xref: /illumos-gate/usr/src/uts/common/io/pts.c (revision f875b4ebb1dd9fdbeb043557cab38ab3bf7f6e01)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"	/* SVR4 1.13    */
30 
31 /*
32  * Pseudo Terminal Slave Driver.
33  *
34  * The pseudo-tty subsystem simulates a terminal connection, where the master
35  * side represents the terminal and the slave represents the user process's
36  * special device end point. The master device is set up as a cloned device
37  * where its major device number is the major for the clone device and its minor
38  * device number is the major for the ptm driver. There are no nodes in the file
39  * system for master devices. The master pseudo driver is opened using the
40  * open(2) system call with /dev/ptmx as the device parameter.  The clone open
41  * finds the next available minor device for the ptm major device.
42  *
43  * A master device is available only if it and its corresponding slave device
44  * are not already open. When the master device is opened, the corresponding
45  * slave device is automatically locked out. Only one open is allowed on a
46  * master device.  Multiple opens are allowed on the slave device.  After both
47  * the master and slave have been opened, the user has two file descriptors
48  * which are the end points of a full duplex connection composed of two streams
49  * which are automatically connected at the master and slave drivers. The user
50  * may then push modules onto either side of the stream pair.
51  *
52  * The master and slave drivers pass all messages to their adjacent queues.
53  * Only the M_FLUSH needs some processing.  Because the read queue of one side
54  * is connected to the write queue of the other, the FLUSHR flag is changed to
55  * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP
56  * message is sent to the slave device which will render the device
57  * unusable. The process on the slave side gets the EIO when attempting to write
58  * on that stream but it will be able to read any data remaining on the stream
59  * head read queue.  When all the data has been read, read() returns 0
60  * indicating that the stream can no longer be used.  On the last close of the
61  * slave device, a 0-length message is sent to the master device. When the
62  * application on the master side issues a read() or getmsg() and 0 is returned,
63  * the user of the master device decides whether to issue a close() that
64  * dismantles the pseudo-terminal subsystem. If the master device is not closed,
65  * the pseudo-tty subsystem will be available to another user to open the slave
66  * device.
67  *
68  * Synchronization:
69  *
70  *   All global data synchronization between ptm/pts is done via global
71  *   ptms_lock mutex which is initialized at system boot time from
72  *   ptms_initspace (called from space.c).
73  *
74  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
75  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
76  *
77  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
78  *   which allow reader locks to be reacquired by the same thread (usual
79  *   reader/writer locks can't be used for that purpose since it is illegal for
80  *   a thread to acquire a lock it already holds, even as a reader). The sole
81  *   purpose of these macros is to guarantee that the peer queue will not
82  *   disappear (due to closing peer) while it is used. It is safe to use
83  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
84  *   they are not real locks but reference counts).
85  *
86  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
87  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
88  *   be set to appropriate queues *after* qprocson() is called during open (to
89  *   prevent peer from accessing the queue with incomplete plumbing) and set to
90  *   NULL before qprocsoff() is called during close.
91  *
92  *   The pt_nullmsg field is only used in open/close routines and it is also
93  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
94  *   holds.
95  *
96  * Lock Ordering:
97  *
98  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
99  *   be entered first, followed by per-pty lock.
100  *
101  * See ptms.h, ptm.c and ptms_conf.c fore more information.
102  *
103  */
104 
105 #include <sys/types.h>
106 #include <sys/param.h>
107 #include <sys/sysmacros.h>
108 #include <sys/stream.h>
109 #include <sys/stropts.h>
110 #include <sys/stat.h>
111 #include <sys/errno.h>
112 #include <sys/debug.h>
113 #include <sys/cmn_err.h>
114 #include <sys/ptms.h>
115 #include <sys/systm.h>
116 #include <sys/modctl.h>
117 #include <sys/conf.h>
118 #include <sys/ddi.h>
119 #include <sys/sunddi.h>
120 #include <sys/cred.h>
121 #include <sys/zone.h>
122 
123 #ifdef DEBUG
124 int pts_debug = 0;
125 #define	DBG(a)	 if (pts_debug) cmn_err(CE_NOTE, a)
126 #else
127 #define	DBG(a)
128 #endif
129 
130 static int ptsopen(queue_t *, dev_t *, int, int, cred_t *);
131 static int ptsclose(queue_t *, int, cred_t *);
132 static void ptswput(queue_t *, mblk_t *);
133 static void ptsrsrv(queue_t *);
134 static void ptswsrv(queue_t *);
135 
136 /*
137  * Slave Stream Pseudo Terminal Module: stream data structure definitions
138  */
139 static struct module_info pts_info = {
140 	0xface,
141 	"pts",
142 	0,
143 	512,
144 	512,
145 	128
146 };
147 
148 static struct qinit ptsrint = {
149 	NULL,
150 	(int (*)()) ptsrsrv,
151 	ptsopen,
152 	ptsclose,
153 	NULL,
154 	&pts_info,
155 	NULL
156 };
157 
158 static struct qinit ptswint = {
159 	(int (*)()) ptswput,
160 	(int (*)()) ptswsrv,
161 	NULL,
162 	NULL,
163 	NULL,
164 	&pts_info,
165 	NULL
166 };
167 
168 static struct streamtab ptsinfo = {
169 	&ptsrint,
170 	&ptswint,
171 	NULL,
172 	NULL
173 };
174 
175 static int pts_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
176 static int pts_attach(dev_info_t *, ddi_attach_cmd_t);
177 static int pts_detach(dev_info_t *, ddi_detach_cmd_t);
178 
179 #define	PTS_CONF_FLAG	(D_NEW | D_MP)
180 
181 /*
182  * this will define (struct cb_ops cb_pts_ops) and (struct dev_ops pts_ops)
183  */
184 DDI_DEFINE_STREAM_OPS(pts_ops, nulldev, nulldev,	\
185 	pts_attach, pts_detach, nodev,			\
186 	pts_devinfo, PTS_CONF_FLAG, &ptsinfo);
187 
188 /*
189  * Module linkage information for the kernel.
190  */
191 
192 static struct modldrv modldrv = {
193 	&mod_driverops, /* Type of module.  This one is a pseudo driver */
194 	"Slave Stream Pseudo Terminal driver 'pts'",
195 	&pts_ops,	/* driver ops */
196 };
197 
198 static struct modlinkage modlinkage = {
199 	MODREV_1,
200 	&modldrv,
201 	NULL
202 };
203 
204 int
205 _init(void)
206 {
207 	int rc;
208 
209 	if ((rc = mod_install(&modlinkage)) == 0)
210 		ptms_init();
211 	return (rc);
212 }
213 
214 
215 int
216 _fini(void)
217 {
218 	return (mod_remove(&modlinkage));
219 }
220 
221 int
222 _info(struct modinfo *modinfop)
223 {
224 	return (mod_info(&modlinkage, modinfop));
225 }
226 
227 static int
228 pts_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
229 {
230 	if (cmd != DDI_ATTACH)
231 		return (DDI_FAILURE);
232 
233 	mutex_enter(&ptms_lock);
234 	pts_dip = devi;
235 	mutex_exit(&ptms_lock);
236 
237 	return (DDI_SUCCESS);
238 }
239 
240 /*ARGSUSED*/
241 static int
242 pts_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
243 {
244 	if (cmd != DDI_DETACH)
245 		return (DDI_FAILURE);
246 
247 	/*
248 	 * For now, pts cannot be detached.
249 	 */
250 	return (DDI_FAILURE);
251 }
252 
253 /*ARGSUSED*/
254 static int
255 pts_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
256     void **result)
257 {
258 	int error;
259 
260 	switch (infocmd) {
261 	case DDI_INFO_DEVT2DEVINFO:
262 		if (pts_dip == NULL) {
263 			error = DDI_FAILURE;
264 		} else {
265 			*result = (void *)pts_dip;
266 			error = DDI_SUCCESS;
267 		}
268 		break;
269 	case DDI_INFO_DEVT2INSTANCE:
270 		*result = (void *)0;
271 		error = DDI_SUCCESS;
272 		break;
273 	default:
274 		error = DDI_FAILURE;
275 	}
276 	return (error);
277 }
278 
279 /* ARGSUSED */
280 /*
281  * Open the slave device. Reject a clone open and do not allow the
282  * driver to be pushed. If the slave/master pair is locked or if
283  * the master is not open, return EACCESS.
284  * Upon success, store the write queue pointer in private data and
285  * set the PTSOPEN bit in the pt_state field.
286  */
287 static int
288 ptsopen(
289 	queue_t *rqp,		/* pointer to the read side queue */
290 	dev_t   *devp,		/* pointer to stream tail's dev */
291 	int	oflag,		/* the user open(2) supplied flags */
292 	int	sflag,		/* open state flag */
293 	cred_t  *credp)		/* credentials */
294 {
295 	struct pt_ttys	*ptsp;
296 	mblk_t		*mp;
297 	mblk_t		*mop;	/* ptr to a setopts message block */
298 	minor_t		dminor = getminor(*devp);
299 	struct stroptions *sop;
300 
301 	DDBG("entering ptsopen(%d)", dminor);
302 
303 	if (sflag != 0) {
304 		return (EINVAL);
305 	}
306 
307 	mutex_enter(&ptms_lock);
308 	ptsp = ptms_minor2ptty(dminor);
309 
310 	if (ptsp == NULL) {
311 		mutex_exit(&ptms_lock);
312 		return (ENXIO);
313 	}
314 	mutex_enter(&ptsp->pt_lock);
315 
316 	/*
317 	 * Prevent opens from zones other than the one blessed by ptm.  We
318 	 * can't even allow the global zone to open all pts's, as it would
319 	 * otherwise inproperly be able to claim pts's already opened by zones.
320 	 */
321 	if (ptsp->pt_zoneid != getzoneid()) {
322 		mutex_exit(&ptsp->pt_lock);
323 		mutex_exit(&ptms_lock);
324 		return (EPERM);
325 	}
326 
327 	/*
328 	 * Allow reopen of this device.
329 	 */
330 	if (rqp->q_ptr != NULL) {
331 		ASSERT(rqp->q_ptr == ptsp);
332 		ASSERT(ptsp->pts_rdq == rqp);
333 		mutex_exit(&ptsp->pt_lock);
334 		mutex_exit(&ptms_lock);
335 		return (0);
336 	}
337 
338 	DDBGP("ptsopen: p = %p\n", (uintptr_t)ptsp);
339 	DDBG("ptsopen: state = %x\n", ptsp->pt_state);
340 
341 
342 	ASSERT(ptsp->pt_minor == dminor);
343 
344 	if ((ptsp->pt_state & PTLOCK) || !(ptsp->pt_state & PTMOPEN)) {
345 		mutex_exit(&ptsp->pt_lock);
346 		mutex_exit(&ptms_lock);
347 		return (EAGAIN);
348 	}
349 
350 	/*
351 	 * if already, open simply return...
352 	 */
353 	if (ptsp->pt_state & PTSOPEN) {
354 		ASSERT(rqp->q_ptr == ptsp);
355 		ASSERT(ptsp->pts_rdq == rqp);
356 		mutex_exit(&ptsp->pt_lock);
357 		mutex_exit(&ptms_lock);
358 		return (0);
359 	}
360 
361 	/*
362 	 * Allocate message block for setting stream head options.
363 	 */
364 	if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
365 		mutex_exit(&ptsp->pt_lock);
366 		mutex_exit(&ptms_lock);
367 		return (ENOMEM);
368 	}
369 
370 	/*
371 	 * Slave should send zero-length message to a master when it is
372 	 * closing. If memory is low at that time, master will not detect slave
373 	 * closes, this pty will not be deallocated. So, preallocate this
374 	 * zero-length message block early.
375 	 */
376 	if ((mp = allocb(0, BPRI_MED)) == NULL) {
377 		mutex_exit(&ptsp->pt_lock);
378 		mutex_exit(&ptms_lock);
379 		freemsg(mop);
380 		return (ENOMEM);
381 	}
382 
383 	ptsp->pt_state |= PTSOPEN;
384 
385 	WR(rqp)->q_ptr = rqp->q_ptr = ptsp;
386 
387 	mutex_exit(&ptsp->pt_lock);
388 	mutex_exit(&ptms_lock);
389 
390 	qprocson(rqp);
391 
392 	/*
393 	 * After qprocson pts driver is fully plumbed into the stream and can
394 	 * send/receive messages. Setting pts_rdq will allow master side to send
395 	 * messages to the slave. This setting can't occur before qprocson() is
396 	 * finished because slave is not ready to process them.
397 	 */
398 	PT_ENTER_WRITE(ptsp);
399 	ptsp->pts_rdq = rqp;
400 	ASSERT(ptsp->pt_nullmsg == NULL);
401 	ptsp->pt_nullmsg = mp;
402 	PT_EXIT_WRITE(ptsp);
403 
404 	/*
405 	 * set up hi/lo water marks on stream head read queue
406 	 * and add controlling tty if not set
407 	 */
408 
409 	mop->b_datap->db_type = M_SETOPTS;
410 	mop->b_wptr += sizeof (struct stroptions);
411 	sop = (struct stroptions *)mop->b_rptr;
412 	sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
413 	sop->so_hiwat = 512;
414 	sop->so_lowat = 256;
415 	putnext(rqp, mop);
416 
417 	return (0);
418 }
419 
420 
421 
422 /*
423  * Find the address to private data identifying the slave's write
424  * queue. Send a 0-length msg up the slave's read queue to designate
425  * the master is closing. Uattach the master from the slave by nulling
426  * out master's write queue field in private data.
427  */
428 /*ARGSUSED1*/
429 static int
430 ptsclose(queue_t *rqp, int flag, cred_t *credp)
431 {
432 	struct pt_ttys	*ptsp;
433 	queue_t *wqp;
434 	mblk_t	*mp;
435 	mblk_t	*bp;
436 
437 	/*
438 	 * q_ptr should never be NULL in the close routine and it is checked in
439 	 * DEBUG kernel by ASSERT. For non-DEBUG kernel the attempt is made to
440 	 * behave gracefully.
441 	 */
442 	ASSERT(rqp->q_ptr != NULL);
443 	if (rqp->q_ptr == NULL) {
444 		qprocsoff(rqp);
445 		return (0);
446 	}
447 
448 	ptsp = (struct pt_ttys *)rqp->q_ptr;
449 
450 	/*
451 	 * Slave is going to close and doesn't want any new  messages coming
452 	 * from the master side, so set pts_rdq to NULL. This should be done
453 	 * before call to qprocsoff() since slave can't process additional
454 	 * messages from the master after qprocsoff is called.
455 	 */
456 	PT_ENTER_WRITE(ptsp);
457 	mp = ptsp->pt_nullmsg;
458 	ptsp->pt_nullmsg = NULL;
459 	ptsp->pts_rdq = NULL;
460 	PT_EXIT_WRITE(ptsp);
461 
462 	/*
463 	 * Drain the ouput
464 	 */
465 	wqp = WR(rqp);
466 	PT_ENTER_READ(ptsp);
467 	while ((bp = getq(wqp)) != NULL) {
468 		if (ptsp->ptm_rdq) {
469 			putnext(ptsp->ptm_rdq, bp);
470 		} else if (bp->b_datap->db_type == M_IOCTL) {
471 			bp->b_datap->db_type = M_IOCNAK;
472 			freemsg(bp->b_cont);
473 			bp->b_cont = NULL;
474 			qreply(wqp, bp);
475 		} else {
476 			freemsg(bp);
477 		}
478 	}
479 	/*
480 	 * qenable master side write queue so that it can flush
481 	 * its messages as slaves's read queue is going away
482 	 */
483 	if (ptsp->ptm_rdq) {
484 		if (mp)
485 			putnext(ptsp->ptm_rdq, mp);
486 		else
487 			qenable(WR(ptsp->ptm_rdq));
488 	} else
489 		freemsg(mp);
490 	PT_EXIT_READ(ptsp);
491 
492 	qprocsoff(rqp);
493 
494 	rqp->q_ptr = NULL;
495 	WR(rqp)->q_ptr = NULL;
496 
497 	ptms_close(ptsp, PTSOPEN | PTSTTY);
498 
499 	return (0);
500 }
501 
502 
503 /*
504  * The wput procedure will only handle flush messages.
505  * All other messages are queued and the write side
506  * service procedure sends them off to the master side.
507  */
508 static void
509 ptswput(queue_t *qp, mblk_t *mp)
510 {
511 	struct pt_ttys *ptsp;
512 	struct iocblk  *iocp;
513 	unsigned char type = mp->b_datap->db_type;
514 
515 	DBG(("entering ptswput\n"));
516 	ASSERT(qp->q_ptr);
517 
518 	ptsp = (struct pt_ttys *)qp->q_ptr;
519 	PT_ENTER_READ(ptsp);
520 	if (ptsp->ptm_rdq == NULL) {
521 		DBG(("in write put proc but no master\n"));
522 		/*
523 		 * NAK ioctl as slave side read queue is gone.
524 		 * Or else free the message.
525 		 */
526 		if (mp->b_datap->db_type == M_IOCTL) {
527 			mp->b_datap->db_type = M_IOCNAK;
528 			freemsg(mp->b_cont);
529 			mp->b_cont = NULL;
530 			qreply(qp, mp);
531 		} else
532 			freemsg(mp);
533 		PT_EXIT_READ(ptsp);
534 		return;
535 	}
536 
537 	if (type >= QPCTL) {
538 	    switch (type) {
539 
540 		/*
541 		 * if write queue request, flush slave's write
542 		 * queue and send FLUSHR to ptm. If read queue
543 		 * request, send FLUSHR to ptm.
544 		 */
545 	    case M_FLUSH:
546 		DBG(("pts got flush request\n"));
547 		if (*mp->b_rptr & FLUSHW) {
548 
549 			DBG(("got FLUSHW, flush pts write Q\n"));
550 			if (*mp->b_rptr & FLUSHBAND)
551 				/*
552 				 * if it is a FLUSHBAND, do flushband.
553 				 */
554 				flushband(qp, *(mp->b_rptr + 1), FLUSHDATA);
555 			else
556 				flushq(qp, FLUSHDATA);
557 
558 			*mp->b_rptr &= ~FLUSHW;
559 			if ((*mp->b_rptr & FLUSHR) == 0) {
560 				/*
561 				 * FLUSHW only. Change to FLUSHR and putnext
562 				 * to ptm, then we are done.
563 				 */
564 				*mp->b_rptr |= FLUSHR;
565 				if (ptsp->ptm_rdq)
566 					putnext(ptsp->ptm_rdq, mp);
567 				break;
568 			} else {
569 				mblk_t *nmp;
570 
571 				/* It is a FLUSHRW. Duplicate the mblk */
572 				nmp = copyb(mp);
573 				if (nmp) {
574 					/*
575 					 * Change FLUSHW to FLUSHR before
576 					 * putnext to ptm.
577 					 */
578 					DBG(("putnext nmp(FLUSHR) to ptm\n"));
579 					*nmp->b_rptr |= FLUSHR;
580 					if (ptsp->ptm_rdq)
581 						putnext(ptsp->ptm_rdq, nmp);
582 				}
583 			}
584 		}
585 		/*
586 		 * Since the packet module will toss any
587 		 * M_FLUSHES sent to the master's stream head
588 		 * read queue, we simply turn it around here.
589 		 */
590 		if (*mp->b_rptr & FLUSHR) {
591 			ASSERT(RD(qp)->q_first == NULL);
592 			DBG(("qreply(qp) turning FLUSHR around\n"));
593 			qreply(qp, mp);
594 		} else {
595 			freemsg(mp);
596 		}
597 		break;
598 
599 	    case M_READ:
600 		/* Caused by ldterm - can not pass to master */
601 		freemsg(mp);
602 		break;
603 
604 	    default:
605 		if (ptsp->ptm_rdq)
606 			putnext(ptsp->ptm_rdq, mp);
607 		break;
608 	    }
609 	    PT_EXIT_READ(ptsp);
610 	    return;
611 	}
612 
613 	switch (type) {
614 
615 	case M_IOCTL:
616 		/*
617 		 * For case PTSSTTY set the flag PTSTTY and ACK
618 		 * the ioctl so that the user program can push
619 		 * the associated modules to get tty semantics.
620 		 * See bugid 4025044
621 		 */
622 		iocp = (struct iocblk *)mp->b_rptr;
623 		switch (iocp->ioc_cmd) {
624 		default:
625 			break;
626 
627 		case PTSSTTY:
628 			if (ptsp->pt_state & PTSTTY) {
629 				mp->b_datap->db_type = M_IOCNAK;
630 				iocp->ioc_error = EEXIST;
631 			} else {
632 				mp->b_datap->db_type = M_IOCACK;
633 				mutex_enter(&ptsp->pt_lock);
634 				ptsp->pt_state |= PTSTTY;
635 				mutex_exit(&ptsp->pt_lock);
636 				iocp->ioc_error = 0;
637 			}
638 			iocp->ioc_count = 0;
639 			qreply(qp, mp);
640 			PT_EXIT_READ(ptsp);
641 			return;
642 		}
643 
644 	default:
645 		/*
646 		 * send other messages to the master
647 		 */
648 		DBG(("put msg on slave's write queue\n"));
649 		(void) putq(qp, mp);
650 		break;
651 	}
652 
653 	PT_EXIT_READ(ptsp);
654 	DBG(("return from ptswput()\n"));
655 }
656 
657 
658 /*
659  * enable the write side of the master. This triggers the
660  * master to send any messages queued on its write side to
661  * the read side of this slave.
662  */
663 static void
664 ptsrsrv(queue_t *qp)
665 {
666 	struct pt_ttys *ptsp;
667 
668 	DBG(("entering ptsrsrv\n"));
669 	ASSERT(qp->q_ptr);
670 
671 	ptsp = (struct pt_ttys *)qp->q_ptr;
672 	PT_ENTER_READ(ptsp);
673 	if (ptsp->ptm_rdq == NULL) {
674 		DBG(("in read srv proc but no master\n"));
675 		PT_EXIT_READ(ptsp);
676 		return;
677 	}
678 	qenable(WR(ptsp->ptm_rdq));
679 	PT_EXIT_READ(ptsp);
680 	DBG(("leaving ptsrsrv\n"));
681 }
682 
683 /*
684  * If there are messages on this queue that can be sent to
685  * master, send them via putnext(). Else, if queued messages
686  * cannot be sent, leave them on this queue. If priority
687  * messages on this queue, send them to master no matter what.
688  */
689 static void
690 ptswsrv(queue_t *qp)
691 {
692 	struct pt_ttys *ptsp;
693 	queue_t *ptm_rdq;
694 	mblk_t *mp;
695 
696 	DBG(("entering ptswsrv\n"));
697 	ASSERT(qp->q_ptr);
698 
699 	ptsp = (struct pt_ttys *)qp->q_ptr;
700 	PT_ENTER_READ(ptsp);
701 	if (ptsp->ptm_rdq == NULL) {
702 		DBG(("in write srv proc but no master\n"));
703 		/*
704 		 * Free messages on the write queue and send
705 		 * NAK for any M_IOCTL type messages to wakeup
706 		 * the user process waiting for ACK/NAK from
707 		 * the ioctl invocation
708 		 */
709 		while ((mp = getq(qp)) != NULL) {
710 			if (mp->b_datap->db_type == M_IOCTL) {
711 				mp->b_datap->db_type = M_IOCNAK;
712 				freemsg(mp->b_cont);
713 				mp->b_cont = NULL;
714 				qreply(qp, mp);
715 			} else
716 				freemsg(mp);
717 		}
718 		PT_EXIT_READ(ptsp);
719 		return;
720 	} else {
721 		ptm_rdq = ptsp->ptm_rdq;
722 	}
723 
724 	/*
725 	 * while there are messages on this write queue...
726 	 */
727 	while ((mp = getq(qp)) != NULL) {
728 		/*
729 		 * if don't have control message and cannot put
730 		 * msg. on master's read queue, put it back on
731 		 * this queue.
732 		 */
733 		if (mp->b_datap->db_type <= QPCTL &&
734 		    !bcanputnext(ptm_rdq, mp->b_band)) {
735 			DBG(("put msg. back on Q\n"));
736 			(void) putbq(qp, mp);
737 			break;
738 		}
739 		/*
740 		 * else send the message up master's stream
741 		 */
742 		DBG(("send message to master\n"));
743 		putnext(ptm_rdq, mp);
744 	}
745 	DBG(("leaving ptswsrv\n"));
746 	PT_EXIT_READ(ptsp);
747 }
748