xref: /illumos-gate/usr/src/uts/common/io/rsm/rsm.c (revision 985cc36c07a787e0cb720fcf2fab565aa2a77590)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2012 Milan Jurik. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  */
27 
28 
29 /*
30  * Overview of the RSM Kernel Agent:
31  * ---------------------------------
32  *
33  * rsm.c constitutes the implementation of the RSM kernel agent. The RSM
34  * kernel agent is a pseudo device driver which makes use of the RSMPI
35  * interface on behalf of the RSMAPI user library.
36  *
37  * The kernel agent functionality can be categorized into the following
38  * components:
39  * 1. Driver Infrastructure
40  * 2. Export/Import Segment Management
41  * 3. Internal resource allocation/deallocation
42  *
43  * The driver infrastructure includes the basic module loading entry points
44  * like _init, _info, _fini to load, unload and report information about
45  * the driver module. The driver infrastructure also includes the
46  * autoconfiguration entry points namely, attach, detach and getinfo for
47  * the device autoconfiguration.
48  *
49  * The kernel agent is a pseudo character device driver and exports
50  * a cb_ops structure which defines the driver entry points for character
51  * device access. This includes the open and close entry points. The
52  * other entry points provided include ioctl, devmap and segmap and chpoll.
53  * read and write entry points are not used since the device is memory
54  * mapped. Also ddi_prop_op is used for the prop_op entry point.
55  *
56  * The ioctl entry point supports a number of commands, which are used by
57  * the RSMAPI library in order to export and import segments. These
58  * commands include commands for binding and rebinding the physical pages
59  * allocated to the virtual address range, publishing the export segment,
60  * unpublishing and republishing an export segment, creating an
61  * import segment and a virtual connection from this import segment to
62  * an export segment, performing scatter-gather data transfer, barrier
63  * operations.
64  *
65  *
66  * Export and Import segments:
67  * ---------------------------
68  *
69  * In order to create an RSM export segment a process allocates a range in its
70  * virtual address space for the segment using standard Solaris interfaces.
71  * The process then calls RSMAPI, which in turn makes an ioctl call to the
72  * RSM kernel agent for an allocation of physical memory pages and for
73  * creation of the export segment by binding these pages to the virtual
74  * address range. These pages are locked in memory so that remote accesses
75  * are always applied to the correct page. Then the RSM segment is published,
76  * again via RSMAPI making an ioctl to the RSM kernel agent, and a segment id
77  * is assigned to it.
78  *
79  * In order to import a published RSM segment, RSMAPI creates an import
80  * segment and forms a virtual connection across the interconnect to the
81  * export segment, via an ioctl into the kernel agent with the connect
82  * command. The import segment setup is completed by mapping the
83  * local device memory into the importers virtual address space. The
84  * mapping of the import segment is handled by the segmap/devmap
85  * infrastructure described as follows.
86  *
87  * Segmap and Devmap interfaces:
88  *
89  * The RSM kernel agent allows device memory to be directly accessed by user
90  * threads via memory mapping. In order to do so, the RSM kernel agent
91  * supports the devmap and segmap entry points.
92  *
93  * The segmap entry point(rsm_segmap) is responsible for setting up a memory
94  * mapping as requested by mmap. The devmap entry point(rsm_devmap) is
95  * responsible for exporting the device memory to the user applications.
96  * rsm_segmap calls RSMPI rsm_map to allocate device memory. Then the
97  * control is transfered to the devmap_setup call which calls rsm_devmap.
98  *
99  * rsm_devmap validates the user mapping to the device or kernel memory
100  * and passes the information to the system for setting up the mapping. The
101  * actual setting up of the mapping is done by devmap_devmem_setup(for
102  * device memory) or devmap_umem_setup(for kernel memory). Callbacks are
103  * registered for device context management via the devmap_devmem_setup
104  * or devmap_umem_setup calls. The callbacks are rsmmap_map, rsmmap_unmap,
105  * rsmmap_access, rsmmap_dup. The callbacks are called when a new mapping
106  * is created, a mapping is freed, a mapping is accessed or an existing
107  * mapping is duplicated respectively. These callbacks allow the RSM kernel
108  * agent to maintain state information associated with the mappings.
109  * The state information is mainly in the form of a cookie list for the import
110  * segment for which mapping has been done.
111  *
112  * Forced disconnect of import segments:
113  *
114  * When an exported segment is unpublished, the exporter sends a forced
115  * disconnect message to all its importers. The importer segments are
116  * unloaded and disconnected. This involves unloading the original
117  * mappings and remapping to a preallocated kernel trash page. This is
118  * done by devmap_umem_remap. The trash/dummy page is a kernel page,
119  * preallocated by the kernel agent during attach using ddi_umem_alloc with
120  * the DDI_UMEM_TRASH flag set. This avoids a core dump in the application
121  * due to unloading of the original mappings.
122  *
123  * Additionally every segment has a mapping generation number associated
124  * with it. This is an entry in the barrier generation page, created
125  * during attach time. This mapping generation number for the import
126  * segments is incremented on a force disconnect to notify the application
127  * of the force disconnect. On this notification, the application needs
128  * to reconnect the segment to establish a new legitimate mapping.
129  *
130  *
131  * Locks used in the kernel agent:
132  * -------------------------------
133  *
134  * The kernel agent uses a variety of mutexes and condition variables for
135  * mutual exclusion of the shared data structures and for synchronization
136  * between the various threads. Some of the locks are described as follows.
137  *
138  * Each resource structure, which represents either an export/import segment
139  * has a lock associated with it. The lock is the resource mutex, rsmrc_lock.
140  * This is used directly by RSMRC_LOCK and RSMRC_UNLOCK macros and in the
141  * rsmseglock_acquire and rsmseglock_release macros. An additional
142  * lock called the rsmsi_lock is used for the shared import data structure
143  * that is relevant for resources representing import segments. There is
144  * also a condition variable associated with the resource called s_cv. This
145  * is used to wait for events like the segment state change etc.
146  *
147  * The resource structures are allocated from a pool of resource structures,
148  * called rsm_resource. This pool is protected via a reader-writer lock,
149  * called rsmrc_lock.
150  *
151  * There are two separate hash tables, one for the export segments and
152  * one for the import segments. The export segments are inserted into the
153  * export segment hash table only after they have been published and the
154  * import segments are inserted in the import segments list only after they
155  * have successfully connected to an exported segment. These tables are
156  * protected via reader-writer locks.
157  *
158  * Debug Support in the kernel agent:
159  * ----------------------------------
160  *
161  * Debugging support in the kernel agent is provided by the following
162  * macros.
163  *
164  * DBG_PRINTF((category, level, message)) is a macro which logs a debug
165  * message to the kernel agents debug buffer, rsmka_dbg. This debug buffer
166  * can be viewed in kmdb as *rsmka_dbg/s. The message is logged based
167  * on the definition of the category and level. All messages that belong to
168  * the specified category(rsmdbg_category) and are of an equal or greater
169  * severity than the specified level(rsmdbg_level) are logged. The message
170  * is a string which uses the same formatting rules as the strings used in
171  * printf.
172  *
173  * The category defines which component of the kernel agent has logged this
174  * message. There are a number of categories that have been defined such as
175  * RSM_KERNEL_AGENT, RSM_OPS, RSM_IMPORT, RSM_EXPORT etc. A macro,
176  * DBG_ADDCATEGORY is used to add in another category to the currently
177  * specified category value so that the component using this new category
178  * can also effectively log debug messages. Thus, the category of a specific
179  * message is some combination of the available categories and we can define
180  * sub-categories if we want a finer level of granularity.
181  *
182  * The level defines the severity of the message. Different level values are
183  * defined, with RSM_ERR being the most severe and RSM_DEBUG_VERBOSE being
184  * the least severe(debug level is 0).
185  *
186  * DBG_DEFINE and DBG_DEFINE_STR are macros provided to declare a debug
187  * variable or a string respectively.
188  *
189  *
190  * NOTES:
191  *
192  * Special Fork and Exec Handling:
193  * -------------------------------
194  *
195  * The backing physical pages of an exported segment are always locked down.
196  * Thus, there are two cases in which a process having exported segments
197  * will cause a cpu to hang: (1) the process invokes exec; (2) a process
198  * forks and invokes exit before the duped file descriptors for the export
199  * segments are closed in the child process. The hang is caused because the
200  * address space release algorithm in Solaris VM subsystem is based on a
201  * non-blocking loop which does not terminate while segments are locked
202  * down. In addition to this, Solaris VM subsystem lacks a callback
203  * mechanism to the rsm kernel agent to allow unlocking these export
204  * segment pages.
205  *
206  * In order to circumvent this problem, the kernel agent does the following.
207  * The Solaris VM subsystem keeps memory segments in increasing order of
208  * virtual addressses. Thus a special page(special_exit_offset) is allocated
209  * by the kernel agent and is mmapped into the heap area of the process address
210  * space(the mmap is done by the RSMAPI library). During the mmap processing
211  * of this special page by the devmap infrastructure, a callback(the same
212  * devmap context management callbacks discussed above) is registered for an
213  * unmap.
214  *
215  * As discussed above, this page is processed by the Solaris address space
216  * release code before any of the exported segments pages(which are allocated
217  * from high memory). It is during this processing that the unmap callback gets
218  * called and this callback is responsible for force destroying the exported
219  * segments and thus eliminating the problem of locked pages.
220  *
221  * Flow-control:
222  * ------------
223  *
224  * A credit based flow control algorithm is used for messages whose
225  * processing cannot be done in the interrupt context because it might
226  * involve invoking rsmpi calls, or might take a long time to complete
227  * or might need to allocate resources. The algorithm operates on a per
228  * path basis. To send a message the pathend needs to have a credit and
229  * it consumes one for every message that is flow controlled. On the
230  * receiving pathend the message is put on a msgbuf_queue and a task is
231  * dispatched on the worker thread - recv_taskq where it is processed.
232  * After processing the message, the receiving pathend dequeues the message,
233  * and if it has processed > RSMIPC_LOTSFREE_MSGBUFS messages sends
234  * credits to the sender pathend.
235  *
236  * RSM_DRTEST:
237  * -----------
238  *
239  * This is used to enable the DR testing using a test driver on test
240  * platforms which do not supported DR.
241  *
242  */
243 
244 #include <sys/types.h>
245 #include <sys/param.h>
246 #include <sys/user.h>
247 #include <sys/buf.h>
248 #include <sys/systm.h>
249 #include <sys/cred.h>
250 #include <sys/vm.h>
251 #include <sys/uio.h>
252 #include <vm/seg.h>
253 #include <vm/page.h>
254 #include <sys/stat.h>
255 
256 #include <sys/time.h>
257 #include <sys/errno.h>
258 
259 #include <sys/file.h>
260 #include <sys/uio.h>
261 #include <sys/proc.h>
262 #include <sys/mman.h>
263 #include <sys/open.h>
264 #include <sys/atomic.h>
265 #include <sys/mem_config.h>
266 
267 
268 #include <sys/ddi.h>
269 #include <sys/devops.h>
270 #include <sys/ddidevmap.h>
271 #include <sys/sunddi.h>
272 #include <sys/esunddi.h>
273 #include <sys/ddi_impldefs.h>
274 
275 #include <sys/kmem.h>
276 #include <sys/conf.h>
277 #include <sys/devops.h>
278 #include <sys/ddi_impldefs.h>
279 
280 #include <sys/modctl.h>
281 
282 #include <sys/policy.h>
283 #include <sys/types.h>
284 #include <sys/conf.h>
285 #include <sys/param.h>
286 
287 #include <sys/taskq.h>
288 
289 #include <sys/rsm/rsm_common.h>
290 #include <sys/rsm/rsmapi_common.h>
291 #include <sys/rsm/rsm.h>
292 #include <rsm_in.h>
293 #include <sys/rsm/rsmka_path_int.h>
294 #include <sys/rsm/rsmpi.h>
295 
296 #include <sys/modctl.h>
297 #include <sys/debug.h>
298 
299 #include <sys/tuneable.h>
300 
301 #ifdef	RSM_DRTEST
302 extern int rsm_kphysm_setup_func_register(kphysm_setup_vector_t *vec,
303 		void *arg);
304 extern void rsm_kphysm_setup_func_unregister(kphysm_setup_vector_t *vec,
305 		void *arg);
306 #endif
307 
308 extern void dbg_printf(int category, int level, char *fmt, ...);
309 extern void rsmka_pathmanager_init();
310 extern void rsmka_pathmanager_cleanup();
311 extern void rele_sendq_token(sendq_token_t *);
312 extern rsm_addr_t get_remote_hwaddr(adapter_t *, rsm_node_id_t);
313 extern rsm_node_id_t get_remote_nodeid(adapter_t *, rsm_addr_t);
314 extern int rsmka_topology_ioctl(caddr_t, int, int);
315 
316 extern pri_t maxclsyspri;
317 extern work_queue_t work_queue;
318 extern kmutex_t ipc_info_lock;
319 extern kmutex_t ipc_info_cvlock;
320 extern kcondvar_t ipc_info_cv;
321 extern kmutex_t path_hold_cvlock;
322 extern kcondvar_t path_hold_cv;
323 
324 extern kmutex_t rsmka_buf_lock;
325 
326 extern path_t *rsm_find_path(char *, int, rsm_addr_t);
327 extern adapter_t *rsmka_lookup_adapter(char *, int);
328 extern sendq_token_t *rsmka_get_sendq_token(rsm_node_id_t, sendq_token_t *);
329 extern boolean_t rsmka_do_path_active(path_t *, int);
330 extern boolean_t rsmka_check_node_alive(rsm_node_id_t);
331 extern void rsmka_release_adapter(adapter_t *);
332 extern void rsmka_enqueue_msgbuf(path_t *path, void *data);
333 extern void rsmka_dequeue_msgbuf(path_t *path);
334 extern msgbuf_elem_t *rsmka_gethead_msgbuf(path_t *path);
335 /* lint -w2 */
336 
337 static int rsm_open(dev_t *, int, int, cred_t *);
338 static int rsm_close(dev_t, int, int, cred_t *);
339 static int rsm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
340     cred_t *credp, int *rvalp);
341 static int rsm_devmap(dev_t, devmap_cookie_t, offset_t, size_t, size_t *,
342     uint_t);
343 static int rsm_segmap(dev_t, off_t, struct as *, caddr_t *, off_t, uint_t,
344     uint_t, uint_t, cred_t *);
345 static int rsm_chpoll(dev_t dev, short events, int anyyet, short *reventsp,
346     struct pollhead **phpp);
347 
348 static int rsm_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
349 static int rsm_attach(dev_info_t *, ddi_attach_cmd_t);
350 static int rsm_detach(dev_info_t *, ddi_detach_cmd_t);
351 
352 static int rsmipc_send(rsm_node_id_t, rsmipc_request_t *, rsmipc_reply_t *);
353 static void rsm_force_unload(rsm_node_id_t, rsm_memseg_id_t, boolean_t);
354 static void rsm_send_importer_disconnects(rsm_memseg_id_t, rsm_node_id_t);
355 static void rsm_send_republish(rsm_memseg_id_t, rsmapi_access_entry_t *, int,
356 				rsm_permission_t);
357 static void rsm_export_force_destroy(ddi_umem_cookie_t *);
358 static void rsmacl_free(rsmapi_access_entry_t *, int);
359 static void rsmpiacl_free(rsm_access_entry_t *, int);
360 
361 static int rsm_inc_pgcnt(pgcnt_t);
362 static void rsm_dec_pgcnt(pgcnt_t);
363 static void rsm_free_mapinfo(rsm_mapinfo_t *mapinfop);
364 static rsm_mapinfo_t *rsm_get_mapinfo(rsmseg_t *, off_t, size_t, off_t *,
365 					size_t *);
366 static void exporter_quiesce();
367 static void rsmseg_suspend(rsmseg_t *, int *);
368 static void rsmsegshare_suspend(rsmseg_t *);
369 static int rsmseg_resume(rsmseg_t *, void **);
370 static int rsmsegshare_resume(rsmseg_t *);
371 
372 static struct cb_ops rsm_cb_ops = {
373 	rsm_open,		/* open */
374 	rsm_close,		/* close */
375 	nodev,			/* strategy */
376 	nodev,			/* print */
377 	nodev,			/* dump */
378 	nodev,			/* read */
379 	nodev,			/* write */
380 	rsm_ioctl,		/* ioctl */
381 	rsm_devmap,		/* devmap */
382 	NULL,			/* mmap */
383 	rsm_segmap,		/* segmap */
384 	rsm_chpoll,		/* poll */
385 	ddi_prop_op,		/* cb_prop_op */
386 	0,			/* streamtab  */
387 	D_NEW|D_MP|D_DEVMAP,	/* Driver compatibility flag */
388 	0,
389 	0,
390 	0
391 };
392 
393 static struct dev_ops rsm_ops = {
394 	DEVO_REV,		/* devo_rev, */
395 	0,			/* refcnt  */
396 	rsm_info,		/* get_dev_info */
397 	nulldev,		/* identify */
398 	nulldev,		/* probe */
399 	rsm_attach,		/* attach */
400 	rsm_detach,		/* detach */
401 	nodev,			/* reset */
402 	&rsm_cb_ops,		/* driver operations */
403 	(struct bus_ops *)0,	/* bus operations */
404 	0,
405 	ddi_quiesce_not_needed,		/* quiesce */
406 };
407 
408 /*
409  * Module linkage information for the kernel.
410  */
411 
412 static struct modldrv modldrv = {
413 	&mod_driverops, /* Type of module.  This one is a pseudo driver */
414 	"Remote Shared Memory Driver",
415 	&rsm_ops,	/* driver ops */
416 };
417 
418 static struct modlinkage modlinkage = {
419 	MODREV_1,
420 	(void *)&modldrv,
421 	0,
422 	0,
423 	0
424 };
425 
426 static void rsm_dr_callback_post_add(void *arg, pgcnt_t delta);
427 static int rsm_dr_callback_pre_del(void *arg, pgcnt_t delta);
428 static void rsm_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled);
429 
430 static kphysm_setup_vector_t rsm_dr_callback_vec = {
431 	KPHYSM_SETUP_VECTOR_VERSION,
432 	rsm_dr_callback_post_add,
433 	rsm_dr_callback_pre_del,
434 	rsm_dr_callback_post_del
435 };
436 
437 /* This flag can be changed to 0 to help with PIT testing */
438 int rsmka_modunloadok = 1;
439 int no_reply_cnt = 0;
440 
441 uint64_t rsm_ctrlmsg_errcnt = 0;
442 uint64_t rsm_ipcsend_errcnt = 0;
443 
444 #define	MAX_NODES 64
445 
446 static struct rsm_driver_data rsm_drv_data;
447 static struct rsmresource_table rsm_resource;
448 
449 static void rsmresource_insert(minor_t, rsmresource_t *, rsm_resource_type_t);
450 static void rsmresource_destroy(void);
451 static int rsmresource_alloc(minor_t *);
452 static rsmresource_t *rsmresource_free(minor_t rnum);
453 static int rsm_closeconnection(rsmseg_t *seg, void **cookie);
454 static int rsm_unpublish(rsmseg_t *seg, int mode);
455 static int rsm_unbind(rsmseg_t *seg);
456 static uint_t rsmhash(rsm_memseg_id_t key);
457 static void rsmhash_alloc(rsmhash_table_t *rhash, int size);
458 static void rsmhash_free(rsmhash_table_t *rhash, int size);
459 static void *rsmhash_getbkt(rsmhash_table_t *rhash, uint_t hashval);
460 static void **rsmhash_bktaddr(rsmhash_table_t *rhash, uint_t hashval);
461 static int rsm_send_notimporting(rsm_node_id_t dest, rsm_memseg_id_t segid,
462 					void *cookie);
463 int rsm_disconnect(rsmseg_t *seg);
464 void rsmseg_unload(rsmseg_t *);
465 void rsm_suspend_complete(rsm_node_id_t src_node, int flag);
466 
467 rsm_intr_hand_ret_t rsm_srv_func(rsm_controller_object_t *chd,
468     rsm_intr_q_op_t opcode, rsm_addr_t src,
469     void *data, size_t size, rsm_intr_hand_arg_t arg);
470 
471 static void rsm_intr_callback(void *, rsm_addr_t, rsm_intr_hand_arg_t);
472 
473 rsm_node_id_t my_nodeid;
474 
475 /* cookie, va, offsets and length for the barrier */
476 static rsm_gnum_t		*bar_va;
477 static ddi_umem_cookie_t	bar_cookie;
478 static off_t			barrier_offset;
479 static size_t			barrier_size;
480 static int			max_segs;
481 
482 /* cookie for the trash memory */
483 static ddi_umem_cookie_t	remap_cookie;
484 
485 static rsm_memseg_id_t	rsm_nextavail_segmentid;
486 
487 extern taskq_t *work_taskq;
488 extern char *taskq_name;
489 
490 static dev_info_t *rsm_dip;	/* private copy of devinfo pointer */
491 
492 static rsmhash_table_t rsm_export_segs;		/* list of exported segs */
493 rsmhash_table_t rsm_import_segs;		/* list of imported segs */
494 static rsmhash_table_t rsm_event_queues;	/* list of event queues */
495 
496 static	rsm_ipc_t	rsm_ipc;		/* ipc info */
497 
498 /* list of nodes to which RSMIPC_MSG_SUSPEND has been sent */
499 static list_head_t	rsm_suspend_list;
500 
501 /* list of descriptors for remote importers */
502 static importers_table_t importer_list;
503 
504 kmutex_t rsm_suspend_cvlock;
505 kcondvar_t rsm_suspend_cv;
506 
507 static kmutex_t rsm_lock;
508 
509 adapter_t loopback_adapter;
510 rsm_controller_attr_t loopback_attr;
511 
512 int rsmipc_send_controlmsg(path_t *path, int msgtype);
513 
514 void rsmka_init_loopback();
515 
516 int rsmka_null_seg_create(
517     rsm_controller_handle_t,
518     rsm_memseg_export_handle_t *,
519     size_t,
520     uint_t,
521     rsm_memory_local_t *,
522     rsm_resource_callback_t,
523     rsm_resource_callback_arg_t);
524 
525 int rsmka_null_seg_destroy(
526     rsm_memseg_export_handle_t);
527 
528 int rsmka_null_bind(
529     rsm_memseg_export_handle_t,
530     off_t,
531     rsm_memory_local_t *,
532     rsm_resource_callback_t,
533     rsm_resource_callback_arg_t);
534 
535 int rsmka_null_unbind(
536     rsm_memseg_export_handle_t,
537     off_t,
538     size_t);
539 
540 int rsmka_null_rebind(
541     rsm_memseg_export_handle_t,
542     off_t,
543     rsm_memory_local_t *,
544     rsm_resource_callback_t,
545     rsm_resource_callback_arg_t);
546 
547 int rsmka_null_publish(
548     rsm_memseg_export_handle_t,
549     rsm_access_entry_t [],
550     uint_t,
551     rsm_memseg_id_t,
552     rsm_resource_callback_t,
553     rsm_resource_callback_arg_t);
554 
555 
556 int rsmka_null_republish(
557     rsm_memseg_export_handle_t,
558     rsm_access_entry_t [],
559     uint_t,
560     rsm_resource_callback_t,
561     rsm_resource_callback_arg_t);
562 
563 int rsmka_null_unpublish(
564     rsm_memseg_export_handle_t);
565 
566 rsm_ops_t null_rsmpi_ops;
567 
568 /*
569  * data and locks to keep track of total amount of exported memory
570  */
571 static	pgcnt_t		rsm_pgcnt;
572 static	pgcnt_t		rsm_pgcnt_max;	/* max allowed */
573 static	kmutex_t	rsm_pgcnt_lock;
574 
575 static	int		rsm_enable_dr;
576 
577 static	char		loopback_str[] = "loopback";
578 
579 int		rsm_hash_size;
580 
581 /*
582  * The locking model is as follows:
583  *
584  * Local operations:
585  *		find resource - grab reader lock on resouce list
586  *		insert rc     - grab writer lock
587  *		delete rc     - grab writer lock and resource mutex
588  *		read/write    - no lock
589  *
590  * Remote invocations:
591  *		find resource - grab read lock and resource mutex
592  *
593  * State:
594  *		resource state - grab resource mutex
595  */
596 
597 int
598 _init(void)
599 {
600 	int e;
601 
602 	e = mod_install(&modlinkage);
603 	if (e != 0) {
604 		return (e);
605 	}
606 
607 	mutex_init(&rsm_lock, NULL, MUTEX_DRIVER, NULL);
608 
609 	mutex_init(&rsmka_buf_lock, NULL, MUTEX_DEFAULT, NULL);
610 
611 
612 	rw_init(&rsm_resource.rsmrc_lock, NULL, RW_DRIVER, NULL);
613 
614 	rsm_hash_size = RSM_HASHSZ;
615 
616 	rw_init(&rsm_export_segs.rsmhash_rw, NULL, RW_DRIVER, NULL);
617 
618 	rw_init(&rsm_import_segs.rsmhash_rw, NULL, RW_DRIVER, NULL);
619 
620 	mutex_init(&importer_list.lock, NULL, MUTEX_DRIVER, NULL);
621 
622 	mutex_init(&rsm_ipc.lock, NULL, MUTEX_DRIVER, NULL);
623 	cv_init(&rsm_ipc.cv, NULL, CV_DRIVER, 0);
624 
625 	mutex_init(&rsm_suspend_cvlock, NULL, MUTEX_DRIVER, NULL);
626 	cv_init(&rsm_suspend_cv, NULL, CV_DRIVER, 0);
627 
628 	mutex_init(&rsm_drv_data.drv_lock, NULL, MUTEX_DRIVER, NULL);
629 	cv_init(&rsm_drv_data.drv_cv, NULL, CV_DRIVER, 0);
630 
631 	rsm_ipc.count = RSMIPC_SZ;
632 	rsm_ipc.wanted = 0;
633 	rsm_ipc.sequence = 0;
634 
635 	(void) mutex_init(&rsm_pgcnt_lock, NULL, MUTEX_DRIVER, NULL);
636 
637 	for (e = 0; e < RSMIPC_SZ; e++) {
638 		rsmipc_slot_t *slot = &rsm_ipc.slots[e];
639 
640 		RSMIPC_SET(slot, RSMIPC_FREE);
641 		mutex_init(&slot->rsmipc_lock, NULL, MUTEX_DRIVER, NULL);
642 		cv_init(&slot->rsmipc_cv, NULL, CV_DRIVER, 0);
643 	}
644 
645 	/*
646 	 * Initialize the suspend message list
647 	 */
648 	rsm_suspend_list.list_head = NULL;
649 	mutex_init(&rsm_suspend_list.list_lock, NULL, MUTEX_DRIVER, NULL);
650 
651 	/*
652 	 * It is assumed here that configuration data is available
653 	 * during system boot since _init may be called at that time.
654 	 */
655 
656 	rsmka_pathmanager_init();
657 
658 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE,
659 	    "rsm: _init done\n"));
660 
661 	return (DDI_SUCCESS);
662 
663 }
664 
665 int
666 _info(struct modinfo *modinfop)
667 {
668 
669 	return (mod_info(&modlinkage, modinfop));
670 }
671 
672 int
673 _fini(void)
674 {
675 	int e;
676 
677 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE,
678 	    "rsm: _fini enter\n"));
679 
680 	/*
681 	 * The rsmka_modunloadok flag is simply used to help with
682 	 * the PIT testing. Make this flag 0 to disallow modunload.
683 	 */
684 	if (rsmka_modunloadok == 0)
685 		return (EBUSY);
686 
687 	/* rsm_detach will be called as a result of mod_remove */
688 	e = mod_remove(&modlinkage);
689 	if (e) {
690 		DBG_PRINTF((RSM_KERNEL_AGENT, RSM_ERR,
691 		    "Unable to fini RSM %x\n", e));
692 		return (e);
693 	}
694 
695 	rsmka_pathmanager_cleanup();
696 
697 	rw_destroy(&rsm_resource.rsmrc_lock);
698 
699 	rw_destroy(&rsm_export_segs.rsmhash_rw);
700 	rw_destroy(&rsm_import_segs.rsmhash_rw);
701 	rw_destroy(&rsm_event_queues.rsmhash_rw);
702 
703 	mutex_destroy(&importer_list.lock);
704 
705 	mutex_destroy(&rsm_ipc.lock);
706 	cv_destroy(&rsm_ipc.cv);
707 
708 	(void) mutex_destroy(&rsm_suspend_list.list_lock);
709 
710 	(void) mutex_destroy(&rsm_pgcnt_lock);
711 
712 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE, "_fini done\n"));
713 
714 	return (DDI_SUCCESS);
715 
716 }
717 
718 /*ARGSUSED1*/
719 static int
720 rsm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
721 {
722 	minor_t	rnum;
723 	int	percent;
724 	int	ret;
725 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
726 
727 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_attach enter\n"));
728 
729 	switch (cmd) {
730 	case DDI_ATTACH:
731 		break;
732 	case DDI_RESUME:
733 	default:
734 		DBG_PRINTF((category, RSM_ERR,
735 		    "rsm:rsm_attach - cmd not supported\n"));
736 		return (DDI_FAILURE);
737 	}
738 
739 	if (rsm_dip != NULL) {
740 		DBG_PRINTF((category, RSM_ERR,
741 		    "rsm:rsm_attach - supports only "
742 		    "one instance\n"));
743 		return (DDI_FAILURE);
744 	}
745 
746 	rsm_enable_dr = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
747 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
748 	    "enable-dynamic-reconfiguration", 1);
749 
750 	mutex_enter(&rsm_drv_data.drv_lock);
751 	rsm_drv_data.drv_state = RSM_DRV_REG_PROCESSING;
752 	mutex_exit(&rsm_drv_data.drv_lock);
753 
754 	if (rsm_enable_dr) {
755 #ifdef	RSM_DRTEST
756 		ret = rsm_kphysm_setup_func_register(&rsm_dr_callback_vec,
757 		    (void *)NULL);
758 #else
759 		ret = kphysm_setup_func_register(&rsm_dr_callback_vec,
760 		    (void *)NULL);
761 #endif
762 		if (ret != 0) {
763 			mutex_exit(&rsm_drv_data.drv_lock);
764 			cmn_err(CE_CONT, "rsm:rsm_attach - Dynamic "
765 			    "reconfiguration setup failed\n");
766 			return (DDI_FAILURE);
767 		}
768 	}
769 
770 	mutex_enter(&rsm_drv_data.drv_lock);
771 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_REG_PROCESSING);
772 	rsm_drv_data.drv_state = RSM_DRV_OK;
773 	cv_broadcast(&rsm_drv_data.drv_cv);
774 	mutex_exit(&rsm_drv_data.drv_lock);
775 
776 	/*
777 	 * page_list_read_lock();
778 	 * xx_setup();
779 	 * page_list_read_unlock();
780 	 */
781 
782 	rsm_hash_size = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
783 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
784 	    "segment-hashtable-size", RSM_HASHSZ);
785 	if (rsm_hash_size == 0) {
786 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
787 		    "rsm: segment-hashtable-size in rsm.conf "
788 		    "must be greater than 0, defaulting to 128\n"));
789 		rsm_hash_size = RSM_HASHSZ;
790 	}
791 
792 	DBG_PRINTF((category, RSM_DEBUG, "rsm_attach rsm_hash_size: %d\n",
793 	    rsm_hash_size));
794 
795 	rsm_pgcnt = 0;
796 
797 	percent = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
798 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
799 	    "max-exported-memory", 0);
800 	if (percent < 0) {
801 		DBG_PRINTF((category, RSM_ERR,
802 		    "rsm:rsm_attach not enough memory available to "
803 		    "export, or max-exported-memory set incorrectly.\n"));
804 		return (DDI_FAILURE);
805 	}
806 	/* 0 indicates no fixed upper limit. maxmem is the max	*/
807 	/* available pageable physical mem			*/
808 	rsm_pgcnt_max = (percent*maxmem)/100;
809 
810 	if (rsm_pgcnt_max > 0) {
811 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
812 		    "rsm: Available physical memory = %lu pages, "
813 		    "Max exportable memory = %lu pages",
814 		    maxmem, rsm_pgcnt_max));
815 	}
816 
817 	/*
818 	 * Create minor number
819 	 */
820 	if (rsmresource_alloc(&rnum) != RSM_SUCCESS) {
821 		DBG_PRINTF((category, RSM_ERR,
822 		    "rsm: rsm_attach - Unable to get "
823 		    "minor number\n"));
824 		return (DDI_FAILURE);
825 	}
826 
827 	ASSERT(rnum == RSM_DRIVER_MINOR);
828 
829 	if (ddi_create_minor_node(devi, DRIVER_NAME, S_IFCHR,
830 	    rnum, DDI_PSEUDO, NULL) == DDI_FAILURE) {
831 		DBG_PRINTF((category, RSM_ERR,
832 		    "rsm: rsm_attach - unable to allocate "
833 		    "minor #\n"));
834 		return (DDI_FAILURE);
835 	}
836 
837 	rsm_dip = devi;
838 	/*
839 	 * Allocate the hashtables
840 	 */
841 	rsmhash_alloc(&rsm_export_segs, rsm_hash_size);
842 	rsmhash_alloc(&rsm_import_segs, rsm_hash_size);
843 
844 	importer_list.bucket = (importing_token_t **)
845 	    kmem_zalloc(rsm_hash_size * sizeof (importing_token_t *), KM_SLEEP);
846 
847 	/*
848 	 * Allocate a resource struct
849 	 */
850 	{
851 		rsmresource_t *p;
852 
853 		p = (rsmresource_t *)kmem_zalloc(sizeof (*p), KM_SLEEP);
854 
855 		mutex_init(&p->rsmrc_lock, NULL, MUTEX_DRIVER, (void *) NULL);
856 
857 		rsmresource_insert(rnum, p, RSM_RESOURCE_BAR);
858 	}
859 
860 	/*
861 	 * Based on the rsm.conf property max-segments, determine the maximum
862 	 * number of segments that can be exported/imported. This is then used
863 	 * to determine the size for barrier failure pages.
864 	 */
865 
866 	/* First get the max number of segments from the rsm.conf file */
867 	max_segs = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
868 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
869 	    "max-segments", 0);
870 	if (max_segs == 0) {
871 		/* Use default number of segments */
872 		max_segs = RSM_MAX_NUM_SEG;
873 	}
874 
875 	/*
876 	 * Based on the max number of segments allowed, determine the barrier
877 	 * page size. add 1 to max_segs since the barrier page itself uses
878 	 * a slot
879 	 */
880 	barrier_size = roundup((max_segs + 1) * sizeof (rsm_gnum_t),
881 	    PAGESIZE);
882 
883 	/*
884 	 * allocation of the barrier failure page
885 	 */
886 	bar_va = (rsm_gnum_t *)ddi_umem_alloc(barrier_size,
887 	    DDI_UMEM_SLEEP, &bar_cookie);
888 
889 	/*
890 	 * Set the barrier_offset
891 	 */
892 	barrier_offset = 0;
893 
894 	/*
895 	 * Allocate a trash memory and get a cookie for it. This will be used
896 	 * when remapping segments during force disconnects. Allocate the
897 	 * trash memory with a large size which is page aligned.
898 	 */
899 	(void) ddi_umem_alloc((size_t)TRASHSIZE,
900 	    DDI_UMEM_TRASH, &remap_cookie);
901 
902 	/* initialize user segment id allocation variable */
903 	rsm_nextavail_segmentid = (rsm_memseg_id_t)RSM_USER_APP_ID_BASE;
904 
905 	/*
906 	 * initialize the null_rsmpi_ops vector and the loopback adapter
907 	 */
908 	rsmka_init_loopback();
909 
910 
911 	ddi_report_dev(devi);
912 
913 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_attach done\n"));
914 
915 	return (DDI_SUCCESS);
916 }
917 
918 /*
919  * The call to mod_remove in the _fine routine will cause the system
920  * to call rsm_detach
921  */
922 /*ARGSUSED*/
923 static int
924 rsm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
925 {
926 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
927 
928 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_detach enter\n"));
929 
930 	switch (cmd) {
931 	case DDI_DETACH:
932 		break;
933 	default:
934 		DBG_PRINTF((category, RSM_ERR,
935 		    "rsm:rsm_detach - cmd %x not supported\n",
936 		    cmd));
937 		return (DDI_FAILURE);
938 	}
939 
940 	mutex_enter(&rsm_drv_data.drv_lock);
941 	while (rsm_drv_data.drv_state != RSM_DRV_OK)
942 		cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
943 	rsm_drv_data.drv_state = RSM_DRV_UNREG_PROCESSING;
944 	mutex_exit(&rsm_drv_data.drv_lock);
945 
946 	/*
947 	 * Unregister the DR callback functions
948 	 */
949 	if (rsm_enable_dr) {
950 #ifdef	RSM_DRTEST
951 		rsm_kphysm_setup_func_unregister(&rsm_dr_callback_vec,
952 		    (void *)NULL);
953 #else
954 		kphysm_setup_func_unregister(&rsm_dr_callback_vec,
955 		    (void *)NULL);
956 #endif
957 	}
958 
959 	mutex_enter(&rsm_drv_data.drv_lock);
960 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_UNREG_PROCESSING);
961 	rsm_drv_data.drv_state = RSM_DRV_NEW;
962 	mutex_exit(&rsm_drv_data.drv_lock);
963 
964 	ASSERT(rsm_suspend_list.list_head == NULL);
965 
966 	/*
967 	 * Release all resources, seglist, controller, ...
968 	 */
969 
970 	/* remove intersend queues */
971 	/* remove registered services */
972 
973 
974 	ddi_remove_minor_node(dip, DRIVER_NAME);
975 	rsm_dip = NULL;
976 
977 	/*
978 	 * Free minor zero resource
979 	 */
980 	{
981 		rsmresource_t *p;
982 
983 		p = rsmresource_free(RSM_DRIVER_MINOR);
984 		if (p) {
985 			mutex_destroy(&p->rsmrc_lock);
986 			kmem_free((void *)p, sizeof (*p));
987 		}
988 	}
989 
990 	/*
991 	 * Free resource table
992 	 */
993 
994 	rsmresource_destroy();
995 
996 	/*
997 	 * Free the hash tables
998 	 */
999 	rsmhash_free(&rsm_export_segs, rsm_hash_size);
1000 	rsmhash_free(&rsm_import_segs, rsm_hash_size);
1001 
1002 	kmem_free((void *)importer_list.bucket,
1003 	    rsm_hash_size * sizeof (importing_token_t *));
1004 	importer_list.bucket = NULL;
1005 
1006 
1007 	/* free barrier page */
1008 	if (bar_cookie != NULL) {
1009 		ddi_umem_free(bar_cookie);
1010 	}
1011 	bar_va = NULL;
1012 	bar_cookie = NULL;
1013 
1014 	/*
1015 	 * Free the memory allocated for the trash
1016 	 */
1017 	if (remap_cookie != NULL) {
1018 		ddi_umem_free(remap_cookie);
1019 	}
1020 	remap_cookie = NULL;
1021 
1022 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_detach done\n"));
1023 
1024 	return (DDI_SUCCESS);
1025 }
1026 
1027 /*ARGSUSED*/
1028 static int
1029 rsm_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1030 {
1031 	register int error;
1032 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
1033 
1034 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_info enter\n"));
1035 
1036 	switch (infocmd) {
1037 	case DDI_INFO_DEVT2DEVINFO:
1038 		if (rsm_dip == NULL)
1039 			error = DDI_FAILURE;
1040 		else {
1041 			*result = (void *)rsm_dip;
1042 			error = DDI_SUCCESS;
1043 		}
1044 		break;
1045 	case DDI_INFO_DEVT2INSTANCE:
1046 		*result = (void *)0;
1047 		error = DDI_SUCCESS;
1048 		break;
1049 	default:
1050 		error = DDI_FAILURE;
1051 	}
1052 
1053 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_info done\n"));
1054 	return (error);
1055 }
1056 
1057 adapter_t *
1058 rsm_getadapter(rsm_ioctlmsg_t *msg, int mode)
1059 {
1060 	adapter_t *adapter;
1061 	char adapter_devname[MAXNAMELEN];
1062 	int instance;
1063 	DBG_DEFINE(category,
1064 	    RSM_KERNEL_AGENT | RSM_IMPORT | RSM_EXPORT | RSM_IOCTL);
1065 
1066 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_getadapter enter\n"));
1067 
1068 	instance = msg->cnum;
1069 
1070 	if ((msg->cname_len <= 0) || (msg->cname_len > MAXNAMELEN)) {
1071 		return (NULL);
1072 	}
1073 
1074 	if (ddi_copyin(msg->cname, adapter_devname, msg->cname_len, mode))
1075 		return (NULL);
1076 
1077 	if (strcmp(adapter_devname, "loopback") == 0)
1078 		return (&loopback_adapter);
1079 
1080 	adapter = rsmka_lookup_adapter(adapter_devname, instance);
1081 
1082 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_getadapter done\n"));
1083 
1084 	return (adapter);
1085 }
1086 
1087 
1088 /*
1089  * *********************** Resource Number Management ********************
1090  * All resources are stored in a simple hash table. The table is an array
1091  * of pointers to resource blks. Each blk contains:
1092  *	base	- base number of this blk
1093  *	used	- number of used slots in this blk.
1094  *	blks    - array of pointers to resource items.
1095  * An entry in a resource blk is empty if it's NULL.
1096  *
1097  * We start with no resource array. Each time we run out of slots, we
1098  * reallocate a new larger array and copy the pointer to the new array and
1099  * a new resource blk is allocated and added to the hash table.
1100  *
1101  * The resource control block contains:
1102  *      root    - array of pointer of resource blks
1103  *      sz      - current size of array.
1104  *      len     - last valid entry in array.
1105  *
1106  * A search operation based on a resource number is as follows:
1107  *      index = rnum / RESOURCE_BLKSZ;
1108  *      ASSERT(index < resource_block.len);
1109  *      ASSERT(index < resource_block.sz);
1110  *	offset = rnum % RESOURCE_BLKSZ;
1111  *      ASSERT(offset >= resource_block.root[index]->base);
1112  *	ASSERT(offset < resource_block.root[index]->base + RESOURCE_BLKSZ);
1113  *	return resource_block.root[index]->blks[offset];
1114  *
1115  * A resource blk is freed with its used count reachs zero.
1116  */
1117 static int
1118 rsmresource_alloc(minor_t *rnum)
1119 {
1120 
1121 	/* search for available resource slot */
1122 	int i, j, empty = -1;
1123 	rsmresource_blk_t *blk;
1124 
1125 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1126 	    "rsmresource_alloc enter\n"));
1127 
1128 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1129 
1130 	/* Try to find an empty slot */
1131 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
1132 		blk = rsm_resource.rsmrc_root[i];
1133 		if (blk != NULL && blk->rsmrcblk_avail > 0) {
1134 			/* found an empty slot in this blk */
1135 			for (j = 0; j < RSMRC_BLKSZ; j++) {
1136 				if (blk->rsmrcblk_blks[j] == NULL) {
1137 					*rnum = (minor_t)
1138 					    (j + (i * RSMRC_BLKSZ));
1139 					/*
1140 					 * obey gen page limits
1141 					 */
1142 					if (*rnum >= max_segs + 1) {
1143 						if (empty < 0) {
1144 							rw_exit(&rsm_resource.
1145 							    rsmrc_lock);
1146 							DBG_PRINTF((
1147 							    RSM_KERNEL_ALL,
1148 							    RSM_ERR,
1149 							    "rsmresource"
1150 							    "_alloc failed:"
1151 							    "not enough res"
1152 							    "%d\n", *rnum));
1153 					return (RSMERR_INSUFFICIENT_RESOURCES);
1154 						} else {
1155 							/* use empty slot */
1156 							break;
1157 						}
1158 
1159 					}
1160 
1161 					blk->rsmrcblk_blks[j] = RSMRC_RESERVED;
1162 					blk->rsmrcblk_avail--;
1163 					rw_exit(&rsm_resource.rsmrc_lock);
1164 					DBG_PRINTF((RSM_KERNEL_ALL,
1165 					    RSM_DEBUG_VERBOSE,
1166 					    "rsmresource_alloc done\n"));
1167 					return (RSM_SUCCESS);
1168 				}
1169 			}
1170 		} else if (blk == NULL && empty < 0) {
1171 			/* remember first empty slot */
1172 			empty = i;
1173 		}
1174 	}
1175 
1176 	/* Couldn't find anything, allocate a new blk */
1177 	/*
1178 	 * Do we need to reallocate the root array
1179 	 */
1180 	if (empty < 0) {
1181 		if (rsm_resource.rsmrc_len == rsm_resource.rsmrc_sz) {
1182 			/*
1183 			 * Allocate new array and copy current stuff into it
1184 			 */
1185 			rsmresource_blk_t	**p;
1186 			uint_t newsz = (uint_t)rsm_resource.rsmrc_sz +
1187 			    RSMRC_BLKSZ;
1188 			/*
1189 			 * Don't allocate more that max valid rnum
1190 			 */
1191 			if (rsm_resource.rsmrc_len*RSMRC_BLKSZ >=
1192 			    max_segs + 1) {
1193 				rw_exit(&rsm_resource.rsmrc_lock);
1194 				return (RSMERR_INSUFFICIENT_RESOURCES);
1195 			}
1196 
1197 			p = (rsmresource_blk_t **)kmem_zalloc(
1198 			    newsz * sizeof (*p),
1199 			    KM_SLEEP);
1200 
1201 			if (rsm_resource.rsmrc_root) {
1202 				uint_t oldsz;
1203 
1204 				oldsz = (uint_t)(rsm_resource.rsmrc_sz *
1205 				    (int)sizeof (*p));
1206 
1207 				/*
1208 				 * Copy old data into new space and
1209 				 * free old stuff
1210 				 */
1211 				bcopy(rsm_resource.rsmrc_root, p, oldsz);
1212 				kmem_free(rsm_resource.rsmrc_root, oldsz);
1213 			}
1214 
1215 			rsm_resource.rsmrc_root = p;
1216 			rsm_resource.rsmrc_sz = (int)newsz;
1217 		}
1218 
1219 		empty = rsm_resource.rsmrc_len;
1220 		rsm_resource.rsmrc_len++;
1221 	}
1222 
1223 	/*
1224 	 * Allocate a new blk
1225 	 */
1226 	blk = (rsmresource_blk_t *)kmem_zalloc(sizeof (*blk), KM_SLEEP);
1227 	ASSERT(rsm_resource.rsmrc_root[empty] == NULL);
1228 	rsm_resource.rsmrc_root[empty] = blk;
1229 	blk->rsmrcblk_avail = RSMRC_BLKSZ - 1;
1230 
1231 	/*
1232 	 * Allocate slot
1233 	 */
1234 
1235 	*rnum = (minor_t)(empty * RSMRC_BLKSZ);
1236 
1237 	/*
1238 	 * watch out not to exceed bounds of barrier page
1239 	 */
1240 	if (*rnum >= max_segs + 1) {
1241 		rw_exit(&rsm_resource.rsmrc_lock);
1242 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_ERR,
1243 		    "rsmresource_alloc failed %d\n", *rnum));
1244 
1245 		return (RSMERR_INSUFFICIENT_RESOURCES);
1246 	}
1247 	blk->rsmrcblk_blks[0] = RSMRC_RESERVED;
1248 
1249 
1250 	rw_exit(&rsm_resource.rsmrc_lock);
1251 
1252 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1253 	    "rsmresource_alloc done\n"));
1254 
1255 	return (RSM_SUCCESS);
1256 }
1257 
1258 static rsmresource_t *
1259 rsmresource_free(minor_t rnum)
1260 {
1261 
1262 	/* search for available resource slot */
1263 	int i, j;
1264 	rsmresource_blk_t *blk;
1265 	rsmresource_t *p;
1266 
1267 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1268 	    "rsmresource_free enter\n"));
1269 
1270 	i = (int)(rnum / RSMRC_BLKSZ);
1271 	j = (int)(rnum % RSMRC_BLKSZ);
1272 
1273 	if (i >= rsm_resource.rsmrc_len) {
1274 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1275 		    "rsmresource_free done\n"));
1276 		return (NULL);
1277 	}
1278 
1279 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1280 
1281 	ASSERT(rsm_resource.rsmrc_root);
1282 	ASSERT(i < rsm_resource.rsmrc_len);
1283 	ASSERT(i < rsm_resource.rsmrc_sz);
1284 	blk = rsm_resource.rsmrc_root[i];
1285 	if (blk == NULL) {
1286 		rw_exit(&rsm_resource.rsmrc_lock);
1287 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1288 		    "rsmresource_free done\n"));
1289 		return (NULL);
1290 	}
1291 
1292 	ASSERT(blk->rsmrcblk_blks[j]); /* reserved or full */
1293 
1294 	p = blk->rsmrcblk_blks[j];
1295 	if (p == RSMRC_RESERVED) {
1296 		p = NULL;
1297 	}
1298 
1299 	blk->rsmrcblk_blks[j] = NULL;
1300 	blk->rsmrcblk_avail++;
1301 	if (blk->rsmrcblk_avail == RSMRC_BLKSZ) {
1302 		/* free this blk */
1303 		kmem_free(blk, sizeof (*blk));
1304 		rsm_resource.rsmrc_root[i] = NULL;
1305 	}
1306 
1307 	rw_exit(&rsm_resource.rsmrc_lock);
1308 
1309 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1310 	    "rsmresource_free done\n"));
1311 
1312 	return (p);
1313 }
1314 
1315 static rsmresource_t *
1316 rsmresource_lookup(minor_t rnum, int lock)
1317 {
1318 	int i, j;
1319 	rsmresource_blk_t *blk;
1320 	rsmresource_t *p;
1321 
1322 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1323 	    "rsmresource_lookup enter\n"));
1324 
1325 	/* Find resource and lock it in READER mode */
1326 	/* search for available resource slot */
1327 
1328 	i = (int)(rnum / RSMRC_BLKSZ);
1329 	j = (int)(rnum % RSMRC_BLKSZ);
1330 
1331 	if (i >= rsm_resource.rsmrc_len) {
1332 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1333 		    "rsmresource_lookup done\n"));
1334 		return (NULL);
1335 	}
1336 
1337 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
1338 
1339 	blk = rsm_resource.rsmrc_root[i];
1340 	if (blk != NULL) {
1341 		ASSERT(i < rsm_resource.rsmrc_len);
1342 		ASSERT(i < rsm_resource.rsmrc_sz);
1343 
1344 		p = blk->rsmrcblk_blks[j];
1345 		if (lock == RSM_LOCK) {
1346 			if (p != RSMRC_RESERVED) {
1347 				mutex_enter(&p->rsmrc_lock);
1348 			} else {
1349 				p = NULL;
1350 			}
1351 		}
1352 	} else {
1353 		p = NULL;
1354 	}
1355 	rw_exit(&rsm_resource.rsmrc_lock);
1356 
1357 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1358 	    "rsmresource_lookup done\n"));
1359 
1360 	return (p);
1361 }
1362 
1363 static void
1364 rsmresource_insert(minor_t rnum, rsmresource_t *p, rsm_resource_type_t type)
1365 {
1366 	/* Find resource and lock it in READER mode */
1367 	/* Caller can upgrade if need be */
1368 	/* search for available resource slot */
1369 	int i, j;
1370 	rsmresource_blk_t *blk;
1371 
1372 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1373 	    "rsmresource_insert enter\n"));
1374 
1375 	i = (int)(rnum / RSMRC_BLKSZ);
1376 	j = (int)(rnum % RSMRC_BLKSZ);
1377 
1378 	p->rsmrc_type = type;
1379 	p->rsmrc_num = rnum;
1380 
1381 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
1382 
1383 	ASSERT(rsm_resource.rsmrc_root);
1384 	ASSERT(i < rsm_resource.rsmrc_len);
1385 	ASSERT(i < rsm_resource.rsmrc_sz);
1386 
1387 	blk = rsm_resource.rsmrc_root[i];
1388 	ASSERT(blk);
1389 
1390 	ASSERT(blk->rsmrcblk_blks[j] == RSMRC_RESERVED);
1391 
1392 	blk->rsmrcblk_blks[j] = p;
1393 
1394 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1395 	    "rsmresource_insert done\n"));
1396 
1397 	rw_exit(&rsm_resource.rsmrc_lock);
1398 }
1399 
1400 static void
1401 rsmresource_destroy()
1402 {
1403 	int i, j;
1404 
1405 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1406 	    "rsmresource_destroy enter\n"));
1407 
1408 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1409 
1410 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
1411 		rsmresource_blk_t	*blk;
1412 
1413 		blk = rsm_resource.rsmrc_root[i];
1414 		if (blk == NULL) {
1415 			continue;
1416 		}
1417 		for (j = 0; j < RSMRC_BLKSZ; j++) {
1418 			if (blk->rsmrcblk_blks[j] != NULL) {
1419 				DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1420 				    "Not null slot %d, %lx\n", j,
1421 				    (size_t)blk->rsmrcblk_blks[j]));
1422 			}
1423 		}
1424 		kmem_free(blk, sizeof (*blk));
1425 		rsm_resource.rsmrc_root[i] = NULL;
1426 	}
1427 	if (rsm_resource.rsmrc_root) {
1428 		i = rsm_resource.rsmrc_sz * (int)sizeof (rsmresource_blk_t *);
1429 		kmem_free(rsm_resource.rsmrc_root, (uint_t)i);
1430 		rsm_resource.rsmrc_root = NULL;
1431 		rsm_resource.rsmrc_len = 0;
1432 		rsm_resource.rsmrc_sz = 0;
1433 	}
1434 
1435 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1436 	    "rsmresource_destroy done\n"));
1437 
1438 	rw_exit(&rsm_resource.rsmrc_lock);
1439 }
1440 
1441 
1442 /* ******************** Generic Key Hash Table Management ********* */
1443 static rsmresource_t *
1444 rsmhash_lookup(rsmhash_table_t *rhash, rsm_memseg_id_t key,
1445     rsm_resource_state_t state)
1446 {
1447 	rsmresource_t	*p;
1448 	uint_t		hashval;
1449 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1450 
1451 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_lookup enter\n"));
1452 
1453 	hashval = rsmhash(key);
1454 
1455 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_lookup %u=%d\n",
1456 	    key, hashval));
1457 
1458 	rw_enter(&rhash->rsmhash_rw, RW_READER);
1459 
1460 	p = (rsmresource_t *)rsmhash_getbkt(rhash, hashval);
1461 
1462 	for (; p; p = p->rsmrc_next) {
1463 		if (p->rsmrc_key == key) {
1464 			/* acquire resource lock */
1465 			RSMRC_LOCK(p);
1466 			break;
1467 		}
1468 	}
1469 
1470 	rw_exit(&rhash->rsmhash_rw);
1471 
1472 	if (p != NULL && p->rsmrc_state != state) {
1473 		/* state changed, release lock and return null */
1474 		RSMRC_UNLOCK(p);
1475 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1476 		    "rsmhash_lookup done: state changed\n"));
1477 		return (NULL);
1478 	}
1479 
1480 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_lookup done\n"));
1481 
1482 	return (p);
1483 }
1484 
1485 static void
1486 rsmhash_rm(rsmhash_table_t *rhash, rsmresource_t *rcelm)
1487 {
1488 	rsmresource_t		*p, **back;
1489 	uint_t			hashval;
1490 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1491 
1492 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_rm enter\n"));
1493 
1494 	hashval = rsmhash(rcelm->rsmrc_key);
1495 
1496 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_rm %u=%d\n",
1497 	    rcelm->rsmrc_key, hashval));
1498 
1499 	/*
1500 	 * It's ok not to find the segment.
1501 	 */
1502 	rw_enter(&rhash->rsmhash_rw, RW_WRITER);
1503 
1504 	back = (rsmresource_t **)rsmhash_bktaddr(rhash, hashval);
1505 
1506 	for (; (p = *back) != NULL;  back = &p->rsmrc_next) {
1507 		if (p == rcelm) {
1508 			*back = rcelm->rsmrc_next;
1509 			break;
1510 		}
1511 	}
1512 
1513 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_rm done\n"));
1514 
1515 	rw_exit(&rhash->rsmhash_rw);
1516 }
1517 
1518 static int
1519 rsmhash_add(rsmhash_table_t *rhash, rsmresource_t *new, rsm_memseg_id_t key,
1520     int dup_check, rsm_resource_state_t state)
1521 {
1522 	rsmresource_t	*p = NULL, **bktp;
1523 	uint_t		hashval;
1524 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1525 
1526 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_add enter\n"));
1527 
1528 	/* lock table */
1529 	rw_enter(&rhash->rsmhash_rw, RW_WRITER);
1530 
1531 	/*
1532 	 * If the current resource state is other than the state passed in
1533 	 * then the resource is (probably) already on the list. eg. for an
1534 	 * import segment if the state is not RSM_STATE_NEW then it's on the
1535 	 * list already.
1536 	 */
1537 	RSMRC_LOCK(new);
1538 	if (new->rsmrc_state != state) {
1539 		RSMRC_UNLOCK(new);
1540 		rw_exit(&rhash->rsmhash_rw);
1541 		return (RSMERR_BAD_SEG_HNDL);
1542 	}
1543 
1544 	hashval = rsmhash(key);
1545 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_add %d\n", hashval));
1546 
1547 	if (dup_check) {
1548 		/*
1549 		 * Used for checking export segments; don't want to have
1550 		 * the same key used for multiple segments.
1551 		 */
1552 
1553 		p = (rsmresource_t *)rsmhash_getbkt(rhash, hashval);
1554 
1555 		for (; p; p = p->rsmrc_next) {
1556 			if (p->rsmrc_key == key) {
1557 				RSMRC_UNLOCK(new);
1558 				break;
1559 			}
1560 		}
1561 	}
1562 
1563 	if (p == NULL) {
1564 		/* Key doesn't exist, add it */
1565 
1566 		bktp = (rsmresource_t **)rsmhash_bktaddr(rhash, hashval);
1567 
1568 		new->rsmrc_key = key;
1569 		new->rsmrc_next = *bktp;
1570 		*bktp = new;
1571 	}
1572 
1573 	rw_exit(&rhash->rsmhash_rw);
1574 
1575 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_add done\n"));
1576 
1577 	return (p == NULL ? RSM_SUCCESS : RSMERR_SEGID_IN_USE);
1578 }
1579 
1580 /*
1581  * XOR each byte of the key.
1582  */
1583 static uint_t
1584 rsmhash(rsm_memseg_id_t key)
1585 {
1586 	uint_t	hash = key;
1587 
1588 	hash ^=  (key >> 8);
1589 	hash ^=  (key >> 16);
1590 	hash ^=  (key >> 24);
1591 
1592 	return (hash % rsm_hash_size);
1593 
1594 }
1595 
1596 /*
1597  * generic function to get a specific bucket
1598  */
1599 static void *
1600 rsmhash_getbkt(rsmhash_table_t *rhash, uint_t hashval)
1601 {
1602 
1603 	if (rhash->bucket == NULL)
1604 		return (NULL);
1605 	else
1606 		return ((void *)rhash->bucket[hashval]);
1607 }
1608 
1609 /*
1610  * generic function to get a specific bucket's address
1611  */
1612 static void **
1613 rsmhash_bktaddr(rsmhash_table_t *rhash, uint_t hashval)
1614 {
1615 	if (rhash->bucket == NULL)
1616 		return (NULL);
1617 	else
1618 		return ((void **)&(rhash->bucket[hashval]));
1619 }
1620 
1621 /*
1622  * generic function to alloc a hash table
1623  */
1624 static void
1625 rsmhash_alloc(rsmhash_table_t *rhash, int size)
1626 {
1627 	rhash->bucket = (rsmresource_t **)
1628 	    kmem_zalloc(size * sizeof (rsmresource_t *), KM_SLEEP);
1629 }
1630 
1631 /*
1632  * generic function to free a hash table
1633  */
1634 static void
1635 rsmhash_free(rsmhash_table_t *rhash, int size)
1636 {
1637 
1638 	kmem_free((void *)rhash->bucket, size * sizeof (caddr_t));
1639 	rhash->bucket = NULL;
1640 
1641 }
1642 /* *********************** Exported Segment Key Management ************ */
1643 
1644 #define	rsmexport_add(new, key)		\
1645 	rsmhash_add(&rsm_export_segs, (rsmresource_t *)new, key, 1, \
1646 	    RSM_STATE_BIND)
1647 
1648 #define	rsmexport_rm(arg)	\
1649 	rsmhash_rm(&rsm_export_segs, (rsmresource_t *)(arg))
1650 
1651 #define	rsmexport_lookup(key)	\
1652 	(rsmseg_t *)rsmhash_lookup(&rsm_export_segs, key, RSM_STATE_EXPORT)
1653 
1654 /* ************************** Import Segment List Management ********** */
1655 
1656 /*
1657  *  Add segment to import list. This will be useful for paging and loopback
1658  * segment unloading.
1659  */
1660 #define	rsmimport_add(arg, key)	\
1661 	rsmhash_add(&rsm_import_segs, (rsmresource_t *)(arg), (key), 0, \
1662 	    RSM_STATE_NEW)
1663 
1664 #define	rsmimport_rm(arg)	\
1665 	rsmhash_rm(&rsm_import_segs, (rsmresource_t *)(arg))
1666 
1667 /*
1668  *	#define	rsmimport_lookup(key)	\
1669  *	(rsmseg_t *)rsmhash_lookup(&rsm_import_segs, (key), RSM_STATE_CONNECT)
1670  */
1671 
1672 /*
1673  * increase the ref count and make the import segment point to the
1674  * shared data structure. Return a pointer to the share data struct
1675  * and the shared data struct is locked upon return
1676  */
1677 static rsm_import_share_t *
1678 rsmshare_get(rsm_memseg_id_t key, rsm_node_id_t node, adapter_t *adapter,
1679     rsmseg_t *segp)
1680 {
1681 	uint_t		hash;
1682 	rsmresource_t		*p;
1683 	rsm_import_share_t	*shdatap;
1684 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1685 
1686 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmshare_get enter\n"));
1687 
1688 	hash = rsmhash(key);
1689 	/* lock table */
1690 	rw_enter(&rsm_import_segs.rsmhash_rw, RW_WRITER);
1691 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmshare_get:key=%u, hash=%d\n",
1692 	    key, hash));
1693 
1694 	p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hash);
1695 
1696 	for (; p; p = p->rsmrc_next) {
1697 		/*
1698 		 * Look for an entry that is importing the same exporter
1699 		 * with the share data structure allocated.
1700 		 */
1701 		if ((p->rsmrc_key == key) &&
1702 		    (p->rsmrc_node == node) &&
1703 		    (p->rsmrc_adapter == adapter) &&
1704 		    (((rsmseg_t *)p)->s_share != NULL)) {
1705 			shdatap = ((rsmseg_t *)p)->s_share;
1706 			break;
1707 		}
1708 	}
1709 
1710 	if (p == NULL) {
1711 		/* we are the first importer, create the shared data struct */
1712 		shdatap = kmem_zalloc(sizeof (rsm_import_share_t), KM_SLEEP);
1713 		shdatap->rsmsi_state = RSMSI_STATE_NEW;
1714 		shdatap->rsmsi_segid = key;
1715 		shdatap->rsmsi_node = node;
1716 		mutex_init(&shdatap->rsmsi_lock, NULL, MUTEX_DRIVER, NULL);
1717 		cv_init(&shdatap->rsmsi_cv, NULL, CV_DRIVER, 0);
1718 	}
1719 
1720 	rsmseglock_acquire(segp);
1721 
1722 	/* we grab the shared lock before returning from this function */
1723 	mutex_enter(&shdatap->rsmsi_lock);
1724 
1725 	shdatap->rsmsi_refcnt++;
1726 	segp->s_share = shdatap;
1727 
1728 	rsmseglock_release(segp);
1729 
1730 	rw_exit(&rsm_import_segs.rsmhash_rw);
1731 
1732 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmshare_get done\n"));
1733 
1734 	return (shdatap);
1735 }
1736 
1737 /*
1738  * the shared data structure should be locked before calling
1739  * rsmsharecv_signal().
1740  * Change the state and signal any waiting segments.
1741  */
1742 void
1743 rsmsharecv_signal(rsmseg_t *seg, int oldstate, int newstate)
1744 {
1745 	ASSERT(rsmsharelock_held(seg));
1746 
1747 	if (seg->s_share->rsmsi_state == oldstate) {
1748 		seg->s_share->rsmsi_state = newstate;
1749 		cv_broadcast(&seg->s_share->rsmsi_cv);
1750 	}
1751 }
1752 
1753 /*
1754  * Add to the hash table
1755  */
1756 static void
1757 importer_list_add(rsm_node_id_t node, rsm_memseg_id_t key, rsm_addr_t hwaddr,
1758     void *cookie)
1759 {
1760 
1761 	importing_token_t	*head;
1762 	importing_token_t	*new_token;
1763 	int			index;
1764 
1765 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1766 
1767 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_add enter\n"));
1768 
1769 	new_token = kmem_zalloc(sizeof (importing_token_t), KM_SLEEP);
1770 	new_token->importing_node = node;
1771 	new_token->key = key;
1772 	new_token->import_segment_cookie = cookie;
1773 	new_token->importing_adapter_hwaddr = hwaddr;
1774 
1775 	index = rsmhash(key);
1776 
1777 	mutex_enter(&importer_list.lock);
1778 
1779 	head = importer_list.bucket[index];
1780 	importer_list.bucket[index] = new_token;
1781 	new_token->next = head;
1782 	mutex_exit(&importer_list.lock);
1783 
1784 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_add done\n"));
1785 }
1786 
1787 static void
1788 importer_list_rm(rsm_node_id_t node,  rsm_memseg_id_t key, void *cookie)
1789 {
1790 
1791 	importing_token_t	*prev, *token = NULL;
1792 	int			index;
1793 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1794 
1795 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_rm enter\n"));
1796 
1797 	index = rsmhash(key);
1798 
1799 	mutex_enter(&importer_list.lock);
1800 
1801 	token = importer_list.bucket[index];
1802 
1803 	prev = token;
1804 	while (token != NULL) {
1805 		if (token->importing_node == node &&
1806 		    token->import_segment_cookie == cookie) {
1807 			if (prev == token)
1808 				importer_list.bucket[index] = token->next;
1809 			else
1810 				prev->next = token->next;
1811 			kmem_free((void *)token, sizeof (*token));
1812 			break;
1813 		} else {
1814 			prev = token;
1815 			token = token->next;
1816 		}
1817 	}
1818 
1819 	mutex_exit(&importer_list.lock);
1820 
1821 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_rm done\n"));
1822 
1823 
1824 }
1825 
1826 /* **************************Segment Structure Management ************* */
1827 
1828 /*
1829  * Free segment structure
1830  */
1831 static void
1832 rsmseg_free(rsmseg_t *seg)
1833 {
1834 
1835 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1836 
1837 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_free enter\n"));
1838 
1839 	/* need to take seglock here to avoid race with rsmmap_unmap() */
1840 	rsmseglock_acquire(seg);
1841 	if (seg->s_ckl != NULL) {
1842 		/* Segment is still busy */
1843 		seg->s_state = RSM_STATE_END;
1844 		rsmseglock_release(seg);
1845 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1846 		    "rsmseg_free done\n"));
1847 		return;
1848 	}
1849 
1850 	rsmseglock_release(seg);
1851 
1852 	ASSERT(seg->s_state == RSM_STATE_END || seg->s_state == RSM_STATE_NEW);
1853 
1854 	/*
1855 	 * If it's an importer decrement the refcount
1856 	 * and if its down to zero free the shared data structure.
1857 	 * This is where failures during rsm_connect() are unrefcounted
1858 	 */
1859 	if (seg->s_share != NULL) {
1860 
1861 		ASSERT(seg->s_type == RSM_RESOURCE_IMPORT_SEGMENT);
1862 
1863 		rsmsharelock_acquire(seg);
1864 
1865 		ASSERT(seg->s_share->rsmsi_refcnt > 0);
1866 
1867 		seg->s_share->rsmsi_refcnt--;
1868 
1869 		if (seg->s_share->rsmsi_refcnt == 0) {
1870 			rsmsharelock_release(seg);
1871 			mutex_destroy(&seg->s_share->rsmsi_lock);
1872 			cv_destroy(&seg->s_share->rsmsi_cv);
1873 			kmem_free((void *)(seg->s_share),
1874 			    sizeof (rsm_import_share_t));
1875 		} else {
1876 			rsmsharelock_release(seg);
1877 		}
1878 		/*
1879 		 * The following needs to be done after any
1880 		 * rsmsharelock calls which use seg->s_share.
1881 		 */
1882 		seg->s_share = NULL;
1883 	}
1884 
1885 	cv_destroy(&seg->s_cv);
1886 	mutex_destroy(&seg->s_lock);
1887 	rsmacl_free(seg->s_acl, seg->s_acl_len);
1888 	rsmpiacl_free(seg->s_acl_in, seg->s_acl_len);
1889 	if (seg->s_adapter)
1890 		rsmka_release_adapter(seg->s_adapter);
1891 
1892 	kmem_free((void *)seg, sizeof (*seg));
1893 
1894 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_free done\n"));
1895 
1896 }
1897 
1898 
1899 static rsmseg_t *
1900 rsmseg_alloc(minor_t num, struct cred *cred)
1901 {
1902 	rsmseg_t	*new;
1903 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1904 
1905 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_alloc enter\n"));
1906 	/*
1907 	 * allocate memory for new segment. This should be a segkmem cache.
1908 	 */
1909 	new = (rsmseg_t *)kmem_zalloc(sizeof (*new), KM_SLEEP);
1910 
1911 	new->s_state = RSM_STATE_NEW;
1912 	new->s_minor	= num;
1913 	new->s_acl_len	= 0;
1914 	new->s_cookie = NULL;
1915 	new->s_adapter = NULL;
1916 
1917 	new->s_mode = 0777 & ~PTOU((ttoproc(curthread)))->u_cmask;
1918 	/* we don't have a key yet, will set at export/connect */
1919 	new->s_uid  = crgetuid(cred);
1920 	new->s_gid  = crgetgid(cred);
1921 
1922 	mutex_init(&new->s_lock, NULL, MUTEX_DRIVER, (void *)NULL);
1923 	cv_init(&new->s_cv, NULL, CV_DRIVER, 0);
1924 
1925 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_alloc done\n"));
1926 
1927 	return (new);
1928 }
1929 
1930 /* ******************************** Driver Open/Close/Poll *************** */
1931 
1932 /*ARGSUSED1*/
1933 static int
1934 rsm_open(dev_t *devp, int flag, int otyp, struct cred *cred)
1935 {
1936 	minor_t rnum;
1937 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
1938 
1939 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_open enter\n"));
1940 	/*
1941 	 * Char only
1942 	 */
1943 	if (otyp != OTYP_CHR) {
1944 		DBG_PRINTF((category, RSM_ERR, "rsm_open: bad otyp\n"));
1945 		return (EINVAL);
1946 	}
1947 
1948 	/*
1949 	 * Only zero can be opened, clones are used for resources.
1950 	 */
1951 	if (getminor(*devp) != RSM_DRIVER_MINOR) {
1952 		DBG_PRINTF((category, RSM_ERR,
1953 		    "rsm_open: bad minor %d\n", getminor(*devp)));
1954 		return (ENODEV);
1955 	}
1956 
1957 	if ((flag & FEXCL) != 0 && secpolicy_excl_open(cred) != 0) {
1958 		DBG_PRINTF((category, RSM_ERR, "rsm_open: bad perm\n"));
1959 		return (EPERM);
1960 	}
1961 
1962 	if (!(flag & FWRITE)) {
1963 		/*
1964 		 * The library function _rsm_librsm_init calls open for
1965 		 * /dev/rsm with flag set to O_RDONLY.  We want a valid
1966 		 * file descriptor to be returned for minor device zero.
1967 		 */
1968 
1969 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1970 		    "rsm_open RDONLY done\n"));
1971 		return (DDI_SUCCESS);
1972 	}
1973 
1974 	/*
1975 	 * - allocate new minor number and segment.
1976 	 * - add segment to list of all segments.
1977 	 * - set minordev data to segment
1978 	 * - update devp argument to new device
1979 	 * - update s_cred to cred; make sure you do crhold(cred);
1980 	 */
1981 
1982 	/* allocate a new resource number */
1983 	if (rsmresource_alloc(&rnum) == RSM_SUCCESS) {
1984 		/*
1985 		 * We will bind this minor to a specific resource in first
1986 		 * ioctl
1987 		 */
1988 		*devp = makedevice(getmajor(*devp), rnum);
1989 	} else {
1990 		return (EAGAIN);
1991 	}
1992 
1993 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_open done\n"));
1994 	return (DDI_SUCCESS);
1995 }
1996 
1997 static void
1998 rsmseg_close(rsmseg_t *seg, int force_flag)
1999 {
2000 	int e = RSM_SUCCESS;
2001 
2002 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
2003 
2004 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_close enter\n"));
2005 
2006 	rsmseglock_acquire(seg);
2007 	if (!force_flag && (seg->s_hdr.rsmrc_type ==
2008 	    RSM_RESOURCE_EXPORT_SEGMENT)) {
2009 		/*
2010 		 * If we are processing rsm_close wait for force_destroy
2011 		 * processing to complete since force_destroy processing
2012 		 * needs to finish first before we can free the segment.
2013 		 * force_destroy is only for export segments
2014 		 */
2015 		while (seg->s_flags & RSM_FORCE_DESTROY_WAIT) {
2016 			cv_wait(&seg->s_cv, &seg->s_lock);
2017 		}
2018 	}
2019 	rsmseglock_release(seg);
2020 
2021 	/* It's ok to read the state without a lock */
2022 	switch (seg->s_state) {
2023 	case RSM_STATE_EXPORT:
2024 	case RSM_STATE_EXPORT_QUIESCING:
2025 	case RSM_STATE_EXPORT_QUIESCED:
2026 		e = rsm_unpublish(seg, 1);
2027 		/* FALLTHRU */
2028 	case RSM_STATE_BIND_QUIESCED:
2029 		/* FALLTHRU */
2030 	case RSM_STATE_BIND:
2031 		e = rsm_unbind(seg);
2032 		if (e != RSM_SUCCESS && force_flag == 1)
2033 			return;
2034 		ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT);
2035 		/* FALLTHRU */
2036 	case RSM_STATE_NEW_QUIESCED:
2037 		rsmseglock_acquire(seg);
2038 		seg->s_state = RSM_STATE_NEW;
2039 		cv_broadcast(&seg->s_cv);
2040 		rsmseglock_release(seg);
2041 		break;
2042 	case RSM_STATE_NEW:
2043 		break;
2044 	case RSM_STATE_ZOMBIE:
2045 		/*
2046 		 * Segments in this state have been removed off the
2047 		 * exported segments list and have been unpublished
2048 		 * and unbind. These segments have been removed during
2049 		 * a callback to the rsm_export_force_destroy, which
2050 		 * is called for the purpose of unlocking these
2051 		 * exported memory segments when a process exits but
2052 		 * leaves the segments locked down since rsm_close is
2053 		 * is not called for the segments. This can happen
2054 		 * when a process calls fork or exec and then exits.
2055 		 * Once the segments are in the ZOMBIE state, all that
2056 		 * remains is to destroy them when rsm_close is called.
2057 		 * This is done here. Thus, for such segments the
2058 		 * the state is changed to new so that later in this
2059 		 * function rsmseg_free is called.
2060 		 */
2061 		rsmseglock_acquire(seg);
2062 		seg->s_state = RSM_STATE_NEW;
2063 		rsmseglock_release(seg);
2064 		break;
2065 	case RSM_STATE_MAP_QUIESCE:
2066 	case RSM_STATE_ACTIVE:
2067 		/* Disconnect will handle the unmap */
2068 	case RSM_STATE_CONN_QUIESCE:
2069 	case RSM_STATE_CONNECT:
2070 	case RSM_STATE_DISCONNECT:
2071 		ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
2072 		(void) rsm_disconnect(seg);
2073 		break;
2074 	case RSM_STATE_MAPPING:
2075 		/*FALLTHRU*/
2076 	case RSM_STATE_END:
2077 		DBG_PRINTF((category, RSM_ERR,
2078 		    "Invalid segment state %d in rsm_close\n", seg->s_state));
2079 		break;
2080 	default:
2081 		DBG_PRINTF((category, RSM_ERR,
2082 		    "Invalid segment state %d in rsm_close\n", seg->s_state));
2083 		break;
2084 	}
2085 
2086 	/*
2087 	 * check state.
2088 	 * - make sure you do crfree(s_cred);
2089 	 * release segment and minor number
2090 	 */
2091 	ASSERT(seg->s_state == RSM_STATE_NEW);
2092 
2093 	/*
2094 	 * The export_force_destroy callback is created to unlock
2095 	 * the exported segments of a process
2096 	 * when the process does a fork or exec and then exits calls this
2097 	 * function with the force flag set to 1 which indicates that the
2098 	 * segment state must be converted to ZOMBIE. This state means that the
2099 	 * segments still exist and have been unlocked and most importantly the
2100 	 * only operation allowed is to destroy them on an rsm_close.
2101 	 */
2102 	if (force_flag) {
2103 		rsmseglock_acquire(seg);
2104 		seg->s_state = RSM_STATE_ZOMBIE;
2105 		rsmseglock_release(seg);
2106 	} else {
2107 		rsmseg_free(seg);
2108 	}
2109 
2110 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_close done\n"));
2111 }
2112 
2113 static int
2114 rsm_close(dev_t dev, int flag, int otyp, cred_t *cred)
2115 {
2116 	minor_t	rnum = getminor(dev);
2117 	rsmresource_t *res;
2118 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
2119 
2120 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close enter\n"));
2121 
2122 	flag = flag; cred = cred;
2123 
2124 	if (otyp != OTYP_CHR)
2125 		return (EINVAL);
2126 
2127 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rnum = %d\n", rnum));
2128 
2129 	/*
2130 	 * At this point we are the last reference to the resource.
2131 	 * Free resource number from resource table.
2132 	 * It's ok to remove number before we free the segment.
2133 	 * We need to lock the resource to protect against remote calls.
2134 	 */
2135 	if (rnum == RSM_DRIVER_MINOR ||
2136 	    (res = rsmresource_free(rnum)) == NULL) {
2137 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close done\n"));
2138 		return (DDI_SUCCESS);
2139 	}
2140 
2141 	switch (res->rsmrc_type) {
2142 	case RSM_RESOURCE_EXPORT_SEGMENT:
2143 	case RSM_RESOURCE_IMPORT_SEGMENT:
2144 		rsmseg_close((rsmseg_t *)res, 0);
2145 		break;
2146 	case RSM_RESOURCE_BAR:
2147 		DBG_PRINTF((category, RSM_ERR, "bad resource in rsm_close\n"));
2148 		break;
2149 	default:
2150 		break;
2151 	}
2152 
2153 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close done\n"));
2154 
2155 	return (DDI_SUCCESS);
2156 }
2157 
2158 /*
2159  * rsm_inc_pgcnt
2160  *
2161  * Description: increment rsm page counter.
2162  *
2163  * Parameters:	pgcnt_t	pnum;	number of pages to be used
2164  *
2165  * Returns:	RSM_SUCCESS	if memory limit not exceeded
2166  *		ENOSPC		if memory limit exceeded. In this case, the
2167  *				page counter remains unchanged.
2168  *
2169  */
2170 static int
2171 rsm_inc_pgcnt(pgcnt_t pnum)
2172 {
2173 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2174 	if (rsm_pgcnt_max == 0) { /* no upper limit has been set */
2175 		return (RSM_SUCCESS);
2176 	}
2177 
2178 	mutex_enter(&rsm_pgcnt_lock);
2179 
2180 	if (rsm_pgcnt + pnum > rsm_pgcnt_max) {
2181 		/* ensure that limits have not been exceeded */
2182 		mutex_exit(&rsm_pgcnt_lock);
2183 		return (RSMERR_INSUFFICIENT_MEM);
2184 	}
2185 
2186 	rsm_pgcnt += pnum;
2187 	DBG_PRINTF((category, RSM_DEBUG, "rsm_pgcnt incr to %d.\n",
2188 	    rsm_pgcnt));
2189 	mutex_exit(&rsm_pgcnt_lock);
2190 
2191 	return (RSM_SUCCESS);
2192 }
2193 
2194 /*
2195  * rsm_dec_pgcnt
2196  *
2197  * Description:	decrement rsm page counter.
2198  *
2199  * Parameters:	pgcnt_t	pnum;	number of pages freed
2200  *
2201  */
2202 static void
2203 rsm_dec_pgcnt(pgcnt_t pnum)
2204 {
2205 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2206 
2207 	if (rsm_pgcnt_max == 0) { /* no upper limit has been set */
2208 		return;
2209 	}
2210 
2211 	mutex_enter(&rsm_pgcnt_lock);
2212 	ASSERT(rsm_pgcnt >= pnum);
2213 	rsm_pgcnt -= pnum;
2214 	DBG_PRINTF((category, RSM_DEBUG, "rsm_pgcnt decr to %d.\n",
2215 	    rsm_pgcnt));
2216 	mutex_exit(&rsm_pgcnt_lock);
2217 }
2218 
2219 static struct umem_callback_ops rsm_as_ops = {
2220 	UMEM_CALLBACK_VERSION, /* version number */
2221 	rsm_export_force_destroy,
2222 };
2223 
2224 static int
2225 rsm_bind_pages(ddi_umem_cookie_t *cookie, caddr_t vaddr, size_t len,
2226     proc_t *procp)
2227 {
2228 	int error = RSM_SUCCESS;
2229 	ulong_t pnum;
2230 	struct umem_callback_ops *callbackops = &rsm_as_ops;
2231 
2232 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2233 
2234 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind_pages enter\n"));
2235 
2236 	/*
2237 	 * Make sure vaddr and len are aligned on a page boundary
2238 	 */
2239 	if ((uintptr_t)vaddr & (PAGESIZE - 1)) {
2240 		return (RSMERR_BAD_ADDR);
2241 	}
2242 
2243 	if (len & (PAGESIZE - 1)) {
2244 		return (RSMERR_BAD_LENGTH);
2245 	}
2246 
2247 	/*
2248 	 * Find number of pages
2249 	 */
2250 	pnum = btopr(len);
2251 	error = rsm_inc_pgcnt(pnum);
2252 	if (error != RSM_SUCCESS) {
2253 		DBG_PRINTF((category, RSM_ERR,
2254 		    "rsm_bind_pages:mem limit exceeded\n"));
2255 		return (RSMERR_INSUFFICIENT_MEM);
2256 	}
2257 
2258 	error = umem_lockmemory(vaddr, len,
2259 	    DDI_UMEMLOCK_WRITE|DDI_UMEMLOCK_READ|DDI_UMEMLOCK_LONGTERM,
2260 	    cookie,
2261 	    callbackops, procp);
2262 
2263 	if (error) {
2264 		rsm_dec_pgcnt(pnum);
2265 		DBG_PRINTF((category, RSM_ERR,
2266 		    "rsm_bind_pages:ddi_umem_lock failed\n"));
2267 		/*
2268 		 * ddi_umem_lock, in the case of failure, returns one of
2269 		 * the following three errors. These are translated into
2270 		 * the RSMERR namespace and returned.
2271 		 */
2272 		if (error == EFAULT)
2273 			return (RSMERR_BAD_ADDR);
2274 		else if (error == EACCES)
2275 			return (RSMERR_PERM_DENIED);
2276 		else
2277 			return (RSMERR_INSUFFICIENT_MEM);
2278 	}
2279 
2280 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind_pages done\n"));
2281 
2282 	return (error);
2283 
2284 }
2285 
2286 static int
2287 rsm_unbind_pages(rsmseg_t *seg)
2288 {
2289 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2290 
2291 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind_pages enter\n"));
2292 
2293 	ASSERT(rsmseglock_held(seg));
2294 
2295 	if (seg->s_cookie != NULL) {
2296 		/* unlock address range */
2297 		ddi_umem_unlock(seg->s_cookie);
2298 		rsm_dec_pgcnt(btopr(seg->s_len));
2299 		seg->s_cookie = NULL;
2300 	}
2301 
2302 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind_pages done\n"));
2303 
2304 	return (RSM_SUCCESS);
2305 }
2306 
2307 
2308 static int
2309 rsm_bind(rsmseg_t *seg, rsm_ioctlmsg_t *msg, intptr_t dataptr, int mode)
2310 {
2311 	int e;
2312 	adapter_t *adapter;
2313 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2314 
2315 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind enter\n"));
2316 
2317 	adapter = rsm_getadapter(msg, mode);
2318 	if (adapter == NULL) {
2319 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2320 		    "rsm_bind done:no adapter\n"));
2321 		return (RSMERR_CTLR_NOT_PRESENT);
2322 	}
2323 
2324 	/* lock address range */
2325 	if (msg->vaddr == NULL) {
2326 		rsmka_release_adapter(adapter);
2327 		DBG_PRINTF((category, RSM_ERR,
2328 		    "rsm: rsm_bind done: invalid vaddr\n"));
2329 		return (RSMERR_BAD_ADDR);
2330 	}
2331 	if (msg->len <= 0) {
2332 		rsmka_release_adapter(adapter);
2333 		DBG_PRINTF((category, RSM_ERR,
2334 		    "rsm_bind: invalid length\n"));
2335 		return (RSMERR_BAD_LENGTH);
2336 	}
2337 
2338 	/* Lock segment */
2339 	rsmseglock_acquire(seg);
2340 
2341 	while (seg->s_state == RSM_STATE_NEW_QUIESCED) {
2342 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
2343 			DBG_PRINTF((category, RSM_DEBUG,
2344 			    "rsm_bind done: cv_wait INTERRUPTED"));
2345 			rsmka_release_adapter(adapter);
2346 			rsmseglock_release(seg);
2347 			return (RSMERR_INTERRUPTED);
2348 		}
2349 	}
2350 
2351 	ASSERT(seg->s_state == RSM_STATE_NEW);
2352 
2353 	ASSERT(seg->s_cookie == NULL);
2354 
2355 	e = rsm_bind_pages(&seg->s_cookie, msg->vaddr, msg->len, curproc);
2356 	if (e == RSM_SUCCESS) {
2357 		seg->s_flags |= RSM_USER_MEMORY;
2358 		if (msg->perm & RSM_ALLOW_REBIND) {
2359 			seg->s_flags |= RSMKA_ALLOW_UNBIND_REBIND;
2360 		}
2361 		if (msg->perm & RSM_CREATE_SEG_DONTWAIT) {
2362 			seg->s_flags |= RSMKA_SET_RESOURCE_DONTWAIT;
2363 		}
2364 		seg->s_region.r_vaddr = msg->vaddr;
2365 		/*
2366 		 * Set the s_pid value in the segment structure. This is used
2367 		 * to identify exported segments belonging to a particular
2368 		 * process so that when the process exits, these segments can
2369 		 * be unlocked forcefully even if rsm_close is not called on
2370 		 * process exit since there maybe other processes referencing
2371 		 * them (for example on a fork or exec).
2372 		 * The s_pid value is also used to authenticate the process
2373 		 * doing a publish or unpublish on the export segment. Only
2374 		 * the creator of the export segment has a right to do a
2375 		 * publish or unpublish and unbind on the segment.
2376 		 */
2377 		seg->s_pid = ddi_get_pid();
2378 		seg->s_len = msg->len;
2379 		seg->s_state = RSM_STATE_BIND;
2380 		seg->s_adapter = adapter;
2381 		seg->s_proc = curproc;
2382 	} else {
2383 		rsmka_release_adapter(adapter);
2384 		DBG_PRINTF((category, RSM_WARNING,
2385 		    "unable to lock down pages\n"));
2386 	}
2387 
2388 	msg->rnum = seg->s_minor;
2389 	/* Unlock segment */
2390 	rsmseglock_release(seg);
2391 
2392 	if (e == RSM_SUCCESS) {
2393 		/* copyout the resource number */
2394 #ifdef _MULTI_DATAMODEL
2395 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
2396 			rsm_ioctlmsg32_t msg32;
2397 
2398 			msg32.rnum = msg->rnum;
2399 			if (ddi_copyout((caddr_t)&msg32.rnum,
2400 			    (caddr_t)&((rsm_ioctlmsg32_t *)dataptr)->rnum,
2401 			    sizeof (minor_t), mode)) {
2402 				rsmka_release_adapter(adapter);
2403 				e = RSMERR_BAD_ADDR;
2404 			}
2405 		}
2406 #endif
2407 		if (ddi_copyout((caddr_t)&msg->rnum,
2408 		    (caddr_t)&((rsm_ioctlmsg_t *)dataptr)->rnum,
2409 		    sizeof (minor_t), mode)) {
2410 			rsmka_release_adapter(adapter);
2411 			e = RSMERR_BAD_ADDR;
2412 		}
2413 	}
2414 
2415 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind done\n"));
2416 
2417 	return (e);
2418 }
2419 
2420 static void
2421 rsm_remap_local_importers(rsm_node_id_t src_nodeid,
2422     rsm_memseg_id_t ex_segid,
2423     ddi_umem_cookie_t cookie)
2424 
2425 {
2426 	rsmresource_t	*p = NULL;
2427 	rsmhash_table_t *rhash = &rsm_import_segs;
2428 	uint_t		index;
2429 
2430 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_FUNC_ALL, RSM_DEBUG_VERBOSE,
2431 	    "rsm_remap_local_importers enter\n"));
2432 
2433 	index = rsmhash(ex_segid);
2434 
2435 	rw_enter(&rhash->rsmhash_rw, RW_READER);
2436 
2437 	p = rsmhash_getbkt(rhash, index);
2438 
2439 	for (; p; p = p->rsmrc_next) {
2440 		rsmseg_t *seg = (rsmseg_t *)p;
2441 		rsmseglock_acquire(seg);
2442 		/*
2443 		 * Change the s_cookie value of only the local importers
2444 		 * which have been mapped (in state RSM_STATE_ACTIVE).
2445 		 * Note that there is no need to change the s_cookie value
2446 		 * if the imported segment is in RSM_STATE_MAPPING since
2447 		 * eventually the s_cookie will be updated via the mapping
2448 		 * functionality.
2449 		 */
2450 		if ((seg->s_segid == ex_segid) && (seg->s_node == src_nodeid) &&
2451 		    (seg->s_state == RSM_STATE_ACTIVE)) {
2452 			seg->s_cookie = cookie;
2453 		}
2454 		rsmseglock_release(seg);
2455 	}
2456 	rw_exit(&rhash->rsmhash_rw);
2457 
2458 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_FUNC_ALL, RSM_DEBUG_VERBOSE,
2459 	    "rsm_remap_local_importers done\n"));
2460 }
2461 
2462 static int
2463 rsm_rebind(rsmseg_t *seg, rsm_ioctlmsg_t *msg)
2464 {
2465 	int e;
2466 	adapter_t *adapter;
2467 	ddi_umem_cookie_t cookie;
2468 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2469 
2470 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind enter\n"));
2471 
2472 	/* Check for permissions to rebind */
2473 	if (!(seg->s_flags & RSMKA_ALLOW_UNBIND_REBIND)) {
2474 		return (RSMERR_REBIND_NOT_ALLOWED);
2475 	}
2476 
2477 	if (seg->s_pid != ddi_get_pid() &&
2478 	    ddi_get_pid() != 0) {
2479 		DBG_PRINTF((category, RSM_ERR, "rsm_rebind: Not owner\n"));
2480 		return (RSMERR_NOT_CREATOR);
2481 	}
2482 
2483 	/*
2484 	 * We will not be allowing partial rebind and hence length passed
2485 	 * in must be same as segment length
2486 	 */
2487 	if (msg->vaddr == NULL) {
2488 		DBG_PRINTF((category, RSM_ERR,
2489 		    "rsm_rebind done: null msg->vaddr\n"));
2490 		return (RSMERR_BAD_ADDR);
2491 	}
2492 	if (msg->len != seg->s_len) {
2493 		DBG_PRINTF((category, RSM_ERR,
2494 		    "rsm_rebind: invalid length\n"));
2495 		return (RSMERR_BAD_LENGTH);
2496 	}
2497 
2498 	/* Lock segment */
2499 	rsmseglock_acquire(seg);
2500 
2501 	while ((seg->s_state == RSM_STATE_BIND_QUIESCED) ||
2502 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCING) ||
2503 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCED)) {
2504 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
2505 			rsmseglock_release(seg);
2506 			DBG_PRINTF((category, RSM_DEBUG,
2507 			    "rsm_rebind done: cv_wait INTERRUPTED"));
2508 			return (RSMERR_INTERRUPTED);
2509 		}
2510 	}
2511 
2512 	/* verify segment state */
2513 	if ((seg->s_state != RSM_STATE_BIND) &&
2514 	    (seg->s_state != RSM_STATE_EXPORT)) {
2515 		/* Unlock segment */
2516 		rsmseglock_release(seg);
2517 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2518 		    "rsm_rebind done: invalid state\n"));
2519 		return (RSMERR_BAD_SEG_HNDL);
2520 	}
2521 
2522 	ASSERT(seg->s_cookie != NULL);
2523 
2524 	if (msg->vaddr == seg->s_region.r_vaddr) {
2525 		rsmseglock_release(seg);
2526 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind done\n"));
2527 		return (RSM_SUCCESS);
2528 	}
2529 
2530 	e = rsm_bind_pages(&cookie, msg->vaddr, msg->len, curproc);
2531 	if (e == RSM_SUCCESS) {
2532 		struct buf *xbuf;
2533 		dev_t sdev = 0;
2534 		rsm_memory_local_t mem;
2535 
2536 		xbuf = ddi_umem_iosetup(cookie, 0, msg->len, B_WRITE,
2537 		    sdev, 0, NULL, DDI_UMEM_SLEEP);
2538 		ASSERT(xbuf != NULL);
2539 
2540 		mem.ms_type = RSM_MEM_BUF;
2541 		mem.ms_bp = xbuf;
2542 
2543 		adapter = seg->s_adapter;
2544 		e = adapter->rsmpi_ops->rsm_rebind(
2545 		    seg->s_handle.out, 0, &mem,
2546 		    RSM_RESOURCE_DONTWAIT, NULL);
2547 
2548 		if (e == RSM_SUCCESS) {
2549 			/*
2550 			 * unbind the older pages, and unload local importers;
2551 			 * but don't disconnect importers
2552 			 */
2553 			(void) rsm_unbind_pages(seg);
2554 			seg->s_cookie = cookie;
2555 			seg->s_region.r_vaddr = msg->vaddr;
2556 			rsm_remap_local_importers(my_nodeid, seg->s_segid,
2557 			    cookie);
2558 		} else {
2559 			/*
2560 			 * Unbind the pages associated with "cookie" by the
2561 			 * rsm_bind_pages calls prior to this. This is
2562 			 * similar to what is done in the rsm_unbind_pages
2563 			 * routine for the seg->s_cookie.
2564 			 */
2565 			ddi_umem_unlock(cookie);
2566 			rsm_dec_pgcnt(btopr(msg->len));
2567 			DBG_PRINTF((category, RSM_ERR,
2568 			    "rsm_rebind failed with %d\n", e));
2569 		}
2570 		/*
2571 		 * At present there is no dependency on the existence of xbuf.
2572 		 * So we can free it here. If in the future this changes, it can
2573 		 * be freed sometime during the segment destroy.
2574 		 */
2575 		freerbuf(xbuf);
2576 	}
2577 
2578 	/* Unlock segment */
2579 	rsmseglock_release(seg);
2580 
2581 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind done\n"));
2582 
2583 	return (e);
2584 }
2585 
2586 static int
2587 rsm_unbind(rsmseg_t *seg)
2588 {
2589 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2590 
2591 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind enter\n"));
2592 
2593 	rsmseglock_acquire(seg);
2594 
2595 	/* verify segment state */
2596 	if ((seg->s_state != RSM_STATE_BIND) &&
2597 	    (seg->s_state != RSM_STATE_BIND_QUIESCED)) {
2598 		rsmseglock_release(seg);
2599 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2600 		    "rsm_unbind: invalid state\n"));
2601 		return (RSMERR_BAD_SEG_HNDL);
2602 	}
2603 
2604 	/* unlock current range */
2605 	(void) rsm_unbind_pages(seg);
2606 
2607 	if (seg->s_state == RSM_STATE_BIND) {
2608 		seg->s_state = RSM_STATE_NEW;
2609 	} else if (seg->s_state == RSM_STATE_BIND_QUIESCED) {
2610 		seg->s_state = RSM_STATE_NEW_QUIESCED;
2611 	}
2612 
2613 	rsmseglock_release(seg);
2614 
2615 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind done\n"));
2616 
2617 	return (RSM_SUCCESS);
2618 }
2619 
2620 /* **************************** Exporter Access List Management ******* */
2621 static void
2622 rsmacl_free(rsmapi_access_entry_t *acl, int acl_len)
2623 {
2624 	int	acl_sz;
2625 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2626 
2627 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_free enter\n"));
2628 
2629 	/* acl could be NULL */
2630 
2631 	if (acl != NULL && acl_len > 0) {
2632 		acl_sz = acl_len * sizeof (rsmapi_access_entry_t);
2633 		kmem_free((void *)acl, acl_sz);
2634 	}
2635 
2636 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_free done\n"));
2637 }
2638 
2639 static void
2640 rsmpiacl_free(rsm_access_entry_t *acl, int acl_len)
2641 {
2642 	int	acl_sz;
2643 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2644 
2645 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_free enter\n"));
2646 
2647 	if (acl != NULL && acl_len > 0) {
2648 		acl_sz = acl_len * sizeof (rsm_access_entry_t);
2649 		kmem_free((void *)acl, acl_sz);
2650 	}
2651 
2652 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_free done\n"));
2653 
2654 }
2655 
2656 static int
2657 rsmacl_build(rsm_ioctlmsg_t *msg, int mode,
2658     rsmapi_access_entry_t **list, int *len, int loopback)
2659 {
2660 	rsmapi_access_entry_t *acl;
2661 	int	acl_len;
2662 	int i;
2663 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2664 
2665 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_build enter\n"));
2666 
2667 	*len = 0;
2668 	*list = NULL;
2669 
2670 	acl_len = msg->acl_len;
2671 	if ((loopback && acl_len > 1) || (acl_len < 0) ||
2672 	    (acl_len > MAX_NODES)) {
2673 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2674 		    "rsmacl_build done: acl invalid\n"));
2675 		return (RSMERR_BAD_ACL);
2676 	}
2677 
2678 	if (acl_len > 0 && acl_len <= MAX_NODES) {
2679 		size_t acl_size = acl_len * sizeof (rsmapi_access_entry_t);
2680 
2681 		acl = kmem_alloc(acl_size, KM_SLEEP);
2682 
2683 		if (ddi_copyin((caddr_t)msg->acl, (caddr_t)acl,
2684 		    acl_size, mode)) {
2685 			kmem_free((void *) acl, acl_size);
2686 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2687 			    "rsmacl_build done: BAD_ADDR\n"));
2688 			return (RSMERR_BAD_ADDR);
2689 		}
2690 
2691 		/*
2692 		 * Verify access list
2693 		 */
2694 		for (i = 0; i < acl_len; i++) {
2695 			if (acl[i].ae_node > MAX_NODES ||
2696 			    (loopback && (acl[i].ae_node != my_nodeid)) ||
2697 			    acl[i].ae_permission > RSM_ACCESS_TRUSTED) {
2698 				/* invalid entry */
2699 				kmem_free((void *) acl, acl_size);
2700 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2701 				    "rsmacl_build done: EINVAL\n"));
2702 				return (RSMERR_BAD_ACL);
2703 			}
2704 		}
2705 
2706 		*len = acl_len;
2707 		*list = acl;
2708 	}
2709 
2710 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_build done\n"));
2711 
2712 	return (DDI_SUCCESS);
2713 }
2714 
2715 static int
2716 rsmpiacl_create(rsmapi_access_entry_t *src, rsm_access_entry_t **dest,
2717     int acl_len, adapter_t *adapter)
2718 {
2719 	rsm_access_entry_t *acl;
2720 	rsm_addr_t hwaddr;
2721 	int i;
2722 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2723 
2724 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_create enter\n"));
2725 
2726 	if (src != NULL) {
2727 		size_t acl_size = acl_len * sizeof (rsm_access_entry_t);
2728 		acl = kmem_alloc(acl_size, KM_SLEEP);
2729 
2730 		/*
2731 		 * translate access list
2732 		 */
2733 		for (i = 0; i < acl_len; i++) {
2734 			if (src[i].ae_node == my_nodeid) {
2735 				acl[i].ae_addr = adapter->hwaddr;
2736 			} else {
2737 				hwaddr = get_remote_hwaddr(adapter,
2738 				    src[i].ae_node);
2739 				if ((int64_t)hwaddr < 0) {
2740 					/* invalid hwaddr */
2741 					kmem_free((void *) acl, acl_size);
2742 					DBG_PRINTF((category,
2743 					    RSM_DEBUG_VERBOSE,
2744 					    "rsmpiacl_create done:"
2745 					    "EINVAL hwaddr\n"));
2746 					return (RSMERR_INTERNAL_ERROR);
2747 				}
2748 				acl[i].ae_addr = hwaddr;
2749 			}
2750 			/* rsmpi understands only RSM_PERM_XXXX */
2751 			acl[i].ae_permission =
2752 			    src[i].ae_permission & RSM_PERM_RDWR;
2753 		}
2754 		*dest = acl;
2755 	} else {
2756 		*dest = NULL;
2757 	}
2758 
2759 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_create done\n"));
2760 
2761 	return (RSM_SUCCESS);
2762 }
2763 
2764 static int
2765 rsmsegacl_validate(rsmipc_request_t *req, rsm_node_id_t rnode,
2766     rsmipc_reply_t *reply)
2767 {
2768 
2769 	int		i;
2770 	rsmseg_t	*seg;
2771 	rsm_memseg_id_t key = req->rsmipc_key;
2772 	rsm_permission_t perm = req->rsmipc_perm;
2773 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2774 
2775 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2776 	    "rsmsegacl_validate enter\n"));
2777 
2778 	/*
2779 	 * Find segment and grab its lock. The reason why we grab the segment
2780 	 * lock in side the search is to avoid the race when the segment is
2781 	 * being deleted and we already have a pointer to it.
2782 	 */
2783 	seg = rsmexport_lookup(key);
2784 	if (!seg) {
2785 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2786 		    "rsmsegacl_validate done: %u ENXIO\n", key));
2787 		return (RSMERR_SEG_NOT_PUBLISHED);
2788 	}
2789 
2790 	ASSERT(rsmseglock_held(seg));
2791 	ASSERT(seg->s_state == RSM_STATE_EXPORT);
2792 
2793 	/*
2794 	 * We implement a 2-level protection scheme.
2795 	 * First, we check if local/remote host has access rights.
2796 	 * Second, we check if the user has access rights.
2797 	 *
2798 	 * This routine only validates the rnode access_list
2799 	 */
2800 	if (seg->s_acl_len > 0) {
2801 		/*
2802 		 * Check host access list
2803 		 */
2804 		ASSERT(seg->s_acl != NULL);
2805 		for (i = 0; i < seg->s_acl_len; i++) {
2806 			if (seg->s_acl[i].ae_node == rnode) {
2807 				perm &= seg->s_acl[i].ae_permission;
2808 				goto found;
2809 			}
2810 		}
2811 		/* rnode is not found in the list */
2812 		rsmseglock_release(seg);
2813 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2814 		    "rsmsegacl_validate done: EPERM\n"));
2815 		return (RSMERR_SEG_NOT_PUBLISHED_TO_NODE);
2816 	} else {
2817 		/* use default owner creation umask */
2818 		perm &= seg->s_mode;
2819 	}
2820 
2821 found:
2822 	/* update perm for this node */
2823 	reply->rsmipc_mode = perm;
2824 	reply->rsmipc_uid = seg->s_uid;
2825 	reply->rsmipc_gid = seg->s_gid;
2826 	reply->rsmipc_segid = seg->s_segid;
2827 	reply->rsmipc_seglen = seg->s_len;
2828 
2829 	/*
2830 	 * Perm of requesting node is valid; source will validate user
2831 	 */
2832 	rsmseglock_release(seg);
2833 
2834 	/*
2835 	 * Add the importer to the list right away, if connect fails
2836 	 * the importer will ask the exporter to remove it.
2837 	 */
2838 	importer_list_add(rnode, key, req->rsmipc_adapter_hwaddr,
2839 	    req->rsmipc_segment_cookie);
2840 
2841 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegacl_validate done\n"));
2842 
2843 	return (RSM_SUCCESS);
2844 }
2845 
2846 
2847 /* ************************** Exporter Calls ************************* */
2848 
2849 static int
2850 rsm_publish(rsmseg_t *seg, rsm_ioctlmsg_t *msg, intptr_t dataptr, int mode)
2851 {
2852 	int			e;
2853 	int			acl_len;
2854 	rsmapi_access_entry_t	*acl;
2855 	rsm_access_entry_t	*rsmpi_acl;
2856 	rsm_memory_local_t	mem;
2857 	struct buf		*xbuf;
2858 	dev_t 			sdev = 0;
2859 	adapter_t		*adapter;
2860 	rsm_memseg_id_t		segment_id = 0;
2861 	int			loopback_flag = 0;
2862 	int			create_flags = 0;
2863 	rsm_resource_callback_t	callback_flag;
2864 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2865 
2866 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_publish enter\n"));
2867 
2868 	if (seg->s_adapter == &loopback_adapter)
2869 		loopback_flag = 1;
2870 
2871 	if (seg->s_pid != ddi_get_pid() &&
2872 	    ddi_get_pid() != 0) {
2873 		DBG_PRINTF((category, RSM_ERR,
2874 		    "rsm_publish: Not creator\n"));
2875 		return (RSMERR_NOT_CREATOR);
2876 	}
2877 
2878 	/*
2879 	 * Get per node access list
2880 	 */
2881 	e = rsmacl_build(msg, mode, &acl, &acl_len, loopback_flag);
2882 	if (e != DDI_SUCCESS) {
2883 		DBG_PRINTF((category, RSM_ERR,
2884 		    "rsm_publish done: rsmacl_build failed\n"));
2885 		return (e);
2886 	}
2887 
2888 	/*
2889 	 * The application provided msg->key is used for resolving a
2890 	 * segment id according to the following:
2891 	 *    key = 0   		Kernel Agent selects the segment id
2892 	 *    key <= RSM_DLPI_ID_END	Reserved for system usage except
2893 	 *				RSMLIB range
2894 	 *    key < RSM_USER_APP_ID_BASE segment id = key
2895 	 *    key >= RSM_USER_APP_ID_BASE Reserved for KA selections
2896 	 *
2897 	 * rsm_nextavail_segmentid is initialized to 0x80000000 and
2898 	 * overflows to zero after 0x80000000 allocations.
2899 	 * An algorithm is needed which allows reinitialization and provides
2900 	 * for reallocation after overflow.  For now, ENOMEM is returned
2901 	 * once the overflow condition has occurred.
2902 	 */
2903 	if (msg->key == 0) {
2904 		mutex_enter(&rsm_lock);
2905 		segment_id = rsm_nextavail_segmentid;
2906 		if (segment_id != 0) {
2907 			rsm_nextavail_segmentid++;
2908 			mutex_exit(&rsm_lock);
2909 		} else {
2910 			mutex_exit(&rsm_lock);
2911 			DBG_PRINTF((category, RSM_ERR,
2912 			    "rsm_publish done: no more keys avlbl\n"));
2913 			return (RSMERR_INSUFFICIENT_RESOURCES);
2914 		}
2915 	} else	if BETWEEN(msg->key, RSM_RSMLIB_ID_BASE, RSM_RSMLIB_ID_END)
2916 		/* range reserved for internal use by base/ndi libraries */
2917 		segment_id = msg->key;
2918 	else	if (msg->key <= RSM_DLPI_ID_END)
2919 		return (RSMERR_RESERVED_SEGID);
2920 	else if (msg->key <= (uint_t)RSM_USER_APP_ID_BASE -1)
2921 		segment_id = msg->key;
2922 	else {
2923 		DBG_PRINTF((category, RSM_ERR,
2924 		    "rsm_publish done: invalid key %u\n", msg->key));
2925 		return (RSMERR_RESERVED_SEGID);
2926 	}
2927 
2928 	/* Add key to exportlist; The segment lock is held on success */
2929 	e = rsmexport_add(seg, segment_id);
2930 	if (e) {
2931 		rsmacl_free(acl, acl_len);
2932 		DBG_PRINTF((category, RSM_ERR,
2933 		    "rsm_publish done: export_add failed: %d\n", e));
2934 		return (e);
2935 	}
2936 
2937 	seg->s_segid = segment_id;
2938 
2939 	if ((seg->s_state != RSM_STATE_BIND) &&
2940 	    (seg->s_state != RSM_STATE_BIND_QUIESCED)) {
2941 		/* state changed since then, free acl and return */
2942 		rsmseglock_release(seg);
2943 		rsmexport_rm(seg);
2944 		rsmacl_free(acl, acl_len);
2945 		DBG_PRINTF((category, RSM_ERR,
2946 		    "rsm_publish done: segment in wrong state: %d\n",
2947 		    seg->s_state));
2948 		return (RSMERR_BAD_SEG_HNDL);
2949 	}
2950 
2951 	/*
2952 	 * If this is for a local memory handle and permissions are zero,
2953 	 * then the surrogate segment is very large and we want to skip
2954 	 * allocation of DVMA space.
2955 	 *
2956 	 * Careful!  If the user didn't use an ACL list, acl will be a NULL
2957 	 * pointer.  Check that before dereferencing it.
2958 	 */
2959 	if (acl != (rsmapi_access_entry_t *)NULL) {
2960 		if (acl[0].ae_node == my_nodeid && acl[0].ae_permission == 0)
2961 			goto skipdriver;
2962 	}
2963 
2964 	/* create segment  */
2965 	xbuf = ddi_umem_iosetup(seg->s_cookie, 0, seg->s_len, B_WRITE,
2966 	    sdev, 0, NULL, DDI_UMEM_SLEEP);
2967 	ASSERT(xbuf != NULL);
2968 
2969 	mem.ms_type = RSM_MEM_BUF;
2970 	mem.ms_bp = xbuf;
2971 
2972 	/* This call includes a bind operations */
2973 
2974 	adapter = seg->s_adapter;
2975 	/*
2976 	 * create a acl list with hwaddr for RSMPI publish
2977 	 */
2978 	e = rsmpiacl_create(acl, &rsmpi_acl, acl_len, adapter);
2979 
2980 	if (e != RSM_SUCCESS) {
2981 		rsmseglock_release(seg);
2982 		rsmexport_rm(seg);
2983 		rsmacl_free(acl, acl_len);
2984 		freerbuf(xbuf);
2985 		DBG_PRINTF((category, RSM_ERR,
2986 		    "rsm_publish done: rsmpiacl_create failed: %d\n", e));
2987 		return (e);
2988 	}
2989 
2990 	if (seg->s_state == RSM_STATE_BIND) {
2991 		/* create segment  */
2992 
2993 		/* This call includes a bind operations */
2994 
2995 		if (seg->s_flags & RSMKA_ALLOW_UNBIND_REBIND) {
2996 			create_flags = RSM_ALLOW_UNBIND_REBIND;
2997 		}
2998 
2999 		if (seg->s_flags & RSMKA_SET_RESOURCE_DONTWAIT) {
3000 			callback_flag  = RSM_RESOURCE_DONTWAIT;
3001 		} else {
3002 			callback_flag  = RSM_RESOURCE_SLEEP;
3003 		}
3004 
3005 		e = adapter->rsmpi_ops->rsm_seg_create(
3006 		    adapter->rsmpi_handle,
3007 		    &seg->s_handle.out, seg->s_len,
3008 		    create_flags, &mem,
3009 		    callback_flag, NULL);
3010 		/*
3011 		 * At present there is no dependency on the existence of xbuf.
3012 		 * So we can free it here. If in the future this changes, it can
3013 		 * be freed sometime during the segment destroy.
3014 		 */
3015 		freerbuf(xbuf);
3016 
3017 		if (e != RSM_SUCCESS) {
3018 			rsmseglock_release(seg);
3019 			rsmexport_rm(seg);
3020 			rsmacl_free(acl, acl_len);
3021 			rsmpiacl_free(rsmpi_acl, acl_len);
3022 			DBG_PRINTF((category, RSM_ERR,
3023 			    "rsm_publish done: export_create failed: %d\n", e));
3024 			/*
3025 			 * The following assertion ensures that the two errors
3026 			 * related to the length and its alignment do not occur
3027 			 * since they have been checked during export_create
3028 			 */
3029 			ASSERT(e != RSMERR_BAD_MEM_ALIGNMENT &&
3030 			    e != RSMERR_BAD_LENGTH);
3031 			if (e == RSMERR_NOT_MEM)
3032 				e = RSMERR_INSUFFICIENT_MEM;
3033 
3034 			return (e);
3035 		}
3036 		/* export segment, this should create an IMMU mapping */
3037 		e = adapter->rsmpi_ops->rsm_publish(
3038 		    seg->s_handle.out,
3039 		    rsmpi_acl, acl_len,
3040 		    seg->s_segid,
3041 		    RSM_RESOURCE_DONTWAIT, NULL);
3042 
3043 		if (e != RSM_SUCCESS) {
3044 			adapter->rsmpi_ops->rsm_seg_destroy(seg->s_handle.out);
3045 			rsmseglock_release(seg);
3046 			rsmexport_rm(seg);
3047 			rsmacl_free(acl, acl_len);
3048 			rsmpiacl_free(rsmpi_acl, acl_len);
3049 			DBG_PRINTF((category, RSM_ERR,
3050 			    "rsm_publish done: export_publish failed: %d\n",
3051 			    e));
3052 			return (e);
3053 		}
3054 	}
3055 
3056 	seg->s_acl_in = rsmpi_acl;
3057 
3058 skipdriver:
3059 	/* defer s_acl/s_acl_len -> avoid crash in rsmseg_free */
3060 	seg->s_acl_len	= acl_len;
3061 	seg->s_acl	= acl;
3062 
3063 	if (seg->s_state == RSM_STATE_BIND) {
3064 		seg->s_state = RSM_STATE_EXPORT;
3065 	} else if (seg->s_state == RSM_STATE_BIND_QUIESCED) {
3066 		seg->s_state = RSM_STATE_EXPORT_QUIESCED;
3067 		cv_broadcast(&seg->s_cv);
3068 	}
3069 
3070 	rsmseglock_release(seg);
3071 
3072 	/*
3073 	 * If the segment id was solicited, then return it in
3074 	 * the original incoming message.
3075 	 */
3076 	if (msg->key == 0) {
3077 		msg->key = segment_id;
3078 #ifdef _MULTI_DATAMODEL
3079 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
3080 			rsm_ioctlmsg32_t msg32;
3081 
3082 			msg32.key = msg->key;
3083 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3084 			    "rsm_publish done\n"));
3085 			return (ddi_copyout((caddr_t)&msg32,
3086 			    (caddr_t)dataptr, sizeof (msg32), mode));
3087 		}
3088 #endif
3089 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3090 		    "rsm_publish done\n"));
3091 		return (ddi_copyout((caddr_t)msg,
3092 		    (caddr_t)dataptr, sizeof (*msg), mode));
3093 	}
3094 
3095 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_publish done\n"));
3096 	return (DDI_SUCCESS);
3097 }
3098 
3099 /*
3100  * This function modifies the access control list of an already published
3101  * segment.  There is no effect on import segments which are already
3102  * connected.
3103  */
3104 static int
3105 rsm_republish(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int mode)
3106 {
3107 	rsmapi_access_entry_t	*new_acl, *old_acl, *tmp_acl;
3108 	rsm_access_entry_t	*rsmpi_new_acl, *rsmpi_old_acl;
3109 	int			new_acl_len, old_acl_len, tmp_acl_len;
3110 	int			e, i;
3111 	adapter_t		*adapter;
3112 	int			loopback_flag = 0;
3113 	rsm_memseg_id_t		key;
3114 	rsm_permission_t	permission;
3115 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
3116 
3117 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_republish enter\n"));
3118 
3119 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3120 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED) &&
3121 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCING))
3122 		return (RSMERR_SEG_NOT_PUBLISHED);
3123 
3124 	if (seg->s_pid != ddi_get_pid() &&
3125 	    ddi_get_pid() != 0) {
3126 		DBG_PRINTF((category, RSM_ERR,
3127 		    "rsm_republish: Not owner\n"));
3128 		return (RSMERR_NOT_CREATOR);
3129 	}
3130 
3131 	if (seg->s_adapter == &loopback_adapter)
3132 		loopback_flag = 1;
3133 
3134 	/*
3135 	 * Build new list first
3136 	 */
3137 	e = rsmacl_build(msg, mode, &new_acl, &new_acl_len, loopback_flag);
3138 	if (e) {
3139 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3140 		    "rsm_republish done: rsmacl_build failed %d", e));
3141 		return (e);
3142 	}
3143 
3144 	/* Lock segment */
3145 	rsmseglock_acquire(seg);
3146 	/*
3147 	 * a republish is in progress - REPUBLISH message is being
3148 	 * sent to the importers so wait for it to complete OR
3149 	 * wait till DR completes
3150 	 */
3151 	while (((seg->s_state == RSM_STATE_EXPORT) &&
3152 	    (seg->s_flags & RSM_REPUBLISH_WAIT)) ||
3153 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCED) ||
3154 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCING)) {
3155 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3156 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3157 			    "rsm_republish done: cv_wait  INTERRUPTED"));
3158 			rsmseglock_release(seg);
3159 			rsmacl_free(new_acl, new_acl_len);
3160 			return (RSMERR_INTERRUPTED);
3161 		}
3162 	}
3163 
3164 	/* recheck if state is valid */
3165 	if (seg->s_state != RSM_STATE_EXPORT) {
3166 		rsmseglock_release(seg);
3167 		rsmacl_free(new_acl, new_acl_len);
3168 		return (RSMERR_SEG_NOT_PUBLISHED);
3169 	}
3170 
3171 	key = seg->s_key;
3172 	old_acl = seg->s_acl;
3173 	old_acl_len = seg->s_acl_len;
3174 
3175 	seg->s_acl = new_acl;
3176 	seg->s_acl_len = new_acl_len;
3177 
3178 	/*
3179 	 * This call will only be meaningful if and when the interconnect
3180 	 * layer makes use of the access list
3181 	 */
3182 	adapter = seg->s_adapter;
3183 	/*
3184 	 * create a acl list with hwaddr for RSMPI publish
3185 	 */
3186 	e = rsmpiacl_create(new_acl, &rsmpi_new_acl, new_acl_len, adapter);
3187 
3188 	if (e != RSM_SUCCESS) {
3189 		seg->s_acl = old_acl;
3190 		seg->s_acl_len = old_acl_len;
3191 		rsmseglock_release(seg);
3192 		rsmacl_free(new_acl, new_acl_len);
3193 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3194 		    "rsm_republish done: rsmpiacl_create failed %d", e));
3195 		return (e);
3196 	}
3197 	rsmpi_old_acl = seg->s_acl_in;
3198 	seg->s_acl_in = rsmpi_new_acl;
3199 
3200 	e = adapter->rsmpi_ops->rsm_republish(seg->s_handle.out,
3201 	    seg->s_acl_in, seg->s_acl_len,
3202 	    RSM_RESOURCE_DONTWAIT, NULL);
3203 
3204 	if (e != RSM_SUCCESS) {
3205 		seg->s_acl = old_acl;
3206 		seg->s_acl_in = rsmpi_old_acl;
3207 		seg->s_acl_len = old_acl_len;
3208 		rsmseglock_release(seg);
3209 		rsmacl_free(new_acl, new_acl_len);
3210 		rsmpiacl_free(rsmpi_new_acl, new_acl_len);
3211 
3212 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3213 		    "rsm_republish done: rsmpi republish failed %d\n", e));
3214 		return (e);
3215 	}
3216 
3217 	/* create a tmp copy of the new acl */
3218 	tmp_acl_len = new_acl_len;
3219 	if (tmp_acl_len > 0) {
3220 		tmp_acl = kmem_zalloc(new_acl_len*sizeof (*tmp_acl), KM_SLEEP);
3221 		for (i = 0; i < tmp_acl_len; i++) {
3222 			tmp_acl[i].ae_node = new_acl[i].ae_node;
3223 			tmp_acl[i].ae_permission = new_acl[i].ae_permission;
3224 		}
3225 		/*
3226 		 * The default permission of a node which was in the old
3227 		 * ACL but not in the new ACL is 0 ie no access.
3228 		 */
3229 		permission = 0;
3230 	} else {
3231 		/*
3232 		 * NULL acl means all importers can connect and
3233 		 * default permission will be owner creation umask
3234 		 */
3235 		tmp_acl = NULL;
3236 		permission = seg->s_mode;
3237 	}
3238 
3239 	/* make other republishers to wait for republish to complete */
3240 	seg->s_flags |= RSM_REPUBLISH_WAIT;
3241 
3242 	rsmseglock_release(seg);
3243 
3244 	/* send the new perms to the importing nodes */
3245 	rsm_send_republish(key, tmp_acl, tmp_acl_len, permission);
3246 
3247 	rsmseglock_acquire(seg);
3248 	seg->s_flags &= ~RSM_REPUBLISH_WAIT;
3249 	/* wake up any one waiting for republish to complete */
3250 	cv_broadcast(&seg->s_cv);
3251 	rsmseglock_release(seg);
3252 
3253 	rsmacl_free(tmp_acl, tmp_acl_len);
3254 	rsmacl_free(old_acl, old_acl_len);
3255 	rsmpiacl_free(rsmpi_old_acl, old_acl_len);
3256 
3257 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_republish done\n"));
3258 	return (DDI_SUCCESS);
3259 }
3260 
3261 static int
3262 rsm_unpublish(rsmseg_t *seg, int mode)
3263 {
3264 	rsmapi_access_entry_t	*acl;
3265 	rsm_access_entry_t	*rsmpi_acl;
3266 	int			acl_len;
3267 	int			e;
3268 	adapter_t *adapter;
3269 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
3270 
3271 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unpublish enter\n"));
3272 
3273 	if (seg->s_pid != ddi_get_pid() &&
3274 	    ddi_get_pid() != 0) {
3275 		DBG_PRINTF((category, RSM_ERR,
3276 		    "rsm_unpublish: Not creator\n"));
3277 		return (RSMERR_NOT_CREATOR);
3278 	}
3279 
3280 	rsmseglock_acquire(seg);
3281 	/*
3282 	 * wait for QUIESCING to complete here before rsmexport_rm
3283 	 * is called because the SUSPEND_COMPLETE mesg which changes
3284 	 * the seg state from EXPORT_QUIESCING to EXPORT_QUIESCED and
3285 	 * signals the cv_wait needs to find it in the hashtable.
3286 	 */
3287 	while ((seg->s_state == RSM_STATE_EXPORT_QUIESCING) ||
3288 	    ((seg->s_state == RSM_STATE_EXPORT) && (seg->s_rdmacnt > 0))) {
3289 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3290 			rsmseglock_release(seg);
3291 			DBG_PRINTF((category, RSM_ERR,
3292 			    "rsm_unpublish done: cv_wait INTR qscing"
3293 			    "getv/putv in progress"));
3294 			return (RSMERR_INTERRUPTED);
3295 		}
3296 	}
3297 
3298 	/* verify segment state */
3299 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3300 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED)) {
3301 		rsmseglock_release(seg);
3302 		DBG_PRINTF((category, RSM_ERR,
3303 		    "rsm_unpublish done: bad state %x\n", seg->s_state));
3304 		return (RSMERR_SEG_NOT_PUBLISHED);
3305 	}
3306 
3307 	rsmseglock_release(seg);
3308 
3309 	rsmexport_rm(seg);
3310 
3311 	rsm_send_importer_disconnects(seg->s_segid, my_nodeid);
3312 
3313 	rsmseglock_acquire(seg);
3314 	/*
3315 	 * wait for republish to complete
3316 	 */
3317 	while ((seg->s_state == RSM_STATE_EXPORT) &&
3318 	    (seg->s_flags & RSM_REPUBLISH_WAIT)) {
3319 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3320 			DBG_PRINTF((category, RSM_ERR,
3321 			    "rsm_unpublish done: cv_wait INTR repubing"));
3322 			rsmseglock_release(seg);
3323 			return (RSMERR_INTERRUPTED);
3324 		}
3325 	}
3326 
3327 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3328 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED)) {
3329 		DBG_PRINTF((category, RSM_ERR,
3330 		    "rsm_unpublish done: invalid state"));
3331 		rsmseglock_release(seg);
3332 		return (RSMERR_SEG_NOT_PUBLISHED);
3333 	}
3334 
3335 	/*
3336 	 * check for putv/get surrogate segment which was not published
3337 	 * to the driver.
3338 	 *
3339 	 * Be certain to see if there is an ACL first!  If this segment was
3340 	 * not published with an ACL, acl will be a null pointer.  Check
3341 	 * that before dereferencing it.
3342 	 */
3343 	acl = seg->s_acl;
3344 	if (acl != (rsmapi_access_entry_t *)NULL) {
3345 		if (acl[0].ae_node == my_nodeid && acl[0].ae_permission == 0)
3346 			goto bypass;
3347 	}
3348 
3349 	/* The RSMPI unpublish/destroy has been done if seg is QUIESCED */
3350 	if (seg->s_state == RSM_STATE_EXPORT_QUIESCED)
3351 		goto bypass;
3352 
3353 	adapter = seg->s_adapter;
3354 	for (;;) {
3355 		if (seg->s_state != RSM_STATE_EXPORT) {
3356 			rsmseglock_release(seg);
3357 			DBG_PRINTF((category, RSM_ERR,
3358 			    "rsm_unpublish done: bad state %x\n",
3359 			    seg->s_state));
3360 			return (RSMERR_SEG_NOT_PUBLISHED);
3361 		}
3362 
3363 		/* unpublish from adapter */
3364 		e = adapter->rsmpi_ops->rsm_unpublish(seg->s_handle.out);
3365 
3366 		if (e == RSM_SUCCESS) {
3367 			break;
3368 		}
3369 
3370 		if (e == RSMERR_SEG_IN_USE && mode == 1) {
3371 			/*
3372 			 * wait for unpublish to succeed, it's busy.
3373 			 */
3374 			seg->s_flags |= RSM_EXPORT_WAIT;
3375 
3376 			/* wait for a max of 1 ms - this is an empirical */
3377 			/* value that was found by some minimal testing  */
3378 			/* can be fine tuned when we have better numbers */
3379 			/* A long term fix would be to send cv_signal	 */
3380 			/* from the intr callback routine		 */
3381 			/* currently nobody signals this wait		 */
3382 			(void) cv_reltimedwait(&seg->s_cv, &seg->s_lock,
3383 			    drv_usectohz(1000), TR_CLOCK_TICK);
3384 
3385 			DBG_PRINTF((category, RSM_ERR,
3386 			    "rsm_unpublish: SEG_IN_USE\n"));
3387 
3388 			seg->s_flags &= ~RSM_EXPORT_WAIT;
3389 		} else {
3390 			if (mode == 1) {
3391 				DBG_PRINTF((category, RSM_ERR,
3392 				    "rsm:rsmpi unpublish err %x\n", e));
3393 				seg->s_state = RSM_STATE_BIND;
3394 			}
3395 			rsmseglock_release(seg);
3396 			return (e);
3397 		}
3398 	}
3399 
3400 	/* Free segment */
3401 	e = adapter->rsmpi_ops->rsm_seg_destroy(seg->s_handle.out);
3402 
3403 	if (e != RSM_SUCCESS) {
3404 		DBG_PRINTF((category, RSM_ERR,
3405 		    "rsm_unpublish: rsmpi destroy key=%x failed %x\n",
3406 		    seg->s_key, e));
3407 	}
3408 
3409 bypass:
3410 	acl = seg->s_acl;
3411 	rsmpi_acl = seg->s_acl_in;
3412 	acl_len = seg->s_acl_len;
3413 
3414 	seg->s_acl = NULL;
3415 	seg->s_acl_in = NULL;
3416 	seg->s_acl_len = 0;
3417 
3418 	if (seg->s_state == RSM_STATE_EXPORT) {
3419 		seg->s_state = RSM_STATE_BIND;
3420 	} else if (seg->s_state == RSM_STATE_EXPORT_QUIESCED) {
3421 		seg->s_state = RSM_STATE_BIND_QUIESCED;
3422 		cv_broadcast(&seg->s_cv);
3423 	}
3424 
3425 	rsmseglock_release(seg);
3426 
3427 	rsmacl_free(acl, acl_len);
3428 	rsmpiacl_free(rsmpi_acl, acl_len);
3429 
3430 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unpublish done\n"));
3431 
3432 	return (DDI_SUCCESS);
3433 }
3434 
3435 /*
3436  * Called from rsm_unpublish to force an unload and disconnection of all
3437  * importers of the unpublished segment.
3438  *
3439  * First build the list of segments requiring a force disconnect, then
3440  * send a request for each.
3441  */
3442 static void
3443 rsm_send_importer_disconnects(rsm_memseg_id_t ex_segid,
3444     rsm_node_id_t ex_nodeid)
3445 {
3446 	rsmipc_request_t 	request;
3447 	importing_token_t	*prev_token, *token, *tmp_token, *tokp;
3448 	importing_token_t	*force_disconnect_list = NULL;
3449 	int			index;
3450 
3451 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3452 	    "rsm_send_importer_disconnects enter\n"));
3453 
3454 	index = rsmhash(ex_segid);
3455 
3456 	mutex_enter(&importer_list.lock);
3457 
3458 	prev_token = NULL;
3459 	token = importer_list.bucket[index];
3460 
3461 	while (token != NULL) {
3462 		if (token->key == ex_segid) {
3463 			/*
3464 			 * take it off the importer list and add it
3465 			 * to the force disconnect list.
3466 			 */
3467 			if (prev_token == NULL)
3468 				importer_list.bucket[index] = token->next;
3469 			else
3470 				prev_token->next = token->next;
3471 			tmp_token = token;
3472 			token = token->next;
3473 			if (force_disconnect_list == NULL) {
3474 				force_disconnect_list = tmp_token;
3475 				tmp_token->next = NULL;
3476 			} else {
3477 				tokp = force_disconnect_list;
3478 				/*
3479 				 * make sure that the tmp_token's node
3480 				 * is not already on the force disconnect
3481 				 * list.
3482 				 */
3483 				while (tokp != NULL) {
3484 					if (tokp->importing_node ==
3485 					    tmp_token->importing_node) {
3486 						break;
3487 					}
3488 					tokp = tokp->next;
3489 				}
3490 				if (tokp == NULL) {
3491 					tmp_token->next =
3492 					    force_disconnect_list;
3493 					force_disconnect_list = tmp_token;
3494 				} else {
3495 					kmem_free((void *)tmp_token,
3496 					    sizeof (*token));
3497 				}
3498 			}
3499 
3500 		} else {
3501 			prev_token = token;
3502 			token = token->next;
3503 		}
3504 	}
3505 	mutex_exit(&importer_list.lock);
3506 
3507 	token = force_disconnect_list;
3508 	while (token != NULL) {
3509 		if (token->importing_node == my_nodeid) {
3510 			rsm_force_unload(ex_nodeid, ex_segid,
3511 			    DISCONNECT);
3512 		} else {
3513 			request.rsmipc_hdr.rsmipc_type =
3514 			    RSMIPC_MSG_DISCONNECT;
3515 			request.rsmipc_key = token->key;
3516 			for (;;) {
3517 				if (rsmipc_send(token->importing_node,
3518 				    &request,
3519 				    RSM_NO_REPLY) == RSM_SUCCESS) {
3520 					break;
3521 				} else {
3522 					delay(drv_usectohz(10000));
3523 				}
3524 			}
3525 		}
3526 		tmp_token = token;
3527 		token = token->next;
3528 		kmem_free((void *)tmp_token, sizeof (*token));
3529 	}
3530 
3531 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3532 	    "rsm_send_importer_disconnects done\n"));
3533 }
3534 
3535 /*
3536  * This function is used as a callback for unlocking the pages locked
3537  * down by a process which then does a fork or an exec.
3538  * It marks the export segments corresponding to umem cookie given by
3539  * the *arg to be in a ZOMBIE state(by calling rsmseg_close to be
3540  * destroyed later when an rsm_close occurs).
3541  */
3542 static void
3543 rsm_export_force_destroy(ddi_umem_cookie_t *ck)
3544 {
3545 	rsmresource_blk_t *blk;
3546 	rsmresource_t *p;
3547 	rsmseg_t *eseg = NULL;
3548 	int i, j;
3549 	int found = 0;
3550 
3551 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3552 	    "rsm_export_force_destroy enter\n"));
3553 
3554 	/*
3555 	 * Walk the resource list and locate the export segment (either
3556 	 * in the BIND or the EXPORT state) which corresponds to the
3557 	 * ddi_umem_cookie_t being freed up, and call rsmseg_close.
3558 	 * Change the state to ZOMBIE by calling rsmseg_close with the
3559 	 * force_flag argument (the second argument) set to 1. Also,
3560 	 * unpublish and unbind the segment, but don't free it. Free it
3561 	 * only on a rsm_close call for the segment.
3562 	 */
3563 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
3564 
3565 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
3566 		blk = rsm_resource.rsmrc_root[i];
3567 		if (blk == NULL) {
3568 			continue;
3569 		}
3570 
3571 		for (j = 0; j < RSMRC_BLKSZ; j++) {
3572 			p = blk->rsmrcblk_blks[j];
3573 			if ((p != NULL) && (p != RSMRC_RESERVED) &&
3574 			    (p->rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT)) {
3575 				eseg = (rsmseg_t *)p;
3576 				if (eseg->s_cookie != ck)
3577 					continue; /* continue searching */
3578 				/*
3579 				 * Found the segment, set flag to indicate
3580 				 * force destroy processing is in progress
3581 				 */
3582 				rsmseglock_acquire(eseg);
3583 				eseg->s_flags |= RSM_FORCE_DESTROY_WAIT;
3584 				rsmseglock_release(eseg);
3585 				found = 1;
3586 				break;
3587 			}
3588 		}
3589 
3590 		if (found)
3591 			break;
3592 	}
3593 
3594 	rw_exit(&rsm_resource.rsmrc_lock);
3595 
3596 	if (found) {
3597 		ASSERT(eseg != NULL);
3598 		/* call rsmseg_close with force flag set to 1 */
3599 		rsmseg_close(eseg, 1);
3600 		/*
3601 		 * force destroy processing done, clear flag and signal any
3602 		 * thread waiting in rsmseg_close.
3603 		 */
3604 		rsmseglock_acquire(eseg);
3605 		eseg->s_flags &= ~RSM_FORCE_DESTROY_WAIT;
3606 		cv_broadcast(&eseg->s_cv);
3607 		rsmseglock_release(eseg);
3608 	}
3609 
3610 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3611 	    "rsm_export_force_destroy done\n"));
3612 }
3613 
3614 /* ******************************* Remote Calls *********************** */
3615 static void
3616 rsm_intr_segconnect(rsm_node_id_t src, rsmipc_request_t *req)
3617 {
3618 	rsmipc_reply_t reply;
3619 	DBG_DEFINE(category,
3620 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3621 
3622 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3623 	    "rsm_intr_segconnect enter\n"));
3624 
3625 	reply.rsmipc_status = (short)rsmsegacl_validate(req, src, &reply);
3626 
3627 	reply.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPLY;
3628 	reply.rsmipc_hdr.rsmipc_cookie = req->rsmipc_hdr.rsmipc_cookie;
3629 
3630 	(void) rsmipc_send(src, NULL, &reply);
3631 
3632 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3633 	    "rsm_intr_segconnect done\n"));
3634 }
3635 
3636 
3637 /*
3638  * When an exported segment is unpublished the exporter sends an ipc
3639  * message (RSMIPC_MSG_DISCONNECT) to all importers.  The recv ipc dispatcher
3640  * calls this function.  The import list is scanned; segments which match the
3641  * exported segment id are unloaded and disconnected.
3642  *
3643  * Will also be called from rsm_rebind with disconnect_flag FALSE.
3644  *
3645  */
3646 static void
3647 rsm_force_unload(rsm_node_id_t src_nodeid,
3648     rsm_memseg_id_t ex_segid,
3649     boolean_t disconnect_flag)
3650 
3651 {
3652 	rsmresource_t	*p = NULL;
3653 	rsmhash_table_t *rhash = &rsm_import_segs;
3654 	uint_t		index;
3655 	DBG_DEFINE(category,
3656 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3657 
3658 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_force_unload enter\n"));
3659 
3660 	index = rsmhash(ex_segid);
3661 
3662 	rw_enter(&rhash->rsmhash_rw, RW_READER);
3663 
3664 	p = rsmhash_getbkt(rhash, index);
3665 
3666 	for (; p; p = p->rsmrc_next) {
3667 		rsmseg_t *seg = (rsmseg_t *)p;
3668 		if ((seg->s_segid == ex_segid) && (seg->s_node == src_nodeid)) {
3669 			/*
3670 			 * In order to make rsmseg_unload and rsm_force_unload
3671 			 * thread safe, acquire the segment lock here.
3672 			 * rsmseg_unload is responsible for releasing the lock.
3673 			 * rsmseg_unload releases the lock just before a call
3674 			 * to rsmipc_send or in case of an early exit which
3675 			 * occurs if the segment was in the state
3676 			 * RSM_STATE_CONNECTING or RSM_STATE_NEW.
3677 			 */
3678 			rsmseglock_acquire(seg);
3679 			if (disconnect_flag)
3680 				seg->s_flags |= RSM_FORCE_DISCONNECT;
3681 			rsmseg_unload(seg);
3682 		}
3683 	}
3684 	rw_exit(&rhash->rsmhash_rw);
3685 
3686 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_force_unload done\n"));
3687 }
3688 
3689 static void
3690 rsm_intr_reply(rsmipc_msghdr_t *msg)
3691 {
3692 	/*
3693 	 * Find slot for cookie in reply.
3694 	 * Match sequence with sequence in cookie
3695 	 * If no match; return
3696 	 * Try to grap lock of slot, if locked return
3697 	 * copy data into reply slot area
3698 	 * signal waiter
3699 	 */
3700 	rsmipc_slot_t 	*slot;
3701 	rsmipc_cookie_t	*cookie;
3702 	void *data = (void *) msg;
3703 	size_t size = sizeof (rsmipc_reply_t);
3704 	DBG_DEFINE(category,
3705 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3706 
3707 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_reply enter\n"));
3708 
3709 	cookie = &msg->rsmipc_cookie;
3710 	if (cookie->ic.index >= RSMIPC_SZ) {
3711 		DBG_PRINTF((category, RSM_ERR,
3712 		    "rsm: rsm_intr_reply bad cookie %d\n", cookie->ic.index));
3713 		return;
3714 	}
3715 
3716 	ASSERT(cookie->ic.index < RSMIPC_SZ);
3717 	slot = &rsm_ipc.slots[cookie->ic.index];
3718 	mutex_enter(&slot->rsmipc_lock);
3719 	if (slot->rsmipc_cookie.value == cookie->value) {
3720 		/* found a match */
3721 		if (RSMIPC_GET(slot, RSMIPC_PENDING)) {
3722 			bcopy(data, slot->rsmipc_data, size);
3723 			RSMIPC_CLEAR(slot, RSMIPC_PENDING);
3724 			cv_signal(&slot->rsmipc_cv);
3725 		}
3726 	} else {
3727 		DBG_PRINTF((category, RSM_DEBUG,
3728 		    "rsm: rsm_intr_reply mismatched reply %d\n",
3729 		    cookie->ic.index));
3730 	}
3731 	mutex_exit(&slot->rsmipc_lock);
3732 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_reply done\n"));
3733 }
3734 
3735 /*
3736  * This function gets dispatched on the worker thread when we receive
3737  * the SQREADY message. This function sends the SQREADY_ACK message.
3738  */
3739 static void
3740 rsm_sqready_ack_deferred(void *arg)
3741 {
3742 	path_t	*path = (path_t *)arg;
3743 	DBG_DEFINE(category,
3744 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3745 
3746 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3747 	    "rsm_sqready_ack_deferred enter\n"));
3748 
3749 	mutex_enter(&path->mutex);
3750 
3751 	/*
3752 	 * If path is not active no point in sending the ACK
3753 	 * because the whole SQREADY protocol will again start
3754 	 * when the path becomes active.
3755 	 */
3756 	if (path->state != RSMKA_PATH_ACTIVE) {
3757 		/*
3758 		 * decrement the path refcnt incremented in rsm_proc_sqready
3759 		 */
3760 		PATH_RELE_NOLOCK(path);
3761 		mutex_exit(&path->mutex);
3762 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3763 		    "rsm_sqready_ack_deferred done:!ACTIVE\n"));
3764 		return;
3765 	}
3766 
3767 	/* send an SQREADY_ACK message */
3768 	(void) rsmipc_send_controlmsg(path, RSMIPC_MSG_SQREADY_ACK);
3769 
3770 	/* initialize credits to the max level */
3771 	path->sendq_token.msgbuf_avail = RSMIPC_MAX_MESSAGES;
3772 
3773 	/* wake up any send that is waiting for credits */
3774 	cv_broadcast(&path->sendq_token.sendq_cv);
3775 
3776 	/*
3777 	 * decrement the path refcnt since we incremented it in
3778 	 * rsm_proc_sqready
3779 	 */
3780 	PATH_RELE_NOLOCK(path);
3781 
3782 	mutex_exit(&path->mutex);
3783 
3784 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3785 	    "rsm_sqready_ack_deferred done\n"));
3786 }
3787 
3788 /*
3789  * Process the SQREADY message
3790  */
3791 static void
3792 rsm_proc_sqready(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3793     rsm_intr_hand_arg_t arg)
3794 {
3795 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3796 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3797 	path_t			*path;
3798 	DBG_DEFINE(category,
3799 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3800 
3801 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_proc_sqready enter\n"));
3802 
3803 	/* look up the path - incr the path refcnt */
3804 	path = rsm_find_path(hdlr_argp->adapter_name,
3805 	    hdlr_argp->adapter_instance, src_hwaddr);
3806 
3807 	/*
3808 	 * No path exists or path is not active - drop the message
3809 	 */
3810 	if (path == NULL) {
3811 		DBG_PRINTF((category, RSM_DEBUG,
3812 		    "rsm_proc_sqready done: msg dropped no path\n"));
3813 		return;
3814 	}
3815 
3816 	mutex_exit(&path->mutex);
3817 
3818 	/* drain any tasks from the previous incarnation */
3819 	taskq_wait(path->recv_taskq);
3820 
3821 	mutex_enter(&path->mutex);
3822 	/*
3823 	 * If we'd sent an SQREADY message and were waiting for SQREADY_ACK
3824 	 * in the meanwhile we received an SQREADY message, blindly reset
3825 	 * the WAIT_FOR_SQACK flag because we'll just send SQREADY_ACK
3826 	 * and forget about the SQREADY that we sent.
3827 	 */
3828 	path->flags &= ~RSMKA_WAIT_FOR_SQACK;
3829 
3830 	if (path->state != RSMKA_PATH_ACTIVE) {
3831 		/* decr refcnt and drop the mutex */
3832 		PATH_RELE_NOLOCK(path);
3833 		mutex_exit(&path->mutex);
3834 		DBG_PRINTF((category, RSM_DEBUG,
3835 		    "rsm_proc_sqready done: msg dropped path !ACTIVE\n"));
3836 		return;
3837 	}
3838 
3839 	DBG_PRINTF((category, RSM_DEBUG, "rsm_proc_sqready:path=%lx "
3840 	    " src=%lx:%llx\n", path, msghdr->rsmipc_src, src_hwaddr));
3841 
3842 	/*
3843 	 * The sender's local incarnation number is our remote incarnation
3844 	 * number save it in the path data structure
3845 	 */
3846 	path->remote_incn = msg->rsmipc_local_incn;
3847 	path->sendq_token.msgbuf_avail = 0;
3848 	path->procmsg_cnt = 0;
3849 
3850 	/*
3851 	 * path is active - dispatch task to send SQREADY_ACK - remember
3852 	 * RSMPI calls can't be done in interrupt context
3853 	 *
3854 	 * We can use the recv_taskq to send because the remote endpoint
3855 	 * cannot start sending messages till it receives SQREADY_ACK hence
3856 	 * at this point there are no tasks on recv_taskq.
3857 	 *
3858 	 * The path refcnt will be decremented in rsm_sqready_ack_deferred.
3859 	 */
3860 	(void) taskq_dispatch(path->recv_taskq,
3861 	    rsm_sqready_ack_deferred, path, KM_NOSLEEP);
3862 
3863 	mutex_exit(&path->mutex);
3864 
3865 
3866 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_proc_sqready done\n"));
3867 }
3868 
3869 /*
3870  * Process the SQREADY_ACK message
3871  */
3872 static void
3873 rsm_proc_sqready_ack(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3874     rsm_intr_hand_arg_t arg)
3875 {
3876 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3877 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3878 	path_t			*path;
3879 	DBG_DEFINE(category,
3880 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3881 
3882 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3883 	    "rsm_proc_sqready_ack enter\n"));
3884 
3885 	/* look up the path - incr the path refcnt */
3886 	path = rsm_find_path(hdlr_argp->adapter_name,
3887 	    hdlr_argp->adapter_instance, src_hwaddr);
3888 
3889 	/*
3890 	 * drop the message if - no path exists or path is not active
3891 	 * or if its not waiting for SQREADY_ACK message
3892 	 */
3893 	if (path == NULL) {
3894 		DBG_PRINTF((category, RSM_DEBUG,
3895 		    "rsm_proc_sqready_ack done: msg dropped no path\n"));
3896 		return;
3897 	}
3898 
3899 	if ((path->state != RSMKA_PATH_ACTIVE) ||
3900 	    !(path->flags & RSMKA_WAIT_FOR_SQACK)) {
3901 		/* decrement the refcnt */
3902 		PATH_RELE_NOLOCK(path);
3903 		mutex_exit(&path->mutex);
3904 		DBG_PRINTF((category, RSM_DEBUG,
3905 		    "rsm_proc_sqready_ack done: msg dropped\n"));
3906 		return;
3907 	}
3908 
3909 	/*
3910 	 * Check if this message is in response to the last RSMIPC_MSG_SQREADY
3911 	 * sent, if not drop it.
3912 	 */
3913 	if (path->local_incn != msghdr->rsmipc_incn) {
3914 		/* decrement the refcnt */
3915 		PATH_RELE_NOLOCK(path);
3916 		mutex_exit(&path->mutex);
3917 		DBG_PRINTF((category, RSM_DEBUG,
3918 		    "rsm_proc_sqready_ack done: msg old incn %lld\n",
3919 		    msghdr->rsmipc_incn));
3920 		return;
3921 	}
3922 
3923 	DBG_PRINTF((category, RSM_DEBUG, "rsm_proc_sqready_ack:path=%lx "
3924 	    " src=%lx:%llx\n", path, msghdr->rsmipc_src, src_hwaddr));
3925 
3926 	/*
3927 	 * clear the WAIT_FOR_SQACK flag since we have recvd the ack
3928 	 */
3929 	path->flags &= ~RSMKA_WAIT_FOR_SQACK;
3930 
3931 	/* save the remote sendq incn number */
3932 	path->remote_incn = msg->rsmipc_local_incn;
3933 
3934 	/* initialize credits to the max level */
3935 	path->sendq_token.msgbuf_avail = RSMIPC_MAX_MESSAGES;
3936 
3937 	/* wake up any send that is waiting for credits */
3938 	cv_broadcast(&path->sendq_token.sendq_cv);
3939 
3940 	/* decrement the refcnt */
3941 	PATH_RELE_NOLOCK(path);
3942 
3943 	mutex_exit(&path->mutex);
3944 
3945 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3946 	    "rsm_proc_sqready_ack done\n"));
3947 }
3948 
3949 /*
3950  * process the RSMIPC_MSG_CREDIT message
3951  */
3952 static void
3953 rsm_add_credits(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3954     rsm_intr_hand_arg_t arg)
3955 {
3956 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3957 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3958 	path_t			*path;
3959 	DBG_DEFINE(category,
3960 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL |
3961 	    RSM_INTR_CALLBACK | RSM_FLOWCONTROL);
3962 
3963 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_add_credits enter\n"));
3964 
3965 	/* look up the path - incr the path refcnt */
3966 	path = rsm_find_path(hdlr_argp->adapter_name,
3967 	    hdlr_argp->adapter_instance, src_hwaddr);
3968 
3969 	if (path == NULL) {
3970 		DBG_PRINTF((category, RSM_DEBUG,
3971 		    "rsm_add_credits enter: path not found\n"));
3972 		return;
3973 	}
3974 
3975 	/* the path is not active - discard credits */
3976 	if (path->state != RSMKA_PATH_ACTIVE) {
3977 		PATH_RELE_NOLOCK(path);
3978 		mutex_exit(&path->mutex);
3979 		DBG_PRINTF((category, RSM_DEBUG,
3980 		    "rsm_add_credits enter:path=%lx !ACTIVE\n", path));
3981 		return;
3982 	}
3983 
3984 	/*
3985 	 * Check if these credits are for current incarnation of the path.
3986 	 */
3987 	if (path->local_incn != msghdr->rsmipc_incn) {
3988 		/* decrement the refcnt */
3989 		PATH_RELE_NOLOCK(path);
3990 		mutex_exit(&path->mutex);
3991 		DBG_PRINTF((category, RSM_DEBUG,
3992 		    "rsm_add_credits enter: old incn %lld\n",
3993 		    msghdr->rsmipc_incn));
3994 		return;
3995 	}
3996 
3997 	DBG_PRINTF((category, RSM_DEBUG,
3998 	    "rsm_add_credits:path=%lx new-creds=%d "
3999 	    "curr credits=%d src=%lx:%llx\n", path, msg->rsmipc_credits,
4000 	    path->sendq_token.msgbuf_avail, msghdr->rsmipc_src,
4001 	    src_hwaddr));
4002 
4003 
4004 	/* add credits to the path's sendq */
4005 	path->sendq_token.msgbuf_avail += msg->rsmipc_credits;
4006 
4007 	ASSERT(path->sendq_token.msgbuf_avail <= RSMIPC_MAX_MESSAGES);
4008 
4009 	/* wake up any send that is waiting for credits */
4010 	cv_broadcast(&path->sendq_token.sendq_cv);
4011 
4012 	/* decrement the refcnt */
4013 	PATH_RELE_NOLOCK(path);
4014 
4015 	mutex_exit(&path->mutex);
4016 
4017 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_add_credits done\n"));
4018 }
4019 
4020 static void
4021 rsm_intr_event(rsmipc_request_t *msg)
4022 {
4023 	rsmseg_t	*seg;
4024 	rsmresource_t	*p;
4025 	rsm_node_id_t	src_node;
4026 	DBG_DEFINE(category,
4027 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4028 
4029 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_event enter\n"));
4030 
4031 	src_node = msg->rsmipc_hdr.rsmipc_src;
4032 
4033 	if ((seg = msg->rsmipc_segment_cookie) != NULL) {
4034 		/* This is for an import segment */
4035 		uint_t hashval = rsmhash(msg->rsmipc_key);
4036 
4037 		rw_enter(&rsm_import_segs.rsmhash_rw, RW_READER);
4038 
4039 		p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hashval);
4040 
4041 		for (; p; p = p->rsmrc_next) {
4042 			if ((p->rsmrc_key == msg->rsmipc_key) &&
4043 			    (p->rsmrc_node == src_node)) {
4044 				seg = (rsmseg_t *)p;
4045 				rsmseglock_acquire(seg);
4046 
4047 				atomic_inc_32(&seg->s_pollevent);
4048 
4049 				if (seg->s_pollflag & RSM_SEGMENT_POLL)
4050 					pollwakeup(&seg->s_poll, POLLRDNORM);
4051 
4052 				rsmseglock_release(seg);
4053 			}
4054 		}
4055 
4056 		rw_exit(&rsm_import_segs.rsmhash_rw);
4057 	} else {
4058 		/* This is for an export segment */
4059 		seg = rsmexport_lookup(msg->rsmipc_key);
4060 		if (!seg) {
4061 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4062 			    "rsm_intr_event done: exp seg not found\n"));
4063 			return;
4064 		}
4065 
4066 		ASSERT(rsmseglock_held(seg));
4067 
4068 		atomic_inc_32(&seg->s_pollevent);
4069 
4070 		/*
4071 		 * We must hold the segment lock here, or else the segment
4072 		 * can be freed while pollwakeup is using it. This implies
4073 		 * that we MUST NOT grab the segment lock during rsm_chpoll,
4074 		 * as outlined in the chpoll(2) man page.
4075 		 */
4076 		if (seg->s_pollflag & RSM_SEGMENT_POLL)
4077 			pollwakeup(&seg->s_poll, POLLRDNORM);
4078 
4079 		rsmseglock_release(seg);
4080 	}
4081 
4082 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_event done\n"));
4083 }
4084 
4085 /*
4086  * The exporter did a republish and changed the ACL - this change is only
4087  * visible to new importers.
4088  */
4089 static void
4090 importer_update(rsm_node_id_t src_node, rsm_memseg_id_t key,
4091     rsm_permission_t perm)
4092 {
4093 
4094 	rsmresource_t	*p;
4095 	rsmseg_t	*seg;
4096 	uint_t		hashval = rsmhash(key);
4097 	DBG_DEFINE(category,
4098 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4099 
4100 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_update enter\n"));
4101 
4102 	rw_enter(&rsm_import_segs.rsmhash_rw, RW_READER);
4103 
4104 	p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hashval);
4105 
4106 	for (; p; p = p->rsmrc_next) {
4107 		/*
4108 		 * find the importer and update the permission in the shared
4109 		 * data structure. Any new importers will use the new perms
4110 		 */
4111 		if ((p->rsmrc_key == key) && (p->rsmrc_node == src_node)) {
4112 			seg = (rsmseg_t *)p;
4113 
4114 			rsmseglock_acquire(seg);
4115 			rsmsharelock_acquire(seg);
4116 			seg->s_share->rsmsi_mode = perm;
4117 			rsmsharelock_release(seg);
4118 			rsmseglock_release(seg);
4119 
4120 			break;
4121 		}
4122 	}
4123 
4124 	rw_exit(&rsm_import_segs.rsmhash_rw);
4125 
4126 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_update done\n"));
4127 }
4128 
4129 void
4130 rsm_suspend_complete(rsm_node_id_t src_node, int flag)
4131 {
4132 	int		done = 1; /* indicate all SUSPENDS have been acked */
4133 	list_element_t	*elem;
4134 	DBG_DEFINE(category,
4135 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4136 
4137 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4138 	    "rsm_suspend_complete enter\n"));
4139 
4140 	mutex_enter(&rsm_suspend_list.list_lock);
4141 
4142 	if (rsm_suspend_list.list_head == NULL) {
4143 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4144 		    "rsm_suspend_complete done: suspend_list is empty\n"));
4145 		mutex_exit(&rsm_suspend_list.list_lock);
4146 		return;
4147 	}
4148 
4149 	elem = rsm_suspend_list.list_head;
4150 	while (elem != NULL) {
4151 		if (elem->nodeid == src_node) {
4152 			/* clear the pending flag for the node */
4153 			elem->flags &= ~RSM_SUSPEND_ACKPENDING;
4154 			elem->flags |= flag;
4155 		}
4156 
4157 		if (done && (elem->flags & RSM_SUSPEND_ACKPENDING))
4158 			done = 0; /* still some nodes have not yet ACKED */
4159 
4160 		elem = elem->next;
4161 	}
4162 
4163 	mutex_exit(&rsm_suspend_list.list_lock);
4164 
4165 	if (!done) {
4166 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4167 		    "rsm_suspend_complete done: acks pending\n"));
4168 		return;
4169 	}
4170 	/*
4171 	 * Now that we are done with suspending all the remote importers
4172 	 * time to quiesce the local exporters
4173 	 */
4174 	exporter_quiesce();
4175 
4176 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4177 	    "rsm_suspend_complete done\n"));
4178 }
4179 
4180 static void
4181 exporter_quiesce()
4182 {
4183 	int		i, e;
4184 	rsmresource_t	*current;
4185 	rsmseg_t	*seg;
4186 	adapter_t	*adapter;
4187 	DBG_DEFINE(category,
4188 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4189 
4190 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exporter_quiesce enter\n"));
4191 	/*
4192 	 * The importers send a SUSPEND_COMPLETE to the exporter node
4193 	 *	Unpublish, unbind the export segment and
4194 	 *	move the segments to the EXPORT_QUIESCED state
4195 	 */
4196 
4197 	rw_enter(&rsm_export_segs.rsmhash_rw, RW_READER);
4198 
4199 	for (i = 0; i < rsm_hash_size; i++) {
4200 		current = rsm_export_segs.bucket[i];
4201 		while (current != NULL) {
4202 			seg = (rsmseg_t *)current;
4203 			rsmseglock_acquire(seg);
4204 			if (current->rsmrc_state ==
4205 			    RSM_STATE_EXPORT_QUIESCING) {
4206 				adapter = seg->s_adapter;
4207 				/*
4208 				 * some local memory handles are not published
4209 				 * check if it was published
4210 				 */
4211 				if ((seg->s_acl == NULL) ||
4212 				    (seg->s_acl[0].ae_node != my_nodeid) ||
4213 				    (seg->s_acl[0].ae_permission != 0)) {
4214 
4215 					e = adapter->rsmpi_ops->rsm_unpublish(
4216 					    seg->s_handle.out);
4217 					DBG_PRINTF((category, RSM_DEBUG,
4218 					    "exporter_quiesce:unpub %d\n", e));
4219 
4220 					e = adapter->rsmpi_ops->rsm_seg_destroy(
4221 					    seg->s_handle.out);
4222 
4223 					DBG_PRINTF((category, RSM_DEBUG,
4224 					    "exporter_quiesce:destroy %d\n",
4225 					    e));
4226 				}
4227 
4228 				(void) rsm_unbind_pages(seg);
4229 				seg->s_state = RSM_STATE_EXPORT_QUIESCED;
4230 				cv_broadcast(&seg->s_cv);
4231 			}
4232 			rsmseglock_release(seg);
4233 			current = current->rsmrc_next;
4234 		}
4235 	}
4236 	rw_exit(&rsm_export_segs.rsmhash_rw);
4237 
4238 	/*
4239 	 * All the local segments we are done with the pre-del processing
4240 	 * - time to move to PREDEL_COMPLETED.
4241 	 */
4242 
4243 	mutex_enter(&rsm_drv_data.drv_lock);
4244 
4245 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_PREDEL_STARTED);
4246 
4247 	rsm_drv_data.drv_state = RSM_DRV_PREDEL_COMPLETED;
4248 
4249 	cv_broadcast(&rsm_drv_data.drv_cv);
4250 
4251 	mutex_exit(&rsm_drv_data.drv_lock);
4252 
4253 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exporter_quiesce done\n"));
4254 }
4255 
4256 static void
4257 importer_suspend(rsm_node_id_t src_node)
4258 {
4259 	int		i;
4260 	int		susp_flg; /* true means already suspended */
4261 	int		num_importers;
4262 	rsmresource_t	*p = NULL, *curp;
4263 	rsmhash_table_t *rhash = &rsm_import_segs;
4264 	rsmseg_t	*seg;
4265 	rsmipc_request_t request;
4266 	DBG_DEFINE(category,
4267 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4268 
4269 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_suspend enter\n"));
4270 
4271 	rw_enter(&rhash->rsmhash_rw, RW_READER);
4272 	for (i = 0; i < rsm_hash_size; i++) {
4273 		p = rhash->bucket[i];
4274 
4275 		/*
4276 		 * Suspend all importers with same <node, key> pair.
4277 		 * After the last one of the shared importers has been
4278 		 * suspended - suspend the shared mappings/connection.
4279 		 */
4280 		for (; p; p = p->rsmrc_next) {
4281 			rsmseg_t *first = (rsmseg_t *)p;
4282 			if ((first->s_node != src_node) ||
4283 			    (first->s_state == RSM_STATE_DISCONNECT))
4284 				continue; /* go to next entry */
4285 			/*
4286 			 * search the rest of the bucket for
4287 			 * other siblings (imprtrs with the same key)
4288 			 * of "first" and suspend them.
4289 			 * All importers with same key fall in
4290 			 * the same bucket.
4291 			 */
4292 			num_importers = 0;
4293 			for (curp = p; curp; curp = curp->rsmrc_next) {
4294 				seg = (rsmseg_t *)curp;
4295 
4296 				rsmseglock_acquire(seg);
4297 
4298 				if ((seg->s_node != first->s_node) ||
4299 				    (seg->s_key != first->s_key) ||
4300 				    (seg->s_state == RSM_STATE_DISCONNECT)) {
4301 					/*
4302 					 * either not a peer segment or its a
4303 					 * disconnected segment - skip it
4304 					 */
4305 					rsmseglock_release(seg);
4306 					continue;
4307 				}
4308 
4309 				rsmseg_suspend(seg, &susp_flg);
4310 
4311 				if (susp_flg) { /* seg already suspended */
4312 					rsmseglock_release(seg);
4313 					break; /* the inner for loop */
4314 				}
4315 
4316 				num_importers++;
4317 				rsmsharelock_acquire(seg);
4318 				/*
4319 				 * we've processed all importers that are
4320 				 * siblings of "first"
4321 				 */
4322 				if (num_importers ==
4323 				    seg->s_share->rsmsi_refcnt) {
4324 					rsmsharelock_release(seg);
4325 					rsmseglock_release(seg);
4326 					break;
4327 				}
4328 				rsmsharelock_release(seg);
4329 				rsmseglock_release(seg);
4330 			}
4331 
4332 			/*
4333 			 * All the importers with the same key and
4334 			 * nodeid as "first" have been suspended.
4335 			 * Now suspend the shared connect/mapping.
4336 			 * This is done only once.
4337 			 */
4338 			if (!susp_flg) {
4339 				rsmsegshare_suspend(seg);
4340 			}
4341 		}
4342 	}
4343 
4344 	rw_exit(&rhash->rsmhash_rw);
4345 
4346 	/* send an ACK for SUSPEND message */
4347 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SUSPEND_DONE;
4348 	(void) rsmipc_send(src_node, &request, RSM_NO_REPLY);
4349 
4350 
4351 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_suspend done\n"));
4352 
4353 }
4354 
4355 static void
4356 rsmseg_suspend(rsmseg_t *seg, int *susp_flg)
4357 {
4358 	int		recheck_state;
4359 	rsmcookie_t	*hdl;
4360 	DBG_DEFINE(category,
4361 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4362 
4363 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4364 	    "rsmseg_suspend enter: key=%u\n", seg->s_key));
4365 
4366 	*susp_flg = 0;
4367 
4368 	ASSERT(rsmseglock_held(seg));
4369 	/* wait if putv/getv is in progress */
4370 	while (seg->s_rdmacnt > 0)
4371 		cv_wait(&seg->s_cv, &seg->s_lock);
4372 
4373 	do {
4374 		recheck_state = 0;
4375 
4376 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4377 		    "rsmseg_suspend:segment %x state=%d\n",
4378 		    seg->s_key, seg->s_state));
4379 
4380 		switch (seg->s_state) {
4381 		case RSM_STATE_NEW:
4382 			/* not a valid state */
4383 			break;
4384 		case RSM_STATE_CONNECTING:
4385 			seg->s_state = RSM_STATE_ABORT_CONNECT;
4386 			break;
4387 		case RSM_STATE_ABORT_CONNECT:
4388 			break;
4389 		case RSM_STATE_CONNECT:
4390 			seg->s_handle.in = NULL;
4391 			seg->s_state = RSM_STATE_CONN_QUIESCE;
4392 			break;
4393 		case RSM_STATE_MAPPING:
4394 			/* wait until segment leaves the mapping state */
4395 			while (seg->s_state == RSM_STATE_MAPPING)
4396 				cv_wait(&seg->s_cv, &seg->s_lock);
4397 			recheck_state = 1;
4398 			break;
4399 		case RSM_STATE_ACTIVE:
4400 			/* unload the mappings */
4401 			if (seg->s_ckl != NULL) {
4402 				hdl = seg->s_ckl;
4403 				for (; hdl != NULL; hdl = hdl->c_next) {
4404 					(void) devmap_unload(hdl->c_dhp,
4405 					    hdl->c_off, hdl->c_len);
4406 				}
4407 			}
4408 			seg->s_mapinfo = NULL;
4409 			seg->s_state = RSM_STATE_MAP_QUIESCE;
4410 			break;
4411 		case RSM_STATE_CONN_QUIESCE:
4412 			/* FALLTHRU */
4413 		case RSM_STATE_MAP_QUIESCE:
4414 			/* rsmseg_suspend already done for seg */
4415 			*susp_flg = 1;
4416 			break;
4417 		case RSM_STATE_DISCONNECT:
4418 			break;
4419 		default:
4420 			ASSERT(0); /* invalid state */
4421 		}
4422 	} while (recheck_state);
4423 
4424 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_suspend done\n"));
4425 }
4426 
4427 static void
4428 rsmsegshare_suspend(rsmseg_t *seg)
4429 {
4430 	int			e;
4431 	adapter_t		*adapter;
4432 	rsm_import_share_t	*sharedp;
4433 	DBG_DEFINE(category,
4434 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4435 
4436 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4437 	    "rsmsegshare_suspend enter\n"));
4438 
4439 	rsmseglock_acquire(seg);
4440 	rsmsharelock_acquire(seg);
4441 
4442 	sharedp = seg->s_share;
4443 	adapter = seg->s_adapter;
4444 	switch (sharedp->rsmsi_state) {
4445 	case RSMSI_STATE_NEW:
4446 		break;
4447 	case RSMSI_STATE_CONNECTING:
4448 		sharedp->rsmsi_state = RSMSI_STATE_ABORT_CONNECT;
4449 		break;
4450 	case RSMSI_STATE_ABORT_CONNECT:
4451 		break;
4452 	case RSMSI_STATE_CONNECTED:
4453 		/* do the rsmpi disconnect */
4454 		if (sharedp->rsmsi_node != my_nodeid) {
4455 			e = adapter->rsmpi_ops->
4456 			    rsm_disconnect(sharedp->rsmsi_handle);
4457 
4458 			DBG_PRINTF((category, RSM_DEBUG,
4459 			    "rsm:rsmpi disconnect seg=%x:err=%d\n",
4460 			    sharedp->rsmsi_segid, e));
4461 		}
4462 
4463 		sharedp->rsmsi_handle = NULL;
4464 
4465 		sharedp->rsmsi_state = RSMSI_STATE_CONN_QUIESCE;
4466 		break;
4467 	case RSMSI_STATE_CONN_QUIESCE:
4468 		break;
4469 	case RSMSI_STATE_MAPPED:
4470 		/* do the rsmpi unmap and disconnect */
4471 		if (sharedp->rsmsi_node != my_nodeid) {
4472 			e = adapter->rsmpi_ops->rsm_unmap(seg->s_handle.in);
4473 
4474 			DBG_PRINTF((category, RSM_DEBUG,
4475 			    "rsmshare_suspend: rsmpi unmap %d\n", e));
4476 
4477 			e = adapter->rsmpi_ops->
4478 			    rsm_disconnect(sharedp->rsmsi_handle);
4479 			DBG_PRINTF((category, RSM_DEBUG,
4480 			    "rsm:rsmpi disconnect seg=%x:err=%d\n",
4481 			    sharedp->rsmsi_segid, e));
4482 		}
4483 
4484 		sharedp->rsmsi_handle = NULL;
4485 
4486 		sharedp->rsmsi_state = RSMSI_STATE_MAP_QUIESCE;
4487 		break;
4488 	case RSMSI_STATE_MAP_QUIESCE:
4489 		break;
4490 	case RSMSI_STATE_DISCONNECTED:
4491 		break;
4492 	default:
4493 		ASSERT(0); /* invalid state */
4494 	}
4495 
4496 	rsmsharelock_release(seg);
4497 	rsmseglock_release(seg);
4498 
4499 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4500 	    "rsmsegshare_suspend done\n"));
4501 }
4502 
4503 /*
4504  * This should get called on receiving a RESUME message or from
4505  * the pathmanger if the node undergoing DR dies.
4506  */
4507 static void
4508 importer_resume(rsm_node_id_t src_node)
4509 {
4510 	int		i;
4511 	rsmresource_t	*p = NULL;
4512 	rsmhash_table_t *rhash = &rsm_import_segs;
4513 	void		*cookie;
4514 	DBG_DEFINE(category,
4515 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4516 
4517 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_resume enter\n"));
4518 
4519 	rw_enter(&rhash->rsmhash_rw, RW_READER);
4520 
4521 	for (i = 0; i < rsm_hash_size; i++) {
4522 		p = rhash->bucket[i];
4523 
4524 		for (; p; p = p->rsmrc_next) {
4525 			rsmseg_t *seg = (rsmseg_t *)p;
4526 
4527 			rsmseglock_acquire(seg);
4528 
4529 			/* process only importers of node undergoing DR */
4530 			if (seg->s_node != src_node) {
4531 				rsmseglock_release(seg);
4532 				continue;
4533 			}
4534 
4535 			if (rsmseg_resume(seg, &cookie) != RSM_SUCCESS) {
4536 				rsmipc_request_t	request;
4537 				/*
4538 				 * rsmpi map/connect failed
4539 				 * inform the exporter so that it can
4540 				 * remove the importer.
4541 				 */
4542 				request.rsmipc_hdr.rsmipc_type =
4543 				    RSMIPC_MSG_NOTIMPORTING;
4544 				request.rsmipc_key = seg->s_segid;
4545 				request.rsmipc_segment_cookie = cookie;
4546 				rsmseglock_release(seg);
4547 				(void) rsmipc_send(seg->s_node, &request,
4548 				    RSM_NO_REPLY);
4549 			} else {
4550 				rsmseglock_release(seg);
4551 			}
4552 		}
4553 	}
4554 
4555 	rw_exit(&rhash->rsmhash_rw);
4556 
4557 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_resume done\n"));
4558 }
4559 
4560 static int
4561 rsmseg_resume(rsmseg_t *seg, void **cookie)
4562 {
4563 	int			e;
4564 	int			retc;
4565 	off_t			dev_offset;
4566 	size_t			maplen;
4567 	uint_t			maxprot;
4568 	rsm_mapinfo_t		*p;
4569 	rsmcookie_t		*hdl;
4570 	rsm_import_share_t	*sharedp;
4571 	DBG_DEFINE(category,
4572 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4573 
4574 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4575 	    "rsmseg_resume enter: key=%u\n", seg->s_key));
4576 
4577 	*cookie = NULL;
4578 
4579 	ASSERT(rsmseglock_held(seg));
4580 
4581 	if ((seg->s_state != RSM_STATE_CONN_QUIESCE) &&
4582 	    (seg->s_state != RSM_STATE_MAP_QUIESCE)) {
4583 		return (RSM_SUCCESS);
4584 	}
4585 
4586 	sharedp = seg->s_share;
4587 
4588 	rsmsharelock_acquire(seg);
4589 
4590 	/* resume the shared connection and/or mapping */
4591 	retc = rsmsegshare_resume(seg);
4592 
4593 	if (seg->s_state == RSM_STATE_CONN_QUIESCE) {
4594 		/* shared state can either be connected or mapped */
4595 		if ((sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) ||
4596 		    (sharedp->rsmsi_state == RSMSI_STATE_MAPPED)) {
4597 			ASSERT(retc == RSM_SUCCESS);
4598 			seg->s_handle.in = sharedp->rsmsi_handle;
4599 			rsmsharelock_release(seg);
4600 			seg->s_state = RSM_STATE_CONNECT;
4601 
4602 		} else { /* error in rsmpi connect during resume */
4603 			seg->s_handle.in = NULL;
4604 			seg->s_state = RSM_STATE_DISCONNECT;
4605 
4606 			sharedp->rsmsi_refcnt--;
4607 			cookie = (void *)sharedp->rsmsi_cookie;
4608 
4609 			if (sharedp->rsmsi_refcnt == 0) {
4610 				ASSERT(sharedp->rsmsi_mapcnt == 0);
4611 				rsmsharelock_release(seg);
4612 
4613 				/* clean up the shared data structure */
4614 				mutex_destroy(&sharedp->rsmsi_lock);
4615 				cv_destroy(&sharedp->rsmsi_cv);
4616 				kmem_free((void *)(sharedp),
4617 				    sizeof (rsm_import_share_t));
4618 
4619 			} else {
4620 				rsmsharelock_release(seg);
4621 			}
4622 			/*
4623 			 * The following needs to be done after any
4624 			 * rsmsharelock calls which use seg->s_share.
4625 			 */
4626 			seg->s_share = NULL;
4627 		}
4628 
4629 		/* signal any waiting segment */
4630 		cv_broadcast(&seg->s_cv);
4631 
4632 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4633 		    "rsmseg_resume done:state=%d\n", seg->s_state));
4634 		return (retc);
4635 	}
4636 
4637 	ASSERT(seg->s_state == RSM_STATE_MAP_QUIESCE);
4638 
4639 	/* Setup protections for remap */
4640 	maxprot = PROT_USER;
4641 	if (seg->s_mode & RSM_PERM_READ) {
4642 		maxprot |= PROT_READ;
4643 	}
4644 	if (seg->s_mode & RSM_PERM_WRITE) {
4645 		maxprot |= PROT_WRITE;
4646 	}
4647 
4648 	if (sharedp->rsmsi_state != RSMSI_STATE_MAPPED) {
4649 		/* error in rsmpi connect or map during resume */
4650 
4651 		/* remap to trash page */
4652 		ASSERT(seg->s_ckl != NULL);
4653 
4654 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4655 			e = devmap_umem_remap(hdl->c_dhp, rsm_dip,
4656 			    remap_cookie, hdl->c_off, hdl->c_len,
4657 			    maxprot, 0, NULL);
4658 
4659 			DBG_PRINTF((category, RSM_ERR,
4660 			    "rsmseg_resume:remap=%d\n", e));
4661 		}
4662 
4663 		seg->s_handle.in = NULL;
4664 		seg->s_state = RSM_STATE_DISCONNECT;
4665 
4666 		sharedp->rsmsi_refcnt--;
4667 
4668 		sharedp->rsmsi_mapcnt--;
4669 		seg->s_mapinfo = NULL;
4670 
4671 		if (sharedp->rsmsi_refcnt == 0) {
4672 			ASSERT(sharedp->rsmsi_mapcnt == 0);
4673 			rsmsharelock_release(seg);
4674 
4675 			/* clean up the shared data structure */
4676 			mutex_destroy(&sharedp->rsmsi_lock);
4677 			cv_destroy(&sharedp->rsmsi_cv);
4678 			kmem_free((void *)(sharedp),
4679 			    sizeof (rsm_import_share_t));
4680 
4681 		} else {
4682 			rsmsharelock_release(seg);
4683 		}
4684 		/*
4685 		 * The following needs to be done after any
4686 		 * rsmsharelock calls which use seg->s_share.
4687 		 */
4688 		seg->s_share = NULL;
4689 
4690 		/* signal any waiting segment */
4691 		cv_broadcast(&seg->s_cv);
4692 
4693 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4694 		    "rsmseg_resume done:seg=%x,err=%d\n",
4695 		    seg->s_key, retc));
4696 		return (retc);
4697 
4698 	}
4699 
4700 	seg->s_handle.in = sharedp->rsmsi_handle;
4701 
4702 	if (seg->s_node == my_nodeid) { /* loopback */
4703 		ASSERT(seg->s_mapinfo == NULL);
4704 
4705 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4706 			e = devmap_umem_remap(hdl->c_dhp,
4707 			    rsm_dip, seg->s_cookie,
4708 			    hdl->c_off, hdl->c_len,
4709 			    maxprot, 0, NULL);
4710 
4711 			DBG_PRINTF((category, RSM_ERR,
4712 			    "rsmseg_resume:remap=%d\n", e));
4713 		}
4714 	} else { /* remote exporter */
4715 		/* remap to the new rsmpi maps */
4716 		seg->s_mapinfo = sharedp->rsmsi_mapinfo;
4717 
4718 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4719 			p = rsm_get_mapinfo(seg, hdl->c_off, hdl->c_len,
4720 			    &dev_offset, &maplen);
4721 			e = devmap_devmem_remap(hdl->c_dhp,
4722 			    p->dip, p->dev_register, dev_offset,
4723 			    maplen, maxprot, 0, NULL);
4724 
4725 			DBG_PRINTF((category, RSM_ERR,
4726 			    "rsmseg_resume:remap=%d\n", e));
4727 		}
4728 	}
4729 
4730 	rsmsharelock_release(seg);
4731 
4732 	seg->s_state = RSM_STATE_ACTIVE;
4733 	cv_broadcast(&seg->s_cv);
4734 
4735 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_resume done\n"));
4736 
4737 	return (retc);
4738 }
4739 
4740 static int
4741 rsmsegshare_resume(rsmseg_t *seg)
4742 {
4743 	int			e = RSM_SUCCESS;
4744 	adapter_t		*adapter;
4745 	rsm_import_share_t	*sharedp;
4746 	DBG_DEFINE(category,
4747 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4748 
4749 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegshare_resume enter\n"));
4750 
4751 	ASSERT(rsmseglock_held(seg));
4752 	ASSERT(rsmsharelock_held(seg));
4753 
4754 	sharedp = seg->s_share;
4755 
4756 	/*
4757 	 * If we are not in a xxxx_QUIESCE state that means shared
4758 	 * connect/mapping processing has been already been done
4759 	 * so return success.
4760 	 */
4761 	if ((sharedp->rsmsi_state != RSMSI_STATE_CONN_QUIESCE) &&
4762 	    (sharedp->rsmsi_state != RSMSI_STATE_MAP_QUIESCE)) {
4763 		return (RSM_SUCCESS);
4764 	}
4765 
4766 	adapter = seg->s_adapter;
4767 
4768 	if (sharedp->rsmsi_node != my_nodeid) {
4769 		rsm_addr_t	hwaddr;
4770 		hwaddr = get_remote_hwaddr(adapter, sharedp->rsmsi_node);
4771 
4772 		e = adapter->rsmpi_ops->rsm_connect(
4773 		    adapter->rsmpi_handle, hwaddr,
4774 		    sharedp->rsmsi_segid, &sharedp->rsmsi_handle);
4775 
4776 		DBG_PRINTF((category, RSM_DEBUG,
4777 		    "rsmsegshare_resume:rsmpi connect seg=%x:err=%d\n",
4778 		    sharedp->rsmsi_segid, e));
4779 
4780 		if (e != RSM_SUCCESS) {
4781 			/* when do we send the NOT_IMPORTING message */
4782 			sharedp->rsmsi_handle = NULL;
4783 			sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
4784 			/* signal any waiting segment */
4785 			cv_broadcast(&sharedp->rsmsi_cv);
4786 			return (e);
4787 		}
4788 	}
4789 
4790 	if (sharedp->rsmsi_state == RSMSI_STATE_CONN_QUIESCE) {
4791 		sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
4792 		/* signal any waiting segment */
4793 		cv_broadcast(&sharedp->rsmsi_cv);
4794 		return (e);
4795 	}
4796 
4797 	ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAP_QUIESCE);
4798 
4799 	/* do the rsmpi map of the whole segment here */
4800 	if (sharedp->rsmsi_node != my_nodeid) {
4801 		size_t mapped_len;
4802 		rsm_mapinfo_t *p;
4803 
4804 		/*
4805 		 * We need to do rsmpi maps with <off, lens> identical to
4806 		 * the old mapinfo list because the segment mapping handles
4807 		 * dhp and such need the fragmentation of rsmpi maps to be
4808 		 * identical to what it was during the mmap of the segment
4809 		 */
4810 		p = sharedp->rsmsi_mapinfo;
4811 
4812 		while (p != NULL) {
4813 			mapped_len = 0;
4814 
4815 			e = adapter->rsmpi_ops->rsm_map(
4816 			    sharedp->rsmsi_handle, p->start_offset,
4817 			    p->individual_len, &mapped_len,
4818 			    &p->dip, &p->dev_register, &p->dev_offset,
4819 			    NULL, NULL);
4820 
4821 			if (e != 0) {
4822 				DBG_PRINTF((category, RSM_ERR,
4823 				    "rsmsegshare_resume: rsmpi map err=%d\n",
4824 				    e));
4825 				break;
4826 			}
4827 
4828 			if (mapped_len != p->individual_len) {
4829 				DBG_PRINTF((category, RSM_ERR,
4830 				    "rsmsegshare_resume: rsmpi maplen"
4831 				    "< reqlen=%lx\n", mapped_len));
4832 				e = RSMERR_BAD_LENGTH;
4833 				break;
4834 			}
4835 
4836 			p = p->next;
4837 
4838 		}
4839 
4840 
4841 		if (e != RSM_SUCCESS) { /* rsmpi map failed */
4842 			int	err;
4843 			/* Check if this is the first rsm_map */
4844 			if (p != sharedp->rsmsi_mapinfo) {
4845 				/*
4846 				 * A single rsm_unmap undoes multiple rsm_maps.
4847 				 */
4848 				(void) seg->s_adapter->rsmpi_ops->
4849 				    rsm_unmap(sharedp->rsmsi_handle);
4850 			}
4851 
4852 			rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
4853 			sharedp->rsmsi_mapinfo = NULL;
4854 
4855 			err = adapter->rsmpi_ops->
4856 			    rsm_disconnect(sharedp->rsmsi_handle);
4857 
4858 			DBG_PRINTF((category, RSM_DEBUG,
4859 			    "rsmsegshare_resume:disconn seg=%x:err=%d\n",
4860 			    sharedp->rsmsi_segid, err));
4861 
4862 			sharedp->rsmsi_handle = NULL;
4863 			sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
4864 
4865 			/* signal the waiting segments */
4866 			cv_broadcast(&sharedp->rsmsi_cv);
4867 			DBG_PRINTF((category, RSM_DEBUG,
4868 			    "rsmsegshare_resume done: rsmpi map err\n"));
4869 			return (e);
4870 		}
4871 	}
4872 
4873 	sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
4874 
4875 	/* signal any waiting segment */
4876 	cv_broadcast(&sharedp->rsmsi_cv);
4877 
4878 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegshare_resume done\n"));
4879 
4880 	return (e);
4881 }
4882 
4883 /*
4884  * this is the routine that gets called by recv_taskq which is the
4885  * thread that processes messages that are flow-controlled.
4886  */
4887 static void
4888 rsm_intr_proc_deferred(void *arg)
4889 {
4890 	path_t			*path = (path_t *)arg;
4891 	rsmipc_request_t	*msg;
4892 	rsmipc_msghdr_t		*msghdr;
4893 	rsm_node_id_t		src_node;
4894 	msgbuf_elem_t		*head;
4895 	int			e;
4896 	DBG_DEFINE(category,
4897 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4898 
4899 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4900 	    "rsm_intr_proc_deferred enter\n"));
4901 
4902 	mutex_enter(&path->mutex);
4903 
4904 	/* use the head of the msgbuf_queue */
4905 	head = rsmka_gethead_msgbuf(path);
4906 
4907 	mutex_exit(&path->mutex);
4908 
4909 	msg = (rsmipc_request_t *)&(head->msg);
4910 	msghdr = (rsmipc_msghdr_t *)msg;
4911 
4912 	src_node = msghdr->rsmipc_src;
4913 
4914 	/*
4915 	 * messages that need to send a reply should check the message version
4916 	 * before processing the message. And all messages that need to
4917 	 * send a reply should be processed here by the worker thread.
4918 	 */
4919 	switch (msghdr->rsmipc_type) {
4920 	case RSMIPC_MSG_SEGCONNECT:
4921 		if (msghdr->rsmipc_version != RSM_VERSION) {
4922 			rsmipc_reply_t reply;
4923 			reply.rsmipc_status = RSMERR_BAD_DRIVER_VERSION;
4924 			reply.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPLY;
4925 			reply.rsmipc_hdr.rsmipc_cookie = msghdr->rsmipc_cookie;
4926 			(void) rsmipc_send(msghdr->rsmipc_src, NULL, &reply);
4927 		} else {
4928 			rsm_intr_segconnect(src_node, msg);
4929 		}
4930 		break;
4931 	case RSMIPC_MSG_DISCONNECT:
4932 		rsm_force_unload(src_node, msg->rsmipc_key, DISCONNECT);
4933 		break;
4934 	case RSMIPC_MSG_SUSPEND:
4935 		importer_suspend(src_node);
4936 		break;
4937 	case RSMIPC_MSG_SUSPEND_DONE:
4938 		rsm_suspend_complete(src_node, 0);
4939 		break;
4940 	case RSMIPC_MSG_RESUME:
4941 		importer_resume(src_node);
4942 		break;
4943 	default:
4944 		ASSERT(0);
4945 	}
4946 
4947 	mutex_enter(&path->mutex);
4948 
4949 	rsmka_dequeue_msgbuf(path);
4950 
4951 	/* incr procmsg_cnt can be at most RSMIPC_MAX_MESSAGES */
4952 	if (path->procmsg_cnt < RSMIPC_MAX_MESSAGES)
4953 		path->procmsg_cnt++;
4954 
4955 	ASSERT(path->procmsg_cnt <= RSMIPC_MAX_MESSAGES);
4956 
4957 	/* No need to send credits if path is going down */
4958 	if ((path->state == RSMKA_PATH_ACTIVE) &&
4959 	    (path->procmsg_cnt >= RSMIPC_LOTSFREE_MSGBUFS)) {
4960 		/*
4961 		 * send credits and reset procmsg_cnt if success otherwise
4962 		 * credits will be sent after processing the next message
4963 		 */
4964 		e = rsmipc_send_controlmsg(path, RSMIPC_MSG_CREDIT);
4965 		if (e == 0)
4966 			path->procmsg_cnt = 0;
4967 		else
4968 			DBG_PRINTF((category, RSM_ERR,
4969 			    "rsm_intr_proc_deferred:send credits err=%d\n", e));
4970 	}
4971 
4972 	/*
4973 	 * decrement the path refcnt since we incremented it in
4974 	 * rsm_intr_callback_dispatch
4975 	 */
4976 	PATH_RELE_NOLOCK(path);
4977 
4978 	mutex_exit(&path->mutex);
4979 
4980 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4981 	    "rsm_intr_proc_deferred done\n"));
4982 }
4983 
4984 /*
4985  * Flow-controlled messages are enqueued and dispatched onto a taskq here
4986  */
4987 static void
4988 rsm_intr_callback_dispatch(void *data, rsm_addr_t src_hwaddr,
4989     rsm_intr_hand_arg_t arg)
4990 {
4991 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
4992 	path_t			*path;
4993 	rsmipc_msghdr_t *msghdr = (rsmipc_msghdr_t *)data;
4994 	DBG_DEFINE(category,
4995 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4996 
4997 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4998 	    "rsm_intr_callback_dispatch enter\n"));
4999 	ASSERT(data && hdlr_argp);
5000 
5001 	/* look up the path - incr the path refcnt */
5002 	path = rsm_find_path(hdlr_argp->adapter_name,
5003 	    hdlr_argp->adapter_instance, src_hwaddr);
5004 
5005 	/* the path has been removed - drop this message */
5006 	if (path == NULL) {
5007 		DBG_PRINTF((category, RSM_DEBUG,
5008 		    "rsm_intr_callback_dispatch done: msg dropped\n"));
5009 		return;
5010 	}
5011 	/* the path is not active - don't accept new messages */
5012 	if (path->state != RSMKA_PATH_ACTIVE) {
5013 		PATH_RELE_NOLOCK(path);
5014 		mutex_exit(&path->mutex);
5015 		DBG_PRINTF((category, RSM_DEBUG,
5016 		    "rsm_intr_callback_dispatch done: msg dropped"
5017 		    " path=%lx !ACTIVE\n", path));
5018 		return;
5019 	}
5020 
5021 	/*
5022 	 * Check if this message was sent to an older incarnation
5023 	 * of the path/sendq.
5024 	 */
5025 	if (path->local_incn != msghdr->rsmipc_incn) {
5026 		/* decrement the refcnt */
5027 		PATH_RELE_NOLOCK(path);
5028 		mutex_exit(&path->mutex);
5029 		DBG_PRINTF((category, RSM_DEBUG,
5030 		    "rsm_intr_callback_dispatch done: old incn %lld\n",
5031 		    msghdr->rsmipc_incn));
5032 		return;
5033 	}
5034 
5035 	/* copy and enqueue msg on the path's msgbuf queue */
5036 	rsmka_enqueue_msgbuf(path, data);
5037 
5038 	/*
5039 	 * schedule task to process messages - ignore retval from
5040 	 * task_dispatch because we sender cannot send more than
5041 	 * what receiver can handle.
5042 	 */
5043 	(void) taskq_dispatch(path->recv_taskq,
5044 	    rsm_intr_proc_deferred, path, KM_NOSLEEP);
5045 
5046 	mutex_exit(&path->mutex);
5047 
5048 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5049 	    "rsm_intr_callback_dispatch done\n"));
5050 }
5051 
5052 /*
5053  * This procedure is called from rsm_srv_func when a remote node creates a
5054  * a send queue.  This event is used as a hint that an  earlier failed
5055  * attempt to create a send queue to that remote node may now succeed and
5056  * should be retried.  Indication of an earlier failed attempt is provided
5057  * by the RSMKA_SQCREATE_PENDING flag.
5058  */
5059 static void
5060 rsm_sqcreateop_callback(rsm_addr_t src_hwaddr, rsm_intr_hand_arg_t arg)
5061 {
5062 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
5063 	path_t			*path;
5064 	DBG_DEFINE(category,
5065 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5066 
5067 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5068 	    "rsm_sqcreateop_callback enter\n"));
5069 
5070 	/* look up the path - incr the path refcnt */
5071 	path = rsm_find_path(hdlr_argp->adapter_name,
5072 	    hdlr_argp->adapter_instance, src_hwaddr);
5073 
5074 	if (path == NULL) {
5075 		DBG_PRINTF((category, RSM_DEBUG,
5076 		    "rsm_sqcreateop_callback done: no path\n"));
5077 		return;
5078 	}
5079 
5080 	if ((path->state == RSMKA_PATH_UP) &&
5081 	    (path->flags & RSMKA_SQCREATE_PENDING)) {
5082 		/*
5083 		 * previous attempt to create sendq had failed, retry
5084 		 * it and move to RSMKA_PATH_ACTIVE state if successful.
5085 		 * the refcnt will be decremented in the do_deferred_work
5086 		 */
5087 		(void) rsmka_do_path_active(path, RSMKA_NO_SLEEP);
5088 	} else {
5089 		/* decrement the refcnt */
5090 		PATH_RELE_NOLOCK(path);
5091 	}
5092 	mutex_exit(&path->mutex);
5093 
5094 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5095 	    "rsm_sqcreateop_callback done\n"));
5096 }
5097 
5098 static void
5099 rsm_intr_callback(void *data, rsm_addr_t src_hwaddr, rsm_intr_hand_arg_t arg)
5100 {
5101 	rsmipc_msghdr_t *msghdr = (rsmipc_msghdr_t *)data;
5102 	rsmipc_request_t *msg = (rsmipc_request_t *)data;
5103 	rsmipc_controlmsg_t *ctrlmsg = (rsmipc_controlmsg_t *)data;
5104 	rsm_node_id_t src_node;
5105 	DBG_DEFINE(category,
5106 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5107 
5108 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_callback enter:"
5109 	    "src=%d, type=%d\n", msghdr->rsmipc_src,
5110 	    msghdr->rsmipc_type));
5111 
5112 	/*
5113 	 * Check for the version number in the msg header. If it is not
5114 	 * RSM_VERSION, drop the message. In the future, we need to manage
5115 	 * incompatible version numbers in some way
5116 	 */
5117 	if (msghdr->rsmipc_version != RSM_VERSION) {
5118 		DBG_PRINTF((category, RSM_ERR, "wrong KA version\n"));
5119 		/*
5120 		 * Drop requests that don't have a reply right here
5121 		 * Request with reply will send a BAD_VERSION reply
5122 		 * when they get processed by the worker thread.
5123 		 */
5124 		if (msghdr->rsmipc_type != RSMIPC_MSG_SEGCONNECT) {
5125 			return;
5126 		}
5127 
5128 	}
5129 
5130 	src_node = msghdr->rsmipc_src;
5131 
5132 	switch (msghdr->rsmipc_type) {
5133 	case RSMIPC_MSG_SEGCONNECT:
5134 	case RSMIPC_MSG_DISCONNECT:
5135 	case RSMIPC_MSG_SUSPEND:
5136 	case RSMIPC_MSG_SUSPEND_DONE:
5137 	case RSMIPC_MSG_RESUME:
5138 		/*
5139 		 * These message types are handled by a worker thread using
5140 		 * the flow-control algorithm.
5141 		 * Any message processing that does one or more of the
5142 		 * following should be handled in a worker thread.
5143 		 *	- allocates resources and might sleep
5144 		 *	- makes RSMPI calls down to the interconnect driver
5145 		 *	this by defn include requests with reply.
5146 		 *	- takes a long duration of time
5147 		 */
5148 		rsm_intr_callback_dispatch(data, src_hwaddr, arg);
5149 		break;
5150 	case RSMIPC_MSG_NOTIMPORTING:
5151 		importer_list_rm(src_node, msg->rsmipc_key,
5152 		    msg->rsmipc_segment_cookie);
5153 		break;
5154 	case RSMIPC_MSG_SQREADY:
5155 		rsm_proc_sqready(data, src_hwaddr, arg);
5156 		break;
5157 	case RSMIPC_MSG_SQREADY_ACK:
5158 		rsm_proc_sqready_ack(data, src_hwaddr, arg);
5159 		break;
5160 	case RSMIPC_MSG_CREDIT:
5161 		rsm_add_credits(ctrlmsg, src_hwaddr, arg);
5162 		break;
5163 	case RSMIPC_MSG_REPLY:
5164 		rsm_intr_reply(msghdr);
5165 		break;
5166 	case RSMIPC_MSG_BELL:
5167 		rsm_intr_event(msg);
5168 		break;
5169 	case RSMIPC_MSG_IMPORTING:
5170 		importer_list_add(src_node, msg->rsmipc_key,
5171 		    msg->rsmipc_adapter_hwaddr,
5172 		    msg->rsmipc_segment_cookie);
5173 		break;
5174 	case RSMIPC_MSG_REPUBLISH:
5175 		importer_update(src_node, msg->rsmipc_key, msg->rsmipc_perm);
5176 		break;
5177 	default:
5178 		DBG_PRINTF((category, RSM_DEBUG,
5179 		    "rsm_intr_callback: bad msg %lx type %d data %lx\n",
5180 		    (size_t)msg, (int)(msghdr->rsmipc_type), (size_t)data));
5181 	}
5182 
5183 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_callback done\n"));
5184 
5185 }
5186 
5187 rsm_intr_hand_ret_t rsm_srv_func(rsm_controller_object_t *chd,
5188     rsm_intr_q_op_t opcode, rsm_addr_t src,
5189     void *data, size_t size, rsm_intr_hand_arg_t arg)
5190 {
5191 	DBG_DEFINE(category,
5192 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5193 
5194 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_srv_func enter\n"));
5195 
5196 	switch (opcode) {
5197 	case RSM_INTR_Q_OP_CREATE:
5198 		DBG_PRINTF((category, RSM_DEBUG, "rsm_srv_func:OP_CREATE\n"));
5199 		rsm_sqcreateop_callback(src, arg);
5200 		break;
5201 	case RSM_INTR_Q_OP_DESTROY:
5202 		DBG_PRINTF((category, RSM_DEBUG, "rsm_srv_func:OP_DESTROY\n"));
5203 		break;
5204 	case RSM_INTR_Q_OP_RECEIVE:
5205 		rsm_intr_callback(data, src, arg);
5206 		break;
5207 	default:
5208 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5209 		    "rsm_srv_func: unknown opcode = %x\n", opcode));
5210 	}
5211 
5212 	chd = chd;
5213 	size = size;
5214 
5215 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_srv_func done\n"));
5216 
5217 	return (RSM_INTR_HAND_CLAIMED);
5218 }
5219 
5220 /* *************************** IPC slots ************************* */
5221 static rsmipc_slot_t *
5222 rsmipc_alloc()
5223 {
5224 	int i;
5225 	rsmipc_slot_t *slot;
5226 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
5227 
5228 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_alloc enter\n"));
5229 
5230 	/* try to find a free slot, if not wait */
5231 	mutex_enter(&rsm_ipc.lock);
5232 
5233 	while (rsm_ipc.count == 0) {
5234 		rsm_ipc.wanted = 1;
5235 		cv_wait(&rsm_ipc.cv, &rsm_ipc.lock);
5236 	}
5237 
5238 	/* An empty slot is available, find it */
5239 	slot = &rsm_ipc.slots[0];
5240 	for (i = 0; i < RSMIPC_SZ; i++, slot++) {
5241 		if (RSMIPC_GET(slot, RSMIPC_FREE)) {
5242 			RSMIPC_CLEAR(slot, RSMIPC_FREE);
5243 			break;
5244 		}
5245 	}
5246 
5247 	ASSERT(i < RSMIPC_SZ);
5248 	rsm_ipc.count--;	/* one less is available */
5249 	rsm_ipc.sequence++; /* new sequence */
5250 
5251 	slot->rsmipc_cookie.ic.sequence = (uint_t)rsm_ipc.sequence;
5252 	slot->rsmipc_cookie.ic.index = (uint_t)i;
5253 
5254 	mutex_exit(&rsm_ipc.lock);
5255 
5256 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_alloc done\n"));
5257 
5258 	return (slot);
5259 }
5260 
5261 static void
5262 rsmipc_free(rsmipc_slot_t *slot)
5263 {
5264 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
5265 
5266 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_free enter\n"));
5267 
5268 	ASSERT(MUTEX_HELD(&slot->rsmipc_lock));
5269 	ASSERT(&rsm_ipc.slots[slot->rsmipc_cookie.ic.index] == slot);
5270 
5271 	mutex_enter(&rsm_ipc.lock);
5272 
5273 	RSMIPC_SET(slot, RSMIPC_FREE);
5274 
5275 	slot->rsmipc_cookie.ic.sequence = 0;
5276 
5277 	mutex_exit(&slot->rsmipc_lock);
5278 	rsm_ipc.count++;
5279 	ASSERT(rsm_ipc.count <= RSMIPC_SZ);
5280 	if (rsm_ipc.wanted) {
5281 		rsm_ipc.wanted = 0;
5282 		cv_broadcast(&rsm_ipc.cv);
5283 	}
5284 
5285 	mutex_exit(&rsm_ipc.lock);
5286 
5287 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_free done\n"));
5288 }
5289 
5290 static int
5291 rsmipc_send(rsm_node_id_t dest, rsmipc_request_t *req, rsmipc_reply_t *reply)
5292 {
5293 	int		e = 0;
5294 	int		credit_check = 0;
5295 	int		retry_cnt = 0;
5296 	int		min_retry_cnt = 10;
5297 	rsm_send_t	is;
5298 	rsmipc_slot_t	*rslot;
5299 	adapter_t	*adapter;
5300 	path_t		*path;
5301 	sendq_token_t	*sendq_token;
5302 	sendq_token_t	*used_sendq_token = NULL;
5303 	rsm_send_q_handle_t	ipc_handle;
5304 	DBG_DEFINE(category,
5305 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5306 
5307 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_send enter:dest=%d",
5308 	    dest));
5309 
5310 	/*
5311 	 * Check if this is a local case
5312 	 */
5313 	if (dest == my_nodeid) {
5314 		switch (req->rsmipc_hdr.rsmipc_type) {
5315 		case RSMIPC_MSG_SEGCONNECT:
5316 			reply->rsmipc_status = (short)rsmsegacl_validate(
5317 			    req, dest, reply);
5318 			break;
5319 		case RSMIPC_MSG_BELL:
5320 			req->rsmipc_hdr.rsmipc_src = dest;
5321 			rsm_intr_event(req);
5322 			break;
5323 		case RSMIPC_MSG_IMPORTING:
5324 			importer_list_add(dest, req->rsmipc_key,
5325 			    req->rsmipc_adapter_hwaddr,
5326 			    req->rsmipc_segment_cookie);
5327 			break;
5328 		case RSMIPC_MSG_NOTIMPORTING:
5329 			importer_list_rm(dest, req->rsmipc_key,
5330 			    req->rsmipc_segment_cookie);
5331 			break;
5332 		case RSMIPC_MSG_REPUBLISH:
5333 			importer_update(dest, req->rsmipc_key,
5334 			    req->rsmipc_perm);
5335 			break;
5336 		case RSMIPC_MSG_SUSPEND:
5337 			importer_suspend(dest);
5338 			break;
5339 		case RSMIPC_MSG_SUSPEND_DONE:
5340 			rsm_suspend_complete(dest, 0);
5341 			break;
5342 		case RSMIPC_MSG_RESUME:
5343 			importer_resume(dest);
5344 			break;
5345 		default:
5346 			ASSERT(0);
5347 		}
5348 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5349 		    "rsmipc_send done\n"));
5350 		return (0);
5351 	}
5352 
5353 	if (dest >= MAX_NODES) {
5354 		DBG_PRINTF((category, RSM_ERR,
5355 		    "rsm: rsmipc_send bad node number %x\n", dest));
5356 		return (RSMERR_REMOTE_NODE_UNREACHABLE);
5357 	}
5358 
5359 	/*
5360 	 * Oh boy! we are going remote.
5361 	 */
5362 
5363 	/*
5364 	 * identify if we need to have credits to send this message
5365 	 * - only selected requests are flow controlled
5366 	 */
5367 	if (req != NULL) {
5368 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5369 		    "rsmipc_send:request type=%d\n",
5370 		    req->rsmipc_hdr.rsmipc_type));
5371 
5372 		switch (req->rsmipc_hdr.rsmipc_type) {
5373 		case RSMIPC_MSG_SEGCONNECT:
5374 		case RSMIPC_MSG_DISCONNECT:
5375 		case RSMIPC_MSG_IMPORTING:
5376 		case RSMIPC_MSG_SUSPEND:
5377 		case RSMIPC_MSG_SUSPEND_DONE:
5378 		case RSMIPC_MSG_RESUME:
5379 			credit_check = 1;
5380 			break;
5381 		default:
5382 			credit_check = 0;
5383 		}
5384 	}
5385 
5386 again:
5387 	if (retry_cnt++ == min_retry_cnt) {
5388 		/* backoff before further retries for 10ms */
5389 		delay(drv_usectohz(10000));
5390 		retry_cnt = 0; /* reset retry_cnt */
5391 	}
5392 	sendq_token = rsmka_get_sendq_token(dest, used_sendq_token);
5393 	if (sendq_token == NULL) {
5394 		DBG_PRINTF((category, RSM_ERR,
5395 		    "rsm: rsmipc_send no device to reach node %d\n", dest));
5396 		return (RSMERR_REMOTE_NODE_UNREACHABLE);
5397 	}
5398 
5399 	if ((sendq_token == used_sendq_token) &&
5400 	    ((e == RSMERR_CONN_ABORTED) || (e == RSMERR_TIMEOUT) ||
5401 	    (e == RSMERR_COMM_ERR_MAYBE_DELIVERED))) {
5402 		rele_sendq_token(sendq_token);
5403 		DBG_PRINTF((category, RSM_DEBUG, "rsmipc_send done=%d\n", e));
5404 		return (RSMERR_CONN_ABORTED);
5405 	} else
5406 		used_sendq_token = sendq_token;
5407 
5408 /* lint -save -e413 */
5409 	path = SQ_TOKEN_TO_PATH(sendq_token);
5410 	adapter = path->local_adapter;
5411 /* lint -restore */
5412 	ipc_handle = sendq_token->rsmpi_sendq_handle;
5413 
5414 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5415 	    "rsmipc_send: path=%lx sendq_hdl=%lx\n", path, ipc_handle));
5416 
5417 	if (reply == NULL) {
5418 		/* Send request without ack */
5419 		/*
5420 		 * Set the rsmipc_version number in the msghdr for KA
5421 		 * communication versioning
5422 		 */
5423 		req->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5424 		req->rsmipc_hdr.rsmipc_src = my_nodeid;
5425 		/*
5426 		 * remote endpoints incn should match the value in our
5427 		 * path's remote_incn field. No need to grab any lock
5428 		 * since we have refcnted the path in rsmka_get_sendq_token
5429 		 */
5430 		req->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5431 
5432 		is.is_data = (void *)req;
5433 		is.is_size = sizeof (*req);
5434 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5435 		is.is_wait = 0;
5436 
5437 		if (credit_check) {
5438 			mutex_enter(&path->mutex);
5439 			/*
5440 			 * wait till we recv credits or path goes down. If path
5441 			 * goes down rsm_send will fail and we handle the error
5442 			 * then
5443 			 */
5444 			while ((sendq_token->msgbuf_avail == 0) &&
5445 			    (path->state == RSMKA_PATH_ACTIVE)) {
5446 				e = cv_wait_sig(&sendq_token->sendq_cv,
5447 				    &path->mutex);
5448 				if (e == 0) {
5449 					mutex_exit(&path->mutex);
5450 					no_reply_cnt++;
5451 					rele_sendq_token(sendq_token);
5452 					DBG_PRINTF((category, RSM_DEBUG,
5453 					    "rsmipc_send done: "
5454 					    "cv_wait INTERRUPTED"));
5455 					return (RSMERR_INTERRUPTED);
5456 				}
5457 			}
5458 
5459 			/*
5460 			 * path is not active retry on another path.
5461 			 */
5462 			if (path->state != RSMKA_PATH_ACTIVE) {
5463 				mutex_exit(&path->mutex);
5464 				rele_sendq_token(sendq_token);
5465 				e = RSMERR_CONN_ABORTED;
5466 				DBG_PRINTF((category, RSM_ERR,
5467 				    "rsm: rsmipc_send: path !ACTIVE"));
5468 				goto again;
5469 			}
5470 
5471 			ASSERT(sendq_token->msgbuf_avail > 0);
5472 
5473 			/*
5474 			 * reserve a msgbuf
5475 			 */
5476 			sendq_token->msgbuf_avail--;
5477 
5478 			mutex_exit(&path->mutex);
5479 
5480 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5481 			    NULL);
5482 
5483 			if (e != RSM_SUCCESS) {
5484 				mutex_enter(&path->mutex);
5485 				/*
5486 				 * release the reserved msgbuf since
5487 				 * the send failed
5488 				 */
5489 				sendq_token->msgbuf_avail++;
5490 				cv_broadcast(&sendq_token->sendq_cv);
5491 				mutex_exit(&path->mutex);
5492 			}
5493 		} else
5494 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5495 			    NULL);
5496 
5497 		no_reply_cnt++;
5498 		rele_sendq_token(sendq_token);
5499 		if (e != RSM_SUCCESS) {
5500 			DBG_PRINTF((category, RSM_ERR,
5501 			    "rsm: rsmipc_send no reply send"
5502 			    " err = %d no reply count = %d\n",
5503 			    e, no_reply_cnt));
5504 			ASSERT(e != RSMERR_QUEUE_FENCE_UP &&
5505 			    e != RSMERR_BAD_BARRIER_HNDL);
5506 			atomic_inc_64(&rsm_ipcsend_errcnt);
5507 			goto again;
5508 		} else {
5509 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5510 			    "rsmipc_send done\n"));
5511 			return (e);
5512 		}
5513 
5514 	}
5515 
5516 	if (req == NULL) {
5517 		/* Send reply - No flow control is done for reply */
5518 		/*
5519 		 * Set the version in the msg header for KA communication
5520 		 * versioning
5521 		 */
5522 		reply->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5523 		reply->rsmipc_hdr.rsmipc_src = my_nodeid;
5524 		/* incn number is not used for reply msgs currently */
5525 		reply->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5526 
5527 		is.is_data = (void *)reply;
5528 		is.is_size = sizeof (*reply);
5529 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5530 		is.is_wait = 0;
5531 		e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is, NULL);
5532 		rele_sendq_token(sendq_token);
5533 		if (e != RSM_SUCCESS) {
5534 			DBG_PRINTF((category, RSM_ERR,
5535 			    "rsm: rsmipc_send reply send"
5536 			    " err = %d\n", e));
5537 			atomic_inc_64(&rsm_ipcsend_errcnt);
5538 			goto again;
5539 		} else {
5540 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5541 			    "rsmipc_send done\n"));
5542 			return (e);
5543 		}
5544 	}
5545 
5546 	/* Reply needed */
5547 	rslot = rsmipc_alloc(); /* allocate a new ipc slot */
5548 
5549 	mutex_enter(&rslot->rsmipc_lock);
5550 
5551 	rslot->rsmipc_data = (void *)reply;
5552 	RSMIPC_SET(rslot, RSMIPC_PENDING);
5553 
5554 	while (RSMIPC_GET(rslot, RSMIPC_PENDING)) {
5555 		/*
5556 		 * Set the rsmipc_version number in the msghdr for KA
5557 		 * communication versioning
5558 		 */
5559 		req->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5560 		req->rsmipc_hdr.rsmipc_src = my_nodeid;
5561 		req->rsmipc_hdr.rsmipc_cookie = rslot->rsmipc_cookie;
5562 		/*
5563 		 * remote endpoints incn should match the value in our
5564 		 * path's remote_incn field. No need to grab any lock
5565 		 * since we have refcnted the path in rsmka_get_sendq_token
5566 		 */
5567 		req->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5568 
5569 		is.is_data = (void *)req;
5570 		is.is_size = sizeof (*req);
5571 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5572 		is.is_wait = 0;
5573 		if (credit_check) {
5574 
5575 			mutex_enter(&path->mutex);
5576 			/*
5577 			 * wait till we recv credits or path goes down. If path
5578 			 * goes down rsm_send will fail and we handle the error
5579 			 * then.
5580 			 */
5581 			while ((sendq_token->msgbuf_avail == 0) &&
5582 			    (path->state == RSMKA_PATH_ACTIVE)) {
5583 				e = cv_wait_sig(&sendq_token->sendq_cv,
5584 				    &path->mutex);
5585 				if (e == 0) {
5586 					mutex_exit(&path->mutex);
5587 					RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5588 					rsmipc_free(rslot);
5589 					rele_sendq_token(sendq_token);
5590 					DBG_PRINTF((category, RSM_DEBUG,
5591 					    "rsmipc_send done: "
5592 					    "cv_wait INTERRUPTED"));
5593 					return (RSMERR_INTERRUPTED);
5594 				}
5595 			}
5596 
5597 			/*
5598 			 * path is not active retry on another path.
5599 			 */
5600 			if (path->state != RSMKA_PATH_ACTIVE) {
5601 				mutex_exit(&path->mutex);
5602 				RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5603 				rsmipc_free(rslot);
5604 				rele_sendq_token(sendq_token);
5605 				e = RSMERR_CONN_ABORTED;
5606 				DBG_PRINTF((category, RSM_ERR,
5607 				    "rsm: rsmipc_send: path !ACTIVE"));
5608 				goto again;
5609 			}
5610 
5611 			ASSERT(sendq_token->msgbuf_avail > 0);
5612 
5613 			/*
5614 			 * reserve a msgbuf
5615 			 */
5616 			sendq_token->msgbuf_avail--;
5617 
5618 			mutex_exit(&path->mutex);
5619 
5620 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5621 			    NULL);
5622 
5623 			if (e != RSM_SUCCESS) {
5624 				mutex_enter(&path->mutex);
5625 				/*
5626 				 * release the reserved msgbuf since
5627 				 * the send failed
5628 				 */
5629 				sendq_token->msgbuf_avail++;
5630 				cv_broadcast(&sendq_token->sendq_cv);
5631 				mutex_exit(&path->mutex);
5632 			}
5633 		} else
5634 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5635 			    NULL);
5636 
5637 		if (e != RSM_SUCCESS) {
5638 			DBG_PRINTF((category, RSM_ERR,
5639 			    "rsm: rsmipc_send rsmpi send err = %d\n", e));
5640 			RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5641 			rsmipc_free(rslot);
5642 			rele_sendq_token(sendq_token);
5643 			atomic_inc_64(&rsm_ipcsend_errcnt);
5644 			goto again;
5645 		}
5646 
5647 		/* wait for a reply signal, a SIGINT, or 5 sec. timeout */
5648 		e = cv_reltimedwait_sig(&rslot->rsmipc_cv, &rslot->rsmipc_lock,
5649 		    drv_usectohz(5000000), TR_CLOCK_TICK);
5650 		if (e < 0) {
5651 			/* timed out - retry */
5652 			e = RSMERR_TIMEOUT;
5653 		} else if (e == 0) {
5654 			/* signalled - return error */
5655 			e = RSMERR_INTERRUPTED;
5656 			break;
5657 		} else {
5658 			e = RSM_SUCCESS;
5659 		}
5660 	}
5661 
5662 	RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5663 	rsmipc_free(rslot);
5664 	rele_sendq_token(sendq_token);
5665 
5666 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_send done=%d\n", e));
5667 	return (e);
5668 }
5669 
5670 static int
5671 rsm_send_notimporting(rsm_node_id_t dest, rsm_memseg_id_t segid,  void *cookie)
5672 {
5673 	rsmipc_request_t request;
5674 
5675 	/*
5676 	 *  inform the exporter to delete this importer
5677 	 */
5678 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_NOTIMPORTING;
5679 	request.rsmipc_key = segid;
5680 	request.rsmipc_segment_cookie = cookie;
5681 	return (rsmipc_send(dest, &request, RSM_NO_REPLY));
5682 }
5683 
5684 static void
5685 rsm_send_republish(rsm_memseg_id_t segid, rsmapi_access_entry_t	*acl,
5686     int acl_len, rsm_permission_t default_permission)
5687 {
5688 	int			i;
5689 	importing_token_t	*token;
5690 	rsmipc_request_t	request;
5691 	republish_token_t	*republish_list = NULL;
5692 	republish_token_t	*rp;
5693 	rsm_permission_t	permission;
5694 	int			index;
5695 
5696 	/*
5697 	 * send the new access mode to all the nodes that have imported
5698 	 * this segment.
5699 	 * If the new acl does not have a node that was present in
5700 	 * the old acl a access permission of 0 is sent.
5701 	 */
5702 
5703 	index = rsmhash(segid);
5704 
5705 	/*
5706 	 * create a list of node/permissions to send the republish message
5707 	 */
5708 	mutex_enter(&importer_list.lock);
5709 
5710 	token = importer_list.bucket[index];
5711 	while (token != NULL) {
5712 		if (segid == token->key) {
5713 			permission = default_permission;
5714 
5715 			for (i = 0; i < acl_len; i++) {
5716 				if (token->importing_node == acl[i].ae_node) {
5717 					permission = acl[i].ae_permission;
5718 					break;
5719 				}
5720 			}
5721 			rp = kmem_zalloc(sizeof (republish_token_t), KM_SLEEP);
5722 
5723 			rp->key = segid;
5724 			rp->importing_node = token->importing_node;
5725 			rp->permission = permission;
5726 			rp->next = republish_list;
5727 			republish_list = rp;
5728 		}
5729 		token = token->next;
5730 	}
5731 
5732 	mutex_exit(&importer_list.lock);
5733 
5734 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPUBLISH;
5735 	request.rsmipc_key = segid;
5736 
5737 	while (republish_list != NULL) {
5738 		request.rsmipc_perm = republish_list->permission;
5739 		(void) rsmipc_send(republish_list->importing_node,
5740 		    &request, RSM_NO_REPLY);
5741 		rp = republish_list;
5742 		republish_list = republish_list->next;
5743 		kmem_free(rp, sizeof (republish_token_t));
5744 	}
5745 }
5746 
5747 static void
5748 rsm_send_suspend()
5749 {
5750 	int			i, e;
5751 	rsmipc_request_t 	request;
5752 	list_element_t		*tokp;
5753 	list_element_t		*head = NULL;
5754 	importing_token_t	*token;
5755 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
5756 	    "rsm_send_suspend enter\n"));
5757 
5758 	/*
5759 	 * create a list of node to send the suspend message
5760 	 *
5761 	 * Currently the whole importer list is scanned and we obtain
5762 	 * all the nodes - this basically gets all nodes that at least
5763 	 * import one segment from the local node.
5764 	 *
5765 	 * no need to grab the rsm_suspend_list lock here since we are
5766 	 * single threaded when suspend is called.
5767 	 */
5768 
5769 	mutex_enter(&importer_list.lock);
5770 	for (i = 0; i < rsm_hash_size; i++) {
5771 
5772 		token = importer_list.bucket[i];
5773 
5774 		while (token != NULL) {
5775 
5776 			tokp = head;
5777 
5778 			/*
5779 			 * make sure that the token's node
5780 			 * is not already on the suspend list
5781 			 */
5782 			while (tokp != NULL) {
5783 				if (tokp->nodeid == token->importing_node) {
5784 					break;
5785 				}
5786 				tokp = tokp->next;
5787 			}
5788 
5789 			if (tokp == NULL) { /* not in suspend list */
5790 				tokp = kmem_zalloc(sizeof (list_element_t),
5791 				    KM_SLEEP);
5792 				tokp->nodeid = token->importing_node;
5793 				tokp->next = head;
5794 				head = tokp;
5795 			}
5796 
5797 			token = token->next;
5798 		}
5799 	}
5800 	mutex_exit(&importer_list.lock);
5801 
5802 	if (head == NULL) { /* no importers so go ahead and quiesce segments */
5803 		exporter_quiesce();
5804 		return;
5805 	}
5806 
5807 	mutex_enter(&rsm_suspend_list.list_lock);
5808 	ASSERT(rsm_suspend_list.list_head == NULL);
5809 	/*
5810 	 * update the suspend list righaway so that if a node dies the
5811 	 * pathmanager can set the NODE dead flag
5812 	 */
5813 	rsm_suspend_list.list_head = head;
5814 	mutex_exit(&rsm_suspend_list.list_lock);
5815 
5816 	tokp = head;
5817 
5818 	while (tokp != NULL) {
5819 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SUSPEND;
5820 		e = rsmipc_send(tokp->nodeid, &request, RSM_NO_REPLY);
5821 		/*
5822 		 * Error in rsmipc_send currently happens due to inaccessibility
5823 		 * of the remote node.
5824 		 */
5825 		if (e == RSM_SUCCESS) { /* send failed - don't wait for ack */
5826 			tokp->flags |= RSM_SUSPEND_ACKPENDING;
5827 		}
5828 
5829 		tokp = tokp->next;
5830 	}
5831 
5832 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
5833 	    "rsm_send_suspend done\n"));
5834 
5835 }
5836 
5837 static void
5838 rsm_send_resume()
5839 {
5840 	rsmipc_request_t 	request;
5841 	list_element_t		*elem, *head;
5842 
5843 	/*
5844 	 * save the suspend list so that we know where to send
5845 	 * the resume messages and make the suspend list head
5846 	 * NULL.
5847 	 */
5848 	mutex_enter(&rsm_suspend_list.list_lock);
5849 	head = rsm_suspend_list.list_head;
5850 	rsm_suspend_list.list_head = NULL;
5851 	mutex_exit(&rsm_suspend_list.list_lock);
5852 
5853 	while (head != NULL) {
5854 		elem = head;
5855 		head = head->next;
5856 
5857 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_RESUME;
5858 
5859 		(void) rsmipc_send(elem->nodeid, &request, RSM_NO_REPLY);
5860 
5861 		kmem_free((void *)elem, sizeof (list_element_t));
5862 
5863 	}
5864 
5865 }
5866 
5867 /*
5868  * This function takes path and sends a message using the sendq
5869  * corresponding to it. The RSMIPC_MSG_SQREADY, RSMIPC_MSG_SQREADY_ACK
5870  * and RSMIPC_MSG_CREDIT are sent using this function.
5871  */
5872 int
5873 rsmipc_send_controlmsg(path_t *path, int msgtype)
5874 {
5875 	int			e;
5876 	int			retry_cnt = 0;
5877 	int			min_retry_cnt = 10;
5878 	adapter_t		*adapter;
5879 	rsm_send_t		is;
5880 	rsm_send_q_handle_t	ipc_handle;
5881 	rsmipc_controlmsg_t	msg;
5882 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_FLOWCONTROL);
5883 
5884 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5885 	    "rsmipc_send_controlmsg enter\n"));
5886 
5887 	ASSERT(MUTEX_HELD(&path->mutex));
5888 
5889 	adapter = path->local_adapter;
5890 
5891 	DBG_PRINTF((category, RSM_DEBUG, "rsmipc_send_controlmsg:path=%lx "
5892 	    "msgtype=%d %lx:%llx->%lx:%llx procmsg=%d\n", path, msgtype,
5893 	    my_nodeid, adapter->hwaddr, path->remote_node,
5894 	    path->remote_hwaddr, path->procmsg_cnt));
5895 
5896 	if (path->state != RSMKA_PATH_ACTIVE) {
5897 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5898 		    "rsmipc_send_controlmsg done: ! RSMKA_PATH_ACTIVE"));
5899 		return (1);
5900 	}
5901 
5902 	ipc_handle = path->sendq_token.rsmpi_sendq_handle;
5903 
5904 	msg.rsmipc_hdr.rsmipc_version = RSM_VERSION;
5905 	msg.rsmipc_hdr.rsmipc_src = my_nodeid;
5906 	msg.rsmipc_hdr.rsmipc_type = msgtype;
5907 	msg.rsmipc_hdr.rsmipc_incn = path->remote_incn;
5908 
5909 	if (msgtype == RSMIPC_MSG_CREDIT)
5910 		msg.rsmipc_credits = path->procmsg_cnt;
5911 
5912 	msg.rsmipc_local_incn = path->local_incn;
5913 
5914 	msg.rsmipc_adapter_hwaddr = adapter->hwaddr;
5915 	/* incr the sendq, path refcnt */
5916 	PATH_HOLD_NOLOCK(path);
5917 	SENDQ_TOKEN_HOLD(path);
5918 
5919 	do {
5920 		/* drop the path lock before doing the rsm_send */
5921 		mutex_exit(&path->mutex);
5922 
5923 		is.is_data = (void *)&msg;
5924 		is.is_size = sizeof (msg);
5925 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5926 		is.is_wait = 0;
5927 
5928 		e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is, NULL);
5929 
5930 		ASSERT(e != RSMERR_QUEUE_FENCE_UP &&
5931 		    e != RSMERR_BAD_BARRIER_HNDL);
5932 
5933 		mutex_enter(&path->mutex);
5934 
5935 		if (e == RSM_SUCCESS) {
5936 			break;
5937 		}
5938 		/* error counter for statistics */
5939 		atomic_inc_64(&rsm_ctrlmsg_errcnt);
5940 
5941 		DBG_PRINTF((category, RSM_ERR,
5942 		    "rsmipc_send_controlmsg:rsm_send error=%d", e));
5943 
5944 		if (++retry_cnt == min_retry_cnt) { /* backoff before retry */
5945 			(void) cv_reltimedwait(&path->sendq_token.sendq_cv,
5946 			    &path->mutex, drv_usectohz(10000), TR_CLOCK_TICK);
5947 			retry_cnt = 0;
5948 		}
5949 	} while (path->state == RSMKA_PATH_ACTIVE);
5950 
5951 	/* decrement the sendq,path refcnt that we incr before rsm_send */
5952 	SENDQ_TOKEN_RELE(path);
5953 	PATH_RELE_NOLOCK(path);
5954 
5955 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5956 	    "rsmipc_send_controlmsg done=%d", e));
5957 	return (e);
5958 }
5959 
5960 /*
5961  * Called from rsm_force_unload and path_importer_disconnect. The memory
5962  * mapping for the imported segment is removed and the segment is
5963  * disconnected at the interconnect layer if disconnect_flag is TRUE.
5964  * rsm_force_unload will get disconnect_flag TRUE from rsm_intr_callback
5965  * and FALSE from rsm_rebind.
5966  *
5967  * When subsequent accesses cause page faulting, the dummy page is mapped
5968  * to resolve the fault, and the mapping generation number is incremented
5969  * so that the application can be notified on a close barrier operation.
5970  *
5971  * It is important to note that the caller of rsmseg_unload is responsible for
5972  * acquiring the segment lock before making a call to rsmseg_unload. This is
5973  * required to make the caller and rsmseg_unload thread safe. The segment lock
5974  * will be released by the rsmseg_unload function.
5975  */
5976 void
5977 rsmseg_unload(rsmseg_t *im_seg)
5978 {
5979 	rsmcookie_t		*hdl;
5980 	void			*shared_cookie;
5981 	rsmipc_request_t	request;
5982 	uint_t			maxprot;
5983 
5984 	DBG_DEFINE(category,
5985 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5986 
5987 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_unload enter\n"));
5988 
5989 	ASSERT(im_seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
5990 
5991 	/* wait until segment leaves the mapping state */
5992 	while (im_seg->s_state == RSM_STATE_MAPPING)
5993 		cv_wait(&im_seg->s_cv, &im_seg->s_lock);
5994 	/*
5995 	 * An unload is only necessary if the segment is connected. However,
5996 	 * if the segment was on the import list in state RSM_STATE_CONNECTING
5997 	 * then a connection was in progress. Change to RSM_STATE_NEW
5998 	 * here to cause an early exit from the connection process.
5999 	 */
6000 	if (im_seg->s_state == RSM_STATE_NEW) {
6001 		rsmseglock_release(im_seg);
6002 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6003 		    "rsmseg_unload done: RSM_STATE_NEW\n"));
6004 		return;
6005 	} else if (im_seg->s_state == RSM_STATE_CONNECTING) {
6006 		im_seg->s_state = RSM_STATE_ABORT_CONNECT;
6007 		rsmsharelock_acquire(im_seg);
6008 		im_seg->s_share->rsmsi_state = RSMSI_STATE_ABORT_CONNECT;
6009 		rsmsharelock_release(im_seg);
6010 		rsmseglock_release(im_seg);
6011 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6012 		    "rsmseg_unload done: RSM_STATE_CONNECTING\n"));
6013 		return;
6014 	}
6015 
6016 	if (im_seg->s_flags & RSM_FORCE_DISCONNECT) {
6017 		if (im_seg->s_ckl != NULL) {
6018 			int e;
6019 			/* Setup protections for remap */
6020 			maxprot = PROT_USER;
6021 			if (im_seg->s_mode & RSM_PERM_READ) {
6022 				maxprot |= PROT_READ;
6023 			}
6024 			if (im_seg->s_mode & RSM_PERM_WRITE) {
6025 				maxprot |= PROT_WRITE;
6026 			}
6027 			hdl = im_seg->s_ckl;
6028 			for (; hdl != NULL; hdl = hdl->c_next) {
6029 				e = devmap_umem_remap(hdl->c_dhp, rsm_dip,
6030 				    remap_cookie,
6031 				    hdl->c_off, hdl->c_len,
6032 				    maxprot, 0, NULL);
6033 
6034 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6035 				    "remap returns %d\n", e));
6036 			}
6037 		}
6038 
6039 		(void) rsm_closeconnection(im_seg, &shared_cookie);
6040 
6041 		if (shared_cookie != NULL) {
6042 			/*
6043 			 * inform the exporting node so this import
6044 			 * can be deleted from the list of importers.
6045 			 */
6046 			request.rsmipc_hdr.rsmipc_type =
6047 			    RSMIPC_MSG_NOTIMPORTING;
6048 			request.rsmipc_key = im_seg->s_segid;
6049 			request.rsmipc_segment_cookie = shared_cookie;
6050 			rsmseglock_release(im_seg);
6051 			(void) rsmipc_send(im_seg->s_node, &request,
6052 			    RSM_NO_REPLY);
6053 		} else {
6054 			rsmseglock_release(im_seg);
6055 		}
6056 	}
6057 	else
6058 		rsmseglock_release(im_seg);
6059 
6060 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_unload done\n"));
6061 
6062 }
6063 
6064 /* ****************************** Importer Calls ************************ */
6065 
6066 static int
6067 rsm_access(uid_t owner, gid_t group, int perm, int mode, const struct cred *cr)
6068 {
6069 	int shifts = 0;
6070 
6071 	if (crgetuid(cr) != owner) {
6072 		shifts += 3;
6073 		if (!groupmember(group, cr))
6074 			shifts += 3;
6075 	}
6076 
6077 	mode &= ~(perm << shifts);
6078 
6079 	if (mode == 0)
6080 		return (0);
6081 
6082 	return (secpolicy_rsm_access(cr, owner, mode));
6083 }
6084 
6085 
6086 static int
6087 rsm_connect(rsmseg_t *seg, rsm_ioctlmsg_t *msg, cred_t *cred,
6088     intptr_t dataptr, int mode)
6089 {
6090 	int e;
6091 	int			recheck_state = 0;
6092 	void			*shared_cookie;
6093 	rsmipc_request_t	request;
6094 	rsmipc_reply_t		reply;
6095 	rsm_permission_t	access;
6096 	adapter_t		*adapter;
6097 	rsm_addr_t		addr = 0;
6098 	rsm_import_share_t	*sharedp;
6099 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6100 
6101 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_connect enter\n"));
6102 
6103 	adapter = rsm_getadapter(msg, mode);
6104 	if (adapter == NULL) {
6105 		DBG_PRINTF((category, RSM_ERR,
6106 		    "rsm_connect done:ENODEV adapter=NULL\n"));
6107 		return (RSMERR_CTLR_NOT_PRESENT);
6108 	}
6109 
6110 	if ((adapter == &loopback_adapter) && (msg->nodeid != my_nodeid)) {
6111 		rsmka_release_adapter(adapter);
6112 		DBG_PRINTF((category, RSM_ERR,
6113 		    "rsm_connect done:ENODEV loopback\n"));
6114 		return (RSMERR_CTLR_NOT_PRESENT);
6115 	}
6116 
6117 
6118 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6119 	ASSERT(seg->s_state == RSM_STATE_NEW);
6120 
6121 	/*
6122 	 * Translate perm to access
6123 	 */
6124 	if (msg->perm & ~RSM_PERM_RDWR) {
6125 		rsmka_release_adapter(adapter);
6126 		DBG_PRINTF((category, RSM_ERR,
6127 		    "rsm_connect done:EINVAL invalid perms\n"));
6128 		return (RSMERR_BAD_PERMS);
6129 	}
6130 	access = 0;
6131 	if (msg->perm & RSM_PERM_READ)
6132 		access |= RSM_ACCESS_READ;
6133 	if (msg->perm & RSM_PERM_WRITE)
6134 		access |= RSM_ACCESS_WRITE;
6135 
6136 	seg->s_node = msg->nodeid;
6137 
6138 	/*
6139 	 * Adding to the import list locks the segment; release the segment
6140 	 * lock so we can get the reply for the send.
6141 	 */
6142 	e = rsmimport_add(seg, msg->key);
6143 	if (e) {
6144 		rsmka_release_adapter(adapter);
6145 		DBG_PRINTF((category, RSM_ERR,
6146 		    "rsm_connect done:rsmimport_add failed %d\n", e));
6147 		return (e);
6148 	}
6149 	seg->s_state = RSM_STATE_CONNECTING;
6150 
6151 	/*
6152 	 * Set the s_adapter field here so as to have a valid comparison of
6153 	 * the adapter and the s_adapter value during rsmshare_get. For
6154 	 * any error, set s_adapter to NULL before doing a release_adapter
6155 	 */
6156 	seg->s_adapter = adapter;
6157 
6158 	rsmseglock_release(seg);
6159 
6160 	/*
6161 	 * get the pointer to the shared data structure; the
6162 	 * shared data is locked and refcount has been incremented
6163 	 */
6164 	sharedp = rsmshare_get(msg->key, msg->nodeid, adapter, seg);
6165 
6166 	ASSERT(rsmsharelock_held(seg));
6167 
6168 	do {
6169 		/* flag indicates whether we need to recheck the state */
6170 		recheck_state = 0;
6171 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6172 		    "rsm_connect:RSMSI_STATE=%d\n", sharedp->rsmsi_state));
6173 		switch (sharedp->rsmsi_state) {
6174 		case RSMSI_STATE_NEW:
6175 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTING;
6176 			break;
6177 		case RSMSI_STATE_CONNECTING:
6178 			/* FALLTHRU */
6179 		case RSMSI_STATE_CONN_QUIESCE:
6180 			/* FALLTHRU */
6181 		case RSMSI_STATE_MAP_QUIESCE:
6182 			/* wait for the state to change */
6183 			while ((sharedp->rsmsi_state ==
6184 			    RSMSI_STATE_CONNECTING) ||
6185 			    (sharedp->rsmsi_state ==
6186 			    RSMSI_STATE_CONN_QUIESCE) ||
6187 			    (sharedp->rsmsi_state ==
6188 			    RSMSI_STATE_MAP_QUIESCE)) {
6189 				if (cv_wait_sig(&sharedp->rsmsi_cv,
6190 				    &sharedp->rsmsi_lock) == 0) {
6191 					/* signalled - clean up and return */
6192 					rsmsharelock_release(seg);
6193 					rsmimport_rm(seg);
6194 					seg->s_adapter = NULL;
6195 					rsmka_release_adapter(adapter);
6196 					seg->s_state = RSM_STATE_NEW;
6197 					DBG_PRINTF((category, RSM_ERR,
6198 					    "rsm_connect done: INTERRUPTED\n"));
6199 					return (RSMERR_INTERRUPTED);
6200 				}
6201 			}
6202 			/*
6203 			 * the state changed, loop back and check what it is
6204 			 */
6205 			recheck_state = 1;
6206 			break;
6207 		case RSMSI_STATE_ABORT_CONNECT:
6208 			/* exit the loop and clean up further down */
6209 			break;
6210 		case RSMSI_STATE_CONNECTED:
6211 			/* already connected, good - fall through */
6212 		case RSMSI_STATE_MAPPED:
6213 			/* already mapped, wow - fall through */
6214 			/* access validation etc is done further down */
6215 			break;
6216 		case RSMSI_STATE_DISCONNECTED:
6217 			/* disconnected - so reconnect now */
6218 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTING;
6219 			break;
6220 		default:
6221 			ASSERT(0); /* Invalid State */
6222 		}
6223 	} while (recheck_state);
6224 
6225 	if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6226 		/* we are the first to connect */
6227 		rsmsharelock_release(seg);
6228 
6229 		if (msg->nodeid != my_nodeid) {
6230 			addr = get_remote_hwaddr(adapter, msg->nodeid);
6231 
6232 			if ((int64_t)addr < 0) {
6233 				rsmsharelock_acquire(seg);
6234 				rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6235 				    RSMSI_STATE_NEW);
6236 				rsmsharelock_release(seg);
6237 				rsmimport_rm(seg);
6238 				seg->s_adapter = NULL;
6239 				rsmka_release_adapter(adapter);
6240 				seg->s_state = RSM_STATE_NEW;
6241 				DBG_PRINTF((category, RSM_ERR,
6242 				    "rsm_connect done: hwaddr<0\n"));
6243 				return (RSMERR_INTERNAL_ERROR);
6244 			}
6245 		} else {
6246 			addr = adapter->hwaddr;
6247 		}
6248 
6249 		/*
6250 		 * send request to node [src, dest, key, msgid] and get back
6251 		 * [status, msgid, cookie]
6252 		 */
6253 		request.rsmipc_key = msg->key;
6254 		/*
6255 		 * we need the s_mode of the exporter so pass
6256 		 * RSM_ACCESS_TRUSTED
6257 		 */
6258 		request.rsmipc_perm = RSM_ACCESS_TRUSTED;
6259 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SEGCONNECT;
6260 		request.rsmipc_adapter_hwaddr = addr;
6261 		request.rsmipc_segment_cookie = sharedp;
6262 
6263 		e = (int)rsmipc_send(msg->nodeid, &request, &reply);
6264 		if (e) {
6265 			rsmsharelock_acquire(seg);
6266 			rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6267 			    RSMSI_STATE_NEW);
6268 			rsmsharelock_release(seg);
6269 			rsmimport_rm(seg);
6270 			seg->s_adapter = NULL;
6271 			rsmka_release_adapter(adapter);
6272 			seg->s_state = RSM_STATE_NEW;
6273 			DBG_PRINTF((category, RSM_ERR,
6274 			    "rsm_connect done:rsmipc_send failed %d\n", e));
6275 			return (e);
6276 		}
6277 
6278 		if (reply.rsmipc_status != RSM_SUCCESS) {
6279 			rsmsharelock_acquire(seg);
6280 			rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6281 			    RSMSI_STATE_NEW);
6282 			rsmsharelock_release(seg);
6283 			rsmimport_rm(seg);
6284 			seg->s_adapter = NULL;
6285 			rsmka_release_adapter(adapter);
6286 			seg->s_state = RSM_STATE_NEW;
6287 			DBG_PRINTF((category, RSM_ERR,
6288 			    "rsm_connect done:rsmipc_send reply err %d\n",
6289 			    reply.rsmipc_status));
6290 			return (reply.rsmipc_status);
6291 		}
6292 
6293 		rsmsharelock_acquire(seg);
6294 		/* store the information recvd into the shared data struct */
6295 		sharedp->rsmsi_mode = reply.rsmipc_mode;
6296 		sharedp->rsmsi_uid = reply.rsmipc_uid;
6297 		sharedp->rsmsi_gid = reply.rsmipc_gid;
6298 		sharedp->rsmsi_seglen = reply.rsmipc_seglen;
6299 		sharedp->rsmsi_cookie = sharedp;
6300 	}
6301 
6302 	rsmsharelock_release(seg);
6303 
6304 	/*
6305 	 * Get the segment lock and check for a force disconnect
6306 	 * from the export side which would have changed the state
6307 	 * back to RSM_STATE_NEW. Once the segment lock is acquired a
6308 	 * force disconnect will be held off until the connection
6309 	 * has completed.
6310 	 */
6311 	rsmseglock_acquire(seg);
6312 	rsmsharelock_acquire(seg);
6313 	ASSERT(seg->s_state == RSM_STATE_CONNECTING ||
6314 	    seg->s_state == RSM_STATE_ABORT_CONNECT);
6315 
6316 	shared_cookie = sharedp->rsmsi_cookie;
6317 
6318 	if ((seg->s_state == RSM_STATE_ABORT_CONNECT) ||
6319 	    (sharedp->rsmsi_state == RSMSI_STATE_ABORT_CONNECT)) {
6320 		seg->s_state = RSM_STATE_NEW;
6321 		seg->s_adapter = NULL;
6322 		rsmsharelock_release(seg);
6323 		rsmseglock_release(seg);
6324 		rsmimport_rm(seg);
6325 		rsmka_release_adapter(adapter);
6326 
6327 		rsmsharelock_acquire(seg);
6328 		if (!(sharedp->rsmsi_flags & RSMSI_FLAGS_ABORTDONE)) {
6329 			/*
6330 			 * set a flag indicating abort handling has been
6331 			 * done
6332 			 */
6333 			sharedp->rsmsi_flags |= RSMSI_FLAGS_ABORTDONE;
6334 			rsmsharelock_release(seg);
6335 			/* send a message to exporter - only once */
6336 			(void) rsm_send_notimporting(msg->nodeid,
6337 			    msg->key, shared_cookie);
6338 			rsmsharelock_acquire(seg);
6339 			/*
6340 			 * wake up any waiting importers and inform that
6341 			 * connection has been aborted
6342 			 */
6343 			cv_broadcast(&sharedp->rsmsi_cv);
6344 		}
6345 		rsmsharelock_release(seg);
6346 
6347 		DBG_PRINTF((category, RSM_ERR,
6348 		    "rsm_connect done: RSM_STATE_ABORT_CONNECT\n"));
6349 		return (RSMERR_INTERRUPTED);
6350 	}
6351 
6352 
6353 	/*
6354 	 * We need to verify that this process has access
6355 	 */
6356 	e = rsm_access(sharedp->rsmsi_uid, sharedp->rsmsi_gid,
6357 	    access & sharedp->rsmsi_mode,
6358 	    (int)(msg->perm & RSM_PERM_RDWR), cred);
6359 	if (e) {
6360 		rsmsharelock_release(seg);
6361 		seg->s_state = RSM_STATE_NEW;
6362 		seg->s_adapter = NULL;
6363 		rsmseglock_release(seg);
6364 		rsmimport_rm(seg);
6365 		rsmka_release_adapter(adapter);
6366 		/*
6367 		 * No need to lock segment it has been removed
6368 		 * from the hash table
6369 		 */
6370 		rsmsharelock_acquire(seg);
6371 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6372 			rsmsharelock_release(seg);
6373 			/* this is the first importer */
6374 
6375 			(void) rsm_send_notimporting(msg->nodeid, msg->key,
6376 			    shared_cookie);
6377 			rsmsharelock_acquire(seg);
6378 			sharedp->rsmsi_state = RSMSI_STATE_NEW;
6379 			cv_broadcast(&sharedp->rsmsi_cv);
6380 		}
6381 		rsmsharelock_release(seg);
6382 
6383 		DBG_PRINTF((category, RSM_ERR,
6384 		    "rsm_connect done: ipcaccess failed\n"));
6385 		return (RSMERR_PERM_DENIED);
6386 	}
6387 
6388 	/* update state and cookie */
6389 	seg->s_segid = sharedp->rsmsi_segid;
6390 	seg->s_len = sharedp->rsmsi_seglen;
6391 	seg->s_mode = access & sharedp->rsmsi_mode;
6392 	seg->s_pid = ddi_get_pid();
6393 	seg->s_mapinfo = NULL;
6394 
6395 	if (seg->s_node != my_nodeid) {
6396 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6397 			e = adapter->rsmpi_ops->rsm_connect(
6398 			    adapter->rsmpi_handle,
6399 			    addr, seg->s_segid, &sharedp->rsmsi_handle);
6400 
6401 			if (e != RSM_SUCCESS) {
6402 				seg->s_state = RSM_STATE_NEW;
6403 				seg->s_adapter = NULL;
6404 				rsmsharelock_release(seg);
6405 				rsmseglock_release(seg);
6406 				rsmimport_rm(seg);
6407 				rsmka_release_adapter(adapter);
6408 				/*
6409 				 *  inform the exporter to delete this importer
6410 				 */
6411 				(void) rsm_send_notimporting(msg->nodeid,
6412 				    msg->key, shared_cookie);
6413 
6414 				/*
6415 				 * Now inform any waiting importers to
6416 				 * retry connect. This needs to be done
6417 				 * after sending notimporting so that
6418 				 * the notimporting is sent before a waiting
6419 				 * importer sends a segconnect while retrying
6420 				 *
6421 				 * No need to lock segment it has been removed
6422 				 * from the hash table
6423 				 */
6424 
6425 				rsmsharelock_acquire(seg);
6426 				sharedp->rsmsi_state = RSMSI_STATE_NEW;
6427 				cv_broadcast(&sharedp->rsmsi_cv);
6428 				rsmsharelock_release(seg);
6429 
6430 				DBG_PRINTF((category, RSM_ERR,
6431 				    "rsm_connect error %d\n", e));
6432 				if (e == RSMERR_SEG_NOT_PUBLISHED_TO_RSM_ADDR)
6433 					return (
6434 					    RSMERR_SEG_NOT_PUBLISHED_TO_NODE);
6435 				else if ((e == RSMERR_RSM_ADDR_UNREACHABLE) ||
6436 				    (e == RSMERR_UNKNOWN_RSM_ADDR))
6437 					return (RSMERR_REMOTE_NODE_UNREACHABLE);
6438 				else
6439 					return (e);
6440 			}
6441 
6442 		}
6443 		seg->s_handle.in = sharedp->rsmsi_handle;
6444 
6445 	}
6446 
6447 	seg->s_state = RSM_STATE_CONNECT;
6448 
6449 
6450 	seg->s_flags &= ~RSM_IMPORT_DUMMY;	/* clear dummy flag */
6451 	if (bar_va) {
6452 		/* increment generation number on barrier page */
6453 		atomic_inc_16(bar_va + seg->s_hdr.rsmrc_num);
6454 		/* return user off into barrier page where status will be */
6455 		msg->off = (int)seg->s_hdr.rsmrc_num;
6456 		msg->gnum = bar_va[msg->off]; 	/* gnum race */
6457 	} else {
6458 		msg->off = 0;
6459 		msg->gnum = 0;	/* gnum race */
6460 	}
6461 
6462 	msg->len = (int)sharedp->rsmsi_seglen;
6463 	msg->rnum = seg->s_minor;
6464 	rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING, RSMSI_STATE_CONNECTED);
6465 	rsmsharelock_release(seg);
6466 	rsmseglock_release(seg);
6467 
6468 	/* Return back to user the segment size & perm in case it's needed */
6469 
6470 #ifdef _MULTI_DATAMODEL
6471 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
6472 		rsm_ioctlmsg32_t msg32;
6473 
6474 		if (msg->len > UINT_MAX)
6475 			msg32.len = RSM_MAXSZ_PAGE_ALIGNED;
6476 		else
6477 			msg32.len = msg->len;
6478 		msg32.off = msg->off;
6479 		msg32.perm = msg->perm;
6480 		msg32.gnum = msg->gnum;
6481 		msg32.rnum = msg->rnum;
6482 
6483 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6484 		    "rsm_connect done\n"));
6485 
6486 		if (ddi_copyout((caddr_t)&msg32, (caddr_t)dataptr,
6487 		    sizeof (msg32), mode))
6488 			return (RSMERR_BAD_ADDR);
6489 		else
6490 			return (RSM_SUCCESS);
6491 	}
6492 #endif
6493 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_connect done\n"));
6494 
6495 	if (ddi_copyout((caddr_t)msg, (caddr_t)dataptr, sizeof (*msg),
6496 	    mode))
6497 		return (RSMERR_BAD_ADDR);
6498 	else
6499 		return (RSM_SUCCESS);
6500 }
6501 
6502 static int
6503 rsm_unmap(rsmseg_t *seg)
6504 {
6505 	int			err;
6506 	adapter_t		*adapter;
6507 	rsm_import_share_t	*sharedp;
6508 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6509 
6510 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6511 	    "rsm_unmap enter %u\n", seg->s_segid));
6512 
6513 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6514 
6515 	/* assert seg is locked */
6516 	ASSERT(rsmseglock_held(seg));
6517 	ASSERT(seg->s_state != RSM_STATE_MAPPING);
6518 
6519 	if ((seg->s_state != RSM_STATE_ACTIVE) &&
6520 	    (seg->s_state != RSM_STATE_MAP_QUIESCE)) {
6521 		/* segment unmap has already been done */
6522 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unmap done\n"));
6523 		return (RSM_SUCCESS);
6524 	}
6525 
6526 	sharedp = seg->s_share;
6527 
6528 	rsmsharelock_acquire(seg);
6529 
6530 	/*
6531 	 *	- shared data struct is in MAPPED or MAP_QUIESCE state
6532 	 */
6533 
6534 	ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED ||
6535 	    sharedp->rsmsi_state == RSMSI_STATE_MAP_QUIESCE);
6536 
6537 	/*
6538 	 * Unmap pages - previously rsm_memseg_import_unmap was called only if
6539 	 * the segment cookie list was NULL; but it is always NULL when
6540 	 * called from rsmmap_unmap and won't be NULL when called for
6541 	 * a force disconnect - so the check for NULL cookie list was removed
6542 	 */
6543 
6544 	ASSERT(sharedp->rsmsi_mapcnt > 0);
6545 
6546 	sharedp->rsmsi_mapcnt--;
6547 
6548 	if (sharedp->rsmsi_mapcnt == 0) {
6549 		if (sharedp->rsmsi_state == RSMSI_STATE_MAPPED) {
6550 			/* unmap the shared RSMPI mapping */
6551 			adapter = seg->s_adapter;
6552 			if (seg->s_node != my_nodeid) {
6553 				ASSERT(sharedp->rsmsi_handle != NULL);
6554 				err = adapter->rsmpi_ops->
6555 				    rsm_unmap(sharedp->rsmsi_handle);
6556 				DBG_PRINTF((category, RSM_DEBUG,
6557 				    "rsm_unmap: rsmpi unmap %d\n", err));
6558 				rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
6559 				sharedp->rsmsi_mapinfo = NULL;
6560 			}
6561 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
6562 		} else { /* MAP_QUIESCE --munmap()--> CONN_QUIESCE */
6563 			sharedp->rsmsi_state = RSMSI_STATE_CONN_QUIESCE;
6564 		}
6565 	}
6566 
6567 	rsmsharelock_release(seg);
6568 
6569 	/*
6570 	 * The s_cookie field is used to store the cookie returned from the
6571 	 * ddi_umem_lock when binding the pages for an export segment. This
6572 	 * is the primary use of the s_cookie field and does not normally
6573 	 * pertain to any importing segment except in the loopback case.
6574 	 * For the loopback case, the import segment and export segment are
6575 	 * on the same node, the s_cookie field of the segment structure for
6576 	 * the importer is initialized to the s_cookie field in the exported
6577 	 * segment during the map operation and is used during the call to
6578 	 * devmap_umem_setup for the import mapping.
6579 	 * Thus, during unmap, we simply need to set s_cookie to NULL to
6580 	 * indicate that the mapping no longer exists.
6581 	 */
6582 	seg->s_cookie = NULL;
6583 
6584 	seg->s_mapinfo = NULL;
6585 
6586 	if (seg->s_state == RSM_STATE_ACTIVE)
6587 		seg->s_state = RSM_STATE_CONNECT;
6588 	else
6589 		seg->s_state = RSM_STATE_CONN_QUIESCE;
6590 
6591 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unmap done\n"));
6592 
6593 	return (RSM_SUCCESS);
6594 }
6595 
6596 /*
6597  * cookie returned here if not null indicates that it is
6598  * the last importer and it can be used in the RSMIPC_NOT_IMPORTING
6599  * message.
6600  */
6601 static int
6602 rsm_closeconnection(rsmseg_t *seg, void **cookie)
6603 {
6604 	int			e;
6605 	adapter_t		*adapter;
6606 	rsm_import_share_t	*sharedp;
6607 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6608 
6609 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6610 	    "rsm_closeconnection enter\n"));
6611 
6612 	*cookie = (void *)NULL;
6613 
6614 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6615 
6616 	/* assert seg is locked */
6617 	ASSERT(rsmseglock_held(seg));
6618 
6619 	if (seg->s_state == RSM_STATE_DISCONNECT) {
6620 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6621 		    "rsm_closeconnection done: already disconnected\n"));
6622 		return (RSM_SUCCESS);
6623 	}
6624 
6625 	/* wait for all putv/getv ops to get done */
6626 	while (seg->s_rdmacnt > 0) {
6627 		cv_wait(&seg->s_cv, &seg->s_lock);
6628 	}
6629 
6630 	(void) rsm_unmap(seg);
6631 
6632 	ASSERT(seg->s_state == RSM_STATE_CONNECT ||
6633 	    seg->s_state == RSM_STATE_CONN_QUIESCE);
6634 
6635 	adapter = seg->s_adapter;
6636 	sharedp = seg->s_share;
6637 
6638 	ASSERT(sharedp != NULL);
6639 
6640 	rsmsharelock_acquire(seg);
6641 
6642 	/*
6643 	 * Disconnect on adapter
6644 	 *
6645 	 * The current algorithm is stateless, I don't have to contact
6646 	 * server when I go away. It only gives me permissions. Of course,
6647 	 * the adapters will talk to terminate the connect.
6648 	 *
6649 	 * disconnect is needed only if we are CONNECTED not in CONN_QUIESCE
6650 	 */
6651 	if ((sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) &&
6652 	    (sharedp->rsmsi_node != my_nodeid)) {
6653 
6654 		if (sharedp->rsmsi_refcnt == 1) {
6655 			/* this is the last importer */
6656 			ASSERT(sharedp->rsmsi_mapcnt == 0);
6657 
6658 			e = adapter->rsmpi_ops->
6659 			    rsm_disconnect(sharedp->rsmsi_handle);
6660 			if (e != RSM_SUCCESS) {
6661 				DBG_PRINTF((category, RSM_DEBUG,
6662 				    "rsm:disconnect failed seg=%x:err=%d\n",
6663 				    seg->s_key, e));
6664 			}
6665 		}
6666 	}
6667 
6668 	seg->s_handle.in = NULL;
6669 
6670 	sharedp->rsmsi_refcnt--;
6671 
6672 	if (sharedp->rsmsi_refcnt == 0) {
6673 		*cookie = (void *)sharedp->rsmsi_cookie;
6674 		sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
6675 		sharedp->rsmsi_handle = NULL;
6676 		rsmsharelock_release(seg);
6677 
6678 		/* clean up the shared data structure */
6679 		mutex_destroy(&sharedp->rsmsi_lock);
6680 		cv_destroy(&sharedp->rsmsi_cv);
6681 		kmem_free((void *)(sharedp), sizeof (rsm_import_share_t));
6682 
6683 	} else {
6684 		rsmsharelock_release(seg);
6685 	}
6686 
6687 	/* increment generation number on barrier page */
6688 	if (bar_va) {
6689 		atomic_inc_16(bar_va + seg->s_hdr.rsmrc_num);
6690 	}
6691 
6692 	/*
6693 	 * The following needs to be done after any
6694 	 * rsmsharelock calls which use seg->s_share.
6695 	 */
6696 	seg->s_share = NULL;
6697 
6698 	seg->s_state = RSM_STATE_DISCONNECT;
6699 	/* signal anyone waiting in the CONN_QUIESCE state */
6700 	cv_broadcast(&seg->s_cv);
6701 
6702 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6703 	    "rsm_closeconnection done\n"));
6704 
6705 	return (RSM_SUCCESS);
6706 }
6707 
6708 int
6709 rsm_disconnect(rsmseg_t *seg)
6710 {
6711 	rsmipc_request_t	request;
6712 	void			*shared_cookie;
6713 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6714 
6715 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_disconnect enter\n"));
6716 
6717 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6718 
6719 	/* assert seg isn't locked */
6720 	ASSERT(!rsmseglock_held(seg));
6721 
6722 
6723 	/* Remove segment from imported list */
6724 	rsmimport_rm(seg);
6725 
6726 	/* acquire the segment */
6727 	rsmseglock_acquire(seg);
6728 
6729 	/* wait until segment leaves the mapping state */
6730 	while (seg->s_state == RSM_STATE_MAPPING)
6731 		cv_wait(&seg->s_cv, &seg->s_lock);
6732 
6733 	if (seg->s_state == RSM_STATE_DISCONNECT) {
6734 		seg->s_state = RSM_STATE_NEW;
6735 		rsmseglock_release(seg);
6736 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6737 		    "rsm_disconnect done: already disconnected\n"));
6738 		return (RSM_SUCCESS);
6739 	}
6740 
6741 	(void) rsm_closeconnection(seg, &shared_cookie);
6742 
6743 	/* update state */
6744 	seg->s_state = RSM_STATE_NEW;
6745 
6746 	if (shared_cookie != NULL) {
6747 		/*
6748 		 *  This is the last importer so inform the exporting node
6749 		 *  so this import can be deleted from the list of importers.
6750 		 */
6751 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_NOTIMPORTING;
6752 		request.rsmipc_key = seg->s_segid;
6753 		request.rsmipc_segment_cookie = shared_cookie;
6754 		rsmseglock_release(seg);
6755 		(void) rsmipc_send(seg->s_node, &request, RSM_NO_REPLY);
6756 	} else {
6757 		rsmseglock_release(seg);
6758 	}
6759 
6760 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_disconnect done\n"));
6761 
6762 	return (DDI_SUCCESS);
6763 }
6764 
6765 /*ARGSUSED*/
6766 static int
6767 rsm_chpoll(dev_t dev, short events, int anyyet, short *reventsp,
6768     struct pollhead **phpp)
6769 {
6770 	minor_t		rnum;
6771 	rsmresource_t	*res;
6772 	rsmseg_t 	*seg;
6773 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
6774 
6775 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_chpoll enter\n"));
6776 
6777 	/* find minor, no lock */
6778 	rnum = getminor(dev);
6779 	res = rsmresource_lookup(rnum, RSM_NOLOCK);
6780 
6781 	/* poll is supported only for export/import segments */
6782 	if ((res == NULL) || (res == RSMRC_RESERVED) ||
6783 	    (res->rsmrc_type == RSM_RESOURCE_BAR)) {
6784 		return (ENXIO);
6785 	}
6786 
6787 	*reventsp = 0;
6788 
6789 	/*
6790 	 * An exported segment must be in state RSM_STATE_EXPORT; an
6791 	 * imported segment must be in state RSM_STATE_ACTIVE.
6792 	 */
6793 	seg = (rsmseg_t *)res;
6794 
6795 	if (seg->s_pollevent) {
6796 		*reventsp = POLLRDNORM;
6797 	} else if (!anyyet) {
6798 		/* cannot take segment lock here */
6799 		*phpp = &seg->s_poll;
6800 		seg->s_pollflag |= RSM_SEGMENT_POLL;
6801 	}
6802 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_chpoll done\n"));
6803 	return (0);
6804 }
6805 
6806 
6807 
6808 /* ************************* IOCTL Commands ********************* */
6809 
6810 static rsmseg_t *
6811 rsmresource_seg(rsmresource_t *res, minor_t rnum, cred_t *credp,
6812     rsm_resource_type_t type)
6813 {
6814 	/* get segment from resource handle */
6815 	rsmseg_t *seg;
6816 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
6817 
6818 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmresource_seg enter\n"));
6819 
6820 
6821 	if (res != RSMRC_RESERVED) {
6822 		seg = (rsmseg_t *)res;
6823 	} else {
6824 		/* Allocate segment now and bind it */
6825 		seg = rsmseg_alloc(rnum, credp);
6826 
6827 		/*
6828 		 * if DR pre-processing is going on or DR is in progress
6829 		 * then the new export segments should be in the NEW_QSCD state
6830 		 */
6831 		if (type == RSM_RESOURCE_EXPORT_SEGMENT) {
6832 			mutex_enter(&rsm_drv_data.drv_lock);
6833 			if ((rsm_drv_data.drv_state ==
6834 			    RSM_DRV_PREDEL_STARTED) ||
6835 			    (rsm_drv_data.drv_state ==
6836 			    RSM_DRV_PREDEL_COMPLETED) ||
6837 			    (rsm_drv_data.drv_state ==
6838 			    RSM_DRV_DR_IN_PROGRESS)) {
6839 				seg->s_state = RSM_STATE_NEW_QUIESCED;
6840 			}
6841 			mutex_exit(&rsm_drv_data.drv_lock);
6842 		}
6843 
6844 		rsmresource_insert(rnum, (rsmresource_t *)seg, type);
6845 	}
6846 
6847 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmresource_seg done\n"));
6848 
6849 	return (seg);
6850 }
6851 
6852 static int
6853 rsmexport_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6854     int mode, cred_t *credp)
6855 {
6856 	int error;
6857 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT | RSM_IOCTL);
6858 
6859 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmexport_ioctl enter\n"));
6860 
6861 	arg = arg;
6862 	credp = credp;
6863 
6864 	ASSERT(seg != NULL);
6865 
6866 	switch (cmd) {
6867 	case RSM_IOCTL_BIND:
6868 		error = rsm_bind(seg, msg, arg, mode);
6869 		break;
6870 	case RSM_IOCTL_REBIND:
6871 		error = rsm_rebind(seg, msg);
6872 		break;
6873 	case RSM_IOCTL_UNBIND:
6874 		error = ENOTSUP;
6875 		break;
6876 	case RSM_IOCTL_PUBLISH:
6877 		error = rsm_publish(seg, msg, arg, mode);
6878 		break;
6879 	case RSM_IOCTL_REPUBLISH:
6880 		error = rsm_republish(seg, msg, mode);
6881 		break;
6882 	case RSM_IOCTL_UNPUBLISH:
6883 		error = rsm_unpublish(seg, 1);
6884 		break;
6885 	default:
6886 		error = EINVAL;
6887 		break;
6888 	}
6889 
6890 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmexport_ioctl done: %d\n",
6891 	    error));
6892 
6893 	return (error);
6894 }
6895 static int
6896 rsmimport_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6897     int mode, cred_t *credp)
6898 {
6899 	int error;
6900 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
6901 
6902 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmimport_ioctl enter\n"));
6903 
6904 	ASSERT(seg);
6905 
6906 	switch (cmd) {
6907 	case RSM_IOCTL_CONNECT:
6908 		error = rsm_connect(seg, msg, credp, arg, mode);
6909 		break;
6910 	default:
6911 		error = EINVAL;
6912 		break;
6913 	}
6914 
6915 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmimport_ioctl done: %d\n",
6916 	    error));
6917 	return (error);
6918 }
6919 
6920 static int
6921 rsmbar_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6922     int mode)
6923 {
6924 	int e;
6925 	adapter_t *adapter;
6926 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
6927 
6928 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmbar_ioctl enter\n"));
6929 
6930 
6931 	if ((seg->s_flags & RSM_IMPORT_DUMMY) != 0) {
6932 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6933 		    "rsmbar_ioctl done: RSM_IMPORT_DUMMY\n"));
6934 		return (RSMERR_CONN_ABORTED);
6935 	} else if (seg->s_node == my_nodeid) {
6936 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6937 		    "rsmbar_ioctl done: loopback\n"));
6938 		return (RSM_SUCCESS);
6939 	}
6940 
6941 	adapter = seg->s_adapter;
6942 
6943 	switch (cmd) {
6944 	case RSM_IOCTL_BAR_CHECK:
6945 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6946 		    "rsmbar_ioctl done: RSM_BAR_CHECK %d\n", bar_va));
6947 		return (bar_va ? RSM_SUCCESS : EINVAL);
6948 	case RSM_IOCTL_BAR_OPEN:
6949 		e = adapter->rsmpi_ops->
6950 		    rsm_open_barrier_ctrl(adapter->rsmpi_handle, &msg->bar);
6951 		break;
6952 	case RSM_IOCTL_BAR_ORDER:
6953 		e = adapter->rsmpi_ops->rsm_order_barrier(&msg->bar);
6954 		break;
6955 	case RSM_IOCTL_BAR_CLOSE:
6956 		e = adapter->rsmpi_ops->rsm_close_barrier(&msg->bar);
6957 		break;
6958 	default:
6959 		e = EINVAL;
6960 		break;
6961 	}
6962 
6963 	if (e == RSM_SUCCESS) {
6964 #ifdef _MULTI_DATAMODEL
6965 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
6966 			rsm_ioctlmsg32_t msg32;
6967 			int i;
6968 
6969 			for (i = 0; i < 4; i++) {
6970 				msg32.bar.comp[i].u64 = msg->bar.comp[i].u64;
6971 			}
6972 
6973 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6974 			    "rsmbar_ioctl done\n"));
6975 			if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
6976 			    sizeof (msg32), mode))
6977 				return (RSMERR_BAD_ADDR);
6978 			else
6979 				return (RSM_SUCCESS);
6980 		}
6981 #endif
6982 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6983 		    "rsmbar_ioctl done\n"));
6984 		if (ddi_copyout((caddr_t)&msg->bar, (caddr_t)arg,
6985 		    sizeof (*msg), mode))
6986 			return (RSMERR_BAD_ADDR);
6987 		else
6988 			return (RSM_SUCCESS);
6989 	}
6990 
6991 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6992 	    "rsmbar_ioctl done: error=%d\n", e));
6993 
6994 	return (e);
6995 }
6996 
6997 /*
6998  * Ring the doorbell of the export segment to which this segment is
6999  * connected.
7000  */
7001 static int
7002 exportbell_ioctl(rsmseg_t *seg, int cmd /*ARGSUSED*/)
7003 {
7004 	int e = 0;
7005 	rsmipc_request_t request;
7006 
7007 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7008 
7009 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exportbell_ioctl enter\n"));
7010 
7011 	request.rsmipc_key = seg->s_segid;
7012 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7013 	request.rsmipc_segment_cookie = NULL;
7014 	e = rsmipc_send(seg->s_node, &request, RSM_NO_REPLY);
7015 
7016 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7017 	    "exportbell_ioctl done: %d\n", e));
7018 
7019 	return (e);
7020 }
7021 
7022 /*
7023  * Ring the doorbells of all segments importing this segment
7024  */
7025 static int
7026 importbell_ioctl(rsmseg_t *seg, int cmd /*ARGSUSED*/)
7027 {
7028 	importing_token_t	*token = NULL;
7029 	rsmipc_request_t	request;
7030 	int			index;
7031 
7032 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT | RSM_IOCTL);
7033 
7034 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importbell_ioctl enter\n"));
7035 
7036 	ASSERT(seg->s_state != RSM_STATE_NEW &&
7037 	    seg->s_state != RSM_STATE_NEW_QUIESCED);
7038 
7039 	request.rsmipc_key = seg->s_segid;
7040 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7041 
7042 	index = rsmhash(seg->s_segid);
7043 
7044 	token = importer_list.bucket[index];
7045 
7046 	while (token != NULL) {
7047 		if (seg->s_key == token->key) {
7048 			request.rsmipc_segment_cookie =
7049 			    token->import_segment_cookie;
7050 			(void) rsmipc_send(token->importing_node,
7051 			    &request, RSM_NO_REPLY);
7052 		}
7053 		token = token->next;
7054 	}
7055 
7056 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7057 	    "importbell_ioctl done\n"));
7058 	return (RSM_SUCCESS);
7059 }
7060 
7061 static int
7062 rsm_consumeevent_copyin(caddr_t arg, rsm_consume_event_msg_t *msgp,
7063     rsm_poll_event_t **eventspp, int mode)
7064 {
7065 	rsm_poll_event_t	*evlist = NULL;
7066 	size_t			evlistsz;
7067 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7068 
7069 #ifdef _MULTI_DATAMODEL
7070 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7071 		int i;
7072 		rsm_consume_event_msg32_t cemsg32 = {0};
7073 		rsm_poll_event32_t	event32[RSM_MAX_POLLFDS];
7074 		rsm_poll_event32_t	*evlist32;
7075 		size_t			evlistsz32;
7076 
7077 		/* copyin the ioctl message */
7078 		if (ddi_copyin(arg, (caddr_t)&cemsg32,
7079 		    sizeof (rsm_consume_event_msg32_t), mode)) {
7080 			DBG_PRINTF((category, RSM_ERR,
7081 			    "consumeevent_copyin msgp: RSMERR_BAD_ADDR\n"));
7082 			return (RSMERR_BAD_ADDR);
7083 		}
7084 		msgp->seglist = (caddr_t)(uintptr_t)cemsg32.seglist;
7085 		msgp->numents = (int)cemsg32.numents;
7086 
7087 		evlistsz32 = sizeof (rsm_poll_event32_t) * msgp->numents;
7088 		/*
7089 		 * If numents is large alloc events list on heap otherwise
7090 		 * use the address of array that was passed in.
7091 		 */
7092 		if (msgp->numents > RSM_MAX_POLLFDS) {
7093 			if (msgp->numents > max_segs) { /* validate numents */
7094 				DBG_PRINTF((category, RSM_ERR,
7095 				    "consumeevent_copyin: "
7096 				    "RSMERR_BAD_ARGS_ERRORS\n"));
7097 				return (RSMERR_BAD_ARGS_ERRORS);
7098 			}
7099 			evlist32 = kmem_zalloc(evlistsz32, KM_SLEEP);
7100 		} else {
7101 			evlist32 = event32;
7102 		}
7103 
7104 		/* copyin the seglist into the rsm_poll_event32_t array */
7105 		if (ddi_copyin((caddr_t)msgp->seglist, (caddr_t)evlist32,
7106 		    evlistsz32, mode)) {
7107 			if ((msgp->numents > RSM_MAX_POLLFDS) && evlist32) {
7108 				kmem_free(evlist32, evlistsz32);
7109 			}
7110 			DBG_PRINTF((category, RSM_ERR,
7111 			    "consumeevent_copyin evlist: RSMERR_BAD_ADDR\n"));
7112 			return (RSMERR_BAD_ADDR);
7113 		}
7114 
7115 		/* evlist and evlistsz are based on rsm_poll_event_t type */
7116 		evlistsz = sizeof (rsm_poll_event_t)* msgp->numents;
7117 
7118 		if (msgp->numents > RSM_MAX_POLLFDS) {
7119 			evlist = kmem_zalloc(evlistsz, KM_SLEEP);
7120 			*eventspp = evlist;
7121 		} else {
7122 			evlist = *eventspp;
7123 		}
7124 		/*
7125 		 * copy the rsm_poll_event32_t array to the rsm_poll_event_t
7126 		 * array
7127 		 */
7128 		for (i = 0; i < msgp->numents; i++) {
7129 			evlist[i].rnum = evlist32[i].rnum;
7130 			evlist[i].fdsidx = evlist32[i].fdsidx;
7131 			evlist[i].revent = evlist32[i].revent;
7132 		}
7133 		/* free the temp 32-bit event list */
7134 		if ((msgp->numents > RSM_MAX_POLLFDS) && evlist32) {
7135 			kmem_free(evlist32, evlistsz32);
7136 		}
7137 
7138 		return (RSM_SUCCESS);
7139 	}
7140 #endif
7141 	/* copyin the ioctl message */
7142 	if (ddi_copyin(arg, (caddr_t)msgp, sizeof (rsm_consume_event_msg_t),
7143 	    mode)) {
7144 		DBG_PRINTF((category, RSM_ERR,
7145 		    "consumeevent_copyin msgp: RSMERR_BAD_ADDR\n"));
7146 		return (RSMERR_BAD_ADDR);
7147 	}
7148 	/*
7149 	 * If numents is large alloc events list on heap otherwise
7150 	 * use the address of array that was passed in.
7151 	 */
7152 	if (msgp->numents > RSM_MAX_POLLFDS) {
7153 		if (msgp->numents > max_segs) { /* validate numents */
7154 			DBG_PRINTF((category, RSM_ERR,
7155 			    "consumeevent_copyin: RSMERR_BAD_ARGS_ERRORS\n"));
7156 			return (RSMERR_BAD_ARGS_ERRORS);
7157 		}
7158 		evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7159 		evlist = kmem_zalloc(evlistsz, KM_SLEEP);
7160 		*eventspp  = evlist;
7161 	}
7162 
7163 	/* copyin the seglist */
7164 	if (ddi_copyin((caddr_t)msgp->seglist, (caddr_t)(*eventspp),
7165 	    sizeof (rsm_poll_event_t)*msgp->numents, mode)) {
7166 		if (evlist) {
7167 			kmem_free(evlist, evlistsz);
7168 			*eventspp = NULL;
7169 		}
7170 		DBG_PRINTF((category, RSM_ERR,
7171 		    "consumeevent_copyin evlist: RSMERR_BAD_ADDR\n"));
7172 		return (RSMERR_BAD_ADDR);
7173 	}
7174 
7175 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7176 	    "consumeevent_copyin done\n"));
7177 	return (RSM_SUCCESS);
7178 }
7179 
7180 static int
7181 rsm_consumeevent_copyout(rsm_consume_event_msg_t *msgp,
7182     rsm_poll_event_t *eventsp, int mode)
7183 {
7184 	size_t			evlistsz;
7185 	int			err = RSM_SUCCESS;
7186 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7187 
7188 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7189 	    "consumeevent_copyout enter: numents(%d) eventsp(%p)\n",
7190 	    msgp->numents, eventsp));
7191 
7192 #ifdef _MULTI_DATAMODEL
7193 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7194 		int i;
7195 		rsm_poll_event32_t	event32[RSM_MAX_POLLFDS];
7196 		rsm_poll_event32_t	*evlist32;
7197 		size_t			evlistsz32;
7198 
7199 		evlistsz32 = sizeof (rsm_poll_event32_t)*msgp->numents;
7200 		if (msgp->numents > RSM_MAX_POLLFDS) {
7201 			evlist32 = kmem_zalloc(evlistsz32, KM_SLEEP);
7202 		} else {
7203 			evlist32 = event32;
7204 		}
7205 
7206 		/*
7207 		 * copy the rsm_poll_event_t array to the rsm_poll_event32_t
7208 		 * array
7209 		 */
7210 		for (i = 0; i < msgp->numents; i++) {
7211 			evlist32[i].rnum = eventsp[i].rnum;
7212 			evlist32[i].fdsidx = eventsp[i].fdsidx;
7213 			evlist32[i].revent = eventsp[i].revent;
7214 		}
7215 
7216 		if (ddi_copyout((caddr_t)evlist32, (caddr_t)msgp->seglist,
7217 		    evlistsz32, mode)) {
7218 			err = RSMERR_BAD_ADDR;
7219 		}
7220 
7221 		if (msgp->numents > RSM_MAX_POLLFDS) {
7222 			if (evlist32) {	/* free the temp 32-bit event list */
7223 				kmem_free(evlist32, evlistsz32);
7224 			}
7225 			/*
7226 			 * eventsp and evlistsz are based on rsm_poll_event_t
7227 			 * type
7228 			 */
7229 			evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7230 			/* event list on the heap and needs to be freed here */
7231 			if (eventsp) {
7232 				kmem_free(eventsp, evlistsz);
7233 			}
7234 		}
7235 
7236 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7237 		    "consumeevent_copyout done: err=%d\n", err));
7238 		return (err);
7239 	}
7240 #endif
7241 	evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7242 
7243 	if (ddi_copyout((caddr_t)eventsp, (caddr_t)msgp->seglist, evlistsz,
7244 	    mode)) {
7245 		err = RSMERR_BAD_ADDR;
7246 	}
7247 
7248 	if ((msgp->numents > RSM_MAX_POLLFDS) && eventsp) {
7249 		/* event list on the heap and needs to be freed here */
7250 		kmem_free(eventsp, evlistsz);
7251 	}
7252 
7253 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7254 	    "consumeevent_copyout done: err=%d\n", err));
7255 	return (err);
7256 }
7257 
7258 static int
7259 rsm_consumeevent_ioctl(caddr_t arg, int mode)
7260 {
7261 	int	rc;
7262 	int	i;
7263 	minor_t	rnum;
7264 	rsm_consume_event_msg_t	msg = {0};
7265 	rsmseg_t		*seg;
7266 	rsm_poll_event_t	*event_list;
7267 	rsm_poll_event_t	events[RSM_MAX_POLLFDS];
7268 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7269 
7270 	event_list = events;
7271 
7272 	if ((rc = rsm_consumeevent_copyin(arg, &msg, &event_list, mode)) !=
7273 	    RSM_SUCCESS) {
7274 		return (rc);
7275 	}
7276 
7277 	for (i = 0; i < msg.numents; i++) {
7278 		rnum = event_list[i].rnum;
7279 		event_list[i].revent = 0;
7280 		/* get the segment structure */
7281 		seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_LOCK);
7282 		if (seg) {
7283 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7284 			    "consumeevent_ioctl: rnum(%d) seg(%p)\n", rnum,
7285 			    seg));
7286 			if (seg->s_pollevent) {
7287 				/* consume the event */
7288 				atomic_dec_32(&seg->s_pollevent);
7289 				event_list[i].revent = POLLRDNORM;
7290 			}
7291 			rsmseglock_release(seg);
7292 		}
7293 	}
7294 
7295 	if ((rc = rsm_consumeevent_copyout(&msg, event_list, mode)) !=
7296 	    RSM_SUCCESS) {
7297 		return (rc);
7298 	}
7299 
7300 	return (RSM_SUCCESS);
7301 }
7302 
7303 static int
7304 iovec_copyin(caddr_t user_vec, rsmka_iovec_t *iovec, int count, int mode)
7305 {
7306 	int size;
7307 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7308 
7309 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "iovec_copyin enter\n"));
7310 
7311 #ifdef _MULTI_DATAMODEL
7312 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7313 		rsmka_iovec32_t	*iovec32, *iovec32_base;
7314 		int i;
7315 
7316 		size = count * sizeof (rsmka_iovec32_t);
7317 		iovec32_base = iovec32 = kmem_zalloc(size, KM_SLEEP);
7318 		if (ddi_copyin((caddr_t)user_vec,
7319 		    (caddr_t)iovec32, size, mode)) {
7320 			kmem_free(iovec32, size);
7321 			DBG_PRINTF((category, RSM_DEBUG,
7322 			    "iovec_copyin: returning RSMERR_BAD_ADDR\n"));
7323 			return (RSMERR_BAD_ADDR);
7324 		}
7325 
7326 		for (i = 0; i < count; i++, iovec++, iovec32++) {
7327 			iovec->io_type = (int)iovec32->io_type;
7328 			if (iovec->io_type == RSM_HANDLE_TYPE)
7329 				iovec->local.segid = (rsm_memseg_id_t)
7330 				    iovec32->local;
7331 			else
7332 				iovec->local.vaddr =
7333 				    (caddr_t)(uintptr_t)iovec32->local;
7334 			iovec->local_offset = (size_t)iovec32->local_offset;
7335 			iovec->remote_offset = (size_t)iovec32->remote_offset;
7336 			iovec->transfer_len = (size_t)iovec32->transfer_len;
7337 
7338 		}
7339 		kmem_free(iovec32_base, size);
7340 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7341 		    "iovec_copyin done\n"));
7342 		return (DDI_SUCCESS);
7343 	}
7344 #endif
7345 
7346 	size = count * sizeof (rsmka_iovec_t);
7347 	if (ddi_copyin((caddr_t)user_vec, (caddr_t)iovec, size, mode)) {
7348 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7349 		    "iovec_copyin done: RSMERR_BAD_ADDR\n"));
7350 		return (RSMERR_BAD_ADDR);
7351 	}
7352 
7353 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "iovec_copyin done\n"));
7354 
7355 	return (DDI_SUCCESS);
7356 }
7357 
7358 
7359 static int
7360 sgio_copyin(caddr_t arg, rsmka_scat_gath_t *sg_io, int mode)
7361 {
7362 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7363 
7364 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_copyin enter\n"));
7365 
7366 #ifdef _MULTI_DATAMODEL
7367 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7368 		rsmka_scat_gath32_t sg_io32;
7369 
7370 		if (ddi_copyin(arg, (caddr_t)&sg_io32, sizeof (sg_io32),
7371 		    mode)) {
7372 			DBG_PRINTF((category, RSM_DEBUG,
7373 			    "sgio_copyin done: returning EFAULT\n"));
7374 			return (RSMERR_BAD_ADDR);
7375 		}
7376 		sg_io->local_nodeid = (rsm_node_id_t)sg_io32.local_nodeid;
7377 		sg_io->io_request_count =  (size_t)sg_io32.io_request_count;
7378 		sg_io->io_residual_count = (size_t)sg_io32.io_residual_count;
7379 		sg_io->flags = (size_t)sg_io32.flags;
7380 		sg_io->remote_handle = (rsm_memseg_import_handle_t)
7381 		    (uintptr_t)sg_io32.remote_handle;
7382 		sg_io->iovec = (rsmka_iovec_t *)(uintptr_t)sg_io32.iovec;
7383 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7384 		    "sgio_copyin done\n"));
7385 		return (DDI_SUCCESS);
7386 	}
7387 #endif
7388 	if (ddi_copyin(arg, (caddr_t)sg_io, sizeof (rsmka_scat_gath_t),
7389 	    mode)) {
7390 		DBG_PRINTF((category, RSM_DEBUG,
7391 		    "sgio_copyin done: returning EFAULT\n"));
7392 		return (RSMERR_BAD_ADDR);
7393 	}
7394 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_copyin done\n"));
7395 	return (DDI_SUCCESS);
7396 }
7397 
7398 static int
7399 sgio_resid_copyout(caddr_t arg, rsmka_scat_gath_t *sg_io, int mode)
7400 {
7401 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7402 
7403 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7404 	    "sgio_resid_copyout enter\n"));
7405 
7406 #ifdef _MULTI_DATAMODEL
7407 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7408 		rsmka_scat_gath32_t sg_io32;
7409 
7410 		sg_io32.io_residual_count = sg_io->io_residual_count;
7411 		sg_io32.flags = sg_io->flags;
7412 
7413 		if (ddi_copyout((caddr_t)&sg_io32.io_residual_count,
7414 		    (caddr_t)&((rsmka_scat_gath32_t *)arg)->io_residual_count,
7415 		    sizeof (uint32_t), mode)) {
7416 
7417 			DBG_PRINTF((category, RSM_ERR,
7418 			    "sgio_resid_copyout error: rescnt\n"));
7419 			return (RSMERR_BAD_ADDR);
7420 		}
7421 
7422 		if (ddi_copyout((caddr_t)&sg_io32.flags,
7423 		    (caddr_t)&((rsmka_scat_gath32_t *)arg)->flags,
7424 		    sizeof (uint32_t), mode)) {
7425 
7426 			DBG_PRINTF((category, RSM_ERR,
7427 			    "sgio_resid_copyout error: flags\n"));
7428 			return (RSMERR_BAD_ADDR);
7429 		}
7430 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7431 		    "sgio_resid_copyout done\n"));
7432 		return (DDI_SUCCESS);
7433 	}
7434 #endif
7435 	if (ddi_copyout((caddr_t)&sg_io->io_residual_count,
7436 	    (caddr_t)&((rsmka_scat_gath_t *)arg)->io_residual_count,
7437 	    sizeof (ulong_t), mode)) {
7438 
7439 		DBG_PRINTF((category, RSM_ERR,
7440 		    "sgio_resid_copyout error:rescnt\n"));
7441 		return (RSMERR_BAD_ADDR);
7442 	}
7443 
7444 	if (ddi_copyout((caddr_t)&sg_io->flags,
7445 	    (caddr_t)&((rsmka_scat_gath_t *)arg)->flags,
7446 	    sizeof (uint_t), mode)) {
7447 
7448 		DBG_PRINTF((category, RSM_ERR,
7449 		    "sgio_resid_copyout error:flags\n"));
7450 		return (RSMERR_BAD_ADDR);
7451 	}
7452 
7453 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_resid_copyout done\n"));
7454 	return (DDI_SUCCESS);
7455 }
7456 
7457 
7458 static int
7459 rsm_iovec_ioctl(dev_t dev, caddr_t arg, int cmd, int mode, cred_t *credp)
7460 {
7461 	rsmka_scat_gath_t	sg_io;
7462 	rsmka_iovec_t		ka_iovec_arr[RSM_MAX_IOVLEN];
7463 	rsmka_iovec_t		*ka_iovec;
7464 	rsmka_iovec_t		*ka_iovec_start;
7465 	rsmpi_scat_gath_t	rsmpi_sg_io;
7466 	rsmpi_iovec_t		iovec_arr[RSM_MAX_IOVLEN];
7467 	rsmpi_iovec_t		*iovec;
7468 	rsmpi_iovec_t		*iovec_start = NULL;
7469 	rsmapi_access_entry_t	*acl;
7470 	rsmresource_t		*res;
7471 	minor_t			rnum;
7472 	rsmseg_t		*im_seg, *ex_seg;
7473 	int			e;
7474 	int			error = 0;
7475 	uint_t			i;
7476 	uint_t			iov_proc = 0; /* num of iovecs processed */
7477 	size_t			size = 0;
7478 	size_t			ka_size;
7479 
7480 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7481 
7482 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_iovec_ioctl enter\n"));
7483 
7484 	credp = credp;
7485 
7486 	/*
7487 	 * Copyin the scatter/gather structure  and build new structure
7488 	 * for rsmpi.
7489 	 */
7490 	e = sgio_copyin(arg, &sg_io, mode);
7491 	if (e != DDI_SUCCESS) {
7492 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7493 		    "rsm_iovec_ioctl done: sgio_copyin %d\n", e));
7494 		return (e);
7495 	}
7496 
7497 	if (sg_io.io_request_count > RSM_MAX_SGIOREQS) {
7498 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7499 		    "rsm_iovec_ioctl done: request_count(%d) too large\n",
7500 		    sg_io.io_request_count));
7501 		return (RSMERR_BAD_SGIO);
7502 	}
7503 
7504 	rsmpi_sg_io.io_request_count = sg_io.io_request_count;
7505 	rsmpi_sg_io.io_residual_count = sg_io.io_request_count;
7506 	rsmpi_sg_io.io_segflg = 0;
7507 
7508 	/* Allocate memory and copyin io vector array  */
7509 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7510 		ka_size =  sg_io.io_request_count * sizeof (rsmka_iovec_t);
7511 		ka_iovec_start = ka_iovec = kmem_zalloc(ka_size, KM_SLEEP);
7512 	} else {
7513 		ka_iovec_start = ka_iovec = ka_iovec_arr;
7514 	}
7515 	e = iovec_copyin((caddr_t)sg_io.iovec, ka_iovec,
7516 	    sg_io.io_request_count, mode);
7517 	if (e != DDI_SUCCESS) {
7518 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7519 			kmem_free(ka_iovec, ka_size);
7520 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7521 		    "rsm_iovec_ioctl done: iovec_copyin %d\n", e));
7522 		return (e);
7523 	}
7524 
7525 	/* get the import segment descriptor */
7526 	rnum = getminor(dev);
7527 	res = rsmresource_lookup(rnum, RSM_LOCK);
7528 
7529 	/*
7530 	 * The following sequence of locking may (or MAY NOT) cause a
7531 	 * deadlock but this is currently not addressed here since the
7532 	 * implementation will be changed to incorporate the use of
7533 	 * reference counting for both the import and the export segments.
7534 	 */
7535 
7536 	/* rsmseglock_acquire(im_seg) done in rsmresource_lookup */
7537 
7538 	im_seg = (rsmseg_t *)res;
7539 
7540 	if (im_seg == NULL) {
7541 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7542 			kmem_free(ka_iovec, ka_size);
7543 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7544 		    "rsm_iovec_ioctl done: rsmresource_lookup failed\n"));
7545 		return (EINVAL);
7546 	}
7547 	/* putv/getv supported is supported only on import segments */
7548 	if (im_seg->s_type != RSM_RESOURCE_IMPORT_SEGMENT) {
7549 		rsmseglock_release(im_seg);
7550 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7551 			kmem_free(ka_iovec, ka_size);
7552 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7553 		    "rsm_iovec_ioctl done: not an import segment\n"));
7554 		return (EINVAL);
7555 	}
7556 
7557 	/*
7558 	 * wait for a remote DR to complete ie. for segments to get UNQUIESCED
7559 	 * as well as wait for a local DR to complete.
7560 	 */
7561 	while ((im_seg->s_state == RSM_STATE_CONN_QUIESCE) ||
7562 	    (im_seg->s_state == RSM_STATE_MAP_QUIESCE) ||
7563 	    (im_seg->s_flags & RSM_DR_INPROGRESS)) {
7564 		if (cv_wait_sig(&im_seg->s_cv, &im_seg->s_lock) == 0) {
7565 			DBG_PRINTF((category, RSM_DEBUG,
7566 			    "rsm_iovec_ioctl done: cv_wait INTR"));
7567 			rsmseglock_release(im_seg);
7568 			return (RSMERR_INTERRUPTED);
7569 		}
7570 	}
7571 
7572 	if ((im_seg->s_state != RSM_STATE_CONNECT) &&
7573 	    (im_seg->s_state != RSM_STATE_ACTIVE)) {
7574 
7575 		ASSERT(im_seg->s_state == RSM_STATE_DISCONNECT ||
7576 		    im_seg->s_state == RSM_STATE_NEW);
7577 
7578 		DBG_PRINTF((category, RSM_DEBUG,
7579 		    "rsm_iovec_ioctl done: im_seg not conn/map"));
7580 		rsmseglock_release(im_seg);
7581 		e = RSMERR_BAD_SGIO;
7582 		goto out;
7583 	}
7584 
7585 	im_seg->s_rdmacnt++;
7586 	rsmseglock_release(im_seg);
7587 
7588 	/*
7589 	 * Allocate and set up the io vector for rsmpi
7590 	 */
7591 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7592 		size = sg_io.io_request_count * sizeof (rsmpi_iovec_t);
7593 		iovec_start = iovec = kmem_zalloc(size, KM_SLEEP);
7594 	} else {
7595 		iovec_start = iovec = iovec_arr;
7596 	}
7597 
7598 	rsmpi_sg_io.iovec = iovec;
7599 	for (iov_proc = 0; iov_proc < sg_io.io_request_count; iov_proc++) {
7600 		if (ka_iovec->io_type == RSM_HANDLE_TYPE) {
7601 			ex_seg = rsmexport_lookup(ka_iovec->local.segid);
7602 
7603 			if (ex_seg == NULL) {
7604 				e = RSMERR_BAD_SGIO;
7605 				break;
7606 			}
7607 			ASSERT(ex_seg->s_state == RSM_STATE_EXPORT);
7608 
7609 			acl = ex_seg->s_acl;
7610 			if (acl[0].ae_permission == 0) {
7611 				struct buf *xbuf;
7612 				dev_t sdev = 0;
7613 
7614 				xbuf = ddi_umem_iosetup(ex_seg->s_cookie,
7615 				    0, ex_seg->s_len, B_WRITE,
7616 				    sdev, 0, NULL, DDI_UMEM_SLEEP);
7617 
7618 				ASSERT(xbuf != NULL);
7619 
7620 				iovec->local_mem.ms_type = RSM_MEM_BUF;
7621 				iovec->local_mem.ms_memory.bp = xbuf;
7622 			} else {
7623 				iovec->local_mem.ms_type = RSM_MEM_HANDLE;
7624 				iovec->local_mem.ms_memory.handle =
7625 				    ex_seg->s_handle.out;
7626 			}
7627 			ex_seg->s_rdmacnt++; /* refcnt the handle */
7628 			rsmseglock_release(ex_seg);
7629 		} else {
7630 			iovec->local_mem.ms_type = RSM_MEM_VADDR;
7631 			iovec->local_mem.ms_memory.vr.vaddr =
7632 			    ka_iovec->local.vaddr;
7633 		}
7634 
7635 		iovec->local_offset = ka_iovec->local_offset;
7636 		iovec->remote_handle = im_seg->s_handle.in;
7637 		iovec->remote_offset = ka_iovec->remote_offset;
7638 		iovec->transfer_length = ka_iovec->transfer_len;
7639 		iovec++;
7640 		ka_iovec++;
7641 	}
7642 
7643 	if (iov_proc <  sg_io.io_request_count) {
7644 		/* error while processing handle */
7645 		rsmseglock_acquire(im_seg);
7646 		im_seg->s_rdmacnt--;   /* decrement the refcnt for importseg */
7647 		if (im_seg->s_rdmacnt == 0) {
7648 			cv_broadcast(&im_seg->s_cv);
7649 		}
7650 		rsmseglock_release(im_seg);
7651 		goto out;
7652 	}
7653 
7654 	/* call rsmpi */
7655 	if (cmd == RSM_IOCTL_PUTV)
7656 		e = im_seg->s_adapter->rsmpi_ops->rsm_memseg_import_putv(
7657 		    im_seg->s_adapter->rsmpi_handle,
7658 		    &rsmpi_sg_io);
7659 	else if (cmd == RSM_IOCTL_GETV)
7660 		e = im_seg->s_adapter->rsmpi_ops->rsm_memseg_import_getv(
7661 		    im_seg->s_adapter->rsmpi_handle,
7662 		    &rsmpi_sg_io);
7663 	else {
7664 		e = EINVAL;
7665 		DBG_PRINTF((category, RSM_DEBUG,
7666 		    "iovec_ioctl: bad command = %x\n", cmd));
7667 	}
7668 
7669 
7670 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7671 	    "rsm_iovec_ioctl RSMPI oper done %d\n", e));
7672 
7673 	sg_io.io_residual_count = rsmpi_sg_io.io_residual_count;
7674 
7675 	/*
7676 	 * Check for implicit signal post flag and do the signal
7677 	 * post if needed
7678 	 */
7679 	if (sg_io.flags & RSM_IMPLICIT_SIGPOST &&
7680 	    e == RSM_SUCCESS) {
7681 		rsmipc_request_t request;
7682 
7683 		request.rsmipc_key = im_seg->s_segid;
7684 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7685 		request.rsmipc_segment_cookie = NULL;
7686 		e = rsmipc_send(im_seg->s_node, &request, RSM_NO_REPLY);
7687 		/*
7688 		 * Reset the implicit signal post flag to 0 to indicate
7689 		 * that the signal post has been done and need not be
7690 		 * done in the RSMAPI library
7691 		 */
7692 		sg_io.flags &= ~RSM_IMPLICIT_SIGPOST;
7693 	}
7694 
7695 	rsmseglock_acquire(im_seg);
7696 	im_seg->s_rdmacnt--;
7697 	if (im_seg->s_rdmacnt == 0) {
7698 		cv_broadcast(&im_seg->s_cv);
7699 	}
7700 	rsmseglock_release(im_seg);
7701 	error = sgio_resid_copyout(arg, &sg_io, mode);
7702 out:
7703 	iovec = iovec_start;
7704 	ka_iovec = ka_iovec_start;
7705 	for (i = 0; i < iov_proc; i++) {
7706 		if (ka_iovec->io_type == RSM_HANDLE_TYPE) {
7707 			ex_seg = rsmexport_lookup(ka_iovec->local.segid);
7708 
7709 			ASSERT(ex_seg != NULL);
7710 			ASSERT(ex_seg->s_state == RSM_STATE_EXPORT);
7711 
7712 			ex_seg->s_rdmacnt--; /* unrefcnt the handle */
7713 			if (ex_seg->s_rdmacnt == 0) {
7714 				cv_broadcast(&ex_seg->s_cv);
7715 			}
7716 			rsmseglock_release(ex_seg);
7717 		}
7718 
7719 		ASSERT(iovec != NULL); /* true if iov_proc > 0 */
7720 
7721 		/*
7722 		 * At present there is no dependency on the existence of xbufs
7723 		 * created by ddi_umem_iosetup for each of the iovecs. So we
7724 		 * can these xbufs here.
7725 		 */
7726 		if (iovec->local_mem.ms_type == RSM_MEM_BUF) {
7727 			freerbuf(iovec->local_mem.ms_memory.bp);
7728 		}
7729 
7730 		iovec++;
7731 		ka_iovec++;
7732 	}
7733 
7734 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7735 		if (iovec_start)
7736 			kmem_free(iovec_start, size);
7737 		kmem_free(ka_iovec_start, ka_size);
7738 	}
7739 
7740 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7741 	    "rsm_iovec_ioctl done %d\n", e));
7742 	/* if RSMPI call fails return that else return copyout's retval */
7743 	return ((e != RSM_SUCCESS) ? e : error);
7744 
7745 }
7746 
7747 
7748 static int
7749 rsmaddr_ioctl(int cmd, rsm_ioctlmsg_t *msg, int mode)
7750 {
7751 	adapter_t	*adapter;
7752 	rsm_addr_t	addr;
7753 	rsm_node_id_t	node;
7754 	int		rval = DDI_SUCCESS;
7755 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
7756 
7757 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmaddr_ioctl enter\n"));
7758 
7759 	adapter =  rsm_getadapter(msg, mode);
7760 	if (adapter == NULL) {
7761 		DBG_PRINTF((category, RSM_DEBUG,
7762 		    "rsmaddr_ioctl done: adapter not found\n"));
7763 		return (RSMERR_CTLR_NOT_PRESENT);
7764 	}
7765 
7766 	switch (cmd) {
7767 	case RSM_IOCTL_MAP_TO_ADDR: /* nodeid to hwaddr mapping */
7768 		/* returns the hwaddr in msg->hwaddr */
7769 		if (msg->nodeid == my_nodeid) {
7770 			msg->hwaddr = adapter->hwaddr;
7771 		} else {
7772 			addr = get_remote_hwaddr(adapter, msg->nodeid);
7773 			if ((int64_t)addr < 0) {
7774 				rval = RSMERR_INTERNAL_ERROR;
7775 			} else {
7776 				msg->hwaddr = addr;
7777 			}
7778 		}
7779 		break;
7780 	case RSM_IOCTL_MAP_TO_NODEID: /* hwaddr to nodeid mapping */
7781 		/* returns the nodeid in msg->nodeid */
7782 		if (msg->hwaddr == adapter->hwaddr) {
7783 			msg->nodeid = my_nodeid;
7784 		} else {
7785 			node = get_remote_nodeid(adapter, msg->hwaddr);
7786 			if ((int)node < 0) {
7787 				rval = RSMERR_INTERNAL_ERROR;
7788 			} else {
7789 				msg->nodeid = (rsm_node_id_t)node;
7790 			}
7791 		}
7792 		break;
7793 	default:
7794 		rval = EINVAL;
7795 		break;
7796 	}
7797 
7798 	rsmka_release_adapter(adapter);
7799 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7800 	    "rsmaddr_ioctl done: %d\n", rval));
7801 	return (rval);
7802 }
7803 
7804 static int
7805 rsm_ddi_copyin(caddr_t arg, rsm_ioctlmsg_t *msg, int mode)
7806 {
7807 	DBG_DEFINE(category,
7808 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL | RSM_DDI);
7809 
7810 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ddi_copyin enter\n"));
7811 
7812 #ifdef _MULTI_DATAMODEL
7813 
7814 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7815 		rsm_ioctlmsg32_t msg32;
7816 		int i;
7817 
7818 		if (ddi_copyin(arg, (caddr_t)&msg32, sizeof (msg32), mode)) {
7819 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7820 			    "rsm_ddi_copyin done: EFAULT\n"));
7821 			return (RSMERR_BAD_ADDR);
7822 		}
7823 		msg->len = msg32.len;
7824 		msg->vaddr = (caddr_t)(uintptr_t)msg32.vaddr;
7825 		msg->arg = (caddr_t)(uintptr_t)msg32.arg;
7826 		msg->key = msg32.key;
7827 		msg->acl_len = msg32.acl_len;
7828 		msg->acl = (rsmapi_access_entry_t *)(uintptr_t)msg32.acl;
7829 		msg->cnum = msg32.cnum;
7830 		msg->cname = (caddr_t)(uintptr_t)msg32.cname;
7831 		msg->cname_len = msg32.cname_len;
7832 		msg->nodeid = msg32.nodeid;
7833 		msg->hwaddr = msg32.hwaddr;
7834 		msg->perm = msg32.perm;
7835 		for (i = 0; i < 4; i++) {
7836 			msg->bar.comp[i].u64 = msg32.bar.comp[i].u64;
7837 		}
7838 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7839 		    "rsm_ddi_copyin done\n"));
7840 		return (RSM_SUCCESS);
7841 	}
7842 #endif
7843 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ddi_copyin done\n"));
7844 	if (ddi_copyin(arg, (caddr_t)msg, sizeof (*msg), mode))
7845 		return (RSMERR_BAD_ADDR);
7846 	else
7847 		return (RSM_SUCCESS);
7848 }
7849 
7850 static int
7851 rsmattr_ddi_copyout(adapter_t *adapter, caddr_t arg, int mode)
7852 {
7853 	rsmka_int_controller_attr_t	rsm_cattr;
7854 	DBG_DEFINE(category,
7855 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL | RSM_DDI);
7856 
7857 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7858 	    "rsmattr_ddi_copyout enter\n"));
7859 	/*
7860 	 * need to copy appropriate data from rsm_controller_attr_t
7861 	 * to rsmka_int_controller_attr_t
7862 	 */
7863 #ifdef	_MULTI_DATAMODEL
7864 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7865 		rsmka_int_controller_attr32_t rsm_cattr32;
7866 
7867 		rsm_cattr32.attr_direct_access_sizes =
7868 		    adapter->rsm_attr.attr_direct_access_sizes;
7869 		rsm_cattr32.attr_atomic_sizes =
7870 		    adapter->rsm_attr.attr_atomic_sizes;
7871 		rsm_cattr32.attr_page_size =
7872 		    adapter->rsm_attr.attr_page_size;
7873 		if (adapter->rsm_attr.attr_max_export_segment_size >
7874 		    UINT_MAX)
7875 			rsm_cattr32.attr_max_export_segment_size =
7876 			    RSM_MAXSZ_PAGE_ALIGNED;
7877 		else
7878 			rsm_cattr32.attr_max_export_segment_size =
7879 			    adapter->rsm_attr.attr_max_export_segment_size;
7880 		if (adapter->rsm_attr.attr_tot_export_segment_size >
7881 		    UINT_MAX)
7882 			rsm_cattr32.attr_tot_export_segment_size =
7883 			    RSM_MAXSZ_PAGE_ALIGNED;
7884 		else
7885 			rsm_cattr32.attr_tot_export_segment_size =
7886 			    adapter->rsm_attr.attr_tot_export_segment_size;
7887 		if (adapter->rsm_attr.attr_max_export_segments >
7888 		    UINT_MAX)
7889 			rsm_cattr32.attr_max_export_segments =
7890 			    UINT_MAX;
7891 		else
7892 			rsm_cattr32.attr_max_export_segments =
7893 			    adapter->rsm_attr.attr_max_export_segments;
7894 		if (adapter->rsm_attr.attr_max_import_map_size >
7895 		    UINT_MAX)
7896 			rsm_cattr32.attr_max_import_map_size =
7897 			    RSM_MAXSZ_PAGE_ALIGNED;
7898 		else
7899 			rsm_cattr32.attr_max_import_map_size =
7900 			    adapter->rsm_attr.attr_max_import_map_size;
7901 		if (adapter->rsm_attr.attr_tot_import_map_size >
7902 		    UINT_MAX)
7903 			rsm_cattr32.attr_tot_import_map_size =
7904 			    RSM_MAXSZ_PAGE_ALIGNED;
7905 		else
7906 			rsm_cattr32.attr_tot_import_map_size =
7907 			    adapter->rsm_attr.attr_tot_import_map_size;
7908 		if (adapter->rsm_attr.attr_max_import_segments >
7909 		    UINT_MAX)
7910 			rsm_cattr32.attr_max_import_segments =
7911 			    UINT_MAX;
7912 		else
7913 			rsm_cattr32.attr_max_import_segments =
7914 			    adapter->rsm_attr.attr_max_import_segments;
7915 		rsm_cattr32.attr_controller_addr =
7916 		    adapter->rsm_attr.attr_controller_addr;
7917 
7918 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7919 		    "rsmattr_ddi_copyout done\n"));
7920 		if (ddi_copyout((caddr_t)&rsm_cattr32, arg,
7921 		    sizeof (rsmka_int_controller_attr32_t), mode)) {
7922 			return (RSMERR_BAD_ADDR);
7923 		}
7924 		else
7925 			return (RSM_SUCCESS);
7926 	}
7927 #endif
7928 	rsm_cattr.attr_direct_access_sizes =
7929 	    adapter->rsm_attr.attr_direct_access_sizes;
7930 	rsm_cattr.attr_atomic_sizes =
7931 	    adapter->rsm_attr.attr_atomic_sizes;
7932 	rsm_cattr.attr_page_size =
7933 	    adapter->rsm_attr.attr_page_size;
7934 	rsm_cattr.attr_max_export_segment_size =
7935 	    adapter->rsm_attr.attr_max_export_segment_size;
7936 	rsm_cattr.attr_tot_export_segment_size =
7937 	    adapter->rsm_attr.attr_tot_export_segment_size;
7938 	rsm_cattr.attr_max_export_segments =
7939 	    adapter->rsm_attr.attr_max_export_segments;
7940 	rsm_cattr.attr_max_import_map_size =
7941 	    adapter->rsm_attr.attr_max_import_map_size;
7942 	rsm_cattr.attr_tot_import_map_size =
7943 	    adapter->rsm_attr.attr_tot_import_map_size;
7944 	rsm_cattr.attr_max_import_segments =
7945 	    adapter->rsm_attr.attr_max_import_segments;
7946 	rsm_cattr.attr_controller_addr =
7947 	    adapter->rsm_attr.attr_controller_addr;
7948 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7949 	    "rsmattr_ddi_copyout done\n"));
7950 	if (ddi_copyout((caddr_t)&rsm_cattr, arg,
7951 	    sizeof (rsmka_int_controller_attr_t), mode)) {
7952 		return (RSMERR_BAD_ADDR);
7953 	}
7954 	else
7955 		return (RSM_SUCCESS);
7956 }
7957 
7958 /*ARGSUSED*/
7959 static int
7960 rsm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
7961     int *rvalp)
7962 {
7963 	rsmseg_t *seg;
7964 	rsmresource_t	*res;
7965 	minor_t		rnum;
7966 	rsm_ioctlmsg_t msg = {0};
7967 	int error;
7968 	adapter_t *adapter;
7969 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
7970 
7971 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ioctl enter\n"));
7972 
7973 	if (cmd == RSM_IOCTL_CONSUMEEVENT) {
7974 		error = rsm_consumeevent_ioctl((caddr_t)arg, mode);
7975 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7976 		    "rsm_ioctl RSM_IOCTL_CONSUMEEVENT done: %d\n", error));
7977 		return (error);
7978 	}
7979 
7980 	/* topology cmd does not use the arg common to other cmds */
7981 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_TOPOLOGY) {
7982 		error = rsmka_topology_ioctl((caddr_t)arg, cmd, mode);
7983 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7984 		    "rsm_ioctl done: %d\n", error));
7985 		return (error);
7986 	}
7987 
7988 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_IOVEC) {
7989 		error = rsm_iovec_ioctl(dev, (caddr_t)arg, cmd, mode, credp);
7990 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7991 		    "rsm_ioctl done: %d\n", error));
7992 		return (error);
7993 	}
7994 
7995 	/*
7996 	 * try to load arguments
7997 	 */
7998 	if (cmd != RSM_IOCTL_RING_BELL &&
7999 	    rsm_ddi_copyin((caddr_t)arg, &msg, mode)) {
8000 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8001 		    "rsm_ioctl done: EFAULT\n"));
8002 		return (RSMERR_BAD_ADDR);
8003 	}
8004 
8005 	if (cmd == RSM_IOCTL_ATTR) {
8006 		adapter =  rsm_getadapter(&msg, mode);
8007 		if (adapter == NULL) {
8008 			DBG_PRINTF((category, RSM_DEBUG,
8009 			    "rsm_ioctl done: ENODEV\n"));
8010 			return (RSMERR_CTLR_NOT_PRESENT);
8011 		}
8012 		error = rsmattr_ddi_copyout(adapter, msg.arg, mode);
8013 		rsmka_release_adapter(adapter);
8014 		DBG_PRINTF((category, RSM_DEBUG,
8015 		    "rsm_ioctl:after copyout %d\n", error));
8016 		return (error);
8017 	}
8018 
8019 	if (cmd == RSM_IOCTL_BAR_INFO) {
8020 		/* Return library off,len of barrier page */
8021 		msg.off = barrier_offset;
8022 		msg.len = (int)barrier_size;
8023 #ifdef _MULTI_DATAMODEL
8024 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
8025 			rsm_ioctlmsg32_t msg32;
8026 
8027 			if (msg.len > UINT_MAX)
8028 				msg.len = RSM_MAXSZ_PAGE_ALIGNED;
8029 			else
8030 				msg32.len = (int32_t)msg.len;
8031 			msg32.off = (int32_t)msg.off;
8032 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8033 			    "rsm_ioctl done\n"));
8034 			if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
8035 			    sizeof (msg32), mode))
8036 				return (RSMERR_BAD_ADDR);
8037 			else
8038 				return (RSM_SUCCESS);
8039 		}
8040 #endif
8041 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8042 		    "rsm_ioctl done\n"));
8043 		if (ddi_copyout((caddr_t)&msg, (caddr_t)arg,
8044 		    sizeof (msg), mode))
8045 			return (RSMERR_BAD_ADDR);
8046 		else
8047 			return (RSM_SUCCESS);
8048 	}
8049 
8050 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_MAP_ADDR) {
8051 		/* map the nodeid or hwaddr */
8052 		error = rsmaddr_ioctl(cmd, &msg, mode);
8053 		if (error == RSM_SUCCESS) {
8054 #ifdef _MULTI_DATAMODEL
8055 			if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
8056 				rsm_ioctlmsg32_t msg32;
8057 
8058 				msg32.hwaddr = (uint64_t)msg.hwaddr;
8059 				msg32.nodeid = (uint32_t)msg.nodeid;
8060 
8061 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8062 				    "rsm_ioctl done\n"));
8063 				if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
8064 				    sizeof (msg32), mode))
8065 					return (RSMERR_BAD_ADDR);
8066 				else
8067 					return (RSM_SUCCESS);
8068 			}
8069 #endif
8070 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8071 			    "rsm_ioctl done\n"));
8072 			if (ddi_copyout((caddr_t)&msg, (caddr_t)arg,
8073 			    sizeof (msg), mode))
8074 				return (RSMERR_BAD_ADDR);
8075 			else
8076 				return (RSM_SUCCESS);
8077 		}
8078 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8079 		    "rsm_ioctl done: %d\n", error));
8080 		return (error);
8081 	}
8082 
8083 	/* Find resource and look it in read mode */
8084 	rnum = getminor(dev);
8085 	res = rsmresource_lookup(rnum, RSM_NOLOCK);
8086 	ASSERT(res != NULL);
8087 
8088 	/*
8089 	 * Find command group
8090 	 */
8091 	switch (RSM_IOCTL_CMDGRP(cmd)) {
8092 	case RSM_IOCTL_EXPORT_SEG:
8093 		/*
8094 		 * Export list is searched during publish, loopback and
8095 		 * remote lookup call.
8096 		 */
8097 		seg = rsmresource_seg(res, rnum, credp,
8098 		    RSM_RESOURCE_EXPORT_SEGMENT);
8099 		if (seg->s_type == RSM_RESOURCE_EXPORT_SEGMENT) {
8100 			error = rsmexport_ioctl(seg, &msg, cmd, arg, mode,
8101 			    credp);
8102 		} else { /* export ioctl on an import/barrier resource */
8103 			error = RSMERR_BAD_SEG_HNDL;
8104 		}
8105 		break;
8106 	case RSM_IOCTL_IMPORT_SEG:
8107 		/* Import list is searched during remote unmap call. */
8108 		seg = rsmresource_seg(res, rnum, credp,
8109 		    RSM_RESOURCE_IMPORT_SEGMENT);
8110 		if (seg->s_type == RSM_RESOURCE_IMPORT_SEGMENT) {
8111 			error = rsmimport_ioctl(seg, &msg, cmd, arg, mode,
8112 			    credp);
8113 		} else  { /* import ioctl on an export/barrier resource */
8114 			error = RSMERR_BAD_SEG_HNDL;
8115 		}
8116 		break;
8117 	case RSM_IOCTL_BAR:
8118 		if (res != RSMRC_RESERVED &&
8119 		    res->rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT) {
8120 			error = rsmbar_ioctl((rsmseg_t *)res, &msg, cmd, arg,
8121 			    mode);
8122 		} else { /* invalid res value */
8123 			error = RSMERR_BAD_SEG_HNDL;
8124 		}
8125 		break;
8126 	case RSM_IOCTL_BELL:
8127 		if (res != RSMRC_RESERVED) {
8128 			if (res->rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT)
8129 				error = exportbell_ioctl((rsmseg_t *)res, cmd);
8130 			else if (res->rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT)
8131 				error = importbell_ioctl((rsmseg_t *)res, cmd);
8132 			else /* RSM_RESOURCE_BAR */
8133 				error = RSMERR_BAD_SEG_HNDL;
8134 		} else { /* invalid res value */
8135 			error = RSMERR_BAD_SEG_HNDL;
8136 		}
8137 		break;
8138 	default:
8139 		error = EINVAL;
8140 	}
8141 
8142 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ioctl done: %d\n",
8143 	    error));
8144 	return (error);
8145 }
8146 
8147 
8148 /* **************************** Segment Mapping Operations ********* */
8149 static rsm_mapinfo_t *
8150 rsm_get_mapinfo(rsmseg_t *seg, off_t off, size_t len, off_t *dev_offset,
8151     size_t *map_len)
8152 {
8153 	rsm_mapinfo_t	*p;
8154 	/*
8155 	 * Find the correct mapinfo structure to use during the mapping
8156 	 * from the seg->s_mapinfo list.
8157 	 * The seg->s_mapinfo list contains in reverse order the mappings
8158 	 * as returned by the RSMPI rsm_map. In rsm_devmap, we need to
8159 	 * access the correct entry within this list for the mapping
8160 	 * requested.
8161 	 *
8162 	 * The algorithm for selecting a list entry is as follows:
8163 	 *
8164 	 * When start_offset of an entry <= off we have found the entry
8165 	 * we were looking for. Adjust the dev_offset and map_len (needs
8166 	 * to be PAGESIZE aligned).
8167 	 */
8168 	p = seg->s_mapinfo;
8169 	for (; p; p = p->next) {
8170 		if (p->start_offset <= off) {
8171 			*dev_offset = p->dev_offset + off - p->start_offset;
8172 			*map_len = (len > p->individual_len) ?
8173 			    p->individual_len : ptob(btopr(len));
8174 			return (p);
8175 		}
8176 		p = p->next;
8177 	}
8178 
8179 	return (NULL);
8180 }
8181 
8182 static void
8183 rsm_free_mapinfo(rsm_mapinfo_t  *mapinfo)
8184 {
8185 	rsm_mapinfo_t *p;
8186 
8187 	while (mapinfo != NULL) {
8188 		p = mapinfo;
8189 		mapinfo = mapinfo->next;
8190 		kmem_free(p, sizeof (*p));
8191 	}
8192 }
8193 
8194 static int
8195 rsmmap_map(devmap_cookie_t dhp, dev_t dev, uint_t flags, offset_t off,
8196     size_t len, void **pvtp)
8197 {
8198 	rsmcookie_t	*p;
8199 	rsmresource_t	*res;
8200 	rsmseg_t	*seg;
8201 	minor_t rnum;
8202 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8203 
8204 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_map enter\n"));
8205 
8206 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8207 	    "rsmmap_map: dhp = %x\n", dhp));
8208 
8209 	flags = flags;
8210 
8211 	rnum = getminor(dev);
8212 	res = (rsmresource_t *)rsmresource_lookup(rnum, RSM_NOLOCK);
8213 	ASSERT(res != NULL);
8214 
8215 	seg = (rsmseg_t *)res;
8216 
8217 	rsmseglock_acquire(seg);
8218 
8219 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8220 
8221 	/*
8222 	 * Allocate structure and add cookie to segment list
8223 	 */
8224 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
8225 
8226 	p->c_dhp = dhp;
8227 	p->c_off = off;
8228 	p->c_len = len;
8229 	p->c_next = seg->s_ckl;
8230 	seg->s_ckl = p;
8231 
8232 	*pvtp = (void *)seg;
8233 
8234 	rsmseglock_release(seg);
8235 
8236 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_map done\n"));
8237 	return (DDI_SUCCESS);
8238 }
8239 
8240 /*
8241  * Page fault handling is done here. The prerequisite mapping setup
8242  * has been done in rsm_devmap with calls to ddi_devmem_setup or
8243  * ddi_umem_setup
8244  */
8245 static int
8246 rsmmap_access(devmap_cookie_t dhp, void *pvt, offset_t offset, size_t len,
8247     uint_t type, uint_t rw)
8248 {
8249 	int e;
8250 	rsmseg_t *seg = (rsmseg_t *)pvt;
8251 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8252 
8253 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_access enter\n"));
8254 
8255 	rsmseglock_acquire(seg);
8256 
8257 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8258 
8259 	while (seg->s_state == RSM_STATE_MAP_QUIESCE) {
8260 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
8261 			DBG_PRINTF((category, RSM_DEBUG,
8262 			    "rsmmap_access done: cv_wait INTR"));
8263 			rsmseglock_release(seg);
8264 			return (RSMERR_INTERRUPTED);
8265 		}
8266 	}
8267 
8268 	ASSERT(seg->s_state == RSM_STATE_DISCONNECT ||
8269 	    seg->s_state == RSM_STATE_ACTIVE);
8270 
8271 	if (seg->s_state == RSM_STATE_DISCONNECT)
8272 		seg->s_flags |= RSM_IMPORT_DUMMY;
8273 
8274 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8275 	    "rsmmap_access: dhp = %x\n", dhp));
8276 
8277 	rsmseglock_release(seg);
8278 
8279 	if (e = devmap_load(dhp, offset, len, type, rw)) {
8280 		DBG_PRINTF((category, RSM_ERR, "devmap_load failed\n"));
8281 	}
8282 
8283 
8284 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_access done\n"));
8285 
8286 	return (e);
8287 }
8288 
8289 static int
8290 rsmmap_dup(devmap_cookie_t dhp, void *oldpvt, devmap_cookie_t new_dhp,
8291 	void **newpvt)
8292 {
8293 	rsmseg_t	*seg = (rsmseg_t *)oldpvt;
8294 	rsmcookie_t	*p, *old;
8295 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8296 
8297 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_dup enter\n"));
8298 
8299 	/*
8300 	 * Same as map, create an entry to hold cookie and add it to
8301 	 * connect segment list. The oldpvt is a pointer to segment.
8302 	 * Return segment pointer in newpvt.
8303 	 */
8304 	rsmseglock_acquire(seg);
8305 
8306 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8307 
8308 	/*
8309 	 * Find old cookie
8310 	 */
8311 	for (old = seg->s_ckl; old != NULL; old = old->c_next) {
8312 		if (old->c_dhp == dhp) {
8313 			break;
8314 		}
8315 	}
8316 	if (old == NULL) {
8317 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8318 		    "rsmmap_dup done: EINVAL\n"));
8319 		rsmseglock_release(seg);
8320 		return (EINVAL);
8321 	}
8322 
8323 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
8324 
8325 	p->c_dhp = new_dhp;
8326 	p->c_off = old->c_off;
8327 	p->c_len = old->c_len;
8328 	p->c_next = seg->s_ckl;
8329 	seg->s_ckl = p;
8330 
8331 	*newpvt = (void *)seg;
8332 
8333 	rsmseglock_release(seg);
8334 
8335 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_dup done\n"));
8336 
8337 	return (DDI_SUCCESS);
8338 }
8339 
8340 static void
8341 rsmmap_unmap(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len,
8342 	devmap_cookie_t new_dhp1, void **pvtp1,
8343 	devmap_cookie_t new_dhp2, void **pvtp2)
8344 {
8345 	/*
8346 	 * Remove pvtp structure from segment list.
8347 	 */
8348 	rsmseg_t	*seg = (rsmseg_t *)pvtp;
8349 	int freeflag;
8350 
8351 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8352 
8353 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_unmap enter\n"));
8354 
8355 	off = off; len = len;
8356 	pvtp1 = pvtp1; pvtp2 = pvtp2;
8357 
8358 	rsmseglock_acquire(seg);
8359 
8360 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8361 
8362 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8363 	    "rsmmap_unmap: dhp = %x\n", dhp));
8364 	/*
8365 	 * We can go ahead and remove the dhps even if we are in
8366 	 * the MAPPING state because the dhps being removed here
8367 	 * belong to a different mmap and we are holding the segment
8368 	 * lock.
8369 	 */
8370 	if (new_dhp1 == NULL && new_dhp2 == NULL) {
8371 		/* find and remove dhp handle */
8372 		rsmcookie_t *tmp, **back = &seg->s_ckl;
8373 
8374 		while (*back != NULL) {
8375 			tmp = *back;
8376 			if (tmp->c_dhp == dhp) {
8377 				*back = tmp->c_next;
8378 				kmem_free(tmp, sizeof (*tmp));
8379 				break;
8380 			}
8381 			back = &tmp->c_next;
8382 		}
8383 	} else {
8384 		DBG_PRINTF((category, RSM_DEBUG_LVL2,
8385 		    "rsmmap_unmap:parital unmap"
8386 		    "new_dhp1 %lx, new_dhp2 %lx\n",
8387 		    (size_t)new_dhp1, (size_t)new_dhp2));
8388 	}
8389 
8390 	/*
8391 	 * rsmmap_unmap is called for each mapping cookie on the list.
8392 	 * When the list becomes empty and we are not in the MAPPING
8393 	 * state then unmap in the rsmpi driver.
8394 	 */
8395 	if ((seg->s_ckl == NULL) && (seg->s_state != RSM_STATE_MAPPING))
8396 		(void) rsm_unmap(seg);
8397 
8398 	if (seg->s_state == RSM_STATE_END && seg->s_ckl == NULL) {
8399 		freeflag = 1;
8400 	} else {
8401 		freeflag = 0;
8402 	}
8403 
8404 	rsmseglock_release(seg);
8405 
8406 	if (freeflag) {
8407 		/* Free the segment structure */
8408 		rsmseg_free(seg);
8409 	}
8410 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_unmap done\n"));
8411 
8412 }
8413 
8414 static struct devmap_callback_ctl rsmmap_ops = {
8415 	DEVMAP_OPS_REV,	/* devmap_ops version number	*/
8416 	rsmmap_map,	/* devmap_ops map routine */
8417 	rsmmap_access,	/* devmap_ops access routine */
8418 	rsmmap_dup,		/* devmap_ops dup routine		*/
8419 	rsmmap_unmap,	/* devmap_ops unmap routine */
8420 };
8421 
8422 static int
8423 rsm_devmap(dev_t dev, devmap_cookie_t dhc, offset_t off, size_t len,
8424     size_t *maplen, uint_t model /*ARGSUSED*/)
8425 {
8426 	struct devmap_callback_ctl *callbackops = &rsmmap_ops;
8427 	int		err;
8428 	uint_t		maxprot;
8429 	minor_t		rnum;
8430 	rsmseg_t	*seg;
8431 	off_t		dev_offset;
8432 	size_t		cur_len;
8433 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8434 
8435 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_devmap enter\n"));
8436 
8437 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8438 	    "rsm_devmap: off = %lx, len = %lx\n", off, len));
8439 	rnum = getminor(dev);
8440 	seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_NOLOCK);
8441 	ASSERT(seg != NULL);
8442 
8443 	if (seg->s_hdr.rsmrc_type == RSM_RESOURCE_BAR) {
8444 		if ((off == barrier_offset) &&
8445 		    (len == barrier_size)) {
8446 
8447 			ASSERT(bar_va != NULL && bar_cookie != NULL);
8448 
8449 			/*
8450 			 * The offset argument in devmap_umem_setup represents
8451 			 * the offset within the kernel memory defined by the
8452 			 * cookie. We use this offset as barrier_offset.
8453 			 */
8454 			err = devmap_umem_setup(dhc, rsm_dip, NULL, bar_cookie,
8455 			    barrier_offset, len, PROT_USER|PROT_READ,
8456 			    DEVMAP_DEFAULTS, 0);
8457 
8458 			if (err != 0) {
8459 				DBG_PRINTF((category, RSM_ERR,
8460 				    "rsm_devmap done: %d\n", err));
8461 				return (RSMERR_MAP_FAILED);
8462 			}
8463 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8464 			    "rsm_devmap done: %d\n", err));
8465 
8466 			*maplen = barrier_size;
8467 
8468 			return (err);
8469 		} else {
8470 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8471 			    "rsm_devmap done: %d\n", err));
8472 			return (RSMERR_MAP_FAILED);
8473 		}
8474 	}
8475 
8476 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8477 	ASSERT(seg->s_state == RSM_STATE_MAPPING);
8478 
8479 	/*
8480 	 * Make sure we still have permission for the map operation.
8481 	 */
8482 	maxprot = PROT_USER;
8483 	if (seg->s_mode & RSM_PERM_READ) {
8484 		maxprot |= PROT_READ;
8485 	}
8486 
8487 	if (seg->s_mode & RSM_PERM_WRITE) {
8488 		maxprot |= PROT_WRITE;
8489 	}
8490 
8491 	/*
8492 	 * For each devmap call, rsmmap_map is called. This maintains driver
8493 	 * private information for the mapping. Thus, if there are multiple
8494 	 * devmap calls there will be multiple rsmmap_map calls and for each
8495 	 * call, the mapping information will be stored.
8496 	 * In case of an error during the processing of the devmap call, error
8497 	 * will be returned. This error return causes the caller of rsm_devmap
8498 	 * to undo all the mappings by calling rsmmap_unmap for each one.
8499 	 * rsmmap_unmap will free up the private information for the requested
8500 	 * mapping.
8501 	 */
8502 	if (seg->s_node != my_nodeid) {
8503 		rsm_mapinfo_t *p;
8504 
8505 		p = rsm_get_mapinfo(seg, off, len, &dev_offset, &cur_len);
8506 		if (p == NULL) {
8507 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8508 			    "rsm_devmap: incorrect mapping info\n"));
8509 			return (RSMERR_MAP_FAILED);
8510 		}
8511 		err = devmap_devmem_setup(dhc, p->dip,
8512 		    callbackops, p->dev_register,
8513 		    dev_offset, cur_len, maxprot,
8514 		    DEVMAP_ALLOW_REMAP | DEVMAP_DEFAULTS, 0);
8515 
8516 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8517 		    "rsm_devmap: dip=%lx,dreg=%lu,doff=%lx,"
8518 		    "off=%lx,len=%lx\n",
8519 		    p->dip, p->dev_register, dev_offset, off, cur_len));
8520 
8521 		if (err != 0) {
8522 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8523 			    "rsm_devmap: devmap_devmem_setup failed %d\n",
8524 			    err));
8525 			return (RSMERR_MAP_FAILED);
8526 		}
8527 		/* cur_len is always an integral multiple pagesize */
8528 		ASSERT((cur_len & (PAGESIZE-1)) == 0);
8529 		*maplen = cur_len;
8530 		return (err);
8531 
8532 	} else {
8533 		err = devmap_umem_setup(dhc, rsm_dip, callbackops,
8534 		    seg->s_cookie, off, len, maxprot,
8535 		    DEVMAP_ALLOW_REMAP|DEVMAP_DEFAULTS, 0);
8536 		if (err != 0) {
8537 			DBG_PRINTF((category, RSM_DEBUG,
8538 			    "rsm_devmap: devmap_umem_setup failed %d\n",
8539 			    err));
8540 			return (RSMERR_MAP_FAILED);
8541 		}
8542 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8543 		    "rsm_devmap: loopback done\n"));
8544 
8545 		*maplen = ptob(btopr(len));
8546 
8547 		return (err);
8548 	}
8549 }
8550 
8551 /*
8552  * We can use the devmap framework for mapping device memory to user space by
8553  * specifying this routine in the rsm_cb_ops structure. The kernel mmap
8554  * processing calls this entry point and devmap_setup is called within this
8555  * function, which eventually calls rsm_devmap
8556  */
8557 static int
8558 rsm_segmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len,
8559     uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred)
8560 {
8561 	int			error = 0;
8562 	int			old_state;
8563 	minor_t			rnum;
8564 	rsmseg_t		*seg, *eseg;
8565 	adapter_t		*adapter;
8566 	rsm_import_share_t	*sharedp;
8567 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8568 
8569 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_segmap enter\n"));
8570 
8571 	/*
8572 	 * find segment
8573 	 */
8574 	rnum = getminor(dev);
8575 	seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_LOCK);
8576 
8577 	if (seg == NULL) {
8578 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8579 		    "rsm_segmap done: invalid segment\n"));
8580 		return (EINVAL);
8581 	}
8582 
8583 	/*
8584 	 * the user is trying to map a resource that has not been
8585 	 * defined yet. The library uses this to map in the
8586 	 * barrier page.
8587 	 */
8588 	if (seg->s_hdr.rsmrc_type == RSM_RESOURCE_BAR) {
8589 		rsmseglock_release(seg);
8590 
8591 		/*
8592 		 * The mapping for the barrier page is identified
8593 		 * by the special offset barrier_offset
8594 		 */
8595 
8596 		if (off == (off_t)barrier_offset ||
8597 		    len == (off_t)barrier_size) {
8598 			if (bar_cookie == NULL || bar_va == NULL) {
8599 				DBG_PRINTF((category, RSM_DEBUG,
8600 				    "rsm_segmap: bar cookie/va is NULL\n"));
8601 				return (EINVAL);
8602 			}
8603 
8604 			error = devmap_setup(dev, (offset_t)off, as, addrp,
8605 			    (size_t)len, prot, maxprot, flags,  cred);
8606 
8607 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8608 			    "rsm_segmap done: %d\n", error));
8609 			return (error);
8610 		} else {
8611 			DBG_PRINTF((category, RSM_DEBUG,
8612 			    "rsm_segmap: bad offset/length\n"));
8613 			return (EINVAL);
8614 		}
8615 	}
8616 
8617 	/* Make sure you can only map imported segments */
8618 	if (seg->s_hdr.rsmrc_type != RSM_RESOURCE_IMPORT_SEGMENT) {
8619 		rsmseglock_release(seg);
8620 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8621 		    "rsm_segmap done: not an import segment\n"));
8622 		return (EINVAL);
8623 	}
8624 	/* check means library is broken */
8625 	ASSERT(seg->s_hdr.rsmrc_num == rnum);
8626 
8627 	/* wait for the segment to become unquiesced */
8628 	while (seg->s_state == RSM_STATE_CONN_QUIESCE) {
8629 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
8630 			rsmseglock_release(seg);
8631 			DBG_PRINTF((category, RSM_DEBUG,
8632 			    "rsm_segmap done: cv_wait INTR"));
8633 			return (ENODEV);
8634 		}
8635 	}
8636 
8637 	/* wait until segment leaves the mapping state */
8638 	while (seg->s_state == RSM_STATE_MAPPING)
8639 		cv_wait(&seg->s_cv, &seg->s_lock);
8640 
8641 	/*
8642 	 * we allow multiple maps of the same segment in the KA
8643 	 * and it works because we do an rsmpi map of the whole
8644 	 * segment during the first map and all the device mapping
8645 	 * information needed in rsm_devmap is in the mapinfo list.
8646 	 */
8647 	if ((seg->s_state != RSM_STATE_CONNECT) &&
8648 	    (seg->s_state != RSM_STATE_ACTIVE)) {
8649 		rsmseglock_release(seg);
8650 		DBG_PRINTF((category, RSM_DEBUG,
8651 		    "rsm_segmap done: segment not connected\n"));
8652 		return (ENODEV);
8653 	}
8654 
8655 	/*
8656 	 * Make sure we are not mapping a larger segment than what's
8657 	 * exported
8658 	 */
8659 	if ((size_t)off + ptob(btopr(len)) > seg->s_len) {
8660 		rsmseglock_release(seg);
8661 		DBG_PRINTF((category, RSM_DEBUG,
8662 		    "rsm_segmap done: off+len>seg size\n"));
8663 		return (ENXIO);
8664 	}
8665 
8666 	/*
8667 	 * Make sure we still have permission for the map operation.
8668 	 */
8669 	maxprot = PROT_USER;
8670 	if (seg->s_mode & RSM_PERM_READ) {
8671 		maxprot |= PROT_READ;
8672 	}
8673 
8674 	if (seg->s_mode & RSM_PERM_WRITE) {
8675 		maxprot |= PROT_WRITE;
8676 	}
8677 
8678 	if ((prot & maxprot) != prot) {
8679 		/* No permission */
8680 		rsmseglock_release(seg);
8681 		DBG_PRINTF((category, RSM_DEBUG,
8682 		    "rsm_segmap done: no permission\n"));
8683 		return (EACCES);
8684 	}
8685 
8686 	old_state = seg->s_state;
8687 
8688 	ASSERT(seg->s_share != NULL);
8689 
8690 	rsmsharelock_acquire(seg);
8691 
8692 	sharedp = seg->s_share;
8693 
8694 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8695 	    "rsm_segmap:RSMSI_STATE=%d\n", sharedp->rsmsi_state));
8696 
8697 	if ((sharedp->rsmsi_state != RSMSI_STATE_CONNECTED) &&
8698 	    (sharedp->rsmsi_state != RSMSI_STATE_MAPPED)) {
8699 		rsmsharelock_release(seg);
8700 		rsmseglock_release(seg);
8701 		DBG_PRINTF((category, RSM_DEBUG,
8702 		    "rsm_segmap done:RSMSI_STATE %d invalid\n",
8703 		    sharedp->rsmsi_state));
8704 		return (ENODEV);
8705 	}
8706 
8707 	/*
8708 	 * Do the map - since we want importers to share mappings
8709 	 * we do the rsmpi map for the whole segment
8710 	 */
8711 	if (seg->s_node != my_nodeid) {
8712 		uint_t dev_register;
8713 		off_t dev_offset;
8714 		dev_info_t *dip;
8715 		size_t tmp_len;
8716 		size_t total_length_mapped = 0;
8717 		size_t length_to_map = seg->s_len;
8718 		off_t tmp_off = 0;
8719 		rsm_mapinfo_t *p;
8720 
8721 		/*
8722 		 * length_to_map = seg->s_len is always an integral
8723 		 * multiple of PAGESIZE. Length mapped in each entry in mapinfo
8724 		 * list is a multiple of PAGESIZE - RSMPI map ensures this
8725 		 */
8726 
8727 		adapter = seg->s_adapter;
8728 		ASSERT(sharedp->rsmsi_state == RSMSI_STATE_CONNECTED ||
8729 		    sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8730 
8731 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) {
8732 			error = 0;
8733 			/* map the whole segment */
8734 			while (total_length_mapped < seg->s_len) {
8735 				tmp_len = 0;
8736 
8737 				error = adapter->rsmpi_ops->rsm_map(
8738 				    seg->s_handle.in, tmp_off,
8739 				    length_to_map, &tmp_len,
8740 				    &dip, &dev_register, &dev_offset,
8741 				    NULL, NULL);
8742 
8743 				if (error != 0)
8744 					break;
8745 
8746 				/*
8747 				 * Store the mapping info obtained from rsm_map
8748 				 */
8749 				p = kmem_alloc(sizeof (*p), KM_SLEEP);
8750 				p->dev_register = dev_register;
8751 				p->dev_offset = dev_offset;
8752 				p->dip = dip;
8753 				p->individual_len = tmp_len;
8754 				p->start_offset = tmp_off;
8755 				p->next = sharedp->rsmsi_mapinfo;
8756 				sharedp->rsmsi_mapinfo = p;
8757 
8758 				total_length_mapped += tmp_len;
8759 				length_to_map -= tmp_len;
8760 				tmp_off += tmp_len;
8761 			}
8762 			seg->s_mapinfo = sharedp->rsmsi_mapinfo;
8763 
8764 			if (error != RSM_SUCCESS) {
8765 				/* Check if this is the the first rsm_map */
8766 				if (sharedp->rsmsi_mapinfo != NULL) {
8767 					/*
8768 					 * A single rsm_unmap undoes
8769 					 * multiple rsm_maps.
8770 					 */
8771 					(void) seg->s_adapter->rsmpi_ops->
8772 					    rsm_unmap(sharedp->rsmsi_handle);
8773 					rsm_free_mapinfo(sharedp->
8774 					    rsmsi_mapinfo);
8775 				}
8776 				sharedp->rsmsi_mapinfo = NULL;
8777 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8778 				rsmsharelock_release(seg);
8779 				rsmseglock_release(seg);
8780 				DBG_PRINTF((category, RSM_DEBUG,
8781 				    "rsm_segmap done: rsmpi map err %d\n",
8782 				    error));
8783 				ASSERT(error != RSMERR_BAD_LENGTH &&
8784 				    error != RSMERR_BAD_MEM_ALIGNMENT &&
8785 				    error != RSMERR_BAD_SEG_HNDL);
8786 				if (error == RSMERR_UNSUPPORTED_OPERATION)
8787 					return (ENOTSUP);
8788 				else if (error == RSMERR_INSUFFICIENT_RESOURCES)
8789 					return (EAGAIN);
8790 				else if (error == RSMERR_CONN_ABORTED)
8791 					return (ENODEV);
8792 				else
8793 					return (error);
8794 			} else {
8795 				sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
8796 			}
8797 		} else {
8798 			seg->s_mapinfo = sharedp->rsmsi_mapinfo;
8799 		}
8800 
8801 		sharedp->rsmsi_mapcnt++;
8802 
8803 		rsmsharelock_release(seg);
8804 
8805 		/* move to an intermediate mapping state */
8806 		seg->s_state = RSM_STATE_MAPPING;
8807 		rsmseglock_release(seg);
8808 
8809 		error = devmap_setup(dev, (offset_t)off, as, addrp,
8810 		    len, prot, maxprot, flags, cred);
8811 
8812 		rsmseglock_acquire(seg);
8813 		ASSERT(seg->s_state == RSM_STATE_MAPPING);
8814 
8815 		if (error == DDI_SUCCESS) {
8816 			seg->s_state = RSM_STATE_ACTIVE;
8817 		} else {
8818 			rsmsharelock_acquire(seg);
8819 
8820 			ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8821 
8822 			sharedp->rsmsi_mapcnt--;
8823 			if (sharedp->rsmsi_mapcnt == 0) {
8824 				/* unmap the shared RSMPI mapping */
8825 				ASSERT(sharedp->rsmsi_handle != NULL);
8826 				(void) adapter->rsmpi_ops->
8827 				    rsm_unmap(sharedp->rsmsi_handle);
8828 				rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
8829 				sharedp->rsmsi_mapinfo = NULL;
8830 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8831 			}
8832 
8833 			rsmsharelock_release(seg);
8834 			seg->s_state = old_state;
8835 			DBG_PRINTF((category, RSM_ERR,
8836 			    "rsm: devmap_setup failed %d\n", error));
8837 		}
8838 		cv_broadcast(&seg->s_cv);
8839 		rsmseglock_release(seg);
8840 		DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsm_segmap done: %d\n",
8841 		    error));
8842 		return (error);
8843 	} else {
8844 		/*
8845 		 * For loopback, the export segment mapping cookie (s_cookie)
8846 		 * is also used as the s_cookie value for its import segments
8847 		 * during mapping.
8848 		 * Note that reference counting for s_cookie of the export
8849 		 * segment is not required due to the following:
8850 		 * We never have a case of the export segment being destroyed,
8851 		 * leaving the import segments with a stale value for the
8852 		 * s_cookie field, since a force disconnect is done prior to a
8853 		 * destroy of an export segment. The force disconnect causes
8854 		 * the s_cookie value to be reset to NULL. Also for the
8855 		 * rsm_rebind operation, we change the s_cookie value of the
8856 		 * export segment as well as of all its local (loopback)
8857 		 * importers.
8858 		 */
8859 		DBG_ADDCATEGORY(category, RSM_LOOPBACK);
8860 
8861 		rsmsharelock_release(seg);
8862 		/*
8863 		 * In order to maintain the lock ordering between the export
8864 		 * and import segment locks, we need to acquire the export
8865 		 * segment lock first and only then acquire the import
8866 		 * segment lock.
8867 		 * The above is necessary to avoid any deadlock scenarios
8868 		 * with rsm_rebind which also acquires both the export
8869 		 * and import segment locks in the above mentioned order.
8870 		 * Based on code inspection, there seem to be no other
8871 		 * situations in which both the export and import segment
8872 		 * locks are acquired either in the same or opposite order
8873 		 * as mentioned above.
8874 		 * Thus in order to conform to the above lock order, we
8875 		 * need to change the state of the import segment to
8876 		 * RSM_STATE_MAPPING, release the lock. Once this is done we
8877 		 * can now safely acquire the export segment lock first
8878 		 * followed by the import segment lock which is as per
8879 		 * the lock order mentioned above.
8880 		 */
8881 		/* move to an intermediate mapping state */
8882 		seg->s_state = RSM_STATE_MAPPING;
8883 		rsmseglock_release(seg);
8884 
8885 		eseg = rsmexport_lookup(seg->s_key);
8886 
8887 		if (eseg == NULL) {
8888 			rsmseglock_acquire(seg);
8889 			/*
8890 			 * Revert to old_state and signal any waiters
8891 			 * The shared state is not changed
8892 			 */
8893 
8894 			seg->s_state = old_state;
8895 			cv_broadcast(&seg->s_cv);
8896 			rsmseglock_release(seg);
8897 			DBG_PRINTF((category, RSM_DEBUG,
8898 			    "rsm_segmap done: key %d not found\n", seg->s_key));
8899 			return (ENODEV);
8900 		}
8901 
8902 		rsmsharelock_acquire(seg);
8903 		ASSERT(sharedp->rsmsi_state == RSMSI_STATE_CONNECTED ||
8904 		    sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8905 
8906 		sharedp->rsmsi_mapcnt++;
8907 		sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
8908 		rsmsharelock_release(seg);
8909 
8910 		ASSERT(eseg->s_cookie != NULL);
8911 
8912 		/*
8913 		 * It is not required or necessary to acquire the import
8914 		 * segment lock here to change the value of s_cookie since
8915 		 * no one will touch the import segment as long as it is
8916 		 * in the RSM_STATE_MAPPING state.
8917 		 */
8918 		seg->s_cookie = eseg->s_cookie;
8919 
8920 		rsmseglock_release(eseg);
8921 
8922 		error = devmap_setup(dev, (offset_t)off, as, addrp, (size_t)len,
8923 		    prot, maxprot, flags, cred);
8924 
8925 		rsmseglock_acquire(seg);
8926 		ASSERT(seg->s_state == RSM_STATE_MAPPING);
8927 		if (error == 0) {
8928 			seg->s_state = RSM_STATE_ACTIVE;
8929 		} else {
8930 			rsmsharelock_acquire(seg);
8931 
8932 			ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8933 
8934 			sharedp->rsmsi_mapcnt--;
8935 			if (sharedp->rsmsi_mapcnt == 0) {
8936 				sharedp->rsmsi_mapinfo = NULL;
8937 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8938 			}
8939 			rsmsharelock_release(seg);
8940 			seg->s_state = old_state;
8941 			seg->s_cookie = NULL;
8942 		}
8943 		cv_broadcast(&seg->s_cv);
8944 		rsmseglock_release(seg);
8945 		DBG_PRINTF((category, RSM_DEBUG_LVL2,
8946 		    "rsm_segmap done: %d\n", error));
8947 		return (error);
8948 	}
8949 }
8950 
8951 int
8952 rsmka_null_seg_create(
8953     rsm_controller_handle_t argcp,
8954     rsm_memseg_export_handle_t *handle,
8955     size_t size,
8956     uint_t flags,
8957     rsm_memory_local_t *memory,
8958     rsm_resource_callback_t callback,
8959     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8960 {
8961 	return (RSM_SUCCESS);
8962 }
8963 
8964 
8965 int
8966 rsmka_null_seg_destroy(
8967     rsm_memseg_export_handle_t argmemseg	/*ARGSUSED*/)
8968 {
8969 	return (RSM_SUCCESS);
8970 }
8971 
8972 
8973 int
8974 rsmka_null_bind(
8975     rsm_memseg_export_handle_t argmemseg,
8976     off_t offset,
8977     rsm_memory_local_t *argmemory,
8978     rsm_resource_callback_t callback,
8979     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8980 {
8981 	return (RSM_SUCCESS);
8982 }
8983 
8984 
8985 int
8986 rsmka_null_unbind(
8987     rsm_memseg_export_handle_t argmemseg,
8988     off_t offset,
8989     size_t length	/*ARGSUSED*/)
8990 {
8991 	return (DDI_SUCCESS);
8992 }
8993 
8994 int
8995 rsmka_null_rebind(
8996     rsm_memseg_export_handle_t argmemseg,
8997     off_t offset,
8998     rsm_memory_local_t *memory,
8999     rsm_resource_callback_t callback,
9000     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
9001 {
9002 	return (RSM_SUCCESS);
9003 }
9004 
9005 int
9006 rsmka_null_publish(
9007     rsm_memseg_export_handle_t argmemseg,
9008     rsm_access_entry_t access_list[],
9009     uint_t access_list_length,
9010     rsm_memseg_id_t segment_id,
9011     rsm_resource_callback_t callback,
9012     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
9013 {
9014 	return (RSM_SUCCESS);
9015 }
9016 
9017 
9018 int
9019 rsmka_null_republish(
9020     rsm_memseg_export_handle_t memseg,
9021     rsm_access_entry_t access_list[],
9022     uint_t access_list_length,
9023     rsm_resource_callback_t callback,
9024     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
9025 {
9026 	return (RSM_SUCCESS);
9027 }
9028 
9029 int
9030 rsmka_null_unpublish(
9031     rsm_memseg_export_handle_t argmemseg	/*ARGSUSED*/)
9032 {
9033 	return (RSM_SUCCESS);
9034 }
9035 
9036 
9037 void
9038 rsmka_init_loopback()
9039 {
9040 	rsm_ops_t	*ops = &null_rsmpi_ops;
9041 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_LOOPBACK);
9042 
9043 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9044 	    "rsmka_init_loopback enter\n"));
9045 
9046 	/* initialize null ops vector */
9047 	ops->rsm_seg_create = rsmka_null_seg_create;
9048 	ops->rsm_seg_destroy = rsmka_null_seg_destroy;
9049 	ops->rsm_bind = rsmka_null_bind;
9050 	ops->rsm_unbind = rsmka_null_unbind;
9051 	ops->rsm_rebind = rsmka_null_rebind;
9052 	ops->rsm_publish = rsmka_null_publish;
9053 	ops->rsm_unpublish = rsmka_null_unpublish;
9054 	ops->rsm_republish = rsmka_null_republish;
9055 
9056 	/* initialize attributes for loopback adapter */
9057 	loopback_attr.attr_name = loopback_str;
9058 	loopback_attr.attr_page_size = 0x8; /* 8K */
9059 
9060 	/* initialize loopback adapter */
9061 	loopback_adapter.rsm_attr = loopback_attr;
9062 	loopback_adapter.rsmpi_ops = &null_rsmpi_ops;
9063 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9064 	    "rsmka_init_loopback done\n"));
9065 }
9066 
9067 /* ************** DR functions ********************************** */
9068 static void
9069 rsm_quiesce_exp_seg(rsmresource_t *resp)
9070 {
9071 	int		recheck_state;
9072 	rsmseg_t	*segp = (rsmseg_t *)resp;
9073 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9074 	DBG_DEFINE_STR(function, "rsm_unquiesce_exp_seg");
9075 
9076 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9077 	    "%s enter: key=%u\n", function, segp->s_key));
9078 
9079 	rsmseglock_acquire(segp);
9080 	do {
9081 		recheck_state = 0;
9082 		if ((segp->s_state == RSM_STATE_NEW_QUIESCED) ||
9083 		    (segp->s_state == RSM_STATE_BIND_QUIESCED) ||
9084 		    (segp->s_state == RSM_STATE_EXPORT_QUIESCING) ||
9085 		    (segp->s_state == RSM_STATE_EXPORT_QUIESCED)) {
9086 			rsmseglock_release(segp);
9087 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9088 			    "%s done:state =%d\n", function,
9089 			    segp->s_state));
9090 			return;
9091 		}
9092 
9093 		if (segp->s_state == RSM_STATE_NEW) {
9094 			segp->s_state = RSM_STATE_NEW_QUIESCED;
9095 			rsmseglock_release(segp);
9096 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9097 			    "%s done:state =%d\n", function,
9098 			    segp->s_state));
9099 			return;
9100 		}
9101 
9102 		if (segp->s_state == RSM_STATE_BIND) {
9103 			/* unbind */
9104 			(void) rsm_unbind_pages(segp);
9105 			segp->s_state = RSM_STATE_BIND_QUIESCED;
9106 			rsmseglock_release(segp);
9107 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9108 			    "%s done:state =%d\n", function,
9109 			    segp->s_state));
9110 			return;
9111 		}
9112 
9113 		if (segp->s_state == RSM_STATE_EXPORT) {
9114 			/*
9115 			 * wait for putv/getv to complete if the segp is
9116 			 * a local memory handle
9117 			 */
9118 			while ((segp->s_state == RSM_STATE_EXPORT) &&
9119 			    (segp->s_rdmacnt != 0)) {
9120 				cv_wait(&segp->s_cv, &segp->s_lock);
9121 			}
9122 
9123 			if (segp->s_state != RSM_STATE_EXPORT) {
9124 				/*
9125 				 * state changed need to see what it
9126 				 * should be changed to.
9127 				 */
9128 				recheck_state = 1;
9129 				continue;
9130 			}
9131 
9132 			segp->s_state = RSM_STATE_EXPORT_QUIESCING;
9133 			rsmseglock_release(segp);
9134 			/*
9135 			 * send SUSPEND messages - currently it will be
9136 			 * done at the end
9137 			 */
9138 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9139 			    "%s done:state =%d\n", function,
9140 			    segp->s_state));
9141 			return;
9142 		}
9143 	} while (recheck_state);
9144 
9145 	rsmseglock_release(segp);
9146 }
9147 
9148 static void
9149 rsm_unquiesce_exp_seg(rsmresource_t *resp)
9150 {
9151 	int			ret;
9152 	rsmseg_t		*segp = (rsmseg_t *)resp;
9153 	rsmapi_access_entry_t	*acl;
9154 	rsm_access_entry_t	*rsmpi_acl;
9155 	int			acl_len;
9156 	int			create_flags = 0;
9157 	struct buf		*xbuf;
9158 	rsm_memory_local_t	mem;
9159 	adapter_t		*adapter;
9160 	dev_t			sdev = 0;
9161 	rsm_resource_callback_t callback_flag;
9162 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9163 	DBG_DEFINE_STR(function, "rsm_unquiesce_exp_seg");
9164 
9165 	rsmseglock_acquire(segp);
9166 
9167 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9168 	    "%s enter: key=%u, state=%d\n", function, segp->s_key,
9169 	    segp->s_state));
9170 
9171 	if ((segp->s_state == RSM_STATE_NEW) ||
9172 	    (segp->s_state == RSM_STATE_BIND) ||
9173 	    (segp->s_state == RSM_STATE_EXPORT)) {
9174 		rsmseglock_release(segp);
9175 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done:state=%d\n",
9176 		    function, segp->s_state));
9177 		return;
9178 	}
9179 
9180 	if (segp->s_state == RSM_STATE_NEW_QUIESCED) {
9181 		segp->s_state = RSM_STATE_NEW;
9182 		cv_broadcast(&segp->s_cv);
9183 		rsmseglock_release(segp);
9184 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done:state=%d\n",
9185 		    function, segp->s_state));
9186 		return;
9187 	}
9188 
9189 	if (segp->s_state == RSM_STATE_BIND_QUIESCED) {
9190 		/* bind the segment */
9191 		ret = rsm_bind_pages(&segp->s_cookie, segp->s_region.r_vaddr,
9192 		    segp->s_len, segp->s_proc);
9193 		if (ret == RSM_SUCCESS) { /* bind successful */
9194 			segp->s_state = RSM_STATE_BIND;
9195 		} else { /* bind failed - resource unavailable */
9196 			segp->s_state = RSM_STATE_NEW;
9197 		}
9198 		cv_broadcast(&segp->s_cv);
9199 		rsmseglock_release(segp);
9200 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9201 		    "%s done: bind_qscd bind = %d\n", function, ret));
9202 		return;
9203 	}
9204 
9205 	while (segp->s_state == RSM_STATE_EXPORT_QUIESCING) {
9206 		/* wait for the segment to move to EXPORT_QUIESCED state */
9207 		cv_wait(&segp->s_cv, &segp->s_lock);
9208 	}
9209 
9210 	if (segp->s_state == RSM_STATE_EXPORT_QUIESCED) {
9211 		/* bind the segment */
9212 		ret = rsm_bind_pages(&segp->s_cookie, segp->s_region.r_vaddr,
9213 		    segp->s_len, segp->s_proc);
9214 
9215 		if (ret != RSM_SUCCESS) {
9216 			/* bind failed - resource unavailable */
9217 			acl_len = segp->s_acl_len;
9218 			acl = segp->s_acl;
9219 			rsmpi_acl = segp->s_acl_in;
9220 			segp->s_acl_len = 0;
9221 			segp->s_acl = NULL;
9222 			segp->s_acl_in = NULL;
9223 			rsmseglock_release(segp);
9224 
9225 			rsmexport_rm(segp);
9226 			rsmacl_free(acl, acl_len);
9227 			rsmpiacl_free(rsmpi_acl, acl_len);
9228 
9229 			rsmseglock_acquire(segp);
9230 			segp->s_state = RSM_STATE_NEW;
9231 			cv_broadcast(&segp->s_cv);
9232 			rsmseglock_release(segp);
9233 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9234 			    "%s done: exp_qscd bind failed = %d\n",
9235 			    function, ret));
9236 			return;
9237 		}
9238 		/*
9239 		 * publish the segment
9240 		 * if  successful
9241 		 *   segp->s_state = RSM_STATE_EXPORT;
9242 		 * else failed
9243 		 *   segp->s_state = RSM_STATE_BIND;
9244 		 */
9245 
9246 		/* check whether it is a local_memory_handle */
9247 		if (segp->s_acl != (rsmapi_access_entry_t *)NULL) {
9248 			if ((segp->s_acl[0].ae_node == my_nodeid) &&
9249 			    (segp->s_acl[0].ae_permission == 0)) {
9250 				segp->s_state = RSM_STATE_EXPORT;
9251 				cv_broadcast(&segp->s_cv);
9252 				rsmseglock_release(segp);
9253 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9254 				    "%s done:exp_qscd\n", function));
9255 				return;
9256 			}
9257 		}
9258 		xbuf = ddi_umem_iosetup(segp->s_cookie, 0, segp->s_len, B_WRITE,
9259 		    sdev, 0, NULL, DDI_UMEM_SLEEP);
9260 		ASSERT(xbuf != NULL);
9261 
9262 		mem.ms_type = RSM_MEM_BUF;
9263 		mem.ms_bp = xbuf;
9264 
9265 		adapter = segp->s_adapter;
9266 
9267 		if (segp->s_flags & RSMKA_ALLOW_UNBIND_REBIND) {
9268 			create_flags = RSM_ALLOW_UNBIND_REBIND;
9269 		}
9270 
9271 		if (segp->s_flags & RSMKA_SET_RESOURCE_DONTWAIT) {
9272 			callback_flag  = RSM_RESOURCE_DONTWAIT;
9273 		} else {
9274 			callback_flag  = RSM_RESOURCE_SLEEP;
9275 		}
9276 
9277 		ret = adapter->rsmpi_ops->rsm_seg_create(
9278 		    adapter->rsmpi_handle, &segp->s_handle.out,
9279 		    segp->s_len, create_flags, &mem,
9280 		    callback_flag, NULL);
9281 
9282 		if (ret != RSM_SUCCESS) {
9283 			acl_len = segp->s_acl_len;
9284 			acl = segp->s_acl;
9285 			rsmpi_acl = segp->s_acl_in;
9286 			segp->s_acl_len = 0;
9287 			segp->s_acl = NULL;
9288 			segp->s_acl_in = NULL;
9289 			rsmseglock_release(segp);
9290 
9291 			rsmexport_rm(segp);
9292 			rsmacl_free(acl, acl_len);
9293 			rsmpiacl_free(rsmpi_acl, acl_len);
9294 
9295 			rsmseglock_acquire(segp);
9296 			segp->s_state = RSM_STATE_BIND;
9297 			cv_broadcast(&segp->s_cv);
9298 			rsmseglock_release(segp);
9299 			DBG_PRINTF((category, RSM_ERR,
9300 			    "%s done: exp_qscd create failed = %d\n",
9301 			    function, ret));
9302 			return;
9303 		}
9304 
9305 		ret = adapter->rsmpi_ops->rsm_publish(
9306 		    segp->s_handle.out, segp->s_acl_in, segp->s_acl_len,
9307 		    segp->s_segid, RSM_RESOURCE_DONTWAIT, NULL);
9308 
9309 		if (ret != RSM_SUCCESS) {
9310 			acl_len = segp->s_acl_len;
9311 			acl = segp->s_acl;
9312 			rsmpi_acl = segp->s_acl_in;
9313 			segp->s_acl_len = 0;
9314 			segp->s_acl = NULL;
9315 			segp->s_acl_in = NULL;
9316 			adapter->rsmpi_ops->rsm_seg_destroy(segp->s_handle.out);
9317 			rsmseglock_release(segp);
9318 
9319 			rsmexport_rm(segp);
9320 			rsmacl_free(acl, acl_len);
9321 			rsmpiacl_free(rsmpi_acl, acl_len);
9322 
9323 			rsmseglock_acquire(segp);
9324 			segp->s_state = RSM_STATE_BIND;
9325 			cv_broadcast(&segp->s_cv);
9326 			rsmseglock_release(segp);
9327 			DBG_PRINTF((category, RSM_ERR,
9328 			    "%s done: exp_qscd publish failed = %d\n",
9329 			    function, ret));
9330 			return;
9331 		}
9332 
9333 		segp->s_state = RSM_STATE_EXPORT;
9334 		cv_broadcast(&segp->s_cv);
9335 		rsmseglock_release(segp);
9336 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done: exp_qscd\n",
9337 		    function));
9338 		return;
9339 	}
9340 
9341 	rsmseglock_release(segp);
9342 
9343 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9344 }
9345 
9346 static void
9347 rsm_quiesce_imp_seg(rsmresource_t *resp)
9348 {
9349 	rsmseg_t	*segp = (rsmseg_t *)resp;
9350 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9351 	DBG_DEFINE_STR(function, "rsm_quiesce_imp_seg");
9352 
9353 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9354 	    "%s enter: key=%u\n", function, segp->s_key));
9355 
9356 	rsmseglock_acquire(segp);
9357 	segp->s_flags |= RSM_DR_INPROGRESS;
9358 
9359 	while (segp->s_rdmacnt != 0) {
9360 		/* wait for the RDMA to complete */
9361 		cv_wait(&segp->s_cv, &segp->s_lock);
9362 	}
9363 
9364 	rsmseglock_release(segp);
9365 
9366 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9367 
9368 }
9369 
9370 static void
9371 rsm_unquiesce_imp_seg(rsmresource_t *resp)
9372 {
9373 	rsmseg_t	*segp = (rsmseg_t *)resp;
9374 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9375 	DBG_DEFINE_STR(function, "rsm_unquiesce_imp_seg");
9376 
9377 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9378 	    "%s enter: key=%u\n", function, segp->s_key));
9379 
9380 	rsmseglock_acquire(segp);
9381 
9382 	segp->s_flags &= ~RSM_DR_INPROGRESS;
9383 	/* wake up any waiting putv/getv ops */
9384 	cv_broadcast(&segp->s_cv);
9385 
9386 	rsmseglock_release(segp);
9387 
9388 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9389 
9390 
9391 }
9392 
9393 static void
9394 rsm_process_exp_seg(rsmresource_t *resp, int event)
9395 {
9396 	if (event == RSM_DR_QUIESCE)
9397 		rsm_quiesce_exp_seg(resp);
9398 	else /* UNQUIESCE */
9399 		rsm_unquiesce_exp_seg(resp);
9400 }
9401 
9402 static void
9403 rsm_process_imp_seg(rsmresource_t *resp, int event)
9404 {
9405 	if (event == RSM_DR_QUIESCE)
9406 		rsm_quiesce_imp_seg(resp);
9407 	else /* UNQUIESCE */
9408 		rsm_unquiesce_imp_seg(resp);
9409 }
9410 
9411 static void
9412 rsm_dr_process_local_segments(int event)
9413 {
9414 
9415 	int i, j;
9416 	rsmresource_blk_t	*blk;
9417 	rsmresource_t		*p;
9418 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9419 
9420 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9421 	    "rsm_dr_process_local_segments enter\n"));
9422 
9423 	/* iterate through the resource structure */
9424 
9425 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
9426 
9427 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
9428 		blk = rsm_resource.rsmrc_root[i];
9429 		if (blk != NULL) {
9430 			for (j = 0; j < RSMRC_BLKSZ; j++) {
9431 				p = blk->rsmrcblk_blks[j];
9432 				if ((p != NULL) && (p != RSMRC_RESERVED)) {
9433 					/* valid resource */
9434 					if (p->rsmrc_type ==
9435 					    RSM_RESOURCE_EXPORT_SEGMENT)
9436 						rsm_process_exp_seg(p, event);
9437 					else if (p->rsmrc_type ==
9438 					    RSM_RESOURCE_IMPORT_SEGMENT)
9439 						rsm_process_imp_seg(p, event);
9440 				}
9441 			}
9442 		}
9443 	}
9444 
9445 	rw_exit(&rsm_resource.rsmrc_lock);
9446 
9447 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9448 	    "rsm_dr_process_local_segments done\n"));
9449 }
9450 
9451 /* *************** DR callback functions ************ */
9452 static void
9453 rsm_dr_callback_post_add(void *arg, pgcnt_t delta /* ARGSUSED */)
9454 {
9455 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9456 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9457 	    "rsm_dr_callback_post_add is a no-op\n"));
9458 	/* Noop */
9459 }
9460 
9461 static int
9462 rsm_dr_callback_pre_del(void *arg, pgcnt_t delta /* ARGSUSED */)
9463 {
9464 	int	recheck_state = 0;
9465 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9466 
9467 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9468 	    "rsm_dr_callback_pre_del enter\n"));
9469 
9470 	mutex_enter(&rsm_drv_data.drv_lock);
9471 
9472 	do {
9473 		recheck_state = 0;
9474 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9475 		    "rsm_dr_callback_pre_del:state=%d\n",
9476 		    rsm_drv_data.drv_state));
9477 
9478 		switch (rsm_drv_data.drv_state) {
9479 		case RSM_DRV_NEW:
9480 			/*
9481 			 * The state should usually never be RSM_DRV_NEW
9482 			 * since in this state the callbacks have not yet
9483 			 * been registered. So, ASSERT.
9484 			 */
9485 			ASSERT(0);
9486 			return (0);
9487 		case RSM_DRV_REG_PROCESSING:
9488 			/*
9489 			 * The driver is in the process of registering
9490 			 * with the DR framework. So, wait till the
9491 			 * registration process is complete.
9492 			 */
9493 			recheck_state = 1;
9494 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9495 			break;
9496 		case RSM_DRV_UNREG_PROCESSING:
9497 			/*
9498 			 * If the state is RSM_DRV_UNREG_PROCESSING, the
9499 			 * module is in the process of detaching and
9500 			 * unregistering the callbacks from the DR
9501 			 * framework. So, simply return.
9502 			 */
9503 			mutex_exit(&rsm_drv_data.drv_lock);
9504 			DBG_PRINTF((category, RSM_DEBUG,
9505 			    "rsm_dr_callback_pre_del:"
9506 			    "pre-del on NEW/UNREG\n"));
9507 			return (0);
9508 		case RSM_DRV_OK:
9509 			rsm_drv_data.drv_state = RSM_DRV_PREDEL_STARTED;
9510 			break;
9511 		case RSM_DRV_PREDEL_STARTED:
9512 			/* FALLTHRU */
9513 		case RSM_DRV_PREDEL_COMPLETED:
9514 			/* FALLTHRU */
9515 		case RSM_DRV_POSTDEL_IN_PROGRESS:
9516 			recheck_state = 1;
9517 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9518 			break;
9519 		case RSM_DRV_DR_IN_PROGRESS:
9520 			rsm_drv_data.drv_memdel_cnt++;
9521 			mutex_exit(&rsm_drv_data.drv_lock);
9522 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9523 			    "rsm_dr_callback_pre_del done\n"));
9524 			return (0);
9525 			/* break; */
9526 		default:
9527 			ASSERT(0);
9528 			break;
9529 		}
9530 
9531 	} while (recheck_state);
9532 
9533 	rsm_drv_data.drv_memdel_cnt++;
9534 
9535 	mutex_exit(&rsm_drv_data.drv_lock);
9536 
9537 	/* Do all the quiescing stuff here */
9538 	DBG_PRINTF((category, RSM_DEBUG,
9539 	    "rsm_dr_callback_pre_del: quiesce things now\n"));
9540 
9541 	rsm_dr_process_local_segments(RSM_DR_QUIESCE);
9542 
9543 	/*
9544 	 * now that all local segments have been quiesced lets inform
9545 	 * the importers
9546 	 */
9547 	rsm_send_suspend();
9548 
9549 	/*
9550 	 * In response to the suspend message the remote node(s) will process
9551 	 * the segments and send a suspend_complete message. Till all
9552 	 * the nodes send the suspend_complete message we wait in the
9553 	 * RSM_DRV_PREDEL_STARTED state. In the exporter_quiesce
9554 	 * function we transition to the RSM_DRV_PREDEL_COMPLETED state.
9555 	 */
9556 	mutex_enter(&rsm_drv_data.drv_lock);
9557 
9558 	while (rsm_drv_data.drv_state == RSM_DRV_PREDEL_STARTED) {
9559 		cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9560 	}
9561 
9562 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_PREDEL_COMPLETED);
9563 
9564 	rsm_drv_data.drv_state = RSM_DRV_DR_IN_PROGRESS;
9565 	cv_broadcast(&rsm_drv_data.drv_cv);
9566 
9567 	mutex_exit(&rsm_drv_data.drv_lock);
9568 
9569 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9570 	    "rsm_dr_callback_pre_del done\n"));
9571 
9572 	return (0);
9573 }
9574 
9575 static void
9576 rsm_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled /* ARGSUSED */)
9577 {
9578 	int	recheck_state = 0;
9579 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9580 
9581 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9582 	    "rsm_dr_callback_post_del enter\n"));
9583 
9584 	mutex_enter(&rsm_drv_data.drv_lock);
9585 
9586 	do {
9587 		recheck_state = 0;
9588 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9589 		    "rsm_dr_callback_post_del:state=%d\n",
9590 		    rsm_drv_data.drv_state));
9591 
9592 		switch (rsm_drv_data.drv_state) {
9593 		case RSM_DRV_NEW:
9594 			/*
9595 			 * The driver state cannot not be RSM_DRV_NEW
9596 			 * since in this state the callbacks have not
9597 			 * yet been registered.
9598 			 */
9599 			ASSERT(0);
9600 			return;
9601 		case RSM_DRV_REG_PROCESSING:
9602 			/*
9603 			 * The driver is in the process of registering with
9604 			 * the DR framework. Wait till the registration is
9605 			 * complete.
9606 			 */
9607 			recheck_state = 1;
9608 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9609 			break;
9610 		case RSM_DRV_UNREG_PROCESSING:
9611 			/*
9612 			 * RSM_DRV_UNREG_PROCESSING state means the module
9613 			 * is detaching and unregistering the callbacks
9614 			 * from the DR framework. So simply return.
9615 			 */
9616 			/* FALLTHRU */
9617 		case RSM_DRV_OK:
9618 			/*
9619 			 * RSM_DRV_OK means we missed the pre-del
9620 			 * corresponding to this post-del coz we had not
9621 			 * registered yet, so simply return.
9622 			 */
9623 			mutex_exit(&rsm_drv_data.drv_lock);
9624 			DBG_PRINTF((category, RSM_DEBUG,
9625 			    "rsm_dr_callback_post_del:"
9626 			    "post-del on OK/UNREG\n"));
9627 			return;
9628 			/* break; */
9629 		case RSM_DRV_PREDEL_STARTED:
9630 			/* FALLTHRU */
9631 		case RSM_DRV_PREDEL_COMPLETED:
9632 			/* FALLTHRU */
9633 		case RSM_DRV_POSTDEL_IN_PROGRESS:
9634 			recheck_state = 1;
9635 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9636 			break;
9637 		case RSM_DRV_DR_IN_PROGRESS:
9638 			rsm_drv_data.drv_memdel_cnt--;
9639 			if (rsm_drv_data.drv_memdel_cnt > 0) {
9640 				mutex_exit(&rsm_drv_data.drv_lock);
9641 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9642 				    "rsm_dr_callback_post_del done:\n"));
9643 				return;
9644 			}
9645 			rsm_drv_data.drv_state = RSM_DRV_POSTDEL_IN_PROGRESS;
9646 			break;
9647 		default:
9648 			ASSERT(0);
9649 			return;
9650 			/* break; */
9651 		}
9652 	} while (recheck_state);
9653 
9654 	mutex_exit(&rsm_drv_data.drv_lock);
9655 
9656 	/* Do all the unquiescing stuff here */
9657 	DBG_PRINTF((category, RSM_DEBUG,
9658 	    "rsm_dr_callback_post_del: unquiesce things now\n"));
9659 
9660 	rsm_dr_process_local_segments(RSM_DR_UNQUIESCE);
9661 
9662 	/*
9663 	 * now that all local segments have been unquiesced lets inform
9664 	 * the importers
9665 	 */
9666 	rsm_send_resume();
9667 
9668 	mutex_enter(&rsm_drv_data.drv_lock);
9669 
9670 	rsm_drv_data.drv_state = RSM_DRV_OK;
9671 
9672 	cv_broadcast(&rsm_drv_data.drv_cv);
9673 
9674 	mutex_exit(&rsm_drv_data.drv_lock);
9675 
9676 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9677 	    "rsm_dr_callback_post_del done\n"));
9678 
9679 	return;
9680 
9681 }
9682