
417 		return ("Not Present");
418 	}
419 	return ("<unknown device type>");
420 
421 }
422 
423 char *
424 scsi_rname(uchar_t reason)
425 {
426 	static char *rnames[] = CMD_REASON_ASCII;
427 
428 	if ((reason > CMD_DEV_GONE) || (reason == (CMD_TERMINATED + 1))) {
429 		return ("<unknown reason>");
430 	} else {
431 		return (rnames[reason]);
432 	}
433 }
434 
435 char *
436 scsi_mname(uchar_t msg)
437 {
438 	static char *imsgs[23] = {
439 		"COMMAND COMPLETE",
440 		"EXTENDED",
441 		"SAVE DATA POINTER",
442 		"RESTORE POINTERS",
443 		"DISCONNECT",
444 		"INITIATOR DETECTED ERROR",
445 		"ABORT",
446 		"REJECT",
447 		"NO-OP",
448 		"MESSAGE PARITY",
449 		"LINKED COMMAND COMPLETE",
450 		"LINKED COMMAND COMPLETE (W/FLAG)",
451 		"BUS DEVICE RESET",
452 		"ABORT TAG",
453 		"CLEAR QUEUE",
454 		"INITIATE RECOVERY",
455 		"RELEASE RECOVERY",
456 		"TERMINATE PROCESS",
457 		"CONTINUE TASK",
458 		"TARGET TRANSFER DISABLE",
459 		"RESERVED (0x14)",
460 		"RESERVED (0x15)",
461 		"CLEAR ACA"
462 	};
463 	static char *imsgs_2[6] = {
464 		"SIMPLE QUEUE TAG",
465 		"HEAD OF QUEUE TAG",
466 		"ORDERED QUEUE TAG",
467 		"IGNORE WIDE RESIDUE",
468 		"ACA",
469 		"LOGICAL UNIT RESET"
470 	};
471 
472 	if (msg < 23) {
473 		return (imsgs[msg]);
474 	} else if (IS_IDENTIFY_MSG(msg)) {
475 		return ("IDENTIFY");
476 	} else if (IS_2BYTE_MSG(msg) &&
477 	    (int)((msg) & 0xF) < (sizeof (imsgs_2) / sizeof (char *))) {
478 		return (imsgs_2[msg & 0xF]);
479 	} else {
480 		return ("<unknown msg>");
481 	}
482 
483 }
484 
485 char *
486 scsi_cname(uchar_t cmd, register char **cmdvec)
487 {
488 	while (*cmdvec != (char *)0) {
489 		if (cmd == **cmdvec) {
490 			return ((char *)((long)(*cmdvec)+1));
491 		}
492 		cmdvec++;
493 	}
494 	return (sprintf(scsi_tmpname, "<undecoded cmd 0x%x>", cmd));
495 }
496 
497 char *
498 scsi_cmd_name(uchar_t cmd, struct scsi_key_strings *cmdlist, char *tmpstr)
499 {
500 	int i = 0;
501 
502 	while (cmdlist[i].key !=  -1) {
503 		if (cmd == cmdlist[i].key) {
504 			return ((char *)cmdlist[i].message);
505 		}
506 		i++;
507 	}
508 	return (sprintf(tmpstr, "<undecoded cmd 0x%x>", cmd));
509 }
510 
511 static struct scsi_asq_key_strings extended_sense_list[] = {
512 	0x00, 0x00, "no additional sense info",
513 	0x00, 0x01, "filemark detected",
514 	0x00, 0x02, "end of partition/medium detected",
515 	0x00, 0x03, "setmark detected",
516 	0x00, 0x04, "begining of partition/medium detected",
517 	0x00, 0x05, "end of data detected",
518 	0x00, 0x06, "i/o process terminated",
519 	0x00, 0x11, "audio play operation in progress",
520 	0x00, 0x12, "audio play operation paused",
521 	0x00, 0x13, "audio play operation successfully completed",
522 	0x00, 0x14, "audio play operation stopped due to error",
523 	0x00, 0x15, "no current audio status to return",
524 	0x00, 0x16, "operation in progress",
525 	0x00, 0x17, "cleaning requested",
526 	0x00, 0x18, "erase operation in progress",
527 	0x00, 0x19, "locate operation in progress",
528 	0x00, 0x1A, "rewind operation in progress",
529 	0x00, 0x1B, "set capacity operation in progress",
530 	0x00, 0x1C, "verify operation in progress",
531 	0x01, 0x00, "no index/sector signal",
532 	0x02, 0x00, "no seek complete",
533 	0x03, 0x00, "peripheral device write fault",
534 	0x03, 0x01, "no write current",
535 	0x03, 0x02, "excessive write errors",
536 	0x04, 0x00, "LUN not ready",
537 	0x04, 0x01, "LUN is becoming ready",
538 	0x04, 0x02, "LUN initializing command required",
539 	0x04, 0x03, "LUN not ready intervention required",
540 	0x04, 0x04, "LUN not ready format in progress",
541 	0x04, 0x05, "LUN not ready, rebuild in progress",
542 	0x04, 0x06, "LUN not ready, recalculation in progress",
543 	0x04, 0x07, "LUN not ready, operation in progress",
544 	0x04, 0x08, "LUN not ready, long write in progress",
545 	0x04, 0x09, "LUN not ready, self-test in progress",
546 	0x04, 0x0A, "LUN not accessible, asymmetric access state transition",
547 	0x04, 0x0B, "LUN not accessible, target port in standby state",
548 	0x04, 0x0C, "LUN not accessible, target port in unavailable state",
549 	0x04, 0x10, "LUN not ready, auxiliary memory not accessible",
550 	0x05, 0x00, "LUN does not respond to selection",
551 	0x06, 0x00, "reference position found",
552 	0x07, 0x00, "multiple peripheral devices selected",
553 	0x08, 0x00, "LUN communication failure",
554 	0x08, 0x01, "LUN communication time-out",
555 	0x08, 0x02, "LUN communication parity error",
556 	0x08, 0x03, "LUN communication crc error (ultra-DMA/32)",
557 	0x08, 0x04, "unreachable copy target",
558 	0x09, 0x00, "track following error",
559 	0x09, 0x01, "tracking servo failure",
560 	0x09, 0x02, "focus servo failure",
561 	0x09, 0x03, "spindle servo failure",
562 	0x09, 0x04, "head select fault",
563 	0x0a, 0x00, "error log overflow",
564 	0x0b, 0x00, "warning",
565 	0x0b, 0x01, "warning - specified temperature exceeded",
566 	0x0b, 0x02, "warning - enclosure degraded",
567 	0x0c, 0x00, "write error",
568 	0x0c, 0x01, "write error - recovered with auto reallocation",
569 	0x0c, 0x02, "write error - auto reallocation failed",
570 	0x0c, 0x03, "write error - recommend reassignment",
571 	0x0c, 0x04, "compression check miscompare error",
572 	0x0c, 0x05, "data expansion occurred during compression",
573 	0x0c, 0x06, "block not compressible",
574 	0x0c, 0x07, "write error - recovery needed",
575 	0x0c, 0x08, "write error - recovery failed",
576 	0x0c, 0x09, "write error - loss of streaming",
577 	0x0c, 0x0a, "write error - padding blocks added",
578 	0x0c, 0x0b, "auxiliary memory write error",
579 	0x0c, 0x0c, "write error - unexpected unsolicited data",
580 	0x0c, 0x0d, "write error - not enough unsolicited data",
581 	0x0d, 0x00, "error detected by third party temporary initiator",
582 	0x0d, 0x01, "third party device failure",
583 	0x0d, 0x02, "copy target device not reachable",
584 	0x0d, 0x03, "incorrect copy target device type",
585 	0x0d, 0x04, "copy target device data underrun",
586 	0x0d, 0x05, "copy target device data overrun",
587 	0x0e, 0x00, "invalid information unit",
588 	0x0e, 0x01, "information unit too short",
589 	0x0e, 0x02, "information unit too long",
590 	0x10, 0x00, "ID CRC or ECC error",
591 	0x11, 0x00, "unrecovered read error",
592 	0x11, 0x01, "read retries exhausted",
593 	0x11, 0x02, "error too long to correct",
594 	0x11, 0x03, "multiple read errors",
595 	0x11, 0x04, "unrecovered read error - auto reallocate failed",
596 	0x11, 0x05, "L-EC uncorrectable error",
597 	0x11, 0x06, "CIRC unrecovered error",
598 	0x11, 0x07, "data re-synchronization error",
599 	0x11, 0x08, "incomplete block read",
600 	0x11, 0x09, "no gap found",
601 	0x11, 0x0a, "miscorrected error",
602 	0x11, 0x0b, "unrecovered read error - recommend reassignment",
603 	0x11, 0x0c, "unrecovered read error - recommend rewrite the data",
604 	0x11, 0x0d, "de-compression crc error",
605 	0x11, 0x0e, "cannot decompress using declared algorithm",
606 	0x11, 0x0f, "error reading UPC/EAN number",
607 	0x11, 0x10, "error reading ISRC number",
608 	0x11, 0x11, "read error - loss of streaming",
609 	0x11, 0x12, "auxiliary memory read error",
610 	0x11, 0x13, "read error - failed retransmission request",
611 	0x12, 0x00, "address mark not found for ID field",
612 	0x13, 0x00, "address mark not found for data field",
613 	0x14, 0x00, "recorded entity not found",
614 	0x14, 0x01, "record not found",
615 	0x14, 0x02, "filemark or setmark not found",
616 	0x14, 0x03, "end-of-data not found",
617 	0x14, 0x04, "block sequence error",
618 	0x14, 0x05, "record not found - recommend reassignment",
619 	0x14, 0x06, "record not found - data auto-reallocated",
620 	0x14, 0x07, "locate operation failure",
621 	0x15, 0x00, "random positioning error",
622 	0x15, 0x01, "mechanical positioning error",
623 	0x15, 0x02, "positioning error detected by read of medium",
624 	0x16, 0x00, "data sync mark error",
625 	0x16, 0x01, "data sync error - data rewritten",
626 	0x16, 0x02, "data sync error - recommend rewrite",
627 	0x16, 0x03, "data sync error - data auto-reallocated",
628 	0x16, 0x04, "data sync error - recommend reassignment",
629 	0x17, 0x00, "recovered data with no error correction",
630 	0x17, 0x01, "recovered data with retries",
631 	0x17, 0x02, "recovered data with positive head offset",
632 	0x17, 0x03, "recovered data with negative head offset",
633 	0x17, 0x04, "recovered data with retries and/or CIRC applied",
634 	0x17, 0x05, "recovered data using previous sector id",
635 	0x17, 0x06, "recovered data without ECC - data auto-reallocated",
636 	0x17, 0x07, "recovered data without ECC - recommend reassignment",
637 	0x17, 0x08, "recovered data without ECC - recommend rewrite",
638 	0x17, 0x09, "recovered data without ECC - data rewritten",
639 	0x18, 0x00, "recovered data with error correction",
640 	0x18, 0x01, "recovered data with error corr. & retries applied",
641 	0x18, 0x02, "recovered data - data auto-reallocated",
642 	0x18, 0x03, "recovered data with CIRC",
643 	0x18, 0x04, "recovered data with L-EC",
644 	0x18, 0x05, "recovered data - recommend reassignment",
645 	0x18, 0x06, "recovered data - recommend rewrite",
646 	0x18, 0x07, "recovered data with ECC - data rewritten",
647 	0x18, 0x08, "recovered data with linking",
648 	0x19, 0x00, "defect list error",
649 	0x1a, 0x00, "parameter list length error",
650 	0x1b, 0x00, "synchronous data xfer error",
651 	0x1c, 0x00, "defect list not found",
652 	0x1c, 0x01, "primary defect list not found",
653 	0x1c, 0x02, "grown defect list not found",
654 	0x1d, 0x00, "miscompare during verify",
655 	0x1e, 0x00, "recovered ID with ECC",
656 	0x1f, 0x00, "partial defect list transfer",
657 	0x20, 0x00, "invalid command operation code",
658 	0x20, 0x01, "access denied - initiator pending-enrolled",
659 	0x20, 0x02, "access denied - no access rights",
660 	0x20, 0x03, "access denied - invalid mgmt id key",
661 	0x20, 0x04, "illegal command while in write capable state",
662 	0x20, 0x06, "illegal command while in explicit address mode",
663 	0x20, 0x07, "illegal command while in implicit address mode",
664 	0x20, 0x08, "access denied - enrollment conflict",
665 	0x20, 0x09, "access denied - invalid lu identifier",
666 	0x20, 0x0a, "access denied - invalid proxy token",
667 	0x20, 0x0b, "access denied - ACL LUN conflict",
668 	0x21, 0x00, "logical block address out of range",
669 	0x21, 0x01, "invalid element address",
670 	0x21, 0x02, "invalid address for write",
671 	0x22, 0x00, "illegal function",
672 	0x24, 0x00, "invalid field in cdb",
673 	0x24, 0x01, "cdb decryption error",
674 	0x25, 0x00, "LUN not supported",
675 	0x26, 0x00, "invalid field in param list",
676 	0x26, 0x01, "parameter not supported",
677 	0x26, 0x02, "parameter value invalid",
678 	0x26, 0x03, "threshold parameters not supported",
679 	0x26, 0x04, "invalid release of persistent reservation",
680 	0x26, 0x05, "data decryption error",
681 	0x26, 0x06, "too many target descriptors",
682 	0x26, 0x07, "unsupported target descriptor type code",
683 	0x26, 0x08, "too many segment descriptors",
684 	0x26, 0x09, "unsupported segment descriptor type code",
685 	0x26, 0x0a, "unexpected inexact segment",
686 	0x26, 0x0b, "inline data length exceeded",
687 	0x26, 0x0c, "invalid operation for copy source or destination",
688 	0x26, 0x0d, "copy segment granularity violation",
689 	0x27, 0x00, "write protected",
690 	0x27, 0x01, "hardware write protected",
691 	0x27, 0x02, "LUN software write protected",
692 	0x27, 0x03, "associated write protect",
693 	0x27, 0x04, "persistent write protect",
694 	0x27, 0x05, "permanent write protect",
695 	0x27, 0x06, "conditional write protect",
696 	0x27, 0x80, "unable to overwrite data",
697 	0x28, 0x00, "medium may have changed",
698 	0x28, 0x01, "import or export element accessed",
699 	0x29, 0x00, "power on, reset, or bus reset occurred",
700 	0x29, 0x01, "power on occurred",
701 	0x29, 0x02, "scsi bus reset occurred",
702 	0x29, 0x03, "bus device reset message occurred",
703 	0x29, 0x04, "device internal reset",
704 	0x29, 0x05, "transceiver mode changed to single-ended",
705 	0x29, 0x06, "transceiver mode changed to LVD",
706 	0x29, 0x07, "i_t nexus loss occurred",
707 	0x2a, 0x00, "parameters changed",
708 	0x2a, 0x01, "mode parameters changed",
709 	0x2a, 0x02, "log parameters changed",
710 	0x2a, 0x03, "reservations preempted",
711 	0x2a, 0x04, "reservations released",
712 	0x2a, 0x05, "registrations preempted",
713 	0x2a, 0x06, "asymmetric access state changed",
714 	0x2a, 0x07, "implicit asymmetric access state transition failed",
715 	0x2b, 0x00, "copy cannot execute since host cannot disconnect",
716 	0x2c, 0x00, "command sequence error",
717 	0x2c, 0x03, "current program area is not empty",
718 	0x2c, 0x04, "current program area is empty",
719 	0x2c, 0x06, "persistent prevent conflict",
720 	0x2c, 0x07, "previous busy status",
721 	0x2c, 0x08, "previous task set full status",
722 	0x2c, 0x09, "previous reservation conflict status",
723 	0x2d, 0x00, "overwrite error on update in place",
724 	0x2e, 0x00, "insufficient time for operation",
725 	0x2f, 0x00, "commands cleared by another initiator",
726 	0x30, 0x00, "incompatible medium installed",
727 	0x30, 0x01, "cannot read medium - unknown format",
728 	0x30, 0x02, "cannot read medium - incompatible format",
729 	0x30, 0x03, "cleaning cartridge installed",
730 	0x30, 0x04, "cannot write medium - unknown format",
731 	0x30, 0x05, "cannot write medium - incompatible format",
732 	0x30, 0x06, "cannot format medium - incompatible medium",
733 	0x30, 0x07, "cleaning failure",
734 	0x30, 0x08, "cannot write - application code mismatch",
735 	0x30, 0x09, "current session not fixated for append",
736 	0x30, 0x0b, "WORM medium - Overwrite attempted",
737 	0x30, 0x0c, "WORM medium - Cannot Erase",
738 	0x30, 0x0d, "WORM medium - Integrity Check",
739 	0x30, 0x10, "medium not formatted",
740 	0x31, 0x00, "medium format corrupted",
741 	0x31, 0x01, "format command failed",
742 	0x31, 0x02, "zoned formatting failed due to spare linking",
743 	0x31, 0x94, "WORM media corrupted",
744 	0x32, 0x00, "no defect spare location available",
745 	0x32, 0x01, "defect list update failure",
746 	0x33, 0x00, "tape length error",
747 	0x34, 0x00, "enclosure failure",
748 	0x35, 0x00, "enclosure services failure",
749 	0x35, 0x01, "unsupported enclosure function",
750 	0x35, 0x02, "enclosure services unavailable",
751 	0x35, 0x03, "enclosure services transfer failure",
752 	0x35, 0x04, "enclosure services transfer refused",
753 	0x36, 0x00, "ribbon, ink, or toner failure",
754 	0x37, 0x00, "rounded parameter",
755 	0x39, 0x00, "saving parameters not supported",
756 	0x3a, 0x00, "medium not present",
757 	0x3a, 0x01, "medium not present - tray closed",
758 	0x3a, 0x02, "medium not present - tray open",
759 	0x3a, 0x03, "medium not present - loadable",
760 	0x3a, 0x04, "medium not present - medium auxiliary memory accessible",
761 	0x3b, 0x00, "sequential positioning error",
762 	0x3b, 0x01, "tape position error at beginning-of-medium",
763 	0x3b, 0x02, "tape position error at end-of-medium",
764 	0x3b, 0x08, "reposition error",
765 	0x3b, 0x0c, "position past beginning of medium",
766 	0x3b, 0x0d, "medium destination element full",
767 	0x3b, 0x0e, "medium source element empty",
768 	0x3b, 0x0f, "end of medium reached",
769 	0x3b, 0x11, "medium magazine not accessible",
770 	0x3b, 0x12, "medium magazine removed",
771 	0x3b, 0x13, "medium magazine inserted",
772 	0x3b, 0x14, "medium magazine locked",
773 	0x3b, 0x15, "medium magazine unlocked",
774 	0x3b, 0x16, "mechanical positioning or changer error",
775 	0x3d, 0x00, "invalid bits in indentify message",
776 	0x3e, 0x00, "LUN has not self-configured yet",
777 	0x3e, 0x01, "LUN failure",
778 	0x3e, 0x02, "timeout on LUN",
779 	0x3e, 0x03, "LUN failed self-test",
780 	0x3e, 0x04, "LUN unable to update self-test log",
781 	0x3f, 0x00, "target operating conditions have changed",
782 	0x3f, 0x01, "microcode has been changed",
783 	0x3f, 0x02, "changed operating definition",
784 	0x3f, 0x03, "inquiry data has changed",
785 	0x3f, 0x04, "component device attached",
786 	0x3f, 0x05, "device identifier changed",
787 	0x3f, 0x06, "redundancy group created or modified",
788 	0x3f, 0x07, "redundancy group deleted",
789 	0x3f, 0x08, "spare created or modified",
790 	0x3f, 0x09, "spare deleted",
791 	0x3f, 0x0a, "volume set created or modified",
792 	0x3f, 0x0b, "volume set deleted",
793 	0x3f, 0x0c, "volume set deassigned",
794 	0x3f, 0x0d, "volume set reassigned",
795 	0x3f, 0x0e, "reported LUNs data has changed",
796 	0x3f, 0x0f, "echo buffer overwritten",
797 	0x3f, 0x10, "medium loadable",
798 	0x3f, 0x11, "medium auxiliary memory accessible",
799 	0x40, 0x00, "ram failure",
800 	0x41, 0x00, "data path failure",
801 	0x42, 0x00, "power-on or self-test failure",
802 	0x43, 0x00, "message error",
803 	0x44, 0x00, "internal target failure",
804 	0x45, 0x00, "select or reselect failure",
805 	0x46, 0x00, "unsuccessful soft reset",
806 	0x47, 0x00, "scsi parity error",
807 	0x47, 0x01, "data phase crc error detected",
808 	0x47, 0x02, "scsi parity error detected during st data phase",
809 	0x47, 0x03, "information unit iucrc error detected",
810 	0x47, 0x04, "asynchronous information protection error detected",
811 	0x47, 0x05, "protocol service crc error",
812 	0x47, 0x7f, "some commands cleared by iscsi protocol event",
813 	0x48, 0x00, "initiator detected error message received",
814 	0x49, 0x00, "invalid message error",
815 	0x4a, 0x00, "command phase error",
816 	0x4b, 0x00, "data phase error",
817 	0x4b, 0x01, "invalid target port transfer tag received",
818 	0x4b, 0x02, "too much write data",
819 	0x4b, 0x03, "ack/nak timeout",
820 	0x4b, 0x04, "nak received",
821 	0x4b, 0x05, "data offset error",
822 	0x4c, 0x00, "logical unit failed self-configuration",
823 	0x4d, 0x00, "tagged overlapped commands (ASCQ = queue tag)",
824 	0x4e, 0x00, "overlapped commands attempted",
825 	0x50, 0x00, "write append error",
826 	0x50, 0x01, "data protect write append error",
827 	0x50, 0x95, "data protect write append error",
828 	0x51, 0x00, "erase failure",
829 	0x52, 0x00, "cartridge fault",
830 	0x53, 0x00, "media load or eject failed",
831 	0x53, 0x01, "unload tape failure",
832 	0x53, 0x02, "medium removal prevented",
833 	0x54, 0x00, "scsi to host system interface failure",
834 	0x55, 0x00, "system resource failure",
835 	0x55, 0x01, "system buffer full",
836 	0x55, 0x02, "insufficient reservation resources",
837 	0x55, 0x03, "insufficient resources",
838 	0x55, 0x04, "insufficient registration resources",
839 	0x55, 0x05, "insufficient access control resources",
840 	0x55, 0x06, "auxiliary memory out of space",
841 	0x57, 0x00, "unable to recover TOC",
842 	0x58, 0x00, "generation does not exist",
843 	0x59, 0x00, "updated block read",
844 	0x5a, 0x00, "operator request or state change input",
845 	0x5a, 0x01, "operator medium removal request",
846 	0x5a, 0x02, "operator selected write protect",
847 	0x5a, 0x03, "operator selected write permit",
848 	0x5b, 0x00, "log exception",
849 	0x5b, 0x01, "threshold condition met",
850 	0x5b, 0x02, "log counter at maximum",
851 	0x5b, 0x03, "log list codes exhausted",
852 	0x5c, 0x00, "RPL status change",
853 	0x5c, 0x01, "spindles synchronized",
854 	0x5c, 0x02, "spindles not synchronized",
855 	0x5d, 0x00, "drive operation marginal, service immediately"
856 		    " (failure prediction threshold exceeded)",
857 	0x5d, 0x01, "media failure prediction threshold exceeded",
858 	0x5d, 0x02, "LUN failure prediction threshold exceeded",
859 	0x5d, 0x03, "spare area exhaustion prediction threshold exceeded",
860 	0x5d, 0x10, "hardware impending failure general hard drive failure",
861 	0x5d, 0x11, "hardware impending failure drive error rate too high",
862 	0x5d, 0x12, "hardware impending failure data error rate too high",
863 	0x5d, 0x13, "hardware impending failure seek error rate too high",
864 	0x5d, 0x14, "hardware impending failure too many block reassigns",
865 	0x5d, 0x15, "hardware impending failure access times too high",
866 	0x5d, 0x16, "hardware impending failure start unit times too high",
867 	0x5d, 0x17, "hardware impending failure channel parametrics",
868 	0x5d, 0x18, "hardware impending failure controller detected",
869 	0x5d, 0x19, "hardware impending failure throughput performance",
870 	0x5d, 0x1a, "hardware impending failure seek time performance",
871 	0x5d, 0x1b, "hardware impending failure spin-up retry count",
872 	0x5d, 0x1c, "hardware impending failure drive calibration retry count",
873 	0x5d, 0x20, "controller impending failure general hard drive failure",
874 	0x5d, 0x21, "controller impending failure drive error rate too high",
875 	0x5d, 0x22, "controller impending failure data error rate too high",
876 	0x5d, 0x23, "controller impending failure seek error rate too high",
877 	0x5d, 0x24, "controller impending failure too many block reassigns",
878 	0x5d, 0x25, "controller impending failure access times too high",
879 	0x5d, 0x26, "controller impending failure start unit times too high",
880 	0x5d, 0x27, "controller impending failure channel parametrics",
881 	0x5d, 0x28, "controller impending failure controller detected",
882 	0x5d, 0x29, "controller impending failure throughput performance",
883 	0x5d, 0x2a, "controller impending failure seek time performance",
884 	0x5d, 0x2b, "controller impending failure spin-up retry count",
885 	0x5d, 0x2c, "controller impending failure drive calibration retry cnt",
886 	0x5d, 0x30, "data channel impending failure general hard drive failure",
887 	0x5d, 0x31, "data channel impending failure drive error rate too high",
888 	0x5d, 0x32, "data channel impending failure data error rate too high",
889 	0x5d, 0x33, "data channel impending failure seek error rate too high",
890 	0x5d, 0x34, "data channel impending failure too many block reassigns",
891 	0x5d, 0x35, "data channel impending failure access times too high",
892 	0x5d, 0x36, "data channel impending failure start unit times too high",
893 	0x5d, 0x37, "data channel impending failure channel parametrics",
894 	0x5d, 0x38, "data channel impending failure controller detected",
895 	0x5d, 0x39, "data channel impending failure throughput performance",
896 	0x5d, 0x3a, "data channel impending failure seek time performance",
897 	0x5d, 0x3b, "data channel impending failure spin-up retry count",
898 	0x5d, 0x3c, "data channel impending failure drive calibrate retry cnt",
899 	0x5d, 0x40, "servo impending failure general hard drive failure",
900 	0x5d, 0x41, "servo impending failure drive error rate too high",
901 	0x5d, 0x42, "servo impending failure data error rate too high",
902 	0x5d, 0x43, "servo impending failure seek error rate too high",
903 	0x5d, 0x44, "servo impending failure too many block reassigns",
904 	0x5d, 0x45, "servo impending failure access times too high",
905 	0x5d, 0x46, "servo impending failure start unit times too high",
906 	0x5d, 0x47, "servo impending failure channel parametrics",
907 	0x5d, 0x48, "servo impending failure controller detected",
908 	0x5d, 0x49, "servo impending failure throughput performance",
909 	0x5d, 0x4a, "servo impending failure seek time performance",
910 	0x5d, 0x4b, "servo impending failure spin-up retry count",
911 	0x5d, 0x4c, "servo impending failure drive calibration retry count",
912 	0x5d, 0x50, "spindle impending failure general hard drive failure",
913 	0x5d, 0x51, "spindle impending failure drive error rate too high",
914 	0x5d, 0x52, "spindle impending failure data error rate too high",
915 	0x5d, 0x53, "spindle impending failure seek error rate too high",
916 	0x5d, 0x54, "spindle impending failure too many block reassigns",
917 	0x5d, 0x55, "spindle impending failure access times too high",
918 	0x5d, 0x56, "spindle impending failure start unit times too high",
919 	0x5d, 0x57, "spindle impending failure channel parametrics",
920 	0x5d, 0x58, "spindle impending failure controller detected",
921 	0x5d, 0x59, "spindle impending failure throughput performance",
922 	0x5d, 0x5a, "spindle impending failure seek time performance",
923 	0x5d, 0x5b, "spindle impending failure spin-up retry count",
924 	0x5d, 0x5c, "spindle impending failure drive calibration retry count",
925 	0x5d, 0x60, "firmware impending failure general hard drive failure",
926 	0x5d, 0x61, "firmware impending failure drive error rate too high",
927 	0x5d, 0x62, "firmware impending failure data error rate too high",
928 	0x5d, 0x63, "firmware impending failure seek error rate too high",
929 	0x5d, 0x64, "firmware impending failure too many block reassigns",
930 	0x5d, 0x65, "firmware impending failure access times too high",
931 	0x5d, 0x66, "firmware impending failure start unit times too high",
932 	0x5d, 0x67, "firmware impending failure channel parametrics",
933 	0x5d, 0x68, "firmware impending failure controller detected",
934 	0x5d, 0x69, "firmware impending failure throughput performance",
935 	0x5d, 0x6a, "firmware impending failure seek time performance",
936 	0x5d, 0x6b, "firmware impending failure spin-up retry count",
937 	0x5d, 0x6c, "firmware impending failure drive calibration retry count",
938 	0x5d, 0xff, "failure prediction threshold exceeded (false)",
939 	0x5e, 0x00, "low power condition active",
940 	0x5e, 0x01, "idle condition activated by timer",
941 	0x5e, 0x02, "standby condition activated by timer",
942 	0x5e, 0x03, "idle condition activated by command",
943 	0x5e, 0x04, "standby condition activated by command",
944 	0x60, 0x00, "lamp failure",
945 	0x61, 0x00, "video aquisition error",
946 	0x62, 0x00, "scan head positioning error",
947 	0x63, 0x00, "end of user area encountered on this track",
948 	0x63, 0x01, "packet does not fit in available space",
949 	0x64, 0x00, "illegal mode for this track",
950 	0x64, 0x01, "invalid packet size",
951 	0x65, 0x00, "voltage fault",
952 	0x66, 0x00, "automatic document feeder cover up",
953 	0x67, 0x00, "configuration failure",
954 	0x67, 0x01, "configuration of incapable LUNs failed",
955 	0x67, 0x02, "add LUN failed",
956 	0x67, 0x03, "modification of LUN failed",
957 	0x67, 0x04, "exchange of LUN failed",
958 	0x67, 0x05, "remove of LUN failed",
959 	0x67, 0x06, "attachment of LUN failed",
960 	0x67, 0x07, "creation of LUN failed",
961 	0x67, 0x08, "assign failure occurred",
962 	0x67, 0x09, "multiply assigned LUN",
963 	0x67, 0x0a, "set target port groups command failed",
964 	0x68, 0x00, "logical unit not configured",
965 	0x69, 0x00, "data loss on logical unit",
966 	0x69, 0x01, "multiple LUN failures",
967 	0x69, 0x02, "parity/data mismatch",
968 	0x6a, 0x00, "informational, refer to log",
969 	0x6b, 0x00, "state change has occured",
970 	0x6b, 0x01, "redundancy level got better",
971 	0x6b, 0x02, "redundancy level got worse",
972 	0x6c, 0x00, "rebuild failure occured",
973 	0x6d, 0x00, "recalculate failure occured",
974 	0x6e, 0x00, "command to logical unit failed",
975 	0x6f, 0x00, "copy protect key exchange failure authentication failure",
976 	0x6f, 0x01, "copy protect key exchange failure key not present",
977 	0x6f, 0x02, "copy protect key exchange failure key not established",
978 	0x6f, 0x03, "read of scrambled sector without authentication",
979 	0x6f, 0x04, "media region code is mismatched to LUN region",
980 	0x6f, 0x05, "drive region must be permanent/region reset count error",
981 	0x70, 0xffff, "decompression exception short algorithm id of ASCQ",
982 	0x71, 0x00, "decompression exception long algorithm id",
983 	0x72, 0x00, "session fixation error",
984 	0x72, 0x01, "session fixation error writing lead-in",
985 	0x72, 0x02, "session fixation error writing lead-out",
986 	0x72, 0x03, "session fixation error - incomplete track in session",
987 	0x72, 0x04, "empty or partially written reserved track",
988 	0x72, 0x05, "no more track reservations allowed",
989 	0x73, 0x00, "cd control error",
990 	0x73, 0x01, "power calibration area almost full",
991 	0x73, 0x02, "power calibration area is full",
992 	0x73, 0x03, "power calibration area error",
993 	0x73, 0x04, "program memory area update failure",
994 	0x73, 0x05, "program memory area is full",
995 	0x73, 0x06, "rma/pma is almost full",
996 	0xffff, 0xffff, NULL
997 };
998 
999 char *
1000 scsi_esname(uint_t key, char *tmpstr)
1001 {
1002 	int i = 0;
1003 
1004 	while (extended_sense_list[i].asc != 0xffff) {
1005 		if (key == extended_sense_list[i].asc) {
1006 			return ((char *)extended_sense_list[i].message);
1007 		}
1008 		i++;
1009 	}
1010 	return (sprintf(tmpstr, "<vendor unique code 0x%x>", key));
1011 }
1012 
1013 char *
1014 scsi_asc_name(uint_t asc, uint_t ascq, char *tmpstr)
1015 {
1016 	int i = 0;
1017 
1018 	while (extended_sense_list[i].asc != 0xffff) {
1019 		if ((asc == extended_sense_list[i].asc) &&
1020 		    ((ascq == extended_sense_list[i].ascq) ||
1021 		    (extended_sense_list[i].ascq == 0xffff))) {
1022 			return ((char *)extended_sense_list[i].message);
1023 		}
1024 		i++;
1025 	}
1026 	return (sprintf(tmpstr, "<vendor unique code 0x%x>", asc));
1027 }
1028 
1029 char *
1030 scsi_sname(uchar_t sense_key)
1031 {
1032 	if (sense_key >= (uchar_t)(NUM_SENSE_KEYS+NUM_IMPL_SENSE_KEYS)) {
1033 		return ("<unknown sense key>");
1034 	} else {
1035 		return (sense_keys[sense_key]);
1036 	}
1037 }
1038 
1039 
1040 /*
1041  * Print a piece of inquiry data- cleaned up for non-printable characters.
1042  */
1043 
1044 static void
1045 inq_fill(char *p, int l, char *s)
1046 {
1047 	register unsigned i = 0;
1048 	char c;
1049 
1050 	if (!p)
1051 		return;
1052 
1053 	while (i++ < l) {
1054 		/* clean string of non-printing chars */
1055 		if ((c = *p++) < ' ' || c >= 0177) {
1056 			c = ' ';
1057 		}
1058 		*s++ = c;
1059 	}
1060 	*s++ = 0;
1061 }
1062 
1063 static char *
1064 scsi_asc_search(uint_t asc, uint_t ascq,
1065     struct scsi_asq_key_strings *list)
1066 {
1067 	int i = 0;
1068 
1069 	while (list[i].asc != 0xffff) {
1070 		if ((asc == list[i].asc) &&
1071 		    ((ascq == list[i].ascq) ||
1072 		    (list[i].ascq == 0xffff))) {
1073 			return ((char *)list[i].message);
1074 		}
1075 		i++;
1076 	}
1077 	return (NULL);
1078 }
1079 
1080 static char *
1081 scsi_asc_ascq_name(uint_t asc, uint_t ascq, char *tmpstr,
1082 	struct scsi_asq_key_strings *list)
1083 {
1084 	char *message;
1085 
1086 	if (list) {
1087 		if (message = scsi_asc_search(asc, ascq, list)) {
1088 			return (message);
1089 		}
1090 	}
1091 	if (message = scsi_asc_search(asc, ascq, extended_sense_list)) {
1092 		return (message);
1093 	}
1094 
1095 	return (sprintf(tmpstr, "<vendor unique code 0x%x>", asc));
1096 }
1097 
1098 /*
1099  * The first part/column of the error message will be at least this length.
1100  * This number has been calculated so that each line fits in 80 chars.
1101  */
1102 #define	SCSI_ERRMSG_COLUMN_LEN	42
1103 #define	SCSI_ERRMSG_BUF_LEN	256
1104 
1105 void
1106 scsi_vu_errmsg(struct scsi_device *devp, struct scsi_pkt *pkt, char *label,
1107     int severity, daddr_t blkno, daddr_t err_blkno,
1108     struct scsi_key_strings *cmdlist, struct scsi_extended_sense *sensep,
1109     struct scsi_asq_key_strings *asc_list,
1110     char *(*decode_fru)(struct scsi_device *, char *, int, uchar_t))
1111 {
1112 	uchar_t com;
1113 	static char buf[SCSI_ERRMSG_BUF_LEN];
1114 	static char buf1[SCSI_ERRMSG_BUF_LEN];
1115 	static char tmpbuf[64];
1116 	static char pad[SCSI_ERRMSG_COLUMN_LEN];
1117 	dev_info_t *dev = devp->sd_dev;
1118 	static char *error_classes[] = {
1119 		"All", "Unknown", "Informational",
1120 		"Recovered", "Retryable", "Fatal"
1121 	};
1122 	uchar_t sense_key, asc, ascq, fru_code;
1123 	uchar_t *fru_code_ptr;
1124 	int i, buflen;
1125 
1126 	mutex_enter(&scsi_log_mutex);
1127 
1128 	/*
1129 	 * We need to put our space padding code because kernel version
1130 	 * of sprintf(9F) doesn't support %-<number>s type of left alignment.
1131 	 */
1132 	for (i = 0; i < SCSI_ERRMSG_COLUMN_LEN; i++) {
1133 		pad[i] = ' ';
1134 	}
1135 
1136 	bzero(buf, 256);
1137 	com = ((union scsi_cdb *)pkt->pkt_cdbp)->scc_cmd;
1138 	(void) sprintf(buf, "Error for Command: %s",
1139 	    scsi_cmd_name(com, cmdlist, tmpbuf));
1140 	buflen = strlen(buf);
1141 	if (buflen < SCSI_ERRMSG_COLUMN_LEN) {
1142 		pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = '\0';
1143 		(void) sprintf(&buf[buflen], "%s Error Level: %s",
1144 		    pad, error_classes[severity]);
1145 		pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = ' ';
1146 	} else {
1147 		(void) sprintf(&buf[buflen], " Error Level: %s",
1148 		    error_classes[severity]);
1149 	}
1150 	impl_scsi_log(dev, label, CE_WARN, buf);
1151 
1152 	if (blkno != -1 || err_blkno != -1 &&
1153 	    ((com & 0xf) == SCMD_READ) || ((com & 0xf) == SCMD_WRITE)) {
1154 		bzero(buf, 256);
1155 		(void) sprintf(buf, "Requested Block: %ld", blkno);
1156 		buflen = strlen(buf);
1157 		if (buflen < SCSI_ERRMSG_COLUMN_LEN) {
1158 			pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = '\0';
1159 			(void) sprintf(&buf[buflen], "%s Error Block: %ld\n",
1160 			    pad, err_blkno);
1161 			pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = ' ';
1162 		} else {
1163 			(void) sprintf(&buf[buflen], " Error Block: %ld\n",
1164 			    err_blkno);
1165 		}
1166 		impl_scsi_log(dev, label, CE_CONT, buf);
1167 	}
1168 
1169 	bzero(buf, 256);
1170 	(void) strcpy(buf, "Vendor: ");
1171 	inq_fill(devp->sd_inq->inq_vid, 8, &buf[strlen(buf)]);
1172 	buflen = strlen(buf);
1173 	if (buflen < SCSI_ERRMSG_COLUMN_LEN) {
1174 		pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = '\0';
1175 		(void) sprintf(&buf[strlen(buf)], "%s Serial Number: ", pad);
1176 		pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = ' ';
1177 	} else {
1178 		(void) sprintf(&buf[strlen(buf)], " Serial Number: ");
1179 	}
1180 	inq_fill(devp->sd_inq->inq_serial, 12, &buf[strlen(buf)]);
1181 	impl_scsi_log(dev, label, CE_CONT, "%s\n", buf);
1182 
1183 	if (sensep) {
1184 		sense_key = scsi_sense_key((uint8_t *)sensep);
1185 		asc = scsi_sense_asc((uint8_t *)sensep);
1186 		ascq = scsi_sense_ascq((uint8_t *)sensep);
1187 		scsi_ext_sense_fields((uint8_t *)sensep, SENSE_LENGTH,
1188 		    NULL, NULL, &fru_code_ptr, NULL, NULL);
1189 		fru_code = (fru_code_ptr ? *fru_code_ptr : 0);
1190 
1191 		bzero(buf, 256);
1192 		(void) sprintf(buf, "Sense Key: %s\n",
1193 		    sense_keys[sense_key]);
1194 		impl_scsi_log(dev, label, CE_CONT, buf);
1195 
1196 		bzero(buf, 256);
1197 		if ((fru_code != 0) &&
1198 		    (decode_fru != NULL)) {
1199 			(*decode_fru)(devp, buf, SCSI_ERRMSG_BUF_LEN,
1200 			    fru_code);
1201 			if (buf[0] != NULL) {
1202 				bzero(buf1, 256);
1203 				(void) sprintf(&buf1[strlen(buf1)],
1204 				    "ASC: 0x%x (%s)", asc,
1205 				    scsi_asc_ascq_name(asc, ascq,
1206 				    tmpbuf, asc_list));
1207 				buflen = strlen(buf1);
1208 				if (buflen < SCSI_ERRMSG_COLUMN_LEN) {
1209 					pad[SCSI_ERRMSG_COLUMN_LEN - buflen] =
1210 					    '\0';
1211 					(void) sprintf(&buf1[buflen],
1212 					    "%s ASCQ: 0x%x", pad, ascq);
1213 				} else {
1214 					(void) sprintf(&buf1[buflen],
1215 					    " ASCQ: 0x%x", ascq);
1216 				}
1217 				impl_scsi_log(dev,
1218 				    label, CE_CONT, "%s\n", buf1);
1219 				impl_scsi_log(dev,
1220 				    label, CE_CONT, "FRU: 0x%x (%s)\n",
1221 				    fru_code, buf);
1222 				mutex_exit(&scsi_log_mutex);
1223 				return;
1224 			}
1225 		}
1226 		(void) sprintf(&buf[strlen(buf)],
1227 		    "ASC: 0x%x (%s), ASCQ: 0x%x, FRU: 0x%x",
1228 		    asc, scsi_asc_ascq_name(asc, ascq, tmpbuf, asc_list),
1229 		    ascq, fru_code);
1230 		impl_scsi_log(dev, label, CE_CONT, "%s\n", buf);
1231 	}
1232 	mutex_exit(&scsi_log_mutex);
1233 }
1234 
1235 void
1236 scsi_errmsg(struct scsi_device *devp, struct scsi_pkt *pkt, char *label,
1237     int severity, daddr_t blkno, daddr_t err_blkno,
1238     struct scsi_key_strings *cmdlist, struct scsi_extended_sense *sensep)
1239 {
1240 	scsi_vu_errmsg(devp, pkt, label, severity, blkno,
1241 	    err_blkno, cmdlist, sensep, NULL, NULL);
1242 }
1243 
1244 /*PRINTFLIKE4*/
1245 void
1246 scsi_log(dev_info_t *dev, char *label, uint_t level,
1247     const char *fmt, ...)
1248 {
1249 	va_list ap;
1250 
1251 	va_start(ap, fmt);
1252 	mutex_enter(&scsi_log_mutex);
1253 	v_scsi_log(dev, label, level, fmt, ap);
1254 	mutex_exit(&scsi_log_mutex);
1255 	va_end(ap);
1256 }
1257 
1258 /*PRINTFLIKE4*/
1259 static void
1260 impl_scsi_log(dev_info_t *dev, char *label, uint_t level,
1261     const char *fmt, ...)
1262 {
1263 	va_list ap;
1264 
1265 	ASSERT(mutex_owned(&scsi_log_mutex));
1266 
1267 	va_start(ap, fmt);
1268 	v_scsi_log(dev, label, level, fmt, ap);
1269 	va_end(ap);
1270 }
1271 
1272 
1273 char *ddi_pathname(dev_info_t *dip, char *path);
1274 
1275 /*PRINTFLIKE4*/
1276 static void
1277 v_scsi_log(dev_info_t *dev, char *label, uint_t level,
1278     const char *fmt, va_list ap)
1279 {
1280 	static char name[256];
1281 	int log_only = 0;
1282 	int boot_only = 0;
1283 	int console_only = 0;
1284 
1285 	ASSERT(mutex_owned(&scsi_log_mutex));
1286 
1287 	if (dev) {
1288 		if (level == CE_PANIC || level == CE_WARN ||
1289 		    level == CE_NOTE) {
1290 			(void) sprintf(name, "%s (%s%d):\n",
1291 			    ddi_pathname(dev, scsi_log_buffer),
1292 			    label, ddi_get_instance(dev));
1293 		} else if (level >= (uint_t)SCSI_DEBUG) {
1294 			(void) sprintf(name,
1295 			    "%s%d:", label, ddi_get_instance(dev));
1296 		} else {
1297 			name[0] = '\0';
1298 		}
1299 	} else {
1300 		(void) sprintf(name, "%s:", label);
1301 	}
1302 
1303 	(void) vsprintf(scsi_log_buffer, fmt, ap);
1304 
1305 	switch (scsi_log_buffer[0]) {
1306 	case '!':
1307 		log_only = 1;
1308 		break;
1309 	case '?':
1310 		boot_only = 1;
1311 		break;
1312 	case '^':
1313 		console_only = 1;
1314 		break;
1315 	}
1316 
1317 	switch (level) {
1318 	case CE_NOTE:
1319 		level = CE_CONT;
1320 		/* FALLTHROUGH */
1321 	case CE_CONT:
1322 	case CE_WARN:
1323 	case CE_PANIC:
1324 		if (boot_only) {
1325 			cmn_err(level, "?%s\t%s", name, &scsi_log_buffer[1]);
1326 		} else if (console_only) {
1327 			cmn_err(level, "^%s\t%s", name, &scsi_log_buffer[1]);
1328 		} else if (log_only) {
1329 			cmn_err(level, "!%s\t%s", name, &scsi_log_buffer[1]);
1330 		} else {
1331 			cmn_err(level, "%s\t%s", name, scsi_log_buffer);
1332 		}
1333 		break;
1334 	case (uint_t)SCSI_DEBUG:
1335 	default:
1336 		cmn_err(CE_CONT, "^DEBUG: %s\t%s", name, scsi_log_buffer);
1337 		break;
1338 	}
1339 }
1340 
1341 /*
1342  * Lookup the 'prop_name' string array property and walk thru its list of
1343  * tuple values looking for a tuple who's VID/PID string (first part of tuple)
1344  * matches the inquiry VID/PID information for the scsi_device.  On a match,
1345  * return a duplicate of the second part of the tuple.  If no match is found,
1346  * return NULL. On non-NULL return, caller is responsible for freeing return
1347  * result via:
1348  *	kmem_free(string, strlen(string) + 1);
1349  *
1350  * This interface can either be used directly, or indirectly by
1351  * scsi_get_device_type_scsi_options.
1352  */
1353 char	*
1354 scsi_get_device_type_string(char *prop_name,
1355     dev_info_t *dip, struct scsi_device *devp)
1356 {
1357 	struct scsi_inquiry	*inq = devp->sd_inq;
1358 	char			**tuples;
1359 	uint_t			ntuples;
1360 	int			i;
1361 	char			*tvp;		/* tuple vid/pid */
1362 	char			*trs;		/* tuple return string */
1363 	int			tvp_len;
1364 
1365 	/* if we have no inquiry data then we can't do this */
1366 	if (inq == NULL)
1367 		return (NULL);
1368 
1369 	/*
1370 	 * So that we can establish a 'prop_name' for all instances of a
1371 	 * device in the system in a single place if needed (via options.conf),
1372 	 * we loop going up to the root ourself. This way root lookup does
1373 	 * *not* specify DDI_PROP_DONTPASS, and the code will look on the
1374 	 * options node.
1375 	 */
1376 	do {
1377 		if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip,
1378 		    (ddi_get_parent(dip) ? DDI_PROP_DONTPASS : 0) |
1379 		    DDI_PROP_NOTPROM, prop_name, &tuples, &ntuples) ==
1380 		    DDI_PROP_SUCCESS) {
1381 
1382 			/* loop over tuples */
1383 			for (i = 0;  i < (ntuples/2); i++) {
1384 				/* split into vid/pid and return-string */
1385 				tvp = tuples[i * 2];
1386 				trs = tuples[(i * 2) + 1];
1387 				tvp_len = strlen(tvp);
1388 
1389 				/* check for vid/pid match */
1390 				if ((tvp_len == 0) ||
1391 				    bcmp(tvp, inq->inq_vid, tvp_len))
1392 					continue;	/* no match */
1393 
1394 				/* match, dup return-string */
1395 				trs = i_ddi_strdup(trs, KM_SLEEP);
1396 				ddi_prop_free(tuples);
1397 				return (trs);
1398 			}
1399 			ddi_prop_free(tuples);
1400 		}
1401 
1402 		/* climb up to root one step at a time */
1403 		dip = ddi_get_parent(dip);
1404 	} while (dip);
1405 
1406 	return (NULL);
1407 }
1408 
1409 /*
1410  * The 'device-type-scsi-options' mechanism can be used to establish a device
1411  * specific scsi_options value for a particular device. This mechanism uses
1412  * paired strings ("vendor_info", "options_property_name") from the string
1413  * array "device-type-scsi-options" definition. A bcmp of the vendor info is
1414  * done against the inquiry data (inq_vid). Here is an example of use:
1415  *
1416  * device-type-scsi-options-list =
1417  *	"FOOLCO  Special x1000", "foolco-scsi-options",
1418  *	"FOOLCO  Special y1000", "foolco-scsi-options";
1419  * foolco-scsi-options = 0xXXXXXXXX;
1420  */
1421 int
1422 scsi_get_device_type_scsi_options(dev_info_t *dip,
1423     struct scsi_device *devp, int options)
1424 {
1425 	char	*string;
1426 
1427 	if ((string = scsi_get_device_type_string(
1428 	    "device-type-scsi-options-list", dip, devp)) != NULL) {
1429 		options = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
1430 		    string, options);
1431 		kmem_free(string, strlen(string) + 1);
1432 	}
1433 	return (options);
1434 }
1435 
1436 /*
1437  * Functions for format-neutral sense data functions
1438  */
1439 int
1440 scsi_validate_sense(uint8_t *sense_buffer, int sense_buf_len, int *flags)
1441 {
1442 	int result;
1443 	struct scsi_extended_sense *es =
1444 	    (struct scsi_extended_sense *)sense_buffer;
1445 
1446 	/*
1447 	 * Init flags if present
1448 	 */
1449 	if (flags != NULL) {
1450 		*flags = 0;
1451 	}
1452 
1453 	/*
1454 	 * Check response code (Solaris breaks this into a 3-bit class
1455 	 * and 4-bit code field.
1456 	 */
1457 	if ((es->es_class != CLASS_EXTENDED_SENSE) ||
1458 	    ((es->es_code != CODE_FMT_FIXED_CURRENT) &&
1459 	    (es->es_code != CODE_FMT_FIXED_DEFERRED) &&
1460 	    (es->es_code != CODE_FMT_DESCR_CURRENT) &&
1461 	    (es->es_code != CODE_FMT_DESCR_DEFERRED))) {
1462 		/*
1463 		 * Sense data (if there's actually anything here) is not
1464 		 * in a format we can handle).
1465 		 */
1466 		return (SENSE_UNUSABLE);
1467 	}
1468 
1469 	/*
1470 	 * Check if this is deferred sense
1471 	 */
1472 	if ((flags != NULL) &&
1473 	    ((es->es_code == CODE_FMT_FIXED_DEFERRED) ||
1474 	    (es->es_code == CODE_FMT_DESCR_DEFERRED))) {
1475 		*flags |= SNS_BUF_DEFERRED;
1476 	}
1477 
1478 	/*
1479 	 * Make sure length is OK
1480 	 */
1481 	if (es->es_code == CODE_FMT_FIXED_CURRENT ||
1482 	    es->es_code == CODE_FMT_FIXED_DEFERRED) {
1483 		/*
1484 		 * We can get by with a buffer that only includes the key,
1485 		 * asc, and ascq.  In reality the minimum length we should
1486 		 * ever see is 18 bytes.
1487 		 */
1488 		if ((sense_buf_len < MIN_FIXED_SENSE_LEN) ||
1489 		    ((es->es_add_len + ADDL_SENSE_ADJUST) <
1490 		    MIN_FIXED_SENSE_LEN)) {
1491 			result = SENSE_UNUSABLE;
1492 		} else {
1493 			/*
1494 			 * The es_add_len field contains the number of sense
1495 			 * data bytes that follow the es_add_len field.
1496 			 */
1497 			if ((flags != NULL) &&
1498 			    (sense_buf_len <
1499 			    (es->es_add_len + ADDL_SENSE_ADJUST))) {
1500 				*flags |= SNS_BUF_OVERFLOW;
1501 			}
1502 
1503 			result = SENSE_FIXED_FORMAT;
1504 		}
1505 	} else {
1506 		struct scsi_descr_sense_hdr *ds =
1507 		    (struct scsi_descr_sense_hdr *)sense_buffer;
1508 
1509 		/*
1510 		 * For descriptor format we need at least the descriptor
1511 		 * header
1512 		 */
1513 		if (sense_buf_len < sizeof (struct scsi_descr_sense_hdr)) {
1514 			result = SENSE_UNUSABLE;
1515 		} else {
1516 			/*
1517 			 * Check for overflow
1518 			 */
1519 			if ((flags != NULL) &&
1520 			    (sense_buf_len <
1521 			    (ds->ds_addl_sense_length + sizeof (*ds)))) {
1522 				*flags |= SNS_BUF_OVERFLOW;
1523 			}
1524 
1525 			result = SENSE_DESCR_FORMAT;
1526 		}
1527 	}
1528 
1529 	return (result);
1530 }
1531 
1532 
1533 uint8_t
1534 scsi_sense_key(uint8_t *sense_buffer)
1535 {
1536 	uint8_t skey;
1537 	if (SCSI_IS_DESCR_SENSE(sense_buffer)) {
1538 		struct scsi_descr_sense_hdr *sdsp =
1539 		    (struct scsi_descr_sense_hdr *)sense_buffer;
1540 		skey = sdsp->ds_key;
1541 	} else {
1542 		struct scsi_extended_sense *ext_sensep =
1543 		    (struct scsi_extended_sense *)sense_buffer;
1544 		skey = ext_sensep->es_key;
1545 	}
1546 	return (skey);
1547 }
1548 
1549 uint8_t
1550 scsi_sense_asc(uint8_t *sense_buffer)
1551 {
1552 	uint8_t asc;
1553 	if (SCSI_IS_DESCR_SENSE(sense_buffer)) {
1554 		struct scsi_descr_sense_hdr *sdsp =
1555 		    (struct scsi_descr_sense_hdr *)sense_buffer;
1556 		asc = sdsp->ds_add_code;
1557 	} else {
1558 		struct scsi_extended_sense *ext_sensep =
1559 		    (struct scsi_extended_sense *)sense_buffer;
1560 		asc = ext_sensep->es_add_code;
1561 	}
1562 	return (asc);
1563 }
1564 
1565 uint8_t
1566 scsi_sense_ascq(uint8_t *sense_buffer)
1567 {
1568 	uint8_t ascq;
1569 	if (SCSI_IS_DESCR_SENSE(sense_buffer)) {
1570 		struct scsi_descr_sense_hdr *sdsp =
1571 		    (struct scsi_descr_sense_hdr *)sense_buffer;
1572 		ascq = sdsp->ds_qual_code;
1573 	} else {
1574 		struct scsi_extended_sense *ext_sensep =
1575 		    (struct scsi_extended_sense *)sense_buffer;
1576 		ascq = ext_sensep->es_qual_code;
1577 	}
1578 	return (ascq);
1579 }
1580 
1581 void scsi_ext_sense_fields(uint8_t *sense_buffer, int sense_buf_len,
1582     uint8_t **information, uint8_t **cmd_spec_info, uint8_t **fru_code,
1583     uint8_t **sk_specific, uint8_t **stream_flags)
1584 {
1585 	int sense_fmt;
1586 
1587 	/*
1588 	 * Sanity check sense data and determine the format
1589 	 */
1590 	sense_fmt = scsi_validate_sense(sense_buffer, sense_buf_len, NULL);
1591 
1592 	/*
1593 	 * Initialize any requested data to 0
1594 	 */
1595 	if (information) {
1596 		*information = NULL;
1597 	}
1598 	if (cmd_spec_info) {
1599 		*cmd_spec_info = NULL;
1600 	}
1601 	if (fru_code) {
1602 		*fru_code = NULL;
1603 	}
1604 	if (sk_specific) {
1605 		*sk_specific = NULL;
1606 	}
1607 	if (stream_flags) {
1608 		*stream_flags = NULL;
1609 	}
1610 
1611 	if (sense_fmt == SENSE_DESCR_FORMAT) {
1612 		struct scsi_descr_template *sdt = NULL;
1613 
1614 		while (scsi_get_next_descr(sense_buffer,
1615 		    sense_buf_len, &sdt) != -1) {
1616 			switch (sdt->sdt_descr_type) {
1617 			case DESCR_INFORMATION: {
1618 				struct scsi_information_sense_descr *isd =
1619 				    (struct scsi_information_sense_descr *)
1620 				    sdt;
1621 				if (information) {
1622 					*information =
1623 					    &isd->isd_information[0];
1624 				}
1625 				break;
1626 			}
1627 			case DESCR_COMMAND_SPECIFIC: {
1628 				struct scsi_cmd_specific_sense_descr *csd =
1629 				    (struct scsi_cmd_specific_sense_descr *)
1630 				    sdt;
1631 				if (cmd_spec_info) {
1632 					*cmd_spec_info =
1633 					    &csd->css_cmd_specific_info[0];
1634 				}
1635 				break;
1636 			}
1637 			case DESCR_SENSE_KEY_SPECIFIC: {
1638 				struct scsi_sk_specific_sense_descr *ssd =
1639 				    (struct scsi_sk_specific_sense_descr *)
1640 				    sdt;
1641 				if (sk_specific) {
1642 					*sk_specific =
1643 					    (uint8_t *)&ssd->sss_data;
1644 				}
1645 				break;
1646 			}
1647 			case DESCR_FRU: {
1648 				struct scsi_fru_sense_descr *fsd =
1649 				    (struct scsi_fru_sense_descr *)
1650 				    sdt;
1651 				if (fru_code) {
1652 					*fru_code = &fsd->fs_fru_code;
1653 				}
1654 				break;
1655 			}
1656 			case DESCR_STREAM_COMMANDS: {
1657 				struct scsi_stream_cmd_sense_descr *strsd =
1658 				    (struct scsi_stream_cmd_sense_descr *)
1659 				    sdt;
1660 				if (stream_flags) {
1661 					*stream_flags =
1662 					    (uint8_t *)&strsd->scs_data;
1663 				}
1664 				break;
1665 			}
1666 			case DESCR_BLOCK_COMMANDS: {
1667 				struct scsi_block_cmd_sense_descr *bsd =
1668 				    (struct scsi_block_cmd_sense_descr *)
1669 				    sdt;
1670 				/*
1671 				 * The "Block Command" sense descriptor
1672 				 * contains an ili bit that we can store
1673 				 * in the stream specific data if it is
1674 				 * available.  We shouldn't see both
1675 				 * a block command and a stream command
1676 				 * descriptor in the same collection
1677 				 * of sense data.
1678 				 */
1679 				if (stream_flags) {
1680 					/*
1681 					 * Can't take an address of a bitfield,
1682 					 * but the flags are just after the
1683 					 * bcs_reserved field.
1684 					 */
1685 					*stream_flags =
1686 					    (uint8_t *)&bsd->bcs_reserved + 1;
1687 				}
1688 				break;
1689 			}
1690 			}
1691 		}
1692 	} else {
1693 		struct scsi_extended_sense *es =
1694 		    (struct scsi_extended_sense *)sense_buffer;
1695 
1696 		/* Get data from fixed sense buffer */
1697 		if (information && es->es_valid) {
1698 			*information = &es->es_info_1;
1699 		}
1700 		if (cmd_spec_info && es->es_valid) {
1701 			*cmd_spec_info = &es->es_cmd_info[0];
1702 		}
1703 		if (fru_code) {
1704 			*fru_code = &es->es_fru_code;
1705 		}
1706 		if (sk_specific) {
1707 			*sk_specific = &es->es_skey_specific[0];
1708 		}
1709 		if (stream_flags) {
1710 			/*
1711 			 * Can't take the address of a bit field,
1712 			 * but the stream flags are located just after
1713 			 * the es_segnum field;
1714 			 */
1715 			*stream_flags = &es->es_segnum + 1;
1716 		}
1717 	}
1718 }
1719 
1720 boolean_t
1721 scsi_sense_info_uint64(uint8_t *sense_buffer, int sense_buf_len,
1722     uint64_t *information)
1723 {
1724 	boolean_t valid;
1725 	int sense_fmt;
1726 
1727 	ASSERT(sense_buffer != NULL);
1728 	ASSERT(information != NULL);
1729 
1730 	/* Validate sense data and get format */
1731 	sense_fmt = scsi_validate_sense(sense_buffer, sense_buf_len, NULL);
1732 
1733 	if (sense_fmt == SENSE_UNUSABLE) {
1734 		/* Information is not valid */
1735 		valid = 0;
1736 	} else if (sense_fmt == SENSE_FIXED_FORMAT) {
1737 		struct scsi_extended_sense *es =
1738 		    (struct scsi_extended_sense *)sense_buffer;
1739 
1740 		*information = (uint64_t)SCSI_READ32(&es->es_info_1);
1741 
1742 		valid = es->es_valid;
1743 	} else {
1744 		/* Sense data is descriptor format */
1745 		struct scsi_information_sense_descr *isd;
1746 
1747 		isd = (struct scsi_information_sense_descr *)
1748 		    scsi_find_sense_descr(sense_buffer, sense_buf_len,
1749 		    DESCR_INFORMATION);
1750 
1751 		if (isd) {
1752 			*information = SCSI_READ64(isd->isd_information);
1753 			valid = 1;
1754 		} else {
1755 			valid = 0;
1756 		}
1757 	}
1758 
1759 	return (valid);
1760 }
1761 
1762 boolean_t
1763 scsi_sense_cmdspecific_uint64(uint8_t *sense_buffer, int sense_buf_len,
1764     uint64_t *cmd_specific_info)
1765 {
1766 	boolean_t valid;
1767 	int sense_fmt;
1768 
1769 	ASSERT(sense_buffer != NULL);
1770 	ASSERT(cmd_specific_info != NULL);
1771 
1772 	/* Validate sense data and get format */
1773 	sense_fmt = scsi_validate_sense(sense_buffer, sense_buf_len, NULL);
1774 
1775 	if (sense_fmt == SENSE_UNUSABLE) {
1776 		/* Command specific info is not valid */
1777 		valid = 0;
1778 	} else if (sense_fmt == SENSE_FIXED_FORMAT) {
1779 		struct scsi_extended_sense *es =
1780 		    (struct scsi_extended_sense *)sense_buffer;
1781 
1782 		*cmd_specific_info = (uint64_t)SCSI_READ32(es->es_cmd_info);
1783 
1784 		valid = es->es_valid;
1785 	} else {
1786 		/* Sense data is descriptor format */
1787 		struct scsi_cmd_specific_sense_descr *c;
1788 
1789 		c = (struct scsi_cmd_specific_sense_descr *)
1790 		    scsi_find_sense_descr(sense_buffer, sense_buf_len,
1791 		    DESCR_COMMAND_SPECIFIC);
1792 
1793 		if (c) {
1794 			valid = 1;
1795 			*cmd_specific_info =
1796 			    SCSI_READ64(c->css_cmd_specific_info);
1797 		} else {
1798 			valid = 0;
1799 		}
1800 	}
1801 
1802 	return (valid);
1803 }
1804 
1805 uint8_t *
1806 scsi_find_sense_descr(uint8_t *sdsp, int sense_buf_len, int req_descr_type)
1807 {
1808 	struct scsi_descr_template *sdt = NULL;
1809 
1810 	while (scsi_get_next_descr(sdsp, sense_buf_len, &sdt) != -1) {
1811 		ASSERT(sdt != NULL);
1812 		if (sdt->sdt_descr_type == req_descr_type) {
1813 			/* Found requested descriptor type */
1814 			break;
1815 		}
1816 	}
1817 
1818 	return ((uint8_t *)sdt);
1819 }
1820 
1821 /*
1822  * Sense Descriptor format is:
1823  *
1824  * <Descriptor type> <Descriptor length> <Descriptor data> ...
1825  *
1826  * 2 must be added to the descriptor length value to get the
1827  * total descriptor length sense the stored length does not
1828  * include the "type" and "additional length" fields.
1829  */
1830 
1831 #define	NEXT_DESCR_PTR(ndp_descr) \
1832 	((struct scsi_descr_template *)(((uint8_t *)(ndp_descr)) + \
1833 	    ((ndp_descr)->sdt_addl_length + \
1834 	    sizeof (struct scsi_descr_template))))
1835 
1836 static int
1837 scsi_get_next_descr(uint8_t *sense_buffer,
1838     int sense_buf_len, struct scsi_descr_template **descrpp)
1839 {
1840 	struct scsi_descr_sense_hdr *sdsp =
1841 	    (struct scsi_descr_sense_hdr *)sense_buffer;
1842 	struct scsi_descr_template *cur_descr;
1843 	boolean_t find_first;
1844 	int valid_sense_length;
1845 
1846 	ASSERT(descrpp != NULL);
1847 	find_first = (*descrpp == NULL);
1848 
1849 	/*
1850 	 * If no descriptor is passed in then return the first
1851 	 * descriptor
1852 	 */
1853 	if (find_first) {
1854 		/*
1855 		 * The first descriptor will immediately follow the header
1856 		 * (Pointer arithmetic)
1857 		 */
1858 		cur_descr = (struct scsi_descr_template *)(sdsp+1);
1859 	} else {
1860 		cur_descr = *descrpp;
1861 		ASSERT(cur_descr > (struct scsi_descr_template *)sdsp);
1862 	}
1863 
1864 	/* Assume no more descriptors are available */
1865 	*descrpp = NULL;
1866 
1867 	/*
1868 	 * Calculate the amount of valid sense data -- make sure the length
1869 	 * byte in this descriptor lies within the valid sense data.
1870 	 */
1871 	valid_sense_length =
1872 	    min((sizeof (struct scsi_descr_sense_hdr) +
1873 	    sdsp->ds_addl_sense_length),
1874 	    sense_buf_len);
1875 
1876 	/*
1877 	 * Make sure this descriptor is complete (either the first
1878 	 * descriptor or the descriptor passed in)
1879 	 */
1880 	if (scsi_validate_descr(sdsp, valid_sense_length, cur_descr) !=
1881 	    DESCR_GOOD) {
1882 		return (-1);
1883 	}
1884 
1885 	/*
1886 	 * If we were looking for the first descriptor go ahead and return it
1887 	 */
1888 	if (find_first) {
1889 		*descrpp = cur_descr;
1890 		return ((*descrpp)->sdt_descr_type);
1891 	}
1892 
1893 	/*
1894 	 * Get pointer to next descriptor
1895 	 */
1896 	cur_descr = NEXT_DESCR_PTR(cur_descr);
1897 
1898 	/*
1899 	 * Make sure this descriptor is also complete.
1900 	 */
1901 	if (scsi_validate_descr(sdsp, valid_sense_length, cur_descr) !=
1902 	    DESCR_GOOD) {
1903 		return (-1);
1904 	}
1905 
1906 	*descrpp = (struct scsi_descr_template *)cur_descr;
1907 	return ((*descrpp)->sdt_descr_type);
1908 }
1909 
1910 static int
1911 scsi_validate_descr(struct scsi_descr_sense_hdr *sdsp,
1912     int valid_sense_length, struct scsi_descr_template *descrp)
1913 {
1914 	int descr_offset, next_descr_offset;
1915 
1916 	/*
1917 	 * Make sure length is present
1918 	 */
1919 	descr_offset = (uint8_t *)descrp - (uint8_t *)sdsp;
1920 	if (descr_offset + sizeof (struct scsi_descr_template) >
1921 	    valid_sense_length) {
1922 		return (DESCR_PARTIAL);
1923 	}
1924 
1925 	/*
1926 	 * Check if length is 0 (no more descriptors)
1927 	 */
1928 	if (descrp->sdt_addl_length == 0) {
1929 		return (DESCR_END);
1930 	}
1931 
1932 	/*
1933 	 * Make sure the rest of the descriptor is present
1934 	 */
1935 	next_descr_offset =
1936 	    (uint8_t *)NEXT_DESCR_PTR(descrp) - (uint8_t *)sdsp;
1937 	if (next_descr_offset > valid_sense_length) {
1938 		return (DESCR_PARTIAL);
1939 	}
1940 
1941 	return (DESCR_GOOD);
1942 }
1943 
1944 /*
1945  * Internal data structure for handling uscsi command.
1946  */
1947 typedef	struct	uscsi_i_cmd {
1948 	struct uscsi_cmd	uic_cmd;
1949 	caddr_t			uic_rqbuf;
1950 	uchar_t			uic_rqlen;
1951 	caddr_t			uic_cdb;
1952 	int			uic_flag;
1953 	struct scsi_address	*uic_ap;
1954 } uscsi_i_cmd_t;
1955 
1956 #if !defined(lint)
1957 _NOTE(SCHEME_PROTECTS_DATA("unshared data", uscsi_i_cmd))
1958 #endif
1959 
1960 /*ARGSUSED*/
1961 static void
1962 scsi_uscsi_mincnt(struct buf *bp)
1963 {
1964 	/*
1965 	 * Do not break up because the CDB count would then be
1966 	 * incorrect and create spurious data underrun errors.
1967 	 */
1968 }
1969 
1970 /*
1971  * Function: scsi_uscsi_alloc_and_copyin
1972  *
1973  * Description: Target drivers call this function to allocate memeory,
1974  *	copy in, and convert ILP32/LP64 to make preparations for handling
1975  *	uscsi commands.
1976  *
1977  * Arguments:
1978  *	arg	- pointer to the caller's uscsi command struct
1979  *	flag	- mode, corresponds to ioctl(9e) 'mode'
1980  *	ap	- SCSI address structure
1981  *	uscmdp	- pointer to the converted uscsi command
1982  *
1983  * Return code: 0
1984  *	EFAULT
1985  *	EINVAL
1986  *
1987  * Context: Never called at interrupt context.
1988  */
1989 
1990 int
1991 scsi_uscsi_alloc_and_copyin(intptr_t arg, int flag, struct scsi_address *ap,
1992     struct uscsi_cmd **uscmdp)
1993 {
1994 #ifdef _MULTI_DATAMODEL
1995 	/*
1996 	 * For use when a 32 bit app makes a call into a
1997 	 * 64 bit ioctl
1998 	 */
1999 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
2000 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
2001 #endif /* _MULTI_DATAMODEL */
2002 	struct uscsi_i_cmd	*uicmd;
2003 	struct uscsi_cmd	*uscmd;
2004 	int			max_hba_cdb;
2005 	int			rval;
2006 	extern dev_info_t	*scsi_vhci_dip;
2007 
2008 	/*
2009 	 * In order to not worry about where the uscsi structure came
2010 	 * from (or where the cdb it points to came from) we're going
2011 	 * to make kmem_alloc'd copies of them here. This will also
2012 	 * allow reference to the data they contain long after this
2013 	 * process has gone to sleep and its kernel stack has been
2014 	 * unmapped, etc. First get some memory for the uscsi_cmd
2015 	 * struct and copy the contents of the given uscsi_cmd struct
2016 	 * into it. We also save infos of the uscsi command by using
2017 	 * uicmd to supply referrence for the copyout operation.
2018 	 */
2019 	uicmd = (struct uscsi_i_cmd *)
2020 	    kmem_zalloc(sizeof (struct uscsi_i_cmd), KM_SLEEP);
2021 	*uscmdp = &(uicmd->uic_cmd);
2022 	uscmd = *uscmdp;
2023 
2024 #ifdef _MULTI_DATAMODEL
2025 	switch (ddi_model_convert_from(flag & FMODELS)) {
2026 	case DDI_MODEL_ILP32:
2027 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
2028 			rval = EFAULT;
2029 			goto done;
2030 		}
2031 		/*
2032 		 * Convert the ILP32 uscsi data from the
2033 		 * application to LP64 for internal use.
2034 		 */
2035 		uscsi_cmd32touscsi_cmd(ucmd32, uscmd);
2036 		break;
2037 	case DDI_MODEL_NONE:
2038 		if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
2039 			rval = EFAULT;
2040 			goto done;
2041 		}
2042 		break;
2043 	}
2044 #else /* ! _MULTI_DATAMODEL */
2045 	if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
2046 		rval = EFAULT;
2047 		goto done;
2048 	}
2049 #endif /* _MULTI_DATAMODEL */
2050 
2051 	uicmd->uic_rqbuf = uscmd->uscsi_rqbuf;
2052 	uicmd->uic_rqlen = uscmd->uscsi_rqlen;
2053 	uicmd->uic_cdb   = uscmd->uscsi_cdb;
2054 	uicmd->uic_flag  = flag;
2055 	uicmd->uic_ap    = ap;
2056 
2057 	/*
2058 	 * Skip the following steps if we meet RESET commands.
2059 	 */
2060 	if (uscmd->uscsi_flags &
2061 	    (USCSI_RESET_LUN | USCSI_RESET_TARGET | USCSI_RESET_ALL)) {
2062 		uscmd->uscsi_rqbuf = NULL;
2063 		uscmd->uscsi_cdb = NULL;
2064 		return (0);
2065 	}
2066 
2067 	/*
2068 	 * Currently, USCSI_PATH_INSTANCE is only valid when directed
2069 	 * to scsi_vhci.
2070 	 */
2071 	if ((uscmd->uscsi_flags & USCSI_PATH_INSTANCE) &&
2072 	    (A_TO_TRAN(ap)->tran_hba_dip != scsi_vhci_dip)) {
2073 		rval = EFAULT;
2074 		goto done;
2075 	}
2076 
2077 	/*
2078 	 * Perfunctory sanity checks. Get the maximum hba supported
2079 	 * cdb length first.
2080 	 */
2081 	max_hba_cdb = scsi_ifgetcap(ap, "max-cdb-length", 1);
2082 	if (max_hba_cdb < CDB_GROUP0) {
2083 		max_hba_cdb = CDB_GROUP4;
2084 	}
2085 	if (uscmd->uscsi_cdblen < CDB_GROUP0 ||
2086 	    uscmd->uscsi_cdblen > max_hba_cdb) {
2087 		rval = EINVAL;
2088 		goto done;
2089 	}
2090 	if ((uscmd->uscsi_flags & USCSI_RQENABLE) &&
2091 	    (uscmd->uscsi_rqlen == 0 || uscmd->uscsi_rqbuf == NULL)) {
2092 		rval = EINVAL;
2093 		goto done;
2094 	}
2095 
2096 	/*
2097 	 * To extend uscsi_cmd in the future, we need to ensure current
2098 	 * reserved bits remain unused (zero).
2099 	 */
2100 	if (uscmd->uscsi_flags & USCSI_RESERVED) {
2101 		rval = EINVAL;
2102 		goto done;
2103 	}
2104 
2105 	/*
2106 	 * Now we get some space for the CDB, and copy the given CDB into
2107 	 * it. Use ddi_copyin() in case the data is in user space.
2108 	 */
2109 	uscmd->uscsi_cdb = kmem_zalloc((size_t)uscmd->uscsi_cdblen, KM_SLEEP);
2110 	if (ddi_copyin(uicmd->uic_cdb, uscmd->uscsi_cdb,
2111 	    (uint_t)uscmd->uscsi_cdblen, flag) != 0) {
2112 		kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
2113 		rval = EFAULT;
2114 		goto done;
2115 	}
2116 
2117 	if (uscmd->uscsi_cdb[0] != SCMD_VAR_LEN) {
2118 		if (uscmd->uscsi_cdblen > SCSI_CDB_SIZE ||
2119 		    scsi_cdb_size[CDB_GROUPID(uscmd->uscsi_cdb[0])] >
2120 		    uscmd->uscsi_cdblen) {
2121 			kmem_free(uscmd->uscsi_cdb,
2122 			    (size_t)uscmd->uscsi_cdblen);
2123 			rval = EINVAL;
2124 			goto done;
2125 		}
2126 	} else {
2127 		if ((uscmd->uscsi_cdblen % 4) != 0) {
2128 			kmem_free(uscmd->uscsi_cdb,
2129 			    (size_t)uscmd->uscsi_cdblen);
2130 			rval = EINVAL;
2131 			goto done;
2132 		}
2133 	}
2134 
2135 	/*
2136 	 * Initialize Request Sense buffering, if requested.
2137 	 */
2138 	if (uscmd->uscsi_flags & USCSI_RQENABLE) {
2139 		/*
2140 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
2141 		 * buffer, but we replace this with a kernel buffer that
2142 		 * we allocate to use with the sense data. The sense data
2143 		 * (if present) gets copied into this new buffer before the
2144 		 * command is completed.  Then we copy the sense data from
2145 		 * our allocated buf into the caller's buffer below. Note
2146 		 * that uscmd->uscsi_rqbuf and uscmd->uscsi_rqlen are used
2147 		 * below to perform the copy back to the caller's buf.
2148 		 */
2149 		if (uicmd->uic_rqlen <= SENSE_LENGTH) {
2150 			uscmd->uscsi_rqlen = SENSE_LENGTH;
2151 			uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH,
2152 			    KM_SLEEP);
2153 		} else {
2154 			uscmd->uscsi_rqlen = MAX_SENSE_LENGTH;
2155 			uscmd->uscsi_rqbuf = kmem_zalloc(MAX_SENSE_LENGTH,
2156 			    KM_SLEEP);
2157 		}
2158 		uscmd->uscsi_rqresid = uscmd->uscsi_rqlen;
2159 	} else {
2160 		uscmd->uscsi_rqbuf = NULL;
2161 		uscmd->uscsi_rqlen = 0;
2162 		uscmd->uscsi_rqresid = 0;
2163 	}
2164 	return (0);
2165 
2166 done:
2167 	kmem_free(uicmd, sizeof (struct uscsi_i_cmd));
2168 	return (rval);
2169 }
2170 
2171 /*
2172  * Function: scsi_uscsi_handle_cmd
2173  *
2174  * Description: Target drivers call this function to handle uscsi commands.
2175  *
2176  * Arguments:
2177  *	dev		- device number
2178  *	dataspace	- UIO_USERSPACE or UIO_SYSSPACE
2179  *	uscmd		- pointer to the converted uscsi command
2180  *	strat		- pointer to the driver's strategy routine
2181  *	bp		- buf struct ptr
2182  *	private_data	- pointer to bp->b_private
2183  *
2184  * Return code: 0
2185  *    EIO	- scsi_reset() failed, or see biowait()/physio() codes.
2186  *    EINVAL
2187  *    return code of biowait(9F) or physio(9F):
2188  *      EIO	- IO error
2189  *      ENXIO
2190  *      EACCES	- reservation conflict
2191  *
2192  * Context: Never called at interrupt context.
2193  */
2194 
2195 int
2196 scsi_uscsi_handle_cmd(dev_t dev, enum uio_seg dataspace,
2197     struct uscsi_cmd *uscmd, int (*strat)(struct buf *),
2198     struct buf *bp, void *private_data)
2199 {
2200 	struct uscsi_i_cmd	*uicmd = (struct uscsi_i_cmd *)uscmd;
2201 	int	bp_alloc_flag = 0;
2202 	int	rval;
2203 
2204 	/*
2205 	 * Perform resets directly; no need to generate a command to do it.
2206 	 */
2207 	if (uscmd->uscsi_flags &
2208 	    (USCSI_RESET_LUN | USCSI_RESET_TARGET | USCSI_RESET_ALL)) {
2209 		int flags = (uscmd->uscsi_flags & USCSI_RESET_ALL) ?
2210 		    RESET_ALL : ((uscmd->uscsi_flags & USCSI_RESET_TARGET) ?
2211 		    RESET_TARGET : RESET_LUN);
2212 		if (scsi_reset(uicmd->uic_ap, flags) == 0) {
2213 			/* Reset attempt was unsuccessful */
2214 			return (EIO);
2215 		}
2216 		return (0);
2217 	}
2218 
2219 	/*
2220 	 * Force asynchronous mode, if necessary.  Doing this here
2221 	 * has the unfortunate effect of running other queued
2222 	 * commands async also, but since the main purpose of this
2223 	 * capability is downloading new drive firmware, we can
2224 	 * probably live with it.
2225 	 */
2226 	if (uscmd->uscsi_flags & USCSI_ASYNC) {
2227 		if (scsi_ifgetcap(uicmd->uic_ap, "synchronous", 1) == 1) {
2228 			if (scsi_ifsetcap(uicmd->uic_ap, "synchronous",
2229 			    0, 1) != 1) {
2230 				return (EINVAL);
2231 			}
2232 		}
2233 	}
2234 
2235 	/*
2236 	 * Re-enable synchronous mode, if requested.
2237 	 */
2238 	if (uscmd->uscsi_flags & USCSI_SYNC) {
2239 		if (scsi_ifgetcap(uicmd->uic_ap, "synchronous", 1) == 0) {
2240 			rval = scsi_ifsetcap(uicmd->uic_ap, "synchronous",
2241 			    1, 1);
2242 		}
2243 	}
2244 
2245 	/*
2246 	 * If bp is NULL, allocate space here.
2247 	 */
2248 	if (bp == NULL) {
2249 		bp = getrbuf(KM_SLEEP);
2250 		bp->b_private = private_data;
2251 		bp_alloc_flag = 1;
2252 	}
2253 
2254 	/*
2255 	 * If we're going to do actual I/O, let physio do all the right things.
2256 	 */
2257 	if (uscmd->uscsi_buflen != 0) {
2258 		struct iovec	aiov;
2259 		struct uio	auio;
2260 		struct uio	*uio = &auio;
2261 
2262 		bzero(&auio, sizeof (struct uio));
2263 		bzero(&aiov, sizeof (struct iovec));
2264 		aiov.iov_base = uscmd->uscsi_bufaddr;
2265 		aiov.iov_len  = uscmd->uscsi_buflen;
2266 		uio->uio_iov  = &aiov;
2267 
2268 		uio->uio_iovcnt  = 1;
2269 		uio->uio_resid   = uscmd->uscsi_buflen;
2270 		uio->uio_segflg  = dataspace;
2271 
2272 		/*
2273 		 * physio() will block here until the command completes....
2274 		 */
2275 		rval = physio(strat, bp, dev,
2276 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
2277 		    scsi_uscsi_mincnt, uio);
2278 	} else {
2279 		/*
2280 		 * We have to mimic that physio would do here! Argh!
2281 		 */
2282 		bp->b_flags  = B_BUSY |
2283 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
2284 		bp->b_edev   = dev;
2285 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
2286 		bp->b_bcount = 0;
2287 		bp->b_blkno  = 0;
2288 		bp->b_resid  = 0;
2289 
2290 		(void) (*strat)(bp);
2291 		rval = biowait(bp);
2292 	}
2293 	uscmd->uscsi_resid = bp->b_resid;
2294 
2295 	if (bp_alloc_flag == 1) {
2296 		bp_mapout(bp);
2297 		freerbuf(bp);
2298 	}
2299 
2300 	return (rval);
2301 }
2302 
2303 /*
2304  * Function: scsi_uscsi_pktinit
2305  *
2306  * Description: Target drivers call this function to transfer uscsi_cmd
2307  *	information into a scsi_pkt before sending the scsi_pkt.
2308  *
2309  *	NB: At this point the implementation is limited to path_instance.
2310  *	At some point more code could be removed from the target driver by
2311  *	enhancing this function - with the added benifit of making the uscsi
2312  *	implementation more consistent accross all drivers.
2313  *
2314  * Arguments:
2315  *    uscmd     - pointer to the uscsi command
2316  *    pkt	- pointer to the scsi_pkt
2317  *
2318  * Return code: 1 on successfull transfer, 0 on failure.
2319  */
2320 int
2321 scsi_uscsi_pktinit(struct uscsi_cmd *uscmd, struct scsi_pkt *pkt)
2322 {
2323 
2324 	/*
2325 	 * See if path_instance was requested in uscsi_cmd.
2326 	 */
2327 	if ((uscmd->uscsi_flags & USCSI_PATH_INSTANCE) &&
2328 	    (uscmd->uscsi_path_instance != 0)) {
2329 		/*
2330 		 * Check to make sure the scsi_pkt was allocated correctly
2331 		 * before transferring uscsi(7i) path_instance to scsi_pkt(9S).
2332 		 */
2333 		if (scsi_pkt_allocated_correctly(pkt)) {
2334 			/* set pkt_path_instance and flag. */
2335 			pkt->pkt_flags |= FLAG_PKT_PATH_INSTANCE;
2336 			pkt->pkt_path_instance = uscmd->uscsi_path_instance;
2337 		} else {
2338 			return (0);	/* failure */
2339 		}
2340 	} else {
2341 		/*
2342 		 * Can only use pkt_path_instance if the packet
2343 		 * was correctly allocated.
2344 		 */
2345 		if (scsi_pkt_allocated_correctly(pkt)) {
2346 			pkt->pkt_path_instance = 0;
2347 		}
2348 		pkt->pkt_flags &= ~FLAG_PKT_PATH_INSTANCE;
2349 	}
2350 
2351 	return (1);			/* success */
2352 }
2353 
2354 /*
2355  * Function: scsi_uscsi_pktfini
2356  *
2357  * Description: Target drivers call this function to transfer completed
2358  * 	scsi_pkt information back into uscsi_cmd.
2359  *
2360  *	NB: At this point the implementation is limited to path_instance.
2361  *	At some point more code could be removed from the target driver by
2362  *	enhancing this function - with the added benifit of making the uscsi
2363  *	implementation more consistent accross all drivers.
2364  *
2365  * Arguments:
2366  *    pkt	- pointer to the scsi_pkt
2367  *    uscmd     - pointer to the uscsi command
2368  *
2369  * Return code: 1 on successfull transfer, 0 on failure.
2370  */
2371 int
2372 scsi_uscsi_pktfini(struct scsi_pkt *pkt, struct uscsi_cmd *uscmd)
2373 {
2374 	/*
2375 	 * Check to make sure the scsi_pkt was allocated correctly before
2376 	 * transferring scsi_pkt(9S) path_instance to uscsi(7i).
2377 	 */
2378 	if (!scsi_pkt_allocated_correctly(pkt)) {
2379 		uscmd->uscsi_path_instance = 0;
2380 		return (0);		/* failure */
2381 	}
2382 
2383 	uscmd->uscsi_path_instance = pkt->pkt_path_instance;
2384 	/* reset path_instance */
2385 	pkt->pkt_flags &= ~FLAG_PKT_PATH_INSTANCE;
2386 	pkt->pkt_path_instance = 0;
2387 	return (1);			/* success */
2388 }
2389 
2390 /*
2391  *    Function: scsi_uscsi_copyout_and_free
2392  *
2393  * Description: Target drivers call this function to undo what was done by
2394  *    scsi_uscsi_alloc_and_copyin.
2395  *
2396  *   Arguments: arg - pointer to the uscsi command to be returned
2397  *    uscmd     - pointer to the converted uscsi command
2398  *
2399  * Return code: 0
2400  *    EFAULT
2401  *
2402  *     Context: Never called at interrupt context.
2403  */
2404 int
2405 scsi_uscsi_copyout_and_free(intptr_t arg, struct uscsi_cmd *uscmd)
2406 {
2407 #ifdef _MULTI_DATAMODEL
2408 	/*
2409 	 * For use when a 32 bit app makes a call into a
2410 	 * 64 bit ioctl.
2411 	 */
2412 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
2413 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
2414 #endif /* _MULTI_DATAMODEL */
2415 	struct uscsi_i_cmd	*uicmd = (struct uscsi_i_cmd *)uscmd;
2416 	caddr_t	k_rqbuf;
2417 	int	k_rqlen;
2418 	caddr_t	k_cdb;
2419 	int	rval = 0;
2420 
2421 	/*
2422 	 * If the caller wants sense data, copy back whatever sense data
2423 	 * we may have gotten, and update the relevant rqsense info.
2424 	 */
2425 	if ((uscmd->uscsi_flags & USCSI_RQENABLE) &&
2426 	    (uscmd->uscsi_rqbuf != NULL)) {
2427 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
2428 		rqlen = min(((int)uicmd->uic_rqlen), rqlen);
2429 		uscmd->uscsi_rqresid = uicmd->uic_rqlen - rqlen;
2430 		/*
2431 		 * Copy out the sense data for user process.
2432 		 */
2433 		if ((uicmd->uic_rqbuf != NULL) && (rqlen != 0)) {
2434 			if (ddi_copyout(uscmd->uscsi_rqbuf,
2435 			    uicmd->uic_rqbuf, rqlen, uicmd->uic_flag) != 0) {
2436 				rval = EFAULT;
2437 			}
2438 		}
2439 	}
2440 
2441 	/*
2442 	 * Free allocated resources and return, mapout the buf in case it was
2443 	 * mapped in by a lower layer.
2444 	 */
2445 	k_rqbuf = uscmd->uscsi_rqbuf;
2446 	k_rqlen = uscmd->uscsi_rqlen;
2447 	k_cdb   = uscmd->uscsi_cdb;
2448 	uscmd->uscsi_rqbuf = uicmd->uic_rqbuf;
2449 	uscmd->uscsi_rqlen = uicmd->uic_rqlen;
2450 	uscmd->uscsi_cdb   = uicmd->uic_cdb;
2451 
2452 #ifdef _MULTI_DATAMODEL
2453 	switch (ddi_model_convert_from(uicmd->uic_flag & FMODELS)) {
2454 	case DDI_MODEL_ILP32:
2455 		/*
2456 		 * Convert back to ILP32 before copyout to the
2457 		 * application
2458 		 */
2459 		uscsi_cmdtouscsi_cmd32(uscmd, ucmd32);
2460 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32),
2461 		    uicmd->uic_flag)) {
2462 			rval = EFAULT;
2463 		}
2464 		break;
2465 	case DDI_MODEL_NONE:
2466 		if (ddi_copyout(uscmd, (void *)arg, sizeof (*uscmd),
2467 		    uicmd->uic_flag)) {
2468 			rval = EFAULT;
2469 		}
2470 		break;
2471 	}
2472 #else /* _MULTI_DATAMODE */
2473 	if (ddi_copyout(uscmd, (void *)arg, sizeof (*uscmd), uicmd->uic_flag)) {
2474 		rval = EFAULT;
2475 	}
2476 #endif /* _MULTI_DATAMODE */
2477 
2478 	if (k_rqbuf != NULL) {
2479 		kmem_free(k_rqbuf, k_rqlen);
2480 	}
2481 	if (k_cdb != NULL) {
2482 		kmem_free(k_cdb, (size_t)uscmd->uscsi_cdblen);
2483 	}
2484 	kmem_free(uicmd, sizeof (struct uscsi_i_cmd));
2485 
2486 	return (rval);
2487 }
2488