xref: /illumos-gate/usr/src/uts/common/io/rge/rge_chip.c (revision b1e2e3fb17324e9ddf43db264a0c64da7756d9e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include "rge.h"
27 
28 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
29 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
30 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
31 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
32 
33 /*
34  * Patchable globals:
35  *
36  *	rge_autorecover
37  *		Enables/disables automatic recovery after fault detection
38  */
39 static uint32_t rge_autorecover = 1;
40 
41 /*
42  * globals:
43  */
44 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
45 static uint32_t rge_watchdog_count	= 1 << 5;
46 static uint32_t rge_rx_watchdog_count	= 1 << 3;
47 
48 /*
49  * Operating register get/set access routines
50  */
51 
52 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
53 #pragma	inline(rge_reg_get32)
54 
55 static uint32_t
56 rge_reg_get32(rge_t *rgep, uintptr_t regno)
57 {
58 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
59 	    (void *)rgep, regno));
60 
61 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
62 }
63 
64 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
65 #pragma	inline(rge_reg_put32)
66 
67 static void
68 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
69 {
70 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
71 	    (void *)rgep, regno, data));
72 
73 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
74 }
75 
76 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
77 #pragma	inline(rge_reg_set32)
78 
79 static void
80 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
81 {
82 	uint32_t regval;
83 
84 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
85 	    (void *)rgep, regno, bits));
86 
87 	regval = rge_reg_get32(rgep, regno);
88 	regval |= bits;
89 	rge_reg_put32(rgep, regno, regval);
90 }
91 
92 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
93 #pragma	inline(rge_reg_clr32)
94 
95 static void
96 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
97 {
98 	uint32_t regval;
99 
100 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
101 	    (void *)rgep, regno, bits));
102 
103 	regval = rge_reg_get32(rgep, regno);
104 	regval &= ~bits;
105 	rge_reg_put32(rgep, regno, regval);
106 }
107 
108 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
109 #pragma	inline(rge_reg_get16)
110 
111 static uint16_t
112 rge_reg_get16(rge_t *rgep, uintptr_t regno)
113 {
114 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
115 	    (void *)rgep, regno));
116 
117 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
118 }
119 
120 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
121 #pragma	inline(rge_reg_put16)
122 
123 static void
124 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
125 {
126 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
127 	    (void *)rgep, regno, data));
128 
129 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
130 }
131 
132 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
133 #pragma	inline(rge_reg_get8)
134 
135 static uint8_t
136 rge_reg_get8(rge_t *rgep, uintptr_t regno)
137 {
138 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
139 	    (void *)rgep, regno));
140 
141 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
142 }
143 
144 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
145 #pragma	inline(rge_reg_put8)
146 
147 static void
148 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
149 {
150 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
151 	    (void *)rgep, regno, data));
152 
153 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
154 }
155 
156 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
157 #pragma	inline(rge_reg_set8)
158 
159 static void
160 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
161 {
162 	uint8_t regval;
163 
164 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
165 	    (void *)rgep, regno, bits));
166 
167 	regval = rge_reg_get8(rgep, regno);
168 	regval |= bits;
169 	rge_reg_put8(rgep, regno, regval);
170 }
171 
172 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
173 #pragma	inline(rge_reg_clr8)
174 
175 static void
176 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
177 {
178 	uint8_t regval;
179 
180 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
181 	    (void *)rgep, regno, bits));
182 
183 	regval = rge_reg_get8(rgep, regno);
184 	regval &= ~bits;
185 	rge_reg_put8(rgep, regno, regval);
186 }
187 
188 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
189 #pragma	no_inline(rge_mii_get16)
190 
191 uint16_t
192 rge_mii_get16(rge_t *rgep, uintptr_t mii)
193 {
194 	uint32_t regval;
195 	uint32_t val32;
196 	uint32_t i;
197 
198 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
199 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
200 
201 	/*
202 	 * Waiting for PHY reading OK
203 	 */
204 	for (i = 0; i < PHY_RESET_LOOP; i++) {
205 		drv_usecwait(1000);
206 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
207 		if (val32 & PHY_ACCESS_WR_FLAG)
208 			return ((uint16_t)(val32 & 0xffff));
209 	}
210 
211 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
212 	return ((uint16_t)~0u);
213 }
214 
215 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
216 #pragma	no_inline(rge_mii_put16)
217 
218 void
219 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
220 {
221 	uint32_t regval;
222 	uint32_t val32;
223 	uint32_t i;
224 
225 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
226 	regval |= data & PHY_DATA_MASK;
227 	regval |= PHY_ACCESS_WR_FLAG;
228 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
229 
230 	/*
231 	 * Waiting for PHY writing OK
232 	 */
233 	for (i = 0; i < PHY_RESET_LOOP; i++) {
234 		drv_usecwait(1000);
235 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
236 		if (!(val32 & PHY_ACCESS_WR_FLAG))
237 			return;
238 	}
239 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
240 	    mii, data));
241 }
242 
243 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
244 #pragma	no_inline(rge_ephy_put16)
245 
246 void
247 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
248 {
249 	uint32_t regval;
250 	uint32_t val32;
251 	uint32_t i;
252 
253 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
254 	regval |= data & EPHY_DATA_MASK;
255 	regval |= EPHY_ACCESS_WR_FLAG;
256 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
257 
258 	/*
259 	 * Waiting for PHY writing OK
260 	 */
261 	for (i = 0; i < PHY_RESET_LOOP; i++) {
262 		drv_usecwait(1000);
263 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
264 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
265 			return;
266 	}
267 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
268 	    emii, data));
269 }
270 
271 /*
272  * Atomically shift a 32-bit word left, returning
273  * the value it had *before* the shift was applied
274  */
275 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
276 #pragma	inline(rge_mii_put16)
277 
278 static uint32_t
279 rge_atomic_shl32(uint32_t *sp, uint_t count)
280 {
281 	uint32_t oldval;
282 	uint32_t newval;
283 
284 	/* ATOMICALLY */
285 	do {
286 		oldval = *sp;
287 		newval = oldval << count;
288 	} while (atomic_cas_32(sp, oldval, newval) != oldval);
289 
290 	return (oldval);
291 }
292 
293 /*
294  * PHY operation routines
295  */
296 #if	RGE_DEBUGGING
297 
298 void
299 rge_phydump(rge_t *rgep)
300 {
301 	uint16_t regs[32];
302 	int i;
303 
304 	ASSERT(mutex_owned(rgep->genlock));
305 
306 	for (i = 0; i < 32; ++i) {
307 		regs[i] = rge_mii_get16(rgep, i);
308 	}
309 
310 	for (i = 0; i < 32; i += 8)
311 		RGE_DEBUG(("rge_phydump: "
312 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
313 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
314 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
315 }
316 
317 #endif	/* RGE_DEBUGGING */
318 
319 static void
320 rge_phy_check(rge_t *rgep)
321 {
322 	uint16_t gig_ctl;
323 
324 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
325 		/*
326 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
327 		 * every 15 seconds whin link down & advertise is 1000.
328 		 */
329 		if (rgep->chipid.phy_ver == PHY_VER_S) {
330 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
331 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
332 				rgep->link_down_count++;
333 				if (rgep->link_down_count > 15) {
334 					(void) rge_phy_reset(rgep);
335 					rgep->stats.phy_reset++;
336 					rgep->link_down_count = 0;
337 				}
338 			}
339 		}
340 	} else {
341 		rgep->link_down_count = 0;
342 	}
343 }
344 
345 /*
346  * Basic low-level function to reset the PHY.
347  * Doesn't incorporate any special-case workarounds.
348  *
349  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
350  */
351 boolean_t
352 rge_phy_reset(rge_t *rgep)
353 {
354 	uint16_t control;
355 	uint_t count;
356 
357 	/*
358 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
359 	 */
360 	control = rge_mii_get16(rgep, MII_CONTROL);
361 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
362 	for (count = 0; count < 5; count++) {
363 		drv_usecwait(100);
364 		control = rge_mii_get16(rgep, MII_CONTROL);
365 		if (BIC(control, MII_CONTROL_RESET))
366 			return (B_TRUE);
367 	}
368 
369 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
370 	return (B_FALSE);
371 }
372 
373 /*
374  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
375  * and advertisements with the required settings as specified by the various
376  * param_* variables that can be poked via the NDD interface.
377  *
378  * We always reset the PHY and reprogram *all* the relevant registers,
379  * not just those changed.  This should cause the link to go down, and then
380  * back up again once the link is stable and autonegotiation (if enabled)
381  * is complete.  We should get a link state change interrupt somewhere along
382  * the way ...
383  *
384  * NOTE: <genlock> must already be held by the caller
385  */
386 void
387 rge_phy_update(rge_t *rgep)
388 {
389 	boolean_t adv_autoneg;
390 	boolean_t adv_pause;
391 	boolean_t adv_asym_pause;
392 	boolean_t adv_1000fdx;
393 	boolean_t adv_1000hdx;
394 	boolean_t adv_100fdx;
395 	boolean_t adv_100hdx;
396 	boolean_t adv_10fdx;
397 	boolean_t adv_10hdx;
398 
399 	uint16_t control;
400 	uint16_t gigctrl;
401 	uint16_t anar;
402 
403 	ASSERT(mutex_owned(rgep->genlock));
404 
405 	RGE_DEBUG(("rge_phy_update: autoneg %d "
406 	    "pause %d asym_pause %d "
407 	    "1000fdx %d 1000hdx %d "
408 	    "100fdx %d 100hdx %d "
409 	    "10fdx %d 10hdx %d ",
410 	    rgep->param_adv_autoneg,
411 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
412 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
413 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
414 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
415 
416 	control = gigctrl = anar = 0;
417 
418 	/*
419 	 * PHY settings are normally based on the param_* variables,
420 	 * but if any loopback mode is in effect, that takes precedence.
421 	 *
422 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
423 	 * and External loopback at a variety of speeds (with a special
424 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
425 	 * is turned ON, and the speed/mastership is forced.
426 	 */
427 	switch (rgep->param_loop_mode) {
428 	case RGE_LOOP_NONE:
429 	default:
430 		adv_autoneg = rgep->param_adv_autoneg;
431 		adv_pause = rgep->param_adv_pause;
432 		adv_asym_pause = rgep->param_adv_asym_pause;
433 		adv_1000fdx = rgep->param_adv_1000fdx;
434 		adv_1000hdx = rgep->param_adv_1000hdx;
435 		adv_100fdx = rgep->param_adv_100fdx;
436 		adv_100hdx = rgep->param_adv_100hdx;
437 		adv_10fdx = rgep->param_adv_10fdx;
438 		adv_10hdx = rgep->param_adv_10hdx;
439 		break;
440 
441 	case RGE_LOOP_INTERNAL_PHY:
442 	case RGE_LOOP_INTERNAL_MAC:
443 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
444 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
445 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
446 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
447 
448 		switch (rgep->param_loop_mode) {
449 		case RGE_LOOP_INTERNAL_PHY:
450 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
451 				rgep->param_link_speed = 1000;
452 				adv_1000fdx = B_TRUE;
453 			} else {
454 				rgep->param_link_speed = 100;
455 				adv_100fdx = B_TRUE;
456 			}
457 			control = MII_CONTROL_LOOPBACK;
458 			break;
459 
460 		case RGE_LOOP_INTERNAL_MAC:
461 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
462 				rgep->param_link_speed = 1000;
463 				adv_1000fdx = B_TRUE;
464 			} else {
465 				rgep->param_link_speed = 100;
466 				adv_100fdx = B_TRUE;
467 			break;
468 		}
469 	}
470 
471 	RGE_DEBUG(("rge_phy_update: autoneg %d "
472 	    "pause %d asym_pause %d "
473 	    "1000fdx %d 1000hdx %d "
474 	    "100fdx %d 100hdx %d "
475 	    "10fdx %d 10hdx %d ",
476 	    adv_autoneg,
477 	    adv_pause, adv_asym_pause,
478 	    adv_1000fdx, adv_1000hdx,
479 	    adv_100fdx, adv_100hdx,
480 	    adv_10fdx, adv_10hdx));
481 
482 	/*
483 	 * We should have at least one technology capability set;
484 	 * if not, we select a default of 1000Mb/s full-duplex
485 	 */
486 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
487 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
488 		if (rgep->chipid.mac_ver != MAC_VER_8101E)
489 			adv_1000fdx = B_TRUE;
490 		} else {
491 			adv_1000fdx = B_FALSE;
492 			adv_100fdx = B_TRUE;
493 		}
494 	}
495 
496 	/*
497 	 * Now transform the adv_* variables into the proper settings
498 	 * of the PHY registers ...
499 	 *
500 	 * If autonegotiation is (now) enabled, we want to trigger
501 	 * a new autonegotiation cycle once the PHY has been
502 	 * programmed with the capabilities to be advertised.
503 	 *
504 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
505 	 */
506 	if (adv_autoneg)
507 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
508 
509 	if (adv_1000fdx)
510 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
511 	else if (adv_1000hdx)
512 		control |= MII_CONTROL_1GB;
513 	else if (adv_100fdx)
514 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
515 	else if (adv_100hdx)
516 		control |= MII_CONTROL_100MB;
517 	else if (adv_10fdx)
518 		control |= MII_CONTROL_FDUPLEX;
519 	else if (adv_10hdx)
520 		control |= 0;
521 	else
522 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
523 
524 	if (adv_1000fdx) {
525 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
526 		/*
527 		 * Chipset limitation: need set other capabilities to true
528 		 */
529 		if (rgep->chipid.is_pcie)
530 			adv_1000hdx = B_TRUE;
531 		adv_100fdx = B_TRUE;
532 		adv_100hdx  = B_TRUE;
533 		adv_10fdx = B_TRUE;
534 		adv_10hdx = B_TRUE;
535 	}
536 
537 	if (adv_1000hdx)
538 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
539 
540 	if (adv_100fdx)
541 		anar |= MII_ABILITY_100BASE_TX_FD;
542 	if (adv_100hdx)
543 		anar |= MII_ABILITY_100BASE_TX;
544 	if (adv_10fdx)
545 		anar |= MII_ABILITY_10BASE_T_FD;
546 	if (adv_10hdx)
547 		anar |= MII_ABILITY_10BASE_T;
548 
549 	if (adv_pause)
550 		anar |= MII_ABILITY_PAUSE;
551 	if (adv_asym_pause)
552 		anar |= MII_ABILITY_ASMPAUSE;
553 
554 	/*
555 	 * Munge in any other fixed bits we require ...
556 	 */
557 	anar |= MII_AN_SELECTOR_8023;
558 
559 	/*
560 	 * Restart the PHY and write the new values.  Note the
561 	 * time, so that we can say whether subsequent link state
562 	 * changes can be attributed to our reprogramming the PHY
563 	 */
564 	rge_phy_init(rgep);
565 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
566 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
567 		/* power up PHY for RTL8168B chipset */
568 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
569 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
570 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
571 	}
572 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
573 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
574 	rge_mii_put16(rgep, MII_CONTROL, control);
575 
576 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
577 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
578 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
579 }
580 
581 void rge_phy_init(rge_t *rgep);
582 #pragma	no_inline(rge_phy_init)
583 
584 void
585 rge_phy_init(rge_t *rgep)
586 {
587 	rgep->phy_mii_addr = 1;
588 
589 	/*
590 	 * Below phy config steps are copied from the Programming Guide
591 	 * (there's no detail comments for these steps.)
592 	 */
593 	switch (rgep->chipid.mac_ver) {
594 	case MAC_VER_8169S_D:
595 	case MAC_VER_8169S_E :
596 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
597 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
598 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
599 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
600 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
601 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
602 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
603 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
604 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
605 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
606 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
607 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
608 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
609 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
610 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
611 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
612 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
613 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
614 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
615 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
616 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
617 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
618 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
619 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
620 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
621 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
622 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
623 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
624 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
625 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
626 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
627 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
628 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
629 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
630 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
631 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
632 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
633 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
634 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
635 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
636 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
637 		break;
638 
639 	case MAC_VER_8169SB:
640 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
641 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
642 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
643 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
644 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
645 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
646 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
647 		break;
648 
649 	case MAC_VER_8169SC:
650 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
651 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
652 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
653 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
654 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
655 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
656 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
657 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
658 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
659 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
660 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
661 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
662 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
663 		break;
664 
665 	case MAC_VER_8168:
666 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
667 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
668 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
669 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
670 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
671 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
672 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
673 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
674 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
675 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
676 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
677 		break;
678 
679 	case MAC_VER_8168B_B:
680 	case MAC_VER_8168B_C:
681 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
682 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
683 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
684 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
685 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
686 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
687 		break;
688 	}
689 }
690 
691 void rge_chip_ident(rge_t *rgep);
692 #pragma	no_inline(rge_chip_ident)
693 
694 void
695 rge_chip_ident(rge_t *rgep)
696 {
697 	chip_id_t *chip = &rgep->chipid;
698 	uint32_t val32;
699 	uint16_t val16;
700 
701 	/*
702 	 * Read and record MAC version
703 	 */
704 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
705 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
706 	chip->mac_ver = val32;
707 	chip->is_pcie = pci_lcap_locate(rgep->cfg_handle,
708 	    PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS;
709 
710 	/*
711 	 * Workaround for 8101E_C
712 	 */
713 	chip->enable_mac_first = !chip->is_pcie;
714 	if (chip->mac_ver == MAC_VER_8101E_C) {
715 		chip->is_pcie = B_FALSE;
716 	}
717 
718 	/*
719 	 * Read and record PHY version
720 	 */
721 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
722 	val16 &= PHY_VER_MASK;
723 	chip->phy_ver = val16;
724 
725 	/* set pci latency timer */
726 	if (chip->mac_ver == MAC_VER_8169 ||
727 	    chip->mac_ver == MAC_VER_8169S_D ||
728 	    chip->mac_ver == MAC_VER_8169S_E ||
729 	    chip->mac_ver == MAC_VER_8169SC)
730 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
731 
732 	if (chip->mac_ver == MAC_VER_8169SC) {
733 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
734 		val16 &= 0x0300;
735 		if (val16 == 0x1)	/* 66Mhz PCI */
736 			rge_reg_put32(rgep, 0x7c, 0x000700ff);
737 		else if (val16 == 0x0) /* 33Mhz PCI */
738 			rge_reg_put32(rgep, 0x7c, 0x0007ff00);
739 	}
740 
741 	/*
742 	 * PCIE chipset require the Rx buffer start address must be
743 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
744 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
745 	 */
746 	if (chip->is_pcie) {
747 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
748 		if (rgep->default_mtu > ETHERMTU) {
749 			rge_notice(rgep, "Jumbo packets not supported "
750 			    "for this PCIE chipset");
751 			rgep->default_mtu = ETHERMTU;
752 		}
753 	}
754 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
755 		rgep->head_room = 0;
756 	else
757 		rgep->head_room = RGE_HEADROOM;
758 
759 	/*
760 	 * Initialize other variables.
761 	 */
762 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
763 		rgep->default_mtu = ETHERMTU;
764 	if (rgep->default_mtu > ETHERMTU) {
765 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
766 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
767 		rgep->ethmax_size = RGE_JUMBO_SIZE;
768 	} else {
769 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
770 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
771 		rgep->ethmax_size = ETHERMAX;
772 	}
773 	chip->rxconfig = RX_CONFIG_DEFAULT;
774 	chip->txconfig = TX_CONFIG_DEFAULT;
775 
776 	/* interval to update statistics for polling mode */
777 	rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK);
778 
779 	/* ensure we are not in polling mode */
780 	rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta;
781 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
782 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
783 }
784 
785 /*
786  * Perform first-stage chip (re-)initialisation, using only config-space
787  * accesses:
788  *
789  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
790  *   returning the data in the structure pointed to by <idp>.
791  * + Enable Memory Space accesses.
792  * + Enable Bus Mastering according.
793  */
794 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
795 #pragma	no_inline(rge_chip_cfg_init)
796 
797 void
798 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
799 {
800 	ddi_acc_handle_t handle;
801 	uint16_t commd;
802 
803 	handle = rgep->cfg_handle;
804 
805 	/*
806 	 * Save PCI cache line size and subsystem vendor ID
807 	 */
808 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
809 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
810 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
811 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
812 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
813 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
814 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
815 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
816 
817 	/*
818 	 * Turn on Master Enable (DMA) and IO Enable bits.
819 	 * Enable PCI Memory Space accesses
820 	 */
821 	commd = cidp->command;
822 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
823 	pci_config_put16(handle, PCI_CONF_COMM, commd);
824 
825 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
826 	    cidp->vendor, cidp->device, cidp->revision));
827 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
828 	    cidp->subven, cidp->subdev));
829 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
830 	    cidp->clsize, cidp->latency, cidp->command));
831 }
832 
833 int rge_chip_reset(rge_t *rgep);
834 #pragma	no_inline(rge_chip_reset)
835 
836 int
837 rge_chip_reset(rge_t *rgep)
838 {
839 	int i;
840 	uint8_t val8;
841 
842 	/*
843 	 * Chip should be in STOP state
844 	 */
845 	rge_reg_clr8(rgep, RT_COMMAND_REG,
846 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
847 
848 	/*
849 	 * Disable interrupt
850 	 */
851 	rgep->int_mask = INT_MASK_NONE;
852 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
853 
854 	/*
855 	 * Clear pended interrupt
856 	 */
857 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
858 
859 	/*
860 	 * Reset chip
861 	 */
862 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
863 
864 	/*
865 	 * Wait for reset success
866 	 */
867 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
868 		drv_usecwait(10);
869 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
870 		if (!(val8 & RT_COMMAND_RESET)) {
871 			rgep->rge_chip_state = RGE_CHIP_RESET;
872 			return (0);
873 		}
874 	}
875 	RGE_REPORT((rgep, "rge_chip_reset fail."));
876 	return (-1);
877 }
878 
879 void rge_chip_init(rge_t *rgep);
880 #pragma	no_inline(rge_chip_init)
881 
882 void
883 rge_chip_init(rge_t *rgep)
884 {
885 	uint32_t val32;
886 	uint32_t val16;
887 	uint32_t *hashp;
888 	chip_id_t *chip = &rgep->chipid;
889 
890 	/*
891 	 * Increase the threshold voltage of RX sensitivity
892 	 */
893 	if (chip->mac_ver == MAC_VER_8168B_B ||
894 	    chip->mac_ver == MAC_VER_8168B_C ||
895 	    chip->mac_ver == MAC_VER_8101E) {
896 		rge_ephy_put16(rgep, 0x01, 0x1bd3);
897 	}
898 
899 	if (chip->mac_ver == MAC_VER_8168 ||
900 	    chip->mac_ver == MAC_VER_8168B_B) {
901 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
902 		val16 = 0x12<<8 | val16;
903 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
904 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
905 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
906 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
907 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
908 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
909 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
910 		val32 |= 0x7000;
911 		val32 &= 0xffff5fff;
912 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
913 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
914 	}
915 
916 	/*
917 	 * Config MII register
918 	 */
919 	rgep->param_link_up = LINK_STATE_DOWN;
920 	rge_phy_update(rgep);
921 
922 	/*
923 	 * Enable Rx checksum offload.
924 	 *  Then for vlan support, we must enable receive vlan de-tagging.
925 	 *  Otherwise, there'll be checksum error.
926 	 */
927 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
928 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
929 	if (chip->mac_ver == MAC_VER_8169S_D) {
930 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
931 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
932 	}
933 	if (chip->mac_ver == MAC_VER_8169S_E ||
934 	    chip->mac_ver == MAC_VER_8169SC) {
935 		val16 |= MUL_PCI_RW_ENABLE;
936 	}
937 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
938 
939 	/*
940 	 * Start transmit/receive before set tx/rx configuration register
941 	 */
942 	if (chip->enable_mac_first)
943 		rge_reg_set8(rgep, RT_COMMAND_REG,
944 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
945 
946 	/*
947 	 * Set dump tally counter register
948 	 */
949 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
950 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
951 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
952 	val32 &= DUMP_COUNTER_REG_RESV;
953 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
954 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
955 
956 	/*
957 	 * Change to config register write enable mode
958 	 */
959 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
960 
961 	/*
962 	 * Set Tx/Rx maximum packet size
963 	 */
964 	if (rgep->default_mtu > ETHERMTU) {
965 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
966 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
967 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
968 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
969 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
970 	} else {
971 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
972 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
973 	}
974 
975 	/*
976 	 * Set receive configuration register
977 	 */
978 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
979 	val32 &= RX_CONFIG_REG_RESV;
980 	if (rgep->promisc)
981 		val32 |= RX_ACCEPT_ALL_PKT;
982 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
983 
984 	/*
985 	 * Set transmit configuration register
986 	 */
987 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
988 	val32 &= TX_CONFIG_REG_RESV;
989 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
990 
991 	/*
992 	 * Set Tx/Rx descriptor register
993 	 */
994 	val32 = rgep->tx_desc.cookie.dmac_laddress;
995 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
996 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
997 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
998 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
999 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
1000 	val32 = rgep->rx_desc.cookie.dmac_laddress;
1001 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
1002 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
1003 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
1004 
1005 	/*
1006 	 * Suggested setting from Realtek
1007 	 */
1008 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1009 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1010 	else
1011 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1012 
1013 	/*
1014 	 * Set multicast register
1015 	 */
1016 	hashp = (uint32_t *)rgep->mcast_hash;
1017 	if (rgep->promisc) {
1018 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1019 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1020 	} else {
1021 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1022 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1023 	}
1024 
1025 	/*
1026 	 * Msic register setting:
1027 	 *   -- Missed packet counter: clear it
1028 	 *   -- TimerInt Register
1029 	 *   -- Timer count register
1030 	 */
1031 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1032 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1033 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1034 
1035 	/*
1036 	 * disable the Unicast Wakeup Frame capability
1037 	 */
1038 	rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
1039 
1040 	/*
1041 	 * Return to normal network/host communication mode
1042 	 */
1043 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1044 	drv_usecwait(20);
1045 }
1046 
1047 /*
1048  * rge_chip_start() -- start the chip transmitting and/or receiving,
1049  * including enabling interrupts
1050  */
1051 void rge_chip_start(rge_t *rgep);
1052 #pragma	no_inline(rge_chip_start)
1053 
1054 void
1055 rge_chip_start(rge_t *rgep)
1056 {
1057 	/*
1058 	 * Clear statistics
1059 	 */
1060 	bzero(&rgep->stats, sizeof (rge_stats_t));
1061 	DMA_ZERO(rgep->dma_area_stats);
1062 
1063 	/*
1064 	 * Start transmit/receive
1065 	 */
1066 	rge_reg_set8(rgep, RT_COMMAND_REG,
1067 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1068 
1069 	/*
1070 	 * Enable interrupt
1071 	 */
1072 	rgep->int_mask = RGE_INT_MASK;
1073 	if (rgep->chipid.is_pcie) {
1074 		rgep->int_mask |= NO_TXDESC_INT;
1075 	}
1076 	rgep->rx_fifo_ovf = 0;
1077 	rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1078 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1079 
1080 	/*
1081 	 * All done!
1082 	 */
1083 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1084 }
1085 
1086 /*
1087  * rge_chip_stop() -- stop board receiving
1088  *
1089  * Since this function is also invoked by rge_quiesce(), it
1090  * must not block; also, no tracing or logging takes place
1091  * when invoked by rge_quiesce().
1092  */
1093 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1094 #pragma	no_inline(rge_chip_stop)
1095 
1096 void
1097 rge_chip_stop(rge_t *rgep, boolean_t fault)
1098 {
1099 	/*
1100 	 * Disable interrupt
1101 	 */
1102 	rgep->int_mask = INT_MASK_NONE;
1103 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1104 
1105 	/*
1106 	 * Clear pended interrupt
1107 	 */
1108 	if (!rgep->suspended) {
1109 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1110 	}
1111 
1112 	/*
1113 	 * Stop the board and disable transmit/receive
1114 	 */
1115 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1116 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1117 
1118 	if (fault)
1119 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1120 	else
1121 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1122 }
1123 
1124 /*
1125  * rge_get_mac_addr() -- get the MAC address on NIC
1126  */
1127 static void rge_get_mac_addr(rge_t *rgep);
1128 #pragma	inline(rge_get_mac_addr)
1129 
1130 static void
1131 rge_get_mac_addr(rge_t *rgep)
1132 {
1133 	uint8_t *macaddr = rgep->netaddr;
1134 	uint32_t val32;
1135 
1136 	/*
1137 	 * Read first 4-byte of mac address
1138 	 */
1139 	val32 = rge_reg_get32(rgep, ID_0_REG);
1140 	macaddr[0] = val32 & 0xff;
1141 	val32 = val32 >> 8;
1142 	macaddr[1] = val32 & 0xff;
1143 	val32 = val32 >> 8;
1144 	macaddr[2] = val32 & 0xff;
1145 	val32 = val32 >> 8;
1146 	macaddr[3] = val32 & 0xff;
1147 
1148 	/*
1149 	 * Read last 2-byte of mac address
1150 	 */
1151 	val32 = rge_reg_get32(rgep, ID_4_REG);
1152 	macaddr[4] = val32 & 0xff;
1153 	val32 = val32 >> 8;
1154 	macaddr[5] = val32 & 0xff;
1155 }
1156 
1157 static void rge_set_mac_addr(rge_t *rgep);
1158 #pragma	inline(rge_set_mac_addr)
1159 
1160 static void
1161 rge_set_mac_addr(rge_t *rgep)
1162 {
1163 	uint8_t *p = rgep->netaddr;
1164 	uint32_t val32;
1165 
1166 	/*
1167 	 * Change to config register write enable mode
1168 	 */
1169 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1170 
1171 	/*
1172 	 * Get first 4 bytes of mac address
1173 	 */
1174 	val32 = p[3];
1175 	val32 = val32 << 8;
1176 	val32 |= p[2];
1177 	val32 = val32 << 8;
1178 	val32 |= p[1];
1179 	val32 = val32 << 8;
1180 	val32 |= p[0];
1181 
1182 	/*
1183 	 * Set first 4 bytes of mac address
1184 	 */
1185 	rge_reg_put32(rgep, ID_0_REG, val32);
1186 
1187 	/*
1188 	 * Get last 2 bytes of mac address
1189 	 */
1190 	val32 = p[5];
1191 	val32 = val32 << 8;
1192 	val32 |= p[4];
1193 
1194 	/*
1195 	 * Set last 2 bytes of mac address
1196 	 */
1197 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1198 	rge_reg_put32(rgep, ID_4_REG, val32);
1199 
1200 	/*
1201 	 * Return to normal network/host communication mode
1202 	 */
1203 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1204 }
1205 
1206 static void rge_set_multi_addr(rge_t *rgep);
1207 #pragma	inline(rge_set_multi_addr)
1208 
1209 static void
1210 rge_set_multi_addr(rge_t *rgep)
1211 {
1212 	uint32_t *hashp;
1213 
1214 	hashp = (uint32_t *)rgep->mcast_hash;
1215 
1216 	/*
1217 	 * Change to config register write enable mode
1218 	 */
1219 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1220 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1221 	}
1222 	if (rgep->promisc) {
1223 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1224 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1225 	} else {
1226 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1227 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1228 	}
1229 
1230 	/*
1231 	 * Return to normal network/host communication mode
1232 	 */
1233 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1234 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1235 	}
1236 }
1237 
1238 static void rge_set_promisc(rge_t *rgep);
1239 #pragma	inline(rge_set_promisc)
1240 
1241 static void
1242 rge_set_promisc(rge_t *rgep)
1243 {
1244 	if (rgep->promisc)
1245 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1246 	else
1247 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1248 }
1249 
1250 /*
1251  * rge_chip_sync() -- program the chip with the unicast MAC address,
1252  * the multicast hash table, the required level of promiscuity, and
1253  * the current loopback mode ...
1254  */
1255 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1256 #pragma	no_inline(rge_chip_sync)
1257 
1258 void
1259 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1260 {
1261 	switch (todo) {
1262 	case RGE_GET_MAC:
1263 		rge_get_mac_addr(rgep);
1264 		break;
1265 	case RGE_SET_MAC:
1266 		/* Reprogram the unicast MAC address(es) ... */
1267 		rge_set_mac_addr(rgep);
1268 		break;
1269 	case RGE_SET_MUL:
1270 		/* Reprogram the hashed multicast address table ... */
1271 		rge_set_multi_addr(rgep);
1272 		break;
1273 	case RGE_SET_PROMISC:
1274 		/* Set or clear the PROMISCUOUS mode bit */
1275 		rge_set_multi_addr(rgep);
1276 		rge_set_promisc(rgep);
1277 		break;
1278 	default:
1279 		break;
1280 	}
1281 }
1282 
1283 void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
1284 #pragma	no_inline(rge_chip_blank)
1285 
1286 /* ARGSUSED */
1287 void
1288 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
1289 {
1290 	_NOTE(ARGUNUSED(arg, ticks, count));
1291 }
1292 
1293 void rge_tx_trigger(rge_t *rgep);
1294 #pragma	no_inline(rge_tx_trigger)
1295 
1296 void
1297 rge_tx_trigger(rge_t *rgep)
1298 {
1299 	rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1300 }
1301 
1302 void rge_hw_stats_dump(rge_t *rgep);
1303 #pragma	no_inline(rge_tx_trigger)
1304 
1305 void
1306 rge_hw_stats_dump(rge_t *rgep)
1307 {
1308 	int i = 0;
1309 	uint32_t regval = 0;
1310 
1311 	if (rgep->rge_mac_state == RGE_MAC_STOPPED)
1312 		return;
1313 
1314 	regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1315 	while (regval & DUMP_START) {
1316 		drv_usecwait(100);
1317 		if (++i > STATS_DUMP_LOOP) {
1318 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1319 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1320 			return;
1321 		}
1322 		regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1323 	}
1324 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1325 
1326 	/*
1327 	 * Start H/W statistics dump for RTL8169 chip
1328 	 */
1329 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1330 }
1331 
1332 /*
1333  * ========== Hardware interrupt handler ==========
1334  */
1335 
1336 #undef	RGE_DBG
1337 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1338 
1339 static void rge_wake_factotum(rge_t *rgep);
1340 #pragma	inline(rge_wake_factotum)
1341 
1342 static void
1343 rge_wake_factotum(rge_t *rgep)
1344 {
1345 	if (rgep->factotum_flag == 0) {
1346 		rgep->factotum_flag = 1;
1347 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1348 	}
1349 }
1350 
1351 /*
1352  *	rge_intr() -- handle chip interrupts
1353  */
1354 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1355 #pragma	no_inline(rge_intr)
1356 
1357 uint_t
1358 rge_intr(caddr_t arg1, caddr_t arg2)
1359 {
1360 	rge_t *rgep = (rge_t *)arg1;
1361 	uint16_t int_status;
1362 	clock_t	now;
1363 	uint32_t tx_pkts;
1364 	uint32_t rx_pkts;
1365 	uint32_t poll_rate;
1366 	uint32_t opt_pkts;
1367 	uint32_t opt_intrs;
1368 	boolean_t update_int_mask = B_FALSE;
1369 	uint32_t itimer;
1370 
1371 	_NOTE(ARGUNUSED(arg2))
1372 
1373 	mutex_enter(rgep->genlock);
1374 
1375 	if (rgep->suspended) {
1376 		mutex_exit(rgep->genlock);
1377 		return (DDI_INTR_UNCLAIMED);
1378 	}
1379 
1380 	/*
1381 	 * Was this interrupt caused by our device...
1382 	 */
1383 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1384 	if (!(int_status & rgep->int_mask)) {
1385 		mutex_exit(rgep->genlock);
1386 		return (DDI_INTR_UNCLAIMED);
1387 				/* indicate it wasn't our interrupt */
1388 	}
1389 	rgep->stats.intr++;
1390 
1391 	/*
1392 	 * Clear interrupt
1393 	 *	For PCIE chipset, we need disable interrupt first.
1394 	 */
1395 	if (rgep->chipid.is_pcie) {
1396 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1397 		update_int_mask = B_TRUE;
1398 	}
1399 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1400 
1401 	/*
1402 	 * Calculate optimal polling interval
1403 	 */
1404 	now = ddi_get_lbolt();
1405 	if (now - rgep->curr_tick >= rgep->tick_delta &&
1406 	    (rgep->param_link_speed == RGE_SPEED_1000M ||
1407 	    rgep->param_link_speed == RGE_SPEED_100M)) {
1408 		/* number of rx and tx packets in the last tick */
1409 		tx_pkts = rgep->stats.opackets - rgep->last_opackets;
1410 		rx_pkts = rgep->stats.rpackets - rgep->last_rpackets;
1411 
1412 		rgep->last_opackets = rgep->stats.opackets;
1413 		rgep->last_rpackets = rgep->stats.rpackets;
1414 
1415 		/* restore interrupt mask */
1416 		rgep->int_mask |= TX_OK_INT | RX_OK_INT;
1417 		if (rgep->chipid.is_pcie) {
1418 			rgep->int_mask |= NO_TXDESC_INT;
1419 		}
1420 
1421 		/* optimal number of packets in a tick */
1422 		if (rgep->param_link_speed == RGE_SPEED_1000M) {
1423 			opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK;
1424 		} else {
1425 			opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK;
1426 		}
1427 
1428 		/*
1429 		 * calculate polling interval based on rx and tx packets
1430 		 * in the last tick
1431 		 */
1432 		poll_rate = 0;
1433 		if (now - rgep->curr_tick < 2*rgep->tick_delta) {
1434 			opt_intrs = opt_pkts/TX_COALESC;
1435 			if (tx_pkts > opt_intrs) {
1436 				poll_rate = max(tx_pkts/TX_COALESC, opt_intrs);
1437 				rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT);
1438 			}
1439 
1440 			opt_intrs = opt_pkts/RX_COALESC;
1441 			if (rx_pkts > opt_intrs) {
1442 				opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs);
1443 				poll_rate = max(opt_intrs, poll_rate);
1444 				rgep->int_mask &= ~RX_OK_INT;
1445 			}
1446 			/* ensure poll_rate reasonable */
1447 			poll_rate = min(poll_rate, opt_pkts*4);
1448 		}
1449 
1450 		if (poll_rate) {
1451 			/* move to polling mode */
1452 			if (rgep->chipid.is_pcie) {
1453 				itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate;
1454 			} else {
1455 				itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate;
1456 			}
1457 		} else {
1458 			/* move to normal mode */
1459 			itimer = 0;
1460 		}
1461 		RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x",
1462 		    __func__, itimer, rgep->int_mask));
1463 		rge_reg_put32(rgep, TIMER_INT_REG, itimer);
1464 
1465 		/* update timestamp for statistics */
1466 		rgep->curr_tick = now;
1467 
1468 		/* reset timer */
1469 		int_status |= TIME_OUT_INT;
1470 
1471 		update_int_mask = B_TRUE;
1472 	}
1473 
1474 	if (int_status & TIME_OUT_INT) {
1475 		rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1476 	}
1477 
1478 	/* flush post writes */
1479 	(void) rge_reg_get16(rgep, INT_STATUS_REG);
1480 
1481 	/*
1482 	 * Cable link change interrupt
1483 	 */
1484 	if (int_status & LINK_CHANGE_INT) {
1485 		rge_chip_cyclic(rgep);
1486 	}
1487 
1488 	if (int_status & RX_FIFO_OVERFLOW_INT) {
1489 		/* start rx watchdog timeout detection */
1490 		rgep->rx_fifo_ovf = 1;
1491 		if (rgep->int_mask & RX_FIFO_OVERFLOW_INT) {
1492 			rgep->int_mask &= ~RX_FIFO_OVERFLOW_INT;
1493 			update_int_mask = B_TRUE;
1494 		}
1495 	} else if (int_status & RGE_RX_INT) {
1496 		/* stop rx watchdog timeout detection */
1497 		rgep->rx_fifo_ovf = 0;
1498 		if ((rgep->int_mask & RX_FIFO_OVERFLOW_INT) == 0) {
1499 			rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1500 			update_int_mask = B_TRUE;
1501 		}
1502 	}
1503 
1504 	mutex_exit(rgep->genlock);
1505 
1506 	/*
1507 	 * Receive interrupt
1508 	 */
1509 	if (int_status & RGE_RX_INT)
1510 		rge_receive(rgep);
1511 
1512 	/*
1513 	 * Transmit interrupt
1514 	 */
1515 	if (int_status & TX_ERR_INT) {
1516 		RGE_REPORT((rgep, "tx error happened, resetting the chip "));
1517 		mutex_enter(rgep->genlock);
1518 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1519 		mutex_exit(rgep->genlock);
1520 	} else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) ||
1521 	    ((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) {
1522 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1523 	}
1524 
1525 	/*
1526 	 * System error interrupt
1527 	 */
1528 	if (int_status & SYS_ERR_INT) {
1529 		RGE_REPORT((rgep, "sys error happened, resetting the chip "));
1530 		mutex_enter(rgep->genlock);
1531 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1532 		mutex_exit(rgep->genlock);
1533 	}
1534 
1535 	/*
1536 	 * Re-enable interrupt for PCIE chipset or install new int_mask
1537 	 */
1538 	if (update_int_mask)
1539 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1540 
1541 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1542 }
1543 
1544 /*
1545  * ========== Factotum, implemented as a softint handler ==========
1546  */
1547 
1548 #undef	RGE_DBG
1549 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1550 
1551 static boolean_t rge_factotum_link_check(rge_t *rgep);
1552 #pragma	no_inline(rge_factotum_link_check)
1553 
1554 static boolean_t
1555 rge_factotum_link_check(rge_t *rgep)
1556 {
1557 	uint8_t media_status;
1558 	int32_t link;
1559 
1560 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1561 	link = (media_status & PHY_STATUS_LINK_UP) ?
1562 	    LINK_STATE_UP : LINK_STATE_DOWN;
1563 	if (rgep->param_link_up != link) {
1564 		/*
1565 		 * Link change.
1566 		 */
1567 		rgep->param_link_up = link;
1568 
1569 		if (link == LINK_STATE_UP) {
1570 			if (media_status & PHY_STATUS_1000MF) {
1571 				rgep->param_link_speed = RGE_SPEED_1000M;
1572 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1573 			} else {
1574 				rgep->param_link_speed =
1575 				    (media_status & PHY_STATUS_100M) ?
1576 				    RGE_SPEED_100M : RGE_SPEED_10M;
1577 				rgep->param_link_duplex =
1578 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1579 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1580 			}
1581 		}
1582 		return (B_TRUE);
1583 	}
1584 	return (B_FALSE);
1585 }
1586 
1587 /*
1588  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1589  */
1590 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1591 #pragma	no_inline(rge_factotum_stall_check)
1592 
1593 static boolean_t
1594 rge_factotum_stall_check(rge_t *rgep)
1595 {
1596 	uint32_t dogval;
1597 
1598 	ASSERT(mutex_owned(rgep->genlock));
1599 
1600 	/*
1601 	 * Specific check for RX stall ...
1602 	 */
1603 	rgep->rx_fifo_ovf <<= 1;
1604 	if (rgep->rx_fifo_ovf > rge_rx_watchdog_count) {
1605 		RGE_REPORT((rgep, "rx_hang detected"));
1606 		return (B_TRUE);
1607 	}
1608 
1609 	/*
1610 	 * Specific check for Tx stall ...
1611 	 *
1612 	 * The 'watchdog' counter is incremented whenever a packet
1613 	 * is queued, reset to 1 when some (but not all) buffers
1614 	 * are reclaimed, reset to 0 (disabled) when all buffers
1615 	 * are reclaimed, and shifted left here.  If it exceeds the
1616 	 * threshold value, the chip is assumed to have stalled and
1617 	 * is put into the ERROR state.  The factotum will then reset
1618 	 * it on the next pass.
1619 	 *
1620 	 * All of which should ensure that we don't get into a state
1621 	 * where packets are left pending indefinitely!
1622 	 */
1623 	if (rgep->resched_needed)
1624 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1625 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1626 	if (dogval < rge_watchdog_count)
1627 		return (B_FALSE);
1628 
1629 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1630 	return (B_TRUE);
1631 
1632 }
1633 
1634 /*
1635  * The factotum is woken up when there's something to do that we'd rather
1636  * not do from inside a hardware interrupt handler or high-level cyclic.
1637  * Its two main tasks are:
1638  *	reset & restart the chip after an error
1639  *	check the link status whenever necessary
1640  */
1641 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1642 #pragma	no_inline(rge_chip_factotum)
1643 
1644 uint_t
1645 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1646 {
1647 	rge_t *rgep;
1648 	uint_t result;
1649 	boolean_t error;
1650 	boolean_t linkchg;
1651 
1652 	rgep = (rge_t *)arg1;
1653 	_NOTE(ARGUNUSED(arg2))
1654 
1655 	if (rgep->factotum_flag == 0)
1656 		return (DDI_INTR_UNCLAIMED);
1657 
1658 	rgep->factotum_flag = 0;
1659 	result = DDI_INTR_CLAIMED;
1660 	error = B_FALSE;
1661 	linkchg = B_FALSE;
1662 
1663 	mutex_enter(rgep->genlock);
1664 	switch (rgep->rge_chip_state) {
1665 	default:
1666 		break;
1667 
1668 	case RGE_CHIP_RUNNING:
1669 		linkchg = rge_factotum_link_check(rgep);
1670 		error = rge_factotum_stall_check(rgep);
1671 		break;
1672 
1673 	case RGE_CHIP_ERROR:
1674 		error = B_TRUE;
1675 		break;
1676 
1677 	case RGE_CHIP_FAULT:
1678 		/*
1679 		 * Fault detected, time to reset ...
1680 		 */
1681 		if (rge_autorecover) {
1682 			RGE_REPORT((rgep, "automatic recovery activated"));
1683 			rge_restart(rgep);
1684 		}
1685 		break;
1686 	}
1687 
1688 	/*
1689 	 * If an error is detected, stop the chip now, marking it as
1690 	 * faulty, so that it will be reset next time through ...
1691 	 */
1692 	if (error)
1693 		rge_chip_stop(rgep, B_TRUE);
1694 	mutex_exit(rgep->genlock);
1695 
1696 	/*
1697 	 * If the link state changed, tell the world about it.
1698 	 * Note: can't do this while still holding the mutex.
1699 	 */
1700 	if (linkchg)
1701 		mac_link_update(rgep->mh, rgep->param_link_up);
1702 
1703 	return (result);
1704 }
1705 
1706 /*
1707  * High-level cyclic handler
1708  *
1709  * This routine schedules a (low-level) softint callback to the
1710  * factotum, and prods the chip to update the status block (which
1711  * will cause a hardware interrupt when complete).
1712  */
1713 void rge_chip_cyclic(void *arg);
1714 #pragma	no_inline(rge_chip_cyclic)
1715 
1716 void
1717 rge_chip_cyclic(void *arg)
1718 {
1719 	rge_t *rgep;
1720 
1721 	rgep = arg;
1722 
1723 	switch (rgep->rge_chip_state) {
1724 	default:
1725 		return;
1726 
1727 	case RGE_CHIP_RUNNING:
1728 		rge_phy_check(rgep);
1729 		if (rgep->tx_free < RGE_SEND_SLOTS)
1730 			rge_send_recycle(rgep);
1731 		break;
1732 
1733 	case RGE_CHIP_FAULT:
1734 	case RGE_CHIP_ERROR:
1735 		break;
1736 	}
1737 
1738 	rge_wake_factotum(rgep);
1739 }
1740 
1741 
1742 /*
1743  * ========== Ioctl subfunctions ==========
1744  */
1745 
1746 #undef	RGE_DBG
1747 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1748 
1749 #if	RGE_DEBUGGING || RGE_DO_PPIO
1750 
1751 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1752 #pragma	no_inline(rge_chip_peek_cfg)
1753 
1754 static void
1755 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1756 {
1757 	uint64_t regval;
1758 	uint64_t regno;
1759 
1760 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1761 	    (void *)rgep, (void *)ppd));
1762 
1763 	regno = ppd->pp_acc_offset;
1764 
1765 	switch (ppd->pp_acc_size) {
1766 	case 1:
1767 		regval = pci_config_get8(rgep->cfg_handle, regno);
1768 		break;
1769 
1770 	case 2:
1771 		regval = pci_config_get16(rgep->cfg_handle, regno);
1772 		break;
1773 
1774 	case 4:
1775 		regval = pci_config_get32(rgep->cfg_handle, regno);
1776 		break;
1777 
1778 	case 8:
1779 		regval = pci_config_get64(rgep->cfg_handle, regno);
1780 		break;
1781 	}
1782 
1783 	ppd->pp_acc_data = regval;
1784 }
1785 
1786 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1787 #pragma	no_inline(rge_chip_poke_cfg)
1788 
1789 static void
1790 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1791 {
1792 	uint64_t regval;
1793 	uint64_t regno;
1794 
1795 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1796 	    (void *)rgep, (void *)ppd));
1797 
1798 	regno = ppd->pp_acc_offset;
1799 	regval = ppd->pp_acc_data;
1800 
1801 	switch (ppd->pp_acc_size) {
1802 	case 1:
1803 		pci_config_put8(rgep->cfg_handle, regno, regval);
1804 		break;
1805 
1806 	case 2:
1807 		pci_config_put16(rgep->cfg_handle, regno, regval);
1808 		break;
1809 
1810 	case 4:
1811 		pci_config_put32(rgep->cfg_handle, regno, regval);
1812 		break;
1813 
1814 	case 8:
1815 		pci_config_put64(rgep->cfg_handle, regno, regval);
1816 		break;
1817 	}
1818 }
1819 
1820 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1821 #pragma	no_inline(rge_chip_peek_reg)
1822 
1823 static void
1824 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1825 {
1826 	uint64_t regval;
1827 	void *regaddr;
1828 
1829 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1830 	    (void *)rgep, (void *)ppd));
1831 
1832 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1833 
1834 	switch (ppd->pp_acc_size) {
1835 	case 1:
1836 		regval = ddi_get8(rgep->io_handle, regaddr);
1837 		break;
1838 
1839 	case 2:
1840 		regval = ddi_get16(rgep->io_handle, regaddr);
1841 		break;
1842 
1843 	case 4:
1844 		regval = ddi_get32(rgep->io_handle, regaddr);
1845 		break;
1846 
1847 	case 8:
1848 		regval = ddi_get64(rgep->io_handle, regaddr);
1849 		break;
1850 	}
1851 
1852 	ppd->pp_acc_data = regval;
1853 }
1854 
1855 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1856 #pragma	no_inline(rge_chip_peek_reg)
1857 
1858 static void
1859 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1860 {
1861 	uint64_t regval;
1862 	void *regaddr;
1863 
1864 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1865 	    (void *)rgep, (void *)ppd));
1866 
1867 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1868 	regval = ppd->pp_acc_data;
1869 
1870 	switch (ppd->pp_acc_size) {
1871 	case 1:
1872 		ddi_put8(rgep->io_handle, regaddr, regval);
1873 		break;
1874 
1875 	case 2:
1876 		ddi_put16(rgep->io_handle, regaddr, regval);
1877 		break;
1878 
1879 	case 4:
1880 		ddi_put32(rgep->io_handle, regaddr, regval);
1881 		break;
1882 
1883 	case 8:
1884 		ddi_put64(rgep->io_handle, regaddr, regval);
1885 		break;
1886 	}
1887 }
1888 
1889 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1890 #pragma	no_inline(rge_chip_peek_mii)
1891 
1892 static void
1893 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1894 {
1895 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1896 	    (void *)rgep, (void *)ppd));
1897 
1898 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1899 }
1900 
1901 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1902 #pragma	no_inline(rge_chip_poke_mii)
1903 
1904 static void
1905 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1906 {
1907 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1908 	    (void *)rgep, (void *)ppd));
1909 
1910 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1911 }
1912 
1913 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1914 #pragma	no_inline(rge_chip_peek_mem)
1915 
1916 static void
1917 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1918 {
1919 	uint64_t regval;
1920 	void *vaddr;
1921 
1922 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1923 	    (void *)rgep, (void *)ppd));
1924 
1925 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1926 
1927 	switch (ppd->pp_acc_size) {
1928 	case 1:
1929 		regval = *(uint8_t *)vaddr;
1930 		break;
1931 
1932 	case 2:
1933 		regval = *(uint16_t *)vaddr;
1934 		break;
1935 
1936 	case 4:
1937 		regval = *(uint32_t *)vaddr;
1938 		break;
1939 
1940 	case 8:
1941 		regval = *(uint64_t *)vaddr;
1942 		break;
1943 	}
1944 
1945 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1946 	    (void *)rgep, (void *)ppd, regval, vaddr));
1947 
1948 	ppd->pp_acc_data = regval;
1949 }
1950 
1951 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1952 #pragma	no_inline(rge_chip_poke_mem)
1953 
1954 static void
1955 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1956 {
1957 	uint64_t regval;
1958 	void *vaddr;
1959 
1960 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1961 	    (void *)rgep, (void *)ppd));
1962 
1963 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1964 	regval = ppd->pp_acc_data;
1965 
1966 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1967 	    (void *)rgep, (void *)ppd, regval, vaddr));
1968 
1969 	switch (ppd->pp_acc_size) {
1970 	case 1:
1971 		*(uint8_t *)vaddr = (uint8_t)regval;
1972 		break;
1973 
1974 	case 2:
1975 		*(uint16_t *)vaddr = (uint16_t)regval;
1976 		break;
1977 
1978 	case 4:
1979 		*(uint32_t *)vaddr = (uint32_t)regval;
1980 		break;
1981 
1982 	case 8:
1983 		*(uint64_t *)vaddr = (uint64_t)regval;
1984 		break;
1985 	}
1986 }
1987 
1988 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1989 					struct iocblk *iocp);
1990 #pragma	no_inline(rge_pp_ioctl)
1991 
1992 static enum ioc_reply
1993 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1994 {
1995 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1996 	rge_peekpoke_t *ppd;
1997 	dma_area_t *areap;
1998 	uint64_t sizemask;
1999 	uint64_t mem_va;
2000 	uint64_t maxoff;
2001 	boolean_t peek;
2002 
2003 	switch (cmd) {
2004 	default:
2005 		/* NOTREACHED */
2006 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
2007 		return (IOC_INVAL);
2008 
2009 	case RGE_PEEK:
2010 		peek = B_TRUE;
2011 		break;
2012 
2013 	case RGE_POKE:
2014 		peek = B_FALSE;
2015 		break;
2016 	}
2017 
2018 	/*
2019 	 * Validate format of ioctl
2020 	 */
2021 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
2022 		return (IOC_INVAL);
2023 	if (mp->b_cont == NULL)
2024 		return (IOC_INVAL);
2025 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
2026 
2027 	/*
2028 	 * Validate request parameters
2029 	 */
2030 	switch (ppd->pp_acc_space) {
2031 	default:
2032 		return (IOC_INVAL);
2033 
2034 	case RGE_PP_SPACE_CFG:
2035 		/*
2036 		 * Config space
2037 		 */
2038 		sizemask = 8|4|2|1;
2039 		mem_va = 0;
2040 		maxoff = PCI_CONF_HDR_SIZE;
2041 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
2042 		break;
2043 
2044 	case RGE_PP_SPACE_REG:
2045 		/*
2046 		 * Memory-mapped I/O space
2047 		 */
2048 		sizemask = 8|4|2|1;
2049 		mem_va = 0;
2050 		maxoff = RGE_REGISTER_MAX;
2051 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
2052 		break;
2053 
2054 	case RGE_PP_SPACE_MII:
2055 		/*
2056 		 * PHY's MII registers
2057 		 * NB: all PHY registers are two bytes, but the
2058 		 * addresses increment in ones (word addressing).
2059 		 * So we scale the address here, then undo the
2060 		 * transformation inside the peek/poke functions.
2061 		 */
2062 		ppd->pp_acc_offset *= 2;
2063 		sizemask = 2;
2064 		mem_va = 0;
2065 		maxoff = (MII_MAXREG+1)*2;
2066 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
2067 		break;
2068 
2069 	case RGE_PP_SPACE_RGE:
2070 		/*
2071 		 * RGE data structure!
2072 		 */
2073 		sizemask = 8|4|2|1;
2074 		mem_va = (uintptr_t)rgep;
2075 		maxoff = sizeof (*rgep);
2076 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2077 		break;
2078 
2079 	case RGE_PP_SPACE_STATISTICS:
2080 	case RGE_PP_SPACE_TXDESC:
2081 	case RGE_PP_SPACE_TXBUFF:
2082 	case RGE_PP_SPACE_RXDESC:
2083 	case RGE_PP_SPACE_RXBUFF:
2084 		/*
2085 		 * Various DMA_AREAs
2086 		 */
2087 		switch (ppd->pp_acc_space) {
2088 		case RGE_PP_SPACE_TXDESC:
2089 			areap = &rgep->dma_area_txdesc;
2090 			break;
2091 		case RGE_PP_SPACE_RXDESC:
2092 			areap = &rgep->dma_area_rxdesc;
2093 			break;
2094 		case RGE_PP_SPACE_STATISTICS:
2095 			areap = &rgep->dma_area_stats;
2096 			break;
2097 		}
2098 
2099 		sizemask = 8|4|2|1;
2100 		mem_va = (uintptr_t)areap->mem_va;
2101 		maxoff = areap->alength;
2102 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2103 		break;
2104 	}
2105 
2106 	switch (ppd->pp_acc_size) {
2107 	default:
2108 		return (IOC_INVAL);
2109 
2110 	case 8:
2111 	case 4:
2112 	case 2:
2113 	case 1:
2114 		if ((ppd->pp_acc_size & sizemask) == 0)
2115 			return (IOC_INVAL);
2116 		break;
2117 	}
2118 
2119 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
2120 		return (IOC_INVAL);
2121 
2122 	if (ppd->pp_acc_offset >= maxoff)
2123 		return (IOC_INVAL);
2124 
2125 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
2126 		return (IOC_INVAL);
2127 
2128 	/*
2129 	 * All OK - go do it!
2130 	 */
2131 	ppd->pp_acc_offset += mem_va;
2132 	(*ppfn)(rgep, ppd);
2133 	return (peek ? IOC_REPLY : IOC_ACK);
2134 }
2135 
2136 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2137 					struct iocblk *iocp);
2138 #pragma	no_inline(rge_diag_ioctl)
2139 
2140 static enum ioc_reply
2141 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2142 {
2143 	ASSERT(mutex_owned(rgep->genlock));
2144 
2145 	switch (cmd) {
2146 	default:
2147 		/* NOTREACHED */
2148 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
2149 		return (IOC_INVAL);
2150 
2151 	case RGE_DIAG:
2152 		/*
2153 		 * Currently a no-op
2154 		 */
2155 		return (IOC_ACK);
2156 
2157 	case RGE_PEEK:
2158 	case RGE_POKE:
2159 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2160 
2161 	case RGE_PHY_RESET:
2162 		return (IOC_RESTART_ACK);
2163 
2164 	case RGE_SOFT_RESET:
2165 	case RGE_HARD_RESET:
2166 		/*
2167 		 * Reset and reinitialise the 570x hardware
2168 		 */
2169 		rge_restart(rgep);
2170 		return (IOC_ACK);
2171 	}
2172 
2173 	/* NOTREACHED */
2174 }
2175 
2176 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2177 
2178 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2179 				    struct iocblk *iocp);
2180 #pragma	no_inline(rge_mii_ioctl)
2181 
2182 static enum ioc_reply
2183 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2184 {
2185 	struct rge_mii_rw *miirwp;
2186 
2187 	/*
2188 	 * Validate format of ioctl
2189 	 */
2190 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2191 		return (IOC_INVAL);
2192 	if (mp->b_cont == NULL)
2193 		return (IOC_INVAL);
2194 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2195 
2196 	/*
2197 	 * Validate request parameters ...
2198 	 */
2199 	if (miirwp->mii_reg > MII_MAXREG)
2200 		return (IOC_INVAL);
2201 
2202 	switch (cmd) {
2203 	default:
2204 		/* NOTREACHED */
2205 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2206 		return (IOC_INVAL);
2207 
2208 	case RGE_MII_READ:
2209 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2210 		return (IOC_REPLY);
2211 
2212 	case RGE_MII_WRITE:
2213 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2214 		return (IOC_ACK);
2215 	}
2216 
2217 	/* NOTREACHED */
2218 }
2219 
2220 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2221 				struct iocblk *iocp);
2222 #pragma	no_inline(rge_chip_ioctl)
2223 
2224 enum ioc_reply
2225 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2226 {
2227 	int cmd;
2228 
2229 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2230 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2231 
2232 	ASSERT(mutex_owned(rgep->genlock));
2233 
2234 	cmd = iocp->ioc_cmd;
2235 	switch (cmd) {
2236 	default:
2237 		/* NOTREACHED */
2238 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2239 		return (IOC_INVAL);
2240 
2241 	case RGE_DIAG:
2242 	case RGE_PEEK:
2243 	case RGE_POKE:
2244 	case RGE_PHY_RESET:
2245 	case RGE_SOFT_RESET:
2246 	case RGE_HARD_RESET:
2247 #if	RGE_DEBUGGING || RGE_DO_PPIO
2248 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2249 #else
2250 		return (IOC_INVAL);
2251 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2252 
2253 	case RGE_MII_READ:
2254 	case RGE_MII_WRITE:
2255 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2256 
2257 	}
2258 
2259 	/* NOTREACHED */
2260 }
2261