xref: /illumos-gate/usr/src/uts/common/io/pciex/pcie.c (revision e00bdde3c6d406f40f53f3025defadc22f7ec31a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright 2024 Oxide Computer Company
26  */
27 
28 /*
29  * PCIe Initialization
30  * -------------------
31  *
32  * The PCIe subsystem is split about and initializes itself in a couple of
33  * different places. This is due to the platform-specific nature of initializing
34  * resources and the nature of the SPARC PROM and how that influenced the
35  * subsystem. Note that traditional PCI (mostly seen these days in Virtual
36  * Machines) follows most of the same basic path outlined here, but skips a
37  * large chunk of PCIe-specific initialization.
38  *
39  * First, there is an initial device discovery phase that is taken care of by
40  * the platform. This is where we discover the set of devices that are present
41  * at system power on. These devices may or may not be hot-pluggable. In
42  * particular, this happens in a platform-specific way right now. In general, we
43  * expect most discovery to be driven by scanning each bus, device, and
44  * function, and seeing what actually exists and responds to configuration space
45  * reads. This is driven via pci_boot.c on x86. This may be seeded by something
46  * like device tree, a PROM, supplemented with ACPI, or by knowledge that the
47  * underlying platform has.
48  *
49  * As a part of this discovery process, the full set of resources that exist in
50  * the system for PCIe are:
51  *
52  *   o PCI buses
53  *   o Prefetchable Memory
54  *   o Non-prefetchable memory
55  *   o I/O ports
56  *
57  * This process is driven by a platform's PCI platform Resource Discovery (PRD)
58  * module. The PRD definitions can be found in <sys/plat/pci_prd.h> and are used
59  * to discover these resources, which will be converted into the initial set of
60  * the standard properties in the system: 'regs', 'available', 'ranges', etc.
61  * Currently it is up to platform-specific code (which should ideally be
62  * consolidated at some point) to set up all these properties.
63  *
64  * As a part of the discovery process, the platform code will create a device
65  * node (dev_info_t) for each discovered function and will create a PCIe nexus
66  * for each overall root complex that exists in the system. Most root complexes
67  * will have multiple root ports, each of which is the foundation of an
68  * independent PCIe bus due to the point-to-point nature of PCIe. When a root
69  * complex is found, a nexus driver such as npe (Nexus for PCIe Express) is
70  * attached. In the case of a non-PCIe-capable system this is where the older
71  * pci nexus driver would be used instead.
72  *
73  * To track data about a given device on a bus, a 'pcie_bus_t' structure is
74  * created for and assigned to every PCIe-based dev_info_t. This can be used to
75  * find the root port and get basic information about the device, its faults,
76  * and related information. This contains pointers to the corresponding root
77  * port as well.
78  *
79  * A root complex has its pcie_bus_t initialized as part of the device discovery
80  * process. That is, because we're trying to bootstrap the actual tree and most
81  * platforms don't have a representation for this that's explicitly
82  * discoverable, this is created manually. See callers of pcie_rc_init_bus().
83  *
84  * For other devices, bridges, and switches, the process is split into two.
85  * There is an initial pcie_bus_t that is created which will exist before we go
86  * through the actual driver attachment process. For example, on x86 this is
87  * done as part of the device and function discovery. The second pass of
88  * initialization is done only after the nexus driver actually is attached and
89  * it goes through and finishes processing all of its children.
90  *
91  * Child Initialization
92  * --------------------
93  *
94  * Generally speaking, the platform will first enumerate all PCIe devices that
95  * are in the sytem before it actually creates a device tree. This is part of
96  * the bus/device/function scanning that is performed and from that dev_info_t
97  * nodes are created for each discovered device and are inserted into the
98  * broader device tree. Later in boot, the actual device tree is walked and the
99  * nodes go through the standard dev_info_t initialization process (DS_PROTO,
100  * DS_LINKED, DS_BOUND, etc.).
101  *
102  * PCIe-specific initialization can roughly be broken into the following pieces:
103  *
104  *   1. Platform initial discovery and resource assignment
105  *   2. The pcie_bus_t initialization
106  *   3. Nexus driver child initialization
107  *   4. Fabric initialization
108  *   5. Device driver-specific initialization
109  *
110  * The first part of this (1) and (2) are discussed in the previous section.
111  * Part (1) in particular is a combination of the PRD (platform resource
112  * discovery) and general device initialization. After this, because we have a
113  * device tree, most of the standard nexus initialization happens.
114  *
115  * (5) is somewhat simple, so let's get into it before we discuss (3) and (4).
116  * This is the last thing that is called and that happens after all of the
117  * others are done. This is the logic that occurs in a driver's attach(9E) entry
118  * point. This is always device-specific and generally speaking should not be
119  * manipulating standard PCIe registers directly on their own. For example, the
120  * MSI/MSI-X, AER, Serial Number, etc. capabilities will be automatically dealt
121  * with by the framework in (3) and (4) below. In many cases, particularly
122  * things that are part of (4), adjusting them in the individual driver is not
123  * safe.
124  *
125  * Finally, let's talk about (3) and (4) as these are related. The NDI provides
126  * for a standard hook for a nexus to initialize its children. In our platforms,
127  * there are basically two possible PCIe nexus drivers: there is the generic
128  * pcieb -- PCIe bridge -- driver which is used for standard root ports,
129  * switches, etc. Then there is the platform-specific primary nexus driver,
130  * which is being slowly consolidated into a single one where it makes sense. An
131  * example of this is npe.
132  *
133  * Each of these has a child initialization function which is called from their
134  * DDI_CTLOPS_INITCHILD operation on the bus_ctl function pointer. This goes
135  * through and initializes a large number of different pieces of PCIe-based
136  * settings through the common pcie_initchild() function. This takes care of
137  * things like:
138  *
139  *   o Advanced Error Reporting
140  *   o Alternative Routing
141  *   o Capturing information around link speed, width, serial numbers, etc.
142  *   o Setting common properties around aborts
143  *
144  * There are a few caveats with this that need to be kept in mind:
145  *
146  *   o A dev_info_t indicates a specific function. This means that a
147  *     multi-function device will not all be initialized at the same time and
148  *     there is no guarantee that all children will be initialized before one of
149  *     them is attached.
150  *   o A child is only initialized if we have found a driver that matches an
151  *     alias in the dev_info_t's compatible array property.  While a lot of
152  *     multi-function devices are often multiple instances of the same thing
153  *     (e.g. a multi-port NIC with a function / NIC), this is not always the
154  *     case and one cannot make any assumptions here.
155  *
156  * This in turn leads to the next form of initialization that takes place in the
157  * case of (4). This is where we take care of things that need to be consistent
158  * across either entire devices or more generally across an entire root port and
159  * all of its children. There are a few different examples of this:
160  *
161  *   o Setting the maximum packet size
162  *   o Determining the tag width
163  *
164  * Note that features which are only based on function 0, such as ASPM (Active
165  * State Power Management), hardware autonomous width disable, etc. ultimately
166  * do not go through this path today. There are some implications here in that
167  * today several of these things are captured on functions which may not have
168  * any control here. This is an area of needed improvement.
169  *
170  * The settings in (4) are initialized in a common way, via
171  * pcie_fabric_setup(). This is called into from two different parts of
172  * the stack:
173  *
174  *   1. When we attach a root port, which is driven by pcieb.
175  *   2. When we have a hotplug event that adds a device.
176  *
177  * In general here we are going to use the term 'fabric' to refer to everything
178  * that is downstream of a root port. This corresponds to what the PCIe
179  * specification calls a 'hierarchy domain'. Strictly speaking, this is fine
180  * until peer-to-peer requests begin to happen that cause you to need to forward
181  * things across root ports. At that point the scope of the fabric increases and
182  * these settings become more complicated. We currently optimize for the much
183  * more common case, which is that each root port is effectively independent
184  * from a PCIe transaction routing perspective.
185  *
186  * Put differently, we use the term 'fabric' to refer to a set of PCIe devices
187  * that can route transactions to one another, which is generally constrained to
188  * everything under a root port and that root ports are independent. If this
189  * constraint changes, then all one needs to do is replace the discussion of the
190  * root port below with the broader root complex and system.
191  *
192  * A challenge with these settings is that once they're set and devices are
193  * actively making requests, we cannot really change them without resetting the
194  * links and cancelling all outstanding transactions via device resets. Because
195  * this is not something that we want to do, we instead look at how and when we
196  * set this to constrain what's going on.
197  *
198  * Because of this we basically say that if a given fabric has more than one
199  * hot-plug capable device that's encountered, then we have to use safe defaults
200  * (which we can allow an operator to tune eventually via pcieadm). If we have a
201  * mix of non-hotpluggable slots with downstream endpoints present and
202  * hot-pluggable slots, then we're in this case. If we don't have hot-pluggable
203  * slots, then we can have an arbitrarily complex setup. Let's look at a few of
204  * these visually:
205  *
206  * In the following diagrams, RP stands for Root Port, EP stands for Endpoint.
207  * If something is hot-pluggable, then we label it with (HP).
208  *
209  *   (1) RP --> EP
210  *   (2) RP --> Switch --> EP
211  *                    +--> EP
212  *                    +--> EP
213  *
214  *   (3) RP --> Switch --> EP
215  *                    +--> EP
216  *                    +--> Switch --> EP
217  *                               +--> EP
218  *                    +--> EP
219  *
220  *
221  *   (4) RP (HP) --> EP
222  *   (5) RP (HP) --> Switch --> EP
223  *                         +--> EP
224  *                         +--> EP
225  *
226  *   (6) RP --> Switch (HP) --> EP
227  *   (7) RP (HP) --> Switch (HP) --> EP
228  *
229  * If we look at all of these, these are all cases where it's safe for us to set
230  * things based on all devices. (1), (2), and (3) are straightforward because
231  * they have no hot-pluggable elements. This means that nothing should come/go
232  * on the system and we can set up fabric-wide properties as part of the root
233  * port.
234  *
235  * Case (4) is the most standard one that we encounter for hot-plug. Here you
236  * have a root port directly connected to an endpoint. The most common example
237  * would be an NVMe device plugged into a root port. Case (5) is interesting to
238  * highlight. While there is a switch and multiple endpoints there, they are
239  * showing up as a unit. This ends up being a weirder variant of (4), but it is
240  * safe for us to set advanced properties because we can figure out what the
241  * total set should be.
242  *
243  * Now, the more interesting bits here are (6) and (7). The reason that (6)
244  * works is that ultimately there is only a single down-stream port here that is
245  * hot-pluggable and all non-hotpluggable ports do not have a device present,
246  * which suggests that they will never have a device present. (7) also could be
247  * made to work by making the observation that if there's truly only one
248  * endpoint in a fabric, it doesn't matter how many switches there are that are
249  * hot-pluggable. This would only hold if we can assume for some reason that no
250  * other endpoints could be added.
251  *
252  * In turn, let's look at several cases that we believe aren't safe:
253  *
254  *   (8) RP --> Switch --> EP
255  *                    +--> EP
256  *               (HP) +--> EP
257  *
258  *   (9) RP --> Switch (HP) +--> EP
259  *                     (HP) +--> EP
260  *
261  *   (10) RP (HP) --> Switch (HP) +--> EP
262  *                           (HP) +--> EP
263  *
264  * All of these are situations where it's much more explicitly unsafe. Let's
265  * take (8). The problem here is that the devices on the non-hotpluggable
266  * downstream switches are always there and we should assume all device drivers
267  * will be active and performing I/O when the hot-pluggable slot changes. If the
268  * hot-pluggable slot has a lower max payload size, then we're mostly out of
269  * luck. The case of (9) is very similar to (8), just that we have more hot-plug
270  * capable slots.
271  *
272  * Finally (10) is a case of multiple instances of hotplug. (9) and (10) are the
273  * more general case of (6) and (7). While we can try to detect (6) and (7) more
274  * generally or try to make it safe, we're going to start with a simpler form of
275  * detection for this, which roughly follows the following rules:
276  *
277  *   o If there are no hot-pluggable slots in an entire fabric, then we can set
278  *     all fabric properties based on device capabilities.
279  *   o If we encounter a hot-pluggable slot, we can only set fabric properties
280  *     based on device capabilities if:
281  *
282  *       1. The hotpluggable slot is a root port.
283  *       2. There are no other hotpluggable devices downstream of it.
284  *
285  * Otherwise, if neither of the above is true, then we must use the basic PCIe
286  * defaults for various fabric-wide properties (discussed below). Even in these
287  * more complicated cases, device-specific properties such as the configuration
288  * of AERs, ASPM, etc. are still handled in the general pcie_init_bus() and
289  * related discussed earlier here.
290  *
291  * Because the only fabrics that we'll change are those that correspond to root
292  * ports, we will only call into the actual fabric feature setup when one of
293  * those changes. This has the side effect of simplifying locking. When we make
294  * changes here we need to be able to hold the entire device tree under the root
295  * port (including the root port and its parent). This is much harder to do
296  * safely when starting in the middle of the tree.
297  *
298  * Handling of Specific Properties
299  * -------------------------------
300  *
301  * This section goes into the rationale behind how we initialize and program
302  * various parts of the PCIe stack.
303  *
304  * 5-, 8-, 10- AND 14-BIT TAGS
305  *
306  * Tags are part of PCIe transactions and when combined with a device identifier
307  * are used to uniquely identify a transaction. In PCIe parlance, a Requester
308  * (someone who initiates a PCIe request) sets a unique tag in the request and
309  * the Completer (someone who processes and responds to a PCIe request) echoes
310  * the tag back. This means that a requester generally is responsible for
311  * ensuring that they don't reuse a tag between transactions.
312  *
313  * Thus the number of tags that a device has relates to the number of
314  * outstanding transactions that it can have, which are usually tied to the
315  * number of outstanding DMA transfers. The size of these transactions is also
316  * then scoped by the handling of the Maximum Packet Payload.
317  *
318  * In PCIe 1.0, devices default to a 5-bit tag. There was also an option to
319  * support an 8-bit tag. The 8-bit extended tag did not distinguish between a
320  * Requester or Completer. There was a bit to indicate device support of 8-bit
321  * tags in the Device Capabilities Register of the PCIe Capability and a
322  * separate bit to enable it in the Device Control Register of the PCIe
323  * Capability.
324  *
325  * In PCIe 4.0, support for a 10-bit tag was added. The specification broke
326  * apart the support bit into multiple pieces. In particular, in the Device
327  * Capabilities 2 register of the PCIe Capability there is a separate bit to
328  * indicate whether the device supports 10-bit completions and 10-bit requests.
329  * All PCIe 4.0 compliant devices are required to support 10-bit tags if they
330  * operate at 16.0 GT/s speed (a PCIe Gen 4 compliant device does not have to
331  * operate at Gen 4 speeds).
332  *
333  * This allows a device to support 10-bit completions but not 10-bit requests.
334  * A device that supports 10-bit requests is required to support 10-bit
335  * completions. There is no ability to enable or disable 10-bit completion
336  * support in the Device Capabilities 2 register. There is only a bit to enable
337  * 10-bit requests. This distinction makes our life easier as this means that as
338  * long as the entire fabric supports 10-bit completions, it doesn't matter if
339  * not all devices support 10-bit requests and we can enable them as required.
340  * More on this in a bit.
341  *
342  * In PCIe 6.0, another set of bits was added for 14-bit tags. These follow the
343  * same pattern as the 10-bit tags. The biggest difference is that the
344  * capabilities and control for these are found in the Device Capabilities 3
345  * and Device Control 3 register of the Device 3 Extended Capability. Similar to
346  * what we see with 10-bit tags, requesters are required to support the
347  * completer capability. The only control bit is for whether or not they enable
348  * a 14-bit requester.
349  *
350  * PCIe switches which sit between root ports and endpoints and show up to
351  * software as a set of bridges. Bridges generally don't have to know about tags
352  * as they are usually neither requesters or completers (unless directly talking
353  * to the bridge instance). That is they are generally required to forward
354  * packets without modifying them. This works until we deal with switch error
355  * handling. At that point, the switch may try to interpret the transaction and
356  * if it doesn't understand the tagging scheme in use, return the transaction to
357  * with the wrong tag and also an incorrectly diagnosed error (usually a
358  * malformed TLP).
359  *
360  * With all this, we construct a somewhat simple policy of how and when we
361  * enable extended tags:
362  *
363  *    o If we have a complex hotplug-capable fabric (based on the discussion
364  *      earlier in fabric-specific settings), then we cannot enable any of the
365  *      8-bit, 10-bit, and 14-bit tagging features. This is due to the issues
366  *      with intermediate PCIe switches and related.
367  *
368  *    o If every device supports 8-bit capable tags, then we will go through and
369  *      enable those everywhere.
370  *
371  *    o If every device supports 10-bit capable completions, then we will enable
372  *      10-bit requester on every device that supports it.
373  *
374  *    o If every device supports 14-bit capable completions, then we will enable
375  *      14-bit requesters on every device that supports it.
376  *
377  * This is the simpler end of the policy and one that is relatively easy to
378  * implement. While we could attempt to relax the constraint that every device
379  * in the fabric implement these features by making assumptions about peer-to-
380  * peer requests (that is devices at the same layer in the tree won't talk to
381  * one another), that is a lot of complexity. For now, we leave such an
382  * implementation to those who need it in the future.
383  *
384  * MAX PAYLOAD SIZE
385  *
386  * When performing transactions on the PCIe bus, a given transaction has a
387  * maximum allowed size. This size is called the MPS or 'Maximum Payload Size'.
388  * A given device reports its maximum supported size in the Device Capabilities
389  * register of the PCIe Capability. It is then set in the Device Control
390  * register.
391  *
392  * One of the challenges with this value is that different functions of a device
393  * have independent values, but strictly speaking are required to actually have
394  * the same value programmed in all of them lest device behavior goes awry. When
395  * a device has the ARI (alternative routing ID) capability enabled, then only
396  * function 0 controls the actual payload size.
397  *
398  * The settings for this need to be consistent throughout the fabric. A
399  * Transmitter is not allowed to create a TLP that exceeds its maximum packet
400  * size and a Receiver is not allowed to receive a packet that exceeds its
401  * maximum packet size. In all of these cases, this would result in something
402  * like a malformed TLP error.
403  *
404  * Effectively, this means that everything on a given fabric must have the same
405  * value programmed in its Device Control register for this value. While in the
406  * case of tags, switches generally weren't completers or requesters, here every
407  * device along the path is subject to this. This makes the actual value that we
408  * set throughout the fabric even more important and the constraints of hotplug
409  * even worse to deal with.
410  *
411  * Because a hotplug device can be inserted with any packet size, if we hit
412  * anything other than the simple hotplug cases discussed in the fabric-specific
413  * settings section, then we must use the smallest size of 128 byte payloads.
414  * This is because a device could be plugged in that supports something smaller
415  * than we had otherwise set. If there are other active devices, those could not
416  * be changed without quiescing the entire fabric. As such our algorithm is as
417  * follows:
418  *
419  *     1. Scan the entire fabric, keeping track of the smallest seen MPS in the
420  *        Device Capabilities Register.
421  *     2. If we have a complex fabric, program each Device Control register with
422  *        a 128 byte maximum payload size, otherwise, program it with the
423  *        discovered value.
424  *
425  *
426  * MAX READ REQUEST SIZE
427  *
428  * The maximum read request size (mrrs) is a much more confusing thing when
429  * compared to the maximum payload size counterpart. The maximum payload size
430  * (MPS) above is what restricts the actual size of a TLP. The mrrs value
431  * is used to control part of the behavior of Memory Read Request, which is not
432  * strictly speaking subject to the MPS. A PCIe device is allowed to respond to
433  * a Memory Read Request with less bytes than were actually requested in a
434  * single completion. In general, the default size that a root complex and its
435  * root port will reply to are based around the length of a cache line.
436  *
437  * What this ultimately controls is the number of requests that the Requester
438  * has to make and trades off bandwidth, bus sharing, and related here. For
439  * example, if the maximum read request size is 4 KiB, then the requester would
440  * only issue a single read request asking for 4 KiB. It would still receive
441  * these as multiple packets in units of the MPS. If however, the maximum read
442  * request was only say 512 B, then it would need to make 8 separate requests,
443  * potentially increasing latency. On the other hand, if systems are relying on
444  * total requests for QoS, then it's important to set it to something that's
445  * closer to the actual MPS.
446  *
447  * Traditionally, the OS has not been the most straightforward about this. It's
448  * important to remember that setting this up is also somewhat in the realm of
449  * system firmware. Due to the PCI Firmware specification, the firmware may have
450  * set up a value for not just the MRRS but also the MPS. As such, our logic
451  * basically left the MRRS alone and used whatever the device had there as long
452  * as we weren't shrinking the device's MPS. If we were, then we'd set it to the
453  * MPS. If the device was a root port, then it was just left at a system wide
454  * and PCIe default of 512 bytes.
455  *
456  * If we survey firmware (which isn't easy due to its nature), we have seen most
457  * cases where the firmware just doesn't do anything and leaves it to the
458  * device's default, which is basically just the PCIe default, unless it has a
459  * specific knowledge of something like say wanting to do something for an NVMe
460  * device. The same is generally true of other systems, leaving it at its
461  * default unless otherwise set by a device driver.
462  *
463  * Because this value doesn't really have the same constraints as other fabric
464  * properties, this becomes much simpler and we instead opt to set it as part of
465  * the device node initialization. In addition, there are no real rules about
466  * different functions having different values here as it doesn't really impact
467  * the TLP processing the same way that the MPS does.
468  *
469  * While we should add a fuller way of setting this and allowing operator
470  * override of the MRRS based on things like device class, etc. that is driven
471  * by pcieadm, that is left to the future. For now we opt to that all devices
472  * are kept at their default (512 bytes or whatever firmware left behind) and we
473  * ensure that root ports always have the mrrs set to 512.
474  */
475 
476 #include <sys/sysmacros.h>
477 #include <sys/types.h>
478 #include <sys/kmem.h>
479 #include <sys/modctl.h>
480 #include <sys/ddi.h>
481 #include <sys/sunddi.h>
482 #include <sys/sunndi.h>
483 #include <sys/fm/protocol.h>
484 #include <sys/fm/util.h>
485 #include <sys/promif.h>
486 #include <sys/disp.h>
487 #include <sys/stat.h>
488 #include <sys/file.h>
489 #include <sys/pci_cap.h>
490 #include <sys/pci_impl.h>
491 #include <sys/pcie_impl.h>
492 #include <sys/hotplug/pci/pcie_hp.h>
493 #include <sys/hotplug/pci/pciehpc.h>
494 #include <sys/hotplug/pci/pcishpc.h>
495 #include <sys/hotplug/pci/pcicfg.h>
496 #include <sys/pci_cfgacc.h>
497 #include <sys/sysevent.h>
498 #include <sys/sysevent/eventdefs.h>
499 #include <sys/sysevent/pcie.h>
500 
501 /* Local functions prototypes */
502 static void pcie_init_pfd(dev_info_t *);
503 static void pcie_fini_pfd(dev_info_t *);
504 
505 #ifdef DEBUG
506 uint_t pcie_debug_flags = 0;
507 static void pcie_print_bus(pcie_bus_t *bus_p);
508 void pcie_dbg(char *fmt, ...);
509 #endif /* DEBUG */
510 
511 /* Variable to control default PCI-Express config settings */
512 ushort_t pcie_command_default =
513     PCI_COMM_SERR_ENABLE |
514     PCI_COMM_WAIT_CYC_ENAB |
515     PCI_COMM_PARITY_DETECT |
516     PCI_COMM_ME |
517     PCI_COMM_MAE |
518     PCI_COMM_IO;
519 
520 /* xxx_fw are bits that are controlled by FW and should not be modified */
521 ushort_t pcie_command_default_fw =
522     PCI_COMM_SPEC_CYC |
523     PCI_COMM_MEMWR_INVAL |
524     PCI_COMM_PALETTE_SNOOP |
525     PCI_COMM_WAIT_CYC_ENAB |
526     0xF800; /* Reserved Bits */
527 
528 ushort_t pcie_bdg_command_default_fw =
529     PCI_BCNF_BCNTRL_ISA_ENABLE |
530     PCI_BCNF_BCNTRL_VGA_ENABLE |
531     0xF000; /* Reserved Bits */
532 
533 /* PCI-Express Base error defaults */
534 ushort_t pcie_base_err_default =
535     PCIE_DEVCTL_CE_REPORTING_EN |
536     PCIE_DEVCTL_NFE_REPORTING_EN |
537     PCIE_DEVCTL_FE_REPORTING_EN |
538     PCIE_DEVCTL_UR_REPORTING_EN;
539 
540 /* PCI-Express Device Control Register */
541 uint16_t pcie_devctl_default = PCIE_DEVCTL_RO_EN |
542     PCIE_DEVCTL_MAX_READ_REQ_512;
543 
544 /* PCI-Express AER Root Control Register */
545 #define	PCIE_ROOT_SYS_ERR	(PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | \
546 				PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | \
547 				PCIE_ROOTCTL_SYS_ERR_ON_FE_EN)
548 
549 ushort_t pcie_root_ctrl_default =
550     PCIE_ROOTCTL_SYS_ERR_ON_CE_EN |
551     PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN |
552     PCIE_ROOTCTL_SYS_ERR_ON_FE_EN;
553 
554 /* PCI-Express Root Error Command Register */
555 ushort_t pcie_root_error_cmd_default =
556     PCIE_AER_RE_CMD_CE_REP_EN |
557     PCIE_AER_RE_CMD_NFE_REP_EN |
558     PCIE_AER_RE_CMD_FE_REP_EN;
559 
560 /* ECRC settings in the PCIe AER Control Register */
561 uint32_t pcie_ecrc_value =
562     PCIE_AER_CTL_ECRC_GEN_ENA |
563     PCIE_AER_CTL_ECRC_CHECK_ENA;
564 
565 /*
566  * If a particular platform wants to disable certain errors such as UR/MA,
567  * instead of using #defines have the platform's PCIe Root Complex driver set
568  * these masks using the pcie_get_XXX_mask and pcie_set_XXX_mask functions.  For
569  * x86 the closest thing to a PCIe root complex driver is NPE.	For SPARC the
570  * closest PCIe root complex driver is PX.
571  *
572  * pcie_serr_disable_flag : disable SERR only (in RCR and command reg) x86
573  * systems may want to disable SERR in general.  For root ports, enabling SERR
574  * causes NMIs which are not handled and results in a watchdog timeout error.
575  */
576 uint32_t pcie_aer_uce_mask = 0;		/* AER UE Mask */
577 uint32_t pcie_aer_ce_mask = 0;		/* AER CE Mask */
578 uint32_t pcie_aer_suce_mask = 0;	/* AER Secondary UE Mask */
579 uint32_t pcie_serr_disable_flag = 0;	/* Disable SERR */
580 
581 /* Default severities needed for eversholt.  Error handling doesn't care */
582 uint32_t pcie_aer_uce_severity = PCIE_AER_UCE_MTLP | PCIE_AER_UCE_RO | \
583     PCIE_AER_UCE_FCP | PCIE_AER_UCE_SD | PCIE_AER_UCE_DLP | \
584     PCIE_AER_UCE_TRAINING;
585 uint32_t pcie_aer_suce_severity = PCIE_AER_SUCE_SERR_ASSERT | \
586     PCIE_AER_SUCE_UC_ADDR_ERR | PCIE_AER_SUCE_UC_ATTR_ERR | \
587     PCIE_AER_SUCE_USC_MSG_DATA_ERR;
588 
589 int pcie_disable_ari = 0;
590 
591 /*
592  * On some platforms, such as the AMD B450 chipset, we've seen an odd
593  * relationship between enabling link bandwidth notifications and AERs about
594  * ECRC errors. This provides a mechanism to disable it.
595  */
596 int pcie_disable_lbw = 0;
597 
598 /*
599  * Amount of time to wait for an in-progress retraining. The default is to try
600  * 500 times in 10ms chunks, thus a total of 5s.
601  */
602 uint32_t pcie_link_retrain_count = 500;
603 uint32_t pcie_link_retrain_delay_ms = 10;
604 
605 taskq_t *pcie_link_tq;
606 kmutex_t pcie_link_tq_mutex;
607 
608 static int pcie_link_bw_intr(dev_info_t *);
609 static void pcie_capture_speeds(dev_info_t *);
610 
611 dev_info_t *pcie_get_rc_dip(dev_info_t *dip);
612 
613 /*
614  * modload support
615  */
616 
617 static struct modlmisc modlmisc	= {
618 	&mod_miscops,	/* Type	of module */
619 	"PCI Express Framework Module"
620 };
621 
622 static struct modlinkage modlinkage = {
623 	MODREV_1,
624 	(void	*)&modlmisc,
625 	NULL
626 };
627 
628 /*
629  * Global Variables needed for a non-atomic version of ddi_fm_ereport_post.
630  * Currently used to send the pci.fabric ereports whose payload depends on the
631  * type of PCI device it is being sent for.
632  */
633 char		*pcie_nv_buf;
634 nv_alloc_t	*pcie_nvap;
635 nvlist_t	*pcie_nvl;
636 
637 int
638 _init(void)
639 {
640 	int rval;
641 
642 	pcie_nv_buf = kmem_alloc(ERPT_DATA_SZ, KM_SLEEP);
643 	pcie_nvap = fm_nva_xcreate(pcie_nv_buf, ERPT_DATA_SZ);
644 	pcie_nvl = fm_nvlist_create(pcie_nvap);
645 	mutex_init(&pcie_link_tq_mutex, NULL, MUTEX_DRIVER, NULL);
646 
647 	if ((rval = mod_install(&modlinkage)) != 0) {
648 		mutex_destroy(&pcie_link_tq_mutex);
649 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
650 		fm_nva_xdestroy(pcie_nvap);
651 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
652 	}
653 	return (rval);
654 }
655 
656 int
657 _fini()
658 {
659 	int		rval;
660 
661 	if ((rval = mod_remove(&modlinkage)) == 0) {
662 		if (pcie_link_tq != NULL) {
663 			taskq_destroy(pcie_link_tq);
664 		}
665 		mutex_destroy(&pcie_link_tq_mutex);
666 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
667 		fm_nva_xdestroy(pcie_nvap);
668 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
669 	}
670 	return (rval);
671 }
672 
673 int
674 _info(struct modinfo *modinfop)
675 {
676 	return (mod_info(&modlinkage, modinfop));
677 }
678 
679 /* ARGSUSED */
680 int
681 pcie_init(dev_info_t *dip, caddr_t arg)
682 {
683 	int	ret = DDI_SUCCESS;
684 
685 	/*
686 	 * Our _init function is too early to create a taskq. Create the pcie
687 	 * link management taskq here now instead.
688 	 */
689 	mutex_enter(&pcie_link_tq_mutex);
690 	if (pcie_link_tq == NULL) {
691 		pcie_link_tq = taskq_create("pcie_link", 1, minclsyspri, 0, 0,
692 		    0);
693 	}
694 	mutex_exit(&pcie_link_tq_mutex);
695 
696 
697 	/*
698 	 * Create a "devctl" minor node to support DEVCTL_DEVICE_*
699 	 * and DEVCTL_BUS_* ioctls to this bus.
700 	 */
701 	if ((ret = ddi_create_minor_node(dip, "devctl", S_IFCHR,
702 	    PCI_MINOR_NUM(ddi_get_instance(dip), PCI_DEVCTL_MINOR),
703 	    DDI_NT_NEXUS, 0)) != DDI_SUCCESS) {
704 		PCIE_DBG("Failed to create devctl minor node for %s%d\n",
705 		    ddi_driver_name(dip), ddi_get_instance(dip));
706 
707 		return (ret);
708 	}
709 
710 	if ((ret = pcie_hp_init(dip, arg)) != DDI_SUCCESS) {
711 		/*
712 		 * On some x86 platforms, we observed unexpected hotplug
713 		 * initialization failures in recent years. The known cause
714 		 * is a hardware issue: while the problem PCI bridges have
715 		 * the Hotplug Capable registers set, the machine actually
716 		 * does not implement the expected ACPI object.
717 		 *
718 		 * We don't want to stop PCI driver attach and system boot
719 		 * just because of this hotplug initialization failure.
720 		 * Continue with a debug message printed.
721 		 */
722 		PCIE_DBG("%s%d: Failed setting hotplug framework\n",
723 		    ddi_driver_name(dip), ddi_get_instance(dip));
724 
725 #if defined(__sparc)
726 		ddi_remove_minor_node(dip, "devctl");
727 
728 		return (ret);
729 #endif /* defined(__sparc) */
730 	}
731 
732 	return (DDI_SUCCESS);
733 }
734 
735 /* ARGSUSED */
736 int
737 pcie_uninit(dev_info_t *dip)
738 {
739 	int	ret = DDI_SUCCESS;
740 
741 	if (pcie_ari_is_enabled(dip) == PCIE_ARI_FORW_ENABLED)
742 		(void) pcie_ari_disable(dip);
743 
744 	if ((ret = pcie_hp_uninit(dip)) != DDI_SUCCESS) {
745 		PCIE_DBG("Failed to uninitialize hotplug for %s%d\n",
746 		    ddi_driver_name(dip), ddi_get_instance(dip));
747 
748 		return (ret);
749 	}
750 
751 	if (pcie_link_bw_supported(dip)) {
752 		(void) pcie_link_bw_disable(dip);
753 	}
754 
755 	ddi_remove_minor_node(dip, "devctl");
756 
757 	return (ret);
758 }
759 
760 /*
761  * PCIe module interface for enabling hotplug interrupt.
762  *
763  * It should be called after pcie_init() is done and bus driver's
764  * interrupt handlers have being attached.
765  */
766 int
767 pcie_hpintr_enable(dev_info_t *dip)
768 {
769 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
770 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
771 
772 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
773 		(void) (ctrl_p->hc_ops.enable_hpc_intr)(ctrl_p);
774 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
775 		(void) pcishpc_enable_irqs(ctrl_p);
776 	}
777 	return (DDI_SUCCESS);
778 }
779 
780 /*
781  * PCIe module interface for disabling hotplug interrupt.
782  *
783  * It should be called before pcie_uninit() is called and bus driver's
784  * interrupt handlers is dettached.
785  */
786 int
787 pcie_hpintr_disable(dev_info_t *dip)
788 {
789 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
790 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
791 
792 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
793 		(void) (ctrl_p->hc_ops.disable_hpc_intr)(ctrl_p);
794 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
795 		(void) pcishpc_disable_irqs(ctrl_p);
796 	}
797 	return (DDI_SUCCESS);
798 }
799 
800 /* ARGSUSED */
801 int
802 pcie_intr(dev_info_t *dip)
803 {
804 	int hp, lbw;
805 
806 	hp = pcie_hp_intr(dip);
807 	lbw = pcie_link_bw_intr(dip);
808 
809 	if (hp == DDI_INTR_CLAIMED || lbw == DDI_INTR_CLAIMED) {
810 		return (DDI_INTR_CLAIMED);
811 	}
812 
813 	return (DDI_INTR_UNCLAIMED);
814 }
815 
816 /* ARGSUSED */
817 int
818 pcie_open(dev_info_t *dip, dev_t *devp, int flags, int otyp, cred_t *credp)
819 {
820 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
821 
822 	/*
823 	 * Make sure the open is for the right file type.
824 	 */
825 	if (otyp != OTYP_CHR)
826 		return (EINVAL);
827 
828 	/*
829 	 * Handle the open by tracking the device state.
830 	 */
831 	if ((bus_p->bus_soft_state == PCI_SOFT_STATE_OPEN_EXCL) ||
832 	    ((flags & FEXCL) &&
833 	    (bus_p->bus_soft_state != PCI_SOFT_STATE_CLOSED))) {
834 		return (EBUSY);
835 	}
836 
837 	if (flags & FEXCL)
838 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN_EXCL;
839 	else
840 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN;
841 
842 	return (0);
843 }
844 
845 /* ARGSUSED */
846 int
847 pcie_close(dev_info_t *dip, dev_t dev, int flags, int otyp, cred_t *credp)
848 {
849 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
850 
851 	if (otyp != OTYP_CHR)
852 		return (EINVAL);
853 
854 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
855 
856 	return (0);
857 }
858 
859 /* ARGSUSED */
860 int
861 pcie_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg, int mode,
862     cred_t *credp, int *rvalp)
863 {
864 	struct devctl_iocdata	*dcp;
865 	uint_t			bus_state;
866 	int			rv = DDI_SUCCESS;
867 
868 	/*
869 	 * We can use the generic implementation for devctl ioctl
870 	 */
871 	switch (cmd) {
872 	case DEVCTL_DEVICE_GETSTATE:
873 	case DEVCTL_DEVICE_ONLINE:
874 	case DEVCTL_DEVICE_OFFLINE:
875 	case DEVCTL_BUS_GETSTATE:
876 		return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
877 	default:
878 		break;
879 	}
880 
881 	/*
882 	 * read devctl ioctl data
883 	 */
884 	if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
885 		return (EFAULT);
886 
887 	switch (cmd) {
888 	case DEVCTL_BUS_QUIESCE:
889 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
890 			if (bus_state == BUS_QUIESCED)
891 				break;
892 		(void) ndi_set_bus_state(dip, BUS_QUIESCED);
893 		break;
894 	case DEVCTL_BUS_UNQUIESCE:
895 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
896 			if (bus_state == BUS_ACTIVE)
897 				break;
898 		(void) ndi_set_bus_state(dip, BUS_ACTIVE);
899 		break;
900 	case DEVCTL_BUS_RESET:
901 	case DEVCTL_BUS_RESETALL:
902 	case DEVCTL_DEVICE_RESET:
903 		rv = ENOTSUP;
904 		break;
905 	default:
906 		rv = ENOTTY;
907 	}
908 
909 	ndi_dc_freehdl(dcp);
910 	return (rv);
911 }
912 
913 /* ARGSUSED */
914 int
915 pcie_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
916     int flags, char *name, caddr_t valuep, int *lengthp)
917 {
918 	if (dev == DDI_DEV_T_ANY)
919 		goto skip;
920 
921 	if (PCIE_IS_HOTPLUG_CAPABLE(dip) &&
922 	    strcmp(name, "pci-occupant") == 0) {
923 		int	pci_dev = PCI_MINOR_NUM_TO_PCI_DEVNUM(getminor(dev));
924 
925 		pcie_hp_create_occupant_props(dip, dev, pci_dev);
926 	}
927 
928 skip:
929 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
930 }
931 
932 int
933 pcie_init_cfghdl(dev_info_t *cdip)
934 {
935 	pcie_bus_t		*bus_p;
936 	ddi_acc_handle_t	eh = NULL;
937 
938 	bus_p = PCIE_DIP2BUS(cdip);
939 	if (bus_p == NULL)
940 		return (DDI_FAILURE);
941 
942 	/* Create an config access special to error handling */
943 	if (pci_config_setup(cdip, &eh) != DDI_SUCCESS) {
944 		cmn_err(CE_WARN, "Cannot setup config access"
945 		    " for BDF 0x%x\n", bus_p->bus_bdf);
946 		return (DDI_FAILURE);
947 	}
948 
949 	bus_p->bus_cfg_hdl = eh;
950 	return (DDI_SUCCESS);
951 }
952 
953 void
954 pcie_fini_cfghdl(dev_info_t *cdip)
955 {
956 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(cdip);
957 
958 	pci_config_teardown(&bus_p->bus_cfg_hdl);
959 }
960 
961 void
962 pcie_determine_serial(dev_info_t *dip)
963 {
964 	pcie_bus_t		*bus_p = PCIE_DIP2BUS(dip);
965 	ddi_acc_handle_t	h;
966 	uint16_t		cap;
967 	uchar_t			serial[8];
968 	uint32_t		low, high;
969 
970 	if (!PCIE_IS_PCIE(bus_p))
971 		return;
972 
973 	h = bus_p->bus_cfg_hdl;
974 
975 	if ((PCI_CAP_LOCATE(h, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap)) ==
976 	    DDI_FAILURE)
977 		return;
978 
979 	high = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_UPPER_DW);
980 	low = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_LOWER_DW);
981 
982 	/*
983 	 * Here, we're trying to figure out if we had an invalid PCIe read. From
984 	 * looking at the contents of the value, it can be hard to tell the
985 	 * difference between a value that has all 1s correctly versus if we had
986 	 * an error. In this case, we only assume it's invalid if both register
987 	 * reads are invalid. We also only use 32-bit reads as we're not sure if
988 	 * all devices will support these as 64-bit reads, while we know that
989 	 * they'll support these as 32-bit reads.
990 	 */
991 	if (high == PCI_EINVAL32 && low == PCI_EINVAL32)
992 		return;
993 
994 	serial[0] = low & 0xff;
995 	serial[1] = (low >> 8) & 0xff;
996 	serial[2] = (low >> 16) & 0xff;
997 	serial[3] = (low >> 24) & 0xff;
998 	serial[4] = high & 0xff;
999 	serial[5] = (high >> 8) & 0xff;
1000 	serial[6] = (high >> 16) & 0xff;
1001 	serial[7] = (high >> 24) & 0xff;
1002 
1003 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, "pcie-serial",
1004 	    serial, sizeof (serial));
1005 }
1006 
1007 static void
1008 pcie_determine_aspm(dev_info_t *dip)
1009 {
1010 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1011 	uint32_t	linkcap;
1012 	uint16_t	linkctl;
1013 
1014 	if (!PCIE_IS_PCIE(bus_p))
1015 		return;
1016 
1017 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1018 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
1019 
1020 	switch (linkcap & PCIE_LINKCAP_ASPM_SUP_MASK) {
1021 	case PCIE_LINKCAP_ASPM_SUP_L0S:
1022 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1023 		    "pcie-aspm-support", "l0s");
1024 		break;
1025 	case PCIE_LINKCAP_ASPM_SUP_L1:
1026 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1027 		    "pcie-aspm-support", "l1");
1028 		break;
1029 	case PCIE_LINKCAP_ASPM_SUP_L0S_L1:
1030 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1031 		    "pcie-aspm-support", "l0s,l1");
1032 		break;
1033 	default:
1034 		return;
1035 	}
1036 
1037 	switch (linkctl & PCIE_LINKCTL_ASPM_CTL_MASK) {
1038 	case PCIE_LINKCTL_ASPM_CTL_DIS:
1039 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1040 		    "pcie-aspm-state", "disabled");
1041 		break;
1042 	case PCIE_LINKCTL_ASPM_CTL_L0S:
1043 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1044 		    "pcie-aspm-state", "l0s");
1045 		break;
1046 	case PCIE_LINKCTL_ASPM_CTL_L1:
1047 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1048 		    "pcie-aspm-state", "l1");
1049 		break;
1050 	case PCIE_LINKCTL_ASPM_CTL_L0S_L1:
1051 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1052 		    "pcie-aspm-state", "l0s,l1");
1053 		break;
1054 	}
1055 }
1056 
1057 /*
1058  * PCI-Express child device initialization. Note, this only will be called on a
1059  * device or function if we actually attach a device driver to it.
1060  *
1061  * This function enables generic pci-express interrupts and error handling.
1062  * Note, tagging, the max packet size, and related are all set up before this
1063  * point and is performed in pcie_fabric_setup().
1064  *
1065  * @param pdip		root dip (root nexus's dip)
1066  * @param cdip		child's dip (device's dip)
1067  * @return		DDI_SUCCESS or DDI_FAILURE
1068  */
1069 /* ARGSUSED */
1070 int
1071 pcie_initchild(dev_info_t *cdip)
1072 {
1073 	uint16_t		tmp16, reg16;
1074 	pcie_bus_t		*bus_p;
1075 	uint32_t		devid, venid;
1076 
1077 	bus_p = PCIE_DIP2BUS(cdip);
1078 	if (bus_p == NULL) {
1079 		PCIE_DBG("%s: BUS not found.\n",
1080 		    ddi_driver_name(cdip));
1081 
1082 		return (DDI_FAILURE);
1083 	}
1084 
1085 	if (pcie_init_cfghdl(cdip) != DDI_SUCCESS)
1086 		return (DDI_FAILURE);
1087 
1088 	/*
1089 	 * Update pcie_bus_t with real Vendor Id Device Id.
1090 	 *
1091 	 * For assigned devices in IOV environment, the OBP will return
1092 	 * faked device id/vendor id on configration read and for both
1093 	 * properties in root domain. translate_devid() function will
1094 	 * update the properties with real device-id/vendor-id on such
1095 	 * platforms, so that we can utilize the properties here to get
1096 	 * real device-id/vendor-id and overwrite the faked ids.
1097 	 *
1098 	 * For unassigned devices or devices in non-IOV environment, the
1099 	 * operation below won't make a difference.
1100 	 *
1101 	 * The IOV implementation only supports assignment of PCIE
1102 	 * endpoint devices. Devices under pci-pci bridges don't need
1103 	 * operation like this.
1104 	 */
1105 	devid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1106 	    "device-id", -1);
1107 	venid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1108 	    "vendor-id", -1);
1109 	bus_p->bus_dev_ven_id = (devid << 16) | (venid & 0xffff);
1110 
1111 	/* Clear the device's status register */
1112 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_STAT);
1113 	PCIE_PUT(16, bus_p, PCI_CONF_STAT, reg16);
1114 
1115 	/* Setup the device's command register */
1116 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_COMM);
1117 	tmp16 = (reg16 & pcie_command_default_fw) | pcie_command_default;
1118 
1119 	if (pcie_serr_disable_flag && PCIE_IS_PCIE(bus_p))
1120 		tmp16 &= ~PCI_COMM_SERR_ENABLE;
1121 
1122 	PCIE_PUT(16, bus_p, PCI_CONF_COMM, tmp16);
1123 	PCIE_DBG_CFG(cdip, bus_p, "COMMAND", 16, PCI_CONF_COMM, reg16);
1124 
1125 	/*
1126 	 * If the device has a bus control register then program it
1127 	 * based on the settings in the command register.
1128 	 */
1129 	if (PCIE_IS_BDG(bus_p)) {
1130 		/* Clear the device's secondary status register */
1131 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_SEC_STATUS);
1132 		PCIE_PUT(16, bus_p, PCI_BCNF_SEC_STATUS, reg16);
1133 
1134 		/* Setup the device's secondary command register */
1135 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_BCNTRL);
1136 		tmp16 = (reg16 & pcie_bdg_command_default_fw);
1137 
1138 		tmp16 |= PCI_BCNF_BCNTRL_SERR_ENABLE;
1139 		/*
1140 		 * Workaround for this Nvidia bridge. Don't enable the SERR
1141 		 * enable bit in the bridge control register as it could lead to
1142 		 * bogus NMIs.
1143 		 */
1144 		if (bus_p->bus_dev_ven_id == 0x037010DE)
1145 			tmp16 &= ~PCI_BCNF_BCNTRL_SERR_ENABLE;
1146 
1147 		if (pcie_command_default & PCI_COMM_PARITY_DETECT)
1148 			tmp16 |= PCI_BCNF_BCNTRL_PARITY_ENABLE;
1149 
1150 		/*
1151 		 * Enable Master Abort Mode only if URs have not been masked.
1152 		 * For PCI and PCIe-PCI bridges, enabling this bit causes a
1153 		 * Master Aborts/UR to be forwarded as a UR/TA or SERR.  If this
1154 		 * bit is masked, posted requests are dropped and non-posted
1155 		 * requests are returned with -1.
1156 		 */
1157 		if (pcie_aer_uce_mask & PCIE_AER_UCE_UR)
1158 			tmp16 &= ~PCI_BCNF_BCNTRL_MAST_AB_MODE;
1159 		else
1160 			tmp16 |= PCI_BCNF_BCNTRL_MAST_AB_MODE;
1161 		PCIE_PUT(16, bus_p, PCI_BCNF_BCNTRL, tmp16);
1162 		PCIE_DBG_CFG(cdip, bus_p, "SEC CMD", 16, PCI_BCNF_BCNTRL,
1163 		    reg16);
1164 	}
1165 
1166 	if (PCIE_IS_PCIE(bus_p)) {
1167 		/* Setup PCIe device control register */
1168 		reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
1169 		/* note: MPS/MRRS are initialized in pcie_initchild_mps() */
1170 		tmp16 = (reg16 & (PCIE_DEVCTL_MAX_READ_REQ_MASK |
1171 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
1172 		    (pcie_devctl_default & ~(PCIE_DEVCTL_MAX_READ_REQ_MASK |
1173 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK));
1174 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
1175 		PCIE_DBG_CAP(cdip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
1176 
1177 		/* Enable PCIe errors */
1178 		pcie_enable_errors(cdip);
1179 
1180 		pcie_determine_serial(cdip);
1181 
1182 		pcie_determine_aspm(cdip);
1183 
1184 		pcie_capture_speeds(cdip);
1185 	}
1186 
1187 	bus_p->bus_ari = B_FALSE;
1188 	if ((pcie_ari_is_enabled(ddi_get_parent(cdip))
1189 	    == PCIE_ARI_FORW_ENABLED) && (pcie_ari_device(cdip)
1190 	    == PCIE_ARI_DEVICE)) {
1191 		bus_p->bus_ari = B_TRUE;
1192 	}
1193 
1194 	return (DDI_SUCCESS);
1195 }
1196 
1197 static void
1198 pcie_init_pfd(dev_info_t *dip)
1199 {
1200 	pf_data_t	*pfd_p = PCIE_ZALLOC(pf_data_t);
1201 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1202 
1203 	PCIE_DIP2PFD(dip) = pfd_p;
1204 
1205 	pfd_p->pe_bus_p = bus_p;
1206 	pfd_p->pe_severity_flags = 0;
1207 	pfd_p->pe_severity_mask = 0;
1208 	pfd_p->pe_orig_severity_flags = 0;
1209 	pfd_p->pe_lock = B_FALSE;
1210 	pfd_p->pe_valid = B_FALSE;
1211 
1212 	/* Allocate the root fault struct for both RC and RP */
1213 	if (PCIE_IS_ROOT(bus_p)) {
1214 		PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1215 		PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1216 		PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1217 	}
1218 
1219 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1220 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1221 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1222 
1223 	if (PCIE_IS_BDG(bus_p))
1224 		PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1225 
1226 	if (PCIE_IS_PCIE(bus_p)) {
1227 		PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1228 
1229 		if (PCIE_IS_RP(bus_p))
1230 			PCIE_RP_REG(pfd_p) =
1231 			    PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1232 
1233 		PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1234 		PCIE_ADV_REG(pfd_p)->pcie_ue_tgt_bdf = PCIE_INVALID_BDF;
1235 
1236 		if (PCIE_IS_RP(bus_p)) {
1237 			PCIE_ADV_RP_REG(pfd_p) =
1238 			    PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1239 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id =
1240 			    PCIE_INVALID_BDF;
1241 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id =
1242 			    PCIE_INVALID_BDF;
1243 		} else if (PCIE_IS_PCIE_BDG(bus_p)) {
1244 			PCIE_ADV_BDG_REG(pfd_p) =
1245 			    PCIE_ZALLOC(pf_pcie_adv_bdg_err_regs_t);
1246 			PCIE_ADV_BDG_REG(pfd_p)->pcie_sue_tgt_bdf =
1247 			    PCIE_INVALID_BDF;
1248 		}
1249 
1250 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1251 			PCIX_BDG_ERR_REG(pfd_p) =
1252 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1253 
1254 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1255 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1256 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1257 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1258 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1259 			}
1260 		}
1261 
1262 		PCIE_SLOT_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_slot_regs_t);
1263 		PCIE_SLOT_REG(pfd_p)->pcie_slot_regs_valid = B_FALSE;
1264 		PCIE_SLOT_REG(pfd_p)->pcie_slot_cap = 0;
1265 		PCIE_SLOT_REG(pfd_p)->pcie_slot_control = 0;
1266 		PCIE_SLOT_REG(pfd_p)->pcie_slot_status = 0;
1267 
1268 	} else if (PCIE_IS_PCIX(bus_p)) {
1269 		if (PCIE_IS_BDG(bus_p)) {
1270 			PCIX_BDG_ERR_REG(pfd_p) =
1271 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1272 
1273 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1274 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1275 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1276 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1277 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1278 			}
1279 		} else {
1280 			PCIX_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcix_err_regs_t);
1281 
1282 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1283 				PCIX_ECC_REG(pfd_p) =
1284 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1285 		}
1286 	}
1287 }
1288 
1289 static void
1290 pcie_fini_pfd(dev_info_t *dip)
1291 {
1292 	pf_data_t	*pfd_p = PCIE_DIP2PFD(dip);
1293 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1294 
1295 	if (PCIE_IS_PCIE(bus_p)) {
1296 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1297 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1298 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1299 				    sizeof (pf_pcix_ecc_regs_t));
1300 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1301 				    sizeof (pf_pcix_ecc_regs_t));
1302 			}
1303 
1304 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1305 			    sizeof (pf_pcix_bdg_err_regs_t));
1306 		}
1307 
1308 		if (PCIE_IS_RP(bus_p))
1309 			kmem_free(PCIE_ADV_RP_REG(pfd_p),
1310 			    sizeof (pf_pcie_adv_rp_err_regs_t));
1311 		else if (PCIE_IS_PCIE_BDG(bus_p))
1312 			kmem_free(PCIE_ADV_BDG_REG(pfd_p),
1313 			    sizeof (pf_pcie_adv_bdg_err_regs_t));
1314 
1315 		kmem_free(PCIE_ADV_REG(pfd_p),
1316 		    sizeof (pf_pcie_adv_err_regs_t));
1317 
1318 		if (PCIE_IS_RP(bus_p))
1319 			kmem_free(PCIE_RP_REG(pfd_p),
1320 			    sizeof (pf_pcie_rp_err_regs_t));
1321 
1322 		kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1323 	} else if (PCIE_IS_PCIX(bus_p)) {
1324 		if (PCIE_IS_BDG(bus_p)) {
1325 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1326 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1327 				    sizeof (pf_pcix_ecc_regs_t));
1328 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1329 				    sizeof (pf_pcix_ecc_regs_t));
1330 			}
1331 
1332 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1333 			    sizeof (pf_pcix_bdg_err_regs_t));
1334 		} else {
1335 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1336 				kmem_free(PCIX_ECC_REG(pfd_p),
1337 				    sizeof (pf_pcix_ecc_regs_t));
1338 
1339 			kmem_free(PCIX_ERR_REG(pfd_p),
1340 			    sizeof (pf_pcix_err_regs_t));
1341 		}
1342 	}
1343 
1344 	if (PCIE_IS_BDG(bus_p))
1345 		kmem_free(PCI_BDG_ERR_REG(pfd_p),
1346 		    sizeof (pf_pci_bdg_err_regs_t));
1347 
1348 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1349 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1350 
1351 	if (PCIE_IS_ROOT(bus_p)) {
1352 		kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1353 		kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1354 	}
1355 
1356 	kmem_free(PCIE_DIP2PFD(dip), sizeof (pf_data_t));
1357 
1358 	PCIE_DIP2PFD(dip) = NULL;
1359 }
1360 
1361 
1362 /*
1363  * Special functions to allocate pf_data_t's for PCIe root complexes.
1364  * Note: Root Complex not Root Port
1365  */
1366 void
1367 pcie_rc_init_pfd(dev_info_t *dip, pf_data_t *pfd_p)
1368 {
1369 	pfd_p->pe_bus_p = PCIE_DIP2DOWNBUS(dip);
1370 	pfd_p->pe_severity_flags = 0;
1371 	pfd_p->pe_severity_mask = 0;
1372 	pfd_p->pe_orig_severity_flags = 0;
1373 	pfd_p->pe_lock = B_FALSE;
1374 	pfd_p->pe_valid = B_FALSE;
1375 
1376 	PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1377 	PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1378 	PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1379 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1380 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1381 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1382 	PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1383 	PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1384 	PCIE_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1385 	PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1386 	PCIE_ADV_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1387 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = PCIE_INVALID_BDF;
1388 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = PCIE_INVALID_BDF;
1389 
1390 	PCIE_ADV_REG(pfd_p)->pcie_ue_sev = pcie_aer_uce_severity;
1391 }
1392 
1393 void
1394 pcie_rc_fini_pfd(pf_data_t *pfd_p)
1395 {
1396 	kmem_free(PCIE_ADV_RP_REG(pfd_p), sizeof (pf_pcie_adv_rp_err_regs_t));
1397 	kmem_free(PCIE_ADV_REG(pfd_p), sizeof (pf_pcie_adv_err_regs_t));
1398 	kmem_free(PCIE_RP_REG(pfd_p), sizeof (pf_pcie_rp_err_regs_t));
1399 	kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1400 	kmem_free(PCI_BDG_ERR_REG(pfd_p), sizeof (pf_pci_bdg_err_regs_t));
1401 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1402 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1403 	kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1404 	kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1405 }
1406 
1407 /*
1408  * init pcie_bus_t for root complex
1409  *
1410  * Only a few of the fields in bus_t is valid for root complex.
1411  * The fields that are bracketed are initialized in this routine:
1412  *
1413  * dev_info_t *		<bus_dip>
1414  * dev_info_t *		bus_rp_dip
1415  * ddi_acc_handle_t	bus_cfg_hdl
1416  * uint_t		<bus_fm_flags>
1417  * pcie_req_id_t	bus_bdf
1418  * pcie_req_id_t	bus_rp_bdf
1419  * uint32_t		bus_dev_ven_id
1420  * uint8_t		bus_rev_id
1421  * uint8_t		<bus_hdr_type>
1422  * uint16_t		<bus_dev_type>
1423  * uint8_t		bus_bdg_secbus
1424  * uint16_t		bus_pcie_off
1425  * uint16_t		<bus_aer_off>
1426  * uint16_t		bus_pcix_off
1427  * uint16_t		bus_ecc_ver
1428  * pci_bus_range_t	bus_bus_range
1429  * ppb_ranges_t	*	bus_addr_ranges
1430  * int			bus_addr_entries
1431  * pci_regspec_t *	bus_assigned_addr
1432  * int			bus_assigned_entries
1433  * pf_data_t *		bus_pfd
1434  * pcie_domain_t *	<bus_dom>
1435  * int			bus_mps
1436  * uint64_t		bus_cfgacc_base
1437  * void	*		bus_plat_private
1438  */
1439 void
1440 pcie_rc_init_bus(dev_info_t *dip)
1441 {
1442 	pcie_bus_t *bus_p;
1443 
1444 	bus_p = (pcie_bus_t *)kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1445 	bus_p->bus_dip = dip;
1446 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_RC_PSEUDO;
1447 	bus_p->bus_hdr_type = PCI_HEADER_ONE;
1448 
1449 	/* Fake that there are AER logs */
1450 	bus_p->bus_aer_off = (uint16_t)-1;
1451 
1452 	/* Needed only for handle lookup */
1453 	atomic_or_uint(&bus_p->bus_fm_flags, PF_FM_READY);
1454 
1455 	ndi_set_bus_private(dip, B_FALSE, DEVI_PORT_TYPE_PCI, bus_p);
1456 
1457 	PCIE_BUS2DOM(bus_p) = PCIE_ZALLOC(pcie_domain_t);
1458 }
1459 
1460 void
1461 pcie_rc_fini_bus(dev_info_t *dip)
1462 {
1463 	pcie_bus_t *bus_p = PCIE_DIP2DOWNBUS(dip);
1464 	ndi_set_bus_private(dip, B_FALSE, 0, NULL);
1465 	kmem_free(PCIE_BUS2DOM(bus_p), sizeof (pcie_domain_t));
1466 	kmem_free(bus_p, sizeof (pcie_bus_t));
1467 }
1468 
1469 static int
1470 pcie_width_to_int(pcie_link_width_t width)
1471 {
1472 	switch (width) {
1473 	case PCIE_LINK_WIDTH_X1:
1474 		return (1);
1475 	case PCIE_LINK_WIDTH_X2:
1476 		return (2);
1477 	case PCIE_LINK_WIDTH_X4:
1478 		return (4);
1479 	case PCIE_LINK_WIDTH_X8:
1480 		return (8);
1481 	case PCIE_LINK_WIDTH_X12:
1482 		return (12);
1483 	case PCIE_LINK_WIDTH_X16:
1484 		return (16);
1485 	case PCIE_LINK_WIDTH_X32:
1486 		return (32);
1487 	default:
1488 		return (0);
1489 	}
1490 }
1491 
1492 /*
1493  * Return the speed in Transfers / second. This is a signed quantity to match
1494  * the ndi/ddi property interfaces.
1495  */
1496 static int64_t
1497 pcie_speed_to_int(pcie_link_speed_t speed)
1498 {
1499 	switch (speed) {
1500 	case PCIE_LINK_SPEED_2_5:
1501 		return (2500000000LL);
1502 	case PCIE_LINK_SPEED_5:
1503 		return (5000000000LL);
1504 	case PCIE_LINK_SPEED_8:
1505 		return (8000000000LL);
1506 	case PCIE_LINK_SPEED_16:
1507 		return (16000000000LL);
1508 	case PCIE_LINK_SPEED_32:
1509 		return (32000000000LL);
1510 	case PCIE_LINK_SPEED_64:
1511 		return (64000000000LL);
1512 	default:
1513 		return (0);
1514 	}
1515 }
1516 
1517 /*
1518  * Translate the recorded speed information into devinfo properties.
1519  */
1520 static void
1521 pcie_speeds_to_devinfo(dev_info_t *dip, pcie_bus_t *bus_p)
1522 {
1523 	if (bus_p->bus_max_width != PCIE_LINK_WIDTH_UNKNOWN) {
1524 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1525 		    "pcie-link-maximum-width",
1526 		    pcie_width_to_int(bus_p->bus_max_width));
1527 	}
1528 
1529 	if (bus_p->bus_cur_width != PCIE_LINK_WIDTH_UNKNOWN) {
1530 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1531 		    "pcie-link-current-width",
1532 		    pcie_width_to_int(bus_p->bus_cur_width));
1533 	}
1534 
1535 	if (bus_p->bus_cur_speed != PCIE_LINK_SPEED_UNKNOWN) {
1536 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1537 		    "pcie-link-current-speed",
1538 		    pcie_speed_to_int(bus_p->bus_cur_speed));
1539 	}
1540 
1541 	if (bus_p->bus_max_speed != PCIE_LINK_SPEED_UNKNOWN) {
1542 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1543 		    "pcie-link-maximum-speed",
1544 		    pcie_speed_to_int(bus_p->bus_max_speed));
1545 	}
1546 
1547 	if (bus_p->bus_target_speed != PCIE_LINK_SPEED_UNKNOWN) {
1548 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1549 		    "pcie-link-target-speed",
1550 		    pcie_speed_to_int(bus_p->bus_target_speed));
1551 	}
1552 
1553 	if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) {
1554 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
1555 		    "pcie-link-admin-target-speed");
1556 	}
1557 
1558 	if (bus_p->bus_sup_speed != PCIE_LINK_SPEED_UNKNOWN) {
1559 		int64_t speeds[PCIE_NSPEEDS];
1560 		uint_t nspeeds = 0;
1561 
1562 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_2_5) {
1563 			speeds[nspeeds++] =
1564 			    pcie_speed_to_int(PCIE_LINK_SPEED_2_5);
1565 		}
1566 
1567 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_5) {
1568 			speeds[nspeeds++] =
1569 			    pcie_speed_to_int(PCIE_LINK_SPEED_5);
1570 		}
1571 
1572 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_8) {
1573 			speeds[nspeeds++] =
1574 			    pcie_speed_to_int(PCIE_LINK_SPEED_8);
1575 		}
1576 
1577 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_16) {
1578 			speeds[nspeeds++] =
1579 			    pcie_speed_to_int(PCIE_LINK_SPEED_16);
1580 		}
1581 
1582 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_32) {
1583 			speeds[nspeeds++] =
1584 			    pcie_speed_to_int(PCIE_LINK_SPEED_32);
1585 		}
1586 
1587 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_64) {
1588 			speeds[nspeeds++] =
1589 			    pcie_speed_to_int(PCIE_LINK_SPEED_64);
1590 		}
1591 
1592 		(void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip,
1593 		    "pcie-link-supported-speeds", speeds, nspeeds);
1594 	}
1595 }
1596 
1597 /*
1598  * We need to capture the supported, maximum, and current device speed and
1599  * width. The way that this has been done has changed over time.
1600  *
1601  * Prior to PCIe Gen 3, there were only current and supported speed fields.
1602  * These were found in the link status and link capabilities registers of the
1603  * PCI express capability. With the change to PCIe Gen 3, the information in the
1604  * link capabilities changed to the maximum value. The supported speeds vector
1605  * was moved to the link capabilities 2 register.
1606  *
1607  * Now, a device may not implement some of these registers. To determine whether
1608  * or not it's here, we have to do the following. First, we need to check the
1609  * revision of the PCI express capability. The link capabilities 2 register did
1610  * not exist prior to version 2 of this capability. If a modern device does not
1611  * implement it, it is supposed to return zero for the register.
1612  */
1613 static void
1614 pcie_capture_speeds(dev_info_t *dip)
1615 {
1616 	uint16_t	vers, status;
1617 	uint32_t	cap, cap2, ctl2;
1618 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1619 	dev_info_t	*rcdip;
1620 
1621 	if (!PCIE_IS_PCIE(bus_p))
1622 		return;
1623 
1624 	rcdip = pcie_get_rc_dip(dip);
1625 	if (bus_p->bus_cfg_hdl == NULL) {
1626 		vers = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1627 		    bus_p->bus_pcie_off + PCIE_PCIECAP);
1628 	} else {
1629 		vers = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
1630 	}
1631 	if (vers == PCI_EINVAL16)
1632 		return;
1633 	vers &= PCIE_PCIECAP_VER_MASK;
1634 
1635 	/*
1636 	 * Verify the capability's version.
1637 	 */
1638 	switch (vers) {
1639 	case PCIE_PCIECAP_VER_1_0:
1640 		cap2 = 0;
1641 		ctl2 = 0;
1642 		break;
1643 	case PCIE_PCIECAP_VER_2_0:
1644 		if (bus_p->bus_cfg_hdl == NULL) {
1645 			cap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1646 			    bus_p->bus_pcie_off + PCIE_LINKCAP2);
1647 			ctl2 = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1648 			    bus_p->bus_pcie_off + PCIE_LINKCTL2);
1649 		} else {
1650 			cap2 = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP2);
1651 			ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
1652 		}
1653 		if (cap2 == PCI_EINVAL32)
1654 			cap2 = 0;
1655 		if (ctl2 == PCI_EINVAL16)
1656 			ctl2 = 0;
1657 		break;
1658 	default:
1659 		/* Don't try and handle an unknown version */
1660 		return;
1661 	}
1662 
1663 	if (bus_p->bus_cfg_hdl == NULL) {
1664 		status = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1665 		    bus_p->bus_pcie_off + PCIE_LINKSTS);
1666 		cap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1667 		    bus_p->bus_pcie_off + PCIE_LINKCAP);
1668 	} else {
1669 		status = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
1670 		cap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1671 	}
1672 	if (status == PCI_EINVAL16 || cap == PCI_EINVAL32)
1673 		return;
1674 
1675 	mutex_enter(&bus_p->bus_speed_mutex);
1676 
1677 	switch (status & PCIE_LINKSTS_SPEED_MASK) {
1678 	case PCIE_LINKSTS_SPEED_2_5:
1679 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_2_5;
1680 		break;
1681 	case PCIE_LINKSTS_SPEED_5:
1682 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_5;
1683 		break;
1684 	case PCIE_LINKSTS_SPEED_8:
1685 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_8;
1686 		break;
1687 	case PCIE_LINKSTS_SPEED_16:
1688 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_16;
1689 		break;
1690 	case PCIE_LINKSTS_SPEED_32:
1691 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_32;
1692 		break;
1693 	case PCIE_LINKSTS_SPEED_64:
1694 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_64;
1695 		break;
1696 	default:
1697 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN;
1698 		break;
1699 	}
1700 
1701 	switch (status & PCIE_LINKSTS_NEG_WIDTH_MASK) {
1702 	case PCIE_LINKSTS_NEG_WIDTH_X1:
1703 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X1;
1704 		break;
1705 	case PCIE_LINKSTS_NEG_WIDTH_X2:
1706 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X2;
1707 		break;
1708 	case PCIE_LINKSTS_NEG_WIDTH_X4:
1709 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X4;
1710 		break;
1711 	case PCIE_LINKSTS_NEG_WIDTH_X8:
1712 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X8;
1713 		break;
1714 	case PCIE_LINKSTS_NEG_WIDTH_X12:
1715 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X12;
1716 		break;
1717 	case PCIE_LINKSTS_NEG_WIDTH_X16:
1718 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X16;
1719 		break;
1720 	case PCIE_LINKSTS_NEG_WIDTH_X32:
1721 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X32;
1722 		break;
1723 	default:
1724 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN;
1725 		break;
1726 	}
1727 
1728 	switch (cap & PCIE_LINKCAP_MAX_WIDTH_MASK) {
1729 	case PCIE_LINKCAP_MAX_WIDTH_X1:
1730 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X1;
1731 		break;
1732 	case PCIE_LINKCAP_MAX_WIDTH_X2:
1733 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X2;
1734 		break;
1735 	case PCIE_LINKCAP_MAX_WIDTH_X4:
1736 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X4;
1737 		break;
1738 	case PCIE_LINKCAP_MAX_WIDTH_X8:
1739 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X8;
1740 		break;
1741 	case PCIE_LINKCAP_MAX_WIDTH_X12:
1742 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X12;
1743 		break;
1744 	case PCIE_LINKCAP_MAX_WIDTH_X16:
1745 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X16;
1746 		break;
1747 	case PCIE_LINKCAP_MAX_WIDTH_X32:
1748 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X32;
1749 		break;
1750 	default:
1751 		bus_p->bus_max_width = PCIE_LINK_WIDTH_UNKNOWN;
1752 		break;
1753 	}
1754 
1755 	/*
1756 	 * If we have the Link Capabilities 2, then we can get the supported
1757 	 * speeds from it and treat the bits in Link Capabilities 1 as the
1758 	 * maximum. If we don't, then we need to follow the Implementation Note
1759 	 * in the standard under Link Capabilities 2. Effectively, this means
1760 	 * that if the value of 10b is set in Link Capabilities register, that
1761 	 * it supports both 2.5 and 5 GT/s speeds.
1762 	 */
1763 	if (cap2 != 0) {
1764 		if (cap2 & PCIE_LINKCAP2_SPEED_2_5)
1765 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_2_5;
1766 		if (cap2 & PCIE_LINKCAP2_SPEED_5)
1767 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_5;
1768 		if (cap2 & PCIE_LINKCAP2_SPEED_8)
1769 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_8;
1770 		if (cap2 & PCIE_LINKCAP2_SPEED_16)
1771 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_16;
1772 		if (cap2 & PCIE_LINKCAP2_SPEED_32)
1773 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_32;
1774 		if (cap2 & PCIE_LINKCAP2_SPEED_64)
1775 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_64;
1776 
1777 		switch (cap & PCIE_LINKCAP_MAX_SPEED_MASK) {
1778 		case PCIE_LINKCAP_MAX_SPEED_2_5:
1779 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1780 			break;
1781 		case PCIE_LINKCAP_MAX_SPEED_5:
1782 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1783 			break;
1784 		case PCIE_LINKCAP_MAX_SPEED_8:
1785 			bus_p->bus_max_speed = PCIE_LINK_SPEED_8;
1786 			break;
1787 		case PCIE_LINKCAP_MAX_SPEED_16:
1788 			bus_p->bus_max_speed = PCIE_LINK_SPEED_16;
1789 			break;
1790 		case PCIE_LINKCAP_MAX_SPEED_32:
1791 			bus_p->bus_max_speed = PCIE_LINK_SPEED_32;
1792 			break;
1793 		case PCIE_LINKCAP_MAX_SPEED_64:
1794 			bus_p->bus_max_speed = PCIE_LINK_SPEED_64;
1795 			break;
1796 		default:
1797 			bus_p->bus_max_speed = PCIE_LINK_SPEED_UNKNOWN;
1798 			break;
1799 		}
1800 	} else {
1801 		if (cap & PCIE_LINKCAP_MAX_SPEED_5) {
1802 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1803 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5 |
1804 			    PCIE_LINK_SPEED_5;
1805 		} else if (cap & PCIE_LINKCAP_MAX_SPEED_2_5) {
1806 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1807 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5;
1808 		}
1809 	}
1810 
1811 	switch (ctl2 & PCIE_LINKCTL2_TARGET_SPEED_MASK) {
1812 	case PCIE_LINKCTL2_TARGET_SPEED_2_5:
1813 		bus_p->bus_target_speed = PCIE_LINK_SPEED_2_5;
1814 		break;
1815 	case PCIE_LINKCTL2_TARGET_SPEED_5:
1816 		bus_p->bus_target_speed = PCIE_LINK_SPEED_5;
1817 		break;
1818 	case PCIE_LINKCTL2_TARGET_SPEED_8:
1819 		bus_p->bus_target_speed = PCIE_LINK_SPEED_8;
1820 		break;
1821 	case PCIE_LINKCTL2_TARGET_SPEED_16:
1822 		bus_p->bus_target_speed = PCIE_LINK_SPEED_16;
1823 		break;
1824 	case PCIE_LINKCTL2_TARGET_SPEED_32:
1825 		bus_p->bus_target_speed = PCIE_LINK_SPEED_32;
1826 		break;
1827 	case PCIE_LINKCTL2_TARGET_SPEED_64:
1828 		bus_p->bus_target_speed = PCIE_LINK_SPEED_64;
1829 		break;
1830 	default:
1831 		bus_p->bus_target_speed = PCIE_LINK_SPEED_UNKNOWN;
1832 		break;
1833 	}
1834 
1835 	pcie_speeds_to_devinfo(dip, bus_p);
1836 	mutex_exit(&bus_p->bus_speed_mutex);
1837 }
1838 
1839 /*
1840  * partially init pcie_bus_t for device (dip,bdf) for accessing pci
1841  * config space
1842  *
1843  * This routine is invoked during boot, either after creating a devinfo node
1844  * (x86 case) or during px driver attach (sparc case); it is also invoked
1845  * in hotplug context after a devinfo node is created.
1846  *
1847  * The fields that are bracketed are initialized if flag PCIE_BUS_INITIAL
1848  * is set:
1849  *
1850  * dev_info_t *		<bus_dip>
1851  * dev_info_t *		<bus_rp_dip>
1852  * ddi_acc_handle_t	bus_cfg_hdl
1853  * uint_t		bus_fm_flags
1854  * pcie_req_id_t	<bus_bdf>
1855  * pcie_req_id_t	<bus_rp_bdf>
1856  * uint32_t		<bus_dev_ven_id>
1857  * uint8_t		<bus_rev_id>
1858  * uint8_t		<bus_hdr_type>
1859  * uint16_t		<bus_dev_type>
1860  * uint8_t		<bus_bdg_secbus
1861  * uint16_t		<bus_pcie_off>
1862  * uint16_t		<bus_aer_off>
1863  * uint16_t		<bus_pcix_off>
1864  * uint16_t		<bus_ecc_ver>
1865  * pci_bus_range_t	bus_bus_range
1866  * ppb_ranges_t	*	bus_addr_ranges
1867  * int			bus_addr_entries
1868  * pci_regspec_t *	bus_assigned_addr
1869  * int			bus_assigned_entries
1870  * pf_data_t *		bus_pfd
1871  * pcie_domain_t *	bus_dom
1872  * int			bus_mps
1873  * uint64_t		bus_cfgacc_base
1874  * void	*		bus_plat_private
1875  *
1876  * The fields that are bracketed are initialized if flag PCIE_BUS_FINAL
1877  * is set:
1878  *
1879  * dev_info_t *		bus_dip
1880  * dev_info_t *		bus_rp_dip
1881  * ddi_acc_handle_t	bus_cfg_hdl
1882  * uint_t		bus_fm_flags
1883  * pcie_req_id_t	bus_bdf
1884  * pcie_req_id_t	bus_rp_bdf
1885  * uint32_t		bus_dev_ven_id
1886  * uint8_t		bus_rev_id
1887  * uint8_t		bus_hdr_type
1888  * uint16_t		bus_dev_type
1889  * uint8_t		<bus_bdg_secbus>
1890  * uint16_t		bus_pcie_off
1891  * uint16_t		bus_aer_off
1892  * uint16_t		bus_pcix_off
1893  * uint16_t		bus_ecc_ver
1894  * pci_bus_range_t	<bus_bus_range>
1895  * ppb_ranges_t	*	<bus_addr_ranges>
1896  * int			<bus_addr_entries>
1897  * pci_regspec_t *	<bus_assigned_addr>
1898  * int			<bus_assigned_entries>
1899  * pf_data_t *		<bus_pfd>
1900  * pcie_domain_t *	bus_dom
1901  * int			bus_mps
1902  * uint64_t		bus_cfgacc_base
1903  * void	*		<bus_plat_private>
1904  */
1905 
1906 pcie_bus_t *
1907 pcie_init_bus(dev_info_t *dip, pcie_req_id_t bdf, uint8_t flags)
1908 {
1909 	uint16_t	status, base, baseptr, num_cap;
1910 	uint32_t	capid;
1911 	int		range_size;
1912 	pcie_bus_t	*bus_p = NULL;
1913 	dev_info_t	*rcdip;
1914 	dev_info_t	*pdip;
1915 	const char	*errstr = NULL;
1916 
1917 	if (!(flags & PCIE_BUS_INITIAL))
1918 		goto initial_done;
1919 
1920 	bus_p = kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1921 
1922 	bus_p->bus_dip = dip;
1923 	bus_p->bus_bdf = bdf;
1924 
1925 	rcdip = pcie_get_rc_dip(dip);
1926 	ASSERT(rcdip != NULL);
1927 
1928 	/* Save the Vendor ID, Device ID and revision ID */
1929 	bus_p->bus_dev_ven_id = pci_cfgacc_get32(rcdip, bdf, PCI_CONF_VENID);
1930 	bus_p->bus_rev_id = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID);
1931 	/* Save the Header Type */
1932 	bus_p->bus_hdr_type = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_HEADER);
1933 	bus_p->bus_hdr_type &= PCI_HEADER_TYPE_M;
1934 
1935 	/*
1936 	 * Figure out the device type and all the relavant capability offsets
1937 	 */
1938 	/* set default value */
1939 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_PCI_PSEUDO;
1940 
1941 	status = pci_cfgacc_get16(rcdip, bdf, PCI_CONF_STAT);
1942 	if (status == PCI_CAP_EINVAL16 || !(status & PCI_STAT_CAP))
1943 		goto caps_done; /* capability not supported */
1944 
1945 	/* Relevant conventional capabilities first */
1946 
1947 	/* Conventional caps: PCI_CAP_ID_PCI_E, PCI_CAP_ID_PCIX */
1948 	num_cap = 2;
1949 
1950 	switch (bus_p->bus_hdr_type) {
1951 	case PCI_HEADER_ZERO:
1952 		baseptr = PCI_CONF_CAP_PTR;
1953 		break;
1954 	case PCI_HEADER_PPB:
1955 		baseptr = PCI_BCNF_CAP_PTR;
1956 		break;
1957 	case PCI_HEADER_CARDBUS:
1958 		baseptr = PCI_CBUS_CAP_PTR;
1959 		break;
1960 	default:
1961 		cmn_err(CE_WARN, "%s: unexpected pci header type:%x",
1962 		    __func__, bus_p->bus_hdr_type);
1963 		goto caps_done;
1964 	}
1965 
1966 	base = baseptr;
1967 	for (base = pci_cfgacc_get8(rcdip, bdf, base); base && num_cap;
1968 	    base = pci_cfgacc_get8(rcdip, bdf, base + PCI_CAP_NEXT_PTR)) {
1969 		capid = pci_cfgacc_get8(rcdip, bdf, base);
1970 		uint16_t pcap;
1971 
1972 		switch (capid) {
1973 		case PCI_CAP_ID_PCI_E:
1974 			bus_p->bus_pcie_off = base;
1975 			pcap = pci_cfgacc_get16(rcdip, bdf, base +
1976 			    PCIE_PCIECAP);
1977 			bus_p->bus_dev_type = pcap & PCIE_PCIECAP_DEV_TYPE_MASK;
1978 			bus_p->bus_pcie_vers = pcap & PCIE_PCIECAP_VER_MASK;
1979 
1980 			/* Check and save PCIe hotplug capability information */
1981 			if ((PCIE_IS_RP(bus_p) || PCIE_IS_SWD(bus_p)) &&
1982 			    (pci_cfgacc_get16(rcdip, bdf, base + PCIE_PCIECAP)
1983 			    & PCIE_PCIECAP_SLOT_IMPL) &&
1984 			    (pci_cfgacc_get32(rcdip, bdf, base + PCIE_SLOTCAP)
1985 			    & PCIE_SLOTCAP_HP_CAPABLE))
1986 				bus_p->bus_hp_sup_modes |= PCIE_NATIVE_HP_MODE;
1987 
1988 			num_cap--;
1989 			break;
1990 		case PCI_CAP_ID_PCIX:
1991 			bus_p->bus_pcix_off = base;
1992 			if (PCIE_IS_BDG(bus_p))
1993 				bus_p->bus_ecc_ver =
1994 				    pci_cfgacc_get16(rcdip, bdf, base +
1995 				    PCI_PCIX_SEC_STATUS) & PCI_PCIX_VER_MASK;
1996 			else
1997 				bus_p->bus_ecc_ver =
1998 				    pci_cfgacc_get16(rcdip, bdf, base +
1999 				    PCI_PCIX_COMMAND) & PCI_PCIX_VER_MASK;
2000 			num_cap--;
2001 			break;
2002 		default:
2003 			break;
2004 		}
2005 	}
2006 
2007 	/* Check and save PCI hotplug (SHPC) capability information */
2008 	if (PCIE_IS_BDG(bus_p)) {
2009 		base = baseptr;
2010 		for (base = pci_cfgacc_get8(rcdip, bdf, base);
2011 		    base; base = pci_cfgacc_get8(rcdip, bdf,
2012 		    base + PCI_CAP_NEXT_PTR)) {
2013 			capid = pci_cfgacc_get8(rcdip, bdf, base);
2014 			if (capid == PCI_CAP_ID_PCI_HOTPLUG) {
2015 				bus_p->bus_pci_hp_off = base;
2016 				bus_p->bus_hp_sup_modes |= PCIE_PCI_HP_MODE;
2017 				break;
2018 			}
2019 		}
2020 	}
2021 
2022 	/* Then, relevant extended capabilities */
2023 
2024 	if (!PCIE_IS_PCIE(bus_p))
2025 		goto caps_done;
2026 
2027 	/* Extended caps: PCIE_EXT_CAP_ID_AER */
2028 	for (base = PCIE_EXT_CAP; base; base = (capid >>
2029 	    PCIE_EXT_CAP_NEXT_PTR_SHIFT) & PCIE_EXT_CAP_NEXT_PTR_MASK) {
2030 		capid = pci_cfgacc_get32(rcdip, bdf, base);
2031 		if (capid == PCI_CAP_EINVAL32)
2032 			break;
2033 		switch ((capid >> PCIE_EXT_CAP_ID_SHIFT) &
2034 		    PCIE_EXT_CAP_ID_MASK) {
2035 		case PCIE_EXT_CAP_ID_AER:
2036 			bus_p->bus_aer_off = base;
2037 			break;
2038 		case PCIE_EXT_CAP_ID_DEV3:
2039 			bus_p->bus_dev3_off = base;
2040 			break;
2041 		}
2042 	}
2043 
2044 caps_done:
2045 	/* save RP dip and RP bdf */
2046 	if (PCIE_IS_RP(bus_p)) {
2047 		bus_p->bus_rp_dip = dip;
2048 		bus_p->bus_rp_bdf = bus_p->bus_bdf;
2049 
2050 		bus_p->bus_fab = PCIE_ZALLOC(pcie_fabric_data_t);
2051 	} else {
2052 		for (pdip = ddi_get_parent(dip); pdip;
2053 		    pdip = ddi_get_parent(pdip)) {
2054 			pcie_bus_t *parent_bus_p = PCIE_DIP2BUS(pdip);
2055 
2056 			/*
2057 			 * If RP dip and RP bdf in parent's bus_t have
2058 			 * been initialized, simply use these instead of
2059 			 * continuing up to the RC.
2060 			 */
2061 			if (parent_bus_p->bus_rp_dip != NULL) {
2062 				bus_p->bus_rp_dip = parent_bus_p->bus_rp_dip;
2063 				bus_p->bus_rp_bdf = parent_bus_p->bus_rp_bdf;
2064 				break;
2065 			}
2066 
2067 			/*
2068 			 * When debugging be aware that some NVIDIA x86
2069 			 * architectures have 2 nodes for each RP, One at Bus
2070 			 * 0x0 and one at Bus 0x80.  The requester is from Bus
2071 			 * 0x80
2072 			 */
2073 			if (PCIE_IS_ROOT(parent_bus_p)) {
2074 				bus_p->bus_rp_dip = pdip;
2075 				bus_p->bus_rp_bdf = parent_bus_p->bus_bdf;
2076 				break;
2077 			}
2078 		}
2079 	}
2080 
2081 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
2082 	(void) atomic_swap_uint(&bus_p->bus_fm_flags, 0);
2083 
2084 	ndi_set_bus_private(dip, B_TRUE, DEVI_PORT_TYPE_PCI, (void *)bus_p);
2085 
2086 	if (PCIE_IS_HOTPLUG_CAPABLE(dip))
2087 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
2088 		    "hotplug-capable");
2089 
2090 initial_done:
2091 	if (!(flags & PCIE_BUS_FINAL))
2092 		goto final_done;
2093 
2094 	/* already initialized? */
2095 	bus_p = PCIE_DIP2BUS(dip);
2096 
2097 	/* Save the Range information if device is a switch/bridge */
2098 	if (PCIE_IS_BDG(bus_p)) {
2099 		/* get "bus_range" property */
2100 		range_size = sizeof (pci_bus_range_t);
2101 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2102 		    "bus-range", (caddr_t)&bus_p->bus_bus_range, &range_size)
2103 		    != DDI_PROP_SUCCESS) {
2104 			errstr = "Cannot find \"bus-range\" property";
2105 			cmn_err(CE_WARN,
2106 			    "PCIE init err info failed BDF 0x%x:%s\n",
2107 			    bus_p->bus_bdf, errstr);
2108 		}
2109 
2110 		/* get secondary bus number */
2111 		rcdip = pcie_get_rc_dip(dip);
2112 		ASSERT(rcdip != NULL);
2113 
2114 		bus_p->bus_bdg_secbus = pci_cfgacc_get8(rcdip,
2115 		    bus_p->bus_bdf, PCI_BCNF_SECBUS);
2116 
2117 		/* Get "ranges" property */
2118 		if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2119 		    "ranges", (caddr_t)&bus_p->bus_addr_ranges,
2120 		    &bus_p->bus_addr_entries) != DDI_PROP_SUCCESS)
2121 			bus_p->bus_addr_entries = 0;
2122 		bus_p->bus_addr_entries /= sizeof (ppb_ranges_t);
2123 	}
2124 
2125 	/* save "assigned-addresses" property array, ignore failues */
2126 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2127 	    "assigned-addresses", (caddr_t)&bus_p->bus_assigned_addr,
2128 	    &bus_p->bus_assigned_entries) == DDI_PROP_SUCCESS)
2129 		bus_p->bus_assigned_entries /= sizeof (pci_regspec_t);
2130 	else
2131 		bus_p->bus_assigned_entries = 0;
2132 
2133 	pcie_init_pfd(dip);
2134 
2135 	pcie_init_plat(dip);
2136 
2137 	pcie_capture_speeds(dip);
2138 
2139 final_done:
2140 
2141 	PCIE_DBG("Add %s(dip 0x%p, bdf 0x%x, secbus 0x%x)\n",
2142 	    ddi_driver_name(dip), (void *)dip, bus_p->bus_bdf,
2143 	    bus_p->bus_bdg_secbus);
2144 #ifdef DEBUG
2145 	if (bus_p != NULL) {
2146 		pcie_print_bus(bus_p);
2147 	}
2148 #endif
2149 
2150 	return (bus_p);
2151 }
2152 
2153 /*
2154  * Invoked before destroying devinfo node, mostly during hotplug
2155  * operation to free pcie_bus_t data structure
2156  */
2157 /* ARGSUSED */
2158 void
2159 pcie_fini_bus(dev_info_t *dip, uint8_t flags)
2160 {
2161 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2162 	ASSERT(bus_p);
2163 
2164 	if (flags & PCIE_BUS_INITIAL) {
2165 		pcie_fini_plat(dip);
2166 		pcie_fini_pfd(dip);
2167 
2168 		if (PCIE_IS_RP(bus_p)) {
2169 			kmem_free(bus_p->bus_fab, sizeof (pcie_fabric_data_t));
2170 			bus_p->bus_fab = NULL;
2171 		}
2172 
2173 		kmem_free(bus_p->bus_assigned_addr,
2174 		    (sizeof (pci_regspec_t) * bus_p->bus_assigned_entries));
2175 		kmem_free(bus_p->bus_addr_ranges,
2176 		    (sizeof (ppb_ranges_t) * bus_p->bus_addr_entries));
2177 		/* zero out the fields that have been destroyed */
2178 		bus_p->bus_assigned_addr = NULL;
2179 		bus_p->bus_addr_ranges = NULL;
2180 		bus_p->bus_assigned_entries = 0;
2181 		bus_p->bus_addr_entries = 0;
2182 	}
2183 
2184 	if (flags & PCIE_BUS_FINAL) {
2185 		if (PCIE_IS_HOTPLUG_CAPABLE(dip)) {
2186 			(void) ndi_prop_remove(DDI_DEV_T_NONE, dip,
2187 			    "hotplug-capable");
2188 		}
2189 
2190 		ndi_set_bus_private(dip, B_TRUE, 0, NULL);
2191 		kmem_free(bus_p, sizeof (pcie_bus_t));
2192 	}
2193 }
2194 
2195 int
2196 pcie_postattach_child(dev_info_t *cdip)
2197 {
2198 	pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip);
2199 
2200 	if (!bus_p)
2201 		return (DDI_FAILURE);
2202 
2203 	return (pcie_enable_ce(cdip));
2204 }
2205 
2206 /*
2207  * PCI-Express child device de-initialization.
2208  * This function disables generic pci-express interrupts and error
2209  * handling.
2210  */
2211 void
2212 pcie_uninitchild(dev_info_t *cdip)
2213 {
2214 	pcie_disable_errors(cdip);
2215 	pcie_fini_cfghdl(cdip);
2216 	pcie_fini_dom(cdip);
2217 }
2218 
2219 /*
2220  * find the root complex dip
2221  */
2222 dev_info_t *
2223 pcie_get_rc_dip(dev_info_t *dip)
2224 {
2225 	dev_info_t *rcdip;
2226 	pcie_bus_t *rc_bus_p;
2227 
2228 	for (rcdip = ddi_get_parent(dip); rcdip;
2229 	    rcdip = ddi_get_parent(rcdip)) {
2230 		rc_bus_p = PCIE_DIP2BUS(rcdip);
2231 		if (rc_bus_p && PCIE_IS_RC(rc_bus_p))
2232 			break;
2233 	}
2234 
2235 	return (rcdip);
2236 }
2237 
2238 boolean_t
2239 pcie_is_pci_device(dev_info_t *dip)
2240 {
2241 	dev_info_t	*pdip;
2242 	char		*device_type;
2243 
2244 	pdip = ddi_get_parent(dip);
2245 	if (pdip == NULL)
2246 		return (B_FALSE);
2247 
2248 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
2249 	    "device_type", &device_type) != DDI_PROP_SUCCESS)
2250 		return (B_FALSE);
2251 
2252 	if (strcmp(device_type, "pciex") != 0 &&
2253 	    strcmp(device_type, "pci") != 0) {
2254 		ddi_prop_free(device_type);
2255 		return (B_FALSE);
2256 	}
2257 
2258 	ddi_prop_free(device_type);
2259 	return (B_TRUE);
2260 }
2261 
2262 typedef struct {
2263 	boolean_t	init;
2264 	uint8_t		flags;
2265 } pcie_bus_arg_t;
2266 
2267 /*ARGSUSED*/
2268 static int
2269 pcie_fab_do_init_fini(dev_info_t *dip, void *arg)
2270 {
2271 	pcie_req_id_t	bdf;
2272 	pcie_bus_arg_t	*bus_arg = (pcie_bus_arg_t *)arg;
2273 
2274 	if (!pcie_is_pci_device(dip))
2275 		goto out;
2276 
2277 	if (bus_arg->init) {
2278 		if (pcie_get_bdf_from_dip(dip, &bdf) != DDI_SUCCESS)
2279 			goto out;
2280 
2281 		(void) pcie_init_bus(dip, bdf, bus_arg->flags);
2282 	} else {
2283 		(void) pcie_fini_bus(dip, bus_arg->flags);
2284 	}
2285 
2286 	return (DDI_WALK_CONTINUE);
2287 
2288 out:
2289 	return (DDI_WALK_PRUNECHILD);
2290 }
2291 
2292 void
2293 pcie_fab_init_bus(dev_info_t *rcdip, uint8_t flags)
2294 {
2295 	dev_info_t	*dip = ddi_get_child(rcdip);
2296 	pcie_bus_arg_t	arg;
2297 
2298 	arg.init = B_TRUE;
2299 	arg.flags = flags;
2300 
2301 	ndi_devi_enter(rcdip);
2302 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2303 	ndi_devi_exit(rcdip);
2304 }
2305 
2306 void
2307 pcie_fab_fini_bus(dev_info_t *rcdip, uint8_t flags)
2308 {
2309 	dev_info_t	*dip = ddi_get_child(rcdip);
2310 	pcie_bus_arg_t	arg;
2311 
2312 	arg.init = B_FALSE;
2313 	arg.flags = flags;
2314 
2315 	ndi_devi_enter(rcdip);
2316 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2317 	ndi_devi_exit(rcdip);
2318 }
2319 
2320 void
2321 pcie_enable_errors(dev_info_t *dip)
2322 {
2323 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2324 	uint16_t	reg16, tmp16;
2325 	uint32_t	reg32, tmp32;
2326 
2327 	ASSERT(bus_p);
2328 
2329 	/*
2330 	 * Clear any pending errors
2331 	 */
2332 	pcie_clear_errors(dip);
2333 
2334 	if (!PCIE_IS_PCIE(bus_p))
2335 		return;
2336 
2337 	/*
2338 	 * Enable Baseline Error Handling but leave CE reporting off (poweron
2339 	 * default).
2340 	 */
2341 	if ((reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL)) !=
2342 	    PCI_CAP_EINVAL16) {
2343 		tmp16 = (reg16 & (PCIE_DEVCTL_MAX_READ_REQ_MASK |
2344 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
2345 		    (pcie_devctl_default & ~(PCIE_DEVCTL_MAX_READ_REQ_MASK |
2346 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
2347 		    (pcie_base_err_default & (~PCIE_DEVCTL_CE_REPORTING_EN));
2348 
2349 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
2350 		PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
2351 	}
2352 
2353 	/* Enable Root Port Baseline Error Receiving */
2354 	if (PCIE_IS_ROOT(bus_p) &&
2355 	    (reg16 = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL)) !=
2356 	    PCI_CAP_EINVAL16) {
2357 
2358 		tmp16 = pcie_serr_disable_flag ?
2359 		    (pcie_root_ctrl_default & ~PCIE_ROOT_SYS_ERR) :
2360 		    pcie_root_ctrl_default;
2361 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, tmp16);
2362 		PCIE_DBG_CAP(dip, bus_p, "ROOT DEVCTL", 16, PCIE_ROOTCTL,
2363 		    reg16);
2364 	}
2365 
2366 	/*
2367 	 * Enable PCI-Express Advanced Error Handling if Exists
2368 	 */
2369 	if (!PCIE_HAS_AER(bus_p))
2370 		return;
2371 
2372 	/* Set Uncorrectable Severity */
2373 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_SERV)) !=
2374 	    PCI_CAP_EINVAL32) {
2375 		tmp32 = pcie_aer_uce_severity;
2376 
2377 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_SERV, tmp32);
2378 		PCIE_DBG_AER(dip, bus_p, "AER UCE SEV", 32, PCIE_AER_UCE_SERV,
2379 		    reg32);
2380 	}
2381 
2382 	/* Enable Uncorrectable errors */
2383 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_MASK)) !=
2384 	    PCI_CAP_EINVAL32) {
2385 		tmp32 = pcie_aer_uce_mask;
2386 
2387 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, tmp32);
2388 		PCIE_DBG_AER(dip, bus_p, "AER UCE MASK", 32, PCIE_AER_UCE_MASK,
2389 		    reg32);
2390 	}
2391 
2392 	/* Enable ECRC generation and checking */
2393 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2394 	    PCI_CAP_EINVAL32) {
2395 		tmp32 = reg32 | pcie_ecrc_value;
2396 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, tmp32);
2397 		PCIE_DBG_AER(dip, bus_p, "AER CTL", 32, PCIE_AER_CTL, reg32);
2398 	}
2399 
2400 	/* Enable Secondary Uncorrectable errors if this is a bridge */
2401 	if (!PCIE_IS_PCIE_BDG(bus_p))
2402 		goto root;
2403 
2404 	/* Set Uncorrectable Severity */
2405 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_SERV)) !=
2406 	    PCI_CAP_EINVAL32) {
2407 		tmp32 = pcie_aer_suce_severity;
2408 
2409 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_SERV, tmp32);
2410 		PCIE_DBG_AER(dip, bus_p, "AER SUCE SEV", 32, PCIE_AER_SUCE_SERV,
2411 		    reg32);
2412 	}
2413 
2414 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_MASK)) !=
2415 	    PCI_CAP_EINVAL32) {
2416 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, pcie_aer_suce_mask);
2417 		PCIE_DBG_AER(dip, bus_p, "AER SUCE MASK", 32,
2418 		    PCIE_AER_SUCE_MASK, reg32);
2419 	}
2420 
2421 root:
2422 	/*
2423 	 * Enable Root Control this is a Root device
2424 	 */
2425 	if (!PCIE_IS_ROOT(bus_p))
2426 		return;
2427 
2428 	if ((reg16 = PCIE_AER_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2429 	    PCI_CAP_EINVAL16) {
2430 		PCIE_AER_PUT(16, bus_p, PCIE_AER_RE_CMD,
2431 		    pcie_root_error_cmd_default);
2432 		PCIE_DBG_AER(dip, bus_p, "AER Root Err Cmd", 16,
2433 		    PCIE_AER_RE_CMD, reg16);
2434 	}
2435 }
2436 
2437 /*
2438  * This function is used for enabling CE reporting and setting the AER CE mask.
2439  * When called from outside the pcie module it should always be preceded by
2440  * a call to pcie_enable_errors.
2441  */
2442 int
2443 pcie_enable_ce(dev_info_t *dip)
2444 {
2445 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2446 	uint16_t	device_sts, device_ctl;
2447 	uint32_t	tmp_pcie_aer_ce_mask;
2448 
2449 	if (!PCIE_IS_PCIE(bus_p))
2450 		return (DDI_SUCCESS);
2451 
2452 	/*
2453 	 * The "pcie_ce_mask" property is used to control both the CE reporting
2454 	 * enable field in the device control register and the AER CE mask. We
2455 	 * leave CE reporting disabled if pcie_ce_mask is set to -1.
2456 	 */
2457 
2458 	tmp_pcie_aer_ce_mask = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2459 	    DDI_PROP_DONTPASS, "pcie_ce_mask", pcie_aer_ce_mask);
2460 
2461 	if (tmp_pcie_aer_ce_mask == (uint32_t)-1) {
2462 		/*
2463 		 * Nothing to do since CE reporting has already been disabled.
2464 		 */
2465 		return (DDI_SUCCESS);
2466 	}
2467 
2468 	if (PCIE_HAS_AER(bus_p)) {
2469 		/* Enable AER CE */
2470 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, tmp_pcie_aer_ce_mask);
2471 		PCIE_DBG_AER(dip, bus_p, "AER CE MASK", 32, PCIE_AER_CE_MASK,
2472 		    0);
2473 
2474 		/* Clear any pending AER CE errors */
2475 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_STS, -1);
2476 	}
2477 
2478 	/* clear any pending CE errors */
2479 	if ((device_sts = PCIE_CAP_GET(16, bus_p, PCIE_DEVSTS)) !=
2480 	    PCI_CAP_EINVAL16)
2481 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVSTS,
2482 		    device_sts & (~PCIE_DEVSTS_CE_DETECTED));
2483 
2484 	/* Enable CE reporting */
2485 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2486 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL,
2487 	    (device_ctl & (~PCIE_DEVCTL_ERR_MASK)) | pcie_base_err_default);
2488 	PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, device_ctl);
2489 
2490 	return (DDI_SUCCESS);
2491 }
2492 
2493 /* ARGSUSED */
2494 void
2495 pcie_disable_errors(dev_info_t *dip)
2496 {
2497 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2498 	uint16_t	device_ctl;
2499 	uint32_t	aer_reg;
2500 
2501 	if (!PCIE_IS_PCIE(bus_p))
2502 		return;
2503 
2504 	/*
2505 	 * Disable PCI-Express Baseline Error Handling
2506 	 */
2507 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2508 	device_ctl &= ~PCIE_DEVCTL_ERR_MASK;
2509 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, device_ctl);
2510 
2511 	/*
2512 	 * Disable PCI-Express Advanced Error Handling if Exists
2513 	 */
2514 	if (!PCIE_HAS_AER(bus_p))
2515 		goto root;
2516 
2517 	/* Disable Uncorrectable errors */
2518 	PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, PCIE_AER_UCE_BITS);
2519 
2520 	/* Disable Correctable errors */
2521 	PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, PCIE_AER_CE_BITS);
2522 
2523 	/* Disable ECRC generation and checking */
2524 	if ((aer_reg = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2525 	    PCI_CAP_EINVAL32) {
2526 		aer_reg &= ~(PCIE_AER_CTL_ECRC_GEN_ENA |
2527 		    PCIE_AER_CTL_ECRC_CHECK_ENA);
2528 
2529 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, aer_reg);
2530 	}
2531 	/*
2532 	 * Disable Secondary Uncorrectable errors if this is a bridge
2533 	 */
2534 	if (!PCIE_IS_PCIE_BDG(bus_p))
2535 		goto root;
2536 
2537 	PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, PCIE_AER_SUCE_BITS);
2538 
2539 root:
2540 	/*
2541 	 * disable Root Control this is a Root device
2542 	 */
2543 	if (!PCIE_IS_ROOT(bus_p))
2544 		return;
2545 
2546 	if (!pcie_serr_disable_flag) {
2547 		device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL);
2548 		device_ctl &= ~PCIE_ROOT_SYS_ERR;
2549 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, device_ctl);
2550 	}
2551 
2552 	if (!PCIE_HAS_AER(bus_p))
2553 		return;
2554 
2555 	if ((device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2556 	    PCI_CAP_EINVAL16) {
2557 		device_ctl &= ~pcie_root_error_cmd_default;
2558 		PCIE_CAP_PUT(16, bus_p, PCIE_AER_RE_CMD, device_ctl);
2559 	}
2560 }
2561 
2562 /*
2563  * Extract bdf from "reg" property.
2564  */
2565 int
2566 pcie_get_bdf_from_dip(dev_info_t *dip, pcie_req_id_t *bdf)
2567 {
2568 	pci_regspec_t	*regspec;
2569 	int		reglen;
2570 
2571 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2572 	    "reg", (int **)&regspec, (uint_t *)&reglen) != DDI_SUCCESS)
2573 		return (DDI_FAILURE);
2574 
2575 	if (reglen < (sizeof (pci_regspec_t) / sizeof (int))) {
2576 		ddi_prop_free(regspec);
2577 		return (DDI_FAILURE);
2578 	}
2579 
2580 	/* Get phys_hi from first element.  All have same bdf. */
2581 	*bdf = (regspec->pci_phys_hi & (PCI_REG_BDFR_M ^ PCI_REG_REG_M)) >> 8;
2582 
2583 	ddi_prop_free(regspec);
2584 	return (DDI_SUCCESS);
2585 }
2586 
2587 dev_info_t *
2588 pcie_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
2589 {
2590 	dev_info_t *cdip = rdip;
2591 
2592 	for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
2593 		;
2594 
2595 	return (cdip);
2596 }
2597 
2598 uint32_t
2599 pcie_get_bdf_for_dma_xfer(dev_info_t *dip, dev_info_t *rdip)
2600 {
2601 	dev_info_t *cdip;
2602 
2603 	/*
2604 	 * As part of the probing, the PCI fcode interpreter may setup a DMA
2605 	 * request if a given card has a fcode on it using dip and rdip of the
2606 	 * hotplug connector i.e, dip and rdip of px/pcieb driver. In this
2607 	 * case, return a invalid value for the bdf since we cannot get to the
2608 	 * bdf value of the actual device which will be initiating this DMA.
2609 	 */
2610 	if (rdip == dip)
2611 		return (PCIE_INVALID_BDF);
2612 
2613 	cdip = pcie_get_my_childs_dip(dip, rdip);
2614 
2615 	/*
2616 	 * For a given rdip, return the bdf value of dip's (px or pcieb)
2617 	 * immediate child or secondary bus-id if dip is a PCIe2PCI bridge.
2618 	 *
2619 	 * XXX - For now, return a invalid bdf value for all PCI and PCI-X
2620 	 * devices since this needs more work.
2621 	 */
2622 	return (PCI_GET_PCIE2PCI_SECBUS(cdip) ?
2623 	    PCIE_INVALID_BDF : PCI_GET_BDF(cdip));
2624 }
2625 
2626 uint32_t
2627 pcie_get_aer_uce_mask()
2628 {
2629 	return (pcie_aer_uce_mask);
2630 }
2631 uint32_t
2632 pcie_get_aer_ce_mask()
2633 {
2634 	return (pcie_aer_ce_mask);
2635 }
2636 uint32_t
2637 pcie_get_aer_suce_mask()
2638 {
2639 	return (pcie_aer_suce_mask);
2640 }
2641 uint32_t
2642 pcie_get_serr_mask()
2643 {
2644 	return (pcie_serr_disable_flag);
2645 }
2646 
2647 void
2648 pcie_set_aer_uce_mask(uint32_t mask)
2649 {
2650 	pcie_aer_uce_mask = mask;
2651 	if (mask & PCIE_AER_UCE_UR)
2652 		pcie_base_err_default &= ~PCIE_DEVCTL_UR_REPORTING_EN;
2653 	else
2654 		pcie_base_err_default |= PCIE_DEVCTL_UR_REPORTING_EN;
2655 
2656 	if (mask & PCIE_AER_UCE_ECRC)
2657 		pcie_ecrc_value = 0;
2658 }
2659 
2660 void
2661 pcie_set_aer_ce_mask(uint32_t mask)
2662 {
2663 	pcie_aer_ce_mask = mask;
2664 }
2665 void
2666 pcie_set_aer_suce_mask(uint32_t mask)
2667 {
2668 	pcie_aer_suce_mask = mask;
2669 }
2670 void
2671 pcie_set_serr_mask(uint32_t mask)
2672 {
2673 	pcie_serr_disable_flag = mask;
2674 }
2675 
2676 /*
2677  * Is the rdip a child of dip.	Used for checking certain CTLOPS from bubbling
2678  * up erronously.  Ex.	ISA ctlops to a PCI-PCI Bridge.
2679  */
2680 boolean_t
2681 pcie_is_child(dev_info_t *dip, dev_info_t *rdip)
2682 {
2683 	dev_info_t	*cdip = ddi_get_child(dip);
2684 	for (; cdip; cdip = ddi_get_next_sibling(cdip))
2685 		if (cdip == rdip)
2686 			break;
2687 	return (cdip != NULL);
2688 }
2689 
2690 boolean_t
2691 pcie_is_link_disabled(dev_info_t *dip)
2692 {
2693 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2694 
2695 	if (PCIE_IS_PCIE(bus_p)) {
2696 		if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) &
2697 		    PCIE_LINKCTL_LINK_DISABLE)
2698 			return (B_TRUE);
2699 	}
2700 	return (B_FALSE);
2701 }
2702 
2703 /*
2704  * Determines if there are any root ports attached to a root complex.
2705  *
2706  * dip - dip of root complex
2707  *
2708  * Returns - DDI_SUCCESS if there is at least one root port otherwise
2709  *	     DDI_FAILURE.
2710  */
2711 int
2712 pcie_root_port(dev_info_t *dip)
2713 {
2714 	int port_type;
2715 	uint16_t cap_ptr;
2716 	ddi_acc_handle_t config_handle;
2717 	dev_info_t *cdip = ddi_get_child(dip);
2718 
2719 	/*
2720 	 * Determine if any of the children of the passed in dip
2721 	 * are root ports.
2722 	 */
2723 	for (; cdip; cdip = ddi_get_next_sibling(cdip)) {
2724 
2725 		if (pci_config_setup(cdip, &config_handle) != DDI_SUCCESS)
2726 			continue;
2727 
2728 		if ((PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E,
2729 		    &cap_ptr)) == DDI_FAILURE) {
2730 			pci_config_teardown(&config_handle);
2731 			continue;
2732 		}
2733 
2734 		port_type = PCI_CAP_GET16(config_handle, 0, cap_ptr,
2735 		    PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
2736 
2737 		pci_config_teardown(&config_handle);
2738 
2739 		if (port_type == PCIE_PCIECAP_DEV_TYPE_ROOT)
2740 			return (DDI_SUCCESS);
2741 	}
2742 
2743 	/* No root ports were found */
2744 
2745 	return (DDI_FAILURE);
2746 }
2747 
2748 /*
2749  * Function that determines if a device a PCIe device.
2750  *
2751  * dip - dip of device.
2752  *
2753  * returns - DDI_SUCCESS if device is a PCIe device, otherwise DDI_FAILURE.
2754  */
2755 int
2756 pcie_dev(dev_info_t *dip)
2757 {
2758 	/* get parent device's device_type property */
2759 	char *device_type;
2760 	int rc = DDI_FAILURE;
2761 	dev_info_t *pdip = ddi_get_parent(dip);
2762 
2763 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
2764 	    DDI_PROP_DONTPASS, "device_type", &device_type)
2765 	    != DDI_PROP_SUCCESS) {
2766 		return (DDI_FAILURE);
2767 	}
2768 
2769 	if (strcmp(device_type, "pciex") == 0)
2770 		rc = DDI_SUCCESS;
2771 	else
2772 		rc = DDI_FAILURE;
2773 
2774 	ddi_prop_free(device_type);
2775 	return (rc);
2776 }
2777 
2778 void
2779 pcie_set_rber_fatal(dev_info_t *dip, boolean_t val)
2780 {
2781 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2782 	bus_p->bus_pfd->pe_rber_fatal = val;
2783 }
2784 
2785 /*
2786  * Return parent Root Port's pe_rber_fatal value.
2787  */
2788 boolean_t
2789 pcie_get_rber_fatal(dev_info_t *dip)
2790 {
2791 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2792 	pcie_bus_t *rp_bus_p = PCIE_DIP2UPBUS(bus_p->bus_rp_dip);
2793 	return (rp_bus_p->bus_pfd->pe_rber_fatal);
2794 }
2795 
2796 int
2797 pcie_ari_supported(dev_info_t *dip)
2798 {
2799 	uint32_t devcap2;
2800 	uint16_t pciecap;
2801 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2802 	uint8_t dev_type;
2803 
2804 	PCIE_DBG("pcie_ari_supported: dip=%p\n", dip);
2805 
2806 	if (bus_p == NULL)
2807 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2808 
2809 	dev_type = bus_p->bus_dev_type;
2810 
2811 	if ((dev_type != PCIE_PCIECAP_DEV_TYPE_DOWN) &&
2812 	    (dev_type != PCIE_PCIECAP_DEV_TYPE_ROOT))
2813 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2814 
2815 	if (pcie_disable_ari) {
2816 		PCIE_DBG("pcie_ari_supported: dip=%p: ARI Disabled\n", dip);
2817 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2818 	}
2819 
2820 	pciecap = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
2821 
2822 	if ((pciecap & PCIE_PCIECAP_VER_MASK) < PCIE_PCIECAP_VER_2_0) {
2823 		PCIE_DBG("pcie_ari_supported: dip=%p: Not 2.0\n", dip);
2824 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2825 	}
2826 
2827 	devcap2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCAP2);
2828 
2829 	PCIE_DBG("pcie_ari_supported: dip=%p: DevCap2=0x%x\n",
2830 	    dip, devcap2);
2831 
2832 	if (devcap2 & PCIE_DEVCAP2_ARI_FORWARD) {
2833 		PCIE_DBG("pcie_ari_supported: "
2834 		    "dip=%p: ARI Forwarding is supported\n", dip);
2835 		return (PCIE_ARI_FORW_SUPPORTED);
2836 	}
2837 	return (PCIE_ARI_FORW_NOT_SUPPORTED);
2838 }
2839 
2840 int
2841 pcie_ari_enable(dev_info_t *dip)
2842 {
2843 	uint16_t devctl2;
2844 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2845 
2846 	PCIE_DBG("pcie_ari_enable: dip=%p\n", dip);
2847 
2848 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2849 		return (DDI_FAILURE);
2850 
2851 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2852 	devctl2 |= PCIE_DEVCTL2_ARI_FORWARD_EN;
2853 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2854 
2855 	PCIE_DBG("pcie_ari_enable: dip=%p: writing 0x%x to DevCtl2\n",
2856 	    dip, devctl2);
2857 
2858 	return (DDI_SUCCESS);
2859 }
2860 
2861 int
2862 pcie_ari_disable(dev_info_t *dip)
2863 {
2864 	uint16_t devctl2;
2865 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2866 
2867 	PCIE_DBG("pcie_ari_disable: dip=%p\n", dip);
2868 
2869 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2870 		return (DDI_FAILURE);
2871 
2872 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2873 	devctl2 &= ~PCIE_DEVCTL2_ARI_FORWARD_EN;
2874 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2875 
2876 	PCIE_DBG("pcie_ari_disable: dip=%p: writing 0x%x to DevCtl2\n",
2877 	    dip, devctl2);
2878 
2879 	return (DDI_SUCCESS);
2880 }
2881 
2882 int
2883 pcie_ari_is_enabled(dev_info_t *dip)
2884 {
2885 	uint16_t devctl2;
2886 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2887 
2888 	PCIE_DBG("pcie_ari_is_enabled: dip=%p\n", dip);
2889 
2890 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2891 		return (PCIE_ARI_FORW_DISABLED);
2892 
2893 	devctl2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCTL2);
2894 
2895 	PCIE_DBG("pcie_ari_is_enabled: dip=%p: DevCtl2=0x%x\n",
2896 	    dip, devctl2);
2897 
2898 	if (devctl2 & PCIE_DEVCTL2_ARI_FORWARD_EN) {
2899 		PCIE_DBG("pcie_ari_is_enabled: "
2900 		    "dip=%p: ARI Forwarding is enabled\n", dip);
2901 		return (PCIE_ARI_FORW_ENABLED);
2902 	}
2903 
2904 	return (PCIE_ARI_FORW_DISABLED);
2905 }
2906 
2907 int
2908 pcie_ari_device(dev_info_t *dip)
2909 {
2910 	ddi_acc_handle_t handle;
2911 	uint16_t cap_ptr;
2912 
2913 	PCIE_DBG("pcie_ari_device: dip=%p\n", dip);
2914 
2915 	/*
2916 	 * XXX - This function may be called before the bus_p structure
2917 	 * has been populated.  This code can be changed to remove
2918 	 * pci_config_setup()/pci_config_teardown() when the RFE
2919 	 * to populate the bus_p structures early in boot is putback.
2920 	 */
2921 
2922 	/* First make sure it is a PCIe device */
2923 
2924 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2925 		return (PCIE_NOT_ARI_DEVICE);
2926 
2927 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr))
2928 	    != DDI_SUCCESS) {
2929 		pci_config_teardown(&handle);
2930 		return (PCIE_NOT_ARI_DEVICE);
2931 	}
2932 
2933 	/* Locate the ARI Capability */
2934 
2935 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI),
2936 	    &cap_ptr)) == DDI_FAILURE) {
2937 		pci_config_teardown(&handle);
2938 		return (PCIE_NOT_ARI_DEVICE);
2939 	}
2940 
2941 	/* ARI Capability was found so it must be a ARI device */
2942 	PCIE_DBG("pcie_ari_device: ARI Device dip=%p\n", dip);
2943 
2944 	pci_config_teardown(&handle);
2945 	return (PCIE_ARI_DEVICE);
2946 }
2947 
2948 int
2949 pcie_ari_get_next_function(dev_info_t *dip, int *func)
2950 {
2951 	uint32_t val;
2952 	uint16_t cap_ptr, next_function;
2953 	ddi_acc_handle_t handle;
2954 
2955 	/*
2956 	 * XXX - This function may be called before the bus_p structure
2957 	 * has been populated.  This code can be changed to remove
2958 	 * pci_config_setup()/pci_config_teardown() when the RFE
2959 	 * to populate the bus_p structures early in boot is putback.
2960 	 */
2961 
2962 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2963 		return (DDI_FAILURE);
2964 
2965 	if ((PCI_CAP_LOCATE(handle,
2966 	    PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), &cap_ptr)) == DDI_FAILURE) {
2967 		pci_config_teardown(&handle);
2968 		return (DDI_FAILURE);
2969 	}
2970 
2971 	val = PCI_CAP_GET32(handle, 0, cap_ptr, PCIE_ARI_CAP);
2972 
2973 	next_function = (val >> PCIE_ARI_CAP_NEXT_FUNC_SHIFT) &
2974 	    PCIE_ARI_CAP_NEXT_FUNC_MASK;
2975 
2976 	pci_config_teardown(&handle);
2977 
2978 	*func = next_function;
2979 
2980 	return (DDI_SUCCESS);
2981 }
2982 
2983 dev_info_t *
2984 pcie_func_to_dip(dev_info_t *dip, pcie_req_id_t function)
2985 {
2986 	pcie_req_id_t child_bdf;
2987 	dev_info_t *cdip;
2988 
2989 	for (cdip = ddi_get_child(dip); cdip;
2990 	    cdip = ddi_get_next_sibling(cdip)) {
2991 
2992 		if (pcie_get_bdf_from_dip(cdip, &child_bdf) == DDI_FAILURE)
2993 			return (NULL);
2994 
2995 		if ((child_bdf & PCIE_REQ_ID_ARI_FUNC_MASK) == function)
2996 			return (cdip);
2997 	}
2998 	return (NULL);
2999 }
3000 
3001 #ifdef	DEBUG
3002 
3003 static void
3004 pcie_print_bus(pcie_bus_t *bus_p)
3005 {
3006 	pcie_dbg("\tbus_dip = 0x%p\n", bus_p->bus_dip);
3007 	pcie_dbg("\tbus_fm_flags = 0x%x\n", bus_p->bus_fm_flags);
3008 
3009 	pcie_dbg("\tbus_bdf = 0x%x\n", bus_p->bus_bdf);
3010 	pcie_dbg("\tbus_dev_ven_id = 0x%x\n", bus_p->bus_dev_ven_id);
3011 	pcie_dbg("\tbus_rev_id = 0x%x\n", bus_p->bus_rev_id);
3012 	pcie_dbg("\tbus_hdr_type = 0x%x\n", bus_p->bus_hdr_type);
3013 	pcie_dbg("\tbus_dev_type = 0x%x\n", bus_p->bus_dev_type);
3014 	pcie_dbg("\tbus_bdg_secbus = 0x%x\n", bus_p->bus_bdg_secbus);
3015 	pcie_dbg("\tbus_pcie_off = 0x%x\n", bus_p->bus_pcie_off);
3016 	pcie_dbg("\tbus_aer_off = 0x%x\n", bus_p->bus_aer_off);
3017 	pcie_dbg("\tbus_pcix_off = 0x%x\n", bus_p->bus_pcix_off);
3018 	pcie_dbg("\tbus_ecc_ver = 0x%x\n", bus_p->bus_ecc_ver);
3019 }
3020 
3021 /*
3022  * For debugging purposes set pcie_dbg_print != 0 to see printf messages
3023  * during interrupt.
3024  *
3025  * When a proper solution is in place this code will disappear.
3026  * Potential solutions are:
3027  * o circular buffers
3028  * o taskq to print at lower pil
3029  */
3030 int pcie_dbg_print = 0;
3031 void
3032 pcie_dbg(char *fmt, ...)
3033 {
3034 	va_list ap;
3035 
3036 	if (!pcie_debug_flags) {
3037 		return;
3038 	}
3039 	va_start(ap, fmt);
3040 	if (servicing_interrupt()) {
3041 		if (pcie_dbg_print) {
3042 			prom_vprintf(fmt, ap);
3043 		}
3044 	} else {
3045 		prom_vprintf(fmt, ap);
3046 	}
3047 	va_end(ap);
3048 }
3049 #endif	/* DEBUG */
3050 
3051 boolean_t
3052 pcie_link_bw_supported(dev_info_t *dip)
3053 {
3054 	uint32_t linkcap;
3055 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3056 
3057 	if (!PCIE_IS_PCIE(bus_p)) {
3058 		return (B_FALSE);
3059 	}
3060 
3061 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3062 		return (B_FALSE);
3063 	}
3064 
3065 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
3066 	return ((linkcap & PCIE_LINKCAP_LINK_BW_NOTIFY_CAP) != 0);
3067 }
3068 
3069 int
3070 pcie_link_bw_enable(dev_info_t *dip)
3071 {
3072 	uint16_t linkctl;
3073 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3074 
3075 	if (pcie_disable_lbw != 0) {
3076 		return (DDI_FAILURE);
3077 	}
3078 
3079 	if (!pcie_link_bw_supported(dip)) {
3080 		return (DDI_FAILURE);
3081 	}
3082 
3083 	mutex_init(&bus_p->bus_lbw_mutex, NULL, MUTEX_DRIVER, NULL);
3084 	cv_init(&bus_p->bus_lbw_cv, NULL, CV_DRIVER, NULL);
3085 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3086 	linkctl |= PCIE_LINKCTL_LINK_BW_INTR_EN;
3087 	linkctl |= PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3088 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3089 
3090 	bus_p->bus_lbw_pbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3091 	bus_p->bus_lbw_cbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3092 	bus_p->bus_lbw_state |= PCIE_LBW_S_ENABLED;
3093 
3094 	return (DDI_SUCCESS);
3095 }
3096 
3097 int
3098 pcie_link_bw_disable(dev_info_t *dip)
3099 {
3100 	uint16_t linkctl;
3101 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3102 
3103 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3104 		return (DDI_FAILURE);
3105 	}
3106 
3107 	mutex_enter(&bus_p->bus_lbw_mutex);
3108 	while ((bus_p->bus_lbw_state &
3109 	    (PCIE_LBW_S_DISPATCHED | PCIE_LBW_S_RUNNING)) != 0) {
3110 		cv_wait(&bus_p->bus_lbw_cv, &bus_p->bus_lbw_mutex);
3111 	}
3112 	mutex_exit(&bus_p->bus_lbw_mutex);
3113 
3114 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3115 	linkctl &= ~PCIE_LINKCTL_LINK_BW_INTR_EN;
3116 	linkctl &= ~PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3117 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3118 
3119 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_ENABLED;
3120 	kmem_free(bus_p->bus_lbw_pbuf, MAXPATHLEN);
3121 	kmem_free(bus_p->bus_lbw_cbuf, MAXPATHLEN);
3122 	bus_p->bus_lbw_pbuf = NULL;
3123 	bus_p->bus_lbw_cbuf = NULL;
3124 
3125 	mutex_destroy(&bus_p->bus_lbw_mutex);
3126 	cv_destroy(&bus_p->bus_lbw_cv);
3127 
3128 	return (DDI_SUCCESS);
3129 }
3130 
3131 void
3132 pcie_link_bw_taskq(void *arg)
3133 {
3134 	dev_info_t *dip = arg;
3135 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3136 	dev_info_t *cdip;
3137 	boolean_t again;
3138 	sysevent_t *se;
3139 	sysevent_value_t se_val;
3140 	sysevent_id_t eid;
3141 	sysevent_attr_list_t *ev_attr_list;
3142 
3143 top:
3144 	ndi_devi_enter(dip);
3145 	se = NULL;
3146 	ev_attr_list = NULL;
3147 	mutex_enter(&bus_p->bus_lbw_mutex);
3148 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_DISPATCHED;
3149 	bus_p->bus_lbw_state |= PCIE_LBW_S_RUNNING;
3150 	mutex_exit(&bus_p->bus_lbw_mutex);
3151 
3152 	/*
3153 	 * Update our own speeds as we've likely changed something.
3154 	 */
3155 	pcie_capture_speeds(dip);
3156 
3157 	/*
3158 	 * Walk our children. We only care about updating this on function 0
3159 	 * because the PCIe specification requires that these all be the same
3160 	 * otherwise.
3161 	 */
3162 	for (cdip = ddi_get_child(dip); cdip != NULL;
3163 	    cdip = ddi_get_next_sibling(cdip)) {
3164 		pcie_bus_t *cbus_p = PCIE_DIP2BUS(cdip);
3165 
3166 		if (cbus_p == NULL) {
3167 			continue;
3168 		}
3169 
3170 		if ((cbus_p->bus_bdf & PCIE_REQ_ID_FUNC_MASK) != 0) {
3171 			continue;
3172 		}
3173 
3174 		/*
3175 		 * It's possible that this can fire while a child is otherwise
3176 		 * only partially constructed. Therefore, if we don't have the
3177 		 * config handle, don't bother updating the child.
3178 		 */
3179 		if (cbus_p->bus_cfg_hdl == NULL) {
3180 			continue;
3181 		}
3182 
3183 		pcie_capture_speeds(cdip);
3184 		break;
3185 	}
3186 
3187 	se = sysevent_alloc(EC_PCIE, ESC_PCIE_LINK_STATE,
3188 	    ILLUMOS_KERN_PUB "pcie", SE_SLEEP);
3189 
3190 	(void) ddi_pathname(dip, bus_p->bus_lbw_pbuf);
3191 	se_val.value_type = SE_DATA_TYPE_STRING;
3192 	se_val.value.sv_string = bus_p->bus_lbw_pbuf;
3193 	if (sysevent_add_attr(&ev_attr_list, PCIE_EV_DETECTOR_PATH, &se_val,
3194 	    SE_SLEEP) != 0) {
3195 		ndi_devi_exit(dip);
3196 		goto err;
3197 	}
3198 
3199 	if (cdip != NULL) {
3200 		(void) ddi_pathname(cdip, bus_p->bus_lbw_cbuf);
3201 
3202 		se_val.value_type = SE_DATA_TYPE_STRING;
3203 		se_val.value.sv_string = bus_p->bus_lbw_cbuf;
3204 
3205 		/*
3206 		 * If this fails, that's OK. We'd rather get the event off and
3207 		 * there's a chance that there may not be anything there for us.
3208 		 */
3209 		(void) sysevent_add_attr(&ev_attr_list, PCIE_EV_CHILD_PATH,
3210 		    &se_val, SE_SLEEP);
3211 	}
3212 
3213 	ndi_devi_exit(dip);
3214 
3215 	/*
3216 	 * Before we generate and send down a sysevent, we need to tell the
3217 	 * system that parts of the devinfo cache need to be invalidated. While
3218 	 * the function below takes several args, it ignores them all. Because
3219 	 * this is a global invalidation, we don't bother trying to do much more
3220 	 * than requesting a global invalidation, lest we accidentally kick off
3221 	 * several in a row.
3222 	 */
3223 	ddi_prop_cache_invalidate(DDI_DEV_T_NONE, NULL, NULL, 0);
3224 
3225 	if (sysevent_attach_attributes(se, ev_attr_list) != 0) {
3226 		goto err;
3227 	}
3228 	ev_attr_list = NULL;
3229 
3230 	if (log_sysevent(se, SE_SLEEP, &eid) != 0) {
3231 		goto err;
3232 	}
3233 
3234 err:
3235 	sysevent_free_attr(ev_attr_list);
3236 	sysevent_free(se);
3237 
3238 	mutex_enter(&bus_p->bus_lbw_mutex);
3239 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_RUNNING;
3240 	cv_broadcast(&bus_p->bus_lbw_cv);
3241 	again = (bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) != 0;
3242 	mutex_exit(&bus_p->bus_lbw_mutex);
3243 
3244 	if (again) {
3245 		goto top;
3246 	}
3247 }
3248 
3249 int
3250 pcie_link_bw_intr(dev_info_t *dip)
3251 {
3252 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3253 	uint16_t linksts;
3254 	uint16_t flags = PCIE_LINKSTS_LINK_BW_MGMT | PCIE_LINKSTS_AUTO_BW;
3255 	hrtime_t now;
3256 
3257 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3258 		return (DDI_INTR_UNCLAIMED);
3259 	}
3260 
3261 	linksts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3262 	if ((linksts & flags) == 0) {
3263 		return (DDI_INTR_UNCLAIMED);
3264 	}
3265 
3266 	now = gethrtime();
3267 
3268 	/*
3269 	 * Check if we've already dispatched this event. If we have already
3270 	 * dispatched it, then there's nothing else to do, we coalesce multiple
3271 	 * events.
3272 	 */
3273 	mutex_enter(&bus_p->bus_lbw_mutex);
3274 	bus_p->bus_lbw_nevents++;
3275 	bus_p->bus_lbw_last_ts = now;
3276 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) == 0) {
3277 		if ((bus_p->bus_lbw_state & PCIE_LBW_S_RUNNING) == 0) {
3278 			taskq_dispatch_ent(pcie_link_tq, pcie_link_bw_taskq,
3279 			    dip, 0, &bus_p->bus_lbw_ent);
3280 		}
3281 
3282 		bus_p->bus_lbw_state |= PCIE_LBW_S_DISPATCHED;
3283 	}
3284 	mutex_exit(&bus_p->bus_lbw_mutex);
3285 
3286 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKSTS, flags);
3287 	return (DDI_INTR_CLAIMED);
3288 }
3289 
3290 int
3291 pcie_link_set_target(dev_info_t *dip, pcie_link_speed_t speed)
3292 {
3293 	uint16_t ctl2, rval;
3294 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3295 
3296 	if (!PCIE_IS_PCIE(bus_p)) {
3297 		return (ENOTSUP);
3298 	}
3299 
3300 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3301 		return (ENOTSUP);
3302 	}
3303 
3304 	if (bus_p->bus_pcie_vers < 2) {
3305 		return (ENOTSUP);
3306 	}
3307 
3308 	switch (speed) {
3309 	case PCIE_LINK_SPEED_2_5:
3310 		rval = PCIE_LINKCTL2_TARGET_SPEED_2_5;
3311 		break;
3312 	case PCIE_LINK_SPEED_5:
3313 		rval = PCIE_LINKCTL2_TARGET_SPEED_5;
3314 		break;
3315 	case PCIE_LINK_SPEED_8:
3316 		rval = PCIE_LINKCTL2_TARGET_SPEED_8;
3317 		break;
3318 	case PCIE_LINK_SPEED_16:
3319 		rval = PCIE_LINKCTL2_TARGET_SPEED_16;
3320 		break;
3321 	case PCIE_LINK_SPEED_32:
3322 		rval = PCIE_LINKCTL2_TARGET_SPEED_32;
3323 		break;
3324 	case PCIE_LINK_SPEED_64:
3325 		rval = PCIE_LINKCTL2_TARGET_SPEED_64;
3326 		break;
3327 	default:
3328 		return (EINVAL);
3329 	}
3330 
3331 	mutex_enter(&bus_p->bus_speed_mutex);
3332 	if ((bus_p->bus_sup_speed & speed) == 0) {
3333 		mutex_exit(&bus_p->bus_speed_mutex);
3334 		return (ENOTSUP);
3335 	}
3336 
3337 	bus_p->bus_target_speed = speed;
3338 	bus_p->bus_speed_flags |= PCIE_LINK_F_ADMIN_TARGET;
3339 
3340 	ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
3341 	ctl2 &= ~PCIE_LINKCTL2_TARGET_SPEED_MASK;
3342 	ctl2 |= rval;
3343 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL2, ctl2);
3344 	mutex_exit(&bus_p->bus_speed_mutex);
3345 
3346 	/*
3347 	 * Make sure our updates have been reflected in devinfo.
3348 	 */
3349 	pcie_capture_speeds(dip);
3350 
3351 	return (0);
3352 }
3353 
3354 int
3355 pcie_link_retrain(dev_info_t *dip)
3356 {
3357 	uint16_t ctl;
3358 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3359 
3360 	if (!PCIE_IS_PCIE(bus_p)) {
3361 		return (ENOTSUP);
3362 	}
3363 
3364 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3365 		return (ENOTSUP);
3366 	}
3367 
3368 	/*
3369 	 * The PCIe specification suggests that we make sure that the link isn't
3370 	 * in training before issuing this command in case there was a state
3371 	 * machine transition prior to when we got here. We wait and then go
3372 	 * ahead and issue the command anyways.
3373 	 */
3374 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3375 		uint16_t sts;
3376 
3377 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3378 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3379 			break;
3380 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3381 	}
3382 
3383 	ctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3384 	ctl |= PCIE_LINKCTL_RETRAIN_LINK;
3385 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, ctl);
3386 
3387 	/*
3388 	 * Wait again to see if it clears before returning to the user.
3389 	 */
3390 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3391 		uint16_t sts;
3392 
3393 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3394 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3395 			break;
3396 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3397 	}
3398 
3399 	return (0);
3400 }
3401 
3402 /*
3403  * Here we're going through and grabbing information about a given PCIe device.
3404  * Our situation is a little bit complicated at this point. This gets invoked
3405  * both during early initialization and during hotplug events. We cannot rely on
3406  * the device node having been fully set up, that is, while the pcie_bus_t
3407  * normally contains a ddi_acc_handle_t for configuration space, that may not be
3408  * valid yet as this can occur before child initialization or we may be dealing
3409  * with a function that will never have a handle.
3410  *
3411  * However, we should always have a fully furnished pcie_bus_t, which means that
3412  * we can get its bdf and use that to access the devices configuration space.
3413  */
3414 static int
3415 pcie_fabric_feature_scan(dev_info_t *dip, void *arg)
3416 {
3417 	pcie_bus_t *bus_p;
3418 	uint32_t devcap;
3419 	uint16_t mps;
3420 	dev_info_t *rcdip;
3421 	pcie_fabric_data_t *fab = arg;
3422 
3423 	/*
3424 	 * Skip over non-PCIe devices. If we encounter something here, we don't
3425 	 * bother going through any of its children because we don't have reason
3426 	 * to believe that a PCIe device that this will impact will exist below
3427 	 * this. While it is possible that there's a PCIe fabric downstream an
3428 	 * intermediate old PCI/PCI-X bus, at that point, we'll still trigger
3429 	 * our complex fabric detection and use the minimums.
3430 	 *
3431 	 * The reason this doesn't trigger an immediate flagging as a complex
3432 	 * case like the one below is because we could be scanning a device that
3433 	 * is a nexus driver and has children already (albeit that would be
3434 	 * somewhat surprising as we don't anticipate being called at this
3435 	 * point).
3436 	 */
3437 	if (pcie_dev(dip) != DDI_SUCCESS) {
3438 		return (DDI_WALK_PRUNECHILD);
3439 	}
3440 
3441 	/*
3442 	 * If we fail to find a pcie_bus_t for some reason, that's somewhat
3443 	 * surprising. We log this fact and set the complex flag and indicate it
3444 	 * was because of this case. This immediately transitions us to a
3445 	 * "complex" case which means use the minimal, safe, settings.
3446 	 */
3447 	bus_p = PCIE_DIP2BUS(dip);
3448 	if (bus_p == NULL) {
3449 		dev_err(dip, CE_WARN, "failed to find associated pcie_bus_t "
3450 		    "during fabric scan");
3451 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3452 		return (DDI_WALK_TERMINATE);
3453 	}
3454 
3455 	/*
3456 	 * In a similar case, there is hardware out there which is a PCIe
3457 	 * device, but does not advertise a PCIe capability. An example of this
3458 	 * is the IDT Tsi382A which can hide its PCIe capability. If this is
3459 	 * the case, we immediately terminate scanning and flag this as a
3460 	 * 'complex' case which causes us to use guaranteed safe settings.
3461 	 */
3462 	if (bus_p->bus_pcie_off == 0) {
3463 		dev_err(dip, CE_WARN, "encountered PCIe device without PCIe "
3464 		    "capability");
3465 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3466 		return (DDI_WALK_TERMINATE);
3467 	}
3468 
3469 	rcdip = pcie_get_rc_dip(dip);
3470 
3471 	/*
3472 	 * First, start by determining what the device's tagging and max packet
3473 	 * size is. All PCIe devices will always have the 8-bit tag information
3474 	 * as this has existed since PCIe 1.0. 10-bit tagging requires a V2
3475 	 * PCIe capability. 14-bit requires the DEV3 cap. If we are missing a
3476 	 * version or capability, then we always treat that as lacking the bits
3477 	 * in the fabric.
3478 	 */
3479 	ASSERT3U(bus_p->bus_pcie_off, !=, 0);
3480 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3481 	    PCIE_DEVCAP);
3482 	mps = devcap & PCIE_DEVCAP_MAX_PAYLOAD_MASK;
3483 	if (mps < fab->pfd_mps_found) {
3484 		fab->pfd_mps_found = mps;
3485 	}
3486 
3487 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) == 0) {
3488 		fab->pfd_tag_found &= ~PCIE_TAG_8B;
3489 	}
3490 
3491 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0) {
3492 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3493 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3494 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_COMP_SUP) == 0) {
3495 			fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3496 		}
3497 	} else {
3498 		fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3499 	}
3500 
3501 	if (bus_p->bus_dev3_off != 0) {
3502 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3503 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3504 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_COMP_SUP) == 0) {
3505 			fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3506 		}
3507 	} else {
3508 		fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3509 	}
3510 
3511 	/*
3512 	 * Now that we have captured device information, we must go and ask
3513 	 * questions of the topology here. The big theory statement enumerates
3514 	 * several types of cases. The big question we need to answer is have we
3515 	 * encountered a hotpluggable bridge that means we need to mark this as
3516 	 * complex.
3517 	 *
3518 	 * The big theory statement notes several different kinds of hotplug
3519 	 * topologies that exist that we can theoretically support. Right now we
3520 	 * opt to keep our lives simple and focus solely on (4) and (5). These
3521 	 * can both be summarized by a single, fairly straightforward rule:
3522 	 *
3523 	 * The only allowed hotpluggable entity is a root port.
3524 	 *
3525 	 * The reason that this can work and detect cases like (6), (7), and our
3526 	 * other invalid ones is that the hotplug code will scan and find all
3527 	 * children before we are called into here.
3528 	 */
3529 	if (bus_p->bus_hp_sup_modes != 0) {
3530 		/*
3531 		 * We opt to terminate in this case because there's no value in
3532 		 * scanning the rest of the tree at this point.
3533 		 */
3534 		if (!PCIE_IS_RP(bus_p)) {
3535 			fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3536 			return (DDI_WALK_TERMINATE);
3537 		}
3538 
3539 		fab->pfd_flags |= PCIE_FABRIC_F_RP_HP;
3540 	}
3541 
3542 	/*
3543 	 * As our walk starts at a root port, we need to make sure that we don't
3544 	 * pick up any of its siblings and their children as those would be
3545 	 * different PCIe fabric domains for us to scan. In many hardware
3546 	 * platforms multiple root ports are all at the same level in the tree.
3547 	 */
3548 	if (bus_p->bus_rp_dip == dip) {
3549 		return (DDI_WALK_PRUNESIB);
3550 	}
3551 
3552 	return (DDI_WALK_CONTINUE);
3553 }
3554 
3555 static int
3556 pcie_fabric_feature_set(dev_info_t *dip, void *arg)
3557 {
3558 	pcie_bus_t *bus_p;
3559 	dev_info_t *rcdip;
3560 	pcie_fabric_data_t *fab = arg;
3561 	uint32_t devcap, devctl;
3562 
3563 	if (pcie_dev(dip) != DDI_SUCCESS) {
3564 		return (DDI_WALK_PRUNECHILD);
3565 	}
3566 
3567 	/*
3568 	 * The missing bus_t sent us into the complex case previously. We still
3569 	 * need to make sure all devices have values we expect here and thus
3570 	 * don't terminate like the above. The same is true for the case where
3571 	 * there is no PCIe capability.
3572 	 */
3573 	bus_p = PCIE_DIP2BUS(dip);
3574 	if (bus_p == NULL || bus_p->bus_pcie_off == 0) {
3575 		return (DDI_WALK_CONTINUE);
3576 	}
3577 	rcdip = pcie_get_rc_dip(dip);
3578 
3579 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3580 	    PCIE_DEVCAP);
3581 	devctl = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3582 	    PCIE_DEVCTL);
3583 
3584 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) != 0 &&
3585 	    (fab->pfd_tag_act & PCIE_TAG_8B) != 0) {
3586 		devctl |= PCIE_DEVCTL_EXT_TAG_FIELD_EN;
3587 	}
3588 
3589 	devctl &= ~PCIE_DEVCTL_MAX_PAYLOAD_MASK;
3590 	ASSERT0(fab->pfd_mps_act & ~PCIE_DEVCAP_MAX_PAYLOAD_MASK);
3591 	devctl |= fab->pfd_mps_act << PCIE_DEVCTL_MAX_PAYLOAD_SHIFT;
3592 
3593 	pci_cfgacc_put16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3594 	    PCIE_DEVCTL, devctl);
3595 
3596 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0 &&
3597 	    (fab->pfd_tag_act & PCIE_TAG_10B_COMP) != 0) {
3598 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3599 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3600 
3601 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_REQ_SUP) == 0) {
3602 			uint16_t devctl2 = pci_cfgacc_get16(rcdip,
3603 			    bus_p->bus_bdf, bus_p->bus_pcie_off + PCIE_DEVCTL2);
3604 			devctl2 |= PCIE_DEVCTL2_10B_TAG_REQ_EN;
3605 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3606 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl2);
3607 		}
3608 	}
3609 
3610 	if (bus_p->bus_dev3_off != 0 &&
3611 	    (fab->pfd_tag_act & PCIE_TAG_14B_COMP) != 0) {
3612 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3613 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3614 
3615 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_REQ_SUP) == 0) {
3616 			uint16_t devctl3 = pci_cfgacc_get16(rcdip,
3617 			    bus_p->bus_bdf, bus_p->bus_dev3_off + PCIE_DEVCTL3);
3618 			devctl3 |= PCIE_DEVCTL3_14B_TAG_REQ_EN;
3619 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3620 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl3);
3621 		}
3622 	}
3623 
3624 	/*
3625 	 * As our walk starts at a root port, we need to make sure that we don't
3626 	 * pick up any of its siblings and their children as those would be
3627 	 * different PCIe fabric domains for us to scan. In many hardware
3628 	 * platforms multiple root ports are all at the same level in the tree.
3629 	 */
3630 	if (bus_p->bus_rp_dip == dip) {
3631 		return (DDI_WALK_PRUNESIB);
3632 	}
3633 
3634 	return (DDI_WALK_CONTINUE);
3635 }
3636 
3637 /*
3638  * This is used to scan and determine the total set of PCIe fabric settings that
3639  * we should have in the system for everything downstream of this specified root
3640  * port. Note, it is only really safe to call this while working from the
3641  * perspective of a root port as we will be walking down the entire device tree.
3642  *
3643  * However, our callers, particularly hoptlug, don't have all the information
3644  * we'd like. In particular, we need to check that:
3645  *
3646  *   o This is actually a PCIe device.
3647  *   o That this is a root port (see the big theory statement to understand this
3648  *     constraint).
3649  */
3650 void
3651 pcie_fabric_setup(dev_info_t *dip)
3652 {
3653 	pcie_bus_t *bus_p;
3654 	pcie_fabric_data_t *fab;
3655 	dev_info_t *pdip;
3656 
3657 	bus_p = PCIE_DIP2BUS(dip);
3658 	if (bus_p == NULL || !PCIE_IS_RP(bus_p)) {
3659 		return;
3660 	}
3661 
3662 	VERIFY3P(bus_p->bus_fab, !=, NULL);
3663 	fab = bus_p->bus_fab;
3664 
3665 	/*
3666 	 * For us to call ddi_walk_devs(), our parent needs to be held.
3667 	 * ddi_walk_devs() will take care of grabbing our dip as part of its
3668 	 * walk before we iterate over our children.
3669 	 *
3670 	 * A reasonable question to ask here is why is it safe to ask for our
3671 	 * parent? In this case, because we have entered here through some
3672 	 * thread that's operating on us whether as part of attach or a hotplug
3673 	 * event, our dip somewhat by definition has to be valid. If we were
3674 	 * looking at our dip's children and then asking them for a parent, then
3675 	 * that would be a race condition.
3676 	 */
3677 	pdip = ddi_get_parent(dip);
3678 	VERIFY3P(pdip, !=, NULL);
3679 	ndi_devi_enter(pdip);
3680 	fab->pfd_flags |= PCIE_FABRIC_F_SCANNING;
3681 
3682 	/*
3683 	 * Reinitialize the tracking structure to basically set the maximum
3684 	 * caps. These will be chipped away during the scan.
3685 	 */
3686 	fab->pfd_mps_found = PCIE_DEVCAP_MAX_PAYLOAD_4096;
3687 	fab->pfd_tag_found = PCIE_TAG_ALL;
3688 	fab->pfd_flags &= ~PCIE_FABRIC_F_COMPLEX;
3689 
3690 	ddi_walk_devs(dip, pcie_fabric_feature_scan, fab);
3691 
3692 	if ((fab->pfd_flags & PCIE_FABRIC_F_COMPLEX) != 0) {
3693 		fab->pfd_tag_act = PCIE_TAG_5B;
3694 		fab->pfd_mps_act = PCIE_DEVCAP_MAX_PAYLOAD_128;
3695 	} else {
3696 		fab->pfd_tag_act = fab->pfd_tag_found;
3697 		fab->pfd_mps_act = fab->pfd_mps_found;
3698 	}
3699 
3700 	ddi_walk_devs(dip, pcie_fabric_feature_set, fab);
3701 
3702 	fab->pfd_flags &= ~PCIE_FABRIC_F_SCANNING;
3703 	ndi_devi_exit(pdip);
3704 }
3705