1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright 2023 Oxide Computer Company 28 */ 29 30 /* 31 * Common x86 and SPARC PCI-E to PCI bus bridge nexus driver 32 * 33 * Background 34 * ---------- 35 * 36 * The PCI Express (PCIe) specification defines that all of the PCIe devices in 37 * the system are connected together in a series of different fabrics. A way to 38 * think of these fabrics is that they are small networks where there are links 39 * between different devices and switches that allow fan out or fan in of the 40 * fabric. The entry point to that fabric is called a root complex and the 41 * fabric terminates at a what is called an endpoint, which is really just PCIe 42 * terminology for the common cards that are inserted into the system (HBAs, 43 * NICs, USB, NVMe, etc.). 44 * 45 * The PCIe specification states that every link on the system has a virtual 46 * PCI-to-PCI bridge. This allows PCIe devices to still be configured the same 47 * way traditional PCI devices are to the operating system and allows them to 48 * have a traditional PCI bus, device, and function associated with them, even 49 * though there is no actual shared bus. In addition, bridges are also used to 50 * connect traditional PCI and PCI-X devices into them. 51 * 52 * The PCIe specification refers to upstream and downstream ports. Upstream 53 * ports are considered closer the root complex and downstream ports are closer 54 * to the endpoint. We can divide the devices that the bridge driver attaches to 55 * into two groups. Those that are considered upstream ports, these include root 56 * complexes and parts of PCIe switches. And downstream ports, which are the 57 * other half of PCIe switches and endpoints (which this driver does not attach 58 * to, normal hardware-specific or class-specific drivers attach to those). 59 * 60 * Interrupt Management 61 * -------------------- 62 * 63 * Upstream ports of bridges have additional things that we care about. 64 * Specifically they're the means through which we find out about: 65 * 66 * - Advanced Error Reporting (AERs) 67 * - Hotplug events 68 * - Link Bandwidth Events 69 * - Power Management Events (PME) 70 * 71 * Each of these features is an optional feature (though ones we hope are 72 * implemented). The features above are grouped into two different buckets based 73 * on which PCI capability they appear in. AER management is done through a PCI 74 * Express extended configuration header (it lives in extended PCI configuration 75 * space) called the 'Advanced Error Reporting Extended Capability'. The other 76 * events are all managed as part of the 'PCI Express Capability Structure'. 77 * This structure is found in traditional PCI configuration space. 78 * 79 * The way that the interrupts are programmed for these types of events differs 80 * a bit from the way one might expect a normal device to operate. For most 81 * devices, one allocates a number of interrupts based on a combination of what 82 * the device supports, what the OS supports per device, and the number the 83 * driver needs. Then the driver programs the device in a device-specific manner 84 * to indicate which events should trigger a specific interrupt vector. 85 * 86 * However, for both the AER and PCI capabilities, the driver has to do 87 * something different. The driver first allocates interrupts by programming the 88 * MSI or MSI-X table and then asks the device which interrupts have been 89 * assigned to these purposes. Because these events are only supported in 90 * 'upstream' devices, this does not interfere with the traditional management 91 * of MSI and MSI-X interrupts. At this time, the pcieb driver only supports the 92 * use of MSI interrupts. 93 * 94 * Once the interrupts have been allocated, we read back which vectors have been 95 * nominated by the device to cover the corresponding capability. The interrupt 96 * is allocated on a per-capability basis. Therefore, one interrupt would cover 97 * AERs, while another interrupt would cover the rest of the desired functions. 98 * Importantly, there is no guarantee that a bridge supports more than one 99 * vector; in particular, at least some AMD bridges do not. In this case, 100 * interrupts associated with all the available capabilities will be routed to 101 * the same shared vector. 102 * 103 * To track which interrupts cover which behaviors, each driver state 104 * (pcieb_devstate_t) has a member called 'pcieb_isr_tab'. Each index represents 105 * an interrupt vector and there are a series of flags that represent the 106 * different possible interrupt sources: PCIEB_INTR_SRC_HP (hotplug), 107 * PCEIB_INTR_SRC_PME (power management event), PCIEB_INTR_SRC_AER (error 108 * reporting), PCIEB_INTR_SRC_LBW (link bandwidth). 109 * 110 * Because the hotplug, link bandwidth, and power management events all share 111 * the same vector, if an interrupt comes in, we must check all of the enabled 112 * sources that might generate this interrupt. It is highly likely that more 113 * than one will fire at the same time, for example, a hotplug event that fires 114 * because a device has been inserted or removed, will likely trigger a link 115 * bandwidth event. 116 * 117 * The pcieb driver itself does not actually have much logic to deal with and 118 * clear the interrupts in question. It generally speaking will vector most 119 * events back to the more general pcie driver or, in the case of AERs, initiate 120 * a scan of the fabric itself (also part of the pcie driver). 121 * 122 * Link Management 123 * --------------- 124 * 125 * The pcieb driver is used to take care of two different aspects of link 126 * management. The first of these, as described briefly above, is to monitor for 127 * changes to the negotiated link bandwidth. These events are managed by 128 * enabling support for the interrupts in the PCI Express Capability Structure. 129 * This is all taken care of by the pcie driver through functions like 130 * pcie_link_bw_enable(). 131 * 132 * The second aspect of link management the pcieb driver enables is the ability 133 * to retrain the link and optionally limit the speed. This is enabled through a 134 * series of private ioctls that are driven through a private userland utility, 135 * /usr/lib/pci/pcieb. Eventually, this should be more fleshed out and a more 136 * uniform interface based around the devctls that can be leveraged across 137 * different classes of devices should be used. 138 * 139 * Under the hood this basically leverages the ability of the upstream port to 140 * retrain a link by writing a bit to the PCIe link control register. See 141 * pcieb_ioctl_retrain(). From there, if the driver ever receives a request to 142 * change the maximum speed, that is updated in the card; however, it does not 143 * immediately retrain the link. A separate ioctl request is required to do so. 144 * Once the speed has been changed, regardless of whether or not it has been 145 * retrained, that fact will always be noted. 146 */ 147 148 #include <sys/sysmacros.h> 149 #include <sys/conf.h> 150 #include <sys/kmem.h> 151 #include <sys/debug.h> 152 #include <sys/modctl.h> 153 #include <sys/autoconf.h> 154 #include <sys/ddi_impldefs.h> 155 #include <sys/pci.h> 156 #include <sys/ddi.h> 157 #include <sys/sunddi.h> 158 #include <sys/sunndi.h> 159 #include <sys/fm/util.h> 160 #include <sys/pci_cap.h> 161 #include <sys/pci_impl.h> 162 #include <sys/pcie_impl.h> 163 #include <sys/open.h> 164 #include <sys/stat.h> 165 #include <sys/file.h> 166 #include <sys/promif.h> /* prom_printf */ 167 #include <sys/disp.h> 168 #include <sys/pcie_pwr.h> 169 #include <sys/hotplug/pci/pcie_hp.h> 170 #include "pcieb.h" 171 #include "pcieb_ioctl.h" 172 #ifdef PX_PLX 173 #include <io/pciex/pcieb_plx.h> 174 #endif /* PX_PLX */ 175 176 /*LINTLIBRARY*/ 177 178 /* panic flag */ 179 int pcieb_die = PF_ERR_FATAL_FLAGS; 180 int pcieb_disable_41210_wkarnd = 0; 181 182 /* flag to turn on MSI support */ 183 int pcieb_enable_msi = 1; 184 185 #if defined(DEBUG) 186 uint_t pcieb_dbg_print = 0; 187 188 static char *pcieb_debug_sym [] = { /* same sequence as pcieb_debug_bit */ 189 /* 0 */ "attach", 190 /* 1 */ "pwr", 191 /* 2 */ "intr" 192 }; 193 #endif /* DEBUG */ 194 195 static int pcieb_bus_map(dev_info_t *, dev_info_t *, ddi_map_req_t *, off_t, 196 off_t, caddr_t *); 197 static int pcieb_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 198 void *); 199 static int pcieb_fm_init(pcieb_devstate_t *pcieb_p); 200 static void pcieb_fm_fini(pcieb_devstate_t *pcieb_p); 201 static int pcieb_fm_init_child(dev_info_t *dip, dev_info_t *cdip, int cap, 202 ddi_iblock_cookie_t *ibc_p); 203 static int pcieb_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, 204 ddi_dma_attr_t *attr_p, int (*waitfp)(caddr_t), caddr_t arg, 205 ddi_dma_handle_t *handlep); 206 static int pcieb_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 207 ddi_dma_handle_t handle, enum ddi_dma_ctlops cmd, off_t *offp, 208 size_t *lenp, caddr_t *objp, uint_t cache_flags); 209 static int pcieb_intr_ops(dev_info_t *dip, dev_info_t *rdip, 210 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 211 212 static struct bus_ops pcieb_bus_ops = { 213 BUSO_REV, 214 pcieb_bus_map, 215 0, 216 0, 217 0, 218 i_ddi_map_fault, 219 0, 220 pcieb_dma_allochdl, 221 ddi_dma_freehdl, 222 ddi_dma_bindhdl, 223 ddi_dma_unbindhdl, 224 ddi_dma_flush, 225 ddi_dma_win, 226 pcieb_dma_mctl, 227 pcieb_ctlops, 228 ddi_bus_prop_op, 229 ndi_busop_get_eventcookie, /* (*bus_get_eventcookie)(); */ 230 ndi_busop_add_eventcall, /* (*bus_add_eventcall)(); */ 231 ndi_busop_remove_eventcall, /* (*bus_remove_eventcall)(); */ 232 ndi_post_event, /* (*bus_post_event)(); */ 233 NULL, /* (*bus_intr_ctl)(); */ 234 NULL, /* (*bus_config)(); */ 235 NULL, /* (*bus_unconfig)(); */ 236 pcieb_fm_init_child, /* (*bus_fm_init)(); */ 237 NULL, /* (*bus_fm_fini)(); */ 238 i_ndi_busop_access_enter, /* (*bus_fm_access_enter)(); */ 239 i_ndi_busop_access_exit, /* (*bus_fm_access_exit)(); */ 240 pcie_bus_power, /* (*bus_power)(); */ 241 pcieb_intr_ops, /* (*bus_intr_op)(); */ 242 pcie_hp_common_ops /* (*bus_hp_op)(); */ 243 }; 244 245 static int pcieb_open(dev_t *, int, int, cred_t *); 246 static int pcieb_close(dev_t, int, int, cred_t *); 247 static int pcieb_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 248 static int pcieb_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 249 static uint_t pcieb_intr_handler(caddr_t arg1, caddr_t arg2); 250 251 /* PM related functions */ 252 static int pcieb_pwr_setup(dev_info_t *dip); 253 static int pcieb_pwr_init_and_raise(dev_info_t *dip, pcie_pwr_t *pwr_p); 254 static void pcieb_pwr_teardown(dev_info_t *dip); 255 static int pcieb_pwr_disable(dev_info_t *dip); 256 257 /* Hotplug related functions */ 258 static void pcieb_id_props(pcieb_devstate_t *pcieb); 259 260 /* 261 * soft state pointer 262 */ 263 void *pcieb_state; 264 265 static struct cb_ops pcieb_cb_ops = { 266 pcieb_open, /* open */ 267 pcieb_close, /* close */ 268 nodev, /* strategy */ 269 nodev, /* print */ 270 nodev, /* dump */ 271 nodev, /* read */ 272 nodev, /* write */ 273 pcieb_ioctl, /* ioctl */ 274 nodev, /* devmap */ 275 nodev, /* mmap */ 276 nodev, /* segmap */ 277 nochpoll, /* poll */ 278 pcie_prop_op, /* cb_prop_op */ 279 NULL, /* streamtab */ 280 D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */ 281 CB_REV, /* rev */ 282 nodev, /* int (*cb_aread)() */ 283 nodev /* int (*cb_awrite)() */ 284 }; 285 286 static int pcieb_probe(dev_info_t *); 287 static int pcieb_attach(dev_info_t *devi, ddi_attach_cmd_t cmd); 288 static int pcieb_detach(dev_info_t *devi, ddi_detach_cmd_t cmd); 289 290 static struct dev_ops pcieb_ops = { 291 DEVO_REV, /* devo_rev */ 292 0, /* refcnt */ 293 pcieb_info, /* info */ 294 nulldev, /* identify */ 295 pcieb_probe, /* probe */ 296 pcieb_attach, /* attach */ 297 pcieb_detach, /* detach */ 298 nulldev, /* reset */ 299 &pcieb_cb_ops, /* driver operations */ 300 &pcieb_bus_ops, /* bus operations */ 301 pcie_power, /* power */ 302 ddi_quiesce_not_needed, /* quiesce */ 303 }; 304 305 /* 306 * Module linkage information for the kernel. 307 */ 308 309 static struct modldrv modldrv = { 310 &mod_driverops, /* Type of module */ 311 "PCIe bridge/switch driver", 312 &pcieb_ops, /* driver ops */ 313 }; 314 315 static struct modlinkage modlinkage = { 316 MODREV_1, 317 (void *)&modldrv, 318 NULL 319 }; 320 321 /* 322 * forward function declarations: 323 */ 324 static void pcieb_uninitchild(dev_info_t *); 325 static int pcieb_initchild(dev_info_t *child); 326 static void pcieb_create_ranges_prop(dev_info_t *, ddi_acc_handle_t); 327 static boolean_t pcieb_is_pcie_device_type(dev_info_t *dip); 328 329 /* interrupt related declarations */ 330 static int pcieb_msi_supported(dev_info_t *); 331 static int pcieb_intr_attach(pcieb_devstate_t *pcieb); 332 static int pcieb_intr_init(pcieb_devstate_t *pcieb_p, int intr_type); 333 static void pcieb_intr_fini(pcieb_devstate_t *pcieb_p); 334 335 int 336 _init(void) 337 { 338 int e; 339 340 if ((e = ddi_soft_state_init(&pcieb_state, sizeof (pcieb_devstate_t), 341 1)) == 0 && (e = mod_install(&modlinkage)) != 0) 342 ddi_soft_state_fini(&pcieb_state); 343 return (e); 344 } 345 346 int 347 _fini(void) 348 { 349 int e; 350 351 if ((e = mod_remove(&modlinkage)) == 0) { 352 ddi_soft_state_fini(&pcieb_state); 353 } 354 return (e); 355 } 356 357 int 358 _info(struct modinfo *modinfop) 359 { 360 return (mod_info(&modlinkage, modinfop)); 361 } 362 363 /* ARGSUSED */ 364 static int 365 pcieb_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 366 { 367 minor_t minor = getminor((dev_t)arg); 368 int instance = PCI_MINOR_NUM_TO_INSTANCE(minor); 369 pcieb_devstate_t *pcieb = ddi_get_soft_state(pcieb_state, instance); 370 int ret = DDI_SUCCESS; 371 372 switch (infocmd) { 373 case DDI_INFO_DEVT2INSTANCE: 374 *result = (void *)(intptr_t)instance; 375 break; 376 case DDI_INFO_DEVT2DEVINFO: 377 if (pcieb == NULL) { 378 ret = DDI_FAILURE; 379 break; 380 } 381 382 *result = (void *)pcieb->pcieb_dip; 383 break; 384 default: 385 ret = DDI_FAILURE; 386 break; 387 } 388 389 return (ret); 390 } 391 392 393 /*ARGSUSED*/ 394 static int 395 pcieb_probe(dev_info_t *devi) 396 { 397 return (DDI_PROBE_SUCCESS); 398 } 399 400 /* 401 * This is a workaround for an undocumented HW erratum with the 402 * multi-function, F0 and F2, Intel 41210 PCIe-to-PCI bridge. When 403 * Fn (cdip) attaches, this workaround is called to initialize Fn's 404 * sibling (sdip) with MPS/MRRS if it isn't already configured. 405 * Doing so prevents a malformed TLP panic. 406 */ 407 static void 408 pcieb_41210_mps_wkrnd(dev_info_t *cdip) 409 { 410 dev_info_t *sdip; 411 ddi_acc_handle_t cfg_hdl; 412 uint16_t cdip_dev_ctrl, cdip_mrrs_mps; 413 pcie_bus_t *cdip_bus_p = PCIE_DIP2BUS(cdip); 414 415 /* Get cdip's MPS/MRRS already setup by pcie_initchild_mps() */ 416 ASSERT(cdip_bus_p); 417 cdip_dev_ctrl = PCIE_CAP_GET(16, cdip_bus_p, PCIE_DEVCTL); 418 cdip_mrrs_mps = cdip_dev_ctrl & 419 (PCIE_DEVCTL_MAX_READ_REQ_MASK | PCIE_DEVCTL_MAX_PAYLOAD_MASK); 420 421 /* Locate sdip and set its MPS/MRRS when applicable */ 422 for (sdip = ddi_get_child(ddi_get_parent(cdip)); sdip; 423 sdip = ddi_get_next_sibling(sdip)) { 424 uint16_t sdip_dev_ctrl, sdip_mrrs_mps, cap_ptr; 425 uint32_t bus_dev_ven_id; 426 427 if (sdip == cdip || pci_config_setup(sdip, &cfg_hdl) 428 != DDI_SUCCESS) 429 continue; 430 431 /* must be an Intel 41210 bridge */ 432 bus_dev_ven_id = pci_config_get32(cfg_hdl, PCI_CONF_VENID); 433 if (!PCIEB_IS_41210_BRIDGE(bus_dev_ven_id)) { 434 pci_config_teardown(&cfg_hdl); 435 continue; 436 } 437 438 if (PCI_CAP_LOCATE(cfg_hdl, PCI_CAP_ID_PCI_E, &cap_ptr) 439 != DDI_SUCCESS) { 440 pci_config_teardown(&cfg_hdl); 441 continue; 442 } 443 444 /* get sdip's MPS/MRRS to compare to cdip's */ 445 sdip_dev_ctrl = PCI_CAP_GET16(cfg_hdl, 0, cap_ptr, 446 PCIE_DEVCTL); 447 sdip_mrrs_mps = sdip_dev_ctrl & 448 (PCIE_DEVCTL_MAX_READ_REQ_MASK | 449 PCIE_DEVCTL_MAX_PAYLOAD_MASK); 450 451 /* if sdip already attached then its MPS/MRRS is configured */ 452 if (i_ddi_devi_attached(sdip)) { 453 ASSERT(sdip_mrrs_mps == cdip_mrrs_mps); 454 pci_config_teardown(&cfg_hdl); 455 continue; 456 } 457 458 /* otherwise, update sdip's MPS/MRRS if different from cdip's */ 459 if (sdip_mrrs_mps != cdip_mrrs_mps) { 460 sdip_dev_ctrl = (sdip_dev_ctrl & 461 ~(PCIE_DEVCTL_MAX_READ_REQ_MASK | 462 PCIE_DEVCTL_MAX_PAYLOAD_MASK)) | cdip_mrrs_mps; 463 464 (void) PCI_CAP_PUT16(cfg_hdl, 0, cap_ptr, PCIE_DEVCTL, 465 sdip_dev_ctrl); 466 } 467 468 /* 469 * note: sdip's bus_mps will be updated by 470 * pcie_initchild_mps() 471 */ 472 473 pci_config_teardown(&cfg_hdl); 474 475 break; 476 } 477 } 478 479 static int 480 pcieb_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 481 { 482 int instance; 483 char device_type[8]; 484 pcieb_devstate_t *pcieb; 485 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(devi); 486 ddi_acc_handle_t config_handle = bus_p->bus_cfg_hdl; 487 488 switch (cmd) { 489 case DDI_RESUME: 490 (void) pcie_pwr_resume(devi); 491 return (DDI_SUCCESS); 492 493 default: 494 return (DDI_FAILURE); 495 496 case DDI_ATTACH: 497 break; 498 } 499 500 if (!(PCIE_IS_BDG(bus_p))) { 501 PCIEB_DEBUG(DBG_ATTACH, devi, "This is not a switch or" 502 " bridge\n"); 503 return (DDI_FAILURE); 504 } 505 506 /* 507 * If PCIE_LINKCTL_LINK_DISABLE bit in the PCIe Config 508 * Space (PCIe Capability Link Control Register) is set, 509 * then do not bind the driver. 510 */ 511 if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) & PCIE_LINKCTL_LINK_DISABLE) 512 return (DDI_FAILURE); 513 514 /* 515 * Allocate and get soft state structure. 516 */ 517 instance = ddi_get_instance(devi); 518 if (ddi_soft_state_zalloc(pcieb_state, instance) != DDI_SUCCESS) 519 return (DDI_FAILURE); 520 pcieb = ddi_get_soft_state(pcieb_state, instance); 521 pcieb->pcieb_dip = devi; 522 523 if ((pcieb_fm_init(pcieb)) != DDI_SUCCESS) { 524 PCIEB_DEBUG(DBG_ATTACH, devi, "Failed in pcieb_fm_init\n"); 525 goto fail; 526 } 527 pcieb->pcieb_init_flags |= PCIEB_INIT_FM; 528 529 mutex_init(&pcieb->pcieb_mutex, NULL, MUTEX_DRIVER, NULL); 530 mutex_init(&pcieb->pcieb_err_mutex, NULL, MUTEX_DRIVER, 531 (void *)pcieb->pcieb_fm_ibc); 532 mutex_init(&pcieb->pcieb_peek_poke_mutex, NULL, MUTEX_DRIVER, 533 (void *)pcieb->pcieb_fm_ibc); 534 535 /* create special properties for device identification */ 536 pcieb_id_props(pcieb); 537 538 /* 539 * Power management setup. This also makes sure that switch/bridge 540 * is at D0 during attach. 541 */ 542 if (pwr_common_setup(devi) != DDI_SUCCESS) { 543 PCIEB_DEBUG(DBG_PWR, devi, "pwr_common_setup failed\n"); 544 goto fail; 545 } 546 547 if (pcieb_pwr_setup(devi) != DDI_SUCCESS) { 548 PCIEB_DEBUG(DBG_PWR, devi, "pxb_pwr_setup failed \n"); 549 goto fail; 550 } 551 552 /* 553 * Make sure the "device_type" property exists. 554 */ 555 if (pcieb_is_pcie_device_type(devi)) 556 (void) strcpy(device_type, "pciex"); 557 else 558 (void) strcpy(device_type, "pci"); 559 560 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 561 "device_type", device_type); 562 563 /* 564 * Check whether the "ranges" property is present. 565 * Otherwise create the ranges property by reading 566 * the configuration registers 567 */ 568 if (ddi_prop_exists(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 569 "ranges") == 0) { 570 pcieb_create_ranges_prop(devi, config_handle); 571 } 572 573 if (PCIE_IS_PCI_BDG(bus_p)) 574 pcieb_set_pci_perf_parameters(devi, config_handle); 575 576 #ifdef PX_PLX 577 pcieb_attach_plx_workarounds(pcieb); 578 #endif /* PX_PLX */ 579 580 if (pcie_init(devi, NULL) != DDI_SUCCESS) 581 goto fail; 582 583 /* Intel PCIe-to-PCI 41210 bridge workaround -- if applicable */ 584 if (pcieb_disable_41210_wkarnd == 0 && 585 PCIEB_IS_41210_BRIDGE(bus_p->bus_dev_ven_id)) 586 pcieb_41210_mps_wkrnd(devi); 587 588 /* 589 * Initialize interrupt handlers. Ignore return value. 590 */ 591 (void) pcieb_intr_attach(pcieb); 592 593 (void) pcie_hpintr_enable(devi); 594 595 (void) pcie_link_bw_enable(devi); 596 597 /* Do any platform specific workarounds needed at this time */ 598 pcieb_plat_attach_workaround(devi); 599 600 /* 601 * If this is a root port, we need to go through and at this point in 602 * time set up and initialize all fabric-wide settings such as the max 603 * packet size, tagging, etc. Since this will involve scanning the 604 * fabric, all error enabling and sw workarounds should be in place 605 * before doing this. For hotplug-capable bridges, this will happen 606 * again when a hotplug event occurs. See the pcie theory statement in 607 * uts/common/io/pciex/pcie.c for more information. 608 */ 609 if (PCIE_IS_RP(bus_p)) 610 pcie_fabric_setup(devi); 611 612 ddi_report_dev(devi); 613 return (DDI_SUCCESS); 614 615 fail: 616 (void) pcieb_detach(devi, DDI_DETACH); 617 return (DDI_FAILURE); 618 } 619 620 static int 621 pcieb_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 622 { 623 pcieb_devstate_t *pcieb; 624 int error = DDI_SUCCESS; 625 626 switch (cmd) { 627 case DDI_SUSPEND: 628 error = pcie_pwr_suspend(devi); 629 return (error); 630 631 case DDI_DETACH: 632 break; 633 634 default: 635 return (DDI_FAILURE); 636 } 637 638 pcieb = ddi_get_soft_state(pcieb_state, ddi_get_instance(devi)); 639 640 /* disable hotplug interrupt */ 641 (void) pcie_hpintr_disable(devi); 642 643 /* remove interrupt handlers */ 644 pcieb_intr_fini(pcieb); 645 646 /* uninitialize inband PCI-E HPC if present */ 647 (void) pcie_uninit(devi); 648 649 (void) ddi_prop_remove(DDI_DEV_T_NONE, devi, "device_type"); 650 651 (void) ndi_prop_remove(DDI_DEV_T_NONE, pcieb->pcieb_dip, 652 "pcie_ce_mask"); 653 654 if (pcieb->pcieb_init_flags & PCIEB_INIT_FM) 655 pcieb_fm_fini(pcieb); 656 657 pcieb_pwr_teardown(devi); 658 pwr_common_teardown(devi); 659 660 mutex_destroy(&pcieb->pcieb_peek_poke_mutex); 661 mutex_destroy(&pcieb->pcieb_err_mutex); 662 mutex_destroy(&pcieb->pcieb_mutex); 663 664 /* 665 * And finally free the per-pci soft state. 666 */ 667 ddi_soft_state_free(pcieb_state, ddi_get_instance(devi)); 668 669 return (DDI_SUCCESS); 670 } 671 672 static int 673 pcieb_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 674 off_t offset, off_t len, caddr_t *vaddrp) 675 { 676 dev_info_t *pdip; 677 678 if (PCIE_IS_RP(PCIE_DIP2BUS(dip)) && mp->map_handlep != NULL) { 679 ddi_acc_impl_t *hdlp = 680 (ddi_acc_impl_t *)(mp->map_handlep)->ah_platform_private; 681 682 pcieb_set_prot_scan(dip, hdlp); 683 } 684 pdip = (dev_info_t *)DEVI(dip)->devi_parent; 685 return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip, rdip, mp, 686 offset, len, vaddrp)); 687 } 688 689 static int 690 pcieb_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, 691 void *arg, void *result) 692 { 693 pci_regspec_t *drv_regp; 694 int reglen; 695 int rn; 696 int totreg; 697 pcieb_devstate_t *pcieb = ddi_get_soft_state(pcieb_state, 698 ddi_get_instance(dip)); 699 struct detachspec *ds; 700 struct attachspec *as; 701 702 switch (ctlop) { 703 case DDI_CTLOPS_REPORTDEV: 704 if (rdip == (dev_info_t *)0) 705 return (DDI_FAILURE); 706 707 if (ddi_get_parent(rdip) == dip) { 708 cmn_err(CE_CONT, "?PCIE-device: %s@%s, %s%d\n", 709 ddi_node_name(rdip), ddi_get_name_addr(rdip), 710 ddi_driver_name(rdip), ddi_get_instance(rdip)); 711 } 712 713 /* Pass it up for fabric sync */ 714 (void) ddi_ctlops(dip, rdip, ctlop, arg, result); 715 return (DDI_SUCCESS); 716 717 case DDI_CTLOPS_INITCHILD: 718 return (pcieb_initchild((dev_info_t *)arg)); 719 720 case DDI_CTLOPS_UNINITCHILD: 721 pcieb_uninitchild((dev_info_t *)arg); 722 return (DDI_SUCCESS); 723 724 case DDI_CTLOPS_SIDDEV: 725 return (DDI_SUCCESS); 726 727 case DDI_CTLOPS_REGSIZE: 728 case DDI_CTLOPS_NREGS: 729 if (rdip == (dev_info_t *)0) 730 return (DDI_FAILURE); 731 break; 732 733 case DDI_CTLOPS_PEEK: 734 case DDI_CTLOPS_POKE: 735 return (pcieb_plat_peekpoke(dip, rdip, ctlop, arg, result)); 736 case DDI_CTLOPS_ATTACH: 737 if (!pcie_is_child(dip, rdip)) 738 return (DDI_SUCCESS); 739 740 as = (struct attachspec *)arg; 741 switch (as->when) { 742 case DDI_PRE: 743 if (as->cmd == DDI_RESUME) { 744 pcie_clear_errors(rdip); 745 if (pcieb_plat_ctlops(rdip, ctlop, arg) != 746 DDI_SUCCESS) 747 return (DDI_FAILURE); 748 } 749 750 if (as->cmd == DDI_ATTACH) 751 return (pcie_pm_hold(dip)); 752 753 return (DDI_SUCCESS); 754 755 case DDI_POST: 756 if (as->cmd == DDI_ATTACH && 757 as->result != DDI_SUCCESS) { 758 /* 759 * Attach failed for the child device. The child 760 * driver may have made PM calls before the 761 * attach failed. pcie_pm_remove_child() should 762 * cleanup PM state and holds (if any) 763 * associated with the child device. 764 */ 765 return (pcie_pm_remove_child(dip, rdip)); 766 } 767 768 if (as->result == DDI_SUCCESS) { 769 pf_init(rdip, (void *)pcieb->pcieb_fm_ibc, 770 as->cmd); 771 772 (void) pcieb_plat_ctlops(rdip, ctlop, arg); 773 } 774 775 /* 776 * For empty hotplug-capable slots, we should explicitly 777 * disable the errors, so that we won't panic upon 778 * unsupported hotplug messages. 779 */ 780 if ((!ddi_prop_exists(DDI_DEV_T_ANY, rdip, 781 DDI_PROP_DONTPASS, "hotplug-capable")) || 782 ddi_get_child(rdip)) { 783 (void) pcie_postattach_child(rdip); 784 return (DDI_SUCCESS); 785 } 786 787 pcie_disable_errors(rdip); 788 789 return (DDI_SUCCESS); 790 default: 791 break; 792 } 793 return (DDI_SUCCESS); 794 795 case DDI_CTLOPS_DETACH: 796 if (!pcie_is_child(dip, rdip)) 797 return (DDI_SUCCESS); 798 799 ds = (struct detachspec *)arg; 800 switch (ds->when) { 801 case DDI_PRE: 802 pf_fini(rdip, ds->cmd); 803 return (DDI_SUCCESS); 804 805 case DDI_POST: 806 if (pcieb_plat_ctlops(rdip, ctlop, arg) != DDI_SUCCESS) 807 return (DDI_FAILURE); 808 if (ds->cmd == DDI_DETACH && 809 ds->result == DDI_SUCCESS) { 810 return (pcie_pm_remove_child(dip, rdip)); 811 } 812 return (DDI_SUCCESS); 813 default: 814 break; 815 } 816 return (DDI_SUCCESS); 817 default: 818 return (ddi_ctlops(dip, rdip, ctlop, arg, result)); 819 } 820 821 *(int *)result = 0; 822 if (ddi_getlongprop(DDI_DEV_T_ANY, rdip, 823 DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "reg", (caddr_t)&drv_regp, 824 ®len) != DDI_SUCCESS) 825 return (DDI_FAILURE); 826 827 totreg = reglen / sizeof (pci_regspec_t); 828 if (ctlop == DDI_CTLOPS_NREGS) 829 *(int *)result = totreg; 830 else if (ctlop == DDI_CTLOPS_REGSIZE) { 831 rn = *(int *)arg; 832 if (rn >= totreg) { 833 kmem_free(drv_regp, reglen); 834 return (DDI_FAILURE); 835 } 836 837 *(off_t *)result = drv_regp[rn].pci_size_low | 838 ((uint64_t)drv_regp[rn].pci_size_hi << 32); 839 } 840 841 kmem_free(drv_regp, reglen); 842 return (DDI_SUCCESS); 843 } 844 845 /* 846 * name_child 847 * 848 * This function is called from init_child to name a node. It is 849 * also passed as a callback for node merging functions. 850 * 851 * return value: DDI_SUCCESS, DDI_FAILURE 852 */ 853 static int 854 pcieb_name_child(dev_info_t *child, char *name, int namelen) 855 { 856 pci_regspec_t *pci_rp; 857 uint_t device, func; 858 char **unit_addr; 859 uint_t n; 860 861 /* 862 * For .conf nodes, use unit-address property as name 863 */ 864 if (ndi_dev_is_persistent_node(child) == 0) { 865 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, child, 866 DDI_PROP_DONTPASS, "unit-address", &unit_addr, &n) != 867 DDI_PROP_SUCCESS) { 868 cmn_err(CE_WARN, 869 "cannot find unit-address in %s.conf", 870 ddi_driver_name(child)); 871 return (DDI_FAILURE); 872 } 873 if (n != 1 || *unit_addr == NULL || **unit_addr == 0) { 874 cmn_err(CE_WARN, "unit-address property in %s.conf" 875 " not well-formed", ddi_driver_name(child)); 876 ddi_prop_free(unit_addr); 877 return (DDI_FAILURE); 878 } 879 (void) snprintf(name, namelen, "%s", *unit_addr); 880 ddi_prop_free(unit_addr); 881 return (DDI_SUCCESS); 882 } 883 884 /* 885 * Get the address portion of the node name based on 886 * the function and device number. 887 */ 888 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, child, 889 DDI_PROP_DONTPASS, "reg", (int **)&pci_rp, &n) != DDI_SUCCESS) { 890 return (DDI_FAILURE); 891 } 892 893 /* copy the device identifications */ 894 device = PCI_REG_DEV_G(pci_rp[0].pci_phys_hi); 895 func = PCI_REG_FUNC_G(pci_rp[0].pci_phys_hi); 896 897 if (pcie_ari_is_enabled(ddi_get_parent(child)) 898 == PCIE_ARI_FORW_ENABLED) { 899 func = (device << 3) | func; 900 device = 0; 901 } 902 903 if (func != 0) 904 (void) snprintf(name, namelen, "%x,%x", device, func); 905 else 906 (void) snprintf(name, namelen, "%x", device); 907 908 ddi_prop_free(pci_rp); 909 return (DDI_SUCCESS); 910 } 911 912 static int 913 pcieb_initchild(dev_info_t *child) 914 { 915 char name[MAXNAMELEN]; 916 int result = DDI_FAILURE; 917 pcieb_devstate_t *pcieb = 918 (pcieb_devstate_t *)ddi_get_soft_state(pcieb_state, 919 ddi_get_instance(ddi_get_parent(child))); 920 921 /* 922 * Name the child 923 */ 924 if (pcieb_name_child(child, name, MAXNAMELEN) != DDI_SUCCESS) { 925 result = DDI_FAILURE; 926 goto done; 927 } 928 ddi_set_name_addr(child, name); 929 930 /* 931 * Pseudo nodes indicate a prototype node with per-instance 932 * properties to be merged into the real h/w device node. 933 * The interpretation of the unit-address is DD[,F] 934 * where DD is the device id and F is the function. 935 */ 936 if (ndi_dev_is_persistent_node(child) == 0) { 937 extern int pci_allow_pseudo_children; 938 939 /* 940 * Try to merge the properties from this prototype 941 * node into real h/w nodes. 942 */ 943 if (ndi_merge_node(child, pcieb_name_child) == DDI_SUCCESS) { 944 /* 945 * Merged ok - return failure to remove the node. 946 */ 947 ddi_set_name_addr(child, NULL); 948 result = DDI_FAILURE; 949 goto done; 950 } 951 952 /* workaround for ddivs to run under PCI-E */ 953 if (pci_allow_pseudo_children) { 954 result = DDI_SUCCESS; 955 goto done; 956 } 957 958 /* 959 * The child was not merged into a h/w node, 960 * but there's not much we can do with it other 961 * than return failure to cause the node to be removed. 962 */ 963 cmn_err(CE_WARN, "!%s@%s: %s.conf properties not merged", 964 ddi_driver_name(child), ddi_get_name_addr(child), 965 ddi_driver_name(child)); 966 ddi_set_name_addr(child, NULL); 967 result = DDI_NOT_WELL_FORMED; 968 goto done; 969 } 970 971 /* platform specific initchild */ 972 pcieb_plat_initchild(child); 973 974 if (pcie_pm_hold(pcieb->pcieb_dip) != DDI_SUCCESS) { 975 PCIEB_DEBUG(DBG_PWR, pcieb->pcieb_dip, 976 "INITCHILD: px_pm_hold failed\n"); 977 result = DDI_FAILURE; 978 goto done; 979 } 980 /* Any return from here must call pcie_pm_release */ 981 982 /* 983 * If configuration registers were previously saved by 984 * child (before it entered D3), then let the child do the 985 * restore to set up the config regs as it'll first need to 986 * power the device out of D3. 987 */ 988 if (ddi_prop_exists(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 989 "config-regs-saved-by-child") == 1) { 990 PCIEB_DEBUG(DBG_PWR, ddi_get_parent(child), 991 "INITCHILD: config regs to be restored by child" 992 " for %s@%s\n", ddi_node_name(child), 993 ddi_get_name_addr(child)); 994 995 result = DDI_SUCCESS; 996 goto cleanup; 997 } 998 999 PCIEB_DEBUG(DBG_PWR, ddi_get_parent(child), 1000 "INITCHILD: config regs setup for %s@%s\n", 1001 ddi_node_name(child), ddi_get_name_addr(child)); 1002 1003 pcie_init_dom(child); 1004 1005 if (pcie_initchild(child) != DDI_SUCCESS) { 1006 result = DDI_FAILURE; 1007 pcie_fini_dom(child); 1008 goto cleanup; 1009 } 1010 1011 #ifdef PX_PLX 1012 if (pcieb_init_plx_workarounds(pcieb, child) == DDI_FAILURE) { 1013 result = DDI_FAILURE; 1014 pcie_fini_dom(child); 1015 goto cleanup; 1016 } 1017 #endif /* PX_PLX */ 1018 1019 result = DDI_SUCCESS; 1020 cleanup: 1021 pcie_pm_release(pcieb->pcieb_dip); 1022 done: 1023 return (result); 1024 } 1025 1026 static void 1027 pcieb_uninitchild(dev_info_t *dip) 1028 { 1029 1030 pcie_uninitchild(dip); 1031 1032 pcieb_plat_uninitchild(dip); 1033 1034 ddi_set_name_addr(dip, NULL); 1035 1036 /* 1037 * Strip the node to properly convert it back to prototype form 1038 */ 1039 ddi_remove_minor_node(dip, NULL); 1040 1041 ddi_prop_remove_all(dip); 1042 } 1043 1044 static boolean_t 1045 pcieb_is_pcie_device_type(dev_info_t *dip) 1046 { 1047 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 1048 1049 if (PCIE_IS_SW(bus_p) || PCIE_IS_RP(bus_p) || PCIE_IS_PCI2PCIE(bus_p)) 1050 return (B_TRUE); 1051 1052 return (B_FALSE); 1053 } 1054 1055 static int 1056 pcieb_intr_attach(pcieb_devstate_t *pcieb) 1057 { 1058 int intr_types; 1059 dev_info_t *dip = pcieb->pcieb_dip; 1060 1061 /* Allow platform specific code to do any initialization first */ 1062 pcieb_plat_intr_attach(pcieb); 1063 1064 /* 1065 * Initialize interrupt handlers. 1066 * If both MSI and FIXED are supported, try to attach MSI first. 1067 * If MSI fails for any reason, then try FIXED, but only allow one 1068 * type to be attached. 1069 */ 1070 if (ddi_intr_get_supported_types(dip, &intr_types) != DDI_SUCCESS) { 1071 PCIEB_DEBUG(DBG_ATTACH, dip, "ddi_intr_get_supported_types" 1072 " failed\n"); 1073 goto FAIL; 1074 } 1075 1076 if ((intr_types & DDI_INTR_TYPE_MSI) && 1077 (pcieb_msi_supported(dip) == DDI_SUCCESS)) { 1078 if (pcieb_intr_init(pcieb, DDI_INTR_TYPE_MSI) == DDI_SUCCESS) 1079 intr_types = DDI_INTR_TYPE_MSI; 1080 else { 1081 PCIEB_DEBUG(DBG_ATTACH, dip, "Unable to attach MSI" 1082 " handler\n"); 1083 } 1084 } 1085 1086 if (intr_types != DDI_INTR_TYPE_MSI) { 1087 /* 1088 * MSIs are not supported or MSI initialization failed. For Root 1089 * Ports mark this so error handling might try to fallback to 1090 * some other mechanism if available (machinecheck etc.). 1091 */ 1092 if (PCIE_IS_RP(PCIE_DIP2UPBUS(dip))) 1093 pcieb->pcieb_no_aer_msi = B_TRUE; 1094 } 1095 1096 if (intr_types & DDI_INTR_TYPE_FIXED) { 1097 if (pcieb_intr_init(pcieb, DDI_INTR_TYPE_FIXED) != 1098 DDI_SUCCESS) { 1099 PCIEB_DEBUG(DBG_ATTACH, dip, 1100 "Unable to attach INTx handler\n"); 1101 goto FAIL; 1102 } 1103 } 1104 return (DDI_SUCCESS); 1105 1106 FAIL: 1107 return (DDI_FAILURE); 1108 } 1109 1110 /* 1111 * This function initializes internally generated interrupts only. 1112 * It does not affect any interrupts generated by downstream devices 1113 * or the forwarding of them. 1114 * 1115 * Enable Device Specific Interrupts or Hotplug features here. 1116 * Enabling features may change how many interrupts are requested 1117 * by the device. If features are not enabled first, the 1118 * device might not ask for any interrupts. 1119 */ 1120 static int 1121 pcieb_intr_init(pcieb_devstate_t *pcieb, int intr_type) 1122 { 1123 dev_info_t *dip = pcieb->pcieb_dip; 1124 int nintrs, request, count, x; 1125 int intr_cap = 0; 1126 int inum = 0; 1127 int ret; 1128 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip); 1129 uint16_t vendorid = bus_p->bus_dev_ven_id & 0xFFFF; 1130 boolean_t is_hp = B_FALSE; 1131 boolean_t is_pme = B_FALSE; 1132 boolean_t is_lbw = B_FALSE; 1133 1134 PCIEB_DEBUG(DBG_ATTACH, dip, "pcieb_intr_init: Attaching %s handler\n", 1135 (intr_type == DDI_INTR_TYPE_MSI) ? "MSI" : "INTx"); 1136 1137 request = 0; 1138 if (PCIE_IS_HOTPLUG_ENABLED(dip)) { 1139 is_hp = B_TRUE; 1140 } 1141 1142 if ((intr_type == DDI_INTR_TYPE_MSI) && PCIE_IS_RP(bus_p) && 1143 (vendorid == NVIDIA_VENDOR_ID)) { 1144 is_pme = B_TRUE; 1145 } 1146 1147 if (intr_type == DDI_INTR_TYPE_MSI && pcie_link_bw_supported(dip)) { 1148 is_lbw = B_TRUE; 1149 } 1150 1151 /* 1152 * The hot-plug, link bandwidth, and power management events all are 1153 * based on the PCI Express capability. Therefore, they all share their 1154 * own interrupt. 1155 */ 1156 if (is_hp || is_pme || is_lbw) { 1157 request++; 1158 } 1159 1160 /* 1161 * If this device is a root port, which means it can have MSI interrupts 1162 * enabled for AERs, then we need to request one. 1163 */ 1164 if (intr_type == DDI_INTR_TYPE_MSI) { 1165 if (PCIE_IS_RP(bus_p) && PCIE_HAS_AER(bus_p)) { 1166 request++; 1167 } 1168 } 1169 1170 if (request == 0) 1171 return (DDI_SUCCESS); 1172 1173 /* 1174 * Get number of supported interrupts. 1175 * 1176 * Several Bridges/Switches will not have this property set, resulting 1177 * in a FAILURE, if the device is not configured in a way that 1178 * interrupts are needed. (eg. hotplugging) 1179 */ 1180 ret = ddi_intr_get_nintrs(dip, intr_type, &nintrs); 1181 if ((ret != DDI_SUCCESS) || (nintrs == 0)) { 1182 PCIEB_DEBUG(DBG_ATTACH, dip, "ddi_intr_get_nintrs ret:%d" 1183 " req:%d\n", ret, nintrs); 1184 return (DDI_FAILURE); 1185 } 1186 1187 PCIEB_DEBUG(DBG_ATTACH, dip, "bdf 0x%x: ddi_intr_get_nintrs: nintrs %d", 1188 " request %d\n", bus_p->bus_bdf, nintrs, request); 1189 1190 if (request > nintrs) 1191 request = nintrs; 1192 1193 /* Allocate an array of interrupt handlers */ 1194 pcieb->pcieb_htable_size = sizeof (ddi_intr_handle_t) * request; 1195 pcieb->pcieb_htable = kmem_zalloc(pcieb->pcieb_htable_size, 1196 KM_SLEEP); 1197 pcieb->pcieb_init_flags |= PCIEB_INIT_HTABLE; 1198 1199 ret = ddi_intr_alloc(dip, pcieb->pcieb_htable, intr_type, inum, 1200 request, &count, DDI_INTR_ALLOC_NORMAL); 1201 if ((ret != DDI_SUCCESS) || (count == 0)) { 1202 PCIEB_DEBUG(DBG_ATTACH, dip, "ddi_intr_alloc() ret: %d ask: %d" 1203 " actual: %d\n", ret, request, count); 1204 goto FAIL; 1205 } 1206 pcieb->pcieb_init_flags |= PCIEB_INIT_ALLOC; 1207 1208 /* Save the actual number of interrupts allocated */ 1209 pcieb->pcieb_intr_count = count; 1210 if (count < request) { 1211 PCIEB_DEBUG(DBG_ATTACH, dip, "bdf 0%x: Requested Intr: %d" 1212 " Received: %d\n", bus_p->bus_bdf, request, count); 1213 } 1214 1215 /* 1216 * NVidia (MCP55 and other) chipsets have a errata that if the number 1217 * of requested MSI intrs is not allocated we have to fall back to INTx. 1218 */ 1219 if (intr_type == DDI_INTR_TYPE_MSI) { 1220 if (PCIE_IS_RP(bus_p) && (vendorid == NVIDIA_VENDOR_ID)) { 1221 if (request != count) 1222 goto FAIL; 1223 } 1224 } 1225 1226 /* Get interrupt priority */ 1227 ret = ddi_intr_get_pri(pcieb->pcieb_htable[0], 1228 &pcieb->pcieb_intr_priority); 1229 if (ret != DDI_SUCCESS) { 1230 PCIEB_DEBUG(DBG_ATTACH, dip, "ddi_intr_get_pri() ret: %d\n", 1231 ret); 1232 goto FAIL; 1233 } 1234 1235 if (pcieb->pcieb_intr_priority >= LOCK_LEVEL) { 1236 pcieb->pcieb_intr_priority = LOCK_LEVEL - 1; 1237 ret = ddi_intr_set_pri(pcieb->pcieb_htable[0], 1238 pcieb->pcieb_intr_priority); 1239 if (ret != DDI_SUCCESS) { 1240 PCIEB_DEBUG(DBG_ATTACH, dip, "ddi_intr_set_pri() ret:" 1241 " %d\n", ret); 1242 1243 goto FAIL; 1244 } 1245 } 1246 1247 mutex_init(&pcieb->pcieb_intr_mutex, NULL, MUTEX_DRIVER, NULL); 1248 1249 pcieb->pcieb_init_flags |= PCIEB_INIT_MUTEX; 1250 1251 for (count = 0; count < pcieb->pcieb_intr_count; count++) { 1252 ret = ddi_intr_add_handler(pcieb->pcieb_htable[count], 1253 pcieb_intr_handler, (caddr_t)pcieb, 1254 (caddr_t)(uintptr_t)(inum + count)); 1255 1256 if (ret != DDI_SUCCESS) { 1257 PCIEB_DEBUG(DBG_ATTACH, dip, "Cannot add " 1258 "interrupt(%d)\n", ret); 1259 break; 1260 } 1261 } 1262 1263 /* If unsucessful, remove the added handlers */ 1264 if (ret != DDI_SUCCESS) { 1265 for (x = 0; x < count; x++) { 1266 (void) ddi_intr_remove_handler(pcieb->pcieb_htable[x]); 1267 } 1268 goto FAIL; 1269 } 1270 1271 pcieb->pcieb_init_flags |= PCIEB_INIT_HANDLER; 1272 1273 (void) ddi_intr_get_cap(pcieb->pcieb_htable[0], &intr_cap); 1274 1275 /* 1276 * Get this intr lock because we are not quite ready to handle 1277 * interrupts immediately after enabling it. The MSI multi register 1278 * gets programmed in ddi_intr_enable after which we need to get the 1279 * MSI offsets for Hotplug/AER. 1280 */ 1281 mutex_enter(&pcieb->pcieb_intr_mutex); 1282 1283 if (intr_cap & DDI_INTR_FLAG_BLOCK) { 1284 (void) ddi_intr_block_enable(pcieb->pcieb_htable, 1285 pcieb->pcieb_intr_count); 1286 pcieb->pcieb_init_flags |= PCIEB_INIT_BLOCK; 1287 } else { 1288 for (count = 0; count < pcieb->pcieb_intr_count; count++) { 1289 (void) ddi_intr_enable(pcieb->pcieb_htable[count]); 1290 } 1291 } 1292 pcieb->pcieb_init_flags |= PCIEB_INIT_ENABLE; 1293 1294 /* Save the interrupt type */ 1295 pcieb->pcieb_intr_type = intr_type; 1296 1297 /* Get the MSI offset for hotplug/PME from the PCIe cap reg */ 1298 if (intr_type == DDI_INTR_TYPE_MSI) { 1299 uint16_t pcie_msi_off; 1300 pcie_msi_off = PCI_CAP_GET16(bus_p->bus_cfg_hdl, 0, 1301 bus_p->bus_pcie_off, PCIE_PCIECAP) & 1302 PCIE_PCIECAP_INT_MSG_NUM; 1303 1304 if (pcie_msi_off >= count) { 1305 PCIEB_DEBUG(DBG_ATTACH, dip, "MSI number %u in PCIe " 1306 "cap > max allocated %d\n", pcie_msi_off, count); 1307 mutex_exit(&pcieb->pcieb_intr_mutex); 1308 goto FAIL; 1309 } 1310 1311 if (is_hp) { 1312 pcieb->pcieb_isr_tab[pcie_msi_off] |= PCIEB_INTR_SRC_HP; 1313 } 1314 1315 if (is_pme) { 1316 pcieb->pcieb_isr_tab[pcie_msi_off] |= 1317 PCIEB_INTR_SRC_PME; 1318 } 1319 1320 if (is_lbw) { 1321 pcieb->pcieb_isr_tab[pcie_msi_off] |= 1322 PCIEB_INTR_SRC_LBW; 1323 } 1324 } else { 1325 /* INTx handles only Hotplug interrupts */ 1326 if (is_hp) 1327 pcieb->pcieb_isr_tab[0] |= PCIEB_INTR_SRC_HP; 1328 } 1329 1330 1331 /* 1332 * Get the MSI offset for errors from the AER Root Error status 1333 * register. 1334 */ 1335 if ((intr_type == DDI_INTR_TYPE_MSI) && PCIE_IS_RP(bus_p)) { 1336 if (PCIE_HAS_AER(bus_p)) { 1337 int aer_msi_off; 1338 aer_msi_off = (PCI_XCAP_GET32(bus_p->bus_cfg_hdl, 0, 1339 bus_p->bus_aer_off, PCIE_AER_RE_STS) >> 1340 PCIE_AER_RE_STS_MSG_NUM_SHIFT) & 1341 PCIE_AER_RE_STS_MSG_NUM_MASK; 1342 1343 if (aer_msi_off >= count) { 1344 PCIEB_DEBUG(DBG_ATTACH, dip, "MSI number %d in" 1345 " AER cap > max allocated %d\n", 1346 aer_msi_off, count); 1347 mutex_exit(&pcieb->pcieb_intr_mutex); 1348 goto FAIL; 1349 } 1350 pcieb->pcieb_isr_tab[aer_msi_off] |= PCIEB_INTR_SRC_AER; 1351 } else { 1352 /* 1353 * This RP does not have AER. Fallback to the 1354 * SERR+Machinecheck approach if available. 1355 */ 1356 pcieb->pcieb_no_aer_msi = B_TRUE; 1357 } 1358 } 1359 1360 mutex_exit(&pcieb->pcieb_intr_mutex); 1361 return (DDI_SUCCESS); 1362 1363 FAIL: 1364 pcieb_intr_fini(pcieb); 1365 return (DDI_FAILURE); 1366 } 1367 1368 static void 1369 pcieb_intr_fini(pcieb_devstate_t *pcieb) 1370 { 1371 int x; 1372 int count = pcieb->pcieb_intr_count; 1373 int flags = pcieb->pcieb_init_flags; 1374 1375 if ((flags & PCIEB_INIT_ENABLE) && 1376 (flags & PCIEB_INIT_BLOCK)) { 1377 (void) ddi_intr_block_disable(pcieb->pcieb_htable, count); 1378 flags &= ~(PCIEB_INIT_ENABLE | 1379 PCIEB_INIT_BLOCK); 1380 } 1381 1382 if (flags & PCIEB_INIT_MUTEX) 1383 mutex_destroy(&pcieb->pcieb_intr_mutex); 1384 1385 for (x = 0; x < count; x++) { 1386 if (flags & PCIEB_INIT_ENABLE) 1387 (void) ddi_intr_disable(pcieb->pcieb_htable[x]); 1388 1389 if (flags & PCIEB_INIT_HANDLER) 1390 (void) ddi_intr_remove_handler(pcieb->pcieb_htable[x]); 1391 1392 if (flags & PCIEB_INIT_ALLOC) 1393 (void) ddi_intr_free(pcieb->pcieb_htable[x]); 1394 } 1395 1396 flags &= ~(PCIEB_INIT_ENABLE | PCIEB_INIT_HANDLER | PCIEB_INIT_ALLOC | 1397 PCIEB_INIT_MUTEX); 1398 1399 if (flags & PCIEB_INIT_HTABLE) 1400 kmem_free(pcieb->pcieb_htable, pcieb->pcieb_htable_size); 1401 1402 flags &= ~PCIEB_INIT_HTABLE; 1403 1404 pcieb->pcieb_init_flags &= flags; 1405 } 1406 1407 /* 1408 * Checks if this device needs MSIs enabled or not. 1409 */ 1410 /*ARGSUSED*/ 1411 static int 1412 pcieb_msi_supported(dev_info_t *dip) 1413 { 1414 return ((pcieb_enable_msi && pcieb_plat_msi_supported(dip)) ? 1415 DDI_SUCCESS: DDI_FAILURE); 1416 } 1417 1418 /*ARGSUSED*/ 1419 static int 1420 pcieb_fm_init_child(dev_info_t *dip, dev_info_t *tdip, int cap, 1421 ddi_iblock_cookie_t *ibc) 1422 { 1423 pcieb_devstate_t *pcieb = ddi_get_soft_state(pcieb_state, 1424 ddi_get_instance(dip)); 1425 1426 ASSERT(ibc != NULL); 1427 *ibc = pcieb->pcieb_fm_ibc; 1428 1429 return (DEVI(dip)->devi_fmhdl->fh_cap | DDI_FM_ACCCHK_CAPABLE | 1430 DDI_FM_DMACHK_CAPABLE); 1431 } 1432 1433 static int 1434 pcieb_fm_init(pcieb_devstate_t *pcieb_p) 1435 { 1436 dev_info_t *dip = pcieb_p->pcieb_dip; 1437 int fm_cap = DDI_FM_EREPORT_CAPABLE; 1438 1439 /* 1440 * Request our capability level and get our parents capability 1441 * and ibc. 1442 */ 1443 ddi_fm_init(dip, &fm_cap, &pcieb_p->pcieb_fm_ibc); 1444 1445 return (DDI_SUCCESS); 1446 } 1447 1448 /* 1449 * Breakdown our FMA resources 1450 */ 1451 static void 1452 pcieb_fm_fini(pcieb_devstate_t *pcieb_p) 1453 { 1454 /* 1455 * Clean up allocated fm structures 1456 */ 1457 ddi_fm_fini(pcieb_p->pcieb_dip); 1458 } 1459 1460 static int 1461 pcieb_open(dev_t *devp, int flags, int otyp, cred_t *credp) 1462 { 1463 int inst = PCI_MINOR_NUM_TO_INSTANCE(getminor(*devp)); 1464 pcieb_devstate_t *pcieb = ddi_get_soft_state(pcieb_state, inst); 1465 int rv; 1466 1467 if (pcieb == NULL) 1468 return (ENXIO); 1469 1470 mutex_enter(&pcieb->pcieb_mutex); 1471 rv = pcie_open(pcieb->pcieb_dip, devp, flags, otyp, credp); 1472 mutex_exit(&pcieb->pcieb_mutex); 1473 1474 return (rv); 1475 } 1476 1477 static int 1478 pcieb_close(dev_t dev, int flags, int otyp, cred_t *credp) 1479 { 1480 int inst = PCI_MINOR_NUM_TO_INSTANCE(getminor(dev)); 1481 pcieb_devstate_t *pcieb = ddi_get_soft_state(pcieb_state, inst); 1482 int rv; 1483 1484 if (pcieb == NULL) 1485 return (ENXIO); 1486 1487 mutex_enter(&pcieb->pcieb_mutex); 1488 rv = pcie_close(pcieb->pcieb_dip, dev, flags, otyp, credp); 1489 mutex_exit(&pcieb->pcieb_mutex); 1490 1491 return (rv); 1492 } 1493 1494 static int 1495 pcieb_ioctl_retrain(pcieb_devstate_t *pcieb, cred_t *credp) 1496 { 1497 pcie_bus_t *bus_p = PCIE_DIP2BUS(pcieb->pcieb_dip); 1498 1499 if (drv_priv(credp) != 0) { 1500 return (EPERM); 1501 } 1502 1503 if (!PCIE_IS_PCIE(bus_p)) { 1504 return (ENOTSUP); 1505 } 1506 1507 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) { 1508 return (ENOTSUP); 1509 } 1510 1511 return (pcie_link_retrain(pcieb->pcieb_dip)); 1512 } 1513 1514 static int 1515 pcieb_ioctl_get_speed(pcieb_devstate_t *pcieb, intptr_t arg, int mode, 1516 cred_t *credp) 1517 { 1518 pcie_bus_t *bus_p = PCIE_DIP2BUS(pcieb->pcieb_dip); 1519 pcieb_ioctl_target_speed_t pits; 1520 1521 if (drv_priv(credp) != 0) { 1522 return (EPERM); 1523 } 1524 1525 if (!PCIE_IS_PCIE(bus_p)) { 1526 return (ENOTSUP); 1527 } 1528 1529 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) { 1530 return (ENOTSUP); 1531 } 1532 1533 pits.pits_flags = 0; 1534 pits.pits_speed = PCIEB_LINK_SPEED_UNKNOWN; 1535 1536 mutex_enter(&bus_p->bus_speed_mutex); 1537 if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) { 1538 pits.pits_flags |= PCIEB_FLAGS_ADMIN_SET; 1539 } 1540 switch (bus_p->bus_target_speed) { 1541 case PCIE_LINK_SPEED_2_5: 1542 pits.pits_speed = PCIEB_LINK_SPEED_GEN1; 1543 break; 1544 case PCIE_LINK_SPEED_5: 1545 pits.pits_speed = PCIEB_LINK_SPEED_GEN2; 1546 break; 1547 case PCIE_LINK_SPEED_8: 1548 pits.pits_speed = PCIEB_LINK_SPEED_GEN3; 1549 break; 1550 case PCIE_LINK_SPEED_16: 1551 pits.pits_speed = PCIEB_LINK_SPEED_GEN4; 1552 break; 1553 case PCIE_LINK_SPEED_32: 1554 pits.pits_speed = PCIEB_LINK_SPEED_GEN5; 1555 break; 1556 case PCIE_LINK_SPEED_64: 1557 pits.pits_speed = PCIEB_LINK_SPEED_GEN6; 1558 break; 1559 default: 1560 pits.pits_speed = PCIEB_LINK_SPEED_UNKNOWN; 1561 break; 1562 } 1563 mutex_exit(&bus_p->bus_speed_mutex); 1564 1565 if (ddi_copyout(&pits, (void *)arg, sizeof (pits), 1566 mode & FKIOCTL) != 0) { 1567 return (EFAULT); 1568 } 1569 1570 return (0); 1571 } 1572 1573 static int 1574 pcieb_ioctl_set_speed(pcieb_devstate_t *pcieb, intptr_t arg, int mode, 1575 cred_t *credp) 1576 { 1577 pcie_bus_t *bus_p = PCIE_DIP2BUS(pcieb->pcieb_dip); 1578 pcieb_ioctl_target_speed_t pits; 1579 pcie_link_speed_t speed; 1580 1581 if (drv_priv(credp) != 0) { 1582 return (EPERM); 1583 } 1584 1585 if (!PCIE_IS_PCIE(bus_p)) { 1586 return (ENOTSUP); 1587 } 1588 1589 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) { 1590 return (ENOTSUP); 1591 } 1592 1593 if (ddi_copyin((void *)arg, &pits, sizeof (pits), 1594 mode & FKIOCTL) != 0) { 1595 return (EFAULT); 1596 } 1597 1598 if (pits.pits_flags != 0) { 1599 return (EINVAL); 1600 } 1601 1602 switch (pits.pits_speed) { 1603 case PCIEB_LINK_SPEED_GEN1: 1604 speed = PCIE_LINK_SPEED_2_5; 1605 break; 1606 case PCIEB_LINK_SPEED_GEN2: 1607 speed = PCIE_LINK_SPEED_5; 1608 break; 1609 case PCIEB_LINK_SPEED_GEN3: 1610 speed = PCIE_LINK_SPEED_8; 1611 break; 1612 case PCIEB_LINK_SPEED_GEN4: 1613 speed = PCIE_LINK_SPEED_16; 1614 break; 1615 case PCIEB_LINK_SPEED_GEN5: 1616 speed = PCIE_LINK_SPEED_32; 1617 break; 1618 case PCIEB_LINK_SPEED_GEN6: 1619 speed = PCIE_LINK_SPEED_64; 1620 break; 1621 default: 1622 return (EINVAL); 1623 } 1624 1625 return (pcie_link_set_target(pcieb->pcieb_dip, speed)); 1626 } 1627 1628 static int 1629 pcieb_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1630 int *rvalp) 1631 { 1632 int inst = PCI_MINOR_NUM_TO_INSTANCE(getminor(dev)); 1633 pcieb_devstate_t *pcieb = ddi_get_soft_state(pcieb_state, inst); 1634 int rv; 1635 1636 if (pcieb == NULL) 1637 return (ENXIO); 1638 1639 /* 1640 * Check if this is one of the commands that the bridge driver natively 1641 * understands. There are only a handful of such private ioctls defined 1642 * in pcieb_ioctl.h. Otherwise, this ioctl should be handled by the 1643 * general pcie driver. 1644 */ 1645 switch (cmd) { 1646 case PCIEB_IOCTL_RETRAIN: 1647 rv = pcieb_ioctl_retrain(pcieb, credp); 1648 break; 1649 case PCIEB_IOCTL_GET_TARGET_SPEED: 1650 rv = pcieb_ioctl_get_speed(pcieb, arg, mode, credp); 1651 break; 1652 case PCIEB_IOCTL_SET_TARGET_SPEED: 1653 rv = pcieb_ioctl_set_speed(pcieb, arg, mode, credp); 1654 break; 1655 default: 1656 /* To handle devctl and hotplug related ioctls */ 1657 rv = pcie_ioctl(pcieb->pcieb_dip, dev, cmd, arg, mode, credp, 1658 rvalp); 1659 break; 1660 } 1661 1662 return (rv); 1663 } 1664 1665 /* 1666 * Common interrupt handler for hotplug, PME and errors. 1667 */ 1668 static uint_t 1669 pcieb_intr_handler(caddr_t arg1, caddr_t arg2) 1670 { 1671 pcieb_devstate_t *pcieb_p = (pcieb_devstate_t *)arg1; 1672 dev_info_t *dip = pcieb_p->pcieb_dip; 1673 ddi_fm_error_t derr; 1674 int sts = 0; 1675 int ret = DDI_INTR_UNCLAIMED; 1676 int isrc; 1677 1678 if (!(pcieb_p->pcieb_init_flags & PCIEB_INIT_ENABLE)) 1679 goto FAIL; 1680 1681 mutex_enter(&pcieb_p->pcieb_intr_mutex); 1682 isrc = pcieb_p->pcieb_isr_tab[(int)(uintptr_t)arg2]; 1683 mutex_exit(&pcieb_p->pcieb_intr_mutex); 1684 1685 PCIEB_DEBUG(DBG_INTR, dip, "Received intr number %d\n", 1686 (int)(uintptr_t)arg2); 1687 1688 if (isrc == PCIEB_INTR_SRC_UNKNOWN) 1689 goto FAIL; 1690 1691 if (isrc & (PCIEB_INTR_SRC_HP | PCIEB_INTR_SRC_LBW)) 1692 ret = pcie_intr(dip); 1693 1694 if (isrc & PCIEB_INTR_SRC_PME) 1695 ret = DDI_INTR_CLAIMED; 1696 1697 /* AER Error */ 1698 if (isrc & PCIEB_INTR_SRC_AER) { 1699 /* 1700 * AERs can interrupt on this vector, so if error reporting is 1701 * possible we need to scan the fabric to determine whether to 1702 * claim it. This process will also generate ereports if the 1703 * bridge has error data for us. Checking for EREPORT_CAPABLE 1704 * is perhaps a bit of a formality here but if it's not set we 1705 * aren't going to be able to do much that's useful with the AER 1706 * data; we initialise sts to 0 rather than PF_ERR_NO_ERROR so 1707 * that we'll claim this interrupt in that case, since we aren't 1708 * going to do the scan. It may be more correct to check the 1709 * root port status ourselves in that case, but we aren't 1710 * terribly worried about the case where we don't have FMA 1711 * capabilities. 1712 */ 1713 bzero(&derr, sizeof (ddi_fm_error_t)); 1714 derr.fme_version = DDI_FME_VERSION; 1715 mutex_enter(&pcieb_p->pcieb_peek_poke_mutex); 1716 mutex_enter(&pcieb_p->pcieb_err_mutex); 1717 1718 pf_eh_enter(PCIE_DIP2BUS(dip)); 1719 PCIE_ROOT_EH_SRC(PCIE_DIP2PFD(dip))->intr_type = 1720 PF_INTR_TYPE_AER; 1721 1722 if ((DEVI(dip)->devi_fmhdl->fh_cap) & DDI_FM_EREPORT_CAPABLE) 1723 sts = pf_scan_fabric(dip, &derr, NULL); 1724 pf_eh_exit(PCIE_DIP2BUS(dip)); 1725 1726 mutex_exit(&pcieb_p->pcieb_err_mutex); 1727 mutex_exit(&pcieb_p->pcieb_peek_poke_mutex); 1728 if ((pcieb_die & sts) != 0) { 1729 fm_panic("%s-%d: PCI(-X) Express Fatal Error. (0x%x)", 1730 ddi_driver_name(dip), ddi_get_instance(dip), sts); 1731 } 1732 1733 if ((sts & ~PF_ERR_NO_ERROR) != 0) 1734 ret = DDI_INTR_CLAIMED; 1735 } 1736 FAIL: 1737 return (ret); 1738 } 1739 1740 /* 1741 * Some PCI-X to PCI-E bridges do not support full 64-bit addressing on the 1742 * PCI-X side of the bridge. We build a special version of this driver for 1743 * those bridges, which uses PCIEB_ADDR_LIMIT_LO and/or PCIEB_ADDR_LIMIT_HI 1744 * to define the range of values which the chip can handle. The code below 1745 * then clamps the DMA address range supplied by the driver, preventing the 1746 * PCI-E nexus driver from allocating any memory the bridge can't deal 1747 * with. 1748 */ 1749 static int 1750 pcieb_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, 1751 ddi_dma_attr_t *attr_p, int (*waitfp)(caddr_t), caddr_t arg, 1752 ddi_dma_handle_t *handlep) 1753 { 1754 int ret; 1755 #ifdef PCIEB_BCM 1756 uint64_t lim; 1757 1758 /* 1759 * If the leaf device's limits are outside than what the Broadcom 1760 * bridge can handle, we need to clip the values passed up the chain. 1761 */ 1762 lim = attr_p->dma_attr_addr_lo; 1763 attr_p->dma_attr_addr_lo = MAX(lim, PCIEB_ADDR_LIMIT_LO); 1764 1765 lim = attr_p->dma_attr_addr_hi; 1766 attr_p->dma_attr_addr_hi = MIN(lim, PCIEB_ADDR_LIMIT_HI); 1767 1768 #endif /* PCIEB_BCM */ 1769 1770 /* 1771 * This is a software workaround to fix the Broadcom 5714/5715 PCIe-PCI 1772 * bridge prefetch bug. Intercept the DMA alloc handle request and set 1773 * PX_DMAI_FLAGS_MAP_BUFZONE flag in the handle. If this flag is set, 1774 * the px nexus driver will allocate an extra page & make it valid one, 1775 * for any DVMA request that comes from any of the Broadcom bridge child 1776 * devices. 1777 */ 1778 if ((ret = ddi_dma_allochdl(dip, rdip, attr_p, waitfp, arg, 1779 handlep)) == DDI_SUCCESS) { 1780 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)*handlep; 1781 #ifdef PCIEB_BCM 1782 mp->dmai_inuse |= PX_DMAI_FLAGS_MAP_BUFZONE; 1783 #endif /* PCIEB_BCM */ 1784 /* 1785 * For a given rdip, update mp->dmai_bdf with the bdf value 1786 * of pcieb's immediate child or secondary bus-id of the 1787 * PCIe2PCI bridge. 1788 */ 1789 mp->dmai_minxfer = pcie_get_bdf_for_dma_xfer(dip, rdip); 1790 } 1791 1792 return (ret); 1793 } 1794 1795 /* 1796 * FDVMA feature is not supported for any child device of Broadcom 5714/5715 1797 * PCIe-PCI bridge due to prefetch bug. Return failure immediately, so that 1798 * these drivers will switch to regular DVMA path. 1799 */ 1800 /*ARGSUSED*/ 1801 static int 1802 pcieb_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 1803 enum ddi_dma_ctlops cmd, off_t *offp, size_t *lenp, caddr_t *objp, 1804 uint_t cache_flags) 1805 { 1806 int ret; 1807 1808 #ifdef PCIEB_BCM 1809 if (cmd == DDI_DMA_RESERVE) 1810 return (DDI_FAILURE); 1811 #endif /* PCIEB_BCM */ 1812 1813 if (((ret = ddi_dma_mctl(dip, rdip, handle, cmd, offp, lenp, objp, 1814 cache_flags)) == DDI_SUCCESS) && (cmd == DDI_DMA_RESERVE)) { 1815 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)*objp; 1816 1817 /* 1818 * For a given rdip, update mp->dmai_bdf with the bdf value 1819 * of pcieb's immediate child or secondary bus-id of the 1820 * PCIe2PCI bridge. 1821 */ 1822 mp->dmai_minxfer = pcie_get_bdf_for_dma_xfer(dip, rdip); 1823 } 1824 1825 return (ret); 1826 } 1827 1828 static int 1829 pcieb_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 1830 ddi_intr_handle_impl_t *hdlp, void *result) 1831 { 1832 return (pcieb_plat_intr_ops(dip, rdip, intr_op, hdlp, result)); 1833 1834 } 1835 1836 /* 1837 * Power management related initialization specific to pcieb. 1838 * Called by pcieb_attach() 1839 */ 1840 static int 1841 pcieb_pwr_setup(dev_info_t *dip) 1842 { 1843 char *comp_array[5]; 1844 int i; 1845 ddi_acc_handle_t conf_hdl; 1846 uint16_t pmcap, cap_ptr; 1847 pcie_pwr_t *pwr_p; 1848 1849 /* Some platforms/devices may choose to disable PM */ 1850 if (pcieb_plat_pwr_disable(dip)) { 1851 (void) pcieb_pwr_disable(dip); 1852 return (DDI_SUCCESS); 1853 } 1854 1855 ASSERT(PCIE_PMINFO(dip)); 1856 pwr_p = PCIE_NEXUS_PMINFO(dip); 1857 ASSERT(pwr_p); 1858 1859 /* Code taken from pci_pci driver */ 1860 if (pci_config_setup(dip, &pwr_p->pwr_conf_hdl) != DDI_SUCCESS) { 1861 PCIEB_DEBUG(DBG_PWR, dip, "pcieb_pwr_setup: pci_config_setup " 1862 "failed\n"); 1863 return (DDI_FAILURE); 1864 } 1865 conf_hdl = pwr_p->pwr_conf_hdl; 1866 1867 /* 1868 * Walk the capabilities searching for a PM entry. 1869 */ 1870 if ((PCI_CAP_LOCATE(conf_hdl, PCI_CAP_ID_PM, &cap_ptr)) == 1871 DDI_FAILURE) { 1872 PCIEB_DEBUG(DBG_PWR, dip, "switch/bridge does not support PM. " 1873 " PCI PM data structure not found in config header\n"); 1874 pci_config_teardown(&conf_hdl); 1875 return (DDI_SUCCESS); 1876 } 1877 /* 1878 * Save offset to pmcsr for future references. 1879 */ 1880 pwr_p->pwr_pmcsr_offset = cap_ptr + PCI_PMCSR; 1881 pmcap = PCI_CAP_GET16(conf_hdl, 0, cap_ptr, PCI_PMCAP); 1882 if (pmcap & PCI_PMCAP_D1) { 1883 PCIEB_DEBUG(DBG_PWR, dip, "D1 state supported\n"); 1884 pwr_p->pwr_pmcaps |= PCIE_SUPPORTS_D1; 1885 } 1886 if (pmcap & PCI_PMCAP_D2) { 1887 PCIEB_DEBUG(DBG_PWR, dip, "D2 state supported\n"); 1888 pwr_p->pwr_pmcaps |= PCIE_SUPPORTS_D2; 1889 } 1890 1891 i = 0; 1892 comp_array[i++] = "NAME=PCIe switch/bridge PM"; 1893 comp_array[i++] = "0=Power Off (D3)"; 1894 if (pwr_p->pwr_pmcaps & PCIE_SUPPORTS_D2) 1895 comp_array[i++] = "1=D2"; 1896 if (pwr_p->pwr_pmcaps & PCIE_SUPPORTS_D1) 1897 comp_array[i++] = "2=D1"; 1898 comp_array[i++] = "3=Full Power D0"; 1899 1900 /* 1901 * Create pm-components property, if it does not exist already. 1902 */ 1903 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip, 1904 "pm-components", comp_array, i) != DDI_PROP_SUCCESS) { 1905 PCIEB_DEBUG(DBG_PWR, dip, "could not create pm-components " 1906 " prop\n"); 1907 pci_config_teardown(&conf_hdl); 1908 return (DDI_FAILURE); 1909 } 1910 return (pcieb_pwr_init_and_raise(dip, pwr_p)); 1911 } 1912 1913 /* 1914 * undo whatever is done in pcieb_pwr_setup. called by pcieb_detach() 1915 */ 1916 static void 1917 pcieb_pwr_teardown(dev_info_t *dip) 1918 { 1919 pcie_pwr_t *pwr_p; 1920 1921 if (!PCIE_PMINFO(dip) || !(pwr_p = PCIE_NEXUS_PMINFO(dip))) 1922 return; 1923 1924 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "pm-components"); 1925 if (pwr_p->pwr_conf_hdl) 1926 pci_config_teardown(&pwr_p->pwr_conf_hdl); 1927 } 1928 1929 /* 1930 * Initializes the power level and raise the power to D0, if it is 1931 * not at D0. 1932 */ 1933 static int 1934 pcieb_pwr_init_and_raise(dev_info_t *dip, pcie_pwr_t *pwr_p) 1935 { 1936 uint16_t pmcsr; 1937 int ret = DDI_SUCCESS; 1938 1939 /* 1940 * Intialize our power level from PMCSR. The common code initializes 1941 * this to UNKNOWN. There is no guarantee that we will be at full 1942 * power at attach. If we are not at D0, raise the power. 1943 */ 1944 pmcsr = pci_config_get16(pwr_p->pwr_conf_hdl, pwr_p->pwr_pmcsr_offset); 1945 pmcsr &= PCI_PMCSR_STATE_MASK; 1946 switch (pmcsr) { 1947 case PCI_PMCSR_D0: 1948 pwr_p->pwr_func_lvl = PM_LEVEL_D0; 1949 break; 1950 1951 case PCI_PMCSR_D1: 1952 pwr_p->pwr_func_lvl = PM_LEVEL_D1; 1953 break; 1954 1955 case PCI_PMCSR_D2: 1956 pwr_p->pwr_func_lvl = PM_LEVEL_D2; 1957 break; 1958 1959 case PCI_PMCSR_D3HOT: 1960 pwr_p->pwr_func_lvl = PM_LEVEL_D3; 1961 break; 1962 1963 default: 1964 break; 1965 } 1966 1967 /* Raise the power to D0. */ 1968 if (pwr_p->pwr_func_lvl != PM_LEVEL_D0 && 1969 ((ret = pm_raise_power(dip, 0, PM_LEVEL_D0)) != DDI_SUCCESS)) { 1970 /* 1971 * Read PMCSR again. If it is at D0, ignore the return 1972 * value from pm_raise_power. 1973 */ 1974 pmcsr = pci_config_get16(pwr_p->pwr_conf_hdl, 1975 pwr_p->pwr_pmcsr_offset); 1976 if ((pmcsr & PCI_PMCSR_STATE_MASK) == PCI_PMCSR_D0) 1977 ret = DDI_SUCCESS; 1978 else { 1979 PCIEB_DEBUG(DBG_PWR, dip, "pcieb_pwr_setup: could not " 1980 "raise power to D0 \n"); 1981 } 1982 } 1983 if (ret == DDI_SUCCESS) 1984 pwr_p->pwr_func_lvl = PM_LEVEL_D0; 1985 return (ret); 1986 } 1987 1988 /* 1989 * Disable PM for x86 and PLX 8532 switch. 1990 * For PLX Transitioning one port on this switch to low power causes links 1991 * on other ports on the same station to die. Due to PLX erratum #34, we 1992 * can't allow the downstream device go to non-D0 state. 1993 */ 1994 static int 1995 pcieb_pwr_disable(dev_info_t *dip) 1996 { 1997 pcie_pwr_t *pwr_p; 1998 1999 ASSERT(PCIE_PMINFO(dip)); 2000 pwr_p = PCIE_NEXUS_PMINFO(dip); 2001 ASSERT(pwr_p); 2002 PCIEB_DEBUG(DBG_PWR, dip, "pcieb_pwr_disable: disabling PM\n"); 2003 pwr_p->pwr_func_lvl = PM_LEVEL_D0; 2004 pwr_p->pwr_flags = PCIE_NO_CHILD_PM; 2005 return (DDI_SUCCESS); 2006 } 2007 2008 #ifdef DEBUG 2009 int pcieb_dbg_intr_print = 0; 2010 void 2011 pcieb_dbg(uint_t bit, dev_info_t *dip, char *fmt, ...) 2012 { 2013 va_list ap; 2014 2015 if (!pcieb_dbg_print) 2016 return; 2017 2018 if (dip) 2019 prom_printf("%s(%d): %s", ddi_driver_name(dip), 2020 ddi_get_instance(dip), pcieb_debug_sym[bit]); 2021 2022 va_start(ap, fmt); 2023 if (servicing_interrupt()) { 2024 if (pcieb_dbg_intr_print) 2025 prom_vprintf(fmt, ap); 2026 } else { 2027 prom_vprintf(fmt, ap); 2028 } 2029 2030 va_end(ap); 2031 } 2032 #endif 2033 2034 static void 2035 pcieb_id_props(pcieb_devstate_t *pcieb) 2036 { 2037 uint64_t serialid = 0; /* 40b field of EUI-64 serial no. register */ 2038 uint16_t cap_ptr; 2039 uint8_t fic = 0; /* 1 = first in chassis device */ 2040 pcie_bus_t *bus_p = PCIE_DIP2BUS(pcieb->pcieb_dip); 2041 ddi_acc_handle_t config_handle = bus_p->bus_cfg_hdl; 2042 2043 /* 2044 * Identify first in chassis. In the special case of a Sun branded 2045 * PLX device, it obviously is first in chassis. Otherwise, in the 2046 * general case, look for an Expansion Slot Register and check its 2047 * first-in-chassis bit. 2048 */ 2049 #ifdef PX_PLX 2050 uint16_t vendor_id = bus_p->bus_dev_ven_id & 0xFFFF; 2051 uint16_t device_id = bus_p->bus_dev_ven_id >> 16; 2052 if ((vendor_id == PXB_VENDOR_SUN) && 2053 ((device_id == PXB_DEVICE_PLX_PCIX) || 2054 (device_id == PXB_DEVICE_PLX_PCIE))) { 2055 fic = 1; 2056 } 2057 #endif /* PX_PLX */ 2058 if ((fic == 0) && ((PCI_CAP_LOCATE(config_handle, 2059 PCI_CAP_ID_SLOT_ID, &cap_ptr)) != DDI_FAILURE)) { 2060 uint8_t esr = PCI_CAP_GET8(config_handle, 0, 2061 cap_ptr, PCI_CAP_ID_REGS_OFF); 2062 if (PCI_CAPSLOT_FIC(esr)) 2063 fic = 1; 2064 } 2065 2066 if ((PCI_CAP_LOCATE(config_handle, 2067 PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap_ptr)) != DDI_FAILURE) { 2068 /* Serialid can be 0 thru a full 40b number */ 2069 serialid = PCI_XCAP_GET32(config_handle, 0, 2070 cap_ptr, PCIE_SER_SID_UPPER_DW); 2071 serialid <<= 32; 2072 serialid |= PCI_XCAP_GET32(config_handle, 0, 2073 cap_ptr, PCIE_SER_SID_LOWER_DW); 2074 } 2075 2076 if (fic) 2077 (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, pcieb->pcieb_dip, 2078 "first-in-chassis"); 2079 if (serialid) 2080 (void) ddi_prop_update_int64(DDI_DEV_T_NONE, pcieb->pcieb_dip, 2081 "serialid#", serialid); 2082 } 2083 2084 static void 2085 pcieb_create_ranges_prop(dev_info_t *dip, 2086 ddi_acc_handle_t config_handle) 2087 { 2088 uint32_t base, limit; 2089 ppb_ranges_t ranges[PCIEB_RANGE_LEN]; 2090 uint8_t io_base_lo, io_limit_lo; 2091 uint16_t io_base_hi, io_limit_hi, mem_base, mem_limit; 2092 int i = 0, rangelen = sizeof (ppb_ranges_t)/sizeof (int); 2093 2094 io_base_lo = pci_config_get8(config_handle, PCI_BCNF_IO_BASE_LOW); 2095 io_limit_lo = pci_config_get8(config_handle, PCI_BCNF_IO_LIMIT_LOW); 2096 io_base_hi = pci_config_get16(config_handle, PCI_BCNF_IO_BASE_HI); 2097 io_limit_hi = pci_config_get16(config_handle, PCI_BCNF_IO_LIMIT_HI); 2098 mem_base = pci_config_get16(config_handle, PCI_BCNF_MEM_BASE); 2099 mem_limit = pci_config_get16(config_handle, PCI_BCNF_MEM_LIMIT); 2100 2101 /* 2102 * Create ranges for IO space 2103 */ 2104 ranges[i].size_low = ranges[i].size_high = 0; 2105 ranges[i].parent_mid = ranges[i].child_mid = ranges[i].parent_high = 0; 2106 ranges[i].child_high = ranges[i].parent_high |= 2107 (PCI_REG_REL_M | PCI_ADDR_IO); 2108 base = PCIEB_16bit_IOADDR(io_base_lo); 2109 limit = PCIEB_16bit_IOADDR(io_limit_lo); 2110 2111 if ((io_base_lo & 0xf) == PCIEB_32BIT_IO) { 2112 base = PCIEB_LADDR(base, io_base_hi); 2113 } 2114 if ((io_limit_lo & 0xf) == PCIEB_32BIT_IO) { 2115 limit = PCIEB_LADDR(limit, io_limit_hi); 2116 } 2117 2118 if ((io_base_lo & PCIEB_32BIT_IO) && (io_limit_hi > 0)) { 2119 base = PCIEB_LADDR(base, io_base_hi); 2120 limit = PCIEB_LADDR(limit, io_limit_hi); 2121 } 2122 2123 /* 2124 * Create ranges for 32bit memory space 2125 */ 2126 base = PCIEB_32bit_MEMADDR(mem_base); 2127 limit = PCIEB_32bit_MEMADDR(mem_limit); 2128 ranges[i].size_low = ranges[i].size_high = 0; 2129 ranges[i].parent_mid = ranges[i].child_mid = ranges[i].parent_high = 0; 2130 ranges[i].child_high = ranges[i].parent_high |= 2131 (PCI_REG_REL_M | PCI_ADDR_MEM32); 2132 ranges[i].child_low = ranges[i].parent_low = base; 2133 if (limit >= base) { 2134 ranges[i].size_low = limit - base + PCIEB_MEMGRAIN; 2135 i++; 2136 } 2137 2138 if (i) { 2139 (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "ranges", 2140 (int *)ranges, i * rangelen); 2141 } 2142 } 2143 2144 /* 2145 * For PCI and PCI-X devices including PCIe2PCI bridge, initialize 2146 * cache-line-size and latency timer configuration registers. 2147 */ 2148 void 2149 pcieb_set_pci_perf_parameters(dev_info_t *dip, ddi_acc_handle_t cfg_hdl) 2150 { 2151 uint_t n; 2152 2153 /* Initialize cache-line-size configuration register if needed */ 2154 if (ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2155 "cache-line-size", 0) == 0) { 2156 pci_config_put8(cfg_hdl, PCI_CONF_CACHE_LINESZ, 2157 PCIEB_CACHE_LINE_SIZE); 2158 n = pci_config_get8(cfg_hdl, PCI_CONF_CACHE_LINESZ); 2159 if (n != 0) { 2160 (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, 2161 "cache-line-size", n); 2162 } 2163 } 2164 2165 /* Initialize latency timer configuration registers if needed */ 2166 if (ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2167 "latency-timer", 0) == 0) { 2168 uchar_t min_gnt, latency_timer; 2169 uchar_t header_type; 2170 2171 /* Determine the configuration header type */ 2172 header_type = pci_config_get8(cfg_hdl, PCI_CONF_HEADER); 2173 2174 if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) { 2175 latency_timer = PCIEB_LATENCY_TIMER; 2176 pci_config_put8(cfg_hdl, PCI_BCNF_LATENCY_TIMER, 2177 latency_timer); 2178 } else { 2179 min_gnt = pci_config_get8(cfg_hdl, PCI_CONF_MIN_G); 2180 latency_timer = min_gnt * 8; 2181 } 2182 2183 pci_config_put8(cfg_hdl, PCI_CONF_LATENCY_TIMER, 2184 latency_timer); 2185 n = pci_config_get8(cfg_hdl, PCI_CONF_LATENCY_TIMER); 2186 if (n != 0) { 2187 (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, 2188 "latency-timer", n); 2189 } 2190 } 2191 } 2192