xref: /illumos-gate/usr/src/uts/common/io/rge/rge_chip.c (revision bb9b6b3f59b8820022416cea99b49c50fef6e391)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include "rge.h"
27 
28 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
29 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
30 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
31 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
32 
33 /*
34  * Patchable globals:
35  *
36  *	rge_autorecover
37  *		Enables/disables automatic recovery after fault detection
38  */
39 static uint32_t rge_autorecover = 1;
40 
41 /*
42  * globals:
43  */
44 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
45 static uint32_t rge_watchdog_count	= 1 << 16;
46 
47 /*
48  * Operating register get/set access routines
49  */
50 
51 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
52 #pragma	inline(rge_reg_get32)
53 
54 static uint32_t
55 rge_reg_get32(rge_t *rgep, uintptr_t regno)
56 {
57 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
58 	    (void *)rgep, regno));
59 
60 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
61 }
62 
63 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
64 #pragma	inline(rge_reg_put32)
65 
66 static void
67 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
68 {
69 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
70 	    (void *)rgep, regno, data));
71 
72 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
73 }
74 
75 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
76 #pragma	inline(rge_reg_set32)
77 
78 static void
79 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
80 {
81 	uint32_t regval;
82 
83 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
84 	    (void *)rgep, regno, bits));
85 
86 	regval = rge_reg_get32(rgep, regno);
87 	regval |= bits;
88 	rge_reg_put32(rgep, regno, regval);
89 }
90 
91 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
92 #pragma	inline(rge_reg_clr32)
93 
94 static void
95 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
96 {
97 	uint32_t regval;
98 
99 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
100 	    (void *)rgep, regno, bits));
101 
102 	regval = rge_reg_get32(rgep, regno);
103 	regval &= ~bits;
104 	rge_reg_put32(rgep, regno, regval);
105 }
106 
107 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
108 #pragma	inline(rge_reg_get16)
109 
110 static uint16_t
111 rge_reg_get16(rge_t *rgep, uintptr_t regno)
112 {
113 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
114 	    (void *)rgep, regno));
115 
116 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
117 }
118 
119 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
120 #pragma	inline(rge_reg_put16)
121 
122 static void
123 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
124 {
125 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
126 	    (void *)rgep, regno, data));
127 
128 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
129 }
130 
131 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
132 #pragma	inline(rge_reg_get8)
133 
134 static uint8_t
135 rge_reg_get8(rge_t *rgep, uintptr_t regno)
136 {
137 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
138 	    (void *)rgep, regno));
139 
140 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
141 }
142 
143 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
144 #pragma	inline(rge_reg_put8)
145 
146 static void
147 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
148 {
149 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
150 	    (void *)rgep, regno, data));
151 
152 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
153 }
154 
155 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
156 #pragma	inline(rge_reg_set8)
157 
158 static void
159 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
160 {
161 	uint8_t regval;
162 
163 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
164 	    (void *)rgep, regno, bits));
165 
166 	regval = rge_reg_get8(rgep, regno);
167 	regval |= bits;
168 	rge_reg_put8(rgep, regno, regval);
169 }
170 
171 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
172 #pragma	inline(rge_reg_clr8)
173 
174 static void
175 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
176 {
177 	uint8_t regval;
178 
179 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
180 	    (void *)rgep, regno, bits));
181 
182 	regval = rge_reg_get8(rgep, regno);
183 	regval &= ~bits;
184 	rge_reg_put8(rgep, regno, regval);
185 }
186 
187 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
188 #pragma	no_inline(rge_mii_get16)
189 
190 uint16_t
191 rge_mii_get16(rge_t *rgep, uintptr_t mii)
192 {
193 	uint32_t regval;
194 	uint32_t val32;
195 	uint32_t i;
196 
197 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
198 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
199 
200 	/*
201 	 * Waiting for PHY reading OK
202 	 */
203 	for (i = 0; i < PHY_RESET_LOOP; i++) {
204 		drv_usecwait(1000);
205 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
206 		if (val32 & PHY_ACCESS_WR_FLAG)
207 			return ((uint16_t)(val32 & 0xffff));
208 	}
209 
210 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
211 	return ((uint16_t)~0u);
212 }
213 
214 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
215 #pragma	no_inline(rge_mii_put16)
216 
217 void
218 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
219 {
220 	uint32_t regval;
221 	uint32_t val32;
222 	uint32_t i;
223 
224 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
225 	regval |= data & PHY_DATA_MASK;
226 	regval |= PHY_ACCESS_WR_FLAG;
227 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
228 
229 	/*
230 	 * Waiting for PHY writing OK
231 	 */
232 	for (i = 0; i < PHY_RESET_LOOP; i++) {
233 		drv_usecwait(1000);
234 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
235 		if (!(val32 & PHY_ACCESS_WR_FLAG))
236 			return;
237 	}
238 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
239 	    mii, data));
240 }
241 
242 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
243 #pragma	no_inline(rge_ephy_put16)
244 
245 void
246 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
247 {
248 	uint32_t regval;
249 	uint32_t val32;
250 	uint32_t i;
251 
252 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
253 	regval |= data & EPHY_DATA_MASK;
254 	regval |= EPHY_ACCESS_WR_FLAG;
255 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
256 
257 	/*
258 	 * Waiting for PHY writing OK
259 	 */
260 	for (i = 0; i < PHY_RESET_LOOP; i++) {
261 		drv_usecwait(1000);
262 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
263 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
264 			return;
265 	}
266 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
267 	    emii, data));
268 }
269 
270 /*
271  * Atomically shift a 32-bit word left, returning
272  * the value it had *before* the shift was applied
273  */
274 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
275 #pragma	inline(rge_mii_put16)
276 
277 static uint32_t
278 rge_atomic_shl32(uint32_t *sp, uint_t count)
279 {
280 	uint32_t oldval;
281 	uint32_t newval;
282 
283 	/* ATOMICALLY */
284 	do {
285 		oldval = *sp;
286 		newval = oldval << count;
287 	} while (cas32(sp, oldval, newval) != oldval);
288 
289 	return (oldval);
290 }
291 
292 /*
293  * PHY operation routines
294  */
295 #if	RGE_DEBUGGING
296 
297 void
298 rge_phydump(rge_t *rgep)
299 {
300 	uint16_t regs[32];
301 	int i;
302 
303 	ASSERT(mutex_owned(rgep->genlock));
304 
305 	for (i = 0; i < 32; ++i) {
306 		regs[i] = rge_mii_get16(rgep, i);
307 	}
308 
309 	for (i = 0; i < 32; i += 8)
310 		RGE_DEBUG(("rge_phydump: "
311 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
312 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
313 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
314 }
315 
316 #endif	/* RGE_DEBUGGING */
317 
318 static void
319 rge_phy_check(rge_t *rgep)
320 {
321 	uint16_t gig_ctl;
322 
323 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
324 		/*
325 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
326 		 * every 15 seconds whin link down & advertise is 1000.
327 		 */
328 		if (rgep->chipid.phy_ver == PHY_VER_S) {
329 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
330 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
331 				rgep->link_down_count++;
332 				if (rgep->link_down_count > 15) {
333 					(void) rge_phy_reset(rgep);
334 					rgep->stats.phy_reset++;
335 					rgep->link_down_count = 0;
336 				}
337 			}
338 		}
339 	} else {
340 		rgep->link_down_count = 0;
341 	}
342 }
343 
344 /*
345  * Basic low-level function to reset the PHY.
346  * Doesn't incorporate any special-case workarounds.
347  *
348  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
349  */
350 boolean_t
351 rge_phy_reset(rge_t *rgep)
352 {
353 	uint16_t control;
354 	uint_t count;
355 
356 	/*
357 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
358 	 */
359 	control = rge_mii_get16(rgep, MII_CONTROL);
360 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
361 	for (count = 0; count < 5; count++) {
362 		drv_usecwait(100);
363 		control = rge_mii_get16(rgep, MII_CONTROL);
364 		if (BIC(control, MII_CONTROL_RESET))
365 			return (B_TRUE);
366 	}
367 
368 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
369 	return (B_FALSE);
370 }
371 
372 /*
373  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
374  * and advertisements with the required settings as specified by the various
375  * param_* variables that can be poked via the NDD interface.
376  *
377  * We always reset the PHY and reprogram *all* the relevant registers,
378  * not just those changed.  This should cause the link to go down, and then
379  * back up again once the link is stable and autonegotiation (if enabled)
380  * is complete.  We should get a link state change interrupt somewhere along
381  * the way ...
382  *
383  * NOTE: <genlock> must already be held by the caller
384  */
385 void
386 rge_phy_update(rge_t *rgep)
387 {
388 	boolean_t adv_autoneg;
389 	boolean_t adv_pause;
390 	boolean_t adv_asym_pause;
391 	boolean_t adv_1000fdx;
392 	boolean_t adv_1000hdx;
393 	boolean_t adv_100fdx;
394 	boolean_t adv_100hdx;
395 	boolean_t adv_10fdx;
396 	boolean_t adv_10hdx;
397 
398 	uint16_t control;
399 	uint16_t gigctrl;
400 	uint16_t anar;
401 
402 	ASSERT(mutex_owned(rgep->genlock));
403 
404 	RGE_DEBUG(("rge_phy_update: autoneg %d "
405 	    "pause %d asym_pause %d "
406 	    "1000fdx %d 1000hdx %d "
407 	    "100fdx %d 100hdx %d "
408 	    "10fdx %d 10hdx %d ",
409 	    rgep->param_adv_autoneg,
410 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
411 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
412 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
413 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
414 
415 	control = gigctrl = anar = 0;
416 
417 	/*
418 	 * PHY settings are normally based on the param_* variables,
419 	 * but if any loopback mode is in effect, that takes precedence.
420 	 *
421 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
422 	 * and External loopback at a variety of speeds (with a special
423 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
424 	 * is turned ON, and the speed/mastership is forced.
425 	 */
426 	switch (rgep->param_loop_mode) {
427 	case RGE_LOOP_NONE:
428 	default:
429 		adv_autoneg = rgep->param_adv_autoneg;
430 		adv_pause = rgep->param_adv_pause;
431 		adv_asym_pause = rgep->param_adv_asym_pause;
432 		adv_1000fdx = rgep->param_adv_1000fdx;
433 		adv_1000hdx = rgep->param_adv_1000hdx;
434 		adv_100fdx = rgep->param_adv_100fdx;
435 		adv_100hdx = rgep->param_adv_100hdx;
436 		adv_10fdx = rgep->param_adv_10fdx;
437 		adv_10hdx = rgep->param_adv_10hdx;
438 		break;
439 
440 	case RGE_LOOP_INTERNAL_PHY:
441 	case RGE_LOOP_INTERNAL_MAC:
442 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
443 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
444 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
445 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
446 
447 		switch (rgep->param_loop_mode) {
448 		case RGE_LOOP_INTERNAL_PHY:
449 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
450 				rgep->param_link_speed = 1000;
451 				adv_1000fdx = B_TRUE;
452 			} else {
453 				rgep->param_link_speed = 100;
454 				adv_100fdx = B_TRUE;
455 			}
456 			control = MII_CONTROL_LOOPBACK;
457 			break;
458 
459 		case RGE_LOOP_INTERNAL_MAC:
460 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
461 				rgep->param_link_speed = 1000;
462 				adv_1000fdx = B_TRUE;
463 			} else {
464 				rgep->param_link_speed = 100;
465 				adv_100fdx = B_TRUE;
466 			break;
467 		}
468 	}
469 
470 	RGE_DEBUG(("rge_phy_update: autoneg %d "
471 	    "pause %d asym_pause %d "
472 	    "1000fdx %d 1000hdx %d "
473 	    "100fdx %d 100hdx %d "
474 	    "10fdx %d 10hdx %d ",
475 	    adv_autoneg,
476 	    adv_pause, adv_asym_pause,
477 	    adv_1000fdx, adv_1000hdx,
478 	    adv_100fdx, adv_100hdx,
479 	    adv_10fdx, adv_10hdx));
480 
481 	/*
482 	 * We should have at least one technology capability set;
483 	 * if not, we select a default of 1000Mb/s full-duplex
484 	 */
485 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
486 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
487 		if (rgep->chipid.mac_ver != MAC_VER_8101E)
488 			adv_1000fdx = B_TRUE;
489 		} else {
490 			adv_1000fdx = B_FALSE;
491 			adv_100fdx = B_TRUE;
492 		}
493 	}
494 
495 	/*
496 	 * Now transform the adv_* variables into the proper settings
497 	 * of the PHY registers ...
498 	 *
499 	 * If autonegotiation is (now) enabled, we want to trigger
500 	 * a new autonegotiation cycle once the PHY has been
501 	 * programmed with the capabilities to be advertised.
502 	 *
503 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
504 	 */
505 	if (adv_autoneg)
506 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
507 
508 	if (adv_1000fdx)
509 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
510 	else if (adv_1000hdx)
511 		control |= MII_CONTROL_1GB;
512 	else if (adv_100fdx)
513 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
514 	else if (adv_100hdx)
515 		control |= MII_CONTROL_100MB;
516 	else if (adv_10fdx)
517 		control |= MII_CONTROL_FDUPLEX;
518 	else if (adv_10hdx)
519 		control |= 0;
520 	else
521 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
522 
523 	if (adv_1000fdx) {
524 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
525 		/*
526 		 * Chipset limitation: need set other capabilities to true
527 		 */
528 		if (rgep->chipid.is_pcie)
529 			adv_1000hdx = B_TRUE;
530 		adv_100fdx = B_TRUE;
531 		adv_100hdx  = B_TRUE;
532 		adv_10fdx = B_TRUE;
533 		adv_10hdx = B_TRUE;
534 	}
535 
536 	if (adv_1000hdx)
537 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
538 
539 	if (adv_100fdx)
540 		anar |= MII_ABILITY_100BASE_TX_FD;
541 	if (adv_100hdx)
542 		anar |= MII_ABILITY_100BASE_TX;
543 	if (adv_10fdx)
544 		anar |= MII_ABILITY_10BASE_T_FD;
545 	if (adv_10hdx)
546 		anar |= MII_ABILITY_10BASE_T;
547 
548 	if (adv_pause)
549 		anar |= MII_ABILITY_PAUSE;
550 	if (adv_asym_pause)
551 		anar |= MII_ABILITY_ASMPAUSE;
552 
553 	/*
554 	 * Munge in any other fixed bits we require ...
555 	 */
556 	anar |= MII_AN_SELECTOR_8023;
557 
558 	/*
559 	 * Restart the PHY and write the new values.  Note the
560 	 * time, so that we can say whether subsequent link state
561 	 * changes can be attributed to our reprogramming the PHY
562 	 */
563 	rge_phy_init(rgep);
564 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
565 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
566 		/* power up PHY for RTL8168B chipset */
567 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
568 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
569 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
570 	}
571 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
572 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
573 	rge_mii_put16(rgep, MII_CONTROL, control);
574 
575 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
576 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
577 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
578 }
579 
580 void rge_phy_init(rge_t *rgep);
581 #pragma	no_inline(rge_phy_init)
582 
583 void
584 rge_phy_init(rge_t *rgep)
585 {
586 	rgep->phy_mii_addr = 1;
587 
588 	/*
589 	 * Below phy config steps are copied from the Programming Guide
590 	 * (there's no detail comments for these steps.)
591 	 */
592 	switch (rgep->chipid.mac_ver) {
593 	case MAC_VER_8169S_D:
594 	case MAC_VER_8169S_E :
595 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
596 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
597 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
598 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
599 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
600 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
601 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
602 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
603 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
604 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
605 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
606 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
607 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
608 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
609 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
610 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
611 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
612 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
613 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
614 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
615 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
616 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
617 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
618 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
619 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
620 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
621 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
622 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
623 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
624 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
625 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
626 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
627 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
628 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
629 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
630 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
631 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
632 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
633 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
634 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
635 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
636 		break;
637 
638 	case MAC_VER_8169SB:
639 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
640 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
641 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
642 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
643 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
644 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
645 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
646 		break;
647 
648 	case MAC_VER_8169SC:
649 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
650 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
651 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
652 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
653 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
654 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
655 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
656 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
657 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
658 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
659 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
660 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
661 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
662 		break;
663 
664 	case MAC_VER_8168:
665 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
666 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
667 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
668 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
669 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
670 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
671 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
672 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
673 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
674 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
675 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
676 		break;
677 
678 	case MAC_VER_8168B_B:
679 	case MAC_VER_8168B_C:
680 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
681 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
682 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
683 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
684 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
685 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
686 		break;
687 	}
688 }
689 
690 void rge_chip_ident(rge_t *rgep);
691 #pragma	no_inline(rge_chip_ident)
692 
693 void
694 rge_chip_ident(rge_t *rgep)
695 {
696 	chip_id_t *chip = &rgep->chipid;
697 	uint32_t val32;
698 	uint16_t val16;
699 
700 	/*
701 	 * Read and record MAC version
702 	 */
703 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
704 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
705 	chip->mac_ver = val32;
706 	switch (chip->mac_ver) {
707 	case MAC_VER_8168:
708 	case MAC_VER_8168B_B:
709 	case MAC_VER_8168B_C:
710 	case MAC_VER_8168C:
711 	case MAC_VER_8101E:
712 	case MAC_VER_8101E_B:
713 		chip->is_pcie = B_TRUE;
714 		break;
715 
716 	default:
717 		chip->is_pcie = B_FALSE;
718 		break;
719 	}
720 
721 	/*
722 	 * Read and record PHY version
723 	 */
724 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
725 	val16 &= PHY_VER_MASK;
726 	chip->phy_ver = val16;
727 
728 	/* set pci latency timer */
729 	if (chip->mac_ver == MAC_VER_8169 ||
730 	    chip->mac_ver == MAC_VER_8169S_D ||
731 	    chip->mac_ver == MAC_VER_8169SC)
732 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
733 
734 	if (chip->mac_ver == MAC_VER_8169SC) {
735 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
736 		val16 &= 0x0300;
737 		if (val16 == 0x1)	/* 66Mhz PCI */
738 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff);
739 		else if (val16 == 0x0) /* 33Mhz PCI */
740 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00);
741 	}
742 
743 	/*
744 	 * PCIE chipset require the Rx buffer start address must be
745 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
746 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
747 	 */
748 	if (chip->is_pcie) {
749 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
750 		if (rgep->default_mtu > ETHERMTU) {
751 			rge_notice(rgep, "Jumbo packets not supported "
752 			    "for this PCIE chipset");
753 			rgep->default_mtu = ETHERMTU;
754 		}
755 	}
756 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
757 		rgep->head_room = 0;
758 	else
759 		rgep->head_room = RGE_HEADROOM;
760 
761 	/*
762 	 * Initialize other variables.
763 	 */
764 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
765 		rgep->default_mtu = ETHERMTU;
766 	if (rgep->default_mtu > ETHERMTU) {
767 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
768 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
769 		rgep->ethmax_size = RGE_JUMBO_SIZE;
770 	} else {
771 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
772 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
773 		rgep->ethmax_size = ETHERMAX;
774 	}
775 	chip->rxconfig = RX_CONFIG_DEFAULT;
776 	chip->txconfig = TX_CONFIG_DEFAULT;
777 
778 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
779 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
780 }
781 
782 /*
783  * Perform first-stage chip (re-)initialisation, using only config-space
784  * accesses:
785  *
786  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
787  *   returning the data in the structure pointed to by <idp>.
788  * + Enable Memory Space accesses.
789  * + Enable Bus Mastering according.
790  */
791 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
792 #pragma	no_inline(rge_chip_cfg_init)
793 
794 void
795 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
796 {
797 	ddi_acc_handle_t handle;
798 	uint16_t commd;
799 
800 	handle = rgep->cfg_handle;
801 
802 	/*
803 	 * Save PCI cache line size and subsystem vendor ID
804 	 */
805 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
806 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
807 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
808 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
809 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
810 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
811 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
812 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
813 
814 	/*
815 	 * Turn on Master Enable (DMA) and IO Enable bits.
816 	 * Enable PCI Memory Space accesses
817 	 */
818 	commd = cidp->command;
819 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
820 	pci_config_put16(handle, PCI_CONF_COMM, commd);
821 
822 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
823 	    cidp->vendor, cidp->device, cidp->revision));
824 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
825 	    cidp->subven, cidp->subdev));
826 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
827 	    cidp->clsize, cidp->latency, cidp->command));
828 }
829 
830 int rge_chip_reset(rge_t *rgep);
831 #pragma	no_inline(rge_chip_reset)
832 
833 int
834 rge_chip_reset(rge_t *rgep)
835 {
836 	int i;
837 	uint8_t val8;
838 
839 	/*
840 	 * Chip should be in STOP state
841 	 */
842 	rge_reg_clr8(rgep, RT_COMMAND_REG,
843 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
844 
845 	/*
846 	 * Disable interrupt
847 	 */
848 	rgep->int_mask = INT_MASK_NONE;
849 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
850 
851 	/*
852 	 * Clear pended interrupt
853 	 */
854 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
855 
856 	/*
857 	 * Reset chip
858 	 */
859 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
860 
861 	/*
862 	 * Wait for reset success
863 	 */
864 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
865 		drv_usecwait(10);
866 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
867 		if (!(val8 & RT_COMMAND_RESET)) {
868 			rgep->rge_chip_state = RGE_CHIP_RESET;
869 			return (0);
870 		}
871 	}
872 	RGE_REPORT((rgep, "rge_chip_reset fail."));
873 	return (-1);
874 }
875 
876 void rge_chip_init(rge_t *rgep);
877 #pragma	no_inline(rge_chip_init)
878 
879 void
880 rge_chip_init(rge_t *rgep)
881 {
882 	uint32_t val32;
883 	uint32_t val16;
884 	uint32_t *hashp;
885 	chip_id_t *chip = &rgep->chipid;
886 
887 	if (chip->is_pcie) {
888 		/*
889 		 * Increase the threshold voltage of RX sensitivity
890 		 */
891 		if (chip->mac_ver != MAC_VER_8168 &&
892 		    chip->mac_ver != MAC_VER_8168C &&
893 		    chip->mac_ver != MAC_VER_8101E_B)
894 			rge_ephy_put16(rgep, 0x01, 0x1bd3);
895 
896 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
897 		val16 = 0x12<<8 | val16;
898 		if (rgep->chipid.mac_ver != MAC_VER_8101E &&
899 		    rgep->chipid.mac_ver != MAC_VER_8101E_B &&
900 		    rgep->chipid.mac_ver != MAC_VER_8101E_C &&
901 		    rgep->chipid.mac_ver != MAC_VER_8168B_C &&
902 		    rgep->chipid.mac_ver != MAC_VER_8168C) {
903 			rge_reg_put16(rgep, PHY_STATUS_REG, val16);
904 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
905 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
906 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
907 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
908 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
909 			val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
910 			val32 |= 0x7000;
911 			val32 &= 0xffff5fff;
912 			rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
913 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
914 		}
915 	}
916 
917 	/*
918 	 * Config MII register
919 	 */
920 	rgep->param_link_up = LINK_STATE_DOWN;
921 	rge_phy_update(rgep);
922 
923 	/*
924 	 * Enable Rx checksum offload.
925 	 *  Then for vlan support, we must enable receive vlan de-tagging.
926 	 *  Otherwise, there'll be checksum error.
927 	 */
928 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
929 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
930 	if (chip->mac_ver == MAC_VER_8169S_D) {
931 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
932 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
933 	}
934 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
935 
936 	/*
937 	 * Start transmit/receive before set tx/rx configuration register
938 	 */
939 	if (!chip->is_pcie)
940 		rge_reg_set8(rgep, RT_COMMAND_REG,
941 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
942 
943 	/*
944 	 * Set dump tally counter register
945 	 */
946 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
947 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
948 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
949 	val32 &= DUMP_COUNTER_REG_RESV;
950 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
951 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
952 
953 	/*
954 	 * Change to config register write enable mode
955 	 */
956 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
957 
958 	/*
959 	 * Set Tx/Rx maximum packet size
960 	 */
961 	if (rgep->default_mtu > ETHERMTU) {
962 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
963 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
964 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
965 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
966 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
967 	} else {
968 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
969 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
970 	}
971 
972 	/*
973 	 * Set receive configuration register
974 	 */
975 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
976 	val32 &= RX_CONFIG_REG_RESV;
977 	if (rgep->promisc)
978 		val32 |= RX_ACCEPT_ALL_PKT;
979 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
980 
981 	/*
982 	 * Set transmit configuration register
983 	 */
984 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
985 	val32 &= TX_CONFIG_REG_RESV;
986 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
987 
988 	/*
989 	 * Set Tx/Rx descriptor register
990 	 */
991 	val32 = rgep->tx_desc.cookie.dmac_laddress;
992 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
993 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
994 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
995 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
996 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
997 	val32 = rgep->rx_desc.cookie.dmac_laddress;
998 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
999 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
1000 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
1001 
1002 	/*
1003 	 * Suggested setting from Realtek
1004 	 */
1005 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1006 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1007 	else
1008 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1009 
1010 	/*
1011 	 * Set multicast register
1012 	 */
1013 	hashp = (uint32_t *)rgep->mcast_hash;
1014 	if (rgep->promisc) {
1015 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1016 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1017 	} else {
1018 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1019 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1020 	}
1021 
1022 	/*
1023 	 * Msic register setting:
1024 	 *   -- Missed packet counter: clear it
1025 	 *   -- TimerInt Register
1026 	 *   -- Timer count register
1027 	 */
1028 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1029 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1030 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1031 
1032 	/*
1033 	 * disable the Unicast Wakeup Frame capability
1034 	 */
1035 	rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
1036 
1037 	/*
1038 	 * Return to normal network/host communication mode
1039 	 */
1040 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1041 	drv_usecwait(20);
1042 }
1043 
1044 /*
1045  * rge_chip_start() -- start the chip transmitting and/or receiving,
1046  * including enabling interrupts
1047  */
1048 void rge_chip_start(rge_t *rgep);
1049 #pragma	no_inline(rge_chip_start)
1050 
1051 void
1052 rge_chip_start(rge_t *rgep)
1053 {
1054 	/*
1055 	 * Clear statistics
1056 	 */
1057 	bzero(&rgep->stats, sizeof (rge_stats_t));
1058 	DMA_ZERO(rgep->dma_area_stats);
1059 
1060 	/*
1061 	 * Start transmit/receive
1062 	 */
1063 	rge_reg_set8(rgep, RT_COMMAND_REG,
1064 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1065 
1066 	/*
1067 	 * Enable interrupt
1068 	 */
1069 	rgep->int_mask = RGE_INT_MASK;
1070 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1071 
1072 	/*
1073 	 * All done!
1074 	 */
1075 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1076 }
1077 
1078 /*
1079  * rge_chip_stop() -- stop board receiving
1080  *
1081  * Since this function is also invoked by rge_quiesce(), it
1082  * must not block; also, no tracing or logging takes place
1083  * when invoked by rge_quiesce().
1084  */
1085 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1086 #pragma	no_inline(rge_chip_stop)
1087 
1088 void
1089 rge_chip_stop(rge_t *rgep, boolean_t fault)
1090 {
1091 	/*
1092 	 * Disable interrupt
1093 	 */
1094 	rgep->int_mask = INT_MASK_NONE;
1095 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1096 
1097 	/*
1098 	 * Clear pended interrupt
1099 	 */
1100 	if (!rgep->suspended) {
1101 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1102 	}
1103 
1104 	/*
1105 	 * Stop the board and disable transmit/receive
1106 	 */
1107 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1108 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1109 
1110 	if (fault)
1111 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1112 	else
1113 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1114 }
1115 
1116 /*
1117  * rge_get_mac_addr() -- get the MAC address on NIC
1118  */
1119 static void rge_get_mac_addr(rge_t *rgep);
1120 #pragma	inline(rge_get_mac_addr)
1121 
1122 static void
1123 rge_get_mac_addr(rge_t *rgep)
1124 {
1125 	uint8_t *macaddr = rgep->netaddr;
1126 	uint32_t val32;
1127 
1128 	/*
1129 	 * Read first 4-byte of mac address
1130 	 */
1131 	val32 = rge_reg_get32(rgep, ID_0_REG);
1132 	macaddr[0] = val32 & 0xff;
1133 	val32 = val32 >> 8;
1134 	macaddr[1] = val32 & 0xff;
1135 	val32 = val32 >> 8;
1136 	macaddr[2] = val32 & 0xff;
1137 	val32 = val32 >> 8;
1138 	macaddr[3] = val32 & 0xff;
1139 
1140 	/*
1141 	 * Read last 2-byte of mac address
1142 	 */
1143 	val32 = rge_reg_get32(rgep, ID_4_REG);
1144 	macaddr[4] = val32 & 0xff;
1145 	val32 = val32 >> 8;
1146 	macaddr[5] = val32 & 0xff;
1147 }
1148 
1149 static void rge_set_mac_addr(rge_t *rgep);
1150 #pragma	inline(rge_set_mac_addr)
1151 
1152 static void
1153 rge_set_mac_addr(rge_t *rgep)
1154 {
1155 	uint8_t *p = rgep->netaddr;
1156 	uint32_t val32;
1157 
1158 	/*
1159 	 * Change to config register write enable mode
1160 	 */
1161 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1162 
1163 	/*
1164 	 * Get first 4 bytes of mac address
1165 	 */
1166 	val32 = p[3];
1167 	val32 = val32 << 8;
1168 	val32 |= p[2];
1169 	val32 = val32 << 8;
1170 	val32 |= p[1];
1171 	val32 = val32 << 8;
1172 	val32 |= p[0];
1173 
1174 	/*
1175 	 * Set first 4 bytes of mac address
1176 	 */
1177 	rge_reg_put32(rgep, ID_0_REG, val32);
1178 
1179 	/*
1180 	 * Get last 2 bytes of mac address
1181 	 */
1182 	val32 = p[5];
1183 	val32 = val32 << 8;
1184 	val32 |= p[4];
1185 
1186 	/*
1187 	 * Set last 2 bytes of mac address
1188 	 */
1189 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1190 	rge_reg_put32(rgep, ID_4_REG, val32);
1191 
1192 	/*
1193 	 * Return to normal network/host communication mode
1194 	 */
1195 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1196 }
1197 
1198 static void rge_set_multi_addr(rge_t *rgep);
1199 #pragma	inline(rge_set_multi_addr)
1200 
1201 static void
1202 rge_set_multi_addr(rge_t *rgep)
1203 {
1204 	uint32_t *hashp;
1205 
1206 	hashp = (uint32_t *)rgep->mcast_hash;
1207 
1208 	/*
1209 	 * Change to config register write enable mode
1210 	 */
1211 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1212 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1213 	}
1214 	if (rgep->promisc) {
1215 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1216 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1217 	} else {
1218 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1219 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1220 	}
1221 
1222 	/*
1223 	 * Return to normal network/host communication mode
1224 	 */
1225 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1226 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1227 	}
1228 }
1229 
1230 static void rge_set_promisc(rge_t *rgep);
1231 #pragma	inline(rge_set_promisc)
1232 
1233 static void
1234 rge_set_promisc(rge_t *rgep)
1235 {
1236 	if (rgep->promisc)
1237 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1238 	else
1239 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1240 }
1241 
1242 /*
1243  * rge_chip_sync() -- program the chip with the unicast MAC address,
1244  * the multicast hash table, the required level of promiscuity, and
1245  * the current loopback mode ...
1246  */
1247 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1248 #pragma	no_inline(rge_chip_sync)
1249 
1250 void
1251 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1252 {
1253 	switch (todo) {
1254 	case RGE_GET_MAC:
1255 		rge_get_mac_addr(rgep);
1256 		break;
1257 	case RGE_SET_MAC:
1258 		/* Reprogram the unicast MAC address(es) ... */
1259 		rge_set_mac_addr(rgep);
1260 		break;
1261 	case RGE_SET_MUL:
1262 		/* Reprogram the hashed multicast address table ... */
1263 		rge_set_multi_addr(rgep);
1264 		break;
1265 	case RGE_SET_PROMISC:
1266 		/* Set or clear the PROMISCUOUS mode bit */
1267 		rge_set_multi_addr(rgep);
1268 		rge_set_promisc(rgep);
1269 		break;
1270 	default:
1271 		break;
1272 	}
1273 }
1274 
1275 void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
1276 #pragma	no_inline(rge_chip_blank)
1277 
1278 /* ARGSUSED */
1279 void
1280 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
1281 {
1282 	_NOTE(ARGUNUSED(arg, ticks, count));
1283 }
1284 
1285 void rge_tx_trigger(rge_t *rgep);
1286 #pragma	no_inline(rge_tx_trigger)
1287 
1288 void
1289 rge_tx_trigger(rge_t *rgep)
1290 {
1291 	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1292 }
1293 
1294 void rge_hw_stats_dump(rge_t *rgep);
1295 #pragma	no_inline(rge_tx_trigger)
1296 
1297 void
1298 rge_hw_stats_dump(rge_t *rgep)
1299 {
1300 	int i = 0;
1301 
1302 	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1303 		drv_usecwait(100);
1304 		if (++i > STATS_DUMP_LOOP) {
1305 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1306 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1307 			return;
1308 		}
1309 	}
1310 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1311 
1312 	/*
1313 	 * Start H/W statistics dump for RTL8169 chip
1314 	 */
1315 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1316 }
1317 
1318 /*
1319  * ========== Hardware interrupt handler ==========
1320  */
1321 
1322 #undef	RGE_DBG
1323 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1324 
1325 static void rge_wake_factotum(rge_t *rgep);
1326 #pragma	inline(rge_wake_factotum)
1327 
1328 static void
1329 rge_wake_factotum(rge_t *rgep)
1330 {
1331 	if (rgep->factotum_flag == 0) {
1332 		rgep->factotum_flag = 1;
1333 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1334 	}
1335 }
1336 
1337 /*
1338  *	rge_intr() -- handle chip interrupts
1339  */
1340 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1341 #pragma	no_inline(rge_intr)
1342 
1343 uint_t
1344 rge_intr(caddr_t arg1, caddr_t arg2)
1345 {
1346 	rge_t *rgep = (rge_t *)arg1;
1347 	uint16_t int_status;
1348 
1349 	_NOTE(ARGUNUSED(arg2))
1350 
1351 	mutex_enter(rgep->genlock);
1352 
1353 	if (rgep->suspended) {
1354 		mutex_exit(rgep->genlock);
1355 		return (DDI_INTR_UNCLAIMED);
1356 	}
1357 
1358 	/*
1359 	 * Was this interrupt caused by our device...
1360 	 */
1361 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1362 	if (!(int_status & rgep->int_mask)) {
1363 		mutex_exit(rgep->genlock);
1364 		return (DDI_INTR_UNCLAIMED);
1365 				/* indicate it wasn't our interrupt */
1366 	}
1367 	rgep->stats.intr++;
1368 
1369 	/*
1370 	 * Clear interrupt
1371 	 *	For PCIE chipset, we need disable interrupt first.
1372 	 */
1373 	if (rgep->chipid.is_pcie)
1374 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1375 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1376 
1377 	/*
1378 	 * Cable link change interrupt
1379 	 */
1380 	if (int_status & LINK_CHANGE_INT) {
1381 		rge_chip_cyclic(rgep);
1382 	}
1383 
1384 	mutex_exit(rgep->genlock);
1385 
1386 	/*
1387 	 * Receive interrupt
1388 	 */
1389 	if (int_status & RGE_RX_INT)
1390 		rge_receive(rgep);
1391 
1392 	/*
1393 	 * Re-enable interrupt for PCIE chipset
1394 	 */
1395 	if (rgep->chipid.is_pcie)
1396 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1397 
1398 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1399 }
1400 
1401 /*
1402  * ========== Factotum, implemented as a softint handler ==========
1403  */
1404 
1405 #undef	RGE_DBG
1406 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1407 
1408 static boolean_t rge_factotum_link_check(rge_t *rgep);
1409 #pragma	no_inline(rge_factotum_link_check)
1410 
1411 static boolean_t
1412 rge_factotum_link_check(rge_t *rgep)
1413 {
1414 	uint8_t media_status;
1415 	int32_t link;
1416 
1417 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1418 	link = (media_status & PHY_STATUS_LINK_UP) ?
1419 	    LINK_STATE_UP : LINK_STATE_DOWN;
1420 	if (rgep->param_link_up != link) {
1421 		/*
1422 		 * Link change.
1423 		 */
1424 		rgep->param_link_up = link;
1425 
1426 		if (link == LINK_STATE_UP) {
1427 			if (media_status & PHY_STATUS_1000MF) {
1428 				rgep->param_link_speed = RGE_SPEED_1000M;
1429 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1430 			} else {
1431 				rgep->param_link_speed =
1432 				    (media_status & PHY_STATUS_100M) ?
1433 				    RGE_SPEED_100M : RGE_SPEED_10M;
1434 				rgep->param_link_duplex =
1435 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1436 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1437 			}
1438 		}
1439 		return (B_TRUE);
1440 	}
1441 	return (B_FALSE);
1442 }
1443 
1444 /*
1445  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1446  */
1447 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1448 #pragma	no_inline(rge_factotum_stall_check)
1449 
1450 static boolean_t
1451 rge_factotum_stall_check(rge_t *rgep)
1452 {
1453 	uint32_t dogval;
1454 
1455 	ASSERT(mutex_owned(rgep->genlock));
1456 
1457 	/*
1458 	 * Specific check for Tx stall ...
1459 	 *
1460 	 * The 'watchdog' counter is incremented whenever a packet
1461 	 * is queued, reset to 1 when some (but not all) buffers
1462 	 * are reclaimed, reset to 0 (disabled) when all buffers
1463 	 * are reclaimed, and shifted left here.  If it exceeds the
1464 	 * threshold value, the chip is assumed to have stalled and
1465 	 * is put into the ERROR state.  The factotum will then reset
1466 	 * it on the next pass.
1467 	 *
1468 	 * All of which should ensure that we don't get into a state
1469 	 * where packets are left pending indefinitely!
1470 	 */
1471 	if (rgep->resched_needed)
1472 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1473 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1474 	if (dogval < rge_watchdog_count)
1475 		return (B_FALSE);
1476 
1477 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1478 	return (B_TRUE);
1479 
1480 }
1481 
1482 /*
1483  * The factotum is woken up when there's something to do that we'd rather
1484  * not do from inside a hardware interrupt handler or high-level cyclic.
1485  * Its two main tasks are:
1486  *	reset & restart the chip after an error
1487  *	check the link status whenever necessary
1488  */
1489 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1490 #pragma	no_inline(rge_chip_factotum)
1491 
1492 uint_t
1493 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1494 {
1495 	rge_t *rgep;
1496 	uint_t result;
1497 	boolean_t error;
1498 	boolean_t linkchg;
1499 
1500 	rgep = (rge_t *)arg1;
1501 	_NOTE(ARGUNUSED(arg2))
1502 
1503 	if (rgep->factotum_flag == 0)
1504 		return (DDI_INTR_UNCLAIMED);
1505 
1506 	rgep->factotum_flag = 0;
1507 	result = DDI_INTR_CLAIMED;
1508 	error = B_FALSE;
1509 	linkchg = B_FALSE;
1510 
1511 	mutex_enter(rgep->genlock);
1512 	switch (rgep->rge_chip_state) {
1513 	default:
1514 		break;
1515 
1516 	case RGE_CHIP_RUNNING:
1517 		linkchg = rge_factotum_link_check(rgep);
1518 		error = rge_factotum_stall_check(rgep);
1519 		break;
1520 
1521 	case RGE_CHIP_ERROR:
1522 		error = B_TRUE;
1523 		break;
1524 
1525 	case RGE_CHIP_FAULT:
1526 		/*
1527 		 * Fault detected, time to reset ...
1528 		 */
1529 		if (rge_autorecover) {
1530 			RGE_REPORT((rgep, "automatic recovery activated"));
1531 			rge_restart(rgep);
1532 		}
1533 		break;
1534 	}
1535 
1536 	/*
1537 	 * If an error is detected, stop the chip now, marking it as
1538 	 * faulty, so that it will be reset next time through ...
1539 	 */
1540 	if (error)
1541 		rge_chip_stop(rgep, B_TRUE);
1542 	mutex_exit(rgep->genlock);
1543 
1544 	/*
1545 	 * If the link state changed, tell the world about it.
1546 	 * Note: can't do this while still holding the mutex.
1547 	 */
1548 	if (linkchg)
1549 		mac_link_update(rgep->mh, rgep->param_link_up);
1550 
1551 	return (result);
1552 }
1553 
1554 /*
1555  * High-level cyclic handler
1556  *
1557  * This routine schedules a (low-level) softint callback to the
1558  * factotum, and prods the chip to update the status block (which
1559  * will cause a hardware interrupt when complete).
1560  */
1561 void rge_chip_cyclic(void *arg);
1562 #pragma	no_inline(rge_chip_cyclic)
1563 
1564 void
1565 rge_chip_cyclic(void *arg)
1566 {
1567 	rge_t *rgep;
1568 
1569 	rgep = arg;
1570 
1571 	switch (rgep->rge_chip_state) {
1572 	default:
1573 		return;
1574 
1575 	case RGE_CHIP_RUNNING:
1576 		rge_phy_check(rgep);
1577 		break;
1578 
1579 	case RGE_CHIP_FAULT:
1580 	case RGE_CHIP_ERROR:
1581 		break;
1582 	}
1583 
1584 	rge_wake_factotum(rgep);
1585 }
1586 
1587 
1588 /*
1589  * ========== Ioctl subfunctions ==========
1590  */
1591 
1592 #undef	RGE_DBG
1593 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1594 
1595 #if	RGE_DEBUGGING || RGE_DO_PPIO
1596 
1597 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1598 #pragma	no_inline(rge_chip_peek_cfg)
1599 
1600 static void
1601 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1602 {
1603 	uint64_t regval;
1604 	uint64_t regno;
1605 
1606 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1607 	    (void *)rgep, (void *)ppd));
1608 
1609 	regno = ppd->pp_acc_offset;
1610 
1611 	switch (ppd->pp_acc_size) {
1612 	case 1:
1613 		regval = pci_config_get8(rgep->cfg_handle, regno);
1614 		break;
1615 
1616 	case 2:
1617 		regval = pci_config_get16(rgep->cfg_handle, regno);
1618 		break;
1619 
1620 	case 4:
1621 		regval = pci_config_get32(rgep->cfg_handle, regno);
1622 		break;
1623 
1624 	case 8:
1625 		regval = pci_config_get64(rgep->cfg_handle, regno);
1626 		break;
1627 	}
1628 
1629 	ppd->pp_acc_data = regval;
1630 }
1631 
1632 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1633 #pragma	no_inline(rge_chip_poke_cfg)
1634 
1635 static void
1636 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1637 {
1638 	uint64_t regval;
1639 	uint64_t regno;
1640 
1641 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1642 	    (void *)rgep, (void *)ppd));
1643 
1644 	regno = ppd->pp_acc_offset;
1645 	regval = ppd->pp_acc_data;
1646 
1647 	switch (ppd->pp_acc_size) {
1648 	case 1:
1649 		pci_config_put8(rgep->cfg_handle, regno, regval);
1650 		break;
1651 
1652 	case 2:
1653 		pci_config_put16(rgep->cfg_handle, regno, regval);
1654 		break;
1655 
1656 	case 4:
1657 		pci_config_put32(rgep->cfg_handle, regno, regval);
1658 		break;
1659 
1660 	case 8:
1661 		pci_config_put64(rgep->cfg_handle, regno, regval);
1662 		break;
1663 	}
1664 }
1665 
1666 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1667 #pragma	no_inline(rge_chip_peek_reg)
1668 
1669 static void
1670 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1671 {
1672 	uint64_t regval;
1673 	void *regaddr;
1674 
1675 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1676 	    (void *)rgep, (void *)ppd));
1677 
1678 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1679 
1680 	switch (ppd->pp_acc_size) {
1681 	case 1:
1682 		regval = ddi_get8(rgep->io_handle, regaddr);
1683 		break;
1684 
1685 	case 2:
1686 		regval = ddi_get16(rgep->io_handle, regaddr);
1687 		break;
1688 
1689 	case 4:
1690 		regval = ddi_get32(rgep->io_handle, regaddr);
1691 		break;
1692 
1693 	case 8:
1694 		regval = ddi_get64(rgep->io_handle, regaddr);
1695 		break;
1696 	}
1697 
1698 	ppd->pp_acc_data = regval;
1699 }
1700 
1701 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1702 #pragma	no_inline(rge_chip_peek_reg)
1703 
1704 static void
1705 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1706 {
1707 	uint64_t regval;
1708 	void *regaddr;
1709 
1710 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1711 	    (void *)rgep, (void *)ppd));
1712 
1713 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1714 	regval = ppd->pp_acc_data;
1715 
1716 	switch (ppd->pp_acc_size) {
1717 	case 1:
1718 		ddi_put8(rgep->io_handle, regaddr, regval);
1719 		break;
1720 
1721 	case 2:
1722 		ddi_put16(rgep->io_handle, regaddr, regval);
1723 		break;
1724 
1725 	case 4:
1726 		ddi_put32(rgep->io_handle, regaddr, regval);
1727 		break;
1728 
1729 	case 8:
1730 		ddi_put64(rgep->io_handle, regaddr, regval);
1731 		break;
1732 	}
1733 }
1734 
1735 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1736 #pragma	no_inline(rge_chip_peek_mii)
1737 
1738 static void
1739 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1740 {
1741 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1742 	    (void *)rgep, (void *)ppd));
1743 
1744 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1745 }
1746 
1747 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1748 #pragma	no_inline(rge_chip_poke_mii)
1749 
1750 static void
1751 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1752 {
1753 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1754 	    (void *)rgep, (void *)ppd));
1755 
1756 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1757 }
1758 
1759 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1760 #pragma	no_inline(rge_chip_peek_mem)
1761 
1762 static void
1763 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1764 {
1765 	uint64_t regval;
1766 	void *vaddr;
1767 
1768 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1769 	    (void *)rgep, (void *)ppd));
1770 
1771 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1772 
1773 	switch (ppd->pp_acc_size) {
1774 	case 1:
1775 		regval = *(uint8_t *)vaddr;
1776 		break;
1777 
1778 	case 2:
1779 		regval = *(uint16_t *)vaddr;
1780 		break;
1781 
1782 	case 4:
1783 		regval = *(uint32_t *)vaddr;
1784 		break;
1785 
1786 	case 8:
1787 		regval = *(uint64_t *)vaddr;
1788 		break;
1789 	}
1790 
1791 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1792 	    (void *)rgep, (void *)ppd, regval, vaddr));
1793 
1794 	ppd->pp_acc_data = regval;
1795 }
1796 
1797 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1798 #pragma	no_inline(rge_chip_poke_mem)
1799 
1800 static void
1801 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1802 {
1803 	uint64_t regval;
1804 	void *vaddr;
1805 
1806 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1807 	    (void *)rgep, (void *)ppd));
1808 
1809 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1810 	regval = ppd->pp_acc_data;
1811 
1812 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1813 	    (void *)rgep, (void *)ppd, regval, vaddr));
1814 
1815 	switch (ppd->pp_acc_size) {
1816 	case 1:
1817 		*(uint8_t *)vaddr = (uint8_t)regval;
1818 		break;
1819 
1820 	case 2:
1821 		*(uint16_t *)vaddr = (uint16_t)regval;
1822 		break;
1823 
1824 	case 4:
1825 		*(uint32_t *)vaddr = (uint32_t)regval;
1826 		break;
1827 
1828 	case 8:
1829 		*(uint64_t *)vaddr = (uint64_t)regval;
1830 		break;
1831 	}
1832 }
1833 
1834 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1835 					struct iocblk *iocp);
1836 #pragma	no_inline(rge_pp_ioctl)
1837 
1838 static enum ioc_reply
1839 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1840 {
1841 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1842 	rge_peekpoke_t *ppd;
1843 	dma_area_t *areap;
1844 	uint64_t sizemask;
1845 	uint64_t mem_va;
1846 	uint64_t maxoff;
1847 	boolean_t peek;
1848 
1849 	switch (cmd) {
1850 	default:
1851 		/* NOTREACHED */
1852 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1853 		return (IOC_INVAL);
1854 
1855 	case RGE_PEEK:
1856 		peek = B_TRUE;
1857 		break;
1858 
1859 	case RGE_POKE:
1860 		peek = B_FALSE;
1861 		break;
1862 	}
1863 
1864 	/*
1865 	 * Validate format of ioctl
1866 	 */
1867 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1868 		return (IOC_INVAL);
1869 	if (mp->b_cont == NULL)
1870 		return (IOC_INVAL);
1871 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1872 
1873 	/*
1874 	 * Validate request parameters
1875 	 */
1876 	switch (ppd->pp_acc_space) {
1877 	default:
1878 		return (IOC_INVAL);
1879 
1880 	case RGE_PP_SPACE_CFG:
1881 		/*
1882 		 * Config space
1883 		 */
1884 		sizemask = 8|4|2|1;
1885 		mem_va = 0;
1886 		maxoff = PCI_CONF_HDR_SIZE;
1887 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1888 		break;
1889 
1890 	case RGE_PP_SPACE_REG:
1891 		/*
1892 		 * Memory-mapped I/O space
1893 		 */
1894 		sizemask = 8|4|2|1;
1895 		mem_va = 0;
1896 		maxoff = RGE_REGISTER_MAX;
1897 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1898 		break;
1899 
1900 	case RGE_PP_SPACE_MII:
1901 		/*
1902 		 * PHY's MII registers
1903 		 * NB: all PHY registers are two bytes, but the
1904 		 * addresses increment in ones (word addressing).
1905 		 * So we scale the address here, then undo the
1906 		 * transformation inside the peek/poke functions.
1907 		 */
1908 		ppd->pp_acc_offset *= 2;
1909 		sizemask = 2;
1910 		mem_va = 0;
1911 		maxoff = (MII_MAXREG+1)*2;
1912 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1913 		break;
1914 
1915 	case RGE_PP_SPACE_RGE:
1916 		/*
1917 		 * RGE data structure!
1918 		 */
1919 		sizemask = 8|4|2|1;
1920 		mem_va = (uintptr_t)rgep;
1921 		maxoff = sizeof (*rgep);
1922 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1923 		break;
1924 
1925 	case RGE_PP_SPACE_STATISTICS:
1926 	case RGE_PP_SPACE_TXDESC:
1927 	case RGE_PP_SPACE_TXBUFF:
1928 	case RGE_PP_SPACE_RXDESC:
1929 	case RGE_PP_SPACE_RXBUFF:
1930 		/*
1931 		 * Various DMA_AREAs
1932 		 */
1933 		switch (ppd->pp_acc_space) {
1934 		case RGE_PP_SPACE_TXDESC:
1935 			areap = &rgep->dma_area_txdesc;
1936 			break;
1937 		case RGE_PP_SPACE_RXDESC:
1938 			areap = &rgep->dma_area_rxdesc;
1939 			break;
1940 		case RGE_PP_SPACE_STATISTICS:
1941 			areap = &rgep->dma_area_stats;
1942 			break;
1943 		}
1944 
1945 		sizemask = 8|4|2|1;
1946 		mem_va = (uintptr_t)areap->mem_va;
1947 		maxoff = areap->alength;
1948 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1949 		break;
1950 	}
1951 
1952 	switch (ppd->pp_acc_size) {
1953 	default:
1954 		return (IOC_INVAL);
1955 
1956 	case 8:
1957 	case 4:
1958 	case 2:
1959 	case 1:
1960 		if ((ppd->pp_acc_size & sizemask) == 0)
1961 			return (IOC_INVAL);
1962 		break;
1963 	}
1964 
1965 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1966 		return (IOC_INVAL);
1967 
1968 	if (ppd->pp_acc_offset >= maxoff)
1969 		return (IOC_INVAL);
1970 
1971 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1972 		return (IOC_INVAL);
1973 
1974 	/*
1975 	 * All OK - go do it!
1976 	 */
1977 	ppd->pp_acc_offset += mem_va;
1978 	(*ppfn)(rgep, ppd);
1979 	return (peek ? IOC_REPLY : IOC_ACK);
1980 }
1981 
1982 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1983 					struct iocblk *iocp);
1984 #pragma	no_inline(rge_diag_ioctl)
1985 
1986 static enum ioc_reply
1987 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1988 {
1989 	ASSERT(mutex_owned(rgep->genlock));
1990 
1991 	switch (cmd) {
1992 	default:
1993 		/* NOTREACHED */
1994 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
1995 		return (IOC_INVAL);
1996 
1997 	case RGE_DIAG:
1998 		/*
1999 		 * Currently a no-op
2000 		 */
2001 		return (IOC_ACK);
2002 
2003 	case RGE_PEEK:
2004 	case RGE_POKE:
2005 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2006 
2007 	case RGE_PHY_RESET:
2008 		return (IOC_RESTART_ACK);
2009 
2010 	case RGE_SOFT_RESET:
2011 	case RGE_HARD_RESET:
2012 		/*
2013 		 * Reset and reinitialise the 570x hardware
2014 		 */
2015 		rge_restart(rgep);
2016 		return (IOC_ACK);
2017 	}
2018 
2019 	/* NOTREACHED */
2020 }
2021 
2022 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2023 
2024 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2025 				    struct iocblk *iocp);
2026 #pragma	no_inline(rge_mii_ioctl)
2027 
2028 static enum ioc_reply
2029 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2030 {
2031 	struct rge_mii_rw *miirwp;
2032 
2033 	/*
2034 	 * Validate format of ioctl
2035 	 */
2036 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2037 		return (IOC_INVAL);
2038 	if (mp->b_cont == NULL)
2039 		return (IOC_INVAL);
2040 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2041 
2042 	/*
2043 	 * Validate request parameters ...
2044 	 */
2045 	if (miirwp->mii_reg > MII_MAXREG)
2046 		return (IOC_INVAL);
2047 
2048 	switch (cmd) {
2049 	default:
2050 		/* NOTREACHED */
2051 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2052 		return (IOC_INVAL);
2053 
2054 	case RGE_MII_READ:
2055 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2056 		return (IOC_REPLY);
2057 
2058 	case RGE_MII_WRITE:
2059 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2060 		return (IOC_ACK);
2061 	}
2062 
2063 	/* NOTREACHED */
2064 }
2065 
2066 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2067 				struct iocblk *iocp);
2068 #pragma	no_inline(rge_chip_ioctl)
2069 
2070 enum ioc_reply
2071 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2072 {
2073 	int cmd;
2074 
2075 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2076 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2077 
2078 	ASSERT(mutex_owned(rgep->genlock));
2079 
2080 	cmd = iocp->ioc_cmd;
2081 	switch (cmd) {
2082 	default:
2083 		/* NOTREACHED */
2084 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2085 		return (IOC_INVAL);
2086 
2087 	case RGE_DIAG:
2088 	case RGE_PEEK:
2089 	case RGE_POKE:
2090 	case RGE_PHY_RESET:
2091 	case RGE_SOFT_RESET:
2092 	case RGE_HARD_RESET:
2093 #if	RGE_DEBUGGING || RGE_DO_PPIO
2094 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2095 #else
2096 		return (IOC_INVAL);
2097 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2098 
2099 	case RGE_MII_READ:
2100 	case RGE_MII_WRITE:
2101 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2102 
2103 	}
2104 
2105 	/* NOTREACHED */
2106 }
2107