xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision fb8f92baa78fdf1ddda6f49125fbd59366393ac8)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2018 Joyent, Inc.
17  * Copyright 2019 Western Digital Corporation.
18  */
19 
20 /*
21  * blkdev driver for NVMe compliant storage devices
22  *
23  * This driver was written to conform to version 1.2.1 of the NVMe
24  * specification.  It may work with newer versions, but that is completely
25  * untested and disabled by default.
26  *
27  * The driver has only been tested on x86 systems and will not work on big-
28  * endian systems without changes to the code accessing registers and data
29  * structures used by the hardware.
30  *
31  *
32  * Interrupt Usage:
33  *
34  * The driver will use a single interrupt while configuring the device as the
35  * specification requires, but contrary to the specification it will try to use
36  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
37  * will switch to multiple-message MSI(-X) if supported. The driver wants to
38  * have one interrupt vector per CPU, but it will work correctly if less are
39  * available. Interrupts can be shared by queues, the interrupt handler will
40  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
41  * the admin queue will share an interrupt with one I/O queue. The interrupt
42  * handler will retrieve completed commands from all queues sharing an interrupt
43  * vector and will post them to a taskq for completion processing.
44  *
45  *
46  * Command Processing:
47  *
48  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
49  * to 65536 I/O commands. The driver will configure one I/O queue pair per
50  * available interrupt vector, with the queue length usually much smaller than
51  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
52  * interrupt vectors will be used.
53  *
54  * Additionally the hardware provides a single special admin queue pair that can
55  * hold up to 4096 admin commands.
56  *
57  * From the hardware perspective both queues of a queue pair are independent,
58  * but they share some driver state: the command array (holding pointers to
59  * commands currently being processed by the hardware) and the active command
60  * counter. Access to a submission queue and the shared state is protected by
61  * nq_mutex, completion queue is protected by ncq_mutex.
62  *
63  * When a command is submitted to a queue pair the active command counter is
64  * incremented and a pointer to the command is stored in the command array. The
65  * array index is used as command identifier (CID) in the submission queue
66  * entry. Some commands may take a very long time to complete, and if the queue
67  * wraps around in that time a submission may find the next array slot to still
68  * be used by a long-running command. In this case the array is sequentially
69  * searched for the next free slot. The length of the command array is the same
70  * as the configured queue length. Queue overrun is prevented by the semaphore,
71  * so a command submission may block if the queue is full.
72  *
73  *
74  * Polled I/O Support:
75  *
76  * For kernel core dump support the driver can do polled I/O. As interrupts are
77  * turned off while dumping the driver will just submit a command in the regular
78  * way, and then repeatedly attempt a command retrieval until it gets the
79  * command back.
80  *
81  *
82  * Namespace Support:
83  *
84  * NVMe devices can have multiple namespaces, each being a independent data
85  * store. The driver supports multiple namespaces and creates a blkdev interface
86  * for each namespace found. Namespaces can have various attributes to support
87  * protection information. This driver does not support any of this and ignores
88  * namespaces that have these attributes.
89  *
90  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
91  * (EUI64). This driver uses the EUI64 if present to generate the devid and
92  * passes it to blkdev to use it in the device node names. As this is currently
93  * untested namespaces with EUI64 are ignored by default.
94  *
95  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
96  * single controller. This is an artificial limit imposed by the driver to be
97  * able to address a reasonable number of controllers and namespaces using a
98  * 32bit minor node number.
99  *
100  *
101  * Minor nodes:
102  *
103  * For each NVMe device the driver exposes one minor node for the controller and
104  * one minor node for each namespace. The only operations supported by those
105  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
106  * interface for the nvmeadm(1M) utility.
107  *
108  *
109  * Blkdev Interface:
110  *
111  * This driver uses blkdev to do all the heavy lifting involved with presenting
112  * a disk device to the system. As a result, the processing of I/O requests is
113  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
114  * setup, and splitting of transfers into manageable chunks.
115  *
116  * I/O requests coming in from blkdev are turned into NVM commands and posted to
117  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
118  * queues. There is currently no timeout handling of I/O commands.
119  *
120  * Blkdev also supports querying device/media information and generating a
121  * devid. The driver reports the best block size as determined by the namespace
122  * format back to blkdev as physical block size to support partition and block
123  * alignment. The devid is either based on the namespace EUI64, if present, or
124  * composed using the device vendor ID, model number, serial number, and the
125  * namespace ID.
126  *
127  *
128  * Error Handling:
129  *
130  * Error handling is currently limited to detecting fatal hardware errors,
131  * either by asynchronous events, or synchronously through command status or
132  * admin command timeouts. In case of severe errors the device is fenced off,
133  * all further requests will return EIO. FMA is then called to fault the device.
134  *
135  * The hardware has a limit for outstanding asynchronous event requests. Before
136  * this limit is known the driver assumes it is at least 1 and posts a single
137  * asynchronous request. Later when the limit is known more asynchronous event
138  * requests are posted to allow quicker reception of error information. When an
139  * asynchronous event is posted by the hardware the driver will parse the error
140  * status fields and log information or fault the device, depending on the
141  * severity of the asynchronous event. The asynchronous event request is then
142  * reused and posted to the admin queue again.
143  *
144  * On command completion the command status is checked for errors. In case of
145  * errors indicating a driver bug the driver panics. Almost all other error
146  * status values just cause EIO to be returned.
147  *
148  * Command timeouts are currently detected for all admin commands except
149  * asynchronous event requests. If a command times out and the hardware appears
150  * to be healthy the driver attempts to abort the command. The original command
151  * timeout is also applied to the abort command. If the abort times out too the
152  * driver assumes the device to be dead, fences it off, and calls FMA to retire
153  * it. In all other cases the aborted command should return immediately with a
154  * status indicating it was aborted, and the driver will wait indefinitely for
155  * that to happen. No timeout handling of normal I/O commands is presently done.
156  *
157  * Any command that times out due to the controller dropping dead will be put on
158  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
159  * memory being reused by the system and later be written to by a "dead" NVMe
160  * controller.
161  *
162  *
163  * Locking:
164  *
165  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
166  * when accessing shared state and submission queue registers, ncq_mutex
167  * is held when accessing completion queue state and registers.
168  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
169  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
170  * mutexes themselves.
171  *
172  * Each command also has its own nc_mutex, which is associated with the
173  * condition variable nc_cv. It is only used on admin commands which are run
174  * synchronously. In that case it must be held across calls to
175  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
176  * nvme_admin_cmd(). It must also be held whenever the completion state of the
177  * command is changed or while a admin command timeout is handled.
178  *
179  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
180  * More than one nc_mutex may only be held when aborting commands. In this case,
181  * the nc_mutex of the command to be aborted must be held across the call to
182  * nvme_abort_cmd() to prevent the command from completing while the abort is in
183  * progress.
184  *
185  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
186  * acquired first. More than one nq_mutex is never held by a single thread.
187  * The ncq_mutex is only held by nvme_retrieve_cmd() and
188  * nvme_process_iocq(). nvme_process_iocq() is only called from the
189  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
190  * mutex is non-contentious but is required for implementation completeness
191  * and safety.
192  *
193  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
194  * and exclusive-open flag nm_oexcl.
195  *
196  *
197  * Quiesce / Fast Reboot:
198  *
199  * The driver currently does not support fast reboot. A quiesce(9E) entry point
200  * is still provided which is used to send a shutdown notification to the
201  * device.
202  *
203  *
204  * Driver Configuration:
205  *
206  * The following driver properties can be changed to control some aspects of the
207  * drivers operation:
208  * - strict-version: can be set to 0 to allow devices conforming to newer
209  *   major versions to be used
210  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
211  *   specific command status as a fatal error leading device faulting
212  * - admin-queue-len: the maximum length of the admin queue (16-4096)
213  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
214  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
215  * - async-event-limit: the maximum number of asynchronous event requests to be
216  *   posted by the driver
217  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
218  *   cache
219  * - min-phys-block-size: the minimum physical block size to report to blkdev,
220  *   which is among other things the basis for ZFS vdev ashift
221  * - max-submission-queues: the maximum number of I/O submission queues.
222  * - max-completion-queues: the maximum number of I/O completion queues,
223  *   can be less than max-submission-queues, in which case the completion
224  *   queues are shared.
225  *
226  *
227  * TODO:
228  * - figure out sane default for I/O queue depth reported to blkdev
229  * - FMA handling of media errors
230  * - support for devices supporting very large I/O requests using chained PRPs
231  * - support for configuring hardware parameters like interrupt coalescing
232  * - support for media formatting and hard partitioning into namespaces
233  * - support for big-endian systems
234  * - support for fast reboot
235  * - support for firmware updates
236  * - support for NVMe Subsystem Reset (1.1)
237  * - support for Scatter/Gather lists (1.1)
238  * - support for Reservations (1.1)
239  * - support for power management
240  */
241 
242 #include <sys/byteorder.h>
243 #ifdef _BIG_ENDIAN
244 #error nvme driver needs porting for big-endian platforms
245 #endif
246 
247 #include <sys/modctl.h>
248 #include <sys/conf.h>
249 #include <sys/devops.h>
250 #include <sys/ddi.h>
251 #include <sys/sunddi.h>
252 #include <sys/sunndi.h>
253 #include <sys/bitmap.h>
254 #include <sys/sysmacros.h>
255 #include <sys/param.h>
256 #include <sys/varargs.h>
257 #include <sys/cpuvar.h>
258 #include <sys/disp.h>
259 #include <sys/blkdev.h>
260 #include <sys/atomic.h>
261 #include <sys/archsystm.h>
262 #include <sys/sata/sata_hba.h>
263 #include <sys/stat.h>
264 #include <sys/policy.h>
265 #include <sys/list.h>
266 
267 #include <sys/nvme.h>
268 
269 #ifdef __x86
270 #include <sys/x86_archext.h>
271 #endif
272 
273 #include "nvme_reg.h"
274 #include "nvme_var.h"
275 
276 /*
277  * Assertions to make sure that we've properly captured various aspects of the
278  * packed structures and haven't broken them during updates.
279  */
280 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
281 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
282 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
283 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
284 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
285 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
286 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
287 
288 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
289 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
290 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
291 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
292 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
293 
294 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
295 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
296 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
297 
298 
299 /* NVMe spec version supported */
300 static const int nvme_version_major = 1;
301 
302 /* tunable for admin command timeout in seconds, default is 1s */
303 int nvme_admin_cmd_timeout = 1;
304 
305 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
306 int nvme_format_cmd_timeout = 600;
307 
308 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
309 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
310 static int nvme_quiesce(dev_info_t *);
311 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
312 static int nvme_setup_interrupts(nvme_t *, int, int);
313 static void nvme_release_interrupts(nvme_t *);
314 static uint_t nvme_intr(caddr_t, caddr_t);
315 
316 static void nvme_shutdown(nvme_t *, int, boolean_t);
317 static boolean_t nvme_reset(nvme_t *, boolean_t);
318 static int nvme_init(nvme_t *);
319 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
320 static void nvme_free_cmd(nvme_cmd_t *);
321 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
322     bd_xfer_t *);
323 static void nvme_admin_cmd(nvme_cmd_t *, int);
324 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
325 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
326 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
327 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
328 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
329 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
330 static void nvme_wakeup_cmd(void *);
331 static void nvme_async_event_task(void *);
332 
333 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
334 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
335 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
336 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
337 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
338 static inline int nvme_check_cmd_status(nvme_cmd_t *);
339 
340 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
341 static void nvme_async_event(nvme_t *);
342 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
343     uint8_t, boolean_t, uint8_t);
344 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
345     ...);
346 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
347 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
348     uint32_t *);
349 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
350     void **, size_t *);
351 static int nvme_write_cache_set(nvme_t *, boolean_t);
352 static int nvme_set_nqueues(nvme_t *);
353 
354 static void nvme_free_dma(nvme_dma_t *);
355 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
356     nvme_dma_t **);
357 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
358     nvme_dma_t **);
359 static void nvme_free_qpair(nvme_qpair_t *);
360 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
361 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
362 
363 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
364 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
365 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
366 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
367 
368 static boolean_t nvme_check_regs_hdl(nvme_t *);
369 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
370 
371 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
372 
373 static void nvme_bd_xfer_done(void *);
374 static void nvme_bd_driveinfo(void *, bd_drive_t *);
375 static int nvme_bd_mediainfo(void *, bd_media_t *);
376 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
377 static int nvme_bd_read(void *, bd_xfer_t *);
378 static int nvme_bd_write(void *, bd_xfer_t *);
379 static int nvme_bd_sync(void *, bd_xfer_t *);
380 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
381 
382 static int nvme_prp_dma_constructor(void *, void *, int);
383 static void nvme_prp_dma_destructor(void *, void *);
384 
385 static void nvme_prepare_devid(nvme_t *, uint32_t);
386 
387 static int nvme_open(dev_t *, int, int, cred_t *);
388 static int nvme_close(dev_t, int, int, cred_t *);
389 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
390 
391 #define	NVME_MINOR_INST_SHIFT	9
392 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
393 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
394 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
395 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
396 
397 static void *nvme_state;
398 static kmem_cache_t *nvme_cmd_cache;
399 
400 /*
401  * DMA attributes for queue DMA memory
402  *
403  * Queue DMA memory must be page aligned. The maximum length of a queue is
404  * 65536 entries, and an entry can be 64 bytes long.
405  */
406 static ddi_dma_attr_t nvme_queue_dma_attr = {
407 	.dma_attr_version	= DMA_ATTR_V0,
408 	.dma_attr_addr_lo	= 0,
409 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
410 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
411 	.dma_attr_align		= 0x1000,
412 	.dma_attr_burstsizes	= 0x7ff,
413 	.dma_attr_minxfer	= 0x1000,
414 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
415 	.dma_attr_seg		= 0xffffffffffffffffULL,
416 	.dma_attr_sgllen	= 1,
417 	.dma_attr_granular	= 1,
418 	.dma_attr_flags		= 0,
419 };
420 
421 /*
422  * DMA attributes for transfers using Physical Region Page (PRP) entries
423  *
424  * A PRP entry describes one page of DMA memory using the page size specified
425  * in the controller configuration's memory page size register (CC.MPS). It uses
426  * a 64bit base address aligned to this page size. There is no limitation on
427  * chaining PRPs together for arbitrarily large DMA transfers.
428  */
429 static ddi_dma_attr_t nvme_prp_dma_attr = {
430 	.dma_attr_version	= DMA_ATTR_V0,
431 	.dma_attr_addr_lo	= 0,
432 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
433 	.dma_attr_count_max	= 0xfff,
434 	.dma_attr_align		= 0x1000,
435 	.dma_attr_burstsizes	= 0x7ff,
436 	.dma_attr_minxfer	= 0x1000,
437 	.dma_attr_maxxfer	= 0x1000,
438 	.dma_attr_seg		= 0xfff,
439 	.dma_attr_sgllen	= -1,
440 	.dma_attr_granular	= 1,
441 	.dma_attr_flags		= 0,
442 };
443 
444 /*
445  * DMA attributes for transfers using scatter/gather lists
446  *
447  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
448  * 32bit length field. SGL Segment and SGL Last Segment entries require the
449  * length to be a multiple of 16 bytes.
450  */
451 static ddi_dma_attr_t nvme_sgl_dma_attr = {
452 	.dma_attr_version	= DMA_ATTR_V0,
453 	.dma_attr_addr_lo	= 0,
454 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
455 	.dma_attr_count_max	= 0xffffffffUL,
456 	.dma_attr_align		= 1,
457 	.dma_attr_burstsizes	= 0x7ff,
458 	.dma_attr_minxfer	= 0x10,
459 	.dma_attr_maxxfer	= 0xfffffffffULL,
460 	.dma_attr_seg		= 0xffffffffffffffffULL,
461 	.dma_attr_sgllen	= -1,
462 	.dma_attr_granular	= 0x10,
463 	.dma_attr_flags		= 0
464 };
465 
466 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
467 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
468 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
469 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
470 };
471 
472 static struct cb_ops nvme_cb_ops = {
473 	.cb_open	= nvme_open,
474 	.cb_close	= nvme_close,
475 	.cb_strategy	= nodev,
476 	.cb_print	= nodev,
477 	.cb_dump	= nodev,
478 	.cb_read	= nodev,
479 	.cb_write	= nodev,
480 	.cb_ioctl	= nvme_ioctl,
481 	.cb_devmap	= nodev,
482 	.cb_mmap	= nodev,
483 	.cb_segmap	= nodev,
484 	.cb_chpoll	= nochpoll,
485 	.cb_prop_op	= ddi_prop_op,
486 	.cb_str		= 0,
487 	.cb_flag	= D_NEW | D_MP,
488 	.cb_rev		= CB_REV,
489 	.cb_aread	= nodev,
490 	.cb_awrite	= nodev
491 };
492 
493 static struct dev_ops nvme_dev_ops = {
494 	.devo_rev	= DEVO_REV,
495 	.devo_refcnt	= 0,
496 	.devo_getinfo	= ddi_no_info,
497 	.devo_identify	= nulldev,
498 	.devo_probe	= nulldev,
499 	.devo_attach	= nvme_attach,
500 	.devo_detach	= nvme_detach,
501 	.devo_reset	= nodev,
502 	.devo_cb_ops	= &nvme_cb_ops,
503 	.devo_bus_ops	= NULL,
504 	.devo_power	= NULL,
505 	.devo_quiesce	= nvme_quiesce,
506 };
507 
508 static struct modldrv nvme_modldrv = {
509 	.drv_modops	= &mod_driverops,
510 	.drv_linkinfo	= "NVMe v1.1b",
511 	.drv_dev_ops	= &nvme_dev_ops
512 };
513 
514 static struct modlinkage nvme_modlinkage = {
515 	.ml_rev		= MODREV_1,
516 	.ml_linkage	= { &nvme_modldrv, NULL }
517 };
518 
519 static bd_ops_t nvme_bd_ops = {
520 	.o_version	= BD_OPS_VERSION_0,
521 	.o_drive_info	= nvme_bd_driveinfo,
522 	.o_media_info	= nvme_bd_mediainfo,
523 	.o_devid_init	= nvme_bd_devid,
524 	.o_sync_cache	= nvme_bd_sync,
525 	.o_read		= nvme_bd_read,
526 	.o_write	= nvme_bd_write,
527 };
528 
529 /*
530  * This list will hold commands that have timed out and couldn't be aborted.
531  * As we don't know what the hardware may still do with the DMA memory we can't
532  * free them, so we'll keep them forever on this list where we can easily look
533  * at them with mdb.
534  */
535 static struct list nvme_lost_cmds;
536 static kmutex_t nvme_lc_mutex;
537 
538 int
539 _init(void)
540 {
541 	int error;
542 
543 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
544 	if (error != DDI_SUCCESS)
545 		return (error);
546 
547 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
548 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
549 
550 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
551 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
552 	    offsetof(nvme_cmd_t, nc_list));
553 
554 	bd_mod_init(&nvme_dev_ops);
555 
556 	error = mod_install(&nvme_modlinkage);
557 	if (error != DDI_SUCCESS) {
558 		ddi_soft_state_fini(&nvme_state);
559 		mutex_destroy(&nvme_lc_mutex);
560 		list_destroy(&nvme_lost_cmds);
561 		bd_mod_fini(&nvme_dev_ops);
562 	}
563 
564 	return (error);
565 }
566 
567 int
568 _fini(void)
569 {
570 	int error;
571 
572 	if (!list_is_empty(&nvme_lost_cmds))
573 		return (DDI_FAILURE);
574 
575 	error = mod_remove(&nvme_modlinkage);
576 	if (error == DDI_SUCCESS) {
577 		ddi_soft_state_fini(&nvme_state);
578 		kmem_cache_destroy(nvme_cmd_cache);
579 		mutex_destroy(&nvme_lc_mutex);
580 		list_destroy(&nvme_lost_cmds);
581 		bd_mod_fini(&nvme_dev_ops);
582 	}
583 
584 	return (error);
585 }
586 
587 int
588 _info(struct modinfo *modinfop)
589 {
590 	return (mod_info(&nvme_modlinkage, modinfop));
591 }
592 
593 static inline void
594 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
595 {
596 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
597 
598 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
599 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
600 }
601 
602 static inline void
603 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
604 {
605 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
606 
607 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
608 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
609 }
610 
611 static inline uint64_t
612 nvme_get64(nvme_t *nvme, uintptr_t reg)
613 {
614 	uint64_t val;
615 
616 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
617 
618 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
619 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
620 
621 	return (val);
622 }
623 
624 static inline uint32_t
625 nvme_get32(nvme_t *nvme, uintptr_t reg)
626 {
627 	uint32_t val;
628 
629 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
630 
631 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
632 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
633 
634 	return (val);
635 }
636 
637 static boolean_t
638 nvme_check_regs_hdl(nvme_t *nvme)
639 {
640 	ddi_fm_error_t error;
641 
642 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
643 
644 	if (error.fme_status != DDI_FM_OK)
645 		return (B_TRUE);
646 
647 	return (B_FALSE);
648 }
649 
650 static boolean_t
651 nvme_check_dma_hdl(nvme_dma_t *dma)
652 {
653 	ddi_fm_error_t error;
654 
655 	if (dma == NULL)
656 		return (B_FALSE);
657 
658 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
659 
660 	if (error.fme_status != DDI_FM_OK)
661 		return (B_TRUE);
662 
663 	return (B_FALSE);
664 }
665 
666 static void
667 nvme_free_dma_common(nvme_dma_t *dma)
668 {
669 	if (dma->nd_dmah != NULL)
670 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
671 	if (dma->nd_acch != NULL)
672 		ddi_dma_mem_free(&dma->nd_acch);
673 	if (dma->nd_dmah != NULL)
674 		ddi_dma_free_handle(&dma->nd_dmah);
675 }
676 
677 static void
678 nvme_free_dma(nvme_dma_t *dma)
679 {
680 	nvme_free_dma_common(dma);
681 	kmem_free(dma, sizeof (*dma));
682 }
683 
684 /* ARGSUSED */
685 static void
686 nvme_prp_dma_destructor(void *buf, void *private)
687 {
688 	nvme_dma_t *dma = (nvme_dma_t *)buf;
689 
690 	nvme_free_dma_common(dma);
691 }
692 
693 static int
694 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
695     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
696 {
697 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
698 	    &dma->nd_dmah) != DDI_SUCCESS) {
699 		/*
700 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
701 		 * the only other possible error is DDI_DMA_BADATTR which
702 		 * indicates a driver bug which should cause a panic.
703 		 */
704 		dev_err(nvme->n_dip, CE_PANIC,
705 		    "!failed to get DMA handle, check DMA attributes");
706 		return (DDI_FAILURE);
707 	}
708 
709 	/*
710 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
711 	 * or the flags are conflicting, which isn't the case here.
712 	 */
713 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
714 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
715 	    &dma->nd_len, &dma->nd_acch);
716 
717 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
718 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
719 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
720 		dev_err(nvme->n_dip, CE_WARN,
721 		    "!failed to bind DMA memory");
722 		atomic_inc_32(&nvme->n_dma_bind_err);
723 		nvme_free_dma_common(dma);
724 		return (DDI_FAILURE);
725 	}
726 
727 	return (DDI_SUCCESS);
728 }
729 
730 static int
731 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
732     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
733 {
734 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
735 
736 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
737 	    DDI_SUCCESS) {
738 		*ret = NULL;
739 		kmem_free(dma, sizeof (nvme_dma_t));
740 		return (DDI_FAILURE);
741 	}
742 
743 	bzero(dma->nd_memp, dma->nd_len);
744 
745 	*ret = dma;
746 	return (DDI_SUCCESS);
747 }
748 
749 /* ARGSUSED */
750 static int
751 nvme_prp_dma_constructor(void *buf, void *private, int flags)
752 {
753 	nvme_dma_t *dma = (nvme_dma_t *)buf;
754 	nvme_t *nvme = (nvme_t *)private;
755 
756 	dma->nd_dmah = NULL;
757 	dma->nd_acch = NULL;
758 
759 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
760 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
761 		return (-1);
762 	}
763 
764 	ASSERT(dma->nd_ncookie == 1);
765 
766 	dma->nd_cached = B_TRUE;
767 
768 	return (0);
769 }
770 
771 static int
772 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
773     uint_t flags, nvme_dma_t **dma)
774 {
775 	uint32_t len = nentry * qe_len;
776 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
777 
778 	len = roundup(len, nvme->n_pagesize);
779 
780 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
781 	    != DDI_SUCCESS) {
782 		dev_err(nvme->n_dip, CE_WARN,
783 		    "!failed to get DMA memory for queue");
784 		goto fail;
785 	}
786 
787 	if ((*dma)->nd_ncookie != 1) {
788 		dev_err(nvme->n_dip, CE_WARN,
789 		    "!got too many cookies for queue DMA");
790 		goto fail;
791 	}
792 
793 	return (DDI_SUCCESS);
794 
795 fail:
796 	if (*dma) {
797 		nvme_free_dma(*dma);
798 		*dma = NULL;
799 	}
800 
801 	return (DDI_FAILURE);
802 }
803 
804 static void
805 nvme_free_cq(nvme_cq_t *cq)
806 {
807 	mutex_destroy(&cq->ncq_mutex);
808 
809 	if (cq->ncq_dma != NULL)
810 		nvme_free_dma(cq->ncq_dma);
811 
812 	kmem_free(cq, sizeof (*cq));
813 }
814 
815 static void
816 nvme_free_qpair(nvme_qpair_t *qp)
817 {
818 	int i;
819 
820 	mutex_destroy(&qp->nq_mutex);
821 	sema_destroy(&qp->nq_sema);
822 
823 	if (qp->nq_sqdma != NULL)
824 		nvme_free_dma(qp->nq_sqdma);
825 
826 	if (qp->nq_active_cmds > 0)
827 		for (i = 0; i != qp->nq_nentry; i++)
828 			if (qp->nq_cmd[i] != NULL)
829 				nvme_free_cmd(qp->nq_cmd[i]);
830 
831 	if (qp->nq_cmd != NULL)
832 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
833 
834 	kmem_free(qp, sizeof (nvme_qpair_t));
835 }
836 
837 /*
838  * Destroy the pre-allocated cq array, but only free individual completion
839  * queues from the given starting index.
840  */
841 static void
842 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
843 {
844 	uint_t i;
845 
846 	for (i = start; i < nvme->n_cq_count; i++)
847 		if (nvme->n_cq[i] != NULL)
848 			nvme_free_cq(nvme->n_cq[i]);
849 
850 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
851 }
852 
853 static int
854 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx)
855 {
856 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
857 
858 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
859 	    DDI_INTR_PRI(nvme->n_intr_pri));
860 
861 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
862 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
863 		goto fail;
864 
865 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
866 	cq->ncq_nentry = nentry;
867 	cq->ncq_id = idx;
868 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
869 
870 	*cqp = cq;
871 	return (DDI_SUCCESS);
872 
873 fail:
874 	nvme_free_cq(cq);
875 	*cqp = NULL;
876 
877 	return (DDI_FAILURE);
878 }
879 
880 /*
881  * Create the n_cq array big enough to hold "ncq" completion queues.
882  * If the array already exists it will be re-sized (but only larger).
883  * The admin queue is included in this array, which boosts the
884  * max number of entries to UINT16_MAX + 1.
885  */
886 static int
887 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry)
888 {
889 	nvme_cq_t **cq;
890 	uint_t i, cq_count;
891 
892 	ASSERT3U(ncq, >, nvme->n_cq_count);
893 
894 	cq = nvme->n_cq;
895 	cq_count = nvme->n_cq_count;
896 
897 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
898 	nvme->n_cq_count = ncq;
899 
900 	for (i = 0; i < cq_count; i++)
901 		nvme->n_cq[i] = cq[i];
902 
903 	for (; i < nvme->n_cq_count; i++)
904 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i) !=
905 		    DDI_SUCCESS)
906 			goto fail;
907 
908 	if (cq != NULL)
909 		kmem_free(cq, sizeof (*cq) * cq_count);
910 
911 	return (DDI_SUCCESS);
912 
913 fail:
914 	nvme_destroy_cq_array(nvme, cq_count);
915 	/*
916 	 * Restore the original array
917 	 */
918 	nvme->n_cq_count = cq_count;
919 	nvme->n_cq = cq;
920 
921 	return (DDI_FAILURE);
922 }
923 
924 static int
925 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
926     uint_t idx)
927 {
928 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
929 	uint_t cq_idx;
930 
931 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
932 	    DDI_INTR_PRI(nvme->n_intr_pri));
933 
934 	/*
935 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
936 	 * initialize the semaphore accordingly.
937 	 */
938 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
939 
940 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
941 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
942 		goto fail;
943 
944 	/*
945 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
946 	 */
947 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
948 	qp->nq_cq = nvme->n_cq[cq_idx];
949 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
950 	qp->nq_nentry = nentry;
951 
952 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
953 
954 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
955 	qp->nq_next_cmd = 0;
956 
957 	*nqp = qp;
958 	return (DDI_SUCCESS);
959 
960 fail:
961 	nvme_free_qpair(qp);
962 	*nqp = NULL;
963 
964 	return (DDI_FAILURE);
965 }
966 
967 static nvme_cmd_t *
968 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
969 {
970 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
971 
972 	if (cmd == NULL)
973 		return (cmd);
974 
975 	bzero(cmd, sizeof (nvme_cmd_t));
976 
977 	cmd->nc_nvme = nvme;
978 
979 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
980 	    DDI_INTR_PRI(nvme->n_intr_pri));
981 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
982 
983 	return (cmd);
984 }
985 
986 static void
987 nvme_free_cmd(nvme_cmd_t *cmd)
988 {
989 	/* Don't free commands on the lost commands list. */
990 	if (list_link_active(&cmd->nc_list))
991 		return;
992 
993 	if (cmd->nc_dma) {
994 		if (cmd->nc_dma->nd_cached)
995 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
996 			    cmd->nc_dma);
997 		else
998 			nvme_free_dma(cmd->nc_dma);
999 		cmd->nc_dma = NULL;
1000 	}
1001 
1002 	cv_destroy(&cmd->nc_cv);
1003 	mutex_destroy(&cmd->nc_mutex);
1004 
1005 	kmem_cache_free(nvme_cmd_cache, cmd);
1006 }
1007 
1008 static void
1009 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1010 {
1011 	sema_p(&qp->nq_sema);
1012 	nvme_submit_cmd_common(qp, cmd);
1013 }
1014 
1015 static int
1016 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1017 {
1018 	if (sema_tryp(&qp->nq_sema) == 0)
1019 		return (EAGAIN);
1020 
1021 	nvme_submit_cmd_common(qp, cmd);
1022 	return (0);
1023 }
1024 
1025 static void
1026 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1027 {
1028 	nvme_reg_sqtdbl_t tail = { 0 };
1029 
1030 	mutex_enter(&qp->nq_mutex);
1031 	cmd->nc_completed = B_FALSE;
1032 
1033 	/*
1034 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1035 	 * slot. If the slot is already occupied advance to the next slot and
1036 	 * try again. This can happen for long running commands like async event
1037 	 * requests.
1038 	 */
1039 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1040 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1041 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1042 
1043 	qp->nq_active_cmds++;
1044 
1045 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1046 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1047 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1048 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1049 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1050 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1051 
1052 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1053 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1054 
1055 	mutex_exit(&qp->nq_mutex);
1056 }
1057 
1058 static nvme_cmd_t *
1059 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1060 {
1061 	nvme_cmd_t *cmd;
1062 
1063 	ASSERT(mutex_owned(&qp->nq_mutex));
1064 	ASSERT3S(cid, <, qp->nq_nentry);
1065 
1066 	cmd = qp->nq_cmd[cid];
1067 	qp->nq_cmd[cid] = NULL;
1068 	ASSERT3U(qp->nq_active_cmds, >, 0);
1069 	qp->nq_active_cmds--;
1070 	sema_v(&qp->nq_sema);
1071 
1072 	ASSERT3P(cmd, !=, NULL);
1073 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1074 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1075 
1076 	return (cmd);
1077 }
1078 
1079 /*
1080  * Get the command tied to the next completed cqe and bump along completion
1081  * queue head counter.
1082  */
1083 static nvme_cmd_t *
1084 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1085 {
1086 	nvme_qpair_t *qp;
1087 	nvme_cqe_t *cqe;
1088 	nvme_cmd_t *cmd;
1089 
1090 	ASSERT(mutex_owned(&cq->ncq_mutex));
1091 
1092 	cqe = &cq->ncq_cq[cq->ncq_head];
1093 
1094 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1095 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1096 		return (NULL);
1097 
1098 	qp = nvme->n_ioq[cqe->cqe_sqid];
1099 
1100 	mutex_enter(&qp->nq_mutex);
1101 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1102 	mutex_exit(&qp->nq_mutex);
1103 
1104 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1105 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1106 
1107 	qp->nq_sqhead = cqe->cqe_sqhd;
1108 
1109 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1110 
1111 	/* Toggle phase on wrap-around. */
1112 	if (cq->ncq_head == 0)
1113 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1114 
1115 	return (cmd);
1116 }
1117 
1118 /*
1119  * Process all completed commands on the io completion queue.
1120  */
1121 static uint_t
1122 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1123 {
1124 	nvme_reg_cqhdbl_t head = { 0 };
1125 	nvme_cmd_t *cmd;
1126 	uint_t completed = 0;
1127 
1128 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1129 	    DDI_SUCCESS)
1130 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1131 		    __func__);
1132 
1133 	mutex_enter(&cq->ncq_mutex);
1134 
1135 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1136 		taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
1137 		    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1138 
1139 		completed++;
1140 	}
1141 
1142 	if (completed > 0) {
1143 		/*
1144 		 * Update the completion queue head doorbell.
1145 		 */
1146 		head.b.cqhdbl_cqh = cq->ncq_head;
1147 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1148 	}
1149 
1150 	mutex_exit(&cq->ncq_mutex);
1151 
1152 	return (completed);
1153 }
1154 
1155 static nvme_cmd_t *
1156 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1157 {
1158 	nvme_cq_t *cq = qp->nq_cq;
1159 	nvme_reg_cqhdbl_t head = { 0 };
1160 	nvme_cmd_t *cmd;
1161 
1162 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1163 	    DDI_SUCCESS)
1164 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1165 		    __func__);
1166 
1167 	mutex_enter(&cq->ncq_mutex);
1168 
1169 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1170 		head.b.cqhdbl_cqh = cq->ncq_head;
1171 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1172 	}
1173 
1174 	mutex_exit(&cq->ncq_mutex);
1175 
1176 	return (cmd);
1177 }
1178 
1179 static int
1180 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1181 {
1182 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1183 
1184 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1185 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1186 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1187 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1188 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1189 
1190 	if (cmd->nc_xfer != NULL)
1191 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1192 
1193 	if (cmd->nc_nvme->n_strict_version) {
1194 		cmd->nc_nvme->n_dead = B_TRUE;
1195 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1196 	}
1197 
1198 	return (EIO);
1199 }
1200 
1201 static int
1202 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1203 {
1204 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1205 
1206 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1207 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1208 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1209 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1210 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1211 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1212 		cmd->nc_nvme->n_dead = B_TRUE;
1213 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1214 	}
1215 
1216 	return (EIO);
1217 }
1218 
1219 static int
1220 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1221 {
1222 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1223 
1224 	switch (cqe->cqe_sf.sf_sc) {
1225 	case NVME_CQE_SC_INT_NVM_WRITE:
1226 		/* write fail */
1227 		/* TODO: post ereport */
1228 		if (cmd->nc_xfer != NULL)
1229 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1230 		return (EIO);
1231 
1232 	case NVME_CQE_SC_INT_NVM_READ:
1233 		/* read fail */
1234 		/* TODO: post ereport */
1235 		if (cmd->nc_xfer != NULL)
1236 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1237 		return (EIO);
1238 
1239 	default:
1240 		return (nvme_check_unknown_cmd_status(cmd));
1241 	}
1242 }
1243 
1244 static int
1245 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1246 {
1247 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1248 
1249 	switch (cqe->cqe_sf.sf_sc) {
1250 	case NVME_CQE_SC_GEN_SUCCESS:
1251 		return (0);
1252 
1253 	/*
1254 	 * Errors indicating a bug in the driver should cause a panic.
1255 	 */
1256 	case NVME_CQE_SC_GEN_INV_OPC:
1257 		/* Invalid Command Opcode */
1258 		if (!cmd->nc_dontpanic)
1259 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1260 			    "programming error: invalid opcode in cmd %p",
1261 			    (void *)cmd);
1262 		return (EINVAL);
1263 
1264 	case NVME_CQE_SC_GEN_INV_FLD:
1265 		/* Invalid Field in Command */
1266 		if (!cmd->nc_dontpanic)
1267 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1268 			    "programming error: invalid field in cmd %p",
1269 			    (void *)cmd);
1270 		return (EIO);
1271 
1272 	case NVME_CQE_SC_GEN_ID_CNFL:
1273 		/* Command ID Conflict */
1274 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1275 		    "cmd ID conflict in cmd %p", (void *)cmd);
1276 		return (0);
1277 
1278 	case NVME_CQE_SC_GEN_INV_NS:
1279 		/* Invalid Namespace or Format */
1280 		if (!cmd->nc_dontpanic)
1281 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1282 			    "programming error: invalid NS/format in cmd %p",
1283 			    (void *)cmd);
1284 		return (EINVAL);
1285 
1286 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1287 		/* LBA Out Of Range */
1288 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1289 		    "LBA out of range in cmd %p", (void *)cmd);
1290 		return (0);
1291 
1292 	/*
1293 	 * Non-fatal errors, handle gracefully.
1294 	 */
1295 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1296 		/* Data Transfer Error (DMA) */
1297 		/* TODO: post ereport */
1298 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1299 		if (cmd->nc_xfer != NULL)
1300 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1301 		return (EIO);
1302 
1303 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1304 		/*
1305 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1306 		 * detailed error information is returned as async event,
1307 		 * so we pretty much ignore the error here and handle it
1308 		 * in the async event handler.
1309 		 */
1310 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1311 		if (cmd->nc_xfer != NULL)
1312 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1313 		return (EIO);
1314 
1315 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1316 		/*
1317 		 * Command Abort Requested. This normally happens only when a
1318 		 * command times out.
1319 		 */
1320 		/* TODO: post ereport or change blkdev to handle this? */
1321 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1322 		return (ECANCELED);
1323 
1324 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1325 		/* Command Aborted due to Power Loss Notification */
1326 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1327 		cmd->nc_nvme->n_dead = B_TRUE;
1328 		return (EIO);
1329 
1330 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1331 		/* Command Aborted due to SQ Deletion */
1332 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1333 		return (EIO);
1334 
1335 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1336 		/* Capacity Exceeded */
1337 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1338 		if (cmd->nc_xfer != NULL)
1339 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1340 		return (EIO);
1341 
1342 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1343 		/* Namespace Not Ready */
1344 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1345 		if (cmd->nc_xfer != NULL)
1346 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1347 		return (EIO);
1348 
1349 	default:
1350 		return (nvme_check_unknown_cmd_status(cmd));
1351 	}
1352 }
1353 
1354 static int
1355 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1356 {
1357 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1358 
1359 	switch (cqe->cqe_sf.sf_sc) {
1360 	case NVME_CQE_SC_SPC_INV_CQ:
1361 		/* Completion Queue Invalid */
1362 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1363 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1364 		return (EINVAL);
1365 
1366 	case NVME_CQE_SC_SPC_INV_QID:
1367 		/* Invalid Queue Identifier */
1368 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1369 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1370 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1371 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1372 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1373 		return (EINVAL);
1374 
1375 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1376 		/* Max Queue Size Exceeded */
1377 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1378 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1379 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1380 		return (EINVAL);
1381 
1382 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1383 		/* Abort Command Limit Exceeded */
1384 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1385 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1386 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1387 		return (0);
1388 
1389 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1390 		/* Async Event Request Limit Exceeded */
1391 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1392 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1393 		    "async event request limit exceeded in cmd %p",
1394 		    (void *)cmd);
1395 		return (0);
1396 
1397 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1398 		/* Invalid Interrupt Vector */
1399 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1400 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1401 		return (EINVAL);
1402 
1403 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1404 		/* Invalid Log Page */
1405 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1406 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1407 		return (EINVAL);
1408 
1409 	case NVME_CQE_SC_SPC_INV_FORMAT:
1410 		/* Invalid Format */
1411 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1412 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1413 		if (cmd->nc_xfer != NULL)
1414 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1415 		return (EINVAL);
1416 
1417 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1418 		/* Invalid Queue Deletion */
1419 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1420 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1421 		return (EINVAL);
1422 
1423 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1424 		/* Conflicting Attributes */
1425 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1426 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1427 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1428 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1429 		if (cmd->nc_xfer != NULL)
1430 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1431 		return (EINVAL);
1432 
1433 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1434 		/* Invalid Protection Information */
1435 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1436 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1437 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1438 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1439 		if (cmd->nc_xfer != NULL)
1440 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1441 		return (EINVAL);
1442 
1443 	case NVME_CQE_SC_SPC_NVM_READONLY:
1444 		/* Write to Read Only Range */
1445 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1446 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1447 		if (cmd->nc_xfer != NULL)
1448 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1449 		return (EROFS);
1450 
1451 	default:
1452 		return (nvme_check_unknown_cmd_status(cmd));
1453 	}
1454 }
1455 
1456 static inline int
1457 nvme_check_cmd_status(nvme_cmd_t *cmd)
1458 {
1459 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1460 
1461 	/*
1462 	 * Take a shortcut if the controller is dead, or if
1463 	 * command status indicates no error.
1464 	 */
1465 	if (cmd->nc_nvme->n_dead)
1466 		return (EIO);
1467 
1468 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1469 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1470 		return (0);
1471 
1472 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1473 		return (nvme_check_generic_cmd_status(cmd));
1474 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1475 		return (nvme_check_specific_cmd_status(cmd));
1476 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1477 		return (nvme_check_integrity_cmd_status(cmd));
1478 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1479 		return (nvme_check_vendor_cmd_status(cmd));
1480 
1481 	return (nvme_check_unknown_cmd_status(cmd));
1482 }
1483 
1484 static int
1485 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1486 {
1487 	nvme_t *nvme = abort_cmd->nc_nvme;
1488 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1489 	nvme_abort_cmd_t ac = { 0 };
1490 	int ret = 0;
1491 
1492 	sema_p(&nvme->n_abort_sema);
1493 
1494 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1495 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1496 
1497 	cmd->nc_sqid = 0;
1498 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1499 	cmd->nc_callback = nvme_wakeup_cmd;
1500 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1501 
1502 	/*
1503 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1504 	 * the aborted command has completed (aborted or otherwise), but since
1505 	 * we still hold the aborted command's mutex its callback hasn't been
1506 	 * processed yet.
1507 	 */
1508 	nvme_admin_cmd(cmd, sec);
1509 	sema_v(&nvme->n_abort_sema);
1510 
1511 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1512 		dev_err(nvme->n_dip, CE_WARN,
1513 		    "!ABORT failed with sct = %x, sc = %x",
1514 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1515 		atomic_inc_32(&nvme->n_abort_failed);
1516 	} else {
1517 		dev_err(nvme->n_dip, CE_WARN,
1518 		    "!ABORT of command %d/%d %ssuccessful",
1519 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1520 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1521 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1522 			atomic_inc_32(&nvme->n_cmd_aborted);
1523 	}
1524 
1525 	nvme_free_cmd(cmd);
1526 	return (ret);
1527 }
1528 
1529 /*
1530  * nvme_wait_cmd -- wait for command completion or timeout
1531  *
1532  * In case of a serious error or a timeout of the abort command the hardware
1533  * will be declared dead and FMA will be notified.
1534  */
1535 static void
1536 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1537 {
1538 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1539 	nvme_t *nvme = cmd->nc_nvme;
1540 	nvme_reg_csts_t csts;
1541 	nvme_qpair_t *qp;
1542 
1543 	ASSERT(mutex_owned(&cmd->nc_mutex));
1544 
1545 	while (!cmd->nc_completed) {
1546 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1547 			break;
1548 	}
1549 
1550 	if (cmd->nc_completed)
1551 		return;
1552 
1553 	/*
1554 	 * The command timed out.
1555 	 *
1556 	 * Check controller for fatal status, any errors associated with the
1557 	 * register or DMA handle, or for a double timeout (abort command timed
1558 	 * out). If necessary log a warning and call FMA.
1559 	 */
1560 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1561 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1562 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1563 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1564 	atomic_inc_32(&nvme->n_cmd_timeout);
1565 
1566 	if (csts.b.csts_cfs ||
1567 	    nvme_check_regs_hdl(nvme) ||
1568 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1569 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1570 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1571 		nvme->n_dead = B_TRUE;
1572 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1573 		/*
1574 		 * If the abort succeeded the command should complete
1575 		 * immediately with an appropriate status.
1576 		 */
1577 		while (!cmd->nc_completed)
1578 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1579 
1580 		return;
1581 	}
1582 
1583 	qp = nvme->n_ioq[cmd->nc_sqid];
1584 
1585 	mutex_enter(&qp->nq_mutex);
1586 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1587 	mutex_exit(&qp->nq_mutex);
1588 
1589 	/*
1590 	 * As we don't know what the presumed dead hardware might still do with
1591 	 * the DMA memory, we'll put the command on the lost commands list if it
1592 	 * has any DMA memory.
1593 	 */
1594 	if (cmd->nc_dma != NULL) {
1595 		mutex_enter(&nvme_lc_mutex);
1596 		list_insert_head(&nvme_lost_cmds, cmd);
1597 		mutex_exit(&nvme_lc_mutex);
1598 	}
1599 }
1600 
1601 static void
1602 nvme_wakeup_cmd(void *arg)
1603 {
1604 	nvme_cmd_t *cmd = arg;
1605 
1606 	mutex_enter(&cmd->nc_mutex);
1607 	cmd->nc_completed = B_TRUE;
1608 	cv_signal(&cmd->nc_cv);
1609 	mutex_exit(&cmd->nc_mutex);
1610 }
1611 
1612 static void
1613 nvme_async_event_task(void *arg)
1614 {
1615 	nvme_cmd_t *cmd = arg;
1616 	nvme_t *nvme = cmd->nc_nvme;
1617 	nvme_error_log_entry_t *error_log = NULL;
1618 	nvme_health_log_t *health_log = NULL;
1619 	size_t logsize = 0;
1620 	nvme_async_event_t event;
1621 
1622 	/*
1623 	 * Check for errors associated with the async request itself. The only
1624 	 * command-specific error is "async event limit exceeded", which
1625 	 * indicates a programming error in the driver and causes a panic in
1626 	 * nvme_check_cmd_status().
1627 	 *
1628 	 * Other possible errors are various scenarios where the async request
1629 	 * was aborted, or internal errors in the device. Internal errors are
1630 	 * reported to FMA, the command aborts need no special handling here.
1631 	 *
1632 	 * And finally, at least qemu nvme does not support async events,
1633 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1634 	 * will avoid posting async events.
1635 	 */
1636 
1637 	if (nvme_check_cmd_status(cmd) != 0) {
1638 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1639 		    "!async event request returned failure, sct = %x, "
1640 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1641 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1642 		    cmd->nc_cqe.cqe_sf.sf_m);
1643 
1644 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1645 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1646 			cmd->nc_nvme->n_dead = B_TRUE;
1647 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1648 			    DDI_SERVICE_LOST);
1649 		}
1650 
1651 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1652 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1653 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1654 			nvme->n_async_event_supported = B_FALSE;
1655 		}
1656 
1657 		nvme_free_cmd(cmd);
1658 		return;
1659 	}
1660 
1661 
1662 	event.r = cmd->nc_cqe.cqe_dw0;
1663 
1664 	/* Clear CQE and re-submit the async request. */
1665 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1666 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1667 
1668 	switch (event.b.ae_type) {
1669 	case NVME_ASYNC_TYPE_ERROR:
1670 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1671 			(void) nvme_get_logpage(nvme, B_FALSE,
1672 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1673 		} else {
1674 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1675 			    "async event reply: %d", event.b.ae_logpage);
1676 			atomic_inc_32(&nvme->n_wrong_logpage);
1677 		}
1678 
1679 		switch (event.b.ae_info) {
1680 		case NVME_ASYNC_ERROR_INV_SQ:
1681 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1682 			    "invalid submission queue");
1683 			return;
1684 
1685 		case NVME_ASYNC_ERROR_INV_DBL:
1686 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1687 			    "invalid doorbell write value");
1688 			return;
1689 
1690 		case NVME_ASYNC_ERROR_DIAGFAIL:
1691 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1692 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1693 			nvme->n_dead = B_TRUE;
1694 			atomic_inc_32(&nvme->n_diagfail_event);
1695 			break;
1696 
1697 		case NVME_ASYNC_ERROR_PERSISTENT:
1698 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1699 			    "device error");
1700 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1701 			nvme->n_dead = B_TRUE;
1702 			atomic_inc_32(&nvme->n_persistent_event);
1703 			break;
1704 
1705 		case NVME_ASYNC_ERROR_TRANSIENT:
1706 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1707 			    "device error");
1708 			/* TODO: send ereport */
1709 			atomic_inc_32(&nvme->n_transient_event);
1710 			break;
1711 
1712 		case NVME_ASYNC_ERROR_FW_LOAD:
1713 			dev_err(nvme->n_dip, CE_WARN,
1714 			    "!firmware image load error");
1715 			atomic_inc_32(&nvme->n_fw_load_event);
1716 			break;
1717 		}
1718 		break;
1719 
1720 	case NVME_ASYNC_TYPE_HEALTH:
1721 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1722 			(void) nvme_get_logpage(nvme, B_FALSE,
1723 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1724 			    -1);
1725 		} else {
1726 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1727 			    "async event reply: %d", event.b.ae_logpage);
1728 			atomic_inc_32(&nvme->n_wrong_logpage);
1729 		}
1730 
1731 		switch (event.b.ae_info) {
1732 		case NVME_ASYNC_HEALTH_RELIABILITY:
1733 			dev_err(nvme->n_dip, CE_WARN,
1734 			    "!device reliability compromised");
1735 			/* TODO: send ereport */
1736 			atomic_inc_32(&nvme->n_reliability_event);
1737 			break;
1738 
1739 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1740 			dev_err(nvme->n_dip, CE_WARN,
1741 			    "!temperature above threshold");
1742 			/* TODO: send ereport */
1743 			atomic_inc_32(&nvme->n_temperature_event);
1744 			break;
1745 
1746 		case NVME_ASYNC_HEALTH_SPARE:
1747 			dev_err(nvme->n_dip, CE_WARN,
1748 			    "!spare space below threshold");
1749 			/* TODO: send ereport */
1750 			atomic_inc_32(&nvme->n_spare_event);
1751 			break;
1752 		}
1753 		break;
1754 
1755 	case NVME_ASYNC_TYPE_VENDOR:
1756 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1757 		    "received, info = %x, logpage = %x", event.b.ae_info,
1758 		    event.b.ae_logpage);
1759 		atomic_inc_32(&nvme->n_vendor_event);
1760 		break;
1761 
1762 	default:
1763 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1764 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1765 		    event.b.ae_info, event.b.ae_logpage);
1766 		atomic_inc_32(&nvme->n_unknown_event);
1767 		break;
1768 	}
1769 
1770 	if (error_log)
1771 		kmem_free(error_log, logsize);
1772 
1773 	if (health_log)
1774 		kmem_free(health_log, logsize);
1775 }
1776 
1777 static void
1778 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1779 {
1780 	mutex_enter(&cmd->nc_mutex);
1781 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1782 	nvme_wait_cmd(cmd, sec);
1783 	mutex_exit(&cmd->nc_mutex);
1784 }
1785 
1786 static void
1787 nvme_async_event(nvme_t *nvme)
1788 {
1789 	nvme_cmd_t *cmd;
1790 
1791 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1792 	cmd->nc_sqid = 0;
1793 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1794 	cmd->nc_callback = nvme_async_event_task;
1795 	cmd->nc_dontpanic = B_TRUE;
1796 
1797 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1798 }
1799 
1800 static int
1801 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1802     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1803 {
1804 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1805 	nvme_format_nvm_t format_nvm = { 0 };
1806 	int ret;
1807 
1808 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1809 	format_nvm.b.fm_ms = ms ? 1 : 0;
1810 	format_nvm.b.fm_pi = pi & 0x7;
1811 	format_nvm.b.fm_pil = pil ? 1 : 0;
1812 	format_nvm.b.fm_ses = ses & 0x7;
1813 
1814 	cmd->nc_sqid = 0;
1815 	cmd->nc_callback = nvme_wakeup_cmd;
1816 	cmd->nc_sqe.sqe_nsid = nsid;
1817 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1818 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1819 
1820 	/*
1821 	 * Some devices like Samsung SM951 don't allow formatting of all
1822 	 * namespaces in one command. Handle that gracefully.
1823 	 */
1824 	if (nsid == (uint32_t)-1)
1825 		cmd->nc_dontpanic = B_TRUE;
1826 	/*
1827 	 * If this format request was initiated by the user, then don't allow a
1828 	 * programmer error to panic the system.
1829 	 */
1830 	if (user)
1831 		cmd->nc_dontpanic = B_TRUE;
1832 
1833 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1834 
1835 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1836 		dev_err(nvme->n_dip, CE_WARN,
1837 		    "!FORMAT failed with sct = %x, sc = %x",
1838 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1839 	}
1840 
1841 	nvme_free_cmd(cmd);
1842 	return (ret);
1843 }
1844 
1845 static int
1846 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1847     uint8_t logpage, ...)
1848 {
1849 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1850 	nvme_getlogpage_t getlogpage = { 0 };
1851 	va_list ap;
1852 	int ret;
1853 
1854 	va_start(ap, logpage);
1855 
1856 	cmd->nc_sqid = 0;
1857 	cmd->nc_callback = nvme_wakeup_cmd;
1858 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1859 
1860 	if (user)
1861 		cmd->nc_dontpanic = B_TRUE;
1862 
1863 	getlogpage.b.lp_lid = logpage;
1864 
1865 	switch (logpage) {
1866 	case NVME_LOGPAGE_ERROR:
1867 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1868 		/*
1869 		 * The GET LOG PAGE command can use at most 2 pages to return
1870 		 * data, PRP lists are not supported.
1871 		 */
1872 		*bufsize = MIN(2 * nvme->n_pagesize,
1873 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1874 		break;
1875 
1876 	case NVME_LOGPAGE_HEALTH:
1877 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1878 		*bufsize = sizeof (nvme_health_log_t);
1879 		break;
1880 
1881 	case NVME_LOGPAGE_FWSLOT:
1882 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1883 		*bufsize = sizeof (nvme_fwslot_log_t);
1884 		break;
1885 
1886 	default:
1887 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1888 		    logpage);
1889 		atomic_inc_32(&nvme->n_unknown_logpage);
1890 		ret = EINVAL;
1891 		goto fail;
1892 	}
1893 
1894 	va_end(ap);
1895 
1896 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1897 
1898 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1899 
1900 	if (nvme_zalloc_dma(nvme, *bufsize,
1901 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1902 		dev_err(nvme->n_dip, CE_WARN,
1903 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1904 		ret = ENOMEM;
1905 		goto fail;
1906 	}
1907 
1908 	if (cmd->nc_dma->nd_ncookie > 2) {
1909 		dev_err(nvme->n_dip, CE_WARN,
1910 		    "!too many DMA cookies for GET LOG PAGE");
1911 		atomic_inc_32(&nvme->n_too_many_cookies);
1912 		ret = ENOMEM;
1913 		goto fail;
1914 	}
1915 
1916 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1917 	if (cmd->nc_dma->nd_ncookie > 1) {
1918 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1919 		    &cmd->nc_dma->nd_cookie);
1920 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1921 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1922 	}
1923 
1924 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1925 
1926 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1927 		dev_err(nvme->n_dip, CE_WARN,
1928 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1929 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1930 		goto fail;
1931 	}
1932 
1933 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
1934 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1935 
1936 fail:
1937 	nvme_free_cmd(cmd);
1938 
1939 	return (ret);
1940 }
1941 
1942 static int
1943 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
1944 {
1945 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1946 	int ret;
1947 
1948 	if (buf == NULL)
1949 		return (EINVAL);
1950 
1951 	cmd->nc_sqid = 0;
1952 	cmd->nc_callback = nvme_wakeup_cmd;
1953 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1954 	cmd->nc_sqe.sqe_nsid = nsid;
1955 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1956 
1957 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1958 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1959 		dev_err(nvme->n_dip, CE_WARN,
1960 		    "!nvme_zalloc_dma failed for IDENTIFY");
1961 		ret = ENOMEM;
1962 		goto fail;
1963 	}
1964 
1965 	if (cmd->nc_dma->nd_ncookie > 2) {
1966 		dev_err(nvme->n_dip, CE_WARN,
1967 		    "!too many DMA cookies for IDENTIFY");
1968 		atomic_inc_32(&nvme->n_too_many_cookies);
1969 		ret = ENOMEM;
1970 		goto fail;
1971 	}
1972 
1973 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1974 	if (cmd->nc_dma->nd_ncookie > 1) {
1975 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1976 		    &cmd->nc_dma->nd_cookie);
1977 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1978 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1979 	}
1980 
1981 	if (user)
1982 		cmd->nc_dontpanic = B_TRUE;
1983 
1984 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1985 
1986 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1987 		dev_err(nvme->n_dip, CE_WARN,
1988 		    "!IDENTIFY failed with sct = %x, sc = %x",
1989 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1990 		goto fail;
1991 	}
1992 
1993 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1994 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1995 
1996 fail:
1997 	nvme_free_cmd(cmd);
1998 
1999 	return (ret);
2000 }
2001 
2002 static int
2003 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2004     uint32_t val, uint32_t *res)
2005 {
2006 	_NOTE(ARGUNUSED(nsid));
2007 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2008 	int ret = EINVAL;
2009 
2010 	ASSERT(res != NULL);
2011 
2012 	cmd->nc_sqid = 0;
2013 	cmd->nc_callback = nvme_wakeup_cmd;
2014 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2015 	cmd->nc_sqe.sqe_cdw10 = feature;
2016 	cmd->nc_sqe.sqe_cdw11 = val;
2017 
2018 	if (user)
2019 		cmd->nc_dontpanic = B_TRUE;
2020 
2021 	switch (feature) {
2022 	case NVME_FEAT_WRITE_CACHE:
2023 		if (!nvme->n_write_cache_present)
2024 			goto fail;
2025 		break;
2026 
2027 	case NVME_FEAT_NQUEUES:
2028 		break;
2029 
2030 	default:
2031 		goto fail;
2032 	}
2033 
2034 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2035 
2036 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2037 		dev_err(nvme->n_dip, CE_WARN,
2038 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2039 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2040 		    cmd->nc_cqe.cqe_sf.sf_sc);
2041 		goto fail;
2042 	}
2043 
2044 	*res = cmd->nc_cqe.cqe_dw0;
2045 
2046 fail:
2047 	nvme_free_cmd(cmd);
2048 	return (ret);
2049 }
2050 
2051 static int
2052 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2053     uint32_t *res, void **buf, size_t *bufsize)
2054 {
2055 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2056 	int ret = EINVAL;
2057 
2058 	ASSERT(res != NULL);
2059 
2060 	if (bufsize != NULL)
2061 		*bufsize = 0;
2062 
2063 	cmd->nc_sqid = 0;
2064 	cmd->nc_callback = nvme_wakeup_cmd;
2065 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2066 	cmd->nc_sqe.sqe_cdw10 = feature;
2067 	cmd->nc_sqe.sqe_cdw11 = *res;
2068 
2069 	/*
2070 	 * For some of the optional features there doesn't seem to be a method
2071 	 * of detecting whether it is supported other than using it.  This will
2072 	 * cause "Invalid Field in Command" error, which is normally considered
2073 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2074 	 * in nvme_check_generic_cmd_status().
2075 	 */
2076 	switch (feature) {
2077 	case NVME_FEAT_ARBITRATION:
2078 	case NVME_FEAT_POWER_MGMT:
2079 	case NVME_FEAT_TEMPERATURE:
2080 	case NVME_FEAT_ERROR:
2081 	case NVME_FEAT_NQUEUES:
2082 	case NVME_FEAT_INTR_COAL:
2083 	case NVME_FEAT_INTR_VECT:
2084 	case NVME_FEAT_WRITE_ATOM:
2085 	case NVME_FEAT_ASYNC_EVENT:
2086 		break;
2087 
2088 	case NVME_FEAT_WRITE_CACHE:
2089 		if (!nvme->n_write_cache_present)
2090 			goto fail;
2091 		break;
2092 
2093 	case NVME_FEAT_LBA_RANGE:
2094 		if (!nvme->n_lba_range_supported)
2095 			goto fail;
2096 
2097 		cmd->nc_dontpanic = B_TRUE;
2098 		cmd->nc_sqe.sqe_nsid = nsid;
2099 		ASSERT(bufsize != NULL);
2100 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2101 		break;
2102 
2103 	case NVME_FEAT_AUTO_PST:
2104 		if (!nvme->n_auto_pst_supported)
2105 			goto fail;
2106 
2107 		ASSERT(bufsize != NULL);
2108 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2109 		break;
2110 
2111 	case NVME_FEAT_PROGRESS:
2112 		if (!nvme->n_progress_supported)
2113 			goto fail;
2114 
2115 		cmd->nc_dontpanic = B_TRUE;
2116 		break;
2117 
2118 	default:
2119 		goto fail;
2120 	}
2121 
2122 	if (user)
2123 		cmd->nc_dontpanic = B_TRUE;
2124 
2125 	if (bufsize != NULL && *bufsize != 0) {
2126 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2127 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2128 			dev_err(nvme->n_dip, CE_WARN,
2129 			    "!nvme_zalloc_dma failed for GET FEATURES");
2130 			ret = ENOMEM;
2131 			goto fail;
2132 		}
2133 
2134 		if (cmd->nc_dma->nd_ncookie > 2) {
2135 			dev_err(nvme->n_dip, CE_WARN,
2136 			    "!too many DMA cookies for GET FEATURES");
2137 			atomic_inc_32(&nvme->n_too_many_cookies);
2138 			ret = ENOMEM;
2139 			goto fail;
2140 		}
2141 
2142 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2143 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2144 		if (cmd->nc_dma->nd_ncookie > 1) {
2145 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2146 			    &cmd->nc_dma->nd_cookie);
2147 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2148 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2149 		}
2150 	}
2151 
2152 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2153 
2154 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2155 		boolean_t known = B_TRUE;
2156 
2157 		/* Check if this is unsupported optional feature */
2158 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2159 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2160 			switch (feature) {
2161 			case NVME_FEAT_LBA_RANGE:
2162 				nvme->n_lba_range_supported = B_FALSE;
2163 				break;
2164 			case NVME_FEAT_PROGRESS:
2165 				nvme->n_progress_supported = B_FALSE;
2166 				break;
2167 			default:
2168 				known = B_FALSE;
2169 				break;
2170 			}
2171 		} else {
2172 			known = B_FALSE;
2173 		}
2174 
2175 		/* Report the error otherwise */
2176 		if (!known) {
2177 			dev_err(nvme->n_dip, CE_WARN,
2178 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2179 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2180 			    cmd->nc_cqe.cqe_sf.sf_sc);
2181 		}
2182 
2183 		goto fail;
2184 	}
2185 
2186 	if (bufsize != NULL && *bufsize != 0) {
2187 		ASSERT(buf != NULL);
2188 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2189 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2190 	}
2191 
2192 	*res = cmd->nc_cqe.cqe_dw0;
2193 
2194 fail:
2195 	nvme_free_cmd(cmd);
2196 	return (ret);
2197 }
2198 
2199 static int
2200 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2201 {
2202 	nvme_write_cache_t nwc = { 0 };
2203 
2204 	if (enable)
2205 		nwc.b.wc_wce = 1;
2206 
2207 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2208 	    nwc.r, &nwc.r));
2209 }
2210 
2211 static int
2212 nvme_set_nqueues(nvme_t *nvme)
2213 {
2214 	nvme_nqueues_t nq = { 0 };
2215 	int ret;
2216 
2217 	/*
2218 	 * The default is to allocate one completion queue per vector.
2219 	 */
2220 	if (nvme->n_completion_queues == -1)
2221 		nvme->n_completion_queues = nvme->n_intr_cnt;
2222 
2223 	/*
2224 	 * There is no point in having more compeletion queues than
2225 	 * interrupt vectors.
2226 	 */
2227 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2228 	    nvme->n_intr_cnt);
2229 
2230 	/*
2231 	 * The default is to use one submission queue per completion queue.
2232 	 */
2233 	if (nvme->n_submission_queues == -1)
2234 		nvme->n_submission_queues = nvme->n_completion_queues;
2235 
2236 	/*
2237 	 * There is no point in having more compeletion queues than
2238 	 * submission queues.
2239 	 */
2240 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2241 	    nvme->n_submission_queues);
2242 
2243 	ASSERT(nvme->n_submission_queues > 0);
2244 	ASSERT(nvme->n_completion_queues > 0);
2245 
2246 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2247 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2248 
2249 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2250 	    &nq.r);
2251 
2252 	if (ret == 0) {
2253 		/*
2254 		 * Never use more than the requested number of queues.
2255 		 */
2256 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2257 		    nq.b.nq_nsq + 1);
2258 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2259 		    nq.b.nq_ncq + 1);
2260 	}
2261 
2262 	return (ret);
2263 }
2264 
2265 static int
2266 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2267 {
2268 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2269 	nvme_create_queue_dw10_t dw10 = { 0 };
2270 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2271 	int ret;
2272 
2273 	dw10.b.q_qid = cq->ncq_id;
2274 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2275 
2276 	c_dw11.b.cq_pc = 1;
2277 	c_dw11.b.cq_ien = 1;
2278 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2279 
2280 	cmd->nc_sqid = 0;
2281 	cmd->nc_callback = nvme_wakeup_cmd;
2282 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2283 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2284 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2285 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2286 
2287 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2288 
2289 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2290 		dev_err(nvme->n_dip, CE_WARN,
2291 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2292 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2293 	}
2294 
2295 	nvme_free_cmd(cmd);
2296 
2297 	return (ret);
2298 }
2299 
2300 static int
2301 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2302 {
2303 	nvme_cq_t *cq = qp->nq_cq;
2304 	nvme_cmd_t *cmd;
2305 	nvme_create_queue_dw10_t dw10 = { 0 };
2306 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2307 	int ret;
2308 
2309 	/*
2310 	 * It is possible to have more qpairs than completion queues,
2311 	 * and when the idx > ncq_id, that completion queue is shared
2312 	 * and has already been created.
2313 	 */
2314 	if (idx <= cq->ncq_id &&
2315 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2316 		return (DDI_FAILURE);
2317 
2318 	dw10.b.q_qid = idx;
2319 	dw10.b.q_qsize = qp->nq_nentry - 1;
2320 
2321 	s_dw11.b.sq_pc = 1;
2322 	s_dw11.b.sq_cqid = cq->ncq_id;
2323 
2324 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2325 	cmd->nc_sqid = 0;
2326 	cmd->nc_callback = nvme_wakeup_cmd;
2327 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2328 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2329 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2330 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2331 
2332 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2333 
2334 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2335 		dev_err(nvme->n_dip, CE_WARN,
2336 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2337 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2338 	}
2339 
2340 	nvme_free_cmd(cmd);
2341 
2342 	return (ret);
2343 }
2344 
2345 static boolean_t
2346 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2347 {
2348 	nvme_reg_csts_t csts;
2349 	int i;
2350 
2351 	nvme_put32(nvme, NVME_REG_CC, 0);
2352 
2353 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2354 	if (csts.b.csts_rdy == 1) {
2355 		nvme_put32(nvme, NVME_REG_CC, 0);
2356 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2357 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2358 			if (csts.b.csts_rdy == 0)
2359 				break;
2360 
2361 			if (quiesce)
2362 				drv_usecwait(50000);
2363 			else
2364 				delay(drv_usectohz(50000));
2365 		}
2366 	}
2367 
2368 	nvme_put32(nvme, NVME_REG_AQA, 0);
2369 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2370 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2371 
2372 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2373 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2374 }
2375 
2376 static void
2377 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2378 {
2379 	nvme_reg_cc_t cc;
2380 	nvme_reg_csts_t csts;
2381 	int i;
2382 
2383 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2384 
2385 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2386 	cc.b.cc_shn = mode & 0x3;
2387 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2388 
2389 	for (i = 0; i != 10; i++) {
2390 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2391 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2392 			break;
2393 
2394 		if (quiesce)
2395 			drv_usecwait(100000);
2396 		else
2397 			delay(drv_usectohz(100000));
2398 	}
2399 }
2400 
2401 
2402 static void
2403 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2404 {
2405 	/*
2406 	 * Section 7.7 of the spec describes how to get a unique ID for
2407 	 * the controller: the vendor ID, the model name and the serial
2408 	 * number shall be unique when combined.
2409 	 *
2410 	 * If a namespace has no EUI64 we use the above and add the hex
2411 	 * namespace ID to get a unique ID for the namespace.
2412 	 */
2413 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2414 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2415 
2416 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2417 	bcopy(nvme->n_idctl->id_serial, serial,
2418 	    sizeof (nvme->n_idctl->id_serial));
2419 
2420 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2421 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2422 
2423 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2424 	    nvme->n_idctl->id_vid, model, serial, nsid);
2425 }
2426 
2427 static int
2428 nvme_init_ns(nvme_t *nvme, int nsid)
2429 {
2430 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2431 	nvme_identify_nsid_t *idns;
2432 	int last_rp;
2433 
2434 	ns->ns_nvme = nvme;
2435 
2436 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2437 		dev_err(nvme->n_dip, CE_WARN,
2438 		    "!failed to identify namespace %d", nsid);
2439 		return (DDI_FAILURE);
2440 	}
2441 
2442 	ns->ns_idns = idns;
2443 	ns->ns_id = nsid;
2444 	ns->ns_block_count = idns->id_nsize;
2445 	ns->ns_block_size =
2446 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2447 	ns->ns_best_block_size = ns->ns_block_size;
2448 
2449 	/*
2450 	 * Get the EUI64 if present. Use it for devid and device node names.
2451 	 */
2452 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2453 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2454 
2455 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2456 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2457 		uint8_t *eui64 = ns->ns_eui64;
2458 
2459 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2460 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2461 		    eui64[0], eui64[1], eui64[2], eui64[3],
2462 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2463 	} else {
2464 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2465 		    ns->ns_id);
2466 
2467 		nvme_prepare_devid(nvme, ns->ns_id);
2468 	}
2469 
2470 	/*
2471 	 * Find the LBA format with no metadata and the best relative
2472 	 * performance. A value of 3 means "degraded", 0 is best.
2473 	 */
2474 	last_rp = 3;
2475 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2476 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2477 			break;
2478 		if (idns->id_lbaf[j].lbaf_ms != 0)
2479 			continue;
2480 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2481 			continue;
2482 		last_rp = idns->id_lbaf[j].lbaf_rp;
2483 		ns->ns_best_block_size =
2484 		    1 << idns->id_lbaf[j].lbaf_lbads;
2485 	}
2486 
2487 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2488 		ns->ns_best_block_size = nvme->n_min_block_size;
2489 
2490 	/*
2491 	 * We currently don't support namespaces that use either:
2492 	 * - protection information
2493 	 * - illegal block size (< 512)
2494 	 */
2495 	if (idns->id_dps.dp_pinfo) {
2496 		dev_err(nvme->n_dip, CE_WARN,
2497 		    "!ignoring namespace %d, unsupported feature: "
2498 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2499 		ns->ns_ignore = B_TRUE;
2500 	} else if (ns->ns_block_size < 512) {
2501 		dev_err(nvme->n_dip, CE_WARN,
2502 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2503 		    nsid, (uint64_t)ns->ns_block_size);
2504 		ns->ns_ignore = B_TRUE;
2505 	} else {
2506 		ns->ns_ignore = B_FALSE;
2507 	}
2508 
2509 	return (DDI_SUCCESS);
2510 }
2511 
2512 static int
2513 nvme_init(nvme_t *nvme)
2514 {
2515 	nvme_reg_cc_t cc = { 0 };
2516 	nvme_reg_aqa_t aqa = { 0 };
2517 	nvme_reg_asq_t asq = { 0 };
2518 	nvme_reg_acq_t acq = { 0 };
2519 	nvme_reg_cap_t cap;
2520 	nvme_reg_vs_t vs;
2521 	nvme_reg_csts_t csts;
2522 	int i = 0;
2523 	uint16_t nqueues;
2524 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2525 	char *vendor, *product;
2526 
2527 	/* Check controller version */
2528 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2529 	nvme->n_version.v_major = vs.b.vs_mjr;
2530 	nvme->n_version.v_minor = vs.b.vs_mnr;
2531 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2532 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2533 
2534 	if (nvme->n_version.v_major > nvme_version_major) {
2535 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2536 		    nvme_version_major);
2537 		if (nvme->n_strict_version)
2538 			goto fail;
2539 	}
2540 
2541 	/* retrieve controller configuration */
2542 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2543 
2544 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2545 		dev_err(nvme->n_dip, CE_WARN,
2546 		    "!NVM command set not supported by hardware");
2547 		goto fail;
2548 	}
2549 
2550 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2551 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2552 	nvme->n_timeout = cap.b.cap_to;
2553 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2554 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2555 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2556 
2557 	/*
2558 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2559 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2560 	 * page size value.
2561 	 */
2562 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2563 	    cap.b.cap_mpsmax + 12);
2564 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2565 
2566 	/*
2567 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2568 	 */
2569 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2570 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2571 
2572 	/*
2573 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2574 	 * Maxxfer may be increased after we identified the controller limits.
2575 	 */
2576 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2577 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2578 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2579 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2580 
2581 	/*
2582 	 * Reset controller if it's still in ready state.
2583 	 */
2584 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2585 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2586 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2587 		nvme->n_dead = B_TRUE;
2588 		goto fail;
2589 	}
2590 
2591 	/*
2592 	 * Create the cq array with one completion queue to be assigned
2593 	 * to the admin queue pair.
2594 	 */
2595 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len) !=
2596 	    DDI_SUCCESS) {
2597 		dev_err(nvme->n_dip, CE_WARN,
2598 		    "!failed to pre-allocate admin completion queue");
2599 		goto fail;
2600 	}
2601 	/*
2602 	 * Create the admin queue pair.
2603 	 */
2604 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2605 	    != DDI_SUCCESS) {
2606 		dev_err(nvme->n_dip, CE_WARN,
2607 		    "!unable to allocate admin qpair");
2608 		goto fail;
2609 	}
2610 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2611 	nvme->n_ioq[0] = nvme->n_adminq;
2612 
2613 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2614 
2615 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2616 	    "admin-queue-len", nvme->n_admin_queue_len);
2617 
2618 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2619 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2620 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2621 
2622 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2623 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2624 
2625 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2626 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2627 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2628 
2629 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2630 	cc.b.cc_css = 0;	/* use NVM command set */
2631 	cc.b.cc_mps = nvme->n_pageshift - 12;
2632 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2633 	cc.b.cc_en = 1;		/* enable controller */
2634 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2635 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2636 
2637 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2638 
2639 	/*
2640 	 * Wait for the controller to become ready.
2641 	 */
2642 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2643 	if (csts.b.csts_rdy == 0) {
2644 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2645 			delay(drv_usectohz(50000));
2646 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2647 
2648 			if (csts.b.csts_cfs == 1) {
2649 				dev_err(nvme->n_dip, CE_WARN,
2650 				    "!controller fatal status at init");
2651 				ddi_fm_service_impact(nvme->n_dip,
2652 				    DDI_SERVICE_LOST);
2653 				nvme->n_dead = B_TRUE;
2654 				goto fail;
2655 			}
2656 
2657 			if (csts.b.csts_rdy == 1)
2658 				break;
2659 		}
2660 	}
2661 
2662 	if (csts.b.csts_rdy == 0) {
2663 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2664 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2665 		nvme->n_dead = B_TRUE;
2666 		goto fail;
2667 	}
2668 
2669 	/*
2670 	 * Assume an abort command limit of 1. We'll destroy and re-init
2671 	 * that later when we know the true abort command limit.
2672 	 */
2673 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2674 
2675 	/*
2676 	 * Setup initial interrupt for admin queue.
2677 	 */
2678 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2679 	    != DDI_SUCCESS) &&
2680 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2681 	    != DDI_SUCCESS) &&
2682 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2683 	    != DDI_SUCCESS)) {
2684 		dev_err(nvme->n_dip, CE_WARN,
2685 		    "!failed to setup initial interrupt");
2686 		goto fail;
2687 	}
2688 
2689 	/*
2690 	 * Post an asynchronous event command to catch errors.
2691 	 * We assume the asynchronous events are supported as required by
2692 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2693 	 * However, since at least qemu does not follow the specification,
2694 	 * we need a mechanism to protect ourselves.
2695 	 */
2696 	nvme->n_async_event_supported = B_TRUE;
2697 	nvme_async_event(nvme);
2698 
2699 	/*
2700 	 * Identify Controller
2701 	 */
2702 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2703 		dev_err(nvme->n_dip, CE_WARN,
2704 		    "!failed to identify controller");
2705 		goto fail;
2706 	}
2707 
2708 	/*
2709 	 * Get Vendor & Product ID
2710 	 */
2711 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2712 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2713 	sata_split_model(model, &vendor, &product);
2714 
2715 	if (vendor == NULL)
2716 		nvme->n_vendor = strdup("NVMe");
2717 	else
2718 		nvme->n_vendor = strdup(vendor);
2719 
2720 	nvme->n_product = strdup(product);
2721 
2722 	/*
2723 	 * Get controller limits.
2724 	 */
2725 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2726 	    MIN(nvme->n_admin_queue_len / 10,
2727 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2728 
2729 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2730 	    "async-event-limit", nvme->n_async_event_limit);
2731 
2732 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2733 
2734 	/*
2735 	 * Reinitialize the semaphore with the true abort command limit
2736 	 * supported by the hardware. It's not necessary to disable interrupts
2737 	 * as only command aborts use the semaphore, and no commands are
2738 	 * executed or aborted while we're here.
2739 	 */
2740 	sema_destroy(&nvme->n_abort_sema);
2741 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2742 	    SEMA_DRIVER, NULL);
2743 
2744 	nvme->n_progress |= NVME_CTRL_LIMITS;
2745 
2746 	if (nvme->n_idctl->id_mdts == 0)
2747 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2748 	else
2749 		nvme->n_max_data_transfer_size =
2750 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2751 
2752 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2753 
2754 	/*
2755 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2756 	 * Chained PRPs are currently unsupported.
2757 	 *
2758 	 * This is a no-op on hardware which doesn't support a transfer size
2759 	 * big enough to require chained PRPs.
2760 	 */
2761 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2762 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2763 
2764 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2765 
2766 	/*
2767 	 * Make sure the minimum/maximum queue entry sizes are not
2768 	 * larger/smaller than the default.
2769 	 */
2770 
2771 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2772 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2773 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2774 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2775 		goto fail;
2776 
2777 	/*
2778 	 * Check for the presence of a Volatile Write Cache. If present,
2779 	 * enable or disable based on the value of the property
2780 	 * volatile-write-cache-enable (default is enabled).
2781 	 */
2782 	nvme->n_write_cache_present =
2783 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2784 
2785 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2786 	    "volatile-write-cache-present",
2787 	    nvme->n_write_cache_present ? 1 : 0);
2788 
2789 	if (!nvme->n_write_cache_present) {
2790 		nvme->n_write_cache_enabled = B_FALSE;
2791 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2792 	    != 0) {
2793 		dev_err(nvme->n_dip, CE_WARN,
2794 		    "!failed to %sable volatile write cache",
2795 		    nvme->n_write_cache_enabled ? "en" : "dis");
2796 		/*
2797 		 * Assume the cache is (still) enabled.
2798 		 */
2799 		nvme->n_write_cache_enabled = B_TRUE;
2800 	}
2801 
2802 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2803 	    "volatile-write-cache-enable",
2804 	    nvme->n_write_cache_enabled ? 1 : 0);
2805 
2806 	/*
2807 	 * Assume LBA Range Type feature is supported. If it isn't this
2808 	 * will be set to B_FALSE by nvme_get_features().
2809 	 */
2810 	nvme->n_lba_range_supported = B_TRUE;
2811 
2812 	/*
2813 	 * Check support for Autonomous Power State Transition.
2814 	 */
2815 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2816 		nvme->n_auto_pst_supported =
2817 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2818 
2819 	/*
2820 	 * Assume Software Progress Marker feature is supported.  If it isn't
2821 	 * this will be set to B_FALSE by nvme_get_features().
2822 	 */
2823 	nvme->n_progress_supported = B_TRUE;
2824 
2825 	/*
2826 	 * Identify Namespaces
2827 	 */
2828 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2829 
2830 	if (nvme->n_namespace_count == 0) {
2831 		dev_err(nvme->n_dip, CE_WARN,
2832 		    "!controllers without namespaces are not supported");
2833 		goto fail;
2834 	}
2835 
2836 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2837 		dev_err(nvme->n_dip, CE_WARN,
2838 		    "!too many namespaces: %d, limiting to %d\n",
2839 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2840 		nvme->n_namespace_count = NVME_MINOR_MAX;
2841 	}
2842 
2843 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2844 	    nvme->n_namespace_count, KM_SLEEP);
2845 
2846 	for (i = 0; i != nvme->n_namespace_count; i++) {
2847 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2848 		    NULL);
2849 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2850 			goto fail;
2851 	}
2852 
2853 	/*
2854 	 * Try to set up MSI/MSI-X interrupts.
2855 	 */
2856 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2857 	    != 0) {
2858 		nvme_release_interrupts(nvme);
2859 
2860 		nqueues = MIN(UINT16_MAX, ncpus);
2861 
2862 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2863 		    nqueues) != DDI_SUCCESS) &&
2864 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2865 		    nqueues) != DDI_SUCCESS)) {
2866 			dev_err(nvme->n_dip, CE_WARN,
2867 			    "!failed to setup MSI/MSI-X interrupts");
2868 			goto fail;
2869 		}
2870 	}
2871 
2872 	/*
2873 	 * Create I/O queue pairs.
2874 	 */
2875 
2876 	if (nvme_set_nqueues(nvme) != 0) {
2877 		dev_err(nvme->n_dip, CE_WARN,
2878 		    "!failed to set number of I/O queues to %d",
2879 		    nvme->n_intr_cnt);
2880 		goto fail;
2881 	}
2882 
2883 	/*
2884 	 * Reallocate I/O queue array
2885 	 */
2886 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2887 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2888 	    (nvme->n_submission_queues + 1), KM_SLEEP);
2889 	nvme->n_ioq[0] = nvme->n_adminq;
2890 
2891 	/*
2892 	 * There should always be at least as many submission queues
2893 	 * as completion queues.
2894 	 */
2895 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
2896 
2897 	nvme->n_ioq_count = nvme->n_submission_queues;
2898 
2899 	nvme->n_io_squeue_len =
2900 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
2901 
2902 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
2903 	    nvme->n_io_squeue_len);
2904 
2905 	/*
2906 	 * Pre-allocate completion queues.
2907 	 * When there are the same number of submission and completion
2908 	 * queues there is no value in having a larger completion
2909 	 * queue length.
2910 	 */
2911 	if (nvme->n_submission_queues == nvme->n_completion_queues)
2912 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
2913 		    nvme->n_io_squeue_len);
2914 
2915 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
2916 	    nvme->n_max_queue_entries);
2917 
2918 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
2919 	    nvme->n_io_cqueue_len);
2920 
2921 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
2922 	    nvme->n_io_cqueue_len) != DDI_SUCCESS) {
2923 		dev_err(nvme->n_dip, CE_WARN,
2924 		    "!failed to pre-allocate completion queues");
2925 		goto fail;
2926 	}
2927 
2928 	/*
2929 	 * If we use less completion queues than interrupt vectors return
2930 	 * some of the interrupt vectors back to the system.
2931 	 */
2932 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
2933 		nvme_release_interrupts(nvme);
2934 
2935 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2936 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
2937 			dev_err(nvme->n_dip, CE_WARN,
2938 			    "!failed to reduce number of interrupts");
2939 			goto fail;
2940 		}
2941 	}
2942 
2943 	/*
2944 	 * Alloc & register I/O queue pairs
2945 	 */
2946 
2947 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2948 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
2949 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2950 			dev_err(nvme->n_dip, CE_WARN,
2951 			    "!unable to allocate I/O qpair %d", i);
2952 			goto fail;
2953 		}
2954 
2955 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2956 			dev_err(nvme->n_dip, CE_WARN,
2957 			    "!unable to create I/O qpair %d", i);
2958 			goto fail;
2959 		}
2960 	}
2961 
2962 	/*
2963 	 * Post more asynchronous events commands to reduce event reporting
2964 	 * latency as suggested by the spec.
2965 	 */
2966 	if (nvme->n_async_event_supported) {
2967 		for (i = 1; i != nvme->n_async_event_limit; i++)
2968 			nvme_async_event(nvme);
2969 	}
2970 
2971 	return (DDI_SUCCESS);
2972 
2973 fail:
2974 	(void) nvme_reset(nvme, B_FALSE);
2975 	return (DDI_FAILURE);
2976 }
2977 
2978 static uint_t
2979 nvme_intr(caddr_t arg1, caddr_t arg2)
2980 {
2981 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2982 	nvme_t *nvme = (nvme_t *)arg1;
2983 	int inum = (int)(uintptr_t)arg2;
2984 	int ccnt = 0;
2985 	int qnum;
2986 
2987 	if (inum >= nvme->n_intr_cnt)
2988 		return (DDI_INTR_UNCLAIMED);
2989 
2990 	if (nvme->n_dead)
2991 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2992 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2993 
2994 	/*
2995 	 * The interrupt vector a queue uses is calculated as queue_idx %
2996 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2997 	 * in steps of n_intr_cnt to process all queues using this vector.
2998 	 */
2999 	for (qnum = inum;
3000 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3001 	    qnum += nvme->n_intr_cnt) {
3002 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3003 	}
3004 
3005 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3006 }
3007 
3008 static void
3009 nvme_release_interrupts(nvme_t *nvme)
3010 {
3011 	int i;
3012 
3013 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3014 		if (nvme->n_inth[i] == NULL)
3015 			break;
3016 
3017 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3018 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3019 		else
3020 			(void) ddi_intr_disable(nvme->n_inth[i]);
3021 
3022 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3023 		(void) ddi_intr_free(nvme->n_inth[i]);
3024 	}
3025 
3026 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3027 	nvme->n_inth = NULL;
3028 	nvme->n_inth_sz = 0;
3029 
3030 	nvme->n_progress &= ~NVME_INTERRUPTS;
3031 }
3032 
3033 static int
3034 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3035 {
3036 	int nintrs, navail, count;
3037 	int ret;
3038 	int i;
3039 
3040 	if (nvme->n_intr_types == 0) {
3041 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3042 		    &nvme->n_intr_types);
3043 		if (ret != DDI_SUCCESS) {
3044 			dev_err(nvme->n_dip, CE_WARN,
3045 			    "!%s: ddi_intr_get_supported types failed",
3046 			    __func__);
3047 			return (ret);
3048 		}
3049 #ifdef __x86
3050 		if (get_hwenv() == HW_VMWARE)
3051 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3052 #endif
3053 	}
3054 
3055 	if ((nvme->n_intr_types & intr_type) == 0)
3056 		return (DDI_FAILURE);
3057 
3058 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3059 	if (ret != DDI_SUCCESS) {
3060 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3061 		    __func__);
3062 		return (ret);
3063 	}
3064 
3065 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3066 	if (ret != DDI_SUCCESS) {
3067 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3068 		    __func__);
3069 		return (ret);
3070 	}
3071 
3072 	/* We want at most one interrupt per queue pair. */
3073 	if (navail > nqpairs)
3074 		navail = nqpairs;
3075 
3076 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3077 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3078 
3079 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3080 	    &count, 0);
3081 	if (ret != DDI_SUCCESS) {
3082 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3083 		    __func__);
3084 		goto fail;
3085 	}
3086 
3087 	nvme->n_intr_cnt = count;
3088 
3089 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3090 	if (ret != DDI_SUCCESS) {
3091 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3092 		    __func__);
3093 		goto fail;
3094 	}
3095 
3096 	for (i = 0; i < count; i++) {
3097 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3098 		    (void *)nvme, (void *)(uintptr_t)i);
3099 		if (ret != DDI_SUCCESS) {
3100 			dev_err(nvme->n_dip, CE_WARN,
3101 			    "!%s: ddi_intr_add_handler failed", __func__);
3102 			goto fail;
3103 		}
3104 	}
3105 
3106 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3107 
3108 	for (i = 0; i < count; i++) {
3109 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3110 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3111 		else
3112 			ret = ddi_intr_enable(nvme->n_inth[i]);
3113 
3114 		if (ret != DDI_SUCCESS) {
3115 			dev_err(nvme->n_dip, CE_WARN,
3116 			    "!%s: enabling interrupt %d failed", __func__, i);
3117 			goto fail;
3118 		}
3119 	}
3120 
3121 	nvme->n_intr_type = intr_type;
3122 
3123 	nvme->n_progress |= NVME_INTERRUPTS;
3124 
3125 	return (DDI_SUCCESS);
3126 
3127 fail:
3128 	nvme_release_interrupts(nvme);
3129 
3130 	return (ret);
3131 }
3132 
3133 static int
3134 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3135 {
3136 	_NOTE(ARGUNUSED(arg));
3137 
3138 	pci_ereport_post(dip, fm_error, NULL);
3139 	return (fm_error->fme_status);
3140 }
3141 
3142 static int
3143 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3144 {
3145 	nvme_t *nvme;
3146 	int instance;
3147 	int nregs;
3148 	off_t regsize;
3149 	int i;
3150 	char name[32];
3151 
3152 	if (cmd != DDI_ATTACH)
3153 		return (DDI_FAILURE);
3154 
3155 	instance = ddi_get_instance(dip);
3156 
3157 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3158 		return (DDI_FAILURE);
3159 
3160 	nvme = ddi_get_soft_state(nvme_state, instance);
3161 	ddi_set_driver_private(dip, nvme);
3162 	nvme->n_dip = dip;
3163 
3164 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3165 
3166 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3167 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3168 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3169 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3170 	    B_TRUE : B_FALSE;
3171 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3172 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3173 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3174 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3175 	/*
3176 	 * Double up the default for completion queues in case of
3177 	 * queue sharing.
3178 	 */
3179 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3180 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3181 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3182 	    DDI_PROP_DONTPASS, "async-event-limit",
3183 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3184 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3185 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3186 	    B_TRUE : B_FALSE;
3187 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3188 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3189 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3190 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3191 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3192 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3193 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3194 
3195 	if (!ISP2(nvme->n_min_block_size) ||
3196 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3197 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3198 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3199 		    "too low" : "not a power of 2",
3200 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3201 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3202 	}
3203 
3204 	if (nvme->n_submission_queues != -1 &&
3205 	    (nvme->n_submission_queues < 1 ||
3206 	    nvme->n_submission_queues > UINT16_MAX)) {
3207 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3208 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3209 		    UINT16_MAX);
3210 		nvme->n_submission_queues = -1;
3211 	}
3212 
3213 	if (nvme->n_completion_queues != -1 &&
3214 	    (nvme->n_completion_queues < 1 ||
3215 	    nvme->n_completion_queues > UINT16_MAX)) {
3216 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3217 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3218 		    UINT16_MAX);
3219 		nvme->n_completion_queues = -1;
3220 	}
3221 
3222 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3223 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3224 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3225 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3226 
3227 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3228 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3229 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3230 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3231 
3232 	if (nvme->n_async_event_limit < 1)
3233 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3234 
3235 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3236 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3237 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3238 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3239 
3240 	/*
3241 	 * Setup FMA support.
3242 	 */
3243 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3244 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3245 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3246 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3247 
3248 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3249 
3250 	if (nvme->n_fm_cap) {
3251 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3252 			nvme->n_reg_acc_attr.devacc_attr_access =
3253 			    DDI_FLAGERR_ACC;
3254 
3255 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3256 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3257 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3258 		}
3259 
3260 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3261 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3262 			pci_ereport_setup(dip);
3263 
3264 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3265 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3266 			    (void *)nvme);
3267 	}
3268 
3269 	nvme->n_progress |= NVME_FMA_INIT;
3270 
3271 	/*
3272 	 * The spec defines several register sets. Only the controller
3273 	 * registers (set 1) are currently used.
3274 	 */
3275 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3276 	    nregs < 2 ||
3277 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3278 		goto fail;
3279 
3280 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3281 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3282 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3283 		goto fail;
3284 	}
3285 
3286 	nvme->n_progress |= NVME_REGS_MAPPED;
3287 
3288 	/*
3289 	 * Create taskq for command completion.
3290 	 */
3291 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
3292 	    ddi_driver_name(dip), ddi_get_instance(dip));
3293 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
3294 	    TASKQ_DEFAULTPRI, 0);
3295 	if (nvme->n_cmd_taskq == NULL) {
3296 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
3297 		goto fail;
3298 	}
3299 
3300 	/*
3301 	 * Create PRP DMA cache
3302 	 */
3303 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3304 	    ddi_driver_name(dip), ddi_get_instance(dip));
3305 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3306 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3307 	    NULL, (void *)nvme, NULL, 0);
3308 
3309 	if (nvme_init(nvme) != DDI_SUCCESS)
3310 		goto fail;
3311 
3312 	/*
3313 	 * Attach the blkdev driver for each namespace.
3314 	 */
3315 	for (i = 0; i != nvme->n_namespace_count; i++) {
3316 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3317 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3318 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3319 			dev_err(dip, CE_WARN,
3320 			    "!failed to create minor node for namespace %d", i);
3321 			goto fail;
3322 		}
3323 
3324 		if (nvme->n_ns[i].ns_ignore)
3325 			continue;
3326 
3327 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3328 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3329 
3330 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3331 			dev_err(dip, CE_WARN,
3332 			    "!failed to get blkdev handle for namespace %d", i);
3333 			goto fail;
3334 		}
3335 
3336 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3337 		    != DDI_SUCCESS) {
3338 			dev_err(dip, CE_WARN,
3339 			    "!failed to attach blkdev handle for namespace %d",
3340 			    i);
3341 			goto fail;
3342 		}
3343 	}
3344 
3345 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3346 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3347 	    != DDI_SUCCESS) {
3348 		dev_err(dip, CE_WARN, "nvme_attach: "
3349 		    "cannot create devctl minor node");
3350 		goto fail;
3351 	}
3352 
3353 	return (DDI_SUCCESS);
3354 
3355 fail:
3356 	/* attach successful anyway so that FMA can retire the device */
3357 	if (nvme->n_dead)
3358 		return (DDI_SUCCESS);
3359 
3360 	(void) nvme_detach(dip, DDI_DETACH);
3361 
3362 	return (DDI_FAILURE);
3363 }
3364 
3365 static int
3366 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3367 {
3368 	int instance, i;
3369 	nvme_t *nvme;
3370 
3371 	if (cmd != DDI_DETACH)
3372 		return (DDI_FAILURE);
3373 
3374 	instance = ddi_get_instance(dip);
3375 
3376 	nvme = ddi_get_soft_state(nvme_state, instance);
3377 
3378 	if (nvme == NULL)
3379 		return (DDI_FAILURE);
3380 
3381 	ddi_remove_minor_node(dip, "devctl");
3382 	mutex_destroy(&nvme->n_minor.nm_mutex);
3383 
3384 	if (nvme->n_ns) {
3385 		for (i = 0; i != nvme->n_namespace_count; i++) {
3386 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3387 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3388 
3389 			if (nvme->n_ns[i].ns_bd_hdl) {
3390 				(void) bd_detach_handle(
3391 				    nvme->n_ns[i].ns_bd_hdl);
3392 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3393 			}
3394 
3395 			if (nvme->n_ns[i].ns_idns)
3396 				kmem_free(nvme->n_ns[i].ns_idns,
3397 				    sizeof (nvme_identify_nsid_t));
3398 			if (nvme->n_ns[i].ns_devid)
3399 				strfree(nvme->n_ns[i].ns_devid);
3400 		}
3401 
3402 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3403 		    nvme->n_namespace_count);
3404 	}
3405 
3406 	if (nvme->n_progress & NVME_INTERRUPTS)
3407 		nvme_release_interrupts(nvme);
3408 
3409 	if (nvme->n_cmd_taskq)
3410 		ddi_taskq_wait(nvme->n_cmd_taskq);
3411 
3412 	if (nvme->n_ioq_count > 0) {
3413 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3414 			if (nvme->n_ioq[i] != NULL) {
3415 				/* TODO: send destroy queue commands */
3416 				nvme_free_qpair(nvme->n_ioq[i]);
3417 			}
3418 		}
3419 
3420 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3421 		    (nvme->n_ioq_count + 1));
3422 	}
3423 
3424 	if (nvme->n_prp_cache != NULL) {
3425 		kmem_cache_destroy(nvme->n_prp_cache);
3426 	}
3427 
3428 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3429 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3430 		(void) nvme_reset(nvme, B_FALSE);
3431 	}
3432 
3433 	if (nvme->n_cmd_taskq)
3434 		ddi_taskq_destroy(nvme->n_cmd_taskq);
3435 
3436 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3437 		sema_destroy(&nvme->n_abort_sema);
3438 
3439 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3440 		nvme_free_qpair(nvme->n_adminq);
3441 
3442 	if (nvme->n_cq_count > 0) {
3443 		nvme_destroy_cq_array(nvme, 0);
3444 		nvme->n_cq = NULL;
3445 		nvme->n_cq_count = 0;
3446 	}
3447 
3448 	if (nvme->n_idctl)
3449 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3450 
3451 	if (nvme->n_progress & NVME_REGS_MAPPED)
3452 		ddi_regs_map_free(&nvme->n_regh);
3453 
3454 	if (nvme->n_progress & NVME_FMA_INIT) {
3455 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3456 			ddi_fm_handler_unregister(nvme->n_dip);
3457 
3458 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3459 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3460 			pci_ereport_teardown(nvme->n_dip);
3461 
3462 		ddi_fm_fini(nvme->n_dip);
3463 	}
3464 
3465 	if (nvme->n_vendor != NULL)
3466 		strfree(nvme->n_vendor);
3467 
3468 	if (nvme->n_product != NULL)
3469 		strfree(nvme->n_product);
3470 
3471 	ddi_soft_state_free(nvme_state, instance);
3472 
3473 	return (DDI_SUCCESS);
3474 }
3475 
3476 static int
3477 nvme_quiesce(dev_info_t *dip)
3478 {
3479 	int instance;
3480 	nvme_t *nvme;
3481 
3482 	instance = ddi_get_instance(dip);
3483 
3484 	nvme = ddi_get_soft_state(nvme_state, instance);
3485 
3486 	if (nvme == NULL)
3487 		return (DDI_FAILURE);
3488 
3489 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3490 
3491 	(void) nvme_reset(nvme, B_TRUE);
3492 
3493 	return (DDI_FAILURE);
3494 }
3495 
3496 static int
3497 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3498 {
3499 	nvme_t *nvme = cmd->nc_nvme;
3500 	int nprp_page, nprp;
3501 	uint64_t *prp;
3502 
3503 	if (xfer->x_ndmac == 0)
3504 		return (DDI_FAILURE);
3505 
3506 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3507 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3508 
3509 	if (xfer->x_ndmac == 1) {
3510 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3511 		return (DDI_SUCCESS);
3512 	} else if (xfer->x_ndmac == 2) {
3513 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3514 		return (DDI_SUCCESS);
3515 	}
3516 
3517 	xfer->x_ndmac--;
3518 
3519 	nprp_page = nvme->n_pagesize / sizeof (uint64_t);
3520 	ASSERT(nprp_page > 0);
3521 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3522 
3523 	/*
3524 	 * We currently don't support chained PRPs and set up our DMA
3525 	 * attributes to reflect that. If we still get an I/O request
3526 	 * that needs a chained PRP something is very wrong.
3527 	 */
3528 	VERIFY(nprp == 1);
3529 
3530 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3531 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3532 
3533 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3534 
3535 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3536 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3537 	    xfer->x_ndmac > 0;
3538 	    prp++, xfer->x_ndmac--) {
3539 		*prp = xfer->x_dmac.dmac_laddress;
3540 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3541 	}
3542 
3543 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3544 	    DDI_DMA_SYNC_FORDEV);
3545 	return (DDI_SUCCESS);
3546 }
3547 
3548 static nvme_cmd_t *
3549 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3550 {
3551 	nvme_t *nvme = ns->ns_nvme;
3552 	nvme_cmd_t *cmd;
3553 
3554 	/*
3555 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3556 	 */
3557 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3558 	    KM_NOSLEEP : KM_SLEEP);
3559 
3560 	if (cmd == NULL)
3561 		return (NULL);
3562 
3563 	cmd->nc_sqe.sqe_opc = opc;
3564 	cmd->nc_callback = nvme_bd_xfer_done;
3565 	cmd->nc_xfer = xfer;
3566 
3567 	switch (opc) {
3568 	case NVME_OPC_NVM_WRITE:
3569 	case NVME_OPC_NVM_READ:
3570 		VERIFY(xfer->x_nblks <= 0x10000);
3571 
3572 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3573 
3574 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3575 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3576 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3577 
3578 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3579 			goto fail;
3580 		break;
3581 
3582 	case NVME_OPC_NVM_FLUSH:
3583 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3584 		break;
3585 
3586 	default:
3587 		goto fail;
3588 	}
3589 
3590 	return (cmd);
3591 
3592 fail:
3593 	nvme_free_cmd(cmd);
3594 	return (NULL);
3595 }
3596 
3597 static void
3598 nvme_bd_xfer_done(void *arg)
3599 {
3600 	nvme_cmd_t *cmd = arg;
3601 	bd_xfer_t *xfer = cmd->nc_xfer;
3602 	int error = 0;
3603 
3604 	error = nvme_check_cmd_status(cmd);
3605 	nvme_free_cmd(cmd);
3606 
3607 	bd_xfer_done(xfer, error);
3608 }
3609 
3610 static void
3611 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3612 {
3613 	nvme_namespace_t *ns = arg;
3614 	nvme_t *nvme = ns->ns_nvme;
3615 
3616 	/*
3617 	 * blkdev maintains one queue size per instance (namespace),
3618 	 * but all namespace share the I/O queues.
3619 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3620 	 * or change blkdev to handle EAGAIN
3621 	 */
3622 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_squeue_len
3623 	    / nvme->n_namespace_count;
3624 
3625 	/*
3626 	 * d_maxxfer is not set, which means the value is taken from the DMA
3627 	 * attributes specified to bd_alloc_handle.
3628 	 */
3629 
3630 	drive->d_removable = B_FALSE;
3631 	drive->d_hotpluggable = B_FALSE;
3632 
3633 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3634 	drive->d_target = ns->ns_id;
3635 	drive->d_lun = 0;
3636 
3637 	drive->d_model = nvme->n_idctl->id_model;
3638 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3639 	drive->d_vendor = nvme->n_vendor;
3640 	drive->d_vendor_len = strlen(nvme->n_vendor);
3641 	drive->d_product = nvme->n_product;
3642 	drive->d_product_len = strlen(nvme->n_product);
3643 	drive->d_serial = nvme->n_idctl->id_serial;
3644 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3645 	drive->d_revision = nvme->n_idctl->id_fwrev;
3646 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3647 }
3648 
3649 static int
3650 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3651 {
3652 	nvme_namespace_t *ns = arg;
3653 
3654 	media->m_nblks = ns->ns_block_count;
3655 	media->m_blksize = ns->ns_block_size;
3656 	media->m_readonly = B_FALSE;
3657 	media->m_solidstate = B_TRUE;
3658 
3659 	media->m_pblksize = ns->ns_best_block_size;
3660 
3661 	return (0);
3662 }
3663 
3664 static int
3665 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3666 {
3667 	nvme_t *nvme = ns->ns_nvme;
3668 	nvme_cmd_t *cmd;
3669 	nvme_qpair_t *ioq;
3670 	boolean_t poll;
3671 	int ret;
3672 
3673 	if (nvme->n_dead)
3674 		return (EIO);
3675 
3676 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3677 	if (cmd == NULL)
3678 		return (ENOMEM);
3679 
3680 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3681 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3682 	ioq = nvme->n_ioq[cmd->nc_sqid];
3683 
3684 	/*
3685 	 * Get the polling flag before submitting the command. The command may
3686 	 * complete immediately after it was submitted, which means we must
3687 	 * treat both cmd and xfer as if they have been freed already.
3688 	 */
3689 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3690 
3691 	ret = nvme_submit_io_cmd(ioq, cmd);
3692 
3693 	if (ret != 0)
3694 		return (ret);
3695 
3696 	if (!poll)
3697 		return (0);
3698 
3699 	do {
3700 		cmd = nvme_retrieve_cmd(nvme, ioq);
3701 		if (cmd != NULL)
3702 			cmd->nc_callback(cmd);
3703 		else
3704 			drv_usecwait(10);
3705 	} while (ioq->nq_active_cmds != 0);
3706 
3707 	return (0);
3708 }
3709 
3710 static int
3711 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3712 {
3713 	nvme_namespace_t *ns = arg;
3714 
3715 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3716 }
3717 
3718 static int
3719 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3720 {
3721 	nvme_namespace_t *ns = arg;
3722 
3723 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3724 }
3725 
3726 static int
3727 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3728 {
3729 	nvme_namespace_t *ns = arg;
3730 
3731 	if (ns->ns_nvme->n_dead)
3732 		return (EIO);
3733 
3734 	/*
3735 	 * If the volatile write cache is not present or not enabled the FLUSH
3736 	 * command is a no-op, so we can take a shortcut here.
3737 	 */
3738 	if (!ns->ns_nvme->n_write_cache_present) {
3739 		bd_xfer_done(xfer, ENOTSUP);
3740 		return (0);
3741 	}
3742 
3743 	if (!ns->ns_nvme->n_write_cache_enabled) {
3744 		bd_xfer_done(xfer, 0);
3745 		return (0);
3746 	}
3747 
3748 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3749 }
3750 
3751 static int
3752 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3753 {
3754 	nvme_namespace_t *ns = arg;
3755 
3756 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3757 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3758 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3759 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3760 	} else {
3761 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3762 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3763 	}
3764 }
3765 
3766 static int
3767 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3768 {
3769 #ifndef __lock_lint
3770 	_NOTE(ARGUNUSED(cred_p));
3771 #endif
3772 	minor_t minor = getminor(*devp);
3773 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3774 	int nsid = NVME_MINOR_NSID(minor);
3775 	nvme_minor_state_t *nm;
3776 	int rv = 0;
3777 
3778 	if (otyp != OTYP_CHR)
3779 		return (EINVAL);
3780 
3781 	if (nvme == NULL)
3782 		return (ENXIO);
3783 
3784 	if (nsid > nvme->n_namespace_count)
3785 		return (ENXIO);
3786 
3787 	if (nvme->n_dead)
3788 		return (EIO);
3789 
3790 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3791 
3792 	mutex_enter(&nm->nm_mutex);
3793 	if (nm->nm_oexcl) {
3794 		rv = EBUSY;
3795 		goto out;
3796 	}
3797 
3798 	if (flag & FEXCL) {
3799 		if (nm->nm_ocnt != 0) {
3800 			rv = EBUSY;
3801 			goto out;
3802 		}
3803 		nm->nm_oexcl = B_TRUE;
3804 	}
3805 
3806 	nm->nm_ocnt++;
3807 
3808 out:
3809 	mutex_exit(&nm->nm_mutex);
3810 	return (rv);
3811 
3812 }
3813 
3814 static int
3815 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3816 {
3817 #ifndef __lock_lint
3818 	_NOTE(ARGUNUSED(cred_p));
3819 	_NOTE(ARGUNUSED(flag));
3820 #endif
3821 	minor_t minor = getminor(dev);
3822 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3823 	int nsid = NVME_MINOR_NSID(minor);
3824 	nvme_minor_state_t *nm;
3825 
3826 	if (otyp != OTYP_CHR)
3827 		return (ENXIO);
3828 
3829 	if (nvme == NULL)
3830 		return (ENXIO);
3831 
3832 	if (nsid > nvme->n_namespace_count)
3833 		return (ENXIO);
3834 
3835 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3836 
3837 	mutex_enter(&nm->nm_mutex);
3838 	if (nm->nm_oexcl)
3839 		nm->nm_oexcl = B_FALSE;
3840 
3841 	ASSERT(nm->nm_ocnt > 0);
3842 	nm->nm_ocnt--;
3843 	mutex_exit(&nm->nm_mutex);
3844 
3845 	return (0);
3846 }
3847 
3848 static int
3849 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3850     cred_t *cred_p)
3851 {
3852 	_NOTE(ARGUNUSED(cred_p));
3853 	int rv = 0;
3854 	void *idctl;
3855 
3856 	if ((mode & FREAD) == 0)
3857 		return (EPERM);
3858 
3859 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3860 		return (EINVAL);
3861 
3862 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
3863 		return (rv);
3864 
3865 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3866 	    != 0)
3867 		rv = EFAULT;
3868 
3869 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3870 
3871 	return (rv);
3872 }
3873 
3874 static int
3875 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3876     int mode, cred_t *cred_p)
3877 {
3878 	_NOTE(ARGUNUSED(nsid, cred_p));
3879 	int rv = 0;
3880 	nvme_reg_cap_t cap = { 0 };
3881 	nvme_capabilities_t nc;
3882 
3883 	if ((mode & FREAD) == 0)
3884 		return (EPERM);
3885 
3886 	if (nioc->n_len < sizeof (nc))
3887 		return (EINVAL);
3888 
3889 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
3890 
3891 	/*
3892 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3893 	 * specify the base page size of 4k (1<<12), so add 12 here to
3894 	 * get the real page size value.
3895 	 */
3896 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3897 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3898 
3899 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3900 		rv = EFAULT;
3901 
3902 	return (rv);
3903 }
3904 
3905 static int
3906 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3907     int mode, cred_t *cred_p)
3908 {
3909 	_NOTE(ARGUNUSED(cred_p));
3910 	void *log = NULL;
3911 	size_t bufsize = 0;
3912 	int rv = 0;
3913 
3914 	if ((mode & FREAD) == 0)
3915 		return (EPERM);
3916 
3917 	switch (nioc->n_arg) {
3918 	case NVME_LOGPAGE_ERROR:
3919 		if (nsid != 0)
3920 			return (EINVAL);
3921 		break;
3922 	case NVME_LOGPAGE_HEALTH:
3923 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3924 			return (EINVAL);
3925 
3926 		if (nsid == 0)
3927 			nsid = (uint32_t)-1;
3928 
3929 		break;
3930 	case NVME_LOGPAGE_FWSLOT:
3931 		if (nsid != 0)
3932 			return (EINVAL);
3933 		break;
3934 	default:
3935 		return (EINVAL);
3936 	}
3937 
3938 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
3939 	    != DDI_SUCCESS)
3940 		return (EIO);
3941 
3942 	if (nioc->n_len < bufsize) {
3943 		kmem_free(log, bufsize);
3944 		return (EINVAL);
3945 	}
3946 
3947 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3948 		rv = EFAULT;
3949 
3950 	nioc->n_len = bufsize;
3951 	kmem_free(log, bufsize);
3952 
3953 	return (rv);
3954 }
3955 
3956 static int
3957 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3958     int mode, cred_t *cred_p)
3959 {
3960 	_NOTE(ARGUNUSED(cred_p));
3961 	void *buf = NULL;
3962 	size_t bufsize = 0;
3963 	uint32_t res = 0;
3964 	uint8_t feature;
3965 	int rv = 0;
3966 
3967 	if ((mode & FREAD) == 0)
3968 		return (EPERM);
3969 
3970 	if ((nioc->n_arg >> 32) > 0xff)
3971 		return (EINVAL);
3972 
3973 	feature = (uint8_t)(nioc->n_arg >> 32);
3974 
3975 	switch (feature) {
3976 	case NVME_FEAT_ARBITRATION:
3977 	case NVME_FEAT_POWER_MGMT:
3978 	case NVME_FEAT_TEMPERATURE:
3979 	case NVME_FEAT_ERROR:
3980 	case NVME_FEAT_NQUEUES:
3981 	case NVME_FEAT_INTR_COAL:
3982 	case NVME_FEAT_WRITE_ATOM:
3983 	case NVME_FEAT_ASYNC_EVENT:
3984 	case NVME_FEAT_PROGRESS:
3985 		if (nsid != 0)
3986 			return (EINVAL);
3987 		break;
3988 
3989 	case NVME_FEAT_INTR_VECT:
3990 		if (nsid != 0)
3991 			return (EINVAL);
3992 
3993 		res = nioc->n_arg & 0xffffffffUL;
3994 		if (res >= nvme->n_intr_cnt)
3995 			return (EINVAL);
3996 		break;
3997 
3998 	case NVME_FEAT_LBA_RANGE:
3999 		if (nvme->n_lba_range_supported == B_FALSE)
4000 			return (EINVAL);
4001 
4002 		if (nsid == 0 ||
4003 		    nsid > nvme->n_namespace_count)
4004 			return (EINVAL);
4005 
4006 		break;
4007 
4008 	case NVME_FEAT_WRITE_CACHE:
4009 		if (nsid != 0)
4010 			return (EINVAL);
4011 
4012 		if (!nvme->n_write_cache_present)
4013 			return (EINVAL);
4014 
4015 		break;
4016 
4017 	case NVME_FEAT_AUTO_PST:
4018 		if (nsid != 0)
4019 			return (EINVAL);
4020 
4021 		if (!nvme->n_auto_pst_supported)
4022 			return (EINVAL);
4023 
4024 		break;
4025 
4026 	default:
4027 		return (EINVAL);
4028 	}
4029 
4030 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4031 	    &bufsize);
4032 	if (rv != 0)
4033 		return (rv);
4034 
4035 	if (nioc->n_len < bufsize) {
4036 		kmem_free(buf, bufsize);
4037 		return (EINVAL);
4038 	}
4039 
4040 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4041 		rv = EFAULT;
4042 
4043 	kmem_free(buf, bufsize);
4044 	nioc->n_arg = res;
4045 	nioc->n_len = bufsize;
4046 
4047 	return (rv);
4048 }
4049 
4050 static int
4051 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4052     cred_t *cred_p)
4053 {
4054 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4055 
4056 	if ((mode & FREAD) == 0)
4057 		return (EPERM);
4058 
4059 	nioc->n_arg = nvme->n_intr_cnt;
4060 	return (0);
4061 }
4062 
4063 static int
4064 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4065     cred_t *cred_p)
4066 {
4067 	_NOTE(ARGUNUSED(nsid, cred_p));
4068 	int rv = 0;
4069 
4070 	if ((mode & FREAD) == 0)
4071 		return (EPERM);
4072 
4073 	if (nioc->n_len < sizeof (nvme->n_version))
4074 		return (ENOMEM);
4075 
4076 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4077 	    sizeof (nvme->n_version), mode) != 0)
4078 		rv = EFAULT;
4079 
4080 	return (rv);
4081 }
4082 
4083 static int
4084 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4085     cred_t *cred_p)
4086 {
4087 	_NOTE(ARGUNUSED(mode));
4088 	nvme_format_nvm_t frmt = { 0 };
4089 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4090 
4091 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4092 		return (EPERM);
4093 
4094 	frmt.r = nioc->n_arg & 0xffffffff;
4095 
4096 	/*
4097 	 * Check whether the FORMAT NVM command is supported.
4098 	 */
4099 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4100 		return (EINVAL);
4101 
4102 	/*
4103 	 * Don't allow format or secure erase of individual namespace if that
4104 	 * would cause a format or secure erase of all namespaces.
4105 	 */
4106 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4107 		return (EINVAL);
4108 
4109 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4110 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4111 		return (EINVAL);
4112 
4113 	/*
4114 	 * Don't allow formatting with Protection Information.
4115 	 */
4116 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4117 		return (EINVAL);
4118 
4119 	/*
4120 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4121 	 * that uses metadata.
4122 	 */
4123 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4124 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4125 		return (EINVAL);
4126 
4127 	/*
4128 	 * Don't allow formatting using an illegal Secure Erase setting.
4129 	 */
4130 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4131 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4132 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4133 		return (EINVAL);
4134 
4135 	if (nsid == 0)
4136 		nsid = (uint32_t)-1;
4137 
4138 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4139 	    B_FALSE, frmt.b.fm_ses));
4140 }
4141 
4142 static int
4143 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4144     cred_t *cred_p)
4145 {
4146 	_NOTE(ARGUNUSED(nioc, mode));
4147 	int rv = 0;
4148 
4149 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4150 		return (EPERM);
4151 
4152 	if (nsid == 0)
4153 		return (EINVAL);
4154 
4155 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4156 	if (rv != DDI_SUCCESS)
4157 		rv = EBUSY;
4158 
4159 	return (rv);
4160 }
4161 
4162 static int
4163 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4164     cred_t *cred_p)
4165 {
4166 	_NOTE(ARGUNUSED(nioc, mode));
4167 	nvme_identify_nsid_t *idns;
4168 	int rv = 0;
4169 
4170 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4171 		return (EPERM);
4172 
4173 	if (nsid == 0)
4174 		return (EINVAL);
4175 
4176 	/*
4177 	 * Identify namespace again, free old identify data.
4178 	 */
4179 	idns = nvme->n_ns[nsid - 1].ns_idns;
4180 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4181 		return (EIO);
4182 
4183 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4184 
4185 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4186 	if (rv != DDI_SUCCESS)
4187 		rv = EBUSY;
4188 
4189 	return (rv);
4190 }
4191 
4192 static int
4193 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
4194     int *rval_p)
4195 {
4196 #ifndef __lock_lint
4197 	_NOTE(ARGUNUSED(rval_p));
4198 #endif
4199 	minor_t minor = getminor(dev);
4200 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4201 	int nsid = NVME_MINOR_NSID(minor);
4202 	int rv = 0;
4203 	nvme_ioctl_t nioc;
4204 
4205 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
4206 		NULL,
4207 		nvme_ioctl_identify,
4208 		nvme_ioctl_identify,
4209 		nvme_ioctl_capabilities,
4210 		nvme_ioctl_get_logpage,
4211 		nvme_ioctl_get_features,
4212 		nvme_ioctl_intr_cnt,
4213 		nvme_ioctl_version,
4214 		nvme_ioctl_format,
4215 		nvme_ioctl_detach,
4216 		nvme_ioctl_attach
4217 	};
4218 
4219 	if (nvme == NULL)
4220 		return (ENXIO);
4221 
4222 	if (nsid > nvme->n_namespace_count)
4223 		return (ENXIO);
4224 
4225 	if (IS_DEVCTL(cmd))
4226 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
4227 
4228 #ifdef _MULTI_DATAMODEL
4229 	switch (ddi_model_convert_from(mode & FMODELS)) {
4230 	case DDI_MODEL_ILP32: {
4231 		nvme_ioctl32_t nioc32;
4232 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
4233 		    mode) != 0)
4234 			return (EFAULT);
4235 		nioc.n_len = nioc32.n_len;
4236 		nioc.n_buf = nioc32.n_buf;
4237 		nioc.n_arg = nioc32.n_arg;
4238 		break;
4239 	}
4240 	case DDI_MODEL_NONE:
4241 #endif
4242 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
4243 		    != 0)
4244 			return (EFAULT);
4245 #ifdef _MULTI_DATAMODEL
4246 		break;
4247 	}
4248 #endif
4249 
4250 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
4251 		return (EIO);
4252 
4253 
4254 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
4255 		/*
4256 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
4257 		 * attachment point nodes.
4258 		 */
4259 		nsid = 0;
4260 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
4261 		/*
4262 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
4263 		 * will always return identify data for namespace 1.
4264 		 */
4265 		nsid = 1;
4266 	}
4267 
4268 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
4269 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
4270 		    cred_p);
4271 	else
4272 		rv = EINVAL;
4273 
4274 #ifdef _MULTI_DATAMODEL
4275 	switch (ddi_model_convert_from(mode & FMODELS)) {
4276 	case DDI_MODEL_ILP32: {
4277 		nvme_ioctl32_t nioc32;
4278 
4279 		nioc32.n_len = (size32_t)nioc.n_len;
4280 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
4281 		nioc32.n_arg = nioc.n_arg;
4282 
4283 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
4284 		    mode) != 0)
4285 			return (EFAULT);
4286 		break;
4287 	}
4288 	case DDI_MODEL_NONE:
4289 #endif
4290 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
4291 		    != 0)
4292 			return (EFAULT);
4293 #ifdef _MULTI_DATAMODEL
4294 		break;
4295 	}
4296 #endif
4297 
4298 	return (rv);
4299 }
4300