1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2024 Oxide Computer Company 14 */ 15 16 /* 17 * Perform various validation checks for user and kernel initiated requests. 18 * This file focuses on the validation of NVMe semantic operations. It assumes 19 * that any necessary permission checks (privileges, exclusive access, etc.) 20 * are being taken care of separately. 21 * 22 * Log Pages 23 * --------- 24 * 25 * Log page requests come into the kernel and we have a few different 26 * constraints that we need to consider while performing validation. There are a 27 * few different gotchas: 28 * 29 * 1) The arguments that one can pass to a get log page command have changed 30 * over the different device revisions. While specifying the log page ID (lid) 31 * has always been supported, a log-specific field (lsp) was added in NVMe 1.3, 32 * and the ability to specify a command-set identifier (csi) was added in NVMe 33 * 2.0. Regardless of whether this is a vendor-specific command or not, we need 34 * to be able to validate that we're not going to send parameters to the 35 * controller that will cause the command to be rejected. 36 * 37 * 2) There are going to be log pages that we know about and some that we don't. 38 * At the moment, we constrain non-admin pass through log pages to be log pages 39 * that the kernel knows about and therefore has an expected size for. This 40 * means that there is a lot more that we can check and enforce, such as whether 41 * or not specific pages support an lsp, lsi, etc. Conversely, for log pages 42 * that are admin pass-through commands, there's not a whole lot that we can 43 * actually do and will only do the version-specific checking. 44 * 45 * For any log page request that comes in, we'll try to identify which of the 46 * different types of log pages that it is, and go through and validate it 47 * appropriately. 48 * 49 * Get Feature 50 * ----------- 51 * 52 * Currently, the kernel only allows standard features to be requested that it 53 * knows about. This will be loosened and look a little bit more like log pages 54 * when we have support for vendor-unique features. 55 * 56 * Like with log pages, in addition to the set of features having evolved, the 57 * arguments to the get features command has also changed to include additions 58 * like whether you want the default or saved value of a feature rather than its 59 * current value. 60 * 61 * One general complication with features is that for a number of optional 62 * features, there is no good way to know whether or not the device supports 63 * said feature other than asking for it. 64 * 65 * The last bit we need to be cognizant of is the fact that only a handful of 66 * features accept a namespace ID. Those that do, may not even support the use 67 * of a broadcast namespace ID. While the controller node may ask for any 68 * feature, those using a namespace node are limited in terms of what they can 69 * actually issue. 70 * 71 * Identify 72 * -------- 73 * 74 * The kernel currently knows about the various identify data structure commands 75 * that it supports. It does this to enforce checking the version and if certain 76 * fields are set. The most complicated form of this is related to the namespace 77 * due to the fact that identify commands come in a few forms: 78 * 79 * 1) Identify commands that do not use a namespace ID at all (like identify 80 * controller). 81 * 2) Identify commands that are used to list namespaces. These allow a zero to 82 * be listed in the namespace ID field to ensure all namespaces are captured. 83 * 3) Identify commands that require a valid namespace and allow the broadcast 84 * namespace ID to be specified. 85 * 4) Identify commands that require a valid namespace and do not allow for a 86 * broadcast namespace ID to be specified. 87 * 88 * The cases here are identified based on flags in the nvme_identify_info_t. We 89 * must check the entire validity here. 90 * 91 * Vendor Unique Commands 92 * ---------------------- 93 * 94 * When it comes to vendor unique commands, the main things that we try to 95 * validate are limited to what the specification requires of the shape of these 96 * commands and the constraints that we have. While there is discovery 97 * functionality in libnvme, we explicitly are not trying to leverage and know 98 * what those are here. This makes things fairly different to both identify 99 * commands and log pages. 100 * 101 * Format Requests 102 * --------------- 103 * 104 * There are a few different things that we need to check before we allow a 105 * format request to proceed. Note, some of these are artificial constraints 106 * that we have opted to place in the driver right now. In particular, right now 107 * we don't support any namespaces with metadata or protection. There is no way 108 * to set this right now in our ioctl interface. Therefore, this stuff is not 109 * verified. 110 * 111 * 1) First we must verify that the controller actually supports the Format NVM 112 * command at all. 113 * 114 * 2) Once that is good, we must validate the secure erase settings and that the 115 * LBA format is valid. 116 * 117 * 3) A controller can limit whether a secure erase or a format must impact the 118 * whole device or not. 119 * 120 * Firmware Download and Commit 121 * ---------------------------- 122 * 123 * Validating a firmware download request is fairly straightforward. Here we're 124 * mostly checking that the requested sizes and offsets have the proper 125 * alignment and aren't beyond the underlying command's maximum sizes. We also 126 * verify whether or not the device actually supports firmware download requests 127 * at all. We don't try to validate the contents of the data or ask if there are 128 * other ongoing things or if we've skipped gaps in the download by changing 129 * offsets. 130 * 131 * When we opt to perform a firmware commit, then all we check is that the 132 * command is supported, that we aren't going to a read-only slot when saving, 133 * or related. 134 */ 135 136 #include <sys/sysmacros.h> 137 #include <sys/nvme.h> 138 139 #include "nvme_reg.h" 140 #include "nvme_var.h" 141 142 typedef struct nvme_validate_info { 143 const nvme_field_info_t *err_fields; 144 size_t err_index; 145 uint32_t err_unuse_bit; 146 nvme_ioctl_errno_t err_field_range; 147 nvme_ioctl_errno_t err_field_unsup; 148 nvme_ioctl_errno_t err_field_unuse; 149 } nvme_validate_info_t; 150 151 static boolean_t 152 nvme_validate_one_field(nvme_ioctl_common_t *com, uint64_t val, 153 const nvme_validate_info_t *info, const nvme_valid_ctrl_data_t *data, 154 uint32_t valid) 155 { 156 const nvme_field_info_t *field = &info->err_fields[info->err_index]; 157 nvme_field_error_t err; 158 159 if (val == 0) { 160 return (B_TRUE); 161 } 162 163 if (valid != 0 && info->err_unuse_bit != 0 && 164 (valid & info->err_unuse_bit) == 0) { 165 VERIFY3U(info->err_field_unuse, !=, 0); 166 return (nvme_ioctl_error(com, info->err_field_unuse, 0, 0)); 167 } 168 169 err = nvme_field_validate(field, data, val, NULL, 0); 170 switch (err) { 171 case NVME_FIELD_ERR_UNSUP_VERSION: 172 case NVME_FIELD_ERR_UNSUP_FIELD: 173 VERIFY3U(info->err_field_unsup, !=, 0); 174 return (nvme_ioctl_error(com, info->err_field_unsup, 0, 0)); 175 case NVME_FIELD_ERR_BAD_VALUE: 176 VERIFY3U(info->err_field_range, !=, 0); 177 return (nvme_ioctl_error(com, info->err_field_range, 0, 0)); 178 case NVME_FIELD_ERR_OK: 179 return (B_TRUE); 180 default: 181 panic("unsupported nvme_field_validate() value: 0x%x", err); 182 } 183 } 184 185 /* 186 * NVMe devices specify log page requests in units of uint32_t's. The original 187 * spec had a zeros based value that was 12 bits wide, providing a little over 188 * 16 KiB for a log page. In NVMe 1.3, this was changed and a device could 189 * optionally support a 32-bit wide length argument. We opt to support a smaller 190 * amount than the NVMe 1.3 maximum: 1 MiB, which is a fairly arbitrary sized 191 * value. 192 */ 193 uint32_t nvme_log_page_max_size = 1 * 1024 * 1024; 194 195 static boolean_t 196 nvme_logpage_is_vendor(nvme_ioctl_get_logpage_t *log) 197 { 198 return (log->nigl_lid >= NVME_LOGPAGE_VEND_MIN && 199 log->nigl_lid <= NVME_LOGPAGE_VEND_MAX); 200 } 201 202 static const nvme_validate_info_t nvme_valid_log_csi = { 203 nvme_log_fields, NVME_LOG_REQ_FIELD_CSI, 0, 204 NVME_IOCTL_E_LOG_CSI_RANGE, 0, NVME_IOCTL_E_LOG_CSI_UNSUP 205 }; 206 207 static const nvme_validate_info_t nvme_valid_log_lid = { 208 nvme_log_fields, NVME_LOG_REQ_FIELD_LID, 0, 209 NVME_IOCTL_E_LOG_LID_RANGE, 0, 0 210 }; 211 212 static const nvme_validate_info_t nvme_valid_log_lsp = { 213 nvme_log_fields, NVME_LOG_REQ_FIELD_LSP, 214 NVME_LOG_DISC_F_NEED_LSP, NVME_IOCTL_E_LOG_LSP_RANGE, 215 NVME_IOCTL_E_LOG_LSP_UNSUP, NVME_IOCTL_E_LOG_LSP_UNUSE 216 }; 217 218 static const nvme_validate_info_t nvme_valid_log_lsi = { 219 nvme_log_fields, NVME_LOG_REQ_FIELD_LSI, 220 NVME_LOG_DISC_F_NEED_LSI, NVME_IOCTL_E_LOG_LSI_RANGE, 221 NVME_IOCTL_E_LOG_LSI_UNSUP, NVME_IOCTL_E_LOG_LSI_UNUSE 222 }; 223 224 static const nvme_validate_info_t nvme_valid_log_rae = { 225 nvme_log_fields, NVME_LOG_REQ_FIELD_RAE, 226 NVME_LOG_DISC_F_NEED_RAE, NVME_IOCTL_E_LOG_RAE_RANGE, 227 NVME_IOCTL_E_LOG_RAE_UNSUP, NVME_IOCTL_E_LOG_RAE_UNUSE 228 }; 229 230 static const nvme_validate_info_t nvme_valid_log_size = { 231 nvme_log_fields, NVME_LOG_REQ_FIELD_SIZE, 0, 232 NVME_IOCTL_E_LOG_SIZE_RANGE, 0, 0 233 }; 234 235 static const nvme_validate_info_t nvme_valid_log_offset = { 236 nvme_log_fields, NVME_LOG_REQ_FIELD_OFFSET, 0, 237 NVME_IOCTL_E_LOG_OFFSET_RANGE, 0, NVME_IOCTL_E_LOG_OFFSET_UNSUP 238 }; 239 240 /* 241 * Validate all of the fields that are present in a log request. The only one we 242 * don't take care of here is the namespace ID, because we have already checked 243 * it prior to this as part of nvme_ioctl_check(). 244 */ 245 static boolean_t 246 nvme_validate_logpage_fields(nvme_ioctl_get_logpage_t *log, 247 const nvme_valid_ctrl_data_t *ctrl_data, const nvme_log_page_info_t *info) 248 { 249 uint32_t disc = 0; 250 251 if (info != NULL) { 252 disc = info->nlpi_disc; 253 } 254 255 if (!nvme_validate_one_field(&log->nigl_common, log->nigl_csi, 256 &nvme_valid_log_csi, ctrl_data, disc)) { 257 return (B_FALSE); 258 } 259 260 if (!nvme_validate_one_field(&log->nigl_common, log->nigl_lid, 261 &nvme_valid_log_lid, ctrl_data, disc)) { 262 return (B_FALSE); 263 } 264 265 if (!nvme_validate_one_field(&log->nigl_common, log->nigl_lsp, 266 &nvme_valid_log_lsp, ctrl_data, disc)) { 267 return (B_FALSE); 268 } 269 270 if (!nvme_validate_one_field(&log->nigl_common, log->nigl_lsi, 271 &nvme_valid_log_lsi, ctrl_data, disc)) { 272 return (B_FALSE); 273 } 274 275 /* 276 * Just like the LID, we treat the size as having two of the same error 277 * type right now as it's always been supported since NVMe 1.0. The 278 * common check confirms that the value is non-zero and that it is 279 * 4-byte aligned. 280 */ 281 if (!nvme_validate_one_field(&log->nigl_common, log->nigl_len, 282 &nvme_valid_log_size, ctrl_data, disc)) { 283 return (B_FALSE); 284 } 285 286 /* 287 * Ensure that the log page does not exceed the kernel's maximum size 288 * that one can get in one request. 289 */ 290 if (log->nigl_len > nvme_log_page_max_size) { 291 return (nvme_ioctl_error(&log->nigl_common, 292 NVME_IOCTL_E_LOG_SIZE_RANGE, 0, 0)); 293 } 294 295 if (!nvme_validate_one_field(&log->nigl_common, log->nigl_rae, 296 &nvme_valid_log_rae, ctrl_data, disc)) { 297 return (B_FALSE); 298 } 299 300 if (!nvme_validate_one_field(&log->nigl_common, log->nigl_offset, 301 &nvme_valid_log_offset, ctrl_data, disc)) { 302 return (B_FALSE); 303 } 304 305 /* 306 * Log pages may either have a known fixed size, a variable size, or an 307 * unknown size. If we have a log page with a known, fixed size, then we 308 * require that the requested size match that and we do not allow an 309 * offset to be specified at this time. Otherwise, there is nothing to 310 * check for a variable length page as we have constrained everything by 311 * the maximum size above. As we encounter fixed size log pages that 312 * exceed the kernel's maximum value, we will likely have to change this 313 * in the future. 314 */ 315 if (info != NULL) { 316 bool var; 317 size_t targ = nvme_log_page_info_size(info, ctrl_data, &var); 318 319 if (!var) { 320 if (targ != 0 && targ != log->nigl_len) { 321 return (nvme_ioctl_error(&log->nigl_common, 322 NVME_IOCTL_E_LOG_SIZE_RANGE, 0, 0)); 323 } 324 325 if (log->nigl_offset != 0) { 326 return (nvme_ioctl_error(&log->nigl_common, 327 NVME_IOCTL_E_LOG_OFFSET_RANGE, 0, 0)); 328 } 329 } 330 } 331 332 return (B_TRUE); 333 } 334 335 /* 336 * Validating a log page comes in a series of a few different steps. Once we 337 * identify that this is a known log page, we first validate that our controller 338 * actually supports the command. Once we know that, then we'll move onto the 339 * question of whether we have an appropriate scope. After that we go through 340 * and make sure all of the fields are set appropriately for the log page. 341 */ 342 boolean_t 343 nvme_validate_logpage(nvme_t *nvme, nvme_ioctl_get_logpage_t *log) 344 { 345 const nvme_log_page_info_t *info = NULL; 346 nvme_valid_ctrl_data_t ctrl_data; 347 nvme_log_disc_scope_t scope, req_scope; 348 349 ctrl_data.vcd_vers = &nvme->n_version; 350 ctrl_data.vcd_id = nvme->n_idctl; 351 352 if (nvme_logpage_is_vendor(log)) { 353 return (nvme_validate_logpage_fields(log, &ctrl_data, NULL)); 354 } 355 356 for (size_t i = 0; i < nvme_std_log_npages; i++) { 357 if (nvme_std_log_pages[i].nlpi_csi == log->nigl_csi && 358 nvme_std_log_pages[i].nlpi_lid == log->nigl_lid) { 359 info = &nvme_std_log_pages[i]; 360 break; 361 } 362 } 363 364 if (info == NULL) { 365 return (nvme_ioctl_error(&log->nigl_common, 366 NVME_IOCTL_E_UNKNOWN_LOG_PAGE, 0, 0)); 367 } 368 369 if (!nvme_log_page_info_supported(info, &ctrl_data)) { 370 return (nvme_ioctl_error(&log->nigl_common, 371 NVME_IOCTL_E_UNSUP_LOG_PAGE, 0, 0)); 372 } 373 374 scope = nvme_log_page_info_scope(info, &ctrl_data); 375 if (log->nigl_common.nioc_nsid == NVME_NSID_BCAST) { 376 req_scope = NVME_LOG_SCOPE_CTRL | NVME_LOG_SCOPE_NVM; 377 } else { 378 req_scope = NVME_LOG_SCOPE_NS; 379 } 380 381 if ((scope & req_scope) == 0) { 382 return (nvme_ioctl_error(&log->nigl_common, 383 NVME_IOCTL_E_BAD_LOG_SCOPE, 0, 0)); 384 } 385 386 return (nvme_validate_logpage_fields(log, &ctrl_data, info)); 387 } 388 389 static const nvme_validate_info_t nvme_valid_get_feat_sel = { 390 nvme_get_feat_fields, NVME_GET_FEAT_REQ_FIELD_SEL, 0, 391 NVME_IOCTL_E_GET_FEAT_SEL_RANGE, NVME_IOCTL_E_GET_FEAT_SEL_UNSUP, 0 392 }; 393 394 static const nvme_validate_info_t nvme_valid_get_feat_cdw11 = { 395 nvme_get_feat_fields, NVME_GET_FEAT_REQ_FIELD_CDW11, 396 NVME_GET_FEAT_F_CDW11, NVME_IOCTL_E_GET_FEAT_CDW11_RANGE, 397 0, NVME_IOCTL_E_GET_FEAT_CDW11_UNUSE 398 }; 399 400 /* 401 * To validate a feature we take the following high-level steps: 402 * 403 * 1) First, we have to determine that this is a feature that we know about. 404 * 2) Ensure that this feature is actually supported. We may not be able to 405 * confirm that it is, but we can sometimes confirm that it is not. Do not 406 * execute any unsupported features. 407 * 3) We have to determine whether we can actually issue this feature with the 408 * specified namespace or not. 409 * 4) Go through and validate all the remaining fields. 410 */ 411 boolean_t 412 nvme_validate_get_feature(nvme_t *nvme, nvme_ioctl_get_feature_t *get) 413 { 414 const nvme_feat_info_t *feat = NULL; 415 const uint32_t nsid = get->nigf_common.nioc_nsid; 416 nvme_valid_ctrl_data_t ctrl_data; 417 nvme_feat_impl_t impl; 418 419 ctrl_data.vcd_vers = &nvme->n_version; 420 ctrl_data.vcd_id = nvme->n_idctl; 421 422 for (size_t i = 0; i < nvme_std_nfeats; i++) { 423 if (nvme_std_feats[i].nfeat_fid == get->nigf_fid) { 424 feat = &nvme_std_feats[i]; 425 break; 426 } 427 } 428 429 if (feat == NULL) { 430 return (nvme_ioctl_error(&get->nigf_common, 431 NVME_IOCTL_E_UNKNOWN_FEATURE, 0, 0)); 432 } 433 434 /* 435 * Before we do anything else, determine if this is supported. For 436 * things that are unknown, there is naught we can do, but try. 437 */ 438 impl = nvme_feat_supported(feat, &ctrl_data); 439 if (impl == NVME_FEAT_IMPL_UNSUPPORTED) { 440 return (nvme_ioctl_error(&get->nigf_common, 441 NVME_IOCTL_E_UNSUP_FEATURE, 0, 0)); 442 } 443 444 /* 445 * To check the namespace related information we rely on whether the get 446 * fields indicates a namespace is required or not. We prefer to use 447 * this rather than the scope as we've seen log pages that end up 448 * supporting multiple scopes. If a namespace is specified, but there is 449 * not one required for the feature, then we assume that this is an 450 * attempt to read something from the controller node. After that we 451 * must check if the broadcast namespace is allowed. 452 * 453 * Conversely, if a namespace is required, then we can't be on the 454 * generic controller node with the namespace left as 0. 455 */ 456 if ((feat->nfeat_in_get & NVME_GET_FEAT_F_NSID) != 0) { 457 if (nsid == 0 || (nsid == NVME_NSID_BCAST && 458 (feat->nfeat_flags & NVME_FEAT_F_GET_BCAST_NSID) == 0)) { 459 return (nvme_ioctl_error(&get->nigf_common, 460 NVME_IOCTL_E_NS_RANGE, 0, 0)); 461 } 462 } else { 463 if (nsid != 0) { 464 return (nvme_ioctl_error(&get->nigf_common, 465 NVME_IOCTL_E_NS_UNUSE, 0, 0)); 466 } 467 } 468 469 /* 470 * The last step is to perform field validation. Note, we've already 471 * validated the nsid above and we skip validating the fid because we've 472 * already taken care of that by selecting for a valid feature. For a 473 * get features, this leaves us with cdw11, a data pointer, and the 474 * 'sel' field. We validate the sel field first. If we find a request 475 * that is asking for the supported capabilities, then we will change 476 * our validation policy and require that the other fields explicitly be 477 * zero to proceed. 478 */ 479 if (!nvme_validate_one_field(&get->nigf_common, get->nigf_sel, 480 &nvme_valid_get_feat_sel, &ctrl_data, feat->nfeat_in_get)) { 481 return (B_FALSE); 482 } 483 484 if (get->nigf_sel == NVME_FEATURE_SEL_SUPPORTED) { 485 if (get->nigf_cdw11 != 0) { 486 return (nvme_ioctl_error(&get->nigf_common, 487 NVME_IOCTL_E_GET_FEAT_CDW11_UNUSE, 0, 0)); 488 } 489 490 if (get->nigf_data != 0 || get->nigf_len != 0) { 491 return (nvme_ioctl_error(&get->nigf_common, 492 NVME_IOCTL_E_GET_FEAT_DATA_UNUSE, 0, 0)); 493 } 494 495 return (B_TRUE); 496 } 497 498 if (!nvme_validate_one_field(&get->nigf_common, get->nigf_cdw11, 499 &nvme_valid_get_feat_cdw11, &ctrl_data, feat->nfeat_in_get)) { 500 return (B_FALSE); 501 } 502 503 /* 504 * The last piece we need to do here is validate the size that we've 505 * been given. There are no size/offset fields in the get feature 506 * request unlike with get log page. Therefore we must be given a data 507 * buffer that matches exactly what the feature requires. 508 */ 509 if ((feat->nfeat_in_get & NVME_GET_FEAT_F_DATA) == 0) { 510 if (get->nigf_data != 0 || get->nigf_len != 0) { 511 return (nvme_ioctl_error(&get->nigf_common, 512 NVME_IOCTL_E_GET_FEAT_DATA_UNUSE, 0, 0)); 513 } 514 } else { 515 if (get->nigf_data == 0 || get->nigf_len != feat->nfeat_len) { 516 return (nvme_ioctl_error(&get->nigf_common, 517 NVME_IOCTL_E_GET_FEAT_DATA_RANGE, 0, 0)); 518 } 519 } 520 521 /* 522 * In the past, the driver also checked a few of the specific values of 523 * cdw11 against information that the kernel had such as the maximum 524 * number of interrupts that we had configured or the valid temperature 525 * types in the temperature thrshold. In the future, if we wanted to add 526 * a cdw11-specific validation, this is where we'd want to insert it 527 * roughly. 528 */ 529 530 return (B_TRUE); 531 } 532 533 static const nvme_validate_info_t nvme_valid_identify_nsid = { 534 nvme_identify_fields, NVME_ID_REQ_F_NSID, 535 1 << NVME_ID_REQ_F_NSID, NVME_IOCTL_E_NS_RANGE, 0, 536 NVME_IOCTL_E_NS_UNUSE 537 }; 538 539 static const nvme_validate_info_t nvme_valid_identify_ctrlid = { 540 nvme_identify_fields, NVME_ID_REQ_F_CTRLID, 541 1 << NVME_ID_REQ_F_CTRLID, NVME_IOCTL_E_IDENTIFY_CTRLID_RANGE, 542 NVME_IOCTL_E_IDENTIFY_CTRLID_UNSUP, NVME_IOCTL_E_IDENTIFY_CTRLID_UNUSE 543 }; 544 545 boolean_t 546 nvme_validate_identify(nvme_t *nvme, nvme_ioctl_identify_t *id, 547 boolean_t ns_minor) 548 { 549 const nvme_identify_info_t *info = NULL; 550 nvme_valid_ctrl_data_t ctrl_data; 551 552 ctrl_data.vcd_vers = &nvme->n_version; 553 ctrl_data.vcd_id = nvme->n_idctl; 554 555 for (size_t i = 0; i < nvme_identify_ncmds; i++) { 556 if (nvme_identify_cmds[i].nii_csi == NVME_CSI_NVM && 557 nvme_identify_cmds[i].nii_cns == id->nid_cns) { 558 info = &nvme_identify_cmds[i]; 559 break; 560 } 561 } 562 563 if (info == NULL) { 564 return (nvme_ioctl_error(&id->nid_common, 565 NVME_IOCTL_E_UNKNOWN_IDENTIFY, 0, 0)); 566 } 567 568 if (!nvme_identify_info_supported(info, &ctrl_data)) { 569 return (nvme_ioctl_error(&id->nid_common, 570 NVME_IOCTL_E_UNSUP_IDENTIFY, 0, 0)); 571 } 572 573 /* 574 * Now it's time for our favorite thing, checking the namespace. Unlike 575 * other validation routines, we can't rely on the general ioctl 576 * checking logic due to all the variations of namespace usage in 577 * commands. See the Identify Commands section of the theory statement 578 * for more information. 579 * 580 * Note: we do not explicitly test the CNS field for validity as we do 581 * the others below as we only allow known CNS values which are 582 * determined above. In addition, we don't use the full generic field 583 * validation for the nsid because it was valid in NVMe 1.0 and its size 584 * hasn't changed throughout. 585 * 586 * First, check that if we're issuing a command that doesn't allow a 587 * namespace to call it, that we've not specified one. In particular, a 588 * namespace minor would already have had its nsid set here, so this is 589 * what would cause us to fail that. 590 */ 591 if ((info->nii_flags & NVME_IDENTIFY_INFO_F_NS_OK) == 0 && ns_minor) { 592 return (nvme_ioctl_error(&id->nid_common, NVME_IOCTL_E_NOT_CTRL, 593 0, 0)); 594 } 595 596 /* 597 * If we've been told that the broadcast namespace is usable here, 598 * translate that first if we can use it. Otherwise we need to try and 599 * translate this to a namespace ID that'll hopefully have some 600 * information, which means we try nsid 1. 601 */ 602 if ((info->nii_flags & NVME_IDENTIFY_INFO_F_BCAST) != 0 && 603 id->nid_common.nioc_nsid == 0) { 604 if (nvme_ctrl_atleast(nvme, &nvme_vers_1v2) && 605 nvme->n_idctl->id_oacs.oa_nsmgmt != 0) { 606 id->nid_common.nioc_nsid = NVME_NSID_BCAST; 607 } else { 608 id->nid_common.nioc_nsid = 1; 609 } 610 } 611 612 /* 613 * Perform namespace ID check. We have three different groups of 614 * commands here that we need to consider and all have different 615 * handling: 616 * 617 * 1) Commands that must not have a namespace specified. 618 * 2) Commands which require a namespace ID, but whether the 619 * broadcast namespace can be used is variable. 620 * 3) Commands which are listing namespaces and therefore can take any 621 * value in the namespace list. 622 * 623 * In addition, because of all the weird semantics above, we have not 624 * leveraged our common ioctl logic for checking whether or not the 625 * namespace is valid. In addition, the general field checking logic 626 * allows a zero here. So for case (1) and (2) we start with the normal 627 * field check. Then we verify a non-zero and broadcast namespace check 628 * for (2). For (3), anything goes. Note, we've already verified the 629 * minor is allowed to use this. 630 */ 631 if ((info->nii_flags & NVME_IDENTIFY_INFO_F_NSID_LIST) == 0 && 632 !nvme_validate_one_field(&id->nid_common, id->nid_common.nioc_nsid, 633 &nvme_valid_identify_nsid, &ctrl_data, info->nii_fields)) { 634 return (B_FALSE); 635 } 636 637 if ((info->nii_fields & (1 << NVME_ID_REQ_F_NSID)) != 0 && 638 (info->nii_flags & NVME_IDENTIFY_INFO_F_NSID_LIST) == 0) { 639 const uint32_t ns = id->nid_common.nioc_nsid; 640 boolean_t allow_bcast = (info->nii_flags & 641 NVME_IDENTIFY_INFO_F_BCAST) != 0; 642 643 if (ns == 0 || ns > nvme->n_namespace_count) { 644 if (ns != NVME_NSID_BCAST) { 645 return (nvme_ioctl_error(&id->nid_common, 646 NVME_IOCTL_E_NS_RANGE, 0, 0)); 647 } else if (!allow_bcast) { 648 return (nvme_ioctl_error(&id->nid_common, 649 NVME_IOCTL_E_NO_BCAST_NS, 0, 0)); 650 } 651 } 652 } 653 654 if (!nvme_validate_one_field(&id->nid_common, id->nid_ctrlid, 655 &nvme_valid_identify_ctrlid, &ctrl_data, info->nii_fields)) { 656 return (B_FALSE); 657 } 658 659 return (B_TRUE); 660 } 661 662 static const nvme_validate_info_t nvme_valid_vuc_opcode = { 663 nvme_vuc_fields, NVME_VUC_REQ_FIELD_OPC, 0, 664 NVME_IOCTL_E_VUC_OPCODE_RANGE, 0, 0 665 }; 666 667 static const nvme_validate_info_t nvme_valid_vuc_nsid = { 668 nvme_vuc_fields, NVME_VUC_REQ_FIELD_NSID, 0, 669 NVME_IOCTL_E_NS_RANGE, 0, 0 670 }; 671 672 static const nvme_validate_info_t nvme_valid_vuc_ndt = { 673 nvme_vuc_fields, NVME_VUC_REQ_FIELD_NDT, 0, 674 NVME_IOCTL_E_VUC_NDT_RANGE, 0, 0 675 }; 676 677 boolean_t 678 nvme_validate_vuc(nvme_t *nvme, nvme_ioctl_passthru_t *pass) 679 { 680 nvme_valid_ctrl_data_t ctrl_data; 681 const uint32_t all_flags = NVME_PASSTHRU_READ | NVME_PASSTHRU_WRITE; 682 const uint32_t all_impact = NVME_IMPACT_NS; 683 684 ctrl_data.vcd_vers = &nvme->n_version; 685 ctrl_data.vcd_id = nvme->n_idctl; 686 687 /* 688 * If there's no controller support, there's nothing that we can do. 689 */ 690 if (nvme->n_idctl->id_nvscc.nv_spec == 0) { 691 return (nvme_ioctl_error(&pass->npc_common, 692 NVME_IOCTL_E_CTRL_VUC_UNSUP, 0, 0)); 693 } 694 695 /* 696 * We don't use the common validation code for the timeout because 697 * there's no way for it to know the kernel's max value right now. 698 */ 699 if (pass->npc_timeout == 0 || 700 pass->npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) { 701 return (nvme_ioctl_error(&pass->npc_common, 702 NVME_IOCTL_E_VUC_TIMEOUT_RANGE, 0, 0)); 703 } 704 705 if (!nvme_validate_one_field(&pass->npc_common, pass->npc_opcode, 706 &nvme_valid_vuc_opcode, &ctrl_data, 0)) { 707 return (B_FALSE); 708 } 709 710 if (!nvme_validate_one_field(&pass->npc_common, 711 pass->npc_common.nioc_nsid, &nvme_valid_vuc_nsid, &ctrl_data, 0)) { 712 return (B_FALSE); 713 } 714 715 /* 716 * Ensure that the flags and impact fields only have known values. 717 */ 718 if ((pass->npc_flags & ~all_flags) != 0) { 719 return (nvme_ioctl_error(&pass->npc_common, 720 NVME_IOCTL_E_VUC_FLAGS_RANGE, 0, 0)); 721 } 722 723 if ((pass->npc_impact & ~all_impact) != 0) { 724 return (nvme_ioctl_error(&pass->npc_common, 725 NVME_IOCTL_E_VUC_IMPACT_RANGE, 0, 0)); 726 } 727 728 /* 729 * We need to validate several different things related to the buffer 730 * and its length: 731 * 732 * - The buffer length must be a multiple of 4 bytes (checked by common 733 * code). 734 * - The buffer length cannot exceed the hardware max (checked by 735 * common code). 736 * - The buffer length cannot exceed our maximum size. 737 * - That if the buffer is present, a length is set. 738 * - That if there is no buffer, the length is zero. 739 * - That if a buffer is set, we have the direction flags set. 740 * - That both direction flags aren't set at the same time. 741 * 742 * We only fall into the normal validation code after all this to make 743 * sure there is nothing additional weird here. 744 */ 745 if (!nvme_validate_one_field(&pass->npc_common, pass->npc_buflen, 746 &nvme_valid_vuc_ndt, &ctrl_data, 0)) { 747 return (B_FALSE); 748 } 749 750 if (pass->npc_buflen > nvme_vendor_specific_admin_cmd_size) { 751 return (nvme_ioctl_error(&pass->npc_common, 752 NVME_IOCTL_E_VUC_NDT_RANGE, 0, 0)); 753 } 754 755 if ((pass->npc_buflen != 0 && pass->npc_buf == 0) || 756 (pass->npc_buflen == 0 && pass->npc_buf != 0)) { 757 return (nvme_ioctl_error(&pass->npc_common, 758 NVME_IOCTL_E_INCONSIST_VUC_BUF_NDT, 0, 0)); 759 } 760 761 if ((pass->npc_buflen != 0 && pass->npc_flags == 0) || 762 ((pass->npc_buflen == 0 && pass->npc_flags != 0))) { 763 return (nvme_ioctl_error(&pass->npc_common, 764 NVME_IOCTL_E_INCONSIST_VUC_FLAGS_NDT, 0, 0)); 765 } 766 767 if ((pass->npc_flags & NVME_PASSTHRU_READ) != 0 && 768 (pass->npc_flags & NVME_PASSTHRU_WRITE) != 0) { 769 return (nvme_ioctl_error(&pass->npc_common, 770 NVME_IOCTL_E_VUC_FLAGS_RANGE, 0, 0)); 771 } 772 773 return (B_TRUE); 774 } 775 776 static const nvme_validate_info_t nvme_valid_format_lbaf = { 777 nvme_format_fields, NVME_FORMAT_REQ_FIELD_LBAF, 0, 778 NVME_IOCTL_E_FORMAT_LBAF_RANGE, 0, 0 779 }; 780 781 static const nvme_validate_info_t nvme_valid_format_ses = { 782 nvme_format_fields, NVME_FORMAT_REQ_FIELD_SES, 0, 783 NVME_IOCTL_E_FORMAT_SES_RANGE, 0, 0 784 }; 785 786 boolean_t 787 nvme_validate_format(nvme_t *nvme, nvme_ioctl_format_t *ioc) 788 { 789 nvme_valid_ctrl_data_t ctrl_data; 790 const nvme_identify_nsid_t *idns; 791 792 ctrl_data.vcd_vers = &nvme->n_version; 793 ctrl_data.vcd_id = nvme->n_idctl; 794 795 if (!nvme_format_cmds_supported(&ctrl_data)) { 796 return (nvme_ioctl_error(&ioc->nif_common, 797 NVME_IOCTL_E_CTRL_FORMAT_UNSUP, 0, 0)); 798 } 799 800 if (!nvme_validate_one_field(&ioc->nif_common, ioc->nif_lbaf, 801 &nvme_valid_format_lbaf, &ctrl_data, 0)) { 802 return (B_FALSE); 803 } 804 805 if (!nvme_validate_one_field(&ioc->nif_common, ioc->nif_ses, 806 &nvme_valid_format_ses, &ctrl_data, 0)) { 807 return (B_FALSE); 808 } 809 810 /* 811 * Now we need to determine if this LBA format is actually one that is 812 * supported by the controller and by the operating system. Note, the 813 * number of LBA formats is considered a zeros values (that is the 814 * actual value is what's there plus one). In the future we should 815 * consider pulling the id_nlbaf check into the common validation code 816 * and passing the common namespace information there as well. 817 */ 818 idns = nvme->n_idcomns; 819 if (ioc->nif_lbaf > idns->id_nlbaf) { 820 return (nvme_ioctl_error(&ioc->nif_common, 821 NVME_IOCTL_E_FORMAT_LBAF_RANGE, 0, 0)); 822 } 823 824 if (idns->id_lbaf[ioc->nif_lbaf].lbaf_ms != 0) { 825 return (nvme_ioctl_error(&ioc->nif_common, 826 NVME_IOCTL_E_UNSUP_LBAF_META, 0, 0)); 827 } 828 829 if (ioc->nif_ses == NVME_FRMT_SES_CRYPTO && 830 nvme->n_idctl->id_fna.fn_crypt_erase == 0) { 831 return (nvme_ioctl_error(&ioc->nif_common, 832 NVME_IOCTL_E_CTRL_CRYPTO_SE_UNSUP, 0, 0)); 833 } 834 835 /* 836 * The remaining checks only apply to cases where we're targeting a 837 * single namespace. 838 */ 839 if (ioc->nif_common.nioc_nsid == NVME_NSID_BCAST) { 840 return (B_TRUE); 841 } 842 843 if (nvme->n_idctl->id_fna.fn_format != 0) { 844 return (nvme_ioctl_error(&ioc->nif_common, 845 NVME_IOCTL_E_CTRL_NS_FORMAT_UNSUP, 0, 0)); 846 } 847 848 if (ioc->nif_ses != NVME_FRMT_SES_NONE && 849 nvme->n_idctl->id_fna.fn_sec_erase != 0) { 850 return (nvme_ioctl_error(&ioc->nif_common, 851 NVME_IOCTL_E_CTRL_NS_SE_UNSUP, 0, 0)); 852 } 853 854 return (B_TRUE); 855 } 856 857 static const nvme_validate_info_t nvme_valid_fw_load_numd = { 858 nvme_fw_load_fields, NVME_FW_LOAD_REQ_FIELD_NUMD, 0, 859 NVME_IOCTL_E_FW_LOAD_LEN_RANGE, 0, 0 860 }; 861 862 static const nvme_validate_info_t nvme_valid_fw_load_offset = { 863 nvme_fw_load_fields, NVME_FW_LOAD_REQ_FIELD_OFFSET, 0, 864 NVME_IOCTL_E_FW_LOAD_OFFSET_RANGE, 0, 0 865 }; 866 867 boolean_t 868 nvme_validate_fw_load(nvme_t *nvme, nvme_ioctl_fw_load_t *fw) 869 { 870 nvme_valid_ctrl_data_t ctrl_data; 871 872 ctrl_data.vcd_vers = &nvme->n_version; 873 ctrl_data.vcd_id = nvme->n_idctl; 874 875 if (!nvme_fw_cmds_supported(&ctrl_data)) { 876 return (nvme_ioctl_error(&fw->fwl_common, 877 NVME_IOCTL_E_CTRL_FW_UNSUP, 0, 0)); 878 } 879 880 if (!nvme_validate_one_field(&fw->fwl_common, fw->fwl_len, 881 &nvme_valid_fw_load_numd, &ctrl_data, 0)) { 882 return (B_FALSE); 883 } 884 885 if (!nvme_validate_one_field(&fw->fwl_common, fw->fwl_off, 886 &nvme_valid_fw_load_offset, &ctrl_data, 0)) { 887 return (B_FALSE); 888 } 889 890 return (B_TRUE); 891 } 892 893 static const nvme_validate_info_t nvme_valid_fw_commit_slot = { 894 nvme_fw_commit_fields, NVME_FW_COMMIT_REQ_FIELD_SLOT, 0, 895 NVME_IOCTL_E_FW_COMMIT_SLOT_RANGE, 0, 0 896 }; 897 898 static const nvme_validate_info_t nvme_valid_fw_commit_act = { 899 nvme_fw_commit_fields, NVME_FW_COMMIT_REQ_FIELD_ACT, 0, 900 NVME_IOCTL_E_FW_COMMIT_ACTION_RANGE, 0, 0 901 }; 902 903 boolean_t 904 nvme_validate_fw_commit(nvme_t *nvme, nvme_ioctl_fw_commit_t *fw) 905 { 906 nvme_valid_ctrl_data_t ctrl_data; 907 908 ctrl_data.vcd_vers = &nvme->n_version; 909 ctrl_data.vcd_id = nvme->n_idctl; 910 911 if (!nvme_fw_cmds_supported(&ctrl_data)) { 912 return (nvme_ioctl_error(&fw->fwc_common, 913 NVME_IOCTL_E_CTRL_FW_UNSUP, 0, 0)); 914 } 915 916 if (!nvme_validate_one_field(&fw->fwc_common, fw->fwc_slot, 917 &nvme_valid_fw_commit_slot, &ctrl_data, 0)) { 918 return (B_FALSE); 919 } 920 921 if (!nvme_validate_one_field(&fw->fwc_common, fw->fwc_action, 922 &nvme_valid_fw_commit_act, &ctrl_data, 0)) { 923 return (B_FALSE); 924 } 925 926 /* 927 * Do not allow someone to explicitly download an image to a read-only 928 * firmware slot. The specification only allows slot 1 to be marked 929 * read-only. 930 */ 931 if (fw->fwc_slot == 1 && nvme->n_idctl->id_frmw.fw_readonly && 932 (fw->fwc_action == NVME_FWC_SAVE || 933 fw->fwc_action == NVME_FWC_SAVE_ACTIVATE)) { 934 return (nvme_ioctl_error(&fw->fwc_common, 935 NVME_IOCTL_E_RO_FW_SLOT, 0, 0)); 936 } 937 938 return (B_TRUE); 939 } 940