xref: /illumos-gate/usr/src/uts/common/io/ppp/spppcomp/zlib.c (revision 88f8b78a88cbdc6d8c1af5c3e54bc49d25095c98)
1 /*
2  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Updated from zlib-1.0.4 to zlib-1.1.3 by James Carlson.
8  *
9  * This file is derived from various .h and .c files from the zlib-1.0.4
10  * distribution by Jean-loup Gailly and Mark Adler, with some additions
11  * by Paul Mackerras to aid in implementing Deflate compression and
12  * decompression for PPP packets.  See zlib.h for conditions of
13  * distribution and use.
14  *
15  * Changes that have been made include:
16  * - added Z_PACKET_FLUSH (see zlib.h for details)
17  * - added inflateIncomp and deflateOutputPending
18  * - allow strm->next_out to be NULL, meaning discard the output
19  *
20  * $Id: zlib.c,v 1.11 1998/09/13 23:37:12 paulus Exp $
21  */
22 
23 #pragma ident	"%Z%%M%	%I%	%E% SMI"
24 
25 /*
26  *  ==FILEVERSION 971210==
27  *
28  * This marker is used by the Linux installation script to determine
29  * whether an up-to-date version of this file is already installed.
30  */
31 
32 #define	NO_DUMMY_DECL
33 #define	NO_ZCFUNCS
34 #define	MY_ZCALLOC
35 
36 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
37 #define	inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
38 #endif
39 
40 
41 /* +++ zutil.h */
42 /*
43  *
44  * zutil.h -- internal interface and configuration of the compression library
45  * Copyright (C) 1995-1998 Jean-loup Gailly.
46  * For conditions of distribution and use, see copyright notice in zlib.h
47  */
48 
49 /*
50  * WARNING: this file should *not* be used by applications. It is part
51  * of the implementation of the compression library and is subject to
52  * change. Applications should only use zlib.h.
53  */
54 
55 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
56 
57 #ifndef _Z_UTIL_H
58 #define	_Z_UTIL_H
59 
60 #include "zlib.h"
61 
62 #if defined(KERNEL) || defined(_KERNEL)
63 /* Assume this is a *BSD or SVR4 kernel */
64 #include <sys/types.h>
65 #include <sys/time.h>
66 #include <sys/systm.h>
67 #ifdef SOL2
68 #include <sys/cmn_err.h>
69 #endif
70 #undef u
71 #define	HAVE_MEMCPY
72 #define	memcmp		bcmp
73 
74 #else
75 #if defined(__KERNEL__)
76 /* Assume this is a Linux kernel */
77 #include <linux/string.h>
78 #define	HAVE_MEMCPY
79 
80 #else /* not kernel */
81 
82 #include <stddef.h>
83 #ifdef NO_ERRNO_H
84 extern int errno;
85 #else
86 #include <errno.h>
87 #endif
88 #ifdef STDC
89 #include <string.h>
90 #include <stdlib.h>
91 #endif
92 #endif /* __KERNEL__ */
93 #endif /* _KERNEL || KERNEL */
94 
95 #ifndef local
96 #define	local static
97 #endif
98 /* compile with -Dlocal if your debugger can't find static symbols */
99 
100 typedef unsigned char  uch;
101 typedef uch FAR uchf;
102 typedef unsigned short ush;
103 typedef ush FAR ushf;
104 typedef unsigned long  ulg;
105 
106 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
107 /* (size given to avoid silly warnings with Visual C++) */
108 
109 #define	ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
110 
111 #define	ERR_RETURN(strm, err) \
112 	return (strm->msg = ERR_MSG(err), (err))
113 /* To be used only when the state is known to be valid */
114 
115 	/* common constants */
116 
117 #ifndef DEF_WBITS
118 #define	DEF_WBITS MAX_WBITS
119 #endif
120 /* default windowBits for decompression. MAX_WBITS is for compression only */
121 
122 #if MAX_MEM_LEVEL >= 8
123 #define	DEF_MEM_LEVEL 8
124 #else
125 #define	DEF_MEM_LEVEL  MAX_MEM_LEVEL
126 #endif
127 /* default memLevel */
128 
129 #define	STORED_BLOCK 0
130 #define	STATIC_TREES 1
131 #define	DYN_TREES    2
132 /* The three kinds of block type */
133 
134 #define	MIN_MATCH  3
135 #define	MAX_MATCH  258
136 /* The minimum and maximum match lengths */
137 
138 #define	PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
139 
140 	/* target dependencies */
141 
142 #ifdef MSDOS
143 #define	OS_CODE  0x00
144 #ifdef __TURBOC__
145 #include <alloc.h>
146 #else /* MSC or DJGPP */
147 #include <malloc.h>
148 #endif
149 #endif
150 
151 #ifdef OS2
152 #define	OS_CODE  0x06
153 #endif
154 
155 #ifdef WIN32 /* Window 95 & Windows NT */
156 #define	OS_CODE  0x0b
157 #endif
158 
159 #if defined(VAXC) || defined(VMS)
160 #define	OS_CODE  0x02
161 #define	F_OPEN(name, mode) \
162 	fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
163 #endif
164 
165 #ifdef AMIGA
166 #define	OS_CODE  0x01
167 #endif
168 
169 #if defined(ATARI) || defined(atarist)
170 #define	OS_CODE  0x05
171 #endif
172 
173 #ifdef MACOS
174 #define	OS_CODE  0x07
175 #endif
176 
177 #ifdef __50SERIES /* Prime/PRIMOS */
178 #define	OS_CODE  0x0F
179 #endif
180 
181 #ifdef TOPS20
182 #define	OS_CODE  0x0a
183 #endif
184 
185 #if defined(_BEOS_) || defined(RISCOS)
186 #define	fdopen(fd, mode) NULL /* No fdopen() */
187 #endif
188 
189 	/* Common defaults */
190 
191 #ifndef OS_CODE
192 #define	OS_CODE  0x03  /* assume Unix */
193 #endif
194 
195 #ifndef F_OPEN
196 #define	F_OPEN(name, mode) fopen((name), (mode))
197 #endif
198 
199 	/* functions */
200 
201 #ifdef HAVE_STRERROR
202 extern char *strerror OF((int));
203 #define	zstrerror(errnum) strerror(errnum)
204 #else
205 #define	zstrerror(errnum) ""
206 #endif
207 
208 #if defined(pyr)
209 #define	NO_MEMCPY
210 #endif
211 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
212 /*
213  * Use our own functions for small and medium model with MSC <= 5.0.
214  * You may have to use the same strategy for Borland C (untested).
215  */
216 #define	NO_MEMCPY
217 #endif
218 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
219 #define	HAVE_MEMCPY
220 #endif
221 #ifdef HAVE_MEMCPY
222 #ifdef SMALL_MEDIUM /* MSDOS small or medium model */
223 #define	zmemcpy _fmemcpy
224 #define	zmemcmp _fmemcmp
225 #define	zmemzero(dest, len) _fmemset(dest, 0, len)
226 #else
227 #define	zmemcpy (void) memcpy
228 #define	zmemcmp memcmp
229 #define	zmemzero(dest, len) (void) memset(dest, 0, len)
230 #endif
231 #else
232 extern void zmemcpy  OF((Bytef* dest, const Bytef* source, uInt len));
233 extern int  zmemcmp  OF((const Bytef* s1, const Bytef* s2, uInt len));
234 extern void zmemzero OF((Bytef* dest, uInt len));
235 #endif
236 
237 /* Diagnostic functions */
238 #ifdef DEBUG_ZLIB
239 #include <stdio.h>
240 #ifndef verbose
241 #define	verbose 0
242 #endif
243 extern void z_error    OF((char *m));
244 #define	Assert(cond, msg) { if (!(cond)) z_error(msg); }
245 #define	Trace(x) {if (z_verbose >= 0) fprintf x; }
246 #define	Tracev(x) {if (z_verbose > 0) fprintf x; }
247 #define	Tracevv(x) {if (z_verbose > 1) fprintf x; }
248 #define	Tracec(c, x) {if (z_verbose > 0 && (c)) fprintf x; }
249 #define	Tracecv(c, x) {if (z_verbose > 1 && (c)) fprintf x; }
250 #else
251 #if defined(SOL2) && defined(DEBUG)
252 #define	Assert(cond, msg)	((cond) ? ((void)0) : panic(msg))
253 #else
254 #define	Assert(cond, msg)	((void)0)
255 #endif
256 #define	Trace(x)	((void)0)
257 #define	Tracev(x)	((void)0)
258 #define	Tracevv(x)	((void)0)
259 #define	Tracec(c, x)	((void)0)
260 #define	Tracecv(c, x)	((void)0)
261 #endif
262 
263 
264 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
265 
266 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
267 /* void   zcfree  OF((voidpf opaque, voidpf ptr)); */
268 
269 #define	ZALLOC(strm, items, size) \
270 	(*((strm)->zalloc))((strm)->opaque, (items), (size))
271 #define	ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
272 #define	TRY_FREE(s, p) {if (p) ZFREE(s, p); }
273 
274 #endif /* _Z_UTIL_H */
275 /* --- zutil.h */
276 
277 /* +++ deflate.h */
278 /*
279  * deflate.h -- internal compression state
280  * Copyright (C) 1995-1998 Jean-loup Gailly
281  * For conditions of distribution and use, see copyright notice in zlib.h
282  */
283 
284 /*
285  * WARNING: this file should *not* be used by applications. It is part
286  * of the implementation of the compression library and is subject to
287  * change. Applications should only use zlib.h.
288  */
289 
290 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
291 
292 #ifndef _DEFLATE_H
293 #define	_DEFLATE_H
294 
295 /* #include "zutil.h" */
296 
297 /*
298  * ===========================================================================
299  * Internal compression state.
300  */
301 
302 #define	LENGTH_CODES 29
303 /* number of length codes, not counting the special END_BLOCK code */
304 
305 #define	LITERALS  256
306 /* number of literal bytes 0..255 */
307 
308 #define	L_CODES (LITERALS+1+LENGTH_CODES)
309 /* number of Literal or Length codes, including the END_BLOCK code */
310 
311 #define	D_CODES   30
312 /* number of distance codes */
313 
314 #define	BL_CODES  19
315 /* number of codes used to transfer the bit lengths */
316 
317 #define	HEAP_SIZE (2*L_CODES+1)
318 /* maximum heap size */
319 
320 #define	MAX_BITS 15
321 /* All codes must not exceed MAX_BITS bits */
322 
323 #define	INIT_STATE    42
324 #define	BUSY_STATE   113
325 #define	FINISH_STATE 666
326 /* Stream status */
327 
328 
329 /* Data structure describing a single value and its code string. */
330 typedef struct ct_data_s {
331 	union {
332 		ush freq;	/* frequency count */
333 		ush code;	/* bit string */
334 	} fc;
335 	union {
336 		ush dad;	/* father node in Huffman tree */
337 		ush len;	/* length of bit string */
338 	} dl;
339 } FAR ct_data;
340 
341 #define	Freq fc.freq
342 #define	Code fc.code
343 #define	Dad  dl.dad
344 #define	Len  dl.len
345 
346 typedef struct static_tree_desc_s  static_tree_desc;
347 
348 typedef struct tree_desc_s {
349 	ct_data *dyn_tree;	/* the dynamic tree */
350 	int	max_code;	/* largest code with non zero frequency */
351 	static_tree_desc *stat_desc;	/* the corresponding static tree */
352 } FAR tree_desc;
353 
354 typedef ush Pos;
355 typedef Pos FAR Posf;
356 typedef unsigned IPos;
357 
358 /*
359  * A Pos is an index in the character window. We use short instead of
360  * int to save space in the various tables. IPos is used only for
361  * parameter passing.
362  */
363 
364 typedef struct deflate_state {
365 	z_streamp strm;	/* pointer back to this zlib stream */
366 	int   status;	/* as the name implies */
367 	Bytef *pending_buf;	/* output still pending */
368 	ulg   pending_buf_size;	/* size of pending_buf */
369 	Bytef *pending_out;	/* next pending byte to output to the stream */
370 	int   pending;	/* nb of bytes in the pending buffer */
371 	int   noheader;	/* suppress zlib header and adler32 */
372 	Byte  data_type;	/* UNKNOWN, BINARY or ASCII */
373 	Byte  method;	/* STORED (for zip only) or DEFLATED */
374 	/* value of flush param for previous deflate call */
375 	int   last_flush;
376 
377 	/* used by deflate.c: */
378 
379 	uInt  w_size;	/* LZ77 window size (32K by default) */
380 	uInt  w_bits;	/* log2(w_size)  (8..16) */
381 	uInt  w_mask;	/* w_size - 1 */
382 
383 	Bytef *window;
384 	/*
385 	 * Sliding window. Input bytes are read into the second half
386 	 * of the window, and move to the first half later to keep a
387 	 * dictionary of at least wSize bytes. With this organization,
388 	 * matches are limited to a distance of wSize-MAX_MATCH bytes,
389 	 * but this ensures that IO is always performed with a length
390 	 * multiple of the block size. Also, it limits the window size
391 	 * to 64K, which is quite useful on MSDOS.  To do: use the
392 	 * user input buffer as sliding window.
393 	 */
394 
395 	ulg window_size;
396 	/*
397 	 * Actual size of window: 2*wSize, except when the user input
398 	 * buffer is directly used as sliding window.
399 	 */
400 
401 	Posf *prev;
402 	/*
403 	 * Link to older string with same hash index. To limit the
404 	 * size of this array to 64K, this link is maintained only for
405 	 * the last 32K strings.  An index in this array is thus a
406 	 * window index modulo 32K.
407 	 */
408 
409 	Posf *head;	/* Heads of the hash chains or NIL. */
410 
411 	uInt  ins_h;	/* hash index of string to be inserted */
412 	uInt  hash_size;	/* number of elements in hash table */
413 	uInt  hash_bits;	/* log2(hash_size) */
414 	uInt  hash_mask;	/* hash_size-1 */
415 
416 	uInt  hash_shift;
417 	/*
418 	 * Number of bits by which ins_h must be shifted at each input
419 	 * step. It must be such that after MIN_MATCH steps, the
420 	 * oldest byte no longer takes part in the hash key, that is:
421 	 * hash_shift * MIN_MATCH >= hash_bits
422 	 */
423 
424 	long block_start;
425 	/*
426 	 * Window position at the beginning of the current output
427 	 * block. Gets negative when the window is moved backwards.
428 	 */
429 
430 	uInt match_length;	/* length of best match */
431 	IPos prev_match;	/* previous match */
432 	int match_available;	/* set if previous match exists */
433 	uInt strstart;	/* start of string to insert */
434 	uInt match_start;	/* start of matching string */
435 	uInt lookahead;	/* number of valid bytes ahead in window */
436 
437 	uInt prev_length;
438 	/*
439 	 * Length of the best match at previous step. Matches not
440 	 * greater than this are discarded. This is used in the lazy
441 	 * match evaluation.
442 	 */
443 
444 	uInt max_chain_length;
445 	/*
446 	 * To speed up deflation, hash chains are never searched
447 	 * beyond *this length.  A higher limit improves compression
448 	 * ratio but *degrades the speed.
449 	 */
450 
451 	uInt max_lazy_match;
452 	/*
453 	 * Attempt to find a better match only when the current match
454 	 * is strictly smaller than this value. This mechanism is used
455 	 * only for compression levels >= 4.
456 	 */
457 #define	max_insert_length  max_lazy_match
458 	/*
459 	 * Insert new strings in the hash table only if the match
460 	 * length is not greater than this length. This saves time but
461 	 * degrades compression.  max_insert_length is used only for
462 	 * compression levels <= 3.
463 	 */
464 
465 	int level;	/* compression level (1..9) */
466 	int strategy;	/* favor or force Huffman coding */
467 
468 	uInt good_match;
469 	/* Use a faster search when the previous match is longer than this */
470 
471 	int nice_match;	/* Stop searching when current match exceeds this */
472 
473 	/* used by trees.c: */
474 	/* Didn't use ct_data typedef below to supress compiler warning */
475 	struct ct_data_s dyn_ltree[HEAP_SIZE];	/* literal and length tree */
476 	struct ct_data_s dyn_dtree[2*D_CODES+1];	/* distance tree */
477 	/* Huffman tree for bit lengths */
478 	struct ct_data_s bl_tree[2*BL_CODES+1];
479 
480 	struct tree_desc_s l_desc;	/* desc. for literal tree */
481 	struct tree_desc_s d_desc;	/* desc. for distance tree */
482 	struct tree_desc_s bl_desc;	/* desc. for bit length tree */
483 
484 	ush bl_count[MAX_BITS+1];
485 	/* number of codes at each bit length for an optimal tree */
486 
487 	int heap[2*L_CODES+1];	/* heap used to build the Huffman trees */
488 	int heap_len;	/* number of elements in the heap */
489 	int heap_max;	/* element of largest frequency */
490 	/*
491 	 * The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0]
492 	 * is not used.  The same heap array is used to build all
493 	 * trees.
494 	 */
495 
496 	uch depth[2*L_CODES+1];
497 	/*
498 	 * Depth of each subtree used as tie breaker for trees of
499 	 * equal frequency
500 	 */
501 
502 	uchf *l_buf;	/* buffer for literals or lengths */
503 
504 	uInt lit_bufsize;
505 	/*
506 	 * Size of match buffer for literals/lengths.  There are 4
507 	 * reasons for limiting lit_bufsize to 64K:
508 	 *
509 	 *   - frequencies can be kept in 16 bit counters
510 	 *
511 	 *   - if compression is not successful for the first block,
512 	 *   all input data is still in the window so we can still
513 	 *   emit a stored block even when input comes from standard
514 	 *   input.  (This can also be done for all blocks if
515 	 *   lit_bufsize is not greater than 32K.)
516 	 *
517 	 *   - if compression is not successful for a file smaller
518 	 *   than 64K, we can even emit a stored file instead of a
519 	 *   stored block (saving 5 bytes).  This is applicable only
520 	 *   for zip (not gzip or zlib).
521 	 *
522 	 *   - creating new Huffman trees less frequently may not
523 	 *   provide fast adaptation to changes in the input data
524 	 *   statistics. (Take for example a binary file with poorly
525 	 *   compressible code followed by a highly compressible
526 	 *   string table.) Smaller buffer sizes give fast adaptation
527 	 *   but have of course the overhead of transmitting trees
528 	 *   more frequently.
529 	 *
530 	 *   - I can't count above 4
531 	 */
532 
533 	uInt last_lit;	/* running index in l_buf */
534 
535 	ushf *d_buf;
536 	/*
537 	 * Buffer for distances. To simplify the code, d_buf and l_buf
538 	 * have the same number of elements. To use different lengths,
539 	 * an extra flag array would be necessary.
540 	 */
541 
542 	ulg opt_len;	/* bit length of current block with optimal trees */
543 	ulg static_len;	/* bit length of current block with static trees */
544 	uInt matches;	/* number of string matches in current block */
545 	int last_eob_len;	/* bit length of EOB code for last block */
546 
547 	ulg compressed_len;	/* total bit length of compressed file PPP */
548 #ifdef DEBUG_ZLIB
549 	ulg bits_sent;	/* bit length of the compressed data */
550 #endif
551 
552 	ush bi_buf;
553 	/*
554 	 * Output buffer. bits are inserted starting at the bottom
555 	 * (least significant bits).
556 	 */
557 	int bi_valid;
558 	/*
559 	 * Number of valid bits in bi_buf.  All bits above the last
560 	 * valid bit are always zero.
561 	 */
562 
563 } FAR deflate_state;
564 
565 /*
566  * Output a byte on the stream.  IN assertion: there is enough room in
567  * pending_buf.
568  */
569 #define	put_byte(s, c) {s->pending_buf[s->pending++] = (c); }
570 
571 
572 #define	MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
573 /*
574  * Minimum amount of lookahead, except at the end of the input file.
575  * See deflate.c for comments about the MIN_MATCH+1.
576  */
577 
578 #define	MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
579 /*
580  * In order to simplify the code, particularly on 16 bit machines,
581  * match distances are limited to MAX_DIST instead of WSIZE.
582  */
583 
584 	/* in trees.c */
585 void _tr_init		OF((deflate_state *s));
586 int  _tr_tally		OF((deflate_state *s, unsigned dist, unsigned lc));
587 void  _tr_flush_block	OF((deflate_state *s, charf *buf, ulg stored_len,
588     int eof));
589 void _tr_align		OF((deflate_state *s));
590 void _tr_stored_block	OF((deflate_state *s, charf *buf, ulg stored_len,
591     int eof));
592 void _tr_stored_type_only OF((deflate_state *));	/* PPP */
593 
594 #define	d_code(dist) \
595 	((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
596 /*
597  * Mapping from a distance to a distance code. dist is the distance - 1 and
598  * must not have side effects. _dist_code[256] and _dist_code[257] are never
599  * used.
600  */
601 
602 #ifndef DEBUG_ZLIB
603 /* Inline versions of _tr_tally for speed: */
604 
605 local uch _length_code[];
606 local uch _dist_code[];
607 
608 #define	_tr_tally_lit(s, c, flush) \
609 	{	uch cc = (c); \
610 		s->d_buf[s->last_lit] = 0; \
611 		s->l_buf[s->last_lit++] = cc; \
612 		s->dyn_ltree[cc].Freq++; \
613 		flush = (s->last_lit == s->lit_bufsize-1); \
614 	}
615 #define	_tr_tally_dist(s, distance, length, flush) \
616 	{	uch len = (length); \
617 		ush dist = (distance); \
618 		s->d_buf[s->last_lit] = dist; \
619 		s->l_buf[s->last_lit++] = len; \
620 		dist--; \
621 		s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
622 		s->dyn_dtree[d_code(dist)].Freq++; \
623 		flush = (s->last_lit == s->lit_bufsize-1); \
624 	}
625 #else
626 #define	_tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
627 #define	_tr_tally_dist(s, distance, length, flush) \
628 		flush = _tr_tally(s, distance, length)
629 #endif
630 
631 #endif
632 /* --- deflate.h */
633 
634 /* +++ deflate.c */
635 /*
636  * deflate.c -- compress data using the deflation algorithm
637  * Copyright (C) 1995-1998 Jean-loup Gailly.
638  * For conditions of distribution and use, see copyright notice in zlib.h
639  */
640 
641 /*
642  *  ALGORITHM
643  *
644  *      The "deflation" process depends on being able to identify portions
645  *      of the input text which are identical to earlier input (within a
646  *      sliding window trailing behind the input currently being processed).
647  *
648  *      The most straightforward technique turns out to be the fastest for
649  *      most input files: try all possible matches and select the longest.
650  *      The key feature of this algorithm is that insertions into the string
651  *      dictionary are very simple and thus fast, and deletions are avoided
652  *      completely. Insertions are performed at each input character, whereas
653  *      string matches are performed only when the previous match ends. So it
654  *      is preferable to spend more time in matches to allow very fast string
655  *      insertions and avoid deletions. The matching algorithm for small
656  *      strings is inspired from that of Rabin & Karp. A brute force approach
657  *      is used to find longer strings when a small match has been found.
658  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
659  *      (by Leonid Broukhis).
660  *         A previous version of this file used a more sophisticated algorithm
661  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
662  *      time, but has a larger average cost, uses more memory and is patented.
663  *      However the F&G algorithm may be faster for some highly redundant
664  *      files if the parameter max_chain_length (described below) is too large.
665  *
666  *  ACKNOWLEDGEMENTS
667  *
668  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
669  *      I found it in 'freeze' written by Leonid Broukhis.
670  *      Thanks to many people for bug reports and testing.
671  *
672  *  REFERENCES
673  *
674  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
675  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
676  *
677  *      A description of the Rabin and Karp algorithm is given in the book
678  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
679  *
680  *      Fiala,E.R., and Greene,D.H.
681  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
682  *
683  */
684 
685 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
686 
687 /* #include "deflate.h" */
688 
689 const char deflate_copyright[] =
690 " deflate 1.1.3 Copyright 1995-1998 Jean-loup Gailly ";
691 /*
692  * If you use the zlib library in a product, an acknowledgment is
693  * welcome in the documentation of your product. If for some reason
694  * you cannot include such an acknowledgment, I would appreciate that
695  * you keep this copyright string in the executable of your product.
696  */
697 
698 /*
699  * ===========================================================================
700  *  Function prototypes.
701  */
702 typedef enum {
703 	/* block not completed, need more input or more output */
704 	need_more,
705 	block_done,	/* block flush performed */
706 	/* finish started, need only more output at next deflate */
707 	finish_started,
708 	finish_done	/* finish done, accept no more input or output */
709 } block_state;
710 
711 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
712 /* Compression function. Returns the block state after the call. */
713 
714 local void fill_window	OF((deflate_state *s));
715 local block_state deflate_stored OF((deflate_state *s, int flush));
716 local block_state deflate_fast	OF((deflate_state *s, int flush));
717 local block_state deflate_slow	OF((deflate_state *s, int flush));
718 local void lm_init	OF((deflate_state *s));
719 local void putShortMSB	OF((deflate_state *s, uInt b));
720 local void flush_pending	OF((z_streamp strm));
721 local int read_buf	OF((z_streamp strm, Bytef *buf, unsigned size));
722 #ifdef ASMV
723 void match_init	OF((void));	/* asm code initialization */
724 uInt longest_match	OF((deflate_state *s, IPos cur_match));
725 #else
726 local uInt longest_match	OF((deflate_state *s, IPos cur_match));
727 #endif
728 
729 #ifdef DEBUG_ZLIB
730 local void check_match OF((deflate_state *s, IPos start, IPos match,
731     int length));
732 #endif
733 
734 /*
735  * ===========================================================================
736  * Local data
737  */
738 
739 #define	NIL 0
740 /* Tail of hash chains */
741 
742 #ifndef TOO_FAR
743 #define	TOO_FAR 4096
744 #endif
745 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
746 
747 #define	MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
748 /*
749  * Minimum amount of lookahead, except at the end of the input file.
750  * See deflate.c for comments about the MIN_MATCH+1.
751  */
752 
753 /*
754  * Values for max_lazy_match, good_match and max_chain_length,
755  * depending on the desired pack level (0..9). The values given below
756  * have been tuned to exclude worst case performance for pathological
757  * files. Better values may be found for specific files.
758  */
759 typedef struct config_s {
760 	ush good_length;	/* reduce lazy search above this match length */
761 	ush max_lazy;	/* do not perform lazy search above this match length */
762 	ush nice_length;	/* quit search above this match length */
763 	ush max_chain;
764 	compress_func func;
765 } config;
766 
767 local const config configuration_table[10] = {
768 /*	good lazy nice chain */
769 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
770 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
771 /* 2 */ {4,    5, 16,    8, deflate_fast},
772 /* 3 */ {4,    6, 32,   32, deflate_fast},
773 
774 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
775 /* 5 */ {8,   16, 32,   32, deflate_slow},
776 /* 6 */ {8,   16, 128, 128, deflate_slow},
777 /* 7 */ {8,   32, 128, 256, deflate_slow},
778 /* 8 */ {32, 128, 258, 1024, deflate_slow},
779 /* 9 */ {32, 258, 258, 4096, deflate_slow}};	/* maximum compression */
780 
781 /*
782  * Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
783  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
784  * meaning.
785  */
786 
787 #define	EQUAL 0
788 /* result of memcmp for equal strings */
789 
790 #ifndef NO_DUMMY_DECL
791 struct static_tree_desc_s {int dummy; };	/* for buggy compilers */
792 #endif
793 
794 /*
795  * ===========================================================================
796  * Update a hash value with the given input byte
797  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
798  *    input characters, so that a running hash key can be computed from the
799  *    previous key instead of complete recalculation each time.
800  */
801 #define	UPDATE_HASH(s, h, c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
802 
803 
804 /*
805  * ===========================================================================
806  * Insert string str in the dictionary and set match_head to the previous head
807  * of the hash chain (the most recent string with same hash key). Return
808  * the previous length of the hash chain.
809  * If this file is compiled with -DFASTEST, the compression level is forced
810  * to 1, and no hash chains are maintained.
811  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
812  *    input characters and the first MIN_MATCH bytes of str are valid
813  *    (except for the last MIN_MATCH-1 bytes of the input file).
814  */
815 #ifdef FASTEST
816 #define	INSERT_STRING(s, str, match_head) \
817 	(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
818 	match_head = s->head[s->ins_h], \
819 	s->head[s->ins_h] = (Pos)(str))
820 #else
821 #define	INSERT_STRING(s, str, match_head) \
822 	(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
823 	s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
824 	s->head[s->ins_h] = (Pos)(str))
825 #endif
826 
827 /*
828  * ===========================================================================
829  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
830  * prev[] will be initialized on the fly.
831  */
832 #define	CLEAR_HASH(s) \
833     s->head[s->hash_size-1] = NIL; \
834     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof (*s->head));
835 
836 /* ========================================================================= */
837 int
838 deflateInit_(strm, level, version, stream_size)
839     z_streamp strm;
840     int level;
841     const char *version;
842     int stream_size;
843 {
844 	(void) deflate_copyright;
845 	return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
846 	    Z_DEFAULT_STRATEGY, version, stream_size);
847 	/* To do: ignore strm->next_in if we use it as window */
848 }
849 
850 /* ========================================================================= */
851 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
852     version, stream_size)
853     z_streamp strm;
854     int  level;
855     int  method;
856     int  windowBits;
857     int  memLevel;
858     int  strategy;
859     const char *version;
860     int stream_size;
861 {
862 	deflate_state *s;
863 	int noheader = 0;
864 	static const char *my_version = ZLIB_VERSION;
865 
866 	ushf *overlay;
867 	/*
868 	 * We overlay pending_buf and d_buf+l_buf. This works since
869 	 * the average output size for (length, distance) codes is <=
870 	 * 24 bits.
871 	 */
872 
873 	if (version == Z_NULL || version[0] != my_version[0] ||
874 	    stream_size != sizeof (z_stream)) {
875 		return (Z_VERSION_ERROR);
876 	}
877 	if (strm == Z_NULL)
878 		return (Z_STREAM_ERROR);
879 
880 	strm->msg = Z_NULL;
881 #ifndef NO_ZCFUNCS
882 	if (strm->zalloc == Z_NULL) {
883 		strm->zalloc = zcalloc;
884 		strm->opaque = (voidpf)0;
885 	}
886 	if (strm->zfree == Z_NULL) strm->zfree = zcfree;
887 #endif
888 
889 	if (level == Z_DEFAULT_COMPRESSION) level = 6;
890 #ifdef FASTEST
891 	level = 1;
892 #endif
893 
894 	if (windowBits < 0) { /* undocumented feature: suppress zlib header */
895 		noheader = 1;
896 		windowBits = -windowBits;
897 	}
898 	if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
899 	    windowBits <= 8 || windowBits > 15 || level < 0 || level > 9 ||
900 	    strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
901 		return (Z_STREAM_ERROR);
902 	}
903 	s = (deflate_state *) ZALLOC(strm, 1, sizeof (deflate_state));
904 	if (s == Z_NULL)
905 		return (Z_MEM_ERROR);
906 	strm->state = (struct internal_state FAR *)s;
907 	s->strm = strm;
908 
909 	s->noheader = noheader;
910 	s->w_bits = windowBits;
911 	s->w_size = 1 << s->w_bits;
912 	s->w_mask = s->w_size - 1;
913 
914 	s->hash_bits = memLevel + 7;
915 	s->hash_size = 1 << s->hash_bits;
916 	s->hash_mask = s->hash_size - 1;
917 	s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
918 
919 	s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof (Byte));
920 	s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof (Pos));
921 	s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof (Pos));
922 
923 	s->lit_bufsize = 1 << (memLevel + 6);	/* 16K elements by default */
924 
925 	overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof (ush)+2);
926 	s->pending_buf = (uchf *) overlay;
927 	s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof (ush)+2L);
928 
929 	if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
930 	    s->pending_buf == Z_NULL) {
931 		strm->msg = ERR_MSG(Z_MEM_ERROR);
932 		s->status = INIT_STATE;
933 		(void) deflateEnd(strm);
934 		return (Z_MEM_ERROR);
935 	}
936 	s->d_buf = overlay + s->lit_bufsize/sizeof (ush);
937 	s->l_buf = s->pending_buf + (1+sizeof (ush))*s->lit_bufsize;
938 
939 	s->level = level;
940 	s->strategy = strategy;
941 	s->method = (Byte)method;
942 
943 	return (deflateReset(strm));
944 }
945 
946 /* ========================================================================= */
947 int
948 deflateSetDictionary(strm, dictionary, dictLength)
949     z_streamp strm;
950     const Bytef *dictionary;
951     uInt  dictLength;
952 {
953 	deflate_state *s;
954 	uInt length = dictLength;
955 	uInt n;
956 	IPos hash_head = 0;
957 
958 	if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
959 		return (Z_STREAM_ERROR);
960 
961 	s = (deflate_state *) strm->state;
962 	if (s->status != INIT_STATE)
963 		return (Z_STREAM_ERROR);
964 
965 	strm->adler = adler32(strm->adler, dictionary, dictLength);
966 
967 	if (length < MIN_MATCH)
968 		return (Z_OK);
969 	if (length > MAX_DIST(s)) {
970 		length = MAX_DIST(s);
971 #ifndef USE_DICT_HEAD
972 		/* use the tail of the dictionary */
973 		dictionary += dictLength - length;
974 #endif
975 	}
976 	Assert(length <= s->window_size, "dict copy");
977 	zmemcpy(s->window, dictionary, length);
978 	s->strstart = length;
979 	s->block_start = (long)length;
980 
981 	/*
982 	 * Insert all strings in the hash table (except for the last
983 	 * two bytes).  s->lookahead stays null, so s->ins_h will be
984 	 * recomputed at the next call of fill_window.
985 	 */
986 	s->ins_h = s->window[0];
987 	UPDATE_HASH(s, s->ins_h, s->window[1]);
988 	for (n = 0; n <= length - MIN_MATCH; n++) {
989 		INSERT_STRING(s, n, hash_head);
990 	}
991 	if (hash_head) hash_head = 0;	/* to make compiler happy */
992 	return (Z_OK);
993 }
994 
995 /* ========================================================================= */
996 int
997 deflateReset(strm)
998     z_streamp strm;
999 {
1000 	deflate_state *s;
1001 
1002 	if (strm == Z_NULL || strm->state == Z_NULL ||
1003 	    strm->zalloc == Z_NULL || strm->zfree == Z_NULL)
1004 		return (Z_STREAM_ERROR);
1005 
1006 	strm->total_in = strm->total_out = 0;
1007 	/* use zfree if we ever allocate msg dynamically */
1008 	strm->msg = Z_NULL;
1009 	strm->data_type = Z_UNKNOWN;
1010 
1011 	s = (deflate_state *)strm->state;
1012 	s->pending = 0;
1013 	s->pending_out = s->pending_buf;
1014 
1015 	if (s->noheader < 0) {
1016 		/* was set to -1 by deflate(..., Z_FINISH); */
1017 		s->noheader = 0;
1018 	}
1019 	s->status = s->noheader ? BUSY_STATE : INIT_STATE;
1020 	strm->adler = 1;
1021 	s->last_flush = Z_NO_FLUSH;
1022 
1023 	_tr_init(s);
1024 	lm_init(s);
1025 
1026 	return (Z_OK);
1027 }
1028 
1029 /* ========================================================================= */
1030 int
1031 deflateParams(strm, level, strategy)
1032     z_streamp strm;
1033     int level;
1034     int strategy;
1035 {
1036 	deflate_state *s;
1037 	compress_func func;
1038 	int err = Z_OK;
1039 
1040 	if (strm == Z_NULL || strm->state == Z_NULL)
1041 		return (Z_STREAM_ERROR);
1042 	s = (deflate_state *) strm->state;
1043 
1044 	if (level == Z_DEFAULT_COMPRESSION) {
1045 		level = 6;
1046 	}
1047 	if (level < 0 || level > 9 || strategy < 0 ||
1048 	    strategy > Z_HUFFMAN_ONLY) {
1049 		return (Z_STREAM_ERROR);
1050 	}
1051 	func = configuration_table[s->level].func;
1052 
1053 	if (func != configuration_table[level].func && strm->total_in != 0) {
1054 		/* Flush the last buffer: */
1055 		err = deflate(strm, Z_PARTIAL_FLUSH);
1056 	}
1057 	if (s->level != level) {
1058 		s->level = level;
1059 		s->max_lazy_match   = configuration_table[level].max_lazy;
1060 		s->good_match	= configuration_table[level].good_length;
1061 		s->nice_match	= configuration_table[level].nice_length;
1062 		s->max_chain_length = configuration_table[level].max_chain;
1063 	}
1064 	s->strategy = strategy;
1065 	return (err);
1066 }
1067 
1068 /*
1069  * =========================================================================
1070  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1071  * IN assertion: the stream state is correct and there is enough room in
1072  * pending_buf.
1073  */
1074 local void
1075 putShortMSB(s, b)
1076     deflate_state *s;
1077     uInt b;
1078 {
1079 	put_byte(s, (Byte)(b >> 8));
1080 	put_byte(s, (Byte)(b & 0xff));
1081 }
1082 
1083 /*
1084  * =========================================================================
1085  * Flush as much pending output as possible. All deflate() output goes
1086  * through this function so some applications may wish to modify it
1087  * to avoid allocating a large strm->next_out buffer and copying into it.
1088  * (See also read_buf()).
1089  */
1090 local void
1091 flush_pending(strm)
1092     z_streamp strm;
1093 {
1094 	deflate_state *s = (deflate_state *) strm->state;
1095 	unsigned len = s->pending;
1096 
1097 	if (len > strm->avail_out) len = strm->avail_out;
1098 	if (len == 0)
1099 		return;
1100 
1101 	if (strm->next_out != Z_NULL) {		/* PPP */
1102 		zmemcpy(strm->next_out, s->pending_out, len);
1103 		strm->next_out += len;
1104 	}					/* PPP */
1105 	s->pending_out += len;
1106 	strm->total_out += len;
1107 	strm->avail_out  -= len;
1108 	s->pending -= len;
1109 	if (s->pending == 0) {
1110 		s->pending_out = s->pending_buf;
1111 	}
1112 }
1113 
1114 /* ========================================================================= */
1115 int
1116 deflate(strm, flush)
1117     z_streamp strm;
1118     int flush;
1119 {
1120 	int old_flush;	/* value of flush param for previous deflate call */
1121 	deflate_state *s;
1122 
1123 	if (strm == Z_NULL || strm->state == Z_NULL ||
1124 	    flush > Z_FINISH || flush < 0) {
1125 		return (Z_STREAM_ERROR);
1126 	}
1127 	s = (deflate_state *) strm->state;
1128 
1129 	if (/* strm->next_out == Z_NULL || --- we allow null --- PPP */
1130 		(strm->next_in == Z_NULL && strm->avail_in != 0) ||
1131 	    (s->status == FINISH_STATE && flush != Z_FINISH)) {
1132 		ERR_RETURN(strm, Z_STREAM_ERROR);
1133 	}
1134 	if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1135 
1136 	s->strm = strm;	/* just in case */
1137 	old_flush = s->last_flush;
1138 	s->last_flush = flush;
1139 
1140 	/* Write the zlib header */
1141 	if (s->status == INIT_STATE) {
1142 
1143 		uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1144 		uInt level_flags = (s->level-1) >> 1;
1145 
1146 		if (level_flags > 3) level_flags = 3;
1147 		header |= (level_flags << 6);
1148 		if (s->strstart != 0) header |= PRESET_DICT;
1149 		header += 31 - (header % 31);
1150 
1151 		s->status = BUSY_STATE;
1152 		putShortMSB(s, header);
1153 
1154 		/* Save the adler32 of the preset dictionary: */
1155 		if (s->strstart != 0) {
1156 			putShortMSB(s, (uInt)(strm->adler >> 16));
1157 			putShortMSB(s, (uInt)(strm->adler & 0xffff));
1158 		}
1159 		strm->adler = 1L;
1160 	}
1161 
1162 	/* Flush as much pending output as possible */
1163 	if (s->pending != 0) {
1164 		flush_pending(strm);
1165 		if (strm->avail_out == 0) {
1166 			/*
1167 			 * Since avail_out is 0, deflate will be
1168 			 * called again with more output space, but
1169 			 * possibly with both pending and avail_in
1170 			 * equal to zero. There won't be anything to
1171 			 * do, but this is not an error situation so
1172 			 * make sure we return OK instead of BUF_ERROR
1173 			 * at next call of deflate:
1174 			 */
1175 			s->last_flush = -1;
1176 			return (Z_OK);
1177 		}
1178 
1179 		/*
1180 		 * Make sure there is something to do and avoid
1181 		 * duplicate consecutive flushes. For repeated and
1182 		 * useless calls with Z_FINISH, we keep returning
1183 		 * Z_STREAM_END instead of Z_BUFF_ERROR.
1184 		 */
1185 	} else if (strm->avail_in == 0 && flush <= old_flush &&
1186 	    flush != Z_FINISH) {
1187 		ERR_RETURN(strm, Z_BUF_ERROR);
1188 	}
1189 
1190 	/* User must not provide more input after the first FINISH: */
1191 	if (s->status == FINISH_STATE && strm->avail_in != 0) {
1192 		ERR_RETURN(strm, Z_BUF_ERROR);
1193 	}
1194 
1195 	/* Start a new block or continue the current one. */
1196 	if (strm->avail_in != 0 || s->lookahead != 0 ||
1197 	    (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1198 		block_state bstate;
1199 
1200 		bstate = (*(configuration_table[s->level].func))(s, flush);
1201 
1202 		if (bstate == finish_started || bstate == finish_done) {
1203 			s->status = FINISH_STATE;
1204 		}
1205 		if (bstate == need_more || bstate == finish_started) {
1206 			if (strm->avail_out == 0) {
1207 				/* avoid BUF_ERROR next call, see above */
1208 				s->last_flush = -1;
1209 			}
1210 			return (Z_OK);
1211 			/*
1212 			 * If flush != Z_NO_FLUSH && avail_out == 0,
1213 			 * the next call of deflate should use the
1214 			 * same flush parameter to make sure that the
1215 			 * flush is complete. So we don't have to
1216 			 * output an empty block here, this will be
1217 			 * done at next call. This also ensures that
1218 			 * for a very small output buffer, we emit at
1219 			 * most one empty block.
1220 			 */
1221 		}
1222 		if (bstate == block_done) {
1223 			if (flush == Z_PARTIAL_FLUSH) {
1224 				_tr_align(s);
1225 			} else if (flush == Z_PACKET_FLUSH) {	/* PPP */
1226 				/*
1227 				 * Output just the 3-bit `stored'
1228 				 * block type value, but not a zero
1229 				 * length.  Added for PPP.
1230 				 */
1231 				_tr_stored_type_only(s);	/* PPP */
1232 			} else { /* FULL_FLUSH or SYNC_FLUSH */
1233 				_tr_stored_block(s, (char *)0, 0L, 0);
1234 				/*
1235 				 * For a full flush, this empty block
1236 				 * will be recognized as a special
1237 				 * marker by inflate_sync().
1238 				 */
1239 				if (flush == Z_FULL_FLUSH) {
1240 					CLEAR_HASH(s);	/* forget history */
1241 				}
1242 			}
1243 			flush_pending(strm);
1244 			if (strm->avail_out == 0) {
1245 				/* avoid BUF_ERROR at next call, see above */
1246 				s->last_flush = -1;
1247 				return (Z_OK);
1248 			}
1249 		}
1250 	}
1251 	Assert(strm->avail_out > 0, "bug2");
1252 
1253 	if (flush != Z_FINISH)
1254 		return (Z_OK);
1255 	if (s->noheader)
1256 		return (Z_STREAM_END);
1257 
1258 	/* Write the zlib trailer (adler32) */
1259 	putShortMSB(s, (uInt)(strm->adler >> 16));
1260 	putShortMSB(s, (uInt)(strm->adler & 0xffff));
1261 	flush_pending(strm);
1262 	/*
1263 	 * If avail_out is zero, the application will call deflate
1264 	 * again to flush the rest.
1265 	 */
1266 	s->noheader = -1;	/* write the trailer only once! */
1267 	return (s->pending != 0 ? Z_OK : Z_STREAM_END);
1268 }
1269 
1270 /* ========================================================================= */
1271 int
1272 deflateEnd(strm)
1273     z_streamp strm;
1274 {
1275 	int status;
1276 	deflate_state *s;
1277 
1278 	if (strm == Z_NULL || strm->state == Z_NULL)
1279 		return (Z_STREAM_ERROR);
1280 	s = (deflate_state *) strm->state;
1281 
1282 	status = s->status;
1283 	if (status != INIT_STATE && status != BUSY_STATE &&
1284 	    status != FINISH_STATE) {
1285 		return (Z_STREAM_ERROR);
1286 	}
1287 
1288 	/* Deallocate in reverse order of allocations: */
1289 	TRY_FREE(strm, s->pending_buf);
1290 	TRY_FREE(strm, s->head);
1291 	TRY_FREE(strm, s->prev);
1292 	TRY_FREE(strm, s->window);
1293 
1294 	ZFREE(strm, s);
1295 	strm->state = Z_NULL;
1296 
1297 	return (status == BUSY_STATE ? Z_DATA_ERROR : Z_OK);
1298 }
1299 
1300 /*
1301  * =========================================================================
1302  * Copy the source state to the destination state.
1303  * To simplify the source, this is not supported for 16-bit MSDOS (which
1304  * doesn't have enough memory anyway to duplicate compression states).
1305  */
1306 int
1307 deflateCopy(dest, source)
1308     z_streamp dest;
1309     z_streamp source;
1310 {
1311 #ifdef MAXSEG_64K
1312 	return (Z_STREAM_ERROR);
1313 #else
1314 	deflate_state *ds;
1315 	deflate_state *ss;
1316 	ushf *overlay;
1317 
1318 	if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1319 		return (Z_STREAM_ERROR);
1320 	ss = (deflate_state *) source->state;
1321 
1322 	zmemcpy(dest, source, sizeof (*dest));
1323 
1324 	ds = (deflate_state *) ZALLOC(dest, 1, sizeof (deflate_state));
1325 	if (ds == Z_NULL)
1326 		return (Z_MEM_ERROR);
1327 	dest->state = (struct internal_state FAR *) ds;
1328 	zmemcpy(ds, ss, sizeof (*ds));
1329 	ds->strm = dest;
1330 
1331 	ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof (Byte));
1332 	ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof (Pos));
1333 	ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof (Pos));
1334 	overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof (ush)+2);
1335 	ds->pending_buf = (uchf *) overlay;
1336 
1337 	if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1338 	    ds->pending_buf == Z_NULL) {
1339 		ds->status = INIT_STATE;
1340 		(void) deflateEnd(dest);
1341 		return (Z_MEM_ERROR);
1342 	}
1343 	/* following zmemcpy doesn't work for 16-bit MSDOS */
1344 	zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof (Byte));
1345 	zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof (Pos));
1346 	zmemcpy(ds->head, ss->head, ds->hash_size * sizeof (Pos));
1347 	zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1348 
1349 	ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1350 	ds->d_buf = overlay + ds->lit_bufsize/sizeof (ush);
1351 	ds->l_buf = ds->pending_buf + (1+sizeof (ush))*ds->lit_bufsize;
1352 
1353 	ds->l_desc.dyn_tree = ds->dyn_ltree;
1354 	ds->d_desc.dyn_tree = ds->dyn_dtree;
1355 	ds->bl_desc.dyn_tree = ds->bl_tree;
1356 
1357 	return (Z_OK);
1358 #endif
1359 }
1360 
1361 /*
1362  * ===========================================================================
1363  * Return the number of bytes of output which are immediately available
1364  * for output from the decompressor.		---PPP---
1365  */
1366 int
1367 deflateOutputPending(strm)
1368     z_streamp strm;
1369 {
1370 	if (strm == Z_NULL || strm->state == Z_NULL)
1371 		return (0);
1372 
1373 	return (((deflate_state *)(strm->state))->pending);
1374 }
1375 
1376 /*
1377  * ===========================================================================
1378  * Read a new buffer from the current input stream, update the adler32
1379  * and total number of bytes read.  All deflate() input goes through
1380  * this function so some applications may wish to modify it to avoid
1381  * allocating a large strm->next_in buffer and copying from it.
1382  * (See also flush_pending()).
1383  */
1384 local int
1385 read_buf(strm, buf, size)
1386     z_streamp strm;
1387     Bytef *buf;
1388     unsigned size;
1389 {
1390 	unsigned len = strm->avail_in;
1391 
1392 	if (len > size) len = size;
1393 	if (len == 0)
1394 		return (0);
1395 
1396 	strm->avail_in  -= len;
1397 
1398 	if (!((deflate_state *)(strm->state))->noheader) {
1399 		strm->adler = adler32(strm->adler, strm->next_in, len);
1400 	}
1401 	zmemcpy(buf, strm->next_in, len);
1402 	strm->next_in  += len;
1403 	strm->total_in += len;
1404 
1405 	return ((int)len);
1406 }
1407 
1408 /*
1409  * ===========================================================================
1410  * Initialize the "longest match" routines for a new zlib stream
1411  */
1412 local void
1413 lm_init(s)
1414     deflate_state *s;
1415 {
1416 	s->window_size = (ulg)2L*s->w_size;
1417 
1418 	CLEAR_HASH(s);
1419 
1420 	/* Set the default configuration parameters: */
1421 	s->max_lazy_match   = configuration_table[s->level].max_lazy;
1422 	s->good_match	= configuration_table[s->level].good_length;
1423 	s->nice_match	= configuration_table[s->level].nice_length;
1424 	s->max_chain_length = configuration_table[s->level].max_chain;
1425 
1426 	s->strstart = 0;
1427 	s->block_start = 0L;
1428 	s->lookahead = 0;
1429 	s->match_length = s->prev_length = MIN_MATCH-1;
1430 	s->match_available = 0;
1431 	s->ins_h = 0;
1432 #ifdef ASMV
1433 	match_init();	/* initialize the asm code */
1434 #endif
1435 }
1436 
1437 /*
1438  * ===========================================================================
1439  * Set match_start to the longest match starting at the given string and
1440  * return its length. Matches shorter or equal to prev_length are discarded,
1441  * in which case the result is equal to prev_length and match_start is
1442  * garbage.
1443  * IN assertions: cur_match is the head of the hash chain for the current
1444  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1445  * OUT assertion: the match length is not greater than s->lookahead.
1446  */
1447 #ifndef ASMV
1448 /*
1449  * For 80x86 and 680x0, an optimized version will be provided in
1450  * match.asm or match.S. The code will be functionally equivalent.
1451  */
1452 #ifndef FASTEST
1453 local uInt
1454 longest_match(s, cur_match)
1455     deflate_state *s;
1456     IPos cur_match;	/* current match */
1457 {
1458 	/* max hash chain length */
1459 	unsigned chain_length = s->max_chain_length;
1460 	register Bytef *scan = s->window + s->strstart;	/* current string */
1461 	register Bytef *match;	/* matched string */
1462 	register int len;	/* length of current match */
1463 	int best_len = s->prev_length;	/* best match length so far */
1464 	int nice_match = s->nice_match;	/* stop if match long enough */
1465 	IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1466 	    s->strstart - (IPos)MAX_DIST(s) : NIL;
1467 	/*
1468 	 * Stop when cur_match becomes <= limit. To simplify the code,
1469 	 * we prevent matches with the string of window index 0.
1470 	 */
1471 	Posf *prev = s->prev;
1472 	uInt wmask = s->w_mask;
1473 
1474 #ifdef UNALIGNED_OK
1475 	/*
1476 	 * Compare two bytes at a time. Note: this is not always
1477 	 * beneficial.  Try with and without -DUNALIGNED_OK to check.
1478 	 */
1479 	register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1480 	register ush scan_start = *(ushf*)scan;
1481 	register ush scan_end   = *(ushf*)(scan+best_len-1);
1482 #else
1483 	register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1484 	register Byte scan_end1  = scan[best_len-1];
1485 	register Byte scan_end   = scan[best_len];
1486 #endif
1487 
1488 	/*
1489 	 * The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2
1490 	 * multiple of 16.  It is easy to get rid of this optimization
1491 	 * if necessary.
1492 	 */
1493 	Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1494 
1495 	/* Do not waste too much time if we already have a good match: */
1496 	if (s->prev_length >= s->good_match) {
1497 		chain_length >>= 2;
1498 	}
1499 	/*
1500 	 * Do not look for matches beyond the end of the input. This
1501 	 * is necessary to make deflate deterministic.
1502 	 */
1503 	if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1504 
1505 	Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD,
1506 	    "need lookahead");
1507 
1508 	do {
1509 		Assert(cur_match <= s->strstart, "no future");
1510 		match = s->window + cur_match;
1511 
1512 		/*
1513 		 * Skip to next match if the match length cannot
1514 		 * increase or if the match length is less than 2:
1515 		 */
1516 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1517 		/*
1518 		 * This code assumes sizeof (unsigned short) == 2. Do
1519 		 * not use UNALIGNED_OK if your compiler uses a
1520 		 * different size.
1521 		 */
1522 		if (*(ushf*)(match+best_len-1) != scan_end ||
1523 		    *(ushf*)match != scan_start) continue;
1524 
1525 		/*
1526 		 * It is not necessary to compare scan[2] and match[2]
1527 		 * since they are always equal when the other bytes
1528 		 * match, given that the hash keys are equal and that
1529 		 * HASH_BITS >= 8. Compare 2 bytes at a time at
1530 		 * strstart+3, +5, ... up to strstart+257. We check
1531 		 * for insufficient lookahead only every 4th
1532 		 * comparison; the 128th check will be made at
1533 		 * strstart+257. If MAX_MATCH-2 is not a multiple of
1534 		 * 8, it is necessary to put more guard bytes at the
1535 		 * end of the window, or to check more often for
1536 		 * insufficient lookahead.
1537 		 */
1538 		Assert(scan[2] == match[2], "scan[2]?");
1539 		scan++, match++;
1540 		do {
1541 		} while (*(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1542 		    *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1543 		    *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1544 		    *(ushf *)(scan += 2) == *(ushf *)(match += 2) &&
1545 		    scan < strend);
1546 		/* The funny "do {}" generates better code on most compilers */
1547 
1548 		/* Here, scan <= window+strstart+257 */
1549 		Assert(scan <= s->window+(unsigned)(s->window_size-1),
1550 		    "wild scan");
1551 		if (*scan == *match) scan++;
1552 
1553 		len = (MAX_MATCH - 1) - (int)(strend-scan);
1554 		scan = strend - (MAX_MATCH-1);
1555 
1556 #else /* UNALIGNED_OK */
1557 
1558 		if (match[best_len]	!= scan_end	||
1559 		    match[best_len-1]	!= scan_end1	||
1560 		    *match		!= *scan	||
1561 		    *++match		!= scan[1])
1562 			continue;
1563 
1564 		/*
1565 		 * The check at best_len-1 can be removed because it
1566 		 * will be made again later. (This heuristic is not
1567 		 * always a win.)  It is not necessary to compare
1568 		 * scan[2] and match[2] since they are always equal
1569 		 * when the other bytes match, given that the hash
1570 		 * keys are equal and that HASH_BITS >= 8.
1571 		 */
1572 		scan += 2, match++;
1573 		Assert(*scan == *match, "match[2]?");
1574 
1575 		/*
1576 		 * We check for insufficient lookahead only every 8th
1577 		 * comparison; the 256th check will be made at
1578 		 * strstart+258.
1579 		 */
1580 		do {
1581 		} while (*++scan == *++match && *++scan == *++match &&
1582 		    *++scan == *++match && *++scan == *++match &&
1583 		    *++scan == *++match && *++scan == *++match &&
1584 		    *++scan == *++match && *++scan == *++match &&
1585 		    scan < strend);
1586 
1587 		Assert(scan <= s->window+(unsigned)(s->window_size-1),
1588 		    "wild scan");
1589 
1590 		len = MAX_MATCH - (int)(strend - scan);
1591 		scan = strend - MAX_MATCH;
1592 
1593 #endif /* UNALIGNED_OK */
1594 
1595 		if (len > best_len) {
1596 			s->match_start = cur_match;
1597 			best_len = len;
1598 			if (len >= nice_match) break;
1599 #ifdef UNALIGNED_OK
1600 			scan_end = *(ushf*)(scan+best_len-1);
1601 #else
1602 			scan_end1  = scan[best_len-1];
1603 			scan_end   = scan[best_len];
1604 #endif
1605 		}
1606 	} while ((cur_match = prev[cur_match & wmask]) > limit &&
1607 	    --chain_length != 0);
1608 
1609 	if ((uInt)best_len <= s->lookahead)
1610 		return (best_len);
1611 	return (s->lookahead);
1612 }
1613 #else /* FASTEST */
1614 /*
1615  * ---------------------------------------------------------------------------
1616  * Optimized version for level == 1 only
1617  */
1618 local uInt
1619 longest_match(s, cur_match)
1620 deflate_state *s;
1621 IPos cur_match;		/* current match */
1622 {
1623 	register Bytef *scan = s->window + s->strstart; /* current string */
1624 	register Bytef *match;		/* matched string */
1625 	register int len;			/* length of current match */
1626 	register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1627 
1628 	/*
1629 	 * The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2
1630 	 * multiple of 16.  It is easy to get rid of this optimization
1631 	 * if necessary.
1632 	 */
1633 	Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1634 
1635 	Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD,
1636 	    "need lookahead");
1637 
1638 	Assert(cur_match <= s->strstart, "no future");
1639 
1640 	match = s->window + cur_match;
1641 
1642 	/* Return failure if the match length is less than 2: */
1643 	if (match[0] != scan[0] || match[1] != scan[1])
1644 		return (MIN_MATCH-1);
1645 
1646 	/*
1647 	 * The check at best_len-1 can be removed because it will be
1648 	 * made again later. (This heuristic is not always a win.)  It
1649 	 * is not necessary to compare scan[2] and match[2] since they
1650 	 * are always equal when the other bytes match, given that the
1651 	 * hash keys are equal and that HASH_BITS >= 8.
1652 	 */
1653 	scan += 2, match += 2;
1654 	Assert(*scan == *match, "match[2]?");
1655 
1656 	/*
1657 	 * We check for insufficient lookahead only every 8th comparison;
1658 	 * the 256th check will be made at strstart+258.
1659 	 */
1660 	do {
1661 	} while (*++scan == *++match && *++scan == *++match &&
1662 	    *++scan == *++match && *++scan == *++match &&
1663 	    *++scan == *++match && *++scan == *++match &&
1664 	    *++scan == *++match && *++scan == *++match &&
1665 	    scan < strend);
1666 
1667 	Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1668 
1669 	len = MAX_MATCH - (int)(strend - scan);
1670 
1671 	if (len < MIN_MATCH)
1672 		return (MIN_MATCH - 1);
1673 
1674 	s->match_start = cur_match;
1675 	return (len <= s->lookahead ? len : s->lookahead);
1676 }
1677 #endif /* FASTEST */
1678 #endif /* ASMV */
1679 
1680 #ifdef DEBUG_ZLIB
1681 /*
1682  * ===========================================================================
1683  * Check that the match at match_start is indeed a match.
1684  */
1685 local void
1686 check_match(s, start, match, length)
1687     deflate_state *s;
1688     IPos start, match;
1689     int length;
1690 {
1691 	/* check that the match is indeed a match */
1692 	if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) {
1693 		fprintf(stderr, " start %u, match %u, length %d\n",
1694 		    start, match, length);
1695 		do {
1696 			fprintf(stderr, "%c%c", s->window[match++],
1697 			    s->window[start++]);
1698 		} while (--length != 0);
1699 		z_error("invalid match");
1700 	}
1701 	if (z_verbose > 1) {
1702 		fprintf(stderr, "\\[%d,%d]", start-match, length);
1703 		do { putc(s->window[start++], stderr); } while (--length != 0);
1704 	}
1705 }
1706 #else
1707 #define	check_match(s, start, match, length)
1708 #endif
1709 
1710 /*
1711  * ===========================================================================
1712  * Fill the window when the lookahead becomes insufficient.
1713  * Updates strstart and lookahead.
1714  *
1715  * IN assertion: lookahead < MIN_LOOKAHEAD
1716  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1717  *    At least one byte has been read, or avail_in == 0; reads are
1718  *    performed for at least two bytes (required for the zip translate_eol
1719  *    option -- not supported here).
1720  */
1721 local void
1722 fill_window(s)
1723     deflate_state *s;
1724 {
1725 	register unsigned n, m;
1726 	register Posf *p;
1727 	unsigned more;	/* Amount of free space at the end of the window. */
1728 	uInt wsize = s->w_size;
1729 
1730 	do {
1731 		more = (unsigned)(s->window_size -(ulg)s->lookahead -
1732 		    (ulg)s->strstart);
1733 
1734 		/* Deal with !@#$% 64K limit: */
1735 		if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1736 			more = wsize;
1737 
1738 		} else if (more == (unsigned)(-1)) {
1739 			/*
1740 			 * Very unlikely, but possible on 16 bit
1741 			 * machine if strstart == 0 and lookahead == 1
1742 			 * (input done one byte at time)
1743 			 */
1744 			more--;
1745 
1746 			/*
1747 			 * If the window is almost full and there is
1748 			 * insufficient lookahead, move the upper half
1749 			 * to the lower one to make room in the upper
1750 			 * half.
1751 			 */
1752 		} else if (s->strstart >= wsize+MAX_DIST(s)) {
1753 
1754 			Assert(wsize+wsize <= s->window_size, "wsize*2");
1755 			zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1756 			s->match_start -= wsize;
1757 			/* we now have strstart >= MAX_DIST */
1758 			s->strstart    -= wsize;
1759 			s->block_start -= (long)wsize;
1760 
1761 			/*
1762 			 * Slide the hash table (could be avoided with
1763 			 * 32 bit values at the expense of memory
1764 			 * usage). We slide even when level == 0 to
1765 			 * keep the hash table consistent if we switch
1766 			 * back to level > 0 later. (Using level 0
1767 			 * permanently is not an optimal usage of
1768 			 * zlib, so we don't care about this
1769 			 * pathological case.)
1770 			 */
1771 			n = s->hash_size;
1772 			p = &s->head[n];
1773 			do {
1774 				m = *--p;
1775 				*p = (Pos)(m >= wsize ? m-wsize : NIL);
1776 			} while (--n);
1777 
1778 			n = wsize;
1779 #ifndef FASTEST
1780 			p = &s->prev[n];
1781 			do {
1782 				m = *--p;
1783 				*p = (Pos)(m >= wsize ? m-wsize : NIL);
1784 				/*
1785 				 * If n is not on any hash chain,
1786 				 * prev[n] is garbage but its value
1787 				 * will never be used.
1788 				 */
1789 			} while (--n);
1790 #endif
1791 			more += wsize;
1792 		}
1793 		if (s->strm->avail_in == 0)
1794 			return;
1795 
1796 		/*
1797 		 * If there was no sliding:
1798 		 *    strstart <= WSIZE+MAX_DIST-1 &&
1799 		 *	lookahead <= MIN_LOOKAHEAD - 1 &&
1800 		 *    more == window_size - lookahead - strstart
1801 		 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE +
1802 		 *	MAX_DIST-1)
1803 		 * => more >= window_size - 2*WSIZE + 2
1804 		 * In the BIG_MEM or MMAP case (not yet supported),
1805 		 *   window_size == input_size + MIN_LOOKAHEAD  &&
1806 		 *   strstart + s->lookahead <= input_size =>
1807 		 *	more >= MIN_LOOKAHEAD.
1808 		 * Otherwise, window_size == 2*WSIZE so more >= 2.
1809 		 * If there was sliding, more >= WSIZE. So in all cases,
1810 		 * more >= 2.
1811 		 */
1812 		Assert(more >= 2, "more < 2");
1813 		Assert(s->strstart + s->lookahead + more <= s->window_size,
1814 		    "read too much");
1815 
1816 		n = read_buf(s->strm, s->window + s->strstart + s->lookahead,
1817 		    more);
1818 		s->lookahead += n;
1819 
1820 		/* Initialize the hash value now that we have some input: */
1821 		if (s->lookahead >= MIN_MATCH) {
1822 			s->ins_h = s->window[s->strstart];
1823 			UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1824 #if MIN_MATCH != 3
1825 			Call UPDATE_HASH() MIN_MATCH-3 more times
1826 #endif
1827 			    }
1828 		/*
1829 		 * If the whole input has less than MIN_MATCH bytes,
1830 		 * ins_h is garbage, but this is not important since
1831 		 * only literal bytes will be emitted.
1832 		 */
1833 
1834 	} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1835 }
1836 
1837 /*
1838  * ===========================================================================
1839  * Flush the current block, with given end-of-file flag.
1840  * IN assertion: strstart is set to the end of the current match.
1841  */
1842 #define	FLUSH_BLOCK_ONLY(s, eof) { \
1843 	_tr_flush_block(s, (s->block_start >= 0L ? \
1844 		(charf *)&s->window[(unsigned)s->block_start] : \
1845 		(charf *)Z_NULL), \
1846 		(ulg)((long)s->strstart - s->block_start), \
1847 		(eof)); \
1848 	s->block_start = s->strstart; \
1849 	flush_pending(s->strm); \
1850 	Tracev((stderr, "[FLUSH]")); \
1851 }
1852 
1853 /* Same but force premature exit if necessary. */
1854 #define	FLUSH_BLOCK(s, eof) { \
1855 	FLUSH_BLOCK_ONLY(s, eof); \
1856 	if (s->strm->avail_out == 0) \
1857 		return ((eof) ? finish_started : need_more); \
1858 }
1859 
1860 /*
1861  * ===========================================================================
1862  * Copy without compression as much as possible from the input stream, return
1863  * the current block state.
1864  * This function does not insert new strings in the dictionary since
1865  * uncompressible data is probably not useful. This function is used
1866  * only for the level=0 compression option.
1867  * NOTE: this function should be optimized to avoid extra copying from
1868  * window to pending_buf.
1869  */
1870 local block_state
1871 deflate_stored(s, flush)
1872     deflate_state *s;
1873     int flush;
1874 {
1875 	/*
1876 	 * Stored blocks are limited to 0xffff bytes, pending_buf is
1877 	 * limited to pending_buf_size, and each stored block has a 5
1878 	 * byte header:
1879 	 */
1880 	ulg max_block_size = 0xffff;
1881 	ulg max_start;
1882 
1883 	if (max_block_size > s->pending_buf_size - 5) {
1884 		max_block_size = s->pending_buf_size - 5;
1885 	}
1886 
1887 	/* Copy as much as possible from input to output: */
1888 	for (;;) {
1889 		/* Fill the window as much as possible: */
1890 		if (s->lookahead <= 1) {
1891 
1892 			Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1893 			    s->block_start >= (long)s->w_size,
1894 			    "slide too late");
1895 
1896 			fill_window(s);
1897 			if (s->lookahead == 0 && flush == Z_NO_FLUSH)
1898 				return (need_more);
1899 
1900 			if (s->lookahead == 0)
1901 				break;	/* flush the current block */
1902 		}
1903 		Assert(s->block_start >= 0L, "block gone");
1904 
1905 		s->strstart += s->lookahead;
1906 		s->lookahead = 0;
1907 
1908 		/* Emit a stored block if pending_buf will be full: */
1909 		max_start = s->block_start + max_block_size;
1910 		if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1911 			/*
1912 			 * strstart == 0 is possible when wraparound
1913 			 * on 16-bit machine
1914 			 */
1915 			s->lookahead = (uInt)(s->strstart - max_start);
1916 			s->strstart = (uInt)max_start;
1917 			FLUSH_BLOCK(s, 0);
1918 		}
1919 		/*
1920 		 * Flush if we may have to slide, otherwise
1921 		 * block_start may become negative and the data will
1922 		 * be gone:
1923 		 */
1924 		if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1925 			FLUSH_BLOCK(s, 0);
1926 		}
1927 	}
1928 	FLUSH_BLOCK(s, flush == Z_FINISH);
1929 	return (flush == Z_FINISH ? finish_done : block_done);
1930 }
1931 
1932 /*
1933  * ===========================================================================
1934  * Compress as much as possible from the input stream, return the current
1935  * block state.
1936  * This function does not perform lazy evaluation of matches and inserts
1937  * new strings in the dictionary only for unmatched strings or for short
1938  * matches. It is used only for the fast compression options.
1939  */
1940 local block_state
1941 deflate_fast(s, flush)
1942     deflate_state *s;
1943     int flush;
1944 {
1945 	IPos hash_head = NIL;	/* head of the hash chain */
1946 	int bflush;	/* set if current block must be flushed */
1947 
1948 	for (;;) {
1949 		/*
1950 		 * Make sure that we always have enough lookahead,
1951 		 * except at the end of the input file. We need
1952 		 * MAX_MATCH bytes for the next match, plus MIN_MATCH
1953 		 * bytes to insert the string following the next
1954 		 * match.
1955 		 */
1956 		if (s->lookahead < MIN_LOOKAHEAD) {
1957 			fill_window(s);
1958 			if (s->lookahead < MIN_LOOKAHEAD &&
1959 			    flush == Z_NO_FLUSH) {
1960 				return (need_more);
1961 			}
1962 			if (s->lookahead == 0)
1963 				break;	/* flush the current block */
1964 		}
1965 
1966 		/*
1967 		 * Insert the string window[strstart .. strstart+2] in
1968 		 * the dictionary, and set hash_head to the head of
1969 		 * the hash chain:
1970 		 */
1971 		if (s->lookahead >= MIN_MATCH) {
1972 			INSERT_STRING(s, s->strstart, hash_head);
1973 		}
1974 
1975 		/*
1976 		 * Find the longest match, discarding those <=
1977 		 * prev_length.  At this point we have always
1978 		 * match_length < MIN_MATCH
1979 		 */
1980 		if (hash_head != NIL && s->strstart - hash_head <=
1981 		    MAX_DIST(s)) {
1982 			/*
1983 			 * To simplify the code, we prevent matches
1984 			 * with the string of window index 0 (in
1985 			 * particular we have to avoid a match of the
1986 			 * string with itself at the start of the
1987 			 * input file).
1988 			 */
1989 			if (s->strategy != Z_HUFFMAN_ONLY) {
1990 				s->match_length = longest_match(s, hash_head);
1991 			}
1992 			/* longest_match() sets match_start */
1993 		}
1994 		if (s->match_length >= MIN_MATCH) {
1995 			check_match(s, s->strstart, s->match_start,
1996 			    s->match_length);
1997 
1998 			_tr_tally_dist(s, s->strstart - s->match_start,
1999 			    s->match_length - MIN_MATCH, bflush);
2000 
2001 			s->lookahead -= s->match_length;
2002 
2003 			/*
2004 			 * Insert new strings in the hash table only
2005 			 * if the match length is not too large. This
2006 			 * saves time but degrades compression.
2007 			 */
2008 #ifndef FASTEST
2009 			if (s->match_length <= s->max_insert_length &&
2010 			    s->lookahead >= MIN_MATCH) {
2011 				/* string at strstart already in hash table */
2012 				s->match_length--;
2013 				do {
2014 					s->strstart++;
2015 					INSERT_STRING(s, s->strstart,
2016 					    hash_head);
2017 					/*
2018 					 * strstart never exceeds
2019 					 * WSIZE-MAX_MATCH, so there
2020 					 * are always MIN_MATCH bytes
2021 					 * ahead.
2022 					 */
2023 				} while (--s->match_length != 0);
2024 				s->strstart++;
2025 			} else
2026 #endif
2027 			{
2028 				s->strstart += s->match_length;
2029 				s->match_length = 0;
2030 				s->ins_h = s->window[s->strstart];
2031 				UPDATE_HASH(s, s->ins_h,
2032 				    s->window[s->strstart+1]);
2033 #if MIN_MATCH != 3
2034 				Call UPDATE_HASH() MIN_MATCH-3 more times
2035 #endif
2036 				/*
2037 				 * If lookahead < MIN_MATCH, ins_h is
2038 				 * garbage, but it does not matter
2039 				 * since it will be recomputed at next
2040 				 * deflate call.
2041 				 */
2042 			}
2043 		} else {
2044 			/* No match, output a literal byte */
2045 			Tracevv((stderr, "%c", s->window[s->strstart]));
2046 			_tr_tally_lit(s, s->window[s->strstart], bflush);
2047 			s->lookahead--;
2048 			s->strstart++;
2049 		}
2050 		if (bflush) FLUSH_BLOCK(s, 0);
2051 	}
2052 	FLUSH_BLOCK(s, flush == Z_FINISH);
2053 	return (flush == Z_FINISH ? finish_done : block_done);
2054 }
2055 
2056 /*
2057  * ===========================================================================
2058  * Same as above, but achieves better compression. We use a lazy
2059  * evaluation for matches: a match is finally adopted only if there is
2060  * no better match at the next window position.
2061  */
2062 local block_state
2063 deflate_slow(s, flush)
2064     deflate_state *s;
2065     int flush;
2066 {
2067 	IPos hash_head = NIL;	/* head of hash chain */
2068 	int bflush;	/* set if current block must be flushed */
2069 
2070 	/* Process the input block. */
2071 	for (;;) {
2072 		/*
2073 		 * Make sure that we always have enough lookahead,
2074 		 * except at the end of the input file. We need
2075 		 * MAX_MATCH bytes for the next match, plus MIN_MATCH
2076 		 * bytes to insert the string following the next
2077 		 * match.
2078 		 */
2079 		if (s->lookahead < MIN_LOOKAHEAD) {
2080 			fill_window(s);
2081 			if (s->lookahead < MIN_LOOKAHEAD &&
2082 			    flush == Z_NO_FLUSH) {
2083 				return (need_more);
2084 			}
2085 			/* flush the current block */
2086 			if (s->lookahead == 0)
2087 				break;
2088 		}
2089 
2090 		/*
2091 		 * Insert the string window[strstart .. strstart+2] in
2092 		 * the dictionary, and set hash_head to the head of
2093 		 * the hash chain:
2094 		 */
2095 		if (s->lookahead >= MIN_MATCH) {
2096 			INSERT_STRING(s, s->strstart, hash_head);
2097 		}
2098 
2099 		/*
2100 		 * Find the longest match, discarding those <=
2101 		 * prev_length.
2102 		 */
2103 		s->prev_length = s->match_length;
2104 		s->prev_match = s->match_start;
2105 		s->match_length = MIN_MATCH-1;
2106 
2107 		if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2108 		    s->strstart - hash_head <= MAX_DIST(s)) {
2109 			/*
2110 			 * To simplify the code, we prevent matches
2111 			 * with the string of window index 0 (in
2112 			 * particular we have to avoid a match of the
2113 			 * string with itself at the start of the
2114 			 * input file).
2115 			 */
2116 			if (s->strategy != Z_HUFFMAN_ONLY) {
2117 				s->match_length = longest_match(s, hash_head);
2118 			}
2119 			/* longest_match() sets match_start */
2120 
2121 			if (s->match_length <= 5 &&
2122 			    (s->strategy == Z_FILTERED ||
2123 				(s->match_length == MIN_MATCH &&
2124 				    s->strstart - s->match_start > TOO_FAR))) {
2125 
2126 				/*
2127 				 * If prev_match is also MIN_MATCH,
2128 				 * match_start is garbage but we will
2129 				 * ignore the current match anyway.
2130 				 */
2131 				s->match_length = MIN_MATCH-1;
2132 			}
2133 		}
2134 		/*
2135 		 * If there was a match at the previous step and the
2136 		 * current match is not better, output the previous
2137 		 * match:
2138 		 */
2139 		if (s->prev_length >= MIN_MATCH &&
2140 		    s->match_length <= s->prev_length) {
2141 			uInt max_insert = s->strstart + s->lookahead -
2142 			    MIN_MATCH;
2143 			/* Do not insert strings in hash table beyond this. */
2144 
2145 			check_match(s, s->strstart-1, s->prev_match,
2146 			    s->prev_length);
2147 
2148 			_tr_tally_dist(s, s->strstart -1 - s->prev_match,
2149 			    s->prev_length - MIN_MATCH, bflush);
2150 
2151 			/*
2152 			 * Insert in hash table all strings up to the
2153 			 * end of the match.  strstart-1 and strstart
2154 			 * are already inserted. If there is not
2155 			 * enough lookahead, the last two strings are
2156 			 * not inserted in the hash table.
2157 			 */
2158 			s->lookahead -= s->prev_length-1;
2159 			s->prev_length -= 2;
2160 			do {
2161 				if (++s->strstart <= max_insert) {
2162 					INSERT_STRING(s, s->strstart,
2163 					    hash_head);
2164 				}
2165 			} while (--s->prev_length != 0);
2166 			s->match_available = 0;
2167 			s->match_length = MIN_MATCH-1;
2168 			s->strstart++;
2169 
2170 			if (bflush) FLUSH_BLOCK(s, 0);
2171 
2172 		} else if (s->match_available) {
2173 			/*
2174 			 * If there was no match at the previous
2175 			 * position, output a single literal. If there
2176 			 * was a match but the current match is
2177 			 * longer, truncate the previous match to a
2178 			 * single literal.
2179 			 */
2180 			Tracevv((stderr, "%c", s->window[s->strstart-1]));
2181 			_tr_tally_lit(s, s->window[s->strstart-1], bflush);
2182 			if (bflush) {
2183 				FLUSH_BLOCK_ONLY(s, 0);
2184 			}
2185 			s->strstart++;
2186 			s->lookahead--;
2187 			if (s->strm->avail_out == 0)
2188 				return (need_more);
2189 		} else {
2190 			/*
2191 			 * There is no previous match to compare with,
2192 			 * wait for the next step to decide.
2193 			 */
2194 			s->match_available = 1;
2195 			s->strstart++;
2196 			s->lookahead--;
2197 		}
2198 	}
2199 	Assert(flush != Z_NO_FLUSH, "no flush?");
2200 	if (s->match_available) {
2201 		Tracevv((stderr, "%c", s->window[s->strstart-1]));
2202 		_tr_tally_lit(s, s->window[s->strstart-1], bflush);
2203 		s->match_available = 0;
2204 	}
2205 	FLUSH_BLOCK(s, flush == Z_FINISH);
2206 	return (flush == Z_FINISH ? finish_done : block_done);
2207 }
2208 /* --- deflate.c */
2209 
2210 /* +++ trees.c */
2211 /*
2212  * trees.c -- output deflated data using Huffman coding
2213  * Copyright (C) 1995-1998 Jean-loup Gailly
2214  * For conditions of distribution and use, see copyright notice in zlib.h
2215  */
2216 
2217 /*
2218  *  ALGORITHM
2219  *
2220  *      The "deflation" process uses several Huffman trees. The more
2221  *      common source values are represented by shorter bit sequences.
2222  *
2223  *      Each code tree is stored in a compressed form which is itself
2224  * a Huffman encoding of the lengths of all the code strings (in
2225  * ascending order by source values).  The actual code strings are
2226  * reconstructed from the lengths in the inflate process, as described
2227  * in the deflate specification.
2228  *
2229  *  REFERENCES
2230  *
2231  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
2232  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
2233  *
2234  *      Storer, James A.
2235  *          Data Compression:  Methods and Theory, pp. 49-50.
2236  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
2237  *
2238  *      Sedgewick, R.
2239  *          Algorithms, p290.
2240  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
2241  */
2242 
2243 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
2244 
2245 /* #include "deflate.h" */
2246 
2247 #ifdef DEBUG_ZLIB
2248 #include <ctype.h>
2249 #endif
2250 
2251 /*
2252  * ===========================================================================
2253  * Constants
2254  */
2255 
2256 #define	MAX_BL_BITS 7
2257 /* Bit length codes must not exceed MAX_BL_BITS bits */
2258 
2259 #define	END_BLOCK 256
2260 /* end of block literal code */
2261 
2262 #define	REP_3_6		16
2263 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2264 
2265 #define	REPZ_3_10	17
2266 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
2267 
2268 #define	REPZ_11_138	18
2269 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
2270 
2271 /* extra bits for each length code */
2272 local const int extra_lbits[LENGTH_CODES] = {
2273 	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4,
2274 	4, 4, 4, 5, 5, 5, 5, 0};
2275 
2276 /* extra bits for each distance code */
2277 local const int extra_dbits[D_CODES] = {
2278 	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9,
2279 	9, 10, 10, 11, 11, 12, 12, 13, 13};
2280 
2281 /* extra bits for each bit length code */
2282 local const int extra_blbits[BL_CODES] = {
2283 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7};
2284 
2285 local const uch bl_order[BL_CODES] = {
2286 	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
2287 
2288 /*
2289  * The lengths of the bit length codes are sent in order of decreasing
2290  * probability, to avoid transmitting the lengths for unused bit
2291  * length codes.
2292  */
2293 
2294 #define	Buf_size (8 * 2*sizeof (char))
2295 /*
2296  * Number of bits used within bi_buf. (bi_buf might be implemented on
2297  * more than 16 bits on some systems.)
2298  */
2299 
2300 /*
2301  * ===========================================================================
2302  * Local data. These are initialized only once.
2303  */
2304 #define	DIST_CODE_LEN  512 /* see definition of array dist_code below */
2305 
2306 local ct_data static_ltree[L_CODES+2];
2307 /*
2308  * The static literal tree. Since the bit lengths are imposed, there
2309  * is no need for the L_CODES extra codes used during heap
2310  * construction. However The codes 286 and 287 are needed to build a
2311  * canonical tree (see _tr_init below).
2312  */
2313 
2314 local ct_data static_dtree[D_CODES];
2315 /*
2316  * The static distance tree. (Actually a trivial tree since all codes
2317  * use 5 bits.)
2318  */
2319 
2320 local uch _dist_code[512];
2321 /*
2322  * distance codes. The first 256 values correspond to the distances 3
2323  * .. 258, the last 256 values correspond to the top 8 bits of the 15
2324  * bit distances.
2325  */
2326 
2327 local uch _length_code[MAX_MATCH-MIN_MATCH+1];
2328 /* length code for each normalized match length (0 == MIN_MATCH) */
2329 
2330 local int base_length[LENGTH_CODES];
2331 /* First normalized length for each code (0 = MIN_MATCH) */
2332 
2333 local int base_dist[D_CODES];
2334 /* First normalized distance for each code (0 = distance of 1) */
2335 
2336 struct static_tree_desc_s {
2337 	const ct_data *static_tree;	/* static tree or NULL */
2338 	const intf    *extra_bits;	/* extra bits for each code or NULL */
2339 	int	extra_base;	/* base index for extra_bits */
2340 	int	elems;	/* max number of elements in the tree */
2341 	int	max_length;	/* max bit length for the codes */
2342 };
2343 
2344 local static_tree_desc  static_l_desc = {
2345 	static_ltree, extra_lbits, LITERALS+1,	L_CODES, MAX_BITS};
2346 
2347 local static_tree_desc  static_d_desc = {
2348 	static_dtree, extra_dbits, 0,		D_CODES, MAX_BITS};
2349 
2350 local static_tree_desc  static_bl_desc = {
2351 	(const ct_data *)0, extra_blbits, 0,		BL_CODES, MAX_BL_BITS};
2352 
2353 /*
2354  * ===========================================================================
2355  * Local (static) routines in this file.
2356  */
2357 
2358 local void tr_static_init OF((void));
2359 local void init_block	OF((deflate_state *s));
2360 local void pqdownheap	OF((deflate_state *s, ct_data *tree, int k));
2361 local void gen_bitlen	OF((deflate_state *s, tree_desc *desc));
2362 local void gen_codes	OF((ct_data *tree, int max_code, ushf *bl_count));
2363 local void build_tree	OF((deflate_state *s, tree_desc *desc));
2364 local void scan_tree	OF((deflate_state *s, ct_data *tree, int max_code));
2365 local void send_tree	OF((deflate_state *s, ct_data *tree, int max_code));
2366 local int  build_bl_tree	OF((deflate_state *s));
2367 local void send_all_trees	OF((deflate_state *s, int lcodes, int dcodes,
2368     int blcodes));
2369 local void compress_block OF((deflate_state *s, ct_data *ltree,
2370     ct_data *dtree));
2371 local void set_data_type	OF((deflate_state *s));
2372 local unsigned bi_reverse	OF((unsigned value, int length));
2373 local void bi_windup	OF((deflate_state *s));
2374 local void bi_flush	OF((deflate_state *s));
2375 local void copy_block	OF((deflate_state *s, charf *buf, unsigned len,
2376     int header));
2377 
2378 #ifndef DEBUG_ZLIB
2379 #define	send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2380 /* Send a code of the given tree. c and tree must not have side effects */
2381 
2382 #else /* DEBUG_ZLIB */
2383 #define	send_code(s, c, tree) \
2384 	{ if (z_verbose > 2) fprintf(stderr, "\ncd %3d ", (c)); \
2385 	send_bits(s, tree[c].Code, tree[c].Len); }
2386 #endif
2387 
2388 /*
2389  * ===========================================================================
2390  * Output a short LSB first on the stream.
2391  * IN assertion: there is enough room in pendingBuf.
2392  */
2393 #define	put_short(s, w) { \
2394 	put_byte(s, (uch)((w) & 0xff)); \
2395 	put_byte(s, (uch)((ush)(w) >> 8)); \
2396 }
2397 
2398 /*
2399  * ===========================================================================
2400  * Send a value on a given number of bits.
2401  * IN assertion: length <= 16 and value fits in length bits.
2402  */
2403 #ifdef DEBUG_ZLIB
2404 local void send_bits	OF((deflate_state *s, int value, int length));
2405 
2406 local void
2407 send_bits(s, value, length)
2408     deflate_state *s;
2409     int value;	/* value to send */
2410     int length;	/* number of bits */
2411 {
2412 	Tracevv((stderr, " l %2d v %4x ", length, value));
2413 	Assert(length > 0 && length <= 15, "invalid length");
2414 	s->bits_sent += (ulg)length;
2415 
2416 	/*
2417 	 * If not enough room in bi_buf, use (valid) bits from bi_buf
2418 	 * and (16 - bi_valid) bits from value, leaving (width -
2419 	 * (16-bi_valid)) unused bits in value.
2420 	 */
2421 	if (s->bi_valid > (int)Buf_size - length) {
2422 		s->bi_buf |= (value << s->bi_valid);
2423 		put_short(s, s->bi_buf);
2424 		s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2425 		s->bi_valid += length - Buf_size;
2426 	} else {
2427 		s->bi_buf |= value << s->bi_valid;
2428 		s->bi_valid += length;
2429 	}
2430 }
2431 #else /* !DEBUG_ZLIB */
2432 
2433 #define	send_bits(s, value, length) \
2434 {	int len = length; \
2435 	if (s->bi_valid > (int)Buf_size - len) {\
2436 		int val = value; \
2437 		s->bi_buf |= (val << s->bi_valid); \
2438 		put_short(s, s->bi_buf); \
2439 		s->bi_buf = (ush)val >> (Buf_size - s->bi_valid); \
2440 		s->bi_valid += len - Buf_size; \
2441 	} else {\
2442 		s->bi_buf |= (value) << s->bi_valid; \
2443 		s->bi_valid += len; \
2444 	}\
2445 }
2446 #endif /* DEBUG_ZLIB */
2447 
2448 
2449 #define	MAX(a, b) (a >= b ? a : b)
2450 /* the arguments must not have side effects */
2451 
2452 /*
2453  * ===========================================================================
2454  * Initialize the various 'constant' tables. In a multi-threaded environment,
2455  * this function may be called by two threads concurrently, but this is
2456  * harmless since both invocations do exactly the same thing.
2457  */
2458 local void
2459 tr_static_init()
2460 {
2461 	static int static_init_done = 0;
2462 	int n;	/* iterates over tree elements */
2463 	int bits;	/* bit counter */
2464 	int length;	/* length value */
2465 	int code;	/* code value */
2466 	int dist;	/* distance index */
2467 	ush bl_count[MAX_BITS+1];
2468 	/* number of codes at each bit length for an optimal tree */
2469 
2470 	if (static_init_done)
2471 		return;
2472 
2473 	/* For some embedded targets, global variables are not initialized: */
2474 	static_l_desc.static_tree = static_ltree;
2475 	static_l_desc.extra_bits = extra_lbits;
2476 	static_d_desc.static_tree = static_dtree;
2477 	static_d_desc.extra_bits = extra_dbits;
2478 	static_bl_desc.extra_bits = extra_blbits;
2479 
2480 	/* Initialize the mapping length (0..255) -> length code (0..28) */
2481 	length = 0;
2482 	for (code = 0; code < LENGTH_CODES-1; code++) {
2483 		base_length[code] = length;
2484 		for (n = 0; n < (1<<extra_lbits[code]); n++) {
2485 			_length_code[length++] = (uch)code;
2486 		}
2487 	}
2488 	Assert(length == 256, "tr_static_init: length != 256");
2489 	/*
2490 	 * Note that the length 255 (match length 258) can be
2491 	 * represented in two different ways: code 284 + 5 bits or
2492 	 * code 285, so we overwrite _length_code[255] to use the best
2493 	 * encoding:
2494 	 */
2495 	_length_code[length-1] = (uch)code;
2496 
2497 	/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2498 	dist = 0;
2499 	for (code = 0; code < 16; code++) {
2500 		base_dist[code] = dist;
2501 		for (n = 0; n < (1<<extra_dbits[code]); n++) {
2502 			_dist_code[dist++] = (uch)code;
2503 		}
2504 	}
2505 	Assert(dist == 256, "tr_static_init: dist != 256");
2506 	dist >>= 7;	/* from now on, all distances are divided by 128 */
2507 	for (; code < D_CODES; code++) {
2508 		base_dist[code] = dist << 7;
2509 		for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2510 			_dist_code[256 + dist++] = (uch)code;
2511 		}
2512 	}
2513 	Assert(dist == 256, "tr_static_init: 256+dist != 512");
2514 
2515 	/* Construct the codes of the static literal tree */
2516 	for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2517 	n = 0;
2518 	while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2519 	while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2520 	while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2521 	while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2522 	/*
2523 	 * Codes 286 and 287 do not exist, but we must include them in the
2524 	 * tree construction to get a canonical Huffman tree (longest code
2525 	 * all ones)
2526 	 */
2527 	gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2528 
2529 	/* The static distance tree is trivial: */
2530 	for (n = 0; n < D_CODES; n++) {
2531 		static_dtree[n].Len = 5;
2532 		static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2533 	}
2534 	static_init_done = 1;
2535 }
2536 
2537 /*
2538  * ===========================================================================
2539  * Initialize the tree data structures for a new zlib stream.
2540  */
2541 void
2542 _tr_init(s)
2543     deflate_state *s;
2544 {
2545 	tr_static_init();
2546 
2547 	s->l_desc.dyn_tree = s->dyn_ltree;
2548 	s->l_desc.stat_desc = &static_l_desc;
2549 
2550 	s->d_desc.dyn_tree = s->dyn_dtree;
2551 	s->d_desc.stat_desc = &static_d_desc;
2552 
2553 	s->bl_desc.dyn_tree = s->bl_tree;
2554 	s->bl_desc.stat_desc = &static_bl_desc;
2555 
2556 	s->bi_buf = 0;
2557 	s->bi_valid = 0;
2558 	s->last_eob_len = 8;	/* enough lookahead for inflate */
2559 	s->compressed_len = 0L;		/* PPP */
2560 #ifdef DEBUG_ZLIB
2561 	s->bits_sent = 0L;
2562 #endif
2563 
2564 	/* Initialize the first block of the first file: */
2565 	init_block(s);
2566 }
2567 
2568 /*
2569  * ===========================================================================
2570  * Initialize a new block.
2571  */
2572 local void
2573 init_block(s)
2574     deflate_state *s;
2575 {
2576 	int n;	/* iterates over tree elements */
2577 
2578 	/* Initialize the trees. */
2579 	for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2580 	for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2581 	for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2582 
2583 	s->dyn_ltree[END_BLOCK].Freq = 1;
2584 	s->opt_len = s->static_len = 0L;
2585 	s->last_lit = s->matches = 0;
2586 }
2587 
2588 #define	SMALLEST 1
2589 /* Index within the heap array of least frequent node in the Huffman tree */
2590 
2591 
2592 /*
2593  * ===========================================================================
2594  * Remove the smallest element from the heap and recreate the heap with
2595  * one less element. Updates heap and heap_len.
2596  */
2597 #define	pqremove(s, tree, top) \
2598 {\
2599 	top = s->heap[SMALLEST]; \
2600 	s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2601 	pqdownheap(s, tree, SMALLEST); \
2602 }
2603 
2604 /*
2605  * ===========================================================================
2606  * Compares to subtrees, using the tree depth as tie breaker when
2607  * the subtrees have equal frequency. This minimizes the worst case length.
2608  */
2609 #define	smaller(tree, n, m, depth) \
2610 	(tree[n].Freq < tree[m].Freq || \
2611 	(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2612 /*
2613  * ===========================================================================
2614  * Restore the heap property by moving down the tree starting at node k,
2615  * exchanging a node with the smallest of its two sons if necessary, stopping
2616  * when the heap property is re-established (each father smaller than its
2617  * two sons).
2618  */
2619 local void
2620 pqdownheap(s, tree, k)
2621     deflate_state *s;
2622     ct_data *tree;	/* the tree to restore */
2623     int k;	/* node to move down */
2624 {
2625 	int v = s->heap[k];
2626 	int j = k << 1;	/* left son of k */
2627 	while (j <= s->heap_len) {
2628 		/* Set j to the smallest of the two sons: */
2629 		if (j < s->heap_len &&
2630 		    smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2631 			j++;
2632 		}
2633 		/* Exit if v is smaller than both sons */
2634 		if (smaller(tree, v, s->heap[j], s->depth)) break;
2635 
2636 		/* Exchange v with the smallest son */
2637 		s->heap[k] = s->heap[j];  k = j;
2638 
2639 		/* And continue down the tree, setting j to the left son of k */
2640 		j <<= 1;
2641 	}
2642 	s->heap[k] = v;
2643 }
2644 
2645 /*
2646  * ===========================================================================
2647  * Compute the optimal bit lengths for a tree and update the total bit length
2648  * for the current block.
2649  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2650  *    above are the tree nodes sorted by increasing frequency.
2651  * OUT assertions: the field len is set to the optimal bit length, the
2652  *     array bl_count contains the frequencies for each bit length.
2653  *     The length opt_len is updated; static_len is also updated if stree is
2654  *     not null.
2655  */
2656 local void
2657 gen_bitlen(s, desc)
2658     deflate_state *s;
2659     tree_desc *desc;	/* the tree descriptor */
2660 {
2661 	ct_data *tree  = desc->dyn_tree;
2662 	int max_code   = desc->max_code;
2663 	const ct_data *stree = desc->stat_desc->static_tree;
2664 	const intf *extra    = desc->stat_desc->extra_bits;
2665 	int base	= desc->stat_desc->extra_base;
2666 	int max_length = desc->stat_desc->max_length;
2667 	int h;	/* heap index */
2668 	int n, m;	/* iterate over the tree elements */
2669 	int bits;	/* bit length */
2670 	int xbits;	/* extra bits */
2671 	ush f;	/* frequency */
2672 	/* number of elements with bit length too large */
2673 	int overflow = 0;
2674 
2675 	for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2676 
2677 	/*
2678 	 * In a first pass, compute the optimal bit lengths (which may
2679 	 * overflow in the case of the bit length tree).
2680 	 */
2681 	tree[s->heap[s->heap_max]].Len = 0;	/* root of the heap */
2682 
2683 	for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2684 		n = s->heap[h];
2685 		bits = tree[tree[n].Dad].Len + 1;
2686 		if (bits > max_length) bits = max_length, overflow++;
2687 		tree[n].Len = (ush)bits;
2688 		/* We overwrite tree[n].Dad which is no longer needed */
2689 
2690 		if (n > max_code) continue;	/* not a leaf node */
2691 
2692 		s->bl_count[bits]++;
2693 		xbits = 0;
2694 		if (n >= base) xbits = extra[n-base];
2695 		f = tree[n].Freq;
2696 		s->opt_len += (ulg)f * (bits + xbits);
2697 		if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2698 	}
2699 	if (overflow == 0)
2700 		return;
2701 
2702 	Trace((stderr, "\nbit length overflow\n"));
2703 	/* This happens for example on obj2 and pic of the Calgary corpus */
2704 
2705 	/* Find the first bit length which could increase: */
2706 	do {
2707 		bits = max_length-1;
2708 		while (s->bl_count[bits] == 0) bits--;
2709 		s->bl_count[bits]--;	/* move one leaf down the tree */
2710 		/* move one overflow item as its brother */
2711 		s->bl_count[bits+1] += 2;
2712 		s->bl_count[max_length]--;
2713 		/*
2714 		 * The brother of the overflow item also moves one
2715 		 * step up, but this does not affect
2716 		 * bl_count[max_length]
2717 		 */
2718 		overflow -= 2;
2719 	} while (overflow > 0);
2720 
2721 	/*
2722 	 * Now recompute all bit lengths, scanning in increasing
2723 	 * frequency.  h is still equal to HEAP_SIZE. (It is simpler
2724 	 * to reconstruct all lengths instead of fixing only the wrong
2725 	 * ones. This idea is taken from 'ar' written by Haruhiko
2726 	 * Okumura.)
2727 	 */
2728 	for (bits = max_length; bits != 0; bits--) {
2729 		n = s->bl_count[bits];
2730 		while (n != 0) {
2731 			m = s->heap[--h];
2732 			if (m > max_code) continue;
2733 			if (tree[m].Len != (unsigned)bits) {
2734 				Trace((stderr, "code %d bits %d->%d\n", m,
2735 				    tree[m].Len, bits));
2736 				s->opt_len += ((long)bits - (long)tree[m].Len)
2737 				    *(long)tree[m].Freq;
2738 				tree[m].Len = (ush)bits;
2739 			}
2740 			n--;
2741 		}
2742 	}
2743 }
2744 
2745 /*
2746  * ===========================================================================
2747  * Generate the codes for a given tree and bit counts (which need not be
2748  * optimal).
2749  * IN assertion: the array bl_count contains the bit length statistics for
2750  * the given tree and the field len is set for all tree elements.
2751  * OUT assertion: the field code is set for all tree elements of non
2752  *     zero code length.
2753  */
2754 local void
2755 gen_codes(tree, max_code, bl_count)
2756     ct_data *tree;	/* the tree to decorate */
2757     int max_code;	/* largest code with non zero frequency */
2758     ushf *bl_count;	/* number of codes at each bit length */
2759 {
2760 	/* next code value for each bit length */
2761 	ush next_code[MAX_BITS+1];
2762 	ush code = 0;	/* running code value */
2763 	int bits;	/* bit index */
2764 	int n;	/* code index */
2765 
2766 	/*
2767 	 * The distribution counts are first used to generate the code
2768 	 * values without bit reversal.
2769 	 */
2770 	for (bits = 1; bits <= MAX_BITS; bits++) {
2771 		next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2772 	}
2773 	/*
2774 	 * Check that the bit counts in bl_count are consistent. The
2775 	 * last code must be all ones.
2776 	 */
2777 	Assert(code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2778 	    "inconsistent bit counts");
2779 	Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
2780 
2781 	for (n = 0;  n <= max_code; n++) {
2782 		int len = tree[n].Len;
2783 		if (len == 0) continue;
2784 		/* Now reverse the bits */
2785 		tree[n].Code = bi_reverse(next_code[len]++, len);
2786 
2787 		Tracecv(tree != static_ltree,
2788 		    (stderr, "\nn %3d %c l %2d c %4x (%x) ",
2789 		    n, (isgraph(n) ? n : ' '), len, tree[n].Code,
2790 			next_code[len]-1));
2791 	}
2792 }
2793 
2794 /*
2795  * ===========================================================================
2796  * Construct one Huffman tree and assigns the code bit strings and lengths.
2797  * Update the total bit length for the current block.
2798  * IN assertion: the field freq is set for all tree elements.
2799  * OUT assertions: the fields len and code are set to the optimal bit length
2800  *     and corresponding code. The length opt_len is updated; static_len is
2801  *     also updated if stree is not null. The field max_code is set.
2802  */
2803 local void
2804 build_tree(s, desc)
2805     deflate_state *s;
2806     tree_desc *desc;	/* the tree descriptor */
2807 {
2808 	ct_data *tree   = desc->dyn_tree;
2809 	const ct_data *stree  = desc->stat_desc->static_tree;
2810 	int elems	= desc->stat_desc->elems;
2811 	int n, m;	/* iterate over heap elements */
2812 	int max_code = -1;	/* largest code with non zero frequency */
2813 	int node;	/* new node being created */
2814 
2815 	/*
2816 	 * Construct the initial heap, with least frequent element in
2817 	 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and
2818 	 * heap[2*n+1].  heap[0] is not used.
2819 	 */
2820 	s->heap_len = 0, s->heap_max = HEAP_SIZE;
2821 
2822 	for (n = 0; n < elems; n++) {
2823 		if (tree[n].Freq != 0) {
2824 			s->heap[++(s->heap_len)] = max_code = n;
2825 			s->depth[n] = 0;
2826 		} else {
2827 			tree[n].Len = 0;
2828 		}
2829 	}
2830 
2831 	/*
2832 	 * The pkzip format requires that at least one distance code
2833 	 * exists, and that at least one bit should be sent even if
2834 	 * there is only one possible code. So to avoid special checks
2835 	 * later on we force at least two codes of non zero frequency.
2836 	 */
2837 	while (s->heap_len < 2) {
2838 		node = s->heap[++(s->heap_len)] = (max_code < 2 ?
2839 		    ++max_code : 0);
2840 		tree[node].Freq = 1;
2841 		s->depth[node] = 0;
2842 		s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2843 		/* node is 0 or 1 so it does not have extra bits */
2844 	}
2845 	desc->max_code = max_code;
2846 
2847 	/*
2848 	 * The elements heap[heap_len/2+1 .. heap_len] are leaves of
2849 	 * the tree, establish sub-heaps of increasing lengths:
2850 	 */
2851 	for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2852 
2853 	/*
2854 	 * Construct the Huffman tree by repeatedly combining the
2855 	 * least two frequent nodes.
2856 	 */
2857 	node = elems;	/* next internal node of the tree */
2858 	do {
2859 		pqremove(s, tree, n);	/* n = node of least frequency */
2860 		m = s->heap[SMALLEST];	/* m = node of next least frequency */
2861 
2862 		/* keep the nodes sorted by frequency */
2863 		s->heap[--(s->heap_max)] = n;
2864 		s->heap[--(s->heap_max)] = m;
2865 
2866 		/* Create a new node father of n and m */
2867 		tree[node].Freq = tree[n].Freq + tree[m].Freq;
2868 		s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2869 		tree[n].Dad = tree[m].Dad = (ush)node;
2870 #ifdef DUMP_BL_TREE
2871 		if (tree == s->bl_tree) {
2872 			fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)",
2873 			    node, tree[node].Freq, n, tree[n].Freq, m,
2874 			    tree[m].Freq);
2875 		}
2876 #endif
2877 		/* and insert the new node in the heap */
2878 		s->heap[SMALLEST] = node++;
2879 		pqdownheap(s, tree, SMALLEST);
2880 
2881 	} while (s->heap_len >= 2);
2882 
2883 	s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2884 
2885 	/*
2886 	 * At this point, the fields freq and dad are set. We can now
2887 	 * generate the bit lengths.
2888 	 */
2889 	gen_bitlen(s, (tree_desc *)desc);
2890 
2891 	/* The field len is now set, we can generate the bit codes */
2892 	gen_codes((ct_data *)tree, max_code, s->bl_count);
2893 }
2894 
2895 /*
2896  * ===========================================================================
2897  * Scan a literal or distance tree to determine the frequencies of the codes
2898  * in the bit length tree.
2899  */
2900 local void
2901 scan_tree(s, tree, max_code)
2902     deflate_state *s;
2903     ct_data *tree;	/* the tree to be scanned */
2904     int max_code;	/* and its largest code of non zero frequency */
2905 {
2906 	int n;	/* iterates over all tree elements */
2907 	int prevlen = -1;	/* last emitted length */
2908 	int curlen;	/* length of current code */
2909 	int nextlen = tree[0].Len;	/* length of next code */
2910 	int count = 0;	/* repeat count of the current code */
2911 	int max_count = 7;	/* max repeat count */
2912 	int min_count = 4;	/* min repeat count */
2913 
2914 	if (nextlen == 0) max_count = 138, min_count = 3;
2915 	tree[max_code+1].Len = (ush)0xffff;	/* guard */
2916 
2917 	for (n = 0; n <= max_code; n++) {
2918 		curlen = nextlen; nextlen = tree[n+1].Len;
2919 		if (++count < max_count && curlen == nextlen) {
2920 			continue;
2921 		} else if (count < min_count) {
2922 			s->bl_tree[curlen].Freq += count;
2923 		} else if (curlen != 0) {
2924 			if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2925 			s->bl_tree[REP_3_6].Freq++;
2926 		} else if (count <= 10) {
2927 			s->bl_tree[REPZ_3_10].Freq++;
2928 		} else {
2929 			s->bl_tree[REPZ_11_138].Freq++;
2930 		}
2931 		count = 0; prevlen = curlen;
2932 		if (nextlen == 0) {
2933 			max_count = 138, min_count = 3;
2934 		} else if (curlen == nextlen) {
2935 			max_count = 6, min_count = 3;
2936 		} else {
2937 			max_count = 7, min_count = 4;
2938 		}
2939 	}
2940 }
2941 
2942 /*
2943  * ===========================================================================
2944  * Send a literal or distance tree in compressed form, using the codes in
2945  * bl_tree.
2946  */
2947 local void
2948 send_tree(s, tree, max_code)
2949     deflate_state *s;
2950     ct_data *tree;	/* the tree to be scanned */
2951     int max_code;	/* and its largest code of non zero frequency */
2952 {
2953 	int n;	/* iterates over all tree elements */
2954 	int prevlen = -1;	/* last emitted length */
2955 	int curlen;	/* length of current code */
2956 	int nextlen = tree[0].Len;	/* length of next code */
2957 	int count = 0;	/* repeat count of the current code */
2958 	int max_count = 7;	/* max repeat count */
2959 	int min_count = 4;	/* min repeat count */
2960 
2961 	/* tree[max_code+1].Len = -1; */  /* guard already set */
2962 	if (nextlen == 0) max_count = 138, min_count = 3;
2963 
2964 	for (n = 0; n <= max_code; n++) {
2965 		curlen = nextlen; nextlen = tree[n+1].Len;
2966 		if (++count < max_count && curlen == nextlen) {
2967 			continue;
2968 		} else if (count < min_count) {
2969 			do { send_code(s, curlen, s->bl_tree); }
2970 			while (--count != 0);
2971 
2972 		} else if (curlen != 0) {
2973 			if (curlen != prevlen) {
2974 				send_code(s, curlen, s->bl_tree); count--;
2975 			}
2976 			Assert(count >= 3 && count <= 6, " 3_6?");
2977 			send_code(s, REP_3_6, s->bl_tree);
2978 			send_bits(s, count-3, 2);
2979 
2980 		} else if (count <= 10) {
2981 			send_code(s, REPZ_3_10, s->bl_tree);
2982 			send_bits(s, count-3, 3);
2983 
2984 		} else {
2985 			send_code(s, REPZ_11_138, s->bl_tree);
2986 			send_bits(s, count-11, 7);
2987 		}
2988 		count = 0; prevlen = curlen;
2989 		if (nextlen == 0) {
2990 			max_count = 138, min_count = 3;
2991 		} else if (curlen == nextlen) {
2992 			max_count = 6, min_count = 3;
2993 		} else {
2994 			max_count = 7, min_count = 4;
2995 		}
2996 	}
2997 }
2998 
2999 /*
3000  * ===========================================================================
3001  * Construct the Huffman tree for the bit lengths and return the index in
3002  * bl_order of the last bit length code to send.
3003  */
3004 local int
3005 build_bl_tree(s)
3006     deflate_state *s;
3007 {
3008 	/* index of last bit length code of non zero freq */
3009 	int max_blindex;
3010 
3011 	/*
3012 	 * Determine the bit length frequencies for literal and
3013 	 * distance trees
3014 	 */
3015 	scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
3016 	scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
3017 
3018 	/* Build the bit length tree: */
3019 	build_tree(s, (tree_desc *)(&(s->bl_desc)));
3020 	/*
3021 	 * opt_len now includes the length of the tree
3022 	 * representations, except the lengths of the bit lengths
3023 	 * codes and the 5+5+4 bits for the counts.
3024 	 */
3025 
3026 	/*
3027 	 * Determine the number of bit length codes to send. The pkzip
3028 	 * format requires that at least 4 bit length codes be
3029 	 * sent. (appnote.txt says 3 but the actual value used is 4.)
3030 	 */
3031 	for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
3032 		if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
3033 	}
3034 	/* Update opt_len to include the bit length tree and counts */
3035 	s->opt_len += 3*(max_blindex+1) + 5+5+4;
3036 	Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
3037 	    s->opt_len, s->static_len));
3038 
3039 	return (max_blindex);
3040 }
3041 
3042 /*
3043  * ===========================================================================
3044  * Send the header for a block using dynamic Huffman trees: the counts, the
3045  * lengths of the bit length codes, the literal tree and the distance tree.
3046  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
3047  */
3048 local void
3049 send_all_trees(s, lcodes, dcodes, blcodes)
3050     deflate_state *s;
3051     int lcodes, dcodes, blcodes;	/* number of codes for each tree */
3052 {
3053 	int rank;	/* index in bl_order */
3054 
3055 	Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4,
3056 	    "not enough codes");
3057 	Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
3058 	    "too many codes");
3059 	Tracev((stderr, "\nbl counts: "));
3060 	send_bits(s, lcodes-257, 5);	/* not +255 as stated in appnote.txt */
3061 	send_bits(s, dcodes-1,   5);
3062 	send_bits(s, blcodes-4,  4);	/* not -3 as stated in appnote.txt */
3063 	for (rank = 0; rank < blcodes; rank++) {
3064 		Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
3065 		send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
3066 	}
3067 #ifdef DEBUG_ZLIB
3068 	Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
3069 #endif
3070 
3071 	/* literal tree */
3072 	send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1);
3073 #ifdef DEBUG_ZLIB
3074 	Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
3075 #endif
3076 
3077 	/* distance tree */
3078 	send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1);
3079 #ifdef DEBUG_ZLIB
3080 	Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
3081 #endif
3082 }
3083 
3084 /*
3085  * ===========================================================================
3086  * Send a stored block
3087  */
3088 void
3089 _tr_stored_block(s, buf, stored_len, eof)
3090     deflate_state *s;
3091     charf *buf;	/* input block */
3092     ulg stored_len;	/* length of input block */
3093     int eof;	/* true if this is the last block for a file */
3094 {
3095 	send_bits(s, (STORED_BLOCK<<1)+eof, 3);	/* send block type */
3096 	s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; /* PPP */
3097 	s->compressed_len += (stored_len + 4) << 3;	/* PPP */
3098 
3099 	copy_block(s, buf, (unsigned)stored_len, 1);	/* with header */
3100 }
3101 
3102 /*
3103  * Send just the `stored block' type code without any length bytes or data.
3104  * ---PPP---
3105  */
3106 void
3107 _tr_stored_type_only(s)
3108     deflate_state *s;
3109 {
3110 	send_bits(s, (STORED_BLOCK << 1), 3);
3111 	bi_windup(s);
3112 	s->compressed_len = (s->compressed_len + 3) & ~7L;	/* PPP */
3113 }
3114 
3115 
3116 /*
3117  * ===========================================================================
3118  * Send one empty static block to give enough lookahead for inflate.
3119  * This takes 10 bits, of which 7 may remain in the bit buffer.
3120  * The current inflate code requires 9 bits of lookahead. If the
3121  * last two codes for the previous block (real code plus EOB) were coded
3122  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
3123  * the last real code. In this case we send two empty static blocks instead
3124  * of one. (There are no problems if the previous block is stored or fixed.)
3125  * To simplify the code, we assume the worst case of last real code encoded
3126  * on one bit only.
3127  */
3128 void
3129 _tr_align(s)
3130     deflate_state *s;
3131 {
3132 	send_bits(s, STATIC_TREES<<1, 3);
3133 	send_code(s, END_BLOCK, static_ltree);
3134 	s->compressed_len += 10L;	/* 3 for block type, 7 for EOB */
3135 	bi_flush(s);
3136 	/*
3137 	 * Of the 10 bits for the empty block, we have already sent
3138 	 * (10 - bi_valid) bits. The lookahead for the last real code
3139 	 * (before the EOB of the previous block) was thus at least
3140 	 * one plus the length of the EOB plus what we have just sent
3141 	 * of the empty static block.
3142 	 */
3143 	if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3144 		send_bits(s, STATIC_TREES<<1, 3);
3145 		send_code(s, END_BLOCK, static_ltree);
3146 		s->compressed_len += 10L;
3147 		bi_flush(s);
3148 	}
3149 	s->last_eob_len = 7;
3150 }
3151 
3152 /*
3153  * ===========================================================================
3154  * Determine the best encoding for the current block: dynamic trees, static
3155  * trees or store, and output the encoded block to the zip file.
3156  */
3157 void
3158 _tr_flush_block(s, buf, stored_len, eof)
3159     deflate_state *s;
3160     charf *buf;	/* input block, or NULL if too old */
3161     ulg stored_len;	/* length of input block */
3162     int eof;	/* true if this is the last block for a file */
3163 {
3164 	ulg opt_lenb, static_lenb;	/* opt_len and static_len in bytes */
3165 	/* index of last bit length code of non zero freq */
3166 	int max_blindex = 0;
3167 
3168 	/* Build the Huffman trees unless a stored block is forced */
3169 	if (s->level > 0) {
3170 
3171 		/* Check if the file is ascii or binary */
3172 		if (s->data_type == Z_UNKNOWN) set_data_type(s);
3173 
3174 		/* Construct the literal and distance trees */
3175 		build_tree(s, (tree_desc *)(&(s->l_desc)));
3176 		Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3177 		    s->static_len));
3178 
3179 		build_tree(s, (tree_desc *)(&(s->d_desc)));
3180 		Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3181 		    s->static_len));
3182 		/*
3183 		 * At this point, opt_len and static_len are the total
3184 		 * bit lengths of the compressed block data, excluding
3185 		 * the tree representations.
3186 		 */
3187 
3188 		/*
3189 		 * Build the bit length tree for the above two trees,
3190 		 * and get the index in bl_order of the last bit
3191 		 * length code to send.
3192 		 */
3193 		max_blindex = build_bl_tree(s);
3194 
3195 		/*
3196 		 * Determine the best encoding. Compute first the
3197 		 * block length in bytes
3198 		 */
3199 		opt_lenb = (s->opt_len+3+7)>>3;
3200 		static_lenb = (s->static_len+3+7)>>3;
3201 
3202 		Tracev((stderr,
3203 		    "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3204 		    opt_lenb, s->opt_len, static_lenb, s->static_len,
3205 		    stored_len, s->last_lit));
3206 
3207 		if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3208 
3209 	} else {
3210 		Assert(buf != (char *)0, "lost buf");
3211 		/* force a stored block */
3212 		opt_lenb = static_lenb = stored_len + 5;
3213 	}
3214 
3215 	/*
3216 	 * If compression failed and this is the first and last block,
3217 	 * and if the .zip file can be seeked (to rewrite the local
3218 	 * header), the whole file is transformed into a stored file:
3219 	 */
3220 #ifdef STORED_FILE_OK
3221 #ifdef FORCE_STORED_FILE
3222 #define	FRC_STR_COND	eof && s->compressed_len == 0L /* force stored file */
3223 #else
3224 #define	FRC_STR_COND	stored_len <= opt_lenb && eof && \
3225 			s->compressed_len == 0L && seekable()
3226 #endif
3227 	if (FRC_STR_COND) {
3228 #undef FRC_STR_COND
3229 		/*
3230 		 * Since LIT_BUFSIZE <= 2*WSIZE, the input data must
3231 		 * be there:
3232 		 */
3233 		if (buf == (charf*)0) error("block vanished");
3234 
3235 		/* without header */
3236 		copy_block(s, buf, (unsigned)stored_len, 0);
3237 		s->compressed_len = stored_len << 3;
3238 		s->method = STORED;
3239 	} else
3240 #endif /* STORED_FILE_OK */
3241 
3242 #ifdef FORCE_STORED
3243 #define	FRC_STR_COND	buf != (char *)0	/* force stored block */
3244 #else
3245 			/* 4: two words for the lengths */
3246 #define	FRC_STR_COND	stored_len+4 <= opt_lenb && buf != (char *)0
3247 #endif
3248 		if (FRC_STR_COND) {
3249 #undef FRC_STR_COND
3250 			/*
3251 			 * The test buf != NULL is only necessary if
3252 			 * LIT_BUFSIZE > WSIZE.  Otherwise we can't
3253 			 * have processed more than WSIZE input bytes
3254 			 * since the last block flush, because
3255 			 * compression would have been successful. If
3256 			 * LIT_BUFSIZE <= WSIZE, it is never too late
3257 			 * to transform a block into a stored block.
3258 			 */
3259 			_tr_stored_block(s, buf, stored_len, eof);
3260 #ifdef FORCE_STATIC
3261 #define	FRC_STAT_COND	static_lenb >= 0 /* force static trees */
3262 #else
3263 #define	FRC_STAT_COND	static_lenb == opt_lenb
3264 #endif
3265 		} else if (FRC_STAT_COND) {
3266 #undef FRC_STAT_COND
3267 			send_bits(s, (STATIC_TREES<<1)+eof, 3);
3268 			compress_block(s, (ct_data *)static_ltree,
3269 			    (ct_data *)static_dtree);
3270 			s->compressed_len += 3 + s->static_len;	/* PPP */
3271 		} else {
3272 			send_bits(s, (DYN_TREES<<1)+eof, 3);
3273 			send_all_trees(s, s->l_desc.max_code+1,
3274 			    s->d_desc.max_code+1,
3275 			    max_blindex+1);
3276 			compress_block(s, (ct_data *)s->dyn_ltree,
3277 			    (ct_data *)s->dyn_dtree);
3278 			s->compressed_len += 3 + s->opt_len;	/* PPP */
3279 		}
3280 #ifdef DEBUG_ZLIB
3281 	Assert(s->compressed_len == s->bits_sent, "bad compressed size");
3282 #endif
3283 	/*
3284 	 * The above check is made mod 2^32, for files larger than 512
3285 	 * MB and uLong implemented on 32 bits.
3286 	 */
3287 	init_block(s);
3288 
3289 	if (eof) {
3290 		bi_windup(s);
3291 		s->compressed_len += 7;	/* align on byte boundary PPP */
3292 	}
3293 	Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3294 	    s->compressed_len-7*eof));
3295 
3296 	/* return (s->compressed_len >> 3); */
3297 }
3298 
3299 /*
3300  * ===========================================================================
3301  * Save the match info and tally the frequency counts. Return true if
3302  * the current block must be flushed.
3303  */
3304 int
3305 _tr_tally(s, dist, lc)
3306     deflate_state *s;
3307     unsigned dist;	/* distance of matched string */
3308 	/* match length-MIN_MATCH or unmatched char (if dist==0) */
3309     unsigned lc;
3310 {
3311 	s->d_buf[s->last_lit] = (ush)dist;
3312 	s->l_buf[s->last_lit++] = (uch)lc;
3313 	if (dist == 0) {
3314 		/* lc is the unmatched char */
3315 		s->dyn_ltree[lc].Freq++;
3316 	} else {
3317 		s->matches++;
3318 		/* Here, lc is the match length - MIN_MATCH */
3319 		dist--;	/* dist = match distance - 1 */
3320 		Assert((ush)dist < (ush)MAX_DIST(s) &&
3321 		    (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3322 		    (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
3323 
3324 		s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3325 		s->dyn_dtree[d_code(dist)].Freq++;
3326 	}
3327 
3328 #ifdef TRUNCATE_BLOCK
3329 	/* Try to guess if it is profitable to stop the current block here */
3330 	if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3331 		/* Compute an upper bound for the compressed length */
3332 		ulg out_length = (ulg)s->last_lit*8L;
3333 		ulg in_length = (ulg)((long)s->strstart - s->block_start);
3334 		int dcode;
3335 		for (dcode = 0; dcode < D_CODES; dcode++) {
3336 			out_length += (ulg)s->dyn_dtree[dcode].Freq *
3337 			    (5L+extra_dbits[dcode]);
3338 		}
3339 		out_length >>= 3;
3340 		Tracev((stderr, "\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3341 		    s->last_lit, in_length, out_length,
3342 		    100L - out_length*100L/in_length));
3343 		if (s->matches < s->last_lit/2 && out_length < in_length/2)
3344 			return (1);
3345 	}
3346 #endif
3347 	return (s->last_lit == s->lit_bufsize-1);
3348 	/*
3349 	 * We avoid equality with lit_bufsize because of wraparound at 64K
3350 	 * on 16 bit machines and because stored blocks are restricted to
3351 	 * 64K-1 bytes.
3352 	 */
3353 }
3354 
3355 /*
3356  * ===========================================================================
3357  * Send the block data compressed using the given Huffman trees
3358  */
3359 local void
3360 compress_block(s, ltree, dtree)
3361     deflate_state *s;
3362     ct_data *ltree;	/* literal tree */
3363     ct_data *dtree;	/* distance tree */
3364 {
3365 	unsigned dist;	/* distance of matched string */
3366 	int lc;	/* match length or unmatched char (if dist == 0) */
3367 	unsigned lx = 0;	/* running index in l_buf */
3368 	unsigned code;	/* the code to send */
3369 	int extra;	/* number of extra bits to send */
3370 
3371 	if (s->last_lit != 0) do {
3372 		dist = s->d_buf[lx];
3373 		lc = s->l_buf[lx++];
3374 		if (dist == 0) {
3375 			/* send a literal byte */
3376 			send_code(s, lc, ltree);
3377 			Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
3378 		} else {
3379 			/* Here, lc is the match length - MIN_MATCH */
3380 			code = _length_code[lc];
3381 			/* send the length code */
3382 			send_code(s, code+LITERALS+1, ltree);
3383 			extra = extra_lbits[code];
3384 			if (extra != 0) {
3385 				lc -= base_length[code];
3386 				/* send the extra length bits */
3387 				send_bits(s, lc, extra);
3388 			}
3389 			/* dist is now the match distance - 1 */
3390 			dist--;
3391 			code = d_code(dist);
3392 			Assert(code < D_CODES, "bad d_code");
3393 
3394 			/* send the distance code */
3395 			send_code(s, code, dtree);
3396 			extra = extra_dbits[code];
3397 			if (extra != 0) {
3398 				dist -= base_dist[code];
3399 				/* send the extra distance bits */
3400 				send_bits(s, dist, extra);
3401 			}
3402 		} /* literal or match pair ? */
3403 
3404 		/*
3405 		 * Check that the overlay between pending_buf and
3406 		 * d_buf+l_buf is ok:
3407 		 */
3408 		Assert(s->pending < s->lit_bufsize + 2*lx,
3409 		    "pendingBuf overflow");
3410 
3411 	} while (lx < s->last_lit);
3412 
3413 	send_code(s, END_BLOCK, ltree);
3414 	s->last_eob_len = ltree[END_BLOCK].Len;
3415 }
3416 
3417 /*
3418  * ===========================================================================
3419  * Set the data type to ASCII or BINARY, using a crude approximation:
3420  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3421  * IN assertion: the fields freq of dyn_ltree are set and the total of all
3422  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3423  */
3424 local void
3425 set_data_type(s)
3426     deflate_state *s;
3427 {
3428 	int n = 0;
3429 	unsigned ascii_freq = 0;
3430 	unsigned bin_freq = 0;
3431 	while (n < 7)	bin_freq	+= s->dyn_ltree[n++].Freq;
3432 	while (n < 128)	ascii_freq	+= s->dyn_ltree[n++].Freq;
3433 	while (n < LITERALS) bin_freq	+= s->dyn_ltree[n++].Freq;
3434 	s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ?
3435 	    Z_BINARY : Z_ASCII);
3436 }
3437 
3438 /*
3439  * ===========================================================================
3440  * Reverse the first len bits of a code, using straightforward code (a faster
3441  * method would use a table)
3442  * IN assertion: 1 <= len <= 15
3443  */
3444 local unsigned
3445 bi_reverse(code, len)
3446     unsigned code;	/* the value to invert */
3447     int len;	/* its bit length */
3448 {
3449 	register unsigned res = 0;
3450 	do {
3451 		res |= code & 1;
3452 		code >>= 1, res <<= 1;
3453 	} while (--len > 0);
3454 	return (res >> 1);
3455 }
3456 
3457 /*
3458  * ===========================================================================
3459  * Flush the bit buffer, keeping at most 7 bits in it.
3460  */
3461 local void
3462 bi_flush(s)
3463     deflate_state *s;
3464 {
3465 	if (s->bi_valid == 16) {
3466 		put_short(s, s->bi_buf);
3467 		s->bi_buf = 0;
3468 		s->bi_valid = 0;
3469 	} else if (s->bi_valid >= 8) {
3470 		put_byte(s, (Byte)s->bi_buf);
3471 		s->bi_buf >>= 8;
3472 		s->bi_valid -= 8;
3473 	}
3474 }
3475 
3476 /*
3477  * ===========================================================================
3478  * Flush the bit buffer and align the output on a byte boundary
3479  */
3480 local void
3481 bi_windup(s)
3482     deflate_state *s;
3483 {
3484 	if (s->bi_valid > 8) {
3485 		put_short(s, s->bi_buf);
3486 	} else if (s->bi_valid > 0) {
3487 		put_byte(s, (Byte)s->bi_buf);
3488 	}
3489 	s->bi_buf = 0;
3490 	s->bi_valid = 0;
3491 #ifdef DEBUG_ZLIB
3492 	s->bits_sent = (s->bits_sent+7) & ~7;
3493 #endif
3494 }
3495 
3496 /*
3497  * ===========================================================================
3498  * Copy a stored block, storing first the length and its
3499  * one's complement if requested.
3500  */
3501 local void
3502 copy_block(s, buf, len, header)
3503     deflate_state *s;
3504     charf    *buf;	/* the input data */
3505     unsigned len;	/* its length */
3506     int	header;	/* true if block header must be written */
3507 {
3508 	bi_windup(s);	/* align on byte boundary */
3509 	s->last_eob_len = 8;	/* enough lookahead for inflate */
3510 
3511 	if (header) {
3512 		put_short(s, (ush)len);
3513 		put_short(s, (ush)~len);
3514 #ifdef DEBUG_ZLIB
3515 		s->bits_sent += 2*16;
3516 #endif
3517 	}
3518 #ifdef DEBUG_ZLIB
3519 	s->bits_sent += (ulg)len<<3;
3520 #endif
3521 	/* bundle up the put_byte(s, *buf++) calls PPP */
3522 	Assert(s->pending + len < s->pending_buf_size, "pending_buf overrun");
3523 	zmemcpy(&s->pending_buf[s->pending], buf, len);	/* PPP */
3524 	s->pending += len;				/* PPP */
3525 }
3526 /* --- trees.c */
3527 
3528 /* +++ inflate.c */
3529 /*
3530  * inflate.c -- zlib interface to inflate modules
3531  * Copyright (C) 1995-1998 Mark Adler
3532  * For conditions of distribution and use, see copyright notice in zlib.h
3533  */
3534 
3535 /* #include "zutil.h" */
3536 
3537 /* +++ infblock.h */
3538 /*
3539  * infblock.h -- header to use infblock.c
3540  * Copyright (C) 1995-1998 Mark Adler
3541  * For conditions of distribution and use, see copyright notice in zlib.h
3542  */
3543 
3544 /*
3545  * WARNING: this file should *not* be used by applications. It is part
3546  * of the implementation of the compression library and is subject to
3547  * change. Applications should only use zlib.h.
3548  */
3549 
3550 struct inflate_blocks_state;
3551 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3552 
3553 extern inflate_blocks_statef * inflate_blocks_new OF((
3554     z_streamp z,
3555     check_func c,	/* check function */
3556     uInt w));	/* window size */
3557 
3558 extern int inflate_blocks OF((
3559     inflate_blocks_statef *,
3560     z_streamp,
3561     int));	/* initial return code */
3562 
3563 extern void inflate_blocks_reset OF((
3564     inflate_blocks_statef *,
3565     z_streamp,
3566     uLongf *));	/* check value on output */
3567 
3568 extern int inflate_blocks_free OF((
3569     inflate_blocks_statef *,
3570     z_streamp));
3571 
3572 extern void inflate_set_dictionary OF((
3573     inflate_blocks_statef *s,
3574     const Bytef *d,  /* dictionary */
3575     uInt  n));	/* dictionary length */
3576 
3577 extern int inflate_blocks_sync_point OF((
3578     inflate_blocks_statef *s));
3579 
3580 /* PPP -- added function */
3581 extern int inflate_addhistory OF((
3582     inflate_blocks_statef *,
3583     z_streamp));
3584 
3585 /* PPP -- added function */
3586 extern int inflate_packet_flush OF((
3587     inflate_blocks_statef *));
3588 /* --- infblock.h */
3589 
3590 #ifndef NO_DUMMY_DECL
3591 struct inflate_blocks_state {int dummy; };	/* for buggy compilers */
3592 #endif
3593 
3594 /* inflate private state */
3595 struct internal_state {
3596 
3597 	/* mode */
3598 	enum {
3599 		METHOD,	/* waiting for method byte */
3600 		FLAG,	/* waiting for flag byte */
3601 		DICT4,	/* four dictionary check bytes to go */
3602 		DICT3,	/* three dictionary check bytes to go */
3603 		DICT2,	/* two dictionary check bytes to go */
3604 		DICT1,	/* one dictionary check byte to go */
3605 		DICT0,	/* waiting for inflateSetDictionary */
3606 		BLOCKS,	/* decompressing blocks */
3607 		CHECK4,	/* four check bytes to go */
3608 		CHECK3,	/* three check bytes to go */
3609 		CHECK2,	/* two check bytes to go */
3610 		CHECK1,	/* one check byte to go */
3611 		DONE,	/* finished check, done */
3612 		BAD}	/* got an error--stay here */
3613 	mode;	/* current inflate mode */
3614 
3615 	/* mode dependent information */
3616 	union {
3617 		uInt method;	/* if FLAGS, method byte */
3618 		struct {
3619 			uLong was;	/* computed check value */
3620 			uLong need;	/* stream check value */
3621 		} check;	/* if CHECK, check values to compare */
3622 		uInt marker;	/* if BAD, inflateSync's marker bytes count */
3623 	} sub;	/* submode */
3624 
3625 	/* mode independent information */
3626 	int  nowrap;	/* flag for no wrapper */
3627 	uInt wbits;	/* log2(window size)  (8..15, defaults to 15) */
3628 	/* current inflate_blocks state */
3629 	inflate_blocks_statef *blocks;
3630 };
3631 
3632 
3633 int
3634 inflateReset(z)
3635 z_streamp z;
3636 {
3637 	if (z == Z_NULL || z->state == Z_NULL)
3638 		return (Z_STREAM_ERROR);
3639 	z->total_in = z->total_out = 0;
3640 	z->msg = Z_NULL;
3641 	z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3642 	inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3643 	Trace((stderr, "inflate: reset\n"));
3644 	return (Z_OK);
3645 }
3646 
3647 
3648 int
3649 inflateEnd(z)
3650 z_streamp z;
3651 {
3652 	if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3653 		return (Z_STREAM_ERROR);
3654 	if (z->state->blocks != Z_NULL) {
3655 		(void) inflate_blocks_free(z->state->blocks, z);
3656 		z->state->blocks = Z_NULL;
3657 	}
3658 	ZFREE(z, z->state);
3659 	z->state = Z_NULL;
3660 	Trace((stderr, "inflate: end\n"));
3661 	return (Z_OK);
3662 }
3663 
3664 
3665 int
3666 inflateInit2_(z, w, version, stream_size)
3667 z_streamp z;
3668 int w;
3669 const char *version;
3670 int stream_size;
3671 {
3672 	if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3673 	    stream_size != sizeof (z_stream))
3674 		return (Z_VERSION_ERROR);
3675 
3676 	/* initialize state */
3677 	if (z == Z_NULL)
3678 		return (Z_STREAM_ERROR);
3679 	z->msg = Z_NULL;
3680 #ifndef NO_ZCFUNCS
3681 	if (z->zalloc == Z_NULL)
3682 	{
3683 		z->zalloc = zcalloc;
3684 		z->opaque = (voidpf)0;
3685 	}
3686 	if (z->zfree == Z_NULL) z->zfree = zcfree;
3687 #endif
3688 	if ((z->state = (struct internal_state FAR *)
3689 	    ZALLOC(z, 1, sizeof (struct internal_state))) == Z_NULL)
3690 		return (Z_MEM_ERROR);
3691 	z->state->blocks = Z_NULL;
3692 
3693 	/* handle undocumented nowrap option (no zlib header or check) */
3694 	z->state->nowrap = 0;
3695 	if (w < 0)
3696 	{
3697 		w = - w;
3698 		z->state->nowrap = 1;
3699 	}
3700 
3701 	/* set window size */
3702 	if (w < 8 || w > 15)
3703 	{
3704 		(void) inflateEnd(z);
3705 		return (Z_STREAM_ERROR);
3706 	}
3707 	z->state->wbits = (uInt)w;
3708 
3709 	/* create inflate_blocks state */
3710 	if ((z->state->blocks =
3711 	    inflate_blocks_new(z, z->state->nowrap ?
3712 		Z_NULL : adler32, (uInt)1 << w))
3713 	    == Z_NULL)
3714 	{
3715 		(void) inflateEnd(z);
3716 		return (Z_MEM_ERROR);
3717 	}
3718 	Trace((stderr, "inflate: allocated\n"));
3719 
3720 	/* reset state */
3721 	(void) inflateReset(z);
3722 	return (Z_OK);
3723 }
3724 
3725 
3726 int
3727 inflateInit_(z, version, stream_size)
3728 z_streamp z;
3729 const char *version;
3730 int stream_size;
3731 {
3732 	return (inflateInit2_(z, DEF_WBITS, version, stream_size));
3733 }
3734 
3735 /* PPP -- added "empty" label and changed f to Z_OK */
3736 #define	NEEDBYTE {if (z->avail_in == 0) goto empty; r = Z_OK; } ((void)0)
3737 #define	NEXTBYTE (z->avail_in--, z->total_in++, *z->next_in++)
3738 
3739 int
3740 inflate(z, f)
3741 z_streamp z;
3742 int f;
3743 {
3744 	int r;
3745 	uInt b;
3746 
3747 	if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3748 		return (Z_STREAM_ERROR);
3749 	/* f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK; -- PPP; Z_FINISH unused */
3750 	r = Z_BUF_ERROR;
3751 	/* CONSTCOND */
3752 	while (1)
3753 		switch (z->state->mode)
3754 	{
3755 	case METHOD:
3756 		NEEDBYTE;
3757 		if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3758 		{
3759 			z->state->mode = BAD;
3760 			z->msg = "unknown compression method";
3761 			/* can't try inflateSync */
3762 			z->state->sub.marker = 5;
3763 			break;
3764 		}
3765 		if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3766 		{
3767 			z->state->mode = BAD;
3768 			z->msg = "invalid window size";
3769 			/* can't try inflateSync */
3770 			z->state->sub.marker = 5;
3771 			break;
3772 		}
3773 		z->state->mode = FLAG;
3774 		/* FALLTHRU */
3775 	case FLAG:
3776 		NEEDBYTE;
3777 		b = NEXTBYTE;
3778 		if (((z->state->sub.method << 8) + b) % 31)
3779 		{
3780 			z->state->mode = BAD;
3781 			z->msg = "incorrect header check";
3782 			/* can't try inflateSync */
3783 			z->state->sub.marker = 5;
3784 			break;
3785 		}
3786 		Trace((stderr, "inflate: zlib header ok\n"));
3787 		if (!(b & PRESET_DICT))
3788 		{
3789 			z->state->mode = BLOCKS;
3790 			break;
3791 		}
3792 		z->state->mode = DICT4;
3793 		/* FALLTHRU */
3794 	case DICT4:
3795 		NEEDBYTE;
3796 		z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3797 		z->state->mode = DICT3;
3798 		/* FALLTHRU */
3799 	case DICT3:
3800 		NEEDBYTE;
3801 		z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3802 		z->state->mode = DICT2;
3803 		/* FALLTHRU */
3804 	case DICT2:
3805 		NEEDBYTE;
3806 		z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3807 		z->state->mode = DICT1;
3808 		/* FALLTHRU */
3809 	case DICT1:
3810 		NEEDBYTE;
3811 		z->state->sub.check.need += (uLong)NEXTBYTE;
3812 		z->adler = z->state->sub.check.need;
3813 		z->state->mode = DICT0;
3814 		return (Z_NEED_DICT);
3815 	case DICT0:
3816 		z->state->mode = BAD;
3817 		z->msg = "need dictionary";
3818 		z->state->sub.marker = 0;	/* can try inflateSync */
3819 		return (Z_STREAM_ERROR);
3820 	case BLOCKS:
3821 		r = inflate_blocks(z->state->blocks, z, r);
3822 		if (f == Z_PACKET_FLUSH && z->avail_in == 0 &&	/* PPP */
3823 		    z->avail_out != 0)				/* PPP */
3824 			r = inflate_packet_flush(z->state->blocks); /* PPP */
3825 		if (r == Z_DATA_ERROR)
3826 		{
3827 			z->state->mode = BAD;
3828 			/* can try inflateSync */
3829 			z->state->sub.marker = 0;
3830 			break;
3831 		}
3832 		/* PPP */
3833 		if (r != Z_STREAM_END)
3834 			return (r);
3835 		r = Z_OK;	/* PPP */
3836 		inflate_blocks_reset(z->state->blocks, z,
3837 		    &z->state->sub.check.was);
3838 		if (z->state->nowrap)
3839 		{
3840 			z->state->mode = DONE;
3841 			break;
3842 		}
3843 		z->state->mode = CHECK4;
3844 		/* FALLTHRU */
3845 	case CHECK4:
3846 		NEEDBYTE;
3847 		z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3848 		z->state->mode = CHECK3;
3849 		/* FALLTHRU */
3850 	case CHECK3:
3851 		NEEDBYTE;
3852 		z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3853 		z->state->mode = CHECK2;
3854 		/* FALLTHRU */
3855 	case CHECK2:
3856 		NEEDBYTE;
3857 		z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3858 		z->state->mode = CHECK1;
3859 		/* FALLTHRU */
3860 	case CHECK1:
3861 		NEEDBYTE;
3862 		z->state->sub.check.need += (uLong)NEXTBYTE;
3863 
3864 		if (z->state->sub.check.was != z->state->sub.check.need)
3865 		{
3866 			z->state->mode = BAD;
3867 			z->msg = "incorrect data check";
3868 			/* can't try inflateSync */
3869 			z->state->sub.marker = 5;
3870 			break;
3871 		}
3872 		Trace((stderr, "inflate: zlib check ok\n"));
3873 		z->state->mode = DONE;
3874 		/* FALLTHRU */
3875 	case DONE:
3876 		return (Z_STREAM_END);
3877 	case BAD:
3878 		return (Z_DATA_ERROR);
3879 	default:
3880 		return (Z_STREAM_ERROR);
3881 	}
3882 
3883 /* PPP -- packet flush handling */
3884 empty:
3885 	if (f != Z_PACKET_FLUSH)
3886 		return (r);
3887 	z->state->mode = BAD;
3888 	z->msg = "need more for packet flush";
3889 	z->state->sub.marker = 0;	/* can try inflateSync */
3890 	return (Z_DATA_ERROR);
3891 }
3892 
3893 
3894 int
3895 inflateSetDictionary(z, dictionary, dictLength)
3896 z_streamp z;
3897 const Bytef *dictionary;
3898 uInt  dictLength;
3899 {
3900 	uInt length = dictLength;
3901 
3902 	if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3903 		return (Z_STREAM_ERROR);
3904 
3905 	if (adler32(1L, dictionary, dictLength) != z->adler)
3906 		return (Z_DATA_ERROR);
3907 	z->adler = 1L;
3908 
3909 	if (length >= ((uInt)1<<z->state->wbits))
3910 	{
3911 		length = (1<<z->state->wbits)-1;
3912 		dictionary += dictLength - length;
3913 	}
3914 	inflate_set_dictionary(z->state->blocks, dictionary, length);
3915 	z->state->mode = BLOCKS;
3916 	return (Z_OK);
3917 }
3918 
3919 /*
3920  * This subroutine adds the data at next_in/avail_in to the output history
3921  * without performing any output.  The output buffer must be "caught up";
3922  * i.e. no pending output (hence s->read equals s->write), and the state must
3923  * be BLOCKS (i.e. we should be willing to see the start of a series of
3924  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3925  * will have been updated if need be.
3926  *
3927  * Added for PPP.
3928  */
3929 
3930 int
3931 inflateIncomp(z)
3932 z_stream *z;
3933 {
3934 	if (z->state->mode != BLOCKS)
3935 		return (Z_DATA_ERROR);
3936 	return (inflate_addhistory(z->state->blocks, z));
3937 }
3938 
3939 
3940 int
3941 inflateSync(z)
3942 z_streamp z;
3943 {
3944 	uInt n;	/* number of bytes to look at */
3945 	Bytef *p;	/* pointer to bytes */
3946 	uInt m;	/* number of marker bytes found in a row */
3947 	uLong r, w;	/* temporaries to save total_in and total_out */
3948 
3949 	/* set up */
3950 	if (z == Z_NULL || z->state == Z_NULL)
3951 		return (Z_STREAM_ERROR);
3952 	if (z->state->mode != BAD)
3953 	{
3954 		z->state->mode = BAD;
3955 		z->state->sub.marker = 0;
3956 	}
3957 	if ((n = z->avail_in) == 0)
3958 		return (Z_BUF_ERROR);
3959 	p = z->next_in;
3960 	m = z->state->sub.marker;
3961 
3962 	/* search */
3963 	while (n && m < 4)
3964 	{
3965 		static const Byte mark[4] = { 0, 0, 0xff, 0xff };
3966 		if (*p == mark[m])
3967 			m++;
3968 		else if (*p)
3969 			m = 0;
3970 		else
3971 			/*
3972 			 * This statement maps 2->2 and 3->1 because a
3973 			 * mismatch with input byte 0x00 on the first
3974 			 * 0xFF in the pattern means that we still
3975 			 * have two contiguous zeros matched (thus
3976 			 * offset 2 is kept), but a mismatch on the
3977 			 * second 0xFF means that only one 0x00 byte
3978 			 * has been matched.  (Boyer-Moore like
3979 			 * search.)
3980 			 */
3981 			m = 4 - m;
3982 		p++, n--;
3983 	}
3984 
3985 	/* restore */
3986 	z->total_in += p - z->next_in;
3987 	z->next_in = p;
3988 	z->avail_in = n;
3989 	z->state->sub.marker = m;
3990 
3991 	/* return no joy or set up to restart on a new block */
3992 	if (m != 4)
3993 		return (Z_DATA_ERROR);
3994 	r = z->total_in;  w = z->total_out;
3995 	(void) inflateReset(z);
3996 	z->total_in = r;  z->total_out = w;
3997 	z->state->mode = BLOCKS;
3998 	return (Z_OK);
3999 }
4000 
4001 /*
4002  * Returns true if inflate is currently at the end of a block
4003  * generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by
4004  * one PPP implementation to provide an additional safety check. PPP
4005  * uses Z_SYNC_FLUSH but removes the length bytes of the resulting
4006  * empty stored block. When decompressing, PPP checks that at the end
4007  * of input packet, inflate is waiting for these length bytes.
4008  */
4009 int
4010 inflateSyncPoint(z)
4011 z_streamp z;
4012 {
4013 	if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
4014 		return (Z_STREAM_ERROR);
4015 	return (inflate_blocks_sync_point(z->state->blocks));
4016 }
4017 
4018 #undef NEEDBYTE
4019 #undef NEXTBYTE
4020 /* --- inflate.c */
4021 
4022 /* +++ infblock.c */
4023 /*
4024  * infblock.c -- interpret and process block types to last block
4025  * Copyright (C) 1995-1998 Mark Adler
4026  * For conditions of distribution and use, see copyright notice in zlib.h
4027  */
4028 
4029 /* #include "zutil.h" */
4030 /* #include "infblock.h" */
4031 
4032 /* +++ inftrees.h */
4033 /*
4034  * inftrees.h -- header to use inftrees.c
4035  * Copyright (C) 1995-1998 Mark Adler
4036  * For conditions of distribution and use, see copyright notice in zlib.h
4037  */
4038 
4039 /*
4040  * WARNING: this file should *not* be used by applications. It is part
4041  * of the implementation of the compression library and is subject to
4042  * change. Applications should only use zlib.h.
4043  */
4044 
4045 /*
4046  * Huffman code lookup table entry--this entry is four bytes for
4047  * machines that have 16-bit pointers (e.g. PC's in the small or
4048  * medium model).
4049  */
4050 
4051 typedef struct inflate_huft_s FAR inflate_huft;
4052 
4053 struct inflate_huft_s {
4054 	union {
4055 		struct {
4056 			Byte Exop;	/* number of extra bits or operation */
4057 			/* number of bits in this code or subcode */
4058 			Byte Bits;
4059 		} what;
4060 		Bytef *pad;	/* pad structure to a power of 2 (4 bytes for */
4061 	} word;	/*  16-bit, 8 bytes for 32-bit machines) */
4062 	/* literal, length base, distance base, or table offset */
4063 	uInt base;
4064 };
4065 
4066 /*
4067  * Maximum size of dynamic tree.  The maximum found in a long but non-
4068  * exhaustive search was 1004 huft structures (850 for length/literals
4069  * and 154 for distances, the latter actually the result of an
4070  * exhaustive search).  The actual maximum is not known, but the value
4071  * below is more than safe.
4072  */
4073 #define	MANY 1440
4074 
4075 extern int inflate_trees_bits OF((
4076     uIntf *,			/* 19 code lengths */
4077     uIntf *,			/* bits tree desired/actual depth */
4078     inflate_huft * FAR *,	/* bits tree result */
4079     inflate_huft *,		/* space for trees */
4080     z_streamp));	/* for zalloc, zfree functions */
4081 
4082 extern int inflate_trees_dynamic OF((
4083     uInt,	/* number of literal/length codes */
4084     uInt,	/* number of distance codes */
4085     uIntf *,	/* that many (total) code lengths */
4086     uIntf *,	/* literal desired/actual bit depth */
4087     uIntf *,	/* distance desired/actual bit depth */
4088     inflate_huft * FAR *,	/* literal/length tree result */
4089     inflate_huft * FAR *,	/* distance tree result */
4090     inflate_huft *,		/* space for trees */
4091     z_streamp));	/* for zalloc, zfree functions */
4092 
4093 extern int inflate_trees_fixed OF((
4094     uIntf *,	/* literal desired/actual bit depth */
4095     uIntf *,	/* distance desired/actual bit depth */
4096     const inflate_huft * FAR *,	/* literal/length tree result */
4097     const inflate_huft * FAR *,	/* distance tree result */
4098     z_streamp));
4099 
4100 /* --- inftrees.h */
4101 
4102 /* +++ infcodes.h */
4103 /*
4104  * infcodes.h -- header to use infcodes.c
4105  * Copyright (C) 1995-1998 Mark Adler
4106  * For conditions of distribution and use, see copyright notice in zlib.h
4107  */
4108 
4109 /*
4110  * WARNING: this file should *not* be used by applications. It is part
4111  * of the implementation of the compression library and is subject to
4112  * change. Applications should only use zlib.h.
4113  */
4114 
4115 struct inflate_codes_state;
4116 typedef struct inflate_codes_state FAR inflate_codes_statef;
4117 
4118 extern inflate_codes_statef *inflate_codes_new OF((
4119     uInt, uInt,
4120     const inflate_huft *, const inflate_huft *,
4121     z_streamp));
4122 
4123 extern int inflate_codes OF((
4124     inflate_blocks_statef *,
4125     z_streamp,
4126     int));
4127 
4128 extern void inflate_codes_free OF((
4129     inflate_codes_statef *,
4130     z_streamp));
4131 
4132 /* --- infcodes.h */
4133 
4134 /* +++ infutil.h */
4135 /*
4136  * infutil.h -- types and macros common to blocks and codes
4137  * Copyright (C) 1995-1998 Mark Adler
4138  * For conditions of distribution and use, see copyright notice in zlib.h
4139  */
4140 
4141 /*
4142  * WARNING: this file should *not* be used by applications. It is part
4143  * of the implementation of the compression library and is subject to
4144  * change. Applications should only use zlib.h.
4145  */
4146 
4147 #ifndef _INFUTIL_H
4148 #define	_INFUTIL_H
4149 
4150 typedef enum {
4151 	TYPE,	/* get type bits (3, including end bit) */
4152 	LENS,	/* get lengths for stored */
4153 	STORED,	/* processing stored block */
4154 	TABLE,	/* get table lengths */
4155 	BTREE,	/* get bit lengths tree for a dynamic block */
4156 	DTREE,	/* get length, distance trees for a dynamic block */
4157 	CODES,	/* processing fixed or dynamic block */
4158 	DRY,	/* output remaining window bytes */
4159 	DONEB,	/* finished last block, done */
4160 	BADB}	/* got a data error--stuck here */
4161 inflate_block_mode;
4162 
4163 /* inflate blocks semi-private state */
4164 struct inflate_blocks_state {
4165 
4166 	/* mode */
4167 	inflate_block_mode  mode;	/* current inflate_block mode */
4168 
4169 	/* mode dependent information */
4170 	union {
4171 		uInt left;	/* if STORED, bytes left to copy */
4172 		struct {
4173 			uInt table;	/* table lengths (14 bits) */
4174 			uInt index;	/* index into blens (or border) */
4175 			uIntf *blens;	/* bit lengths of codes */
4176 			uInt bb;	/* bit length tree depth */
4177 			inflate_huft *tb;	/* bit length decoding tree */
4178 		} trees;	/* if DTREE, decoding info for trees */
4179 		struct {
4180 			inflate_codes_statef *codes;
4181 		} decode;	/* if CODES, current state */
4182 	} sub;	/* submode */
4183 	uInt last;	/* true if this block is the last block */
4184 
4185 	/* mode independent information */
4186 	uInt bitk;	/* bits in bit buffer */
4187 	uLong bitb;	/* bit buffer */
4188 	inflate_huft *hufts;  /* single malloc for tree space */
4189 	Bytef *window;	/* sliding window */
4190 	Bytef *end;	/* one byte after sliding window */
4191 	Bytef *read;	/* window read pointer */
4192 	Bytef *write;	/* window write pointer */
4193 	check_func checkfn;	/* check function */
4194 	uLong check;	/* check on output */
4195 
4196 };
4197 
4198 
4199 /* defines for inflate input/output */
4200 /*   update pointers and return */
4201 #define	UPDBITS {s->bitb = b; s->bitk = k; }
4202 #define	UPDIN {z->avail_in = n; z->total_in += p-z->next_in; z->next_in = p; }
4203 #define	UPDOUT {s->write = q; }
4204 #define	UPDATE {UPDBITS UPDIN UPDOUT}
4205 #define	LEAVE {UPDATE return (inflate_flush(s, z, r)); }
4206 /*   get bytes and bits */
4207 #define	LOADIN {p = z->next_in; n = z->avail_in; b = s->bitb; k = s->bitk; }
4208 #define	NEEDBYTE { if (n) r = Z_OK; else LEAVE }
4209 #define	NEXTBYTE (n--, *p++)
4210 #define	NEEDBITS(j) { while (k < (j)) { NEEDBYTE; b |= ((uLong)NEXTBYTE)<<k; \
4211 	k += 8; }}
4212 #define	DUMPBITS(j) {b >>= (j); k -= (j); }
4213 /*   output bytes */
4214 #define	WAVAIL (uInt)(q < s->read ? s->read-q-1 : s->end-q)
4215 #define	LOADOUT {q = s->write; m = (uInt)WAVAIL; }
4216 #define	WWRAP {if (q == s->end && s->read != s->window) {q = s->window; \
4217 	m = (uInt)WAVAIL; }}
4218 #define	FLUSH {UPDOUT r = inflate_flush(s, z, r); LOADOUT}
4219 #define	NEEDOUT {if (m == 0) {WWRAP if (m == 0) { FLUSH WWRAP \
4220 	if (m == 0) LEAVE }} r = Z_OK; }
4221 #define	OUTBYTE(a) {*q++ = (Byte)(a); m--; }
4222 /*   load local pointers */
4223 #define	LOAD {LOADIN LOADOUT}
4224 
4225 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
4226 extern uInt inflate_mask[17];
4227 
4228 /* copy as much as possible from the sliding window to the output area */
4229 extern int inflate_flush OF((
4230     inflate_blocks_statef *,
4231     z_streamp,
4232     int));
4233 
4234 #ifndef NO_DUMMY_DECL
4235 struct internal_state {int dummy; };	/* for buggy compilers */
4236 #endif
4237 
4238 #endif
4239 /* --- infutil.h */
4240 
4241 #ifndef NO_DUMMY_DECL
4242 struct inflate_codes_state {int dummy; };	/* for buggy compilers */
4243 #endif
4244 
4245 /* Table for deflate from PKZIP's appnote.txt. */
4246 local const uInt border[] = { /* Order of the bit length code lengths */
4247 	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
4248 
4249 /*
4250  * Notes beyond the 1.93a appnote.txt:
4251  *
4252  *   1. Distance pointers never point before the beginning of the output
4253  *      stream.
4254  *   2. Distance pointers can point back across blocks, up to 32k away.
4255  *   3. There is an implied maximum of 7 bits for the bit length table and
4256  *      15 bits for the actual data.
4257  *   4. If only one code exists, then it is encoded using one bit.  (Zero
4258  *      would be more efficient, but perhaps a little confusing.)  If two
4259  *      codes exist, they are coded using one bit each (0 and 1).
4260  *   5. There is no way of sending zero distance codes--a dummy must be
4261  *      sent if there are none.  (History: a pre 2.0 version of PKZIP would
4262  *      store blocks with no distance codes, but this was discovered to be
4263  *      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
4264  *      zero distance codes, which is sent as one code of zero bits in
4265  *      length.
4266  *   6. There are up to 286 literal/length codes.  Code 256 represents the
4267  *      end-of-block.  Note however that the static length tree defines
4268  *      288 codes just to fill out the Huffman codes.  Codes 286 and 287
4269  *      cannot be used though, since there is no length base or extra bits
4270  *      defined for them.  Similarily, there are up to 30 distance codes.
4271  *      However, static trees define 32 codes (all 5 bits) to fill out the
4272  *      Huffman codes, but the last two had better not show up in the data.
4273  *   7. Unzip can check dynamic Huffman blocks for complete code sets.
4274  *      The exception is that a single code would not be complete (see #4).
4275  *   8. The five bits following the block type is really the number of
4276  *      literal codes sent minus 257.
4277  *   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4278  *      (1+6+6).  Therefore, to output three times the length, you output
4279  *      three codes (1+1+1), whereas to output four times the same length,
4280  *      you only need two codes (1+3).  Hmm.
4281  *  10. In the tree reconstruction algorithm, Code = Code + Increment
4282  *      only if BitLength(i) is not zero.  (Pretty obvious.)
4283  *  11. Correction: 4 Bits: #of Bit Length codes - 4     (4 - 19)
4284  *  12. Note: length code 284 can represent 227-258, but length code 285
4285  *      really is 258.  The last length deserves its own, short code
4286  *      since it gets used a lot in very redundant files.  The length
4287  *      258 is special since 258 - 3 (the min match length) is 255.
4288  *  13. The literal/length and distance code bit lengths are read as a
4289  *      single stream of lengths.  It is possible (and advantageous) for
4290  *      a repeat code (16, 17, or 18) to go across the boundary between
4291  *      the two sets of lengths.
4292  */
4293 
4294 
4295 void
4296 inflate_blocks_reset(s, z, c)
4297 inflate_blocks_statef *s;
4298 z_streamp z;
4299 uLongf *c;
4300 {
4301 	if (c != Z_NULL)
4302 		*c = s->check;
4303 	if ((s->mode == BTREE || s->mode == DTREE) &&
4304 	    s->sub.trees.blens != Z_NULL) {
4305 		ZFREE(z, s->sub.trees.blens);
4306 		s->sub.trees.blens = Z_NULL;
4307 	}
4308 	if (s->mode == CODES && s->sub.decode.codes != Z_NULL) {
4309 		(void) inflate_codes_free(s->sub.decode.codes, z);
4310 		s->sub.decode.codes = Z_NULL;
4311 	}
4312 	s->mode = TYPE;
4313 	s->bitk = 0;
4314 	s->bitb = 0;
4315 	s->read = s->write = s->window;
4316 	if (s->checkfn != Z_NULL)
4317 		z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
4318 	Trace((stderr, "inflate:   blocks reset\n"));
4319 }
4320 
4321 inflate_blocks_statef *
4322 inflate_blocks_new(z, c, w)
4323 z_streamp z;
4324 check_func c;
4325 uInt w;
4326 {
4327 	inflate_blocks_statef *s;
4328 
4329 	if ((s = (inflate_blocks_statef *)ZALLOC
4330 	    (z, 1, sizeof (struct inflate_blocks_state))) == Z_NULL)
4331 		return (s);
4332 	s->hufts = (inflate_huft *)ZALLOC(z, MANY, sizeof (inflate_huft));
4333 	if (s->hufts == Z_NULL) {
4334 		ZFREE(z, s);
4335 		return (Z_NULL);
4336 	}
4337 	if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4338 	{
4339 		ZFREE(z, s->hufts);
4340 		ZFREE(z, s);
4341 		return (Z_NULL);
4342 	}
4343 	s->end = s->window + w;
4344 	s->checkfn = c;
4345 	s->mode = TYPE;
4346 	Trace((stderr, "inflate:   blocks allocated\n"));
4347 	inflate_blocks_reset(s, z, Z_NULL);
4348 	return (s);
4349 }
4350 
4351 
4352 int
4353 inflate_blocks(s, z, r)
4354 inflate_blocks_statef *s;
4355 z_streamp z;
4356 int r;
4357 {
4358 	uInt t;	/* temporary storage */
4359 	uLong b;	/* bit buffer */
4360 	uInt k;	/* bits in bit buffer */
4361 	Bytef *p;	/* input data pointer */
4362 	uInt n;	/* bytes available there */
4363 	Bytef *q;	/* output window write pointer */
4364 	uInt m;	/* bytes to end of window or read pointer */
4365 
4366 	/* copy input/output information to locals (UPDATE macro restores) */
4367 	LOAD;
4368 
4369 	/* process input based on current state */
4370 	/* CONSTCOND */
4371 	while (1)
4372 		switch (s->mode)
4373 	{
4374 	case TYPE:
4375 		NEEDBITS(3);
4376 		t = (uInt)b & 7;
4377 		s->last = t & 1;
4378 		switch (t >> 1)
4379 		{
4380 		case 0:			/* stored */
4381 			Trace((stderr, "inflate:     stored block%s\n",
4382 			    s->last ? " (last)" : ""));
4383 			DUMPBITS(3);
4384 			t = k & 7;	/* go to byte boundary */
4385 			DUMPBITS(t);
4386 			s->mode = LENS;	/* get length of stored block */
4387 			break;
4388 		case 1:			/* fixed */
4389 			Trace((stderr, "inflate:     fixed codes block%s\n",
4390 			    s->last ? " (last)" : ""));
4391 			{
4392 				uInt bl, bd;
4393 				const inflate_huft *tl, *td;
4394 
4395 				(void) inflate_trees_fixed(&bl, &bd, &tl, &td,
4396 				    z);
4397 				s->sub.decode.codes = inflate_codes_new(bl,
4398 				    bd, tl, td, z);
4399 				if (s->sub.decode.codes == Z_NULL)
4400 				{
4401 					r = Z_MEM_ERROR;
4402 					LEAVE
4403 				}
4404 			}
4405 			DUMPBITS(3);
4406 			s->mode = CODES;
4407 			break;
4408 		case 2:			/* dynamic */
4409 			Trace((stderr, "inflate:     dynamic codes block%s\n",
4410 			    s->last ? " (last)" : ""));
4411 			DUMPBITS(3);
4412 			s->mode = TABLE;
4413 			break;
4414 		case 3:			/* illegal */
4415 			DUMPBITS(3);
4416 			s->mode = BADB;
4417 			z->msg = "invalid block type";
4418 			r = Z_DATA_ERROR;
4419 			LEAVE
4420 		}
4421 		break;
4422 	case LENS:
4423 		NEEDBITS(32);
4424 		if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4425 		{
4426 			s->mode = BADB;
4427 			z->msg = "invalid stored block lengths";
4428 			r = Z_DATA_ERROR;
4429 			LEAVE
4430 		}
4431 		s->sub.left = (uInt)b & 0xffff;
4432 		b = k = 0;	/* dump bits */
4433 		Tracev((stderr, "inflate:       stored length %u\n",
4434 		    s->sub.left));
4435 		s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4436 		break;
4437 	case STORED:
4438 		if (n == 0)
4439 			LEAVE
4440 		NEEDOUT;
4441 		t = s->sub.left;
4442 		if (t > n) t = n;
4443 		if (t > m) t = m;
4444 		zmemcpy(q, p, t);
4445 		p += t;  n -= t;
4446 		q += t;  m -= t;
4447 		if ((s->sub.left -= t) != 0)
4448 			break;
4449 		Tracev((stderr,
4450 		    "inflate:       stored end, %lu total out\n",
4451 		    z->total_out + (q >= s->read ? q - s->read :
4452 			(s->end - s->read) + (q - s->window))));
4453 		s->mode = s->last ? DRY : TYPE;
4454 		break;
4455 	case TABLE:
4456 		NEEDBITS(14);
4457 		s->sub.trees.table = t = (uInt)b & 0x3fff;
4458 #ifndef PKZIP_BUG_WORKAROUND
4459 		if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4460 		{
4461 			s->mode = BADB;
4462 			z->msg =
4463 			    (char *)"too many length or distance symbols";
4464 			r = Z_DATA_ERROR;
4465 			LEAVE
4466 		}
4467 #endif
4468 		t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4469 		/* if (t < 19) t = 19; */
4470 		if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t,
4471 		    sizeof (uInt))) == Z_NULL)
4472 		{
4473 			r = Z_MEM_ERROR;
4474 			LEAVE
4475 		}
4476 		DUMPBITS(14);
4477 		s->sub.trees.index = 0;
4478 		Tracev((stderr, "inflate:       table sizes ok\n"));
4479 		s->mode = BTREE;
4480 		/* FALLTHRU */
4481 	case BTREE:
4482 		while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4483 		{
4484 			NEEDBITS(3);
4485 			s->sub.trees.blens[border[s->sub.trees.index++]] =
4486 			    (uInt)b & 7;
4487 			DUMPBITS(3);
4488 		}
4489 		while (s->sub.trees.index < 19)
4490 			s->sub.trees.blens[border[s->sub.trees.index++]] =
4491 			    0;
4492 		s->sub.trees.bb = 7;
4493 		t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4494 		    &s->sub.trees.tb, s->hufts, z);
4495 		if (t != Z_OK)
4496 		{
4497 			ZFREE(z, s->sub.trees.blens);
4498 			s->sub.trees.blens = Z_NULL;
4499 			r = t;
4500 			if (r == Z_DATA_ERROR)
4501 				s->mode = BADB;
4502 			LEAVE
4503 		}
4504 		s->sub.trees.index = 0;
4505 		Tracev((stderr, "inflate:       bits tree ok\n"));
4506 		s->mode = DTREE;
4507 		/* FALLTHRU */
4508 	case DTREE:
4509 		while (t = s->sub.trees.table,
4510 		    s->sub.trees.index < 258 + (t & 0x1f) +
4511 		    ((t >> 5) & 0x1f))
4512 		{
4513 			inflate_huft *h;
4514 			uInt i, j, c;
4515 
4516 			t = s->sub.trees.bb;
4517 			NEEDBITS(t);
4518 			h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4519 			t = h->word.what.Bits;
4520 			c = h->base;
4521 			if (c < 16)
4522 			{
4523 				DUMPBITS(t);
4524 				s->sub.trees.blens[s->sub.trees.index++] =
4525 				    c;
4526 			} else { /* c == 16..18 */
4527 				i = c == 18 ? 7 : c - 14;
4528 				j = c == 18 ? 11 : 3;
4529 				NEEDBITS(t + i);
4530 				DUMPBITS(t);
4531 				j += (uInt)b & inflate_mask[i];
4532 				DUMPBITS(i);
4533 				i = s->sub.trees.index;
4534 				t = s->sub.trees.table;
4535 				if (i + j > 258 + (t & 0x1f) +
4536 				    ((t >> 5) & 0x1f) ||
4537 				    (c == 16 && i < 1))
4538 				{
4539 					ZFREE(z, s->sub.trees.blens);
4540 					s->sub.trees.blens = Z_NULL;
4541 					s->mode = BADB;
4542 					z->msg = "invalid bit length repeat";
4543 					r = Z_DATA_ERROR;
4544 					LEAVE
4545 				}
4546 				c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4547 				do {
4548 					s->sub.trees.blens[i++] = c;
4549 				} while (--j);
4550 				s->sub.trees.index = i;
4551 			}
4552 		}
4553 		s->sub.trees.tb = Z_NULL;
4554 		{
4555 			uInt bl, bd;
4556 			inflate_huft *tl, *td;
4557 			inflate_codes_statef *c;
4558 
4559 				/* must be <= 9 for lookahead assumptions */
4560 			bl = 9;
4561 				/* must be <= 9 for lookahead assumptions */
4562 			bd = 6;
4563 			t = s->sub.trees.table;
4564 			t = inflate_trees_dynamic(257 + (t & 0x1f),
4565 			    1 + ((t >> 5) & 0x1f),
4566 			    s->sub.trees.blens, &bl, &bd, &tl, &td,
4567 			    s->hufts, z);
4568 			ZFREE(z, s->sub.trees.blens);
4569 			s->sub.trees.blens = Z_NULL;
4570 			if (t != Z_OK)
4571 			{
4572 				if (t == (uInt)Z_DATA_ERROR)
4573 					s->mode = BADB;
4574 				r = t;
4575 				LEAVE
4576 			}
4577 			Tracev((stderr, "inflate:       trees ok\n"));
4578 			if ((c = inflate_codes_new(bl, bd, tl, td, z)) ==
4579 			    Z_NULL)
4580 			{
4581 				r = Z_MEM_ERROR;
4582 				LEAVE
4583 			}
4584 			s->sub.decode.codes = c;
4585 		}
4586 		s->mode = CODES;
4587 		/* FALLTHRU */
4588 	case CODES:
4589 		UPDATE;
4590 		if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4591 			return (inflate_flush(s, z, r));
4592 		r = Z_OK;
4593 		(void) inflate_codes_free(s->sub.decode.codes, z);
4594 		LOAD;
4595 		Tracev((stderr, "inflate:       codes end, %lu total out\n",
4596 		    z->total_out + (q >= s->read ? q - s->read :
4597 			(s->end - s->read) + (q - s->window))));
4598 		if (!s->last)
4599 		{
4600 			s->mode = TYPE;
4601 			break;
4602 		}
4603 		s->mode = DRY;
4604 		/* FALLTHRU */
4605 	case DRY:
4606 		FLUSH;
4607 		if (s->read != s->write)
4608 			LEAVE
4609 		s->mode = DONEB;
4610 		/* FALLTHRU */
4611 	case DONEB:
4612 		r = Z_STREAM_END;
4613 		LEAVE
4614 	case BADB:
4615 		r = Z_DATA_ERROR;
4616 		LEAVE
4617 	default:
4618 		r = Z_STREAM_ERROR;
4619 		LEAVE
4620 	}
4621 	/* NOTREACHED */
4622 	/* otherwise lint complains */
4623 }
4624 
4625 
4626 int
4627 inflate_blocks_free(s, z)
4628 inflate_blocks_statef *s;
4629 z_streamp z;
4630 {
4631 	inflate_blocks_reset(s, z, Z_NULL);
4632 	ZFREE(z, s->window);
4633 	s->window = Z_NULL;
4634 	ZFREE(z, s->hufts);
4635 	s->hufts = Z_NULL;
4636 	ZFREE(z, s);
4637 	Trace((stderr, "inflate:   blocks freed\n"));
4638 	return (Z_OK);
4639 }
4640 
4641 
4642 void
4643 inflate_set_dictionary(s, d, n)
4644 inflate_blocks_statef *s;
4645 const Bytef *d;
4646 uInt  n;
4647 {
4648 	Assert(s->window + n <= s->end, "set dict");
4649 	zmemcpy((charf *)s->window, d, n);
4650 	s->read = s->write = s->window + n;
4651 }
4652 
4653 /*
4654  * Returns true if inflate is currently at the end of a block
4655  * generated by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4656  * IN assertion: s != Z_NULL
4657  */
4658 int
4659 inflate_blocks_sync_point(s)
4660 inflate_blocks_statef *s;
4661 {
4662 	return (s->mode == LENS);
4663 }
4664 
4665 /*
4666  * This subroutine adds the data at next_in/avail_in to the output history
4667  * without performing any output.  The output buffer must be "caught up";
4668  * i.e. no pending output (hence s->read equals s->write), and the state must
4669  * be BLOCKS (i.e. we should be willing to see the start of a series of
4670  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4671  * will have been updated if need be.
4672  */
4673 int
4674 inflate_addhistory(s, z)
4675 inflate_blocks_statef *s;
4676 z_stream *z;
4677 {
4678 	uLong b;	/* bit buffer */  /* NOT USED HERE */
4679 	uInt k;	/* bits in bit buffer */ /* NOT USED HERE */
4680 	uInt t;	/* temporary storage */
4681 	Bytef *p;	/* input data pointer */
4682 	uInt n;	/* bytes available there */
4683 	Bytef *q;	/* output window write pointer */
4684 	uInt m;	/* bytes to end of window or read pointer */
4685 
4686 	if (s->read != s->write)
4687 		return (Z_STREAM_ERROR);
4688 	if (s->mode != TYPE)
4689 		return (Z_DATA_ERROR);
4690 
4691 	/* we're ready to rock */
4692 	LOAD;
4693 	/*
4694 	 * while there is input ready, copy to output buffer, moving
4695 	 * pointers as needed.
4696 	 */
4697 	while (n) {
4698 		t = n;	/* how many to do */
4699 		/* is there room until end of buffer? */
4700 		if (t > m) t = m;
4701 		/* update check information */
4702 		if (s->checkfn != Z_NULL)
4703 			s->check = (*s->checkfn)(s->check, q, t);
4704 		zmemcpy(q, p, t);
4705 		q += t;
4706 		p += t;
4707 		n -= t;
4708 		z->total_out += t;
4709 		s->read = q;	/* drag read pointer forward */
4710 /* WWRAP */	/* expand WWRAP macro by hand to handle s->read */
4711 		if (q == s->end) {
4712 			s->read = q = s->window;
4713 			m = WAVAIL;
4714 		}
4715 	}
4716 	UPDATE;
4717 	return (Z_OK);
4718 }
4719 
4720 
4721 /*
4722  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4723  * a `stored' block type value but not the (zero) length bytes.
4724  */
4725 int
4726 inflate_packet_flush(s)
4727     inflate_blocks_statef *s;
4728 {
4729 	if (s->mode != LENS)
4730 		return (Z_DATA_ERROR);
4731 	s->mode = TYPE;
4732 	return (Z_OK);
4733 }
4734 /* --- infblock.c */
4735 
4736 /* +++ inftrees.c */
4737 /*
4738  * inftrees.c -- generate Huffman trees for efficient decoding
4739  * Copyright (C) 1995-1998 Mark Adler
4740  * For conditions of distribution and use, see copyright notice in zlib.h
4741  */
4742 
4743 /* #include "zutil.h" */
4744 /* #include "inftrees.h" */
4745 
4746 const char inflate_copyright[] =
4747 " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
4748 /*
4749  * If you use the zlib library in a product, an acknowledgment is
4750  * welcome in the documentation of your product. If for some reason
4751  * you cannot include such an acknowledgment, I would appreciate that
4752  * you keep this copyright string in the executable of your product.
4753  */
4754 
4755 #ifndef NO_DUMMY_DECL
4756 struct internal_state  {int dummy; };	/* for buggy compilers */
4757 #endif
4758 
4759 /* simplify the use of the inflate_huft type with some defines */
4760 #define	exop word.what.Exop
4761 #define	bits word.what.Bits
4762 
4763 
4764 local int huft_build OF((
4765 	uIntf *,	/* code lengths in bits */
4766 	uInt,		/* number of codes */
4767 	uInt,		/* number of "simple" codes */
4768 	const uIntf *,	/* list of base values for non-simple codes */
4769 	const uIntf *,	/* list of extra bits for non-simple codes */
4770 	inflate_huft * FAR*, /* result: starting table */
4771 	uIntf *,	/* maximum lookup bits (returns actual) */
4772 	inflate_huft *hp,	/* space for trees */
4773 	uInt *hn,	/* hufts used in space */
4774 	uIntf *v));	/* working area: values in order of bit length */
4775 
4776 /* Tables for deflate from PKZIP's appnote.txt. */
4777 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4778 	3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4779 	35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4780 	/* see note #13 above about 258 */
4781 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4782 	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4783 	3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112};
4784 	/* 112==invalid */
4785 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4786 	1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4787 	257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4788 	8193, 12289, 16385, 24577};
4789 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4790 	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4791 	7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4792 	12, 12, 13, 13};
4793 
4794 /*
4795  * Huffman code decoding is performed using a multi-level table
4796  * lookup.  The fastest way to decode is to simply build a lookup
4797  * table whose size is determined by the longest code.  However, the
4798  * time it takes to build this table can also be a factor if the data
4799  * being decoded is not very long.  The most common codes are
4800  * necessarily the shortest codes, so those codes dominate the
4801  * decoding time, and hence the speed.  The idea is you can have a
4802  * shorter table that decodes the shorter, more probable codes, and
4803  * then point to subsidiary tables for the longer codes.  The time it
4804  * costs to decode the longer codes is then traded against the time it
4805  * takes to make longer tables.
4806  *
4807  * This results of this trade are in the variables lbits and dbits
4808  * below.  lbits is the number of bits the first level table for
4809  * literal/ length codes can decode in one step, and dbits is the same
4810  * thing for the distance codes.  Subsequent tables are also less than
4811  * or equal to those sizes.  These values may be adjusted either when
4812  * all of the codes are shorter than that, in which case the longest
4813  * code length in bits is used, or when the shortest code is *longer*
4814  * than the requested table size, in which case the length of the
4815  * shortest code in bits is used.
4816  *
4817  * There are two different values for the two tables, since they code
4818  * a different number of possibilities each.  The literal/length table
4819  * codes 286 possible values, or in a flat code, a little over eight
4820  * bits.  The distance table codes 30 possible values, or a little
4821  * less than five bits, flat.  The optimum values for speed end up
4822  * being about one bit more than those, so lbits is 8+1 and dbits is
4823  * 5+1.  The optimum values may differ though from machine to machine,
4824  * and possibly even between compilers.  Your mileage may vary.
4825  */
4826 
4827 
4828 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4829 #define	BMAX 15		/* maximum bit length of any code */
4830 
4831 
4832 local int
4833 huft_build(b, n, s, d, e, t, m, hp, hn, v)
4834 uIntf *b;	/* code lengths in bits (all assumed <= BMAX) */
4835 uInt n;	/* number of codes (assumed <= 288) */
4836 uInt s;	/* number of simple-valued codes (0..s-1) */
4837 const uIntf *d;	/* list of base values for non-simple codes */
4838 const uIntf *e;	/* list of extra bits for non-simple codes */
4839 inflate_huft * FAR *t;	/* result: starting table */
4840 uIntf *m;	/* maximum lookup bits, returns actual */
4841 inflate_huft *hp;	/* space for trees */
4842 uInt *hn;		/* hufts used in space */
4843 uIntf *v;		/* working area: values in order of bit length */
4844 /*
4845  * Given a list of code lengths and a maximum table size, make a set
4846  * of tables to decode that set of codes.  Return Z_OK on success,
4847  * Z_BUF_ERROR if the given code set is incomplete (the tables are
4848  * still built in this case), Z_DATA_ERROR if the input is invalid (an
4849  * over-subscribed set of lengths), or Z_MEM_ERROR if not enough
4850  * memory.
4851  */
4852 {
4853 
4854 	uInt a;	/* counter for codes of length k */
4855 	uInt c[BMAX+1];	/* bit length count table */
4856 	uInt f;	/* i repeats in table every f entries */
4857 	int g;	/* maximum code length */
4858 	int h;	/* table level */
4859 	register uInt i;	/* counter, current code */
4860 	register uInt j;	/* counter */
4861 	register int k;	/* number of bits in current code */
4862 	int l;	/* bits per table (returned in m) */
4863 	register uIntf *p;	/* pointer into c[], b[], or v[] */
4864 	inflate_huft *q;	/* points to current table */
4865 	struct inflate_huft_s r; /* table entry for structure assignment */
4866 	inflate_huft *u[BMAX];	/* table stack */
4867 	uInt mask;	/* (1 << w) - 1, to avoid cc -O bug on HP */
4868 	register int w;	/* bits before this table == (l * h) */
4869 	uInt x[BMAX+1];	/* bit offsets, then code stack */
4870 	uIntf *xp;	/* pointer into x */
4871 	int y;	/* number of dummy codes added */
4872 	uInt z;	/* number of entries in current table */
4873 
4874 	(void) inflate_copyright;
4875 	/* Generate counts for each bit length */
4876 	p = c;
4877 #define	C0 *p++ = 0;
4878 #define	C2 C0 C0 C0 C0
4879 #define	C4 C2 C2 C2 C2
4880 	C4	/* clear c[]--assume BMAX+1 is 16 */
4881 	    p = b;  i = n;
4882 	do {
4883 		c[*p++]++;	/* assume all entries <= BMAX */
4884 	} while (--i);
4885 	if (c[0] == n)		/* null input--all zero length codes */
4886 	{
4887 		*t = (inflate_huft *)Z_NULL;
4888 		*m = 0;
4889 		return (Z_OK);
4890 	}
4891 
4892 
4893 	/* Find minimum and maximum length, bound *m by those */
4894 	l = *m;
4895 	for (j = 1; j <= BMAX; j++)
4896 		if (c[j])
4897 			break;
4898 	k = j;	/* minimum code length */
4899 	if ((uInt)l < j)
4900 		l = j;
4901 	for (i = BMAX; i; i--)
4902 		if (c[i])
4903 			break;
4904 	g = i;	/* maximum code length */
4905 	if ((uInt)l > i)
4906 		l = i;
4907 	*m = l;
4908 
4909 
4910 	/* Adjust last length count to fill out codes, if needed */
4911 	for (y = 1 << j; j < i; j++, y <<= 1)
4912 		if ((y -= c[j]) < 0)
4913 			return (Z_DATA_ERROR);
4914 	if ((y -= c[i]) < 0)
4915 		return (Z_DATA_ERROR);
4916 	c[i] += y;
4917 
4918 
4919 	/* Generate starting offsets into the value table for each length */
4920 	x[1] = j = 0;
4921 	p = c + 1;  xp = x + 2;
4922 	while (--i) {		/* note that i == g from above */
4923 		*xp++ = (j += *p++);
4924 	}
4925 
4926 
4927 	/* Make a table of values in order of bit lengths */
4928 	p = b;  i = 0;
4929 	do {
4930 		if ((j = *p++) != 0)
4931 			v[x[j]++] = i;
4932 	} while (++i < n);
4933 	n = x[g];	/* set n to length of v */
4934 
4935 
4936 	/* Generate the Huffman codes and for each, make the table entries */
4937 	x[0] = i = 0;	/* first Huffman code is zero */
4938 	p = v;	/* grab values in bit order */
4939 	h = -1;	/* no tables yet--level -1 */
4940 	w = -l;	/* bits decoded == (l * h) */
4941 	u[0] = (inflate_huft *)Z_NULL;	/* just to keep compilers happy */
4942 	q = (inflate_huft *)Z_NULL;	/* ditto */
4943 	z = 0;	/* ditto */
4944 
4945 	/* go through the bit lengths (k already is bits in shortest code) */
4946 	for (; k <= g; k++) {
4947 		a = c[k];
4948 		while (a--) {
4949 			/*
4950 			 * here i is the Huffman code of length k bits
4951 			 * for value *p.  make tables up to required
4952 			 * level.
4953 			 */
4954 			while (k > w + l) {
4955 				h++;
4956 				w += l;	/* previous table always l bits */
4957 
4958 				/*
4959 				 * compute minimum size table less
4960 				 * than or equal to l bits
4961 				 */
4962 				z = g - w;
4963 				/* table size upper limit */
4964 				z = z > (uInt)l ? l : z;
4965 				/* try a k-w bit table */
4966 				if ((f = 1 << (j = k - w)) > a + 1) {
4967 					/* too few codes for k-w bit table */
4968 					/* deduct codes from patterns left */
4969 					f -= a + 1;
4970 					xp = c + k;
4971 					if (j < z)
4972 						/*
4973 						 * try smaller tables
4974 						 * up to z bits
4975 						 */
4976 						while (++j < z) {
4977 							/*
4978 							 * enough
4979 							 * codes to
4980 							 * use up j
4981 							 * bits
4982 							 */
4983 							if ((f <<= 1) <= *++xp)
4984 								break;
4985 							f -= *xp;
4986 							/*
4987 							 * else deduct
4988 							 * codes from
4989 							 * patterns
4990 							 */
4991 						}
4992 				}
4993 				/* table entries for j-bit table */
4994 				z = 1 << j;
4995 
4996 				/* allocate new table */
4997 				/* (note: doesn't matter for fixed) */
4998 				/* not enough memory */
4999 				if (*hn + z > MANY)
5000 					return (Z_MEM_ERROR);
5001 				u[h] = q = hp + *hn;
5002 				*hn += z;
5003 
5004 				/* connect to last table, if there is one */
5005 				if (h) {
5006 					/* save pattern for backing up */
5007 					x[h] = i;
5008 					/* bits to dump before this table */
5009 					r.bits = (Byte)l;
5010 					/* bits in this table */
5011 					r.exop = (Byte)j;
5012 					j = i >> (w - l);
5013 					/* offset to this table */
5014 					r.base = (uInt)(q - u[h-1] - j);
5015 					/* connect to last table */
5016 					u[h-1][j] = r;
5017 				} else
5018 					/* first table is returned result */
5019 					*t = q;
5020 			}
5021 
5022 			/* set up table entry in r */
5023 			r.bits = (Byte)(k - w);
5024 			if (p >= v + n)
5025 				/* out of values--invalid code */
5026 				r.exop = 128 + 64;
5027 			else if (*p < s)
5028 			{
5029 				/* 256 is end-of-block */
5030 				r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);
5031 				/* simple code is just the value */
5032 				r.base = *p++;
5033 			}
5034 			else
5035 			{
5036 				/* non-simple--look up in lists */
5037 				r.exop = (Byte)(e[*p - s] + 16 + 64);
5038 				r.base = d[*p++ - s];
5039 			}
5040 
5041 			/* fill code-like entries with r */
5042 			f = 1 << (k - w);
5043 			for (j = i >> w; j < z; j += f)
5044 				q[j] = r;
5045 
5046 			/* backwards increment the k-bit code i */
5047 			for (j = 1 << (k - 1); i & j; j >>= 1)
5048 				i ^= j;
5049 			i ^= j;
5050 
5051 			/* backup over finished tables */
5052 			mask = (1 << w) - 1;	/* needed on HP, cc -O bug */
5053 			while ((i & mask) != x[h])
5054 			{
5055 				h--;	/* don't need to update q */
5056 				w -= l;
5057 				mask = (1 << w) - 1;
5058 			}
5059 		}
5060 	}
5061 
5062 
5063 	/* Return Z_BUF_ERROR if we were given an incomplete table */
5064 	return (y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK);
5065 }
5066 
5067 
5068 int
5069 inflate_trees_bits(c, bb, tb, hp, z)
5070 uIntf *c;	/* 19 code lengths */
5071 uIntf *bb;	/* bits tree desired/actual depth */
5072 inflate_huft * FAR *tb;	/* bits tree result */
5073 inflate_huft *hp;	/* space for trees */
5074 z_streamp z;	/* for zfree function */
5075 {
5076 	int r;
5077 	uInt hn = 0;		/* hufts used in space */
5078 	uIntf v[19];		/* work area for huft_build */
5079 
5080 	r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb,
5081 	    hp, &hn, v);
5082 	if (r == Z_DATA_ERROR)
5083 		z->msg = "oversubscribed dynamic bit lengths tree";
5084 	else if (r == Z_BUF_ERROR || *bb == 0)
5085 	{
5086 		z->msg = "incomplete dynamic bit lengths tree";
5087 		r = Z_DATA_ERROR;
5088 	}
5089 	return (r);
5090 }
5091 
5092 
5093 int
5094 inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
5095 uInt nl;	/* number of literal/length codes */
5096 uInt nd;	/* number of distance codes */
5097 uIntf *c;	/* that many (total) code lengths */
5098 uIntf *bl;	/* literal desired/actual bit depth */
5099 uIntf *bd;	/* distance desired/actual bit depth */
5100 inflate_huft * FAR *tl;	/* literal/length tree result */
5101 inflate_huft * FAR *td;	/* distance tree result */
5102 inflate_huft *hp;	/* space for trees */
5103 z_streamp z;	/* for zfree function */
5104 {
5105 	int r;
5106 	uInt hn = 0;		/* hufts used in space */
5107 	uIntf v[288];		/* work area for huft_build */
5108 
5109 	/* build literal/length tree */
5110 	r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
5111 	if (r != Z_OK || *bl == 0)
5112 	{
5113 		if (r == Z_DATA_ERROR)
5114 			z->msg = "oversubscribed literal/length tree";
5115 		else if (r != Z_MEM_ERROR)
5116 		{
5117 			z->msg = "incomplete literal/length tree";
5118 			r = Z_DATA_ERROR;
5119 		}
5120 		return (r);
5121 	}
5122 
5123 	/* build distance tree */
5124 	r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
5125 	if (r != Z_OK || (*bd == 0 && nl > 257))
5126 	{
5127 		if (r == Z_DATA_ERROR)
5128 			z->msg = "oversubscribed distance tree";
5129 		else if (r == Z_BUF_ERROR) {
5130 #ifdef PKZIP_BUG_WORKAROUND
5131 			r = Z_OK;
5132 #else
5133 			z->msg = "incomplete distance tree";
5134 			r = Z_DATA_ERROR;
5135 		} else if (r != Z_MEM_ERROR) {
5136 			z->msg = "empty distance tree with lengths";
5137 			r = Z_DATA_ERROR;
5138 #endif
5139 		}
5140 		return (r);
5141 	}
5142 
5143 /* done */
5144 	return (Z_OK);
5145 }
5146 
5147 
5148 /* build fixed tables only once--keep them here */
5149 /* #define	BUILDFIXED */
5150 #ifdef BUILDFIXED
5151 local int fixed_built = 0;
5152 #define	FIXEDH 544	/* number of hufts used by fixed tables */
5153 local inflate_huft fixed_mem[FIXEDH];
5154 local uInt fixed_bl;
5155 local uInt fixed_bd;
5156 local inflate_huft *fixed_tl;
5157 local inflate_huft *fixed_td;
5158 #else
5159 #include "inffixed.h"
5160 #endif
5161 
5162 /*ARGSUSED*/
5163 int
5164 inflate_trees_fixed(bl, bd, tl, td, z)
5165 uIntf *bl;	/* literal desired/actual bit depth */
5166 uIntf *bd;	/* distance desired/actual bit depth */
5167 const inflate_huft * FAR *tl;	/* literal/length tree result */
5168 const inflate_huft * FAR *td;	/* distance tree result */
5169 z_streamp z;	/* for memory allocation */
5170 {
5171 #ifdef BUILDFIXED
5172 	/*
5173 	 * build fixed tables if not already (multiple overlapped
5174 	 * executions ok)
5175 	 */
5176 	if (!fixed_built)
5177 	{
5178 		int k;	/* temporary variable */
5179 		uInt f = 0;	/* number of hufts used in fixed_mem */
5180 		uIntf *c;	/* length list for huft_build */
5181 		uIntf *v;
5182 
5183 		/* allocate memory */
5184 		if ((c = (uIntf*)ZALLOC(z, 288, sizeof (uInt))) == Z_NULL)
5185 			return (Z_MEM_ERROR);
5186 		if ((v = (uIntf*)ZALLOC(z, 288, sizeof (uInt))) == Z_NULL)
5187 		{
5188 			ZFREE(z, c);
5189 			return (Z_MEM_ERROR);
5190 		}
5191 		/* literal table */
5192 		for (k = 0; k < 144; k++)
5193 			c[k] = 8;
5194 		for (; k < 256; k++)
5195 			c[k] = 9;
5196 		for (; k < 280; k++)
5197 			c[k] = 7;
5198 		for (; k < 288; k++)
5199 			c[k] = 8;
5200 		fixed_bl = 9;
5201 		(void) huft_build(c, 288, 257, cplens, cplext, &fixed_tl,
5202 		    &fixed_bl, fixed_mem, &f, v);
5203 
5204 		/* distance table */
5205 		for (k = 0; k < 30; k++)
5206 			c[k] = 5;
5207 		fixed_bd = 5;
5208 		(void) huft_build(c, 30, 0, cpdist, cpdext, &fixed_td,
5209 		    &fixed_bd, fixed_mem, &f, v);
5210 
5211 		/* done */
5212 		ZFREE(z, v);
5213 		ZFREE(z, c);
5214 		fixed_built = 1;
5215 	}
5216 #endif
5217 	*bl = fixed_bl;
5218 	*bd = fixed_bd;
5219 	*tl = fixed_tl;
5220 	*td = fixed_td;
5221 	return (Z_OK);
5222 }
5223 /* --- inftrees.c */
5224 
5225 /* +++ infcodes.c */
5226 /*
5227  * infcodes.c -- process literals and length/distance pairs
5228  * Copyright (C) 1995-1998 Mark Adler
5229  * For conditions of distribution and use, see copyright notice in zlib.h
5230  */
5231 
5232 /* #include "zutil.h" */
5233 /* #include "inftrees.h" */
5234 /* #include "infblock.h" */
5235 /* #include "infcodes.h" */
5236 /* #include "infutil.h" */
5237 
5238 /* +++ inffast.h */
5239 /*
5240  * inffast.h -- header to use inffast.c
5241  * Copyright (C) 1995-1998 Mark Adler
5242  * For conditions of distribution and use, see copyright notice in zlib.h
5243  */
5244 
5245 /*
5246  * WARNING: this file should *not* be used by applications. It is part
5247  * of the implementation of the compression library and is subject to
5248  * change. Applications should only use zlib.h.
5249  */
5250 
5251 extern int inflate_fast OF((
5252     uInt,
5253     uInt,
5254     const inflate_huft *,
5255     const inflate_huft *,
5256     inflate_blocks_statef *,
5257     z_streamp));
5258 /* --- inffast.h */
5259 
5260 /* simplify the use of the inflate_huft type with some defines */
5261 #define	exop word.what.Exop
5262 #define	bits word.what.Bits
5263 
5264 /* inflate codes private state */
5265 struct inflate_codes_state {
5266 
5267 	/* mode */
5268 	enum {	/* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5269 		START,	/* x: set up for LEN */
5270 		LEN,	/* i: get length/literal/eob next */
5271 		LENEXT,	/* i: getting length extra (have base) */
5272 		DIST,	/* i: get distance next */
5273 		DISTEXT,	/* i: getting distance extra */
5274 		COPY,	/* o: copying bytes in window, waiting for space */
5275 		LIT,	/* o: got literal, waiting for output space */
5276 		WASH,	/* o: got eob, possibly still output waiting */
5277 		END,	/* x: got eob and all data flushed */
5278 		BADCODE}	/* x: got error */
5279 	mode;	/* current inflate_codes mode */
5280 
5281 	/* mode dependent information */
5282 	uInt len;
5283 	union {
5284 		struct {
5285 			const inflate_huft *tree;	/* pointer into tree */
5286 			uInt need;	/* bits needed */
5287 		} code;	/* if LEN or DIST, where in tree */
5288 		uInt lit;	/* if LIT, literal */
5289 		struct {
5290 			uInt get;	/* bits to get for extra */
5291 			uInt dist;	/* distance back to copy from */
5292 		} copy;	/* if EXT or COPY, where and how much */
5293 	} sub;	/* submode */
5294 
5295 	/* mode independent information */
5296 	Byte lbits;	/* ltree bits decoded per branch */
5297 	Byte dbits;	/* dtree bits decoder per branch */
5298 	const inflate_huft *ltree;	/* literal/length/eob tree */
5299 	const inflate_huft *dtree;	/* distance tree */
5300 
5301 };
5302 
5303 
5304 inflate_codes_statef *
5305 inflate_codes_new(bl, bd, tl, td, z)
5306 uInt bl, bd;
5307 const inflate_huft *tl;
5308 const inflate_huft *td;	/* need separate declaration for Borland C++ */
5309 z_streamp z;
5310 {
5311 	inflate_codes_statef *c;
5312 
5313 	if ((c = (inflate_codes_statef *)
5314 	    ZALLOC(z, 1, sizeof (struct inflate_codes_state))) != Z_NULL)
5315 	{
5316 		c->mode = START;
5317 		c->lbits = (Byte)bl;
5318 		c->dbits = (Byte)bd;
5319 		c->ltree = tl;
5320 		c->dtree = td;
5321 		Tracev((stderr, "inflate:       codes new\n"));
5322 	}
5323 	return (c);
5324 }
5325 
5326 
5327 int
5328 inflate_codes(s, z, r)
5329 inflate_blocks_statef *s;
5330 z_streamp z;
5331 int r;
5332 {
5333 	uInt j;	/* temporary storage */
5334 	const inflate_huft *t;	/* temporary pointer */
5335 	uInt e;	/* extra bits or operation */
5336 	uLong b;	/* bit buffer */
5337 	uInt k;	/* bits in bit buffer */
5338 	Bytef *p;	/* input data pointer */
5339 	uInt n;	/* bytes available there */
5340 	Bytef *q;	/* output window write pointer */
5341 	uInt m;	/* bytes to end of window or read pointer */
5342 	Bytef *f;	/* pointer to copy strings from */
5343 	inflate_codes_statef *c = s->sub.decode.codes;	/* codes state */
5344 
5345 	/* copy input/output information to locals (UPDATE macro restores) */
5346 	LOAD;
5347 
5348 	/* process input and output based on current state */
5349 	/* CONSTCOND */
5350 	while (1)
5351 		/* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5352 		switch (c->mode) {
5353 		case START:	/* x: set up for LEN */
5354 #ifndef SLOW
5355 			if (m >= 258 && n >= 10)
5356 			{
5357 				UPDATE;
5358 				r = inflate_fast(c->lbits, c->dbits,
5359 				    c->ltree, c->dtree, s, z);
5360 				LOAD;
5361 				if (r != Z_OK) {
5362 					c->mode = r == Z_STREAM_END ?
5363 					    WASH : BADCODE;
5364 					break;
5365 				}
5366 			}
5367 #endif /* !SLOW */
5368 			c->sub.code.need = c->lbits;
5369 			c->sub.code.tree = c->ltree;
5370 			c->mode = LEN;
5371 			/* FALLTHRU */
5372 		case LEN:	/* i: get length/literal/eob next */
5373 			j = c->sub.code.need;
5374 			NEEDBITS(j);
5375 			t = c->sub.code.tree +
5376 			    ((uInt)b & inflate_mask[j]);
5377 			DUMPBITS(t->bits);
5378 			e = (uInt)(t->exop);
5379 			if (e == 0) {	/* literal */
5380 				c->sub.lit = t->base;
5381 				Tracevv((stderr, t->base >= 0x20 &&
5382 				    t->base < 0x7f ?
5383 				    "inflate:         literal '%c'\n" :
5384 				    "inflate:         literal 0x%02x\n",
5385 				    t->base));
5386 				c->mode = LIT;
5387 				break;
5388 			}
5389 			if (e & 16) {	/* length */
5390 				c->sub.copy.get = e & 15;
5391 				c->len = t->base;
5392 				c->mode = LENEXT;
5393 				break;
5394 			}
5395 			if ((e & 64) == 0) {	/* next table */
5396 				c->sub.code.need = e;
5397 				c->sub.code.tree = t + t->base;
5398 				break;
5399 			}
5400 			if (e & 32) {	/* end of block */
5401 				Tracevv((stderr,
5402 				    "inflate:         end of block\n"));
5403 				c->mode = WASH;
5404 				break;
5405 			}
5406 			c->mode = BADCODE;	/* invalid code */
5407 			z->msg = "invalid literal/length code";
5408 			r = Z_DATA_ERROR;
5409 			LEAVE
5410 		case LENEXT:	/* i: getting length extra (have base) */
5411 			j = c->sub.copy.get;
5412 			NEEDBITS(j);
5413 			c->len += (uInt)b & inflate_mask[j];
5414 			DUMPBITS(j);
5415 			c->sub.code.need = c->dbits;
5416 			c->sub.code.tree = c->dtree;
5417 			Tracevv((stderr,
5418 			    "inflate:         length %u\n", c->len));
5419 			c->mode = DIST;
5420 			/* FALLTHRU */
5421 		case DIST:	/* i: get distance next */
5422 			j = c->sub.code.need;
5423 			NEEDBITS(j);
5424 			t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5425 			DUMPBITS(t->bits);
5426 			e = (uInt)(t->exop);
5427 			if (e & 16) {	/* distance */
5428 				c->sub.copy.get = e & 15;
5429 				c->sub.copy.dist = t->base;
5430 				c->mode = DISTEXT;
5431 				break;
5432 			}
5433 			if ((e & 64) == 0) {	/* next table */
5434 				c->sub.code.need = e;
5435 				c->sub.code.tree = t + t->base;
5436 				break;
5437 			}
5438 			c->mode = BADCODE;	/* invalid code */
5439 			z->msg = "invalid distance code";
5440 			r = Z_DATA_ERROR;
5441 			LEAVE
5442 		case DISTEXT:	/* i: getting distance extra */
5443 			j = c->sub.copy.get;
5444 			NEEDBITS(j);
5445 			c->sub.copy.dist += (uInt)b & inflate_mask[j];
5446 			DUMPBITS(j);
5447 			Tracevv((stderr,
5448 			    "inflate:         distance %u\n",
5449 			    c->sub.copy.dist));
5450 			c->mode = COPY;
5451 			/* FALLTHRU */
5452 		case COPY:
5453 			/* o: copying bytes in window, waiting for space */
5454 #ifndef __TURBOC__ /* Turbo C bug for following expression */
5455 			f = (uInt)(q - s->window) < c->sub.copy.dist ?
5456 			    s->end - (c->sub.copy.dist - (q - s->window)) :
5457 				q - c->sub.copy.dist;
5458 #else
5459 			f = q - c->sub.copy.dist;
5460 			if ((uInt)(q - s->window) < c->sub.copy.dist)
5461 				f = s->end - (c->sub.copy.dist -
5462 				    (uInt)(q - s->window));
5463 #endif
5464 			while (c->len)
5465 			{
5466 				NEEDOUT;
5467 				OUTBYTE(*f++);
5468 				if (f == s->end)
5469 					f = s->window;
5470 				c->len--;
5471 			}
5472 			c->mode = START;
5473 			break;
5474 		case LIT:	/* o: got literal, waiting for output space */
5475 			NEEDOUT;
5476 			OUTBYTE(c->sub.lit);
5477 			c->mode = START;
5478 			break;
5479 		case WASH:	/* o: got eob, possibly more output */
5480 			if (k > 7) {	/* return unused byte, if any */
5481 				Assert(k < 16,
5482 				    "inflate_codes grabbed too many bytes");
5483 				k -= 8;
5484 				n++;
5485 				p--;	/* can always return one */
5486 			}
5487 			FLUSH;
5488 			if (s->read != s->write)
5489 				LEAVE
5490 			c->mode = END;
5491 			/* FALLTHRU */
5492 		case END:
5493 			r = Z_STREAM_END;
5494 			LEAVE
5495 		case BADCODE:	/* x: got error */
5496 			r = Z_DATA_ERROR;
5497 			LEAVE
5498 		default:
5499 			r = Z_STREAM_ERROR;
5500 			LEAVE
5501 		}
5502 	/* NOTREACHED */
5503 	/* otherwise lint complains */
5504 }
5505 
5506 
5507 void
5508 inflate_codes_free(c, z)
5509 inflate_codes_statef *c;
5510 z_streamp z;
5511 {
5512 	ZFREE(z, c);
5513 	Tracev((stderr, "inflate:       codes free\n"));
5514 }
5515 /* --- infcodes.c */
5516 
5517 /* +++ infutil.c */
5518 /*
5519  * inflate_util.c -- data and routines common to blocks and codes
5520  * Copyright (C) 1995-1998 Mark Adler
5521  * For conditions of distribution and use, see copyright notice in zlib.h
5522  */
5523 
5524 /* #include "zutil.h" */
5525 /* #include "infblock.h" */
5526 /* #include "inftrees.h" */
5527 /* #include "infcodes.h" */
5528 /* #include "infutil.h" */
5529 
5530 #ifndef NO_DUMMY_DECL
5531 struct inflate_codes_state {int dummy; };	/* for buggy compilers */
5532 #endif
5533 
5534 /* And'ing with mask[n] masks the lower n bits */
5535 uInt inflate_mask[17] = {
5536 	0x0000,
5537 	0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5538 	0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5539 };
5540 
5541 
5542 /* copy as much as possible from the sliding window to the output area */
5543 int
5544 inflate_flush(s, z, r)
5545 inflate_blocks_statef *s;
5546 z_streamp z;
5547 int r;
5548 {
5549 	uInt n;
5550 	Bytef *p;
5551 	Bytef *q;
5552 
5553 	/* local copies of source and destination pointers */
5554 	p = z->next_out;
5555 	q = s->read;
5556 
5557 	/* compute number of bytes to copy as far as end of window */
5558 	n = (uInt)((q <= s->write ? s->write : s->end) - q);
5559 	if (n > z->avail_out) n = z->avail_out;
5560 	if (n && r == Z_BUF_ERROR) r = Z_OK;
5561 
5562 	/* update counters */
5563 	z->avail_out -= n;
5564 	z->total_out += n;
5565 
5566 	/* update check information */
5567 	if (s->checkfn != Z_NULL)
5568 		z->adler = s->check = (*s->checkfn)(s->check, q, n);
5569 
5570 	/* copy as far as end of window */
5571 	if (p != Z_NULL) {	/* PPP */
5572 		zmemcpy(p, q, n);
5573 		p += n;
5574 	}	/* PPP */
5575 	q += n;
5576 
5577 	/* see if more to copy at beginning of window */
5578 	if (q == s->end)
5579 	{
5580 		/* wrap pointers */
5581 		q = s->window;
5582 		if (s->write == s->end)
5583 			s->write = s->window;
5584 
5585 		/* compute bytes to copy */
5586 		n = (uInt)(s->write - q);
5587 		if (n > z->avail_out) n = z->avail_out;
5588 		if (n && r == Z_BUF_ERROR) r = Z_OK;
5589 
5590 		/* update counters */
5591 		z->avail_out -= n;
5592 		z->total_out += n;
5593 
5594 		/* update check information */
5595 		if (s->checkfn != Z_NULL)
5596 			z->adler = s->check = (*s->checkfn)(s->check, q, n);
5597 
5598 		/* copy */
5599 		if (p != Z_NULL) {	/* PPP */
5600 			zmemcpy(p, q, n);
5601 			p += n;
5602 		}	/* PPP */
5603 		q += n;
5604 	}
5605 
5606 	/* update pointers */
5607 	z->next_out = p;
5608 	s->read = q;
5609 
5610 	/* done */
5611 	return (r);
5612 }
5613 /* --- infutil.c */
5614 
5615 /* +++ inffast.c */
5616 /*
5617  * inffast.c -- process literals and length/distance pairs fast
5618  * Copyright (C) 1995-1998 Mark Adler
5619  * For conditions of distribution and use, see copyright notice in zlib.h
5620  */
5621 
5622 /* #include "zutil.h" */
5623 /* #include "inftrees.h" */
5624 /* #include "infblock.h" */
5625 /* #include "infcodes.h" */
5626 /* #include "infutil.h" */
5627 /* #include "inffast.h" */
5628 
5629 #ifndef NO_DUMMY_DECL
5630 struct inflate_codes_state {int dummy; };	/* for buggy compilers */
5631 #endif
5632 
5633 /* simplify the use of the inflate_huft type with some defines */
5634 #define	exop word.what.Exop
5635 #define	bits word.what.Bits
5636 
5637 /* macros for bit input with no checking and for returning unused bytes */
5638 #define	GRABBITS(j) { while (k < (j)) {b |= ((uLong)NEXTBYTE)<<k; k += 8; }}
5639 #define	UNGRAB {c = z->avail_in-n; c = (k>>3) < c?k>>3:c; n += c; p -= c; \
5640 	k -= c<<3; }
5641 
5642 /*
5643  * Called with number of bytes left to write in window at least 258
5644  * (the maximum string length) and number of input bytes available at
5645  * least ten.  The ten bytes are six bytes for the longest length/
5646  * distance pair plus four bytes for overloading the bit buffer.
5647  */
5648 
5649 int
5650 inflate_fast(bl, bd, tl, td, s, z)
5651 uInt bl, bd;
5652 const inflate_huft *tl;
5653 const inflate_huft *td;	/* need separate declaration for Borland C++ */
5654 inflate_blocks_statef *s;
5655 z_streamp z;
5656 {
5657 	const inflate_huft *t;	/* temporary pointer */
5658 	uInt e;	/* extra bits or operation */
5659 	uLong b;	/* bit buffer */
5660 	uInt k;	/* bits in bit buffer */
5661 	Bytef *p;	/* input data pointer */
5662 	uInt n;	/* bytes available there */
5663 	Bytef *q;	/* output window write pointer */
5664 	uInt m;	/* bytes to end of window or read pointer */
5665 	uInt ml;	/* mask for literal/length tree */
5666 	uInt md;	/* mask for distance tree */
5667 	uInt c;	/* bytes to copy */
5668 	uInt d;	/* distance back to copy from */
5669 	Bytef *r;	/* copy source pointer */
5670 
5671 	/* load input, output, bit values */
5672 	LOAD;
5673 
5674 	/* initialize masks */
5675 	ml = inflate_mask[bl];
5676 	md = inflate_mask[bd];
5677 
5678 	/* do until not enough input or output space for fast loop */
5679 	do {	/* assume called with m >= 258 && n >= 10 */
5680 		/* get literal/length code */
5681 		/* max bits for literal/length code */
5682 		GRABBITS(20);
5683 		if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) {
5684 			DUMPBITS(t->bits);
5685 			Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5686 			    "inflate:         * literal '%c'\n" :
5687 			    "inflate:         * literal 0x%02x\n", t->base));
5688 			*q++ = (Byte)t->base;
5689 			m--;
5690 			continue;
5691 		}
5692 		do {
5693 			DUMPBITS(t->bits);
5694 			if (e & 16) {
5695 				/* get extra bits for length */
5696 				e &= 15;
5697 				c = t->base + ((uInt)b & inflate_mask[e]);
5698 				DUMPBITS(e);
5699 				Tracevv((stderr,
5700 				    "inflate:         * length %u\n", c));
5701 
5702 				/* decode distance base of block to copy */
5703 				GRABBITS(15);	/* max bits for distance code */
5704 				e = (t = td + ((uInt)b & md))->exop;
5705 				do {
5706 					DUMPBITS(t->bits);
5707 					if (e & 16) {
5708 						/*
5709 						 * get extra bits to
5710 						 * add to distance
5711 						 * base
5712 						 */
5713 						e &= 15;
5714 						/* get extra bits (up to 13) */
5715 						GRABBITS(e);
5716 						d = t->base + ((uInt)b &
5717 						    inflate_mask[e]);
5718 						DUMPBITS(e);
5719 						Tracevv((stderr,
5720 						    "inflate:         * "
5721 						    "distance %u\n", d));
5722 
5723 						/* do the copy */
5724 						m -= c;
5725 						/* offset before dest */
5726 						if ((uInt)(q - s->window) >= d)
5727 							/*  just copy */
5728 						{
5729 							r = q - d;
5730 							/*
5731 							 * minimum
5732 							 * count is
5733 							 * three, so
5734 							 * unroll loop
5735 							 * a little
5736 							 */
5737 							*q++ = *r++;  c--;
5738 							*q++ = *r++;  c--;
5739 						}
5740 					/* else offset after destination */
5741 						else {
5742 	/* bytes from offset to end */
5743 							e = d - (uInt)(q -
5744 							    s->window);
5745 	/* pointer to offset */
5746 							r = s->end - e;
5747 							/* if source crosses */
5748 							if (c > e) {
5749 	/* copy to end of window */
5750 								c -= e;
5751 								do {
5752 									*q++ =
5753 									    *r
5754 									    ++;
5755 								} while (--e);
5756 	/* copy rest from start of window */
5757 								r = s->window;
5758 							}
5759 						}
5760 						/* copy all or what's left */
5761 						do {
5762 							*q++ = *r++;
5763 						} while (--c);
5764 						break;
5765 					} else if ((e & 64) == 0) {
5766 						t += t->base;
5767 						e = (t += ((uInt)b &
5768 						    inflate_mask[e]))->exop;
5769 					} else {
5770 						z->msg =
5771 						    "invalid distance code";
5772 						UNGRAB;
5773 						UPDATE;
5774 						return (Z_DATA_ERROR);
5775 					}
5776 					/* CONSTCOND */
5777 				} while (1);
5778 				break;
5779 			}
5780 			if ((e & 64) == 0)
5781 			{
5782 				t += t->base;
5783 				if ((e = (t += ((uInt)b &
5784 				    inflate_mask[e]))->exop) == 0)
5785 				{
5786 					DUMPBITS(t->bits);
5787 					Tracevv((stderr, t->base >= 0x20 &&
5788 					    t->base < 0x7f ?
5789 					    "inflate:         * literal '%c'\n"
5790 					    :
5791 					    "inflate:         * literal "
5792 					    "0x%02x\n", t->base));
5793 					*q++ = (Byte)t->base;
5794 					m--;
5795 					break;
5796 				}
5797 			} else if (e & 32) {
5798 				Tracevv((stderr,
5799 				    "inflate:         * end of block\n"));
5800 				UNGRAB;
5801 				UPDATE;
5802 				return (Z_STREAM_END);
5803 			} else {
5804 				z->msg = "invalid literal/length code";
5805 				UNGRAB;
5806 				UPDATE;
5807 				return (Z_DATA_ERROR);
5808 			}
5809 			/* CONSTCOND */
5810 		} while (1);
5811 	} while (m >= 258 && n >= 10);
5812 
5813 	/* not enough input or output--restore pointers and return */
5814 	UNGRAB;
5815 	UPDATE;
5816 	return (Z_OK);
5817 }
5818 /* --- inffast.c */
5819 
5820 /* +++ zutil.c */
5821 /*
5822  * zutil.c -- target dependent utility functions for the compression library
5823  * Copyright (C) 1995-1998 Jean-loup Gailly.
5824  * For conditions of distribution and use, see copyright notice in zlib.h
5825  */
5826 
5827 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5828 
5829 #ifdef DEBUG_ZLIB
5830 #include <stdio.h>
5831 #endif
5832 
5833 /* #include "zutil.h" */
5834 
5835 #ifndef NO_DUMMY_DECL
5836 struct internal_state	{int dummy; };	/* for buggy compilers */
5837 #endif
5838 
5839 #ifndef STDC
5840 extern void exit OF((int));
5841 #endif
5842 
5843 const char *z_errmsg[10] = {
5844 "need dictionary",	/* Z_NEED_DICT		2 */
5845 "stream end",		/* Z_STREAM_END		1 */
5846 "",			/* Z_OK			0 */
5847 "file error",		/* Z_ERRNO		(-1) */
5848 "stream error",		/* Z_STREAM_ERROR	(-2) */
5849 "data error",		/* Z_DATA_ERROR		(-3) */
5850 "insufficient memory",	/* Z_MEM_ERROR		(-4) */
5851 "buffer error",		/* Z_BUF_ERROR		(-5) */
5852 "incompatible version",	/* Z_VERSION_ERROR	(-6) */
5853 ""};
5854 
5855 
5856 const char *
5857 zlibVersion()
5858 {
5859 	return (ZLIB_VERSION);
5860 }
5861 
5862 #ifdef DEBUG_ZLIB
5863 void
5864 z_error(m)
5865     char *m;
5866 {
5867 	fprintf(stderr, "%s\n", m);
5868 	exit(1);
5869 }
5870 #endif
5871 
5872 #ifndef HAVE_MEMCPY
5873 
5874 void
5875 zmemcpy(dest, source, len)
5876     Bytef* dest;
5877     const Bytef* source;
5878     uInt  len;
5879 {
5880 	if (len == 0)
5881 		return;
5882 	do {
5883 		*dest++ = *source++;	/* ??? to be unrolled */
5884 	} while (--len != 0);
5885 }
5886 
5887 int
5888 zmemcmp(s1, s2, len)
5889 const Bytef* s1;
5890 const Bytef* s2;
5891 uInt  len;
5892 {
5893 	uInt j;
5894 
5895 	for (j = 0; j < len; j++) {
5896 		if (s1[j] != s2[j])
5897 			return (2*(s1[j] > s2[j])-1);
5898 	}
5899 	return (0);
5900 }
5901 
5902 void
5903 zmemzero(dest, len)
5904     Bytef* dest;
5905     uInt  len;
5906 {
5907 	if (len == 0)
5908 		return;
5909 	do {
5910 		*dest++ = 0;	/* ??? to be unrolled */
5911 	} while (--len != 0);
5912 }
5913 #endif
5914 
5915 #ifdef __TURBOC__
5916 #if (defined(__BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5917 /*
5918  * Small and medium model in Turbo C are for now limited to near
5919  * allocation with reduced MAX_WBITS and MAX_MEM_LEVEL
5920  */
5921 #define	MY_ZCALLOC
5922 
5923 /*
5924  * Turbo C malloc() does not allow dynamic allocation of 64K bytes and
5925  * farmalloc(64K) returns a pointer with an offset of 8, so we must
5926  * fix the pointer. Warning: the pointer must be put back to its
5927  * original form in order to free it, use zcfree().
5928  */
5929 
5930 #define	MAX_PTR 10
5931 /* 10*64K = 640K */
5932 
5933 local int next_ptr = 0;
5934 
5935 typedef struct ptr_table_s {
5936 	voidpf org_ptr;
5937 	voidpf new_ptr;
5938 } ptr_table;
5939 
5940 local ptr_table table[MAX_PTR];
5941 /*
5942  * This table is used to remember the original form of pointers to
5943  * large buffers (64K). Such pointers are normalized with a zero
5944  * offset.  Since MSDOS is not a preemptive multitasking OS, this
5945  * table is not protected from concurrent access. This hack doesn't
5946  * work anyway on a protected system like OS/2. Use Microsoft C
5947  * instead.
5948  */
5949 
5950 voidpf
5951 zcalloc(voidpf opaque, unsigned items, unsigned size)
5952 {
5953 	voidpf buf = opaque;	/* just to make some compilers happy */
5954 	ulg bsize = (ulg)items*size;
5955 
5956 	/*
5957 	 * If we allocate less than 65520 bytes, we assume that
5958 	 * farmalloc will return a usable pointer which doesn't have
5959 	 * to be normalized.
5960 	 */
5961 	if (bsize < 65520L) {
5962 		buf = farmalloc(bsize);
5963 		if (*(ush *)&buf != 0)
5964 			return (buf);
5965 	} else {
5966 		buf = farmalloc(bsize + 16L);
5967 	}
5968 	if (buf == NULL || next_ptr >= MAX_PTR)
5969 		return (NULL);
5970 	table[next_ptr].org_ptr = buf;
5971 
5972 	/* Normalize the pointer to seg:0 */
5973 	*((ush *)&buf+1) += ((ush)((uch *)buf-0) + 15) >> 4;
5974 	*(ush *)&buf = 0;
5975 	table[next_ptr++].new_ptr = buf;
5976 	return (buf);
5977 }
5978 
5979 void
5980 zcfree(voidpf opaque, voidpf ptr)
5981 {
5982 	int n;
5983 	if (*(ush*)&ptr != 0) { /* object < 64K */
5984 		farfree(ptr);
5985 		return;
5986 	}
5987 	/* Find the original pointer */
5988 	for (n = 0; n < next_ptr; n++) {
5989 		if (ptr != table[n].new_ptr)
5990 			continue;
5991 
5992 		farfree(table[n].org_ptr);
5993 		while (++n < next_ptr) {
5994 			table[n-1] = table[n];
5995 		}
5996 		next_ptr--;
5997 		return;
5998 	}
5999 	ptr = opaque;	/* just to make some compilers happy */
6000 	Assert(0, "zcfree: ptr not found");
6001 }
6002 #endif
6003 #endif /* __TURBOC__ */
6004 
6005 
6006 #if defined(M_I86) && !defined(__32BIT__)
6007 /* Microsoft C in 16-bit mode */
6008 
6009 #define	MY_ZCALLOC
6010 
6011 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
6012 #define	_halloc  halloc
6013 #define	_hfree   hfree
6014 #endif
6015 
6016 voidpf
6017 zcalloc(voidpf opaque, unsigned items, unsigned size)
6018 {
6019 	if (opaque) opaque = 0;	/* to make compiler happy */
6020 	return (_halloc((long)items, size));
6021 }
6022 
6023 void
6024 zcfree(voidpf opaque, voidpf ptr)
6025 {
6026 	if (opaque) opaque = 0;	/* to make compiler happy */
6027 	_hfree(ptr);
6028 }
6029 
6030 #endif /* MSC */
6031 
6032 
6033 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
6034 
6035 #ifndef STDC
6036 extern voidp  calloc OF((uInt items, uInt size));
6037 extern void   free   OF((voidpf ptr));
6038 #endif
6039 
6040 voidpf
6041 zcalloc(opaque, items, size)
6042     voidpf opaque;
6043     unsigned items;
6044     unsigned size;
6045 {
6046 	if (opaque) items += size - size;	/* make compiler happy */
6047 	return ((voidpf)calloc(items, size));
6048 }
6049 
6050 /*ARGSUSED*/
6051 void
6052 zcfree(opaque, ptr)
6053     voidpf opaque;
6054     voidpf ptr;
6055 {
6056 	free(ptr);
6057 }
6058 
6059 #endif /* MY_ZCALLOC */
6060 /* --- zutil.c */
6061 
6062 /* +++ adler32.c */
6063 /*
6064  * adler32.c -- compute the Adler-32 checksum of a data stream
6065  * Copyright (C) 1995-1998 Mark Adler
6066  * For conditions of distribution and use, see copyright notice in zlib.h
6067  */
6068 
6069 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
6070 
6071 /* #include "zlib.h" */
6072 
6073 #define	BASE 65521L /* largest prime smaller than 65536 */
6074 #define	NMAX 5552
6075 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
6076 
6077 #define	DO1(buf, i)  {s1 += buf[i]; s2 += s1; }
6078 #define	DO2(buf, i)  DO1(buf, i); DO1(buf, i+1);
6079 #define	DO4(buf, i)  DO2(buf, i); DO2(buf, i+2);
6080 #define	DO8(buf, i)  DO4(buf, i); DO4(buf, i+4);
6081 #define	DO16(buf)   DO8(buf, 0); DO8(buf, 8);
6082 
6083 /* ========================================================================= */
6084 uLong
6085 adler32(adler, buf, len)
6086     uLong adler;
6087     const Bytef *buf;
6088     uInt len;
6089 {
6090 	unsigned long s1 = adler & 0xffff;
6091 	unsigned long s2 = (adler >> 16) & 0xffff;
6092 	int k;
6093 
6094 	if (buf == Z_NULL)
6095 		return (1L);
6096 
6097 	while (len > 0) {
6098 		k = len < NMAX ? len : NMAX;
6099 		len -= k;
6100 		while (k >= 16) {
6101 			DO16(buf);
6102 			buf += 16;
6103 			k -= 16;
6104 		}
6105 		if (k != 0) do {
6106 			s1 += *buf++;
6107 			s2 += s1;
6108 		} while (--k);
6109 		s1 %= BASE;
6110 		s2 %= BASE;
6111 	}
6112 	return ((s2 << 16) | s1);
6113 }
6114 /* --- adler32.c */
6115