xref: /illumos-gate/usr/src/uts/common/io/ptms_conf.c (revision 20a7641f9918de8574b8b3b47dbe35c4bfc78df1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2021 Oxide Computer Company
25  */
26 
27 /*
28  * PSEUDO-TERMINAL COMMON DATA AND ROUTINES (PTM, PTS)
29  *
30  * This file contains global data and code shared between manager and
31  * subsidiary parts of the pseudo-terminal driver.
32  *
33  * Pseudo-terminals (or ptys for short) are allocated dynamically.
34  * ptys are put in the global ptms_slots array indexed by minor numbers.
35  *
36  * The slots array is initially small (of the size NPTY_MIN). When more ptys are
37  * needed than the slot array size, the larger slot array is allocated and all
38  * opened ptys move to the new one.
39  *
40  *
41  * RESOURCE ALLOCATION
42  *
43  * - pt_ttys structures are allocated via pt_ttys_alloc, which uses
44  *   kmem_cache_alloc().
45  * - Minor number space is allocated via vmem_alloc() interface.
46  * - ptms_slots arrays are allocated via kmem_alloc().
47  *
48  * Minors start from 1 instead of 0, because vmem_alloc() returns 0 in case of
49  * failure.  Also, in anticipation of removing the clone device interface to
50  * pseudo-terminal subsystem, minor 0 should not be used. (Potential future
51  * development).
52  *
53  * After the table slot size reaches pt_maxdelta, we stop 2^N extension
54  * algorithm and start extending the slot table size by pt_maxdelta.
55  *
56  * Device entries /dev/pts directory are created dynamically by the /dev
57  * filesystem.  We no longer call ddi_create_minor_node() on behalf of the
58  * subsidiary driver.  The /dev filesystem creates /dev/pts nodes based on the
59  * pt_ttys array.
60  *
61  *
62  * SYNCHRONIZATION
63  *
64  * All global data synchronization between ptm/pts is done via global ptms_lock
65  * mutex which is implicitly initialized by declaring it global.
66  *
67  * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
68  * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
69  *
70  * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
71  * which allow reader locks to be reacquired by the same thread (usual
72  * reader/writer locks can't be used for that purpose since it is illegal for a
73  * thread to acquire a lock it already holds, even as a reader). The sole
74  * purpose of these macros is to guarantee that the peer queue will not
75  * disappear (due to closing peer) while it is used. It is safe to use
76  * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
77  * they are not real locks but reference counts).
78  *
79  * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in manager/subsidiary
80  * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
81  * be set to appropriate queues *after* qprocson() is called during open (to
82  * prevent peer from accessing the queue with incomplete plumbing) and set to
83  * NULL before qprocsoff() is called during close. Put and service procedures
84  * use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
85  *
86  * The pt_nullmsg field is only used in open/close routines and is also
87  * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
88  * holds.
89  *
90  *
91  * LOCK ORDERING
92  *
93  * If both ptms_lock and per-pty lock should be held, ptms_lock should always
94  * be entered first, followed by per-pty lock.
95  *
96  *
97  * GLOBAL FUNCTIONS
98  *
99  * void ptms_init(void);
100  *
101  *	Called by pts/ptm _init entry points. It performes one-time
102  *	initialization needed for both pts and ptm. This initialization is done
103  *	here and not in ptms_initspace because all these data structures are not
104  *	needed if pseudo-terminals are not used in the system.
105  *
106  * struct pt_ttys *pt_ttys_alloc(void);
107  *
108  *	Allocate new minor number and pseudo-terminal entry. May sleep.
109  *	New minor number is recorded in pt_minor field of the entry returned.
110  *	This routine also initializes pt_minor and pt_state fields of the new
111  *	pseudo-terminal and puts a pointer to it into ptms_slots array.
112  *
113  * struct pt_ttys *ptms_minor2ptty(minor_t minor)
114  *
115  *	Find pt_ttys structure by minor number.
116  *	Returns NULL when minor is out of range.
117  *
118  * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid)
119  *
120  *	Check if minor refers to an allocated pty in the current zone.
121  *	Returns
122  *		 0 if not allocated or not for this zone.
123  *		 1 if an allocated pty in the current zone.
124  *	Also returns owner of pty.
125  *
126  * int ptms_minor_exists(minor_t minor)
127  *
128  *	Check if minor refers to an allocated pty (in any zone)
129  *	Returns
130  *		0 if not an allocated pty
131  *		1 if an allocated pty
132  *
133  * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid)
134  *
135  *	Sets the owner associated with a pty.
136  *
137  * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
138  *
139  *	Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
140  *	set) free pt entry and corresponding slot.
141  *
142  *
143  * TUNEABLES AND CONFIGURATION
144  *
145  *	pt_cnt: minimum number of pseudo-terminals in the system. The system
146  *		should provide at least this number of ptys (provided sufficient
147  *		memory is available). It is different from the older semantics
148  *		of pt_cnt meaning maximum number of ptys.
149  *		Set to 0 by default.
150  *
151  *	pt_max_pty: Maximum number of pseudo-terminals in the system. The system
152  *		should not allocate more ptys than pt_max_pty (although, it may
153  *		impose stricter maximum). Zero value means no user-defined
154  *		maximum. This is intended to be used as "denial-of-service"
155  *		protection.
156  *		Set to 0 by default.
157  *
158  *		Both pt_cnt and pt_max_pty may be modified during system
159  *		lifetime with their semantics preserved.
160  *
161  *	pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
162  *
163  *	pt_ptyofmem: Approximate percentage of system memory that may be
164  *		occupied by pty data structures. Initially set to NPTY_PERCENT.
165  *		This variable is used once during initialization to estimate
166  *		maximum number of ptys in the system. The actual maximum is
167  *		determined as minimum of pt_max_pty and calculated value.
168  *
169  *	pt_maxdelta: Maximum extension chunk of the slot table.
170  */
171 
172 
173 
174 #include <sys/types.h>
175 #include <sys/param.h>
176 #include <sys/termios.h>
177 #include <sys/stream.h>
178 #include <sys/stropts.h>
179 #include <sys/kmem.h>
180 #include <sys/ptms.h>
181 #include <sys/stat.h>
182 #include <sys/sunddi.h>
183 #include <sys/ddi.h>
184 #include <sys/bitmap.h>
185 #include <sys/sysmacros.h>
186 #include <sys/ddi_impldefs.h>
187 #include <sys/zone.h>
188 #ifdef DEBUG
189 #include <sys/strlog.h>
190 #endif
191 
192 
193 /* Initial number of ptms slots */
194 #define	NPTY_INITIAL 16
195 
196 #define	NPTY_PERCENT 5
197 
198 /* Maximum increment of the slot table size */
199 #define	PTY_MAXDELTA 128
200 
201 /*
202  * Tuneable variables.
203  */
204 uint_t	pt_cnt = 0;			/* Minimum number of ptys */
205 size_t	pt_max_pty = 0;			/* Maximum number of ptys */
206 uint_t	pt_init_cnt = NPTY_INITIAL;	/* Initial number of ptms slots */
207 uint_t	pt_pctofmem = NPTY_PERCENT;	/* Percent of memory to use for ptys */
208 uint_t	pt_maxdelta = PTY_MAXDELTA;	/* Max increment for slot table size */
209 
210 /* Other global variables */
211 
212 kmutex_t ptms_lock;			/* Global data access lock */
213 
214 /*
215  * Slot array and its management variables
216  */
217 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */
218 static size_t ptms_nslots = 0;		/* Size of slot array */
219 static size_t ptms_ptymax = 0;		/* Maximum number of ptys */
220 static size_t ptms_inuse = 0;		/* # of ptys currently allocated */
221 
222 dev_info_t *pts_dip = NULL;		/* Set if subsidiary is attached */
223 
224 static struct kmem_cache *ptms_cache = NULL;	/* pty cache */
225 
226 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */
227 
228 static uint_t ptms_roundup(uint_t);
229 static int ptms_constructor(void *, void *, int);
230 static void ptms_destructor(void *, void *);
231 static minor_t ptms_grow(void);
232 
233 /*
234  * Total size occupied by one pty. Each pty manager/subsidiary pair consumes
235  * one pointer for ptms_slots array, one pt_ttys structure, and one empty
236  * message preallocated for pts close.
237  */
238 
239 #define	PTY_SIZE (sizeof (struct pt_ttys) + \
240     sizeof (struct pt_ttys *) + \
241     sizeof (dblk_t))
242 
243 #ifdef DEBUG
244 int ptms_debug = 0;
245 #define	PTMOD_ID 5
246 #endif
247 
248 /*
249  * Clear all bits of x except the highest bit
250  */
251 #define	truncate(x)	((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))
252 
253 /*
254  * Roundup the number to the nearest power of 2
255  */
256 static uint_t
257 ptms_roundup(uint_t x)
258 {
259 	uint_t p = truncate(x);	/* x with non-high bits stripped */
260 
261 	/*
262 	 * If x is a power of 2, return x, otherwise roundup.
263 	 */
264 	return (p == x ? p : (p * 2));
265 }
266 
267 /*
268  * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
269  * only called once during system lifetime. Called from ptm or pts _init
270  * routine.
271  */
272 void
273 ptms_init(void)
274 {
275 	mutex_enter(&ptms_lock);
276 
277 	if (ptms_slots == NULL) {
278 		ptms_slots = kmem_zalloc(pt_init_cnt *
279 		    sizeof (struct pt_ttys *), KM_SLEEP);
280 
281 		ptms_cache = kmem_cache_create("pty_map",
282 		    sizeof (struct pt_ttys), 0, ptms_constructor,
283 		    ptms_destructor, NULL, NULL, NULL, 0);
284 
285 		ptms_nslots = pt_init_cnt;
286 
287 		/* Allocate integer space for minor numbers */
288 		ptms_minor_arena = vmem_create("ptms_minor", (void *)1,
289 		    ptms_nslots, 1, NULL, NULL, NULL, 0,
290 		    VM_SLEEP | VMC_IDENTIFIER);
291 
292 		/*
293 		 * Calculate available number of ptys - how many ptys can we
294 		 * allocate in pt_pctofmem % of available memory. The value is
295 		 * rounded up to the nearest power of 2.
296 		 */
297 		ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) /
298 		    (100 * PTY_SIZE));
299 	}
300 	mutex_exit(&ptms_lock);
301 }
302 
303 /*
304  * This routine attaches the pts dip.
305  */
306 int
307 ptms_attach_subsidiary(void)
308 {
309 	if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL)
310 		return (-1);
311 
312 	ASSERT(pts_dip);
313 	return (0);
314 }
315 
316 /*
317  * Called from /dev fs. Checks if dip is attached,
318  * and if it is, returns its major number.
319  */
320 major_t
321 ptms_subsidiary_attached(void)
322 {
323 	major_t maj = DDI_MAJOR_T_NONE;
324 
325 	mutex_enter(&ptms_lock);
326 	if (pts_dip)
327 		maj = ddi_driver_major(pts_dip);
328 	mutex_exit(&ptms_lock);
329 
330 	return (maj);
331 }
332 
333 /*
334  * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
335  * NULL if no memory or maximum number of entries reached.
336  */
337 struct pt_ttys *
338 pt_ttys_alloc(void)
339 {
340 	minor_t dminor;
341 	struct pt_ttys *pt = NULL;
342 
343 	mutex_enter(&ptms_lock);
344 
345 	/*
346 	 * Always try to allocate new pty when pt_cnt minimum limit is not
347 	 * achieved. If it is achieved, the maximum is determined by either
348 	 * user-specified value (if it is non-zero) or our memory estimations -
349 	 * whatever is less.
350 	 */
351 	if (ptms_inuse >= pt_cnt) {
352 		/*
353 		 * When system achieved required minimum of ptys, check for the
354 		 *   denial of service limits.
355 		 *
356 		 * Since pt_max_pty may be zero, the formula below is used to
357 		 * avoid conditional expression. It will equal to pt_max_pty if
358 		 * it is not zero and ptms_ptymax otherwise.
359 		 */
360 		size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty);
361 
362 		/* Do not try to allocate more than allowed */
363 		if (ptms_inuse >= min(ptms_ptymax, user_max)) {
364 			mutex_exit(&ptms_lock);
365 			return (NULL);
366 		}
367 	}
368 	ptms_inuse++;
369 
370 	/*
371 	 * Allocate new minor number. If this fails, all slots are busy and
372 	 * we need to grow the hash.
373 	 */
374 	dminor = (minor_t)(uintptr_t)
375 	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP);
376 
377 	if (dminor == 0) {
378 		/* Grow the cache and retry allocation */
379 		dminor = ptms_grow();
380 	}
381 
382 	if (dminor == 0) {
383 		/* Not enough memory now */
384 		ptms_inuse--;
385 		mutex_exit(&ptms_lock);
386 		return (NULL);
387 	}
388 
389 	pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP);
390 	if (pt == NULL) {
391 		/* Not enough memory - this entry can't be used now. */
392 		vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1);
393 		ptms_inuse--;
394 	} else {
395 		pt->pt_minor = dminor;
396 		pt->pt_pid = curproc->p_pid;	/* For debugging */
397 		pt->pt_state = (PTMOPEN | PTLOCK);
398 		pt->pt_zoneid = getzoneid();
399 		pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */
400 		pt->pt_rgid = 0;
401 		ASSERT(ptms_slots[dminor - 1] == NULL);
402 		ptms_slots[dminor - 1] = pt;
403 	}
404 
405 	mutex_exit(&ptms_lock);
406 	return (pt);
407 }
408 
409 /*
410  * Get pt_ttys structure by minor number.
411  * Returns NULL when minor is out of range.
412  */
413 struct pt_ttys *
414 ptms_minor2ptty(minor_t dminor)
415 {
416 	struct pt_ttys *pt = NULL;
417 
418 	ASSERT(mutex_owned(&ptms_lock));
419 	if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL)
420 		pt = ptms_slots[dminor - 1];
421 
422 	return (pt);
423 }
424 
425 /*
426  * Invoked in response to chown on /dev/pts nodes to change the
427  * permission on a pty
428  */
429 void
430 ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid)
431 {
432 	struct pt_ttys *pt;
433 
434 	if (ruid > MAXUID || rgid > MAXUID)
435 		return;
436 
437 	/*
438 	 * /dev/pts/0 is not used, but some applications may check it. There
439 	 * is no pty backing it - so we have nothing to do.
440 	 */
441 	if (dminor == 0)
442 		return;
443 
444 	mutex_enter(&ptms_lock);
445 	pt = ptms_minor2ptty(dminor);
446 	if (pt != NULL && pt->pt_zoneid == getzoneid()) {
447 		pt->pt_ruid = ruid;
448 		pt->pt_rgid = rgid;
449 	}
450 	mutex_exit(&ptms_lock);
451 }
452 
453 /*
454  * Given a ptm/pts minor number
455  * returns:
456  *	1 if the pty is allocated to the current zone.
457  *	0 otherwise
458  *
459  * If the pty is allocated to the current zone, it also returns the owner.
460  */
461 int
462 ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid)
463 {
464 	struct pt_ttys *pt;
465 	int ret;
466 
467 	ASSERT(ruid);
468 	ASSERT(rgid);
469 
470 	*ruid = (uid_t)-1;
471 	*rgid = (gid_t)-1;
472 
473 	/*
474 	 * /dev/pts/0 is not used, but some applications may check it, so create
475 	 * it also. Report the owner as root. It belongs to all zones.
476 	 */
477 	if (dminor == 0) {
478 		*ruid = 0;
479 		*rgid = 0;
480 		return (1);
481 	}
482 
483 	ret = 0;
484 	mutex_enter(&ptms_lock);
485 	pt = ptms_minor2ptty(dminor);
486 	if (pt != NULL) {
487 		ASSERT(pt->pt_ruid <= MAXUID);
488 		ASSERT(pt->pt_rgid <= MAXUID);
489 		if (pt->pt_zoneid == getzoneid()) {
490 			ret = 1;
491 			*ruid = pt->pt_ruid;
492 			*rgid = pt->pt_rgid;
493 		}
494 	}
495 	mutex_exit(&ptms_lock);
496 
497 	return (ret);
498 }
499 
500 /*
501  * Given a ptm/pts minor number
502  * returns:
503  *	0 if the pty is not allocated
504  *	1 if the pty is allocated
505  */
506 int
507 ptms_minor_exists(minor_t dminor)
508 {
509 	int ret;
510 
511 	mutex_enter(&ptms_lock);
512 	ret = ptms_minor2ptty(dminor) ? 1 : 0;
513 	mutex_exit(&ptms_lock);
514 
515 	return (ret);
516 }
517 
518 /*
519  * Close the pt and clear flags_to_clear.
520  * If pt device is not opened by someone else, free it and clear its slot.
521  */
522 void
523 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear)
524 {
525 	uint_t flags;
526 
527 	ASSERT(MUTEX_NOT_HELD(&ptms_lock));
528 	ASSERT(pt != NULL);
529 
530 	mutex_enter(&ptms_lock);
531 
532 	mutex_enter(&pt->pt_lock);
533 	pt->pt_state &= ~flags_to_clear;
534 	flags = pt->pt_state;
535 	mutex_exit(&pt->pt_lock);
536 
537 	if (! (flags & (PTMOPEN | PTSOPEN))) {
538 		/* No one owns the entry - free it */
539 
540 		ASSERT(pt->ptm_rdq == NULL);
541 		ASSERT(pt->pts_rdq == NULL);
542 		ASSERT(pt->pt_nullmsg == NULL);
543 		ASSERT(pt->pt_refcnt == 0);
544 		ASSERT(pt->pt_minor <= ptms_nslots);
545 		ASSERT(ptms_slots[pt->pt_minor - 1] == pt);
546 		ASSERT(ptms_inuse > 0);
547 
548 		ptms_inuse--;
549 
550 		pt->pt_pid = 0;
551 
552 		ptms_slots[pt->pt_minor - 1] = NULL;
553 		/* Return minor number to the pool of minors */
554 		vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1);
555 		/* Return pt to the cache */
556 		kmem_cache_free(ptms_cache, pt);
557 	}
558 	mutex_exit(&ptms_lock);
559 }
560 
561 /*
562  * Allocate another slot table twice as large as the original one (limited to
563  * global maximum). Migrate all pt to the new slot table and free the original
564  * one. Create more /devices entries for new devices.
565  */
566 static minor_t
567 ptms_grow()
568 {
569 	minor_t old_size = ptms_nslots;
570 	minor_t delta = MIN(pt_maxdelta, old_size);
571 	minor_t new_size = old_size + delta;
572 	struct pt_ttys **ptms_old = ptms_slots;
573 	struct pt_ttys **ptms_new;
574 	void  *vaddr;			/* vmem_add return value */
575 
576 	ASSERT(MUTEX_HELD(&ptms_lock));
577 
578 	DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse);
579 
580 	/* Allocate new ptms array */
581 	ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *),
582 	    KM_NOSLEEP);
583 	if (ptms_new == NULL)
584 		return ((minor_t)0);
585 
586 	/* Increase clone index space */
587 	vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1),
588 	    new_size - old_size, VM_NOSLEEP);
589 
590 	if (vaddr == NULL) {
591 		kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
592 		return ((minor_t)0);
593 	}
594 
595 	/* Migrate pt entries to a new location */
596 	ptms_nslots = new_size;
597 	bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *));
598 	ptms_slots = ptms_new;
599 	kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *));
600 
601 	/* Allocate minor number and return it */
602 	return ((minor_t)(uintptr_t)
603 	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP));
604 }
605 
606 /*ARGSUSED*/
607 static int
608 ptms_constructor(void *maddr, void *arg, int kmflags)
609 {
610 	struct pt_ttys *pt = maddr;
611 
612 	pt->pts_rdq = NULL;
613 	pt->ptm_rdq = NULL;
614 	pt->pt_nullmsg = NULL;
615 	pt->pt_pid = 0;
616 	pt->pt_minor = 0;
617 	pt->pt_refcnt = 0;
618 	pt->pt_state = 0;
619 	pt->pt_zoneid = GLOBAL_ZONEID;
620 
621 	cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL);
622 	mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL);
623 	return (0);
624 }
625 
626 /*ARGSUSED*/
627 static void
628 ptms_destructor(void *maddr, void *arg)
629 {
630 	struct pt_ttys *pt = maddr;
631 
632 	ASSERT(pt->pt_refcnt == 0);
633 	ASSERT(pt->pt_state == 0);
634 	ASSERT(pt->ptm_rdq == NULL);
635 	ASSERT(pt->pts_rdq == NULL);
636 
637 	mutex_destroy(&pt->pt_lock);
638 	cv_destroy(&pt->pt_cv);
639 }
640 
641 #ifdef DEBUG
642 void
643 ptms_log(char *str, uint_t arg)
644 {
645 	if (ptms_debug) {
646 		if (ptms_debug & 2)
647 			cmn_err(CE_CONT, str, arg);
648 		if (ptms_debug & 4)
649 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
650 			    str, arg);
651 		else
652 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
653 	}
654 }
655 
656 void
657 ptms_logp(char *str, uintptr_t arg)
658 {
659 	if (ptms_debug) {
660 		if (ptms_debug & 2)
661 			cmn_err(CE_CONT, str, arg);
662 		if (ptms_debug & 4)
663 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
664 			    str, arg);
665 		else
666 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
667 	}
668 }
669 #endif
670