xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision c3d9bc08a709328922dddd4cf87d0341592e5f52)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2020 Joyent, Inc.
17  * Copyright 2019 Western Digital Corporation.
18  * Copyright 2020 Racktop Systems.
19  */
20 
21 /*
22  * blkdev driver for NVMe compliant storage devices
23  *
24  * This driver was written to conform to version 1.2.1 of the NVMe
25  * specification.  It may work with newer versions, but that is completely
26  * untested and disabled by default.
27  *
28  * The driver has only been tested on x86 systems and will not work on big-
29  * endian systems without changes to the code accessing registers and data
30  * structures used by the hardware.
31  *
32  *
33  * Interrupt Usage:
34  *
35  * The driver will use a single interrupt while configuring the device as the
36  * specification requires, but contrary to the specification it will try to use
37  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
38  * will switch to multiple-message MSI(-X) if supported. The driver wants to
39  * have one interrupt vector per CPU, but it will work correctly if less are
40  * available. Interrupts can be shared by queues, the interrupt handler will
41  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
42  * the admin queue will share an interrupt with one I/O queue. The interrupt
43  * handler will retrieve completed commands from all queues sharing an interrupt
44  * vector and will post them to a taskq for completion processing.
45  *
46  *
47  * Command Processing:
48  *
49  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
50  * to 65536 I/O commands. The driver will configure one I/O queue pair per
51  * available interrupt vector, with the queue length usually much smaller than
52  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
53  * interrupt vectors will be used.
54  *
55  * Additionally the hardware provides a single special admin queue pair that can
56  * hold up to 4096 admin commands.
57  *
58  * From the hardware perspective both queues of a queue pair are independent,
59  * but they share some driver state: the command array (holding pointers to
60  * commands currently being processed by the hardware) and the active command
61  * counter. Access to a submission queue and the shared state is protected by
62  * nq_mutex; completion queue is protected by ncq_mutex.
63  *
64  * When a command is submitted to a queue pair the active command counter is
65  * incremented and a pointer to the command is stored in the command array. The
66  * array index is used as command identifier (CID) in the submission queue
67  * entry. Some commands may take a very long time to complete, and if the queue
68  * wraps around in that time a submission may find the next array slot to still
69  * be used by a long-running command. In this case the array is sequentially
70  * searched for the next free slot. The length of the command array is the same
71  * as the configured queue length. Queue overrun is prevented by the semaphore,
72  * so a command submission may block if the queue is full.
73  *
74  *
75  * Polled I/O Support:
76  *
77  * For kernel core dump support the driver can do polled I/O. As interrupts are
78  * turned off while dumping the driver will just submit a command in the regular
79  * way, and then repeatedly attempt a command retrieval until it gets the
80  * command back.
81  *
82  *
83  * Namespace Support:
84  *
85  * NVMe devices can have multiple namespaces, each being a independent data
86  * store. The driver supports multiple namespaces and creates a blkdev interface
87  * for each namespace found. Namespaces can have various attributes to support
88  * protection information. This driver does not support any of this and ignores
89  * namespaces that have these attributes.
90  *
91  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
92  * (EUI64). This driver uses the EUI64 if present to generate the devid and
93  * passes it to blkdev to use it in the device node names. As this is currently
94  * untested namespaces with EUI64 are ignored by default.
95  *
96  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
97  * single controller. This is an artificial limit imposed by the driver to be
98  * able to address a reasonable number of controllers and namespaces using a
99  * 32bit minor node number.
100  *
101  *
102  * Minor nodes:
103  *
104  * For each NVMe device the driver exposes one minor node for the controller and
105  * one minor node for each namespace. The only operations supported by those
106  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
107  * interface for the nvmeadm(1M) utility.
108  *
109  *
110  * Blkdev Interface:
111  *
112  * This driver uses blkdev to do all the heavy lifting involved with presenting
113  * a disk device to the system. As a result, the processing of I/O requests is
114  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
115  * setup, and splitting of transfers into manageable chunks.
116  *
117  * I/O requests coming in from blkdev are turned into NVM commands and posted to
118  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
119  * queues. There is currently no timeout handling of I/O commands.
120  *
121  * Blkdev also supports querying device/media information and generating a
122  * devid. The driver reports the best block size as determined by the namespace
123  * format back to blkdev as physical block size to support partition and block
124  * alignment. The devid is either based on the namespace EUI64, if present, or
125  * composed using the device vendor ID, model number, serial number, and the
126  * namespace ID.
127  *
128  *
129  * Error Handling:
130  *
131  * Error handling is currently limited to detecting fatal hardware errors,
132  * either by asynchronous events, or synchronously through command status or
133  * admin command timeouts. In case of severe errors the device is fenced off,
134  * all further requests will return EIO. FMA is then called to fault the device.
135  *
136  * The hardware has a limit for outstanding asynchronous event requests. Before
137  * this limit is known the driver assumes it is at least 1 and posts a single
138  * asynchronous request. Later when the limit is known more asynchronous event
139  * requests are posted to allow quicker reception of error information. When an
140  * asynchronous event is posted by the hardware the driver will parse the error
141  * status fields and log information or fault the device, depending on the
142  * severity of the asynchronous event. The asynchronous event request is then
143  * reused and posted to the admin queue again.
144  *
145  * On command completion the command status is checked for errors. In case of
146  * errors indicating a driver bug the driver panics. Almost all other error
147  * status values just cause EIO to be returned.
148  *
149  * Command timeouts are currently detected for all admin commands except
150  * asynchronous event requests. If a command times out and the hardware appears
151  * to be healthy the driver attempts to abort the command. The original command
152  * timeout is also applied to the abort command. If the abort times out too the
153  * driver assumes the device to be dead, fences it off, and calls FMA to retire
154  * it. In all other cases the aborted command should return immediately with a
155  * status indicating it was aborted, and the driver will wait indefinitely for
156  * that to happen. No timeout handling of normal I/O commands is presently done.
157  *
158  * Any command that times out due to the controller dropping dead will be put on
159  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
160  * memory being reused by the system and later be written to by a "dead" NVMe
161  * controller.
162  *
163  *
164  * Locking:
165  *
166  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
167  * when accessing shared state and submission queue registers, ncq_mutex
168  * is held when accessing completion queue state and registers.
169  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
170  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
171  * mutexes themselves.
172  *
173  * Each command also has its own nc_mutex, which is associated with the
174  * condition variable nc_cv. It is only used on admin commands which are run
175  * synchronously. In that case it must be held across calls to
176  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
177  * nvme_admin_cmd(). It must also be held whenever the completion state of the
178  * command is changed or while a admin command timeout is handled.
179  *
180  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
181  * More than one nc_mutex may only be held when aborting commands. In this case,
182  * the nc_mutex of the command to be aborted must be held across the call to
183  * nvme_abort_cmd() to prevent the command from completing while the abort is in
184  * progress.
185  *
186  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
187  * acquired first. More than one nq_mutex is never held by a single thread.
188  * The ncq_mutex is only held by nvme_retrieve_cmd() and
189  * nvme_process_iocq(). nvme_process_iocq() is only called from the
190  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
191  * mutex is non-contentious but is required for implementation completeness
192  * and safety.
193  *
194  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
195  * and exclusive-open flag nm_oexcl.
196  *
197  *
198  * Quiesce / Fast Reboot:
199  *
200  * The driver currently does not support fast reboot. A quiesce(9E) entry point
201  * is still provided which is used to send a shutdown notification to the
202  * device.
203  *
204  *
205  * NVMe Hotplug:
206  *
207  * The driver supports hot removal. The driver uses the NDI event framework
208  * to register a callback, nvme_remove_callback, to clean up when a disk is
209  * removed. In particular, the driver will unqueue outstanding I/O commands and
210  * set n_dead on the softstate to true so that other operations, such as ioctls
211  * and command submissions, fail as well.
212  *
213  * While the callback registration relies on the NDI event framework, the
214  * removal event itself is kicked off in the PCIe hotplug framework, when the
215  * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicatating that a
216  * device was removed from the slot.
217  *
218  * The NVMe driver instance itself will remain until the final close of the
219  * device.
220  *
221  *
222  * DDI UFM Support
223  *
224  * The driver supports the DDI UFM framework for reporting information about
225  * the device's firmware image and slot configuration. This data can be
226  * queried by userland software via ioctls to the ufm driver. For more
227  * information, see ddi_ufm(9E).
228  *
229  *
230  * Driver Configuration:
231  *
232  * The following driver properties can be changed to control some aspects of the
233  * drivers operation:
234  * - strict-version: can be set to 0 to allow devices conforming to newer
235  *   major versions to be used
236  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
237  *   specific command status as a fatal error leading device faulting
238  * - admin-queue-len: the maximum length of the admin queue (16-4096)
239  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
240  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
241  * - async-event-limit: the maximum number of asynchronous event requests to be
242  *   posted by the driver
243  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
244  *   cache
245  * - min-phys-block-size: the minimum physical block size to report to blkdev,
246  *   which is among other things the basis for ZFS vdev ashift
247  * - max-submission-queues: the maximum number of I/O submission queues.
248  * - max-completion-queues: the maximum number of I/O completion queues,
249  *   can be less than max-submission-queues, in which case the completion
250  *   queues are shared.
251  *
252  *
253  * TODO:
254  * - figure out sane default for I/O queue depth reported to blkdev
255  * - FMA handling of media errors
256  * - support for devices supporting very large I/O requests using chained PRPs
257  * - support for configuring hardware parameters like interrupt coalescing
258  * - support for media formatting and hard partitioning into namespaces
259  * - support for big-endian systems
260  * - support for fast reboot
261  * - support for NVMe Subsystem Reset (1.1)
262  * - support for Scatter/Gather lists (1.1)
263  * - support for Reservations (1.1)
264  * - support for power management
265  */
266 
267 #include <sys/byteorder.h>
268 #ifdef _BIG_ENDIAN
269 #error nvme driver needs porting for big-endian platforms
270 #endif
271 
272 #include <sys/modctl.h>
273 #include <sys/conf.h>
274 #include <sys/devops.h>
275 #include <sys/ddi.h>
276 #include <sys/ddi_ufm.h>
277 #include <sys/sunddi.h>
278 #include <sys/sunndi.h>
279 #include <sys/bitmap.h>
280 #include <sys/sysmacros.h>
281 #include <sys/param.h>
282 #include <sys/varargs.h>
283 #include <sys/cpuvar.h>
284 #include <sys/disp.h>
285 #include <sys/blkdev.h>
286 #include <sys/atomic.h>
287 #include <sys/archsystm.h>
288 #include <sys/sata/sata_hba.h>
289 #include <sys/stat.h>
290 #include <sys/policy.h>
291 #include <sys/list.h>
292 #include <sys/dkio.h>
293 
294 #include <sys/nvme.h>
295 
296 #ifdef __x86
297 #include <sys/x86_archext.h>
298 #endif
299 
300 #include "nvme_reg.h"
301 #include "nvme_var.h"
302 
303 /*
304  * Assertions to make sure that we've properly captured various aspects of the
305  * packed structures and haven't broken them during updates.
306  */
307 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
308 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
309 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
310 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
311 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
312 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
313 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
314 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
315 
316 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
317 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
318 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
319 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
320 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
321 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
322 
323 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
324 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
325 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
326 
327 
328 /* NVMe spec version supported */
329 static const int nvme_version_major = 1;
330 
331 /* tunable for admin command timeout in seconds, default is 1s */
332 int nvme_admin_cmd_timeout = 1;
333 
334 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
335 int nvme_format_cmd_timeout = 600;
336 
337 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
338 int nvme_commit_save_cmd_timeout = 15;
339 
340 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
341 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
342 static int nvme_quiesce(dev_info_t *);
343 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
344 static int nvme_setup_interrupts(nvme_t *, int, int);
345 static void nvme_release_interrupts(nvme_t *);
346 static uint_t nvme_intr(caddr_t, caddr_t);
347 
348 static void nvme_shutdown(nvme_t *, int, boolean_t);
349 static boolean_t nvme_reset(nvme_t *, boolean_t);
350 static int nvme_init(nvme_t *);
351 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
352 static void nvme_free_cmd(nvme_cmd_t *);
353 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
354     bd_xfer_t *);
355 static void nvme_admin_cmd(nvme_cmd_t *, int);
356 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
357 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
358 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
359 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
360 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
361 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
362 static void nvme_wakeup_cmd(void *);
363 static void nvme_async_event_task(void *);
364 
365 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
366 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
367 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
368 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
369 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
370 static inline int nvme_check_cmd_status(nvme_cmd_t *);
371 
372 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
373 static void nvme_async_event(nvme_t *);
374 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
375     uint8_t, boolean_t, uint8_t);
376 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
377     ...);
378 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
379 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
380     uint32_t *);
381 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
382     void **, size_t *);
383 static int nvme_write_cache_set(nvme_t *, boolean_t);
384 static int nvme_set_nqueues(nvme_t *);
385 
386 static void nvme_free_dma(nvme_dma_t *);
387 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
388     nvme_dma_t **);
389 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
390     nvme_dma_t **);
391 static void nvme_free_qpair(nvme_qpair_t *);
392 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
393 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
394 
395 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
396 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
397 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
398 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
399 
400 static boolean_t nvme_check_regs_hdl(nvme_t *);
401 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
402 
403 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
404 
405 static void nvme_bd_xfer_done(void *);
406 static void nvme_bd_driveinfo(void *, bd_drive_t *);
407 static int nvme_bd_mediainfo(void *, bd_media_t *);
408 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
409 static int nvme_bd_read(void *, bd_xfer_t *);
410 static int nvme_bd_write(void *, bd_xfer_t *);
411 static int nvme_bd_sync(void *, bd_xfer_t *);
412 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
413 static int nvme_bd_free_space(void *, bd_xfer_t *);
414 
415 static int nvme_prp_dma_constructor(void *, void *, int);
416 static void nvme_prp_dma_destructor(void *, void *);
417 
418 static void nvme_prepare_devid(nvme_t *, uint32_t);
419 
420 /* DDI UFM callbacks */
421 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
422     ddi_ufm_image_t *);
423 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
424     ddi_ufm_slot_t *);
425 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
426 
427 static int nvme_open(dev_t *, int, int, cred_t *);
428 static int nvme_close(dev_t, int, int, cred_t *);
429 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
430 
431 static ddi_ufm_ops_t nvme_ufm_ops = {
432 	NULL,
433 	nvme_ufm_fill_image,
434 	nvme_ufm_fill_slot,
435 	nvme_ufm_getcaps
436 };
437 
438 #define	NVME_MINOR_INST_SHIFT	9
439 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
440 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
441 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
442 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
443 
444 static void *nvme_state;
445 static kmem_cache_t *nvme_cmd_cache;
446 
447 /*
448  * DMA attributes for queue DMA memory
449  *
450  * Queue DMA memory must be page aligned. The maximum length of a queue is
451  * 65536 entries, and an entry can be 64 bytes long.
452  */
453 static ddi_dma_attr_t nvme_queue_dma_attr = {
454 	.dma_attr_version	= DMA_ATTR_V0,
455 	.dma_attr_addr_lo	= 0,
456 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
457 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
458 	.dma_attr_align		= 0x1000,
459 	.dma_attr_burstsizes	= 0x7ff,
460 	.dma_attr_minxfer	= 0x1000,
461 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
462 	.dma_attr_seg		= 0xffffffffffffffffULL,
463 	.dma_attr_sgllen	= 1,
464 	.dma_attr_granular	= 1,
465 	.dma_attr_flags		= 0,
466 };
467 
468 /*
469  * DMA attributes for transfers using Physical Region Page (PRP) entries
470  *
471  * A PRP entry describes one page of DMA memory using the page size specified
472  * in the controller configuration's memory page size register (CC.MPS). It uses
473  * a 64bit base address aligned to this page size. There is no limitation on
474  * chaining PRPs together for arbitrarily large DMA transfers.
475  */
476 static ddi_dma_attr_t nvme_prp_dma_attr = {
477 	.dma_attr_version	= DMA_ATTR_V0,
478 	.dma_attr_addr_lo	= 0,
479 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
480 	.dma_attr_count_max	= 0xfff,
481 	.dma_attr_align		= 0x1000,
482 	.dma_attr_burstsizes	= 0x7ff,
483 	.dma_attr_minxfer	= 0x1000,
484 	.dma_attr_maxxfer	= 0x1000,
485 	.dma_attr_seg		= 0xfff,
486 	.dma_attr_sgllen	= -1,
487 	.dma_attr_granular	= 1,
488 	.dma_attr_flags		= 0,
489 };
490 
491 /*
492  * DMA attributes for transfers using scatter/gather lists
493  *
494  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
495  * 32bit length field. SGL Segment and SGL Last Segment entries require the
496  * length to be a multiple of 16 bytes.
497  */
498 static ddi_dma_attr_t nvme_sgl_dma_attr = {
499 	.dma_attr_version	= DMA_ATTR_V0,
500 	.dma_attr_addr_lo	= 0,
501 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
502 	.dma_attr_count_max	= 0xffffffffUL,
503 	.dma_attr_align		= 1,
504 	.dma_attr_burstsizes	= 0x7ff,
505 	.dma_attr_minxfer	= 0x10,
506 	.dma_attr_maxxfer	= 0xfffffffffULL,
507 	.dma_attr_seg		= 0xffffffffffffffffULL,
508 	.dma_attr_sgllen	= -1,
509 	.dma_attr_granular	= 0x10,
510 	.dma_attr_flags		= 0
511 };
512 
513 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
514 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
515 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
516 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
517 };
518 
519 static struct cb_ops nvme_cb_ops = {
520 	.cb_open	= nvme_open,
521 	.cb_close	= nvme_close,
522 	.cb_strategy	= nodev,
523 	.cb_print	= nodev,
524 	.cb_dump	= nodev,
525 	.cb_read	= nodev,
526 	.cb_write	= nodev,
527 	.cb_ioctl	= nvme_ioctl,
528 	.cb_devmap	= nodev,
529 	.cb_mmap	= nodev,
530 	.cb_segmap	= nodev,
531 	.cb_chpoll	= nochpoll,
532 	.cb_prop_op	= ddi_prop_op,
533 	.cb_str		= 0,
534 	.cb_flag	= D_NEW | D_MP,
535 	.cb_rev		= CB_REV,
536 	.cb_aread	= nodev,
537 	.cb_awrite	= nodev
538 };
539 
540 static struct dev_ops nvme_dev_ops = {
541 	.devo_rev	= DEVO_REV,
542 	.devo_refcnt	= 0,
543 	.devo_getinfo	= ddi_no_info,
544 	.devo_identify	= nulldev,
545 	.devo_probe	= nulldev,
546 	.devo_attach	= nvme_attach,
547 	.devo_detach	= nvme_detach,
548 	.devo_reset	= nodev,
549 	.devo_cb_ops	= &nvme_cb_ops,
550 	.devo_bus_ops	= NULL,
551 	.devo_power	= NULL,
552 	.devo_quiesce	= nvme_quiesce,
553 };
554 
555 static struct modldrv nvme_modldrv = {
556 	.drv_modops	= &mod_driverops,
557 	.drv_linkinfo	= "NVMe v1.1b",
558 	.drv_dev_ops	= &nvme_dev_ops
559 };
560 
561 static struct modlinkage nvme_modlinkage = {
562 	.ml_rev		= MODREV_1,
563 	.ml_linkage	= { &nvme_modldrv, NULL }
564 };
565 
566 static bd_ops_t nvme_bd_ops = {
567 	.o_version	= BD_OPS_CURRENT_VERSION,
568 	.o_drive_info	= nvme_bd_driveinfo,
569 	.o_media_info	= nvme_bd_mediainfo,
570 	.o_devid_init	= nvme_bd_devid,
571 	.o_sync_cache	= nvme_bd_sync,
572 	.o_read		= nvme_bd_read,
573 	.o_write	= nvme_bd_write,
574 	.o_free_space	= nvme_bd_free_space,
575 };
576 
577 /*
578  * This list will hold commands that have timed out and couldn't be aborted.
579  * As we don't know what the hardware may still do with the DMA memory we can't
580  * free them, so we'll keep them forever on this list where we can easily look
581  * at them with mdb.
582  */
583 static struct list nvme_lost_cmds;
584 static kmutex_t nvme_lc_mutex;
585 
586 int
587 _init(void)
588 {
589 	int error;
590 
591 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
592 	if (error != DDI_SUCCESS)
593 		return (error);
594 
595 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
596 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
597 
598 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
599 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
600 	    offsetof(nvme_cmd_t, nc_list));
601 
602 	bd_mod_init(&nvme_dev_ops);
603 
604 	error = mod_install(&nvme_modlinkage);
605 	if (error != DDI_SUCCESS) {
606 		ddi_soft_state_fini(&nvme_state);
607 		mutex_destroy(&nvme_lc_mutex);
608 		list_destroy(&nvme_lost_cmds);
609 		bd_mod_fini(&nvme_dev_ops);
610 	}
611 
612 	return (error);
613 }
614 
615 int
616 _fini(void)
617 {
618 	int error;
619 
620 	if (!list_is_empty(&nvme_lost_cmds))
621 		return (DDI_FAILURE);
622 
623 	error = mod_remove(&nvme_modlinkage);
624 	if (error == DDI_SUCCESS) {
625 		ddi_soft_state_fini(&nvme_state);
626 		kmem_cache_destroy(nvme_cmd_cache);
627 		mutex_destroy(&nvme_lc_mutex);
628 		list_destroy(&nvme_lost_cmds);
629 		bd_mod_fini(&nvme_dev_ops);
630 	}
631 
632 	return (error);
633 }
634 
635 int
636 _info(struct modinfo *modinfop)
637 {
638 	return (mod_info(&nvme_modlinkage, modinfop));
639 }
640 
641 static inline void
642 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
643 {
644 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
645 
646 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
647 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
648 }
649 
650 static inline void
651 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
652 {
653 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
654 
655 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
656 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
657 }
658 
659 static inline uint64_t
660 nvme_get64(nvme_t *nvme, uintptr_t reg)
661 {
662 	uint64_t val;
663 
664 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
665 
666 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
667 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
668 
669 	return (val);
670 }
671 
672 static inline uint32_t
673 nvme_get32(nvme_t *nvme, uintptr_t reg)
674 {
675 	uint32_t val;
676 
677 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
678 
679 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
680 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
681 
682 	return (val);
683 }
684 
685 static boolean_t
686 nvme_check_regs_hdl(nvme_t *nvme)
687 {
688 	ddi_fm_error_t error;
689 
690 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
691 
692 	if (error.fme_status != DDI_FM_OK)
693 		return (B_TRUE);
694 
695 	return (B_FALSE);
696 }
697 
698 static boolean_t
699 nvme_check_dma_hdl(nvme_dma_t *dma)
700 {
701 	ddi_fm_error_t error;
702 
703 	if (dma == NULL)
704 		return (B_FALSE);
705 
706 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
707 
708 	if (error.fme_status != DDI_FM_OK)
709 		return (B_TRUE);
710 
711 	return (B_FALSE);
712 }
713 
714 static void
715 nvme_free_dma_common(nvme_dma_t *dma)
716 {
717 	if (dma->nd_dmah != NULL)
718 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
719 	if (dma->nd_acch != NULL)
720 		ddi_dma_mem_free(&dma->nd_acch);
721 	if (dma->nd_dmah != NULL)
722 		ddi_dma_free_handle(&dma->nd_dmah);
723 }
724 
725 static void
726 nvme_free_dma(nvme_dma_t *dma)
727 {
728 	nvme_free_dma_common(dma);
729 	kmem_free(dma, sizeof (*dma));
730 }
731 
732 /* ARGSUSED */
733 static void
734 nvme_prp_dma_destructor(void *buf, void *private)
735 {
736 	nvme_dma_t *dma = (nvme_dma_t *)buf;
737 
738 	nvme_free_dma_common(dma);
739 }
740 
741 static int
742 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
743     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
744 {
745 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
746 	    &dma->nd_dmah) != DDI_SUCCESS) {
747 		/*
748 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
749 		 * the only other possible error is DDI_DMA_BADATTR which
750 		 * indicates a driver bug which should cause a panic.
751 		 */
752 		dev_err(nvme->n_dip, CE_PANIC,
753 		    "!failed to get DMA handle, check DMA attributes");
754 		return (DDI_FAILURE);
755 	}
756 
757 	/*
758 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
759 	 * or the flags are conflicting, which isn't the case here.
760 	 */
761 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
762 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
763 	    &dma->nd_len, &dma->nd_acch);
764 
765 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
766 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
767 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
768 		dev_err(nvme->n_dip, CE_WARN,
769 		    "!failed to bind DMA memory");
770 		atomic_inc_32(&nvme->n_dma_bind_err);
771 		nvme_free_dma_common(dma);
772 		return (DDI_FAILURE);
773 	}
774 
775 	return (DDI_SUCCESS);
776 }
777 
778 static int
779 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
780     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
781 {
782 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
783 
784 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
785 	    DDI_SUCCESS) {
786 		*ret = NULL;
787 		kmem_free(dma, sizeof (nvme_dma_t));
788 		return (DDI_FAILURE);
789 	}
790 
791 	bzero(dma->nd_memp, dma->nd_len);
792 
793 	*ret = dma;
794 	return (DDI_SUCCESS);
795 }
796 
797 /* ARGSUSED */
798 static int
799 nvme_prp_dma_constructor(void *buf, void *private, int flags)
800 {
801 	nvme_dma_t *dma = (nvme_dma_t *)buf;
802 	nvme_t *nvme = (nvme_t *)private;
803 
804 	dma->nd_dmah = NULL;
805 	dma->nd_acch = NULL;
806 
807 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
808 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
809 		return (-1);
810 	}
811 
812 	ASSERT(dma->nd_ncookie == 1);
813 
814 	dma->nd_cached = B_TRUE;
815 
816 	return (0);
817 }
818 
819 static int
820 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
821     uint_t flags, nvme_dma_t **dma)
822 {
823 	uint32_t len = nentry * qe_len;
824 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
825 
826 	len = roundup(len, nvme->n_pagesize);
827 
828 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
829 	    != DDI_SUCCESS) {
830 		dev_err(nvme->n_dip, CE_WARN,
831 		    "!failed to get DMA memory for queue");
832 		goto fail;
833 	}
834 
835 	if ((*dma)->nd_ncookie != 1) {
836 		dev_err(nvme->n_dip, CE_WARN,
837 		    "!got too many cookies for queue DMA");
838 		goto fail;
839 	}
840 
841 	return (DDI_SUCCESS);
842 
843 fail:
844 	if (*dma) {
845 		nvme_free_dma(*dma);
846 		*dma = NULL;
847 	}
848 
849 	return (DDI_FAILURE);
850 }
851 
852 static void
853 nvme_free_cq(nvme_cq_t *cq)
854 {
855 	mutex_destroy(&cq->ncq_mutex);
856 
857 	if (cq->ncq_cmd_taskq != NULL)
858 		taskq_destroy(cq->ncq_cmd_taskq);
859 
860 	if (cq->ncq_dma != NULL)
861 		nvme_free_dma(cq->ncq_dma);
862 
863 	kmem_free(cq, sizeof (*cq));
864 }
865 
866 static void
867 nvme_free_qpair(nvme_qpair_t *qp)
868 {
869 	int i;
870 
871 	mutex_destroy(&qp->nq_mutex);
872 	sema_destroy(&qp->nq_sema);
873 
874 	if (qp->nq_sqdma != NULL)
875 		nvme_free_dma(qp->nq_sqdma);
876 
877 	if (qp->nq_active_cmds > 0)
878 		for (i = 0; i != qp->nq_nentry; i++)
879 			if (qp->nq_cmd[i] != NULL)
880 				nvme_free_cmd(qp->nq_cmd[i]);
881 
882 	if (qp->nq_cmd != NULL)
883 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
884 
885 	kmem_free(qp, sizeof (nvme_qpair_t));
886 }
887 
888 /*
889  * Destroy the pre-allocated cq array, but only free individual completion
890  * queues from the given starting index.
891  */
892 static void
893 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
894 {
895 	uint_t i;
896 
897 	for (i = start; i < nvme->n_cq_count; i++)
898 		if (nvme->n_cq[i] != NULL)
899 			nvme_free_cq(nvme->n_cq[i]);
900 
901 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
902 }
903 
904 static int
905 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
906     uint_t nthr)
907 {
908 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
909 	char name[64];		/* large enough for the taskq name */
910 
911 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
912 	    DDI_INTR_PRI(nvme->n_intr_pri));
913 
914 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
915 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
916 		goto fail;
917 
918 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
919 	cq->ncq_nentry = nentry;
920 	cq->ncq_id = idx;
921 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
922 
923 	/*
924 	 * Each completion queue has its own command taskq.
925 	 */
926 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
927 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
928 
929 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
930 	    TASKQ_PREPOPULATE);
931 
932 	if (cq->ncq_cmd_taskq == NULL) {
933 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
934 		    "taskq for cq %u", idx);
935 		goto fail;
936 	}
937 
938 	*cqp = cq;
939 	return (DDI_SUCCESS);
940 
941 fail:
942 	nvme_free_cq(cq);
943 	*cqp = NULL;
944 
945 	return (DDI_FAILURE);
946 }
947 
948 /*
949  * Create the n_cq array big enough to hold "ncq" completion queues.
950  * If the array already exists it will be re-sized (but only larger).
951  * The admin queue is included in this array, which boosts the
952  * max number of entries to UINT16_MAX + 1.
953  */
954 static int
955 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
956 {
957 	nvme_cq_t **cq;
958 	uint_t i, cq_count;
959 
960 	ASSERT3U(ncq, >, nvme->n_cq_count);
961 
962 	cq = nvme->n_cq;
963 	cq_count = nvme->n_cq_count;
964 
965 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
966 	nvme->n_cq_count = ncq;
967 
968 	for (i = 0; i < cq_count; i++)
969 		nvme->n_cq[i] = cq[i];
970 
971 	for (; i < nvme->n_cq_count; i++)
972 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
973 		    DDI_SUCCESS)
974 			goto fail;
975 
976 	if (cq != NULL)
977 		kmem_free(cq, sizeof (*cq) * cq_count);
978 
979 	return (DDI_SUCCESS);
980 
981 fail:
982 	nvme_destroy_cq_array(nvme, cq_count);
983 	/*
984 	 * Restore the original array
985 	 */
986 	nvme->n_cq_count = cq_count;
987 	nvme->n_cq = cq;
988 
989 	return (DDI_FAILURE);
990 }
991 
992 static int
993 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
994     uint_t idx)
995 {
996 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
997 	uint_t cq_idx;
998 
999 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
1000 	    DDI_INTR_PRI(nvme->n_intr_pri));
1001 
1002 	/*
1003 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
1004 	 * initialize the semaphore accordingly.
1005 	 */
1006 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
1007 
1008 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
1009 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
1010 		goto fail;
1011 
1012 	/*
1013 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
1014 	 */
1015 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
1016 	qp->nq_cq = nvme->n_cq[cq_idx];
1017 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1018 	qp->nq_nentry = nentry;
1019 
1020 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1021 
1022 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1023 	qp->nq_next_cmd = 0;
1024 
1025 	*nqp = qp;
1026 	return (DDI_SUCCESS);
1027 
1028 fail:
1029 	nvme_free_qpair(qp);
1030 	*nqp = NULL;
1031 
1032 	return (DDI_FAILURE);
1033 }
1034 
1035 static nvme_cmd_t *
1036 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1037 {
1038 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1039 
1040 	if (cmd == NULL)
1041 		return (cmd);
1042 
1043 	bzero(cmd, sizeof (nvme_cmd_t));
1044 
1045 	cmd->nc_nvme = nvme;
1046 
1047 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1048 	    DDI_INTR_PRI(nvme->n_intr_pri));
1049 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1050 
1051 	return (cmd);
1052 }
1053 
1054 static void
1055 nvme_free_cmd(nvme_cmd_t *cmd)
1056 {
1057 	/* Don't free commands on the lost commands list. */
1058 	if (list_link_active(&cmd->nc_list))
1059 		return;
1060 
1061 	if (cmd->nc_dma) {
1062 		if (cmd->nc_dma->nd_cached)
1063 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
1064 			    cmd->nc_dma);
1065 		else
1066 			nvme_free_dma(cmd->nc_dma);
1067 		cmd->nc_dma = NULL;
1068 	}
1069 
1070 	cv_destroy(&cmd->nc_cv);
1071 	mutex_destroy(&cmd->nc_mutex);
1072 
1073 	kmem_cache_free(nvme_cmd_cache, cmd);
1074 }
1075 
1076 static void
1077 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1078 {
1079 	sema_p(&qp->nq_sema);
1080 	nvme_submit_cmd_common(qp, cmd);
1081 }
1082 
1083 static int
1084 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1085 {
1086 	if (cmd->nc_nvme->n_dead) {
1087 		return (EIO);
1088 	}
1089 
1090 	if (sema_tryp(&qp->nq_sema) == 0)
1091 		return (EAGAIN);
1092 
1093 	nvme_submit_cmd_common(qp, cmd);
1094 	return (0);
1095 }
1096 
1097 static void
1098 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1099 {
1100 	nvme_reg_sqtdbl_t tail = { 0 };
1101 
1102 	mutex_enter(&qp->nq_mutex);
1103 	cmd->nc_completed = B_FALSE;
1104 
1105 	/*
1106 	 * Now that we hold the queue pair lock, we must check whether or not
1107 	 * the controller has been listed as dead (e.g. was removed due to
1108 	 * hotplug). This is necessary as otherwise we could race with
1109 	 * nvme_remove_callback(). Because this has not been enqueued, we don't
1110 	 * call nvme_unqueue_cmd(), which is why we must manually decrement the
1111 	 * semaphore.
1112 	 */
1113 	if (cmd->nc_nvme->n_dead) {
1114 		taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback,
1115 		    cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1116 		sema_v(&qp->nq_sema);
1117 		mutex_exit(&qp->nq_mutex);
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1123 	 * slot. If the slot is already occupied advance to the next slot and
1124 	 * try again. This can happen for long running commands like async event
1125 	 * requests.
1126 	 */
1127 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1128 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1129 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1130 
1131 	qp->nq_active_cmds++;
1132 
1133 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1134 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1135 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1136 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1137 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1138 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1139 
1140 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1141 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1142 
1143 	mutex_exit(&qp->nq_mutex);
1144 }
1145 
1146 static nvme_cmd_t *
1147 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1148 {
1149 	nvme_cmd_t *cmd;
1150 
1151 	ASSERT(mutex_owned(&qp->nq_mutex));
1152 	ASSERT3S(cid, <, qp->nq_nentry);
1153 
1154 	cmd = qp->nq_cmd[cid];
1155 	qp->nq_cmd[cid] = NULL;
1156 	ASSERT3U(qp->nq_active_cmds, >, 0);
1157 	qp->nq_active_cmds--;
1158 	sema_v(&qp->nq_sema);
1159 
1160 	ASSERT3P(cmd, !=, NULL);
1161 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1162 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1163 
1164 	return (cmd);
1165 }
1166 
1167 /*
1168  * Get the command tied to the next completed cqe and bump along completion
1169  * queue head counter.
1170  */
1171 static nvme_cmd_t *
1172 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1173 {
1174 	nvme_qpair_t *qp;
1175 	nvme_cqe_t *cqe;
1176 	nvme_cmd_t *cmd;
1177 
1178 	ASSERT(mutex_owned(&cq->ncq_mutex));
1179 
1180 	cqe = &cq->ncq_cq[cq->ncq_head];
1181 
1182 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1183 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1184 		return (NULL);
1185 
1186 	qp = nvme->n_ioq[cqe->cqe_sqid];
1187 
1188 	mutex_enter(&qp->nq_mutex);
1189 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1190 	mutex_exit(&qp->nq_mutex);
1191 
1192 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1193 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1194 
1195 	qp->nq_sqhead = cqe->cqe_sqhd;
1196 
1197 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1198 
1199 	/* Toggle phase on wrap-around. */
1200 	if (cq->ncq_head == 0)
1201 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1202 
1203 	return (cmd);
1204 }
1205 
1206 /*
1207  * Process all completed commands on the io completion queue.
1208  */
1209 static uint_t
1210 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1211 {
1212 	nvme_reg_cqhdbl_t head = { 0 };
1213 	nvme_cmd_t *cmd;
1214 	uint_t completed = 0;
1215 
1216 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1217 	    DDI_SUCCESS)
1218 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1219 		    __func__);
1220 
1221 	mutex_enter(&cq->ncq_mutex);
1222 
1223 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1224 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1225 		    TQ_NOSLEEP, &cmd->nc_tqent);
1226 
1227 		completed++;
1228 	}
1229 
1230 	if (completed > 0) {
1231 		/*
1232 		 * Update the completion queue head doorbell.
1233 		 */
1234 		head.b.cqhdbl_cqh = cq->ncq_head;
1235 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1236 	}
1237 
1238 	mutex_exit(&cq->ncq_mutex);
1239 
1240 	return (completed);
1241 }
1242 
1243 static nvme_cmd_t *
1244 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1245 {
1246 	nvme_cq_t *cq = qp->nq_cq;
1247 	nvme_reg_cqhdbl_t head = { 0 };
1248 	nvme_cmd_t *cmd;
1249 
1250 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1251 	    DDI_SUCCESS)
1252 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1253 		    __func__);
1254 
1255 	mutex_enter(&cq->ncq_mutex);
1256 
1257 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1258 		head.b.cqhdbl_cqh = cq->ncq_head;
1259 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1260 	}
1261 
1262 	mutex_exit(&cq->ncq_mutex);
1263 
1264 	return (cmd);
1265 }
1266 
1267 static int
1268 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1269 {
1270 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1271 
1272 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1273 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1274 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1275 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1276 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1277 
1278 	if (cmd->nc_xfer != NULL)
1279 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1280 
1281 	if (cmd->nc_nvme->n_strict_version) {
1282 		cmd->nc_nvme->n_dead = B_TRUE;
1283 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1284 	}
1285 
1286 	return (EIO);
1287 }
1288 
1289 static int
1290 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1291 {
1292 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1293 
1294 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1295 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1296 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1297 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1298 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1299 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1300 		cmd->nc_nvme->n_dead = B_TRUE;
1301 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1302 	}
1303 
1304 	return (EIO);
1305 }
1306 
1307 static int
1308 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1309 {
1310 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1311 
1312 	switch (cqe->cqe_sf.sf_sc) {
1313 	case NVME_CQE_SC_INT_NVM_WRITE:
1314 		/* write fail */
1315 		/* TODO: post ereport */
1316 		if (cmd->nc_xfer != NULL)
1317 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1318 		return (EIO);
1319 
1320 	case NVME_CQE_SC_INT_NVM_READ:
1321 		/* read fail */
1322 		/* TODO: post ereport */
1323 		if (cmd->nc_xfer != NULL)
1324 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1325 		return (EIO);
1326 
1327 	default:
1328 		return (nvme_check_unknown_cmd_status(cmd));
1329 	}
1330 }
1331 
1332 static int
1333 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1334 {
1335 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1336 
1337 	switch (cqe->cqe_sf.sf_sc) {
1338 	case NVME_CQE_SC_GEN_SUCCESS:
1339 		return (0);
1340 
1341 	/*
1342 	 * Errors indicating a bug in the driver should cause a panic.
1343 	 */
1344 	case NVME_CQE_SC_GEN_INV_OPC:
1345 		/* Invalid Command Opcode */
1346 		if (!cmd->nc_dontpanic)
1347 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1348 			    "programming error: invalid opcode in cmd %p",
1349 			    (void *)cmd);
1350 		return (EINVAL);
1351 
1352 	case NVME_CQE_SC_GEN_INV_FLD:
1353 		/* Invalid Field in Command */
1354 		if (!cmd->nc_dontpanic)
1355 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1356 			    "programming error: invalid field in cmd %p",
1357 			    (void *)cmd);
1358 		return (EIO);
1359 
1360 	case NVME_CQE_SC_GEN_ID_CNFL:
1361 		/* Command ID Conflict */
1362 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1363 		    "cmd ID conflict in cmd %p", (void *)cmd);
1364 		return (0);
1365 
1366 	case NVME_CQE_SC_GEN_INV_NS:
1367 		/* Invalid Namespace or Format */
1368 		if (!cmd->nc_dontpanic)
1369 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1370 			    "programming error: invalid NS/format in cmd %p",
1371 			    (void *)cmd);
1372 		return (EINVAL);
1373 
1374 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1375 		/* LBA Out Of Range */
1376 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1377 		    "LBA out of range in cmd %p", (void *)cmd);
1378 		return (0);
1379 
1380 	/*
1381 	 * Non-fatal errors, handle gracefully.
1382 	 */
1383 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1384 		/* Data Transfer Error (DMA) */
1385 		/* TODO: post ereport */
1386 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1387 		if (cmd->nc_xfer != NULL)
1388 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1389 		return (EIO);
1390 
1391 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1392 		/*
1393 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1394 		 * detailed error information is returned as async event,
1395 		 * so we pretty much ignore the error here and handle it
1396 		 * in the async event handler.
1397 		 */
1398 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1399 		if (cmd->nc_xfer != NULL)
1400 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1401 		return (EIO);
1402 
1403 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1404 		/*
1405 		 * Command Abort Requested. This normally happens only when a
1406 		 * command times out.
1407 		 */
1408 		/* TODO: post ereport or change blkdev to handle this? */
1409 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1410 		return (ECANCELED);
1411 
1412 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1413 		/* Command Aborted due to Power Loss Notification */
1414 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1415 		cmd->nc_nvme->n_dead = B_TRUE;
1416 		return (EIO);
1417 
1418 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1419 		/* Command Aborted due to SQ Deletion */
1420 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1421 		return (EIO);
1422 
1423 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1424 		/* Capacity Exceeded */
1425 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1426 		if (cmd->nc_xfer != NULL)
1427 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1428 		return (EIO);
1429 
1430 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1431 		/* Namespace Not Ready */
1432 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1433 		if (cmd->nc_xfer != NULL)
1434 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1435 		return (EIO);
1436 
1437 	default:
1438 		return (nvme_check_unknown_cmd_status(cmd));
1439 	}
1440 }
1441 
1442 static int
1443 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1444 {
1445 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1446 
1447 	switch (cqe->cqe_sf.sf_sc) {
1448 	case NVME_CQE_SC_SPC_INV_CQ:
1449 		/* Completion Queue Invalid */
1450 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1451 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1452 		return (EINVAL);
1453 
1454 	case NVME_CQE_SC_SPC_INV_QID:
1455 		/* Invalid Queue Identifier */
1456 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1457 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1458 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1459 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1460 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1461 		return (EINVAL);
1462 
1463 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1464 		/* Max Queue Size Exceeded */
1465 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1466 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1467 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1468 		return (EINVAL);
1469 
1470 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1471 		/* Abort Command Limit Exceeded */
1472 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1473 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1474 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1475 		return (0);
1476 
1477 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1478 		/* Async Event Request Limit Exceeded */
1479 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1480 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1481 		    "async event request limit exceeded in cmd %p",
1482 		    (void *)cmd);
1483 		return (0);
1484 
1485 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1486 		/* Invalid Interrupt Vector */
1487 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1488 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1489 		return (EINVAL);
1490 
1491 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1492 		/* Invalid Log Page */
1493 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1494 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1495 		return (EINVAL);
1496 
1497 	case NVME_CQE_SC_SPC_INV_FORMAT:
1498 		/* Invalid Format */
1499 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1500 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1501 		if (cmd->nc_xfer != NULL)
1502 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1503 		return (EINVAL);
1504 
1505 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1506 		/* Invalid Queue Deletion */
1507 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1508 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1509 		return (EINVAL);
1510 
1511 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1512 		/* Conflicting Attributes */
1513 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1514 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1515 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1516 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1517 		if (cmd->nc_xfer != NULL)
1518 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1519 		return (EINVAL);
1520 
1521 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1522 		/* Invalid Protection Information */
1523 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1524 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1525 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1526 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1527 		if (cmd->nc_xfer != NULL)
1528 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1529 		return (EINVAL);
1530 
1531 	case NVME_CQE_SC_SPC_NVM_READONLY:
1532 		/* Write to Read Only Range */
1533 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1534 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1535 		if (cmd->nc_xfer != NULL)
1536 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1537 		return (EROFS);
1538 
1539 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1540 		/* Invalid Firmware Slot */
1541 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1542 		return (EINVAL);
1543 
1544 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1545 		/* Invalid Firmware Image */
1546 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1547 		return (EINVAL);
1548 
1549 	case NVME_CQE_SC_SPC_FW_RESET:
1550 		/* Conventional Reset Required */
1551 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1552 		return (0);
1553 
1554 	case NVME_CQE_SC_SPC_FW_NSSR:
1555 		/* NVMe Subsystem Reset Required */
1556 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1557 		return (0);
1558 
1559 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1560 		/* Activation Requires Reset */
1561 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1562 		return (0);
1563 
1564 	case NVME_CQE_SC_SPC_FW_MTFA:
1565 		/* Activation Requires Maximum Time Violation */
1566 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1567 		return (EAGAIN);
1568 
1569 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1570 		/* Activation Prohibited */
1571 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1572 		return (EINVAL);
1573 
1574 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1575 		/* Overlapping Firmware Ranges */
1576 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1577 		return (EINVAL);
1578 
1579 	default:
1580 		return (nvme_check_unknown_cmd_status(cmd));
1581 	}
1582 }
1583 
1584 static inline int
1585 nvme_check_cmd_status(nvme_cmd_t *cmd)
1586 {
1587 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1588 
1589 	/*
1590 	 * Take a shortcut if the controller is dead, or if
1591 	 * command status indicates no error.
1592 	 */
1593 	if (cmd->nc_nvme->n_dead)
1594 		return (EIO);
1595 
1596 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1597 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1598 		return (0);
1599 
1600 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1601 		return (nvme_check_generic_cmd_status(cmd));
1602 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1603 		return (nvme_check_specific_cmd_status(cmd));
1604 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1605 		return (nvme_check_integrity_cmd_status(cmd));
1606 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1607 		return (nvme_check_vendor_cmd_status(cmd));
1608 
1609 	return (nvme_check_unknown_cmd_status(cmd));
1610 }
1611 
1612 static int
1613 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1614 {
1615 	nvme_t *nvme = abort_cmd->nc_nvme;
1616 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1617 	nvme_abort_cmd_t ac = { 0 };
1618 	int ret = 0;
1619 
1620 	sema_p(&nvme->n_abort_sema);
1621 
1622 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1623 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1624 
1625 	cmd->nc_sqid = 0;
1626 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1627 	cmd->nc_callback = nvme_wakeup_cmd;
1628 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1629 
1630 	/*
1631 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1632 	 * the aborted command has completed (aborted or otherwise), but since
1633 	 * we still hold the aborted command's mutex its callback hasn't been
1634 	 * processed yet.
1635 	 */
1636 	nvme_admin_cmd(cmd, sec);
1637 	sema_v(&nvme->n_abort_sema);
1638 
1639 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1640 		dev_err(nvme->n_dip, CE_WARN,
1641 		    "!ABORT failed with sct = %x, sc = %x",
1642 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1643 		atomic_inc_32(&nvme->n_abort_failed);
1644 	} else {
1645 		dev_err(nvme->n_dip, CE_WARN,
1646 		    "!ABORT of command %d/%d %ssuccessful",
1647 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1648 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1649 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1650 			atomic_inc_32(&nvme->n_cmd_aborted);
1651 	}
1652 
1653 	nvme_free_cmd(cmd);
1654 	return (ret);
1655 }
1656 
1657 /*
1658  * nvme_wait_cmd -- wait for command completion or timeout
1659  *
1660  * In case of a serious error or a timeout of the abort command the hardware
1661  * will be declared dead and FMA will be notified.
1662  */
1663 static void
1664 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1665 {
1666 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1667 	nvme_t *nvme = cmd->nc_nvme;
1668 	nvme_reg_csts_t csts;
1669 	nvme_qpair_t *qp;
1670 
1671 	ASSERT(mutex_owned(&cmd->nc_mutex));
1672 
1673 	while (!cmd->nc_completed) {
1674 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1675 			break;
1676 	}
1677 
1678 	if (cmd->nc_completed)
1679 		return;
1680 
1681 	/*
1682 	 * The command timed out.
1683 	 *
1684 	 * Check controller for fatal status, any errors associated with the
1685 	 * register or DMA handle, or for a double timeout (abort command timed
1686 	 * out). If necessary log a warning and call FMA.
1687 	 */
1688 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1689 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1690 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1691 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1692 	atomic_inc_32(&nvme->n_cmd_timeout);
1693 
1694 	if (csts.b.csts_cfs ||
1695 	    nvme_check_regs_hdl(nvme) ||
1696 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1697 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1698 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1699 		nvme->n_dead = B_TRUE;
1700 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1701 		/*
1702 		 * If the abort succeeded the command should complete
1703 		 * immediately with an appropriate status.
1704 		 */
1705 		while (!cmd->nc_completed)
1706 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1707 
1708 		return;
1709 	}
1710 
1711 	qp = nvme->n_ioq[cmd->nc_sqid];
1712 
1713 	mutex_enter(&qp->nq_mutex);
1714 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1715 	mutex_exit(&qp->nq_mutex);
1716 
1717 	/*
1718 	 * As we don't know what the presumed dead hardware might still do with
1719 	 * the DMA memory, we'll put the command on the lost commands list if it
1720 	 * has any DMA memory.
1721 	 */
1722 	if (cmd->nc_dma != NULL) {
1723 		mutex_enter(&nvme_lc_mutex);
1724 		list_insert_head(&nvme_lost_cmds, cmd);
1725 		mutex_exit(&nvme_lc_mutex);
1726 	}
1727 }
1728 
1729 static void
1730 nvme_wakeup_cmd(void *arg)
1731 {
1732 	nvme_cmd_t *cmd = arg;
1733 
1734 	mutex_enter(&cmd->nc_mutex);
1735 	cmd->nc_completed = B_TRUE;
1736 	cv_signal(&cmd->nc_cv);
1737 	mutex_exit(&cmd->nc_mutex);
1738 }
1739 
1740 static void
1741 nvme_async_event_task(void *arg)
1742 {
1743 	nvme_cmd_t *cmd = arg;
1744 	nvme_t *nvme = cmd->nc_nvme;
1745 	nvme_error_log_entry_t *error_log = NULL;
1746 	nvme_health_log_t *health_log = NULL;
1747 	size_t logsize = 0;
1748 	nvme_async_event_t event;
1749 
1750 	/*
1751 	 * Check for errors associated with the async request itself. The only
1752 	 * command-specific error is "async event limit exceeded", which
1753 	 * indicates a programming error in the driver and causes a panic in
1754 	 * nvme_check_cmd_status().
1755 	 *
1756 	 * Other possible errors are various scenarios where the async request
1757 	 * was aborted, or internal errors in the device. Internal errors are
1758 	 * reported to FMA, the command aborts need no special handling here.
1759 	 *
1760 	 * And finally, at least qemu nvme does not support async events,
1761 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1762 	 * will avoid posting async events.
1763 	 */
1764 
1765 	if (nvme_check_cmd_status(cmd) != 0) {
1766 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1767 		    "!async event request returned failure, sct = %x, "
1768 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1769 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1770 		    cmd->nc_cqe.cqe_sf.sf_m);
1771 
1772 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1773 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1774 			cmd->nc_nvme->n_dead = B_TRUE;
1775 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1776 			    DDI_SERVICE_LOST);
1777 		}
1778 
1779 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1780 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1781 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1782 			nvme->n_async_event_supported = B_FALSE;
1783 		}
1784 
1785 		nvme_free_cmd(cmd);
1786 		return;
1787 	}
1788 
1789 
1790 	event.r = cmd->nc_cqe.cqe_dw0;
1791 
1792 	/* Clear CQE and re-submit the async request. */
1793 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1794 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1795 
1796 	switch (event.b.ae_type) {
1797 	case NVME_ASYNC_TYPE_ERROR:
1798 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1799 			(void) nvme_get_logpage(nvme, B_FALSE,
1800 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1801 		} else {
1802 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1803 			    "async event reply: %d", event.b.ae_logpage);
1804 			atomic_inc_32(&nvme->n_wrong_logpage);
1805 		}
1806 
1807 		switch (event.b.ae_info) {
1808 		case NVME_ASYNC_ERROR_INV_SQ:
1809 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1810 			    "invalid submission queue");
1811 			return;
1812 
1813 		case NVME_ASYNC_ERROR_INV_DBL:
1814 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1815 			    "invalid doorbell write value");
1816 			return;
1817 
1818 		case NVME_ASYNC_ERROR_DIAGFAIL:
1819 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1820 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1821 			nvme->n_dead = B_TRUE;
1822 			atomic_inc_32(&nvme->n_diagfail_event);
1823 			break;
1824 
1825 		case NVME_ASYNC_ERROR_PERSISTENT:
1826 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1827 			    "device error");
1828 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1829 			nvme->n_dead = B_TRUE;
1830 			atomic_inc_32(&nvme->n_persistent_event);
1831 			break;
1832 
1833 		case NVME_ASYNC_ERROR_TRANSIENT:
1834 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1835 			    "device error");
1836 			/* TODO: send ereport */
1837 			atomic_inc_32(&nvme->n_transient_event);
1838 			break;
1839 
1840 		case NVME_ASYNC_ERROR_FW_LOAD:
1841 			dev_err(nvme->n_dip, CE_WARN,
1842 			    "!firmware image load error");
1843 			atomic_inc_32(&nvme->n_fw_load_event);
1844 			break;
1845 		}
1846 		break;
1847 
1848 	case NVME_ASYNC_TYPE_HEALTH:
1849 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1850 			(void) nvme_get_logpage(nvme, B_FALSE,
1851 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1852 			    -1);
1853 		} else {
1854 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1855 			    "async event reply: %d", event.b.ae_logpage);
1856 			atomic_inc_32(&nvme->n_wrong_logpage);
1857 		}
1858 
1859 		switch (event.b.ae_info) {
1860 		case NVME_ASYNC_HEALTH_RELIABILITY:
1861 			dev_err(nvme->n_dip, CE_WARN,
1862 			    "!device reliability compromised");
1863 			/* TODO: send ereport */
1864 			atomic_inc_32(&nvme->n_reliability_event);
1865 			break;
1866 
1867 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1868 			dev_err(nvme->n_dip, CE_WARN,
1869 			    "!temperature above threshold");
1870 			/* TODO: send ereport */
1871 			atomic_inc_32(&nvme->n_temperature_event);
1872 			break;
1873 
1874 		case NVME_ASYNC_HEALTH_SPARE:
1875 			dev_err(nvme->n_dip, CE_WARN,
1876 			    "!spare space below threshold");
1877 			/* TODO: send ereport */
1878 			atomic_inc_32(&nvme->n_spare_event);
1879 			break;
1880 		}
1881 		break;
1882 
1883 	case NVME_ASYNC_TYPE_VENDOR:
1884 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1885 		    "received, info = %x, logpage = %x", event.b.ae_info,
1886 		    event.b.ae_logpage);
1887 		atomic_inc_32(&nvme->n_vendor_event);
1888 		break;
1889 
1890 	default:
1891 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1892 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1893 		    event.b.ae_info, event.b.ae_logpage);
1894 		atomic_inc_32(&nvme->n_unknown_event);
1895 		break;
1896 	}
1897 
1898 	if (error_log)
1899 		kmem_free(error_log, logsize);
1900 
1901 	if (health_log)
1902 		kmem_free(health_log, logsize);
1903 }
1904 
1905 static void
1906 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1907 {
1908 	mutex_enter(&cmd->nc_mutex);
1909 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1910 	nvme_wait_cmd(cmd, sec);
1911 	mutex_exit(&cmd->nc_mutex);
1912 }
1913 
1914 static void
1915 nvme_async_event(nvme_t *nvme)
1916 {
1917 	nvme_cmd_t *cmd;
1918 
1919 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1920 	cmd->nc_sqid = 0;
1921 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1922 	cmd->nc_callback = nvme_async_event_task;
1923 	cmd->nc_dontpanic = B_TRUE;
1924 
1925 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1926 }
1927 
1928 static int
1929 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1930     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1931 {
1932 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1933 	nvme_format_nvm_t format_nvm = { 0 };
1934 	int ret;
1935 
1936 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1937 	format_nvm.b.fm_ms = ms ? 1 : 0;
1938 	format_nvm.b.fm_pi = pi & 0x7;
1939 	format_nvm.b.fm_pil = pil ? 1 : 0;
1940 	format_nvm.b.fm_ses = ses & 0x7;
1941 
1942 	cmd->nc_sqid = 0;
1943 	cmd->nc_callback = nvme_wakeup_cmd;
1944 	cmd->nc_sqe.sqe_nsid = nsid;
1945 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1946 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1947 
1948 	/*
1949 	 * Some devices like Samsung SM951 don't allow formatting of all
1950 	 * namespaces in one command. Handle that gracefully.
1951 	 */
1952 	if (nsid == (uint32_t)-1)
1953 		cmd->nc_dontpanic = B_TRUE;
1954 	/*
1955 	 * If this format request was initiated by the user, then don't allow a
1956 	 * programmer error to panic the system.
1957 	 */
1958 	if (user)
1959 		cmd->nc_dontpanic = B_TRUE;
1960 
1961 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1962 
1963 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1964 		dev_err(nvme->n_dip, CE_WARN,
1965 		    "!FORMAT failed with sct = %x, sc = %x",
1966 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1967 	}
1968 
1969 	nvme_free_cmd(cmd);
1970 	return (ret);
1971 }
1972 
1973 static int
1974 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1975     uint8_t logpage, ...)
1976 {
1977 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1978 	nvme_getlogpage_t getlogpage = { 0 };
1979 	va_list ap;
1980 	int ret;
1981 
1982 	va_start(ap, logpage);
1983 
1984 	cmd->nc_sqid = 0;
1985 	cmd->nc_callback = nvme_wakeup_cmd;
1986 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1987 
1988 	if (user)
1989 		cmd->nc_dontpanic = B_TRUE;
1990 
1991 	getlogpage.b.lp_lid = logpage;
1992 
1993 	switch (logpage) {
1994 	case NVME_LOGPAGE_ERROR:
1995 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1996 		/*
1997 		 * The GET LOG PAGE command can use at most 2 pages to return
1998 		 * data, PRP lists are not supported.
1999 		 */
2000 		*bufsize = MIN(2 * nvme->n_pagesize,
2001 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
2002 		break;
2003 
2004 	case NVME_LOGPAGE_HEALTH:
2005 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2006 		*bufsize = sizeof (nvme_health_log_t);
2007 		break;
2008 
2009 	case NVME_LOGPAGE_FWSLOT:
2010 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2011 		*bufsize = sizeof (nvme_fwslot_log_t);
2012 		break;
2013 
2014 	default:
2015 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
2016 		    logpage);
2017 		atomic_inc_32(&nvme->n_unknown_logpage);
2018 		ret = EINVAL;
2019 		goto fail;
2020 	}
2021 
2022 	va_end(ap);
2023 
2024 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
2025 
2026 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
2027 
2028 	if (nvme_zalloc_dma(nvme, *bufsize,
2029 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2030 		dev_err(nvme->n_dip, CE_WARN,
2031 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
2032 		ret = ENOMEM;
2033 		goto fail;
2034 	}
2035 
2036 	if (cmd->nc_dma->nd_ncookie > 2) {
2037 		dev_err(nvme->n_dip, CE_WARN,
2038 		    "!too many DMA cookies for GET LOG PAGE");
2039 		atomic_inc_32(&nvme->n_too_many_cookies);
2040 		ret = ENOMEM;
2041 		goto fail;
2042 	}
2043 
2044 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2045 	if (cmd->nc_dma->nd_ncookie > 1) {
2046 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2047 		    &cmd->nc_dma->nd_cookie);
2048 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2049 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2050 	}
2051 
2052 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2053 
2054 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2055 		dev_err(nvme->n_dip, CE_WARN,
2056 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2057 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2058 		goto fail;
2059 	}
2060 
2061 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2062 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2063 
2064 fail:
2065 	nvme_free_cmd(cmd);
2066 
2067 	return (ret);
2068 }
2069 
2070 static int
2071 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2072 {
2073 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2074 	int ret;
2075 
2076 	if (buf == NULL)
2077 		return (EINVAL);
2078 
2079 	cmd->nc_sqid = 0;
2080 	cmd->nc_callback = nvme_wakeup_cmd;
2081 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2082 	cmd->nc_sqe.sqe_nsid = nsid;
2083 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2084 
2085 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2086 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2087 		dev_err(nvme->n_dip, CE_WARN,
2088 		    "!nvme_zalloc_dma failed for IDENTIFY");
2089 		ret = ENOMEM;
2090 		goto fail;
2091 	}
2092 
2093 	if (cmd->nc_dma->nd_ncookie > 2) {
2094 		dev_err(nvme->n_dip, CE_WARN,
2095 		    "!too many DMA cookies for IDENTIFY");
2096 		atomic_inc_32(&nvme->n_too_many_cookies);
2097 		ret = ENOMEM;
2098 		goto fail;
2099 	}
2100 
2101 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2102 	if (cmd->nc_dma->nd_ncookie > 1) {
2103 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2104 		    &cmd->nc_dma->nd_cookie);
2105 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2106 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2107 	}
2108 
2109 	if (user)
2110 		cmd->nc_dontpanic = B_TRUE;
2111 
2112 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2113 
2114 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2115 		dev_err(nvme->n_dip, CE_WARN,
2116 		    "!IDENTIFY failed with sct = %x, sc = %x",
2117 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2118 		goto fail;
2119 	}
2120 
2121 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2122 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2123 
2124 fail:
2125 	nvme_free_cmd(cmd);
2126 
2127 	return (ret);
2128 }
2129 
2130 static int
2131 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2132     uint32_t val, uint32_t *res)
2133 {
2134 	_NOTE(ARGUNUSED(nsid));
2135 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2136 	int ret = EINVAL;
2137 
2138 	ASSERT(res != NULL);
2139 
2140 	cmd->nc_sqid = 0;
2141 	cmd->nc_callback = nvme_wakeup_cmd;
2142 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2143 	cmd->nc_sqe.sqe_cdw10 = feature;
2144 	cmd->nc_sqe.sqe_cdw11 = val;
2145 
2146 	if (user)
2147 		cmd->nc_dontpanic = B_TRUE;
2148 
2149 	switch (feature) {
2150 	case NVME_FEAT_WRITE_CACHE:
2151 		if (!nvme->n_write_cache_present)
2152 			goto fail;
2153 		break;
2154 
2155 	case NVME_FEAT_NQUEUES:
2156 		break;
2157 
2158 	default:
2159 		goto fail;
2160 	}
2161 
2162 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2163 
2164 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2165 		dev_err(nvme->n_dip, CE_WARN,
2166 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2167 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2168 		    cmd->nc_cqe.cqe_sf.sf_sc);
2169 		goto fail;
2170 	}
2171 
2172 	*res = cmd->nc_cqe.cqe_dw0;
2173 
2174 fail:
2175 	nvme_free_cmd(cmd);
2176 	return (ret);
2177 }
2178 
2179 static int
2180 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2181     uint32_t *res, void **buf, size_t *bufsize)
2182 {
2183 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2184 	int ret = EINVAL;
2185 
2186 	ASSERT(res != NULL);
2187 
2188 	if (bufsize != NULL)
2189 		*bufsize = 0;
2190 
2191 	cmd->nc_sqid = 0;
2192 	cmd->nc_callback = nvme_wakeup_cmd;
2193 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2194 	cmd->nc_sqe.sqe_cdw10 = feature;
2195 	cmd->nc_sqe.sqe_cdw11 = *res;
2196 
2197 	/*
2198 	 * For some of the optional features there doesn't seem to be a method
2199 	 * of detecting whether it is supported other than using it.  This will
2200 	 * cause "Invalid Field in Command" error, which is normally considered
2201 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2202 	 * in nvme_check_generic_cmd_status().
2203 	 */
2204 	switch (feature) {
2205 	case NVME_FEAT_ARBITRATION:
2206 	case NVME_FEAT_POWER_MGMT:
2207 	case NVME_FEAT_TEMPERATURE:
2208 	case NVME_FEAT_ERROR:
2209 	case NVME_FEAT_NQUEUES:
2210 	case NVME_FEAT_INTR_COAL:
2211 	case NVME_FEAT_INTR_VECT:
2212 	case NVME_FEAT_WRITE_ATOM:
2213 	case NVME_FEAT_ASYNC_EVENT:
2214 		break;
2215 
2216 	case NVME_FEAT_WRITE_CACHE:
2217 		if (!nvme->n_write_cache_present)
2218 			goto fail;
2219 		break;
2220 
2221 	case NVME_FEAT_LBA_RANGE:
2222 		if (!nvme->n_lba_range_supported)
2223 			goto fail;
2224 
2225 		cmd->nc_dontpanic = B_TRUE;
2226 		cmd->nc_sqe.sqe_nsid = nsid;
2227 		ASSERT(bufsize != NULL);
2228 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2229 		break;
2230 
2231 	case NVME_FEAT_AUTO_PST:
2232 		if (!nvme->n_auto_pst_supported)
2233 			goto fail;
2234 
2235 		ASSERT(bufsize != NULL);
2236 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2237 		break;
2238 
2239 	case NVME_FEAT_PROGRESS:
2240 		if (!nvme->n_progress_supported)
2241 			goto fail;
2242 
2243 		cmd->nc_dontpanic = B_TRUE;
2244 		break;
2245 
2246 	default:
2247 		goto fail;
2248 	}
2249 
2250 	if (user)
2251 		cmd->nc_dontpanic = B_TRUE;
2252 
2253 	if (bufsize != NULL && *bufsize != 0) {
2254 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2255 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2256 			dev_err(nvme->n_dip, CE_WARN,
2257 			    "!nvme_zalloc_dma failed for GET FEATURES");
2258 			ret = ENOMEM;
2259 			goto fail;
2260 		}
2261 
2262 		if (cmd->nc_dma->nd_ncookie > 2) {
2263 			dev_err(nvme->n_dip, CE_WARN,
2264 			    "!too many DMA cookies for GET FEATURES");
2265 			atomic_inc_32(&nvme->n_too_many_cookies);
2266 			ret = ENOMEM;
2267 			goto fail;
2268 		}
2269 
2270 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2271 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2272 		if (cmd->nc_dma->nd_ncookie > 1) {
2273 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2274 			    &cmd->nc_dma->nd_cookie);
2275 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2276 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2277 		}
2278 	}
2279 
2280 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2281 
2282 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2283 		boolean_t known = B_TRUE;
2284 
2285 		/* Check if this is unsupported optional feature */
2286 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2287 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2288 			switch (feature) {
2289 			case NVME_FEAT_LBA_RANGE:
2290 				nvme->n_lba_range_supported = B_FALSE;
2291 				break;
2292 			case NVME_FEAT_PROGRESS:
2293 				nvme->n_progress_supported = B_FALSE;
2294 				break;
2295 			default:
2296 				known = B_FALSE;
2297 				break;
2298 			}
2299 		} else {
2300 			known = B_FALSE;
2301 		}
2302 
2303 		/* Report the error otherwise */
2304 		if (!known) {
2305 			dev_err(nvme->n_dip, CE_WARN,
2306 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2307 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2308 			    cmd->nc_cqe.cqe_sf.sf_sc);
2309 		}
2310 
2311 		goto fail;
2312 	}
2313 
2314 	if (bufsize != NULL && *bufsize != 0) {
2315 		ASSERT(buf != NULL);
2316 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2317 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2318 	}
2319 
2320 	*res = cmd->nc_cqe.cqe_dw0;
2321 
2322 fail:
2323 	nvme_free_cmd(cmd);
2324 	return (ret);
2325 }
2326 
2327 static int
2328 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2329 {
2330 	nvme_write_cache_t nwc = { 0 };
2331 
2332 	if (enable)
2333 		nwc.b.wc_wce = 1;
2334 
2335 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2336 	    nwc.r, &nwc.r));
2337 }
2338 
2339 static int
2340 nvme_set_nqueues(nvme_t *nvme)
2341 {
2342 	nvme_nqueues_t nq = { 0 };
2343 	int ret;
2344 
2345 	/*
2346 	 * The default is to allocate one completion queue per vector.
2347 	 */
2348 	if (nvme->n_completion_queues == -1)
2349 		nvme->n_completion_queues = nvme->n_intr_cnt;
2350 
2351 	/*
2352 	 * There is no point in having more compeletion queues than
2353 	 * interrupt vectors.
2354 	 */
2355 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2356 	    nvme->n_intr_cnt);
2357 
2358 	/*
2359 	 * The default is to use one submission queue per completion queue.
2360 	 */
2361 	if (nvme->n_submission_queues == -1)
2362 		nvme->n_submission_queues = nvme->n_completion_queues;
2363 
2364 	/*
2365 	 * There is no point in having more compeletion queues than
2366 	 * submission queues.
2367 	 */
2368 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2369 	    nvme->n_submission_queues);
2370 
2371 	ASSERT(nvme->n_submission_queues > 0);
2372 	ASSERT(nvme->n_completion_queues > 0);
2373 
2374 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2375 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2376 
2377 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2378 	    &nq.r);
2379 
2380 	if (ret == 0) {
2381 		/*
2382 		 * Never use more than the requested number of queues.
2383 		 */
2384 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2385 		    nq.b.nq_nsq + 1);
2386 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2387 		    nq.b.nq_ncq + 1);
2388 	}
2389 
2390 	return (ret);
2391 }
2392 
2393 static int
2394 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2395 {
2396 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2397 	nvme_create_queue_dw10_t dw10 = { 0 };
2398 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2399 	int ret;
2400 
2401 	dw10.b.q_qid = cq->ncq_id;
2402 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2403 
2404 	c_dw11.b.cq_pc = 1;
2405 	c_dw11.b.cq_ien = 1;
2406 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2407 
2408 	cmd->nc_sqid = 0;
2409 	cmd->nc_callback = nvme_wakeup_cmd;
2410 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2411 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2412 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2413 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2414 
2415 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2416 
2417 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2418 		dev_err(nvme->n_dip, CE_WARN,
2419 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2420 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2421 	}
2422 
2423 	nvme_free_cmd(cmd);
2424 
2425 	return (ret);
2426 }
2427 
2428 static int
2429 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2430 {
2431 	nvme_cq_t *cq = qp->nq_cq;
2432 	nvme_cmd_t *cmd;
2433 	nvme_create_queue_dw10_t dw10 = { 0 };
2434 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2435 	int ret;
2436 
2437 	/*
2438 	 * It is possible to have more qpairs than completion queues,
2439 	 * and when the idx > ncq_id, that completion queue is shared
2440 	 * and has already been created.
2441 	 */
2442 	if (idx <= cq->ncq_id &&
2443 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2444 		return (DDI_FAILURE);
2445 
2446 	dw10.b.q_qid = idx;
2447 	dw10.b.q_qsize = qp->nq_nentry - 1;
2448 
2449 	s_dw11.b.sq_pc = 1;
2450 	s_dw11.b.sq_cqid = cq->ncq_id;
2451 
2452 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2453 	cmd->nc_sqid = 0;
2454 	cmd->nc_callback = nvme_wakeup_cmd;
2455 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2456 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2457 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2458 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2459 
2460 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2461 
2462 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2463 		dev_err(nvme->n_dip, CE_WARN,
2464 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2465 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2466 	}
2467 
2468 	nvme_free_cmd(cmd);
2469 
2470 	return (ret);
2471 }
2472 
2473 static boolean_t
2474 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2475 {
2476 	nvme_reg_csts_t csts;
2477 	int i;
2478 
2479 	nvme_put32(nvme, NVME_REG_CC, 0);
2480 
2481 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2482 	if (csts.b.csts_rdy == 1) {
2483 		nvme_put32(nvme, NVME_REG_CC, 0);
2484 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2485 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2486 			if (csts.b.csts_rdy == 0)
2487 				break;
2488 
2489 			if (quiesce)
2490 				drv_usecwait(50000);
2491 			else
2492 				delay(drv_usectohz(50000));
2493 		}
2494 	}
2495 
2496 	nvme_put32(nvme, NVME_REG_AQA, 0);
2497 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2498 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2499 
2500 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2501 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2502 }
2503 
2504 static void
2505 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2506 {
2507 	nvme_reg_cc_t cc;
2508 	nvme_reg_csts_t csts;
2509 	int i;
2510 
2511 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2512 
2513 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2514 	cc.b.cc_shn = mode & 0x3;
2515 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2516 
2517 	for (i = 0; i != 10; i++) {
2518 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2519 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2520 			break;
2521 
2522 		if (quiesce)
2523 			drv_usecwait(100000);
2524 		else
2525 			delay(drv_usectohz(100000));
2526 	}
2527 }
2528 
2529 
2530 static void
2531 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2532 {
2533 	/*
2534 	 * Section 7.7 of the spec describes how to get a unique ID for
2535 	 * the controller: the vendor ID, the model name and the serial
2536 	 * number shall be unique when combined.
2537 	 *
2538 	 * If a namespace has no EUI64 we use the above and add the hex
2539 	 * namespace ID to get a unique ID for the namespace.
2540 	 */
2541 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2542 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2543 
2544 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2545 	bcopy(nvme->n_idctl->id_serial, serial,
2546 	    sizeof (nvme->n_idctl->id_serial));
2547 
2548 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2549 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2550 
2551 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2552 	    nvme->n_idctl->id_vid, model, serial, nsid);
2553 }
2554 
2555 static int
2556 nvme_init_ns(nvme_t *nvme, int nsid)
2557 {
2558 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2559 	nvme_identify_nsid_t *idns;
2560 	boolean_t was_ignored;
2561 	int last_rp;
2562 
2563 	ns->ns_nvme = nvme;
2564 
2565 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2566 		dev_err(nvme->n_dip, CE_WARN,
2567 		    "!failed to identify namespace %d", nsid);
2568 		return (DDI_FAILURE);
2569 	}
2570 
2571 	ns->ns_idns = idns;
2572 	ns->ns_id = nsid;
2573 	ns->ns_block_count = idns->id_nsize;
2574 	ns->ns_block_size =
2575 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2576 	ns->ns_best_block_size = ns->ns_block_size;
2577 
2578 	/*
2579 	 * Get the EUI64 if present. Use it for devid and device node names.
2580 	 */
2581 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2582 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2583 
2584 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2585 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2586 		uint8_t *eui64 = ns->ns_eui64;
2587 
2588 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2589 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2590 		    eui64[0], eui64[1], eui64[2], eui64[3],
2591 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2592 	} else {
2593 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2594 		    ns->ns_id);
2595 
2596 		nvme_prepare_devid(nvme, ns->ns_id);
2597 	}
2598 
2599 	/*
2600 	 * Find the LBA format with no metadata and the best relative
2601 	 * performance. A value of 3 means "degraded", 0 is best.
2602 	 */
2603 	last_rp = 3;
2604 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2605 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2606 			break;
2607 		if (idns->id_lbaf[j].lbaf_ms != 0)
2608 			continue;
2609 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2610 			continue;
2611 		last_rp = idns->id_lbaf[j].lbaf_rp;
2612 		ns->ns_best_block_size =
2613 		    1 << idns->id_lbaf[j].lbaf_lbads;
2614 	}
2615 
2616 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2617 		ns->ns_best_block_size = nvme->n_min_block_size;
2618 
2619 	was_ignored = ns->ns_ignore;
2620 
2621 	/*
2622 	 * We currently don't support namespaces that use either:
2623 	 * - protection information
2624 	 * - illegal block size (< 512)
2625 	 */
2626 	if (idns->id_dps.dp_pinfo) {
2627 		dev_err(nvme->n_dip, CE_WARN,
2628 		    "!ignoring namespace %d, unsupported feature: "
2629 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2630 		ns->ns_ignore = B_TRUE;
2631 	} else if (ns->ns_block_size < 512) {
2632 		dev_err(nvme->n_dip, CE_WARN,
2633 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2634 		    nsid, (uint64_t)ns->ns_block_size);
2635 		ns->ns_ignore = B_TRUE;
2636 	} else {
2637 		ns->ns_ignore = B_FALSE;
2638 	}
2639 
2640 	/*
2641 	 * Keep a count of namespaces which are attachable.
2642 	 * See comments in nvme_bd_driveinfo() to understand its effect.
2643 	 */
2644 	if (was_ignored) {
2645 		/*
2646 		 * Previously ignored, but now not. Count it.
2647 		 */
2648 		if (!ns->ns_ignore)
2649 			nvme->n_namespaces_attachable++;
2650 	} else {
2651 		/*
2652 		 * Wasn't ignored previously, but now needs to be.
2653 		 * Discount it.
2654 		 */
2655 		if (ns->ns_ignore)
2656 			nvme->n_namespaces_attachable--;
2657 	}
2658 
2659 	return (DDI_SUCCESS);
2660 }
2661 
2662 static int
2663 nvme_init(nvme_t *nvme)
2664 {
2665 	nvme_reg_cc_t cc = { 0 };
2666 	nvme_reg_aqa_t aqa = { 0 };
2667 	nvme_reg_asq_t asq = { 0 };
2668 	nvme_reg_acq_t acq = { 0 };
2669 	nvme_reg_cap_t cap;
2670 	nvme_reg_vs_t vs;
2671 	nvme_reg_csts_t csts;
2672 	int i = 0;
2673 	uint16_t nqueues;
2674 	uint_t tq_threads;
2675 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2676 	char *vendor, *product;
2677 
2678 	/* Check controller version */
2679 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2680 	nvme->n_version.v_major = vs.b.vs_mjr;
2681 	nvme->n_version.v_minor = vs.b.vs_mnr;
2682 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2683 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2684 
2685 	if (nvme->n_version.v_major > nvme_version_major) {
2686 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2687 		    nvme_version_major);
2688 		if (nvme->n_strict_version)
2689 			goto fail;
2690 	}
2691 
2692 	/* retrieve controller configuration */
2693 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2694 
2695 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2696 		dev_err(nvme->n_dip, CE_WARN,
2697 		    "!NVM command set not supported by hardware");
2698 		goto fail;
2699 	}
2700 
2701 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2702 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2703 	nvme->n_timeout = cap.b.cap_to;
2704 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2705 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2706 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2707 
2708 	/*
2709 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2710 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2711 	 * page size value.
2712 	 */
2713 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2714 	    cap.b.cap_mpsmax + 12);
2715 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2716 
2717 	/*
2718 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2719 	 */
2720 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2721 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2722 
2723 	/*
2724 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2725 	 * Maxxfer may be increased after we identified the controller limits.
2726 	 */
2727 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2728 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2729 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2730 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2731 
2732 	/*
2733 	 * Reset controller if it's still in ready state.
2734 	 */
2735 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2736 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2737 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2738 		nvme->n_dead = B_TRUE;
2739 		goto fail;
2740 	}
2741 
2742 	/*
2743 	 * Create the cq array with one completion queue to be assigned
2744 	 * to the admin queue pair and a limited number of taskqs (4).
2745 	 */
2746 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2747 	    DDI_SUCCESS) {
2748 		dev_err(nvme->n_dip, CE_WARN,
2749 		    "!failed to pre-allocate admin completion queue");
2750 		goto fail;
2751 	}
2752 	/*
2753 	 * Create the admin queue pair.
2754 	 */
2755 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2756 	    != DDI_SUCCESS) {
2757 		dev_err(nvme->n_dip, CE_WARN,
2758 		    "!unable to allocate admin qpair");
2759 		goto fail;
2760 	}
2761 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2762 	nvme->n_ioq[0] = nvme->n_adminq;
2763 
2764 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2765 
2766 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2767 	    "admin-queue-len", nvme->n_admin_queue_len);
2768 
2769 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2770 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2771 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2772 
2773 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2774 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2775 
2776 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2777 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2778 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2779 
2780 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2781 	cc.b.cc_css = 0;	/* use NVM command set */
2782 	cc.b.cc_mps = nvme->n_pageshift - 12;
2783 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2784 	cc.b.cc_en = 1;		/* enable controller */
2785 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2786 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2787 
2788 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2789 
2790 	/*
2791 	 * Wait for the controller to become ready.
2792 	 */
2793 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2794 	if (csts.b.csts_rdy == 0) {
2795 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2796 			delay(drv_usectohz(50000));
2797 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2798 
2799 			if (csts.b.csts_cfs == 1) {
2800 				dev_err(nvme->n_dip, CE_WARN,
2801 				    "!controller fatal status at init");
2802 				ddi_fm_service_impact(nvme->n_dip,
2803 				    DDI_SERVICE_LOST);
2804 				nvme->n_dead = B_TRUE;
2805 				goto fail;
2806 			}
2807 
2808 			if (csts.b.csts_rdy == 1)
2809 				break;
2810 		}
2811 	}
2812 
2813 	if (csts.b.csts_rdy == 0) {
2814 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2815 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2816 		nvme->n_dead = B_TRUE;
2817 		goto fail;
2818 	}
2819 
2820 	/*
2821 	 * Assume an abort command limit of 1. We'll destroy and re-init
2822 	 * that later when we know the true abort command limit.
2823 	 */
2824 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2825 
2826 	/*
2827 	 * Setup initial interrupt for admin queue.
2828 	 */
2829 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2830 	    != DDI_SUCCESS) &&
2831 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2832 	    != DDI_SUCCESS) &&
2833 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2834 	    != DDI_SUCCESS)) {
2835 		dev_err(nvme->n_dip, CE_WARN,
2836 		    "!failed to setup initial interrupt");
2837 		goto fail;
2838 	}
2839 
2840 	/*
2841 	 * Post an asynchronous event command to catch errors.
2842 	 * We assume the asynchronous events are supported as required by
2843 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2844 	 * However, since at least qemu does not follow the specification,
2845 	 * we need a mechanism to protect ourselves.
2846 	 */
2847 	nvme->n_async_event_supported = B_TRUE;
2848 	nvme_async_event(nvme);
2849 
2850 	/*
2851 	 * Identify Controller
2852 	 */
2853 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2854 		dev_err(nvme->n_dip, CE_WARN,
2855 		    "!failed to identify controller");
2856 		goto fail;
2857 	}
2858 
2859 	/*
2860 	 * Get Vendor & Product ID
2861 	 */
2862 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2863 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2864 	sata_split_model(model, &vendor, &product);
2865 
2866 	if (vendor == NULL)
2867 		nvme->n_vendor = strdup("NVMe");
2868 	else
2869 		nvme->n_vendor = strdup(vendor);
2870 
2871 	nvme->n_product = strdup(product);
2872 
2873 	/*
2874 	 * Get controller limits.
2875 	 */
2876 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2877 	    MIN(nvme->n_admin_queue_len / 10,
2878 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2879 
2880 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2881 	    "async-event-limit", nvme->n_async_event_limit);
2882 
2883 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2884 
2885 	/*
2886 	 * Reinitialize the semaphore with the true abort command limit
2887 	 * supported by the hardware. It's not necessary to disable interrupts
2888 	 * as only command aborts use the semaphore, and no commands are
2889 	 * executed or aborted while we're here.
2890 	 */
2891 	sema_destroy(&nvme->n_abort_sema);
2892 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2893 	    SEMA_DRIVER, NULL);
2894 
2895 	nvme->n_progress |= NVME_CTRL_LIMITS;
2896 
2897 	if (nvme->n_idctl->id_mdts == 0)
2898 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2899 	else
2900 		nvme->n_max_data_transfer_size =
2901 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2902 
2903 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2904 
2905 	/*
2906 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2907 	 * Chained PRPs are currently unsupported.
2908 	 *
2909 	 * This is a no-op on hardware which doesn't support a transfer size
2910 	 * big enough to require chained PRPs.
2911 	 */
2912 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2913 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2914 
2915 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2916 
2917 	/*
2918 	 * Make sure the minimum/maximum queue entry sizes are not
2919 	 * larger/smaller than the default.
2920 	 */
2921 
2922 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2923 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2924 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2925 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2926 		goto fail;
2927 
2928 	/*
2929 	 * Check for the presence of a Volatile Write Cache. If present,
2930 	 * enable or disable based on the value of the property
2931 	 * volatile-write-cache-enable (default is enabled).
2932 	 */
2933 	nvme->n_write_cache_present =
2934 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2935 
2936 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2937 	    "volatile-write-cache-present",
2938 	    nvme->n_write_cache_present ? 1 : 0);
2939 
2940 	if (!nvme->n_write_cache_present) {
2941 		nvme->n_write_cache_enabled = B_FALSE;
2942 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2943 	    != 0) {
2944 		dev_err(nvme->n_dip, CE_WARN,
2945 		    "!failed to %sable volatile write cache",
2946 		    nvme->n_write_cache_enabled ? "en" : "dis");
2947 		/*
2948 		 * Assume the cache is (still) enabled.
2949 		 */
2950 		nvme->n_write_cache_enabled = B_TRUE;
2951 	}
2952 
2953 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2954 	    "volatile-write-cache-enable",
2955 	    nvme->n_write_cache_enabled ? 1 : 0);
2956 
2957 	/*
2958 	 * Assume LBA Range Type feature is supported. If it isn't this
2959 	 * will be set to B_FALSE by nvme_get_features().
2960 	 */
2961 	nvme->n_lba_range_supported = B_TRUE;
2962 
2963 	/*
2964 	 * Check support for Autonomous Power State Transition.
2965 	 */
2966 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2967 		nvme->n_auto_pst_supported =
2968 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2969 
2970 	/*
2971 	 * Assume Software Progress Marker feature is supported.  If it isn't
2972 	 * this will be set to B_FALSE by nvme_get_features().
2973 	 */
2974 	nvme->n_progress_supported = B_TRUE;
2975 
2976 	/*
2977 	 * Identify Namespaces
2978 	 */
2979 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2980 
2981 	if (nvme->n_namespace_count == 0) {
2982 		dev_err(nvme->n_dip, CE_WARN,
2983 		    "!controllers without namespaces are not supported");
2984 		goto fail;
2985 	}
2986 
2987 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2988 		dev_err(nvme->n_dip, CE_WARN,
2989 		    "!too many namespaces: %d, limiting to %d\n",
2990 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2991 		nvme->n_namespace_count = NVME_MINOR_MAX;
2992 	}
2993 
2994 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2995 	    nvme->n_namespace_count, KM_SLEEP);
2996 
2997 	for (i = 0; i != nvme->n_namespace_count; i++) {
2998 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2999 		    NULL);
3000 		nvme->n_ns[i].ns_ignore = B_TRUE;
3001 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
3002 			goto fail;
3003 	}
3004 
3005 	/*
3006 	 * Try to set up MSI/MSI-X interrupts.
3007 	 */
3008 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
3009 	    != 0) {
3010 		nvme_release_interrupts(nvme);
3011 
3012 		nqueues = MIN(UINT16_MAX, ncpus);
3013 
3014 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
3015 		    nqueues) != DDI_SUCCESS) &&
3016 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
3017 		    nqueues) != DDI_SUCCESS)) {
3018 			dev_err(nvme->n_dip, CE_WARN,
3019 			    "!failed to setup MSI/MSI-X interrupts");
3020 			goto fail;
3021 		}
3022 	}
3023 
3024 	/*
3025 	 * Create I/O queue pairs.
3026 	 */
3027 
3028 	if (nvme_set_nqueues(nvme) != 0) {
3029 		dev_err(nvme->n_dip, CE_WARN,
3030 		    "!failed to set number of I/O queues to %d",
3031 		    nvme->n_intr_cnt);
3032 		goto fail;
3033 	}
3034 
3035 	/*
3036 	 * Reallocate I/O queue array
3037 	 */
3038 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3039 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3040 	    (nvme->n_submission_queues + 1), KM_SLEEP);
3041 	nvme->n_ioq[0] = nvme->n_adminq;
3042 
3043 	/*
3044 	 * There should always be at least as many submission queues
3045 	 * as completion queues.
3046 	 */
3047 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3048 
3049 	nvme->n_ioq_count = nvme->n_submission_queues;
3050 
3051 	nvme->n_io_squeue_len =
3052 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3053 
3054 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3055 	    nvme->n_io_squeue_len);
3056 
3057 	/*
3058 	 * Pre-allocate completion queues.
3059 	 * When there are the same number of submission and completion
3060 	 * queues there is no value in having a larger completion
3061 	 * queue length.
3062 	 */
3063 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3064 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3065 		    nvme->n_io_squeue_len);
3066 
3067 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3068 	    nvme->n_max_queue_entries);
3069 
3070 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3071 	    nvme->n_io_cqueue_len);
3072 
3073 	/*
3074 	 * Assign the equal quantity of taskq threads to each completion
3075 	 * queue, capping the total number of threads to the number
3076 	 * of CPUs.
3077 	 */
3078 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3079 
3080 	/*
3081 	 * In case the calculation above is zero, we need at least one
3082 	 * thread per completion queue.
3083 	 */
3084 	tq_threads = MAX(1, tq_threads);
3085 
3086 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3087 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3088 		dev_err(nvme->n_dip, CE_WARN,
3089 		    "!failed to pre-allocate completion queues");
3090 		goto fail;
3091 	}
3092 
3093 	/*
3094 	 * If we use less completion queues than interrupt vectors return
3095 	 * some of the interrupt vectors back to the system.
3096 	 */
3097 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3098 		nvme_release_interrupts(nvme);
3099 
3100 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3101 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3102 			dev_err(nvme->n_dip, CE_WARN,
3103 			    "!failed to reduce number of interrupts");
3104 			goto fail;
3105 		}
3106 	}
3107 
3108 	/*
3109 	 * Alloc & register I/O queue pairs
3110 	 */
3111 
3112 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3113 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3114 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3115 			dev_err(nvme->n_dip, CE_WARN,
3116 			    "!unable to allocate I/O qpair %d", i);
3117 			goto fail;
3118 		}
3119 
3120 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3121 			dev_err(nvme->n_dip, CE_WARN,
3122 			    "!unable to create I/O qpair %d", i);
3123 			goto fail;
3124 		}
3125 	}
3126 
3127 	/*
3128 	 * Post more asynchronous events commands to reduce event reporting
3129 	 * latency as suggested by the spec.
3130 	 */
3131 	if (nvme->n_async_event_supported) {
3132 		for (i = 1; i != nvme->n_async_event_limit; i++)
3133 			nvme_async_event(nvme);
3134 	}
3135 
3136 	return (DDI_SUCCESS);
3137 
3138 fail:
3139 	(void) nvme_reset(nvme, B_FALSE);
3140 	return (DDI_FAILURE);
3141 }
3142 
3143 static uint_t
3144 nvme_intr(caddr_t arg1, caddr_t arg2)
3145 {
3146 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3147 	nvme_t *nvme = (nvme_t *)arg1;
3148 	int inum = (int)(uintptr_t)arg2;
3149 	int ccnt = 0;
3150 	int qnum;
3151 
3152 	if (inum >= nvme->n_intr_cnt)
3153 		return (DDI_INTR_UNCLAIMED);
3154 
3155 	if (nvme->n_dead)
3156 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3157 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3158 
3159 	/*
3160 	 * The interrupt vector a queue uses is calculated as queue_idx %
3161 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3162 	 * in steps of n_intr_cnt to process all queues using this vector.
3163 	 */
3164 	for (qnum = inum;
3165 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3166 	    qnum += nvme->n_intr_cnt) {
3167 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3168 	}
3169 
3170 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3171 }
3172 
3173 static void
3174 nvme_release_interrupts(nvme_t *nvme)
3175 {
3176 	int i;
3177 
3178 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3179 		if (nvme->n_inth[i] == NULL)
3180 			break;
3181 
3182 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3183 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3184 		else
3185 			(void) ddi_intr_disable(nvme->n_inth[i]);
3186 
3187 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3188 		(void) ddi_intr_free(nvme->n_inth[i]);
3189 	}
3190 
3191 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3192 	nvme->n_inth = NULL;
3193 	nvme->n_inth_sz = 0;
3194 
3195 	nvme->n_progress &= ~NVME_INTERRUPTS;
3196 }
3197 
3198 static int
3199 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3200 {
3201 	int nintrs, navail, count;
3202 	int ret;
3203 	int i;
3204 
3205 	if (nvme->n_intr_types == 0) {
3206 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3207 		    &nvme->n_intr_types);
3208 		if (ret != DDI_SUCCESS) {
3209 			dev_err(nvme->n_dip, CE_WARN,
3210 			    "!%s: ddi_intr_get_supported types failed",
3211 			    __func__);
3212 			return (ret);
3213 		}
3214 #ifdef __x86
3215 		if (get_hwenv() == HW_VMWARE)
3216 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3217 #endif
3218 	}
3219 
3220 	if ((nvme->n_intr_types & intr_type) == 0)
3221 		return (DDI_FAILURE);
3222 
3223 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3224 	if (ret != DDI_SUCCESS) {
3225 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3226 		    __func__);
3227 		return (ret);
3228 	}
3229 
3230 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3231 	if (ret != DDI_SUCCESS) {
3232 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3233 		    __func__);
3234 		return (ret);
3235 	}
3236 
3237 	/* We want at most one interrupt per queue pair. */
3238 	if (navail > nqpairs)
3239 		navail = nqpairs;
3240 
3241 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3242 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3243 
3244 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3245 	    &count, 0);
3246 	if (ret != DDI_SUCCESS) {
3247 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3248 		    __func__);
3249 		goto fail;
3250 	}
3251 
3252 	nvme->n_intr_cnt = count;
3253 
3254 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3255 	if (ret != DDI_SUCCESS) {
3256 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3257 		    __func__);
3258 		goto fail;
3259 	}
3260 
3261 	for (i = 0; i < count; i++) {
3262 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3263 		    (void *)nvme, (void *)(uintptr_t)i);
3264 		if (ret != DDI_SUCCESS) {
3265 			dev_err(nvme->n_dip, CE_WARN,
3266 			    "!%s: ddi_intr_add_handler failed", __func__);
3267 			goto fail;
3268 		}
3269 	}
3270 
3271 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3272 
3273 	for (i = 0; i < count; i++) {
3274 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3275 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3276 		else
3277 			ret = ddi_intr_enable(nvme->n_inth[i]);
3278 
3279 		if (ret != DDI_SUCCESS) {
3280 			dev_err(nvme->n_dip, CE_WARN,
3281 			    "!%s: enabling interrupt %d failed", __func__, i);
3282 			goto fail;
3283 		}
3284 	}
3285 
3286 	nvme->n_intr_type = intr_type;
3287 
3288 	nvme->n_progress |= NVME_INTERRUPTS;
3289 
3290 	return (DDI_SUCCESS);
3291 
3292 fail:
3293 	nvme_release_interrupts(nvme);
3294 
3295 	return (ret);
3296 }
3297 
3298 static int
3299 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3300 {
3301 	_NOTE(ARGUNUSED(arg));
3302 
3303 	pci_ereport_post(dip, fm_error, NULL);
3304 	return (fm_error->fme_status);
3305 }
3306 
3307 static void
3308 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a,
3309     void *b)
3310 {
3311 	nvme_t *nvme = a;
3312 
3313 	nvme->n_dead = B_TRUE;
3314 
3315 	/*
3316 	 * Fail all outstanding commands, including those in the admin queue
3317 	 * (queue 0).
3318 	 */
3319 	for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) {
3320 		nvme_qpair_t *qp = nvme->n_ioq[i];
3321 
3322 		mutex_enter(&qp->nq_mutex);
3323 		for (size_t j = 0; j < qp->nq_nentry; j++) {
3324 			nvme_cmd_t *cmd = qp->nq_cmd[j];
3325 			nvme_cmd_t *u_cmd;
3326 
3327 			if (cmd == NULL) {
3328 				continue;
3329 			}
3330 
3331 			/*
3332 			 * Since we have the queue lock held the entire time we
3333 			 * iterate over it, it's not possible for the queue to
3334 			 * change underneath us. Thus, we don't need to check
3335 			 * that the return value of nvme_unqueue_cmd matches the
3336 			 * requested cmd to unqueue.
3337 			 */
3338 			u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
3339 			taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq,
3340 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
3341 
3342 			ASSERT3P(u_cmd, ==, cmd);
3343 		}
3344 		mutex_exit(&qp->nq_mutex);
3345 	}
3346 }
3347 
3348 static int
3349 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3350 {
3351 	nvme_t *nvme;
3352 	int instance;
3353 	int nregs;
3354 	off_t regsize;
3355 	int i;
3356 	char name[32];
3357 	bd_ops_t ops = nvme_bd_ops;
3358 
3359 	if (cmd != DDI_ATTACH)
3360 		return (DDI_FAILURE);
3361 
3362 	instance = ddi_get_instance(dip);
3363 
3364 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3365 		return (DDI_FAILURE);
3366 
3367 	nvme = ddi_get_soft_state(nvme_state, instance);
3368 	ddi_set_driver_private(dip, nvme);
3369 	nvme->n_dip = dip;
3370 
3371 	/* Set up event handlers for hot removal. */
3372 	if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT,
3373 	    &nvme->n_rm_cookie) != DDI_SUCCESS) {
3374 		goto fail;
3375 	}
3376 	if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie,
3377 	    nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) !=
3378 	    DDI_SUCCESS) {
3379 		goto fail;
3380 	}
3381 
3382 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3383 
3384 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3385 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3386 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3387 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3388 	    B_TRUE : B_FALSE;
3389 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3390 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3391 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3392 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3393 	/*
3394 	 * Double up the default for completion queues in case of
3395 	 * queue sharing.
3396 	 */
3397 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3398 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3399 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3400 	    DDI_PROP_DONTPASS, "async-event-limit",
3401 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3402 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3403 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3404 	    B_TRUE : B_FALSE;
3405 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3406 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3407 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3408 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3409 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3410 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3411 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3412 
3413 	if (!ISP2(nvme->n_min_block_size) ||
3414 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3415 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3416 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3417 		    "too low" : "not a power of 2",
3418 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3419 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3420 	}
3421 
3422 	if (nvme->n_submission_queues != -1 &&
3423 	    (nvme->n_submission_queues < 1 ||
3424 	    nvme->n_submission_queues > UINT16_MAX)) {
3425 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3426 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3427 		    UINT16_MAX);
3428 		nvme->n_submission_queues = -1;
3429 	}
3430 
3431 	if (nvme->n_completion_queues != -1 &&
3432 	    (nvme->n_completion_queues < 1 ||
3433 	    nvme->n_completion_queues > UINT16_MAX)) {
3434 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3435 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3436 		    UINT16_MAX);
3437 		nvme->n_completion_queues = -1;
3438 	}
3439 
3440 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3441 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3442 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3443 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3444 
3445 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3446 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3447 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3448 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3449 
3450 	if (nvme->n_async_event_limit < 1)
3451 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3452 
3453 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3454 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3455 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3456 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3457 
3458 	/*
3459 	 * Setup FMA support.
3460 	 */
3461 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3462 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3463 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3464 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3465 
3466 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3467 
3468 	if (nvme->n_fm_cap) {
3469 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3470 			nvme->n_reg_acc_attr.devacc_attr_access =
3471 			    DDI_FLAGERR_ACC;
3472 
3473 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3474 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3475 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3476 		}
3477 
3478 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3479 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3480 			pci_ereport_setup(dip);
3481 
3482 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3483 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3484 			    (void *)nvme);
3485 	}
3486 
3487 	nvme->n_progress |= NVME_FMA_INIT;
3488 
3489 	/*
3490 	 * The spec defines several register sets. Only the controller
3491 	 * registers (set 1) are currently used.
3492 	 */
3493 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3494 	    nregs < 2 ||
3495 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3496 		goto fail;
3497 
3498 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3499 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3500 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3501 		goto fail;
3502 	}
3503 
3504 	nvme->n_progress |= NVME_REGS_MAPPED;
3505 
3506 	/*
3507 	 * Create PRP DMA cache
3508 	 */
3509 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3510 	    ddi_driver_name(dip), ddi_get_instance(dip));
3511 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3512 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3513 	    NULL, (void *)nvme, NULL, 0);
3514 
3515 	if (nvme_init(nvme) != DDI_SUCCESS)
3516 		goto fail;
3517 
3518 	if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3519 		ops.o_free_space = NULL;
3520 
3521 	/*
3522 	 * Initialize the driver with the UFM subsystem
3523 	 */
3524 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3525 	    &nvme->n_ufmh, nvme) != 0) {
3526 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3527 		goto fail;
3528 	}
3529 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3530 	ddi_ufm_update(nvme->n_ufmh);
3531 	nvme->n_progress |= NVME_UFM_INIT;
3532 
3533 	/*
3534 	 * Attach the blkdev driver for each namespace.
3535 	 */
3536 	for (i = 0; i != nvme->n_namespace_count; i++) {
3537 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3538 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3539 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3540 			dev_err(dip, CE_WARN,
3541 			    "!failed to create minor node for namespace %d", i);
3542 			goto fail;
3543 		}
3544 
3545 		if (nvme->n_ns[i].ns_ignore)
3546 			continue;
3547 
3548 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3549 		    &ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3550 
3551 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3552 			dev_err(dip, CE_WARN,
3553 			    "!failed to get blkdev handle for namespace %d", i);
3554 			goto fail;
3555 		}
3556 
3557 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3558 		    != DDI_SUCCESS) {
3559 			dev_err(dip, CE_WARN,
3560 			    "!failed to attach blkdev handle for namespace %d",
3561 			    i);
3562 			goto fail;
3563 		}
3564 	}
3565 
3566 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3567 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3568 	    != DDI_SUCCESS) {
3569 		dev_err(dip, CE_WARN, "nvme_attach: "
3570 		    "cannot create devctl minor node");
3571 		goto fail;
3572 	}
3573 
3574 	return (DDI_SUCCESS);
3575 
3576 fail:
3577 	/* attach successful anyway so that FMA can retire the device */
3578 	if (nvme->n_dead)
3579 		return (DDI_SUCCESS);
3580 
3581 	(void) nvme_detach(dip, DDI_DETACH);
3582 
3583 	return (DDI_FAILURE);
3584 }
3585 
3586 static int
3587 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3588 {
3589 	int instance, i;
3590 	nvme_t *nvme;
3591 
3592 	if (cmd != DDI_DETACH)
3593 		return (DDI_FAILURE);
3594 
3595 	instance = ddi_get_instance(dip);
3596 
3597 	nvme = ddi_get_soft_state(nvme_state, instance);
3598 
3599 	if (nvme == NULL)
3600 		return (DDI_FAILURE);
3601 
3602 	ddi_remove_minor_node(dip, "devctl");
3603 	mutex_destroy(&nvme->n_minor.nm_mutex);
3604 
3605 	if (nvme->n_ns) {
3606 		for (i = 0; i != nvme->n_namespace_count; i++) {
3607 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3608 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3609 
3610 			if (nvme->n_ns[i].ns_bd_hdl) {
3611 				(void) bd_detach_handle(
3612 				    nvme->n_ns[i].ns_bd_hdl);
3613 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3614 			}
3615 
3616 			if (nvme->n_ns[i].ns_idns)
3617 				kmem_free(nvme->n_ns[i].ns_idns,
3618 				    sizeof (nvme_identify_nsid_t));
3619 			if (nvme->n_ns[i].ns_devid)
3620 				strfree(nvme->n_ns[i].ns_devid);
3621 		}
3622 
3623 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3624 		    nvme->n_namespace_count);
3625 	}
3626 	if (nvme->n_progress & NVME_UFM_INIT) {
3627 		ddi_ufm_fini(nvme->n_ufmh);
3628 		mutex_destroy(&nvme->n_fwslot_mutex);
3629 	}
3630 
3631 	if (nvme->n_progress & NVME_INTERRUPTS)
3632 		nvme_release_interrupts(nvme);
3633 
3634 	for (i = 0; i < nvme->n_cq_count; i++) {
3635 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3636 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3637 	}
3638 
3639 	if (nvme->n_ioq_count > 0) {
3640 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3641 			if (nvme->n_ioq[i] != NULL) {
3642 				/* TODO: send destroy queue commands */
3643 				nvme_free_qpair(nvme->n_ioq[i]);
3644 			}
3645 		}
3646 
3647 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3648 		    (nvme->n_ioq_count + 1));
3649 	}
3650 
3651 	if (nvme->n_prp_cache != NULL) {
3652 		kmem_cache_destroy(nvme->n_prp_cache);
3653 	}
3654 
3655 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3656 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3657 		(void) nvme_reset(nvme, B_FALSE);
3658 	}
3659 
3660 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3661 		sema_destroy(&nvme->n_abort_sema);
3662 
3663 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3664 		nvme_free_qpair(nvme->n_adminq);
3665 
3666 	if (nvme->n_cq_count > 0) {
3667 		nvme_destroy_cq_array(nvme, 0);
3668 		nvme->n_cq = NULL;
3669 		nvme->n_cq_count = 0;
3670 	}
3671 
3672 	if (nvme->n_idctl)
3673 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3674 
3675 	if (nvme->n_progress & NVME_REGS_MAPPED)
3676 		ddi_regs_map_free(&nvme->n_regh);
3677 
3678 	if (nvme->n_progress & NVME_FMA_INIT) {
3679 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3680 			ddi_fm_handler_unregister(nvme->n_dip);
3681 
3682 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3683 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3684 			pci_ereport_teardown(nvme->n_dip);
3685 
3686 		ddi_fm_fini(nvme->n_dip);
3687 	}
3688 
3689 	if (nvme->n_vendor != NULL)
3690 		strfree(nvme->n_vendor);
3691 
3692 	if (nvme->n_product != NULL)
3693 		strfree(nvme->n_product);
3694 
3695 	/* Clean up hot removal event handler. */
3696 	if (nvme->n_ev_rm_cb_id != NULL) {
3697 		(void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id);
3698 	}
3699 	nvme->n_ev_rm_cb_id = NULL;
3700 
3701 	ddi_soft_state_free(nvme_state, instance);
3702 
3703 	return (DDI_SUCCESS);
3704 }
3705 
3706 static int
3707 nvme_quiesce(dev_info_t *dip)
3708 {
3709 	int instance;
3710 	nvme_t *nvme;
3711 
3712 	instance = ddi_get_instance(dip);
3713 
3714 	nvme = ddi_get_soft_state(nvme_state, instance);
3715 
3716 	if (nvme == NULL)
3717 		return (DDI_FAILURE);
3718 
3719 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3720 
3721 	(void) nvme_reset(nvme, B_TRUE);
3722 
3723 	return (DDI_FAILURE);
3724 }
3725 
3726 static int
3727 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3728 {
3729 	nvme_t *nvme = cmd->nc_nvme;
3730 	int nprp_page, nprp;
3731 	uint64_t *prp;
3732 
3733 	if (xfer->x_ndmac == 0)
3734 		return (DDI_FAILURE);
3735 
3736 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3737 
3738 	if (xfer->x_ndmac == 1) {
3739 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3740 		return (DDI_SUCCESS);
3741 	} else if (xfer->x_ndmac == 2) {
3742 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3743 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3744 		return (DDI_SUCCESS);
3745 	}
3746 
3747 	xfer->x_ndmac--;
3748 
3749 	nprp_page = nvme->n_pagesize / sizeof (uint64_t);
3750 	ASSERT(nprp_page > 0);
3751 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3752 
3753 	/*
3754 	 * We currently don't support chained PRPs and set up our DMA
3755 	 * attributes to reflect that. If we still get an I/O request
3756 	 * that needs a chained PRP something is very wrong.
3757 	 */
3758 	VERIFY(nprp == 1);
3759 
3760 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3761 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3762 
3763 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3764 
3765 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3766 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3767 	    xfer->x_ndmac > 0;
3768 	    prp++, xfer->x_ndmac--) {
3769 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3770 		*prp = xfer->x_dmac.dmac_laddress;
3771 	}
3772 
3773 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3774 	    DDI_DMA_SYNC_FORDEV);
3775 	return (DDI_SUCCESS);
3776 }
3777 
3778 /*
3779  * The maximum number of requests supported for a deallocate request is
3780  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
3781  * unchanged through at least 1.4a). The definition of nvme_range_t is also
3782  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
3783  * a deallocate request will fit into the smallest supported namespace page
3784  * (4k).
3785  */
3786 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
3787 
3788 static int
3789 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
3790     int allocflag)
3791 {
3792 	const dkioc_free_list_t *dfl = xfer->x_dfl;
3793 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
3794 	nvme_t *nvme = cmd->nc_nvme;
3795 	nvme_range_t *ranges = NULL;
3796 	uint_t i;
3797 
3798 	/*
3799 	 * The number of ranges in the request is 0s based (that is
3800 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
3801 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
3802 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
3803 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
3804 	 * in blkdev.
3805 	 */
3806 	VERIFY3U(dfl->dfl_num_exts, >, 0);
3807 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
3808 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
3809 
3810 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
3811 
3812 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
3813 	if (cmd->nc_dma == NULL)
3814 		return (DDI_FAILURE);
3815 
3816 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3817 	ranges = (nvme_range_t *)cmd->nc_dma->nd_memp;
3818 
3819 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
3820 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3821 
3822 	for (i = 0; i < dfl->dfl_num_exts; i++) {
3823 		uint64_t lba, len;
3824 
3825 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
3826 		len = exts[i].dfle_length / blocksize;
3827 
3828 		VERIFY3U(len, <=, UINT32_MAX);
3829 
3830 		/* No context attributes for a deallocate request */
3831 		ranges[i].nr_ctxattr = 0;
3832 		ranges[i].nr_len = len;
3833 		ranges[i].nr_lba = lba;
3834 	}
3835 
3836 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3837 	    DDI_DMA_SYNC_FORDEV);
3838 
3839 	return (DDI_SUCCESS);
3840 }
3841 
3842 static nvme_cmd_t *
3843 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3844 {
3845 	nvme_t *nvme = ns->ns_nvme;
3846 	nvme_cmd_t *cmd;
3847 	int allocflag;
3848 
3849 	/*
3850 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3851 	 */
3852 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
3853 	cmd = nvme_alloc_cmd(nvme, allocflag);
3854 
3855 	if (cmd == NULL)
3856 		return (NULL);
3857 
3858 	cmd->nc_sqe.sqe_opc = opc;
3859 	cmd->nc_callback = nvme_bd_xfer_done;
3860 	cmd->nc_xfer = xfer;
3861 
3862 	switch (opc) {
3863 	case NVME_OPC_NVM_WRITE:
3864 	case NVME_OPC_NVM_READ:
3865 		VERIFY(xfer->x_nblks <= 0x10000);
3866 
3867 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3868 
3869 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3870 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3871 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3872 
3873 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3874 			goto fail;
3875 		break;
3876 
3877 	case NVME_OPC_NVM_FLUSH:
3878 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3879 		break;
3880 
3881 	case NVME_OPC_NVM_DSET_MGMT:
3882 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3883 
3884 		if (nvme_fill_ranges(cmd, xfer,
3885 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
3886 			goto fail;
3887 		break;
3888 
3889 	default:
3890 		goto fail;
3891 	}
3892 
3893 	return (cmd);
3894 
3895 fail:
3896 	nvme_free_cmd(cmd);
3897 	return (NULL);
3898 }
3899 
3900 static void
3901 nvme_bd_xfer_done(void *arg)
3902 {
3903 	nvme_cmd_t *cmd = arg;
3904 	bd_xfer_t *xfer = cmd->nc_xfer;
3905 	int error = 0;
3906 
3907 	error = nvme_check_cmd_status(cmd);
3908 	nvme_free_cmd(cmd);
3909 
3910 	bd_xfer_done(xfer, error);
3911 }
3912 
3913 static void
3914 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3915 {
3916 	nvme_namespace_t *ns = arg;
3917 	nvme_t *nvme = ns->ns_nvme;
3918 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
3919 
3920 	/*
3921 	 * Set the blkdev qcount to the number of submission queues.
3922 	 * It will then create one waitq/runq pair for each submission
3923 	 * queue and spread I/O requests across the queues.
3924 	 */
3925 	drive->d_qcount = nvme->n_ioq_count;
3926 
3927 	/*
3928 	 * I/O activity to individual namespaces is distributed across
3929 	 * each of the d_qcount blkdev queues (which has been set to
3930 	 * the number of nvme submission queues). d_qsize is the number
3931 	 * of submitted and not completed I/Os within each queue that blkdev
3932 	 * will allow before it starts holding them in the waitq.
3933 	 *
3934 	 * Each namespace will create a child blkdev instance, for each one
3935 	 * we try and set the d_qsize so that each namespace gets an
3936 	 * equal portion of the submission queue.
3937 	 *
3938 	 * If post instantiation of the nvme drive, n_namespaces_attachable
3939 	 * changes and a namespace is attached it could calculate a
3940 	 * different d_qsize. It may even be that the sum of the d_qsizes is
3941 	 * now beyond the submission queue size. Should that be the case
3942 	 * and the I/O rate is such that blkdev attempts to submit more
3943 	 * I/Os than the size of the submission queue, the excess I/Os
3944 	 * will be held behind the semaphore nq_sema.
3945 	 */
3946 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
3947 
3948 	/*
3949 	 * Don't let the queue size drop below the minimum, though.
3950 	 */
3951 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
3952 
3953 	/*
3954 	 * d_maxxfer is not set, which means the value is taken from the DMA
3955 	 * attributes specified to bd_alloc_handle.
3956 	 */
3957 
3958 	drive->d_removable = B_FALSE;
3959 	drive->d_hotpluggable = B_FALSE;
3960 
3961 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3962 	drive->d_target = ns->ns_id;
3963 	drive->d_lun = 0;
3964 
3965 	drive->d_model = nvme->n_idctl->id_model;
3966 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3967 	drive->d_vendor = nvme->n_vendor;
3968 	drive->d_vendor_len = strlen(nvme->n_vendor);
3969 	drive->d_product = nvme->n_product;
3970 	drive->d_product_len = strlen(nvme->n_product);
3971 	drive->d_serial = nvme->n_idctl->id_serial;
3972 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3973 	drive->d_revision = nvme->n_idctl->id_fwrev;
3974 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3975 
3976 	/*
3977 	 * If we support the dataset management command, the only restrictions
3978 	 * on a discard request are the maximum number of ranges (segments)
3979 	 * per single request.
3980 	 */
3981 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
3982 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
3983 }
3984 
3985 static int
3986 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3987 {
3988 	nvme_namespace_t *ns = arg;
3989 	nvme_t *nvme = ns->ns_nvme;
3990 
3991 	if (nvme->n_dead) {
3992 		return (EIO);
3993 	}
3994 
3995 	media->m_nblks = ns->ns_block_count;
3996 	media->m_blksize = ns->ns_block_size;
3997 	media->m_readonly = B_FALSE;
3998 	media->m_solidstate = B_TRUE;
3999 
4000 	media->m_pblksize = ns->ns_best_block_size;
4001 
4002 	return (0);
4003 }
4004 
4005 static int
4006 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
4007 {
4008 	nvme_t *nvme = ns->ns_nvme;
4009 	nvme_cmd_t *cmd;
4010 	nvme_qpair_t *ioq;
4011 	boolean_t poll;
4012 	int ret;
4013 
4014 	if (nvme->n_dead) {
4015 		return (EIO);
4016 	}
4017 
4018 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
4019 	if (cmd == NULL)
4020 		return (ENOMEM);
4021 
4022 	cmd->nc_sqid = xfer->x_qnum + 1;
4023 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4024 	ioq = nvme->n_ioq[cmd->nc_sqid];
4025 
4026 	/*
4027 	 * Get the polling flag before submitting the command. The command may
4028 	 * complete immediately after it was submitted, which means we must
4029 	 * treat both cmd and xfer as if they have been freed already.
4030 	 */
4031 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
4032 
4033 	ret = nvme_submit_io_cmd(ioq, cmd);
4034 
4035 	if (ret != 0)
4036 		return (ret);
4037 
4038 	if (!poll)
4039 		return (0);
4040 
4041 	do {
4042 		cmd = nvme_retrieve_cmd(nvme, ioq);
4043 		if (cmd != NULL)
4044 			cmd->nc_callback(cmd);
4045 		else
4046 			drv_usecwait(10);
4047 	} while (ioq->nq_active_cmds != 0);
4048 
4049 	return (0);
4050 }
4051 
4052 static int
4053 nvme_bd_read(void *arg, bd_xfer_t *xfer)
4054 {
4055 	nvme_namespace_t *ns = arg;
4056 
4057 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
4058 }
4059 
4060 static int
4061 nvme_bd_write(void *arg, bd_xfer_t *xfer)
4062 {
4063 	nvme_namespace_t *ns = arg;
4064 
4065 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
4066 }
4067 
4068 static int
4069 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
4070 {
4071 	nvme_namespace_t *ns = arg;
4072 
4073 	if (ns->ns_nvme->n_dead)
4074 		return (EIO);
4075 
4076 	/*
4077 	 * If the volatile write cache is not present or not enabled the FLUSH
4078 	 * command is a no-op, so we can take a shortcut here.
4079 	 */
4080 	if (!ns->ns_nvme->n_write_cache_present) {
4081 		bd_xfer_done(xfer, ENOTSUP);
4082 		return (0);
4083 	}
4084 
4085 	if (!ns->ns_nvme->n_write_cache_enabled) {
4086 		bd_xfer_done(xfer, 0);
4087 		return (0);
4088 	}
4089 
4090 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
4091 }
4092 
4093 static int
4094 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
4095 {
4096 	nvme_namespace_t *ns = arg;
4097 	nvme_t *nvme = ns->ns_nvme;
4098 
4099 	if (nvme->n_dead) {
4100 		return (EIO);
4101 	}
4102 
4103 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
4104 	if (*(uint64_t *)ns->ns_eui64 != 0) {
4105 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4106 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4107 	} else {
4108 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
4109 		    strlen(ns->ns_devid), ns->ns_devid, devid));
4110 	}
4111 }
4112 
4113 static int
4114 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4115 {
4116 	nvme_namespace_t *ns = arg;
4117 
4118 	if (xfer->x_dfl == NULL)
4119 		return (EINVAL);
4120 
4121 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4122 		return (ENOTSUP);
4123 
4124 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4125 }
4126 
4127 static int
4128 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4129 {
4130 #ifndef __lock_lint
4131 	_NOTE(ARGUNUSED(cred_p));
4132 #endif
4133 	minor_t minor = getminor(*devp);
4134 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4135 	int nsid = NVME_MINOR_NSID(minor);
4136 	nvme_minor_state_t *nm;
4137 	int rv = 0;
4138 
4139 	if (otyp != OTYP_CHR)
4140 		return (EINVAL);
4141 
4142 	if (nvme == NULL)
4143 		return (ENXIO);
4144 
4145 	if (nsid > nvme->n_namespace_count)
4146 		return (ENXIO);
4147 
4148 	if (nvme->n_dead)
4149 		return (EIO);
4150 
4151 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4152 
4153 	mutex_enter(&nm->nm_mutex);
4154 	if (nm->nm_oexcl) {
4155 		rv = EBUSY;
4156 		goto out;
4157 	}
4158 
4159 	if (flag & FEXCL) {
4160 		if (nm->nm_ocnt != 0) {
4161 			rv = EBUSY;
4162 			goto out;
4163 		}
4164 		nm->nm_oexcl = B_TRUE;
4165 	}
4166 
4167 	nm->nm_ocnt++;
4168 
4169 out:
4170 	mutex_exit(&nm->nm_mutex);
4171 	return (rv);
4172 
4173 }
4174 
4175 static int
4176 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4177 {
4178 #ifndef __lock_lint
4179 	_NOTE(ARGUNUSED(cred_p));
4180 	_NOTE(ARGUNUSED(flag));
4181 #endif
4182 	minor_t minor = getminor(dev);
4183 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4184 	int nsid = NVME_MINOR_NSID(minor);
4185 	nvme_minor_state_t *nm;
4186 
4187 	if (otyp != OTYP_CHR)
4188 		return (ENXIO);
4189 
4190 	if (nvme == NULL)
4191 		return (ENXIO);
4192 
4193 	if (nsid > nvme->n_namespace_count)
4194 		return (ENXIO);
4195 
4196 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4197 
4198 	mutex_enter(&nm->nm_mutex);
4199 	if (nm->nm_oexcl)
4200 		nm->nm_oexcl = B_FALSE;
4201 
4202 	ASSERT(nm->nm_ocnt > 0);
4203 	nm->nm_ocnt--;
4204 	mutex_exit(&nm->nm_mutex);
4205 
4206 	return (0);
4207 }
4208 
4209 static int
4210 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4211     cred_t *cred_p)
4212 {
4213 	_NOTE(ARGUNUSED(cred_p));
4214 	int rv = 0;
4215 	void *idctl;
4216 
4217 	if ((mode & FREAD) == 0)
4218 		return (EPERM);
4219 
4220 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4221 		return (EINVAL);
4222 
4223 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4224 		return (rv);
4225 
4226 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4227 	    != 0)
4228 		rv = EFAULT;
4229 
4230 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4231 
4232 	return (rv);
4233 }
4234 
4235 /*
4236  * Execute commands on behalf of the various ioctls.
4237  */
4238 static int
4239 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4240     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4241 {
4242 	nvme_cmd_t *cmd;
4243 	nvme_qpair_t *ioq;
4244 	int rv = 0;
4245 
4246 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4247 	if (is_admin) {
4248 		cmd->nc_sqid = 0;
4249 		ioq = nvme->n_adminq;
4250 	} else {
4251 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4252 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4253 		ioq = nvme->n_ioq[cmd->nc_sqid];
4254 	}
4255 
4256 	cmd->nc_callback = nvme_wakeup_cmd;
4257 	cmd->nc_sqe = *sqe;
4258 
4259 	if ((rwk & (FREAD | FWRITE)) != 0) {
4260 		if (data_addr == NULL) {
4261 			rv = EINVAL;
4262 			goto free_cmd;
4263 		}
4264 
4265 		/*
4266 		 * Because we use PRPs and haven't implemented PRP
4267 		 * lists here, the maximum data size is restricted to
4268 		 * 2 pages.
4269 		 */
4270 		if (data_len > 2 * nvme->n_pagesize) {
4271 			dev_err(nvme->n_dip, CE_WARN, "!Data size %u is too "
4272 			    "large for nvme_ioc_cmd(). Limit is 2 pages "
4273 			    "(%u bytes)", data_len,  2 * nvme->n_pagesize);
4274 
4275 			rv = EINVAL;
4276 			goto free_cmd;
4277 		}
4278 
4279 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4280 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4281 			dev_err(nvme->n_dip, CE_WARN,
4282 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4283 
4284 			rv = ENOMEM;
4285 			goto free_cmd;
4286 		}
4287 
4288 		if (cmd->nc_dma->nd_ncookie > 2) {
4289 			dev_err(nvme->n_dip, CE_WARN,
4290 			    "!too many DMA cookies for nvme_ioc_cmd()");
4291 			atomic_inc_32(&nvme->n_too_many_cookies);
4292 
4293 			rv = E2BIG;
4294 			goto free_cmd;
4295 		}
4296 
4297 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
4298 		    cmd->nc_dma->nd_cookie.dmac_laddress;
4299 
4300 		if (cmd->nc_dma->nd_ncookie > 1) {
4301 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
4302 			    &cmd->nc_dma->nd_cookie);
4303 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
4304 			    cmd->nc_dma->nd_cookie.dmac_laddress;
4305 		}
4306 
4307 		if ((rwk & FWRITE) != 0) {
4308 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4309 			    data_len, rwk & FKIOCTL) != 0) {
4310 				rv = EFAULT;
4311 				goto free_cmd;
4312 			}
4313 		}
4314 	}
4315 
4316 	if (is_admin) {
4317 		nvme_admin_cmd(cmd, timeout);
4318 	} else {
4319 		mutex_enter(&cmd->nc_mutex);
4320 
4321 		rv = nvme_submit_io_cmd(ioq, cmd);
4322 
4323 		if (rv == EAGAIN) {
4324 			mutex_exit(&cmd->nc_mutex);
4325 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4326 			    "!nvme_ioc_cmd() failed, I/O Q full");
4327 			goto free_cmd;
4328 		}
4329 
4330 		nvme_wait_cmd(cmd, timeout);
4331 
4332 		mutex_exit(&cmd->nc_mutex);
4333 	}
4334 
4335 	if (cqe != NULL)
4336 		*cqe = cmd->nc_cqe;
4337 
4338 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4339 		dev_err(nvme->n_dip, CE_WARN,
4340 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4341 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4342 
4343 		goto free_cmd;
4344 	}
4345 
4346 	if ((rwk & FREAD) != 0) {
4347 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4348 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4349 			rv = EFAULT;
4350 	}
4351 
4352 free_cmd:
4353 	nvme_free_cmd(cmd);
4354 
4355 	return (rv);
4356 }
4357 
4358 static int
4359 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4360     int mode, cred_t *cred_p)
4361 {
4362 	_NOTE(ARGUNUSED(nsid, cred_p));
4363 	int rv = 0;
4364 	nvme_reg_cap_t cap = { 0 };
4365 	nvme_capabilities_t nc;
4366 
4367 	if ((mode & FREAD) == 0)
4368 		return (EPERM);
4369 
4370 	if (nioc->n_len < sizeof (nc))
4371 		return (EINVAL);
4372 
4373 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4374 
4375 	/*
4376 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4377 	 * specify the base page size of 4k (1<<12), so add 12 here to
4378 	 * get the real page size value.
4379 	 */
4380 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4381 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4382 
4383 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4384 		rv = EFAULT;
4385 
4386 	return (rv);
4387 }
4388 
4389 static int
4390 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4391     int mode, cred_t *cred_p)
4392 {
4393 	_NOTE(ARGUNUSED(cred_p));
4394 	void *log = NULL;
4395 	size_t bufsize = 0;
4396 	int rv = 0;
4397 
4398 	if ((mode & FREAD) == 0)
4399 		return (EPERM);
4400 
4401 	switch (nioc->n_arg) {
4402 	case NVME_LOGPAGE_ERROR:
4403 		if (nsid != 0)
4404 			return (EINVAL);
4405 		break;
4406 	case NVME_LOGPAGE_HEALTH:
4407 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4408 			return (EINVAL);
4409 
4410 		if (nsid == 0)
4411 			nsid = (uint32_t)-1;
4412 
4413 		break;
4414 	case NVME_LOGPAGE_FWSLOT:
4415 		if (nsid != 0)
4416 			return (EINVAL);
4417 		break;
4418 	default:
4419 		return (EINVAL);
4420 	}
4421 
4422 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4423 	    != DDI_SUCCESS)
4424 		return (EIO);
4425 
4426 	if (nioc->n_len < bufsize) {
4427 		kmem_free(log, bufsize);
4428 		return (EINVAL);
4429 	}
4430 
4431 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4432 		rv = EFAULT;
4433 
4434 	nioc->n_len = bufsize;
4435 	kmem_free(log, bufsize);
4436 
4437 	return (rv);
4438 }
4439 
4440 static int
4441 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4442     int mode, cred_t *cred_p)
4443 {
4444 	_NOTE(ARGUNUSED(cred_p));
4445 	void *buf = NULL;
4446 	size_t bufsize = 0;
4447 	uint32_t res = 0;
4448 	uint8_t feature;
4449 	int rv = 0;
4450 
4451 	if ((mode & FREAD) == 0)
4452 		return (EPERM);
4453 
4454 	if ((nioc->n_arg >> 32) > 0xff)
4455 		return (EINVAL);
4456 
4457 	feature = (uint8_t)(nioc->n_arg >> 32);
4458 
4459 	switch (feature) {
4460 	case NVME_FEAT_ARBITRATION:
4461 	case NVME_FEAT_POWER_MGMT:
4462 	case NVME_FEAT_ERROR:
4463 	case NVME_FEAT_NQUEUES:
4464 	case NVME_FEAT_INTR_COAL:
4465 	case NVME_FEAT_WRITE_ATOM:
4466 	case NVME_FEAT_ASYNC_EVENT:
4467 	case NVME_FEAT_PROGRESS:
4468 		if (nsid != 0)
4469 			return (EINVAL);
4470 		break;
4471 
4472 	case NVME_FEAT_TEMPERATURE:
4473 		if (nsid != 0)
4474 			return (EINVAL);
4475 		res = nioc->n_arg & 0xffffffffUL;
4476 		if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
4477 			nvme_temp_threshold_t tt;
4478 
4479 			tt.r = res;
4480 			if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
4481 			    tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
4482 				return (EINVAL);
4483 			}
4484 
4485 			if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
4486 				return (EINVAL);
4487 			}
4488 		} else if (res != 0) {
4489 			return (EINVAL);
4490 		}
4491 		break;
4492 
4493 	case NVME_FEAT_INTR_VECT:
4494 		if (nsid != 0)
4495 			return (EINVAL);
4496 
4497 		res = nioc->n_arg & 0xffffffffUL;
4498 		if (res >= nvme->n_intr_cnt)
4499 			return (EINVAL);
4500 		break;
4501 
4502 	case NVME_FEAT_LBA_RANGE:
4503 		if (nvme->n_lba_range_supported == B_FALSE)
4504 			return (EINVAL);
4505 
4506 		if (nsid == 0 ||
4507 		    nsid > nvme->n_namespace_count)
4508 			return (EINVAL);
4509 
4510 		break;
4511 
4512 	case NVME_FEAT_WRITE_CACHE:
4513 		if (nsid != 0)
4514 			return (EINVAL);
4515 
4516 		if (!nvme->n_write_cache_present)
4517 			return (EINVAL);
4518 
4519 		break;
4520 
4521 	case NVME_FEAT_AUTO_PST:
4522 		if (nsid != 0)
4523 			return (EINVAL);
4524 
4525 		if (!nvme->n_auto_pst_supported)
4526 			return (EINVAL);
4527 
4528 		break;
4529 
4530 	default:
4531 		return (EINVAL);
4532 	}
4533 
4534 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4535 	    &bufsize);
4536 	if (rv != 0)
4537 		return (rv);
4538 
4539 	if (nioc->n_len < bufsize) {
4540 		kmem_free(buf, bufsize);
4541 		return (EINVAL);
4542 	}
4543 
4544 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4545 		rv = EFAULT;
4546 
4547 	kmem_free(buf, bufsize);
4548 	nioc->n_arg = res;
4549 	nioc->n_len = bufsize;
4550 
4551 	return (rv);
4552 }
4553 
4554 static int
4555 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4556     cred_t *cred_p)
4557 {
4558 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4559 
4560 	if ((mode & FREAD) == 0)
4561 		return (EPERM);
4562 
4563 	nioc->n_arg = nvme->n_intr_cnt;
4564 	return (0);
4565 }
4566 
4567 static int
4568 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4569     cred_t *cred_p)
4570 {
4571 	_NOTE(ARGUNUSED(nsid, cred_p));
4572 	int rv = 0;
4573 
4574 	if ((mode & FREAD) == 0)
4575 		return (EPERM);
4576 
4577 	if (nioc->n_len < sizeof (nvme->n_version))
4578 		return (ENOMEM);
4579 
4580 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4581 	    sizeof (nvme->n_version), mode) != 0)
4582 		rv = EFAULT;
4583 
4584 	return (rv);
4585 }
4586 
4587 static int
4588 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4589     cred_t *cred_p)
4590 {
4591 	_NOTE(ARGUNUSED(mode));
4592 	nvme_format_nvm_t frmt = { 0 };
4593 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4594 
4595 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4596 		return (EPERM);
4597 
4598 	frmt.r = nioc->n_arg & 0xffffffff;
4599 
4600 	/*
4601 	 * Check whether the FORMAT NVM command is supported.
4602 	 */
4603 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4604 		return (EINVAL);
4605 
4606 	/*
4607 	 * Don't allow format or secure erase of individual namespace if that
4608 	 * would cause a format or secure erase of all namespaces.
4609 	 */
4610 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4611 		return (EINVAL);
4612 
4613 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4614 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4615 		return (EINVAL);
4616 
4617 	/*
4618 	 * Don't allow formatting with Protection Information.
4619 	 */
4620 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4621 		return (EINVAL);
4622 
4623 	/*
4624 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4625 	 * that uses metadata.
4626 	 */
4627 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4628 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4629 		return (EINVAL);
4630 
4631 	/*
4632 	 * Don't allow formatting using an illegal Secure Erase setting.
4633 	 */
4634 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4635 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4636 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4637 		return (EINVAL);
4638 
4639 	if (nsid == 0)
4640 		nsid = (uint32_t)-1;
4641 
4642 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4643 	    B_FALSE, frmt.b.fm_ses));
4644 }
4645 
4646 static int
4647 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4648     cred_t *cred_p)
4649 {
4650 	_NOTE(ARGUNUSED(nioc, mode));
4651 	int rv = 0;
4652 
4653 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4654 		return (EPERM);
4655 
4656 	if (nsid == 0)
4657 		return (EINVAL);
4658 
4659 	if (nvme->n_ns[nsid - 1].ns_ignore)
4660 		return (0);
4661 
4662 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4663 	if (rv != DDI_SUCCESS)
4664 		rv = EBUSY;
4665 
4666 	return (rv);
4667 }
4668 
4669 static int
4670 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4671     cred_t *cred_p)
4672 {
4673 	_NOTE(ARGUNUSED(nioc, mode));
4674 	nvme_identify_nsid_t *idns;
4675 	int rv = 0;
4676 
4677 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4678 		return (EPERM);
4679 
4680 	if (nsid == 0)
4681 		return (EINVAL);
4682 
4683 	/*
4684 	 * Identify namespace again, free old identify data.
4685 	 */
4686 	idns = nvme->n_ns[nsid - 1].ns_idns;
4687 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4688 		return (EIO);
4689 
4690 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4691 
4692 	if (nvme->n_ns[nsid - 1].ns_ignore)
4693 		return (ENOTSUP);
4694 
4695 	if (nvme->n_ns[nsid - 1].ns_bd_hdl == NULL)
4696 		nvme->n_ns[nsid - 1].ns_bd_hdl = bd_alloc_handle(
4697 		    &nvme->n_ns[nsid - 1], &nvme_bd_ops, &nvme->n_prp_dma_attr,
4698 		    KM_SLEEP);
4699 
4700 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4701 	if (rv != DDI_SUCCESS)
4702 		rv = EBUSY;
4703 
4704 	return (rv);
4705 }
4706 
4707 static void
4708 nvme_ufm_update(nvme_t *nvme)
4709 {
4710 	mutex_enter(&nvme->n_fwslot_mutex);
4711 	ddi_ufm_update(nvme->n_ufmh);
4712 	if (nvme->n_fwslot != NULL) {
4713 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4714 		nvme->n_fwslot = NULL;
4715 	}
4716 	mutex_exit(&nvme->n_fwslot_mutex);
4717 }
4718 
4719 static int
4720 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4721     int mode, cred_t *cred_p)
4722 {
4723 	int rv = 0;
4724 	size_t len, copylen;
4725 	offset_t offset;
4726 	uintptr_t buf;
4727 	nvme_sqe_t sqe = {
4728 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
4729 	};
4730 
4731 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4732 		return (EPERM);
4733 
4734 	if (nsid != 0)
4735 		return (EINVAL);
4736 
4737 	/*
4738 	 * The offset (in n_len) is restricted to the number of DWORDs in
4739 	 * 32 bits.
4740 	 */
4741 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4742 		return (EINVAL);
4743 
4744 	/* Confirm that both offset and length are a multiple of DWORD bytes */
4745 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4746 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
4747 		return (EINVAL);
4748 
4749 	len = nioc->n_len;
4750 	offset = nioc->n_arg;
4751 	buf = (uintptr_t)nioc->n_buf;
4752 	while (len > 0 && rv == 0) {
4753 		/*
4754 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
4755 		 * It is limited to 2 PRPs per NVM command, so limit
4756 		 * the size of the data to 2 pages.
4757 		 */
4758 		copylen = MIN(2 * nvme->n_pagesize, len);
4759 
4760 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4761 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4762 
4763 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4764 		    FWRITE, NULL, nvme_admin_cmd_timeout);
4765 
4766 		buf += copylen;
4767 		offset += copylen;
4768 		len -= copylen;
4769 	}
4770 
4771 	/*
4772 	 * Let the DDI UFM subsystem know that the firmware information for
4773 	 * this device has changed.
4774 	 */
4775 	nvme_ufm_update(nvme);
4776 
4777 	return (rv);
4778 }
4779 
4780 static int
4781 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4782     int mode, cred_t *cred_p)
4783 {
4784 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
4785 	uint32_t slot = nioc->n_arg & 0xffffffff;
4786 	uint32_t action = nioc->n_arg >> 32;
4787 	nvme_cqe_t cqe = { 0 };
4788 	nvme_sqe_t sqe = {
4789 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
4790 	};
4791 	int timeout;
4792 	int rv;
4793 
4794 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4795 		return (EPERM);
4796 
4797 	if (nsid != 0)
4798 		return (EINVAL);
4799 
4800 	/* Validate slot is in range. */
4801 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
4802 		return (EINVAL);
4803 
4804 	switch (action) {
4805 	case NVME_FWC_SAVE:
4806 	case NVME_FWC_SAVE_ACTIVATE:
4807 		timeout = nvme_commit_save_cmd_timeout;
4808 		break;
4809 	case NVME_FWC_ACTIVATE:
4810 	case NVME_FWC_ACTIVATE_IMMED:
4811 		timeout = nvme_admin_cmd_timeout;
4812 		break;
4813 	default:
4814 		return (EINVAL);
4815 	}
4816 
4817 	fc_dw10.b.fc_slot = slot;
4818 	fc_dw10.b.fc_action = action;
4819 	sqe.sqe_cdw10 = fc_dw10.r;
4820 
4821 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
4822 
4823 	nioc->n_arg = ((uint64_t)cqe.cqe_sf.sf_sct << 16) | cqe.cqe_sf.sf_sc;
4824 
4825 	/*
4826 	 * Let the DDI UFM subsystem know that the firmware information for
4827 	 * this device has changed.
4828 	 */
4829 	nvme_ufm_update(nvme);
4830 
4831 	return (rv);
4832 }
4833 
4834 static int
4835 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
4836     int *rval_p)
4837 {
4838 #ifndef __lock_lint
4839 	_NOTE(ARGUNUSED(rval_p));
4840 #endif
4841 	minor_t minor = getminor(dev);
4842 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4843 	int nsid = NVME_MINOR_NSID(minor);
4844 	int rv = 0;
4845 	nvme_ioctl_t nioc;
4846 
4847 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
4848 		NULL,
4849 		nvme_ioctl_identify,
4850 		nvme_ioctl_identify,
4851 		nvme_ioctl_capabilities,
4852 		nvme_ioctl_get_logpage,
4853 		nvme_ioctl_get_features,
4854 		nvme_ioctl_intr_cnt,
4855 		nvme_ioctl_version,
4856 		nvme_ioctl_format,
4857 		nvme_ioctl_detach,
4858 		nvme_ioctl_attach,
4859 		nvme_ioctl_firmware_download,
4860 		nvme_ioctl_firmware_commit
4861 	};
4862 
4863 	if (nvme == NULL)
4864 		return (ENXIO);
4865 
4866 	if (nsid > nvme->n_namespace_count)
4867 		return (ENXIO);
4868 
4869 	if (IS_DEVCTL(cmd))
4870 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
4871 
4872 #ifdef _MULTI_DATAMODEL
4873 	switch (ddi_model_convert_from(mode & FMODELS)) {
4874 	case DDI_MODEL_ILP32: {
4875 		nvme_ioctl32_t nioc32;
4876 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
4877 		    mode) != 0)
4878 			return (EFAULT);
4879 		nioc.n_len = nioc32.n_len;
4880 		nioc.n_buf = nioc32.n_buf;
4881 		nioc.n_arg = nioc32.n_arg;
4882 		break;
4883 	}
4884 	case DDI_MODEL_NONE:
4885 #endif
4886 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
4887 		    != 0)
4888 			return (EFAULT);
4889 #ifdef _MULTI_DATAMODEL
4890 		break;
4891 	}
4892 #endif
4893 
4894 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
4895 		return (EIO);
4896 
4897 
4898 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
4899 		/*
4900 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
4901 		 * attachment point nodes.
4902 		 */
4903 		nsid = 0;
4904 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
4905 		/*
4906 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
4907 		 * will always return identify data for namespace 1.
4908 		 */
4909 		nsid = 1;
4910 	}
4911 
4912 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
4913 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
4914 		    cred_p);
4915 	else
4916 		rv = EINVAL;
4917 
4918 #ifdef _MULTI_DATAMODEL
4919 	switch (ddi_model_convert_from(mode & FMODELS)) {
4920 	case DDI_MODEL_ILP32: {
4921 		nvme_ioctl32_t nioc32;
4922 
4923 		nioc32.n_len = (size32_t)nioc.n_len;
4924 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
4925 		nioc32.n_arg = nioc.n_arg;
4926 
4927 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
4928 		    mode) != 0)
4929 			return (EFAULT);
4930 		break;
4931 	}
4932 	case DDI_MODEL_NONE:
4933 #endif
4934 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
4935 		    != 0)
4936 			return (EFAULT);
4937 #ifdef _MULTI_DATAMODEL
4938 		break;
4939 	}
4940 #endif
4941 
4942 	return (rv);
4943 }
4944 
4945 /*
4946  * DDI UFM Callbacks
4947  */
4948 static int
4949 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4950     ddi_ufm_image_t *img)
4951 {
4952 	nvme_t *nvme = arg;
4953 
4954 	if (imgno != 0)
4955 		return (EINVAL);
4956 
4957 	ddi_ufm_image_set_desc(img, "Firmware");
4958 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
4959 
4960 	return (0);
4961 }
4962 
4963 /*
4964  * Fill out firmware slot information for the requested slot.  The firmware
4965  * slot information is gathered by requesting the Firmware Slot Information log
4966  * page.  The format of the page is described in section 5.10.1.3.
4967  *
4968  * We lazily cache the log page on the first call and then invalidate the cache
4969  * data after a successful firmware download or firmware commit command.
4970  * The cached data is protected by a mutex as the state can change
4971  * asynchronous to this callback.
4972  */
4973 static int
4974 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4975     uint_t slotno, ddi_ufm_slot_t *slot)
4976 {
4977 	nvme_t *nvme = arg;
4978 	void *log = NULL;
4979 	size_t bufsize;
4980 	ddi_ufm_attr_t attr = 0;
4981 	char fw_ver[NVME_FWVER_SZ + 1];
4982 	int ret;
4983 
4984 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
4985 		return (EINVAL);
4986 
4987 	mutex_enter(&nvme->n_fwslot_mutex);
4988 	if (nvme->n_fwslot == NULL) {
4989 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
4990 		    NVME_LOGPAGE_FWSLOT, 0);
4991 		if (ret != DDI_SUCCESS ||
4992 		    bufsize != sizeof (nvme_fwslot_log_t)) {
4993 			if (log != NULL)
4994 				kmem_free(log, bufsize);
4995 			mutex_exit(&nvme->n_fwslot_mutex);
4996 			return (EIO);
4997 		}
4998 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
4999 	}
5000 
5001 	/*
5002 	 * NVMe numbers firmware slots starting at 1
5003 	 */
5004 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
5005 		attr |= DDI_UFM_ATTR_ACTIVE;
5006 
5007 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
5008 		attr |= DDI_UFM_ATTR_WRITEABLE;
5009 
5010 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
5011 		attr |= DDI_UFM_ATTR_EMPTY;
5012 	} else {
5013 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
5014 		    NVME_FWVER_SZ);
5015 		fw_ver[NVME_FWVER_SZ] = '\0';
5016 		ddi_ufm_slot_set_version(slot, fw_ver);
5017 	}
5018 	mutex_exit(&nvme->n_fwslot_mutex);
5019 
5020 	ddi_ufm_slot_set_attrs(slot, attr);
5021 
5022 	return (0);
5023 }
5024 
5025 static int
5026 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
5027 {
5028 	*caps = DDI_UFM_CAP_REPORT;
5029 	return (0);
5030 }
5031