xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision badf94ff3599fab15963f6c532929e9bc411757a)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
14  * Copyright 2019 Unix Software Ltd.
15  * Copyright 2020 Joyent, Inc.
16  * Copyright 2020 Racktop Systems.
17  * Copyright 2022 Oxide Computer Company.
18  * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
19  * Copyright 2022 Tintri by DDN, Inc. All rights reserved.
20  */
21 
22 /*
23  * blkdev driver for NVMe compliant storage devices
24  *
25  * This driver targets and is designed to support all NVMe 1.x devices.
26  * Features are added to the driver as we encounter devices that require them
27  * and our needs, so some commands or log pages may not take advantage of newer
28  * features that devices support at this time. When you encounter such a case,
29  * it is generally fine to add that support to the driver as long as you take
30  * care to ensure that the requisite device version is met before using it.
31  *
32  * The driver has only been tested on x86 systems and will not work on big-
33  * endian systems without changes to the code accessing registers and data
34  * structures used by the hardware.
35  *
36  *
37  * Interrupt Usage:
38  *
39  * The driver will use a single interrupt while configuring the device as the
40  * specification requires, but contrary to the specification it will try to use
41  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
42  * will switch to multiple-message MSI(-X) if supported. The driver wants to
43  * have one interrupt vector per CPU, but it will work correctly if less are
44  * available. Interrupts can be shared by queues, the interrupt handler will
45  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
46  * the admin queue will share an interrupt with one I/O queue. The interrupt
47  * handler will retrieve completed commands from all queues sharing an interrupt
48  * vector and will post them to a taskq for completion processing.
49  *
50  *
51  * Command Processing:
52  *
53  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
54  * to 65536 I/O commands. The driver will configure one I/O queue pair per
55  * available interrupt vector, with the queue length usually much smaller than
56  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
57  * interrupt vectors will be used.
58  *
59  * Additionally the hardware provides a single special admin queue pair that can
60  * hold up to 4096 admin commands.
61  *
62  * From the hardware perspective both queues of a queue pair are independent,
63  * but they share some driver state: the command array (holding pointers to
64  * commands currently being processed by the hardware) and the active command
65  * counter. Access to a submission queue and the shared state is protected by
66  * nq_mutex; completion queue is protected by ncq_mutex.
67  *
68  * When a command is submitted to a queue pair the active command counter is
69  * incremented and a pointer to the command is stored in the command array. The
70  * array index is used as command identifier (CID) in the submission queue
71  * entry. Some commands may take a very long time to complete, and if the queue
72  * wraps around in that time a submission may find the next array slot to still
73  * be used by a long-running command. In this case the array is sequentially
74  * searched for the next free slot. The length of the command array is the same
75  * as the configured queue length. Queue overrun is prevented by the semaphore,
76  * so a command submission may block if the queue is full.
77  *
78  *
79  * Polled I/O Support:
80  *
81  * For kernel core dump support the driver can do polled I/O. As interrupts are
82  * turned off while dumping the driver will just submit a command in the regular
83  * way, and then repeatedly attempt a command retrieval until it gets the
84  * command back.
85  *
86  *
87  * Namespace Support:
88  *
89  * NVMe devices can have multiple namespaces, each being a independent data
90  * store. The driver supports multiple namespaces and creates a blkdev interface
91  * for each namespace found. Namespaces can have various attributes to support
92  * protection information. This driver does not support any of this and ignores
93  * namespaces that have these attributes.
94  *
95  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
96  * (EUI64). This driver uses the EUI64 if present to generate the devid and
97  * passes it to blkdev to use it in the device node names. As this is currently
98  * untested namespaces with EUI64 are ignored by default.
99  *
100  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
101  * single controller. This is an artificial limit imposed by the driver to be
102  * able to address a reasonable number of controllers and namespaces using a
103  * 32bit minor node number.
104  *
105  *
106  * Minor nodes:
107  *
108  * For each NVMe device the driver exposes one minor node for the controller and
109  * one minor node for each namespace. The only operations supported by those
110  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
111  * interface for the nvmeadm(8) utility.
112  *
113  * Exclusive opens are required for certain ioctl(9E) operations that alter
114  * controller and/or namespace state. While different namespaces may be opened
115  * exclusively in parallel, an exclusive open of the controller minor node
116  * requires that no namespaces are currently open (exclusive or otherwise).
117  * Opening any namespace minor node (exclusive or otherwise) will fail while
118  * the controller minor node is opened exclusively by any other thread. Thus it
119  * is possible for one thread at a time to open the controller minor node
120  * exclusively, and keep it open while opening any namespace minor node of the
121  * same controller, exclusively or otherwise.
122  *
123  *
124  *
125  * Blkdev Interface:
126  *
127  * This driver uses blkdev to do all the heavy lifting involved with presenting
128  * a disk device to the system. As a result, the processing of I/O requests is
129  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
130  * setup, and splitting of transfers into manageable chunks.
131  *
132  * I/O requests coming in from blkdev are turned into NVM commands and posted to
133  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
134  * queues. There is currently no timeout handling of I/O commands.
135  *
136  * Blkdev also supports querying device/media information and generating a
137  * devid. The driver reports the best block size as determined by the namespace
138  * format back to blkdev as physical block size to support partition and block
139  * alignment. The devid is either based on the namespace EUI64, if present, or
140  * composed using the device vendor ID, model number, serial number, and the
141  * namespace ID.
142  *
143  *
144  * Error Handling:
145  *
146  * Error handling is currently limited to detecting fatal hardware errors,
147  * either by asynchronous events, or synchronously through command status or
148  * admin command timeouts. In case of severe errors the device is fenced off,
149  * all further requests will return EIO. FMA is then called to fault the device.
150  *
151  * The hardware has a limit for outstanding asynchronous event requests. Before
152  * this limit is known the driver assumes it is at least 1 and posts a single
153  * asynchronous request. Later when the limit is known more asynchronous event
154  * requests are posted to allow quicker reception of error information. When an
155  * asynchronous event is posted by the hardware the driver will parse the error
156  * status fields and log information or fault the device, depending on the
157  * severity of the asynchronous event. The asynchronous event request is then
158  * reused and posted to the admin queue again.
159  *
160  * On command completion the command status is checked for errors. In case of
161  * errors indicating a driver bug the driver panics. Almost all other error
162  * status values just cause EIO to be returned.
163  *
164  * Command timeouts are currently detected for all admin commands except
165  * asynchronous event requests. If a command times out and the hardware appears
166  * to be healthy the driver attempts to abort the command. The original command
167  * timeout is also applied to the abort command. If the abort times out too the
168  * driver assumes the device to be dead, fences it off, and calls FMA to retire
169  * it. In all other cases the aborted command should return immediately with a
170  * status indicating it was aborted, and the driver will wait indefinitely for
171  * that to happen. No timeout handling of normal I/O commands is presently done.
172  *
173  * Any command that times out due to the controller dropping dead will be put on
174  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
175  * memory being reused by the system and later be written to by a "dead" NVMe
176  * controller.
177  *
178  *
179  * Locking:
180  *
181  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
182  * when accessing shared state and submission queue registers, ncq_mutex
183  * is held when accessing completion queue state and registers.
184  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
185  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
186  * mutexes themselves.
187  *
188  * Each command also has its own nc_mutex, which is associated with the
189  * condition variable nc_cv. It is only used on admin commands which are run
190  * synchronously. In that case it must be held across calls to
191  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
192  * nvme_admin_cmd(). It must also be held whenever the completion state of the
193  * command is changed or while a admin command timeout is handled.
194  *
195  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
196  * More than one nc_mutex may only be held when aborting commands. In this case,
197  * the nc_mutex of the command to be aborted must be held across the call to
198  * nvme_abort_cmd() to prevent the command from completing while the abort is in
199  * progress.
200  *
201  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
202  * acquired first. More than one nq_mutex is never held by a single thread.
203  * The ncq_mutex is only held by nvme_retrieve_cmd() and
204  * nvme_process_iocq(). nvme_process_iocq() is only called from the
205  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
206  * mutex is non-contentious but is required for implementation completeness
207  * and safety.
208  *
209  * There is one mutex n_minor_mutex which protects all open flags nm_open and
210  * exclusive-open thread pointers nm_oexcl of each minor node associated with a
211  * controller and its namespaces.
212  *
213  * In addition, there is one mutex n_mgmt_mutex which must be held whenever the
214  * driver state for any namespace is changed, especially across calls to
215  * nvme_init_ns(), nvme_attach_ns() and nvme_detach_ns(). Except when detaching
216  * nvme, it should also be held across calls that modify the blkdev handle of a
217  * namespace. Command and queue mutexes may be acquired and released while
218  * n_mgmt_mutex is held, n_minor_mutex should not.
219  *
220  *
221  * Quiesce / Fast Reboot:
222  *
223  * The driver currently does not support fast reboot. A quiesce(9E) entry point
224  * is still provided which is used to send a shutdown notification to the
225  * device.
226  *
227  *
228  * NVMe Hotplug:
229  *
230  * The driver supports hot removal. The driver uses the NDI event framework
231  * to register a callback, nvme_remove_callback, to clean up when a disk is
232  * removed. In particular, the driver will unqueue outstanding I/O commands and
233  * set n_dead on the softstate to true so that other operations, such as ioctls
234  * and command submissions, fail as well.
235  *
236  * While the callback registration relies on the NDI event framework, the
237  * removal event itself is kicked off in the PCIe hotplug framework, when the
238  * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a
239  * device was removed from the slot.
240  *
241  * The NVMe driver instance itself will remain until the final close of the
242  * device.
243  *
244  *
245  * DDI UFM Support
246  *
247  * The driver supports the DDI UFM framework for reporting information about
248  * the device's firmware image and slot configuration. This data can be
249  * queried by userland software via ioctls to the ufm driver. For more
250  * information, see ddi_ufm(9E).
251  *
252  *
253  * Driver Configuration:
254  *
255  * The following driver properties can be changed to control some aspects of the
256  * drivers operation:
257  * - strict-version: can be set to 0 to allow devices conforming to newer
258  *   major versions to be used
259  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
260  *   specific command status as a fatal error leading device faulting
261  * - admin-queue-len: the maximum length of the admin queue (16-4096)
262  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
263  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
264  * - async-event-limit: the maximum number of asynchronous event requests to be
265  *   posted by the driver
266  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
267  *   cache
268  * - min-phys-block-size: the minimum physical block size to report to blkdev,
269  *   which is among other things the basis for ZFS vdev ashift
270  * - max-submission-queues: the maximum number of I/O submission queues.
271  * - max-completion-queues: the maximum number of I/O completion queues,
272  *   can be less than max-submission-queues, in which case the completion
273  *   queues are shared.
274  *
275  *
276  * TODO:
277  * - figure out sane default for I/O queue depth reported to blkdev
278  * - FMA handling of media errors
279  * - support for devices supporting very large I/O requests using chained PRPs
280  * - support for configuring hardware parameters like interrupt coalescing
281  * - support for media formatting and hard partitioning into namespaces
282  * - support for big-endian systems
283  * - support for fast reboot
284  * - support for NVMe Subsystem Reset (1.1)
285  * - support for Scatter/Gather lists (1.1)
286  * - support for Reservations (1.1)
287  * - support for power management
288  */
289 
290 #include <sys/byteorder.h>
291 #ifdef _BIG_ENDIAN
292 #error nvme driver needs porting for big-endian platforms
293 #endif
294 
295 #include <sys/modctl.h>
296 #include <sys/conf.h>
297 #include <sys/devops.h>
298 #include <sys/ddi.h>
299 #include <sys/ddi_ufm.h>
300 #include <sys/sunddi.h>
301 #include <sys/sunndi.h>
302 #include <sys/bitmap.h>
303 #include <sys/sysmacros.h>
304 #include <sys/param.h>
305 #include <sys/varargs.h>
306 #include <sys/cpuvar.h>
307 #include <sys/disp.h>
308 #include <sys/blkdev.h>
309 #include <sys/atomic.h>
310 #include <sys/archsystm.h>
311 #include <sys/sata/sata_hba.h>
312 #include <sys/stat.h>
313 #include <sys/policy.h>
314 #include <sys/list.h>
315 #include <sys/dkio.h>
316 
317 #include <sys/nvme.h>
318 
319 #ifdef __x86
320 #include <sys/x86_archext.h>
321 #endif
322 
323 #include "nvme_reg.h"
324 #include "nvme_var.h"
325 
326 /*
327  * Assertions to make sure that we've properly captured various aspects of the
328  * packed structures and haven't broken them during updates.
329  */
330 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
331 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
332 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
333 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
334 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
335 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
336 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
337 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
338 
339 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
340 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
341 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
342 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
343 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
344 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
345 
346 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
347 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
348 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
349 
350 
351 /* NVMe spec version supported */
352 static const int nvme_version_major = 1;
353 
354 /* tunable for admin command timeout in seconds, default is 1s */
355 int nvme_admin_cmd_timeout = 1;
356 
357 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
358 int nvme_format_cmd_timeout = 600;
359 
360 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
361 int nvme_commit_save_cmd_timeout = 15;
362 
363 /*
364  * tunable for the size of arbitrary vendor specific admin commands,
365  * default is 16MiB.
366  */
367 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24;
368 
369 /*
370  * tunable for the max timeout of arbitary vendor specific admin commands,
371  * default is 60s.
372  */
373 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60;
374 
375 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
376 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
377 static int nvme_quiesce(dev_info_t *);
378 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
379 static int nvme_setup_interrupts(nvme_t *, int, int);
380 static void nvme_release_interrupts(nvme_t *);
381 static uint_t nvme_intr(caddr_t, caddr_t);
382 
383 static void nvme_shutdown(nvme_t *, int, boolean_t);
384 static boolean_t nvme_reset(nvme_t *, boolean_t);
385 static int nvme_init(nvme_t *);
386 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
387 static void nvme_free_cmd(nvme_cmd_t *);
388 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
389     bd_xfer_t *);
390 static void nvme_admin_cmd(nvme_cmd_t *, int);
391 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
392 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
393 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
394 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
395 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
396 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
397 static void nvme_wakeup_cmd(void *);
398 static void nvme_async_event_task(void *);
399 
400 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
401 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
402 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
403 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
404 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
405 static inline int nvme_check_cmd_status(nvme_cmd_t *);
406 
407 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
408 static void nvme_async_event(nvme_t *);
409 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
410     uint8_t, boolean_t, uint8_t);
411 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
412     ...);
413 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
414 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
415     uint32_t *);
416 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
417     void **, size_t *);
418 static int nvme_write_cache_set(nvme_t *, boolean_t);
419 static int nvme_set_nqueues(nvme_t *);
420 
421 static void nvme_free_dma(nvme_dma_t *);
422 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
423     nvme_dma_t **);
424 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
425     nvme_dma_t **);
426 static void nvme_free_qpair(nvme_qpair_t *);
427 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
428 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
429 
430 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
431 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
432 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
433 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
434 
435 static boolean_t nvme_check_regs_hdl(nvme_t *);
436 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
437 
438 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t);
439 
440 static void nvme_bd_xfer_done(void *);
441 static void nvme_bd_driveinfo(void *, bd_drive_t *);
442 static int nvme_bd_mediainfo(void *, bd_media_t *);
443 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
444 static int nvme_bd_read(void *, bd_xfer_t *);
445 static int nvme_bd_write(void *, bd_xfer_t *);
446 static int nvme_bd_sync(void *, bd_xfer_t *);
447 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
448 static int nvme_bd_free_space(void *, bd_xfer_t *);
449 
450 static int nvme_prp_dma_constructor(void *, void *, int);
451 static void nvme_prp_dma_destructor(void *, void *);
452 
453 static void nvme_prepare_devid(nvme_t *, uint32_t);
454 
455 /* DDI UFM callbacks */
456 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
457     ddi_ufm_image_t *);
458 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
459     ddi_ufm_slot_t *);
460 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
461 
462 static int nvme_open(dev_t *, int, int, cred_t *);
463 static int nvme_close(dev_t, int, int, cred_t *);
464 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
465 
466 static int nvme_init_ns(nvme_t *, int);
467 static int nvme_attach_ns(nvme_t *, int);
468 static int nvme_detach_ns(nvme_t *, int);
469 
470 #define	NVME_NSID2NS(nvme, nsid)	(&((nvme)->n_ns[(nsid) - 1]))
471 
472 static ddi_ufm_ops_t nvme_ufm_ops = {
473 	NULL,
474 	nvme_ufm_fill_image,
475 	nvme_ufm_fill_slot,
476 	nvme_ufm_getcaps
477 };
478 
479 #define	NVME_MINOR_INST_SHIFT	9
480 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
481 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
482 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
483 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
484 #define	NVME_IS_VENDOR_SPECIFIC_CMD(x)	(((x) >= 0xC0) && ((x) <= 0xFF))
485 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MIN	0xC0
486 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX	0xFF
487 #define	NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x)	\
488 		(((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \
489 		((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX))
490 
491 /*
492  * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX
493  * DWords in size. However, revision 1.3 also modified the layout of the Get Log
494  * Page command significantly relative to version 1.2, including changing
495  * reserved bits, adding new bitfields, and requiring the use of command DWord
496  * 11 to fully specify the size of the log page (the lower and upper 16 bits of
497  * the number of DWords in the page are split between DWord 10 and DWord 11,
498  * respectively).
499  *
500  * All of these impose significantly different layout requirements on the
501  * `nvme_getlogpage_t` type. This could be solved with two different types, or a
502  * complicated/nested union with the two versions as the overlying members. Both
503  * of these are reasonable, if a bit convoluted. However, these is no current
504  * need for such large pages, or a way to test them, as most log pages actually
505  * fit within the current size limit. So for simplicity, we retain the size cap
506  * from version 1.2.
507  *
508  * Note that the number of DWords is zero-based, so we add 1. It is subtracted
509  * to form a zero-based value in `nvme_get_logpage`.
510  */
511 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE	\
512 		(((1 << 12) + 1) * sizeof (uint32_t))
513 
514 static void *nvme_state;
515 static kmem_cache_t *nvme_cmd_cache;
516 
517 /*
518  * DMA attributes for queue DMA memory
519  *
520  * Queue DMA memory must be page aligned. The maximum length of a queue is
521  * 65536 entries, and an entry can be 64 bytes long.
522  */
523 static ddi_dma_attr_t nvme_queue_dma_attr = {
524 	.dma_attr_version	= DMA_ATTR_V0,
525 	.dma_attr_addr_lo	= 0,
526 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
527 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
528 	.dma_attr_align		= 0x1000,
529 	.dma_attr_burstsizes	= 0x7ff,
530 	.dma_attr_minxfer	= 0x1000,
531 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
532 	.dma_attr_seg		= 0xffffffffffffffffULL,
533 	.dma_attr_sgllen	= 1,
534 	.dma_attr_granular	= 1,
535 	.dma_attr_flags		= 0,
536 };
537 
538 /*
539  * DMA attributes for transfers using Physical Region Page (PRP) entries
540  *
541  * A PRP entry describes one page of DMA memory using the page size specified
542  * in the controller configuration's memory page size register (CC.MPS). It uses
543  * a 64bit base address aligned to this page size. There is no limitation on
544  * chaining PRPs together for arbitrarily large DMA transfers.
545  */
546 static ddi_dma_attr_t nvme_prp_dma_attr = {
547 	.dma_attr_version	= DMA_ATTR_V0,
548 	.dma_attr_addr_lo	= 0,
549 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
550 	.dma_attr_count_max	= 0xfff,
551 	.dma_attr_align		= 0x1000,
552 	.dma_attr_burstsizes	= 0x7ff,
553 	.dma_attr_minxfer	= 0x1000,
554 	.dma_attr_maxxfer	= 0x1000,
555 	.dma_attr_seg		= 0xfff,
556 	.dma_attr_sgllen	= -1,
557 	.dma_attr_granular	= 1,
558 	.dma_attr_flags		= 0,
559 };
560 
561 /*
562  * DMA attributes for transfers using scatter/gather lists
563  *
564  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
565  * 32bit length field. SGL Segment and SGL Last Segment entries require the
566  * length to be a multiple of 16 bytes.
567  */
568 static ddi_dma_attr_t nvme_sgl_dma_attr = {
569 	.dma_attr_version	= DMA_ATTR_V0,
570 	.dma_attr_addr_lo	= 0,
571 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
572 	.dma_attr_count_max	= 0xffffffffUL,
573 	.dma_attr_align		= 1,
574 	.dma_attr_burstsizes	= 0x7ff,
575 	.dma_attr_minxfer	= 0x10,
576 	.dma_attr_maxxfer	= 0xfffffffffULL,
577 	.dma_attr_seg		= 0xffffffffffffffffULL,
578 	.dma_attr_sgllen	= -1,
579 	.dma_attr_granular	= 0x10,
580 	.dma_attr_flags		= 0
581 };
582 
583 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
584 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
585 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
586 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
587 };
588 
589 static struct cb_ops nvme_cb_ops = {
590 	.cb_open	= nvme_open,
591 	.cb_close	= nvme_close,
592 	.cb_strategy	= nodev,
593 	.cb_print	= nodev,
594 	.cb_dump	= nodev,
595 	.cb_read	= nodev,
596 	.cb_write	= nodev,
597 	.cb_ioctl	= nvme_ioctl,
598 	.cb_devmap	= nodev,
599 	.cb_mmap	= nodev,
600 	.cb_segmap	= nodev,
601 	.cb_chpoll	= nochpoll,
602 	.cb_prop_op	= ddi_prop_op,
603 	.cb_str		= 0,
604 	.cb_flag	= D_NEW | D_MP,
605 	.cb_rev		= CB_REV,
606 	.cb_aread	= nodev,
607 	.cb_awrite	= nodev
608 };
609 
610 static struct dev_ops nvme_dev_ops = {
611 	.devo_rev	= DEVO_REV,
612 	.devo_refcnt	= 0,
613 	.devo_getinfo	= ddi_no_info,
614 	.devo_identify	= nulldev,
615 	.devo_probe	= nulldev,
616 	.devo_attach	= nvme_attach,
617 	.devo_detach	= nvme_detach,
618 	.devo_reset	= nodev,
619 	.devo_cb_ops	= &nvme_cb_ops,
620 	.devo_bus_ops	= NULL,
621 	.devo_power	= NULL,
622 	.devo_quiesce	= nvme_quiesce,
623 };
624 
625 static struct modldrv nvme_modldrv = {
626 	.drv_modops	= &mod_driverops,
627 	.drv_linkinfo	= "NVMe v1.1b",
628 	.drv_dev_ops	= &nvme_dev_ops
629 };
630 
631 static struct modlinkage nvme_modlinkage = {
632 	.ml_rev		= MODREV_1,
633 	.ml_linkage	= { &nvme_modldrv, NULL }
634 };
635 
636 static bd_ops_t nvme_bd_ops = {
637 	.o_version	= BD_OPS_CURRENT_VERSION,
638 	.o_drive_info	= nvme_bd_driveinfo,
639 	.o_media_info	= nvme_bd_mediainfo,
640 	.o_devid_init	= nvme_bd_devid,
641 	.o_sync_cache	= nvme_bd_sync,
642 	.o_read		= nvme_bd_read,
643 	.o_write	= nvme_bd_write,
644 	.o_free_space	= nvme_bd_free_space,
645 };
646 
647 /*
648  * This list will hold commands that have timed out and couldn't be aborted.
649  * As we don't know what the hardware may still do with the DMA memory we can't
650  * free them, so we'll keep them forever on this list where we can easily look
651  * at them with mdb.
652  */
653 static struct list nvme_lost_cmds;
654 static kmutex_t nvme_lc_mutex;
655 
656 int
657 _init(void)
658 {
659 	int error;
660 
661 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
662 	if (error != DDI_SUCCESS)
663 		return (error);
664 
665 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
666 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
667 
668 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
669 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
670 	    offsetof(nvme_cmd_t, nc_list));
671 
672 	bd_mod_init(&nvme_dev_ops);
673 
674 	error = mod_install(&nvme_modlinkage);
675 	if (error != DDI_SUCCESS) {
676 		ddi_soft_state_fini(&nvme_state);
677 		mutex_destroy(&nvme_lc_mutex);
678 		list_destroy(&nvme_lost_cmds);
679 		bd_mod_fini(&nvme_dev_ops);
680 	}
681 
682 	return (error);
683 }
684 
685 int
686 _fini(void)
687 {
688 	int error;
689 
690 	if (!list_is_empty(&nvme_lost_cmds))
691 		return (DDI_FAILURE);
692 
693 	error = mod_remove(&nvme_modlinkage);
694 	if (error == DDI_SUCCESS) {
695 		ddi_soft_state_fini(&nvme_state);
696 		kmem_cache_destroy(nvme_cmd_cache);
697 		mutex_destroy(&nvme_lc_mutex);
698 		list_destroy(&nvme_lost_cmds);
699 		bd_mod_fini(&nvme_dev_ops);
700 	}
701 
702 	return (error);
703 }
704 
705 int
706 _info(struct modinfo *modinfop)
707 {
708 	return (mod_info(&nvme_modlinkage, modinfop));
709 }
710 
711 static inline void
712 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
713 {
714 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
715 
716 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
717 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
718 }
719 
720 static inline void
721 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
722 {
723 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
724 
725 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
726 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
727 }
728 
729 static inline uint64_t
730 nvme_get64(nvme_t *nvme, uintptr_t reg)
731 {
732 	uint64_t val;
733 
734 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
735 
736 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
737 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
738 
739 	return (val);
740 }
741 
742 static inline uint32_t
743 nvme_get32(nvme_t *nvme, uintptr_t reg)
744 {
745 	uint32_t val;
746 
747 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
748 
749 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
750 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
751 
752 	return (val);
753 }
754 
755 static boolean_t
756 nvme_check_regs_hdl(nvme_t *nvme)
757 {
758 	ddi_fm_error_t error;
759 
760 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
761 
762 	if (error.fme_status != DDI_FM_OK)
763 		return (B_TRUE);
764 
765 	return (B_FALSE);
766 }
767 
768 static boolean_t
769 nvme_check_dma_hdl(nvme_dma_t *dma)
770 {
771 	ddi_fm_error_t error;
772 
773 	if (dma == NULL)
774 		return (B_FALSE);
775 
776 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
777 
778 	if (error.fme_status != DDI_FM_OK)
779 		return (B_TRUE);
780 
781 	return (B_FALSE);
782 }
783 
784 static void
785 nvme_free_dma_common(nvme_dma_t *dma)
786 {
787 	if (dma->nd_dmah != NULL)
788 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
789 	if (dma->nd_acch != NULL)
790 		ddi_dma_mem_free(&dma->nd_acch);
791 	if (dma->nd_dmah != NULL)
792 		ddi_dma_free_handle(&dma->nd_dmah);
793 }
794 
795 static void
796 nvme_free_dma(nvme_dma_t *dma)
797 {
798 	nvme_free_dma_common(dma);
799 	kmem_free(dma, sizeof (*dma));
800 }
801 
802 /* ARGSUSED */
803 static void
804 nvme_prp_dma_destructor(void *buf, void *private)
805 {
806 	nvme_dma_t *dma = (nvme_dma_t *)buf;
807 
808 	nvme_free_dma_common(dma);
809 }
810 
811 static int
812 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
813     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
814 {
815 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
816 	    &dma->nd_dmah) != DDI_SUCCESS) {
817 		/*
818 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
819 		 * the only other possible error is DDI_DMA_BADATTR which
820 		 * indicates a driver bug which should cause a panic.
821 		 */
822 		dev_err(nvme->n_dip, CE_PANIC,
823 		    "!failed to get DMA handle, check DMA attributes");
824 		return (DDI_FAILURE);
825 	}
826 
827 	/*
828 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
829 	 * or the flags are conflicting, which isn't the case here.
830 	 */
831 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
832 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
833 	    &dma->nd_len, &dma->nd_acch);
834 
835 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
836 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
837 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
838 		dev_err(nvme->n_dip, CE_WARN,
839 		    "!failed to bind DMA memory");
840 		atomic_inc_32(&nvme->n_dma_bind_err);
841 		nvme_free_dma_common(dma);
842 		return (DDI_FAILURE);
843 	}
844 
845 	return (DDI_SUCCESS);
846 }
847 
848 static int
849 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
850     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
851 {
852 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
853 
854 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
855 	    DDI_SUCCESS) {
856 		*ret = NULL;
857 		kmem_free(dma, sizeof (nvme_dma_t));
858 		return (DDI_FAILURE);
859 	}
860 
861 	bzero(dma->nd_memp, dma->nd_len);
862 
863 	*ret = dma;
864 	return (DDI_SUCCESS);
865 }
866 
867 /* ARGSUSED */
868 static int
869 nvme_prp_dma_constructor(void *buf, void *private, int flags)
870 {
871 	nvme_dma_t *dma = (nvme_dma_t *)buf;
872 	nvme_t *nvme = (nvme_t *)private;
873 
874 	dma->nd_dmah = NULL;
875 	dma->nd_acch = NULL;
876 
877 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
878 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
879 		return (-1);
880 	}
881 
882 	ASSERT(dma->nd_ncookie == 1);
883 
884 	dma->nd_cached = B_TRUE;
885 
886 	return (0);
887 }
888 
889 static int
890 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
891     uint_t flags, nvme_dma_t **dma)
892 {
893 	uint32_t len = nentry * qe_len;
894 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
895 
896 	len = roundup(len, nvme->n_pagesize);
897 
898 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
899 	    != DDI_SUCCESS) {
900 		dev_err(nvme->n_dip, CE_WARN,
901 		    "!failed to get DMA memory for queue");
902 		goto fail;
903 	}
904 
905 	if ((*dma)->nd_ncookie != 1) {
906 		dev_err(nvme->n_dip, CE_WARN,
907 		    "!got too many cookies for queue DMA");
908 		goto fail;
909 	}
910 
911 	return (DDI_SUCCESS);
912 
913 fail:
914 	if (*dma) {
915 		nvme_free_dma(*dma);
916 		*dma = NULL;
917 	}
918 
919 	return (DDI_FAILURE);
920 }
921 
922 static void
923 nvme_free_cq(nvme_cq_t *cq)
924 {
925 	mutex_destroy(&cq->ncq_mutex);
926 
927 	if (cq->ncq_cmd_taskq != NULL)
928 		taskq_destroy(cq->ncq_cmd_taskq);
929 
930 	if (cq->ncq_dma != NULL)
931 		nvme_free_dma(cq->ncq_dma);
932 
933 	kmem_free(cq, sizeof (*cq));
934 }
935 
936 static void
937 nvme_free_qpair(nvme_qpair_t *qp)
938 {
939 	int i;
940 
941 	mutex_destroy(&qp->nq_mutex);
942 	sema_destroy(&qp->nq_sema);
943 
944 	if (qp->nq_sqdma != NULL)
945 		nvme_free_dma(qp->nq_sqdma);
946 
947 	if (qp->nq_active_cmds > 0)
948 		for (i = 0; i != qp->nq_nentry; i++)
949 			if (qp->nq_cmd[i] != NULL)
950 				nvme_free_cmd(qp->nq_cmd[i]);
951 
952 	if (qp->nq_cmd != NULL)
953 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
954 
955 	kmem_free(qp, sizeof (nvme_qpair_t));
956 }
957 
958 /*
959  * Destroy the pre-allocated cq array, but only free individual completion
960  * queues from the given starting index.
961  */
962 static void
963 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
964 {
965 	uint_t i;
966 
967 	for (i = start; i < nvme->n_cq_count; i++)
968 		if (nvme->n_cq[i] != NULL)
969 			nvme_free_cq(nvme->n_cq[i]);
970 
971 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
972 }
973 
974 static int
975 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
976     uint_t nthr)
977 {
978 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
979 	char name[64];		/* large enough for the taskq name */
980 
981 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
982 	    DDI_INTR_PRI(nvme->n_intr_pri));
983 
984 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
985 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
986 		goto fail;
987 
988 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
989 	cq->ncq_nentry = nentry;
990 	cq->ncq_id = idx;
991 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
992 
993 	/*
994 	 * Each completion queue has its own command taskq.
995 	 */
996 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
997 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
998 
999 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
1000 	    TASKQ_PREPOPULATE);
1001 
1002 	if (cq->ncq_cmd_taskq == NULL) {
1003 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
1004 		    "taskq for cq %u", idx);
1005 		goto fail;
1006 	}
1007 
1008 	*cqp = cq;
1009 	return (DDI_SUCCESS);
1010 
1011 fail:
1012 	nvme_free_cq(cq);
1013 	*cqp = NULL;
1014 
1015 	return (DDI_FAILURE);
1016 }
1017 
1018 /*
1019  * Create the n_cq array big enough to hold "ncq" completion queues.
1020  * If the array already exists it will be re-sized (but only larger).
1021  * The admin queue is included in this array, which boosts the
1022  * max number of entries to UINT16_MAX + 1.
1023  */
1024 static int
1025 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
1026 {
1027 	nvme_cq_t **cq;
1028 	uint_t i, cq_count;
1029 
1030 	ASSERT3U(ncq, >, nvme->n_cq_count);
1031 
1032 	cq = nvme->n_cq;
1033 	cq_count = nvme->n_cq_count;
1034 
1035 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
1036 	nvme->n_cq_count = ncq;
1037 
1038 	for (i = 0; i < cq_count; i++)
1039 		nvme->n_cq[i] = cq[i];
1040 
1041 	for (; i < nvme->n_cq_count; i++)
1042 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
1043 		    DDI_SUCCESS)
1044 			goto fail;
1045 
1046 	if (cq != NULL)
1047 		kmem_free(cq, sizeof (*cq) * cq_count);
1048 
1049 	return (DDI_SUCCESS);
1050 
1051 fail:
1052 	nvme_destroy_cq_array(nvme, cq_count);
1053 	/*
1054 	 * Restore the original array
1055 	 */
1056 	nvme->n_cq_count = cq_count;
1057 	nvme->n_cq = cq;
1058 
1059 	return (DDI_FAILURE);
1060 }
1061 
1062 static int
1063 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
1064     uint_t idx)
1065 {
1066 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
1067 	uint_t cq_idx;
1068 
1069 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
1070 	    DDI_INTR_PRI(nvme->n_intr_pri));
1071 
1072 	/*
1073 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
1074 	 * initialize the semaphore accordingly.
1075 	 */
1076 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
1077 
1078 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
1079 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
1080 		goto fail;
1081 
1082 	/*
1083 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
1084 	 */
1085 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
1086 	qp->nq_cq = nvme->n_cq[cq_idx];
1087 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1088 	qp->nq_nentry = nentry;
1089 
1090 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1091 
1092 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1093 	qp->nq_next_cmd = 0;
1094 
1095 	*nqp = qp;
1096 	return (DDI_SUCCESS);
1097 
1098 fail:
1099 	nvme_free_qpair(qp);
1100 	*nqp = NULL;
1101 
1102 	return (DDI_FAILURE);
1103 }
1104 
1105 static nvme_cmd_t *
1106 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1107 {
1108 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1109 
1110 	if (cmd == NULL)
1111 		return (cmd);
1112 
1113 	bzero(cmd, sizeof (nvme_cmd_t));
1114 
1115 	cmd->nc_nvme = nvme;
1116 
1117 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1118 	    DDI_INTR_PRI(nvme->n_intr_pri));
1119 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1120 
1121 	return (cmd);
1122 }
1123 
1124 static void
1125 nvme_free_cmd(nvme_cmd_t *cmd)
1126 {
1127 	/* Don't free commands on the lost commands list. */
1128 	if (list_link_active(&cmd->nc_list))
1129 		return;
1130 
1131 	if (cmd->nc_dma) {
1132 		nvme_free_dma(cmd->nc_dma);
1133 		cmd->nc_dma = NULL;
1134 	}
1135 
1136 	if (cmd->nc_prp) {
1137 		kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp);
1138 		cmd->nc_prp = NULL;
1139 	}
1140 
1141 	cv_destroy(&cmd->nc_cv);
1142 	mutex_destroy(&cmd->nc_mutex);
1143 
1144 	kmem_cache_free(nvme_cmd_cache, cmd);
1145 }
1146 
1147 static void
1148 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1149 {
1150 	sema_p(&qp->nq_sema);
1151 	nvme_submit_cmd_common(qp, cmd);
1152 }
1153 
1154 static int
1155 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1156 {
1157 	if (cmd->nc_nvme->n_dead) {
1158 		return (EIO);
1159 	}
1160 
1161 	if (sema_tryp(&qp->nq_sema) == 0)
1162 		return (EAGAIN);
1163 
1164 	nvme_submit_cmd_common(qp, cmd);
1165 	return (0);
1166 }
1167 
1168 static void
1169 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1170 {
1171 	nvme_reg_sqtdbl_t tail = { 0 };
1172 
1173 	mutex_enter(&qp->nq_mutex);
1174 	cmd->nc_completed = B_FALSE;
1175 
1176 	/*
1177 	 * Now that we hold the queue pair lock, we must check whether or not
1178 	 * the controller has been listed as dead (e.g. was removed due to
1179 	 * hotplug). This is necessary as otherwise we could race with
1180 	 * nvme_remove_callback(). Because this has not been enqueued, we don't
1181 	 * call nvme_unqueue_cmd(), which is why we must manually decrement the
1182 	 * semaphore.
1183 	 */
1184 	if (cmd->nc_nvme->n_dead) {
1185 		taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback,
1186 		    cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1187 		sema_v(&qp->nq_sema);
1188 		mutex_exit(&qp->nq_mutex);
1189 		return;
1190 	}
1191 
1192 	/*
1193 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1194 	 * slot. If the slot is already occupied advance to the next slot and
1195 	 * try again. This can happen for long running commands like async event
1196 	 * requests.
1197 	 */
1198 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1199 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1200 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1201 
1202 	qp->nq_active_cmds++;
1203 
1204 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1205 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1206 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1207 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1208 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1209 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1210 
1211 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1212 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1213 
1214 	mutex_exit(&qp->nq_mutex);
1215 }
1216 
1217 static nvme_cmd_t *
1218 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1219 {
1220 	nvme_cmd_t *cmd;
1221 
1222 	ASSERT(mutex_owned(&qp->nq_mutex));
1223 	ASSERT3S(cid, <, qp->nq_nentry);
1224 
1225 	cmd = qp->nq_cmd[cid];
1226 	qp->nq_cmd[cid] = NULL;
1227 	ASSERT3U(qp->nq_active_cmds, >, 0);
1228 	qp->nq_active_cmds--;
1229 	sema_v(&qp->nq_sema);
1230 
1231 	ASSERT3P(cmd, !=, NULL);
1232 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1233 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1234 
1235 	return (cmd);
1236 }
1237 
1238 /*
1239  * Get the command tied to the next completed cqe and bump along completion
1240  * queue head counter.
1241  */
1242 static nvme_cmd_t *
1243 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1244 {
1245 	nvme_qpair_t *qp;
1246 	nvme_cqe_t *cqe;
1247 	nvme_cmd_t *cmd;
1248 
1249 	ASSERT(mutex_owned(&cq->ncq_mutex));
1250 
1251 	cqe = &cq->ncq_cq[cq->ncq_head];
1252 
1253 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1254 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1255 		return (NULL);
1256 
1257 	qp = nvme->n_ioq[cqe->cqe_sqid];
1258 
1259 	mutex_enter(&qp->nq_mutex);
1260 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1261 	mutex_exit(&qp->nq_mutex);
1262 
1263 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1264 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1265 
1266 	qp->nq_sqhead = cqe->cqe_sqhd;
1267 
1268 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1269 
1270 	/* Toggle phase on wrap-around. */
1271 	if (cq->ncq_head == 0)
1272 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1273 
1274 	return (cmd);
1275 }
1276 
1277 /*
1278  * Process all completed commands on the io completion queue.
1279  */
1280 static uint_t
1281 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1282 {
1283 	nvme_reg_cqhdbl_t head = { 0 };
1284 	nvme_cmd_t *cmd;
1285 	uint_t completed = 0;
1286 
1287 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1288 	    DDI_SUCCESS)
1289 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1290 		    __func__);
1291 
1292 	mutex_enter(&cq->ncq_mutex);
1293 
1294 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1295 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1296 		    TQ_NOSLEEP, &cmd->nc_tqent);
1297 
1298 		completed++;
1299 	}
1300 
1301 	if (completed > 0) {
1302 		/*
1303 		 * Update the completion queue head doorbell.
1304 		 */
1305 		head.b.cqhdbl_cqh = cq->ncq_head;
1306 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1307 	}
1308 
1309 	mutex_exit(&cq->ncq_mutex);
1310 
1311 	return (completed);
1312 }
1313 
1314 static nvme_cmd_t *
1315 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1316 {
1317 	nvme_cq_t *cq = qp->nq_cq;
1318 	nvme_reg_cqhdbl_t head = { 0 };
1319 	nvme_cmd_t *cmd;
1320 
1321 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1322 	    DDI_SUCCESS)
1323 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1324 		    __func__);
1325 
1326 	mutex_enter(&cq->ncq_mutex);
1327 
1328 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1329 		head.b.cqhdbl_cqh = cq->ncq_head;
1330 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1331 	}
1332 
1333 	mutex_exit(&cq->ncq_mutex);
1334 
1335 	return (cmd);
1336 }
1337 
1338 static int
1339 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1340 {
1341 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1342 
1343 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1344 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1345 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1346 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1347 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1348 
1349 	if (cmd->nc_xfer != NULL)
1350 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1351 
1352 	if (cmd->nc_nvme->n_strict_version) {
1353 		cmd->nc_nvme->n_dead = B_TRUE;
1354 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1355 	}
1356 
1357 	return (EIO);
1358 }
1359 
1360 static int
1361 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1362 {
1363 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1364 
1365 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1366 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1367 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1368 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1369 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1370 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1371 		cmd->nc_nvme->n_dead = B_TRUE;
1372 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1373 	}
1374 
1375 	return (EIO);
1376 }
1377 
1378 static int
1379 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1380 {
1381 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1382 
1383 	switch (cqe->cqe_sf.sf_sc) {
1384 	case NVME_CQE_SC_INT_NVM_WRITE:
1385 		/* write fail */
1386 		/* TODO: post ereport */
1387 		if (cmd->nc_xfer != NULL)
1388 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1389 		return (EIO);
1390 
1391 	case NVME_CQE_SC_INT_NVM_READ:
1392 		/* read fail */
1393 		/* TODO: post ereport */
1394 		if (cmd->nc_xfer != NULL)
1395 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1396 		return (EIO);
1397 
1398 	default:
1399 		return (nvme_check_unknown_cmd_status(cmd));
1400 	}
1401 }
1402 
1403 static int
1404 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1405 {
1406 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1407 
1408 	switch (cqe->cqe_sf.sf_sc) {
1409 	case NVME_CQE_SC_GEN_SUCCESS:
1410 		return (0);
1411 
1412 	/*
1413 	 * Errors indicating a bug in the driver should cause a panic.
1414 	 */
1415 	case NVME_CQE_SC_GEN_INV_OPC:
1416 		/* Invalid Command Opcode */
1417 		if (!cmd->nc_dontpanic)
1418 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1419 			    "programming error: invalid opcode in cmd %p",
1420 			    (void *)cmd);
1421 		return (EINVAL);
1422 
1423 	case NVME_CQE_SC_GEN_INV_FLD:
1424 		/* Invalid Field in Command */
1425 		if (!cmd->nc_dontpanic)
1426 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1427 			    "programming error: invalid field in cmd %p",
1428 			    (void *)cmd);
1429 		return (EIO);
1430 
1431 	case NVME_CQE_SC_GEN_ID_CNFL:
1432 		/* Command ID Conflict */
1433 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1434 		    "cmd ID conflict in cmd %p", (void *)cmd);
1435 		return (0);
1436 
1437 	case NVME_CQE_SC_GEN_INV_NS:
1438 		/* Invalid Namespace or Format */
1439 		if (!cmd->nc_dontpanic)
1440 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1441 			    "programming error: invalid NS/format in cmd %p",
1442 			    (void *)cmd);
1443 		return (EINVAL);
1444 
1445 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1446 		/* LBA Out Of Range */
1447 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1448 		    "LBA out of range in cmd %p", (void *)cmd);
1449 		return (0);
1450 
1451 	/*
1452 	 * Non-fatal errors, handle gracefully.
1453 	 */
1454 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1455 		/* Data Transfer Error (DMA) */
1456 		/* TODO: post ereport */
1457 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1458 		if (cmd->nc_xfer != NULL)
1459 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1460 		return (EIO);
1461 
1462 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1463 		/*
1464 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1465 		 * detailed error information is returned as async event,
1466 		 * so we pretty much ignore the error here and handle it
1467 		 * in the async event handler.
1468 		 */
1469 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1470 		if (cmd->nc_xfer != NULL)
1471 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1472 		return (EIO);
1473 
1474 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1475 		/*
1476 		 * Command Abort Requested. This normally happens only when a
1477 		 * command times out.
1478 		 */
1479 		/* TODO: post ereport or change blkdev to handle this? */
1480 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1481 		return (ECANCELED);
1482 
1483 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1484 		/* Command Aborted due to Power Loss Notification */
1485 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1486 		cmd->nc_nvme->n_dead = B_TRUE;
1487 		return (EIO);
1488 
1489 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1490 		/* Command Aborted due to SQ Deletion */
1491 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1492 		return (EIO);
1493 
1494 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1495 		/* Capacity Exceeded */
1496 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1497 		if (cmd->nc_xfer != NULL)
1498 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1499 		return (EIO);
1500 
1501 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1502 		/* Namespace Not Ready */
1503 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1504 		if (cmd->nc_xfer != NULL)
1505 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1506 		return (EIO);
1507 
1508 	default:
1509 		return (nvme_check_unknown_cmd_status(cmd));
1510 	}
1511 }
1512 
1513 static int
1514 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1515 {
1516 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1517 
1518 	switch (cqe->cqe_sf.sf_sc) {
1519 	case NVME_CQE_SC_SPC_INV_CQ:
1520 		/* Completion Queue Invalid */
1521 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1522 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1523 		return (EINVAL);
1524 
1525 	case NVME_CQE_SC_SPC_INV_QID:
1526 		/* Invalid Queue Identifier */
1527 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1528 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1529 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1530 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1531 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1532 		return (EINVAL);
1533 
1534 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1535 		/* Max Queue Size Exceeded */
1536 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1537 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1538 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1539 		return (EINVAL);
1540 
1541 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1542 		/* Abort Command Limit Exceeded */
1543 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1544 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1545 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1546 		return (0);
1547 
1548 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1549 		/* Async Event Request Limit Exceeded */
1550 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1551 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1552 		    "async event request limit exceeded in cmd %p",
1553 		    (void *)cmd);
1554 		return (0);
1555 
1556 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1557 		/* Invalid Interrupt Vector */
1558 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1559 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1560 		return (EINVAL);
1561 
1562 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1563 		/* Invalid Log Page */
1564 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1565 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1566 		return (EINVAL);
1567 
1568 	case NVME_CQE_SC_SPC_INV_FORMAT:
1569 		/* Invalid Format */
1570 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1571 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1572 		if (cmd->nc_xfer != NULL)
1573 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1574 		return (EINVAL);
1575 
1576 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1577 		/* Invalid Queue Deletion */
1578 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1579 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1580 		return (EINVAL);
1581 
1582 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1583 		/* Conflicting Attributes */
1584 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1585 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1586 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1587 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1588 		if (cmd->nc_xfer != NULL)
1589 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1590 		return (EINVAL);
1591 
1592 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1593 		/* Invalid Protection Information */
1594 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1595 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1596 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1597 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1598 		if (cmd->nc_xfer != NULL)
1599 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1600 		return (EINVAL);
1601 
1602 	case NVME_CQE_SC_SPC_NVM_READONLY:
1603 		/* Write to Read Only Range */
1604 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1605 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1606 		if (cmd->nc_xfer != NULL)
1607 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1608 		return (EROFS);
1609 
1610 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1611 		/* Invalid Firmware Slot */
1612 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1613 		return (EINVAL);
1614 
1615 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1616 		/* Invalid Firmware Image */
1617 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1618 		return (EINVAL);
1619 
1620 	case NVME_CQE_SC_SPC_FW_RESET:
1621 		/* Conventional Reset Required */
1622 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1623 		return (0);
1624 
1625 	case NVME_CQE_SC_SPC_FW_NSSR:
1626 		/* NVMe Subsystem Reset Required */
1627 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1628 		return (0);
1629 
1630 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1631 		/* Activation Requires Reset */
1632 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1633 		return (0);
1634 
1635 	case NVME_CQE_SC_SPC_FW_MTFA:
1636 		/* Activation Requires Maximum Time Violation */
1637 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1638 		return (EAGAIN);
1639 
1640 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1641 		/* Activation Prohibited */
1642 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1643 		return (EINVAL);
1644 
1645 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1646 		/* Overlapping Firmware Ranges */
1647 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1648 		return (EINVAL);
1649 
1650 	default:
1651 		return (nvme_check_unknown_cmd_status(cmd));
1652 	}
1653 }
1654 
1655 static inline int
1656 nvme_check_cmd_status(nvme_cmd_t *cmd)
1657 {
1658 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1659 
1660 	/*
1661 	 * Take a shortcut if the controller is dead, or if
1662 	 * command status indicates no error.
1663 	 */
1664 	if (cmd->nc_nvme->n_dead)
1665 		return (EIO);
1666 
1667 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1668 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1669 		return (0);
1670 
1671 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1672 		return (nvme_check_generic_cmd_status(cmd));
1673 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1674 		return (nvme_check_specific_cmd_status(cmd));
1675 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1676 		return (nvme_check_integrity_cmd_status(cmd));
1677 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1678 		return (nvme_check_vendor_cmd_status(cmd));
1679 
1680 	return (nvme_check_unknown_cmd_status(cmd));
1681 }
1682 
1683 static int
1684 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1685 {
1686 	nvme_t *nvme = abort_cmd->nc_nvme;
1687 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1688 	nvme_abort_cmd_t ac = { 0 };
1689 	int ret = 0;
1690 
1691 	sema_p(&nvme->n_abort_sema);
1692 
1693 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1694 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1695 
1696 	cmd->nc_sqid = 0;
1697 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1698 	cmd->nc_callback = nvme_wakeup_cmd;
1699 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1700 
1701 	/*
1702 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1703 	 * the aborted command has completed (aborted or otherwise), but since
1704 	 * we still hold the aborted command's mutex its callback hasn't been
1705 	 * processed yet.
1706 	 */
1707 	nvme_admin_cmd(cmd, sec);
1708 	sema_v(&nvme->n_abort_sema);
1709 
1710 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1711 		dev_err(nvme->n_dip, CE_WARN,
1712 		    "!ABORT failed with sct = %x, sc = %x",
1713 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1714 		atomic_inc_32(&nvme->n_abort_failed);
1715 	} else {
1716 		dev_err(nvme->n_dip, CE_WARN,
1717 		    "!ABORT of command %d/%d %ssuccessful",
1718 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1719 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1720 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1721 			atomic_inc_32(&nvme->n_cmd_aborted);
1722 	}
1723 
1724 	nvme_free_cmd(cmd);
1725 	return (ret);
1726 }
1727 
1728 /*
1729  * nvme_wait_cmd -- wait for command completion or timeout
1730  *
1731  * In case of a serious error or a timeout of the abort command the hardware
1732  * will be declared dead and FMA will be notified.
1733  */
1734 static void
1735 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1736 {
1737 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1738 	nvme_t *nvme = cmd->nc_nvme;
1739 	nvme_reg_csts_t csts;
1740 	nvme_qpair_t *qp;
1741 
1742 	ASSERT(mutex_owned(&cmd->nc_mutex));
1743 
1744 	while (!cmd->nc_completed) {
1745 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1746 			break;
1747 	}
1748 
1749 	if (cmd->nc_completed)
1750 		return;
1751 
1752 	/*
1753 	 * The command timed out.
1754 	 *
1755 	 * Check controller for fatal status, any errors associated with the
1756 	 * register or DMA handle, or for a double timeout (abort command timed
1757 	 * out). If necessary log a warning and call FMA.
1758 	 */
1759 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1760 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1761 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1762 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1763 	atomic_inc_32(&nvme->n_cmd_timeout);
1764 
1765 	if (csts.b.csts_cfs ||
1766 	    nvme_check_regs_hdl(nvme) ||
1767 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1768 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1769 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1770 		nvme->n_dead = B_TRUE;
1771 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1772 		/*
1773 		 * If the abort succeeded the command should complete
1774 		 * immediately with an appropriate status.
1775 		 */
1776 		while (!cmd->nc_completed)
1777 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1778 
1779 		return;
1780 	}
1781 
1782 	qp = nvme->n_ioq[cmd->nc_sqid];
1783 
1784 	mutex_enter(&qp->nq_mutex);
1785 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1786 	mutex_exit(&qp->nq_mutex);
1787 
1788 	/*
1789 	 * As we don't know what the presumed dead hardware might still do with
1790 	 * the DMA memory, we'll put the command on the lost commands list if it
1791 	 * has any DMA memory.
1792 	 */
1793 	if (cmd->nc_dma != NULL) {
1794 		mutex_enter(&nvme_lc_mutex);
1795 		list_insert_head(&nvme_lost_cmds, cmd);
1796 		mutex_exit(&nvme_lc_mutex);
1797 	}
1798 }
1799 
1800 static void
1801 nvme_wakeup_cmd(void *arg)
1802 {
1803 	nvme_cmd_t *cmd = arg;
1804 
1805 	mutex_enter(&cmd->nc_mutex);
1806 	cmd->nc_completed = B_TRUE;
1807 	cv_signal(&cmd->nc_cv);
1808 	mutex_exit(&cmd->nc_mutex);
1809 }
1810 
1811 static void
1812 nvme_async_event_task(void *arg)
1813 {
1814 	nvme_cmd_t *cmd = arg;
1815 	nvme_t *nvme = cmd->nc_nvme;
1816 	nvme_error_log_entry_t *error_log = NULL;
1817 	nvme_health_log_t *health_log = NULL;
1818 	nvme_nschange_list_t *nslist = NULL;
1819 	size_t logsize = 0;
1820 	nvme_async_event_t event;
1821 
1822 	/*
1823 	 * Check for errors associated with the async request itself. The only
1824 	 * command-specific error is "async event limit exceeded", which
1825 	 * indicates a programming error in the driver and causes a panic in
1826 	 * nvme_check_cmd_status().
1827 	 *
1828 	 * Other possible errors are various scenarios where the async request
1829 	 * was aborted, or internal errors in the device. Internal errors are
1830 	 * reported to FMA, the command aborts need no special handling here.
1831 	 *
1832 	 * And finally, at least qemu nvme does not support async events,
1833 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1834 	 * will avoid posting async events.
1835 	 */
1836 
1837 	if (nvme_check_cmd_status(cmd) != 0) {
1838 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1839 		    "!async event request returned failure, sct = %x, "
1840 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1841 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1842 		    cmd->nc_cqe.cqe_sf.sf_m);
1843 
1844 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1845 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1846 			cmd->nc_nvme->n_dead = B_TRUE;
1847 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1848 			    DDI_SERVICE_LOST);
1849 		}
1850 
1851 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1852 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1853 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1854 			nvme->n_async_event_supported = B_FALSE;
1855 		}
1856 
1857 		nvme_free_cmd(cmd);
1858 		return;
1859 	}
1860 
1861 	event.r = cmd->nc_cqe.cqe_dw0;
1862 
1863 	/* Clear CQE and re-submit the async request. */
1864 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1865 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1866 
1867 	switch (event.b.ae_type) {
1868 	case NVME_ASYNC_TYPE_ERROR:
1869 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1870 			(void) nvme_get_logpage(nvme, B_FALSE,
1871 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1872 		} else {
1873 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1874 			    "async event reply: %d", event.b.ae_logpage);
1875 			atomic_inc_32(&nvme->n_wrong_logpage);
1876 		}
1877 
1878 		switch (event.b.ae_info) {
1879 		case NVME_ASYNC_ERROR_INV_SQ:
1880 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1881 			    "invalid submission queue");
1882 			return;
1883 
1884 		case NVME_ASYNC_ERROR_INV_DBL:
1885 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1886 			    "invalid doorbell write value");
1887 			return;
1888 
1889 		case NVME_ASYNC_ERROR_DIAGFAIL:
1890 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1891 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1892 			nvme->n_dead = B_TRUE;
1893 			atomic_inc_32(&nvme->n_diagfail_event);
1894 			break;
1895 
1896 		case NVME_ASYNC_ERROR_PERSISTENT:
1897 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1898 			    "device error");
1899 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1900 			nvme->n_dead = B_TRUE;
1901 			atomic_inc_32(&nvme->n_persistent_event);
1902 			break;
1903 
1904 		case NVME_ASYNC_ERROR_TRANSIENT:
1905 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1906 			    "device error");
1907 			/* TODO: send ereport */
1908 			atomic_inc_32(&nvme->n_transient_event);
1909 			break;
1910 
1911 		case NVME_ASYNC_ERROR_FW_LOAD:
1912 			dev_err(nvme->n_dip, CE_WARN,
1913 			    "!firmware image load error");
1914 			atomic_inc_32(&nvme->n_fw_load_event);
1915 			break;
1916 		}
1917 		break;
1918 
1919 	case NVME_ASYNC_TYPE_HEALTH:
1920 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1921 			(void) nvme_get_logpage(nvme, B_FALSE,
1922 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1923 			    -1);
1924 		} else {
1925 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1926 			    "async event reply: %d", event.b.ae_logpage);
1927 			atomic_inc_32(&nvme->n_wrong_logpage);
1928 		}
1929 
1930 		switch (event.b.ae_info) {
1931 		case NVME_ASYNC_HEALTH_RELIABILITY:
1932 			dev_err(nvme->n_dip, CE_WARN,
1933 			    "!device reliability compromised");
1934 			/* TODO: send ereport */
1935 			atomic_inc_32(&nvme->n_reliability_event);
1936 			break;
1937 
1938 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1939 			dev_err(nvme->n_dip, CE_WARN,
1940 			    "!temperature above threshold");
1941 			/* TODO: send ereport */
1942 			atomic_inc_32(&nvme->n_temperature_event);
1943 			break;
1944 
1945 		case NVME_ASYNC_HEALTH_SPARE:
1946 			dev_err(nvme->n_dip, CE_WARN,
1947 			    "!spare space below threshold");
1948 			/* TODO: send ereport */
1949 			atomic_inc_32(&nvme->n_spare_event);
1950 			break;
1951 		}
1952 		break;
1953 
1954 	case NVME_ASYNC_TYPE_NOTICE:
1955 		switch (event.b.ae_info) {
1956 		case NVME_ASYNC_NOTICE_NS_CHANGE:
1957 			dev_err(nvme->n_dip, CE_NOTE,
1958 			    "namespace attribute change event, "
1959 			    "logpage = %x", event.b.ae_logpage);
1960 			atomic_inc_32(&nvme->n_notice_event);
1961 
1962 			if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE)
1963 				break;
1964 
1965 			if (nvme_get_logpage(nvme, B_FALSE, (void **)&nslist,
1966 			    &logsize, event.b.ae_logpage, -1) != 0) {
1967 				break;
1968 			}
1969 
1970 			if (nslist->nscl_ns[0] == UINT32_MAX) {
1971 				dev_err(nvme->n_dip, CE_CONT,
1972 				    "more than %u namespaces have changed.\n",
1973 				    NVME_NSCHANGE_LIST_SIZE);
1974 				break;
1975 			}
1976 
1977 			mutex_enter(&nvme->n_mgmt_mutex);
1978 			for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) {
1979 				uint32_t nsid = nslist->nscl_ns[i];
1980 
1981 				if (nsid == 0)	/* end of list */
1982 					break;
1983 
1984 				dev_err(nvme->n_dip, CE_NOTE,
1985 				    "!namespace %u (%s) has changed.", nsid,
1986 				    NVME_NSID2NS(nvme, nsid)->ns_name);
1987 
1988 				if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
1989 					continue;
1990 
1991 				bd_state_change(
1992 				    NVME_NSID2NS(nvme, nsid)->ns_bd_hdl);
1993 			}
1994 			mutex_exit(&nvme->n_mgmt_mutex);
1995 
1996 			break;
1997 
1998 		case NVME_ASYNC_NOTICE_FW_ACTIVATE:
1999 			dev_err(nvme->n_dip, CE_NOTE,
2000 			    "firmware activation starting, "
2001 			    "logpage = %x", event.b.ae_logpage);
2002 			atomic_inc_32(&nvme->n_notice_event);
2003 			break;
2004 
2005 		case NVME_ASYNC_NOTICE_TELEMETRY:
2006 			dev_err(nvme->n_dip, CE_NOTE,
2007 			    "telemetry log changed, "
2008 			    "logpage = %x", event.b.ae_logpage);
2009 			atomic_inc_32(&nvme->n_notice_event);
2010 			break;
2011 
2012 		case NVME_ASYNC_NOTICE_NS_ASYMM:
2013 			dev_err(nvme->n_dip, CE_NOTE,
2014 			    "asymmetric namespace access change, "
2015 			    "logpage = %x", event.b.ae_logpage);
2016 			atomic_inc_32(&nvme->n_notice_event);
2017 			break;
2018 
2019 		case NVME_ASYNC_NOTICE_LATENCYLOG:
2020 			dev_err(nvme->n_dip, CE_NOTE,
2021 			    "predictable latency event aggregate log change, "
2022 			    "logpage = %x", event.b.ae_logpage);
2023 			atomic_inc_32(&nvme->n_notice_event);
2024 			break;
2025 
2026 		case NVME_ASYNC_NOTICE_LBASTATUS:
2027 			dev_err(nvme->n_dip, CE_NOTE,
2028 			    "LBA status information alert, "
2029 			    "logpage = %x", event.b.ae_logpage);
2030 			atomic_inc_32(&nvme->n_notice_event);
2031 			break;
2032 
2033 		case NVME_ASYNC_NOTICE_ENDURANCELOG:
2034 			dev_err(nvme->n_dip, CE_NOTE,
2035 			    "endurance group event aggregate log page change, "
2036 			    "logpage = %x", event.b.ae_logpage);
2037 			atomic_inc_32(&nvme->n_notice_event);
2038 			break;
2039 
2040 		default:
2041 			dev_err(nvme->n_dip, CE_WARN,
2042 			    "!unknown notice async event received, "
2043 			    "info = %x, logpage = %x", event.b.ae_info,
2044 			    event.b.ae_logpage);
2045 			atomic_inc_32(&nvme->n_unknown_event);
2046 			break;
2047 		}
2048 		break;
2049 
2050 	case NVME_ASYNC_TYPE_VENDOR:
2051 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
2052 		    "received, info = %x, logpage = %x", event.b.ae_info,
2053 		    event.b.ae_logpage);
2054 		atomic_inc_32(&nvme->n_vendor_event);
2055 		break;
2056 
2057 	default:
2058 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
2059 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
2060 		    event.b.ae_info, event.b.ae_logpage);
2061 		atomic_inc_32(&nvme->n_unknown_event);
2062 		break;
2063 	}
2064 
2065 	if (error_log != NULL)
2066 		kmem_free(error_log, logsize);
2067 
2068 	if (health_log != NULL)
2069 		kmem_free(health_log, logsize);
2070 
2071 	if (nslist != NULL)
2072 		kmem_free(nslist, logsize);
2073 }
2074 
2075 static void
2076 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
2077 {
2078 	mutex_enter(&cmd->nc_mutex);
2079 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
2080 	nvme_wait_cmd(cmd, sec);
2081 	mutex_exit(&cmd->nc_mutex);
2082 }
2083 
2084 static void
2085 nvme_async_event(nvme_t *nvme)
2086 {
2087 	nvme_cmd_t *cmd;
2088 
2089 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2090 	cmd->nc_sqid = 0;
2091 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
2092 	cmd->nc_callback = nvme_async_event_task;
2093 	cmd->nc_dontpanic = B_TRUE;
2094 
2095 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
2096 }
2097 
2098 static int
2099 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
2100     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
2101 {
2102 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2103 	nvme_format_nvm_t format_nvm = { 0 };
2104 	int ret;
2105 
2106 	format_nvm.b.fm_lbaf = lbaf & 0xf;
2107 	format_nvm.b.fm_ms = ms ? 1 : 0;
2108 	format_nvm.b.fm_pi = pi & 0x7;
2109 	format_nvm.b.fm_pil = pil ? 1 : 0;
2110 	format_nvm.b.fm_ses = ses & 0x7;
2111 
2112 	cmd->nc_sqid = 0;
2113 	cmd->nc_callback = nvme_wakeup_cmd;
2114 	cmd->nc_sqe.sqe_nsid = nsid;
2115 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
2116 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
2117 
2118 	/*
2119 	 * Some devices like Samsung SM951 don't allow formatting of all
2120 	 * namespaces in one command. Handle that gracefully.
2121 	 */
2122 	if (nsid == (uint32_t)-1)
2123 		cmd->nc_dontpanic = B_TRUE;
2124 	/*
2125 	 * If this format request was initiated by the user, then don't allow a
2126 	 * programmer error to panic the system.
2127 	 */
2128 	if (user)
2129 		cmd->nc_dontpanic = B_TRUE;
2130 
2131 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
2132 
2133 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2134 		dev_err(nvme->n_dip, CE_WARN,
2135 		    "!FORMAT failed with sct = %x, sc = %x",
2136 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2137 	}
2138 
2139 	nvme_free_cmd(cmd);
2140 	return (ret);
2141 }
2142 
2143 /*
2144  * The `bufsize` parameter is usually an output parameter, set by this routine
2145  * when filling in the supported types of logpages from the device. However, for
2146  * vendor-specific pages, it is an input parameter, and must be set
2147  * appropriately by callers.
2148  */
2149 static int
2150 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
2151     uint8_t logpage, ...)
2152 {
2153 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2154 	nvme_getlogpage_t getlogpage = { 0 };
2155 	va_list ap;
2156 	int ret;
2157 
2158 	va_start(ap, logpage);
2159 
2160 	cmd->nc_sqid = 0;
2161 	cmd->nc_callback = nvme_wakeup_cmd;
2162 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
2163 
2164 	if (user)
2165 		cmd->nc_dontpanic = B_TRUE;
2166 
2167 	getlogpage.b.lp_lid = logpage;
2168 
2169 	switch (logpage) {
2170 	case NVME_LOGPAGE_ERROR:
2171 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2172 		*bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE,
2173 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
2174 		break;
2175 
2176 	case NVME_LOGPAGE_HEALTH:
2177 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2178 		*bufsize = sizeof (nvme_health_log_t);
2179 		break;
2180 
2181 	case NVME_LOGPAGE_FWSLOT:
2182 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2183 		*bufsize = sizeof (nvme_fwslot_log_t);
2184 		break;
2185 
2186 	case NVME_LOGPAGE_NSCHANGE:
2187 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2188 		*bufsize = sizeof (nvme_nschange_list_t);
2189 		break;
2190 
2191 	default:
2192 		/*
2193 		 * This intentionally only checks against the minimum valid
2194 		 * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid
2195 		 * page ID, so this one-sided check avoids a compiler error
2196 		 * about a check that's always true.
2197 		 */
2198 		if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) {
2199 			dev_err(nvme->n_dip, CE_WARN,
2200 			    "!unknown log page requested: %d", logpage);
2201 			atomic_inc_32(&nvme->n_unknown_logpage);
2202 			ret = EINVAL;
2203 			goto fail;
2204 		}
2205 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2206 	}
2207 
2208 	va_end(ap);
2209 
2210 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
2211 
2212 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
2213 
2214 	if (nvme_zalloc_dma(nvme, *bufsize,
2215 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2216 		dev_err(nvme->n_dip, CE_WARN,
2217 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
2218 		ret = ENOMEM;
2219 		goto fail;
2220 	}
2221 
2222 	if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
2223 		goto fail;
2224 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2225 
2226 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2227 		dev_err(nvme->n_dip, CE_WARN,
2228 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2229 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2230 		goto fail;
2231 	}
2232 
2233 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2234 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2235 
2236 fail:
2237 	nvme_free_cmd(cmd);
2238 
2239 	return (ret);
2240 }
2241 
2242 static int
2243 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2244 {
2245 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2246 	int ret;
2247 
2248 	if (buf == NULL)
2249 		return (EINVAL);
2250 
2251 	cmd->nc_sqid = 0;
2252 	cmd->nc_callback = nvme_wakeup_cmd;
2253 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2254 	cmd->nc_sqe.sqe_nsid = nsid;
2255 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2256 
2257 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2258 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2259 		dev_err(nvme->n_dip, CE_WARN,
2260 		    "!nvme_zalloc_dma failed for IDENTIFY");
2261 		ret = ENOMEM;
2262 		goto fail;
2263 	}
2264 
2265 	if (cmd->nc_dma->nd_ncookie > 2) {
2266 		dev_err(nvme->n_dip, CE_WARN,
2267 		    "!too many DMA cookies for IDENTIFY");
2268 		atomic_inc_32(&nvme->n_too_many_cookies);
2269 		ret = ENOMEM;
2270 		goto fail;
2271 	}
2272 
2273 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2274 	if (cmd->nc_dma->nd_ncookie > 1) {
2275 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2276 		    &cmd->nc_dma->nd_cookie);
2277 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2278 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2279 	}
2280 
2281 	if (user)
2282 		cmd->nc_dontpanic = B_TRUE;
2283 
2284 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2285 
2286 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2287 		dev_err(nvme->n_dip, CE_WARN,
2288 		    "!IDENTIFY failed with sct = %x, sc = %x",
2289 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2290 		goto fail;
2291 	}
2292 
2293 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2294 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2295 
2296 fail:
2297 	nvme_free_cmd(cmd);
2298 
2299 	return (ret);
2300 }
2301 
2302 static int
2303 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2304     uint32_t val, uint32_t *res)
2305 {
2306 	_NOTE(ARGUNUSED(nsid));
2307 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2308 	int ret = EINVAL;
2309 
2310 	ASSERT(res != NULL);
2311 
2312 	cmd->nc_sqid = 0;
2313 	cmd->nc_callback = nvme_wakeup_cmd;
2314 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2315 	cmd->nc_sqe.sqe_cdw10 = feature;
2316 	cmd->nc_sqe.sqe_cdw11 = val;
2317 
2318 	if (user)
2319 		cmd->nc_dontpanic = B_TRUE;
2320 
2321 	switch (feature) {
2322 	case NVME_FEAT_WRITE_CACHE:
2323 		if (!nvme->n_write_cache_present)
2324 			goto fail;
2325 		break;
2326 
2327 	case NVME_FEAT_NQUEUES:
2328 		break;
2329 
2330 	default:
2331 		goto fail;
2332 	}
2333 
2334 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2335 
2336 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2337 		dev_err(nvme->n_dip, CE_WARN,
2338 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2339 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2340 		    cmd->nc_cqe.cqe_sf.sf_sc);
2341 		goto fail;
2342 	}
2343 
2344 	*res = cmd->nc_cqe.cqe_dw0;
2345 
2346 fail:
2347 	nvme_free_cmd(cmd);
2348 	return (ret);
2349 }
2350 
2351 static int
2352 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2353     uint32_t *res, void **buf, size_t *bufsize)
2354 {
2355 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2356 	int ret = EINVAL;
2357 
2358 	ASSERT(res != NULL);
2359 
2360 	if (bufsize != NULL)
2361 		*bufsize = 0;
2362 
2363 	cmd->nc_sqid = 0;
2364 	cmd->nc_callback = nvme_wakeup_cmd;
2365 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2366 	cmd->nc_sqe.sqe_cdw10 = feature;
2367 	cmd->nc_sqe.sqe_cdw11 = *res;
2368 
2369 	/*
2370 	 * For some of the optional features there doesn't seem to be a method
2371 	 * of detecting whether it is supported other than using it.  This will
2372 	 * cause "Invalid Field in Command" error, which is normally considered
2373 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2374 	 * in nvme_check_generic_cmd_status().
2375 	 */
2376 	switch (feature) {
2377 	case NVME_FEAT_ARBITRATION:
2378 	case NVME_FEAT_POWER_MGMT:
2379 	case NVME_FEAT_TEMPERATURE:
2380 	case NVME_FEAT_ERROR:
2381 	case NVME_FEAT_NQUEUES:
2382 	case NVME_FEAT_INTR_COAL:
2383 	case NVME_FEAT_INTR_VECT:
2384 	case NVME_FEAT_WRITE_ATOM:
2385 	case NVME_FEAT_ASYNC_EVENT:
2386 		break;
2387 
2388 	case NVME_FEAT_WRITE_CACHE:
2389 		if (!nvme->n_write_cache_present)
2390 			goto fail;
2391 		break;
2392 
2393 	case NVME_FEAT_LBA_RANGE:
2394 		if (!nvme->n_lba_range_supported)
2395 			goto fail;
2396 
2397 		cmd->nc_dontpanic = B_TRUE;
2398 		cmd->nc_sqe.sqe_nsid = nsid;
2399 		ASSERT(bufsize != NULL);
2400 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2401 		break;
2402 
2403 	case NVME_FEAT_AUTO_PST:
2404 		if (!nvme->n_auto_pst_supported)
2405 			goto fail;
2406 
2407 		ASSERT(bufsize != NULL);
2408 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2409 		break;
2410 
2411 	case NVME_FEAT_PROGRESS:
2412 		if (!nvme->n_progress_supported)
2413 			goto fail;
2414 
2415 		cmd->nc_dontpanic = B_TRUE;
2416 		break;
2417 
2418 	default:
2419 		goto fail;
2420 	}
2421 
2422 	if (user)
2423 		cmd->nc_dontpanic = B_TRUE;
2424 
2425 	if (bufsize != NULL && *bufsize != 0) {
2426 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2427 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2428 			dev_err(nvme->n_dip, CE_WARN,
2429 			    "!nvme_zalloc_dma failed for GET FEATURES");
2430 			ret = ENOMEM;
2431 			goto fail;
2432 		}
2433 
2434 		if (cmd->nc_dma->nd_ncookie > 2) {
2435 			dev_err(nvme->n_dip, CE_WARN,
2436 			    "!too many DMA cookies for GET FEATURES");
2437 			atomic_inc_32(&nvme->n_too_many_cookies);
2438 			ret = ENOMEM;
2439 			goto fail;
2440 		}
2441 
2442 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2443 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2444 		if (cmd->nc_dma->nd_ncookie > 1) {
2445 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2446 			    &cmd->nc_dma->nd_cookie);
2447 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2448 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2449 		}
2450 	}
2451 
2452 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2453 
2454 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2455 		boolean_t known = B_TRUE;
2456 
2457 		/* Check if this is unsupported optional feature */
2458 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2459 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2460 			switch (feature) {
2461 			case NVME_FEAT_LBA_RANGE:
2462 				nvme->n_lba_range_supported = B_FALSE;
2463 				break;
2464 			case NVME_FEAT_PROGRESS:
2465 				nvme->n_progress_supported = B_FALSE;
2466 				break;
2467 			default:
2468 				known = B_FALSE;
2469 				break;
2470 			}
2471 		} else {
2472 			known = B_FALSE;
2473 		}
2474 
2475 		/* Report the error otherwise */
2476 		if (!known) {
2477 			dev_err(nvme->n_dip, CE_WARN,
2478 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2479 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2480 			    cmd->nc_cqe.cqe_sf.sf_sc);
2481 		}
2482 
2483 		goto fail;
2484 	}
2485 
2486 	if (bufsize != NULL && *bufsize != 0) {
2487 		ASSERT(buf != NULL);
2488 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2489 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2490 	}
2491 
2492 	*res = cmd->nc_cqe.cqe_dw0;
2493 
2494 fail:
2495 	nvme_free_cmd(cmd);
2496 	return (ret);
2497 }
2498 
2499 static int
2500 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2501 {
2502 	nvme_write_cache_t nwc = { 0 };
2503 
2504 	if (enable)
2505 		nwc.b.wc_wce = 1;
2506 
2507 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2508 	    nwc.r, &nwc.r));
2509 }
2510 
2511 static int
2512 nvme_set_nqueues(nvme_t *nvme)
2513 {
2514 	nvme_nqueues_t nq = { 0 };
2515 	int ret;
2516 
2517 	/*
2518 	 * The default is to allocate one completion queue per vector.
2519 	 */
2520 	if (nvme->n_completion_queues == -1)
2521 		nvme->n_completion_queues = nvme->n_intr_cnt;
2522 
2523 	/*
2524 	 * There is no point in having more completion queues than
2525 	 * interrupt vectors.
2526 	 */
2527 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2528 	    nvme->n_intr_cnt);
2529 
2530 	/*
2531 	 * The default is to use one submission queue per completion queue.
2532 	 */
2533 	if (nvme->n_submission_queues == -1)
2534 		nvme->n_submission_queues = nvme->n_completion_queues;
2535 
2536 	/*
2537 	 * There is no point in having more compeletion queues than
2538 	 * submission queues.
2539 	 */
2540 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2541 	    nvme->n_submission_queues);
2542 
2543 	ASSERT(nvme->n_submission_queues > 0);
2544 	ASSERT(nvme->n_completion_queues > 0);
2545 
2546 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2547 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2548 
2549 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2550 	    &nq.r);
2551 
2552 	if (ret == 0) {
2553 		/*
2554 		 * Never use more than the requested number of queues.
2555 		 */
2556 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2557 		    nq.b.nq_nsq + 1);
2558 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2559 		    nq.b.nq_ncq + 1);
2560 	}
2561 
2562 	return (ret);
2563 }
2564 
2565 static int
2566 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2567 {
2568 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2569 	nvme_create_queue_dw10_t dw10 = { 0 };
2570 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2571 	int ret;
2572 
2573 	dw10.b.q_qid = cq->ncq_id;
2574 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2575 
2576 	c_dw11.b.cq_pc = 1;
2577 	c_dw11.b.cq_ien = 1;
2578 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2579 
2580 	cmd->nc_sqid = 0;
2581 	cmd->nc_callback = nvme_wakeup_cmd;
2582 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2583 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2584 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2585 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2586 
2587 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2588 
2589 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2590 		dev_err(nvme->n_dip, CE_WARN,
2591 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2592 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2593 	}
2594 
2595 	nvme_free_cmd(cmd);
2596 
2597 	return (ret);
2598 }
2599 
2600 static int
2601 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2602 {
2603 	nvme_cq_t *cq = qp->nq_cq;
2604 	nvme_cmd_t *cmd;
2605 	nvme_create_queue_dw10_t dw10 = { 0 };
2606 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2607 	int ret;
2608 
2609 	/*
2610 	 * It is possible to have more qpairs than completion queues,
2611 	 * and when the idx > ncq_id, that completion queue is shared
2612 	 * and has already been created.
2613 	 */
2614 	if (idx <= cq->ncq_id &&
2615 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2616 		return (DDI_FAILURE);
2617 
2618 	dw10.b.q_qid = idx;
2619 	dw10.b.q_qsize = qp->nq_nentry - 1;
2620 
2621 	s_dw11.b.sq_pc = 1;
2622 	s_dw11.b.sq_cqid = cq->ncq_id;
2623 
2624 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2625 	cmd->nc_sqid = 0;
2626 	cmd->nc_callback = nvme_wakeup_cmd;
2627 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2628 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2629 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2630 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2631 
2632 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2633 
2634 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2635 		dev_err(nvme->n_dip, CE_WARN,
2636 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2637 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2638 	}
2639 
2640 	nvme_free_cmd(cmd);
2641 
2642 	return (ret);
2643 }
2644 
2645 static boolean_t
2646 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2647 {
2648 	nvme_reg_csts_t csts;
2649 	int i;
2650 
2651 	nvme_put32(nvme, NVME_REG_CC, 0);
2652 
2653 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2654 	if (csts.b.csts_rdy == 1) {
2655 		nvme_put32(nvme, NVME_REG_CC, 0);
2656 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2657 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2658 			if (csts.b.csts_rdy == 0)
2659 				break;
2660 
2661 			if (quiesce)
2662 				drv_usecwait(50000);
2663 			else
2664 				delay(drv_usectohz(50000));
2665 		}
2666 	}
2667 
2668 	nvme_put32(nvme, NVME_REG_AQA, 0);
2669 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2670 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2671 
2672 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2673 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2674 }
2675 
2676 static void
2677 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2678 {
2679 	nvme_reg_cc_t cc;
2680 	nvme_reg_csts_t csts;
2681 	int i;
2682 
2683 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2684 
2685 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2686 	cc.b.cc_shn = mode & 0x3;
2687 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2688 
2689 	for (i = 0; i != 10; i++) {
2690 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2691 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2692 			break;
2693 
2694 		if (quiesce)
2695 			drv_usecwait(100000);
2696 		else
2697 			delay(drv_usectohz(100000));
2698 	}
2699 }
2700 
2701 
2702 static void
2703 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2704 {
2705 	/*
2706 	 * Section 7.7 of the spec describes how to get a unique ID for
2707 	 * the controller: the vendor ID, the model name and the serial
2708 	 * number shall be unique when combined.
2709 	 *
2710 	 * If a namespace has no EUI64 we use the above and add the hex
2711 	 * namespace ID to get a unique ID for the namespace.
2712 	 */
2713 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2714 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2715 
2716 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2717 	bcopy(nvme->n_idctl->id_serial, serial,
2718 	    sizeof (nvme->n_idctl->id_serial));
2719 
2720 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2721 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2722 
2723 	NVME_NSID2NS(nvme, nsid)->ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2724 	    nvme->n_idctl->id_vid, model, serial, nsid);
2725 }
2726 
2727 static int
2728 nvme_init_ns(nvme_t *nvme, int nsid)
2729 {
2730 	nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid);
2731 	nvme_identify_nsid_t *idns;
2732 	boolean_t was_ignored;
2733 	int last_rp;
2734 
2735 	ns->ns_nvme = nvme;
2736 
2737 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
2738 
2739 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2740 		dev_err(nvme->n_dip, CE_WARN,
2741 		    "!failed to identify namespace %d", nsid);
2742 		return (DDI_FAILURE);
2743 	}
2744 
2745 	if (ns->ns_idns != NULL)
2746 		kmem_free(ns->ns_idns, sizeof (nvme_identify_nsid_t));
2747 
2748 	ns->ns_idns = idns;
2749 	ns->ns_id = nsid;
2750 	ns->ns_block_count = idns->id_nsize;
2751 	ns->ns_block_size =
2752 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2753 	ns->ns_best_block_size = ns->ns_block_size;
2754 
2755 	/*
2756 	 * Get the EUI64 if present. Use it for devid and device node names.
2757 	 */
2758 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2759 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2760 
2761 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2762 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2763 		uint8_t *eui64 = ns->ns_eui64;
2764 
2765 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2766 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2767 		    eui64[0], eui64[1], eui64[2], eui64[3],
2768 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2769 	} else {
2770 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2771 		    ns->ns_id);
2772 
2773 		nvme_prepare_devid(nvme, ns->ns_id);
2774 	}
2775 
2776 	/*
2777 	 * Find the LBA format with no metadata and the best relative
2778 	 * performance. A value of 3 means "degraded", 0 is best.
2779 	 */
2780 	last_rp = 3;
2781 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2782 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2783 			break;
2784 		if (idns->id_lbaf[j].lbaf_ms != 0)
2785 			continue;
2786 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2787 			continue;
2788 		last_rp = idns->id_lbaf[j].lbaf_rp;
2789 		ns->ns_best_block_size =
2790 		    1 << idns->id_lbaf[j].lbaf_lbads;
2791 	}
2792 
2793 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2794 		ns->ns_best_block_size = nvme->n_min_block_size;
2795 
2796 	was_ignored = ns->ns_ignore;
2797 
2798 	/*
2799 	 * We currently don't support namespaces that use either:
2800 	 * - protection information
2801 	 * - illegal block size (< 512)
2802 	 */
2803 	if (idns->id_dps.dp_pinfo) {
2804 		dev_err(nvme->n_dip, CE_WARN,
2805 		    "!ignoring namespace %d, unsupported feature: "
2806 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2807 		ns->ns_ignore = B_TRUE;
2808 	} else if (ns->ns_block_size < 512) {
2809 		dev_err(nvme->n_dip, CE_WARN,
2810 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2811 		    nsid, (uint64_t)ns->ns_block_size);
2812 		ns->ns_ignore = B_TRUE;
2813 	} else {
2814 		ns->ns_ignore = B_FALSE;
2815 	}
2816 
2817 	/*
2818 	 * Keep a count of namespaces which are attachable.
2819 	 * See comments in nvme_bd_driveinfo() to understand its effect.
2820 	 */
2821 	if (was_ignored) {
2822 		/*
2823 		 * Previously ignored, but now not. Count it.
2824 		 */
2825 		if (!ns->ns_ignore)
2826 			nvme->n_namespaces_attachable++;
2827 	} else {
2828 		/*
2829 		 * Wasn't ignored previously, but now needs to be.
2830 		 * Discount it.
2831 		 */
2832 		if (ns->ns_ignore)
2833 			nvme->n_namespaces_attachable--;
2834 	}
2835 
2836 	return (DDI_SUCCESS);
2837 }
2838 
2839 static int
2840 nvme_attach_ns(nvme_t *nvme, int nsid)
2841 {
2842 	nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid);
2843 
2844 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
2845 
2846 	if (ns->ns_ignore)
2847 		return (ENOTSUP);
2848 
2849 	if (ns->ns_bd_hdl == NULL) {
2850 		bd_ops_t ops = nvme_bd_ops;
2851 
2852 		if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
2853 			ops.o_free_space = NULL;
2854 
2855 		ns->ns_bd_hdl = bd_alloc_handle(ns, &ops, &nvme->n_prp_dma_attr,
2856 		    KM_SLEEP);
2857 
2858 		if (ns->ns_bd_hdl == NULL) {
2859 			dev_err(nvme->n_dip, CE_WARN, "!Failed to get blkdev "
2860 			    "handle for namespace id %d", nsid);
2861 			return (EINVAL);
2862 		}
2863 	}
2864 
2865 	if (bd_attach_handle(nvme->n_dip, ns->ns_bd_hdl) != DDI_SUCCESS)
2866 		return (EBUSY);
2867 
2868 	ns->ns_attached = B_TRUE;
2869 
2870 	return (0);
2871 }
2872 
2873 static int
2874 nvme_detach_ns(nvme_t *nvme, int nsid)
2875 {
2876 	nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid);
2877 	int rv;
2878 
2879 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
2880 
2881 	if (ns->ns_ignore || !ns->ns_attached)
2882 		return (0);
2883 
2884 	ASSERT(ns->ns_bd_hdl != NULL);
2885 	rv = bd_detach_handle(ns->ns_bd_hdl);
2886 	if (rv != DDI_SUCCESS)
2887 		return (EBUSY);
2888 	else
2889 		ns->ns_attached = B_FALSE;
2890 
2891 	return (0);
2892 }
2893 
2894 static int
2895 nvme_init(nvme_t *nvme)
2896 {
2897 	nvme_reg_cc_t cc = { 0 };
2898 	nvme_reg_aqa_t aqa = { 0 };
2899 	nvme_reg_asq_t asq = { 0 };
2900 	nvme_reg_acq_t acq = { 0 };
2901 	nvme_reg_cap_t cap;
2902 	nvme_reg_vs_t vs;
2903 	nvme_reg_csts_t csts;
2904 	int i = 0;
2905 	uint16_t nqueues;
2906 	uint_t tq_threads;
2907 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2908 	char *vendor, *product;
2909 
2910 	/* Check controller version */
2911 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2912 	nvme->n_version.v_major = vs.b.vs_mjr;
2913 	nvme->n_version.v_minor = vs.b.vs_mnr;
2914 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2915 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2916 
2917 	if (nvme->n_version.v_major > nvme_version_major) {
2918 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2919 		    nvme_version_major);
2920 		if (nvme->n_strict_version)
2921 			goto fail;
2922 	}
2923 
2924 	/* retrieve controller configuration */
2925 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2926 
2927 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2928 		dev_err(nvme->n_dip, CE_WARN,
2929 		    "!NVM command set not supported by hardware");
2930 		goto fail;
2931 	}
2932 
2933 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2934 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2935 	nvme->n_timeout = cap.b.cap_to;
2936 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2937 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2938 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2939 
2940 	/*
2941 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2942 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2943 	 * page size value.
2944 	 */
2945 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2946 	    cap.b.cap_mpsmax + 12);
2947 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2948 
2949 	/*
2950 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2951 	 */
2952 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2953 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2954 
2955 	/*
2956 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2957 	 * Maxxfer may be increased after we identified the controller limits.
2958 	 */
2959 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2960 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2961 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2962 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2963 
2964 	/*
2965 	 * Reset controller if it's still in ready state.
2966 	 */
2967 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2968 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2969 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2970 		nvme->n_dead = B_TRUE;
2971 		goto fail;
2972 	}
2973 
2974 	/*
2975 	 * Create the cq array with one completion queue to be assigned
2976 	 * to the admin queue pair and a limited number of taskqs (4).
2977 	 */
2978 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2979 	    DDI_SUCCESS) {
2980 		dev_err(nvme->n_dip, CE_WARN,
2981 		    "!failed to pre-allocate admin completion queue");
2982 		goto fail;
2983 	}
2984 	/*
2985 	 * Create the admin queue pair.
2986 	 */
2987 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2988 	    != DDI_SUCCESS) {
2989 		dev_err(nvme->n_dip, CE_WARN,
2990 		    "!unable to allocate admin qpair");
2991 		goto fail;
2992 	}
2993 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2994 	nvme->n_ioq[0] = nvme->n_adminq;
2995 
2996 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2997 
2998 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2999 	    "admin-queue-len", nvme->n_admin_queue_len);
3000 
3001 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
3002 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
3003 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
3004 
3005 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
3006 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
3007 
3008 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
3009 	nvme_put64(nvme, NVME_REG_ASQ, asq);
3010 	nvme_put64(nvme, NVME_REG_ACQ, acq);
3011 
3012 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
3013 	cc.b.cc_css = 0;	/* use NVM command set */
3014 	cc.b.cc_mps = nvme->n_pageshift - 12;
3015 	cc.b.cc_shn = 0;	/* no shutdown in progress */
3016 	cc.b.cc_en = 1;		/* enable controller */
3017 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
3018 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
3019 
3020 	nvme_put32(nvme, NVME_REG_CC, cc.r);
3021 
3022 	/*
3023 	 * Wait for the controller to become ready.
3024 	 */
3025 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3026 	if (csts.b.csts_rdy == 0) {
3027 		for (i = 0; i != nvme->n_timeout * 10; i++) {
3028 			delay(drv_usectohz(50000));
3029 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3030 
3031 			if (csts.b.csts_cfs == 1) {
3032 				dev_err(nvme->n_dip, CE_WARN,
3033 				    "!controller fatal status at init");
3034 				ddi_fm_service_impact(nvme->n_dip,
3035 				    DDI_SERVICE_LOST);
3036 				nvme->n_dead = B_TRUE;
3037 				goto fail;
3038 			}
3039 
3040 			if (csts.b.csts_rdy == 1)
3041 				break;
3042 		}
3043 	}
3044 
3045 	if (csts.b.csts_rdy == 0) {
3046 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
3047 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
3048 		nvme->n_dead = B_TRUE;
3049 		goto fail;
3050 	}
3051 
3052 	/*
3053 	 * Assume an abort command limit of 1. We'll destroy and re-init
3054 	 * that later when we know the true abort command limit.
3055 	 */
3056 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
3057 
3058 	/*
3059 	 * Set up initial interrupt for admin queue.
3060 	 */
3061 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
3062 	    != DDI_SUCCESS) &&
3063 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
3064 	    != DDI_SUCCESS) &&
3065 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
3066 	    != DDI_SUCCESS)) {
3067 		dev_err(nvme->n_dip, CE_WARN,
3068 		    "!failed to setup initial interrupt");
3069 		goto fail;
3070 	}
3071 
3072 	/*
3073 	 * Post an asynchronous event command to catch errors.
3074 	 * We assume the asynchronous events are supported as required by
3075 	 * specification (Figure 40 in section 5 of NVMe 1.2).
3076 	 * However, since at least qemu does not follow the specification,
3077 	 * we need a mechanism to protect ourselves.
3078 	 */
3079 	nvme->n_async_event_supported = B_TRUE;
3080 	nvme_async_event(nvme);
3081 
3082 	/*
3083 	 * Identify Controller
3084 	 */
3085 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
3086 		dev_err(nvme->n_dip, CE_WARN,
3087 		    "!failed to identify controller");
3088 		goto fail;
3089 	}
3090 
3091 	/*
3092 	 * Get Vendor & Product ID
3093 	 */
3094 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
3095 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
3096 	sata_split_model(model, &vendor, &product);
3097 
3098 	if (vendor == NULL)
3099 		nvme->n_vendor = strdup("NVMe");
3100 	else
3101 		nvme->n_vendor = strdup(vendor);
3102 
3103 	nvme->n_product = strdup(product);
3104 
3105 	/*
3106 	 * Get controller limits.
3107 	 */
3108 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
3109 	    MIN(nvme->n_admin_queue_len / 10,
3110 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
3111 
3112 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3113 	    "async-event-limit", nvme->n_async_event_limit);
3114 
3115 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
3116 
3117 	/*
3118 	 * Reinitialize the semaphore with the true abort command limit
3119 	 * supported by the hardware. It's not necessary to disable interrupts
3120 	 * as only command aborts use the semaphore, and no commands are
3121 	 * executed or aborted while we're here.
3122 	 */
3123 	sema_destroy(&nvme->n_abort_sema);
3124 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
3125 	    SEMA_DRIVER, NULL);
3126 
3127 	nvme->n_progress |= NVME_CTRL_LIMITS;
3128 
3129 	if (nvme->n_idctl->id_mdts == 0)
3130 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
3131 	else
3132 		nvme->n_max_data_transfer_size =
3133 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
3134 
3135 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
3136 
3137 	/*
3138 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
3139 	 * Chained PRPs are currently unsupported.
3140 	 *
3141 	 * This is a no-op on hardware which doesn't support a transfer size
3142 	 * big enough to require chained PRPs.
3143 	 */
3144 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
3145 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
3146 
3147 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
3148 
3149 	/*
3150 	 * Make sure the minimum/maximum queue entry sizes are not
3151 	 * larger/smaller than the default.
3152 	 */
3153 
3154 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
3155 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
3156 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
3157 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
3158 		goto fail;
3159 
3160 	/*
3161 	 * Check for the presence of a Volatile Write Cache. If present,
3162 	 * enable or disable based on the value of the property
3163 	 * volatile-write-cache-enable (default is enabled).
3164 	 */
3165 	nvme->n_write_cache_present =
3166 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
3167 
3168 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3169 	    "volatile-write-cache-present",
3170 	    nvme->n_write_cache_present ? 1 : 0);
3171 
3172 	if (!nvme->n_write_cache_present) {
3173 		nvme->n_write_cache_enabled = B_FALSE;
3174 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
3175 	    != 0) {
3176 		dev_err(nvme->n_dip, CE_WARN,
3177 		    "!failed to %sable volatile write cache",
3178 		    nvme->n_write_cache_enabled ? "en" : "dis");
3179 		/*
3180 		 * Assume the cache is (still) enabled.
3181 		 */
3182 		nvme->n_write_cache_enabled = B_TRUE;
3183 	}
3184 
3185 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3186 	    "volatile-write-cache-enable",
3187 	    nvme->n_write_cache_enabled ? 1 : 0);
3188 
3189 	/*
3190 	 * Assume LBA Range Type feature is supported. If it isn't this
3191 	 * will be set to B_FALSE by nvme_get_features().
3192 	 */
3193 	nvme->n_lba_range_supported = B_TRUE;
3194 
3195 	/*
3196 	 * Check support for Autonomous Power State Transition.
3197 	 */
3198 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
3199 		nvme->n_auto_pst_supported =
3200 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
3201 
3202 	/*
3203 	 * Assume Software Progress Marker feature is supported.  If it isn't
3204 	 * this will be set to B_FALSE by nvme_get_features().
3205 	 */
3206 	nvme->n_progress_supported = B_TRUE;
3207 
3208 	/*
3209 	 * Identify Namespaces
3210 	 */
3211 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
3212 
3213 	if (nvme->n_namespace_count == 0) {
3214 		dev_err(nvme->n_dip, CE_WARN,
3215 		    "!controllers without namespaces are not supported");
3216 		goto fail;
3217 	}
3218 
3219 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
3220 		dev_err(nvme->n_dip, CE_WARN,
3221 		    "!too many namespaces: %d, limiting to %d\n",
3222 		    nvme->n_namespace_count, NVME_MINOR_MAX);
3223 		nvme->n_namespace_count = NVME_MINOR_MAX;
3224 	}
3225 
3226 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
3227 	    nvme->n_namespace_count, KM_SLEEP);
3228 
3229 	/*
3230 	 * Try to set up MSI/MSI-X interrupts.
3231 	 */
3232 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
3233 	    != 0) {
3234 		nvme_release_interrupts(nvme);
3235 
3236 		nqueues = MIN(UINT16_MAX, ncpus);
3237 
3238 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
3239 		    nqueues) != DDI_SUCCESS) &&
3240 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
3241 		    nqueues) != DDI_SUCCESS)) {
3242 			dev_err(nvme->n_dip, CE_WARN,
3243 			    "!failed to setup MSI/MSI-X interrupts");
3244 			goto fail;
3245 		}
3246 	}
3247 
3248 	/*
3249 	 * Create I/O queue pairs.
3250 	 */
3251 
3252 	if (nvme_set_nqueues(nvme) != 0) {
3253 		dev_err(nvme->n_dip, CE_WARN,
3254 		    "!failed to set number of I/O queues to %d",
3255 		    nvme->n_intr_cnt);
3256 		goto fail;
3257 	}
3258 
3259 	/*
3260 	 * Reallocate I/O queue array
3261 	 */
3262 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3263 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3264 	    (nvme->n_submission_queues + 1), KM_SLEEP);
3265 	nvme->n_ioq[0] = nvme->n_adminq;
3266 
3267 	/*
3268 	 * There should always be at least as many submission queues
3269 	 * as completion queues.
3270 	 */
3271 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3272 
3273 	nvme->n_ioq_count = nvme->n_submission_queues;
3274 
3275 	nvme->n_io_squeue_len =
3276 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3277 
3278 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3279 	    nvme->n_io_squeue_len);
3280 
3281 	/*
3282 	 * Pre-allocate completion queues.
3283 	 * When there are the same number of submission and completion
3284 	 * queues there is no value in having a larger completion
3285 	 * queue length.
3286 	 */
3287 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3288 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3289 		    nvme->n_io_squeue_len);
3290 
3291 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3292 	    nvme->n_max_queue_entries);
3293 
3294 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3295 	    nvme->n_io_cqueue_len);
3296 
3297 	/*
3298 	 * Assign the equal quantity of taskq threads to each completion
3299 	 * queue, capping the total number of threads to the number
3300 	 * of CPUs.
3301 	 */
3302 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3303 
3304 	/*
3305 	 * In case the calculation above is zero, we need at least one
3306 	 * thread per completion queue.
3307 	 */
3308 	tq_threads = MAX(1, tq_threads);
3309 
3310 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3311 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3312 		dev_err(nvme->n_dip, CE_WARN,
3313 		    "!failed to pre-allocate completion queues");
3314 		goto fail;
3315 	}
3316 
3317 	/*
3318 	 * If we use less completion queues than interrupt vectors return
3319 	 * some of the interrupt vectors back to the system.
3320 	 */
3321 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3322 		nvme_release_interrupts(nvme);
3323 
3324 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3325 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3326 			dev_err(nvme->n_dip, CE_WARN,
3327 			    "!failed to reduce number of interrupts");
3328 			goto fail;
3329 		}
3330 	}
3331 
3332 	/*
3333 	 * Alloc & register I/O queue pairs
3334 	 */
3335 
3336 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3337 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3338 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3339 			dev_err(nvme->n_dip, CE_WARN,
3340 			    "!unable to allocate I/O qpair %d", i);
3341 			goto fail;
3342 		}
3343 
3344 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3345 			dev_err(nvme->n_dip, CE_WARN,
3346 			    "!unable to create I/O qpair %d", i);
3347 			goto fail;
3348 		}
3349 	}
3350 
3351 	/*
3352 	 * Post more asynchronous events commands to reduce event reporting
3353 	 * latency as suggested by the spec.
3354 	 */
3355 	if (nvme->n_async_event_supported) {
3356 		for (i = 1; i != nvme->n_async_event_limit; i++)
3357 			nvme_async_event(nvme);
3358 	}
3359 
3360 	return (DDI_SUCCESS);
3361 
3362 fail:
3363 	(void) nvme_reset(nvme, B_FALSE);
3364 	return (DDI_FAILURE);
3365 }
3366 
3367 static uint_t
3368 nvme_intr(caddr_t arg1, caddr_t arg2)
3369 {
3370 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3371 	nvme_t *nvme = (nvme_t *)arg1;
3372 	int inum = (int)(uintptr_t)arg2;
3373 	int ccnt = 0;
3374 	int qnum;
3375 
3376 	if (inum >= nvme->n_intr_cnt)
3377 		return (DDI_INTR_UNCLAIMED);
3378 
3379 	if (nvme->n_dead)
3380 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3381 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3382 
3383 	/*
3384 	 * The interrupt vector a queue uses is calculated as queue_idx %
3385 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3386 	 * in steps of n_intr_cnt to process all queues using this vector.
3387 	 */
3388 	for (qnum = inum;
3389 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3390 	    qnum += nvme->n_intr_cnt) {
3391 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3392 	}
3393 
3394 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3395 }
3396 
3397 static void
3398 nvme_release_interrupts(nvme_t *nvme)
3399 {
3400 	int i;
3401 
3402 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3403 		if (nvme->n_inth[i] == NULL)
3404 			break;
3405 
3406 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3407 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3408 		else
3409 			(void) ddi_intr_disable(nvme->n_inth[i]);
3410 
3411 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3412 		(void) ddi_intr_free(nvme->n_inth[i]);
3413 	}
3414 
3415 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3416 	nvme->n_inth = NULL;
3417 	nvme->n_inth_sz = 0;
3418 
3419 	nvme->n_progress &= ~NVME_INTERRUPTS;
3420 }
3421 
3422 static int
3423 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3424 {
3425 	int nintrs, navail, count;
3426 	int ret;
3427 	int i;
3428 
3429 	if (nvme->n_intr_types == 0) {
3430 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3431 		    &nvme->n_intr_types);
3432 		if (ret != DDI_SUCCESS) {
3433 			dev_err(nvme->n_dip, CE_WARN,
3434 			    "!%s: ddi_intr_get_supported types failed",
3435 			    __func__);
3436 			return (ret);
3437 		}
3438 #ifdef __x86
3439 		if (get_hwenv() == HW_VMWARE)
3440 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3441 #endif
3442 	}
3443 
3444 	if ((nvme->n_intr_types & intr_type) == 0)
3445 		return (DDI_FAILURE);
3446 
3447 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3448 	if (ret != DDI_SUCCESS) {
3449 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3450 		    __func__);
3451 		return (ret);
3452 	}
3453 
3454 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3455 	if (ret != DDI_SUCCESS) {
3456 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3457 		    __func__);
3458 		return (ret);
3459 	}
3460 
3461 	/* We want at most one interrupt per queue pair. */
3462 	if (navail > nqpairs)
3463 		navail = nqpairs;
3464 
3465 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3466 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3467 
3468 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3469 	    &count, 0);
3470 	if (ret != DDI_SUCCESS) {
3471 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3472 		    __func__);
3473 		goto fail;
3474 	}
3475 
3476 	nvme->n_intr_cnt = count;
3477 
3478 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3479 	if (ret != DDI_SUCCESS) {
3480 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3481 		    __func__);
3482 		goto fail;
3483 	}
3484 
3485 	for (i = 0; i < count; i++) {
3486 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3487 		    (void *)nvme, (void *)(uintptr_t)i);
3488 		if (ret != DDI_SUCCESS) {
3489 			dev_err(nvme->n_dip, CE_WARN,
3490 			    "!%s: ddi_intr_add_handler failed", __func__);
3491 			goto fail;
3492 		}
3493 	}
3494 
3495 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3496 
3497 	for (i = 0; i < count; i++) {
3498 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3499 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3500 		else
3501 			ret = ddi_intr_enable(nvme->n_inth[i]);
3502 
3503 		if (ret != DDI_SUCCESS) {
3504 			dev_err(nvme->n_dip, CE_WARN,
3505 			    "!%s: enabling interrupt %d failed", __func__, i);
3506 			goto fail;
3507 		}
3508 	}
3509 
3510 	nvme->n_intr_type = intr_type;
3511 
3512 	nvme->n_progress |= NVME_INTERRUPTS;
3513 
3514 	return (DDI_SUCCESS);
3515 
3516 fail:
3517 	nvme_release_interrupts(nvme);
3518 
3519 	return (ret);
3520 }
3521 
3522 static int
3523 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3524 {
3525 	_NOTE(ARGUNUSED(arg));
3526 
3527 	pci_ereport_post(dip, fm_error, NULL);
3528 	return (fm_error->fme_status);
3529 }
3530 
3531 static void
3532 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a,
3533     void *b)
3534 {
3535 	nvme_t *nvme = a;
3536 
3537 	nvme->n_dead = B_TRUE;
3538 
3539 	/*
3540 	 * Fail all outstanding commands, including those in the admin queue
3541 	 * (queue 0).
3542 	 */
3543 	for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) {
3544 		nvme_qpair_t *qp = nvme->n_ioq[i];
3545 
3546 		mutex_enter(&qp->nq_mutex);
3547 		for (size_t j = 0; j < qp->nq_nentry; j++) {
3548 			nvme_cmd_t *cmd = qp->nq_cmd[j];
3549 			nvme_cmd_t *u_cmd;
3550 
3551 			if (cmd == NULL) {
3552 				continue;
3553 			}
3554 
3555 			/*
3556 			 * Since we have the queue lock held the entire time we
3557 			 * iterate over it, it's not possible for the queue to
3558 			 * change underneath us. Thus, we don't need to check
3559 			 * that the return value of nvme_unqueue_cmd matches the
3560 			 * requested cmd to unqueue.
3561 			 */
3562 			u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
3563 			taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq,
3564 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
3565 
3566 			ASSERT3P(u_cmd, ==, cmd);
3567 		}
3568 		mutex_exit(&qp->nq_mutex);
3569 	}
3570 }
3571 
3572 static int
3573 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3574 {
3575 	nvme_t *nvme;
3576 	int instance;
3577 	int nregs;
3578 	off_t regsize;
3579 	int i;
3580 	char name[32];
3581 
3582 	if (cmd != DDI_ATTACH)
3583 		return (DDI_FAILURE);
3584 
3585 	instance = ddi_get_instance(dip);
3586 
3587 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3588 		return (DDI_FAILURE);
3589 
3590 	nvme = ddi_get_soft_state(nvme_state, instance);
3591 	ddi_set_driver_private(dip, nvme);
3592 	nvme->n_dip = dip;
3593 
3594 	/* Set up event handlers for hot removal. */
3595 	if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT,
3596 	    &nvme->n_rm_cookie) != DDI_SUCCESS) {
3597 		goto fail;
3598 	}
3599 	if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie,
3600 	    nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) !=
3601 	    DDI_SUCCESS) {
3602 		goto fail;
3603 	}
3604 
3605 	mutex_init(&nvme->n_minor_mutex, NULL, MUTEX_DRIVER, NULL);
3606 	nvme->n_progress |= NVME_MUTEX_INIT;
3607 
3608 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3609 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3610 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3611 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3612 	    B_TRUE : B_FALSE;
3613 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3614 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3615 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3616 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3617 	/*
3618 	 * Double up the default for completion queues in case of
3619 	 * queue sharing.
3620 	 */
3621 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3622 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3623 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3624 	    DDI_PROP_DONTPASS, "async-event-limit",
3625 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3626 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3627 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3628 	    B_TRUE : B_FALSE;
3629 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3630 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3631 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3632 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3633 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3634 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3635 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3636 
3637 	if (!ISP2(nvme->n_min_block_size) ||
3638 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3639 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3640 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3641 		    "too low" : "not a power of 2",
3642 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3643 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3644 	}
3645 
3646 	if (nvme->n_submission_queues != -1 &&
3647 	    (nvme->n_submission_queues < 1 ||
3648 	    nvme->n_submission_queues > UINT16_MAX)) {
3649 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3650 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3651 		    UINT16_MAX);
3652 		nvme->n_submission_queues = -1;
3653 	}
3654 
3655 	if (nvme->n_completion_queues != -1 &&
3656 	    (nvme->n_completion_queues < 1 ||
3657 	    nvme->n_completion_queues > UINT16_MAX)) {
3658 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3659 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3660 		    UINT16_MAX);
3661 		nvme->n_completion_queues = -1;
3662 	}
3663 
3664 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3665 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3666 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3667 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3668 
3669 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3670 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3671 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3672 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3673 
3674 	if (nvme->n_async_event_limit < 1)
3675 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3676 
3677 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3678 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3679 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3680 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3681 
3682 	/*
3683 	 * Set up FMA support.
3684 	 */
3685 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3686 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3687 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3688 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3689 
3690 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3691 
3692 	if (nvme->n_fm_cap) {
3693 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3694 			nvme->n_reg_acc_attr.devacc_attr_access =
3695 			    DDI_FLAGERR_ACC;
3696 
3697 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3698 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3699 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3700 		}
3701 
3702 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3703 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3704 			pci_ereport_setup(dip);
3705 
3706 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3707 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3708 			    (void *)nvme);
3709 	}
3710 
3711 	nvme->n_progress |= NVME_FMA_INIT;
3712 
3713 	/*
3714 	 * The spec defines several register sets. Only the controller
3715 	 * registers (set 1) are currently used.
3716 	 */
3717 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3718 	    nregs < 2 ||
3719 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3720 		goto fail;
3721 
3722 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3723 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3724 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3725 		goto fail;
3726 	}
3727 
3728 	nvme->n_progress |= NVME_REGS_MAPPED;
3729 
3730 	/*
3731 	 * Create PRP DMA cache
3732 	 */
3733 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3734 	    ddi_driver_name(dip), ddi_get_instance(dip));
3735 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3736 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3737 	    NULL, (void *)nvme, NULL, 0);
3738 
3739 	if (nvme_init(nvme) != DDI_SUCCESS)
3740 		goto fail;
3741 
3742 	/*
3743 	 * Initialize the driver with the UFM subsystem
3744 	 */
3745 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3746 	    &nvme->n_ufmh, nvme) != 0) {
3747 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3748 		goto fail;
3749 	}
3750 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3751 	ddi_ufm_update(nvme->n_ufmh);
3752 	nvme->n_progress |= NVME_UFM_INIT;
3753 
3754 	mutex_init(&nvme->n_mgmt_mutex, NULL, MUTEX_DRIVER, NULL);
3755 	nvme->n_progress |= NVME_MGMT_INIT;
3756 
3757 	/*
3758 	 * Identify and attach namespaces.
3759 	 */
3760 	mutex_enter(&nvme->n_mgmt_mutex);
3761 
3762 	for (i = 1; i <= nvme->n_namespace_count; i++) {
3763 		nvme_namespace_t *ns = NVME_NSID2NS(nvme, i);
3764 		int rv;
3765 
3766 		/*
3767 		 * Namespaces start out ignored. When nvme_init_ns() checks
3768 		 * their properties and finds they can be used, it will set
3769 		 * ns_ignore to B_FALSE. It will also use this state change
3770 		 * to keep an accurate count of attachable namespaces.
3771 		 */
3772 		ns->ns_ignore = B_TRUE;
3773 		if (nvme_init_ns(nvme, i) != 0) {
3774 			mutex_exit(&nvme->n_mgmt_mutex);
3775 			goto fail;
3776 		}
3777 
3778 		rv = nvme_attach_ns(nvme, i);
3779 		if (rv != 0 && rv != ENOTSUP) {
3780 			mutex_exit(&nvme->n_mgmt_mutex);
3781 			goto fail;
3782 		}
3783 
3784 		if (ddi_create_minor_node(nvme->n_dip, ns->ns_name, S_IFCHR,
3785 		    NVME_MINOR(ddi_get_instance(nvme->n_dip), i),
3786 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3787 			mutex_exit(&nvme->n_mgmt_mutex);
3788 			dev_err(dip, CE_WARN,
3789 			    "!failed to create minor node for namespace %d", i);
3790 			goto fail;
3791 		}
3792 	}
3793 
3794 	mutex_exit(&nvme->n_mgmt_mutex);
3795 
3796 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3797 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3798 	    != DDI_SUCCESS) {
3799 		dev_err(dip, CE_WARN, "nvme_attach: "
3800 		    "cannot create devctl minor node");
3801 		goto fail;
3802 	}
3803 
3804 	return (DDI_SUCCESS);
3805 
3806 fail:
3807 	/* attach successful anyway so that FMA can retire the device */
3808 	if (nvme->n_dead)
3809 		return (DDI_SUCCESS);
3810 
3811 	(void) nvme_detach(dip, DDI_DETACH);
3812 
3813 	return (DDI_FAILURE);
3814 }
3815 
3816 static int
3817 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3818 {
3819 	int instance, i;
3820 	nvme_t *nvme;
3821 
3822 	if (cmd != DDI_DETACH)
3823 		return (DDI_FAILURE);
3824 
3825 	instance = ddi_get_instance(dip);
3826 
3827 	nvme = ddi_get_soft_state(nvme_state, instance);
3828 
3829 	if (nvme == NULL)
3830 		return (DDI_FAILURE);
3831 
3832 	ddi_remove_minor_node(dip, "devctl");
3833 
3834 	if (nvme->n_ns) {
3835 		for (i = 1; i <= nvme->n_namespace_count; i++) {
3836 			nvme_namespace_t *ns = NVME_NSID2NS(nvme, i);
3837 
3838 			ddi_remove_minor_node(dip, ns->ns_name);
3839 
3840 			if (ns->ns_bd_hdl) {
3841 				(void) bd_detach_handle(ns->ns_bd_hdl);
3842 				bd_free_handle(ns->ns_bd_hdl);
3843 			}
3844 
3845 			if (ns->ns_idns)
3846 				kmem_free(ns->ns_idns,
3847 				    sizeof (nvme_identify_nsid_t));
3848 			if (ns->ns_devid)
3849 				strfree(ns->ns_devid);
3850 		}
3851 
3852 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3853 		    nvme->n_namespace_count);
3854 	}
3855 
3856 	if (nvme->n_progress & NVME_MGMT_INIT) {
3857 		mutex_destroy(&nvme->n_mgmt_mutex);
3858 	}
3859 
3860 	if (nvme->n_progress & NVME_UFM_INIT) {
3861 		ddi_ufm_fini(nvme->n_ufmh);
3862 		mutex_destroy(&nvme->n_fwslot_mutex);
3863 	}
3864 
3865 	if (nvme->n_progress & NVME_INTERRUPTS)
3866 		nvme_release_interrupts(nvme);
3867 
3868 	for (i = 0; i < nvme->n_cq_count; i++) {
3869 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3870 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3871 	}
3872 
3873 	if (nvme->n_progress & NVME_MUTEX_INIT) {
3874 		mutex_destroy(&nvme->n_minor_mutex);
3875 	}
3876 
3877 	if (nvme->n_ioq_count > 0) {
3878 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3879 			if (nvme->n_ioq[i] != NULL) {
3880 				/* TODO: send destroy queue commands */
3881 				nvme_free_qpair(nvme->n_ioq[i]);
3882 			}
3883 		}
3884 
3885 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3886 		    (nvme->n_ioq_count + 1));
3887 	}
3888 
3889 	if (nvme->n_prp_cache != NULL) {
3890 		kmem_cache_destroy(nvme->n_prp_cache);
3891 	}
3892 
3893 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3894 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3895 		(void) nvme_reset(nvme, B_FALSE);
3896 	}
3897 
3898 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3899 		sema_destroy(&nvme->n_abort_sema);
3900 
3901 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3902 		nvme_free_qpair(nvme->n_adminq);
3903 
3904 	if (nvme->n_cq_count > 0) {
3905 		nvme_destroy_cq_array(nvme, 0);
3906 		nvme->n_cq = NULL;
3907 		nvme->n_cq_count = 0;
3908 	}
3909 
3910 	if (nvme->n_idctl)
3911 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3912 
3913 	if (nvme->n_progress & NVME_REGS_MAPPED)
3914 		ddi_regs_map_free(&nvme->n_regh);
3915 
3916 	if (nvme->n_progress & NVME_FMA_INIT) {
3917 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3918 			ddi_fm_handler_unregister(nvme->n_dip);
3919 
3920 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3921 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3922 			pci_ereport_teardown(nvme->n_dip);
3923 
3924 		ddi_fm_fini(nvme->n_dip);
3925 	}
3926 
3927 	if (nvme->n_vendor != NULL)
3928 		strfree(nvme->n_vendor);
3929 
3930 	if (nvme->n_product != NULL)
3931 		strfree(nvme->n_product);
3932 
3933 	/* Clean up hot removal event handler. */
3934 	if (nvme->n_ev_rm_cb_id != NULL) {
3935 		(void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id);
3936 	}
3937 	nvme->n_ev_rm_cb_id = NULL;
3938 
3939 	ddi_soft_state_free(nvme_state, instance);
3940 
3941 	return (DDI_SUCCESS);
3942 }
3943 
3944 static int
3945 nvme_quiesce(dev_info_t *dip)
3946 {
3947 	int instance;
3948 	nvme_t *nvme;
3949 
3950 	instance = ddi_get_instance(dip);
3951 
3952 	nvme = ddi_get_soft_state(nvme_state, instance);
3953 
3954 	if (nvme == NULL)
3955 		return (DDI_FAILURE);
3956 
3957 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3958 
3959 	(void) nvme_reset(nvme, B_TRUE);
3960 
3961 	return (DDI_FAILURE);
3962 }
3963 
3964 static int
3965 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma)
3966 {
3967 	nvme_t *nvme = cmd->nc_nvme;
3968 	uint_t nprp_per_page, nprp;
3969 	uint64_t *prp;
3970 	const ddi_dma_cookie_t *cookie;
3971 	uint_t idx;
3972 	uint_t ncookies = ddi_dma_ncookies(dma);
3973 
3974 	if (ncookies == 0)
3975 		return (DDI_FAILURE);
3976 
3977 	if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL)
3978 		return (DDI_FAILURE);
3979 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress;
3980 
3981 	if (ncookies == 1) {
3982 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3983 		return (DDI_SUCCESS);
3984 	} else if (ncookies == 2) {
3985 		if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL)
3986 			return (DDI_FAILURE);
3987 		cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress;
3988 		return (DDI_SUCCESS);
3989 	}
3990 
3991 	/*
3992 	 * At this point, we're always operating on cookies at
3993 	 * index >= 1 and writing the addresses of those cookies
3994 	 * into a new page. The address of that page is stored
3995 	 * as the second PRP entry.
3996 	 */
3997 	nprp_per_page = nvme->n_pagesize / sizeof (uint64_t);
3998 	ASSERT(nprp_per_page > 0);
3999 
4000 	/*
4001 	 * We currently don't support chained PRPs and set up our DMA
4002 	 * attributes to reflect that. If we still get an I/O request
4003 	 * that needs a chained PRP something is very wrong. Account
4004 	 * for the first cookie here, which we've placed in d_prp[0].
4005 	 */
4006 	nprp = howmany(ncookies - 1, nprp_per_page);
4007 	VERIFY(nprp == 1);
4008 
4009 	/*
4010 	 * Allocate a page of pointers, in which we'll write the
4011 	 * addresses of cookies 1 to `ncookies`.
4012 	 */
4013 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
4014 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
4015 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress;
4016 
4017 	prp = (uint64_t *)cmd->nc_prp->nd_memp;
4018 	for (idx = 1; idx < ncookies; idx++) {
4019 		if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL)
4020 			return (DDI_FAILURE);
4021 		*prp++ = cookie->dmac_laddress;
4022 	}
4023 
4024 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
4025 	    DDI_DMA_SYNC_FORDEV);
4026 	return (DDI_SUCCESS);
4027 }
4028 
4029 /*
4030  * The maximum number of requests supported for a deallocate request is
4031  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
4032  * unchanged through at least 1.4a). The definition of nvme_range_t is also
4033  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
4034  * a deallocate request will fit into the smallest supported namespace page
4035  * (4k).
4036  */
4037 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
4038 
4039 static int
4040 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
4041     int allocflag)
4042 {
4043 	const dkioc_free_list_t *dfl = xfer->x_dfl;
4044 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
4045 	nvme_t *nvme = cmd->nc_nvme;
4046 	nvme_range_t *ranges = NULL;
4047 	uint_t i;
4048 
4049 	/*
4050 	 * The number of ranges in the request is 0s based (that is
4051 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
4052 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
4053 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
4054 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
4055 	 * in blkdev.
4056 	 */
4057 	VERIFY3U(dfl->dfl_num_exts, >, 0);
4058 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
4059 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
4060 
4061 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
4062 
4063 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
4064 	if (cmd->nc_prp == NULL)
4065 		return (DDI_FAILURE);
4066 
4067 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
4068 	ranges = (nvme_range_t *)cmd->nc_prp->nd_memp;
4069 
4070 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress;
4071 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
4072 
4073 	for (i = 0; i < dfl->dfl_num_exts; i++) {
4074 		uint64_t lba, len;
4075 
4076 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
4077 		len = exts[i].dfle_length / blocksize;
4078 
4079 		VERIFY3U(len, <=, UINT32_MAX);
4080 
4081 		/* No context attributes for a deallocate request */
4082 		ranges[i].nr_ctxattr = 0;
4083 		ranges[i].nr_len = len;
4084 		ranges[i].nr_lba = lba;
4085 	}
4086 
4087 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
4088 	    DDI_DMA_SYNC_FORDEV);
4089 
4090 	return (DDI_SUCCESS);
4091 }
4092 
4093 static nvme_cmd_t *
4094 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
4095 {
4096 	nvme_t *nvme = ns->ns_nvme;
4097 	nvme_cmd_t *cmd;
4098 	int allocflag;
4099 
4100 	/*
4101 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
4102 	 */
4103 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
4104 	cmd = nvme_alloc_cmd(nvme, allocflag);
4105 
4106 	if (cmd == NULL)
4107 		return (NULL);
4108 
4109 	cmd->nc_sqe.sqe_opc = opc;
4110 	cmd->nc_callback = nvme_bd_xfer_done;
4111 	cmd->nc_xfer = xfer;
4112 
4113 	switch (opc) {
4114 	case NVME_OPC_NVM_WRITE:
4115 	case NVME_OPC_NVM_READ:
4116 		VERIFY(xfer->x_nblks <= 0x10000);
4117 
4118 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4119 
4120 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
4121 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
4122 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
4123 
4124 		if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS)
4125 			goto fail;
4126 		break;
4127 
4128 	case NVME_OPC_NVM_FLUSH:
4129 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4130 		break;
4131 
4132 	case NVME_OPC_NVM_DSET_MGMT:
4133 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4134 
4135 		if (nvme_fill_ranges(cmd, xfer,
4136 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
4137 			goto fail;
4138 		break;
4139 
4140 	default:
4141 		goto fail;
4142 	}
4143 
4144 	return (cmd);
4145 
4146 fail:
4147 	nvme_free_cmd(cmd);
4148 	return (NULL);
4149 }
4150 
4151 static void
4152 nvme_bd_xfer_done(void *arg)
4153 {
4154 	nvme_cmd_t *cmd = arg;
4155 	bd_xfer_t *xfer = cmd->nc_xfer;
4156 	int error = 0;
4157 
4158 	error = nvme_check_cmd_status(cmd);
4159 	nvme_free_cmd(cmd);
4160 
4161 	bd_xfer_done(xfer, error);
4162 }
4163 
4164 static void
4165 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
4166 {
4167 	nvme_namespace_t *ns = arg;
4168 	nvme_t *nvme = ns->ns_nvme;
4169 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
4170 	boolean_t mutex_exit_needed = B_TRUE;
4171 
4172 	/*
4173 	 * nvme_bd_driveinfo is called by blkdev in two situations:
4174 	 * - during bd_attach_handle(), which we call with the mutex held
4175 	 * - during bd_attach(), which may be called with or without the
4176 	 *   mutex held
4177 	 */
4178 	if (mutex_owned(&nvme->n_mgmt_mutex))
4179 		mutex_exit_needed = B_FALSE;
4180 	else
4181 		mutex_enter(&nvme->n_mgmt_mutex);
4182 
4183 	/*
4184 	 * Set the blkdev qcount to the number of submission queues.
4185 	 * It will then create one waitq/runq pair for each submission
4186 	 * queue and spread I/O requests across the queues.
4187 	 */
4188 	drive->d_qcount = nvme->n_ioq_count;
4189 
4190 	/*
4191 	 * I/O activity to individual namespaces is distributed across
4192 	 * each of the d_qcount blkdev queues (which has been set to
4193 	 * the number of nvme submission queues). d_qsize is the number
4194 	 * of submitted and not completed I/Os within each queue that blkdev
4195 	 * will allow before it starts holding them in the waitq.
4196 	 *
4197 	 * Each namespace will create a child blkdev instance, for each one
4198 	 * we try and set the d_qsize so that each namespace gets an
4199 	 * equal portion of the submission queue.
4200 	 *
4201 	 * If post instantiation of the nvme drive, n_namespaces_attachable
4202 	 * changes and a namespace is attached it could calculate a
4203 	 * different d_qsize. It may even be that the sum of the d_qsizes is
4204 	 * now beyond the submission queue size. Should that be the case
4205 	 * and the I/O rate is such that blkdev attempts to submit more
4206 	 * I/Os than the size of the submission queue, the excess I/Os
4207 	 * will be held behind the semaphore nq_sema.
4208 	 */
4209 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
4210 
4211 	/*
4212 	 * Don't let the queue size drop below the minimum, though.
4213 	 */
4214 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
4215 
4216 	/*
4217 	 * d_maxxfer is not set, which means the value is taken from the DMA
4218 	 * attributes specified to bd_alloc_handle.
4219 	 */
4220 
4221 	drive->d_removable = B_FALSE;
4222 	drive->d_hotpluggable = B_FALSE;
4223 
4224 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
4225 	drive->d_target = ns->ns_id;
4226 	drive->d_lun = 0;
4227 
4228 	drive->d_model = nvme->n_idctl->id_model;
4229 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
4230 	drive->d_vendor = nvme->n_vendor;
4231 	drive->d_vendor_len = strlen(nvme->n_vendor);
4232 	drive->d_product = nvme->n_product;
4233 	drive->d_product_len = strlen(nvme->n_product);
4234 	drive->d_serial = nvme->n_idctl->id_serial;
4235 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
4236 	drive->d_revision = nvme->n_idctl->id_fwrev;
4237 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
4238 
4239 	/*
4240 	 * If we support the dataset management command, the only restrictions
4241 	 * on a discard request are the maximum number of ranges (segments)
4242 	 * per single request.
4243 	 */
4244 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
4245 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
4246 
4247 	if (mutex_exit_needed)
4248 		mutex_exit(&nvme->n_mgmt_mutex);
4249 }
4250 
4251 static int
4252 nvme_bd_mediainfo(void *arg, bd_media_t *media)
4253 {
4254 	nvme_namespace_t *ns = arg;
4255 	nvme_t *nvme = ns->ns_nvme;
4256 	boolean_t mutex_exit_needed = B_TRUE;
4257 
4258 	if (nvme->n_dead) {
4259 		return (EIO);
4260 	}
4261 
4262 	/*
4263 	 * nvme_bd_mediainfo is called by blkdev in various situations,
4264 	 * most of them out of our control. There's one exception though:
4265 	 * When we call bd_state_change() in response to "namespace change"
4266 	 * notification, where the mutex is already being held by us.
4267 	 */
4268 	if (mutex_owned(&nvme->n_mgmt_mutex))
4269 		mutex_exit_needed = B_FALSE;
4270 	else
4271 		mutex_enter(&nvme->n_mgmt_mutex);
4272 
4273 	media->m_nblks = ns->ns_block_count;
4274 	media->m_blksize = ns->ns_block_size;
4275 	media->m_readonly = B_FALSE;
4276 	media->m_solidstate = B_TRUE;
4277 
4278 	media->m_pblksize = ns->ns_best_block_size;
4279 
4280 	if (mutex_exit_needed)
4281 		mutex_exit(&nvme->n_mgmt_mutex);
4282 
4283 	return (0);
4284 }
4285 
4286 static int
4287 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
4288 {
4289 	nvme_t *nvme = ns->ns_nvme;
4290 	nvme_cmd_t *cmd;
4291 	nvme_qpair_t *ioq;
4292 	boolean_t poll;
4293 	int ret;
4294 
4295 	if (nvme->n_dead) {
4296 		return (EIO);
4297 	}
4298 
4299 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
4300 	if (cmd == NULL)
4301 		return (ENOMEM);
4302 
4303 	cmd->nc_sqid = xfer->x_qnum + 1;
4304 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4305 	ioq = nvme->n_ioq[cmd->nc_sqid];
4306 
4307 	/*
4308 	 * Get the polling flag before submitting the command. The command may
4309 	 * complete immediately after it was submitted, which means we must
4310 	 * treat both cmd and xfer as if they have been freed already.
4311 	 */
4312 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
4313 
4314 	ret = nvme_submit_io_cmd(ioq, cmd);
4315 
4316 	if (ret != 0)
4317 		return (ret);
4318 
4319 	if (!poll)
4320 		return (0);
4321 
4322 	do {
4323 		cmd = nvme_retrieve_cmd(nvme, ioq);
4324 		if (cmd != NULL)
4325 			cmd->nc_callback(cmd);
4326 		else
4327 			drv_usecwait(10);
4328 	} while (ioq->nq_active_cmds != 0);
4329 
4330 	return (0);
4331 }
4332 
4333 static int
4334 nvme_bd_read(void *arg, bd_xfer_t *xfer)
4335 {
4336 	nvme_namespace_t *ns = arg;
4337 
4338 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
4339 }
4340 
4341 static int
4342 nvme_bd_write(void *arg, bd_xfer_t *xfer)
4343 {
4344 	nvme_namespace_t *ns = arg;
4345 
4346 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
4347 }
4348 
4349 static int
4350 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
4351 {
4352 	nvme_namespace_t *ns = arg;
4353 
4354 	if (ns->ns_nvme->n_dead)
4355 		return (EIO);
4356 
4357 	/*
4358 	 * If the volatile write cache is not present or not enabled the FLUSH
4359 	 * command is a no-op, so we can take a shortcut here.
4360 	 */
4361 	if (!ns->ns_nvme->n_write_cache_present) {
4362 		bd_xfer_done(xfer, ENOTSUP);
4363 		return (0);
4364 	}
4365 
4366 	if (!ns->ns_nvme->n_write_cache_enabled) {
4367 		bd_xfer_done(xfer, 0);
4368 		return (0);
4369 	}
4370 
4371 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
4372 }
4373 
4374 static int
4375 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
4376 {
4377 	nvme_namespace_t *ns = arg;
4378 	nvme_t *nvme = ns->ns_nvme;
4379 
4380 	if (nvme->n_dead) {
4381 		return (EIO);
4382 	}
4383 
4384 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
4385 	if (*(uint64_t *)ns->ns_eui64 != 0) {
4386 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4387 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4388 	} else {
4389 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
4390 		    strlen(ns->ns_devid), ns->ns_devid, devid));
4391 	}
4392 }
4393 
4394 static int
4395 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4396 {
4397 	nvme_namespace_t *ns = arg;
4398 
4399 	if (xfer->x_dfl == NULL)
4400 		return (EINVAL);
4401 
4402 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4403 		return (ENOTSUP);
4404 
4405 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4406 }
4407 
4408 static int
4409 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4410 {
4411 #ifndef __lock_lint
4412 	_NOTE(ARGUNUSED(cred_p));
4413 #endif
4414 	minor_t minor = getminor(*devp);
4415 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4416 	int nsid = NVME_MINOR_NSID(minor);
4417 	nvme_minor_state_t *nm;
4418 	int rv = 0;
4419 
4420 	if (otyp != OTYP_CHR)
4421 		return (EINVAL);
4422 
4423 	if (nvme == NULL)
4424 		return (ENXIO);
4425 
4426 	if (nsid > nvme->n_namespace_count)
4427 		return (ENXIO);
4428 
4429 	if (nvme->n_dead)
4430 		return (EIO);
4431 
4432 	mutex_enter(&nvme->n_minor_mutex);
4433 
4434 	/*
4435 	 * First check the devctl node and error out if it's been opened
4436 	 * exclusively already by any other thread.
4437 	 */
4438 	if (nvme->n_minor.nm_oexcl != NULL &&
4439 	    nvme->n_minor.nm_oexcl != curthread) {
4440 		rv = EBUSY;
4441 		goto out;
4442 	}
4443 
4444 	nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor);
4445 
4446 	if (flag & FEXCL) {
4447 		if (nm->nm_oexcl != NULL || nm->nm_open) {
4448 			rv = EBUSY;
4449 			goto out;
4450 		}
4451 
4452 		/*
4453 		 * If at least one namespace is already open, fail the
4454 		 * exclusive open of the devctl node.
4455 		 */
4456 		if (nsid == 0) {
4457 			for (int i = 1; i <= nvme->n_namespace_count; i++) {
4458 				if (NVME_NSID2NS(nvme, i)->ns_minor.nm_open) {
4459 					rv = EBUSY;
4460 					goto out;
4461 				}
4462 			}
4463 		}
4464 
4465 		nm->nm_oexcl = curthread;
4466 	}
4467 
4468 	nm->nm_open = B_TRUE;
4469 
4470 out:
4471 	mutex_exit(&nvme->n_minor_mutex);
4472 	return (rv);
4473 
4474 }
4475 
4476 static int
4477 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4478 {
4479 #ifndef __lock_lint
4480 	_NOTE(ARGUNUSED(cred_p));
4481 	_NOTE(ARGUNUSED(flag));
4482 #endif
4483 	minor_t minor = getminor(dev);
4484 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4485 	int nsid = NVME_MINOR_NSID(minor);
4486 	nvme_minor_state_t *nm;
4487 
4488 	if (otyp != OTYP_CHR)
4489 		return (ENXIO);
4490 
4491 	if (nvme == NULL)
4492 		return (ENXIO);
4493 
4494 	if (nsid > nvme->n_namespace_count)
4495 		return (ENXIO);
4496 
4497 	nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor);
4498 
4499 	mutex_enter(&nvme->n_minor_mutex);
4500 	if (nm->nm_oexcl != NULL) {
4501 		ASSERT(nm->nm_oexcl == curthread);
4502 		nm->nm_oexcl = NULL;
4503 	}
4504 
4505 	ASSERT(nm->nm_open);
4506 	nm->nm_open = B_FALSE;
4507 	mutex_exit(&nvme->n_minor_mutex);
4508 
4509 	return (0);
4510 }
4511 
4512 static int
4513 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4514     cred_t *cred_p)
4515 {
4516 	_NOTE(ARGUNUSED(cred_p));
4517 	int rv = 0;
4518 	void *idctl;
4519 
4520 	if ((mode & FREAD) == 0)
4521 		return (EPERM);
4522 
4523 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4524 		return (EINVAL);
4525 
4526 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4527 		return (rv);
4528 
4529 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4530 	    != 0)
4531 		rv = EFAULT;
4532 
4533 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4534 
4535 	return (rv);
4536 }
4537 
4538 /*
4539  * Execute commands on behalf of the various ioctls.
4540  */
4541 static int
4542 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4543     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4544 {
4545 	nvme_cmd_t *cmd;
4546 	nvme_qpair_t *ioq;
4547 	int rv = 0;
4548 
4549 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4550 	if (is_admin) {
4551 		cmd->nc_sqid = 0;
4552 		ioq = nvme->n_adminq;
4553 	} else {
4554 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4555 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4556 		ioq = nvme->n_ioq[cmd->nc_sqid];
4557 	}
4558 
4559 	/*
4560 	 * This function is used to facilitate requests from
4561 	 * userspace, so don't panic if the command fails. This
4562 	 * is especially true for admin passthru commands, where
4563 	 * the actual command data structure is entirely defined
4564 	 * by userspace.
4565 	 */
4566 	cmd->nc_dontpanic = B_TRUE;
4567 
4568 	cmd->nc_callback = nvme_wakeup_cmd;
4569 	cmd->nc_sqe = *sqe;
4570 
4571 	if ((rwk & (FREAD | FWRITE)) != 0) {
4572 		if (data_addr == NULL) {
4573 			rv = EINVAL;
4574 			goto free_cmd;
4575 		}
4576 
4577 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4578 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4579 			dev_err(nvme->n_dip, CE_WARN,
4580 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4581 
4582 			rv = ENOMEM;
4583 			goto free_cmd;
4584 		}
4585 
4586 		if ((rv = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
4587 			goto free_cmd;
4588 
4589 		if ((rwk & FWRITE) != 0) {
4590 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4591 			    data_len, rwk & FKIOCTL) != 0) {
4592 				rv = EFAULT;
4593 				goto free_cmd;
4594 			}
4595 		}
4596 	}
4597 
4598 	if (is_admin) {
4599 		nvme_admin_cmd(cmd, timeout);
4600 	} else {
4601 		mutex_enter(&cmd->nc_mutex);
4602 
4603 		rv = nvme_submit_io_cmd(ioq, cmd);
4604 
4605 		if (rv == EAGAIN) {
4606 			mutex_exit(&cmd->nc_mutex);
4607 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4608 			    "!nvme_ioc_cmd() failed, I/O Q full");
4609 			goto free_cmd;
4610 		}
4611 
4612 		nvme_wait_cmd(cmd, timeout);
4613 
4614 		mutex_exit(&cmd->nc_mutex);
4615 	}
4616 
4617 	if (cqe != NULL)
4618 		*cqe = cmd->nc_cqe;
4619 
4620 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4621 		dev_err(nvme->n_dip, CE_WARN,
4622 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4623 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4624 
4625 		goto free_cmd;
4626 	}
4627 
4628 	if ((rwk & FREAD) != 0) {
4629 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4630 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4631 			rv = EFAULT;
4632 	}
4633 
4634 free_cmd:
4635 	nvme_free_cmd(cmd);
4636 
4637 	return (rv);
4638 }
4639 
4640 static int
4641 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4642     int mode, cred_t *cred_p)
4643 {
4644 	_NOTE(ARGUNUSED(nsid, cred_p));
4645 	int rv = 0;
4646 	nvme_reg_cap_t cap = { 0 };
4647 	nvme_capabilities_t nc;
4648 
4649 	if ((mode & FREAD) == 0)
4650 		return (EPERM);
4651 
4652 	if (nioc->n_len < sizeof (nc))
4653 		return (EINVAL);
4654 
4655 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4656 
4657 	/*
4658 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4659 	 * specify the base page size of 4k (1<<12), so add 12 here to
4660 	 * get the real page size value.
4661 	 */
4662 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4663 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4664 
4665 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4666 		rv = EFAULT;
4667 
4668 	return (rv);
4669 }
4670 
4671 static int
4672 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4673     int mode, cred_t *cred_p)
4674 {
4675 	_NOTE(ARGUNUSED(cred_p));
4676 	void *log = NULL;
4677 	size_t bufsize = 0;
4678 	int rv = 0;
4679 
4680 	if ((mode & FREAD) == 0)
4681 		return (EPERM);
4682 
4683 	switch (nioc->n_arg) {
4684 	case NVME_LOGPAGE_ERROR:
4685 		if (nsid != 0)
4686 			return (EINVAL);
4687 		break;
4688 	case NVME_LOGPAGE_HEALTH:
4689 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4690 			return (EINVAL);
4691 
4692 		if (nsid == 0)
4693 			nsid = (uint32_t)-1;
4694 
4695 		break;
4696 	case NVME_LOGPAGE_FWSLOT:
4697 		if (nsid != 0)
4698 			return (EINVAL);
4699 		break;
4700 	default:
4701 		if (!NVME_IS_VENDOR_SPECIFIC_LOGPAGE(nioc->n_arg))
4702 			return (EINVAL);
4703 		if (nioc->n_len > NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE) {
4704 			dev_err(nvme->n_dip, CE_NOTE, "!Vendor-specific log "
4705 			    "page size exceeds device maximum supported size: "
4706 			    "%lu", NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE);
4707 			return (EINVAL);
4708 		}
4709 		if (nioc->n_len == 0)
4710 			return (EINVAL);
4711 		bufsize = nioc->n_len;
4712 		if (nsid == 0)
4713 			nsid = (uint32_t)-1;
4714 	}
4715 
4716 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4717 	    != DDI_SUCCESS)
4718 		return (EIO);
4719 
4720 	if (nioc->n_len < bufsize) {
4721 		kmem_free(log, bufsize);
4722 		return (EINVAL);
4723 	}
4724 
4725 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4726 		rv = EFAULT;
4727 
4728 	nioc->n_len = bufsize;
4729 	kmem_free(log, bufsize);
4730 
4731 	return (rv);
4732 }
4733 
4734 static int
4735 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4736     int mode, cred_t *cred_p)
4737 {
4738 	_NOTE(ARGUNUSED(cred_p));
4739 	void *buf = NULL;
4740 	size_t bufsize = 0;
4741 	uint32_t res = 0;
4742 	uint8_t feature;
4743 	int rv = 0;
4744 
4745 	if ((mode & FREAD) == 0)
4746 		return (EPERM);
4747 
4748 	if ((nioc->n_arg >> 32) > 0xff)
4749 		return (EINVAL);
4750 
4751 	feature = (uint8_t)(nioc->n_arg >> 32);
4752 
4753 	switch (feature) {
4754 	case NVME_FEAT_ARBITRATION:
4755 	case NVME_FEAT_POWER_MGMT:
4756 	case NVME_FEAT_ERROR:
4757 	case NVME_FEAT_NQUEUES:
4758 	case NVME_FEAT_INTR_COAL:
4759 	case NVME_FEAT_WRITE_ATOM:
4760 	case NVME_FEAT_ASYNC_EVENT:
4761 	case NVME_FEAT_PROGRESS:
4762 		if (nsid != 0)
4763 			return (EINVAL);
4764 		break;
4765 
4766 	case NVME_FEAT_TEMPERATURE:
4767 		if (nsid != 0)
4768 			return (EINVAL);
4769 		res = nioc->n_arg & 0xffffffffUL;
4770 		if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
4771 			nvme_temp_threshold_t tt;
4772 
4773 			tt.r = res;
4774 			if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
4775 			    tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
4776 				return (EINVAL);
4777 			}
4778 
4779 			if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
4780 				return (EINVAL);
4781 			}
4782 		} else if (res != 0) {
4783 			return (ENOTSUP);
4784 		}
4785 		break;
4786 
4787 	case NVME_FEAT_INTR_VECT:
4788 		if (nsid != 0)
4789 			return (EINVAL);
4790 
4791 		res = nioc->n_arg & 0xffffffffUL;
4792 		if (res >= nvme->n_intr_cnt)
4793 			return (EINVAL);
4794 		break;
4795 
4796 	case NVME_FEAT_LBA_RANGE:
4797 		if (nvme->n_lba_range_supported == B_FALSE)
4798 			return (EINVAL);
4799 
4800 		if (nsid == 0 ||
4801 		    nsid > nvme->n_namespace_count)
4802 			return (EINVAL);
4803 
4804 		break;
4805 
4806 	case NVME_FEAT_WRITE_CACHE:
4807 		if (nsid != 0)
4808 			return (EINVAL);
4809 
4810 		if (!nvme->n_write_cache_present)
4811 			return (EINVAL);
4812 
4813 		break;
4814 
4815 	case NVME_FEAT_AUTO_PST:
4816 		if (nsid != 0)
4817 			return (EINVAL);
4818 
4819 		if (!nvme->n_auto_pst_supported)
4820 			return (EINVAL);
4821 
4822 		break;
4823 
4824 	default:
4825 		return (EINVAL);
4826 	}
4827 
4828 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4829 	    &bufsize);
4830 	if (rv != 0)
4831 		return (rv);
4832 
4833 	if (nioc->n_len < bufsize) {
4834 		kmem_free(buf, bufsize);
4835 		return (EINVAL);
4836 	}
4837 
4838 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4839 		rv = EFAULT;
4840 
4841 	kmem_free(buf, bufsize);
4842 	nioc->n_arg = res;
4843 	nioc->n_len = bufsize;
4844 
4845 	return (rv);
4846 }
4847 
4848 static int
4849 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4850     cred_t *cred_p)
4851 {
4852 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4853 
4854 	if ((mode & FREAD) == 0)
4855 		return (EPERM);
4856 
4857 	nioc->n_arg = nvme->n_intr_cnt;
4858 	return (0);
4859 }
4860 
4861 static int
4862 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4863     cred_t *cred_p)
4864 {
4865 	_NOTE(ARGUNUSED(nsid, cred_p));
4866 	int rv = 0;
4867 
4868 	if ((mode & FREAD) == 0)
4869 		return (EPERM);
4870 
4871 	if (nioc->n_len < sizeof (nvme->n_version))
4872 		return (ENOMEM);
4873 
4874 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4875 	    sizeof (nvme->n_version), mode) != 0)
4876 		rv = EFAULT;
4877 
4878 	return (rv);
4879 }
4880 
4881 static int
4882 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4883     cred_t *cred_p)
4884 {
4885 	_NOTE(ARGUNUSED(mode));
4886 	nvme_format_nvm_t frmt = { 0 };
4887 	int c_nsid = nsid != 0 ? nsid : 1;
4888 	nvme_identify_nsid_t *idns;
4889 	nvme_minor_state_t *nm;
4890 
4891 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4892 		return (EPERM);
4893 
4894 	nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor);
4895 	if (nm->nm_oexcl != curthread)
4896 		return (EACCES);
4897 
4898 	if (nsid != 0 && NVME_NSID2NS(nvme, nsid)->ns_attached)
4899 		return (EBUSY);
4900 
4901 	frmt.r = nioc->n_arg & 0xffffffff;
4902 
4903 	/*
4904 	 * Check whether the FORMAT NVM command is supported.
4905 	 */
4906 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4907 		return (ENOTSUP);
4908 
4909 	/*
4910 	 * Don't allow format or secure erase of individual namespace if that
4911 	 * would cause a format or secure erase of all namespaces.
4912 	 */
4913 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4914 		return (EINVAL);
4915 
4916 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4917 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4918 		return (EINVAL);
4919 
4920 	/*
4921 	 * Don't allow formatting with Protection Information.
4922 	 */
4923 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4924 		return (EINVAL);
4925 
4926 	/*
4927 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4928 	 * that uses metadata.
4929 	 */
4930 	idns = NVME_NSID2NS(nvme, c_nsid)->ns_idns;
4931 	if (frmt.b.fm_lbaf > idns->id_nlbaf ||
4932 	    idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4933 		return (EINVAL);
4934 
4935 	/*
4936 	 * Don't allow formatting using an illegal Secure Erase setting.
4937 	 */
4938 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4939 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4940 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4941 		return (EINVAL);
4942 
4943 	if (nsid == 0)
4944 		nsid = (uint32_t)-1;
4945 
4946 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4947 	    B_FALSE, frmt.b.fm_ses));
4948 }
4949 
4950 static int
4951 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4952     cred_t *cred_p)
4953 {
4954 	_NOTE(ARGUNUSED(nioc, mode));
4955 	int rv;
4956 
4957 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4958 		return (EPERM);
4959 
4960 	if (nsid == 0)
4961 		return (EINVAL);
4962 
4963 	if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread)
4964 		return (EACCES);
4965 
4966 	mutex_enter(&nvme->n_mgmt_mutex);
4967 
4968 	rv = nvme_detach_ns(nvme, nsid);
4969 
4970 	mutex_exit(&nvme->n_mgmt_mutex);
4971 
4972 	return (rv);
4973 }
4974 
4975 static int
4976 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4977     cred_t *cred_p)
4978 {
4979 	_NOTE(ARGUNUSED(nioc, mode));
4980 	int rv;
4981 
4982 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4983 		return (EPERM);
4984 
4985 	if (nsid == 0)
4986 		return (EINVAL);
4987 
4988 	if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread)
4989 		return (EACCES);
4990 
4991 	mutex_enter(&nvme->n_mgmt_mutex);
4992 
4993 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) {
4994 		mutex_exit(&nvme->n_mgmt_mutex);
4995 		return (EIO);
4996 	}
4997 
4998 	rv = nvme_attach_ns(nvme, nsid);
4999 
5000 	mutex_exit(&nvme->n_mgmt_mutex);
5001 	return (rv);
5002 }
5003 
5004 static void
5005 nvme_ufm_update(nvme_t *nvme)
5006 {
5007 	mutex_enter(&nvme->n_fwslot_mutex);
5008 	ddi_ufm_update(nvme->n_ufmh);
5009 	if (nvme->n_fwslot != NULL) {
5010 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
5011 		nvme->n_fwslot = NULL;
5012 	}
5013 	mutex_exit(&nvme->n_fwslot_mutex);
5014 }
5015 
5016 static int
5017 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
5018     int mode, cred_t *cred_p)
5019 {
5020 	int rv = 0;
5021 	size_t len, copylen;
5022 	offset_t offset;
5023 	uintptr_t buf;
5024 	nvme_cqe_t cqe = { 0 };
5025 	nvme_sqe_t sqe = {
5026 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
5027 	};
5028 
5029 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5030 		return (EPERM);
5031 
5032 	if (nvme->n_idctl->id_oacs.oa_firmware == 0)
5033 		return (ENOTSUP);
5034 
5035 	if (nsid != 0)
5036 		return (EINVAL);
5037 
5038 	/*
5039 	 * The offset (in n_len) is restricted to the number of DWORDs in
5040 	 * 32 bits.
5041 	 */
5042 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
5043 		return (EINVAL);
5044 
5045 	/* Confirm that both offset and length are a multiple of DWORD bytes */
5046 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
5047 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
5048 		return (EINVAL);
5049 
5050 	len = nioc->n_len;
5051 	offset = nioc->n_arg;
5052 	buf = (uintptr_t)nioc->n_buf;
5053 
5054 	nioc->n_arg = 0;
5055 
5056 	while (len > 0 && rv == 0) {
5057 		/*
5058 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
5059 		 * It is limited to 2 PRPs per NVM command, so limit
5060 		 * the size of the data to 2 pages.
5061 		 */
5062 		copylen = MIN(2 * nvme->n_pagesize, len);
5063 
5064 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
5065 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
5066 
5067 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
5068 		    FWRITE, &cqe, nvme_admin_cmd_timeout);
5069 
5070 		/*
5071 		 * Regardless of whether the command succeeded or not, whether
5072 		 * there's an errno in rv to be returned, we'll return any
5073 		 * command-specific status code in n_arg.
5074 		 *
5075 		 * As n_arg isn't cleared in all other possible code paths
5076 		 * returning an error, we return the status code as a negative
5077 		 * value so it can be distinguished easily from whatever value
5078 		 * was passed in n_arg originally. This of course only works as
5079 		 * long as arguments passed in n_arg are less than INT64_MAX,
5080 		 * which they currently are.
5081 		 */
5082 		if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
5083 			nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc;
5084 
5085 		buf += copylen;
5086 		offset += copylen;
5087 		len -= copylen;
5088 	}
5089 
5090 	/*
5091 	 * Let the DDI UFM subsystem know that the firmware information for
5092 	 * this device has changed.
5093 	 */
5094 	nvme_ufm_update(nvme);
5095 
5096 	return (rv);
5097 }
5098 
5099 static int
5100 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
5101     int mode, cred_t *cred_p)
5102 {
5103 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
5104 	uint32_t slot = nioc->n_arg & 0xffffffff;
5105 	uint32_t action = nioc->n_arg >> 32;
5106 	nvme_cqe_t cqe = { 0 };
5107 	nvme_sqe_t sqe = {
5108 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
5109 	};
5110 	int timeout;
5111 	int rv;
5112 
5113 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5114 		return (EPERM);
5115 
5116 	if (nvme->n_idctl->id_oacs.oa_firmware == 0)
5117 		return (ENOTSUP);
5118 
5119 	if (nsid != 0)
5120 		return (EINVAL);
5121 
5122 	/* Validate slot is in range. */
5123 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
5124 		return (EINVAL);
5125 
5126 	switch (action) {
5127 	case NVME_FWC_SAVE:
5128 	case NVME_FWC_SAVE_ACTIVATE:
5129 		timeout = nvme_commit_save_cmd_timeout;
5130 		if (slot == 1 && nvme->n_idctl->id_frmw.fw_readonly)
5131 			return (EROFS);
5132 		break;
5133 	case NVME_FWC_ACTIVATE:
5134 	case NVME_FWC_ACTIVATE_IMMED:
5135 		timeout = nvme_admin_cmd_timeout;
5136 		break;
5137 	default:
5138 		return (EINVAL);
5139 	}
5140 
5141 	fc_dw10.b.fc_slot = slot;
5142 	fc_dw10.b.fc_action = action;
5143 	sqe.sqe_cdw10 = fc_dw10.r;
5144 
5145 	nioc->n_arg = 0;
5146 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
5147 
5148 	/*
5149 	 * Regardless of whether the command succeeded or not, whether
5150 	 * there's an errno in rv to be returned, we'll return any
5151 	 * command-specific status code in n_arg.
5152 	 *
5153 	 * As n_arg isn't cleared in all other possible code paths
5154 	 * returning an error, we return the status code as a negative
5155 	 * value so it can be distinguished easily from whatever value
5156 	 * was passed in n_arg originally. This of course only works as
5157 	 * long as arguments passed in n_arg are less than INT64_MAX,
5158 	 * which they currently are.
5159 	 */
5160 	if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
5161 		nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc;
5162 
5163 	/*
5164 	 * Let the DDI UFM subsystem know that the firmware information for
5165 	 * this device has changed.
5166 	 */
5167 	nvme_ufm_update(nvme);
5168 
5169 	return (rv);
5170 }
5171 
5172 /*
5173  * Helper to copy in a passthru command from userspace, handling
5174  * different data models.
5175  */
5176 static int
5177 nvme_passthru_copy_cmd_in(const void *buf, nvme_passthru_cmd_t *cmd, int mode)
5178 {
5179 #ifdef _MULTI_DATAMODEL
5180 	switch (ddi_model_convert_from(mode & FMODELS)) {
5181 	case DDI_MODEL_ILP32: {
5182 		nvme_passthru_cmd32_t cmd32;
5183 		if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0)
5184 			return (-1);
5185 		cmd->npc_opcode = cmd32.npc_opcode;
5186 		cmd->npc_timeout = cmd32.npc_timeout;
5187 		cmd->npc_flags = cmd32.npc_flags;
5188 		cmd->npc_cdw12 = cmd32.npc_cdw12;
5189 		cmd->npc_cdw13 = cmd32.npc_cdw13;
5190 		cmd->npc_cdw14 = cmd32.npc_cdw14;
5191 		cmd->npc_cdw15 = cmd32.npc_cdw15;
5192 		cmd->npc_buflen = cmd32.npc_buflen;
5193 		cmd->npc_buf = cmd32.npc_buf;
5194 		break;
5195 	}
5196 	case DDI_MODEL_NONE:
5197 #endif
5198 	if (ddi_copyin(buf, (void*)cmd, sizeof (nvme_passthru_cmd_t),
5199 	    mode) != 0)
5200 		return (-1);
5201 #ifdef _MULTI_DATAMODEL
5202 		break;
5203 	}
5204 #endif
5205 	return (0);
5206 }
5207 
5208 /*
5209  * Helper to copy out a passthru command result to userspace, handling
5210  * different data models.
5211  */
5212 static int
5213 nvme_passthru_copy_cmd_out(const nvme_passthru_cmd_t *cmd, void *buf, int mode)
5214 {
5215 #ifdef _MULTI_DATAMODEL
5216 	switch (ddi_model_convert_from(mode & FMODELS)) {
5217 	case DDI_MODEL_ILP32: {
5218 		nvme_passthru_cmd32_t cmd32;
5219 		bzero(&cmd32, sizeof (cmd32));
5220 		cmd32.npc_opcode = cmd->npc_opcode;
5221 		cmd32.npc_status = cmd->npc_status;
5222 		cmd32.npc_err = cmd->npc_err;
5223 		cmd32.npc_timeout = cmd->npc_timeout;
5224 		cmd32.npc_flags = cmd->npc_flags;
5225 		cmd32.npc_cdw0 = cmd->npc_cdw0;
5226 		cmd32.npc_cdw12 = cmd->npc_cdw12;
5227 		cmd32.npc_cdw13 = cmd->npc_cdw13;
5228 		cmd32.npc_cdw14 = cmd->npc_cdw14;
5229 		cmd32.npc_cdw15 = cmd->npc_cdw15;
5230 		cmd32.npc_buflen = (size32_t)cmd->npc_buflen;
5231 		cmd32.npc_buf = (uintptr32_t)cmd->npc_buf;
5232 		if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0)
5233 			return (-1);
5234 		break;
5235 	}
5236 	case DDI_MODEL_NONE:
5237 #endif
5238 		if (ddi_copyout(cmd, buf, sizeof (nvme_passthru_cmd_t),
5239 		    mode) != 0)
5240 			return (-1);
5241 #ifdef _MULTI_DATAMODEL
5242 		break;
5243 	}
5244 #endif
5245 	return (0);
5246 }
5247 
5248 /*
5249  * Run an arbitrary vendor-specific admin command on the device.
5250  */
5251 static int
5252 nvme_ioctl_passthru(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5253     cred_t *cred_p)
5254 {
5255 	int rv = 0;
5256 	uint_t timeout = 0;
5257 	int rwk = 0;
5258 	nvme_passthru_cmd_t cmd;
5259 	size_t expected_passthru_size = 0;
5260 	nvme_sqe_t sqe;
5261 	nvme_cqe_t cqe;
5262 
5263 	bzero(&cmd, sizeof (cmd));
5264 	bzero(&sqe, sizeof (sqe));
5265 	bzero(&cqe, sizeof (cqe));
5266 
5267 	/*
5268 	 * Basic checks: permissions, data model, argument size.
5269 	 */
5270 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5271 		return (EPERM);
5272 
5273 	/*
5274 	 * Compute the expected size of the argument buffer
5275 	 */
5276 #ifdef _MULTI_DATAMODEL
5277 	switch (ddi_model_convert_from(mode & FMODELS)) {
5278 	case DDI_MODEL_ILP32:
5279 		expected_passthru_size = sizeof (nvme_passthru_cmd32_t);
5280 		break;
5281 	case DDI_MODEL_NONE:
5282 #endif
5283 		expected_passthru_size = sizeof (nvme_passthru_cmd_t);
5284 #ifdef _MULTI_DATAMODEL
5285 		break;
5286 	}
5287 #endif
5288 
5289 	if (nioc->n_len != expected_passthru_size) {
5290 		cmd.npc_err = NVME_PASSTHRU_ERR_CMD_SIZE;
5291 		rv = EINVAL;
5292 		goto out;
5293 	}
5294 
5295 	/*
5296 	 * Ensure the device supports the standard vendor specific
5297 	 * admin command format.
5298 	 */
5299 	if (!nvme->n_idctl->id_nvscc.nv_spec) {
5300 		cmd.npc_err = NVME_PASSTHRU_ERR_NOT_SUPPORTED;
5301 		rv = ENOTSUP;
5302 		goto out;
5303 	}
5304 
5305 	if (nvme_passthru_copy_cmd_in((const void*)nioc->n_buf, &cmd, mode))
5306 		return (EFAULT);
5307 
5308 	if (!NVME_IS_VENDOR_SPECIFIC_CMD(cmd.npc_opcode)) {
5309 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_OPCODE;
5310 		rv = EINVAL;
5311 		goto out;
5312 	}
5313 
5314 	/*
5315 	 * This restriction is not mandated by the spec, so future work
5316 	 * could relax this if it's necessary to support commands that both
5317 	 * read and write.
5318 	 */
5319 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0 &&
5320 	    (cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) {
5321 		cmd.npc_err = NVME_PASSTHRU_ERR_READ_AND_WRITE;
5322 		rv = EINVAL;
5323 		goto out;
5324 	}
5325 	if (cmd.npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) {
5326 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_TIMEOUT;
5327 		rv = EINVAL;
5328 		goto out;
5329 	}
5330 	timeout = cmd.npc_timeout;
5331 
5332 	/*
5333 	 * Passed-thru command buffer verification:
5334 	 *  - Size is multiple of DWords
5335 	 *  - Non-null iff the length is non-zero
5336 	 *  - Null if neither reading nor writing data.
5337 	 *  - Non-null if reading or writing.
5338 	 *  - Maximum buffer size.
5339 	 */
5340 	if ((cmd.npc_buflen % sizeof (uint32_t)) != 0) {
5341 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5342 		rv = EINVAL;
5343 		goto out;
5344 	}
5345 	if (((void*)cmd.npc_buf != NULL && cmd.npc_buflen == 0) ||
5346 	    ((void*)cmd.npc_buf == NULL && cmd.npc_buflen != 0)) {
5347 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5348 		rv = EINVAL;
5349 		goto out;
5350 	}
5351 	if (cmd.npc_flags == 0 && (void*)cmd.npc_buf != NULL) {
5352 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5353 		rv = EINVAL;
5354 		goto out;
5355 	}
5356 	if ((cmd.npc_flags != 0) && ((void*)cmd.npc_buf == NULL)) {
5357 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5358 		rv = EINVAL;
5359 		goto out;
5360 	}
5361 	if (cmd.npc_buflen > nvme_vendor_specific_admin_cmd_size) {
5362 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5363 		rv = EINVAL;
5364 		goto out;
5365 	}
5366 	if ((cmd.npc_buflen >> NVME_DWORD_SHIFT) > UINT32_MAX) {
5367 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5368 		rv = EINVAL;
5369 		goto out;
5370 	}
5371 
5372 	sqe.sqe_opc = cmd.npc_opcode;
5373 	sqe.sqe_nsid = nsid;
5374 	sqe.sqe_cdw10 = (uint32_t)(cmd.npc_buflen >> NVME_DWORD_SHIFT);
5375 	sqe.sqe_cdw12 = cmd.npc_cdw12;
5376 	sqe.sqe_cdw13 = cmd.npc_cdw13;
5377 	sqe.sqe_cdw14 = cmd.npc_cdw14;
5378 	sqe.sqe_cdw15 = cmd.npc_cdw15;
5379 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0)
5380 		rwk = FREAD;
5381 	else if ((cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0)
5382 		rwk = FWRITE;
5383 
5384 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void*)cmd.npc_buf,
5385 	    cmd.npc_buflen, rwk, &cqe, timeout);
5386 	cmd.npc_status = cqe.cqe_sf.sf_sc;
5387 	cmd.npc_cdw0 = cqe.cqe_dw0;
5388 
5389 out:
5390 	if (nvme_passthru_copy_cmd_out(&cmd, (void*)nioc->n_buf, mode))
5391 		rv = EFAULT;
5392 	return (rv);
5393 }
5394 
5395 static int
5396 nvme_ioctl_is_ignored_ns(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5397     cred_t *cred_p)
5398 {
5399 	_NOTE(ARGUNUSED(cred_p));
5400 
5401 	if ((mode & FREAD) == 0)
5402 		return (EPERM);
5403 
5404 	if (nsid == 0)
5405 		return (EINVAL);
5406 
5407 	if (NVME_NSID2NS(nvme, nsid)->ns_ignore)
5408 		nioc->n_arg = 1;
5409 	else
5410 		nioc->n_arg = 0;
5411 
5412 	return (0);
5413 }
5414 
5415 static int
5416 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
5417     int *rval_p)
5418 {
5419 #ifndef __lock_lint
5420 	_NOTE(ARGUNUSED(rval_p));
5421 #endif
5422 	minor_t minor = getminor(dev);
5423 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
5424 	int nsid = NVME_MINOR_NSID(minor);
5425 	int rv = 0;
5426 	nvme_ioctl_t nioc;
5427 
5428 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
5429 		NULL,
5430 		nvme_ioctl_identify,
5431 		nvme_ioctl_identify,
5432 		nvme_ioctl_capabilities,
5433 		nvme_ioctl_get_logpage,
5434 		nvme_ioctl_get_features,
5435 		nvme_ioctl_intr_cnt,
5436 		nvme_ioctl_version,
5437 		nvme_ioctl_format,
5438 		nvme_ioctl_detach,
5439 		nvme_ioctl_attach,
5440 		nvme_ioctl_firmware_download,
5441 		nvme_ioctl_firmware_commit,
5442 		nvme_ioctl_passthru,
5443 		nvme_ioctl_is_ignored_ns
5444 	};
5445 
5446 	if (nvme == NULL)
5447 		return (ENXIO);
5448 
5449 	if (nsid > nvme->n_namespace_count)
5450 		return (ENXIO);
5451 
5452 	if (IS_DEVCTL(cmd))
5453 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
5454 
5455 #ifdef _MULTI_DATAMODEL
5456 	switch (ddi_model_convert_from(mode & FMODELS)) {
5457 	case DDI_MODEL_ILP32: {
5458 		nvme_ioctl32_t nioc32;
5459 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
5460 		    mode) != 0)
5461 			return (EFAULT);
5462 		nioc.n_len = nioc32.n_len;
5463 		nioc.n_buf = nioc32.n_buf;
5464 		nioc.n_arg = nioc32.n_arg;
5465 		break;
5466 	}
5467 	case DDI_MODEL_NONE:
5468 #endif
5469 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
5470 		    != 0)
5471 			return (EFAULT);
5472 #ifdef _MULTI_DATAMODEL
5473 		break;
5474 	}
5475 #endif
5476 
5477 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
5478 		return (EIO);
5479 
5480 
5481 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
5482 		/*
5483 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
5484 		 * attachment point nodes.
5485 		 */
5486 		nsid = 0;
5487 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
5488 		/*
5489 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
5490 		 * will always return identify data for namespace 1.
5491 		 */
5492 		nsid = 1;
5493 	}
5494 
5495 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
5496 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
5497 		    cred_p);
5498 	else
5499 		rv = EINVAL;
5500 
5501 #ifdef _MULTI_DATAMODEL
5502 	switch (ddi_model_convert_from(mode & FMODELS)) {
5503 	case DDI_MODEL_ILP32: {
5504 		nvme_ioctl32_t nioc32;
5505 
5506 		nioc32.n_len = (size32_t)nioc.n_len;
5507 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
5508 		nioc32.n_arg = nioc.n_arg;
5509 
5510 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
5511 		    mode) != 0)
5512 			return (EFAULT);
5513 		break;
5514 	}
5515 	case DDI_MODEL_NONE:
5516 #endif
5517 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
5518 		    != 0)
5519 			return (EFAULT);
5520 #ifdef _MULTI_DATAMODEL
5521 		break;
5522 	}
5523 #endif
5524 
5525 	return (rv);
5526 }
5527 
5528 /*
5529  * DDI UFM Callbacks
5530  */
5531 static int
5532 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5533     ddi_ufm_image_t *img)
5534 {
5535 	nvme_t *nvme = arg;
5536 
5537 	if (imgno != 0)
5538 		return (EINVAL);
5539 
5540 	ddi_ufm_image_set_desc(img, "Firmware");
5541 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
5542 
5543 	return (0);
5544 }
5545 
5546 /*
5547  * Fill out firmware slot information for the requested slot.  The firmware
5548  * slot information is gathered by requesting the Firmware Slot Information log
5549  * page.  The format of the page is described in section 5.10.1.3.
5550  *
5551  * We lazily cache the log page on the first call and then invalidate the cache
5552  * data after a successful firmware download or firmware commit command.
5553  * The cached data is protected by a mutex as the state can change
5554  * asynchronous to this callback.
5555  */
5556 static int
5557 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5558     uint_t slotno, ddi_ufm_slot_t *slot)
5559 {
5560 	nvme_t *nvme = arg;
5561 	void *log = NULL;
5562 	size_t bufsize;
5563 	ddi_ufm_attr_t attr = 0;
5564 	char fw_ver[NVME_FWVER_SZ + 1];
5565 	int ret;
5566 
5567 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
5568 		return (EINVAL);
5569 
5570 	mutex_enter(&nvme->n_fwslot_mutex);
5571 	if (nvme->n_fwslot == NULL) {
5572 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
5573 		    NVME_LOGPAGE_FWSLOT, 0);
5574 		if (ret != DDI_SUCCESS ||
5575 		    bufsize != sizeof (nvme_fwslot_log_t)) {
5576 			if (log != NULL)
5577 				kmem_free(log, bufsize);
5578 			mutex_exit(&nvme->n_fwslot_mutex);
5579 			return (EIO);
5580 		}
5581 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
5582 	}
5583 
5584 	/*
5585 	 * NVMe numbers firmware slots starting at 1
5586 	 */
5587 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
5588 		attr |= DDI_UFM_ATTR_ACTIVE;
5589 
5590 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
5591 		attr |= DDI_UFM_ATTR_WRITEABLE;
5592 
5593 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
5594 		attr |= DDI_UFM_ATTR_EMPTY;
5595 	} else {
5596 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
5597 		    NVME_FWVER_SZ);
5598 		fw_ver[NVME_FWVER_SZ] = '\0';
5599 		ddi_ufm_slot_set_version(slot, fw_ver);
5600 	}
5601 	mutex_exit(&nvme->n_fwslot_mutex);
5602 
5603 	ddi_ufm_slot_set_attrs(slot, attr);
5604 
5605 	return (0);
5606 }
5607 
5608 static int
5609 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
5610 {
5611 	*caps = DDI_UFM_CAP_REPORT;
5612 	return (0);
5613 }
5614