xref: /illumos-gate/usr/src/uts/common/io/pciex/pcie.c (revision 3fe455549728ac525df3be56130ad8e075d645d7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright 2024 Oxide Computer Company
26  */
27 
28 /*
29  * PCIe Initialization
30  * -------------------
31  *
32  * The PCIe subsystem is split about and initializes itself in a couple of
33  * different places. This is due to the platform-specific nature of initializing
34  * resources and the nature of the SPARC PROM and how that influenced the
35  * subsystem. Note that traditional PCI (mostly seen these days in Virtual
36  * Machines) follows most of the same basic path outlined here, but skips a
37  * large chunk of PCIe-specific initialization.
38  *
39  * First, there is an initial device discovery phase that is taken care of by
40  * the platform. This is where we discover the set of devices that are present
41  * at system power on. These devices may or may not be hot-pluggable. In
42  * particular, this happens in a platform-specific way right now. In general, we
43  * expect most discovery to be driven by scanning each bus, device, and
44  * function, and seeing what actually exists and responds to configuration space
45  * reads. This is driven via pci_boot.c on x86. This may be seeded by something
46  * like device tree, a PROM, supplemented with ACPI, or by knowledge that the
47  * underlying platform has.
48  *
49  * As a part of this discovery process, the full set of resources that exist in
50  * the system for PCIe are:
51  *
52  *   o PCI buses
53  *   o Prefetchable Memory
54  *   o Non-prefetchable memory
55  *   o I/O ports
56  *
57  * This process is driven by a platform's PCI platform Resource Discovery (PRD)
58  * module. The PRD definitions can be found in <sys/plat/pci_prd.h> and are used
59  * to discover these resources, which will be converted into the initial set of
60  * the standard properties in the system: 'regs', 'available', 'ranges', etc.
61  * Currently it is up to platform-specific code (which should ideally be
62  * consolidated at some point) to set up all these properties.
63  *
64  * As a part of the discovery process, the platform code will create a device
65  * node (dev_info_t) for each discovered function and will create a PCIe nexus
66  * for each overall root complex that exists in the system. Most root complexes
67  * will have multiple root ports, each of which is the foundation of an
68  * independent PCIe bus due to the point-to-point nature of PCIe. When a root
69  * complex is found, a nexus driver such as npe (Nexus for PCIe Express) is
70  * attached. In the case of a non-PCIe-capable system this is where the older
71  * pci nexus driver would be used instead.
72  *
73  * To track data about a given device on a bus, a 'pcie_bus_t' structure is
74  * created for and assigned to every PCIe-based dev_info_t. This can be used to
75  * find the root port and get basic information about the device, its faults,
76  * and related information. This contains pointers to the corresponding root
77  * port as well.
78  *
79  * A root complex has its pcie_bus_t initialized as part of the device discovery
80  * process. That is, because we're trying to bootstrap the actual tree and most
81  * platforms don't have a representation for this that's explicitly
82  * discoverable, this is created manually. See callers of pcie_rc_init_bus().
83  *
84  * For other devices, bridges, and switches, the process is split into two.
85  * There is an initial pcie_bus_t that is created which will exist before we go
86  * through the actual driver attachment process. For example, on x86 this is
87  * done as part of the device and function discovery. The second pass of
88  * initialization is done only after the nexus driver actually is attached and
89  * it goes through and finishes processing all of its children.
90  *
91  * Child Initialization
92  * --------------------
93  *
94  * Generally speaking, the platform will first enumerate all PCIe devices that
95  * are in the sytem before it actually creates a device tree. This is part of
96  * the bus/device/function scanning that is performed and from that dev_info_t
97  * nodes are created for each discovered device and are inserted into the
98  * broader device tree. Later in boot, the actual device tree is walked and the
99  * nodes go through the standard dev_info_t initialization process (DS_PROTO,
100  * DS_LINKED, DS_BOUND, etc.).
101  *
102  * PCIe-specific initialization can roughly be broken into the following pieces:
103  *
104  *   1. Platform initial discovery and resource assignment
105  *   2. The pcie_bus_t initialization
106  *   3. Nexus driver child initialization
107  *   4. Fabric initialization
108  *   5. Device driver-specific initialization
109  *
110  * The first part of this (1) and (2) are discussed in the previous section.
111  * Part (1) in particular is a combination of the PRD (platform resource
112  * discovery) and general device initialization. After this, because we have a
113  * device tree, most of the standard nexus initialization happens.
114  *
115  * (5) is somewhat simple, so let's get into it before we discuss (3) and (4).
116  * This is the last thing that is called and that happens after all of the
117  * others are done. This is the logic that occurs in a driver's attach(9E) entry
118  * point. This is always device-specific and generally speaking should not be
119  * manipulating standard PCIe registers directly on their own. For example, the
120  * MSI/MSI-X, AER, Serial Number, etc. capabilities will be automatically dealt
121  * with by the framework in (3) and (4) below. In many cases, particularly
122  * things that are part of (4), adjusting them in the individual driver is not
123  * safe.
124  *
125  * Finally, let's talk about (3) and (4) as these are related. The NDI provides
126  * for a standard hook for a nexus to initialize its children. In our platforms,
127  * there are basically two possible PCIe nexus drivers: there is the generic
128  * pcieb -- PCIe bridge -- driver which is used for standard root ports,
129  * switches, etc. Then there is the platform-specific primary nexus driver,
130  * which is being slowly consolidated into a single one where it makes sense. An
131  * example of this is npe.
132  *
133  * Each of these has a child initialization function which is called from their
134  * DDI_CTLOPS_INITCHILD operation on the bus_ctl function pointer. This goes
135  * through and initializes a large number of different pieces of PCIe-based
136  * settings through the common pcie_initchild() function. This takes care of
137  * things like:
138  *
139  *   o Advanced Error Reporting
140  *   o Alternative Routing
141  *   o Capturing information around link speed, width, serial numbers, etc.
142  *   o Setting common properties around aborts
143  *
144  * There are a few caveats with this that need to be kept in mind:
145  *
146  *   o A dev_info_t indicates a specific function. This means that a
147  *     multi-function device will not all be initialized at the same time and
148  *     there is no guarantee that all children will be initialized before one of
149  *     them is attached.
150  *   o A child is only initialized if we have found a driver that matches an
151  *     alias in the dev_info_t's compatible array property.  While a lot of
152  *     multi-function devices are often multiple instances of the same thing
153  *     (e.g. a multi-port NIC with a function / NIC), this is not always the
154  *     case and one cannot make any assumptions here.
155  *
156  * This in turn leads to the next form of initialization that takes place in the
157  * case of (4). This is where we take care of things that need to be consistent
158  * across either entire devices or more generally across an entire root port and
159  * all of its children. There are a few different examples of this:
160  *
161  *   o Setting the maximum packet size
162  *   o Determining the tag width
163  *
164  * Note that features which are only based on function 0, such as ASPM (Active
165  * State Power Management), hardware autonomous width disable, etc. ultimately
166  * do not go through this path today. There are some implications here in that
167  * today several of these things are captured on functions which may not have
168  * any control here. This is an area of needed improvement.
169  *
170  * The settings in (4) are initialized in a common way, via
171  * pcie_fabric_setup(). This is called into from two different parts of
172  * the stack:
173  *
174  *   1. When we attach a root port, which is driven by pcieb.
175  *   2. When we have a hotplug event that adds a device.
176  *
177  * In general here we are going to use the term 'fabric' to refer to everything
178  * that is downstream of a root port. This corresponds to what the PCIe
179  * specification calls a 'hierarchy domain'. Strictly speaking, this is fine
180  * until peer-to-peer requests begin to happen that cause you to need to forward
181  * things across root ports. At that point the scope of the fabric increases and
182  * these settings become more complicated. We currently optimize for the much
183  * more common case, which is that each root port is effectively independent
184  * from a PCIe transaction routing perspective.
185  *
186  * Put differently, we use the term 'fabric' to refer to a set of PCIe devices
187  * that can route transactions to one another, which is generally constrained to
188  * everything under a root port and that root ports are independent. If this
189  * constraint changes, then all one needs to do is replace the discussion of the
190  * root port below with the broader root complex and system.
191  *
192  * A challenge with these settings is that once they're set and devices are
193  * actively making requests, we cannot really change them without resetting the
194  * links and cancelling all outstanding transactions via device resets. Because
195  * this is not something that we want to do, we instead look at how and when we
196  * set this to constrain what's going on.
197  *
198  * Because of this we basically say that if a given fabric has more than one
199  * hot-plug capable device that's encountered, then we have to use safe defaults
200  * (which we can allow an operator to tune eventually via pcieadm). If we have a
201  * mix of non-hotpluggable slots with downstream endpoints present and
202  * hot-pluggable slots, then we're in this case. If we don't have hot-pluggable
203  * slots, then we can have an arbitrarily complex setup. Let's look at a few of
204  * these visually:
205  *
206  * In the following diagrams, RP stands for Root Port, EP stands for Endpoint.
207  * If something is hot-pluggable, then we label it with (HP).
208  *
209  *   (1) RP --> EP
210  *   (2) RP --> Switch --> EP
211  *                    +--> EP
212  *                    +--> EP
213  *
214  *   (3) RP --> Switch --> EP
215  *                    +--> EP
216  *                    +--> Switch --> EP
217  *                               +--> EP
218  *                    +--> EP
219  *
220  *
221  *   (4) RP (HP) --> EP
222  *   (5) RP (HP) --> Switch --> EP
223  *                         +--> EP
224  *                         +--> EP
225  *
226  *   (6) RP --> Switch (HP) --> EP
227  *   (7) RP (HP) --> Switch (HP) --> EP
228  *
229  * If we look at all of these, these are all cases where it's safe for us to set
230  * things based on all devices. (1), (2), and (3) are straightforward because
231  * they have no hot-pluggable elements. This means that nothing should come/go
232  * on the system and we can set up fabric-wide properties as part of the root
233  * port.
234  *
235  * Case (4) is the most standard one that we encounter for hot-plug. Here you
236  * have a root port directly connected to an endpoint. The most common example
237  * would be an NVMe device plugged into a root port. Case (5) is interesting to
238  * highlight. While there is a switch and multiple endpoints there, they are
239  * showing up as a unit. This ends up being a weirder variant of (4), but it is
240  * safe for us to set advanced properties because we can figure out what the
241  * total set should be.
242  *
243  * Now, the more interesting bits here are (6) and (7). The reason that (6)
244  * works is that ultimately there is only a single down-stream port here that is
245  * hot-pluggable and all non-hotpluggable ports do not have a device present,
246  * which suggests that they will never have a device present. (7) also could be
247  * made to work by making the observation that if there's truly only one
248  * endpoint in a fabric, it doesn't matter how many switches there are that are
249  * hot-pluggable. This would only hold if we can assume for some reason that no
250  * other endpoints could be added.
251  *
252  * In turn, let's look at several cases that we believe aren't safe:
253  *
254  *   (8) RP --> Switch --> EP
255  *                    +--> EP
256  *               (HP) +--> EP
257  *
258  *   (9) RP --> Switch (HP) +--> EP
259  *                     (HP) +--> EP
260  *
261  *   (10) RP (HP) --> Switch (HP) +--> EP
262  *                           (HP) +--> EP
263  *
264  * All of these are situations where it's much more explicitly unsafe. Let's
265  * take (8). The problem here is that the devices on the non-hotpluggable
266  * downstream switches are always there and we should assume all device drivers
267  * will be active and performing I/O when the hot-pluggable slot changes. If the
268  * hot-pluggable slot has a lower max payload size, then we're mostly out of
269  * luck. The case of (9) is very similar to (8), just that we have more hot-plug
270  * capable slots.
271  *
272  * Finally (10) is a case of multiple instances of hotplug. (9) and (10) are the
273  * more general case of (6) and (7). While we can try to detect (6) and (7) more
274  * generally or try to make it safe, we're going to start with a simpler form of
275  * detection for this, which roughly follows the following rules:
276  *
277  *   o If there are no hot-pluggable slots in an entire fabric, then we can set
278  *     all fabric properties based on device capabilities.
279  *   o If we encounter a hot-pluggable slot, we can only set fabric properties
280  *     based on device capabilities if:
281  *
282  *       1. The hotpluggable slot is a root port.
283  *       2. There are no other hotpluggable devices downstream of it.
284  *
285  * Otherwise, if neither of the above is true, then we must use the basic PCIe
286  * defaults for various fabric-wide properties (discussed below). Even in these
287  * more complicated cases, device-specific properties such as the configuration
288  * of AERs, ASPM, etc. are still handled in the general pcie_init_bus() and
289  * related discussed earlier here.
290  *
291  * Because the only fabrics that we'll change are those that correspond to root
292  * ports, we will only call into the actual fabric feature setup when one of
293  * those changes. This has the side effect of simplifying locking. When we make
294  * changes here we need to be able to hold the entire device tree under the root
295  * port (including the root port and its parent). This is much harder to do
296  * safely when starting in the middle of the tree.
297  *
298  * Handling of Specific Properties
299  * -------------------------------
300  *
301  * This section goes into the rationale behind how we initialize and program
302  * various parts of the PCIe stack.
303  *
304  * 5-, 8-, 10- AND 14-BIT TAGS
305  *
306  * Tags are part of PCIe transactions and when combined with a device identifier
307  * are used to uniquely identify a transaction. In PCIe parlance, a Requester
308  * (someone who initiates a PCIe request) sets a unique tag in the request and
309  * the Completer (someone who processes and responds to a PCIe request) echoes
310  * the tag back. This means that a requester generally is responsible for
311  * ensuring that they don't reuse a tag between transactions.
312  *
313  * Thus the number of tags that a device has relates to the number of
314  * outstanding transactions that it can have, which are usually tied to the
315  * number of outstanding DMA transfers. The size of these transactions is also
316  * then scoped by the handling of the Maximum Packet Payload.
317  *
318  * In PCIe 1.0, devices default to a 5-bit tag. There was also an option to
319  * support an 8-bit tag. The 8-bit extended tag did not distinguish between a
320  * Requester or Completer. There was a bit to indicate device support of 8-bit
321  * tags in the Device Capabilities Register of the PCIe Capability and a
322  * separate bit to enable it in the Device Control Register of the PCIe
323  * Capability.
324  *
325  * In PCIe 4.0, support for a 10-bit tag was added. The specification broke
326  * apart the support bit into multiple pieces. In particular, in the Device
327  * Capabilities 2 register of the PCIe Capability there is a separate bit to
328  * indicate whether the device supports 10-bit completions and 10-bit requests.
329  * All PCIe 4.0 compliant devices are required to support 10-bit tags if they
330  * operate at 16.0 GT/s speed (a PCIe Gen 4 compliant device does not have to
331  * operate at Gen 4 speeds).
332  *
333  * This allows a device to support 10-bit completions but not 10-bit requests.
334  * A device that supports 10-bit requests is required to support 10-bit
335  * completions. There is no ability to enable or disable 10-bit completion
336  * support in the Device Capabilities 2 register. There is only a bit to enable
337  * 10-bit requests. This distinction makes our life easier as this means that as
338  * long as the entire fabric supports 10-bit completions, it doesn't matter if
339  * not all devices support 10-bit requests and we can enable them as required.
340  * More on this in a bit.
341  *
342  * In PCIe 6.0, another set of bits was added for 14-bit tags. These follow the
343  * same pattern as the 10-bit tags. The biggest difference is that the
344  * capabilities and control for these are found in the Device Capabilities 3
345  * and Device Control 3 register of the Device 3 Extended Capability. Similar to
346  * what we see with 10-bit tags, requesters are required to support the
347  * completer capability. The only control bit is for whether or not they enable
348  * a 14-bit requester.
349  *
350  * PCIe switches which sit between root ports and endpoints and show up to
351  * software as a set of bridges. Bridges generally don't have to know about tags
352  * as they are usually neither requesters or completers (unless directly talking
353  * to the bridge instance). That is they are generally required to forward
354  * packets without modifying them. This works until we deal with switch error
355  * handling. At that point, the switch may try to interpret the transaction and
356  * if it doesn't understand the tagging scheme in use, return the transaction to
357  * with the wrong tag and also an incorrectly diagnosed error (usually a
358  * malformed TLP).
359  *
360  * With all this, we construct a somewhat simple policy of how and when we
361  * enable extended tags:
362  *
363  *    o If we have a complex hotplug-capable fabric (based on the discussion
364  *      earlier in fabric-specific settings), then we cannot enable any of the
365  *      8-bit, 10-bit, and 14-bit tagging features. This is due to the issues
366  *      with intermediate PCIe switches and related.
367  *
368  *    o If every device supports 8-bit capable tags, then we will go through and
369  *      enable those everywhere.
370  *
371  *    o If every device supports 10-bit capable completions, then we will enable
372  *      10-bit requester on every device that supports it.
373  *
374  *    o If every device supports 14-bit capable completions, then we will enable
375  *      14-bit requesters on every device that supports it.
376  *
377  * This is the simpler end of the policy and one that is relatively easy to
378  * implement. While we could attempt to relax the constraint that every device
379  * in the fabric implement these features by making assumptions about peer-to-
380  * peer requests (that is devices at the same layer in the tree won't talk to
381  * one another), that is a lot of complexity. For now, we leave such an
382  * implementation to those who need it in the future.
383  *
384  * MAX PAYLOAD SIZE
385  *
386  * When performing transactions on the PCIe bus, a given transaction has a
387  * maximum allowed size. This size is called the MPS or 'Maximum Payload Size'.
388  * A given device reports its maximum supported size in the Device Capabilities
389  * register of the PCIe Capability. It is then set in the Device Control
390  * register.
391  *
392  * One of the challenges with this value is that different functions of a device
393  * have independent values, but strictly speaking are required to actually have
394  * the same value programmed in all of them lest device behavior goes awry. When
395  * a device has the ARI (alternative routing ID) capability enabled, then only
396  * function 0 controls the actual payload size.
397  *
398  * The settings for this need to be consistent throughout the fabric. A
399  * Transmitter is not allowed to create a TLP that exceeds its maximum packet
400  * size and a Receiver is not allowed to receive a packet that exceeds its
401  * maximum packet size. In all of these cases, this would result in something
402  * like a malformed TLP error.
403  *
404  * Effectively, this means that everything on a given fabric must have the same
405  * value programmed in its Device Control register for this value. While in the
406  * case of tags, switches generally weren't completers or requesters, here every
407  * device along the path is subject to this. This makes the actual value that we
408  * set throughout the fabric even more important and the constraints of hotplug
409  * even worse to deal with.
410  *
411  * Because a hotplug device can be inserted with any packet size, if we hit
412  * anything other than the simple hotplug cases discussed in the fabric-specific
413  * settings section, then we must use the smallest size of 128 byte payloads.
414  * This is because a device could be plugged in that supports something smaller
415  * than we had otherwise set. If there are other active devices, those could not
416  * be changed without quiescing the entire fabric. As such our algorithm is as
417  * follows:
418  *
419  *     1. Scan the entire fabric, keeping track of the smallest seen MPS in the
420  *        Device Capabilities Register.
421  *     2. If we have a complex fabric, program each Device Control register with
422  *        a 128 byte maximum payload size, otherwise, program it with the
423  *        discovered value.
424  *
425  *
426  * MAX READ REQUEST SIZE
427  *
428  * The maximum read request size (mrrs) is a much more confusing thing when
429  * compared to the maximum payload size counterpart. The maximum payload size
430  * (MPS) above is what restricts the actual size of a TLP. The mrrs value
431  * is used to control part of the behavior of Memory Read Request, which is not
432  * strictly speaking subject to the MPS. A PCIe device is allowed to respond to
433  * a Memory Read Request with less bytes than were actually requested in a
434  * single completion. In general, the default size that a root complex and its
435  * root port will reply to are based around the length of a cache line.
436  *
437  * What this ultimately controls is the number of requests that the Requester
438  * has to make and trades off bandwidth, bus sharing, and related here. For
439  * example, if the maximum read request size is 4 KiB, then the requester would
440  * only issue a single read request asking for 4 KiB. It would still receive
441  * these as multiple packets in units of the MPS. If however, the maximum read
442  * request was only say 512 B, then it would need to make 8 separate requests,
443  * potentially increasing latency. On the other hand, if systems are relying on
444  * total requests for QoS, then it's important to set it to something that's
445  * closer to the actual MPS.
446  *
447  * Traditionally, the OS has not been the most straightforward about this. It's
448  * important to remember that setting this up is also somewhat in the realm of
449  * system firmware. Due to the PCI Firmware specification, the firmware may have
450  * set up a value for not just the MRRS but also the MPS. As such, our logic
451  * basically left the MRRS alone and used whatever the device had there as long
452  * as we weren't shrinking the device's MPS. If we were, then we'd set it to the
453  * MPS. If the device was a root port, then it was just left at a system wide
454  * and PCIe default of 512 bytes.
455  *
456  * If we survey firmware (which isn't easy due to its nature), we have seen most
457  * cases where the firmware just doesn't do anything and leaves it to the
458  * device's default, which is basically just the PCIe default, unless it has a
459  * specific knowledge of something like say wanting to do something for an NVMe
460  * device. The same is generally true of other systems, leaving it at its
461  * default unless otherwise set by a device driver.
462  *
463  * Because this value doesn't really have the same constraints as other fabric
464  * properties, this becomes much simpler and we instead opt to set it as part of
465  * the device node initialization. In addition, there are no real rules about
466  * different functions having different values here as it doesn't really impact
467  * the TLP processing the same way that the MPS does.
468  *
469  * While we should add a fuller way of setting this and allowing operator
470  * override of the MRRS based on things like device class, etc. that is driven
471  * by pcieadm, that is left to the future. For now we opt to that all devices
472  * are kept at their default (512 bytes or whatever firmware left behind) and we
473  * ensure that root ports always have the mrrs set to 512.
474  */
475 
476 #include <sys/sysmacros.h>
477 #include <sys/types.h>
478 #include <sys/kmem.h>
479 #include <sys/modctl.h>
480 #include <sys/ddi.h>
481 #include <sys/sunddi.h>
482 #include <sys/sunndi.h>
483 #include <sys/fm/protocol.h>
484 #include <sys/fm/util.h>
485 #include <sys/promif.h>
486 #include <sys/disp.h>
487 #include <sys/stat.h>
488 #include <sys/file.h>
489 #include <sys/pci_cap.h>
490 #include <sys/pci_impl.h>
491 #include <sys/pcie_impl.h>
492 #include <sys/hotplug/pci/pcie_hp.h>
493 #include <sys/hotplug/pci/pciehpc.h>
494 #include <sys/hotplug/pci/pcishpc.h>
495 #include <sys/hotplug/pci/pcicfg.h>
496 #include <sys/pci_cfgacc.h>
497 #include <sys/sysevent.h>
498 #include <sys/sysevent/eventdefs.h>
499 #include <sys/sysevent/pcie.h>
500 
501 /* Local functions prototypes */
502 static void pcie_init_pfd(dev_info_t *);
503 static void pcie_fini_pfd(dev_info_t *);
504 
505 #ifdef DEBUG
506 uint_t pcie_debug_flags = 0;
507 static void pcie_print_bus(pcie_bus_t *bus_p);
508 void pcie_dbg(char *fmt, ...);
509 #endif /* DEBUG */
510 
511 /* Variable to control default PCI-Express config settings */
512 ushort_t pcie_command_default =
513     PCI_COMM_SERR_ENABLE |
514     PCI_COMM_WAIT_CYC_ENAB |
515     PCI_COMM_PARITY_DETECT |
516     PCI_COMM_ME |
517     PCI_COMM_MAE |
518     PCI_COMM_IO;
519 
520 /* xxx_fw are bits that are controlled by FW and should not be modified */
521 ushort_t pcie_command_default_fw =
522     PCI_COMM_SPEC_CYC |
523     PCI_COMM_MEMWR_INVAL |
524     PCI_COMM_PALETTE_SNOOP |
525     PCI_COMM_WAIT_CYC_ENAB |
526     0xF800; /* Reserved Bits */
527 
528 ushort_t pcie_bdg_command_default_fw =
529     PCI_BCNF_BCNTRL_ISA_ENABLE |
530     PCI_BCNF_BCNTRL_VGA_ENABLE |
531     0xF000; /* Reserved Bits */
532 
533 /* PCI-Express Base error defaults */
534 ushort_t pcie_base_err_default =
535     PCIE_DEVCTL_CE_REPORTING_EN |
536     PCIE_DEVCTL_NFE_REPORTING_EN |
537     PCIE_DEVCTL_FE_REPORTING_EN |
538     PCIE_DEVCTL_UR_REPORTING_EN;
539 
540 /*
541  * This contains default values and masks that are used to manipulate the device
542  * control register and ensure that it is in a normal state. The mask controls
543  * things that are managed by pcie_fabric_setup(), firmware, or other sources
544  * and therefore should be preserved unless we're explicitly trying to change
545  * it.
546  */
547 uint16_t pcie_devctl_default = PCIE_DEVCTL_RO_EN | PCIE_DEVCTL_MAX_READ_REQ_512;
548 uint16_t pcie_devctl_default_mask = PCIE_DEVCTL_MAX_READ_REQ_MASK |
549     PCIE_DEVCTL_MAX_PAYLOAD_MASK | PCIE_DEVCTL_EXT_TAG_FIELD_EN;
550 
551 /* PCI-Express AER Root Control Register */
552 #define	PCIE_ROOT_SYS_ERR	(PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | \
553 				PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | \
554 				PCIE_ROOTCTL_SYS_ERR_ON_FE_EN)
555 
556 ushort_t pcie_root_ctrl_default =
557     PCIE_ROOTCTL_SYS_ERR_ON_CE_EN |
558     PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN |
559     PCIE_ROOTCTL_SYS_ERR_ON_FE_EN;
560 
561 /* PCI-Express Root Error Command Register */
562 ushort_t pcie_root_error_cmd_default =
563     PCIE_AER_RE_CMD_CE_REP_EN |
564     PCIE_AER_RE_CMD_NFE_REP_EN |
565     PCIE_AER_RE_CMD_FE_REP_EN;
566 
567 /* ECRC settings in the PCIe AER Control Register */
568 uint32_t pcie_ecrc_value =
569     PCIE_AER_CTL_ECRC_GEN_ENA |
570     PCIE_AER_CTL_ECRC_CHECK_ENA;
571 
572 /*
573  * If a particular platform wants to disable certain errors such as UR/MA,
574  * instead of using #defines have the platform's PCIe Root Complex driver set
575  * these masks using the pcie_get_XXX_mask and pcie_set_XXX_mask functions.  For
576  * x86 the closest thing to a PCIe root complex driver is NPE.	For SPARC the
577  * closest PCIe root complex driver is PX.
578  *
579  * pcie_serr_disable_flag : disable SERR only (in RCR and command reg) x86
580  * systems may want to disable SERR in general.  For root ports, enabling SERR
581  * causes NMIs which are not handled and results in a watchdog timeout error.
582  */
583 uint32_t pcie_aer_uce_mask = 0;		/* AER UE Mask */
584 uint32_t pcie_aer_ce_mask = 0;		/* AER CE Mask */
585 uint32_t pcie_aer_suce_mask = 0;	/* AER Secondary UE Mask */
586 uint32_t pcie_serr_disable_flag = 0;	/* Disable SERR */
587 
588 /* Default severities needed for eversholt.  Error handling doesn't care */
589 uint32_t pcie_aer_uce_severity = PCIE_AER_UCE_MTLP | PCIE_AER_UCE_RO | \
590     PCIE_AER_UCE_FCP | PCIE_AER_UCE_SD | PCIE_AER_UCE_DLP | \
591     PCIE_AER_UCE_TRAINING;
592 uint32_t pcie_aer_suce_severity = PCIE_AER_SUCE_SERR_ASSERT | \
593     PCIE_AER_SUCE_UC_ADDR_ERR | PCIE_AER_SUCE_UC_ATTR_ERR | \
594     PCIE_AER_SUCE_USC_MSG_DATA_ERR;
595 
596 int pcie_disable_ari = 0;
597 
598 /*
599  * On some platforms, such as the AMD B450 chipset, we've seen an odd
600  * relationship between enabling link bandwidth notifications and AERs about
601  * ECRC errors. This provides a mechanism to disable it.
602  */
603 int pcie_disable_lbw = 0;
604 
605 /*
606  * Amount of time to wait for an in-progress retraining. The default is to try
607  * 500 times in 10ms chunks, thus a total of 5s.
608  */
609 uint32_t pcie_link_retrain_count = 500;
610 uint32_t pcie_link_retrain_delay_ms = 10;
611 
612 taskq_t *pcie_link_tq;
613 kmutex_t pcie_link_tq_mutex;
614 
615 static int pcie_link_bw_intr(dev_info_t *);
616 static void pcie_capture_speeds(dev_info_t *);
617 
618 dev_info_t *pcie_get_rc_dip(dev_info_t *dip);
619 
620 /*
621  * modload support
622  */
623 
624 static struct modlmisc modlmisc	= {
625 	&mod_miscops,	/* Type	of module */
626 	"PCI Express Framework Module"
627 };
628 
629 static struct modlinkage modlinkage = {
630 	MODREV_1,
631 	(void	*)&modlmisc,
632 	NULL
633 };
634 
635 /*
636  * Global Variables needed for a non-atomic version of ddi_fm_ereport_post.
637  * Currently used to send the pci.fabric ereports whose payload depends on the
638  * type of PCI device it is being sent for.
639  */
640 char		*pcie_nv_buf;
641 nv_alloc_t	*pcie_nvap;
642 nvlist_t	*pcie_nvl;
643 
644 int
645 _init(void)
646 {
647 	int rval;
648 
649 	pcie_nv_buf = kmem_alloc(ERPT_DATA_SZ, KM_SLEEP);
650 	pcie_nvap = fm_nva_xcreate(pcie_nv_buf, ERPT_DATA_SZ);
651 	pcie_nvl = fm_nvlist_create(pcie_nvap);
652 	mutex_init(&pcie_link_tq_mutex, NULL, MUTEX_DRIVER, NULL);
653 
654 	if ((rval = mod_install(&modlinkage)) != 0) {
655 		mutex_destroy(&pcie_link_tq_mutex);
656 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
657 		fm_nva_xdestroy(pcie_nvap);
658 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
659 	}
660 	return (rval);
661 }
662 
663 int
664 _fini()
665 {
666 	int		rval;
667 
668 	if ((rval = mod_remove(&modlinkage)) == 0) {
669 		if (pcie_link_tq != NULL) {
670 			taskq_destroy(pcie_link_tq);
671 		}
672 		mutex_destroy(&pcie_link_tq_mutex);
673 		fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
674 		fm_nva_xdestroy(pcie_nvap);
675 		kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
676 	}
677 	return (rval);
678 }
679 
680 int
681 _info(struct modinfo *modinfop)
682 {
683 	return (mod_info(&modlinkage, modinfop));
684 }
685 
686 /* ARGSUSED */
687 int
688 pcie_init(dev_info_t *dip, caddr_t arg)
689 {
690 	int	ret = DDI_SUCCESS;
691 
692 	/*
693 	 * Our _init function is too early to create a taskq. Create the pcie
694 	 * link management taskq here now instead.
695 	 */
696 	mutex_enter(&pcie_link_tq_mutex);
697 	if (pcie_link_tq == NULL) {
698 		pcie_link_tq = taskq_create("pcie_link", 1, minclsyspri, 0, 0,
699 		    0);
700 	}
701 	mutex_exit(&pcie_link_tq_mutex);
702 
703 
704 	/*
705 	 * Create a "devctl" minor node to support DEVCTL_DEVICE_*
706 	 * and DEVCTL_BUS_* ioctls to this bus.
707 	 */
708 	if ((ret = ddi_create_minor_node(dip, "devctl", S_IFCHR,
709 	    PCI_MINOR_NUM(ddi_get_instance(dip), PCI_DEVCTL_MINOR),
710 	    DDI_NT_NEXUS, 0)) != DDI_SUCCESS) {
711 		PCIE_DBG("Failed to create devctl minor node for %s%d\n",
712 		    ddi_driver_name(dip), ddi_get_instance(dip));
713 
714 		return (ret);
715 	}
716 
717 	if ((ret = pcie_hp_init(dip, arg)) != DDI_SUCCESS) {
718 		/*
719 		 * On some x86 platforms, we observed unexpected hotplug
720 		 * initialization failures in recent years. The known cause
721 		 * is a hardware issue: while the problem PCI bridges have
722 		 * the Hotplug Capable registers set, the machine actually
723 		 * does not implement the expected ACPI object.
724 		 *
725 		 * We don't want to stop PCI driver attach and system boot
726 		 * just because of this hotplug initialization failure.
727 		 * Continue with a debug message printed.
728 		 */
729 		PCIE_DBG("%s%d: Failed setting hotplug framework\n",
730 		    ddi_driver_name(dip), ddi_get_instance(dip));
731 
732 #if defined(__sparc)
733 		ddi_remove_minor_node(dip, "devctl");
734 
735 		return (ret);
736 #endif /* defined(__sparc) */
737 	}
738 
739 	return (DDI_SUCCESS);
740 }
741 
742 /* ARGSUSED */
743 int
744 pcie_uninit(dev_info_t *dip)
745 {
746 	int	ret = DDI_SUCCESS;
747 
748 	if (pcie_ari_is_enabled(dip) == PCIE_ARI_FORW_ENABLED)
749 		(void) pcie_ari_disable(dip);
750 
751 	if ((ret = pcie_hp_uninit(dip)) != DDI_SUCCESS) {
752 		PCIE_DBG("Failed to uninitialize hotplug for %s%d\n",
753 		    ddi_driver_name(dip), ddi_get_instance(dip));
754 
755 		return (ret);
756 	}
757 
758 	if (pcie_link_bw_supported(dip)) {
759 		(void) pcie_link_bw_disable(dip);
760 	}
761 
762 	ddi_remove_minor_node(dip, "devctl");
763 
764 	return (ret);
765 }
766 
767 /*
768  * PCIe module interface for enabling hotplug interrupt.
769  *
770  * It should be called after pcie_init() is done and bus driver's
771  * interrupt handlers have being attached.
772  */
773 int
774 pcie_hpintr_enable(dev_info_t *dip)
775 {
776 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
777 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
778 
779 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
780 		(void) (ctrl_p->hc_ops.enable_hpc_intr)(ctrl_p);
781 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
782 		(void) pcishpc_enable_irqs(ctrl_p);
783 	}
784 	return (DDI_SUCCESS);
785 }
786 
787 /*
788  * PCIe module interface for disabling hotplug interrupt.
789  *
790  * It should be called before pcie_uninit() is called and bus driver's
791  * interrupt handlers is dettached.
792  */
793 int
794 pcie_hpintr_disable(dev_info_t *dip)
795 {
796 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
797 	pcie_hp_ctrl_t	*ctrl_p = PCIE_GET_HP_CTRL(dip);
798 
799 	if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
800 		(void) (ctrl_p->hc_ops.disable_hpc_intr)(ctrl_p);
801 	} else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
802 		(void) pcishpc_disable_irqs(ctrl_p);
803 	}
804 	return (DDI_SUCCESS);
805 }
806 
807 /* ARGSUSED */
808 int
809 pcie_intr(dev_info_t *dip)
810 {
811 	int hp, lbw;
812 
813 	hp = pcie_hp_intr(dip);
814 	lbw = pcie_link_bw_intr(dip);
815 
816 	if (hp == DDI_INTR_CLAIMED || lbw == DDI_INTR_CLAIMED) {
817 		return (DDI_INTR_CLAIMED);
818 	}
819 
820 	return (DDI_INTR_UNCLAIMED);
821 }
822 
823 /* ARGSUSED */
824 int
825 pcie_open(dev_info_t *dip, dev_t *devp, int flags, int otyp, cred_t *credp)
826 {
827 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
828 
829 	/*
830 	 * Make sure the open is for the right file type.
831 	 */
832 	if (otyp != OTYP_CHR)
833 		return (EINVAL);
834 
835 	/*
836 	 * Handle the open by tracking the device state.
837 	 */
838 	if ((bus_p->bus_soft_state == PCI_SOFT_STATE_OPEN_EXCL) ||
839 	    ((flags & FEXCL) &&
840 	    (bus_p->bus_soft_state != PCI_SOFT_STATE_CLOSED))) {
841 		return (EBUSY);
842 	}
843 
844 	if (flags & FEXCL)
845 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN_EXCL;
846 	else
847 		bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN;
848 
849 	return (0);
850 }
851 
852 /* ARGSUSED */
853 int
854 pcie_close(dev_info_t *dip, dev_t dev, int flags, int otyp, cred_t *credp)
855 {
856 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
857 
858 	if (otyp != OTYP_CHR)
859 		return (EINVAL);
860 
861 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
862 
863 	return (0);
864 }
865 
866 /* ARGSUSED */
867 int
868 pcie_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg, int mode,
869     cred_t *credp, int *rvalp)
870 {
871 	struct devctl_iocdata	*dcp;
872 	uint_t			bus_state;
873 	int			rv = DDI_SUCCESS;
874 
875 	/*
876 	 * We can use the generic implementation for devctl ioctl
877 	 */
878 	switch (cmd) {
879 	case DEVCTL_DEVICE_GETSTATE:
880 	case DEVCTL_DEVICE_ONLINE:
881 	case DEVCTL_DEVICE_OFFLINE:
882 	case DEVCTL_BUS_GETSTATE:
883 		return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
884 	default:
885 		break;
886 	}
887 
888 	/*
889 	 * read devctl ioctl data
890 	 */
891 	if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
892 		return (EFAULT);
893 
894 	switch (cmd) {
895 	case DEVCTL_BUS_QUIESCE:
896 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
897 			if (bus_state == BUS_QUIESCED)
898 				break;
899 		(void) ndi_set_bus_state(dip, BUS_QUIESCED);
900 		break;
901 	case DEVCTL_BUS_UNQUIESCE:
902 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
903 			if (bus_state == BUS_ACTIVE)
904 				break;
905 		(void) ndi_set_bus_state(dip, BUS_ACTIVE);
906 		break;
907 	case DEVCTL_BUS_RESET:
908 	case DEVCTL_BUS_RESETALL:
909 	case DEVCTL_DEVICE_RESET:
910 		rv = ENOTSUP;
911 		break;
912 	default:
913 		rv = ENOTTY;
914 	}
915 
916 	ndi_dc_freehdl(dcp);
917 	return (rv);
918 }
919 
920 /* ARGSUSED */
921 int
922 pcie_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
923     int flags, char *name, caddr_t valuep, int *lengthp)
924 {
925 	if (dev == DDI_DEV_T_ANY)
926 		goto skip;
927 
928 	if (PCIE_IS_HOTPLUG_CAPABLE(dip) &&
929 	    strcmp(name, "pci-occupant") == 0) {
930 		int	pci_dev = PCI_MINOR_NUM_TO_PCI_DEVNUM(getminor(dev));
931 
932 		pcie_hp_create_occupant_props(dip, dev, pci_dev);
933 	}
934 
935 skip:
936 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
937 }
938 
939 int
940 pcie_init_cfghdl(dev_info_t *cdip)
941 {
942 	pcie_bus_t		*bus_p;
943 	ddi_acc_handle_t	eh = NULL;
944 
945 	bus_p = PCIE_DIP2BUS(cdip);
946 	if (bus_p == NULL)
947 		return (DDI_FAILURE);
948 
949 	/* Create an config access special to error handling */
950 	if (pci_config_setup(cdip, &eh) != DDI_SUCCESS) {
951 		cmn_err(CE_WARN, "Cannot setup config access"
952 		    " for BDF 0x%x\n", bus_p->bus_bdf);
953 		return (DDI_FAILURE);
954 	}
955 
956 	bus_p->bus_cfg_hdl = eh;
957 	return (DDI_SUCCESS);
958 }
959 
960 void
961 pcie_fini_cfghdl(dev_info_t *cdip)
962 {
963 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(cdip);
964 
965 	pci_config_teardown(&bus_p->bus_cfg_hdl);
966 }
967 
968 void
969 pcie_determine_serial(dev_info_t *dip)
970 {
971 	pcie_bus_t		*bus_p = PCIE_DIP2BUS(dip);
972 	ddi_acc_handle_t	h;
973 	uint16_t		cap;
974 	uchar_t			serial[8];
975 	uint32_t		low, high;
976 
977 	if (!PCIE_IS_PCIE(bus_p))
978 		return;
979 
980 	h = bus_p->bus_cfg_hdl;
981 
982 	if ((PCI_CAP_LOCATE(h, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap)) ==
983 	    DDI_FAILURE)
984 		return;
985 
986 	high = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_UPPER_DW);
987 	low = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_LOWER_DW);
988 
989 	/*
990 	 * Here, we're trying to figure out if we had an invalid PCIe read. From
991 	 * looking at the contents of the value, it can be hard to tell the
992 	 * difference between a value that has all 1s correctly versus if we had
993 	 * an error. In this case, we only assume it's invalid if both register
994 	 * reads are invalid. We also only use 32-bit reads as we're not sure if
995 	 * all devices will support these as 64-bit reads, while we know that
996 	 * they'll support these as 32-bit reads.
997 	 */
998 	if (high == PCI_EINVAL32 && low == PCI_EINVAL32)
999 		return;
1000 
1001 	serial[0] = low & 0xff;
1002 	serial[1] = (low >> 8) & 0xff;
1003 	serial[2] = (low >> 16) & 0xff;
1004 	serial[3] = (low >> 24) & 0xff;
1005 	serial[4] = high & 0xff;
1006 	serial[5] = (high >> 8) & 0xff;
1007 	serial[6] = (high >> 16) & 0xff;
1008 	serial[7] = (high >> 24) & 0xff;
1009 
1010 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, "pcie-serial",
1011 	    serial, sizeof (serial));
1012 }
1013 
1014 static void
1015 pcie_determine_aspm(dev_info_t *dip)
1016 {
1017 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1018 	uint32_t	linkcap;
1019 	uint16_t	linkctl;
1020 
1021 	if (!PCIE_IS_PCIE(bus_p))
1022 		return;
1023 
1024 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1025 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
1026 
1027 	switch (linkcap & PCIE_LINKCAP_ASPM_SUP_MASK) {
1028 	case PCIE_LINKCAP_ASPM_SUP_L0S:
1029 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1030 		    "pcie-aspm-support", "l0s");
1031 		break;
1032 	case PCIE_LINKCAP_ASPM_SUP_L1:
1033 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1034 		    "pcie-aspm-support", "l1");
1035 		break;
1036 	case PCIE_LINKCAP_ASPM_SUP_L0S_L1:
1037 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1038 		    "pcie-aspm-support", "l0s,l1");
1039 		break;
1040 	default:
1041 		return;
1042 	}
1043 
1044 	switch (linkctl & PCIE_LINKCTL_ASPM_CTL_MASK) {
1045 	case PCIE_LINKCTL_ASPM_CTL_DIS:
1046 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1047 		    "pcie-aspm-state", "disabled");
1048 		break;
1049 	case PCIE_LINKCTL_ASPM_CTL_L0S:
1050 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1051 		    "pcie-aspm-state", "l0s");
1052 		break;
1053 	case PCIE_LINKCTL_ASPM_CTL_L1:
1054 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1055 		    "pcie-aspm-state", "l1");
1056 		break;
1057 	case PCIE_LINKCTL_ASPM_CTL_L0S_L1:
1058 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1059 		    "pcie-aspm-state", "l0s,l1");
1060 		break;
1061 	}
1062 }
1063 
1064 /*
1065  * PCI-Express child device initialization. Note, this only will be called on a
1066  * device or function if we actually attach a device driver to it.
1067  *
1068  * This function enables generic pci-express interrupts and error handling.
1069  * Note, tagging, the max packet size, and related are all set up before this
1070  * point and is performed in pcie_fabric_setup().
1071  *
1072  * @param pdip		root dip (root nexus's dip)
1073  * @param cdip		child's dip (device's dip)
1074  * @return		DDI_SUCCESS or DDI_FAILURE
1075  */
1076 /* ARGSUSED */
1077 int
1078 pcie_initchild(dev_info_t *cdip)
1079 {
1080 	uint16_t		tmp16, reg16;
1081 	pcie_bus_t		*bus_p;
1082 	uint32_t		devid, venid;
1083 
1084 	bus_p = PCIE_DIP2BUS(cdip);
1085 	if (bus_p == NULL) {
1086 		PCIE_DBG("%s: BUS not found.\n",
1087 		    ddi_driver_name(cdip));
1088 
1089 		return (DDI_FAILURE);
1090 	}
1091 
1092 	if (pcie_init_cfghdl(cdip) != DDI_SUCCESS)
1093 		return (DDI_FAILURE);
1094 
1095 	/*
1096 	 * Update pcie_bus_t with real Vendor Id Device Id.
1097 	 *
1098 	 * For assigned devices in IOV environment, the OBP will return
1099 	 * faked device id/vendor id on configration read and for both
1100 	 * properties in root domain. translate_devid() function will
1101 	 * update the properties with real device-id/vendor-id on such
1102 	 * platforms, so that we can utilize the properties here to get
1103 	 * real device-id/vendor-id and overwrite the faked ids.
1104 	 *
1105 	 * For unassigned devices or devices in non-IOV environment, the
1106 	 * operation below won't make a difference.
1107 	 *
1108 	 * The IOV implementation only supports assignment of PCIE
1109 	 * endpoint devices. Devices under pci-pci bridges don't need
1110 	 * operation like this.
1111 	 */
1112 	devid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1113 	    "device-id", -1);
1114 	venid = ddi_prop_get_int(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1115 	    "vendor-id", -1);
1116 	bus_p->bus_dev_ven_id = (devid << 16) | (venid & 0xffff);
1117 
1118 	/* Clear the device's status register */
1119 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_STAT);
1120 	PCIE_PUT(16, bus_p, PCI_CONF_STAT, reg16);
1121 
1122 	/* Setup the device's command register */
1123 	reg16 = PCIE_GET(16, bus_p, PCI_CONF_COMM);
1124 	tmp16 = (reg16 & pcie_command_default_fw) | pcie_command_default;
1125 
1126 	if (pcie_serr_disable_flag && PCIE_IS_PCIE(bus_p))
1127 		tmp16 &= ~PCI_COMM_SERR_ENABLE;
1128 
1129 	PCIE_PUT(16, bus_p, PCI_CONF_COMM, tmp16);
1130 	PCIE_DBG_CFG(cdip, bus_p, "COMMAND", 16, PCI_CONF_COMM, reg16);
1131 
1132 	/*
1133 	 * If the device has a bus control register then program it
1134 	 * based on the settings in the command register.
1135 	 */
1136 	if (PCIE_IS_BDG(bus_p)) {
1137 		/* Clear the device's secondary status register */
1138 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_SEC_STATUS);
1139 		PCIE_PUT(16, bus_p, PCI_BCNF_SEC_STATUS, reg16);
1140 
1141 		/* Setup the device's secondary command register */
1142 		reg16 = PCIE_GET(16, bus_p, PCI_BCNF_BCNTRL);
1143 		tmp16 = (reg16 & pcie_bdg_command_default_fw);
1144 
1145 		tmp16 |= PCI_BCNF_BCNTRL_SERR_ENABLE;
1146 		/*
1147 		 * Workaround for this Nvidia bridge. Don't enable the SERR
1148 		 * enable bit in the bridge control register as it could lead to
1149 		 * bogus NMIs.
1150 		 */
1151 		if (bus_p->bus_dev_ven_id == 0x037010DE)
1152 			tmp16 &= ~PCI_BCNF_BCNTRL_SERR_ENABLE;
1153 
1154 		if (pcie_command_default & PCI_COMM_PARITY_DETECT)
1155 			tmp16 |= PCI_BCNF_BCNTRL_PARITY_ENABLE;
1156 
1157 		/*
1158 		 * Enable Master Abort Mode only if URs have not been masked.
1159 		 * For PCI and PCIe-PCI bridges, enabling this bit causes a
1160 		 * Master Aborts/UR to be forwarded as a UR/TA or SERR.  If this
1161 		 * bit is masked, posted requests are dropped and non-posted
1162 		 * requests are returned with -1.
1163 		 */
1164 		if (pcie_aer_uce_mask & PCIE_AER_UCE_UR)
1165 			tmp16 &= ~PCI_BCNF_BCNTRL_MAST_AB_MODE;
1166 		else
1167 			tmp16 |= PCI_BCNF_BCNTRL_MAST_AB_MODE;
1168 		PCIE_PUT(16, bus_p, PCI_BCNF_BCNTRL, tmp16);
1169 		PCIE_DBG_CFG(cdip, bus_p, "SEC CMD", 16, PCI_BCNF_BCNTRL,
1170 		    reg16);
1171 	}
1172 
1173 	if (PCIE_IS_PCIE(bus_p)) {
1174 		/*
1175 		 * Get the device control register into an initial state that
1176 		 * makes sense. The maximum payload, tagging, and related will
1177 		 * be dealt with in pcie_fabric_setup().
1178 		 */
1179 		reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
1180 		tmp16 = (reg16 & pcie_devctl_default_mask) |
1181 		    (pcie_devctl_default & ~pcie_devctl_default_mask);
1182 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
1183 		PCIE_DBG_CAP(cdip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
1184 
1185 		/* Enable PCIe errors */
1186 		pcie_enable_errors(cdip);
1187 
1188 		pcie_determine_serial(cdip);
1189 
1190 		pcie_determine_aspm(cdip);
1191 
1192 		pcie_capture_speeds(cdip);
1193 	}
1194 
1195 	bus_p->bus_ari = B_FALSE;
1196 	if ((pcie_ari_is_enabled(ddi_get_parent(cdip))
1197 	    == PCIE_ARI_FORW_ENABLED) && (pcie_ari_device(cdip)
1198 	    == PCIE_ARI_DEVICE)) {
1199 		bus_p->bus_ari = B_TRUE;
1200 	}
1201 
1202 	return (DDI_SUCCESS);
1203 }
1204 
1205 static void
1206 pcie_init_pfd(dev_info_t *dip)
1207 {
1208 	pf_data_t	*pfd_p = PCIE_ZALLOC(pf_data_t);
1209 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1210 
1211 	PCIE_DIP2PFD(dip) = pfd_p;
1212 
1213 	pfd_p->pe_bus_p = bus_p;
1214 	pfd_p->pe_severity_flags = 0;
1215 	pfd_p->pe_severity_mask = 0;
1216 	pfd_p->pe_orig_severity_flags = 0;
1217 	pfd_p->pe_lock = B_FALSE;
1218 	pfd_p->pe_valid = B_FALSE;
1219 
1220 	/* Allocate the root fault struct for both RC and RP */
1221 	if (PCIE_IS_ROOT(bus_p)) {
1222 		PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1223 		PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1224 		PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1225 	}
1226 
1227 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1228 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1229 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1230 
1231 	if (PCIE_IS_BDG(bus_p))
1232 		PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1233 
1234 	if (PCIE_IS_PCIE(bus_p)) {
1235 		PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1236 
1237 		if (PCIE_IS_RP(bus_p))
1238 			PCIE_RP_REG(pfd_p) =
1239 			    PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1240 
1241 		PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1242 		PCIE_ADV_REG(pfd_p)->pcie_ue_tgt_bdf = PCIE_INVALID_BDF;
1243 
1244 		if (PCIE_IS_RP(bus_p)) {
1245 			PCIE_ADV_RP_REG(pfd_p) =
1246 			    PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1247 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id =
1248 			    PCIE_INVALID_BDF;
1249 			PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id =
1250 			    PCIE_INVALID_BDF;
1251 		} else if (PCIE_IS_PCIE_BDG(bus_p)) {
1252 			PCIE_ADV_BDG_REG(pfd_p) =
1253 			    PCIE_ZALLOC(pf_pcie_adv_bdg_err_regs_t);
1254 			PCIE_ADV_BDG_REG(pfd_p)->pcie_sue_tgt_bdf =
1255 			    PCIE_INVALID_BDF;
1256 		}
1257 
1258 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1259 			PCIX_BDG_ERR_REG(pfd_p) =
1260 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1261 
1262 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1263 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1264 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1265 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1266 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1267 			}
1268 		}
1269 
1270 		PCIE_SLOT_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_slot_regs_t);
1271 		PCIE_SLOT_REG(pfd_p)->pcie_slot_regs_valid = B_FALSE;
1272 		PCIE_SLOT_REG(pfd_p)->pcie_slot_cap = 0;
1273 		PCIE_SLOT_REG(pfd_p)->pcie_slot_control = 0;
1274 		PCIE_SLOT_REG(pfd_p)->pcie_slot_status = 0;
1275 
1276 	} else if (PCIE_IS_PCIX(bus_p)) {
1277 		if (PCIE_IS_BDG(bus_p)) {
1278 			PCIX_BDG_ERR_REG(pfd_p) =
1279 			    PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1280 
1281 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1282 				PCIX_BDG_ECC_REG(pfd_p, 0) =
1283 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1284 				PCIX_BDG_ECC_REG(pfd_p, 1) =
1285 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1286 			}
1287 		} else {
1288 			PCIX_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcix_err_regs_t);
1289 
1290 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1291 				PCIX_ECC_REG(pfd_p) =
1292 				    PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1293 		}
1294 	}
1295 }
1296 
1297 static void
1298 pcie_fini_pfd(dev_info_t *dip)
1299 {
1300 	pf_data_t	*pfd_p = PCIE_DIP2PFD(dip);
1301 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1302 
1303 	if (PCIE_IS_PCIE(bus_p)) {
1304 		if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1305 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1306 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1307 				    sizeof (pf_pcix_ecc_regs_t));
1308 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1309 				    sizeof (pf_pcix_ecc_regs_t));
1310 			}
1311 
1312 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1313 			    sizeof (pf_pcix_bdg_err_regs_t));
1314 		}
1315 
1316 		if (PCIE_IS_RP(bus_p))
1317 			kmem_free(PCIE_ADV_RP_REG(pfd_p),
1318 			    sizeof (pf_pcie_adv_rp_err_regs_t));
1319 		else if (PCIE_IS_PCIE_BDG(bus_p))
1320 			kmem_free(PCIE_ADV_BDG_REG(pfd_p),
1321 			    sizeof (pf_pcie_adv_bdg_err_regs_t));
1322 
1323 		kmem_free(PCIE_ADV_REG(pfd_p),
1324 		    sizeof (pf_pcie_adv_err_regs_t));
1325 
1326 		if (PCIE_IS_RP(bus_p))
1327 			kmem_free(PCIE_RP_REG(pfd_p),
1328 			    sizeof (pf_pcie_rp_err_regs_t));
1329 
1330 		kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1331 	} else if (PCIE_IS_PCIX(bus_p)) {
1332 		if (PCIE_IS_BDG(bus_p)) {
1333 			if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1334 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1335 				    sizeof (pf_pcix_ecc_regs_t));
1336 				kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1337 				    sizeof (pf_pcix_ecc_regs_t));
1338 			}
1339 
1340 			kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1341 			    sizeof (pf_pcix_bdg_err_regs_t));
1342 		} else {
1343 			if (PCIX_ECC_VERSION_CHECK(bus_p))
1344 				kmem_free(PCIX_ECC_REG(pfd_p),
1345 				    sizeof (pf_pcix_ecc_regs_t));
1346 
1347 			kmem_free(PCIX_ERR_REG(pfd_p),
1348 			    sizeof (pf_pcix_err_regs_t));
1349 		}
1350 	}
1351 
1352 	if (PCIE_IS_BDG(bus_p))
1353 		kmem_free(PCI_BDG_ERR_REG(pfd_p),
1354 		    sizeof (pf_pci_bdg_err_regs_t));
1355 
1356 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1357 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1358 
1359 	if (PCIE_IS_ROOT(bus_p)) {
1360 		kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1361 		kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1362 	}
1363 
1364 	kmem_free(PCIE_DIP2PFD(dip), sizeof (pf_data_t));
1365 
1366 	PCIE_DIP2PFD(dip) = NULL;
1367 }
1368 
1369 
1370 /*
1371  * Special functions to allocate pf_data_t's for PCIe root complexes.
1372  * Note: Root Complex not Root Port
1373  */
1374 void
1375 pcie_rc_init_pfd(dev_info_t *dip, pf_data_t *pfd_p)
1376 {
1377 	pfd_p->pe_bus_p = PCIE_DIP2DOWNBUS(dip);
1378 	pfd_p->pe_severity_flags = 0;
1379 	pfd_p->pe_severity_mask = 0;
1380 	pfd_p->pe_orig_severity_flags = 0;
1381 	pfd_p->pe_lock = B_FALSE;
1382 	pfd_p->pe_valid = B_FALSE;
1383 
1384 	PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1385 	PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1386 	PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1387 	PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1388 	PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1389 	PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1390 	PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1391 	PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1392 	PCIE_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1393 	PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1394 	PCIE_ADV_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1395 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = PCIE_INVALID_BDF;
1396 	PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = PCIE_INVALID_BDF;
1397 
1398 	PCIE_ADV_REG(pfd_p)->pcie_ue_sev = pcie_aer_uce_severity;
1399 }
1400 
1401 void
1402 pcie_rc_fini_pfd(pf_data_t *pfd_p)
1403 {
1404 	kmem_free(PCIE_ADV_RP_REG(pfd_p), sizeof (pf_pcie_adv_rp_err_regs_t));
1405 	kmem_free(PCIE_ADV_REG(pfd_p), sizeof (pf_pcie_adv_err_regs_t));
1406 	kmem_free(PCIE_RP_REG(pfd_p), sizeof (pf_pcie_rp_err_regs_t));
1407 	kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1408 	kmem_free(PCI_BDG_ERR_REG(pfd_p), sizeof (pf_pci_bdg_err_regs_t));
1409 	kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1410 	kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1411 	kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1412 	kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1413 }
1414 
1415 /*
1416  * init pcie_bus_t for root complex
1417  *
1418  * Only a few of the fields in bus_t is valid for root complex.
1419  * The fields that are bracketed are initialized in this routine:
1420  *
1421  * dev_info_t *		<bus_dip>
1422  * dev_info_t *		bus_rp_dip
1423  * ddi_acc_handle_t	bus_cfg_hdl
1424  * uint_t		<bus_fm_flags>
1425  * pcie_req_id_t	bus_bdf
1426  * pcie_req_id_t	bus_rp_bdf
1427  * uint32_t		bus_dev_ven_id
1428  * uint8_t		bus_rev_id
1429  * uint8_t		<bus_hdr_type>
1430  * uint16_t		<bus_dev_type>
1431  * uint8_t		bus_bdg_secbus
1432  * uint16_t		bus_pcie_off
1433  * uint16_t		<bus_aer_off>
1434  * uint16_t		bus_pcix_off
1435  * uint16_t		bus_ecc_ver
1436  * pci_bus_range_t	bus_bus_range
1437  * ppb_ranges_t	*	bus_addr_ranges
1438  * int			bus_addr_entries
1439  * pci_regspec_t *	bus_assigned_addr
1440  * int			bus_assigned_entries
1441  * pf_data_t *		bus_pfd
1442  * pcie_domain_t *	<bus_dom>
1443  * int			bus_mps
1444  * uint64_t		bus_cfgacc_base
1445  * void	*		bus_plat_private
1446  */
1447 void
1448 pcie_rc_init_bus(dev_info_t *dip)
1449 {
1450 	pcie_bus_t *bus_p;
1451 
1452 	bus_p = (pcie_bus_t *)kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1453 	bus_p->bus_dip = dip;
1454 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_RC_PSEUDO;
1455 	bus_p->bus_hdr_type = PCI_HEADER_ONE;
1456 
1457 	/* Fake that there are AER logs */
1458 	bus_p->bus_aer_off = (uint16_t)-1;
1459 
1460 	/* Needed only for handle lookup */
1461 	atomic_or_uint(&bus_p->bus_fm_flags, PF_FM_READY);
1462 
1463 	ndi_set_bus_private(dip, B_FALSE, DEVI_PORT_TYPE_PCI, bus_p);
1464 
1465 	PCIE_BUS2DOM(bus_p) = PCIE_ZALLOC(pcie_domain_t);
1466 }
1467 
1468 void
1469 pcie_rc_fini_bus(dev_info_t *dip)
1470 {
1471 	pcie_bus_t *bus_p = PCIE_DIP2DOWNBUS(dip);
1472 	ndi_set_bus_private(dip, B_FALSE, 0, NULL);
1473 	kmem_free(PCIE_BUS2DOM(bus_p), sizeof (pcie_domain_t));
1474 	kmem_free(bus_p, sizeof (pcie_bus_t));
1475 }
1476 
1477 static int
1478 pcie_width_to_int(pcie_link_width_t width)
1479 {
1480 	switch (width) {
1481 	case PCIE_LINK_WIDTH_X1:
1482 		return (1);
1483 	case PCIE_LINK_WIDTH_X2:
1484 		return (2);
1485 	case PCIE_LINK_WIDTH_X4:
1486 		return (4);
1487 	case PCIE_LINK_WIDTH_X8:
1488 		return (8);
1489 	case PCIE_LINK_WIDTH_X12:
1490 		return (12);
1491 	case PCIE_LINK_WIDTH_X16:
1492 		return (16);
1493 	case PCIE_LINK_WIDTH_X32:
1494 		return (32);
1495 	default:
1496 		return (0);
1497 	}
1498 }
1499 
1500 /*
1501  * Return the speed in Transfers / second. This is a signed quantity to match
1502  * the ndi/ddi property interfaces.
1503  */
1504 static int64_t
1505 pcie_speed_to_int(pcie_link_speed_t speed)
1506 {
1507 	switch (speed) {
1508 	case PCIE_LINK_SPEED_2_5:
1509 		return (2500000000LL);
1510 	case PCIE_LINK_SPEED_5:
1511 		return (5000000000LL);
1512 	case PCIE_LINK_SPEED_8:
1513 		return (8000000000LL);
1514 	case PCIE_LINK_SPEED_16:
1515 		return (16000000000LL);
1516 	case PCIE_LINK_SPEED_32:
1517 		return (32000000000LL);
1518 	case PCIE_LINK_SPEED_64:
1519 		return (64000000000LL);
1520 	default:
1521 		return (0);
1522 	}
1523 }
1524 
1525 /*
1526  * Translate the recorded speed information into devinfo properties.
1527  */
1528 static void
1529 pcie_speeds_to_devinfo(dev_info_t *dip, pcie_bus_t *bus_p)
1530 {
1531 	if (bus_p->bus_max_width != PCIE_LINK_WIDTH_UNKNOWN) {
1532 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1533 		    "pcie-link-maximum-width",
1534 		    pcie_width_to_int(bus_p->bus_max_width));
1535 	}
1536 
1537 	if (bus_p->bus_cur_width != PCIE_LINK_WIDTH_UNKNOWN) {
1538 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1539 		    "pcie-link-current-width",
1540 		    pcie_width_to_int(bus_p->bus_cur_width));
1541 	}
1542 
1543 	if (bus_p->bus_cur_speed != PCIE_LINK_SPEED_UNKNOWN) {
1544 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1545 		    "pcie-link-current-speed",
1546 		    pcie_speed_to_int(bus_p->bus_cur_speed));
1547 	}
1548 
1549 	if (bus_p->bus_max_speed != PCIE_LINK_SPEED_UNKNOWN) {
1550 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1551 		    "pcie-link-maximum-speed",
1552 		    pcie_speed_to_int(bus_p->bus_max_speed));
1553 	}
1554 
1555 	if (bus_p->bus_target_speed != PCIE_LINK_SPEED_UNKNOWN) {
1556 		(void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1557 		    "pcie-link-target-speed",
1558 		    pcie_speed_to_int(bus_p->bus_target_speed));
1559 	}
1560 
1561 	if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) {
1562 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
1563 		    "pcie-link-admin-target-speed");
1564 	}
1565 
1566 	if (bus_p->bus_sup_speed != PCIE_LINK_SPEED_UNKNOWN) {
1567 		int64_t speeds[PCIE_NSPEEDS];
1568 		uint_t nspeeds = 0;
1569 
1570 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_2_5) {
1571 			speeds[nspeeds++] =
1572 			    pcie_speed_to_int(PCIE_LINK_SPEED_2_5);
1573 		}
1574 
1575 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_5) {
1576 			speeds[nspeeds++] =
1577 			    pcie_speed_to_int(PCIE_LINK_SPEED_5);
1578 		}
1579 
1580 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_8) {
1581 			speeds[nspeeds++] =
1582 			    pcie_speed_to_int(PCIE_LINK_SPEED_8);
1583 		}
1584 
1585 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_16) {
1586 			speeds[nspeeds++] =
1587 			    pcie_speed_to_int(PCIE_LINK_SPEED_16);
1588 		}
1589 
1590 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_32) {
1591 			speeds[nspeeds++] =
1592 			    pcie_speed_to_int(PCIE_LINK_SPEED_32);
1593 		}
1594 
1595 		if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_64) {
1596 			speeds[nspeeds++] =
1597 			    pcie_speed_to_int(PCIE_LINK_SPEED_64);
1598 		}
1599 
1600 		(void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip,
1601 		    "pcie-link-supported-speeds", speeds, nspeeds);
1602 	}
1603 }
1604 
1605 /*
1606  * We need to capture the supported, maximum, and current device speed and
1607  * width. The way that this has been done has changed over time.
1608  *
1609  * Prior to PCIe Gen 3, there were only current and supported speed fields.
1610  * These were found in the link status and link capabilities registers of the
1611  * PCI express capability. With the change to PCIe Gen 3, the information in the
1612  * link capabilities changed to the maximum value. The supported speeds vector
1613  * was moved to the link capabilities 2 register.
1614  *
1615  * Now, a device may not implement some of these registers. To determine whether
1616  * or not it's here, we have to do the following. First, we need to check the
1617  * revision of the PCI express capability. The link capabilities 2 register did
1618  * not exist prior to version 2 of this capability. If a modern device does not
1619  * implement it, it is supposed to return zero for the register.
1620  */
1621 static void
1622 pcie_capture_speeds(dev_info_t *dip)
1623 {
1624 	uint16_t	vers, status;
1625 	uint32_t	cap, cap2, ctl2;
1626 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
1627 	dev_info_t	*rcdip;
1628 
1629 	if (!PCIE_IS_PCIE(bus_p))
1630 		return;
1631 
1632 	rcdip = pcie_get_rc_dip(dip);
1633 	if (bus_p->bus_cfg_hdl == NULL) {
1634 		vers = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1635 		    bus_p->bus_pcie_off + PCIE_PCIECAP);
1636 	} else {
1637 		vers = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
1638 	}
1639 	if (vers == PCI_EINVAL16)
1640 		return;
1641 	vers &= PCIE_PCIECAP_VER_MASK;
1642 
1643 	/*
1644 	 * Verify the capability's version.
1645 	 */
1646 	switch (vers) {
1647 	case PCIE_PCIECAP_VER_1_0:
1648 		cap2 = 0;
1649 		ctl2 = 0;
1650 		break;
1651 	case PCIE_PCIECAP_VER_2_0:
1652 		if (bus_p->bus_cfg_hdl == NULL) {
1653 			cap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1654 			    bus_p->bus_pcie_off + PCIE_LINKCAP2);
1655 			ctl2 = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1656 			    bus_p->bus_pcie_off + PCIE_LINKCTL2);
1657 		} else {
1658 			cap2 = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP2);
1659 			ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
1660 		}
1661 		if (cap2 == PCI_EINVAL32)
1662 			cap2 = 0;
1663 		if (ctl2 == PCI_EINVAL16)
1664 			ctl2 = 0;
1665 		break;
1666 	default:
1667 		/* Don't try and handle an unknown version */
1668 		return;
1669 	}
1670 
1671 	if (bus_p->bus_cfg_hdl == NULL) {
1672 		status = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1673 		    bus_p->bus_pcie_off + PCIE_LINKSTS);
1674 		cap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1675 		    bus_p->bus_pcie_off + PCIE_LINKCAP);
1676 	} else {
1677 		status = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
1678 		cap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1679 	}
1680 	if (status == PCI_EINVAL16 || cap == PCI_EINVAL32)
1681 		return;
1682 
1683 	mutex_enter(&bus_p->bus_speed_mutex);
1684 
1685 	switch (status & PCIE_LINKSTS_SPEED_MASK) {
1686 	case PCIE_LINKSTS_SPEED_2_5:
1687 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_2_5;
1688 		break;
1689 	case PCIE_LINKSTS_SPEED_5:
1690 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_5;
1691 		break;
1692 	case PCIE_LINKSTS_SPEED_8:
1693 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_8;
1694 		break;
1695 	case PCIE_LINKSTS_SPEED_16:
1696 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_16;
1697 		break;
1698 	case PCIE_LINKSTS_SPEED_32:
1699 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_32;
1700 		break;
1701 	case PCIE_LINKSTS_SPEED_64:
1702 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_64;
1703 		break;
1704 	default:
1705 		bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN;
1706 		break;
1707 	}
1708 
1709 	switch (status & PCIE_LINKSTS_NEG_WIDTH_MASK) {
1710 	case PCIE_LINKSTS_NEG_WIDTH_X1:
1711 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X1;
1712 		break;
1713 	case PCIE_LINKSTS_NEG_WIDTH_X2:
1714 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X2;
1715 		break;
1716 	case PCIE_LINKSTS_NEG_WIDTH_X4:
1717 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X4;
1718 		break;
1719 	case PCIE_LINKSTS_NEG_WIDTH_X8:
1720 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X8;
1721 		break;
1722 	case PCIE_LINKSTS_NEG_WIDTH_X12:
1723 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X12;
1724 		break;
1725 	case PCIE_LINKSTS_NEG_WIDTH_X16:
1726 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X16;
1727 		break;
1728 	case PCIE_LINKSTS_NEG_WIDTH_X32:
1729 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_X32;
1730 		break;
1731 	default:
1732 		bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN;
1733 		break;
1734 	}
1735 
1736 	switch (cap & PCIE_LINKCAP_MAX_WIDTH_MASK) {
1737 	case PCIE_LINKCAP_MAX_WIDTH_X1:
1738 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X1;
1739 		break;
1740 	case PCIE_LINKCAP_MAX_WIDTH_X2:
1741 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X2;
1742 		break;
1743 	case PCIE_LINKCAP_MAX_WIDTH_X4:
1744 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X4;
1745 		break;
1746 	case PCIE_LINKCAP_MAX_WIDTH_X8:
1747 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X8;
1748 		break;
1749 	case PCIE_LINKCAP_MAX_WIDTH_X12:
1750 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X12;
1751 		break;
1752 	case PCIE_LINKCAP_MAX_WIDTH_X16:
1753 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X16;
1754 		break;
1755 	case PCIE_LINKCAP_MAX_WIDTH_X32:
1756 		bus_p->bus_max_width = PCIE_LINK_WIDTH_X32;
1757 		break;
1758 	default:
1759 		bus_p->bus_max_width = PCIE_LINK_WIDTH_UNKNOWN;
1760 		break;
1761 	}
1762 
1763 	/*
1764 	 * If we have the Link Capabilities 2, then we can get the supported
1765 	 * speeds from it and treat the bits in Link Capabilities 1 as the
1766 	 * maximum. If we don't, then we need to follow the Implementation Note
1767 	 * in the standard under Link Capabilities 2. Effectively, this means
1768 	 * that if the value of 10b is set in Link Capabilities register, that
1769 	 * it supports both 2.5 and 5 GT/s speeds.
1770 	 */
1771 	if (cap2 != 0) {
1772 		if (cap2 & PCIE_LINKCAP2_SPEED_2_5)
1773 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_2_5;
1774 		if (cap2 & PCIE_LINKCAP2_SPEED_5)
1775 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_5;
1776 		if (cap2 & PCIE_LINKCAP2_SPEED_8)
1777 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_8;
1778 		if (cap2 & PCIE_LINKCAP2_SPEED_16)
1779 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_16;
1780 		if (cap2 & PCIE_LINKCAP2_SPEED_32)
1781 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_32;
1782 		if (cap2 & PCIE_LINKCAP2_SPEED_64)
1783 			bus_p->bus_sup_speed |= PCIE_LINK_SPEED_64;
1784 
1785 		switch (cap & PCIE_LINKCAP_MAX_SPEED_MASK) {
1786 		case PCIE_LINKCAP_MAX_SPEED_2_5:
1787 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1788 			break;
1789 		case PCIE_LINKCAP_MAX_SPEED_5:
1790 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1791 			break;
1792 		case PCIE_LINKCAP_MAX_SPEED_8:
1793 			bus_p->bus_max_speed = PCIE_LINK_SPEED_8;
1794 			break;
1795 		case PCIE_LINKCAP_MAX_SPEED_16:
1796 			bus_p->bus_max_speed = PCIE_LINK_SPEED_16;
1797 			break;
1798 		case PCIE_LINKCAP_MAX_SPEED_32:
1799 			bus_p->bus_max_speed = PCIE_LINK_SPEED_32;
1800 			break;
1801 		case PCIE_LINKCAP_MAX_SPEED_64:
1802 			bus_p->bus_max_speed = PCIE_LINK_SPEED_64;
1803 			break;
1804 		default:
1805 			bus_p->bus_max_speed = PCIE_LINK_SPEED_UNKNOWN;
1806 			break;
1807 		}
1808 	} else {
1809 		if (cap & PCIE_LINKCAP_MAX_SPEED_5) {
1810 			bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1811 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5 |
1812 			    PCIE_LINK_SPEED_5;
1813 		} else if (cap & PCIE_LINKCAP_MAX_SPEED_2_5) {
1814 			bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1815 			bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5;
1816 		}
1817 	}
1818 
1819 	switch (ctl2 & PCIE_LINKCTL2_TARGET_SPEED_MASK) {
1820 	case PCIE_LINKCTL2_TARGET_SPEED_2_5:
1821 		bus_p->bus_target_speed = PCIE_LINK_SPEED_2_5;
1822 		break;
1823 	case PCIE_LINKCTL2_TARGET_SPEED_5:
1824 		bus_p->bus_target_speed = PCIE_LINK_SPEED_5;
1825 		break;
1826 	case PCIE_LINKCTL2_TARGET_SPEED_8:
1827 		bus_p->bus_target_speed = PCIE_LINK_SPEED_8;
1828 		break;
1829 	case PCIE_LINKCTL2_TARGET_SPEED_16:
1830 		bus_p->bus_target_speed = PCIE_LINK_SPEED_16;
1831 		break;
1832 	case PCIE_LINKCTL2_TARGET_SPEED_32:
1833 		bus_p->bus_target_speed = PCIE_LINK_SPEED_32;
1834 		break;
1835 	case PCIE_LINKCTL2_TARGET_SPEED_64:
1836 		bus_p->bus_target_speed = PCIE_LINK_SPEED_64;
1837 		break;
1838 	default:
1839 		bus_p->bus_target_speed = PCIE_LINK_SPEED_UNKNOWN;
1840 		break;
1841 	}
1842 
1843 	pcie_speeds_to_devinfo(dip, bus_p);
1844 	mutex_exit(&bus_p->bus_speed_mutex);
1845 }
1846 
1847 /*
1848  * partially init pcie_bus_t for device (dip,bdf) for accessing pci
1849  * config space
1850  *
1851  * This routine is invoked during boot, either after creating a devinfo node
1852  * (x86 case) or during px driver attach (sparc case); it is also invoked
1853  * in hotplug context after a devinfo node is created.
1854  *
1855  * The fields that are bracketed are initialized if flag PCIE_BUS_INITIAL
1856  * is set:
1857  *
1858  * dev_info_t *		<bus_dip>
1859  * dev_info_t *		<bus_rp_dip>
1860  * ddi_acc_handle_t	bus_cfg_hdl
1861  * uint_t		bus_fm_flags
1862  * pcie_req_id_t	<bus_bdf>
1863  * pcie_req_id_t	<bus_rp_bdf>
1864  * uint32_t		<bus_dev_ven_id>
1865  * uint8_t		<bus_rev_id>
1866  * uint8_t		<bus_hdr_type>
1867  * uint16_t		<bus_dev_type>
1868  * uint8_t		<bus_bdg_secbus
1869  * uint16_t		<bus_pcie_off>
1870  * uint16_t		<bus_aer_off>
1871  * uint16_t		<bus_pcix_off>
1872  * uint16_t		<bus_ecc_ver>
1873  * pci_bus_range_t	bus_bus_range
1874  * ppb_ranges_t	*	bus_addr_ranges
1875  * int			bus_addr_entries
1876  * pci_regspec_t *	bus_assigned_addr
1877  * int			bus_assigned_entries
1878  * pf_data_t *		bus_pfd
1879  * pcie_domain_t *	bus_dom
1880  * int			bus_mps
1881  * uint64_t		bus_cfgacc_base
1882  * void	*		bus_plat_private
1883  *
1884  * The fields that are bracketed are initialized if flag PCIE_BUS_FINAL
1885  * is set:
1886  *
1887  * dev_info_t *		bus_dip
1888  * dev_info_t *		bus_rp_dip
1889  * ddi_acc_handle_t	bus_cfg_hdl
1890  * uint_t		bus_fm_flags
1891  * pcie_req_id_t	bus_bdf
1892  * pcie_req_id_t	bus_rp_bdf
1893  * uint32_t		bus_dev_ven_id
1894  * uint8_t		bus_rev_id
1895  * uint8_t		bus_hdr_type
1896  * uint16_t		bus_dev_type
1897  * uint8_t		<bus_bdg_secbus>
1898  * uint16_t		bus_pcie_off
1899  * uint16_t		bus_aer_off
1900  * uint16_t		bus_pcix_off
1901  * uint16_t		bus_ecc_ver
1902  * pci_bus_range_t	<bus_bus_range>
1903  * ppb_ranges_t	*	<bus_addr_ranges>
1904  * int			<bus_addr_entries>
1905  * pci_regspec_t *	<bus_assigned_addr>
1906  * int			<bus_assigned_entries>
1907  * pf_data_t *		<bus_pfd>
1908  * pcie_domain_t *	bus_dom
1909  * int			bus_mps
1910  * uint64_t		bus_cfgacc_base
1911  * void	*		<bus_plat_private>
1912  */
1913 
1914 pcie_bus_t *
1915 pcie_init_bus(dev_info_t *dip, pcie_req_id_t bdf, uint8_t flags)
1916 {
1917 	uint16_t	status, base, baseptr, num_cap;
1918 	uint32_t	capid;
1919 	int		range_size;
1920 	pcie_bus_t	*bus_p = NULL;
1921 	dev_info_t	*rcdip;
1922 	dev_info_t	*pdip;
1923 	const char	*errstr = NULL;
1924 
1925 	if (!(flags & PCIE_BUS_INITIAL))
1926 		goto initial_done;
1927 
1928 	bus_p = kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1929 
1930 	bus_p->bus_dip = dip;
1931 	bus_p->bus_bdf = bdf;
1932 
1933 	rcdip = pcie_get_rc_dip(dip);
1934 	ASSERT(rcdip != NULL);
1935 
1936 	/* Save the Vendor ID, Device ID and revision ID */
1937 	bus_p->bus_dev_ven_id = pci_cfgacc_get32(rcdip, bdf, PCI_CONF_VENID);
1938 	bus_p->bus_rev_id = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID);
1939 	/* Save the Header Type */
1940 	bus_p->bus_hdr_type = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_HEADER);
1941 	bus_p->bus_hdr_type &= PCI_HEADER_TYPE_M;
1942 
1943 	/*
1944 	 * Figure out the device type and all the relavant capability offsets
1945 	 */
1946 	/* set default value */
1947 	bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_PCI_PSEUDO;
1948 
1949 	status = pci_cfgacc_get16(rcdip, bdf, PCI_CONF_STAT);
1950 	if (status == PCI_CAP_EINVAL16 || !(status & PCI_STAT_CAP))
1951 		goto caps_done; /* capability not supported */
1952 
1953 	/* Relevant conventional capabilities first */
1954 
1955 	/* Conventional caps: PCI_CAP_ID_PCI_E, PCI_CAP_ID_PCIX */
1956 	num_cap = 2;
1957 
1958 	switch (bus_p->bus_hdr_type) {
1959 	case PCI_HEADER_ZERO:
1960 		baseptr = PCI_CONF_CAP_PTR;
1961 		break;
1962 	case PCI_HEADER_PPB:
1963 		baseptr = PCI_BCNF_CAP_PTR;
1964 		break;
1965 	case PCI_HEADER_CARDBUS:
1966 		baseptr = PCI_CBUS_CAP_PTR;
1967 		break;
1968 	default:
1969 		cmn_err(CE_WARN, "%s: unexpected pci header type:%x",
1970 		    __func__, bus_p->bus_hdr_type);
1971 		goto caps_done;
1972 	}
1973 
1974 	base = baseptr;
1975 	for (base = pci_cfgacc_get8(rcdip, bdf, base); base && num_cap;
1976 	    base = pci_cfgacc_get8(rcdip, bdf, base + PCI_CAP_NEXT_PTR)) {
1977 		capid = pci_cfgacc_get8(rcdip, bdf, base);
1978 		uint16_t pcap;
1979 
1980 		switch (capid) {
1981 		case PCI_CAP_ID_PCI_E:
1982 			bus_p->bus_pcie_off = base;
1983 			pcap = pci_cfgacc_get16(rcdip, bdf, base +
1984 			    PCIE_PCIECAP);
1985 			bus_p->bus_dev_type = pcap & PCIE_PCIECAP_DEV_TYPE_MASK;
1986 			bus_p->bus_pcie_vers = pcap & PCIE_PCIECAP_VER_MASK;
1987 
1988 			/* Check and save PCIe hotplug capability information */
1989 			if ((PCIE_IS_RP(bus_p) || PCIE_IS_SWD(bus_p)) &&
1990 			    (pci_cfgacc_get16(rcdip, bdf, base + PCIE_PCIECAP)
1991 			    & PCIE_PCIECAP_SLOT_IMPL) &&
1992 			    (pci_cfgacc_get32(rcdip, bdf, base + PCIE_SLOTCAP)
1993 			    & PCIE_SLOTCAP_HP_CAPABLE))
1994 				bus_p->bus_hp_sup_modes |= PCIE_NATIVE_HP_MODE;
1995 
1996 			num_cap--;
1997 			break;
1998 		case PCI_CAP_ID_PCIX:
1999 			bus_p->bus_pcix_off = base;
2000 			if (PCIE_IS_BDG(bus_p))
2001 				bus_p->bus_ecc_ver =
2002 				    pci_cfgacc_get16(rcdip, bdf, base +
2003 				    PCI_PCIX_SEC_STATUS) & PCI_PCIX_VER_MASK;
2004 			else
2005 				bus_p->bus_ecc_ver =
2006 				    pci_cfgacc_get16(rcdip, bdf, base +
2007 				    PCI_PCIX_COMMAND) & PCI_PCIX_VER_MASK;
2008 			num_cap--;
2009 			break;
2010 		default:
2011 			break;
2012 		}
2013 	}
2014 
2015 	/* Check and save PCI hotplug (SHPC) capability information */
2016 	if (PCIE_IS_BDG(bus_p)) {
2017 		base = baseptr;
2018 		for (base = pci_cfgacc_get8(rcdip, bdf, base);
2019 		    base; base = pci_cfgacc_get8(rcdip, bdf,
2020 		    base + PCI_CAP_NEXT_PTR)) {
2021 			capid = pci_cfgacc_get8(rcdip, bdf, base);
2022 			if (capid == PCI_CAP_ID_PCI_HOTPLUG) {
2023 				bus_p->bus_pci_hp_off = base;
2024 				bus_p->bus_hp_sup_modes |= PCIE_PCI_HP_MODE;
2025 				break;
2026 			}
2027 		}
2028 	}
2029 
2030 	/* Then, relevant extended capabilities */
2031 
2032 	if (!PCIE_IS_PCIE(bus_p))
2033 		goto caps_done;
2034 
2035 	/* Extended caps: PCIE_EXT_CAP_ID_AER */
2036 	for (base = PCIE_EXT_CAP; base; base = (capid >>
2037 	    PCIE_EXT_CAP_NEXT_PTR_SHIFT) & PCIE_EXT_CAP_NEXT_PTR_MASK) {
2038 		capid = pci_cfgacc_get32(rcdip, bdf, base);
2039 		if (capid == PCI_CAP_EINVAL32)
2040 			break;
2041 		switch ((capid >> PCIE_EXT_CAP_ID_SHIFT) &
2042 		    PCIE_EXT_CAP_ID_MASK) {
2043 		case PCIE_EXT_CAP_ID_AER:
2044 			bus_p->bus_aer_off = base;
2045 			break;
2046 		case PCIE_EXT_CAP_ID_DEV3:
2047 			bus_p->bus_dev3_off = base;
2048 			break;
2049 		}
2050 	}
2051 
2052 caps_done:
2053 	/* save RP dip and RP bdf */
2054 	if (PCIE_IS_RP(bus_p)) {
2055 		bus_p->bus_rp_dip = dip;
2056 		bus_p->bus_rp_bdf = bus_p->bus_bdf;
2057 
2058 		bus_p->bus_fab = PCIE_ZALLOC(pcie_fabric_data_t);
2059 	} else {
2060 		for (pdip = ddi_get_parent(dip); pdip;
2061 		    pdip = ddi_get_parent(pdip)) {
2062 			pcie_bus_t *parent_bus_p = PCIE_DIP2BUS(pdip);
2063 
2064 			/*
2065 			 * If RP dip and RP bdf in parent's bus_t have
2066 			 * been initialized, simply use these instead of
2067 			 * continuing up to the RC.
2068 			 */
2069 			if (parent_bus_p->bus_rp_dip != NULL) {
2070 				bus_p->bus_rp_dip = parent_bus_p->bus_rp_dip;
2071 				bus_p->bus_rp_bdf = parent_bus_p->bus_rp_bdf;
2072 				break;
2073 			}
2074 
2075 			/*
2076 			 * When debugging be aware that some NVIDIA x86
2077 			 * architectures have 2 nodes for each RP, One at Bus
2078 			 * 0x0 and one at Bus 0x80.  The requester is from Bus
2079 			 * 0x80
2080 			 */
2081 			if (PCIE_IS_ROOT(parent_bus_p)) {
2082 				bus_p->bus_rp_dip = pdip;
2083 				bus_p->bus_rp_bdf = parent_bus_p->bus_bdf;
2084 				break;
2085 			}
2086 		}
2087 	}
2088 
2089 	bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
2090 	(void) atomic_swap_uint(&bus_p->bus_fm_flags, 0);
2091 
2092 	ndi_set_bus_private(dip, B_TRUE, DEVI_PORT_TYPE_PCI, (void *)bus_p);
2093 
2094 	if (PCIE_IS_HOTPLUG_CAPABLE(dip))
2095 		(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
2096 		    "hotplug-capable");
2097 
2098 initial_done:
2099 	if (!(flags & PCIE_BUS_FINAL))
2100 		goto final_done;
2101 
2102 	/* already initialized? */
2103 	bus_p = PCIE_DIP2BUS(dip);
2104 
2105 	/* Save the Range information if device is a switch/bridge */
2106 	if (PCIE_IS_BDG(bus_p)) {
2107 		/* get "bus_range" property */
2108 		range_size = sizeof (pci_bus_range_t);
2109 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2110 		    "bus-range", (caddr_t)&bus_p->bus_bus_range, &range_size)
2111 		    != DDI_PROP_SUCCESS) {
2112 			errstr = "Cannot find \"bus-range\" property";
2113 			cmn_err(CE_WARN,
2114 			    "PCIE init err info failed BDF 0x%x:%s\n",
2115 			    bus_p->bus_bdf, errstr);
2116 		}
2117 
2118 		/* get secondary bus number */
2119 		rcdip = pcie_get_rc_dip(dip);
2120 		ASSERT(rcdip != NULL);
2121 
2122 		bus_p->bus_bdg_secbus = pci_cfgacc_get8(rcdip,
2123 		    bus_p->bus_bdf, PCI_BCNF_SECBUS);
2124 
2125 		/* Get "ranges" property */
2126 		if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2127 		    "ranges", (caddr_t)&bus_p->bus_addr_ranges,
2128 		    &bus_p->bus_addr_entries) != DDI_PROP_SUCCESS)
2129 			bus_p->bus_addr_entries = 0;
2130 		bus_p->bus_addr_entries /= sizeof (ppb_ranges_t);
2131 	}
2132 
2133 	/* save "assigned-addresses" property array, ignore failues */
2134 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2135 	    "assigned-addresses", (caddr_t)&bus_p->bus_assigned_addr,
2136 	    &bus_p->bus_assigned_entries) == DDI_PROP_SUCCESS)
2137 		bus_p->bus_assigned_entries /= sizeof (pci_regspec_t);
2138 	else
2139 		bus_p->bus_assigned_entries = 0;
2140 
2141 	pcie_init_pfd(dip);
2142 
2143 	pcie_init_plat(dip);
2144 
2145 	pcie_capture_speeds(dip);
2146 
2147 final_done:
2148 
2149 	PCIE_DBG("Add %s(dip 0x%p, bdf 0x%x, secbus 0x%x)\n",
2150 	    ddi_driver_name(dip), (void *)dip, bus_p->bus_bdf,
2151 	    bus_p->bus_bdg_secbus);
2152 #ifdef DEBUG
2153 	if (bus_p != NULL) {
2154 		pcie_print_bus(bus_p);
2155 	}
2156 #endif
2157 
2158 	return (bus_p);
2159 }
2160 
2161 /*
2162  * Invoked before destroying devinfo node, mostly during hotplug
2163  * operation to free pcie_bus_t data structure
2164  */
2165 /* ARGSUSED */
2166 void
2167 pcie_fini_bus(dev_info_t *dip, uint8_t flags)
2168 {
2169 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2170 	ASSERT(bus_p);
2171 
2172 	if (flags & PCIE_BUS_INITIAL) {
2173 		pcie_fini_plat(dip);
2174 		pcie_fini_pfd(dip);
2175 
2176 		if (PCIE_IS_RP(bus_p)) {
2177 			kmem_free(bus_p->bus_fab, sizeof (pcie_fabric_data_t));
2178 			bus_p->bus_fab = NULL;
2179 		}
2180 
2181 		kmem_free(bus_p->bus_assigned_addr,
2182 		    (sizeof (pci_regspec_t) * bus_p->bus_assigned_entries));
2183 		kmem_free(bus_p->bus_addr_ranges,
2184 		    (sizeof (ppb_ranges_t) * bus_p->bus_addr_entries));
2185 		/* zero out the fields that have been destroyed */
2186 		bus_p->bus_assigned_addr = NULL;
2187 		bus_p->bus_addr_ranges = NULL;
2188 		bus_p->bus_assigned_entries = 0;
2189 		bus_p->bus_addr_entries = 0;
2190 	}
2191 
2192 	if (flags & PCIE_BUS_FINAL) {
2193 		if (PCIE_IS_HOTPLUG_CAPABLE(dip)) {
2194 			(void) ndi_prop_remove(DDI_DEV_T_NONE, dip,
2195 			    "hotplug-capable");
2196 		}
2197 
2198 		ndi_set_bus_private(dip, B_TRUE, 0, NULL);
2199 		kmem_free(bus_p, sizeof (pcie_bus_t));
2200 	}
2201 }
2202 
2203 int
2204 pcie_postattach_child(dev_info_t *cdip)
2205 {
2206 	pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip);
2207 
2208 	if (!bus_p)
2209 		return (DDI_FAILURE);
2210 
2211 	return (pcie_enable_ce(cdip));
2212 }
2213 
2214 /*
2215  * PCI-Express child device de-initialization.
2216  * This function disables generic pci-express interrupts and error
2217  * handling.
2218  */
2219 void
2220 pcie_uninitchild(dev_info_t *cdip)
2221 {
2222 	pcie_disable_errors(cdip);
2223 	pcie_fini_cfghdl(cdip);
2224 	pcie_fini_dom(cdip);
2225 }
2226 
2227 /*
2228  * find the root complex dip
2229  */
2230 dev_info_t *
2231 pcie_get_rc_dip(dev_info_t *dip)
2232 {
2233 	dev_info_t *rcdip;
2234 	pcie_bus_t *rc_bus_p;
2235 
2236 	for (rcdip = ddi_get_parent(dip); rcdip;
2237 	    rcdip = ddi_get_parent(rcdip)) {
2238 		rc_bus_p = PCIE_DIP2BUS(rcdip);
2239 		if (rc_bus_p && PCIE_IS_RC(rc_bus_p))
2240 			break;
2241 	}
2242 
2243 	return (rcdip);
2244 }
2245 
2246 boolean_t
2247 pcie_is_pci_device(dev_info_t *dip)
2248 {
2249 	dev_info_t	*pdip;
2250 	char		*device_type;
2251 
2252 	pdip = ddi_get_parent(dip);
2253 	if (pdip == NULL)
2254 		return (B_FALSE);
2255 
2256 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
2257 	    "device_type", &device_type) != DDI_PROP_SUCCESS)
2258 		return (B_FALSE);
2259 
2260 	if (strcmp(device_type, "pciex") != 0 &&
2261 	    strcmp(device_type, "pci") != 0) {
2262 		ddi_prop_free(device_type);
2263 		return (B_FALSE);
2264 	}
2265 
2266 	ddi_prop_free(device_type);
2267 	return (B_TRUE);
2268 }
2269 
2270 typedef struct {
2271 	boolean_t	init;
2272 	uint8_t		flags;
2273 } pcie_bus_arg_t;
2274 
2275 /*ARGSUSED*/
2276 static int
2277 pcie_fab_do_init_fini(dev_info_t *dip, void *arg)
2278 {
2279 	pcie_req_id_t	bdf;
2280 	pcie_bus_arg_t	*bus_arg = (pcie_bus_arg_t *)arg;
2281 
2282 	if (!pcie_is_pci_device(dip))
2283 		goto out;
2284 
2285 	if (bus_arg->init) {
2286 		if (pcie_get_bdf_from_dip(dip, &bdf) != DDI_SUCCESS)
2287 			goto out;
2288 
2289 		(void) pcie_init_bus(dip, bdf, bus_arg->flags);
2290 	} else {
2291 		(void) pcie_fini_bus(dip, bus_arg->flags);
2292 	}
2293 
2294 	return (DDI_WALK_CONTINUE);
2295 
2296 out:
2297 	return (DDI_WALK_PRUNECHILD);
2298 }
2299 
2300 void
2301 pcie_fab_init_bus(dev_info_t *rcdip, uint8_t flags)
2302 {
2303 	dev_info_t	*dip = ddi_get_child(rcdip);
2304 	pcie_bus_arg_t	arg;
2305 
2306 	arg.init = B_TRUE;
2307 	arg.flags = flags;
2308 
2309 	ndi_devi_enter(rcdip);
2310 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2311 	ndi_devi_exit(rcdip);
2312 }
2313 
2314 void
2315 pcie_fab_fini_bus(dev_info_t *rcdip, uint8_t flags)
2316 {
2317 	dev_info_t	*dip = ddi_get_child(rcdip);
2318 	pcie_bus_arg_t	arg;
2319 
2320 	arg.init = B_FALSE;
2321 	arg.flags = flags;
2322 
2323 	ndi_devi_enter(rcdip);
2324 	ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2325 	ndi_devi_exit(rcdip);
2326 }
2327 
2328 void
2329 pcie_enable_errors(dev_info_t *dip)
2330 {
2331 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2332 	uint16_t	reg16, tmp16;
2333 	uint32_t	reg32, tmp32;
2334 
2335 	ASSERT(bus_p);
2336 
2337 	/*
2338 	 * Clear any pending errors
2339 	 */
2340 	pcie_clear_errors(dip);
2341 
2342 	if (!PCIE_IS_PCIE(bus_p))
2343 		return;
2344 
2345 	/*
2346 	 * Enable Baseline Error Handling but leave CE reporting off (poweron
2347 	 * default).
2348 	 */
2349 	if ((reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL)) !=
2350 	    PCI_CAP_EINVAL16) {
2351 		tmp16 = (reg16 & pcie_devctl_default_mask) |
2352 		    (pcie_devctl_default & ~pcie_devctl_default_mask) |
2353 		    (pcie_base_err_default & ~PCIE_DEVCTL_CE_REPORTING_EN);
2354 
2355 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
2356 		PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
2357 	}
2358 
2359 	/* Enable Root Port Baseline Error Receiving */
2360 	if (PCIE_IS_ROOT(bus_p) &&
2361 	    (reg16 = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL)) !=
2362 	    PCI_CAP_EINVAL16) {
2363 
2364 		tmp16 = pcie_serr_disable_flag ?
2365 		    (pcie_root_ctrl_default & ~PCIE_ROOT_SYS_ERR) :
2366 		    pcie_root_ctrl_default;
2367 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, tmp16);
2368 		PCIE_DBG_CAP(dip, bus_p, "ROOT DEVCTL", 16, PCIE_ROOTCTL,
2369 		    reg16);
2370 	}
2371 
2372 	/*
2373 	 * Enable PCI-Express Advanced Error Handling if Exists
2374 	 */
2375 	if (!PCIE_HAS_AER(bus_p))
2376 		return;
2377 
2378 	/* Set Uncorrectable Severity */
2379 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_SERV)) !=
2380 	    PCI_CAP_EINVAL32) {
2381 		tmp32 = pcie_aer_uce_severity;
2382 
2383 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_SERV, tmp32);
2384 		PCIE_DBG_AER(dip, bus_p, "AER UCE SEV", 32, PCIE_AER_UCE_SERV,
2385 		    reg32);
2386 	}
2387 
2388 	/* Enable Uncorrectable errors */
2389 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_MASK)) !=
2390 	    PCI_CAP_EINVAL32) {
2391 		tmp32 = pcie_aer_uce_mask;
2392 
2393 		PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, tmp32);
2394 		PCIE_DBG_AER(dip, bus_p, "AER UCE MASK", 32, PCIE_AER_UCE_MASK,
2395 		    reg32);
2396 	}
2397 
2398 	/* Enable ECRC generation and checking */
2399 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2400 	    PCI_CAP_EINVAL32) {
2401 		tmp32 = reg32 | pcie_ecrc_value;
2402 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, tmp32);
2403 		PCIE_DBG_AER(dip, bus_p, "AER CTL", 32, PCIE_AER_CTL, reg32);
2404 	}
2405 
2406 	/* Enable Secondary Uncorrectable errors if this is a bridge */
2407 	if (!PCIE_IS_PCIE_BDG(bus_p))
2408 		goto root;
2409 
2410 	/* Set Uncorrectable Severity */
2411 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_SERV)) !=
2412 	    PCI_CAP_EINVAL32) {
2413 		tmp32 = pcie_aer_suce_severity;
2414 
2415 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_SERV, tmp32);
2416 		PCIE_DBG_AER(dip, bus_p, "AER SUCE SEV", 32, PCIE_AER_SUCE_SERV,
2417 		    reg32);
2418 	}
2419 
2420 	if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_MASK)) !=
2421 	    PCI_CAP_EINVAL32) {
2422 		PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, pcie_aer_suce_mask);
2423 		PCIE_DBG_AER(dip, bus_p, "AER SUCE MASK", 32,
2424 		    PCIE_AER_SUCE_MASK, reg32);
2425 	}
2426 
2427 root:
2428 	/*
2429 	 * Enable Root Control this is a Root device
2430 	 */
2431 	if (!PCIE_IS_ROOT(bus_p))
2432 		return;
2433 
2434 	if ((reg16 = PCIE_AER_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2435 	    PCI_CAP_EINVAL16) {
2436 		PCIE_AER_PUT(16, bus_p, PCIE_AER_RE_CMD,
2437 		    pcie_root_error_cmd_default);
2438 		PCIE_DBG_AER(dip, bus_p, "AER Root Err Cmd", 16,
2439 		    PCIE_AER_RE_CMD, reg16);
2440 	}
2441 }
2442 
2443 /*
2444  * This function is used for enabling CE reporting and setting the AER CE mask.
2445  * When called from outside the pcie module it should always be preceded by
2446  * a call to pcie_enable_errors.
2447  */
2448 int
2449 pcie_enable_ce(dev_info_t *dip)
2450 {
2451 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2452 	uint16_t	device_sts, device_ctl;
2453 	uint32_t	tmp_pcie_aer_ce_mask;
2454 
2455 	if (!PCIE_IS_PCIE(bus_p))
2456 		return (DDI_SUCCESS);
2457 
2458 	/*
2459 	 * The "pcie_ce_mask" property is used to control both the CE reporting
2460 	 * enable field in the device control register and the AER CE mask. We
2461 	 * leave CE reporting disabled if pcie_ce_mask is set to -1.
2462 	 */
2463 
2464 	tmp_pcie_aer_ce_mask = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2465 	    DDI_PROP_DONTPASS, "pcie_ce_mask", pcie_aer_ce_mask);
2466 
2467 	if (tmp_pcie_aer_ce_mask == (uint32_t)-1) {
2468 		/*
2469 		 * Nothing to do since CE reporting has already been disabled.
2470 		 */
2471 		return (DDI_SUCCESS);
2472 	}
2473 
2474 	if (PCIE_HAS_AER(bus_p)) {
2475 		/* Enable AER CE */
2476 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, tmp_pcie_aer_ce_mask);
2477 		PCIE_DBG_AER(dip, bus_p, "AER CE MASK", 32, PCIE_AER_CE_MASK,
2478 		    0);
2479 
2480 		/* Clear any pending AER CE errors */
2481 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_STS, -1);
2482 	}
2483 
2484 	/* clear any pending CE errors */
2485 	if ((device_sts = PCIE_CAP_GET(16, bus_p, PCIE_DEVSTS)) !=
2486 	    PCI_CAP_EINVAL16)
2487 		PCIE_CAP_PUT(16, bus_p, PCIE_DEVSTS,
2488 		    device_sts & (~PCIE_DEVSTS_CE_DETECTED));
2489 
2490 	/* Enable CE reporting */
2491 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2492 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL,
2493 	    (device_ctl & (~PCIE_DEVCTL_ERR_MASK)) | pcie_base_err_default);
2494 	PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, device_ctl);
2495 
2496 	return (DDI_SUCCESS);
2497 }
2498 
2499 /* ARGSUSED */
2500 void
2501 pcie_disable_errors(dev_info_t *dip)
2502 {
2503 	pcie_bus_t	*bus_p = PCIE_DIP2BUS(dip);
2504 	uint16_t	device_ctl;
2505 	uint32_t	aer_reg;
2506 
2507 	if (!PCIE_IS_PCIE(bus_p))
2508 		return;
2509 
2510 	/*
2511 	 * Disable PCI-Express Baseline Error Handling
2512 	 */
2513 	device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2514 	device_ctl &= ~PCIE_DEVCTL_ERR_MASK;
2515 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, device_ctl);
2516 
2517 	/*
2518 	 * Disable PCI-Express Advanced Error Handling if Exists
2519 	 */
2520 	if (!PCIE_HAS_AER(bus_p))
2521 		goto root;
2522 
2523 	/* Disable Uncorrectable errors */
2524 	PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, PCIE_AER_UCE_BITS);
2525 
2526 	/* Disable Correctable errors */
2527 	PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, PCIE_AER_CE_BITS);
2528 
2529 	/* Disable ECRC generation and checking */
2530 	if ((aer_reg = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2531 	    PCI_CAP_EINVAL32) {
2532 		aer_reg &= ~(PCIE_AER_CTL_ECRC_GEN_ENA |
2533 		    PCIE_AER_CTL_ECRC_CHECK_ENA);
2534 
2535 		PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, aer_reg);
2536 	}
2537 	/*
2538 	 * Disable Secondary Uncorrectable errors if this is a bridge
2539 	 */
2540 	if (!PCIE_IS_PCIE_BDG(bus_p))
2541 		goto root;
2542 
2543 	PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, PCIE_AER_SUCE_BITS);
2544 
2545 root:
2546 	/*
2547 	 * disable Root Control this is a Root device
2548 	 */
2549 	if (!PCIE_IS_ROOT(bus_p))
2550 		return;
2551 
2552 	if (!pcie_serr_disable_flag) {
2553 		device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL);
2554 		device_ctl &= ~PCIE_ROOT_SYS_ERR;
2555 		PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, device_ctl);
2556 	}
2557 
2558 	if (!PCIE_HAS_AER(bus_p))
2559 		return;
2560 
2561 	if ((device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2562 	    PCI_CAP_EINVAL16) {
2563 		device_ctl &= ~pcie_root_error_cmd_default;
2564 		PCIE_CAP_PUT(16, bus_p, PCIE_AER_RE_CMD, device_ctl);
2565 	}
2566 }
2567 
2568 /*
2569  * Extract bdf from "reg" property.
2570  */
2571 int
2572 pcie_get_bdf_from_dip(dev_info_t *dip, pcie_req_id_t *bdf)
2573 {
2574 	pci_regspec_t	*regspec;
2575 	int		reglen;
2576 
2577 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2578 	    "reg", (int **)&regspec, (uint_t *)&reglen) != DDI_SUCCESS)
2579 		return (DDI_FAILURE);
2580 
2581 	if (reglen < (sizeof (pci_regspec_t) / sizeof (int))) {
2582 		ddi_prop_free(regspec);
2583 		return (DDI_FAILURE);
2584 	}
2585 
2586 	/* Get phys_hi from first element.  All have same bdf. */
2587 	*bdf = (regspec->pci_phys_hi & (PCI_REG_BDFR_M ^ PCI_REG_REG_M)) >> 8;
2588 
2589 	ddi_prop_free(regspec);
2590 	return (DDI_SUCCESS);
2591 }
2592 
2593 dev_info_t *
2594 pcie_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
2595 {
2596 	dev_info_t *cdip = rdip;
2597 
2598 	for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
2599 		;
2600 
2601 	return (cdip);
2602 }
2603 
2604 uint32_t
2605 pcie_get_bdf_for_dma_xfer(dev_info_t *dip, dev_info_t *rdip)
2606 {
2607 	dev_info_t *cdip;
2608 
2609 	/*
2610 	 * As part of the probing, the PCI fcode interpreter may setup a DMA
2611 	 * request if a given card has a fcode on it using dip and rdip of the
2612 	 * hotplug connector i.e, dip and rdip of px/pcieb driver. In this
2613 	 * case, return a invalid value for the bdf since we cannot get to the
2614 	 * bdf value of the actual device which will be initiating this DMA.
2615 	 */
2616 	if (rdip == dip)
2617 		return (PCIE_INVALID_BDF);
2618 
2619 	cdip = pcie_get_my_childs_dip(dip, rdip);
2620 
2621 	/*
2622 	 * For a given rdip, return the bdf value of dip's (px or pcieb)
2623 	 * immediate child or secondary bus-id if dip is a PCIe2PCI bridge.
2624 	 *
2625 	 * XXX - For now, return a invalid bdf value for all PCI and PCI-X
2626 	 * devices since this needs more work.
2627 	 */
2628 	return (PCI_GET_PCIE2PCI_SECBUS(cdip) ?
2629 	    PCIE_INVALID_BDF : PCI_GET_BDF(cdip));
2630 }
2631 
2632 uint32_t
2633 pcie_get_aer_uce_mask()
2634 {
2635 	return (pcie_aer_uce_mask);
2636 }
2637 uint32_t
2638 pcie_get_aer_ce_mask()
2639 {
2640 	return (pcie_aer_ce_mask);
2641 }
2642 uint32_t
2643 pcie_get_aer_suce_mask()
2644 {
2645 	return (pcie_aer_suce_mask);
2646 }
2647 uint32_t
2648 pcie_get_serr_mask()
2649 {
2650 	return (pcie_serr_disable_flag);
2651 }
2652 
2653 void
2654 pcie_set_aer_uce_mask(uint32_t mask)
2655 {
2656 	pcie_aer_uce_mask = mask;
2657 	if (mask & PCIE_AER_UCE_UR)
2658 		pcie_base_err_default &= ~PCIE_DEVCTL_UR_REPORTING_EN;
2659 	else
2660 		pcie_base_err_default |= PCIE_DEVCTL_UR_REPORTING_EN;
2661 
2662 	if (mask & PCIE_AER_UCE_ECRC)
2663 		pcie_ecrc_value = 0;
2664 }
2665 
2666 void
2667 pcie_set_aer_ce_mask(uint32_t mask)
2668 {
2669 	pcie_aer_ce_mask = mask;
2670 }
2671 void
2672 pcie_set_aer_suce_mask(uint32_t mask)
2673 {
2674 	pcie_aer_suce_mask = mask;
2675 }
2676 void
2677 pcie_set_serr_mask(uint32_t mask)
2678 {
2679 	pcie_serr_disable_flag = mask;
2680 }
2681 
2682 /*
2683  * Is the rdip a child of dip.	Used for checking certain CTLOPS from bubbling
2684  * up erronously.  Ex.	ISA ctlops to a PCI-PCI Bridge.
2685  */
2686 boolean_t
2687 pcie_is_child(dev_info_t *dip, dev_info_t *rdip)
2688 {
2689 	dev_info_t	*cdip = ddi_get_child(dip);
2690 	for (; cdip; cdip = ddi_get_next_sibling(cdip))
2691 		if (cdip == rdip)
2692 			break;
2693 	return (cdip != NULL);
2694 }
2695 
2696 boolean_t
2697 pcie_is_link_disabled(dev_info_t *dip)
2698 {
2699 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2700 
2701 	if (PCIE_IS_PCIE(bus_p)) {
2702 		if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) &
2703 		    PCIE_LINKCTL_LINK_DISABLE)
2704 			return (B_TRUE);
2705 	}
2706 	return (B_FALSE);
2707 }
2708 
2709 /*
2710  * Determines if there are any root ports attached to a root complex.
2711  *
2712  * dip - dip of root complex
2713  *
2714  * Returns - DDI_SUCCESS if there is at least one root port otherwise
2715  *	     DDI_FAILURE.
2716  */
2717 int
2718 pcie_root_port(dev_info_t *dip)
2719 {
2720 	int port_type;
2721 	uint16_t cap_ptr;
2722 	ddi_acc_handle_t config_handle;
2723 	dev_info_t *cdip = ddi_get_child(dip);
2724 
2725 	/*
2726 	 * Determine if any of the children of the passed in dip
2727 	 * are root ports.
2728 	 */
2729 	for (; cdip; cdip = ddi_get_next_sibling(cdip)) {
2730 
2731 		if (pci_config_setup(cdip, &config_handle) != DDI_SUCCESS)
2732 			continue;
2733 
2734 		if ((PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E,
2735 		    &cap_ptr)) == DDI_FAILURE) {
2736 			pci_config_teardown(&config_handle);
2737 			continue;
2738 		}
2739 
2740 		port_type = PCI_CAP_GET16(config_handle, 0, cap_ptr,
2741 		    PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
2742 
2743 		pci_config_teardown(&config_handle);
2744 
2745 		if (port_type == PCIE_PCIECAP_DEV_TYPE_ROOT)
2746 			return (DDI_SUCCESS);
2747 	}
2748 
2749 	/* No root ports were found */
2750 
2751 	return (DDI_FAILURE);
2752 }
2753 
2754 /*
2755  * Function that determines if a device a PCIe device.
2756  *
2757  * dip - dip of device.
2758  *
2759  * returns - DDI_SUCCESS if device is a PCIe device, otherwise DDI_FAILURE.
2760  */
2761 int
2762 pcie_dev(dev_info_t *dip)
2763 {
2764 	/* get parent device's device_type property */
2765 	char *device_type;
2766 	int rc = DDI_FAILURE;
2767 	dev_info_t *pdip = ddi_get_parent(dip);
2768 
2769 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
2770 	    DDI_PROP_DONTPASS, "device_type", &device_type)
2771 	    != DDI_PROP_SUCCESS) {
2772 		return (DDI_FAILURE);
2773 	}
2774 
2775 	if (strcmp(device_type, "pciex") == 0)
2776 		rc = DDI_SUCCESS;
2777 	else
2778 		rc = DDI_FAILURE;
2779 
2780 	ddi_prop_free(device_type);
2781 	return (rc);
2782 }
2783 
2784 void
2785 pcie_set_rber_fatal(dev_info_t *dip, boolean_t val)
2786 {
2787 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2788 	bus_p->bus_pfd->pe_rber_fatal = val;
2789 }
2790 
2791 /*
2792  * Return parent Root Port's pe_rber_fatal value.
2793  */
2794 boolean_t
2795 pcie_get_rber_fatal(dev_info_t *dip)
2796 {
2797 	pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2798 	pcie_bus_t *rp_bus_p = PCIE_DIP2UPBUS(bus_p->bus_rp_dip);
2799 	return (rp_bus_p->bus_pfd->pe_rber_fatal);
2800 }
2801 
2802 int
2803 pcie_ari_supported(dev_info_t *dip)
2804 {
2805 	uint32_t devcap2;
2806 	uint16_t pciecap;
2807 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2808 	uint8_t dev_type;
2809 
2810 	PCIE_DBG("pcie_ari_supported: dip=%p\n", dip);
2811 
2812 	if (bus_p == NULL)
2813 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2814 
2815 	dev_type = bus_p->bus_dev_type;
2816 
2817 	if ((dev_type != PCIE_PCIECAP_DEV_TYPE_DOWN) &&
2818 	    (dev_type != PCIE_PCIECAP_DEV_TYPE_ROOT))
2819 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2820 
2821 	if (pcie_disable_ari) {
2822 		PCIE_DBG("pcie_ari_supported: dip=%p: ARI Disabled\n", dip);
2823 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2824 	}
2825 
2826 	pciecap = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
2827 
2828 	if ((pciecap & PCIE_PCIECAP_VER_MASK) < PCIE_PCIECAP_VER_2_0) {
2829 		PCIE_DBG("pcie_ari_supported: dip=%p: Not 2.0\n", dip);
2830 		return (PCIE_ARI_FORW_NOT_SUPPORTED);
2831 	}
2832 
2833 	devcap2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCAP2);
2834 
2835 	PCIE_DBG("pcie_ari_supported: dip=%p: DevCap2=0x%x\n",
2836 	    dip, devcap2);
2837 
2838 	if (devcap2 & PCIE_DEVCAP2_ARI_FORWARD) {
2839 		PCIE_DBG("pcie_ari_supported: "
2840 		    "dip=%p: ARI Forwarding is supported\n", dip);
2841 		return (PCIE_ARI_FORW_SUPPORTED);
2842 	}
2843 	return (PCIE_ARI_FORW_NOT_SUPPORTED);
2844 }
2845 
2846 int
2847 pcie_ari_enable(dev_info_t *dip)
2848 {
2849 	uint16_t devctl2;
2850 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2851 
2852 	PCIE_DBG("pcie_ari_enable: dip=%p\n", dip);
2853 
2854 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2855 		return (DDI_FAILURE);
2856 
2857 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2858 	devctl2 |= PCIE_DEVCTL2_ARI_FORWARD_EN;
2859 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2860 
2861 	PCIE_DBG("pcie_ari_enable: dip=%p: writing 0x%x to DevCtl2\n",
2862 	    dip, devctl2);
2863 
2864 	return (DDI_SUCCESS);
2865 }
2866 
2867 int
2868 pcie_ari_disable(dev_info_t *dip)
2869 {
2870 	uint16_t devctl2;
2871 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2872 
2873 	PCIE_DBG("pcie_ari_disable: dip=%p\n", dip);
2874 
2875 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2876 		return (DDI_FAILURE);
2877 
2878 	devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2879 	devctl2 &= ~PCIE_DEVCTL2_ARI_FORWARD_EN;
2880 	PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2881 
2882 	PCIE_DBG("pcie_ari_disable: dip=%p: writing 0x%x to DevCtl2\n",
2883 	    dip, devctl2);
2884 
2885 	return (DDI_SUCCESS);
2886 }
2887 
2888 int
2889 pcie_ari_is_enabled(dev_info_t *dip)
2890 {
2891 	uint16_t devctl2;
2892 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2893 
2894 	PCIE_DBG("pcie_ari_is_enabled: dip=%p\n", dip);
2895 
2896 	if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2897 		return (PCIE_ARI_FORW_DISABLED);
2898 
2899 	devctl2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCTL2);
2900 
2901 	PCIE_DBG("pcie_ari_is_enabled: dip=%p: DevCtl2=0x%x\n",
2902 	    dip, devctl2);
2903 
2904 	if (devctl2 & PCIE_DEVCTL2_ARI_FORWARD_EN) {
2905 		PCIE_DBG("pcie_ari_is_enabled: "
2906 		    "dip=%p: ARI Forwarding is enabled\n", dip);
2907 		return (PCIE_ARI_FORW_ENABLED);
2908 	}
2909 
2910 	return (PCIE_ARI_FORW_DISABLED);
2911 }
2912 
2913 int
2914 pcie_ari_device(dev_info_t *dip)
2915 {
2916 	ddi_acc_handle_t handle;
2917 	uint16_t cap_ptr;
2918 
2919 	PCIE_DBG("pcie_ari_device: dip=%p\n", dip);
2920 
2921 	/*
2922 	 * XXX - This function may be called before the bus_p structure
2923 	 * has been populated.  This code can be changed to remove
2924 	 * pci_config_setup()/pci_config_teardown() when the RFE
2925 	 * to populate the bus_p structures early in boot is putback.
2926 	 */
2927 
2928 	/* First make sure it is a PCIe device */
2929 
2930 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2931 		return (PCIE_NOT_ARI_DEVICE);
2932 
2933 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr))
2934 	    != DDI_SUCCESS) {
2935 		pci_config_teardown(&handle);
2936 		return (PCIE_NOT_ARI_DEVICE);
2937 	}
2938 
2939 	/* Locate the ARI Capability */
2940 
2941 	if ((PCI_CAP_LOCATE(handle, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI),
2942 	    &cap_ptr)) == DDI_FAILURE) {
2943 		pci_config_teardown(&handle);
2944 		return (PCIE_NOT_ARI_DEVICE);
2945 	}
2946 
2947 	/* ARI Capability was found so it must be a ARI device */
2948 	PCIE_DBG("pcie_ari_device: ARI Device dip=%p\n", dip);
2949 
2950 	pci_config_teardown(&handle);
2951 	return (PCIE_ARI_DEVICE);
2952 }
2953 
2954 int
2955 pcie_ari_get_next_function(dev_info_t *dip, int *func)
2956 {
2957 	uint32_t val;
2958 	uint16_t cap_ptr, next_function;
2959 	ddi_acc_handle_t handle;
2960 
2961 	/*
2962 	 * XXX - This function may be called before the bus_p structure
2963 	 * has been populated.  This code can be changed to remove
2964 	 * pci_config_setup()/pci_config_teardown() when the RFE
2965 	 * to populate the bus_p structures early in boot is putback.
2966 	 */
2967 
2968 	if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2969 		return (DDI_FAILURE);
2970 
2971 	if ((PCI_CAP_LOCATE(handle,
2972 	    PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), &cap_ptr)) == DDI_FAILURE) {
2973 		pci_config_teardown(&handle);
2974 		return (DDI_FAILURE);
2975 	}
2976 
2977 	val = PCI_CAP_GET32(handle, 0, cap_ptr, PCIE_ARI_CAP);
2978 
2979 	next_function = (val >> PCIE_ARI_CAP_NEXT_FUNC_SHIFT) &
2980 	    PCIE_ARI_CAP_NEXT_FUNC_MASK;
2981 
2982 	pci_config_teardown(&handle);
2983 
2984 	*func = next_function;
2985 
2986 	return (DDI_SUCCESS);
2987 }
2988 
2989 dev_info_t *
2990 pcie_func_to_dip(dev_info_t *dip, pcie_req_id_t function)
2991 {
2992 	pcie_req_id_t child_bdf;
2993 	dev_info_t *cdip;
2994 
2995 	for (cdip = ddi_get_child(dip); cdip;
2996 	    cdip = ddi_get_next_sibling(cdip)) {
2997 
2998 		if (pcie_get_bdf_from_dip(cdip, &child_bdf) == DDI_FAILURE)
2999 			return (NULL);
3000 
3001 		if ((child_bdf & PCIE_REQ_ID_ARI_FUNC_MASK) == function)
3002 			return (cdip);
3003 	}
3004 	return (NULL);
3005 }
3006 
3007 #ifdef	DEBUG
3008 
3009 static void
3010 pcie_print_bus(pcie_bus_t *bus_p)
3011 {
3012 	pcie_dbg("\tbus_dip = 0x%p\n", bus_p->bus_dip);
3013 	pcie_dbg("\tbus_fm_flags = 0x%x\n", bus_p->bus_fm_flags);
3014 
3015 	pcie_dbg("\tbus_bdf = 0x%x\n", bus_p->bus_bdf);
3016 	pcie_dbg("\tbus_dev_ven_id = 0x%x\n", bus_p->bus_dev_ven_id);
3017 	pcie_dbg("\tbus_rev_id = 0x%x\n", bus_p->bus_rev_id);
3018 	pcie_dbg("\tbus_hdr_type = 0x%x\n", bus_p->bus_hdr_type);
3019 	pcie_dbg("\tbus_dev_type = 0x%x\n", bus_p->bus_dev_type);
3020 	pcie_dbg("\tbus_bdg_secbus = 0x%x\n", bus_p->bus_bdg_secbus);
3021 	pcie_dbg("\tbus_pcie_off = 0x%x\n", bus_p->bus_pcie_off);
3022 	pcie_dbg("\tbus_aer_off = 0x%x\n", bus_p->bus_aer_off);
3023 	pcie_dbg("\tbus_pcix_off = 0x%x\n", bus_p->bus_pcix_off);
3024 	pcie_dbg("\tbus_ecc_ver = 0x%x\n", bus_p->bus_ecc_ver);
3025 }
3026 
3027 /*
3028  * For debugging purposes set pcie_dbg_print != 0 to see printf messages
3029  * during interrupt.
3030  *
3031  * When a proper solution is in place this code will disappear.
3032  * Potential solutions are:
3033  * o circular buffers
3034  * o taskq to print at lower pil
3035  */
3036 int pcie_dbg_print = 0;
3037 void
3038 pcie_dbg(char *fmt, ...)
3039 {
3040 	va_list ap;
3041 
3042 	if (!pcie_debug_flags) {
3043 		return;
3044 	}
3045 	va_start(ap, fmt);
3046 	if (servicing_interrupt()) {
3047 		if (pcie_dbg_print) {
3048 			prom_vprintf(fmt, ap);
3049 		}
3050 	} else {
3051 		prom_vprintf(fmt, ap);
3052 	}
3053 	va_end(ap);
3054 }
3055 #endif	/* DEBUG */
3056 
3057 boolean_t
3058 pcie_link_bw_supported(dev_info_t *dip)
3059 {
3060 	uint32_t linkcap;
3061 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3062 
3063 	if (!PCIE_IS_PCIE(bus_p)) {
3064 		return (B_FALSE);
3065 	}
3066 
3067 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3068 		return (B_FALSE);
3069 	}
3070 
3071 	linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
3072 	return ((linkcap & PCIE_LINKCAP_LINK_BW_NOTIFY_CAP) != 0);
3073 }
3074 
3075 int
3076 pcie_link_bw_enable(dev_info_t *dip)
3077 {
3078 	uint16_t linkctl;
3079 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3080 
3081 	if (pcie_disable_lbw != 0) {
3082 		return (DDI_FAILURE);
3083 	}
3084 
3085 	if (!pcie_link_bw_supported(dip)) {
3086 		return (DDI_FAILURE);
3087 	}
3088 
3089 	mutex_init(&bus_p->bus_lbw_mutex, NULL, MUTEX_DRIVER, NULL);
3090 	cv_init(&bus_p->bus_lbw_cv, NULL, CV_DRIVER, NULL);
3091 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3092 	linkctl |= PCIE_LINKCTL_LINK_BW_INTR_EN;
3093 	linkctl |= PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3094 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3095 
3096 	bus_p->bus_lbw_pbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3097 	bus_p->bus_lbw_cbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3098 	bus_p->bus_lbw_state |= PCIE_LBW_S_ENABLED;
3099 
3100 	return (DDI_SUCCESS);
3101 }
3102 
3103 int
3104 pcie_link_bw_disable(dev_info_t *dip)
3105 {
3106 	uint16_t linkctl;
3107 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3108 
3109 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3110 		return (DDI_FAILURE);
3111 	}
3112 
3113 	mutex_enter(&bus_p->bus_lbw_mutex);
3114 	while ((bus_p->bus_lbw_state &
3115 	    (PCIE_LBW_S_DISPATCHED | PCIE_LBW_S_RUNNING)) != 0) {
3116 		cv_wait(&bus_p->bus_lbw_cv, &bus_p->bus_lbw_mutex);
3117 	}
3118 	mutex_exit(&bus_p->bus_lbw_mutex);
3119 
3120 	linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3121 	linkctl &= ~PCIE_LINKCTL_LINK_BW_INTR_EN;
3122 	linkctl &= ~PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3123 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3124 
3125 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_ENABLED;
3126 	kmem_free(bus_p->bus_lbw_pbuf, MAXPATHLEN);
3127 	kmem_free(bus_p->bus_lbw_cbuf, MAXPATHLEN);
3128 	bus_p->bus_lbw_pbuf = NULL;
3129 	bus_p->bus_lbw_cbuf = NULL;
3130 
3131 	mutex_destroy(&bus_p->bus_lbw_mutex);
3132 	cv_destroy(&bus_p->bus_lbw_cv);
3133 
3134 	return (DDI_SUCCESS);
3135 }
3136 
3137 void
3138 pcie_link_bw_taskq(void *arg)
3139 {
3140 	dev_info_t *dip = arg;
3141 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3142 	dev_info_t *cdip;
3143 	boolean_t again;
3144 	sysevent_t *se;
3145 	sysevent_value_t se_val;
3146 	sysevent_id_t eid;
3147 	sysevent_attr_list_t *ev_attr_list;
3148 
3149 top:
3150 	ndi_devi_enter(dip);
3151 	se = NULL;
3152 	ev_attr_list = NULL;
3153 	mutex_enter(&bus_p->bus_lbw_mutex);
3154 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_DISPATCHED;
3155 	bus_p->bus_lbw_state |= PCIE_LBW_S_RUNNING;
3156 	mutex_exit(&bus_p->bus_lbw_mutex);
3157 
3158 	/*
3159 	 * Update our own speeds as we've likely changed something.
3160 	 */
3161 	pcie_capture_speeds(dip);
3162 
3163 	/*
3164 	 * Walk our children. We only care about updating this on function 0
3165 	 * because the PCIe specification requires that these all be the same
3166 	 * otherwise.
3167 	 */
3168 	for (cdip = ddi_get_child(dip); cdip != NULL;
3169 	    cdip = ddi_get_next_sibling(cdip)) {
3170 		pcie_bus_t *cbus_p = PCIE_DIP2BUS(cdip);
3171 
3172 		if (cbus_p == NULL) {
3173 			continue;
3174 		}
3175 
3176 		if ((cbus_p->bus_bdf & PCIE_REQ_ID_FUNC_MASK) != 0) {
3177 			continue;
3178 		}
3179 
3180 		/*
3181 		 * It's possible that this can fire while a child is otherwise
3182 		 * only partially constructed. Therefore, if we don't have the
3183 		 * config handle, don't bother updating the child.
3184 		 */
3185 		if (cbus_p->bus_cfg_hdl == NULL) {
3186 			continue;
3187 		}
3188 
3189 		pcie_capture_speeds(cdip);
3190 		break;
3191 	}
3192 
3193 	se = sysevent_alloc(EC_PCIE, ESC_PCIE_LINK_STATE,
3194 	    ILLUMOS_KERN_PUB "pcie", SE_SLEEP);
3195 
3196 	(void) ddi_pathname(dip, bus_p->bus_lbw_pbuf);
3197 	se_val.value_type = SE_DATA_TYPE_STRING;
3198 	se_val.value.sv_string = bus_p->bus_lbw_pbuf;
3199 	if (sysevent_add_attr(&ev_attr_list, PCIE_EV_DETECTOR_PATH, &se_val,
3200 	    SE_SLEEP) != 0) {
3201 		ndi_devi_exit(dip);
3202 		goto err;
3203 	}
3204 
3205 	if (cdip != NULL) {
3206 		(void) ddi_pathname(cdip, bus_p->bus_lbw_cbuf);
3207 
3208 		se_val.value_type = SE_DATA_TYPE_STRING;
3209 		se_val.value.sv_string = bus_p->bus_lbw_cbuf;
3210 
3211 		/*
3212 		 * If this fails, that's OK. We'd rather get the event off and
3213 		 * there's a chance that there may not be anything there for us.
3214 		 */
3215 		(void) sysevent_add_attr(&ev_attr_list, PCIE_EV_CHILD_PATH,
3216 		    &se_val, SE_SLEEP);
3217 	}
3218 
3219 	ndi_devi_exit(dip);
3220 
3221 	/*
3222 	 * Before we generate and send down a sysevent, we need to tell the
3223 	 * system that parts of the devinfo cache need to be invalidated. While
3224 	 * the function below takes several args, it ignores them all. Because
3225 	 * this is a global invalidation, we don't bother trying to do much more
3226 	 * than requesting a global invalidation, lest we accidentally kick off
3227 	 * several in a row.
3228 	 */
3229 	ddi_prop_cache_invalidate(DDI_DEV_T_NONE, NULL, NULL, 0);
3230 
3231 	if (sysevent_attach_attributes(se, ev_attr_list) != 0) {
3232 		goto err;
3233 	}
3234 	ev_attr_list = NULL;
3235 
3236 	if (log_sysevent(se, SE_SLEEP, &eid) != 0) {
3237 		goto err;
3238 	}
3239 
3240 err:
3241 	sysevent_free_attr(ev_attr_list);
3242 	sysevent_free(se);
3243 
3244 	mutex_enter(&bus_p->bus_lbw_mutex);
3245 	bus_p->bus_lbw_state &= ~PCIE_LBW_S_RUNNING;
3246 	cv_broadcast(&bus_p->bus_lbw_cv);
3247 	again = (bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) != 0;
3248 	mutex_exit(&bus_p->bus_lbw_mutex);
3249 
3250 	if (again) {
3251 		goto top;
3252 	}
3253 }
3254 
3255 int
3256 pcie_link_bw_intr(dev_info_t *dip)
3257 {
3258 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3259 	uint16_t linksts;
3260 	uint16_t flags = PCIE_LINKSTS_LINK_BW_MGMT | PCIE_LINKSTS_AUTO_BW;
3261 	hrtime_t now;
3262 
3263 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3264 		return (DDI_INTR_UNCLAIMED);
3265 	}
3266 
3267 	linksts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3268 	if ((linksts & flags) == 0) {
3269 		return (DDI_INTR_UNCLAIMED);
3270 	}
3271 
3272 	now = gethrtime();
3273 
3274 	/*
3275 	 * Check if we've already dispatched this event. If we have already
3276 	 * dispatched it, then there's nothing else to do, we coalesce multiple
3277 	 * events.
3278 	 */
3279 	mutex_enter(&bus_p->bus_lbw_mutex);
3280 	bus_p->bus_lbw_nevents++;
3281 	bus_p->bus_lbw_last_ts = now;
3282 	if ((bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) == 0) {
3283 		if ((bus_p->bus_lbw_state & PCIE_LBW_S_RUNNING) == 0) {
3284 			taskq_dispatch_ent(pcie_link_tq, pcie_link_bw_taskq,
3285 			    dip, 0, &bus_p->bus_lbw_ent);
3286 		}
3287 
3288 		bus_p->bus_lbw_state |= PCIE_LBW_S_DISPATCHED;
3289 	}
3290 	mutex_exit(&bus_p->bus_lbw_mutex);
3291 
3292 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKSTS, flags);
3293 	return (DDI_INTR_CLAIMED);
3294 }
3295 
3296 int
3297 pcie_link_set_target(dev_info_t *dip, pcie_link_speed_t speed)
3298 {
3299 	uint16_t ctl2, rval;
3300 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3301 
3302 	if (!PCIE_IS_PCIE(bus_p)) {
3303 		return (ENOTSUP);
3304 	}
3305 
3306 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3307 		return (ENOTSUP);
3308 	}
3309 
3310 	if (bus_p->bus_pcie_vers < 2) {
3311 		return (ENOTSUP);
3312 	}
3313 
3314 	switch (speed) {
3315 	case PCIE_LINK_SPEED_2_5:
3316 		rval = PCIE_LINKCTL2_TARGET_SPEED_2_5;
3317 		break;
3318 	case PCIE_LINK_SPEED_5:
3319 		rval = PCIE_LINKCTL2_TARGET_SPEED_5;
3320 		break;
3321 	case PCIE_LINK_SPEED_8:
3322 		rval = PCIE_LINKCTL2_TARGET_SPEED_8;
3323 		break;
3324 	case PCIE_LINK_SPEED_16:
3325 		rval = PCIE_LINKCTL2_TARGET_SPEED_16;
3326 		break;
3327 	case PCIE_LINK_SPEED_32:
3328 		rval = PCIE_LINKCTL2_TARGET_SPEED_32;
3329 		break;
3330 	case PCIE_LINK_SPEED_64:
3331 		rval = PCIE_LINKCTL2_TARGET_SPEED_64;
3332 		break;
3333 	default:
3334 		return (EINVAL);
3335 	}
3336 
3337 	mutex_enter(&bus_p->bus_speed_mutex);
3338 	if ((bus_p->bus_sup_speed & speed) == 0) {
3339 		mutex_exit(&bus_p->bus_speed_mutex);
3340 		return (ENOTSUP);
3341 	}
3342 
3343 	bus_p->bus_target_speed = speed;
3344 	bus_p->bus_speed_flags |= PCIE_LINK_F_ADMIN_TARGET;
3345 
3346 	ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
3347 	ctl2 &= ~PCIE_LINKCTL2_TARGET_SPEED_MASK;
3348 	ctl2 |= rval;
3349 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL2, ctl2);
3350 	mutex_exit(&bus_p->bus_speed_mutex);
3351 
3352 	/*
3353 	 * Make sure our updates have been reflected in devinfo.
3354 	 */
3355 	pcie_capture_speeds(dip);
3356 
3357 	return (0);
3358 }
3359 
3360 int
3361 pcie_link_retrain(dev_info_t *dip)
3362 {
3363 	uint16_t ctl;
3364 	pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3365 
3366 	if (!PCIE_IS_PCIE(bus_p)) {
3367 		return (ENOTSUP);
3368 	}
3369 
3370 	if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3371 		return (ENOTSUP);
3372 	}
3373 
3374 	/*
3375 	 * The PCIe specification suggests that we make sure that the link isn't
3376 	 * in training before issuing this command in case there was a state
3377 	 * machine transition prior to when we got here. We wait and then go
3378 	 * ahead and issue the command anyways.
3379 	 */
3380 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3381 		uint16_t sts;
3382 
3383 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3384 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3385 			break;
3386 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3387 	}
3388 
3389 	ctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3390 	ctl |= PCIE_LINKCTL_RETRAIN_LINK;
3391 	PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, ctl);
3392 
3393 	/*
3394 	 * Wait again to see if it clears before returning to the user.
3395 	 */
3396 	for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3397 		uint16_t sts;
3398 
3399 		sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3400 		if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3401 			break;
3402 		delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3403 	}
3404 
3405 	return (0);
3406 }
3407 
3408 /*
3409  * Here we're going through and grabbing information about a given PCIe device.
3410  * Our situation is a little bit complicated at this point. This gets invoked
3411  * both during early initialization and during hotplug events. We cannot rely on
3412  * the device node having been fully set up, that is, while the pcie_bus_t
3413  * normally contains a ddi_acc_handle_t for configuration space, that may not be
3414  * valid yet as this can occur before child initialization or we may be dealing
3415  * with a function that will never have a handle.
3416  *
3417  * However, we should always have a fully furnished pcie_bus_t, which means that
3418  * we can get its bdf and use that to access the devices configuration space.
3419  */
3420 static int
3421 pcie_fabric_feature_scan(dev_info_t *dip, void *arg)
3422 {
3423 	pcie_bus_t *bus_p;
3424 	uint32_t devcap;
3425 	uint16_t mps;
3426 	dev_info_t *rcdip;
3427 	pcie_fabric_data_t *fab = arg;
3428 
3429 	/*
3430 	 * Skip over non-PCIe devices. If we encounter something here, we don't
3431 	 * bother going through any of its children because we don't have reason
3432 	 * to believe that a PCIe device that this will impact will exist below
3433 	 * this. While it is possible that there's a PCIe fabric downstream an
3434 	 * intermediate old PCI/PCI-X bus, at that point, we'll still trigger
3435 	 * our complex fabric detection and use the minimums.
3436 	 *
3437 	 * The reason this doesn't trigger an immediate flagging as a complex
3438 	 * case like the one below is because we could be scanning a device that
3439 	 * is a nexus driver and has children already (albeit that would be
3440 	 * somewhat surprising as we don't anticipate being called at this
3441 	 * point).
3442 	 */
3443 	if (pcie_dev(dip) != DDI_SUCCESS) {
3444 		return (DDI_WALK_PRUNECHILD);
3445 	}
3446 
3447 	/*
3448 	 * If we fail to find a pcie_bus_t for some reason, that's somewhat
3449 	 * surprising. We log this fact and set the complex flag and indicate it
3450 	 * was because of this case. This immediately transitions us to a
3451 	 * "complex" case which means use the minimal, safe, settings.
3452 	 */
3453 	bus_p = PCIE_DIP2BUS(dip);
3454 	if (bus_p == NULL) {
3455 		dev_err(dip, CE_WARN, "failed to find associated pcie_bus_t "
3456 		    "during fabric scan");
3457 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3458 		return (DDI_WALK_TERMINATE);
3459 	}
3460 
3461 	/*
3462 	 * In a similar case, there is hardware out there which is a PCIe
3463 	 * device, but does not advertise a PCIe capability. An example of this
3464 	 * is the IDT Tsi382A which can hide its PCIe capability. If this is
3465 	 * the case, we immediately terminate scanning and flag this as a
3466 	 * 'complex' case which causes us to use guaranteed safe settings.
3467 	 */
3468 	if (bus_p->bus_pcie_off == 0) {
3469 		dev_err(dip, CE_WARN, "encountered PCIe device without PCIe "
3470 		    "capability");
3471 		fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3472 		return (DDI_WALK_TERMINATE);
3473 	}
3474 
3475 	rcdip = pcie_get_rc_dip(dip);
3476 
3477 	/*
3478 	 * First, start by determining what the device's tagging and max packet
3479 	 * size is. All PCIe devices will always have the 8-bit tag information
3480 	 * as this has existed since PCIe 1.0. 10-bit tagging requires a V2
3481 	 * PCIe capability. 14-bit requires the DEV3 cap. If we are missing a
3482 	 * version or capability, then we always treat that as lacking the bits
3483 	 * in the fabric.
3484 	 */
3485 	ASSERT3U(bus_p->bus_pcie_off, !=, 0);
3486 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3487 	    PCIE_DEVCAP);
3488 	mps = devcap & PCIE_DEVCAP_MAX_PAYLOAD_MASK;
3489 	if (mps < fab->pfd_mps_found) {
3490 		fab->pfd_mps_found = mps;
3491 	}
3492 
3493 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) == 0) {
3494 		fab->pfd_tag_found &= ~PCIE_TAG_8B;
3495 	}
3496 
3497 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0) {
3498 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3499 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3500 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_COMP_SUP) == 0) {
3501 			fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3502 		}
3503 	} else {
3504 		fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3505 	}
3506 
3507 	if (bus_p->bus_dev3_off != 0) {
3508 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3509 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3510 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_COMP_SUP) == 0) {
3511 			fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3512 		}
3513 	} else {
3514 		fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3515 	}
3516 
3517 	/*
3518 	 * Now that we have captured device information, we must go and ask
3519 	 * questions of the topology here. The big theory statement enumerates
3520 	 * several types of cases. The big question we need to answer is have we
3521 	 * encountered a hotpluggable bridge that means we need to mark this as
3522 	 * complex.
3523 	 *
3524 	 * The big theory statement notes several different kinds of hotplug
3525 	 * topologies that exist that we can theoretically support. Right now we
3526 	 * opt to keep our lives simple and focus solely on (4) and (5). These
3527 	 * can both be summarized by a single, fairly straightforward rule:
3528 	 *
3529 	 * The only allowed hotpluggable entity is a root port.
3530 	 *
3531 	 * The reason that this can work and detect cases like (6), (7), and our
3532 	 * other invalid ones is that the hotplug code will scan and find all
3533 	 * children before we are called into here.
3534 	 */
3535 	if (bus_p->bus_hp_sup_modes != 0) {
3536 		/*
3537 		 * We opt to terminate in this case because there's no value in
3538 		 * scanning the rest of the tree at this point.
3539 		 */
3540 		if (!PCIE_IS_RP(bus_p)) {
3541 			fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3542 			return (DDI_WALK_TERMINATE);
3543 		}
3544 
3545 		fab->pfd_flags |= PCIE_FABRIC_F_RP_HP;
3546 	}
3547 
3548 	/*
3549 	 * As our walk starts at a root port, we need to make sure that we don't
3550 	 * pick up any of its siblings and their children as those would be
3551 	 * different PCIe fabric domains for us to scan. In many hardware
3552 	 * platforms multiple root ports are all at the same level in the tree.
3553 	 */
3554 	if (bus_p->bus_rp_dip == dip) {
3555 		return (DDI_WALK_PRUNESIB);
3556 	}
3557 
3558 	return (DDI_WALK_CONTINUE);
3559 }
3560 
3561 static int
3562 pcie_fabric_feature_set(dev_info_t *dip, void *arg)
3563 {
3564 	pcie_bus_t *bus_p;
3565 	dev_info_t *rcdip;
3566 	pcie_fabric_data_t *fab = arg;
3567 	uint32_t devcap, devctl;
3568 
3569 	if (pcie_dev(dip) != DDI_SUCCESS) {
3570 		return (DDI_WALK_PRUNECHILD);
3571 	}
3572 
3573 	/*
3574 	 * The missing bus_t sent us into the complex case previously. We still
3575 	 * need to make sure all devices have values we expect here and thus
3576 	 * don't terminate like the above. The same is true for the case where
3577 	 * there is no PCIe capability.
3578 	 */
3579 	bus_p = PCIE_DIP2BUS(dip);
3580 	if (bus_p == NULL || bus_p->bus_pcie_off == 0) {
3581 		return (DDI_WALK_CONTINUE);
3582 	}
3583 	rcdip = pcie_get_rc_dip(dip);
3584 
3585 	devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3586 	    PCIE_DEVCAP);
3587 	devctl = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3588 	    PCIE_DEVCTL);
3589 
3590 	if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) != 0 &&
3591 	    (fab->pfd_tag_act & PCIE_TAG_8B) != 0) {
3592 		devctl |= PCIE_DEVCTL_EXT_TAG_FIELD_EN;
3593 	}
3594 
3595 	devctl &= ~PCIE_DEVCTL_MAX_PAYLOAD_MASK;
3596 	ASSERT0(fab->pfd_mps_act & ~PCIE_DEVCAP_MAX_PAYLOAD_MASK);
3597 	devctl |= fab->pfd_mps_act << PCIE_DEVCTL_MAX_PAYLOAD_SHIFT;
3598 
3599 	pci_cfgacc_put16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3600 	    PCIE_DEVCTL, devctl);
3601 
3602 	if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0 &&
3603 	    (fab->pfd_tag_act & PCIE_TAG_10B_COMP) != 0) {
3604 		uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3605 		    bus_p->bus_pcie_off + PCIE_DEVCAP2);
3606 
3607 		if ((devcap2 & PCIE_DEVCAP2_10B_TAG_REQ_SUP) == 0) {
3608 			uint16_t devctl2 = pci_cfgacc_get16(rcdip,
3609 			    bus_p->bus_bdf, bus_p->bus_pcie_off + PCIE_DEVCTL2);
3610 			devctl2 |= PCIE_DEVCTL2_10B_TAG_REQ_EN;
3611 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3612 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl2);
3613 		}
3614 	}
3615 
3616 	if (bus_p->bus_dev3_off != 0 &&
3617 	    (fab->pfd_tag_act & PCIE_TAG_14B_COMP) != 0) {
3618 		uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3619 		    bus_p->bus_dev3_off + PCIE_DEVCAP3);
3620 
3621 		if ((devcap3 & PCIE_DEVCAP3_14B_TAG_REQ_SUP) == 0) {
3622 			uint16_t devctl3 = pci_cfgacc_get16(rcdip,
3623 			    bus_p->bus_bdf, bus_p->bus_dev3_off + PCIE_DEVCTL3);
3624 			devctl3 |= PCIE_DEVCTL3_14B_TAG_REQ_EN;
3625 			pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3626 			    bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl3);
3627 		}
3628 	}
3629 
3630 	/*
3631 	 * As our walk starts at a root port, we need to make sure that we don't
3632 	 * pick up any of its siblings and their children as those would be
3633 	 * different PCIe fabric domains for us to scan. In many hardware
3634 	 * platforms multiple root ports are all at the same level in the tree.
3635 	 */
3636 	if (bus_p->bus_rp_dip == dip) {
3637 		return (DDI_WALK_PRUNESIB);
3638 	}
3639 
3640 	return (DDI_WALK_CONTINUE);
3641 }
3642 
3643 /*
3644  * This is used to scan and determine the total set of PCIe fabric settings that
3645  * we should have in the system for everything downstream of this specified root
3646  * port. Note, it is only really safe to call this while working from the
3647  * perspective of a root port as we will be walking down the entire device tree.
3648  *
3649  * However, our callers, particularly hoptlug, don't have all the information
3650  * we'd like. In particular, we need to check that:
3651  *
3652  *   o This is actually a PCIe device.
3653  *   o That this is a root port (see the big theory statement to understand this
3654  *     constraint).
3655  */
3656 void
3657 pcie_fabric_setup(dev_info_t *dip)
3658 {
3659 	pcie_bus_t *bus_p;
3660 	pcie_fabric_data_t *fab;
3661 	dev_info_t *pdip;
3662 
3663 	bus_p = PCIE_DIP2BUS(dip);
3664 	if (bus_p == NULL || !PCIE_IS_RP(bus_p)) {
3665 		return;
3666 	}
3667 
3668 	VERIFY3P(bus_p->bus_fab, !=, NULL);
3669 	fab = bus_p->bus_fab;
3670 
3671 	/*
3672 	 * For us to call ddi_walk_devs(), our parent needs to be held.
3673 	 * ddi_walk_devs() will take care of grabbing our dip as part of its
3674 	 * walk before we iterate over our children.
3675 	 *
3676 	 * A reasonable question to ask here is why is it safe to ask for our
3677 	 * parent? In this case, because we have entered here through some
3678 	 * thread that's operating on us whether as part of attach or a hotplug
3679 	 * event, our dip somewhat by definition has to be valid. If we were
3680 	 * looking at our dip's children and then asking them for a parent, then
3681 	 * that would be a race condition.
3682 	 */
3683 	pdip = ddi_get_parent(dip);
3684 	VERIFY3P(pdip, !=, NULL);
3685 	ndi_devi_enter(pdip);
3686 	fab->pfd_flags |= PCIE_FABRIC_F_SCANNING;
3687 
3688 	/*
3689 	 * Reinitialize the tracking structure to basically set the maximum
3690 	 * caps. These will be chipped away during the scan.
3691 	 */
3692 	fab->pfd_mps_found = PCIE_DEVCAP_MAX_PAYLOAD_4096;
3693 	fab->pfd_tag_found = PCIE_TAG_ALL;
3694 	fab->pfd_flags &= ~PCIE_FABRIC_F_COMPLEX;
3695 
3696 	ddi_walk_devs(dip, pcie_fabric_feature_scan, fab);
3697 
3698 	if ((fab->pfd_flags & PCIE_FABRIC_F_COMPLEX) != 0) {
3699 		fab->pfd_tag_act = PCIE_TAG_5B;
3700 		fab->pfd_mps_act = PCIE_DEVCAP_MAX_PAYLOAD_128;
3701 	} else {
3702 		fab->pfd_tag_act = fab->pfd_tag_found;
3703 		fab->pfd_mps_act = fab->pfd_mps_found;
3704 	}
3705 
3706 	ddi_walk_devs(dip, pcie_fabric_feature_set, fab);
3707 
3708 	fab->pfd_flags &= ~PCIE_FABRIC_F_SCANNING;
3709 	ndi_devi_exit(pdip);
3710 }
3711