xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 91b4b5393fe18d32505f967d482b81eef7f68d22)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2020 Joyent, Inc.
17  * Copyright 2019 Western Digital Corporation.
18  * Copyright 2020 Racktop Systems.
19  */
20 
21 /*
22  * blkdev driver for NVMe compliant storage devices
23  *
24  * This driver was written to conform to version 1.2.1 of the NVMe
25  * specification.  It may work with newer versions, but that is completely
26  * untested and disabled by default.
27  *
28  * The driver has only been tested on x86 systems and will not work on big-
29  * endian systems without changes to the code accessing registers and data
30  * structures used by the hardware.
31  *
32  *
33  * Interrupt Usage:
34  *
35  * The driver will use a single interrupt while configuring the device as the
36  * specification requires, but contrary to the specification it will try to use
37  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
38  * will switch to multiple-message MSI(-X) if supported. The driver wants to
39  * have one interrupt vector per CPU, but it will work correctly if less are
40  * available. Interrupts can be shared by queues, the interrupt handler will
41  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
42  * the admin queue will share an interrupt with one I/O queue. The interrupt
43  * handler will retrieve completed commands from all queues sharing an interrupt
44  * vector and will post them to a taskq for completion processing.
45  *
46  *
47  * Command Processing:
48  *
49  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
50  * to 65536 I/O commands. The driver will configure one I/O queue pair per
51  * available interrupt vector, with the queue length usually much smaller than
52  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
53  * interrupt vectors will be used.
54  *
55  * Additionally the hardware provides a single special admin queue pair that can
56  * hold up to 4096 admin commands.
57  *
58  * From the hardware perspective both queues of a queue pair are independent,
59  * but they share some driver state: the command array (holding pointers to
60  * commands currently being processed by the hardware) and the active command
61  * counter. Access to a submission queue and the shared state is protected by
62  * nq_mutex, completion queue is protected by ncq_mutex.
63  *
64  * When a command is submitted to a queue pair the active command counter is
65  * incremented and a pointer to the command is stored in the command array. The
66  * array index is used as command identifier (CID) in the submission queue
67  * entry. Some commands may take a very long time to complete, and if the queue
68  * wraps around in that time a submission may find the next array slot to still
69  * be used by a long-running command. In this case the array is sequentially
70  * searched for the next free slot. The length of the command array is the same
71  * as the configured queue length. Queue overrun is prevented by the semaphore,
72  * so a command submission may block if the queue is full.
73  *
74  *
75  * Polled I/O Support:
76  *
77  * For kernel core dump support the driver can do polled I/O. As interrupts are
78  * turned off while dumping the driver will just submit a command in the regular
79  * way, and then repeatedly attempt a command retrieval until it gets the
80  * command back.
81  *
82  *
83  * Namespace Support:
84  *
85  * NVMe devices can have multiple namespaces, each being a independent data
86  * store. The driver supports multiple namespaces and creates a blkdev interface
87  * for each namespace found. Namespaces can have various attributes to support
88  * protection information. This driver does not support any of this and ignores
89  * namespaces that have these attributes.
90  *
91  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
92  * (EUI64). This driver uses the EUI64 if present to generate the devid and
93  * passes it to blkdev to use it in the device node names. As this is currently
94  * untested namespaces with EUI64 are ignored by default.
95  *
96  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
97  * single controller. This is an artificial limit imposed by the driver to be
98  * able to address a reasonable number of controllers and namespaces using a
99  * 32bit minor node number.
100  *
101  *
102  * Minor nodes:
103  *
104  * For each NVMe device the driver exposes one minor node for the controller and
105  * one minor node for each namespace. The only operations supported by those
106  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
107  * interface for the nvmeadm(1M) utility.
108  *
109  *
110  * Blkdev Interface:
111  *
112  * This driver uses blkdev to do all the heavy lifting involved with presenting
113  * a disk device to the system. As a result, the processing of I/O requests is
114  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
115  * setup, and splitting of transfers into manageable chunks.
116  *
117  * I/O requests coming in from blkdev are turned into NVM commands and posted to
118  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
119  * queues. There is currently no timeout handling of I/O commands.
120  *
121  * Blkdev also supports querying device/media information and generating a
122  * devid. The driver reports the best block size as determined by the namespace
123  * format back to blkdev as physical block size to support partition and block
124  * alignment. The devid is either based on the namespace EUI64, if present, or
125  * composed using the device vendor ID, model number, serial number, and the
126  * namespace ID.
127  *
128  *
129  * Error Handling:
130  *
131  * Error handling is currently limited to detecting fatal hardware errors,
132  * either by asynchronous events, or synchronously through command status or
133  * admin command timeouts. In case of severe errors the device is fenced off,
134  * all further requests will return EIO. FMA is then called to fault the device.
135  *
136  * The hardware has a limit for outstanding asynchronous event requests. Before
137  * this limit is known the driver assumes it is at least 1 and posts a single
138  * asynchronous request. Later when the limit is known more asynchronous event
139  * requests are posted to allow quicker reception of error information. When an
140  * asynchronous event is posted by the hardware the driver will parse the error
141  * status fields and log information or fault the device, depending on the
142  * severity of the asynchronous event. The asynchronous event request is then
143  * reused and posted to the admin queue again.
144  *
145  * On command completion the command status is checked for errors. In case of
146  * errors indicating a driver bug the driver panics. Almost all other error
147  * status values just cause EIO to be returned.
148  *
149  * Command timeouts are currently detected for all admin commands except
150  * asynchronous event requests. If a command times out and the hardware appears
151  * to be healthy the driver attempts to abort the command. The original command
152  * timeout is also applied to the abort command. If the abort times out too the
153  * driver assumes the device to be dead, fences it off, and calls FMA to retire
154  * it. In all other cases the aborted command should return immediately with a
155  * status indicating it was aborted, and the driver will wait indefinitely for
156  * that to happen. No timeout handling of normal I/O commands is presently done.
157  *
158  * Any command that times out due to the controller dropping dead will be put on
159  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
160  * memory being reused by the system and later be written to by a "dead" NVMe
161  * controller.
162  *
163  *
164  * Locking:
165  *
166  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
167  * when accessing shared state and submission queue registers, ncq_mutex
168  * is held when accessing completion queue state and registers.
169  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
170  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
171  * mutexes themselves.
172  *
173  * Each command also has its own nc_mutex, which is associated with the
174  * condition variable nc_cv. It is only used on admin commands which are run
175  * synchronously. In that case it must be held across calls to
176  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
177  * nvme_admin_cmd(). It must also be held whenever the completion state of the
178  * command is changed or while a admin command timeout is handled.
179  *
180  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
181  * More than one nc_mutex may only be held when aborting commands. In this case,
182  * the nc_mutex of the command to be aborted must be held across the call to
183  * nvme_abort_cmd() to prevent the command from completing while the abort is in
184  * progress.
185  *
186  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
187  * acquired first. More than one nq_mutex is never held by a single thread.
188  * The ncq_mutex is only held by nvme_retrieve_cmd() and
189  * nvme_process_iocq(). nvme_process_iocq() is only called from the
190  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
191  * mutex is non-contentious but is required for implementation completeness
192  * and safety.
193  *
194  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
195  * and exclusive-open flag nm_oexcl.
196  *
197  *
198  * Quiesce / Fast Reboot:
199  *
200  * The driver currently does not support fast reboot. A quiesce(9E) entry point
201  * is still provided which is used to send a shutdown notification to the
202  * device.
203  *
204  *
205  * DDI UFM Support
206  *
207  * The driver supports the DDI UFM framework for reporting information about
208  * the device's firmware image and slot configuration. This data can be
209  * queried by userland software via ioctls to the ufm driver. For more
210  * information, see ddi_ufm(9E).
211  *
212  *
213  * Driver Configuration:
214  *
215  * The following driver properties can be changed to control some aspects of the
216  * drivers operation:
217  * - strict-version: can be set to 0 to allow devices conforming to newer
218  *   major versions to be used
219  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
220  *   specific command status as a fatal error leading device faulting
221  * - admin-queue-len: the maximum length of the admin queue (16-4096)
222  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
223  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
224  * - async-event-limit: the maximum number of asynchronous event requests to be
225  *   posted by the driver
226  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
227  *   cache
228  * - min-phys-block-size: the minimum physical block size to report to blkdev,
229  *   which is among other things the basis for ZFS vdev ashift
230  * - max-submission-queues: the maximum number of I/O submission queues.
231  * - max-completion-queues: the maximum number of I/O completion queues,
232  *   can be less than max-submission-queues, in which case the completion
233  *   queues are shared.
234  *
235  *
236  * TODO:
237  * - figure out sane default for I/O queue depth reported to blkdev
238  * - FMA handling of media errors
239  * - support for devices supporting very large I/O requests using chained PRPs
240  * - support for configuring hardware parameters like interrupt coalescing
241  * - support for media formatting and hard partitioning into namespaces
242  * - support for big-endian systems
243  * - support for fast reboot
244  * - support for NVMe Subsystem Reset (1.1)
245  * - support for Scatter/Gather lists (1.1)
246  * - support for Reservations (1.1)
247  * - support for power management
248  */
249 
250 #include <sys/byteorder.h>
251 #ifdef _BIG_ENDIAN
252 #error nvme driver needs porting for big-endian platforms
253 #endif
254 
255 #include <sys/modctl.h>
256 #include <sys/conf.h>
257 #include <sys/devops.h>
258 #include <sys/ddi.h>
259 #include <sys/ddi_ufm.h>
260 #include <sys/sunddi.h>
261 #include <sys/sunndi.h>
262 #include <sys/bitmap.h>
263 #include <sys/sysmacros.h>
264 #include <sys/param.h>
265 #include <sys/varargs.h>
266 #include <sys/cpuvar.h>
267 #include <sys/disp.h>
268 #include <sys/blkdev.h>
269 #include <sys/atomic.h>
270 #include <sys/archsystm.h>
271 #include <sys/sata/sata_hba.h>
272 #include <sys/stat.h>
273 #include <sys/policy.h>
274 #include <sys/list.h>
275 #include <sys/dkio.h>
276 
277 #include <sys/nvme.h>
278 
279 #ifdef __x86
280 #include <sys/x86_archext.h>
281 #endif
282 
283 #include "nvme_reg.h"
284 #include "nvme_var.h"
285 
286 /*
287  * Assertions to make sure that we've properly captured various aspects of the
288  * packed structures and haven't broken them during updates.
289  */
290 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
291 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
292 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
293 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
294 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
295 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
296 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
297 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
298 
299 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
300 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
301 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
302 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
303 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
304 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
305 
306 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
307 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
308 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
309 
310 
311 /* NVMe spec version supported */
312 static const int nvme_version_major = 1;
313 
314 /* tunable for admin command timeout in seconds, default is 1s */
315 int nvme_admin_cmd_timeout = 1;
316 
317 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
318 int nvme_format_cmd_timeout = 600;
319 
320 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
321 int nvme_commit_save_cmd_timeout = 15;
322 
323 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
324 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
325 static int nvme_quiesce(dev_info_t *);
326 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
327 static int nvme_setup_interrupts(nvme_t *, int, int);
328 static void nvme_release_interrupts(nvme_t *);
329 static uint_t nvme_intr(caddr_t, caddr_t);
330 
331 static void nvme_shutdown(nvme_t *, int, boolean_t);
332 static boolean_t nvme_reset(nvme_t *, boolean_t);
333 static int nvme_init(nvme_t *);
334 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
335 static void nvme_free_cmd(nvme_cmd_t *);
336 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
337     bd_xfer_t *);
338 static void nvme_admin_cmd(nvme_cmd_t *, int);
339 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
340 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
341 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
342 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
343 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
344 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
345 static void nvme_wakeup_cmd(void *);
346 static void nvme_async_event_task(void *);
347 
348 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
349 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
350 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
351 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
352 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
353 static inline int nvme_check_cmd_status(nvme_cmd_t *);
354 
355 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
356 static void nvme_async_event(nvme_t *);
357 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
358     uint8_t, boolean_t, uint8_t);
359 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
360     ...);
361 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
362 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
363     uint32_t *);
364 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
365     void **, size_t *);
366 static int nvme_write_cache_set(nvme_t *, boolean_t);
367 static int nvme_set_nqueues(nvme_t *);
368 
369 static void nvme_free_dma(nvme_dma_t *);
370 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
371     nvme_dma_t **);
372 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
373     nvme_dma_t **);
374 static void nvme_free_qpair(nvme_qpair_t *);
375 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
376 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
377 
378 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
379 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
380 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
381 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
382 
383 static boolean_t nvme_check_regs_hdl(nvme_t *);
384 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
385 
386 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
387 
388 static void nvme_bd_xfer_done(void *);
389 static void nvme_bd_driveinfo(void *, bd_drive_t *);
390 static int nvme_bd_mediainfo(void *, bd_media_t *);
391 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
392 static int nvme_bd_read(void *, bd_xfer_t *);
393 static int nvme_bd_write(void *, bd_xfer_t *);
394 static int nvme_bd_sync(void *, bd_xfer_t *);
395 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
396 static int nvme_bd_free_space(void *, bd_xfer_t *);
397 
398 static int nvme_prp_dma_constructor(void *, void *, int);
399 static void nvme_prp_dma_destructor(void *, void *);
400 
401 static void nvme_prepare_devid(nvme_t *, uint32_t);
402 
403 /* DDI UFM callbacks */
404 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
405     ddi_ufm_image_t *);
406 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
407     ddi_ufm_slot_t *);
408 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
409 
410 static int nvme_open(dev_t *, int, int, cred_t *);
411 static int nvme_close(dev_t, int, int, cred_t *);
412 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
413 
414 static ddi_ufm_ops_t nvme_ufm_ops = {
415 	NULL,
416 	nvme_ufm_fill_image,
417 	nvme_ufm_fill_slot,
418 	nvme_ufm_getcaps
419 };
420 
421 #define	NVME_MINOR_INST_SHIFT	9
422 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
423 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
424 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
425 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
426 
427 static void *nvme_state;
428 static kmem_cache_t *nvme_cmd_cache;
429 
430 /*
431  * DMA attributes for queue DMA memory
432  *
433  * Queue DMA memory must be page aligned. The maximum length of a queue is
434  * 65536 entries, and an entry can be 64 bytes long.
435  */
436 static ddi_dma_attr_t nvme_queue_dma_attr = {
437 	.dma_attr_version	= DMA_ATTR_V0,
438 	.dma_attr_addr_lo	= 0,
439 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
440 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
441 	.dma_attr_align		= 0x1000,
442 	.dma_attr_burstsizes	= 0x7ff,
443 	.dma_attr_minxfer	= 0x1000,
444 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
445 	.dma_attr_seg		= 0xffffffffffffffffULL,
446 	.dma_attr_sgllen	= 1,
447 	.dma_attr_granular	= 1,
448 	.dma_attr_flags		= 0,
449 };
450 
451 /*
452  * DMA attributes for transfers using Physical Region Page (PRP) entries
453  *
454  * A PRP entry describes one page of DMA memory using the page size specified
455  * in the controller configuration's memory page size register (CC.MPS). It uses
456  * a 64bit base address aligned to this page size. There is no limitation on
457  * chaining PRPs together for arbitrarily large DMA transfers.
458  */
459 static ddi_dma_attr_t nvme_prp_dma_attr = {
460 	.dma_attr_version	= DMA_ATTR_V0,
461 	.dma_attr_addr_lo	= 0,
462 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
463 	.dma_attr_count_max	= 0xfff,
464 	.dma_attr_align		= 0x1000,
465 	.dma_attr_burstsizes	= 0x7ff,
466 	.dma_attr_minxfer	= 0x1000,
467 	.dma_attr_maxxfer	= 0x1000,
468 	.dma_attr_seg		= 0xfff,
469 	.dma_attr_sgllen	= -1,
470 	.dma_attr_granular	= 1,
471 	.dma_attr_flags		= 0,
472 };
473 
474 /*
475  * DMA attributes for transfers using scatter/gather lists
476  *
477  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
478  * 32bit length field. SGL Segment and SGL Last Segment entries require the
479  * length to be a multiple of 16 bytes.
480  */
481 static ddi_dma_attr_t nvme_sgl_dma_attr = {
482 	.dma_attr_version	= DMA_ATTR_V0,
483 	.dma_attr_addr_lo	= 0,
484 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
485 	.dma_attr_count_max	= 0xffffffffUL,
486 	.dma_attr_align		= 1,
487 	.dma_attr_burstsizes	= 0x7ff,
488 	.dma_attr_minxfer	= 0x10,
489 	.dma_attr_maxxfer	= 0xfffffffffULL,
490 	.dma_attr_seg		= 0xffffffffffffffffULL,
491 	.dma_attr_sgllen	= -1,
492 	.dma_attr_granular	= 0x10,
493 	.dma_attr_flags		= 0
494 };
495 
496 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
497 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
498 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
499 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
500 };
501 
502 static struct cb_ops nvme_cb_ops = {
503 	.cb_open	= nvme_open,
504 	.cb_close	= nvme_close,
505 	.cb_strategy	= nodev,
506 	.cb_print	= nodev,
507 	.cb_dump	= nodev,
508 	.cb_read	= nodev,
509 	.cb_write	= nodev,
510 	.cb_ioctl	= nvme_ioctl,
511 	.cb_devmap	= nodev,
512 	.cb_mmap	= nodev,
513 	.cb_segmap	= nodev,
514 	.cb_chpoll	= nochpoll,
515 	.cb_prop_op	= ddi_prop_op,
516 	.cb_str		= 0,
517 	.cb_flag	= D_NEW | D_MP,
518 	.cb_rev		= CB_REV,
519 	.cb_aread	= nodev,
520 	.cb_awrite	= nodev
521 };
522 
523 static struct dev_ops nvme_dev_ops = {
524 	.devo_rev	= DEVO_REV,
525 	.devo_refcnt	= 0,
526 	.devo_getinfo	= ddi_no_info,
527 	.devo_identify	= nulldev,
528 	.devo_probe	= nulldev,
529 	.devo_attach	= nvme_attach,
530 	.devo_detach	= nvme_detach,
531 	.devo_reset	= nodev,
532 	.devo_cb_ops	= &nvme_cb_ops,
533 	.devo_bus_ops	= NULL,
534 	.devo_power	= NULL,
535 	.devo_quiesce	= nvme_quiesce,
536 };
537 
538 static struct modldrv nvme_modldrv = {
539 	.drv_modops	= &mod_driverops,
540 	.drv_linkinfo	= "NVMe v1.1b",
541 	.drv_dev_ops	= &nvme_dev_ops
542 };
543 
544 static struct modlinkage nvme_modlinkage = {
545 	.ml_rev		= MODREV_1,
546 	.ml_linkage	= { &nvme_modldrv, NULL }
547 };
548 
549 static bd_ops_t nvme_bd_ops = {
550 	.o_version	= BD_OPS_CURRENT_VERSION,
551 	.o_drive_info	= nvme_bd_driveinfo,
552 	.o_media_info	= nvme_bd_mediainfo,
553 	.o_devid_init	= nvme_bd_devid,
554 	.o_sync_cache	= nvme_bd_sync,
555 	.o_read		= nvme_bd_read,
556 	.o_write	= nvme_bd_write,
557 	.o_free_space	= nvme_bd_free_space,
558 };
559 
560 /*
561  * This list will hold commands that have timed out and couldn't be aborted.
562  * As we don't know what the hardware may still do with the DMA memory we can't
563  * free them, so we'll keep them forever on this list where we can easily look
564  * at them with mdb.
565  */
566 static struct list nvme_lost_cmds;
567 static kmutex_t nvme_lc_mutex;
568 
569 int
570 _init(void)
571 {
572 	int error;
573 
574 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
575 	if (error != DDI_SUCCESS)
576 		return (error);
577 
578 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
579 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
580 
581 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
582 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
583 	    offsetof(nvme_cmd_t, nc_list));
584 
585 	bd_mod_init(&nvme_dev_ops);
586 
587 	error = mod_install(&nvme_modlinkage);
588 	if (error != DDI_SUCCESS) {
589 		ddi_soft_state_fini(&nvme_state);
590 		mutex_destroy(&nvme_lc_mutex);
591 		list_destroy(&nvme_lost_cmds);
592 		bd_mod_fini(&nvme_dev_ops);
593 	}
594 
595 	return (error);
596 }
597 
598 int
599 _fini(void)
600 {
601 	int error;
602 
603 	if (!list_is_empty(&nvme_lost_cmds))
604 		return (DDI_FAILURE);
605 
606 	error = mod_remove(&nvme_modlinkage);
607 	if (error == DDI_SUCCESS) {
608 		ddi_soft_state_fini(&nvme_state);
609 		kmem_cache_destroy(nvme_cmd_cache);
610 		mutex_destroy(&nvme_lc_mutex);
611 		list_destroy(&nvme_lost_cmds);
612 		bd_mod_fini(&nvme_dev_ops);
613 	}
614 
615 	return (error);
616 }
617 
618 int
619 _info(struct modinfo *modinfop)
620 {
621 	return (mod_info(&nvme_modlinkage, modinfop));
622 }
623 
624 static inline void
625 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
626 {
627 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
628 
629 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
630 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
631 }
632 
633 static inline void
634 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
635 {
636 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
637 
638 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
639 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
640 }
641 
642 static inline uint64_t
643 nvme_get64(nvme_t *nvme, uintptr_t reg)
644 {
645 	uint64_t val;
646 
647 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
648 
649 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
650 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
651 
652 	return (val);
653 }
654 
655 static inline uint32_t
656 nvme_get32(nvme_t *nvme, uintptr_t reg)
657 {
658 	uint32_t val;
659 
660 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
661 
662 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
663 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
664 
665 	return (val);
666 }
667 
668 static boolean_t
669 nvme_check_regs_hdl(nvme_t *nvme)
670 {
671 	ddi_fm_error_t error;
672 
673 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
674 
675 	if (error.fme_status != DDI_FM_OK)
676 		return (B_TRUE);
677 
678 	return (B_FALSE);
679 }
680 
681 static boolean_t
682 nvme_check_dma_hdl(nvme_dma_t *dma)
683 {
684 	ddi_fm_error_t error;
685 
686 	if (dma == NULL)
687 		return (B_FALSE);
688 
689 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
690 
691 	if (error.fme_status != DDI_FM_OK)
692 		return (B_TRUE);
693 
694 	return (B_FALSE);
695 }
696 
697 static void
698 nvme_free_dma_common(nvme_dma_t *dma)
699 {
700 	if (dma->nd_dmah != NULL)
701 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
702 	if (dma->nd_acch != NULL)
703 		ddi_dma_mem_free(&dma->nd_acch);
704 	if (dma->nd_dmah != NULL)
705 		ddi_dma_free_handle(&dma->nd_dmah);
706 }
707 
708 static void
709 nvme_free_dma(nvme_dma_t *dma)
710 {
711 	nvme_free_dma_common(dma);
712 	kmem_free(dma, sizeof (*dma));
713 }
714 
715 /* ARGSUSED */
716 static void
717 nvme_prp_dma_destructor(void *buf, void *private)
718 {
719 	nvme_dma_t *dma = (nvme_dma_t *)buf;
720 
721 	nvme_free_dma_common(dma);
722 }
723 
724 static int
725 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
726     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
727 {
728 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
729 	    &dma->nd_dmah) != DDI_SUCCESS) {
730 		/*
731 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
732 		 * the only other possible error is DDI_DMA_BADATTR which
733 		 * indicates a driver bug which should cause a panic.
734 		 */
735 		dev_err(nvme->n_dip, CE_PANIC,
736 		    "!failed to get DMA handle, check DMA attributes");
737 		return (DDI_FAILURE);
738 	}
739 
740 	/*
741 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
742 	 * or the flags are conflicting, which isn't the case here.
743 	 */
744 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
745 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
746 	    &dma->nd_len, &dma->nd_acch);
747 
748 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
749 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
750 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
751 		dev_err(nvme->n_dip, CE_WARN,
752 		    "!failed to bind DMA memory");
753 		atomic_inc_32(&nvme->n_dma_bind_err);
754 		nvme_free_dma_common(dma);
755 		return (DDI_FAILURE);
756 	}
757 
758 	return (DDI_SUCCESS);
759 }
760 
761 static int
762 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
763     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
764 {
765 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
766 
767 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
768 	    DDI_SUCCESS) {
769 		*ret = NULL;
770 		kmem_free(dma, sizeof (nvme_dma_t));
771 		return (DDI_FAILURE);
772 	}
773 
774 	bzero(dma->nd_memp, dma->nd_len);
775 
776 	*ret = dma;
777 	return (DDI_SUCCESS);
778 }
779 
780 /* ARGSUSED */
781 static int
782 nvme_prp_dma_constructor(void *buf, void *private, int flags)
783 {
784 	nvme_dma_t *dma = (nvme_dma_t *)buf;
785 	nvme_t *nvme = (nvme_t *)private;
786 
787 	dma->nd_dmah = NULL;
788 	dma->nd_acch = NULL;
789 
790 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
791 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
792 		return (-1);
793 	}
794 
795 	ASSERT(dma->nd_ncookie == 1);
796 
797 	dma->nd_cached = B_TRUE;
798 
799 	return (0);
800 }
801 
802 static int
803 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
804     uint_t flags, nvme_dma_t **dma)
805 {
806 	uint32_t len = nentry * qe_len;
807 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
808 
809 	len = roundup(len, nvme->n_pagesize);
810 
811 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
812 	    != DDI_SUCCESS) {
813 		dev_err(nvme->n_dip, CE_WARN,
814 		    "!failed to get DMA memory for queue");
815 		goto fail;
816 	}
817 
818 	if ((*dma)->nd_ncookie != 1) {
819 		dev_err(nvme->n_dip, CE_WARN,
820 		    "!got too many cookies for queue DMA");
821 		goto fail;
822 	}
823 
824 	return (DDI_SUCCESS);
825 
826 fail:
827 	if (*dma) {
828 		nvme_free_dma(*dma);
829 		*dma = NULL;
830 	}
831 
832 	return (DDI_FAILURE);
833 }
834 
835 static void
836 nvme_free_cq(nvme_cq_t *cq)
837 {
838 	mutex_destroy(&cq->ncq_mutex);
839 
840 	if (cq->ncq_cmd_taskq != NULL)
841 		taskq_destroy(cq->ncq_cmd_taskq);
842 
843 	if (cq->ncq_dma != NULL)
844 		nvme_free_dma(cq->ncq_dma);
845 
846 	kmem_free(cq, sizeof (*cq));
847 }
848 
849 static void
850 nvme_free_qpair(nvme_qpair_t *qp)
851 {
852 	int i;
853 
854 	mutex_destroy(&qp->nq_mutex);
855 	sema_destroy(&qp->nq_sema);
856 
857 	if (qp->nq_sqdma != NULL)
858 		nvme_free_dma(qp->nq_sqdma);
859 
860 	if (qp->nq_active_cmds > 0)
861 		for (i = 0; i != qp->nq_nentry; i++)
862 			if (qp->nq_cmd[i] != NULL)
863 				nvme_free_cmd(qp->nq_cmd[i]);
864 
865 	if (qp->nq_cmd != NULL)
866 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
867 
868 	kmem_free(qp, sizeof (nvme_qpair_t));
869 }
870 
871 /*
872  * Destroy the pre-allocated cq array, but only free individual completion
873  * queues from the given starting index.
874  */
875 static void
876 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
877 {
878 	uint_t i;
879 
880 	for (i = start; i < nvme->n_cq_count; i++)
881 		if (nvme->n_cq[i] != NULL)
882 			nvme_free_cq(nvme->n_cq[i]);
883 
884 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
885 }
886 
887 static int
888 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
889     uint_t nthr)
890 {
891 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
892 	char name[64];		/* large enough for the taskq name */
893 
894 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
895 	    DDI_INTR_PRI(nvme->n_intr_pri));
896 
897 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
898 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
899 		goto fail;
900 
901 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
902 	cq->ncq_nentry = nentry;
903 	cq->ncq_id = idx;
904 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
905 
906 	/*
907 	 * Each completion queue has its own command taskq.
908 	 */
909 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
910 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
911 
912 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
913 	    TASKQ_PREPOPULATE);
914 
915 	if (cq->ncq_cmd_taskq == NULL) {
916 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
917 		    "taskq for cq %u", idx);
918 		goto fail;
919 	}
920 
921 	*cqp = cq;
922 	return (DDI_SUCCESS);
923 
924 fail:
925 	nvme_free_cq(cq);
926 	*cqp = NULL;
927 
928 	return (DDI_FAILURE);
929 }
930 
931 /*
932  * Create the n_cq array big enough to hold "ncq" completion queues.
933  * If the array already exists it will be re-sized (but only larger).
934  * The admin queue is included in this array, which boosts the
935  * max number of entries to UINT16_MAX + 1.
936  */
937 static int
938 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
939 {
940 	nvme_cq_t **cq;
941 	uint_t i, cq_count;
942 
943 	ASSERT3U(ncq, >, nvme->n_cq_count);
944 
945 	cq = nvme->n_cq;
946 	cq_count = nvme->n_cq_count;
947 
948 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
949 	nvme->n_cq_count = ncq;
950 
951 	for (i = 0; i < cq_count; i++)
952 		nvme->n_cq[i] = cq[i];
953 
954 	for (; i < nvme->n_cq_count; i++)
955 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
956 		    DDI_SUCCESS)
957 			goto fail;
958 
959 	if (cq != NULL)
960 		kmem_free(cq, sizeof (*cq) * cq_count);
961 
962 	return (DDI_SUCCESS);
963 
964 fail:
965 	nvme_destroy_cq_array(nvme, cq_count);
966 	/*
967 	 * Restore the original array
968 	 */
969 	nvme->n_cq_count = cq_count;
970 	nvme->n_cq = cq;
971 
972 	return (DDI_FAILURE);
973 }
974 
975 static int
976 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
977     uint_t idx)
978 {
979 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
980 	uint_t cq_idx;
981 
982 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
983 	    DDI_INTR_PRI(nvme->n_intr_pri));
984 
985 	/*
986 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
987 	 * initialize the semaphore accordingly.
988 	 */
989 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
990 
991 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
992 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
993 		goto fail;
994 
995 	/*
996 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
997 	 */
998 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
999 	qp->nq_cq = nvme->n_cq[cq_idx];
1000 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1001 	qp->nq_nentry = nentry;
1002 
1003 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1004 
1005 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1006 	qp->nq_next_cmd = 0;
1007 
1008 	*nqp = qp;
1009 	return (DDI_SUCCESS);
1010 
1011 fail:
1012 	nvme_free_qpair(qp);
1013 	*nqp = NULL;
1014 
1015 	return (DDI_FAILURE);
1016 }
1017 
1018 static nvme_cmd_t *
1019 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1020 {
1021 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1022 
1023 	if (cmd == NULL)
1024 		return (cmd);
1025 
1026 	bzero(cmd, sizeof (nvme_cmd_t));
1027 
1028 	cmd->nc_nvme = nvme;
1029 
1030 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1031 	    DDI_INTR_PRI(nvme->n_intr_pri));
1032 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1033 
1034 	return (cmd);
1035 }
1036 
1037 static void
1038 nvme_free_cmd(nvme_cmd_t *cmd)
1039 {
1040 	/* Don't free commands on the lost commands list. */
1041 	if (list_link_active(&cmd->nc_list))
1042 		return;
1043 
1044 	if (cmd->nc_dma) {
1045 		if (cmd->nc_dma->nd_cached)
1046 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
1047 			    cmd->nc_dma);
1048 		else
1049 			nvme_free_dma(cmd->nc_dma);
1050 		cmd->nc_dma = NULL;
1051 	}
1052 
1053 	cv_destroy(&cmd->nc_cv);
1054 	mutex_destroy(&cmd->nc_mutex);
1055 
1056 	kmem_cache_free(nvme_cmd_cache, cmd);
1057 }
1058 
1059 static void
1060 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1061 {
1062 	sema_p(&qp->nq_sema);
1063 	nvme_submit_cmd_common(qp, cmd);
1064 }
1065 
1066 static int
1067 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1068 {
1069 	if (sema_tryp(&qp->nq_sema) == 0)
1070 		return (EAGAIN);
1071 
1072 	nvme_submit_cmd_common(qp, cmd);
1073 	return (0);
1074 }
1075 
1076 static void
1077 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1078 {
1079 	nvme_reg_sqtdbl_t tail = { 0 };
1080 
1081 	mutex_enter(&qp->nq_mutex);
1082 	cmd->nc_completed = B_FALSE;
1083 
1084 	/*
1085 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1086 	 * slot. If the slot is already occupied advance to the next slot and
1087 	 * try again. This can happen for long running commands like async event
1088 	 * requests.
1089 	 */
1090 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1091 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1092 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1093 
1094 	qp->nq_active_cmds++;
1095 
1096 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1097 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1098 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1099 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1100 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1101 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1102 
1103 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1104 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1105 
1106 	mutex_exit(&qp->nq_mutex);
1107 }
1108 
1109 static nvme_cmd_t *
1110 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1111 {
1112 	nvme_cmd_t *cmd;
1113 
1114 	ASSERT(mutex_owned(&qp->nq_mutex));
1115 	ASSERT3S(cid, <, qp->nq_nentry);
1116 
1117 	cmd = qp->nq_cmd[cid];
1118 	qp->nq_cmd[cid] = NULL;
1119 	ASSERT3U(qp->nq_active_cmds, >, 0);
1120 	qp->nq_active_cmds--;
1121 	sema_v(&qp->nq_sema);
1122 
1123 	ASSERT3P(cmd, !=, NULL);
1124 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1125 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1126 
1127 	return (cmd);
1128 }
1129 
1130 /*
1131  * Get the command tied to the next completed cqe and bump along completion
1132  * queue head counter.
1133  */
1134 static nvme_cmd_t *
1135 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1136 {
1137 	nvme_qpair_t *qp;
1138 	nvme_cqe_t *cqe;
1139 	nvme_cmd_t *cmd;
1140 
1141 	ASSERT(mutex_owned(&cq->ncq_mutex));
1142 
1143 	cqe = &cq->ncq_cq[cq->ncq_head];
1144 
1145 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1146 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1147 		return (NULL);
1148 
1149 	qp = nvme->n_ioq[cqe->cqe_sqid];
1150 
1151 	mutex_enter(&qp->nq_mutex);
1152 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1153 	mutex_exit(&qp->nq_mutex);
1154 
1155 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1156 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1157 
1158 	qp->nq_sqhead = cqe->cqe_sqhd;
1159 
1160 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1161 
1162 	/* Toggle phase on wrap-around. */
1163 	if (cq->ncq_head == 0)
1164 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1165 
1166 	return (cmd);
1167 }
1168 
1169 /*
1170  * Process all completed commands on the io completion queue.
1171  */
1172 static uint_t
1173 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1174 {
1175 	nvme_reg_cqhdbl_t head = { 0 };
1176 	nvme_cmd_t *cmd;
1177 	uint_t completed = 0;
1178 
1179 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1180 	    DDI_SUCCESS)
1181 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1182 		    __func__);
1183 
1184 	mutex_enter(&cq->ncq_mutex);
1185 
1186 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1187 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1188 		    TQ_NOSLEEP, &cmd->nc_tqent);
1189 
1190 		completed++;
1191 	}
1192 
1193 	if (completed > 0) {
1194 		/*
1195 		 * Update the completion queue head doorbell.
1196 		 */
1197 		head.b.cqhdbl_cqh = cq->ncq_head;
1198 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1199 	}
1200 
1201 	mutex_exit(&cq->ncq_mutex);
1202 
1203 	return (completed);
1204 }
1205 
1206 static nvme_cmd_t *
1207 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1208 {
1209 	nvme_cq_t *cq = qp->nq_cq;
1210 	nvme_reg_cqhdbl_t head = { 0 };
1211 	nvme_cmd_t *cmd;
1212 
1213 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1214 	    DDI_SUCCESS)
1215 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1216 		    __func__);
1217 
1218 	mutex_enter(&cq->ncq_mutex);
1219 
1220 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1221 		head.b.cqhdbl_cqh = cq->ncq_head;
1222 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1223 	}
1224 
1225 	mutex_exit(&cq->ncq_mutex);
1226 
1227 	return (cmd);
1228 }
1229 
1230 static int
1231 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1232 {
1233 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1234 
1235 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1236 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1237 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1238 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1239 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1240 
1241 	if (cmd->nc_xfer != NULL)
1242 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1243 
1244 	if (cmd->nc_nvme->n_strict_version) {
1245 		cmd->nc_nvme->n_dead = B_TRUE;
1246 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1247 	}
1248 
1249 	return (EIO);
1250 }
1251 
1252 static int
1253 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1254 {
1255 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1256 
1257 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1258 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1259 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1260 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1261 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1262 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1263 		cmd->nc_nvme->n_dead = B_TRUE;
1264 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1265 	}
1266 
1267 	return (EIO);
1268 }
1269 
1270 static int
1271 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1272 {
1273 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1274 
1275 	switch (cqe->cqe_sf.sf_sc) {
1276 	case NVME_CQE_SC_INT_NVM_WRITE:
1277 		/* write fail */
1278 		/* TODO: post ereport */
1279 		if (cmd->nc_xfer != NULL)
1280 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1281 		return (EIO);
1282 
1283 	case NVME_CQE_SC_INT_NVM_READ:
1284 		/* read fail */
1285 		/* TODO: post ereport */
1286 		if (cmd->nc_xfer != NULL)
1287 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1288 		return (EIO);
1289 
1290 	default:
1291 		return (nvme_check_unknown_cmd_status(cmd));
1292 	}
1293 }
1294 
1295 static int
1296 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1297 {
1298 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1299 
1300 	switch (cqe->cqe_sf.sf_sc) {
1301 	case NVME_CQE_SC_GEN_SUCCESS:
1302 		return (0);
1303 
1304 	/*
1305 	 * Errors indicating a bug in the driver should cause a panic.
1306 	 */
1307 	case NVME_CQE_SC_GEN_INV_OPC:
1308 		/* Invalid Command Opcode */
1309 		if (!cmd->nc_dontpanic)
1310 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1311 			    "programming error: invalid opcode in cmd %p",
1312 			    (void *)cmd);
1313 		return (EINVAL);
1314 
1315 	case NVME_CQE_SC_GEN_INV_FLD:
1316 		/* Invalid Field in Command */
1317 		if (!cmd->nc_dontpanic)
1318 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1319 			    "programming error: invalid field in cmd %p",
1320 			    (void *)cmd);
1321 		return (EIO);
1322 
1323 	case NVME_CQE_SC_GEN_ID_CNFL:
1324 		/* Command ID Conflict */
1325 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1326 		    "cmd ID conflict in cmd %p", (void *)cmd);
1327 		return (0);
1328 
1329 	case NVME_CQE_SC_GEN_INV_NS:
1330 		/* Invalid Namespace or Format */
1331 		if (!cmd->nc_dontpanic)
1332 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1333 			    "programming error: invalid NS/format in cmd %p",
1334 			    (void *)cmd);
1335 		return (EINVAL);
1336 
1337 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1338 		/* LBA Out Of Range */
1339 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1340 		    "LBA out of range in cmd %p", (void *)cmd);
1341 		return (0);
1342 
1343 	/*
1344 	 * Non-fatal errors, handle gracefully.
1345 	 */
1346 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1347 		/* Data Transfer Error (DMA) */
1348 		/* TODO: post ereport */
1349 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1350 		if (cmd->nc_xfer != NULL)
1351 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1352 		return (EIO);
1353 
1354 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1355 		/*
1356 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1357 		 * detailed error information is returned as async event,
1358 		 * so we pretty much ignore the error here and handle it
1359 		 * in the async event handler.
1360 		 */
1361 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1362 		if (cmd->nc_xfer != NULL)
1363 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1364 		return (EIO);
1365 
1366 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1367 		/*
1368 		 * Command Abort Requested. This normally happens only when a
1369 		 * command times out.
1370 		 */
1371 		/* TODO: post ereport or change blkdev to handle this? */
1372 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1373 		return (ECANCELED);
1374 
1375 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1376 		/* Command Aborted due to Power Loss Notification */
1377 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1378 		cmd->nc_nvme->n_dead = B_TRUE;
1379 		return (EIO);
1380 
1381 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1382 		/* Command Aborted due to SQ Deletion */
1383 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1384 		return (EIO);
1385 
1386 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1387 		/* Capacity Exceeded */
1388 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1389 		if (cmd->nc_xfer != NULL)
1390 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1391 		return (EIO);
1392 
1393 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1394 		/* Namespace Not Ready */
1395 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1396 		if (cmd->nc_xfer != NULL)
1397 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1398 		return (EIO);
1399 
1400 	default:
1401 		return (nvme_check_unknown_cmd_status(cmd));
1402 	}
1403 }
1404 
1405 static int
1406 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1407 {
1408 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1409 
1410 	switch (cqe->cqe_sf.sf_sc) {
1411 	case NVME_CQE_SC_SPC_INV_CQ:
1412 		/* Completion Queue Invalid */
1413 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1414 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1415 		return (EINVAL);
1416 
1417 	case NVME_CQE_SC_SPC_INV_QID:
1418 		/* Invalid Queue Identifier */
1419 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1420 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1421 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1422 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1423 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1424 		return (EINVAL);
1425 
1426 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1427 		/* Max Queue Size Exceeded */
1428 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1429 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1430 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1431 		return (EINVAL);
1432 
1433 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1434 		/* Abort Command Limit Exceeded */
1435 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1436 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1437 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1438 		return (0);
1439 
1440 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1441 		/* Async Event Request Limit Exceeded */
1442 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1443 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1444 		    "async event request limit exceeded in cmd %p",
1445 		    (void *)cmd);
1446 		return (0);
1447 
1448 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1449 		/* Invalid Interrupt Vector */
1450 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1451 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1452 		return (EINVAL);
1453 
1454 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1455 		/* Invalid Log Page */
1456 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1457 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1458 		return (EINVAL);
1459 
1460 	case NVME_CQE_SC_SPC_INV_FORMAT:
1461 		/* Invalid Format */
1462 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1463 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1464 		if (cmd->nc_xfer != NULL)
1465 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1466 		return (EINVAL);
1467 
1468 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1469 		/* Invalid Queue Deletion */
1470 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1471 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1472 		return (EINVAL);
1473 
1474 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1475 		/* Conflicting Attributes */
1476 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1477 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1478 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1479 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1480 		if (cmd->nc_xfer != NULL)
1481 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1482 		return (EINVAL);
1483 
1484 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1485 		/* Invalid Protection Information */
1486 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1487 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1488 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1489 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1490 		if (cmd->nc_xfer != NULL)
1491 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1492 		return (EINVAL);
1493 
1494 	case NVME_CQE_SC_SPC_NVM_READONLY:
1495 		/* Write to Read Only Range */
1496 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1497 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1498 		if (cmd->nc_xfer != NULL)
1499 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1500 		return (EROFS);
1501 
1502 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1503 		/* Invalid Firmware Slot */
1504 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1505 		return (EINVAL);
1506 
1507 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1508 		/* Invalid Firmware Image */
1509 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1510 		return (EINVAL);
1511 
1512 	case NVME_CQE_SC_SPC_FW_RESET:
1513 		/* Conventional Reset Required */
1514 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1515 		return (0);
1516 
1517 	case NVME_CQE_SC_SPC_FW_NSSR:
1518 		/* NVMe Subsystem Reset Required */
1519 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1520 		return (0);
1521 
1522 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1523 		/* Activation Requires Reset */
1524 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1525 		return (0);
1526 
1527 	case NVME_CQE_SC_SPC_FW_MTFA:
1528 		/* Activation Requires Maximum Time Violation */
1529 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1530 		return (EAGAIN);
1531 
1532 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1533 		/* Activation Prohibited */
1534 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1535 		return (EINVAL);
1536 
1537 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1538 		/* Overlapping Firmware Ranges */
1539 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1540 		return (EINVAL);
1541 
1542 	default:
1543 		return (nvme_check_unknown_cmd_status(cmd));
1544 	}
1545 }
1546 
1547 static inline int
1548 nvme_check_cmd_status(nvme_cmd_t *cmd)
1549 {
1550 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1551 
1552 	/*
1553 	 * Take a shortcut if the controller is dead, or if
1554 	 * command status indicates no error.
1555 	 */
1556 	if (cmd->nc_nvme->n_dead)
1557 		return (EIO);
1558 
1559 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1560 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1561 		return (0);
1562 
1563 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1564 		return (nvme_check_generic_cmd_status(cmd));
1565 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1566 		return (nvme_check_specific_cmd_status(cmd));
1567 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1568 		return (nvme_check_integrity_cmd_status(cmd));
1569 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1570 		return (nvme_check_vendor_cmd_status(cmd));
1571 
1572 	return (nvme_check_unknown_cmd_status(cmd));
1573 }
1574 
1575 static int
1576 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1577 {
1578 	nvme_t *nvme = abort_cmd->nc_nvme;
1579 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1580 	nvme_abort_cmd_t ac = { 0 };
1581 	int ret = 0;
1582 
1583 	sema_p(&nvme->n_abort_sema);
1584 
1585 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1586 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1587 
1588 	cmd->nc_sqid = 0;
1589 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1590 	cmd->nc_callback = nvme_wakeup_cmd;
1591 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1592 
1593 	/*
1594 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1595 	 * the aborted command has completed (aborted or otherwise), but since
1596 	 * we still hold the aborted command's mutex its callback hasn't been
1597 	 * processed yet.
1598 	 */
1599 	nvme_admin_cmd(cmd, sec);
1600 	sema_v(&nvme->n_abort_sema);
1601 
1602 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1603 		dev_err(nvme->n_dip, CE_WARN,
1604 		    "!ABORT failed with sct = %x, sc = %x",
1605 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1606 		atomic_inc_32(&nvme->n_abort_failed);
1607 	} else {
1608 		dev_err(nvme->n_dip, CE_WARN,
1609 		    "!ABORT of command %d/%d %ssuccessful",
1610 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1611 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1612 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1613 			atomic_inc_32(&nvme->n_cmd_aborted);
1614 	}
1615 
1616 	nvme_free_cmd(cmd);
1617 	return (ret);
1618 }
1619 
1620 /*
1621  * nvme_wait_cmd -- wait for command completion or timeout
1622  *
1623  * In case of a serious error or a timeout of the abort command the hardware
1624  * will be declared dead and FMA will be notified.
1625  */
1626 static void
1627 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1628 {
1629 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1630 	nvme_t *nvme = cmd->nc_nvme;
1631 	nvme_reg_csts_t csts;
1632 	nvme_qpair_t *qp;
1633 
1634 	ASSERT(mutex_owned(&cmd->nc_mutex));
1635 
1636 	while (!cmd->nc_completed) {
1637 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1638 			break;
1639 	}
1640 
1641 	if (cmd->nc_completed)
1642 		return;
1643 
1644 	/*
1645 	 * The command timed out.
1646 	 *
1647 	 * Check controller for fatal status, any errors associated with the
1648 	 * register or DMA handle, or for a double timeout (abort command timed
1649 	 * out). If necessary log a warning and call FMA.
1650 	 */
1651 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1652 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1653 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1654 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1655 	atomic_inc_32(&nvme->n_cmd_timeout);
1656 
1657 	if (csts.b.csts_cfs ||
1658 	    nvme_check_regs_hdl(nvme) ||
1659 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1660 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1661 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1662 		nvme->n_dead = B_TRUE;
1663 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1664 		/*
1665 		 * If the abort succeeded the command should complete
1666 		 * immediately with an appropriate status.
1667 		 */
1668 		while (!cmd->nc_completed)
1669 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1670 
1671 		return;
1672 	}
1673 
1674 	qp = nvme->n_ioq[cmd->nc_sqid];
1675 
1676 	mutex_enter(&qp->nq_mutex);
1677 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1678 	mutex_exit(&qp->nq_mutex);
1679 
1680 	/*
1681 	 * As we don't know what the presumed dead hardware might still do with
1682 	 * the DMA memory, we'll put the command on the lost commands list if it
1683 	 * has any DMA memory.
1684 	 */
1685 	if (cmd->nc_dma != NULL) {
1686 		mutex_enter(&nvme_lc_mutex);
1687 		list_insert_head(&nvme_lost_cmds, cmd);
1688 		mutex_exit(&nvme_lc_mutex);
1689 	}
1690 }
1691 
1692 static void
1693 nvme_wakeup_cmd(void *arg)
1694 {
1695 	nvme_cmd_t *cmd = arg;
1696 
1697 	mutex_enter(&cmd->nc_mutex);
1698 	cmd->nc_completed = B_TRUE;
1699 	cv_signal(&cmd->nc_cv);
1700 	mutex_exit(&cmd->nc_mutex);
1701 }
1702 
1703 static void
1704 nvme_async_event_task(void *arg)
1705 {
1706 	nvme_cmd_t *cmd = arg;
1707 	nvme_t *nvme = cmd->nc_nvme;
1708 	nvme_error_log_entry_t *error_log = NULL;
1709 	nvme_health_log_t *health_log = NULL;
1710 	size_t logsize = 0;
1711 	nvme_async_event_t event;
1712 
1713 	/*
1714 	 * Check for errors associated with the async request itself. The only
1715 	 * command-specific error is "async event limit exceeded", which
1716 	 * indicates a programming error in the driver and causes a panic in
1717 	 * nvme_check_cmd_status().
1718 	 *
1719 	 * Other possible errors are various scenarios where the async request
1720 	 * was aborted, or internal errors in the device. Internal errors are
1721 	 * reported to FMA, the command aborts need no special handling here.
1722 	 *
1723 	 * And finally, at least qemu nvme does not support async events,
1724 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1725 	 * will avoid posting async events.
1726 	 */
1727 
1728 	if (nvme_check_cmd_status(cmd) != 0) {
1729 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1730 		    "!async event request returned failure, sct = %x, "
1731 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1732 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1733 		    cmd->nc_cqe.cqe_sf.sf_m);
1734 
1735 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1736 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1737 			cmd->nc_nvme->n_dead = B_TRUE;
1738 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1739 			    DDI_SERVICE_LOST);
1740 		}
1741 
1742 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1743 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1744 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1745 			nvme->n_async_event_supported = B_FALSE;
1746 		}
1747 
1748 		nvme_free_cmd(cmd);
1749 		return;
1750 	}
1751 
1752 
1753 	event.r = cmd->nc_cqe.cqe_dw0;
1754 
1755 	/* Clear CQE and re-submit the async request. */
1756 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1757 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1758 
1759 	switch (event.b.ae_type) {
1760 	case NVME_ASYNC_TYPE_ERROR:
1761 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1762 			(void) nvme_get_logpage(nvme, B_FALSE,
1763 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1764 		} else {
1765 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1766 			    "async event reply: %d", event.b.ae_logpage);
1767 			atomic_inc_32(&nvme->n_wrong_logpage);
1768 		}
1769 
1770 		switch (event.b.ae_info) {
1771 		case NVME_ASYNC_ERROR_INV_SQ:
1772 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1773 			    "invalid submission queue");
1774 			return;
1775 
1776 		case NVME_ASYNC_ERROR_INV_DBL:
1777 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1778 			    "invalid doorbell write value");
1779 			return;
1780 
1781 		case NVME_ASYNC_ERROR_DIAGFAIL:
1782 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1783 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1784 			nvme->n_dead = B_TRUE;
1785 			atomic_inc_32(&nvme->n_diagfail_event);
1786 			break;
1787 
1788 		case NVME_ASYNC_ERROR_PERSISTENT:
1789 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1790 			    "device error");
1791 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1792 			nvme->n_dead = B_TRUE;
1793 			atomic_inc_32(&nvme->n_persistent_event);
1794 			break;
1795 
1796 		case NVME_ASYNC_ERROR_TRANSIENT:
1797 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1798 			    "device error");
1799 			/* TODO: send ereport */
1800 			atomic_inc_32(&nvme->n_transient_event);
1801 			break;
1802 
1803 		case NVME_ASYNC_ERROR_FW_LOAD:
1804 			dev_err(nvme->n_dip, CE_WARN,
1805 			    "!firmware image load error");
1806 			atomic_inc_32(&nvme->n_fw_load_event);
1807 			break;
1808 		}
1809 		break;
1810 
1811 	case NVME_ASYNC_TYPE_HEALTH:
1812 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1813 			(void) nvme_get_logpage(nvme, B_FALSE,
1814 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1815 			    -1);
1816 		} else {
1817 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1818 			    "async event reply: %d", event.b.ae_logpage);
1819 			atomic_inc_32(&nvme->n_wrong_logpage);
1820 		}
1821 
1822 		switch (event.b.ae_info) {
1823 		case NVME_ASYNC_HEALTH_RELIABILITY:
1824 			dev_err(nvme->n_dip, CE_WARN,
1825 			    "!device reliability compromised");
1826 			/* TODO: send ereport */
1827 			atomic_inc_32(&nvme->n_reliability_event);
1828 			break;
1829 
1830 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1831 			dev_err(nvme->n_dip, CE_WARN,
1832 			    "!temperature above threshold");
1833 			/* TODO: send ereport */
1834 			atomic_inc_32(&nvme->n_temperature_event);
1835 			break;
1836 
1837 		case NVME_ASYNC_HEALTH_SPARE:
1838 			dev_err(nvme->n_dip, CE_WARN,
1839 			    "!spare space below threshold");
1840 			/* TODO: send ereport */
1841 			atomic_inc_32(&nvme->n_spare_event);
1842 			break;
1843 		}
1844 		break;
1845 
1846 	case NVME_ASYNC_TYPE_VENDOR:
1847 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1848 		    "received, info = %x, logpage = %x", event.b.ae_info,
1849 		    event.b.ae_logpage);
1850 		atomic_inc_32(&nvme->n_vendor_event);
1851 		break;
1852 
1853 	default:
1854 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1855 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1856 		    event.b.ae_info, event.b.ae_logpage);
1857 		atomic_inc_32(&nvme->n_unknown_event);
1858 		break;
1859 	}
1860 
1861 	if (error_log)
1862 		kmem_free(error_log, logsize);
1863 
1864 	if (health_log)
1865 		kmem_free(health_log, logsize);
1866 }
1867 
1868 static void
1869 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1870 {
1871 	mutex_enter(&cmd->nc_mutex);
1872 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1873 	nvme_wait_cmd(cmd, sec);
1874 	mutex_exit(&cmd->nc_mutex);
1875 }
1876 
1877 static void
1878 nvme_async_event(nvme_t *nvme)
1879 {
1880 	nvme_cmd_t *cmd;
1881 
1882 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1883 	cmd->nc_sqid = 0;
1884 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1885 	cmd->nc_callback = nvme_async_event_task;
1886 	cmd->nc_dontpanic = B_TRUE;
1887 
1888 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1889 }
1890 
1891 static int
1892 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1893     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1894 {
1895 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1896 	nvme_format_nvm_t format_nvm = { 0 };
1897 	int ret;
1898 
1899 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1900 	format_nvm.b.fm_ms = ms ? 1 : 0;
1901 	format_nvm.b.fm_pi = pi & 0x7;
1902 	format_nvm.b.fm_pil = pil ? 1 : 0;
1903 	format_nvm.b.fm_ses = ses & 0x7;
1904 
1905 	cmd->nc_sqid = 0;
1906 	cmd->nc_callback = nvme_wakeup_cmd;
1907 	cmd->nc_sqe.sqe_nsid = nsid;
1908 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1909 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1910 
1911 	/*
1912 	 * Some devices like Samsung SM951 don't allow formatting of all
1913 	 * namespaces in one command. Handle that gracefully.
1914 	 */
1915 	if (nsid == (uint32_t)-1)
1916 		cmd->nc_dontpanic = B_TRUE;
1917 	/*
1918 	 * If this format request was initiated by the user, then don't allow a
1919 	 * programmer error to panic the system.
1920 	 */
1921 	if (user)
1922 		cmd->nc_dontpanic = B_TRUE;
1923 
1924 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1925 
1926 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1927 		dev_err(nvme->n_dip, CE_WARN,
1928 		    "!FORMAT failed with sct = %x, sc = %x",
1929 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1930 	}
1931 
1932 	nvme_free_cmd(cmd);
1933 	return (ret);
1934 }
1935 
1936 static int
1937 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1938     uint8_t logpage, ...)
1939 {
1940 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1941 	nvme_getlogpage_t getlogpage = { 0 };
1942 	va_list ap;
1943 	int ret;
1944 
1945 	va_start(ap, logpage);
1946 
1947 	cmd->nc_sqid = 0;
1948 	cmd->nc_callback = nvme_wakeup_cmd;
1949 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1950 
1951 	if (user)
1952 		cmd->nc_dontpanic = B_TRUE;
1953 
1954 	getlogpage.b.lp_lid = logpage;
1955 
1956 	switch (logpage) {
1957 	case NVME_LOGPAGE_ERROR:
1958 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1959 		/*
1960 		 * The GET LOG PAGE command can use at most 2 pages to return
1961 		 * data, PRP lists are not supported.
1962 		 */
1963 		*bufsize = MIN(2 * nvme->n_pagesize,
1964 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1965 		break;
1966 
1967 	case NVME_LOGPAGE_HEALTH:
1968 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1969 		*bufsize = sizeof (nvme_health_log_t);
1970 		break;
1971 
1972 	case NVME_LOGPAGE_FWSLOT:
1973 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1974 		*bufsize = sizeof (nvme_fwslot_log_t);
1975 		break;
1976 
1977 	default:
1978 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1979 		    logpage);
1980 		atomic_inc_32(&nvme->n_unknown_logpage);
1981 		ret = EINVAL;
1982 		goto fail;
1983 	}
1984 
1985 	va_end(ap);
1986 
1987 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1988 
1989 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1990 
1991 	if (nvme_zalloc_dma(nvme, *bufsize,
1992 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1993 		dev_err(nvme->n_dip, CE_WARN,
1994 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1995 		ret = ENOMEM;
1996 		goto fail;
1997 	}
1998 
1999 	if (cmd->nc_dma->nd_ncookie > 2) {
2000 		dev_err(nvme->n_dip, CE_WARN,
2001 		    "!too many DMA cookies for GET LOG PAGE");
2002 		atomic_inc_32(&nvme->n_too_many_cookies);
2003 		ret = ENOMEM;
2004 		goto fail;
2005 	}
2006 
2007 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2008 	if (cmd->nc_dma->nd_ncookie > 1) {
2009 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2010 		    &cmd->nc_dma->nd_cookie);
2011 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2012 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2013 	}
2014 
2015 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2016 
2017 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2018 		dev_err(nvme->n_dip, CE_WARN,
2019 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2020 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2021 		goto fail;
2022 	}
2023 
2024 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2025 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2026 
2027 fail:
2028 	nvme_free_cmd(cmd);
2029 
2030 	return (ret);
2031 }
2032 
2033 static int
2034 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2035 {
2036 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2037 	int ret;
2038 
2039 	if (buf == NULL)
2040 		return (EINVAL);
2041 
2042 	cmd->nc_sqid = 0;
2043 	cmd->nc_callback = nvme_wakeup_cmd;
2044 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2045 	cmd->nc_sqe.sqe_nsid = nsid;
2046 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2047 
2048 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2049 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2050 		dev_err(nvme->n_dip, CE_WARN,
2051 		    "!nvme_zalloc_dma failed for IDENTIFY");
2052 		ret = ENOMEM;
2053 		goto fail;
2054 	}
2055 
2056 	if (cmd->nc_dma->nd_ncookie > 2) {
2057 		dev_err(nvme->n_dip, CE_WARN,
2058 		    "!too many DMA cookies for IDENTIFY");
2059 		atomic_inc_32(&nvme->n_too_many_cookies);
2060 		ret = ENOMEM;
2061 		goto fail;
2062 	}
2063 
2064 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2065 	if (cmd->nc_dma->nd_ncookie > 1) {
2066 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2067 		    &cmd->nc_dma->nd_cookie);
2068 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2069 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2070 	}
2071 
2072 	if (user)
2073 		cmd->nc_dontpanic = B_TRUE;
2074 
2075 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2076 
2077 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2078 		dev_err(nvme->n_dip, CE_WARN,
2079 		    "!IDENTIFY failed with sct = %x, sc = %x",
2080 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2081 		goto fail;
2082 	}
2083 
2084 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2085 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2086 
2087 fail:
2088 	nvme_free_cmd(cmd);
2089 
2090 	return (ret);
2091 }
2092 
2093 static int
2094 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2095     uint32_t val, uint32_t *res)
2096 {
2097 	_NOTE(ARGUNUSED(nsid));
2098 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2099 	int ret = EINVAL;
2100 
2101 	ASSERT(res != NULL);
2102 
2103 	cmd->nc_sqid = 0;
2104 	cmd->nc_callback = nvme_wakeup_cmd;
2105 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2106 	cmd->nc_sqe.sqe_cdw10 = feature;
2107 	cmd->nc_sqe.sqe_cdw11 = val;
2108 
2109 	if (user)
2110 		cmd->nc_dontpanic = B_TRUE;
2111 
2112 	switch (feature) {
2113 	case NVME_FEAT_WRITE_CACHE:
2114 		if (!nvme->n_write_cache_present)
2115 			goto fail;
2116 		break;
2117 
2118 	case NVME_FEAT_NQUEUES:
2119 		break;
2120 
2121 	default:
2122 		goto fail;
2123 	}
2124 
2125 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2126 
2127 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2128 		dev_err(nvme->n_dip, CE_WARN,
2129 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2130 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2131 		    cmd->nc_cqe.cqe_sf.sf_sc);
2132 		goto fail;
2133 	}
2134 
2135 	*res = cmd->nc_cqe.cqe_dw0;
2136 
2137 fail:
2138 	nvme_free_cmd(cmd);
2139 	return (ret);
2140 }
2141 
2142 static int
2143 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2144     uint32_t *res, void **buf, size_t *bufsize)
2145 {
2146 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2147 	int ret = EINVAL;
2148 
2149 	ASSERT(res != NULL);
2150 
2151 	if (bufsize != NULL)
2152 		*bufsize = 0;
2153 
2154 	cmd->nc_sqid = 0;
2155 	cmd->nc_callback = nvme_wakeup_cmd;
2156 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2157 	cmd->nc_sqe.sqe_cdw10 = feature;
2158 	cmd->nc_sqe.sqe_cdw11 = *res;
2159 
2160 	/*
2161 	 * For some of the optional features there doesn't seem to be a method
2162 	 * of detecting whether it is supported other than using it.  This will
2163 	 * cause "Invalid Field in Command" error, which is normally considered
2164 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2165 	 * in nvme_check_generic_cmd_status().
2166 	 */
2167 	switch (feature) {
2168 	case NVME_FEAT_ARBITRATION:
2169 	case NVME_FEAT_POWER_MGMT:
2170 	case NVME_FEAT_TEMPERATURE:
2171 	case NVME_FEAT_ERROR:
2172 	case NVME_FEAT_NQUEUES:
2173 	case NVME_FEAT_INTR_COAL:
2174 	case NVME_FEAT_INTR_VECT:
2175 	case NVME_FEAT_WRITE_ATOM:
2176 	case NVME_FEAT_ASYNC_EVENT:
2177 		break;
2178 
2179 	case NVME_FEAT_WRITE_CACHE:
2180 		if (!nvme->n_write_cache_present)
2181 			goto fail;
2182 		break;
2183 
2184 	case NVME_FEAT_LBA_RANGE:
2185 		if (!nvme->n_lba_range_supported)
2186 			goto fail;
2187 
2188 		cmd->nc_dontpanic = B_TRUE;
2189 		cmd->nc_sqe.sqe_nsid = nsid;
2190 		ASSERT(bufsize != NULL);
2191 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2192 		break;
2193 
2194 	case NVME_FEAT_AUTO_PST:
2195 		if (!nvme->n_auto_pst_supported)
2196 			goto fail;
2197 
2198 		ASSERT(bufsize != NULL);
2199 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2200 		break;
2201 
2202 	case NVME_FEAT_PROGRESS:
2203 		if (!nvme->n_progress_supported)
2204 			goto fail;
2205 
2206 		cmd->nc_dontpanic = B_TRUE;
2207 		break;
2208 
2209 	default:
2210 		goto fail;
2211 	}
2212 
2213 	if (user)
2214 		cmd->nc_dontpanic = B_TRUE;
2215 
2216 	if (bufsize != NULL && *bufsize != 0) {
2217 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2218 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2219 			dev_err(nvme->n_dip, CE_WARN,
2220 			    "!nvme_zalloc_dma failed for GET FEATURES");
2221 			ret = ENOMEM;
2222 			goto fail;
2223 		}
2224 
2225 		if (cmd->nc_dma->nd_ncookie > 2) {
2226 			dev_err(nvme->n_dip, CE_WARN,
2227 			    "!too many DMA cookies for GET FEATURES");
2228 			atomic_inc_32(&nvme->n_too_many_cookies);
2229 			ret = ENOMEM;
2230 			goto fail;
2231 		}
2232 
2233 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2234 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2235 		if (cmd->nc_dma->nd_ncookie > 1) {
2236 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2237 			    &cmd->nc_dma->nd_cookie);
2238 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2239 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2240 		}
2241 	}
2242 
2243 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2244 
2245 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2246 		boolean_t known = B_TRUE;
2247 
2248 		/* Check if this is unsupported optional feature */
2249 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2250 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2251 			switch (feature) {
2252 			case NVME_FEAT_LBA_RANGE:
2253 				nvme->n_lba_range_supported = B_FALSE;
2254 				break;
2255 			case NVME_FEAT_PROGRESS:
2256 				nvme->n_progress_supported = B_FALSE;
2257 				break;
2258 			default:
2259 				known = B_FALSE;
2260 				break;
2261 			}
2262 		} else {
2263 			known = B_FALSE;
2264 		}
2265 
2266 		/* Report the error otherwise */
2267 		if (!known) {
2268 			dev_err(nvme->n_dip, CE_WARN,
2269 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2270 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2271 			    cmd->nc_cqe.cqe_sf.sf_sc);
2272 		}
2273 
2274 		goto fail;
2275 	}
2276 
2277 	if (bufsize != NULL && *bufsize != 0) {
2278 		ASSERT(buf != NULL);
2279 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2280 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2281 	}
2282 
2283 	*res = cmd->nc_cqe.cqe_dw0;
2284 
2285 fail:
2286 	nvme_free_cmd(cmd);
2287 	return (ret);
2288 }
2289 
2290 static int
2291 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2292 {
2293 	nvme_write_cache_t nwc = { 0 };
2294 
2295 	if (enable)
2296 		nwc.b.wc_wce = 1;
2297 
2298 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2299 	    nwc.r, &nwc.r));
2300 }
2301 
2302 static int
2303 nvme_set_nqueues(nvme_t *nvme)
2304 {
2305 	nvme_nqueues_t nq = { 0 };
2306 	int ret;
2307 
2308 	/*
2309 	 * The default is to allocate one completion queue per vector.
2310 	 */
2311 	if (nvme->n_completion_queues == -1)
2312 		nvme->n_completion_queues = nvme->n_intr_cnt;
2313 
2314 	/*
2315 	 * There is no point in having more compeletion queues than
2316 	 * interrupt vectors.
2317 	 */
2318 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2319 	    nvme->n_intr_cnt);
2320 
2321 	/*
2322 	 * The default is to use one submission queue per completion queue.
2323 	 */
2324 	if (nvme->n_submission_queues == -1)
2325 		nvme->n_submission_queues = nvme->n_completion_queues;
2326 
2327 	/*
2328 	 * There is no point in having more compeletion queues than
2329 	 * submission queues.
2330 	 */
2331 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2332 	    nvme->n_submission_queues);
2333 
2334 	ASSERT(nvme->n_submission_queues > 0);
2335 	ASSERT(nvme->n_completion_queues > 0);
2336 
2337 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2338 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2339 
2340 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2341 	    &nq.r);
2342 
2343 	if (ret == 0) {
2344 		/*
2345 		 * Never use more than the requested number of queues.
2346 		 */
2347 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2348 		    nq.b.nq_nsq + 1);
2349 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2350 		    nq.b.nq_ncq + 1);
2351 	}
2352 
2353 	return (ret);
2354 }
2355 
2356 static int
2357 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2358 {
2359 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2360 	nvme_create_queue_dw10_t dw10 = { 0 };
2361 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2362 	int ret;
2363 
2364 	dw10.b.q_qid = cq->ncq_id;
2365 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2366 
2367 	c_dw11.b.cq_pc = 1;
2368 	c_dw11.b.cq_ien = 1;
2369 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2370 
2371 	cmd->nc_sqid = 0;
2372 	cmd->nc_callback = nvme_wakeup_cmd;
2373 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2374 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2375 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2376 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2377 
2378 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2379 
2380 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2381 		dev_err(nvme->n_dip, CE_WARN,
2382 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2383 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2384 	}
2385 
2386 	nvme_free_cmd(cmd);
2387 
2388 	return (ret);
2389 }
2390 
2391 static int
2392 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2393 {
2394 	nvme_cq_t *cq = qp->nq_cq;
2395 	nvme_cmd_t *cmd;
2396 	nvme_create_queue_dw10_t dw10 = { 0 };
2397 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2398 	int ret;
2399 
2400 	/*
2401 	 * It is possible to have more qpairs than completion queues,
2402 	 * and when the idx > ncq_id, that completion queue is shared
2403 	 * and has already been created.
2404 	 */
2405 	if (idx <= cq->ncq_id &&
2406 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2407 		return (DDI_FAILURE);
2408 
2409 	dw10.b.q_qid = idx;
2410 	dw10.b.q_qsize = qp->nq_nentry - 1;
2411 
2412 	s_dw11.b.sq_pc = 1;
2413 	s_dw11.b.sq_cqid = cq->ncq_id;
2414 
2415 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2416 	cmd->nc_sqid = 0;
2417 	cmd->nc_callback = nvme_wakeup_cmd;
2418 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2419 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2420 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2421 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2422 
2423 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2424 
2425 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2426 		dev_err(nvme->n_dip, CE_WARN,
2427 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2428 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2429 	}
2430 
2431 	nvme_free_cmd(cmd);
2432 
2433 	return (ret);
2434 }
2435 
2436 static boolean_t
2437 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2438 {
2439 	nvme_reg_csts_t csts;
2440 	int i;
2441 
2442 	nvme_put32(nvme, NVME_REG_CC, 0);
2443 
2444 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2445 	if (csts.b.csts_rdy == 1) {
2446 		nvme_put32(nvme, NVME_REG_CC, 0);
2447 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2448 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2449 			if (csts.b.csts_rdy == 0)
2450 				break;
2451 
2452 			if (quiesce)
2453 				drv_usecwait(50000);
2454 			else
2455 				delay(drv_usectohz(50000));
2456 		}
2457 	}
2458 
2459 	nvme_put32(nvme, NVME_REG_AQA, 0);
2460 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2461 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2462 
2463 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2464 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2465 }
2466 
2467 static void
2468 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2469 {
2470 	nvme_reg_cc_t cc;
2471 	nvme_reg_csts_t csts;
2472 	int i;
2473 
2474 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2475 
2476 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2477 	cc.b.cc_shn = mode & 0x3;
2478 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2479 
2480 	for (i = 0; i != 10; i++) {
2481 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2482 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2483 			break;
2484 
2485 		if (quiesce)
2486 			drv_usecwait(100000);
2487 		else
2488 			delay(drv_usectohz(100000));
2489 	}
2490 }
2491 
2492 
2493 static void
2494 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2495 {
2496 	/*
2497 	 * Section 7.7 of the spec describes how to get a unique ID for
2498 	 * the controller: the vendor ID, the model name and the serial
2499 	 * number shall be unique when combined.
2500 	 *
2501 	 * If a namespace has no EUI64 we use the above and add the hex
2502 	 * namespace ID to get a unique ID for the namespace.
2503 	 */
2504 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2505 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2506 
2507 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2508 	bcopy(nvme->n_idctl->id_serial, serial,
2509 	    sizeof (nvme->n_idctl->id_serial));
2510 
2511 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2512 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2513 
2514 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2515 	    nvme->n_idctl->id_vid, model, serial, nsid);
2516 }
2517 
2518 static int
2519 nvme_init_ns(nvme_t *nvme, int nsid)
2520 {
2521 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2522 	nvme_identify_nsid_t *idns;
2523 	boolean_t was_ignored;
2524 	int last_rp;
2525 
2526 	ns->ns_nvme = nvme;
2527 
2528 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2529 		dev_err(nvme->n_dip, CE_WARN,
2530 		    "!failed to identify namespace %d", nsid);
2531 		return (DDI_FAILURE);
2532 	}
2533 
2534 	ns->ns_idns = idns;
2535 	ns->ns_id = nsid;
2536 	ns->ns_block_count = idns->id_nsize;
2537 	ns->ns_block_size =
2538 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2539 	ns->ns_best_block_size = ns->ns_block_size;
2540 
2541 	/*
2542 	 * Get the EUI64 if present. Use it for devid and device node names.
2543 	 */
2544 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2545 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2546 
2547 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2548 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2549 		uint8_t *eui64 = ns->ns_eui64;
2550 
2551 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2552 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2553 		    eui64[0], eui64[1], eui64[2], eui64[3],
2554 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2555 	} else {
2556 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2557 		    ns->ns_id);
2558 
2559 		nvme_prepare_devid(nvme, ns->ns_id);
2560 	}
2561 
2562 	/*
2563 	 * Find the LBA format with no metadata and the best relative
2564 	 * performance. A value of 3 means "degraded", 0 is best.
2565 	 */
2566 	last_rp = 3;
2567 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2568 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2569 			break;
2570 		if (idns->id_lbaf[j].lbaf_ms != 0)
2571 			continue;
2572 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2573 			continue;
2574 		last_rp = idns->id_lbaf[j].lbaf_rp;
2575 		ns->ns_best_block_size =
2576 		    1 << idns->id_lbaf[j].lbaf_lbads;
2577 	}
2578 
2579 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2580 		ns->ns_best_block_size = nvme->n_min_block_size;
2581 
2582 	was_ignored = ns->ns_ignore;
2583 
2584 	/*
2585 	 * We currently don't support namespaces that use either:
2586 	 * - protection information
2587 	 * - illegal block size (< 512)
2588 	 */
2589 	if (idns->id_dps.dp_pinfo) {
2590 		dev_err(nvme->n_dip, CE_WARN,
2591 		    "!ignoring namespace %d, unsupported feature: "
2592 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2593 		ns->ns_ignore = B_TRUE;
2594 	} else if (ns->ns_block_size < 512) {
2595 		dev_err(nvme->n_dip, CE_WARN,
2596 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2597 		    nsid, (uint64_t)ns->ns_block_size);
2598 		ns->ns_ignore = B_TRUE;
2599 	} else {
2600 		ns->ns_ignore = B_FALSE;
2601 	}
2602 
2603 	/*
2604 	 * Keep a count of namespaces which are attachable.
2605 	 * See comments in nvme_bd_driveinfo() to understand its effect.
2606 	 */
2607 	if (was_ignored) {
2608 		/*
2609 		 * Previously ignored, but now not. Count it.
2610 		 */
2611 		if (!ns->ns_ignore)
2612 			nvme->n_namespaces_attachable++;
2613 	} else {
2614 		/*
2615 		 * Wasn't ignored previously, but now needs to be.
2616 		 * Discount it.
2617 		 */
2618 		if (ns->ns_ignore)
2619 			nvme->n_namespaces_attachable--;
2620 	}
2621 
2622 	return (DDI_SUCCESS);
2623 }
2624 
2625 static int
2626 nvme_init(nvme_t *nvme)
2627 {
2628 	nvme_reg_cc_t cc = { 0 };
2629 	nvme_reg_aqa_t aqa = { 0 };
2630 	nvme_reg_asq_t asq = { 0 };
2631 	nvme_reg_acq_t acq = { 0 };
2632 	nvme_reg_cap_t cap;
2633 	nvme_reg_vs_t vs;
2634 	nvme_reg_csts_t csts;
2635 	int i = 0;
2636 	uint16_t nqueues;
2637 	uint_t tq_threads;
2638 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2639 	char *vendor, *product;
2640 
2641 	/* Check controller version */
2642 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2643 	nvme->n_version.v_major = vs.b.vs_mjr;
2644 	nvme->n_version.v_minor = vs.b.vs_mnr;
2645 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2646 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2647 
2648 	if (nvme->n_version.v_major > nvme_version_major) {
2649 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2650 		    nvme_version_major);
2651 		if (nvme->n_strict_version)
2652 			goto fail;
2653 	}
2654 
2655 	/* retrieve controller configuration */
2656 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2657 
2658 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2659 		dev_err(nvme->n_dip, CE_WARN,
2660 		    "!NVM command set not supported by hardware");
2661 		goto fail;
2662 	}
2663 
2664 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2665 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2666 	nvme->n_timeout = cap.b.cap_to;
2667 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2668 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2669 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2670 
2671 	/*
2672 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2673 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2674 	 * page size value.
2675 	 */
2676 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2677 	    cap.b.cap_mpsmax + 12);
2678 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2679 
2680 	/*
2681 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2682 	 */
2683 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2684 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2685 
2686 	/*
2687 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2688 	 * Maxxfer may be increased after we identified the controller limits.
2689 	 */
2690 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2691 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2692 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2693 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2694 
2695 	/*
2696 	 * Reset controller if it's still in ready state.
2697 	 */
2698 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2699 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2700 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2701 		nvme->n_dead = B_TRUE;
2702 		goto fail;
2703 	}
2704 
2705 	/*
2706 	 * Create the cq array with one completion queue to be assigned
2707 	 * to the admin queue pair and a limited number of taskqs (4).
2708 	 */
2709 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2710 	    DDI_SUCCESS) {
2711 		dev_err(nvme->n_dip, CE_WARN,
2712 		    "!failed to pre-allocate admin completion queue");
2713 		goto fail;
2714 	}
2715 	/*
2716 	 * Create the admin queue pair.
2717 	 */
2718 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2719 	    != DDI_SUCCESS) {
2720 		dev_err(nvme->n_dip, CE_WARN,
2721 		    "!unable to allocate admin qpair");
2722 		goto fail;
2723 	}
2724 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2725 	nvme->n_ioq[0] = nvme->n_adminq;
2726 
2727 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2728 
2729 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2730 	    "admin-queue-len", nvme->n_admin_queue_len);
2731 
2732 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2733 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2734 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2735 
2736 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2737 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2738 
2739 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2740 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2741 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2742 
2743 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2744 	cc.b.cc_css = 0;	/* use NVM command set */
2745 	cc.b.cc_mps = nvme->n_pageshift - 12;
2746 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2747 	cc.b.cc_en = 1;		/* enable controller */
2748 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2749 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2750 
2751 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2752 
2753 	/*
2754 	 * Wait for the controller to become ready.
2755 	 */
2756 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2757 	if (csts.b.csts_rdy == 0) {
2758 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2759 			delay(drv_usectohz(50000));
2760 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2761 
2762 			if (csts.b.csts_cfs == 1) {
2763 				dev_err(nvme->n_dip, CE_WARN,
2764 				    "!controller fatal status at init");
2765 				ddi_fm_service_impact(nvme->n_dip,
2766 				    DDI_SERVICE_LOST);
2767 				nvme->n_dead = B_TRUE;
2768 				goto fail;
2769 			}
2770 
2771 			if (csts.b.csts_rdy == 1)
2772 				break;
2773 		}
2774 	}
2775 
2776 	if (csts.b.csts_rdy == 0) {
2777 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2778 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2779 		nvme->n_dead = B_TRUE;
2780 		goto fail;
2781 	}
2782 
2783 	/*
2784 	 * Assume an abort command limit of 1. We'll destroy and re-init
2785 	 * that later when we know the true abort command limit.
2786 	 */
2787 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2788 
2789 	/*
2790 	 * Setup initial interrupt for admin queue.
2791 	 */
2792 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2793 	    != DDI_SUCCESS) &&
2794 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2795 	    != DDI_SUCCESS) &&
2796 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2797 	    != DDI_SUCCESS)) {
2798 		dev_err(nvme->n_dip, CE_WARN,
2799 		    "!failed to setup initial interrupt");
2800 		goto fail;
2801 	}
2802 
2803 	/*
2804 	 * Post an asynchronous event command to catch errors.
2805 	 * We assume the asynchronous events are supported as required by
2806 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2807 	 * However, since at least qemu does not follow the specification,
2808 	 * we need a mechanism to protect ourselves.
2809 	 */
2810 	nvme->n_async_event_supported = B_TRUE;
2811 	nvme_async_event(nvme);
2812 
2813 	/*
2814 	 * Identify Controller
2815 	 */
2816 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2817 		dev_err(nvme->n_dip, CE_WARN,
2818 		    "!failed to identify controller");
2819 		goto fail;
2820 	}
2821 
2822 	/*
2823 	 * Get Vendor & Product ID
2824 	 */
2825 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2826 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2827 	sata_split_model(model, &vendor, &product);
2828 
2829 	if (vendor == NULL)
2830 		nvme->n_vendor = strdup("NVMe");
2831 	else
2832 		nvme->n_vendor = strdup(vendor);
2833 
2834 	nvme->n_product = strdup(product);
2835 
2836 	/*
2837 	 * Get controller limits.
2838 	 */
2839 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2840 	    MIN(nvme->n_admin_queue_len / 10,
2841 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2842 
2843 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2844 	    "async-event-limit", nvme->n_async_event_limit);
2845 
2846 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2847 
2848 	/*
2849 	 * Reinitialize the semaphore with the true abort command limit
2850 	 * supported by the hardware. It's not necessary to disable interrupts
2851 	 * as only command aborts use the semaphore, and no commands are
2852 	 * executed or aborted while we're here.
2853 	 */
2854 	sema_destroy(&nvme->n_abort_sema);
2855 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2856 	    SEMA_DRIVER, NULL);
2857 
2858 	nvme->n_progress |= NVME_CTRL_LIMITS;
2859 
2860 	if (nvme->n_idctl->id_mdts == 0)
2861 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2862 	else
2863 		nvme->n_max_data_transfer_size =
2864 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2865 
2866 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2867 
2868 	/*
2869 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2870 	 * Chained PRPs are currently unsupported.
2871 	 *
2872 	 * This is a no-op on hardware which doesn't support a transfer size
2873 	 * big enough to require chained PRPs.
2874 	 */
2875 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2876 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2877 
2878 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2879 
2880 	/*
2881 	 * Make sure the minimum/maximum queue entry sizes are not
2882 	 * larger/smaller than the default.
2883 	 */
2884 
2885 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2886 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2887 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2888 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2889 		goto fail;
2890 
2891 	/*
2892 	 * Check for the presence of a Volatile Write Cache. If present,
2893 	 * enable or disable based on the value of the property
2894 	 * volatile-write-cache-enable (default is enabled).
2895 	 */
2896 	nvme->n_write_cache_present =
2897 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2898 
2899 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2900 	    "volatile-write-cache-present",
2901 	    nvme->n_write_cache_present ? 1 : 0);
2902 
2903 	if (!nvme->n_write_cache_present) {
2904 		nvme->n_write_cache_enabled = B_FALSE;
2905 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2906 	    != 0) {
2907 		dev_err(nvme->n_dip, CE_WARN,
2908 		    "!failed to %sable volatile write cache",
2909 		    nvme->n_write_cache_enabled ? "en" : "dis");
2910 		/*
2911 		 * Assume the cache is (still) enabled.
2912 		 */
2913 		nvme->n_write_cache_enabled = B_TRUE;
2914 	}
2915 
2916 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2917 	    "volatile-write-cache-enable",
2918 	    nvme->n_write_cache_enabled ? 1 : 0);
2919 
2920 	/*
2921 	 * Assume LBA Range Type feature is supported. If it isn't this
2922 	 * will be set to B_FALSE by nvme_get_features().
2923 	 */
2924 	nvme->n_lba_range_supported = B_TRUE;
2925 
2926 	/*
2927 	 * Check support for Autonomous Power State Transition.
2928 	 */
2929 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2930 		nvme->n_auto_pst_supported =
2931 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2932 
2933 	/*
2934 	 * Assume Software Progress Marker feature is supported.  If it isn't
2935 	 * this will be set to B_FALSE by nvme_get_features().
2936 	 */
2937 	nvme->n_progress_supported = B_TRUE;
2938 
2939 	/*
2940 	 * Identify Namespaces
2941 	 */
2942 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2943 
2944 	if (nvme->n_namespace_count == 0) {
2945 		dev_err(nvme->n_dip, CE_WARN,
2946 		    "!controllers without namespaces are not supported");
2947 		goto fail;
2948 	}
2949 
2950 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2951 		dev_err(nvme->n_dip, CE_WARN,
2952 		    "!too many namespaces: %d, limiting to %d\n",
2953 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2954 		nvme->n_namespace_count = NVME_MINOR_MAX;
2955 	}
2956 
2957 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2958 	    nvme->n_namespace_count, KM_SLEEP);
2959 
2960 	for (i = 0; i != nvme->n_namespace_count; i++) {
2961 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2962 		    NULL);
2963 		nvme->n_ns[i].ns_ignore = B_TRUE;
2964 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2965 			goto fail;
2966 	}
2967 
2968 	/*
2969 	 * Try to set up MSI/MSI-X interrupts.
2970 	 */
2971 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2972 	    != 0) {
2973 		nvme_release_interrupts(nvme);
2974 
2975 		nqueues = MIN(UINT16_MAX, ncpus);
2976 
2977 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2978 		    nqueues) != DDI_SUCCESS) &&
2979 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2980 		    nqueues) != DDI_SUCCESS)) {
2981 			dev_err(nvme->n_dip, CE_WARN,
2982 			    "!failed to setup MSI/MSI-X interrupts");
2983 			goto fail;
2984 		}
2985 	}
2986 
2987 	/*
2988 	 * Create I/O queue pairs.
2989 	 */
2990 
2991 	if (nvme_set_nqueues(nvme) != 0) {
2992 		dev_err(nvme->n_dip, CE_WARN,
2993 		    "!failed to set number of I/O queues to %d",
2994 		    nvme->n_intr_cnt);
2995 		goto fail;
2996 	}
2997 
2998 	/*
2999 	 * Reallocate I/O queue array
3000 	 */
3001 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3002 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3003 	    (nvme->n_submission_queues + 1), KM_SLEEP);
3004 	nvme->n_ioq[0] = nvme->n_adminq;
3005 
3006 	/*
3007 	 * There should always be at least as many submission queues
3008 	 * as completion queues.
3009 	 */
3010 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3011 
3012 	nvme->n_ioq_count = nvme->n_submission_queues;
3013 
3014 	nvme->n_io_squeue_len =
3015 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3016 
3017 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3018 	    nvme->n_io_squeue_len);
3019 
3020 	/*
3021 	 * Pre-allocate completion queues.
3022 	 * When there are the same number of submission and completion
3023 	 * queues there is no value in having a larger completion
3024 	 * queue length.
3025 	 */
3026 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3027 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3028 		    nvme->n_io_squeue_len);
3029 
3030 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3031 	    nvme->n_max_queue_entries);
3032 
3033 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3034 	    nvme->n_io_cqueue_len);
3035 
3036 	/*
3037 	 * Assign the equal quantity of taskq threads to each completion
3038 	 * queue, capping the total number of threads to the number
3039 	 * of CPUs.
3040 	 */
3041 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3042 
3043 	/*
3044 	 * In case the calculation above is zero, we need at least one
3045 	 * thread per completion queue.
3046 	 */
3047 	tq_threads = MAX(1, tq_threads);
3048 
3049 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3050 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3051 		dev_err(nvme->n_dip, CE_WARN,
3052 		    "!failed to pre-allocate completion queues");
3053 		goto fail;
3054 	}
3055 
3056 	/*
3057 	 * If we use less completion queues than interrupt vectors return
3058 	 * some of the interrupt vectors back to the system.
3059 	 */
3060 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3061 		nvme_release_interrupts(nvme);
3062 
3063 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3064 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3065 			dev_err(nvme->n_dip, CE_WARN,
3066 			    "!failed to reduce number of interrupts");
3067 			goto fail;
3068 		}
3069 	}
3070 
3071 	/*
3072 	 * Alloc & register I/O queue pairs
3073 	 */
3074 
3075 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3076 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3077 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3078 			dev_err(nvme->n_dip, CE_WARN,
3079 			    "!unable to allocate I/O qpair %d", i);
3080 			goto fail;
3081 		}
3082 
3083 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3084 			dev_err(nvme->n_dip, CE_WARN,
3085 			    "!unable to create I/O qpair %d", i);
3086 			goto fail;
3087 		}
3088 	}
3089 
3090 	/*
3091 	 * Post more asynchronous events commands to reduce event reporting
3092 	 * latency as suggested by the spec.
3093 	 */
3094 	if (nvme->n_async_event_supported) {
3095 		for (i = 1; i != nvme->n_async_event_limit; i++)
3096 			nvme_async_event(nvme);
3097 	}
3098 
3099 	return (DDI_SUCCESS);
3100 
3101 fail:
3102 	(void) nvme_reset(nvme, B_FALSE);
3103 	return (DDI_FAILURE);
3104 }
3105 
3106 static uint_t
3107 nvme_intr(caddr_t arg1, caddr_t arg2)
3108 {
3109 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3110 	nvme_t *nvme = (nvme_t *)arg1;
3111 	int inum = (int)(uintptr_t)arg2;
3112 	int ccnt = 0;
3113 	int qnum;
3114 
3115 	if (inum >= nvme->n_intr_cnt)
3116 		return (DDI_INTR_UNCLAIMED);
3117 
3118 	if (nvme->n_dead)
3119 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3120 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3121 
3122 	/*
3123 	 * The interrupt vector a queue uses is calculated as queue_idx %
3124 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3125 	 * in steps of n_intr_cnt to process all queues using this vector.
3126 	 */
3127 	for (qnum = inum;
3128 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3129 	    qnum += nvme->n_intr_cnt) {
3130 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3131 	}
3132 
3133 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3134 }
3135 
3136 static void
3137 nvme_release_interrupts(nvme_t *nvme)
3138 {
3139 	int i;
3140 
3141 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3142 		if (nvme->n_inth[i] == NULL)
3143 			break;
3144 
3145 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3146 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3147 		else
3148 			(void) ddi_intr_disable(nvme->n_inth[i]);
3149 
3150 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3151 		(void) ddi_intr_free(nvme->n_inth[i]);
3152 	}
3153 
3154 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3155 	nvme->n_inth = NULL;
3156 	nvme->n_inth_sz = 0;
3157 
3158 	nvme->n_progress &= ~NVME_INTERRUPTS;
3159 }
3160 
3161 static int
3162 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3163 {
3164 	int nintrs, navail, count;
3165 	int ret;
3166 	int i;
3167 
3168 	if (nvme->n_intr_types == 0) {
3169 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3170 		    &nvme->n_intr_types);
3171 		if (ret != DDI_SUCCESS) {
3172 			dev_err(nvme->n_dip, CE_WARN,
3173 			    "!%s: ddi_intr_get_supported types failed",
3174 			    __func__);
3175 			return (ret);
3176 		}
3177 #ifdef __x86
3178 		if (get_hwenv() == HW_VMWARE)
3179 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3180 #endif
3181 	}
3182 
3183 	if ((nvme->n_intr_types & intr_type) == 0)
3184 		return (DDI_FAILURE);
3185 
3186 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3187 	if (ret != DDI_SUCCESS) {
3188 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3189 		    __func__);
3190 		return (ret);
3191 	}
3192 
3193 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3194 	if (ret != DDI_SUCCESS) {
3195 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3196 		    __func__);
3197 		return (ret);
3198 	}
3199 
3200 	/* We want at most one interrupt per queue pair. */
3201 	if (navail > nqpairs)
3202 		navail = nqpairs;
3203 
3204 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3205 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3206 
3207 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3208 	    &count, 0);
3209 	if (ret != DDI_SUCCESS) {
3210 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3211 		    __func__);
3212 		goto fail;
3213 	}
3214 
3215 	nvme->n_intr_cnt = count;
3216 
3217 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3218 	if (ret != DDI_SUCCESS) {
3219 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3220 		    __func__);
3221 		goto fail;
3222 	}
3223 
3224 	for (i = 0; i < count; i++) {
3225 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3226 		    (void *)nvme, (void *)(uintptr_t)i);
3227 		if (ret != DDI_SUCCESS) {
3228 			dev_err(nvme->n_dip, CE_WARN,
3229 			    "!%s: ddi_intr_add_handler failed", __func__);
3230 			goto fail;
3231 		}
3232 	}
3233 
3234 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3235 
3236 	for (i = 0; i < count; i++) {
3237 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3238 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3239 		else
3240 			ret = ddi_intr_enable(nvme->n_inth[i]);
3241 
3242 		if (ret != DDI_SUCCESS) {
3243 			dev_err(nvme->n_dip, CE_WARN,
3244 			    "!%s: enabling interrupt %d failed", __func__, i);
3245 			goto fail;
3246 		}
3247 	}
3248 
3249 	nvme->n_intr_type = intr_type;
3250 
3251 	nvme->n_progress |= NVME_INTERRUPTS;
3252 
3253 	return (DDI_SUCCESS);
3254 
3255 fail:
3256 	nvme_release_interrupts(nvme);
3257 
3258 	return (ret);
3259 }
3260 
3261 static int
3262 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3263 {
3264 	_NOTE(ARGUNUSED(arg));
3265 
3266 	pci_ereport_post(dip, fm_error, NULL);
3267 	return (fm_error->fme_status);
3268 }
3269 
3270 static int
3271 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3272 {
3273 	nvme_t *nvme;
3274 	int instance;
3275 	int nregs;
3276 	off_t regsize;
3277 	int i;
3278 	char name[32];
3279 	bd_ops_t ops = nvme_bd_ops;
3280 
3281 	if (cmd != DDI_ATTACH)
3282 		return (DDI_FAILURE);
3283 
3284 	instance = ddi_get_instance(dip);
3285 
3286 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3287 		return (DDI_FAILURE);
3288 
3289 	nvme = ddi_get_soft_state(nvme_state, instance);
3290 	ddi_set_driver_private(dip, nvme);
3291 	nvme->n_dip = dip;
3292 
3293 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3294 
3295 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3296 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3297 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3298 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3299 	    B_TRUE : B_FALSE;
3300 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3301 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3302 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3303 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3304 	/*
3305 	 * Double up the default for completion queues in case of
3306 	 * queue sharing.
3307 	 */
3308 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3309 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3310 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3311 	    DDI_PROP_DONTPASS, "async-event-limit",
3312 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3313 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3314 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3315 	    B_TRUE : B_FALSE;
3316 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3317 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3318 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3319 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3320 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3321 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3322 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3323 
3324 	if (!ISP2(nvme->n_min_block_size) ||
3325 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3326 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3327 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3328 		    "too low" : "not a power of 2",
3329 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3330 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3331 	}
3332 
3333 	if (nvme->n_submission_queues != -1 &&
3334 	    (nvme->n_submission_queues < 1 ||
3335 	    nvme->n_submission_queues > UINT16_MAX)) {
3336 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3337 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3338 		    UINT16_MAX);
3339 		nvme->n_submission_queues = -1;
3340 	}
3341 
3342 	if (nvme->n_completion_queues != -1 &&
3343 	    (nvme->n_completion_queues < 1 ||
3344 	    nvme->n_completion_queues > UINT16_MAX)) {
3345 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3346 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3347 		    UINT16_MAX);
3348 		nvme->n_completion_queues = -1;
3349 	}
3350 
3351 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3352 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3353 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3354 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3355 
3356 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3357 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3358 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3359 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3360 
3361 	if (nvme->n_async_event_limit < 1)
3362 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3363 
3364 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3365 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3366 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3367 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3368 
3369 	/*
3370 	 * Setup FMA support.
3371 	 */
3372 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3373 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3374 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3375 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3376 
3377 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3378 
3379 	if (nvme->n_fm_cap) {
3380 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3381 			nvme->n_reg_acc_attr.devacc_attr_access =
3382 			    DDI_FLAGERR_ACC;
3383 
3384 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3385 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3386 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3387 		}
3388 
3389 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3390 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3391 			pci_ereport_setup(dip);
3392 
3393 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3394 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3395 			    (void *)nvme);
3396 	}
3397 
3398 	nvme->n_progress |= NVME_FMA_INIT;
3399 
3400 	/*
3401 	 * The spec defines several register sets. Only the controller
3402 	 * registers (set 1) are currently used.
3403 	 */
3404 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3405 	    nregs < 2 ||
3406 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3407 		goto fail;
3408 
3409 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3410 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3411 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3412 		goto fail;
3413 	}
3414 
3415 	nvme->n_progress |= NVME_REGS_MAPPED;
3416 
3417 	/*
3418 	 * Create PRP DMA cache
3419 	 */
3420 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3421 	    ddi_driver_name(dip), ddi_get_instance(dip));
3422 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3423 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3424 	    NULL, (void *)nvme, NULL, 0);
3425 
3426 	if (nvme_init(nvme) != DDI_SUCCESS)
3427 		goto fail;
3428 
3429 	if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3430 		ops.o_free_space = NULL;
3431 
3432 	/*
3433 	 * Initialize the driver with the UFM subsystem
3434 	 */
3435 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3436 	    &nvme->n_ufmh, nvme) != 0) {
3437 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3438 		goto fail;
3439 	}
3440 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3441 	ddi_ufm_update(nvme->n_ufmh);
3442 	nvme->n_progress |= NVME_UFM_INIT;
3443 
3444 	/*
3445 	 * Attach the blkdev driver for each namespace.
3446 	 */
3447 	for (i = 0; i != nvme->n_namespace_count; i++) {
3448 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3449 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3450 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3451 			dev_err(dip, CE_WARN,
3452 			    "!failed to create minor node for namespace %d", i);
3453 			goto fail;
3454 		}
3455 
3456 		if (nvme->n_ns[i].ns_ignore)
3457 			continue;
3458 
3459 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3460 		    &ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3461 
3462 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3463 			dev_err(dip, CE_WARN,
3464 			    "!failed to get blkdev handle for namespace %d", i);
3465 			goto fail;
3466 		}
3467 
3468 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3469 		    != DDI_SUCCESS) {
3470 			dev_err(dip, CE_WARN,
3471 			    "!failed to attach blkdev handle for namespace %d",
3472 			    i);
3473 			goto fail;
3474 		}
3475 	}
3476 
3477 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3478 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3479 	    != DDI_SUCCESS) {
3480 		dev_err(dip, CE_WARN, "nvme_attach: "
3481 		    "cannot create devctl minor node");
3482 		goto fail;
3483 	}
3484 
3485 	return (DDI_SUCCESS);
3486 
3487 fail:
3488 	/* attach successful anyway so that FMA can retire the device */
3489 	if (nvme->n_dead)
3490 		return (DDI_SUCCESS);
3491 
3492 	(void) nvme_detach(dip, DDI_DETACH);
3493 
3494 	return (DDI_FAILURE);
3495 }
3496 
3497 static int
3498 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3499 {
3500 	int instance, i;
3501 	nvme_t *nvme;
3502 
3503 	if (cmd != DDI_DETACH)
3504 		return (DDI_FAILURE);
3505 
3506 	instance = ddi_get_instance(dip);
3507 
3508 	nvme = ddi_get_soft_state(nvme_state, instance);
3509 
3510 	if (nvme == NULL)
3511 		return (DDI_FAILURE);
3512 
3513 	ddi_remove_minor_node(dip, "devctl");
3514 	mutex_destroy(&nvme->n_minor.nm_mutex);
3515 
3516 	if (nvme->n_ns) {
3517 		for (i = 0; i != nvme->n_namespace_count; i++) {
3518 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3519 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3520 
3521 			if (nvme->n_ns[i].ns_bd_hdl) {
3522 				(void) bd_detach_handle(
3523 				    nvme->n_ns[i].ns_bd_hdl);
3524 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3525 			}
3526 
3527 			if (nvme->n_ns[i].ns_idns)
3528 				kmem_free(nvme->n_ns[i].ns_idns,
3529 				    sizeof (nvme_identify_nsid_t));
3530 			if (nvme->n_ns[i].ns_devid)
3531 				strfree(nvme->n_ns[i].ns_devid);
3532 		}
3533 
3534 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3535 		    nvme->n_namespace_count);
3536 	}
3537 	if (nvme->n_progress & NVME_UFM_INIT) {
3538 		ddi_ufm_fini(nvme->n_ufmh);
3539 		mutex_destroy(&nvme->n_fwslot_mutex);
3540 	}
3541 
3542 	if (nvme->n_progress & NVME_INTERRUPTS)
3543 		nvme_release_interrupts(nvme);
3544 
3545 	for (i = 0; i < nvme->n_cq_count; i++) {
3546 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3547 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3548 	}
3549 
3550 	if (nvme->n_ioq_count > 0) {
3551 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3552 			if (nvme->n_ioq[i] != NULL) {
3553 				/* TODO: send destroy queue commands */
3554 				nvme_free_qpair(nvme->n_ioq[i]);
3555 			}
3556 		}
3557 
3558 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3559 		    (nvme->n_ioq_count + 1));
3560 	}
3561 
3562 	if (nvme->n_prp_cache != NULL) {
3563 		kmem_cache_destroy(nvme->n_prp_cache);
3564 	}
3565 
3566 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3567 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3568 		(void) nvme_reset(nvme, B_FALSE);
3569 	}
3570 
3571 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3572 		sema_destroy(&nvme->n_abort_sema);
3573 
3574 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3575 		nvme_free_qpair(nvme->n_adminq);
3576 
3577 	if (nvme->n_cq_count > 0) {
3578 		nvme_destroy_cq_array(nvme, 0);
3579 		nvme->n_cq = NULL;
3580 		nvme->n_cq_count = 0;
3581 	}
3582 
3583 	if (nvme->n_idctl)
3584 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3585 
3586 	if (nvme->n_progress & NVME_REGS_MAPPED)
3587 		ddi_regs_map_free(&nvme->n_regh);
3588 
3589 	if (nvme->n_progress & NVME_FMA_INIT) {
3590 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3591 			ddi_fm_handler_unregister(nvme->n_dip);
3592 
3593 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3594 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3595 			pci_ereport_teardown(nvme->n_dip);
3596 
3597 		ddi_fm_fini(nvme->n_dip);
3598 	}
3599 
3600 	if (nvme->n_vendor != NULL)
3601 		strfree(nvme->n_vendor);
3602 
3603 	if (nvme->n_product != NULL)
3604 		strfree(nvme->n_product);
3605 
3606 	ddi_soft_state_free(nvme_state, instance);
3607 
3608 	return (DDI_SUCCESS);
3609 }
3610 
3611 static int
3612 nvme_quiesce(dev_info_t *dip)
3613 {
3614 	int instance;
3615 	nvme_t *nvme;
3616 
3617 	instance = ddi_get_instance(dip);
3618 
3619 	nvme = ddi_get_soft_state(nvme_state, instance);
3620 
3621 	if (nvme == NULL)
3622 		return (DDI_FAILURE);
3623 
3624 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3625 
3626 	(void) nvme_reset(nvme, B_TRUE);
3627 
3628 	return (DDI_FAILURE);
3629 }
3630 
3631 static int
3632 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3633 {
3634 	nvme_t *nvme = cmd->nc_nvme;
3635 	int nprp_page, nprp;
3636 	uint64_t *prp;
3637 
3638 	if (xfer->x_ndmac == 0)
3639 		return (DDI_FAILURE);
3640 
3641 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3642 
3643 	if (xfer->x_ndmac == 1) {
3644 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3645 		return (DDI_SUCCESS);
3646 	} else if (xfer->x_ndmac == 2) {
3647 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3648 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3649 		return (DDI_SUCCESS);
3650 	}
3651 
3652 	xfer->x_ndmac--;
3653 
3654 	nprp_page = nvme->n_pagesize / sizeof (uint64_t);
3655 	ASSERT(nprp_page > 0);
3656 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3657 
3658 	/*
3659 	 * We currently don't support chained PRPs and set up our DMA
3660 	 * attributes to reflect that. If we still get an I/O request
3661 	 * that needs a chained PRP something is very wrong.
3662 	 */
3663 	VERIFY(nprp == 1);
3664 
3665 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3666 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3667 
3668 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3669 
3670 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3671 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3672 	    xfer->x_ndmac > 0;
3673 	    prp++, xfer->x_ndmac--) {
3674 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3675 		*prp = xfer->x_dmac.dmac_laddress;
3676 	}
3677 
3678 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3679 	    DDI_DMA_SYNC_FORDEV);
3680 	return (DDI_SUCCESS);
3681 }
3682 
3683 /*
3684  * The maximum number of requests supported for a deallocate request is
3685  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
3686  * unchanged through at least 1.4a). The definition of nvme_range_t is also
3687  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
3688  * a deallocate request will fit into the smallest supported namespace page
3689  * (4k).
3690  */
3691 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
3692 
3693 static int
3694 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
3695     int allocflag)
3696 {
3697 	const dkioc_free_list_t *dfl = xfer->x_dfl;
3698 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
3699 	nvme_t *nvme = cmd->nc_nvme;
3700 	nvme_range_t *ranges = NULL;
3701 	uint_t i;
3702 
3703 	/*
3704 	 * The number of ranges in the request is 0s based (that is
3705 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
3706 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
3707 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
3708 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
3709 	 * in blkdev.
3710 	 */
3711 	VERIFY3U(dfl->dfl_num_exts, >, 0);
3712 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
3713 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
3714 
3715 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
3716 
3717 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
3718 	if (cmd->nc_dma == NULL)
3719 		return (DDI_FAILURE);
3720 
3721 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3722 	ranges = (nvme_range_t *)cmd->nc_dma->nd_memp;
3723 
3724 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
3725 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3726 
3727 	for (i = 0; i < dfl->dfl_num_exts; i++) {
3728 		uint64_t lba, len;
3729 
3730 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
3731 		len = exts[i].dfle_length / blocksize;
3732 
3733 		VERIFY3U(len, <=, UINT32_MAX);
3734 
3735 		/* No context attributes for a deallocate request */
3736 		ranges[i].nr_ctxattr = 0;
3737 		ranges[i].nr_len = len;
3738 		ranges[i].nr_lba = lba;
3739 	}
3740 
3741 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3742 	    DDI_DMA_SYNC_FORDEV);
3743 
3744 	return (DDI_SUCCESS);
3745 }
3746 
3747 static nvme_cmd_t *
3748 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3749 {
3750 	nvme_t *nvme = ns->ns_nvme;
3751 	nvme_cmd_t *cmd;
3752 	int allocflag;
3753 
3754 	/*
3755 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3756 	 */
3757 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
3758 	cmd = nvme_alloc_cmd(nvme, allocflag);
3759 
3760 	if (cmd == NULL)
3761 		return (NULL);
3762 
3763 	cmd->nc_sqe.sqe_opc = opc;
3764 	cmd->nc_callback = nvme_bd_xfer_done;
3765 	cmd->nc_xfer = xfer;
3766 
3767 	switch (opc) {
3768 	case NVME_OPC_NVM_WRITE:
3769 	case NVME_OPC_NVM_READ:
3770 		VERIFY(xfer->x_nblks <= 0x10000);
3771 
3772 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3773 
3774 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3775 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3776 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3777 
3778 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3779 			goto fail;
3780 		break;
3781 
3782 	case NVME_OPC_NVM_FLUSH:
3783 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3784 		break;
3785 
3786 	case NVME_OPC_NVM_DSET_MGMT:
3787 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3788 
3789 		if (nvme_fill_ranges(cmd, xfer,
3790 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
3791 			goto fail;
3792 		break;
3793 
3794 	default:
3795 		goto fail;
3796 	}
3797 
3798 	return (cmd);
3799 
3800 fail:
3801 	nvme_free_cmd(cmd);
3802 	return (NULL);
3803 }
3804 
3805 static void
3806 nvme_bd_xfer_done(void *arg)
3807 {
3808 	nvme_cmd_t *cmd = arg;
3809 	bd_xfer_t *xfer = cmd->nc_xfer;
3810 	int error = 0;
3811 
3812 	error = nvme_check_cmd_status(cmd);
3813 	nvme_free_cmd(cmd);
3814 
3815 	bd_xfer_done(xfer, error);
3816 }
3817 
3818 static void
3819 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3820 {
3821 	nvme_namespace_t *ns = arg;
3822 	nvme_t *nvme = ns->ns_nvme;
3823 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
3824 
3825 	/*
3826 	 * Set the blkdev qcount to the number of submission queues.
3827 	 * It will then create one waitq/runq pair for each submission
3828 	 * queue and spread I/O requests across the queues.
3829 	 */
3830 	drive->d_qcount = nvme->n_ioq_count;
3831 
3832 	/*
3833 	 * I/O activity to individual namespaces is distributed across
3834 	 * each of the d_qcount blkdev queues (which has been set to
3835 	 * the number of nvme submission queues). d_qsize is the number
3836 	 * of submitted and not completed I/Os within each queue that blkdev
3837 	 * will allow before it starts holding them in the waitq.
3838 	 *
3839 	 * Each namespace will create a child blkdev instance, for each one
3840 	 * we try and set the d_qsize so that each namespace gets an
3841 	 * equal portion of the submission queue.
3842 	 *
3843 	 * If post instantiation of the nvme drive, n_namespaces_attachable
3844 	 * changes and a namespace is attached it could calculate a
3845 	 * different d_qsize. It may even be that the sum of the d_qsizes is
3846 	 * now beyond the submission queue size. Should that be the case
3847 	 * and the I/O rate is such that blkdev attempts to submit more
3848 	 * I/Os than the size of the submission queue, the excess I/Os
3849 	 * will be held behind the semaphore nq_sema.
3850 	 */
3851 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
3852 
3853 	/*
3854 	 * Don't let the queue size drop below the minimum, though.
3855 	 */
3856 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
3857 
3858 	/*
3859 	 * d_maxxfer is not set, which means the value is taken from the DMA
3860 	 * attributes specified to bd_alloc_handle.
3861 	 */
3862 
3863 	drive->d_removable = B_FALSE;
3864 	drive->d_hotpluggable = B_FALSE;
3865 
3866 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3867 	drive->d_target = ns->ns_id;
3868 	drive->d_lun = 0;
3869 
3870 	drive->d_model = nvme->n_idctl->id_model;
3871 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3872 	drive->d_vendor = nvme->n_vendor;
3873 	drive->d_vendor_len = strlen(nvme->n_vendor);
3874 	drive->d_product = nvme->n_product;
3875 	drive->d_product_len = strlen(nvme->n_product);
3876 	drive->d_serial = nvme->n_idctl->id_serial;
3877 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3878 	drive->d_revision = nvme->n_idctl->id_fwrev;
3879 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3880 
3881 	/*
3882 	 * If we support the dataset management command, the only restrictions
3883 	 * on a discard request are the maximum number of ranges (segments)
3884 	 * per single request.
3885 	 */
3886 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
3887 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
3888 }
3889 
3890 static int
3891 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3892 {
3893 	nvme_namespace_t *ns = arg;
3894 
3895 	media->m_nblks = ns->ns_block_count;
3896 	media->m_blksize = ns->ns_block_size;
3897 	media->m_readonly = B_FALSE;
3898 	media->m_solidstate = B_TRUE;
3899 
3900 	media->m_pblksize = ns->ns_best_block_size;
3901 
3902 	return (0);
3903 }
3904 
3905 static int
3906 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3907 {
3908 	nvme_t *nvme = ns->ns_nvme;
3909 	nvme_cmd_t *cmd;
3910 	nvme_qpair_t *ioq;
3911 	boolean_t poll;
3912 	int ret;
3913 
3914 	if (nvme->n_dead)
3915 		return (EIO);
3916 
3917 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3918 	if (cmd == NULL)
3919 		return (ENOMEM);
3920 
3921 	cmd->nc_sqid = xfer->x_qnum + 1;
3922 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3923 	ioq = nvme->n_ioq[cmd->nc_sqid];
3924 
3925 	/*
3926 	 * Get the polling flag before submitting the command. The command may
3927 	 * complete immediately after it was submitted, which means we must
3928 	 * treat both cmd and xfer as if they have been freed already.
3929 	 */
3930 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3931 
3932 	ret = nvme_submit_io_cmd(ioq, cmd);
3933 
3934 	if (ret != 0)
3935 		return (ret);
3936 
3937 	if (!poll)
3938 		return (0);
3939 
3940 	do {
3941 		cmd = nvme_retrieve_cmd(nvme, ioq);
3942 		if (cmd != NULL)
3943 			cmd->nc_callback(cmd);
3944 		else
3945 			drv_usecwait(10);
3946 	} while (ioq->nq_active_cmds != 0);
3947 
3948 	return (0);
3949 }
3950 
3951 static int
3952 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3953 {
3954 	nvme_namespace_t *ns = arg;
3955 
3956 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3957 }
3958 
3959 static int
3960 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3961 {
3962 	nvme_namespace_t *ns = arg;
3963 
3964 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3965 }
3966 
3967 static int
3968 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3969 {
3970 	nvme_namespace_t *ns = arg;
3971 
3972 	if (ns->ns_nvme->n_dead)
3973 		return (EIO);
3974 
3975 	/*
3976 	 * If the volatile write cache is not present or not enabled the FLUSH
3977 	 * command is a no-op, so we can take a shortcut here.
3978 	 */
3979 	if (!ns->ns_nvme->n_write_cache_present) {
3980 		bd_xfer_done(xfer, ENOTSUP);
3981 		return (0);
3982 	}
3983 
3984 	if (!ns->ns_nvme->n_write_cache_enabled) {
3985 		bd_xfer_done(xfer, 0);
3986 		return (0);
3987 	}
3988 
3989 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3990 }
3991 
3992 static int
3993 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3994 {
3995 	nvme_namespace_t *ns = arg;
3996 
3997 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3998 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3999 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4000 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4001 	} else {
4002 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
4003 		    strlen(ns->ns_devid), ns->ns_devid, devid));
4004 	}
4005 }
4006 
4007 static int
4008 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4009 {
4010 	nvme_namespace_t *ns = arg;
4011 
4012 	if (xfer->x_dfl == NULL)
4013 		return (EINVAL);
4014 
4015 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4016 		return (ENOTSUP);
4017 
4018 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4019 }
4020 
4021 static int
4022 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4023 {
4024 #ifndef __lock_lint
4025 	_NOTE(ARGUNUSED(cred_p));
4026 #endif
4027 	minor_t minor = getminor(*devp);
4028 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4029 	int nsid = NVME_MINOR_NSID(minor);
4030 	nvme_minor_state_t *nm;
4031 	int rv = 0;
4032 
4033 	if (otyp != OTYP_CHR)
4034 		return (EINVAL);
4035 
4036 	if (nvme == NULL)
4037 		return (ENXIO);
4038 
4039 	if (nsid > nvme->n_namespace_count)
4040 		return (ENXIO);
4041 
4042 	if (nvme->n_dead)
4043 		return (EIO);
4044 
4045 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4046 
4047 	mutex_enter(&nm->nm_mutex);
4048 	if (nm->nm_oexcl) {
4049 		rv = EBUSY;
4050 		goto out;
4051 	}
4052 
4053 	if (flag & FEXCL) {
4054 		if (nm->nm_ocnt != 0) {
4055 			rv = EBUSY;
4056 			goto out;
4057 		}
4058 		nm->nm_oexcl = B_TRUE;
4059 	}
4060 
4061 	nm->nm_ocnt++;
4062 
4063 out:
4064 	mutex_exit(&nm->nm_mutex);
4065 	return (rv);
4066 
4067 }
4068 
4069 static int
4070 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4071 {
4072 #ifndef __lock_lint
4073 	_NOTE(ARGUNUSED(cred_p));
4074 	_NOTE(ARGUNUSED(flag));
4075 #endif
4076 	minor_t minor = getminor(dev);
4077 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4078 	int nsid = NVME_MINOR_NSID(minor);
4079 	nvme_minor_state_t *nm;
4080 
4081 	if (otyp != OTYP_CHR)
4082 		return (ENXIO);
4083 
4084 	if (nvme == NULL)
4085 		return (ENXIO);
4086 
4087 	if (nsid > nvme->n_namespace_count)
4088 		return (ENXIO);
4089 
4090 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4091 
4092 	mutex_enter(&nm->nm_mutex);
4093 	if (nm->nm_oexcl)
4094 		nm->nm_oexcl = B_FALSE;
4095 
4096 	ASSERT(nm->nm_ocnt > 0);
4097 	nm->nm_ocnt--;
4098 	mutex_exit(&nm->nm_mutex);
4099 
4100 	return (0);
4101 }
4102 
4103 static int
4104 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4105     cred_t *cred_p)
4106 {
4107 	_NOTE(ARGUNUSED(cred_p));
4108 	int rv = 0;
4109 	void *idctl;
4110 
4111 	if ((mode & FREAD) == 0)
4112 		return (EPERM);
4113 
4114 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4115 		return (EINVAL);
4116 
4117 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4118 		return (rv);
4119 
4120 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4121 	    != 0)
4122 		rv = EFAULT;
4123 
4124 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4125 
4126 	return (rv);
4127 }
4128 
4129 /*
4130  * Execute commands on behalf of the various ioctls.
4131  */
4132 static int
4133 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4134     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4135 {
4136 	nvme_cmd_t *cmd;
4137 	nvme_qpair_t *ioq;
4138 	int rv = 0;
4139 
4140 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4141 	if (is_admin) {
4142 		cmd->nc_sqid = 0;
4143 		ioq = nvme->n_adminq;
4144 	} else {
4145 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4146 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4147 		ioq = nvme->n_ioq[cmd->nc_sqid];
4148 	}
4149 
4150 	cmd->nc_callback = nvme_wakeup_cmd;
4151 	cmd->nc_sqe = *sqe;
4152 
4153 	if ((rwk & (FREAD | FWRITE)) != 0) {
4154 		if (data_addr == NULL) {
4155 			rv = EINVAL;
4156 			goto free_cmd;
4157 		}
4158 
4159 		/*
4160 		 * Because we use PRPs and haven't implemented PRP
4161 		 * lists here, the maximum data size is restricted to
4162 		 * 2 pages.
4163 		 */
4164 		if (data_len > 2 * nvme->n_pagesize) {
4165 			dev_err(nvme->n_dip, CE_WARN, "!Data size %u is too "
4166 			    "large for nvme_ioc_cmd(). Limit is 2 pages "
4167 			    "(%u bytes)", data_len,  2 * nvme->n_pagesize);
4168 
4169 			rv = EINVAL;
4170 			goto free_cmd;
4171 		}
4172 
4173 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4174 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4175 			dev_err(nvme->n_dip, CE_WARN,
4176 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4177 
4178 			rv = ENOMEM;
4179 			goto free_cmd;
4180 		}
4181 
4182 		if (cmd->nc_dma->nd_ncookie > 2) {
4183 			dev_err(nvme->n_dip, CE_WARN,
4184 			    "!too many DMA cookies for nvme_ioc_cmd()");
4185 			atomic_inc_32(&nvme->n_too_many_cookies);
4186 
4187 			rv = E2BIG;
4188 			goto free_cmd;
4189 		}
4190 
4191 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
4192 		    cmd->nc_dma->nd_cookie.dmac_laddress;
4193 
4194 		if (cmd->nc_dma->nd_ncookie > 1) {
4195 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
4196 			    &cmd->nc_dma->nd_cookie);
4197 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
4198 			    cmd->nc_dma->nd_cookie.dmac_laddress;
4199 		}
4200 
4201 		if ((rwk & FWRITE) != 0) {
4202 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4203 			    data_len, rwk & FKIOCTL) != 0) {
4204 				rv = EFAULT;
4205 				goto free_cmd;
4206 			}
4207 		}
4208 	}
4209 
4210 	if (is_admin) {
4211 		nvme_admin_cmd(cmd, timeout);
4212 	} else {
4213 		mutex_enter(&cmd->nc_mutex);
4214 
4215 		rv = nvme_submit_io_cmd(ioq, cmd);
4216 
4217 		if (rv == EAGAIN) {
4218 			mutex_exit(&cmd->nc_mutex);
4219 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4220 			    "!nvme_ioc_cmd() failed, I/O Q full");
4221 			goto free_cmd;
4222 		}
4223 
4224 		nvme_wait_cmd(cmd, timeout);
4225 
4226 		mutex_exit(&cmd->nc_mutex);
4227 	}
4228 
4229 	if (cqe != NULL)
4230 		*cqe = cmd->nc_cqe;
4231 
4232 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4233 		dev_err(nvme->n_dip, CE_WARN,
4234 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4235 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4236 
4237 		goto free_cmd;
4238 	}
4239 
4240 	if ((rwk & FREAD) != 0) {
4241 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4242 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4243 			rv = EFAULT;
4244 	}
4245 
4246 free_cmd:
4247 	nvme_free_cmd(cmd);
4248 
4249 	return (rv);
4250 }
4251 
4252 static int
4253 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4254     int mode, cred_t *cred_p)
4255 {
4256 	_NOTE(ARGUNUSED(nsid, cred_p));
4257 	int rv = 0;
4258 	nvme_reg_cap_t cap = { 0 };
4259 	nvme_capabilities_t nc;
4260 
4261 	if ((mode & FREAD) == 0)
4262 		return (EPERM);
4263 
4264 	if (nioc->n_len < sizeof (nc))
4265 		return (EINVAL);
4266 
4267 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4268 
4269 	/*
4270 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4271 	 * specify the base page size of 4k (1<<12), so add 12 here to
4272 	 * get the real page size value.
4273 	 */
4274 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4275 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4276 
4277 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4278 		rv = EFAULT;
4279 
4280 	return (rv);
4281 }
4282 
4283 static int
4284 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4285     int mode, cred_t *cred_p)
4286 {
4287 	_NOTE(ARGUNUSED(cred_p));
4288 	void *log = NULL;
4289 	size_t bufsize = 0;
4290 	int rv = 0;
4291 
4292 	if ((mode & FREAD) == 0)
4293 		return (EPERM);
4294 
4295 	switch (nioc->n_arg) {
4296 	case NVME_LOGPAGE_ERROR:
4297 		if (nsid != 0)
4298 			return (EINVAL);
4299 		break;
4300 	case NVME_LOGPAGE_HEALTH:
4301 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4302 			return (EINVAL);
4303 
4304 		if (nsid == 0)
4305 			nsid = (uint32_t)-1;
4306 
4307 		break;
4308 	case NVME_LOGPAGE_FWSLOT:
4309 		if (nsid != 0)
4310 			return (EINVAL);
4311 		break;
4312 	default:
4313 		return (EINVAL);
4314 	}
4315 
4316 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4317 	    != DDI_SUCCESS)
4318 		return (EIO);
4319 
4320 	if (nioc->n_len < bufsize) {
4321 		kmem_free(log, bufsize);
4322 		return (EINVAL);
4323 	}
4324 
4325 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4326 		rv = EFAULT;
4327 
4328 	nioc->n_len = bufsize;
4329 	kmem_free(log, bufsize);
4330 
4331 	return (rv);
4332 }
4333 
4334 static int
4335 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4336     int mode, cred_t *cred_p)
4337 {
4338 	_NOTE(ARGUNUSED(cred_p));
4339 	void *buf = NULL;
4340 	size_t bufsize = 0;
4341 	uint32_t res = 0;
4342 	uint8_t feature;
4343 	int rv = 0;
4344 
4345 	if ((mode & FREAD) == 0)
4346 		return (EPERM);
4347 
4348 	if ((nioc->n_arg >> 32) > 0xff)
4349 		return (EINVAL);
4350 
4351 	feature = (uint8_t)(nioc->n_arg >> 32);
4352 
4353 	switch (feature) {
4354 	case NVME_FEAT_ARBITRATION:
4355 	case NVME_FEAT_POWER_MGMT:
4356 	case NVME_FEAT_ERROR:
4357 	case NVME_FEAT_NQUEUES:
4358 	case NVME_FEAT_INTR_COAL:
4359 	case NVME_FEAT_WRITE_ATOM:
4360 	case NVME_FEAT_ASYNC_EVENT:
4361 	case NVME_FEAT_PROGRESS:
4362 		if (nsid != 0)
4363 			return (EINVAL);
4364 		break;
4365 
4366 	case NVME_FEAT_TEMPERATURE:
4367 		if (nsid != 0)
4368 			return (EINVAL);
4369 		res = nioc->n_arg & 0xffffffffUL;
4370 		if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
4371 			nvme_temp_threshold_t tt;
4372 
4373 			tt.r = res;
4374 			if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
4375 			    tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
4376 				return (EINVAL);
4377 			}
4378 
4379 			if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
4380 				return (EINVAL);
4381 			}
4382 		} else if (res != 0) {
4383 			return (EINVAL);
4384 		}
4385 		break;
4386 
4387 	case NVME_FEAT_INTR_VECT:
4388 		if (nsid != 0)
4389 			return (EINVAL);
4390 
4391 		res = nioc->n_arg & 0xffffffffUL;
4392 		if (res >= nvme->n_intr_cnt)
4393 			return (EINVAL);
4394 		break;
4395 
4396 	case NVME_FEAT_LBA_RANGE:
4397 		if (nvme->n_lba_range_supported == B_FALSE)
4398 			return (EINVAL);
4399 
4400 		if (nsid == 0 ||
4401 		    nsid > nvme->n_namespace_count)
4402 			return (EINVAL);
4403 
4404 		break;
4405 
4406 	case NVME_FEAT_WRITE_CACHE:
4407 		if (nsid != 0)
4408 			return (EINVAL);
4409 
4410 		if (!nvme->n_write_cache_present)
4411 			return (EINVAL);
4412 
4413 		break;
4414 
4415 	case NVME_FEAT_AUTO_PST:
4416 		if (nsid != 0)
4417 			return (EINVAL);
4418 
4419 		if (!nvme->n_auto_pst_supported)
4420 			return (EINVAL);
4421 
4422 		break;
4423 
4424 	default:
4425 		return (EINVAL);
4426 	}
4427 
4428 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4429 	    &bufsize);
4430 	if (rv != 0)
4431 		return (rv);
4432 
4433 	if (nioc->n_len < bufsize) {
4434 		kmem_free(buf, bufsize);
4435 		return (EINVAL);
4436 	}
4437 
4438 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4439 		rv = EFAULT;
4440 
4441 	kmem_free(buf, bufsize);
4442 	nioc->n_arg = res;
4443 	nioc->n_len = bufsize;
4444 
4445 	return (rv);
4446 }
4447 
4448 static int
4449 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4450     cred_t *cred_p)
4451 {
4452 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4453 
4454 	if ((mode & FREAD) == 0)
4455 		return (EPERM);
4456 
4457 	nioc->n_arg = nvme->n_intr_cnt;
4458 	return (0);
4459 }
4460 
4461 static int
4462 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4463     cred_t *cred_p)
4464 {
4465 	_NOTE(ARGUNUSED(nsid, cred_p));
4466 	int rv = 0;
4467 
4468 	if ((mode & FREAD) == 0)
4469 		return (EPERM);
4470 
4471 	if (nioc->n_len < sizeof (nvme->n_version))
4472 		return (ENOMEM);
4473 
4474 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4475 	    sizeof (nvme->n_version), mode) != 0)
4476 		rv = EFAULT;
4477 
4478 	return (rv);
4479 }
4480 
4481 static int
4482 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4483     cred_t *cred_p)
4484 {
4485 	_NOTE(ARGUNUSED(mode));
4486 	nvme_format_nvm_t frmt = { 0 };
4487 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4488 
4489 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4490 		return (EPERM);
4491 
4492 	frmt.r = nioc->n_arg & 0xffffffff;
4493 
4494 	/*
4495 	 * Check whether the FORMAT NVM command is supported.
4496 	 */
4497 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4498 		return (EINVAL);
4499 
4500 	/*
4501 	 * Don't allow format or secure erase of individual namespace if that
4502 	 * would cause a format or secure erase of all namespaces.
4503 	 */
4504 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4505 		return (EINVAL);
4506 
4507 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4508 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4509 		return (EINVAL);
4510 
4511 	/*
4512 	 * Don't allow formatting with Protection Information.
4513 	 */
4514 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4515 		return (EINVAL);
4516 
4517 	/*
4518 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4519 	 * that uses metadata.
4520 	 */
4521 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4522 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4523 		return (EINVAL);
4524 
4525 	/*
4526 	 * Don't allow formatting using an illegal Secure Erase setting.
4527 	 */
4528 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4529 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4530 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4531 		return (EINVAL);
4532 
4533 	if (nsid == 0)
4534 		nsid = (uint32_t)-1;
4535 
4536 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4537 	    B_FALSE, frmt.b.fm_ses));
4538 }
4539 
4540 static int
4541 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4542     cred_t *cred_p)
4543 {
4544 	_NOTE(ARGUNUSED(nioc, mode));
4545 	int rv = 0;
4546 
4547 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4548 		return (EPERM);
4549 
4550 	if (nsid == 0)
4551 		return (EINVAL);
4552 
4553 	if (nvme->n_ns[nsid - 1].ns_ignore)
4554 		return (0);
4555 
4556 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4557 	if (rv != DDI_SUCCESS)
4558 		rv = EBUSY;
4559 
4560 	return (rv);
4561 }
4562 
4563 static int
4564 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4565     cred_t *cred_p)
4566 {
4567 	_NOTE(ARGUNUSED(nioc, mode));
4568 	nvme_identify_nsid_t *idns;
4569 	int rv = 0;
4570 
4571 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4572 		return (EPERM);
4573 
4574 	if (nsid == 0)
4575 		return (EINVAL);
4576 
4577 	/*
4578 	 * Identify namespace again, free old identify data.
4579 	 */
4580 	idns = nvme->n_ns[nsid - 1].ns_idns;
4581 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4582 		return (EIO);
4583 
4584 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4585 
4586 	if (nvme->n_ns[nsid - 1].ns_ignore)
4587 		return (ENOTSUP);
4588 
4589 	if (nvme->n_ns[nsid - 1].ns_bd_hdl == NULL)
4590 		nvme->n_ns[nsid - 1].ns_bd_hdl = bd_alloc_handle(
4591 		    &nvme->n_ns[nsid - 1], &nvme_bd_ops, &nvme->n_prp_dma_attr,
4592 		    KM_SLEEP);
4593 
4594 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4595 	if (rv != DDI_SUCCESS)
4596 		rv = EBUSY;
4597 
4598 	return (rv);
4599 }
4600 
4601 static void
4602 nvme_ufm_update(nvme_t *nvme)
4603 {
4604 	mutex_enter(&nvme->n_fwslot_mutex);
4605 	ddi_ufm_update(nvme->n_ufmh);
4606 	if (nvme->n_fwslot != NULL) {
4607 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4608 		nvme->n_fwslot = NULL;
4609 	}
4610 	mutex_exit(&nvme->n_fwslot_mutex);
4611 }
4612 
4613 static int
4614 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4615     int mode, cred_t *cred_p)
4616 {
4617 	int rv = 0;
4618 	size_t len, copylen;
4619 	offset_t offset;
4620 	uintptr_t buf;
4621 	nvme_sqe_t sqe = {
4622 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
4623 	};
4624 
4625 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4626 		return (EPERM);
4627 
4628 	if (nsid != 0)
4629 		return (EINVAL);
4630 
4631 	/*
4632 	 * The offset (in n_len) is restricted to the number of DWORDs in
4633 	 * 32 bits.
4634 	 */
4635 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4636 		return (EINVAL);
4637 
4638 	/* Confirm that both offset and length are a multiple of DWORD bytes */
4639 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4640 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
4641 		return (EINVAL);
4642 
4643 	len = nioc->n_len;
4644 	offset = nioc->n_arg;
4645 	buf = (uintptr_t)nioc->n_buf;
4646 	while (len > 0 && rv == 0) {
4647 		/*
4648 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
4649 		 * It is limited to 2 PRPs per NVM command, so limit
4650 		 * the size of the data to 2 pages.
4651 		 */
4652 		copylen = MIN(2 * nvme->n_pagesize, len);
4653 
4654 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4655 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4656 
4657 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4658 		    FWRITE, NULL, nvme_admin_cmd_timeout);
4659 
4660 		buf += copylen;
4661 		offset += copylen;
4662 		len -= copylen;
4663 	}
4664 
4665 	/*
4666 	 * Let the DDI UFM subsystem know that the firmware information for
4667 	 * this device has changed.
4668 	 */
4669 	nvme_ufm_update(nvme);
4670 
4671 	return (rv);
4672 }
4673 
4674 static int
4675 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4676     int mode, cred_t *cred_p)
4677 {
4678 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
4679 	uint32_t slot = nioc->n_arg & 0xffffffff;
4680 	uint32_t action = nioc->n_arg >> 32;
4681 	nvme_cqe_t cqe = { 0 };
4682 	nvme_sqe_t sqe = {
4683 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
4684 	};
4685 	int timeout;
4686 	int rv;
4687 
4688 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4689 		return (EPERM);
4690 
4691 	if (nsid != 0)
4692 		return (EINVAL);
4693 
4694 	/* Validate slot is in range. */
4695 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
4696 		return (EINVAL);
4697 
4698 	switch (action) {
4699 	case NVME_FWC_SAVE:
4700 	case NVME_FWC_SAVE_ACTIVATE:
4701 		timeout = nvme_commit_save_cmd_timeout;
4702 		break;
4703 	case NVME_FWC_ACTIVATE:
4704 	case NVME_FWC_ACTIVATE_IMMED:
4705 		timeout = nvme_admin_cmd_timeout;
4706 		break;
4707 	default:
4708 		return (EINVAL);
4709 	}
4710 
4711 	fc_dw10.b.fc_slot = slot;
4712 	fc_dw10.b.fc_action = action;
4713 	sqe.sqe_cdw10 = fc_dw10.r;
4714 
4715 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
4716 
4717 	nioc->n_arg = ((uint64_t)cqe.cqe_sf.sf_sct << 16) | cqe.cqe_sf.sf_sc;
4718 
4719 	/*
4720 	 * Let the DDI UFM subsystem know that the firmware information for
4721 	 * this device has changed.
4722 	 */
4723 	nvme_ufm_update(nvme);
4724 
4725 	return (rv);
4726 }
4727 
4728 static int
4729 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
4730     int *rval_p)
4731 {
4732 #ifndef __lock_lint
4733 	_NOTE(ARGUNUSED(rval_p));
4734 #endif
4735 	minor_t minor = getminor(dev);
4736 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4737 	int nsid = NVME_MINOR_NSID(minor);
4738 	int rv = 0;
4739 	nvme_ioctl_t nioc;
4740 
4741 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
4742 		NULL,
4743 		nvme_ioctl_identify,
4744 		nvme_ioctl_identify,
4745 		nvme_ioctl_capabilities,
4746 		nvme_ioctl_get_logpage,
4747 		nvme_ioctl_get_features,
4748 		nvme_ioctl_intr_cnt,
4749 		nvme_ioctl_version,
4750 		nvme_ioctl_format,
4751 		nvme_ioctl_detach,
4752 		nvme_ioctl_attach,
4753 		nvme_ioctl_firmware_download,
4754 		nvme_ioctl_firmware_commit
4755 	};
4756 
4757 	if (nvme == NULL)
4758 		return (ENXIO);
4759 
4760 	if (nsid > nvme->n_namespace_count)
4761 		return (ENXIO);
4762 
4763 	if (IS_DEVCTL(cmd))
4764 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
4765 
4766 #ifdef _MULTI_DATAMODEL
4767 	switch (ddi_model_convert_from(mode & FMODELS)) {
4768 	case DDI_MODEL_ILP32: {
4769 		nvme_ioctl32_t nioc32;
4770 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
4771 		    mode) != 0)
4772 			return (EFAULT);
4773 		nioc.n_len = nioc32.n_len;
4774 		nioc.n_buf = nioc32.n_buf;
4775 		nioc.n_arg = nioc32.n_arg;
4776 		break;
4777 	}
4778 	case DDI_MODEL_NONE:
4779 #endif
4780 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
4781 		    != 0)
4782 			return (EFAULT);
4783 #ifdef _MULTI_DATAMODEL
4784 		break;
4785 	}
4786 #endif
4787 
4788 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
4789 		return (EIO);
4790 
4791 
4792 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
4793 		/*
4794 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
4795 		 * attachment point nodes.
4796 		 */
4797 		nsid = 0;
4798 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
4799 		/*
4800 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
4801 		 * will always return identify data for namespace 1.
4802 		 */
4803 		nsid = 1;
4804 	}
4805 
4806 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
4807 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
4808 		    cred_p);
4809 	else
4810 		rv = EINVAL;
4811 
4812 #ifdef _MULTI_DATAMODEL
4813 	switch (ddi_model_convert_from(mode & FMODELS)) {
4814 	case DDI_MODEL_ILP32: {
4815 		nvme_ioctl32_t nioc32;
4816 
4817 		nioc32.n_len = (size32_t)nioc.n_len;
4818 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
4819 		nioc32.n_arg = nioc.n_arg;
4820 
4821 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
4822 		    mode) != 0)
4823 			return (EFAULT);
4824 		break;
4825 	}
4826 	case DDI_MODEL_NONE:
4827 #endif
4828 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
4829 		    != 0)
4830 			return (EFAULT);
4831 #ifdef _MULTI_DATAMODEL
4832 		break;
4833 	}
4834 #endif
4835 
4836 	return (rv);
4837 }
4838 
4839 /*
4840  * DDI UFM Callbacks
4841  */
4842 static int
4843 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4844     ddi_ufm_image_t *img)
4845 {
4846 	nvme_t *nvme = arg;
4847 
4848 	if (imgno != 0)
4849 		return (EINVAL);
4850 
4851 	ddi_ufm_image_set_desc(img, "Firmware");
4852 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
4853 
4854 	return (0);
4855 }
4856 
4857 /*
4858  * Fill out firmware slot information for the requested slot.  The firmware
4859  * slot information is gathered by requesting the Firmware Slot Information log
4860  * page.  The format of the page is described in section 5.10.1.3.
4861  *
4862  * We lazily cache the log page on the first call and then invalidate the cache
4863  * data after a successful firmware download or firmware commit command.
4864  * The cached data is protected by a mutex as the state can change
4865  * asynchronous to this callback.
4866  */
4867 static int
4868 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4869     uint_t slotno, ddi_ufm_slot_t *slot)
4870 {
4871 	nvme_t *nvme = arg;
4872 	void *log = NULL;
4873 	size_t bufsize;
4874 	ddi_ufm_attr_t attr = 0;
4875 	char fw_ver[NVME_FWVER_SZ + 1];
4876 	int ret;
4877 
4878 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
4879 		return (EINVAL);
4880 
4881 	mutex_enter(&nvme->n_fwslot_mutex);
4882 	if (nvme->n_fwslot == NULL) {
4883 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
4884 		    NVME_LOGPAGE_FWSLOT, 0);
4885 		if (ret != DDI_SUCCESS ||
4886 		    bufsize != sizeof (nvme_fwslot_log_t)) {
4887 			if (log != NULL)
4888 				kmem_free(log, bufsize);
4889 			mutex_exit(&nvme->n_fwslot_mutex);
4890 			return (EIO);
4891 		}
4892 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
4893 	}
4894 
4895 	/*
4896 	 * NVMe numbers firmware slots starting at 1
4897 	 */
4898 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
4899 		attr |= DDI_UFM_ATTR_ACTIVE;
4900 
4901 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
4902 		attr |= DDI_UFM_ATTR_WRITEABLE;
4903 
4904 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
4905 		attr |= DDI_UFM_ATTR_EMPTY;
4906 	} else {
4907 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
4908 		    NVME_FWVER_SZ);
4909 		fw_ver[NVME_FWVER_SZ] = '\0';
4910 		ddi_ufm_slot_set_version(slot, fw_ver);
4911 	}
4912 	mutex_exit(&nvme->n_fwslot_mutex);
4913 
4914 	ddi_ufm_slot_set_attrs(slot, attr);
4915 
4916 	return (0);
4917 }
4918 
4919 static int
4920 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
4921 {
4922 	*caps = DDI_UFM_CAP_REPORT;
4923 	return (0);
4924 }
4925