xref: /illumos-gate/usr/src/uts/common/io/pciex/pcie.c (revision 76c08ae9d10f4e0b653a6ea98c06a7868246164b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright 2022 Oxide Computer Company
26  */
27 
28 /*
29  * PCIe Initialization
30  * -------------------
31  *
32  * The PCIe subsystem is split about and initializes itself in a couple of
33  * different places. This is due to the platform-specific nature of initializing
34  * resources and the nature of the SPARC PROM and how that influenced the
35  * subsystem. Note that traditional PCI (mostly seen these days in Virtual
36  * Machines) follows most of the same basic path outlined here, but skips a
37  * large chunk of PCIe-specific initialization.
38  *
39  * First, there is an initial device discovery phase that is taken care of by
40  * the platform. This is where we discover the set of devices that are present
41  * at system power on. These devices may or may not be hot-pluggable. In
42  * particular, this happens in a platform-specific way right now. In general, we
43  * expect most discovery to be driven by scanning each bus, device, and
44  * function, and seeing what actually exists and responds to configuration space
45  * reads. This is driven via pci_boot.c on x86. This may be seeded by something
46  * like device tree, a PROM, supplemented with ACPI, or by knowledge that the
47  * underlying platform has.
48  *
49  * As a part of this discovery process, the full set of resources that exist in
50  * the system for PCIe are:
51  *
52  *   o PCI buses
53  *   o Prefetchable Memory
54  *   o Non-prefetchable memory
55  *   o I/O ports
56  *
57  * This process is driven by a platform's PCI platform Resource Discovery (PRD)
58  * module. The PRD definitions can be found in <sys/plat/pci_prd.h> and are used
59  * to discover these resources, which will be converted into the initial set of
60  * the standard properties in the system: 'regs', 'available', 'ranges', etc.
61  * Currently it is up to platform-specific code (which should ideally be
62  * consolidated at some point) to set up all these properties.
63  *
64  * As a part of the discovery process, the platform code will create a device
65  * node (dev_info_t) for each discovered function and will create a PCIe nexus
66  * for each overall root complex that exists in the system. Most root complexes
67  * will have multiple root ports, each of which is the foundation of an
68  * independent PCIe bus due to the point-to-point nature of PCIe. When a root
69  * complex is found, a nexus driver such as npe (Nexus for PCIe Express) is
70  * attached. In the case of a non-PCIe-capable system this is where the older
71  * pci nexus driver would be used instead.
72  *
73  * To track data about a given device on a bus, a 'pcie_bus_t' structure is
74  * created for and assigned to every PCIe-based dev_info_t. This can be used to
75  * find the root port and get basic information about the device, its faults,
76  * and related information. This contains pointers to the corresponding root
77  * port as well.
78  *
79  * A root complex has its pcie_bus_t initialized as part of the device discovery
80  * process. That is, because we're trying to bootstrap the actual tree and most
81  * platforms don't have a representation for this that's explicitly
82  * discoverable, this is created manually. See callers of pcie_rc_init_bus().
83  *
84  * For other devices, bridges, and switches, the process is split into two.
85  * There is an initial pcie_bus_t that is created which will exist before we go
86  * through the actual driver attachment process. For example, on x86 this is
87  * done as part of the device and function discovery. The second pass of
88  * initialization is done only after the nexus driver actually is attached and
89  * it goes through and finishes processing all of its children.
90  *
91  * Child Initialization
92  * --------------------
93  *
94  * Generally speaking, the platform will first enumerate all PCIe devices that
95  * are in the sytem before it actually creates a device tree. This is part of
96  * the bus/device/function scanning that is performed and from that dev_info_t
97  * nodes are created for each discovered device and are inserted into the
98  * broader device tree. Later in boot, the actual device tree is walked and the
99  * nodes go through the standard dev_info_t initialization process (DS_PROTO,
100  * DS_LINKED, DS_BOUND, etc.).
101  *
102  * PCIe-specific initialization can roughly be broken into the following pieces:
103  *
104  *   1. Platform initial discovery and resource assignment
105  *   2. The pcie_bus_t initialization
106  *   3. Nexus driver child initialization
107  *   4. Fabric initialization
108  *   5. Device driver-specific initialization
109  *
110  * The first part of this (1) and (2) are discussed in the previous section.
111  * Part (1) in particular is a combination of the PRD (platform resource
112  * discovery) and general device initialization. After this, because we have a
113  * device tree, most of the standard nexus initialization happens.
114  *
115  * (5) is somewhat simple, so let's get into it before we discuss (3) and (4).
116  * This is the last thing that is called and that happens after all of the
117  * others are done. This is the logic that occurs in a driver's attach(9E) entry
118  * point. This is always device-specific and generally speaking should not be
119  * manipulating standard PCIe registers directly on their own. For example, the
120  * MSI/MSI-X, AER, Serial Number, etc. capabilities will be automatically dealt
121  * with by the framework in (3) and (4) below. In many cases, particularly
122  * things that are part of (4), adjusting them in the individual driver is not
123  * safe.
124  *
125  * Finally, let's talk about (3) and (4) as these are related. The NDI provides
126  * for a standard hook for a nexus to initialize its children. In our platforms,
127  * there are basically two possible PCIe nexus drivers: there is the generic
128  * pcieb -- PCIe bridge -- driver which is used for standard root ports,
129  * switches, etc. Then there is the platform-specific primary nexus driver,
130  * which is being slowly consolidated into a single one where it makes sense. An
131  * example of this is npe.
132  *
133  * Each of these has a child initialization function which is called from their
134  * DDI_CTLOPS_INITCHILD operation on the bus_ctl function pointer. This goes
135  * through and initializes a large number of different pieces of PCIe-based
136  * settings through the common pcie_initchild() function. This takes care of
137  * things like:
138  *
139  *   o Advanced Error Reporting
140  *   o Alternative Routing
141  *   o Capturing information around link speed, width, serial numbers, etc.
142  *   o Setting common properties around aborts
143  *
144  * There are a few caveats with this that need to be kept in mind:
145  *
146  *   o A dev_info_t indicates a specific function. This means that a
147  *     multi-function device will not all be initialized at the same time and
148  *     there is no guarantee that all children will be initialized before one of
149  *     them is attached.
150  *   o A child is only initialized if we have found a driver that matches an
151  *     alias in the dev_info_t's compatible array property.  While a lot of
152  *     multi-function devices are often multiple instances of the same thing
153  *     (e.g. a multi-port NIC with a function / NIC), this is not always the
154  *     case and one cannot make any assumptions here.
155  *
156  * This in turn leads to the next form of initialization that takes place in the
157  * case of (4). This is where we take care of things that need to be consistent
158  * across either entire devices or more generally across an entire root port and
159  * all of its children. There are a few different examples of this:
160  *
161  *   o Setting the maximum packet size
162  *   o Determining the tag width
163  *
164  * Note that features which are only based on function 0, such as ASPM (Active
165  * State Power Management), hardware autonomous width disable, etc. ultimately
166  * do not go through this path today. There are some implications here in that
167  * today several of these things are captured on functions which may not have
168  * any control here. This is an area of needed improvement.
169  *
170  * The settings in (4) are initialized in a common way, via
171  * pcie_fabric_setup(). This is called into from two different parts of
172  * the stack:
173  *
174  *   1. When we attach a root port, which is driven by pcieb.
175  *   2. When we have a hotplug event that adds a device.
176  *
177  * In general here we are going to use the term 'fabric' to refer to everything
178  * that is downstream of a root port. This corresponds to what the PCIe
179  * specification calls a 'hierarchy domain'. Strictly speaking, this is fine
180  * until peer-to-peer requests begin to happen that cause you to need to forward
181  * things across root ports. At that point the scope of the fabric increases and
182  * these settings become more complicated. We currently optimize for the much
183  * more common case, which is that each root port is effectively independent
184  * from a PCIe transaction routing perspective.
185  *
186  * Put differently, we use the term 'fabric' to refer to a set of PCIe devices
187  * that can route transactions to one another, which is generally constrained to
188  * everything under a root port and that root ports are independent. If this
189  * constraint changes, then all one needs to do is replace the discussion of the
190  * root port below with the broader root complex and system.
191  *
192  * A challenge with these settings is that once they're set and devices are
193  * actively making requests, we cannot really change them without resetting the
194  * links and cancelling all outstanding transactions via device resets. Because
195  * this is not something that we want to do, we instead look at how and when we
196  * set this to constrain what's going on.
197  *
198  * Because of this we basically say that if a given fabric has more than one
199  * hot-plug capable device that's encountered, then we have to use safe defaults
200  * (which we can allow an operator to tune eventually via pcieadm). If we have a
201  * mix of non-hotpluggable slots with downstream endpoints present and
202  * hot-pluggable slots, then we're in this case. If we don't have hot-pluggable
203  * slots, then we can have an arbitrarily complex setup. Let's look at a few of
204  * these visually:
205  *
206  * In the following diagrams, RP stands for Root Port, EP stands for Endpoint.
207  * If something is hot-pluggable, then we label it with (HP).
208  *
209  *   (1) RP --> EP
210  *   (2) RP --> Switch --> EP
211  *                    +--> EP
212  *                    +--> EP
213  *
214  *   (3) RP --> Switch --> EP
215  *                    +--> EP
216  *                    +--> Switch --> EP
217  *                               +--> EP
218  *                    +--> EP
219  *
220  *
221  *   (4) RP (HP) --> EP
222  *   (5) RP (HP) --> Switch --> EP
223  *                         +--> EP
224  *                         +--> EP
225  *
226  *   (6) RP --> Switch (HP) --> EP
227  *   (7) RP (HP) --> Switch (HP) --> EP
228  *
229  * If we look at all of these, these are all cases where it's safe for us to set
230  * things based on all devices. (1), (2), and (3) are straightforward because
231  * they have no hot-pluggable elements. This means that nothing should come/go
232  * on the system and we can set up fabric-wide properties as part of the root
233  * port.
234  *
235  * Case (4) is the most standard one that we encounter for hot-plug. Here you
236  * have a root port directly connected to an endpoint. The most common example
237  * would be an NVMe device plugged into a root port. Case (5) is interesting to
238  * highlight. While there is a switch and multiple endpoints there, they are
239  * showing up as a unit. This ends up being a weirder variant of (4), but it is
240  * safe for us to set advanced properties because we can figure out what the
241  * total set should be.
242  *
243  * Now, the more interesting bits here are (6) and (7). The reason that (6)
244  * works is that ultimately there is only a single down-stream port here that is
245  * hot-pluggable and all non-hotpluggable ports do not have a device present,
246  * which suggests that they will never have a device present. (7) also could be
247  * made to work by making the observation that if there's truly only one
248  * endpoint in a fabric, it doesn't matter how many switches there are that are
249  * hot-pluggable. This would only hold if we can assume for some reason that no
250  * other endpoints could be added.
251  *
252  * In turn, let's look at several cases that we believe aren't safe:
253  *
254  *   (8) RP --> Switch --> EP
255  *                    +--> EP
256  *               (HP) +--> EP
257  *
258  *   (9) RP --> Switch (HP) +--> EP
259  *                     (HP) +--> EP
260  *
261  *   (10) RP (HP) --> Switch (HP) +--> EP
262  *                           (HP) +--> EP
263  *
264  * All of these are situations where it's much more explicitly unsafe. Let's
265  * take (8). The problem here is that the devices on the non-hotpluggable
266  * downstream switches are always there and we should assume all device drivers
267  * will be active and performing I/O when the hot-pluggable slot changes. If the
268  * hot-pluggable slot has a lower max payload size, then we're mostly out of
269  * luck. The case of (9) is very similar to (8), just that we have more hot-plug
270  * capable slots.
271  *
272  * Finally (10) is a case of multiple instances of hotplug. (9) and (10) are the
273  * more general case of (6) and (7). While we can try to detect (6) and (7) more
274  * generally or try to make it safe, we're going to start with a simpler form of
275  * detection for this, which roughly follows the following rules:
276  *
277  *   o If there are no hot-pluggable slots in an entire fabric, then we can set
278  *     all fabric properties based on device capabilities.
279  *   o If we encounter a hot-pluggable slot, we can only set fabric properties
280  *     based on device capabilities if:
281  *
282  *       1. The hotpluggable slot is a root port.
283  *       2. There are no other hotpluggable devices downstream of it.
284  *
285  * Otherwise, if neither of the above is true, then we must use the basic PCIe
286  * defaults for various fabric-wide properties (discussed below). Even in these
287  * more complicated cases, device-specific properties such as the configuration
288  * of AERs, ASPM, etc. are still handled in the general pcie_init_bus() and
289  * related discussed earlier here.
290  *
291  * Because the only fabrics that we'll change are those that correspond to root
292  * ports, we will only call into the actual fabric feature setup when one of
293  * those changes. This has the side effect of simplifying locking. When we make
294  * changes here we need to be able to hold the entire device tree under the root
295  * port (including the root port and its parent). This is much harder to do
296  * safely when starting in the middle of the tree.
297  *
298  * Handling of Specific Properties
299  * -------------------------------
300  *
301  * This section goes into the rationale behind how we initialize and program
302  * various parts of the PCIe stack.
303  *
304  * 5-, 8-, 10- AND 14-BIT TAGS
305  *
306  * Tags are part of PCIe transactions and when combined with a device identifier
307  * are used to uniquely identify a transaction. In PCIe parlance, a Requester
308  * (someone who initiates a PCIe request) sets a unique tag in the request and
309  * the Completer (someone who processes and responds to a PCIe request) echoes
310  * the tag back. This means that a requester generally is responsible for
311  * ensuring that they don't reuse a tag between transactions.
312  *
313  * Thus the number of tags that a device has relates to the number of
314  * outstanding transactions that it can have, which are usually tied to the
315  * number of outstanding DMA transfers. The size of these transactions is also
316  * then scoped by the handling of the Maximum Packet Payload.
317  *
318  * In PCIe 1.0, devices default to a 5-bit tag. There was also an option to
319  * support an 8-bit tag. The 8-bit extended tag did not distinguish between a
320  * Requester or Completer. There was a bit to indicate device support of 8-bit
321  * tags in the Device Capabilities Register of the PCIe Capability and a
322  * separate bit to enable it in the Device Control Register of the PCIe
323  * Capability.
324  *
325  * In PCIe 4.0, support for a 10-bit tag was added. The specification broke
326  * apart the support bit into multiple pieces. In particular, in the Device
327  * Capabilities 2 register of the PCIe Capability there is a separate bit to
328  * indicate whether the device supports 10-bit completions and 10-bit requests.
329  * All PCIe 4.0 compliant devices are required to support 10-bit tags if they
330  * operate at 16.0 GT/s speed (a PCIe Gen 4 compliant device does not have to
331  * operate at Gen 4 speeds).
332  *
333  * This allows a device to support 10-bit completions but not 10-bit requests.
334  * A device that supports 10-bit requests is required to support 10-bit
335  * completions. There is no ability to enable or disable 10-bit completion
336  * support in the Device Capabilities 2 register. There is only a bit to enable
337  * 10-bit requests. This distinction makes our life easier as this means that as
338  * long as the entire fabric supports 10-bit completions, it doesn't matter if
339  * not all devices support 10-bit requests and we can enable them as required.
340  * More on this in a bit.
341  *
342  * In PCIe 6.0, another set of bits was added for 14-bit tags. These follow the
343  * same pattern as the 10-bit tags. The biggest difference is that the
344  * capabilities and control for these are found in the Device Capabilities 3
345  * and Device Control 3 register of the Device 3 Extended Capability. Similar to
346  * what we see with 10-bit tags, requesters are required to support the
347  * completer capability. The only control bit is for whether or not they enable
348  * a 14-bit requester.
349  *
350  * PCIe switches which sit between root ports and endpoints and show up to
351  * software as a set of bridges. Bridges generally don't have to know about tags
352  * as they are usually neither requesters or completers (unless directly talking
353  * to the bridge instance). That is they are generally required to forward
354  * packets without modifying them. This works until we deal with switch error
355  * handling. At that point, the switch may try to interpret the transaction and
356  * if it doesn't understand the tagging scheme in use, return the transaction to
357  * with the wrong tag and also an incorrectly diagnosed error (usually a
358  * malformed TLP).
359  *
360  * With all this, we construct a somewhat simple policy of how and when we
361  * enable extended tags:
362  *
363  *    o If we have a complex hotplug-capable fabric (based on the discussion
364  *      earlier in fabric-specific settings), then we cannot enable any of the
365  *      8-bit, 10-bit, and 14-bit tagging features. This is due to the issues
366  *      with intermediate PCIe switches and related.
367  *
368  *    o If every device supports 8-bit capable tags, then we will go through and
369  *      enable those everywhere.
370  *
371  *    o If every device supports 10-bit capable completions, then we will enable
372  *      10-bit requester on every device that supports it.
373  *
374  *    o If every device supports 14-bit capable completions, then we will enable
375  *      14-bit requesters on every device that supports it.
376  *
377  * This is the simpler end of the policy and one that is relatively easy to
378  * implement. While we could attempt to relax the constraint that every device
379  * in the fabric implement these features by making assumptions about peer-to-
380  * peer requests (that is devices at the same layer in the tree won't talk to
381  * one another), that is a lot of complexity. For now, we leave such an
382  * implementation to those who need it in the future.
383  *
384  * MAX PAYLOAD SIZE
385  *
386  * When performing transactions on the PCIe bus, a given transaction has a
387  * maximum allowed size. This size is called the MPS or 'Maximum Payload Size'.
388  * A given device reports its maximum supported size in the Device Capabilities
389  * register of the PCIe Capability. It is then set in the Device Control
390  * register.
391  *
392  * One of the challenges with this value is that different functions of a device
393  * have independent values, but strictly speaking are required to actually have
394  * the same value programmed in all of them lest device behavior goes awry. When
395  * a device has the ARI (alternative routing ID) capability enabled, then only
396  * function 0 controls the actual payload size.
397  *
398  * The settings for this need to be consistent throughout the fabric. A
399  * Transmitter is not allowed to create a TLP that exceeds its maximum packet
400  * size and a Receiver is not allowed to receive a packet that exceeds its
401  * maximum packet size. In all of these cases, this would result in something
402  * like a malformed TLP error.
403  *
404  * Effectively, this means that everything on a given fabric must have the same
405  * value programmed in its Device Control register for this value. While in the
406  * case of tags, switches generally weren't completers or requesters, here every
407  * device along the path is subject to this. This makes the actual value that we
408  * set throughout the fabric even more important and the constraints of hotplug
409  * even worse to deal with.
410  *
411  * Because a hotplug device can be inserted with any packet size, if we hit
412  * anything other than the simple hotplug cases discussed in the fabric-specific
413  * settings section, then we must use the smallest size of 128 byte payloads.
414  * This is because a device could be plugged in that supports something smaller
415  * than we had otherwise set. If there are other active devices, those could not
416  * be changed without quiescing the entire fabric. As such our algorithm is as
417  * follows:
418  *
419  *     1. Scan the entire fabric, keeping track of the smallest seen MPS in the
420  *        Device Capabilities Register.
421  *     2. If we have a complex fabric, program each Device Control register with
422  *        a 128 byte maximum payload size, otherwise, program it with the
423  *        discovered value.
424  *
425  *
426  * MAX READ REQUEST SIZE
427  *
428  * The maximum read request size (mrrs) is a much more confusing thing when
429  * compared to the maximum payload size counterpart. The maximum payload size
430  * (MPS) above is what restricts the actual size of a TLP. The mrrs value
431  * is used to control part of the behavior of Memory Read Request, which is not
432  * strictly speaking subject to the MPS. A PCIe device is allowed to respond to
433  * a Memory Read Request with less bytes than were actually requested in a
434  * single completion. In general, the default size that a root complex and its
435  * root port will reply to are based around the length of a cache line.
436  *
437  * What this ultimately controls is the number of requests that the Requester
438  * has to make and trades off bandwidth, bus sharing, and related here. For
439  * example, if the maximum read request size is 4 KiB, then the requester would
440  * only issue a single read request asking for 4 KiB. It would still receive
441  * these as multiple packets in units of the MPS. If however, the maximum read
442  * request was only say 512 B, then it would need to make 8 separate requests,
443  * potentially increasing latency. On the other hand, if systems are relying on
444  * total requests for QoS, then it's important to set it to something that's
445  * closer to the actual MPS.
446  *
447  * Traditionally, the OS has not been the most straightforward about this. It's
448  * important to remember that setting this up is also somewhat in the realm of
449  * system firmware. Due to the PCI Firmware specification, the firmware may have
450  * set up a value for not just the MRRS but also the MPS. As such, our logic
451  * basically left the MRRS alone and used whatever the device had there as long
452  * as we weren't shrinking the device's MPS. If we were, then we'd set it to the
453  * MPS. If the device was a root port, then it was just left at a system wide
454  * and PCIe default of 512 bytes.
455  *
456  * If we survey firmware (which isn't easy due to its nature), we have seen most
457  * cases where the firmware just doesn't do anything and leaves it to the
458  * device's default, which is basically just the PCIe default, unless it has a
459  * specific knowledge of something like say wanting to do something for an NVMe
460  * device. The same is generally true of other systems, leaving it at its
461  * default unless otherwise set by a device driver.
462  *
463  * Because this value doesn't really have the same constraints as other fabric
464  * properties, this becomes much simpler and we instead opt to set it as part of
465  * the device node initialization. In addition, there are no real rules about
466  * different functions having different values here as it doesn't really impact
467  * the TLP processing the same way that the MPS does.
468  *
469  * While we should add a fuller way of setting this and allowing operator
470  * override of the MRRS based on things like device class, etc. that is driven
471  * by pcieadm, that is left to the future. For now we opt to that all devices
472  * are kept at their default (512 bytes or whatever firmware left behind) and we
473  * ensure that root ports always have the mrrs set to 512.
474  */
475 
476 #include <sys/sysmacros.h>
477 #include <sys/types.h>
478 #include <sys/kmem.h>
479 #include <sys/modctl.h>
480 #include <sys/ddi.h>
481 #include <sys/sunddi.h>
482 #include <sys/sunndi.h>
483 #include <sys/fm/protocol.h>
484 #include <sys/fm/util.h>
485 #include <sys/promif.h>
486 #include <sys/disp.h>
487 #include <sys/stat.h>
488 #include <sys/file.h>
489 #include <sys/pci_cap.h>
490 #include <sys/pci_impl.h>
491 #include <sys/pcie_impl.h>
492 #include <sys/hotplug/pci/pcie_hp.h>
493 #include <sys/hotplug/pci/pciehpc.h>
494 #include <sys/hotplug/pci/pcishpc.h>
495 #include <sys/hotplug/pci/pcicfg.h>
496 #include <sys/pci_cfgacc.h>
497 #include <sys/sysevent.h>
498 #include <sys/sysevent/eventdefs.h>
499 #include <sys/sysevent/pcie.h>
500 
501 /* Local functions prototypes */
502 static void pcie_init_pfd(dev_info_t *);
503 static void pcie_fini_pfd(dev_info_t *);
504 
505 #if defined(__x86)
506 static void pcie_check_io_mem_range(ddi_acc_handle_t, boolean_t *, boolean_t *);
507 #endif /* defined(__x86) */
508 
509 #ifdef DEBUG
510 uint_t pcie_debug_flags = 0;
511 static void pcie_print_bus(pcie_bus_t *bus_p);
512 void pcie_dbg(char *fmt, ...);
513 #endif /* DEBUG */
514 
515 /* Variable to control default PCI-Express config settings */
516 ushort_t pcie_command_default =
517     PCI_COMM_SERR_ENABLE |
518     PCI_COMM_WAIT_CYC_ENAB |
519     PCI_COMM_PARITY_DETECT |
520     PCI_COMM_ME |
521     PCI_COMM_MAE |
522     PCI_COMM_IO;
523 
524 /* xxx_fw are bits that are controlled by FW and should not be modified */
525 ushort_t pcie_command_default_fw =
526     PCI_COMM_SPEC_CYC |
527     PCI_COMM_MEMWR_INVAL |
528     PCI_COMM_PALETTE_SNOOP |
529     PCI_COMM_WAIT_CYC_ENAB |
530     0xF800; /* Reserved Bits */
531 
532 ushort_t pcie_bdg_command_default_fw =
533     PCI_BCNF_BCNTRL_ISA_ENABLE |
534     PCI_BCNF_BCNTRL_VGA_ENABLE |
535     0xF000; /* Reserved Bits */
536 
537 /* PCI-Express Base error defaults */
538 ushort_t pcie_base_err_default =
539     PCIE_DEVCTL_CE_REPORTING_EN |
540     PCIE_DEVCTL_NFE_REPORTING_EN |
541     PCIE_DEVCTL_FE_REPORTING_EN |
542     PCIE_DEVCTL_UR_REPORTING_EN;
543 
544 /* PCI-Express Device Control Register */
545 uint16_t pcie_devctl_default = PCIE_DEVCTL_RO_EN |
546     PCIE_DEVCTL_MAX_READ_REQ_512;
547 
548 /* PCI-Express AER Root Control Register */
549 #define	PCIE_ROOT_SYS_ERR	(PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | \
550 				PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | \
551 				PCIE_ROOTCTL_SYS_ERR_ON_FE_EN)
552 
553 ushort_t pcie_root_ctrl_default =
554     PCIE_ROOTCTL_SYS_ERR_ON_CE_EN |
555     PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN |
556     PCIE_ROOTCTL_SYS_ERR_ON_FE_EN;
557 
558 /* PCI-Express Root Error Command Register */
559 ushort_t pcie_root_error_cmd_default =
560     PCIE_AER_RE_CMD_CE_REP_EN |
561     PCIE_AER_RE_CMD_NFE_REP_EN |
562     PCIE_AER_RE_CMD_FE_REP_EN;
563 
564 /* ECRC settings in the PCIe AER Control Register */
565 uint32_t pcie_ecrc_value =
566     PCIE_AER_CTL_ECRC_GEN_ENA |
567     PCIE_AER_CTL_ECRC_CHECK_ENA;
568 
569 /*
570  * If a particular platform wants to disable certain errors such as UR/MA,
571  * instead of using #defines have the platform's PCIe Root Complex driver set
572  * these masks using the pcie_get_XXX_mask and pcie_set_XXX_mask functions.  For
573  * x86 the closest thing to a PCIe root complex driver is NPE.	For SPARC the
574  * closest PCIe root complex driver is PX.
575  *
576  * pcie_serr_disable_flag : disable SERR only (in RCR and command reg) x86
577  * systems may want to disable SERR in general.  For root ports, enabling SERR
578  * causes NMIs which are not handled and results in a watchdog timeout error.
579  */
580 uint32_t pcie_aer_uce_mask = 0;		/* AER UE Mask */
581 uint32_t pcie_aer_ce_mask = 0;		/* AER CE Mask */
582 uint32_t pcie_aer_suce_mask = 0;	/* AER Secondary UE Mask */
583 uint32_t pcie_serr_disable_flag = 0;	/* Disable SERR */
584 
585 /* Default severities needed for eversholt.  Error handling doesn't care */
586 uint32_t pcie_aer_uce_severity = PCIE_AER_UCE_MTLP | PCIE_AER_UCE_RO | \
587     PCIE_AER_UCE_FCP | PCIE_AER_UCE_SD | PCIE_AER_UCE_DLP | \
588     PCIE_AER_UCE_TRAINING;
589 uint32_t pcie_aer_suce_severity = PCIE_AER_SUCE_SERR_ASSERT | \
590     PCIE_AER_SUCE_UC_ADDR_ERR | PCIE_AER_SUCE_UC_ATTR_ERR | \
591     PCIE_AER_SUCE_USC_MSG_DATA_ERR;
592 
593 int pcie_disable_ari = 0;
594 
595 /*
596  * On some platforms, such as the AMD B450 chipset, we've seen an odd
597  * relationship between enabling link bandwidth notifications and AERs about
598  * ECRC errors. This provides a mechanism to disable it.
599  */
600 int pcie_disable_lbw = 0;
601 
602 /*
603  * Amount of time to wait for an in-progress retraining. The default is to try
604  * 500 times in 10ms chunks, thus a total of 5s.
605  */
606 uint32_t pcie_link_retrain_count = 500;
607 uint32_t pcie_link_retrain_delay_ms = 10;
608 
609 taskq_t *pcie_link_tq;
610 kmutex_t pcie_link_tq_mutex;
611 
612 static int pcie_link_bw_intr(dev_info_t *);
613 static void pcie_capture_speeds(dev_info_t *);
614 
615 dev_info_t *pcie_get_rc_dip(dev_info_t *dip);
616 
617 /*
618  * modload support
619  */
620 
621 static struct modlmisc modlmisc	= {
622 	&mod_miscops,	/* Type	of module */
623 	"PCI Express Framework Module"
624 };
625 
626 static struct modlinkage modlinkage = {
627 	MODREV_1,
628 	(void	*)&modlmisc,
629 	NULL
630 };
631 
632 /*
633  * Global Variables needed for a non-atomic version of ddi_fm_ereport_post.
634  * Currently used to send the pci.fabric ereports whose payload depends on the
635  * type of PCI device it is being sent for.
636  */
637 char		*pcie_nv_buf;
638 nv_alloc_t	*pcie_nvap;
639 nvlist_t	*pcie_nvl;
640 
641 int
642 _init(void)
643 {
644 	int rval;
645 
646 	pcie_nv_buf = kmem_alloc(ERPT_DATA_SZ, KM_SLEEP);
647 	pcie_nvap = fm_nva_xcreate(pcie_nv_buf, ERPT_DATA_SZ);
648 	pcie_nvl = fm_nvlist_create(pcie_nvap);
649 	mutex_init(&pcie_link_tq_mutex, NULL, MUTEX_DRIVER, NULL);
650 
651 	if ((rval = mod_install(&modlinkage)) != 0) {
652 		mutex_destroy(&pcie_link_tq_mutex);
653 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
654 		fm_nva_xdestroy(pcie_nvap);
655 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
656 	}
657 	return (rval);
658 }
659 
660 int
661 _fini()
662 {
663 	int		rval;
664 
665 	if ((rval = mod_remove(&modlinkage)) == 0) {
666 		if (pcie_link_tq != NULL) {
667 			taskq_destroy(pcie_link_tq);
668 		}
669 		mutex_destroy(&pcie_link_tq_mutex);
670 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
671 		fm_nva_xdestroy(pcie_nvap);
672 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
673 	}
674 	return (rval);
675 }
676 
677 int
678 _info(struct modinfo *modinfop)
679 {
680 	return (mod_info(&modlinkage, modinfop));
681 }
682 
683 /* ARGSUSED */
684 int
685 pcie_init(dev_info_t *dip, caddr_t arg)
686 {
687 	int	ret = DDI_SUCCESS;
688 
689 	/*
690 	 * Our _init function is too early to create a taskq. Create the pcie
691 	 * link management taskq here now instead.
692 	 */
693 	mutex_enter(&pcie_link_tq_mutex);
694 	if (pcie_link_tq == NULL) {
695 		pcie_link_tq = taskq_create("pcie_link", 1, minclsyspri, 0, 0,
696 		    0);
697 	}
698 	mutex_exit(&pcie_link_tq_mutex);
699 
700 
701 	/*
702 	 * Create a "devctl" minor node to support DEVCTL_DEVICE_*
703 	 * and DEVCTL_BUS_* ioctls to this bus.
704 	 */
705 	if ((ret = ddi_create_minor_node(dip, "devctl", S_IFCHR,
706 	    PCI_MINOR_NUM(ddi_get_instance(dip), PCI_DEVCTL_MINOR),
707 	    DDI_NT_NEXUS, 0)) != DDI_SUCCESS) {
708 		PCIE_DBG("Failed to create devctl minor node for %s%d\n",
709 		    ddi_driver_name(dip), ddi_get_instance(dip));
710 
711 		return (ret);
712 	}
713 
714 	if ((ret = pcie_hp_init(dip, arg)) != DDI_SUCCESS) {
715 		/*
716 		 * On some x86 platforms, we observed unexpected hotplug
717 		 * initialization failures in recent years. The known cause
718 		 * is a hardware issue: while the problem PCI bridges have
719 		 * the Hotplug Capable registers set, the machine actually
720 		 * does not implement the expected ACPI object.
721 		 *
722 		 * We don't want to stop PCI driver attach and system boot
723 		 * just because of this hotplug initialization failure.
724 		 * Continue with a debug message printed.
725 		 */
726 		PCIE_DBG("%s%d: Failed setting hotplug framework\n",
727 		    ddi_driver_name(dip), ddi_get_instance(dip));
728 
729 #if defined(__sparc)
730 		ddi_remove_minor_node(dip, "devctl");
731 
732 		return (ret);
733 #endif /* defined(__sparc) */
734 	}
735 
736 	return (DDI_SUCCESS);
737 }
738 
739 /* ARGSUSED */
740 int
741 pcie_uninit(dev_info_t *dip)
742 {
743 	int	ret = DDI_SUCCESS;
744 
745 	if (pcie_ari_is_enabled(dip) == PCIE_ARI_FORW_ENABLED)
746 		(void) pcie_ari_disable(dip);
747 
748 	if ((ret = pcie_hp_uninit(dip)) != DDI_SUCCESS) {
749 		PCIE_DBG("Failed to uninitialize hotplug for %s%d\n",
750 		    ddi_driver_name(dip), ddi_get_instance(dip));
751 
752 		return (ret);
753 	}
754 
755 	if (pcie_link_bw_supported(dip)) {
756 		(void) pcie_link_bw_disable(dip);
757 	}
758 
759 	ddi_remove_minor_node(dip, "devctl");
760 
761 	return (ret);
762 }
763 
764 /*
765  * PCIe module interface for enabling hotplug interrupt.
766  *
767  * It should be called after pcie_init() is done and bus driver's
768  * interrupt handlers have being attached.
769  */
770 int
771 pcie_hpintr_enable(dev_info_t *dip)
772 {
773 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
774 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
775 
776 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
777 		(void) (ctrl_p->hc_ops.enable_hpc_intr)(ctrl_p);
778 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
779 		(void) pcishpc_enable_irqs(ctrl_p);
780 	}
781 	return (DDI_SUCCESS);
782 }
783 
784 /*
785  * PCIe module interface for disabling hotplug interrupt.
786  *
787  * It should be called before pcie_uninit() is called and bus driver's
788  * interrupt handlers is dettached.
789  */
790 int
791 pcie_hpintr_disable(dev_info_t *dip)
792 {
793 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
794 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
795 
796 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
797 		(void) (ctrl_p->hc_ops.disable_hpc_intr)(ctrl_p);
798 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
799 		(void) pcishpc_disable_irqs(ctrl_p);
800 	}
801 	return (DDI_SUCCESS);
802 }
803 
804 /* ARGSUSED */
805 int
806 pcie_intr(dev_info_t *dip)
807 {
808 	int hp, lbw;
809 
810 	hp = pcie_hp_intr(dip);
811 	lbw = pcie_link_bw_intr(dip);
812 
813 	if (hp == DDI_INTR_CLAIMED || lbw == DDI_INTR_CLAIMED) {
814 		return (DDI_INTR_CLAIMED);
815 	}
816 
817 	return (DDI_INTR_UNCLAIMED);
818 }
819 
820 /* ARGSUSED */
821 int
822 pcie_open(dev_info_t *dip, dev_t *devp, int flags, int otyp, cred_t *credp)
823 {
824 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
825 
826 	/*
827 	 * Make sure the open is for the right file type.
828 	 */
829 	if (otyp != OTYP_CHR)
830 		return (EINVAL);
831 
832 	/*
833 	 * Handle the open by tracking the device state.
834 	 */
835 	if ((bus_p->bus_soft_state == PCI_SOFT_STATE_OPEN_EXCL) ||
836 	    ((flags & FEXCL) &&
837 	    (bus_p->bus_soft_state != PCI_SOFT_STATE_CLOSED))) {
838 		return (EBUSY);
839 	}
840 
841 	if (flags & FEXCL)
842 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN_EXCL;
843 	else
844 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN;
845 
846 	return (0);
847 }
848 
849 /* ARGSUSED */
850 int
851 pcie_close(dev_info_t *dip, dev_t dev, int flags, int otyp, cred_t *credp)
852 {
853 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
854 
855 	if (otyp != OTYP_CHR)
856 		return (EINVAL);
857 
858 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
859 
860 	return (0);
861 }
862 
863 /* ARGSUSED */
864 int
865 pcie_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg, int mode,
866     cred_t *credp, int *rvalp)
867 {
868 	struct devctl_iocdata	*dcp;
869 	uint_t			bus_state;
870 	int			rv = DDI_SUCCESS;
871 
872 	/*
873 	 * We can use the generic implementation for devctl ioctl
874 	 */
875 	switch (cmd) {
876 	case DEVCTL_DEVICE_GETSTATE:
877 	case DEVCTL_DEVICE_ONLINE:
878 	case DEVCTL_DEVICE_OFFLINE:
879 	case DEVCTL_BUS_GETSTATE:
880 		return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
881 	default:
882 		break;
883 	}
884 
885 	/*
886 	 * read devctl ioctl data
887 	 */
888 	if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
889 		return (EFAULT);
890 
891 	switch (cmd) {
892 	case DEVCTL_BUS_QUIESCE:
893 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
894 			if (bus_state == BUS_QUIESCED)
895 				break;
896 		(void) ndi_set_bus_state(dip, BUS_QUIESCED);
897 		break;
898 	case DEVCTL_BUS_UNQUIESCE:
899 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
900 			if (bus_state == BUS_ACTIVE)
901 				break;
902 		(void) ndi_set_bus_state(dip, BUS_ACTIVE);
903 		break;
904 	case DEVCTL_BUS_RESET:
905 	case DEVCTL_BUS_RESETALL:
906 	case DEVCTL_DEVICE_RESET:
907 		rv = ENOTSUP;
908 		break;
909 	default:
910 		rv = ENOTTY;
911 	}
912 
913 	ndi_dc_freehdl(dcp);
914 	return (rv);
915 }
916 
917 /* ARGSUSED */
918 int
919 pcie_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
920     int flags, char *name, caddr_t valuep, int *lengthp)
921 {
922 	if (dev == DDI_DEV_T_ANY)
923 		goto skip;
924 
925 	if (PCIE_IS_HOTPLUG_CAPABLE(dip) &&
926 	    strcmp(name, "pci-occupant") == 0) {
927 		int	pci_dev = PCI_MINOR_NUM_TO_PCI_DEVNUM(getminor(dev));
928 
929 		pcie_hp_create_occupant_props(dip, dev, pci_dev);
930 	}
931 
932 skip:
933 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
934 }
935 
936 int
937 pcie_init_cfghdl(dev_info_t *cdip)
938 {
939 	pcie_bus_t		*bus_p;
940 	ddi_acc_handle_t	eh = NULL;
941 
942 	bus_p = PCIE_DIP2BUS(cdip);
943 	if (bus_p == NULL)
944 		return (DDI_FAILURE);
945 
946 	/* Create an config access special to error handling */
947 	if (pci_config_setup(cdip, &eh) != DDI_SUCCESS) {
948 		cmn_err(CE_WARN, "Cannot setup config access"
949 		    " for BDF 0x%x\n", bus_p->bus_bdf);
950 		return (DDI_FAILURE);
951 	}
952 
953 	bus_p->bus_cfg_hdl = eh;
954 	return (DDI_SUCCESS);
955 }
956 
957 void
958 pcie_fini_cfghdl(dev_info_t *cdip)
959 {
960 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(cdip);
961 
962 	pci_config_teardown(&bus_p->bus_cfg_hdl);
963 }
964 
965 void
966 pcie_determine_serial(dev_info_t *dip)
967 {
968 	pcie_bus_t		*bus_p = PCIE_DIP2BUS(dip);
969 	ddi_acc_handle_t	h;
970 	uint16_t		cap;
971 	uchar_t			serial[8];
972 	uint32_t		low, high;
973 
974 	if (!PCIE_IS_PCIE(bus_p))
975 		return;
976 
977 	h = bus_p->bus_cfg_hdl;
978 
979 	if ((PCI_CAP_LOCATE(h, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap)) ==
980 	    DDI_FAILURE)
981 		return;
982 
983 	high = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_UPPER_DW);
984 	low = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_LOWER_DW);
985 
986 	/*
987 	 * Here, we're trying to figure out if we had an invalid PCIe read. From
988 	 * looking at the contents of the value, it can be hard to tell the
989 	 * difference between a value that has all 1s correctly versus if we had
990 	 * an error. In this case, we only assume it's invalid if both register
991 	 * reads are invalid. We also only use 32-bit reads as we're not sure if
992 	 * all devices will support these as 64-bit reads, while we know that
993 	 * they'll support these as 32-bit reads.
994 	 */
995 	if (high == PCI_EINVAL32 && low == PCI_EINVAL32)
996 		return;
997 
998 	serial[0] = low & 0xff;
999 	serial[1] = (low >> 8) & 0xff;
1000 	serial[2] = (low >> 16) & 0xff;
1001 	serial[3] = (low >> 24) & 0xff;
1002 	serial[4] = high & 0xff;
1003 	serial[5] = (high >> 8) & 0xff;
1004 	serial[6] = (high >> 16) & 0xff;
1005 	serial[7] = (high >> 24) & 0xff;
1006 
1007 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, "pcie-serial",
1008 	    serial, sizeof (serial));
1009 }
1010 
1011 static void
1012 pcie_determine_aspm(dev_info_t *dip)
1013 {
1014 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1015 	uint32_t	linkcap;
1016 	uint16_t	linkctl;
1017 
1018 	if (!PCIE_IS_PCIE(bus_p))
1019 		return;
1020 
1021 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1022 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
1023 
1024 	switch (linkcap & PCIE_LINKCAP_ASPM_SUP_MASK) {
1025 	case PCIE_LINKCAP_ASPM_SUP_L0S:
1026 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1027 		    "pcie-aspm-support", "l0s");
1028 		break;
1029 	case PCIE_LINKCAP_ASPM_SUP_L1:
1030 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1031 		    "pcie-aspm-support", "l1");
1032 		break;
1033 	case PCIE_LINKCAP_ASPM_SUP_L0S_L1:
1034 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1035 		    "pcie-aspm-support", "l0s,l1");
1036 		break;
1037 	default:
1038 		return;
1039 	}
1040 
1041 	switch (linkctl & PCIE_LINKCTL_ASPM_CTL_MASK) {
1042 	case PCIE_LINKCTL_ASPM_CTL_DIS:
1043 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1044 		    "pcie-aspm-state", "disabled");
1045 		break;
1046 	case PCIE_LINKCTL_ASPM_CTL_L0S:
1047 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1048 		    "pcie-aspm-state", "l0s");
1049 		break;
1050 	case PCIE_LINKCTL_ASPM_CTL_L1:
1051 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1052 		    "pcie-aspm-state", "l1");
1053 		break;
1054 	case PCIE_LINKCTL_ASPM_CTL_L0S_L1:
1055 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1056 		    "pcie-aspm-state", "l0s,l1");
1057 		break;
1058 	}
1059 }
1060 
1061 /*
1062  * PCI-Express child device initialization. Note, this only will be called on a
1063  * device or function if we actually attach a device driver to it.
1064  *
1065  * This function enables generic pci-express interrupts and error handling.
1066  * Note, tagging, the max packet size, and related are all set up before this
1067  * point and is performed in pcie_fabric_setup().
1068  *
1069  * @param pdip		root dip (root nexus's dip)
1070  * @param cdip		child's dip (device's dip)
1071  * @return		DDI_SUCCESS or DDI_FAILURE
1072  */
1073 /* ARGSUSED */
1074 int
1075 pcie_initchild(dev_info_t *cdip)
1076 {
1077 	uint16_t		tmp16, reg16;
1078 	pcie_bus_t		*bus_p;
1079 	uint32_t		devid, venid;
1080 
1081 	bus_p = PCIE_DIP2BUS(cdip);
1082 	if (bus_p == NULL) {
1083 		PCIE_DBG("%s: BUS not found.\n",
1084 		    ddi_driver_name(cdip));
1085 
1086 		return (DDI_FAILURE);
1087 	}
1088 
1089 	if (pcie_init_cfghdl(cdip) != DDI_SUCCESS)
1090 		return (DDI_FAILURE);
1091 
1092 	/*
1093 	 * Update pcie_bus_t with real Vendor Id Device Id.
1094 	 *
1095 	 * For assigned devices in IOV environment, the OBP will return
1096 	 * faked device id/vendor id on configration read and for both
1097 	 * properties in root domain. translate_devid() function will
1098 	 * update the properties with real device-id/vendor-id on such
1099 	 * platforms, so that we can utilize the properties here to get
1100 	 * real device-id/vendor-id and overwrite the faked ids.
1101 	 *
1102 	 * For unassigned devices or devices in non-IOV environment, the
1103 	 * operation below won't make a difference.
1104 	 *
1105 	 * The IOV implementation only supports assignment of PCIE
1106 	 * endpoint devices. Devices under pci-pci bridges don't need
1107 	 * operation like this.
1108 	 */
1109 	devid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1110 	    "device-id", -1);
1111 	venid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1112 	    "vendor-id", -1);
1113 	bus_p->bus_dev_ven_id = (devid << 16) | (venid & 0xffff);
1114 
1115 	/* Clear the device's status register */
1116 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_STAT);
1117 	PCIE_PUT(16, bus_p, PCI_CONF_STAT, reg16);
1118 
1119 	/* Setup the device's command register */
1120 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_COMM);
1121 	tmp16 = (reg16 & pcie_command_default_fw) | pcie_command_default;
1122 
1123 #if defined(__x86)
1124 	boolean_t empty_io_range = B_FALSE;
1125 	boolean_t empty_mem_range = B_FALSE;
1126 	/*
1127 	 * Check for empty IO and Mem ranges on bridges. If so disable IO/Mem
1128 	 * access as it can cause a hang if enabled.
1129 	 */
1130 	pcie_check_io_mem_range(bus_p->bus_cfg_hdl, &empty_io_range,
1131 	    &empty_mem_range);
1132 	if ((empty_io_range == B_TRUE) &&
1133 	    (pcie_command_default & PCI_COMM_IO)) {
1134 		tmp16 &= ~PCI_COMM_IO;
1135 		PCIE_DBG("No I/O range found for %s, bdf 0x%x\n",
1136 		    ddi_driver_name(cdip), bus_p->bus_bdf);
1137 	}
1138 	if ((empty_mem_range == B_TRUE) &&
1139 	    (pcie_command_default & PCI_COMM_MAE)) {
1140 		tmp16 &= ~PCI_COMM_MAE;
1141 		PCIE_DBG("No Mem range found for %s, bdf 0x%x\n",
1142 		    ddi_driver_name(cdip), bus_p->bus_bdf);
1143 	}
1144 #endif /* defined(__x86) */
1145 
1146 	if (pcie_serr_disable_flag && PCIE_IS_PCIE(bus_p))
1147 		tmp16 &= ~PCI_COMM_SERR_ENABLE;
1148 
1149 	PCIE_PUT(16, bus_p, PCI_CONF_COMM, tmp16);
1150 	PCIE_DBG_CFG(cdip, bus_p, "COMMAND", 16, PCI_CONF_COMM, reg16);
1151 
1152 	/*
1153 	 * If the device has a bus control register then program it
1154 	 * based on the settings in the command register.
1155 	 */
1156 	if (PCIE_IS_BDG(bus_p)) {
1157 		/* Clear the device's secondary status register */
1158 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_SEC_STATUS);
1159 		PCIE_PUT(16, bus_p, PCI_BCNF_SEC_STATUS, reg16);
1160 
1161 		/* Setup the device's secondary command register */
1162 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_BCNTRL);
1163 		tmp16 = (reg16 & pcie_bdg_command_default_fw);
1164 
1165 		tmp16 |= PCI_BCNF_BCNTRL_SERR_ENABLE;
1166 		/*
1167 		 * Workaround for this Nvidia bridge. Don't enable the SERR
1168 		 * enable bit in the bridge control register as it could lead to
1169 		 * bogus NMIs.
1170 		 */
1171 		if (bus_p->bus_dev_ven_id == 0x037010DE)
1172 			tmp16 &= ~PCI_BCNF_BCNTRL_SERR_ENABLE;
1173 
1174 		if (pcie_command_default & PCI_COMM_PARITY_DETECT)
1175 			tmp16 |= PCI_BCNF_BCNTRL_PARITY_ENABLE;
1176 
1177 		/*
1178 		 * Enable Master Abort Mode only if URs have not been masked.
1179 		 * For PCI and PCIe-PCI bridges, enabling this bit causes a
1180 		 * Master Aborts/UR to be forwarded as a UR/TA or SERR.  If this
1181 		 * bit is masked, posted requests are dropped and non-posted
1182 		 * requests are returned with -1.
1183 		 */
1184 		if (pcie_aer_uce_mask & PCIE_AER_UCE_UR)
1185 			tmp16 &= ~PCI_BCNF_BCNTRL_MAST_AB_MODE;
1186 		else
1187 			tmp16 |= PCI_BCNF_BCNTRL_MAST_AB_MODE;
1188 		PCIE_PUT(16, bus_p, PCI_BCNF_BCNTRL, tmp16);
1189 		PCIE_DBG_CFG(cdip, bus_p, "SEC CMD", 16, PCI_BCNF_BCNTRL,
1190 		    reg16);
1191 	}
1192 
1193 	if (PCIE_IS_PCIE(bus_p)) {
1194 		/* Setup PCIe device control register */
1195 		reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
1196 		/* note: MPS/MRRS are initialized in pcie_initchild_mps() */
1197 		tmp16 = (reg16 & (PCIE_DEVCTL_MAX_READ_REQ_MASK |
1198 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
1199 		    (pcie_devctl_default & ~(PCIE_DEVCTL_MAX_READ_REQ_MASK |
1200 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK));
1201 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
1202 		PCIE_DBG_CAP(cdip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
1203 
1204 		/* Enable PCIe errors */
1205 		pcie_enable_errors(cdip);
1206 
1207 		pcie_determine_serial(cdip);
1208 
1209 		pcie_determine_aspm(cdip);
1210 
1211 		pcie_capture_speeds(cdip);
1212 	}
1213 
1214 	bus_p->bus_ari = B_FALSE;
1215 	if ((pcie_ari_is_enabled(ddi_get_parent(cdip))
1216 	    == PCIE_ARI_FORW_ENABLED) && (pcie_ari_device(cdip)
1217 	    == PCIE_ARI_DEVICE)) {
1218 		bus_p->bus_ari = B_TRUE;
1219 	}
1220 
1221 	return (DDI_SUCCESS);
1222 }
1223 
1224 static void
1225 pcie_init_pfd(dev_info_t *dip)
1226 {
1227 	pf_data_t	*pfd_p = PCIE_ZALLOC(pf_data_t);
1228 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1229 
1230 	PCIE_DIP2PFD(dip) = pfd_p;
1231 
1232 	pfd_p->pe_bus_p = bus_p;
1233 	pfd_p->pe_severity_flags = 0;
1234 	pfd_p->pe_severity_mask = 0;
1235 	pfd_p->pe_orig_severity_flags = 0;
1236 	pfd_p->pe_lock = B_FALSE;
1237 	pfd_p->pe_valid = B_FALSE;
1238 
1239 	/* Allocate the root fault struct for both RC and RP */
1240 	if (PCIE_IS_ROOT(bus_p)) {
1241 		PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1242 		PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1243 		PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1244 	}
1245 
1246 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1247 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1248 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1249 
1250 	if (PCIE_IS_BDG(bus_p))
1251 		PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1252 
1253 	if (PCIE_IS_PCIE(bus_p)) {
1254 		PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1255 
1256 		if (PCIE_IS_RP(bus_p))
1257 			PCIE_RP_REG(pfd_p) =
1258 			    PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1259 
1260 		PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1261 		PCIE_ADV_REG(pfd_p)->pcie_ue_tgt_bdf = PCIE_INVALID_BDF;
1262 
1263 		if (PCIE_IS_RP(bus_p)) {
1264 			PCIE_ADV_RP_REG(pfd_p) =
1265 			    PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1266 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id =
1267 			    PCIE_INVALID_BDF;
1268 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id =
1269 			    PCIE_INVALID_BDF;
1270 		} else if (PCIE_IS_PCIE_BDG(bus_p)) {
1271 			PCIE_ADV_BDG_REG(pfd_p) =
1272 			    PCIE_ZALLOC(pf_pcie_adv_bdg_err_regs_t);
1273 			PCIE_ADV_BDG_REG(pfd_p)->pcie_sue_tgt_bdf =
1274 			    PCIE_INVALID_BDF;
1275 		}
1276 
1277 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1278 			PCIX_BDG_ERR_REG(pfd_p) =
1279 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1280 
1281 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1282 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1283 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1284 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1285 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1286 			}
1287 		}
1288 
1289 		PCIE_SLOT_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_slot_regs_t);
1290 		PCIE_SLOT_REG(pfd_p)->pcie_slot_regs_valid = B_FALSE;
1291 		PCIE_SLOT_REG(pfd_p)->pcie_slot_cap = 0;
1292 		PCIE_SLOT_REG(pfd_p)->pcie_slot_control = 0;
1293 		PCIE_SLOT_REG(pfd_p)->pcie_slot_status = 0;
1294 
1295 	} else if (PCIE_IS_PCIX(bus_p)) {
1296 		if (PCIE_IS_BDG(bus_p)) {
1297 			PCIX_BDG_ERR_REG(pfd_p) =
1298 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1299 
1300 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1301 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1302 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1303 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1304 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1305 			}
1306 		} else {
1307 			PCIX_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcix_err_regs_t);
1308 
1309 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1310 				PCIX_ECC_REG(pfd_p) =
1311 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1312 		}
1313 	}
1314 }
1315 
1316 static void
1317 pcie_fini_pfd(dev_info_t *dip)
1318 {
1319 	pf_data_t	*pfd_p = PCIE_DIP2PFD(dip);
1320 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1321 
1322 	if (PCIE_IS_PCIE(bus_p)) {
1323 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1324 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1325 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1326 				    sizeof (pf_pcix_ecc_regs_t));
1327 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1328 				    sizeof (pf_pcix_ecc_regs_t));
1329 			}
1330 
1331 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1332 			    sizeof (pf_pcix_bdg_err_regs_t));
1333 		}
1334 
1335 		if (PCIE_IS_RP(bus_p))
1336 			kmem_free(PCIE_ADV_RP_REG(pfd_p),
1337 			    sizeof (pf_pcie_adv_rp_err_regs_t));
1338 		else if (PCIE_IS_PCIE_BDG(bus_p))
1339 			kmem_free(PCIE_ADV_BDG_REG(pfd_p),
1340 			    sizeof (pf_pcie_adv_bdg_err_regs_t));
1341 
1342 		kmem_free(PCIE_ADV_REG(pfd_p),
1343 		    sizeof (pf_pcie_adv_err_regs_t));
1344 
1345 		if (PCIE_IS_RP(bus_p))
1346 			kmem_free(PCIE_RP_REG(pfd_p),
1347 			    sizeof (pf_pcie_rp_err_regs_t));
1348 
1349 		kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1350 	} else if (PCIE_IS_PCIX(bus_p)) {
1351 		if (PCIE_IS_BDG(bus_p)) {
1352 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1353 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1354 				    sizeof (pf_pcix_ecc_regs_t));
1355 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1356 				    sizeof (pf_pcix_ecc_regs_t));
1357 			}
1358 
1359 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1360 			    sizeof (pf_pcix_bdg_err_regs_t));
1361 		} else {
1362 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1363 				kmem_free(PCIX_ECC_REG(pfd_p),
1364 				    sizeof (pf_pcix_ecc_regs_t));
1365 
1366 			kmem_free(PCIX_ERR_REG(pfd_p),
1367 			    sizeof (pf_pcix_err_regs_t));
1368 		}
1369 	}
1370 
1371 	if (PCIE_IS_BDG(bus_p))
1372 		kmem_free(PCI_BDG_ERR_REG(pfd_p),
1373 		    sizeof (pf_pci_bdg_err_regs_t));
1374 
1375 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1376 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1377 
1378 	if (PCIE_IS_ROOT(bus_p)) {
1379 		kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1380 		kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1381 	}
1382 
1383 	kmem_free(PCIE_DIP2PFD(dip), sizeof (pf_data_t));
1384 
1385 	PCIE_DIP2PFD(dip) = NULL;
1386 }
1387 
1388 
1389 /*
1390  * Special functions to allocate pf_data_t's for PCIe root complexes.
1391  * Note: Root Complex not Root Port
1392  */
1393 void
1394 pcie_rc_init_pfd(dev_info_t *dip, pf_data_t *pfd_p)
1395 {
1396 	pfd_p->pe_bus_p = PCIE_DIP2DOWNBUS(dip);
1397 	pfd_p->pe_severity_flags = 0;
1398 	pfd_p->pe_severity_mask = 0;
1399 	pfd_p->pe_orig_severity_flags = 0;
1400 	pfd_p->pe_lock = B_FALSE;
1401 	pfd_p->pe_valid = B_FALSE;
1402 
1403 	PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1404 	PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1405 	PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1406 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1407 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1408 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1409 	PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1410 	PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1411 	PCIE_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1412 	PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1413 	PCIE_ADV_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1414 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = PCIE_INVALID_BDF;
1415 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = PCIE_INVALID_BDF;
1416 
1417 	PCIE_ADV_REG(pfd_p)->pcie_ue_sev = pcie_aer_uce_severity;
1418 }
1419 
1420 void
1421 pcie_rc_fini_pfd(pf_data_t *pfd_p)
1422 {
1423 	kmem_free(PCIE_ADV_RP_REG(pfd_p), sizeof (pf_pcie_adv_rp_err_regs_t));
1424 	kmem_free(PCIE_ADV_REG(pfd_p), sizeof (pf_pcie_adv_err_regs_t));
1425 	kmem_free(PCIE_RP_REG(pfd_p), sizeof (pf_pcie_rp_err_regs_t));
1426 	kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1427 	kmem_free(PCI_BDG_ERR_REG(pfd_p), sizeof (pf_pci_bdg_err_regs_t));
1428 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1429 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1430 	kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1431 	kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1432 }
1433 
1434 /*
1435  * init pcie_bus_t for root complex
1436  *
1437  * Only a few of the fields in bus_t is valid for root complex.
1438  * The fields that are bracketed are initialized in this routine:
1439  *
1440  * dev_info_t *		<bus_dip>
1441  * dev_info_t *		bus_rp_dip
1442  * ddi_acc_handle_t	bus_cfg_hdl
1443  * uint_t		<bus_fm_flags>
1444  * pcie_req_id_t	bus_bdf
1445  * pcie_req_id_t	bus_rp_bdf
1446  * uint32_t		bus_dev_ven_id
1447  * uint8_t		bus_rev_id
1448  * uint8_t		<bus_hdr_type>
1449  * uint16_t		<bus_dev_type>
1450  * uint8_t		bus_bdg_secbus
1451  * uint16_t		bus_pcie_off
1452  * uint16_t		<bus_aer_off>
1453  * uint16_t		bus_pcix_off
1454  * uint16_t		bus_ecc_ver
1455  * pci_bus_range_t	bus_bus_range
1456  * ppb_ranges_t	*	bus_addr_ranges
1457  * int			bus_addr_entries
1458  * pci_regspec_t *	bus_assigned_addr
1459  * int			bus_assigned_entries
1460  * pf_data_t *		bus_pfd
1461  * pcie_domain_t *	<bus_dom>
1462  * int			bus_mps
1463  * uint64_t		bus_cfgacc_base
1464  * void	*		bus_plat_private
1465  */
1466 void
1467 pcie_rc_init_bus(dev_info_t *dip)
1468 {
1469 	pcie_bus_t *bus_p;
1470 
1471 	bus_p = (pcie_bus_t *)kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1472 	bus_p->bus_dip = dip;
1473 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_RC_PSEUDO;
1474 	bus_p->bus_hdr_type = PCI_HEADER_ONE;
1475 
1476 	/* Fake that there are AER logs */
1477 	bus_p->bus_aer_off = (uint16_t)-1;
1478 
1479 	/* Needed only for handle lookup */
1480 	atomic_or_uint(&bus_p->bus_fm_flags, PF_FM_READY);
1481 
1482 	ndi_set_bus_private(dip, B_FALSE, DEVI_PORT_TYPE_PCI, bus_p);
1483 
1484 	PCIE_BUS2DOM(bus_p) = PCIE_ZALLOC(pcie_domain_t);
1485 }
1486 
1487 void
1488 pcie_rc_fini_bus(dev_info_t *dip)
1489 {
1490 	pcie_bus_t *bus_p = PCIE_DIP2DOWNBUS(dip);
1491 	ndi_set_bus_private(dip, B_FALSE, 0, NULL);
1492 	kmem_free(PCIE_BUS2DOM(bus_p), sizeof (pcie_domain_t));
1493 	kmem_free(bus_p, sizeof (pcie_bus_t));
1494 }
1495 
1496 static int
1497 pcie_width_to_int(pcie_link_width_t width)
1498 {
1499 	switch (width) {
1500 	case PCIE_LINK_WIDTH_X1:
1501 		return (1);
1502 	case PCIE_LINK_WIDTH_X2:
1503 		return (2);
1504 	case PCIE_LINK_WIDTH_X4:
1505 		return (4);
1506 	case PCIE_LINK_WIDTH_X8:
1507 		return (8);
1508 	case PCIE_LINK_WIDTH_X12:
1509 		return (12);
1510 	case PCIE_LINK_WIDTH_X16:
1511 		return (16);
1512 	case PCIE_LINK_WIDTH_X32:
1513 		return (32);
1514 	default:
1515 		return (0);
1516 	}
1517 }
1518 
1519 /*
1520  * Return the speed in Transfers / second. This is a signed quantity to match
1521  * the ndi/ddi property interfaces.
1522  */
1523 static int64_t
1524 pcie_speed_to_int(pcie_link_speed_t speed)
1525 {
1526 	switch (speed) {
1527 	case PCIE_LINK_SPEED_2_5:
1528 		return (2500000000LL);
1529 	case PCIE_LINK_SPEED_5:
1530 		return (5000000000LL);
1531 	case PCIE_LINK_SPEED_8:
1532 		return (8000000000LL);
1533 	case PCIE_LINK_SPEED_16:
1534 		return (16000000000LL);
1535 	case PCIE_LINK_SPEED_32:
1536 		return (32000000000LL);
1537 	case PCIE_LINK_SPEED_64:
1538 		return (64000000000LL);
1539 	default:
1540 		return (0);
1541 	}
1542 }
1543 
1544 /*
1545  * Translate the recorded speed information into devinfo properties.
1546  */
1547 static void
1548 pcie_speeds_to_devinfo(dev_info_t *dip, pcie_bus_t *bus_p)
1549 {
1550 	if (bus_p->bus_max_width != PCIE_LINK_WIDTH_UNKNOWN) {
1551 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1552 		    "pcie-link-maximum-width",
1553 		    pcie_width_to_int(bus_p->bus_max_width));
1554 	}
1555 
1556 	if (bus_p->bus_cur_width != PCIE_LINK_WIDTH_UNKNOWN) {
1557 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1558 		    "pcie-link-current-width",
1559 		    pcie_width_to_int(bus_p->bus_cur_width));
1560 	}
1561 
1562 	if (bus_p->bus_cur_speed != PCIE_LINK_SPEED_UNKNOWN) {
1563 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1564 		    "pcie-link-current-speed",
1565 		    pcie_speed_to_int(bus_p->bus_cur_speed));
1566 	}
1567 
1568 	if (bus_p->bus_max_speed != PCIE_LINK_SPEED_UNKNOWN) {
1569 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1570 		    "pcie-link-maximum-speed",
1571 		    pcie_speed_to_int(bus_p->bus_max_speed));
1572 	}
1573 
1574 	if (bus_p->bus_target_speed != PCIE_LINK_SPEED_UNKNOWN) {
1575 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1576 		    "pcie-link-target-speed",
1577 		    pcie_speed_to_int(bus_p->bus_target_speed));
1578 	}
1579 
1580 	if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) {
1581 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
1582 		    "pcie-link-admin-target-speed");
1583 	}
1584 
1585 	if (bus_p->bus_sup_speed != PCIE_LINK_SPEED_UNKNOWN) {
1586 		int64_t speeds[PCIE_NSPEEDS];
1587 		uint_t nspeeds = 0;
1588 
1589 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_2_5) {
1590 			speeds[nspeeds++] =
1591 			    pcie_speed_to_int(PCIE_LINK_SPEED_2_5);
1592 		}
1593 
1594 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_5) {
1595 			speeds[nspeeds++] =
1596 			    pcie_speed_to_int(PCIE_LINK_SPEED_5);
1597 		}
1598 
1599 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_8) {
1600 			speeds[nspeeds++] =
1601 			    pcie_speed_to_int(PCIE_LINK_SPEED_8);
1602 		}
1603 
1604 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_16) {
1605 			speeds[nspeeds++] =
1606 			    pcie_speed_to_int(PCIE_LINK_SPEED_16);
1607 		}
1608 
1609 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_32) {
1610 			speeds[nspeeds++] =
1611 			    pcie_speed_to_int(PCIE_LINK_SPEED_32);
1612 		}
1613 
1614 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_64) {
1615 			speeds[nspeeds++] =
1616 			    pcie_speed_to_int(PCIE_LINK_SPEED_64);
1617 		}
1618 
1619 		(void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip,
1620 		    "pcie-link-supported-speeds", speeds, nspeeds);
1621 	}
1622 }
1623 
1624 /*
1625  * We need to capture the supported, maximum, and current device speed and
1626  * width. The way that this has been done has changed over time.
1627  *
1628  * Prior to PCIe Gen 3, there were only current and supported speed fields.
1629  * These were found in the link status and link capabilities registers of the
1630  * PCI express capability. With the change to PCIe Gen 3, the information in the
1631  * link capabilities changed to the maximum value. The supported speeds vector
1632  * was moved to the link capabilities 2 register.
1633  *
1634  * Now, a device may not implement some of these registers. To determine whether
1635  * or not it's here, we have to do the following. First, we need to check the
1636  * revision of the PCI express capability. The link capabilities 2 register did
1637  * not exist prior to version 2 of this capability. If a modern device does not
1638  * implement it, it is supposed to return zero for the register.
1639  */
1640 static void
1641 pcie_capture_speeds(dev_info_t *dip)
1642 {
1643 	uint16_t	vers, status;
1644 	uint32_t	cap, cap2, ctl2;
1645 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1646 	dev_info_t	*rcdip;
1647 
1648 	if (!PCIE_IS_PCIE(bus_p))
1649 		return;
1650 
1651 	rcdip = pcie_get_rc_dip(dip);
1652 	if (bus_p->bus_cfg_hdl == NULL) {
1653 		vers = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1654 		    bus_p->bus_pcie_off + PCIE_PCIECAP);
1655 	} else {
1656 		vers = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
1657 	}
1658 	if (vers == PCI_EINVAL16)
1659 		return;
1660 	vers &= PCIE_PCIECAP_VER_MASK;
1661 
1662 	/*
1663 	 * Verify the capability's version.
1664 	 */
1665 	switch (vers) {
1666 	case PCIE_PCIECAP_VER_1_0:
1667 		cap2 = 0;
1668 		ctl2 = 0;
1669 		break;
1670 	case PCIE_PCIECAP_VER_2_0:
1671 		if (bus_p->bus_cfg_hdl == NULL) {
1672 			cap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1673 			    bus_p->bus_pcie_off + PCIE_LINKCAP2);
1674 			ctl2 = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1675 			    bus_p->bus_pcie_off + PCIE_LINKCTL2);
1676 		} else {
1677 			cap2 = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP2);
1678 			ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
1679 		}
1680 		if (cap2 == PCI_EINVAL32)
1681 			cap2 = 0;
1682 		if (ctl2 == PCI_EINVAL16)
1683 			ctl2 = 0;
1684 		break;
1685 	default:
1686 		/* Don't try and handle an unknown version */
1687 		return;
1688 	}
1689 
1690 	if (bus_p->bus_cfg_hdl == NULL) {
1691 		status = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1692 		    bus_p->bus_pcie_off + PCIE_LINKSTS);
1693 		cap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1694 		    bus_p->bus_pcie_off + PCIE_LINKCAP);
1695 	} else {
1696 		status = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
1697 		cap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1698 	}
1699 	if (status == PCI_EINVAL16 || cap == PCI_EINVAL32)
1700 		return;
1701 
1702 	mutex_enter(&bus_p->bus_speed_mutex);
1703 
1704 	switch (status & PCIE_LINKSTS_SPEED_MASK) {
1705 	case PCIE_LINKSTS_SPEED_2_5:
1706 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_2_5;
1707 		break;
1708 	case PCIE_LINKSTS_SPEED_5:
1709 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_5;
1710 		break;
1711 	case PCIE_LINKSTS_SPEED_8:
1712 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_8;
1713 		break;
1714 	case PCIE_LINKSTS_SPEED_16:
1715 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_16;
1716 		break;
1717 	case PCIE_LINKSTS_SPEED_32:
1718 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_32;
1719 		break;
1720 	case PCIE_LINKSTS_SPEED_64:
1721 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_64;
1722 		break;
1723 	default:
1724 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN;
1725 		break;
1726 	}
1727 
1728 	switch (status & PCIE_LINKSTS_NEG_WIDTH_MASK) {
1729 	case PCIE_LINKSTS_NEG_WIDTH_X1:
1730 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X1;
1731 		break;
1732 	case PCIE_LINKSTS_NEG_WIDTH_X2:
1733 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X2;
1734 		break;
1735 	case PCIE_LINKSTS_NEG_WIDTH_X4:
1736 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X4;
1737 		break;
1738 	case PCIE_LINKSTS_NEG_WIDTH_X8:
1739 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X8;
1740 		break;
1741 	case PCIE_LINKSTS_NEG_WIDTH_X12:
1742 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X12;
1743 		break;
1744 	case PCIE_LINKSTS_NEG_WIDTH_X16:
1745 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X16;
1746 		break;
1747 	case PCIE_LINKSTS_NEG_WIDTH_X32:
1748 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X32;
1749 		break;
1750 	default:
1751 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN;
1752 		break;
1753 	}
1754 
1755 	switch (cap & PCIE_LINKCAP_MAX_WIDTH_MASK) {
1756 	case PCIE_LINKCAP_MAX_WIDTH_X1:
1757 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X1;
1758 		break;
1759 	case PCIE_LINKCAP_MAX_WIDTH_X2:
1760 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X2;
1761 		break;
1762 	case PCIE_LINKCAP_MAX_WIDTH_X4:
1763 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X4;
1764 		break;
1765 	case PCIE_LINKCAP_MAX_WIDTH_X8:
1766 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X8;
1767 		break;
1768 	case PCIE_LINKCAP_MAX_WIDTH_X12:
1769 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X12;
1770 		break;
1771 	case PCIE_LINKCAP_MAX_WIDTH_X16:
1772 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X16;
1773 		break;
1774 	case PCIE_LINKCAP_MAX_WIDTH_X32:
1775 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X32;
1776 		break;
1777 	default:
1778 		bus_p->bus_max_width = PCIE_LINK_WIDTH_UNKNOWN;
1779 		break;
1780 	}
1781 
1782 	/*
1783 	 * If we have the Link Capabilities 2, then we can get the supported
1784 	 * speeds from it and treat the bits in Link Capabilities 1 as the
1785 	 * maximum. If we don't, then we need to follow the Implementation Note
1786 	 * in the standard under Link Capabilities 2. Effectively, this means
1787 	 * that if the value of 10b is set in Link Capabilities register, that
1788 	 * it supports both 2.5 and 5 GT/s speeds.
1789 	 */
1790 	if (cap2 != 0) {
1791 		if (cap2 & PCIE_LINKCAP2_SPEED_2_5)
1792 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_2_5;
1793 		if (cap2 & PCIE_LINKCAP2_SPEED_5)
1794 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_5;
1795 		if (cap2 & PCIE_LINKCAP2_SPEED_8)
1796 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_8;
1797 		if (cap2 & PCIE_LINKCAP2_SPEED_16)
1798 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_16;
1799 		if (cap2 & PCIE_LINKCAP2_SPEED_32)
1800 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_32;
1801 		if (cap2 & PCIE_LINKCAP2_SPEED_64)
1802 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_64;
1803 
1804 		switch (cap & PCIE_LINKCAP_MAX_SPEED_MASK) {
1805 		case PCIE_LINKCAP_MAX_SPEED_2_5:
1806 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1807 			break;
1808 		case PCIE_LINKCAP_MAX_SPEED_5:
1809 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1810 			break;
1811 		case PCIE_LINKCAP_MAX_SPEED_8:
1812 			bus_p->bus_max_speed = PCIE_LINK_SPEED_8;
1813 			break;
1814 		case PCIE_LINKCAP_MAX_SPEED_16:
1815 			bus_p->bus_max_speed = PCIE_LINK_SPEED_16;
1816 			break;
1817 		case PCIE_LINKCAP_MAX_SPEED_32:
1818 			bus_p->bus_max_speed = PCIE_LINK_SPEED_32;
1819 			break;
1820 		case PCIE_LINKCAP_MAX_SPEED_64:
1821 			bus_p->bus_max_speed = PCIE_LINK_SPEED_64;
1822 			break;
1823 		default:
1824 			bus_p->bus_max_speed = PCIE_LINK_SPEED_UNKNOWN;
1825 			break;
1826 		}
1827 	} else {
1828 		if (cap & PCIE_LINKCAP_MAX_SPEED_5) {
1829 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1830 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5 |
1831 			    PCIE_LINK_SPEED_5;
1832 		} else if (cap & PCIE_LINKCAP_MAX_SPEED_2_5) {
1833 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1834 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5;
1835 		}
1836 	}
1837 
1838 	switch (ctl2 & PCIE_LINKCTL2_TARGET_SPEED_MASK) {
1839 	case PCIE_LINKCTL2_TARGET_SPEED_2_5:
1840 		bus_p->bus_target_speed = PCIE_LINK_SPEED_2_5;
1841 		break;
1842 	case PCIE_LINKCTL2_TARGET_SPEED_5:
1843 		bus_p->bus_target_speed = PCIE_LINK_SPEED_5;
1844 		break;
1845 	case PCIE_LINKCTL2_TARGET_SPEED_8:
1846 		bus_p->bus_target_speed = PCIE_LINK_SPEED_8;
1847 		break;
1848 	case PCIE_LINKCTL2_TARGET_SPEED_16:
1849 		bus_p->bus_target_speed = PCIE_LINK_SPEED_16;
1850 		break;
1851 	case PCIE_LINKCTL2_TARGET_SPEED_32:
1852 		bus_p->bus_target_speed = PCIE_LINK_SPEED_32;
1853 		break;
1854 	case PCIE_LINKCTL2_TARGET_SPEED_64:
1855 		bus_p->bus_target_speed = PCIE_LINK_SPEED_64;
1856 		break;
1857 	default:
1858 		bus_p->bus_target_speed = PCIE_LINK_SPEED_UNKNOWN;
1859 		break;
1860 	}
1861 
1862 	pcie_speeds_to_devinfo(dip, bus_p);
1863 	mutex_exit(&bus_p->bus_speed_mutex);
1864 }
1865 
1866 /*
1867  * partially init pcie_bus_t for device (dip,bdf) for accessing pci
1868  * config space
1869  *
1870  * This routine is invoked during boot, either after creating a devinfo node
1871  * (x86 case) or during px driver attach (sparc case); it is also invoked
1872  * in hotplug context after a devinfo node is created.
1873  *
1874  * The fields that are bracketed are initialized if flag PCIE_BUS_INITIAL
1875  * is set:
1876  *
1877  * dev_info_t *		<bus_dip>
1878  * dev_info_t *		<bus_rp_dip>
1879  * ddi_acc_handle_t	bus_cfg_hdl
1880  * uint_t		bus_fm_flags
1881  * pcie_req_id_t	<bus_bdf>
1882  * pcie_req_id_t	<bus_rp_bdf>
1883  * uint32_t		<bus_dev_ven_id>
1884  * uint8_t		<bus_rev_id>
1885  * uint8_t		<bus_hdr_type>
1886  * uint16_t		<bus_dev_type>
1887  * uint8_t		<bus_bdg_secbus
1888  * uint16_t		<bus_pcie_off>
1889  * uint16_t		<bus_aer_off>
1890  * uint16_t		<bus_pcix_off>
1891  * uint16_t		<bus_ecc_ver>
1892  * pci_bus_range_t	bus_bus_range
1893  * ppb_ranges_t	*	bus_addr_ranges
1894  * int			bus_addr_entries
1895  * pci_regspec_t *	bus_assigned_addr
1896  * int			bus_assigned_entries
1897  * pf_data_t *		bus_pfd
1898  * pcie_domain_t *	bus_dom
1899  * int			bus_mps
1900  * uint64_t		bus_cfgacc_base
1901  * void	*		bus_plat_private
1902  *
1903  * The fields that are bracketed are initialized if flag PCIE_BUS_FINAL
1904  * is set:
1905  *
1906  * dev_info_t *		bus_dip
1907  * dev_info_t *		bus_rp_dip
1908  * ddi_acc_handle_t	bus_cfg_hdl
1909  * uint_t		bus_fm_flags
1910  * pcie_req_id_t	bus_bdf
1911  * pcie_req_id_t	bus_rp_bdf
1912  * uint32_t		bus_dev_ven_id
1913  * uint8_t		bus_rev_id
1914  * uint8_t		bus_hdr_type
1915  * uint16_t		bus_dev_type
1916  * uint8_t		<bus_bdg_secbus>
1917  * uint16_t		bus_pcie_off
1918  * uint16_t		bus_aer_off
1919  * uint16_t		bus_pcix_off
1920  * uint16_t		bus_ecc_ver
1921  * pci_bus_range_t	<bus_bus_range>
1922  * ppb_ranges_t	*	<bus_addr_ranges>
1923  * int			<bus_addr_entries>
1924  * pci_regspec_t *	<bus_assigned_addr>
1925  * int			<bus_assigned_entries>
1926  * pf_data_t *		<bus_pfd>
1927  * pcie_domain_t *	bus_dom
1928  * int			bus_mps
1929  * uint64_t		bus_cfgacc_base
1930  * void	*		<bus_plat_private>
1931  */
1932 
1933 pcie_bus_t *
1934 pcie_init_bus(dev_info_t *dip, pcie_req_id_t bdf, uint8_t flags)
1935 {
1936 	uint16_t	status, base, baseptr, num_cap;
1937 	uint32_t	capid;
1938 	int		range_size;
1939 	pcie_bus_t	*bus_p = NULL;
1940 	dev_info_t	*rcdip;
1941 	dev_info_t	*pdip;
1942 	const char	*errstr = NULL;
1943 
1944 	if (!(flags & PCIE_BUS_INITIAL))
1945 		goto initial_done;
1946 
1947 	bus_p = kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1948 
1949 	bus_p->bus_dip = dip;
1950 	bus_p->bus_bdf = bdf;
1951 
1952 	rcdip = pcie_get_rc_dip(dip);
1953 	ASSERT(rcdip != NULL);
1954 
1955 	/* Save the Vendor ID, Device ID and revision ID */
1956 	bus_p->bus_dev_ven_id = pci_cfgacc_get32(rcdip, bdf, PCI_CONF_VENID);
1957 	bus_p->bus_rev_id = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID);
1958 	/* Save the Header Type */
1959 	bus_p->bus_hdr_type = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_HEADER);
1960 	bus_p->bus_hdr_type &= PCI_HEADER_TYPE_M;
1961 
1962 	/*
1963 	 * Figure out the device type and all the relavant capability offsets
1964 	 */
1965 	/* set default value */
1966 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_PCI_PSEUDO;
1967 
1968 	status = pci_cfgacc_get16(rcdip, bdf, PCI_CONF_STAT);
1969 	if (status == PCI_CAP_EINVAL16 || !(status & PCI_STAT_CAP))
1970 		goto caps_done; /* capability not supported */
1971 
1972 	/* Relevant conventional capabilities first */
1973 
1974 	/* Conventional caps: PCI_CAP_ID_PCI_E, PCI_CAP_ID_PCIX */
1975 	num_cap = 2;
1976 
1977 	switch (bus_p->bus_hdr_type) {
1978 	case PCI_HEADER_ZERO:
1979 		baseptr = PCI_CONF_CAP_PTR;
1980 		break;
1981 	case PCI_HEADER_PPB:
1982 		baseptr = PCI_BCNF_CAP_PTR;
1983 		break;
1984 	case PCI_HEADER_CARDBUS:
1985 		baseptr = PCI_CBUS_CAP_PTR;
1986 		break;
1987 	default:
1988 		cmn_err(CE_WARN, "%s: unexpected pci header type:%x",
1989 		    __func__, bus_p->bus_hdr_type);
1990 		goto caps_done;
1991 	}
1992 
1993 	base = baseptr;
1994 	for (base = pci_cfgacc_get8(rcdip, bdf, base); base && num_cap;
1995 	    base = pci_cfgacc_get8(rcdip, bdf, base + PCI_CAP_NEXT_PTR)) {
1996 		capid = pci_cfgacc_get8(rcdip, bdf, base);
1997 		uint16_t pcap;
1998 
1999 		switch (capid) {
2000 		case PCI_CAP_ID_PCI_E:
2001 			bus_p->bus_pcie_off = base;
2002 			pcap = pci_cfgacc_get16(rcdip, bdf, base +
2003 			    PCIE_PCIECAP);
2004 			bus_p->bus_dev_type = pcap & PCIE_PCIECAP_DEV_TYPE_MASK;
2005 			bus_p->bus_pcie_vers = pcap & PCIE_PCIECAP_VER_MASK;
2006 
2007 			/* Check and save PCIe hotplug capability information */
2008 			if ((PCIE_IS_RP(bus_p) || PCIE_IS_SWD(bus_p)) &&
2009 			    (pci_cfgacc_get16(rcdip, bdf, base + PCIE_PCIECAP)
2010 			    & PCIE_PCIECAP_SLOT_IMPL) &&
2011 			    (pci_cfgacc_get32(rcdip, bdf, base + PCIE_SLOTCAP)
2012 			    & PCIE_SLOTCAP_HP_CAPABLE))
2013 				bus_p->bus_hp_sup_modes |= PCIE_NATIVE_HP_MODE;
2014 
2015 			num_cap--;
2016 			break;
2017 		case PCI_CAP_ID_PCIX:
2018 			bus_p->bus_pcix_off = base;
2019 			if (PCIE_IS_BDG(bus_p))
2020 				bus_p->bus_ecc_ver =
2021 				    pci_cfgacc_get16(rcdip, bdf, base +
2022 				    PCI_PCIX_SEC_STATUS) & PCI_PCIX_VER_MASK;
2023 			else
2024 				bus_p->bus_ecc_ver =
2025 				    pci_cfgacc_get16(rcdip, bdf, base +
2026 				    PCI_PCIX_COMMAND) & PCI_PCIX_VER_MASK;
2027 			num_cap--;
2028 			break;
2029 		default:
2030 			break;
2031 		}
2032 	}
2033 
2034 	/* Check and save PCI hotplug (SHPC) capability information */
2035 	if (PCIE_IS_BDG(bus_p)) {
2036 		base = baseptr;
2037 		for (base = pci_cfgacc_get8(rcdip, bdf, base);
2038 		    base; base = pci_cfgacc_get8(rcdip, bdf,
2039 		    base + PCI_CAP_NEXT_PTR)) {
2040 			capid = pci_cfgacc_get8(rcdip, bdf, base);
2041 			if (capid == PCI_CAP_ID_PCI_HOTPLUG) {
2042 				bus_p->bus_pci_hp_off = base;
2043 				bus_p->bus_hp_sup_modes |= PCIE_PCI_HP_MODE;
2044 				break;
2045 			}
2046 		}
2047 	}
2048 
2049 	/* Then, relevant extended capabilities */
2050 
2051 	if (!PCIE_IS_PCIE(bus_p))
2052 		goto caps_done;
2053 
2054 	/* Extended caps: PCIE_EXT_CAP_ID_AER */
2055 	for (base = PCIE_EXT_CAP; base; base = (capid >>
2056 	    PCIE_EXT_CAP_NEXT_PTR_SHIFT) & PCIE_EXT_CAP_NEXT_PTR_MASK) {
2057 		capid = pci_cfgacc_get32(rcdip, bdf, base);
2058 		if (capid == PCI_CAP_EINVAL32)
2059 			break;
2060 		switch ((capid >> PCIE_EXT_CAP_ID_SHIFT) &
2061 		    PCIE_EXT_CAP_ID_MASK) {
2062 		case PCIE_EXT_CAP_ID_AER:
2063 			bus_p->bus_aer_off = base;
2064 			break;
2065 		case PCIE_EXT_CAP_ID_DEV3:
2066 			bus_p->bus_dev3_off = base;
2067 			break;
2068 		}
2069 	}
2070 
2071 caps_done:
2072 	/* save RP dip and RP bdf */
2073 	if (PCIE_IS_RP(bus_p)) {
2074 		bus_p->bus_rp_dip = dip;
2075 		bus_p->bus_rp_bdf = bus_p->bus_bdf;
2076 
2077 		bus_p->bus_fab = PCIE_ZALLOC(pcie_fabric_data_t);
2078 	} else {
2079 		for (pdip = ddi_get_parent(dip); pdip;
2080 		    pdip = ddi_get_parent(pdip)) {
2081 			pcie_bus_t *parent_bus_p = PCIE_DIP2BUS(pdip);
2082 
2083 			/*
2084 			 * If RP dip and RP bdf in parent's bus_t have
2085 			 * been initialized, simply use these instead of
2086 			 * continuing up to the RC.
2087 			 */
2088 			if (parent_bus_p->bus_rp_dip != NULL) {
2089 				bus_p->bus_rp_dip = parent_bus_p->bus_rp_dip;
2090 				bus_p->bus_rp_bdf = parent_bus_p->bus_rp_bdf;
2091 				break;
2092 			}
2093 
2094 			/*
2095 			 * When debugging be aware that some NVIDIA x86
2096 			 * architectures have 2 nodes for each RP, One at Bus
2097 			 * 0x0 and one at Bus 0x80.  The requester is from Bus
2098 			 * 0x80
2099 			 */
2100 			if (PCIE_IS_ROOT(parent_bus_p)) {
2101 				bus_p->bus_rp_dip = pdip;
2102 				bus_p->bus_rp_bdf = parent_bus_p->bus_bdf;
2103 				break;
2104 			}
2105 		}
2106 	}
2107 
2108 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
2109 	(void) atomic_swap_uint(&bus_p->bus_fm_flags, 0);
2110 
2111 	ndi_set_bus_private(dip, B_TRUE, DEVI_PORT_TYPE_PCI, (void *)bus_p);
2112 
2113 	if (PCIE_IS_HOTPLUG_CAPABLE(dip))
2114 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
2115 		    "hotplug-capable");
2116 
2117 initial_done:
2118 	if (!(flags & PCIE_BUS_FINAL))
2119 		goto final_done;
2120 
2121 	/* already initialized? */
2122 	bus_p = PCIE_DIP2BUS(dip);
2123 
2124 	/* Save the Range information if device is a switch/bridge */
2125 	if (PCIE_IS_BDG(bus_p)) {
2126 		/* get "bus_range" property */
2127 		range_size = sizeof (pci_bus_range_t);
2128 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2129 		    "bus-range", (caddr_t)&bus_p->bus_bus_range, &range_size)
2130 		    != DDI_PROP_SUCCESS) {
2131 			errstr = "Cannot find \"bus-range\" property";
2132 			cmn_err(CE_WARN,
2133 			    "PCIE init err info failed BDF 0x%x:%s\n",
2134 			    bus_p->bus_bdf, errstr);
2135 		}
2136 
2137 		/* get secondary bus number */
2138 		rcdip = pcie_get_rc_dip(dip);
2139 		ASSERT(rcdip != NULL);
2140 
2141 		bus_p->bus_bdg_secbus = pci_cfgacc_get8(rcdip,
2142 		    bus_p->bus_bdf, PCI_BCNF_SECBUS);
2143 
2144 		/* Get "ranges" property */
2145 		if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2146 		    "ranges", (caddr_t)&bus_p->bus_addr_ranges,
2147 		    &bus_p->bus_addr_entries) != DDI_PROP_SUCCESS)
2148 			bus_p->bus_addr_entries = 0;
2149 		bus_p->bus_addr_entries /= sizeof (ppb_ranges_t);
2150 	}
2151 
2152 	/* save "assigned-addresses" property array, ignore failues */
2153 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2154 	    "assigned-addresses", (caddr_t)&bus_p->bus_assigned_addr,
2155 	    &bus_p->bus_assigned_entries) == DDI_PROP_SUCCESS)
2156 		bus_p->bus_assigned_entries /= sizeof (pci_regspec_t);
2157 	else
2158 		bus_p->bus_assigned_entries = 0;
2159 
2160 	pcie_init_pfd(dip);
2161 
2162 	pcie_init_plat(dip);
2163 
2164 	pcie_capture_speeds(dip);
2165 
2166 final_done:
2167 
2168 	PCIE_DBG("Add %s(dip 0x%p, bdf 0x%x, secbus 0x%x)\n",
2169 	    ddi_driver_name(dip), (void *)dip, bus_p->bus_bdf,
2170 	    bus_p->bus_bdg_secbus);
2171 #ifdef DEBUG
2172 	if (bus_p != NULL) {
2173 		pcie_print_bus(bus_p);
2174 	}
2175 #endif
2176 
2177 	return (bus_p);
2178 }
2179 
2180 /*
2181  * Invoked before destroying devinfo node, mostly during hotplug
2182  * operation to free pcie_bus_t data structure
2183  */
2184 /* ARGSUSED */
2185 void
2186 pcie_fini_bus(dev_info_t *dip, uint8_t flags)
2187 {
2188 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2189 	ASSERT(bus_p);
2190 
2191 	if (flags & PCIE_BUS_INITIAL) {
2192 		pcie_fini_plat(dip);
2193 		pcie_fini_pfd(dip);
2194 
2195 		if (PCIE_IS_RP(bus_p)) {
2196 			kmem_free(bus_p->bus_fab, sizeof (pcie_fabric_data_t));
2197 			bus_p->bus_fab = NULL;
2198 		}
2199 
2200 		kmem_free(bus_p->bus_assigned_addr,
2201 		    (sizeof (pci_regspec_t) * bus_p->bus_assigned_entries));
2202 		kmem_free(bus_p->bus_addr_ranges,
2203 		    (sizeof (ppb_ranges_t) * bus_p->bus_addr_entries));
2204 		/* zero out the fields that have been destroyed */
2205 		bus_p->bus_assigned_addr = NULL;
2206 		bus_p->bus_addr_ranges = NULL;
2207 		bus_p->bus_assigned_entries = 0;
2208 		bus_p->bus_addr_entries = 0;
2209 	}
2210 
2211 	if (flags & PCIE_BUS_FINAL) {
2212 		if (PCIE_IS_HOTPLUG_CAPABLE(dip)) {
2213 			(void) ndi_prop_remove(DDI_DEV_T_NONE, dip,
2214 			    "hotplug-capable");
2215 		}
2216 
2217 		ndi_set_bus_private(dip, B_TRUE, 0, NULL);
2218 		kmem_free(bus_p, sizeof (pcie_bus_t));
2219 	}
2220 }
2221 
2222 int
2223 pcie_postattach_child(dev_info_t *cdip)
2224 {
2225 	pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip);
2226 
2227 	if (!bus_p)
2228 		return (DDI_FAILURE);
2229 
2230 	return (pcie_enable_ce(cdip));
2231 }
2232 
2233 /*
2234  * PCI-Express child device de-initialization.
2235  * This function disables generic pci-express interrupts and error
2236  * handling.
2237  */
2238 void
2239 pcie_uninitchild(dev_info_t *cdip)
2240 {
2241 	pcie_disable_errors(cdip);
2242 	pcie_fini_cfghdl(cdip);
2243 	pcie_fini_dom(cdip);
2244 }
2245 
2246 /*
2247  * find the root complex dip
2248  */
2249 dev_info_t *
2250 pcie_get_rc_dip(dev_info_t *dip)
2251 {
2252 	dev_info_t *rcdip;
2253 	pcie_bus_t *rc_bus_p;
2254 
2255 	for (rcdip = ddi_get_parent(dip); rcdip;
2256 	    rcdip = ddi_get_parent(rcdip)) {
2257 		rc_bus_p = PCIE_DIP2BUS(rcdip);
2258 		if (rc_bus_p && PCIE_IS_RC(rc_bus_p))
2259 			break;
2260 	}
2261 
2262 	return (rcdip);
2263 }
2264 
2265 boolean_t
2266 pcie_is_pci_device(dev_info_t *dip)
2267 {
2268 	dev_info_t	*pdip;
2269 	char		*device_type;
2270 
2271 	pdip = ddi_get_parent(dip);
2272 	if (pdip == NULL)
2273 		return (B_FALSE);
2274 
2275 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
2276 	    "device_type", &device_type) != DDI_PROP_SUCCESS)
2277 		return (B_FALSE);
2278 
2279 	if (strcmp(device_type, "pciex") != 0 &&
2280 	    strcmp(device_type, "pci") != 0) {
2281 		ddi_prop_free(device_type);
2282 		return (B_FALSE);
2283 	}
2284 
2285 	ddi_prop_free(device_type);
2286 	return (B_TRUE);
2287 }
2288 
2289 typedef struct {
2290 	boolean_t	init;
2291 	uint8_t		flags;
2292 } pcie_bus_arg_t;
2293 
2294 /*ARGSUSED*/
2295 static int
2296 pcie_fab_do_init_fini(dev_info_t *dip, void *arg)
2297 {
2298 	pcie_req_id_t	bdf;
2299 	pcie_bus_arg_t	*bus_arg = (pcie_bus_arg_t *)arg;
2300 
2301 	if (!pcie_is_pci_device(dip))
2302 		goto out;
2303 
2304 	if (bus_arg->init) {
2305 		if (pcie_get_bdf_from_dip(dip, &bdf) != DDI_SUCCESS)
2306 			goto out;
2307 
2308 		(void) pcie_init_bus(dip, bdf, bus_arg->flags);
2309 	} else {
2310 		(void) pcie_fini_bus(dip, bus_arg->flags);
2311 	}
2312 
2313 	return (DDI_WALK_CONTINUE);
2314 
2315 out:
2316 	return (DDI_WALK_PRUNECHILD);
2317 }
2318 
2319 void
2320 pcie_fab_init_bus(dev_info_t *rcdip, uint8_t flags)
2321 {
2322 	int		circular_count;
2323 	dev_info_t	*dip = ddi_get_child(rcdip);
2324 	pcie_bus_arg_t	arg;
2325 
2326 	arg.init = B_TRUE;
2327 	arg.flags = flags;
2328 
2329 	ndi_devi_enter(rcdip, &circular_count);
2330 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2331 	ndi_devi_exit(rcdip, circular_count);
2332 }
2333 
2334 void
2335 pcie_fab_fini_bus(dev_info_t *rcdip, uint8_t flags)
2336 {
2337 	int		circular_count;
2338 	dev_info_t	*dip = ddi_get_child(rcdip);
2339 	pcie_bus_arg_t	arg;
2340 
2341 	arg.init = B_FALSE;
2342 	arg.flags = flags;
2343 
2344 	ndi_devi_enter(rcdip, &circular_count);
2345 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2346 	ndi_devi_exit(rcdip, circular_count);
2347 }
2348 
2349 void
2350 pcie_enable_errors(dev_info_t *dip)
2351 {
2352 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2353 	uint16_t	reg16, tmp16;
2354 	uint32_t	reg32, tmp32;
2355 
2356 	ASSERT(bus_p);
2357 
2358 	/*
2359 	 * Clear any pending errors
2360 	 */
2361 	pcie_clear_errors(dip);
2362 
2363 	if (!PCIE_IS_PCIE(bus_p))
2364 		return;
2365 
2366 	/*
2367 	 * Enable Baseline Error Handling but leave CE reporting off (poweron
2368 	 * default).
2369 	 */
2370 	if ((reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL)) !=
2371 	    PCI_CAP_EINVAL16) {
2372 		tmp16 = (reg16 & (PCIE_DEVCTL_MAX_READ_REQ_MASK |
2373 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
2374 		    (pcie_devctl_default & ~(PCIE_DEVCTL_MAX_READ_REQ_MASK |
2375 		    PCIE_DEVCTL_MAX_PAYLOAD_MASK)) |
2376 		    (pcie_base_err_default & (~PCIE_DEVCTL_CE_REPORTING_EN));
2377 
2378 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
2379 		PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
2380 	}
2381 
2382 	/* Enable Root Port Baseline Error Receiving */
2383 	if (PCIE_IS_ROOT(bus_p) &&
2384 	    (reg16 = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL)) !=
2385 	    PCI_CAP_EINVAL16) {
2386 
2387 		tmp16 = pcie_serr_disable_flag ?
2388 		    (pcie_root_ctrl_default & ~PCIE_ROOT_SYS_ERR) :
2389 		    pcie_root_ctrl_default;
2390 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, tmp16);
2391 		PCIE_DBG_CAP(dip, bus_p, "ROOT DEVCTL", 16, PCIE_ROOTCTL,
2392 		    reg16);
2393 	}
2394 
2395 	/*
2396 	 * Enable PCI-Express Advanced Error Handling if Exists
2397 	 */
2398 	if (!PCIE_HAS_AER(bus_p))
2399 		return;
2400 
2401 	/* Set Uncorrectable Severity */
2402 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_SERV)) !=
2403 	    PCI_CAP_EINVAL32) {
2404 		tmp32 = pcie_aer_uce_severity;
2405 
2406 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_SERV, tmp32);
2407 		PCIE_DBG_AER(dip, bus_p, "AER UCE SEV", 32, PCIE_AER_UCE_SERV,
2408 		    reg32);
2409 	}
2410 
2411 	/* Enable Uncorrectable errors */
2412 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_MASK)) !=
2413 	    PCI_CAP_EINVAL32) {
2414 		tmp32 = pcie_aer_uce_mask;
2415 
2416 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, tmp32);
2417 		PCIE_DBG_AER(dip, bus_p, "AER UCE MASK", 32, PCIE_AER_UCE_MASK,
2418 		    reg32);
2419 	}
2420 
2421 	/* Enable ECRC generation and checking */
2422 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2423 	    PCI_CAP_EINVAL32) {
2424 		tmp32 = reg32 | pcie_ecrc_value;
2425 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, tmp32);
2426 		PCIE_DBG_AER(dip, bus_p, "AER CTL", 32, PCIE_AER_CTL, reg32);
2427 	}
2428 
2429 	/* Enable Secondary Uncorrectable errors if this is a bridge */
2430 	if (!PCIE_IS_PCIE_BDG(bus_p))
2431 		goto root;
2432 
2433 	/* Set Uncorrectable Severity */
2434 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_SERV)) !=
2435 	    PCI_CAP_EINVAL32) {
2436 		tmp32 = pcie_aer_suce_severity;
2437 
2438 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_SERV, tmp32);
2439 		PCIE_DBG_AER(dip, bus_p, "AER SUCE SEV", 32, PCIE_AER_SUCE_SERV,
2440 		    reg32);
2441 	}
2442 
2443 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_MASK)) !=
2444 	    PCI_CAP_EINVAL32) {
2445 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, pcie_aer_suce_mask);
2446 		PCIE_DBG_AER(dip, bus_p, "AER SUCE MASK", 32,
2447 		    PCIE_AER_SUCE_MASK, reg32);
2448 	}
2449 
2450 root:
2451 	/*
2452 	 * Enable Root Control this is a Root device
2453 	 */
2454 	if (!PCIE_IS_ROOT(bus_p))
2455 		return;
2456 
2457 	if ((reg16 = PCIE_AER_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2458 	    PCI_CAP_EINVAL16) {
2459 		PCIE_AER_PUT(16, bus_p, PCIE_AER_RE_CMD,
2460 		    pcie_root_error_cmd_default);
2461 		PCIE_DBG_AER(dip, bus_p, "AER Root Err Cmd", 16,
2462 		    PCIE_AER_RE_CMD, reg16);
2463 	}
2464 }
2465 
2466 /*
2467  * This function is used for enabling CE reporting and setting the AER CE mask.
2468  * When called from outside the pcie module it should always be preceded by
2469  * a call to pcie_enable_errors.
2470  */
2471 int
2472 pcie_enable_ce(dev_info_t *dip)
2473 {
2474 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2475 	uint16_t	device_sts, device_ctl;
2476 	uint32_t	tmp_pcie_aer_ce_mask;
2477 
2478 	if (!PCIE_IS_PCIE(bus_p))
2479 		return (DDI_SUCCESS);
2480 
2481 	/*
2482 	 * The "pcie_ce_mask" property is used to control both the CE reporting
2483 	 * enable field in the device control register and the AER CE mask. We
2484 	 * leave CE reporting disabled if pcie_ce_mask is set to -1.
2485 	 */
2486 
2487 	tmp_pcie_aer_ce_mask = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2488 	    DDI_PROP_DONTPASS, "pcie_ce_mask", pcie_aer_ce_mask);
2489 
2490 	if (tmp_pcie_aer_ce_mask == (uint32_t)-1) {
2491 		/*
2492 		 * Nothing to do since CE reporting has already been disabled.
2493 		 */
2494 		return (DDI_SUCCESS);
2495 	}
2496 
2497 	if (PCIE_HAS_AER(bus_p)) {
2498 		/* Enable AER CE */
2499 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, tmp_pcie_aer_ce_mask);
2500 		PCIE_DBG_AER(dip, bus_p, "AER CE MASK", 32, PCIE_AER_CE_MASK,
2501 		    0);
2502 
2503 		/* Clear any pending AER CE errors */
2504 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_STS, -1);
2505 	}
2506 
2507 	/* clear any pending CE errors */
2508 	if ((device_sts = PCIE_CAP_GET(16, bus_p, PCIE_DEVSTS)) !=
2509 	    PCI_CAP_EINVAL16)
2510 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVSTS,
2511 		    device_sts & (~PCIE_DEVSTS_CE_DETECTED));
2512 
2513 	/* Enable CE reporting */
2514 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2515 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL,
2516 	    (device_ctl & (~PCIE_DEVCTL_ERR_MASK)) | pcie_base_err_default);
2517 	PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, device_ctl);
2518 
2519 	return (DDI_SUCCESS);
2520 }
2521 
2522 /* ARGSUSED */
2523 void
2524 pcie_disable_errors(dev_info_t *dip)
2525 {
2526 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2527 	uint16_t	device_ctl;
2528 	uint32_t	aer_reg;
2529 
2530 	if (!PCIE_IS_PCIE(bus_p))
2531 		return;
2532 
2533 	/*
2534 	 * Disable PCI-Express Baseline Error Handling
2535 	 */
2536 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2537 	device_ctl &= ~PCIE_DEVCTL_ERR_MASK;
2538 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, device_ctl);
2539 
2540 	/*
2541 	 * Disable PCI-Express Advanced Error Handling if Exists
2542 	 */
2543 	if (!PCIE_HAS_AER(bus_p))
2544 		goto root;
2545 
2546 	/* Disable Uncorrectable errors */
2547 	PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, PCIE_AER_UCE_BITS);
2548 
2549 	/* Disable Correctable errors */
2550 	PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, PCIE_AER_CE_BITS);
2551 
2552 	/* Disable ECRC generation and checking */
2553 	if ((aer_reg = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2554 	    PCI_CAP_EINVAL32) {
2555 		aer_reg &= ~(PCIE_AER_CTL_ECRC_GEN_ENA |
2556 		    PCIE_AER_CTL_ECRC_CHECK_ENA);
2557 
2558 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, aer_reg);
2559 	}
2560 	/*
2561 	 * Disable Secondary Uncorrectable errors if this is a bridge
2562 	 */
2563 	if (!PCIE_IS_PCIE_BDG(bus_p))
2564 		goto root;
2565 
2566 	PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, PCIE_AER_SUCE_BITS);
2567 
2568 root:
2569 	/*
2570 	 * disable Root Control this is a Root device
2571 	 */
2572 	if (!PCIE_IS_ROOT(bus_p))
2573 		return;
2574 
2575 	if (!pcie_serr_disable_flag) {
2576 		device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL);
2577 		device_ctl &= ~PCIE_ROOT_SYS_ERR;
2578 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, device_ctl);
2579 	}
2580 
2581 	if (!PCIE_HAS_AER(bus_p))
2582 		return;
2583 
2584 	if ((device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2585 	    PCI_CAP_EINVAL16) {
2586 		device_ctl &= ~pcie_root_error_cmd_default;
2587 		PCIE_CAP_PUT(16, bus_p, PCIE_AER_RE_CMD, device_ctl);
2588 	}
2589 }
2590 
2591 /*
2592  * Extract bdf from "reg" property.
2593  */
2594 int
2595 pcie_get_bdf_from_dip(dev_info_t *dip, pcie_req_id_t *bdf)
2596 {
2597 	pci_regspec_t	*regspec;
2598 	int		reglen;
2599 
2600 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2601 	    "reg", (int **)&regspec, (uint_t *)&reglen) != DDI_SUCCESS)
2602 		return (DDI_FAILURE);
2603 
2604 	if (reglen < (sizeof (pci_regspec_t) / sizeof (int))) {
2605 		ddi_prop_free(regspec);
2606 		return (DDI_FAILURE);
2607 	}
2608 
2609 	/* Get phys_hi from first element.  All have same bdf. */
2610 	*bdf = (regspec->pci_phys_hi & (PCI_REG_BDFR_M ^ PCI_REG_REG_M)) >> 8;
2611 
2612 	ddi_prop_free(regspec);
2613 	return (DDI_SUCCESS);
2614 }
2615 
2616 dev_info_t *
2617 pcie_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
2618 {
2619 	dev_info_t *cdip = rdip;
2620 
2621 	for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
2622 		;
2623 
2624 	return (cdip);
2625 }
2626 
2627 uint32_t
2628 pcie_get_bdf_for_dma_xfer(dev_info_t *dip, dev_info_t *rdip)
2629 {
2630 	dev_info_t *cdip;
2631 
2632 	/*
2633 	 * As part of the probing, the PCI fcode interpreter may setup a DMA
2634 	 * request if a given card has a fcode on it using dip and rdip of the
2635 	 * hotplug connector i.e, dip and rdip of px/pcieb driver. In this
2636 	 * case, return a invalid value for the bdf since we cannot get to the
2637 	 * bdf value of the actual device which will be initiating this DMA.
2638 	 */
2639 	if (rdip == dip)
2640 		return (PCIE_INVALID_BDF);
2641 
2642 	cdip = pcie_get_my_childs_dip(dip, rdip);
2643 
2644 	/*
2645 	 * For a given rdip, return the bdf value of dip's (px or pcieb)
2646 	 * immediate child or secondary bus-id if dip is a PCIe2PCI bridge.
2647 	 *
2648 	 * XXX - For now, return a invalid bdf value for all PCI and PCI-X
2649 	 * devices since this needs more work.
2650 	 */
2651 	return (PCI_GET_PCIE2PCI_SECBUS(cdip) ?
2652 	    PCIE_INVALID_BDF : PCI_GET_BDF(cdip));
2653 }
2654 
2655 uint32_t
2656 pcie_get_aer_uce_mask()
2657 {
2658 	return (pcie_aer_uce_mask);
2659 }
2660 uint32_t
2661 pcie_get_aer_ce_mask()
2662 {
2663 	return (pcie_aer_ce_mask);
2664 }
2665 uint32_t
2666 pcie_get_aer_suce_mask()
2667 {
2668 	return (pcie_aer_suce_mask);
2669 }
2670 uint32_t
2671 pcie_get_serr_mask()
2672 {
2673 	return (pcie_serr_disable_flag);
2674 }
2675 
2676 void
2677 pcie_set_aer_uce_mask(uint32_t mask)
2678 {
2679 	pcie_aer_uce_mask = mask;
2680 	if (mask & PCIE_AER_UCE_UR)
2681 		pcie_base_err_default &= ~PCIE_DEVCTL_UR_REPORTING_EN;
2682 	else
2683 		pcie_base_err_default |= PCIE_DEVCTL_UR_REPORTING_EN;
2684 
2685 	if (mask & PCIE_AER_UCE_ECRC)
2686 		pcie_ecrc_value = 0;
2687 }
2688 
2689 void
2690 pcie_set_aer_ce_mask(uint32_t mask)
2691 {
2692 	pcie_aer_ce_mask = mask;
2693 }
2694 void
2695 pcie_set_aer_suce_mask(uint32_t mask)
2696 {
2697 	pcie_aer_suce_mask = mask;
2698 }
2699 void
2700 pcie_set_serr_mask(uint32_t mask)
2701 {
2702 	pcie_serr_disable_flag = mask;
2703 }
2704 
2705 /*
2706  * Is the rdip a child of dip.	Used for checking certain CTLOPS from bubbling
2707  * up erronously.  Ex.	ISA ctlops to a PCI-PCI Bridge.
2708  */
2709 boolean_t
2710 pcie_is_child(dev_info_t *dip, dev_info_t *rdip)
2711 {
2712 	dev_info_t	*cdip = ddi_get_child(dip);
2713 	for (; cdip; cdip = ddi_get_next_sibling(cdip))
2714 		if (cdip == rdip)
2715 			break;
2716 	return (cdip != NULL);
2717 }
2718 
2719 boolean_t
2720 pcie_is_link_disabled(dev_info_t *dip)
2721 {
2722 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2723 
2724 	if (PCIE_IS_PCIE(bus_p)) {
2725 		if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) &
2726 		    PCIE_LINKCTL_LINK_DISABLE)
2727 			return (B_TRUE);
2728 	}
2729 	return (B_FALSE);
2730 }
2731 
2732 /*
2733  * Determines if there are any root ports attached to a root complex.
2734  *
2735  * dip - dip of root complex
2736  *
2737  * Returns - DDI_SUCCESS if there is at least one root port otherwise
2738  *	     DDI_FAILURE.
2739  */
2740 int
2741 pcie_root_port(dev_info_t *dip)
2742 {
2743 	int port_type;
2744 	uint16_t cap_ptr;
2745 	ddi_acc_handle_t config_handle;
2746 	dev_info_t *cdip = ddi_get_child(dip);
2747 
2748 	/*
2749 	 * Determine if any of the children of the passed in dip
2750 	 * are root ports.
2751 	 */
2752 	for (; cdip; cdip = ddi_get_next_sibling(cdip)) {
2753 
2754 		if (pci_config_setup(cdip, &config_handle) != DDI_SUCCESS)
2755 			continue;
2756 
2757 		if ((PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E,
2758 		    &cap_ptr)) == DDI_FAILURE) {
2759 			pci_config_teardown(&config_handle);
2760 			continue;
2761 		}
2762 
2763 		port_type = PCI_CAP_GET16(config_handle, 0, cap_ptr,
2764 		    PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
2765 
2766 		pci_config_teardown(&config_handle);
2767 
2768 		if (port_type == PCIE_PCIECAP_DEV_TYPE_ROOT)
2769 			return (DDI_SUCCESS);
2770 	}
2771 
2772 	/* No root ports were found */
2773 
2774 	return (DDI_FAILURE);
2775 }
2776 
2777 /*
2778  * Function that determines if a device a PCIe device.
2779  *
2780  * dip - dip of device.
2781  *
2782  * returns - DDI_SUCCESS if device is a PCIe device, otherwise DDI_FAILURE.
2783  */
2784 int
2785 pcie_dev(dev_info_t *dip)
2786 {
2787 	/* get parent device's device_type property */
2788 	char *device_type;
2789 	int rc = DDI_FAILURE;
2790 	dev_info_t *pdip = ddi_get_parent(dip);
2791 
2792 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
2793 	    DDI_PROP_DONTPASS, "device_type", &device_type)
2794 	    != DDI_PROP_SUCCESS) {
2795 		return (DDI_FAILURE);
2796 	}
2797 
2798 	if (strcmp(device_type, "pciex") == 0)
2799 		rc = DDI_SUCCESS;
2800 	else
2801 		rc = DDI_FAILURE;
2802 
2803 	ddi_prop_free(device_type);
2804 	return (rc);
2805 }
2806 
2807 void
2808 pcie_set_rber_fatal(dev_info_t *dip, boolean_t val)
2809 {
2810 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2811 	bus_p->bus_pfd->pe_rber_fatal = val;
2812 }
2813 
2814 /*
2815  * Return parent Root Port's pe_rber_fatal value.
2816  */
2817 boolean_t
2818 pcie_get_rber_fatal(dev_info_t *dip)
2819 {
2820 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2821 	pcie_bus_t *rp_bus_p = PCIE_DIP2UPBUS(bus_p->bus_rp_dip);
2822 	return (rp_bus_p->bus_pfd->pe_rber_fatal);
2823 }
2824 
2825 int
2826 pcie_ari_supported(dev_info_t *dip)
2827 {
2828 	uint32_t devcap2;
2829 	uint16_t pciecap;
2830 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2831 	uint8_t dev_type;
2832 
2833 	PCIE_DBG("pcie_ari_supported: dip=%p\n", dip);
2834 
2835 	if (bus_p == NULL)
2836 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2837 
2838 	dev_type = bus_p->bus_dev_type;
2839 
2840 	if ((dev_type != PCIE_PCIECAP_DEV_TYPE_DOWN) &&
2841 	    (dev_type != PCIE_PCIECAP_DEV_TYPE_ROOT))
2842 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2843 
2844 	if (pcie_disable_ari) {
2845 		PCIE_DBG("pcie_ari_supported: dip=%p: ARI Disabled\n", dip);
2846 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2847 	}
2848 
2849 	pciecap = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
2850 
2851 	if ((pciecap & PCIE_PCIECAP_VER_MASK) < PCIE_PCIECAP_VER_2_0) {
2852 		PCIE_DBG("pcie_ari_supported: dip=%p: Not 2.0\n", dip);
2853 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2854 	}
2855 
2856 	devcap2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCAP2);
2857 
2858 	PCIE_DBG("pcie_ari_supported: dip=%p: DevCap2=0x%x\n",
2859 	    dip, devcap2);
2860 
2861 	if (devcap2 & PCIE_DEVCAP2_ARI_FORWARD) {
2862 		PCIE_DBG("pcie_ari_supported: "
2863 		    "dip=%p: ARI Forwarding is supported\n", dip);
2864 		return (PCIE_ARI_FORW_SUPPORTED);
2865 	}
2866 	return (PCIE_ARI_FORW_NOT_SUPPORTED);
2867 }
2868 
2869 int
2870 pcie_ari_enable(dev_info_t *dip)
2871 {
2872 	uint16_t devctl2;
2873 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2874 
2875 	PCIE_DBG("pcie_ari_enable: dip=%p\n", dip);
2876 
2877 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2878 		return (DDI_FAILURE);
2879 
2880 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2881 	devctl2 |= PCIE_DEVCTL2_ARI_FORWARD_EN;
2882 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2883 
2884 	PCIE_DBG("pcie_ari_enable: dip=%p: writing 0x%x to DevCtl2\n",
2885 	    dip, devctl2);
2886 
2887 	return (DDI_SUCCESS);
2888 }
2889 
2890 int
2891 pcie_ari_disable(dev_info_t *dip)
2892 {
2893 	uint16_t devctl2;
2894 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2895 
2896 	PCIE_DBG("pcie_ari_disable: dip=%p\n", dip);
2897 
2898 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2899 		return (DDI_FAILURE);
2900 
2901 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2902 	devctl2 &= ~PCIE_DEVCTL2_ARI_FORWARD_EN;
2903 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2904 
2905 	PCIE_DBG("pcie_ari_disable: dip=%p: writing 0x%x to DevCtl2\n",
2906 	    dip, devctl2);
2907 
2908 	return (DDI_SUCCESS);
2909 }
2910 
2911 int
2912 pcie_ari_is_enabled(dev_info_t *dip)
2913 {
2914 	uint16_t devctl2;
2915 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2916 
2917 	PCIE_DBG("pcie_ari_is_enabled: dip=%p\n", dip);
2918 
2919 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2920 		return (PCIE_ARI_FORW_DISABLED);
2921 
2922 	devctl2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCTL2);
2923 
2924 	PCIE_DBG("pcie_ari_is_enabled: dip=%p: DevCtl2=0x%x\n",
2925 	    dip, devctl2);
2926 
2927 	if (devctl2 & PCIE_DEVCTL2_ARI_FORWARD_EN) {
2928 		PCIE_DBG("pcie_ari_is_enabled: "
2929 		    "dip=%p: ARI Forwarding is enabled\n", dip);
2930 		return (PCIE_ARI_FORW_ENABLED);
2931 	}
2932 
2933 	return (PCIE_ARI_FORW_DISABLED);
2934 }
2935 
2936 int
2937 pcie_ari_device(dev_info_t *dip)
2938 {
2939 	ddi_acc_handle_t handle;
2940 	uint16_t cap_ptr;
2941 
2942 	PCIE_DBG("pcie_ari_device: dip=%p\n", dip);
2943 
2944 	/*
2945 	 * XXX - This function may be called before the bus_p structure
2946 	 * has been populated.  This code can be changed to remove
2947 	 * pci_config_setup()/pci_config_teardown() when the RFE
2948 	 * to populate the bus_p structures early in boot is putback.
2949 	 */
2950 
2951 	/* First make sure it is a PCIe device */
2952 
2953 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2954 		return (PCIE_NOT_ARI_DEVICE);
2955 
2956 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr))
2957 	    != DDI_SUCCESS) {
2958 		pci_config_teardown(&handle);
2959 		return (PCIE_NOT_ARI_DEVICE);
2960 	}
2961 
2962 	/* Locate the ARI Capability */
2963 
2964 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI),
2965 	    &cap_ptr)) == DDI_FAILURE) {
2966 		pci_config_teardown(&handle);
2967 		return (PCIE_NOT_ARI_DEVICE);
2968 	}
2969 
2970 	/* ARI Capability was found so it must be a ARI device */
2971 	PCIE_DBG("pcie_ari_device: ARI Device dip=%p\n", dip);
2972 
2973 	pci_config_teardown(&handle);
2974 	return (PCIE_ARI_DEVICE);
2975 }
2976 
2977 int
2978 pcie_ari_get_next_function(dev_info_t *dip, int *func)
2979 {
2980 	uint32_t val;
2981 	uint16_t cap_ptr, next_function;
2982 	ddi_acc_handle_t handle;
2983 
2984 	/*
2985 	 * XXX - This function may be called before the bus_p structure
2986 	 * has been populated.  This code can be changed to remove
2987 	 * pci_config_setup()/pci_config_teardown() when the RFE
2988 	 * to populate the bus_p structures early in boot is putback.
2989 	 */
2990 
2991 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2992 		return (DDI_FAILURE);
2993 
2994 	if ((PCI_CAP_LOCATE(handle,
2995 	    PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), &cap_ptr)) == DDI_FAILURE) {
2996 		pci_config_teardown(&handle);
2997 		return (DDI_FAILURE);
2998 	}
2999 
3000 	val = PCI_CAP_GET32(handle, 0, cap_ptr, PCIE_ARI_CAP);
3001 
3002 	next_function = (val >> PCIE_ARI_CAP_NEXT_FUNC_SHIFT) &
3003 	    PCIE_ARI_CAP_NEXT_FUNC_MASK;
3004 
3005 	pci_config_teardown(&handle);
3006 
3007 	*func = next_function;
3008 
3009 	return (DDI_SUCCESS);
3010 }
3011 
3012 dev_info_t *
3013 pcie_func_to_dip(dev_info_t *dip, pcie_req_id_t function)
3014 {
3015 	pcie_req_id_t child_bdf;
3016 	dev_info_t *cdip;
3017 
3018 	for (cdip = ddi_get_child(dip); cdip;
3019 	    cdip = ddi_get_next_sibling(cdip)) {
3020 
3021 		if (pcie_get_bdf_from_dip(cdip, &child_bdf) == DDI_FAILURE)
3022 			return (NULL);
3023 
3024 		if ((child_bdf & PCIE_REQ_ID_ARI_FUNC_MASK) == function)
3025 			return (cdip);
3026 	}
3027 	return (NULL);
3028 }
3029 
3030 #ifdef	DEBUG
3031 
3032 static void
3033 pcie_print_bus(pcie_bus_t *bus_p)
3034 {
3035 	pcie_dbg("\tbus_dip = 0x%p\n", bus_p->bus_dip);
3036 	pcie_dbg("\tbus_fm_flags = 0x%x\n", bus_p->bus_fm_flags);
3037 
3038 	pcie_dbg("\tbus_bdf = 0x%x\n", bus_p->bus_bdf);
3039 	pcie_dbg("\tbus_dev_ven_id = 0x%x\n", bus_p->bus_dev_ven_id);
3040 	pcie_dbg("\tbus_rev_id = 0x%x\n", bus_p->bus_rev_id);
3041 	pcie_dbg("\tbus_hdr_type = 0x%x\n", bus_p->bus_hdr_type);
3042 	pcie_dbg("\tbus_dev_type = 0x%x\n", bus_p->bus_dev_type);
3043 	pcie_dbg("\tbus_bdg_secbus = 0x%x\n", bus_p->bus_bdg_secbus);
3044 	pcie_dbg("\tbus_pcie_off = 0x%x\n", bus_p->bus_pcie_off);
3045 	pcie_dbg("\tbus_aer_off = 0x%x\n", bus_p->bus_aer_off);
3046 	pcie_dbg("\tbus_pcix_off = 0x%x\n", bus_p->bus_pcix_off);
3047 	pcie_dbg("\tbus_ecc_ver = 0x%x\n", bus_p->bus_ecc_ver);
3048 }
3049 
3050 /*
3051  * For debugging purposes set pcie_dbg_print != 0 to see printf messages
3052  * during interrupt.
3053  *
3054  * When a proper solution is in place this code will disappear.
3055  * Potential solutions are:
3056  * o circular buffers
3057  * o taskq to print at lower pil
3058  */
3059 int pcie_dbg_print = 0;
3060 void
3061 pcie_dbg(char *fmt, ...)
3062 {
3063 	va_list ap;
3064 
3065 	if (!pcie_debug_flags) {
3066 		return;
3067 	}
3068 	va_start(ap, fmt);
3069 	if (servicing_interrupt()) {
3070 		if (pcie_dbg_print) {
3071 			prom_vprintf(fmt, ap);
3072 		}
3073 	} else {
3074 		prom_vprintf(fmt, ap);
3075 	}
3076 	va_end(ap);
3077 }
3078 #endif	/* DEBUG */
3079 
3080 #if defined(__x86)
3081 static void
3082 pcie_check_io_mem_range(ddi_acc_handle_t cfg_hdl, boolean_t *empty_io_range,
3083     boolean_t *empty_mem_range)
3084 {
3085 	uint8_t	class, subclass;
3086 	uint_t	val;
3087 
3088 	class = pci_config_get8(cfg_hdl, PCI_CONF_BASCLASS);
3089 	subclass = pci_config_get8(cfg_hdl, PCI_CONF_SUBCLASS);
3090 
3091 	if ((class == PCI_CLASS_BRIDGE) && (subclass == PCI_BRIDGE_PCI)) {
3092 		val = (((uint_t)pci_config_get8(cfg_hdl, PCI_BCNF_IO_BASE_LOW) &
3093 		    PCI_BCNF_IO_MASK) << 8);
3094 		/*
3095 		 * Assuming that a zero based io_range[0] implies an
3096 		 * invalid I/O range.  Likewise for mem_range[0].
3097 		 */
3098 		if (val == 0)
3099 			*empty_io_range = B_TRUE;
3100 		val = (((uint_t)pci_config_get16(cfg_hdl, PCI_BCNF_MEM_BASE) &
3101 		    PCI_BCNF_MEM_MASK) << 16);
3102 		if (val == 0)
3103 			*empty_mem_range = B_TRUE;
3104 	}
3105 }
3106 
3107 #endif /* defined(__x86) */
3108 
3109 boolean_t
3110 pcie_link_bw_supported(dev_info_t *dip)
3111 {
3112 	uint32_t linkcap;
3113 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3114 
3115 	if (!PCIE_IS_PCIE(bus_p)) {
3116 		return (B_FALSE);
3117 	}
3118 
3119 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3120 		return (B_FALSE);
3121 	}
3122 
3123 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
3124 	return ((linkcap & PCIE_LINKCAP_LINK_BW_NOTIFY_CAP) != 0);
3125 }
3126 
3127 int
3128 pcie_link_bw_enable(dev_info_t *dip)
3129 {
3130 	uint16_t linkctl;
3131 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3132 
3133 	if (pcie_disable_lbw != 0) {
3134 		return (DDI_FAILURE);
3135 	}
3136 
3137 	if (!pcie_link_bw_supported(dip)) {
3138 		return (DDI_FAILURE);
3139 	}
3140 
3141 	mutex_init(&bus_p->bus_lbw_mutex, NULL, MUTEX_DRIVER, NULL);
3142 	cv_init(&bus_p->bus_lbw_cv, NULL, CV_DRIVER, NULL);
3143 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3144 	linkctl |= PCIE_LINKCTL_LINK_BW_INTR_EN;
3145 	linkctl |= PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3146 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3147 
3148 	bus_p->bus_lbw_pbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3149 	bus_p->bus_lbw_cbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3150 	bus_p->bus_lbw_state |= PCIE_LBW_S_ENABLED;
3151 
3152 	return (DDI_SUCCESS);
3153 }
3154 
3155 int
3156 pcie_link_bw_disable(dev_info_t *dip)
3157 {
3158 	uint16_t linkctl;
3159 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3160 
3161 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3162 		return (DDI_FAILURE);
3163 	}
3164 
3165 	mutex_enter(&bus_p->bus_lbw_mutex);
3166 	while ((bus_p->bus_lbw_state &
3167 	    (PCIE_LBW_S_DISPATCHED | PCIE_LBW_S_RUNNING)) != 0) {
3168 		cv_wait(&bus_p->bus_lbw_cv, &bus_p->bus_lbw_mutex);
3169 	}
3170 	mutex_exit(&bus_p->bus_lbw_mutex);
3171 
3172 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3173 	linkctl &= ~PCIE_LINKCTL_LINK_BW_INTR_EN;
3174 	linkctl &= ~PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3175 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3176 
3177 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_ENABLED;
3178 	kmem_free(bus_p->bus_lbw_pbuf, MAXPATHLEN);
3179 	kmem_free(bus_p->bus_lbw_cbuf, MAXPATHLEN);
3180 	bus_p->bus_lbw_pbuf = NULL;
3181 	bus_p->bus_lbw_cbuf = NULL;
3182 
3183 	mutex_destroy(&bus_p->bus_lbw_mutex);
3184 	cv_destroy(&bus_p->bus_lbw_cv);
3185 
3186 	return (DDI_SUCCESS);
3187 }
3188 
3189 void
3190 pcie_link_bw_taskq(void *arg)
3191 {
3192 	dev_info_t *dip = arg;
3193 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3194 	dev_info_t *cdip;
3195 	boolean_t again;
3196 	sysevent_t *se;
3197 	sysevent_value_t se_val;
3198 	sysevent_id_t eid;
3199 	sysevent_attr_list_t *ev_attr_list;
3200 	int circular;
3201 
3202 top:
3203 	ndi_devi_enter(dip, &circular);
3204 	se = NULL;
3205 	ev_attr_list = NULL;
3206 	mutex_enter(&bus_p->bus_lbw_mutex);
3207 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_DISPATCHED;
3208 	bus_p->bus_lbw_state |= PCIE_LBW_S_RUNNING;
3209 	mutex_exit(&bus_p->bus_lbw_mutex);
3210 
3211 	/*
3212 	 * Update our own speeds as we've likely changed something.
3213 	 */
3214 	pcie_capture_speeds(dip);
3215 
3216 	/*
3217 	 * Walk our children. We only care about updating this on function 0
3218 	 * because the PCIe specification requires that these all be the same
3219 	 * otherwise.
3220 	 */
3221 	for (cdip = ddi_get_child(dip); cdip != NULL;
3222 	    cdip = ddi_get_next_sibling(cdip)) {
3223 		pcie_bus_t *cbus_p = PCIE_DIP2BUS(cdip);
3224 
3225 		if (cbus_p == NULL) {
3226 			continue;
3227 		}
3228 
3229 		if ((cbus_p->bus_bdf & PCIE_REQ_ID_FUNC_MASK) != 0) {
3230 			continue;
3231 		}
3232 
3233 		/*
3234 		 * It's possible that this can fire while a child is otherwise
3235 		 * only partially constructed. Therefore, if we don't have the
3236 		 * config handle, don't bother updating the child.
3237 		 */
3238 		if (cbus_p->bus_cfg_hdl == NULL) {
3239 			continue;
3240 		}
3241 
3242 		pcie_capture_speeds(cdip);
3243 		break;
3244 	}
3245 
3246 	se = sysevent_alloc(EC_PCIE, ESC_PCIE_LINK_STATE,
3247 	    ILLUMOS_KERN_PUB "pcie", SE_SLEEP);
3248 
3249 	(void) ddi_pathname(dip, bus_p->bus_lbw_pbuf);
3250 	se_val.value_type = SE_DATA_TYPE_STRING;
3251 	se_val.value.sv_string = bus_p->bus_lbw_pbuf;
3252 	if (sysevent_add_attr(&ev_attr_list, PCIE_EV_DETECTOR_PATH, &se_val,
3253 	    SE_SLEEP) != 0) {
3254 		ndi_devi_exit(dip, circular);
3255 		goto err;
3256 	}
3257 
3258 	if (cdip != NULL) {
3259 		(void) ddi_pathname(cdip, bus_p->bus_lbw_cbuf);
3260 
3261 		se_val.value_type = SE_DATA_TYPE_STRING;
3262 		se_val.value.sv_string = bus_p->bus_lbw_cbuf;
3263 
3264 		/*
3265 		 * If this fails, that's OK. We'd rather get the event off and
3266 		 * there's a chance that there may not be anything there for us.
3267 		 */
3268 		(void) sysevent_add_attr(&ev_attr_list, PCIE_EV_CHILD_PATH,
3269 		    &se_val, SE_SLEEP);
3270 	}
3271 
3272 	ndi_devi_exit(dip, circular);
3273 
3274 	/*
3275 	 * Before we generate and send down a sysevent, we need to tell the
3276 	 * system that parts of the devinfo cache need to be invalidated. While
3277 	 * the function below takes several args, it ignores them all. Because
3278 	 * this is a global invalidation, we don't bother trying to do much more
3279 	 * than requesting a global invalidation, lest we accidentally kick off
3280 	 * several in a row.
3281 	 */
3282 	ddi_prop_cache_invalidate(DDI_DEV_T_NONE, NULL, NULL, 0);
3283 
3284 	if (sysevent_attach_attributes(se, ev_attr_list) != 0) {
3285 		goto err;
3286 	}
3287 	ev_attr_list = NULL;
3288 
3289 	if (log_sysevent(se, SE_SLEEP, &eid) != 0) {
3290 		goto err;
3291 	}
3292 
3293 err:
3294 	sysevent_free_attr(ev_attr_list);
3295 	sysevent_free(se);
3296 
3297 	mutex_enter(&bus_p->bus_lbw_mutex);
3298 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_RUNNING;
3299 	cv_broadcast(&bus_p->bus_lbw_cv);
3300 	again = (bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) != 0;
3301 	mutex_exit(&bus_p->bus_lbw_mutex);
3302 
3303 	if (again) {
3304 		goto top;
3305 	}
3306 }
3307 
3308 int
3309 pcie_link_bw_intr(dev_info_t *dip)
3310 {
3311 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3312 	uint16_t linksts;
3313 	uint16_t flags = PCIE_LINKSTS_LINK_BW_MGMT | PCIE_LINKSTS_AUTO_BW;
3314 
3315 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3316 		return (DDI_INTR_UNCLAIMED);
3317 	}
3318 
3319 	linksts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3320 	if ((linksts & flags) == 0) {
3321 		return (DDI_INTR_UNCLAIMED);
3322 	}
3323 
3324 	/*
3325 	 * Check if we've already dispatched this event. If we have already
3326 	 * dispatched it, then there's nothing else to do, we coalesce multiple
3327 	 * events.
3328 	 */
3329 	mutex_enter(&bus_p->bus_lbw_mutex);
3330 	bus_p->bus_lbw_nevents++;
3331 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) == 0) {
3332 		if ((bus_p->bus_lbw_state & PCIE_LBW_S_RUNNING) == 0) {
3333 			taskq_dispatch_ent(pcie_link_tq, pcie_link_bw_taskq,
3334 			    dip, 0, &bus_p->bus_lbw_ent);
3335 		}
3336 
3337 		bus_p->bus_lbw_state |= PCIE_LBW_S_DISPATCHED;
3338 	}
3339 	mutex_exit(&bus_p->bus_lbw_mutex);
3340 
3341 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKSTS, flags);
3342 	return (DDI_INTR_CLAIMED);
3343 }
3344 
3345 int
3346 pcie_link_set_target(dev_info_t *dip, pcie_link_speed_t speed)
3347 {
3348 	uint16_t ctl2, rval;
3349 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3350 
3351 	if (!PCIE_IS_PCIE(bus_p)) {
3352 		return (ENOTSUP);
3353 	}
3354 
3355 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3356 		return (ENOTSUP);
3357 	}
3358 
3359 	if (bus_p->bus_pcie_vers < 2) {
3360 		return (ENOTSUP);
3361 	}
3362 
3363 	switch (speed) {
3364 	case PCIE_LINK_SPEED_2_5:
3365 		rval = PCIE_LINKCTL2_TARGET_SPEED_2_5;
3366 		break;
3367 	case PCIE_LINK_SPEED_5:
3368 		rval = PCIE_LINKCTL2_TARGET_SPEED_5;
3369 		break;
3370 	case PCIE_LINK_SPEED_8:
3371 		rval = PCIE_LINKCTL2_TARGET_SPEED_8;
3372 		break;
3373 	case PCIE_LINK_SPEED_16:
3374 		rval = PCIE_LINKCTL2_TARGET_SPEED_16;
3375 		break;
3376 	case PCIE_LINK_SPEED_32:
3377 		rval = PCIE_LINKCTL2_TARGET_SPEED_32;
3378 		break;
3379 	case PCIE_LINK_SPEED_64:
3380 		rval = PCIE_LINKCTL2_TARGET_SPEED_64;
3381 		break;
3382 	default:
3383 		return (EINVAL);
3384 	}
3385 
3386 	mutex_enter(&bus_p->bus_speed_mutex);
3387 	if ((bus_p->bus_sup_speed & speed) == 0) {
3388 		mutex_exit(&bus_p->bus_speed_mutex);
3389 		return (ENOTSUP);
3390 	}
3391 
3392 	bus_p->bus_target_speed = speed;
3393 	bus_p->bus_speed_flags |= PCIE_LINK_F_ADMIN_TARGET;
3394 
3395 	ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
3396 	ctl2 &= ~PCIE_LINKCTL2_TARGET_SPEED_MASK;
3397 	ctl2 |= rval;
3398 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL2, ctl2);
3399 	mutex_exit(&bus_p->bus_speed_mutex);
3400 
3401 	/*
3402 	 * Make sure our updates have been reflected in devinfo.
3403 	 */
3404 	pcie_capture_speeds(dip);
3405 
3406 	return (0);
3407 }
3408 
3409 int
3410 pcie_link_retrain(dev_info_t *dip)
3411 {
3412 	uint16_t ctl;
3413 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3414 
3415 	if (!PCIE_IS_PCIE(bus_p)) {
3416 		return (ENOTSUP);
3417 	}
3418 
3419 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3420 		return (ENOTSUP);
3421 	}
3422 
3423 	/*
3424 	 * The PCIe specification suggests that we make sure that the link isn't
3425 	 * in training before issuing this command in case there was a state
3426 	 * machine transition prior to when we got here. We wait and then go
3427 	 * ahead and issue the command anyways.
3428 	 */
3429 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3430 		uint16_t sts;
3431 
3432 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3433 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3434 			break;
3435 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3436 	}
3437 
3438 	ctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3439 	ctl |= PCIE_LINKCTL_RETRAIN_LINK;
3440 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, ctl);
3441 
3442 	/*
3443 	 * Wait again to see if it clears before returning to the user.
3444 	 */
3445 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3446 		uint16_t sts;
3447 
3448 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3449 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3450 			break;
3451 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3452 	}
3453 
3454 	return (0);
3455 }
3456 
3457 /*
3458  * Here we're going through and grabbing information about a given PCIe device.
3459  * Our situation is a little bit complicated at this point. This gets invoked
3460  * both during early initialization and during hotplug events. We cannot rely on
3461  * the device node having been fully set up, that is, while the pcie_bus_t
3462  * normally contains a ddi_acc_handle_t for configuration space, that may not be
3463  * valid yet as this can occur before child initialization or we may be dealing
3464  * with a function that will never have a handle.
3465  *
3466  * However, we should always have a fully furnished pcie_bus_t, which means that
3467  * we can get its bdf and use that to access the devices configuration space.
3468  */
3469 static int
3470 pcie_fabric_feature_scan(dev_info_t *dip, void *arg)
3471 {
3472 	pcie_bus_t *bus_p;
3473 	uint32_t devcap;
3474 	uint16_t mps;
3475 	dev_info_t *rcdip;
3476 	pcie_fabric_data_t *fab = arg;
3477 
3478 	/*
3479 	 * Skip over non-PCIe devices. If we encounter something here, we don't
3480 	 * bother going through any of its children because we don't have reason
3481 	 * to believe that a PCIe device that this will impact will exist below
3482 	 * this. While it is possible that there's a PCIe fabric downstream an
3483 	 * intermediate old PCI/PCI-X bus, at that point, we'll still trigger
3484 	 * our complex fabric detection and use the minimums.
3485 	 *
3486 	 * The reason this doesn't trigger an immediate flagging as a complex
3487 	 * case like the one below is because we could be scanning a device that
3488 	 * is a nexus driver and has children already (albeit that would be
3489 	 * somewhat surprising as we don't anticipate being called at this
3490 	 * point).
3491 	 */
3492 	if (pcie_dev(dip) != DDI_SUCCESS) {
3493 		return (DDI_WALK_PRUNECHILD);
3494 	}
3495 
3496 	/*
3497 	 * If we fail to find a pcie_bus_t for some reason, that's somewhat
3498 	 * surprising. We log this fact and set the complex flag and indicate it
3499 	 * was because of this case. This immediately transitions us to a
3500 	 * "complex" case which means use the minimal, safe, settings.
3501 	 */
3502 	bus_p = PCIE_DIP2BUS(dip);
3503 	if (bus_p == NULL) {
3504 		dev_err(dip, CE_WARN, "failed to find associated pcie_bus_t "
3505 		    "during fabric scan");
3506 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3507 		return (DDI_WALK_TERMINATE);
3508 	}
3509 
3510 	/*
3511 	 * In a similar case, there is hardware out there which is a PCIe
3512 	 * device, but does not advertise a PCIe capability. An example of this
3513 	 * is the IDT Tsi382A which can hide its PCIe capability. If this is
3514 	 * the case, we immediately terminate scanning and flag this as a
3515 	 * 'complex' case which causes us to use guaranteed safe settings.
3516 	 */
3517 	if (bus_p->bus_pcie_off == 0) {
3518 		dev_err(dip, CE_WARN, "encountered PCIe device without PCIe "
3519 		    "capability");
3520 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3521 		return (DDI_WALK_TERMINATE);
3522 	}
3523 
3524 	rcdip = pcie_get_rc_dip(dip);
3525 
3526 	/*
3527 	 * First, start by determining what the device's tagging and max packet
3528 	 * size is. All PCIe devices will always have the 8-bit tag information
3529 	 * as this has existed since PCIe 1.0. 10-bit tagging requires a V2
3530 	 * PCIe capability. 14-bit requires the DEV3 cap. If we are missing a
3531 	 * version or capability, then we always treat that as lacking the bits
3532 	 * in the fabric.
3533 	 */
3534 	ASSERT3U(bus_p->bus_pcie_off, !=, 0);
3535 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3536 	    PCIE_DEVCAP);
3537 	mps = devcap & PCIE_DEVCAP_MAX_PAYLOAD_MASK;
3538 	if (mps < fab->pfd_mps_found) {
3539 		fab->pfd_mps_found = mps;
3540 	}
3541 
3542 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) == 0) {
3543 		fab->pfd_tag_found &= ~PCIE_TAG_8B;
3544 	}
3545 
3546 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0) {
3547 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3548 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3549 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_COMP_SUP) == 0) {
3550 			fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3551 		}
3552 	} else {
3553 		fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3554 	}
3555 
3556 	if (bus_p->bus_dev3_off != 0) {
3557 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3558 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3559 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_COMP_SUP) == 0) {
3560 			fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3561 		}
3562 	} else {
3563 		fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3564 	}
3565 
3566 	/*
3567 	 * Now that we have captured device information, we must go and ask
3568 	 * questions of the topology here. The big theory statement enumerates
3569 	 * several types of cases. The big question we need to answer is have we
3570 	 * encountered a hotpluggable bridge that means we need to mark this as
3571 	 * complex.
3572 	 *
3573 	 * The big theory statement notes several different kinds of hotplug
3574 	 * topologies that exist that we can theoretically support. Right now we
3575 	 * opt to keep our lives simple and focus solely on (4) and (5). These
3576 	 * can both be summarized by a single, fairly straightforward rule:
3577 	 *
3578 	 * The only allowed hotpluggable entity is a root port.
3579 	 *
3580 	 * The reason that this can work and detect cases like (6), (7), and our
3581 	 * other invalid ones is that the hotplug code will scan and find all
3582 	 * children before we are called into here.
3583 	 */
3584 	if (bus_p->bus_hp_sup_modes != 0) {
3585 		/*
3586 		 * We opt to terminate in this case because there's no value in
3587 		 * scanning the rest of the tree at this point.
3588 		 */
3589 		if (!PCIE_IS_RP(bus_p)) {
3590 			fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3591 			return (DDI_WALK_TERMINATE);
3592 		}
3593 
3594 		fab->pfd_flags |= PCIE_FABRIC_F_RP_HP;
3595 	}
3596 
3597 	/*
3598 	 * As our walk starts at a root port, we need to make sure that we don't
3599 	 * pick up any of its siblings and their children as those would be
3600 	 * different PCIe fabric domains for us to scan. In many hardware
3601 	 * platforms multiple root ports are all at the same level in the tree.
3602 	 */
3603 	if (bus_p->bus_rp_dip == dip) {
3604 		return (DDI_WALK_PRUNESIB);
3605 	}
3606 
3607 	return (DDI_WALK_CONTINUE);
3608 }
3609 
3610 static int
3611 pcie_fabric_feature_set(dev_info_t *dip, void *arg)
3612 {
3613 	pcie_bus_t *bus_p;
3614 	dev_info_t *rcdip;
3615 	pcie_fabric_data_t *fab = arg;
3616 	uint32_t devcap, devctl;
3617 
3618 	if (pcie_dev(dip) != DDI_SUCCESS) {
3619 		return (DDI_WALK_PRUNECHILD);
3620 	}
3621 
3622 	/*
3623 	 * The missing bus_t sent us into the complex case previously. We still
3624 	 * need to make sure all devices have values we expect here and thus
3625 	 * don't terminate like the above. The same is true for the case where
3626 	 * there is no PCIe capability.
3627 	 */
3628 	bus_p = PCIE_DIP2BUS(dip);
3629 	if (bus_p == NULL || bus_p->bus_pcie_off == 0) {
3630 		return (DDI_WALK_CONTINUE);
3631 	}
3632 	rcdip = pcie_get_rc_dip(dip);
3633 
3634 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3635 	    PCIE_DEVCAP);
3636 	devctl = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3637 	    PCIE_DEVCTL);
3638 
3639 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) != 0 &&
3640 	    (fab->pfd_tag_act & PCIE_TAG_8B) != 0) {
3641 		devctl |= PCIE_DEVCTL_EXT_TAG_FIELD_EN;
3642 	}
3643 
3644 	devctl &= ~PCIE_DEVCTL_MAX_PAYLOAD_MASK;
3645 	ASSERT0(fab->pfd_mps_act & ~PCIE_DEVCAP_MAX_PAYLOAD_MASK);
3646 	devctl |= fab->pfd_mps_act << PCIE_DEVCTL_MAX_PAYLOAD_SHIFT;
3647 
3648 	pci_cfgacc_put16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3649 	    PCIE_DEVCTL, devctl);
3650 
3651 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0 &&
3652 	    (fab->pfd_tag_act & PCIE_TAG_10B_COMP) != 0) {
3653 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3654 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3655 
3656 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_REQ_SUP) == 0) {
3657 			uint16_t devctl2 = pci_cfgacc_get16(rcdip,
3658 			    bus_p->bus_bdf, bus_p->bus_pcie_off + PCIE_DEVCTL2);
3659 			devctl2 |= PCIE_DEVCTL2_10B_TAG_REQ_EN;
3660 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3661 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl2);
3662 		}
3663 	}
3664 
3665 	if (bus_p->bus_dev3_off != 0 &&
3666 	    (fab->pfd_tag_act & PCIE_TAG_14B_COMP) != 0) {
3667 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3668 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3669 
3670 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_REQ_SUP) == 0) {
3671 			uint16_t devctl3 = pci_cfgacc_get16(rcdip,
3672 			    bus_p->bus_bdf, bus_p->bus_dev3_off + PCIE_DEVCTL3);
3673 			devctl3 |= PCIE_DEVCTL3_14B_TAG_REQ_EN;
3674 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3675 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl3);
3676 		}
3677 	}
3678 
3679 	/*
3680 	 * As our walk starts at a root port, we need to make sure that we don't
3681 	 * pick up any of its siblings and their children as those would be
3682 	 * different PCIe fabric domains for us to scan. In many hardware
3683 	 * platforms multiple root ports are all at the same level in the tree.
3684 	 */
3685 	if (bus_p->bus_rp_dip == dip) {
3686 		return (DDI_WALK_PRUNESIB);
3687 	}
3688 
3689 	return (DDI_WALK_CONTINUE);
3690 }
3691 
3692 /*
3693  * This is used to scan and determine the total set of PCIe fabric settings that
3694  * we should have in the system for everything downstream of this specified root
3695  * port. Note, it is only really safe to call this while working from the
3696  * perspective of a root port as we will be walking down the entire device tree.
3697  *
3698  * However, our callers, particularly hoptlug, don't have all the information
3699  * we'd like. In particular, we need to check that:
3700  *
3701  *   o This is actually a PCIe device.
3702  *   o That this is a root port (see the big theory statement to understand this
3703  *     constraint).
3704  */
3705 void
3706 pcie_fabric_setup(dev_info_t *dip)
3707 {
3708 	pcie_bus_t *bus_p;
3709 	pcie_fabric_data_t *fab;
3710 	dev_info_t *pdip;
3711 	int circular_count;
3712 
3713 	bus_p = PCIE_DIP2BUS(dip);
3714 	if (bus_p == NULL || !PCIE_IS_RP(bus_p)) {
3715 		return;
3716 	}
3717 
3718 	VERIFY3P(bus_p->bus_fab, !=, NULL);
3719 	fab = bus_p->bus_fab;
3720 
3721 	/*
3722 	 * For us to call ddi_walk_devs(), our parent needs to be held.
3723 	 * ddi_walk_devs() will take care of grabbing our dip as part of its
3724 	 * walk before we iterate over our children.
3725 	 *
3726 	 * A reasonable question to ask here is why is it safe to ask for our
3727 	 * parent? In this case, because we have entered here through some
3728 	 * thread that's operating on us whether as part of attach or a hotplug
3729 	 * event, our dip somewhat by definition has to be valid. If we were
3730 	 * looking at our dip's children and then asking them for a parent, then
3731 	 * that would be a race condition.
3732 	 */
3733 	pdip = ddi_get_parent(dip);
3734 	VERIFY3P(pdip, !=, NULL);
3735 	ndi_devi_enter(pdip, &circular_count);
3736 	fab->pfd_flags |= PCIE_FABRIC_F_SCANNING;
3737 
3738 	/*
3739 	 * Reinitialize the tracking structure to basically set the maximum
3740 	 * caps. These will be chipped away during the scan.
3741 	 */
3742 	fab->pfd_mps_found = PCIE_DEVCAP_MAX_PAYLOAD_4096;
3743 	fab->pfd_tag_found = PCIE_TAG_ALL;
3744 	fab->pfd_flags &= ~PCIE_FABRIC_F_COMPLEX;
3745 
3746 	ddi_walk_devs(dip, pcie_fabric_feature_scan, fab);
3747 
3748 	if ((fab->pfd_flags & PCIE_FABRIC_F_COMPLEX) != 0) {
3749 		fab->pfd_tag_act = PCIE_TAG_5B;
3750 		fab->pfd_mps_act = PCIE_DEVCAP_MAX_PAYLOAD_128;
3751 	} else {
3752 		fab->pfd_tag_act = fab->pfd_tag_found;
3753 		fab->pfd_mps_act = fab->pfd_mps_found;
3754 	}
3755 
3756 	ddi_walk_devs(dip, pcie_fabric_feature_set, fab);
3757 
3758 	fab->pfd_flags &= ~PCIE_FABRIC_F_SCANNING;
3759 	ndi_devi_exit(pdip, circular_count);
3760 }
3761