xref: /illumos-gate/usr/src/uts/common/io/pciex/pcie.c (revision c9645fac1ea94ab03679849e593a401e6e6f5792)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright 2022 Oxide Computer Company
26  */
27 
28 /*
29  * PCIe Initialization
30  * -------------------
31  *
32  * The PCIe subsystem is split about and initializes itself in a couple of
33  * different places. This is due to the platform-specific nature of initializing
34  * resources and the nature of the SPARC PROM and how that influenced the
35  * subsystem. Note that traditional PCI (mostly seen these days in Virtual
36  * Machines) follows most of the same basic path outlined here, but skips a
37  * large chunk of PCIe-specific initialization.
38  *
39  * First, there is an initial device discovery phase that is taken care of by
40  * the platform. This is where we discover the set of devices that are present
41  * at system power on. These devices may or may not be hot-pluggable. In
42  * particular, this happens in a platform-specific way right now. In general, we
43  * expect most discovery to be driven by scanning each bus, device, and
44  * function, and seeing what actually exists and responds to configuration space
45  * reads. This is driven via pci_boot.c on x86. This may be seeded by something
46  * like device tree, a PROM, supplemented with ACPI, or by knowledge that the
47  * underlying platform has.
48  *
49  * As a part of this discovery process, the full set of resources that exist in
50  * the system for PCIe are:
51  *
52  *   o PCI buses
53  *   o Prefetchable Memory
54  *   o Non-prefetchable memory
55  *   o I/O ports
56  *
57  * This process is driven by a platform's PCI platform Resource Discovery (PRD)
58  * module. The PRD definitions can be found in <sys/plat/pci_prd.h> and are used
59  * to discover these resources, which will be converted into the initial set of
60  * the standard properties in the system: 'regs', 'available', 'ranges', etc.
61  * Currently it is up to platform-specific code (which should ideally be
62  * consolidated at some point) to set up all these properties.
63  *
64  * As a part of the discovery process, the platform code will create a device
65  * node (dev_info_t) for each discovered function and will create a PCIe nexus
66  * for each overall root complex that exists in the system. Most root complexes
67  * will have multiple root ports, each of which is the foundation of an
68  * independent PCIe bus due to the point-to-point nature of PCIe. When a root
69  * complex is found, a nexus driver such as npe (Nexus for PCIe Express) is
70  * attached. In the case of a non-PCIe-capable system this is where the older
71  * pci nexus driver would be used instead.
72  *
73  * To track data about a given device on a bus, a 'pcie_bus_t' structure is
74  * created for and assigned to every PCIe-based dev_info_t. This can be used to
75  * find the root port and get basic information about the device, its faults,
76  * and related information. This contains pointers to the corresponding root
77  * port as well.
78  *
79  * A root complex has its pcie_bus_t initialized as part of the device discovery
80  * process. That is, because we're trying to bootstrap the actual tree and most
81  * platforms don't have a representation for this that's explicitly
82  * discoverable, this is created manually. See callers of pcie_rc_init_bus().
83  *
84  * For other devices, bridges, and switches, the process is split into two.
85  * There is an initial pcie_bus_t that is created which will exist before we go
86  * through the actual driver attachment process. For example, on x86 this is
87  * done as part of the device and function discovery. The second pass of
88  * initialization is done only after the nexus driver actually is attached and
89  * it goes through and finishes processing all of its children.
90  *
91  * Child Initialization
92  * --------------------
93  *
94  * Generally speaking, the platform will first enumerate all PCIe devices that
95  * are in the sytem before it actually creates a device tree. This is part of
96  * the bus/device/function scanning that is performed and from that dev_info_t
97  * nodes are created for each discovered device and are inserted into the
98  * broader device tree. Later in boot, the actual device tree is walked and the
99  * nodes go through the standard dev_info_t initialization process (DS_PROTO,
100  * DS_LINKED, DS_BOUND, etc.).
101  *
102  * PCIe-specific initialization can roughly be broken into the following pieces:
103  *
104  *   1. Platform initial discovery and resource assignment
105  *   2. The pcie_bus_t initialization
106  *   3. Nexus driver child initialization
107  *   4. Fabric initialization
108  *   5. Device driver-specific initialization
109  *
110  * The first part of this (1) and (2) are discussed in the previous section.
111  * Part (1) in particular is a combination of the PRD (platform resource
112  * discovery) and general device initialization. After this, because we have a
113  * device tree, most of the standard nexus initialization happens.
114  *
115  * (5) is somewhat simple, so let's get into it before we discuss (3) and (4).
116  * This is the last thing that is called and that happens after all of the
117  * others are done. This is the logic that occurs in a driver's attach(9E) entry
118  * point. This is always device-specific and generally speaking should not be
119  * manipulating standard PCIe registers directly on their own. For example, the
120  * MSI/MSI-X, AER, Serial Number, etc. capabilities will be automatically dealt
121  * with by the framework in (3) and (4) below. In many cases, particularly
122  * things that are part of (4), adjusting them in the individual driver is not
123  * safe.
124  *
125  * Finally, let's talk about (3) and (4) as these are related. The NDI provides
126  * for a standard hook for a nexus to initialize its children. In our platforms,
127  * there are basically two possible PCIe nexus drivers: there is the generic
128  * pcieb -- PCIe bridge -- driver which is used for standard root ports,
129  * switches, etc. Then there is the platform-specific primary nexus driver,
130  * which is being slowly consolidated into a single one where it makes sense. An
131  * example of this is npe.
132  *
133  * Each of these has a child initialization function which is called from their
134  * DDI_CTLOPS_INITCHILD operation on the bus_ctl function pointer. This goes
135  * through and initializes a large number of different pieces of PCIe-based
136  * settings through the common pcie_initchild() function. This takes care of
137  * things like:
138  *
139  *   o Advanced Error Reporting
140  *   o Alternative Routing
141  *   o Capturing information around link speed, width, serial numbers, etc.
142  *   o Setting common properties around aborts
143  *
144  * There are a few caveats with this that need to be kept in mind:
145  *
146  *   o A dev_info_t indicates a specific function. This means that a
147  *     multi-function device will not all be initialized at the same time and
148  *     there is no guarantee that all children will be initialized before one of
149  *     them is attached.
150  *   o A child is only initialized if we have found a driver that matches an
151  *     alias in the dev_info_t's compatible array property.  While a lot of
152  *     multi-function devices are often multiple instances of the same thing
153  *     (e.g. a multi-port NIC with a function / NIC), this is not always the
154  *     case and one cannot make any assumptions here.
155  *
156  * This in turn leads to the next form of initialization that takes place in the
157  * case of (4). This is where we take care of things that need to be consistent
158  * across either entire devices or more generally across an entire root port and
159  * all of its children. There are a few different examples of this:
160  *
161  *   o Setting the maximum packet size
162  *   o Determining the tag width
163  *
164  * Note that features which are only based on function 0, such as ASPM (Active
165  * State Power Management), hardware autonomous width disable, etc. ultimately
166  * do not go through this path today. There are some implications here in that
167  * today several of these things are captured on functions which may not have
168  * any control here. This is an area of needed improvement.
169  *
170  * The settings in (4) are initialized in a common way, via
171  * pcie_fabric_setup(). This is called into from two different parts of
172  * the stack:
173  *
174  *   1. When we attach a root port, which is driven by pcieb.
175  *   2. When we have a hotplug event that adds a device.
176  *
177  * In general here we are going to use the term 'fabric' to refer to everything
178  * that is downstream of a root port. This corresponds to what the PCIe
179  * specification calls a 'hierarchy domain'. Strictly speaking, this is fine
180  * until peer-to-peer requests begin to happen that cause you to need to forward
181  * things across root ports. At that point the scope of the fabric increases and
182  * these settings become more complicated. We currently optimize for the much
183  * more common case, which is that each root port is effectively independent
184  * from a PCIe transaction routing perspective.
185  *
186  * Put differently, we use the term 'fabric' to refer to a set of PCIe devices
187  * that can route transactions to one another, which is generally constrained to
188  * everything under a root port and that root ports are independent. If this
189  * constraint changes, then all one needs to do is replace the discussion of the
190  * root port below with the broader root complex and system.
191  *
192  * A challenge with these settings is that once they're set and devices are
193  * actively making requests, we cannot really change them without resetting the
194  * links and cancelling all outstanding transactions via device resets. Because
195  * this is not something that we want to do, we instead look at how and when we
196  * set this to constrain what's going on.
197  *
198  * Because of this we basically say that if a given fabric has more than one
199  * hot-plug capable device that's encountered, then we have to use safe defaults
200  * (which we can allow an operator to tune eventually via pcieadm). If we have a
201  * mix of non-hotpluggable slots with downstream endpoints present and
202  * hot-pluggable slots, then we're in this case. If we don't have hot-pluggable
203  * slots, then we can have an arbitrarily complex setup. Let's look at a few of
204  * these visually:
205  *
206  * In the following diagrams, RP stands for Root Port, EP stands for Endpoint.
207  * If something is hot-pluggable, then we label it with (HP).
208  *
209  *   (1) RP --> EP
210  *   (2) RP --> Switch --> EP
211  *                    +--> EP
212  *                    +--> EP
213  *
214  *   (3) RP --> Switch --> EP
215  *                    +--> EP
216  *                    +--> Switch --> EP
217  *                               +--> EP
218  *                    +--> EP
219  *
220  *
221  *   (4) RP (HP) --> EP
222  *   (5) RP (HP) --> Switch --> EP
223  *                         +--> EP
224  *                         +--> EP
225  *
226  *   (6) RP --> Switch (HP) --> EP
227  *   (7) RP (HP) --> Switch (HP) --> EP
228  *
229  * If we look at all of these, these are all cases where it's safe for us to set
230  * things based on all devices. (1), (2), and (3) are straightforward because
231  * they have no hot-pluggable elements. This means that nothing should come/go
232  * on the system and we can set up fabric-wide properties as part of the root
233  * port.
234  *
235  * Case (4) is the most standard one that we encounter for hot-plug. Here you
236  * have a root port directly connected to an endpoint. The most common example
237  * would be an NVMe device plugged into a root port. Case (5) is interesting to
238  * highlight. While there is a switch and multiple endpoints there, they are
239  * showing up as a unit. This ends up being a weirder variant of (4), but it is
240  * safe for us to set advanced properties because we can figure out what the
241  * total set should be.
242  *
243  * Now, the more interesting bits here are (6) and (7). The reason that (6)
244  * works is that ultimately there is only a single down-stream port here that is
245  * hot-pluggable and all non-hotpluggable ports do not have a device present,
246  * which suggests that they will never have a device present. (7) also could be
247  * made to work by making the observation that if there's truly only one
248  * endpoint in a fabric, it doesn't matter how many switches there are that are
249  * hot-pluggable. This would only hold if we can assume for some reason that no
250  * other endpoints could be added.
251  *
252  * In turn, let's look at several cases that we believe aren't safe:
253  *
254  *   (8) RP --> Switch --> EP
255  *                    +--> EP
256  *               (HP) +--> EP
257  *
258  *   (9) RP --> Switch (HP) +--> EP
259  *                     (HP) +--> EP
260  *
261  *   (10) RP (HP) --> Switch (HP) +--> EP
262  *                           (HP) +--> EP
263  *
264  * All of these are situations where it's much more explicitly unsafe. Let's
265  * take (8). The problem here is that the devices on the non-hotpluggable
266  * downstream switches are always there and we should assume all device drivers
267  * will be active and performing I/O when the hot-pluggable slot changes. If the
268  * hot-pluggable slot has a lower max payload size, then we're mostly out of
269  * luck. The case of (9) is very similar to (8), just that we have more hot-plug
270  * capable slots.
271  *
272  * Finally (10) is a case of multiple instances of hotplug. (9) and (10) are the
273  * more general case of (6) and (7). While we can try to detect (6) and (7) more
274  * generally or try to make it safe, we're going to start with a simpler form of
275  * detection for this, which roughly follows the following rules:
276  *
277  *   o If there are no hot-pluggable slots in an entire fabric, then we can set
278  *     all fabric properties based on device capabilities.
279  *   o If we encounter a hot-pluggable slot, we can only set fabric properties
280  *     based on device capabilities if:
281  *
282  *       1. The hotpluggable slot is a root port.
283  *       2. There are no other hotpluggable devices downstream of it.
284  *
285  * Otherwise, if neither of the above is true, then we must use the basic PCIe
286  * defaults for various fabric-wide properties (discussed below). Even in these
287  * more complicated cases, device-specific properties such as the configuration
288  * of AERs, ASPM, etc. are still handled in the general pcie_init_bus() and
289  * related discussed earlier here.
290  *
291  * Because the only fabrics that we'll change are those that correspond to root
292  * ports, we will only call into the actual fabric feature setup when one of
293  * those changes. This has the side effect of simplifying locking. When we make
294  * changes here we need to be able to hold the entire device tree under the root
295  * port (including the root port and its parent). This is much harder to do
296  * safely when starting in the middle of the tree.
297  *
298  * Handling of Specific Properties
299  * -------------------------------
300  *
301  * This section goes into the rationale behind how we initialize and program
302  * various parts of the PCIe stack.
303  *
304  * 5-, 8-, 10- AND 14-BIT TAGS
305  *
306  * Tags are part of PCIe transactions and when combined with a device identifier
307  * are used to uniquely identify a transaction. In PCIe parlance, a Requester
308  * (someone who initiates a PCIe request) sets a unique tag in the request and
309  * the Completer (someone who processes and responds to a PCIe request) echoes
310  * the tag back. This means that a requester generally is responsible for
311  * ensuring that they don't reuse a tag between transactions.
312  *
313  * Thus the number of tags that a device has relates to the number of
314  * outstanding transactions that it can have, which are usually tied to the
315  * number of outstanding DMA transfers. The size of these transactions is also
316  * then scoped by the handling of the Maximum Packet Payload.
317  *
318  * In PCIe 1.0, devices default to a 5-bit tag. There was also an option to
319  * support an 8-bit tag. The 8-bit extended tag did not distinguish between a
320  * Requester or Completer. There was a bit to indicate device support of 8-bit
321  * tags in the Device Capabilities Register of the PCIe Capability and a
322  * separate bit to enable it in the Device Control Register of the PCIe
323  * Capability.
324  *
325  * In PCIe 4.0, support for a 10-bit tag was added. The specification broke
326  * apart the support bit into multiple pieces. In particular, in the Device
327  * Capabilities 2 register of the PCIe Capability there is a separate bit to
328  * indicate whether the device supports 10-bit completions and 10-bit requests.
329  * All PCIe 4.0 compliant devices are required to support 10-bit tags if they
330  * operate at 16.0 GT/s speed (a PCIe Gen 4 compliant device does not have to
331  * operate at Gen 4 speeds).
332  *
333  * This allows a device to support 10-bit completions but not 10-bit requests.
334  * A device that supports 10-bit requests is required to support 10-bit
335  * completions. There is no ability to enable or disable 10-bit completion
336  * support in the Device Capabilities 2 register. There is only a bit to enable
337  * 10-bit requests. This distinction makes our life easier as this means that as
338  * long as the entire fabric supports 10-bit completions, it doesn't matter if
339  * not all devices support 10-bit requests and we can enable them as required.
340  * More on this in a bit.
341  *
342  * In PCIe 6.0, another set of bits was added for 14-bit tags. These follow the
343  * same pattern as the 10-bit tags. The biggest difference is that the
344  * capabilities and control for these are found in the Device Capabilities 3
345  * and Device Control 3 register of the Device 3 Extended Capability. Similar to
346  * what we see with 10-bit tags, requesters are required to support the
347  * completer capability. The only control bit is for whether or not they enable
348  * a 14-bit requester.
349  *
350  * PCIe switches which sit between root ports and endpoints and show up to
351  * software as a set of bridges. Bridges generally don't have to know about tags
352  * as they are usually neither requesters or completers (unless directly talking
353  * to the bridge instance). That is they are generally required to forward
354  * packets without modifying them. This works until we deal with switch error
355  * handling. At that point, the switch may try to interpret the transaction and
356  * if it doesn't understand the tagging scheme in use, return the transaction to
357  * with the wrong tag and also an incorrectly diagnosed error (usually a
358  * malformed TLP).
359  *
360  * With all this, we construct a somewhat simple policy of how and when we
361  * enable extended tags:
362  *
363  *    o If we have a complex hotplug-capable fabric (based on the discussion
364  *      earlier in fabric-specific settings), then we cannot enable any of the
365  *      8-bit, 10-bit, and 14-bit tagging features. This is due to the issues
366  *      with intermediate PCIe switches and related.
367  *
368  *    o If every device supports 8-bit capable tags, then we will go through and
369  *      enable those everywhere.
370  *
371  *    o If every device supports 10-bit capable completions, then we will enable
372  *      10-bit requester on every device that supports it.
373  *
374  *    o If every device supports 14-bit capable completions, then we will enable
375  *      14-bit requesters on every device that supports it.
376  *
377  * This is the simpler end of the policy and one that is relatively easy to
378  * implement. While we could attempt to relax the constraint that every device
379  * in the fabric implement these features by making assumptions about peer-to-
380  * peer requests (that is devices at the same layer in the tree won't talk to
381  * one another), that is a lot of complexity. For now, we leave such an
382  * implementation to those who need it in the future.
383  *
384  * MAX PAYLOAD SIZE
385  *
386  * When performing transactions on the PCIe bus, a given transaction has a
387  * maximum allowed size. This size is called the MPS or 'Maximum Payload Size'.
388  * A given device reports its maximum supported size in the Device Capabilities
389  * register of the PCIe Capability. It is then set in the Device Control
390  * register.
391  *
392  * One of the challenges with this value is that different functions of a device
393  * have independent values, but strictly speaking are required to actually have
394  * the same value programmed in all of them lest device behavior goes awry. When
395  * a device has the ARI (alternative routing ID) capability enabled, then only
396  * function 0 controls the actual payload size.
397  *
398  * The settings for this need to be consistent throughout the fabric. A
399  * Transmitter is not allowed to create a TLP that exceeds its maximum packet
400  * size and a Receiver is not allowed to receive a packet that exceeds its
401  * maximum packet size. In all of these cases, this would result in something
402  * like a malformed TLP error.
403  *
404  * Effectively, this means that everything on a given fabric must have the same
405  * value programmed in its Device Control register for this value. While in the
406  * case of tags, switches generally weren't completers or requesters, here every
407  * device along the path is subject to this. This makes the actual value that we
408  * set throughout the fabric even more important and the constraints of hotplug
409  * even worse to deal with.
410  *
411  * Because a hotplug device can be inserted with any packet size, if we hit
412  * anything other than the simple hotplug cases discussed in the fabric-specific
413  * settings section, then we must use the smallest size of 128 byte payloads.
414  * This is because a device could be plugged in that supports something smaller
415  * than we had otherwise set. If there are other active devices, those could not
416  * be changed without quiescing the entire fabric. As such our algorithm is as
417  * follows:
418  *
419  *     1. Scan the entire fabric, keeping track of the smallest seen MPS in the
420  *        Device Capabilities Register.
421  *     2. If we have a complex fabric, program each Device Control register with
422  *        a 128 byte maximum payload size, otherwise, program it with the
423  *        discovered value.
424  *
425  *
426  * MAX READ REQUEST SIZE
427  *
428  * The maximum read request size (mrrs) is a much more confusing thing when
429  * compared to the maximum payload size counterpart. The maximum payload size
430  * (MPS) above is what restricts the actual size of a TLP. The mrrs value
431  * is used to control part of the behavior of Memory Read Request, which is not
432  * strictly speaking subject to the MPS. A PCIe device is allowed to respond to
433  * a Memory Read Request with less bytes than were actually requested in a
434  * single completion. In general, the default size that a root complex and its
435  * root port will reply to are based around the length of a cache line.
436  *
437  * What this ultimately controls is the number of requests that the Requester
438  * has to make and trades off bandwidth, bus sharing, and related here. For
439  * example, if the maximum read request size is 4 KiB, then the requester would
440  * only issue a single read request asking for 4 KiB. It would still receive
441  * these as multiple packets in units of the MPS. If however, the maximum read
442  * request was only say 512 B, then it would need to make 8 separate requests,
443  * potentially increasing latency. On the other hand, if systems are relying on
444  * total requests for QoS, then it's important to set it to something that's
445  * closer to the actual MPS.
446  *
447  * Traditionally, the OS has not been the most straightforward about this. It's
448  * important to remember that setting this up is also somewhat in the realm of
449  * system firmware. Due to the PCI Firmware specification, the firmware may have
450  * set up a value for not just the MRRS but also the MPS. As such, our logic
451  * basically left the MRRS alone and used whatever the device had there as long
452  * as we weren't shrinking the device's MPS. If we were, then we'd set it to the
453  * MPS. If the device was a root port, then it was just left at a system wide
454  * and PCIe default of 512 bytes.
455  *
456  * If we survey firmware (which isn't easy due to its nature), we have seen most
457  * cases where the firmware just doesn't do anything and leaves it to the
458  * device's default, which is basically just the PCIe default, unless it has a
459  * specific knowledge of something like say wanting to do something for an NVMe
460  * device. The same is generally true of other systems, leaving it at its
461  * default unless otherwise set by a device driver.
462  *
463  * Because this value doesn't really have the same constraints as other fabric
464  * properties, this becomes much simpler and we instead opt to set it as part of
465  * the device node initialization. In addition, there are no real rules about
466  * different functions having different values here as it doesn't really impact
467  * the TLP processing the same way that the MPS does.
468  *
469  * While we should add a fuller way of setting this and allowing operator
470  * override of the MRRS based on things like device class, etc. that is driven
471  * by pcieadm, that is left to the future. For now we opt to that all devices
472  * are kept at their default (512 bytes or whatever firmware left behind) and we
473  * ensure that root ports always have the mrrs set to 512.
474  */
475 
476 #include <sys/sysmacros.h>
477 #include <sys/types.h>
478 #include <sys/kmem.h>
479 #include <sys/modctl.h>
480 #include <sys/ddi.h>
481 #include <sys/sunddi.h>
482 #include <sys/sunndi.h>
483 #include <sys/fm/protocol.h>
484 #include <sys/fm/util.h>
485 #include <sys/promif.h>
486 #include <sys/disp.h>
487 #include <sys/stat.h>
488 #include <sys/file.h>
489 #include <sys/pci_cap.h>
490 #include <sys/pci_impl.h>
491 #include <sys/pcie_impl.h>
492 #include <sys/hotplug/pci/pcie_hp.h>
493 #include <sys/hotplug/pci/pciehpc.h>
494 #include <sys/hotplug/pci/pcishpc.h>
495 #include <sys/hotplug/pci/pcicfg.h>
496 #include <sys/pci_cfgacc.h>
497 #include <sys/sysevent.h>
498 #include <sys/sysevent/eventdefs.h>
499 #include <sys/sysevent/pcie.h>
500 
501 /* Local functions prototypes */
502 static void pcie_init_pfd(dev_info_t *);
503 static void pcie_fini_pfd(dev_info_t *);
504 
505 #if defined(__x86)
506 static void pcie_check_io_mem_range(ddi_acc_handle_t, boolean_t *, boolean_t *);
507 #endif /* defined(__x86) */
508 
509 #ifdef DEBUG
510 uint_t pcie_debug_flags = 0;
511 static void pcie_print_bus(pcie_bus_t *bus_p);
512 void pcie_dbg(char *fmt, ...);
513 #endif /* DEBUG */
514 
515 /* Variable to control default PCI-Express config settings */
516 ushort_t pcie_command_default =
517     PCI_COMM_SERR_ENABLE |
518     PCI_COMM_WAIT_CYC_ENAB |
519     PCI_COMM_PARITY_DETECT |
520     PCI_COMM_ME |
521     PCI_COMM_MAE |
522     PCI_COMM_IO;
523 
524 /* xxx_fw are bits that are controlled by FW and should not be modified */
525 ushort_t pcie_command_default_fw =
526     PCI_COMM_SPEC_CYC |
527     PCI_COMM_MEMWR_INVAL |
528     PCI_COMM_PALETTE_SNOOP |
529     PCI_COMM_WAIT_CYC_ENAB |
530     0xF800; /* Reserved Bits */
531 
532 ushort_t pcie_bdg_command_default_fw =
533     PCI_BCNF_BCNTRL_ISA_ENABLE |
534     PCI_BCNF_BCNTRL_VGA_ENABLE |
535     0xF000; /* Reserved Bits */
536 
537 /* PCI-Express Base error defaults */
538 ushort_t pcie_base_err_default =
539     PCIE_DEVCTL_CE_REPORTING_EN |
540     PCIE_DEVCTL_NFE_REPORTING_EN |
541     PCIE_DEVCTL_FE_REPORTING_EN |
542     PCIE_DEVCTL_UR_REPORTING_EN;
543 
544 /* PCI-Express Device Control Register */
545 uint16_t pcie_devctl_default = PCIE_DEVCTL_RO_EN |
546     PCIE_DEVCTL_MAX_READ_REQ_512;
547 
548 /* PCI-Express AER Root Control Register */
549 #define	PCIE_ROOT_SYS_ERR	(PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | \
550 				PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | \
551 				PCIE_ROOTCTL_SYS_ERR_ON_FE_EN)
552 
553 ushort_t pcie_root_ctrl_default =
554     PCIE_ROOTCTL_SYS_ERR_ON_CE_EN |
555     PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN |
556     PCIE_ROOTCTL_SYS_ERR_ON_FE_EN;
557 
558 /* PCI-Express Root Error Command Register */
559 ushort_t pcie_root_error_cmd_default =
560     PCIE_AER_RE_CMD_CE_REP_EN |
561     PCIE_AER_RE_CMD_NFE_REP_EN |
562     PCIE_AER_RE_CMD_FE_REP_EN;
563 
564 /* ECRC settings in the PCIe AER Control Register */
565 uint32_t pcie_ecrc_value =
566     PCIE_AER_CTL_ECRC_GEN_ENA |
567     PCIE_AER_CTL_ECRC_CHECK_ENA;
568 
569 /*
570  * If a particular platform wants to disable certain errors such as UR/MA,
571  * instead of using #defines have the platform's PCIe Root Complex driver set
572  * these masks using the pcie_get_XXX_mask and pcie_set_XXX_mask functions.  For
573  * x86 the closest thing to a PCIe root complex driver is NPE.	For SPARC the
574  * closest PCIe root complex driver is PX.
575  *
576  * pcie_serr_disable_flag : disable SERR only (in RCR and command reg) x86
577  * systems may want to disable SERR in general.  For root ports, enabling SERR
578  * causes NMIs which are not handled and results in a watchdog timeout error.
579  */
580 uint32_t pcie_aer_uce_mask = 0;		/* AER UE Mask */
581 uint32_t pcie_aer_ce_mask = 0;		/* AER CE Mask */
582 uint32_t pcie_aer_suce_mask = 0;	/* AER Secondary UE Mask */
583 uint32_t pcie_serr_disable_flag = 0;	/* Disable SERR */
584 
585 /* Default severities needed for eversholt.  Error handling doesn't care */
586 uint32_t pcie_aer_uce_severity = PCIE_AER_UCE_MTLP | PCIE_AER_UCE_RO | \
587     PCIE_AER_UCE_FCP | PCIE_AER_UCE_SD | PCIE_AER_UCE_DLP | \
588     PCIE_AER_UCE_TRAINING;
589 uint32_t pcie_aer_suce_severity = PCIE_AER_SUCE_SERR_ASSERT | \
590     PCIE_AER_SUCE_UC_ADDR_ERR | PCIE_AER_SUCE_UC_ATTR_ERR | \
591     PCIE_AER_SUCE_USC_MSG_DATA_ERR;
592 
593 int pcie_disable_ari = 0;
594 
595 /*
596  * On some platforms, such as the AMD B450 chipset, we've seen an odd
597  * relationship between enabling link bandwidth notifications and AERs about
598  * ECRC errors. This provides a mechanism to disable it.
599  */
600 int pcie_disable_lbw = 0;
601 
602 /*
603  * Amount of time to wait for an in-progress retraining. The default is to try
604  * 500 times in 10ms chunks, thus a total of 5s.
605  */
606 uint32_t pcie_link_retrain_count = 500;
607 uint32_t pcie_link_retrain_delay_ms = 10;
608 
609 taskq_t *pcie_link_tq;
610 kmutex_t pcie_link_tq_mutex;
611 
612 static void pcie_scan_mps(dev_info_t *rc_dip, dev_info_t *dip,
613 	int *max_supported);
614 static int pcie_get_max_supported(dev_info_t *dip, void *arg);
615 static int pcie_map_phys(dev_info_t *dip, pci_regspec_t *phys_spec,
616     caddr_t *addrp, ddi_acc_handle_t *handlep);
617 static void pcie_unmap_phys(ddi_acc_handle_t *handlep,	pci_regspec_t *ph);
618 static int pcie_link_bw_intr(dev_info_t *);
619 static void pcie_capture_speeds(dev_info_t *);
620 
621 dev_info_t *pcie_get_rc_dip(dev_info_t *dip);
622 
623 /*
624  * modload support
625  */
626 
627 static struct modlmisc modlmisc	= {
628 	&mod_miscops,	/* Type	of module */
629 	"PCI Express Framework Module"
630 };
631 
632 static struct modlinkage modlinkage = {
633 	MODREV_1,
634 	(void	*)&modlmisc,
635 	NULL
636 };
637 
638 /*
639  * Global Variables needed for a non-atomic version of ddi_fm_ereport_post.
640  * Currently used to send the pci.fabric ereports whose payload depends on the
641  * type of PCI device it is being sent for.
642  */
643 char		*pcie_nv_buf;
644 nv_alloc_t	*pcie_nvap;
645 nvlist_t	*pcie_nvl;
646 
647 int
648 _init(void)
649 {
650 	int rval;
651 
652 	pcie_nv_buf = kmem_alloc(ERPT_DATA_SZ, KM_SLEEP);
653 	pcie_nvap = fm_nva_xcreate(pcie_nv_buf, ERPT_DATA_SZ);
654 	pcie_nvl = fm_nvlist_create(pcie_nvap);
655 	mutex_init(&pcie_link_tq_mutex, NULL, MUTEX_DRIVER, NULL);
656 
657 	if ((rval = mod_install(&modlinkage)) != 0) {
658 		mutex_destroy(&pcie_link_tq_mutex);
659 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
660 		fm_nva_xdestroy(pcie_nvap);
661 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
662 	}
663 	return (rval);
664 }
665 
666 int
667 _fini()
668 {
669 	int		rval;
670 
671 	if ((rval = mod_remove(&modlinkage)) == 0) {
672 		if (pcie_link_tq != NULL) {
673 			taskq_destroy(pcie_link_tq);
674 		}
675 		mutex_destroy(&pcie_link_tq_mutex);
676 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
677 		fm_nva_xdestroy(pcie_nvap);
678 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
679 	}
680 	return (rval);
681 }
682 
683 int
684 _info(struct modinfo *modinfop)
685 {
686 	return (mod_info(&modlinkage, modinfop));
687 }
688 
689 /* ARGSUSED */
690 int
691 pcie_init(dev_info_t *dip, caddr_t arg)
692 {
693 	int	ret = DDI_SUCCESS;
694 
695 	/*
696 	 * Our _init function is too early to create a taskq. Create the pcie
697 	 * link management taskq here now instead.
698 	 */
699 	mutex_enter(&pcie_link_tq_mutex);
700 	if (pcie_link_tq == NULL) {
701 		pcie_link_tq = taskq_create("pcie_link", 1, minclsyspri, 0, 0,
702 		    0);
703 	}
704 	mutex_exit(&pcie_link_tq_mutex);
705 
706 
707 	/*
708 	 * Create a "devctl" minor node to support DEVCTL_DEVICE_*
709 	 * and DEVCTL_BUS_* ioctls to this bus.
710 	 */
711 	if ((ret = ddi_create_minor_node(dip, "devctl", S_IFCHR,
712 	    PCI_MINOR_NUM(ddi_get_instance(dip), PCI_DEVCTL_MINOR),
713 	    DDI_NT_NEXUS, 0)) != DDI_SUCCESS) {
714 		PCIE_DBG("Failed to create devctl minor node for %s%d\n",
715 		    ddi_driver_name(dip), ddi_get_instance(dip));
716 
717 		return (ret);
718 	}
719 
720 	if ((ret = pcie_hp_init(dip, arg)) != DDI_SUCCESS) {
721 		/*
722 		 * On some x86 platforms, we observed unexpected hotplug
723 		 * initialization failures in recent years. The known cause
724 		 * is a hardware issue: while the problem PCI bridges have
725 		 * the Hotplug Capable registers set, the machine actually
726 		 * does not implement the expected ACPI object.
727 		 *
728 		 * We don't want to stop PCI driver attach and system boot
729 		 * just because of this hotplug initialization failure.
730 		 * Continue with a debug message printed.
731 		 */
732 		PCIE_DBG("%s%d: Failed setting hotplug framework\n",
733 		    ddi_driver_name(dip), ddi_get_instance(dip));
734 
735 #if defined(__sparc)
736 		ddi_remove_minor_node(dip, "devctl");
737 
738 		return (ret);
739 #endif /* defined(__sparc) */
740 	}
741 
742 	return (DDI_SUCCESS);
743 }
744 
745 /* ARGSUSED */
746 int
747 pcie_uninit(dev_info_t *dip)
748 {
749 	int	ret = DDI_SUCCESS;
750 
751 	if (pcie_ari_is_enabled(dip) == PCIE_ARI_FORW_ENABLED)
752 		(void) pcie_ari_disable(dip);
753 
754 	if ((ret = pcie_hp_uninit(dip)) != DDI_SUCCESS) {
755 		PCIE_DBG("Failed to uninitialize hotplug for %s%d\n",
756 		    ddi_driver_name(dip), ddi_get_instance(dip));
757 
758 		return (ret);
759 	}
760 
761 	if (pcie_link_bw_supported(dip)) {
762 		(void) pcie_link_bw_disable(dip);
763 	}
764 
765 	ddi_remove_minor_node(dip, "devctl");
766 
767 	return (ret);
768 }
769 
770 /*
771  * PCIe module interface for enabling hotplug interrupt.
772  *
773  * It should be called after pcie_init() is done and bus driver's
774  * interrupt handlers have being attached.
775  */
776 int
777 pcie_hpintr_enable(dev_info_t *dip)
778 {
779 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
780 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
781 
782 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
783 		(void) (ctrl_p->hc_ops.enable_hpc_intr)(ctrl_p);
784 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
785 		(void) pcishpc_enable_irqs(ctrl_p);
786 	}
787 	return (DDI_SUCCESS);
788 }
789 
790 /*
791  * PCIe module interface for disabling hotplug interrupt.
792  *
793  * It should be called before pcie_uninit() is called and bus driver's
794  * interrupt handlers is dettached.
795  */
796 int
797 pcie_hpintr_disable(dev_info_t *dip)
798 {
799 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
800 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
801 
802 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
803 		(void) (ctrl_p->hc_ops.disable_hpc_intr)(ctrl_p);
804 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
805 		(void) pcishpc_disable_irqs(ctrl_p);
806 	}
807 	return (DDI_SUCCESS);
808 }
809 
810 /* ARGSUSED */
811 int
812 pcie_intr(dev_info_t *dip)
813 {
814 	int hp, lbw;
815 
816 	hp = pcie_hp_intr(dip);
817 	lbw = pcie_link_bw_intr(dip);
818 
819 	if (hp == DDI_INTR_CLAIMED || lbw == DDI_INTR_CLAIMED) {
820 		return (DDI_INTR_CLAIMED);
821 	}
822 
823 	return (DDI_INTR_UNCLAIMED);
824 }
825 
826 /* ARGSUSED */
827 int
828 pcie_open(dev_info_t *dip, dev_t *devp, int flags, int otyp, cred_t *credp)
829 {
830 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
831 
832 	/*
833 	 * Make sure the open is for the right file type.
834 	 */
835 	if (otyp != OTYP_CHR)
836 		return (EINVAL);
837 
838 	/*
839 	 * Handle the open by tracking the device state.
840 	 */
841 	if ((bus_p->bus_soft_state == PCI_SOFT_STATE_OPEN_EXCL) ||
842 	    ((flags & FEXCL) &&
843 	    (bus_p->bus_soft_state != PCI_SOFT_STATE_CLOSED))) {
844 		return (EBUSY);
845 	}
846 
847 	if (flags & FEXCL)
848 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN_EXCL;
849 	else
850 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN;
851 
852 	return (0);
853 }
854 
855 /* ARGSUSED */
856 int
857 pcie_close(dev_info_t *dip, dev_t dev, int flags, int otyp, cred_t *credp)
858 {
859 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
860 
861 	if (otyp != OTYP_CHR)
862 		return (EINVAL);
863 
864 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
865 
866 	return (0);
867 }
868 
869 /* ARGSUSED */
870 int
871 pcie_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg, int mode,
872     cred_t *credp, int *rvalp)
873 {
874 	struct devctl_iocdata	*dcp;
875 	uint_t			bus_state;
876 	int			rv = DDI_SUCCESS;
877 
878 	/*
879 	 * We can use the generic implementation for devctl ioctl
880 	 */
881 	switch (cmd) {
882 	case DEVCTL_DEVICE_GETSTATE:
883 	case DEVCTL_DEVICE_ONLINE:
884 	case DEVCTL_DEVICE_OFFLINE:
885 	case DEVCTL_BUS_GETSTATE:
886 		return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
887 	default:
888 		break;
889 	}
890 
891 	/*
892 	 * read devctl ioctl data
893 	 */
894 	if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
895 		return (EFAULT);
896 
897 	switch (cmd) {
898 	case DEVCTL_BUS_QUIESCE:
899 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
900 			if (bus_state == BUS_QUIESCED)
901 				break;
902 		(void) ndi_set_bus_state(dip, BUS_QUIESCED);
903 		break;
904 	case DEVCTL_BUS_UNQUIESCE:
905 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
906 			if (bus_state == BUS_ACTIVE)
907 				break;
908 		(void) ndi_set_bus_state(dip, BUS_ACTIVE);
909 		break;
910 	case DEVCTL_BUS_RESET:
911 	case DEVCTL_BUS_RESETALL:
912 	case DEVCTL_DEVICE_RESET:
913 		rv = ENOTSUP;
914 		break;
915 	default:
916 		rv = ENOTTY;
917 	}
918 
919 	ndi_dc_freehdl(dcp);
920 	return (rv);
921 }
922 
923 /* ARGSUSED */
924 int
925 pcie_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
926     int flags, char *name, caddr_t valuep, int *lengthp)
927 {
928 	if (dev == DDI_DEV_T_ANY)
929 		goto skip;
930 
931 	if (PCIE_IS_HOTPLUG_CAPABLE(dip) &&
932 	    strcmp(name, "pci-occupant") == 0) {
933 		int	pci_dev = PCI_MINOR_NUM_TO_PCI_DEVNUM(getminor(dev));
934 
935 		pcie_hp_create_occupant_props(dip, dev, pci_dev);
936 	}
937 
938 skip:
939 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
940 }
941 
942 int
943 pcie_init_cfghdl(dev_info_t *cdip)
944 {
945 	pcie_bus_t		*bus_p;
946 	ddi_acc_handle_t	eh = NULL;
947 
948 	bus_p = PCIE_DIP2BUS(cdip);
949 	if (bus_p == NULL)
950 		return (DDI_FAILURE);
951 
952 	/* Create an config access special to error handling */
953 	if (pci_config_setup(cdip, &eh) != DDI_SUCCESS) {
954 		cmn_err(CE_WARN, "Cannot setup config access"
955 		    " for BDF 0x%x\n", bus_p->bus_bdf);
956 		return (DDI_FAILURE);
957 	}
958 
959 	bus_p->bus_cfg_hdl = eh;
960 	return (DDI_SUCCESS);
961 }
962 
963 void
964 pcie_fini_cfghdl(dev_info_t *cdip)
965 {
966 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(cdip);
967 
968 	pci_config_teardown(&bus_p->bus_cfg_hdl);
969 }
970 
971 void
972 pcie_determine_serial(dev_info_t *dip)
973 {
974 	pcie_bus_t		*bus_p = PCIE_DIP2BUS(dip);
975 	ddi_acc_handle_t	h;
976 	uint16_t		cap;
977 	uchar_t			serial[8];
978 	uint32_t		low, high;
979 
980 	if (!PCIE_IS_PCIE(bus_p))
981 		return;
982 
983 	h = bus_p->bus_cfg_hdl;
984 
985 	if ((PCI_CAP_LOCATE(h, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap)) ==
986 	    DDI_FAILURE)
987 		return;
988 
989 	high = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_UPPER_DW);
990 	low = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_LOWER_DW);
991 
992 	/*
993 	 * Here, we're trying to figure out if we had an invalid PCIe read. From
994 	 * looking at the contents of the value, it can be hard to tell the
995 	 * difference between a value that has all 1s correctly versus if we had
996 	 * an error. In this case, we only assume it's invalid if both register
997 	 * reads are invalid. We also only use 32-bit reads as we're not sure if
998 	 * all devices will support these as 64-bit reads, while we know that
999 	 * they'll support these as 32-bit reads.
1000 	 */
1001 	if (high == PCI_EINVAL32 && low == PCI_EINVAL32)
1002 		return;
1003 
1004 	serial[0] = low & 0xff;
1005 	serial[1] = (low >> 8) & 0xff;
1006 	serial[2] = (low >> 16) & 0xff;
1007 	serial[3] = (low >> 24) & 0xff;
1008 	serial[4] = high & 0xff;
1009 	serial[5] = (high >> 8) & 0xff;
1010 	serial[6] = (high >> 16) & 0xff;
1011 	serial[7] = (high >> 24) & 0xff;
1012 
1013 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, "pcie-serial",
1014 	    serial, sizeof (serial));
1015 }
1016 
1017 static void
1018 pcie_determine_aspm(dev_info_t *dip)
1019 {
1020 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1021 	uint32_t	linkcap;
1022 	uint16_t	linkctl;
1023 
1024 	if (!PCIE_IS_PCIE(bus_p))
1025 		return;
1026 
1027 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1028 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
1029 
1030 	switch (linkcap & PCIE_LINKCAP_ASPM_SUP_MASK) {
1031 	case PCIE_LINKCAP_ASPM_SUP_L0S:
1032 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1033 		    "pcie-aspm-support", "l0s");
1034 		break;
1035 	case PCIE_LINKCAP_ASPM_SUP_L1:
1036 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1037 		    "pcie-aspm-support", "l1");
1038 		break;
1039 	case PCIE_LINKCAP_ASPM_SUP_L0S_L1:
1040 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1041 		    "pcie-aspm-support", "l0s,l1");
1042 		break;
1043 	default:
1044 		return;
1045 	}
1046 
1047 	switch (linkctl & PCIE_LINKCTL_ASPM_CTL_MASK) {
1048 	case PCIE_LINKCTL_ASPM_CTL_DIS:
1049 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1050 		    "pcie-aspm-state", "disabled");
1051 		break;
1052 	case PCIE_LINKCTL_ASPM_CTL_L0S:
1053 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1054 		    "pcie-aspm-state", "l0s");
1055 		break;
1056 	case PCIE_LINKCTL_ASPM_CTL_L1:
1057 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1058 		    "pcie-aspm-state", "l1");
1059 		break;
1060 	case PCIE_LINKCTL_ASPM_CTL_L0S_L1:
1061 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1062 		    "pcie-aspm-state", "l0s,l1");
1063 		break;
1064 	}
1065 }
1066 
1067 /*
1068  * PCI-Express child device initialization. Note, this only will be called on a
1069  * device or function if we actually attach a device driver to it.
1070  *
1071  * This function enables generic pci-express interrupts and error handling.
1072  * Note, tagging, the max packet size, and related are all set up before this
1073  * point and is performed in pcie_fabric_setup().
1074  *
1075  * @param pdip		root dip (root nexus's dip)
1076  * @param cdip		child's dip (device's dip)
1077  * @return		DDI_SUCCESS or DDI_FAILURE
1078  */
1079 /* ARGSUSED */
1080 int
1081 pcie_initchild(dev_info_t *cdip)
1082 {
1083 	uint16_t		tmp16, reg16;
1084 	pcie_bus_t		*bus_p;
1085 	uint32_t		devid, venid;
1086 
1087 	bus_p = PCIE_DIP2BUS(cdip);
1088 	if (bus_p == NULL) {
1089 		PCIE_DBG("%s: BUS not found.\n",
1090 		    ddi_driver_name(cdip));
1091 
1092 		return (DDI_FAILURE);
1093 	}
1094 
1095 	if (pcie_init_cfghdl(cdip) != DDI_SUCCESS)
1096 		return (DDI_FAILURE);
1097 
1098 	/*
1099 	 * Update pcie_bus_t with real Vendor Id Device Id.
1100 	 *
1101 	 * For assigned devices in IOV environment, the OBP will return
1102 	 * faked device id/vendor id on configration read and for both
1103 	 * properties in root domain. translate_devid() function will
1104 	 * update the properties with real device-id/vendor-id on such
1105 	 * platforms, so that we can utilize the properties here to get
1106 	 * real device-id/vendor-id and overwrite the faked ids.
1107 	 *
1108 	 * For unassigned devices or devices in non-IOV environment, the
1109 	 * operation below won't make a difference.
1110 	 *
1111 	 * The IOV implementation only supports assignment of PCIE
1112 	 * endpoint devices. Devices under pci-pci bridges don't need
1113 	 * operation like this.
1114 	 */
1115 	devid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1116 	    "device-id", -1);
1117 	venid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1118 	    "vendor-id", -1);
1119 	bus_p->bus_dev_ven_id = (devid << 16) | (venid & 0xffff);
1120 
1121 	/* Clear the device's status register */
1122 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_STAT);
1123 	PCIE_PUT(16, bus_p, PCI_CONF_STAT, reg16);
1124 
1125 	/* Setup the device's command register */
1126 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_COMM);
1127 	tmp16 = (reg16 & pcie_command_default_fw) | pcie_command_default;
1128 
1129 #if defined(__x86)
1130 	boolean_t empty_io_range = B_FALSE;
1131 	boolean_t empty_mem_range = B_FALSE;
1132 	/*
1133 	 * Check for empty IO and Mem ranges on bridges. If so disable IO/Mem
1134 	 * access as it can cause a hang if enabled.
1135 	 */
1136 	pcie_check_io_mem_range(bus_p->bus_cfg_hdl, &empty_io_range,
1137 	    &empty_mem_range);
1138 	if ((empty_io_range == B_TRUE) &&
1139 	    (pcie_command_default & PCI_COMM_IO)) {
1140 		tmp16 &= ~PCI_COMM_IO;
1141 		PCIE_DBG("No I/O range found for %s, bdf 0x%x\n",
1142 		    ddi_driver_name(cdip), bus_p->bus_bdf);
1143 	}
1144 	if ((empty_mem_range == B_TRUE) &&
1145 	    (pcie_command_default & PCI_COMM_MAE)) {
1146 		tmp16 &= ~PCI_COMM_MAE;
1147 		PCIE_DBG("No Mem range found for %s, bdf 0x%x\n",
1148 		    ddi_driver_name(cdip), bus_p->bus_bdf);
1149 	}
1150 #endif /* defined(__x86) */
1151 
1152 	if (pcie_serr_disable_flag && PCIE_IS_PCIE(bus_p))
1153 		tmp16 &= ~PCI_COMM_SERR_ENABLE;
1154 
1155 	PCIE_PUT(16, bus_p, PCI_CONF_COMM, tmp16);
1156 	PCIE_DBG_CFG(cdip, bus_p, "COMMAND", 16, PCI_CONF_COMM, reg16);
1157 
1158 	/*
1159 	 * If the device has a bus control register then program it
1160 	 * based on the settings in the command register.
1161 	 */
1162 	if (PCIE_IS_BDG(bus_p)) {
1163 		/* Clear the device's secondary status register */
1164 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_SEC_STATUS);
1165 		PCIE_PUT(16, bus_p, PCI_BCNF_SEC_STATUS, reg16);
1166 
1167 		/* Setup the device's secondary command register */
1168 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_BCNTRL);
1169 		tmp16 = (reg16 & pcie_bdg_command_default_fw);
1170 
1171 		tmp16 |= PCI_BCNF_BCNTRL_SERR_ENABLE;
1172 		/*
1173 		 * Workaround for this Nvidia bridge. Don't enable the SERR
1174 		 * enable bit in the bridge control register as it could lead to
1175 		 * bogus NMIs.
1176 		 */
1177 		if (bus_p->bus_dev_ven_id == 0x037010DE)
1178 			tmp16 &= ~PCI_BCNF_BCNTRL_SERR_ENABLE;
1179 
1180 		if (pcie_command_default & PCI_COMM_PARITY_DETECT)
1181 			tmp16 |= PCI_BCNF_BCNTRL_PARITY_ENABLE;
1182 
1183 		/*
1184 		 * Enable Master Abort Mode only if URs have not been masked.
1185 		 * For PCI and PCIe-PCI bridges, enabling this bit causes a
1186 		 * Master Aborts/UR to be forwarded as a UR/TA or SERR.  If this
1187 		 * bit is masked, posted requests are dropped and non-posted
1188 		 * requests are returned with -1.
1189 		 */
1190 		if (pcie_aer_uce_mask & PCIE_AER_UCE_UR)
1191 			tmp16 &= ~PCI_BCNF_BCNTRL_MAST_AB_MODE;
1192 		else
1193 			tmp16 |= PCI_BCNF_BCNTRL_MAST_AB_MODE;
1194 		PCIE_PUT(16, bus_p, PCI_BCNF_BCNTRL, tmp16);
1195 		PCIE_DBG_CFG(cdip, bus_p, "SEC CMD", 16, PCI_BCNF_BCNTRL,
1196 		    reg16);
1197 	}
1198 
1199 	if (PCIE_IS_PCIE(bus_p)) {
1200 		/* Setup PCIe device control register */
1201 		reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
1202 		/* note: MPS/MRRS are initialized in pcie_initchild_mps() */
1203 		tmp16 = (reg16 & (PCIE_DEVCTL_MAX_READ_REQ_MASK |
1204 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
1205 		    (pcie_devctl_default & ~(PCIE_DEVCTL_MAX_READ_REQ_MASK |
1206 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK));
1207 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
1208 		PCIE_DBG_CAP(cdip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
1209 
1210 		/* Enable PCIe errors */
1211 		pcie_enable_errors(cdip);
1212 
1213 		pcie_determine_serial(cdip);
1214 
1215 		pcie_determine_aspm(cdip);
1216 
1217 		pcie_capture_speeds(cdip);
1218 	}
1219 
1220 	bus_p->bus_ari = B_FALSE;
1221 	if ((pcie_ari_is_enabled(ddi_get_parent(cdip))
1222 	    == PCIE_ARI_FORW_ENABLED) && (pcie_ari_device(cdip)
1223 	    == PCIE_ARI_DEVICE)) {
1224 		bus_p->bus_ari = B_TRUE;
1225 	}
1226 
1227 	return (DDI_SUCCESS);
1228 }
1229 
1230 static void
1231 pcie_init_pfd(dev_info_t *dip)
1232 {
1233 	pf_data_t	*pfd_p = PCIE_ZALLOC(pf_data_t);
1234 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1235 
1236 	PCIE_DIP2PFD(dip) = pfd_p;
1237 
1238 	pfd_p->pe_bus_p = bus_p;
1239 	pfd_p->pe_severity_flags = 0;
1240 	pfd_p->pe_severity_mask = 0;
1241 	pfd_p->pe_orig_severity_flags = 0;
1242 	pfd_p->pe_lock = B_FALSE;
1243 	pfd_p->pe_valid = B_FALSE;
1244 
1245 	/* Allocate the root fault struct for both RC and RP */
1246 	if (PCIE_IS_ROOT(bus_p)) {
1247 		PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1248 		PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1249 		PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1250 	}
1251 
1252 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1253 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1254 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1255 
1256 	if (PCIE_IS_BDG(bus_p))
1257 		PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1258 
1259 	if (PCIE_IS_PCIE(bus_p)) {
1260 		PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1261 
1262 		if (PCIE_IS_RP(bus_p))
1263 			PCIE_RP_REG(pfd_p) =
1264 			    PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1265 
1266 		PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1267 		PCIE_ADV_REG(pfd_p)->pcie_ue_tgt_bdf = PCIE_INVALID_BDF;
1268 
1269 		if (PCIE_IS_RP(bus_p)) {
1270 			PCIE_ADV_RP_REG(pfd_p) =
1271 			    PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1272 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id =
1273 			    PCIE_INVALID_BDF;
1274 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id =
1275 			    PCIE_INVALID_BDF;
1276 		} else if (PCIE_IS_PCIE_BDG(bus_p)) {
1277 			PCIE_ADV_BDG_REG(pfd_p) =
1278 			    PCIE_ZALLOC(pf_pcie_adv_bdg_err_regs_t);
1279 			PCIE_ADV_BDG_REG(pfd_p)->pcie_sue_tgt_bdf =
1280 			    PCIE_INVALID_BDF;
1281 		}
1282 
1283 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1284 			PCIX_BDG_ERR_REG(pfd_p) =
1285 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1286 
1287 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1288 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1289 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1290 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1291 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1292 			}
1293 		}
1294 
1295 		PCIE_SLOT_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_slot_regs_t);
1296 		PCIE_SLOT_REG(pfd_p)->pcie_slot_regs_valid = B_FALSE;
1297 		PCIE_SLOT_REG(pfd_p)->pcie_slot_cap = 0;
1298 		PCIE_SLOT_REG(pfd_p)->pcie_slot_control = 0;
1299 		PCIE_SLOT_REG(pfd_p)->pcie_slot_status = 0;
1300 
1301 	} else if (PCIE_IS_PCIX(bus_p)) {
1302 		if (PCIE_IS_BDG(bus_p)) {
1303 			PCIX_BDG_ERR_REG(pfd_p) =
1304 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1305 
1306 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1307 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1308 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1309 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1310 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1311 			}
1312 		} else {
1313 			PCIX_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcix_err_regs_t);
1314 
1315 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1316 				PCIX_ECC_REG(pfd_p) =
1317 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1318 		}
1319 	}
1320 }
1321 
1322 static void
1323 pcie_fini_pfd(dev_info_t *dip)
1324 {
1325 	pf_data_t	*pfd_p = PCIE_DIP2PFD(dip);
1326 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1327 
1328 	if (PCIE_IS_PCIE(bus_p)) {
1329 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1330 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1331 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1332 				    sizeof (pf_pcix_ecc_regs_t));
1333 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1334 				    sizeof (pf_pcix_ecc_regs_t));
1335 			}
1336 
1337 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1338 			    sizeof (pf_pcix_bdg_err_regs_t));
1339 		}
1340 
1341 		if (PCIE_IS_RP(bus_p))
1342 			kmem_free(PCIE_ADV_RP_REG(pfd_p),
1343 			    sizeof (pf_pcie_adv_rp_err_regs_t));
1344 		else if (PCIE_IS_PCIE_BDG(bus_p))
1345 			kmem_free(PCIE_ADV_BDG_REG(pfd_p),
1346 			    sizeof (pf_pcie_adv_bdg_err_regs_t));
1347 
1348 		kmem_free(PCIE_ADV_REG(pfd_p),
1349 		    sizeof (pf_pcie_adv_err_regs_t));
1350 
1351 		if (PCIE_IS_RP(bus_p))
1352 			kmem_free(PCIE_RP_REG(pfd_p),
1353 			    sizeof (pf_pcie_rp_err_regs_t));
1354 
1355 		kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1356 	} else if (PCIE_IS_PCIX(bus_p)) {
1357 		if (PCIE_IS_BDG(bus_p)) {
1358 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1359 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1360 				    sizeof (pf_pcix_ecc_regs_t));
1361 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1362 				    sizeof (pf_pcix_ecc_regs_t));
1363 			}
1364 
1365 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1366 			    sizeof (pf_pcix_bdg_err_regs_t));
1367 		} else {
1368 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1369 				kmem_free(PCIX_ECC_REG(pfd_p),
1370 				    sizeof (pf_pcix_ecc_regs_t));
1371 
1372 			kmem_free(PCIX_ERR_REG(pfd_p),
1373 			    sizeof (pf_pcix_err_regs_t));
1374 		}
1375 	}
1376 
1377 	if (PCIE_IS_BDG(bus_p))
1378 		kmem_free(PCI_BDG_ERR_REG(pfd_p),
1379 		    sizeof (pf_pci_bdg_err_regs_t));
1380 
1381 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1382 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1383 
1384 	if (PCIE_IS_ROOT(bus_p)) {
1385 		kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1386 		kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1387 	}
1388 
1389 	kmem_free(PCIE_DIP2PFD(dip), sizeof (pf_data_t));
1390 
1391 	PCIE_DIP2PFD(dip) = NULL;
1392 }
1393 
1394 
1395 /*
1396  * Special functions to allocate pf_data_t's for PCIe root complexes.
1397  * Note: Root Complex not Root Port
1398  */
1399 void
1400 pcie_rc_init_pfd(dev_info_t *dip, pf_data_t *pfd_p)
1401 {
1402 	pfd_p->pe_bus_p = PCIE_DIP2DOWNBUS(dip);
1403 	pfd_p->pe_severity_flags = 0;
1404 	pfd_p->pe_severity_mask = 0;
1405 	pfd_p->pe_orig_severity_flags = 0;
1406 	pfd_p->pe_lock = B_FALSE;
1407 	pfd_p->pe_valid = B_FALSE;
1408 
1409 	PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1410 	PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1411 	PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1412 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1413 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1414 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1415 	PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1416 	PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1417 	PCIE_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1418 	PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1419 	PCIE_ADV_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1420 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = PCIE_INVALID_BDF;
1421 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = PCIE_INVALID_BDF;
1422 
1423 	PCIE_ADV_REG(pfd_p)->pcie_ue_sev = pcie_aer_uce_severity;
1424 }
1425 
1426 void
1427 pcie_rc_fini_pfd(pf_data_t *pfd_p)
1428 {
1429 	kmem_free(PCIE_ADV_RP_REG(pfd_p), sizeof (pf_pcie_adv_rp_err_regs_t));
1430 	kmem_free(PCIE_ADV_REG(pfd_p), sizeof (pf_pcie_adv_err_regs_t));
1431 	kmem_free(PCIE_RP_REG(pfd_p), sizeof (pf_pcie_rp_err_regs_t));
1432 	kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1433 	kmem_free(PCI_BDG_ERR_REG(pfd_p), sizeof (pf_pci_bdg_err_regs_t));
1434 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1435 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1436 	kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1437 	kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1438 }
1439 
1440 /*
1441  * init pcie_bus_t for root complex
1442  *
1443  * Only a few of the fields in bus_t is valid for root complex.
1444  * The fields that are bracketed are initialized in this routine:
1445  *
1446  * dev_info_t *		<bus_dip>
1447  * dev_info_t *		bus_rp_dip
1448  * ddi_acc_handle_t	bus_cfg_hdl
1449  * uint_t		<bus_fm_flags>
1450  * pcie_req_id_t	bus_bdf
1451  * pcie_req_id_t	bus_rp_bdf
1452  * uint32_t		bus_dev_ven_id
1453  * uint8_t		bus_rev_id
1454  * uint8_t		<bus_hdr_type>
1455  * uint16_t		<bus_dev_type>
1456  * uint8_t		bus_bdg_secbus
1457  * uint16_t		bus_pcie_off
1458  * uint16_t		<bus_aer_off>
1459  * uint16_t		bus_pcix_off
1460  * uint16_t		bus_ecc_ver
1461  * pci_bus_range_t	bus_bus_range
1462  * ppb_ranges_t	*	bus_addr_ranges
1463  * int			bus_addr_entries
1464  * pci_regspec_t *	bus_assigned_addr
1465  * int			bus_assigned_entries
1466  * pf_data_t *		bus_pfd
1467  * pcie_domain_t *	<bus_dom>
1468  * int			bus_mps
1469  * uint64_t		bus_cfgacc_base
1470  * void	*		bus_plat_private
1471  */
1472 void
1473 pcie_rc_init_bus(dev_info_t *dip)
1474 {
1475 	pcie_bus_t *bus_p;
1476 
1477 	bus_p = (pcie_bus_t *)kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1478 	bus_p->bus_dip = dip;
1479 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_RC_PSEUDO;
1480 	bus_p->bus_hdr_type = PCI_HEADER_ONE;
1481 
1482 	/* Fake that there are AER logs */
1483 	bus_p->bus_aer_off = (uint16_t)-1;
1484 
1485 	/* Needed only for handle lookup */
1486 	atomic_or_uint(&bus_p->bus_fm_flags, PF_FM_READY);
1487 
1488 	ndi_set_bus_private(dip, B_FALSE, DEVI_PORT_TYPE_PCI, bus_p);
1489 
1490 	PCIE_BUS2DOM(bus_p) = PCIE_ZALLOC(pcie_domain_t);
1491 }
1492 
1493 void
1494 pcie_rc_fini_bus(dev_info_t *dip)
1495 {
1496 	pcie_bus_t *bus_p = PCIE_DIP2DOWNBUS(dip);
1497 	ndi_set_bus_private(dip, B_FALSE, 0, NULL);
1498 	kmem_free(PCIE_BUS2DOM(bus_p), sizeof (pcie_domain_t));
1499 	kmem_free(bus_p, sizeof (pcie_bus_t));
1500 }
1501 
1502 static int
1503 pcie_width_to_int(pcie_link_width_t width)
1504 {
1505 	switch (width) {
1506 	case PCIE_LINK_WIDTH_X1:
1507 		return (1);
1508 	case PCIE_LINK_WIDTH_X2:
1509 		return (2);
1510 	case PCIE_LINK_WIDTH_X4:
1511 		return (4);
1512 	case PCIE_LINK_WIDTH_X8:
1513 		return (8);
1514 	case PCIE_LINK_WIDTH_X12:
1515 		return (12);
1516 	case PCIE_LINK_WIDTH_X16:
1517 		return (16);
1518 	case PCIE_LINK_WIDTH_X32:
1519 		return (32);
1520 	default:
1521 		return (0);
1522 	}
1523 }
1524 
1525 /*
1526  * Return the speed in Transfers / second. This is a signed quantity to match
1527  * the ndi/ddi property interfaces.
1528  */
1529 static int64_t
1530 pcie_speed_to_int(pcie_link_speed_t speed)
1531 {
1532 	switch (speed) {
1533 	case PCIE_LINK_SPEED_2_5:
1534 		return (2500000000LL);
1535 	case PCIE_LINK_SPEED_5:
1536 		return (5000000000LL);
1537 	case PCIE_LINK_SPEED_8:
1538 		return (8000000000LL);
1539 	case PCIE_LINK_SPEED_16:
1540 		return (16000000000LL);
1541 	default:
1542 		return (0);
1543 	}
1544 }
1545 
1546 /*
1547  * Translate the recorded speed information into devinfo properties.
1548  */
1549 static void
1550 pcie_speeds_to_devinfo(dev_info_t *dip, pcie_bus_t *bus_p)
1551 {
1552 	if (bus_p->bus_max_width != PCIE_LINK_WIDTH_UNKNOWN) {
1553 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1554 		    "pcie-link-maximum-width",
1555 		    pcie_width_to_int(bus_p->bus_max_width));
1556 	}
1557 
1558 	if (bus_p->bus_cur_width != PCIE_LINK_WIDTH_UNKNOWN) {
1559 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1560 		    "pcie-link-current-width",
1561 		    pcie_width_to_int(bus_p->bus_cur_width));
1562 	}
1563 
1564 	if (bus_p->bus_cur_speed != PCIE_LINK_SPEED_UNKNOWN) {
1565 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1566 		    "pcie-link-current-speed",
1567 		    pcie_speed_to_int(bus_p->bus_cur_speed));
1568 	}
1569 
1570 	if (bus_p->bus_max_speed != PCIE_LINK_SPEED_UNKNOWN) {
1571 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1572 		    "pcie-link-maximum-speed",
1573 		    pcie_speed_to_int(bus_p->bus_max_speed));
1574 	}
1575 
1576 	if (bus_p->bus_target_speed != PCIE_LINK_SPEED_UNKNOWN) {
1577 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1578 		    "pcie-link-target-speed",
1579 		    pcie_speed_to_int(bus_p->bus_target_speed));
1580 	}
1581 
1582 	if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) {
1583 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
1584 		    "pcie-link-admin-target-speed");
1585 	}
1586 
1587 	if (bus_p->bus_sup_speed != PCIE_LINK_SPEED_UNKNOWN) {
1588 		int64_t speeds[4];
1589 		uint_t nspeeds = 0;
1590 
1591 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_2_5) {
1592 			speeds[nspeeds++] =
1593 			    pcie_speed_to_int(PCIE_LINK_SPEED_2_5);
1594 		}
1595 
1596 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_5) {
1597 			speeds[nspeeds++] =
1598 			    pcie_speed_to_int(PCIE_LINK_SPEED_5);
1599 		}
1600 
1601 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_8) {
1602 			speeds[nspeeds++] =
1603 			    pcie_speed_to_int(PCIE_LINK_SPEED_8);
1604 		}
1605 
1606 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_16) {
1607 			speeds[nspeeds++] =
1608 			    pcie_speed_to_int(PCIE_LINK_SPEED_16);
1609 		}
1610 
1611 		(void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip,
1612 		    "pcie-link-supported-speeds", speeds, nspeeds);
1613 	}
1614 }
1615 
1616 /*
1617  * We need to capture the supported, maximum, and current device speed and
1618  * width. The way that this has been done has changed over time.
1619  *
1620  * Prior to PCIe Gen 3, there were only current and supported speed fields.
1621  * These were found in the link status and link capabilities registers of the
1622  * PCI express capability. With the change to PCIe Gen 3, the information in the
1623  * link capabilities changed to the maximum value. The supported speeds vector
1624  * was moved to the link capabilities 2 register.
1625  *
1626  * Now, a device may not implement some of these registers. To determine whether
1627  * or not it's here, we have to do the following. First, we need to check the
1628  * revision of the PCI express capability. The link capabilities 2 register did
1629  * not exist prior to version 2 of this capability. If a modern device does not
1630  * implement it, it is supposed to return zero for the register.
1631  */
1632 static void
1633 pcie_capture_speeds(dev_info_t *dip)
1634 {
1635 	uint16_t	vers, status;
1636 	uint32_t	cap, cap2, ctl2;
1637 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1638 	dev_info_t	*rcdip;
1639 
1640 	if (!PCIE_IS_PCIE(bus_p))
1641 		return;
1642 
1643 	rcdip = pcie_get_rc_dip(dip);
1644 	if (bus_p->bus_cfg_hdl == NULL) {
1645 		vers = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1646 		    bus_p->bus_pcie_off + PCIE_PCIECAP);
1647 	} else {
1648 		vers = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
1649 	}
1650 	if (vers == PCI_EINVAL16)
1651 		return;
1652 	vers &= PCIE_PCIECAP_VER_MASK;
1653 
1654 	/*
1655 	 * Verify the capability's version.
1656 	 */
1657 	switch (vers) {
1658 	case PCIE_PCIECAP_VER_1_0:
1659 		cap2 = 0;
1660 		ctl2 = 0;
1661 		break;
1662 	case PCIE_PCIECAP_VER_2_0:
1663 		if (bus_p->bus_cfg_hdl == NULL) {
1664 			cap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1665 			    bus_p->bus_pcie_off + PCIE_LINKCAP2);
1666 			ctl2 = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1667 			    bus_p->bus_pcie_off + PCIE_LINKCTL2);
1668 		} else {
1669 			cap2 = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP2);
1670 			ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
1671 		}
1672 		if (cap2 == PCI_EINVAL32)
1673 			cap2 = 0;
1674 		if (ctl2 == PCI_EINVAL16)
1675 			ctl2 = 0;
1676 		break;
1677 	default:
1678 		/* Don't try and handle an unknown version */
1679 		return;
1680 	}
1681 
1682 	if (bus_p->bus_cfg_hdl == NULL) {
1683 		status = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1684 		    bus_p->bus_pcie_off + PCIE_LINKSTS);
1685 		cap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1686 		    bus_p->bus_pcie_off + PCIE_LINKCAP);
1687 	} else {
1688 		status = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
1689 		cap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1690 	}
1691 	if (status == PCI_EINVAL16 || cap == PCI_EINVAL32)
1692 		return;
1693 
1694 	mutex_enter(&bus_p->bus_speed_mutex);
1695 
1696 	switch (status & PCIE_LINKSTS_SPEED_MASK) {
1697 	case PCIE_LINKSTS_SPEED_2_5:
1698 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_2_5;
1699 		break;
1700 	case PCIE_LINKSTS_SPEED_5:
1701 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_5;
1702 		break;
1703 	case PCIE_LINKSTS_SPEED_8:
1704 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_8;
1705 		break;
1706 	case PCIE_LINKSTS_SPEED_16:
1707 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_16;
1708 		break;
1709 	default:
1710 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN;
1711 		break;
1712 	}
1713 
1714 	switch (status & PCIE_LINKSTS_NEG_WIDTH_MASK) {
1715 	case PCIE_LINKSTS_NEG_WIDTH_X1:
1716 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X1;
1717 		break;
1718 	case PCIE_LINKSTS_NEG_WIDTH_X2:
1719 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X2;
1720 		break;
1721 	case PCIE_LINKSTS_NEG_WIDTH_X4:
1722 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X4;
1723 		break;
1724 	case PCIE_LINKSTS_NEG_WIDTH_X8:
1725 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X8;
1726 		break;
1727 	case PCIE_LINKSTS_NEG_WIDTH_X12:
1728 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X12;
1729 		break;
1730 	case PCIE_LINKSTS_NEG_WIDTH_X16:
1731 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X16;
1732 		break;
1733 	case PCIE_LINKSTS_NEG_WIDTH_X32:
1734 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X32;
1735 		break;
1736 	default:
1737 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN;
1738 		break;
1739 	}
1740 
1741 	switch (cap & PCIE_LINKCAP_MAX_WIDTH_MASK) {
1742 	case PCIE_LINKCAP_MAX_WIDTH_X1:
1743 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X1;
1744 		break;
1745 	case PCIE_LINKCAP_MAX_WIDTH_X2:
1746 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X2;
1747 		break;
1748 	case PCIE_LINKCAP_MAX_WIDTH_X4:
1749 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X4;
1750 		break;
1751 	case PCIE_LINKCAP_MAX_WIDTH_X8:
1752 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X8;
1753 		break;
1754 	case PCIE_LINKCAP_MAX_WIDTH_X12:
1755 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X12;
1756 		break;
1757 	case PCIE_LINKCAP_MAX_WIDTH_X16:
1758 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X16;
1759 		break;
1760 	case PCIE_LINKCAP_MAX_WIDTH_X32:
1761 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X32;
1762 		break;
1763 	default:
1764 		bus_p->bus_max_width = PCIE_LINK_WIDTH_UNKNOWN;
1765 		break;
1766 	}
1767 
1768 	/*
1769 	 * If we have the Link Capabilities 2, then we can get the supported
1770 	 * speeds from it and treat the bits in Link Capabilities 1 as the
1771 	 * maximum. If we don't, then we need to follow the Implementation Note
1772 	 * in the standard under Link Capabilities 2. Effectively, this means
1773 	 * that if the value of 10b is set in Link Capabilities register, that
1774 	 * it supports both 2.5 and 5 GT/s speeds.
1775 	 */
1776 	if (cap2 != 0) {
1777 		if (cap2 & PCIE_LINKCAP2_SPEED_2_5)
1778 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_2_5;
1779 		if (cap2 & PCIE_LINKCAP2_SPEED_5)
1780 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_5;
1781 		if (cap2 & PCIE_LINKCAP2_SPEED_8)
1782 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_8;
1783 		if (cap2 & PCIE_LINKCAP2_SPEED_16)
1784 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_16;
1785 
1786 		switch (cap & PCIE_LINKCAP_MAX_SPEED_MASK) {
1787 		case PCIE_LINKCAP_MAX_SPEED_2_5:
1788 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1789 			break;
1790 		case PCIE_LINKCAP_MAX_SPEED_5:
1791 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1792 			break;
1793 		case PCIE_LINKCAP_MAX_SPEED_8:
1794 			bus_p->bus_max_speed = PCIE_LINK_SPEED_8;
1795 			break;
1796 		case PCIE_LINKCAP_MAX_SPEED_16:
1797 			bus_p->bus_max_speed = PCIE_LINK_SPEED_16;
1798 			break;
1799 		default:
1800 			bus_p->bus_max_speed = PCIE_LINK_SPEED_UNKNOWN;
1801 			break;
1802 		}
1803 	} else {
1804 		if (cap & PCIE_LINKCAP_MAX_SPEED_5) {
1805 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1806 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5 |
1807 			    PCIE_LINK_SPEED_5;
1808 		} else if (cap & PCIE_LINKCAP_MAX_SPEED_2_5) {
1809 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1810 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5;
1811 		}
1812 	}
1813 
1814 	switch (ctl2 & PCIE_LINKCTL2_TARGET_SPEED_MASK) {
1815 	case PCIE_LINKCTL2_TARGET_SPEED_2_5:
1816 		bus_p->bus_target_speed = PCIE_LINK_SPEED_2_5;
1817 		break;
1818 	case PCIE_LINKCTL2_TARGET_SPEED_5:
1819 		bus_p->bus_target_speed = PCIE_LINK_SPEED_5;
1820 		break;
1821 	case PCIE_LINKCTL2_TARGET_SPEED_8:
1822 		bus_p->bus_target_speed = PCIE_LINK_SPEED_8;
1823 		break;
1824 	case PCIE_LINKCTL2_TARGET_SPEED_16:
1825 		bus_p->bus_target_speed = PCIE_LINK_SPEED_16;
1826 		break;
1827 	default:
1828 		bus_p->bus_target_speed = PCIE_LINK_SPEED_UNKNOWN;
1829 		break;
1830 	}
1831 
1832 	pcie_speeds_to_devinfo(dip, bus_p);
1833 	mutex_exit(&bus_p->bus_speed_mutex);
1834 }
1835 
1836 /*
1837  * partially init pcie_bus_t for device (dip,bdf) for accessing pci
1838  * config space
1839  *
1840  * This routine is invoked during boot, either after creating a devinfo node
1841  * (x86 case) or during px driver attach (sparc case); it is also invoked
1842  * in hotplug context after a devinfo node is created.
1843  *
1844  * The fields that are bracketed are initialized if flag PCIE_BUS_INITIAL
1845  * is set:
1846  *
1847  * dev_info_t *		<bus_dip>
1848  * dev_info_t *		<bus_rp_dip>
1849  * ddi_acc_handle_t	bus_cfg_hdl
1850  * uint_t		bus_fm_flags
1851  * pcie_req_id_t	<bus_bdf>
1852  * pcie_req_id_t	<bus_rp_bdf>
1853  * uint32_t		<bus_dev_ven_id>
1854  * uint8_t		<bus_rev_id>
1855  * uint8_t		<bus_hdr_type>
1856  * uint16_t		<bus_dev_type>
1857  * uint8_t		<bus_bdg_secbus
1858  * uint16_t		<bus_pcie_off>
1859  * uint16_t		<bus_aer_off>
1860  * uint16_t		<bus_pcix_off>
1861  * uint16_t		<bus_ecc_ver>
1862  * pci_bus_range_t	bus_bus_range
1863  * ppb_ranges_t	*	bus_addr_ranges
1864  * int			bus_addr_entries
1865  * pci_regspec_t *	bus_assigned_addr
1866  * int			bus_assigned_entries
1867  * pf_data_t *		bus_pfd
1868  * pcie_domain_t *	bus_dom
1869  * int			bus_mps
1870  * uint64_t		bus_cfgacc_base
1871  * void	*		bus_plat_private
1872  *
1873  * The fields that are bracketed are initialized if flag PCIE_BUS_FINAL
1874  * is set:
1875  *
1876  * dev_info_t *		bus_dip
1877  * dev_info_t *		bus_rp_dip
1878  * ddi_acc_handle_t	bus_cfg_hdl
1879  * uint_t		bus_fm_flags
1880  * pcie_req_id_t	bus_bdf
1881  * pcie_req_id_t	bus_rp_bdf
1882  * uint32_t		bus_dev_ven_id
1883  * uint8_t		bus_rev_id
1884  * uint8_t		bus_hdr_type
1885  * uint16_t		bus_dev_type
1886  * uint8_t		<bus_bdg_secbus>
1887  * uint16_t		bus_pcie_off
1888  * uint16_t		bus_aer_off
1889  * uint16_t		bus_pcix_off
1890  * uint16_t		bus_ecc_ver
1891  * pci_bus_range_t	<bus_bus_range>
1892  * ppb_ranges_t	*	<bus_addr_ranges>
1893  * int			<bus_addr_entries>
1894  * pci_regspec_t *	<bus_assigned_addr>
1895  * int			<bus_assigned_entries>
1896  * pf_data_t *		<bus_pfd>
1897  * pcie_domain_t *	bus_dom
1898  * int			bus_mps
1899  * uint64_t		bus_cfgacc_base
1900  * void	*		<bus_plat_private>
1901  */
1902 
1903 pcie_bus_t *
1904 pcie_init_bus(dev_info_t *dip, pcie_req_id_t bdf, uint8_t flags)
1905 {
1906 	uint16_t	status, base, baseptr, num_cap;
1907 	uint32_t	capid;
1908 	int		range_size;
1909 	pcie_bus_t	*bus_p = NULL;
1910 	dev_info_t	*rcdip;
1911 	dev_info_t	*pdip;
1912 	const char	*errstr = NULL;
1913 
1914 	if (!(flags & PCIE_BUS_INITIAL))
1915 		goto initial_done;
1916 
1917 	bus_p = kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1918 
1919 	bus_p->bus_dip = dip;
1920 	bus_p->bus_bdf = bdf;
1921 
1922 	rcdip = pcie_get_rc_dip(dip);
1923 	ASSERT(rcdip != NULL);
1924 
1925 	/* Save the Vendor ID, Device ID and revision ID */
1926 	bus_p->bus_dev_ven_id = pci_cfgacc_get32(rcdip, bdf, PCI_CONF_VENID);
1927 	bus_p->bus_rev_id = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID);
1928 	/* Save the Header Type */
1929 	bus_p->bus_hdr_type = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_HEADER);
1930 	bus_p->bus_hdr_type &= PCI_HEADER_TYPE_M;
1931 
1932 	/*
1933 	 * Figure out the device type and all the relavant capability offsets
1934 	 */
1935 	/* set default value */
1936 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_PCI_PSEUDO;
1937 
1938 	status = pci_cfgacc_get16(rcdip, bdf, PCI_CONF_STAT);
1939 	if (status == PCI_CAP_EINVAL16 || !(status & PCI_STAT_CAP))
1940 		goto caps_done; /* capability not supported */
1941 
1942 	/* Relevant conventional capabilities first */
1943 
1944 	/* Conventional caps: PCI_CAP_ID_PCI_E, PCI_CAP_ID_PCIX */
1945 	num_cap = 2;
1946 
1947 	switch (bus_p->bus_hdr_type) {
1948 	case PCI_HEADER_ZERO:
1949 		baseptr = PCI_CONF_CAP_PTR;
1950 		break;
1951 	case PCI_HEADER_PPB:
1952 		baseptr = PCI_BCNF_CAP_PTR;
1953 		break;
1954 	case PCI_HEADER_CARDBUS:
1955 		baseptr = PCI_CBUS_CAP_PTR;
1956 		break;
1957 	default:
1958 		cmn_err(CE_WARN, "%s: unexpected pci header type:%x",
1959 		    __func__, bus_p->bus_hdr_type);
1960 		goto caps_done;
1961 	}
1962 
1963 	base = baseptr;
1964 	for (base = pci_cfgacc_get8(rcdip, bdf, base); base && num_cap;
1965 	    base = pci_cfgacc_get8(rcdip, bdf, base + PCI_CAP_NEXT_PTR)) {
1966 		capid = pci_cfgacc_get8(rcdip, bdf, base);
1967 		uint16_t pcap;
1968 
1969 		switch (capid) {
1970 		case PCI_CAP_ID_PCI_E:
1971 			bus_p->bus_pcie_off = base;
1972 			pcap = pci_cfgacc_get16(rcdip, bdf, base +
1973 			    PCIE_PCIECAP);
1974 			bus_p->bus_dev_type = pcap & PCIE_PCIECAP_DEV_TYPE_MASK;
1975 			bus_p->bus_pcie_vers = pcap & PCIE_PCIECAP_VER_MASK;
1976 
1977 			/* Check and save PCIe hotplug capability information */
1978 			if ((PCIE_IS_RP(bus_p) || PCIE_IS_SWD(bus_p)) &&
1979 			    (pci_cfgacc_get16(rcdip, bdf, base + PCIE_PCIECAP)
1980 			    & PCIE_PCIECAP_SLOT_IMPL) &&
1981 			    (pci_cfgacc_get32(rcdip, bdf, base + PCIE_SLOTCAP)
1982 			    & PCIE_SLOTCAP_HP_CAPABLE))
1983 				bus_p->bus_hp_sup_modes |= PCIE_NATIVE_HP_MODE;
1984 
1985 			num_cap--;
1986 			break;
1987 		case PCI_CAP_ID_PCIX:
1988 			bus_p->bus_pcix_off = base;
1989 			if (PCIE_IS_BDG(bus_p))
1990 				bus_p->bus_ecc_ver =
1991 				    pci_cfgacc_get16(rcdip, bdf, base +
1992 				    PCI_PCIX_SEC_STATUS) & PCI_PCIX_VER_MASK;
1993 			else
1994 				bus_p->bus_ecc_ver =
1995 				    pci_cfgacc_get16(rcdip, bdf, base +
1996 				    PCI_PCIX_COMMAND) & PCI_PCIX_VER_MASK;
1997 			num_cap--;
1998 			break;
1999 		default:
2000 			break;
2001 		}
2002 	}
2003 
2004 	/* Check and save PCI hotplug (SHPC) capability information */
2005 	if (PCIE_IS_BDG(bus_p)) {
2006 		base = baseptr;
2007 		for (base = pci_cfgacc_get8(rcdip, bdf, base);
2008 		    base; base = pci_cfgacc_get8(rcdip, bdf,
2009 		    base + PCI_CAP_NEXT_PTR)) {
2010 			capid = pci_cfgacc_get8(rcdip, bdf, base);
2011 			if (capid == PCI_CAP_ID_PCI_HOTPLUG) {
2012 				bus_p->bus_pci_hp_off = base;
2013 				bus_p->bus_hp_sup_modes |= PCIE_PCI_HP_MODE;
2014 				break;
2015 			}
2016 		}
2017 	}
2018 
2019 	/* Then, relevant extended capabilities */
2020 
2021 	if (!PCIE_IS_PCIE(bus_p))
2022 		goto caps_done;
2023 
2024 	/* Extended caps: PCIE_EXT_CAP_ID_AER */
2025 	for (base = PCIE_EXT_CAP; base; base = (capid >>
2026 	    PCIE_EXT_CAP_NEXT_PTR_SHIFT) & PCIE_EXT_CAP_NEXT_PTR_MASK) {
2027 		capid = pci_cfgacc_get32(rcdip, bdf, base);
2028 		if (capid == PCI_CAP_EINVAL32)
2029 			break;
2030 		switch ((capid >> PCIE_EXT_CAP_ID_SHIFT) &
2031 		    PCIE_EXT_CAP_ID_MASK) {
2032 		case PCIE_EXT_CAP_ID_AER:
2033 			bus_p->bus_aer_off = base;
2034 			break;
2035 		case PCIE_EXT_CAP_ID_DEV3:
2036 			bus_p->bus_dev3_off = base;
2037 			break;
2038 		}
2039 	}
2040 
2041 caps_done:
2042 	/* save RP dip and RP bdf */
2043 	if (PCIE_IS_RP(bus_p)) {
2044 		bus_p->bus_rp_dip = dip;
2045 		bus_p->bus_rp_bdf = bus_p->bus_bdf;
2046 
2047 		bus_p->bus_fab = PCIE_ZALLOC(pcie_fabric_data_t);
2048 	} else {
2049 		for (pdip = ddi_get_parent(dip); pdip;
2050 		    pdip = ddi_get_parent(pdip)) {
2051 			pcie_bus_t *parent_bus_p = PCIE_DIP2BUS(pdip);
2052 
2053 			/*
2054 			 * If RP dip and RP bdf in parent's bus_t have
2055 			 * been initialized, simply use these instead of
2056 			 * continuing up to the RC.
2057 			 */
2058 			if (parent_bus_p->bus_rp_dip != NULL) {
2059 				bus_p->bus_rp_dip = parent_bus_p->bus_rp_dip;
2060 				bus_p->bus_rp_bdf = parent_bus_p->bus_rp_bdf;
2061 				break;
2062 			}
2063 
2064 			/*
2065 			 * When debugging be aware that some NVIDIA x86
2066 			 * architectures have 2 nodes for each RP, One at Bus
2067 			 * 0x0 and one at Bus 0x80.  The requester is from Bus
2068 			 * 0x80
2069 			 */
2070 			if (PCIE_IS_ROOT(parent_bus_p)) {
2071 				bus_p->bus_rp_dip = pdip;
2072 				bus_p->bus_rp_bdf = parent_bus_p->bus_bdf;
2073 				break;
2074 			}
2075 		}
2076 	}
2077 
2078 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
2079 	(void) atomic_swap_uint(&bus_p->bus_fm_flags, 0);
2080 
2081 	ndi_set_bus_private(dip, B_TRUE, DEVI_PORT_TYPE_PCI, (void *)bus_p);
2082 
2083 	if (PCIE_IS_HOTPLUG_CAPABLE(dip))
2084 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
2085 		    "hotplug-capable");
2086 
2087 initial_done:
2088 	if (!(flags & PCIE_BUS_FINAL))
2089 		goto final_done;
2090 
2091 	/* already initialized? */
2092 	bus_p = PCIE_DIP2BUS(dip);
2093 
2094 	/* Save the Range information if device is a switch/bridge */
2095 	if (PCIE_IS_BDG(bus_p)) {
2096 		/* get "bus_range" property */
2097 		range_size = sizeof (pci_bus_range_t);
2098 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2099 		    "bus-range", (caddr_t)&bus_p->bus_bus_range, &range_size)
2100 		    != DDI_PROP_SUCCESS) {
2101 			errstr = "Cannot find \"bus-range\" property";
2102 			cmn_err(CE_WARN,
2103 			    "PCIE init err info failed BDF 0x%x:%s\n",
2104 			    bus_p->bus_bdf, errstr);
2105 		}
2106 
2107 		/* get secondary bus number */
2108 		rcdip = pcie_get_rc_dip(dip);
2109 		ASSERT(rcdip != NULL);
2110 
2111 		bus_p->bus_bdg_secbus = pci_cfgacc_get8(rcdip,
2112 		    bus_p->bus_bdf, PCI_BCNF_SECBUS);
2113 
2114 		/* Get "ranges" property */
2115 		if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2116 		    "ranges", (caddr_t)&bus_p->bus_addr_ranges,
2117 		    &bus_p->bus_addr_entries) != DDI_PROP_SUCCESS)
2118 			bus_p->bus_addr_entries = 0;
2119 		bus_p->bus_addr_entries /= sizeof (ppb_ranges_t);
2120 	}
2121 
2122 	/* save "assigned-addresses" property array, ignore failues */
2123 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2124 	    "assigned-addresses", (caddr_t)&bus_p->bus_assigned_addr,
2125 	    &bus_p->bus_assigned_entries) == DDI_PROP_SUCCESS)
2126 		bus_p->bus_assigned_entries /= sizeof (pci_regspec_t);
2127 	else
2128 		bus_p->bus_assigned_entries = 0;
2129 
2130 	pcie_init_pfd(dip);
2131 
2132 	pcie_init_plat(dip);
2133 
2134 	pcie_capture_speeds(dip);
2135 
2136 final_done:
2137 
2138 	PCIE_DBG("Add %s(dip 0x%p, bdf 0x%x, secbus 0x%x)\n",
2139 	    ddi_driver_name(dip), (void *)dip, bus_p->bus_bdf,
2140 	    bus_p->bus_bdg_secbus);
2141 #ifdef DEBUG
2142 	if (bus_p != NULL) {
2143 		pcie_print_bus(bus_p);
2144 	}
2145 #endif
2146 
2147 	return (bus_p);
2148 }
2149 
2150 /*
2151  * Invoked before destroying devinfo node, mostly during hotplug
2152  * operation to free pcie_bus_t data structure
2153  */
2154 /* ARGSUSED */
2155 void
2156 pcie_fini_bus(dev_info_t *dip, uint8_t flags)
2157 {
2158 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2159 	ASSERT(bus_p);
2160 
2161 	if (flags & PCIE_BUS_INITIAL) {
2162 		pcie_fini_plat(dip);
2163 		pcie_fini_pfd(dip);
2164 
2165 		if (PCIE_IS_RP(bus_p)) {
2166 			kmem_free(bus_p->bus_fab, sizeof (pcie_fabric_data_t));
2167 			bus_p->bus_fab = NULL;
2168 		}
2169 
2170 		kmem_free(bus_p->bus_assigned_addr,
2171 		    (sizeof (pci_regspec_t) * bus_p->bus_assigned_entries));
2172 		kmem_free(bus_p->bus_addr_ranges,
2173 		    (sizeof (ppb_ranges_t) * bus_p->bus_addr_entries));
2174 		/* zero out the fields that have been destroyed */
2175 		bus_p->bus_assigned_addr = NULL;
2176 		bus_p->bus_addr_ranges = NULL;
2177 		bus_p->bus_assigned_entries = 0;
2178 		bus_p->bus_addr_entries = 0;
2179 	}
2180 
2181 	if (flags & PCIE_BUS_FINAL) {
2182 		if (PCIE_IS_HOTPLUG_CAPABLE(dip)) {
2183 			(void) ndi_prop_remove(DDI_DEV_T_NONE, dip,
2184 			    "hotplug-capable");
2185 		}
2186 
2187 		ndi_set_bus_private(dip, B_TRUE, 0, NULL);
2188 		kmem_free(bus_p, sizeof (pcie_bus_t));
2189 	}
2190 }
2191 
2192 int
2193 pcie_postattach_child(dev_info_t *cdip)
2194 {
2195 	pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip);
2196 
2197 	if (!bus_p)
2198 		return (DDI_FAILURE);
2199 
2200 	return (pcie_enable_ce(cdip));
2201 }
2202 
2203 /*
2204  * PCI-Express child device de-initialization.
2205  * This function disables generic pci-express interrupts and error
2206  * handling.
2207  */
2208 void
2209 pcie_uninitchild(dev_info_t *cdip)
2210 {
2211 	pcie_disable_errors(cdip);
2212 	pcie_fini_cfghdl(cdip);
2213 	pcie_fini_dom(cdip);
2214 }
2215 
2216 /*
2217  * find the root complex dip
2218  */
2219 dev_info_t *
2220 pcie_get_rc_dip(dev_info_t *dip)
2221 {
2222 	dev_info_t *rcdip;
2223 	pcie_bus_t *rc_bus_p;
2224 
2225 	for (rcdip = ddi_get_parent(dip); rcdip;
2226 	    rcdip = ddi_get_parent(rcdip)) {
2227 		rc_bus_p = PCIE_DIP2BUS(rcdip);
2228 		if (rc_bus_p && PCIE_IS_RC(rc_bus_p))
2229 			break;
2230 	}
2231 
2232 	return (rcdip);
2233 }
2234 
2235 boolean_t
2236 pcie_is_pci_device(dev_info_t *dip)
2237 {
2238 	dev_info_t	*pdip;
2239 	char		*device_type;
2240 
2241 	pdip = ddi_get_parent(dip);
2242 	if (pdip == NULL)
2243 		return (B_FALSE);
2244 
2245 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
2246 	    "device_type", &device_type) != DDI_PROP_SUCCESS)
2247 		return (B_FALSE);
2248 
2249 	if (strcmp(device_type, "pciex") != 0 &&
2250 	    strcmp(device_type, "pci") != 0) {
2251 		ddi_prop_free(device_type);
2252 		return (B_FALSE);
2253 	}
2254 
2255 	ddi_prop_free(device_type);
2256 	return (B_TRUE);
2257 }
2258 
2259 typedef struct {
2260 	boolean_t	init;
2261 	uint8_t		flags;
2262 } pcie_bus_arg_t;
2263 
2264 /*ARGSUSED*/
2265 static int
2266 pcie_fab_do_init_fini(dev_info_t *dip, void *arg)
2267 {
2268 	pcie_req_id_t	bdf;
2269 	pcie_bus_arg_t	*bus_arg = (pcie_bus_arg_t *)arg;
2270 
2271 	if (!pcie_is_pci_device(dip))
2272 		goto out;
2273 
2274 	if (bus_arg->init) {
2275 		if (pcie_get_bdf_from_dip(dip, &bdf) != DDI_SUCCESS)
2276 			goto out;
2277 
2278 		(void) pcie_init_bus(dip, bdf, bus_arg->flags);
2279 	} else {
2280 		(void) pcie_fini_bus(dip, bus_arg->flags);
2281 	}
2282 
2283 	return (DDI_WALK_CONTINUE);
2284 
2285 out:
2286 	return (DDI_WALK_PRUNECHILD);
2287 }
2288 
2289 void
2290 pcie_fab_init_bus(dev_info_t *rcdip, uint8_t flags)
2291 {
2292 	int		circular_count;
2293 	dev_info_t	*dip = ddi_get_child(rcdip);
2294 	pcie_bus_arg_t	arg;
2295 
2296 	arg.init = B_TRUE;
2297 	arg.flags = flags;
2298 
2299 	ndi_devi_enter(rcdip, &circular_count);
2300 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2301 	ndi_devi_exit(rcdip, circular_count);
2302 }
2303 
2304 void
2305 pcie_fab_fini_bus(dev_info_t *rcdip, uint8_t flags)
2306 {
2307 	int		circular_count;
2308 	dev_info_t	*dip = ddi_get_child(rcdip);
2309 	pcie_bus_arg_t	arg;
2310 
2311 	arg.init = B_FALSE;
2312 	arg.flags = flags;
2313 
2314 	ndi_devi_enter(rcdip, &circular_count);
2315 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2316 	ndi_devi_exit(rcdip, circular_count);
2317 }
2318 
2319 void
2320 pcie_enable_errors(dev_info_t *dip)
2321 {
2322 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2323 	uint16_t	reg16, tmp16;
2324 	uint32_t	reg32, tmp32;
2325 
2326 	ASSERT(bus_p);
2327 
2328 	/*
2329 	 * Clear any pending errors
2330 	 */
2331 	pcie_clear_errors(dip);
2332 
2333 	if (!PCIE_IS_PCIE(bus_p))
2334 		return;
2335 
2336 	/*
2337 	 * Enable Baseline Error Handling but leave CE reporting off (poweron
2338 	 * default).
2339 	 */
2340 	if ((reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL)) !=
2341 	    PCI_CAP_EINVAL16) {
2342 		tmp16 = (reg16 & (PCIE_DEVCTL_MAX_READ_REQ_MASK |
2343 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
2344 		    (pcie_devctl_default & ~(PCIE_DEVCTL_MAX_READ_REQ_MASK |
2345 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
2346 		    (pcie_base_err_default & (~PCIE_DEVCTL_CE_REPORTING_EN));
2347 
2348 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
2349 		PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
2350 	}
2351 
2352 	/* Enable Root Port Baseline Error Receiving */
2353 	if (PCIE_IS_ROOT(bus_p) &&
2354 	    (reg16 = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL)) !=
2355 	    PCI_CAP_EINVAL16) {
2356 
2357 		tmp16 = pcie_serr_disable_flag ?
2358 		    (pcie_root_ctrl_default & ~PCIE_ROOT_SYS_ERR) :
2359 		    pcie_root_ctrl_default;
2360 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, tmp16);
2361 		PCIE_DBG_CAP(dip, bus_p, "ROOT DEVCTL", 16, PCIE_ROOTCTL,
2362 		    reg16);
2363 	}
2364 
2365 	/*
2366 	 * Enable PCI-Express Advanced Error Handling if Exists
2367 	 */
2368 	if (!PCIE_HAS_AER(bus_p))
2369 		return;
2370 
2371 	/* Set Uncorrectable Severity */
2372 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_SERV)) !=
2373 	    PCI_CAP_EINVAL32) {
2374 		tmp32 = pcie_aer_uce_severity;
2375 
2376 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_SERV, tmp32);
2377 		PCIE_DBG_AER(dip, bus_p, "AER UCE SEV", 32, PCIE_AER_UCE_SERV,
2378 		    reg32);
2379 	}
2380 
2381 	/* Enable Uncorrectable errors */
2382 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_MASK)) !=
2383 	    PCI_CAP_EINVAL32) {
2384 		tmp32 = pcie_aer_uce_mask;
2385 
2386 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, tmp32);
2387 		PCIE_DBG_AER(dip, bus_p, "AER UCE MASK", 32, PCIE_AER_UCE_MASK,
2388 		    reg32);
2389 	}
2390 
2391 	/* Enable ECRC generation and checking */
2392 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2393 	    PCI_CAP_EINVAL32) {
2394 		tmp32 = reg32 | pcie_ecrc_value;
2395 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, tmp32);
2396 		PCIE_DBG_AER(dip, bus_p, "AER CTL", 32, PCIE_AER_CTL, reg32);
2397 	}
2398 
2399 	/* Enable Secondary Uncorrectable errors if this is a bridge */
2400 	if (!PCIE_IS_PCIE_BDG(bus_p))
2401 		goto root;
2402 
2403 	/* Set Uncorrectable Severity */
2404 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_SERV)) !=
2405 	    PCI_CAP_EINVAL32) {
2406 		tmp32 = pcie_aer_suce_severity;
2407 
2408 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_SERV, tmp32);
2409 		PCIE_DBG_AER(dip, bus_p, "AER SUCE SEV", 32, PCIE_AER_SUCE_SERV,
2410 		    reg32);
2411 	}
2412 
2413 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_MASK)) !=
2414 	    PCI_CAP_EINVAL32) {
2415 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, pcie_aer_suce_mask);
2416 		PCIE_DBG_AER(dip, bus_p, "AER SUCE MASK", 32,
2417 		    PCIE_AER_SUCE_MASK, reg32);
2418 	}
2419 
2420 root:
2421 	/*
2422 	 * Enable Root Control this is a Root device
2423 	 */
2424 	if (!PCIE_IS_ROOT(bus_p))
2425 		return;
2426 
2427 	if ((reg16 = PCIE_AER_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2428 	    PCI_CAP_EINVAL16) {
2429 		PCIE_AER_PUT(16, bus_p, PCIE_AER_RE_CMD,
2430 		    pcie_root_error_cmd_default);
2431 		PCIE_DBG_AER(dip, bus_p, "AER Root Err Cmd", 16,
2432 		    PCIE_AER_RE_CMD, reg16);
2433 	}
2434 }
2435 
2436 /*
2437  * This function is used for enabling CE reporting and setting the AER CE mask.
2438  * When called from outside the pcie module it should always be preceded by
2439  * a call to pcie_enable_errors.
2440  */
2441 int
2442 pcie_enable_ce(dev_info_t *dip)
2443 {
2444 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2445 	uint16_t	device_sts, device_ctl;
2446 	uint32_t	tmp_pcie_aer_ce_mask;
2447 
2448 	if (!PCIE_IS_PCIE(bus_p))
2449 		return (DDI_SUCCESS);
2450 
2451 	/*
2452 	 * The "pcie_ce_mask" property is used to control both the CE reporting
2453 	 * enable field in the device control register and the AER CE mask. We
2454 	 * leave CE reporting disabled if pcie_ce_mask is set to -1.
2455 	 */
2456 
2457 	tmp_pcie_aer_ce_mask = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2458 	    DDI_PROP_DONTPASS, "pcie_ce_mask", pcie_aer_ce_mask);
2459 
2460 	if (tmp_pcie_aer_ce_mask == (uint32_t)-1) {
2461 		/*
2462 		 * Nothing to do since CE reporting has already been disabled.
2463 		 */
2464 		return (DDI_SUCCESS);
2465 	}
2466 
2467 	if (PCIE_HAS_AER(bus_p)) {
2468 		/* Enable AER CE */
2469 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, tmp_pcie_aer_ce_mask);
2470 		PCIE_DBG_AER(dip, bus_p, "AER CE MASK", 32, PCIE_AER_CE_MASK,
2471 		    0);
2472 
2473 		/* Clear any pending AER CE errors */
2474 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_STS, -1);
2475 	}
2476 
2477 	/* clear any pending CE errors */
2478 	if ((device_sts = PCIE_CAP_GET(16, bus_p, PCIE_DEVSTS)) !=
2479 	    PCI_CAP_EINVAL16)
2480 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVSTS,
2481 		    device_sts & (~PCIE_DEVSTS_CE_DETECTED));
2482 
2483 	/* Enable CE reporting */
2484 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2485 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL,
2486 	    (device_ctl & (~PCIE_DEVCTL_ERR_MASK)) | pcie_base_err_default);
2487 	PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, device_ctl);
2488 
2489 	return (DDI_SUCCESS);
2490 }
2491 
2492 /* ARGSUSED */
2493 void
2494 pcie_disable_errors(dev_info_t *dip)
2495 {
2496 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2497 	uint16_t	device_ctl;
2498 	uint32_t	aer_reg;
2499 
2500 	if (!PCIE_IS_PCIE(bus_p))
2501 		return;
2502 
2503 	/*
2504 	 * Disable PCI-Express Baseline Error Handling
2505 	 */
2506 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2507 	device_ctl &= ~PCIE_DEVCTL_ERR_MASK;
2508 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, device_ctl);
2509 
2510 	/*
2511 	 * Disable PCI-Express Advanced Error Handling if Exists
2512 	 */
2513 	if (!PCIE_HAS_AER(bus_p))
2514 		goto root;
2515 
2516 	/* Disable Uncorrectable errors */
2517 	PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, PCIE_AER_UCE_BITS);
2518 
2519 	/* Disable Correctable errors */
2520 	PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, PCIE_AER_CE_BITS);
2521 
2522 	/* Disable ECRC generation and checking */
2523 	if ((aer_reg = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2524 	    PCI_CAP_EINVAL32) {
2525 		aer_reg &= ~(PCIE_AER_CTL_ECRC_GEN_ENA |
2526 		    PCIE_AER_CTL_ECRC_CHECK_ENA);
2527 
2528 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, aer_reg);
2529 	}
2530 	/*
2531 	 * Disable Secondary Uncorrectable errors if this is a bridge
2532 	 */
2533 	if (!PCIE_IS_PCIE_BDG(bus_p))
2534 		goto root;
2535 
2536 	PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, PCIE_AER_SUCE_BITS);
2537 
2538 root:
2539 	/*
2540 	 * disable Root Control this is a Root device
2541 	 */
2542 	if (!PCIE_IS_ROOT(bus_p))
2543 		return;
2544 
2545 	if (!pcie_serr_disable_flag) {
2546 		device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL);
2547 		device_ctl &= ~PCIE_ROOT_SYS_ERR;
2548 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, device_ctl);
2549 	}
2550 
2551 	if (!PCIE_HAS_AER(bus_p))
2552 		return;
2553 
2554 	if ((device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2555 	    PCI_CAP_EINVAL16) {
2556 		device_ctl &= ~pcie_root_error_cmd_default;
2557 		PCIE_CAP_PUT(16, bus_p, PCIE_AER_RE_CMD, device_ctl);
2558 	}
2559 }
2560 
2561 /*
2562  * Extract bdf from "reg" property.
2563  */
2564 int
2565 pcie_get_bdf_from_dip(dev_info_t *dip, pcie_req_id_t *bdf)
2566 {
2567 	pci_regspec_t	*regspec;
2568 	int		reglen;
2569 
2570 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2571 	    "reg", (int **)&regspec, (uint_t *)&reglen) != DDI_SUCCESS)
2572 		return (DDI_FAILURE);
2573 
2574 	if (reglen < (sizeof (pci_regspec_t) / sizeof (int))) {
2575 		ddi_prop_free(regspec);
2576 		return (DDI_FAILURE);
2577 	}
2578 
2579 	/* Get phys_hi from first element.  All have same bdf. */
2580 	*bdf = (regspec->pci_phys_hi & (PCI_REG_BDFR_M ^ PCI_REG_REG_M)) >> 8;
2581 
2582 	ddi_prop_free(regspec);
2583 	return (DDI_SUCCESS);
2584 }
2585 
2586 dev_info_t *
2587 pcie_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
2588 {
2589 	dev_info_t *cdip = rdip;
2590 
2591 	for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
2592 		;
2593 
2594 	return (cdip);
2595 }
2596 
2597 uint32_t
2598 pcie_get_bdf_for_dma_xfer(dev_info_t *dip, dev_info_t *rdip)
2599 {
2600 	dev_info_t *cdip;
2601 
2602 	/*
2603 	 * As part of the probing, the PCI fcode interpreter may setup a DMA
2604 	 * request if a given card has a fcode on it using dip and rdip of the
2605 	 * hotplug connector i.e, dip and rdip of px/pcieb driver. In this
2606 	 * case, return a invalid value for the bdf since we cannot get to the
2607 	 * bdf value of the actual device which will be initiating this DMA.
2608 	 */
2609 	if (rdip == dip)
2610 		return (PCIE_INVALID_BDF);
2611 
2612 	cdip = pcie_get_my_childs_dip(dip, rdip);
2613 
2614 	/*
2615 	 * For a given rdip, return the bdf value of dip's (px or pcieb)
2616 	 * immediate child or secondary bus-id if dip is a PCIe2PCI bridge.
2617 	 *
2618 	 * XXX - For now, return a invalid bdf value for all PCI and PCI-X
2619 	 * devices since this needs more work.
2620 	 */
2621 	return (PCI_GET_PCIE2PCI_SECBUS(cdip) ?
2622 	    PCIE_INVALID_BDF : PCI_GET_BDF(cdip));
2623 }
2624 
2625 uint32_t
2626 pcie_get_aer_uce_mask()
2627 {
2628 	return (pcie_aer_uce_mask);
2629 }
2630 uint32_t
2631 pcie_get_aer_ce_mask()
2632 {
2633 	return (pcie_aer_ce_mask);
2634 }
2635 uint32_t
2636 pcie_get_aer_suce_mask()
2637 {
2638 	return (pcie_aer_suce_mask);
2639 }
2640 uint32_t
2641 pcie_get_serr_mask()
2642 {
2643 	return (pcie_serr_disable_flag);
2644 }
2645 
2646 void
2647 pcie_set_aer_uce_mask(uint32_t mask)
2648 {
2649 	pcie_aer_uce_mask = mask;
2650 	if (mask & PCIE_AER_UCE_UR)
2651 		pcie_base_err_default &= ~PCIE_DEVCTL_UR_REPORTING_EN;
2652 	else
2653 		pcie_base_err_default |= PCIE_DEVCTL_UR_REPORTING_EN;
2654 
2655 	if (mask & PCIE_AER_UCE_ECRC)
2656 		pcie_ecrc_value = 0;
2657 }
2658 
2659 void
2660 pcie_set_aer_ce_mask(uint32_t mask)
2661 {
2662 	pcie_aer_ce_mask = mask;
2663 }
2664 void
2665 pcie_set_aer_suce_mask(uint32_t mask)
2666 {
2667 	pcie_aer_suce_mask = mask;
2668 }
2669 void
2670 pcie_set_serr_mask(uint32_t mask)
2671 {
2672 	pcie_serr_disable_flag = mask;
2673 }
2674 
2675 /*
2676  * Is the rdip a child of dip.	Used for checking certain CTLOPS from bubbling
2677  * up erronously.  Ex.	ISA ctlops to a PCI-PCI Bridge.
2678  */
2679 boolean_t
2680 pcie_is_child(dev_info_t *dip, dev_info_t *rdip)
2681 {
2682 	dev_info_t	*cdip = ddi_get_child(dip);
2683 	for (; cdip; cdip = ddi_get_next_sibling(cdip))
2684 		if (cdip == rdip)
2685 			break;
2686 	return (cdip != NULL);
2687 }
2688 
2689 boolean_t
2690 pcie_is_link_disabled(dev_info_t *dip)
2691 {
2692 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2693 
2694 	if (PCIE_IS_PCIE(bus_p)) {
2695 		if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) &
2696 		    PCIE_LINKCTL_LINK_DISABLE)
2697 			return (B_TRUE);
2698 	}
2699 	return (B_FALSE);
2700 }
2701 
2702 /*
2703  * Determines if there are any root ports attached to a root complex.
2704  *
2705  * dip - dip of root complex
2706  *
2707  * Returns - DDI_SUCCESS if there is at least one root port otherwise
2708  *	     DDI_FAILURE.
2709  */
2710 int
2711 pcie_root_port(dev_info_t *dip)
2712 {
2713 	int port_type;
2714 	uint16_t cap_ptr;
2715 	ddi_acc_handle_t config_handle;
2716 	dev_info_t *cdip = ddi_get_child(dip);
2717 
2718 	/*
2719 	 * Determine if any of the children of the passed in dip
2720 	 * are root ports.
2721 	 */
2722 	for (; cdip; cdip = ddi_get_next_sibling(cdip)) {
2723 
2724 		if (pci_config_setup(cdip, &config_handle) != DDI_SUCCESS)
2725 			continue;
2726 
2727 		if ((PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E,
2728 		    &cap_ptr)) == DDI_FAILURE) {
2729 			pci_config_teardown(&config_handle);
2730 			continue;
2731 		}
2732 
2733 		port_type = PCI_CAP_GET16(config_handle, 0, cap_ptr,
2734 		    PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
2735 
2736 		pci_config_teardown(&config_handle);
2737 
2738 		if (port_type == PCIE_PCIECAP_DEV_TYPE_ROOT)
2739 			return (DDI_SUCCESS);
2740 	}
2741 
2742 	/* No root ports were found */
2743 
2744 	return (DDI_FAILURE);
2745 }
2746 
2747 /*
2748  * Function that determines if a device a PCIe device.
2749  *
2750  * dip - dip of device.
2751  *
2752  * returns - DDI_SUCCESS if device is a PCIe device, otherwise DDI_FAILURE.
2753  */
2754 int
2755 pcie_dev(dev_info_t *dip)
2756 {
2757 	/* get parent device's device_type property */
2758 	char *device_type;
2759 	int rc = DDI_FAILURE;
2760 	dev_info_t *pdip = ddi_get_parent(dip);
2761 
2762 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
2763 	    DDI_PROP_DONTPASS, "device_type", &device_type)
2764 	    != DDI_PROP_SUCCESS) {
2765 		return (DDI_FAILURE);
2766 	}
2767 
2768 	if (strcmp(device_type, "pciex") == 0)
2769 		rc = DDI_SUCCESS;
2770 	else
2771 		rc = DDI_FAILURE;
2772 
2773 	ddi_prop_free(device_type);
2774 	return (rc);
2775 }
2776 
2777 /*
2778  * Function to map in a device's memory space.
2779  */
2780 static int
2781 pcie_map_phys(dev_info_t *dip, pci_regspec_t *phys_spec,
2782     caddr_t *addrp, ddi_acc_handle_t *handlep)
2783 {
2784 	ddi_map_req_t mr;
2785 	ddi_acc_hdl_t *hp;
2786 	int result;
2787 	ddi_device_acc_attr_t attr;
2788 
2789 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
2790 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
2791 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
2792 	attr.devacc_attr_access = DDI_CAUTIOUS_ACC;
2793 
2794 	*handlep = impl_acc_hdl_alloc(KM_SLEEP, NULL);
2795 	hp = impl_acc_hdl_get(*handlep);
2796 	hp->ah_vers = VERS_ACCHDL;
2797 	hp->ah_dip = dip;
2798 	hp->ah_rnumber = 0;
2799 	hp->ah_offset = 0;
2800 	hp->ah_len = 0;
2801 	hp->ah_acc = attr;
2802 
2803 	mr.map_op = DDI_MO_MAP_LOCKED;
2804 	mr.map_type = DDI_MT_REGSPEC;
2805 	mr.map_obj.rp = (struct regspec *)phys_spec;
2806 	mr.map_prot = PROT_READ | PROT_WRITE;
2807 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
2808 	mr.map_handlep = hp;
2809 	mr.map_vers = DDI_MAP_VERSION;
2810 
2811 	result = ddi_map(dip, &mr, 0, 0, addrp);
2812 
2813 	if (result != DDI_SUCCESS) {
2814 		impl_acc_hdl_free(*handlep);
2815 		*handlep = (ddi_acc_handle_t)NULL;
2816 	} else {
2817 		hp->ah_addr = *addrp;
2818 	}
2819 
2820 	return (result);
2821 }
2822 
2823 /*
2824  * Map out memory that was mapped in with pcie_map_phys();
2825  */
2826 static void
2827 pcie_unmap_phys(ddi_acc_handle_t *handlep,  pci_regspec_t *ph)
2828 {
2829 	ddi_map_req_t mr;
2830 	ddi_acc_hdl_t *hp;
2831 
2832 	hp = impl_acc_hdl_get(*handlep);
2833 	ASSERT(hp);
2834 
2835 	mr.map_op = DDI_MO_UNMAP;
2836 	mr.map_type = DDI_MT_REGSPEC;
2837 	mr.map_obj.rp = (struct regspec *)ph;
2838 	mr.map_prot = PROT_READ | PROT_WRITE;
2839 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
2840 	mr.map_handlep = hp;
2841 	mr.map_vers = DDI_MAP_VERSION;
2842 
2843 	(void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
2844 	    hp->ah_len, &hp->ah_addr);
2845 
2846 	impl_acc_hdl_free(*handlep);
2847 	*handlep = (ddi_acc_handle_t)NULL;
2848 }
2849 
2850 void
2851 pcie_set_rber_fatal(dev_info_t *dip, boolean_t val)
2852 {
2853 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2854 	bus_p->bus_pfd->pe_rber_fatal = val;
2855 }
2856 
2857 /*
2858  * Return parent Root Port's pe_rber_fatal value.
2859  */
2860 boolean_t
2861 pcie_get_rber_fatal(dev_info_t *dip)
2862 {
2863 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2864 	pcie_bus_t *rp_bus_p = PCIE_DIP2UPBUS(bus_p->bus_rp_dip);
2865 	return (rp_bus_p->bus_pfd->pe_rber_fatal);
2866 }
2867 
2868 int
2869 pcie_ari_supported(dev_info_t *dip)
2870 {
2871 	uint32_t devcap2;
2872 	uint16_t pciecap;
2873 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2874 	uint8_t dev_type;
2875 
2876 	PCIE_DBG("pcie_ari_supported: dip=%p\n", dip);
2877 
2878 	if (bus_p == NULL)
2879 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2880 
2881 	dev_type = bus_p->bus_dev_type;
2882 
2883 	if ((dev_type != PCIE_PCIECAP_DEV_TYPE_DOWN) &&
2884 	    (dev_type != PCIE_PCIECAP_DEV_TYPE_ROOT))
2885 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2886 
2887 	if (pcie_disable_ari) {
2888 		PCIE_DBG("pcie_ari_supported: dip=%p: ARI Disabled\n", dip);
2889 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2890 	}
2891 
2892 	pciecap = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
2893 
2894 	if ((pciecap & PCIE_PCIECAP_VER_MASK) < PCIE_PCIECAP_VER_2_0) {
2895 		PCIE_DBG("pcie_ari_supported: dip=%p: Not 2.0\n", dip);
2896 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2897 	}
2898 
2899 	devcap2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCAP2);
2900 
2901 	PCIE_DBG("pcie_ari_supported: dip=%p: DevCap2=0x%x\n",
2902 	    dip, devcap2);
2903 
2904 	if (devcap2 & PCIE_DEVCAP2_ARI_FORWARD) {
2905 		PCIE_DBG("pcie_ari_supported: "
2906 		    "dip=%p: ARI Forwarding is supported\n", dip);
2907 		return (PCIE_ARI_FORW_SUPPORTED);
2908 	}
2909 	return (PCIE_ARI_FORW_NOT_SUPPORTED);
2910 }
2911 
2912 int
2913 pcie_ari_enable(dev_info_t *dip)
2914 {
2915 	uint16_t devctl2;
2916 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2917 
2918 	PCIE_DBG("pcie_ari_enable: dip=%p\n", dip);
2919 
2920 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2921 		return (DDI_FAILURE);
2922 
2923 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2924 	devctl2 |= PCIE_DEVCTL2_ARI_FORWARD_EN;
2925 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2926 
2927 	PCIE_DBG("pcie_ari_enable: dip=%p: writing 0x%x to DevCtl2\n",
2928 	    dip, devctl2);
2929 
2930 	return (DDI_SUCCESS);
2931 }
2932 
2933 int
2934 pcie_ari_disable(dev_info_t *dip)
2935 {
2936 	uint16_t devctl2;
2937 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2938 
2939 	PCIE_DBG("pcie_ari_disable: dip=%p\n", dip);
2940 
2941 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2942 		return (DDI_FAILURE);
2943 
2944 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2945 	devctl2 &= ~PCIE_DEVCTL2_ARI_FORWARD_EN;
2946 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2947 
2948 	PCIE_DBG("pcie_ari_disable: dip=%p: writing 0x%x to DevCtl2\n",
2949 	    dip, devctl2);
2950 
2951 	return (DDI_SUCCESS);
2952 }
2953 
2954 int
2955 pcie_ari_is_enabled(dev_info_t *dip)
2956 {
2957 	uint16_t devctl2;
2958 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2959 
2960 	PCIE_DBG("pcie_ari_is_enabled: dip=%p\n", dip);
2961 
2962 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2963 		return (PCIE_ARI_FORW_DISABLED);
2964 
2965 	devctl2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCTL2);
2966 
2967 	PCIE_DBG("pcie_ari_is_enabled: dip=%p: DevCtl2=0x%x\n",
2968 	    dip, devctl2);
2969 
2970 	if (devctl2 & PCIE_DEVCTL2_ARI_FORWARD_EN) {
2971 		PCIE_DBG("pcie_ari_is_enabled: "
2972 		    "dip=%p: ARI Forwarding is enabled\n", dip);
2973 		return (PCIE_ARI_FORW_ENABLED);
2974 	}
2975 
2976 	return (PCIE_ARI_FORW_DISABLED);
2977 }
2978 
2979 int
2980 pcie_ari_device(dev_info_t *dip)
2981 {
2982 	ddi_acc_handle_t handle;
2983 	uint16_t cap_ptr;
2984 
2985 	PCIE_DBG("pcie_ari_device: dip=%p\n", dip);
2986 
2987 	/*
2988 	 * XXX - This function may be called before the bus_p structure
2989 	 * has been populated.  This code can be changed to remove
2990 	 * pci_config_setup()/pci_config_teardown() when the RFE
2991 	 * to populate the bus_p structures early in boot is putback.
2992 	 */
2993 
2994 	/* First make sure it is a PCIe device */
2995 
2996 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2997 		return (PCIE_NOT_ARI_DEVICE);
2998 
2999 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr))
3000 	    != DDI_SUCCESS) {
3001 		pci_config_teardown(&handle);
3002 		return (PCIE_NOT_ARI_DEVICE);
3003 	}
3004 
3005 	/* Locate the ARI Capability */
3006 
3007 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI),
3008 	    &cap_ptr)) == DDI_FAILURE) {
3009 		pci_config_teardown(&handle);
3010 		return (PCIE_NOT_ARI_DEVICE);
3011 	}
3012 
3013 	/* ARI Capability was found so it must be a ARI device */
3014 	PCIE_DBG("pcie_ari_device: ARI Device dip=%p\n", dip);
3015 
3016 	pci_config_teardown(&handle);
3017 	return (PCIE_ARI_DEVICE);
3018 }
3019 
3020 int
3021 pcie_ari_get_next_function(dev_info_t *dip, int *func)
3022 {
3023 	uint32_t val;
3024 	uint16_t cap_ptr, next_function;
3025 	ddi_acc_handle_t handle;
3026 
3027 	/*
3028 	 * XXX - This function may be called before the bus_p structure
3029 	 * has been populated.  This code can be changed to remove
3030 	 * pci_config_setup()/pci_config_teardown() when the RFE
3031 	 * to populate the bus_p structures early in boot is putback.
3032 	 */
3033 
3034 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
3035 		return (DDI_FAILURE);
3036 
3037 	if ((PCI_CAP_LOCATE(handle,
3038 	    PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), &cap_ptr)) == DDI_FAILURE) {
3039 		pci_config_teardown(&handle);
3040 		return (DDI_FAILURE);
3041 	}
3042 
3043 	val = PCI_CAP_GET32(handle, 0, cap_ptr, PCIE_ARI_CAP);
3044 
3045 	next_function = (val >> PCIE_ARI_CAP_NEXT_FUNC_SHIFT) &
3046 	    PCIE_ARI_CAP_NEXT_FUNC_MASK;
3047 
3048 	pci_config_teardown(&handle);
3049 
3050 	*func = next_function;
3051 
3052 	return (DDI_SUCCESS);
3053 }
3054 
3055 dev_info_t *
3056 pcie_func_to_dip(dev_info_t *dip, pcie_req_id_t function)
3057 {
3058 	pcie_req_id_t child_bdf;
3059 	dev_info_t *cdip;
3060 
3061 	for (cdip = ddi_get_child(dip); cdip;
3062 	    cdip = ddi_get_next_sibling(cdip)) {
3063 
3064 		if (pcie_get_bdf_from_dip(cdip, &child_bdf) == DDI_FAILURE)
3065 			return (NULL);
3066 
3067 		if ((child_bdf & PCIE_REQ_ID_ARI_FUNC_MASK) == function)
3068 			return (cdip);
3069 	}
3070 	return (NULL);
3071 }
3072 
3073 #ifdef	DEBUG
3074 
3075 static void
3076 pcie_print_bus(pcie_bus_t *bus_p)
3077 {
3078 	pcie_dbg("\tbus_dip = 0x%p\n", bus_p->bus_dip);
3079 	pcie_dbg("\tbus_fm_flags = 0x%x\n", bus_p->bus_fm_flags);
3080 
3081 	pcie_dbg("\tbus_bdf = 0x%x\n", bus_p->bus_bdf);
3082 	pcie_dbg("\tbus_dev_ven_id = 0x%x\n", bus_p->bus_dev_ven_id);
3083 	pcie_dbg("\tbus_rev_id = 0x%x\n", bus_p->bus_rev_id);
3084 	pcie_dbg("\tbus_hdr_type = 0x%x\n", bus_p->bus_hdr_type);
3085 	pcie_dbg("\tbus_dev_type = 0x%x\n", bus_p->bus_dev_type);
3086 	pcie_dbg("\tbus_bdg_secbus = 0x%x\n", bus_p->bus_bdg_secbus);
3087 	pcie_dbg("\tbus_pcie_off = 0x%x\n", bus_p->bus_pcie_off);
3088 	pcie_dbg("\tbus_aer_off = 0x%x\n", bus_p->bus_aer_off);
3089 	pcie_dbg("\tbus_pcix_off = 0x%x\n", bus_p->bus_pcix_off);
3090 	pcie_dbg("\tbus_ecc_ver = 0x%x\n", bus_p->bus_ecc_ver);
3091 }
3092 
3093 /*
3094  * For debugging purposes set pcie_dbg_print != 0 to see printf messages
3095  * during interrupt.
3096  *
3097  * When a proper solution is in place this code will disappear.
3098  * Potential solutions are:
3099  * o circular buffers
3100  * o taskq to print at lower pil
3101  */
3102 int pcie_dbg_print = 0;
3103 void
3104 pcie_dbg(char *fmt, ...)
3105 {
3106 	va_list ap;
3107 
3108 	if (!pcie_debug_flags) {
3109 		return;
3110 	}
3111 	va_start(ap, fmt);
3112 	if (servicing_interrupt()) {
3113 		if (pcie_dbg_print) {
3114 			prom_vprintf(fmt, ap);
3115 		}
3116 	} else {
3117 		prom_vprintf(fmt, ap);
3118 	}
3119 	va_end(ap);
3120 }
3121 #endif	/* DEBUG */
3122 
3123 #if defined(__x86)
3124 static void
3125 pcie_check_io_mem_range(ddi_acc_handle_t cfg_hdl, boolean_t *empty_io_range,
3126     boolean_t *empty_mem_range)
3127 {
3128 	uint8_t	class, subclass;
3129 	uint_t	val;
3130 
3131 	class = pci_config_get8(cfg_hdl, PCI_CONF_BASCLASS);
3132 	subclass = pci_config_get8(cfg_hdl, PCI_CONF_SUBCLASS);
3133 
3134 	if ((class == PCI_CLASS_BRIDGE) && (subclass == PCI_BRIDGE_PCI)) {
3135 		val = (((uint_t)pci_config_get8(cfg_hdl, PCI_BCNF_IO_BASE_LOW) &
3136 		    PCI_BCNF_IO_MASK) << 8);
3137 		/*
3138 		 * Assuming that a zero based io_range[0] implies an
3139 		 * invalid I/O range.  Likewise for mem_range[0].
3140 		 */
3141 		if (val == 0)
3142 			*empty_io_range = B_TRUE;
3143 		val = (((uint_t)pci_config_get16(cfg_hdl, PCI_BCNF_MEM_BASE) &
3144 		    PCI_BCNF_MEM_MASK) << 16);
3145 		if (val == 0)
3146 			*empty_mem_range = B_TRUE;
3147 	}
3148 }
3149 
3150 #endif /* defined(__x86) */
3151 
3152 boolean_t
3153 pcie_link_bw_supported(dev_info_t *dip)
3154 {
3155 	uint32_t linkcap;
3156 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3157 
3158 	if (!PCIE_IS_PCIE(bus_p)) {
3159 		return (B_FALSE);
3160 	}
3161 
3162 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3163 		return (B_FALSE);
3164 	}
3165 
3166 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
3167 	return ((linkcap & PCIE_LINKCAP_LINK_BW_NOTIFY_CAP) != 0);
3168 }
3169 
3170 int
3171 pcie_link_bw_enable(dev_info_t *dip)
3172 {
3173 	uint16_t linkctl;
3174 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3175 
3176 	if (pcie_disable_lbw != 0) {
3177 		return (DDI_FAILURE);
3178 	}
3179 
3180 	if (!pcie_link_bw_supported(dip)) {
3181 		return (DDI_FAILURE);
3182 	}
3183 
3184 	mutex_init(&bus_p->bus_lbw_mutex, NULL, MUTEX_DRIVER, NULL);
3185 	cv_init(&bus_p->bus_lbw_cv, NULL, CV_DRIVER, NULL);
3186 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3187 	linkctl |= PCIE_LINKCTL_LINK_BW_INTR_EN;
3188 	linkctl |= PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3189 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3190 
3191 	bus_p->bus_lbw_pbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3192 	bus_p->bus_lbw_cbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3193 	bus_p->bus_lbw_state |= PCIE_LBW_S_ENABLED;
3194 
3195 	return (DDI_SUCCESS);
3196 }
3197 
3198 int
3199 pcie_link_bw_disable(dev_info_t *dip)
3200 {
3201 	uint16_t linkctl;
3202 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3203 
3204 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3205 		return (DDI_FAILURE);
3206 	}
3207 
3208 	mutex_enter(&bus_p->bus_lbw_mutex);
3209 	while ((bus_p->bus_lbw_state &
3210 	    (PCIE_LBW_S_DISPATCHED | PCIE_LBW_S_RUNNING)) != 0) {
3211 		cv_wait(&bus_p->bus_lbw_cv, &bus_p->bus_lbw_mutex);
3212 	}
3213 	mutex_exit(&bus_p->bus_lbw_mutex);
3214 
3215 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3216 	linkctl &= ~PCIE_LINKCTL_LINK_BW_INTR_EN;
3217 	linkctl &= ~PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3218 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3219 
3220 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_ENABLED;
3221 	kmem_free(bus_p->bus_lbw_pbuf, MAXPATHLEN);
3222 	kmem_free(bus_p->bus_lbw_cbuf, MAXPATHLEN);
3223 	bus_p->bus_lbw_pbuf = NULL;
3224 	bus_p->bus_lbw_cbuf = NULL;
3225 
3226 	mutex_destroy(&bus_p->bus_lbw_mutex);
3227 	cv_destroy(&bus_p->bus_lbw_cv);
3228 
3229 	return (DDI_SUCCESS);
3230 }
3231 
3232 void
3233 pcie_link_bw_taskq(void *arg)
3234 {
3235 	dev_info_t *dip = arg;
3236 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3237 	dev_info_t *cdip;
3238 	boolean_t again;
3239 	sysevent_t *se;
3240 	sysevent_value_t se_val;
3241 	sysevent_id_t eid;
3242 	sysevent_attr_list_t *ev_attr_list;
3243 	int circular;
3244 
3245 top:
3246 	ndi_devi_enter(dip, &circular);
3247 	se = NULL;
3248 	ev_attr_list = NULL;
3249 	mutex_enter(&bus_p->bus_lbw_mutex);
3250 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_DISPATCHED;
3251 	bus_p->bus_lbw_state |= PCIE_LBW_S_RUNNING;
3252 	mutex_exit(&bus_p->bus_lbw_mutex);
3253 
3254 	/*
3255 	 * Update our own speeds as we've likely changed something.
3256 	 */
3257 	pcie_capture_speeds(dip);
3258 
3259 	/*
3260 	 * Walk our children. We only care about updating this on function 0
3261 	 * because the PCIe specification requires that these all be the same
3262 	 * otherwise.
3263 	 */
3264 	for (cdip = ddi_get_child(dip); cdip != NULL;
3265 	    cdip = ddi_get_next_sibling(cdip)) {
3266 		pcie_bus_t *cbus_p = PCIE_DIP2BUS(cdip);
3267 
3268 		if (cbus_p == NULL) {
3269 			continue;
3270 		}
3271 
3272 		if ((cbus_p->bus_bdf & PCIE_REQ_ID_FUNC_MASK) != 0) {
3273 			continue;
3274 		}
3275 
3276 		/*
3277 		 * It's possible that this can fire while a child is otherwise
3278 		 * only partially constructed. Therefore, if we don't have the
3279 		 * config handle, don't bother updating the child.
3280 		 */
3281 		if (cbus_p->bus_cfg_hdl == NULL) {
3282 			continue;
3283 		}
3284 
3285 		pcie_capture_speeds(cdip);
3286 		break;
3287 	}
3288 
3289 	se = sysevent_alloc(EC_PCIE, ESC_PCIE_LINK_STATE,
3290 	    ILLUMOS_KERN_PUB "pcie", SE_SLEEP);
3291 
3292 	(void) ddi_pathname(dip, bus_p->bus_lbw_pbuf);
3293 	se_val.value_type = SE_DATA_TYPE_STRING;
3294 	se_val.value.sv_string = bus_p->bus_lbw_pbuf;
3295 	if (sysevent_add_attr(&ev_attr_list, PCIE_EV_DETECTOR_PATH, &se_val,
3296 	    SE_SLEEP) != 0) {
3297 		ndi_devi_exit(dip, circular);
3298 		goto err;
3299 	}
3300 
3301 	if (cdip != NULL) {
3302 		(void) ddi_pathname(cdip, bus_p->bus_lbw_cbuf);
3303 
3304 		se_val.value_type = SE_DATA_TYPE_STRING;
3305 		se_val.value.sv_string = bus_p->bus_lbw_cbuf;
3306 
3307 		/*
3308 		 * If this fails, that's OK. We'd rather get the event off and
3309 		 * there's a chance that there may not be anything there for us.
3310 		 */
3311 		(void) sysevent_add_attr(&ev_attr_list, PCIE_EV_CHILD_PATH,
3312 		    &se_val, SE_SLEEP);
3313 	}
3314 
3315 	ndi_devi_exit(dip, circular);
3316 
3317 	/*
3318 	 * Before we generate and send down a sysevent, we need to tell the
3319 	 * system that parts of the devinfo cache need to be invalidated. While
3320 	 * the function below takes several args, it ignores them all. Because
3321 	 * this is a global invalidation, we don't bother trying to do much more
3322 	 * than requesting a global invalidation, lest we accidentally kick off
3323 	 * several in a row.
3324 	 */
3325 	ddi_prop_cache_invalidate(DDI_DEV_T_NONE, NULL, NULL, 0);
3326 
3327 	if (sysevent_attach_attributes(se, ev_attr_list) != 0) {
3328 		goto err;
3329 	}
3330 	ev_attr_list = NULL;
3331 
3332 	if (log_sysevent(se, SE_SLEEP, &eid) != 0) {
3333 		goto err;
3334 	}
3335 
3336 err:
3337 	sysevent_free_attr(ev_attr_list);
3338 	sysevent_free(se);
3339 
3340 	mutex_enter(&bus_p->bus_lbw_mutex);
3341 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_RUNNING;
3342 	cv_broadcast(&bus_p->bus_lbw_cv);
3343 	again = (bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) != 0;
3344 	mutex_exit(&bus_p->bus_lbw_mutex);
3345 
3346 	if (again) {
3347 		goto top;
3348 	}
3349 }
3350 
3351 int
3352 pcie_link_bw_intr(dev_info_t *dip)
3353 {
3354 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3355 	uint16_t linksts;
3356 	uint16_t flags = PCIE_LINKSTS_LINK_BW_MGMT | PCIE_LINKSTS_AUTO_BW;
3357 
3358 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3359 		return (DDI_INTR_UNCLAIMED);
3360 	}
3361 
3362 	linksts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3363 	if ((linksts & flags) == 0) {
3364 		return (DDI_INTR_UNCLAIMED);
3365 	}
3366 
3367 	/*
3368 	 * Check if we've already dispatched this event. If we have already
3369 	 * dispatched it, then there's nothing else to do, we coalesce multiple
3370 	 * events.
3371 	 */
3372 	mutex_enter(&bus_p->bus_lbw_mutex);
3373 	bus_p->bus_lbw_nevents++;
3374 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) == 0) {
3375 		if ((bus_p->bus_lbw_state & PCIE_LBW_S_RUNNING) == 0) {
3376 			taskq_dispatch_ent(pcie_link_tq, pcie_link_bw_taskq,
3377 			    dip, 0, &bus_p->bus_lbw_ent);
3378 		}
3379 
3380 		bus_p->bus_lbw_state |= PCIE_LBW_S_DISPATCHED;
3381 	}
3382 	mutex_exit(&bus_p->bus_lbw_mutex);
3383 
3384 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKSTS, flags);
3385 	return (DDI_INTR_CLAIMED);
3386 }
3387 
3388 int
3389 pcie_link_set_target(dev_info_t *dip, pcie_link_speed_t speed)
3390 {
3391 	uint16_t ctl2, rval;
3392 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3393 
3394 	if (!PCIE_IS_PCIE(bus_p)) {
3395 		return (ENOTSUP);
3396 	}
3397 
3398 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3399 		return (ENOTSUP);
3400 	}
3401 
3402 	switch (speed) {
3403 	case PCIE_LINK_SPEED_2_5:
3404 		rval = PCIE_LINKCTL2_TARGET_SPEED_2_5;
3405 		break;
3406 	case PCIE_LINK_SPEED_5:
3407 		rval = PCIE_LINKCTL2_TARGET_SPEED_5;
3408 		break;
3409 	case PCIE_LINK_SPEED_8:
3410 		rval = PCIE_LINKCTL2_TARGET_SPEED_8;
3411 		break;
3412 	case PCIE_LINK_SPEED_16:
3413 		rval = PCIE_LINKCTL2_TARGET_SPEED_16;
3414 		break;
3415 	default:
3416 		return (EINVAL);
3417 	}
3418 
3419 	mutex_enter(&bus_p->bus_speed_mutex);
3420 	bus_p->bus_target_speed = speed;
3421 	bus_p->bus_speed_flags |= PCIE_LINK_F_ADMIN_TARGET;
3422 
3423 	ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
3424 	ctl2 &= ~PCIE_LINKCTL2_TARGET_SPEED_MASK;
3425 	ctl2 |= rval;
3426 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL2, ctl2);
3427 	mutex_exit(&bus_p->bus_speed_mutex);
3428 
3429 	/*
3430 	 * Make sure our updates have been reflected in devinfo.
3431 	 */
3432 	pcie_capture_speeds(dip);
3433 
3434 	return (0);
3435 }
3436 
3437 int
3438 pcie_link_retrain(dev_info_t *dip)
3439 {
3440 	uint16_t ctl;
3441 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3442 
3443 	if (!PCIE_IS_PCIE(bus_p)) {
3444 		return (ENOTSUP);
3445 	}
3446 
3447 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3448 		return (ENOTSUP);
3449 	}
3450 
3451 	/*
3452 	 * The PCIe specification suggests that we make sure that the link isn't
3453 	 * in training before issuing this command in case there was a state
3454 	 * machine transition prior to when we got here. We wait and then go
3455 	 * ahead and issue the command anyways.
3456 	 */
3457 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3458 		uint16_t sts;
3459 
3460 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3461 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3462 			break;
3463 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3464 	}
3465 
3466 	ctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3467 	ctl |= PCIE_LINKCTL_RETRAIN_LINK;
3468 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, ctl);
3469 
3470 	/*
3471 	 * Wait again to see if it clears before returning to the user.
3472 	 */
3473 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3474 		uint16_t sts;
3475 
3476 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3477 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3478 			break;
3479 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3480 	}
3481 
3482 	return (0);
3483 }
3484 
3485 /*
3486  * Here we're going through and grabbing information about a given PCIe device.
3487  * Our situation is a little bit complicated at this point. This gets invoked
3488  * both during early initialization and during hotplug events. We cannot rely on
3489  * the device node having been fully set up, that is, while the pcie_bus_t
3490  * normally contains a ddi_acc_handle_t for configuration space, that may not be
3491  * valid yet as this can occur before child initialization or we may be dealing
3492  * with a function that will never have a handle.
3493  *
3494  * However, we should always have a fully furnished pcie_bus_t, which means that
3495  * we can get its bdf and use that to access the devices configuration space.
3496  */
3497 static int
3498 pcie_fabric_feature_scan(dev_info_t *dip, void *arg)
3499 {
3500 	pcie_bus_t *bus_p;
3501 	uint32_t devcap;
3502 	uint16_t mps;
3503 	dev_info_t *rcdip;
3504 	pcie_fabric_data_t *fab = arg;
3505 
3506 	/*
3507 	 * Skip over non-PCIe devices. If we encounter something here, we don't
3508 	 * bother going through any of its children because we don't have reason
3509 	 * to believe that a PCIe device that this will impact will exist below
3510 	 * this. While it is possible that there's a PCIe fabric downstream an
3511 	 * intermediate old PCI/PCI-X bus, at that point, we'll still trigger
3512 	 * our complex fabric detection and use the minimums.
3513 	 *
3514 	 * The reason this doesn't trigger an immediate flagging as a complex
3515 	 * case like the one below is because we could be scanning a device that
3516 	 * is a nexus driver and has children already (albeit that would be
3517 	 * somewhat surprising as we don't anticipate being called at this
3518 	 * point).
3519 	 */
3520 	if (pcie_dev(dip) != DDI_SUCCESS) {
3521 		return (DDI_WALK_PRUNECHILD);
3522 	}
3523 
3524 	/*
3525 	 * If we fail to find a pcie_bus_t for some reason, that's somewhat
3526 	 * surprising. We log this fact and set the complex flag and indicate it
3527 	 * was because of this case. This immediately transitions us to a
3528 	 * "complex" case which means use the minimal, safe, settings.
3529 	 */
3530 	bus_p = PCIE_DIP2BUS(dip);
3531 	if (bus_p == NULL) {
3532 		dev_err(dip, CE_WARN, "failed to find associated pcie_bus_t "
3533 		    "during fabric scan");
3534 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3535 		return (DDI_WALK_TERMINATE);
3536 	}
3537 	rcdip = pcie_get_rc_dip(dip);
3538 
3539 	/*
3540 	 * First, start by determining what the device's tagging and max packet
3541 	 * size is. All PCIe devices will always have the 8-bit tag information
3542 	 * as this has existed since PCIe 1.0. 10-bit tagging requires a V2
3543 	 * PCIe capability. 14-bit requires the DEV3 cap. If we are missing a
3544 	 * version or capability, then we always treat that as lacking the bits
3545 	 * in the fabric.
3546 	 */
3547 	ASSERT3U(bus_p->bus_pcie_off, !=, 0);
3548 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3549 	    PCIE_DEVCAP);
3550 	mps = devcap & PCIE_DEVCAP_MAX_PAYLOAD_MASK;
3551 	if (mps < fab->pfd_mps_found) {
3552 		fab->pfd_mps_found = mps;
3553 	}
3554 
3555 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) == 0) {
3556 		fab->pfd_tag_found &= ~PCIE_TAG_8B;
3557 	}
3558 
3559 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0) {
3560 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3561 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3562 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_COMP_SUP) == 0) {
3563 			fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3564 		}
3565 	} else {
3566 		fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3567 	}
3568 
3569 	if (bus_p->bus_dev3_off != 0) {
3570 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3571 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3572 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_COMP_SUP) == 0) {
3573 			fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3574 		}
3575 	} else {
3576 		fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3577 	}
3578 
3579 	/*
3580 	 * Now that we have captured device information, we must go and ask
3581 	 * questions of the topology here. The big theory statement enumerates
3582 	 * several types of cases. The big question we need to answer is have we
3583 	 * encountered a hotpluggable bridge that means we need to mark this as
3584 	 * complex.
3585 	 *
3586 	 * The big theory statement notes several different kinds of hotplug
3587 	 * topologies that exist that we can theoretically support. Right now we
3588 	 * opt to keep our lives simple and focus solely on (4) and (5). These
3589 	 * can both be summarized by a single, fairly straightforward rule:
3590 	 *
3591 	 * The only allowed hotpluggable entity is a root port.
3592 	 *
3593 	 * The reason that this can work and detect cases like (6), (7), and our
3594 	 * other invalid ones is that the hotplug code will scan and find all
3595 	 * children before we are called into here.
3596 	 */
3597 	if (bus_p->bus_hp_sup_modes != 0) {
3598 		/*
3599 		 * We opt to terminate in this case because there's no value in
3600 		 * scanning the rest of the tree at this point.
3601 		 */
3602 		if (!PCIE_IS_RP(bus_p)) {
3603 			fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3604 			return (DDI_WALK_TERMINATE);
3605 		}
3606 
3607 		fab->pfd_flags |= PCIE_FABRIC_F_RP_HP;
3608 	}
3609 
3610 	/*
3611 	 * As our walk starts at a root port, we need to make sure that we don't
3612 	 * pick up any of its siblings and their children as those would be
3613 	 * different PCIe fabric domains for us to scan. In many hardware
3614 	 * platforms multiple root ports are all at the same level in the tree.
3615 	 */
3616 	if (bus_p->bus_rp_dip == dip) {
3617 		return (DDI_WALK_PRUNESIB);
3618 	}
3619 
3620 	return (DDI_WALK_CONTINUE);
3621 }
3622 
3623 static int
3624 pcie_fabric_feature_set(dev_info_t *dip, void *arg)
3625 {
3626 	pcie_bus_t *bus_p;
3627 	dev_info_t *rcdip;
3628 	pcie_fabric_data_t *fab = arg;
3629 	uint32_t devcap, devctl;
3630 
3631 	if (pcie_dev(dip) != DDI_SUCCESS) {
3632 		return (DDI_WALK_PRUNECHILD);
3633 	}
3634 
3635 	/*
3636 	 * The missing bus_t sent us into the complex case previously. We still
3637 	 * need to make sure all devices have values we expect here and thus
3638 	 * don't terminate like the above.
3639 	 */
3640 	bus_p = PCIE_DIP2BUS(dip);
3641 	if (bus_p == NULL) {
3642 		return (DDI_WALK_CONTINUE);
3643 	}
3644 	rcdip = pcie_get_rc_dip(dip);
3645 
3646 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3647 	    PCIE_DEVCAP);
3648 	devctl = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3649 	    PCIE_DEVCTL);
3650 
3651 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) != 0 &&
3652 	    (fab->pfd_tag_act & PCIE_TAG_8B) != 0) {
3653 		devctl |= PCIE_DEVCTL_EXT_TAG_FIELD_EN;
3654 	}
3655 
3656 	devctl &= ~PCIE_DEVCTL_MAX_PAYLOAD_MASK;
3657 	ASSERT0(fab->pfd_mps_act & ~PCIE_DEVCAP_MAX_PAYLOAD_MASK);
3658 	devctl |= fab->pfd_mps_act << PCIE_DEVCTL_MAX_PAYLOAD_SHIFT;
3659 
3660 	pci_cfgacc_put16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3661 	    PCIE_DEVCTL, devctl);
3662 
3663 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0 &&
3664 	    (fab->pfd_tag_act & PCIE_TAG_10B_COMP) != 0) {
3665 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3666 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3667 
3668 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_REQ_SUP) == 0) {
3669 			uint16_t devctl2 = pci_cfgacc_get16(rcdip,
3670 			    bus_p->bus_bdf, bus_p->bus_pcie_off + PCIE_DEVCTL2);
3671 			devctl2 |= PCIE_DEVCTL2_10B_TAG_REQ_EN;
3672 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3673 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl2);
3674 		}
3675 	}
3676 
3677 	if (bus_p->bus_dev3_off != 0 &&
3678 	    (fab->pfd_tag_act & PCIE_TAG_14B_COMP) != 0) {
3679 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3680 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3681 
3682 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_REQ_SUP) == 0) {
3683 			uint16_t devctl3 = pci_cfgacc_get16(rcdip,
3684 			    bus_p->bus_bdf, bus_p->bus_dev3_off + PCIE_DEVCTL3);
3685 			devctl3 |= PCIE_DEVCTL3_14B_TAG_REQ_EN;
3686 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3687 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl3);
3688 		}
3689 	}
3690 
3691 	/*
3692 	 * As our walk starts at a root port, we need to make sure that we don't
3693 	 * pick up any of its siblings and their children as those would be
3694 	 * different PCIe fabric domains for us to scan. In many hardware
3695 	 * platforms multiple root ports are all at the same level in the tree.
3696 	 */
3697 	if (bus_p->bus_rp_dip == dip) {
3698 		return (DDI_WALK_PRUNESIB);
3699 	}
3700 
3701 	return (DDI_WALK_CONTINUE);
3702 }
3703 
3704 /*
3705  * This is used to scan and determine the total set of PCIe fabric settings that
3706  * we should have in the system for everything downstream of this specified root
3707  * port. Note, it is only really safe to call this while working from the
3708  * perspective of a root port as we will be walking down the entire device tree.
3709  *
3710  * However, our callers, particularly hoptlug, don't have all the information
3711  * we'd like. In particular, we need to check that:
3712  *
3713  *   o This is actually a PCIe device.
3714  *   o That this is a root port (see the big theory statement to understand this
3715  *     constraint).
3716  */
3717 void
3718 pcie_fabric_setup(dev_info_t *dip)
3719 {
3720 	pcie_bus_t *bus_p;
3721 	pcie_fabric_data_t *fab;
3722 	dev_info_t *pdip;
3723 	int circular_count;
3724 
3725 	bus_p = PCIE_DIP2BUS(dip);
3726 	if (bus_p == NULL || !PCIE_IS_RP(bus_p)) {
3727 		return;
3728 	}
3729 
3730 	VERIFY3P(bus_p->bus_fab, !=, NULL);
3731 	fab = bus_p->bus_fab;
3732 
3733 	/*
3734 	 * For us to call ddi_walk_devs(), our parent needs to be held.
3735 	 * ddi_walk_devs() will take care of grabbing our dip as part of its
3736 	 * walk before we iterate over our children.
3737 	 *
3738 	 * A reasonable question to ask here is why is it safe to ask for our
3739 	 * parent? In this case, because we have entered here through some
3740 	 * thread that's operating on us whether as part of attach or a hotplug
3741 	 * event, our dip somewhat by definition has to be valid. If we were
3742 	 * looking at our dip's children and then asking them for a parent, then
3743 	 * that would be a race condition.
3744 	 */
3745 	pdip = ddi_get_parent(dip);
3746 	VERIFY3P(pdip, !=, NULL);
3747 	ndi_devi_enter(pdip, &circular_count);
3748 	fab->pfd_flags |= PCIE_FABRIC_F_SCANNING;
3749 
3750 	/*
3751 	 * Reinitialize the tracking structure to basically set the maximum
3752 	 * caps. These will be chipped away during the scan.
3753 	 */
3754 	fab->pfd_mps_found = PCIE_DEVCAP_MAX_PAYLOAD_4096;
3755 	fab->pfd_tag_found = PCIE_TAG_ALL;
3756 	fab->pfd_flags &= ~PCIE_FABRIC_F_COMPLEX;
3757 
3758 	ddi_walk_devs(dip, pcie_fabric_feature_scan, fab);
3759 
3760 	if ((fab->pfd_flags & PCIE_FABRIC_F_COMPLEX) != 0) {
3761 		fab->pfd_tag_act = PCIE_TAG_5B;
3762 		fab->pfd_mps_act = PCIE_DEVCAP_MAX_PAYLOAD_128;
3763 	} else {
3764 		fab->pfd_tag_act = fab->pfd_tag_found;
3765 		fab->pfd_mps_act = fab->pfd_mps_found;
3766 	}
3767 
3768 	ddi_walk_devs(dip, pcie_fabric_feature_set, fab);
3769 
3770 	fab->pfd_flags &= ~PCIE_FABRIC_F_SCANNING;
3771 	ndi_devi_exit(pdip, circular_count);
3772 }
3773