1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright 2024 Oxide Computer Company 26 */ 27 28 /* 29 * PCIe Initialization 30 * ------------------- 31 * 32 * The PCIe subsystem is split about and initializes itself in a couple of 33 * different places. This is due to the platform-specific nature of initializing 34 * resources and the nature of the SPARC PROM and how that influenced the 35 * subsystem. Note that traditional PCI (mostly seen these days in Virtual 36 * Machines) follows most of the same basic path outlined here, but skips a 37 * large chunk of PCIe-specific initialization. 38 * 39 * First, there is an initial device discovery phase that is taken care of by 40 * the platform. This is where we discover the set of devices that are present 41 * at system power on. These devices may or may not be hot-pluggable. In 42 * particular, this happens in a platform-specific way right now. In general, we 43 * expect most discovery to be driven by scanning each bus, device, and 44 * function, and seeing what actually exists and responds to configuration space 45 * reads. This is driven via pci_boot.c on x86. This may be seeded by something 46 * like device tree, a PROM, supplemented with ACPI, or by knowledge that the 47 * underlying platform has. 48 * 49 * As a part of this discovery process, the full set of resources that exist in 50 * the system for PCIe are: 51 * 52 * o PCI buses 53 * o Prefetchable Memory 54 * o Non-prefetchable memory 55 * o I/O ports 56 * 57 * This process is driven by a platform's PCI platform Resource Discovery (PRD) 58 * module. The PRD definitions can be found in <sys/plat/pci_prd.h> and are used 59 * to discover these resources, which will be converted into the initial set of 60 * the standard properties in the system: 'regs', 'available', 'ranges', etc. 61 * Currently it is up to platform-specific code (which should ideally be 62 * consolidated at some point) to set up all these properties. 63 * 64 * As a part of the discovery process, the platform code will create a device 65 * node (dev_info_t) for each discovered function and will create a PCIe nexus 66 * for each overall root complex that exists in the system. Most root complexes 67 * will have multiple root ports, each of which is the foundation of an 68 * independent PCIe bus due to the point-to-point nature of PCIe. When a root 69 * complex is found, a nexus driver such as npe (Nexus for PCIe Express) is 70 * attached. In the case of a non-PCIe-capable system this is where the older 71 * pci nexus driver would be used instead. 72 * 73 * To track data about a given device on a bus, a 'pcie_bus_t' structure is 74 * created for and assigned to every PCIe-based dev_info_t. This can be used to 75 * find the root port and get basic information about the device, its faults, 76 * and related information. This contains pointers to the corresponding root 77 * port as well. 78 * 79 * A root complex has its pcie_bus_t initialized as part of the device discovery 80 * process. That is, because we're trying to bootstrap the actual tree and most 81 * platforms don't have a representation for this that's explicitly 82 * discoverable, this is created manually. See callers of pcie_rc_init_bus(). 83 * 84 * For other devices, bridges, and switches, the process is split into two. 85 * There is an initial pcie_bus_t that is created which will exist before we go 86 * through the actual driver attachment process. For example, on x86 this is 87 * done as part of the device and function discovery. The second pass of 88 * initialization is done only after the nexus driver actually is attached and 89 * it goes through and finishes processing all of its children. 90 * 91 * Child Initialization 92 * -------------------- 93 * 94 * Generally speaking, the platform will first enumerate all PCIe devices that 95 * are in the sytem before it actually creates a device tree. This is part of 96 * the bus/device/function scanning that is performed and from that dev_info_t 97 * nodes are created for each discovered device and are inserted into the 98 * broader device tree. Later in boot, the actual device tree is walked and the 99 * nodes go through the standard dev_info_t initialization process (DS_PROTO, 100 * DS_LINKED, DS_BOUND, etc.). 101 * 102 * PCIe-specific initialization can roughly be broken into the following pieces: 103 * 104 * 1. Platform initial discovery and resource assignment 105 * 2. The pcie_bus_t initialization 106 * 3. Nexus driver child initialization 107 * 4. Fabric initialization 108 * 5. Device driver-specific initialization 109 * 110 * The first part of this (1) and (2) are discussed in the previous section. 111 * Part (1) in particular is a combination of the PRD (platform resource 112 * discovery) and general device initialization. After this, because we have a 113 * device tree, most of the standard nexus initialization happens. 114 * 115 * (5) is somewhat simple, so let's get into it before we discuss (3) and (4). 116 * This is the last thing that is called and that happens after all of the 117 * others are done. This is the logic that occurs in a driver's attach(9E) entry 118 * point. This is always device-specific and generally speaking should not be 119 * manipulating standard PCIe registers directly on their own. For example, the 120 * MSI/MSI-X, AER, Serial Number, etc. capabilities will be automatically dealt 121 * with by the framework in (3) and (4) below. In many cases, particularly 122 * things that are part of (4), adjusting them in the individual driver is not 123 * safe. 124 * 125 * Finally, let's talk about (3) and (4) as these are related. The NDI provides 126 * for a standard hook for a nexus to initialize its children. In our platforms, 127 * there are basically two possible PCIe nexus drivers: there is the generic 128 * pcieb -- PCIe bridge -- driver which is used for standard root ports, 129 * switches, etc. Then there is the platform-specific primary nexus driver, 130 * which is being slowly consolidated into a single one where it makes sense. An 131 * example of this is npe. 132 * 133 * Each of these has a child initialization function which is called from their 134 * DDI_CTLOPS_INITCHILD operation on the bus_ctl function pointer. This goes 135 * through and initializes a large number of different pieces of PCIe-based 136 * settings through the common pcie_initchild() function. This takes care of 137 * things like: 138 * 139 * o Advanced Error Reporting 140 * o Alternative Routing 141 * o Capturing information around link speed, width, serial numbers, etc. 142 * o Setting common properties around aborts 143 * 144 * There are a few caveats with this that need to be kept in mind: 145 * 146 * o A dev_info_t indicates a specific function. This means that a 147 * multi-function device will not all be initialized at the same time and 148 * there is no guarantee that all children will be initialized before one of 149 * them is attached. 150 * o A child is only initialized if we have found a driver that matches an 151 * alias in the dev_info_t's compatible array property. While a lot of 152 * multi-function devices are often multiple instances of the same thing 153 * (e.g. a multi-port NIC with a function / NIC), this is not always the 154 * case and one cannot make any assumptions here. 155 * 156 * This in turn leads to the next form of initialization that takes place in the 157 * case of (4). This is where we take care of things that need to be consistent 158 * across either entire devices or more generally across an entire root port and 159 * all of its children. There are a few different examples of this: 160 * 161 * o Setting the maximum packet size 162 * o Determining the tag width 163 * 164 * Note that features which are only based on function 0, such as ASPM (Active 165 * State Power Management), hardware autonomous width disable, etc. ultimately 166 * do not go through this path today. There are some implications here in that 167 * today several of these things are captured on functions which may not have 168 * any control here. This is an area of needed improvement. 169 * 170 * The settings in (4) are initialized in a common way, via 171 * pcie_fabric_setup(). This is called into from two different parts of 172 * the stack: 173 * 174 * 1. When we attach a root port, which is driven by pcieb. 175 * 2. When we have a hotplug event that adds a device. 176 * 177 * In general here we are going to use the term 'fabric' to refer to everything 178 * that is downstream of a root port. This corresponds to what the PCIe 179 * specification calls a 'hierarchy domain'. Strictly speaking, this is fine 180 * until peer-to-peer requests begin to happen that cause you to need to forward 181 * things across root ports. At that point the scope of the fabric increases and 182 * these settings become more complicated. We currently optimize for the much 183 * more common case, which is that each root port is effectively independent 184 * from a PCIe transaction routing perspective. 185 * 186 * Put differently, we use the term 'fabric' to refer to a set of PCIe devices 187 * that can route transactions to one another, which is generally constrained to 188 * everything under a root port and that root ports are independent. If this 189 * constraint changes, then all one needs to do is replace the discussion of the 190 * root port below with the broader root complex and system. 191 * 192 * A challenge with these settings is that once they're set and devices are 193 * actively making requests, we cannot really change them without resetting the 194 * links and cancelling all outstanding transactions via device resets. Because 195 * this is not something that we want to do, we instead look at how and when we 196 * set this to constrain what's going on. 197 * 198 * Because of this we basically say that if a given fabric has more than one 199 * hot-plug capable device that's encountered, then we have to use safe defaults 200 * (which we can allow an operator to tune eventually via pcieadm). If we have a 201 * mix of non-hotpluggable slots with downstream endpoints present and 202 * hot-pluggable slots, then we're in this case. If we don't have hot-pluggable 203 * slots, then we can have an arbitrarily complex setup. Let's look at a few of 204 * these visually: 205 * 206 * In the following diagrams, RP stands for Root Port, EP stands for Endpoint. 207 * If something is hot-pluggable, then we label it with (HP). 208 * 209 * (1) RP --> EP 210 * (2) RP --> Switch --> EP 211 * +--> EP 212 * +--> EP 213 * 214 * (3) RP --> Switch --> EP 215 * +--> EP 216 * +--> Switch --> EP 217 * +--> EP 218 * +--> EP 219 * 220 * 221 * (4) RP (HP) --> EP 222 * (5) RP (HP) --> Switch --> EP 223 * +--> EP 224 * +--> EP 225 * 226 * (6) RP --> Switch (HP) --> EP 227 * (7) RP (HP) --> Switch (HP) --> EP 228 * 229 * If we look at all of these, these are all cases where it's safe for us to set 230 * things based on all devices. (1), (2), and (3) are straightforward because 231 * they have no hot-pluggable elements. This means that nothing should come/go 232 * on the system and we can set up fabric-wide properties as part of the root 233 * port. 234 * 235 * Case (4) is the most standard one that we encounter for hot-plug. Here you 236 * have a root port directly connected to an endpoint. The most common example 237 * would be an NVMe device plugged into a root port. Case (5) is interesting to 238 * highlight. While there is a switch and multiple endpoints there, they are 239 * showing up as a unit. This ends up being a weirder variant of (4), but it is 240 * safe for us to set advanced properties because we can figure out what the 241 * total set should be. 242 * 243 * Now, the more interesting bits here are (6) and (7). The reason that (6) 244 * works is that ultimately there is only a single down-stream port here that is 245 * hot-pluggable and all non-hotpluggable ports do not have a device present, 246 * which suggests that they will never have a device present. (7) also could be 247 * made to work by making the observation that if there's truly only one 248 * endpoint in a fabric, it doesn't matter how many switches there are that are 249 * hot-pluggable. This would only hold if we can assume for some reason that no 250 * other endpoints could be added. 251 * 252 * In turn, let's look at several cases that we believe aren't safe: 253 * 254 * (8) RP --> Switch --> EP 255 * +--> EP 256 * (HP) +--> EP 257 * 258 * (9) RP --> Switch (HP) +--> EP 259 * (HP) +--> EP 260 * 261 * (10) RP (HP) --> Switch (HP) +--> EP 262 * (HP) +--> EP 263 * 264 * All of these are situations where it's much more explicitly unsafe. Let's 265 * take (8). The problem here is that the devices on the non-hotpluggable 266 * downstream switches are always there and we should assume all device drivers 267 * will be active and performing I/O when the hot-pluggable slot changes. If the 268 * hot-pluggable slot has a lower max payload size, then we're mostly out of 269 * luck. The case of (9) is very similar to (8), just that we have more hot-plug 270 * capable slots. 271 * 272 * Finally (10) is a case of multiple instances of hotplug. (9) and (10) are the 273 * more general case of (6) and (7). While we can try to detect (6) and (7) more 274 * generally or try to make it safe, we're going to start with a simpler form of 275 * detection for this, which roughly follows the following rules: 276 * 277 * o If there are no hot-pluggable slots in an entire fabric, then we can set 278 * all fabric properties based on device capabilities. 279 * o If we encounter a hot-pluggable slot, we can only set fabric properties 280 * based on device capabilities if: 281 * 282 * 1. The hotpluggable slot is a root port. 283 * 2. There are no other hotpluggable devices downstream of it. 284 * 285 * Otherwise, if neither of the above is true, then we must use the basic PCIe 286 * defaults for various fabric-wide properties (discussed below). Even in these 287 * more complicated cases, device-specific properties such as the configuration 288 * of AERs, ASPM, etc. are still handled in the general pcie_init_bus() and 289 * related discussed earlier here. 290 * 291 * Because the only fabrics that we'll change are those that correspond to root 292 * ports, we will only call into the actual fabric feature setup when one of 293 * those changes. This has the side effect of simplifying locking. When we make 294 * changes here we need to be able to hold the entire device tree under the root 295 * port (including the root port and its parent). This is much harder to do 296 * safely when starting in the middle of the tree. 297 * 298 * Handling of Specific Properties 299 * ------------------------------- 300 * 301 * This section goes into the rationale behind how we initialize and program 302 * various parts of the PCIe stack. 303 * 304 * 5-, 8-, 10- AND 14-BIT TAGS 305 * 306 * Tags are part of PCIe transactions and when combined with a device identifier 307 * are used to uniquely identify a transaction. In PCIe parlance, a Requester 308 * (someone who initiates a PCIe request) sets a unique tag in the request and 309 * the Completer (someone who processes and responds to a PCIe request) echoes 310 * the tag back. This means that a requester generally is responsible for 311 * ensuring that they don't reuse a tag between transactions. 312 * 313 * Thus the number of tags that a device has relates to the number of 314 * outstanding transactions that it can have, which are usually tied to the 315 * number of outstanding DMA transfers. The size of these transactions is also 316 * then scoped by the handling of the Maximum Packet Payload. 317 * 318 * In PCIe 1.0, devices default to a 5-bit tag. There was also an option to 319 * support an 8-bit tag. The 8-bit extended tag did not distinguish between a 320 * Requester or Completer. There was a bit to indicate device support of 8-bit 321 * tags in the Device Capabilities Register of the PCIe Capability and a 322 * separate bit to enable it in the Device Control Register of the PCIe 323 * Capability. 324 * 325 * In PCIe 4.0, support for a 10-bit tag was added. The specification broke 326 * apart the support bit into multiple pieces. In particular, in the Device 327 * Capabilities 2 register of the PCIe Capability there is a separate bit to 328 * indicate whether the device supports 10-bit completions and 10-bit requests. 329 * All PCIe 4.0 compliant devices are required to support 10-bit tags if they 330 * operate at 16.0 GT/s speed (a PCIe Gen 4 compliant device does not have to 331 * operate at Gen 4 speeds). 332 * 333 * This allows a device to support 10-bit completions but not 10-bit requests. 334 * A device that supports 10-bit requests is required to support 10-bit 335 * completions. There is no ability to enable or disable 10-bit completion 336 * support in the Device Capabilities 2 register. There is only a bit to enable 337 * 10-bit requests. This distinction makes our life easier as this means that as 338 * long as the entire fabric supports 10-bit completions, it doesn't matter if 339 * not all devices support 10-bit requests and we can enable them as required. 340 * More on this in a bit. 341 * 342 * In PCIe 6.0, another set of bits was added for 14-bit tags. These follow the 343 * same pattern as the 10-bit tags. The biggest difference is that the 344 * capabilities and control for these are found in the Device Capabilities 3 345 * and Device Control 3 register of the Device 3 Extended Capability. Similar to 346 * what we see with 10-bit tags, requesters are required to support the 347 * completer capability. The only control bit is for whether or not they enable 348 * a 14-bit requester. 349 * 350 * PCIe switches which sit between root ports and endpoints and show up to 351 * software as a set of bridges. Bridges generally don't have to know about tags 352 * as they are usually neither requesters or completers (unless directly talking 353 * to the bridge instance). That is they are generally required to forward 354 * packets without modifying them. This works until we deal with switch error 355 * handling. At that point, the switch may try to interpret the transaction and 356 * if it doesn't understand the tagging scheme in use, return the transaction to 357 * with the wrong tag and also an incorrectly diagnosed error (usually a 358 * malformed TLP). 359 * 360 * With all this, we construct a somewhat simple policy of how and when we 361 * enable extended tags: 362 * 363 * o If we have a complex hotplug-capable fabric (based on the discussion 364 * earlier in fabric-specific settings), then we cannot enable any of the 365 * 8-bit, 10-bit, and 14-bit tagging features. This is due to the issues 366 * with intermediate PCIe switches and related. 367 * 368 * o If every device supports 8-bit capable tags, then we will go through and 369 * enable those everywhere. 370 * 371 * o If every device supports 10-bit capable completions, then we will enable 372 * 10-bit requester on every device that supports it. 373 * 374 * o If every device supports 14-bit capable completions, then we will enable 375 * 14-bit requesters on every device that supports it. 376 * 377 * This is the simpler end of the policy and one that is relatively easy to 378 * implement. While we could attempt to relax the constraint that every device 379 * in the fabric implement these features by making assumptions about peer-to- 380 * peer requests (that is devices at the same layer in the tree won't talk to 381 * one another), that is a lot of complexity. For now, we leave such an 382 * implementation to those who need it in the future. 383 * 384 * MAX PAYLOAD SIZE 385 * 386 * When performing transactions on the PCIe bus, a given transaction has a 387 * maximum allowed size. This size is called the MPS or 'Maximum Payload Size'. 388 * A given device reports its maximum supported size in the Device Capabilities 389 * register of the PCIe Capability. It is then set in the Device Control 390 * register. 391 * 392 * One of the challenges with this value is that different functions of a device 393 * have independent values, but strictly speaking are required to actually have 394 * the same value programmed in all of them lest device behavior goes awry. When 395 * a device has the ARI (alternative routing ID) capability enabled, then only 396 * function 0 controls the actual payload size. 397 * 398 * The settings for this need to be consistent throughout the fabric. A 399 * Transmitter is not allowed to create a TLP that exceeds its maximum packet 400 * size and a Receiver is not allowed to receive a packet that exceeds its 401 * maximum packet size. In all of these cases, this would result in something 402 * like a malformed TLP error. 403 * 404 * Effectively, this means that everything on a given fabric must have the same 405 * value programmed in its Device Control register for this value. While in the 406 * case of tags, switches generally weren't completers or requesters, here every 407 * device along the path is subject to this. This makes the actual value that we 408 * set throughout the fabric even more important and the constraints of hotplug 409 * even worse to deal with. 410 * 411 * Because a hotplug device can be inserted with any packet size, if we hit 412 * anything other than the simple hotplug cases discussed in the fabric-specific 413 * settings section, then we must use the smallest size of 128 byte payloads. 414 * This is because a device could be plugged in that supports something smaller 415 * than we had otherwise set. If there are other active devices, those could not 416 * be changed without quiescing the entire fabric. As such our algorithm is as 417 * follows: 418 * 419 * 1. Scan the entire fabric, keeping track of the smallest seen MPS in the 420 * Device Capabilities Register. 421 * 2. If we have a complex fabric, program each Device Control register with 422 * a 128 byte maximum payload size, otherwise, program it with the 423 * discovered value. 424 * 425 * 426 * MAX READ REQUEST SIZE 427 * 428 * The maximum read request size (mrrs) is a much more confusing thing when 429 * compared to the maximum payload size counterpart. The maximum payload size 430 * (MPS) above is what restricts the actual size of a TLP. The mrrs value 431 * is used to control part of the behavior of Memory Read Request, which is not 432 * strictly speaking subject to the MPS. A PCIe device is allowed to respond to 433 * a Memory Read Request with less bytes than were actually requested in a 434 * single completion. In general, the default size that a root complex and its 435 * root port will reply to are based around the length of a cache line. 436 * 437 * What this ultimately controls is the number of requests that the Requester 438 * has to make and trades off bandwidth, bus sharing, and related here. For 439 * example, if the maximum read request size is 4 KiB, then the requester would 440 * only issue a single read request asking for 4 KiB. It would still receive 441 * these as multiple packets in units of the MPS. If however, the maximum read 442 * request was only say 512 B, then it would need to make 8 separate requests, 443 * potentially increasing latency. On the other hand, if systems are relying on 444 * total requests for QoS, then it's important to set it to something that's 445 * closer to the actual MPS. 446 * 447 * Traditionally, the OS has not been the most straightforward about this. It's 448 * important to remember that setting this up is also somewhat in the realm of 449 * system firmware. Due to the PCI Firmware specification, the firmware may have 450 * set up a value for not just the MRRS but also the MPS. As such, our logic 451 * basically left the MRRS alone and used whatever the device had there as long 452 * as we weren't shrinking the device's MPS. If we were, then we'd set it to the 453 * MPS. If the device was a root port, then it was just left at a system wide 454 * and PCIe default of 512 bytes. 455 * 456 * If we survey firmware (which isn't easy due to its nature), we have seen most 457 * cases where the firmware just doesn't do anything and leaves it to the 458 * device's default, which is basically just the PCIe default, unless it has a 459 * specific knowledge of something like say wanting to do something for an NVMe 460 * device. The same is generally true of other systems, leaving it at its 461 * default unless otherwise set by a device driver. 462 * 463 * Because this value doesn't really have the same constraints as other fabric 464 * properties, this becomes much simpler and we instead opt to set it as part of 465 * the device node initialization. In addition, there are no real rules about 466 * different functions having different values here as it doesn't really impact 467 * the TLP processing the same way that the MPS does. 468 * 469 * While we should add a fuller way of setting this and allowing operator 470 * override of the MRRS based on things like device class, etc. that is driven 471 * by pcieadm, that is left to the future. For now we opt to that all devices 472 * are kept at their default (512 bytes or whatever firmware left behind) and we 473 * ensure that root ports always have the mrrs set to 512. 474 */ 475 476 #include <sys/sysmacros.h> 477 #include <sys/types.h> 478 #include <sys/kmem.h> 479 #include <sys/modctl.h> 480 #include <sys/ddi.h> 481 #include <sys/sunddi.h> 482 #include <sys/sunndi.h> 483 #include <sys/fm/protocol.h> 484 #include <sys/fm/util.h> 485 #include <sys/promif.h> 486 #include <sys/disp.h> 487 #include <sys/stat.h> 488 #include <sys/file.h> 489 #include <sys/pci_cap.h> 490 #include <sys/pci_impl.h> 491 #include <sys/pcie_impl.h> 492 #include <sys/hotplug/pci/pcie_hp.h> 493 #include <sys/hotplug/pci/pciehpc.h> 494 #include <sys/hotplug/pci/pcishpc.h> 495 #include <sys/hotplug/pci/pcicfg.h> 496 #include <sys/pci_cfgacc.h> 497 #include <sys/sysevent.h> 498 #include <sys/sysevent/eventdefs.h> 499 #include <sys/sysevent/pcie.h> 500 501 /* Local functions prototypes */ 502 static void pcie_init_pfd(dev_info_t *); 503 static void pcie_fini_pfd(dev_info_t *); 504 505 #ifdef DEBUG 506 uint_t pcie_debug_flags = 0; 507 static void pcie_print_bus(pcie_bus_t *bus_p); 508 void pcie_dbg(char *fmt, ...); 509 #endif /* DEBUG */ 510 511 /* Variable to control default PCI-Express config settings */ 512 ushort_t pcie_command_default = 513 PCI_COMM_SERR_ENABLE | 514 PCI_COMM_WAIT_CYC_ENAB | 515 PCI_COMM_PARITY_DETECT | 516 PCI_COMM_ME | 517 PCI_COMM_MAE | 518 PCI_COMM_IO; 519 520 /* xxx_fw are bits that are controlled by FW and should not be modified */ 521 ushort_t pcie_command_default_fw = 522 PCI_COMM_SPEC_CYC | 523 PCI_COMM_MEMWR_INVAL | 524 PCI_COMM_PALETTE_SNOOP | 525 PCI_COMM_WAIT_CYC_ENAB | 526 0xF800; /* Reserved Bits */ 527 528 ushort_t pcie_bdg_command_default_fw = 529 PCI_BCNF_BCNTRL_ISA_ENABLE | 530 PCI_BCNF_BCNTRL_VGA_ENABLE | 531 0xF000; /* Reserved Bits */ 532 533 /* PCI-Express Base error defaults */ 534 ushort_t pcie_base_err_default = 535 PCIE_DEVCTL_CE_REPORTING_EN | 536 PCIE_DEVCTL_NFE_REPORTING_EN | 537 PCIE_DEVCTL_FE_REPORTING_EN | 538 PCIE_DEVCTL_UR_REPORTING_EN; 539 540 /* 541 * This contains default values and masks that are used to manipulate the device 542 * control register and ensure that it is in a normal state. The mask controls 543 * things that are managed by pcie_fabric_setup(), firmware, or other sources 544 * and therefore should be preserved unless we're explicitly trying to change 545 * it. 546 */ 547 uint16_t pcie_devctl_default = PCIE_DEVCTL_RO_EN | PCIE_DEVCTL_MAX_READ_REQ_512; 548 uint16_t pcie_devctl_default_mask = PCIE_DEVCTL_MAX_READ_REQ_MASK | 549 PCIE_DEVCTL_MAX_PAYLOAD_MASK | PCIE_DEVCTL_EXT_TAG_FIELD_EN; 550 551 /* PCI-Express AER Root Control Register */ 552 #define PCIE_ROOT_SYS_ERR (PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | \ 553 PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | \ 554 PCIE_ROOTCTL_SYS_ERR_ON_FE_EN) 555 556 ushort_t pcie_root_ctrl_default = 557 PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | 558 PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | 559 PCIE_ROOTCTL_SYS_ERR_ON_FE_EN; 560 561 /* PCI-Express Root Error Command Register */ 562 ushort_t pcie_root_error_cmd_default = 563 PCIE_AER_RE_CMD_CE_REP_EN | 564 PCIE_AER_RE_CMD_NFE_REP_EN | 565 PCIE_AER_RE_CMD_FE_REP_EN; 566 567 /* ECRC settings in the PCIe AER Control Register */ 568 uint32_t pcie_ecrc_value = 569 PCIE_AER_CTL_ECRC_GEN_ENA | 570 PCIE_AER_CTL_ECRC_CHECK_ENA; 571 572 /* 573 * If a particular platform wants to disable certain errors such as UR/MA, 574 * instead of using #defines have the platform's PCIe Root Complex driver set 575 * these masks using the pcie_get_XXX_mask and pcie_set_XXX_mask functions. For 576 * x86 the closest thing to a PCIe root complex driver is NPE. For SPARC the 577 * closest PCIe root complex driver is PX. 578 * 579 * pcie_serr_disable_flag : disable SERR only (in RCR and command reg) x86 580 * systems may want to disable SERR in general. For root ports, enabling SERR 581 * causes NMIs which are not handled and results in a watchdog timeout error. 582 */ 583 uint32_t pcie_aer_uce_mask = 0; /* AER UE Mask */ 584 uint32_t pcie_aer_ce_mask = 0; /* AER CE Mask */ 585 uint32_t pcie_aer_suce_mask = 0; /* AER Secondary UE Mask */ 586 uint32_t pcie_serr_disable_flag = 0; /* Disable SERR */ 587 588 /* Default severities needed for eversholt. Error handling doesn't care */ 589 uint32_t pcie_aer_uce_severity = PCIE_AER_UCE_MTLP | PCIE_AER_UCE_RO | \ 590 PCIE_AER_UCE_FCP | PCIE_AER_UCE_SD | PCIE_AER_UCE_DLP | \ 591 PCIE_AER_UCE_TRAINING; 592 uint32_t pcie_aer_suce_severity = PCIE_AER_SUCE_SERR_ASSERT | \ 593 PCIE_AER_SUCE_UC_ADDR_ERR | PCIE_AER_SUCE_UC_ATTR_ERR | \ 594 PCIE_AER_SUCE_USC_MSG_DATA_ERR; 595 596 int pcie_disable_ari = 0; 597 598 /* 599 * On some platforms, such as the AMD B450 chipset, we've seen an odd 600 * relationship between enabling link bandwidth notifications and AERs about 601 * ECRC errors. This provides a mechanism to disable it. 602 */ 603 int pcie_disable_lbw = 0; 604 605 /* 606 * Amount of time to wait for an in-progress retraining. The default is to try 607 * 500 times in 10ms chunks, thus a total of 5s. 608 */ 609 uint32_t pcie_link_retrain_count = 500; 610 uint32_t pcie_link_retrain_delay_ms = 10; 611 612 taskq_t *pcie_link_tq; 613 kmutex_t pcie_link_tq_mutex; 614 615 static int pcie_link_bw_intr(dev_info_t *); 616 static void pcie_capture_speeds(dev_info_t *); 617 618 dev_info_t *pcie_get_rc_dip(dev_info_t *dip); 619 620 /* 621 * modload support 622 */ 623 624 static struct modlmisc modlmisc = { 625 &mod_miscops, /* Type of module */ 626 "PCI Express Framework Module" 627 }; 628 629 static struct modlinkage modlinkage = { 630 MODREV_1, 631 (void *)&modlmisc, 632 NULL 633 }; 634 635 /* 636 * Global Variables needed for a non-atomic version of ddi_fm_ereport_post. 637 * Currently used to send the pci.fabric ereports whose payload depends on the 638 * type of PCI device it is being sent for. 639 */ 640 char *pcie_nv_buf; 641 nv_alloc_t *pcie_nvap; 642 nvlist_t *pcie_nvl; 643 644 int 645 _init(void) 646 { 647 int rval; 648 649 pcie_nv_buf = kmem_alloc(ERPT_DATA_SZ, KM_SLEEP); 650 pcie_nvap = fm_nva_xcreate(pcie_nv_buf, ERPT_DATA_SZ); 651 pcie_nvl = fm_nvlist_create(pcie_nvap); 652 mutex_init(&pcie_link_tq_mutex, NULL, MUTEX_DRIVER, NULL); 653 654 if ((rval = mod_install(&modlinkage)) != 0) { 655 mutex_destroy(&pcie_link_tq_mutex); 656 fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN); 657 fm_nva_xdestroy(pcie_nvap); 658 kmem_free(pcie_nv_buf, ERPT_DATA_SZ); 659 } 660 return (rval); 661 } 662 663 int 664 _fini() 665 { 666 int rval; 667 668 if ((rval = mod_remove(&modlinkage)) == 0) { 669 if (pcie_link_tq != NULL) { 670 taskq_destroy(pcie_link_tq); 671 } 672 mutex_destroy(&pcie_link_tq_mutex); 673 fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN); 674 fm_nva_xdestroy(pcie_nvap); 675 kmem_free(pcie_nv_buf, ERPT_DATA_SZ); 676 } 677 return (rval); 678 } 679 680 int 681 _info(struct modinfo *modinfop) 682 { 683 return (mod_info(&modlinkage, modinfop)); 684 } 685 686 /* ARGSUSED */ 687 int 688 pcie_init(dev_info_t *dip, caddr_t arg) 689 { 690 int ret = DDI_SUCCESS; 691 692 /* 693 * Our _init function is too early to create a taskq. Create the pcie 694 * link management taskq here now instead. 695 */ 696 mutex_enter(&pcie_link_tq_mutex); 697 if (pcie_link_tq == NULL) { 698 pcie_link_tq = taskq_create("pcie_link", 1, minclsyspri, 0, 0, 699 0); 700 } 701 mutex_exit(&pcie_link_tq_mutex); 702 703 704 /* 705 * Create a "devctl" minor node to support DEVCTL_DEVICE_* 706 * and DEVCTL_BUS_* ioctls to this bus. 707 */ 708 if ((ret = ddi_create_minor_node(dip, "devctl", S_IFCHR, 709 PCI_MINOR_NUM(ddi_get_instance(dip), PCI_DEVCTL_MINOR), 710 DDI_NT_NEXUS, 0)) != DDI_SUCCESS) { 711 PCIE_DBG("Failed to create devctl minor node for %s%d\n", 712 ddi_driver_name(dip), ddi_get_instance(dip)); 713 714 return (ret); 715 } 716 717 if ((ret = pcie_hp_init(dip, arg)) != DDI_SUCCESS) { 718 /* 719 * On some x86 platforms, we observed unexpected hotplug 720 * initialization failures in recent years. The known cause 721 * is a hardware issue: while the problem PCI bridges have 722 * the Hotplug Capable registers set, the machine actually 723 * does not implement the expected ACPI object. 724 * 725 * We don't want to stop PCI driver attach and system boot 726 * just because of this hotplug initialization failure. 727 * Continue with a debug message printed. 728 */ 729 PCIE_DBG("%s%d: Failed setting hotplug framework\n", 730 ddi_driver_name(dip), ddi_get_instance(dip)); 731 732 #if defined(__sparc) 733 ddi_remove_minor_node(dip, "devctl"); 734 735 return (ret); 736 #endif /* defined(__sparc) */ 737 } 738 739 return (DDI_SUCCESS); 740 } 741 742 /* ARGSUSED */ 743 int 744 pcie_uninit(dev_info_t *dip) 745 { 746 int ret = DDI_SUCCESS; 747 748 if (pcie_ari_is_enabled(dip) == PCIE_ARI_FORW_ENABLED) 749 (void) pcie_ari_disable(dip); 750 751 if ((ret = pcie_hp_uninit(dip)) != DDI_SUCCESS) { 752 PCIE_DBG("Failed to uninitialize hotplug for %s%d\n", 753 ddi_driver_name(dip), ddi_get_instance(dip)); 754 755 return (ret); 756 } 757 758 if (pcie_link_bw_supported(dip)) { 759 (void) pcie_link_bw_disable(dip); 760 } 761 762 ddi_remove_minor_node(dip, "devctl"); 763 764 return (ret); 765 } 766 767 /* 768 * PCIe module interface for enabling hotplug interrupt. 769 * 770 * It should be called after pcie_init() is done and bus driver's 771 * interrupt handlers have being attached. 772 */ 773 int 774 pcie_hpintr_enable(dev_info_t *dip) 775 { 776 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 777 pcie_hp_ctrl_t *ctrl_p = PCIE_GET_HP_CTRL(dip); 778 779 if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) { 780 (void) (ctrl_p->hc_ops.enable_hpc_intr)(ctrl_p); 781 } else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) { 782 (void) pcishpc_enable_irqs(ctrl_p); 783 } 784 return (DDI_SUCCESS); 785 } 786 787 /* 788 * PCIe module interface for disabling hotplug interrupt. 789 * 790 * It should be called before pcie_uninit() is called and bus driver's 791 * interrupt handlers is dettached. 792 */ 793 int 794 pcie_hpintr_disable(dev_info_t *dip) 795 { 796 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 797 pcie_hp_ctrl_t *ctrl_p = PCIE_GET_HP_CTRL(dip); 798 799 if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) { 800 (void) (ctrl_p->hc_ops.disable_hpc_intr)(ctrl_p); 801 } else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) { 802 (void) pcishpc_disable_irqs(ctrl_p); 803 } 804 return (DDI_SUCCESS); 805 } 806 807 /* ARGSUSED */ 808 int 809 pcie_intr(dev_info_t *dip) 810 { 811 int hp, lbw; 812 813 hp = pcie_hp_intr(dip); 814 lbw = pcie_link_bw_intr(dip); 815 816 if (hp == DDI_INTR_CLAIMED || lbw == DDI_INTR_CLAIMED) { 817 return (DDI_INTR_CLAIMED); 818 } 819 820 return (DDI_INTR_UNCLAIMED); 821 } 822 823 /* ARGSUSED */ 824 int 825 pcie_open(dev_info_t *dip, dev_t *devp, int flags, int otyp, cred_t *credp) 826 { 827 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 828 829 /* 830 * Make sure the open is for the right file type. 831 */ 832 if (otyp != OTYP_CHR) 833 return (EINVAL); 834 835 /* 836 * Handle the open by tracking the device state. 837 */ 838 if ((bus_p->bus_soft_state == PCI_SOFT_STATE_OPEN_EXCL) || 839 ((flags & FEXCL) && 840 (bus_p->bus_soft_state != PCI_SOFT_STATE_CLOSED))) { 841 return (EBUSY); 842 } 843 844 if (flags & FEXCL) 845 bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN_EXCL; 846 else 847 bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN; 848 849 return (0); 850 } 851 852 /* ARGSUSED */ 853 int 854 pcie_close(dev_info_t *dip, dev_t dev, int flags, int otyp, cred_t *credp) 855 { 856 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 857 858 if (otyp != OTYP_CHR) 859 return (EINVAL); 860 861 bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED; 862 863 return (0); 864 } 865 866 /* ARGSUSED */ 867 int 868 pcie_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg, int mode, 869 cred_t *credp, int *rvalp) 870 { 871 struct devctl_iocdata *dcp; 872 uint_t bus_state; 873 int rv = DDI_SUCCESS; 874 875 /* 876 * We can use the generic implementation for devctl ioctl 877 */ 878 switch (cmd) { 879 case DEVCTL_DEVICE_GETSTATE: 880 case DEVCTL_DEVICE_ONLINE: 881 case DEVCTL_DEVICE_OFFLINE: 882 case DEVCTL_BUS_GETSTATE: 883 return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0)); 884 default: 885 break; 886 } 887 888 /* 889 * read devctl ioctl data 890 */ 891 if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS) 892 return (EFAULT); 893 894 switch (cmd) { 895 case DEVCTL_BUS_QUIESCE: 896 if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) 897 if (bus_state == BUS_QUIESCED) 898 break; 899 (void) ndi_set_bus_state(dip, BUS_QUIESCED); 900 break; 901 case DEVCTL_BUS_UNQUIESCE: 902 if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) 903 if (bus_state == BUS_ACTIVE) 904 break; 905 (void) ndi_set_bus_state(dip, BUS_ACTIVE); 906 break; 907 case DEVCTL_BUS_RESET: 908 case DEVCTL_BUS_RESETALL: 909 case DEVCTL_DEVICE_RESET: 910 rv = ENOTSUP; 911 break; 912 default: 913 rv = ENOTTY; 914 } 915 916 ndi_dc_freehdl(dcp); 917 return (rv); 918 } 919 920 /* ARGSUSED */ 921 int 922 pcie_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 923 int flags, char *name, caddr_t valuep, int *lengthp) 924 { 925 if (dev == DDI_DEV_T_ANY) 926 goto skip; 927 928 if (PCIE_IS_HOTPLUG_CAPABLE(dip) && 929 strcmp(name, "pci-occupant") == 0) { 930 int pci_dev = PCI_MINOR_NUM_TO_PCI_DEVNUM(getminor(dev)); 931 932 pcie_hp_create_occupant_props(dip, dev, pci_dev); 933 } 934 935 skip: 936 return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); 937 } 938 939 int 940 pcie_init_cfghdl(dev_info_t *cdip) 941 { 942 pcie_bus_t *bus_p; 943 ddi_acc_handle_t eh = NULL; 944 945 bus_p = PCIE_DIP2BUS(cdip); 946 if (bus_p == NULL) 947 return (DDI_FAILURE); 948 949 /* Create an config access special to error handling */ 950 if (pci_config_setup(cdip, &eh) != DDI_SUCCESS) { 951 cmn_err(CE_WARN, "Cannot setup config access" 952 " for BDF 0x%x\n", bus_p->bus_bdf); 953 return (DDI_FAILURE); 954 } 955 956 bus_p->bus_cfg_hdl = eh; 957 return (DDI_SUCCESS); 958 } 959 960 void 961 pcie_fini_cfghdl(dev_info_t *cdip) 962 { 963 pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip); 964 965 pci_config_teardown(&bus_p->bus_cfg_hdl); 966 } 967 968 void 969 pcie_determine_serial(dev_info_t *dip) 970 { 971 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 972 ddi_acc_handle_t h; 973 uint16_t cap; 974 uchar_t serial[8]; 975 uint32_t low, high; 976 977 if (!PCIE_IS_PCIE(bus_p)) 978 return; 979 980 h = bus_p->bus_cfg_hdl; 981 982 if ((PCI_CAP_LOCATE(h, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap)) == 983 DDI_FAILURE) 984 return; 985 986 high = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_UPPER_DW); 987 low = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_LOWER_DW); 988 989 /* 990 * Here, we're trying to figure out if we had an invalid PCIe read. From 991 * looking at the contents of the value, it can be hard to tell the 992 * difference between a value that has all 1s correctly versus if we had 993 * an error. In this case, we only assume it's invalid if both register 994 * reads are invalid. We also only use 32-bit reads as we're not sure if 995 * all devices will support these as 64-bit reads, while we know that 996 * they'll support these as 32-bit reads. 997 */ 998 if (high == PCI_EINVAL32 && low == PCI_EINVAL32) 999 return; 1000 1001 serial[0] = low & 0xff; 1002 serial[1] = (low >> 8) & 0xff; 1003 serial[2] = (low >> 16) & 0xff; 1004 serial[3] = (low >> 24) & 0xff; 1005 serial[4] = high & 0xff; 1006 serial[5] = (high >> 8) & 0xff; 1007 serial[6] = (high >> 16) & 0xff; 1008 serial[7] = (high >> 24) & 0xff; 1009 1010 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, "pcie-serial", 1011 serial, sizeof (serial)); 1012 } 1013 1014 static void 1015 pcie_determine_aspm(dev_info_t *dip) 1016 { 1017 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 1018 uint32_t linkcap; 1019 uint16_t linkctl; 1020 1021 if (!PCIE_IS_PCIE(bus_p)) 1022 return; 1023 1024 linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP); 1025 linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL); 1026 1027 switch (linkcap & PCIE_LINKCAP_ASPM_SUP_MASK) { 1028 case PCIE_LINKCAP_ASPM_SUP_L0S: 1029 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1030 "pcie-aspm-support", "l0s"); 1031 break; 1032 case PCIE_LINKCAP_ASPM_SUP_L1: 1033 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1034 "pcie-aspm-support", "l1"); 1035 break; 1036 case PCIE_LINKCAP_ASPM_SUP_L0S_L1: 1037 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1038 "pcie-aspm-support", "l0s,l1"); 1039 break; 1040 default: 1041 return; 1042 } 1043 1044 switch (linkctl & PCIE_LINKCTL_ASPM_CTL_MASK) { 1045 case PCIE_LINKCTL_ASPM_CTL_DIS: 1046 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1047 "pcie-aspm-state", "disabled"); 1048 break; 1049 case PCIE_LINKCTL_ASPM_CTL_L0S: 1050 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1051 "pcie-aspm-state", "l0s"); 1052 break; 1053 case PCIE_LINKCTL_ASPM_CTL_L1: 1054 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1055 "pcie-aspm-state", "l1"); 1056 break; 1057 case PCIE_LINKCTL_ASPM_CTL_L0S_L1: 1058 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1059 "pcie-aspm-state", "l0s,l1"); 1060 break; 1061 } 1062 } 1063 1064 /* 1065 * PCI-Express child device initialization. Note, this only will be called on a 1066 * device or function if we actually attach a device driver to it. 1067 * 1068 * This function enables generic pci-express interrupts and error handling. 1069 * Note, tagging, the max packet size, and related are all set up before this 1070 * point and is performed in pcie_fabric_setup(). 1071 * 1072 * @param pdip root dip (root nexus's dip) 1073 * @param cdip child's dip (device's dip) 1074 * @return DDI_SUCCESS or DDI_FAILURE 1075 */ 1076 /* ARGSUSED */ 1077 int 1078 pcie_initchild(dev_info_t *cdip) 1079 { 1080 uint16_t tmp16, reg16; 1081 pcie_bus_t *bus_p; 1082 1083 bus_p = PCIE_DIP2BUS(cdip); 1084 if (bus_p == NULL) { 1085 PCIE_DBG("%s: BUS not found.\n", 1086 ddi_driver_name(cdip)); 1087 1088 return (DDI_FAILURE); 1089 } 1090 1091 if (pcie_init_cfghdl(cdip) != DDI_SUCCESS) 1092 return (DDI_FAILURE); 1093 1094 /* Clear the device's status register */ 1095 reg16 = PCIE_GET(16, bus_p, PCI_CONF_STAT); 1096 PCIE_PUT(16, bus_p, PCI_CONF_STAT, reg16); 1097 1098 /* Setup the device's command register */ 1099 reg16 = PCIE_GET(16, bus_p, PCI_CONF_COMM); 1100 tmp16 = (reg16 & pcie_command_default_fw) | pcie_command_default; 1101 1102 if (pcie_serr_disable_flag && PCIE_IS_PCIE(bus_p)) 1103 tmp16 &= ~PCI_COMM_SERR_ENABLE; 1104 1105 PCIE_PUT(16, bus_p, PCI_CONF_COMM, tmp16); 1106 PCIE_DBG_CFG(cdip, bus_p, "COMMAND", 16, PCI_CONF_COMM, reg16); 1107 1108 /* 1109 * If the device has a bus control register then program it 1110 * based on the settings in the command register. 1111 */ 1112 if (PCIE_IS_BDG(bus_p)) { 1113 /* Clear the device's secondary status register */ 1114 reg16 = PCIE_GET(16, bus_p, PCI_BCNF_SEC_STATUS); 1115 PCIE_PUT(16, bus_p, PCI_BCNF_SEC_STATUS, reg16); 1116 1117 /* Setup the device's secondary command register */ 1118 reg16 = PCIE_GET(16, bus_p, PCI_BCNF_BCNTRL); 1119 tmp16 = (reg16 & pcie_bdg_command_default_fw); 1120 1121 tmp16 |= PCI_BCNF_BCNTRL_SERR_ENABLE; 1122 /* 1123 * Workaround for this Nvidia bridge. Don't enable the SERR 1124 * enable bit in the bridge control register as it could lead to 1125 * bogus NMIs. 1126 */ 1127 if (bus_p->bus_dev_ven_id == 0x037010DE) 1128 tmp16 &= ~PCI_BCNF_BCNTRL_SERR_ENABLE; 1129 1130 if (pcie_command_default & PCI_COMM_PARITY_DETECT) 1131 tmp16 |= PCI_BCNF_BCNTRL_PARITY_ENABLE; 1132 1133 /* 1134 * Enable Master Abort Mode only if URs have not been masked. 1135 * For PCI and PCIe-PCI bridges, enabling this bit causes a 1136 * Master Aborts/UR to be forwarded as a UR/TA or SERR. If this 1137 * bit is masked, posted requests are dropped and non-posted 1138 * requests are returned with -1. 1139 */ 1140 if (pcie_aer_uce_mask & PCIE_AER_UCE_UR) 1141 tmp16 &= ~PCI_BCNF_BCNTRL_MAST_AB_MODE; 1142 else 1143 tmp16 |= PCI_BCNF_BCNTRL_MAST_AB_MODE; 1144 PCIE_PUT(16, bus_p, PCI_BCNF_BCNTRL, tmp16); 1145 PCIE_DBG_CFG(cdip, bus_p, "SEC CMD", 16, PCI_BCNF_BCNTRL, 1146 reg16); 1147 } 1148 1149 if (PCIE_IS_PCIE(bus_p)) { 1150 /* 1151 * Get the device control register into an initial state that 1152 * makes sense. The maximum payload, tagging, and related will 1153 * be dealt with in pcie_fabric_setup(). 1154 */ 1155 reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL); 1156 tmp16 = (reg16 & pcie_devctl_default_mask) | 1157 (pcie_devctl_default & ~pcie_devctl_default_mask); 1158 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16); 1159 PCIE_DBG_CAP(cdip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16); 1160 1161 /* Enable PCIe errors */ 1162 pcie_enable_errors(cdip); 1163 1164 pcie_determine_serial(cdip); 1165 1166 pcie_determine_aspm(cdip); 1167 1168 pcie_capture_speeds(cdip); 1169 } 1170 1171 bus_p->bus_ari = B_FALSE; 1172 if ((pcie_ari_is_enabled(ddi_get_parent(cdip)) 1173 == PCIE_ARI_FORW_ENABLED) && (pcie_ari_device(cdip) 1174 == PCIE_ARI_DEVICE)) { 1175 bus_p->bus_ari = B_TRUE; 1176 } 1177 1178 return (DDI_SUCCESS); 1179 } 1180 1181 static void 1182 pcie_init_pfd(dev_info_t *dip) 1183 { 1184 pf_data_t *pfd_p = PCIE_ZALLOC(pf_data_t); 1185 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 1186 1187 PCIE_DIP2PFD(dip) = pfd_p; 1188 1189 pfd_p->pe_bus_p = bus_p; 1190 pfd_p->pe_severity_flags = 0; 1191 pfd_p->pe_severity_mask = 0; 1192 pfd_p->pe_orig_severity_flags = 0; 1193 pfd_p->pe_lock = B_FALSE; 1194 pfd_p->pe_valid = B_FALSE; 1195 1196 /* Allocate the root fault struct for both RC and RP */ 1197 if (PCIE_IS_ROOT(bus_p)) { 1198 PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t); 1199 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF; 1200 PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t); 1201 } 1202 1203 PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t); 1204 PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t); 1205 PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF; 1206 1207 if (PCIE_IS_BDG(bus_p)) 1208 PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t); 1209 1210 if (PCIE_IS_PCIE(bus_p)) { 1211 PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t); 1212 1213 if (PCIE_IS_RP(bus_p)) 1214 PCIE_RP_REG(pfd_p) = 1215 PCIE_ZALLOC(pf_pcie_rp_err_regs_t); 1216 1217 PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t); 1218 PCIE_ADV_REG(pfd_p)->pcie_ue_tgt_bdf = PCIE_INVALID_BDF; 1219 1220 if (PCIE_IS_RP(bus_p)) { 1221 PCIE_ADV_RP_REG(pfd_p) = 1222 PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t); 1223 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = 1224 PCIE_INVALID_BDF; 1225 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = 1226 PCIE_INVALID_BDF; 1227 } else if (PCIE_IS_PCIE_BDG(bus_p)) { 1228 PCIE_ADV_BDG_REG(pfd_p) = 1229 PCIE_ZALLOC(pf_pcie_adv_bdg_err_regs_t); 1230 PCIE_ADV_BDG_REG(pfd_p)->pcie_sue_tgt_bdf = 1231 PCIE_INVALID_BDF; 1232 } 1233 1234 if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) { 1235 PCIX_BDG_ERR_REG(pfd_p) = 1236 PCIE_ZALLOC(pf_pcix_bdg_err_regs_t); 1237 1238 if (PCIX_ECC_VERSION_CHECK(bus_p)) { 1239 PCIX_BDG_ECC_REG(pfd_p, 0) = 1240 PCIE_ZALLOC(pf_pcix_ecc_regs_t); 1241 PCIX_BDG_ECC_REG(pfd_p, 1) = 1242 PCIE_ZALLOC(pf_pcix_ecc_regs_t); 1243 } 1244 } 1245 1246 PCIE_SLOT_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_slot_regs_t); 1247 PCIE_SLOT_REG(pfd_p)->pcie_slot_regs_valid = B_FALSE; 1248 PCIE_SLOT_REG(pfd_p)->pcie_slot_cap = 0; 1249 PCIE_SLOT_REG(pfd_p)->pcie_slot_control = 0; 1250 PCIE_SLOT_REG(pfd_p)->pcie_slot_status = 0; 1251 1252 } else if (PCIE_IS_PCIX(bus_p)) { 1253 if (PCIE_IS_BDG(bus_p)) { 1254 PCIX_BDG_ERR_REG(pfd_p) = 1255 PCIE_ZALLOC(pf_pcix_bdg_err_regs_t); 1256 1257 if (PCIX_ECC_VERSION_CHECK(bus_p)) { 1258 PCIX_BDG_ECC_REG(pfd_p, 0) = 1259 PCIE_ZALLOC(pf_pcix_ecc_regs_t); 1260 PCIX_BDG_ECC_REG(pfd_p, 1) = 1261 PCIE_ZALLOC(pf_pcix_ecc_regs_t); 1262 } 1263 } else { 1264 PCIX_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcix_err_regs_t); 1265 1266 if (PCIX_ECC_VERSION_CHECK(bus_p)) 1267 PCIX_ECC_REG(pfd_p) = 1268 PCIE_ZALLOC(pf_pcix_ecc_regs_t); 1269 } 1270 } 1271 } 1272 1273 static void 1274 pcie_fini_pfd(dev_info_t *dip) 1275 { 1276 pf_data_t *pfd_p = PCIE_DIP2PFD(dip); 1277 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 1278 1279 if (PCIE_IS_PCIE(bus_p)) { 1280 if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) { 1281 if (PCIX_ECC_VERSION_CHECK(bus_p)) { 1282 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0), 1283 sizeof (pf_pcix_ecc_regs_t)); 1284 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1), 1285 sizeof (pf_pcix_ecc_regs_t)); 1286 } 1287 1288 kmem_free(PCIX_BDG_ERR_REG(pfd_p), 1289 sizeof (pf_pcix_bdg_err_regs_t)); 1290 } 1291 1292 if (PCIE_IS_RP(bus_p)) 1293 kmem_free(PCIE_ADV_RP_REG(pfd_p), 1294 sizeof (pf_pcie_adv_rp_err_regs_t)); 1295 else if (PCIE_IS_PCIE_BDG(bus_p)) 1296 kmem_free(PCIE_ADV_BDG_REG(pfd_p), 1297 sizeof (pf_pcie_adv_bdg_err_regs_t)); 1298 1299 kmem_free(PCIE_ADV_REG(pfd_p), 1300 sizeof (pf_pcie_adv_err_regs_t)); 1301 1302 if (PCIE_IS_RP(bus_p)) 1303 kmem_free(PCIE_RP_REG(pfd_p), 1304 sizeof (pf_pcie_rp_err_regs_t)); 1305 1306 kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t)); 1307 } else if (PCIE_IS_PCIX(bus_p)) { 1308 if (PCIE_IS_BDG(bus_p)) { 1309 if (PCIX_ECC_VERSION_CHECK(bus_p)) { 1310 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0), 1311 sizeof (pf_pcix_ecc_regs_t)); 1312 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1), 1313 sizeof (pf_pcix_ecc_regs_t)); 1314 } 1315 1316 kmem_free(PCIX_BDG_ERR_REG(pfd_p), 1317 sizeof (pf_pcix_bdg_err_regs_t)); 1318 } else { 1319 if (PCIX_ECC_VERSION_CHECK(bus_p)) 1320 kmem_free(PCIX_ECC_REG(pfd_p), 1321 sizeof (pf_pcix_ecc_regs_t)); 1322 1323 kmem_free(PCIX_ERR_REG(pfd_p), 1324 sizeof (pf_pcix_err_regs_t)); 1325 } 1326 } 1327 1328 if (PCIE_IS_BDG(bus_p)) 1329 kmem_free(PCI_BDG_ERR_REG(pfd_p), 1330 sizeof (pf_pci_bdg_err_regs_t)); 1331 1332 kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t)); 1333 kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t)); 1334 1335 if (PCIE_IS_ROOT(bus_p)) { 1336 kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t)); 1337 kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t)); 1338 } 1339 1340 kmem_free(PCIE_DIP2PFD(dip), sizeof (pf_data_t)); 1341 1342 PCIE_DIP2PFD(dip) = NULL; 1343 } 1344 1345 1346 /* 1347 * Special functions to allocate pf_data_t's for PCIe root complexes. 1348 * Note: Root Complex not Root Port 1349 */ 1350 void 1351 pcie_rc_init_pfd(dev_info_t *dip, pf_data_t *pfd_p) 1352 { 1353 pfd_p->pe_bus_p = PCIE_DIP2DOWNBUS(dip); 1354 pfd_p->pe_severity_flags = 0; 1355 pfd_p->pe_severity_mask = 0; 1356 pfd_p->pe_orig_severity_flags = 0; 1357 pfd_p->pe_lock = B_FALSE; 1358 pfd_p->pe_valid = B_FALSE; 1359 1360 PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t); 1361 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF; 1362 PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t); 1363 PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t); 1364 PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t); 1365 PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF; 1366 PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t); 1367 PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t); 1368 PCIE_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_rp_err_regs_t); 1369 PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t); 1370 PCIE_ADV_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t); 1371 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = PCIE_INVALID_BDF; 1372 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = PCIE_INVALID_BDF; 1373 1374 PCIE_ADV_REG(pfd_p)->pcie_ue_sev = pcie_aer_uce_severity; 1375 } 1376 1377 void 1378 pcie_rc_fini_pfd(pf_data_t *pfd_p) 1379 { 1380 kmem_free(PCIE_ADV_RP_REG(pfd_p), sizeof (pf_pcie_adv_rp_err_regs_t)); 1381 kmem_free(PCIE_ADV_REG(pfd_p), sizeof (pf_pcie_adv_err_regs_t)); 1382 kmem_free(PCIE_RP_REG(pfd_p), sizeof (pf_pcie_rp_err_regs_t)); 1383 kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t)); 1384 kmem_free(PCI_BDG_ERR_REG(pfd_p), sizeof (pf_pci_bdg_err_regs_t)); 1385 kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t)); 1386 kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t)); 1387 kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t)); 1388 kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t)); 1389 } 1390 1391 /* 1392 * init pcie_bus_t for root complex 1393 * 1394 * Only a few of the fields in bus_t is valid for root complex. 1395 * The fields that are bracketed are initialized in this routine: 1396 * 1397 * dev_info_t * <bus_dip> 1398 * dev_info_t * bus_rp_dip 1399 * ddi_acc_handle_t bus_cfg_hdl 1400 * uint_t <bus_fm_flags> 1401 * pcie_req_id_t bus_bdf 1402 * pcie_req_id_t bus_rp_bdf 1403 * uint32_t bus_dev_ven_id 1404 * uint8_t bus_rev_id 1405 * uint8_t <bus_hdr_type> 1406 * uint16_t <bus_dev_type> 1407 * uint8_t bus_bdg_secbus 1408 * uint16_t bus_pcie_off 1409 * uint16_t <bus_aer_off> 1410 * uint16_t bus_pcix_off 1411 * uint16_t bus_ecc_ver 1412 * pci_bus_range_t bus_bus_range 1413 * ppb_ranges_t * bus_addr_ranges 1414 * int bus_addr_entries 1415 * pci_regspec_t * bus_assigned_addr 1416 * int bus_assigned_entries 1417 * pf_data_t * bus_pfd 1418 * pcie_domain_t * <bus_dom> 1419 * int bus_mps 1420 * uint64_t bus_cfgacc_base 1421 * void * bus_plat_private 1422 */ 1423 void 1424 pcie_rc_init_bus(dev_info_t *dip) 1425 { 1426 pcie_bus_t *bus_p; 1427 1428 bus_p = (pcie_bus_t *)kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP); 1429 bus_p->bus_dip = dip; 1430 bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_RC_PSEUDO; 1431 bus_p->bus_hdr_type = PCI_HEADER_ONE; 1432 1433 /* Fake that there are AER logs */ 1434 bus_p->bus_aer_off = (uint16_t)-1; 1435 1436 /* Needed only for handle lookup */ 1437 atomic_or_uint(&bus_p->bus_fm_flags, PF_FM_READY); 1438 1439 ndi_set_bus_private(dip, B_FALSE, DEVI_PORT_TYPE_PCI, bus_p); 1440 1441 PCIE_BUS2DOM(bus_p) = PCIE_ZALLOC(pcie_domain_t); 1442 } 1443 1444 void 1445 pcie_rc_fini_bus(dev_info_t *dip) 1446 { 1447 pcie_bus_t *bus_p = PCIE_DIP2DOWNBUS(dip); 1448 ndi_set_bus_private(dip, B_FALSE, 0, NULL); 1449 kmem_free(PCIE_BUS2DOM(bus_p), sizeof (pcie_domain_t)); 1450 kmem_free(bus_p, sizeof (pcie_bus_t)); 1451 } 1452 1453 static int 1454 pcie_width_to_int(pcie_link_width_t width) 1455 { 1456 switch (width) { 1457 case PCIE_LINK_WIDTH_X1: 1458 return (1); 1459 case PCIE_LINK_WIDTH_X2: 1460 return (2); 1461 case PCIE_LINK_WIDTH_X4: 1462 return (4); 1463 case PCIE_LINK_WIDTH_X8: 1464 return (8); 1465 case PCIE_LINK_WIDTH_X12: 1466 return (12); 1467 case PCIE_LINK_WIDTH_X16: 1468 return (16); 1469 case PCIE_LINK_WIDTH_X32: 1470 return (32); 1471 default: 1472 return (0); 1473 } 1474 } 1475 1476 /* 1477 * Return the speed in Transfers / second. This is a signed quantity to match 1478 * the ndi/ddi property interfaces. 1479 */ 1480 static int64_t 1481 pcie_speed_to_int(pcie_link_speed_t speed) 1482 { 1483 switch (speed) { 1484 case PCIE_LINK_SPEED_2_5: 1485 return (2500000000LL); 1486 case PCIE_LINK_SPEED_5: 1487 return (5000000000LL); 1488 case PCIE_LINK_SPEED_8: 1489 return (8000000000LL); 1490 case PCIE_LINK_SPEED_16: 1491 return (16000000000LL); 1492 case PCIE_LINK_SPEED_32: 1493 return (32000000000LL); 1494 case PCIE_LINK_SPEED_64: 1495 return (64000000000LL); 1496 default: 1497 return (0); 1498 } 1499 } 1500 1501 /* 1502 * Translate the recorded speed information into devinfo properties. 1503 */ 1504 static void 1505 pcie_speeds_to_devinfo(dev_info_t *dip, pcie_bus_t *bus_p) 1506 { 1507 if (bus_p->bus_max_width != PCIE_LINK_WIDTH_UNKNOWN) { 1508 (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, 1509 "pcie-link-maximum-width", 1510 pcie_width_to_int(bus_p->bus_max_width)); 1511 } 1512 1513 if (bus_p->bus_cur_width != PCIE_LINK_WIDTH_UNKNOWN) { 1514 (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, 1515 "pcie-link-current-width", 1516 pcie_width_to_int(bus_p->bus_cur_width)); 1517 } 1518 1519 if (bus_p->bus_cur_speed != PCIE_LINK_SPEED_UNKNOWN) { 1520 (void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip, 1521 "pcie-link-current-speed", 1522 pcie_speed_to_int(bus_p->bus_cur_speed)); 1523 } 1524 1525 if (bus_p->bus_max_speed != PCIE_LINK_SPEED_UNKNOWN) { 1526 (void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip, 1527 "pcie-link-maximum-speed", 1528 pcie_speed_to_int(bus_p->bus_max_speed)); 1529 } 1530 1531 if (bus_p->bus_target_speed != PCIE_LINK_SPEED_UNKNOWN) { 1532 (void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip, 1533 "pcie-link-target-speed", 1534 pcie_speed_to_int(bus_p->bus_target_speed)); 1535 } 1536 1537 if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) { 1538 (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip, 1539 "pcie-link-admin-target-speed"); 1540 } 1541 1542 if (bus_p->bus_sup_speed != PCIE_LINK_SPEED_UNKNOWN) { 1543 int64_t speeds[PCIE_NSPEEDS]; 1544 uint_t nspeeds = 0; 1545 1546 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_2_5) { 1547 speeds[nspeeds++] = 1548 pcie_speed_to_int(PCIE_LINK_SPEED_2_5); 1549 } 1550 1551 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_5) { 1552 speeds[nspeeds++] = 1553 pcie_speed_to_int(PCIE_LINK_SPEED_5); 1554 } 1555 1556 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_8) { 1557 speeds[nspeeds++] = 1558 pcie_speed_to_int(PCIE_LINK_SPEED_8); 1559 } 1560 1561 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_16) { 1562 speeds[nspeeds++] = 1563 pcie_speed_to_int(PCIE_LINK_SPEED_16); 1564 } 1565 1566 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_32) { 1567 speeds[nspeeds++] = 1568 pcie_speed_to_int(PCIE_LINK_SPEED_32); 1569 } 1570 1571 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_64) { 1572 speeds[nspeeds++] = 1573 pcie_speed_to_int(PCIE_LINK_SPEED_64); 1574 } 1575 1576 (void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip, 1577 "pcie-link-supported-speeds", speeds, nspeeds); 1578 } 1579 } 1580 1581 /* 1582 * We need to capture the supported, maximum, and current device speed and 1583 * width. The way that this has been done has changed over time. 1584 * 1585 * Prior to PCIe Gen 3, there were only current and supported speed fields. 1586 * These were found in the link status and link capabilities registers of the 1587 * PCI express capability. With the change to PCIe Gen 3, the information in the 1588 * link capabilities changed to the maximum value. The supported speeds vector 1589 * was moved to the link capabilities 2 register. 1590 * 1591 * Now, a device may not implement some of these registers. To determine whether 1592 * or not it's here, we have to do the following. First, we need to check the 1593 * revision of the PCI express capability. The link capabilities 2 register did 1594 * not exist prior to version 2 of this capability. If a modern device does not 1595 * implement it, it is supposed to return zero for the register. 1596 */ 1597 static void 1598 pcie_capture_speeds(dev_info_t *dip) 1599 { 1600 uint16_t vers, status; 1601 uint32_t cap, cap2, ctl2; 1602 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 1603 dev_info_t *rcdip; 1604 1605 if (!PCIE_IS_PCIE(bus_p)) 1606 return; 1607 1608 rcdip = pcie_get_rc_dip(dip); 1609 if (bus_p->bus_cfg_hdl == NULL) { 1610 vers = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, 1611 bus_p->bus_pcie_off + PCIE_PCIECAP); 1612 } else { 1613 vers = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP); 1614 } 1615 if (vers == PCI_EINVAL16) 1616 return; 1617 vers &= PCIE_PCIECAP_VER_MASK; 1618 1619 /* 1620 * Verify the capability's version. 1621 */ 1622 switch (vers) { 1623 case PCIE_PCIECAP_VER_1_0: 1624 cap2 = 0; 1625 ctl2 = 0; 1626 break; 1627 case PCIE_PCIECAP_VER_2_0: 1628 if (bus_p->bus_cfg_hdl == NULL) { 1629 cap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, 1630 bus_p->bus_pcie_off + PCIE_LINKCAP2); 1631 ctl2 = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, 1632 bus_p->bus_pcie_off + PCIE_LINKCTL2); 1633 } else { 1634 cap2 = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP2); 1635 ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2); 1636 } 1637 if (cap2 == PCI_EINVAL32) 1638 cap2 = 0; 1639 if (ctl2 == PCI_EINVAL16) 1640 ctl2 = 0; 1641 break; 1642 default: 1643 /* Don't try and handle an unknown version */ 1644 return; 1645 } 1646 1647 if (bus_p->bus_cfg_hdl == NULL) { 1648 status = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, 1649 bus_p->bus_pcie_off + PCIE_LINKSTS); 1650 cap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, 1651 bus_p->bus_pcie_off + PCIE_LINKCAP); 1652 } else { 1653 status = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS); 1654 cap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP); 1655 } 1656 if (status == PCI_EINVAL16 || cap == PCI_EINVAL32) 1657 return; 1658 1659 mutex_enter(&bus_p->bus_speed_mutex); 1660 1661 switch (status & PCIE_LINKSTS_SPEED_MASK) { 1662 case PCIE_LINKSTS_SPEED_2_5: 1663 bus_p->bus_cur_speed = PCIE_LINK_SPEED_2_5; 1664 break; 1665 case PCIE_LINKSTS_SPEED_5: 1666 bus_p->bus_cur_speed = PCIE_LINK_SPEED_5; 1667 break; 1668 case PCIE_LINKSTS_SPEED_8: 1669 bus_p->bus_cur_speed = PCIE_LINK_SPEED_8; 1670 break; 1671 case PCIE_LINKSTS_SPEED_16: 1672 bus_p->bus_cur_speed = PCIE_LINK_SPEED_16; 1673 break; 1674 case PCIE_LINKSTS_SPEED_32: 1675 bus_p->bus_cur_speed = PCIE_LINK_SPEED_32; 1676 break; 1677 case PCIE_LINKSTS_SPEED_64: 1678 bus_p->bus_cur_speed = PCIE_LINK_SPEED_64; 1679 break; 1680 default: 1681 bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN; 1682 break; 1683 } 1684 1685 switch (status & PCIE_LINKSTS_NEG_WIDTH_MASK) { 1686 case PCIE_LINKSTS_NEG_WIDTH_X1: 1687 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X1; 1688 break; 1689 case PCIE_LINKSTS_NEG_WIDTH_X2: 1690 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X2; 1691 break; 1692 case PCIE_LINKSTS_NEG_WIDTH_X4: 1693 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X4; 1694 break; 1695 case PCIE_LINKSTS_NEG_WIDTH_X8: 1696 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X8; 1697 break; 1698 case PCIE_LINKSTS_NEG_WIDTH_X12: 1699 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X12; 1700 break; 1701 case PCIE_LINKSTS_NEG_WIDTH_X16: 1702 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X16; 1703 break; 1704 case PCIE_LINKSTS_NEG_WIDTH_X32: 1705 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X32; 1706 break; 1707 default: 1708 bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN; 1709 break; 1710 } 1711 1712 switch (cap & PCIE_LINKCAP_MAX_WIDTH_MASK) { 1713 case PCIE_LINKCAP_MAX_WIDTH_X1: 1714 bus_p->bus_max_width = PCIE_LINK_WIDTH_X1; 1715 break; 1716 case PCIE_LINKCAP_MAX_WIDTH_X2: 1717 bus_p->bus_max_width = PCIE_LINK_WIDTH_X2; 1718 break; 1719 case PCIE_LINKCAP_MAX_WIDTH_X4: 1720 bus_p->bus_max_width = PCIE_LINK_WIDTH_X4; 1721 break; 1722 case PCIE_LINKCAP_MAX_WIDTH_X8: 1723 bus_p->bus_max_width = PCIE_LINK_WIDTH_X8; 1724 break; 1725 case PCIE_LINKCAP_MAX_WIDTH_X12: 1726 bus_p->bus_max_width = PCIE_LINK_WIDTH_X12; 1727 break; 1728 case PCIE_LINKCAP_MAX_WIDTH_X16: 1729 bus_p->bus_max_width = PCIE_LINK_WIDTH_X16; 1730 break; 1731 case PCIE_LINKCAP_MAX_WIDTH_X32: 1732 bus_p->bus_max_width = PCIE_LINK_WIDTH_X32; 1733 break; 1734 default: 1735 bus_p->bus_max_width = PCIE_LINK_WIDTH_UNKNOWN; 1736 break; 1737 } 1738 1739 /* 1740 * If we have the Link Capabilities 2, then we can get the supported 1741 * speeds from it and treat the bits in Link Capabilities 1 as the 1742 * maximum. If we don't, then we need to follow the Implementation Note 1743 * in the standard under Link Capabilities 2. Effectively, this means 1744 * that if the value of 10b is set in Link Capabilities register, that 1745 * it supports both 2.5 and 5 GT/s speeds. 1746 */ 1747 if (cap2 != 0) { 1748 if (cap2 & PCIE_LINKCAP2_SPEED_2_5) 1749 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_2_5; 1750 if (cap2 & PCIE_LINKCAP2_SPEED_5) 1751 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_5; 1752 if (cap2 & PCIE_LINKCAP2_SPEED_8) 1753 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_8; 1754 if (cap2 & PCIE_LINKCAP2_SPEED_16) 1755 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_16; 1756 if (cap2 & PCIE_LINKCAP2_SPEED_32) 1757 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_32; 1758 if (cap2 & PCIE_LINKCAP2_SPEED_64) 1759 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_64; 1760 1761 switch (cap & PCIE_LINKCAP_MAX_SPEED_MASK) { 1762 case PCIE_LINKCAP_MAX_SPEED_2_5: 1763 bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5; 1764 break; 1765 case PCIE_LINKCAP_MAX_SPEED_5: 1766 bus_p->bus_max_speed = PCIE_LINK_SPEED_5; 1767 break; 1768 case PCIE_LINKCAP_MAX_SPEED_8: 1769 bus_p->bus_max_speed = PCIE_LINK_SPEED_8; 1770 break; 1771 case PCIE_LINKCAP_MAX_SPEED_16: 1772 bus_p->bus_max_speed = PCIE_LINK_SPEED_16; 1773 break; 1774 case PCIE_LINKCAP_MAX_SPEED_32: 1775 bus_p->bus_max_speed = PCIE_LINK_SPEED_32; 1776 break; 1777 case PCIE_LINKCAP_MAX_SPEED_64: 1778 bus_p->bus_max_speed = PCIE_LINK_SPEED_64; 1779 break; 1780 default: 1781 bus_p->bus_max_speed = PCIE_LINK_SPEED_UNKNOWN; 1782 break; 1783 } 1784 } else { 1785 if (cap & PCIE_LINKCAP_MAX_SPEED_5) { 1786 bus_p->bus_max_speed = PCIE_LINK_SPEED_5; 1787 bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5 | 1788 PCIE_LINK_SPEED_5; 1789 } else if (cap & PCIE_LINKCAP_MAX_SPEED_2_5) { 1790 bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5; 1791 bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5; 1792 } 1793 } 1794 1795 switch (ctl2 & PCIE_LINKCTL2_TARGET_SPEED_MASK) { 1796 case PCIE_LINKCTL2_TARGET_SPEED_2_5: 1797 bus_p->bus_target_speed = PCIE_LINK_SPEED_2_5; 1798 break; 1799 case PCIE_LINKCTL2_TARGET_SPEED_5: 1800 bus_p->bus_target_speed = PCIE_LINK_SPEED_5; 1801 break; 1802 case PCIE_LINKCTL2_TARGET_SPEED_8: 1803 bus_p->bus_target_speed = PCIE_LINK_SPEED_8; 1804 break; 1805 case PCIE_LINKCTL2_TARGET_SPEED_16: 1806 bus_p->bus_target_speed = PCIE_LINK_SPEED_16; 1807 break; 1808 case PCIE_LINKCTL2_TARGET_SPEED_32: 1809 bus_p->bus_target_speed = PCIE_LINK_SPEED_32; 1810 break; 1811 case PCIE_LINKCTL2_TARGET_SPEED_64: 1812 bus_p->bus_target_speed = PCIE_LINK_SPEED_64; 1813 break; 1814 default: 1815 bus_p->bus_target_speed = PCIE_LINK_SPEED_UNKNOWN; 1816 break; 1817 } 1818 1819 pcie_speeds_to_devinfo(dip, bus_p); 1820 mutex_exit(&bus_p->bus_speed_mutex); 1821 } 1822 1823 /* 1824 * partially init pcie_bus_t for device (dip,bdf) for accessing pci 1825 * config space 1826 * 1827 * This routine is invoked during boot, either after creating a devinfo node 1828 * (x86 case) or during px driver attach (sparc case); it is also invoked 1829 * in hotplug context after a devinfo node is created. 1830 * 1831 * The fields that are bracketed are initialized if flag PCIE_BUS_INITIAL 1832 * is set: 1833 * 1834 * dev_info_t * <bus_dip> 1835 * dev_info_t * <bus_rp_dip> 1836 * ddi_acc_handle_t bus_cfg_hdl 1837 * uint_t bus_fm_flags 1838 * pcie_req_id_t <bus_bdf> 1839 * pcie_req_id_t <bus_rp_bdf> 1840 * uint32_t <bus_dev_ven_id> 1841 * uint8_t <bus_rev_id> 1842 * uint8_t <bus_hdr_type> 1843 * uint16_t <bus_dev_type> 1844 * uint8_t <bus_bdg_secbus 1845 * uint16_t <bus_pcie_off> 1846 * uint16_t <bus_aer_off> 1847 * uint16_t <bus_pcix_off> 1848 * uint16_t <bus_ecc_ver> 1849 * pci_bus_range_t bus_bus_range 1850 * ppb_ranges_t * bus_addr_ranges 1851 * int bus_addr_entries 1852 * pci_regspec_t * bus_assigned_addr 1853 * int bus_assigned_entries 1854 * pf_data_t * bus_pfd 1855 * pcie_domain_t * bus_dom 1856 * int bus_mps 1857 * uint64_t bus_cfgacc_base 1858 * void * bus_plat_private 1859 * 1860 * The fields that are bracketed are initialized if flag PCIE_BUS_FINAL 1861 * is set: 1862 * 1863 * dev_info_t * bus_dip 1864 * dev_info_t * bus_rp_dip 1865 * ddi_acc_handle_t bus_cfg_hdl 1866 * uint_t bus_fm_flags 1867 * pcie_req_id_t bus_bdf 1868 * pcie_req_id_t bus_rp_bdf 1869 * uint32_t bus_dev_ven_id 1870 * uint8_t bus_rev_id 1871 * uint8_t bus_hdr_type 1872 * uint16_t bus_dev_type 1873 * uint8_t <bus_bdg_secbus> 1874 * uint16_t bus_pcie_off 1875 * uint16_t bus_aer_off 1876 * uint16_t bus_pcix_off 1877 * uint16_t bus_ecc_ver 1878 * pci_bus_range_t <bus_bus_range> 1879 * ppb_ranges_t * <bus_addr_ranges> 1880 * int <bus_addr_entries> 1881 * pci_regspec_t * <bus_assigned_addr> 1882 * int <bus_assigned_entries> 1883 * pf_data_t * <bus_pfd> 1884 * pcie_domain_t * bus_dom 1885 * int bus_mps 1886 * uint64_t bus_cfgacc_base 1887 * void * <bus_plat_private> 1888 */ 1889 1890 pcie_bus_t * 1891 pcie_init_bus(dev_info_t *dip, pcie_req_id_t bdf, uint8_t flags) 1892 { 1893 uint16_t status, base, baseptr, num_cap; 1894 uint32_t capid; 1895 int range_size; 1896 pcie_bus_t *bus_p = NULL; 1897 dev_info_t *rcdip; 1898 dev_info_t *pdip; 1899 const char *errstr = NULL; 1900 1901 if (!(flags & PCIE_BUS_INITIAL)) 1902 goto initial_done; 1903 1904 bus_p = kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP); 1905 1906 bus_p->bus_dip = dip; 1907 bus_p->bus_bdf = bdf; 1908 1909 rcdip = pcie_get_rc_dip(dip); 1910 ASSERT(rcdip != NULL); 1911 1912 /* Save the Vendor ID, Device ID and revision ID */ 1913 bus_p->bus_dev_ven_id = pci_cfgacc_get32(rcdip, bdf, PCI_CONF_VENID); 1914 bus_p->bus_rev_id = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID); 1915 /* Save the Header Type */ 1916 bus_p->bus_hdr_type = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_HEADER); 1917 bus_p->bus_hdr_type &= PCI_HEADER_TYPE_M; 1918 1919 /* 1920 * Figure out the device type and all the relavant capability offsets 1921 */ 1922 /* set default value */ 1923 bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_PCI_PSEUDO; 1924 1925 status = pci_cfgacc_get16(rcdip, bdf, PCI_CONF_STAT); 1926 if (status == PCI_CAP_EINVAL16 || !(status & PCI_STAT_CAP)) 1927 goto caps_done; /* capability not supported */ 1928 1929 /* Relevant conventional capabilities first */ 1930 1931 /* Conventional caps: PCI_CAP_ID_PCI_E, PCI_CAP_ID_PCIX */ 1932 num_cap = 2; 1933 1934 switch (bus_p->bus_hdr_type) { 1935 case PCI_HEADER_ZERO: 1936 baseptr = PCI_CONF_CAP_PTR; 1937 break; 1938 case PCI_HEADER_PPB: 1939 baseptr = PCI_BCNF_CAP_PTR; 1940 break; 1941 case PCI_HEADER_CARDBUS: 1942 baseptr = PCI_CBUS_CAP_PTR; 1943 break; 1944 default: 1945 cmn_err(CE_WARN, "%s: unexpected pci header type:%x", 1946 __func__, bus_p->bus_hdr_type); 1947 goto caps_done; 1948 } 1949 1950 base = baseptr; 1951 for (base = pci_cfgacc_get8(rcdip, bdf, base); base && num_cap; 1952 base = pci_cfgacc_get8(rcdip, bdf, base + PCI_CAP_NEXT_PTR)) { 1953 capid = pci_cfgacc_get8(rcdip, bdf, base); 1954 uint16_t pcap; 1955 1956 switch (capid) { 1957 case PCI_CAP_ID_PCI_E: 1958 bus_p->bus_pcie_off = base; 1959 pcap = pci_cfgacc_get16(rcdip, bdf, base + 1960 PCIE_PCIECAP); 1961 bus_p->bus_dev_type = pcap & PCIE_PCIECAP_DEV_TYPE_MASK; 1962 bus_p->bus_pcie_vers = pcap & PCIE_PCIECAP_VER_MASK; 1963 1964 /* Check and save PCIe hotplug capability information */ 1965 if ((PCIE_IS_RP(bus_p) || PCIE_IS_SWD(bus_p)) && 1966 (pci_cfgacc_get16(rcdip, bdf, base + PCIE_PCIECAP) 1967 & PCIE_PCIECAP_SLOT_IMPL) && 1968 (pci_cfgacc_get32(rcdip, bdf, base + PCIE_SLOTCAP) 1969 & PCIE_SLOTCAP_HP_CAPABLE)) 1970 bus_p->bus_hp_sup_modes |= PCIE_NATIVE_HP_MODE; 1971 1972 num_cap--; 1973 break; 1974 case PCI_CAP_ID_PCIX: 1975 bus_p->bus_pcix_off = base; 1976 if (PCIE_IS_BDG(bus_p)) 1977 bus_p->bus_ecc_ver = 1978 pci_cfgacc_get16(rcdip, bdf, base + 1979 PCI_PCIX_SEC_STATUS) & PCI_PCIX_VER_MASK; 1980 else 1981 bus_p->bus_ecc_ver = 1982 pci_cfgacc_get16(rcdip, bdf, base + 1983 PCI_PCIX_COMMAND) & PCI_PCIX_VER_MASK; 1984 num_cap--; 1985 break; 1986 default: 1987 break; 1988 } 1989 } 1990 1991 /* Check and save PCI hotplug (SHPC) capability information */ 1992 if (PCIE_IS_BDG(bus_p)) { 1993 base = baseptr; 1994 for (base = pci_cfgacc_get8(rcdip, bdf, base); 1995 base; base = pci_cfgacc_get8(rcdip, bdf, 1996 base + PCI_CAP_NEXT_PTR)) { 1997 capid = pci_cfgacc_get8(rcdip, bdf, base); 1998 if (capid == PCI_CAP_ID_PCI_HOTPLUG) { 1999 bus_p->bus_pci_hp_off = base; 2000 bus_p->bus_hp_sup_modes |= PCIE_PCI_HP_MODE; 2001 break; 2002 } 2003 } 2004 } 2005 2006 /* Then, relevant extended capabilities */ 2007 2008 if (!PCIE_IS_PCIE(bus_p)) 2009 goto caps_done; 2010 2011 /* Extended caps: PCIE_EXT_CAP_ID_AER */ 2012 for (base = PCIE_EXT_CAP; base; base = (capid >> 2013 PCIE_EXT_CAP_NEXT_PTR_SHIFT) & PCIE_EXT_CAP_NEXT_PTR_MASK) { 2014 capid = pci_cfgacc_get32(rcdip, bdf, base); 2015 if (capid == PCI_CAP_EINVAL32) 2016 break; 2017 switch ((capid >> PCIE_EXT_CAP_ID_SHIFT) & 2018 PCIE_EXT_CAP_ID_MASK) { 2019 case PCIE_EXT_CAP_ID_AER: 2020 bus_p->bus_aer_off = base; 2021 break; 2022 case PCIE_EXT_CAP_ID_DEV3: 2023 bus_p->bus_dev3_off = base; 2024 break; 2025 } 2026 } 2027 2028 caps_done: 2029 /* save RP dip and RP bdf */ 2030 if (PCIE_IS_RP(bus_p)) { 2031 bus_p->bus_rp_dip = dip; 2032 bus_p->bus_rp_bdf = bus_p->bus_bdf; 2033 2034 bus_p->bus_fab = PCIE_ZALLOC(pcie_fabric_data_t); 2035 } else { 2036 for (pdip = ddi_get_parent(dip); pdip; 2037 pdip = ddi_get_parent(pdip)) { 2038 pcie_bus_t *parent_bus_p = PCIE_DIP2BUS(pdip); 2039 2040 /* 2041 * If RP dip and RP bdf in parent's bus_t have 2042 * been initialized, simply use these instead of 2043 * continuing up to the RC. 2044 */ 2045 if (parent_bus_p->bus_rp_dip != NULL) { 2046 bus_p->bus_rp_dip = parent_bus_p->bus_rp_dip; 2047 bus_p->bus_rp_bdf = parent_bus_p->bus_rp_bdf; 2048 break; 2049 } 2050 2051 /* 2052 * When debugging be aware that some NVIDIA x86 2053 * architectures have 2 nodes for each RP, One at Bus 2054 * 0x0 and one at Bus 0x80. The requester is from Bus 2055 * 0x80 2056 */ 2057 if (PCIE_IS_ROOT(parent_bus_p)) { 2058 bus_p->bus_rp_dip = pdip; 2059 bus_p->bus_rp_bdf = parent_bus_p->bus_bdf; 2060 break; 2061 } 2062 } 2063 } 2064 2065 bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED; 2066 (void) atomic_swap_uint(&bus_p->bus_fm_flags, 0); 2067 2068 ndi_set_bus_private(dip, B_TRUE, DEVI_PORT_TYPE_PCI, (void *)bus_p); 2069 2070 if (PCIE_IS_HOTPLUG_CAPABLE(dip)) 2071 (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip, 2072 "hotplug-capable"); 2073 2074 initial_done: 2075 if (!(flags & PCIE_BUS_FINAL)) 2076 goto final_done; 2077 2078 /* already initialized? */ 2079 bus_p = PCIE_DIP2BUS(dip); 2080 2081 /* Save the Range information if device is a switch/bridge */ 2082 if (PCIE_IS_BDG(bus_p)) { 2083 /* get "bus_range" property */ 2084 range_size = sizeof (pci_bus_range_t); 2085 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2086 "bus-range", (caddr_t)&bus_p->bus_bus_range, &range_size) 2087 != DDI_PROP_SUCCESS) { 2088 errstr = "Cannot find \"bus-range\" property"; 2089 cmn_err(CE_WARN, 2090 "PCIE init err info failed BDF 0x%x:%s\n", 2091 bus_p->bus_bdf, errstr); 2092 } 2093 2094 /* get secondary bus number */ 2095 rcdip = pcie_get_rc_dip(dip); 2096 ASSERT(rcdip != NULL); 2097 2098 bus_p->bus_bdg_secbus = pci_cfgacc_get8(rcdip, 2099 bus_p->bus_bdf, PCI_BCNF_SECBUS); 2100 2101 /* Get "ranges" property */ 2102 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2103 "ranges", (caddr_t)&bus_p->bus_addr_ranges, 2104 &bus_p->bus_addr_entries) != DDI_PROP_SUCCESS) 2105 bus_p->bus_addr_entries = 0; 2106 bus_p->bus_addr_entries /= sizeof (ppb_ranges_t); 2107 } 2108 2109 /* save "assigned-addresses" property array, ignore failues */ 2110 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2111 "assigned-addresses", (caddr_t)&bus_p->bus_assigned_addr, 2112 &bus_p->bus_assigned_entries) == DDI_PROP_SUCCESS) 2113 bus_p->bus_assigned_entries /= sizeof (pci_regspec_t); 2114 else 2115 bus_p->bus_assigned_entries = 0; 2116 2117 pcie_init_pfd(dip); 2118 2119 pcie_init_plat(dip); 2120 2121 pcie_capture_speeds(dip); 2122 2123 final_done: 2124 2125 PCIE_DBG("Add %s(dip 0x%p, bdf 0x%x, secbus 0x%x)\n", 2126 ddi_driver_name(dip), (void *)dip, bus_p->bus_bdf, 2127 bus_p->bus_bdg_secbus); 2128 #ifdef DEBUG 2129 if (bus_p != NULL) { 2130 pcie_print_bus(bus_p); 2131 } 2132 #endif 2133 2134 return (bus_p); 2135 } 2136 2137 /* 2138 * Invoked before destroying devinfo node, mostly during hotplug 2139 * operation to free pcie_bus_t data structure 2140 */ 2141 /* ARGSUSED */ 2142 void 2143 pcie_fini_bus(dev_info_t *dip, uint8_t flags) 2144 { 2145 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip); 2146 ASSERT(bus_p); 2147 2148 if (flags & PCIE_BUS_INITIAL) { 2149 pcie_fini_plat(dip); 2150 pcie_fini_pfd(dip); 2151 2152 if (PCIE_IS_RP(bus_p)) { 2153 kmem_free(bus_p->bus_fab, sizeof (pcie_fabric_data_t)); 2154 bus_p->bus_fab = NULL; 2155 } 2156 2157 kmem_free(bus_p->bus_assigned_addr, 2158 (sizeof (pci_regspec_t) * bus_p->bus_assigned_entries)); 2159 kmem_free(bus_p->bus_addr_ranges, 2160 (sizeof (ppb_ranges_t) * bus_p->bus_addr_entries)); 2161 /* zero out the fields that have been destroyed */ 2162 bus_p->bus_assigned_addr = NULL; 2163 bus_p->bus_addr_ranges = NULL; 2164 bus_p->bus_assigned_entries = 0; 2165 bus_p->bus_addr_entries = 0; 2166 } 2167 2168 if (flags & PCIE_BUS_FINAL) { 2169 if (PCIE_IS_HOTPLUG_CAPABLE(dip)) { 2170 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, 2171 "hotplug-capable"); 2172 } 2173 2174 ndi_set_bus_private(dip, B_TRUE, 0, NULL); 2175 kmem_free(bus_p, sizeof (pcie_bus_t)); 2176 } 2177 } 2178 2179 int 2180 pcie_postattach_child(dev_info_t *cdip) 2181 { 2182 pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip); 2183 2184 if (!bus_p) 2185 return (DDI_FAILURE); 2186 2187 return (pcie_enable_ce(cdip)); 2188 } 2189 2190 /* 2191 * PCI-Express child device de-initialization. 2192 * This function disables generic pci-express interrupts and error 2193 * handling. 2194 */ 2195 void 2196 pcie_uninitchild(dev_info_t *cdip) 2197 { 2198 pcie_disable_errors(cdip); 2199 pcie_fini_cfghdl(cdip); 2200 pcie_fini_dom(cdip); 2201 } 2202 2203 /* 2204 * find the root complex dip 2205 */ 2206 dev_info_t * 2207 pcie_get_rc_dip(dev_info_t *dip) 2208 { 2209 dev_info_t *rcdip; 2210 pcie_bus_t *rc_bus_p; 2211 2212 for (rcdip = ddi_get_parent(dip); rcdip; 2213 rcdip = ddi_get_parent(rcdip)) { 2214 rc_bus_p = PCIE_DIP2BUS(rcdip); 2215 if (rc_bus_p && PCIE_IS_RC(rc_bus_p)) 2216 break; 2217 } 2218 2219 return (rcdip); 2220 } 2221 2222 boolean_t 2223 pcie_is_pci_device(dev_info_t *dip) 2224 { 2225 dev_info_t *pdip; 2226 char *device_type; 2227 2228 pdip = ddi_get_parent(dip); 2229 if (pdip == NULL) 2230 return (B_FALSE); 2231 2232 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 2233 "device_type", &device_type) != DDI_PROP_SUCCESS) 2234 return (B_FALSE); 2235 2236 if (strcmp(device_type, "pciex") != 0 && 2237 strcmp(device_type, "pci") != 0) { 2238 ddi_prop_free(device_type); 2239 return (B_FALSE); 2240 } 2241 2242 ddi_prop_free(device_type); 2243 return (B_TRUE); 2244 } 2245 2246 typedef struct { 2247 boolean_t init; 2248 uint8_t flags; 2249 } pcie_bus_arg_t; 2250 2251 /*ARGSUSED*/ 2252 static int 2253 pcie_fab_do_init_fini(dev_info_t *dip, void *arg) 2254 { 2255 pcie_req_id_t bdf; 2256 pcie_bus_arg_t *bus_arg = (pcie_bus_arg_t *)arg; 2257 2258 if (!pcie_is_pci_device(dip)) 2259 goto out; 2260 2261 if (bus_arg->init) { 2262 if (pcie_get_bdf_from_dip(dip, &bdf) != DDI_SUCCESS) 2263 goto out; 2264 2265 (void) pcie_init_bus(dip, bdf, bus_arg->flags); 2266 } else { 2267 (void) pcie_fini_bus(dip, bus_arg->flags); 2268 } 2269 2270 return (DDI_WALK_CONTINUE); 2271 2272 out: 2273 return (DDI_WALK_PRUNECHILD); 2274 } 2275 2276 void 2277 pcie_fab_init_bus(dev_info_t *rcdip, uint8_t flags) 2278 { 2279 dev_info_t *dip = ddi_get_child(rcdip); 2280 pcie_bus_arg_t arg; 2281 2282 arg.init = B_TRUE; 2283 arg.flags = flags; 2284 2285 ndi_devi_enter(rcdip); 2286 ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg); 2287 ndi_devi_exit(rcdip); 2288 } 2289 2290 void 2291 pcie_fab_fini_bus(dev_info_t *rcdip, uint8_t flags) 2292 { 2293 dev_info_t *dip = ddi_get_child(rcdip); 2294 pcie_bus_arg_t arg; 2295 2296 arg.init = B_FALSE; 2297 arg.flags = flags; 2298 2299 ndi_devi_enter(rcdip); 2300 ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg); 2301 ndi_devi_exit(rcdip); 2302 } 2303 2304 void 2305 pcie_enable_errors(dev_info_t *dip) 2306 { 2307 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2308 uint16_t reg16, tmp16; 2309 uint32_t reg32, tmp32; 2310 2311 ASSERT(bus_p); 2312 2313 /* 2314 * Clear any pending errors 2315 */ 2316 pcie_clear_errors(dip); 2317 2318 if (!PCIE_IS_PCIE(bus_p)) 2319 return; 2320 2321 /* 2322 * Enable Baseline Error Handling but leave CE reporting off (poweron 2323 * default). 2324 */ 2325 if ((reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL)) != 2326 PCI_CAP_EINVAL16) { 2327 tmp16 = (reg16 & pcie_devctl_default_mask) | 2328 (pcie_devctl_default & ~pcie_devctl_default_mask) | 2329 (pcie_base_err_default & ~PCIE_DEVCTL_CE_REPORTING_EN); 2330 2331 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16); 2332 PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16); 2333 } 2334 2335 /* Enable Root Port Baseline Error Receiving */ 2336 if (PCIE_IS_ROOT(bus_p) && 2337 (reg16 = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL)) != 2338 PCI_CAP_EINVAL16) { 2339 2340 tmp16 = pcie_serr_disable_flag ? 2341 (pcie_root_ctrl_default & ~PCIE_ROOT_SYS_ERR) : 2342 pcie_root_ctrl_default; 2343 PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, tmp16); 2344 PCIE_DBG_CAP(dip, bus_p, "ROOT DEVCTL", 16, PCIE_ROOTCTL, 2345 reg16); 2346 } 2347 2348 /* 2349 * Enable PCI-Express Advanced Error Handling if Exists 2350 */ 2351 if (!PCIE_HAS_AER(bus_p)) 2352 return; 2353 2354 /* Set Uncorrectable Severity */ 2355 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_SERV)) != 2356 PCI_CAP_EINVAL32) { 2357 tmp32 = pcie_aer_uce_severity; 2358 2359 PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_SERV, tmp32); 2360 PCIE_DBG_AER(dip, bus_p, "AER UCE SEV", 32, PCIE_AER_UCE_SERV, 2361 reg32); 2362 } 2363 2364 /* Enable Uncorrectable errors */ 2365 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_MASK)) != 2366 PCI_CAP_EINVAL32) { 2367 tmp32 = pcie_aer_uce_mask; 2368 2369 PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, tmp32); 2370 PCIE_DBG_AER(dip, bus_p, "AER UCE MASK", 32, PCIE_AER_UCE_MASK, 2371 reg32); 2372 } 2373 2374 /* Enable ECRC generation and checking */ 2375 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) != 2376 PCI_CAP_EINVAL32) { 2377 tmp32 = reg32 | pcie_ecrc_value; 2378 PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, tmp32); 2379 PCIE_DBG_AER(dip, bus_p, "AER CTL", 32, PCIE_AER_CTL, reg32); 2380 } 2381 2382 /* Enable Secondary Uncorrectable errors if this is a bridge */ 2383 if (!PCIE_IS_PCIE_BDG(bus_p)) 2384 goto root; 2385 2386 /* Set Uncorrectable Severity */ 2387 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_SERV)) != 2388 PCI_CAP_EINVAL32) { 2389 tmp32 = pcie_aer_suce_severity; 2390 2391 PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_SERV, tmp32); 2392 PCIE_DBG_AER(dip, bus_p, "AER SUCE SEV", 32, PCIE_AER_SUCE_SERV, 2393 reg32); 2394 } 2395 2396 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_MASK)) != 2397 PCI_CAP_EINVAL32) { 2398 PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, pcie_aer_suce_mask); 2399 PCIE_DBG_AER(dip, bus_p, "AER SUCE MASK", 32, 2400 PCIE_AER_SUCE_MASK, reg32); 2401 } 2402 2403 root: 2404 /* 2405 * Enable Root Control this is a Root device 2406 */ 2407 if (!PCIE_IS_ROOT(bus_p)) 2408 return; 2409 2410 if ((reg16 = PCIE_AER_GET(16, bus_p, PCIE_AER_RE_CMD)) != 2411 PCI_CAP_EINVAL16) { 2412 PCIE_AER_PUT(16, bus_p, PCIE_AER_RE_CMD, 2413 pcie_root_error_cmd_default); 2414 PCIE_DBG_AER(dip, bus_p, "AER Root Err Cmd", 16, 2415 PCIE_AER_RE_CMD, reg16); 2416 } 2417 } 2418 2419 /* 2420 * This function is used for enabling CE reporting and setting the AER CE mask. 2421 * When called from outside the pcie module it should always be preceded by 2422 * a call to pcie_enable_errors. 2423 */ 2424 int 2425 pcie_enable_ce(dev_info_t *dip) 2426 { 2427 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2428 uint16_t device_sts, device_ctl; 2429 uint32_t tmp_pcie_aer_ce_mask; 2430 2431 if (!PCIE_IS_PCIE(bus_p)) 2432 return (DDI_SUCCESS); 2433 2434 /* 2435 * The "pcie_ce_mask" property is used to control both the CE reporting 2436 * enable field in the device control register and the AER CE mask. We 2437 * leave CE reporting disabled if pcie_ce_mask is set to -1. 2438 */ 2439 2440 tmp_pcie_aer_ce_mask = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2441 DDI_PROP_DONTPASS, "pcie_ce_mask", pcie_aer_ce_mask); 2442 2443 if (tmp_pcie_aer_ce_mask == (uint32_t)-1) { 2444 /* 2445 * Nothing to do since CE reporting has already been disabled. 2446 */ 2447 return (DDI_SUCCESS); 2448 } 2449 2450 if (PCIE_HAS_AER(bus_p)) { 2451 /* Enable AER CE */ 2452 PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, tmp_pcie_aer_ce_mask); 2453 PCIE_DBG_AER(dip, bus_p, "AER CE MASK", 32, PCIE_AER_CE_MASK, 2454 0); 2455 2456 /* Clear any pending AER CE errors */ 2457 PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_STS, -1); 2458 } 2459 2460 /* clear any pending CE errors */ 2461 if ((device_sts = PCIE_CAP_GET(16, bus_p, PCIE_DEVSTS)) != 2462 PCI_CAP_EINVAL16) 2463 PCIE_CAP_PUT(16, bus_p, PCIE_DEVSTS, 2464 device_sts & (~PCIE_DEVSTS_CE_DETECTED)); 2465 2466 /* Enable CE reporting */ 2467 device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL); 2468 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, 2469 (device_ctl & (~PCIE_DEVCTL_ERR_MASK)) | pcie_base_err_default); 2470 PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, device_ctl); 2471 2472 return (DDI_SUCCESS); 2473 } 2474 2475 /* ARGSUSED */ 2476 void 2477 pcie_disable_errors(dev_info_t *dip) 2478 { 2479 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2480 uint16_t device_ctl; 2481 uint32_t aer_reg; 2482 2483 if (!PCIE_IS_PCIE(bus_p)) 2484 return; 2485 2486 /* 2487 * Disable PCI-Express Baseline Error Handling 2488 */ 2489 device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL); 2490 device_ctl &= ~PCIE_DEVCTL_ERR_MASK; 2491 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, device_ctl); 2492 2493 /* 2494 * Disable PCI-Express Advanced Error Handling if Exists 2495 */ 2496 if (!PCIE_HAS_AER(bus_p)) 2497 goto root; 2498 2499 /* Disable Uncorrectable errors */ 2500 PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, PCIE_AER_UCE_BITS); 2501 2502 /* Disable Correctable errors */ 2503 PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, PCIE_AER_CE_BITS); 2504 2505 /* Disable ECRC generation and checking */ 2506 if ((aer_reg = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) != 2507 PCI_CAP_EINVAL32) { 2508 aer_reg &= ~(PCIE_AER_CTL_ECRC_GEN_ENA | 2509 PCIE_AER_CTL_ECRC_CHECK_ENA); 2510 2511 PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, aer_reg); 2512 } 2513 /* 2514 * Disable Secondary Uncorrectable errors if this is a bridge 2515 */ 2516 if (!PCIE_IS_PCIE_BDG(bus_p)) 2517 goto root; 2518 2519 PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, PCIE_AER_SUCE_BITS); 2520 2521 root: 2522 /* 2523 * disable Root Control this is a Root device 2524 */ 2525 if (!PCIE_IS_ROOT(bus_p)) 2526 return; 2527 2528 if (!pcie_serr_disable_flag) { 2529 device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL); 2530 device_ctl &= ~PCIE_ROOT_SYS_ERR; 2531 PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, device_ctl); 2532 } 2533 2534 if (!PCIE_HAS_AER(bus_p)) 2535 return; 2536 2537 if ((device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_AER_RE_CMD)) != 2538 PCI_CAP_EINVAL16) { 2539 device_ctl &= ~pcie_root_error_cmd_default; 2540 PCIE_CAP_PUT(16, bus_p, PCIE_AER_RE_CMD, device_ctl); 2541 } 2542 } 2543 2544 /* 2545 * Extract bdf from "reg" property. 2546 */ 2547 int 2548 pcie_get_bdf_from_dip(dev_info_t *dip, pcie_req_id_t *bdf) 2549 { 2550 pci_regspec_t *regspec; 2551 int reglen; 2552 2553 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2554 "reg", (int **)®spec, (uint_t *)®len) != DDI_SUCCESS) 2555 return (DDI_FAILURE); 2556 2557 if (reglen < (sizeof (pci_regspec_t) / sizeof (int))) { 2558 ddi_prop_free(regspec); 2559 return (DDI_FAILURE); 2560 } 2561 2562 /* Get phys_hi from first element. All have same bdf. */ 2563 *bdf = (regspec->pci_phys_hi & (PCI_REG_BDFR_M ^ PCI_REG_REG_M)) >> 8; 2564 2565 ddi_prop_free(regspec); 2566 return (DDI_SUCCESS); 2567 } 2568 2569 dev_info_t * 2570 pcie_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip) 2571 { 2572 dev_info_t *cdip = rdip; 2573 2574 for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip)) 2575 ; 2576 2577 return (cdip); 2578 } 2579 2580 uint32_t 2581 pcie_get_bdf_for_dma_xfer(dev_info_t *dip, dev_info_t *rdip) 2582 { 2583 dev_info_t *cdip; 2584 2585 /* 2586 * As part of the probing, the PCI fcode interpreter may setup a DMA 2587 * request if a given card has a fcode on it using dip and rdip of the 2588 * hotplug connector i.e, dip and rdip of px/pcieb driver. In this 2589 * case, return a invalid value for the bdf since we cannot get to the 2590 * bdf value of the actual device which will be initiating this DMA. 2591 */ 2592 if (rdip == dip) 2593 return (PCIE_INVALID_BDF); 2594 2595 cdip = pcie_get_my_childs_dip(dip, rdip); 2596 2597 /* 2598 * For a given rdip, return the bdf value of dip's (px or pcieb) 2599 * immediate child or secondary bus-id if dip is a PCIe2PCI bridge. 2600 * 2601 * XXX - For now, return a invalid bdf value for all PCI and PCI-X 2602 * devices since this needs more work. 2603 */ 2604 return (PCI_GET_PCIE2PCI_SECBUS(cdip) ? 2605 PCIE_INVALID_BDF : PCI_GET_BDF(cdip)); 2606 } 2607 2608 uint32_t 2609 pcie_get_aer_uce_mask() 2610 { 2611 return (pcie_aer_uce_mask); 2612 } 2613 uint32_t 2614 pcie_get_aer_ce_mask() 2615 { 2616 return (pcie_aer_ce_mask); 2617 } 2618 uint32_t 2619 pcie_get_aer_suce_mask() 2620 { 2621 return (pcie_aer_suce_mask); 2622 } 2623 uint32_t 2624 pcie_get_serr_mask() 2625 { 2626 return (pcie_serr_disable_flag); 2627 } 2628 2629 void 2630 pcie_set_aer_uce_mask(uint32_t mask) 2631 { 2632 pcie_aer_uce_mask = mask; 2633 if (mask & PCIE_AER_UCE_UR) 2634 pcie_base_err_default &= ~PCIE_DEVCTL_UR_REPORTING_EN; 2635 else 2636 pcie_base_err_default |= PCIE_DEVCTL_UR_REPORTING_EN; 2637 2638 if (mask & PCIE_AER_UCE_ECRC) 2639 pcie_ecrc_value = 0; 2640 } 2641 2642 void 2643 pcie_set_aer_ce_mask(uint32_t mask) 2644 { 2645 pcie_aer_ce_mask = mask; 2646 } 2647 void 2648 pcie_set_aer_suce_mask(uint32_t mask) 2649 { 2650 pcie_aer_suce_mask = mask; 2651 } 2652 void 2653 pcie_set_serr_mask(uint32_t mask) 2654 { 2655 pcie_serr_disable_flag = mask; 2656 } 2657 2658 /* 2659 * Is the rdip a child of dip. Used for checking certain CTLOPS from bubbling 2660 * up erronously. Ex. ISA ctlops to a PCI-PCI Bridge. 2661 */ 2662 boolean_t 2663 pcie_is_child(dev_info_t *dip, dev_info_t *rdip) 2664 { 2665 dev_info_t *cdip = ddi_get_child(dip); 2666 for (; cdip; cdip = ddi_get_next_sibling(cdip)) 2667 if (cdip == rdip) 2668 break; 2669 return (cdip != NULL); 2670 } 2671 2672 boolean_t 2673 pcie_is_link_disabled(dev_info_t *dip) 2674 { 2675 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2676 2677 if (PCIE_IS_PCIE(bus_p)) { 2678 if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) & 2679 PCIE_LINKCTL_LINK_DISABLE) 2680 return (B_TRUE); 2681 } 2682 return (B_FALSE); 2683 } 2684 2685 /* 2686 * Determines if there are any root ports attached to a root complex. 2687 * 2688 * dip - dip of root complex 2689 * 2690 * Returns - DDI_SUCCESS if there is at least one root port otherwise 2691 * DDI_FAILURE. 2692 */ 2693 int 2694 pcie_root_port(dev_info_t *dip) 2695 { 2696 int port_type; 2697 uint16_t cap_ptr; 2698 ddi_acc_handle_t config_handle; 2699 dev_info_t *cdip = ddi_get_child(dip); 2700 2701 /* 2702 * Determine if any of the children of the passed in dip 2703 * are root ports. 2704 */ 2705 for (; cdip; cdip = ddi_get_next_sibling(cdip)) { 2706 2707 if (pci_config_setup(cdip, &config_handle) != DDI_SUCCESS) 2708 continue; 2709 2710 if ((PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E, 2711 &cap_ptr)) == DDI_FAILURE) { 2712 pci_config_teardown(&config_handle); 2713 continue; 2714 } 2715 2716 port_type = PCI_CAP_GET16(config_handle, 0, cap_ptr, 2717 PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK; 2718 2719 pci_config_teardown(&config_handle); 2720 2721 if (port_type == PCIE_PCIECAP_DEV_TYPE_ROOT) 2722 return (DDI_SUCCESS); 2723 } 2724 2725 /* No root ports were found */ 2726 2727 return (DDI_FAILURE); 2728 } 2729 2730 /* 2731 * Function that determines if a device a PCIe device. 2732 * 2733 * dip - dip of device. 2734 * 2735 * returns - DDI_SUCCESS if device is a PCIe device, otherwise DDI_FAILURE. 2736 */ 2737 int 2738 pcie_dev(dev_info_t *dip) 2739 { 2740 /* get parent device's device_type property */ 2741 char *device_type; 2742 int rc = DDI_FAILURE; 2743 dev_info_t *pdip = ddi_get_parent(dip); 2744 2745 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, 2746 DDI_PROP_DONTPASS, "device_type", &device_type) 2747 != DDI_PROP_SUCCESS) { 2748 return (DDI_FAILURE); 2749 } 2750 2751 if (strcmp(device_type, "pciex") == 0) 2752 rc = DDI_SUCCESS; 2753 else 2754 rc = DDI_FAILURE; 2755 2756 ddi_prop_free(device_type); 2757 return (rc); 2758 } 2759 2760 void 2761 pcie_set_rber_fatal(dev_info_t *dip, boolean_t val) 2762 { 2763 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip); 2764 bus_p->bus_pfd->pe_rber_fatal = val; 2765 } 2766 2767 /* 2768 * Return parent Root Port's pe_rber_fatal value. 2769 */ 2770 boolean_t 2771 pcie_get_rber_fatal(dev_info_t *dip) 2772 { 2773 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip); 2774 pcie_bus_t *rp_bus_p = PCIE_DIP2UPBUS(bus_p->bus_rp_dip); 2775 return (rp_bus_p->bus_pfd->pe_rber_fatal); 2776 } 2777 2778 int 2779 pcie_ari_supported(dev_info_t *dip) 2780 { 2781 uint32_t devcap2; 2782 uint16_t pciecap; 2783 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2784 uint8_t dev_type; 2785 2786 PCIE_DBG("pcie_ari_supported: dip=%p\n", dip); 2787 2788 if (bus_p == NULL) 2789 return (PCIE_ARI_FORW_NOT_SUPPORTED); 2790 2791 dev_type = bus_p->bus_dev_type; 2792 2793 if ((dev_type != PCIE_PCIECAP_DEV_TYPE_DOWN) && 2794 (dev_type != PCIE_PCIECAP_DEV_TYPE_ROOT)) 2795 return (PCIE_ARI_FORW_NOT_SUPPORTED); 2796 2797 if (pcie_disable_ari) { 2798 PCIE_DBG("pcie_ari_supported: dip=%p: ARI Disabled\n", dip); 2799 return (PCIE_ARI_FORW_NOT_SUPPORTED); 2800 } 2801 2802 pciecap = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP); 2803 2804 if ((pciecap & PCIE_PCIECAP_VER_MASK) < PCIE_PCIECAP_VER_2_0) { 2805 PCIE_DBG("pcie_ari_supported: dip=%p: Not 2.0\n", dip); 2806 return (PCIE_ARI_FORW_NOT_SUPPORTED); 2807 } 2808 2809 devcap2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCAP2); 2810 2811 PCIE_DBG("pcie_ari_supported: dip=%p: DevCap2=0x%x\n", 2812 dip, devcap2); 2813 2814 if (devcap2 & PCIE_DEVCAP2_ARI_FORWARD) { 2815 PCIE_DBG("pcie_ari_supported: " 2816 "dip=%p: ARI Forwarding is supported\n", dip); 2817 return (PCIE_ARI_FORW_SUPPORTED); 2818 } 2819 return (PCIE_ARI_FORW_NOT_SUPPORTED); 2820 } 2821 2822 int 2823 pcie_ari_enable(dev_info_t *dip) 2824 { 2825 uint16_t devctl2; 2826 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2827 2828 PCIE_DBG("pcie_ari_enable: dip=%p\n", dip); 2829 2830 if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED) 2831 return (DDI_FAILURE); 2832 2833 devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2); 2834 devctl2 |= PCIE_DEVCTL2_ARI_FORWARD_EN; 2835 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2); 2836 2837 PCIE_DBG("pcie_ari_enable: dip=%p: writing 0x%x to DevCtl2\n", 2838 dip, devctl2); 2839 2840 return (DDI_SUCCESS); 2841 } 2842 2843 int 2844 pcie_ari_disable(dev_info_t *dip) 2845 { 2846 uint16_t devctl2; 2847 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2848 2849 PCIE_DBG("pcie_ari_disable: dip=%p\n", dip); 2850 2851 if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED) 2852 return (DDI_FAILURE); 2853 2854 devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2); 2855 devctl2 &= ~PCIE_DEVCTL2_ARI_FORWARD_EN; 2856 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2); 2857 2858 PCIE_DBG("pcie_ari_disable: dip=%p: writing 0x%x to DevCtl2\n", 2859 dip, devctl2); 2860 2861 return (DDI_SUCCESS); 2862 } 2863 2864 int 2865 pcie_ari_is_enabled(dev_info_t *dip) 2866 { 2867 uint16_t devctl2; 2868 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 2869 2870 PCIE_DBG("pcie_ari_is_enabled: dip=%p\n", dip); 2871 2872 if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED) 2873 return (PCIE_ARI_FORW_DISABLED); 2874 2875 devctl2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCTL2); 2876 2877 PCIE_DBG("pcie_ari_is_enabled: dip=%p: DevCtl2=0x%x\n", 2878 dip, devctl2); 2879 2880 if (devctl2 & PCIE_DEVCTL2_ARI_FORWARD_EN) { 2881 PCIE_DBG("pcie_ari_is_enabled: " 2882 "dip=%p: ARI Forwarding is enabled\n", dip); 2883 return (PCIE_ARI_FORW_ENABLED); 2884 } 2885 2886 return (PCIE_ARI_FORW_DISABLED); 2887 } 2888 2889 int 2890 pcie_ari_device(dev_info_t *dip) 2891 { 2892 ddi_acc_handle_t handle; 2893 uint16_t cap_ptr; 2894 2895 PCIE_DBG("pcie_ari_device: dip=%p\n", dip); 2896 2897 /* 2898 * XXX - This function may be called before the bus_p structure 2899 * has been populated. This code can be changed to remove 2900 * pci_config_setup()/pci_config_teardown() when the RFE 2901 * to populate the bus_p structures early in boot is putback. 2902 */ 2903 2904 /* First make sure it is a PCIe device */ 2905 2906 if (pci_config_setup(dip, &handle) != DDI_SUCCESS) 2907 return (PCIE_NOT_ARI_DEVICE); 2908 2909 if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr)) 2910 != DDI_SUCCESS) { 2911 pci_config_teardown(&handle); 2912 return (PCIE_NOT_ARI_DEVICE); 2913 } 2914 2915 /* Locate the ARI Capability */ 2916 2917 if ((PCI_CAP_LOCATE(handle, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), 2918 &cap_ptr)) == DDI_FAILURE) { 2919 pci_config_teardown(&handle); 2920 return (PCIE_NOT_ARI_DEVICE); 2921 } 2922 2923 /* ARI Capability was found so it must be a ARI device */ 2924 PCIE_DBG("pcie_ari_device: ARI Device dip=%p\n", dip); 2925 2926 pci_config_teardown(&handle); 2927 return (PCIE_ARI_DEVICE); 2928 } 2929 2930 int 2931 pcie_ari_get_next_function(dev_info_t *dip, int *func) 2932 { 2933 uint32_t val; 2934 uint16_t cap_ptr, next_function; 2935 ddi_acc_handle_t handle; 2936 2937 /* 2938 * XXX - This function may be called before the bus_p structure 2939 * has been populated. This code can be changed to remove 2940 * pci_config_setup()/pci_config_teardown() when the RFE 2941 * to populate the bus_p structures early in boot is putback. 2942 */ 2943 2944 if (pci_config_setup(dip, &handle) != DDI_SUCCESS) 2945 return (DDI_FAILURE); 2946 2947 if ((PCI_CAP_LOCATE(handle, 2948 PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), &cap_ptr)) == DDI_FAILURE) { 2949 pci_config_teardown(&handle); 2950 return (DDI_FAILURE); 2951 } 2952 2953 val = PCI_CAP_GET32(handle, 0, cap_ptr, PCIE_ARI_CAP); 2954 2955 next_function = (val >> PCIE_ARI_CAP_NEXT_FUNC_SHIFT) & 2956 PCIE_ARI_CAP_NEXT_FUNC_MASK; 2957 2958 pci_config_teardown(&handle); 2959 2960 *func = next_function; 2961 2962 return (DDI_SUCCESS); 2963 } 2964 2965 dev_info_t * 2966 pcie_func_to_dip(dev_info_t *dip, pcie_req_id_t function) 2967 { 2968 pcie_req_id_t child_bdf; 2969 dev_info_t *cdip; 2970 2971 for (cdip = ddi_get_child(dip); cdip; 2972 cdip = ddi_get_next_sibling(cdip)) { 2973 2974 if (pcie_get_bdf_from_dip(cdip, &child_bdf) == DDI_FAILURE) 2975 return (NULL); 2976 2977 if ((child_bdf & PCIE_REQ_ID_ARI_FUNC_MASK) == function) 2978 return (cdip); 2979 } 2980 return (NULL); 2981 } 2982 2983 #ifdef DEBUG 2984 2985 static void 2986 pcie_print_bus(pcie_bus_t *bus_p) 2987 { 2988 pcie_dbg("\tbus_dip = 0x%p\n", bus_p->bus_dip); 2989 pcie_dbg("\tbus_fm_flags = 0x%x\n", bus_p->bus_fm_flags); 2990 2991 pcie_dbg("\tbus_bdf = 0x%x\n", bus_p->bus_bdf); 2992 pcie_dbg("\tbus_dev_ven_id = 0x%x\n", bus_p->bus_dev_ven_id); 2993 pcie_dbg("\tbus_rev_id = 0x%x\n", bus_p->bus_rev_id); 2994 pcie_dbg("\tbus_hdr_type = 0x%x\n", bus_p->bus_hdr_type); 2995 pcie_dbg("\tbus_dev_type = 0x%x\n", bus_p->bus_dev_type); 2996 pcie_dbg("\tbus_bdg_secbus = 0x%x\n", bus_p->bus_bdg_secbus); 2997 pcie_dbg("\tbus_pcie_off = 0x%x\n", bus_p->bus_pcie_off); 2998 pcie_dbg("\tbus_aer_off = 0x%x\n", bus_p->bus_aer_off); 2999 pcie_dbg("\tbus_pcix_off = 0x%x\n", bus_p->bus_pcix_off); 3000 pcie_dbg("\tbus_ecc_ver = 0x%x\n", bus_p->bus_ecc_ver); 3001 } 3002 3003 /* 3004 * For debugging purposes set pcie_dbg_print != 0 to see printf messages 3005 * during interrupt. 3006 * 3007 * When a proper solution is in place this code will disappear. 3008 * Potential solutions are: 3009 * o circular buffers 3010 * o taskq to print at lower pil 3011 */ 3012 int pcie_dbg_print = 0; 3013 void 3014 pcie_dbg(char *fmt, ...) 3015 { 3016 va_list ap; 3017 3018 if (!pcie_debug_flags) { 3019 return; 3020 } 3021 va_start(ap, fmt); 3022 if (servicing_interrupt()) { 3023 if (pcie_dbg_print) { 3024 prom_vprintf(fmt, ap); 3025 } 3026 } else { 3027 prom_vprintf(fmt, ap); 3028 } 3029 va_end(ap); 3030 } 3031 #endif /* DEBUG */ 3032 3033 boolean_t 3034 pcie_link_bw_supported(dev_info_t *dip) 3035 { 3036 uint32_t linkcap; 3037 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 3038 3039 if (!PCIE_IS_PCIE(bus_p)) { 3040 return (B_FALSE); 3041 } 3042 3043 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) { 3044 return (B_FALSE); 3045 } 3046 3047 linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP); 3048 return ((linkcap & PCIE_LINKCAP_LINK_BW_NOTIFY_CAP) != 0); 3049 } 3050 3051 int 3052 pcie_link_bw_enable(dev_info_t *dip) 3053 { 3054 uint16_t linkctl; 3055 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 3056 3057 if (pcie_disable_lbw != 0) { 3058 return (DDI_FAILURE); 3059 } 3060 3061 if (!pcie_link_bw_supported(dip)) { 3062 return (DDI_FAILURE); 3063 } 3064 3065 mutex_init(&bus_p->bus_lbw_mutex, NULL, MUTEX_DRIVER, NULL); 3066 cv_init(&bus_p->bus_lbw_cv, NULL, CV_DRIVER, NULL); 3067 linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL); 3068 linkctl |= PCIE_LINKCTL_LINK_BW_INTR_EN; 3069 linkctl |= PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN; 3070 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl); 3071 3072 bus_p->bus_lbw_pbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3073 bus_p->bus_lbw_cbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3074 bus_p->bus_lbw_state |= PCIE_LBW_S_ENABLED; 3075 3076 return (DDI_SUCCESS); 3077 } 3078 3079 int 3080 pcie_link_bw_disable(dev_info_t *dip) 3081 { 3082 uint16_t linkctl; 3083 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 3084 3085 if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) { 3086 return (DDI_FAILURE); 3087 } 3088 3089 mutex_enter(&bus_p->bus_lbw_mutex); 3090 while ((bus_p->bus_lbw_state & 3091 (PCIE_LBW_S_DISPATCHED | PCIE_LBW_S_RUNNING)) != 0) { 3092 cv_wait(&bus_p->bus_lbw_cv, &bus_p->bus_lbw_mutex); 3093 } 3094 mutex_exit(&bus_p->bus_lbw_mutex); 3095 3096 linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL); 3097 linkctl &= ~PCIE_LINKCTL_LINK_BW_INTR_EN; 3098 linkctl &= ~PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN; 3099 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl); 3100 3101 bus_p->bus_lbw_state &= ~PCIE_LBW_S_ENABLED; 3102 kmem_free(bus_p->bus_lbw_pbuf, MAXPATHLEN); 3103 kmem_free(bus_p->bus_lbw_cbuf, MAXPATHLEN); 3104 bus_p->bus_lbw_pbuf = NULL; 3105 bus_p->bus_lbw_cbuf = NULL; 3106 3107 mutex_destroy(&bus_p->bus_lbw_mutex); 3108 cv_destroy(&bus_p->bus_lbw_cv); 3109 3110 return (DDI_SUCCESS); 3111 } 3112 3113 void 3114 pcie_link_bw_taskq(void *arg) 3115 { 3116 dev_info_t *dip = arg; 3117 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 3118 dev_info_t *cdip; 3119 boolean_t again; 3120 sysevent_t *se; 3121 sysevent_value_t se_val; 3122 sysevent_id_t eid; 3123 sysevent_attr_list_t *ev_attr_list; 3124 3125 top: 3126 ndi_devi_enter(dip); 3127 se = NULL; 3128 ev_attr_list = NULL; 3129 mutex_enter(&bus_p->bus_lbw_mutex); 3130 bus_p->bus_lbw_state &= ~PCIE_LBW_S_DISPATCHED; 3131 bus_p->bus_lbw_state |= PCIE_LBW_S_RUNNING; 3132 mutex_exit(&bus_p->bus_lbw_mutex); 3133 3134 /* 3135 * Update our own speeds as we've likely changed something. 3136 */ 3137 pcie_capture_speeds(dip); 3138 3139 /* 3140 * Walk our children. We only care about updating this on function 0 3141 * because the PCIe specification requires that these all be the same 3142 * otherwise. 3143 */ 3144 for (cdip = ddi_get_child(dip); cdip != NULL; 3145 cdip = ddi_get_next_sibling(cdip)) { 3146 pcie_bus_t *cbus_p = PCIE_DIP2BUS(cdip); 3147 3148 if (cbus_p == NULL) { 3149 continue; 3150 } 3151 3152 if ((cbus_p->bus_bdf & PCIE_REQ_ID_FUNC_MASK) != 0) { 3153 continue; 3154 } 3155 3156 /* 3157 * It's possible that this can fire while a child is otherwise 3158 * only partially constructed. Therefore, if we don't have the 3159 * config handle, don't bother updating the child. 3160 */ 3161 if (cbus_p->bus_cfg_hdl == NULL) { 3162 continue; 3163 } 3164 3165 pcie_capture_speeds(cdip); 3166 break; 3167 } 3168 3169 se = sysevent_alloc(EC_PCIE, ESC_PCIE_LINK_STATE, 3170 ILLUMOS_KERN_PUB "pcie", SE_SLEEP); 3171 3172 (void) ddi_pathname(dip, bus_p->bus_lbw_pbuf); 3173 se_val.value_type = SE_DATA_TYPE_STRING; 3174 se_val.value.sv_string = bus_p->bus_lbw_pbuf; 3175 if (sysevent_add_attr(&ev_attr_list, PCIE_EV_DETECTOR_PATH, &se_val, 3176 SE_SLEEP) != 0) { 3177 ndi_devi_exit(dip); 3178 goto err; 3179 } 3180 3181 if (cdip != NULL) { 3182 (void) ddi_pathname(cdip, bus_p->bus_lbw_cbuf); 3183 3184 se_val.value_type = SE_DATA_TYPE_STRING; 3185 se_val.value.sv_string = bus_p->bus_lbw_cbuf; 3186 3187 /* 3188 * If this fails, that's OK. We'd rather get the event off and 3189 * there's a chance that there may not be anything there for us. 3190 */ 3191 (void) sysevent_add_attr(&ev_attr_list, PCIE_EV_CHILD_PATH, 3192 &se_val, SE_SLEEP); 3193 } 3194 3195 ndi_devi_exit(dip); 3196 3197 /* 3198 * Before we generate and send down a sysevent, we need to tell the 3199 * system that parts of the devinfo cache need to be invalidated. While 3200 * the function below takes several args, it ignores them all. Because 3201 * this is a global invalidation, we don't bother trying to do much more 3202 * than requesting a global invalidation, lest we accidentally kick off 3203 * several in a row. 3204 */ 3205 ddi_prop_cache_invalidate(DDI_DEV_T_NONE, NULL, NULL, 0); 3206 3207 if (sysevent_attach_attributes(se, ev_attr_list) != 0) { 3208 goto err; 3209 } 3210 ev_attr_list = NULL; 3211 3212 if (log_sysevent(se, SE_SLEEP, &eid) != 0) { 3213 goto err; 3214 } 3215 3216 err: 3217 sysevent_free_attr(ev_attr_list); 3218 sysevent_free(se); 3219 3220 mutex_enter(&bus_p->bus_lbw_mutex); 3221 bus_p->bus_lbw_state &= ~PCIE_LBW_S_RUNNING; 3222 cv_broadcast(&bus_p->bus_lbw_cv); 3223 again = (bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) != 0; 3224 mutex_exit(&bus_p->bus_lbw_mutex); 3225 3226 if (again) { 3227 goto top; 3228 } 3229 } 3230 3231 int 3232 pcie_link_bw_intr(dev_info_t *dip) 3233 { 3234 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 3235 uint16_t linksts; 3236 uint16_t flags = PCIE_LINKSTS_LINK_BW_MGMT | PCIE_LINKSTS_AUTO_BW; 3237 hrtime_t now; 3238 3239 if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) { 3240 return (DDI_INTR_UNCLAIMED); 3241 } 3242 3243 linksts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS); 3244 if ((linksts & flags) == 0) { 3245 return (DDI_INTR_UNCLAIMED); 3246 } 3247 3248 now = gethrtime(); 3249 3250 /* 3251 * Check if we've already dispatched this event. If we have already 3252 * dispatched it, then there's nothing else to do, we coalesce multiple 3253 * events. 3254 */ 3255 mutex_enter(&bus_p->bus_lbw_mutex); 3256 bus_p->bus_lbw_nevents++; 3257 bus_p->bus_lbw_last_ts = now; 3258 if ((bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) == 0) { 3259 if ((bus_p->bus_lbw_state & PCIE_LBW_S_RUNNING) == 0) { 3260 taskq_dispatch_ent(pcie_link_tq, pcie_link_bw_taskq, 3261 dip, 0, &bus_p->bus_lbw_ent); 3262 } 3263 3264 bus_p->bus_lbw_state |= PCIE_LBW_S_DISPATCHED; 3265 } 3266 mutex_exit(&bus_p->bus_lbw_mutex); 3267 3268 PCIE_CAP_PUT(16, bus_p, PCIE_LINKSTS, flags); 3269 return (DDI_INTR_CLAIMED); 3270 } 3271 3272 int 3273 pcie_link_set_target(dev_info_t *dip, pcie_link_speed_t speed) 3274 { 3275 uint16_t ctl2, rval; 3276 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 3277 3278 if (!PCIE_IS_PCIE(bus_p)) { 3279 return (ENOTSUP); 3280 } 3281 3282 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) { 3283 return (ENOTSUP); 3284 } 3285 3286 if (bus_p->bus_pcie_vers < 2) { 3287 return (ENOTSUP); 3288 } 3289 3290 switch (speed) { 3291 case PCIE_LINK_SPEED_2_5: 3292 rval = PCIE_LINKCTL2_TARGET_SPEED_2_5; 3293 break; 3294 case PCIE_LINK_SPEED_5: 3295 rval = PCIE_LINKCTL2_TARGET_SPEED_5; 3296 break; 3297 case PCIE_LINK_SPEED_8: 3298 rval = PCIE_LINKCTL2_TARGET_SPEED_8; 3299 break; 3300 case PCIE_LINK_SPEED_16: 3301 rval = PCIE_LINKCTL2_TARGET_SPEED_16; 3302 break; 3303 case PCIE_LINK_SPEED_32: 3304 rval = PCIE_LINKCTL2_TARGET_SPEED_32; 3305 break; 3306 case PCIE_LINK_SPEED_64: 3307 rval = PCIE_LINKCTL2_TARGET_SPEED_64; 3308 break; 3309 default: 3310 return (EINVAL); 3311 } 3312 3313 mutex_enter(&bus_p->bus_speed_mutex); 3314 if ((bus_p->bus_sup_speed & speed) == 0) { 3315 mutex_exit(&bus_p->bus_speed_mutex); 3316 return (ENOTSUP); 3317 } 3318 3319 bus_p->bus_target_speed = speed; 3320 bus_p->bus_speed_flags |= PCIE_LINK_F_ADMIN_TARGET; 3321 3322 ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2); 3323 ctl2 &= ~PCIE_LINKCTL2_TARGET_SPEED_MASK; 3324 ctl2 |= rval; 3325 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL2, ctl2); 3326 mutex_exit(&bus_p->bus_speed_mutex); 3327 3328 /* 3329 * Make sure our updates have been reflected in devinfo. 3330 */ 3331 pcie_capture_speeds(dip); 3332 3333 return (0); 3334 } 3335 3336 int 3337 pcie_link_retrain(dev_info_t *dip) 3338 { 3339 uint16_t ctl; 3340 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip); 3341 3342 if (!PCIE_IS_PCIE(bus_p)) { 3343 return (ENOTSUP); 3344 } 3345 3346 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) { 3347 return (ENOTSUP); 3348 } 3349 3350 /* 3351 * The PCIe specification suggests that we make sure that the link isn't 3352 * in training before issuing this command in case there was a state 3353 * machine transition prior to when we got here. We wait and then go 3354 * ahead and issue the command anyways. 3355 */ 3356 for (uint32_t i = 0; i < pcie_link_retrain_count; i++) { 3357 uint16_t sts; 3358 3359 sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS); 3360 if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0) 3361 break; 3362 delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000)); 3363 } 3364 3365 ctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL); 3366 ctl |= PCIE_LINKCTL_RETRAIN_LINK; 3367 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, ctl); 3368 3369 /* 3370 * Wait again to see if it clears before returning to the user. 3371 */ 3372 for (uint32_t i = 0; i < pcie_link_retrain_count; i++) { 3373 uint16_t sts; 3374 3375 sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS); 3376 if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0) 3377 break; 3378 delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000)); 3379 } 3380 3381 return (0); 3382 } 3383 3384 /* 3385 * Here we're going through and grabbing information about a given PCIe device. 3386 * Our situation is a little bit complicated at this point. This gets invoked 3387 * both during early initialization and during hotplug events. We cannot rely on 3388 * the device node having been fully set up, that is, while the pcie_bus_t 3389 * normally contains a ddi_acc_handle_t for configuration space, that may not be 3390 * valid yet as this can occur before child initialization or we may be dealing 3391 * with a function that will never have a handle. 3392 * 3393 * However, we should always have a fully furnished pcie_bus_t, which means that 3394 * we can get its bdf and use that to access the devices configuration space. 3395 */ 3396 static int 3397 pcie_fabric_feature_scan(dev_info_t *dip, void *arg) 3398 { 3399 pcie_bus_t *bus_p; 3400 uint32_t devcap; 3401 uint16_t mps; 3402 dev_info_t *rcdip; 3403 pcie_fabric_data_t *fab = arg; 3404 3405 /* 3406 * Skip over non-PCIe devices. If we encounter something here, we don't 3407 * bother going through any of its children because we don't have reason 3408 * to believe that a PCIe device that this will impact will exist below 3409 * this. While it is possible that there's a PCIe fabric downstream an 3410 * intermediate old PCI/PCI-X bus, at that point, we'll still trigger 3411 * our complex fabric detection and use the minimums. 3412 * 3413 * The reason this doesn't trigger an immediate flagging as a complex 3414 * case like the one below is because we could be scanning a device that 3415 * is a nexus driver and has children already (albeit that would be 3416 * somewhat surprising as we don't anticipate being called at this 3417 * point). 3418 */ 3419 if (pcie_dev(dip) != DDI_SUCCESS) { 3420 return (DDI_WALK_PRUNECHILD); 3421 } 3422 3423 /* 3424 * If we fail to find a pcie_bus_t for some reason, that's somewhat 3425 * surprising. We log this fact and set the complex flag and indicate it 3426 * was because of this case. This immediately transitions us to a 3427 * "complex" case which means use the minimal, safe, settings. 3428 */ 3429 bus_p = PCIE_DIP2BUS(dip); 3430 if (bus_p == NULL) { 3431 dev_err(dip, CE_WARN, "failed to find associated pcie_bus_t " 3432 "during fabric scan"); 3433 fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX; 3434 return (DDI_WALK_TERMINATE); 3435 } 3436 3437 /* 3438 * In a similar case, there is hardware out there which is a PCIe 3439 * device, but does not advertise a PCIe capability. An example of this 3440 * is the IDT Tsi382A which can hide its PCIe capability. If this is 3441 * the case, we immediately terminate scanning and flag this as a 3442 * 'complex' case which causes us to use guaranteed safe settings. 3443 */ 3444 if (bus_p->bus_pcie_off == 0) { 3445 dev_err(dip, CE_WARN, "encountered PCIe device without PCIe " 3446 "capability"); 3447 fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX; 3448 return (DDI_WALK_TERMINATE); 3449 } 3450 3451 rcdip = pcie_get_rc_dip(dip); 3452 3453 /* 3454 * First, start by determining what the device's tagging and max packet 3455 * size is. All PCIe devices will always have the 8-bit tag information 3456 * as this has existed since PCIe 1.0. 10-bit tagging requires a V2 3457 * PCIe capability. 14-bit requires the DEV3 cap. If we are missing a 3458 * version or capability, then we always treat that as lacking the bits 3459 * in the fabric. 3460 */ 3461 ASSERT3U(bus_p->bus_pcie_off, !=, 0); 3462 devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off + 3463 PCIE_DEVCAP); 3464 mps = devcap & PCIE_DEVCAP_MAX_PAYLOAD_MASK; 3465 if (mps < fab->pfd_mps_found) { 3466 fab->pfd_mps_found = mps; 3467 } 3468 3469 if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) == 0) { 3470 fab->pfd_tag_found &= ~PCIE_TAG_8B; 3471 } 3472 3473 if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0) { 3474 uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, 3475 bus_p->bus_pcie_off + PCIE_DEVCAP2); 3476 if ((devcap2 & PCIE_DEVCAP2_10B_TAG_COMP_SUP) == 0) { 3477 fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP; 3478 } 3479 } else { 3480 fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP; 3481 } 3482 3483 if (bus_p->bus_dev3_off != 0) { 3484 uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, 3485 bus_p->bus_dev3_off + PCIE_DEVCAP3); 3486 if ((devcap3 & PCIE_DEVCAP3_14B_TAG_COMP_SUP) == 0) { 3487 fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP; 3488 } 3489 } else { 3490 fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP; 3491 } 3492 3493 /* 3494 * Now that we have captured device information, we must go and ask 3495 * questions of the topology here. The big theory statement enumerates 3496 * several types of cases. The big question we need to answer is have we 3497 * encountered a hotpluggable bridge that means we need to mark this as 3498 * complex. 3499 * 3500 * The big theory statement notes several different kinds of hotplug 3501 * topologies that exist that we can theoretically support. Right now we 3502 * opt to keep our lives simple and focus solely on (4) and (5). These 3503 * can both be summarized by a single, fairly straightforward rule: 3504 * 3505 * The only allowed hotpluggable entity is a root port. 3506 * 3507 * The reason that this can work and detect cases like (6), (7), and our 3508 * other invalid ones is that the hotplug code will scan and find all 3509 * children before we are called into here. 3510 */ 3511 if (bus_p->bus_hp_sup_modes != 0) { 3512 /* 3513 * We opt to terminate in this case because there's no value in 3514 * scanning the rest of the tree at this point. 3515 */ 3516 if (!PCIE_IS_RP(bus_p)) { 3517 fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX; 3518 return (DDI_WALK_TERMINATE); 3519 } 3520 3521 fab->pfd_flags |= PCIE_FABRIC_F_RP_HP; 3522 } 3523 3524 /* 3525 * As our walk starts at a root port, we need to make sure that we don't 3526 * pick up any of its siblings and their children as those would be 3527 * different PCIe fabric domains for us to scan. In many hardware 3528 * platforms multiple root ports are all at the same level in the tree. 3529 */ 3530 if (bus_p->bus_rp_dip == dip) { 3531 return (DDI_WALK_PRUNESIB); 3532 } 3533 3534 return (DDI_WALK_CONTINUE); 3535 } 3536 3537 static int 3538 pcie_fabric_feature_set(dev_info_t *dip, void *arg) 3539 { 3540 pcie_bus_t *bus_p; 3541 dev_info_t *rcdip; 3542 pcie_fabric_data_t *fab = arg; 3543 uint32_t devcap, devctl; 3544 3545 if (pcie_dev(dip) != DDI_SUCCESS) { 3546 return (DDI_WALK_PRUNECHILD); 3547 } 3548 3549 /* 3550 * The missing bus_t sent us into the complex case previously. We still 3551 * need to make sure all devices have values we expect here and thus 3552 * don't terminate like the above. The same is true for the case where 3553 * there is no PCIe capability. 3554 */ 3555 bus_p = PCIE_DIP2BUS(dip); 3556 if (bus_p == NULL || bus_p->bus_pcie_off == 0) { 3557 return (DDI_WALK_CONTINUE); 3558 } 3559 rcdip = pcie_get_rc_dip(dip); 3560 3561 devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off + 3562 PCIE_DEVCAP); 3563 devctl = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off + 3564 PCIE_DEVCTL); 3565 3566 if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) != 0 && 3567 (fab->pfd_tag_act & PCIE_TAG_8B) != 0) { 3568 devctl |= PCIE_DEVCTL_EXT_TAG_FIELD_EN; 3569 } 3570 3571 devctl &= ~PCIE_DEVCTL_MAX_PAYLOAD_MASK; 3572 ASSERT0(fab->pfd_mps_act & ~PCIE_DEVCAP_MAX_PAYLOAD_MASK); 3573 devctl |= fab->pfd_mps_act << PCIE_DEVCTL_MAX_PAYLOAD_SHIFT; 3574 3575 pci_cfgacc_put16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off + 3576 PCIE_DEVCTL, devctl); 3577 3578 if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0 && 3579 (fab->pfd_tag_act & PCIE_TAG_10B_COMP) != 0) { 3580 uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, 3581 bus_p->bus_pcie_off + PCIE_DEVCAP2); 3582 3583 if ((devcap2 & PCIE_DEVCAP2_10B_TAG_REQ_SUP) == 0) { 3584 uint16_t devctl2 = pci_cfgacc_get16(rcdip, 3585 bus_p->bus_bdf, bus_p->bus_pcie_off + PCIE_DEVCTL2); 3586 devctl2 |= PCIE_DEVCTL2_10B_TAG_REQ_EN; 3587 pci_cfgacc_put16(rcdip, bus_p->bus_bdf, 3588 bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl2); 3589 } 3590 } 3591 3592 if (bus_p->bus_dev3_off != 0 && 3593 (fab->pfd_tag_act & PCIE_TAG_14B_COMP) != 0) { 3594 uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, 3595 bus_p->bus_dev3_off + PCIE_DEVCAP3); 3596 3597 if ((devcap3 & PCIE_DEVCAP3_14B_TAG_REQ_SUP) == 0) { 3598 uint16_t devctl3 = pci_cfgacc_get16(rcdip, 3599 bus_p->bus_bdf, bus_p->bus_dev3_off + PCIE_DEVCTL3); 3600 devctl3 |= PCIE_DEVCTL3_14B_TAG_REQ_EN; 3601 pci_cfgacc_put16(rcdip, bus_p->bus_bdf, 3602 bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl3); 3603 } 3604 } 3605 3606 /* 3607 * As our walk starts at a root port, we need to make sure that we don't 3608 * pick up any of its siblings and their children as those would be 3609 * different PCIe fabric domains for us to scan. In many hardware 3610 * platforms multiple root ports are all at the same level in the tree. 3611 */ 3612 if (bus_p->bus_rp_dip == dip) { 3613 return (DDI_WALK_PRUNESIB); 3614 } 3615 3616 return (DDI_WALK_CONTINUE); 3617 } 3618 3619 /* 3620 * This is used to scan and determine the total set of PCIe fabric settings that 3621 * we should have in the system for everything downstream of this specified root 3622 * port. Note, it is only really safe to call this while working from the 3623 * perspective of a root port as we will be walking down the entire device tree. 3624 * 3625 * However, our callers, particularly hoptlug, don't have all the information 3626 * we'd like. In particular, we need to check that: 3627 * 3628 * o This is actually a PCIe device. 3629 * o That this is a root port (see the big theory statement to understand this 3630 * constraint). 3631 */ 3632 void 3633 pcie_fabric_setup(dev_info_t *dip) 3634 { 3635 pcie_bus_t *bus_p; 3636 pcie_fabric_data_t *fab; 3637 dev_info_t *pdip; 3638 3639 bus_p = PCIE_DIP2BUS(dip); 3640 if (bus_p == NULL || !PCIE_IS_RP(bus_p)) { 3641 return; 3642 } 3643 3644 VERIFY3P(bus_p->bus_fab, !=, NULL); 3645 fab = bus_p->bus_fab; 3646 3647 /* 3648 * For us to call ddi_walk_devs(), our parent needs to be held. 3649 * ddi_walk_devs() will take care of grabbing our dip as part of its 3650 * walk before we iterate over our children. 3651 * 3652 * A reasonable question to ask here is why is it safe to ask for our 3653 * parent? In this case, because we have entered here through some 3654 * thread that's operating on us whether as part of attach or a hotplug 3655 * event, our dip somewhat by definition has to be valid. If we were 3656 * looking at our dip's children and then asking them for a parent, then 3657 * that would be a race condition. 3658 */ 3659 pdip = ddi_get_parent(dip); 3660 VERIFY3P(pdip, !=, NULL); 3661 ndi_devi_enter(pdip); 3662 fab->pfd_flags |= PCIE_FABRIC_F_SCANNING; 3663 3664 /* 3665 * Reinitialize the tracking structure to basically set the maximum 3666 * caps. These will be chipped away during the scan. 3667 */ 3668 fab->pfd_mps_found = PCIE_DEVCAP_MAX_PAYLOAD_4096; 3669 fab->pfd_tag_found = PCIE_TAG_ALL; 3670 fab->pfd_flags &= ~PCIE_FABRIC_F_COMPLEX; 3671 3672 ddi_walk_devs(dip, pcie_fabric_feature_scan, fab); 3673 3674 if ((fab->pfd_flags & PCIE_FABRIC_F_COMPLEX) != 0) { 3675 fab->pfd_tag_act = PCIE_TAG_5B; 3676 fab->pfd_mps_act = PCIE_DEVCAP_MAX_PAYLOAD_128; 3677 } else { 3678 fab->pfd_tag_act = fab->pfd_tag_found; 3679 fab->pfd_mps_act = fab->pfd_mps_found; 3680 } 3681 3682 ddi_walk_devs(dip, pcie_fabric_feature_set, fab); 3683 3684 fab->pfd_flags &= ~PCIE_FABRIC_F_SCANNING; 3685 ndi_devi_exit(pdip); 3686 } 3687