xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 7d0b359ca572cd04474eb1f2ceec5a8ff39e36c9)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2017 Joyent, Inc.
17  */
18 
19 /*
20  * blkdev driver for NVMe compliant storage devices
21  *
22  * This driver was written to conform to version 1.2.1 of the NVMe
23  * specification.  It may work with newer versions, but that is completely
24  * untested and disabled by default.
25  *
26  * The driver has only been tested on x86 systems and will not work on big-
27  * endian systems without changes to the code accessing registers and data
28  * structures used by the hardware.
29  *
30  *
31  * Interrupt Usage:
32  *
33  * The driver will use a single interrupt while configuring the device as the
34  * specification requires, but contrary to the specification it will try to use
35  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36  * will switch to multiple-message MSI(-X) if supported. The driver wants to
37  * have one interrupt vector per CPU, but it will work correctly if less are
38  * available. Interrupts can be shared by queues, the interrupt handler will
39  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40  * the admin queue will share an interrupt with one I/O queue. The interrupt
41  * handler will retrieve completed commands from all queues sharing an interrupt
42  * vector and will post them to a taskq for completion processing.
43  *
44  *
45  * Command Processing:
46  *
47  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48  * to 65536 I/O commands. The driver will configure one I/O queue pair per
49  * available interrupt vector, with the queue length usually much smaller than
50  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51  * interrupt vectors will be used.
52  *
53  * Additionally the hardware provides a single special admin queue pair that can
54  * hold up to 4096 admin commands.
55  *
56  * From the hardware perspective both queues of a queue pair are independent,
57  * but they share some driver state: the command array (holding pointers to
58  * commands currently being processed by the hardware) and the active command
59  * counter. Access to a queue pair and the shared state is protected by
60  * nq_mutex.
61  *
62  * When a command is submitted to a queue pair the active command counter is
63  * incremented and a pointer to the command is stored in the command array. The
64  * array index is used as command identifier (CID) in the submission queue
65  * entry. Some commands may take a very long time to complete, and if the queue
66  * wraps around in that time a submission may find the next array slot to still
67  * be used by a long-running command. In this case the array is sequentially
68  * searched for the next free slot. The length of the command array is the same
69  * as the configured queue length. Queue overrun is prevented by the semaphore,
70  * so a command submission may block if the queue is full.
71  *
72  *
73  * Polled I/O Support:
74  *
75  * For kernel core dump support the driver can do polled I/O. As interrupts are
76  * turned off while dumping the driver will just submit a command in the regular
77  * way, and then repeatedly attempt a command retrieval until it gets the
78  * command back.
79  *
80  *
81  * Namespace Support:
82  *
83  * NVMe devices can have multiple namespaces, each being a independent data
84  * store. The driver supports multiple namespaces and creates a blkdev interface
85  * for each namespace found. Namespaces can have various attributes to support
86  * thin provisioning and protection information. This driver does not support
87  * any of this and ignores namespaces that have these attributes.
88  *
89  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
90  * (EUI64). This driver uses the EUI64 if present to generate the devid and
91  * passes it to blkdev to use it in the device node names. As this is currently
92  * untested namespaces with EUI64 are ignored by default.
93  *
94  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
95  * single controller. This is an artificial limit imposed by the driver to be
96  * able to address a reasonable number of controllers and namespaces using a
97  * 32bit minor node number.
98  *
99  *
100  * Minor nodes:
101  *
102  * For each NVMe device the driver exposes one minor node for the controller and
103  * one minor node for each namespace. The only operations supported by those
104  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
105  * interface for the nvmeadm(1M) utility.
106  *
107  *
108  * Blkdev Interface:
109  *
110  * This driver uses blkdev to do all the heavy lifting involved with presenting
111  * a disk device to the system. As a result, the processing of I/O requests is
112  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
113  * setup, and splitting of transfers into manageable chunks.
114  *
115  * I/O requests coming in from blkdev are turned into NVM commands and posted to
116  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
117  * queues. There is currently no timeout handling of I/O commands.
118  *
119  * Blkdev also supports querying device/media information and generating a
120  * devid. The driver reports the best block size as determined by the namespace
121  * format back to blkdev as physical block size to support partition and block
122  * alignment. The devid is either based on the namespace EUI64, if present, or
123  * composed using the device vendor ID, model number, serial number, and the
124  * namespace ID.
125  *
126  *
127  * Error Handling:
128  *
129  * Error handling is currently limited to detecting fatal hardware errors,
130  * either by asynchronous events, or synchronously through command status or
131  * admin command timeouts. In case of severe errors the device is fenced off,
132  * all further requests will return EIO. FMA is then called to fault the device.
133  *
134  * The hardware has a limit for outstanding asynchronous event requests. Before
135  * this limit is known the driver assumes it is at least 1 and posts a single
136  * asynchronous request. Later when the limit is known more asynchronous event
137  * requests are posted to allow quicker reception of error information. When an
138  * asynchronous event is posted by the hardware the driver will parse the error
139  * status fields and log information or fault the device, depending on the
140  * severity of the asynchronous event. The asynchronous event request is then
141  * reused and posted to the admin queue again.
142  *
143  * On command completion the command status is checked for errors. In case of
144  * errors indicating a driver bug the driver panics. Almost all other error
145  * status values just cause EIO to be returned.
146  *
147  * Command timeouts are currently detected for all admin commands except
148  * asynchronous event requests. If a command times out and the hardware appears
149  * to be healthy the driver attempts to abort the command. The original command
150  * timeout is also applied to the abort command. If the abort times out too the
151  * driver assumes the device to be dead, fences it off, and calls FMA to retire
152  * it. In all other cases the aborted command should return immediately with a
153  * status indicating it was aborted, and the driver will wait indefinitely for
154  * that to happen. No timeout handling of normal I/O commands is presently done.
155  *
156  * Any command that times out due to the controller dropping dead will be put on
157  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
158  * memory being reused by the system and later be written to by a "dead" NVMe
159  * controller.
160  *
161  *
162  * Locking:
163  *
164  * Each queue pair has its own nq_mutex, which must be held when accessing the
165  * associated queue registers or the shared state of the queue pair. Callers of
166  * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
167  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
168  * themselves.
169  *
170  * Each command also has its own nc_mutex, which is associated with the
171  * condition variable nc_cv. It is only used on admin commands which are run
172  * synchronously. In that case it must be held across calls to
173  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
174  * nvme_admin_cmd(). It must also be held whenever the completion state of the
175  * command is changed or while a admin command timeout is handled.
176  *
177  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
178  * More than one nc_mutex may only be held when aborting commands. In this case,
179  * the nc_mutex of the command to be aborted must be held across the call to
180  * nvme_abort_cmd() to prevent the command from completing while the abort is in
181  * progress.
182  *
183  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
184  * and exclusive-open flag nm_oexcl.
185  *
186  *
187  * Quiesce / Fast Reboot:
188  *
189  * The driver currently does not support fast reboot. A quiesce(9E) entry point
190  * is still provided which is used to send a shutdown notification to the
191  * device.
192  *
193  *
194  * Driver Configuration:
195  *
196  * The following driver properties can be changed to control some aspects of the
197  * drivers operation:
198  * - strict-version: can be set to 0 to allow devices conforming to newer
199  *   versions or namespaces with EUI64 to be used
200  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
201  *   specific command status as a fatal error leading device faulting
202  * - admin-queue-len: the maximum length of the admin queue (16-4096)
203  * - io-queue-len: the maximum length of the I/O queues (16-65536)
204  * - async-event-limit: the maximum number of asynchronous event requests to be
205  *   posted by the driver
206  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
207  *   cache
208  * - min-phys-block-size: the minimum physical block size to report to blkdev,
209  *   which is among other things the basis for ZFS vdev ashift
210  *
211  *
212  * TODO:
213  * - figure out sane default for I/O queue depth reported to blkdev
214  * - FMA handling of media errors
215  * - support for devices supporting very large I/O requests using chained PRPs
216  * - support for configuring hardware parameters like interrupt coalescing
217  * - support for media formatting and hard partitioning into namespaces
218  * - support for big-endian systems
219  * - support for fast reboot
220  * - support for firmware updates
221  * - support for NVMe Subsystem Reset (1.1)
222  * - support for Scatter/Gather lists (1.1)
223  * - support for Reservations (1.1)
224  * - support for power management
225  */
226 
227 #include <sys/byteorder.h>
228 #ifdef _BIG_ENDIAN
229 #error nvme driver needs porting for big-endian platforms
230 #endif
231 
232 #include <sys/modctl.h>
233 #include <sys/conf.h>
234 #include <sys/devops.h>
235 #include <sys/ddi.h>
236 #include <sys/sunddi.h>
237 #include <sys/sunndi.h>
238 #include <sys/bitmap.h>
239 #include <sys/sysmacros.h>
240 #include <sys/param.h>
241 #include <sys/varargs.h>
242 #include <sys/cpuvar.h>
243 #include <sys/disp.h>
244 #include <sys/blkdev.h>
245 #include <sys/atomic.h>
246 #include <sys/archsystm.h>
247 #include <sys/sata/sata_hba.h>
248 #include <sys/stat.h>
249 #include <sys/policy.h>
250 #include <sys/list.h>
251 
252 #include <sys/nvme.h>
253 
254 #ifdef __x86
255 #include <sys/x86_archext.h>
256 #endif
257 
258 #include "nvme_reg.h"
259 #include "nvme_var.h"
260 
261 
262 /* NVMe spec version supported */
263 static const int nvme_version_major = 1;
264 static const int nvme_version_minor = 2;
265 
266 /* tunable for admin command timeout in seconds, default is 1s */
267 int nvme_admin_cmd_timeout = 1;
268 
269 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
270 int nvme_format_cmd_timeout = 600;
271 
272 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
273 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
274 static int nvme_quiesce(dev_info_t *);
275 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
276 static int nvme_setup_interrupts(nvme_t *, int, int);
277 static void nvme_release_interrupts(nvme_t *);
278 static uint_t nvme_intr(caddr_t, caddr_t);
279 
280 static void nvme_shutdown(nvme_t *, int, boolean_t);
281 static boolean_t nvme_reset(nvme_t *, boolean_t);
282 static int nvme_init(nvme_t *);
283 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
284 static void nvme_free_cmd(nvme_cmd_t *);
285 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
286     bd_xfer_t *);
287 static void nvme_admin_cmd(nvme_cmd_t *, int);
288 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
289 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
290 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
291 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
292 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
293 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
294 static void nvme_wakeup_cmd(void *);
295 static void nvme_async_event_task(void *);
296 
297 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
298 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
299 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
300 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
301 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
302 static inline int nvme_check_cmd_status(nvme_cmd_t *);
303 
304 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
305 static void nvme_async_event(nvme_t *);
306 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
307     boolean_t, uint8_t);
308 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
309 static int nvme_identify(nvme_t *, uint32_t, void **);
310 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
311     uint32_t *);
312 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
313     void **, size_t *);
314 static int nvme_write_cache_set(nvme_t *, boolean_t);
315 static int nvme_set_nqueues(nvme_t *, uint16_t *);
316 
317 static void nvme_free_dma(nvme_dma_t *);
318 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
319     nvme_dma_t **);
320 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
321     nvme_dma_t **);
322 static void nvme_free_qpair(nvme_qpair_t *);
323 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
324 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
325 
326 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
327 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
328 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
329 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
330 
331 static boolean_t nvme_check_regs_hdl(nvme_t *);
332 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
333 
334 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
335 
336 static void nvme_bd_xfer_done(void *);
337 static void nvme_bd_driveinfo(void *, bd_drive_t *);
338 static int nvme_bd_mediainfo(void *, bd_media_t *);
339 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
340 static int nvme_bd_read(void *, bd_xfer_t *);
341 static int nvme_bd_write(void *, bd_xfer_t *);
342 static int nvme_bd_sync(void *, bd_xfer_t *);
343 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
344 
345 static int nvme_prp_dma_constructor(void *, void *, int);
346 static void nvme_prp_dma_destructor(void *, void *);
347 
348 static void nvme_prepare_devid(nvme_t *, uint32_t);
349 
350 static int nvme_open(dev_t *, int, int, cred_t *);
351 static int nvme_close(dev_t, int, int, cred_t *);
352 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
353 
354 #define	NVME_MINOR_INST_SHIFT	9
355 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
356 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
357 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
358 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
359 
360 static void *nvme_state;
361 static kmem_cache_t *nvme_cmd_cache;
362 
363 /*
364  * DMA attributes for queue DMA memory
365  *
366  * Queue DMA memory must be page aligned. The maximum length of a queue is
367  * 65536 entries, and an entry can be 64 bytes long.
368  */
369 static ddi_dma_attr_t nvme_queue_dma_attr = {
370 	.dma_attr_version	= DMA_ATTR_V0,
371 	.dma_attr_addr_lo	= 0,
372 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
373 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
374 	.dma_attr_align		= 0x1000,
375 	.dma_attr_burstsizes	= 0x7ff,
376 	.dma_attr_minxfer	= 0x1000,
377 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
378 	.dma_attr_seg		= 0xffffffffffffffffULL,
379 	.dma_attr_sgllen	= 1,
380 	.dma_attr_granular	= 1,
381 	.dma_attr_flags		= 0,
382 };
383 
384 /*
385  * DMA attributes for transfers using Physical Region Page (PRP) entries
386  *
387  * A PRP entry describes one page of DMA memory using the page size specified
388  * in the controller configuration's memory page size register (CC.MPS). It uses
389  * a 64bit base address aligned to this page size. There is no limitation on
390  * chaining PRPs together for arbitrarily large DMA transfers.
391  */
392 static ddi_dma_attr_t nvme_prp_dma_attr = {
393 	.dma_attr_version	= DMA_ATTR_V0,
394 	.dma_attr_addr_lo	= 0,
395 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
396 	.dma_attr_count_max	= 0xfff,
397 	.dma_attr_align		= 0x1000,
398 	.dma_attr_burstsizes	= 0x7ff,
399 	.dma_attr_minxfer	= 0x1000,
400 	.dma_attr_maxxfer	= 0x1000,
401 	.dma_attr_seg		= 0xfff,
402 	.dma_attr_sgllen	= -1,
403 	.dma_attr_granular	= 1,
404 	.dma_attr_flags		= 0,
405 };
406 
407 /*
408  * DMA attributes for transfers using scatter/gather lists
409  *
410  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
411  * 32bit length field. SGL Segment and SGL Last Segment entries require the
412  * length to be a multiple of 16 bytes.
413  */
414 static ddi_dma_attr_t nvme_sgl_dma_attr = {
415 	.dma_attr_version	= DMA_ATTR_V0,
416 	.dma_attr_addr_lo	= 0,
417 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
418 	.dma_attr_count_max	= 0xffffffffUL,
419 	.dma_attr_align		= 1,
420 	.dma_attr_burstsizes	= 0x7ff,
421 	.dma_attr_minxfer	= 0x10,
422 	.dma_attr_maxxfer	= 0xfffffffffULL,
423 	.dma_attr_seg		= 0xffffffffffffffffULL,
424 	.dma_attr_sgllen	= -1,
425 	.dma_attr_granular	= 0x10,
426 	.dma_attr_flags		= 0
427 };
428 
429 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
430 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
431 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
432 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
433 };
434 
435 static struct cb_ops nvme_cb_ops = {
436 	.cb_open	= nvme_open,
437 	.cb_close	= nvme_close,
438 	.cb_strategy	= nodev,
439 	.cb_print	= nodev,
440 	.cb_dump	= nodev,
441 	.cb_read	= nodev,
442 	.cb_write	= nodev,
443 	.cb_ioctl	= nvme_ioctl,
444 	.cb_devmap	= nodev,
445 	.cb_mmap	= nodev,
446 	.cb_segmap	= nodev,
447 	.cb_chpoll	= nochpoll,
448 	.cb_prop_op	= ddi_prop_op,
449 	.cb_str		= 0,
450 	.cb_flag	= D_NEW | D_MP,
451 	.cb_rev		= CB_REV,
452 	.cb_aread	= nodev,
453 	.cb_awrite	= nodev
454 };
455 
456 static struct dev_ops nvme_dev_ops = {
457 	.devo_rev	= DEVO_REV,
458 	.devo_refcnt	= 0,
459 	.devo_getinfo	= ddi_no_info,
460 	.devo_identify	= nulldev,
461 	.devo_probe	= nulldev,
462 	.devo_attach	= nvme_attach,
463 	.devo_detach	= nvme_detach,
464 	.devo_reset	= nodev,
465 	.devo_cb_ops	= &nvme_cb_ops,
466 	.devo_bus_ops	= NULL,
467 	.devo_power	= NULL,
468 	.devo_quiesce	= nvme_quiesce,
469 };
470 
471 static struct modldrv nvme_modldrv = {
472 	.drv_modops	= &mod_driverops,
473 	.drv_linkinfo	= "NVMe v1.1b",
474 	.drv_dev_ops	= &nvme_dev_ops
475 };
476 
477 static struct modlinkage nvme_modlinkage = {
478 	.ml_rev		= MODREV_1,
479 	.ml_linkage	= { &nvme_modldrv, NULL }
480 };
481 
482 static bd_ops_t nvme_bd_ops = {
483 	.o_version	= BD_OPS_VERSION_0,
484 	.o_drive_info	= nvme_bd_driveinfo,
485 	.o_media_info	= nvme_bd_mediainfo,
486 	.o_devid_init	= nvme_bd_devid,
487 	.o_sync_cache	= nvme_bd_sync,
488 	.o_read		= nvme_bd_read,
489 	.o_write	= nvme_bd_write,
490 };
491 
492 /*
493  * This list will hold commands that have timed out and couldn't be aborted.
494  * As we don't know what the hardware may still do with the DMA memory we can't
495  * free them, so we'll keep them forever on this list where we can easily look
496  * at them with mdb.
497  */
498 static struct list nvme_lost_cmds;
499 static kmutex_t nvme_lc_mutex;
500 
501 int
502 _init(void)
503 {
504 	int error;
505 
506 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
507 	if (error != DDI_SUCCESS)
508 		return (error);
509 
510 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
511 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
512 
513 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
514 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
515 	    offsetof(nvme_cmd_t, nc_list));
516 
517 	bd_mod_init(&nvme_dev_ops);
518 
519 	error = mod_install(&nvme_modlinkage);
520 	if (error != DDI_SUCCESS) {
521 		ddi_soft_state_fini(&nvme_state);
522 		mutex_destroy(&nvme_lc_mutex);
523 		list_destroy(&nvme_lost_cmds);
524 		bd_mod_fini(&nvme_dev_ops);
525 	}
526 
527 	return (error);
528 }
529 
530 int
531 _fini(void)
532 {
533 	int error;
534 
535 	if (!list_is_empty(&nvme_lost_cmds))
536 		return (DDI_FAILURE);
537 
538 	error = mod_remove(&nvme_modlinkage);
539 	if (error == DDI_SUCCESS) {
540 		ddi_soft_state_fini(&nvme_state);
541 		kmem_cache_destroy(nvme_cmd_cache);
542 		mutex_destroy(&nvme_lc_mutex);
543 		list_destroy(&nvme_lost_cmds);
544 		bd_mod_fini(&nvme_dev_ops);
545 	}
546 
547 	return (error);
548 }
549 
550 int
551 _info(struct modinfo *modinfop)
552 {
553 	return (mod_info(&nvme_modlinkage, modinfop));
554 }
555 
556 static inline void
557 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
558 {
559 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
560 
561 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
562 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
563 }
564 
565 static inline void
566 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
567 {
568 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
569 
570 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
571 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
572 }
573 
574 static inline uint64_t
575 nvme_get64(nvme_t *nvme, uintptr_t reg)
576 {
577 	uint64_t val;
578 
579 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
580 
581 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
582 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
583 
584 	return (val);
585 }
586 
587 static inline uint32_t
588 nvme_get32(nvme_t *nvme, uintptr_t reg)
589 {
590 	uint32_t val;
591 
592 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
593 
594 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
595 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
596 
597 	return (val);
598 }
599 
600 static boolean_t
601 nvme_check_regs_hdl(nvme_t *nvme)
602 {
603 	ddi_fm_error_t error;
604 
605 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
606 
607 	if (error.fme_status != DDI_FM_OK)
608 		return (B_TRUE);
609 
610 	return (B_FALSE);
611 }
612 
613 static boolean_t
614 nvme_check_dma_hdl(nvme_dma_t *dma)
615 {
616 	ddi_fm_error_t error;
617 
618 	if (dma == NULL)
619 		return (B_FALSE);
620 
621 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
622 
623 	if (error.fme_status != DDI_FM_OK)
624 		return (B_TRUE);
625 
626 	return (B_FALSE);
627 }
628 
629 static void
630 nvme_free_dma_common(nvme_dma_t *dma)
631 {
632 	if (dma->nd_dmah != NULL)
633 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
634 	if (dma->nd_acch != NULL)
635 		ddi_dma_mem_free(&dma->nd_acch);
636 	if (dma->nd_dmah != NULL)
637 		ddi_dma_free_handle(&dma->nd_dmah);
638 }
639 
640 static void
641 nvme_free_dma(nvme_dma_t *dma)
642 {
643 	nvme_free_dma_common(dma);
644 	kmem_free(dma, sizeof (*dma));
645 }
646 
647 /* ARGSUSED */
648 static void
649 nvme_prp_dma_destructor(void *buf, void *private)
650 {
651 	nvme_dma_t *dma = (nvme_dma_t *)buf;
652 
653 	nvme_free_dma_common(dma);
654 }
655 
656 static int
657 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
658     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
659 {
660 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
661 	    &dma->nd_dmah) != DDI_SUCCESS) {
662 		/*
663 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
664 		 * the only other possible error is DDI_DMA_BADATTR which
665 		 * indicates a driver bug which should cause a panic.
666 		 */
667 		dev_err(nvme->n_dip, CE_PANIC,
668 		    "!failed to get DMA handle, check DMA attributes");
669 		return (DDI_FAILURE);
670 	}
671 
672 	/*
673 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
674 	 * or the flags are conflicting, which isn't the case here.
675 	 */
676 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
677 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
678 	    &dma->nd_len, &dma->nd_acch);
679 
680 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
681 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
682 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
683 		dev_err(nvme->n_dip, CE_WARN,
684 		    "!failed to bind DMA memory");
685 		atomic_inc_32(&nvme->n_dma_bind_err);
686 		nvme_free_dma_common(dma);
687 		return (DDI_FAILURE);
688 	}
689 
690 	return (DDI_SUCCESS);
691 }
692 
693 static int
694 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
695     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
696 {
697 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
698 
699 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
700 	    DDI_SUCCESS) {
701 		*ret = NULL;
702 		kmem_free(dma, sizeof (nvme_dma_t));
703 		return (DDI_FAILURE);
704 	}
705 
706 	bzero(dma->nd_memp, dma->nd_len);
707 
708 	*ret = dma;
709 	return (DDI_SUCCESS);
710 }
711 
712 /* ARGSUSED */
713 static int
714 nvme_prp_dma_constructor(void *buf, void *private, int flags)
715 {
716 	nvme_dma_t *dma = (nvme_dma_t *)buf;
717 	nvme_t *nvme = (nvme_t *)private;
718 
719 	dma->nd_dmah = NULL;
720 	dma->nd_acch = NULL;
721 
722 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
723 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
724 		return (-1);
725 	}
726 
727 	ASSERT(dma->nd_ncookie == 1);
728 
729 	dma->nd_cached = B_TRUE;
730 
731 	return (0);
732 }
733 
734 static int
735 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
736     uint_t flags, nvme_dma_t **dma)
737 {
738 	uint32_t len = nentry * qe_len;
739 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
740 
741 	len = roundup(len, nvme->n_pagesize);
742 
743 	q_dma_attr.dma_attr_minxfer = len;
744 
745 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
746 	    != DDI_SUCCESS) {
747 		dev_err(nvme->n_dip, CE_WARN,
748 		    "!failed to get DMA memory for queue");
749 		goto fail;
750 	}
751 
752 	if ((*dma)->nd_ncookie != 1) {
753 		dev_err(nvme->n_dip, CE_WARN,
754 		    "!got too many cookies for queue DMA");
755 		goto fail;
756 	}
757 
758 	return (DDI_SUCCESS);
759 
760 fail:
761 	if (*dma) {
762 		nvme_free_dma(*dma);
763 		*dma = NULL;
764 	}
765 
766 	return (DDI_FAILURE);
767 }
768 
769 static void
770 nvme_free_qpair(nvme_qpair_t *qp)
771 {
772 	int i;
773 
774 	mutex_destroy(&qp->nq_mutex);
775 	sema_destroy(&qp->nq_sema);
776 
777 	if (qp->nq_sqdma != NULL)
778 		nvme_free_dma(qp->nq_sqdma);
779 	if (qp->nq_cqdma != NULL)
780 		nvme_free_dma(qp->nq_cqdma);
781 
782 	if (qp->nq_active_cmds > 0)
783 		for (i = 0; i != qp->nq_nentry; i++)
784 			if (qp->nq_cmd[i] != NULL)
785 				nvme_free_cmd(qp->nq_cmd[i]);
786 
787 	if (qp->nq_cmd != NULL)
788 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
789 
790 	kmem_free(qp, sizeof (nvme_qpair_t));
791 }
792 
793 static int
794 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
795     int idx)
796 {
797 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
798 
799 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
800 	    DDI_INTR_PRI(nvme->n_intr_pri));
801 	sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
802 
803 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
804 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
805 		goto fail;
806 
807 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
808 	    DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
809 		goto fail;
810 
811 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
812 	qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
813 	qp->nq_nentry = nentry;
814 
815 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
816 	qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
817 
818 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
819 	qp->nq_next_cmd = 0;
820 
821 	*nqp = qp;
822 	return (DDI_SUCCESS);
823 
824 fail:
825 	nvme_free_qpair(qp);
826 	*nqp = NULL;
827 
828 	return (DDI_FAILURE);
829 }
830 
831 static nvme_cmd_t *
832 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
833 {
834 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
835 
836 	if (cmd == NULL)
837 		return (cmd);
838 
839 	bzero(cmd, sizeof (nvme_cmd_t));
840 
841 	cmd->nc_nvme = nvme;
842 
843 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
844 	    DDI_INTR_PRI(nvme->n_intr_pri));
845 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
846 
847 	return (cmd);
848 }
849 
850 static void
851 nvme_free_cmd(nvme_cmd_t *cmd)
852 {
853 	/* Don't free commands on the lost commands list. */
854 	if (list_link_active(&cmd->nc_list))
855 		return;
856 
857 	if (cmd->nc_dma) {
858 		if (cmd->nc_dma->nd_cached)
859 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
860 			    cmd->nc_dma);
861 		else
862 			nvme_free_dma(cmd->nc_dma);
863 		cmd->nc_dma = NULL;
864 	}
865 
866 	cv_destroy(&cmd->nc_cv);
867 	mutex_destroy(&cmd->nc_mutex);
868 
869 	kmem_cache_free(nvme_cmd_cache, cmd);
870 }
871 
872 static void
873 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
874 {
875 	sema_p(&qp->nq_sema);
876 	nvme_submit_cmd_common(qp, cmd);
877 }
878 
879 static int
880 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
881 {
882 	if (sema_tryp(&qp->nq_sema) == 0)
883 		return (EAGAIN);
884 
885 	nvme_submit_cmd_common(qp, cmd);
886 	return (0);
887 }
888 
889 static void
890 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
891 {
892 	nvme_reg_sqtdbl_t tail = { 0 };
893 
894 	mutex_enter(&qp->nq_mutex);
895 	cmd->nc_completed = B_FALSE;
896 
897 	/*
898 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
899 	 * slot. If the slot is already occupied advance to the next slot and
900 	 * try again. This can happen for long running commands like async event
901 	 * requests.
902 	 */
903 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
904 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
905 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
906 
907 	qp->nq_active_cmds++;
908 
909 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
910 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
911 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
912 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
913 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
914 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
915 
916 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
917 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
918 
919 	mutex_exit(&qp->nq_mutex);
920 }
921 
922 static nvme_cmd_t *
923 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
924 {
925 	nvme_cmd_t *cmd;
926 
927 	ASSERT(mutex_owned(&qp->nq_mutex));
928 	ASSERT3S(cid, <, qp->nq_nentry);
929 
930 	cmd = qp->nq_cmd[cid];
931 	qp->nq_cmd[cid] = NULL;
932 	ASSERT3U(qp->nq_active_cmds, >, 0);
933 	qp->nq_active_cmds--;
934 	sema_v(&qp->nq_sema);
935 
936 	ASSERT3P(cmd, !=, NULL);
937 	ASSERT3P(cmd->nc_nvme, ==, nvme);
938 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
939 
940 	return (cmd);
941 }
942 
943 static nvme_cmd_t *
944 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
945 {
946 	nvme_reg_cqhdbl_t head = { 0 };
947 
948 	nvme_cqe_t *cqe;
949 	nvme_cmd_t *cmd;
950 
951 	(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
952 	    sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
953 
954 	mutex_enter(&qp->nq_mutex);
955 	cqe = &qp->nq_cq[qp->nq_cqhead];
956 
957 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
958 	if (cqe->cqe_sf.sf_p == qp->nq_phase) {
959 		mutex_exit(&qp->nq_mutex);
960 		return (NULL);
961 	}
962 
963 	ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
964 
965 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
966 
967 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
968 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
969 
970 	qp->nq_sqhead = cqe->cqe_sqhd;
971 
972 	head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
973 
974 	/* Toggle phase on wrap-around. */
975 	if (qp->nq_cqhead == 0)
976 		qp->nq_phase = qp->nq_phase ? 0 : 1;
977 
978 	nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
979 	mutex_exit(&qp->nq_mutex);
980 
981 	return (cmd);
982 }
983 
984 static int
985 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
986 {
987 	nvme_cqe_t *cqe = &cmd->nc_cqe;
988 
989 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
990 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
991 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
992 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
993 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
994 
995 	if (cmd->nc_xfer != NULL)
996 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
997 
998 	if (cmd->nc_nvme->n_strict_version) {
999 		cmd->nc_nvme->n_dead = B_TRUE;
1000 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1001 	}
1002 
1003 	return (EIO);
1004 }
1005 
1006 static int
1007 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1008 {
1009 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1010 
1011 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1017 		cmd->nc_nvme->n_dead = B_TRUE;
1018 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1019 	}
1020 
1021 	return (EIO);
1022 }
1023 
1024 static int
1025 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1026 {
1027 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1028 
1029 	switch (cqe->cqe_sf.sf_sc) {
1030 	case NVME_CQE_SC_INT_NVM_WRITE:
1031 		/* write fail */
1032 		/* TODO: post ereport */
1033 		if (cmd->nc_xfer != NULL)
1034 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1035 		return (EIO);
1036 
1037 	case NVME_CQE_SC_INT_NVM_READ:
1038 		/* read fail */
1039 		/* TODO: post ereport */
1040 		if (cmd->nc_xfer != NULL)
1041 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1042 		return (EIO);
1043 
1044 	default:
1045 		return (nvme_check_unknown_cmd_status(cmd));
1046 	}
1047 }
1048 
1049 static int
1050 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1051 {
1052 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1053 
1054 	switch (cqe->cqe_sf.sf_sc) {
1055 	case NVME_CQE_SC_GEN_SUCCESS:
1056 		return (0);
1057 
1058 	/*
1059 	 * Errors indicating a bug in the driver should cause a panic.
1060 	 */
1061 	case NVME_CQE_SC_GEN_INV_OPC:
1062 		/* Invalid Command Opcode */
1063 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1064 		    "invalid opcode in cmd %p", (void *)cmd);
1065 		return (0);
1066 
1067 	case NVME_CQE_SC_GEN_INV_FLD:
1068 		/* Invalid Field in Command */
1069 		if (!cmd->nc_dontpanic)
1070 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1071 			    "programming error: invalid field in cmd %p",
1072 			    (void *)cmd);
1073 		return (EIO);
1074 
1075 	case NVME_CQE_SC_GEN_ID_CNFL:
1076 		/* Command ID Conflict */
1077 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1078 		    "cmd ID conflict in cmd %p", (void *)cmd);
1079 		return (0);
1080 
1081 	case NVME_CQE_SC_GEN_INV_NS:
1082 		/* Invalid Namespace or Format */
1083 		if (!cmd->nc_dontpanic)
1084 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1085 			    "programming error: " "invalid NS/format in cmd %p",
1086 			    (void *)cmd);
1087 		return (EINVAL);
1088 
1089 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1090 		/* LBA Out Of Range */
1091 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1092 		    "LBA out of range in cmd %p", (void *)cmd);
1093 		return (0);
1094 
1095 	/*
1096 	 * Non-fatal errors, handle gracefully.
1097 	 */
1098 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1099 		/* Data Transfer Error (DMA) */
1100 		/* TODO: post ereport */
1101 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1102 		if (cmd->nc_xfer != NULL)
1103 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1104 		return (EIO);
1105 
1106 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1107 		/*
1108 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1109 		 * detailed error information is returned as async event,
1110 		 * so we pretty much ignore the error here and handle it
1111 		 * in the async event handler.
1112 		 */
1113 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1114 		if (cmd->nc_xfer != NULL)
1115 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1116 		return (EIO);
1117 
1118 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1119 		/*
1120 		 * Command Abort Requested. This normally happens only when a
1121 		 * command times out.
1122 		 */
1123 		/* TODO: post ereport or change blkdev to handle this? */
1124 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1125 		return (ECANCELED);
1126 
1127 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1128 		/* Command Aborted due to Power Loss Notification */
1129 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1130 		cmd->nc_nvme->n_dead = B_TRUE;
1131 		return (EIO);
1132 
1133 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1134 		/* Command Aborted due to SQ Deletion */
1135 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1136 		return (EIO);
1137 
1138 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1139 		/* Capacity Exceeded */
1140 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1141 		if (cmd->nc_xfer != NULL)
1142 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1143 		return (EIO);
1144 
1145 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1146 		/* Namespace Not Ready */
1147 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1148 		if (cmd->nc_xfer != NULL)
1149 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1150 		return (EIO);
1151 
1152 	default:
1153 		return (nvme_check_unknown_cmd_status(cmd));
1154 	}
1155 }
1156 
1157 static int
1158 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1159 {
1160 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1161 
1162 	switch (cqe->cqe_sf.sf_sc) {
1163 	case NVME_CQE_SC_SPC_INV_CQ:
1164 		/* Completion Queue Invalid */
1165 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1166 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1167 		return (EINVAL);
1168 
1169 	case NVME_CQE_SC_SPC_INV_QID:
1170 		/* Invalid Queue Identifier */
1171 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1172 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1173 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1174 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1175 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1176 		return (EINVAL);
1177 
1178 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1179 		/* Max Queue Size Exceeded */
1180 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1181 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1182 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1183 		return (EINVAL);
1184 
1185 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1186 		/* Abort Command Limit Exceeded */
1187 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1188 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1189 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1190 		return (0);
1191 
1192 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1193 		/* Async Event Request Limit Exceeded */
1194 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1195 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1196 		    "async event request limit exceeded in cmd %p",
1197 		    (void *)cmd);
1198 		return (0);
1199 
1200 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1201 		/* Invalid Interrupt Vector */
1202 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1203 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1204 		return (EINVAL);
1205 
1206 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1207 		/* Invalid Log Page */
1208 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1209 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1210 		return (EINVAL);
1211 
1212 	case NVME_CQE_SC_SPC_INV_FORMAT:
1213 		/* Invalid Format */
1214 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1215 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1216 		if (cmd->nc_xfer != NULL)
1217 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1218 		return (EINVAL);
1219 
1220 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1221 		/* Invalid Queue Deletion */
1222 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1223 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1224 		return (EINVAL);
1225 
1226 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1227 		/* Conflicting Attributes */
1228 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1229 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1230 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1231 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1232 		if (cmd->nc_xfer != NULL)
1233 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1234 		return (EINVAL);
1235 
1236 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1237 		/* Invalid Protection Information */
1238 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1239 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1240 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1241 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1242 		if (cmd->nc_xfer != NULL)
1243 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1244 		return (EINVAL);
1245 
1246 	case NVME_CQE_SC_SPC_NVM_READONLY:
1247 		/* Write to Read Only Range */
1248 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1249 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1250 		if (cmd->nc_xfer != NULL)
1251 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1252 		return (EROFS);
1253 
1254 	default:
1255 		return (nvme_check_unknown_cmd_status(cmd));
1256 	}
1257 }
1258 
1259 static inline int
1260 nvme_check_cmd_status(nvme_cmd_t *cmd)
1261 {
1262 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1263 
1264 	/*
1265 	 * Take a shortcut if the controller is dead, or if
1266 	 * command status indicates no error.
1267 	 */
1268 	if (cmd->nc_nvme->n_dead)
1269 		return (EIO);
1270 
1271 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1272 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1273 		return (0);
1274 
1275 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1276 		return (nvme_check_generic_cmd_status(cmd));
1277 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1278 		return (nvme_check_specific_cmd_status(cmd));
1279 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1280 		return (nvme_check_integrity_cmd_status(cmd));
1281 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1282 		return (nvme_check_vendor_cmd_status(cmd));
1283 
1284 	return (nvme_check_unknown_cmd_status(cmd));
1285 }
1286 
1287 static int
1288 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1289 {
1290 	nvme_t *nvme = abort_cmd->nc_nvme;
1291 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1292 	nvme_abort_cmd_t ac = { 0 };
1293 	int ret = 0;
1294 
1295 	sema_p(&nvme->n_abort_sema);
1296 
1297 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1298 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1299 
1300 	cmd->nc_sqid = 0;
1301 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1302 	cmd->nc_callback = nvme_wakeup_cmd;
1303 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1304 
1305 	/*
1306 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1307 	 * the aborted command has completed (aborted or otherwise), but since
1308 	 * we still hold the aborted command's mutex its callback hasn't been
1309 	 * processed yet.
1310 	 */
1311 	nvme_admin_cmd(cmd, sec);
1312 	sema_v(&nvme->n_abort_sema);
1313 
1314 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1315 		dev_err(nvme->n_dip, CE_WARN,
1316 		    "!ABORT failed with sct = %x, sc = %x",
1317 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1318 		atomic_inc_32(&nvme->n_abort_failed);
1319 	} else {
1320 		dev_err(nvme->n_dip, CE_WARN,
1321 		    "!ABORT of command %d/%d %ssuccessful",
1322 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1323 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1324 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1325 			atomic_inc_32(&nvme->n_cmd_aborted);
1326 	}
1327 
1328 	nvme_free_cmd(cmd);
1329 	return (ret);
1330 }
1331 
1332 /*
1333  * nvme_wait_cmd -- wait for command completion or timeout
1334  *
1335  * In case of a serious error or a timeout of the abort command the hardware
1336  * will be declared dead and FMA will be notified.
1337  */
1338 static void
1339 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1340 {
1341 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1342 	nvme_t *nvme = cmd->nc_nvme;
1343 	nvme_reg_csts_t csts;
1344 	nvme_qpair_t *qp;
1345 
1346 	ASSERT(mutex_owned(&cmd->nc_mutex));
1347 
1348 	while (!cmd->nc_completed) {
1349 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1350 			break;
1351 	}
1352 
1353 	if (cmd->nc_completed)
1354 		return;
1355 
1356 	/*
1357 	 * The command timed out.
1358 	 *
1359 	 * Check controller for fatal status, any errors associated with the
1360 	 * register or DMA handle, or for a double timeout (abort command timed
1361 	 * out). If necessary log a warning and call FMA.
1362 	 */
1363 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1364 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1365 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1366 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1367 	atomic_inc_32(&nvme->n_cmd_timeout);
1368 
1369 	if (csts.b.csts_cfs ||
1370 	    nvme_check_regs_hdl(nvme) ||
1371 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1372 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1373 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1374 		nvme->n_dead = B_TRUE;
1375 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1376 		/*
1377 		 * If the abort succeeded the command should complete
1378 		 * immediately with an appropriate status.
1379 		 */
1380 		while (!cmd->nc_completed)
1381 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1382 
1383 		return;
1384 	}
1385 
1386 	qp = nvme->n_ioq[cmd->nc_sqid];
1387 
1388 	mutex_enter(&qp->nq_mutex);
1389 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1390 	mutex_exit(&qp->nq_mutex);
1391 
1392 	/*
1393 	 * As we don't know what the presumed dead hardware might still do with
1394 	 * the DMA memory, we'll put the command on the lost commands list if it
1395 	 * has any DMA memory.
1396 	 */
1397 	if (cmd->nc_dma != NULL) {
1398 		mutex_enter(&nvme_lc_mutex);
1399 		list_insert_head(&nvme_lost_cmds, cmd);
1400 		mutex_exit(&nvme_lc_mutex);
1401 	}
1402 }
1403 
1404 static void
1405 nvme_wakeup_cmd(void *arg)
1406 {
1407 	nvme_cmd_t *cmd = arg;
1408 
1409 	mutex_enter(&cmd->nc_mutex);
1410 	cmd->nc_completed = B_TRUE;
1411 	cv_signal(&cmd->nc_cv);
1412 	mutex_exit(&cmd->nc_mutex);
1413 }
1414 
1415 static void
1416 nvme_async_event_task(void *arg)
1417 {
1418 	nvme_cmd_t *cmd = arg;
1419 	nvme_t *nvme = cmd->nc_nvme;
1420 	nvme_error_log_entry_t *error_log = NULL;
1421 	nvme_health_log_t *health_log = NULL;
1422 	size_t logsize = 0;
1423 	nvme_async_event_t event;
1424 
1425 	/*
1426 	 * Check for errors associated with the async request itself. The only
1427 	 * command-specific error is "async event limit exceeded", which
1428 	 * indicates a programming error in the driver and causes a panic in
1429 	 * nvme_check_cmd_status().
1430 	 *
1431 	 * Other possible errors are various scenarios where the async request
1432 	 * was aborted, or internal errors in the device. Internal errors are
1433 	 * reported to FMA, the command aborts need no special handling here.
1434 	 */
1435 	if (nvme_check_cmd_status(cmd) != 0) {
1436 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1437 		    "!async event request returned failure, sct = %x, "
1438 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1439 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1440 		    cmd->nc_cqe.cqe_sf.sf_m);
1441 
1442 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1443 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1444 			cmd->nc_nvme->n_dead = B_TRUE;
1445 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1446 			    DDI_SERVICE_LOST);
1447 		}
1448 		nvme_free_cmd(cmd);
1449 		return;
1450 	}
1451 
1452 
1453 	event.r = cmd->nc_cqe.cqe_dw0;
1454 
1455 	/* Clear CQE and re-submit the async request. */
1456 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1457 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1458 
1459 	switch (event.b.ae_type) {
1460 	case NVME_ASYNC_TYPE_ERROR:
1461 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1462 			(void) nvme_get_logpage(nvme, (void **)&error_log,
1463 			    &logsize, event.b.ae_logpage);
1464 		} else {
1465 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1466 			    "async event reply: %d", event.b.ae_logpage);
1467 			atomic_inc_32(&nvme->n_wrong_logpage);
1468 		}
1469 
1470 		switch (event.b.ae_info) {
1471 		case NVME_ASYNC_ERROR_INV_SQ:
1472 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1473 			    "invalid submission queue");
1474 			return;
1475 
1476 		case NVME_ASYNC_ERROR_INV_DBL:
1477 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1478 			    "invalid doorbell write value");
1479 			return;
1480 
1481 		case NVME_ASYNC_ERROR_DIAGFAIL:
1482 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1483 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1484 			nvme->n_dead = B_TRUE;
1485 			atomic_inc_32(&nvme->n_diagfail_event);
1486 			break;
1487 
1488 		case NVME_ASYNC_ERROR_PERSISTENT:
1489 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1490 			    "device error");
1491 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1492 			nvme->n_dead = B_TRUE;
1493 			atomic_inc_32(&nvme->n_persistent_event);
1494 			break;
1495 
1496 		case NVME_ASYNC_ERROR_TRANSIENT:
1497 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1498 			    "device error");
1499 			/* TODO: send ereport */
1500 			atomic_inc_32(&nvme->n_transient_event);
1501 			break;
1502 
1503 		case NVME_ASYNC_ERROR_FW_LOAD:
1504 			dev_err(nvme->n_dip, CE_WARN,
1505 			    "!firmware image load error");
1506 			atomic_inc_32(&nvme->n_fw_load_event);
1507 			break;
1508 		}
1509 		break;
1510 
1511 	case NVME_ASYNC_TYPE_HEALTH:
1512 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1513 			(void) nvme_get_logpage(nvme, (void **)&health_log,
1514 			    &logsize, event.b.ae_logpage, -1);
1515 		} else {
1516 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1517 			    "async event reply: %d", event.b.ae_logpage);
1518 			atomic_inc_32(&nvme->n_wrong_logpage);
1519 		}
1520 
1521 		switch (event.b.ae_info) {
1522 		case NVME_ASYNC_HEALTH_RELIABILITY:
1523 			dev_err(nvme->n_dip, CE_WARN,
1524 			    "!device reliability compromised");
1525 			/* TODO: send ereport */
1526 			atomic_inc_32(&nvme->n_reliability_event);
1527 			break;
1528 
1529 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1530 			dev_err(nvme->n_dip, CE_WARN,
1531 			    "!temperature above threshold");
1532 			/* TODO: send ereport */
1533 			atomic_inc_32(&nvme->n_temperature_event);
1534 			break;
1535 
1536 		case NVME_ASYNC_HEALTH_SPARE:
1537 			dev_err(nvme->n_dip, CE_WARN,
1538 			    "!spare space below threshold");
1539 			/* TODO: send ereport */
1540 			atomic_inc_32(&nvme->n_spare_event);
1541 			break;
1542 		}
1543 		break;
1544 
1545 	case NVME_ASYNC_TYPE_VENDOR:
1546 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1547 		    "received, info = %x, logpage = %x", event.b.ae_info,
1548 		    event.b.ae_logpage);
1549 		atomic_inc_32(&nvme->n_vendor_event);
1550 		break;
1551 
1552 	default:
1553 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1554 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1555 		    event.b.ae_info, event.b.ae_logpage);
1556 		atomic_inc_32(&nvme->n_unknown_event);
1557 		break;
1558 	}
1559 
1560 	if (error_log)
1561 		kmem_free(error_log, logsize);
1562 
1563 	if (health_log)
1564 		kmem_free(health_log, logsize);
1565 }
1566 
1567 static void
1568 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1569 {
1570 	mutex_enter(&cmd->nc_mutex);
1571 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1572 	nvme_wait_cmd(cmd, sec);
1573 	mutex_exit(&cmd->nc_mutex);
1574 }
1575 
1576 static void
1577 nvme_async_event(nvme_t *nvme)
1578 {
1579 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1580 
1581 	cmd->nc_sqid = 0;
1582 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1583 	cmd->nc_callback = nvme_async_event_task;
1584 
1585 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1586 }
1587 
1588 static int
1589 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1590     uint8_t pi, boolean_t pil, uint8_t ses)
1591 {
1592 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1593 	nvme_format_nvm_t format_nvm = { 0 };
1594 	int ret;
1595 
1596 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1597 	format_nvm.b.fm_ms = ms ? 1 : 0;
1598 	format_nvm.b.fm_pi = pi & 0x7;
1599 	format_nvm.b.fm_pil = pil ? 1 : 0;
1600 	format_nvm.b.fm_ses = ses & 0x7;
1601 
1602 	cmd->nc_sqid = 0;
1603 	cmd->nc_callback = nvme_wakeup_cmd;
1604 	cmd->nc_sqe.sqe_nsid = nsid;
1605 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1606 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1607 
1608 	/*
1609 	 * Some devices like Samsung SM951 don't allow formatting of all
1610 	 * namespaces in one command. Handle that gracefully.
1611 	 */
1612 	if (nsid == (uint32_t)-1)
1613 		cmd->nc_dontpanic = B_TRUE;
1614 
1615 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1616 
1617 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1618 		dev_err(nvme->n_dip, CE_WARN,
1619 		    "!FORMAT failed with sct = %x, sc = %x",
1620 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1621 	}
1622 
1623 	nvme_free_cmd(cmd);
1624 	return (ret);
1625 }
1626 
1627 static int
1628 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1629     ...)
1630 {
1631 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1632 	nvme_getlogpage_t getlogpage = { 0 };
1633 	va_list ap;
1634 	int ret;
1635 
1636 	va_start(ap, logpage);
1637 
1638 	cmd->nc_sqid = 0;
1639 	cmd->nc_callback = nvme_wakeup_cmd;
1640 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1641 
1642 	getlogpage.b.lp_lid = logpage;
1643 
1644 	switch (logpage) {
1645 	case NVME_LOGPAGE_ERROR:
1646 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1647 		/*
1648 		 * The GET LOG PAGE command can use at most 2 pages to return
1649 		 * data, PRP lists are not supported.
1650 		 */
1651 		*bufsize = MIN(2 * nvme->n_pagesize,
1652 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1653 		break;
1654 
1655 	case NVME_LOGPAGE_HEALTH:
1656 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1657 		*bufsize = sizeof (nvme_health_log_t);
1658 		break;
1659 
1660 	case NVME_LOGPAGE_FWSLOT:
1661 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1662 		*bufsize = sizeof (nvme_fwslot_log_t);
1663 		break;
1664 
1665 	default:
1666 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1667 		    logpage);
1668 		atomic_inc_32(&nvme->n_unknown_logpage);
1669 		ret = EINVAL;
1670 		goto fail;
1671 	}
1672 
1673 	va_end(ap);
1674 
1675 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1676 
1677 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1678 
1679 	if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1680 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1681 		dev_err(nvme->n_dip, CE_WARN,
1682 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1683 		ret = ENOMEM;
1684 		goto fail;
1685 	}
1686 
1687 	if (cmd->nc_dma->nd_ncookie > 2) {
1688 		dev_err(nvme->n_dip, CE_WARN,
1689 		    "!too many DMA cookies for GET LOG PAGE");
1690 		atomic_inc_32(&nvme->n_too_many_cookies);
1691 		ret = ENOMEM;
1692 		goto fail;
1693 	}
1694 
1695 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1696 	if (cmd->nc_dma->nd_ncookie > 1) {
1697 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1698 		    &cmd->nc_dma->nd_cookie);
1699 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1700 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1701 	}
1702 
1703 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1704 
1705 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1706 		dev_err(nvme->n_dip, CE_WARN,
1707 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1708 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1709 		goto fail;
1710 	}
1711 
1712 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
1713 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1714 
1715 fail:
1716 	nvme_free_cmd(cmd);
1717 
1718 	return (ret);
1719 }
1720 
1721 static int
1722 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1723 {
1724 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1725 	int ret;
1726 
1727 	if (buf == NULL)
1728 		return (EINVAL);
1729 
1730 	cmd->nc_sqid = 0;
1731 	cmd->nc_callback = nvme_wakeup_cmd;
1732 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1733 	cmd->nc_sqe.sqe_nsid = nsid;
1734 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1735 
1736 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1737 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1738 		dev_err(nvme->n_dip, CE_WARN,
1739 		    "!nvme_zalloc_dma failed for IDENTIFY");
1740 		ret = ENOMEM;
1741 		goto fail;
1742 	}
1743 
1744 	if (cmd->nc_dma->nd_ncookie > 2) {
1745 		dev_err(nvme->n_dip, CE_WARN,
1746 		    "!too many DMA cookies for IDENTIFY");
1747 		atomic_inc_32(&nvme->n_too_many_cookies);
1748 		ret = ENOMEM;
1749 		goto fail;
1750 	}
1751 
1752 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1753 	if (cmd->nc_dma->nd_ncookie > 1) {
1754 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1755 		    &cmd->nc_dma->nd_cookie);
1756 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1757 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1758 	}
1759 
1760 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1761 
1762 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1763 		dev_err(nvme->n_dip, CE_WARN,
1764 		    "!IDENTIFY failed with sct = %x, sc = %x",
1765 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1766 		goto fail;
1767 	}
1768 
1769 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1770 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1771 
1772 fail:
1773 	nvme_free_cmd(cmd);
1774 
1775 	return (ret);
1776 }
1777 
1778 static int
1779 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1780     uint32_t *res)
1781 {
1782 	_NOTE(ARGUNUSED(nsid));
1783 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1784 	int ret = EINVAL;
1785 
1786 	ASSERT(res != NULL);
1787 
1788 	cmd->nc_sqid = 0;
1789 	cmd->nc_callback = nvme_wakeup_cmd;
1790 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1791 	cmd->nc_sqe.sqe_cdw10 = feature;
1792 	cmd->nc_sqe.sqe_cdw11 = val;
1793 
1794 	switch (feature) {
1795 	case NVME_FEAT_WRITE_CACHE:
1796 		if (!nvme->n_write_cache_present)
1797 			goto fail;
1798 		break;
1799 
1800 	case NVME_FEAT_NQUEUES:
1801 		break;
1802 
1803 	default:
1804 		goto fail;
1805 	}
1806 
1807 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1808 
1809 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1810 		dev_err(nvme->n_dip, CE_WARN,
1811 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
1812 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1813 		    cmd->nc_cqe.cqe_sf.sf_sc);
1814 		goto fail;
1815 	}
1816 
1817 	*res = cmd->nc_cqe.cqe_dw0;
1818 
1819 fail:
1820 	nvme_free_cmd(cmd);
1821 	return (ret);
1822 }
1823 
1824 static int
1825 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1826     void **buf, size_t *bufsize)
1827 {
1828 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1829 	int ret = EINVAL;
1830 
1831 	ASSERT(res != NULL);
1832 
1833 	if (bufsize != NULL)
1834 		*bufsize = 0;
1835 
1836 	cmd->nc_sqid = 0;
1837 	cmd->nc_callback = nvme_wakeup_cmd;
1838 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1839 	cmd->nc_sqe.sqe_cdw10 = feature;
1840 	cmd->nc_sqe.sqe_cdw11 = *res;
1841 
1842 	switch (feature) {
1843 	case NVME_FEAT_ARBITRATION:
1844 	case NVME_FEAT_POWER_MGMT:
1845 	case NVME_FEAT_TEMPERATURE:
1846 	case NVME_FEAT_ERROR:
1847 	case NVME_FEAT_NQUEUES:
1848 	case NVME_FEAT_INTR_COAL:
1849 	case NVME_FEAT_INTR_VECT:
1850 	case NVME_FEAT_WRITE_ATOM:
1851 	case NVME_FEAT_ASYNC_EVENT:
1852 	case NVME_FEAT_PROGRESS:
1853 		break;
1854 
1855 	case NVME_FEAT_WRITE_CACHE:
1856 		if (!nvme->n_write_cache_present)
1857 			goto fail;
1858 		break;
1859 
1860 	case NVME_FEAT_LBA_RANGE:
1861 		if (!nvme->n_lba_range_supported)
1862 			goto fail;
1863 
1864 		/*
1865 		 * The LBA Range Type feature is optional. There doesn't seem
1866 		 * be a method of detecting whether it is supported other than
1867 		 * using it. This will cause a "invalid field in command" error,
1868 		 * which is normally considered a programming error and causes
1869 		 * panic in nvme_check_generic_cmd_status().
1870 		 */
1871 		cmd->nc_dontpanic = B_TRUE;
1872 		cmd->nc_sqe.sqe_nsid = nsid;
1873 		ASSERT(bufsize != NULL);
1874 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
1875 
1876 		break;
1877 
1878 	case NVME_FEAT_AUTO_PST:
1879 		if (!nvme->n_auto_pst_supported)
1880 			goto fail;
1881 
1882 		ASSERT(bufsize != NULL);
1883 		*bufsize = NVME_AUTO_PST_BUFSIZE;
1884 		break;
1885 
1886 	default:
1887 		goto fail;
1888 	}
1889 
1890 	if (bufsize != NULL && *bufsize != 0) {
1891 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1892 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1893 			dev_err(nvme->n_dip, CE_WARN,
1894 			    "!nvme_zalloc_dma failed for GET FEATURES");
1895 			ret = ENOMEM;
1896 			goto fail;
1897 		}
1898 
1899 		if (cmd->nc_dma->nd_ncookie > 2) {
1900 			dev_err(nvme->n_dip, CE_WARN,
1901 			    "!too many DMA cookies for GET FEATURES");
1902 			atomic_inc_32(&nvme->n_too_many_cookies);
1903 			ret = ENOMEM;
1904 			goto fail;
1905 		}
1906 
1907 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
1908 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1909 		if (cmd->nc_dma->nd_ncookie > 1) {
1910 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1911 			    &cmd->nc_dma->nd_cookie);
1912 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
1913 			    cmd->nc_dma->nd_cookie.dmac_laddress;
1914 		}
1915 	}
1916 
1917 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1918 
1919 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1920 		if (feature == NVME_FEAT_LBA_RANGE &&
1921 		    cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1922 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1923 			nvme->n_lba_range_supported = B_FALSE;
1924 		else
1925 			dev_err(nvme->n_dip, CE_WARN,
1926 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
1927 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1928 			    cmd->nc_cqe.cqe_sf.sf_sc);
1929 		goto fail;
1930 	}
1931 
1932 	if (bufsize != NULL && *bufsize != 0) {
1933 		ASSERT(buf != NULL);
1934 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
1935 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1936 	}
1937 
1938 	*res = cmd->nc_cqe.cqe_dw0;
1939 
1940 fail:
1941 	nvme_free_cmd(cmd);
1942 	return (ret);
1943 }
1944 
1945 static int
1946 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1947 {
1948 	nvme_write_cache_t nwc = { 0 };
1949 
1950 	if (enable)
1951 		nwc.b.wc_wce = 1;
1952 
1953 	return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1954 	    &nwc.r));
1955 }
1956 
1957 static int
1958 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
1959 {
1960 	nvme_nqueues_t nq = { 0 };
1961 	int ret;
1962 
1963 	nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
1964 
1965 	ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
1966 
1967 	if (ret == 0) {
1968 		/*
1969 		 * Always use the same number of submission and completion
1970 		 * queues, and never use more than the requested number of
1971 		 * queues.
1972 		 */
1973 		*nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
1974 	}
1975 
1976 	return (ret);
1977 }
1978 
1979 static int
1980 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1981 {
1982 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1983 	nvme_create_queue_dw10_t dw10 = { 0 };
1984 	nvme_create_cq_dw11_t c_dw11 = { 0 };
1985 	nvme_create_sq_dw11_t s_dw11 = { 0 };
1986 	int ret;
1987 
1988 	dw10.b.q_qid = idx;
1989 	dw10.b.q_qsize = qp->nq_nentry - 1;
1990 
1991 	c_dw11.b.cq_pc = 1;
1992 	c_dw11.b.cq_ien = 1;
1993 	c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1994 
1995 	cmd->nc_sqid = 0;
1996 	cmd->nc_callback = nvme_wakeup_cmd;
1997 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1998 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
1999 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2000 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2001 
2002 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2003 
2004 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2005 		dev_err(nvme->n_dip, CE_WARN,
2006 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2007 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2008 		goto fail;
2009 	}
2010 
2011 	nvme_free_cmd(cmd);
2012 
2013 	s_dw11.b.sq_pc = 1;
2014 	s_dw11.b.sq_cqid = idx;
2015 
2016 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2017 	cmd->nc_sqid = 0;
2018 	cmd->nc_callback = nvme_wakeup_cmd;
2019 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2020 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2021 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2022 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2023 
2024 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2025 
2026 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2027 		dev_err(nvme->n_dip, CE_WARN,
2028 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2029 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2030 		goto fail;
2031 	}
2032 
2033 fail:
2034 	nvme_free_cmd(cmd);
2035 
2036 	return (ret);
2037 }
2038 
2039 static boolean_t
2040 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2041 {
2042 	nvme_reg_csts_t csts;
2043 	int i;
2044 
2045 	nvme_put32(nvme, NVME_REG_CC, 0);
2046 
2047 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2048 	if (csts.b.csts_rdy == 1) {
2049 		nvme_put32(nvme, NVME_REG_CC, 0);
2050 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2051 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2052 			if (csts.b.csts_rdy == 0)
2053 				break;
2054 
2055 			if (quiesce)
2056 				drv_usecwait(50000);
2057 			else
2058 				delay(drv_usectohz(50000));
2059 		}
2060 	}
2061 
2062 	nvme_put32(nvme, NVME_REG_AQA, 0);
2063 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2064 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2065 
2066 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2067 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2068 }
2069 
2070 static void
2071 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2072 {
2073 	nvme_reg_cc_t cc;
2074 	nvme_reg_csts_t csts;
2075 	int i;
2076 
2077 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2078 
2079 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2080 	cc.b.cc_shn = mode & 0x3;
2081 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2082 
2083 	for (i = 0; i != 10; i++) {
2084 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2085 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2086 			break;
2087 
2088 		if (quiesce)
2089 			drv_usecwait(100000);
2090 		else
2091 			delay(drv_usectohz(100000));
2092 	}
2093 }
2094 
2095 
2096 static void
2097 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2098 {
2099 	/*
2100 	 * Section 7.7 of the spec describes how to get a unique ID for
2101 	 * the controller: the vendor ID, the model name and the serial
2102 	 * number shall be unique when combined.
2103 	 *
2104 	 * If a namespace has no EUI64 we use the above and add the hex
2105 	 * namespace ID to get a unique ID for the namespace.
2106 	 */
2107 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2108 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2109 
2110 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2111 	bcopy(nvme->n_idctl->id_serial, serial,
2112 	    sizeof (nvme->n_idctl->id_serial));
2113 
2114 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2115 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2116 
2117 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2118 	    nvme->n_idctl->id_vid, model, serial, nsid);
2119 }
2120 
2121 static int
2122 nvme_init_ns(nvme_t *nvme, int nsid)
2123 {
2124 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2125 	nvme_identify_nsid_t *idns;
2126 	int last_rp;
2127 
2128 	ns->ns_nvme = nvme;
2129 
2130 	if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2131 		dev_err(nvme->n_dip, CE_WARN,
2132 		    "!failed to identify namespace %d", nsid);
2133 		return (DDI_FAILURE);
2134 	}
2135 
2136 	ns->ns_idns = idns;
2137 	ns->ns_id = nsid;
2138 	ns->ns_block_count = idns->id_nsize;
2139 	ns->ns_block_size =
2140 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2141 	ns->ns_best_block_size = ns->ns_block_size;
2142 
2143 	/*
2144 	 * Get the EUI64 if present. Use it for devid and device node names.
2145 	 */
2146 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2147 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2148 
2149 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2150 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2151 		uint8_t *eui64 = ns->ns_eui64;
2152 
2153 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2154 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2155 		    eui64[0], eui64[1], eui64[2], eui64[3],
2156 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2157 	} else {
2158 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2159 		    ns->ns_id);
2160 
2161 		nvme_prepare_devid(nvme, ns->ns_id);
2162 	}
2163 
2164 	/*
2165 	 * Find the LBA format with no metadata and the best relative
2166 	 * performance. A value of 3 means "degraded", 0 is best.
2167 	 */
2168 	last_rp = 3;
2169 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2170 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2171 			break;
2172 		if (idns->id_lbaf[j].lbaf_ms != 0)
2173 			continue;
2174 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2175 			continue;
2176 		last_rp = idns->id_lbaf[j].lbaf_rp;
2177 		ns->ns_best_block_size =
2178 		    1 << idns->id_lbaf[j].lbaf_lbads;
2179 	}
2180 
2181 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2182 		ns->ns_best_block_size = nvme->n_min_block_size;
2183 
2184 	/*
2185 	 * We currently don't support namespaces that use either:
2186 	 * - thin provisioning
2187 	 * - protection information
2188 	 * - illegal block size (< 512)
2189 	 */
2190 	if (idns->id_nsfeat.f_thin ||
2191 	    idns->id_dps.dp_pinfo) {
2192 		dev_err(nvme->n_dip, CE_WARN,
2193 		    "!ignoring namespace %d, unsupported features: "
2194 		    "thin = %d, pinfo = %d", nsid,
2195 		    idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2196 		ns->ns_ignore = B_TRUE;
2197 	} else if (ns->ns_block_size < 512) {
2198 		dev_err(nvme->n_dip, CE_WARN,
2199 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2200 		    nsid, (uint64_t)ns->ns_block_size);
2201 		ns->ns_ignore = B_TRUE;
2202 	} else {
2203 		ns->ns_ignore = B_FALSE;
2204 	}
2205 
2206 	return (DDI_SUCCESS);
2207 }
2208 
2209 static int
2210 nvme_init(nvme_t *nvme)
2211 {
2212 	nvme_reg_cc_t cc = { 0 };
2213 	nvme_reg_aqa_t aqa = { 0 };
2214 	nvme_reg_asq_t asq = { 0 };
2215 	nvme_reg_acq_t acq = { 0 };
2216 	nvme_reg_cap_t cap;
2217 	nvme_reg_vs_t vs;
2218 	nvme_reg_csts_t csts;
2219 	int i = 0;
2220 	uint16_t nqueues;
2221 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2222 	char *vendor, *product;
2223 
2224 	/* Check controller version */
2225 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2226 	nvme->n_version.v_major = vs.b.vs_mjr;
2227 	nvme->n_version.v_minor = vs.b.vs_mnr;
2228 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2229 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2230 
2231 	if (NVME_VERSION_HIGHER(&nvme->n_version,
2232 	    nvme_version_major, nvme_version_minor)) {
2233 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2234 		    nvme_version_major, nvme_version_minor);
2235 		if (nvme->n_strict_version)
2236 			goto fail;
2237 	}
2238 
2239 	/* retrieve controller configuration */
2240 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2241 
2242 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2243 		dev_err(nvme->n_dip, CE_WARN,
2244 		    "!NVM command set not supported by hardware");
2245 		goto fail;
2246 	}
2247 
2248 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2249 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2250 	nvme->n_timeout = cap.b.cap_to;
2251 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2252 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2253 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2254 
2255 	/*
2256 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2257 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2258 	 * page size value.
2259 	 */
2260 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2261 	    cap.b.cap_mpsmax + 12);
2262 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2263 
2264 	/*
2265 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2266 	 */
2267 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2268 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2269 
2270 	/*
2271 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2272 	 * Maxxfer may be increased after we identified the controller limits.
2273 	 */
2274 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2275 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2276 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2277 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2278 
2279 	/*
2280 	 * Reset controller if it's still in ready state.
2281 	 */
2282 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2283 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2284 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2285 		nvme->n_dead = B_TRUE;
2286 		goto fail;
2287 	}
2288 
2289 	/*
2290 	 * Create the admin queue pair.
2291 	 */
2292 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2293 	    != DDI_SUCCESS) {
2294 		dev_err(nvme->n_dip, CE_WARN,
2295 		    "!unable to allocate admin qpair");
2296 		goto fail;
2297 	}
2298 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2299 	nvme->n_ioq[0] = nvme->n_adminq;
2300 
2301 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2302 
2303 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2304 	    "admin-queue-len", nvme->n_admin_queue_len);
2305 
2306 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2307 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2308 	acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2309 
2310 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2311 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2312 
2313 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2314 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2315 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2316 
2317 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2318 	cc.b.cc_css = 0;	/* use NVM command set */
2319 	cc.b.cc_mps = nvme->n_pageshift - 12;
2320 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2321 	cc.b.cc_en = 1;		/* enable controller */
2322 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2323 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2324 
2325 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2326 
2327 	/*
2328 	 * Wait for the controller to become ready.
2329 	 */
2330 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2331 	if (csts.b.csts_rdy == 0) {
2332 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2333 			delay(drv_usectohz(50000));
2334 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2335 
2336 			if (csts.b.csts_cfs == 1) {
2337 				dev_err(nvme->n_dip, CE_WARN,
2338 				    "!controller fatal status at init");
2339 				ddi_fm_service_impact(nvme->n_dip,
2340 				    DDI_SERVICE_LOST);
2341 				nvme->n_dead = B_TRUE;
2342 				goto fail;
2343 			}
2344 
2345 			if (csts.b.csts_rdy == 1)
2346 				break;
2347 		}
2348 	}
2349 
2350 	if (csts.b.csts_rdy == 0) {
2351 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2352 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2353 		nvme->n_dead = B_TRUE;
2354 		goto fail;
2355 	}
2356 
2357 	/*
2358 	 * Assume an abort command limit of 1. We'll destroy and re-init
2359 	 * that later when we know the true abort command limit.
2360 	 */
2361 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2362 
2363 	/*
2364 	 * Setup initial interrupt for admin queue.
2365 	 */
2366 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2367 	    != DDI_SUCCESS) &&
2368 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2369 	    != DDI_SUCCESS) &&
2370 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2371 	    != DDI_SUCCESS)) {
2372 		dev_err(nvme->n_dip, CE_WARN,
2373 		    "!failed to setup initial interrupt");
2374 		goto fail;
2375 	}
2376 
2377 	/*
2378 	 * Post an asynchronous event command to catch errors.
2379 	 */
2380 	nvme_async_event(nvme);
2381 
2382 	/*
2383 	 * Identify Controller
2384 	 */
2385 	if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2386 		dev_err(nvme->n_dip, CE_WARN,
2387 		    "!failed to identify controller");
2388 		goto fail;
2389 	}
2390 
2391 	/*
2392 	 * Get Vendor & Product ID
2393 	 */
2394 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2395 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2396 	sata_split_model(model, &vendor, &product);
2397 
2398 	if (vendor == NULL)
2399 		nvme->n_vendor = strdup("NVMe");
2400 	else
2401 		nvme->n_vendor = strdup(vendor);
2402 
2403 	nvme->n_product = strdup(product);
2404 
2405 	/*
2406 	 * Get controller limits.
2407 	 */
2408 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2409 	    MIN(nvme->n_admin_queue_len / 10,
2410 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2411 
2412 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2413 	    "async-event-limit", nvme->n_async_event_limit);
2414 
2415 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2416 
2417 	/*
2418 	 * Reinitialize the semaphore with the true abort command limit
2419 	 * supported by the hardware. It's not necessary to disable interrupts
2420 	 * as only command aborts use the semaphore, and no commands are
2421 	 * executed or aborted while we're here.
2422 	 */
2423 	sema_destroy(&nvme->n_abort_sema);
2424 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2425 	    SEMA_DRIVER, NULL);
2426 
2427 	nvme->n_progress |= NVME_CTRL_LIMITS;
2428 
2429 	if (nvme->n_idctl->id_mdts == 0)
2430 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2431 	else
2432 		nvme->n_max_data_transfer_size =
2433 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2434 
2435 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2436 
2437 	/*
2438 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2439 	 * Chained PRPs are currently unsupported.
2440 	 *
2441 	 * This is a no-op on hardware which doesn't support a transfer size
2442 	 * big enough to require chained PRPs.
2443 	 */
2444 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2445 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2446 
2447 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2448 
2449 	/*
2450 	 * Make sure the minimum/maximum queue entry sizes are not
2451 	 * larger/smaller than the default.
2452 	 */
2453 
2454 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2455 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2456 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2457 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2458 		goto fail;
2459 
2460 	/*
2461 	 * Check for the presence of a Volatile Write Cache. If present,
2462 	 * enable or disable based on the value of the property
2463 	 * volatile-write-cache-enable (default is enabled).
2464 	 */
2465 	nvme->n_write_cache_present =
2466 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2467 
2468 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2469 	    "volatile-write-cache-present",
2470 	    nvme->n_write_cache_present ? 1 : 0);
2471 
2472 	if (!nvme->n_write_cache_present) {
2473 		nvme->n_write_cache_enabled = B_FALSE;
2474 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2475 	    != 0) {
2476 		dev_err(nvme->n_dip, CE_WARN,
2477 		    "!failed to %sable volatile write cache",
2478 		    nvme->n_write_cache_enabled ? "en" : "dis");
2479 		/*
2480 		 * Assume the cache is (still) enabled.
2481 		 */
2482 		nvme->n_write_cache_enabled = B_TRUE;
2483 	}
2484 
2485 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2486 	    "volatile-write-cache-enable",
2487 	    nvme->n_write_cache_enabled ? 1 : 0);
2488 
2489 	/*
2490 	 * Assume LBA Range Type feature is supported. If it isn't this
2491 	 * will be set to B_FALSE by nvme_get_features().
2492 	 */
2493 	nvme->n_lba_range_supported = B_TRUE;
2494 
2495 	/*
2496 	 * Check support for Autonomous Power State Transition.
2497 	 */
2498 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2499 		nvme->n_auto_pst_supported =
2500 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2501 
2502 	/*
2503 	 * Identify Namespaces
2504 	 */
2505 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2506 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2507 		dev_err(nvme->n_dip, CE_WARN,
2508 		    "!too many namespaces: %d, limiting to %d\n",
2509 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2510 		nvme->n_namespace_count = NVME_MINOR_MAX;
2511 	}
2512 
2513 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2514 	    nvme->n_namespace_count, KM_SLEEP);
2515 
2516 	for (i = 0; i != nvme->n_namespace_count; i++) {
2517 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2518 		    NULL);
2519 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2520 			goto fail;
2521 	}
2522 
2523 	/*
2524 	 * Try to set up MSI/MSI-X interrupts.
2525 	 */
2526 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2527 	    != 0) {
2528 		nvme_release_interrupts(nvme);
2529 
2530 		nqueues = MIN(UINT16_MAX, ncpus);
2531 
2532 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2533 		    nqueues) != DDI_SUCCESS) &&
2534 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2535 		    nqueues) != DDI_SUCCESS)) {
2536 			dev_err(nvme->n_dip, CE_WARN,
2537 			    "!failed to setup MSI/MSI-X interrupts");
2538 			goto fail;
2539 		}
2540 	}
2541 
2542 	nqueues = nvme->n_intr_cnt;
2543 
2544 	/*
2545 	 * Create I/O queue pairs.
2546 	 */
2547 
2548 	if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2549 		dev_err(nvme->n_dip, CE_WARN,
2550 		    "!failed to set number of I/O queues to %d",
2551 		    nvme->n_intr_cnt);
2552 		goto fail;
2553 	}
2554 
2555 	/*
2556 	 * Reallocate I/O queue array
2557 	 */
2558 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2559 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2560 	    (nqueues + 1), KM_SLEEP);
2561 	nvme->n_ioq[0] = nvme->n_adminq;
2562 
2563 	nvme->n_ioq_count = nqueues;
2564 
2565 	/*
2566 	 * If we got less queues than we asked for we might as well give
2567 	 * some of the interrupt vectors back to the system.
2568 	 */
2569 	if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2570 		nvme_release_interrupts(nvme);
2571 
2572 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2573 		    nvme->n_ioq_count) != DDI_SUCCESS) {
2574 			dev_err(nvme->n_dip, CE_WARN,
2575 			    "!failed to reduce number of interrupts");
2576 			goto fail;
2577 		}
2578 	}
2579 
2580 	/*
2581 	 * Alloc & register I/O queue pairs
2582 	 */
2583 	nvme->n_io_queue_len =
2584 	    MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2585 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2586 	    nvme->n_io_queue_len);
2587 
2588 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2589 		if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2590 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2591 			dev_err(nvme->n_dip, CE_WARN,
2592 			    "!unable to allocate I/O qpair %d", i);
2593 			goto fail;
2594 		}
2595 
2596 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2597 			dev_err(nvme->n_dip, CE_WARN,
2598 			    "!unable to create I/O qpair %d", i);
2599 			goto fail;
2600 		}
2601 	}
2602 
2603 	/*
2604 	 * Post more asynchronous events commands to reduce event reporting
2605 	 * latency as suggested by the spec.
2606 	 */
2607 	for (i = 1; i != nvme->n_async_event_limit; i++)
2608 		nvme_async_event(nvme);
2609 
2610 	return (DDI_SUCCESS);
2611 
2612 fail:
2613 	(void) nvme_reset(nvme, B_FALSE);
2614 	return (DDI_FAILURE);
2615 }
2616 
2617 static uint_t
2618 nvme_intr(caddr_t arg1, caddr_t arg2)
2619 {
2620 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2621 	nvme_t *nvme = (nvme_t *)arg1;
2622 	int inum = (int)(uintptr_t)arg2;
2623 	int ccnt = 0;
2624 	int qnum;
2625 	nvme_cmd_t *cmd;
2626 
2627 	if (inum >= nvme->n_intr_cnt)
2628 		return (DDI_INTR_UNCLAIMED);
2629 
2630 	if (nvme->n_dead)
2631 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2632 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2633 
2634 	/*
2635 	 * The interrupt vector a queue uses is calculated as queue_idx %
2636 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2637 	 * in steps of n_intr_cnt to process all queues using this vector.
2638 	 */
2639 	for (qnum = inum;
2640 	    qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2641 	    qnum += nvme->n_intr_cnt) {
2642 		while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2643 			taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2644 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2645 			ccnt++;
2646 		}
2647 	}
2648 
2649 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2650 }
2651 
2652 static void
2653 nvme_release_interrupts(nvme_t *nvme)
2654 {
2655 	int i;
2656 
2657 	for (i = 0; i < nvme->n_intr_cnt; i++) {
2658 		if (nvme->n_inth[i] == NULL)
2659 			break;
2660 
2661 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2662 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2663 		else
2664 			(void) ddi_intr_disable(nvme->n_inth[i]);
2665 
2666 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
2667 		(void) ddi_intr_free(nvme->n_inth[i]);
2668 	}
2669 
2670 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
2671 	nvme->n_inth = NULL;
2672 	nvme->n_inth_sz = 0;
2673 
2674 	nvme->n_progress &= ~NVME_INTERRUPTS;
2675 }
2676 
2677 static int
2678 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2679 {
2680 	int nintrs, navail, count;
2681 	int ret;
2682 	int i;
2683 
2684 	if (nvme->n_intr_types == 0) {
2685 		ret = ddi_intr_get_supported_types(nvme->n_dip,
2686 		    &nvme->n_intr_types);
2687 		if (ret != DDI_SUCCESS) {
2688 			dev_err(nvme->n_dip, CE_WARN,
2689 			    "!%s: ddi_intr_get_supported types failed",
2690 			    __func__);
2691 			return (ret);
2692 		}
2693 #ifdef __x86
2694 		if (get_hwenv() == HW_VMWARE)
2695 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2696 #endif
2697 	}
2698 
2699 	if ((nvme->n_intr_types & intr_type) == 0)
2700 		return (DDI_FAILURE);
2701 
2702 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2703 	if (ret != DDI_SUCCESS) {
2704 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2705 		    __func__);
2706 		return (ret);
2707 	}
2708 
2709 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2710 	if (ret != DDI_SUCCESS) {
2711 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2712 		    __func__);
2713 		return (ret);
2714 	}
2715 
2716 	/* We want at most one interrupt per queue pair. */
2717 	if (navail > nqpairs)
2718 		navail = nqpairs;
2719 
2720 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2721 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2722 
2723 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2724 	    &count, 0);
2725 	if (ret != DDI_SUCCESS) {
2726 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2727 		    __func__);
2728 		goto fail;
2729 	}
2730 
2731 	nvme->n_intr_cnt = count;
2732 
2733 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2734 	if (ret != DDI_SUCCESS) {
2735 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2736 		    __func__);
2737 		goto fail;
2738 	}
2739 
2740 	for (i = 0; i < count; i++) {
2741 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2742 		    (void *)nvme, (void *)(uintptr_t)i);
2743 		if (ret != DDI_SUCCESS) {
2744 			dev_err(nvme->n_dip, CE_WARN,
2745 			    "!%s: ddi_intr_add_handler failed", __func__);
2746 			goto fail;
2747 		}
2748 	}
2749 
2750 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2751 
2752 	for (i = 0; i < count; i++) {
2753 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2754 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2755 		else
2756 			ret = ddi_intr_enable(nvme->n_inth[i]);
2757 
2758 		if (ret != DDI_SUCCESS) {
2759 			dev_err(nvme->n_dip, CE_WARN,
2760 			    "!%s: enabling interrupt %d failed", __func__, i);
2761 			goto fail;
2762 		}
2763 	}
2764 
2765 	nvme->n_intr_type = intr_type;
2766 
2767 	nvme->n_progress |= NVME_INTERRUPTS;
2768 
2769 	return (DDI_SUCCESS);
2770 
2771 fail:
2772 	nvme_release_interrupts(nvme);
2773 
2774 	return (ret);
2775 }
2776 
2777 static int
2778 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2779 {
2780 	_NOTE(ARGUNUSED(arg));
2781 
2782 	pci_ereport_post(dip, fm_error, NULL);
2783 	return (fm_error->fme_status);
2784 }
2785 
2786 static int
2787 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2788 {
2789 	nvme_t *nvme;
2790 	int instance;
2791 	int nregs;
2792 	off_t regsize;
2793 	int i;
2794 	char name[32];
2795 
2796 	if (cmd != DDI_ATTACH)
2797 		return (DDI_FAILURE);
2798 
2799 	instance = ddi_get_instance(dip);
2800 
2801 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2802 		return (DDI_FAILURE);
2803 
2804 	nvme = ddi_get_soft_state(nvme_state, instance);
2805 	ddi_set_driver_private(dip, nvme);
2806 	nvme->n_dip = dip;
2807 
2808 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2809 
2810 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2811 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2812 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2813 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2814 	    B_TRUE : B_FALSE;
2815 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2816 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2817 	nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2818 	    DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2819 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2820 	    DDI_PROP_DONTPASS, "async-event-limit",
2821 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2822 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2823 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2824 	    B_TRUE : B_FALSE;
2825 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2826 	    DDI_PROP_DONTPASS, "min-phys-block-size",
2827 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
2828 
2829 	if (!ISP2(nvme->n_min_block_size) ||
2830 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2831 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2832 		    "using default %d", ISP2(nvme->n_min_block_size) ?
2833 		    "too low" : "not a power of 2",
2834 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
2835 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2836 	}
2837 
2838 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2839 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2840 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2841 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2842 
2843 	if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2844 		nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2845 
2846 	if (nvme->n_async_event_limit < 1)
2847 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2848 
2849 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2850 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2851 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2852 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2853 
2854 	/*
2855 	 * Setup FMA support.
2856 	 */
2857 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2858 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2859 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2860 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2861 
2862 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2863 
2864 	if (nvme->n_fm_cap) {
2865 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2866 			nvme->n_reg_acc_attr.devacc_attr_access =
2867 			    DDI_FLAGERR_ACC;
2868 
2869 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2870 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2871 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2872 		}
2873 
2874 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2875 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2876 			pci_ereport_setup(dip);
2877 
2878 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2879 			ddi_fm_handler_register(dip, nvme_fm_errcb,
2880 			    (void *)nvme);
2881 	}
2882 
2883 	nvme->n_progress |= NVME_FMA_INIT;
2884 
2885 	/*
2886 	 * The spec defines several register sets. Only the controller
2887 	 * registers (set 1) are currently used.
2888 	 */
2889 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2890 	    nregs < 2 ||
2891 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2892 		goto fail;
2893 
2894 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2895 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2896 		dev_err(dip, CE_WARN, "!failed to map regset 1");
2897 		goto fail;
2898 	}
2899 
2900 	nvme->n_progress |= NVME_REGS_MAPPED;
2901 
2902 	/*
2903 	 * Create taskq for command completion.
2904 	 */
2905 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2906 	    ddi_driver_name(dip), ddi_get_instance(dip));
2907 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2908 	    TASKQ_DEFAULTPRI, 0);
2909 	if (nvme->n_cmd_taskq == NULL) {
2910 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2911 		goto fail;
2912 	}
2913 
2914 	/*
2915 	 * Create PRP DMA cache
2916 	 */
2917 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2918 	    ddi_driver_name(dip), ddi_get_instance(dip));
2919 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2920 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2921 	    NULL, (void *)nvme, NULL, 0);
2922 
2923 	if (nvme_init(nvme) != DDI_SUCCESS)
2924 		goto fail;
2925 
2926 	/*
2927 	 * Attach the blkdev driver for each namespace.
2928 	 */
2929 	for (i = 0; i != nvme->n_namespace_count; i++) {
2930 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2931 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2932 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2933 			dev_err(dip, CE_WARN,
2934 			    "!failed to create minor node for namespace %d", i);
2935 			goto fail;
2936 		}
2937 
2938 		if (nvme->n_ns[i].ns_ignore)
2939 			continue;
2940 
2941 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2942 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2943 
2944 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2945 			dev_err(dip, CE_WARN,
2946 			    "!failed to get blkdev handle for namespace %d", i);
2947 			goto fail;
2948 		}
2949 
2950 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2951 		    != DDI_SUCCESS) {
2952 			dev_err(dip, CE_WARN,
2953 			    "!failed to attach blkdev handle for namespace %d",
2954 			    i);
2955 			goto fail;
2956 		}
2957 	}
2958 
2959 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2960 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2961 	    != DDI_SUCCESS) {
2962 		dev_err(dip, CE_WARN, "nvme_attach: "
2963 		    "cannot create devctl minor node");
2964 		goto fail;
2965 	}
2966 
2967 	return (DDI_SUCCESS);
2968 
2969 fail:
2970 	/* attach successful anyway so that FMA can retire the device */
2971 	if (nvme->n_dead)
2972 		return (DDI_SUCCESS);
2973 
2974 	(void) nvme_detach(dip, DDI_DETACH);
2975 
2976 	return (DDI_FAILURE);
2977 }
2978 
2979 static int
2980 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2981 {
2982 	int instance, i;
2983 	nvme_t *nvme;
2984 
2985 	if (cmd != DDI_DETACH)
2986 		return (DDI_FAILURE);
2987 
2988 	instance = ddi_get_instance(dip);
2989 
2990 	nvme = ddi_get_soft_state(nvme_state, instance);
2991 
2992 	if (nvme == NULL)
2993 		return (DDI_FAILURE);
2994 
2995 	ddi_remove_minor_node(dip, "devctl");
2996 	mutex_destroy(&nvme->n_minor.nm_mutex);
2997 
2998 	if (nvme->n_ns) {
2999 		for (i = 0; i != nvme->n_namespace_count; i++) {
3000 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3001 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3002 
3003 			if (nvme->n_ns[i].ns_bd_hdl) {
3004 				(void) bd_detach_handle(
3005 				    nvme->n_ns[i].ns_bd_hdl);
3006 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3007 			}
3008 
3009 			if (nvme->n_ns[i].ns_idns)
3010 				kmem_free(nvme->n_ns[i].ns_idns,
3011 				    sizeof (nvme_identify_nsid_t));
3012 			if (nvme->n_ns[i].ns_devid)
3013 				strfree(nvme->n_ns[i].ns_devid);
3014 		}
3015 
3016 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3017 		    nvme->n_namespace_count);
3018 	}
3019 
3020 	if (nvme->n_progress & NVME_INTERRUPTS)
3021 		nvme_release_interrupts(nvme);
3022 
3023 	if (nvme->n_cmd_taskq)
3024 		ddi_taskq_wait(nvme->n_cmd_taskq);
3025 
3026 	if (nvme->n_ioq_count > 0) {
3027 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3028 			if (nvme->n_ioq[i] != NULL) {
3029 				/* TODO: send destroy queue commands */
3030 				nvme_free_qpair(nvme->n_ioq[i]);
3031 			}
3032 		}
3033 
3034 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3035 		    (nvme->n_ioq_count + 1));
3036 	}
3037 
3038 	if (nvme->n_prp_cache != NULL) {
3039 		kmem_cache_destroy(nvme->n_prp_cache);
3040 	}
3041 
3042 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3043 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3044 		(void) nvme_reset(nvme, B_FALSE);
3045 	}
3046 
3047 	if (nvme->n_cmd_taskq)
3048 		ddi_taskq_destroy(nvme->n_cmd_taskq);
3049 
3050 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3051 		sema_destroy(&nvme->n_abort_sema);
3052 
3053 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3054 		nvme_free_qpair(nvme->n_adminq);
3055 
3056 	if (nvme->n_idctl)
3057 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3058 
3059 	if (nvme->n_progress & NVME_REGS_MAPPED)
3060 		ddi_regs_map_free(&nvme->n_regh);
3061 
3062 	if (nvme->n_progress & NVME_FMA_INIT) {
3063 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3064 			ddi_fm_handler_unregister(nvme->n_dip);
3065 
3066 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3067 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3068 			pci_ereport_teardown(nvme->n_dip);
3069 
3070 		ddi_fm_fini(nvme->n_dip);
3071 	}
3072 
3073 	if (nvme->n_vendor != NULL)
3074 		strfree(nvme->n_vendor);
3075 
3076 	if (nvme->n_product != NULL)
3077 		strfree(nvme->n_product);
3078 
3079 	ddi_soft_state_free(nvme_state, instance);
3080 
3081 	return (DDI_SUCCESS);
3082 }
3083 
3084 static int
3085 nvme_quiesce(dev_info_t *dip)
3086 {
3087 	int instance;
3088 	nvme_t *nvme;
3089 
3090 	instance = ddi_get_instance(dip);
3091 
3092 	nvme = ddi_get_soft_state(nvme_state, instance);
3093 
3094 	if (nvme == NULL)
3095 		return (DDI_FAILURE);
3096 
3097 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3098 
3099 	(void) nvme_reset(nvme, B_TRUE);
3100 
3101 	return (DDI_FAILURE);
3102 }
3103 
3104 static int
3105 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3106 {
3107 	nvme_t *nvme = cmd->nc_nvme;
3108 	int nprp_page, nprp;
3109 	uint64_t *prp;
3110 
3111 	if (xfer->x_ndmac == 0)
3112 		return (DDI_FAILURE);
3113 
3114 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3115 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3116 
3117 	if (xfer->x_ndmac == 1) {
3118 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3119 		return (DDI_SUCCESS);
3120 	} else if (xfer->x_ndmac == 2) {
3121 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3122 		return (DDI_SUCCESS);
3123 	}
3124 
3125 	xfer->x_ndmac--;
3126 
3127 	nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3128 	ASSERT(nprp_page > 0);
3129 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3130 
3131 	/*
3132 	 * We currently don't support chained PRPs and set up our DMA
3133 	 * attributes to reflect that. If we still get an I/O request
3134 	 * that needs a chained PRP something is very wrong.
3135 	 */
3136 	VERIFY(nprp == 1);
3137 
3138 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3139 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3140 
3141 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3142 
3143 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3144 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3145 	    xfer->x_ndmac > 0;
3146 	    prp++, xfer->x_ndmac--) {
3147 		*prp = xfer->x_dmac.dmac_laddress;
3148 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3149 	}
3150 
3151 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3152 	    DDI_DMA_SYNC_FORDEV);
3153 	return (DDI_SUCCESS);
3154 }
3155 
3156 static nvme_cmd_t *
3157 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3158 {
3159 	nvme_t *nvme = ns->ns_nvme;
3160 	nvme_cmd_t *cmd;
3161 
3162 	/*
3163 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3164 	 */
3165 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3166 	    KM_NOSLEEP : KM_SLEEP);
3167 
3168 	if (cmd == NULL)
3169 		return (NULL);
3170 
3171 	cmd->nc_sqe.sqe_opc = opc;
3172 	cmd->nc_callback = nvme_bd_xfer_done;
3173 	cmd->nc_xfer = xfer;
3174 
3175 	switch (opc) {
3176 	case NVME_OPC_NVM_WRITE:
3177 	case NVME_OPC_NVM_READ:
3178 		VERIFY(xfer->x_nblks <= 0x10000);
3179 
3180 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3181 
3182 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3183 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3184 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3185 
3186 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3187 			goto fail;
3188 		break;
3189 
3190 	case NVME_OPC_NVM_FLUSH:
3191 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3192 		break;
3193 
3194 	default:
3195 		goto fail;
3196 	}
3197 
3198 	return (cmd);
3199 
3200 fail:
3201 	nvme_free_cmd(cmd);
3202 	return (NULL);
3203 }
3204 
3205 static void
3206 nvme_bd_xfer_done(void *arg)
3207 {
3208 	nvme_cmd_t *cmd = arg;
3209 	bd_xfer_t *xfer = cmd->nc_xfer;
3210 	int error = 0;
3211 
3212 	error = nvme_check_cmd_status(cmd);
3213 	nvme_free_cmd(cmd);
3214 
3215 	bd_xfer_done(xfer, error);
3216 }
3217 
3218 static void
3219 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3220 {
3221 	nvme_namespace_t *ns = arg;
3222 	nvme_t *nvme = ns->ns_nvme;
3223 
3224 	/*
3225 	 * blkdev maintains one queue size per instance (namespace),
3226 	 * but all namespace share the I/O queues.
3227 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3228 	 * or change blkdev to handle EAGAIN
3229 	 */
3230 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3231 	    / nvme->n_namespace_count;
3232 
3233 	/*
3234 	 * d_maxxfer is not set, which means the value is taken from the DMA
3235 	 * attributes specified to bd_alloc_handle.
3236 	 */
3237 
3238 	drive->d_removable = B_FALSE;
3239 	drive->d_hotpluggable = B_FALSE;
3240 
3241 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3242 	drive->d_target = ns->ns_id;
3243 	drive->d_lun = 0;
3244 
3245 	drive->d_model = nvme->n_idctl->id_model;
3246 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3247 	drive->d_vendor = nvme->n_vendor;
3248 	drive->d_vendor_len = strlen(nvme->n_vendor);
3249 	drive->d_product = nvme->n_product;
3250 	drive->d_product_len = strlen(nvme->n_product);
3251 	drive->d_serial = nvme->n_idctl->id_serial;
3252 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3253 	drive->d_revision = nvme->n_idctl->id_fwrev;
3254 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3255 }
3256 
3257 static int
3258 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3259 {
3260 	nvme_namespace_t *ns = arg;
3261 
3262 	media->m_nblks = ns->ns_block_count;
3263 	media->m_blksize = ns->ns_block_size;
3264 	media->m_readonly = B_FALSE;
3265 	media->m_solidstate = B_TRUE;
3266 
3267 	media->m_pblksize = ns->ns_best_block_size;
3268 
3269 	return (0);
3270 }
3271 
3272 static int
3273 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3274 {
3275 	nvme_t *nvme = ns->ns_nvme;
3276 	nvme_cmd_t *cmd;
3277 	nvme_qpair_t *ioq;
3278 	boolean_t poll;
3279 	int ret;
3280 
3281 	if (nvme->n_dead)
3282 		return (EIO);
3283 
3284 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3285 	if (cmd == NULL)
3286 		return (ENOMEM);
3287 
3288 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3289 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3290 	ioq = nvme->n_ioq[cmd->nc_sqid];
3291 
3292 	/*
3293 	 * Get the polling flag before submitting the command. The command may
3294 	 * complete immediately after it was submitted, which means we must
3295 	 * treat both cmd and xfer as if they have been freed already.
3296 	 */
3297 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3298 
3299 	ret = nvme_submit_io_cmd(ioq, cmd);
3300 
3301 	if (ret != 0)
3302 		return (ret);
3303 
3304 	if (!poll)
3305 		return (0);
3306 
3307 	do {
3308 		cmd = nvme_retrieve_cmd(nvme, ioq);
3309 		if (cmd != NULL)
3310 			nvme_bd_xfer_done(cmd);
3311 		else
3312 			drv_usecwait(10);
3313 	} while (ioq->nq_active_cmds != 0);
3314 
3315 	return (0);
3316 }
3317 
3318 static int
3319 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3320 {
3321 	nvme_namespace_t *ns = arg;
3322 
3323 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3324 }
3325 
3326 static int
3327 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3328 {
3329 	nvme_namespace_t *ns = arg;
3330 
3331 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3332 }
3333 
3334 static int
3335 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3336 {
3337 	nvme_namespace_t *ns = arg;
3338 
3339 	if (ns->ns_nvme->n_dead)
3340 		return (EIO);
3341 
3342 	/*
3343 	 * If the volatile write cache is not present or not enabled the FLUSH
3344 	 * command is a no-op, so we can take a shortcut here.
3345 	 */
3346 	if (!ns->ns_nvme->n_write_cache_present) {
3347 		bd_xfer_done(xfer, ENOTSUP);
3348 		return (0);
3349 	}
3350 
3351 	if (!ns->ns_nvme->n_write_cache_enabled) {
3352 		bd_xfer_done(xfer, 0);
3353 		return (0);
3354 	}
3355 
3356 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3357 }
3358 
3359 static int
3360 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3361 {
3362 	nvme_namespace_t *ns = arg;
3363 
3364 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3365 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3366 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3367 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3368 	} else {
3369 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3370 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3371 	}
3372 }
3373 
3374 static int
3375 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3376 {
3377 #ifndef __lock_lint
3378 	_NOTE(ARGUNUSED(cred_p));
3379 #endif
3380 	minor_t minor = getminor(*devp);
3381 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3382 	int nsid = NVME_MINOR_NSID(minor);
3383 	nvme_minor_state_t *nm;
3384 	int rv = 0;
3385 
3386 	if (otyp != OTYP_CHR)
3387 		return (EINVAL);
3388 
3389 	if (nvme == NULL)
3390 		return (ENXIO);
3391 
3392 	if (nsid > nvme->n_namespace_count)
3393 		return (ENXIO);
3394 
3395 	if (nvme->n_dead)
3396 		return (EIO);
3397 
3398 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3399 
3400 	mutex_enter(&nm->nm_mutex);
3401 	if (nm->nm_oexcl) {
3402 		rv = EBUSY;
3403 		goto out;
3404 	}
3405 
3406 	if (flag & FEXCL) {
3407 		if (nm->nm_ocnt != 0) {
3408 			rv = EBUSY;
3409 			goto out;
3410 		}
3411 		nm->nm_oexcl = B_TRUE;
3412 	}
3413 
3414 	nm->nm_ocnt++;
3415 
3416 out:
3417 	mutex_exit(&nm->nm_mutex);
3418 	return (rv);
3419 
3420 }
3421 
3422 static int
3423 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3424 {
3425 #ifndef __lock_lint
3426 	_NOTE(ARGUNUSED(cred_p));
3427 	_NOTE(ARGUNUSED(flag));
3428 #endif
3429 	minor_t minor = getminor(dev);
3430 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3431 	int nsid = NVME_MINOR_NSID(minor);
3432 	nvme_minor_state_t *nm;
3433 
3434 	if (otyp != OTYP_CHR)
3435 		return (ENXIO);
3436 
3437 	if (nvme == NULL)
3438 		return (ENXIO);
3439 
3440 	if (nsid > nvme->n_namespace_count)
3441 		return (ENXIO);
3442 
3443 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3444 
3445 	mutex_enter(&nm->nm_mutex);
3446 	if (nm->nm_oexcl)
3447 		nm->nm_oexcl = B_FALSE;
3448 
3449 	ASSERT(nm->nm_ocnt > 0);
3450 	nm->nm_ocnt--;
3451 	mutex_exit(&nm->nm_mutex);
3452 
3453 	return (0);
3454 }
3455 
3456 static int
3457 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3458     cred_t *cred_p)
3459 {
3460 	_NOTE(ARGUNUSED(cred_p));
3461 	int rv = 0;
3462 	void *idctl;
3463 
3464 	if ((mode & FREAD) == 0)
3465 		return (EPERM);
3466 
3467 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3468 		return (EINVAL);
3469 
3470 	if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3471 		return (rv);
3472 
3473 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3474 	    != 0)
3475 		rv = EFAULT;
3476 
3477 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3478 
3479 	return (rv);
3480 }
3481 
3482 static int
3483 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3484     int mode, cred_t *cred_p)
3485 {
3486 	_NOTE(ARGUNUSED(nsid, cred_p));
3487 	int rv = 0;
3488 	nvme_reg_cap_t cap = { 0 };
3489 	nvme_capabilities_t nc;
3490 
3491 	if ((mode & FREAD) == 0)
3492 		return (EPERM);
3493 
3494 	if (nioc->n_len < sizeof (nc))
3495 		return (EINVAL);
3496 
3497 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
3498 
3499 	/*
3500 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3501 	 * specify the base page size of 4k (1<<12), so add 12 here to
3502 	 * get the real page size value.
3503 	 */
3504 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3505 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3506 
3507 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3508 		rv = EFAULT;
3509 
3510 	return (rv);
3511 }
3512 
3513 static int
3514 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3515     int mode, cred_t *cred_p)
3516 {
3517 	_NOTE(ARGUNUSED(cred_p));
3518 	void *log = NULL;
3519 	size_t bufsize = 0;
3520 	int rv = 0;
3521 
3522 	if ((mode & FREAD) == 0)
3523 		return (EPERM);
3524 
3525 	switch (nioc->n_arg) {
3526 	case NVME_LOGPAGE_ERROR:
3527 		if (nsid != 0)
3528 			return (EINVAL);
3529 		break;
3530 	case NVME_LOGPAGE_HEALTH:
3531 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3532 			return (EINVAL);
3533 
3534 		if (nsid == 0)
3535 			nsid = (uint32_t)-1;
3536 
3537 		break;
3538 	case NVME_LOGPAGE_FWSLOT:
3539 		if (nsid != 0)
3540 			return (EINVAL);
3541 		break;
3542 	default:
3543 		return (EINVAL);
3544 	}
3545 
3546 	if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3547 	    != DDI_SUCCESS)
3548 		return (EIO);
3549 
3550 	if (nioc->n_len < bufsize) {
3551 		kmem_free(log, bufsize);
3552 		return (EINVAL);
3553 	}
3554 
3555 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3556 		rv = EFAULT;
3557 
3558 	nioc->n_len = bufsize;
3559 	kmem_free(log, bufsize);
3560 
3561 	return (rv);
3562 }
3563 
3564 static int
3565 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3566     int mode, cred_t *cred_p)
3567 {
3568 	_NOTE(ARGUNUSED(cred_p));
3569 	void *buf = NULL;
3570 	size_t bufsize = 0;
3571 	uint32_t res = 0;
3572 	uint8_t feature;
3573 	int rv = 0;
3574 
3575 	if ((mode & FREAD) == 0)
3576 		return (EPERM);
3577 
3578 	if ((nioc->n_arg >> 32) > 0xff)
3579 		return (EINVAL);
3580 
3581 	feature = (uint8_t)(nioc->n_arg >> 32);
3582 
3583 	switch (feature) {
3584 	case NVME_FEAT_ARBITRATION:
3585 	case NVME_FEAT_POWER_MGMT:
3586 	case NVME_FEAT_TEMPERATURE:
3587 	case NVME_FEAT_ERROR:
3588 	case NVME_FEAT_NQUEUES:
3589 	case NVME_FEAT_INTR_COAL:
3590 	case NVME_FEAT_WRITE_ATOM:
3591 	case NVME_FEAT_ASYNC_EVENT:
3592 	case NVME_FEAT_PROGRESS:
3593 		if (nsid != 0)
3594 			return (EINVAL);
3595 		break;
3596 
3597 	case NVME_FEAT_INTR_VECT:
3598 		if (nsid != 0)
3599 			return (EINVAL);
3600 
3601 		res = nioc->n_arg & 0xffffffffUL;
3602 		if (res >= nvme->n_intr_cnt)
3603 			return (EINVAL);
3604 		break;
3605 
3606 	case NVME_FEAT_LBA_RANGE:
3607 		if (nvme->n_lba_range_supported == B_FALSE)
3608 			return (EINVAL);
3609 
3610 		if (nsid == 0 ||
3611 		    nsid > nvme->n_namespace_count)
3612 			return (EINVAL);
3613 
3614 		break;
3615 
3616 	case NVME_FEAT_WRITE_CACHE:
3617 		if (nsid != 0)
3618 			return (EINVAL);
3619 
3620 		if (!nvme->n_write_cache_present)
3621 			return (EINVAL);
3622 
3623 		break;
3624 
3625 	case NVME_FEAT_AUTO_PST:
3626 		if (nsid != 0)
3627 			return (EINVAL);
3628 
3629 		if (!nvme->n_auto_pst_supported)
3630 			return (EINVAL);
3631 
3632 		break;
3633 
3634 	default:
3635 		return (EINVAL);
3636 	}
3637 
3638 	rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3639 	if (rv != 0)
3640 		return (rv);
3641 
3642 	if (nioc->n_len < bufsize) {
3643 		kmem_free(buf, bufsize);
3644 		return (EINVAL);
3645 	}
3646 
3647 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3648 		rv = EFAULT;
3649 
3650 	kmem_free(buf, bufsize);
3651 	nioc->n_arg = res;
3652 	nioc->n_len = bufsize;
3653 
3654 	return (rv);
3655 }
3656 
3657 static int
3658 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3659     cred_t *cred_p)
3660 {
3661 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
3662 
3663 	if ((mode & FREAD) == 0)
3664 		return (EPERM);
3665 
3666 	nioc->n_arg = nvme->n_intr_cnt;
3667 	return (0);
3668 }
3669 
3670 static int
3671 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3672     cred_t *cred_p)
3673 {
3674 	_NOTE(ARGUNUSED(nsid, cred_p));
3675 	int rv = 0;
3676 
3677 	if ((mode & FREAD) == 0)
3678 		return (EPERM);
3679 
3680 	if (nioc->n_len < sizeof (nvme->n_version))
3681 		return (ENOMEM);
3682 
3683 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3684 	    sizeof (nvme->n_version), mode) != 0)
3685 		rv = EFAULT;
3686 
3687 	return (rv);
3688 }
3689 
3690 static int
3691 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3692     cred_t *cred_p)
3693 {
3694 	_NOTE(ARGUNUSED(mode));
3695 	nvme_format_nvm_t frmt = { 0 };
3696 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
3697 
3698 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3699 		return (EPERM);
3700 
3701 	frmt.r = nioc->n_arg & 0xffffffff;
3702 
3703 	/*
3704 	 * Check whether the FORMAT NVM command is supported.
3705 	 */
3706 	if (nvme->n_idctl->id_oacs.oa_format == 0)
3707 		return (EINVAL);
3708 
3709 	/*
3710 	 * Don't allow format or secure erase of individual namespace if that
3711 	 * would cause a format or secure erase of all namespaces.
3712 	 */
3713 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3714 		return (EINVAL);
3715 
3716 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3717 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
3718 		return (EINVAL);
3719 
3720 	/*
3721 	 * Don't allow formatting with Protection Information.
3722 	 */
3723 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3724 		return (EINVAL);
3725 
3726 	/*
3727 	 * Don't allow formatting using an illegal LBA format, or any LBA format
3728 	 * that uses metadata.
3729 	 */
3730 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3731 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3732 		return (EINVAL);
3733 
3734 	/*
3735 	 * Don't allow formatting using an illegal Secure Erase setting.
3736 	 */
3737 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3738 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3739 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3740 		return (EINVAL);
3741 
3742 	if (nsid == 0)
3743 		nsid = (uint32_t)-1;
3744 
3745 	return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3746 	    frmt.b.fm_ses));
3747 }
3748 
3749 static int
3750 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3751     cred_t *cred_p)
3752 {
3753 	_NOTE(ARGUNUSED(nioc, mode));
3754 	int rv = 0;
3755 
3756 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3757 		return (EPERM);
3758 
3759 	if (nsid == 0)
3760 		return (EINVAL);
3761 
3762 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3763 	if (rv != DDI_SUCCESS)
3764 		rv = EBUSY;
3765 
3766 	return (rv);
3767 }
3768 
3769 static int
3770 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3771     cred_t *cred_p)
3772 {
3773 	_NOTE(ARGUNUSED(nioc, mode));
3774 	nvme_identify_nsid_t *idns;
3775 	int rv = 0;
3776 
3777 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3778 		return (EPERM);
3779 
3780 	if (nsid == 0)
3781 		return (EINVAL);
3782 
3783 	/*
3784 	 * Identify namespace again, free old identify data.
3785 	 */
3786 	idns = nvme->n_ns[nsid - 1].ns_idns;
3787 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3788 		return (EIO);
3789 
3790 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
3791 
3792 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3793 	if (rv != DDI_SUCCESS)
3794 		rv = EBUSY;
3795 
3796 	return (rv);
3797 }
3798 
3799 static int
3800 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3801     int *rval_p)
3802 {
3803 #ifndef __lock_lint
3804 	_NOTE(ARGUNUSED(rval_p));
3805 #endif
3806 	minor_t minor = getminor(dev);
3807 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3808 	int nsid = NVME_MINOR_NSID(minor);
3809 	int rv = 0;
3810 	nvme_ioctl_t nioc;
3811 
3812 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3813 		NULL,
3814 		nvme_ioctl_identify,
3815 		nvme_ioctl_identify,
3816 		nvme_ioctl_capabilities,
3817 		nvme_ioctl_get_logpage,
3818 		nvme_ioctl_get_features,
3819 		nvme_ioctl_intr_cnt,
3820 		nvme_ioctl_version,
3821 		nvme_ioctl_format,
3822 		nvme_ioctl_detach,
3823 		nvme_ioctl_attach
3824 	};
3825 
3826 	if (nvme == NULL)
3827 		return (ENXIO);
3828 
3829 	if (nsid > nvme->n_namespace_count)
3830 		return (ENXIO);
3831 
3832 	if (IS_DEVCTL(cmd))
3833 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3834 
3835 #ifdef _MULTI_DATAMODEL
3836 	switch (ddi_model_convert_from(mode & FMODELS)) {
3837 	case DDI_MODEL_ILP32: {
3838 		nvme_ioctl32_t nioc32;
3839 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3840 		    mode) != 0)
3841 			return (EFAULT);
3842 		nioc.n_len = nioc32.n_len;
3843 		nioc.n_buf = nioc32.n_buf;
3844 		nioc.n_arg = nioc32.n_arg;
3845 		break;
3846 	}
3847 	case DDI_MODEL_NONE:
3848 #endif
3849 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3850 		    != 0)
3851 			return (EFAULT);
3852 #ifdef _MULTI_DATAMODEL
3853 		break;
3854 	}
3855 #endif
3856 
3857 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3858 		return (EIO);
3859 
3860 
3861 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3862 		/*
3863 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3864 		 * attachment point nodes.
3865 		 */
3866 		nsid = 0;
3867 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3868 		/*
3869 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3870 		 * will always return identify data for namespace 1.
3871 		 */
3872 		nsid = 1;
3873 	}
3874 
3875 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3876 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3877 		    cred_p);
3878 	else
3879 		rv = EINVAL;
3880 
3881 #ifdef _MULTI_DATAMODEL
3882 	switch (ddi_model_convert_from(mode & FMODELS)) {
3883 	case DDI_MODEL_ILP32: {
3884 		nvme_ioctl32_t nioc32;
3885 
3886 		nioc32.n_len = (size32_t)nioc.n_len;
3887 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3888 		nioc32.n_arg = nioc.n_arg;
3889 
3890 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3891 		    mode) != 0)
3892 			return (EFAULT);
3893 		break;
3894 	}
3895 	case DDI_MODEL_NONE:
3896 #endif
3897 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3898 		    != 0)
3899 			return (EFAULT);
3900 #ifdef _MULTI_DATAMODEL
3901 		break;
3902 	}
3903 #endif
3904 
3905 	return (rv);
3906 }
3907