1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. 14 * Copyright 2019 Unix Software Ltd. 15 * Copyright 2020 Joyent, Inc. 16 * Copyright 2020 Racktop Systems. 17 * Copyright 2023 Oxide Computer Company. 18 * Copyright 2022 OmniOS Community Edition (OmniOSce) Association. 19 * Copyright 2022 Tintri by DDN, Inc. All rights reserved. 20 */ 21 22 /* 23 * blkdev driver for NVMe compliant storage devices 24 * 25 * This driver targets and is designed to support all NVMe 1.x devices. 26 * Features are added to the driver as we encounter devices that require them 27 * and our needs, so some commands or log pages may not take advantage of newer 28 * features that devices support at this time. When you encounter such a case, 29 * it is generally fine to add that support to the driver as long as you take 30 * care to ensure that the requisite device version is met before using it. 31 * 32 * The driver has only been tested on x86 systems and will not work on big- 33 * endian systems without changes to the code accessing registers and data 34 * structures used by the hardware. 35 * 36 * 37 * Interrupt Usage: 38 * 39 * The driver will use a single interrupt while configuring the device as the 40 * specification requires, but contrary to the specification it will try to use 41 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it 42 * will switch to multiple-message MSI(-X) if supported. The driver wants to 43 * have one interrupt vector per CPU, but it will work correctly if less are 44 * available. Interrupts can be shared by queues, the interrupt handler will 45 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only 46 * the admin queue will share an interrupt with one I/O queue. The interrupt 47 * handler will retrieve completed commands from all queues sharing an interrupt 48 * vector and will post them to a taskq for completion processing. 49 * 50 * 51 * Command Processing: 52 * 53 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up 54 * to 65536 I/O commands. The driver will configure one I/O queue pair per 55 * available interrupt vector, with the queue length usually much smaller than 56 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer 57 * interrupt vectors will be used. 58 * 59 * Additionally the hardware provides a single special admin queue pair that can 60 * hold up to 4096 admin commands. 61 * 62 * From the hardware perspective both queues of a queue pair are independent, 63 * but they share some driver state: the command array (holding pointers to 64 * commands currently being processed by the hardware) and the active command 65 * counter. Access to a submission queue and the shared state is protected by 66 * nq_mutex; completion queue is protected by ncq_mutex. 67 * 68 * When a command is submitted to a queue pair the active command counter is 69 * incremented and a pointer to the command is stored in the command array. The 70 * array index is used as command identifier (CID) in the submission queue 71 * entry. Some commands may take a very long time to complete, and if the queue 72 * wraps around in that time a submission may find the next array slot to still 73 * be used by a long-running command. In this case the array is sequentially 74 * searched for the next free slot. The length of the command array is the same 75 * as the configured queue length. Queue overrun is prevented by the semaphore, 76 * so a command submission may block if the queue is full. 77 * 78 * 79 * Polled I/O Support: 80 * 81 * For kernel core dump support the driver can do polled I/O. As interrupts are 82 * turned off while dumping the driver will just submit a command in the regular 83 * way, and then repeatedly attempt a command retrieval until it gets the 84 * command back. 85 * 86 * 87 * Namespace Support: 88 * 89 * NVMe devices can have multiple namespaces, each being a independent data 90 * store. The driver supports multiple namespaces and creates a blkdev interface 91 * for each namespace found. Namespaces can have various attributes to support 92 * protection information. This driver does not support any of this and ignores 93 * namespaces that have these attributes. 94 * 95 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier 96 * (EUI64), and NVMe 1.2 introduced an additional 128bit Namespace Globally 97 * Unique Identifier (NGUID). This driver uses either the NGUID or the EUI64 98 * if present to generate the devid, and passes the EUI64 to blkdev to use it 99 * in the device node names. 100 * 101 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a 102 * single controller. This is an artificial limit imposed by the driver to be 103 * able to address a reasonable number of controllers and namespaces using a 104 * 32bit minor node number. 105 * 106 * 107 * Minor nodes: 108 * 109 * For each NVMe device the driver exposes one minor node for the controller and 110 * one minor node for each namespace. The only operations supported by those 111 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the 112 * interface for the nvmeadm(8) utility. 113 * 114 * Exclusive opens are required for certain ioctl(9E) operations that alter 115 * controller and/or namespace state. While different namespaces may be opened 116 * exclusively in parallel, an exclusive open of the controller minor node 117 * requires that no namespaces are currently open (exclusive or otherwise). 118 * Opening any namespace minor node (exclusive or otherwise) will fail while 119 * the controller minor node is opened exclusively by any other thread. Thus it 120 * is possible for one thread at a time to open the controller minor node 121 * exclusively, and keep it open while opening any namespace minor node of the 122 * same controller, exclusively or otherwise. 123 * 124 * 125 * 126 * Blkdev Interface: 127 * 128 * This driver uses blkdev to do all the heavy lifting involved with presenting 129 * a disk device to the system. As a result, the processing of I/O requests is 130 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA 131 * setup, and splitting of transfers into manageable chunks. 132 * 133 * I/O requests coming in from blkdev are turned into NVM commands and posted to 134 * an I/O queue. The queue is selected by taking the CPU id modulo the number of 135 * queues. There is currently no timeout handling of I/O commands. 136 * 137 * Blkdev also supports querying device/media information and generating a 138 * devid. The driver reports the best block size as determined by the namespace 139 * format back to blkdev as physical block size to support partition and block 140 * alignment. The devid is either based on the namespace GUID or EUI64, if 141 * present, or composed using the device vendor ID, model number, serial number, 142 * and the namespace ID. 143 * 144 * 145 * Error Handling: 146 * 147 * Error handling is currently limited to detecting fatal hardware errors, 148 * either by asynchronous events, or synchronously through command status or 149 * admin command timeouts. In case of severe errors the device is fenced off, 150 * all further requests will return EIO. FMA is then called to fault the device. 151 * 152 * The hardware has a limit for outstanding asynchronous event requests. Before 153 * this limit is known the driver assumes it is at least 1 and posts a single 154 * asynchronous request. Later when the limit is known more asynchronous event 155 * requests are posted to allow quicker reception of error information. When an 156 * asynchronous event is posted by the hardware the driver will parse the error 157 * status fields and log information or fault the device, depending on the 158 * severity of the asynchronous event. The asynchronous event request is then 159 * reused and posted to the admin queue again. 160 * 161 * On command completion the command status is checked for errors. In case of 162 * errors indicating a driver bug the driver panics. Almost all other error 163 * status values just cause EIO to be returned. 164 * 165 * Command timeouts are currently detected for all admin commands except 166 * asynchronous event requests. If a command times out and the hardware appears 167 * to be healthy the driver attempts to abort the command. The original command 168 * timeout is also applied to the abort command. If the abort times out too the 169 * driver assumes the device to be dead, fences it off, and calls FMA to retire 170 * it. In all other cases the aborted command should return immediately with a 171 * status indicating it was aborted, and the driver will wait indefinitely for 172 * that to happen. No timeout handling of normal I/O commands is presently done. 173 * 174 * Any command that times out due to the controller dropping dead will be put on 175 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA 176 * memory being reused by the system and later be written to by a "dead" NVMe 177 * controller. 178 * 179 * 180 * Locking: 181 * 182 * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held 183 * when accessing shared state and submission queue registers, ncq_mutex 184 * is held when accessing completion queue state and registers. 185 * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while 186 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both 187 * mutexes themselves. 188 * 189 * Each command also has its own nc_mutex, which is associated with the 190 * condition variable nc_cv. It is only used on admin commands which are run 191 * synchronously. In that case it must be held across calls to 192 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by 193 * nvme_admin_cmd(). It must also be held whenever the completion state of the 194 * command is changed or while a admin command timeout is handled. 195 * 196 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first. 197 * More than one nc_mutex may only be held when aborting commands. In this case, 198 * the nc_mutex of the command to be aborted must be held across the call to 199 * nvme_abort_cmd() to prevent the command from completing while the abort is in 200 * progress. 201 * 202 * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be 203 * acquired first. More than one nq_mutex is never held by a single thread. 204 * The ncq_mutex is only held by nvme_retrieve_cmd() and 205 * nvme_process_iocq(). nvme_process_iocq() is only called from the 206 * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the 207 * mutex is non-contentious but is required for implementation completeness 208 * and safety. 209 * 210 * There is one mutex n_minor_mutex which protects all open flags nm_open and 211 * exclusive-open thread pointers nm_oexcl of each minor node associated with a 212 * controller and its namespaces. 213 * 214 * In addition, there is one mutex n_mgmt_mutex which must be held whenever the 215 * driver state for any namespace is changed, especially across calls to 216 * nvme_init_ns(), nvme_attach_ns() and nvme_detach_ns(). Except when detaching 217 * nvme, it should also be held across calls that modify the blkdev handle of a 218 * namespace. Command and queue mutexes may be acquired and released while 219 * n_mgmt_mutex is held, n_minor_mutex should not. 220 * 221 * 222 * Quiesce / Fast Reboot: 223 * 224 * The driver currently does not support fast reboot. A quiesce(9E) entry point 225 * is still provided which is used to send a shutdown notification to the 226 * device. 227 * 228 * 229 * NVMe Hotplug: 230 * 231 * The driver supports hot removal. The driver uses the NDI event framework 232 * to register a callback, nvme_remove_callback, to clean up when a disk is 233 * removed. In particular, the driver will unqueue outstanding I/O commands and 234 * set n_dead on the softstate to true so that other operations, such as ioctls 235 * and command submissions, fail as well. 236 * 237 * While the callback registration relies on the NDI event framework, the 238 * removal event itself is kicked off in the PCIe hotplug framework, when the 239 * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a 240 * device was removed from the slot. 241 * 242 * The NVMe driver instance itself will remain until the final close of the 243 * device. 244 * 245 * 246 * DDI UFM Support 247 * 248 * The driver supports the DDI UFM framework for reporting information about 249 * the device's firmware image and slot configuration. This data can be 250 * queried by userland software via ioctls to the ufm driver. For more 251 * information, see ddi_ufm(9E). 252 * 253 * 254 * Driver Configuration: 255 * 256 * The following driver properties can be changed to control some aspects of the 257 * drivers operation: 258 * - strict-version: can be set to 0 to allow devices conforming to newer 259 * major versions to be used 260 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor 261 * specific command status as a fatal error leading device faulting 262 * - admin-queue-len: the maximum length of the admin queue (16-4096) 263 * - io-squeue-len: the maximum length of the I/O submission queues (16-65536) 264 * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536) 265 * - async-event-limit: the maximum number of asynchronous event requests to be 266 * posted by the driver 267 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write 268 * cache 269 * - min-phys-block-size: the minimum physical block size to report to blkdev, 270 * which is among other things the basis for ZFS vdev ashift 271 * - max-submission-queues: the maximum number of I/O submission queues. 272 * - max-completion-queues: the maximum number of I/O completion queues, 273 * can be less than max-submission-queues, in which case the completion 274 * queues are shared. 275 * 276 * In addition to the above properties, some device-specific tunables can be 277 * configured using the nvme-config-list global property. The value of this 278 * property is a list of triplets. The formal syntax is: 279 * 280 * nvme-config-list ::= <triplet> [, <triplet>]* ; 281 * <triplet> ::= "<model>" , "<rev-list>" , "<tuple-list>" 282 * <rev-list> ::= [ <fwrev> [, <fwrev>]*] 283 * <tuple-list> ::= <tunable> [, <tunable>]* 284 * <tunable> ::= <name> : <value> 285 * 286 * The <model> and <fwrev> are the strings in nvme_identify_ctrl_t`id_model and 287 * nvme_identify_ctrl_t`id_fwrev, respectively. The remainder of <tuple-list> 288 * contains one or more tunables to apply to all controllers that match the 289 * specified model number and optionally firmware revision. Each <tunable> is a 290 * <name> : <value> pair. Supported tunables are: 291 * 292 * - ignore-unknown-vendor-status: can be set to "on" to not handle any vendor 293 * specific command status as a fatal error leading device faulting 294 * 295 * - min-phys-block-size: the minimum physical block size to report to blkdev, 296 * which is among other things the basis for ZFS vdev ashift 297 * 298 * - volatile-write-cache: can be set to "on" or "off" to enable or disable the 299 * volatile write cache, if present 300 * 301 * 302 * TODO: 303 * - figure out sane default for I/O queue depth reported to blkdev 304 * - FMA handling of media errors 305 * - support for devices supporting very large I/O requests using chained PRPs 306 * - support for configuring hardware parameters like interrupt coalescing 307 * - support for media formatting and hard partitioning into namespaces 308 * - support for big-endian systems 309 * - support for fast reboot 310 * - support for NVMe Subsystem Reset (1.1) 311 * - support for Scatter/Gather lists (1.1) 312 * - support for Reservations (1.1) 313 * - support for power management 314 */ 315 316 #include <sys/byteorder.h> 317 #ifdef _BIG_ENDIAN 318 #error nvme driver needs porting for big-endian platforms 319 #endif 320 321 #include <sys/modctl.h> 322 #include <sys/conf.h> 323 #include <sys/devops.h> 324 #include <sys/ddi.h> 325 #include <sys/ddi_ufm.h> 326 #include <sys/sunddi.h> 327 #include <sys/sunndi.h> 328 #include <sys/bitmap.h> 329 #include <sys/sysmacros.h> 330 #include <sys/param.h> 331 #include <sys/varargs.h> 332 #include <sys/cpuvar.h> 333 #include <sys/disp.h> 334 #include <sys/blkdev.h> 335 #include <sys/atomic.h> 336 #include <sys/archsystm.h> 337 #include <sys/sata/sata_hba.h> 338 #include <sys/stat.h> 339 #include <sys/policy.h> 340 #include <sys/list.h> 341 #include <sys/dkio.h> 342 343 #include <sys/nvme.h> 344 345 #ifdef __x86 346 #include <sys/x86_archext.h> 347 #endif 348 349 #include "nvme_reg.h" 350 #include "nvme_var.h" 351 352 /* 353 * Assertions to make sure that we've properly captured various aspects of the 354 * packed structures and haven't broken them during updates. 355 */ 356 CTASSERT(sizeof (nvme_identify_ctrl_t) == NVME_IDENTIFY_BUFSIZE); 357 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256); 358 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512); 359 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520); 360 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768); 361 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792); 362 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048); 363 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072); 364 365 CTASSERT(sizeof (nvme_identify_nsid_t) == NVME_IDENTIFY_BUFSIZE); 366 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32); 367 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92); 368 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104); 369 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128); 370 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384); 371 372 CTASSERT(sizeof (nvme_identify_nsid_list_t) == NVME_IDENTIFY_BUFSIZE); 373 CTASSERT(sizeof (nvme_identify_ctrl_list_t) == NVME_IDENTIFY_BUFSIZE); 374 375 CTASSERT(sizeof (nvme_identify_primary_caps_t) == NVME_IDENTIFY_BUFSIZE); 376 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32); 377 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64); 378 379 CTASSERT(sizeof (nvme_nschange_list_t) == 4096); 380 381 382 /* NVMe spec version supported */ 383 static const int nvme_version_major = 1; 384 385 /* tunable for admin command timeout in seconds, default is 1s */ 386 int nvme_admin_cmd_timeout = 1; 387 388 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */ 389 int nvme_format_cmd_timeout = 600; 390 391 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */ 392 int nvme_commit_save_cmd_timeout = 15; 393 394 /* 395 * tunable for the size of arbitrary vendor specific admin commands, 396 * default is 16MiB. 397 */ 398 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24; 399 400 /* 401 * tunable for the max timeout of arbitary vendor specific admin commands, 402 * default is 60s. 403 */ 404 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60; 405 406 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); 407 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); 408 static int nvme_quiesce(dev_info_t *); 409 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); 410 static int nvme_setup_interrupts(nvme_t *, int, int); 411 static void nvme_release_interrupts(nvme_t *); 412 static uint_t nvme_intr(caddr_t, caddr_t); 413 414 static void nvme_shutdown(nvme_t *, int, boolean_t); 415 static boolean_t nvme_reset(nvme_t *, boolean_t); 416 static int nvme_init(nvme_t *); 417 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); 418 static void nvme_free_cmd(nvme_cmd_t *); 419 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, 420 bd_xfer_t *); 421 static void nvme_admin_cmd(nvme_cmd_t *, int); 422 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *); 423 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *); 424 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *); 425 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int); 426 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); 427 static void nvme_wait_cmd(nvme_cmd_t *, uint_t); 428 static void nvme_wakeup_cmd(void *); 429 static void nvme_async_event_task(void *); 430 431 static int nvme_check_unknown_cmd_status(nvme_cmd_t *); 432 static int nvme_check_vendor_cmd_status(nvme_cmd_t *); 433 static int nvme_check_integrity_cmd_status(nvme_cmd_t *); 434 static int nvme_check_specific_cmd_status(nvme_cmd_t *); 435 static int nvme_check_generic_cmd_status(nvme_cmd_t *); 436 static inline int nvme_check_cmd_status(nvme_cmd_t *); 437 438 static int nvme_abort_cmd(nvme_cmd_t *, uint_t); 439 static void nvme_async_event(nvme_t *); 440 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t, 441 uint8_t, boolean_t, uint8_t); 442 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t, 443 ...); 444 static int nvme_identify(nvme_t *, boolean_t, uint32_t, uint8_t, void **); 445 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t, 446 uint32_t *); 447 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *, 448 void **, size_t *); 449 static int nvme_write_cache_set(nvme_t *, boolean_t); 450 static int nvme_set_nqueues(nvme_t *); 451 452 static void nvme_free_dma(nvme_dma_t *); 453 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, 454 nvme_dma_t **); 455 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, 456 nvme_dma_t **); 457 static void nvme_free_qpair(nvme_qpair_t *); 458 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t); 459 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); 460 461 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); 462 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); 463 static inline uint64_t nvme_get64(nvme_t *, uintptr_t); 464 static inline uint32_t nvme_get32(nvme_t *, uintptr_t); 465 466 static boolean_t nvme_check_regs_hdl(nvme_t *); 467 static boolean_t nvme_check_dma_hdl(nvme_dma_t *); 468 469 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t); 470 471 static void nvme_bd_xfer_done(void *); 472 static void nvme_bd_driveinfo(void *, bd_drive_t *); 473 static int nvme_bd_mediainfo(void *, bd_media_t *); 474 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); 475 static int nvme_bd_read(void *, bd_xfer_t *); 476 static int nvme_bd_write(void *, bd_xfer_t *); 477 static int nvme_bd_sync(void *, bd_xfer_t *); 478 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); 479 static int nvme_bd_free_space(void *, bd_xfer_t *); 480 481 static int nvme_prp_dma_constructor(void *, void *, int); 482 static void nvme_prp_dma_destructor(void *, void *); 483 484 static void nvme_prepare_devid(nvme_t *, uint32_t); 485 486 /* DDI UFM callbacks */ 487 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t, 488 ddi_ufm_image_t *); 489 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t, 490 ddi_ufm_slot_t *); 491 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *); 492 493 static int nvme_open(dev_t *, int, int, cred_t *); 494 static int nvme_close(dev_t, int, int, cred_t *); 495 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 496 497 static int nvme_init_ns(nvme_t *, int); 498 static int nvme_attach_ns(nvme_t *, int); 499 static int nvme_detach_ns(nvme_t *, int); 500 501 #define NVME_NSID2NS(nvme, nsid) (&((nvme)->n_ns[(nsid) - 1])) 502 503 static ddi_ufm_ops_t nvme_ufm_ops = { 504 NULL, 505 nvme_ufm_fill_image, 506 nvme_ufm_fill_slot, 507 nvme_ufm_getcaps 508 }; 509 510 #define NVME_MINOR_INST_SHIFT 9 511 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid)) 512 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT) 513 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1)) 514 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2) 515 #define NVME_IS_VENDOR_SPECIFIC_CMD(x) (((x) >= 0xC0) && ((x) <= 0xFF)) 516 #define NVME_VENDOR_SPECIFIC_LOGPAGE_MIN 0xC0 517 #define NVME_VENDOR_SPECIFIC_LOGPAGE_MAX 0xFF 518 #define NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x) \ 519 (((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \ 520 ((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX)) 521 522 /* 523 * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX 524 * DWords in size. However, revision 1.3 also modified the layout of the Get Log 525 * Page command significantly relative to version 1.2, including changing 526 * reserved bits, adding new bitfields, and requiring the use of command DWord 527 * 11 to fully specify the size of the log page (the lower and upper 16 bits of 528 * the number of DWords in the page are split between DWord 10 and DWord 11, 529 * respectively). 530 * 531 * All of these impose significantly different layout requirements on the 532 * `nvme_getlogpage_t` type. This could be solved with two different types, or a 533 * complicated/nested union with the two versions as the overlying members. Both 534 * of these are reasonable, if a bit convoluted. However, these is no current 535 * need for such large pages, or a way to test them, as most log pages actually 536 * fit within the current size limit. So for simplicity, we retain the size cap 537 * from version 1.2. 538 * 539 * Note that the number of DWords is zero-based, so we add 1. It is subtracted 540 * to form a zero-based value in `nvme_get_logpage`. 541 */ 542 #define NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE \ 543 (((1 << 12) + 1) * sizeof (uint32_t)) 544 545 static void *nvme_state; 546 static kmem_cache_t *nvme_cmd_cache; 547 548 /* 549 * DMA attributes for queue DMA memory 550 * 551 * Queue DMA memory must be page aligned. The maximum length of a queue is 552 * 65536 entries, and an entry can be 64 bytes long. 553 */ 554 static ddi_dma_attr_t nvme_queue_dma_attr = { 555 .dma_attr_version = DMA_ATTR_V0, 556 .dma_attr_addr_lo = 0, 557 .dma_attr_addr_hi = 0xffffffffffffffffULL, 558 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, 559 .dma_attr_align = 0x1000, 560 .dma_attr_burstsizes = 0x7ff, 561 .dma_attr_minxfer = 0x1000, 562 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 563 .dma_attr_seg = 0xffffffffffffffffULL, 564 .dma_attr_sgllen = 1, 565 .dma_attr_granular = 1, 566 .dma_attr_flags = 0, 567 }; 568 569 /* 570 * DMA attributes for transfers using Physical Region Page (PRP) entries 571 * 572 * A PRP entry describes one page of DMA memory using the page size specified 573 * in the controller configuration's memory page size register (CC.MPS). It uses 574 * a 64bit base address aligned to this page size. There is no limitation on 575 * chaining PRPs together for arbitrarily large DMA transfers. 576 */ 577 static ddi_dma_attr_t nvme_prp_dma_attr = { 578 .dma_attr_version = DMA_ATTR_V0, 579 .dma_attr_addr_lo = 0, 580 .dma_attr_addr_hi = 0xffffffffffffffffULL, 581 .dma_attr_count_max = 0xfff, 582 .dma_attr_align = 0x1000, 583 .dma_attr_burstsizes = 0x7ff, 584 .dma_attr_minxfer = 0x1000, 585 .dma_attr_maxxfer = 0x1000, 586 .dma_attr_seg = 0xfff, 587 .dma_attr_sgllen = -1, 588 .dma_attr_granular = 1, 589 .dma_attr_flags = 0, 590 }; 591 592 /* 593 * DMA attributes for transfers using scatter/gather lists 594 * 595 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a 596 * 32bit length field. SGL Segment and SGL Last Segment entries require the 597 * length to be a multiple of 16 bytes. 598 */ 599 static ddi_dma_attr_t nvme_sgl_dma_attr = { 600 .dma_attr_version = DMA_ATTR_V0, 601 .dma_attr_addr_lo = 0, 602 .dma_attr_addr_hi = 0xffffffffffffffffULL, 603 .dma_attr_count_max = 0xffffffffUL, 604 .dma_attr_align = 1, 605 .dma_attr_burstsizes = 0x7ff, 606 .dma_attr_minxfer = 0x10, 607 .dma_attr_maxxfer = 0xfffffffffULL, 608 .dma_attr_seg = 0xffffffffffffffffULL, 609 .dma_attr_sgllen = -1, 610 .dma_attr_granular = 0x10, 611 .dma_attr_flags = 0 612 }; 613 614 static ddi_device_acc_attr_t nvme_reg_acc_attr = { 615 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 616 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 617 .devacc_attr_dataorder = DDI_STRICTORDER_ACC 618 }; 619 620 static struct cb_ops nvme_cb_ops = { 621 .cb_open = nvme_open, 622 .cb_close = nvme_close, 623 .cb_strategy = nodev, 624 .cb_print = nodev, 625 .cb_dump = nodev, 626 .cb_read = nodev, 627 .cb_write = nodev, 628 .cb_ioctl = nvme_ioctl, 629 .cb_devmap = nodev, 630 .cb_mmap = nodev, 631 .cb_segmap = nodev, 632 .cb_chpoll = nochpoll, 633 .cb_prop_op = ddi_prop_op, 634 .cb_str = 0, 635 .cb_flag = D_NEW | D_MP, 636 .cb_rev = CB_REV, 637 .cb_aread = nodev, 638 .cb_awrite = nodev 639 }; 640 641 static struct dev_ops nvme_dev_ops = { 642 .devo_rev = DEVO_REV, 643 .devo_refcnt = 0, 644 .devo_getinfo = ddi_no_info, 645 .devo_identify = nulldev, 646 .devo_probe = nulldev, 647 .devo_attach = nvme_attach, 648 .devo_detach = nvme_detach, 649 .devo_reset = nodev, 650 .devo_cb_ops = &nvme_cb_ops, 651 .devo_bus_ops = NULL, 652 .devo_power = NULL, 653 .devo_quiesce = nvme_quiesce, 654 }; 655 656 static struct modldrv nvme_modldrv = { 657 .drv_modops = &mod_driverops, 658 .drv_linkinfo = "NVMe v1.1b", 659 .drv_dev_ops = &nvme_dev_ops 660 }; 661 662 static struct modlinkage nvme_modlinkage = { 663 .ml_rev = MODREV_1, 664 .ml_linkage = { &nvme_modldrv, NULL } 665 }; 666 667 static bd_ops_t nvme_bd_ops = { 668 .o_version = BD_OPS_CURRENT_VERSION, 669 .o_drive_info = nvme_bd_driveinfo, 670 .o_media_info = nvme_bd_mediainfo, 671 .o_devid_init = nvme_bd_devid, 672 .o_sync_cache = nvme_bd_sync, 673 .o_read = nvme_bd_read, 674 .o_write = nvme_bd_write, 675 .o_free_space = nvme_bd_free_space, 676 }; 677 678 /* 679 * This list will hold commands that have timed out and couldn't be aborted. 680 * As we don't know what the hardware may still do with the DMA memory we can't 681 * free them, so we'll keep them forever on this list where we can easily look 682 * at them with mdb. 683 */ 684 static struct list nvme_lost_cmds; 685 static kmutex_t nvme_lc_mutex; 686 687 int 688 _init(void) 689 { 690 int error; 691 692 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); 693 if (error != DDI_SUCCESS) 694 return (error); 695 696 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", 697 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 698 699 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL); 700 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t), 701 offsetof(nvme_cmd_t, nc_list)); 702 703 bd_mod_init(&nvme_dev_ops); 704 705 error = mod_install(&nvme_modlinkage); 706 if (error != DDI_SUCCESS) { 707 ddi_soft_state_fini(&nvme_state); 708 mutex_destroy(&nvme_lc_mutex); 709 list_destroy(&nvme_lost_cmds); 710 bd_mod_fini(&nvme_dev_ops); 711 } 712 713 return (error); 714 } 715 716 int 717 _fini(void) 718 { 719 int error; 720 721 if (!list_is_empty(&nvme_lost_cmds)) 722 return (DDI_FAILURE); 723 724 error = mod_remove(&nvme_modlinkage); 725 if (error == DDI_SUCCESS) { 726 ddi_soft_state_fini(&nvme_state); 727 kmem_cache_destroy(nvme_cmd_cache); 728 mutex_destroy(&nvme_lc_mutex); 729 list_destroy(&nvme_lost_cmds); 730 bd_mod_fini(&nvme_dev_ops); 731 } 732 733 return (error); 734 } 735 736 int 737 _info(struct modinfo *modinfop) 738 { 739 return (mod_info(&nvme_modlinkage, modinfop)); 740 } 741 742 static inline void 743 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) 744 { 745 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 746 747 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 748 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); 749 } 750 751 static inline void 752 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) 753 { 754 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 755 756 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 757 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); 758 } 759 760 static inline uint64_t 761 nvme_get64(nvme_t *nvme, uintptr_t reg) 762 { 763 uint64_t val; 764 765 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 766 767 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 768 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); 769 770 return (val); 771 } 772 773 static inline uint32_t 774 nvme_get32(nvme_t *nvme, uintptr_t reg) 775 { 776 uint32_t val; 777 778 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 779 780 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 781 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); 782 783 return (val); 784 } 785 786 static boolean_t 787 nvme_check_regs_hdl(nvme_t *nvme) 788 { 789 ddi_fm_error_t error; 790 791 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); 792 793 if (error.fme_status != DDI_FM_OK) 794 return (B_TRUE); 795 796 return (B_FALSE); 797 } 798 799 static boolean_t 800 nvme_check_dma_hdl(nvme_dma_t *dma) 801 { 802 ddi_fm_error_t error; 803 804 if (dma == NULL) 805 return (B_FALSE); 806 807 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); 808 809 if (error.fme_status != DDI_FM_OK) 810 return (B_TRUE); 811 812 return (B_FALSE); 813 } 814 815 static void 816 nvme_free_dma_common(nvme_dma_t *dma) 817 { 818 if (dma->nd_dmah != NULL) 819 (void) ddi_dma_unbind_handle(dma->nd_dmah); 820 if (dma->nd_acch != NULL) 821 ddi_dma_mem_free(&dma->nd_acch); 822 if (dma->nd_dmah != NULL) 823 ddi_dma_free_handle(&dma->nd_dmah); 824 } 825 826 static void 827 nvme_free_dma(nvme_dma_t *dma) 828 { 829 nvme_free_dma_common(dma); 830 kmem_free(dma, sizeof (*dma)); 831 } 832 833 /* ARGSUSED */ 834 static void 835 nvme_prp_dma_destructor(void *buf, void *private) 836 { 837 nvme_dma_t *dma = (nvme_dma_t *)buf; 838 839 nvme_free_dma_common(dma); 840 } 841 842 static int 843 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, 844 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) 845 { 846 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, 847 &dma->nd_dmah) != DDI_SUCCESS) { 848 /* 849 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and 850 * the only other possible error is DDI_DMA_BADATTR which 851 * indicates a driver bug which should cause a panic. 852 */ 853 dev_err(nvme->n_dip, CE_PANIC, 854 "!failed to get DMA handle, check DMA attributes"); 855 return (DDI_FAILURE); 856 } 857 858 /* 859 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified 860 * or the flags are conflicting, which isn't the case here. 861 */ 862 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, 863 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, 864 &dma->nd_len, &dma->nd_acch); 865 866 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, 867 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 868 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { 869 dev_err(nvme->n_dip, CE_WARN, 870 "!failed to bind DMA memory"); 871 atomic_inc_32(&nvme->n_dma_bind_err); 872 nvme_free_dma_common(dma); 873 return (DDI_FAILURE); 874 } 875 876 return (DDI_SUCCESS); 877 } 878 879 static int 880 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, 881 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) 882 { 883 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); 884 885 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != 886 DDI_SUCCESS) { 887 *ret = NULL; 888 kmem_free(dma, sizeof (nvme_dma_t)); 889 return (DDI_FAILURE); 890 } 891 892 bzero(dma->nd_memp, dma->nd_len); 893 894 *ret = dma; 895 return (DDI_SUCCESS); 896 } 897 898 /* ARGSUSED */ 899 static int 900 nvme_prp_dma_constructor(void *buf, void *private, int flags) 901 { 902 nvme_dma_t *dma = (nvme_dma_t *)buf; 903 nvme_t *nvme = (nvme_t *)private; 904 905 dma->nd_dmah = NULL; 906 dma->nd_acch = NULL; 907 908 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, 909 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { 910 return (-1); 911 } 912 913 ASSERT(dma->nd_ncookie == 1); 914 915 dma->nd_cached = B_TRUE; 916 917 return (0); 918 } 919 920 static int 921 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, 922 uint_t flags, nvme_dma_t **dma) 923 { 924 uint32_t len = nentry * qe_len; 925 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; 926 927 len = roundup(len, nvme->n_pagesize); 928 929 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) 930 != DDI_SUCCESS) { 931 dev_err(nvme->n_dip, CE_WARN, 932 "!failed to get DMA memory for queue"); 933 goto fail; 934 } 935 936 if ((*dma)->nd_ncookie != 1) { 937 dev_err(nvme->n_dip, CE_WARN, 938 "!got too many cookies for queue DMA"); 939 goto fail; 940 } 941 942 return (DDI_SUCCESS); 943 944 fail: 945 if (*dma) { 946 nvme_free_dma(*dma); 947 *dma = NULL; 948 } 949 950 return (DDI_FAILURE); 951 } 952 953 static void 954 nvme_free_cq(nvme_cq_t *cq) 955 { 956 mutex_destroy(&cq->ncq_mutex); 957 958 if (cq->ncq_cmd_taskq != NULL) 959 taskq_destroy(cq->ncq_cmd_taskq); 960 961 if (cq->ncq_dma != NULL) 962 nvme_free_dma(cq->ncq_dma); 963 964 kmem_free(cq, sizeof (*cq)); 965 } 966 967 static void 968 nvme_free_qpair(nvme_qpair_t *qp) 969 { 970 int i; 971 972 mutex_destroy(&qp->nq_mutex); 973 sema_destroy(&qp->nq_sema); 974 975 if (qp->nq_sqdma != NULL) 976 nvme_free_dma(qp->nq_sqdma); 977 978 if (qp->nq_active_cmds > 0) 979 for (i = 0; i != qp->nq_nentry; i++) 980 if (qp->nq_cmd[i] != NULL) 981 nvme_free_cmd(qp->nq_cmd[i]); 982 983 if (qp->nq_cmd != NULL) 984 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); 985 986 kmem_free(qp, sizeof (nvme_qpair_t)); 987 } 988 989 /* 990 * Destroy the pre-allocated cq array, but only free individual completion 991 * queues from the given starting index. 992 */ 993 static void 994 nvme_destroy_cq_array(nvme_t *nvme, uint_t start) 995 { 996 uint_t i; 997 998 for (i = start; i < nvme->n_cq_count; i++) 999 if (nvme->n_cq[i] != NULL) 1000 nvme_free_cq(nvme->n_cq[i]); 1001 1002 kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count); 1003 } 1004 1005 static int 1006 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx, 1007 uint_t nthr) 1008 { 1009 nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP); 1010 char name[64]; /* large enough for the taskq name */ 1011 1012 mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER, 1013 DDI_INTR_PRI(nvme->n_intr_pri)); 1014 1015 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), 1016 DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS) 1017 goto fail; 1018 1019 cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp; 1020 cq->ncq_nentry = nentry; 1021 cq->ncq_id = idx; 1022 cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx); 1023 1024 /* 1025 * Each completion queue has its own command taskq. 1026 */ 1027 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u", 1028 ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx); 1029 1030 cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX, 1031 TASKQ_PREPOPULATE); 1032 1033 if (cq->ncq_cmd_taskq == NULL) { 1034 dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd " 1035 "taskq for cq %u", idx); 1036 goto fail; 1037 } 1038 1039 *cqp = cq; 1040 return (DDI_SUCCESS); 1041 1042 fail: 1043 nvme_free_cq(cq); 1044 *cqp = NULL; 1045 1046 return (DDI_FAILURE); 1047 } 1048 1049 /* 1050 * Create the n_cq array big enough to hold "ncq" completion queues. 1051 * If the array already exists it will be re-sized (but only larger). 1052 * The admin queue is included in this array, which boosts the 1053 * max number of entries to UINT16_MAX + 1. 1054 */ 1055 static int 1056 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr) 1057 { 1058 nvme_cq_t **cq; 1059 uint_t i, cq_count; 1060 1061 ASSERT3U(ncq, >, nvme->n_cq_count); 1062 1063 cq = nvme->n_cq; 1064 cq_count = nvme->n_cq_count; 1065 1066 nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP); 1067 nvme->n_cq_count = ncq; 1068 1069 for (i = 0; i < cq_count; i++) 1070 nvme->n_cq[i] = cq[i]; 1071 1072 for (; i < nvme->n_cq_count; i++) 1073 if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) != 1074 DDI_SUCCESS) 1075 goto fail; 1076 1077 if (cq != NULL) 1078 kmem_free(cq, sizeof (*cq) * cq_count); 1079 1080 return (DDI_SUCCESS); 1081 1082 fail: 1083 nvme_destroy_cq_array(nvme, cq_count); 1084 /* 1085 * Restore the original array 1086 */ 1087 nvme->n_cq_count = cq_count; 1088 nvme->n_cq = cq; 1089 1090 return (DDI_FAILURE); 1091 } 1092 1093 static int 1094 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, 1095 uint_t idx) 1096 { 1097 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); 1098 uint_t cq_idx; 1099 1100 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, 1101 DDI_INTR_PRI(nvme->n_intr_pri)); 1102 1103 /* 1104 * The NVMe spec defines that a full queue has one empty (unused) slot; 1105 * initialize the semaphore accordingly. 1106 */ 1107 sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL); 1108 1109 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), 1110 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) 1111 goto fail; 1112 1113 /* 1114 * idx == 0 is adminq, those above 0 are shared io completion queues. 1115 */ 1116 cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1); 1117 qp->nq_cq = nvme->n_cq[cq_idx]; 1118 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; 1119 qp->nq_nentry = nentry; 1120 1121 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); 1122 1123 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); 1124 qp->nq_next_cmd = 0; 1125 1126 *nqp = qp; 1127 return (DDI_SUCCESS); 1128 1129 fail: 1130 nvme_free_qpair(qp); 1131 *nqp = NULL; 1132 1133 return (DDI_FAILURE); 1134 } 1135 1136 static nvme_cmd_t * 1137 nvme_alloc_cmd(nvme_t *nvme, int kmflag) 1138 { 1139 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); 1140 1141 if (cmd == NULL) 1142 return (cmd); 1143 1144 bzero(cmd, sizeof (nvme_cmd_t)); 1145 1146 cmd->nc_nvme = nvme; 1147 1148 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, 1149 DDI_INTR_PRI(nvme->n_intr_pri)); 1150 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); 1151 1152 return (cmd); 1153 } 1154 1155 static void 1156 nvme_free_cmd(nvme_cmd_t *cmd) 1157 { 1158 /* Don't free commands on the lost commands list. */ 1159 if (list_link_active(&cmd->nc_list)) 1160 return; 1161 1162 if (cmd->nc_dma) { 1163 nvme_free_dma(cmd->nc_dma); 1164 cmd->nc_dma = NULL; 1165 } 1166 1167 if (cmd->nc_prp) { 1168 kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp); 1169 cmd->nc_prp = NULL; 1170 } 1171 1172 cv_destroy(&cmd->nc_cv); 1173 mutex_destroy(&cmd->nc_mutex); 1174 1175 kmem_cache_free(nvme_cmd_cache, cmd); 1176 } 1177 1178 static void 1179 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1180 { 1181 sema_p(&qp->nq_sema); 1182 nvme_submit_cmd_common(qp, cmd); 1183 } 1184 1185 static int 1186 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1187 { 1188 if (cmd->nc_nvme->n_dead) { 1189 return (EIO); 1190 } 1191 1192 if (sema_tryp(&qp->nq_sema) == 0) 1193 return (EAGAIN); 1194 1195 nvme_submit_cmd_common(qp, cmd); 1196 return (0); 1197 } 1198 1199 static void 1200 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1201 { 1202 nvme_reg_sqtdbl_t tail = { 0 }; 1203 1204 mutex_enter(&qp->nq_mutex); 1205 cmd->nc_completed = B_FALSE; 1206 1207 /* 1208 * Now that we hold the queue pair lock, we must check whether or not 1209 * the controller has been listed as dead (e.g. was removed due to 1210 * hotplug). This is necessary as otherwise we could race with 1211 * nvme_remove_callback(). Because this has not been enqueued, we don't 1212 * call nvme_unqueue_cmd(), which is why we must manually decrement the 1213 * semaphore. 1214 */ 1215 if (cmd->nc_nvme->n_dead) { 1216 taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback, 1217 cmd, TQ_NOSLEEP, &cmd->nc_tqent); 1218 sema_v(&qp->nq_sema); 1219 mutex_exit(&qp->nq_mutex); 1220 return; 1221 } 1222 1223 /* 1224 * Try to insert the cmd into the active cmd array at the nq_next_cmd 1225 * slot. If the slot is already occupied advance to the next slot and 1226 * try again. This can happen for long running commands like async event 1227 * requests. 1228 */ 1229 while (qp->nq_cmd[qp->nq_next_cmd] != NULL) 1230 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 1231 qp->nq_cmd[qp->nq_next_cmd] = cmd; 1232 1233 qp->nq_active_cmds++; 1234 1235 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; 1236 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); 1237 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, 1238 sizeof (nvme_sqe_t) * qp->nq_sqtail, 1239 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); 1240 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 1241 1242 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; 1243 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); 1244 1245 mutex_exit(&qp->nq_mutex); 1246 } 1247 1248 static nvme_cmd_t * 1249 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid) 1250 { 1251 nvme_cmd_t *cmd; 1252 1253 ASSERT(mutex_owned(&qp->nq_mutex)); 1254 ASSERT3S(cid, <, qp->nq_nentry); 1255 1256 cmd = qp->nq_cmd[cid]; 1257 qp->nq_cmd[cid] = NULL; 1258 ASSERT3U(qp->nq_active_cmds, >, 0); 1259 qp->nq_active_cmds--; 1260 sema_v(&qp->nq_sema); 1261 1262 ASSERT3P(cmd, !=, NULL); 1263 ASSERT3P(cmd->nc_nvme, ==, nvme); 1264 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid); 1265 1266 return (cmd); 1267 } 1268 1269 /* 1270 * Get the command tied to the next completed cqe and bump along completion 1271 * queue head counter. 1272 */ 1273 static nvme_cmd_t * 1274 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq) 1275 { 1276 nvme_qpair_t *qp; 1277 nvme_cqe_t *cqe; 1278 nvme_cmd_t *cmd; 1279 1280 ASSERT(mutex_owned(&cq->ncq_mutex)); 1281 1282 cqe = &cq->ncq_cq[cq->ncq_head]; 1283 1284 /* Check phase tag of CQE. Hardware inverts it for new entries. */ 1285 if (cqe->cqe_sf.sf_p == cq->ncq_phase) 1286 return (NULL); 1287 1288 qp = nvme->n_ioq[cqe->cqe_sqid]; 1289 1290 mutex_enter(&qp->nq_mutex); 1291 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid); 1292 mutex_exit(&qp->nq_mutex); 1293 1294 ASSERT(cmd->nc_sqid == cqe->cqe_sqid); 1295 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); 1296 1297 qp->nq_sqhead = cqe->cqe_sqhd; 1298 1299 cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry; 1300 1301 /* Toggle phase on wrap-around. */ 1302 if (cq->ncq_head == 0) 1303 cq->ncq_phase = cq->ncq_phase ? 0 : 1; 1304 1305 return (cmd); 1306 } 1307 1308 /* 1309 * Process all completed commands on the io completion queue. 1310 */ 1311 static uint_t 1312 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq) 1313 { 1314 nvme_reg_cqhdbl_t head = { 0 }; 1315 nvme_cmd_t *cmd; 1316 uint_t completed = 0; 1317 1318 if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != 1319 DDI_SUCCESS) 1320 dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", 1321 __func__); 1322 1323 mutex_enter(&cq->ncq_mutex); 1324 1325 while ((cmd = nvme_get_completed(nvme, cq)) != NULL) { 1326 taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd, 1327 TQ_NOSLEEP, &cmd->nc_tqent); 1328 1329 completed++; 1330 } 1331 1332 if (completed > 0) { 1333 /* 1334 * Update the completion queue head doorbell. 1335 */ 1336 head.b.cqhdbl_cqh = cq->ncq_head; 1337 nvme_put32(nvme, cq->ncq_hdbl, head.r); 1338 } 1339 1340 mutex_exit(&cq->ncq_mutex); 1341 1342 return (completed); 1343 } 1344 1345 static nvme_cmd_t * 1346 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) 1347 { 1348 nvme_cq_t *cq = qp->nq_cq; 1349 nvme_reg_cqhdbl_t head = { 0 }; 1350 nvme_cmd_t *cmd; 1351 1352 if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != 1353 DDI_SUCCESS) 1354 dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", 1355 __func__); 1356 1357 mutex_enter(&cq->ncq_mutex); 1358 1359 if ((cmd = nvme_get_completed(nvme, cq)) != NULL) { 1360 head.b.cqhdbl_cqh = cq->ncq_head; 1361 nvme_put32(nvme, cq->ncq_hdbl, head.r); 1362 } 1363 1364 mutex_exit(&cq->ncq_mutex); 1365 1366 return (cmd); 1367 } 1368 1369 static int 1370 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) 1371 { 1372 nvme_cqe_t *cqe = &cmd->nc_cqe; 1373 1374 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1375 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 1376 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 1377 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 1378 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 1379 1380 if (cmd->nc_xfer != NULL) 1381 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1382 1383 if (cmd->nc_nvme->n_strict_version) { 1384 cmd->nc_nvme->n_dead = B_TRUE; 1385 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1386 } 1387 1388 return (EIO); 1389 } 1390 1391 static int 1392 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) 1393 { 1394 nvme_cqe_t *cqe = &cmd->nc_cqe; 1395 1396 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1397 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 1398 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 1399 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 1400 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 1401 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { 1402 cmd->nc_nvme->n_dead = B_TRUE; 1403 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1404 } 1405 1406 return (EIO); 1407 } 1408 1409 static int 1410 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) 1411 { 1412 nvme_cqe_t *cqe = &cmd->nc_cqe; 1413 1414 switch (cqe->cqe_sf.sf_sc) { 1415 case NVME_CQE_SC_INT_NVM_WRITE: 1416 /* write fail */ 1417 /* TODO: post ereport */ 1418 if (cmd->nc_xfer != NULL) 1419 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1420 return (EIO); 1421 1422 case NVME_CQE_SC_INT_NVM_READ: 1423 /* read fail */ 1424 /* TODO: post ereport */ 1425 if (cmd->nc_xfer != NULL) 1426 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1427 return (EIO); 1428 1429 default: 1430 return (nvme_check_unknown_cmd_status(cmd)); 1431 } 1432 } 1433 1434 static int 1435 nvme_check_generic_cmd_status(nvme_cmd_t *cmd) 1436 { 1437 nvme_cqe_t *cqe = &cmd->nc_cqe; 1438 1439 switch (cqe->cqe_sf.sf_sc) { 1440 case NVME_CQE_SC_GEN_SUCCESS: 1441 return (0); 1442 1443 /* 1444 * Errors indicating a bug in the driver should cause a panic. 1445 */ 1446 case NVME_CQE_SC_GEN_INV_OPC: 1447 /* Invalid Command Opcode */ 1448 if (!cmd->nc_dontpanic) 1449 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1450 "programming error: invalid opcode in cmd %p", 1451 (void *)cmd); 1452 return (EINVAL); 1453 1454 case NVME_CQE_SC_GEN_INV_FLD: 1455 /* Invalid Field in Command */ 1456 if (!cmd->nc_dontpanic) 1457 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1458 "programming error: invalid field in cmd %p", 1459 (void *)cmd); 1460 return (EIO); 1461 1462 case NVME_CQE_SC_GEN_ID_CNFL: 1463 /* Command ID Conflict */ 1464 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1465 "cmd ID conflict in cmd %p", (void *)cmd); 1466 return (0); 1467 1468 case NVME_CQE_SC_GEN_INV_NS: 1469 /* Invalid Namespace or Format */ 1470 if (!cmd->nc_dontpanic) 1471 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1472 "programming error: invalid NS/format in cmd %p", 1473 (void *)cmd); 1474 return (EINVAL); 1475 1476 case NVME_CQE_SC_GEN_NVM_LBA_RANGE: 1477 /* LBA Out Of Range */ 1478 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1479 "LBA out of range in cmd %p", (void *)cmd); 1480 return (0); 1481 1482 /* 1483 * Non-fatal errors, handle gracefully. 1484 */ 1485 case NVME_CQE_SC_GEN_DATA_XFR_ERR: 1486 /* Data Transfer Error (DMA) */ 1487 /* TODO: post ereport */ 1488 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); 1489 if (cmd->nc_xfer != NULL) 1490 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1491 return (EIO); 1492 1493 case NVME_CQE_SC_GEN_INTERNAL_ERR: 1494 /* 1495 * Internal Error. The spec (v1.0, section 4.5.1.2) says 1496 * detailed error information is returned as async event, 1497 * so we pretty much ignore the error here and handle it 1498 * in the async event handler. 1499 */ 1500 atomic_inc_32(&cmd->nc_nvme->n_internal_err); 1501 if (cmd->nc_xfer != NULL) 1502 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1503 return (EIO); 1504 1505 case NVME_CQE_SC_GEN_ABORT_REQUEST: 1506 /* 1507 * Command Abort Requested. This normally happens only when a 1508 * command times out. 1509 */ 1510 /* TODO: post ereport or change blkdev to handle this? */ 1511 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); 1512 return (ECANCELED); 1513 1514 case NVME_CQE_SC_GEN_ABORT_PWRLOSS: 1515 /* Command Aborted due to Power Loss Notification */ 1516 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1517 cmd->nc_nvme->n_dead = B_TRUE; 1518 return (EIO); 1519 1520 case NVME_CQE_SC_GEN_ABORT_SQ_DEL: 1521 /* Command Aborted due to SQ Deletion */ 1522 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); 1523 return (EIO); 1524 1525 case NVME_CQE_SC_GEN_NVM_CAP_EXC: 1526 /* Capacity Exceeded */ 1527 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); 1528 if (cmd->nc_xfer != NULL) 1529 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1530 return (EIO); 1531 1532 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: 1533 /* Namespace Not Ready */ 1534 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); 1535 if (cmd->nc_xfer != NULL) 1536 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1537 return (EIO); 1538 1539 case NVME_CQE_SC_GEN_NVM_FORMATTING: 1540 /* Format in progress (1.2) */ 1541 if (!NVME_VERSION_ATLEAST(&cmd->nc_nvme->n_version, 1, 2)) 1542 return (nvme_check_unknown_cmd_status(cmd)); 1543 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_formatting); 1544 if (cmd->nc_xfer != NULL) 1545 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1546 return (EIO); 1547 1548 default: 1549 return (nvme_check_unknown_cmd_status(cmd)); 1550 } 1551 } 1552 1553 static int 1554 nvme_check_specific_cmd_status(nvme_cmd_t *cmd) 1555 { 1556 nvme_cqe_t *cqe = &cmd->nc_cqe; 1557 1558 switch (cqe->cqe_sf.sf_sc) { 1559 case NVME_CQE_SC_SPC_INV_CQ: 1560 /* Completion Queue Invalid */ 1561 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); 1562 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); 1563 return (EINVAL); 1564 1565 case NVME_CQE_SC_SPC_INV_QID: 1566 /* Invalid Queue Identifier */ 1567 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1568 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || 1569 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || 1570 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1571 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); 1572 return (EINVAL); 1573 1574 case NVME_CQE_SC_SPC_MAX_QSZ_EXC: 1575 /* Max Queue Size Exceeded */ 1576 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1577 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1578 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); 1579 return (EINVAL); 1580 1581 case NVME_CQE_SC_SPC_ABRT_CMD_EXC: 1582 /* Abort Command Limit Exceeded */ 1583 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); 1584 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1585 "abort command limit exceeded in cmd %p", (void *)cmd); 1586 return (0); 1587 1588 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: 1589 /* Async Event Request Limit Exceeded */ 1590 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); 1591 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1592 "async event request limit exceeded in cmd %p", 1593 (void *)cmd); 1594 return (0); 1595 1596 case NVME_CQE_SC_SPC_INV_INT_VECT: 1597 /* Invalid Interrupt Vector */ 1598 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1599 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); 1600 return (EINVAL); 1601 1602 case NVME_CQE_SC_SPC_INV_LOG_PAGE: 1603 /* Invalid Log Page */ 1604 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); 1605 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); 1606 return (EINVAL); 1607 1608 case NVME_CQE_SC_SPC_INV_FORMAT: 1609 /* Invalid Format */ 1610 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); 1611 atomic_inc_32(&cmd->nc_nvme->n_inv_format); 1612 if (cmd->nc_xfer != NULL) 1613 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1614 return (EINVAL); 1615 1616 case NVME_CQE_SC_SPC_INV_Q_DEL: 1617 /* Invalid Queue Deletion */ 1618 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1619 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); 1620 return (EINVAL); 1621 1622 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: 1623 /* Conflicting Attributes */ 1624 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || 1625 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1626 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1627 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); 1628 if (cmd->nc_xfer != NULL) 1629 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1630 return (EINVAL); 1631 1632 case NVME_CQE_SC_SPC_NVM_INV_PROT: 1633 /* Invalid Protection Information */ 1634 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || 1635 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1636 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1637 atomic_inc_32(&cmd->nc_nvme->n_inv_prot); 1638 if (cmd->nc_xfer != NULL) 1639 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1640 return (EINVAL); 1641 1642 case NVME_CQE_SC_SPC_NVM_READONLY: 1643 /* Write to Read Only Range */ 1644 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1645 atomic_inc_32(&cmd->nc_nvme->n_readonly); 1646 if (cmd->nc_xfer != NULL) 1647 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1648 return (EROFS); 1649 1650 case NVME_CQE_SC_SPC_INV_FW_SLOT: 1651 /* Invalid Firmware Slot */ 1652 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1653 return (EINVAL); 1654 1655 case NVME_CQE_SC_SPC_INV_FW_IMG: 1656 /* Invalid Firmware Image */ 1657 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1658 return (EINVAL); 1659 1660 case NVME_CQE_SC_SPC_FW_RESET: 1661 /* Conventional Reset Required */ 1662 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1663 return (0); 1664 1665 case NVME_CQE_SC_SPC_FW_NSSR: 1666 /* NVMe Subsystem Reset Required */ 1667 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1668 return (0); 1669 1670 case NVME_CQE_SC_SPC_FW_NEXT_RESET: 1671 /* Activation Requires Reset */ 1672 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1673 return (0); 1674 1675 case NVME_CQE_SC_SPC_FW_MTFA: 1676 /* Activation Requires Maximum Time Violation */ 1677 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1678 return (EAGAIN); 1679 1680 case NVME_CQE_SC_SPC_FW_PROHIBITED: 1681 /* Activation Prohibited */ 1682 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1683 return (EINVAL); 1684 1685 case NVME_CQE_SC_SPC_FW_OVERLAP: 1686 /* Overlapping Firmware Ranges */ 1687 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD); 1688 return (EINVAL); 1689 1690 default: 1691 return (nvme_check_unknown_cmd_status(cmd)); 1692 } 1693 } 1694 1695 static inline int 1696 nvme_check_cmd_status(nvme_cmd_t *cmd) 1697 { 1698 nvme_cqe_t *cqe = &cmd->nc_cqe; 1699 1700 /* 1701 * Take a shortcut if the controller is dead, or if 1702 * command status indicates no error. 1703 */ 1704 if (cmd->nc_nvme->n_dead) 1705 return (EIO); 1706 1707 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1708 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 1709 return (0); 1710 1711 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) 1712 return (nvme_check_generic_cmd_status(cmd)); 1713 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 1714 return (nvme_check_specific_cmd_status(cmd)); 1715 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) 1716 return (nvme_check_integrity_cmd_status(cmd)); 1717 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) 1718 return (nvme_check_vendor_cmd_status(cmd)); 1719 1720 return (nvme_check_unknown_cmd_status(cmd)); 1721 } 1722 1723 static int 1724 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec) 1725 { 1726 nvme_t *nvme = abort_cmd->nc_nvme; 1727 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1728 nvme_abort_cmd_t ac = { 0 }; 1729 int ret = 0; 1730 1731 sema_p(&nvme->n_abort_sema); 1732 1733 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; 1734 ac.b.ac_sqid = abort_cmd->nc_sqid; 1735 1736 cmd->nc_sqid = 0; 1737 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; 1738 cmd->nc_callback = nvme_wakeup_cmd; 1739 cmd->nc_sqe.sqe_cdw10 = ac.r; 1740 1741 /* 1742 * Send the ABORT to the hardware. The ABORT command will return _after_ 1743 * the aborted command has completed (aborted or otherwise), but since 1744 * we still hold the aborted command's mutex its callback hasn't been 1745 * processed yet. 1746 */ 1747 nvme_admin_cmd(cmd, sec); 1748 sema_v(&nvme->n_abort_sema); 1749 1750 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1751 dev_err(nvme->n_dip, CE_WARN, 1752 "!ABORT failed with sct = %x, sc = %x", 1753 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1754 atomic_inc_32(&nvme->n_abort_failed); 1755 } else { 1756 dev_err(nvme->n_dip, CE_WARN, 1757 "!ABORT of command %d/%d %ssuccessful", 1758 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid, 1759 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : ""); 1760 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0) 1761 atomic_inc_32(&nvme->n_cmd_aborted); 1762 } 1763 1764 nvme_free_cmd(cmd); 1765 return (ret); 1766 } 1767 1768 /* 1769 * nvme_wait_cmd -- wait for command completion or timeout 1770 * 1771 * In case of a serious error or a timeout of the abort command the hardware 1772 * will be declared dead and FMA will be notified. 1773 */ 1774 static void 1775 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) 1776 { 1777 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); 1778 nvme_t *nvme = cmd->nc_nvme; 1779 nvme_reg_csts_t csts; 1780 nvme_qpair_t *qp; 1781 1782 ASSERT(mutex_owned(&cmd->nc_mutex)); 1783 1784 while (!cmd->nc_completed) { 1785 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) 1786 break; 1787 } 1788 1789 if (cmd->nc_completed) 1790 return; 1791 1792 /* 1793 * The command timed out. 1794 * 1795 * Check controller for fatal status, any errors associated with the 1796 * register or DMA handle, or for a double timeout (abort command timed 1797 * out). If necessary log a warning and call FMA. 1798 */ 1799 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1800 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, " 1801 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid, 1802 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); 1803 atomic_inc_32(&nvme->n_cmd_timeout); 1804 1805 if (csts.b.csts_cfs || 1806 nvme_check_regs_hdl(nvme) || 1807 nvme_check_dma_hdl(cmd->nc_dma) || 1808 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { 1809 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1810 nvme->n_dead = B_TRUE; 1811 } else if (nvme_abort_cmd(cmd, sec) == 0) { 1812 /* 1813 * If the abort succeeded the command should complete 1814 * immediately with an appropriate status. 1815 */ 1816 while (!cmd->nc_completed) 1817 cv_wait(&cmd->nc_cv, &cmd->nc_mutex); 1818 1819 return; 1820 } 1821 1822 qp = nvme->n_ioq[cmd->nc_sqid]; 1823 1824 mutex_enter(&qp->nq_mutex); 1825 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); 1826 mutex_exit(&qp->nq_mutex); 1827 1828 /* 1829 * As we don't know what the presumed dead hardware might still do with 1830 * the DMA memory, we'll put the command on the lost commands list if it 1831 * has any DMA memory. 1832 */ 1833 if (cmd->nc_dma != NULL) { 1834 mutex_enter(&nvme_lc_mutex); 1835 list_insert_head(&nvme_lost_cmds, cmd); 1836 mutex_exit(&nvme_lc_mutex); 1837 } 1838 } 1839 1840 static void 1841 nvme_wakeup_cmd(void *arg) 1842 { 1843 nvme_cmd_t *cmd = arg; 1844 1845 mutex_enter(&cmd->nc_mutex); 1846 cmd->nc_completed = B_TRUE; 1847 cv_signal(&cmd->nc_cv); 1848 mutex_exit(&cmd->nc_mutex); 1849 } 1850 1851 static void 1852 nvme_async_event_task(void *arg) 1853 { 1854 nvme_cmd_t *cmd = arg; 1855 nvme_t *nvme = cmd->nc_nvme; 1856 nvme_error_log_entry_t *error_log = NULL; 1857 nvme_health_log_t *health_log = NULL; 1858 nvme_nschange_list_t *nslist = NULL; 1859 size_t logsize = 0; 1860 nvme_async_event_t event; 1861 1862 /* 1863 * Check for errors associated with the async request itself. The only 1864 * command-specific error is "async event limit exceeded", which 1865 * indicates a programming error in the driver and causes a panic in 1866 * nvme_check_cmd_status(). 1867 * 1868 * Other possible errors are various scenarios where the async request 1869 * was aborted, or internal errors in the device. Internal errors are 1870 * reported to FMA, the command aborts need no special handling here. 1871 * 1872 * And finally, at least qemu nvme does not support async events, 1873 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we 1874 * will avoid posting async events. 1875 */ 1876 1877 if (nvme_check_cmd_status(cmd) != 0) { 1878 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1879 "!async event request returned failure, sct = %x, " 1880 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, 1881 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, 1882 cmd->nc_cqe.cqe_sf.sf_m); 1883 1884 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1885 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { 1886 cmd->nc_nvme->n_dead = B_TRUE; 1887 ddi_fm_service_impact(cmd->nc_nvme->n_dip, 1888 DDI_SERVICE_LOST); 1889 } 1890 1891 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1892 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC && 1893 cmd->nc_cqe.cqe_sf.sf_dnr == 1) { 1894 nvme->n_async_event_supported = B_FALSE; 1895 } 1896 1897 nvme_free_cmd(cmd); 1898 return; 1899 } 1900 1901 event.r = cmd->nc_cqe.cqe_dw0; 1902 1903 /* Clear CQE and re-submit the async request. */ 1904 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); 1905 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 1906 1907 switch (event.b.ae_type) { 1908 case NVME_ASYNC_TYPE_ERROR: 1909 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { 1910 (void) nvme_get_logpage(nvme, B_FALSE, 1911 (void **)&error_log, &logsize, event.b.ae_logpage); 1912 } else { 1913 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1914 "async event reply: %d", event.b.ae_logpage); 1915 atomic_inc_32(&nvme->n_wrong_logpage); 1916 } 1917 1918 switch (event.b.ae_info) { 1919 case NVME_ASYNC_ERROR_INV_SQ: 1920 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1921 "invalid submission queue"); 1922 return; 1923 1924 case NVME_ASYNC_ERROR_INV_DBL: 1925 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1926 "invalid doorbell write value"); 1927 return; 1928 1929 case NVME_ASYNC_ERROR_DIAGFAIL: 1930 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); 1931 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1932 nvme->n_dead = B_TRUE; 1933 atomic_inc_32(&nvme->n_diagfail_event); 1934 break; 1935 1936 case NVME_ASYNC_ERROR_PERSISTENT: 1937 dev_err(nvme->n_dip, CE_WARN, "!persistent internal " 1938 "device error"); 1939 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1940 nvme->n_dead = B_TRUE; 1941 atomic_inc_32(&nvme->n_persistent_event); 1942 break; 1943 1944 case NVME_ASYNC_ERROR_TRANSIENT: 1945 dev_err(nvme->n_dip, CE_WARN, "!transient internal " 1946 "device error"); 1947 /* TODO: send ereport */ 1948 atomic_inc_32(&nvme->n_transient_event); 1949 break; 1950 1951 case NVME_ASYNC_ERROR_FW_LOAD: 1952 dev_err(nvme->n_dip, CE_WARN, 1953 "!firmware image load error"); 1954 atomic_inc_32(&nvme->n_fw_load_event); 1955 break; 1956 } 1957 break; 1958 1959 case NVME_ASYNC_TYPE_HEALTH: 1960 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { 1961 (void) nvme_get_logpage(nvme, B_FALSE, 1962 (void **)&health_log, &logsize, event.b.ae_logpage, 1963 -1); 1964 } else { 1965 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1966 "async event reply: %d", event.b.ae_logpage); 1967 atomic_inc_32(&nvme->n_wrong_logpage); 1968 } 1969 1970 switch (event.b.ae_info) { 1971 case NVME_ASYNC_HEALTH_RELIABILITY: 1972 dev_err(nvme->n_dip, CE_WARN, 1973 "!device reliability compromised"); 1974 /* TODO: send ereport */ 1975 atomic_inc_32(&nvme->n_reliability_event); 1976 break; 1977 1978 case NVME_ASYNC_HEALTH_TEMPERATURE: 1979 dev_err(nvme->n_dip, CE_WARN, 1980 "!temperature above threshold"); 1981 /* TODO: send ereport */ 1982 atomic_inc_32(&nvme->n_temperature_event); 1983 break; 1984 1985 case NVME_ASYNC_HEALTH_SPARE: 1986 dev_err(nvme->n_dip, CE_WARN, 1987 "!spare space below threshold"); 1988 /* TODO: send ereport */ 1989 atomic_inc_32(&nvme->n_spare_event); 1990 break; 1991 } 1992 break; 1993 1994 case NVME_ASYNC_TYPE_NOTICE: 1995 switch (event.b.ae_info) { 1996 case NVME_ASYNC_NOTICE_NS_CHANGE: 1997 dev_err(nvme->n_dip, CE_NOTE, 1998 "namespace attribute change event, " 1999 "logpage = %x", event.b.ae_logpage); 2000 atomic_inc_32(&nvme->n_notice_event); 2001 2002 if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE) 2003 break; 2004 2005 if (nvme_get_logpage(nvme, B_FALSE, (void **)&nslist, 2006 &logsize, event.b.ae_logpage, -1) != 0) { 2007 break; 2008 } 2009 2010 if (nslist->nscl_ns[0] == UINT32_MAX) { 2011 dev_err(nvme->n_dip, CE_CONT, 2012 "more than %u namespaces have changed.\n", 2013 NVME_NSCHANGE_LIST_SIZE); 2014 break; 2015 } 2016 2017 mutex_enter(&nvme->n_mgmt_mutex); 2018 for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) { 2019 uint32_t nsid = nslist->nscl_ns[i]; 2020 2021 if (nsid == 0) /* end of list */ 2022 break; 2023 2024 dev_err(nvme->n_dip, CE_NOTE, 2025 "!namespace nvme%d/%u has changed.", 2026 ddi_get_instance(nvme->n_dip), nsid); 2027 2028 2029 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) 2030 continue; 2031 2032 bd_state_change( 2033 NVME_NSID2NS(nvme, nsid)->ns_bd_hdl); 2034 } 2035 mutex_exit(&nvme->n_mgmt_mutex); 2036 2037 break; 2038 2039 case NVME_ASYNC_NOTICE_FW_ACTIVATE: 2040 dev_err(nvme->n_dip, CE_NOTE, 2041 "firmware activation starting, " 2042 "logpage = %x", event.b.ae_logpage); 2043 atomic_inc_32(&nvme->n_notice_event); 2044 break; 2045 2046 case NVME_ASYNC_NOTICE_TELEMETRY: 2047 dev_err(nvme->n_dip, CE_NOTE, 2048 "telemetry log changed, " 2049 "logpage = %x", event.b.ae_logpage); 2050 atomic_inc_32(&nvme->n_notice_event); 2051 break; 2052 2053 case NVME_ASYNC_NOTICE_NS_ASYMM: 2054 dev_err(nvme->n_dip, CE_NOTE, 2055 "asymmetric namespace access change, " 2056 "logpage = %x", event.b.ae_logpage); 2057 atomic_inc_32(&nvme->n_notice_event); 2058 break; 2059 2060 case NVME_ASYNC_NOTICE_LATENCYLOG: 2061 dev_err(nvme->n_dip, CE_NOTE, 2062 "predictable latency event aggregate log change, " 2063 "logpage = %x", event.b.ae_logpage); 2064 atomic_inc_32(&nvme->n_notice_event); 2065 break; 2066 2067 case NVME_ASYNC_NOTICE_LBASTATUS: 2068 dev_err(nvme->n_dip, CE_NOTE, 2069 "LBA status information alert, " 2070 "logpage = %x", event.b.ae_logpage); 2071 atomic_inc_32(&nvme->n_notice_event); 2072 break; 2073 2074 case NVME_ASYNC_NOTICE_ENDURANCELOG: 2075 dev_err(nvme->n_dip, CE_NOTE, 2076 "endurance group event aggregate log page change, " 2077 "logpage = %x", event.b.ae_logpage); 2078 atomic_inc_32(&nvme->n_notice_event); 2079 break; 2080 2081 default: 2082 dev_err(nvme->n_dip, CE_WARN, 2083 "!unknown notice async event received, " 2084 "info = %x, logpage = %x", event.b.ae_info, 2085 event.b.ae_logpage); 2086 atomic_inc_32(&nvme->n_unknown_event); 2087 break; 2088 } 2089 break; 2090 2091 case NVME_ASYNC_TYPE_VENDOR: 2092 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " 2093 "received, info = %x, logpage = %x", event.b.ae_info, 2094 event.b.ae_logpage); 2095 atomic_inc_32(&nvme->n_vendor_event); 2096 break; 2097 2098 default: 2099 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " 2100 "type = %x, info = %x, logpage = %x", event.b.ae_type, 2101 event.b.ae_info, event.b.ae_logpage); 2102 atomic_inc_32(&nvme->n_unknown_event); 2103 break; 2104 } 2105 2106 if (error_log != NULL) 2107 kmem_free(error_log, logsize); 2108 2109 if (health_log != NULL) 2110 kmem_free(health_log, logsize); 2111 2112 if (nslist != NULL) 2113 kmem_free(nslist, logsize); 2114 } 2115 2116 static void 2117 nvme_admin_cmd(nvme_cmd_t *cmd, int sec) 2118 { 2119 mutex_enter(&cmd->nc_mutex); 2120 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd); 2121 nvme_wait_cmd(cmd, sec); 2122 mutex_exit(&cmd->nc_mutex); 2123 } 2124 2125 static void 2126 nvme_async_event(nvme_t *nvme) 2127 { 2128 nvme_cmd_t *cmd; 2129 2130 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2131 cmd->nc_sqid = 0; 2132 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; 2133 cmd->nc_callback = nvme_async_event_task; 2134 cmd->nc_dontpanic = B_TRUE; 2135 2136 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 2137 } 2138 2139 static int 2140 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf, 2141 boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses) 2142 { 2143 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2144 nvme_format_nvm_t format_nvm = { 0 }; 2145 int ret; 2146 2147 format_nvm.b.fm_lbaf = lbaf & 0xf; 2148 format_nvm.b.fm_ms = ms ? 1 : 0; 2149 format_nvm.b.fm_pi = pi & 0x7; 2150 format_nvm.b.fm_pil = pil ? 1 : 0; 2151 format_nvm.b.fm_ses = ses & 0x7; 2152 2153 cmd->nc_sqid = 0; 2154 cmd->nc_callback = nvme_wakeup_cmd; 2155 cmd->nc_sqe.sqe_nsid = nsid; 2156 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT; 2157 cmd->nc_sqe.sqe_cdw10 = format_nvm.r; 2158 2159 /* 2160 * Some devices like Samsung SM951 don't allow formatting of all 2161 * namespaces in one command. Handle that gracefully. 2162 */ 2163 if (nsid == (uint32_t)-1) 2164 cmd->nc_dontpanic = B_TRUE; 2165 /* 2166 * If this format request was initiated by the user, then don't allow a 2167 * programmer error to panic the system. 2168 */ 2169 if (user) 2170 cmd->nc_dontpanic = B_TRUE; 2171 2172 nvme_admin_cmd(cmd, nvme_format_cmd_timeout); 2173 2174 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2175 dev_err(nvme->n_dip, CE_WARN, 2176 "!FORMAT failed with sct = %x, sc = %x", 2177 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2178 } 2179 2180 nvme_free_cmd(cmd); 2181 return (ret); 2182 } 2183 2184 /* 2185 * The `bufsize` parameter is usually an output parameter, set by this routine 2186 * when filling in the supported types of logpages from the device. However, for 2187 * vendor-specific pages, it is an input parameter, and must be set 2188 * appropriately by callers. 2189 */ 2190 static int 2191 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize, 2192 uint8_t logpage, ...) 2193 { 2194 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2195 nvme_getlogpage_t getlogpage = { 0 }; 2196 va_list ap; 2197 int ret; 2198 2199 va_start(ap, logpage); 2200 2201 cmd->nc_sqid = 0; 2202 cmd->nc_callback = nvme_wakeup_cmd; 2203 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; 2204 2205 if (user) 2206 cmd->nc_dontpanic = B_TRUE; 2207 2208 getlogpage.b.lp_lid = logpage; 2209 2210 switch (logpage) { 2211 case NVME_LOGPAGE_ERROR: 2212 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 2213 *bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE, 2214 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t)); 2215 break; 2216 2217 case NVME_LOGPAGE_HEALTH: 2218 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 2219 *bufsize = sizeof (nvme_health_log_t); 2220 break; 2221 2222 case NVME_LOGPAGE_FWSLOT: 2223 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 2224 *bufsize = sizeof (nvme_fwslot_log_t); 2225 break; 2226 2227 case NVME_LOGPAGE_NSCHANGE: 2228 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 2229 *bufsize = sizeof (nvme_nschange_list_t); 2230 break; 2231 2232 default: 2233 /* 2234 * This intentionally only checks against the minimum valid 2235 * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid 2236 * page ID, so this one-sided check avoids a compiler error 2237 * about a check that's always true. 2238 */ 2239 if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) { 2240 dev_err(nvme->n_dip, CE_WARN, 2241 "!unknown log page requested: %d", logpage); 2242 atomic_inc_32(&nvme->n_unknown_logpage); 2243 ret = EINVAL; 2244 goto fail; 2245 } 2246 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 2247 } 2248 2249 va_end(ap); 2250 2251 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1; 2252 2253 cmd->nc_sqe.sqe_cdw10 = getlogpage.r; 2254 2255 if (nvme_zalloc_dma(nvme, *bufsize, 2256 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2257 dev_err(nvme->n_dip, CE_WARN, 2258 "!nvme_zalloc_dma failed for GET LOG PAGE"); 2259 ret = ENOMEM; 2260 goto fail; 2261 } 2262 2263 if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0) 2264 goto fail; 2265 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2266 2267 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2268 dev_err(nvme->n_dip, CE_WARN, 2269 "!GET LOG PAGE failed with sct = %x, sc = %x", 2270 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2271 goto fail; 2272 } 2273 2274 *buf = kmem_alloc(*bufsize, KM_SLEEP); 2275 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); 2276 2277 fail: 2278 nvme_free_cmd(cmd); 2279 2280 return (ret); 2281 } 2282 2283 static int 2284 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t cns, 2285 void **buf) 2286 { 2287 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2288 int ret; 2289 2290 if (buf == NULL) 2291 return (EINVAL); 2292 2293 cmd->nc_sqid = 0; 2294 cmd->nc_callback = nvme_wakeup_cmd; 2295 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; 2296 cmd->nc_sqe.sqe_nsid = nsid; 2297 cmd->nc_sqe.sqe_cdw10 = cns; 2298 2299 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, 2300 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2301 dev_err(nvme->n_dip, CE_WARN, 2302 "!nvme_zalloc_dma failed for IDENTIFY"); 2303 ret = ENOMEM; 2304 goto fail; 2305 } 2306 2307 if (cmd->nc_dma->nd_ncookie > 2) { 2308 dev_err(nvme->n_dip, CE_WARN, 2309 "!too many DMA cookies for IDENTIFY"); 2310 atomic_inc_32(&nvme->n_too_many_cookies); 2311 ret = ENOMEM; 2312 goto fail; 2313 } 2314 2315 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 2316 if (cmd->nc_dma->nd_ncookie > 1) { 2317 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 2318 &cmd->nc_dma->nd_cookie); 2319 cmd->nc_sqe.sqe_dptr.d_prp[1] = 2320 cmd->nc_dma->nd_cookie.dmac_laddress; 2321 } 2322 2323 if (user) 2324 cmd->nc_dontpanic = B_TRUE; 2325 2326 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2327 2328 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2329 dev_err(nvme->n_dip, CE_WARN, 2330 "!IDENTIFY failed with sct = %x, sc = %x", 2331 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2332 goto fail; 2333 } 2334 2335 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); 2336 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE); 2337 2338 fail: 2339 nvme_free_cmd(cmd); 2340 2341 return (ret); 2342 } 2343 2344 static int 2345 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature, 2346 uint32_t val, uint32_t *res) 2347 { 2348 _NOTE(ARGUNUSED(nsid)); 2349 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2350 int ret = EINVAL; 2351 2352 ASSERT(res != NULL); 2353 2354 cmd->nc_sqid = 0; 2355 cmd->nc_callback = nvme_wakeup_cmd; 2356 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; 2357 cmd->nc_sqe.sqe_cdw10 = feature; 2358 cmd->nc_sqe.sqe_cdw11 = val; 2359 2360 if (user) 2361 cmd->nc_dontpanic = B_TRUE; 2362 2363 switch (feature) { 2364 case NVME_FEAT_WRITE_CACHE: 2365 if (!nvme->n_write_cache_present) 2366 goto fail; 2367 break; 2368 2369 case NVME_FEAT_NQUEUES: 2370 break; 2371 2372 default: 2373 goto fail; 2374 } 2375 2376 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2377 2378 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2379 dev_err(nvme->n_dip, CE_WARN, 2380 "!SET FEATURES %d failed with sct = %x, sc = %x", 2381 feature, cmd->nc_cqe.cqe_sf.sf_sct, 2382 cmd->nc_cqe.cqe_sf.sf_sc); 2383 goto fail; 2384 } 2385 2386 *res = cmd->nc_cqe.cqe_dw0; 2387 2388 fail: 2389 nvme_free_cmd(cmd); 2390 return (ret); 2391 } 2392 2393 static int 2394 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature, 2395 uint32_t *res, void **buf, size_t *bufsize) 2396 { 2397 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2398 int ret = EINVAL; 2399 2400 ASSERT(res != NULL); 2401 2402 if (bufsize != NULL) 2403 *bufsize = 0; 2404 2405 cmd->nc_sqid = 0; 2406 cmd->nc_callback = nvme_wakeup_cmd; 2407 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES; 2408 cmd->nc_sqe.sqe_cdw10 = feature; 2409 cmd->nc_sqe.sqe_cdw11 = *res; 2410 2411 /* 2412 * For some of the optional features there doesn't seem to be a method 2413 * of detecting whether it is supported other than using it. This will 2414 * cause "Invalid Field in Command" error, which is normally considered 2415 * a programming error. Set the nc_dontpanic flag to override the panic 2416 * in nvme_check_generic_cmd_status(). 2417 */ 2418 switch (feature) { 2419 case NVME_FEAT_ARBITRATION: 2420 case NVME_FEAT_POWER_MGMT: 2421 case NVME_FEAT_TEMPERATURE: 2422 case NVME_FEAT_ERROR: 2423 case NVME_FEAT_NQUEUES: 2424 case NVME_FEAT_INTR_COAL: 2425 case NVME_FEAT_INTR_VECT: 2426 case NVME_FEAT_WRITE_ATOM: 2427 case NVME_FEAT_ASYNC_EVENT: 2428 break; 2429 2430 case NVME_FEAT_WRITE_CACHE: 2431 if (!nvme->n_write_cache_present) 2432 goto fail; 2433 break; 2434 2435 case NVME_FEAT_LBA_RANGE: 2436 if (!nvme->n_lba_range_supported) 2437 goto fail; 2438 2439 cmd->nc_dontpanic = B_TRUE; 2440 cmd->nc_sqe.sqe_nsid = nsid; 2441 ASSERT(bufsize != NULL); 2442 *bufsize = NVME_LBA_RANGE_BUFSIZE; 2443 break; 2444 2445 case NVME_FEAT_AUTO_PST: 2446 if (!nvme->n_auto_pst_supported) 2447 goto fail; 2448 2449 ASSERT(bufsize != NULL); 2450 *bufsize = NVME_AUTO_PST_BUFSIZE; 2451 break; 2452 2453 case NVME_FEAT_PROGRESS: 2454 if (!nvme->n_progress_supported) 2455 goto fail; 2456 2457 cmd->nc_dontpanic = B_TRUE; 2458 break; 2459 2460 default: 2461 goto fail; 2462 } 2463 2464 if (user) 2465 cmd->nc_dontpanic = B_TRUE; 2466 2467 if (bufsize != NULL && *bufsize != 0) { 2468 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ, 2469 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2470 dev_err(nvme->n_dip, CE_WARN, 2471 "!nvme_zalloc_dma failed for GET FEATURES"); 2472 ret = ENOMEM; 2473 goto fail; 2474 } 2475 2476 if (cmd->nc_dma->nd_ncookie > 2) { 2477 dev_err(nvme->n_dip, CE_WARN, 2478 "!too many DMA cookies for GET FEATURES"); 2479 atomic_inc_32(&nvme->n_too_many_cookies); 2480 ret = ENOMEM; 2481 goto fail; 2482 } 2483 2484 cmd->nc_sqe.sqe_dptr.d_prp[0] = 2485 cmd->nc_dma->nd_cookie.dmac_laddress; 2486 if (cmd->nc_dma->nd_ncookie > 1) { 2487 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 2488 &cmd->nc_dma->nd_cookie); 2489 cmd->nc_sqe.sqe_dptr.d_prp[1] = 2490 cmd->nc_dma->nd_cookie.dmac_laddress; 2491 } 2492 } 2493 2494 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2495 2496 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2497 boolean_t known = B_TRUE; 2498 2499 /* Check if this is unsupported optional feature */ 2500 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 2501 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) { 2502 switch (feature) { 2503 case NVME_FEAT_LBA_RANGE: 2504 nvme->n_lba_range_supported = B_FALSE; 2505 break; 2506 case NVME_FEAT_PROGRESS: 2507 nvme->n_progress_supported = B_FALSE; 2508 break; 2509 default: 2510 known = B_FALSE; 2511 break; 2512 } 2513 } else { 2514 known = B_FALSE; 2515 } 2516 2517 /* Report the error otherwise */ 2518 if (!known) { 2519 dev_err(nvme->n_dip, CE_WARN, 2520 "!GET FEATURES %d failed with sct = %x, sc = %x", 2521 feature, cmd->nc_cqe.cqe_sf.sf_sct, 2522 cmd->nc_cqe.cqe_sf.sf_sc); 2523 } 2524 2525 goto fail; 2526 } 2527 2528 if (bufsize != NULL && *bufsize != 0) { 2529 ASSERT(buf != NULL); 2530 *buf = kmem_alloc(*bufsize, KM_SLEEP); 2531 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); 2532 } 2533 2534 *res = cmd->nc_cqe.cqe_dw0; 2535 2536 fail: 2537 nvme_free_cmd(cmd); 2538 return (ret); 2539 } 2540 2541 static int 2542 nvme_write_cache_set(nvme_t *nvme, boolean_t enable) 2543 { 2544 nvme_write_cache_t nwc = { 0 }; 2545 2546 if (enable) 2547 nwc.b.wc_wce = 1; 2548 2549 return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE, 2550 nwc.r, &nwc.r)); 2551 } 2552 2553 static int 2554 nvme_set_nqueues(nvme_t *nvme) 2555 { 2556 nvme_nqueues_t nq = { 0 }; 2557 int ret; 2558 2559 /* 2560 * The default is to allocate one completion queue per vector. 2561 */ 2562 if (nvme->n_completion_queues == -1) 2563 nvme->n_completion_queues = nvme->n_intr_cnt; 2564 2565 /* 2566 * There is no point in having more completion queues than 2567 * interrupt vectors. 2568 */ 2569 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2570 nvme->n_intr_cnt); 2571 2572 /* 2573 * The default is to use one submission queue per completion queue. 2574 */ 2575 if (nvme->n_submission_queues == -1) 2576 nvme->n_submission_queues = nvme->n_completion_queues; 2577 2578 /* 2579 * There is no point in having more compeletion queues than 2580 * submission queues. 2581 */ 2582 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2583 nvme->n_submission_queues); 2584 2585 ASSERT(nvme->n_submission_queues > 0); 2586 ASSERT(nvme->n_completion_queues > 0); 2587 2588 nq.b.nq_nsq = nvme->n_submission_queues - 1; 2589 nq.b.nq_ncq = nvme->n_completion_queues - 1; 2590 2591 ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r, 2592 &nq.r); 2593 2594 if (ret == 0) { 2595 /* 2596 * Never use more than the requested number of queues. 2597 */ 2598 nvme->n_submission_queues = MIN(nvme->n_submission_queues, 2599 nq.b.nq_nsq + 1); 2600 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2601 nq.b.nq_ncq + 1); 2602 } 2603 2604 return (ret); 2605 } 2606 2607 static int 2608 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq) 2609 { 2610 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2611 nvme_create_queue_dw10_t dw10 = { 0 }; 2612 nvme_create_cq_dw11_t c_dw11 = { 0 }; 2613 int ret; 2614 2615 dw10.b.q_qid = cq->ncq_id; 2616 dw10.b.q_qsize = cq->ncq_nentry - 1; 2617 2618 c_dw11.b.cq_pc = 1; 2619 c_dw11.b.cq_ien = 1; 2620 c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt; 2621 2622 cmd->nc_sqid = 0; 2623 cmd->nc_callback = nvme_wakeup_cmd; 2624 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; 2625 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2626 cmd->nc_sqe.sqe_cdw11 = c_dw11.r; 2627 cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress; 2628 2629 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2630 2631 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2632 dev_err(nvme->n_dip, CE_WARN, 2633 "!CREATE CQUEUE failed with sct = %x, sc = %x", 2634 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2635 } 2636 2637 nvme_free_cmd(cmd); 2638 2639 return (ret); 2640 } 2641 2642 static int 2643 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) 2644 { 2645 nvme_cq_t *cq = qp->nq_cq; 2646 nvme_cmd_t *cmd; 2647 nvme_create_queue_dw10_t dw10 = { 0 }; 2648 nvme_create_sq_dw11_t s_dw11 = { 0 }; 2649 int ret; 2650 2651 /* 2652 * It is possible to have more qpairs than completion queues, 2653 * and when the idx > ncq_id, that completion queue is shared 2654 * and has already been created. 2655 */ 2656 if (idx <= cq->ncq_id && 2657 nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS) 2658 return (DDI_FAILURE); 2659 2660 dw10.b.q_qid = idx; 2661 dw10.b.q_qsize = qp->nq_nentry - 1; 2662 2663 s_dw11.b.sq_pc = 1; 2664 s_dw11.b.sq_cqid = cq->ncq_id; 2665 2666 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2667 cmd->nc_sqid = 0; 2668 cmd->nc_callback = nvme_wakeup_cmd; 2669 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; 2670 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2671 cmd->nc_sqe.sqe_cdw11 = s_dw11.r; 2672 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; 2673 2674 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2675 2676 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2677 dev_err(nvme->n_dip, CE_WARN, 2678 "!CREATE SQUEUE failed with sct = %x, sc = %x", 2679 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2680 } 2681 2682 nvme_free_cmd(cmd); 2683 2684 return (ret); 2685 } 2686 2687 static boolean_t 2688 nvme_reset(nvme_t *nvme, boolean_t quiesce) 2689 { 2690 nvme_reg_csts_t csts; 2691 int i; 2692 2693 nvme_put32(nvme, NVME_REG_CC, 0); 2694 2695 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2696 if (csts.b.csts_rdy == 1) { 2697 nvme_put32(nvme, NVME_REG_CC, 0); 2698 for (i = 0; i != nvme->n_timeout * 10; i++) { 2699 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2700 if (csts.b.csts_rdy == 0) 2701 break; 2702 2703 if (quiesce) 2704 drv_usecwait(50000); 2705 else 2706 delay(drv_usectohz(50000)); 2707 } 2708 } 2709 2710 nvme_put32(nvme, NVME_REG_AQA, 0); 2711 nvme_put32(nvme, NVME_REG_ASQ, 0); 2712 nvme_put32(nvme, NVME_REG_ACQ, 0); 2713 2714 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2715 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); 2716 } 2717 2718 static void 2719 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) 2720 { 2721 nvme_reg_cc_t cc; 2722 nvme_reg_csts_t csts; 2723 int i; 2724 2725 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); 2726 2727 cc.r = nvme_get32(nvme, NVME_REG_CC); 2728 cc.b.cc_shn = mode & 0x3; 2729 nvme_put32(nvme, NVME_REG_CC, cc.r); 2730 2731 for (i = 0; i != 10; i++) { 2732 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2733 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) 2734 break; 2735 2736 if (quiesce) 2737 drv_usecwait(100000); 2738 else 2739 delay(drv_usectohz(100000)); 2740 } 2741 } 2742 2743 /* 2744 * Return length of string without trailing spaces. 2745 */ 2746 static int 2747 nvme_strlen(const char *str, int len) 2748 { 2749 if (len <= 0) 2750 return (0); 2751 2752 while (str[--len] == ' ') 2753 ; 2754 2755 return (++len); 2756 } 2757 2758 static void 2759 nvme_config_min_block_size(nvme_t *nvme, char *model, char *val) 2760 { 2761 ulong_t bsize = 0; 2762 char *msg = ""; 2763 2764 if (ddi_strtoul(val, NULL, 0, &bsize) != 0) 2765 goto err; 2766 2767 if (!ISP2(bsize)) { 2768 msg = ": not a power of 2"; 2769 goto err; 2770 } 2771 2772 if (bsize < NVME_DEFAULT_MIN_BLOCK_SIZE) { 2773 msg = ": too low"; 2774 goto err; 2775 } 2776 2777 nvme->n_min_block_size = bsize; 2778 return; 2779 2780 err: 2781 dev_err(nvme->n_dip, CE_WARN, 2782 "!nvme-config-list: ignoring invalid min-phys-block-size '%s' " 2783 "for model '%s'%s", val, model, msg); 2784 2785 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 2786 } 2787 2788 static void 2789 nvme_config_boolean(nvme_t *nvme, char *model, char *name, char *val, 2790 boolean_t *b) 2791 { 2792 if (strcmp(val, "on") == 0 || 2793 strcmp(val, "true") == 0) 2794 *b = B_TRUE; 2795 else if (strcmp(val, "off") == 0 || 2796 strcmp(val, "false") == 0) 2797 *b = B_FALSE; 2798 else 2799 dev_err(nvme->n_dip, CE_WARN, 2800 "!nvme-config-list: invalid value for %s '%s'" 2801 " for model '%s', ignoring", name, val, model); 2802 } 2803 2804 static void 2805 nvme_config_list(nvme_t *nvme) 2806 { 2807 char **config_list; 2808 uint_t nelem; 2809 int rv, i; 2810 2811 /* 2812 * We're following the pattern of 'sd-config-list' here, but extend it. 2813 * Instead of two we have three separate strings for "model", "fwrev", 2814 * and "name-value-list". 2815 */ 2816 rv = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, nvme->n_dip, 2817 DDI_PROP_DONTPASS, "nvme-config-list", &config_list, &nelem); 2818 2819 if (rv != DDI_PROP_SUCCESS) { 2820 if (rv == DDI_PROP_CANNOT_DECODE) { 2821 dev_err(nvme->n_dip, CE_WARN, 2822 "!nvme-config-list: cannot be decoded"); 2823 } 2824 2825 return; 2826 } 2827 2828 if ((nelem % 3) != 0) { 2829 dev_err(nvme->n_dip, CE_WARN, "!nvme-config-list: must be " 2830 "triplets of <model>/<fwrev>/<name-value-list> strings "); 2831 goto out; 2832 } 2833 2834 for (i = 0; i < nelem; i += 3) { 2835 char *model = config_list[i]; 2836 char *fwrev = config_list[i + 1]; 2837 char *nvp, *save_nv; 2838 int id_model_len, id_fwrev_len; 2839 2840 id_model_len = nvme_strlen(nvme->n_idctl->id_model, 2841 sizeof (nvme->n_idctl->id_model)); 2842 2843 if (strlen(model) != id_model_len) 2844 continue; 2845 2846 if (strncmp(model, nvme->n_idctl->id_model, id_model_len) != 0) 2847 continue; 2848 2849 id_fwrev_len = nvme_strlen(nvme->n_idctl->id_fwrev, 2850 sizeof (nvme->n_idctl->id_fwrev)); 2851 2852 if (strlen(fwrev) != 0) { 2853 boolean_t match = B_FALSE; 2854 char *fwr, *last_fw; 2855 2856 for (fwr = strtok_r(fwrev, ",", &last_fw); 2857 fwr != NULL; 2858 fwr = strtok_r(NULL, ",", &last_fw)) { 2859 if (strlen(fwr) != id_fwrev_len) 2860 continue; 2861 2862 if (strncmp(fwr, nvme->n_idctl->id_fwrev, 2863 id_fwrev_len) == 0) 2864 match = B_TRUE; 2865 } 2866 2867 if (!match) 2868 continue; 2869 } 2870 2871 /* 2872 * We should now have a comma-separated list of name:value 2873 * pairs. 2874 */ 2875 for (nvp = strtok_r(config_list[i + 2], ",", &save_nv); 2876 nvp != NULL; nvp = strtok_r(NULL, ",", &save_nv)) { 2877 char *name = nvp; 2878 char *val = strchr(nvp, ':'); 2879 2880 if (val == NULL || name == val) { 2881 dev_err(nvme->n_dip, CE_WARN, 2882 "!nvme-config-list: <name-value-list> " 2883 "for model '%s' is malformed", model); 2884 goto out; 2885 } 2886 2887 /* 2888 * Null-terminate 'name', move 'val' past ':' sep. 2889 */ 2890 *val++ = '\0'; 2891 2892 /* 2893 * Process the name:val pairs that we know about. 2894 */ 2895 if (strcmp(name, "ignore-unknown-vendor-status") == 0) { 2896 nvme_config_boolean(nvme, model, name, val, 2897 &nvme->n_ignore_unknown_vendor_status); 2898 } else if (strcmp(name, "min-phys-block-size") == 0) { 2899 nvme_config_min_block_size(nvme, model, val); 2900 } else if (strcmp(name, "volatile-write-cache") == 0) { 2901 nvme_config_boolean(nvme, model, name, val, 2902 &nvme->n_write_cache_enabled); 2903 } else { 2904 /* 2905 * Unknown 'name'. 2906 */ 2907 dev_err(nvme->n_dip, CE_WARN, 2908 "!nvme-config-list: unknown config '%s' " 2909 "for model '%s', ignoring", name, model); 2910 } 2911 } 2912 } 2913 2914 out: 2915 ddi_prop_free(config_list); 2916 } 2917 2918 static void 2919 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) 2920 { 2921 /* 2922 * Section 7.7 of the spec describes how to get a unique ID for 2923 * the controller: the vendor ID, the model name and the serial 2924 * number shall be unique when combined. 2925 * 2926 * If a namespace has no EUI64 we use the above and add the hex 2927 * namespace ID to get a unique ID for the namespace. 2928 */ 2929 char model[sizeof (nvme->n_idctl->id_model) + 1]; 2930 char serial[sizeof (nvme->n_idctl->id_serial) + 1]; 2931 2932 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 2933 bcopy(nvme->n_idctl->id_serial, serial, 2934 sizeof (nvme->n_idctl->id_serial)); 2935 2936 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 2937 serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; 2938 2939 NVME_NSID2NS(nvme, nsid)->ns_devid = kmem_asprintf("%4X-%s-%s-%X", 2940 nvme->n_idctl->id_vid, model, serial, nsid); 2941 } 2942 2943 static nvme_identify_nsid_list_t * 2944 nvme_update_nsid_list(nvme_t *nvme, int cns) 2945 { 2946 nvme_identify_nsid_list_t *nslist; 2947 2948 /* 2949 * We currently don't handle cases where there are more than 2950 * 1024 active namespaces, requiring several IDENTIFY commands. 2951 */ 2952 if (nvme_identify(nvme, B_FALSE, 0, cns, (void **)&nslist) == 0) 2953 return (nslist); 2954 2955 return (NULL); 2956 } 2957 2958 static boolean_t 2959 nvme_allocated_ns(nvme_namespace_t *ns) 2960 { 2961 nvme_t *nvme = ns->ns_nvme; 2962 uint32_t i; 2963 2964 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 2965 2966 /* 2967 * If supported, update the list of allocated namespace IDs. 2968 */ 2969 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) && 2970 nvme->n_idctl->id_oacs.oa_nsmgmt != 0) { 2971 nvme_identify_nsid_list_t *nslist = nvme_update_nsid_list(nvme, 2972 NVME_IDENTIFY_NSID_ALLOC_LIST); 2973 boolean_t found = B_FALSE; 2974 2975 /* 2976 * When namespace management is supported, this really shouldn't 2977 * be NULL. Treat all namespaces as allocated if it is. 2978 */ 2979 if (nslist == NULL) 2980 return (B_TRUE); 2981 2982 for (i = 0; i < ARRAY_SIZE(nslist->nl_nsid); i++) { 2983 if (ns->ns_id == 0) 2984 break; 2985 2986 if (ns->ns_id == nslist->nl_nsid[i]) 2987 found = B_TRUE; 2988 } 2989 2990 kmem_free(nslist, NVME_IDENTIFY_BUFSIZE); 2991 return (found); 2992 } else { 2993 /* 2994 * If namespace management isn't supported, report all 2995 * namespaces as allocated. 2996 */ 2997 return (B_TRUE); 2998 } 2999 } 3000 3001 static boolean_t 3002 nvme_active_ns(nvme_namespace_t *ns) 3003 { 3004 nvme_t *nvme = ns->ns_nvme; 3005 uint64_t *ptr; 3006 uint32_t i; 3007 3008 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3009 3010 /* 3011 * If supported, update the list of active namespace IDs. 3012 */ 3013 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) { 3014 nvme_identify_nsid_list_t *nslist = nvme_update_nsid_list(nvme, 3015 NVME_IDENTIFY_NSID_LIST); 3016 boolean_t found = B_FALSE; 3017 3018 /* 3019 * When namespace management is supported, this really shouldn't 3020 * be NULL. Treat all namespaces as allocated if it is. 3021 */ 3022 if (nslist == NULL) 3023 return (B_TRUE); 3024 3025 for (i = 0; i < ARRAY_SIZE(nslist->nl_nsid); i++) { 3026 if (ns->ns_id == 0) 3027 break; 3028 3029 if (ns->ns_id == nslist->nl_nsid[i]) 3030 found = B_TRUE; 3031 } 3032 3033 kmem_free(nslist, NVME_IDENTIFY_BUFSIZE); 3034 return (found); 3035 } 3036 3037 /* 3038 * Workaround for revision 1.0: 3039 * Check whether the IDENTIFY NAMESPACE data is zero-filled. 3040 */ 3041 for (ptr = (uint64_t *)ns->ns_idns; 3042 ptr != (uint64_t *)(ns->ns_idns + 1); 3043 ptr++) { 3044 if (*ptr != 0) { 3045 return (B_TRUE); 3046 } 3047 } 3048 3049 return (B_FALSE); 3050 } 3051 3052 static int 3053 nvme_init_ns(nvme_t *nvme, int nsid) 3054 { 3055 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 3056 nvme_identify_nsid_t *idns; 3057 boolean_t was_ignored; 3058 int last_rp; 3059 3060 ns->ns_nvme = nvme; 3061 3062 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3063 3064 if (nvme_identify(nvme, B_FALSE, nsid, NVME_IDENTIFY_NSID, 3065 (void **)&idns) != 0) { 3066 dev_err(nvme->n_dip, CE_WARN, 3067 "!failed to identify namespace %d", nsid); 3068 return (DDI_FAILURE); 3069 } 3070 3071 if (ns->ns_idns != NULL) 3072 kmem_free(ns->ns_idns, sizeof (nvme_identify_nsid_t)); 3073 3074 ns->ns_idns = idns; 3075 ns->ns_id = nsid; 3076 3077 was_ignored = ns->ns_ignore; 3078 3079 ns->ns_allocated = nvme_allocated_ns(ns); 3080 ns->ns_active = nvme_active_ns(ns); 3081 3082 ns->ns_block_count = idns->id_nsize; 3083 ns->ns_block_size = 3084 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; 3085 ns->ns_best_block_size = ns->ns_block_size; 3086 3087 /* 3088 * Get the EUI64 if present. 3089 */ 3090 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 3091 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64)); 3092 3093 /* 3094 * Get the NGUID if present. 3095 */ 3096 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) 3097 bcopy(idns->id_nguid, ns->ns_nguid, sizeof (ns->ns_nguid)); 3098 3099 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 3100 if (*(uint64_t *)ns->ns_eui64 == 0) 3101 nvme_prepare_devid(nvme, ns->ns_id); 3102 3103 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%u", ns->ns_id); 3104 3105 /* 3106 * Find the LBA format with no metadata and the best relative 3107 * performance. A value of 3 means "degraded", 0 is best. 3108 */ 3109 last_rp = 3; 3110 for (int j = 0; j <= idns->id_nlbaf; j++) { 3111 if (idns->id_lbaf[j].lbaf_lbads == 0) 3112 break; 3113 if (idns->id_lbaf[j].lbaf_ms != 0) 3114 continue; 3115 if (idns->id_lbaf[j].lbaf_rp >= last_rp) 3116 continue; 3117 last_rp = idns->id_lbaf[j].lbaf_rp; 3118 ns->ns_best_block_size = 3119 1 << idns->id_lbaf[j].lbaf_lbads; 3120 } 3121 3122 if (ns->ns_best_block_size < nvme->n_min_block_size) 3123 ns->ns_best_block_size = nvme->n_min_block_size; 3124 3125 was_ignored = ns->ns_ignore; 3126 3127 /* 3128 * We currently don't support namespaces that are inactive, or use 3129 * either: 3130 * - protection information 3131 * - illegal block size (< 512) 3132 */ 3133 if (!ns->ns_active) { 3134 ns->ns_ignore = B_TRUE; 3135 } else if (idns->id_dps.dp_pinfo) { 3136 dev_err(nvme->n_dip, CE_WARN, 3137 "!ignoring namespace %d, unsupported feature: " 3138 "pinfo = %d", nsid, idns->id_dps.dp_pinfo); 3139 ns->ns_ignore = B_TRUE; 3140 } else if (ns->ns_block_size < 512) { 3141 dev_err(nvme->n_dip, CE_WARN, 3142 "!ignoring namespace %d, unsupported block size %"PRIu64, 3143 nsid, (uint64_t)ns->ns_block_size); 3144 ns->ns_ignore = B_TRUE; 3145 } else { 3146 ns->ns_ignore = B_FALSE; 3147 } 3148 3149 /* 3150 * Keep a count of namespaces which are attachable. 3151 * See comments in nvme_bd_driveinfo() to understand its effect. 3152 */ 3153 if (was_ignored) { 3154 /* 3155 * Previously ignored, but now not. Count it. 3156 */ 3157 if (!ns->ns_ignore) 3158 nvme->n_namespaces_attachable++; 3159 } else { 3160 /* 3161 * Wasn't ignored previously, but now needs to be. 3162 * Discount it. 3163 */ 3164 if (ns->ns_ignore) 3165 nvme->n_namespaces_attachable--; 3166 } 3167 3168 return (DDI_SUCCESS); 3169 } 3170 3171 static int 3172 nvme_attach_ns(nvme_t *nvme, int nsid) 3173 { 3174 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 3175 3176 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3177 3178 if (ns->ns_ignore) 3179 return (ENOTSUP); 3180 3181 if (ns->ns_bd_hdl == NULL) { 3182 bd_ops_t ops = nvme_bd_ops; 3183 3184 if (!nvme->n_idctl->id_oncs.on_dset_mgmt) 3185 ops.o_free_space = NULL; 3186 3187 ns->ns_bd_hdl = bd_alloc_handle(ns, &ops, &nvme->n_prp_dma_attr, 3188 KM_SLEEP); 3189 3190 if (ns->ns_bd_hdl == NULL) { 3191 dev_err(nvme->n_dip, CE_WARN, "!Failed to get blkdev " 3192 "handle for namespace id %d", nsid); 3193 return (EINVAL); 3194 } 3195 } 3196 3197 if (bd_attach_handle(nvme->n_dip, ns->ns_bd_hdl) != DDI_SUCCESS) 3198 return (EBUSY); 3199 3200 ns->ns_attached = B_TRUE; 3201 3202 return (0); 3203 } 3204 3205 static int 3206 nvme_detach_ns(nvme_t *nvme, int nsid) 3207 { 3208 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 3209 int rv; 3210 3211 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3212 3213 if (ns->ns_ignore || !ns->ns_attached) 3214 return (0); 3215 3216 ASSERT(ns->ns_bd_hdl != NULL); 3217 rv = bd_detach_handle(ns->ns_bd_hdl); 3218 if (rv != DDI_SUCCESS) 3219 return (EBUSY); 3220 else 3221 ns->ns_attached = B_FALSE; 3222 3223 return (0); 3224 } 3225 3226 static int 3227 nvme_init(nvme_t *nvme) 3228 { 3229 nvme_reg_cc_t cc = { 0 }; 3230 nvme_reg_aqa_t aqa = { 0 }; 3231 nvme_reg_asq_t asq = { 0 }; 3232 nvme_reg_acq_t acq = { 0 }; 3233 nvme_reg_cap_t cap; 3234 nvme_reg_vs_t vs; 3235 nvme_reg_csts_t csts; 3236 int i = 0; 3237 uint16_t nqueues; 3238 uint_t tq_threads; 3239 char model[sizeof (nvme->n_idctl->id_model) + 1]; 3240 char *vendor, *product; 3241 3242 /* Check controller version */ 3243 vs.r = nvme_get32(nvme, NVME_REG_VS); 3244 nvme->n_version.v_major = vs.b.vs_mjr; 3245 nvme->n_version.v_minor = vs.b.vs_mnr; 3246 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", 3247 nvme->n_version.v_major, nvme->n_version.v_minor); 3248 3249 if (nvme->n_version.v_major > nvme_version_major) { 3250 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x", 3251 nvme_version_major); 3252 if (nvme->n_strict_version) 3253 goto fail; 3254 } 3255 3256 /* retrieve controller configuration */ 3257 cap.r = nvme_get64(nvme, NVME_REG_CAP); 3258 3259 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { 3260 dev_err(nvme->n_dip, CE_WARN, 3261 "!NVM command set not supported by hardware"); 3262 goto fail; 3263 } 3264 3265 nvme->n_nssr_supported = cap.b.cap_nssrs; 3266 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; 3267 nvme->n_timeout = cap.b.cap_to; 3268 nvme->n_arbitration_mechanisms = cap.b.cap_ams; 3269 nvme->n_cont_queues_reqd = cap.b.cap_cqr; 3270 nvme->n_max_queue_entries = cap.b.cap_mqes + 1; 3271 3272 /* 3273 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify 3274 * the base page size of 4k (1<<12), so add 12 here to get the real 3275 * page size value. 3276 */ 3277 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), 3278 cap.b.cap_mpsmax + 12); 3279 nvme->n_pagesize = 1UL << (nvme->n_pageshift); 3280 3281 /* 3282 * Set up Queue DMA to transfer at least 1 page-aligned page at a time. 3283 */ 3284 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; 3285 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 3286 3287 /* 3288 * Set up PRP DMA to transfer 1 page-aligned page at a time. 3289 * Maxxfer may be increased after we identified the controller limits. 3290 */ 3291 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; 3292 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 3293 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; 3294 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; 3295 3296 /* 3297 * Reset controller if it's still in ready state. 3298 */ 3299 if (nvme_reset(nvme, B_FALSE) == B_FALSE) { 3300 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); 3301 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 3302 nvme->n_dead = B_TRUE; 3303 goto fail; 3304 } 3305 3306 /* 3307 * Create the cq array with one completion queue to be assigned 3308 * to the admin queue pair and a limited number of taskqs (4). 3309 */ 3310 if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) != 3311 DDI_SUCCESS) { 3312 dev_err(nvme->n_dip, CE_WARN, 3313 "!failed to pre-allocate admin completion queue"); 3314 goto fail; 3315 } 3316 /* 3317 * Create the admin queue pair. 3318 */ 3319 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) 3320 != DDI_SUCCESS) { 3321 dev_err(nvme->n_dip, CE_WARN, 3322 "!unable to allocate admin qpair"); 3323 goto fail; 3324 } 3325 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); 3326 nvme->n_ioq[0] = nvme->n_adminq; 3327 3328 nvme->n_progress |= NVME_ADMIN_QUEUE; 3329 3330 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3331 "admin-queue-len", nvme->n_admin_queue_len); 3332 3333 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; 3334 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; 3335 acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress; 3336 3337 ASSERT((asq & (nvme->n_pagesize - 1)) == 0); 3338 ASSERT((acq & (nvme->n_pagesize - 1)) == 0); 3339 3340 nvme_put32(nvme, NVME_REG_AQA, aqa.r); 3341 nvme_put64(nvme, NVME_REG_ASQ, asq); 3342 nvme_put64(nvme, NVME_REG_ACQ, acq); 3343 3344 cc.b.cc_ams = 0; /* use Round-Robin arbitration */ 3345 cc.b.cc_css = 0; /* use NVM command set */ 3346 cc.b.cc_mps = nvme->n_pageshift - 12; 3347 cc.b.cc_shn = 0; /* no shutdown in progress */ 3348 cc.b.cc_en = 1; /* enable controller */ 3349 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ 3350 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ 3351 3352 nvme_put32(nvme, NVME_REG_CC, cc.r); 3353 3354 /* 3355 * Wait for the controller to become ready. 3356 */ 3357 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3358 if (csts.b.csts_rdy == 0) { 3359 for (i = 0; i != nvme->n_timeout * 10; i++) { 3360 delay(drv_usectohz(50000)); 3361 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3362 3363 if (csts.b.csts_cfs == 1) { 3364 dev_err(nvme->n_dip, CE_WARN, 3365 "!controller fatal status at init"); 3366 ddi_fm_service_impact(nvme->n_dip, 3367 DDI_SERVICE_LOST); 3368 nvme->n_dead = B_TRUE; 3369 goto fail; 3370 } 3371 3372 if (csts.b.csts_rdy == 1) 3373 break; 3374 } 3375 } 3376 3377 if (csts.b.csts_rdy == 0) { 3378 dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); 3379 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 3380 nvme->n_dead = B_TRUE; 3381 goto fail; 3382 } 3383 3384 /* 3385 * Assume an abort command limit of 1. We'll destroy and re-init 3386 * that later when we know the true abort command limit. 3387 */ 3388 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); 3389 3390 /* 3391 * Set up initial interrupt for admin queue. 3392 */ 3393 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) 3394 != DDI_SUCCESS) && 3395 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) 3396 != DDI_SUCCESS) && 3397 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) 3398 != DDI_SUCCESS)) { 3399 dev_err(nvme->n_dip, CE_WARN, 3400 "!failed to setup initial interrupt"); 3401 goto fail; 3402 } 3403 3404 /* 3405 * Post an asynchronous event command to catch errors. 3406 * We assume the asynchronous events are supported as required by 3407 * specification (Figure 40 in section 5 of NVMe 1.2). 3408 * However, since at least qemu does not follow the specification, 3409 * we need a mechanism to protect ourselves. 3410 */ 3411 nvme->n_async_event_supported = B_TRUE; 3412 nvme_async_event(nvme); 3413 3414 /* 3415 * Identify Controller 3416 */ 3417 if (nvme_identify(nvme, B_FALSE, 0, NVME_IDENTIFY_CTRL, 3418 (void **)&nvme->n_idctl) != 0) { 3419 dev_err(nvme->n_dip, CE_WARN, 3420 "!failed to identify controller"); 3421 goto fail; 3422 } 3423 3424 /* 3425 * Process nvme-config-list (if present) in nvme.conf. 3426 */ 3427 nvme_config_list(nvme); 3428 3429 /* 3430 * Get Vendor & Product ID 3431 */ 3432 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 3433 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 3434 sata_split_model(model, &vendor, &product); 3435 3436 if (vendor == NULL) 3437 nvme->n_vendor = strdup("NVMe"); 3438 else 3439 nvme->n_vendor = strdup(vendor); 3440 3441 nvme->n_product = strdup(product); 3442 3443 /* 3444 * Get controller limits. 3445 */ 3446 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, 3447 MIN(nvme->n_admin_queue_len / 10, 3448 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); 3449 3450 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3451 "async-event-limit", nvme->n_async_event_limit); 3452 3453 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; 3454 3455 /* 3456 * Reinitialize the semaphore with the true abort command limit 3457 * supported by the hardware. It's not necessary to disable interrupts 3458 * as only command aborts use the semaphore, and no commands are 3459 * executed or aborted while we're here. 3460 */ 3461 sema_destroy(&nvme->n_abort_sema); 3462 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, 3463 SEMA_DRIVER, NULL); 3464 3465 nvme->n_progress |= NVME_CTRL_LIMITS; 3466 3467 if (nvme->n_idctl->id_mdts == 0) 3468 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; 3469 else 3470 nvme->n_max_data_transfer_size = 3471 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); 3472 3473 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; 3474 3475 /* 3476 * Limit n_max_data_transfer_size to what we can handle in one PRP. 3477 * Chained PRPs are currently unsupported. 3478 * 3479 * This is a no-op on hardware which doesn't support a transfer size 3480 * big enough to require chained PRPs. 3481 */ 3482 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, 3483 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); 3484 3485 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; 3486 3487 /* 3488 * Make sure the minimum/maximum queue entry sizes are not 3489 * larger/smaller than the default. 3490 */ 3491 3492 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || 3493 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || 3494 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || 3495 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) 3496 goto fail; 3497 3498 /* 3499 * Check for the presence of a Volatile Write Cache. If present, 3500 * enable or disable based on the value of the property 3501 * volatile-write-cache-enable (default is enabled). 3502 */ 3503 nvme->n_write_cache_present = 3504 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE; 3505 3506 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3507 "volatile-write-cache-present", 3508 nvme->n_write_cache_present ? 1 : 0); 3509 3510 if (!nvme->n_write_cache_present) { 3511 nvme->n_write_cache_enabled = B_FALSE; 3512 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled) 3513 != 0) { 3514 dev_err(nvme->n_dip, CE_WARN, 3515 "!failed to %sable volatile write cache", 3516 nvme->n_write_cache_enabled ? "en" : "dis"); 3517 /* 3518 * Assume the cache is (still) enabled. 3519 */ 3520 nvme->n_write_cache_enabled = B_TRUE; 3521 } 3522 3523 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3524 "volatile-write-cache-enable", 3525 nvme->n_write_cache_enabled ? 1 : 0); 3526 3527 /* 3528 * Assume LBA Range Type feature is supported. If it isn't this 3529 * will be set to B_FALSE by nvme_get_features(). 3530 */ 3531 nvme->n_lba_range_supported = B_TRUE; 3532 3533 /* 3534 * Check support for Autonomous Power State Transition. 3535 */ 3536 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 3537 nvme->n_auto_pst_supported = 3538 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE; 3539 3540 /* 3541 * Assume Software Progress Marker feature is supported. If it isn't 3542 * this will be set to B_FALSE by nvme_get_features(). 3543 */ 3544 nvme->n_progress_supported = B_TRUE; 3545 3546 /* 3547 * Get number of supported namespaces and allocate namespace array. 3548 */ 3549 nvme->n_namespace_count = nvme->n_idctl->id_nn; 3550 3551 if (nvme->n_namespace_count == 0) { 3552 dev_err(nvme->n_dip, CE_WARN, 3553 "!controllers without namespaces are not supported"); 3554 goto fail; 3555 } 3556 3557 if (nvme->n_namespace_count > NVME_MINOR_MAX) { 3558 dev_err(nvme->n_dip, CE_WARN, 3559 "!too many namespaces: %d, limiting to %d\n", 3560 nvme->n_namespace_count, NVME_MINOR_MAX); 3561 nvme->n_namespace_count = NVME_MINOR_MAX; 3562 } 3563 3564 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * 3565 nvme->n_namespace_count, KM_SLEEP); 3566 3567 /* 3568 * Try to set up MSI/MSI-X interrupts. 3569 */ 3570 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) 3571 != 0) { 3572 nvme_release_interrupts(nvme); 3573 3574 nqueues = MIN(UINT16_MAX, ncpus); 3575 3576 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 3577 nqueues) != DDI_SUCCESS) && 3578 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 3579 nqueues) != DDI_SUCCESS)) { 3580 dev_err(nvme->n_dip, CE_WARN, 3581 "!failed to setup MSI/MSI-X interrupts"); 3582 goto fail; 3583 } 3584 } 3585 3586 /* 3587 * Create I/O queue pairs. 3588 */ 3589 3590 if (nvme_set_nqueues(nvme) != 0) { 3591 dev_err(nvme->n_dip, CE_WARN, 3592 "!failed to set number of I/O queues to %d", 3593 nvme->n_intr_cnt); 3594 goto fail; 3595 } 3596 3597 /* 3598 * Reallocate I/O queue array 3599 */ 3600 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); 3601 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * 3602 (nvme->n_submission_queues + 1), KM_SLEEP); 3603 nvme->n_ioq[0] = nvme->n_adminq; 3604 3605 /* 3606 * There should always be at least as many submission queues 3607 * as completion queues. 3608 */ 3609 ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues); 3610 3611 nvme->n_ioq_count = nvme->n_submission_queues; 3612 3613 nvme->n_io_squeue_len = 3614 MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries); 3615 3616 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len", 3617 nvme->n_io_squeue_len); 3618 3619 /* 3620 * Pre-allocate completion queues. 3621 * When there are the same number of submission and completion 3622 * queues there is no value in having a larger completion 3623 * queue length. 3624 */ 3625 if (nvme->n_submission_queues == nvme->n_completion_queues) 3626 nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len, 3627 nvme->n_io_squeue_len); 3628 3629 nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len, 3630 nvme->n_max_queue_entries); 3631 3632 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len", 3633 nvme->n_io_cqueue_len); 3634 3635 /* 3636 * Assign the equal quantity of taskq threads to each completion 3637 * queue, capping the total number of threads to the number 3638 * of CPUs. 3639 */ 3640 tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues; 3641 3642 /* 3643 * In case the calculation above is zero, we need at least one 3644 * thread per completion queue. 3645 */ 3646 tq_threads = MAX(1, tq_threads); 3647 3648 if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1, 3649 nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) { 3650 dev_err(nvme->n_dip, CE_WARN, 3651 "!failed to pre-allocate completion queues"); 3652 goto fail; 3653 } 3654 3655 /* 3656 * If we use less completion queues than interrupt vectors return 3657 * some of the interrupt vectors back to the system. 3658 */ 3659 if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) { 3660 nvme_release_interrupts(nvme); 3661 3662 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, 3663 nvme->n_completion_queues + 1) != DDI_SUCCESS) { 3664 dev_err(nvme->n_dip, CE_WARN, 3665 "!failed to reduce number of interrupts"); 3666 goto fail; 3667 } 3668 } 3669 3670 /* 3671 * Alloc & register I/O queue pairs 3672 */ 3673 3674 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 3675 if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len, 3676 &nvme->n_ioq[i], i) != DDI_SUCCESS) { 3677 dev_err(nvme->n_dip, CE_WARN, 3678 "!unable to allocate I/O qpair %d", i); 3679 goto fail; 3680 } 3681 3682 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) { 3683 dev_err(nvme->n_dip, CE_WARN, 3684 "!unable to create I/O qpair %d", i); 3685 goto fail; 3686 } 3687 } 3688 3689 /* 3690 * Post more asynchronous events commands to reduce event reporting 3691 * latency as suggested by the spec. 3692 */ 3693 if (nvme->n_async_event_supported) { 3694 for (i = 1; i != nvme->n_async_event_limit; i++) 3695 nvme_async_event(nvme); 3696 } 3697 3698 return (DDI_SUCCESS); 3699 3700 fail: 3701 (void) nvme_reset(nvme, B_FALSE); 3702 return (DDI_FAILURE); 3703 } 3704 3705 static uint_t 3706 nvme_intr(caddr_t arg1, caddr_t arg2) 3707 { 3708 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3709 nvme_t *nvme = (nvme_t *)arg1; 3710 int inum = (int)(uintptr_t)arg2; 3711 int ccnt = 0; 3712 int qnum; 3713 3714 if (inum >= nvme->n_intr_cnt) 3715 return (DDI_INTR_UNCLAIMED); 3716 3717 if (nvme->n_dead) 3718 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ? 3719 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED); 3720 3721 /* 3722 * The interrupt vector a queue uses is calculated as queue_idx % 3723 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array 3724 * in steps of n_intr_cnt to process all queues using this vector. 3725 */ 3726 for (qnum = inum; 3727 qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL; 3728 qnum += nvme->n_intr_cnt) { 3729 ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]); 3730 } 3731 3732 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 3733 } 3734 3735 static void 3736 nvme_release_interrupts(nvme_t *nvme) 3737 { 3738 int i; 3739 3740 for (i = 0; i < nvme->n_intr_cnt; i++) { 3741 if (nvme->n_inth[i] == NULL) 3742 break; 3743 3744 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 3745 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); 3746 else 3747 (void) ddi_intr_disable(nvme->n_inth[i]); 3748 3749 (void) ddi_intr_remove_handler(nvme->n_inth[i]); 3750 (void) ddi_intr_free(nvme->n_inth[i]); 3751 } 3752 3753 kmem_free(nvme->n_inth, nvme->n_inth_sz); 3754 nvme->n_inth = NULL; 3755 nvme->n_inth_sz = 0; 3756 3757 nvme->n_progress &= ~NVME_INTERRUPTS; 3758 } 3759 3760 static int 3761 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) 3762 { 3763 int nintrs, navail, count; 3764 int ret; 3765 int i; 3766 3767 if (nvme->n_intr_types == 0) { 3768 ret = ddi_intr_get_supported_types(nvme->n_dip, 3769 &nvme->n_intr_types); 3770 if (ret != DDI_SUCCESS) { 3771 dev_err(nvme->n_dip, CE_WARN, 3772 "!%s: ddi_intr_get_supported types failed", 3773 __func__); 3774 return (ret); 3775 } 3776 #ifdef __x86 3777 if (get_hwenv() == HW_VMWARE) 3778 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX; 3779 #endif 3780 } 3781 3782 if ((nvme->n_intr_types & intr_type) == 0) 3783 return (DDI_FAILURE); 3784 3785 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); 3786 if (ret != DDI_SUCCESS) { 3787 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", 3788 __func__); 3789 return (ret); 3790 } 3791 3792 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); 3793 if (ret != DDI_SUCCESS) { 3794 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", 3795 __func__); 3796 return (ret); 3797 } 3798 3799 /* We want at most one interrupt per queue pair. */ 3800 if (navail > nqpairs) 3801 navail = nqpairs; 3802 3803 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; 3804 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); 3805 3806 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, 3807 &count, 0); 3808 if (ret != DDI_SUCCESS) { 3809 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", 3810 __func__); 3811 goto fail; 3812 } 3813 3814 nvme->n_intr_cnt = count; 3815 3816 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); 3817 if (ret != DDI_SUCCESS) { 3818 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", 3819 __func__); 3820 goto fail; 3821 } 3822 3823 for (i = 0; i < count; i++) { 3824 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, 3825 (void *)nvme, (void *)(uintptr_t)i); 3826 if (ret != DDI_SUCCESS) { 3827 dev_err(nvme->n_dip, CE_WARN, 3828 "!%s: ddi_intr_add_handler failed", __func__); 3829 goto fail; 3830 } 3831 } 3832 3833 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); 3834 3835 for (i = 0; i < count; i++) { 3836 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 3837 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1); 3838 else 3839 ret = ddi_intr_enable(nvme->n_inth[i]); 3840 3841 if (ret != DDI_SUCCESS) { 3842 dev_err(nvme->n_dip, CE_WARN, 3843 "!%s: enabling interrupt %d failed", __func__, i); 3844 goto fail; 3845 } 3846 } 3847 3848 nvme->n_intr_type = intr_type; 3849 3850 nvme->n_progress |= NVME_INTERRUPTS; 3851 3852 return (DDI_SUCCESS); 3853 3854 fail: 3855 nvme_release_interrupts(nvme); 3856 3857 return (ret); 3858 } 3859 3860 static int 3861 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) 3862 { 3863 _NOTE(ARGUNUSED(arg)); 3864 3865 pci_ereport_post(dip, fm_error, NULL); 3866 return (fm_error->fme_status); 3867 } 3868 3869 static void 3870 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a, 3871 void *b) 3872 { 3873 nvme_t *nvme = a; 3874 3875 nvme->n_dead = B_TRUE; 3876 3877 /* 3878 * Fail all outstanding commands, including those in the admin queue 3879 * (queue 0). 3880 */ 3881 for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) { 3882 nvme_qpair_t *qp = nvme->n_ioq[i]; 3883 3884 mutex_enter(&qp->nq_mutex); 3885 for (size_t j = 0; j < qp->nq_nentry; j++) { 3886 nvme_cmd_t *cmd = qp->nq_cmd[j]; 3887 nvme_cmd_t *u_cmd; 3888 3889 if (cmd == NULL) { 3890 continue; 3891 } 3892 3893 /* 3894 * Since we have the queue lock held the entire time we 3895 * iterate over it, it's not possible for the queue to 3896 * change underneath us. Thus, we don't need to check 3897 * that the return value of nvme_unqueue_cmd matches the 3898 * requested cmd to unqueue. 3899 */ 3900 u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); 3901 taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, 3902 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); 3903 3904 ASSERT3P(u_cmd, ==, cmd); 3905 } 3906 mutex_exit(&qp->nq_mutex); 3907 } 3908 } 3909 3910 static int 3911 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 3912 { 3913 nvme_t *nvme; 3914 int instance; 3915 int nregs; 3916 off_t regsize; 3917 int i; 3918 char name[32]; 3919 boolean_t attached_ns; 3920 3921 if (cmd != DDI_ATTACH) 3922 return (DDI_FAILURE); 3923 3924 instance = ddi_get_instance(dip); 3925 3926 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) 3927 return (DDI_FAILURE); 3928 3929 nvme = ddi_get_soft_state(nvme_state, instance); 3930 ddi_set_driver_private(dip, nvme); 3931 nvme->n_dip = dip; 3932 3933 /* Set up event handlers for hot removal. */ 3934 if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT, 3935 &nvme->n_rm_cookie) != DDI_SUCCESS) { 3936 goto fail; 3937 } 3938 if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie, 3939 nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) != 3940 DDI_SUCCESS) { 3941 goto fail; 3942 } 3943 3944 mutex_init(&nvme->n_minor_mutex, NULL, MUTEX_DRIVER, NULL); 3945 nvme->n_progress |= NVME_MUTEX_INIT; 3946 3947 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3948 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; 3949 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, 3950 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? 3951 B_TRUE : B_FALSE; 3952 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3953 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); 3954 nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3955 DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN); 3956 /* 3957 * Double up the default for completion queues in case of 3958 * queue sharing. 3959 */ 3960 nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3961 DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN); 3962 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3963 DDI_PROP_DONTPASS, "async-event-limit", 3964 NVME_DEFAULT_ASYNC_EVENT_LIMIT); 3965 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3966 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ? 3967 B_TRUE : B_FALSE; 3968 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3969 DDI_PROP_DONTPASS, "min-phys-block-size", 3970 NVME_DEFAULT_MIN_BLOCK_SIZE); 3971 nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3972 DDI_PROP_DONTPASS, "max-submission-queues", -1); 3973 nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3974 DDI_PROP_DONTPASS, "max-completion-queues", -1); 3975 3976 if (!ISP2(nvme->n_min_block_size) || 3977 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) { 3978 dev_err(dip, CE_WARN, "!min-phys-block-size %s, " 3979 "using default %d", ISP2(nvme->n_min_block_size) ? 3980 "too low" : "not a power of 2", 3981 NVME_DEFAULT_MIN_BLOCK_SIZE); 3982 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 3983 } 3984 3985 if (nvme->n_submission_queues != -1 && 3986 (nvme->n_submission_queues < 1 || 3987 nvme->n_submission_queues > UINT16_MAX)) { 3988 dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not " 3989 "valid. Must be [1..%d]", nvme->n_submission_queues, 3990 UINT16_MAX); 3991 nvme->n_submission_queues = -1; 3992 } 3993 3994 if (nvme->n_completion_queues != -1 && 3995 (nvme->n_completion_queues < 1 || 3996 nvme->n_completion_queues > UINT16_MAX)) { 3997 dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not " 3998 "valid. Must be [1..%d]", nvme->n_completion_queues, 3999 UINT16_MAX); 4000 nvme->n_completion_queues = -1; 4001 } 4002 4003 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) 4004 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; 4005 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) 4006 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; 4007 4008 if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN) 4009 nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN; 4010 if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN) 4011 nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN; 4012 4013 if (nvme->n_async_event_limit < 1) 4014 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; 4015 4016 nvme->n_reg_acc_attr = nvme_reg_acc_attr; 4017 nvme->n_queue_dma_attr = nvme_queue_dma_attr; 4018 nvme->n_prp_dma_attr = nvme_prp_dma_attr; 4019 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; 4020 4021 /* 4022 * Set up FMA support. 4023 */ 4024 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, 4025 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 4026 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 4027 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 4028 4029 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); 4030 4031 if (nvme->n_fm_cap) { 4032 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) 4033 nvme->n_reg_acc_attr.devacc_attr_access = 4034 DDI_FLAGERR_ACC; 4035 4036 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { 4037 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 4038 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 4039 } 4040 4041 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 4042 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4043 pci_ereport_setup(dip); 4044 4045 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4046 ddi_fm_handler_register(dip, nvme_fm_errcb, 4047 (void *)nvme); 4048 } 4049 4050 nvme->n_progress |= NVME_FMA_INIT; 4051 4052 /* 4053 * The spec defines several register sets. Only the controller 4054 * registers (set 1) are currently used. 4055 */ 4056 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || 4057 nregs < 2 || 4058 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) 4059 goto fail; 4060 4061 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, 4062 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { 4063 dev_err(dip, CE_WARN, "!failed to map regset 1"); 4064 goto fail; 4065 } 4066 4067 nvme->n_progress |= NVME_REGS_MAPPED; 4068 4069 /* 4070 * Create PRP DMA cache 4071 */ 4072 (void) snprintf(name, sizeof (name), "%s%d_prp_cache", 4073 ddi_driver_name(dip), ddi_get_instance(dip)); 4074 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t), 4075 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor, 4076 NULL, (void *)nvme, NULL, 0); 4077 4078 if (nvme_init(nvme) != DDI_SUCCESS) 4079 goto fail; 4080 4081 /* 4082 * Initialize the driver with the UFM subsystem 4083 */ 4084 if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops, 4085 &nvme->n_ufmh, nvme) != 0) { 4086 dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem"); 4087 goto fail; 4088 } 4089 mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL); 4090 ddi_ufm_update(nvme->n_ufmh); 4091 nvme->n_progress |= NVME_UFM_INIT; 4092 4093 mutex_init(&nvme->n_mgmt_mutex, NULL, MUTEX_DRIVER, NULL); 4094 nvme->n_progress |= NVME_MGMT_INIT; 4095 4096 /* 4097 * Identify namespaces. 4098 */ 4099 mutex_enter(&nvme->n_mgmt_mutex); 4100 4101 for (i = 1; i <= nvme->n_namespace_count; i++) { 4102 nvme_namespace_t *ns = NVME_NSID2NS(nvme, i); 4103 4104 /* 4105 * Namespaces start out ignored. When nvme_init_ns() checks 4106 * their properties and finds they can be used, it will set 4107 * ns_ignore to B_FALSE. It will also use this state change 4108 * to keep an accurate count of attachable namespaces. 4109 */ 4110 ns->ns_ignore = B_TRUE; 4111 if (nvme_init_ns(nvme, i) != 0) { 4112 mutex_exit(&nvme->n_mgmt_mutex); 4113 goto fail; 4114 } 4115 4116 if (ddi_create_minor_node(nvme->n_dip, ns->ns_name, S_IFCHR, 4117 NVME_MINOR(ddi_get_instance(nvme->n_dip), i), 4118 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) { 4119 mutex_exit(&nvme->n_mgmt_mutex); 4120 dev_err(dip, CE_WARN, 4121 "!failed to create minor node for namespace %d", i); 4122 goto fail; 4123 } 4124 } 4125 4126 if (ddi_create_minor_node(dip, "devctl", S_IFCHR, 4127 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0) 4128 != DDI_SUCCESS) { 4129 mutex_exit(&nvme->n_mgmt_mutex); 4130 dev_err(dip, CE_WARN, "nvme_attach: " 4131 "cannot create devctl minor node"); 4132 goto fail; 4133 } 4134 4135 attached_ns = B_FALSE; 4136 for (i = 1; i <= nvme->n_namespace_count; i++) { 4137 int rv; 4138 4139 rv = nvme_attach_ns(nvme, i); 4140 if (rv == 0) { 4141 attached_ns = B_TRUE; 4142 } else if (rv != ENOTSUP) { 4143 dev_err(nvme->n_dip, CE_WARN, 4144 "!failed to attach namespace %d: %d", i, rv); 4145 /* 4146 * Once we have successfully attached a namespace we 4147 * can no longer fail the driver attach as there is now 4148 * a blkdev child node linked to this device, and 4149 * our node is not yet in the attached state. 4150 */ 4151 if (!attached_ns) { 4152 mutex_exit(&nvme->n_mgmt_mutex); 4153 goto fail; 4154 } 4155 } 4156 } 4157 4158 mutex_exit(&nvme->n_mgmt_mutex); 4159 4160 return (DDI_SUCCESS); 4161 4162 fail: 4163 /* attach successful anyway so that FMA can retire the device */ 4164 if (nvme->n_dead) 4165 return (DDI_SUCCESS); 4166 4167 (void) nvme_detach(dip, DDI_DETACH); 4168 4169 return (DDI_FAILURE); 4170 } 4171 4172 static int 4173 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 4174 { 4175 int instance, i; 4176 nvme_t *nvme; 4177 4178 if (cmd != DDI_DETACH) 4179 return (DDI_FAILURE); 4180 4181 instance = ddi_get_instance(dip); 4182 4183 nvme = ddi_get_soft_state(nvme_state, instance); 4184 4185 if (nvme == NULL) 4186 return (DDI_FAILURE); 4187 4188 ddi_remove_minor_node(dip, "devctl"); 4189 4190 if (nvme->n_ns) { 4191 for (i = 1; i <= nvme->n_namespace_count; i++) { 4192 nvme_namespace_t *ns = NVME_NSID2NS(nvme, i); 4193 4194 ddi_remove_minor_node(dip, ns->ns_name); 4195 4196 if (ns->ns_bd_hdl) { 4197 (void) bd_detach_handle(ns->ns_bd_hdl); 4198 bd_free_handle(ns->ns_bd_hdl); 4199 } 4200 4201 if (ns->ns_idns) 4202 kmem_free(ns->ns_idns, 4203 sizeof (nvme_identify_nsid_t)); 4204 if (ns->ns_devid) 4205 strfree(ns->ns_devid); 4206 } 4207 4208 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * 4209 nvme->n_namespace_count); 4210 } 4211 4212 if (nvme->n_progress & NVME_MGMT_INIT) { 4213 mutex_destroy(&nvme->n_mgmt_mutex); 4214 } 4215 4216 if (nvme->n_progress & NVME_UFM_INIT) { 4217 ddi_ufm_fini(nvme->n_ufmh); 4218 mutex_destroy(&nvme->n_fwslot_mutex); 4219 } 4220 4221 if (nvme->n_progress & NVME_INTERRUPTS) 4222 nvme_release_interrupts(nvme); 4223 4224 for (i = 0; i < nvme->n_cq_count; i++) { 4225 if (nvme->n_cq[i]->ncq_cmd_taskq != NULL) 4226 taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq); 4227 } 4228 4229 if (nvme->n_progress & NVME_MUTEX_INIT) { 4230 mutex_destroy(&nvme->n_minor_mutex); 4231 } 4232 4233 if (nvme->n_ioq_count > 0) { 4234 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 4235 if (nvme->n_ioq[i] != NULL) { 4236 /* TODO: send destroy queue commands */ 4237 nvme_free_qpair(nvme->n_ioq[i]); 4238 } 4239 } 4240 4241 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * 4242 (nvme->n_ioq_count + 1)); 4243 } 4244 4245 if (nvme->n_prp_cache != NULL) { 4246 kmem_cache_destroy(nvme->n_prp_cache); 4247 } 4248 4249 if (nvme->n_progress & NVME_REGS_MAPPED) { 4250 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE); 4251 (void) nvme_reset(nvme, B_FALSE); 4252 } 4253 4254 if (nvme->n_progress & NVME_CTRL_LIMITS) 4255 sema_destroy(&nvme->n_abort_sema); 4256 4257 if (nvme->n_progress & NVME_ADMIN_QUEUE) 4258 nvme_free_qpair(nvme->n_adminq); 4259 4260 if (nvme->n_cq_count > 0) { 4261 nvme_destroy_cq_array(nvme, 0); 4262 nvme->n_cq = NULL; 4263 nvme->n_cq_count = 0; 4264 } 4265 4266 if (nvme->n_idctl) 4267 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE); 4268 4269 if (nvme->n_progress & NVME_REGS_MAPPED) 4270 ddi_regs_map_free(&nvme->n_regh); 4271 4272 if (nvme->n_progress & NVME_FMA_INIT) { 4273 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4274 ddi_fm_handler_unregister(nvme->n_dip); 4275 4276 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 4277 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4278 pci_ereport_teardown(nvme->n_dip); 4279 4280 ddi_fm_fini(nvme->n_dip); 4281 } 4282 4283 if (nvme->n_vendor != NULL) 4284 strfree(nvme->n_vendor); 4285 4286 if (nvme->n_product != NULL) 4287 strfree(nvme->n_product); 4288 4289 /* Clean up hot removal event handler. */ 4290 if (nvme->n_ev_rm_cb_id != NULL) { 4291 (void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id); 4292 } 4293 nvme->n_ev_rm_cb_id = NULL; 4294 4295 ddi_soft_state_free(nvme_state, instance); 4296 4297 return (DDI_SUCCESS); 4298 } 4299 4300 static int 4301 nvme_quiesce(dev_info_t *dip) 4302 { 4303 int instance; 4304 nvme_t *nvme; 4305 4306 instance = ddi_get_instance(dip); 4307 4308 nvme = ddi_get_soft_state(nvme_state, instance); 4309 4310 if (nvme == NULL) 4311 return (DDI_FAILURE); 4312 4313 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE); 4314 4315 (void) nvme_reset(nvme, B_TRUE); 4316 4317 return (DDI_FAILURE); 4318 } 4319 4320 static int 4321 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma) 4322 { 4323 nvme_t *nvme = cmd->nc_nvme; 4324 uint_t nprp_per_page, nprp; 4325 uint64_t *prp; 4326 const ddi_dma_cookie_t *cookie; 4327 uint_t idx; 4328 uint_t ncookies = ddi_dma_ncookies(dma); 4329 4330 if (ncookies == 0) 4331 return (DDI_FAILURE); 4332 4333 if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL) 4334 return (DDI_FAILURE); 4335 cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress; 4336 4337 if (ncookies == 1) { 4338 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 4339 return (DDI_SUCCESS); 4340 } else if (ncookies == 2) { 4341 if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL) 4342 return (DDI_FAILURE); 4343 cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress; 4344 return (DDI_SUCCESS); 4345 } 4346 4347 /* 4348 * At this point, we're always operating on cookies at 4349 * index >= 1 and writing the addresses of those cookies 4350 * into a new page. The address of that page is stored 4351 * as the second PRP entry. 4352 */ 4353 nprp_per_page = nvme->n_pagesize / sizeof (uint64_t); 4354 ASSERT(nprp_per_page > 0); 4355 4356 /* 4357 * We currently don't support chained PRPs and set up our DMA 4358 * attributes to reflect that. If we still get an I/O request 4359 * that needs a chained PRP something is very wrong. Account 4360 * for the first cookie here, which we've placed in d_prp[0]. 4361 */ 4362 nprp = howmany(ncookies - 1, nprp_per_page); 4363 VERIFY(nprp == 1); 4364 4365 /* 4366 * Allocate a page of pointers, in which we'll write the 4367 * addresses of cookies 1 to `ncookies`. 4368 */ 4369 cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP); 4370 bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len); 4371 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress; 4372 4373 prp = (uint64_t *)cmd->nc_prp->nd_memp; 4374 for (idx = 1; idx < ncookies; idx++) { 4375 if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL) 4376 return (DDI_FAILURE); 4377 *prp++ = cookie->dmac_laddress; 4378 } 4379 4380 (void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len, 4381 DDI_DMA_SYNC_FORDEV); 4382 return (DDI_SUCCESS); 4383 } 4384 4385 /* 4386 * The maximum number of requests supported for a deallocate request is 4387 * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and 4388 * unchanged through at least 1.4a). The definition of nvme_range_t is also 4389 * from the NVMe 1.1 spec. Together, the result is that all of the ranges for 4390 * a deallocate request will fit into the smallest supported namespace page 4391 * (4k). 4392 */ 4393 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096); 4394 4395 static int 4396 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize, 4397 int allocflag) 4398 { 4399 const dkioc_free_list_t *dfl = xfer->x_dfl; 4400 const dkioc_free_list_ext_t *exts = dfl->dfl_exts; 4401 nvme_t *nvme = cmd->nc_nvme; 4402 nvme_range_t *ranges = NULL; 4403 uint_t i; 4404 4405 /* 4406 * The number of ranges in the request is 0s based (that is 4407 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ..., 4408 * word10 == 255 -> 256 ranges). Therefore the allowed values are 4409 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request, 4410 * we either provided bad info in nvme_bd_driveinfo() or there is a bug 4411 * in blkdev. 4412 */ 4413 VERIFY3U(dfl->dfl_num_exts, >, 0); 4414 VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES); 4415 cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff; 4416 4417 cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE; 4418 4419 cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag); 4420 if (cmd->nc_prp == NULL) 4421 return (DDI_FAILURE); 4422 4423 bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len); 4424 ranges = (nvme_range_t *)cmd->nc_prp->nd_memp; 4425 4426 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress; 4427 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 4428 4429 for (i = 0; i < dfl->dfl_num_exts; i++) { 4430 uint64_t lba, len; 4431 4432 lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize; 4433 len = exts[i].dfle_length / blocksize; 4434 4435 VERIFY3U(len, <=, UINT32_MAX); 4436 4437 /* No context attributes for a deallocate request */ 4438 ranges[i].nr_ctxattr = 0; 4439 ranges[i].nr_len = len; 4440 ranges[i].nr_lba = lba; 4441 } 4442 4443 (void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len, 4444 DDI_DMA_SYNC_FORDEV); 4445 4446 return (DDI_SUCCESS); 4447 } 4448 4449 static nvme_cmd_t * 4450 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) 4451 { 4452 nvme_t *nvme = ns->ns_nvme; 4453 nvme_cmd_t *cmd; 4454 int allocflag; 4455 4456 /* 4457 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. 4458 */ 4459 allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP; 4460 cmd = nvme_alloc_cmd(nvme, allocflag); 4461 4462 if (cmd == NULL) 4463 return (NULL); 4464 4465 cmd->nc_sqe.sqe_opc = opc; 4466 cmd->nc_callback = nvme_bd_xfer_done; 4467 cmd->nc_xfer = xfer; 4468 4469 switch (opc) { 4470 case NVME_OPC_NVM_WRITE: 4471 case NVME_OPC_NVM_READ: 4472 VERIFY(xfer->x_nblks <= 0x10000); 4473 4474 cmd->nc_sqe.sqe_nsid = ns->ns_id; 4475 4476 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; 4477 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); 4478 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); 4479 4480 if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS) 4481 goto fail; 4482 break; 4483 4484 case NVME_OPC_NVM_FLUSH: 4485 cmd->nc_sqe.sqe_nsid = ns->ns_id; 4486 break; 4487 4488 case NVME_OPC_NVM_DSET_MGMT: 4489 cmd->nc_sqe.sqe_nsid = ns->ns_id; 4490 4491 if (nvme_fill_ranges(cmd, xfer, 4492 (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS) 4493 goto fail; 4494 break; 4495 4496 default: 4497 goto fail; 4498 } 4499 4500 return (cmd); 4501 4502 fail: 4503 nvme_free_cmd(cmd); 4504 return (NULL); 4505 } 4506 4507 static void 4508 nvme_bd_xfer_done(void *arg) 4509 { 4510 nvme_cmd_t *cmd = arg; 4511 bd_xfer_t *xfer = cmd->nc_xfer; 4512 int error = 0; 4513 4514 error = nvme_check_cmd_status(cmd); 4515 nvme_free_cmd(cmd); 4516 4517 bd_xfer_done(xfer, error); 4518 } 4519 4520 static void 4521 nvme_bd_driveinfo(void *arg, bd_drive_t *drive) 4522 { 4523 nvme_namespace_t *ns = arg; 4524 nvme_t *nvme = ns->ns_nvme; 4525 uint_t ns_count = MAX(1, nvme->n_namespaces_attachable); 4526 boolean_t mutex_exit_needed = B_TRUE; 4527 4528 /* 4529 * nvme_bd_driveinfo is called by blkdev in two situations: 4530 * - during bd_attach_handle(), which we call with the mutex held 4531 * - during bd_attach(), which may be called with or without the 4532 * mutex held 4533 */ 4534 if (mutex_owned(&nvme->n_mgmt_mutex)) 4535 mutex_exit_needed = B_FALSE; 4536 else 4537 mutex_enter(&nvme->n_mgmt_mutex); 4538 4539 /* 4540 * Set the blkdev qcount to the number of submission queues. 4541 * It will then create one waitq/runq pair for each submission 4542 * queue and spread I/O requests across the queues. 4543 */ 4544 drive->d_qcount = nvme->n_ioq_count; 4545 4546 /* 4547 * I/O activity to individual namespaces is distributed across 4548 * each of the d_qcount blkdev queues (which has been set to 4549 * the number of nvme submission queues). d_qsize is the number 4550 * of submitted and not completed I/Os within each queue that blkdev 4551 * will allow before it starts holding them in the waitq. 4552 * 4553 * Each namespace will create a child blkdev instance, for each one 4554 * we try and set the d_qsize so that each namespace gets an 4555 * equal portion of the submission queue. 4556 * 4557 * If post instantiation of the nvme drive, n_namespaces_attachable 4558 * changes and a namespace is attached it could calculate a 4559 * different d_qsize. It may even be that the sum of the d_qsizes is 4560 * now beyond the submission queue size. Should that be the case 4561 * and the I/O rate is such that blkdev attempts to submit more 4562 * I/Os than the size of the submission queue, the excess I/Os 4563 * will be held behind the semaphore nq_sema. 4564 */ 4565 drive->d_qsize = nvme->n_io_squeue_len / ns_count; 4566 4567 /* 4568 * Don't let the queue size drop below the minimum, though. 4569 */ 4570 drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN); 4571 4572 /* 4573 * d_maxxfer is not set, which means the value is taken from the DMA 4574 * attributes specified to bd_alloc_handle. 4575 */ 4576 4577 drive->d_removable = B_FALSE; 4578 drive->d_hotpluggable = B_FALSE; 4579 4580 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64)); 4581 drive->d_target = ns->ns_id; 4582 drive->d_lun = 0; 4583 4584 drive->d_model = nvme->n_idctl->id_model; 4585 drive->d_model_len = sizeof (nvme->n_idctl->id_model); 4586 drive->d_vendor = nvme->n_vendor; 4587 drive->d_vendor_len = strlen(nvme->n_vendor); 4588 drive->d_product = nvme->n_product; 4589 drive->d_product_len = strlen(nvme->n_product); 4590 drive->d_serial = nvme->n_idctl->id_serial; 4591 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); 4592 drive->d_revision = nvme->n_idctl->id_fwrev; 4593 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); 4594 4595 /* 4596 * If we support the dataset management command, the only restrictions 4597 * on a discard request are the maximum number of ranges (segments) 4598 * per single request. 4599 */ 4600 if (nvme->n_idctl->id_oncs.on_dset_mgmt) 4601 drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES; 4602 4603 if (mutex_exit_needed) 4604 mutex_exit(&nvme->n_mgmt_mutex); 4605 } 4606 4607 static int 4608 nvme_bd_mediainfo(void *arg, bd_media_t *media) 4609 { 4610 nvme_namespace_t *ns = arg; 4611 nvme_t *nvme = ns->ns_nvme; 4612 boolean_t mutex_exit_needed = B_TRUE; 4613 4614 if (nvme->n_dead) { 4615 return (EIO); 4616 } 4617 4618 /* 4619 * nvme_bd_mediainfo is called by blkdev in various situations, 4620 * most of them out of our control. There's one exception though: 4621 * When we call bd_state_change() in response to "namespace change" 4622 * notification, where the mutex is already being held by us. 4623 */ 4624 if (mutex_owned(&nvme->n_mgmt_mutex)) 4625 mutex_exit_needed = B_FALSE; 4626 else 4627 mutex_enter(&nvme->n_mgmt_mutex); 4628 4629 media->m_nblks = ns->ns_block_count; 4630 media->m_blksize = ns->ns_block_size; 4631 media->m_readonly = B_FALSE; 4632 media->m_solidstate = B_TRUE; 4633 4634 media->m_pblksize = ns->ns_best_block_size; 4635 4636 if (mutex_exit_needed) 4637 mutex_exit(&nvme->n_mgmt_mutex); 4638 4639 return (0); 4640 } 4641 4642 static int 4643 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) 4644 { 4645 nvme_t *nvme = ns->ns_nvme; 4646 nvme_cmd_t *cmd; 4647 nvme_qpair_t *ioq; 4648 boolean_t poll; 4649 int ret; 4650 4651 if (nvme->n_dead) { 4652 return (EIO); 4653 } 4654 4655 cmd = nvme_create_nvm_cmd(ns, opc, xfer); 4656 if (cmd == NULL) 4657 return (ENOMEM); 4658 4659 cmd->nc_sqid = xfer->x_qnum + 1; 4660 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 4661 ioq = nvme->n_ioq[cmd->nc_sqid]; 4662 4663 /* 4664 * Get the polling flag before submitting the command. The command may 4665 * complete immediately after it was submitted, which means we must 4666 * treat both cmd and xfer as if they have been freed already. 4667 */ 4668 poll = (xfer->x_flags & BD_XFER_POLL) != 0; 4669 4670 ret = nvme_submit_io_cmd(ioq, cmd); 4671 4672 if (ret != 0) 4673 return (ret); 4674 4675 if (!poll) 4676 return (0); 4677 4678 do { 4679 cmd = nvme_retrieve_cmd(nvme, ioq); 4680 if (cmd != NULL) 4681 cmd->nc_callback(cmd); 4682 else 4683 drv_usecwait(10); 4684 } while (ioq->nq_active_cmds != 0); 4685 4686 return (0); 4687 } 4688 4689 static int 4690 nvme_bd_read(void *arg, bd_xfer_t *xfer) 4691 { 4692 nvme_namespace_t *ns = arg; 4693 4694 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); 4695 } 4696 4697 static int 4698 nvme_bd_write(void *arg, bd_xfer_t *xfer) 4699 { 4700 nvme_namespace_t *ns = arg; 4701 4702 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); 4703 } 4704 4705 static int 4706 nvme_bd_sync(void *arg, bd_xfer_t *xfer) 4707 { 4708 nvme_namespace_t *ns = arg; 4709 4710 if (ns->ns_nvme->n_dead) 4711 return (EIO); 4712 4713 /* 4714 * If the volatile write cache is not present or not enabled the FLUSH 4715 * command is a no-op, so we can take a shortcut here. 4716 */ 4717 if (!ns->ns_nvme->n_write_cache_present) { 4718 bd_xfer_done(xfer, ENOTSUP); 4719 return (0); 4720 } 4721 4722 if (!ns->ns_nvme->n_write_cache_enabled) { 4723 bd_xfer_done(xfer, 0); 4724 return (0); 4725 } 4726 4727 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); 4728 } 4729 4730 static int 4731 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) 4732 { 4733 nvme_namespace_t *ns = arg; 4734 nvme_t *nvme = ns->ns_nvme; 4735 4736 if (nvme->n_dead) { 4737 return (EIO); 4738 } 4739 4740 if (*(uint64_t *)ns->ns_nguid != 0 || 4741 *(uint64_t *)(ns->ns_nguid + 8) != 0) { 4742 return (ddi_devid_init(devinfo, DEVID_NVME_NGUID, 4743 sizeof (ns->ns_nguid), ns->ns_nguid, devid)); 4744 } else if (*(uint64_t *)ns->ns_eui64 != 0) { 4745 return (ddi_devid_init(devinfo, DEVID_NVME_EUI64, 4746 sizeof (ns->ns_eui64), ns->ns_eui64, devid)); 4747 } else { 4748 return (ddi_devid_init(devinfo, DEVID_NVME_NSID, 4749 strlen(ns->ns_devid), ns->ns_devid, devid)); 4750 } 4751 } 4752 4753 static int 4754 nvme_bd_free_space(void *arg, bd_xfer_t *xfer) 4755 { 4756 nvme_namespace_t *ns = arg; 4757 4758 if (xfer->x_dfl == NULL) 4759 return (EINVAL); 4760 4761 if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt) 4762 return (ENOTSUP); 4763 4764 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT)); 4765 } 4766 4767 static int 4768 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 4769 { 4770 #ifndef __lock_lint 4771 _NOTE(ARGUNUSED(cred_p)); 4772 #endif 4773 minor_t minor = getminor(*devp); 4774 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 4775 int nsid = NVME_MINOR_NSID(minor); 4776 nvme_minor_state_t *nm; 4777 int rv = 0; 4778 4779 if (otyp != OTYP_CHR) 4780 return (EINVAL); 4781 4782 if (nvme == NULL) 4783 return (ENXIO); 4784 4785 if (nsid > nvme->n_namespace_count) 4786 return (ENXIO); 4787 4788 if (nvme->n_dead) 4789 return (EIO); 4790 4791 mutex_enter(&nvme->n_minor_mutex); 4792 4793 /* 4794 * First check the devctl node and error out if it's been opened 4795 * exclusively already by any other thread. 4796 */ 4797 if (nvme->n_minor.nm_oexcl != NULL && 4798 nvme->n_minor.nm_oexcl != curthread) { 4799 rv = EBUSY; 4800 goto out; 4801 } 4802 4803 nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor); 4804 4805 if (flag & FEXCL) { 4806 if (nm->nm_oexcl != NULL || nm->nm_open) { 4807 rv = EBUSY; 4808 goto out; 4809 } 4810 4811 /* 4812 * If at least one namespace is already open, fail the 4813 * exclusive open of the devctl node. 4814 */ 4815 if (nsid == 0) { 4816 for (int i = 1; i <= nvme->n_namespace_count; i++) { 4817 if (NVME_NSID2NS(nvme, i)->ns_minor.nm_open) { 4818 rv = EBUSY; 4819 goto out; 4820 } 4821 } 4822 } 4823 4824 nm->nm_oexcl = curthread; 4825 } 4826 4827 nm->nm_open = B_TRUE; 4828 4829 out: 4830 mutex_exit(&nvme->n_minor_mutex); 4831 return (rv); 4832 4833 } 4834 4835 static int 4836 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 4837 { 4838 #ifndef __lock_lint 4839 _NOTE(ARGUNUSED(cred_p)); 4840 _NOTE(ARGUNUSED(flag)); 4841 #endif 4842 minor_t minor = getminor(dev); 4843 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 4844 int nsid = NVME_MINOR_NSID(minor); 4845 nvme_minor_state_t *nm; 4846 4847 if (otyp != OTYP_CHR) 4848 return (ENXIO); 4849 4850 if (nvme == NULL) 4851 return (ENXIO); 4852 4853 if (nsid > nvme->n_namespace_count) 4854 return (ENXIO); 4855 4856 nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor); 4857 4858 mutex_enter(&nvme->n_minor_mutex); 4859 if (nm->nm_oexcl != NULL) { 4860 ASSERT(nm->nm_oexcl == curthread); 4861 nm->nm_oexcl = NULL; 4862 } 4863 4864 ASSERT(nm->nm_open); 4865 nm->nm_open = B_FALSE; 4866 mutex_exit(&nvme->n_minor_mutex); 4867 4868 return (0); 4869 } 4870 4871 static int 4872 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 4873 cred_t *cred_p) 4874 { 4875 _NOTE(ARGUNUSED(cred_p)); 4876 int rv = 0; 4877 void *idctl; 4878 4879 if ((mode & FREAD) == 0) 4880 return (EPERM); 4881 4882 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE) 4883 return (EINVAL); 4884 4885 switch (nioc->n_arg) { 4886 case NVME_IDENTIFY_NSID: 4887 /* 4888 * If we support namespace management, set the nsid to -1 to 4889 * retrieve the common namespace capabilities. Otherwise 4890 * have a best guess by returning identify data for namespace 1. 4891 */ 4892 if (nsid == 0) 4893 nsid = nvme->n_idctl->id_oacs.oa_nsmgmt == 1 ? -1 : 1; 4894 break; 4895 4896 case NVME_IDENTIFY_CTRL: 4897 /* 4898 * Let NVME_IDENTIFY_CTRL work the same on devctl and attachment 4899 * point nodes. 4900 */ 4901 nsid = 0; 4902 break; 4903 4904 case NVME_IDENTIFY_NSID_LIST: 4905 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 4906 return (ENOTSUP); 4907 4908 /* 4909 * For now, always try to get the list of active NSIDs starting 4910 * at the first namespace. This will have to be revisited should 4911 * the need arise to support more than 1024 namespaces. 4912 */ 4913 nsid = 0; 4914 break; 4915 4916 case NVME_IDENTIFY_NSID_DESC: 4917 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 3)) 4918 return (ENOTSUP); 4919 break; 4920 4921 case NVME_IDENTIFY_NSID_ALLOC: 4922 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4923 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4924 return (ENOTSUP); 4925 4926 /* 4927 * To make this work on a devctl node, make this return the 4928 * identify data for namespace 1. We assume that any NVMe 4929 * device supports at least one namespace, which has ID 1. 4930 */ 4931 if (nsid == 0) 4932 nsid = 1; 4933 break; 4934 4935 case NVME_IDENTIFY_NSID_ALLOC_LIST: 4936 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4937 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4938 return (ENOTSUP); 4939 4940 /* 4941 * For now, always try to get the list of allocated NSIDs 4942 * starting at the first namespace. This will have to be 4943 * revisited should the need arise to support more than 1024 4944 * namespaces. 4945 */ 4946 nsid = 0; 4947 break; 4948 4949 case NVME_IDENTIFY_NSID_CTRL_LIST: 4950 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4951 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4952 return (ENOTSUP); 4953 4954 if (nsid == 0) 4955 return (EINVAL); 4956 break; 4957 4958 case NVME_IDENTIFY_CTRL_LIST: 4959 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4960 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4961 return (ENOTSUP); 4962 4963 if (nsid != 0) 4964 return (EINVAL); 4965 break; 4966 4967 default: 4968 return (EINVAL); 4969 } 4970 4971 if ((rv = nvme_identify(nvme, B_TRUE, nsid, nioc->n_arg & 0xff, 4972 (void **)&idctl)) != 0) 4973 return (rv); 4974 4975 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode) 4976 != 0) 4977 rv = EFAULT; 4978 4979 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE); 4980 4981 return (rv); 4982 } 4983 4984 /* 4985 * Execute commands on behalf of the various ioctls. 4986 */ 4987 static int 4988 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr, 4989 uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout) 4990 { 4991 nvme_cmd_t *cmd; 4992 nvme_qpair_t *ioq; 4993 int rv = 0; 4994 4995 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 4996 if (is_admin) { 4997 cmd->nc_sqid = 0; 4998 ioq = nvme->n_adminq; 4999 } else { 5000 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1; 5001 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 5002 ioq = nvme->n_ioq[cmd->nc_sqid]; 5003 } 5004 5005 /* 5006 * This function is used to facilitate requests from 5007 * userspace, so don't panic if the command fails. This 5008 * is especially true for admin passthru commands, where 5009 * the actual command data structure is entirely defined 5010 * by userspace. 5011 */ 5012 cmd->nc_dontpanic = B_TRUE; 5013 5014 cmd->nc_callback = nvme_wakeup_cmd; 5015 cmd->nc_sqe = *sqe; 5016 5017 if ((rwk & (FREAD | FWRITE)) != 0) { 5018 if (data_addr == NULL) { 5019 rv = EINVAL; 5020 goto free_cmd; 5021 } 5022 5023 if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ, 5024 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 5025 dev_err(nvme->n_dip, CE_WARN, 5026 "!nvme_zalloc_dma failed for nvme_ioc_cmd()"); 5027 5028 rv = ENOMEM; 5029 goto free_cmd; 5030 } 5031 5032 if ((rv = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0) 5033 goto free_cmd; 5034 5035 if ((rwk & FWRITE) != 0) { 5036 if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp, 5037 data_len, rwk & FKIOCTL) != 0) { 5038 rv = EFAULT; 5039 goto free_cmd; 5040 } 5041 } 5042 } 5043 5044 if (is_admin) { 5045 nvme_admin_cmd(cmd, timeout); 5046 } else { 5047 mutex_enter(&cmd->nc_mutex); 5048 5049 rv = nvme_submit_io_cmd(ioq, cmd); 5050 5051 if (rv == EAGAIN) { 5052 mutex_exit(&cmd->nc_mutex); 5053 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 5054 "!nvme_ioc_cmd() failed, I/O Q full"); 5055 goto free_cmd; 5056 } 5057 5058 nvme_wait_cmd(cmd, timeout); 5059 5060 mutex_exit(&cmd->nc_mutex); 5061 } 5062 5063 if (cqe != NULL) 5064 *cqe = cmd->nc_cqe; 5065 5066 if ((rv = nvme_check_cmd_status(cmd)) != 0) { 5067 dev_err(nvme->n_dip, CE_WARN, 5068 "!nvme_ioc_cmd() failed with sct = %x, sc = %x", 5069 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 5070 5071 goto free_cmd; 5072 } 5073 5074 if ((rwk & FREAD) != 0) { 5075 if (ddi_copyout(cmd->nc_dma->nd_memp, 5076 data_addr, data_len, rwk & FKIOCTL) != 0) 5077 rv = EFAULT; 5078 } 5079 5080 free_cmd: 5081 nvme_free_cmd(cmd); 5082 5083 return (rv); 5084 } 5085 5086 static int 5087 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5088 int mode, cred_t *cred_p) 5089 { 5090 _NOTE(ARGUNUSED(nsid, cred_p)); 5091 int rv = 0; 5092 nvme_reg_cap_t cap = { 0 }; 5093 nvme_capabilities_t nc; 5094 5095 if ((mode & FREAD) == 0) 5096 return (EPERM); 5097 5098 if (nioc->n_len < sizeof (nc)) 5099 return (EINVAL); 5100 5101 cap.r = nvme_get64(nvme, NVME_REG_CAP); 5102 5103 /* 5104 * The MPSMIN and MPSMAX fields in the CAP register use 0 to 5105 * specify the base page size of 4k (1<<12), so add 12 here to 5106 * get the real page size value. 5107 */ 5108 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax); 5109 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin); 5110 5111 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0) 5112 rv = EFAULT; 5113 5114 return (rv); 5115 } 5116 5117 static int 5118 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5119 int mode, cred_t *cred_p) 5120 { 5121 _NOTE(ARGUNUSED(cred_p)); 5122 void *log = NULL; 5123 size_t bufsize = 0; 5124 int rv = 0; 5125 5126 if ((mode & FREAD) == 0) 5127 return (EPERM); 5128 5129 if (nsid > 0 && !NVME_NSID2NS(nvme, nsid)->ns_active) 5130 return (EINVAL); 5131 5132 switch (nioc->n_arg) { 5133 case NVME_LOGPAGE_ERROR: 5134 if (nsid != 0) 5135 return (EINVAL); 5136 break; 5137 case NVME_LOGPAGE_HEALTH: 5138 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0) 5139 return (EINVAL); 5140 5141 if (nsid == 0) 5142 nsid = (uint32_t)-1; 5143 5144 break; 5145 case NVME_LOGPAGE_FWSLOT: 5146 if (nsid != 0) 5147 return (EINVAL); 5148 break; 5149 default: 5150 if (!NVME_IS_VENDOR_SPECIFIC_LOGPAGE(nioc->n_arg)) 5151 return (EINVAL); 5152 if (nioc->n_len > NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE) { 5153 dev_err(nvme->n_dip, CE_NOTE, "!Vendor-specific log " 5154 "page size exceeds device maximum supported size: " 5155 "%lu", NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE); 5156 return (EINVAL); 5157 } 5158 if (nioc->n_len == 0) 5159 return (EINVAL); 5160 bufsize = nioc->n_len; 5161 if (nsid == 0) 5162 nsid = (uint32_t)-1; 5163 } 5164 5165 if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid) 5166 != DDI_SUCCESS) 5167 return (EIO); 5168 5169 if (nioc->n_len < bufsize) { 5170 kmem_free(log, bufsize); 5171 return (EINVAL); 5172 } 5173 5174 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0) 5175 rv = EFAULT; 5176 5177 nioc->n_len = bufsize; 5178 kmem_free(log, bufsize); 5179 5180 return (rv); 5181 } 5182 5183 static int 5184 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5185 int mode, cred_t *cred_p) 5186 { 5187 _NOTE(ARGUNUSED(cred_p)); 5188 void *buf = NULL; 5189 size_t bufsize = 0; 5190 uint32_t res = 0; 5191 uint8_t feature; 5192 int rv = 0; 5193 5194 if ((mode & FREAD) == 0) 5195 return (EPERM); 5196 5197 if (nsid > 0 && !NVME_NSID2NS(nvme, nsid)->ns_active) 5198 return (EINVAL); 5199 5200 if ((nioc->n_arg >> 32) > 0xff) 5201 return (EINVAL); 5202 5203 feature = (uint8_t)(nioc->n_arg >> 32); 5204 5205 switch (feature) { 5206 case NVME_FEAT_ARBITRATION: 5207 case NVME_FEAT_POWER_MGMT: 5208 case NVME_FEAT_ERROR: 5209 case NVME_FEAT_NQUEUES: 5210 case NVME_FEAT_INTR_COAL: 5211 case NVME_FEAT_WRITE_ATOM: 5212 case NVME_FEAT_ASYNC_EVENT: 5213 case NVME_FEAT_PROGRESS: 5214 if (nsid != 0) 5215 return (EINVAL); 5216 break; 5217 5218 case NVME_FEAT_TEMPERATURE: 5219 if (nsid != 0) 5220 return (EINVAL); 5221 res = nioc->n_arg & 0xffffffffUL; 5222 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) { 5223 nvme_temp_threshold_t tt; 5224 5225 tt.r = res; 5226 if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER && 5227 tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) { 5228 return (EINVAL); 5229 } 5230 5231 if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) { 5232 return (EINVAL); 5233 } 5234 } else if (res != 0) { 5235 return (ENOTSUP); 5236 } 5237 break; 5238 5239 case NVME_FEAT_INTR_VECT: 5240 if (nsid != 0) 5241 return (EINVAL); 5242 5243 res = nioc->n_arg & 0xffffffffUL; 5244 if (res >= nvme->n_intr_cnt) 5245 return (EINVAL); 5246 break; 5247 5248 case NVME_FEAT_LBA_RANGE: 5249 if (nvme->n_lba_range_supported == B_FALSE) 5250 return (EINVAL); 5251 5252 if (nsid == 0 || 5253 nsid > nvme->n_namespace_count) 5254 return (EINVAL); 5255 5256 break; 5257 5258 case NVME_FEAT_WRITE_CACHE: 5259 if (nsid != 0) 5260 return (EINVAL); 5261 5262 if (!nvme->n_write_cache_present) 5263 return (EINVAL); 5264 5265 break; 5266 5267 case NVME_FEAT_AUTO_PST: 5268 if (nsid != 0) 5269 return (EINVAL); 5270 5271 if (!nvme->n_auto_pst_supported) 5272 return (EINVAL); 5273 5274 break; 5275 5276 default: 5277 return (EINVAL); 5278 } 5279 5280 rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf, 5281 &bufsize); 5282 if (rv != 0) 5283 return (rv); 5284 5285 if (nioc->n_len < bufsize) { 5286 kmem_free(buf, bufsize); 5287 return (EINVAL); 5288 } 5289 5290 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0) 5291 rv = EFAULT; 5292 5293 kmem_free(buf, bufsize); 5294 nioc->n_arg = res; 5295 nioc->n_len = bufsize; 5296 5297 return (rv); 5298 } 5299 5300 static int 5301 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5302 cred_t *cred_p) 5303 { 5304 _NOTE(ARGUNUSED(nsid, mode, cred_p)); 5305 5306 if ((mode & FREAD) == 0) 5307 return (EPERM); 5308 5309 nioc->n_arg = nvme->n_intr_cnt; 5310 return (0); 5311 } 5312 5313 static int 5314 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5315 cred_t *cred_p) 5316 { 5317 _NOTE(ARGUNUSED(nsid, cred_p)); 5318 int rv = 0; 5319 5320 if ((mode & FREAD) == 0) 5321 return (EPERM); 5322 5323 if (nioc->n_len < sizeof (nvme->n_version)) 5324 return (ENOMEM); 5325 5326 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf, 5327 sizeof (nvme->n_version), mode) != 0) 5328 rv = EFAULT; 5329 5330 return (rv); 5331 } 5332 5333 static int 5334 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5335 cred_t *cred_p) 5336 { 5337 _NOTE(ARGUNUSED(mode)); 5338 nvme_format_nvm_t frmt = { 0 }; 5339 int c_nsid = nsid != 0 ? nsid : 1; 5340 nvme_identify_nsid_t *idns; 5341 nvme_minor_state_t *nm; 5342 5343 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5344 return (EPERM); 5345 5346 nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor); 5347 if (nm->nm_oexcl != curthread) 5348 return (EACCES); 5349 5350 if (nsid != 0) { 5351 if (NVME_NSID2NS(nvme, nsid)->ns_attached) 5352 return (EBUSY); 5353 else if (!NVME_NSID2NS(nvme, nsid)->ns_active) 5354 return (EINVAL); 5355 } 5356 5357 frmt.r = nioc->n_arg & 0xffffffff; 5358 5359 /* 5360 * Check whether the FORMAT NVM command is supported. 5361 */ 5362 if (nvme->n_idctl->id_oacs.oa_format == 0) 5363 return (ENOTSUP); 5364 5365 /* 5366 * Don't allow format or secure erase of individual namespace if that 5367 * would cause a format or secure erase of all namespaces. 5368 */ 5369 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0) 5370 return (EINVAL); 5371 5372 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE && 5373 nvme->n_idctl->id_fna.fn_sec_erase != 0) 5374 return (EINVAL); 5375 5376 /* 5377 * Don't allow formatting with Protection Information. 5378 */ 5379 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0) 5380 return (EINVAL); 5381 5382 /* 5383 * Don't allow formatting using an illegal LBA format, or any LBA format 5384 * that uses metadata. 5385 */ 5386 idns = NVME_NSID2NS(nvme, c_nsid)->ns_idns; 5387 if (frmt.b.fm_lbaf > idns->id_nlbaf || 5388 idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0) 5389 return (EINVAL); 5390 5391 /* 5392 * Don't allow formatting using an illegal Secure Erase setting. 5393 */ 5394 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES || 5395 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO && 5396 nvme->n_idctl->id_fna.fn_crypt_erase == 0)) 5397 return (EINVAL); 5398 5399 if (nsid == 0) 5400 nsid = (uint32_t)-1; 5401 5402 return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0, 5403 B_FALSE, frmt.b.fm_ses)); 5404 } 5405 5406 static int 5407 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5408 cred_t *cred_p) 5409 { 5410 _NOTE(ARGUNUSED(nioc, mode)); 5411 int rv; 5412 5413 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5414 return (EPERM); 5415 5416 if (nsid == 0) 5417 return (EINVAL); 5418 5419 if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread) 5420 return (EACCES); 5421 5422 mutex_enter(&nvme->n_mgmt_mutex); 5423 5424 rv = nvme_detach_ns(nvme, nsid); 5425 5426 mutex_exit(&nvme->n_mgmt_mutex); 5427 5428 return (rv); 5429 } 5430 5431 static int 5432 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5433 cred_t *cred_p) 5434 { 5435 _NOTE(ARGUNUSED(nioc, mode)); 5436 int rv; 5437 5438 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5439 return (EPERM); 5440 5441 if (nsid == 0) 5442 return (EINVAL); 5443 5444 if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread) 5445 return (EACCES); 5446 5447 mutex_enter(&nvme->n_mgmt_mutex); 5448 5449 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) { 5450 mutex_exit(&nvme->n_mgmt_mutex); 5451 return (EIO); 5452 } 5453 5454 rv = nvme_attach_ns(nvme, nsid); 5455 5456 mutex_exit(&nvme->n_mgmt_mutex); 5457 return (rv); 5458 } 5459 5460 static void 5461 nvme_ufm_update(nvme_t *nvme) 5462 { 5463 mutex_enter(&nvme->n_fwslot_mutex); 5464 ddi_ufm_update(nvme->n_ufmh); 5465 if (nvme->n_fwslot != NULL) { 5466 kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t)); 5467 nvme->n_fwslot = NULL; 5468 } 5469 mutex_exit(&nvme->n_fwslot_mutex); 5470 } 5471 5472 static int 5473 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5474 int mode, cred_t *cred_p) 5475 { 5476 int rv = 0; 5477 size_t len, copylen; 5478 offset_t offset; 5479 uintptr_t buf; 5480 nvme_cqe_t cqe = { 0 }; 5481 nvme_sqe_t sqe = { 5482 .sqe_opc = NVME_OPC_FW_IMAGE_LOAD 5483 }; 5484 5485 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5486 return (EPERM); 5487 5488 if (nvme->n_idctl->id_oacs.oa_firmware == 0) 5489 return (ENOTSUP); 5490 5491 if (nsid != 0) 5492 return (EINVAL); 5493 5494 /* 5495 * The offset (in n_len) is restricted to the number of DWORDs in 5496 * 32 bits. 5497 */ 5498 if (nioc->n_len > NVME_FW_OFFSETB_MAX) 5499 return (EINVAL); 5500 5501 /* Confirm that both offset and length are a multiple of DWORD bytes */ 5502 if ((nioc->n_len & NVME_DWORD_MASK) != 0 || 5503 (nioc->n_arg & NVME_DWORD_MASK) != 0) 5504 return (EINVAL); 5505 5506 len = nioc->n_len; 5507 offset = nioc->n_arg; 5508 buf = (uintptr_t)nioc->n_buf; 5509 5510 nioc->n_arg = 0; 5511 5512 while (len > 0 && rv == 0) { 5513 /* 5514 * nvme_ioc_cmd() does not use SGLs or PRP lists. 5515 * It is limited to 2 PRPs per NVM command, so limit 5516 * the size of the data to 2 pages. 5517 */ 5518 copylen = MIN(2 * nvme->n_pagesize, len); 5519 5520 sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1; 5521 sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT); 5522 5523 rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen, 5524 FWRITE, &cqe, nvme_admin_cmd_timeout); 5525 5526 /* 5527 * Regardless of whether the command succeeded or not, whether 5528 * there's an errno in rv to be returned, we'll return any 5529 * command-specific status code in n_arg. 5530 * 5531 * As n_arg isn't cleared in all other possible code paths 5532 * returning an error, we return the status code as a negative 5533 * value so it can be distinguished easily from whatever value 5534 * was passed in n_arg originally. This of course only works as 5535 * long as arguments passed in n_arg are less than INT64_MAX, 5536 * which they currently are. 5537 */ 5538 if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 5539 nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc; 5540 5541 buf += copylen; 5542 offset += copylen; 5543 len -= copylen; 5544 } 5545 5546 /* 5547 * Let the DDI UFM subsystem know that the firmware information for 5548 * this device has changed. 5549 */ 5550 nvme_ufm_update(nvme); 5551 5552 return (rv); 5553 } 5554 5555 static int 5556 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5557 int mode, cred_t *cred_p) 5558 { 5559 nvme_firmware_commit_dw10_t fc_dw10 = { 0 }; 5560 uint32_t slot = nioc->n_arg & 0xffffffff; 5561 uint32_t action = nioc->n_arg >> 32; 5562 nvme_cqe_t cqe = { 0 }; 5563 nvme_sqe_t sqe = { 5564 .sqe_opc = NVME_OPC_FW_ACTIVATE 5565 }; 5566 int timeout; 5567 int rv; 5568 5569 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5570 return (EPERM); 5571 5572 if (nvme->n_idctl->id_oacs.oa_firmware == 0) 5573 return (ENOTSUP); 5574 5575 if (nsid != 0) 5576 return (EINVAL); 5577 5578 /* Validate slot is in range. */ 5579 if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX) 5580 return (EINVAL); 5581 5582 switch (action) { 5583 case NVME_FWC_SAVE: 5584 case NVME_FWC_SAVE_ACTIVATE: 5585 timeout = nvme_commit_save_cmd_timeout; 5586 if (slot == 1 && nvme->n_idctl->id_frmw.fw_readonly) 5587 return (EROFS); 5588 break; 5589 case NVME_FWC_ACTIVATE: 5590 case NVME_FWC_ACTIVATE_IMMED: 5591 timeout = nvme_admin_cmd_timeout; 5592 break; 5593 default: 5594 return (EINVAL); 5595 } 5596 5597 fc_dw10.b.fc_slot = slot; 5598 fc_dw10.b.fc_action = action; 5599 sqe.sqe_cdw10 = fc_dw10.r; 5600 5601 nioc->n_arg = 0; 5602 rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout); 5603 5604 /* 5605 * Regardless of whether the command succeeded or not, whether 5606 * there's an errno in rv to be returned, we'll return any 5607 * command-specific status code in n_arg. 5608 * 5609 * As n_arg isn't cleared in all other possible code paths 5610 * returning an error, we return the status code as a negative 5611 * value so it can be distinguished easily from whatever value 5612 * was passed in n_arg originally. This of course only works as 5613 * long as arguments passed in n_arg are less than INT64_MAX, 5614 * which they currently are. 5615 */ 5616 if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 5617 nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc; 5618 5619 /* 5620 * Let the DDI UFM subsystem know that the firmware information for 5621 * this device has changed. 5622 */ 5623 nvme_ufm_update(nvme); 5624 5625 return (rv); 5626 } 5627 5628 /* 5629 * Helper to copy in a passthru command from userspace, handling 5630 * different data models. 5631 */ 5632 static int 5633 nvme_passthru_copy_cmd_in(const void *buf, nvme_passthru_cmd_t *cmd, int mode) 5634 { 5635 #ifdef _MULTI_DATAMODEL 5636 switch (ddi_model_convert_from(mode & FMODELS)) { 5637 case DDI_MODEL_ILP32: { 5638 nvme_passthru_cmd32_t cmd32; 5639 if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0) 5640 return (-1); 5641 cmd->npc_opcode = cmd32.npc_opcode; 5642 cmd->npc_timeout = cmd32.npc_timeout; 5643 cmd->npc_flags = cmd32.npc_flags; 5644 cmd->npc_cdw12 = cmd32.npc_cdw12; 5645 cmd->npc_cdw13 = cmd32.npc_cdw13; 5646 cmd->npc_cdw14 = cmd32.npc_cdw14; 5647 cmd->npc_cdw15 = cmd32.npc_cdw15; 5648 cmd->npc_buflen = cmd32.npc_buflen; 5649 cmd->npc_buf = cmd32.npc_buf; 5650 break; 5651 } 5652 case DDI_MODEL_NONE: 5653 #endif 5654 if (ddi_copyin(buf, (void*)cmd, sizeof (nvme_passthru_cmd_t), 5655 mode) != 0) 5656 return (-1); 5657 #ifdef _MULTI_DATAMODEL 5658 break; 5659 } 5660 #endif 5661 return (0); 5662 } 5663 5664 /* 5665 * Helper to copy out a passthru command result to userspace, handling 5666 * different data models. 5667 */ 5668 static int 5669 nvme_passthru_copy_cmd_out(const nvme_passthru_cmd_t *cmd, void *buf, int mode) 5670 { 5671 #ifdef _MULTI_DATAMODEL 5672 switch (ddi_model_convert_from(mode & FMODELS)) { 5673 case DDI_MODEL_ILP32: { 5674 nvme_passthru_cmd32_t cmd32; 5675 bzero(&cmd32, sizeof (cmd32)); 5676 cmd32.npc_opcode = cmd->npc_opcode; 5677 cmd32.npc_status = cmd->npc_status; 5678 cmd32.npc_err = cmd->npc_err; 5679 cmd32.npc_timeout = cmd->npc_timeout; 5680 cmd32.npc_flags = cmd->npc_flags; 5681 cmd32.npc_cdw0 = cmd->npc_cdw0; 5682 cmd32.npc_cdw12 = cmd->npc_cdw12; 5683 cmd32.npc_cdw13 = cmd->npc_cdw13; 5684 cmd32.npc_cdw14 = cmd->npc_cdw14; 5685 cmd32.npc_cdw15 = cmd->npc_cdw15; 5686 cmd32.npc_buflen = (size32_t)cmd->npc_buflen; 5687 cmd32.npc_buf = (uintptr32_t)cmd->npc_buf; 5688 if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0) 5689 return (-1); 5690 break; 5691 } 5692 case DDI_MODEL_NONE: 5693 #endif 5694 if (ddi_copyout(cmd, buf, sizeof (nvme_passthru_cmd_t), 5695 mode) != 0) 5696 return (-1); 5697 #ifdef _MULTI_DATAMODEL 5698 break; 5699 } 5700 #endif 5701 return (0); 5702 } 5703 5704 /* 5705 * Run an arbitrary vendor-specific admin command on the device. 5706 */ 5707 static int 5708 nvme_ioctl_passthru(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5709 cred_t *cred_p) 5710 { 5711 int rv = 0; 5712 uint_t timeout = 0; 5713 int rwk = 0; 5714 nvme_passthru_cmd_t cmd; 5715 size_t expected_passthru_size = 0; 5716 nvme_sqe_t sqe; 5717 nvme_cqe_t cqe; 5718 5719 bzero(&cmd, sizeof (cmd)); 5720 bzero(&sqe, sizeof (sqe)); 5721 bzero(&cqe, sizeof (cqe)); 5722 5723 /* 5724 * Basic checks: permissions, data model, argument size. 5725 */ 5726 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5727 return (EPERM); 5728 5729 /* 5730 * Compute the expected size of the argument buffer 5731 */ 5732 #ifdef _MULTI_DATAMODEL 5733 switch (ddi_model_convert_from(mode & FMODELS)) { 5734 case DDI_MODEL_ILP32: 5735 expected_passthru_size = sizeof (nvme_passthru_cmd32_t); 5736 break; 5737 case DDI_MODEL_NONE: 5738 #endif 5739 expected_passthru_size = sizeof (nvme_passthru_cmd_t); 5740 #ifdef _MULTI_DATAMODEL 5741 break; 5742 } 5743 #endif 5744 5745 if (nioc->n_len != expected_passthru_size) { 5746 cmd.npc_err = NVME_PASSTHRU_ERR_CMD_SIZE; 5747 rv = EINVAL; 5748 goto out; 5749 } 5750 5751 /* 5752 * Ensure the device supports the standard vendor specific 5753 * admin command format. 5754 */ 5755 if (!nvme->n_idctl->id_nvscc.nv_spec) { 5756 cmd.npc_err = NVME_PASSTHRU_ERR_NOT_SUPPORTED; 5757 rv = ENOTSUP; 5758 goto out; 5759 } 5760 5761 if (nvme_passthru_copy_cmd_in((const void*)nioc->n_buf, &cmd, mode)) 5762 return (EFAULT); 5763 5764 if (!NVME_IS_VENDOR_SPECIFIC_CMD(cmd.npc_opcode)) { 5765 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_OPCODE; 5766 rv = EINVAL; 5767 goto out; 5768 } 5769 5770 /* 5771 * This restriction is not mandated by the spec, so future work 5772 * could relax this if it's necessary to support commands that both 5773 * read and write. 5774 */ 5775 if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0 && 5776 (cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) { 5777 cmd.npc_err = NVME_PASSTHRU_ERR_READ_AND_WRITE; 5778 rv = EINVAL; 5779 goto out; 5780 } 5781 if (cmd.npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) { 5782 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_TIMEOUT; 5783 rv = EINVAL; 5784 goto out; 5785 } 5786 timeout = cmd.npc_timeout; 5787 5788 /* 5789 * Passed-thru command buffer verification: 5790 * - Size is multiple of DWords 5791 * - Non-null iff the length is non-zero 5792 * - Null if neither reading nor writing data. 5793 * - Non-null if reading or writing. 5794 * - Maximum buffer size. 5795 */ 5796 if ((cmd.npc_buflen % sizeof (uint32_t)) != 0) { 5797 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5798 rv = EINVAL; 5799 goto out; 5800 } 5801 if (((void*)cmd.npc_buf != NULL && cmd.npc_buflen == 0) || 5802 ((void*)cmd.npc_buf == NULL && cmd.npc_buflen != 0)) { 5803 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5804 rv = EINVAL; 5805 goto out; 5806 } 5807 if (cmd.npc_flags == 0 && (void*)cmd.npc_buf != NULL) { 5808 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5809 rv = EINVAL; 5810 goto out; 5811 } 5812 if ((cmd.npc_flags != 0) && ((void*)cmd.npc_buf == NULL)) { 5813 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5814 rv = EINVAL; 5815 goto out; 5816 } 5817 if (cmd.npc_buflen > nvme_vendor_specific_admin_cmd_size) { 5818 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5819 rv = EINVAL; 5820 goto out; 5821 } 5822 if ((cmd.npc_buflen >> NVME_DWORD_SHIFT) > UINT32_MAX) { 5823 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5824 rv = EINVAL; 5825 goto out; 5826 } 5827 5828 sqe.sqe_opc = cmd.npc_opcode; 5829 sqe.sqe_nsid = nsid; 5830 sqe.sqe_cdw10 = (uint32_t)(cmd.npc_buflen >> NVME_DWORD_SHIFT); 5831 sqe.sqe_cdw12 = cmd.npc_cdw12; 5832 sqe.sqe_cdw13 = cmd.npc_cdw13; 5833 sqe.sqe_cdw14 = cmd.npc_cdw14; 5834 sqe.sqe_cdw15 = cmd.npc_cdw15; 5835 if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0) 5836 rwk = FREAD; 5837 else if ((cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) 5838 rwk = FWRITE; 5839 5840 rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void*)cmd.npc_buf, 5841 cmd.npc_buflen, rwk, &cqe, timeout); 5842 cmd.npc_status = cqe.cqe_sf.sf_sc; 5843 cmd.npc_cdw0 = cqe.cqe_dw0; 5844 5845 out: 5846 if (nvme_passthru_copy_cmd_out(&cmd, (void*)nioc->n_buf, mode)) 5847 rv = EFAULT; 5848 return (rv); 5849 } 5850 5851 static int 5852 nvme_ioctl_ns_state(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5853 cred_t *cred_p) 5854 { 5855 _NOTE(ARGUNUSED(cred_p)); 5856 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 5857 5858 if ((mode & FREAD) == 0) 5859 return (EPERM); 5860 5861 if (nsid == 0) 5862 return (EINVAL); 5863 5864 nioc->n_arg = 0; 5865 5866 mutex_enter(&nvme->n_mgmt_mutex); 5867 5868 if (ns->ns_allocated) 5869 nioc->n_arg |= NVME_NS_STATE_ALLOCATED; 5870 5871 if (ns->ns_active) 5872 nioc->n_arg |= NVME_NS_STATE_ACTIVE; 5873 5874 if (ns->ns_attached) 5875 nioc->n_arg |= NVME_NS_STATE_ATTACHED; 5876 5877 if (ns->ns_ignore) 5878 nioc->n_arg |= NVME_NS_STATE_IGNORED; 5879 5880 mutex_exit(&nvme->n_mgmt_mutex); 5881 5882 return (0); 5883 } 5884 5885 static int 5886 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p, 5887 int *rval_p) 5888 { 5889 #ifndef __lock_lint 5890 _NOTE(ARGUNUSED(rval_p)); 5891 #endif 5892 minor_t minor = getminor(dev); 5893 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 5894 int nsid = NVME_MINOR_NSID(minor); 5895 int rv = 0; 5896 nvme_ioctl_t nioc; 5897 5898 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = { 5899 NULL, 5900 nvme_ioctl_identify, 5901 NULL, 5902 nvme_ioctl_capabilities, 5903 nvme_ioctl_get_logpage, 5904 nvme_ioctl_get_features, 5905 nvme_ioctl_intr_cnt, 5906 nvme_ioctl_version, 5907 nvme_ioctl_format, 5908 nvme_ioctl_detach, 5909 nvme_ioctl_attach, 5910 nvme_ioctl_firmware_download, 5911 nvme_ioctl_firmware_commit, 5912 nvme_ioctl_passthru, 5913 nvme_ioctl_ns_state 5914 }; 5915 5916 if (nvme == NULL) 5917 return (ENXIO); 5918 5919 if (nsid > nvme->n_namespace_count) 5920 return (ENXIO); 5921 5922 if (IS_DEVCTL(cmd)) 5923 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0)); 5924 5925 #ifdef _MULTI_DATAMODEL 5926 switch (ddi_model_convert_from(mode & FMODELS)) { 5927 case DDI_MODEL_ILP32: { 5928 nvme_ioctl32_t nioc32; 5929 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t), 5930 mode) != 0) 5931 return (EFAULT); 5932 nioc.n_len = nioc32.n_len; 5933 nioc.n_buf = nioc32.n_buf; 5934 nioc.n_arg = nioc32.n_arg; 5935 break; 5936 } 5937 case DDI_MODEL_NONE: 5938 #endif 5939 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode) 5940 != 0) 5941 return (EFAULT); 5942 #ifdef _MULTI_DATAMODEL 5943 break; 5944 } 5945 #endif 5946 5947 if (nvme->n_dead && cmd != NVME_IOC_DETACH) 5948 return (EIO); 5949 5950 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL) 5951 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode, 5952 cred_p); 5953 else 5954 rv = EINVAL; 5955 5956 #ifdef _MULTI_DATAMODEL 5957 switch (ddi_model_convert_from(mode & FMODELS)) { 5958 case DDI_MODEL_ILP32: { 5959 nvme_ioctl32_t nioc32; 5960 5961 nioc32.n_len = (size32_t)nioc.n_len; 5962 nioc32.n_buf = (uintptr32_t)nioc.n_buf; 5963 nioc32.n_arg = nioc.n_arg; 5964 5965 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t), 5966 mode) != 0) 5967 return (EFAULT); 5968 break; 5969 } 5970 case DDI_MODEL_NONE: 5971 #endif 5972 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode) 5973 != 0) 5974 return (EFAULT); 5975 #ifdef _MULTI_DATAMODEL 5976 break; 5977 } 5978 #endif 5979 5980 return (rv); 5981 } 5982 5983 /* 5984 * DDI UFM Callbacks 5985 */ 5986 static int 5987 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, 5988 ddi_ufm_image_t *img) 5989 { 5990 nvme_t *nvme = arg; 5991 5992 if (imgno != 0) 5993 return (EINVAL); 5994 5995 ddi_ufm_image_set_desc(img, "Firmware"); 5996 ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot); 5997 5998 return (0); 5999 } 6000 6001 /* 6002 * Fill out firmware slot information for the requested slot. The firmware 6003 * slot information is gathered by requesting the Firmware Slot Information log 6004 * page. The format of the page is described in section 5.10.1.3. 6005 * 6006 * We lazily cache the log page on the first call and then invalidate the cache 6007 * data after a successful firmware download or firmware commit command. 6008 * The cached data is protected by a mutex as the state can change 6009 * asynchronous to this callback. 6010 */ 6011 static int 6012 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, 6013 uint_t slotno, ddi_ufm_slot_t *slot) 6014 { 6015 nvme_t *nvme = arg; 6016 void *log = NULL; 6017 size_t bufsize; 6018 ddi_ufm_attr_t attr = 0; 6019 char fw_ver[NVME_FWVER_SZ + 1]; 6020 int ret; 6021 6022 if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1)) 6023 return (EINVAL); 6024 6025 mutex_enter(&nvme->n_fwslot_mutex); 6026 if (nvme->n_fwslot == NULL) { 6027 ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, 6028 NVME_LOGPAGE_FWSLOT, 0); 6029 if (ret != DDI_SUCCESS || 6030 bufsize != sizeof (nvme_fwslot_log_t)) { 6031 if (log != NULL) 6032 kmem_free(log, bufsize); 6033 mutex_exit(&nvme->n_fwslot_mutex); 6034 return (EIO); 6035 } 6036 nvme->n_fwslot = (nvme_fwslot_log_t *)log; 6037 } 6038 6039 /* 6040 * NVMe numbers firmware slots starting at 1 6041 */ 6042 if (slotno == (nvme->n_fwslot->fw_afi - 1)) 6043 attr |= DDI_UFM_ATTR_ACTIVE; 6044 6045 if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0) 6046 attr |= DDI_UFM_ATTR_WRITEABLE; 6047 6048 if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') { 6049 attr |= DDI_UFM_ATTR_EMPTY; 6050 } else { 6051 (void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno], 6052 NVME_FWVER_SZ); 6053 fw_ver[NVME_FWVER_SZ] = '\0'; 6054 ddi_ufm_slot_set_version(slot, fw_ver); 6055 } 6056 mutex_exit(&nvme->n_fwslot_mutex); 6057 6058 ddi_ufm_slot_set_attrs(slot, attr); 6059 6060 return (0); 6061 } 6062 6063 static int 6064 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps) 6065 { 6066 *caps = DDI_UFM_CAP_REPORT; 6067 return (0); 6068 } 6069