1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file contains global data and code shared between master and slave parts 28 * of the pseudo-terminal driver. 29 * 30 * Pseudo terminals (or pt's for short) are allocated dynamically. 31 * pt's are put in the global ptms_slots array indexed by minor numbers. 32 * 33 * The slots array is initially small (of the size NPTY_MIN). When more pt's are 34 * needed than the slot array size, the larger slot array is allocated and all 35 * opened pt's move to the new one. 36 * 37 * Resource allocation: 38 * 39 * pt_ttys structures are allocated via pt_ttys_alloc, which uses 40 * kmem_cache_alloc(). 41 * Minor number space is allocated via vmem_alloc() interface. 42 * ptms_slots arrays are allocated via kmem_alloc(). 43 * 44 * Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case 45 * of failure. Also, in anticipation of removing clone device interface to 46 * pseudo-terminal subsystem, minor 0 should not be used. (Potential future 47 * development). 48 * 49 * After the table slot size reaches pt_maxdelta, we stop 2^N extension 50 * algorithm and start extending the slot table size by pt_maxdelta. 51 * 52 * Device entries /dev/pts directory are created dynamically by the 53 * /dev filesystem. We no longer call ddi_create_minor_node() on 54 * behalf of the slave driver. The /dev filesystem creates /dev/pts 55 * nodes based on the pt_ttys array. 56 * 57 * Synchronization: 58 * 59 * All global data synchronization between ptm/pts is done via global 60 * ptms_lock mutex which is implicitly initialized by declaring it global. 61 * 62 * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and 63 * pt_nullmsg) are protected by pt_ttys.pt_lock mutex. 64 * 65 * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks 66 * which allow reader locks to be reacquired by the same thread (usual 67 * reader/writer locks can't be used for that purpose since it is illegal for 68 * a thread to acquire a lock it already holds, even as a reader). The sole 69 * purpose of these macros is to guarantee that the peer queue will not 70 * disappear (due to closing peer) while it is used. It is safe to use 71 * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since 72 * they are not real locks but reference counts). 73 * 74 * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave 75 * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should 76 * be set to appropriate queues *after* qprocson() is called during open (to 77 * prevent peer from accessing the queue with incomplete plumbing) and set to 78 * NULL before qprocsoff() is called during close. Put and service procedures 79 * use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes. 80 * 81 * The pt_nullmsg field is only used in open/close routines and is also 82 * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex 83 * holds. 84 * 85 * Lock Ordering: 86 * 87 * If both ptms_lock and per-pty lock should be held, ptms_lock should always 88 * be entered first, followed by per-pty lock. 89 * 90 * Global functions: 91 * 92 * void ptms_init(void); 93 * 94 * Called by pts/ptm _init entry points. It performes one-time 95 * initialization needed for both pts and ptm. This initialization is done 96 * here and not in ptms_initspace because all these data structures are not 97 * needed if pseudo-terminals are not used in the system. 98 * 99 * struct pt_ttys *pt_ttys_alloc(void); 100 * 101 * Allocate new minor number and pseudo-terminal entry. May sleep. 102 * New minor number is recorded in pt_minor field of the entry returned. 103 * This routine also initializes pt_minor and pt_state fields of the new 104 * pseudo-terminal and puts a pointer to it into ptms_slots array. 105 * 106 * struct pt_ttys *ptms_minor2ptty(minor_t minor) 107 * 108 * Find pt_ttys structure by minor number. 109 * Returns NULL when minor is out of range. 110 * 111 * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid) 112 * 113 * Check if minor refers to an allocated pty in the current zone. 114 * Returns 115 * 0 if not allocated or not for this zone. 116 * 1 if an allocated pty in the current zone. 117 * Also returns owner of pty. 118 * 119 * int ptms_minor_exists(minor_t minor) 120 * Check if minor refers to an allocated pty (in any zone) 121 * Returns 122 * 0 if not an allocated pty 123 * 1 if an allocated pty 124 * 125 * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid) 126 * 127 * Sets the owner associated with a pty. 128 * 129 * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear); 130 * 131 * Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not 132 * set) free pt entry and corresponding slot. 133 * 134 * Tuneables and configuration: 135 * 136 * pt_cnt: minimum number of pseudo-terminals in the system. The system 137 * should provide at least this number of ptys (provided sufficient 138 * memory is available). It is different from the older semantics 139 * of pt_cnt meaning maximum number of ptys. 140 * Set to 0 by default. 141 * 142 * pt_max_pty: Maximum number of pseudo-terminals in the system. The system 143 * should not allocate more ptys than pt_max_pty (although, it may 144 * impose stricter maximum). Zero value means no user-defined 145 * maximum. This is intended to be used as "denial-of-service" 146 * protection. 147 * Set to 0 by default. 148 * 149 * Both pt_cnt and pt_max_pty may be modified during system lifetime 150 * with their semantics preserved. 151 * 152 * pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL. 153 * 154 * pt_ptyofmem: Approximate percentage of system memory that may be 155 * occupied by pty data structures. Initially set to NPTY_PERCENT. 156 * This variable is used once during initialization to estimate 157 * maximum number of ptys in the system. The actual maximum is 158 * determined as minimum of pt_max_pty and calculated value. 159 * 160 * pt_maxdelta: Maximum extension chunk of the slot table. 161 */ 162 163 164 165 #include <sys/types.h> 166 #include <sys/param.h> 167 #include <sys/termios.h> 168 #include <sys/stream.h> 169 #include <sys/stropts.h> 170 #include <sys/kmem.h> 171 #include <sys/ptms.h> 172 #include <sys/stat.h> 173 #include <sys/sunddi.h> 174 #include <sys/ddi.h> 175 #include <sys/bitmap.h> 176 #include <sys/sysmacros.h> 177 #include <sys/ddi_impldefs.h> 178 #include <sys/zone.h> 179 #ifdef DEBUG 180 #include <sys/strlog.h> 181 #endif 182 183 184 /* Initial number of ptms slots */ 185 #define NPTY_INITIAL 16 186 187 #define NPTY_PERCENT 5 188 189 /* Maximum increment of the slot table size */ 190 #define PTY_MAXDELTA 128 191 192 /* 193 * Tuneable variables. 194 */ 195 uint_t pt_cnt = 0; /* Minimum number of ptys */ 196 size_t pt_max_pty = 0; /* Maximum number of ptys */ 197 uint_t pt_init_cnt = NPTY_INITIAL; /* Initial number of ptms slots */ 198 uint_t pt_pctofmem = NPTY_PERCENT; /* Percent of memory to use for ptys */ 199 uint_t pt_maxdelta = PTY_MAXDELTA; /* Max increment for slot table size */ 200 201 /* Other global variables */ 202 203 kmutex_t ptms_lock; /* Global data access lock */ 204 205 /* 206 * Slot array and its management variables 207 */ 208 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */ 209 static size_t ptms_nslots = 0; /* Size of slot array */ 210 static size_t ptms_ptymax = 0; /* Maximum number of ptys */ 211 static size_t ptms_inuse = 0; /* # of ptys currently allocated */ 212 213 dev_info_t *pts_dip = NULL; /* set if slave is attached */ 214 215 static struct kmem_cache *ptms_cache = NULL; /* pty cache */ 216 217 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */ 218 219 static uint_t ptms_roundup(uint_t); 220 static int ptms_constructor(void *, void *, int); 221 static void ptms_destructor(void *, void *); 222 static minor_t ptms_grow(void); 223 224 /* 225 * Total size occupied by one pty. Each pty master/slave pair consumes one 226 * pointer for ptms_slots array, one pt_ttys structure and one empty message 227 * preallocated for pts close. 228 */ 229 230 #define PTY_SIZE (sizeof (struct pt_ttys) + \ 231 sizeof (struct pt_ttys *) + \ 232 sizeof (dblk_t)) 233 234 #ifdef DEBUG 235 int ptms_debug = 0; 236 #define PTMOD_ID 5 237 #endif 238 239 /* 240 * Clear all bits of x except the highest bit 241 */ 242 #define truncate(x) ((x) <= 2 ? (x) : (1 << (highbit(x) - 1))) 243 244 /* 245 * Roundup the number to the nearest power of 2 246 */ 247 static uint_t 248 ptms_roundup(uint_t x) 249 { 250 uint_t p = truncate(x); /* x with non-high bits stripped */ 251 252 /* 253 * If x is a power of 2, return x, otherwise roundup. 254 */ 255 return (p == x ? p : (p * 2)); 256 } 257 258 /* 259 * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is 260 * only called once during system lifetime. Called from ptm or pts _init 261 * routine. 262 */ 263 void 264 ptms_init(void) 265 { 266 mutex_enter(&ptms_lock); 267 268 if (ptms_slots == NULL) { 269 ptms_slots = kmem_zalloc(pt_init_cnt * 270 sizeof (struct pt_ttys *), KM_SLEEP); 271 272 ptms_cache = kmem_cache_create("pty_map", 273 sizeof (struct pt_ttys), 0, ptms_constructor, 274 ptms_destructor, NULL, NULL, NULL, 0); 275 276 ptms_nslots = pt_init_cnt; 277 278 /* Allocate integer space for minor numbers */ 279 ptms_minor_arena = vmem_create("ptms_minor", (void *)1, 280 ptms_nslots, 1, NULL, NULL, NULL, 0, 281 VM_SLEEP | VMC_IDENTIFIER); 282 283 /* 284 * Calculate available number of ptys - how many ptys can we 285 * allocate in pt_pctofmem % of available memory. The value is 286 * rounded up to the nearest power of 2. 287 */ 288 ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) / 289 (100 * PTY_SIZE)); 290 } 291 mutex_exit(&ptms_lock); 292 } 293 294 /* 295 * This routine attaches the pts dip. 296 */ 297 int 298 ptms_attach_slave(void) 299 { 300 if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL) 301 return (-1); 302 303 ASSERT(pts_dip); 304 return (0); 305 } 306 307 /* 308 * Called from /dev fs. Checks if dip is attached, 309 * and if it is, returns its major number. 310 */ 311 major_t 312 ptms_slave_attached(void) 313 { 314 major_t maj = DDI_MAJOR_T_NONE; 315 316 mutex_enter(&ptms_lock); 317 if (pts_dip) 318 maj = ddi_driver_major(pts_dip); 319 mutex_exit(&ptms_lock); 320 321 return (maj); 322 } 323 324 /* 325 * Allocate new minor number and pseudo-terminal entry. Returns the new entry or 326 * NULL if no memory or maximum number of entries reached. 327 */ 328 struct pt_ttys * 329 pt_ttys_alloc(void) 330 { 331 minor_t dminor; 332 struct pt_ttys *pt = NULL; 333 334 mutex_enter(&ptms_lock); 335 336 /* 337 * Always try to allocate new pty when pt_cnt minimum limit is not 338 * achieved. If it is achieved, the maximum is determined by either 339 * user-specified value (if it is non-zero) or our memory estimations - 340 * whatever is less. 341 */ 342 if (ptms_inuse >= pt_cnt) { 343 /* 344 * When system achieved required minimum of ptys, check for the 345 * denial of service limits. 346 * 347 * Since pt_max_pty may be zero, the formula below is used to 348 * avoid conditional expression. It will equal to pt_max_pty if 349 * it is not zero and ptms_ptymax otherwise. 350 */ 351 size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty); 352 353 /* Do not try to allocate more than allowed */ 354 if (ptms_inuse >= min(ptms_ptymax, user_max)) { 355 mutex_exit(&ptms_lock); 356 return (NULL); 357 } 358 } 359 ptms_inuse++; 360 361 /* 362 * Allocate new minor number. If this fails, all slots are busy and 363 * we need to grow the hash. 364 */ 365 dminor = (minor_t)(uintptr_t) 366 vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP); 367 368 if (dminor == 0) { 369 /* Grow the cache and retry allocation */ 370 dminor = ptms_grow(); 371 } 372 373 if (dminor == 0) { 374 /* Not enough memory now */ 375 ptms_inuse--; 376 mutex_exit(&ptms_lock); 377 return (NULL); 378 } 379 380 pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP); 381 if (pt == NULL) { 382 /* Not enough memory - this entry can't be used now. */ 383 vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1); 384 ptms_inuse--; 385 } else { 386 pt->pt_minor = dminor; 387 pt->pt_pid = curproc->p_pid; /* For debugging */ 388 pt->pt_state = (PTMOPEN | PTLOCK); 389 pt->pt_zoneid = getzoneid(); 390 pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */ 391 pt->pt_rgid = 0; 392 ASSERT(ptms_slots[dminor - 1] == NULL); 393 ptms_slots[dminor - 1] = pt; 394 } 395 396 mutex_exit(&ptms_lock); 397 return (pt); 398 } 399 400 /* 401 * Get pt_ttys structure by minor number. 402 * Returns NULL when minor is out of range. 403 */ 404 struct pt_ttys * 405 ptms_minor2ptty(minor_t dminor) 406 { 407 struct pt_ttys *pt = NULL; 408 409 ASSERT(mutex_owned(&ptms_lock)); 410 if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL) 411 pt = ptms_slots[dminor - 1]; 412 413 return (pt); 414 } 415 416 /* 417 * Invoked in response to chown on /dev/pts nodes to change the 418 * permission on a pty 419 */ 420 void 421 ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid) 422 { 423 struct pt_ttys *pt; 424 425 ASSERT(ruid >= 0); 426 ASSERT(rgid >= 0); 427 428 if (ruid < 0 || rgid < 0) 429 return; 430 431 /* 432 * /dev/pts/0 is not used, but some applications may check it. There 433 * is no pty backing it - so we have nothing to do. 434 */ 435 if (dminor == 0) 436 return; 437 438 mutex_enter(&ptms_lock); 439 pt = ptms_minor2ptty(dminor); 440 if (pt != NULL && pt->pt_zoneid == getzoneid()) { 441 pt->pt_ruid = ruid; 442 pt->pt_rgid = rgid; 443 } 444 mutex_exit(&ptms_lock); 445 } 446 447 /* 448 * Given a ptm/pts minor number 449 * returns: 450 * 1 if the pty is allocated to the current zone. 451 * 0 otherwise 452 * 453 * If the pty is allocated to the current zone, it also returns the owner. 454 */ 455 int 456 ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid) 457 { 458 struct pt_ttys *pt; 459 int ret; 460 461 ASSERT(ruid); 462 ASSERT(rgid); 463 464 *ruid = (uid_t)-1; 465 *rgid = (gid_t)-1; 466 467 /* 468 * /dev/pts/0 is not used, but some applications may check it, so create 469 * it also. Report the owner as root. It belongs to all zones. 470 */ 471 if (dminor == 0) { 472 *ruid = 0; 473 *rgid = 0; 474 return (1); 475 } 476 477 ret = 0; 478 mutex_enter(&ptms_lock); 479 pt = ptms_minor2ptty(dminor); 480 if (pt != NULL) { 481 ASSERT(pt->pt_ruid >= 0); 482 ASSERT(pt->pt_rgid >= 0); 483 if (pt->pt_zoneid == getzoneid()) { 484 ret = 1; 485 *ruid = pt->pt_ruid; 486 *rgid = pt->pt_rgid; 487 } 488 } 489 mutex_exit(&ptms_lock); 490 491 return (ret); 492 } 493 494 /* 495 * Given a ptm/pts minor number 496 * returns: 497 * 0 if the pty is not allocated 498 * 1 if the pty is allocated 499 */ 500 int 501 ptms_minor_exists(minor_t dminor) 502 { 503 int ret; 504 505 mutex_enter(&ptms_lock); 506 ret = ptms_minor2ptty(dminor) ? 1 : 0; 507 mutex_exit(&ptms_lock); 508 509 return (ret); 510 } 511 512 /* 513 * Close the pt and clear flags_to_clear. 514 * If pt device is not opened by someone else, free it and clear its slot. 515 */ 516 void 517 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear) 518 { 519 uint_t flags; 520 521 ASSERT(MUTEX_NOT_HELD(&ptms_lock)); 522 ASSERT(pt != NULL); 523 524 mutex_enter(&ptms_lock); 525 526 mutex_enter(&pt->pt_lock); 527 pt->pt_state &= ~flags_to_clear; 528 flags = pt->pt_state; 529 mutex_exit(&pt->pt_lock); 530 531 if (! (flags & (PTMOPEN | PTSOPEN))) { 532 /* No one owns the entry - free it */ 533 534 ASSERT(pt->ptm_rdq == NULL); 535 ASSERT(pt->pts_rdq == NULL); 536 ASSERT(pt->pt_nullmsg == NULL); 537 ASSERT(pt->pt_refcnt == 0); 538 ASSERT(pt->pt_minor <= ptms_nslots); 539 ASSERT(ptms_slots[pt->pt_minor - 1] == pt); 540 ASSERT(ptms_inuse > 0); 541 542 ptms_inuse--; 543 544 pt->pt_pid = 0; 545 546 ptms_slots[pt->pt_minor - 1] = NULL; 547 /* Return minor number to the pool of minors */ 548 vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1); 549 /* Return pt to the cache */ 550 kmem_cache_free(ptms_cache, pt); 551 } 552 mutex_exit(&ptms_lock); 553 } 554 555 /* 556 * Allocate another slot table twice as large as the original one (limited to 557 * global maximum). Migrate all pt to the new slot table and free the original 558 * one. Create more /devices entries for new devices. 559 */ 560 static minor_t 561 ptms_grow() 562 { 563 minor_t old_size = ptms_nslots; 564 minor_t delta = MIN(pt_maxdelta, old_size); 565 minor_t new_size = old_size + delta; 566 struct pt_ttys **ptms_old = ptms_slots; 567 struct pt_ttys **ptms_new; 568 void *vaddr; /* vmem_add return value */ 569 570 ASSERT(MUTEX_HELD(&ptms_lock)); 571 572 DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse); 573 574 /* Allocate new ptms array */ 575 ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *), 576 KM_NOSLEEP); 577 if (ptms_new == NULL) 578 return ((minor_t)0); 579 580 /* Increase clone index space */ 581 vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1), 582 new_size - old_size, VM_NOSLEEP); 583 584 if (vaddr == NULL) { 585 kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *)); 586 return ((minor_t)0); 587 } 588 589 /* Migrate pt entries to a new location */ 590 ptms_nslots = new_size; 591 bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *)); 592 ptms_slots = ptms_new; 593 kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *)); 594 595 /* Allocate minor number and return it */ 596 return ((minor_t)(uintptr_t) 597 vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP)); 598 } 599 600 /*ARGSUSED*/ 601 static int 602 ptms_constructor(void *maddr, void *arg, int kmflags) 603 { 604 struct pt_ttys *pt = maddr; 605 606 pt->pts_rdq = NULL; 607 pt->ptm_rdq = NULL; 608 pt->pt_nullmsg = NULL; 609 pt->pt_pid = 0; 610 pt->pt_minor = 0; 611 pt->pt_refcnt = 0; 612 pt->pt_state = 0; 613 pt->pt_zoneid = GLOBAL_ZONEID; 614 615 cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL); 616 mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL); 617 return (0); 618 } 619 620 /*ARGSUSED*/ 621 static void 622 ptms_destructor(void *maddr, void *arg) 623 { 624 struct pt_ttys *pt = maddr; 625 626 ASSERT(pt->pt_refcnt == 0); 627 ASSERT(pt->pt_state == 0); 628 ASSERT(pt->ptm_rdq == NULL); 629 ASSERT(pt->pts_rdq == NULL); 630 631 mutex_destroy(&pt->pt_lock); 632 cv_destroy(&pt->pt_cv); 633 } 634 635 #ifdef DEBUG 636 void 637 ptms_log(char *str, uint_t arg) 638 { 639 if (ptms_debug) { 640 if (ptms_debug & 2) 641 cmn_err(CE_CONT, str, arg); 642 if (ptms_debug & 4) 643 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR, 644 str, arg); 645 else 646 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg); 647 } 648 } 649 650 void 651 ptms_logp(char *str, uintptr_t arg) 652 { 653 if (ptms_debug) { 654 if (ptms_debug & 2) 655 cmn_err(CE_CONT, str, arg); 656 if (ptms_debug & 4) 657 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR, 658 str, arg); 659 else 660 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg); 661 } 662 } 663 #endif 664