xref: /illumos-gate/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c (revision 828d47c166ce67972b1f1929669b9af5be769423)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *
29  * nv_sata is a combo SATA HBA driver for ck804/mcp5x (mcp5x = mcp55/mcp51)
30  * based chipsets.
31  *
32  * NCQ
33  * ---
34  *
35  * A portion of the NCQ is in place, but is incomplete.  NCQ is disabled
36  * and is likely to be revisited in the future.
37  *
38  *
39  * Power Management
40  * ----------------
41  *
42  * Normally power management would be responsible for ensuring the device
43  * is quiescent and then changing power states to the device, such as
44  * powering down parts or all of the device.  mcp5x/ck804 is unique in
45  * that it is only available as part of a larger southbridge chipset, so
46  * removing power to the device isn't possible.  Switches to control
47  * power management states D0/D3 in the PCI configuration space appear to
48  * be supported but changes to these states are apparently are ignored.
49  * The only further PM that the driver _could_ do is shut down the PHY,
50  * but in order to deliver the first rev of the driver sooner than later,
51  * that will be deferred until some future phase.
52  *
53  * Since the driver currently will not directly change any power state to
54  * the device, no power() entry point will be required.  However, it is
55  * possible that in ACPI power state S3, aka suspend to RAM, that power
56  * can be removed to the device, and the driver cannot rely on BIOS to
57  * have reset any state.  For the time being, there is no known
58  * non-default configurations that need to be programmed.  This judgement
59  * is based on the port of the legacy ata driver not having any such
60  * functionality and based on conversations with the PM team.  If such a
61  * restoration is later deemed necessary it can be incorporated into the
62  * DDI_RESUME processing.
63  *
64  */
65 
66 #include <sys/scsi/scsi.h>
67 #include <sys/pci.h>
68 #include <sys/byteorder.h>
69 #include <sys/sunddi.h>
70 #include <sys/sata/sata_hba.h>
71 #ifdef SGPIO_SUPPORT
72 #include <sys/sata/adapters/nv_sata/nv_sgpio.h>
73 #include <sys/devctl.h>
74 #include <sys/sdt.h>
75 #endif
76 #include <sys/sata/adapters/nv_sata/nv_sata.h>
77 #include <sys/disp.h>
78 #include <sys/note.h>
79 #include <sys/promif.h>
80 
81 
82 /*
83  * Function prototypes for driver entry points
84  */
85 static int nv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
86 static int nv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
87 static int nv_quiesce(dev_info_t *dip);
88 static int nv_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd,
89     void *arg, void **result);
90 
91 /*
92  * Function prototypes for entry points from sata service module
93  * These functions are distinguished from other local functions
94  * by the prefix "nv_sata_"
95  */
96 static int nv_sata_start(dev_info_t *dip, sata_pkt_t *spkt);
97 static int nv_sata_abort(dev_info_t *dip, sata_pkt_t *spkt, int);
98 static int nv_sata_reset(dev_info_t *dip, sata_device_t *sd);
99 static int nv_sata_activate(dev_info_t *dip, sata_device_t *sd);
100 static int nv_sata_deactivate(dev_info_t *dip, sata_device_t *sd);
101 
102 /*
103  * Local function prototypes
104  */
105 static uint_t mcp5x_intr(caddr_t arg1, caddr_t arg2);
106 static uint_t ck804_intr(caddr_t arg1, caddr_t arg2);
107 static int nv_add_legacy_intrs(nv_ctl_t *nvc);
108 #ifdef NV_MSI_SUPPORTED
109 static int nv_add_msi_intrs(nv_ctl_t *nvc);
110 #endif
111 static void nv_rem_intrs(nv_ctl_t *nvc);
112 static int nv_start_common(nv_port_t *nvp, sata_pkt_t *spkt);
113 static int nv_start_nodata(nv_port_t *nvp, int slot);
114 static void nv_intr_nodata(nv_port_t *nvp, nv_slot_t *spkt);
115 static int nv_start_pio_in(nv_port_t *nvp, int slot);
116 static int nv_start_pio_out(nv_port_t *nvp, int slot);
117 static void nv_intr_pio_in(nv_port_t *nvp, nv_slot_t *spkt);
118 static void nv_intr_pio_out(nv_port_t *nvp, nv_slot_t *spkt);
119 static int nv_start_pkt_pio(nv_port_t *nvp, int slot);
120 static void nv_intr_pkt_pio(nv_port_t *nvp, nv_slot_t *nv_slotp);
121 static int nv_start_dma(nv_port_t *nvp, int slot);
122 static void nv_intr_dma(nv_port_t *nvp, struct nv_slot *spkt);
123 static void nv_log(uint_t flag, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...);
124 static void nv_uninit_ctl(nv_ctl_t *nvc);
125 static void mcp5x_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
126 static void ck804_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
127 static void nv_uninit_port(nv_port_t *nvp);
128 static int nv_init_port(nv_port_t *nvp);
129 static int nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
130 static int mcp5x_packet_complete_intr(nv_ctl_t *nvc, nv_port_t *nvp);
131 #ifdef NCQ
132 static int mcp5x_dma_setup_intr(nv_ctl_t *nvc, nv_port_t *nvp);
133 #endif
134 static void nv_start_dma_engine(nv_port_t *nvp, int slot);
135 static void nv_port_state_change(nv_port_t *nvp, int event, uint8_t addr_type,
136     int state);
137 static boolean_t nv_check_link(uint32_t sstatus);
138 static void nv_common_reg_init(nv_ctl_t *nvc);
139 static void ck804_intr_process(nv_ctl_t *nvc, uint8_t intr_status);
140 static void nv_reset(nv_port_t *nvp);
141 static void nv_complete_io(nv_port_t *nvp,  sata_pkt_t *spkt, int slot);
142 static void nv_timeout(void *);
143 static int nv_poll_wait(nv_port_t *nvp, sata_pkt_t *spkt);
144 static void nv_cmn_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...);
145 static void nv_read_signature(nv_port_t *nvp);
146 static void mcp5x_set_intr(nv_port_t *nvp, int flag);
147 static void ck804_set_intr(nv_port_t *nvp, int flag);
148 static void nv_resume(nv_port_t *nvp);
149 static void nv_suspend(nv_port_t *nvp);
150 static int nv_start_sync(nv_port_t *nvp, sata_pkt_t *spkt);
151 static int nv_abort_active(nv_port_t *nvp, sata_pkt_t *spkt, int abort_reason);
152 static void nv_copy_registers(nv_port_t *nvp, sata_device_t *sd,
153     sata_pkt_t *spkt);
154 static void nv_report_add_remove(nv_port_t *nvp, int flags);
155 static int nv_start_async(nv_port_t *nvp, sata_pkt_t *spkt);
156 static int nv_wait3(nv_port_t *nvp, uchar_t onbits1, uchar_t offbits1,
157     uchar_t failure_onbits2, uchar_t failure_offbits2,
158     uchar_t failure_onbits3, uchar_t failure_offbits3,
159     uint_t timeout_usec, int type_wait);
160 static int nv_wait(nv_port_t *nvp, uchar_t onbits, uchar_t offbits,
161     uint_t timeout_usec, int type_wait);
162 static int nv_start_rqsense_pio(nv_port_t *nvp, nv_slot_t *nv_slotp);
163 
164 #ifdef SGPIO_SUPPORT
165 static int nv_open(dev_t *devp, int flag, int otyp, cred_t *credp);
166 static int nv_close(dev_t dev, int flag, int otyp, cred_t *credp);
167 static int nv_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
168     cred_t *credp, int *rvalp);
169 
170 static void nv_sgp_led_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
171 static int nv_sgp_detect(ddi_acc_handle_t pci_conf_handle, uint16_t *csrpp,
172     uint32_t *cbpp);
173 static int nv_sgp_init(nv_ctl_t *nvc);
174 static void nv_sgp_reset(nv_ctl_t *nvc);
175 static int nv_sgp_init_cmd(nv_ctl_t *nvc);
176 static int nv_sgp_check_set_cmn(nv_ctl_t *nvc);
177 static int nv_sgp_csr_read(nv_ctl_t *nvc);
178 static void nv_sgp_csr_write(nv_ctl_t *nvc, uint32_t val);
179 static int nv_sgp_write_data(nv_ctl_t *nvc);
180 static void nv_sgp_activity_led_ctl(void *arg);
181 static void nv_sgp_drive_connect(nv_ctl_t *nvc, int drive);
182 static void nv_sgp_drive_disconnect(nv_ctl_t *nvc, int drive);
183 static void nv_sgp_drive_active(nv_ctl_t *nvc, int drive);
184 static void nv_sgp_locate(nv_ctl_t *nvc, int drive, int value);
185 static void nv_sgp_error(nv_ctl_t *nvc, int drive, int value);
186 static void nv_sgp_cleanup(nv_ctl_t *nvc);
187 #endif
188 
189 
190 /*
191  * DMA attributes for the data buffer for x86.  dma_attr_burstsizes is unused.
192  * Verify if needed if ported to other ISA.
193  */
194 static ddi_dma_attr_t buffer_dma_attr = {
195 	DMA_ATTR_V0,		/* dma_attr_version */
196 	0,			/* dma_attr_addr_lo: lowest bus address */
197 	0xffffffffull,		/* dma_attr_addr_hi: */
198 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_count_max i.e for one cookie */
199 	4,			/* dma_attr_align */
200 	1,			/* dma_attr_burstsizes. */
201 	1,			/* dma_attr_minxfer */
202 	0xffffffffull,		/* dma_attr_maxxfer including all cookies */
203 	0xffffffffull,		/* dma_attr_seg */
204 	NV_DMA_NSEGS,		/* dma_attr_sgllen */
205 	512,			/* dma_attr_granular */
206 	0,			/* dma_attr_flags */
207 };
208 static ddi_dma_attr_t buffer_dma_40bit_attr = {
209 	DMA_ATTR_V0,		/* dma_attr_version */
210 	0,			/* dma_attr_addr_lo: lowest bus address */
211 	0xffffffffffull,	/* dma_attr_addr_hi: */
212 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_count_max i.e for one cookie */
213 	4,			/* dma_attr_align */
214 	1,			/* dma_attr_burstsizes. */
215 	1,			/* dma_attr_minxfer */
216 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_maxxfer including all cookies */
217 	0xffffffffull,		/* dma_attr_seg */
218 	NV_DMA_NSEGS,		/* dma_attr_sgllen */
219 	512,			/* dma_attr_granular */
220 	0,			/* dma_attr_flags */
221 };
222 
223 
224 /*
225  * DMA attributes for PRD tables
226  */
227 ddi_dma_attr_t nv_prd_dma_attr = {
228 	DMA_ATTR_V0,		/* dma_attr_version */
229 	0,			/* dma_attr_addr_lo */
230 	0xffffffffull,		/* dma_attr_addr_hi */
231 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_count_max */
232 	4,			/* dma_attr_align */
233 	1,			/* dma_attr_burstsizes */
234 	1,			/* dma_attr_minxfer */
235 	NV_BM_64K_BOUNDARY,	/* dma_attr_maxxfer */
236 	NV_BM_64K_BOUNDARY - 1,	/* dma_attr_seg */
237 	1,			/* dma_attr_sgllen */
238 	1,			/* dma_attr_granular */
239 	0			/* dma_attr_flags */
240 };
241 
242 /*
243  * Device access attributes
244  */
245 static ddi_device_acc_attr_t accattr = {
246     DDI_DEVICE_ATTR_V0,
247     DDI_STRUCTURE_LE_ACC,
248     DDI_STRICTORDER_ACC
249 };
250 
251 
252 #ifdef SGPIO_SUPPORT
253 static struct cb_ops nv_cb_ops = {
254 	nv_open,		/* open */
255 	nv_close,		/* close */
256 	nodev,			/* strategy (block) */
257 	nodev,			/* print (block) */
258 	nodev,			/* dump (block) */
259 	nodev,			/* read */
260 	nodev,			/* write */
261 	nv_ioctl,		/* ioctl */
262 	nodev,			/* devmap */
263 	nodev,			/* mmap */
264 	nodev,			/* segmap */
265 	nochpoll,		/* chpoll */
266 	ddi_prop_op,		/* prop_op */
267 	NULL,			/* streams */
268 	D_NEW | D_MP |
269 	D_64BIT | D_HOTPLUG,	/* flags */
270 	CB_REV			/* rev */
271 };
272 #endif  /* SGPIO_SUPPORT */
273 
274 
275 static struct dev_ops nv_dev_ops = {
276 	DEVO_REV,		/* devo_rev */
277 	0,			/* refcnt  */
278 	nv_getinfo,		/* info */
279 	nulldev,		/* identify */
280 	nulldev,		/* probe */
281 	nv_attach,		/* attach */
282 	nv_detach,		/* detach */
283 	nodev,			/* no reset */
284 #ifdef SGPIO_SUPPORT
285 	&nv_cb_ops,		/* driver operations */
286 #else
287 	(struct cb_ops *)0,	/* driver operations */
288 #endif
289 	NULL,			/* bus operations */
290 	NULL,			/* power */
291 	nv_quiesce		/* quiesce */
292 };
293 
294 
295 /*
296  * Request Sense CDB for ATAPI
297  */
298 static const uint8_t nv_rqsense_cdb[16] = {
299 	SCMD_REQUEST_SENSE,
300 	0,
301 	0,
302 	0,
303 	SATA_ATAPI_MIN_RQSENSE_LEN,
304 	0,
305 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0	/* pad out to max CDB length */
306 };
307 
308 
309 static sata_tran_hotplug_ops_t nv_hotplug_ops;
310 
311 extern struct mod_ops mod_driverops;
312 
313 static  struct modldrv modldrv = {
314 	&mod_driverops,	/* driverops */
315 	"Nvidia ck804/mcp51/mcp55 HBA",
316 	&nv_dev_ops,	/* driver ops */
317 };
318 
319 static  struct modlinkage modlinkage = {
320 	MODREV_1,
321 	&modldrv,
322 	NULL
323 };
324 
325 
326 /*
327  * wait between checks of reg status
328  */
329 int nv_usec_delay = NV_WAIT_REG_CHECK;
330 
331 /*
332  * The following is needed for nv_vcmn_err()
333  */
334 static kmutex_t nv_log_mutex; /* protects nv_log_buf */
335 static char nv_log_buf[NV_STRING_512];
336 int nv_debug_flags = NVDBG_ALWAYS;
337 int nv_log_to_console = B_FALSE;
338 
339 int nv_log_delay = 0;
340 int nv_prom_print = B_FALSE;
341 
342 /*
343  * for debugging
344  */
345 #ifdef DEBUG
346 int ncq_commands = 0;
347 int non_ncq_commands = 0;
348 #endif
349 
350 /*
351  * Opaque state pointer to be initialized by ddi_soft_state_init()
352  */
353 static void *nv_statep	= NULL;
354 
355 /* This can be disabled if there are any problems with 40-bit DMA */
356 int nv_sata_40bit_dma = B_TRUE;
357 
358 static sata_tran_hotplug_ops_t nv_hotplug_ops = {
359 	SATA_TRAN_HOTPLUG_OPS_REV_1,	/* structure version */
360 	nv_sata_activate,	/* activate port. cfgadm -c connect */
361 	nv_sata_deactivate	/* deactivate port. cfgadm -c disconnect */
362 };
363 
364 
365 /*
366  *  nv module initialization
367  */
368 int
369 _init(void)
370 {
371 	int	error;
372 
373 	error = ddi_soft_state_init(&nv_statep, sizeof (nv_ctl_t), 0);
374 
375 	if (error != 0) {
376 
377 		return (error);
378 	}
379 
380 	mutex_init(&nv_log_mutex, NULL, MUTEX_DRIVER, NULL);
381 
382 	if ((error = sata_hba_init(&modlinkage)) != 0) {
383 		ddi_soft_state_fini(&nv_statep);
384 		mutex_destroy(&nv_log_mutex);
385 
386 		return (error);
387 	}
388 
389 	error = mod_install(&modlinkage);
390 	if (error != 0) {
391 		sata_hba_fini(&modlinkage);
392 		ddi_soft_state_fini(&nv_statep);
393 		mutex_destroy(&nv_log_mutex);
394 
395 		return (error);
396 	}
397 
398 	return (error);
399 }
400 
401 
402 /*
403  * nv module uninitialize
404  */
405 int
406 _fini(void)
407 {
408 	int	error;
409 
410 	error = mod_remove(&modlinkage);
411 
412 	if (error != 0) {
413 		return (error);
414 	}
415 
416 	/*
417 	 * remove the resources allocated in _init()
418 	 */
419 	mutex_destroy(&nv_log_mutex);
420 	sata_hba_fini(&modlinkage);
421 	ddi_soft_state_fini(&nv_statep);
422 
423 	return (error);
424 }
425 
426 
427 /*
428  * nv _info entry point
429  */
430 int
431 _info(struct modinfo *modinfop)
432 {
433 	return (mod_info(&modlinkage, modinfop));
434 }
435 
436 
437 /*
438  * these wrappers for ddi_{get,put}8 are for observability
439  * with dtrace
440  */
441 #ifdef DEBUG
442 
443 static void
444 nv_put8(ddi_acc_handle_t handle, uint8_t *dev_addr, uint8_t value)
445 {
446 	ddi_put8(handle, dev_addr, value);
447 }
448 
449 static void
450 nv_put32(ddi_acc_handle_t handle, uint32_t *dev_addr, uint32_t value)
451 {
452 	ddi_put32(handle, dev_addr, value);
453 }
454 
455 static uint32_t
456 nv_get32(ddi_acc_handle_t handle, uint32_t *dev_addr)
457 {
458 	return (ddi_get32(handle, dev_addr));
459 }
460 
461 static void
462 nv_put16(ddi_acc_handle_t handle, uint16_t *dev_addr, uint16_t value)
463 {
464 	ddi_put16(handle, dev_addr, value);
465 }
466 
467 static uint16_t
468 nv_get16(ddi_acc_handle_t handle, uint16_t *dev_addr)
469 {
470 	return (ddi_get16(handle, dev_addr));
471 }
472 
473 static uint8_t
474 nv_get8(ddi_acc_handle_t handle, uint8_t *dev_addr)
475 {
476 	return (ddi_get8(handle, dev_addr));
477 }
478 
479 #else
480 
481 #define	nv_put8 ddi_put8
482 #define	nv_put32 ddi_put32
483 #define	nv_get32 ddi_get32
484 #define	nv_put16 ddi_put16
485 #define	nv_get16 ddi_get16
486 #define	nv_get8 ddi_get8
487 
488 #endif
489 
490 
491 /*
492  * Driver attach
493  */
494 static int
495 nv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
496 {
497 	int status, attach_state, intr_types, bar, i, command;
498 	int inst = ddi_get_instance(dip);
499 	ddi_acc_handle_t pci_conf_handle;
500 	nv_ctl_t *nvc;
501 	uint8_t subclass;
502 	uint32_t reg32;
503 #ifdef SGPIO_SUPPORT
504 	pci_regspec_t *regs;
505 	int rlen;
506 #endif
507 
508 	switch (cmd) {
509 
510 	case DDI_ATTACH:
511 
512 		NVLOG((NVDBG_INIT, NULL, NULL,
513 		    "nv_attach(): DDI_ATTACH inst %d", inst));
514 
515 		attach_state = ATTACH_PROGRESS_NONE;
516 
517 		status = ddi_soft_state_zalloc(nv_statep, inst);
518 
519 		if (status != DDI_SUCCESS) {
520 			break;
521 		}
522 
523 		nvc = ddi_get_soft_state(nv_statep, inst);
524 
525 		nvc->nvc_dip = dip;
526 
527 		attach_state |= ATTACH_PROGRESS_STATEP_ALLOC;
528 
529 		if (pci_config_setup(dip, &pci_conf_handle) == DDI_SUCCESS) {
530 			nvc->nvc_revid = pci_config_get8(pci_conf_handle,
531 			    PCI_CONF_REVID);
532 			NVLOG((NVDBG_INIT, NULL, NULL,
533 			    "inst %d: silicon revid is %x nv_debug_flags=%x",
534 			    inst, nvc->nvc_revid, nv_debug_flags));
535 		} else {
536 			break;
537 		}
538 
539 		attach_state |= ATTACH_PROGRESS_CONF_HANDLE;
540 
541 		/*
542 		 * Set the PCI command register: enable IO/MEM/Master.
543 		 */
544 		command = pci_config_get16(pci_conf_handle, PCI_CONF_COMM);
545 		pci_config_put16(pci_conf_handle, PCI_CONF_COMM,
546 		    command|PCI_COMM_IO|PCI_COMM_MAE|PCI_COMM_ME);
547 
548 		subclass = pci_config_get8(pci_conf_handle, PCI_CONF_SUBCLASS);
549 
550 		if (subclass & PCI_MASS_RAID) {
551 			cmn_err(CE_WARN,
552 			    "attach failed: RAID mode not supported");
553 			break;
554 		}
555 
556 		/*
557 		 * the 6 bars of the controller are:
558 		 * 0: port 0 task file
559 		 * 1: port 0 status
560 		 * 2: port 1 task file
561 		 * 3: port 1 status
562 		 * 4: bus master for both ports
563 		 * 5: extended registers for SATA features
564 		 */
565 		for (bar = 0; bar < 6; bar++) {
566 			status = ddi_regs_map_setup(dip, bar + 1,
567 			    (caddr_t *)&nvc->nvc_bar_addr[bar], 0, 0, &accattr,
568 			    &nvc->nvc_bar_hdl[bar]);
569 
570 			if (status != DDI_SUCCESS) {
571 				NVLOG((NVDBG_INIT, nvc, NULL,
572 				    "ddi_regs_map_setup failure for bar"
573 				    " %d status = %d", bar, status));
574 				break;
575 			}
576 		}
577 
578 		attach_state |= ATTACH_PROGRESS_BARS;
579 
580 		/*
581 		 * initialize controller and driver core
582 		 */
583 		status = nv_init_ctl(nvc, pci_conf_handle);
584 
585 		if (status == NV_FAILURE) {
586 			NVLOG((NVDBG_INIT, nvc, NULL, "nv_init_ctl failed"));
587 
588 			break;
589 		}
590 
591 		attach_state |= ATTACH_PROGRESS_CTL_SETUP;
592 
593 		/*
594 		 * initialize mutexes
595 		 */
596 		mutex_init(&nvc->nvc_mutex, NULL, MUTEX_DRIVER,
597 		    DDI_INTR_PRI(nvc->nvc_intr_pri));
598 
599 		attach_state |= ATTACH_PROGRESS_MUTEX_INIT;
600 
601 		/*
602 		 * get supported interrupt types
603 		 */
604 		if (ddi_intr_get_supported_types(dip, &intr_types) !=
605 		    DDI_SUCCESS) {
606 			nv_cmn_err(CE_WARN, nvc, NULL,
607 			    "!ddi_intr_get_supported_types failed");
608 			NVLOG((NVDBG_INIT, nvc, NULL,
609 			    "interrupt supported types failed"));
610 
611 			break;
612 		}
613 
614 		NVLOG((NVDBG_INIT, nvc, NULL,
615 		    "ddi_intr_get_supported_types() returned: 0x%x",
616 		    intr_types));
617 
618 #ifdef NV_MSI_SUPPORTED
619 		if (intr_types & DDI_INTR_TYPE_MSI) {
620 			NVLOG((NVDBG_INIT, nvc, NULL,
621 			    "using MSI interrupt type"));
622 
623 			/*
624 			 * Try MSI first, but fall back to legacy if MSI
625 			 * attach fails
626 			 */
627 			if (nv_add_msi_intrs(nvc) == DDI_SUCCESS) {
628 				nvc->nvc_intr_type = DDI_INTR_TYPE_MSI;
629 				attach_state |= ATTACH_PROGRESS_INTR_ADDED;
630 				NVLOG((NVDBG_INIT, nvc, NULL,
631 				    "MSI interrupt setup done"));
632 			} else {
633 				nv_cmn_err(CE_CONT, nvc, NULL,
634 				    "!MSI registration failed "
635 				    "will try Legacy interrupts");
636 			}
637 		}
638 #endif
639 
640 		/*
641 		 * Either the MSI interrupt setup has failed or only
642 		 * the fixed interrupts are available on the system.
643 		 */
644 		if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED) &&
645 		    (intr_types & DDI_INTR_TYPE_FIXED)) {
646 
647 			NVLOG((NVDBG_INIT, nvc, NULL,
648 			    "using Legacy interrupt type"));
649 
650 			if (nv_add_legacy_intrs(nvc) == DDI_SUCCESS) {
651 				nvc->nvc_intr_type = DDI_INTR_TYPE_FIXED;
652 				attach_state |= ATTACH_PROGRESS_INTR_ADDED;
653 				NVLOG((NVDBG_INIT, nvc, NULL,
654 				    "Legacy interrupt setup done"));
655 			} else {
656 				nv_cmn_err(CE_WARN, nvc, NULL,
657 				    "!legacy interrupt setup failed");
658 				NVLOG((NVDBG_INIT, nvc, NULL,
659 				    "legacy interrupt setup failed"));
660 				break;
661 			}
662 		}
663 
664 		if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED)) {
665 			NVLOG((NVDBG_INIT, nvc, NULL,
666 			    "no interrupts registered"));
667 			break;
668 		}
669 
670 #ifdef SGPIO_SUPPORT
671 		/*
672 		 * save off the controller number
673 		 */
674 		(void) ddi_getlongprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
675 		    "reg", (caddr_t)&regs, &rlen);
676 		nvc->nvc_ctlr_num = PCI_REG_FUNC_G(regs->pci_phys_hi);
677 		kmem_free(regs, rlen);
678 
679 		/*
680 		 * initialize SGPIO
681 		 */
682 		nv_sgp_led_init(nvc, pci_conf_handle);
683 #endif	/* SGPIO_SUPPORT */
684 
685 		/*
686 		 * attach to sata module
687 		 */
688 		if (sata_hba_attach(nvc->nvc_dip,
689 		    &nvc->nvc_sata_hba_tran,
690 		    DDI_ATTACH) != DDI_SUCCESS) {
691 			attach_state |= ATTACH_PROGRESS_SATA_MODULE;
692 
693 			break;
694 		}
695 
696 		pci_config_teardown(&pci_conf_handle);
697 
698 		NVLOG((NVDBG_INIT, nvc, NULL, "nv_attach DDI_SUCCESS"));
699 
700 		return (DDI_SUCCESS);
701 
702 	case DDI_RESUME:
703 
704 		nvc = ddi_get_soft_state(nv_statep, inst);
705 
706 		NVLOG((NVDBG_INIT, nvc, NULL,
707 		    "nv_attach(): DDI_RESUME inst %d", inst));
708 
709 		if (pci_config_setup(dip, &pci_conf_handle) != DDI_SUCCESS) {
710 			return (DDI_FAILURE);
711 		}
712 
713 		/*
714 		 * Set the PCI command register: enable IO/MEM/Master.
715 		 */
716 		command = pci_config_get16(pci_conf_handle, PCI_CONF_COMM);
717 		pci_config_put16(pci_conf_handle, PCI_CONF_COMM,
718 		    command|PCI_COMM_IO|PCI_COMM_MAE|PCI_COMM_ME);
719 
720 		/*
721 		 * Need to set bit 2 to 1 at config offset 0x50
722 		 * to enable access to the bar5 registers.
723 		 */
724 		reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_20);
725 
726 		if ((reg32 & NV_BAR5_SPACE_EN) != NV_BAR5_SPACE_EN) {
727 			pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
728 			    reg32 | NV_BAR5_SPACE_EN);
729 		}
730 
731 		nvc->nvc_state &= ~NV_CTRL_SUSPEND;
732 
733 		for (i = 0; i < NV_MAX_PORTS(nvc); i++) {
734 			nv_resume(&(nvc->nvc_port[i]));
735 		}
736 
737 		pci_config_teardown(&pci_conf_handle);
738 
739 		return (DDI_SUCCESS);
740 
741 	default:
742 		return (DDI_FAILURE);
743 	}
744 
745 
746 	/*
747 	 * DDI_ATTACH failure path starts here
748 	 */
749 
750 	if (attach_state & ATTACH_PROGRESS_INTR_ADDED) {
751 		nv_rem_intrs(nvc);
752 	}
753 
754 	if (attach_state & ATTACH_PROGRESS_SATA_MODULE) {
755 		/*
756 		 * Remove timers
757 		 */
758 		int port = 0;
759 		nv_port_t *nvp;
760 
761 		for (; port < NV_MAX_PORTS(nvc); port++) {
762 			nvp = &(nvc->nvc_port[port]);
763 			if (nvp->nvp_timeout_id != 0) {
764 				(void) untimeout(nvp->nvp_timeout_id);
765 			}
766 		}
767 	}
768 
769 	if (attach_state & ATTACH_PROGRESS_MUTEX_INIT) {
770 		mutex_destroy(&nvc->nvc_mutex);
771 	}
772 
773 	if (attach_state & ATTACH_PROGRESS_CTL_SETUP) {
774 		nv_uninit_ctl(nvc);
775 	}
776 
777 	if (attach_state & ATTACH_PROGRESS_BARS) {
778 		while (--bar >= 0) {
779 			ddi_regs_map_free(&nvc->nvc_bar_hdl[bar]);
780 		}
781 	}
782 
783 	if (attach_state & ATTACH_PROGRESS_STATEP_ALLOC) {
784 		ddi_soft_state_free(nv_statep, inst);
785 	}
786 
787 	if (attach_state & ATTACH_PROGRESS_CONF_HANDLE) {
788 		pci_config_teardown(&pci_conf_handle);
789 	}
790 
791 	cmn_err(CE_WARN, "nv_sata%d attach failed", inst);
792 
793 	return (DDI_FAILURE);
794 }
795 
796 
797 static int
798 nv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
799 {
800 	int i, port, inst = ddi_get_instance(dip);
801 	nv_ctl_t *nvc;
802 	nv_port_t *nvp;
803 
804 	nvc = ddi_get_soft_state(nv_statep, inst);
805 
806 	switch (cmd) {
807 
808 	case DDI_DETACH:
809 
810 		NVLOG((NVDBG_INIT, nvc, NULL, "nv_detach: DDI_DETACH"));
811 
812 		/*
813 		 * Remove interrupts
814 		 */
815 		nv_rem_intrs(nvc);
816 
817 		/*
818 		 * Remove timers
819 		 */
820 		for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
821 			nvp = &(nvc->nvc_port[port]);
822 			if (nvp->nvp_timeout_id != 0) {
823 				(void) untimeout(nvp->nvp_timeout_id);
824 			}
825 		}
826 
827 		/*
828 		 * Remove maps
829 		 */
830 		for (i = 0; i < 6; i++) {
831 			ddi_regs_map_free(&nvc->nvc_bar_hdl[i]);
832 		}
833 
834 		/*
835 		 * Destroy mutexes
836 		 */
837 		mutex_destroy(&nvc->nvc_mutex);
838 
839 		/*
840 		 * Uninitialize the controller
841 		 */
842 		nv_uninit_ctl(nvc);
843 
844 #ifdef SGPIO_SUPPORT
845 		/*
846 		 * release SGPIO resources
847 		 */
848 		nv_sgp_cleanup(nvc);
849 #endif
850 
851 		/*
852 		 * unregister from the sata module
853 		 */
854 		(void) sata_hba_detach(nvc->nvc_dip, DDI_DETACH);
855 
856 		/*
857 		 * Free soft state
858 		 */
859 		ddi_soft_state_free(nv_statep, inst);
860 
861 		return (DDI_SUCCESS);
862 
863 	case DDI_SUSPEND:
864 
865 		NVLOG((NVDBG_INIT, nvc, NULL, "nv_detach: DDI_SUSPEND"));
866 
867 		for (i = 0; i < NV_MAX_PORTS(nvc); i++) {
868 			nv_suspend(&(nvc->nvc_port[i]));
869 		}
870 
871 		nvc->nvc_state |= NV_CTRL_SUSPEND;
872 
873 		return (DDI_SUCCESS);
874 
875 	default:
876 		return (DDI_FAILURE);
877 	}
878 }
879 
880 
881 /*ARGSUSED*/
882 static int
883 nv_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
884 {
885 	nv_ctl_t *nvc;
886 	int instance;
887 	dev_t dev;
888 
889 	dev = (dev_t)arg;
890 	instance = getminor(dev);
891 
892 	switch (infocmd) {
893 	case DDI_INFO_DEVT2DEVINFO:
894 		nvc = ddi_get_soft_state(nv_statep,  instance);
895 		if (nvc != NULL) {
896 			*result = nvc->nvc_dip;
897 			return (DDI_SUCCESS);
898 		} else {
899 			*result = NULL;
900 			return (DDI_FAILURE);
901 		}
902 	case DDI_INFO_DEVT2INSTANCE:
903 		*(int *)result = instance;
904 		break;
905 	default:
906 		break;
907 	}
908 	return (DDI_SUCCESS);
909 }
910 
911 
912 #ifdef SGPIO_SUPPORT
913 /* ARGSUSED */
914 static int
915 nv_open(dev_t *devp, int flag, int otyp, cred_t *credp)
916 {
917 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, getminor(*devp));
918 
919 	if (nvc == NULL) {
920 		return (ENXIO);
921 	}
922 
923 	return (0);
924 }
925 
926 
927 /* ARGSUSED */
928 static int
929 nv_close(dev_t dev, int flag, int otyp, cred_t *credp)
930 {
931 	return (0);
932 }
933 
934 
935 /* ARGSUSED */
936 static int
937 nv_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
938 {
939 	nv_ctl_t *nvc;
940 	int inst;
941 	int status;
942 	int ctlr, port;
943 	int drive;
944 	uint8_t curr_led;
945 	struct dc_led_ctl led;
946 
947 	inst = getminor(dev);
948 	if (inst == -1) {
949 		return (EBADF);
950 	}
951 
952 	nvc = ddi_get_soft_state(nv_statep, inst);
953 	if (nvc == NULL) {
954 		return (EBADF);
955 	}
956 
957 	if ((nvc->nvc_sgp_cbp == NULL) || (nvc->nvc_sgp_cmn == NULL)) {
958 		return (EIO);
959 	}
960 
961 	switch (cmd) {
962 	case DEVCTL_SET_LED:
963 		status = ddi_copyin((void *)arg, &led,
964 		    sizeof (struct dc_led_ctl), mode);
965 		if (status != 0)
966 			return (EFAULT);
967 
968 		/*
969 		 * Since only the first two controller currently support
970 		 * SGPIO (as per NVIDIA docs), this code will as well.
971 		 * Note that this validate the port value within led_state
972 		 * as well.
973 		 */
974 
975 		ctlr = SGP_DRV_TO_CTLR(led.led_number);
976 		if ((ctlr != 0) && (ctlr != 1))
977 			return (ENXIO);
978 
979 		if ((led.led_state & DCL_STATE_FAST_BLNK) ||
980 		    (led.led_state & DCL_STATE_SLOW_BLNK)) {
981 			return (EINVAL);
982 		}
983 
984 		drive = led.led_number;
985 
986 		if ((led.led_ctl_active == DCL_CNTRL_OFF) ||
987 		    (led.led_state == DCL_STATE_OFF)) {
988 
989 			if (led.led_type == DCL_TYPE_DEVICE_FAIL) {
990 				nv_sgp_error(nvc, drive, TR_ERROR_DISABLE);
991 			} else if (led.led_type == DCL_TYPE_DEVICE_OK2RM) {
992 				nv_sgp_locate(nvc, drive, TR_LOCATE_DISABLE);
993 			} else {
994 				return (ENXIO);
995 			}
996 
997 			port = SGP_DRV_TO_PORT(led.led_number);
998 			nvc->nvc_port[port].nvp_sgp_ioctl_mod |= led.led_type;
999 		}
1000 
1001 		if (led.led_ctl_active == DCL_CNTRL_ON) {
1002 			if (led.led_type == DCL_TYPE_DEVICE_FAIL) {
1003 				nv_sgp_error(nvc, drive, TR_ERROR_ENABLE);
1004 			} else if (led.led_type == DCL_TYPE_DEVICE_OK2RM) {
1005 				nv_sgp_locate(nvc, drive, TR_LOCATE_ENABLE);
1006 			} else {
1007 				return (ENXIO);
1008 			}
1009 
1010 			port = SGP_DRV_TO_PORT(led.led_number);
1011 			nvc->nvc_port[port].nvp_sgp_ioctl_mod |= led.led_type;
1012 		}
1013 
1014 		break;
1015 
1016 	case DEVCTL_GET_LED:
1017 		status = ddi_copyin((void *)arg, &led,
1018 		    sizeof (struct dc_led_ctl), mode);
1019 		if (status != 0)
1020 			return (EFAULT);
1021 
1022 		/*
1023 		 * Since only the first two controller currently support
1024 		 * SGPIO (as per NVIDIA docs), this code will as well.
1025 		 * Note that this validate the port value within led_state
1026 		 * as well.
1027 		 */
1028 
1029 		ctlr = SGP_DRV_TO_CTLR(led.led_number);
1030 		if ((ctlr != 0) && (ctlr != 1))
1031 			return (ENXIO);
1032 
1033 		curr_led = SGPIO0_TR_DRV(nvc->nvc_sgp_cbp->sgpio0_tr,
1034 		    led.led_number);
1035 
1036 		port = SGP_DRV_TO_PORT(led.led_number);
1037 		if (nvc->nvc_port[port].nvp_sgp_ioctl_mod & led.led_type) {
1038 			led.led_ctl_active = DCL_CNTRL_ON;
1039 
1040 			if (led.led_type == DCL_TYPE_DEVICE_FAIL) {
1041 				if (TR_ERROR(curr_led) == TR_ERROR_DISABLE)
1042 					led.led_state = DCL_STATE_OFF;
1043 				else
1044 					led.led_state = DCL_STATE_ON;
1045 			} else if (led.led_type == DCL_TYPE_DEVICE_OK2RM) {
1046 				if (TR_LOCATE(curr_led) == TR_LOCATE_DISABLE)
1047 					led.led_state = DCL_STATE_OFF;
1048 				else
1049 					led.led_state = DCL_STATE_ON;
1050 			} else {
1051 				return (ENXIO);
1052 			}
1053 		} else {
1054 			led.led_ctl_active = DCL_CNTRL_OFF;
1055 			/*
1056 			 * Not really off, but never set and no constant for
1057 			 * tri-state
1058 			 */
1059 			led.led_state = DCL_STATE_OFF;
1060 		}
1061 
1062 		status = ddi_copyout(&led, (void *)arg,
1063 		    sizeof (struct dc_led_ctl), mode);
1064 		if (status != 0)
1065 			return (EFAULT);
1066 
1067 		break;
1068 
1069 	case DEVCTL_NUM_LEDS:
1070 		led.led_number = SGPIO_DRV_CNT_VALUE;
1071 		led.led_ctl_active = 1;
1072 		led.led_type = 3;
1073 
1074 		/*
1075 		 * According to documentation, NVIDIA SGPIO is supposed to
1076 		 * support blinking, but it does not seem to work in practice.
1077 		 */
1078 		led.led_state = DCL_STATE_ON;
1079 
1080 		status = ddi_copyout(&led, (void *)arg,
1081 		    sizeof (struct dc_led_ctl), mode);
1082 		if (status != 0)
1083 			return (EFAULT);
1084 
1085 		break;
1086 
1087 	default:
1088 		return (EINVAL);
1089 	}
1090 
1091 	return (0);
1092 }
1093 #endif	/* SGPIO_SUPPORT */
1094 
1095 
1096 /*
1097  * Called by sata module to probe a port.  Port and device state
1098  * are not changed here... only reported back to the sata module.
1099  *
1100  * If probe confirms a device is present for the first time, it will
1101  * initiate a device reset, then probe will be called again and the
1102  * signature will be check.  If the signature is valid, data structures
1103  * will be initialized.
1104  */
1105 static int
1106 nv_sata_probe(dev_info_t *dip, sata_device_t *sd)
1107 {
1108 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1109 	uint8_t cport = sd->satadev_addr.cport;
1110 	uint8_t pmport = sd->satadev_addr.pmport;
1111 	uint8_t qual = sd->satadev_addr.qual;
1112 	clock_t nv_lbolt = ddi_get_lbolt();
1113 	nv_port_t *nvp;
1114 
1115 	if (cport >= NV_MAX_PORTS(nvc)) {
1116 		sd->satadev_type = SATA_DTYPE_NONE;
1117 		sd->satadev_state = SATA_STATE_UNKNOWN;
1118 
1119 		return (SATA_FAILURE);
1120 	}
1121 
1122 	ASSERT(nvc->nvc_port != NULL);
1123 	nvp = &(nvc->nvc_port[cport]);
1124 	ASSERT(nvp != NULL);
1125 
1126 	NVLOG((NVDBG_PROBE, nvc, nvp,
1127 	    "nv_sata_probe: enter cport: 0x%x, pmport: 0x%x, "
1128 	    "qual: 0x%x", cport, pmport, qual));
1129 
1130 	mutex_enter(&nvp->nvp_mutex);
1131 
1132 	/*
1133 	 * This check seems to be done in the SATA module.
1134 	 * It may not be required here
1135 	 */
1136 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
1137 		nv_cmn_err(CE_WARN, nvc, nvp,
1138 		    "port inactive.  Use cfgadm to activate");
1139 		sd->satadev_type = SATA_DTYPE_UNKNOWN;
1140 		sd->satadev_state = SATA_PSTATE_SHUTDOWN;
1141 		mutex_exit(&nvp->nvp_mutex);
1142 
1143 		return (SATA_FAILURE);
1144 	}
1145 
1146 	if (qual == SATA_ADDR_PMPORT) {
1147 		sd->satadev_type = SATA_DTYPE_NONE;
1148 		sd->satadev_state = SATA_STATE_UNKNOWN;
1149 		mutex_exit(&nvp->nvp_mutex);
1150 		nv_cmn_err(CE_WARN, nvc, nvp,
1151 		    "controller does not support port multiplier");
1152 
1153 		return (SATA_FAILURE);
1154 	}
1155 
1156 	sd->satadev_state = SATA_PSTATE_PWRON;
1157 
1158 	nv_copy_registers(nvp, sd, NULL);
1159 
1160 	/*
1161 	 * determine link status
1162 	 */
1163 	if (nv_check_link(sd->satadev_scr.sstatus) == B_FALSE) {
1164 		uint8_t det;
1165 
1166 		/*
1167 		 * Reset will cause the link to go down for a short period of
1168 		 * time.  If link is lost for less than 2 seconds ignore it
1169 		 * so that the reset can progress.
1170 		 */
1171 		if (nvp->nvp_state & NV_PORT_RESET_PROBE) {
1172 
1173 			if (nvp->nvp_link_lost_time == 0) {
1174 				nvp->nvp_link_lost_time = nv_lbolt;
1175 			}
1176 
1177 			if (TICK_TO_SEC(nv_lbolt -
1178 			    nvp->nvp_link_lost_time) < NV_LINK_LOST_OK) {
1179 				NVLOG((NVDBG_ALWAYS, nvp->nvp_ctlp, nvp,
1180 				    "probe: intermittent link lost while"
1181 				    " resetting"));
1182 				/*
1183 				 * fake status of link so that probe continues
1184 				 */
1185 				SSTATUS_SET_IPM(sd->satadev_scr.sstatus,
1186 				    SSTATUS_IPM_ACTIVE);
1187 				SSTATUS_SET_DET(sd->satadev_scr.sstatus,
1188 				    SSTATUS_DET_DEVPRE_PHYCOM);
1189 				sd->satadev_type = SATA_DTYPE_UNKNOWN;
1190 				mutex_exit(&nvp->nvp_mutex);
1191 
1192 				return (SATA_SUCCESS);
1193 			} else {
1194 				nvp->nvp_state &=
1195 				    ~(NV_PORT_RESET_PROBE|NV_PORT_RESET);
1196 			}
1197 		}
1198 
1199 		/*
1200 		 * no link, so tear down port and abort all active packets
1201 		 */
1202 
1203 		det = (sd->satadev_scr.sstatus & SSTATUS_DET) >>
1204 		    SSTATUS_DET_SHIFT;
1205 
1206 		switch (det) {
1207 		case SSTATUS_DET_NODEV:
1208 		case SSTATUS_DET_PHYOFFLINE:
1209 			sd->satadev_type = SATA_DTYPE_NONE;
1210 			break;
1211 		default:
1212 			sd->satadev_type = SATA_DTYPE_UNKNOWN;
1213 			break;
1214 		}
1215 
1216 		NVLOG((NVDBG_PROBE, nvp->nvp_ctlp, nvp,
1217 		    "probe: link lost invoking nv_abort_active"));
1218 
1219 		(void) nv_abort_active(nvp, NULL, SATA_PKT_TIMEOUT);
1220 		nv_uninit_port(nvp);
1221 
1222 		mutex_exit(&nvp->nvp_mutex);
1223 
1224 		return (SATA_SUCCESS);
1225 	} else {
1226 		nvp->nvp_link_lost_time = 0;
1227 	}
1228 
1229 	/*
1230 	 * A device is present so clear hotremoved flag
1231 	 */
1232 	nvp->nvp_state &= ~NV_PORT_HOTREMOVED;
1233 
1234 #ifdef SGPIO_SUPPORT
1235 	nv_sgp_drive_connect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
1236 	    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
1237 #endif
1238 
1239 	/*
1240 	 * If the signature was acquired previously there is no need to
1241 	 * do it again.
1242 	 */
1243 	if (nvp->nvp_signature != 0) {
1244 		NVLOG((NVDBG_PROBE, nvp->nvp_ctlp, nvp,
1245 		    "probe: signature acquired previously"));
1246 		sd->satadev_type = nvp->nvp_type;
1247 		mutex_exit(&nvp->nvp_mutex);
1248 
1249 		return (SATA_SUCCESS);
1250 	}
1251 
1252 	/*
1253 	 * If NV_PORT_RESET is not set, this is the first time through
1254 	 * so perform reset and return.
1255 	 */
1256 	if ((nvp->nvp_state & NV_PORT_RESET) == 0) {
1257 		NVLOG((NVDBG_PROBE, nvp->nvp_ctlp, nvp,
1258 		    "probe: first reset to get sig"));
1259 		nvp->nvp_state |= NV_PORT_RESET_PROBE;
1260 		nv_reset(nvp);
1261 		sd->satadev_type = nvp->nvp_type = SATA_DTYPE_UNKNOWN;
1262 		nvp->nvp_probe_time = nv_lbolt;
1263 		mutex_exit(&nvp->nvp_mutex);
1264 
1265 		return (SATA_SUCCESS);
1266 	}
1267 
1268 	/*
1269 	 * Reset was done previously.  see if the signature is
1270 	 * available.
1271 	 */
1272 	nv_read_signature(nvp);
1273 	sd->satadev_type = nvp->nvp_type;
1274 
1275 	/*
1276 	 * Some drives may require additional resets to get a
1277 	 * valid signature.  If a drive was not just powered up, the signature
1278 	 * should arrive within half a second of reset.  Therefore if more
1279 	 * than 5 seconds has elapsed while waiting for a signature, reset
1280 	 * again.  These extra resets do not appear to create problems when
1281 	 * the drive is spinning up for more than this reset period.
1282 	 */
1283 	if (nvp->nvp_signature == 0) {
1284 		if (TICK_TO_SEC(nv_lbolt - nvp->nvp_reset_time) > 5) {
1285 			NVLOG((NVDBG_PROBE, nvc, nvp, "additional reset"
1286 			    " during signature acquisition"));
1287 			nv_reset(nvp);
1288 		}
1289 
1290 		mutex_exit(&nvp->nvp_mutex);
1291 
1292 		return (SATA_SUCCESS);
1293 	}
1294 
1295 	NVLOG((NVDBG_PROBE, nvc, nvp, "signature acquired after %d ms",
1296 	    TICK_TO_MSEC(nv_lbolt - nvp->nvp_probe_time)));
1297 
1298 	/*
1299 	 * nv_sata only deals with ATA disks and ATAPI CD/DVDs so far.  If
1300 	 * it is not either of those, then just return.
1301 	 */
1302 	if ((nvp->nvp_type != SATA_DTYPE_ATADISK) &&
1303 	    (nvp->nvp_type != SATA_DTYPE_ATAPICD)) {
1304 		NVLOG((NVDBG_PROBE, nvc, nvp, "Driver currently handles only"
1305 		    " disks/CDs/DVDs.  Signature acquired was %X",
1306 		    nvp->nvp_signature));
1307 		mutex_exit(&nvp->nvp_mutex);
1308 
1309 		return (SATA_SUCCESS);
1310 	}
1311 
1312 	/*
1313 	 * make sure structures are initialized
1314 	 */
1315 	if (nv_init_port(nvp) == NV_SUCCESS) {
1316 		NVLOG((NVDBG_PROBE, nvc, nvp,
1317 		    "device detected and set up at port %d", cport));
1318 		mutex_exit(&nvp->nvp_mutex);
1319 
1320 		return (SATA_SUCCESS);
1321 	} else {
1322 		nv_cmn_err(CE_WARN, nvc, nvp, "failed to set up data "
1323 		    "structures for port %d", cport);
1324 		mutex_exit(&nvp->nvp_mutex);
1325 
1326 		return (SATA_FAILURE);
1327 	}
1328 	/*NOTREACHED*/
1329 }
1330 
1331 
1332 /*
1333  * Called by sata module to start a new command.
1334  */
1335 static int
1336 nv_sata_start(dev_info_t *dip, sata_pkt_t *spkt)
1337 {
1338 	int cport = spkt->satapkt_device.satadev_addr.cport;
1339 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1340 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1341 	int ret;
1342 
1343 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_start: opmode: 0x%x cmd=%x",
1344 	    spkt->satapkt_op_mode, spkt->satapkt_cmd.satacmd_cmd_reg));
1345 
1346 	mutex_enter(&nvp->nvp_mutex);
1347 
1348 	/*
1349 	 * hotremoved is an intermediate state where the link was lost,
1350 	 * but the hotplug event has not yet been processed by the sata
1351 	 * module.  Fail the request.
1352 	 */
1353 	if (nvp->nvp_state & NV_PORT_HOTREMOVED) {
1354 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1355 		spkt->satapkt_device.satadev_state = SATA_STATE_UNKNOWN;
1356 		NVLOG((NVDBG_ERRS, nvc, nvp,
1357 		    "nv_sata_start: NV_PORT_HOTREMOVED"));
1358 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1359 		mutex_exit(&nvp->nvp_mutex);
1360 
1361 		return (SATA_TRAN_PORT_ERROR);
1362 	}
1363 
1364 	if (nvp->nvp_state & NV_PORT_RESET) {
1365 		NVLOG((NVDBG_ERRS, nvc, nvp,
1366 		    "still waiting for reset completion"));
1367 		spkt->satapkt_reason = SATA_PKT_BUSY;
1368 		mutex_exit(&nvp->nvp_mutex);
1369 
1370 		/*
1371 		 * If in panic, timeouts do not occur, so fake one
1372 		 * so that the signature can be acquired to complete
1373 		 * the reset handling.
1374 		 */
1375 		if (ddi_in_panic()) {
1376 			nv_timeout(nvp);
1377 		}
1378 
1379 		return (SATA_TRAN_BUSY);
1380 	}
1381 
1382 	if (nvp->nvp_type == SATA_DTYPE_NONE) {
1383 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1384 		NVLOG((NVDBG_ERRS, nvc, nvp,
1385 		    "nv_sata_start: SATA_DTYPE_NONE"));
1386 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1387 		mutex_exit(&nvp->nvp_mutex);
1388 
1389 		return (SATA_TRAN_PORT_ERROR);
1390 	}
1391 
1392 	if (spkt->satapkt_device.satadev_type == SATA_DTYPE_PMULT) {
1393 		ASSERT(nvp->nvp_type == SATA_DTYPE_PMULT);
1394 		nv_cmn_err(CE_WARN, nvc, nvp,
1395 		    "port multipliers not supported by controller");
1396 		spkt->satapkt_reason = SATA_PKT_CMD_UNSUPPORTED;
1397 		mutex_exit(&nvp->nvp_mutex);
1398 
1399 		return (SATA_TRAN_CMD_UNSUPPORTED);
1400 	}
1401 
1402 	if ((nvp->nvp_state & NV_PORT_INIT) == 0) {
1403 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1404 		NVLOG((NVDBG_ERRS, nvc, nvp,
1405 		    "nv_sata_start: port not yet initialized"));
1406 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1407 		mutex_exit(&nvp->nvp_mutex);
1408 
1409 		return (SATA_TRAN_PORT_ERROR);
1410 	}
1411 
1412 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
1413 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1414 		NVLOG((NVDBG_ERRS, nvc, nvp,
1415 		    "nv_sata_start: NV_PORT_INACTIVE"));
1416 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1417 		mutex_exit(&nvp->nvp_mutex);
1418 
1419 		return (SATA_TRAN_PORT_ERROR);
1420 	}
1421 
1422 	if (nvp->nvp_state & NV_PORT_FAILED) {
1423 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1424 		NVLOG((NVDBG_ERRS, nvc, nvp,
1425 		    "nv_sata_start: NV_PORT_FAILED state"));
1426 		nv_copy_registers(nvp, &spkt->satapkt_device, NULL);
1427 		mutex_exit(&nvp->nvp_mutex);
1428 
1429 		return (SATA_TRAN_PORT_ERROR);
1430 	}
1431 
1432 	/*
1433 	 * after a device reset, and then when sata module restore processing
1434 	 * is complete, the sata module will set sata_clear_dev_reset which
1435 	 * indicates that restore processing has completed and normal
1436 	 * non-restore related commands should be processed.
1437 	 */
1438 	if (spkt->satapkt_cmd.satacmd_flags.sata_clear_dev_reset) {
1439 		nvp->nvp_state &= ~NV_PORT_RESTORE;
1440 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1441 		    "nv_sata_start: clearing NV_PORT_RESTORE"));
1442 	}
1443 
1444 	/*
1445 	 * if the device was recently reset as indicated by NV_PORT_RESTORE,
1446 	 * only allow commands which restore device state.  The sata module
1447 	 * marks such commands with with sata_ignore_dev_reset.
1448 	 *
1449 	 * during coredump, nv_reset is called and but then the restore
1450 	 * doesn't happen.  For now, workaround by ignoring the wait for
1451 	 * restore if the system is panicing.
1452 	 */
1453 	if ((nvp->nvp_state & NV_PORT_RESTORE) &&
1454 	    !(spkt->satapkt_cmd.satacmd_flags.sata_ignore_dev_reset) &&
1455 	    (ddi_in_panic() == 0)) {
1456 		spkt->satapkt_reason = SATA_PKT_BUSY;
1457 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1458 		    "nv_sata_start: waiting for restore "));
1459 		mutex_exit(&nvp->nvp_mutex);
1460 
1461 		return (SATA_TRAN_BUSY);
1462 	}
1463 
1464 	if (nvp->nvp_state & NV_PORT_ABORTING) {
1465 		spkt->satapkt_reason = SATA_PKT_BUSY;
1466 		NVLOG((NVDBG_ERRS, nvc, nvp,
1467 		    "nv_sata_start: NV_PORT_ABORTING"));
1468 		mutex_exit(&nvp->nvp_mutex);
1469 
1470 		return (SATA_TRAN_BUSY);
1471 	}
1472 
1473 	if (spkt->satapkt_op_mode &
1474 	    (SATA_OPMODE_POLLING|SATA_OPMODE_SYNCH)) {
1475 
1476 		ret = nv_start_sync(nvp, spkt);
1477 
1478 		mutex_exit(&nvp->nvp_mutex);
1479 
1480 		return (ret);
1481 	}
1482 
1483 	/*
1484 	 * start command asynchronous command
1485 	 */
1486 	ret = nv_start_async(nvp, spkt);
1487 
1488 	mutex_exit(&nvp->nvp_mutex);
1489 
1490 	return (ret);
1491 }
1492 
1493 
1494 /*
1495  * SATA_OPMODE_POLLING implies the driver is in a
1496  * synchronous mode, and SATA_OPMODE_SYNCH is also set.
1497  * If only SATA_OPMODE_SYNCH is set, the driver can use
1498  * interrupts and sleep wait on a cv.
1499  *
1500  * If SATA_OPMODE_POLLING is set, the driver can't use
1501  * interrupts and must busy wait and simulate the
1502  * interrupts by waiting for BSY to be cleared.
1503  *
1504  * Synchronous mode has to return BUSY if there are
1505  * any other commands already on the drive.
1506  */
1507 static int
1508 nv_start_sync(nv_port_t *nvp, sata_pkt_t *spkt)
1509 {
1510 	nv_ctl_t *nvc = nvp->nvp_ctlp;
1511 	int ret;
1512 
1513 	NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp, "nv_sata_satapkt_sync: entry"));
1514 
1515 	if (nvp->nvp_ncq_run != 0 || nvp->nvp_non_ncq_run != 0) {
1516 		spkt->satapkt_reason = SATA_PKT_BUSY;
1517 		NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp,
1518 		    "nv_sata_satapkt_sync: device is busy, sync cmd rejected"
1519 		    "ncq_run: %d non_ncq_run: %d  spkt: %p",
1520 		    nvp->nvp_ncq_run, nvp->nvp_non_ncq_run,
1521 		    (&(nvp->nvp_slot[0]))->nvslot_spkt));
1522 
1523 		return (SATA_TRAN_BUSY);
1524 	}
1525 
1526 	/*
1527 	 * if SYNC but not POLL, verify that this is not on interrupt thread.
1528 	 */
1529 	if (!(spkt->satapkt_op_mode & SATA_OPMODE_POLLING) &&
1530 	    servicing_interrupt()) {
1531 		spkt->satapkt_reason = SATA_PKT_BUSY;
1532 		NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp,
1533 		    "SYNC mode not allowed during interrupt"));
1534 
1535 		return (SATA_TRAN_BUSY);
1536 
1537 	}
1538 
1539 	/*
1540 	 * disable interrupt generation if in polled mode
1541 	 */
1542 	if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
1543 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
1544 	}
1545 
1546 	if ((ret = nv_start_common(nvp, spkt)) != SATA_TRAN_ACCEPTED) {
1547 		if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
1548 			(*(nvc->nvc_set_intr))(nvp, NV_INTR_ENABLE);
1549 		}
1550 
1551 		return (ret);
1552 	}
1553 
1554 	if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
1555 		mutex_exit(&nvp->nvp_mutex);
1556 		ret = nv_poll_wait(nvp, spkt);
1557 		mutex_enter(&nvp->nvp_mutex);
1558 
1559 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_ENABLE);
1560 
1561 		NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp, "nv_sata_satapkt_sync:"
1562 		    " done % reason %d", ret));
1563 
1564 		return (ret);
1565 	}
1566 
1567 	/*
1568 	 * non-polling synchronous mode handling.  The interrupt will signal
1569 	 * when the IO is completed.
1570 	 */
1571 	cv_wait(&nvp->nvp_poll_cv, &nvp->nvp_mutex);
1572 
1573 	if (spkt->satapkt_reason != SATA_PKT_COMPLETED) {
1574 
1575 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
1576 	}
1577 
1578 	NVLOG((NVDBG_SYNC, nvp->nvp_ctlp, nvp, "nv_sata_satapkt_sync:"
1579 	    " done % reason %d", spkt->satapkt_reason));
1580 
1581 	return (SATA_TRAN_ACCEPTED);
1582 }
1583 
1584 
1585 static int
1586 nv_poll_wait(nv_port_t *nvp, sata_pkt_t *spkt)
1587 {
1588 	int ret;
1589 	nv_ctl_t *nvc = nvp->nvp_ctlp;
1590 #if ! defined(__lock_lint)
1591 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[0]); /* not NCQ aware */
1592 #endif
1593 
1594 	NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: enter"));
1595 
1596 	for (;;) {
1597 
1598 		NV_DELAY_NSEC(400);
1599 
1600 		NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: before nv_wait"));
1601 		if (nv_wait(nvp, 0, SATA_STATUS_BSY,
1602 		    NV_SEC2USEC(spkt->satapkt_time), NV_NOSLEEP) == B_FALSE) {
1603 			mutex_enter(&nvp->nvp_mutex);
1604 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
1605 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
1606 			nv_reset(nvp);
1607 			nv_complete_io(nvp, spkt, 0);
1608 			mutex_exit(&nvp->nvp_mutex);
1609 			NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: "
1610 			    "SATA_STATUS_BSY"));
1611 
1612 			return (SATA_TRAN_ACCEPTED);
1613 		}
1614 
1615 		NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: before nvc_intr"));
1616 
1617 		/*
1618 		 * Simulate interrupt.
1619 		 */
1620 		ret = (*(nvc->nvc_interrupt))((caddr_t)nvc, NULL);
1621 		NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait: after nvc_intr"));
1622 
1623 		if (ret != DDI_INTR_CLAIMED) {
1624 			NVLOG((NVDBG_SYNC, nvc, nvp, "nv_poll_wait:"
1625 			    " unclaimed -- resetting"));
1626 			mutex_enter(&nvp->nvp_mutex);
1627 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
1628 			nv_reset(nvp);
1629 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
1630 			nv_complete_io(nvp, spkt, 0);
1631 			mutex_exit(&nvp->nvp_mutex);
1632 
1633 			return (SATA_TRAN_ACCEPTED);
1634 		}
1635 
1636 #if ! defined(__lock_lint)
1637 		if (nv_slotp->nvslot_flags == NVSLOT_COMPLETE) {
1638 			/*
1639 			 * packet is complete
1640 			 */
1641 			return (SATA_TRAN_ACCEPTED);
1642 		}
1643 #endif
1644 	}
1645 	/*NOTREACHED*/
1646 }
1647 
1648 
1649 /*
1650  * Called by sata module to abort outstanding packets.
1651  */
1652 /*ARGSUSED*/
1653 static int
1654 nv_sata_abort(dev_info_t *dip, sata_pkt_t *spkt, int flag)
1655 {
1656 	int cport = spkt->satapkt_device.satadev_addr.cport;
1657 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1658 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1659 	int c_a, ret;
1660 
1661 	ASSERT(cport < NV_MAX_PORTS(nvc));
1662 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_abort %d %p", flag, spkt));
1663 
1664 	mutex_enter(&nvp->nvp_mutex);
1665 
1666 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
1667 		mutex_exit(&nvp->nvp_mutex);
1668 		nv_cmn_err(CE_WARN, nvc, nvp,
1669 		    "abort request failed: port inactive");
1670 
1671 		return (SATA_FAILURE);
1672 	}
1673 
1674 	/*
1675 	 * spkt == NULL then abort all commands
1676 	 */
1677 	c_a = nv_abort_active(nvp, spkt, SATA_PKT_ABORTED);
1678 
1679 	if (c_a) {
1680 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1681 		    "packets aborted running=%d", c_a));
1682 		ret = SATA_SUCCESS;
1683 	} else {
1684 		if (spkt == NULL) {
1685 			NVLOG((NVDBG_ENTRY, nvc, nvp, "no spkts to abort"));
1686 		} else {
1687 			NVLOG((NVDBG_ENTRY, nvc, nvp,
1688 			    "can't find spkt to abort"));
1689 		}
1690 		ret = SATA_FAILURE;
1691 	}
1692 
1693 	mutex_exit(&nvp->nvp_mutex);
1694 
1695 	return (ret);
1696 }
1697 
1698 
1699 /*
1700  * if spkt == NULL abort all pkts running, otherwise
1701  * abort the requested packet.  must be called with nv_mutex
1702  * held and returns with it held.  Not NCQ aware.
1703  */
1704 static int
1705 nv_abort_active(nv_port_t *nvp, sata_pkt_t *spkt, int abort_reason)
1706 {
1707 	int aborted = 0, i, reset_once = B_FALSE;
1708 	struct nv_slot *nv_slotp;
1709 	sata_pkt_t *spkt_slot;
1710 
1711 	ASSERT(MUTEX_HELD(&nvp->nvp_mutex));
1712 
1713 	/*
1714 	 * return if the port is not configured
1715 	 */
1716 	if (nvp->nvp_slot == NULL) {
1717 		NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp,
1718 		    "nv_abort_active: not configured so returning"));
1719 
1720 		return (0);
1721 	}
1722 
1723 	NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp, "nv_abort_active"));
1724 
1725 	nvp->nvp_state |= NV_PORT_ABORTING;
1726 
1727 	for (i = 0; i < nvp->nvp_queue_depth; i++) {
1728 
1729 		nv_slotp = &(nvp->nvp_slot[i]);
1730 		spkt_slot = nv_slotp->nvslot_spkt;
1731 
1732 		/*
1733 		 * skip if not active command in slot
1734 		 */
1735 		if (spkt_slot == NULL) {
1736 			continue;
1737 		}
1738 
1739 		/*
1740 		 * if a specific packet was requested, skip if
1741 		 * this is not a match
1742 		 */
1743 		if ((spkt != NULL) && (spkt != spkt_slot)) {
1744 			continue;
1745 		}
1746 
1747 		/*
1748 		 * stop the hardware.  This could need reworking
1749 		 * when NCQ is enabled in the driver.
1750 		 */
1751 		if (reset_once == B_FALSE) {
1752 			ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
1753 
1754 			/*
1755 			 * stop DMA engine
1756 			 */
1757 			nv_put8(bmhdl, nvp->nvp_bmicx,  0);
1758 
1759 			nv_reset(nvp);
1760 			reset_once = B_TRUE;
1761 		}
1762 
1763 		spkt_slot->satapkt_reason = abort_reason;
1764 		nv_complete_io(nvp, spkt_slot, i);
1765 		aborted++;
1766 	}
1767 
1768 	nvp->nvp_state &= ~NV_PORT_ABORTING;
1769 
1770 	return (aborted);
1771 }
1772 
1773 
1774 /*
1775  * Called by sata module to reset a port, device, or the controller.
1776  */
1777 static int
1778 nv_sata_reset(dev_info_t *dip, sata_device_t *sd)
1779 {
1780 	int cport = sd->satadev_addr.cport;
1781 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1782 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1783 	int ret = SATA_SUCCESS;
1784 
1785 	ASSERT(cport < NV_MAX_PORTS(nvc));
1786 
1787 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_reset"));
1788 
1789 	mutex_enter(&nvp->nvp_mutex);
1790 
1791 	switch (sd->satadev_addr.qual) {
1792 
1793 	case SATA_ADDR_CPORT:
1794 		/*FALLTHROUGH*/
1795 	case SATA_ADDR_DCPORT:
1796 		nv_reset(nvp);
1797 		(void) nv_abort_active(nvp, NULL, SATA_PKT_RESET);
1798 
1799 		break;
1800 	case SATA_ADDR_CNTRL:
1801 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1802 		    "nv_sata_reset: constroller reset not supported"));
1803 
1804 		break;
1805 	case SATA_ADDR_PMPORT:
1806 	case SATA_ADDR_DPMPORT:
1807 		NVLOG((NVDBG_ENTRY, nvc, nvp,
1808 		    "nv_sata_reset: port multipliers not supported"));
1809 		/*FALLTHROUGH*/
1810 	default:
1811 		/*
1812 		 * unsupported case
1813 		 */
1814 		ret = SATA_FAILURE;
1815 		break;
1816 	}
1817 
1818 	if (ret == SATA_SUCCESS) {
1819 		/*
1820 		 * If the port is inactive, do a quiet reset and don't attempt
1821 		 * to wait for reset completion or do any post reset processing
1822 		 */
1823 		if (nvp->nvp_state & NV_PORT_INACTIVE) {
1824 			nvp->nvp_state &= ~NV_PORT_RESET;
1825 			nvp->nvp_reset_time = 0;
1826 		}
1827 
1828 		/*
1829 		 * clear the port failed flag
1830 		 */
1831 		nvp->nvp_state &= ~NV_PORT_FAILED;
1832 	}
1833 
1834 	mutex_exit(&nvp->nvp_mutex);
1835 
1836 	return (ret);
1837 }
1838 
1839 
1840 /*
1841  * Sata entry point to handle port activation.  cfgadm -c connect
1842  */
1843 static int
1844 nv_sata_activate(dev_info_t *dip, sata_device_t *sd)
1845 {
1846 	int cport = sd->satadev_addr.cport;
1847 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1848 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1849 
1850 	ASSERT(cport < NV_MAX_PORTS(nvc));
1851 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_activate"));
1852 
1853 	mutex_enter(&nvp->nvp_mutex);
1854 
1855 	sd->satadev_state = SATA_STATE_READY;
1856 
1857 	nv_copy_registers(nvp, sd, NULL);
1858 
1859 	(*(nvc->nvc_set_intr))(nvp, NV_INTR_ENABLE);
1860 
1861 	nvp->nvp_state = 0;
1862 
1863 	mutex_exit(&nvp->nvp_mutex);
1864 
1865 	return (SATA_SUCCESS);
1866 }
1867 
1868 
1869 /*
1870  * Sata entry point to handle port deactivation.  cfgadm -c disconnect
1871  */
1872 static int
1873 nv_sata_deactivate(dev_info_t *dip, sata_device_t *sd)
1874 {
1875 	int cport = sd->satadev_addr.cport;
1876 	nv_ctl_t *nvc = ddi_get_soft_state(nv_statep, ddi_get_instance(dip));
1877 	nv_port_t *nvp = &(nvc->nvc_port[cport]);
1878 
1879 	ASSERT(cport < NV_MAX_PORTS(nvc));
1880 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_sata_deactivate"));
1881 
1882 	mutex_enter(&nvp->nvp_mutex);
1883 
1884 	(void) nv_abort_active(nvp, NULL, SATA_PKT_RESET);
1885 
1886 	/*
1887 	 * mark the device as inaccessible
1888 	 */
1889 	nvp->nvp_state &= ~NV_PORT_INACTIVE;
1890 
1891 	/*
1892 	 * disable the interrupts on port
1893 	 */
1894 	(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
1895 
1896 	nv_uninit_port(nvp);
1897 
1898 	sd->satadev_state = SATA_PSTATE_SHUTDOWN;
1899 	nv_copy_registers(nvp, sd, NULL);
1900 
1901 	mutex_exit(&nvp->nvp_mutex);
1902 
1903 	return (SATA_SUCCESS);
1904 }
1905 
1906 
1907 /*
1908  * find an empty slot in the driver's queue, increment counters,
1909  * and then invoke the appropriate PIO or DMA start routine.
1910  */
1911 static int
1912 nv_start_common(nv_port_t *nvp, sata_pkt_t *spkt)
1913 {
1914 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
1915 	int on_bit = 0x01, slot, sactive, ret, ncq = 0;
1916 	uint8_t cmd = spkt->satapkt_cmd.satacmd_cmd_reg;
1917 	int direction = sata_cmdp->satacmd_flags.sata_data_direction;
1918 	nv_ctl_t *nvc = nvp->nvp_ctlp;
1919 	nv_slot_t *nv_slotp;
1920 	boolean_t dma_cmd;
1921 
1922 	NVLOG((NVDBG_DELIVER, nvc, nvp, "nv_start_common  entered: cmd: 0x%x",
1923 	    sata_cmdp->satacmd_cmd_reg));
1924 
1925 	if ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
1926 	    (cmd == SATAC_READ_FPDMA_QUEUED)) {
1927 		nvp->nvp_ncq_run++;
1928 		/*
1929 		 * search for an empty NCQ slot.  by the time, it's already
1930 		 * been determined by the caller that there is room on the
1931 		 * queue.
1932 		 */
1933 		for (slot = 0; slot < nvp->nvp_queue_depth; slot++,
1934 		    on_bit <<= 1) {
1935 			if ((nvp->nvp_sactive_cache & on_bit) == 0) {
1936 				break;
1937 			}
1938 		}
1939 
1940 		/*
1941 		 * the first empty slot found, should not exceed the queue
1942 		 * depth of the drive.  if it does it's an error.
1943 		 */
1944 		ASSERT(slot != nvp->nvp_queue_depth);
1945 
1946 		sactive = nv_get32(nvc->nvc_bar_hdl[5],
1947 		    nvp->nvp_sactive);
1948 		ASSERT((sactive & on_bit) == 0);
1949 		nv_put32(nvc->nvc_bar_hdl[5], nvp->nvp_sactive, on_bit);
1950 		NVLOG((NVDBG_INIT, nvc, nvp, "setting SACTIVE onbit: %X",
1951 		    on_bit));
1952 		nvp->nvp_sactive_cache |= on_bit;
1953 
1954 		ncq = NVSLOT_NCQ;
1955 
1956 	} else {
1957 		nvp->nvp_non_ncq_run++;
1958 		slot = 0;
1959 	}
1960 
1961 	nv_slotp = (nv_slot_t *)&nvp->nvp_slot[slot];
1962 
1963 	ASSERT(nv_slotp->nvslot_spkt == NULL);
1964 
1965 	nv_slotp->nvslot_spkt = spkt;
1966 	nv_slotp->nvslot_flags = ncq;
1967 
1968 	/*
1969 	 * the sata module doesn't indicate which commands utilize the
1970 	 * DMA engine, so find out using this switch table.
1971 	 */
1972 	switch (spkt->satapkt_cmd.satacmd_cmd_reg) {
1973 	case SATAC_READ_DMA_EXT:
1974 	case SATAC_WRITE_DMA_EXT:
1975 	case SATAC_WRITE_DMA:
1976 	case SATAC_READ_DMA:
1977 	case SATAC_READ_DMA_QUEUED:
1978 	case SATAC_READ_DMA_QUEUED_EXT:
1979 	case SATAC_WRITE_DMA_QUEUED:
1980 	case SATAC_WRITE_DMA_QUEUED_EXT:
1981 	case SATAC_READ_FPDMA_QUEUED:
1982 	case SATAC_WRITE_FPDMA_QUEUED:
1983 		dma_cmd = B_TRUE;
1984 		break;
1985 	default:
1986 		dma_cmd = B_FALSE;
1987 	}
1988 
1989 	if (sata_cmdp->satacmd_num_dma_cookies != 0 && dma_cmd == B_TRUE) {
1990 		NVLOG((NVDBG_DELIVER, nvc,  nvp, "DMA command"));
1991 		nv_slotp->nvslot_start = nv_start_dma;
1992 		nv_slotp->nvslot_intr = nv_intr_dma;
1993 	} else if (spkt->satapkt_cmd.satacmd_cmd_reg == SATAC_PACKET) {
1994 		NVLOG((NVDBG_DELIVER, nvc,  nvp, "packet command"));
1995 		nv_slotp->nvslot_start = nv_start_pkt_pio;
1996 		nv_slotp->nvslot_intr = nv_intr_pkt_pio;
1997 		if ((direction == SATA_DIR_READ) ||
1998 		    (direction == SATA_DIR_WRITE)) {
1999 			nv_slotp->nvslot_byte_count =
2000 			    spkt->satapkt_cmd.satacmd_bp->b_bcount;
2001 			nv_slotp->nvslot_v_addr =
2002 			    spkt->satapkt_cmd.satacmd_bp->b_un.b_addr;
2003 			/*
2004 			 * Freeing DMA resources allocated by the framework
2005 			 * now to avoid buffer overwrite (dma sync) problems
2006 			 * when the buffer is released at command completion.
2007 			 * Primarily an issue on systems with more than
2008 			 * 4GB of memory.
2009 			 */
2010 			sata_free_dma_resources(spkt);
2011 		}
2012 	} else if (direction == SATA_DIR_NODATA_XFER) {
2013 		NVLOG((NVDBG_DELIVER, nvc, nvp, "non-data command"));
2014 		nv_slotp->nvslot_start = nv_start_nodata;
2015 		nv_slotp->nvslot_intr = nv_intr_nodata;
2016 	} else if (direction == SATA_DIR_READ) {
2017 		NVLOG((NVDBG_DELIVER, nvc, nvp, "pio in command"));
2018 		nv_slotp->nvslot_start = nv_start_pio_in;
2019 		nv_slotp->nvslot_intr = nv_intr_pio_in;
2020 		nv_slotp->nvslot_byte_count =
2021 		    spkt->satapkt_cmd.satacmd_bp->b_bcount;
2022 		nv_slotp->nvslot_v_addr =
2023 		    spkt->satapkt_cmd.satacmd_bp->b_un.b_addr;
2024 		/*
2025 		 * Freeing DMA resources allocated by the framework now to
2026 		 * avoid buffer overwrite (dma sync) problems when the buffer
2027 		 * is released at command completion.  This is not an issue
2028 		 * for write because write does not update the buffer.
2029 		 * Primarily an issue on systems with more than 4GB of memory.
2030 		 */
2031 		sata_free_dma_resources(spkt);
2032 	} else if (direction == SATA_DIR_WRITE) {
2033 		NVLOG((NVDBG_DELIVER, nvc, nvp, "pio out command"));
2034 		nv_slotp->nvslot_start = nv_start_pio_out;
2035 		nv_slotp->nvslot_intr = nv_intr_pio_out;
2036 		nv_slotp->nvslot_byte_count =
2037 		    spkt->satapkt_cmd.satacmd_bp->b_bcount;
2038 		nv_slotp->nvslot_v_addr =
2039 		    spkt->satapkt_cmd.satacmd_bp->b_un.b_addr;
2040 	} else {
2041 		nv_cmn_err(CE_WARN, nvc, nvp, "malformed command: direction"
2042 		    " %d cookies %d cmd %x",
2043 		    sata_cmdp->satacmd_flags.sata_data_direction,
2044 		    sata_cmdp->satacmd_num_dma_cookies,  cmd);
2045 		spkt->satapkt_reason = SATA_PKT_CMD_UNSUPPORTED;
2046 		ret = SATA_TRAN_CMD_UNSUPPORTED;
2047 
2048 		goto fail;
2049 	}
2050 
2051 	if ((ret = (*nv_slotp->nvslot_start)(nvp, slot)) ==
2052 	    SATA_TRAN_ACCEPTED) {
2053 #ifdef SGPIO_SUPPORT
2054 		nv_sgp_drive_active(nvp->nvp_ctlp,
2055 		    (nvp->nvp_ctlp->nvc_ctlr_num * 2) + nvp->nvp_port_num);
2056 #endif
2057 		nv_slotp->nvslot_stime = ddi_get_lbolt();
2058 
2059 		/*
2060 		 * start timer if it's not already running and this packet
2061 		 * is not requesting polled mode.
2062 		 */
2063 		if ((nvp->nvp_timeout_id == 0) &&
2064 		    ((spkt->satapkt_op_mode & SATA_OPMODE_POLLING) == 0)) {
2065 			nvp->nvp_timeout_id = timeout(nv_timeout, (void *)nvp,
2066 			    drv_usectohz(NV_ONE_SEC));
2067 		}
2068 
2069 		return (SATA_TRAN_ACCEPTED);
2070 	}
2071 
2072 	fail:
2073 
2074 	spkt->satapkt_reason = SATA_TRAN_PORT_ERROR;
2075 
2076 	if (ncq == NVSLOT_NCQ) {
2077 		nvp->nvp_ncq_run--;
2078 		nvp->nvp_sactive_cache &= ~on_bit;
2079 	} else {
2080 		nvp->nvp_non_ncq_run--;
2081 	}
2082 	nv_slotp->nvslot_spkt = NULL;
2083 	nv_slotp->nvslot_flags = 0;
2084 
2085 	return (ret);
2086 }
2087 
2088 
2089 /*
2090  * Check if the signature is ready and if non-zero translate
2091  * it into a solaris sata defined type.
2092  */
2093 static void
2094 nv_read_signature(nv_port_t *nvp)
2095 {
2096 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
2097 
2098 	nvp->nvp_signature = nv_get8(cmdhdl, nvp->nvp_count);
2099 	nvp->nvp_signature |= (nv_get8(cmdhdl, nvp->nvp_sect) << 8);
2100 	nvp->nvp_signature |= (nv_get8(cmdhdl, nvp->nvp_lcyl) << 16);
2101 	nvp->nvp_signature |= (nv_get8(cmdhdl, nvp->nvp_hcyl) << 24);
2102 
2103 	switch (nvp->nvp_signature) {
2104 
2105 	case NV_SIG_DISK:
2106 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp, "drive is a disk"));
2107 		nvp->nvp_type = SATA_DTYPE_ATADISK;
2108 		break;
2109 	case NV_SIG_ATAPI:
2110 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2111 		    "drive is an optical device"));
2112 		nvp->nvp_type = SATA_DTYPE_ATAPICD;
2113 		break;
2114 	case NV_SIG_PM:
2115 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2116 		    "device is a port multiplier"));
2117 		nvp->nvp_type = SATA_DTYPE_PMULT;
2118 		break;
2119 	case NV_SIG_NOTREADY:
2120 		NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2121 		    "signature not ready"));
2122 		nvp->nvp_type = SATA_DTYPE_UNKNOWN;
2123 		break;
2124 	default:
2125 		nv_cmn_err(CE_WARN, nvp->nvp_ctlp, nvp, "signature %X not"
2126 		    " recognized", nvp->nvp_signature);
2127 		nvp->nvp_type = SATA_DTYPE_UNKNOWN;
2128 		break;
2129 	}
2130 
2131 	if (nvp->nvp_signature) {
2132 		nvp->nvp_state &= ~(NV_PORT_RESET_PROBE|NV_PORT_RESET);
2133 	}
2134 }
2135 
2136 
2137 /*
2138  * Reset the port
2139  */
2140 static void
2141 nv_reset(nv_port_t *nvp)
2142 {
2143 	ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
2144 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
2145 	nv_ctl_t *nvc = nvp->nvp_ctlp;
2146 	uint32_t sctrl;
2147 
2148 	NVLOG((NVDBG_ENTRY, nvc, nvp, "nv_reset()"));
2149 
2150 	ASSERT(mutex_owned(&nvp->nvp_mutex));
2151 
2152 	/*
2153 	 * clear signature registers
2154 	 */
2155 	nv_put8(cmdhdl, nvp->nvp_sect, 0);
2156 	nv_put8(cmdhdl, nvp->nvp_lcyl, 0);
2157 	nv_put8(cmdhdl, nvp->nvp_hcyl, 0);
2158 	nv_put8(cmdhdl, nvp->nvp_count, 0);
2159 
2160 	nvp->nvp_signature = 0;
2161 	nvp->nvp_type = 0;
2162 	nvp->nvp_state |= NV_PORT_RESET;
2163 	nvp->nvp_reset_time = ddi_get_lbolt();
2164 	nvp->nvp_link_lost_time = 0;
2165 
2166 	/*
2167 	 * assert reset in PHY by writing a 1 to bit 0 scontrol
2168 	 */
2169 	sctrl = nv_get32(bar5_hdl, nvp->nvp_sctrl);
2170 
2171 	nv_put32(bar5_hdl, nvp->nvp_sctrl, sctrl | SCONTROL_DET_COMRESET);
2172 
2173 	/*
2174 	 * wait 1ms
2175 	 */
2176 	drv_usecwait(1000);
2177 
2178 	/*
2179 	 * de-assert reset in PHY
2180 	 */
2181 	nv_put32(bar5_hdl, nvp->nvp_sctrl, sctrl);
2182 
2183 	/*
2184 	 * make sure timer is running
2185 	 */
2186 	if (nvp->nvp_timeout_id == 0) {
2187 		nvp->nvp_timeout_id = timeout(nv_timeout, (void *)nvp,
2188 		    drv_usectohz(NV_ONE_SEC));
2189 	}
2190 }
2191 
2192 
2193 /*
2194  * Initialize register handling specific to mcp51/mcp55
2195  */
2196 /* ARGSUSED */
2197 static void
2198 mcp5x_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2199 {
2200 	nv_port_t *nvp;
2201 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
2202 	uint8_t off, port;
2203 
2204 	nvc->nvc_mcp5x_ctl = (uint32_t *)(bar5 + MCP5X_CTL);
2205 	nvc->nvc_mcp5x_ncq = (uint32_t *)(bar5 + MCP5X_NCQ);
2206 
2207 	for (port = 0, off = 0; port < NV_MAX_PORTS(nvc); port++, off += 2) {
2208 		nvp = &(nvc->nvc_port[port]);
2209 		nvp->nvp_mcp5x_int_status =
2210 		    (uint16_t *)(bar5 + MCP5X_INT_STATUS + off);
2211 		nvp->nvp_mcp5x_int_ctl =
2212 		    (uint16_t *)(bar5 + MCP5X_INT_CTL + off);
2213 
2214 		/*
2215 		 * clear any previous interrupts asserted
2216 		 */
2217 		nv_put16(nvc->nvc_bar_hdl[5], nvp->nvp_mcp5x_int_status,
2218 		    MCP5X_INT_CLEAR);
2219 
2220 		/*
2221 		 * These are the interrupts to accept for now.  The spec
2222 		 * says these are enable bits, but nvidia has indicated
2223 		 * these are masking bits.  Even though they may be masked
2224 		 * out to prevent asserting the main interrupt, they can
2225 		 * still be asserted while reading the interrupt status
2226 		 * register, so that needs to be considered in the interrupt
2227 		 * handler.
2228 		 */
2229 		nv_put16(nvc->nvc_bar_hdl[5], nvp->nvp_mcp5x_int_ctl,
2230 		    ~(MCP5X_INT_IGNORE));
2231 	}
2232 
2233 	/*
2234 	 * Allow the driver to program the BM on the first command instead
2235 	 * of waiting for an interrupt.
2236 	 */
2237 #ifdef NCQ
2238 	flags = MCP_SATA_AE_NCQ_PDEV_FIRST_CMD | MCP_SATA_AE_NCQ_SDEV_FIRST_CMD;
2239 	nv_put32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ncq, flags);
2240 	flags = MCP_SATA_AE_CTL_PRI_SWNCQ | MCP_SATA_AE_CTL_SEC_SWNCQ;
2241 	nv_put32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ctl, flags);
2242 #endif
2243 
2244 	/*
2245 	 * mcp55 rev A03 and above supports 40-bit physical addressing.
2246 	 * Enable DMA to take advantage of that.
2247 	 *
2248 	 */
2249 	if (nvc->nvc_revid >= 0xa3) {
2250 		if (nv_sata_40bit_dma == B_TRUE) {
2251 			uint32_t reg32;
2252 			NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2253 			    "rev id is %X and"
2254 			    " is capable of 40-bit DMA addressing",
2255 			    nvc->nvc_revid));
2256 			nvc->dma_40bit = B_TRUE;
2257 			reg32 = pci_config_get32(pci_conf_handle,
2258 			    NV_SATA_CFG_20);
2259 			pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
2260 			    reg32 |NV_40BIT_PRD);
2261 		} else {
2262 			NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2263 			    "40-bit DMA disabled by nv_sata_40bit_dma"));
2264 		}
2265 	} else {
2266 		nv_cmn_err(CE_NOTE, nvp->nvp_ctlp, nvp, "rev id is %X and is "
2267 		    "not capable of 40-bit DMA addressing", nvc->nvc_revid);
2268 	}
2269 }
2270 
2271 
2272 /*
2273  * Initialize register handling specific to ck804
2274  */
2275 static void
2276 ck804_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2277 {
2278 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
2279 	uint32_t reg32;
2280 	uint16_t reg16;
2281 	nv_port_t *nvp;
2282 	int j;
2283 
2284 	/*
2285 	 * delay hotplug interrupts until PHYRDY.
2286 	 */
2287 	reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_42);
2288 	pci_config_put32(pci_conf_handle, NV_SATA_CFG_42,
2289 	    reg32 | CK804_CFG_DELAY_HOTPLUG_INTR);
2290 
2291 	/*
2292 	 * enable hot plug interrupts for channel x and y
2293 	 */
2294 	reg16 = nv_get16(nvc->nvc_bar_hdl[5],
2295 	    (uint16_t *)(bar5 + NV_ADMACTL_X));
2296 	nv_put16(nvc->nvc_bar_hdl[5], (uint16_t *)(bar5 + NV_ADMACTL_X),
2297 	    NV_HIRQ_EN | reg16);
2298 
2299 
2300 	reg16 = nv_get16(nvc->nvc_bar_hdl[5],
2301 	    (uint16_t *)(bar5 + NV_ADMACTL_Y));
2302 	nv_put16(nvc->nvc_bar_hdl[5], (uint16_t *)(bar5 + NV_ADMACTL_Y),
2303 	    NV_HIRQ_EN | reg16);
2304 
2305 	nvc->nvc_ck804_int_status = (uint8_t *)(bar5 + CK804_SATA_INT_STATUS);
2306 
2307 	/*
2308 	 * clear any existing interrupt pending then enable
2309 	 */
2310 	for (j = 0; j < NV_MAX_PORTS(nvc); j++) {
2311 		nvp = &(nvc->nvc_port[j]);
2312 		mutex_enter(&nvp->nvp_mutex);
2313 		(*(nvp->nvp_ctlp->nvc_set_intr))(nvp,
2314 		    NV_INTR_CLEAR_ALL|NV_INTR_ENABLE);
2315 		mutex_exit(&nvp->nvp_mutex);
2316 	}
2317 }
2318 
2319 
2320 /*
2321  * Initialize the controller and set up driver data structures.
2322  * determine if ck804 or mcp5x class.
2323  */
2324 static int
2325 nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2326 {
2327 	struct sata_hba_tran stran;
2328 	nv_port_t *nvp;
2329 	int j, ck804;
2330 	uchar_t *cmd_addr, *ctl_addr, *bm_addr;
2331 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2332 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
2333 	uint32_t reg32;
2334 	uint8_t reg8, reg8_save;
2335 
2336 	NVLOG((NVDBG_INIT, nvc, NULL, "nv_init_ctl entered"));
2337 
2338 	ck804 = B_TRUE;
2339 #ifdef SGPIO_SUPPORT
2340 	nvc->nvc_mcp5x_flag = B_FALSE;
2341 #endif
2342 
2343 	/*
2344 	 * Need to set bit 2 to 1 at config offset 0x50
2345 	 * to enable access to the bar5 registers.
2346 	 */
2347 	reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_20);
2348 	pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
2349 	    reg32 | NV_BAR5_SPACE_EN);
2350 
2351 	/*
2352 	 * Determine if this is ck804 or mcp5x.  ck804 will map in the
2353 	 * task file registers into bar5 while mcp5x won't.  The offset of
2354 	 * the task file registers in mcp5x's space is unused, so it will
2355 	 * return zero.  So check one of the task file registers to see if it is
2356 	 * writable and reads back what was written.  If it's mcp5x it will
2357 	 * return back 0xff whereas ck804 will return the value written.
2358 	 */
2359 	reg8_save = nv_get8(bar5_hdl,
2360 	    (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X));
2361 
2362 
2363 	for (j = 1; j < 3; j++) {
2364 
2365 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X), j);
2366 		reg8 = nv_get8(bar5_hdl,
2367 		    (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X));
2368 
2369 		if (reg8 != j) {
2370 			ck804 = B_FALSE;
2371 			nvc->nvc_mcp5x_flag = B_TRUE;
2372 			break;
2373 		}
2374 	}
2375 
2376 	nv_put8(bar5_hdl, (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X), reg8_save);
2377 
2378 	if (ck804 == B_TRUE) {
2379 		NVLOG((NVDBG_INIT, nvc, NULL, "controller is CK804"));
2380 		nvc->nvc_interrupt = ck804_intr;
2381 		nvc->nvc_reg_init = ck804_reg_init;
2382 		nvc->nvc_set_intr = ck804_set_intr;
2383 	} else {
2384 		NVLOG((NVDBG_INIT, nvc, NULL, "controller is MCP51/MCP55"));
2385 		nvc->nvc_interrupt = mcp5x_intr;
2386 		nvc->nvc_reg_init = mcp5x_reg_init;
2387 		nvc->nvc_set_intr = mcp5x_set_intr;
2388 	}
2389 
2390 
2391 	stran.sata_tran_hba_rev = SATA_TRAN_HBA_REV_2;
2392 	stran.sata_tran_hba_dip = nvc->nvc_dip;
2393 	if (nvc->dma_40bit == B_TRUE)
2394 		stran.sata_tran_hba_dma_attr = &buffer_dma_40bit_attr;
2395 	else
2396 		stran.sata_tran_hba_dma_attr = &buffer_dma_attr;
2397 	stran.sata_tran_hba_num_cports = NV_NUM_CPORTS;
2398 	stran.sata_tran_hba_features_support =
2399 	    SATA_CTLF_HOTPLUG | SATA_CTLF_ASN | SATA_CTLF_ATAPI;
2400 	stran.sata_tran_hba_qdepth = NV_QUEUE_SLOTS;
2401 	stran.sata_tran_probe_port = nv_sata_probe;
2402 	stran.sata_tran_start = nv_sata_start;
2403 	stran.sata_tran_abort = nv_sata_abort;
2404 	stran.sata_tran_reset_dport = nv_sata_reset;
2405 	stran.sata_tran_selftest = NULL;
2406 	stran.sata_tran_hotplug_ops = &nv_hotplug_ops;
2407 	stran.sata_tran_pwrmgt_ops = NULL;
2408 	stran.sata_tran_ioctl = NULL;
2409 	nvc->nvc_sata_hba_tran = stran;
2410 
2411 	nvc->nvc_port = kmem_zalloc(sizeof (nv_port_t) * NV_MAX_PORTS(nvc),
2412 	    KM_SLEEP);
2413 
2414 	/*
2415 	 * initialize registers common to all chipsets
2416 	 */
2417 	nv_common_reg_init(nvc);
2418 
2419 	for (j = 0; j < NV_MAX_PORTS(nvc); j++) {
2420 		nvp = &(nvc->nvc_port[j]);
2421 
2422 		cmd_addr = nvp->nvp_cmd_addr;
2423 		ctl_addr = nvp->nvp_ctl_addr;
2424 		bm_addr = nvp->nvp_bm_addr;
2425 
2426 		mutex_init(&nvp->nvp_mutex, NULL, MUTEX_DRIVER,
2427 		    DDI_INTR_PRI(nvc->nvc_intr_pri));
2428 
2429 		cv_init(&nvp->nvp_poll_cv, NULL, CV_DRIVER, NULL);
2430 
2431 		nvp->nvp_data	= cmd_addr + NV_DATA;
2432 		nvp->nvp_error	= cmd_addr + NV_ERROR;
2433 		nvp->nvp_feature = cmd_addr + NV_FEATURE;
2434 		nvp->nvp_count	= cmd_addr + NV_COUNT;
2435 		nvp->nvp_sect	= cmd_addr + NV_SECT;
2436 		nvp->nvp_lcyl	= cmd_addr + NV_LCYL;
2437 		nvp->nvp_hcyl	= cmd_addr + NV_HCYL;
2438 		nvp->nvp_drvhd	= cmd_addr + NV_DRVHD;
2439 		nvp->nvp_status	= cmd_addr + NV_STATUS;
2440 		nvp->nvp_cmd	= cmd_addr + NV_CMD;
2441 		nvp->nvp_altstatus = ctl_addr + NV_ALTSTATUS;
2442 		nvp->nvp_devctl	= ctl_addr + NV_DEVCTL;
2443 
2444 		nvp->nvp_bmicx	= bm_addr + BMICX_REG;
2445 		nvp->nvp_bmisx	= bm_addr + BMISX_REG;
2446 		nvp->nvp_bmidtpx = (uint32_t *)(bm_addr + BMIDTPX_REG);
2447 
2448 		nvp->nvp_state = 0;
2449 	}
2450 
2451 	/*
2452 	 * initialize register by calling chip specific reg initialization
2453 	 */
2454 	(*(nvc->nvc_reg_init))(nvc, pci_conf_handle);
2455 
2456 	return (NV_SUCCESS);
2457 }
2458 
2459 
2460 /*
2461  * Initialize data structures with enough slots to handle queuing, if
2462  * enabled.  NV_QUEUE_SLOTS will be set to 1 or 32, depending on whether
2463  * NCQ support is built into the driver and enabled.  It might have been
2464  * better to derive the true size from the drive itself, but the sata
2465  * module only sends down that information on the first NCQ command,
2466  * which means possibly re-sizing the structures on an interrupt stack,
2467  * making error handling more messy.  The easy way is to just allocate
2468  * all 32 slots, which is what most drives support anyway.
2469  */
2470 static int
2471 nv_init_port(nv_port_t *nvp)
2472 {
2473 	nv_ctl_t *nvc = nvp->nvp_ctlp;
2474 	size_t	prd_size = sizeof (prde_t) * NV_DMA_NSEGS;
2475 	dev_info_t *dip = nvc->nvc_dip;
2476 	ddi_device_acc_attr_t dev_attr;
2477 	size_t buf_size;
2478 	ddi_dma_cookie_t cookie;
2479 	uint_t count;
2480 	int rc, i;
2481 
2482 	dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
2483 	dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
2484 	dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
2485 
2486 	if (nvp->nvp_state & NV_PORT_INIT) {
2487 		NVLOG((NVDBG_INIT, nvc, nvp,
2488 		    "nv_init_port previously initialized"));
2489 
2490 		return (NV_SUCCESS);
2491 	} else {
2492 		NVLOG((NVDBG_INIT, nvc, nvp, "nv_init_port initializing"));
2493 	}
2494 
2495 	nvp->nvp_sg_dma_hdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
2496 	    NV_QUEUE_SLOTS, KM_SLEEP);
2497 
2498 	nvp->nvp_sg_acc_hdl = kmem_zalloc(sizeof (ddi_acc_handle_t) *
2499 	    NV_QUEUE_SLOTS, KM_SLEEP);
2500 
2501 	nvp->nvp_sg_addr = kmem_zalloc(sizeof (caddr_t) *
2502 	    NV_QUEUE_SLOTS, KM_SLEEP);
2503 
2504 	nvp->nvp_sg_paddr = kmem_zalloc(sizeof (uint32_t) *
2505 	    NV_QUEUE_SLOTS, KM_SLEEP);
2506 
2507 	nvp->nvp_slot = kmem_zalloc(sizeof (nv_slot_t) * NV_QUEUE_SLOTS,
2508 	    KM_SLEEP);
2509 
2510 	for (i = 0; i < NV_QUEUE_SLOTS; i++) {
2511 
2512 		rc = ddi_dma_alloc_handle(dip, &nv_prd_dma_attr,
2513 		    DDI_DMA_SLEEP, NULL, &(nvp->nvp_sg_dma_hdl[i]));
2514 
2515 		if (rc != DDI_SUCCESS) {
2516 			nv_uninit_port(nvp);
2517 
2518 			return (NV_FAILURE);
2519 		}
2520 
2521 		rc = ddi_dma_mem_alloc(nvp->nvp_sg_dma_hdl[i], prd_size,
2522 		    &dev_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
2523 		    NULL, &(nvp->nvp_sg_addr[i]), &buf_size,
2524 		    &(nvp->nvp_sg_acc_hdl[i]));
2525 
2526 		if (rc != DDI_SUCCESS) {
2527 			nv_uninit_port(nvp);
2528 
2529 			return (NV_FAILURE);
2530 		}
2531 
2532 		rc = ddi_dma_addr_bind_handle(nvp->nvp_sg_dma_hdl[i], NULL,
2533 		    nvp->nvp_sg_addr[i], buf_size,
2534 		    DDI_DMA_WRITE | DDI_DMA_CONSISTENT,
2535 		    DDI_DMA_SLEEP, NULL, &cookie, &count);
2536 
2537 		if (rc != DDI_DMA_MAPPED) {
2538 			nv_uninit_port(nvp);
2539 
2540 			return (NV_FAILURE);
2541 		}
2542 
2543 		ASSERT(count == 1);
2544 		ASSERT((cookie.dmac_address & (sizeof (int) - 1)) == 0);
2545 
2546 		ASSERT(cookie.dmac_laddress <= UINT32_MAX);
2547 
2548 		nvp->nvp_sg_paddr[i] = cookie.dmac_address;
2549 	}
2550 
2551 	/*
2552 	 * nvp_queue_depth represents the actual drive queue depth, not the
2553 	 * number of slots allocated in the structures (which may be more).
2554 	 * Actual queue depth is only learned after the first NCQ command, so
2555 	 * initialize it to 1 for now.
2556 	 */
2557 	nvp->nvp_queue_depth = 1;
2558 
2559 	nvp->nvp_state |= NV_PORT_INIT;
2560 
2561 	return (NV_SUCCESS);
2562 }
2563 
2564 
2565 /*
2566  * Free dynamically allocated structures for port.
2567  */
2568 static void
2569 nv_uninit_port(nv_port_t *nvp)
2570 {
2571 	int i;
2572 
2573 	/*
2574 	 * It is possible to reach here before a port has been initialized or
2575 	 * after it has already been uninitialized.  Just return in that case.
2576 	 */
2577 	if (nvp->nvp_slot == NULL) {
2578 
2579 		return;
2580 	}
2581 
2582 	NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp,
2583 	    "nv_uninit_port uninitializing"));
2584 
2585 	nvp->nvp_type = SATA_DTYPE_NONE;
2586 
2587 	for (i = 0; i < NV_QUEUE_SLOTS; i++) {
2588 		if (nvp->nvp_sg_paddr[i]) {
2589 			(void) ddi_dma_unbind_handle(nvp->nvp_sg_dma_hdl[i]);
2590 		}
2591 
2592 		if (nvp->nvp_sg_acc_hdl[i] != NULL) {
2593 			ddi_dma_mem_free(&(nvp->nvp_sg_acc_hdl[i]));
2594 		}
2595 
2596 		if (nvp->nvp_sg_dma_hdl[i] != NULL) {
2597 			ddi_dma_free_handle(&(nvp->nvp_sg_dma_hdl[i]));
2598 		}
2599 	}
2600 
2601 	kmem_free(nvp->nvp_slot, sizeof (nv_slot_t) * NV_QUEUE_SLOTS);
2602 	nvp->nvp_slot = NULL;
2603 
2604 	kmem_free(nvp->nvp_sg_dma_hdl,
2605 	    sizeof (ddi_dma_handle_t) * NV_QUEUE_SLOTS);
2606 	nvp->nvp_sg_dma_hdl = NULL;
2607 
2608 	kmem_free(nvp->nvp_sg_acc_hdl,
2609 	    sizeof (ddi_acc_handle_t) * NV_QUEUE_SLOTS);
2610 	nvp->nvp_sg_acc_hdl = NULL;
2611 
2612 	kmem_free(nvp->nvp_sg_addr, sizeof (caddr_t) * NV_QUEUE_SLOTS);
2613 	nvp->nvp_sg_addr = NULL;
2614 
2615 	kmem_free(nvp->nvp_sg_paddr, sizeof (uint32_t) * NV_QUEUE_SLOTS);
2616 	nvp->nvp_sg_paddr = NULL;
2617 
2618 	nvp->nvp_state &= ~NV_PORT_INIT;
2619 	nvp->nvp_signature = 0;
2620 }
2621 
2622 
2623 /*
2624  * Cache register offsets and access handles to frequently accessed registers
2625  * which are common to either chipset.
2626  */
2627 static void
2628 nv_common_reg_init(nv_ctl_t *nvc)
2629 {
2630 	uchar_t *bar5_addr = nvc->nvc_bar_addr[5];
2631 	uchar_t *bm_addr_offset, *sreg_offset;
2632 	uint8_t bar, port;
2633 	nv_port_t *nvp;
2634 
2635 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2636 		if (port == 0) {
2637 			bar = NV_BAR_0;
2638 			bm_addr_offset = 0;
2639 			sreg_offset = (uchar_t *)(CH0_SREG_OFFSET + bar5_addr);
2640 		} else {
2641 			bar = NV_BAR_2;
2642 			bm_addr_offset = (uchar_t *)8;
2643 			sreg_offset = (uchar_t *)(CH1_SREG_OFFSET + bar5_addr);
2644 		}
2645 
2646 		nvp = &(nvc->nvc_port[port]);
2647 		nvp->nvp_ctlp = nvc;
2648 		nvp->nvp_port_num = port;
2649 		NVLOG((NVDBG_INIT, nvc, nvp, "setting up port mappings"));
2650 
2651 		nvp->nvp_cmd_hdl = nvc->nvc_bar_hdl[bar];
2652 		nvp->nvp_cmd_addr = nvc->nvc_bar_addr[bar];
2653 		nvp->nvp_ctl_hdl = nvc->nvc_bar_hdl[bar + 1];
2654 		nvp->nvp_ctl_addr = nvc->nvc_bar_addr[bar + 1];
2655 		nvp->nvp_bm_hdl = nvc->nvc_bar_hdl[NV_BAR_4];
2656 		nvp->nvp_bm_addr = nvc->nvc_bar_addr[NV_BAR_4] +
2657 		    (long)bm_addr_offset;
2658 
2659 		nvp->nvp_sstatus = (uint32_t *)(sreg_offset + NV_SSTATUS);
2660 		nvp->nvp_serror = (uint32_t *)(sreg_offset + NV_SERROR);
2661 		nvp->nvp_sactive = (uint32_t *)(sreg_offset + NV_SACTIVE);
2662 		nvp->nvp_sctrl = (uint32_t *)(sreg_offset + NV_SCTRL);
2663 	}
2664 }
2665 
2666 
2667 static void
2668 nv_uninit_ctl(nv_ctl_t *nvc)
2669 {
2670 	int port;
2671 	nv_port_t *nvp;
2672 
2673 	NVLOG((NVDBG_INIT, nvc, NULL, "nv_uninit_ctl entered"));
2674 
2675 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2676 		nvp = &(nvc->nvc_port[port]);
2677 		mutex_enter(&nvp->nvp_mutex);
2678 		NVLOG((NVDBG_INIT, nvc, nvp, "uninitializing port"));
2679 		nv_uninit_port(nvp);
2680 		mutex_exit(&nvp->nvp_mutex);
2681 		mutex_destroy(&nvp->nvp_mutex);
2682 		cv_destroy(&nvp->nvp_poll_cv);
2683 	}
2684 
2685 	kmem_free(nvc->nvc_port, NV_MAX_PORTS(nvc) * sizeof (nv_port_t));
2686 	nvc->nvc_port = NULL;
2687 }
2688 
2689 
2690 /*
2691  * ck804 interrupt.  This is a wrapper around ck804_intr_process so
2692  * that interrupts from other devices can be disregarded while dtracing.
2693  */
2694 /* ARGSUSED */
2695 static uint_t
2696 ck804_intr(caddr_t arg1, caddr_t arg2)
2697 {
2698 	nv_ctl_t *nvc = (nv_ctl_t *)arg1;
2699 	uint8_t intr_status;
2700 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2701 
2702 	if (nvc->nvc_state & NV_CTRL_SUSPEND)
2703 		return (DDI_INTR_UNCLAIMED);
2704 
2705 	intr_status = ddi_get8(bar5_hdl, nvc->nvc_ck804_int_status);
2706 
2707 	if (intr_status == 0) {
2708 
2709 		return (DDI_INTR_UNCLAIMED);
2710 	}
2711 
2712 	ck804_intr_process(nvc, intr_status);
2713 
2714 	return (DDI_INTR_CLAIMED);
2715 }
2716 
2717 
2718 /*
2719  * Main interrupt handler for ck804.  handles normal device
2720  * interrupts as well as port hot plug and remove interrupts.
2721  *
2722  */
2723 static void
2724 ck804_intr_process(nv_ctl_t *nvc, uint8_t intr_status)
2725 {
2726 
2727 	int port, i;
2728 	nv_port_t *nvp;
2729 	nv_slot_t *nv_slotp;
2730 	uchar_t	status;
2731 	sata_pkt_t *spkt;
2732 	uint8_t bmstatus, clear_bits;
2733 	ddi_acc_handle_t bmhdl;
2734 	int nvcleared = 0;
2735 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2736 	uint32_t sstatus;
2737 	int port_mask_hot[] = {
2738 		CK804_INT_PDEV_HOT, CK804_INT_SDEV_HOT,
2739 	};
2740 	int port_mask_pm[] = {
2741 		CK804_INT_PDEV_PM, CK804_INT_SDEV_PM,
2742 	};
2743 
2744 	NVLOG((NVDBG_INTR, nvc, NULL,
2745 	    "ck804_intr_process entered intr_status=%x", intr_status));
2746 
2747 	/*
2748 	 * For command completion interrupt, explicit clear is not required.
2749 	 * however, for the error cases explicit clear is performed.
2750 	 */
2751 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2752 
2753 		int port_mask[] = {CK804_INT_PDEV_INT, CK804_INT_SDEV_INT};
2754 
2755 		if ((port_mask[port] & intr_status) == 0) {
2756 			continue;
2757 		}
2758 
2759 		NVLOG((NVDBG_INTR, nvc, NULL,
2760 		    "ck804_intr_process interrupt on port %d", port));
2761 
2762 		nvp = &(nvc->nvc_port[port]);
2763 
2764 		mutex_enter(&nvp->nvp_mutex);
2765 
2766 		/*
2767 		 * there was a corner case found where an interrupt
2768 		 * arrived before nvp_slot was set.  Should
2769 		 * probably should track down why that happens and try
2770 		 * to eliminate that source and then get rid of this
2771 		 * check.
2772 		 */
2773 		if (nvp->nvp_slot == NULL) {
2774 			status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_status);
2775 			NVLOG((NVDBG_ALWAYS, nvc, nvp, "spurious interrupt "
2776 			    "received before initialization "
2777 			    "completed status=%x", status));
2778 			mutex_exit(&nvp->nvp_mutex);
2779 
2780 			/*
2781 			 * clear interrupt bits
2782 			 */
2783 			nv_put8(bar5_hdl, nvc->nvc_ck804_int_status,
2784 			    port_mask[port]);
2785 
2786 			continue;
2787 		}
2788 
2789 		if ((&(nvp->nvp_slot[0]))->nvslot_spkt == NULL)  {
2790 			status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_status);
2791 			NVLOG((NVDBG_ALWAYS, nvc, nvp, "spurious interrupt "
2792 			    " no command in progress status=%x", status));
2793 			mutex_exit(&nvp->nvp_mutex);
2794 
2795 			/*
2796 			 * clear interrupt bits
2797 			 */
2798 			nv_put8(bar5_hdl, nvc->nvc_ck804_int_status,
2799 			    port_mask[port]);
2800 
2801 			continue;
2802 		}
2803 
2804 		bmhdl = nvp->nvp_bm_hdl;
2805 		bmstatus = nv_get8(bmhdl, nvp->nvp_bmisx);
2806 
2807 		if (!(bmstatus & BMISX_IDEINTS)) {
2808 			mutex_exit(&nvp->nvp_mutex);
2809 
2810 			continue;
2811 		}
2812 
2813 		status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_altstatus);
2814 
2815 		if (status & SATA_STATUS_BSY) {
2816 			mutex_exit(&nvp->nvp_mutex);
2817 
2818 			continue;
2819 		}
2820 
2821 		nv_slotp = &(nvp->nvp_slot[0]);
2822 
2823 		ASSERT(nv_slotp);
2824 
2825 		spkt = nv_slotp->nvslot_spkt;
2826 
2827 		if (spkt == NULL) {
2828 			mutex_exit(&nvp->nvp_mutex);
2829 
2830 			continue;
2831 		}
2832 
2833 		(*nv_slotp->nvslot_intr)(nvp, nv_slotp);
2834 
2835 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
2836 
2837 		/*
2838 		 * If there is no link cannot be certain about the completion
2839 		 * of the packet, so abort it.
2840 		 */
2841 		if (nv_check_link((&spkt->satapkt_device)->
2842 		    satadev_scr.sstatus) == B_FALSE) {
2843 
2844 			(void) nv_abort_active(nvp, NULL, SATA_PKT_PORT_ERROR);
2845 
2846 		} else if (nv_slotp->nvslot_flags == NVSLOT_COMPLETE) {
2847 
2848 			nv_complete_io(nvp, spkt, 0);
2849 		}
2850 
2851 		mutex_exit(&nvp->nvp_mutex);
2852 	}
2853 
2854 	/*
2855 	 * ck804 often doesn't correctly distinguish hot add/remove
2856 	 * interrupts.  Frequently both the ADD and the REMOVE bits
2857 	 * are asserted, whether it was a remove or add.  Use sstatus
2858 	 * to distinguish hot add from hot remove.
2859 	 */
2860 
2861 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
2862 		clear_bits = 0;
2863 
2864 		nvp = &(nvc->nvc_port[port]);
2865 		mutex_enter(&nvp->nvp_mutex);
2866 
2867 		if ((port_mask_pm[port] & intr_status) != 0) {
2868 			clear_bits = port_mask_pm[port];
2869 			NVLOG((NVDBG_HOT, nvc, nvp,
2870 			    "clearing PM interrupt bit: %x",
2871 			    intr_status & port_mask_pm[port]));
2872 		}
2873 
2874 		if ((port_mask_hot[port] & intr_status) == 0) {
2875 			if (clear_bits != 0) {
2876 				goto clear;
2877 			} else {
2878 				mutex_exit(&nvp->nvp_mutex);
2879 				continue;
2880 			}
2881 		}
2882 
2883 		/*
2884 		 * reaching here means there was a hot add or remove.
2885 		 */
2886 		clear_bits |= port_mask_hot[port];
2887 
2888 		ASSERT(nvc->nvc_port[port].nvp_sstatus);
2889 
2890 		sstatus = nv_get32(bar5_hdl,
2891 		    nvc->nvc_port[port].nvp_sstatus);
2892 
2893 		if ((sstatus & SSTATUS_DET_DEVPRE_PHYCOM) ==
2894 		    SSTATUS_DET_DEVPRE_PHYCOM) {
2895 			nv_report_add_remove(nvp, 0);
2896 		} else {
2897 			nv_report_add_remove(nvp, NV_PORT_HOTREMOVED);
2898 		}
2899 	clear:
2900 		/*
2901 		 * clear interrupt bits.  explicit interrupt clear is
2902 		 * required for hotplug interrupts.
2903 		 */
2904 		nv_put8(bar5_hdl, nvc->nvc_ck804_int_status, clear_bits);
2905 
2906 		/*
2907 		 * make sure it's flushed and cleared.  If not try
2908 		 * again.  Sometimes it has been observed to not clear
2909 		 * on the first try.
2910 		 */
2911 		intr_status = nv_get8(bar5_hdl, nvc->nvc_ck804_int_status);
2912 
2913 		/*
2914 		 * make 10 additional attempts to clear the interrupt
2915 		 */
2916 		for (i = 0; (intr_status & clear_bits) && (i < 10); i++) {
2917 			NVLOG((NVDBG_ALWAYS, nvc, nvp, "inst_status=%x "
2918 			    "still not clear try=%d", intr_status,
2919 			    ++nvcleared));
2920 			nv_put8(bar5_hdl, nvc->nvc_ck804_int_status,
2921 			    clear_bits);
2922 			intr_status = nv_get8(bar5_hdl,
2923 			    nvc->nvc_ck804_int_status);
2924 		}
2925 
2926 		/*
2927 		 * if still not clear, log a message and disable the
2928 		 * port. highly unlikely that this path is taken, but it
2929 		 * gives protection against a wedged interrupt.
2930 		 */
2931 		if (intr_status & clear_bits) {
2932 			(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
2933 			nv_port_state_change(nvp, SATA_EVNT_PORT_FAILED,
2934 			    SATA_ADDR_CPORT, SATA_PSTATE_FAILED);
2935 			nvp->nvp_state |= NV_PORT_FAILED;
2936 			(void) nv_abort_active(nvp, NULL, SATA_PKT_DEV_ERROR);
2937 			nv_cmn_err(CE_WARN, nvc, nvp, "unable to clear "
2938 			    "interrupt.  disabling port intr_status=%X",
2939 			    intr_status);
2940 		}
2941 
2942 		mutex_exit(&nvp->nvp_mutex);
2943 	}
2944 }
2945 
2946 
2947 /*
2948  * Interrupt handler for mcp5x.  It is invoked by the wrapper for each port
2949  * on the controller, to handle completion and hot plug and remove events.
2950  *
2951  */
2952 static uint_t
2953 mcp5x_intr_port(nv_port_t *nvp)
2954 {
2955 	nv_ctl_t *nvc = nvp->nvp_ctlp;
2956 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2957 	uint8_t clear = 0, intr_cycles = 0;
2958 	int ret = DDI_INTR_UNCLAIMED;
2959 	uint16_t int_status;
2960 
2961 	NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_intr_port entered"));
2962 
2963 	for (;;) {
2964 		/*
2965 		 * read current interrupt status
2966 		 */
2967 		int_status = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_status);
2968 
2969 		NVLOG((NVDBG_INTR, nvc, nvp, "int_status = %x", int_status));
2970 
2971 		/*
2972 		 * MCP5X_INT_IGNORE interrupts will show up in the status,
2973 		 * but are masked out from causing an interrupt to be generated
2974 		 * to the processor.  Ignore them here by masking them out.
2975 		 */
2976 		int_status &= ~(MCP5X_INT_IGNORE);
2977 
2978 		/*
2979 		 * exit the loop when no more interrupts to process
2980 		 */
2981 		if (int_status == 0) {
2982 
2983 			break;
2984 		}
2985 
2986 		if (int_status & MCP5X_INT_COMPLETE) {
2987 			NVLOG((NVDBG_INTR, nvc, nvp,
2988 			    "mcp5x_packet_complete_intr"));
2989 			/*
2990 			 * since int_status was set, return DDI_INTR_CLAIMED
2991 			 * from the DDI's perspective even though the packet
2992 			 * completion may not have succeeded.  If it fails,
2993 			 * need to manually clear the interrupt, otherwise
2994 			 * clearing is implicit.
2995 			 */
2996 			ret = DDI_INTR_CLAIMED;
2997 			if (mcp5x_packet_complete_intr(nvc, nvp) ==
2998 			    NV_FAILURE) {
2999 				clear = MCP5X_INT_COMPLETE;
3000 			} else {
3001 				intr_cycles = 0;
3002 			}
3003 		}
3004 
3005 		if (int_status & MCP5X_INT_DMA_SETUP) {
3006 			NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_dma_setup_intr"));
3007 
3008 			/*
3009 			 * Needs to be cleared before starting the BM, so do it
3010 			 * now.  make sure this is still working.
3011 			 */
3012 			nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_status,
3013 			    MCP5X_INT_DMA_SETUP);
3014 #ifdef NCQ
3015 			ret = mcp5x_dma_setup_intr(nvc, nvp);
3016 #endif
3017 		}
3018 
3019 		if (int_status & MCP5X_INT_REM) {
3020 			NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x device removed"));
3021 			clear = MCP5X_INT_REM;
3022 			ret = DDI_INTR_CLAIMED;
3023 
3024 			mutex_enter(&nvp->nvp_mutex);
3025 			nv_report_add_remove(nvp, NV_PORT_HOTREMOVED);
3026 			mutex_exit(&nvp->nvp_mutex);
3027 
3028 		} else if (int_status & MCP5X_INT_ADD) {
3029 			NVLOG((NVDBG_HOT, nvc, nvp, "mcp5x device added"));
3030 			clear = MCP5X_INT_ADD;
3031 			ret = DDI_INTR_CLAIMED;
3032 
3033 			mutex_enter(&nvp->nvp_mutex);
3034 			nv_report_add_remove(nvp, 0);
3035 			mutex_exit(&nvp->nvp_mutex);
3036 		}
3037 
3038 		if (clear) {
3039 			nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_status, clear);
3040 			clear = 0;
3041 		}
3042 
3043 		if (intr_cycles++ == NV_MAX_INTR_LOOP) {
3044 			nv_cmn_err(CE_WARN, nvc, nvp, "excessive interrupt "
3045 			    "processing.  Disabling port int_status=%X"
3046 			    " clear=%X", int_status, clear);
3047 			mutex_enter(&nvp->nvp_mutex);
3048 			(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
3049 			nv_port_state_change(nvp, SATA_EVNT_PORT_FAILED,
3050 			    SATA_ADDR_CPORT, SATA_PSTATE_FAILED);
3051 			nvp->nvp_state |= NV_PORT_FAILED;
3052 			(void) nv_abort_active(nvp, NULL, SATA_PKT_DEV_ERROR);
3053 			mutex_exit(&nvp->nvp_mutex);
3054 		}
3055 	}
3056 
3057 	NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_intr_port: finished ret=%d", ret));
3058 
3059 	return (ret);
3060 }
3061 
3062 
3063 /* ARGSUSED */
3064 static uint_t
3065 mcp5x_intr(caddr_t arg1, caddr_t arg2)
3066 {
3067 	nv_ctl_t *nvc = (nv_ctl_t *)arg1;
3068 	int ret;
3069 
3070 	if (nvc->nvc_state & NV_CTRL_SUSPEND)
3071 		return (DDI_INTR_UNCLAIMED);
3072 
3073 	ret = mcp5x_intr_port(&(nvc->nvc_port[0]));
3074 	ret |= mcp5x_intr_port(&(nvc->nvc_port[1]));
3075 
3076 	return (ret);
3077 }
3078 
3079 
3080 #ifdef NCQ
3081 /*
3082  * with software driven NCQ on mcp5x, an interrupt occurs right
3083  * before the drive is ready to do a DMA transfer.  At this point,
3084  * the PRD table needs to be programmed and the DMA engine enabled
3085  * and ready to go.
3086  *
3087  * -- MCP_SATA_AE_INT_STATUS_SDEV_DMA_SETUP indicates the interrupt
3088  * -- MCP_SATA_AE_NCQ_PDEV_DMA_SETUP_TAG shows which command is ready
3089  * -- clear bit 0 of master command reg
3090  * -- program PRD
3091  * -- clear the interrupt status bit for the DMA Setup FIS
3092  * -- set bit 0 of the bus master command register
3093  */
3094 static int
3095 mcp5x_dma_setup_intr(nv_ctl_t *nvc, nv_port_t *nvp)
3096 {
3097 	int slot;
3098 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
3099 	uint8_t bmicx;
3100 	int port = nvp->nvp_port_num;
3101 	uint8_t tag_shift[] = {MCP_SATA_AE_NCQ_PDEV_DMA_SETUP_TAG_SHIFT,
3102 	    MCP_SATA_AE_NCQ_SDEV_DMA_SETUP_TAG_SHIFT};
3103 
3104 	nv_cmn_err(CE_PANIC, nvc, nvp,
3105 	    "this is should not be executed at all until NCQ");
3106 
3107 	mutex_enter(&nvp->nvp_mutex);
3108 
3109 	slot = nv_get32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ncq);
3110 
3111 	slot = (slot >> tag_shift[port]) & MCP_SATA_AE_NCQ_DMA_SETUP_TAG_MASK;
3112 
3113 	NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_dma_setup_intr slot %d"
3114 	    " nvp_slot_sactive %X", slot, nvp->nvp_sactive_cache));
3115 
3116 	/*
3117 	 * halt the DMA engine.  This step is necessary according to
3118 	 * the mcp5x spec, probably since there may have been a "first" packet
3119 	 * that already programmed the DMA engine, but may not turn out to
3120 	 * be the first one processed.
3121 	 */
3122 	bmicx = nv_get8(bmhdl, nvp->nvp_bmicx);
3123 
3124 #if 0
3125 	if (bmicx & BMICX_SSBM) {
3126 		NVLOG((NVDBG_INTR, nvc, nvp, "BM was already enabled for "
3127 		    "another packet.  Cancelling and reprogramming"));
3128 		nv_put8(bmhdl, nvp->nvp_bmicx,  bmicx & ~BMICX_SSBM);
3129 	}
3130 #endif
3131 	nv_put8(bmhdl, nvp->nvp_bmicx,  bmicx & ~BMICX_SSBM);
3132 
3133 	nv_start_dma_engine(nvp, slot);
3134 
3135 	mutex_exit(&nvp->nvp_mutex);
3136 
3137 	return (DDI_INTR_CLAIMED);
3138 }
3139 #endif /* NCQ */
3140 
3141 
3142 /*
3143  * packet completion interrupt.  If the packet is complete, invoke
3144  * the packet completion callback.
3145  */
3146 static int
3147 mcp5x_packet_complete_intr(nv_ctl_t *nvc, nv_port_t *nvp)
3148 {
3149 	uint8_t status, bmstatus;
3150 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
3151 	int sactive;
3152 	int active_pkt_bit = 0, active_pkt = 0, ncq_command = B_FALSE;
3153 	sata_pkt_t *spkt;
3154 	nv_slot_t *nv_slotp;
3155 
3156 	mutex_enter(&nvp->nvp_mutex);
3157 
3158 	bmstatus = nv_get8(bmhdl, nvp->nvp_bmisx);
3159 
3160 	if (!(bmstatus & BMISX_IDEINTS)) {
3161 		NVLOG((NVDBG_INTR, nvc, nvp, "BMISX_IDEINTS not set"));
3162 		mutex_exit(&nvp->nvp_mutex);
3163 
3164 		return (NV_FAILURE);
3165 	}
3166 
3167 	/*
3168 	 * If the just completed item is a non-ncq command, the busy
3169 	 * bit should not be set
3170 	 */
3171 	if (nvp->nvp_non_ncq_run) {
3172 		status = nv_get8(nvp->nvp_ctl_hdl, nvp->nvp_altstatus);
3173 		if (status & SATA_STATUS_BSY) {
3174 			nv_cmn_err(CE_WARN, nvc, nvp,
3175 			    "unexpected SATA_STATUS_BSY set");
3176 			mutex_exit(&nvp->nvp_mutex);
3177 			/*
3178 			 * calling function will clear interrupt.  then
3179 			 * the real interrupt will either arrive or the
3180 			 * packet timeout handling will take over and
3181 			 * reset.
3182 			 */
3183 			return (NV_FAILURE);
3184 		}
3185 
3186 	} else {
3187 		/*
3188 		 * NCQ check for BSY here and wait if still bsy before
3189 		 * continuing. Rather than wait for it to be cleared
3190 		 * when starting a packet and wasting CPU time, the starting
3191 		 * thread can exit immediate, but might have to spin here
3192 		 * for a bit possibly.  Needs more work and experimentation.
3193 		 */
3194 		ASSERT(nvp->nvp_ncq_run);
3195 	}
3196 
3197 
3198 	if (nvp->nvp_ncq_run) {
3199 		ncq_command = B_TRUE;
3200 		ASSERT(nvp->nvp_non_ncq_run == 0);
3201 	} else {
3202 		ASSERT(nvp->nvp_non_ncq_run != 0);
3203 	}
3204 
3205 	/*
3206 	 * active_pkt_bit will represent the bitmap of the single completed
3207 	 * packet.  Because of the nature of sw assisted NCQ, only one
3208 	 * command will complete per interrupt.
3209 	 */
3210 
3211 	if (ncq_command == B_FALSE) {
3212 		active_pkt = 0;
3213 	} else {
3214 		/*
3215 		 * NCQ: determine which command just completed, by examining
3216 		 * which bit cleared in the register since last written.
3217 		 */
3218 		sactive = nv_get32(nvc->nvc_bar_hdl[5], nvp->nvp_sactive);
3219 
3220 		active_pkt_bit = ~sactive & nvp->nvp_sactive_cache;
3221 
3222 		ASSERT(active_pkt_bit);
3223 
3224 
3225 		/*
3226 		 * this failure path needs more work to handle the
3227 		 * error condition and recovery.
3228 		 */
3229 		if (active_pkt_bit == 0) {
3230 			ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
3231 
3232 			nv_cmn_err(CE_CONT, nvc, nvp, "ERROR sactive = %X  "
3233 			    "nvp->nvp_sactive %X", sactive,
3234 			    nvp->nvp_sactive_cache);
3235 
3236 			(void) nv_get8(cmdhdl, nvp->nvp_status);
3237 
3238 			mutex_exit(&nvp->nvp_mutex);
3239 
3240 			return (NV_FAILURE);
3241 		}
3242 
3243 		for (active_pkt = 0; (active_pkt_bit & 0x1) != 0x1;
3244 		    active_pkt++, active_pkt_bit >>= 1) {
3245 		}
3246 
3247 		/*
3248 		 * make sure only one bit is ever turned on
3249 		 */
3250 		ASSERT(active_pkt_bit == 1);
3251 
3252 		nvp->nvp_sactive_cache &= ~(0x01 << active_pkt);
3253 	}
3254 
3255 	nv_slotp = &(nvp->nvp_slot[active_pkt]);
3256 
3257 	spkt = nv_slotp->nvslot_spkt;
3258 
3259 	ASSERT(spkt != NULL);
3260 
3261 	(*nv_slotp->nvslot_intr)(nvp, nv_slotp);
3262 
3263 	nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
3264 
3265 	/*
3266 	 * If there is no link cannot be certain about the completion
3267 	 * of the packet, so abort it.
3268 	 */
3269 	if (nv_check_link((&spkt->satapkt_device)->
3270 	    satadev_scr.sstatus) == B_FALSE) {
3271 		(void) nv_abort_active(nvp, NULL, SATA_PKT_PORT_ERROR);
3272 
3273 	} else if (nv_slotp->nvslot_flags == NVSLOT_COMPLETE) {
3274 
3275 		nv_complete_io(nvp, spkt, active_pkt);
3276 	}
3277 
3278 	mutex_exit(&nvp->nvp_mutex);
3279 
3280 	return (NV_SUCCESS);
3281 }
3282 
3283 
3284 static void
3285 nv_complete_io(nv_port_t *nvp, sata_pkt_t *spkt, int slot)
3286 {
3287 
3288 	ASSERT(MUTEX_HELD(&nvp->nvp_mutex));
3289 
3290 	if ((&(nvp->nvp_slot[slot]))->nvslot_flags & NVSLOT_NCQ) {
3291 		nvp->nvp_ncq_run--;
3292 	} else {
3293 		nvp->nvp_non_ncq_run--;
3294 	}
3295 
3296 	/*
3297 	 * mark the packet slot idle so it can be reused.  Do this before
3298 	 * calling satapkt_comp so the slot can be reused.
3299 	 */
3300 	(&(nvp->nvp_slot[slot]))->nvslot_spkt = NULL;
3301 
3302 	if (spkt->satapkt_op_mode & SATA_OPMODE_SYNCH) {
3303 		/*
3304 		 * If this is not timed polled mode cmd, which has an
3305 		 * active thread monitoring for completion, then need
3306 		 * to signal the sleeping thread that the cmd is complete.
3307 		 */
3308 		if ((spkt->satapkt_op_mode & SATA_OPMODE_POLLING) == 0) {
3309 			cv_signal(&nvp->nvp_poll_cv);
3310 		}
3311 
3312 		return;
3313 	}
3314 
3315 	if (spkt->satapkt_comp != NULL) {
3316 		mutex_exit(&nvp->nvp_mutex);
3317 		(*spkt->satapkt_comp)(spkt);
3318 		mutex_enter(&nvp->nvp_mutex);
3319 	}
3320 }
3321 
3322 
3323 /*
3324  * check whether packet is ncq command or not.  for ncq command,
3325  * start it if there is still room on queue.  for non-ncq command only
3326  * start if no other command is running.
3327  */
3328 static int
3329 nv_start_async(nv_port_t *nvp, sata_pkt_t *spkt)
3330 {
3331 	uint8_t cmd, ncq;
3332 
3333 	NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp, "nv_start_async: entry"));
3334 
3335 	cmd = spkt->satapkt_cmd.satacmd_cmd_reg;
3336 
3337 	ncq = ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
3338 	    (cmd == SATAC_READ_FPDMA_QUEUED));
3339 
3340 	if (ncq == B_FALSE) {
3341 
3342 		if ((nvp->nvp_non_ncq_run == 1) ||
3343 		    (nvp->nvp_ncq_run > 0)) {
3344 			/*
3345 			 * next command is non-ncq which can't run
3346 			 * concurrently.  exit and return queue full.
3347 			 */
3348 			spkt->satapkt_reason = SATA_PKT_QUEUE_FULL;
3349 
3350 			return (SATA_TRAN_QUEUE_FULL);
3351 		}
3352 
3353 		return (nv_start_common(nvp, spkt));
3354 	}
3355 
3356 	/*
3357 	 * ncq == B_TRUE
3358 	 */
3359 	if (nvp->nvp_non_ncq_run == 1) {
3360 		/*
3361 		 * cannot start any NCQ commands when there
3362 		 * is a non-NCQ command running.
3363 		 */
3364 		spkt->satapkt_reason = SATA_PKT_QUEUE_FULL;
3365 
3366 		return (SATA_TRAN_QUEUE_FULL);
3367 	}
3368 
3369 #ifdef NCQ
3370 	/*
3371 	 * this is not compiled for now as satapkt_device.satadev_qdepth
3372 	 * is being pulled out until NCQ support is later addressed
3373 	 *
3374 	 * nvp_queue_depth is initialized by the first NCQ command
3375 	 * received.
3376 	 */
3377 	if (nvp->nvp_queue_depth == 1) {
3378 		nvp->nvp_queue_depth =
3379 		    spkt->satapkt_device.satadev_qdepth;
3380 
3381 		ASSERT(nvp->nvp_queue_depth > 1);
3382 
3383 		NVLOG((NVDBG_ENTRY, nvp->nvp_ctlp, nvp,
3384 		    "nv_process_queue: nvp_queue_depth set to %d",
3385 		    nvp->nvp_queue_depth));
3386 	}
3387 #endif
3388 
3389 	if (nvp->nvp_ncq_run >= nvp->nvp_queue_depth) {
3390 		/*
3391 		 * max number of NCQ commands already active
3392 		 */
3393 		spkt->satapkt_reason = SATA_PKT_QUEUE_FULL;
3394 
3395 		return (SATA_TRAN_QUEUE_FULL);
3396 	}
3397 
3398 	return (nv_start_common(nvp, spkt));
3399 }
3400 
3401 
3402 /*
3403  * configure INTx and legacy interrupts
3404  */
3405 static int
3406 nv_add_legacy_intrs(nv_ctl_t *nvc)
3407 {
3408 	dev_info_t	*devinfo = nvc->nvc_dip;
3409 	int		actual, count = 0;
3410 	int		x, y, rc, inum = 0;
3411 
3412 	NVLOG((NVDBG_ENTRY, nvc, NULL, "nv_add_legacy_intrs"));
3413 
3414 	/*
3415 	 * get number of interrupts
3416 	 */
3417 	rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &count);
3418 	if ((rc != DDI_SUCCESS) || (count == 0)) {
3419 		NVLOG((NVDBG_INTR, nvc, NULL,
3420 		    "ddi_intr_get_nintrs() failed, "
3421 		    "rc %d count %d", rc, count));
3422 
3423 		return (DDI_FAILURE);
3424 	}
3425 
3426 	/*
3427 	 * allocate an array of interrupt handles
3428 	 */
3429 	nvc->nvc_intr_size = count * sizeof (ddi_intr_handle_t);
3430 	nvc->nvc_htable = kmem_zalloc(nvc->nvc_intr_size, KM_SLEEP);
3431 
3432 	/*
3433 	 * call ddi_intr_alloc()
3434 	 */
3435 	rc = ddi_intr_alloc(devinfo, nvc->nvc_htable, DDI_INTR_TYPE_FIXED,
3436 	    inum, count, &actual, DDI_INTR_ALLOC_STRICT);
3437 
3438 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
3439 		nv_cmn_err(CE_WARN, nvc, NULL,
3440 		    "ddi_intr_alloc() failed, rc %d", rc);
3441 		kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3442 
3443 		return (DDI_FAILURE);
3444 	}
3445 
3446 	if (actual < count) {
3447 		nv_cmn_err(CE_WARN, nvc, NULL,
3448 		    "ddi_intr_alloc: requested: %d, received: %d",
3449 		    count, actual);
3450 
3451 		goto failure;
3452 	}
3453 
3454 	nvc->nvc_intr_cnt = actual;
3455 
3456 	/*
3457 	 * get intr priority
3458 	 */
3459 	if (ddi_intr_get_pri(nvc->nvc_htable[0], &nvc->nvc_intr_pri) !=
3460 	    DDI_SUCCESS) {
3461 		nv_cmn_err(CE_WARN, nvc, NULL, "ddi_intr_get_pri() failed");
3462 
3463 		goto failure;
3464 	}
3465 
3466 	/*
3467 	 * Test for high level mutex
3468 	 */
3469 	if (nvc->nvc_intr_pri >= ddi_intr_get_hilevel_pri()) {
3470 		nv_cmn_err(CE_WARN, nvc, NULL,
3471 		    "nv_add_legacy_intrs: high level intr not supported");
3472 
3473 		goto failure;
3474 	}
3475 
3476 	for (x = 0; x < actual; x++) {
3477 		if (ddi_intr_add_handler(nvc->nvc_htable[x],
3478 		    nvc->nvc_interrupt, (caddr_t)nvc, NULL) != DDI_SUCCESS) {
3479 			nv_cmn_err(CE_WARN, nvc, NULL,
3480 			    "ddi_intr_add_handler() failed");
3481 
3482 			goto failure;
3483 		}
3484 	}
3485 
3486 	/*
3487 	 * call ddi_intr_enable() for legacy interrupts
3488 	 */
3489 	for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3490 		(void) ddi_intr_enable(nvc->nvc_htable[x]);
3491 	}
3492 
3493 	return (DDI_SUCCESS);
3494 
3495 	failure:
3496 	/*
3497 	 * free allocated intr and nvc_htable
3498 	 */
3499 	for (y = 0; y < actual; y++) {
3500 		(void) ddi_intr_free(nvc->nvc_htable[y]);
3501 	}
3502 
3503 	kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3504 
3505 	return (DDI_FAILURE);
3506 }
3507 
3508 #ifdef	NV_MSI_SUPPORTED
3509 /*
3510  * configure MSI interrupts
3511  */
3512 static int
3513 nv_add_msi_intrs(nv_ctl_t *nvc)
3514 {
3515 	dev_info_t	*devinfo = nvc->nvc_dip;
3516 	int		count, avail, actual;
3517 	int		x, y, rc, inum = 0;
3518 
3519 	NVLOG((NVDBG_ENTRY, nvc, NULL, "nv_add_msi_intrs"));
3520 
3521 	/*
3522 	 * get number of interrupts
3523 	 */
3524 	rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSI, &count);
3525 	if ((rc != DDI_SUCCESS) || (count == 0)) {
3526 		nv_cmn_err(CE_WARN, nvc, NULL,
3527 		    "ddi_intr_get_nintrs() failed, "
3528 		    "rc %d count %d", rc, count);
3529 
3530 		return (DDI_FAILURE);
3531 	}
3532 
3533 	/*
3534 	 * get number of available interrupts
3535 	 */
3536 	rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSI, &avail);
3537 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
3538 		nv_cmn_err(CE_WARN, nvc, NULL,
3539 		    "ddi_intr_get_navail() failed, "
3540 		    "rc %d avail %d", rc, avail);
3541 
3542 		return (DDI_FAILURE);
3543 	}
3544 
3545 	if (avail < count) {
3546 		nv_cmn_err(CE_WARN, nvc, NULL,
3547 		    "ddi_intr_get_nvail returned %d ddi_intr_get_nintrs: %d",
3548 		    avail, count);
3549 	}
3550 
3551 	/*
3552 	 * allocate an array of interrupt handles
3553 	 */
3554 	nvc->nvc_intr_size = count * sizeof (ddi_intr_handle_t);
3555 	nvc->nvc_htable = kmem_alloc(nvc->nvc_intr_size, KM_SLEEP);
3556 
3557 	rc = ddi_intr_alloc(devinfo, nvc->nvc_htable, DDI_INTR_TYPE_MSI,
3558 	    inum, count, &actual, DDI_INTR_ALLOC_NORMAL);
3559 
3560 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
3561 		nv_cmn_err(CE_WARN, nvc, NULL,
3562 		    "ddi_intr_alloc() failed, rc %d", rc);
3563 		kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3564 
3565 		return (DDI_FAILURE);
3566 	}
3567 
3568 	/*
3569 	 * Use interrupt count returned or abort?
3570 	 */
3571 	if (actual < count) {
3572 		NVLOG((NVDBG_INIT, nvc, NULL,
3573 		    "Requested: %d, Received: %d", count, actual));
3574 	}
3575 
3576 	nvc->nvc_intr_cnt = actual;
3577 
3578 	/*
3579 	 * get priority for first msi, assume remaining are all the same
3580 	 */
3581 	if (ddi_intr_get_pri(nvc->nvc_htable[0], &nvc->nvc_intr_pri) !=
3582 	    DDI_SUCCESS) {
3583 		nv_cmn_err(CE_WARN, nvc, NULL, "ddi_intr_get_pri() failed");
3584 
3585 		goto failure;
3586 	}
3587 
3588 	/*
3589 	 * test for high level mutex
3590 	 */
3591 	if (nvc->nvc_intr_pri >= ddi_intr_get_hilevel_pri()) {
3592 		nv_cmn_err(CE_WARN, nvc, NULL,
3593 		    "nv_add_msi_intrs: high level intr not supported");
3594 
3595 		goto failure;
3596 	}
3597 
3598 	/*
3599 	 * Call ddi_intr_add_handler()
3600 	 */
3601 	for (x = 0; x < actual; x++) {
3602 		if (ddi_intr_add_handler(nvc->nvc_htable[x],
3603 		    nvc->nvc_interrupt, (caddr_t)nvc, NULL) != DDI_SUCCESS) {
3604 			nv_cmn_err(CE_WARN, nvc, NULL,
3605 			    "ddi_intr_add_handler() failed");
3606 
3607 			goto failure;
3608 		}
3609 	}
3610 
3611 	(void) ddi_intr_get_cap(nvc->nvc_htable[0], &nvc->nvc_intr_cap);
3612 
3613 	if (nvc->nvc_intr_cap & DDI_INTR_FLAG_BLOCK) {
3614 		(void) ddi_intr_block_enable(nvc->nvc_htable,
3615 		    nvc->nvc_intr_cnt);
3616 	} else {
3617 		/*
3618 		 * Call ddi_intr_enable() for MSI non block enable
3619 		 */
3620 		for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3621 			(void) ddi_intr_enable(nvc->nvc_htable[x]);
3622 		}
3623 	}
3624 
3625 	return (DDI_SUCCESS);
3626 
3627 	failure:
3628 	/*
3629 	 * free allocated intr and nvc_htable
3630 	 */
3631 	for (y = 0; y < actual; y++) {
3632 		(void) ddi_intr_free(nvc->nvc_htable[y]);
3633 	}
3634 
3635 	kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3636 
3637 	return (DDI_FAILURE);
3638 }
3639 #endif
3640 
3641 
3642 static void
3643 nv_rem_intrs(nv_ctl_t *nvc)
3644 {
3645 	int x, i;
3646 	nv_port_t *nvp;
3647 
3648 	NVLOG((NVDBG_ENTRY, nvc, NULL, "nv_rem_intrs"));
3649 
3650 	/*
3651 	 * prevent controller from generating interrupts by
3652 	 * masking them out.  This is an extra precaution.
3653 	 */
3654 	for (i = 0; i < NV_MAX_PORTS(nvc); i++) {
3655 		nvp = (&nvc->nvc_port[i]);
3656 		mutex_enter(&nvp->nvp_mutex);
3657 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE);
3658 		mutex_exit(&nvp->nvp_mutex);
3659 	}
3660 
3661 	/*
3662 	 * disable all interrupts
3663 	 */
3664 	if ((nvc->nvc_intr_type == DDI_INTR_TYPE_MSI) &&
3665 	    (nvc->nvc_intr_cap & DDI_INTR_FLAG_BLOCK)) {
3666 		(void) ddi_intr_block_disable(nvc->nvc_htable,
3667 		    nvc->nvc_intr_cnt);
3668 	} else {
3669 		for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3670 			(void) ddi_intr_disable(nvc->nvc_htable[x]);
3671 		}
3672 	}
3673 
3674 	for (x = 0; x < nvc->nvc_intr_cnt; x++) {
3675 		(void) ddi_intr_remove_handler(nvc->nvc_htable[x]);
3676 		(void) ddi_intr_free(nvc->nvc_htable[x]);
3677 	}
3678 
3679 	kmem_free(nvc->nvc_htable, nvc->nvc_intr_size);
3680 }
3681 
3682 
3683 /*
3684  * variable argument wrapper for cmn_err.  prefixes the instance and port
3685  * number if possible
3686  */
3687 static void
3688 nv_vcmn_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, va_list ap)
3689 {
3690 	char port[NV_STRING_10];
3691 	char inst[NV_STRING_10];
3692 
3693 	mutex_enter(&nv_log_mutex);
3694 
3695 	if (nvc) {
3696 		(void) snprintf(inst, NV_STRING_10, "inst %d",
3697 		    ddi_get_instance(nvc->nvc_dip));
3698 	} else {
3699 		inst[0] = '\0';
3700 	}
3701 
3702 	if (nvp) {
3703 		(void) sprintf(port, " port %d", nvp->nvp_port_num);
3704 	} else {
3705 		port[0] = '\0';
3706 	}
3707 
3708 	(void) sprintf(nv_log_buf, "nv_sata %s%s%s", inst, port,
3709 	    (inst[0]|port[0] ? ": " :""));
3710 
3711 	(void) vsnprintf(&nv_log_buf[strlen(nv_log_buf)],
3712 	    NV_STRING_512 - strlen(nv_log_buf), fmt, ap);
3713 
3714 	/*
3715 	 * normally set to log to console but in some debug situations it
3716 	 * may be useful to log only to a file.
3717 	 */
3718 	if (nv_log_to_console) {
3719 		if (nv_prom_print) {
3720 			prom_printf("%s\n", nv_log_buf);
3721 		} else {
3722 			cmn_err(ce, "%s", nv_log_buf);
3723 		}
3724 
3725 
3726 	} else {
3727 		cmn_err(ce, "!%s", nv_log_buf);
3728 	}
3729 
3730 	mutex_exit(&nv_log_mutex);
3731 }
3732 
3733 
3734 /*
3735  * wrapper for cmn_err
3736  */
3737 static void
3738 nv_cmn_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...)
3739 {
3740 	va_list ap;
3741 
3742 	va_start(ap, fmt);
3743 	nv_vcmn_err(ce, nvc, nvp, fmt, ap);
3744 	va_end(ap);
3745 }
3746 
3747 
3748 #if defined(DEBUG)
3749 /*
3750  * prefixes the instance and port number if possible to the debug message
3751  */
3752 static void
3753 nv_log(uint_t flag, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...)
3754 {
3755 	va_list ap;
3756 
3757 	if ((nv_debug_flags & flag) == 0) {
3758 		return;
3759 	}
3760 
3761 	va_start(ap, fmt);
3762 	nv_vcmn_err(CE_NOTE, nvc, nvp, fmt, ap);
3763 	va_end(ap);
3764 
3765 	/*
3766 	 * useful for some debugging situations
3767 	 */
3768 	if (nv_log_delay) {
3769 		drv_usecwait(nv_log_delay);
3770 	}
3771 
3772 }
3773 #endif /* DEBUG */
3774 
3775 
3776 /*
3777  * program registers which are common to all commands
3778  */
3779 static void
3780 nv_program_taskfile_regs(nv_port_t *nvp, int slot)
3781 {
3782 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
3783 	sata_pkt_t *spkt;
3784 	sata_cmd_t *satacmd;
3785 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
3786 	uint8_t cmd, ncq = B_FALSE;
3787 
3788 	spkt = nv_slotp->nvslot_spkt;
3789 	satacmd = &spkt->satapkt_cmd;
3790 	cmd = satacmd->satacmd_cmd_reg;
3791 
3792 	ASSERT(nvp->nvp_slot);
3793 
3794 	if ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
3795 	    (cmd == SATAC_READ_FPDMA_QUEUED)) {
3796 		ncq = B_TRUE;
3797 	}
3798 
3799 	/*
3800 	 * select the drive
3801 	 */
3802 	nv_put8(cmdhdl, nvp->nvp_drvhd, satacmd->satacmd_device_reg);
3803 
3804 	/*
3805 	 * make certain the drive selected
3806 	 */
3807 	if (nv_wait(nvp, SATA_STATUS_DRDY, SATA_STATUS_BSY,
3808 	    NV_SEC2USEC(5), 0) == B_FALSE) {
3809 
3810 		return;
3811 	}
3812 
3813 	switch (spkt->satapkt_cmd.satacmd_addr_type) {
3814 
3815 	case ATA_ADDR_LBA:
3816 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp, "ATA_ADDR_LBA mode"));
3817 
3818 		nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
3819 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
3820 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
3821 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
3822 
3823 		break;
3824 
3825 	case ATA_ADDR_LBA28:
3826 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
3827 		    "ATA_ADDR_LBA28 mode"));
3828 		/*
3829 		 * NCQ only uses 48-bit addressing
3830 		 */
3831 		ASSERT(ncq != B_TRUE);
3832 
3833 		nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
3834 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
3835 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
3836 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
3837 
3838 		break;
3839 
3840 	case ATA_ADDR_LBA48:
3841 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
3842 		    "ATA_ADDR_LBA48 mode"));
3843 
3844 		/*
3845 		 * for NCQ, tag goes into count register and real sector count
3846 		 * into features register.  The sata module does the translation
3847 		 * in the satacmd.
3848 		 */
3849 		if (ncq == B_TRUE) {
3850 			nv_put8(cmdhdl, nvp->nvp_count, slot << 3);
3851 			nv_put8(cmdhdl, nvp->nvp_feature,
3852 			    satacmd->satacmd_features_reg_ext);
3853 			nv_put8(cmdhdl, nvp->nvp_feature,
3854 			    satacmd->satacmd_features_reg);
3855 		} else {
3856 			nv_put8(cmdhdl, nvp->nvp_count,
3857 			    satacmd->satacmd_sec_count_msb);
3858 			nv_put8(cmdhdl, nvp->nvp_count,
3859 			    satacmd->satacmd_sec_count_lsb);
3860 		}
3861 
3862 		/*
3863 		 * send the high-order half first
3864 		 */
3865 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_msb);
3866 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_msb);
3867 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_msb);
3868 		/*
3869 		 * Send the low-order half
3870 		 */
3871 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
3872 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
3873 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
3874 
3875 		break;
3876 
3877 	case 0:
3878 		/*
3879 		 * non-media access commands such as identify and features
3880 		 * take this path.
3881 		 */
3882 		nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
3883 		nv_put8(cmdhdl, nvp->nvp_feature,
3884 		    satacmd->satacmd_features_reg);
3885 		nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
3886 		nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
3887 		nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
3888 
3889 		break;
3890 
3891 	default:
3892 		break;
3893 	}
3894 
3895 	ASSERT(nvp->nvp_slot);
3896 }
3897 
3898 
3899 /*
3900  * start a command that involves no media access
3901  */
3902 static int
3903 nv_start_nodata(nv_port_t *nvp, int slot)
3904 {
3905 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
3906 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
3907 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
3908 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
3909 
3910 	nv_program_taskfile_regs(nvp, slot);
3911 
3912 	/*
3913 	 * This next one sets the controller in motion
3914 	 */
3915 	nv_put8(cmdhdl, nvp->nvp_cmd, sata_cmdp->satacmd_cmd_reg);
3916 
3917 	return (SATA_TRAN_ACCEPTED);
3918 }
3919 
3920 
3921 int
3922 nv_bm_status_clear(nv_port_t *nvp)
3923 {
3924 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
3925 	uchar_t	status, ret;
3926 
3927 	/*
3928 	 * Get the current BM status
3929 	 */
3930 	ret = status = nv_get8(bmhdl, nvp->nvp_bmisx);
3931 
3932 	status = (status & BMISX_MASK) | BMISX_IDERR | BMISX_IDEINTS;
3933 
3934 	/*
3935 	 * Clear the latches (and preserve the other bits)
3936 	 */
3937 	nv_put8(bmhdl, nvp->nvp_bmisx, status);
3938 
3939 	return (ret);
3940 }
3941 
3942 
3943 /*
3944  * program the bus master DMA engine with the PRD address for
3945  * the active slot command, and start the DMA engine.
3946  */
3947 static void
3948 nv_start_dma_engine(nv_port_t *nvp, int slot)
3949 {
3950 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
3951 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
3952 	uchar_t direction;
3953 
3954 	ASSERT(nv_slotp->nvslot_spkt != NULL);
3955 
3956 	if (nv_slotp->nvslot_spkt->satapkt_cmd.satacmd_flags.sata_data_direction
3957 	    == SATA_DIR_READ) {
3958 		direction = BMICX_RWCON_WRITE_TO_MEMORY;
3959 	} else {
3960 		direction = BMICX_RWCON_READ_FROM_MEMORY;
3961 	}
3962 
3963 	NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
3964 	    "nv_start_dma_engine entered"));
3965 
3966 	/*
3967 	 * reset the controller's interrupt and error status bits
3968 	 */
3969 	(void) nv_bm_status_clear(nvp);
3970 
3971 	/*
3972 	 * program the PRD table physical start address
3973 	 */
3974 	nv_put32(bmhdl, nvp->nvp_bmidtpx, nvp->nvp_sg_paddr[slot]);
3975 
3976 	/*
3977 	 * set the direction control and start the DMA controller
3978 	 */
3979 	nv_put8(bmhdl, nvp->nvp_bmicx, direction | BMICX_SSBM);
3980 }
3981 
3982 /*
3983  * start dma command, either in or out
3984  */
3985 static int
3986 nv_start_dma(nv_port_t *nvp, int slot)
3987 {
3988 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
3989 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
3990 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
3991 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
3992 	uint8_t cmd = sata_cmdp->satacmd_cmd_reg;
3993 #ifdef NCQ
3994 	uint8_t ncq = B_FALSE;
3995 #endif
3996 	ddi_acc_handle_t sghdl = nvp->nvp_sg_acc_hdl[slot];
3997 	uint_t *dstp = (uint_t *)nvp->nvp_sg_addr[slot];
3998 	int sg_count = sata_cmdp->satacmd_num_dma_cookies, idx;
3999 	ddi_dma_cookie_t  *srcp = sata_cmdp->satacmd_dma_cookie_list;
4000 
4001 	ASSERT(sg_count != 0);
4002 
4003 	if (sata_cmdp->satacmd_num_dma_cookies > NV_DMA_NSEGS) {
4004 		nv_cmn_err(CE_WARN, nvp->nvp_ctlp, nvp, "NV_DMA_NSEGS=%d <"
4005 		    " satacmd_num_dma_cookies=%d", NV_DMA_NSEGS,
4006 		    sata_cmdp->satacmd_num_dma_cookies);
4007 
4008 		return (NV_FAILURE);
4009 	}
4010 
4011 	nv_program_taskfile_regs(nvp, slot);
4012 
4013 	/*
4014 	 * start the drive in motion
4015 	 */
4016 	nv_put8(cmdhdl, nvp->nvp_cmd, cmd);
4017 
4018 	/*
4019 	 * the drive starts processing the transaction when the cmd register
4020 	 * is written.  This is done here before programming the DMA engine to
4021 	 * parallelize and save some time.  In the event that the drive is ready
4022 	 * before DMA, it will wait.
4023 	 */
4024 #ifdef NCQ
4025 	if ((cmd == SATAC_WRITE_FPDMA_QUEUED) ||
4026 	    (cmd == SATAC_READ_FPDMA_QUEUED)) {
4027 		ncq = B_TRUE;
4028 	}
4029 #endif
4030 
4031 	/*
4032 	 * copy the PRD list to PRD table in DMA accessible memory
4033 	 * so that the controller can access it.
4034 	 */
4035 	for (idx = 0; idx < sg_count; idx++, srcp++) {
4036 		uint32_t size;
4037 
4038 		ASSERT(srcp->dmac_size <= UINT16_MAX);
4039 
4040 		nv_put32(sghdl, dstp++, srcp->dmac_address);
4041 
4042 		size = srcp->dmac_size;
4043 
4044 		/*
4045 		 * If this is a 40-bit address, copy bits 32-40 of the
4046 		 * physical address to bits 16-24 of the PRD count.
4047 		 */
4048 		if (srcp->dmac_laddress > UINT32_MAX) {
4049 			size |= ((srcp->dmac_laddress & 0xff00000000) >> 16);
4050 		}
4051 
4052 		/*
4053 		 * set the end of table flag for the last entry
4054 		 */
4055 		if (idx == (sg_count - 1)) {
4056 			size |= PRDE_EOT;
4057 		}
4058 
4059 		nv_put32(sghdl, dstp++, size);
4060 	}
4061 
4062 	(void) ddi_dma_sync(nvp->nvp_sg_dma_hdl[slot], 0,
4063 	    sizeof (prde_t) * NV_DMA_NSEGS, DDI_DMA_SYNC_FORDEV);
4064 
4065 	nv_start_dma_engine(nvp, slot);
4066 
4067 #ifdef NCQ
4068 	/*
4069 	 * optimization:  for SWNCQ, start DMA engine if this is the only
4070 	 * command running.  Preliminary NCQ efforts indicated this needs
4071 	 * more debugging.
4072 	 *
4073 	 * if (nvp->nvp_ncq_run <= 1)
4074 	 */
4075 
4076 	if (ncq == B_FALSE) {
4077 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp,
4078 		    "NOT NCQ so starting DMA NOW non_ncq_commands=%d"
4079 		    " cmd = %X", non_ncq_commands++, cmd));
4080 		nv_start_dma_engine(nvp, slot);
4081 	} else {
4082 		NVLOG((NVDBG_DELIVER, nvp->nvp_ctlp, nvp, "?NCQ, so program "
4083 		    "DMA later ncq_commands=%d cmd = %X", ncq_commands++, cmd));
4084 	}
4085 #endif /* NCQ */
4086 
4087 	return (SATA_TRAN_ACCEPTED);
4088 }
4089 
4090 
4091 /*
4092  * start a PIO data-in ATA command
4093  */
4094 static int
4095 nv_start_pio_in(nv_port_t *nvp, int slot)
4096 {
4097 
4098 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4099 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4100 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4101 
4102 	nv_program_taskfile_regs(nvp, slot);
4103 
4104 	/*
4105 	 * This next one sets the drive in motion
4106 	 */
4107 	nv_put8(cmdhdl, nvp->nvp_cmd, spkt->satapkt_cmd.satacmd_cmd_reg);
4108 
4109 	return (SATA_TRAN_ACCEPTED);
4110 }
4111 
4112 
4113 /*
4114  * start a PIO data-out ATA command
4115  */
4116 static int
4117 nv_start_pio_out(nv_port_t *nvp, int slot)
4118 {
4119 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4120 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4121 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4122 
4123 	nv_program_taskfile_regs(nvp, slot);
4124 
4125 	/*
4126 	 * this next one sets the drive in motion
4127 	 */
4128 	nv_put8(cmdhdl, nvp->nvp_cmd, spkt->satapkt_cmd.satacmd_cmd_reg);
4129 
4130 	/*
4131 	 * wait for the busy bit to settle
4132 	 */
4133 	NV_DELAY_NSEC(400);
4134 
4135 	/*
4136 	 * wait for the drive to assert DRQ to send the first chunk
4137 	 * of data. Have to busy wait because there's no interrupt for
4138 	 * the first chunk. This is bad... uses a lot of cycles if the
4139 	 * drive responds too slowly or if the wait loop granularity
4140 	 * is too large. It's even worse if the drive is defective and
4141 	 * the loop times out.
4142 	 */
4143 	if (nv_wait3(nvp, SATA_STATUS_DRQ, SATA_STATUS_BSY, /* okay */
4144 	    SATA_STATUS_ERR, SATA_STATUS_BSY, /* cmd failed */
4145 	    SATA_STATUS_DF, SATA_STATUS_BSY, /* drive failed */
4146 	    4000000, 0) == B_FALSE) {
4147 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4148 
4149 		goto error;
4150 	}
4151 
4152 	/*
4153 	 * send the first block.
4154 	 */
4155 	nv_intr_pio_out(nvp, nv_slotp);
4156 
4157 	/*
4158 	 * If nvslot_flags is not set to COMPLETE yet, then processing
4159 	 * is OK so far, so return.  Otherwise, fall into error handling
4160 	 * below.
4161 	 */
4162 	if (nv_slotp->nvslot_flags != NVSLOT_COMPLETE) {
4163 
4164 		return (SATA_TRAN_ACCEPTED);
4165 	}
4166 
4167 	error:
4168 	/*
4169 	 * there was an error so reset the device and complete the packet.
4170 	 */
4171 	nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4172 	nv_complete_io(nvp, spkt, 0);
4173 	nv_reset(nvp);
4174 
4175 	return (SATA_TRAN_PORT_ERROR);
4176 }
4177 
4178 
4179 /*
4180  * start a ATAPI Packet command (PIO data in or out)
4181  */
4182 static int
4183 nv_start_pkt_pio(nv_port_t *nvp, int slot)
4184 {
4185 	nv_slot_t *nv_slotp = &(nvp->nvp_slot[slot]);
4186 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4187 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4188 	sata_cmd_t *satacmd = &spkt->satapkt_cmd;
4189 
4190 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4191 	    "nv_start_pkt_pio: start"));
4192 
4193 	/*
4194 	 * Write the PACKET command to the command register.  Normally
4195 	 * this would be done through nv_program_taskfile_regs().  It
4196 	 * is done here because some values need to be overridden.
4197 	 */
4198 
4199 	/* select the drive */
4200 	nv_put8(cmdhdl, nvp->nvp_drvhd, satacmd->satacmd_device_reg);
4201 
4202 	/* make certain the drive selected */
4203 	if (nv_wait(nvp, SATA_STATUS_DRDY, SATA_STATUS_BSY,
4204 	    NV_SEC2USEC(5), 0) == B_FALSE) {
4205 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4206 		    "nv_start_pkt_pio: drive select failed"));
4207 		return (SATA_TRAN_PORT_ERROR);
4208 	}
4209 
4210 	/*
4211 	 * The command is always sent via PIO, despite whatever the SATA
4212 	 * framework sets in the command.  Overwrite the DMA bit to do this.
4213 	 * Also, overwrite the overlay bit to be safe (it shouldn't be set).
4214 	 */
4215 	nv_put8(cmdhdl, nvp->nvp_feature, 0);	/* deassert DMA and OVL */
4216 
4217 	/* set appropriately by the sata framework */
4218 	nv_put8(cmdhdl, nvp->nvp_hcyl, satacmd->satacmd_lba_high_lsb);
4219 	nv_put8(cmdhdl, nvp->nvp_lcyl, satacmd->satacmd_lba_mid_lsb);
4220 	nv_put8(cmdhdl, nvp->nvp_sect, satacmd->satacmd_lba_low_lsb);
4221 	nv_put8(cmdhdl, nvp->nvp_count, satacmd->satacmd_sec_count_lsb);
4222 
4223 	/* initiate the command by writing the command register last */
4224 	nv_put8(cmdhdl, nvp->nvp_cmd, spkt->satapkt_cmd.satacmd_cmd_reg);
4225 
4226 	/* Give the host controller time to do its thing */
4227 	NV_DELAY_NSEC(400);
4228 
4229 	/*
4230 	 * Wait for the device to indicate that it is ready for the command
4231 	 * ATAPI protocol state - HP0: Check_Status_A
4232 	 */
4233 
4234 	if (nv_wait3(nvp, SATA_STATUS_DRQ, SATA_STATUS_BSY, /* okay */
4235 	    SATA_STATUS_ERR, SATA_STATUS_BSY, /* cmd failed */
4236 	    SATA_STATUS_DF, SATA_STATUS_BSY, /* drive failed */
4237 	    4000000, 0) == B_FALSE) {
4238 		/*
4239 		 * Either an error or device fault occurred or the wait
4240 		 * timed out.  According to the ATAPI protocol, command
4241 		 * completion is also possible.  Other implementations of
4242 		 * this protocol don't handle this last case, so neither
4243 		 * does this code.
4244 		 */
4245 
4246 		if (nv_get8(cmdhdl, nvp->nvp_status) &
4247 		    (SATA_STATUS_ERR | SATA_STATUS_DF)) {
4248 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4249 
4250 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4251 			    "nv_start_pkt_pio: device error (HP0)"));
4252 		} else {
4253 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4254 
4255 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4256 			    "nv_start_pkt_pio: timeout (HP0)"));
4257 		}
4258 
4259 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4260 		nv_complete_io(nvp, spkt, 0);
4261 		nv_reset(nvp);
4262 
4263 		return (SATA_TRAN_PORT_ERROR);
4264 	}
4265 
4266 	/*
4267 	 * Put the ATAPI command in the data register
4268 	 * ATAPI protocol state - HP1: Send_Packet
4269 	 */
4270 
4271 	ddi_rep_put16(cmdhdl, (ushort_t *)spkt->satapkt_cmd.satacmd_acdb,
4272 	    (ushort_t *)nvp->nvp_data,
4273 	    (spkt->satapkt_cmd.satacmd_acdb_len >> 1), DDI_DEV_NO_AUTOINCR);
4274 
4275 	/*
4276 	 * See you in nv_intr_pkt_pio.
4277 	 * ATAPI protocol state - HP3: INTRQ_wait
4278 	 */
4279 
4280 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4281 	    "nv_start_pkt_pio: exiting into HP3"));
4282 
4283 	return (SATA_TRAN_ACCEPTED);
4284 }
4285 
4286 
4287 /*
4288  * Interrupt processing for a non-data ATA command.
4289  */
4290 static void
4291 nv_intr_nodata(nv_port_t *nvp, nv_slot_t *nv_slotp)
4292 {
4293 	uchar_t status;
4294 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4295 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4296 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4297 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4298 
4299 	NVLOG((NVDBG_INTR, nvp->nvp_ctlp, nvp, "nv_intr_nodata entered"));
4300 
4301 	status = nv_get8(cmdhdl, nvp->nvp_status);
4302 
4303 	/*
4304 	 * check for errors
4305 	 */
4306 	if (status & (SATA_STATUS_DF | SATA_STATUS_ERR)) {
4307 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4308 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4309 		    nvp->nvp_altstatus);
4310 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
4311 	} else {
4312 		spkt->satapkt_reason = SATA_PKT_COMPLETED;
4313 	}
4314 
4315 	nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4316 }
4317 
4318 
4319 /*
4320  * ATA command, PIO data in
4321  */
4322 static void
4323 nv_intr_pio_in(nv_port_t *nvp, nv_slot_t *nv_slotp)
4324 {
4325 	uchar_t	status;
4326 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4327 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4328 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4329 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4330 	int count;
4331 
4332 	status = nv_get8(cmdhdl, nvp->nvp_status);
4333 
4334 	if (status & SATA_STATUS_BSY) {
4335 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4336 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4337 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4338 		    nvp->nvp_altstatus);
4339 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
4340 		nv_reset(nvp);
4341 
4342 		return;
4343 	}
4344 
4345 	/*
4346 	 * check for errors
4347 	 */
4348 	if ((status & (SATA_STATUS_DRQ | SATA_STATUS_DF |
4349 	    SATA_STATUS_ERR)) != SATA_STATUS_DRQ) {
4350 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4351 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4352 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4353 
4354 		return;
4355 	}
4356 
4357 	/*
4358 	 * read the next chunk of data (if any)
4359 	 */
4360 	count = min(nv_slotp->nvslot_byte_count, NV_BYTES_PER_SEC);
4361 
4362 	/*
4363 	 * read count bytes
4364 	 */
4365 	ASSERT(count != 0);
4366 
4367 	ddi_rep_get16(cmdhdl, (ushort_t *)nv_slotp->nvslot_v_addr,
4368 	    (ushort_t *)nvp->nvp_data, (count >> 1), DDI_DEV_NO_AUTOINCR);
4369 
4370 	nv_slotp->nvslot_v_addr += count;
4371 	nv_slotp->nvslot_byte_count -= count;
4372 
4373 
4374 	if (nv_slotp->nvslot_byte_count != 0) {
4375 		/*
4376 		 * more to transfer.  Wait for next interrupt.
4377 		 */
4378 		return;
4379 	}
4380 
4381 	/*
4382 	 * transfer is complete. wait for the busy bit to settle.
4383 	 */
4384 	NV_DELAY_NSEC(400);
4385 
4386 	spkt->satapkt_reason = SATA_PKT_COMPLETED;
4387 	nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4388 }
4389 
4390 
4391 /*
4392  * ATA command PIO data out
4393  */
4394 static void
4395 nv_intr_pio_out(nv_port_t *nvp, nv_slot_t *nv_slotp)
4396 {
4397 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4398 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4399 	uchar_t status;
4400 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4401 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4402 	int count;
4403 
4404 	/*
4405 	 * clear the IRQ
4406 	 */
4407 	status = nv_get8(cmdhdl, nvp->nvp_status);
4408 
4409 	if (status & SATA_STATUS_BSY) {
4410 		/*
4411 		 * this should not happen
4412 		 */
4413 		spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4414 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4415 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4416 		    nvp->nvp_altstatus);
4417 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
4418 
4419 		return;
4420 	}
4421 
4422 	/*
4423 	 * check for errors
4424 	 */
4425 	if (status & (SATA_STATUS_DF | SATA_STATUS_ERR)) {
4426 		nv_copy_registers(nvp,  &spkt->satapkt_device, spkt);
4427 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4428 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4429 
4430 		return;
4431 	}
4432 
4433 	/*
4434 	 * this is the condition which signals the drive is
4435 	 * no longer ready to transfer.  Likely that the transfer
4436 	 * completed successfully, but check that byte_count is
4437 	 * zero.
4438 	 */
4439 	if ((status & SATA_STATUS_DRQ) == 0) {
4440 
4441 		if (nv_slotp->nvslot_byte_count == 0) {
4442 			/*
4443 			 * complete; successful transfer
4444 			 */
4445 			spkt->satapkt_reason = SATA_PKT_COMPLETED;
4446 		} else {
4447 			/*
4448 			 * error condition, incomplete transfer
4449 			 */
4450 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4451 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4452 		}
4453 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4454 
4455 		return;
4456 	}
4457 
4458 	/*
4459 	 * write the next chunk of data
4460 	 */
4461 	count = min(nv_slotp->nvslot_byte_count, NV_BYTES_PER_SEC);
4462 
4463 	/*
4464 	 * read or write count bytes
4465 	 */
4466 
4467 	ASSERT(count != 0);
4468 
4469 	ddi_rep_put16(cmdhdl, (ushort_t *)nv_slotp->nvslot_v_addr,
4470 	    (ushort_t *)nvp->nvp_data, (count >> 1), DDI_DEV_NO_AUTOINCR);
4471 
4472 	nv_slotp->nvslot_v_addr += count;
4473 	nv_slotp->nvslot_byte_count -= count;
4474 }
4475 
4476 
4477 /*
4478  * ATAPI PACKET command, PIO in/out interrupt
4479  *
4480  * Under normal circumstances, one of four different interrupt scenarios
4481  * will result in this function being called:
4482  *
4483  * 1. Packet command data transfer
4484  * 2. Packet command completion
4485  * 3. Request sense data transfer
4486  * 4. Request sense command completion
4487  */
4488 static void
4489 nv_intr_pkt_pio(nv_port_t *nvp, nv_slot_t *nv_slotp)
4490 {
4491 	uchar_t	status;
4492 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4493 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4494 	int direction = sata_cmdp->satacmd_flags.sata_data_direction;
4495 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4496 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4497 	uint16_t ctlr_count;
4498 	int count;
4499 
4500 	/* ATAPI protocol state - HP2: Check_Status_B */
4501 
4502 	status = nv_get8(cmdhdl, nvp->nvp_status);
4503 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4504 	    "nv_intr_pkt_pio: status 0x%x", status));
4505 
4506 	if (status & SATA_STATUS_BSY) {
4507 		if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) != 0) {
4508 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4509 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4510 		} else {
4511 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4512 			spkt->satapkt_reason = SATA_PKT_TIMEOUT;
4513 
4514 			nv_reset(nvp);
4515 		}
4516 
4517 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4518 		    "nv_intr_pkt_pio: busy - status 0x%x", status));
4519 
4520 		return;
4521 	}
4522 
4523 	if ((status & SATA_STATUS_DF) != 0) {
4524 		/*
4525 		 * On device fault, just clean up and bail.  Request sense
4526 		 * will just default to its NO SENSE initialized value.
4527 		 */
4528 
4529 		if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) == 0) {
4530 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4531 		}
4532 
4533 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4534 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4535 
4536 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4537 		    nvp->nvp_altstatus);
4538 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl,
4539 		    nvp->nvp_error);
4540 
4541 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4542 		    "nv_intr_pkt_pio: device fault"));
4543 
4544 		return;
4545 	}
4546 
4547 	if ((status & SATA_STATUS_ERR) != 0) {
4548 		/*
4549 		 * On command error, figure out whether we are processing a
4550 		 * request sense.  If so, clean up and bail.  Otherwise,
4551 		 * do a REQUEST SENSE.
4552 		 */
4553 
4554 		if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) == 0) {
4555 			nv_slotp->nvslot_flags |= NVSLOT_RQSENSE;
4556 			if (nv_start_rqsense_pio(nvp, nv_slotp) ==
4557 			    NV_FAILURE) {
4558 				nv_copy_registers(nvp, &spkt->satapkt_device,
4559 				    spkt);
4560 				nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4561 				spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4562 			}
4563 
4564 			sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4565 			    nvp->nvp_altstatus);
4566 			sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl,
4567 			    nvp->nvp_error);
4568 		} else {
4569 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4570 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4571 
4572 			nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4573 		}
4574 
4575 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4576 		    "nv_intr_pkt_pio: error (status 0x%x)", status));
4577 
4578 		return;
4579 	}
4580 
4581 	if ((nv_slotp->nvslot_flags & NVSLOT_RQSENSE) != 0) {
4582 		/*
4583 		 * REQUEST SENSE command processing
4584 		 */
4585 
4586 		if ((status & (SATA_STATUS_DRQ)) != 0) {
4587 			/* ATAPI state - HP4: Transfer_Data */
4588 
4589 			/* read the byte count from the controller */
4590 			ctlr_count =
4591 			    (uint16_t)nv_get8(cmdhdl, nvp->nvp_hcyl) << 8;
4592 			ctlr_count |= nv_get8(cmdhdl, nvp->nvp_lcyl);
4593 
4594 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4595 			    "nv_intr_pkt_pio: ctlr byte count - %d",
4596 			    ctlr_count));
4597 
4598 			if (ctlr_count == 0) {
4599 				/* no data to transfer - some devices do this */
4600 
4601 				spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4602 				nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4603 
4604 				NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4605 				    "nv_intr_pkt_pio: done (no data)"));
4606 
4607 				return;
4608 			}
4609 
4610 			count = min(ctlr_count, SATA_ATAPI_RQSENSE_LEN);
4611 
4612 			/* transfer the data */
4613 			ddi_rep_get16(cmdhdl,
4614 			    (ushort_t *)nv_slotp->nvslot_rqsense_buff,
4615 			    (ushort_t *)nvp->nvp_data, (count >> 1),
4616 			    DDI_DEV_NO_AUTOINCR);
4617 
4618 			/* consume residual bytes */
4619 			ctlr_count -= count;
4620 
4621 			if (ctlr_count > 0) {
4622 				for (; ctlr_count > 0; ctlr_count -= 2)
4623 					(void) ddi_get16(cmdhdl,
4624 					    (ushort_t *)nvp->nvp_data);
4625 			}
4626 
4627 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4628 			    "nv_intr_pkt_pio: transition to HP2"));
4629 		} else {
4630 			/* still in ATAPI state - HP2 */
4631 
4632 			/*
4633 			 * In order to avoid clobbering the rqsense data
4634 			 * set by the SATA framework, the sense data read
4635 			 * from the device is put in a separate buffer and
4636 			 * copied into the packet after the request sense
4637 			 * command successfully completes.
4638 			 */
4639 			bcopy(nv_slotp->nvslot_rqsense_buff,
4640 			    spkt->satapkt_cmd.satacmd_rqsense,
4641 			    SATA_ATAPI_RQSENSE_LEN);
4642 
4643 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4644 			spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4645 
4646 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4647 			    "nv_intr_pkt_pio: request sense done"));
4648 		}
4649 
4650 		return;
4651 	}
4652 
4653 	/*
4654 	 * Normal command processing
4655 	 */
4656 
4657 	if ((status & (SATA_STATUS_DRQ)) != 0) {
4658 		/* ATAPI protocol state - HP4: Transfer_Data */
4659 
4660 		/* read the byte count from the controller */
4661 		ctlr_count = (uint16_t)nv_get8(cmdhdl, nvp->nvp_hcyl) << 8;
4662 		ctlr_count |= nv_get8(cmdhdl, nvp->nvp_lcyl);
4663 
4664 		if (ctlr_count == 0) {
4665 			/* no data to transfer - some devices do this */
4666 
4667 			spkt->satapkt_reason = SATA_PKT_COMPLETED;
4668 			nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4669 
4670 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4671 			    "nv_intr_pkt_pio: done (no data)"));
4672 
4673 			return;
4674 		}
4675 
4676 		count = min(ctlr_count, nv_slotp->nvslot_byte_count);
4677 
4678 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4679 		    "nv_intr_pkt_pio: drive_bytes 0x%x", ctlr_count));
4680 
4681 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4682 		    "nv_intr_pkt_pio: byte_count 0x%x",
4683 		    nv_slotp->nvslot_byte_count));
4684 
4685 		/* transfer the data */
4686 
4687 		if (direction == SATA_DIR_READ) {
4688 			ddi_rep_get16(cmdhdl,
4689 			    (ushort_t *)nv_slotp->nvslot_v_addr,
4690 			    (ushort_t *)nvp->nvp_data, (count >> 1),
4691 			    DDI_DEV_NO_AUTOINCR);
4692 
4693 			ctlr_count -= count;
4694 
4695 			if (ctlr_count > 0) {
4696 				/* consume remainding bytes */
4697 
4698 				for (; ctlr_count > 0;
4699 				    ctlr_count -= 2)
4700 					(void) ddi_get16(cmdhdl,
4701 					    (ushort_t *)nvp->nvp_data);
4702 
4703 				NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4704 				    "nv_intr_pkt_pio: bytes remained"));
4705 			}
4706 		} else {
4707 			ddi_rep_put16(cmdhdl,
4708 			    (ushort_t *)nv_slotp->nvslot_v_addr,
4709 			    (ushort_t *)nvp->nvp_data, (count >> 1),
4710 			    DDI_DEV_NO_AUTOINCR);
4711 		}
4712 
4713 		nv_slotp->nvslot_v_addr += count;
4714 		nv_slotp->nvslot_byte_count -= count;
4715 
4716 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4717 		    "nv_intr_pkt_pio: transition to HP2"));
4718 	} else {
4719 		/* still in ATAPI state - HP2 */
4720 
4721 		spkt->satapkt_reason = SATA_PKT_COMPLETED;
4722 		nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4723 
4724 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
4725 		    "nv_intr_pkt_pio: done"));
4726 	}
4727 }
4728 
4729 
4730 /*
4731  * ATA command, DMA data in/out
4732  */
4733 static void
4734 nv_intr_dma(nv_port_t *nvp, struct nv_slot *nv_slotp)
4735 {
4736 	uchar_t status;
4737 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
4738 	sata_cmd_t *sata_cmdp = &spkt->satapkt_cmd;
4739 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4740 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
4741 	ddi_acc_handle_t bmhdl = nvp->nvp_bm_hdl;
4742 	uchar_t	bmicx;
4743 	uchar_t bm_status;
4744 
4745 	nv_slotp->nvslot_flags = NVSLOT_COMPLETE;
4746 
4747 	/*
4748 	 * stop DMA engine.
4749 	 */
4750 	bmicx = nv_get8(bmhdl, nvp->nvp_bmicx);
4751 	nv_put8(bmhdl, nvp->nvp_bmicx,  bmicx & ~BMICX_SSBM);
4752 
4753 	/*
4754 	 * get the status and clear the IRQ, and check for DMA error
4755 	 */
4756 	status = nv_get8(cmdhdl, nvp->nvp_status);
4757 
4758 	/*
4759 	 * check for drive errors
4760 	 */
4761 	if (status & (SATA_STATUS_DF | SATA_STATUS_ERR)) {
4762 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
4763 		spkt->satapkt_reason = SATA_PKT_DEV_ERROR;
4764 		(void) nv_bm_status_clear(nvp);
4765 
4766 		return;
4767 	}
4768 
4769 	bm_status = nv_bm_status_clear(nvp);
4770 
4771 	/*
4772 	 * check for bus master errors
4773 	 */
4774 	if (bm_status & BMISX_IDERR) {
4775 		spkt->satapkt_reason = SATA_PKT_RESET;
4776 		sata_cmdp->satacmd_status_reg = nv_get8(ctlhdl,
4777 		    nvp->nvp_altstatus);
4778 		sata_cmdp->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
4779 		nv_reset(nvp);
4780 
4781 		return;
4782 	}
4783 
4784 	spkt->satapkt_reason = SATA_PKT_COMPLETED;
4785 }
4786 
4787 
4788 /*
4789  * Wait for a register of a controller to achieve a specific state.
4790  * To return normally, all the bits in the first sub-mask must be ON,
4791  * all the bits in the second sub-mask must be OFF.
4792  * If timeout_usec microseconds pass without the controller achieving
4793  * the desired bit configuration, return TRUE, else FALSE.
4794  *
4795  * hybrid waiting algorithm: if not in interrupt context, busy looping will
4796  * occur for the first 250 us, then switch over to a sleeping wait.
4797  *
4798  */
4799 int
4800 nv_wait(nv_port_t *nvp, uchar_t onbits, uchar_t offbits, uint_t timeout_usec,
4801     int type_wait)
4802 {
4803 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4804 	hrtime_t end, cur, start_sleep, start;
4805 	int first_time = B_TRUE;
4806 	ushort_t val;
4807 
4808 	for (;;) {
4809 		val = nv_get8(ctlhdl, nvp->nvp_altstatus);
4810 
4811 		if ((val & onbits) == onbits && (val & offbits) == 0) {
4812 
4813 			return (B_TRUE);
4814 		}
4815 
4816 		cur = gethrtime();
4817 
4818 		/*
4819 		 * store the start time and calculate the end
4820 		 * time.  also calculate "start_sleep" which is
4821 		 * the point after which the driver will stop busy
4822 		 * waiting and change to sleep waiting.
4823 		 */
4824 		if (first_time) {
4825 			first_time = B_FALSE;
4826 			/*
4827 			 * start and end are in nanoseconds
4828 			 */
4829 			start = cur;
4830 			end = start + timeout_usec * 1000;
4831 			/*
4832 			 * add 1 ms to start
4833 			 */
4834 			start_sleep =  start + 250000;
4835 
4836 			if (servicing_interrupt()) {
4837 				type_wait = NV_NOSLEEP;
4838 			}
4839 		}
4840 
4841 		if (cur > end) {
4842 
4843 			break;
4844 		}
4845 
4846 		if ((type_wait != NV_NOSLEEP) && (cur > start_sleep)) {
4847 #if ! defined(__lock_lint)
4848 			delay(1);
4849 #endif
4850 		} else {
4851 			drv_usecwait(nv_usec_delay);
4852 		}
4853 	}
4854 
4855 	return (B_FALSE);
4856 }
4857 
4858 
4859 /*
4860  * This is a slightly more complicated version that checks
4861  * for error conditions and bails-out rather than looping
4862  * until the timeout is exceeded.
4863  *
4864  * hybrid waiting algorithm: if not in interrupt context, busy looping will
4865  * occur for the first 250 us, then switch over to a sleeping wait.
4866  */
4867 int
4868 nv_wait3(
4869 	nv_port_t	*nvp,
4870 	uchar_t		onbits1,
4871 	uchar_t		offbits1,
4872 	uchar_t		failure_onbits2,
4873 	uchar_t		failure_offbits2,
4874 	uchar_t		failure_onbits3,
4875 	uchar_t		failure_offbits3,
4876 	uint_t		timeout_usec,
4877 	int		type_wait)
4878 {
4879 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
4880 	hrtime_t end, cur, start_sleep, start;
4881 	int first_time = B_TRUE;
4882 	ushort_t val;
4883 
4884 	for (;;) {
4885 		val = nv_get8(ctlhdl, nvp->nvp_altstatus);
4886 
4887 		/*
4888 		 * check for expected condition
4889 		 */
4890 		if ((val & onbits1) == onbits1 && (val & offbits1) == 0) {
4891 
4892 			return (B_TRUE);
4893 		}
4894 
4895 		/*
4896 		 * check for error conditions
4897 		 */
4898 		if ((val & failure_onbits2) == failure_onbits2 &&
4899 		    (val & failure_offbits2) == 0) {
4900 
4901 			return (B_FALSE);
4902 		}
4903 
4904 		if ((val & failure_onbits3) == failure_onbits3 &&
4905 		    (val & failure_offbits3) == 0) {
4906 
4907 			return (B_FALSE);
4908 		}
4909 
4910 		/*
4911 		 * store the start time and calculate the end
4912 		 * time.  also calculate "start_sleep" which is
4913 		 * the point after which the driver will stop busy
4914 		 * waiting and change to sleep waiting.
4915 		 */
4916 		if (first_time) {
4917 			first_time = B_FALSE;
4918 			/*
4919 			 * start and end are in nanoseconds
4920 			 */
4921 			cur = start = gethrtime();
4922 			end = start + timeout_usec * 1000;
4923 			/*
4924 			 * add 1 ms to start
4925 			 */
4926 			start_sleep =  start + 250000;
4927 
4928 			if (servicing_interrupt()) {
4929 				type_wait = NV_NOSLEEP;
4930 			}
4931 		} else {
4932 			cur = gethrtime();
4933 		}
4934 
4935 		if (cur > end) {
4936 
4937 			break;
4938 		}
4939 
4940 		if ((type_wait != NV_NOSLEEP) && (cur > start_sleep)) {
4941 #if ! defined(__lock_lint)
4942 			delay(1);
4943 #endif
4944 		} else {
4945 			drv_usecwait(nv_usec_delay);
4946 		}
4947 	}
4948 
4949 	return (B_FALSE);
4950 }
4951 
4952 
4953 /*
4954  * nv_check_link() checks if a specified link is active device present
4955  * and communicating.
4956  */
4957 static boolean_t
4958 nv_check_link(uint32_t sstatus)
4959 {
4960 	uint8_t det;
4961 
4962 	det = (sstatus & SSTATUS_DET) >> SSTATUS_DET_SHIFT;
4963 
4964 	return (det == SSTATUS_DET_DEVPRE_PHYCOM);
4965 }
4966 
4967 
4968 /*
4969  * nv_port_state_change() reports the state of the port to the
4970  * sata module by calling sata_hba_event_notify().  This
4971  * function is called any time the state of the port is changed
4972  */
4973 static void
4974 nv_port_state_change(nv_port_t *nvp, int event, uint8_t addr_type, int state)
4975 {
4976 	sata_device_t sd;
4977 
4978 	bzero((void *)&sd, sizeof (sata_device_t));
4979 	sd.satadev_rev = SATA_DEVICE_REV;
4980 	nv_copy_registers(nvp, &sd, NULL);
4981 
4982 	/*
4983 	 * When NCQ is implemented sactive and snotific field need to be
4984 	 * updated.
4985 	 */
4986 	sd.satadev_addr.cport = nvp->nvp_port_num;
4987 	sd.satadev_addr.qual = addr_type;
4988 	sd.satadev_state = state;
4989 
4990 	sata_hba_event_notify(nvp->nvp_ctlp->nvc_dip, &sd, event);
4991 }
4992 
4993 
4994 /*
4995  * timeout processing:
4996  *
4997  * Check if any packets have crossed a timeout threshold.  If so, then
4998  * abort the packet.  This function is not NCQ aware.
4999  *
5000  * If reset was invoked in any other place than nv_sata_probe(), then
5001  * monitor for reset completion here.
5002  *
5003  */
5004 static void
5005 nv_timeout(void *arg)
5006 {
5007 	nv_port_t *nvp = arg;
5008 	nv_slot_t *nv_slotp;
5009 	int restart_timeout = B_FALSE;
5010 
5011 	mutex_enter(&nvp->nvp_mutex);
5012 
5013 	/*
5014 	 * If the probe entry point is driving the reset and signature
5015 	 * acquisition, just return.
5016 	 */
5017 	if (nvp->nvp_state & NV_PORT_RESET_PROBE) {
5018 		goto finished;
5019 	}
5020 
5021 	/*
5022 	 * If the port is not in the init state, it likely
5023 	 * means the link was lost while a timeout was active.
5024 	 */
5025 	if ((nvp->nvp_state & NV_PORT_INIT) == 0) {
5026 		NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5027 		    "nv_timeout: port uninitialized"));
5028 
5029 		goto finished;
5030 	}
5031 
5032 	if (nvp->nvp_state & NV_PORT_RESET) {
5033 		ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
5034 		uint32_t sstatus;
5035 
5036 		NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5037 		    "nv_timeout(): port waiting for signature"));
5038 
5039 		sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
5040 
5041 		/*
5042 		 * check for link presence.  If the link remains
5043 		 * missing for more than 2 seconds, send a remove
5044 		 * event and abort signature acquisition.
5045 		 */
5046 		if (nv_check_link(sstatus) == B_FALSE) {
5047 			clock_t e_link_lost = ddi_get_lbolt();
5048 
5049 			if (nvp->nvp_link_lost_time == 0) {
5050 				nvp->nvp_link_lost_time = e_link_lost;
5051 			}
5052 			if (TICK_TO_SEC(e_link_lost -
5053 			    nvp->nvp_link_lost_time) < NV_LINK_LOST_OK) {
5054 				NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5055 				    "probe: intermittent link lost while"
5056 				    " resetting"));
5057 				restart_timeout = B_TRUE;
5058 			} else {
5059 				NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5060 				    "link lost during signature acquisition."
5061 				    "  Giving up"));
5062 				nv_port_state_change(nvp,
5063 				    SATA_EVNT_DEVICE_DETACHED|
5064 				    SATA_EVNT_LINK_LOST,
5065 				    SATA_ADDR_CPORT, 0);
5066 				nvp->nvp_state |= NV_PORT_HOTREMOVED;
5067 				nvp->nvp_state &= ~NV_PORT_RESET;
5068 			}
5069 
5070 			goto finished;
5071 		} else {
5072 
5073 			nvp->nvp_link_lost_time = 0;
5074 		}
5075 
5076 		nv_read_signature(nvp);
5077 
5078 		if (nvp->nvp_signature != 0) {
5079 			if ((nvp->nvp_type == SATA_DTYPE_ATADISK) ||
5080 			    (nvp->nvp_type == SATA_DTYPE_ATAPICD)) {
5081 				nvp->nvp_state |= NV_PORT_RESTORE;
5082 				nv_port_state_change(nvp,
5083 				    SATA_EVNT_DEVICE_RESET,
5084 				    SATA_ADDR_DCPORT,
5085 				    SATA_DSTATE_RESET|SATA_DSTATE_PWR_ACTIVE);
5086 			}
5087 
5088 			goto finished;
5089 		}
5090 
5091 		/*
5092 		 * Reset if more than 5 seconds has passed without
5093 		 * acquiring a signature.
5094 		 */
5095 		if (TICK_TO_SEC(ddi_get_lbolt() - nvp->nvp_reset_time) > 5) {
5096 			nv_reset(nvp);
5097 		}
5098 
5099 		restart_timeout = B_TRUE;
5100 		goto finished;
5101 	}
5102 
5103 
5104 	/*
5105 	 * not yet NCQ aware
5106 	 */
5107 	nv_slotp = &(nvp->nvp_slot[0]);
5108 
5109 	/*
5110 	 * this happens early on before nv_slotp is set
5111 	 * up OR when a device was unexpectedly removed and
5112 	 * there was an active packet.
5113 	 */
5114 	if (nv_slotp == NULL) {
5115 		NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5116 		    "nv_timeout: nv_slotp == NULL"));
5117 
5118 		goto finished;
5119 	}
5120 
5121 	/*
5122 	 * perform timeout checking and processing only if there is an
5123 	 * active packet on the port
5124 	 */
5125 	if (nv_slotp->nvslot_spkt != NULL)  {
5126 		sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
5127 		sata_cmd_t *satacmd = &spkt->satapkt_cmd;
5128 		uint8_t cmd = satacmd->satacmd_cmd_reg;
5129 		uint64_t lba;
5130 
5131 #if ! defined(__lock_lint) && defined(DEBUG)
5132 
5133 		lba = (uint64_t)satacmd->satacmd_lba_low_lsb |
5134 		    ((uint64_t)satacmd->satacmd_lba_mid_lsb << 8) |
5135 		    ((uint64_t)satacmd->satacmd_lba_high_lsb << 16) |
5136 		    ((uint64_t)satacmd->satacmd_lba_low_msb << 24) |
5137 		    ((uint64_t)satacmd->satacmd_lba_mid_msb << 32) |
5138 		    ((uint64_t)satacmd->satacmd_lba_high_msb << 40);
5139 #endif
5140 
5141 		/*
5142 		 * timeout not needed if there is a polling thread
5143 		 */
5144 		if (spkt->satapkt_op_mode & SATA_OPMODE_POLLING) {
5145 
5146 			goto finished;
5147 		}
5148 
5149 		if (TICK_TO_SEC(ddi_get_lbolt() - nv_slotp->nvslot_stime) >
5150 		    spkt->satapkt_time) {
5151 			NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5152 			    "abort timeout: "
5153 			    "nvslot_stime: %ld max ticks till timeout: "
5154 			    "%ld cur_time: %ld cmd=%x lba=%d",
5155 			    nv_slotp->nvslot_stime, drv_usectohz(MICROSEC *
5156 			    spkt->satapkt_time), ddi_get_lbolt(), cmd, lba));
5157 
5158 			(void) nv_abort_active(nvp, spkt, SATA_PKT_TIMEOUT);
5159 
5160 		} else {
5161 			NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp, "nv_timeout:"
5162 			    " still in use so restarting timeout"));
5163 		}
5164 		restart_timeout = B_TRUE;
5165 
5166 	} else {
5167 		/*
5168 		 * there was no active packet, so do not re-enable timeout
5169 		 */
5170 		NVLOG((NVDBG_TIMEOUT, nvp->nvp_ctlp, nvp,
5171 		    "nv_timeout: no active packet so not re-arming timeout"));
5172 	}
5173 
5174 	finished:
5175 
5176 	if (restart_timeout == B_TRUE) {
5177 		nvp->nvp_timeout_id = timeout(nv_timeout, (void *)nvp,
5178 		    drv_usectohz(NV_ONE_SEC));
5179 	} else {
5180 		nvp->nvp_timeout_id = 0;
5181 	}
5182 	mutex_exit(&nvp->nvp_mutex);
5183 }
5184 
5185 
5186 /*
5187  * enable or disable the 3 interrupt types the driver is
5188  * interested in: completion, add and remove.
5189  */
5190 static void
5191 ck804_set_intr(nv_port_t *nvp, int flag)
5192 {
5193 	nv_ctl_t *nvc = nvp->nvp_ctlp;
5194 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
5195 	uchar_t *bar5  = nvc->nvc_bar_addr[5];
5196 	uint8_t intr_bits[] = { CK804_INT_PDEV_HOT|CK804_INT_PDEV_INT,
5197 	    CK804_INT_SDEV_HOT|CK804_INT_SDEV_INT };
5198 	uint8_t clear_all_bits[] = { CK804_INT_PDEV_ALL, CK804_INT_SDEV_ALL };
5199 	uint8_t int_en, port = nvp->nvp_port_num, intr_status;
5200 
5201 	if (flag & NV_INTR_DISABLE_NON_BLOCKING) {
5202 		int_en = nv_get8(bar5_hdl,
5203 		    (uint8_t *)(bar5 + CK804_SATA_INT_EN));
5204 		int_en &= ~intr_bits[port];
5205 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + CK804_SATA_INT_EN),
5206 		    int_en);
5207 		return;
5208 	}
5209 
5210 	ASSERT(mutex_owned(&nvp->nvp_mutex));
5211 
5212 	/*
5213 	 * controller level lock also required since access to an 8-bit
5214 	 * interrupt register is shared between both channels.
5215 	 */
5216 	mutex_enter(&nvc->nvc_mutex);
5217 
5218 	if (flag & NV_INTR_CLEAR_ALL) {
5219 		NVLOG((NVDBG_INTR, nvc, nvp,
5220 		    "ck804_set_intr: NV_INTR_CLEAR_ALL"));
5221 
5222 		intr_status = nv_get8(nvc->nvc_bar_hdl[5],
5223 		    (uint8_t *)(nvc->nvc_ck804_int_status));
5224 
5225 		if (intr_status & clear_all_bits[port]) {
5226 
5227 			nv_put8(nvc->nvc_bar_hdl[5],
5228 			    (uint8_t *)(nvc->nvc_ck804_int_status),
5229 			    clear_all_bits[port]);
5230 
5231 			NVLOG((NVDBG_INTR, nvc, nvp,
5232 			    "interrupt bits cleared %x",
5233 			    intr_status & clear_all_bits[port]));
5234 		}
5235 	}
5236 
5237 	if (flag & NV_INTR_DISABLE) {
5238 		NVLOG((NVDBG_INTR, nvc, nvp,
5239 		    "ck804_set_intr: NV_INTR_DISABLE"));
5240 		int_en = nv_get8(bar5_hdl,
5241 		    (uint8_t *)(bar5 + CK804_SATA_INT_EN));
5242 		int_en &= ~intr_bits[port];
5243 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + CK804_SATA_INT_EN),
5244 		    int_en);
5245 	}
5246 
5247 	if (flag & NV_INTR_ENABLE) {
5248 		NVLOG((NVDBG_INTR, nvc, nvp, "ck804_set_intr: NV_INTR_ENABLE"));
5249 		int_en = nv_get8(bar5_hdl,
5250 		    (uint8_t *)(bar5 + CK804_SATA_INT_EN));
5251 		int_en |= intr_bits[port];
5252 		nv_put8(bar5_hdl, (uint8_t *)(bar5 + CK804_SATA_INT_EN),
5253 		    int_en);
5254 	}
5255 
5256 	mutex_exit(&nvc->nvc_mutex);
5257 }
5258 
5259 
5260 /*
5261  * enable or disable the 3 interrupts the driver is interested in:
5262  * completion interrupt, hot add, and hot remove interrupt.
5263  */
5264 static void
5265 mcp5x_set_intr(nv_port_t *nvp, int flag)
5266 {
5267 	nv_ctl_t *nvc = nvp->nvp_ctlp;
5268 	ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
5269 	uint16_t intr_bits =
5270 	    MCP5X_INT_ADD|MCP5X_INT_REM|MCP5X_INT_COMPLETE;
5271 	uint16_t int_en;
5272 
5273 	if (flag & NV_INTR_DISABLE_NON_BLOCKING) {
5274 		int_en = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_ctl);
5275 		int_en &= ~intr_bits;
5276 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_ctl, int_en);
5277 		return;
5278 	}
5279 
5280 	ASSERT(mutex_owned(&nvp->nvp_mutex));
5281 
5282 	NVLOG((NVDBG_HOT, nvc, nvp, "mcp055_set_intr: enter flag: %d", flag));
5283 
5284 	if (flag & NV_INTR_CLEAR_ALL) {
5285 		NVLOG((NVDBG_INTR, nvc, nvp,
5286 		    "mcp5x_set_intr: NV_INTR_CLEAR_ALL"));
5287 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_status, MCP5X_INT_CLEAR);
5288 	}
5289 
5290 	if (flag & NV_INTR_ENABLE) {
5291 		NVLOG((NVDBG_INTR, nvc, nvp, "mcp5x_set_intr: NV_INTR_ENABLE"));
5292 		int_en = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_ctl);
5293 		int_en |= intr_bits;
5294 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_ctl, int_en);
5295 	}
5296 
5297 	if (flag & NV_INTR_DISABLE) {
5298 		NVLOG((NVDBG_INTR, nvc, nvp,
5299 		    "mcp5x_set_intr: NV_INTR_DISABLE"));
5300 		int_en = nv_get16(bar5_hdl, nvp->nvp_mcp5x_int_ctl);
5301 		int_en &= ~intr_bits;
5302 		nv_put16(bar5_hdl, nvp->nvp_mcp5x_int_ctl, int_en);
5303 	}
5304 }
5305 
5306 
5307 static void
5308 nv_resume(nv_port_t *nvp)
5309 {
5310 	NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp, "nv_resume()"));
5311 
5312 	mutex_enter(&nvp->nvp_mutex);
5313 
5314 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
5315 		mutex_exit(&nvp->nvp_mutex);
5316 		return;
5317 	}
5318 
5319 #ifdef SGPIO_SUPPORT
5320 	nv_sgp_drive_connect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
5321 	    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
5322 #endif
5323 
5324 	/* Enable interrupt */
5325 	(*(nvp->nvp_ctlp->nvc_set_intr))(nvp, NV_INTR_CLEAR_ALL|NV_INTR_ENABLE);
5326 
5327 	/*
5328 	 * power may have been removed to the port and the
5329 	 * drive, and/or a drive may have been added or removed.
5330 	 * Force a reset which will cause a probe and re-establish
5331 	 * any state needed on the drive.
5332 	 */
5333 	nv_reset(nvp);
5334 
5335 	mutex_exit(&nvp->nvp_mutex);
5336 }
5337 
5338 
5339 static void
5340 nv_suspend(nv_port_t *nvp)
5341 {
5342 	NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp, "nv_suspend()"));
5343 
5344 	mutex_enter(&nvp->nvp_mutex);
5345 
5346 #ifdef SGPIO_SUPPORT
5347 	nv_sgp_drive_disconnect(nvp->nvp_ctlp, SGP_CTLR_PORT_TO_DRV(
5348 	    nvp->nvp_ctlp->nvc_ctlr_num, nvp->nvp_port_num));
5349 #endif
5350 
5351 	if (nvp->nvp_state & NV_PORT_INACTIVE) {
5352 		mutex_exit(&nvp->nvp_mutex);
5353 		return;
5354 	}
5355 
5356 	/*
5357 	 * Stop the timeout handler.
5358 	 * (It will be restarted in nv_reset() during nv_resume().)
5359 	 */
5360 	if (nvp->nvp_timeout_id) {
5361 		(void) untimeout(nvp->nvp_timeout_id);
5362 		nvp->nvp_timeout_id = 0;
5363 	}
5364 
5365 	/* Disable interrupt */
5366 	(*(nvp->nvp_ctlp->nvc_set_intr))(nvp,
5367 	    NV_INTR_CLEAR_ALL|NV_INTR_DISABLE);
5368 
5369 	mutex_exit(&nvp->nvp_mutex);
5370 }
5371 
5372 
5373 static void
5374 nv_copy_registers(nv_port_t *nvp, sata_device_t *sd, sata_pkt_t *spkt)
5375 {
5376 	ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
5377 	sata_cmd_t *scmd = &spkt->satapkt_cmd;
5378 	ddi_acc_handle_t ctlhdl = nvp->nvp_ctl_hdl;
5379 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
5380 	uchar_t status;
5381 	struct sata_cmd_flags flags;
5382 
5383 	NVLOG((NVDBG_INIT, nvp->nvp_ctlp, nvp, "nv_copy_registers()"));
5384 
5385 	sd->satadev_scr.sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
5386 	sd->satadev_scr.serror = nv_get32(bar5_hdl, nvp->nvp_serror);
5387 	sd->satadev_scr.scontrol = nv_get32(bar5_hdl, nvp->nvp_sctrl);
5388 
5389 	if (spkt == NULL) {
5390 
5391 		return;
5392 	}
5393 
5394 	/*
5395 	 * in the error case, implicitly set the return of regs needed
5396 	 * for error handling.
5397 	 */
5398 	status = scmd->satacmd_status_reg = nv_get8(ctlhdl,
5399 	    nvp->nvp_altstatus);
5400 
5401 	flags = scmd->satacmd_flags;
5402 
5403 	if (status & SATA_STATUS_ERR) {
5404 		flags.sata_copy_out_lba_low_msb = B_TRUE;
5405 		flags.sata_copy_out_lba_mid_msb = B_TRUE;
5406 		flags.sata_copy_out_lba_high_msb = B_TRUE;
5407 		flags.sata_copy_out_lba_low_lsb = B_TRUE;
5408 		flags.sata_copy_out_lba_mid_lsb = B_TRUE;
5409 		flags.sata_copy_out_lba_high_lsb = B_TRUE;
5410 		flags.sata_copy_out_error_reg = B_TRUE;
5411 		flags.sata_copy_out_sec_count_msb = B_TRUE;
5412 		flags.sata_copy_out_sec_count_lsb = B_TRUE;
5413 		scmd->satacmd_status_reg = status;
5414 	}
5415 
5416 	if (scmd->satacmd_addr_type & ATA_ADDR_LBA48) {
5417 
5418 		/*
5419 		 * set HOB so that high byte will be read
5420 		 */
5421 		nv_put8(ctlhdl, nvp->nvp_devctl, ATDC_HOB|ATDC_D3);
5422 
5423 		/*
5424 		 * get the requested high bytes
5425 		 */
5426 		if (flags.sata_copy_out_sec_count_msb) {
5427 			scmd->satacmd_sec_count_msb =
5428 			    nv_get8(cmdhdl, nvp->nvp_count);
5429 		}
5430 
5431 		if (flags.sata_copy_out_lba_low_msb) {
5432 			scmd->satacmd_lba_low_msb =
5433 			    nv_get8(cmdhdl, nvp->nvp_sect);
5434 		}
5435 
5436 		if (flags.sata_copy_out_lba_mid_msb) {
5437 			scmd->satacmd_lba_mid_msb =
5438 			    nv_get8(cmdhdl, nvp->nvp_lcyl);
5439 		}
5440 
5441 		if (flags.sata_copy_out_lba_high_msb) {
5442 			scmd->satacmd_lba_high_msb =
5443 			    nv_get8(cmdhdl, nvp->nvp_hcyl);
5444 		}
5445 	}
5446 
5447 	/*
5448 	 * disable HOB so that low byte is read
5449 	 */
5450 	nv_put8(ctlhdl, nvp->nvp_devctl, ATDC_D3);
5451 
5452 	/*
5453 	 * get the requested low bytes
5454 	 */
5455 	if (flags.sata_copy_out_sec_count_lsb) {
5456 		scmd->satacmd_sec_count_lsb = nv_get8(cmdhdl, nvp->nvp_count);
5457 	}
5458 
5459 	if (flags.sata_copy_out_lba_low_lsb) {
5460 		scmd->satacmd_lba_low_lsb = nv_get8(cmdhdl, nvp->nvp_sect);
5461 	}
5462 
5463 	if (flags.sata_copy_out_lba_mid_lsb) {
5464 		scmd->satacmd_lba_mid_lsb = nv_get8(cmdhdl, nvp->nvp_lcyl);
5465 	}
5466 
5467 	if (flags.sata_copy_out_lba_high_lsb) {
5468 		scmd->satacmd_lba_high_lsb = nv_get8(cmdhdl, nvp->nvp_hcyl);
5469 	}
5470 
5471 	/*
5472 	 * get the device register if requested
5473 	 */
5474 	if (flags.sata_copy_out_device_reg) {
5475 		scmd->satacmd_device_reg =  nv_get8(cmdhdl, nvp->nvp_drvhd);
5476 	}
5477 
5478 	/*
5479 	 * get the error register if requested
5480 	 */
5481 	if (flags.sata_copy_out_error_reg) {
5482 		scmd->satacmd_error_reg = nv_get8(cmdhdl, nvp->nvp_error);
5483 	}
5484 }
5485 
5486 
5487 /*
5488  * Hot plug and remove interrupts can occur when the device is reset.  Just
5489  * masking the interrupt doesn't always work well because if a
5490  * different interrupt arrives on the other port, the driver can still
5491  * end up checking the state of the other port and discover the hot
5492  * interrupt flag is set even though it was masked.  Checking for recent
5493  * reset activity and then ignoring turns out to be the easiest way.
5494  */
5495 static void
5496 nv_report_add_remove(nv_port_t *nvp, int flags)
5497 {
5498 	ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
5499 	clock_t time_diff = ddi_get_lbolt() - nvp->nvp_reset_time;
5500 	uint32_t sstatus;
5501 	int i;
5502 
5503 	/*
5504 	 * If reset within last 1 second ignore.  This should be
5505 	 * reworked and improved instead of having this somewhat
5506 	 * heavy handed clamping job.
5507 	 */
5508 	if (time_diff < drv_usectohz(NV_ONE_SEC)) {
5509 		NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp, "nv_report_add_remove()"
5510 		    "ignoring plug interrupt was %dms ago",
5511 		    TICK_TO_MSEC(time_diff)));
5512 
5513 		return;
5514 	}
5515 
5516 	/*
5517 	 * wait up to 1ms for sstatus to settle and reflect the true
5518 	 * status of the port.  Failure to do so can create confusion
5519 	 * in probe, where the incorrect sstatus value can still
5520 	 * persist.
5521 	 */
5522 	for (i = 0; i < 1000; i++) {
5523 		sstatus = nv_get32(bar5_hdl, nvp->nvp_sstatus);
5524 
5525 		if ((flags == NV_PORT_HOTREMOVED) &&
5526 		    ((sstatus & SSTATUS_DET_DEVPRE_PHYCOM) !=
5527 		    SSTATUS_DET_DEVPRE_PHYCOM)) {
5528 			break;
5529 		}
5530 
5531 		if ((flags != NV_PORT_HOTREMOVED) &&
5532 		    ((sstatus & SSTATUS_DET_DEVPRE_PHYCOM) ==
5533 		    SSTATUS_DET_DEVPRE_PHYCOM)) {
5534 			break;
5535 		}
5536 		drv_usecwait(1);
5537 	}
5538 
5539 	NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
5540 	    "sstatus took %i us for DEVPRE_PHYCOM to settle", i));
5541 
5542 	if (flags == NV_PORT_HOTREMOVED) {
5543 		NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
5544 		    "nv_report_add_remove() hot removed"));
5545 		nv_port_state_change(nvp,
5546 		    SATA_EVNT_DEVICE_DETACHED,
5547 		    SATA_ADDR_CPORT, 0);
5548 
5549 		nvp->nvp_state |= NV_PORT_HOTREMOVED;
5550 	} else {
5551 		NVLOG((NVDBG_HOT, nvp->nvp_ctlp, nvp,
5552 		    "nv_report_add_remove() hot plugged"));
5553 		nv_port_state_change(nvp, SATA_EVNT_DEVICE_ATTACHED,
5554 		    SATA_ADDR_CPORT, 0);
5555 	}
5556 }
5557 
5558 /*
5559  * Get request sense data and stuff it the command's sense buffer.
5560  * Start a request sense command in order to get sense data to insert
5561  * in the sata packet's rqsense buffer.  The command completion
5562  * processing is in nv_intr_pkt_pio.
5563  *
5564  * The sata framework provides a function to allocate and set-up a
5565  * request sense packet command. The reasons it is not being used here is:
5566  * a) it cannot be called in an interrupt context and this function is
5567  *    called in an interrupt context.
5568  * b) it allocates DMA resources that are not used here because this is
5569  *    implemented using PIO.
5570  *
5571  * If, in the future, this is changed to use DMA, the sata framework should
5572  * be used to allocate and set-up the error retrieval (request sense)
5573  * command.
5574  */
5575 static int
5576 nv_start_rqsense_pio(nv_port_t *nvp, nv_slot_t *nv_slotp)
5577 {
5578 	sata_pkt_t *spkt = nv_slotp->nvslot_spkt;
5579 	sata_cmd_t *satacmd = &spkt->satapkt_cmd;
5580 	ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
5581 	int cdb_len = spkt->satapkt_cmd.satacmd_acdb_len;
5582 
5583 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
5584 	    "nv_start_rqsense_pio: start"));
5585 
5586 	/* clear the local request sense buffer before starting the command */
5587 	bzero(nv_slotp->nvslot_rqsense_buff, SATA_ATAPI_RQSENSE_LEN);
5588 
5589 	/* Write the request sense PACKET command */
5590 
5591 	/* select the drive */
5592 	nv_put8(cmdhdl, nvp->nvp_drvhd, satacmd->satacmd_device_reg);
5593 
5594 	/* make certain the drive selected */
5595 	if (nv_wait(nvp, SATA_STATUS_DRDY, SATA_STATUS_BSY,
5596 	    NV_SEC2USEC(5), 0) == B_FALSE) {
5597 		NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
5598 		    "nv_start_rqsense_pio: drive select failed"));
5599 		return (NV_FAILURE);
5600 	}
5601 
5602 	/* set up the command */
5603 	nv_put8(cmdhdl, nvp->nvp_feature, 0);	/* deassert DMA and OVL */
5604 	nv_put8(cmdhdl, nvp->nvp_hcyl, SATA_ATAPI_MAX_BYTES_PER_DRQ >> 8);
5605 	nv_put8(cmdhdl, nvp->nvp_lcyl, SATA_ATAPI_MAX_BYTES_PER_DRQ & 0xff);
5606 	nv_put8(cmdhdl, nvp->nvp_sect, 0);
5607 	nv_put8(cmdhdl, nvp->nvp_count, 0);	/* no tag */
5608 
5609 	/* initiate the command by writing the command register last */
5610 	nv_put8(cmdhdl, nvp->nvp_cmd, SATAC_PACKET);
5611 
5612 	/* Give the host ctlr time to do its thing, according to ATA/ATAPI */
5613 	NV_DELAY_NSEC(400);
5614 
5615 	/*
5616 	 * Wait for the device to indicate that it is ready for the command
5617 	 * ATAPI protocol state - HP0: Check_Status_A
5618 	 */
5619 
5620 	if (nv_wait3(nvp, SATA_STATUS_DRQ, SATA_STATUS_BSY, /* okay */
5621 	    SATA_STATUS_ERR, SATA_STATUS_BSY, /* cmd failed */
5622 	    SATA_STATUS_DF, SATA_STATUS_BSY, /* drive failed */
5623 	    4000000, 0) == B_FALSE) {
5624 		if (nv_get8(cmdhdl, nvp->nvp_status) &
5625 		    (SATA_STATUS_ERR | SATA_STATUS_DF)) {
5626 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
5627 			    "nv_start_rqsense_pio: rqsense dev error (HP0)"));
5628 		} else {
5629 			NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
5630 			    "nv_start_rqsense_pio: rqsense timeout (HP0)"));
5631 		}
5632 
5633 		nv_copy_registers(nvp, &spkt->satapkt_device, spkt);
5634 		nv_complete_io(nvp, spkt, 0);
5635 		nv_reset(nvp);
5636 
5637 		return (NV_FAILURE);
5638 	}
5639 
5640 	/*
5641 	 * Put the ATAPI command in the data register
5642 	 * ATAPI protocol state - HP1: Send_Packet
5643 	 */
5644 
5645 	ddi_rep_put16(cmdhdl, (ushort_t *)nv_rqsense_cdb,
5646 	    (ushort_t *)nvp->nvp_data,
5647 	    (cdb_len >> 1), DDI_DEV_NO_AUTOINCR);
5648 
5649 	NVLOG((NVDBG_ATAPI, nvp->nvp_ctlp, nvp,
5650 	    "nv_start_rqsense_pio: exiting into HP3"));
5651 
5652 	return (NV_SUCCESS);
5653 }
5654 
5655 /*
5656  * quiesce(9E) entry point.
5657  *
5658  * This function is called when the system is single-threaded at high
5659  * PIL with preemption disabled. Therefore, this function must not be
5660  * blocked.
5661  *
5662  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5663  * DDI_FAILURE indicates an error condition and should almost never happen.
5664  */
5665 static int
5666 nv_quiesce(dev_info_t *dip)
5667 {
5668 	int port, instance = ddi_get_instance(dip);
5669 	nv_ctl_t *nvc;
5670 
5671 	if ((nvc = (nv_ctl_t *)ddi_get_soft_state(nv_statep, instance)) == NULL)
5672 		return (DDI_FAILURE);
5673 
5674 	for (port = 0; port < NV_MAX_PORTS(nvc); port++) {
5675 		nv_port_t *nvp = &(nvc->nvc_port[port]);
5676 		ddi_acc_handle_t cmdhdl = nvp->nvp_cmd_hdl;
5677 		ddi_acc_handle_t bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
5678 		uint32_t sctrl;
5679 
5680 		/*
5681 		 * Stop the controllers from generating interrupts.
5682 		 */
5683 		(*(nvc->nvc_set_intr))(nvp, NV_INTR_DISABLE_NON_BLOCKING);
5684 
5685 		/*
5686 		 * clear signature registers
5687 		 */
5688 		nv_put8(cmdhdl, nvp->nvp_sect, 0);
5689 		nv_put8(cmdhdl, nvp->nvp_lcyl, 0);
5690 		nv_put8(cmdhdl, nvp->nvp_hcyl, 0);
5691 		nv_put8(cmdhdl, nvp->nvp_count, 0);
5692 
5693 		nvp->nvp_signature = 0;
5694 		nvp->nvp_type = 0;
5695 		nvp->nvp_state |= NV_PORT_RESET;
5696 		nvp->nvp_reset_time = ddi_get_lbolt();
5697 		nvp->nvp_link_lost_time = 0;
5698 
5699 		/*
5700 		 * assert reset in PHY by writing a 1 to bit 0 scontrol
5701 		 */
5702 		sctrl = nv_get32(bar5_hdl, nvp->nvp_sctrl);
5703 
5704 		nv_put32(bar5_hdl, nvp->nvp_sctrl,
5705 		    sctrl | SCONTROL_DET_COMRESET);
5706 
5707 		/*
5708 		 * wait 1ms
5709 		 */
5710 		drv_usecwait(1000);
5711 
5712 		/*
5713 		 * de-assert reset in PHY
5714 		 */
5715 		nv_put32(bar5_hdl, nvp->nvp_sctrl, sctrl);
5716 	}
5717 
5718 	return (DDI_SUCCESS);
5719 }
5720 
5721 
5722 #ifdef SGPIO_SUPPORT
5723 /*
5724  * NVIDIA specific SGPIO LED support
5725  * Please refer to the NVIDIA documentation for additional details
5726  */
5727 
5728 /*
5729  * nv_sgp_led_init
5730  * Detect SGPIO support.  If present, initialize.
5731  */
5732 static void
5733 nv_sgp_led_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
5734 {
5735 	uint16_t csrp;		/* SGPIO_CSRP from PCI config space */
5736 	uint32_t cbp;		/* SGPIO_CBP from PCI config space */
5737 	nv_sgp_cmn_t *cmn;	/* shared data structure */
5738 	char tqname[SGPIO_TQ_NAME_LEN];
5739 	extern caddr_t psm_map_phys_new(paddr_t, size_t, int);
5740 
5741 	/*
5742 	 * Initialize with appropriately invalid values in case this function
5743 	 * exits without initializing SGPIO (for example, there is no SGPIO
5744 	 * support).
5745 	 */
5746 	nvc->nvc_sgp_csr = 0;
5747 	nvc->nvc_sgp_cbp = NULL;
5748 
5749 	/*
5750 	 * Only try to initialize SGPIO LED support if this property
5751 	 * indicates it should be.
5752 	 */
5753 	if (ddi_getprop(DDI_DEV_T_ANY, nvc->nvc_dip, DDI_PROP_DONTPASS,
5754 	    "enable-sgpio-leds", 0) != 1)
5755 		return;
5756 
5757 	/*
5758 	 * CK804 can pass the sgpio_detect test even though it does not support
5759 	 * SGPIO, so don't even look at a CK804.
5760 	 */
5761 	if (nvc->nvc_mcp5x_flag != B_TRUE)
5762 		return;
5763 
5764 	/*
5765 	 * The NVIDIA SGPIO support can nominally handle 6 drives.
5766 	 * However, the current implementation only supports 4 drives.
5767 	 * With two drives per controller, that means only look at the
5768 	 * first two controllers.
5769 	 */
5770 	if ((nvc->nvc_ctlr_num != 0) && (nvc->nvc_ctlr_num != 1))
5771 		return;
5772 
5773 	/* confirm that the SGPIO registers are there */
5774 	if (nv_sgp_detect(pci_conf_handle, &csrp, &cbp) != NV_SUCCESS) {
5775 		NVLOG((NVDBG_INIT, nvc, NULL,
5776 		    "SGPIO registers not detected"));
5777 		return;
5778 	}
5779 
5780 	/* save off the SGPIO_CSR I/O address */
5781 	nvc->nvc_sgp_csr = csrp;
5782 
5783 	/* map in Command Block */
5784 	nvc->nvc_sgp_cbp = (nv_sgp_cb_t *)psm_map_phys_new(cbp,
5785 	    sizeof (nv_sgp_cb_t), PROT_READ | PROT_WRITE);
5786 
5787 	/* initialize the SGPIO h/w */
5788 	if (nv_sgp_init(nvc) == NV_FAILURE) {
5789 		nv_cmn_err(CE_WARN, nvc, NULL,
5790 		    "!Unable to initialize SGPIO");
5791 	}
5792 
5793 	if (nvc->nvc_ctlr_num == 0) {
5794 		/*
5795 		 * Controller 0 on the MCP5X/IO55 initialized the SGPIO
5796 		 * and the data that is shared between the controllers.
5797 		 * The clever thing to do would be to let the first controller
5798 		 * that comes up be the one that initializes all this.
5799 		 * However, SGPIO state is not necessarily zeroed between
5800 		 * between OS reboots, so there might be old data there.
5801 		 */
5802 
5803 		/* allocate shared space */
5804 		cmn = (nv_sgp_cmn_t *)kmem_zalloc(sizeof (nv_sgp_cmn_t),
5805 		    KM_SLEEP);
5806 		if (cmn == NULL) {
5807 			nv_cmn_err(CE_WARN, nvc, NULL,
5808 			    "!Failed to allocate shared data");
5809 			return;
5810 		}
5811 
5812 		nvc->nvc_sgp_cmn = cmn;
5813 
5814 		/* initialize the shared data structure */
5815 		cmn->nvs_magic = SGPIO_MAGIC;
5816 		cmn->nvs_in_use = (1 << nvc->nvc_ctlr_num);
5817 		cmn->nvs_connected = 0;
5818 		cmn->nvs_activity = 0;
5819 
5820 		mutex_init(&cmn->nvs_slock, NULL, MUTEX_DRIVER, NULL);
5821 		mutex_init(&cmn->nvs_tlock, NULL, MUTEX_DRIVER, NULL);
5822 		cv_init(&cmn->nvs_cv, NULL, CV_DRIVER, NULL);
5823 
5824 		/* put the address in the SGPIO scratch register */
5825 #if defined(__amd64)
5826 		nvc->nvc_sgp_cbp->sgpio_sr = (uint64_t)cmn;
5827 #else
5828 		nvc->nvc_sgp_cbp->sgpio_sr = (uint32_t)cmn;
5829 #endif
5830 
5831 		/* start the activity LED taskq */
5832 
5833 		/*
5834 		 * The taskq name should be unique and the time
5835 		 */
5836 		(void) snprintf(tqname, SGPIO_TQ_NAME_LEN,
5837 		    "nvSataLed%x", (short)(ddi_get_lbolt() & 0xffff));
5838 		cmn->nvs_taskq = ddi_taskq_create(nvc->nvc_dip, tqname, 1,
5839 		    TASKQ_DEFAULTPRI, 0);
5840 		if (cmn->nvs_taskq == NULL) {
5841 			cmn->nvs_taskq_delay = 0;
5842 			nv_cmn_err(CE_WARN, nvc, NULL,
5843 			    "!Failed to start activity LED taskq");
5844 		} else {
5845 			cmn->nvs_taskq_delay = SGPIO_LOOP_WAIT_USECS;
5846 			(void) ddi_taskq_dispatch(cmn->nvs_taskq,
5847 			    nv_sgp_activity_led_ctl, nvc, DDI_SLEEP);
5848 		}
5849 
5850 	} else if (nvc->nvc_ctlr_num == 1) {
5851 		/*
5852 		 * Controller 1 confirms that SGPIO has been initialized
5853 		 * and, if so, try to get the shared data pointer, otherwise
5854 		 * get the shared data pointer when accessing the data.
5855 		 */
5856 
5857 		if (nvc->nvc_sgp_cbp->sgpio_sr != 0) {
5858 			cmn = (nv_sgp_cmn_t *)nvc->nvc_sgp_cbp->sgpio_sr;
5859 
5860 			/*
5861 			 * It looks like a pointer, but is it the shared data?
5862 			 */
5863 			if (cmn->nvs_magic == SGPIO_MAGIC) {
5864 				nvc->nvc_sgp_cmn = cmn;
5865 
5866 				cmn->nvs_in_use |= (1 << nvc->nvc_ctlr_num);
5867 			}
5868 		}
5869 	}
5870 }
5871 
5872 /*
5873  * nv_sgp_detect
5874  * Read the SGPIO_CSR and SGPIO_CBP values from PCI config space and
5875  * report back whether both were readable.
5876  */
5877 static int
5878 nv_sgp_detect(ddi_acc_handle_t pci_conf_handle, uint16_t *csrpp,
5879     uint32_t *cbpp)
5880 {
5881 	/* get the SGPIO_CSRP */
5882 	*csrpp = pci_config_get16(pci_conf_handle, SGPIO_CSRP);
5883 	if (*csrpp == 0) {
5884 		return (NV_FAILURE);
5885 	}
5886 
5887 	/* SGPIO_CSRP is good, get the SGPIO_CBP */
5888 	*cbpp = pci_config_get32(pci_conf_handle, SGPIO_CBP);
5889 	if (*cbpp == 0) {
5890 		return (NV_FAILURE);
5891 	}
5892 
5893 	/* SGPIO_CBP is good, so we must support SGPIO */
5894 	return (NV_SUCCESS);
5895 }
5896 
5897 /*
5898  * nv_sgp_init
5899  * Initialize SGPIO.  The process is specified by NVIDIA.
5900  */
5901 static int
5902 nv_sgp_init(nv_ctl_t *nvc)
5903 {
5904 	uint32_t status;
5905 	int drive_count;
5906 
5907 	/*
5908 	 * if SGPIO status set to SGPIO_STATE_RESET, logic has been
5909 	 * reset and needs to be initialized.
5910 	 */
5911 	status = nv_sgp_csr_read(nvc);
5912 	if (SGPIO_CSR_SSTAT(status) == SGPIO_STATE_RESET) {
5913 		if (nv_sgp_init_cmd(nvc) == NV_FAILURE) {
5914 			/* reset and try again */
5915 			nv_sgp_reset(nvc);
5916 			if (nv_sgp_init_cmd(nvc) == NV_FAILURE) {
5917 				NVLOG((NVDBG_ALWAYS, nvc, NULL,
5918 				    "SGPIO init failed"));
5919 				return (NV_FAILURE);
5920 			}
5921 		}
5922 	}
5923 
5924 	/*
5925 	 * NVIDIA recommends reading the supported drive count even
5926 	 * though they also indicate that it is 4 at this time.
5927 	 */
5928 	drive_count = SGP_CR0_DRV_CNT(nvc->nvc_sgp_cbp->sgpio_cr0);
5929 	if (drive_count != SGPIO_DRV_CNT_VALUE) {
5930 		NVLOG((NVDBG_ALWAYS, nvc, NULL,
5931 		    "SGPIO reported undocumented drive count - %d",
5932 		    drive_count));
5933 	}
5934 
5935 	NVLOG((NVDBG_INIT, nvc, NULL,
5936 	    "initialized ctlr: %d csr: 0x%08x",
5937 	    nvc->nvc_ctlr_num, nvc->nvc_sgp_csr));
5938 
5939 	return (NV_SUCCESS);
5940 }
5941 
5942 static void
5943 nv_sgp_reset(nv_ctl_t *nvc)
5944 {
5945 	uint32_t cmd;
5946 	uint32_t status;
5947 
5948 	cmd = SGPIO_CMD_RESET;
5949 	nv_sgp_csr_write(nvc, cmd);
5950 
5951 	status = nv_sgp_csr_read(nvc);
5952 
5953 	if (SGPIO_CSR_CSTAT(status) != SGPIO_CMD_OK) {
5954 		NVLOG((NVDBG_ALWAYS, nvc, NULL,
5955 		    "SGPIO reset failed: CSR - 0x%x", status));
5956 	}
5957 }
5958 
5959 static int
5960 nv_sgp_init_cmd(nv_ctl_t *nvc)
5961 {
5962 	int seq;
5963 	hrtime_t start, end;
5964 	uint32_t status;
5965 	uint32_t cmd;
5966 
5967 	/* get the old sequence value */
5968 	status = nv_sgp_csr_read(nvc);
5969 	seq = SGPIO_CSR_SEQ(status);
5970 
5971 	/* check the state since we have the info anyway */
5972 	if (SGPIO_CSR_SSTAT(status) != SGPIO_STATE_OPERATIONAL) {
5973 		NVLOG((NVDBG_ALWAYS, nvc, NULL,
5974 		    "SGPIO init_cmd: state not operational"));
5975 	}
5976 
5977 	/* issue command */
5978 	cmd = SGPIO_CSR_CMD_SET(SGPIO_CMD_READ_PARAMS);
5979 	nv_sgp_csr_write(nvc, cmd);
5980 
5981 	DTRACE_PROBE2(sgpio__cmd, int, cmd, int, status);
5982 
5983 	/* poll for completion */
5984 	start = gethrtime();
5985 	end = start + NV_SGP_CMD_TIMEOUT;
5986 	for (;;) {
5987 		status = nv_sgp_csr_read(nvc);
5988 
5989 		/* break on error */
5990 		if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_ERROR)
5991 			break;
5992 
5993 		/* break on command completion (seq changed) */
5994 		if (SGPIO_CSR_SEQ(status) != seq) {
5995 			if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_ACTIVE) {
5996 				NVLOG((NVDBG_ALWAYS, nvc, NULL,
5997 				    "Seq changed but command still active"));
5998 			}
5999 
6000 			break;
6001 		}
6002 
6003 		/* Wait 400 ns and try again */
6004 		NV_DELAY_NSEC(400);
6005 
6006 		if (gethrtime() > end)
6007 			break;
6008 	}
6009 
6010 	if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_OK)
6011 		return (NV_SUCCESS);
6012 
6013 	return (NV_FAILURE);
6014 }
6015 
6016 static int
6017 nv_sgp_check_set_cmn(nv_ctl_t *nvc)
6018 {
6019 	nv_sgp_cmn_t *cmn;
6020 
6021 	if (nvc->nvc_sgp_cbp == NULL)
6022 		return (NV_FAILURE);
6023 
6024 	/* check to see if Scratch Register is set */
6025 	if (nvc->nvc_sgp_cbp->sgpio_sr != 0) {
6026 		nvc->nvc_sgp_cmn =
6027 		    (nv_sgp_cmn_t *)nvc->nvc_sgp_cbp->sgpio_sr;
6028 
6029 		if (nvc->nvc_sgp_cmn->nvs_magic != SGPIO_MAGIC)
6030 			return (NV_FAILURE);
6031 
6032 		cmn = nvc->nvc_sgp_cmn;
6033 
6034 		mutex_enter(&cmn->nvs_slock);
6035 		cmn->nvs_in_use |= (1 << nvc->nvc_ctlr_num);
6036 		mutex_exit(&cmn->nvs_slock);
6037 
6038 		return (NV_SUCCESS);
6039 	}
6040 
6041 	return (NV_FAILURE);
6042 }
6043 
6044 /*
6045  * nv_sgp_csr_read
6046  * This is just a 32-bit port read from the value that was obtained from the
6047  * PCI config space.
6048  *
6049  * XXX It was advised to use the in[bwl] function for this, even though they
6050  * are obsolete interfaces.
6051  */
6052 static int
6053 nv_sgp_csr_read(nv_ctl_t *nvc)
6054 {
6055 	return (inl(nvc->nvc_sgp_csr));
6056 }
6057 
6058 /*
6059  * nv_sgp_csr_write
6060  * This is just a 32-bit I/O port write.  The port number was obtained from
6061  * the PCI config space.
6062  *
6063  * XXX It was advised to use the out[bwl] function for this, even though they
6064  * are obsolete interfaces.
6065  */
6066 static void
6067 nv_sgp_csr_write(nv_ctl_t *nvc, uint32_t val)
6068 {
6069 	outl(nvc->nvc_sgp_csr, val);
6070 }
6071 
6072 /*
6073  * nv_sgp_write_data
6074  * Cause SGPIO to send Command Block data
6075  */
6076 static int
6077 nv_sgp_write_data(nv_ctl_t *nvc)
6078 {
6079 	hrtime_t start, end;
6080 	uint32_t status;
6081 	uint32_t cmd;
6082 
6083 	/* issue command */
6084 	cmd = SGPIO_CSR_CMD_SET(SGPIO_CMD_WRITE_DATA);
6085 	nv_sgp_csr_write(nvc, cmd);
6086 
6087 	/* poll for completion */
6088 	start = gethrtime();
6089 	end = start + NV_SGP_CMD_TIMEOUT;
6090 	for (;;) {
6091 		status = nv_sgp_csr_read(nvc);
6092 
6093 		/* break on error completion */
6094 		if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_ERROR)
6095 			break;
6096 
6097 		/* break on successful completion */
6098 		if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_OK)
6099 			break;
6100 
6101 		/* Wait 400 ns and try again */
6102 		NV_DELAY_NSEC(400);
6103 
6104 		if (gethrtime() > end)
6105 			break;
6106 	}
6107 
6108 	if (SGPIO_CSR_CSTAT(status) == SGPIO_CMD_OK)
6109 		return (NV_SUCCESS);
6110 
6111 	return (NV_FAILURE);
6112 }
6113 
6114 /*
6115  * nv_sgp_activity_led_ctl
6116  * This is run as a taskq.  It wakes up at a fixed interval and checks to
6117  * see if any of the activity LEDs need to be changed.
6118  */
6119 static void
6120 nv_sgp_activity_led_ctl(void *arg)
6121 {
6122 	nv_ctl_t *nvc = (nv_ctl_t *)arg;
6123 	nv_sgp_cmn_t *cmn;
6124 	volatile nv_sgp_cb_t *cbp;
6125 	clock_t ticks;
6126 	uint8_t drv_leds;
6127 	uint32_t old_leds;
6128 	uint32_t new_led_state;
6129 	int i;
6130 
6131 	cmn = nvc->nvc_sgp_cmn;
6132 	cbp = nvc->nvc_sgp_cbp;
6133 
6134 	do {
6135 		/* save off the old state of all of the LEDs */
6136 		old_leds = cbp->sgpio0_tr;
6137 
6138 		DTRACE_PROBE3(sgpio__activity__state,
6139 		    int, cmn->nvs_connected, int, cmn->nvs_activity,
6140 		    int, old_leds);
6141 
6142 		new_led_state = 0;
6143 
6144 		/* for each drive */
6145 		for (i = 0; i < SGPIO_DRV_CNT_VALUE; i++) {
6146 
6147 			/* get the current state of the LEDs for the drive */
6148 			drv_leds = SGPIO0_TR_DRV(old_leds, i);
6149 
6150 			if ((cmn->nvs_connected & (1 << i)) == 0) {
6151 				/* if not connected, turn off activity */
6152 				drv_leds &= ~TR_ACTIVE_MASK;
6153 				drv_leds |= TR_ACTIVE_SET(TR_ACTIVE_DISABLE);
6154 
6155 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6156 				new_led_state |=
6157 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6158 
6159 				continue;
6160 			}
6161 
6162 			if ((cmn->nvs_activity & (1 << i)) == 0) {
6163 				/* connected, but not active */
6164 				drv_leds &= ~TR_ACTIVE_MASK;
6165 				drv_leds |= TR_ACTIVE_SET(TR_ACTIVE_ENABLE);
6166 
6167 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6168 				new_led_state |=
6169 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6170 
6171 				continue;
6172 			}
6173 
6174 			/* connected and active */
6175 			if (TR_ACTIVE(drv_leds) == TR_ACTIVE_ENABLE) {
6176 				/* was enabled, so disable */
6177 				drv_leds &= ~TR_ACTIVE_MASK;
6178 				drv_leds |=
6179 				    TR_ACTIVE_SET(TR_ACTIVE_DISABLE);
6180 
6181 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6182 				new_led_state |=
6183 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6184 			} else {
6185 				/* was disabled, so enable */
6186 				drv_leds &= ~TR_ACTIVE_MASK;
6187 				drv_leds |= TR_ACTIVE_SET(TR_ACTIVE_ENABLE);
6188 
6189 				new_led_state &= SGPIO0_TR_DRV_CLR(i);
6190 				new_led_state |=
6191 				    SGPIO0_TR_DRV_SET(drv_leds, i);
6192 			}
6193 
6194 			/*
6195 			 * clear the activity bit
6196 			 * if there is drive activity again within the
6197 			 * loop interval (now 1/16 second), nvs_activity
6198 			 * will be reset and the "connected and active"
6199 			 * condition above will cause the LED to blink
6200 			 * off and on at the loop interval rate.  The
6201 			 * rate may be increased (interval shortened) as
6202 			 * long as it is not more than 1/30 second.
6203 			 */
6204 			mutex_enter(&cmn->nvs_slock);
6205 			cmn->nvs_activity &= ~(1 << i);
6206 			mutex_exit(&cmn->nvs_slock);
6207 		}
6208 
6209 		DTRACE_PROBE1(sgpio__new__led__state, int, new_led_state);
6210 
6211 		/* write out LED values */
6212 
6213 		mutex_enter(&cmn->nvs_slock);
6214 		cbp->sgpio0_tr &= ~TR_ACTIVE_MASK_ALL;
6215 		cbp->sgpio0_tr |= new_led_state;
6216 		cbp->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
6217 		mutex_exit(&cmn->nvs_slock);
6218 
6219 		if (nv_sgp_write_data(nvc) == NV_FAILURE) {
6220 			NVLOG((NVDBG_VERBOSE, nvc, NULL,
6221 			    "nv_sgp_write_data failure updating active LED"));
6222 		}
6223 
6224 		/* now rest for the interval */
6225 		mutex_enter(&cmn->nvs_tlock);
6226 		ticks = drv_usectohz(cmn->nvs_taskq_delay);
6227 		if (ticks > 0)
6228 			(void) cv_timedwait(&cmn->nvs_cv, &cmn->nvs_tlock,
6229 			    ddi_get_lbolt() + ticks);
6230 		mutex_exit(&cmn->nvs_tlock);
6231 	} while (ticks > 0);
6232 }
6233 
6234 /*
6235  * nv_sgp_drive_connect
6236  * Set the flag used to indicate that the drive is attached to the HBA.
6237  * Used to let the taskq know that it should turn the Activity LED on.
6238  */
6239 static void
6240 nv_sgp_drive_connect(nv_ctl_t *nvc, int drive)
6241 {
6242 	nv_sgp_cmn_t *cmn;
6243 
6244 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6245 		return;
6246 	cmn = nvc->nvc_sgp_cmn;
6247 
6248 	mutex_enter(&cmn->nvs_slock);
6249 	cmn->nvs_connected |= (1 << drive);
6250 	mutex_exit(&cmn->nvs_slock);
6251 }
6252 
6253 /*
6254  * nv_sgp_drive_disconnect
6255  * Clears the flag used to indicate that the drive is no longer attached
6256  * to the HBA.  Used to let the taskq know that it should turn the
6257  * Activity LED off.  The flag that indicates that the drive is in use is
6258  * also cleared.
6259  */
6260 static void
6261 nv_sgp_drive_disconnect(nv_ctl_t *nvc, int drive)
6262 {
6263 	nv_sgp_cmn_t *cmn;
6264 
6265 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6266 		return;
6267 	cmn = nvc->nvc_sgp_cmn;
6268 
6269 	mutex_enter(&cmn->nvs_slock);
6270 	cmn->nvs_connected &= ~(1 << drive);
6271 	cmn->nvs_activity &= ~(1 << drive);
6272 	mutex_exit(&cmn->nvs_slock);
6273 }
6274 
6275 /*
6276  * nv_sgp_drive_active
6277  * Sets the flag used to indicate that the drive has been accessed and the
6278  * LED should be flicked off, then on.  It is cleared at a fixed time
6279  * interval by the LED taskq and set by the sata command start.
6280  */
6281 static void
6282 nv_sgp_drive_active(nv_ctl_t *nvc, int drive)
6283 {
6284 	nv_sgp_cmn_t *cmn;
6285 
6286 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6287 		return;
6288 	cmn = nvc->nvc_sgp_cmn;
6289 
6290 	DTRACE_PROBE1(sgpio__active, int, drive);
6291 
6292 	mutex_enter(&cmn->nvs_slock);
6293 	cmn->nvs_connected |= (1 << drive);
6294 	cmn->nvs_activity |= (1 << drive);
6295 	mutex_exit(&cmn->nvs_slock);
6296 }
6297 
6298 
6299 /*
6300  * nv_sgp_locate
6301  * Turns the Locate/OK2RM LED off or on for a particular drive.  State is
6302  * maintained in the SGPIO Command Block.
6303  */
6304 static void
6305 nv_sgp_locate(nv_ctl_t *nvc, int drive, int value)
6306 {
6307 	uint8_t leds;
6308 	volatile nv_sgp_cb_t *cb = nvc->nvc_sgp_cbp;
6309 	nv_sgp_cmn_t *cmn;
6310 
6311 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6312 		return;
6313 	cmn = nvc->nvc_sgp_cmn;
6314 
6315 	if ((drive < 0) || (drive >= SGPIO_DRV_CNT_VALUE))
6316 		return;
6317 
6318 	DTRACE_PROBE2(sgpio__locate, int, drive, int, value);
6319 
6320 	mutex_enter(&cmn->nvs_slock);
6321 
6322 	leds = SGPIO0_TR_DRV(cb->sgpio0_tr, drive);
6323 
6324 	leds &= ~TR_LOCATE_MASK;
6325 	leds |= TR_LOCATE_SET(value);
6326 
6327 	cb->sgpio0_tr &= SGPIO0_TR_DRV_CLR(drive);
6328 	cb->sgpio0_tr |= SGPIO0_TR_DRV_SET(leds, drive);
6329 
6330 	cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
6331 
6332 	mutex_exit(&cmn->nvs_slock);
6333 
6334 	if (nv_sgp_write_data(nvc) == NV_FAILURE) {
6335 		nv_cmn_err(CE_WARN, nvc, NULL,
6336 		    "!nv_sgp_write_data failure updating OK2RM/Locate LED");
6337 	}
6338 }
6339 
6340 /*
6341  * nv_sgp_error
6342  * Turns the Error/Failure LED off or on for a particular drive.  State is
6343  * maintained in the SGPIO Command Block.
6344  */
6345 static void
6346 nv_sgp_error(nv_ctl_t *nvc, int drive, int value)
6347 {
6348 	uint8_t leds;
6349 	volatile nv_sgp_cb_t *cb = nvc->nvc_sgp_cbp;
6350 	nv_sgp_cmn_t *cmn;
6351 
6352 	if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE)
6353 		return;
6354 	cmn = nvc->nvc_sgp_cmn;
6355 
6356 	if ((drive < 0) || (drive >= SGPIO_DRV_CNT_VALUE))
6357 		return;
6358 
6359 	DTRACE_PROBE2(sgpio__error, int, drive, int, value);
6360 
6361 	mutex_enter(&cmn->nvs_slock);
6362 
6363 	leds = SGPIO0_TR_DRV(cb->sgpio0_tr, drive);
6364 
6365 	leds &= ~TR_ERROR_MASK;
6366 	leds |= TR_ERROR_SET(value);
6367 
6368 	cb->sgpio0_tr &= SGPIO0_TR_DRV_CLR(drive);
6369 	cb->sgpio0_tr |= SGPIO0_TR_DRV_SET(leds, drive);
6370 
6371 	cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
6372 
6373 	mutex_exit(&cmn->nvs_slock);
6374 
6375 	if (nv_sgp_write_data(nvc) == NV_FAILURE) {
6376 		nv_cmn_err(CE_WARN, nvc, NULL,
6377 		    "!nv_sgp_write_data failure updating Fail/Error LED");
6378 	}
6379 }
6380 
6381 static void
6382 nv_sgp_cleanup(nv_ctl_t *nvc)
6383 {
6384 	int drive;
6385 	uint8_t drv_leds;
6386 	uint32_t led_state;
6387 	volatile nv_sgp_cb_t *cb = nvc->nvc_sgp_cbp;
6388 	nv_sgp_cmn_t *cmn = nvc->nvc_sgp_cmn;
6389 	extern void psm_unmap_phys(caddr_t, size_t);
6390 
6391 	/*
6392 	 * If the SGPIO command block isn't mapped or the shared data
6393 	 * structure isn't present in this instance, there isn't much that
6394 	 * can be cleaned up.
6395 	 */
6396 	if ((cb == NULL) || (cmn == NULL))
6397 		return;
6398 
6399 	/* turn off activity LEDs for this controller */
6400 	drv_leds = TR_ACTIVE_SET(TR_ACTIVE_DISABLE);
6401 
6402 	/* get the existing LED state */
6403 	led_state = cb->sgpio0_tr;
6404 
6405 	/* turn off port 0 */
6406 	drive = SGP_CTLR_PORT_TO_DRV(nvc->nvc_ctlr_num, 0);
6407 	led_state &= SGPIO0_TR_DRV_CLR(drive);
6408 	led_state |= SGPIO0_TR_DRV_SET(drv_leds, drive);
6409 
6410 	/* turn off port 1 */
6411 	drive = SGP_CTLR_PORT_TO_DRV(nvc->nvc_ctlr_num, 1);
6412 	led_state &= SGPIO0_TR_DRV_CLR(drive);
6413 	led_state |= SGPIO0_TR_DRV_SET(drv_leds, drive);
6414 
6415 	/* set the new led state, which should turn off this ctrl's LEDs */
6416 	cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
6417 	(void) nv_sgp_write_data(nvc);
6418 
6419 	/* clear the controller's in use bit */
6420 	mutex_enter(&cmn->nvs_slock);
6421 	cmn->nvs_in_use &= ~(1 << nvc->nvc_ctlr_num);
6422 	mutex_exit(&cmn->nvs_slock);
6423 
6424 	if (cmn->nvs_in_use == 0) {
6425 		/* if all "in use" bits cleared, take everything down */
6426 
6427 		if (cmn->nvs_taskq != NULL) {
6428 			/* allow activity taskq to exit */
6429 			cmn->nvs_taskq_delay = 0;
6430 			cv_broadcast(&cmn->nvs_cv);
6431 
6432 			/* then destroy it */
6433 			ddi_taskq_destroy(cmn->nvs_taskq);
6434 		}
6435 
6436 		/* turn off all of the LEDs */
6437 		cb->sgpio0_tr = 0;
6438 		cb->sgpio_cr0 = SGP_CR0_ENABLE_MASK;
6439 		(void) nv_sgp_write_data(nvc);
6440 
6441 		cb->sgpio_sr = NULL;
6442 
6443 		/* free resources */
6444 		cv_destroy(&cmn->nvs_cv);
6445 		mutex_destroy(&cmn->nvs_tlock);
6446 		mutex_destroy(&cmn->nvs_slock);
6447 
6448 		kmem_free(nvc->nvc_sgp_cmn, sizeof (nv_sgp_cmn_t));
6449 	}
6450 
6451 	nvc->nvc_sgp_cmn = NULL;
6452 
6453 	/* unmap the SGPIO Command Block */
6454 	psm_unmap_phys((caddr_t)nvc->nvc_sgp_cbp, sizeof (nv_sgp_cb_t));
6455 }
6456 #endif	/* SGPIO_SUPPORT */
6457