xref: /illumos-gate/usr/src/uts/common/io/rsm/rsm.c (revision b1e2e3fb17324e9ddf43db264a0c64da7756d9e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2012 Milan Jurik. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  * Copyright 2017 Joyent, Inc.
27  */
28 
29 
30 /*
31  * Overview of the RSM Kernel Agent:
32  * ---------------------------------
33  *
34  * rsm.c constitutes the implementation of the RSM kernel agent. The RSM
35  * kernel agent is a pseudo device driver which makes use of the RSMPI
36  * interface on behalf of the RSMAPI user library.
37  *
38  * The kernel agent functionality can be categorized into the following
39  * components:
40  * 1. Driver Infrastructure
41  * 2. Export/Import Segment Management
42  * 3. Internal resource allocation/deallocation
43  *
44  * The driver infrastructure includes the basic module loading entry points
45  * like _init, _info, _fini to load, unload and report information about
46  * the driver module. The driver infrastructure also includes the
47  * autoconfiguration entry points namely, attach, detach and getinfo for
48  * the device autoconfiguration.
49  *
50  * The kernel agent is a pseudo character device driver and exports
51  * a cb_ops structure which defines the driver entry points for character
52  * device access. This includes the open and close entry points. The
53  * other entry points provided include ioctl, devmap and segmap and chpoll.
54  * read and write entry points are not used since the device is memory
55  * mapped. Also ddi_prop_op is used for the prop_op entry point.
56  *
57  * The ioctl entry point supports a number of commands, which are used by
58  * the RSMAPI library in order to export and import segments. These
59  * commands include commands for binding and rebinding the physical pages
60  * allocated to the virtual address range, publishing the export segment,
61  * unpublishing and republishing an export segment, creating an
62  * import segment and a virtual connection from this import segment to
63  * an export segment, performing scatter-gather data transfer, barrier
64  * operations.
65  *
66  *
67  * Export and Import segments:
68  * ---------------------------
69  *
70  * In order to create an RSM export segment a process allocates a range in its
71  * virtual address space for the segment using standard Solaris interfaces.
72  * The process then calls RSMAPI, which in turn makes an ioctl call to the
73  * RSM kernel agent for an allocation of physical memory pages and for
74  * creation of the export segment by binding these pages to the virtual
75  * address range. These pages are locked in memory so that remote accesses
76  * are always applied to the correct page. Then the RSM segment is published,
77  * again via RSMAPI making an ioctl to the RSM kernel agent, and a segment id
78  * is assigned to it.
79  *
80  * In order to import a published RSM segment, RSMAPI creates an import
81  * segment and forms a virtual connection across the interconnect to the
82  * export segment, via an ioctl into the kernel agent with the connect
83  * command. The import segment setup is completed by mapping the
84  * local device memory into the importers virtual address space. The
85  * mapping of the import segment is handled by the segmap/devmap
86  * infrastructure described as follows.
87  *
88  * Segmap and Devmap interfaces:
89  *
90  * The RSM kernel agent allows device memory to be directly accessed by user
91  * threads via memory mapping. In order to do so, the RSM kernel agent
92  * supports the devmap and segmap entry points.
93  *
94  * The segmap entry point(rsm_segmap) is responsible for setting up a memory
95  * mapping as requested by mmap. The devmap entry point(rsm_devmap) is
96  * responsible for exporting the device memory to the user applications.
97  * rsm_segmap calls RSMPI rsm_map to allocate device memory. Then the
98  * control is transfered to the devmap_setup call which calls rsm_devmap.
99  *
100  * rsm_devmap validates the user mapping to the device or kernel memory
101  * and passes the information to the system for setting up the mapping. The
102  * actual setting up of the mapping is done by devmap_devmem_setup(for
103  * device memory) or devmap_umem_setup(for kernel memory). Callbacks are
104  * registered for device context management via the devmap_devmem_setup
105  * or devmap_umem_setup calls. The callbacks are rsmmap_map, rsmmap_unmap,
106  * rsmmap_access, rsmmap_dup. The callbacks are called when a new mapping
107  * is created, a mapping is freed, a mapping is accessed or an existing
108  * mapping is duplicated respectively. These callbacks allow the RSM kernel
109  * agent to maintain state information associated with the mappings.
110  * The state information is mainly in the form of a cookie list for the import
111  * segment for which mapping has been done.
112  *
113  * Forced disconnect of import segments:
114  *
115  * When an exported segment is unpublished, the exporter sends a forced
116  * disconnect message to all its importers. The importer segments are
117  * unloaded and disconnected. This involves unloading the original
118  * mappings and remapping to a preallocated kernel trash page. This is
119  * done by devmap_umem_remap. The trash/dummy page is a kernel page,
120  * preallocated by the kernel agent during attach using ddi_umem_alloc with
121  * the DDI_UMEM_TRASH flag set. This avoids a core dump in the application
122  * due to unloading of the original mappings.
123  *
124  * Additionally every segment has a mapping generation number associated
125  * with it. This is an entry in the barrier generation page, created
126  * during attach time. This mapping generation number for the import
127  * segments is incremented on a force disconnect to notify the application
128  * of the force disconnect. On this notification, the application needs
129  * to reconnect the segment to establish a new legitimate mapping.
130  *
131  *
132  * Locks used in the kernel agent:
133  * -------------------------------
134  *
135  * The kernel agent uses a variety of mutexes and condition variables for
136  * mutual exclusion of the shared data structures and for synchronization
137  * between the various threads. Some of the locks are described as follows.
138  *
139  * Each resource structure, which represents either an export/import segment
140  * has a lock associated with it. The lock is the resource mutex, rsmrc_lock.
141  * This is used directly by RSMRC_LOCK and RSMRC_UNLOCK macros and in the
142  * rsmseglock_acquire and rsmseglock_release macros. An additional
143  * lock called the rsmsi_lock is used for the shared import data structure
144  * that is relevant for resources representing import segments. There is
145  * also a condition variable associated with the resource called s_cv. This
146  * is used to wait for events like the segment state change etc.
147  *
148  * The resource structures are allocated from a pool of resource structures,
149  * called rsm_resource. This pool is protected via a reader-writer lock,
150  * called rsmrc_lock.
151  *
152  * There are two separate hash tables, one for the export segments and
153  * one for the import segments. The export segments are inserted into the
154  * export segment hash table only after they have been published and the
155  * import segments are inserted in the import segments list only after they
156  * have successfully connected to an exported segment. These tables are
157  * protected via reader-writer locks.
158  *
159  * Debug Support in the kernel agent:
160  * ----------------------------------
161  *
162  * Debugging support in the kernel agent is provided by the following
163  * macros.
164  *
165  * DBG_PRINTF((category, level, message)) is a macro which logs a debug
166  * message to the kernel agents debug buffer, rsmka_dbg. This debug buffer
167  * can be viewed in kmdb as *rsmka_dbg/s. The message is logged based
168  * on the definition of the category and level. All messages that belong to
169  * the specified category(rsmdbg_category) and are of an equal or greater
170  * severity than the specified level(rsmdbg_level) are logged. The message
171  * is a string which uses the same formatting rules as the strings used in
172  * printf.
173  *
174  * The category defines which component of the kernel agent has logged this
175  * message. There are a number of categories that have been defined such as
176  * RSM_KERNEL_AGENT, RSM_OPS, RSM_IMPORT, RSM_EXPORT etc. A macro,
177  * DBG_ADDCATEGORY is used to add in another category to the currently
178  * specified category value so that the component using this new category
179  * can also effectively log debug messages. Thus, the category of a specific
180  * message is some combination of the available categories and we can define
181  * sub-categories if we want a finer level of granularity.
182  *
183  * The level defines the severity of the message. Different level values are
184  * defined, with RSM_ERR being the most severe and RSM_DEBUG_VERBOSE being
185  * the least severe(debug level is 0).
186  *
187  * DBG_DEFINE and DBG_DEFINE_STR are macros provided to declare a debug
188  * variable or a string respectively.
189  *
190  *
191  * NOTES:
192  *
193  * Special Fork and Exec Handling:
194  * -------------------------------
195  *
196  * The backing physical pages of an exported segment are always locked down.
197  * Thus, there are two cases in which a process having exported segments
198  * will cause a cpu to hang: (1) the process invokes exec; (2) a process
199  * forks and invokes exit before the duped file descriptors for the export
200  * segments are closed in the child process. The hang is caused because the
201  * address space release algorithm in Solaris VM subsystem is based on a
202  * non-blocking loop which does not terminate while segments are locked
203  * down. In addition to this, Solaris VM subsystem lacks a callback
204  * mechanism to the rsm kernel agent to allow unlocking these export
205  * segment pages.
206  *
207  * In order to circumvent this problem, the kernel agent does the following.
208  * The Solaris VM subsystem keeps memory segments in increasing order of
209  * virtual addressses. Thus a special page(special_exit_offset) is allocated
210  * by the kernel agent and is mmapped into the heap area of the process address
211  * space(the mmap is done by the RSMAPI library). During the mmap processing
212  * of this special page by the devmap infrastructure, a callback(the same
213  * devmap context management callbacks discussed above) is registered for an
214  * unmap.
215  *
216  * As discussed above, this page is processed by the Solaris address space
217  * release code before any of the exported segments pages(which are allocated
218  * from high memory). It is during this processing that the unmap callback gets
219  * called and this callback is responsible for force destroying the exported
220  * segments and thus eliminating the problem of locked pages.
221  *
222  * Flow-control:
223  * ------------
224  *
225  * A credit based flow control algorithm is used for messages whose
226  * processing cannot be done in the interrupt context because it might
227  * involve invoking rsmpi calls, or might take a long time to complete
228  * or might need to allocate resources. The algorithm operates on a per
229  * path basis. To send a message the pathend needs to have a credit and
230  * it consumes one for every message that is flow controlled. On the
231  * receiving pathend the message is put on a msgbuf_queue and a task is
232  * dispatched on the worker thread - recv_taskq where it is processed.
233  * After processing the message, the receiving pathend dequeues the message,
234  * and if it has processed > RSMIPC_LOTSFREE_MSGBUFS messages sends
235  * credits to the sender pathend.
236  *
237  * RSM_DRTEST:
238  * -----------
239  *
240  * This is used to enable the DR testing using a test driver on test
241  * platforms which do not supported DR.
242  *
243  */
244 
245 #include <sys/types.h>
246 #include <sys/param.h>
247 #include <sys/user.h>
248 #include <sys/buf.h>
249 #include <sys/systm.h>
250 #include <sys/cred.h>
251 #include <sys/vm.h>
252 #include <sys/uio.h>
253 #include <vm/seg.h>
254 #include <vm/page.h>
255 #include <sys/stat.h>
256 
257 #include <sys/time.h>
258 #include <sys/errno.h>
259 
260 #include <sys/file.h>
261 #include <sys/uio.h>
262 #include <sys/proc.h>
263 #include <sys/mman.h>
264 #include <sys/open.h>
265 #include <sys/atomic.h>
266 #include <sys/mem_config.h>
267 
268 
269 #include <sys/ddi.h>
270 #include <sys/devops.h>
271 #include <sys/ddidevmap.h>
272 #include <sys/sunddi.h>
273 #include <sys/esunddi.h>
274 #include <sys/ddi_impldefs.h>
275 
276 #include <sys/kmem.h>
277 #include <sys/conf.h>
278 #include <sys/devops.h>
279 #include <sys/ddi_impldefs.h>
280 
281 #include <sys/modctl.h>
282 
283 #include <sys/policy.h>
284 #include <sys/types.h>
285 #include <sys/conf.h>
286 #include <sys/param.h>
287 
288 #include <sys/taskq.h>
289 
290 #include <sys/rsm/rsm_common.h>
291 #include <sys/rsm/rsmapi_common.h>
292 #include <sys/rsm/rsm.h>
293 #include <rsm_in.h>
294 #include <sys/rsm/rsmka_path_int.h>
295 #include <sys/rsm/rsmpi.h>
296 
297 #include <sys/modctl.h>
298 #include <sys/debug.h>
299 
300 #include <sys/tuneable.h>
301 
302 #ifdef	RSM_DRTEST
303 extern int rsm_kphysm_setup_func_register(kphysm_setup_vector_t *vec,
304 		void *arg);
305 extern void rsm_kphysm_setup_func_unregister(kphysm_setup_vector_t *vec,
306 		void *arg);
307 #endif
308 
309 extern void dbg_printf(int category, int level, char *fmt, ...);
310 extern void rsmka_pathmanager_init();
311 extern void rsmka_pathmanager_cleanup();
312 extern void rele_sendq_token(sendq_token_t *);
313 extern rsm_addr_t get_remote_hwaddr(adapter_t *, rsm_node_id_t);
314 extern rsm_node_id_t get_remote_nodeid(adapter_t *, rsm_addr_t);
315 extern int rsmka_topology_ioctl(caddr_t, int, int);
316 
317 extern pri_t maxclsyspri;
318 extern work_queue_t work_queue;
319 extern kmutex_t ipc_info_lock;
320 extern kmutex_t ipc_info_cvlock;
321 extern kcondvar_t ipc_info_cv;
322 extern kmutex_t path_hold_cvlock;
323 extern kcondvar_t path_hold_cv;
324 
325 extern kmutex_t rsmka_buf_lock;
326 
327 extern path_t *rsm_find_path(char *, int, rsm_addr_t);
328 extern adapter_t *rsmka_lookup_adapter(char *, int);
329 extern sendq_token_t *rsmka_get_sendq_token(rsm_node_id_t, sendq_token_t *);
330 extern boolean_t rsmka_do_path_active(path_t *, int);
331 extern boolean_t rsmka_check_node_alive(rsm_node_id_t);
332 extern void rsmka_release_adapter(adapter_t *);
333 extern void rsmka_enqueue_msgbuf(path_t *path, void *data);
334 extern void rsmka_dequeue_msgbuf(path_t *path);
335 extern msgbuf_elem_t *rsmka_gethead_msgbuf(path_t *path);
336 /* lint -w2 */
337 
338 static int rsm_open(dev_t *, int, int, cred_t *);
339 static int rsm_close(dev_t, int, int, cred_t *);
340 static int rsm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
341     cred_t *credp, int *rvalp);
342 static int rsm_devmap(dev_t, devmap_cookie_t, offset_t, size_t, size_t *,
343     uint_t);
344 static int rsm_segmap(dev_t, off_t, struct as *, caddr_t *, off_t, uint_t,
345     uint_t, uint_t, cred_t *);
346 static int rsm_chpoll(dev_t dev, short events, int anyyet, short *reventsp,
347     struct pollhead **phpp);
348 
349 static int rsm_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
350 static int rsm_attach(dev_info_t *, ddi_attach_cmd_t);
351 static int rsm_detach(dev_info_t *, ddi_detach_cmd_t);
352 
353 static int rsmipc_send(rsm_node_id_t, rsmipc_request_t *, rsmipc_reply_t *);
354 static void rsm_force_unload(rsm_node_id_t, rsm_memseg_id_t, boolean_t);
355 static void rsm_send_importer_disconnects(rsm_memseg_id_t, rsm_node_id_t);
356 static void rsm_send_republish(rsm_memseg_id_t, rsmapi_access_entry_t *, int,
357 				rsm_permission_t);
358 static void rsm_export_force_destroy(ddi_umem_cookie_t *);
359 static void rsmacl_free(rsmapi_access_entry_t *, int);
360 static void rsmpiacl_free(rsm_access_entry_t *, int);
361 
362 static int rsm_inc_pgcnt(pgcnt_t);
363 static void rsm_dec_pgcnt(pgcnt_t);
364 static void rsm_free_mapinfo(rsm_mapinfo_t *mapinfop);
365 static rsm_mapinfo_t *rsm_get_mapinfo(rsmseg_t *, off_t, size_t, off_t *,
366 					size_t *);
367 static void exporter_quiesce();
368 static void rsmseg_suspend(rsmseg_t *, int *);
369 static void rsmsegshare_suspend(rsmseg_t *);
370 static int rsmseg_resume(rsmseg_t *, void **);
371 static int rsmsegshare_resume(rsmseg_t *);
372 
373 static struct cb_ops rsm_cb_ops = {
374 	rsm_open,		/* open */
375 	rsm_close,		/* close */
376 	nodev,			/* strategy */
377 	nodev,			/* print */
378 	nodev,			/* dump */
379 	nodev,			/* read */
380 	nodev,			/* write */
381 	rsm_ioctl,		/* ioctl */
382 	rsm_devmap,		/* devmap */
383 	NULL,			/* mmap */
384 	rsm_segmap,		/* segmap */
385 	rsm_chpoll,		/* poll */
386 	ddi_prop_op,		/* cb_prop_op */
387 	0,			/* streamtab  */
388 	D_NEW|D_MP|D_DEVMAP,	/* Driver compatibility flag */
389 	0,
390 	0,
391 	0
392 };
393 
394 static struct dev_ops rsm_ops = {
395 	DEVO_REV,		/* devo_rev, */
396 	0,			/* refcnt  */
397 	rsm_info,		/* get_dev_info */
398 	nulldev,		/* identify */
399 	nulldev,		/* probe */
400 	rsm_attach,		/* attach */
401 	rsm_detach,		/* detach */
402 	nodev,			/* reset */
403 	&rsm_cb_ops,		/* driver operations */
404 	(struct bus_ops *)0,	/* bus operations */
405 	0,
406 	ddi_quiesce_not_needed,		/* quiesce */
407 };
408 
409 /*
410  * Module linkage information for the kernel.
411  */
412 
413 static struct modldrv modldrv = {
414 	&mod_driverops, /* Type of module.  This one is a pseudo driver */
415 	"Remote Shared Memory Driver",
416 	&rsm_ops,	/* driver ops */
417 };
418 
419 static struct modlinkage modlinkage = {
420 	MODREV_1,
421 	(void *)&modldrv,
422 	0,
423 	0,
424 	0
425 };
426 
427 static void rsm_dr_callback_post_add(void *arg, pgcnt_t delta);
428 static int rsm_dr_callback_pre_del(void *arg, pgcnt_t delta);
429 static void rsm_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled);
430 
431 static kphysm_setup_vector_t rsm_dr_callback_vec = {
432 	KPHYSM_SETUP_VECTOR_VERSION,
433 	rsm_dr_callback_post_add,
434 	rsm_dr_callback_pre_del,
435 	rsm_dr_callback_post_del
436 };
437 
438 /* This flag can be changed to 0 to help with PIT testing */
439 int rsmka_modunloadok = 1;
440 int no_reply_cnt = 0;
441 
442 uint64_t rsm_ctrlmsg_errcnt = 0;
443 uint64_t rsm_ipcsend_errcnt = 0;
444 
445 #define	MAX_NODES 64
446 
447 static struct rsm_driver_data rsm_drv_data;
448 static struct rsmresource_table rsm_resource;
449 
450 static void rsmresource_insert(minor_t, rsmresource_t *, rsm_resource_type_t);
451 static void rsmresource_destroy(void);
452 static int rsmresource_alloc(minor_t *);
453 static rsmresource_t *rsmresource_free(minor_t rnum);
454 static int rsm_closeconnection(rsmseg_t *seg, void **cookie);
455 static int rsm_unpublish(rsmseg_t *seg, int mode);
456 static int rsm_unbind(rsmseg_t *seg);
457 static uint_t rsmhash(rsm_memseg_id_t key);
458 static void rsmhash_alloc(rsmhash_table_t *rhash, int size);
459 static void rsmhash_free(rsmhash_table_t *rhash, int size);
460 static void *rsmhash_getbkt(rsmhash_table_t *rhash, uint_t hashval);
461 static void **rsmhash_bktaddr(rsmhash_table_t *rhash, uint_t hashval);
462 static int rsm_send_notimporting(rsm_node_id_t dest, rsm_memseg_id_t segid,
463 					void *cookie);
464 int rsm_disconnect(rsmseg_t *seg);
465 void rsmseg_unload(rsmseg_t *);
466 void rsm_suspend_complete(rsm_node_id_t src_node, int flag);
467 
468 rsm_intr_hand_ret_t rsm_srv_func(rsm_controller_object_t *chd,
469     rsm_intr_q_op_t opcode, rsm_addr_t src,
470     void *data, size_t size, rsm_intr_hand_arg_t arg);
471 
472 static void rsm_intr_callback(void *, rsm_addr_t, rsm_intr_hand_arg_t);
473 
474 rsm_node_id_t my_nodeid;
475 
476 /* cookie, va, offsets and length for the barrier */
477 static rsm_gnum_t		*bar_va;
478 static ddi_umem_cookie_t	bar_cookie;
479 static off_t			barrier_offset;
480 static size_t			barrier_size;
481 static int			max_segs;
482 
483 /* cookie for the trash memory */
484 static ddi_umem_cookie_t	remap_cookie;
485 
486 static rsm_memseg_id_t	rsm_nextavail_segmentid;
487 
488 extern taskq_t *work_taskq;
489 extern char *taskq_name;
490 
491 static dev_info_t *rsm_dip;	/* private copy of devinfo pointer */
492 
493 static rsmhash_table_t rsm_export_segs;		/* list of exported segs */
494 rsmhash_table_t rsm_import_segs;		/* list of imported segs */
495 static rsmhash_table_t rsm_event_queues;	/* list of event queues */
496 
497 static	rsm_ipc_t	rsm_ipc;		/* ipc info */
498 
499 /* list of nodes to which RSMIPC_MSG_SUSPEND has been sent */
500 static list_head_t	rsm_suspend_list;
501 
502 /* list of descriptors for remote importers */
503 static importers_table_t importer_list;
504 
505 kmutex_t rsm_suspend_cvlock;
506 kcondvar_t rsm_suspend_cv;
507 
508 static kmutex_t rsm_lock;
509 
510 adapter_t loopback_adapter;
511 rsm_controller_attr_t loopback_attr;
512 
513 int rsmipc_send_controlmsg(path_t *path, int msgtype);
514 
515 void rsmka_init_loopback();
516 
517 int rsmka_null_seg_create(
518     rsm_controller_handle_t,
519     rsm_memseg_export_handle_t *,
520     size_t,
521     uint_t,
522     rsm_memory_local_t *,
523     rsm_resource_callback_t,
524     rsm_resource_callback_arg_t);
525 
526 int rsmka_null_seg_destroy(
527     rsm_memseg_export_handle_t);
528 
529 int rsmka_null_bind(
530     rsm_memseg_export_handle_t,
531     off_t,
532     rsm_memory_local_t *,
533     rsm_resource_callback_t,
534     rsm_resource_callback_arg_t);
535 
536 int rsmka_null_unbind(
537     rsm_memseg_export_handle_t,
538     off_t,
539     size_t);
540 
541 int rsmka_null_rebind(
542     rsm_memseg_export_handle_t,
543     off_t,
544     rsm_memory_local_t *,
545     rsm_resource_callback_t,
546     rsm_resource_callback_arg_t);
547 
548 int rsmka_null_publish(
549     rsm_memseg_export_handle_t,
550     rsm_access_entry_t [],
551     uint_t,
552     rsm_memseg_id_t,
553     rsm_resource_callback_t,
554     rsm_resource_callback_arg_t);
555 
556 
557 int rsmka_null_republish(
558     rsm_memseg_export_handle_t,
559     rsm_access_entry_t [],
560     uint_t,
561     rsm_resource_callback_t,
562     rsm_resource_callback_arg_t);
563 
564 int rsmka_null_unpublish(
565     rsm_memseg_export_handle_t);
566 
567 rsm_ops_t null_rsmpi_ops;
568 
569 /*
570  * data and locks to keep track of total amount of exported memory
571  */
572 static	pgcnt_t		rsm_pgcnt;
573 static	pgcnt_t		rsm_pgcnt_max;	/* max allowed */
574 static	kmutex_t	rsm_pgcnt_lock;
575 
576 static	int		rsm_enable_dr;
577 
578 static	char		loopback_str[] = "loopback";
579 
580 int		rsm_hash_size;
581 
582 /*
583  * The locking model is as follows:
584  *
585  * Local operations:
586  *		find resource - grab reader lock on resouce list
587  *		insert rc     - grab writer lock
588  *		delete rc     - grab writer lock and resource mutex
589  *		read/write    - no lock
590  *
591  * Remote invocations:
592  *		find resource - grab read lock and resource mutex
593  *
594  * State:
595  *		resource state - grab resource mutex
596  */
597 
598 int
599 _init(void)
600 {
601 	int e;
602 
603 	e = mod_install(&modlinkage);
604 	if (e != 0) {
605 		return (e);
606 	}
607 
608 	mutex_init(&rsm_lock, NULL, MUTEX_DRIVER, NULL);
609 
610 	mutex_init(&rsmka_buf_lock, NULL, MUTEX_DEFAULT, NULL);
611 
612 
613 	rw_init(&rsm_resource.rsmrc_lock, NULL, RW_DRIVER, NULL);
614 
615 	rsm_hash_size = RSM_HASHSZ;
616 
617 	rw_init(&rsm_export_segs.rsmhash_rw, NULL, RW_DRIVER, NULL);
618 
619 	rw_init(&rsm_import_segs.rsmhash_rw, NULL, RW_DRIVER, NULL);
620 
621 	mutex_init(&importer_list.lock, NULL, MUTEX_DRIVER, NULL);
622 
623 	mutex_init(&rsm_ipc.lock, NULL, MUTEX_DRIVER, NULL);
624 	cv_init(&rsm_ipc.cv, NULL, CV_DRIVER, 0);
625 
626 	mutex_init(&rsm_suspend_cvlock, NULL, MUTEX_DRIVER, NULL);
627 	cv_init(&rsm_suspend_cv, NULL, CV_DRIVER, 0);
628 
629 	mutex_init(&rsm_drv_data.drv_lock, NULL, MUTEX_DRIVER, NULL);
630 	cv_init(&rsm_drv_data.drv_cv, NULL, CV_DRIVER, 0);
631 
632 	rsm_ipc.count = RSMIPC_SZ;
633 	rsm_ipc.wanted = 0;
634 	rsm_ipc.sequence = 0;
635 
636 	(void) mutex_init(&rsm_pgcnt_lock, NULL, MUTEX_DRIVER, NULL);
637 
638 	for (e = 0; e < RSMIPC_SZ; e++) {
639 		rsmipc_slot_t *slot = &rsm_ipc.slots[e];
640 
641 		RSMIPC_SET(slot, RSMIPC_FREE);
642 		mutex_init(&slot->rsmipc_lock, NULL, MUTEX_DRIVER, NULL);
643 		cv_init(&slot->rsmipc_cv, NULL, CV_DRIVER, 0);
644 	}
645 
646 	/*
647 	 * Initialize the suspend message list
648 	 */
649 	rsm_suspend_list.list_head = NULL;
650 	mutex_init(&rsm_suspend_list.list_lock, NULL, MUTEX_DRIVER, NULL);
651 
652 	/*
653 	 * It is assumed here that configuration data is available
654 	 * during system boot since _init may be called at that time.
655 	 */
656 
657 	rsmka_pathmanager_init();
658 
659 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE,
660 	    "rsm: _init done\n"));
661 
662 	return (DDI_SUCCESS);
663 
664 }
665 
666 int
667 _info(struct modinfo *modinfop)
668 {
669 
670 	return (mod_info(&modlinkage, modinfop));
671 }
672 
673 int
674 _fini(void)
675 {
676 	int e;
677 
678 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE,
679 	    "rsm: _fini enter\n"));
680 
681 	/*
682 	 * The rsmka_modunloadok flag is simply used to help with
683 	 * the PIT testing. Make this flag 0 to disallow modunload.
684 	 */
685 	if (rsmka_modunloadok == 0)
686 		return (EBUSY);
687 
688 	/* rsm_detach will be called as a result of mod_remove */
689 	e = mod_remove(&modlinkage);
690 	if (e) {
691 		DBG_PRINTF((RSM_KERNEL_AGENT, RSM_ERR,
692 		    "Unable to fini RSM %x\n", e));
693 		return (e);
694 	}
695 
696 	rsmka_pathmanager_cleanup();
697 
698 	rw_destroy(&rsm_resource.rsmrc_lock);
699 
700 	rw_destroy(&rsm_export_segs.rsmhash_rw);
701 	rw_destroy(&rsm_import_segs.rsmhash_rw);
702 	rw_destroy(&rsm_event_queues.rsmhash_rw);
703 
704 	mutex_destroy(&importer_list.lock);
705 
706 	mutex_destroy(&rsm_ipc.lock);
707 	cv_destroy(&rsm_ipc.cv);
708 
709 	(void) mutex_destroy(&rsm_suspend_list.list_lock);
710 
711 	(void) mutex_destroy(&rsm_pgcnt_lock);
712 
713 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE, "_fini done\n"));
714 
715 	return (DDI_SUCCESS);
716 
717 }
718 
719 /*ARGSUSED1*/
720 static int
721 rsm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
722 {
723 	minor_t	rnum;
724 	int	percent;
725 	int	ret;
726 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
727 
728 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_attach enter\n"));
729 
730 	switch (cmd) {
731 	case DDI_ATTACH:
732 		break;
733 	case DDI_RESUME:
734 	default:
735 		DBG_PRINTF((category, RSM_ERR,
736 		    "rsm:rsm_attach - cmd not supported\n"));
737 		return (DDI_FAILURE);
738 	}
739 
740 	if (rsm_dip != NULL) {
741 		DBG_PRINTF((category, RSM_ERR,
742 		    "rsm:rsm_attach - supports only "
743 		    "one instance\n"));
744 		return (DDI_FAILURE);
745 	}
746 
747 	rsm_enable_dr = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
748 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
749 	    "enable-dynamic-reconfiguration", 1);
750 
751 	mutex_enter(&rsm_drv_data.drv_lock);
752 	rsm_drv_data.drv_state = RSM_DRV_REG_PROCESSING;
753 	mutex_exit(&rsm_drv_data.drv_lock);
754 
755 	if (rsm_enable_dr) {
756 #ifdef	RSM_DRTEST
757 		ret = rsm_kphysm_setup_func_register(&rsm_dr_callback_vec,
758 		    (void *)NULL);
759 #else
760 		ret = kphysm_setup_func_register(&rsm_dr_callback_vec,
761 		    (void *)NULL);
762 #endif
763 		if (ret != 0) {
764 			mutex_exit(&rsm_drv_data.drv_lock);
765 			cmn_err(CE_CONT, "rsm:rsm_attach - Dynamic "
766 			    "reconfiguration setup failed\n");
767 			return (DDI_FAILURE);
768 		}
769 	}
770 
771 	mutex_enter(&rsm_drv_data.drv_lock);
772 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_REG_PROCESSING);
773 	rsm_drv_data.drv_state = RSM_DRV_OK;
774 	cv_broadcast(&rsm_drv_data.drv_cv);
775 	mutex_exit(&rsm_drv_data.drv_lock);
776 
777 	/*
778 	 * page_list_read_lock();
779 	 * xx_setup();
780 	 * page_list_read_unlock();
781 	 */
782 
783 	rsm_hash_size = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
784 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
785 	    "segment-hashtable-size", RSM_HASHSZ);
786 	if (rsm_hash_size == 0) {
787 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
788 		    "rsm: segment-hashtable-size in rsm.conf "
789 		    "must be greater than 0, defaulting to 128\n"));
790 		rsm_hash_size = RSM_HASHSZ;
791 	}
792 
793 	DBG_PRINTF((category, RSM_DEBUG, "rsm_attach rsm_hash_size: %d\n",
794 	    rsm_hash_size));
795 
796 	rsm_pgcnt = 0;
797 
798 	percent = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
799 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
800 	    "max-exported-memory", 0);
801 	if (percent < 0) {
802 		DBG_PRINTF((category, RSM_ERR,
803 		    "rsm:rsm_attach not enough memory available to "
804 		    "export, or max-exported-memory set incorrectly.\n"));
805 		return (DDI_FAILURE);
806 	}
807 	/* 0 indicates no fixed upper limit. maxmem is the max	*/
808 	/* available pageable physical mem			*/
809 	rsm_pgcnt_max = (percent*maxmem)/100;
810 
811 	if (rsm_pgcnt_max > 0) {
812 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
813 		    "rsm: Available physical memory = %lu pages, "
814 		    "Max exportable memory = %lu pages",
815 		    maxmem, rsm_pgcnt_max));
816 	}
817 
818 	/*
819 	 * Create minor number
820 	 */
821 	if (rsmresource_alloc(&rnum) != RSM_SUCCESS) {
822 		DBG_PRINTF((category, RSM_ERR,
823 		    "rsm: rsm_attach - Unable to get "
824 		    "minor number\n"));
825 		return (DDI_FAILURE);
826 	}
827 
828 	ASSERT(rnum == RSM_DRIVER_MINOR);
829 
830 	if (ddi_create_minor_node(devi, DRIVER_NAME, S_IFCHR,
831 	    rnum, DDI_PSEUDO, 0) == DDI_FAILURE) {
832 		DBG_PRINTF((category, RSM_ERR,
833 		    "rsm: rsm_attach - unable to allocate "
834 		    "minor #\n"));
835 		return (DDI_FAILURE);
836 	}
837 
838 	rsm_dip = devi;
839 	/*
840 	 * Allocate the hashtables
841 	 */
842 	rsmhash_alloc(&rsm_export_segs, rsm_hash_size);
843 	rsmhash_alloc(&rsm_import_segs, rsm_hash_size);
844 
845 	importer_list.bucket = (importing_token_t **)
846 	    kmem_zalloc(rsm_hash_size * sizeof (importing_token_t *), KM_SLEEP);
847 
848 	/*
849 	 * Allocate a resource struct
850 	 */
851 	{
852 		rsmresource_t *p;
853 
854 		p = (rsmresource_t *)kmem_zalloc(sizeof (*p), KM_SLEEP);
855 
856 		mutex_init(&p->rsmrc_lock, NULL, MUTEX_DRIVER, (void *) NULL);
857 
858 		rsmresource_insert(rnum, p, RSM_RESOURCE_BAR);
859 	}
860 
861 	/*
862 	 * Based on the rsm.conf property max-segments, determine the maximum
863 	 * number of segments that can be exported/imported. This is then used
864 	 * to determine the size for barrier failure pages.
865 	 */
866 
867 	/* First get the max number of segments from the rsm.conf file */
868 	max_segs = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
869 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
870 	    "max-segments", 0);
871 	if (max_segs == 0) {
872 		/* Use default number of segments */
873 		max_segs = RSM_MAX_NUM_SEG;
874 	}
875 
876 	/*
877 	 * Based on the max number of segments allowed, determine the barrier
878 	 * page size. add 1 to max_segs since the barrier page itself uses
879 	 * a slot
880 	 */
881 	barrier_size = roundup((max_segs + 1) * sizeof (rsm_gnum_t),
882 	    PAGESIZE);
883 
884 	/*
885 	 * allocation of the barrier failure page
886 	 */
887 	bar_va = (rsm_gnum_t *)ddi_umem_alloc(barrier_size,
888 	    DDI_UMEM_SLEEP, &bar_cookie);
889 
890 	/*
891 	 * Set the barrier_offset
892 	 */
893 	barrier_offset = 0;
894 
895 	/*
896 	 * Allocate a trash memory and get a cookie for it. This will be used
897 	 * when remapping segments during force disconnects. Allocate the
898 	 * trash memory with a large size which is page aligned.
899 	 */
900 	(void) ddi_umem_alloc((size_t)TRASHSIZE,
901 	    DDI_UMEM_TRASH, &remap_cookie);
902 
903 	/* initialize user segment id allocation variable */
904 	rsm_nextavail_segmentid = (rsm_memseg_id_t)RSM_USER_APP_ID_BASE;
905 
906 	/*
907 	 * initialize the null_rsmpi_ops vector and the loopback adapter
908 	 */
909 	rsmka_init_loopback();
910 
911 
912 	ddi_report_dev(devi);
913 
914 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_attach done\n"));
915 
916 	return (DDI_SUCCESS);
917 }
918 
919 /*
920  * The call to mod_remove in the _fine routine will cause the system
921  * to call rsm_detach
922  */
923 /*ARGSUSED*/
924 static int
925 rsm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
926 {
927 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
928 
929 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_detach enter\n"));
930 
931 	switch (cmd) {
932 	case DDI_DETACH:
933 		break;
934 	default:
935 		DBG_PRINTF((category, RSM_ERR,
936 		    "rsm:rsm_detach - cmd %x not supported\n",
937 		    cmd));
938 		return (DDI_FAILURE);
939 	}
940 
941 	mutex_enter(&rsm_drv_data.drv_lock);
942 	while (rsm_drv_data.drv_state != RSM_DRV_OK)
943 		cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
944 	rsm_drv_data.drv_state = RSM_DRV_UNREG_PROCESSING;
945 	mutex_exit(&rsm_drv_data.drv_lock);
946 
947 	/*
948 	 * Unregister the DR callback functions
949 	 */
950 	if (rsm_enable_dr) {
951 #ifdef	RSM_DRTEST
952 		rsm_kphysm_setup_func_unregister(&rsm_dr_callback_vec,
953 		    (void *)NULL);
954 #else
955 		kphysm_setup_func_unregister(&rsm_dr_callback_vec,
956 		    (void *)NULL);
957 #endif
958 	}
959 
960 	mutex_enter(&rsm_drv_data.drv_lock);
961 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_UNREG_PROCESSING);
962 	rsm_drv_data.drv_state = RSM_DRV_NEW;
963 	mutex_exit(&rsm_drv_data.drv_lock);
964 
965 	ASSERT(rsm_suspend_list.list_head == NULL);
966 
967 	/*
968 	 * Release all resources, seglist, controller, ...
969 	 */
970 
971 	/* remove intersend queues */
972 	/* remove registered services */
973 
974 
975 	ddi_remove_minor_node(dip, DRIVER_NAME);
976 	rsm_dip = NULL;
977 
978 	/*
979 	 * Free minor zero resource
980 	 */
981 	{
982 		rsmresource_t *p;
983 
984 		p = rsmresource_free(RSM_DRIVER_MINOR);
985 		if (p) {
986 			mutex_destroy(&p->rsmrc_lock);
987 			kmem_free((void *)p, sizeof (*p));
988 		}
989 	}
990 
991 	/*
992 	 * Free resource table
993 	 */
994 
995 	rsmresource_destroy();
996 
997 	/*
998 	 * Free the hash tables
999 	 */
1000 	rsmhash_free(&rsm_export_segs, rsm_hash_size);
1001 	rsmhash_free(&rsm_import_segs, rsm_hash_size);
1002 
1003 	kmem_free((void *)importer_list.bucket,
1004 	    rsm_hash_size * sizeof (importing_token_t *));
1005 	importer_list.bucket = NULL;
1006 
1007 
1008 	/* free barrier page */
1009 	if (bar_cookie != NULL) {
1010 		ddi_umem_free(bar_cookie);
1011 	}
1012 	bar_va = NULL;
1013 	bar_cookie = NULL;
1014 
1015 	/*
1016 	 * Free the memory allocated for the trash
1017 	 */
1018 	if (remap_cookie != NULL) {
1019 		ddi_umem_free(remap_cookie);
1020 	}
1021 	remap_cookie = NULL;
1022 
1023 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_detach done\n"));
1024 
1025 	return (DDI_SUCCESS);
1026 }
1027 
1028 /*ARGSUSED*/
1029 static int
1030 rsm_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1031 {
1032 	register int error;
1033 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
1034 
1035 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_info enter\n"));
1036 
1037 	switch (infocmd) {
1038 	case DDI_INFO_DEVT2DEVINFO:
1039 		if (rsm_dip == NULL)
1040 			error = DDI_FAILURE;
1041 		else {
1042 			*result = (void *)rsm_dip;
1043 			error = DDI_SUCCESS;
1044 		}
1045 		break;
1046 	case DDI_INFO_DEVT2INSTANCE:
1047 		*result = (void *)0;
1048 		error = DDI_SUCCESS;
1049 		break;
1050 	default:
1051 		error = DDI_FAILURE;
1052 	}
1053 
1054 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_info done\n"));
1055 	return (error);
1056 }
1057 
1058 adapter_t *
1059 rsm_getadapter(rsm_ioctlmsg_t *msg, int mode)
1060 {
1061 	adapter_t *adapter;
1062 	char adapter_devname[MAXNAMELEN];
1063 	int instance;
1064 	DBG_DEFINE(category,
1065 	    RSM_KERNEL_AGENT | RSM_IMPORT | RSM_EXPORT | RSM_IOCTL);
1066 
1067 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_getadapter enter\n"));
1068 
1069 	instance = msg->cnum;
1070 
1071 	if ((msg->cname_len <= 0) || (msg->cname_len > MAXNAMELEN)) {
1072 		return (NULL);
1073 	}
1074 
1075 	if (ddi_copyin(msg->cname, adapter_devname, msg->cname_len, mode))
1076 		return (NULL);
1077 
1078 	if (strcmp(adapter_devname, "loopback") == 0)
1079 		return (&loopback_adapter);
1080 
1081 	adapter = rsmka_lookup_adapter(adapter_devname, instance);
1082 
1083 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_getadapter done\n"));
1084 
1085 	return (adapter);
1086 }
1087 
1088 
1089 /*
1090  * *********************** Resource Number Management ********************
1091  * All resources are stored in a simple hash table. The table is an array
1092  * of pointers to resource blks. Each blk contains:
1093  *	base	- base number of this blk
1094  *	used	- number of used slots in this blk.
1095  *	blks    - array of pointers to resource items.
1096  * An entry in a resource blk is empty if it's NULL.
1097  *
1098  * We start with no resource array. Each time we run out of slots, we
1099  * reallocate a new larger array and copy the pointer to the new array and
1100  * a new resource blk is allocated and added to the hash table.
1101  *
1102  * The resource control block contains:
1103  *      root    - array of pointer of resource blks
1104  *      sz      - current size of array.
1105  *      len     - last valid entry in array.
1106  *
1107  * A search operation based on a resource number is as follows:
1108  *      index = rnum / RESOURCE_BLKSZ;
1109  *      ASSERT(index < resource_block.len);
1110  *      ASSERT(index < resource_block.sz);
1111  *	offset = rnum % RESOURCE_BLKSZ;
1112  *      ASSERT(offset >= resource_block.root[index]->base);
1113  *	ASSERT(offset < resource_block.root[index]->base + RESOURCE_BLKSZ);
1114  *	return resource_block.root[index]->blks[offset];
1115  *
1116  * A resource blk is freed with its used count reachs zero.
1117  */
1118 static int
1119 rsmresource_alloc(minor_t *rnum)
1120 {
1121 
1122 	/* search for available resource slot */
1123 	int i, j, empty = -1;
1124 	rsmresource_blk_t *blk;
1125 
1126 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1127 	    "rsmresource_alloc enter\n"));
1128 
1129 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1130 
1131 	/* Try to find an empty slot */
1132 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
1133 		blk = rsm_resource.rsmrc_root[i];
1134 		if (blk != NULL && blk->rsmrcblk_avail > 0) {
1135 			/* found an empty slot in this blk */
1136 			for (j = 0; j < RSMRC_BLKSZ; j++) {
1137 				if (blk->rsmrcblk_blks[j] == NULL) {
1138 					*rnum = (minor_t)
1139 					    (j + (i * RSMRC_BLKSZ));
1140 					/*
1141 					 * obey gen page limits
1142 					 */
1143 					if (*rnum >= max_segs + 1) {
1144 						if (empty < 0) {
1145 							rw_exit(&rsm_resource.
1146 							    rsmrc_lock);
1147 							DBG_PRINTF((
1148 							    RSM_KERNEL_ALL,
1149 							    RSM_ERR,
1150 							    "rsmresource"
1151 							    "_alloc failed:"
1152 							    "not enough res"
1153 							    "%d\n", *rnum));
1154 					return (RSMERR_INSUFFICIENT_RESOURCES);
1155 						} else {
1156 							/* use empty slot */
1157 							break;
1158 						}
1159 
1160 					}
1161 
1162 					blk->rsmrcblk_blks[j] = RSMRC_RESERVED;
1163 					blk->rsmrcblk_avail--;
1164 					rw_exit(&rsm_resource.rsmrc_lock);
1165 					DBG_PRINTF((RSM_KERNEL_ALL,
1166 					    RSM_DEBUG_VERBOSE,
1167 					    "rsmresource_alloc done\n"));
1168 					return (RSM_SUCCESS);
1169 				}
1170 			}
1171 		} else if (blk == NULL && empty < 0) {
1172 			/* remember first empty slot */
1173 			empty = i;
1174 		}
1175 	}
1176 
1177 	/* Couldn't find anything, allocate a new blk */
1178 	/*
1179 	 * Do we need to reallocate the root array
1180 	 */
1181 	if (empty < 0) {
1182 		if (rsm_resource.rsmrc_len == rsm_resource.rsmrc_sz) {
1183 			/*
1184 			 * Allocate new array and copy current stuff into it
1185 			 */
1186 			rsmresource_blk_t	**p;
1187 			uint_t newsz = (uint_t)rsm_resource.rsmrc_sz +
1188 			    RSMRC_BLKSZ;
1189 			/*
1190 			 * Don't allocate more that max valid rnum
1191 			 */
1192 			if (rsm_resource.rsmrc_len*RSMRC_BLKSZ >=
1193 			    max_segs + 1) {
1194 				rw_exit(&rsm_resource.rsmrc_lock);
1195 				return (RSMERR_INSUFFICIENT_RESOURCES);
1196 			}
1197 
1198 			p = (rsmresource_blk_t **)kmem_zalloc(
1199 			    newsz * sizeof (*p),
1200 			    KM_SLEEP);
1201 
1202 			if (rsm_resource.rsmrc_root) {
1203 				uint_t oldsz;
1204 
1205 				oldsz = (uint_t)(rsm_resource.rsmrc_sz *
1206 				    (int)sizeof (*p));
1207 
1208 				/*
1209 				 * Copy old data into new space and
1210 				 * free old stuff
1211 				 */
1212 				bcopy(rsm_resource.rsmrc_root, p, oldsz);
1213 				kmem_free(rsm_resource.rsmrc_root, oldsz);
1214 			}
1215 
1216 			rsm_resource.rsmrc_root = p;
1217 			rsm_resource.rsmrc_sz = (int)newsz;
1218 		}
1219 
1220 		empty = rsm_resource.rsmrc_len;
1221 		rsm_resource.rsmrc_len++;
1222 	}
1223 
1224 	/*
1225 	 * Allocate a new blk
1226 	 */
1227 	blk = (rsmresource_blk_t *)kmem_zalloc(sizeof (*blk), KM_SLEEP);
1228 	ASSERT(rsm_resource.rsmrc_root[empty] == NULL);
1229 	rsm_resource.rsmrc_root[empty] = blk;
1230 	blk->rsmrcblk_avail = RSMRC_BLKSZ - 1;
1231 
1232 	/*
1233 	 * Allocate slot
1234 	 */
1235 
1236 	*rnum = (minor_t)(empty * RSMRC_BLKSZ);
1237 
1238 	/*
1239 	 * watch out not to exceed bounds of barrier page
1240 	 */
1241 	if (*rnum >= max_segs + 1) {
1242 		rw_exit(&rsm_resource.rsmrc_lock);
1243 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_ERR,
1244 		    "rsmresource_alloc failed %d\n", *rnum));
1245 
1246 		return (RSMERR_INSUFFICIENT_RESOURCES);
1247 	}
1248 	blk->rsmrcblk_blks[0] = RSMRC_RESERVED;
1249 
1250 
1251 	rw_exit(&rsm_resource.rsmrc_lock);
1252 
1253 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1254 	    "rsmresource_alloc done\n"));
1255 
1256 	return (RSM_SUCCESS);
1257 }
1258 
1259 static rsmresource_t *
1260 rsmresource_free(minor_t rnum)
1261 {
1262 
1263 	/* search for available resource slot */
1264 	int i, j;
1265 	rsmresource_blk_t *blk;
1266 	rsmresource_t *p;
1267 
1268 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1269 	    "rsmresource_free enter\n"));
1270 
1271 	i = (int)(rnum / RSMRC_BLKSZ);
1272 	j = (int)(rnum % RSMRC_BLKSZ);
1273 
1274 	if (i >= rsm_resource.rsmrc_len) {
1275 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1276 		    "rsmresource_free done\n"));
1277 		return (NULL);
1278 	}
1279 
1280 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1281 
1282 	ASSERT(rsm_resource.rsmrc_root);
1283 	ASSERT(i < rsm_resource.rsmrc_len);
1284 	ASSERT(i < rsm_resource.rsmrc_sz);
1285 	blk = rsm_resource.rsmrc_root[i];
1286 	if (blk == NULL) {
1287 		rw_exit(&rsm_resource.rsmrc_lock);
1288 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1289 		    "rsmresource_free done\n"));
1290 		return (NULL);
1291 	}
1292 
1293 	ASSERT(blk->rsmrcblk_blks[j]); /* reserved or full */
1294 
1295 	p = blk->rsmrcblk_blks[j];
1296 	if (p == RSMRC_RESERVED) {
1297 		p = NULL;
1298 	}
1299 
1300 	blk->rsmrcblk_blks[j] = NULL;
1301 	blk->rsmrcblk_avail++;
1302 	if (blk->rsmrcblk_avail == RSMRC_BLKSZ) {
1303 		/* free this blk */
1304 		kmem_free(blk, sizeof (*blk));
1305 		rsm_resource.rsmrc_root[i] = NULL;
1306 	}
1307 
1308 	rw_exit(&rsm_resource.rsmrc_lock);
1309 
1310 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1311 	    "rsmresource_free done\n"));
1312 
1313 	return (p);
1314 }
1315 
1316 static rsmresource_t *
1317 rsmresource_lookup(minor_t rnum, int lock)
1318 {
1319 	int i, j;
1320 	rsmresource_blk_t *blk;
1321 	rsmresource_t *p;
1322 
1323 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1324 	    "rsmresource_lookup enter\n"));
1325 
1326 	/* Find resource and lock it in READER mode */
1327 	/* search for available resource slot */
1328 
1329 	i = (int)(rnum / RSMRC_BLKSZ);
1330 	j = (int)(rnum % RSMRC_BLKSZ);
1331 
1332 	if (i >= rsm_resource.rsmrc_len) {
1333 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1334 		    "rsmresource_lookup done\n"));
1335 		return (NULL);
1336 	}
1337 
1338 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
1339 
1340 	blk = rsm_resource.rsmrc_root[i];
1341 	if (blk != NULL) {
1342 		ASSERT(i < rsm_resource.rsmrc_len);
1343 		ASSERT(i < rsm_resource.rsmrc_sz);
1344 
1345 		p = blk->rsmrcblk_blks[j];
1346 		if (lock == RSM_LOCK) {
1347 			if (p != RSMRC_RESERVED) {
1348 				mutex_enter(&p->rsmrc_lock);
1349 			} else {
1350 				p = NULL;
1351 			}
1352 		}
1353 	} else {
1354 		p = NULL;
1355 	}
1356 	rw_exit(&rsm_resource.rsmrc_lock);
1357 
1358 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1359 	    "rsmresource_lookup done\n"));
1360 
1361 	return (p);
1362 }
1363 
1364 static void
1365 rsmresource_insert(minor_t rnum, rsmresource_t *p, rsm_resource_type_t type)
1366 {
1367 	/* Find resource and lock it in READER mode */
1368 	/* Caller can upgrade if need be */
1369 	/* search for available resource slot */
1370 	int i, j;
1371 	rsmresource_blk_t *blk;
1372 
1373 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1374 	    "rsmresource_insert enter\n"));
1375 
1376 	i = (int)(rnum / RSMRC_BLKSZ);
1377 	j = (int)(rnum % RSMRC_BLKSZ);
1378 
1379 	p->rsmrc_type = type;
1380 	p->rsmrc_num = rnum;
1381 
1382 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
1383 
1384 	ASSERT(rsm_resource.rsmrc_root);
1385 	ASSERT(i < rsm_resource.rsmrc_len);
1386 	ASSERT(i < rsm_resource.rsmrc_sz);
1387 
1388 	blk = rsm_resource.rsmrc_root[i];
1389 	ASSERT(blk);
1390 
1391 	ASSERT(blk->rsmrcblk_blks[j] == RSMRC_RESERVED);
1392 
1393 	blk->rsmrcblk_blks[j] = p;
1394 
1395 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1396 	    "rsmresource_insert done\n"));
1397 
1398 	rw_exit(&rsm_resource.rsmrc_lock);
1399 }
1400 
1401 static void
1402 rsmresource_destroy()
1403 {
1404 	int i, j;
1405 
1406 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1407 	    "rsmresource_destroy enter\n"));
1408 
1409 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1410 
1411 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
1412 		rsmresource_blk_t	*blk;
1413 
1414 		blk = rsm_resource.rsmrc_root[i];
1415 		if (blk == NULL) {
1416 			continue;
1417 		}
1418 		for (j = 0; j < RSMRC_BLKSZ; j++) {
1419 			if (blk->rsmrcblk_blks[j] != NULL) {
1420 				DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1421 				    "Not null slot %d, %lx\n", j,
1422 				    (size_t)blk->rsmrcblk_blks[j]));
1423 			}
1424 		}
1425 		kmem_free(blk, sizeof (*blk));
1426 		rsm_resource.rsmrc_root[i] = NULL;
1427 	}
1428 	if (rsm_resource.rsmrc_root) {
1429 		i = rsm_resource.rsmrc_sz * (int)sizeof (rsmresource_blk_t *);
1430 		kmem_free(rsm_resource.rsmrc_root, (uint_t)i);
1431 		rsm_resource.rsmrc_root = NULL;
1432 		rsm_resource.rsmrc_len = 0;
1433 		rsm_resource.rsmrc_sz = 0;
1434 	}
1435 
1436 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1437 	    "rsmresource_destroy done\n"));
1438 
1439 	rw_exit(&rsm_resource.rsmrc_lock);
1440 }
1441 
1442 
1443 /* ******************** Generic Key Hash Table Management ********* */
1444 static rsmresource_t *
1445 rsmhash_lookup(rsmhash_table_t *rhash, rsm_memseg_id_t key,
1446     rsm_resource_state_t state)
1447 {
1448 	rsmresource_t	*p;
1449 	uint_t		hashval;
1450 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1451 
1452 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_lookup enter\n"));
1453 
1454 	hashval = rsmhash(key);
1455 
1456 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_lookup %u=%d\n",
1457 	    key, hashval));
1458 
1459 	rw_enter(&rhash->rsmhash_rw, RW_READER);
1460 
1461 	p = (rsmresource_t *)rsmhash_getbkt(rhash, hashval);
1462 
1463 	for (; p; p = p->rsmrc_next) {
1464 		if (p->rsmrc_key == key) {
1465 			/* acquire resource lock */
1466 			RSMRC_LOCK(p);
1467 			break;
1468 		}
1469 	}
1470 
1471 	rw_exit(&rhash->rsmhash_rw);
1472 
1473 	if (p != NULL && p->rsmrc_state != state) {
1474 		/* state changed, release lock and return null */
1475 		RSMRC_UNLOCK(p);
1476 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1477 		    "rsmhash_lookup done: state changed\n"));
1478 		return (NULL);
1479 	}
1480 
1481 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_lookup done\n"));
1482 
1483 	return (p);
1484 }
1485 
1486 static void
1487 rsmhash_rm(rsmhash_table_t *rhash, rsmresource_t *rcelm)
1488 {
1489 	rsmresource_t		*p, **back;
1490 	uint_t			hashval;
1491 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1492 
1493 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_rm enter\n"));
1494 
1495 	hashval = rsmhash(rcelm->rsmrc_key);
1496 
1497 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_rm %u=%d\n",
1498 	    rcelm->rsmrc_key, hashval));
1499 
1500 	/*
1501 	 * It's ok not to find the segment.
1502 	 */
1503 	rw_enter(&rhash->rsmhash_rw, RW_WRITER);
1504 
1505 	back = (rsmresource_t **)rsmhash_bktaddr(rhash, hashval);
1506 
1507 	for (; (p = *back) != NULL;  back = &p->rsmrc_next) {
1508 		if (p == rcelm) {
1509 			*back = rcelm->rsmrc_next;
1510 			break;
1511 		}
1512 	}
1513 
1514 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_rm done\n"));
1515 
1516 	rw_exit(&rhash->rsmhash_rw);
1517 }
1518 
1519 static int
1520 rsmhash_add(rsmhash_table_t *rhash, rsmresource_t *new, rsm_memseg_id_t key,
1521     int dup_check, rsm_resource_state_t state)
1522 {
1523 	rsmresource_t	*p = NULL, **bktp;
1524 	uint_t		hashval;
1525 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1526 
1527 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_add enter\n"));
1528 
1529 	/* lock table */
1530 	rw_enter(&rhash->rsmhash_rw, RW_WRITER);
1531 
1532 	/*
1533 	 * If the current resource state is other than the state passed in
1534 	 * then the resource is (probably) already on the list. eg. for an
1535 	 * import segment if the state is not RSM_STATE_NEW then it's on the
1536 	 * list already.
1537 	 */
1538 	RSMRC_LOCK(new);
1539 	if (new->rsmrc_state != state) {
1540 		RSMRC_UNLOCK(new);
1541 		rw_exit(&rhash->rsmhash_rw);
1542 		return (RSMERR_BAD_SEG_HNDL);
1543 	}
1544 
1545 	hashval = rsmhash(key);
1546 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_add %d\n", hashval));
1547 
1548 	if (dup_check) {
1549 		/*
1550 		 * Used for checking export segments; don't want to have
1551 		 * the same key used for multiple segments.
1552 		 */
1553 
1554 		p = (rsmresource_t *)rsmhash_getbkt(rhash, hashval);
1555 
1556 		for (; p; p = p->rsmrc_next) {
1557 			if (p->rsmrc_key == key) {
1558 				RSMRC_UNLOCK(new);
1559 				break;
1560 			}
1561 		}
1562 	}
1563 
1564 	if (p == NULL) {
1565 		/* Key doesn't exist, add it */
1566 
1567 		bktp = (rsmresource_t **)rsmhash_bktaddr(rhash, hashval);
1568 
1569 		new->rsmrc_key = key;
1570 		new->rsmrc_next = *bktp;
1571 		*bktp = new;
1572 	}
1573 
1574 	rw_exit(&rhash->rsmhash_rw);
1575 
1576 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_add done\n"));
1577 
1578 	return (p == NULL ? RSM_SUCCESS : RSMERR_SEGID_IN_USE);
1579 }
1580 
1581 /*
1582  * XOR each byte of the key.
1583  */
1584 static uint_t
1585 rsmhash(rsm_memseg_id_t key)
1586 {
1587 	uint_t	hash = key;
1588 
1589 	hash ^=  (key >> 8);
1590 	hash ^=  (key >> 16);
1591 	hash ^=  (key >> 24);
1592 
1593 	return (hash % rsm_hash_size);
1594 
1595 }
1596 
1597 /*
1598  * generic function to get a specific bucket
1599  */
1600 static void *
1601 rsmhash_getbkt(rsmhash_table_t *rhash, uint_t hashval)
1602 {
1603 
1604 	if (rhash->bucket == NULL)
1605 		return (NULL);
1606 	else
1607 		return ((void *)rhash->bucket[hashval]);
1608 }
1609 
1610 /*
1611  * generic function to get a specific bucket's address
1612  */
1613 static void **
1614 rsmhash_bktaddr(rsmhash_table_t *rhash, uint_t hashval)
1615 {
1616 	if (rhash->bucket == NULL)
1617 		return (NULL);
1618 	else
1619 		return ((void **)&(rhash->bucket[hashval]));
1620 }
1621 
1622 /*
1623  * generic function to alloc a hash table
1624  */
1625 static void
1626 rsmhash_alloc(rsmhash_table_t *rhash, int size)
1627 {
1628 	rhash->bucket = (rsmresource_t **)
1629 	    kmem_zalloc(size * sizeof (rsmresource_t *), KM_SLEEP);
1630 }
1631 
1632 /*
1633  * generic function to free a hash table
1634  */
1635 static void
1636 rsmhash_free(rsmhash_table_t *rhash, int size)
1637 {
1638 
1639 	kmem_free((void *)rhash->bucket, size * sizeof (caddr_t));
1640 	rhash->bucket = NULL;
1641 
1642 }
1643 /* *********************** Exported Segment Key Management ************ */
1644 
1645 #define	rsmexport_add(new, key)		\
1646 	rsmhash_add(&rsm_export_segs, (rsmresource_t *)new, key, 1, \
1647 	    RSM_STATE_BIND)
1648 
1649 #define	rsmexport_rm(arg)	\
1650 	rsmhash_rm(&rsm_export_segs, (rsmresource_t *)(arg))
1651 
1652 #define	rsmexport_lookup(key)	\
1653 	(rsmseg_t *)rsmhash_lookup(&rsm_export_segs, key, RSM_STATE_EXPORT)
1654 
1655 /* ************************** Import Segment List Management ********** */
1656 
1657 /*
1658  *  Add segment to import list. This will be useful for paging and loopback
1659  * segment unloading.
1660  */
1661 #define	rsmimport_add(arg, key)	\
1662 	rsmhash_add(&rsm_import_segs, (rsmresource_t *)(arg), (key), 0, \
1663 	    RSM_STATE_NEW)
1664 
1665 #define	rsmimport_rm(arg)	\
1666 	rsmhash_rm(&rsm_import_segs, (rsmresource_t *)(arg))
1667 
1668 /*
1669  *	#define	rsmimport_lookup(key)	\
1670  *	(rsmseg_t *)rsmhash_lookup(&rsm_import_segs, (key), RSM_STATE_CONNECT)
1671  */
1672 
1673 /*
1674  * increase the ref count and make the import segment point to the
1675  * shared data structure. Return a pointer to the share data struct
1676  * and the shared data struct is locked upon return
1677  */
1678 static rsm_import_share_t *
1679 rsmshare_get(rsm_memseg_id_t key, rsm_node_id_t node, adapter_t *adapter,
1680     rsmseg_t *segp)
1681 {
1682 	uint_t		hash;
1683 	rsmresource_t		*p;
1684 	rsm_import_share_t	*shdatap;
1685 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1686 
1687 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmshare_get enter\n"));
1688 
1689 	hash = rsmhash(key);
1690 	/* lock table */
1691 	rw_enter(&rsm_import_segs.rsmhash_rw, RW_WRITER);
1692 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmshare_get:key=%u, hash=%d\n",
1693 	    key, hash));
1694 
1695 	p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hash);
1696 
1697 	for (; p; p = p->rsmrc_next) {
1698 		/*
1699 		 * Look for an entry that is importing the same exporter
1700 		 * with the share data structure allocated.
1701 		 */
1702 		if ((p->rsmrc_key == key) &&
1703 		    (p->rsmrc_node == node) &&
1704 		    (p->rsmrc_adapter == adapter) &&
1705 		    (((rsmseg_t *)p)->s_share != NULL)) {
1706 			shdatap = ((rsmseg_t *)p)->s_share;
1707 			break;
1708 		}
1709 	}
1710 
1711 	if (p == NULL) {
1712 		/* we are the first importer, create the shared data struct */
1713 		shdatap = kmem_zalloc(sizeof (rsm_import_share_t), KM_SLEEP);
1714 		shdatap->rsmsi_state = RSMSI_STATE_NEW;
1715 		shdatap->rsmsi_segid = key;
1716 		shdatap->rsmsi_node = node;
1717 		mutex_init(&shdatap->rsmsi_lock, NULL, MUTEX_DRIVER, NULL);
1718 		cv_init(&shdatap->rsmsi_cv, NULL, CV_DRIVER, 0);
1719 	}
1720 
1721 	rsmseglock_acquire(segp);
1722 
1723 	/* we grab the shared lock before returning from this function */
1724 	mutex_enter(&shdatap->rsmsi_lock);
1725 
1726 	shdatap->rsmsi_refcnt++;
1727 	segp->s_share = shdatap;
1728 
1729 	rsmseglock_release(segp);
1730 
1731 	rw_exit(&rsm_import_segs.rsmhash_rw);
1732 
1733 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmshare_get done\n"));
1734 
1735 	return (shdatap);
1736 }
1737 
1738 /*
1739  * the shared data structure should be locked before calling
1740  * rsmsharecv_signal().
1741  * Change the state and signal any waiting segments.
1742  */
1743 void
1744 rsmsharecv_signal(rsmseg_t *seg, int oldstate, int newstate)
1745 {
1746 	ASSERT(rsmsharelock_held(seg));
1747 
1748 	if (seg->s_share->rsmsi_state == oldstate) {
1749 		seg->s_share->rsmsi_state = newstate;
1750 		cv_broadcast(&seg->s_share->rsmsi_cv);
1751 	}
1752 }
1753 
1754 /*
1755  * Add to the hash table
1756  */
1757 static void
1758 importer_list_add(rsm_node_id_t node, rsm_memseg_id_t key, rsm_addr_t hwaddr,
1759     void *cookie)
1760 {
1761 
1762 	importing_token_t	*head;
1763 	importing_token_t	*new_token;
1764 	int			index;
1765 
1766 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1767 
1768 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_add enter\n"));
1769 
1770 	new_token = kmem_zalloc(sizeof (importing_token_t), KM_SLEEP);
1771 	new_token->importing_node = node;
1772 	new_token->key = key;
1773 	new_token->import_segment_cookie = cookie;
1774 	new_token->importing_adapter_hwaddr = hwaddr;
1775 
1776 	index = rsmhash(key);
1777 
1778 	mutex_enter(&importer_list.lock);
1779 
1780 	head = importer_list.bucket[index];
1781 	importer_list.bucket[index] = new_token;
1782 	new_token->next = head;
1783 	mutex_exit(&importer_list.lock);
1784 
1785 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_add done\n"));
1786 }
1787 
1788 static void
1789 importer_list_rm(rsm_node_id_t node,  rsm_memseg_id_t key, void *cookie)
1790 {
1791 
1792 	importing_token_t	*prev, *token = NULL;
1793 	int			index;
1794 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1795 
1796 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_rm enter\n"));
1797 
1798 	index = rsmhash(key);
1799 
1800 	mutex_enter(&importer_list.lock);
1801 
1802 	token = importer_list.bucket[index];
1803 
1804 	prev = token;
1805 	while (token != NULL) {
1806 		if (token->importing_node == node &&
1807 		    token->import_segment_cookie == cookie) {
1808 			if (prev == token)
1809 				importer_list.bucket[index] = token->next;
1810 			else
1811 				prev->next = token->next;
1812 			kmem_free((void *)token, sizeof (*token));
1813 			break;
1814 		} else {
1815 			prev = token;
1816 			token = token->next;
1817 		}
1818 	}
1819 
1820 	mutex_exit(&importer_list.lock);
1821 
1822 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_rm done\n"));
1823 
1824 
1825 }
1826 
1827 /* **************************Segment Structure Management ************* */
1828 
1829 /*
1830  * Free segment structure
1831  */
1832 static void
1833 rsmseg_free(rsmseg_t *seg)
1834 {
1835 
1836 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1837 
1838 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_free enter\n"));
1839 
1840 	/* need to take seglock here to avoid race with rsmmap_unmap() */
1841 	rsmseglock_acquire(seg);
1842 	if (seg->s_ckl != NULL) {
1843 		/* Segment is still busy */
1844 		seg->s_state = RSM_STATE_END;
1845 		rsmseglock_release(seg);
1846 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1847 		    "rsmseg_free done\n"));
1848 		return;
1849 	}
1850 
1851 	rsmseglock_release(seg);
1852 
1853 	ASSERT(seg->s_state == RSM_STATE_END || seg->s_state == RSM_STATE_NEW);
1854 
1855 	/*
1856 	 * If it's an importer decrement the refcount
1857 	 * and if its down to zero free the shared data structure.
1858 	 * This is where failures during rsm_connect() are unrefcounted
1859 	 */
1860 	if (seg->s_share != NULL) {
1861 
1862 		ASSERT(seg->s_type == RSM_RESOURCE_IMPORT_SEGMENT);
1863 
1864 		rsmsharelock_acquire(seg);
1865 
1866 		ASSERT(seg->s_share->rsmsi_refcnt > 0);
1867 
1868 		seg->s_share->rsmsi_refcnt--;
1869 
1870 		if (seg->s_share->rsmsi_refcnt == 0) {
1871 			rsmsharelock_release(seg);
1872 			mutex_destroy(&seg->s_share->rsmsi_lock);
1873 			cv_destroy(&seg->s_share->rsmsi_cv);
1874 			kmem_free((void *)(seg->s_share),
1875 			    sizeof (rsm_import_share_t));
1876 		} else {
1877 			rsmsharelock_release(seg);
1878 		}
1879 		/*
1880 		 * The following needs to be done after any
1881 		 * rsmsharelock calls which use seg->s_share.
1882 		 */
1883 		seg->s_share = NULL;
1884 	}
1885 
1886 	cv_destroy(&seg->s_cv);
1887 	mutex_destroy(&seg->s_lock);
1888 	rsmacl_free(seg->s_acl, seg->s_acl_len);
1889 	rsmpiacl_free(seg->s_acl_in, seg->s_acl_len);
1890 	if (seg->s_adapter)
1891 		rsmka_release_adapter(seg->s_adapter);
1892 
1893 	kmem_free((void *)seg, sizeof (*seg));
1894 
1895 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_free done\n"));
1896 
1897 }
1898 
1899 
1900 static rsmseg_t *
1901 rsmseg_alloc(minor_t num, struct cred *cred)
1902 {
1903 	rsmseg_t	*new;
1904 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1905 
1906 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_alloc enter\n"));
1907 	/*
1908 	 * allocate memory for new segment. This should be a segkmem cache.
1909 	 */
1910 	new = (rsmseg_t *)kmem_zalloc(sizeof (*new), KM_SLEEP);
1911 
1912 	new->s_state = RSM_STATE_NEW;
1913 	new->s_minor	= num;
1914 	new->s_acl_len	= 0;
1915 	new->s_cookie = NULL;
1916 	new->s_adapter = NULL;
1917 
1918 	new->s_mode = 0777 & ~PTOU((ttoproc(curthread)))->u_cmask;
1919 	/* we don't have a key yet, will set at export/connect */
1920 	new->s_uid  = crgetuid(cred);
1921 	new->s_gid  = crgetgid(cred);
1922 
1923 	mutex_init(&new->s_lock, NULL, MUTEX_DRIVER, (void *)NULL);
1924 	cv_init(&new->s_cv, NULL, CV_DRIVER, 0);
1925 
1926 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_alloc done\n"));
1927 
1928 	return (new);
1929 }
1930 
1931 /* ******************************** Driver Open/Close/Poll *************** */
1932 
1933 /*ARGSUSED1*/
1934 static int
1935 rsm_open(dev_t *devp, int flag, int otyp, struct cred *cred)
1936 {
1937 	minor_t rnum;
1938 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
1939 
1940 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_open enter\n"));
1941 	/*
1942 	 * Char only
1943 	 */
1944 	if (otyp != OTYP_CHR) {
1945 		DBG_PRINTF((category, RSM_ERR, "rsm_open: bad otyp\n"));
1946 		return (EINVAL);
1947 	}
1948 
1949 	/*
1950 	 * Only zero can be opened, clones are used for resources.
1951 	 */
1952 	if (getminor(*devp) != RSM_DRIVER_MINOR) {
1953 		DBG_PRINTF((category, RSM_ERR,
1954 		    "rsm_open: bad minor %d\n", getminor(*devp)));
1955 		return (ENODEV);
1956 	}
1957 
1958 	if ((flag & FEXCL) != 0 && secpolicy_excl_open(cred) != 0) {
1959 		DBG_PRINTF((category, RSM_ERR, "rsm_open: bad perm\n"));
1960 		return (EPERM);
1961 	}
1962 
1963 	if (!(flag & FWRITE)) {
1964 		/*
1965 		 * The library function _rsm_librsm_init calls open for
1966 		 * /dev/rsm with flag set to O_RDONLY.  We want a valid
1967 		 * file descriptor to be returned for minor device zero.
1968 		 */
1969 
1970 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1971 		    "rsm_open RDONLY done\n"));
1972 		return (DDI_SUCCESS);
1973 	}
1974 
1975 	/*
1976 	 * - allocate new minor number and segment.
1977 	 * - add segment to list of all segments.
1978 	 * - set minordev data to segment
1979 	 * - update devp argument to new device
1980 	 * - update s_cred to cred; make sure you do crhold(cred);
1981 	 */
1982 
1983 	/* allocate a new resource number */
1984 	if (rsmresource_alloc(&rnum) == RSM_SUCCESS) {
1985 		/*
1986 		 * We will bind this minor to a specific resource in first
1987 		 * ioctl
1988 		 */
1989 		*devp = makedevice(getmajor(*devp), rnum);
1990 	} else {
1991 		return (EAGAIN);
1992 	}
1993 
1994 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_open done\n"));
1995 	return (DDI_SUCCESS);
1996 }
1997 
1998 static void
1999 rsmseg_close(rsmseg_t *seg, int force_flag)
2000 {
2001 	int e = RSM_SUCCESS;
2002 
2003 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
2004 
2005 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_close enter\n"));
2006 
2007 	rsmseglock_acquire(seg);
2008 	if (!force_flag && (seg->s_hdr.rsmrc_type ==
2009 	    RSM_RESOURCE_EXPORT_SEGMENT)) {
2010 		/*
2011 		 * If we are processing rsm_close wait for force_destroy
2012 		 * processing to complete since force_destroy processing
2013 		 * needs to finish first before we can free the segment.
2014 		 * force_destroy is only for export segments
2015 		 */
2016 		while (seg->s_flags & RSM_FORCE_DESTROY_WAIT) {
2017 			cv_wait(&seg->s_cv, &seg->s_lock);
2018 		}
2019 	}
2020 	rsmseglock_release(seg);
2021 
2022 	/* It's ok to read the state without a lock */
2023 	switch (seg->s_state) {
2024 	case RSM_STATE_EXPORT:
2025 	case RSM_STATE_EXPORT_QUIESCING:
2026 	case RSM_STATE_EXPORT_QUIESCED:
2027 		e = rsm_unpublish(seg, 1);
2028 		/* FALLTHRU */
2029 	case RSM_STATE_BIND_QUIESCED:
2030 		/* FALLTHRU */
2031 	case RSM_STATE_BIND:
2032 		e = rsm_unbind(seg);
2033 		if (e != RSM_SUCCESS && force_flag == 1)
2034 			return;
2035 		ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT);
2036 		/* FALLTHRU */
2037 	case RSM_STATE_NEW_QUIESCED:
2038 		rsmseglock_acquire(seg);
2039 		seg->s_state = RSM_STATE_NEW;
2040 		cv_broadcast(&seg->s_cv);
2041 		rsmseglock_release(seg);
2042 		break;
2043 	case RSM_STATE_NEW:
2044 		break;
2045 	case RSM_STATE_ZOMBIE:
2046 		/*
2047 		 * Segments in this state have been removed off the
2048 		 * exported segments list and have been unpublished
2049 		 * and unbind. These segments have been removed during
2050 		 * a callback to the rsm_export_force_destroy, which
2051 		 * is called for the purpose of unlocking these
2052 		 * exported memory segments when a process exits but
2053 		 * leaves the segments locked down since rsm_close is
2054 		 * is not called for the segments. This can happen
2055 		 * when a process calls fork or exec and then exits.
2056 		 * Once the segments are in the ZOMBIE state, all that
2057 		 * remains is to destroy them when rsm_close is called.
2058 		 * This is done here. Thus, for such segments the
2059 		 * the state is changed to new so that later in this
2060 		 * function rsmseg_free is called.
2061 		 */
2062 		rsmseglock_acquire(seg);
2063 		seg->s_state = RSM_STATE_NEW;
2064 		rsmseglock_release(seg);
2065 		break;
2066 	case RSM_STATE_MAP_QUIESCE:
2067 	case RSM_STATE_ACTIVE:
2068 		/* Disconnect will handle the unmap */
2069 	case RSM_STATE_CONN_QUIESCE:
2070 	case RSM_STATE_CONNECT:
2071 	case RSM_STATE_DISCONNECT:
2072 		ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
2073 		(void) rsm_disconnect(seg);
2074 		break;
2075 	case RSM_STATE_MAPPING:
2076 		/*FALLTHRU*/
2077 	case RSM_STATE_END:
2078 		DBG_PRINTF((category, RSM_ERR,
2079 		    "Invalid segment state %d in rsm_close\n", seg->s_state));
2080 		break;
2081 	default:
2082 		DBG_PRINTF((category, RSM_ERR,
2083 		    "Invalid segment state %d in rsm_close\n", seg->s_state));
2084 		break;
2085 	}
2086 
2087 	/*
2088 	 * check state.
2089 	 * - make sure you do crfree(s_cred);
2090 	 * release segment and minor number
2091 	 */
2092 	ASSERT(seg->s_state == RSM_STATE_NEW);
2093 
2094 	/*
2095 	 * The export_force_destroy callback is created to unlock
2096 	 * the exported segments of a process
2097 	 * when the process does a fork or exec and then exits calls this
2098 	 * function with the force flag set to 1 which indicates that the
2099 	 * segment state must be converted to ZOMBIE. This state means that the
2100 	 * segments still exist and have been unlocked and most importantly the
2101 	 * only operation allowed is to destroy them on an rsm_close.
2102 	 */
2103 	if (force_flag) {
2104 		rsmseglock_acquire(seg);
2105 		seg->s_state = RSM_STATE_ZOMBIE;
2106 		rsmseglock_release(seg);
2107 	} else {
2108 		rsmseg_free(seg);
2109 	}
2110 
2111 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_close done\n"));
2112 }
2113 
2114 static int
2115 rsm_close(dev_t dev, int flag, int otyp, cred_t *cred)
2116 {
2117 	minor_t	rnum = getminor(dev);
2118 	rsmresource_t *res;
2119 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
2120 
2121 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close enter\n"));
2122 
2123 	flag = flag; cred = cred;
2124 
2125 	if (otyp != OTYP_CHR)
2126 		return (EINVAL);
2127 
2128 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rnum = %d\n", rnum));
2129 
2130 	/*
2131 	 * At this point we are the last reference to the resource.
2132 	 * Free resource number from resource table.
2133 	 * It's ok to remove number before we free the segment.
2134 	 * We need to lock the resource to protect against remote calls.
2135 	 */
2136 	if (rnum == RSM_DRIVER_MINOR ||
2137 	    (res = rsmresource_free(rnum)) == NULL) {
2138 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close done\n"));
2139 		return (DDI_SUCCESS);
2140 	}
2141 
2142 	switch (res->rsmrc_type) {
2143 	case RSM_RESOURCE_EXPORT_SEGMENT:
2144 	case RSM_RESOURCE_IMPORT_SEGMENT:
2145 		rsmseg_close((rsmseg_t *)res, 0);
2146 		break;
2147 	case RSM_RESOURCE_BAR:
2148 		DBG_PRINTF((category, RSM_ERR, "bad resource in rsm_close\n"));
2149 		break;
2150 	default:
2151 		break;
2152 	}
2153 
2154 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close done\n"));
2155 
2156 	return (DDI_SUCCESS);
2157 }
2158 
2159 /*
2160  * rsm_inc_pgcnt
2161  *
2162  * Description: increment rsm page counter.
2163  *
2164  * Parameters:	pgcnt_t	pnum;	number of pages to be used
2165  *
2166  * Returns:	RSM_SUCCESS	if memory limit not exceeded
2167  *		ENOSPC		if memory limit exceeded. In this case, the
2168  *				page counter remains unchanged.
2169  *
2170  */
2171 static int
2172 rsm_inc_pgcnt(pgcnt_t pnum)
2173 {
2174 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2175 	if (rsm_pgcnt_max == 0) { /* no upper limit has been set */
2176 		return (RSM_SUCCESS);
2177 	}
2178 
2179 	mutex_enter(&rsm_pgcnt_lock);
2180 
2181 	if (rsm_pgcnt + pnum > rsm_pgcnt_max) {
2182 		/* ensure that limits have not been exceeded */
2183 		mutex_exit(&rsm_pgcnt_lock);
2184 		return (RSMERR_INSUFFICIENT_MEM);
2185 	}
2186 
2187 	rsm_pgcnt += pnum;
2188 	DBG_PRINTF((category, RSM_DEBUG, "rsm_pgcnt incr to %d.\n",
2189 	    rsm_pgcnt));
2190 	mutex_exit(&rsm_pgcnt_lock);
2191 
2192 	return (RSM_SUCCESS);
2193 }
2194 
2195 /*
2196  * rsm_dec_pgcnt
2197  *
2198  * Description:	decrement rsm page counter.
2199  *
2200  * Parameters:	pgcnt_t	pnum;	number of pages freed
2201  *
2202  */
2203 static void
2204 rsm_dec_pgcnt(pgcnt_t pnum)
2205 {
2206 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2207 
2208 	if (rsm_pgcnt_max == 0) { /* no upper limit has been set */
2209 		return;
2210 	}
2211 
2212 	mutex_enter(&rsm_pgcnt_lock);
2213 	ASSERT(rsm_pgcnt >= pnum);
2214 	rsm_pgcnt -= pnum;
2215 	DBG_PRINTF((category, RSM_DEBUG, "rsm_pgcnt decr to %d.\n",
2216 	    rsm_pgcnt));
2217 	mutex_exit(&rsm_pgcnt_lock);
2218 }
2219 
2220 static struct umem_callback_ops rsm_as_ops = {
2221 	UMEM_CALLBACK_VERSION, /* version number */
2222 	rsm_export_force_destroy,
2223 };
2224 
2225 static int
2226 rsm_bind_pages(ddi_umem_cookie_t *cookie, caddr_t vaddr, size_t len,
2227     proc_t *procp)
2228 {
2229 	int error = RSM_SUCCESS;
2230 	ulong_t pnum;
2231 	struct umem_callback_ops *callbackops = &rsm_as_ops;
2232 
2233 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2234 
2235 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind_pages enter\n"));
2236 
2237 	/*
2238 	 * Make sure vaddr and len are aligned on a page boundary
2239 	 */
2240 	if ((uintptr_t)vaddr & (PAGESIZE - 1)) {
2241 		return (RSMERR_BAD_ADDR);
2242 	}
2243 
2244 	if (len & (PAGESIZE - 1)) {
2245 		return (RSMERR_BAD_LENGTH);
2246 	}
2247 
2248 	/*
2249 	 * Find number of pages
2250 	 */
2251 	pnum = btopr(len);
2252 	error = rsm_inc_pgcnt(pnum);
2253 	if (error != RSM_SUCCESS) {
2254 		DBG_PRINTF((category, RSM_ERR,
2255 		    "rsm_bind_pages:mem limit exceeded\n"));
2256 		return (RSMERR_INSUFFICIENT_MEM);
2257 	}
2258 
2259 	error = umem_lockmemory(vaddr, len,
2260 	    DDI_UMEMLOCK_WRITE|DDI_UMEMLOCK_READ|DDI_UMEMLOCK_LONGTERM,
2261 	    cookie,
2262 	    callbackops, procp);
2263 
2264 	if (error) {
2265 		rsm_dec_pgcnt(pnum);
2266 		DBG_PRINTF((category, RSM_ERR,
2267 		    "rsm_bind_pages:ddi_umem_lock failed\n"));
2268 		/*
2269 		 * ddi_umem_lock, in the case of failure, returns one of
2270 		 * the following three errors. These are translated into
2271 		 * the RSMERR namespace and returned.
2272 		 */
2273 		if (error == EFAULT)
2274 			return (RSMERR_BAD_ADDR);
2275 		else if (error == EACCES)
2276 			return (RSMERR_PERM_DENIED);
2277 		else
2278 			return (RSMERR_INSUFFICIENT_MEM);
2279 	}
2280 
2281 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind_pages done\n"));
2282 
2283 	return (error);
2284 
2285 }
2286 
2287 static int
2288 rsm_unbind_pages(rsmseg_t *seg)
2289 {
2290 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2291 
2292 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind_pages enter\n"));
2293 
2294 	ASSERT(rsmseglock_held(seg));
2295 
2296 	if (seg->s_cookie != NULL) {
2297 		/* unlock address range */
2298 		ddi_umem_unlock(seg->s_cookie);
2299 		rsm_dec_pgcnt(btopr(seg->s_len));
2300 		seg->s_cookie = NULL;
2301 	}
2302 
2303 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind_pages done\n"));
2304 
2305 	return (RSM_SUCCESS);
2306 }
2307 
2308 
2309 static int
2310 rsm_bind(rsmseg_t *seg, rsm_ioctlmsg_t *msg, intptr_t dataptr, int mode)
2311 {
2312 	int e;
2313 	adapter_t *adapter;
2314 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2315 
2316 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind enter\n"));
2317 
2318 	adapter = rsm_getadapter(msg, mode);
2319 	if (adapter == NULL) {
2320 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2321 		    "rsm_bind done:no adapter\n"));
2322 		return (RSMERR_CTLR_NOT_PRESENT);
2323 	}
2324 
2325 	/* lock address range */
2326 	if (msg->vaddr == NULL) {
2327 		rsmka_release_adapter(adapter);
2328 		DBG_PRINTF((category, RSM_ERR,
2329 		    "rsm: rsm_bind done: invalid vaddr\n"));
2330 		return (RSMERR_BAD_ADDR);
2331 	}
2332 	if (msg->len <= 0) {
2333 		rsmka_release_adapter(adapter);
2334 		DBG_PRINTF((category, RSM_ERR,
2335 		    "rsm_bind: invalid length\n"));
2336 		return (RSMERR_BAD_LENGTH);
2337 	}
2338 
2339 	/* Lock segment */
2340 	rsmseglock_acquire(seg);
2341 
2342 	while (seg->s_state == RSM_STATE_NEW_QUIESCED) {
2343 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
2344 			DBG_PRINTF((category, RSM_DEBUG,
2345 			    "rsm_bind done: cv_wait INTERRUPTED"));
2346 			rsmka_release_adapter(adapter);
2347 			rsmseglock_release(seg);
2348 			return (RSMERR_INTERRUPTED);
2349 		}
2350 	}
2351 
2352 	ASSERT(seg->s_state == RSM_STATE_NEW);
2353 
2354 	ASSERT(seg->s_cookie == NULL);
2355 
2356 	e = rsm_bind_pages(&seg->s_cookie, msg->vaddr, msg->len, curproc);
2357 	if (e == RSM_SUCCESS) {
2358 		seg->s_flags |= RSM_USER_MEMORY;
2359 		if (msg->perm & RSM_ALLOW_REBIND) {
2360 			seg->s_flags |= RSMKA_ALLOW_UNBIND_REBIND;
2361 		}
2362 		if (msg->perm & RSM_CREATE_SEG_DONTWAIT) {
2363 			seg->s_flags |= RSMKA_SET_RESOURCE_DONTWAIT;
2364 		}
2365 		seg->s_region.r_vaddr = msg->vaddr;
2366 		/*
2367 		 * Set the s_pid value in the segment structure. This is used
2368 		 * to identify exported segments belonging to a particular
2369 		 * process so that when the process exits, these segments can
2370 		 * be unlocked forcefully even if rsm_close is not called on
2371 		 * process exit since there maybe other processes referencing
2372 		 * them (for example on a fork or exec).
2373 		 * The s_pid value is also used to authenticate the process
2374 		 * doing a publish or unpublish on the export segment. Only
2375 		 * the creator of the export segment has a right to do a
2376 		 * publish or unpublish and unbind on the segment.
2377 		 */
2378 		seg->s_pid = ddi_get_pid();
2379 		seg->s_len = msg->len;
2380 		seg->s_state = RSM_STATE_BIND;
2381 		seg->s_adapter = adapter;
2382 		seg->s_proc = curproc;
2383 	} else {
2384 		rsmka_release_adapter(adapter);
2385 		DBG_PRINTF((category, RSM_WARNING,
2386 		    "unable to lock down pages\n"));
2387 	}
2388 
2389 	msg->rnum = seg->s_minor;
2390 	/* Unlock segment */
2391 	rsmseglock_release(seg);
2392 
2393 	if (e == RSM_SUCCESS) {
2394 		/* copyout the resource number */
2395 #ifdef _MULTI_DATAMODEL
2396 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
2397 			rsm_ioctlmsg32_t msg32;
2398 
2399 			msg32.rnum = msg->rnum;
2400 			if (ddi_copyout((caddr_t)&msg32.rnum,
2401 			    (caddr_t)&((rsm_ioctlmsg32_t *)dataptr)->rnum,
2402 			    sizeof (minor_t), mode)) {
2403 				rsmka_release_adapter(adapter);
2404 				e = RSMERR_BAD_ADDR;
2405 			}
2406 		}
2407 #endif
2408 		if (ddi_copyout((caddr_t)&msg->rnum,
2409 		    (caddr_t)&((rsm_ioctlmsg_t *)dataptr)->rnum,
2410 		    sizeof (minor_t), mode)) {
2411 			rsmka_release_adapter(adapter);
2412 			e = RSMERR_BAD_ADDR;
2413 		}
2414 	}
2415 
2416 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind done\n"));
2417 
2418 	return (e);
2419 }
2420 
2421 static void
2422 rsm_remap_local_importers(rsm_node_id_t src_nodeid,
2423     rsm_memseg_id_t ex_segid, ddi_umem_cookie_t cookie)
2424 {
2425 	rsmresource_t	*p = NULL;
2426 	rsmhash_table_t *rhash = &rsm_import_segs;
2427 	uint_t		index;
2428 
2429 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_FUNC_ALL, RSM_DEBUG_VERBOSE,
2430 	    "rsm_remap_local_importers enter\n"));
2431 
2432 	index = rsmhash(ex_segid);
2433 
2434 	rw_enter(&rhash->rsmhash_rw, RW_READER);
2435 
2436 	p = rsmhash_getbkt(rhash, index);
2437 
2438 	for (; p; p = p->rsmrc_next) {
2439 		rsmseg_t *seg = (rsmseg_t *)p;
2440 		rsmseglock_acquire(seg);
2441 		/*
2442 		 * Change the s_cookie value of only the local importers
2443 		 * which have been mapped (in state RSM_STATE_ACTIVE).
2444 		 * Note that there is no need to change the s_cookie value
2445 		 * if the imported segment is in RSM_STATE_MAPPING since
2446 		 * eventually the s_cookie will be updated via the mapping
2447 		 * functionality.
2448 		 */
2449 		if ((seg->s_segid == ex_segid) && (seg->s_node == src_nodeid) &&
2450 		    (seg->s_state == RSM_STATE_ACTIVE)) {
2451 			seg->s_cookie = cookie;
2452 		}
2453 		rsmseglock_release(seg);
2454 	}
2455 	rw_exit(&rhash->rsmhash_rw);
2456 
2457 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_FUNC_ALL, RSM_DEBUG_VERBOSE,
2458 	    "rsm_remap_local_importers done\n"));
2459 }
2460 
2461 static int
2462 rsm_rebind(rsmseg_t *seg, rsm_ioctlmsg_t *msg)
2463 {
2464 	int e;
2465 	adapter_t *adapter;
2466 	ddi_umem_cookie_t cookie;
2467 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2468 
2469 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind enter\n"));
2470 
2471 	/* Check for permissions to rebind */
2472 	if (!(seg->s_flags & RSMKA_ALLOW_UNBIND_REBIND)) {
2473 		return (RSMERR_REBIND_NOT_ALLOWED);
2474 	}
2475 
2476 	if (seg->s_pid != ddi_get_pid() &&
2477 	    ddi_get_pid() != 0) {
2478 		DBG_PRINTF((category, RSM_ERR, "rsm_rebind: Not owner\n"));
2479 		return (RSMERR_NOT_CREATOR);
2480 	}
2481 
2482 	/*
2483 	 * We will not be allowing partial rebind and hence length passed
2484 	 * in must be same as segment length
2485 	 */
2486 	if (msg->vaddr == NULL) {
2487 		DBG_PRINTF((category, RSM_ERR,
2488 		    "rsm_rebind done: null msg->vaddr\n"));
2489 		return (RSMERR_BAD_ADDR);
2490 	}
2491 	if (msg->len != seg->s_len) {
2492 		DBG_PRINTF((category, RSM_ERR,
2493 		    "rsm_rebind: invalid length\n"));
2494 		return (RSMERR_BAD_LENGTH);
2495 	}
2496 
2497 	/* Lock segment */
2498 	rsmseglock_acquire(seg);
2499 
2500 	while ((seg->s_state == RSM_STATE_BIND_QUIESCED) ||
2501 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCING) ||
2502 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCED)) {
2503 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
2504 			rsmseglock_release(seg);
2505 			DBG_PRINTF((category, RSM_DEBUG,
2506 			    "rsm_rebind done: cv_wait INTERRUPTED"));
2507 			return (RSMERR_INTERRUPTED);
2508 		}
2509 	}
2510 
2511 	/* verify segment state */
2512 	if ((seg->s_state != RSM_STATE_BIND) &&
2513 	    (seg->s_state != RSM_STATE_EXPORT)) {
2514 		/* Unlock segment */
2515 		rsmseglock_release(seg);
2516 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2517 		    "rsm_rebind done: invalid state\n"));
2518 		return (RSMERR_BAD_SEG_HNDL);
2519 	}
2520 
2521 	ASSERT(seg->s_cookie != NULL);
2522 
2523 	if (msg->vaddr == seg->s_region.r_vaddr) {
2524 		rsmseglock_release(seg);
2525 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind done\n"));
2526 		return (RSM_SUCCESS);
2527 	}
2528 
2529 	e = rsm_bind_pages(&cookie, msg->vaddr, msg->len, curproc);
2530 	if (e == RSM_SUCCESS) {
2531 		struct buf *xbuf;
2532 		dev_t sdev = 0;
2533 		rsm_memory_local_t mem;
2534 
2535 		xbuf = ddi_umem_iosetup(cookie, 0, msg->len, B_WRITE,
2536 		    sdev, 0, NULL, DDI_UMEM_SLEEP);
2537 		ASSERT(xbuf != NULL);
2538 
2539 		mem.ms_type = RSM_MEM_BUF;
2540 		mem.ms_bp = xbuf;
2541 
2542 		adapter = seg->s_adapter;
2543 		e = adapter->rsmpi_ops->rsm_rebind(
2544 		    seg->s_handle.out, 0, &mem,
2545 		    RSM_RESOURCE_DONTWAIT, NULL);
2546 
2547 		if (e == RSM_SUCCESS) {
2548 			/*
2549 			 * unbind the older pages, and unload local importers;
2550 			 * but don't disconnect importers
2551 			 */
2552 			(void) rsm_unbind_pages(seg);
2553 			seg->s_cookie = cookie;
2554 			seg->s_region.r_vaddr = msg->vaddr;
2555 			rsm_remap_local_importers(my_nodeid, seg->s_segid,
2556 			    cookie);
2557 		} else {
2558 			/*
2559 			 * Unbind the pages associated with "cookie" by the
2560 			 * rsm_bind_pages calls prior to this. This is
2561 			 * similar to what is done in the rsm_unbind_pages
2562 			 * routine for the seg->s_cookie.
2563 			 */
2564 			ddi_umem_unlock(cookie);
2565 			rsm_dec_pgcnt(btopr(msg->len));
2566 			DBG_PRINTF((category, RSM_ERR,
2567 			    "rsm_rebind failed with %d\n", e));
2568 		}
2569 		/*
2570 		 * At present there is no dependency on the existence of xbuf.
2571 		 * So we can free it here. If in the future this changes, it can
2572 		 * be freed sometime during the segment destroy.
2573 		 */
2574 		freerbuf(xbuf);
2575 	}
2576 
2577 	/* Unlock segment */
2578 	rsmseglock_release(seg);
2579 
2580 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind done\n"));
2581 
2582 	return (e);
2583 }
2584 
2585 static int
2586 rsm_unbind(rsmseg_t *seg)
2587 {
2588 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2589 
2590 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind enter\n"));
2591 
2592 	rsmseglock_acquire(seg);
2593 
2594 	/* verify segment state */
2595 	if ((seg->s_state != RSM_STATE_BIND) &&
2596 	    (seg->s_state != RSM_STATE_BIND_QUIESCED)) {
2597 		rsmseglock_release(seg);
2598 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2599 		    "rsm_unbind: invalid state\n"));
2600 		return (RSMERR_BAD_SEG_HNDL);
2601 	}
2602 
2603 	/* unlock current range */
2604 	(void) rsm_unbind_pages(seg);
2605 
2606 	if (seg->s_state == RSM_STATE_BIND) {
2607 		seg->s_state = RSM_STATE_NEW;
2608 	} else if (seg->s_state == RSM_STATE_BIND_QUIESCED) {
2609 		seg->s_state = RSM_STATE_NEW_QUIESCED;
2610 	}
2611 
2612 	rsmseglock_release(seg);
2613 
2614 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind done\n"));
2615 
2616 	return (RSM_SUCCESS);
2617 }
2618 
2619 /* **************************** Exporter Access List Management ******* */
2620 static void
2621 rsmacl_free(rsmapi_access_entry_t *acl, int acl_len)
2622 {
2623 	int	acl_sz;
2624 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2625 
2626 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_free enter\n"));
2627 
2628 	/* acl could be NULL */
2629 
2630 	if (acl != NULL && acl_len > 0) {
2631 		acl_sz = acl_len * sizeof (rsmapi_access_entry_t);
2632 		kmem_free((void *)acl, acl_sz);
2633 	}
2634 
2635 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_free done\n"));
2636 }
2637 
2638 static void
2639 rsmpiacl_free(rsm_access_entry_t *acl, int acl_len)
2640 {
2641 	int	acl_sz;
2642 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2643 
2644 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_free enter\n"));
2645 
2646 	if (acl != NULL && acl_len > 0) {
2647 		acl_sz = acl_len * sizeof (rsm_access_entry_t);
2648 		kmem_free((void *)acl, acl_sz);
2649 	}
2650 
2651 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_free done\n"));
2652 
2653 }
2654 
2655 static int
2656 rsmacl_build(rsm_ioctlmsg_t *msg, int mode,
2657     rsmapi_access_entry_t **list, int *len, int loopback)
2658 {
2659 	rsmapi_access_entry_t *acl;
2660 	int	acl_len;
2661 	int i;
2662 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2663 
2664 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_build enter\n"));
2665 
2666 	*len = 0;
2667 	*list = NULL;
2668 
2669 	acl_len = msg->acl_len;
2670 	if ((loopback && acl_len > 1) || (acl_len < 0) ||
2671 	    (acl_len > MAX_NODES)) {
2672 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2673 		    "rsmacl_build done: acl invalid\n"));
2674 		return (RSMERR_BAD_ACL);
2675 	}
2676 
2677 	if (acl_len > 0 && acl_len <= MAX_NODES) {
2678 		size_t acl_size = acl_len * sizeof (rsmapi_access_entry_t);
2679 
2680 		acl = kmem_alloc(acl_size, KM_SLEEP);
2681 
2682 		if (ddi_copyin((caddr_t)msg->acl, (caddr_t)acl,
2683 		    acl_size, mode)) {
2684 			kmem_free((void *) acl, acl_size);
2685 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2686 			    "rsmacl_build done: BAD_ADDR\n"));
2687 			return (RSMERR_BAD_ADDR);
2688 		}
2689 
2690 		/*
2691 		 * Verify access list
2692 		 */
2693 		for (i = 0; i < acl_len; i++) {
2694 			if (acl[i].ae_node > MAX_NODES ||
2695 			    (loopback && (acl[i].ae_node != my_nodeid)) ||
2696 			    acl[i].ae_permission > RSM_ACCESS_TRUSTED) {
2697 				/* invalid entry */
2698 				kmem_free((void *) acl, acl_size);
2699 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2700 				    "rsmacl_build done: EINVAL\n"));
2701 				return (RSMERR_BAD_ACL);
2702 			}
2703 		}
2704 
2705 		*len = acl_len;
2706 		*list = acl;
2707 	}
2708 
2709 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_build done\n"));
2710 
2711 	return (DDI_SUCCESS);
2712 }
2713 
2714 static int
2715 rsmpiacl_create(rsmapi_access_entry_t *src, rsm_access_entry_t **dest,
2716     int acl_len, adapter_t *adapter)
2717 {
2718 	rsm_access_entry_t *acl;
2719 	rsm_addr_t hwaddr;
2720 	int i;
2721 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2722 
2723 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_create enter\n"));
2724 
2725 	if (src != NULL) {
2726 		size_t acl_size = acl_len * sizeof (rsm_access_entry_t);
2727 		acl = kmem_alloc(acl_size, KM_SLEEP);
2728 
2729 		/*
2730 		 * translate access list
2731 		 */
2732 		for (i = 0; i < acl_len; i++) {
2733 			if (src[i].ae_node == my_nodeid) {
2734 				acl[i].ae_addr = adapter->hwaddr;
2735 			} else {
2736 				hwaddr = get_remote_hwaddr(adapter,
2737 				    src[i].ae_node);
2738 				if ((int64_t)hwaddr < 0) {
2739 					/* invalid hwaddr */
2740 					kmem_free((void *) acl, acl_size);
2741 					DBG_PRINTF((category,
2742 					    RSM_DEBUG_VERBOSE,
2743 					    "rsmpiacl_create done:"
2744 					    "EINVAL hwaddr\n"));
2745 					return (RSMERR_INTERNAL_ERROR);
2746 				}
2747 				acl[i].ae_addr = hwaddr;
2748 			}
2749 			/* rsmpi understands only RSM_PERM_XXXX */
2750 			acl[i].ae_permission =
2751 			    src[i].ae_permission & RSM_PERM_RDWR;
2752 		}
2753 		*dest = acl;
2754 	} else {
2755 		*dest = NULL;
2756 	}
2757 
2758 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_create done\n"));
2759 
2760 	return (RSM_SUCCESS);
2761 }
2762 
2763 static int
2764 rsmsegacl_validate(rsmipc_request_t *req, rsm_node_id_t rnode,
2765     rsmipc_reply_t *reply)
2766 {
2767 
2768 	int		i;
2769 	rsmseg_t	*seg;
2770 	rsm_memseg_id_t key = req->rsmipc_key;
2771 	rsm_permission_t perm = req->rsmipc_perm;
2772 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2773 
2774 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2775 	    "rsmsegacl_validate enter\n"));
2776 
2777 	/*
2778 	 * Find segment and grab its lock. The reason why we grab the segment
2779 	 * lock in side the search is to avoid the race when the segment is
2780 	 * being deleted and we already have a pointer to it.
2781 	 */
2782 	seg = rsmexport_lookup(key);
2783 	if (!seg) {
2784 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2785 		    "rsmsegacl_validate done: %u ENXIO\n", key));
2786 		return (RSMERR_SEG_NOT_PUBLISHED);
2787 	}
2788 
2789 	ASSERT(rsmseglock_held(seg));
2790 	ASSERT(seg->s_state == RSM_STATE_EXPORT);
2791 
2792 	/*
2793 	 * We implement a 2-level protection scheme.
2794 	 * First, we check if local/remote host has access rights.
2795 	 * Second, we check if the user has access rights.
2796 	 *
2797 	 * This routine only validates the rnode access_list
2798 	 */
2799 	if (seg->s_acl_len > 0) {
2800 		/*
2801 		 * Check host access list
2802 		 */
2803 		ASSERT(seg->s_acl != NULL);
2804 		for (i = 0; i < seg->s_acl_len; i++) {
2805 			if (seg->s_acl[i].ae_node == rnode) {
2806 				perm &= seg->s_acl[i].ae_permission;
2807 				goto found;
2808 			}
2809 		}
2810 		/* rnode is not found in the list */
2811 		rsmseglock_release(seg);
2812 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2813 		    "rsmsegacl_validate done: EPERM\n"));
2814 		return (RSMERR_SEG_NOT_PUBLISHED_TO_NODE);
2815 	} else {
2816 		/* use default owner creation umask */
2817 		perm &= seg->s_mode;
2818 	}
2819 
2820 found:
2821 	/* update perm for this node */
2822 	reply->rsmipc_mode = perm;
2823 	reply->rsmipc_uid = seg->s_uid;
2824 	reply->rsmipc_gid = seg->s_gid;
2825 	reply->rsmipc_segid = seg->s_segid;
2826 	reply->rsmipc_seglen = seg->s_len;
2827 
2828 	/*
2829 	 * Perm of requesting node is valid; source will validate user
2830 	 */
2831 	rsmseglock_release(seg);
2832 
2833 	/*
2834 	 * Add the importer to the list right away, if connect fails
2835 	 * the importer will ask the exporter to remove it.
2836 	 */
2837 	importer_list_add(rnode, key, req->rsmipc_adapter_hwaddr,
2838 	    req->rsmipc_segment_cookie);
2839 
2840 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegacl_validate done\n"));
2841 
2842 	return (RSM_SUCCESS);
2843 }
2844 
2845 
2846 /* ************************** Exporter Calls ************************* */
2847 
2848 static int
2849 rsm_publish(rsmseg_t *seg, rsm_ioctlmsg_t *msg, intptr_t dataptr, int mode)
2850 {
2851 	int			e;
2852 	int			acl_len;
2853 	rsmapi_access_entry_t	*acl;
2854 	rsm_access_entry_t	*rsmpi_acl;
2855 	rsm_memory_local_t	mem;
2856 	struct buf		*xbuf;
2857 	dev_t			sdev = 0;
2858 	adapter_t		*adapter;
2859 	rsm_memseg_id_t		segment_id = 0;
2860 	int			loopback_flag = 0;
2861 	int			create_flags = 0;
2862 	rsm_resource_callback_t	callback_flag;
2863 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2864 
2865 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_publish enter\n"));
2866 
2867 	if (seg->s_adapter == &loopback_adapter)
2868 		loopback_flag = 1;
2869 
2870 	if (seg->s_pid != ddi_get_pid() &&
2871 	    ddi_get_pid() != 0) {
2872 		DBG_PRINTF((category, RSM_ERR,
2873 		    "rsm_publish: Not creator\n"));
2874 		return (RSMERR_NOT_CREATOR);
2875 	}
2876 
2877 	/*
2878 	 * Get per node access list
2879 	 */
2880 	e = rsmacl_build(msg, mode, &acl, &acl_len, loopback_flag);
2881 	if (e != DDI_SUCCESS) {
2882 		DBG_PRINTF((category, RSM_ERR,
2883 		    "rsm_publish done: rsmacl_build failed\n"));
2884 		return (e);
2885 	}
2886 
2887 	/*
2888 	 * The application provided msg->key is used for resolving a
2889 	 * segment id according to the following:
2890 	 *    key = 0			Kernel Agent selects the segment id
2891 	 *    key <= RSM_DLPI_ID_END	Reserved for system usage except
2892 	 *				RSMLIB range
2893 	 *    key < RSM_USER_APP_ID_BASE segment id = key
2894 	 *    key >= RSM_USER_APP_ID_BASE Reserved for KA selections
2895 	 *
2896 	 * rsm_nextavail_segmentid is initialized to 0x80000000 and
2897 	 * overflows to zero after 0x80000000 allocations.
2898 	 * An algorithm is needed which allows reinitialization and provides
2899 	 * for reallocation after overflow.  For now, ENOMEM is returned
2900 	 * once the overflow condition has occurred.
2901 	 */
2902 	if (msg->key == 0) {
2903 		mutex_enter(&rsm_lock);
2904 		segment_id = rsm_nextavail_segmentid;
2905 		if (segment_id != 0) {
2906 			rsm_nextavail_segmentid++;
2907 			mutex_exit(&rsm_lock);
2908 		} else {
2909 			mutex_exit(&rsm_lock);
2910 			DBG_PRINTF((category, RSM_ERR,
2911 			    "rsm_publish done: no more keys avlbl\n"));
2912 			return (RSMERR_INSUFFICIENT_RESOURCES);
2913 		}
2914 	} else	if BETWEEN(msg->key, RSM_RSMLIB_ID_BASE, RSM_RSMLIB_ID_END)
2915 		/* range reserved for internal use by base/ndi libraries */
2916 		segment_id = msg->key;
2917 	else	if (msg->key <= RSM_DLPI_ID_END)
2918 		return (RSMERR_RESERVED_SEGID);
2919 	else if (msg->key <= (uint_t)RSM_USER_APP_ID_BASE -1)
2920 		segment_id = msg->key;
2921 	else {
2922 		DBG_PRINTF((category, RSM_ERR,
2923 		    "rsm_publish done: invalid key %u\n", msg->key));
2924 		return (RSMERR_RESERVED_SEGID);
2925 	}
2926 
2927 	/* Add key to exportlist; The segment lock is held on success */
2928 	e = rsmexport_add(seg, segment_id);
2929 	if (e) {
2930 		rsmacl_free(acl, acl_len);
2931 		DBG_PRINTF((category, RSM_ERR,
2932 		    "rsm_publish done: export_add failed: %d\n", e));
2933 		return (e);
2934 	}
2935 
2936 	seg->s_segid = segment_id;
2937 
2938 	if ((seg->s_state != RSM_STATE_BIND) &&
2939 	    (seg->s_state != RSM_STATE_BIND_QUIESCED)) {
2940 		/* state changed since then, free acl and return */
2941 		rsmseglock_release(seg);
2942 		rsmexport_rm(seg);
2943 		rsmacl_free(acl, acl_len);
2944 		DBG_PRINTF((category, RSM_ERR,
2945 		    "rsm_publish done: segment in wrong state: %d\n",
2946 		    seg->s_state));
2947 		return (RSMERR_BAD_SEG_HNDL);
2948 	}
2949 
2950 	/*
2951 	 * If this is for a local memory handle and permissions are zero,
2952 	 * then the surrogate segment is very large and we want to skip
2953 	 * allocation of DVMA space.
2954 	 *
2955 	 * Careful!  If the user didn't use an ACL list, acl will be a NULL
2956 	 * pointer.  Check that before dereferencing it.
2957 	 */
2958 	if (acl != (rsmapi_access_entry_t *)NULL) {
2959 		if (acl[0].ae_node == my_nodeid && acl[0].ae_permission == 0)
2960 			goto skipdriver;
2961 	}
2962 
2963 	/* create segment  */
2964 	xbuf = ddi_umem_iosetup(seg->s_cookie, 0, seg->s_len, B_WRITE,
2965 	    sdev, 0, NULL, DDI_UMEM_SLEEP);
2966 	ASSERT(xbuf != NULL);
2967 
2968 	mem.ms_type = RSM_MEM_BUF;
2969 	mem.ms_bp = xbuf;
2970 
2971 	/* This call includes a bind operations */
2972 
2973 	adapter = seg->s_adapter;
2974 	/*
2975 	 * create a acl list with hwaddr for RSMPI publish
2976 	 */
2977 	e = rsmpiacl_create(acl, &rsmpi_acl, acl_len, adapter);
2978 
2979 	if (e != RSM_SUCCESS) {
2980 		rsmseglock_release(seg);
2981 		rsmexport_rm(seg);
2982 		rsmacl_free(acl, acl_len);
2983 		freerbuf(xbuf);
2984 		DBG_PRINTF((category, RSM_ERR,
2985 		    "rsm_publish done: rsmpiacl_create failed: %d\n", e));
2986 		return (e);
2987 	}
2988 
2989 	if (seg->s_state == RSM_STATE_BIND) {
2990 		/* create segment  */
2991 
2992 		/* This call includes a bind operations */
2993 
2994 		if (seg->s_flags & RSMKA_ALLOW_UNBIND_REBIND) {
2995 			create_flags = RSM_ALLOW_UNBIND_REBIND;
2996 		}
2997 
2998 		if (seg->s_flags & RSMKA_SET_RESOURCE_DONTWAIT) {
2999 			callback_flag  = RSM_RESOURCE_DONTWAIT;
3000 		} else {
3001 			callback_flag  = RSM_RESOURCE_SLEEP;
3002 		}
3003 
3004 		e = adapter->rsmpi_ops->rsm_seg_create(
3005 		    adapter->rsmpi_handle,
3006 		    &seg->s_handle.out, seg->s_len,
3007 		    create_flags, &mem,
3008 		    callback_flag, NULL);
3009 		/*
3010 		 * At present there is no dependency on the existence of xbuf.
3011 		 * So we can free it here. If in the future this changes, it can
3012 		 * be freed sometime during the segment destroy.
3013 		 */
3014 		freerbuf(xbuf);
3015 
3016 		if (e != RSM_SUCCESS) {
3017 			rsmseglock_release(seg);
3018 			rsmexport_rm(seg);
3019 			rsmacl_free(acl, acl_len);
3020 			rsmpiacl_free(rsmpi_acl, acl_len);
3021 			DBG_PRINTF((category, RSM_ERR,
3022 			    "rsm_publish done: export_create failed: %d\n", e));
3023 			/*
3024 			 * The following assertion ensures that the two errors
3025 			 * related to the length and its alignment do not occur
3026 			 * since they have been checked during export_create
3027 			 */
3028 			ASSERT(e != RSMERR_BAD_MEM_ALIGNMENT &&
3029 			    e != RSMERR_BAD_LENGTH);
3030 			if (e == RSMERR_NOT_MEM)
3031 				e = RSMERR_INSUFFICIENT_MEM;
3032 
3033 			return (e);
3034 		}
3035 		/* export segment, this should create an IMMU mapping */
3036 		e = adapter->rsmpi_ops->rsm_publish(
3037 		    seg->s_handle.out,
3038 		    rsmpi_acl, acl_len,
3039 		    seg->s_segid,
3040 		    RSM_RESOURCE_DONTWAIT, NULL);
3041 
3042 		if (e != RSM_SUCCESS) {
3043 			adapter->rsmpi_ops->rsm_seg_destroy(seg->s_handle.out);
3044 			rsmseglock_release(seg);
3045 			rsmexport_rm(seg);
3046 			rsmacl_free(acl, acl_len);
3047 			rsmpiacl_free(rsmpi_acl, acl_len);
3048 			DBG_PRINTF((category, RSM_ERR,
3049 			    "rsm_publish done: export_publish failed: %d\n",
3050 			    e));
3051 			return (e);
3052 		}
3053 	}
3054 
3055 	seg->s_acl_in = rsmpi_acl;
3056 
3057 skipdriver:
3058 	/* defer s_acl/s_acl_len -> avoid crash in rsmseg_free */
3059 	seg->s_acl_len	= acl_len;
3060 	seg->s_acl	= acl;
3061 
3062 	if (seg->s_state == RSM_STATE_BIND) {
3063 		seg->s_state = RSM_STATE_EXPORT;
3064 	} else if (seg->s_state == RSM_STATE_BIND_QUIESCED) {
3065 		seg->s_state = RSM_STATE_EXPORT_QUIESCED;
3066 		cv_broadcast(&seg->s_cv);
3067 	}
3068 
3069 	rsmseglock_release(seg);
3070 
3071 	/*
3072 	 * If the segment id was solicited, then return it in
3073 	 * the original incoming message.
3074 	 */
3075 	if (msg->key == 0) {
3076 		msg->key = segment_id;
3077 #ifdef _MULTI_DATAMODEL
3078 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
3079 			rsm_ioctlmsg32_t msg32;
3080 
3081 			msg32.key = msg->key;
3082 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3083 			    "rsm_publish done\n"));
3084 			return (ddi_copyout((caddr_t)&msg32,
3085 			    (caddr_t)dataptr, sizeof (msg32), mode));
3086 		}
3087 #endif
3088 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3089 		    "rsm_publish done\n"));
3090 		return (ddi_copyout((caddr_t)msg,
3091 		    (caddr_t)dataptr, sizeof (*msg), mode));
3092 	}
3093 
3094 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_publish done\n"));
3095 	return (DDI_SUCCESS);
3096 }
3097 
3098 /*
3099  * This function modifies the access control list of an already published
3100  * segment.  There is no effect on import segments which are already
3101  * connected.
3102  */
3103 static int
3104 rsm_republish(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int mode)
3105 {
3106 	rsmapi_access_entry_t	*new_acl, *old_acl, *tmp_acl;
3107 	rsm_access_entry_t	*rsmpi_new_acl, *rsmpi_old_acl;
3108 	int			new_acl_len, old_acl_len, tmp_acl_len;
3109 	int			e, i;
3110 	adapter_t		*adapter;
3111 	int			loopback_flag = 0;
3112 	rsm_memseg_id_t		key;
3113 	rsm_permission_t	permission;
3114 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
3115 
3116 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_republish enter\n"));
3117 
3118 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3119 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED) &&
3120 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCING))
3121 		return (RSMERR_SEG_NOT_PUBLISHED);
3122 
3123 	if (seg->s_pid != ddi_get_pid() &&
3124 	    ddi_get_pid() != 0) {
3125 		DBG_PRINTF((category, RSM_ERR,
3126 		    "rsm_republish: Not owner\n"));
3127 		return (RSMERR_NOT_CREATOR);
3128 	}
3129 
3130 	if (seg->s_adapter == &loopback_adapter)
3131 		loopback_flag = 1;
3132 
3133 	/*
3134 	 * Build new list first
3135 	 */
3136 	e = rsmacl_build(msg, mode, &new_acl, &new_acl_len, loopback_flag);
3137 	if (e) {
3138 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3139 		    "rsm_republish done: rsmacl_build failed %d", e));
3140 		return (e);
3141 	}
3142 
3143 	/* Lock segment */
3144 	rsmseglock_acquire(seg);
3145 	/*
3146 	 * a republish is in progress - REPUBLISH message is being
3147 	 * sent to the importers so wait for it to complete OR
3148 	 * wait till DR completes
3149 	 */
3150 	while (((seg->s_state == RSM_STATE_EXPORT) &&
3151 	    (seg->s_flags & RSM_REPUBLISH_WAIT)) ||
3152 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCED) ||
3153 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCING)) {
3154 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3155 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3156 			    "rsm_republish done: cv_wait  INTERRUPTED"));
3157 			rsmseglock_release(seg);
3158 			rsmacl_free(new_acl, new_acl_len);
3159 			return (RSMERR_INTERRUPTED);
3160 		}
3161 	}
3162 
3163 	/* recheck if state is valid */
3164 	if (seg->s_state != RSM_STATE_EXPORT) {
3165 		rsmseglock_release(seg);
3166 		rsmacl_free(new_acl, new_acl_len);
3167 		return (RSMERR_SEG_NOT_PUBLISHED);
3168 	}
3169 
3170 	key = seg->s_key;
3171 	old_acl = seg->s_acl;
3172 	old_acl_len = seg->s_acl_len;
3173 
3174 	seg->s_acl = new_acl;
3175 	seg->s_acl_len = new_acl_len;
3176 
3177 	/*
3178 	 * This call will only be meaningful if and when the interconnect
3179 	 * layer makes use of the access list
3180 	 */
3181 	adapter = seg->s_adapter;
3182 	/*
3183 	 * create a acl list with hwaddr for RSMPI publish
3184 	 */
3185 	e = rsmpiacl_create(new_acl, &rsmpi_new_acl, new_acl_len, adapter);
3186 
3187 	if (e != RSM_SUCCESS) {
3188 		seg->s_acl = old_acl;
3189 		seg->s_acl_len = old_acl_len;
3190 		rsmseglock_release(seg);
3191 		rsmacl_free(new_acl, new_acl_len);
3192 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3193 		    "rsm_republish done: rsmpiacl_create failed %d", e));
3194 		return (e);
3195 	}
3196 	rsmpi_old_acl = seg->s_acl_in;
3197 	seg->s_acl_in = rsmpi_new_acl;
3198 
3199 	e = adapter->rsmpi_ops->rsm_republish(seg->s_handle.out,
3200 	    seg->s_acl_in, seg->s_acl_len,
3201 	    RSM_RESOURCE_DONTWAIT, NULL);
3202 
3203 	if (e != RSM_SUCCESS) {
3204 		seg->s_acl = old_acl;
3205 		seg->s_acl_in = rsmpi_old_acl;
3206 		seg->s_acl_len = old_acl_len;
3207 		rsmseglock_release(seg);
3208 		rsmacl_free(new_acl, new_acl_len);
3209 		rsmpiacl_free(rsmpi_new_acl, new_acl_len);
3210 
3211 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3212 		    "rsm_republish done: rsmpi republish failed %d\n", e));
3213 		return (e);
3214 	}
3215 
3216 	/* create a tmp copy of the new acl */
3217 	tmp_acl_len = new_acl_len;
3218 	if (tmp_acl_len > 0) {
3219 		tmp_acl = kmem_zalloc(new_acl_len*sizeof (*tmp_acl), KM_SLEEP);
3220 		for (i = 0; i < tmp_acl_len; i++) {
3221 			tmp_acl[i].ae_node = new_acl[i].ae_node;
3222 			tmp_acl[i].ae_permission = new_acl[i].ae_permission;
3223 		}
3224 		/*
3225 		 * The default permission of a node which was in the old
3226 		 * ACL but not in the new ACL is 0 ie no access.
3227 		 */
3228 		permission = 0;
3229 	} else {
3230 		/*
3231 		 * NULL acl means all importers can connect and
3232 		 * default permission will be owner creation umask
3233 		 */
3234 		tmp_acl = NULL;
3235 		permission = seg->s_mode;
3236 	}
3237 
3238 	/* make other republishers to wait for republish to complete */
3239 	seg->s_flags |= RSM_REPUBLISH_WAIT;
3240 
3241 	rsmseglock_release(seg);
3242 
3243 	/* send the new perms to the importing nodes */
3244 	rsm_send_republish(key, tmp_acl, tmp_acl_len, permission);
3245 
3246 	rsmseglock_acquire(seg);
3247 	seg->s_flags &= ~RSM_REPUBLISH_WAIT;
3248 	/* wake up any one waiting for republish to complete */
3249 	cv_broadcast(&seg->s_cv);
3250 	rsmseglock_release(seg);
3251 
3252 	rsmacl_free(tmp_acl, tmp_acl_len);
3253 	rsmacl_free(old_acl, old_acl_len);
3254 	rsmpiacl_free(rsmpi_old_acl, old_acl_len);
3255 
3256 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_republish done\n"));
3257 	return (DDI_SUCCESS);
3258 }
3259 
3260 static int
3261 rsm_unpublish(rsmseg_t *seg, int mode)
3262 {
3263 	rsmapi_access_entry_t	*acl;
3264 	rsm_access_entry_t	*rsmpi_acl;
3265 	int			acl_len;
3266 	int			e;
3267 	adapter_t *adapter;
3268 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
3269 
3270 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unpublish enter\n"));
3271 
3272 	if (seg->s_pid != ddi_get_pid() &&
3273 	    ddi_get_pid() != 0) {
3274 		DBG_PRINTF((category, RSM_ERR,
3275 		    "rsm_unpublish: Not creator\n"));
3276 		return (RSMERR_NOT_CREATOR);
3277 	}
3278 
3279 	rsmseglock_acquire(seg);
3280 	/*
3281 	 * wait for QUIESCING to complete here before rsmexport_rm
3282 	 * is called because the SUSPEND_COMPLETE mesg which changes
3283 	 * the seg state from EXPORT_QUIESCING to EXPORT_QUIESCED and
3284 	 * signals the cv_wait needs to find it in the hashtable.
3285 	 */
3286 	while ((seg->s_state == RSM_STATE_EXPORT_QUIESCING) ||
3287 	    ((seg->s_state == RSM_STATE_EXPORT) && (seg->s_rdmacnt > 0))) {
3288 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3289 			rsmseglock_release(seg);
3290 			DBG_PRINTF((category, RSM_ERR,
3291 			    "rsm_unpublish done: cv_wait INTR qscing"
3292 			    "getv/putv in progress"));
3293 			return (RSMERR_INTERRUPTED);
3294 		}
3295 	}
3296 
3297 	/* verify segment state */
3298 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3299 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED)) {
3300 		rsmseglock_release(seg);
3301 		DBG_PRINTF((category, RSM_ERR,
3302 		    "rsm_unpublish done: bad state %x\n", seg->s_state));
3303 		return (RSMERR_SEG_NOT_PUBLISHED);
3304 	}
3305 
3306 	rsmseglock_release(seg);
3307 
3308 	rsmexport_rm(seg);
3309 
3310 	rsm_send_importer_disconnects(seg->s_segid, my_nodeid);
3311 
3312 	rsmseglock_acquire(seg);
3313 	/*
3314 	 * wait for republish to complete
3315 	 */
3316 	while ((seg->s_state == RSM_STATE_EXPORT) &&
3317 	    (seg->s_flags & RSM_REPUBLISH_WAIT)) {
3318 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3319 			DBG_PRINTF((category, RSM_ERR,
3320 			    "rsm_unpublish done: cv_wait INTR repubing"));
3321 			rsmseglock_release(seg);
3322 			return (RSMERR_INTERRUPTED);
3323 		}
3324 	}
3325 
3326 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3327 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED)) {
3328 		DBG_PRINTF((category, RSM_ERR,
3329 		    "rsm_unpublish done: invalid state"));
3330 		rsmseglock_release(seg);
3331 		return (RSMERR_SEG_NOT_PUBLISHED);
3332 	}
3333 
3334 	/*
3335 	 * check for putv/get surrogate segment which was not published
3336 	 * to the driver.
3337 	 *
3338 	 * Be certain to see if there is an ACL first!  If this segment was
3339 	 * not published with an ACL, acl will be a null pointer.  Check
3340 	 * that before dereferencing it.
3341 	 */
3342 	acl = seg->s_acl;
3343 	if (acl != (rsmapi_access_entry_t *)NULL) {
3344 		if (acl[0].ae_node == my_nodeid && acl[0].ae_permission == 0)
3345 			goto bypass;
3346 	}
3347 
3348 	/* The RSMPI unpublish/destroy has been done if seg is QUIESCED */
3349 	if (seg->s_state == RSM_STATE_EXPORT_QUIESCED)
3350 		goto bypass;
3351 
3352 	adapter = seg->s_adapter;
3353 	for (;;) {
3354 		if (seg->s_state != RSM_STATE_EXPORT) {
3355 			rsmseglock_release(seg);
3356 			DBG_PRINTF((category, RSM_ERR,
3357 			    "rsm_unpublish done: bad state %x\n",
3358 			    seg->s_state));
3359 			return (RSMERR_SEG_NOT_PUBLISHED);
3360 		}
3361 
3362 		/* unpublish from adapter */
3363 		e = adapter->rsmpi_ops->rsm_unpublish(seg->s_handle.out);
3364 
3365 		if (e == RSM_SUCCESS) {
3366 			break;
3367 		}
3368 
3369 		if (e == RSMERR_SEG_IN_USE && mode == 1) {
3370 			/*
3371 			 * wait for unpublish to succeed, it's busy.
3372 			 */
3373 			seg->s_flags |= RSM_EXPORT_WAIT;
3374 
3375 			/* wait for a max of 1 ms - this is an empirical */
3376 			/* value that was found by some minimal testing  */
3377 			/* can be fine tuned when we have better numbers */
3378 			/* A long term fix would be to send cv_signal	 */
3379 			/* from the intr callback routine		 */
3380 			/* currently nobody signals this wait		 */
3381 			(void) cv_reltimedwait(&seg->s_cv, &seg->s_lock,
3382 			    drv_usectohz(1000), TR_CLOCK_TICK);
3383 
3384 			DBG_PRINTF((category, RSM_ERR,
3385 			    "rsm_unpublish: SEG_IN_USE\n"));
3386 
3387 			seg->s_flags &= ~RSM_EXPORT_WAIT;
3388 		} else {
3389 			if (mode == 1) {
3390 				DBG_PRINTF((category, RSM_ERR,
3391 				    "rsm:rsmpi unpublish err %x\n", e));
3392 				seg->s_state = RSM_STATE_BIND;
3393 			}
3394 			rsmseglock_release(seg);
3395 			return (e);
3396 		}
3397 	}
3398 
3399 	/* Free segment */
3400 	e = adapter->rsmpi_ops->rsm_seg_destroy(seg->s_handle.out);
3401 
3402 	if (e != RSM_SUCCESS) {
3403 		DBG_PRINTF((category, RSM_ERR,
3404 		    "rsm_unpublish: rsmpi destroy key=%x failed %x\n",
3405 		    seg->s_key, e));
3406 	}
3407 
3408 bypass:
3409 	acl = seg->s_acl;
3410 	rsmpi_acl = seg->s_acl_in;
3411 	acl_len = seg->s_acl_len;
3412 
3413 	seg->s_acl = NULL;
3414 	seg->s_acl_in = NULL;
3415 	seg->s_acl_len = 0;
3416 
3417 	if (seg->s_state == RSM_STATE_EXPORT) {
3418 		seg->s_state = RSM_STATE_BIND;
3419 	} else if (seg->s_state == RSM_STATE_EXPORT_QUIESCED) {
3420 		seg->s_state = RSM_STATE_BIND_QUIESCED;
3421 		cv_broadcast(&seg->s_cv);
3422 	}
3423 
3424 	rsmseglock_release(seg);
3425 
3426 	rsmacl_free(acl, acl_len);
3427 	rsmpiacl_free(rsmpi_acl, acl_len);
3428 
3429 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unpublish done\n"));
3430 
3431 	return (DDI_SUCCESS);
3432 }
3433 
3434 /*
3435  * Called from rsm_unpublish to force an unload and disconnection of all
3436  * importers of the unpublished segment.
3437  *
3438  * First build the list of segments requiring a force disconnect, then
3439  * send a request for each.
3440  */
3441 static void
3442 rsm_send_importer_disconnects(rsm_memseg_id_t ex_segid,
3443     rsm_node_id_t ex_nodeid)
3444 {
3445 	rsmipc_request_t	request;
3446 	importing_token_t	*prev_token, *token, *tmp_token, *tokp;
3447 	importing_token_t	*force_disconnect_list = NULL;
3448 	int			index;
3449 
3450 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3451 	    "rsm_send_importer_disconnects enter\n"));
3452 
3453 	index = rsmhash(ex_segid);
3454 
3455 	mutex_enter(&importer_list.lock);
3456 
3457 	prev_token = NULL;
3458 	token = importer_list.bucket[index];
3459 
3460 	while (token != NULL) {
3461 		if (token->key == ex_segid) {
3462 			/*
3463 			 * take it off the importer list and add it
3464 			 * to the force disconnect list.
3465 			 */
3466 			if (prev_token == NULL)
3467 				importer_list.bucket[index] = token->next;
3468 			else
3469 				prev_token->next = token->next;
3470 			tmp_token = token;
3471 			token = token->next;
3472 			if (force_disconnect_list == NULL) {
3473 				force_disconnect_list = tmp_token;
3474 				tmp_token->next = NULL;
3475 			} else {
3476 				tokp = force_disconnect_list;
3477 				/*
3478 				 * make sure that the tmp_token's node
3479 				 * is not already on the force disconnect
3480 				 * list.
3481 				 */
3482 				while (tokp != NULL) {
3483 					if (tokp->importing_node ==
3484 					    tmp_token->importing_node) {
3485 						break;
3486 					}
3487 					tokp = tokp->next;
3488 				}
3489 				if (tokp == NULL) {
3490 					tmp_token->next =
3491 					    force_disconnect_list;
3492 					force_disconnect_list = tmp_token;
3493 				} else {
3494 					kmem_free((void *)tmp_token,
3495 					    sizeof (*token));
3496 				}
3497 			}
3498 
3499 		} else {
3500 			prev_token = token;
3501 			token = token->next;
3502 		}
3503 	}
3504 	mutex_exit(&importer_list.lock);
3505 
3506 	token = force_disconnect_list;
3507 	while (token != NULL) {
3508 		if (token->importing_node == my_nodeid) {
3509 			rsm_force_unload(ex_nodeid, ex_segid,
3510 			    DISCONNECT);
3511 		} else {
3512 			request.rsmipc_hdr.rsmipc_type =
3513 			    RSMIPC_MSG_DISCONNECT;
3514 			request.rsmipc_key = token->key;
3515 			for (;;) {
3516 				if (rsmipc_send(token->importing_node,
3517 				    &request,
3518 				    RSM_NO_REPLY) == RSM_SUCCESS) {
3519 					break;
3520 				} else {
3521 					delay(drv_usectohz(10000));
3522 				}
3523 			}
3524 		}
3525 		tmp_token = token;
3526 		token = token->next;
3527 		kmem_free((void *)tmp_token, sizeof (*token));
3528 	}
3529 
3530 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3531 	    "rsm_send_importer_disconnects done\n"));
3532 }
3533 
3534 /*
3535  * This function is used as a callback for unlocking the pages locked
3536  * down by a process which then does a fork or an exec.
3537  * It marks the export segments corresponding to umem cookie given by
3538  * the *arg to be in a ZOMBIE state(by calling rsmseg_close to be
3539  * destroyed later when an rsm_close occurs).
3540  */
3541 static void
3542 rsm_export_force_destroy(ddi_umem_cookie_t *ck)
3543 {
3544 	rsmresource_blk_t *blk;
3545 	rsmresource_t *p;
3546 	rsmseg_t *eseg = NULL;
3547 	int i, j;
3548 	int found = 0;
3549 
3550 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3551 	    "rsm_export_force_destroy enter\n"));
3552 
3553 	/*
3554 	 * Walk the resource list and locate the export segment (either
3555 	 * in the BIND or the EXPORT state) which corresponds to the
3556 	 * ddi_umem_cookie_t being freed up, and call rsmseg_close.
3557 	 * Change the state to ZOMBIE by calling rsmseg_close with the
3558 	 * force_flag argument (the second argument) set to 1. Also,
3559 	 * unpublish and unbind the segment, but don't free it. Free it
3560 	 * only on a rsm_close call for the segment.
3561 	 */
3562 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
3563 
3564 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
3565 		blk = rsm_resource.rsmrc_root[i];
3566 		if (blk == NULL) {
3567 			continue;
3568 		}
3569 
3570 		for (j = 0; j < RSMRC_BLKSZ; j++) {
3571 			p = blk->rsmrcblk_blks[j];
3572 			if ((p != NULL) && (p != RSMRC_RESERVED) &&
3573 			    (p->rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT)) {
3574 				eseg = (rsmseg_t *)p;
3575 				if (eseg->s_cookie != ck)
3576 					continue; /* continue searching */
3577 				/*
3578 				 * Found the segment, set flag to indicate
3579 				 * force destroy processing is in progress
3580 				 */
3581 				rsmseglock_acquire(eseg);
3582 				eseg->s_flags |= RSM_FORCE_DESTROY_WAIT;
3583 				rsmseglock_release(eseg);
3584 				found = 1;
3585 				break;
3586 			}
3587 		}
3588 
3589 		if (found)
3590 			break;
3591 	}
3592 
3593 	rw_exit(&rsm_resource.rsmrc_lock);
3594 
3595 	if (found) {
3596 		ASSERT(eseg != NULL);
3597 		/* call rsmseg_close with force flag set to 1 */
3598 		rsmseg_close(eseg, 1);
3599 		/*
3600 		 * force destroy processing done, clear flag and signal any
3601 		 * thread waiting in rsmseg_close.
3602 		 */
3603 		rsmseglock_acquire(eseg);
3604 		eseg->s_flags &= ~RSM_FORCE_DESTROY_WAIT;
3605 		cv_broadcast(&eseg->s_cv);
3606 		rsmseglock_release(eseg);
3607 	}
3608 
3609 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3610 	    "rsm_export_force_destroy done\n"));
3611 }
3612 
3613 /* ******************************* Remote Calls *********************** */
3614 static void
3615 rsm_intr_segconnect(rsm_node_id_t src, rsmipc_request_t *req)
3616 {
3617 	rsmipc_reply_t reply;
3618 	DBG_DEFINE(category,
3619 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3620 
3621 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3622 	    "rsm_intr_segconnect enter\n"));
3623 
3624 	reply.rsmipc_status = (short)rsmsegacl_validate(req, src, &reply);
3625 
3626 	reply.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPLY;
3627 	reply.rsmipc_hdr.rsmipc_cookie = req->rsmipc_hdr.rsmipc_cookie;
3628 
3629 	(void) rsmipc_send(src, NULL, &reply);
3630 
3631 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3632 	    "rsm_intr_segconnect done\n"));
3633 }
3634 
3635 
3636 /*
3637  * When an exported segment is unpublished the exporter sends an ipc
3638  * message (RSMIPC_MSG_DISCONNECT) to all importers.  The recv ipc dispatcher
3639  * calls this function.  The import list is scanned; segments which match the
3640  * exported segment id are unloaded and disconnected.
3641  *
3642  * Will also be called from rsm_rebind with disconnect_flag FALSE.
3643  *
3644  */
3645 static void
3646 rsm_force_unload(rsm_node_id_t src_nodeid, rsm_memseg_id_t ex_segid,
3647     boolean_t disconnect_flag)
3648 {
3649 	rsmresource_t	*p = NULL;
3650 	rsmhash_table_t *rhash = &rsm_import_segs;
3651 	uint_t		index;
3652 	DBG_DEFINE(category,
3653 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3654 
3655 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_force_unload enter\n"));
3656 
3657 	index = rsmhash(ex_segid);
3658 
3659 	rw_enter(&rhash->rsmhash_rw, RW_READER);
3660 
3661 	p = rsmhash_getbkt(rhash, index);
3662 
3663 	for (; p; p = p->rsmrc_next) {
3664 		rsmseg_t *seg = (rsmseg_t *)p;
3665 		if ((seg->s_segid == ex_segid) && (seg->s_node == src_nodeid)) {
3666 			/*
3667 			 * In order to make rsmseg_unload and rsm_force_unload
3668 			 * thread safe, acquire the segment lock here.
3669 			 * rsmseg_unload is responsible for releasing the lock.
3670 			 * rsmseg_unload releases the lock just before a call
3671 			 * to rsmipc_send or in case of an early exit which
3672 			 * occurs if the segment was in the state
3673 			 * RSM_STATE_CONNECTING or RSM_STATE_NEW.
3674 			 */
3675 			rsmseglock_acquire(seg);
3676 			if (disconnect_flag)
3677 				seg->s_flags |= RSM_FORCE_DISCONNECT;
3678 			rsmseg_unload(seg);
3679 		}
3680 	}
3681 	rw_exit(&rhash->rsmhash_rw);
3682 
3683 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_force_unload done\n"));
3684 }
3685 
3686 static void
3687 rsm_intr_reply(rsmipc_msghdr_t *msg)
3688 {
3689 	/*
3690 	 * Find slot for cookie in reply.
3691 	 * Match sequence with sequence in cookie
3692 	 * If no match; return
3693 	 * Try to grap lock of slot, if locked return
3694 	 * copy data into reply slot area
3695 	 * signal waiter
3696 	 */
3697 	rsmipc_slot_t	*slot;
3698 	rsmipc_cookie_t	*cookie;
3699 	void *data = (void *) msg;
3700 	size_t size = sizeof (rsmipc_reply_t);
3701 	DBG_DEFINE(category,
3702 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3703 
3704 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_reply enter\n"));
3705 
3706 	cookie = &msg->rsmipc_cookie;
3707 	if (cookie->ic.index >= RSMIPC_SZ) {
3708 		DBG_PRINTF((category, RSM_ERR,
3709 		    "rsm: rsm_intr_reply bad cookie %d\n", cookie->ic.index));
3710 		return;
3711 	}
3712 
3713 	ASSERT(cookie->ic.index < RSMIPC_SZ);
3714 	slot = &rsm_ipc.slots[cookie->ic.index];
3715 	mutex_enter(&slot->rsmipc_lock);
3716 	if (slot->rsmipc_cookie.value == cookie->value) {
3717 		/* found a match */
3718 		if (RSMIPC_GET(slot, RSMIPC_PENDING)) {
3719 			bcopy(data, slot->rsmipc_data, size);
3720 			RSMIPC_CLEAR(slot, RSMIPC_PENDING);
3721 			cv_signal(&slot->rsmipc_cv);
3722 		}
3723 	} else {
3724 		DBG_PRINTF((category, RSM_DEBUG,
3725 		    "rsm: rsm_intr_reply mismatched reply %d\n",
3726 		    cookie->ic.index));
3727 	}
3728 	mutex_exit(&slot->rsmipc_lock);
3729 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_reply done\n"));
3730 }
3731 
3732 /*
3733  * This function gets dispatched on the worker thread when we receive
3734  * the SQREADY message. This function sends the SQREADY_ACK message.
3735  */
3736 static void
3737 rsm_sqready_ack_deferred(void *arg)
3738 {
3739 	path_t	*path = (path_t *)arg;
3740 	DBG_DEFINE(category,
3741 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3742 
3743 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3744 	    "rsm_sqready_ack_deferred enter\n"));
3745 
3746 	mutex_enter(&path->mutex);
3747 
3748 	/*
3749 	 * If path is not active no point in sending the ACK
3750 	 * because the whole SQREADY protocol will again start
3751 	 * when the path becomes active.
3752 	 */
3753 	if (path->state != RSMKA_PATH_ACTIVE) {
3754 		/*
3755 		 * decrement the path refcnt incremented in rsm_proc_sqready
3756 		 */
3757 		PATH_RELE_NOLOCK(path);
3758 		mutex_exit(&path->mutex);
3759 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3760 		    "rsm_sqready_ack_deferred done:!ACTIVE\n"));
3761 		return;
3762 	}
3763 
3764 	/* send an SQREADY_ACK message */
3765 	(void) rsmipc_send_controlmsg(path, RSMIPC_MSG_SQREADY_ACK);
3766 
3767 	/* initialize credits to the max level */
3768 	path->sendq_token.msgbuf_avail = RSMIPC_MAX_MESSAGES;
3769 
3770 	/* wake up any send that is waiting for credits */
3771 	cv_broadcast(&path->sendq_token.sendq_cv);
3772 
3773 	/*
3774 	 * decrement the path refcnt since we incremented it in
3775 	 * rsm_proc_sqready
3776 	 */
3777 	PATH_RELE_NOLOCK(path);
3778 
3779 	mutex_exit(&path->mutex);
3780 
3781 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3782 	    "rsm_sqready_ack_deferred done\n"));
3783 }
3784 
3785 /*
3786  * Process the SQREADY message
3787  */
3788 static void
3789 rsm_proc_sqready(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3790     rsm_intr_hand_arg_t arg)
3791 {
3792 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3793 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3794 	path_t			*path;
3795 	DBG_DEFINE(category,
3796 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3797 
3798 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_proc_sqready enter\n"));
3799 
3800 	/* look up the path - incr the path refcnt */
3801 	path = rsm_find_path(hdlr_argp->adapter_name,
3802 	    hdlr_argp->adapter_instance, src_hwaddr);
3803 
3804 	/*
3805 	 * No path exists or path is not active - drop the message
3806 	 */
3807 	if (path == NULL) {
3808 		DBG_PRINTF((category, RSM_DEBUG,
3809 		    "rsm_proc_sqready done: msg dropped no path\n"));
3810 		return;
3811 	}
3812 
3813 	mutex_exit(&path->mutex);
3814 
3815 	/* drain any tasks from the previous incarnation */
3816 	taskq_wait(path->recv_taskq);
3817 
3818 	mutex_enter(&path->mutex);
3819 	/*
3820 	 * If we'd sent an SQREADY message and were waiting for SQREADY_ACK
3821 	 * in the meanwhile we received an SQREADY message, blindly reset
3822 	 * the WAIT_FOR_SQACK flag because we'll just send SQREADY_ACK
3823 	 * and forget about the SQREADY that we sent.
3824 	 */
3825 	path->flags &= ~RSMKA_WAIT_FOR_SQACK;
3826 
3827 	if (path->state != RSMKA_PATH_ACTIVE) {
3828 		/* decr refcnt and drop the mutex */
3829 		PATH_RELE_NOLOCK(path);
3830 		mutex_exit(&path->mutex);
3831 		DBG_PRINTF((category, RSM_DEBUG,
3832 		    "rsm_proc_sqready done: msg dropped path !ACTIVE\n"));
3833 		return;
3834 	}
3835 
3836 	DBG_PRINTF((category, RSM_DEBUG, "rsm_proc_sqready:path=%lx "
3837 	    " src=%lx:%llx\n", path, msghdr->rsmipc_src, src_hwaddr));
3838 
3839 	/*
3840 	 * The sender's local incarnation number is our remote incarnation
3841 	 * number save it in the path data structure
3842 	 */
3843 	path->remote_incn = msg->rsmipc_local_incn;
3844 	path->sendq_token.msgbuf_avail = 0;
3845 	path->procmsg_cnt = 0;
3846 
3847 	/*
3848 	 * path is active - dispatch task to send SQREADY_ACK - remember
3849 	 * RSMPI calls can't be done in interrupt context
3850 	 *
3851 	 * We can use the recv_taskq to send because the remote endpoint
3852 	 * cannot start sending messages till it receives SQREADY_ACK hence
3853 	 * at this point there are no tasks on recv_taskq.
3854 	 *
3855 	 * The path refcnt will be decremented in rsm_sqready_ack_deferred.
3856 	 */
3857 	(void) taskq_dispatch(path->recv_taskq,
3858 	    rsm_sqready_ack_deferred, path, KM_NOSLEEP);
3859 
3860 	mutex_exit(&path->mutex);
3861 
3862 
3863 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_proc_sqready done\n"));
3864 }
3865 
3866 /*
3867  * Process the SQREADY_ACK message
3868  */
3869 static void
3870 rsm_proc_sqready_ack(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3871     rsm_intr_hand_arg_t arg)
3872 {
3873 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3874 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3875 	path_t			*path;
3876 	DBG_DEFINE(category,
3877 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3878 
3879 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3880 	    "rsm_proc_sqready_ack enter\n"));
3881 
3882 	/* look up the path - incr the path refcnt */
3883 	path = rsm_find_path(hdlr_argp->adapter_name,
3884 	    hdlr_argp->adapter_instance, src_hwaddr);
3885 
3886 	/*
3887 	 * drop the message if - no path exists or path is not active
3888 	 * or if its not waiting for SQREADY_ACK message
3889 	 */
3890 	if (path == NULL) {
3891 		DBG_PRINTF((category, RSM_DEBUG,
3892 		    "rsm_proc_sqready_ack done: msg dropped no path\n"));
3893 		return;
3894 	}
3895 
3896 	if ((path->state != RSMKA_PATH_ACTIVE) ||
3897 	    !(path->flags & RSMKA_WAIT_FOR_SQACK)) {
3898 		/* decrement the refcnt */
3899 		PATH_RELE_NOLOCK(path);
3900 		mutex_exit(&path->mutex);
3901 		DBG_PRINTF((category, RSM_DEBUG,
3902 		    "rsm_proc_sqready_ack done: msg dropped\n"));
3903 		return;
3904 	}
3905 
3906 	/*
3907 	 * Check if this message is in response to the last RSMIPC_MSG_SQREADY
3908 	 * sent, if not drop it.
3909 	 */
3910 	if (path->local_incn != msghdr->rsmipc_incn) {
3911 		/* decrement the refcnt */
3912 		PATH_RELE_NOLOCK(path);
3913 		mutex_exit(&path->mutex);
3914 		DBG_PRINTF((category, RSM_DEBUG,
3915 		    "rsm_proc_sqready_ack done: msg old incn %lld\n",
3916 		    msghdr->rsmipc_incn));
3917 		return;
3918 	}
3919 
3920 	DBG_PRINTF((category, RSM_DEBUG, "rsm_proc_sqready_ack:path=%lx "
3921 	    " src=%lx:%llx\n", path, msghdr->rsmipc_src, src_hwaddr));
3922 
3923 	/*
3924 	 * clear the WAIT_FOR_SQACK flag since we have recvd the ack
3925 	 */
3926 	path->flags &= ~RSMKA_WAIT_FOR_SQACK;
3927 
3928 	/* save the remote sendq incn number */
3929 	path->remote_incn = msg->rsmipc_local_incn;
3930 
3931 	/* initialize credits to the max level */
3932 	path->sendq_token.msgbuf_avail = RSMIPC_MAX_MESSAGES;
3933 
3934 	/* wake up any send that is waiting for credits */
3935 	cv_broadcast(&path->sendq_token.sendq_cv);
3936 
3937 	/* decrement the refcnt */
3938 	PATH_RELE_NOLOCK(path);
3939 
3940 	mutex_exit(&path->mutex);
3941 
3942 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3943 	    "rsm_proc_sqready_ack done\n"));
3944 }
3945 
3946 /*
3947  * process the RSMIPC_MSG_CREDIT message
3948  */
3949 static void
3950 rsm_add_credits(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3951     rsm_intr_hand_arg_t arg)
3952 {
3953 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3954 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3955 	path_t			*path;
3956 	DBG_DEFINE(category,
3957 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL |
3958 	    RSM_INTR_CALLBACK | RSM_FLOWCONTROL);
3959 
3960 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_add_credits enter\n"));
3961 
3962 	/* look up the path - incr the path refcnt */
3963 	path = rsm_find_path(hdlr_argp->adapter_name,
3964 	    hdlr_argp->adapter_instance, src_hwaddr);
3965 
3966 	if (path == NULL) {
3967 		DBG_PRINTF((category, RSM_DEBUG,
3968 		    "rsm_add_credits enter: path not found\n"));
3969 		return;
3970 	}
3971 
3972 	/* the path is not active - discard credits */
3973 	if (path->state != RSMKA_PATH_ACTIVE) {
3974 		PATH_RELE_NOLOCK(path);
3975 		mutex_exit(&path->mutex);
3976 		DBG_PRINTF((category, RSM_DEBUG,
3977 		    "rsm_add_credits enter:path=%lx !ACTIVE\n", path));
3978 		return;
3979 	}
3980 
3981 	/*
3982 	 * Check if these credits are for current incarnation of the path.
3983 	 */
3984 	if (path->local_incn != msghdr->rsmipc_incn) {
3985 		/* decrement the refcnt */
3986 		PATH_RELE_NOLOCK(path);
3987 		mutex_exit(&path->mutex);
3988 		DBG_PRINTF((category, RSM_DEBUG,
3989 		    "rsm_add_credits enter: old incn %lld\n",
3990 		    msghdr->rsmipc_incn));
3991 		return;
3992 	}
3993 
3994 	DBG_PRINTF((category, RSM_DEBUG,
3995 	    "rsm_add_credits:path=%lx new-creds=%d "
3996 	    "curr credits=%d src=%lx:%llx\n", path, msg->rsmipc_credits,
3997 	    path->sendq_token.msgbuf_avail, msghdr->rsmipc_src,
3998 	    src_hwaddr));
3999 
4000 
4001 	/* add credits to the path's sendq */
4002 	path->sendq_token.msgbuf_avail += msg->rsmipc_credits;
4003 
4004 	ASSERT(path->sendq_token.msgbuf_avail <= RSMIPC_MAX_MESSAGES);
4005 
4006 	/* wake up any send that is waiting for credits */
4007 	cv_broadcast(&path->sendq_token.sendq_cv);
4008 
4009 	/* decrement the refcnt */
4010 	PATH_RELE_NOLOCK(path);
4011 
4012 	mutex_exit(&path->mutex);
4013 
4014 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_add_credits done\n"));
4015 }
4016 
4017 static void
4018 rsm_intr_event(rsmipc_request_t *msg)
4019 {
4020 	rsmseg_t	*seg;
4021 	rsmresource_t	*p;
4022 	rsm_node_id_t	src_node;
4023 	DBG_DEFINE(category,
4024 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4025 
4026 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_event enter\n"));
4027 
4028 	src_node = msg->rsmipc_hdr.rsmipc_src;
4029 
4030 	if ((seg = msg->rsmipc_segment_cookie) != NULL) {
4031 		/* This is for an import segment */
4032 		uint_t hashval = rsmhash(msg->rsmipc_key);
4033 
4034 		rw_enter(&rsm_import_segs.rsmhash_rw, RW_READER);
4035 
4036 		p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hashval);
4037 
4038 		for (; p; p = p->rsmrc_next) {
4039 			if ((p->rsmrc_key == msg->rsmipc_key) &&
4040 			    (p->rsmrc_node == src_node)) {
4041 				seg = (rsmseg_t *)p;
4042 				rsmseglock_acquire(seg);
4043 
4044 				atomic_inc_32(&seg->s_pollevent);
4045 
4046 				if (seg->s_pollflag & RSM_SEGMENT_POLL)
4047 					pollwakeup(&seg->s_poll, POLLRDNORM);
4048 
4049 				rsmseglock_release(seg);
4050 			}
4051 		}
4052 
4053 		rw_exit(&rsm_import_segs.rsmhash_rw);
4054 	} else {
4055 		/* This is for an export segment */
4056 		seg = rsmexport_lookup(msg->rsmipc_key);
4057 		if (!seg) {
4058 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4059 			    "rsm_intr_event done: exp seg not found\n"));
4060 			return;
4061 		}
4062 
4063 		ASSERT(rsmseglock_held(seg));
4064 
4065 		atomic_inc_32(&seg->s_pollevent);
4066 
4067 		/*
4068 		 * We must hold the segment lock here, or else the segment
4069 		 * can be freed while pollwakeup is using it. This implies
4070 		 * that we MUST NOT grab the segment lock during rsm_chpoll,
4071 		 * as outlined in the chpoll(2) man page.
4072 		 */
4073 		if (seg->s_pollflag & RSM_SEGMENT_POLL)
4074 			pollwakeup(&seg->s_poll, POLLRDNORM);
4075 
4076 		rsmseglock_release(seg);
4077 	}
4078 
4079 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_event done\n"));
4080 }
4081 
4082 /*
4083  * The exporter did a republish and changed the ACL - this change is only
4084  * visible to new importers.
4085  */
4086 static void
4087 importer_update(rsm_node_id_t src_node, rsm_memseg_id_t key,
4088     rsm_permission_t perm)
4089 {
4090 
4091 	rsmresource_t	*p;
4092 	rsmseg_t	*seg;
4093 	uint_t		hashval = rsmhash(key);
4094 	DBG_DEFINE(category,
4095 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4096 
4097 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_update enter\n"));
4098 
4099 	rw_enter(&rsm_import_segs.rsmhash_rw, RW_READER);
4100 
4101 	p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hashval);
4102 
4103 	for (; p; p = p->rsmrc_next) {
4104 		/*
4105 		 * find the importer and update the permission in the shared
4106 		 * data structure. Any new importers will use the new perms
4107 		 */
4108 		if ((p->rsmrc_key == key) && (p->rsmrc_node == src_node)) {
4109 			seg = (rsmseg_t *)p;
4110 
4111 			rsmseglock_acquire(seg);
4112 			rsmsharelock_acquire(seg);
4113 			seg->s_share->rsmsi_mode = perm;
4114 			rsmsharelock_release(seg);
4115 			rsmseglock_release(seg);
4116 
4117 			break;
4118 		}
4119 	}
4120 
4121 	rw_exit(&rsm_import_segs.rsmhash_rw);
4122 
4123 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_update done\n"));
4124 }
4125 
4126 void
4127 rsm_suspend_complete(rsm_node_id_t src_node, int flag)
4128 {
4129 	int		done = 1; /* indicate all SUSPENDS have been acked */
4130 	list_element_t	*elem;
4131 	DBG_DEFINE(category,
4132 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4133 
4134 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4135 	    "rsm_suspend_complete enter\n"));
4136 
4137 	mutex_enter(&rsm_suspend_list.list_lock);
4138 
4139 	if (rsm_suspend_list.list_head == NULL) {
4140 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4141 		    "rsm_suspend_complete done: suspend_list is empty\n"));
4142 		mutex_exit(&rsm_suspend_list.list_lock);
4143 		return;
4144 	}
4145 
4146 	elem = rsm_suspend_list.list_head;
4147 	while (elem != NULL) {
4148 		if (elem->nodeid == src_node) {
4149 			/* clear the pending flag for the node */
4150 			elem->flags &= ~RSM_SUSPEND_ACKPENDING;
4151 			elem->flags |= flag;
4152 		}
4153 
4154 		if (done && (elem->flags & RSM_SUSPEND_ACKPENDING))
4155 			done = 0; /* still some nodes have not yet ACKED */
4156 
4157 		elem = elem->next;
4158 	}
4159 
4160 	mutex_exit(&rsm_suspend_list.list_lock);
4161 
4162 	if (!done) {
4163 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4164 		    "rsm_suspend_complete done: acks pending\n"));
4165 		return;
4166 	}
4167 	/*
4168 	 * Now that we are done with suspending all the remote importers
4169 	 * time to quiesce the local exporters
4170 	 */
4171 	exporter_quiesce();
4172 
4173 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4174 	    "rsm_suspend_complete done\n"));
4175 }
4176 
4177 static void
4178 exporter_quiesce()
4179 {
4180 	int		i, e;
4181 	rsmresource_t	*current;
4182 	rsmseg_t	*seg;
4183 	adapter_t	*adapter;
4184 	DBG_DEFINE(category,
4185 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4186 
4187 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exporter_quiesce enter\n"));
4188 	/*
4189 	 * The importers send a SUSPEND_COMPLETE to the exporter node
4190 	 *	Unpublish, unbind the export segment and
4191 	 *	move the segments to the EXPORT_QUIESCED state
4192 	 */
4193 
4194 	rw_enter(&rsm_export_segs.rsmhash_rw, RW_READER);
4195 
4196 	for (i = 0; i < rsm_hash_size; i++) {
4197 		current = rsm_export_segs.bucket[i];
4198 		while (current != NULL) {
4199 			seg = (rsmseg_t *)current;
4200 			rsmseglock_acquire(seg);
4201 			if (current->rsmrc_state ==
4202 			    RSM_STATE_EXPORT_QUIESCING) {
4203 				adapter = seg->s_adapter;
4204 				/*
4205 				 * some local memory handles are not published
4206 				 * check if it was published
4207 				 */
4208 				if ((seg->s_acl == NULL) ||
4209 				    (seg->s_acl[0].ae_node != my_nodeid) ||
4210 				    (seg->s_acl[0].ae_permission != 0)) {
4211 
4212 					e = adapter->rsmpi_ops->rsm_unpublish(
4213 					    seg->s_handle.out);
4214 					DBG_PRINTF((category, RSM_DEBUG,
4215 					    "exporter_quiesce:unpub %d\n", e));
4216 
4217 					e = adapter->rsmpi_ops->rsm_seg_destroy(
4218 					    seg->s_handle.out);
4219 
4220 					DBG_PRINTF((category, RSM_DEBUG,
4221 					    "exporter_quiesce:destroy %d\n",
4222 					    e));
4223 				}
4224 
4225 				(void) rsm_unbind_pages(seg);
4226 				seg->s_state = RSM_STATE_EXPORT_QUIESCED;
4227 				cv_broadcast(&seg->s_cv);
4228 			}
4229 			rsmseglock_release(seg);
4230 			current = current->rsmrc_next;
4231 		}
4232 	}
4233 	rw_exit(&rsm_export_segs.rsmhash_rw);
4234 
4235 	/*
4236 	 * All the local segments we are done with the pre-del processing
4237 	 * - time to move to PREDEL_COMPLETED.
4238 	 */
4239 
4240 	mutex_enter(&rsm_drv_data.drv_lock);
4241 
4242 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_PREDEL_STARTED);
4243 
4244 	rsm_drv_data.drv_state = RSM_DRV_PREDEL_COMPLETED;
4245 
4246 	cv_broadcast(&rsm_drv_data.drv_cv);
4247 
4248 	mutex_exit(&rsm_drv_data.drv_lock);
4249 
4250 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exporter_quiesce done\n"));
4251 }
4252 
4253 static void
4254 importer_suspend(rsm_node_id_t src_node)
4255 {
4256 	int		i;
4257 	int		susp_flg; /* true means already suspended */
4258 	int		num_importers;
4259 	rsmresource_t	*p = NULL, *curp;
4260 	rsmhash_table_t *rhash = &rsm_import_segs;
4261 	rsmseg_t	*seg;
4262 	rsmipc_request_t request;
4263 	DBG_DEFINE(category,
4264 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4265 
4266 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_suspend enter\n"));
4267 
4268 	rw_enter(&rhash->rsmhash_rw, RW_READER);
4269 	for (i = 0; i < rsm_hash_size; i++) {
4270 		p = rhash->bucket[i];
4271 
4272 		/*
4273 		 * Suspend all importers with same <node, key> pair.
4274 		 * After the last one of the shared importers has been
4275 		 * suspended - suspend the shared mappings/connection.
4276 		 */
4277 		for (; p; p = p->rsmrc_next) {
4278 			rsmseg_t *first = (rsmseg_t *)p;
4279 			if ((first->s_node != src_node) ||
4280 			    (first->s_state == RSM_STATE_DISCONNECT))
4281 				continue; /* go to next entry */
4282 			/*
4283 			 * search the rest of the bucket for
4284 			 * other siblings (imprtrs with the same key)
4285 			 * of "first" and suspend them.
4286 			 * All importers with same key fall in
4287 			 * the same bucket.
4288 			 */
4289 			num_importers = 0;
4290 			for (curp = p; curp; curp = curp->rsmrc_next) {
4291 				seg = (rsmseg_t *)curp;
4292 
4293 				rsmseglock_acquire(seg);
4294 
4295 				if ((seg->s_node != first->s_node) ||
4296 				    (seg->s_key != first->s_key) ||
4297 				    (seg->s_state == RSM_STATE_DISCONNECT)) {
4298 					/*
4299 					 * either not a peer segment or its a
4300 					 * disconnected segment - skip it
4301 					 */
4302 					rsmseglock_release(seg);
4303 					continue;
4304 				}
4305 
4306 				rsmseg_suspend(seg, &susp_flg);
4307 
4308 				if (susp_flg) { /* seg already suspended */
4309 					rsmseglock_release(seg);
4310 					break; /* the inner for loop */
4311 				}
4312 
4313 				num_importers++;
4314 				rsmsharelock_acquire(seg);
4315 				/*
4316 				 * we've processed all importers that are
4317 				 * siblings of "first"
4318 				 */
4319 				if (num_importers ==
4320 				    seg->s_share->rsmsi_refcnt) {
4321 					rsmsharelock_release(seg);
4322 					rsmseglock_release(seg);
4323 					break;
4324 				}
4325 				rsmsharelock_release(seg);
4326 				rsmseglock_release(seg);
4327 			}
4328 
4329 			/*
4330 			 * All the importers with the same key and
4331 			 * nodeid as "first" have been suspended.
4332 			 * Now suspend the shared connect/mapping.
4333 			 * This is done only once.
4334 			 */
4335 			if (!susp_flg) {
4336 				rsmsegshare_suspend(seg);
4337 			}
4338 		}
4339 	}
4340 
4341 	rw_exit(&rhash->rsmhash_rw);
4342 
4343 	/* send an ACK for SUSPEND message */
4344 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SUSPEND_DONE;
4345 	(void) rsmipc_send(src_node, &request, RSM_NO_REPLY);
4346 
4347 
4348 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_suspend done\n"));
4349 
4350 }
4351 
4352 static void
4353 rsmseg_suspend(rsmseg_t *seg, int *susp_flg)
4354 {
4355 	int		recheck_state;
4356 	rsmcookie_t	*hdl;
4357 	DBG_DEFINE(category,
4358 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4359 
4360 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4361 	    "rsmseg_suspend enter: key=%u\n", seg->s_key));
4362 
4363 	*susp_flg = 0;
4364 
4365 	ASSERT(rsmseglock_held(seg));
4366 	/* wait if putv/getv is in progress */
4367 	while (seg->s_rdmacnt > 0)
4368 		cv_wait(&seg->s_cv, &seg->s_lock);
4369 
4370 	do {
4371 		recheck_state = 0;
4372 
4373 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4374 		    "rsmseg_suspend:segment %x state=%d\n",
4375 		    seg->s_key, seg->s_state));
4376 
4377 		switch (seg->s_state) {
4378 		case RSM_STATE_NEW:
4379 			/* not a valid state */
4380 			break;
4381 		case RSM_STATE_CONNECTING:
4382 			seg->s_state = RSM_STATE_ABORT_CONNECT;
4383 			break;
4384 		case RSM_STATE_ABORT_CONNECT:
4385 			break;
4386 		case RSM_STATE_CONNECT:
4387 			seg->s_handle.in = NULL;
4388 			seg->s_state = RSM_STATE_CONN_QUIESCE;
4389 			break;
4390 		case RSM_STATE_MAPPING:
4391 			/* wait until segment leaves the mapping state */
4392 			while (seg->s_state == RSM_STATE_MAPPING)
4393 				cv_wait(&seg->s_cv, &seg->s_lock);
4394 			recheck_state = 1;
4395 			break;
4396 		case RSM_STATE_ACTIVE:
4397 			/* unload the mappings */
4398 			if (seg->s_ckl != NULL) {
4399 				hdl = seg->s_ckl;
4400 				for (; hdl != NULL; hdl = hdl->c_next) {
4401 					(void) devmap_unload(hdl->c_dhp,
4402 					    hdl->c_off, hdl->c_len);
4403 				}
4404 			}
4405 			seg->s_mapinfo = NULL;
4406 			seg->s_state = RSM_STATE_MAP_QUIESCE;
4407 			break;
4408 		case RSM_STATE_CONN_QUIESCE:
4409 			/* FALLTHRU */
4410 		case RSM_STATE_MAP_QUIESCE:
4411 			/* rsmseg_suspend already done for seg */
4412 			*susp_flg = 1;
4413 			break;
4414 		case RSM_STATE_DISCONNECT:
4415 			break;
4416 		default:
4417 			ASSERT(0); /* invalid state */
4418 		}
4419 	} while (recheck_state);
4420 
4421 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_suspend done\n"));
4422 }
4423 
4424 static void
4425 rsmsegshare_suspend(rsmseg_t *seg)
4426 {
4427 	int			e;
4428 	adapter_t		*adapter;
4429 	rsm_import_share_t	*sharedp;
4430 	DBG_DEFINE(category,
4431 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4432 
4433 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4434 	    "rsmsegshare_suspend enter\n"));
4435 
4436 	rsmseglock_acquire(seg);
4437 	rsmsharelock_acquire(seg);
4438 
4439 	sharedp = seg->s_share;
4440 	adapter = seg->s_adapter;
4441 	switch (sharedp->rsmsi_state) {
4442 	case RSMSI_STATE_NEW:
4443 		break;
4444 	case RSMSI_STATE_CONNECTING:
4445 		sharedp->rsmsi_state = RSMSI_STATE_ABORT_CONNECT;
4446 		break;
4447 	case RSMSI_STATE_ABORT_CONNECT:
4448 		break;
4449 	case RSMSI_STATE_CONNECTED:
4450 		/* do the rsmpi disconnect */
4451 		if (sharedp->rsmsi_node != my_nodeid) {
4452 			e = adapter->rsmpi_ops->
4453 			    rsm_disconnect(sharedp->rsmsi_handle);
4454 
4455 			DBG_PRINTF((category, RSM_DEBUG,
4456 			    "rsm:rsmpi disconnect seg=%x:err=%d\n",
4457 			    sharedp->rsmsi_segid, e));
4458 		}
4459 
4460 		sharedp->rsmsi_handle = NULL;
4461 
4462 		sharedp->rsmsi_state = RSMSI_STATE_CONN_QUIESCE;
4463 		break;
4464 	case RSMSI_STATE_CONN_QUIESCE:
4465 		break;
4466 	case RSMSI_STATE_MAPPED:
4467 		/* do the rsmpi unmap and disconnect */
4468 		if (sharedp->rsmsi_node != my_nodeid) {
4469 			e = adapter->rsmpi_ops->rsm_unmap(seg->s_handle.in);
4470 
4471 			DBG_PRINTF((category, RSM_DEBUG,
4472 			    "rsmshare_suspend: rsmpi unmap %d\n", e));
4473 
4474 			e = adapter->rsmpi_ops->
4475 			    rsm_disconnect(sharedp->rsmsi_handle);
4476 			DBG_PRINTF((category, RSM_DEBUG,
4477 			    "rsm:rsmpi disconnect seg=%x:err=%d\n",
4478 			    sharedp->rsmsi_segid, e));
4479 		}
4480 
4481 		sharedp->rsmsi_handle = NULL;
4482 
4483 		sharedp->rsmsi_state = RSMSI_STATE_MAP_QUIESCE;
4484 		break;
4485 	case RSMSI_STATE_MAP_QUIESCE:
4486 		break;
4487 	case RSMSI_STATE_DISCONNECTED:
4488 		break;
4489 	default:
4490 		ASSERT(0); /* invalid state */
4491 	}
4492 
4493 	rsmsharelock_release(seg);
4494 	rsmseglock_release(seg);
4495 
4496 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4497 	    "rsmsegshare_suspend done\n"));
4498 }
4499 
4500 /*
4501  * This should get called on receiving a RESUME message or from
4502  * the pathmanger if the node undergoing DR dies.
4503  */
4504 static void
4505 importer_resume(rsm_node_id_t src_node)
4506 {
4507 	int		i;
4508 	rsmresource_t	*p = NULL;
4509 	rsmhash_table_t *rhash = &rsm_import_segs;
4510 	void		*cookie;
4511 	DBG_DEFINE(category,
4512 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4513 
4514 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_resume enter\n"));
4515 
4516 	rw_enter(&rhash->rsmhash_rw, RW_READER);
4517 
4518 	for (i = 0; i < rsm_hash_size; i++) {
4519 		p = rhash->bucket[i];
4520 
4521 		for (; p; p = p->rsmrc_next) {
4522 			rsmseg_t *seg = (rsmseg_t *)p;
4523 
4524 			rsmseglock_acquire(seg);
4525 
4526 			/* process only importers of node undergoing DR */
4527 			if (seg->s_node != src_node) {
4528 				rsmseglock_release(seg);
4529 				continue;
4530 			}
4531 
4532 			if (rsmseg_resume(seg, &cookie) != RSM_SUCCESS) {
4533 				rsmipc_request_t	request;
4534 				/*
4535 				 * rsmpi map/connect failed
4536 				 * inform the exporter so that it can
4537 				 * remove the importer.
4538 				 */
4539 				request.rsmipc_hdr.rsmipc_type =
4540 				    RSMIPC_MSG_NOTIMPORTING;
4541 				request.rsmipc_key = seg->s_segid;
4542 				request.rsmipc_segment_cookie = cookie;
4543 				rsmseglock_release(seg);
4544 				(void) rsmipc_send(seg->s_node, &request,
4545 				    RSM_NO_REPLY);
4546 			} else {
4547 				rsmseglock_release(seg);
4548 			}
4549 		}
4550 	}
4551 
4552 	rw_exit(&rhash->rsmhash_rw);
4553 
4554 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_resume done\n"));
4555 }
4556 
4557 static int
4558 rsmseg_resume(rsmseg_t *seg, void **cookie)
4559 {
4560 	int			e;
4561 	int			retc;
4562 	off_t			dev_offset;
4563 	size_t			maplen;
4564 	uint_t			maxprot;
4565 	rsm_mapinfo_t		*p;
4566 	rsmcookie_t		*hdl;
4567 	rsm_import_share_t	*sharedp;
4568 	DBG_DEFINE(category,
4569 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4570 
4571 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4572 	    "rsmseg_resume enter: key=%u\n", seg->s_key));
4573 
4574 	*cookie = NULL;
4575 
4576 	ASSERT(rsmseglock_held(seg));
4577 
4578 	if ((seg->s_state != RSM_STATE_CONN_QUIESCE) &&
4579 	    (seg->s_state != RSM_STATE_MAP_QUIESCE)) {
4580 		return (RSM_SUCCESS);
4581 	}
4582 
4583 	sharedp = seg->s_share;
4584 
4585 	rsmsharelock_acquire(seg);
4586 
4587 	/* resume the shared connection and/or mapping */
4588 	retc = rsmsegshare_resume(seg);
4589 
4590 	if (seg->s_state == RSM_STATE_CONN_QUIESCE) {
4591 		/* shared state can either be connected or mapped */
4592 		if ((sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) ||
4593 		    (sharedp->rsmsi_state == RSMSI_STATE_MAPPED)) {
4594 			ASSERT(retc == RSM_SUCCESS);
4595 			seg->s_handle.in = sharedp->rsmsi_handle;
4596 			rsmsharelock_release(seg);
4597 			seg->s_state = RSM_STATE_CONNECT;
4598 
4599 		} else { /* error in rsmpi connect during resume */
4600 			seg->s_handle.in = NULL;
4601 			seg->s_state = RSM_STATE_DISCONNECT;
4602 
4603 			sharedp->rsmsi_refcnt--;
4604 			cookie = (void *)sharedp->rsmsi_cookie;
4605 
4606 			if (sharedp->rsmsi_refcnt == 0) {
4607 				ASSERT(sharedp->rsmsi_mapcnt == 0);
4608 				rsmsharelock_release(seg);
4609 
4610 				/* clean up the shared data structure */
4611 				mutex_destroy(&sharedp->rsmsi_lock);
4612 				cv_destroy(&sharedp->rsmsi_cv);
4613 				kmem_free((void *)(sharedp),
4614 				    sizeof (rsm_import_share_t));
4615 
4616 			} else {
4617 				rsmsharelock_release(seg);
4618 			}
4619 			/*
4620 			 * The following needs to be done after any
4621 			 * rsmsharelock calls which use seg->s_share.
4622 			 */
4623 			seg->s_share = NULL;
4624 		}
4625 
4626 		/* signal any waiting segment */
4627 		cv_broadcast(&seg->s_cv);
4628 
4629 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4630 		    "rsmseg_resume done:state=%d\n", seg->s_state));
4631 		return (retc);
4632 	}
4633 
4634 	ASSERT(seg->s_state == RSM_STATE_MAP_QUIESCE);
4635 
4636 	/* Setup protections for remap */
4637 	maxprot = PROT_USER;
4638 	if (seg->s_mode & RSM_PERM_READ) {
4639 		maxprot |= PROT_READ;
4640 	}
4641 	if (seg->s_mode & RSM_PERM_WRITE) {
4642 		maxprot |= PROT_WRITE;
4643 	}
4644 
4645 	if (sharedp->rsmsi_state != RSMSI_STATE_MAPPED) {
4646 		/* error in rsmpi connect or map during resume */
4647 
4648 		/* remap to trash page */
4649 		ASSERT(seg->s_ckl != NULL);
4650 
4651 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4652 			e = devmap_umem_remap(hdl->c_dhp, rsm_dip,
4653 			    remap_cookie, hdl->c_off, hdl->c_len,
4654 			    maxprot, 0, NULL);
4655 
4656 			DBG_PRINTF((category, RSM_ERR,
4657 			    "rsmseg_resume:remap=%d\n", e));
4658 		}
4659 
4660 		seg->s_handle.in = NULL;
4661 		seg->s_state = RSM_STATE_DISCONNECT;
4662 
4663 		sharedp->rsmsi_refcnt--;
4664 
4665 		sharedp->rsmsi_mapcnt--;
4666 		seg->s_mapinfo = NULL;
4667 
4668 		if (sharedp->rsmsi_refcnt == 0) {
4669 			ASSERT(sharedp->rsmsi_mapcnt == 0);
4670 			rsmsharelock_release(seg);
4671 
4672 			/* clean up the shared data structure */
4673 			mutex_destroy(&sharedp->rsmsi_lock);
4674 			cv_destroy(&sharedp->rsmsi_cv);
4675 			kmem_free((void *)(sharedp),
4676 			    sizeof (rsm_import_share_t));
4677 
4678 		} else {
4679 			rsmsharelock_release(seg);
4680 		}
4681 		/*
4682 		 * The following needs to be done after any
4683 		 * rsmsharelock calls which use seg->s_share.
4684 		 */
4685 		seg->s_share = NULL;
4686 
4687 		/* signal any waiting segment */
4688 		cv_broadcast(&seg->s_cv);
4689 
4690 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4691 		    "rsmseg_resume done:seg=%x,err=%d\n",
4692 		    seg->s_key, retc));
4693 		return (retc);
4694 
4695 	}
4696 
4697 	seg->s_handle.in = sharedp->rsmsi_handle;
4698 
4699 	if (seg->s_node == my_nodeid) { /* loopback */
4700 		ASSERT(seg->s_mapinfo == NULL);
4701 
4702 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4703 			e = devmap_umem_remap(hdl->c_dhp,
4704 			    rsm_dip, seg->s_cookie,
4705 			    hdl->c_off, hdl->c_len,
4706 			    maxprot, 0, NULL);
4707 
4708 			DBG_PRINTF((category, RSM_ERR,
4709 			    "rsmseg_resume:remap=%d\n", e));
4710 		}
4711 	} else { /* remote exporter */
4712 		/* remap to the new rsmpi maps */
4713 		seg->s_mapinfo = sharedp->rsmsi_mapinfo;
4714 
4715 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4716 			p = rsm_get_mapinfo(seg, hdl->c_off, hdl->c_len,
4717 			    &dev_offset, &maplen);
4718 			e = devmap_devmem_remap(hdl->c_dhp,
4719 			    p->dip, p->dev_register, dev_offset,
4720 			    maplen, maxprot, 0, NULL);
4721 
4722 			DBG_PRINTF((category, RSM_ERR,
4723 			    "rsmseg_resume:remap=%d\n", e));
4724 		}
4725 	}
4726 
4727 	rsmsharelock_release(seg);
4728 
4729 	seg->s_state = RSM_STATE_ACTIVE;
4730 	cv_broadcast(&seg->s_cv);
4731 
4732 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_resume done\n"));
4733 
4734 	return (retc);
4735 }
4736 
4737 static int
4738 rsmsegshare_resume(rsmseg_t *seg)
4739 {
4740 	int			e = RSM_SUCCESS;
4741 	adapter_t		*adapter;
4742 	rsm_import_share_t	*sharedp;
4743 	DBG_DEFINE(category,
4744 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4745 
4746 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegshare_resume enter\n"));
4747 
4748 	ASSERT(rsmseglock_held(seg));
4749 	ASSERT(rsmsharelock_held(seg));
4750 
4751 	sharedp = seg->s_share;
4752 
4753 	/*
4754 	 * If we are not in a xxxx_QUIESCE state that means shared
4755 	 * connect/mapping processing has been already been done
4756 	 * so return success.
4757 	 */
4758 	if ((sharedp->rsmsi_state != RSMSI_STATE_CONN_QUIESCE) &&
4759 	    (sharedp->rsmsi_state != RSMSI_STATE_MAP_QUIESCE)) {
4760 		return (RSM_SUCCESS);
4761 	}
4762 
4763 	adapter = seg->s_adapter;
4764 
4765 	if (sharedp->rsmsi_node != my_nodeid) {
4766 		rsm_addr_t	hwaddr;
4767 		hwaddr = get_remote_hwaddr(adapter, sharedp->rsmsi_node);
4768 
4769 		e = adapter->rsmpi_ops->rsm_connect(
4770 		    adapter->rsmpi_handle, hwaddr,
4771 		    sharedp->rsmsi_segid, &sharedp->rsmsi_handle);
4772 
4773 		DBG_PRINTF((category, RSM_DEBUG,
4774 		    "rsmsegshare_resume:rsmpi connect seg=%x:err=%d\n",
4775 		    sharedp->rsmsi_segid, e));
4776 
4777 		if (e != RSM_SUCCESS) {
4778 			/* when do we send the NOT_IMPORTING message */
4779 			sharedp->rsmsi_handle = NULL;
4780 			sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
4781 			/* signal any waiting segment */
4782 			cv_broadcast(&sharedp->rsmsi_cv);
4783 			return (e);
4784 		}
4785 	}
4786 
4787 	if (sharedp->rsmsi_state == RSMSI_STATE_CONN_QUIESCE) {
4788 		sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
4789 		/* signal any waiting segment */
4790 		cv_broadcast(&sharedp->rsmsi_cv);
4791 		return (e);
4792 	}
4793 
4794 	ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAP_QUIESCE);
4795 
4796 	/* do the rsmpi map of the whole segment here */
4797 	if (sharedp->rsmsi_node != my_nodeid) {
4798 		size_t mapped_len;
4799 		rsm_mapinfo_t *p;
4800 
4801 		/*
4802 		 * We need to do rsmpi maps with <off, lens> identical to
4803 		 * the old mapinfo list because the segment mapping handles
4804 		 * dhp and such need the fragmentation of rsmpi maps to be
4805 		 * identical to what it was during the mmap of the segment
4806 		 */
4807 		p = sharedp->rsmsi_mapinfo;
4808 
4809 		while (p != NULL) {
4810 			mapped_len = 0;
4811 
4812 			e = adapter->rsmpi_ops->rsm_map(
4813 			    sharedp->rsmsi_handle, p->start_offset,
4814 			    p->individual_len, &mapped_len,
4815 			    &p->dip, &p->dev_register, &p->dev_offset,
4816 			    NULL, NULL);
4817 
4818 			if (e != 0) {
4819 				DBG_PRINTF((category, RSM_ERR,
4820 				    "rsmsegshare_resume: rsmpi map err=%d\n",
4821 				    e));
4822 				break;
4823 			}
4824 
4825 			if (mapped_len != p->individual_len) {
4826 				DBG_PRINTF((category, RSM_ERR,
4827 				    "rsmsegshare_resume: rsmpi maplen"
4828 				    "< reqlen=%lx\n", mapped_len));
4829 				e = RSMERR_BAD_LENGTH;
4830 				break;
4831 			}
4832 
4833 			p = p->next;
4834 
4835 		}
4836 
4837 
4838 		if (e != RSM_SUCCESS) { /* rsmpi map failed */
4839 			int	err;
4840 			/* Check if this is the first rsm_map */
4841 			if (p != sharedp->rsmsi_mapinfo) {
4842 				/*
4843 				 * A single rsm_unmap undoes multiple rsm_maps.
4844 				 */
4845 				(void) seg->s_adapter->rsmpi_ops->
4846 				    rsm_unmap(sharedp->rsmsi_handle);
4847 			}
4848 
4849 			rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
4850 			sharedp->rsmsi_mapinfo = NULL;
4851 
4852 			err = adapter->rsmpi_ops->
4853 			    rsm_disconnect(sharedp->rsmsi_handle);
4854 
4855 			DBG_PRINTF((category, RSM_DEBUG,
4856 			    "rsmsegshare_resume:disconn seg=%x:err=%d\n",
4857 			    sharedp->rsmsi_segid, err));
4858 
4859 			sharedp->rsmsi_handle = NULL;
4860 			sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
4861 
4862 			/* signal the waiting segments */
4863 			cv_broadcast(&sharedp->rsmsi_cv);
4864 			DBG_PRINTF((category, RSM_DEBUG,
4865 			    "rsmsegshare_resume done: rsmpi map err\n"));
4866 			return (e);
4867 		}
4868 	}
4869 
4870 	sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
4871 
4872 	/* signal any waiting segment */
4873 	cv_broadcast(&sharedp->rsmsi_cv);
4874 
4875 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegshare_resume done\n"));
4876 
4877 	return (e);
4878 }
4879 
4880 /*
4881  * this is the routine that gets called by recv_taskq which is the
4882  * thread that processes messages that are flow-controlled.
4883  */
4884 static void
4885 rsm_intr_proc_deferred(void *arg)
4886 {
4887 	path_t			*path = (path_t *)arg;
4888 	rsmipc_request_t	*msg;
4889 	rsmipc_msghdr_t		*msghdr;
4890 	rsm_node_id_t		src_node;
4891 	msgbuf_elem_t		*head;
4892 	int			e;
4893 	DBG_DEFINE(category,
4894 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4895 
4896 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4897 	    "rsm_intr_proc_deferred enter\n"));
4898 
4899 	mutex_enter(&path->mutex);
4900 
4901 	/* use the head of the msgbuf_queue */
4902 	head = rsmka_gethead_msgbuf(path);
4903 
4904 	mutex_exit(&path->mutex);
4905 
4906 	msg = (rsmipc_request_t *)&(head->msg);
4907 	msghdr = (rsmipc_msghdr_t *)msg;
4908 
4909 	src_node = msghdr->rsmipc_src;
4910 
4911 	/*
4912 	 * messages that need to send a reply should check the message version
4913 	 * before processing the message. And all messages that need to
4914 	 * send a reply should be processed here by the worker thread.
4915 	 */
4916 	switch (msghdr->rsmipc_type) {
4917 	case RSMIPC_MSG_SEGCONNECT:
4918 		if (msghdr->rsmipc_version != RSM_VERSION) {
4919 			rsmipc_reply_t reply;
4920 			reply.rsmipc_status = RSMERR_BAD_DRIVER_VERSION;
4921 			reply.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPLY;
4922 			reply.rsmipc_hdr.rsmipc_cookie = msghdr->rsmipc_cookie;
4923 			(void) rsmipc_send(msghdr->rsmipc_src, NULL, &reply);
4924 		} else {
4925 			rsm_intr_segconnect(src_node, msg);
4926 		}
4927 		break;
4928 	case RSMIPC_MSG_DISCONNECT:
4929 		rsm_force_unload(src_node, msg->rsmipc_key, DISCONNECT);
4930 		break;
4931 	case RSMIPC_MSG_SUSPEND:
4932 		importer_suspend(src_node);
4933 		break;
4934 	case RSMIPC_MSG_SUSPEND_DONE:
4935 		rsm_suspend_complete(src_node, 0);
4936 		break;
4937 	case RSMIPC_MSG_RESUME:
4938 		importer_resume(src_node);
4939 		break;
4940 	default:
4941 		ASSERT(0);
4942 	}
4943 
4944 	mutex_enter(&path->mutex);
4945 
4946 	rsmka_dequeue_msgbuf(path);
4947 
4948 	/* incr procmsg_cnt can be at most RSMIPC_MAX_MESSAGES */
4949 	if (path->procmsg_cnt < RSMIPC_MAX_MESSAGES)
4950 		path->procmsg_cnt++;
4951 
4952 	ASSERT(path->procmsg_cnt <= RSMIPC_MAX_MESSAGES);
4953 
4954 	/* No need to send credits if path is going down */
4955 	if ((path->state == RSMKA_PATH_ACTIVE) &&
4956 	    (path->procmsg_cnt >= RSMIPC_LOTSFREE_MSGBUFS)) {
4957 		/*
4958 		 * send credits and reset procmsg_cnt if success otherwise
4959 		 * credits will be sent after processing the next message
4960 		 */
4961 		e = rsmipc_send_controlmsg(path, RSMIPC_MSG_CREDIT);
4962 		if (e == 0)
4963 			path->procmsg_cnt = 0;
4964 		else
4965 			DBG_PRINTF((category, RSM_ERR,
4966 			    "rsm_intr_proc_deferred:send credits err=%d\n", e));
4967 	}
4968 
4969 	/*
4970 	 * decrement the path refcnt since we incremented it in
4971 	 * rsm_intr_callback_dispatch
4972 	 */
4973 	PATH_RELE_NOLOCK(path);
4974 
4975 	mutex_exit(&path->mutex);
4976 
4977 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4978 	    "rsm_intr_proc_deferred done\n"));
4979 }
4980 
4981 /*
4982  * Flow-controlled messages are enqueued and dispatched onto a taskq here
4983  */
4984 static void
4985 rsm_intr_callback_dispatch(void *data, rsm_addr_t src_hwaddr,
4986     rsm_intr_hand_arg_t arg)
4987 {
4988 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
4989 	path_t			*path;
4990 	rsmipc_msghdr_t *msghdr = (rsmipc_msghdr_t *)data;
4991 	DBG_DEFINE(category,
4992 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4993 
4994 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4995 	    "rsm_intr_callback_dispatch enter\n"));
4996 	ASSERT(data && hdlr_argp);
4997 
4998 	/* look up the path - incr the path refcnt */
4999 	path = rsm_find_path(hdlr_argp->adapter_name,
5000 	    hdlr_argp->adapter_instance, src_hwaddr);
5001 
5002 	/* the path has been removed - drop this message */
5003 	if (path == NULL) {
5004 		DBG_PRINTF((category, RSM_DEBUG,
5005 		    "rsm_intr_callback_dispatch done: msg dropped\n"));
5006 		return;
5007 	}
5008 	/* the path is not active - don't accept new messages */
5009 	if (path->state != RSMKA_PATH_ACTIVE) {
5010 		PATH_RELE_NOLOCK(path);
5011 		mutex_exit(&path->mutex);
5012 		DBG_PRINTF((category, RSM_DEBUG,
5013 		    "rsm_intr_callback_dispatch done: msg dropped"
5014 		    " path=%lx !ACTIVE\n", path));
5015 		return;
5016 	}
5017 
5018 	/*
5019 	 * Check if this message was sent to an older incarnation
5020 	 * of the path/sendq.
5021 	 */
5022 	if (path->local_incn != msghdr->rsmipc_incn) {
5023 		/* decrement the refcnt */
5024 		PATH_RELE_NOLOCK(path);
5025 		mutex_exit(&path->mutex);
5026 		DBG_PRINTF((category, RSM_DEBUG,
5027 		    "rsm_intr_callback_dispatch done: old incn %lld\n",
5028 		    msghdr->rsmipc_incn));
5029 		return;
5030 	}
5031 
5032 	/* copy and enqueue msg on the path's msgbuf queue */
5033 	rsmka_enqueue_msgbuf(path, data);
5034 
5035 	/*
5036 	 * schedule task to process messages - ignore retval from
5037 	 * task_dispatch because we sender cannot send more than
5038 	 * what receiver can handle.
5039 	 */
5040 	(void) taskq_dispatch(path->recv_taskq,
5041 	    rsm_intr_proc_deferred, path, KM_NOSLEEP);
5042 
5043 	mutex_exit(&path->mutex);
5044 
5045 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5046 	    "rsm_intr_callback_dispatch done\n"));
5047 }
5048 
5049 /*
5050  * This procedure is called from rsm_srv_func when a remote node creates a
5051  * a send queue.  This event is used as a hint that an  earlier failed
5052  * attempt to create a send queue to that remote node may now succeed and
5053  * should be retried.  Indication of an earlier failed attempt is provided
5054  * by the RSMKA_SQCREATE_PENDING flag.
5055  */
5056 static void
5057 rsm_sqcreateop_callback(rsm_addr_t src_hwaddr, rsm_intr_hand_arg_t arg)
5058 {
5059 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
5060 	path_t			*path;
5061 	DBG_DEFINE(category,
5062 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5063 
5064 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5065 	    "rsm_sqcreateop_callback enter\n"));
5066 
5067 	/* look up the path - incr the path refcnt */
5068 	path = rsm_find_path(hdlr_argp->adapter_name,
5069 	    hdlr_argp->adapter_instance, src_hwaddr);
5070 
5071 	if (path == NULL) {
5072 		DBG_PRINTF((category, RSM_DEBUG,
5073 		    "rsm_sqcreateop_callback done: no path\n"));
5074 		return;
5075 	}
5076 
5077 	if ((path->state == RSMKA_PATH_UP) &&
5078 	    (path->flags & RSMKA_SQCREATE_PENDING)) {
5079 		/*
5080 		 * previous attempt to create sendq had failed, retry
5081 		 * it and move to RSMKA_PATH_ACTIVE state if successful.
5082 		 * the refcnt will be decremented in the do_deferred_work
5083 		 */
5084 		(void) rsmka_do_path_active(path, RSMKA_NO_SLEEP);
5085 	} else {
5086 		/* decrement the refcnt */
5087 		PATH_RELE_NOLOCK(path);
5088 	}
5089 	mutex_exit(&path->mutex);
5090 
5091 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5092 	    "rsm_sqcreateop_callback done\n"));
5093 }
5094 
5095 static void
5096 rsm_intr_callback(void *data, rsm_addr_t src_hwaddr, rsm_intr_hand_arg_t arg)
5097 {
5098 	rsmipc_msghdr_t *msghdr = (rsmipc_msghdr_t *)data;
5099 	rsmipc_request_t *msg = (rsmipc_request_t *)data;
5100 	rsmipc_controlmsg_t *ctrlmsg = (rsmipc_controlmsg_t *)data;
5101 	rsm_node_id_t src_node;
5102 	DBG_DEFINE(category,
5103 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5104 
5105 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_callback enter:"
5106 	    "src=%d, type=%d\n", msghdr->rsmipc_src,
5107 	    msghdr->rsmipc_type));
5108 
5109 	/*
5110 	 * Check for the version number in the msg header. If it is not
5111 	 * RSM_VERSION, drop the message. In the future, we need to manage
5112 	 * incompatible version numbers in some way
5113 	 */
5114 	if (msghdr->rsmipc_version != RSM_VERSION) {
5115 		DBG_PRINTF((category, RSM_ERR, "wrong KA version\n"));
5116 		/*
5117 		 * Drop requests that don't have a reply right here
5118 		 * Request with reply will send a BAD_VERSION reply
5119 		 * when they get processed by the worker thread.
5120 		 */
5121 		if (msghdr->rsmipc_type != RSMIPC_MSG_SEGCONNECT) {
5122 			return;
5123 		}
5124 
5125 	}
5126 
5127 	src_node = msghdr->rsmipc_src;
5128 
5129 	switch (msghdr->rsmipc_type) {
5130 	case RSMIPC_MSG_SEGCONNECT:
5131 	case RSMIPC_MSG_DISCONNECT:
5132 	case RSMIPC_MSG_SUSPEND:
5133 	case RSMIPC_MSG_SUSPEND_DONE:
5134 	case RSMIPC_MSG_RESUME:
5135 		/*
5136 		 * These message types are handled by a worker thread using
5137 		 * the flow-control algorithm.
5138 		 * Any message processing that does one or more of the
5139 		 * following should be handled in a worker thread.
5140 		 *	- allocates resources and might sleep
5141 		 *	- makes RSMPI calls down to the interconnect driver
5142 		 *	this by defn include requests with reply.
5143 		 *	- takes a long duration of time
5144 		 */
5145 		rsm_intr_callback_dispatch(data, src_hwaddr, arg);
5146 		break;
5147 	case RSMIPC_MSG_NOTIMPORTING:
5148 		importer_list_rm(src_node, msg->rsmipc_key,
5149 		    msg->rsmipc_segment_cookie);
5150 		break;
5151 	case RSMIPC_MSG_SQREADY:
5152 		rsm_proc_sqready(data, src_hwaddr, arg);
5153 		break;
5154 	case RSMIPC_MSG_SQREADY_ACK:
5155 		rsm_proc_sqready_ack(data, src_hwaddr, arg);
5156 		break;
5157 	case RSMIPC_MSG_CREDIT:
5158 		rsm_add_credits(ctrlmsg, src_hwaddr, arg);
5159 		break;
5160 	case RSMIPC_MSG_REPLY:
5161 		rsm_intr_reply(msghdr);
5162 		break;
5163 	case RSMIPC_MSG_BELL:
5164 		rsm_intr_event(msg);
5165 		break;
5166 	case RSMIPC_MSG_IMPORTING:
5167 		importer_list_add(src_node, msg->rsmipc_key,
5168 		    msg->rsmipc_adapter_hwaddr,
5169 		    msg->rsmipc_segment_cookie);
5170 		break;
5171 	case RSMIPC_MSG_REPUBLISH:
5172 		importer_update(src_node, msg->rsmipc_key, msg->rsmipc_perm);
5173 		break;
5174 	default:
5175 		DBG_PRINTF((category, RSM_DEBUG,
5176 		    "rsm_intr_callback: bad msg %lx type %d data %lx\n",
5177 		    (size_t)msg, (int)(msghdr->rsmipc_type), (size_t)data));
5178 	}
5179 
5180 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_callback done\n"));
5181 
5182 }
5183 
5184 rsm_intr_hand_ret_t rsm_srv_func(rsm_controller_object_t *chd,
5185     rsm_intr_q_op_t opcode, rsm_addr_t src,
5186     void *data, size_t size, rsm_intr_hand_arg_t arg)
5187 {
5188 	DBG_DEFINE(category,
5189 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5190 
5191 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_srv_func enter\n"));
5192 
5193 	switch (opcode) {
5194 	case RSM_INTR_Q_OP_CREATE:
5195 		DBG_PRINTF((category, RSM_DEBUG, "rsm_srv_func:OP_CREATE\n"));
5196 		rsm_sqcreateop_callback(src, arg);
5197 		break;
5198 	case RSM_INTR_Q_OP_DESTROY:
5199 		DBG_PRINTF((category, RSM_DEBUG, "rsm_srv_func:OP_DESTROY\n"));
5200 		break;
5201 	case RSM_INTR_Q_OP_RECEIVE:
5202 		rsm_intr_callback(data, src, arg);
5203 		break;
5204 	default:
5205 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5206 		    "rsm_srv_func: unknown opcode = %x\n", opcode));
5207 	}
5208 
5209 	chd = chd;
5210 	size = size;
5211 
5212 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_srv_func done\n"));
5213 
5214 	return (RSM_INTR_HAND_CLAIMED);
5215 }
5216 
5217 /* *************************** IPC slots ************************* */
5218 static rsmipc_slot_t *
5219 rsmipc_alloc()
5220 {
5221 	int i;
5222 	rsmipc_slot_t *slot;
5223 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
5224 
5225 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_alloc enter\n"));
5226 
5227 	/* try to find a free slot, if not wait */
5228 	mutex_enter(&rsm_ipc.lock);
5229 
5230 	while (rsm_ipc.count == 0) {
5231 		rsm_ipc.wanted = 1;
5232 		cv_wait(&rsm_ipc.cv, &rsm_ipc.lock);
5233 	}
5234 
5235 	/* An empty slot is available, find it */
5236 	slot = &rsm_ipc.slots[0];
5237 	for (i = 0; i < RSMIPC_SZ; i++, slot++) {
5238 		if (RSMIPC_GET(slot, RSMIPC_FREE)) {
5239 			RSMIPC_CLEAR(slot, RSMIPC_FREE);
5240 			break;
5241 		}
5242 	}
5243 
5244 	ASSERT(i < RSMIPC_SZ);
5245 	rsm_ipc.count--;	/* one less is available */
5246 	rsm_ipc.sequence++; /* new sequence */
5247 
5248 	slot->rsmipc_cookie.ic.sequence = (uint_t)rsm_ipc.sequence;
5249 	slot->rsmipc_cookie.ic.index = (uint_t)i;
5250 
5251 	mutex_exit(&rsm_ipc.lock);
5252 
5253 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_alloc done\n"));
5254 
5255 	return (slot);
5256 }
5257 
5258 static void
5259 rsmipc_free(rsmipc_slot_t *slot)
5260 {
5261 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
5262 
5263 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_free enter\n"));
5264 
5265 	ASSERT(MUTEX_HELD(&slot->rsmipc_lock));
5266 	ASSERT(&rsm_ipc.slots[slot->rsmipc_cookie.ic.index] == slot);
5267 
5268 	mutex_enter(&rsm_ipc.lock);
5269 
5270 	RSMIPC_SET(slot, RSMIPC_FREE);
5271 
5272 	slot->rsmipc_cookie.ic.sequence = 0;
5273 
5274 	mutex_exit(&slot->rsmipc_lock);
5275 	rsm_ipc.count++;
5276 	ASSERT(rsm_ipc.count <= RSMIPC_SZ);
5277 	if (rsm_ipc.wanted) {
5278 		rsm_ipc.wanted = 0;
5279 		cv_broadcast(&rsm_ipc.cv);
5280 	}
5281 
5282 	mutex_exit(&rsm_ipc.lock);
5283 
5284 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_free done\n"));
5285 }
5286 
5287 static int
5288 rsmipc_send(rsm_node_id_t dest, rsmipc_request_t *req, rsmipc_reply_t *reply)
5289 {
5290 	int		e = 0;
5291 	int		credit_check = 0;
5292 	int		retry_cnt = 0;
5293 	int		min_retry_cnt = 10;
5294 	rsm_send_t	is;
5295 	rsmipc_slot_t	*rslot;
5296 	adapter_t	*adapter;
5297 	path_t		*path;
5298 	sendq_token_t	*sendq_token;
5299 	sendq_token_t	*used_sendq_token = NULL;
5300 	rsm_send_q_handle_t	ipc_handle;
5301 	DBG_DEFINE(category,
5302 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5303 
5304 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_send enter:dest=%d",
5305 	    dest));
5306 
5307 	/*
5308 	 * Check if this is a local case
5309 	 */
5310 	if (dest == my_nodeid) {
5311 		switch (req->rsmipc_hdr.rsmipc_type) {
5312 		case RSMIPC_MSG_SEGCONNECT:
5313 			reply->rsmipc_status = (short)rsmsegacl_validate(
5314 			    req, dest, reply);
5315 			break;
5316 		case RSMIPC_MSG_BELL:
5317 			req->rsmipc_hdr.rsmipc_src = dest;
5318 			rsm_intr_event(req);
5319 			break;
5320 		case RSMIPC_MSG_IMPORTING:
5321 			importer_list_add(dest, req->rsmipc_key,
5322 			    req->rsmipc_adapter_hwaddr,
5323 			    req->rsmipc_segment_cookie);
5324 			break;
5325 		case RSMIPC_MSG_NOTIMPORTING:
5326 			importer_list_rm(dest, req->rsmipc_key,
5327 			    req->rsmipc_segment_cookie);
5328 			break;
5329 		case RSMIPC_MSG_REPUBLISH:
5330 			importer_update(dest, req->rsmipc_key,
5331 			    req->rsmipc_perm);
5332 			break;
5333 		case RSMIPC_MSG_SUSPEND:
5334 			importer_suspend(dest);
5335 			break;
5336 		case RSMIPC_MSG_SUSPEND_DONE:
5337 			rsm_suspend_complete(dest, 0);
5338 			break;
5339 		case RSMIPC_MSG_RESUME:
5340 			importer_resume(dest);
5341 			break;
5342 		default:
5343 			ASSERT(0);
5344 		}
5345 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5346 		    "rsmipc_send done\n"));
5347 		return (0);
5348 	}
5349 
5350 	if (dest >= MAX_NODES) {
5351 		DBG_PRINTF((category, RSM_ERR,
5352 		    "rsm: rsmipc_send bad node number %x\n", dest));
5353 		return (RSMERR_REMOTE_NODE_UNREACHABLE);
5354 	}
5355 
5356 	/*
5357 	 * Oh boy! we are going remote.
5358 	 */
5359 
5360 	/*
5361 	 * identify if we need to have credits to send this message
5362 	 * - only selected requests are flow controlled
5363 	 */
5364 	if (req != NULL) {
5365 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5366 		    "rsmipc_send:request type=%d\n",
5367 		    req->rsmipc_hdr.rsmipc_type));
5368 
5369 		switch (req->rsmipc_hdr.rsmipc_type) {
5370 		case RSMIPC_MSG_SEGCONNECT:
5371 		case RSMIPC_MSG_DISCONNECT:
5372 		case RSMIPC_MSG_IMPORTING:
5373 		case RSMIPC_MSG_SUSPEND:
5374 		case RSMIPC_MSG_SUSPEND_DONE:
5375 		case RSMIPC_MSG_RESUME:
5376 			credit_check = 1;
5377 			break;
5378 		default:
5379 			credit_check = 0;
5380 		}
5381 	}
5382 
5383 again:
5384 	if (retry_cnt++ == min_retry_cnt) {
5385 		/* backoff before further retries for 10ms */
5386 		delay(drv_usectohz(10000));
5387 		retry_cnt = 0; /* reset retry_cnt */
5388 	}
5389 	sendq_token = rsmka_get_sendq_token(dest, used_sendq_token);
5390 	if (sendq_token == NULL) {
5391 		DBG_PRINTF((category, RSM_ERR,
5392 		    "rsm: rsmipc_send no device to reach node %d\n", dest));
5393 		return (RSMERR_REMOTE_NODE_UNREACHABLE);
5394 	}
5395 
5396 	if ((sendq_token == used_sendq_token) &&
5397 	    ((e == RSMERR_CONN_ABORTED) || (e == RSMERR_TIMEOUT) ||
5398 	    (e == RSMERR_COMM_ERR_MAYBE_DELIVERED))) {
5399 		rele_sendq_token(sendq_token);
5400 		DBG_PRINTF((category, RSM_DEBUG, "rsmipc_send done=%d\n", e));
5401 		return (RSMERR_CONN_ABORTED);
5402 	} else
5403 		used_sendq_token = sendq_token;
5404 
5405 /* lint -save -e413 */
5406 	path = SQ_TOKEN_TO_PATH(sendq_token);
5407 	adapter = path->local_adapter;
5408 /* lint -restore */
5409 	ipc_handle = sendq_token->rsmpi_sendq_handle;
5410 
5411 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5412 	    "rsmipc_send: path=%lx sendq_hdl=%lx\n", path, ipc_handle));
5413 
5414 	if (reply == NULL) {
5415 		/* Send request without ack */
5416 		/*
5417 		 * Set the rsmipc_version number in the msghdr for KA
5418 		 * communication versioning
5419 		 */
5420 		req->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5421 		req->rsmipc_hdr.rsmipc_src = my_nodeid;
5422 		/*
5423 		 * remote endpoints incn should match the value in our
5424 		 * path's remote_incn field. No need to grab any lock
5425 		 * since we have refcnted the path in rsmka_get_sendq_token
5426 		 */
5427 		req->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5428 
5429 		is.is_data = (void *)req;
5430 		is.is_size = sizeof (*req);
5431 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5432 		is.is_wait = 0;
5433 
5434 		if (credit_check) {
5435 			mutex_enter(&path->mutex);
5436 			/*
5437 			 * wait till we recv credits or path goes down. If path
5438 			 * goes down rsm_send will fail and we handle the error
5439 			 * then
5440 			 */
5441 			while ((sendq_token->msgbuf_avail == 0) &&
5442 			    (path->state == RSMKA_PATH_ACTIVE)) {
5443 				e = cv_wait_sig(&sendq_token->sendq_cv,
5444 				    &path->mutex);
5445 				if (e == 0) {
5446 					mutex_exit(&path->mutex);
5447 					no_reply_cnt++;
5448 					rele_sendq_token(sendq_token);
5449 					DBG_PRINTF((category, RSM_DEBUG,
5450 					    "rsmipc_send done: "
5451 					    "cv_wait INTERRUPTED"));
5452 					return (RSMERR_INTERRUPTED);
5453 				}
5454 			}
5455 
5456 			/*
5457 			 * path is not active retry on another path.
5458 			 */
5459 			if (path->state != RSMKA_PATH_ACTIVE) {
5460 				mutex_exit(&path->mutex);
5461 				rele_sendq_token(sendq_token);
5462 				e = RSMERR_CONN_ABORTED;
5463 				DBG_PRINTF((category, RSM_ERR,
5464 				    "rsm: rsmipc_send: path !ACTIVE"));
5465 				goto again;
5466 			}
5467 
5468 			ASSERT(sendq_token->msgbuf_avail > 0);
5469 
5470 			/*
5471 			 * reserve a msgbuf
5472 			 */
5473 			sendq_token->msgbuf_avail--;
5474 
5475 			mutex_exit(&path->mutex);
5476 
5477 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5478 			    NULL);
5479 
5480 			if (e != RSM_SUCCESS) {
5481 				mutex_enter(&path->mutex);
5482 				/*
5483 				 * release the reserved msgbuf since
5484 				 * the send failed
5485 				 */
5486 				sendq_token->msgbuf_avail++;
5487 				cv_broadcast(&sendq_token->sendq_cv);
5488 				mutex_exit(&path->mutex);
5489 			}
5490 		} else
5491 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5492 			    NULL);
5493 
5494 		no_reply_cnt++;
5495 		rele_sendq_token(sendq_token);
5496 		if (e != RSM_SUCCESS) {
5497 			DBG_PRINTF((category, RSM_ERR,
5498 			    "rsm: rsmipc_send no reply send"
5499 			    " err = %d no reply count = %d\n",
5500 			    e, no_reply_cnt));
5501 			ASSERT(e != RSMERR_QUEUE_FENCE_UP &&
5502 			    e != RSMERR_BAD_BARRIER_HNDL);
5503 			atomic_inc_64(&rsm_ipcsend_errcnt);
5504 			goto again;
5505 		} else {
5506 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5507 			    "rsmipc_send done\n"));
5508 			return (e);
5509 		}
5510 
5511 	}
5512 
5513 	if (req == NULL) {
5514 		/* Send reply - No flow control is done for reply */
5515 		/*
5516 		 * Set the version in the msg header for KA communication
5517 		 * versioning
5518 		 */
5519 		reply->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5520 		reply->rsmipc_hdr.rsmipc_src = my_nodeid;
5521 		/* incn number is not used for reply msgs currently */
5522 		reply->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5523 
5524 		is.is_data = (void *)reply;
5525 		is.is_size = sizeof (*reply);
5526 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5527 		is.is_wait = 0;
5528 		e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is, NULL);
5529 		rele_sendq_token(sendq_token);
5530 		if (e != RSM_SUCCESS) {
5531 			DBG_PRINTF((category, RSM_ERR,
5532 			    "rsm: rsmipc_send reply send"
5533 			    " err = %d\n", e));
5534 			atomic_inc_64(&rsm_ipcsend_errcnt);
5535 			goto again;
5536 		} else {
5537 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5538 			    "rsmipc_send done\n"));
5539 			return (e);
5540 		}
5541 	}
5542 
5543 	/* Reply needed */
5544 	rslot = rsmipc_alloc(); /* allocate a new ipc slot */
5545 
5546 	mutex_enter(&rslot->rsmipc_lock);
5547 
5548 	rslot->rsmipc_data = (void *)reply;
5549 	RSMIPC_SET(rslot, RSMIPC_PENDING);
5550 
5551 	while (RSMIPC_GET(rslot, RSMIPC_PENDING)) {
5552 		/*
5553 		 * Set the rsmipc_version number in the msghdr for KA
5554 		 * communication versioning
5555 		 */
5556 		req->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5557 		req->rsmipc_hdr.rsmipc_src = my_nodeid;
5558 		req->rsmipc_hdr.rsmipc_cookie = rslot->rsmipc_cookie;
5559 		/*
5560 		 * remote endpoints incn should match the value in our
5561 		 * path's remote_incn field. No need to grab any lock
5562 		 * since we have refcnted the path in rsmka_get_sendq_token
5563 		 */
5564 		req->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5565 
5566 		is.is_data = (void *)req;
5567 		is.is_size = sizeof (*req);
5568 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5569 		is.is_wait = 0;
5570 		if (credit_check) {
5571 
5572 			mutex_enter(&path->mutex);
5573 			/*
5574 			 * wait till we recv credits or path goes down. If path
5575 			 * goes down rsm_send will fail and we handle the error
5576 			 * then.
5577 			 */
5578 			while ((sendq_token->msgbuf_avail == 0) &&
5579 			    (path->state == RSMKA_PATH_ACTIVE)) {
5580 				e = cv_wait_sig(&sendq_token->sendq_cv,
5581 				    &path->mutex);
5582 				if (e == 0) {
5583 					mutex_exit(&path->mutex);
5584 					RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5585 					rsmipc_free(rslot);
5586 					rele_sendq_token(sendq_token);
5587 					DBG_PRINTF((category, RSM_DEBUG,
5588 					    "rsmipc_send done: "
5589 					    "cv_wait INTERRUPTED"));
5590 					return (RSMERR_INTERRUPTED);
5591 				}
5592 			}
5593 
5594 			/*
5595 			 * path is not active retry on another path.
5596 			 */
5597 			if (path->state != RSMKA_PATH_ACTIVE) {
5598 				mutex_exit(&path->mutex);
5599 				RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5600 				rsmipc_free(rslot);
5601 				rele_sendq_token(sendq_token);
5602 				e = RSMERR_CONN_ABORTED;
5603 				DBG_PRINTF((category, RSM_ERR,
5604 				    "rsm: rsmipc_send: path !ACTIVE"));
5605 				goto again;
5606 			}
5607 
5608 			ASSERT(sendq_token->msgbuf_avail > 0);
5609 
5610 			/*
5611 			 * reserve a msgbuf
5612 			 */
5613 			sendq_token->msgbuf_avail--;
5614 
5615 			mutex_exit(&path->mutex);
5616 
5617 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5618 			    NULL);
5619 
5620 			if (e != RSM_SUCCESS) {
5621 				mutex_enter(&path->mutex);
5622 				/*
5623 				 * release the reserved msgbuf since
5624 				 * the send failed
5625 				 */
5626 				sendq_token->msgbuf_avail++;
5627 				cv_broadcast(&sendq_token->sendq_cv);
5628 				mutex_exit(&path->mutex);
5629 			}
5630 		} else
5631 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5632 			    NULL);
5633 
5634 		if (e != RSM_SUCCESS) {
5635 			DBG_PRINTF((category, RSM_ERR,
5636 			    "rsm: rsmipc_send rsmpi send err = %d\n", e));
5637 			RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5638 			rsmipc_free(rslot);
5639 			rele_sendq_token(sendq_token);
5640 			atomic_inc_64(&rsm_ipcsend_errcnt);
5641 			goto again;
5642 		}
5643 
5644 		/* wait for a reply signal, a SIGINT, or 5 sec. timeout */
5645 		e = cv_reltimedwait_sig(&rslot->rsmipc_cv, &rslot->rsmipc_lock,
5646 		    drv_usectohz(5000000), TR_CLOCK_TICK);
5647 		if (e < 0) {
5648 			/* timed out - retry */
5649 			e = RSMERR_TIMEOUT;
5650 		} else if (e == 0) {
5651 			/* signalled - return error */
5652 			e = RSMERR_INTERRUPTED;
5653 			break;
5654 		} else {
5655 			e = RSM_SUCCESS;
5656 		}
5657 	}
5658 
5659 	RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5660 	rsmipc_free(rslot);
5661 	rele_sendq_token(sendq_token);
5662 
5663 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_send done=%d\n", e));
5664 	return (e);
5665 }
5666 
5667 static int
5668 rsm_send_notimporting(rsm_node_id_t dest, rsm_memseg_id_t segid,  void *cookie)
5669 {
5670 	rsmipc_request_t request;
5671 
5672 	/*
5673 	 *  inform the exporter to delete this importer
5674 	 */
5675 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_NOTIMPORTING;
5676 	request.rsmipc_key = segid;
5677 	request.rsmipc_segment_cookie = cookie;
5678 	return (rsmipc_send(dest, &request, RSM_NO_REPLY));
5679 }
5680 
5681 static void
5682 rsm_send_republish(rsm_memseg_id_t segid, rsmapi_access_entry_t	*acl,
5683     int acl_len, rsm_permission_t default_permission)
5684 {
5685 	int			i;
5686 	importing_token_t	*token;
5687 	rsmipc_request_t	request;
5688 	republish_token_t	*republish_list = NULL;
5689 	republish_token_t	*rp;
5690 	rsm_permission_t	permission;
5691 	int			index;
5692 
5693 	/*
5694 	 * send the new access mode to all the nodes that have imported
5695 	 * this segment.
5696 	 * If the new acl does not have a node that was present in
5697 	 * the old acl a access permission of 0 is sent.
5698 	 */
5699 
5700 	index = rsmhash(segid);
5701 
5702 	/*
5703 	 * create a list of node/permissions to send the republish message
5704 	 */
5705 	mutex_enter(&importer_list.lock);
5706 
5707 	token = importer_list.bucket[index];
5708 	while (token != NULL) {
5709 		if (segid == token->key) {
5710 			permission = default_permission;
5711 
5712 			for (i = 0; i < acl_len; i++) {
5713 				if (token->importing_node == acl[i].ae_node) {
5714 					permission = acl[i].ae_permission;
5715 					break;
5716 				}
5717 			}
5718 			rp = kmem_zalloc(sizeof (republish_token_t), KM_SLEEP);
5719 
5720 			rp->key = segid;
5721 			rp->importing_node = token->importing_node;
5722 			rp->permission = permission;
5723 			rp->next = republish_list;
5724 			republish_list = rp;
5725 		}
5726 		token = token->next;
5727 	}
5728 
5729 	mutex_exit(&importer_list.lock);
5730 
5731 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPUBLISH;
5732 	request.rsmipc_key = segid;
5733 
5734 	while (republish_list != NULL) {
5735 		request.rsmipc_perm = republish_list->permission;
5736 		(void) rsmipc_send(republish_list->importing_node,
5737 		    &request, RSM_NO_REPLY);
5738 		rp = republish_list;
5739 		republish_list = republish_list->next;
5740 		kmem_free(rp, sizeof (republish_token_t));
5741 	}
5742 }
5743 
5744 static void
5745 rsm_send_suspend()
5746 {
5747 	int			i, e;
5748 	rsmipc_request_t	request;
5749 	list_element_t		*tokp;
5750 	list_element_t		*head = NULL;
5751 	importing_token_t	*token;
5752 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
5753 	    "rsm_send_suspend enter\n"));
5754 
5755 	/*
5756 	 * create a list of node to send the suspend message
5757 	 *
5758 	 * Currently the whole importer list is scanned and we obtain
5759 	 * all the nodes - this basically gets all nodes that at least
5760 	 * import one segment from the local node.
5761 	 *
5762 	 * no need to grab the rsm_suspend_list lock here since we are
5763 	 * single threaded when suspend is called.
5764 	 */
5765 
5766 	mutex_enter(&importer_list.lock);
5767 	for (i = 0; i < rsm_hash_size; i++) {
5768 
5769 		token = importer_list.bucket[i];
5770 
5771 		while (token != NULL) {
5772 
5773 			tokp = head;
5774 
5775 			/*
5776 			 * make sure that the token's node
5777 			 * is not already on the suspend list
5778 			 */
5779 			while (tokp != NULL) {
5780 				if (tokp->nodeid == token->importing_node) {
5781 					break;
5782 				}
5783 				tokp = tokp->next;
5784 			}
5785 
5786 			if (tokp == NULL) { /* not in suspend list */
5787 				tokp = kmem_zalloc(sizeof (list_element_t),
5788 				    KM_SLEEP);
5789 				tokp->nodeid = token->importing_node;
5790 				tokp->next = head;
5791 				head = tokp;
5792 			}
5793 
5794 			token = token->next;
5795 		}
5796 	}
5797 	mutex_exit(&importer_list.lock);
5798 
5799 	if (head == NULL) { /* no importers so go ahead and quiesce segments */
5800 		exporter_quiesce();
5801 		return;
5802 	}
5803 
5804 	mutex_enter(&rsm_suspend_list.list_lock);
5805 	ASSERT(rsm_suspend_list.list_head == NULL);
5806 	/*
5807 	 * update the suspend list righaway so that if a node dies the
5808 	 * pathmanager can set the NODE dead flag
5809 	 */
5810 	rsm_suspend_list.list_head = head;
5811 	mutex_exit(&rsm_suspend_list.list_lock);
5812 
5813 	tokp = head;
5814 
5815 	while (tokp != NULL) {
5816 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SUSPEND;
5817 		e = rsmipc_send(tokp->nodeid, &request, RSM_NO_REPLY);
5818 		/*
5819 		 * Error in rsmipc_send currently happens due to inaccessibility
5820 		 * of the remote node.
5821 		 */
5822 		if (e == RSM_SUCCESS) { /* send failed - don't wait for ack */
5823 			tokp->flags |= RSM_SUSPEND_ACKPENDING;
5824 		}
5825 
5826 		tokp = tokp->next;
5827 	}
5828 
5829 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
5830 	    "rsm_send_suspend done\n"));
5831 
5832 }
5833 
5834 static void
5835 rsm_send_resume()
5836 {
5837 	rsmipc_request_t	request;
5838 	list_element_t		*elem, *head;
5839 
5840 	/*
5841 	 * save the suspend list so that we know where to send
5842 	 * the resume messages and make the suspend list head
5843 	 * NULL.
5844 	 */
5845 	mutex_enter(&rsm_suspend_list.list_lock);
5846 	head = rsm_suspend_list.list_head;
5847 	rsm_suspend_list.list_head = NULL;
5848 	mutex_exit(&rsm_suspend_list.list_lock);
5849 
5850 	while (head != NULL) {
5851 		elem = head;
5852 		head = head->next;
5853 
5854 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_RESUME;
5855 
5856 		(void) rsmipc_send(elem->nodeid, &request, RSM_NO_REPLY);
5857 
5858 		kmem_free((void *)elem, sizeof (list_element_t));
5859 
5860 	}
5861 
5862 }
5863 
5864 /*
5865  * This function takes path and sends a message using the sendq
5866  * corresponding to it. The RSMIPC_MSG_SQREADY, RSMIPC_MSG_SQREADY_ACK
5867  * and RSMIPC_MSG_CREDIT are sent using this function.
5868  */
5869 int
5870 rsmipc_send_controlmsg(path_t *path, int msgtype)
5871 {
5872 	int			e;
5873 	int			retry_cnt = 0;
5874 	int			min_retry_cnt = 10;
5875 	adapter_t		*adapter;
5876 	rsm_send_t		is;
5877 	rsm_send_q_handle_t	ipc_handle;
5878 	rsmipc_controlmsg_t	msg;
5879 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_FLOWCONTROL);
5880 
5881 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5882 	    "rsmipc_send_controlmsg enter\n"));
5883 
5884 	ASSERT(MUTEX_HELD(&path->mutex));
5885 
5886 	adapter = path->local_adapter;
5887 
5888 	DBG_PRINTF((category, RSM_DEBUG, "rsmipc_send_controlmsg:path=%lx "
5889 	    "msgtype=%d %lx:%llx->%lx:%llx procmsg=%d\n", path, msgtype,
5890 	    my_nodeid, adapter->hwaddr, path->remote_node,
5891 	    path->remote_hwaddr, path->procmsg_cnt));
5892 
5893 	if (path->state != RSMKA_PATH_ACTIVE) {
5894 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5895 		    "rsmipc_send_controlmsg done: ! RSMKA_PATH_ACTIVE"));
5896 		return (1);
5897 	}
5898 
5899 	ipc_handle = path->sendq_token.rsmpi_sendq_handle;
5900 
5901 	msg.rsmipc_hdr.rsmipc_version = RSM_VERSION;
5902 	msg.rsmipc_hdr.rsmipc_src = my_nodeid;
5903 	msg.rsmipc_hdr.rsmipc_type = msgtype;
5904 	msg.rsmipc_hdr.rsmipc_incn = path->remote_incn;
5905 
5906 	if (msgtype == RSMIPC_MSG_CREDIT)
5907 		msg.rsmipc_credits = path->procmsg_cnt;
5908 
5909 	msg.rsmipc_local_incn = path->local_incn;
5910 
5911 	msg.rsmipc_adapter_hwaddr = adapter->hwaddr;
5912 	/* incr the sendq, path refcnt */
5913 	PATH_HOLD_NOLOCK(path);
5914 	SENDQ_TOKEN_HOLD(path);
5915 
5916 	do {
5917 		/* drop the path lock before doing the rsm_send */
5918 		mutex_exit(&path->mutex);
5919 
5920 		is.is_data = (void *)&msg;
5921 		is.is_size = sizeof (msg);
5922 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5923 		is.is_wait = 0;
5924 
5925 		e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is, NULL);
5926 
5927 		ASSERT(e != RSMERR_QUEUE_FENCE_UP &&
5928 		    e != RSMERR_BAD_BARRIER_HNDL);
5929 
5930 		mutex_enter(&path->mutex);
5931 
5932 		if (e == RSM_SUCCESS) {
5933 			break;
5934 		}
5935 		/* error counter for statistics */
5936 		atomic_inc_64(&rsm_ctrlmsg_errcnt);
5937 
5938 		DBG_PRINTF((category, RSM_ERR,
5939 		    "rsmipc_send_controlmsg:rsm_send error=%d", e));
5940 
5941 		if (++retry_cnt == min_retry_cnt) { /* backoff before retry */
5942 			(void) cv_reltimedwait(&path->sendq_token.sendq_cv,
5943 			    &path->mutex, drv_usectohz(10000), TR_CLOCK_TICK);
5944 			retry_cnt = 0;
5945 		}
5946 	} while (path->state == RSMKA_PATH_ACTIVE);
5947 
5948 	/* decrement the sendq,path refcnt that we incr before rsm_send */
5949 	SENDQ_TOKEN_RELE(path);
5950 	PATH_RELE_NOLOCK(path);
5951 
5952 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5953 	    "rsmipc_send_controlmsg done=%d", e));
5954 	return (e);
5955 }
5956 
5957 /*
5958  * Called from rsm_force_unload and path_importer_disconnect. The memory
5959  * mapping for the imported segment is removed and the segment is
5960  * disconnected at the interconnect layer if disconnect_flag is TRUE.
5961  * rsm_force_unload will get disconnect_flag TRUE from rsm_intr_callback
5962  * and FALSE from rsm_rebind.
5963  *
5964  * When subsequent accesses cause page faulting, the dummy page is mapped
5965  * to resolve the fault, and the mapping generation number is incremented
5966  * so that the application can be notified on a close barrier operation.
5967  *
5968  * It is important to note that the caller of rsmseg_unload is responsible for
5969  * acquiring the segment lock before making a call to rsmseg_unload. This is
5970  * required to make the caller and rsmseg_unload thread safe. The segment lock
5971  * will be released by the rsmseg_unload function.
5972  */
5973 void
5974 rsmseg_unload(rsmseg_t *im_seg)
5975 {
5976 	rsmcookie_t		*hdl;
5977 	void			*shared_cookie;
5978 	rsmipc_request_t	request;
5979 	uint_t			maxprot;
5980 
5981 	DBG_DEFINE(category,
5982 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5983 
5984 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_unload enter\n"));
5985 
5986 	ASSERT(im_seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
5987 
5988 	/* wait until segment leaves the mapping state */
5989 	while (im_seg->s_state == RSM_STATE_MAPPING)
5990 		cv_wait(&im_seg->s_cv, &im_seg->s_lock);
5991 	/*
5992 	 * An unload is only necessary if the segment is connected. However,
5993 	 * if the segment was on the import list in state RSM_STATE_CONNECTING
5994 	 * then a connection was in progress. Change to RSM_STATE_NEW
5995 	 * here to cause an early exit from the connection process.
5996 	 */
5997 	if (im_seg->s_state == RSM_STATE_NEW) {
5998 		rsmseglock_release(im_seg);
5999 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6000 		    "rsmseg_unload done: RSM_STATE_NEW\n"));
6001 		return;
6002 	} else if (im_seg->s_state == RSM_STATE_CONNECTING) {
6003 		im_seg->s_state = RSM_STATE_ABORT_CONNECT;
6004 		rsmsharelock_acquire(im_seg);
6005 		im_seg->s_share->rsmsi_state = RSMSI_STATE_ABORT_CONNECT;
6006 		rsmsharelock_release(im_seg);
6007 		rsmseglock_release(im_seg);
6008 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6009 		    "rsmseg_unload done: RSM_STATE_CONNECTING\n"));
6010 		return;
6011 	}
6012 
6013 	if (im_seg->s_flags & RSM_FORCE_DISCONNECT) {
6014 		if (im_seg->s_ckl != NULL) {
6015 			int e;
6016 			/* Setup protections for remap */
6017 			maxprot = PROT_USER;
6018 			if (im_seg->s_mode & RSM_PERM_READ) {
6019 				maxprot |= PROT_READ;
6020 			}
6021 			if (im_seg->s_mode & RSM_PERM_WRITE) {
6022 				maxprot |= PROT_WRITE;
6023 			}
6024 			hdl = im_seg->s_ckl;
6025 			for (; hdl != NULL; hdl = hdl->c_next) {
6026 				e = devmap_umem_remap(hdl->c_dhp, rsm_dip,
6027 				    remap_cookie,
6028 				    hdl->c_off, hdl->c_len,
6029 				    maxprot, 0, NULL);
6030 
6031 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6032 				    "remap returns %d\n", e));
6033 			}
6034 		}
6035 
6036 		(void) rsm_closeconnection(im_seg, &shared_cookie);
6037 
6038 		if (shared_cookie != NULL) {
6039 			/*
6040 			 * inform the exporting node so this import
6041 			 * can be deleted from the list of importers.
6042 			 */
6043 			request.rsmipc_hdr.rsmipc_type =
6044 			    RSMIPC_MSG_NOTIMPORTING;
6045 			request.rsmipc_key = im_seg->s_segid;
6046 			request.rsmipc_segment_cookie = shared_cookie;
6047 			rsmseglock_release(im_seg);
6048 			(void) rsmipc_send(im_seg->s_node, &request,
6049 			    RSM_NO_REPLY);
6050 		} else {
6051 			rsmseglock_release(im_seg);
6052 		}
6053 	}
6054 	else
6055 		rsmseglock_release(im_seg);
6056 
6057 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_unload done\n"));
6058 
6059 }
6060 
6061 /* ****************************** Importer Calls ************************ */
6062 
6063 static int
6064 rsm_access(uid_t owner, gid_t group, int perm, int mode, const struct cred *cr)
6065 {
6066 	int shifts = 0;
6067 
6068 	if (crgetuid(cr) != owner) {
6069 		shifts += 3;
6070 		if (!groupmember(group, cr))
6071 			shifts += 3;
6072 	}
6073 
6074 	mode &= ~(perm << shifts);
6075 
6076 	if (mode == 0)
6077 		return (0);
6078 
6079 	return (secpolicy_rsm_access(cr, owner, mode));
6080 }
6081 
6082 
6083 static int
6084 rsm_connect(rsmseg_t *seg, rsm_ioctlmsg_t *msg, cred_t *cred,
6085     intptr_t dataptr, int mode)
6086 {
6087 	int e;
6088 	int			recheck_state = 0;
6089 	void			*shared_cookie;
6090 	rsmipc_request_t	request;
6091 	rsmipc_reply_t		reply;
6092 	rsm_permission_t	access;
6093 	adapter_t		*adapter;
6094 	rsm_addr_t		addr = 0;
6095 	rsm_import_share_t	*sharedp;
6096 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6097 
6098 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_connect enter\n"));
6099 
6100 	adapter = rsm_getadapter(msg, mode);
6101 	if (adapter == NULL) {
6102 		DBG_PRINTF((category, RSM_ERR,
6103 		    "rsm_connect done:ENODEV adapter=NULL\n"));
6104 		return (RSMERR_CTLR_NOT_PRESENT);
6105 	}
6106 
6107 	if ((adapter == &loopback_adapter) && (msg->nodeid != my_nodeid)) {
6108 		rsmka_release_adapter(adapter);
6109 		DBG_PRINTF((category, RSM_ERR,
6110 		    "rsm_connect done:ENODEV loopback\n"));
6111 		return (RSMERR_CTLR_NOT_PRESENT);
6112 	}
6113 
6114 
6115 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6116 	ASSERT(seg->s_state == RSM_STATE_NEW);
6117 
6118 	/*
6119 	 * Translate perm to access
6120 	 */
6121 	if (msg->perm & ~RSM_PERM_RDWR) {
6122 		rsmka_release_adapter(adapter);
6123 		DBG_PRINTF((category, RSM_ERR,
6124 		    "rsm_connect done:EINVAL invalid perms\n"));
6125 		return (RSMERR_BAD_PERMS);
6126 	}
6127 	access = 0;
6128 	if (msg->perm & RSM_PERM_READ)
6129 		access |= RSM_ACCESS_READ;
6130 	if (msg->perm & RSM_PERM_WRITE)
6131 		access |= RSM_ACCESS_WRITE;
6132 
6133 	seg->s_node = msg->nodeid;
6134 
6135 	/*
6136 	 * Adding to the import list locks the segment; release the segment
6137 	 * lock so we can get the reply for the send.
6138 	 */
6139 	e = rsmimport_add(seg, msg->key);
6140 	if (e) {
6141 		rsmka_release_adapter(adapter);
6142 		DBG_PRINTF((category, RSM_ERR,
6143 		    "rsm_connect done:rsmimport_add failed %d\n", e));
6144 		return (e);
6145 	}
6146 	seg->s_state = RSM_STATE_CONNECTING;
6147 
6148 	/*
6149 	 * Set the s_adapter field here so as to have a valid comparison of
6150 	 * the adapter and the s_adapter value during rsmshare_get. For
6151 	 * any error, set s_adapter to NULL before doing a release_adapter
6152 	 */
6153 	seg->s_adapter = adapter;
6154 
6155 	rsmseglock_release(seg);
6156 
6157 	/*
6158 	 * get the pointer to the shared data structure; the
6159 	 * shared data is locked and refcount has been incremented
6160 	 */
6161 	sharedp = rsmshare_get(msg->key, msg->nodeid, adapter, seg);
6162 
6163 	ASSERT(rsmsharelock_held(seg));
6164 
6165 	do {
6166 		/* flag indicates whether we need to recheck the state */
6167 		recheck_state = 0;
6168 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6169 		    "rsm_connect:RSMSI_STATE=%d\n", sharedp->rsmsi_state));
6170 		switch (sharedp->rsmsi_state) {
6171 		case RSMSI_STATE_NEW:
6172 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTING;
6173 			break;
6174 		case RSMSI_STATE_CONNECTING:
6175 			/* FALLTHRU */
6176 		case RSMSI_STATE_CONN_QUIESCE:
6177 			/* FALLTHRU */
6178 		case RSMSI_STATE_MAP_QUIESCE:
6179 			/* wait for the state to change */
6180 			while ((sharedp->rsmsi_state ==
6181 			    RSMSI_STATE_CONNECTING) ||
6182 			    (sharedp->rsmsi_state ==
6183 			    RSMSI_STATE_CONN_QUIESCE) ||
6184 			    (sharedp->rsmsi_state ==
6185 			    RSMSI_STATE_MAP_QUIESCE)) {
6186 				if (cv_wait_sig(&sharedp->rsmsi_cv,
6187 				    &sharedp->rsmsi_lock) == 0) {
6188 					/* signalled - clean up and return */
6189 					rsmsharelock_release(seg);
6190 					rsmimport_rm(seg);
6191 					seg->s_adapter = NULL;
6192 					rsmka_release_adapter(adapter);
6193 					seg->s_state = RSM_STATE_NEW;
6194 					DBG_PRINTF((category, RSM_ERR,
6195 					    "rsm_connect done: INTERRUPTED\n"));
6196 					return (RSMERR_INTERRUPTED);
6197 				}
6198 			}
6199 			/*
6200 			 * the state changed, loop back and check what it is
6201 			 */
6202 			recheck_state = 1;
6203 			break;
6204 		case RSMSI_STATE_ABORT_CONNECT:
6205 			/* exit the loop and clean up further down */
6206 			break;
6207 		case RSMSI_STATE_CONNECTED:
6208 			/* already connected, good - fall through */
6209 		case RSMSI_STATE_MAPPED:
6210 			/* already mapped, wow - fall through */
6211 			/* access validation etc is done further down */
6212 			break;
6213 		case RSMSI_STATE_DISCONNECTED:
6214 			/* disconnected - so reconnect now */
6215 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTING;
6216 			break;
6217 		default:
6218 			ASSERT(0); /* Invalid State */
6219 		}
6220 	} while (recheck_state);
6221 
6222 	if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6223 		/* we are the first to connect */
6224 		rsmsharelock_release(seg);
6225 
6226 		if (msg->nodeid != my_nodeid) {
6227 			addr = get_remote_hwaddr(adapter, msg->nodeid);
6228 
6229 			if ((int64_t)addr < 0) {
6230 				rsmsharelock_acquire(seg);
6231 				rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6232 				    RSMSI_STATE_NEW);
6233 				rsmsharelock_release(seg);
6234 				rsmimport_rm(seg);
6235 				seg->s_adapter = NULL;
6236 				rsmka_release_adapter(adapter);
6237 				seg->s_state = RSM_STATE_NEW;
6238 				DBG_PRINTF((category, RSM_ERR,
6239 				    "rsm_connect done: hwaddr<0\n"));
6240 				return (RSMERR_INTERNAL_ERROR);
6241 			}
6242 		} else {
6243 			addr = adapter->hwaddr;
6244 		}
6245 
6246 		/*
6247 		 * send request to node [src, dest, key, msgid] and get back
6248 		 * [status, msgid, cookie]
6249 		 */
6250 		request.rsmipc_key = msg->key;
6251 		/*
6252 		 * we need the s_mode of the exporter so pass
6253 		 * RSM_ACCESS_TRUSTED
6254 		 */
6255 		request.rsmipc_perm = RSM_ACCESS_TRUSTED;
6256 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SEGCONNECT;
6257 		request.rsmipc_adapter_hwaddr = addr;
6258 		request.rsmipc_segment_cookie = sharedp;
6259 
6260 		e = (int)rsmipc_send(msg->nodeid, &request, &reply);
6261 		if (e) {
6262 			rsmsharelock_acquire(seg);
6263 			rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6264 			    RSMSI_STATE_NEW);
6265 			rsmsharelock_release(seg);
6266 			rsmimport_rm(seg);
6267 			seg->s_adapter = NULL;
6268 			rsmka_release_adapter(adapter);
6269 			seg->s_state = RSM_STATE_NEW;
6270 			DBG_PRINTF((category, RSM_ERR,
6271 			    "rsm_connect done:rsmipc_send failed %d\n", e));
6272 			return (e);
6273 		}
6274 
6275 		if (reply.rsmipc_status != RSM_SUCCESS) {
6276 			rsmsharelock_acquire(seg);
6277 			rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6278 			    RSMSI_STATE_NEW);
6279 			rsmsharelock_release(seg);
6280 			rsmimport_rm(seg);
6281 			seg->s_adapter = NULL;
6282 			rsmka_release_adapter(adapter);
6283 			seg->s_state = RSM_STATE_NEW;
6284 			DBG_PRINTF((category, RSM_ERR,
6285 			    "rsm_connect done:rsmipc_send reply err %d\n",
6286 			    reply.rsmipc_status));
6287 			return (reply.rsmipc_status);
6288 		}
6289 
6290 		rsmsharelock_acquire(seg);
6291 		/* store the information recvd into the shared data struct */
6292 		sharedp->rsmsi_mode = reply.rsmipc_mode;
6293 		sharedp->rsmsi_uid = reply.rsmipc_uid;
6294 		sharedp->rsmsi_gid = reply.rsmipc_gid;
6295 		sharedp->rsmsi_seglen = reply.rsmipc_seglen;
6296 		sharedp->rsmsi_cookie = sharedp;
6297 	}
6298 
6299 	rsmsharelock_release(seg);
6300 
6301 	/*
6302 	 * Get the segment lock and check for a force disconnect
6303 	 * from the export side which would have changed the state
6304 	 * back to RSM_STATE_NEW. Once the segment lock is acquired a
6305 	 * force disconnect will be held off until the connection
6306 	 * has completed.
6307 	 */
6308 	rsmseglock_acquire(seg);
6309 	rsmsharelock_acquire(seg);
6310 	ASSERT(seg->s_state == RSM_STATE_CONNECTING ||
6311 	    seg->s_state == RSM_STATE_ABORT_CONNECT);
6312 
6313 	shared_cookie = sharedp->rsmsi_cookie;
6314 
6315 	if ((seg->s_state == RSM_STATE_ABORT_CONNECT) ||
6316 	    (sharedp->rsmsi_state == RSMSI_STATE_ABORT_CONNECT)) {
6317 		seg->s_state = RSM_STATE_NEW;
6318 		seg->s_adapter = NULL;
6319 		rsmsharelock_release(seg);
6320 		rsmseglock_release(seg);
6321 		rsmimport_rm(seg);
6322 		rsmka_release_adapter(adapter);
6323 
6324 		rsmsharelock_acquire(seg);
6325 		if (!(sharedp->rsmsi_flags & RSMSI_FLAGS_ABORTDONE)) {
6326 			/*
6327 			 * set a flag indicating abort handling has been
6328 			 * done
6329 			 */
6330 			sharedp->rsmsi_flags |= RSMSI_FLAGS_ABORTDONE;
6331 			rsmsharelock_release(seg);
6332 			/* send a message to exporter - only once */
6333 			(void) rsm_send_notimporting(msg->nodeid,
6334 			    msg->key, shared_cookie);
6335 			rsmsharelock_acquire(seg);
6336 			/*
6337 			 * wake up any waiting importers and inform that
6338 			 * connection has been aborted
6339 			 */
6340 			cv_broadcast(&sharedp->rsmsi_cv);
6341 		}
6342 		rsmsharelock_release(seg);
6343 
6344 		DBG_PRINTF((category, RSM_ERR,
6345 		    "rsm_connect done: RSM_STATE_ABORT_CONNECT\n"));
6346 		return (RSMERR_INTERRUPTED);
6347 	}
6348 
6349 
6350 	/*
6351 	 * We need to verify that this process has access
6352 	 */
6353 	e = rsm_access(sharedp->rsmsi_uid, sharedp->rsmsi_gid,
6354 	    access & sharedp->rsmsi_mode,
6355 	    (int)(msg->perm & RSM_PERM_RDWR), cred);
6356 	if (e) {
6357 		rsmsharelock_release(seg);
6358 		seg->s_state = RSM_STATE_NEW;
6359 		seg->s_adapter = NULL;
6360 		rsmseglock_release(seg);
6361 		rsmimport_rm(seg);
6362 		rsmka_release_adapter(adapter);
6363 		/*
6364 		 * No need to lock segment it has been removed
6365 		 * from the hash table
6366 		 */
6367 		rsmsharelock_acquire(seg);
6368 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6369 			rsmsharelock_release(seg);
6370 			/* this is the first importer */
6371 
6372 			(void) rsm_send_notimporting(msg->nodeid, msg->key,
6373 			    shared_cookie);
6374 			rsmsharelock_acquire(seg);
6375 			sharedp->rsmsi_state = RSMSI_STATE_NEW;
6376 			cv_broadcast(&sharedp->rsmsi_cv);
6377 		}
6378 		rsmsharelock_release(seg);
6379 
6380 		DBG_PRINTF((category, RSM_ERR,
6381 		    "rsm_connect done: ipcaccess failed\n"));
6382 		return (RSMERR_PERM_DENIED);
6383 	}
6384 
6385 	/* update state and cookie */
6386 	seg->s_segid = sharedp->rsmsi_segid;
6387 	seg->s_len = sharedp->rsmsi_seglen;
6388 	seg->s_mode = access & sharedp->rsmsi_mode;
6389 	seg->s_pid = ddi_get_pid();
6390 	seg->s_mapinfo = NULL;
6391 
6392 	if (seg->s_node != my_nodeid) {
6393 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6394 			e = adapter->rsmpi_ops->rsm_connect(
6395 			    adapter->rsmpi_handle,
6396 			    addr, seg->s_segid, &sharedp->rsmsi_handle);
6397 
6398 			if (e != RSM_SUCCESS) {
6399 				seg->s_state = RSM_STATE_NEW;
6400 				seg->s_adapter = NULL;
6401 				rsmsharelock_release(seg);
6402 				rsmseglock_release(seg);
6403 				rsmimport_rm(seg);
6404 				rsmka_release_adapter(adapter);
6405 				/*
6406 				 *  inform the exporter to delete this importer
6407 				 */
6408 				(void) rsm_send_notimporting(msg->nodeid,
6409 				    msg->key, shared_cookie);
6410 
6411 				/*
6412 				 * Now inform any waiting importers to
6413 				 * retry connect. This needs to be done
6414 				 * after sending notimporting so that
6415 				 * the notimporting is sent before a waiting
6416 				 * importer sends a segconnect while retrying
6417 				 *
6418 				 * No need to lock segment it has been removed
6419 				 * from the hash table
6420 				 */
6421 
6422 				rsmsharelock_acquire(seg);
6423 				sharedp->rsmsi_state = RSMSI_STATE_NEW;
6424 				cv_broadcast(&sharedp->rsmsi_cv);
6425 				rsmsharelock_release(seg);
6426 
6427 				DBG_PRINTF((category, RSM_ERR,
6428 				    "rsm_connect error %d\n", e));
6429 				if (e == RSMERR_SEG_NOT_PUBLISHED_TO_RSM_ADDR)
6430 					return (
6431 					    RSMERR_SEG_NOT_PUBLISHED_TO_NODE);
6432 				else if ((e == RSMERR_RSM_ADDR_UNREACHABLE) ||
6433 				    (e == RSMERR_UNKNOWN_RSM_ADDR))
6434 					return (RSMERR_REMOTE_NODE_UNREACHABLE);
6435 				else
6436 					return (e);
6437 			}
6438 
6439 		}
6440 		seg->s_handle.in = sharedp->rsmsi_handle;
6441 
6442 	}
6443 
6444 	seg->s_state = RSM_STATE_CONNECT;
6445 
6446 
6447 	seg->s_flags &= ~RSM_IMPORT_DUMMY;	/* clear dummy flag */
6448 	if (bar_va) {
6449 		/* increment generation number on barrier page */
6450 		atomic_inc_16(bar_va + seg->s_hdr.rsmrc_num);
6451 		/* return user off into barrier page where status will be */
6452 		msg->off = (int)seg->s_hdr.rsmrc_num;
6453 		msg->gnum = bar_va[msg->off];	/* gnum race */
6454 	} else {
6455 		msg->off = 0;
6456 		msg->gnum = 0;	/* gnum race */
6457 	}
6458 
6459 	msg->len = (int)sharedp->rsmsi_seglen;
6460 	msg->rnum = seg->s_minor;
6461 	rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING, RSMSI_STATE_CONNECTED);
6462 	rsmsharelock_release(seg);
6463 	rsmseglock_release(seg);
6464 
6465 	/* Return back to user the segment size & perm in case it's needed */
6466 
6467 #ifdef _MULTI_DATAMODEL
6468 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
6469 		rsm_ioctlmsg32_t msg32;
6470 
6471 		if (msg->len > UINT_MAX)
6472 			msg32.len = RSM_MAXSZ_PAGE_ALIGNED;
6473 		else
6474 			msg32.len = msg->len;
6475 		msg32.off = msg->off;
6476 		msg32.perm = msg->perm;
6477 		msg32.gnum = msg->gnum;
6478 		msg32.rnum = msg->rnum;
6479 
6480 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6481 		    "rsm_connect done\n"));
6482 
6483 		if (ddi_copyout((caddr_t)&msg32, (caddr_t)dataptr,
6484 		    sizeof (msg32), mode))
6485 			return (RSMERR_BAD_ADDR);
6486 		else
6487 			return (RSM_SUCCESS);
6488 	}
6489 #endif
6490 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_connect done\n"));
6491 
6492 	if (ddi_copyout((caddr_t)msg, (caddr_t)dataptr, sizeof (*msg),
6493 	    mode))
6494 		return (RSMERR_BAD_ADDR);
6495 	else
6496 		return (RSM_SUCCESS);
6497 }
6498 
6499 static int
6500 rsm_unmap(rsmseg_t *seg)
6501 {
6502 	int			err;
6503 	adapter_t		*adapter;
6504 	rsm_import_share_t	*sharedp;
6505 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6506 
6507 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6508 	    "rsm_unmap enter %u\n", seg->s_segid));
6509 
6510 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6511 
6512 	/* assert seg is locked */
6513 	ASSERT(rsmseglock_held(seg));
6514 	ASSERT(seg->s_state != RSM_STATE_MAPPING);
6515 
6516 	if ((seg->s_state != RSM_STATE_ACTIVE) &&
6517 	    (seg->s_state != RSM_STATE_MAP_QUIESCE)) {
6518 		/* segment unmap has already been done */
6519 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unmap done\n"));
6520 		return (RSM_SUCCESS);
6521 	}
6522 
6523 	sharedp = seg->s_share;
6524 
6525 	rsmsharelock_acquire(seg);
6526 
6527 	/*
6528 	 *	- shared data struct is in MAPPED or MAP_QUIESCE state
6529 	 */
6530 
6531 	ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED ||
6532 	    sharedp->rsmsi_state == RSMSI_STATE_MAP_QUIESCE);
6533 
6534 	/*
6535 	 * Unmap pages - previously rsm_memseg_import_unmap was called only if
6536 	 * the segment cookie list was NULL; but it is always NULL when
6537 	 * called from rsmmap_unmap and won't be NULL when called for
6538 	 * a force disconnect - so the check for NULL cookie list was removed
6539 	 */
6540 
6541 	ASSERT(sharedp->rsmsi_mapcnt > 0);
6542 
6543 	sharedp->rsmsi_mapcnt--;
6544 
6545 	if (sharedp->rsmsi_mapcnt == 0) {
6546 		if (sharedp->rsmsi_state == RSMSI_STATE_MAPPED) {
6547 			/* unmap the shared RSMPI mapping */
6548 			adapter = seg->s_adapter;
6549 			if (seg->s_node != my_nodeid) {
6550 				ASSERT(sharedp->rsmsi_handle != NULL);
6551 				err = adapter->rsmpi_ops->
6552 				    rsm_unmap(sharedp->rsmsi_handle);
6553 				DBG_PRINTF((category, RSM_DEBUG,
6554 				    "rsm_unmap: rsmpi unmap %d\n", err));
6555 				rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
6556 				sharedp->rsmsi_mapinfo = NULL;
6557 			}
6558 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
6559 		} else { /* MAP_QUIESCE --munmap()--> CONN_QUIESCE */
6560 			sharedp->rsmsi_state = RSMSI_STATE_CONN_QUIESCE;
6561 		}
6562 	}
6563 
6564 	rsmsharelock_release(seg);
6565 
6566 	/*
6567 	 * The s_cookie field is used to store the cookie returned from the
6568 	 * ddi_umem_lock when binding the pages for an export segment. This
6569 	 * is the primary use of the s_cookie field and does not normally
6570 	 * pertain to any importing segment except in the loopback case.
6571 	 * For the loopback case, the import segment and export segment are
6572 	 * on the same node, the s_cookie field of the segment structure for
6573 	 * the importer is initialized to the s_cookie field in the exported
6574 	 * segment during the map operation and is used during the call to
6575 	 * devmap_umem_setup for the import mapping.
6576 	 * Thus, during unmap, we simply need to set s_cookie to NULL to
6577 	 * indicate that the mapping no longer exists.
6578 	 */
6579 	seg->s_cookie = NULL;
6580 
6581 	seg->s_mapinfo = NULL;
6582 
6583 	if (seg->s_state == RSM_STATE_ACTIVE)
6584 		seg->s_state = RSM_STATE_CONNECT;
6585 	else
6586 		seg->s_state = RSM_STATE_CONN_QUIESCE;
6587 
6588 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unmap done\n"));
6589 
6590 	return (RSM_SUCCESS);
6591 }
6592 
6593 /*
6594  * cookie returned here if not null indicates that it is
6595  * the last importer and it can be used in the RSMIPC_NOT_IMPORTING
6596  * message.
6597  */
6598 static int
6599 rsm_closeconnection(rsmseg_t *seg, void **cookie)
6600 {
6601 	int			e;
6602 	adapter_t		*adapter;
6603 	rsm_import_share_t	*sharedp;
6604 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6605 
6606 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6607 	    "rsm_closeconnection enter\n"));
6608 
6609 	*cookie = (void *)NULL;
6610 
6611 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6612 
6613 	/* assert seg is locked */
6614 	ASSERT(rsmseglock_held(seg));
6615 
6616 	if (seg->s_state == RSM_STATE_DISCONNECT) {
6617 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6618 		    "rsm_closeconnection done: already disconnected\n"));
6619 		return (RSM_SUCCESS);
6620 	}
6621 
6622 	/* wait for all putv/getv ops to get done */
6623 	while (seg->s_rdmacnt > 0) {
6624 		cv_wait(&seg->s_cv, &seg->s_lock);
6625 	}
6626 
6627 	(void) rsm_unmap(seg);
6628 
6629 	ASSERT(seg->s_state == RSM_STATE_CONNECT ||
6630 	    seg->s_state == RSM_STATE_CONN_QUIESCE);
6631 
6632 	adapter = seg->s_adapter;
6633 	sharedp = seg->s_share;
6634 
6635 	ASSERT(sharedp != NULL);
6636 
6637 	rsmsharelock_acquire(seg);
6638 
6639 	/*
6640 	 * Disconnect on adapter
6641 	 *
6642 	 * The current algorithm is stateless, I don't have to contact
6643 	 * server when I go away. It only gives me permissions. Of course,
6644 	 * the adapters will talk to terminate the connect.
6645 	 *
6646 	 * disconnect is needed only if we are CONNECTED not in CONN_QUIESCE
6647 	 */
6648 	if ((sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) &&
6649 	    (sharedp->rsmsi_node != my_nodeid)) {
6650 
6651 		if (sharedp->rsmsi_refcnt == 1) {
6652 			/* this is the last importer */
6653 			ASSERT(sharedp->rsmsi_mapcnt == 0);
6654 
6655 			e = adapter->rsmpi_ops->
6656 			    rsm_disconnect(sharedp->rsmsi_handle);
6657 			if (e != RSM_SUCCESS) {
6658 				DBG_PRINTF((category, RSM_DEBUG,
6659 				    "rsm:disconnect failed seg=%x:err=%d\n",
6660 				    seg->s_key, e));
6661 			}
6662 		}
6663 	}
6664 
6665 	seg->s_handle.in = NULL;
6666 
6667 	sharedp->rsmsi_refcnt--;
6668 
6669 	if (sharedp->rsmsi_refcnt == 0) {
6670 		*cookie = (void *)sharedp->rsmsi_cookie;
6671 		sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
6672 		sharedp->rsmsi_handle = NULL;
6673 		rsmsharelock_release(seg);
6674 
6675 		/* clean up the shared data structure */
6676 		mutex_destroy(&sharedp->rsmsi_lock);
6677 		cv_destroy(&sharedp->rsmsi_cv);
6678 		kmem_free((void *)(sharedp), sizeof (rsm_import_share_t));
6679 
6680 	} else {
6681 		rsmsharelock_release(seg);
6682 	}
6683 
6684 	/* increment generation number on barrier page */
6685 	if (bar_va) {
6686 		atomic_inc_16(bar_va + seg->s_hdr.rsmrc_num);
6687 	}
6688 
6689 	/*
6690 	 * The following needs to be done after any
6691 	 * rsmsharelock calls which use seg->s_share.
6692 	 */
6693 	seg->s_share = NULL;
6694 
6695 	seg->s_state = RSM_STATE_DISCONNECT;
6696 	/* signal anyone waiting in the CONN_QUIESCE state */
6697 	cv_broadcast(&seg->s_cv);
6698 
6699 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6700 	    "rsm_closeconnection done\n"));
6701 
6702 	return (RSM_SUCCESS);
6703 }
6704 
6705 int
6706 rsm_disconnect(rsmseg_t *seg)
6707 {
6708 	rsmipc_request_t	request;
6709 	void			*shared_cookie;
6710 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6711 
6712 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_disconnect enter\n"));
6713 
6714 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6715 
6716 	/* assert seg isn't locked */
6717 	ASSERT(!rsmseglock_held(seg));
6718 
6719 
6720 	/* Remove segment from imported list */
6721 	rsmimport_rm(seg);
6722 
6723 	/* acquire the segment */
6724 	rsmseglock_acquire(seg);
6725 
6726 	/* wait until segment leaves the mapping state */
6727 	while (seg->s_state == RSM_STATE_MAPPING)
6728 		cv_wait(&seg->s_cv, &seg->s_lock);
6729 
6730 	if (seg->s_state == RSM_STATE_DISCONNECT) {
6731 		seg->s_state = RSM_STATE_NEW;
6732 		rsmseglock_release(seg);
6733 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6734 		    "rsm_disconnect done: already disconnected\n"));
6735 		return (RSM_SUCCESS);
6736 	}
6737 
6738 	(void) rsm_closeconnection(seg, &shared_cookie);
6739 
6740 	/* update state */
6741 	seg->s_state = RSM_STATE_NEW;
6742 
6743 	if (shared_cookie != NULL) {
6744 		/*
6745 		 *  This is the last importer so inform the exporting node
6746 		 *  so this import can be deleted from the list of importers.
6747 		 */
6748 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_NOTIMPORTING;
6749 		request.rsmipc_key = seg->s_segid;
6750 		request.rsmipc_segment_cookie = shared_cookie;
6751 		rsmseglock_release(seg);
6752 		(void) rsmipc_send(seg->s_node, &request, RSM_NO_REPLY);
6753 	} else {
6754 		rsmseglock_release(seg);
6755 	}
6756 
6757 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_disconnect done\n"));
6758 
6759 	return (DDI_SUCCESS);
6760 }
6761 
6762 static int
6763 rsm_chpoll(dev_t dev, short events, int anyyet, short *reventsp,
6764     struct pollhead **phpp)
6765 {
6766 	minor_t		rnum;
6767 	rsmresource_t	*res;
6768 	rsmseg_t	*seg;
6769 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
6770 
6771 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_chpoll enter\n"));
6772 
6773 	/* find minor, no lock */
6774 	rnum = getminor(dev);
6775 	res = rsmresource_lookup(rnum, RSM_NOLOCK);
6776 
6777 	/* poll is supported only for export/import segments */
6778 	if ((res == NULL) || (res == RSMRC_RESERVED) ||
6779 	    (res->rsmrc_type == RSM_RESOURCE_BAR)) {
6780 		return (ENXIO);
6781 	}
6782 
6783 	/*
6784 	 * An exported segment must be in state RSM_STATE_EXPORT; an
6785 	 * imported segment must be in state RSM_STATE_ACTIVE.
6786 	 */
6787 	seg = (rsmseg_t *)res;
6788 
6789 	if (seg->s_pollevent) {
6790 		*reventsp = POLLRDNORM;
6791 	} else {
6792 		*reventsp = 0;
6793 	}
6794 
6795 	if ((*reventsp == 0 && !anyyet) || (events & POLLET)) {
6796 		/* cannot take segment lock here */
6797 		*phpp = &seg->s_poll;
6798 		seg->s_pollflag |= RSM_SEGMENT_POLL;
6799 	}
6800 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_chpoll done\n"));
6801 	return (0);
6802 }
6803 
6804 
6805 
6806 /* ************************* IOCTL Commands ********************* */
6807 
6808 static rsmseg_t *
6809 rsmresource_seg(rsmresource_t *res, minor_t rnum, cred_t *credp,
6810     rsm_resource_type_t type)
6811 {
6812 	/* get segment from resource handle */
6813 	rsmseg_t *seg;
6814 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
6815 
6816 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmresource_seg enter\n"));
6817 
6818 
6819 	if (res != RSMRC_RESERVED) {
6820 		seg = (rsmseg_t *)res;
6821 	} else {
6822 		/* Allocate segment now and bind it */
6823 		seg = rsmseg_alloc(rnum, credp);
6824 
6825 		/*
6826 		 * if DR pre-processing is going on or DR is in progress
6827 		 * then the new export segments should be in the NEW_QSCD state
6828 		 */
6829 		if (type == RSM_RESOURCE_EXPORT_SEGMENT) {
6830 			mutex_enter(&rsm_drv_data.drv_lock);
6831 			if ((rsm_drv_data.drv_state ==
6832 			    RSM_DRV_PREDEL_STARTED) ||
6833 			    (rsm_drv_data.drv_state ==
6834 			    RSM_DRV_PREDEL_COMPLETED) ||
6835 			    (rsm_drv_data.drv_state ==
6836 			    RSM_DRV_DR_IN_PROGRESS)) {
6837 				seg->s_state = RSM_STATE_NEW_QUIESCED;
6838 			}
6839 			mutex_exit(&rsm_drv_data.drv_lock);
6840 		}
6841 
6842 		rsmresource_insert(rnum, (rsmresource_t *)seg, type);
6843 	}
6844 
6845 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmresource_seg done\n"));
6846 
6847 	return (seg);
6848 }
6849 
6850 static int
6851 rsmexport_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6852     int mode, cred_t *credp)
6853 {
6854 	int error;
6855 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT | RSM_IOCTL);
6856 
6857 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmexport_ioctl enter\n"));
6858 
6859 	arg = arg;
6860 	credp = credp;
6861 
6862 	ASSERT(seg != NULL);
6863 
6864 	switch (cmd) {
6865 	case RSM_IOCTL_BIND:
6866 		error = rsm_bind(seg, msg, arg, mode);
6867 		break;
6868 	case RSM_IOCTL_REBIND:
6869 		error = rsm_rebind(seg, msg);
6870 		break;
6871 	case RSM_IOCTL_UNBIND:
6872 		error = ENOTSUP;
6873 		break;
6874 	case RSM_IOCTL_PUBLISH:
6875 		error = rsm_publish(seg, msg, arg, mode);
6876 		break;
6877 	case RSM_IOCTL_REPUBLISH:
6878 		error = rsm_republish(seg, msg, mode);
6879 		break;
6880 	case RSM_IOCTL_UNPUBLISH:
6881 		error = rsm_unpublish(seg, 1);
6882 		break;
6883 	default:
6884 		error = EINVAL;
6885 		break;
6886 	}
6887 
6888 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmexport_ioctl done: %d\n",
6889 	    error));
6890 
6891 	return (error);
6892 }
6893 static int
6894 rsmimport_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6895     int mode, cred_t *credp)
6896 {
6897 	int error;
6898 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
6899 
6900 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmimport_ioctl enter\n"));
6901 
6902 	ASSERT(seg);
6903 
6904 	switch (cmd) {
6905 	case RSM_IOCTL_CONNECT:
6906 		error = rsm_connect(seg, msg, credp, arg, mode);
6907 		break;
6908 	default:
6909 		error = EINVAL;
6910 		break;
6911 	}
6912 
6913 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmimport_ioctl done: %d\n",
6914 	    error));
6915 	return (error);
6916 }
6917 
6918 static int
6919 rsmbar_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6920     int mode)
6921 {
6922 	int e;
6923 	adapter_t *adapter;
6924 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
6925 
6926 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmbar_ioctl enter\n"));
6927 
6928 
6929 	if ((seg->s_flags & RSM_IMPORT_DUMMY) != 0) {
6930 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6931 		    "rsmbar_ioctl done: RSM_IMPORT_DUMMY\n"));
6932 		return (RSMERR_CONN_ABORTED);
6933 	} else if (seg->s_node == my_nodeid) {
6934 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6935 		    "rsmbar_ioctl done: loopback\n"));
6936 		return (RSM_SUCCESS);
6937 	}
6938 
6939 	adapter = seg->s_adapter;
6940 
6941 	switch (cmd) {
6942 	case RSM_IOCTL_BAR_CHECK:
6943 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6944 		    "rsmbar_ioctl done: RSM_BAR_CHECK %d\n", bar_va));
6945 		return (bar_va ? RSM_SUCCESS : EINVAL);
6946 	case RSM_IOCTL_BAR_OPEN:
6947 		e = adapter->rsmpi_ops->
6948 		    rsm_open_barrier_ctrl(adapter->rsmpi_handle, &msg->bar);
6949 		break;
6950 	case RSM_IOCTL_BAR_ORDER:
6951 		e = adapter->rsmpi_ops->rsm_order_barrier(&msg->bar);
6952 		break;
6953 	case RSM_IOCTL_BAR_CLOSE:
6954 		e = adapter->rsmpi_ops->rsm_close_barrier(&msg->bar);
6955 		break;
6956 	default:
6957 		e = EINVAL;
6958 		break;
6959 	}
6960 
6961 	if (e == RSM_SUCCESS) {
6962 #ifdef _MULTI_DATAMODEL
6963 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
6964 			rsm_ioctlmsg32_t msg32;
6965 			int i;
6966 
6967 			for (i = 0; i < 4; i++) {
6968 				msg32.bar.comp[i].u64 = msg->bar.comp[i].u64;
6969 			}
6970 
6971 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6972 			    "rsmbar_ioctl done\n"));
6973 			if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
6974 			    sizeof (msg32), mode))
6975 				return (RSMERR_BAD_ADDR);
6976 			else
6977 				return (RSM_SUCCESS);
6978 		}
6979 #endif
6980 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6981 		    "rsmbar_ioctl done\n"));
6982 		if (ddi_copyout((caddr_t)&msg->bar, (caddr_t)arg,
6983 		    sizeof (*msg), mode))
6984 			return (RSMERR_BAD_ADDR);
6985 		else
6986 			return (RSM_SUCCESS);
6987 	}
6988 
6989 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6990 	    "rsmbar_ioctl done: error=%d\n", e));
6991 
6992 	return (e);
6993 }
6994 
6995 /*
6996  * Ring the doorbell of the export segment to which this segment is
6997  * connected.
6998  */
6999 static int
7000 exportbell_ioctl(rsmseg_t *seg, int cmd /*ARGSUSED*/)
7001 {
7002 	int e = 0;
7003 	rsmipc_request_t request;
7004 
7005 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7006 
7007 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exportbell_ioctl enter\n"));
7008 
7009 	request.rsmipc_key = seg->s_segid;
7010 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7011 	request.rsmipc_segment_cookie = NULL;
7012 	e = rsmipc_send(seg->s_node, &request, RSM_NO_REPLY);
7013 
7014 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7015 	    "exportbell_ioctl done: %d\n", e));
7016 
7017 	return (e);
7018 }
7019 
7020 /*
7021  * Ring the doorbells of all segments importing this segment
7022  */
7023 static int
7024 importbell_ioctl(rsmseg_t *seg, int cmd /*ARGSUSED*/)
7025 {
7026 	importing_token_t	*token = NULL;
7027 	rsmipc_request_t	request;
7028 	int			index;
7029 
7030 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT | RSM_IOCTL);
7031 
7032 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importbell_ioctl enter\n"));
7033 
7034 	ASSERT(seg->s_state != RSM_STATE_NEW &&
7035 	    seg->s_state != RSM_STATE_NEW_QUIESCED);
7036 
7037 	request.rsmipc_key = seg->s_segid;
7038 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7039 
7040 	index = rsmhash(seg->s_segid);
7041 
7042 	token = importer_list.bucket[index];
7043 
7044 	while (token != NULL) {
7045 		if (seg->s_key == token->key) {
7046 			request.rsmipc_segment_cookie =
7047 			    token->import_segment_cookie;
7048 			(void) rsmipc_send(token->importing_node,
7049 			    &request, RSM_NO_REPLY);
7050 		}
7051 		token = token->next;
7052 	}
7053 
7054 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7055 	    "importbell_ioctl done\n"));
7056 	return (RSM_SUCCESS);
7057 }
7058 
7059 static int
7060 rsm_consumeevent_copyin(caddr_t arg, rsm_consume_event_msg_t *msgp,
7061     rsm_poll_event_t **eventspp, int mode)
7062 {
7063 	rsm_poll_event_t	*evlist = NULL;
7064 	size_t			evlistsz;
7065 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7066 
7067 #ifdef _MULTI_DATAMODEL
7068 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7069 		int i;
7070 		rsm_consume_event_msg32_t cemsg32 = {0};
7071 		rsm_poll_event32_t	event32[RSM_MAX_POLLFDS];
7072 		rsm_poll_event32_t	*evlist32;
7073 		size_t			evlistsz32;
7074 
7075 		/* copyin the ioctl message */
7076 		if (ddi_copyin(arg, (caddr_t)&cemsg32,
7077 		    sizeof (rsm_consume_event_msg32_t), mode)) {
7078 			DBG_PRINTF((category, RSM_ERR,
7079 			    "consumeevent_copyin msgp: RSMERR_BAD_ADDR\n"));
7080 			return (RSMERR_BAD_ADDR);
7081 		}
7082 		msgp->seglist = (caddr_t)(uintptr_t)cemsg32.seglist;
7083 		msgp->numents = (int)cemsg32.numents;
7084 
7085 		evlistsz32 = sizeof (rsm_poll_event32_t) * msgp->numents;
7086 		/*
7087 		 * If numents is large alloc events list on heap otherwise
7088 		 * use the address of array that was passed in.
7089 		 */
7090 		if (msgp->numents > RSM_MAX_POLLFDS) {
7091 			if (msgp->numents > max_segs) { /* validate numents */
7092 				DBG_PRINTF((category, RSM_ERR,
7093 				    "consumeevent_copyin: "
7094 				    "RSMERR_BAD_ARGS_ERRORS\n"));
7095 				return (RSMERR_BAD_ARGS_ERRORS);
7096 			}
7097 			evlist32 = kmem_zalloc(evlistsz32, KM_SLEEP);
7098 		} else {
7099 			evlist32 = event32;
7100 		}
7101 
7102 		/* copyin the seglist into the rsm_poll_event32_t array */
7103 		if (ddi_copyin((caddr_t)msgp->seglist, (caddr_t)evlist32,
7104 		    evlistsz32, mode)) {
7105 			if ((msgp->numents > RSM_MAX_POLLFDS) && evlist32) {
7106 				kmem_free(evlist32, evlistsz32);
7107 			}
7108 			DBG_PRINTF((category, RSM_ERR,
7109 			    "consumeevent_copyin evlist: RSMERR_BAD_ADDR\n"));
7110 			return (RSMERR_BAD_ADDR);
7111 		}
7112 
7113 		/* evlist and evlistsz are based on rsm_poll_event_t type */
7114 		evlistsz = sizeof (rsm_poll_event_t)* msgp->numents;
7115 
7116 		if (msgp->numents > RSM_MAX_POLLFDS) {
7117 			evlist = kmem_zalloc(evlistsz, KM_SLEEP);
7118 			*eventspp = evlist;
7119 		} else {
7120 			evlist = *eventspp;
7121 		}
7122 		/*
7123 		 * copy the rsm_poll_event32_t array to the rsm_poll_event_t
7124 		 * array
7125 		 */
7126 		for (i = 0; i < msgp->numents; i++) {
7127 			evlist[i].rnum = evlist32[i].rnum;
7128 			evlist[i].fdsidx = evlist32[i].fdsidx;
7129 			evlist[i].revent = evlist32[i].revent;
7130 		}
7131 		/* free the temp 32-bit event list */
7132 		if ((msgp->numents > RSM_MAX_POLLFDS) && evlist32) {
7133 			kmem_free(evlist32, evlistsz32);
7134 		}
7135 
7136 		return (RSM_SUCCESS);
7137 	}
7138 #endif
7139 	/* copyin the ioctl message */
7140 	if (ddi_copyin(arg, (caddr_t)msgp, sizeof (rsm_consume_event_msg_t),
7141 	    mode)) {
7142 		DBG_PRINTF((category, RSM_ERR,
7143 		    "consumeevent_copyin msgp: RSMERR_BAD_ADDR\n"));
7144 		return (RSMERR_BAD_ADDR);
7145 	}
7146 	/*
7147 	 * If numents is large alloc events list on heap otherwise
7148 	 * use the address of array that was passed in.
7149 	 */
7150 	if (msgp->numents > RSM_MAX_POLLFDS) {
7151 		if (msgp->numents > max_segs) { /* validate numents */
7152 			DBG_PRINTF((category, RSM_ERR,
7153 			    "consumeevent_copyin: RSMERR_BAD_ARGS_ERRORS\n"));
7154 			return (RSMERR_BAD_ARGS_ERRORS);
7155 		}
7156 		evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7157 		evlist = kmem_zalloc(evlistsz, KM_SLEEP);
7158 		*eventspp  = evlist;
7159 	}
7160 
7161 	/* copyin the seglist */
7162 	if (ddi_copyin((caddr_t)msgp->seglist, (caddr_t)(*eventspp),
7163 	    sizeof (rsm_poll_event_t)*msgp->numents, mode)) {
7164 		if (evlist) {
7165 			kmem_free(evlist, evlistsz);
7166 			*eventspp = NULL;
7167 		}
7168 		DBG_PRINTF((category, RSM_ERR,
7169 		    "consumeevent_copyin evlist: RSMERR_BAD_ADDR\n"));
7170 		return (RSMERR_BAD_ADDR);
7171 	}
7172 
7173 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7174 	    "consumeevent_copyin done\n"));
7175 	return (RSM_SUCCESS);
7176 }
7177 
7178 static int
7179 rsm_consumeevent_copyout(rsm_consume_event_msg_t *msgp,
7180     rsm_poll_event_t *eventsp, int mode)
7181 {
7182 	size_t			evlistsz;
7183 	int			err = RSM_SUCCESS;
7184 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7185 
7186 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7187 	    "consumeevent_copyout enter: numents(%d) eventsp(%p)\n",
7188 	    msgp->numents, eventsp));
7189 
7190 #ifdef _MULTI_DATAMODEL
7191 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7192 		int i;
7193 		rsm_poll_event32_t	event32[RSM_MAX_POLLFDS];
7194 		rsm_poll_event32_t	*evlist32;
7195 		size_t			evlistsz32;
7196 
7197 		evlistsz32 = sizeof (rsm_poll_event32_t)*msgp->numents;
7198 		if (msgp->numents > RSM_MAX_POLLFDS) {
7199 			evlist32 = kmem_zalloc(evlistsz32, KM_SLEEP);
7200 		} else {
7201 			evlist32 = event32;
7202 		}
7203 
7204 		/*
7205 		 * copy the rsm_poll_event_t array to the rsm_poll_event32_t
7206 		 * array
7207 		 */
7208 		for (i = 0; i < msgp->numents; i++) {
7209 			evlist32[i].rnum = eventsp[i].rnum;
7210 			evlist32[i].fdsidx = eventsp[i].fdsidx;
7211 			evlist32[i].revent = eventsp[i].revent;
7212 		}
7213 
7214 		if (ddi_copyout((caddr_t)evlist32, (caddr_t)msgp->seglist,
7215 		    evlistsz32, mode)) {
7216 			err = RSMERR_BAD_ADDR;
7217 		}
7218 
7219 		if (msgp->numents > RSM_MAX_POLLFDS) {
7220 			if (evlist32) {	/* free the temp 32-bit event list */
7221 				kmem_free(evlist32, evlistsz32);
7222 			}
7223 			/*
7224 			 * eventsp and evlistsz are based on rsm_poll_event_t
7225 			 * type
7226 			 */
7227 			evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7228 			/* event list on the heap and needs to be freed here */
7229 			if (eventsp) {
7230 				kmem_free(eventsp, evlistsz);
7231 			}
7232 		}
7233 
7234 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7235 		    "consumeevent_copyout done: err=%d\n", err));
7236 		return (err);
7237 	}
7238 #endif
7239 	evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7240 
7241 	if (ddi_copyout((caddr_t)eventsp, (caddr_t)msgp->seglist, evlistsz,
7242 	    mode)) {
7243 		err = RSMERR_BAD_ADDR;
7244 	}
7245 
7246 	if ((msgp->numents > RSM_MAX_POLLFDS) && eventsp) {
7247 		/* event list on the heap and needs to be freed here */
7248 		kmem_free(eventsp, evlistsz);
7249 	}
7250 
7251 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7252 	    "consumeevent_copyout done: err=%d\n", err));
7253 	return (err);
7254 }
7255 
7256 static int
7257 rsm_consumeevent_ioctl(caddr_t arg, int mode)
7258 {
7259 	int	rc;
7260 	int	i;
7261 	minor_t	rnum;
7262 	rsm_consume_event_msg_t	msg = {0};
7263 	rsmseg_t		*seg;
7264 	rsm_poll_event_t	*event_list;
7265 	rsm_poll_event_t	events[RSM_MAX_POLLFDS];
7266 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7267 
7268 	event_list = events;
7269 
7270 	if ((rc = rsm_consumeevent_copyin(arg, &msg, &event_list, mode)) !=
7271 	    RSM_SUCCESS) {
7272 		return (rc);
7273 	}
7274 
7275 	for (i = 0; i < msg.numents; i++) {
7276 		rnum = event_list[i].rnum;
7277 		event_list[i].revent = 0;
7278 		/* get the segment structure */
7279 		seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_LOCK);
7280 		if (seg) {
7281 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7282 			    "consumeevent_ioctl: rnum(%d) seg(%p)\n", rnum,
7283 			    seg));
7284 			if (seg->s_pollevent) {
7285 				/* consume the event */
7286 				atomic_dec_32(&seg->s_pollevent);
7287 				event_list[i].revent = POLLRDNORM;
7288 			}
7289 			rsmseglock_release(seg);
7290 		}
7291 	}
7292 
7293 	if ((rc = rsm_consumeevent_copyout(&msg, event_list, mode)) !=
7294 	    RSM_SUCCESS) {
7295 		return (rc);
7296 	}
7297 
7298 	return (RSM_SUCCESS);
7299 }
7300 
7301 static int
7302 iovec_copyin(caddr_t user_vec, rsmka_iovec_t *iovec, int count, int mode)
7303 {
7304 	int size;
7305 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7306 
7307 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "iovec_copyin enter\n"));
7308 
7309 #ifdef _MULTI_DATAMODEL
7310 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7311 		rsmka_iovec32_t	*iovec32, *iovec32_base;
7312 		int i;
7313 
7314 		size = count * sizeof (rsmka_iovec32_t);
7315 		iovec32_base = iovec32 = kmem_zalloc(size, KM_SLEEP);
7316 		if (ddi_copyin((caddr_t)user_vec,
7317 		    (caddr_t)iovec32, size, mode)) {
7318 			kmem_free(iovec32, size);
7319 			DBG_PRINTF((category, RSM_DEBUG,
7320 			    "iovec_copyin: returning RSMERR_BAD_ADDR\n"));
7321 			return (RSMERR_BAD_ADDR);
7322 		}
7323 
7324 		for (i = 0; i < count; i++, iovec++, iovec32++) {
7325 			iovec->io_type = (int)iovec32->io_type;
7326 			if (iovec->io_type == RSM_HANDLE_TYPE)
7327 				iovec->local.segid = (rsm_memseg_id_t)
7328 				    iovec32->local;
7329 			else
7330 				iovec->local.vaddr =
7331 				    (caddr_t)(uintptr_t)iovec32->local;
7332 			iovec->local_offset = (size_t)iovec32->local_offset;
7333 			iovec->remote_offset = (size_t)iovec32->remote_offset;
7334 			iovec->transfer_len = (size_t)iovec32->transfer_len;
7335 
7336 		}
7337 		kmem_free(iovec32_base, size);
7338 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7339 		    "iovec_copyin done\n"));
7340 		return (DDI_SUCCESS);
7341 	}
7342 #endif
7343 
7344 	size = count * sizeof (rsmka_iovec_t);
7345 	if (ddi_copyin((caddr_t)user_vec, (caddr_t)iovec, size, mode)) {
7346 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7347 		    "iovec_copyin done: RSMERR_BAD_ADDR\n"));
7348 		return (RSMERR_BAD_ADDR);
7349 	}
7350 
7351 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "iovec_copyin done\n"));
7352 
7353 	return (DDI_SUCCESS);
7354 }
7355 
7356 
7357 static int
7358 sgio_copyin(caddr_t arg, rsmka_scat_gath_t *sg_io, int mode)
7359 {
7360 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7361 
7362 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_copyin enter\n"));
7363 
7364 #ifdef _MULTI_DATAMODEL
7365 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7366 		rsmka_scat_gath32_t sg_io32;
7367 
7368 		if (ddi_copyin(arg, (caddr_t)&sg_io32, sizeof (sg_io32),
7369 		    mode)) {
7370 			DBG_PRINTF((category, RSM_DEBUG,
7371 			    "sgio_copyin done: returning EFAULT\n"));
7372 			return (RSMERR_BAD_ADDR);
7373 		}
7374 		sg_io->local_nodeid = (rsm_node_id_t)sg_io32.local_nodeid;
7375 		sg_io->io_request_count =  (size_t)sg_io32.io_request_count;
7376 		sg_io->io_residual_count = (size_t)sg_io32.io_residual_count;
7377 		sg_io->flags = (size_t)sg_io32.flags;
7378 		sg_io->remote_handle = (rsm_memseg_import_handle_t)
7379 		    (uintptr_t)sg_io32.remote_handle;
7380 		sg_io->iovec = (rsmka_iovec_t *)(uintptr_t)sg_io32.iovec;
7381 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7382 		    "sgio_copyin done\n"));
7383 		return (DDI_SUCCESS);
7384 	}
7385 #endif
7386 	if (ddi_copyin(arg, (caddr_t)sg_io, sizeof (rsmka_scat_gath_t),
7387 	    mode)) {
7388 		DBG_PRINTF((category, RSM_DEBUG,
7389 		    "sgio_copyin done: returning EFAULT\n"));
7390 		return (RSMERR_BAD_ADDR);
7391 	}
7392 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_copyin done\n"));
7393 	return (DDI_SUCCESS);
7394 }
7395 
7396 static int
7397 sgio_resid_copyout(caddr_t arg, rsmka_scat_gath_t *sg_io, int mode)
7398 {
7399 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7400 
7401 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7402 	    "sgio_resid_copyout enter\n"));
7403 
7404 #ifdef _MULTI_DATAMODEL
7405 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7406 		rsmka_scat_gath32_t sg_io32;
7407 
7408 		sg_io32.io_residual_count = sg_io->io_residual_count;
7409 		sg_io32.flags = sg_io->flags;
7410 
7411 		if (ddi_copyout((caddr_t)&sg_io32.io_residual_count,
7412 		    (caddr_t)&((rsmka_scat_gath32_t *)arg)->io_residual_count,
7413 		    sizeof (uint32_t), mode)) {
7414 
7415 			DBG_PRINTF((category, RSM_ERR,
7416 			    "sgio_resid_copyout error: rescnt\n"));
7417 			return (RSMERR_BAD_ADDR);
7418 		}
7419 
7420 		if (ddi_copyout((caddr_t)&sg_io32.flags,
7421 		    (caddr_t)&((rsmka_scat_gath32_t *)arg)->flags,
7422 		    sizeof (uint32_t), mode)) {
7423 
7424 			DBG_PRINTF((category, RSM_ERR,
7425 			    "sgio_resid_copyout error: flags\n"));
7426 			return (RSMERR_BAD_ADDR);
7427 		}
7428 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7429 		    "sgio_resid_copyout done\n"));
7430 		return (DDI_SUCCESS);
7431 	}
7432 #endif
7433 	if (ddi_copyout((caddr_t)&sg_io->io_residual_count,
7434 	    (caddr_t)&((rsmka_scat_gath_t *)arg)->io_residual_count,
7435 	    sizeof (ulong_t), mode)) {
7436 
7437 		DBG_PRINTF((category, RSM_ERR,
7438 		    "sgio_resid_copyout error:rescnt\n"));
7439 		return (RSMERR_BAD_ADDR);
7440 	}
7441 
7442 	if (ddi_copyout((caddr_t)&sg_io->flags,
7443 	    (caddr_t)&((rsmka_scat_gath_t *)arg)->flags,
7444 	    sizeof (uint_t), mode)) {
7445 
7446 		DBG_PRINTF((category, RSM_ERR,
7447 		    "sgio_resid_copyout error:flags\n"));
7448 		return (RSMERR_BAD_ADDR);
7449 	}
7450 
7451 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_resid_copyout done\n"));
7452 	return (DDI_SUCCESS);
7453 }
7454 
7455 
7456 static int
7457 rsm_iovec_ioctl(dev_t dev, caddr_t arg, int cmd, int mode, cred_t *credp)
7458 {
7459 	rsmka_scat_gath_t	sg_io;
7460 	rsmka_iovec_t		ka_iovec_arr[RSM_MAX_IOVLEN];
7461 	rsmka_iovec_t		*ka_iovec;
7462 	rsmka_iovec_t		*ka_iovec_start;
7463 	rsmpi_scat_gath_t	rsmpi_sg_io;
7464 	rsmpi_iovec_t		iovec_arr[RSM_MAX_IOVLEN];
7465 	rsmpi_iovec_t		*iovec;
7466 	rsmpi_iovec_t		*iovec_start = NULL;
7467 	rsmapi_access_entry_t	*acl;
7468 	rsmresource_t		*res;
7469 	minor_t			rnum;
7470 	rsmseg_t		*im_seg, *ex_seg;
7471 	int			e;
7472 	int			error = 0;
7473 	uint_t			i;
7474 	uint_t			iov_proc = 0; /* num of iovecs processed */
7475 	size_t			size = 0;
7476 	size_t			ka_size;
7477 
7478 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7479 
7480 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_iovec_ioctl enter\n"));
7481 
7482 	credp = credp;
7483 
7484 	/*
7485 	 * Copyin the scatter/gather structure  and build new structure
7486 	 * for rsmpi.
7487 	 */
7488 	e = sgio_copyin(arg, &sg_io, mode);
7489 	if (e != DDI_SUCCESS) {
7490 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7491 		    "rsm_iovec_ioctl done: sgio_copyin %d\n", e));
7492 		return (e);
7493 	}
7494 
7495 	if (sg_io.io_request_count > RSM_MAX_SGIOREQS) {
7496 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7497 		    "rsm_iovec_ioctl done: request_count(%d) too large\n",
7498 		    sg_io.io_request_count));
7499 		return (RSMERR_BAD_SGIO);
7500 	}
7501 
7502 	rsmpi_sg_io.io_request_count = sg_io.io_request_count;
7503 	rsmpi_sg_io.io_residual_count = sg_io.io_request_count;
7504 	rsmpi_sg_io.io_segflg = 0;
7505 
7506 	/* Allocate memory and copyin io vector array  */
7507 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7508 		ka_size =  sg_io.io_request_count * sizeof (rsmka_iovec_t);
7509 		ka_iovec_start = ka_iovec = kmem_zalloc(ka_size, KM_SLEEP);
7510 	} else {
7511 		ka_iovec_start = ka_iovec = ka_iovec_arr;
7512 	}
7513 	e = iovec_copyin((caddr_t)sg_io.iovec, ka_iovec,
7514 	    sg_io.io_request_count, mode);
7515 	if (e != DDI_SUCCESS) {
7516 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7517 			kmem_free(ka_iovec, ka_size);
7518 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7519 		    "rsm_iovec_ioctl done: iovec_copyin %d\n", e));
7520 		return (e);
7521 	}
7522 
7523 	/* get the import segment descriptor */
7524 	rnum = getminor(dev);
7525 	res = rsmresource_lookup(rnum, RSM_LOCK);
7526 
7527 	/*
7528 	 * The following sequence of locking may (or MAY NOT) cause a
7529 	 * deadlock but this is currently not addressed here since the
7530 	 * implementation will be changed to incorporate the use of
7531 	 * reference counting for both the import and the export segments.
7532 	 */
7533 
7534 	/* rsmseglock_acquire(im_seg) done in rsmresource_lookup */
7535 
7536 	im_seg = (rsmseg_t *)res;
7537 
7538 	if (im_seg == NULL) {
7539 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7540 			kmem_free(ka_iovec, ka_size);
7541 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7542 		    "rsm_iovec_ioctl done: rsmresource_lookup failed\n"));
7543 		return (EINVAL);
7544 	}
7545 	/* putv/getv supported is supported only on import segments */
7546 	if (im_seg->s_type != RSM_RESOURCE_IMPORT_SEGMENT) {
7547 		rsmseglock_release(im_seg);
7548 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7549 			kmem_free(ka_iovec, ka_size);
7550 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7551 		    "rsm_iovec_ioctl done: not an import segment\n"));
7552 		return (EINVAL);
7553 	}
7554 
7555 	/*
7556 	 * wait for a remote DR to complete ie. for segments to get UNQUIESCED
7557 	 * as well as wait for a local DR to complete.
7558 	 */
7559 	while ((im_seg->s_state == RSM_STATE_CONN_QUIESCE) ||
7560 	    (im_seg->s_state == RSM_STATE_MAP_QUIESCE) ||
7561 	    (im_seg->s_flags & RSM_DR_INPROGRESS)) {
7562 		if (cv_wait_sig(&im_seg->s_cv, &im_seg->s_lock) == 0) {
7563 			DBG_PRINTF((category, RSM_DEBUG,
7564 			    "rsm_iovec_ioctl done: cv_wait INTR"));
7565 			rsmseglock_release(im_seg);
7566 			return (RSMERR_INTERRUPTED);
7567 		}
7568 	}
7569 
7570 	if ((im_seg->s_state != RSM_STATE_CONNECT) &&
7571 	    (im_seg->s_state != RSM_STATE_ACTIVE)) {
7572 
7573 		ASSERT(im_seg->s_state == RSM_STATE_DISCONNECT ||
7574 		    im_seg->s_state == RSM_STATE_NEW);
7575 
7576 		DBG_PRINTF((category, RSM_DEBUG,
7577 		    "rsm_iovec_ioctl done: im_seg not conn/map"));
7578 		rsmseglock_release(im_seg);
7579 		e = RSMERR_BAD_SGIO;
7580 		goto out;
7581 	}
7582 
7583 	im_seg->s_rdmacnt++;
7584 	rsmseglock_release(im_seg);
7585 
7586 	/*
7587 	 * Allocate and set up the io vector for rsmpi
7588 	 */
7589 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7590 		size = sg_io.io_request_count * sizeof (rsmpi_iovec_t);
7591 		iovec_start = iovec = kmem_zalloc(size, KM_SLEEP);
7592 	} else {
7593 		iovec_start = iovec = iovec_arr;
7594 	}
7595 
7596 	rsmpi_sg_io.iovec = iovec;
7597 	for (iov_proc = 0; iov_proc < sg_io.io_request_count; iov_proc++) {
7598 		if (ka_iovec->io_type == RSM_HANDLE_TYPE) {
7599 			ex_seg = rsmexport_lookup(ka_iovec->local.segid);
7600 
7601 			if (ex_seg == NULL) {
7602 				e = RSMERR_BAD_SGIO;
7603 				break;
7604 			}
7605 			ASSERT(ex_seg->s_state == RSM_STATE_EXPORT);
7606 
7607 			acl = ex_seg->s_acl;
7608 			if (acl[0].ae_permission == 0) {
7609 				struct buf *xbuf;
7610 				dev_t sdev = 0;
7611 
7612 				xbuf = ddi_umem_iosetup(ex_seg->s_cookie,
7613 				    0, ex_seg->s_len, B_WRITE,
7614 				    sdev, 0, NULL, DDI_UMEM_SLEEP);
7615 
7616 				ASSERT(xbuf != NULL);
7617 
7618 				iovec->local_mem.ms_type = RSM_MEM_BUF;
7619 				iovec->local_mem.ms_memory.bp = xbuf;
7620 			} else {
7621 				iovec->local_mem.ms_type = RSM_MEM_HANDLE;
7622 				iovec->local_mem.ms_memory.handle =
7623 				    ex_seg->s_handle.out;
7624 			}
7625 			ex_seg->s_rdmacnt++; /* refcnt the handle */
7626 			rsmseglock_release(ex_seg);
7627 		} else {
7628 			iovec->local_mem.ms_type = RSM_MEM_VADDR;
7629 			iovec->local_mem.ms_memory.vr.vaddr =
7630 			    ka_iovec->local.vaddr;
7631 		}
7632 
7633 		iovec->local_offset = ka_iovec->local_offset;
7634 		iovec->remote_handle = im_seg->s_handle.in;
7635 		iovec->remote_offset = ka_iovec->remote_offset;
7636 		iovec->transfer_length = ka_iovec->transfer_len;
7637 		iovec++;
7638 		ka_iovec++;
7639 	}
7640 
7641 	if (iov_proc <  sg_io.io_request_count) {
7642 		/* error while processing handle */
7643 		rsmseglock_acquire(im_seg);
7644 		im_seg->s_rdmacnt--;   /* decrement the refcnt for importseg */
7645 		if (im_seg->s_rdmacnt == 0) {
7646 			cv_broadcast(&im_seg->s_cv);
7647 		}
7648 		rsmseglock_release(im_seg);
7649 		goto out;
7650 	}
7651 
7652 	/* call rsmpi */
7653 	if (cmd == RSM_IOCTL_PUTV)
7654 		e = im_seg->s_adapter->rsmpi_ops->rsm_memseg_import_putv(
7655 		    im_seg->s_adapter->rsmpi_handle,
7656 		    &rsmpi_sg_io);
7657 	else if (cmd == RSM_IOCTL_GETV)
7658 		e = im_seg->s_adapter->rsmpi_ops->rsm_memseg_import_getv(
7659 		    im_seg->s_adapter->rsmpi_handle,
7660 		    &rsmpi_sg_io);
7661 	else {
7662 		e = EINVAL;
7663 		DBG_PRINTF((category, RSM_DEBUG,
7664 		    "iovec_ioctl: bad command = %x\n", cmd));
7665 	}
7666 
7667 
7668 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7669 	    "rsm_iovec_ioctl RSMPI oper done %d\n", e));
7670 
7671 	sg_io.io_residual_count = rsmpi_sg_io.io_residual_count;
7672 
7673 	/*
7674 	 * Check for implicit signal post flag and do the signal
7675 	 * post if needed
7676 	 */
7677 	if (sg_io.flags & RSM_IMPLICIT_SIGPOST &&
7678 	    e == RSM_SUCCESS) {
7679 		rsmipc_request_t request;
7680 
7681 		request.rsmipc_key = im_seg->s_segid;
7682 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7683 		request.rsmipc_segment_cookie = NULL;
7684 		e = rsmipc_send(im_seg->s_node, &request, RSM_NO_REPLY);
7685 		/*
7686 		 * Reset the implicit signal post flag to 0 to indicate
7687 		 * that the signal post has been done and need not be
7688 		 * done in the RSMAPI library
7689 		 */
7690 		sg_io.flags &= ~RSM_IMPLICIT_SIGPOST;
7691 	}
7692 
7693 	rsmseglock_acquire(im_seg);
7694 	im_seg->s_rdmacnt--;
7695 	if (im_seg->s_rdmacnt == 0) {
7696 		cv_broadcast(&im_seg->s_cv);
7697 	}
7698 	rsmseglock_release(im_seg);
7699 	error = sgio_resid_copyout(arg, &sg_io, mode);
7700 out:
7701 	iovec = iovec_start;
7702 	ka_iovec = ka_iovec_start;
7703 	for (i = 0; i < iov_proc; i++) {
7704 		if (ka_iovec->io_type == RSM_HANDLE_TYPE) {
7705 			ex_seg = rsmexport_lookup(ka_iovec->local.segid);
7706 
7707 			ASSERT(ex_seg != NULL);
7708 			ASSERT(ex_seg->s_state == RSM_STATE_EXPORT);
7709 
7710 			ex_seg->s_rdmacnt--; /* unrefcnt the handle */
7711 			if (ex_seg->s_rdmacnt == 0) {
7712 				cv_broadcast(&ex_seg->s_cv);
7713 			}
7714 			rsmseglock_release(ex_seg);
7715 		}
7716 
7717 		ASSERT(iovec != NULL); /* true if iov_proc > 0 */
7718 
7719 		/*
7720 		 * At present there is no dependency on the existence of xbufs
7721 		 * created by ddi_umem_iosetup for each of the iovecs. So we
7722 		 * can these xbufs here.
7723 		 */
7724 		if (iovec->local_mem.ms_type == RSM_MEM_BUF) {
7725 			freerbuf(iovec->local_mem.ms_memory.bp);
7726 		}
7727 
7728 		iovec++;
7729 		ka_iovec++;
7730 	}
7731 
7732 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7733 		if (iovec_start)
7734 			kmem_free(iovec_start, size);
7735 		kmem_free(ka_iovec_start, ka_size);
7736 	}
7737 
7738 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7739 	    "rsm_iovec_ioctl done %d\n", e));
7740 	/* if RSMPI call fails return that else return copyout's retval */
7741 	return ((e != RSM_SUCCESS) ? e : error);
7742 
7743 }
7744 
7745 
7746 static int
7747 rsmaddr_ioctl(int cmd, rsm_ioctlmsg_t *msg, int mode)
7748 {
7749 	adapter_t	*adapter;
7750 	rsm_addr_t	addr;
7751 	rsm_node_id_t	node;
7752 	int		rval = DDI_SUCCESS;
7753 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
7754 
7755 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmaddr_ioctl enter\n"));
7756 
7757 	adapter =  rsm_getadapter(msg, mode);
7758 	if (adapter == NULL) {
7759 		DBG_PRINTF((category, RSM_DEBUG,
7760 		    "rsmaddr_ioctl done: adapter not found\n"));
7761 		return (RSMERR_CTLR_NOT_PRESENT);
7762 	}
7763 
7764 	switch (cmd) {
7765 	case RSM_IOCTL_MAP_TO_ADDR: /* nodeid to hwaddr mapping */
7766 		/* returns the hwaddr in msg->hwaddr */
7767 		if (msg->nodeid == my_nodeid) {
7768 			msg->hwaddr = adapter->hwaddr;
7769 		} else {
7770 			addr = get_remote_hwaddr(adapter, msg->nodeid);
7771 			if ((int64_t)addr < 0) {
7772 				rval = RSMERR_INTERNAL_ERROR;
7773 			} else {
7774 				msg->hwaddr = addr;
7775 			}
7776 		}
7777 		break;
7778 	case RSM_IOCTL_MAP_TO_NODEID: /* hwaddr to nodeid mapping */
7779 		/* returns the nodeid in msg->nodeid */
7780 		if (msg->hwaddr == adapter->hwaddr) {
7781 			msg->nodeid = my_nodeid;
7782 		} else {
7783 			node = get_remote_nodeid(adapter, msg->hwaddr);
7784 			if ((int)node < 0) {
7785 				rval = RSMERR_INTERNAL_ERROR;
7786 			} else {
7787 				msg->nodeid = (rsm_node_id_t)node;
7788 			}
7789 		}
7790 		break;
7791 	default:
7792 		rval = EINVAL;
7793 		break;
7794 	}
7795 
7796 	rsmka_release_adapter(adapter);
7797 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7798 	    "rsmaddr_ioctl done: %d\n", rval));
7799 	return (rval);
7800 }
7801 
7802 static int
7803 rsm_ddi_copyin(caddr_t arg, rsm_ioctlmsg_t *msg, int mode)
7804 {
7805 	DBG_DEFINE(category,
7806 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL | RSM_DDI);
7807 
7808 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ddi_copyin enter\n"));
7809 
7810 #ifdef _MULTI_DATAMODEL
7811 
7812 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7813 		rsm_ioctlmsg32_t msg32;
7814 		int i;
7815 
7816 		if (ddi_copyin(arg, (caddr_t)&msg32, sizeof (msg32), mode)) {
7817 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7818 			    "rsm_ddi_copyin done: EFAULT\n"));
7819 			return (RSMERR_BAD_ADDR);
7820 		}
7821 		msg->len = msg32.len;
7822 		msg->vaddr = (caddr_t)(uintptr_t)msg32.vaddr;
7823 		msg->arg = (caddr_t)(uintptr_t)msg32.arg;
7824 		msg->key = msg32.key;
7825 		msg->acl_len = msg32.acl_len;
7826 		msg->acl = (rsmapi_access_entry_t *)(uintptr_t)msg32.acl;
7827 		msg->cnum = msg32.cnum;
7828 		msg->cname = (caddr_t)(uintptr_t)msg32.cname;
7829 		msg->cname_len = msg32.cname_len;
7830 		msg->nodeid = msg32.nodeid;
7831 		msg->hwaddr = msg32.hwaddr;
7832 		msg->perm = msg32.perm;
7833 		for (i = 0; i < 4; i++) {
7834 			msg->bar.comp[i].u64 = msg32.bar.comp[i].u64;
7835 		}
7836 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7837 		    "rsm_ddi_copyin done\n"));
7838 		return (RSM_SUCCESS);
7839 	}
7840 #endif
7841 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ddi_copyin done\n"));
7842 	if (ddi_copyin(arg, (caddr_t)msg, sizeof (*msg), mode))
7843 		return (RSMERR_BAD_ADDR);
7844 	else
7845 		return (RSM_SUCCESS);
7846 }
7847 
7848 static int
7849 rsmattr_ddi_copyout(adapter_t *adapter, caddr_t arg, int mode)
7850 {
7851 	rsmka_int_controller_attr_t	rsm_cattr;
7852 	DBG_DEFINE(category,
7853 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL | RSM_DDI);
7854 
7855 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7856 	    "rsmattr_ddi_copyout enter\n"));
7857 	/*
7858 	 * need to copy appropriate data from rsm_controller_attr_t
7859 	 * to rsmka_int_controller_attr_t
7860 	 */
7861 #ifdef	_MULTI_DATAMODEL
7862 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7863 		rsmka_int_controller_attr32_t rsm_cattr32;
7864 
7865 		rsm_cattr32.attr_direct_access_sizes =
7866 		    adapter->rsm_attr.attr_direct_access_sizes;
7867 		rsm_cattr32.attr_atomic_sizes =
7868 		    adapter->rsm_attr.attr_atomic_sizes;
7869 		rsm_cattr32.attr_page_size =
7870 		    adapter->rsm_attr.attr_page_size;
7871 		if (adapter->rsm_attr.attr_max_export_segment_size >
7872 		    UINT_MAX)
7873 			rsm_cattr32.attr_max_export_segment_size =
7874 			    RSM_MAXSZ_PAGE_ALIGNED;
7875 		else
7876 			rsm_cattr32.attr_max_export_segment_size =
7877 			    adapter->rsm_attr.attr_max_export_segment_size;
7878 		if (adapter->rsm_attr.attr_tot_export_segment_size >
7879 		    UINT_MAX)
7880 			rsm_cattr32.attr_tot_export_segment_size =
7881 			    RSM_MAXSZ_PAGE_ALIGNED;
7882 		else
7883 			rsm_cattr32.attr_tot_export_segment_size =
7884 			    adapter->rsm_attr.attr_tot_export_segment_size;
7885 		if (adapter->rsm_attr.attr_max_export_segments >
7886 		    UINT_MAX)
7887 			rsm_cattr32.attr_max_export_segments =
7888 			    UINT_MAX;
7889 		else
7890 			rsm_cattr32.attr_max_export_segments =
7891 			    adapter->rsm_attr.attr_max_export_segments;
7892 		if (adapter->rsm_attr.attr_max_import_map_size >
7893 		    UINT_MAX)
7894 			rsm_cattr32.attr_max_import_map_size =
7895 			    RSM_MAXSZ_PAGE_ALIGNED;
7896 		else
7897 			rsm_cattr32.attr_max_import_map_size =
7898 			    adapter->rsm_attr.attr_max_import_map_size;
7899 		if (adapter->rsm_attr.attr_tot_import_map_size >
7900 		    UINT_MAX)
7901 			rsm_cattr32.attr_tot_import_map_size =
7902 			    RSM_MAXSZ_PAGE_ALIGNED;
7903 		else
7904 			rsm_cattr32.attr_tot_import_map_size =
7905 			    adapter->rsm_attr.attr_tot_import_map_size;
7906 		if (adapter->rsm_attr.attr_max_import_segments >
7907 		    UINT_MAX)
7908 			rsm_cattr32.attr_max_import_segments =
7909 			    UINT_MAX;
7910 		else
7911 			rsm_cattr32.attr_max_import_segments =
7912 			    adapter->rsm_attr.attr_max_import_segments;
7913 		rsm_cattr32.attr_controller_addr =
7914 		    adapter->rsm_attr.attr_controller_addr;
7915 
7916 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7917 		    "rsmattr_ddi_copyout done\n"));
7918 		if (ddi_copyout((caddr_t)&rsm_cattr32, arg,
7919 		    sizeof (rsmka_int_controller_attr32_t), mode)) {
7920 			return (RSMERR_BAD_ADDR);
7921 		}
7922 		else
7923 			return (RSM_SUCCESS);
7924 	}
7925 #endif
7926 	rsm_cattr.attr_direct_access_sizes =
7927 	    adapter->rsm_attr.attr_direct_access_sizes;
7928 	rsm_cattr.attr_atomic_sizes =
7929 	    adapter->rsm_attr.attr_atomic_sizes;
7930 	rsm_cattr.attr_page_size =
7931 	    adapter->rsm_attr.attr_page_size;
7932 	rsm_cattr.attr_max_export_segment_size =
7933 	    adapter->rsm_attr.attr_max_export_segment_size;
7934 	rsm_cattr.attr_tot_export_segment_size =
7935 	    adapter->rsm_attr.attr_tot_export_segment_size;
7936 	rsm_cattr.attr_max_export_segments =
7937 	    adapter->rsm_attr.attr_max_export_segments;
7938 	rsm_cattr.attr_max_import_map_size =
7939 	    adapter->rsm_attr.attr_max_import_map_size;
7940 	rsm_cattr.attr_tot_import_map_size =
7941 	    adapter->rsm_attr.attr_tot_import_map_size;
7942 	rsm_cattr.attr_max_import_segments =
7943 	    adapter->rsm_attr.attr_max_import_segments;
7944 	rsm_cattr.attr_controller_addr =
7945 	    adapter->rsm_attr.attr_controller_addr;
7946 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7947 	    "rsmattr_ddi_copyout done\n"));
7948 	if (ddi_copyout((caddr_t)&rsm_cattr, arg,
7949 	    sizeof (rsmka_int_controller_attr_t), mode)) {
7950 		return (RSMERR_BAD_ADDR);
7951 	}
7952 	else
7953 		return (RSM_SUCCESS);
7954 }
7955 
7956 /*ARGSUSED*/
7957 static int
7958 rsm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
7959     int *rvalp)
7960 {
7961 	rsmseg_t *seg;
7962 	rsmresource_t	*res;
7963 	minor_t		rnum;
7964 	rsm_ioctlmsg_t msg = {0};
7965 	int error;
7966 	adapter_t *adapter;
7967 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
7968 
7969 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ioctl enter\n"));
7970 
7971 	if (cmd == RSM_IOCTL_CONSUMEEVENT) {
7972 		error = rsm_consumeevent_ioctl((caddr_t)arg, mode);
7973 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7974 		    "rsm_ioctl RSM_IOCTL_CONSUMEEVENT done: %d\n", error));
7975 		return (error);
7976 	}
7977 
7978 	/* topology cmd does not use the arg common to other cmds */
7979 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_TOPOLOGY) {
7980 		error = rsmka_topology_ioctl((caddr_t)arg, cmd, mode);
7981 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7982 		    "rsm_ioctl done: %d\n", error));
7983 		return (error);
7984 	}
7985 
7986 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_IOVEC) {
7987 		error = rsm_iovec_ioctl(dev, (caddr_t)arg, cmd, mode, credp);
7988 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7989 		    "rsm_ioctl done: %d\n", error));
7990 		return (error);
7991 	}
7992 
7993 	/*
7994 	 * try to load arguments
7995 	 */
7996 	if (cmd != RSM_IOCTL_RING_BELL &&
7997 	    rsm_ddi_copyin((caddr_t)arg, &msg, mode)) {
7998 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7999 		    "rsm_ioctl done: EFAULT\n"));
8000 		return (RSMERR_BAD_ADDR);
8001 	}
8002 
8003 	if (cmd == RSM_IOCTL_ATTR) {
8004 		adapter =  rsm_getadapter(&msg, mode);
8005 		if (adapter == NULL) {
8006 			DBG_PRINTF((category, RSM_DEBUG,
8007 			    "rsm_ioctl done: ENODEV\n"));
8008 			return (RSMERR_CTLR_NOT_PRESENT);
8009 		}
8010 		error = rsmattr_ddi_copyout(adapter, msg.arg, mode);
8011 		rsmka_release_adapter(adapter);
8012 		DBG_PRINTF((category, RSM_DEBUG,
8013 		    "rsm_ioctl:after copyout %d\n", error));
8014 		return (error);
8015 	}
8016 
8017 	if (cmd == RSM_IOCTL_BAR_INFO) {
8018 		/* Return library off,len of barrier page */
8019 		msg.off = barrier_offset;
8020 		msg.len = (int)barrier_size;
8021 #ifdef _MULTI_DATAMODEL
8022 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
8023 			rsm_ioctlmsg32_t msg32;
8024 
8025 			if (msg.len > UINT_MAX)
8026 				msg.len = RSM_MAXSZ_PAGE_ALIGNED;
8027 			else
8028 				msg32.len = (int32_t)msg.len;
8029 			msg32.off = (int32_t)msg.off;
8030 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8031 			    "rsm_ioctl done\n"));
8032 			if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
8033 			    sizeof (msg32), mode))
8034 				return (RSMERR_BAD_ADDR);
8035 			else
8036 				return (RSM_SUCCESS);
8037 		}
8038 #endif
8039 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8040 		    "rsm_ioctl done\n"));
8041 		if (ddi_copyout((caddr_t)&msg, (caddr_t)arg,
8042 		    sizeof (msg), mode))
8043 			return (RSMERR_BAD_ADDR);
8044 		else
8045 			return (RSM_SUCCESS);
8046 	}
8047 
8048 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_MAP_ADDR) {
8049 		/* map the nodeid or hwaddr */
8050 		error = rsmaddr_ioctl(cmd, &msg, mode);
8051 		if (error == RSM_SUCCESS) {
8052 #ifdef _MULTI_DATAMODEL
8053 			if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
8054 				rsm_ioctlmsg32_t msg32;
8055 
8056 				msg32.hwaddr = (uint64_t)msg.hwaddr;
8057 				msg32.nodeid = (uint32_t)msg.nodeid;
8058 
8059 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8060 				    "rsm_ioctl done\n"));
8061 				if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
8062 				    sizeof (msg32), mode))
8063 					return (RSMERR_BAD_ADDR);
8064 				else
8065 					return (RSM_SUCCESS);
8066 			}
8067 #endif
8068 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8069 			    "rsm_ioctl done\n"));
8070 			if (ddi_copyout((caddr_t)&msg, (caddr_t)arg,
8071 			    sizeof (msg), mode))
8072 				return (RSMERR_BAD_ADDR);
8073 			else
8074 				return (RSM_SUCCESS);
8075 		}
8076 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8077 		    "rsm_ioctl done: %d\n", error));
8078 		return (error);
8079 	}
8080 
8081 	/* Find resource and look it in read mode */
8082 	rnum = getminor(dev);
8083 	res = rsmresource_lookup(rnum, RSM_NOLOCK);
8084 	ASSERT(res != NULL);
8085 
8086 	/*
8087 	 * Find command group
8088 	 */
8089 	switch (RSM_IOCTL_CMDGRP(cmd)) {
8090 	case RSM_IOCTL_EXPORT_SEG:
8091 		/*
8092 		 * Export list is searched during publish, loopback and
8093 		 * remote lookup call.
8094 		 */
8095 		seg = rsmresource_seg(res, rnum, credp,
8096 		    RSM_RESOURCE_EXPORT_SEGMENT);
8097 		if (seg->s_type == RSM_RESOURCE_EXPORT_SEGMENT) {
8098 			error = rsmexport_ioctl(seg, &msg, cmd, arg, mode,
8099 			    credp);
8100 		} else { /* export ioctl on an import/barrier resource */
8101 			error = RSMERR_BAD_SEG_HNDL;
8102 		}
8103 		break;
8104 	case RSM_IOCTL_IMPORT_SEG:
8105 		/* Import list is searched during remote unmap call. */
8106 		seg = rsmresource_seg(res, rnum, credp,
8107 		    RSM_RESOURCE_IMPORT_SEGMENT);
8108 		if (seg->s_type == RSM_RESOURCE_IMPORT_SEGMENT) {
8109 			error = rsmimport_ioctl(seg, &msg, cmd, arg, mode,
8110 			    credp);
8111 		} else  { /* import ioctl on an export/barrier resource */
8112 			error = RSMERR_BAD_SEG_HNDL;
8113 		}
8114 		break;
8115 	case RSM_IOCTL_BAR:
8116 		if (res != RSMRC_RESERVED &&
8117 		    res->rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT) {
8118 			error = rsmbar_ioctl((rsmseg_t *)res, &msg, cmd, arg,
8119 			    mode);
8120 		} else { /* invalid res value */
8121 			error = RSMERR_BAD_SEG_HNDL;
8122 		}
8123 		break;
8124 	case RSM_IOCTL_BELL:
8125 		if (res != RSMRC_RESERVED) {
8126 			if (res->rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT)
8127 				error = exportbell_ioctl((rsmseg_t *)res, cmd);
8128 			else if (res->rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT)
8129 				error = importbell_ioctl((rsmseg_t *)res, cmd);
8130 			else /* RSM_RESOURCE_BAR */
8131 				error = RSMERR_BAD_SEG_HNDL;
8132 		} else { /* invalid res value */
8133 			error = RSMERR_BAD_SEG_HNDL;
8134 		}
8135 		break;
8136 	default:
8137 		error = EINVAL;
8138 	}
8139 
8140 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ioctl done: %d\n",
8141 	    error));
8142 	return (error);
8143 }
8144 
8145 
8146 /* **************************** Segment Mapping Operations ********* */
8147 static rsm_mapinfo_t *
8148 rsm_get_mapinfo(rsmseg_t *seg, off_t off, size_t len, off_t *dev_offset,
8149     size_t *map_len)
8150 {
8151 	rsm_mapinfo_t	*p;
8152 	/*
8153 	 * Find the correct mapinfo structure to use during the mapping
8154 	 * from the seg->s_mapinfo list.
8155 	 * The seg->s_mapinfo list contains in reverse order the mappings
8156 	 * as returned by the RSMPI rsm_map. In rsm_devmap, we need to
8157 	 * access the correct entry within this list for the mapping
8158 	 * requested.
8159 	 *
8160 	 * The algorithm for selecting a list entry is as follows:
8161 	 *
8162 	 * When start_offset of an entry <= off we have found the entry
8163 	 * we were looking for. Adjust the dev_offset and map_len (needs
8164 	 * to be PAGESIZE aligned).
8165 	 */
8166 	p = seg->s_mapinfo;
8167 	for (; p; p = p->next) {
8168 		if (p->start_offset <= off) {
8169 			*dev_offset = p->dev_offset + off - p->start_offset;
8170 			*map_len = (len > p->individual_len) ?
8171 			    p->individual_len : ptob(btopr(len));
8172 			return (p);
8173 		}
8174 		p = p->next;
8175 	}
8176 
8177 	return (NULL);
8178 }
8179 
8180 static void
8181 rsm_free_mapinfo(rsm_mapinfo_t  *mapinfo)
8182 {
8183 	rsm_mapinfo_t *p;
8184 
8185 	while (mapinfo != NULL) {
8186 		p = mapinfo;
8187 		mapinfo = mapinfo->next;
8188 		kmem_free(p, sizeof (*p));
8189 	}
8190 }
8191 
8192 static int
8193 rsmmap_map(devmap_cookie_t dhp, dev_t dev, uint_t flags, offset_t off,
8194     size_t len, void **pvtp)
8195 {
8196 	rsmcookie_t	*p;
8197 	rsmresource_t	*res;
8198 	rsmseg_t	*seg;
8199 	minor_t rnum;
8200 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8201 
8202 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_map enter\n"));
8203 
8204 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8205 	    "rsmmap_map: dhp = %x\n", dhp));
8206 
8207 	flags = flags;
8208 
8209 	rnum = getminor(dev);
8210 	res = (rsmresource_t *)rsmresource_lookup(rnum, RSM_NOLOCK);
8211 	ASSERT(res != NULL);
8212 
8213 	seg = (rsmseg_t *)res;
8214 
8215 	rsmseglock_acquire(seg);
8216 
8217 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8218 
8219 	/*
8220 	 * Allocate structure and add cookie to segment list
8221 	 */
8222 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
8223 
8224 	p->c_dhp = dhp;
8225 	p->c_off = off;
8226 	p->c_len = len;
8227 	p->c_next = seg->s_ckl;
8228 	seg->s_ckl = p;
8229 
8230 	*pvtp = (void *)seg;
8231 
8232 	rsmseglock_release(seg);
8233 
8234 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_map done\n"));
8235 	return (DDI_SUCCESS);
8236 }
8237 
8238 /*
8239  * Page fault handling is done here. The prerequisite mapping setup
8240  * has been done in rsm_devmap with calls to ddi_devmem_setup or
8241  * ddi_umem_setup
8242  */
8243 static int
8244 rsmmap_access(devmap_cookie_t dhp, void *pvt, offset_t offset, size_t len,
8245     uint_t type, uint_t rw)
8246 {
8247 	int e;
8248 	rsmseg_t *seg = (rsmseg_t *)pvt;
8249 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8250 
8251 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_access enter\n"));
8252 
8253 	rsmseglock_acquire(seg);
8254 
8255 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8256 
8257 	while (seg->s_state == RSM_STATE_MAP_QUIESCE) {
8258 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
8259 			DBG_PRINTF((category, RSM_DEBUG,
8260 			    "rsmmap_access done: cv_wait INTR"));
8261 			rsmseglock_release(seg);
8262 			return (RSMERR_INTERRUPTED);
8263 		}
8264 	}
8265 
8266 	ASSERT(seg->s_state == RSM_STATE_DISCONNECT ||
8267 	    seg->s_state == RSM_STATE_ACTIVE);
8268 
8269 	if (seg->s_state == RSM_STATE_DISCONNECT)
8270 		seg->s_flags |= RSM_IMPORT_DUMMY;
8271 
8272 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8273 	    "rsmmap_access: dhp = %x\n", dhp));
8274 
8275 	rsmseglock_release(seg);
8276 
8277 	if (e = devmap_load(dhp, offset, len, type, rw)) {
8278 		DBG_PRINTF((category, RSM_ERR, "devmap_load failed\n"));
8279 	}
8280 
8281 
8282 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_access done\n"));
8283 
8284 	return (e);
8285 }
8286 
8287 static int
8288 rsmmap_dup(devmap_cookie_t dhp, void *oldpvt, devmap_cookie_t new_dhp,
8289     void **newpvt)
8290 {
8291 	rsmseg_t	*seg = (rsmseg_t *)oldpvt;
8292 	rsmcookie_t	*p, *old;
8293 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8294 
8295 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_dup enter\n"));
8296 
8297 	/*
8298 	 * Same as map, create an entry to hold cookie and add it to
8299 	 * connect segment list. The oldpvt is a pointer to segment.
8300 	 * Return segment pointer in newpvt.
8301 	 */
8302 	rsmseglock_acquire(seg);
8303 
8304 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8305 
8306 	/*
8307 	 * Find old cookie
8308 	 */
8309 	for (old = seg->s_ckl; old != NULL; old = old->c_next) {
8310 		if (old->c_dhp == dhp) {
8311 			break;
8312 		}
8313 	}
8314 	if (old == NULL) {
8315 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8316 		    "rsmmap_dup done: EINVAL\n"));
8317 		rsmseglock_release(seg);
8318 		return (EINVAL);
8319 	}
8320 
8321 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
8322 
8323 	p->c_dhp = new_dhp;
8324 	p->c_off = old->c_off;
8325 	p->c_len = old->c_len;
8326 	p->c_next = seg->s_ckl;
8327 	seg->s_ckl = p;
8328 
8329 	*newpvt = (void *)seg;
8330 
8331 	rsmseglock_release(seg);
8332 
8333 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_dup done\n"));
8334 
8335 	return (DDI_SUCCESS);
8336 }
8337 
8338 static void
8339 rsmmap_unmap(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len,
8340     devmap_cookie_t new_dhp1, void **pvtp1,
8341     devmap_cookie_t new_dhp2, void **pvtp2)
8342 {
8343 	/*
8344 	 * Remove pvtp structure from segment list.
8345 	 */
8346 	rsmseg_t	*seg = (rsmseg_t *)pvtp;
8347 	int freeflag;
8348 
8349 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8350 
8351 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_unmap enter\n"));
8352 
8353 	off = off; len = len;
8354 	pvtp1 = pvtp1; pvtp2 = pvtp2;
8355 
8356 	rsmseglock_acquire(seg);
8357 
8358 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8359 
8360 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8361 	    "rsmmap_unmap: dhp = %x\n", dhp));
8362 	/*
8363 	 * We can go ahead and remove the dhps even if we are in
8364 	 * the MAPPING state because the dhps being removed here
8365 	 * belong to a different mmap and we are holding the segment
8366 	 * lock.
8367 	 */
8368 	if (new_dhp1 == NULL && new_dhp2 == NULL) {
8369 		/* find and remove dhp handle */
8370 		rsmcookie_t *tmp, **back = &seg->s_ckl;
8371 
8372 		while (*back != NULL) {
8373 			tmp = *back;
8374 			if (tmp->c_dhp == dhp) {
8375 				*back = tmp->c_next;
8376 				kmem_free(tmp, sizeof (*tmp));
8377 				break;
8378 			}
8379 			back = &tmp->c_next;
8380 		}
8381 	} else {
8382 		DBG_PRINTF((category, RSM_DEBUG_LVL2,
8383 		    "rsmmap_unmap:parital unmap"
8384 		    "new_dhp1 %lx, new_dhp2 %lx\n",
8385 		    (size_t)new_dhp1, (size_t)new_dhp2));
8386 	}
8387 
8388 	/*
8389 	 * rsmmap_unmap is called for each mapping cookie on the list.
8390 	 * When the list becomes empty and we are not in the MAPPING
8391 	 * state then unmap in the rsmpi driver.
8392 	 */
8393 	if ((seg->s_ckl == NULL) && (seg->s_state != RSM_STATE_MAPPING))
8394 		(void) rsm_unmap(seg);
8395 
8396 	if (seg->s_state == RSM_STATE_END && seg->s_ckl == NULL) {
8397 		freeflag = 1;
8398 	} else {
8399 		freeflag = 0;
8400 	}
8401 
8402 	rsmseglock_release(seg);
8403 
8404 	if (freeflag) {
8405 		/* Free the segment structure */
8406 		rsmseg_free(seg);
8407 	}
8408 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_unmap done\n"));
8409 
8410 }
8411 
8412 static struct devmap_callback_ctl rsmmap_ops = {
8413 	DEVMAP_OPS_REV,	/* devmap_ops version number	*/
8414 	rsmmap_map,	/* devmap_ops map routine */
8415 	rsmmap_access,	/* devmap_ops access routine */
8416 	rsmmap_dup,		/* devmap_ops dup routine		*/
8417 	rsmmap_unmap,	/* devmap_ops unmap routine */
8418 };
8419 
8420 static int
8421 rsm_devmap(dev_t dev, devmap_cookie_t dhc, offset_t off, size_t len,
8422     size_t *maplen, uint_t model /*ARGSUSED*/)
8423 {
8424 	struct devmap_callback_ctl *callbackops = &rsmmap_ops;
8425 	int		err;
8426 	uint_t		maxprot;
8427 	minor_t		rnum;
8428 	rsmseg_t	*seg;
8429 	off_t		dev_offset;
8430 	size_t		cur_len;
8431 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8432 
8433 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_devmap enter\n"));
8434 
8435 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8436 	    "rsm_devmap: off = %lx, len = %lx\n", off, len));
8437 	rnum = getminor(dev);
8438 	seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_NOLOCK);
8439 	ASSERT(seg != NULL);
8440 
8441 	if (seg->s_hdr.rsmrc_type == RSM_RESOURCE_BAR) {
8442 		if ((off == barrier_offset) &&
8443 		    (len == barrier_size)) {
8444 
8445 			ASSERT(bar_va != NULL && bar_cookie != NULL);
8446 
8447 			/*
8448 			 * The offset argument in devmap_umem_setup represents
8449 			 * the offset within the kernel memory defined by the
8450 			 * cookie. We use this offset as barrier_offset.
8451 			 */
8452 			err = devmap_umem_setup(dhc, rsm_dip, NULL, bar_cookie,
8453 			    barrier_offset, len, PROT_USER|PROT_READ,
8454 			    DEVMAP_DEFAULTS, 0);
8455 
8456 			if (err != 0) {
8457 				DBG_PRINTF((category, RSM_ERR,
8458 				    "rsm_devmap done: %d\n", err));
8459 				return (RSMERR_MAP_FAILED);
8460 			}
8461 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8462 			    "rsm_devmap done: %d\n", err));
8463 
8464 			*maplen = barrier_size;
8465 
8466 			return (err);
8467 		} else {
8468 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8469 			    "rsm_devmap done: %d\n", err));
8470 			return (RSMERR_MAP_FAILED);
8471 		}
8472 	}
8473 
8474 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8475 	ASSERT(seg->s_state == RSM_STATE_MAPPING);
8476 
8477 	/*
8478 	 * Make sure we still have permission for the map operation.
8479 	 */
8480 	maxprot = PROT_USER;
8481 	if (seg->s_mode & RSM_PERM_READ) {
8482 		maxprot |= PROT_READ;
8483 	}
8484 
8485 	if (seg->s_mode & RSM_PERM_WRITE) {
8486 		maxprot |= PROT_WRITE;
8487 	}
8488 
8489 	/*
8490 	 * For each devmap call, rsmmap_map is called. This maintains driver
8491 	 * private information for the mapping. Thus, if there are multiple
8492 	 * devmap calls there will be multiple rsmmap_map calls and for each
8493 	 * call, the mapping information will be stored.
8494 	 * In case of an error during the processing of the devmap call, error
8495 	 * will be returned. This error return causes the caller of rsm_devmap
8496 	 * to undo all the mappings by calling rsmmap_unmap for each one.
8497 	 * rsmmap_unmap will free up the private information for the requested
8498 	 * mapping.
8499 	 */
8500 	if (seg->s_node != my_nodeid) {
8501 		rsm_mapinfo_t *p;
8502 
8503 		p = rsm_get_mapinfo(seg, off, len, &dev_offset, &cur_len);
8504 		if (p == NULL) {
8505 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8506 			    "rsm_devmap: incorrect mapping info\n"));
8507 			return (RSMERR_MAP_FAILED);
8508 		}
8509 		err = devmap_devmem_setup(dhc, p->dip,
8510 		    callbackops, p->dev_register,
8511 		    dev_offset, cur_len, maxprot,
8512 		    DEVMAP_ALLOW_REMAP | DEVMAP_DEFAULTS, 0);
8513 
8514 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8515 		    "rsm_devmap: dip=%lx,dreg=%lu,doff=%lx,"
8516 		    "off=%lx,len=%lx\n",
8517 		    p->dip, p->dev_register, dev_offset, off, cur_len));
8518 
8519 		if (err != 0) {
8520 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8521 			    "rsm_devmap: devmap_devmem_setup failed %d\n",
8522 			    err));
8523 			return (RSMERR_MAP_FAILED);
8524 		}
8525 		/* cur_len is always an integral multiple pagesize */
8526 		ASSERT((cur_len & (PAGESIZE-1)) == 0);
8527 		*maplen = cur_len;
8528 		return (err);
8529 
8530 	} else {
8531 		err = devmap_umem_setup(dhc, rsm_dip, callbackops,
8532 		    seg->s_cookie, off, len, maxprot,
8533 		    DEVMAP_ALLOW_REMAP|DEVMAP_DEFAULTS, 0);
8534 		if (err != 0) {
8535 			DBG_PRINTF((category, RSM_DEBUG,
8536 			    "rsm_devmap: devmap_umem_setup failed %d\n",
8537 			    err));
8538 			return (RSMERR_MAP_FAILED);
8539 		}
8540 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8541 		    "rsm_devmap: loopback done\n"));
8542 
8543 		*maplen = ptob(btopr(len));
8544 
8545 		return (err);
8546 	}
8547 }
8548 
8549 /*
8550  * We can use the devmap framework for mapping device memory to user space by
8551  * specifying this routine in the rsm_cb_ops structure. The kernel mmap
8552  * processing calls this entry point and devmap_setup is called within this
8553  * function, which eventually calls rsm_devmap
8554  */
8555 static int
8556 rsm_segmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len,
8557     uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred)
8558 {
8559 	int			error = 0;
8560 	int			old_state;
8561 	minor_t			rnum;
8562 	rsmseg_t		*seg, *eseg;
8563 	adapter_t		*adapter;
8564 	rsm_import_share_t	*sharedp;
8565 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8566 
8567 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_segmap enter\n"));
8568 
8569 	/*
8570 	 * find segment
8571 	 */
8572 	rnum = getminor(dev);
8573 	seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_LOCK);
8574 
8575 	if (seg == NULL) {
8576 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8577 		    "rsm_segmap done: invalid segment\n"));
8578 		return (EINVAL);
8579 	}
8580 
8581 	/*
8582 	 * the user is trying to map a resource that has not been
8583 	 * defined yet. The library uses this to map in the
8584 	 * barrier page.
8585 	 */
8586 	if (seg->s_hdr.rsmrc_type == RSM_RESOURCE_BAR) {
8587 		rsmseglock_release(seg);
8588 
8589 		/*
8590 		 * The mapping for the barrier page is identified
8591 		 * by the special offset barrier_offset
8592 		 */
8593 
8594 		if (off == (off_t)barrier_offset ||
8595 		    len == (off_t)barrier_size) {
8596 			if (bar_cookie == NULL || bar_va == NULL) {
8597 				DBG_PRINTF((category, RSM_DEBUG,
8598 				    "rsm_segmap: bar cookie/va is NULL\n"));
8599 				return (EINVAL);
8600 			}
8601 
8602 			error = devmap_setup(dev, (offset_t)off, as, addrp,
8603 			    (size_t)len, prot, maxprot, flags,  cred);
8604 
8605 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8606 			    "rsm_segmap done: %d\n", error));
8607 			return (error);
8608 		} else {
8609 			DBG_PRINTF((category, RSM_DEBUG,
8610 			    "rsm_segmap: bad offset/length\n"));
8611 			return (EINVAL);
8612 		}
8613 	}
8614 
8615 	/* Make sure you can only map imported segments */
8616 	if (seg->s_hdr.rsmrc_type != RSM_RESOURCE_IMPORT_SEGMENT) {
8617 		rsmseglock_release(seg);
8618 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8619 		    "rsm_segmap done: not an import segment\n"));
8620 		return (EINVAL);
8621 	}
8622 	/* check means library is broken */
8623 	ASSERT(seg->s_hdr.rsmrc_num == rnum);
8624 
8625 	/* wait for the segment to become unquiesced */
8626 	while (seg->s_state == RSM_STATE_CONN_QUIESCE) {
8627 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
8628 			rsmseglock_release(seg);
8629 			DBG_PRINTF((category, RSM_DEBUG,
8630 			    "rsm_segmap done: cv_wait INTR"));
8631 			return (ENODEV);
8632 		}
8633 	}
8634 
8635 	/* wait until segment leaves the mapping state */
8636 	while (seg->s_state == RSM_STATE_MAPPING)
8637 		cv_wait(&seg->s_cv, &seg->s_lock);
8638 
8639 	/*
8640 	 * we allow multiple maps of the same segment in the KA
8641 	 * and it works because we do an rsmpi map of the whole
8642 	 * segment during the first map and all the device mapping
8643 	 * information needed in rsm_devmap is in the mapinfo list.
8644 	 */
8645 	if ((seg->s_state != RSM_STATE_CONNECT) &&
8646 	    (seg->s_state != RSM_STATE_ACTIVE)) {
8647 		rsmseglock_release(seg);
8648 		DBG_PRINTF((category, RSM_DEBUG,
8649 		    "rsm_segmap done: segment not connected\n"));
8650 		return (ENODEV);
8651 	}
8652 
8653 	/*
8654 	 * Make sure we are not mapping a larger segment than what's
8655 	 * exported
8656 	 */
8657 	if ((size_t)off + ptob(btopr(len)) > seg->s_len) {
8658 		rsmseglock_release(seg);
8659 		DBG_PRINTF((category, RSM_DEBUG,
8660 		    "rsm_segmap done: off+len>seg size\n"));
8661 		return (ENXIO);
8662 	}
8663 
8664 	/*
8665 	 * Make sure we still have permission for the map operation.
8666 	 */
8667 	maxprot = PROT_USER;
8668 	if (seg->s_mode & RSM_PERM_READ) {
8669 		maxprot |= PROT_READ;
8670 	}
8671 
8672 	if (seg->s_mode & RSM_PERM_WRITE) {
8673 		maxprot |= PROT_WRITE;
8674 	}
8675 
8676 	if ((prot & maxprot) != prot) {
8677 		/* No permission */
8678 		rsmseglock_release(seg);
8679 		DBG_PRINTF((category, RSM_DEBUG,
8680 		    "rsm_segmap done: no permission\n"));
8681 		return (EACCES);
8682 	}
8683 
8684 	old_state = seg->s_state;
8685 
8686 	ASSERT(seg->s_share != NULL);
8687 
8688 	rsmsharelock_acquire(seg);
8689 
8690 	sharedp = seg->s_share;
8691 
8692 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8693 	    "rsm_segmap:RSMSI_STATE=%d\n", sharedp->rsmsi_state));
8694 
8695 	if ((sharedp->rsmsi_state != RSMSI_STATE_CONNECTED) &&
8696 	    (sharedp->rsmsi_state != RSMSI_STATE_MAPPED)) {
8697 		rsmsharelock_release(seg);
8698 		rsmseglock_release(seg);
8699 		DBG_PRINTF((category, RSM_DEBUG,
8700 		    "rsm_segmap done:RSMSI_STATE %d invalid\n",
8701 		    sharedp->rsmsi_state));
8702 		return (ENODEV);
8703 	}
8704 
8705 	/*
8706 	 * Do the map - since we want importers to share mappings
8707 	 * we do the rsmpi map for the whole segment
8708 	 */
8709 	if (seg->s_node != my_nodeid) {
8710 		uint_t dev_register;
8711 		off_t dev_offset;
8712 		dev_info_t *dip;
8713 		size_t tmp_len;
8714 		size_t total_length_mapped = 0;
8715 		size_t length_to_map = seg->s_len;
8716 		off_t tmp_off = 0;
8717 		rsm_mapinfo_t *p;
8718 
8719 		/*
8720 		 * length_to_map = seg->s_len is always an integral
8721 		 * multiple of PAGESIZE. Length mapped in each entry in mapinfo
8722 		 * list is a multiple of PAGESIZE - RSMPI map ensures this
8723 		 */
8724 
8725 		adapter = seg->s_adapter;
8726 		ASSERT(sharedp->rsmsi_state == RSMSI_STATE_CONNECTED ||
8727 		    sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8728 
8729 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) {
8730 			error = 0;
8731 			/* map the whole segment */
8732 			while (total_length_mapped < seg->s_len) {
8733 				tmp_len = 0;
8734 
8735 				error = adapter->rsmpi_ops->rsm_map(
8736 				    seg->s_handle.in, tmp_off,
8737 				    length_to_map, &tmp_len,
8738 				    &dip, &dev_register, &dev_offset,
8739 				    NULL, NULL);
8740 
8741 				if (error != 0)
8742 					break;
8743 
8744 				/*
8745 				 * Store the mapping info obtained from rsm_map
8746 				 */
8747 				p = kmem_alloc(sizeof (*p), KM_SLEEP);
8748 				p->dev_register = dev_register;
8749 				p->dev_offset = dev_offset;
8750 				p->dip = dip;
8751 				p->individual_len = tmp_len;
8752 				p->start_offset = tmp_off;
8753 				p->next = sharedp->rsmsi_mapinfo;
8754 				sharedp->rsmsi_mapinfo = p;
8755 
8756 				total_length_mapped += tmp_len;
8757 				length_to_map -= tmp_len;
8758 				tmp_off += tmp_len;
8759 			}
8760 			seg->s_mapinfo = sharedp->rsmsi_mapinfo;
8761 
8762 			if (error != RSM_SUCCESS) {
8763 				/* Check if this is the the first rsm_map */
8764 				if (sharedp->rsmsi_mapinfo != NULL) {
8765 					/*
8766 					 * A single rsm_unmap undoes
8767 					 * multiple rsm_maps.
8768 					 */
8769 					(void) seg->s_adapter->rsmpi_ops->
8770 					    rsm_unmap(sharedp->rsmsi_handle);
8771 					rsm_free_mapinfo(sharedp->
8772 					    rsmsi_mapinfo);
8773 				}
8774 				sharedp->rsmsi_mapinfo = NULL;
8775 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8776 				rsmsharelock_release(seg);
8777 				rsmseglock_release(seg);
8778 				DBG_PRINTF((category, RSM_DEBUG,
8779 				    "rsm_segmap done: rsmpi map err %d\n",
8780 				    error));
8781 				ASSERT(error != RSMERR_BAD_LENGTH &&
8782 				    error != RSMERR_BAD_MEM_ALIGNMENT &&
8783 				    error != RSMERR_BAD_SEG_HNDL);
8784 				if (error == RSMERR_UNSUPPORTED_OPERATION)
8785 					return (ENOTSUP);
8786 				else if (error == RSMERR_INSUFFICIENT_RESOURCES)
8787 					return (EAGAIN);
8788 				else if (error == RSMERR_CONN_ABORTED)
8789 					return (ENODEV);
8790 				else
8791 					return (error);
8792 			} else {
8793 				sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
8794 			}
8795 		} else {
8796 			seg->s_mapinfo = sharedp->rsmsi_mapinfo;
8797 		}
8798 
8799 		sharedp->rsmsi_mapcnt++;
8800 
8801 		rsmsharelock_release(seg);
8802 
8803 		/* move to an intermediate mapping state */
8804 		seg->s_state = RSM_STATE_MAPPING;
8805 		rsmseglock_release(seg);
8806 
8807 		error = devmap_setup(dev, (offset_t)off, as, addrp,
8808 		    len, prot, maxprot, flags, cred);
8809 
8810 		rsmseglock_acquire(seg);
8811 		ASSERT(seg->s_state == RSM_STATE_MAPPING);
8812 
8813 		if (error == DDI_SUCCESS) {
8814 			seg->s_state = RSM_STATE_ACTIVE;
8815 		} else {
8816 			rsmsharelock_acquire(seg);
8817 
8818 			ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8819 
8820 			sharedp->rsmsi_mapcnt--;
8821 			if (sharedp->rsmsi_mapcnt == 0) {
8822 				/* unmap the shared RSMPI mapping */
8823 				ASSERT(sharedp->rsmsi_handle != NULL);
8824 				(void) adapter->rsmpi_ops->
8825 				    rsm_unmap(sharedp->rsmsi_handle);
8826 				rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
8827 				sharedp->rsmsi_mapinfo = NULL;
8828 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8829 			}
8830 
8831 			rsmsharelock_release(seg);
8832 			seg->s_state = old_state;
8833 			DBG_PRINTF((category, RSM_ERR,
8834 			    "rsm: devmap_setup failed %d\n", error));
8835 		}
8836 		cv_broadcast(&seg->s_cv);
8837 		rsmseglock_release(seg);
8838 		DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsm_segmap done: %d\n",
8839 		    error));
8840 		return (error);
8841 	} else {
8842 		/*
8843 		 * For loopback, the export segment mapping cookie (s_cookie)
8844 		 * is also used as the s_cookie value for its import segments
8845 		 * during mapping.
8846 		 * Note that reference counting for s_cookie of the export
8847 		 * segment is not required due to the following:
8848 		 * We never have a case of the export segment being destroyed,
8849 		 * leaving the import segments with a stale value for the
8850 		 * s_cookie field, since a force disconnect is done prior to a
8851 		 * destroy of an export segment. The force disconnect causes
8852 		 * the s_cookie value to be reset to NULL. Also for the
8853 		 * rsm_rebind operation, we change the s_cookie value of the
8854 		 * export segment as well as of all its local (loopback)
8855 		 * importers.
8856 		 */
8857 		DBG_ADDCATEGORY(category, RSM_LOOPBACK);
8858 
8859 		rsmsharelock_release(seg);
8860 		/*
8861 		 * In order to maintain the lock ordering between the export
8862 		 * and import segment locks, we need to acquire the export
8863 		 * segment lock first and only then acquire the import
8864 		 * segment lock.
8865 		 * The above is necessary to avoid any deadlock scenarios
8866 		 * with rsm_rebind which also acquires both the export
8867 		 * and import segment locks in the above mentioned order.
8868 		 * Based on code inspection, there seem to be no other
8869 		 * situations in which both the export and import segment
8870 		 * locks are acquired either in the same or opposite order
8871 		 * as mentioned above.
8872 		 * Thus in order to conform to the above lock order, we
8873 		 * need to change the state of the import segment to
8874 		 * RSM_STATE_MAPPING, release the lock. Once this is done we
8875 		 * can now safely acquire the export segment lock first
8876 		 * followed by the import segment lock which is as per
8877 		 * the lock order mentioned above.
8878 		 */
8879 		/* move to an intermediate mapping state */
8880 		seg->s_state = RSM_STATE_MAPPING;
8881 		rsmseglock_release(seg);
8882 
8883 		eseg = rsmexport_lookup(seg->s_key);
8884 
8885 		if (eseg == NULL) {
8886 			rsmseglock_acquire(seg);
8887 			/*
8888 			 * Revert to old_state and signal any waiters
8889 			 * The shared state is not changed
8890 			 */
8891 
8892 			seg->s_state = old_state;
8893 			cv_broadcast(&seg->s_cv);
8894 			rsmseglock_release(seg);
8895 			DBG_PRINTF((category, RSM_DEBUG,
8896 			    "rsm_segmap done: key %d not found\n", seg->s_key));
8897 			return (ENODEV);
8898 		}
8899 
8900 		rsmsharelock_acquire(seg);
8901 		ASSERT(sharedp->rsmsi_state == RSMSI_STATE_CONNECTED ||
8902 		    sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8903 
8904 		sharedp->rsmsi_mapcnt++;
8905 		sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
8906 		rsmsharelock_release(seg);
8907 
8908 		ASSERT(eseg->s_cookie != NULL);
8909 
8910 		/*
8911 		 * It is not required or necessary to acquire the import
8912 		 * segment lock here to change the value of s_cookie since
8913 		 * no one will touch the import segment as long as it is
8914 		 * in the RSM_STATE_MAPPING state.
8915 		 */
8916 		seg->s_cookie = eseg->s_cookie;
8917 
8918 		rsmseglock_release(eseg);
8919 
8920 		error = devmap_setup(dev, (offset_t)off, as, addrp, (size_t)len,
8921 		    prot, maxprot, flags, cred);
8922 
8923 		rsmseglock_acquire(seg);
8924 		ASSERT(seg->s_state == RSM_STATE_MAPPING);
8925 		if (error == 0) {
8926 			seg->s_state = RSM_STATE_ACTIVE;
8927 		} else {
8928 			rsmsharelock_acquire(seg);
8929 
8930 			ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8931 
8932 			sharedp->rsmsi_mapcnt--;
8933 			if (sharedp->rsmsi_mapcnt == 0) {
8934 				sharedp->rsmsi_mapinfo = NULL;
8935 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8936 			}
8937 			rsmsharelock_release(seg);
8938 			seg->s_state = old_state;
8939 			seg->s_cookie = NULL;
8940 		}
8941 		cv_broadcast(&seg->s_cv);
8942 		rsmseglock_release(seg);
8943 		DBG_PRINTF((category, RSM_DEBUG_LVL2,
8944 		    "rsm_segmap done: %d\n", error));
8945 		return (error);
8946 	}
8947 }
8948 
8949 int
8950 rsmka_null_seg_create(
8951     rsm_controller_handle_t argcp,
8952     rsm_memseg_export_handle_t *handle,
8953     size_t size,
8954     uint_t flags,
8955     rsm_memory_local_t *memory,
8956     rsm_resource_callback_t callback,
8957     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8958 {
8959 	return (RSM_SUCCESS);
8960 }
8961 
8962 
8963 int
8964 rsmka_null_seg_destroy(
8965     rsm_memseg_export_handle_t argmemseg	/*ARGSUSED*/)
8966 {
8967 	return (RSM_SUCCESS);
8968 }
8969 
8970 
8971 int
8972 rsmka_null_bind(
8973     rsm_memseg_export_handle_t argmemseg,
8974     off_t offset,
8975     rsm_memory_local_t *argmemory,
8976     rsm_resource_callback_t callback,
8977     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8978 {
8979 	return (RSM_SUCCESS);
8980 }
8981 
8982 
8983 int
8984 rsmka_null_unbind(
8985     rsm_memseg_export_handle_t argmemseg,
8986     off_t offset,
8987     size_t length	/*ARGSUSED*/)
8988 {
8989 	return (DDI_SUCCESS);
8990 }
8991 
8992 int
8993 rsmka_null_rebind(
8994     rsm_memseg_export_handle_t argmemseg,
8995     off_t offset,
8996     rsm_memory_local_t *memory,
8997     rsm_resource_callback_t callback,
8998     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8999 {
9000 	return (RSM_SUCCESS);
9001 }
9002 
9003 int
9004 rsmka_null_publish(
9005     rsm_memseg_export_handle_t argmemseg,
9006     rsm_access_entry_t access_list[],
9007     uint_t access_list_length,
9008     rsm_memseg_id_t segment_id,
9009     rsm_resource_callback_t callback,
9010     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
9011 {
9012 	return (RSM_SUCCESS);
9013 }
9014 
9015 
9016 int
9017 rsmka_null_republish(
9018     rsm_memseg_export_handle_t memseg,
9019     rsm_access_entry_t access_list[],
9020     uint_t access_list_length,
9021     rsm_resource_callback_t callback,
9022     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
9023 {
9024 	return (RSM_SUCCESS);
9025 }
9026 
9027 int
9028 rsmka_null_unpublish(
9029     rsm_memseg_export_handle_t argmemseg	/*ARGSUSED*/)
9030 {
9031 	return (RSM_SUCCESS);
9032 }
9033 
9034 
9035 void
9036 rsmka_init_loopback()
9037 {
9038 	rsm_ops_t	*ops = &null_rsmpi_ops;
9039 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_LOOPBACK);
9040 
9041 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9042 	    "rsmka_init_loopback enter\n"));
9043 
9044 	/* initialize null ops vector */
9045 	ops->rsm_seg_create = rsmka_null_seg_create;
9046 	ops->rsm_seg_destroy = rsmka_null_seg_destroy;
9047 	ops->rsm_bind = rsmka_null_bind;
9048 	ops->rsm_unbind = rsmka_null_unbind;
9049 	ops->rsm_rebind = rsmka_null_rebind;
9050 	ops->rsm_publish = rsmka_null_publish;
9051 	ops->rsm_unpublish = rsmka_null_unpublish;
9052 	ops->rsm_republish = rsmka_null_republish;
9053 
9054 	/* initialize attributes for loopback adapter */
9055 	loopback_attr.attr_name = loopback_str;
9056 	loopback_attr.attr_page_size = 0x8; /* 8K */
9057 
9058 	/* initialize loopback adapter */
9059 	loopback_adapter.rsm_attr = loopback_attr;
9060 	loopback_adapter.rsmpi_ops = &null_rsmpi_ops;
9061 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9062 	    "rsmka_init_loopback done\n"));
9063 }
9064 
9065 /* ************** DR functions ********************************** */
9066 static void
9067 rsm_quiesce_exp_seg(rsmresource_t *resp)
9068 {
9069 	int		recheck_state;
9070 	rsmseg_t	*segp = (rsmseg_t *)resp;
9071 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9072 	DBG_DEFINE_STR(function, "rsm_unquiesce_exp_seg");
9073 
9074 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9075 	    "%s enter: key=%u\n", function, segp->s_key));
9076 
9077 	rsmseglock_acquire(segp);
9078 	do {
9079 		recheck_state = 0;
9080 		if ((segp->s_state == RSM_STATE_NEW_QUIESCED) ||
9081 		    (segp->s_state == RSM_STATE_BIND_QUIESCED) ||
9082 		    (segp->s_state == RSM_STATE_EXPORT_QUIESCING) ||
9083 		    (segp->s_state == RSM_STATE_EXPORT_QUIESCED)) {
9084 			rsmseglock_release(segp);
9085 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9086 			    "%s done:state =%d\n", function,
9087 			    segp->s_state));
9088 			return;
9089 		}
9090 
9091 		if (segp->s_state == RSM_STATE_NEW) {
9092 			segp->s_state = RSM_STATE_NEW_QUIESCED;
9093 			rsmseglock_release(segp);
9094 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9095 			    "%s done:state =%d\n", function,
9096 			    segp->s_state));
9097 			return;
9098 		}
9099 
9100 		if (segp->s_state == RSM_STATE_BIND) {
9101 			/* unbind */
9102 			(void) rsm_unbind_pages(segp);
9103 			segp->s_state = RSM_STATE_BIND_QUIESCED;
9104 			rsmseglock_release(segp);
9105 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9106 			    "%s done:state =%d\n", function,
9107 			    segp->s_state));
9108 			return;
9109 		}
9110 
9111 		if (segp->s_state == RSM_STATE_EXPORT) {
9112 			/*
9113 			 * wait for putv/getv to complete if the segp is
9114 			 * a local memory handle
9115 			 */
9116 			while ((segp->s_state == RSM_STATE_EXPORT) &&
9117 			    (segp->s_rdmacnt != 0)) {
9118 				cv_wait(&segp->s_cv, &segp->s_lock);
9119 			}
9120 
9121 			if (segp->s_state != RSM_STATE_EXPORT) {
9122 				/*
9123 				 * state changed need to see what it
9124 				 * should be changed to.
9125 				 */
9126 				recheck_state = 1;
9127 				continue;
9128 			}
9129 
9130 			segp->s_state = RSM_STATE_EXPORT_QUIESCING;
9131 			rsmseglock_release(segp);
9132 			/*
9133 			 * send SUSPEND messages - currently it will be
9134 			 * done at the end
9135 			 */
9136 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9137 			    "%s done:state =%d\n", function,
9138 			    segp->s_state));
9139 			return;
9140 		}
9141 	} while (recheck_state);
9142 
9143 	rsmseglock_release(segp);
9144 }
9145 
9146 static void
9147 rsm_unquiesce_exp_seg(rsmresource_t *resp)
9148 {
9149 	int			ret;
9150 	rsmseg_t		*segp = (rsmseg_t *)resp;
9151 	rsmapi_access_entry_t	*acl;
9152 	rsm_access_entry_t	*rsmpi_acl;
9153 	int			acl_len;
9154 	int			create_flags = 0;
9155 	struct buf		*xbuf;
9156 	rsm_memory_local_t	mem;
9157 	adapter_t		*adapter;
9158 	dev_t			sdev = 0;
9159 	rsm_resource_callback_t callback_flag;
9160 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9161 	DBG_DEFINE_STR(function, "rsm_unquiesce_exp_seg");
9162 
9163 	rsmseglock_acquire(segp);
9164 
9165 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9166 	    "%s enter: key=%u, state=%d\n", function, segp->s_key,
9167 	    segp->s_state));
9168 
9169 	if ((segp->s_state == RSM_STATE_NEW) ||
9170 	    (segp->s_state == RSM_STATE_BIND) ||
9171 	    (segp->s_state == RSM_STATE_EXPORT)) {
9172 		rsmseglock_release(segp);
9173 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done:state=%d\n",
9174 		    function, segp->s_state));
9175 		return;
9176 	}
9177 
9178 	if (segp->s_state == RSM_STATE_NEW_QUIESCED) {
9179 		segp->s_state = RSM_STATE_NEW;
9180 		cv_broadcast(&segp->s_cv);
9181 		rsmseglock_release(segp);
9182 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done:state=%d\n",
9183 		    function, segp->s_state));
9184 		return;
9185 	}
9186 
9187 	if (segp->s_state == RSM_STATE_BIND_QUIESCED) {
9188 		/* bind the segment */
9189 		ret = rsm_bind_pages(&segp->s_cookie, segp->s_region.r_vaddr,
9190 		    segp->s_len, segp->s_proc);
9191 		if (ret == RSM_SUCCESS) { /* bind successful */
9192 			segp->s_state = RSM_STATE_BIND;
9193 		} else { /* bind failed - resource unavailable */
9194 			segp->s_state = RSM_STATE_NEW;
9195 		}
9196 		cv_broadcast(&segp->s_cv);
9197 		rsmseglock_release(segp);
9198 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9199 		    "%s done: bind_qscd bind = %d\n", function, ret));
9200 		return;
9201 	}
9202 
9203 	while (segp->s_state == RSM_STATE_EXPORT_QUIESCING) {
9204 		/* wait for the segment to move to EXPORT_QUIESCED state */
9205 		cv_wait(&segp->s_cv, &segp->s_lock);
9206 	}
9207 
9208 	if (segp->s_state == RSM_STATE_EXPORT_QUIESCED) {
9209 		/* bind the segment */
9210 		ret = rsm_bind_pages(&segp->s_cookie, segp->s_region.r_vaddr,
9211 		    segp->s_len, segp->s_proc);
9212 
9213 		if (ret != RSM_SUCCESS) {
9214 			/* bind failed - resource unavailable */
9215 			acl_len = segp->s_acl_len;
9216 			acl = segp->s_acl;
9217 			rsmpi_acl = segp->s_acl_in;
9218 			segp->s_acl_len = 0;
9219 			segp->s_acl = NULL;
9220 			segp->s_acl_in = NULL;
9221 			rsmseglock_release(segp);
9222 
9223 			rsmexport_rm(segp);
9224 			rsmacl_free(acl, acl_len);
9225 			rsmpiacl_free(rsmpi_acl, acl_len);
9226 
9227 			rsmseglock_acquire(segp);
9228 			segp->s_state = RSM_STATE_NEW;
9229 			cv_broadcast(&segp->s_cv);
9230 			rsmseglock_release(segp);
9231 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9232 			    "%s done: exp_qscd bind failed = %d\n",
9233 			    function, ret));
9234 			return;
9235 		}
9236 		/*
9237 		 * publish the segment
9238 		 * if  successful
9239 		 *   segp->s_state = RSM_STATE_EXPORT;
9240 		 * else failed
9241 		 *   segp->s_state = RSM_STATE_BIND;
9242 		 */
9243 
9244 		/* check whether it is a local_memory_handle */
9245 		if (segp->s_acl != (rsmapi_access_entry_t *)NULL) {
9246 			if ((segp->s_acl[0].ae_node == my_nodeid) &&
9247 			    (segp->s_acl[0].ae_permission == 0)) {
9248 				segp->s_state = RSM_STATE_EXPORT;
9249 				cv_broadcast(&segp->s_cv);
9250 				rsmseglock_release(segp);
9251 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9252 				    "%s done:exp_qscd\n", function));
9253 				return;
9254 			}
9255 		}
9256 		xbuf = ddi_umem_iosetup(segp->s_cookie, 0, segp->s_len, B_WRITE,
9257 		    sdev, 0, NULL, DDI_UMEM_SLEEP);
9258 		ASSERT(xbuf != NULL);
9259 
9260 		mem.ms_type = RSM_MEM_BUF;
9261 		mem.ms_bp = xbuf;
9262 
9263 		adapter = segp->s_adapter;
9264 
9265 		if (segp->s_flags & RSMKA_ALLOW_UNBIND_REBIND) {
9266 			create_flags = RSM_ALLOW_UNBIND_REBIND;
9267 		}
9268 
9269 		if (segp->s_flags & RSMKA_SET_RESOURCE_DONTWAIT) {
9270 			callback_flag  = RSM_RESOURCE_DONTWAIT;
9271 		} else {
9272 			callback_flag  = RSM_RESOURCE_SLEEP;
9273 		}
9274 
9275 		ret = adapter->rsmpi_ops->rsm_seg_create(
9276 		    adapter->rsmpi_handle, &segp->s_handle.out,
9277 		    segp->s_len, create_flags, &mem,
9278 		    callback_flag, NULL);
9279 
9280 		if (ret != RSM_SUCCESS) {
9281 			acl_len = segp->s_acl_len;
9282 			acl = segp->s_acl;
9283 			rsmpi_acl = segp->s_acl_in;
9284 			segp->s_acl_len = 0;
9285 			segp->s_acl = NULL;
9286 			segp->s_acl_in = NULL;
9287 			rsmseglock_release(segp);
9288 
9289 			rsmexport_rm(segp);
9290 			rsmacl_free(acl, acl_len);
9291 			rsmpiacl_free(rsmpi_acl, acl_len);
9292 
9293 			rsmseglock_acquire(segp);
9294 			segp->s_state = RSM_STATE_BIND;
9295 			cv_broadcast(&segp->s_cv);
9296 			rsmseglock_release(segp);
9297 			DBG_PRINTF((category, RSM_ERR,
9298 			    "%s done: exp_qscd create failed = %d\n",
9299 			    function, ret));
9300 			return;
9301 		}
9302 
9303 		ret = adapter->rsmpi_ops->rsm_publish(
9304 		    segp->s_handle.out, segp->s_acl_in, segp->s_acl_len,
9305 		    segp->s_segid, RSM_RESOURCE_DONTWAIT, NULL);
9306 
9307 		if (ret != RSM_SUCCESS) {
9308 			acl_len = segp->s_acl_len;
9309 			acl = segp->s_acl;
9310 			rsmpi_acl = segp->s_acl_in;
9311 			segp->s_acl_len = 0;
9312 			segp->s_acl = NULL;
9313 			segp->s_acl_in = NULL;
9314 			adapter->rsmpi_ops->rsm_seg_destroy(segp->s_handle.out);
9315 			rsmseglock_release(segp);
9316 
9317 			rsmexport_rm(segp);
9318 			rsmacl_free(acl, acl_len);
9319 			rsmpiacl_free(rsmpi_acl, acl_len);
9320 
9321 			rsmseglock_acquire(segp);
9322 			segp->s_state = RSM_STATE_BIND;
9323 			cv_broadcast(&segp->s_cv);
9324 			rsmseglock_release(segp);
9325 			DBG_PRINTF((category, RSM_ERR,
9326 			    "%s done: exp_qscd publish failed = %d\n",
9327 			    function, ret));
9328 			return;
9329 		}
9330 
9331 		segp->s_state = RSM_STATE_EXPORT;
9332 		cv_broadcast(&segp->s_cv);
9333 		rsmseglock_release(segp);
9334 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done: exp_qscd\n",
9335 		    function));
9336 		return;
9337 	}
9338 
9339 	rsmseglock_release(segp);
9340 
9341 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9342 }
9343 
9344 static void
9345 rsm_quiesce_imp_seg(rsmresource_t *resp)
9346 {
9347 	rsmseg_t	*segp = (rsmseg_t *)resp;
9348 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9349 	DBG_DEFINE_STR(function, "rsm_quiesce_imp_seg");
9350 
9351 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9352 	    "%s enter: key=%u\n", function, segp->s_key));
9353 
9354 	rsmseglock_acquire(segp);
9355 	segp->s_flags |= RSM_DR_INPROGRESS;
9356 
9357 	while (segp->s_rdmacnt != 0) {
9358 		/* wait for the RDMA to complete */
9359 		cv_wait(&segp->s_cv, &segp->s_lock);
9360 	}
9361 
9362 	rsmseglock_release(segp);
9363 
9364 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9365 
9366 }
9367 
9368 static void
9369 rsm_unquiesce_imp_seg(rsmresource_t *resp)
9370 {
9371 	rsmseg_t	*segp = (rsmseg_t *)resp;
9372 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9373 	DBG_DEFINE_STR(function, "rsm_unquiesce_imp_seg");
9374 
9375 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9376 	    "%s enter: key=%u\n", function, segp->s_key));
9377 
9378 	rsmseglock_acquire(segp);
9379 
9380 	segp->s_flags &= ~RSM_DR_INPROGRESS;
9381 	/* wake up any waiting putv/getv ops */
9382 	cv_broadcast(&segp->s_cv);
9383 
9384 	rsmseglock_release(segp);
9385 
9386 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9387 
9388 
9389 }
9390 
9391 static void
9392 rsm_process_exp_seg(rsmresource_t *resp, int event)
9393 {
9394 	if (event == RSM_DR_QUIESCE)
9395 		rsm_quiesce_exp_seg(resp);
9396 	else /* UNQUIESCE */
9397 		rsm_unquiesce_exp_seg(resp);
9398 }
9399 
9400 static void
9401 rsm_process_imp_seg(rsmresource_t *resp, int event)
9402 {
9403 	if (event == RSM_DR_QUIESCE)
9404 		rsm_quiesce_imp_seg(resp);
9405 	else /* UNQUIESCE */
9406 		rsm_unquiesce_imp_seg(resp);
9407 }
9408 
9409 static void
9410 rsm_dr_process_local_segments(int event)
9411 {
9412 
9413 	int i, j;
9414 	rsmresource_blk_t	*blk;
9415 	rsmresource_t		*p;
9416 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9417 
9418 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9419 	    "rsm_dr_process_local_segments enter\n"));
9420 
9421 	/* iterate through the resource structure */
9422 
9423 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
9424 
9425 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
9426 		blk = rsm_resource.rsmrc_root[i];
9427 		if (blk != NULL) {
9428 			for (j = 0; j < RSMRC_BLKSZ; j++) {
9429 				p = blk->rsmrcblk_blks[j];
9430 				if ((p != NULL) && (p != RSMRC_RESERVED)) {
9431 					/* valid resource */
9432 					if (p->rsmrc_type ==
9433 					    RSM_RESOURCE_EXPORT_SEGMENT)
9434 						rsm_process_exp_seg(p, event);
9435 					else if (p->rsmrc_type ==
9436 					    RSM_RESOURCE_IMPORT_SEGMENT)
9437 						rsm_process_imp_seg(p, event);
9438 				}
9439 			}
9440 		}
9441 	}
9442 
9443 	rw_exit(&rsm_resource.rsmrc_lock);
9444 
9445 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9446 	    "rsm_dr_process_local_segments done\n"));
9447 }
9448 
9449 /* *************** DR callback functions ************ */
9450 static void
9451 rsm_dr_callback_post_add(void *arg, pgcnt_t delta /* ARGSUSED */)
9452 {
9453 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9454 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9455 	    "rsm_dr_callback_post_add is a no-op\n"));
9456 	/* Noop */
9457 }
9458 
9459 static int
9460 rsm_dr_callback_pre_del(void *arg, pgcnt_t delta /* ARGSUSED */)
9461 {
9462 	int	recheck_state = 0;
9463 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9464 
9465 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9466 	    "rsm_dr_callback_pre_del enter\n"));
9467 
9468 	mutex_enter(&rsm_drv_data.drv_lock);
9469 
9470 	do {
9471 		recheck_state = 0;
9472 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9473 		    "rsm_dr_callback_pre_del:state=%d\n",
9474 		    rsm_drv_data.drv_state));
9475 
9476 		switch (rsm_drv_data.drv_state) {
9477 		case RSM_DRV_NEW:
9478 			/*
9479 			 * The state should usually never be RSM_DRV_NEW
9480 			 * since in this state the callbacks have not yet
9481 			 * been registered. So, ASSERT.
9482 			 */
9483 			ASSERT(0);
9484 			return (0);
9485 		case RSM_DRV_REG_PROCESSING:
9486 			/*
9487 			 * The driver is in the process of registering
9488 			 * with the DR framework. So, wait till the
9489 			 * registration process is complete.
9490 			 */
9491 			recheck_state = 1;
9492 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9493 			break;
9494 		case RSM_DRV_UNREG_PROCESSING:
9495 			/*
9496 			 * If the state is RSM_DRV_UNREG_PROCESSING, the
9497 			 * module is in the process of detaching and
9498 			 * unregistering the callbacks from the DR
9499 			 * framework. So, simply return.
9500 			 */
9501 			mutex_exit(&rsm_drv_data.drv_lock);
9502 			DBG_PRINTF((category, RSM_DEBUG,
9503 			    "rsm_dr_callback_pre_del:"
9504 			    "pre-del on NEW/UNREG\n"));
9505 			return (0);
9506 		case RSM_DRV_OK:
9507 			rsm_drv_data.drv_state = RSM_DRV_PREDEL_STARTED;
9508 			break;
9509 		case RSM_DRV_PREDEL_STARTED:
9510 			/* FALLTHRU */
9511 		case RSM_DRV_PREDEL_COMPLETED:
9512 			/* FALLTHRU */
9513 		case RSM_DRV_POSTDEL_IN_PROGRESS:
9514 			recheck_state = 1;
9515 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9516 			break;
9517 		case RSM_DRV_DR_IN_PROGRESS:
9518 			rsm_drv_data.drv_memdel_cnt++;
9519 			mutex_exit(&rsm_drv_data.drv_lock);
9520 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9521 			    "rsm_dr_callback_pre_del done\n"));
9522 			return (0);
9523 			/* break; */
9524 		default:
9525 			ASSERT(0);
9526 			break;
9527 		}
9528 
9529 	} while (recheck_state);
9530 
9531 	rsm_drv_data.drv_memdel_cnt++;
9532 
9533 	mutex_exit(&rsm_drv_data.drv_lock);
9534 
9535 	/* Do all the quiescing stuff here */
9536 	DBG_PRINTF((category, RSM_DEBUG,
9537 	    "rsm_dr_callback_pre_del: quiesce things now\n"));
9538 
9539 	rsm_dr_process_local_segments(RSM_DR_QUIESCE);
9540 
9541 	/*
9542 	 * now that all local segments have been quiesced lets inform
9543 	 * the importers
9544 	 */
9545 	rsm_send_suspend();
9546 
9547 	/*
9548 	 * In response to the suspend message the remote node(s) will process
9549 	 * the segments and send a suspend_complete message. Till all
9550 	 * the nodes send the suspend_complete message we wait in the
9551 	 * RSM_DRV_PREDEL_STARTED state. In the exporter_quiesce
9552 	 * function we transition to the RSM_DRV_PREDEL_COMPLETED state.
9553 	 */
9554 	mutex_enter(&rsm_drv_data.drv_lock);
9555 
9556 	while (rsm_drv_data.drv_state == RSM_DRV_PREDEL_STARTED) {
9557 		cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9558 	}
9559 
9560 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_PREDEL_COMPLETED);
9561 
9562 	rsm_drv_data.drv_state = RSM_DRV_DR_IN_PROGRESS;
9563 	cv_broadcast(&rsm_drv_data.drv_cv);
9564 
9565 	mutex_exit(&rsm_drv_data.drv_lock);
9566 
9567 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9568 	    "rsm_dr_callback_pre_del done\n"));
9569 
9570 	return (0);
9571 }
9572 
9573 static void
9574 rsm_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled /* ARGSUSED */)
9575 {
9576 	int	recheck_state = 0;
9577 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9578 
9579 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9580 	    "rsm_dr_callback_post_del enter\n"));
9581 
9582 	mutex_enter(&rsm_drv_data.drv_lock);
9583 
9584 	do {
9585 		recheck_state = 0;
9586 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9587 		    "rsm_dr_callback_post_del:state=%d\n",
9588 		    rsm_drv_data.drv_state));
9589 
9590 		switch (rsm_drv_data.drv_state) {
9591 		case RSM_DRV_NEW:
9592 			/*
9593 			 * The driver state cannot not be RSM_DRV_NEW
9594 			 * since in this state the callbacks have not
9595 			 * yet been registered.
9596 			 */
9597 			ASSERT(0);
9598 			return;
9599 		case RSM_DRV_REG_PROCESSING:
9600 			/*
9601 			 * The driver is in the process of registering with
9602 			 * the DR framework. Wait till the registration is
9603 			 * complete.
9604 			 */
9605 			recheck_state = 1;
9606 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9607 			break;
9608 		case RSM_DRV_UNREG_PROCESSING:
9609 			/*
9610 			 * RSM_DRV_UNREG_PROCESSING state means the module
9611 			 * is detaching and unregistering the callbacks
9612 			 * from the DR framework. So simply return.
9613 			 */
9614 			/* FALLTHRU */
9615 		case RSM_DRV_OK:
9616 			/*
9617 			 * RSM_DRV_OK means we missed the pre-del
9618 			 * corresponding to this post-del coz we had not
9619 			 * registered yet, so simply return.
9620 			 */
9621 			mutex_exit(&rsm_drv_data.drv_lock);
9622 			DBG_PRINTF((category, RSM_DEBUG,
9623 			    "rsm_dr_callback_post_del:"
9624 			    "post-del on OK/UNREG\n"));
9625 			return;
9626 			/* break; */
9627 		case RSM_DRV_PREDEL_STARTED:
9628 			/* FALLTHRU */
9629 		case RSM_DRV_PREDEL_COMPLETED:
9630 			/* FALLTHRU */
9631 		case RSM_DRV_POSTDEL_IN_PROGRESS:
9632 			recheck_state = 1;
9633 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9634 			break;
9635 		case RSM_DRV_DR_IN_PROGRESS:
9636 			rsm_drv_data.drv_memdel_cnt--;
9637 			if (rsm_drv_data.drv_memdel_cnt > 0) {
9638 				mutex_exit(&rsm_drv_data.drv_lock);
9639 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9640 				    "rsm_dr_callback_post_del done:\n"));
9641 				return;
9642 			}
9643 			rsm_drv_data.drv_state = RSM_DRV_POSTDEL_IN_PROGRESS;
9644 			break;
9645 		default:
9646 			ASSERT(0);
9647 			return;
9648 			/* break; */
9649 		}
9650 	} while (recheck_state);
9651 
9652 	mutex_exit(&rsm_drv_data.drv_lock);
9653 
9654 	/* Do all the unquiescing stuff here */
9655 	DBG_PRINTF((category, RSM_DEBUG,
9656 	    "rsm_dr_callback_post_del: unquiesce things now\n"));
9657 
9658 	rsm_dr_process_local_segments(RSM_DR_UNQUIESCE);
9659 
9660 	/*
9661 	 * now that all local segments have been unquiesced lets inform
9662 	 * the importers
9663 	 */
9664 	rsm_send_resume();
9665 
9666 	mutex_enter(&rsm_drv_data.drv_lock);
9667 
9668 	rsm_drv_data.drv_state = RSM_DRV_OK;
9669 
9670 	cv_broadcast(&rsm_drv_data.drv_cv);
9671 
9672 	mutex_exit(&rsm_drv_data.drv_lock);
9673 
9674 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9675 	    "rsm_dr_callback_post_del done\n"));
9676 
9677 	return;
9678 
9679 }
9680