1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 14 * Copyright 2016 Tegile Systems, Inc. All rights reserved. 15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. 16 * Copyright 2017 Joyent, Inc. 17 */ 18 19 /* 20 * blkdev driver for NVMe compliant storage devices 21 * 22 * This driver was written to conform to version 1.2.1 of the NVMe 23 * specification. It may work with newer versions, but that is completely 24 * untested and disabled by default. 25 * 26 * The driver has only been tested on x86 systems and will not work on big- 27 * endian systems without changes to the code accessing registers and data 28 * structures used by the hardware. 29 * 30 * 31 * Interrupt Usage: 32 * 33 * The driver will use a single interrupt while configuring the device as the 34 * specification requires, but contrary to the specification it will try to use 35 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it 36 * will switch to multiple-message MSI(-X) if supported. The driver wants to 37 * have one interrupt vector per CPU, but it will work correctly if less are 38 * available. Interrupts can be shared by queues, the interrupt handler will 39 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only 40 * the admin queue will share an interrupt with one I/O queue. The interrupt 41 * handler will retrieve completed commands from all queues sharing an interrupt 42 * vector and will post them to a taskq for completion processing. 43 * 44 * 45 * Command Processing: 46 * 47 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up 48 * to 65536 I/O commands. The driver will configure one I/O queue pair per 49 * available interrupt vector, with the queue length usually much smaller than 50 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer 51 * interrupt vectors will be used. 52 * 53 * Additionally the hardware provides a single special admin queue pair that can 54 * hold up to 4096 admin commands. 55 * 56 * From the hardware perspective both queues of a queue pair are independent, 57 * but they share some driver state: the command array (holding pointers to 58 * commands currently being processed by the hardware) and the active command 59 * counter. Access to a queue pair and the shared state is protected by 60 * nq_mutex. 61 * 62 * When a command is submitted to a queue pair the active command counter is 63 * incremented and a pointer to the command is stored in the command array. The 64 * array index is used as command identifier (CID) in the submission queue 65 * entry. Some commands may take a very long time to complete, and if the queue 66 * wraps around in that time a submission may find the next array slot to still 67 * be used by a long-running command. In this case the array is sequentially 68 * searched for the next free slot. The length of the command array is the same 69 * as the configured queue length. Queue overrun is prevented by the semaphore, 70 * so a command submission may block if the queue is full. 71 * 72 * 73 * Polled I/O Support: 74 * 75 * For kernel core dump support the driver can do polled I/O. As interrupts are 76 * turned off while dumping the driver will just submit a command in the regular 77 * way, and then repeatedly attempt a command retrieval until it gets the 78 * command back. 79 * 80 * 81 * Namespace Support: 82 * 83 * NVMe devices can have multiple namespaces, each being a independent data 84 * store. The driver supports multiple namespaces and creates a blkdev interface 85 * for each namespace found. Namespaces can have various attributes to support 86 * thin provisioning and protection information. This driver does not support 87 * any of this and ignores namespaces that have these attributes. 88 * 89 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier 90 * (EUI64). This driver uses the EUI64 if present to generate the devid and 91 * passes it to blkdev to use it in the device node names. As this is currently 92 * untested namespaces with EUI64 are ignored by default. 93 * 94 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a 95 * single controller. This is an artificial limit imposed by the driver to be 96 * able to address a reasonable number of controllers and namespaces using a 97 * 32bit minor node number. 98 * 99 * 100 * Minor nodes: 101 * 102 * For each NVMe device the driver exposes one minor node for the controller and 103 * one minor node for each namespace. The only operations supported by those 104 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the 105 * interface for the nvmeadm(1M) utility. 106 * 107 * 108 * Blkdev Interface: 109 * 110 * This driver uses blkdev to do all the heavy lifting involved with presenting 111 * a disk device to the system. As a result, the processing of I/O requests is 112 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA 113 * setup, and splitting of transfers into manageable chunks. 114 * 115 * I/O requests coming in from blkdev are turned into NVM commands and posted to 116 * an I/O queue. The queue is selected by taking the CPU id modulo the number of 117 * queues. There is currently no timeout handling of I/O commands. 118 * 119 * Blkdev also supports querying device/media information and generating a 120 * devid. The driver reports the best block size as determined by the namespace 121 * format back to blkdev as physical block size to support partition and block 122 * alignment. The devid is either based on the namespace EUI64, if present, or 123 * composed using the device vendor ID, model number, serial number, and the 124 * namespace ID. 125 * 126 * 127 * Error Handling: 128 * 129 * Error handling is currently limited to detecting fatal hardware errors, 130 * either by asynchronous events, or synchronously through command status or 131 * admin command timeouts. In case of severe errors the device is fenced off, 132 * all further requests will return EIO. FMA is then called to fault the device. 133 * 134 * The hardware has a limit for outstanding asynchronous event requests. Before 135 * this limit is known the driver assumes it is at least 1 and posts a single 136 * asynchronous request. Later when the limit is known more asynchronous event 137 * requests are posted to allow quicker reception of error information. When an 138 * asynchronous event is posted by the hardware the driver will parse the error 139 * status fields and log information or fault the device, depending on the 140 * severity of the asynchronous event. The asynchronous event request is then 141 * reused and posted to the admin queue again. 142 * 143 * On command completion the command status is checked for errors. In case of 144 * errors indicating a driver bug the driver panics. Almost all other error 145 * status values just cause EIO to be returned. 146 * 147 * Command timeouts are currently detected for all admin commands except 148 * asynchronous event requests. If a command times out and the hardware appears 149 * to be healthy the driver attempts to abort the command. The original command 150 * timeout is also applied to the abort command. If the abort times out too the 151 * driver assumes the device to be dead, fences it off, and calls FMA to retire 152 * it. In all other cases the aborted command should return immediately with a 153 * status indicating it was aborted, and the driver will wait indefinitely for 154 * that to happen. No timeout handling of normal I/O commands is presently done. 155 * 156 * Any command that times out due to the controller dropping dead will be put on 157 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA 158 * memory being reused by the system and later be written to by a "dead" NVMe 159 * controller. 160 * 161 * 162 * Locking: 163 * 164 * Each queue pair has its own nq_mutex, which must be held when accessing the 165 * associated queue registers or the shared state of the queue pair. Callers of 166 * nvme_unqueue_cmd() must make sure that nq_mutex is held, while 167 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this 168 * themselves. 169 * 170 * Each command also has its own nc_mutex, which is associated with the 171 * condition variable nc_cv. It is only used on admin commands which are run 172 * synchronously. In that case it must be held across calls to 173 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by 174 * nvme_admin_cmd(). It must also be held whenever the completion state of the 175 * command is changed or while a admin command timeout is handled. 176 * 177 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first. 178 * More than one nc_mutex may only be held when aborting commands. In this case, 179 * the nc_mutex of the command to be aborted must be held across the call to 180 * nvme_abort_cmd() to prevent the command from completing while the abort is in 181 * progress. 182 * 183 * Each minor node has its own nm_mutex, which protects the open count nm_ocnt 184 * and exclusive-open flag nm_oexcl. 185 * 186 * 187 * Quiesce / Fast Reboot: 188 * 189 * The driver currently does not support fast reboot. A quiesce(9E) entry point 190 * is still provided which is used to send a shutdown notification to the 191 * device. 192 * 193 * 194 * Driver Configuration: 195 * 196 * The following driver properties can be changed to control some aspects of the 197 * drivers operation: 198 * - strict-version: can be set to 0 to allow devices conforming to newer 199 * versions or namespaces with EUI64 to be used 200 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor 201 * specific command status as a fatal error leading device faulting 202 * - admin-queue-len: the maximum length of the admin queue (16-4096) 203 * - io-queue-len: the maximum length of the I/O queues (16-65536) 204 * - async-event-limit: the maximum number of asynchronous event requests to be 205 * posted by the driver 206 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write 207 * cache 208 * - min-phys-block-size: the minimum physical block size to report to blkdev, 209 * which is among other things the basis for ZFS vdev ashift 210 * 211 * 212 * TODO: 213 * - figure out sane default for I/O queue depth reported to blkdev 214 * - FMA handling of media errors 215 * - support for devices supporting very large I/O requests using chained PRPs 216 * - support for configuring hardware parameters like interrupt coalescing 217 * - support for media formatting and hard partitioning into namespaces 218 * - support for big-endian systems 219 * - support for fast reboot 220 * - support for firmware updates 221 * - support for NVMe Subsystem Reset (1.1) 222 * - support for Scatter/Gather lists (1.1) 223 * - support for Reservations (1.1) 224 * - support for power management 225 */ 226 227 #include <sys/byteorder.h> 228 #ifdef _BIG_ENDIAN 229 #error nvme driver needs porting for big-endian platforms 230 #endif 231 232 #include <sys/modctl.h> 233 #include <sys/conf.h> 234 #include <sys/devops.h> 235 #include <sys/ddi.h> 236 #include <sys/sunddi.h> 237 #include <sys/sunndi.h> 238 #include <sys/bitmap.h> 239 #include <sys/sysmacros.h> 240 #include <sys/param.h> 241 #include <sys/varargs.h> 242 #include <sys/cpuvar.h> 243 #include <sys/disp.h> 244 #include <sys/blkdev.h> 245 #include <sys/atomic.h> 246 #include <sys/archsystm.h> 247 #include <sys/sata/sata_hba.h> 248 #include <sys/stat.h> 249 #include <sys/policy.h> 250 #include <sys/list.h> 251 252 #include <sys/nvme.h> 253 254 #ifdef __x86 255 #include <sys/x86_archext.h> 256 #endif 257 258 #include "nvme_reg.h" 259 #include "nvme_var.h" 260 261 262 /* NVMe spec version supported */ 263 static const int nvme_version_major = 1; 264 static const int nvme_version_minor = 2; 265 266 /* tunable for admin command timeout in seconds, default is 1s */ 267 int nvme_admin_cmd_timeout = 1; 268 269 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */ 270 int nvme_format_cmd_timeout = 600; 271 272 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); 273 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); 274 static int nvme_quiesce(dev_info_t *); 275 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); 276 static int nvme_setup_interrupts(nvme_t *, int, int); 277 static void nvme_release_interrupts(nvme_t *); 278 static uint_t nvme_intr(caddr_t, caddr_t); 279 280 static void nvme_shutdown(nvme_t *, int, boolean_t); 281 static boolean_t nvme_reset(nvme_t *, boolean_t); 282 static int nvme_init(nvme_t *); 283 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); 284 static void nvme_free_cmd(nvme_cmd_t *); 285 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, 286 bd_xfer_t *); 287 static void nvme_admin_cmd(nvme_cmd_t *, int); 288 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *); 289 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *); 290 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *); 291 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int); 292 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); 293 static void nvme_wait_cmd(nvme_cmd_t *, uint_t); 294 static void nvme_wakeup_cmd(void *); 295 static void nvme_async_event_task(void *); 296 297 static int nvme_check_unknown_cmd_status(nvme_cmd_t *); 298 static int nvme_check_vendor_cmd_status(nvme_cmd_t *); 299 static int nvme_check_integrity_cmd_status(nvme_cmd_t *); 300 static int nvme_check_specific_cmd_status(nvme_cmd_t *); 301 static int nvme_check_generic_cmd_status(nvme_cmd_t *); 302 static inline int nvme_check_cmd_status(nvme_cmd_t *); 303 304 static int nvme_abort_cmd(nvme_cmd_t *, uint_t); 305 static void nvme_async_event(nvme_t *); 306 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t, 307 boolean_t, uint8_t); 308 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...); 309 static int nvme_identify(nvme_t *, uint32_t, void **); 310 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t, 311 uint32_t *); 312 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *, 313 void **, size_t *); 314 static int nvme_write_cache_set(nvme_t *, boolean_t); 315 static int nvme_set_nqueues(nvme_t *, uint16_t *); 316 317 static void nvme_free_dma(nvme_dma_t *); 318 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, 319 nvme_dma_t **); 320 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, 321 nvme_dma_t **); 322 static void nvme_free_qpair(nvme_qpair_t *); 323 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int); 324 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); 325 326 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); 327 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); 328 static inline uint64_t nvme_get64(nvme_t *, uintptr_t); 329 static inline uint32_t nvme_get32(nvme_t *, uintptr_t); 330 331 static boolean_t nvme_check_regs_hdl(nvme_t *); 332 static boolean_t nvme_check_dma_hdl(nvme_dma_t *); 333 334 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *); 335 336 static void nvme_bd_xfer_done(void *); 337 static void nvme_bd_driveinfo(void *, bd_drive_t *); 338 static int nvme_bd_mediainfo(void *, bd_media_t *); 339 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); 340 static int nvme_bd_read(void *, bd_xfer_t *); 341 static int nvme_bd_write(void *, bd_xfer_t *); 342 static int nvme_bd_sync(void *, bd_xfer_t *); 343 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); 344 345 static int nvme_prp_dma_constructor(void *, void *, int); 346 static void nvme_prp_dma_destructor(void *, void *); 347 348 static void nvme_prepare_devid(nvme_t *, uint32_t); 349 350 static int nvme_open(dev_t *, int, int, cred_t *); 351 static int nvme_close(dev_t, int, int, cred_t *); 352 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 353 354 #define NVME_MINOR_INST_SHIFT 9 355 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid)) 356 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT) 357 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1)) 358 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2) 359 360 static void *nvme_state; 361 static kmem_cache_t *nvme_cmd_cache; 362 363 /* 364 * DMA attributes for queue DMA memory 365 * 366 * Queue DMA memory must be page aligned. The maximum length of a queue is 367 * 65536 entries, and an entry can be 64 bytes long. 368 */ 369 static ddi_dma_attr_t nvme_queue_dma_attr = { 370 .dma_attr_version = DMA_ATTR_V0, 371 .dma_attr_addr_lo = 0, 372 .dma_attr_addr_hi = 0xffffffffffffffffULL, 373 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, 374 .dma_attr_align = 0x1000, 375 .dma_attr_burstsizes = 0x7ff, 376 .dma_attr_minxfer = 0x1000, 377 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 378 .dma_attr_seg = 0xffffffffffffffffULL, 379 .dma_attr_sgllen = 1, 380 .dma_attr_granular = 1, 381 .dma_attr_flags = 0, 382 }; 383 384 /* 385 * DMA attributes for transfers using Physical Region Page (PRP) entries 386 * 387 * A PRP entry describes one page of DMA memory using the page size specified 388 * in the controller configuration's memory page size register (CC.MPS). It uses 389 * a 64bit base address aligned to this page size. There is no limitation on 390 * chaining PRPs together for arbitrarily large DMA transfers. 391 */ 392 static ddi_dma_attr_t nvme_prp_dma_attr = { 393 .dma_attr_version = DMA_ATTR_V0, 394 .dma_attr_addr_lo = 0, 395 .dma_attr_addr_hi = 0xffffffffffffffffULL, 396 .dma_attr_count_max = 0xfff, 397 .dma_attr_align = 0x1000, 398 .dma_attr_burstsizes = 0x7ff, 399 .dma_attr_minxfer = 0x1000, 400 .dma_attr_maxxfer = 0x1000, 401 .dma_attr_seg = 0xfff, 402 .dma_attr_sgllen = -1, 403 .dma_attr_granular = 1, 404 .dma_attr_flags = 0, 405 }; 406 407 /* 408 * DMA attributes for transfers using scatter/gather lists 409 * 410 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a 411 * 32bit length field. SGL Segment and SGL Last Segment entries require the 412 * length to be a multiple of 16 bytes. 413 */ 414 static ddi_dma_attr_t nvme_sgl_dma_attr = { 415 .dma_attr_version = DMA_ATTR_V0, 416 .dma_attr_addr_lo = 0, 417 .dma_attr_addr_hi = 0xffffffffffffffffULL, 418 .dma_attr_count_max = 0xffffffffUL, 419 .dma_attr_align = 1, 420 .dma_attr_burstsizes = 0x7ff, 421 .dma_attr_minxfer = 0x10, 422 .dma_attr_maxxfer = 0xfffffffffULL, 423 .dma_attr_seg = 0xffffffffffffffffULL, 424 .dma_attr_sgllen = -1, 425 .dma_attr_granular = 0x10, 426 .dma_attr_flags = 0 427 }; 428 429 static ddi_device_acc_attr_t nvme_reg_acc_attr = { 430 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 431 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 432 .devacc_attr_dataorder = DDI_STRICTORDER_ACC 433 }; 434 435 static struct cb_ops nvme_cb_ops = { 436 .cb_open = nvme_open, 437 .cb_close = nvme_close, 438 .cb_strategy = nodev, 439 .cb_print = nodev, 440 .cb_dump = nodev, 441 .cb_read = nodev, 442 .cb_write = nodev, 443 .cb_ioctl = nvme_ioctl, 444 .cb_devmap = nodev, 445 .cb_mmap = nodev, 446 .cb_segmap = nodev, 447 .cb_chpoll = nochpoll, 448 .cb_prop_op = ddi_prop_op, 449 .cb_str = 0, 450 .cb_flag = D_NEW | D_MP, 451 .cb_rev = CB_REV, 452 .cb_aread = nodev, 453 .cb_awrite = nodev 454 }; 455 456 static struct dev_ops nvme_dev_ops = { 457 .devo_rev = DEVO_REV, 458 .devo_refcnt = 0, 459 .devo_getinfo = ddi_no_info, 460 .devo_identify = nulldev, 461 .devo_probe = nulldev, 462 .devo_attach = nvme_attach, 463 .devo_detach = nvme_detach, 464 .devo_reset = nodev, 465 .devo_cb_ops = &nvme_cb_ops, 466 .devo_bus_ops = NULL, 467 .devo_power = NULL, 468 .devo_quiesce = nvme_quiesce, 469 }; 470 471 static struct modldrv nvme_modldrv = { 472 .drv_modops = &mod_driverops, 473 .drv_linkinfo = "NVMe v1.1b", 474 .drv_dev_ops = &nvme_dev_ops 475 }; 476 477 static struct modlinkage nvme_modlinkage = { 478 .ml_rev = MODREV_1, 479 .ml_linkage = { &nvme_modldrv, NULL } 480 }; 481 482 static bd_ops_t nvme_bd_ops = { 483 .o_version = BD_OPS_VERSION_0, 484 .o_drive_info = nvme_bd_driveinfo, 485 .o_media_info = nvme_bd_mediainfo, 486 .o_devid_init = nvme_bd_devid, 487 .o_sync_cache = nvme_bd_sync, 488 .o_read = nvme_bd_read, 489 .o_write = nvme_bd_write, 490 }; 491 492 /* 493 * This list will hold commands that have timed out and couldn't be aborted. 494 * As we don't know what the hardware may still do with the DMA memory we can't 495 * free them, so we'll keep them forever on this list where we can easily look 496 * at them with mdb. 497 */ 498 static struct list nvme_lost_cmds; 499 static kmutex_t nvme_lc_mutex; 500 501 int 502 _init(void) 503 { 504 int error; 505 506 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); 507 if (error != DDI_SUCCESS) 508 return (error); 509 510 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", 511 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 512 513 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL); 514 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t), 515 offsetof(nvme_cmd_t, nc_list)); 516 517 bd_mod_init(&nvme_dev_ops); 518 519 error = mod_install(&nvme_modlinkage); 520 if (error != DDI_SUCCESS) { 521 ddi_soft_state_fini(&nvme_state); 522 mutex_destroy(&nvme_lc_mutex); 523 list_destroy(&nvme_lost_cmds); 524 bd_mod_fini(&nvme_dev_ops); 525 } 526 527 return (error); 528 } 529 530 int 531 _fini(void) 532 { 533 int error; 534 535 if (!list_is_empty(&nvme_lost_cmds)) 536 return (DDI_FAILURE); 537 538 error = mod_remove(&nvme_modlinkage); 539 if (error == DDI_SUCCESS) { 540 ddi_soft_state_fini(&nvme_state); 541 kmem_cache_destroy(nvme_cmd_cache); 542 mutex_destroy(&nvme_lc_mutex); 543 list_destroy(&nvme_lost_cmds); 544 bd_mod_fini(&nvme_dev_ops); 545 } 546 547 return (error); 548 } 549 550 int 551 _info(struct modinfo *modinfop) 552 { 553 return (mod_info(&nvme_modlinkage, modinfop)); 554 } 555 556 static inline void 557 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) 558 { 559 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 560 561 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 562 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); 563 } 564 565 static inline void 566 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) 567 { 568 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 569 570 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 571 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); 572 } 573 574 static inline uint64_t 575 nvme_get64(nvme_t *nvme, uintptr_t reg) 576 { 577 uint64_t val; 578 579 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 580 581 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 582 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); 583 584 return (val); 585 } 586 587 static inline uint32_t 588 nvme_get32(nvme_t *nvme, uintptr_t reg) 589 { 590 uint32_t val; 591 592 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 593 594 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 595 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); 596 597 return (val); 598 } 599 600 static boolean_t 601 nvme_check_regs_hdl(nvme_t *nvme) 602 { 603 ddi_fm_error_t error; 604 605 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); 606 607 if (error.fme_status != DDI_FM_OK) 608 return (B_TRUE); 609 610 return (B_FALSE); 611 } 612 613 static boolean_t 614 nvme_check_dma_hdl(nvme_dma_t *dma) 615 { 616 ddi_fm_error_t error; 617 618 if (dma == NULL) 619 return (B_FALSE); 620 621 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); 622 623 if (error.fme_status != DDI_FM_OK) 624 return (B_TRUE); 625 626 return (B_FALSE); 627 } 628 629 static void 630 nvme_free_dma_common(nvme_dma_t *dma) 631 { 632 if (dma->nd_dmah != NULL) 633 (void) ddi_dma_unbind_handle(dma->nd_dmah); 634 if (dma->nd_acch != NULL) 635 ddi_dma_mem_free(&dma->nd_acch); 636 if (dma->nd_dmah != NULL) 637 ddi_dma_free_handle(&dma->nd_dmah); 638 } 639 640 static void 641 nvme_free_dma(nvme_dma_t *dma) 642 { 643 nvme_free_dma_common(dma); 644 kmem_free(dma, sizeof (*dma)); 645 } 646 647 /* ARGSUSED */ 648 static void 649 nvme_prp_dma_destructor(void *buf, void *private) 650 { 651 nvme_dma_t *dma = (nvme_dma_t *)buf; 652 653 nvme_free_dma_common(dma); 654 } 655 656 static int 657 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, 658 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) 659 { 660 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, 661 &dma->nd_dmah) != DDI_SUCCESS) { 662 /* 663 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and 664 * the only other possible error is DDI_DMA_BADATTR which 665 * indicates a driver bug which should cause a panic. 666 */ 667 dev_err(nvme->n_dip, CE_PANIC, 668 "!failed to get DMA handle, check DMA attributes"); 669 return (DDI_FAILURE); 670 } 671 672 /* 673 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified 674 * or the flags are conflicting, which isn't the case here. 675 */ 676 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, 677 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, 678 &dma->nd_len, &dma->nd_acch); 679 680 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, 681 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 682 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { 683 dev_err(nvme->n_dip, CE_WARN, 684 "!failed to bind DMA memory"); 685 atomic_inc_32(&nvme->n_dma_bind_err); 686 nvme_free_dma_common(dma); 687 return (DDI_FAILURE); 688 } 689 690 return (DDI_SUCCESS); 691 } 692 693 static int 694 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, 695 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) 696 { 697 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); 698 699 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != 700 DDI_SUCCESS) { 701 *ret = NULL; 702 kmem_free(dma, sizeof (nvme_dma_t)); 703 return (DDI_FAILURE); 704 } 705 706 bzero(dma->nd_memp, dma->nd_len); 707 708 *ret = dma; 709 return (DDI_SUCCESS); 710 } 711 712 /* ARGSUSED */ 713 static int 714 nvme_prp_dma_constructor(void *buf, void *private, int flags) 715 { 716 nvme_dma_t *dma = (nvme_dma_t *)buf; 717 nvme_t *nvme = (nvme_t *)private; 718 719 dma->nd_dmah = NULL; 720 dma->nd_acch = NULL; 721 722 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, 723 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { 724 return (-1); 725 } 726 727 ASSERT(dma->nd_ncookie == 1); 728 729 dma->nd_cached = B_TRUE; 730 731 return (0); 732 } 733 734 static int 735 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, 736 uint_t flags, nvme_dma_t **dma) 737 { 738 uint32_t len = nentry * qe_len; 739 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; 740 741 len = roundup(len, nvme->n_pagesize); 742 743 q_dma_attr.dma_attr_minxfer = len; 744 745 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) 746 != DDI_SUCCESS) { 747 dev_err(nvme->n_dip, CE_WARN, 748 "!failed to get DMA memory for queue"); 749 goto fail; 750 } 751 752 if ((*dma)->nd_ncookie != 1) { 753 dev_err(nvme->n_dip, CE_WARN, 754 "!got too many cookies for queue DMA"); 755 goto fail; 756 } 757 758 return (DDI_SUCCESS); 759 760 fail: 761 if (*dma) { 762 nvme_free_dma(*dma); 763 *dma = NULL; 764 } 765 766 return (DDI_FAILURE); 767 } 768 769 static void 770 nvme_free_qpair(nvme_qpair_t *qp) 771 { 772 int i; 773 774 mutex_destroy(&qp->nq_mutex); 775 sema_destroy(&qp->nq_sema); 776 777 if (qp->nq_sqdma != NULL) 778 nvme_free_dma(qp->nq_sqdma); 779 if (qp->nq_cqdma != NULL) 780 nvme_free_dma(qp->nq_cqdma); 781 782 if (qp->nq_active_cmds > 0) 783 for (i = 0; i != qp->nq_nentry; i++) 784 if (qp->nq_cmd[i] != NULL) 785 nvme_free_cmd(qp->nq_cmd[i]); 786 787 if (qp->nq_cmd != NULL) 788 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); 789 790 kmem_free(qp, sizeof (nvme_qpair_t)); 791 } 792 793 static int 794 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, 795 int idx) 796 { 797 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); 798 799 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, 800 DDI_INTR_PRI(nvme->n_intr_pri)); 801 sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL); 802 803 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), 804 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) 805 goto fail; 806 807 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), 808 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS) 809 goto fail; 810 811 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; 812 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp; 813 qp->nq_nentry = nentry; 814 815 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); 816 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx); 817 818 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); 819 qp->nq_next_cmd = 0; 820 821 *nqp = qp; 822 return (DDI_SUCCESS); 823 824 fail: 825 nvme_free_qpair(qp); 826 *nqp = NULL; 827 828 return (DDI_FAILURE); 829 } 830 831 static nvme_cmd_t * 832 nvme_alloc_cmd(nvme_t *nvme, int kmflag) 833 { 834 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); 835 836 if (cmd == NULL) 837 return (cmd); 838 839 bzero(cmd, sizeof (nvme_cmd_t)); 840 841 cmd->nc_nvme = nvme; 842 843 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, 844 DDI_INTR_PRI(nvme->n_intr_pri)); 845 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); 846 847 return (cmd); 848 } 849 850 static void 851 nvme_free_cmd(nvme_cmd_t *cmd) 852 { 853 /* Don't free commands on the lost commands list. */ 854 if (list_link_active(&cmd->nc_list)) 855 return; 856 857 if (cmd->nc_dma) { 858 if (cmd->nc_dma->nd_cached) 859 kmem_cache_free(cmd->nc_nvme->n_prp_cache, 860 cmd->nc_dma); 861 else 862 nvme_free_dma(cmd->nc_dma); 863 cmd->nc_dma = NULL; 864 } 865 866 cv_destroy(&cmd->nc_cv); 867 mutex_destroy(&cmd->nc_mutex); 868 869 kmem_cache_free(nvme_cmd_cache, cmd); 870 } 871 872 static void 873 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 874 { 875 sema_p(&qp->nq_sema); 876 nvme_submit_cmd_common(qp, cmd); 877 } 878 879 static int 880 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 881 { 882 if (sema_tryp(&qp->nq_sema) == 0) 883 return (EAGAIN); 884 885 nvme_submit_cmd_common(qp, cmd); 886 return (0); 887 } 888 889 static void 890 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd) 891 { 892 nvme_reg_sqtdbl_t tail = { 0 }; 893 894 mutex_enter(&qp->nq_mutex); 895 cmd->nc_completed = B_FALSE; 896 897 /* 898 * Try to insert the cmd into the active cmd array at the nq_next_cmd 899 * slot. If the slot is already occupied advance to the next slot and 900 * try again. This can happen for long running commands like async event 901 * requests. 902 */ 903 while (qp->nq_cmd[qp->nq_next_cmd] != NULL) 904 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 905 qp->nq_cmd[qp->nq_next_cmd] = cmd; 906 907 qp->nq_active_cmds++; 908 909 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; 910 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); 911 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, 912 sizeof (nvme_sqe_t) * qp->nq_sqtail, 913 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); 914 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 915 916 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; 917 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); 918 919 mutex_exit(&qp->nq_mutex); 920 } 921 922 static nvme_cmd_t * 923 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid) 924 { 925 nvme_cmd_t *cmd; 926 927 ASSERT(mutex_owned(&qp->nq_mutex)); 928 ASSERT3S(cid, <, qp->nq_nentry); 929 930 cmd = qp->nq_cmd[cid]; 931 qp->nq_cmd[cid] = NULL; 932 ASSERT3U(qp->nq_active_cmds, >, 0); 933 qp->nq_active_cmds--; 934 sema_v(&qp->nq_sema); 935 936 ASSERT3P(cmd, !=, NULL); 937 ASSERT3P(cmd->nc_nvme, ==, nvme); 938 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid); 939 940 return (cmd); 941 } 942 943 static nvme_cmd_t * 944 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) 945 { 946 nvme_reg_cqhdbl_t head = { 0 }; 947 948 nvme_cqe_t *cqe; 949 nvme_cmd_t *cmd; 950 951 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0, 952 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL); 953 954 mutex_enter(&qp->nq_mutex); 955 cqe = &qp->nq_cq[qp->nq_cqhead]; 956 957 /* Check phase tag of CQE. Hardware inverts it for new entries. */ 958 if (cqe->cqe_sf.sf_p == qp->nq_phase) { 959 mutex_exit(&qp->nq_mutex); 960 return (NULL); 961 } 962 963 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp); 964 965 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid); 966 967 ASSERT(cmd->nc_sqid == cqe->cqe_sqid); 968 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); 969 970 qp->nq_sqhead = cqe->cqe_sqhd; 971 972 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry; 973 974 /* Toggle phase on wrap-around. */ 975 if (qp->nq_cqhead == 0) 976 qp->nq_phase = qp->nq_phase ? 0 : 1; 977 978 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r); 979 mutex_exit(&qp->nq_mutex); 980 981 return (cmd); 982 } 983 984 static int 985 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) 986 { 987 nvme_cqe_t *cqe = &cmd->nc_cqe; 988 989 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 990 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 991 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 992 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 993 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 994 995 if (cmd->nc_xfer != NULL) 996 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 997 998 if (cmd->nc_nvme->n_strict_version) { 999 cmd->nc_nvme->n_dead = B_TRUE; 1000 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1001 } 1002 1003 return (EIO); 1004 } 1005 1006 static int 1007 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) 1008 { 1009 nvme_cqe_t *cqe = &cmd->nc_cqe; 1010 1011 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1012 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 1013 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 1014 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 1015 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 1016 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { 1017 cmd->nc_nvme->n_dead = B_TRUE; 1018 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1019 } 1020 1021 return (EIO); 1022 } 1023 1024 static int 1025 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) 1026 { 1027 nvme_cqe_t *cqe = &cmd->nc_cqe; 1028 1029 switch (cqe->cqe_sf.sf_sc) { 1030 case NVME_CQE_SC_INT_NVM_WRITE: 1031 /* write fail */ 1032 /* TODO: post ereport */ 1033 if (cmd->nc_xfer != NULL) 1034 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1035 return (EIO); 1036 1037 case NVME_CQE_SC_INT_NVM_READ: 1038 /* read fail */ 1039 /* TODO: post ereport */ 1040 if (cmd->nc_xfer != NULL) 1041 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1042 return (EIO); 1043 1044 default: 1045 return (nvme_check_unknown_cmd_status(cmd)); 1046 } 1047 } 1048 1049 static int 1050 nvme_check_generic_cmd_status(nvme_cmd_t *cmd) 1051 { 1052 nvme_cqe_t *cqe = &cmd->nc_cqe; 1053 1054 switch (cqe->cqe_sf.sf_sc) { 1055 case NVME_CQE_SC_GEN_SUCCESS: 1056 return (0); 1057 1058 /* 1059 * Errors indicating a bug in the driver should cause a panic. 1060 */ 1061 case NVME_CQE_SC_GEN_INV_OPC: 1062 /* Invalid Command Opcode */ 1063 if (!cmd->nc_dontpanic) 1064 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1065 "programming error: invalid opcode in cmd %p", 1066 (void *)cmd); 1067 return (EINVAL); 1068 1069 case NVME_CQE_SC_GEN_INV_FLD: 1070 /* Invalid Field in Command */ 1071 if (!cmd->nc_dontpanic) 1072 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1073 "programming error: invalid field in cmd %p", 1074 (void *)cmd); 1075 return (EIO); 1076 1077 case NVME_CQE_SC_GEN_ID_CNFL: 1078 /* Command ID Conflict */ 1079 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1080 "cmd ID conflict in cmd %p", (void *)cmd); 1081 return (0); 1082 1083 case NVME_CQE_SC_GEN_INV_NS: 1084 /* Invalid Namespace or Format */ 1085 if (!cmd->nc_dontpanic) 1086 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1087 "programming error: " "invalid NS/format in cmd %p", 1088 (void *)cmd); 1089 return (EINVAL); 1090 1091 case NVME_CQE_SC_GEN_NVM_LBA_RANGE: 1092 /* LBA Out Of Range */ 1093 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1094 "LBA out of range in cmd %p", (void *)cmd); 1095 return (0); 1096 1097 /* 1098 * Non-fatal errors, handle gracefully. 1099 */ 1100 case NVME_CQE_SC_GEN_DATA_XFR_ERR: 1101 /* Data Transfer Error (DMA) */ 1102 /* TODO: post ereport */ 1103 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); 1104 if (cmd->nc_xfer != NULL) 1105 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1106 return (EIO); 1107 1108 case NVME_CQE_SC_GEN_INTERNAL_ERR: 1109 /* 1110 * Internal Error. The spec (v1.0, section 4.5.1.2) says 1111 * detailed error information is returned as async event, 1112 * so we pretty much ignore the error here and handle it 1113 * in the async event handler. 1114 */ 1115 atomic_inc_32(&cmd->nc_nvme->n_internal_err); 1116 if (cmd->nc_xfer != NULL) 1117 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1118 return (EIO); 1119 1120 case NVME_CQE_SC_GEN_ABORT_REQUEST: 1121 /* 1122 * Command Abort Requested. This normally happens only when a 1123 * command times out. 1124 */ 1125 /* TODO: post ereport or change blkdev to handle this? */ 1126 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); 1127 return (ECANCELED); 1128 1129 case NVME_CQE_SC_GEN_ABORT_PWRLOSS: 1130 /* Command Aborted due to Power Loss Notification */ 1131 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1132 cmd->nc_nvme->n_dead = B_TRUE; 1133 return (EIO); 1134 1135 case NVME_CQE_SC_GEN_ABORT_SQ_DEL: 1136 /* Command Aborted due to SQ Deletion */ 1137 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); 1138 return (EIO); 1139 1140 case NVME_CQE_SC_GEN_NVM_CAP_EXC: 1141 /* Capacity Exceeded */ 1142 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); 1143 if (cmd->nc_xfer != NULL) 1144 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1145 return (EIO); 1146 1147 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: 1148 /* Namespace Not Ready */ 1149 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); 1150 if (cmd->nc_xfer != NULL) 1151 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1152 return (EIO); 1153 1154 default: 1155 return (nvme_check_unknown_cmd_status(cmd)); 1156 } 1157 } 1158 1159 static int 1160 nvme_check_specific_cmd_status(nvme_cmd_t *cmd) 1161 { 1162 nvme_cqe_t *cqe = &cmd->nc_cqe; 1163 1164 switch (cqe->cqe_sf.sf_sc) { 1165 case NVME_CQE_SC_SPC_INV_CQ: 1166 /* Completion Queue Invalid */ 1167 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); 1168 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); 1169 return (EINVAL); 1170 1171 case NVME_CQE_SC_SPC_INV_QID: 1172 /* Invalid Queue Identifier */ 1173 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1174 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || 1175 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || 1176 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1177 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); 1178 return (EINVAL); 1179 1180 case NVME_CQE_SC_SPC_MAX_QSZ_EXC: 1181 /* Max Queue Size Exceeded */ 1182 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1183 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1184 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); 1185 return (EINVAL); 1186 1187 case NVME_CQE_SC_SPC_ABRT_CMD_EXC: 1188 /* Abort Command Limit Exceeded */ 1189 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); 1190 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1191 "abort command limit exceeded in cmd %p", (void *)cmd); 1192 return (0); 1193 1194 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: 1195 /* Async Event Request Limit Exceeded */ 1196 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); 1197 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1198 "async event request limit exceeded in cmd %p", 1199 (void *)cmd); 1200 return (0); 1201 1202 case NVME_CQE_SC_SPC_INV_INT_VECT: 1203 /* Invalid Interrupt Vector */ 1204 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1205 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); 1206 return (EINVAL); 1207 1208 case NVME_CQE_SC_SPC_INV_LOG_PAGE: 1209 /* Invalid Log Page */ 1210 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); 1211 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); 1212 return (EINVAL); 1213 1214 case NVME_CQE_SC_SPC_INV_FORMAT: 1215 /* Invalid Format */ 1216 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); 1217 atomic_inc_32(&cmd->nc_nvme->n_inv_format); 1218 if (cmd->nc_xfer != NULL) 1219 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1220 return (EINVAL); 1221 1222 case NVME_CQE_SC_SPC_INV_Q_DEL: 1223 /* Invalid Queue Deletion */ 1224 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1225 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); 1226 return (EINVAL); 1227 1228 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: 1229 /* Conflicting Attributes */ 1230 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || 1231 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1232 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1233 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); 1234 if (cmd->nc_xfer != NULL) 1235 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1236 return (EINVAL); 1237 1238 case NVME_CQE_SC_SPC_NVM_INV_PROT: 1239 /* Invalid Protection Information */ 1240 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || 1241 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1242 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1243 atomic_inc_32(&cmd->nc_nvme->n_inv_prot); 1244 if (cmd->nc_xfer != NULL) 1245 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1246 return (EINVAL); 1247 1248 case NVME_CQE_SC_SPC_NVM_READONLY: 1249 /* Write to Read Only Range */ 1250 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1251 atomic_inc_32(&cmd->nc_nvme->n_readonly); 1252 if (cmd->nc_xfer != NULL) 1253 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1254 return (EROFS); 1255 1256 default: 1257 return (nvme_check_unknown_cmd_status(cmd)); 1258 } 1259 } 1260 1261 static inline int 1262 nvme_check_cmd_status(nvme_cmd_t *cmd) 1263 { 1264 nvme_cqe_t *cqe = &cmd->nc_cqe; 1265 1266 /* 1267 * Take a shortcut if the controller is dead, or if 1268 * command status indicates no error. 1269 */ 1270 if (cmd->nc_nvme->n_dead) 1271 return (EIO); 1272 1273 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1274 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 1275 return (0); 1276 1277 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) 1278 return (nvme_check_generic_cmd_status(cmd)); 1279 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 1280 return (nvme_check_specific_cmd_status(cmd)); 1281 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) 1282 return (nvme_check_integrity_cmd_status(cmd)); 1283 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) 1284 return (nvme_check_vendor_cmd_status(cmd)); 1285 1286 return (nvme_check_unknown_cmd_status(cmd)); 1287 } 1288 1289 static int 1290 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec) 1291 { 1292 nvme_t *nvme = abort_cmd->nc_nvme; 1293 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1294 nvme_abort_cmd_t ac = { 0 }; 1295 int ret = 0; 1296 1297 sema_p(&nvme->n_abort_sema); 1298 1299 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; 1300 ac.b.ac_sqid = abort_cmd->nc_sqid; 1301 1302 cmd->nc_sqid = 0; 1303 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; 1304 cmd->nc_callback = nvme_wakeup_cmd; 1305 cmd->nc_sqe.sqe_cdw10 = ac.r; 1306 1307 /* 1308 * Send the ABORT to the hardware. The ABORT command will return _after_ 1309 * the aborted command has completed (aborted or otherwise), but since 1310 * we still hold the aborted command's mutex its callback hasn't been 1311 * processed yet. 1312 */ 1313 nvme_admin_cmd(cmd, sec); 1314 sema_v(&nvme->n_abort_sema); 1315 1316 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1317 dev_err(nvme->n_dip, CE_WARN, 1318 "!ABORT failed with sct = %x, sc = %x", 1319 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1320 atomic_inc_32(&nvme->n_abort_failed); 1321 } else { 1322 dev_err(nvme->n_dip, CE_WARN, 1323 "!ABORT of command %d/%d %ssuccessful", 1324 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid, 1325 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : ""); 1326 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0) 1327 atomic_inc_32(&nvme->n_cmd_aborted); 1328 } 1329 1330 nvme_free_cmd(cmd); 1331 return (ret); 1332 } 1333 1334 /* 1335 * nvme_wait_cmd -- wait for command completion or timeout 1336 * 1337 * In case of a serious error or a timeout of the abort command the hardware 1338 * will be declared dead and FMA will be notified. 1339 */ 1340 static void 1341 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) 1342 { 1343 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); 1344 nvme_t *nvme = cmd->nc_nvme; 1345 nvme_reg_csts_t csts; 1346 nvme_qpair_t *qp; 1347 1348 ASSERT(mutex_owned(&cmd->nc_mutex)); 1349 1350 while (!cmd->nc_completed) { 1351 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) 1352 break; 1353 } 1354 1355 if (cmd->nc_completed) 1356 return; 1357 1358 /* 1359 * The command timed out. 1360 * 1361 * Check controller for fatal status, any errors associated with the 1362 * register or DMA handle, or for a double timeout (abort command timed 1363 * out). If necessary log a warning and call FMA. 1364 */ 1365 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1366 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, " 1367 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid, 1368 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); 1369 atomic_inc_32(&nvme->n_cmd_timeout); 1370 1371 if (csts.b.csts_cfs || 1372 nvme_check_regs_hdl(nvme) || 1373 nvme_check_dma_hdl(cmd->nc_dma) || 1374 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { 1375 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1376 nvme->n_dead = B_TRUE; 1377 } else if (nvme_abort_cmd(cmd, sec) == 0) { 1378 /* 1379 * If the abort succeeded the command should complete 1380 * immediately with an appropriate status. 1381 */ 1382 while (!cmd->nc_completed) 1383 cv_wait(&cmd->nc_cv, &cmd->nc_mutex); 1384 1385 return; 1386 } 1387 1388 qp = nvme->n_ioq[cmd->nc_sqid]; 1389 1390 mutex_enter(&qp->nq_mutex); 1391 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); 1392 mutex_exit(&qp->nq_mutex); 1393 1394 /* 1395 * As we don't know what the presumed dead hardware might still do with 1396 * the DMA memory, we'll put the command on the lost commands list if it 1397 * has any DMA memory. 1398 */ 1399 if (cmd->nc_dma != NULL) { 1400 mutex_enter(&nvme_lc_mutex); 1401 list_insert_head(&nvme_lost_cmds, cmd); 1402 mutex_exit(&nvme_lc_mutex); 1403 } 1404 } 1405 1406 static void 1407 nvme_wakeup_cmd(void *arg) 1408 { 1409 nvme_cmd_t *cmd = arg; 1410 1411 mutex_enter(&cmd->nc_mutex); 1412 cmd->nc_completed = B_TRUE; 1413 cv_signal(&cmd->nc_cv); 1414 mutex_exit(&cmd->nc_mutex); 1415 } 1416 1417 static void 1418 nvme_async_event_task(void *arg) 1419 { 1420 nvme_cmd_t *cmd = arg; 1421 nvme_t *nvme = cmd->nc_nvme; 1422 nvme_error_log_entry_t *error_log = NULL; 1423 nvme_health_log_t *health_log = NULL; 1424 size_t logsize = 0; 1425 nvme_async_event_t event; 1426 1427 /* 1428 * Check for errors associated with the async request itself. The only 1429 * command-specific error is "async event limit exceeded", which 1430 * indicates a programming error in the driver and causes a panic in 1431 * nvme_check_cmd_status(). 1432 * 1433 * Other possible errors are various scenarios where the async request 1434 * was aborted, or internal errors in the device. Internal errors are 1435 * reported to FMA, the command aborts need no special handling here. 1436 * 1437 * And finally, at least qemu nvme does not support async events, 1438 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we 1439 * will avoid posting async events. 1440 */ 1441 1442 if (nvme_check_cmd_status(cmd) != 0) { 1443 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1444 "!async event request returned failure, sct = %x, " 1445 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, 1446 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, 1447 cmd->nc_cqe.cqe_sf.sf_m); 1448 1449 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1450 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { 1451 cmd->nc_nvme->n_dead = B_TRUE; 1452 ddi_fm_service_impact(cmd->nc_nvme->n_dip, 1453 DDI_SERVICE_LOST); 1454 } 1455 1456 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1457 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC && 1458 cmd->nc_cqe.cqe_sf.sf_dnr == 1) { 1459 nvme->n_async_event_supported = B_FALSE; 1460 } 1461 1462 nvme_free_cmd(cmd); 1463 return; 1464 } 1465 1466 1467 event.r = cmd->nc_cqe.cqe_dw0; 1468 1469 /* Clear CQE and re-submit the async request. */ 1470 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); 1471 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 1472 1473 switch (event.b.ae_type) { 1474 case NVME_ASYNC_TYPE_ERROR: 1475 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { 1476 (void) nvme_get_logpage(nvme, (void **)&error_log, 1477 &logsize, event.b.ae_logpage); 1478 } else { 1479 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1480 "async event reply: %d", event.b.ae_logpage); 1481 atomic_inc_32(&nvme->n_wrong_logpage); 1482 } 1483 1484 switch (event.b.ae_info) { 1485 case NVME_ASYNC_ERROR_INV_SQ: 1486 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1487 "invalid submission queue"); 1488 return; 1489 1490 case NVME_ASYNC_ERROR_INV_DBL: 1491 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1492 "invalid doorbell write value"); 1493 return; 1494 1495 case NVME_ASYNC_ERROR_DIAGFAIL: 1496 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); 1497 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1498 nvme->n_dead = B_TRUE; 1499 atomic_inc_32(&nvme->n_diagfail_event); 1500 break; 1501 1502 case NVME_ASYNC_ERROR_PERSISTENT: 1503 dev_err(nvme->n_dip, CE_WARN, "!persistent internal " 1504 "device error"); 1505 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1506 nvme->n_dead = B_TRUE; 1507 atomic_inc_32(&nvme->n_persistent_event); 1508 break; 1509 1510 case NVME_ASYNC_ERROR_TRANSIENT: 1511 dev_err(nvme->n_dip, CE_WARN, "!transient internal " 1512 "device error"); 1513 /* TODO: send ereport */ 1514 atomic_inc_32(&nvme->n_transient_event); 1515 break; 1516 1517 case NVME_ASYNC_ERROR_FW_LOAD: 1518 dev_err(nvme->n_dip, CE_WARN, 1519 "!firmware image load error"); 1520 atomic_inc_32(&nvme->n_fw_load_event); 1521 break; 1522 } 1523 break; 1524 1525 case NVME_ASYNC_TYPE_HEALTH: 1526 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { 1527 (void) nvme_get_logpage(nvme, (void **)&health_log, 1528 &logsize, event.b.ae_logpage, -1); 1529 } else { 1530 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1531 "async event reply: %d", event.b.ae_logpage); 1532 atomic_inc_32(&nvme->n_wrong_logpage); 1533 } 1534 1535 switch (event.b.ae_info) { 1536 case NVME_ASYNC_HEALTH_RELIABILITY: 1537 dev_err(nvme->n_dip, CE_WARN, 1538 "!device reliability compromised"); 1539 /* TODO: send ereport */ 1540 atomic_inc_32(&nvme->n_reliability_event); 1541 break; 1542 1543 case NVME_ASYNC_HEALTH_TEMPERATURE: 1544 dev_err(nvme->n_dip, CE_WARN, 1545 "!temperature above threshold"); 1546 /* TODO: send ereport */ 1547 atomic_inc_32(&nvme->n_temperature_event); 1548 break; 1549 1550 case NVME_ASYNC_HEALTH_SPARE: 1551 dev_err(nvme->n_dip, CE_WARN, 1552 "!spare space below threshold"); 1553 /* TODO: send ereport */ 1554 atomic_inc_32(&nvme->n_spare_event); 1555 break; 1556 } 1557 break; 1558 1559 case NVME_ASYNC_TYPE_VENDOR: 1560 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " 1561 "received, info = %x, logpage = %x", event.b.ae_info, 1562 event.b.ae_logpage); 1563 atomic_inc_32(&nvme->n_vendor_event); 1564 break; 1565 1566 default: 1567 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " 1568 "type = %x, info = %x, logpage = %x", event.b.ae_type, 1569 event.b.ae_info, event.b.ae_logpage); 1570 atomic_inc_32(&nvme->n_unknown_event); 1571 break; 1572 } 1573 1574 if (error_log) 1575 kmem_free(error_log, logsize); 1576 1577 if (health_log) 1578 kmem_free(health_log, logsize); 1579 } 1580 1581 static void 1582 nvme_admin_cmd(nvme_cmd_t *cmd, int sec) 1583 { 1584 mutex_enter(&cmd->nc_mutex); 1585 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd); 1586 nvme_wait_cmd(cmd, sec); 1587 mutex_exit(&cmd->nc_mutex); 1588 } 1589 1590 static void 1591 nvme_async_event(nvme_t *nvme) 1592 { 1593 nvme_cmd_t *cmd; 1594 1595 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1596 cmd->nc_sqid = 0; 1597 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; 1598 cmd->nc_callback = nvme_async_event_task; 1599 cmd->nc_dontpanic = B_TRUE; 1600 1601 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 1602 } 1603 1604 static int 1605 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms, 1606 uint8_t pi, boolean_t pil, uint8_t ses) 1607 { 1608 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1609 nvme_format_nvm_t format_nvm = { 0 }; 1610 int ret; 1611 1612 format_nvm.b.fm_lbaf = lbaf & 0xf; 1613 format_nvm.b.fm_ms = ms ? 1 : 0; 1614 format_nvm.b.fm_pi = pi & 0x7; 1615 format_nvm.b.fm_pil = pil ? 1 : 0; 1616 format_nvm.b.fm_ses = ses & 0x7; 1617 1618 cmd->nc_sqid = 0; 1619 cmd->nc_callback = nvme_wakeup_cmd; 1620 cmd->nc_sqe.sqe_nsid = nsid; 1621 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT; 1622 cmd->nc_sqe.sqe_cdw10 = format_nvm.r; 1623 1624 /* 1625 * Some devices like Samsung SM951 don't allow formatting of all 1626 * namespaces in one command. Handle that gracefully. 1627 */ 1628 if (nsid == (uint32_t)-1) 1629 cmd->nc_dontpanic = B_TRUE; 1630 1631 nvme_admin_cmd(cmd, nvme_format_cmd_timeout); 1632 1633 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1634 dev_err(nvme->n_dip, CE_WARN, 1635 "!FORMAT failed with sct = %x, sc = %x", 1636 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1637 } 1638 1639 nvme_free_cmd(cmd); 1640 return (ret); 1641 } 1642 1643 static int 1644 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage, 1645 ...) 1646 { 1647 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1648 nvme_getlogpage_t getlogpage = { 0 }; 1649 va_list ap; 1650 int ret; 1651 1652 va_start(ap, logpage); 1653 1654 cmd->nc_sqid = 0; 1655 cmd->nc_callback = nvme_wakeup_cmd; 1656 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; 1657 1658 getlogpage.b.lp_lid = logpage; 1659 1660 switch (logpage) { 1661 case NVME_LOGPAGE_ERROR: 1662 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1663 /* 1664 * The GET LOG PAGE command can use at most 2 pages to return 1665 * data, PRP lists are not supported. 1666 */ 1667 *bufsize = MIN(2 * nvme->n_pagesize, 1668 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t)); 1669 break; 1670 1671 case NVME_LOGPAGE_HEALTH: 1672 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 1673 *bufsize = sizeof (nvme_health_log_t); 1674 break; 1675 1676 case NVME_LOGPAGE_FWSLOT: 1677 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1678 *bufsize = sizeof (nvme_fwslot_log_t); 1679 break; 1680 1681 default: 1682 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d", 1683 logpage); 1684 atomic_inc_32(&nvme->n_unknown_logpage); 1685 ret = EINVAL; 1686 goto fail; 1687 } 1688 1689 va_end(ap); 1690 1691 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1; 1692 1693 cmd->nc_sqe.sqe_cdw10 = getlogpage.r; 1694 1695 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t), 1696 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1697 dev_err(nvme->n_dip, CE_WARN, 1698 "!nvme_zalloc_dma failed for GET LOG PAGE"); 1699 ret = ENOMEM; 1700 goto fail; 1701 } 1702 1703 if (cmd->nc_dma->nd_ncookie > 2) { 1704 dev_err(nvme->n_dip, CE_WARN, 1705 "!too many DMA cookies for GET LOG PAGE"); 1706 atomic_inc_32(&nvme->n_too_many_cookies); 1707 ret = ENOMEM; 1708 goto fail; 1709 } 1710 1711 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1712 if (cmd->nc_dma->nd_ncookie > 1) { 1713 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1714 &cmd->nc_dma->nd_cookie); 1715 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1716 cmd->nc_dma->nd_cookie.dmac_laddress; 1717 } 1718 1719 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 1720 1721 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1722 dev_err(nvme->n_dip, CE_WARN, 1723 "!GET LOG PAGE failed with sct = %x, sc = %x", 1724 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1725 goto fail; 1726 } 1727 1728 *buf = kmem_alloc(*bufsize, KM_SLEEP); 1729 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); 1730 1731 fail: 1732 nvme_free_cmd(cmd); 1733 1734 return (ret); 1735 } 1736 1737 static int 1738 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf) 1739 { 1740 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1741 int ret; 1742 1743 if (buf == NULL) 1744 return (EINVAL); 1745 1746 cmd->nc_sqid = 0; 1747 cmd->nc_callback = nvme_wakeup_cmd; 1748 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; 1749 cmd->nc_sqe.sqe_nsid = nsid; 1750 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL; 1751 1752 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, 1753 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1754 dev_err(nvme->n_dip, CE_WARN, 1755 "!nvme_zalloc_dma failed for IDENTIFY"); 1756 ret = ENOMEM; 1757 goto fail; 1758 } 1759 1760 if (cmd->nc_dma->nd_ncookie > 2) { 1761 dev_err(nvme->n_dip, CE_WARN, 1762 "!too many DMA cookies for IDENTIFY"); 1763 atomic_inc_32(&nvme->n_too_many_cookies); 1764 ret = ENOMEM; 1765 goto fail; 1766 } 1767 1768 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1769 if (cmd->nc_dma->nd_ncookie > 1) { 1770 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1771 &cmd->nc_dma->nd_cookie); 1772 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1773 cmd->nc_dma->nd_cookie.dmac_laddress; 1774 } 1775 1776 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 1777 1778 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1779 dev_err(nvme->n_dip, CE_WARN, 1780 "!IDENTIFY failed with sct = %x, sc = %x", 1781 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1782 goto fail; 1783 } 1784 1785 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); 1786 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE); 1787 1788 fail: 1789 nvme_free_cmd(cmd); 1790 1791 return (ret); 1792 } 1793 1794 static int 1795 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val, 1796 uint32_t *res) 1797 { 1798 _NOTE(ARGUNUSED(nsid)); 1799 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1800 int ret = EINVAL; 1801 1802 ASSERT(res != NULL); 1803 1804 cmd->nc_sqid = 0; 1805 cmd->nc_callback = nvme_wakeup_cmd; 1806 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; 1807 cmd->nc_sqe.sqe_cdw10 = feature; 1808 cmd->nc_sqe.sqe_cdw11 = val; 1809 1810 switch (feature) { 1811 case NVME_FEAT_WRITE_CACHE: 1812 if (!nvme->n_write_cache_present) 1813 goto fail; 1814 break; 1815 1816 case NVME_FEAT_NQUEUES: 1817 break; 1818 1819 default: 1820 goto fail; 1821 } 1822 1823 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 1824 1825 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1826 dev_err(nvme->n_dip, CE_WARN, 1827 "!SET FEATURES %d failed with sct = %x, sc = %x", 1828 feature, cmd->nc_cqe.cqe_sf.sf_sct, 1829 cmd->nc_cqe.cqe_sf.sf_sc); 1830 goto fail; 1831 } 1832 1833 *res = cmd->nc_cqe.cqe_dw0; 1834 1835 fail: 1836 nvme_free_cmd(cmd); 1837 return (ret); 1838 } 1839 1840 static int 1841 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res, 1842 void **buf, size_t *bufsize) 1843 { 1844 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1845 int ret = EINVAL; 1846 1847 ASSERT(res != NULL); 1848 1849 if (bufsize != NULL) 1850 *bufsize = 0; 1851 1852 cmd->nc_sqid = 0; 1853 cmd->nc_callback = nvme_wakeup_cmd; 1854 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES; 1855 cmd->nc_sqe.sqe_cdw10 = feature; 1856 cmd->nc_sqe.sqe_cdw11 = *res; 1857 1858 switch (feature) { 1859 case NVME_FEAT_ARBITRATION: 1860 case NVME_FEAT_POWER_MGMT: 1861 case NVME_FEAT_TEMPERATURE: 1862 case NVME_FEAT_ERROR: 1863 case NVME_FEAT_NQUEUES: 1864 case NVME_FEAT_INTR_COAL: 1865 case NVME_FEAT_INTR_VECT: 1866 case NVME_FEAT_WRITE_ATOM: 1867 case NVME_FEAT_ASYNC_EVENT: 1868 case NVME_FEAT_PROGRESS: 1869 break; 1870 1871 case NVME_FEAT_WRITE_CACHE: 1872 if (!nvme->n_write_cache_present) 1873 goto fail; 1874 break; 1875 1876 case NVME_FEAT_LBA_RANGE: 1877 if (!nvme->n_lba_range_supported) 1878 goto fail; 1879 1880 /* 1881 * The LBA Range Type feature is optional. There doesn't seem 1882 * be a method of detecting whether it is supported other than 1883 * using it. This will cause a "invalid field in command" error, 1884 * which is normally considered a programming error and causes 1885 * panic in nvme_check_generic_cmd_status(). 1886 */ 1887 cmd->nc_dontpanic = B_TRUE; 1888 cmd->nc_sqe.sqe_nsid = nsid; 1889 ASSERT(bufsize != NULL); 1890 *bufsize = NVME_LBA_RANGE_BUFSIZE; 1891 1892 break; 1893 1894 case NVME_FEAT_AUTO_PST: 1895 if (!nvme->n_auto_pst_supported) 1896 goto fail; 1897 1898 ASSERT(bufsize != NULL); 1899 *bufsize = NVME_AUTO_PST_BUFSIZE; 1900 break; 1901 1902 default: 1903 goto fail; 1904 } 1905 1906 if (bufsize != NULL && *bufsize != 0) { 1907 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ, 1908 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1909 dev_err(nvme->n_dip, CE_WARN, 1910 "!nvme_zalloc_dma failed for GET FEATURES"); 1911 ret = ENOMEM; 1912 goto fail; 1913 } 1914 1915 if (cmd->nc_dma->nd_ncookie > 2) { 1916 dev_err(nvme->n_dip, CE_WARN, 1917 "!too many DMA cookies for GET FEATURES"); 1918 atomic_inc_32(&nvme->n_too_many_cookies); 1919 ret = ENOMEM; 1920 goto fail; 1921 } 1922 1923 cmd->nc_sqe.sqe_dptr.d_prp[0] = 1924 cmd->nc_dma->nd_cookie.dmac_laddress; 1925 if (cmd->nc_dma->nd_ncookie > 1) { 1926 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1927 &cmd->nc_dma->nd_cookie); 1928 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1929 cmd->nc_dma->nd_cookie.dmac_laddress; 1930 } 1931 } 1932 1933 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 1934 1935 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1936 if (feature == NVME_FEAT_LBA_RANGE && 1937 cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1938 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) 1939 nvme->n_lba_range_supported = B_FALSE; 1940 else 1941 dev_err(nvme->n_dip, CE_WARN, 1942 "!GET FEATURES %d failed with sct = %x, sc = %x", 1943 feature, cmd->nc_cqe.cqe_sf.sf_sct, 1944 cmd->nc_cqe.cqe_sf.sf_sc); 1945 goto fail; 1946 } 1947 1948 if (bufsize != NULL && *bufsize != 0) { 1949 ASSERT(buf != NULL); 1950 *buf = kmem_alloc(*bufsize, KM_SLEEP); 1951 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); 1952 } 1953 1954 *res = cmd->nc_cqe.cqe_dw0; 1955 1956 fail: 1957 nvme_free_cmd(cmd); 1958 return (ret); 1959 } 1960 1961 static int 1962 nvme_write_cache_set(nvme_t *nvme, boolean_t enable) 1963 { 1964 nvme_write_cache_t nwc = { 0 }; 1965 1966 if (enable) 1967 nwc.b.wc_wce = 1; 1968 1969 return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, 1970 &nwc.r)); 1971 } 1972 1973 static int 1974 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues) 1975 { 1976 nvme_nqueues_t nq = { 0 }; 1977 int ret; 1978 1979 nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1; 1980 1981 ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r); 1982 1983 if (ret == 0) { 1984 /* 1985 * Always use the same number of submission and completion 1986 * queues, and never use more than the requested number of 1987 * queues. 1988 */ 1989 *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1); 1990 } 1991 1992 return (ret); 1993 } 1994 1995 static int 1996 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) 1997 { 1998 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1999 nvme_create_queue_dw10_t dw10 = { 0 }; 2000 nvme_create_cq_dw11_t c_dw11 = { 0 }; 2001 nvme_create_sq_dw11_t s_dw11 = { 0 }; 2002 int ret; 2003 2004 dw10.b.q_qid = idx; 2005 dw10.b.q_qsize = qp->nq_nentry - 1; 2006 2007 c_dw11.b.cq_pc = 1; 2008 c_dw11.b.cq_ien = 1; 2009 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt; 2010 2011 cmd->nc_sqid = 0; 2012 cmd->nc_callback = nvme_wakeup_cmd; 2013 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; 2014 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2015 cmd->nc_sqe.sqe_cdw11 = c_dw11.r; 2016 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress; 2017 2018 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2019 2020 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2021 dev_err(nvme->n_dip, CE_WARN, 2022 "!CREATE CQUEUE failed with sct = %x, sc = %x", 2023 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2024 goto fail; 2025 } 2026 2027 nvme_free_cmd(cmd); 2028 2029 s_dw11.b.sq_pc = 1; 2030 s_dw11.b.sq_cqid = idx; 2031 2032 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2033 cmd->nc_sqid = 0; 2034 cmd->nc_callback = nvme_wakeup_cmd; 2035 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; 2036 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2037 cmd->nc_sqe.sqe_cdw11 = s_dw11.r; 2038 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; 2039 2040 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2041 2042 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2043 dev_err(nvme->n_dip, CE_WARN, 2044 "!CREATE SQUEUE failed with sct = %x, sc = %x", 2045 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2046 goto fail; 2047 } 2048 2049 fail: 2050 nvme_free_cmd(cmd); 2051 2052 return (ret); 2053 } 2054 2055 static boolean_t 2056 nvme_reset(nvme_t *nvme, boolean_t quiesce) 2057 { 2058 nvme_reg_csts_t csts; 2059 int i; 2060 2061 nvme_put32(nvme, NVME_REG_CC, 0); 2062 2063 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2064 if (csts.b.csts_rdy == 1) { 2065 nvme_put32(nvme, NVME_REG_CC, 0); 2066 for (i = 0; i != nvme->n_timeout * 10; i++) { 2067 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2068 if (csts.b.csts_rdy == 0) 2069 break; 2070 2071 if (quiesce) 2072 drv_usecwait(50000); 2073 else 2074 delay(drv_usectohz(50000)); 2075 } 2076 } 2077 2078 nvme_put32(nvme, NVME_REG_AQA, 0); 2079 nvme_put32(nvme, NVME_REG_ASQ, 0); 2080 nvme_put32(nvme, NVME_REG_ACQ, 0); 2081 2082 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2083 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); 2084 } 2085 2086 static void 2087 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) 2088 { 2089 nvme_reg_cc_t cc; 2090 nvme_reg_csts_t csts; 2091 int i; 2092 2093 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); 2094 2095 cc.r = nvme_get32(nvme, NVME_REG_CC); 2096 cc.b.cc_shn = mode & 0x3; 2097 nvme_put32(nvme, NVME_REG_CC, cc.r); 2098 2099 for (i = 0; i != 10; i++) { 2100 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2101 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) 2102 break; 2103 2104 if (quiesce) 2105 drv_usecwait(100000); 2106 else 2107 delay(drv_usectohz(100000)); 2108 } 2109 } 2110 2111 2112 static void 2113 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) 2114 { 2115 /* 2116 * Section 7.7 of the spec describes how to get a unique ID for 2117 * the controller: the vendor ID, the model name and the serial 2118 * number shall be unique when combined. 2119 * 2120 * If a namespace has no EUI64 we use the above and add the hex 2121 * namespace ID to get a unique ID for the namespace. 2122 */ 2123 char model[sizeof (nvme->n_idctl->id_model) + 1]; 2124 char serial[sizeof (nvme->n_idctl->id_serial) + 1]; 2125 2126 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 2127 bcopy(nvme->n_idctl->id_serial, serial, 2128 sizeof (nvme->n_idctl->id_serial)); 2129 2130 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 2131 serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; 2132 2133 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X", 2134 nvme->n_idctl->id_vid, model, serial, nsid); 2135 } 2136 2137 static int 2138 nvme_init_ns(nvme_t *nvme, int nsid) 2139 { 2140 nvme_namespace_t *ns = &nvme->n_ns[nsid - 1]; 2141 nvme_identify_nsid_t *idns; 2142 int last_rp; 2143 2144 ns->ns_nvme = nvme; 2145 2146 if (nvme_identify(nvme, nsid, (void **)&idns) != 0) { 2147 dev_err(nvme->n_dip, CE_WARN, 2148 "!failed to identify namespace %d", nsid); 2149 return (DDI_FAILURE); 2150 } 2151 2152 ns->ns_idns = idns; 2153 ns->ns_id = nsid; 2154 ns->ns_block_count = idns->id_nsize; 2155 ns->ns_block_size = 2156 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; 2157 ns->ns_best_block_size = ns->ns_block_size; 2158 2159 /* 2160 * Get the EUI64 if present. Use it for devid and device node names. 2161 */ 2162 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 2163 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64)); 2164 2165 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 2166 if (*(uint64_t *)ns->ns_eui64 != 0) { 2167 uint8_t *eui64 = ns->ns_eui64; 2168 2169 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), 2170 "%02x%02x%02x%02x%02x%02x%02x%02x", 2171 eui64[0], eui64[1], eui64[2], eui64[3], 2172 eui64[4], eui64[5], eui64[6], eui64[7]); 2173 } else { 2174 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d", 2175 ns->ns_id); 2176 2177 nvme_prepare_devid(nvme, ns->ns_id); 2178 } 2179 2180 /* 2181 * Find the LBA format with no metadata and the best relative 2182 * performance. A value of 3 means "degraded", 0 is best. 2183 */ 2184 last_rp = 3; 2185 for (int j = 0; j <= idns->id_nlbaf; j++) { 2186 if (idns->id_lbaf[j].lbaf_lbads == 0) 2187 break; 2188 if (idns->id_lbaf[j].lbaf_ms != 0) 2189 continue; 2190 if (idns->id_lbaf[j].lbaf_rp >= last_rp) 2191 continue; 2192 last_rp = idns->id_lbaf[j].lbaf_rp; 2193 ns->ns_best_block_size = 2194 1 << idns->id_lbaf[j].lbaf_lbads; 2195 } 2196 2197 if (ns->ns_best_block_size < nvme->n_min_block_size) 2198 ns->ns_best_block_size = nvme->n_min_block_size; 2199 2200 /* 2201 * We currently don't support namespaces that use either: 2202 * - thin provisioning 2203 * - protection information 2204 * - illegal block size (< 512) 2205 */ 2206 if (idns->id_nsfeat.f_thin || 2207 idns->id_dps.dp_pinfo) { 2208 dev_err(nvme->n_dip, CE_WARN, 2209 "!ignoring namespace %d, unsupported features: " 2210 "thin = %d, pinfo = %d", nsid, 2211 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo); 2212 ns->ns_ignore = B_TRUE; 2213 } else if (ns->ns_block_size < 512) { 2214 dev_err(nvme->n_dip, CE_WARN, 2215 "!ignoring namespace %d, unsupported block size %"PRIu64, 2216 nsid, (uint64_t)ns->ns_block_size); 2217 ns->ns_ignore = B_TRUE; 2218 } else { 2219 ns->ns_ignore = B_FALSE; 2220 } 2221 2222 return (DDI_SUCCESS); 2223 } 2224 2225 static int 2226 nvme_init(nvme_t *nvme) 2227 { 2228 nvme_reg_cc_t cc = { 0 }; 2229 nvme_reg_aqa_t aqa = { 0 }; 2230 nvme_reg_asq_t asq = { 0 }; 2231 nvme_reg_acq_t acq = { 0 }; 2232 nvme_reg_cap_t cap; 2233 nvme_reg_vs_t vs; 2234 nvme_reg_csts_t csts; 2235 int i = 0; 2236 uint16_t nqueues; 2237 char model[sizeof (nvme->n_idctl->id_model) + 1]; 2238 char *vendor, *product; 2239 2240 /* Check controller version */ 2241 vs.r = nvme_get32(nvme, NVME_REG_VS); 2242 nvme->n_version.v_major = vs.b.vs_mjr; 2243 nvme->n_version.v_minor = vs.b.vs_mnr; 2244 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", 2245 nvme->n_version.v_major, nvme->n_version.v_minor); 2246 2247 if (NVME_VERSION_HIGHER(&nvme->n_version, 2248 nvme_version_major, nvme_version_minor)) { 2249 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d", 2250 nvme_version_major, nvme_version_minor); 2251 if (nvme->n_strict_version) 2252 goto fail; 2253 } 2254 2255 /* retrieve controller configuration */ 2256 cap.r = nvme_get64(nvme, NVME_REG_CAP); 2257 2258 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { 2259 dev_err(nvme->n_dip, CE_WARN, 2260 "!NVM command set not supported by hardware"); 2261 goto fail; 2262 } 2263 2264 nvme->n_nssr_supported = cap.b.cap_nssrs; 2265 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; 2266 nvme->n_timeout = cap.b.cap_to; 2267 nvme->n_arbitration_mechanisms = cap.b.cap_ams; 2268 nvme->n_cont_queues_reqd = cap.b.cap_cqr; 2269 nvme->n_max_queue_entries = cap.b.cap_mqes + 1; 2270 2271 /* 2272 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify 2273 * the base page size of 4k (1<<12), so add 12 here to get the real 2274 * page size value. 2275 */ 2276 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), 2277 cap.b.cap_mpsmax + 12); 2278 nvme->n_pagesize = 1UL << (nvme->n_pageshift); 2279 2280 /* 2281 * Set up Queue DMA to transfer at least 1 page-aligned page at a time. 2282 */ 2283 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; 2284 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 2285 2286 /* 2287 * Set up PRP DMA to transfer 1 page-aligned page at a time. 2288 * Maxxfer may be increased after we identified the controller limits. 2289 */ 2290 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; 2291 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 2292 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; 2293 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; 2294 2295 /* 2296 * Reset controller if it's still in ready state. 2297 */ 2298 if (nvme_reset(nvme, B_FALSE) == B_FALSE) { 2299 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); 2300 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 2301 nvme->n_dead = B_TRUE; 2302 goto fail; 2303 } 2304 2305 /* 2306 * Create the admin queue pair. 2307 */ 2308 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) 2309 != DDI_SUCCESS) { 2310 dev_err(nvme->n_dip, CE_WARN, 2311 "!unable to allocate admin qpair"); 2312 goto fail; 2313 } 2314 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); 2315 nvme->n_ioq[0] = nvme->n_adminq; 2316 2317 nvme->n_progress |= NVME_ADMIN_QUEUE; 2318 2319 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 2320 "admin-queue-len", nvme->n_admin_queue_len); 2321 2322 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; 2323 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; 2324 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress; 2325 2326 ASSERT((asq & (nvme->n_pagesize - 1)) == 0); 2327 ASSERT((acq & (nvme->n_pagesize - 1)) == 0); 2328 2329 nvme_put32(nvme, NVME_REG_AQA, aqa.r); 2330 nvme_put64(nvme, NVME_REG_ASQ, asq); 2331 nvme_put64(nvme, NVME_REG_ACQ, acq); 2332 2333 cc.b.cc_ams = 0; /* use Round-Robin arbitration */ 2334 cc.b.cc_css = 0; /* use NVM command set */ 2335 cc.b.cc_mps = nvme->n_pageshift - 12; 2336 cc.b.cc_shn = 0; /* no shutdown in progress */ 2337 cc.b.cc_en = 1; /* enable controller */ 2338 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ 2339 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ 2340 2341 nvme_put32(nvme, NVME_REG_CC, cc.r); 2342 2343 /* 2344 * Wait for the controller to become ready. 2345 */ 2346 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2347 if (csts.b.csts_rdy == 0) { 2348 for (i = 0; i != nvme->n_timeout * 10; i++) { 2349 delay(drv_usectohz(50000)); 2350 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2351 2352 if (csts.b.csts_cfs == 1) { 2353 dev_err(nvme->n_dip, CE_WARN, 2354 "!controller fatal status at init"); 2355 ddi_fm_service_impact(nvme->n_dip, 2356 DDI_SERVICE_LOST); 2357 nvme->n_dead = B_TRUE; 2358 goto fail; 2359 } 2360 2361 if (csts.b.csts_rdy == 1) 2362 break; 2363 } 2364 } 2365 2366 if (csts.b.csts_rdy == 0) { 2367 dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); 2368 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 2369 nvme->n_dead = B_TRUE; 2370 goto fail; 2371 } 2372 2373 /* 2374 * Assume an abort command limit of 1. We'll destroy and re-init 2375 * that later when we know the true abort command limit. 2376 */ 2377 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); 2378 2379 /* 2380 * Setup initial interrupt for admin queue. 2381 */ 2382 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) 2383 != DDI_SUCCESS) && 2384 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) 2385 != DDI_SUCCESS) && 2386 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) 2387 != DDI_SUCCESS)) { 2388 dev_err(nvme->n_dip, CE_WARN, 2389 "!failed to setup initial interrupt"); 2390 goto fail; 2391 } 2392 2393 /* 2394 * Post an asynchronous event command to catch errors. 2395 * We assume the asynchronous events are supported as required by 2396 * specification (Figure 40 in section 5 of NVMe 1.2). 2397 * However, since at least qemu does not follow the specification, 2398 * we need a mechanism to protect ourselves. 2399 */ 2400 nvme->n_async_event_supported = B_TRUE; 2401 nvme_async_event(nvme); 2402 2403 /* 2404 * Identify Controller 2405 */ 2406 if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) { 2407 dev_err(nvme->n_dip, CE_WARN, 2408 "!failed to identify controller"); 2409 goto fail; 2410 } 2411 2412 /* 2413 * Get Vendor & Product ID 2414 */ 2415 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 2416 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 2417 sata_split_model(model, &vendor, &product); 2418 2419 if (vendor == NULL) 2420 nvme->n_vendor = strdup("NVMe"); 2421 else 2422 nvme->n_vendor = strdup(vendor); 2423 2424 nvme->n_product = strdup(product); 2425 2426 /* 2427 * Get controller limits. 2428 */ 2429 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, 2430 MIN(nvme->n_admin_queue_len / 10, 2431 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); 2432 2433 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 2434 "async-event-limit", nvme->n_async_event_limit); 2435 2436 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; 2437 2438 /* 2439 * Reinitialize the semaphore with the true abort command limit 2440 * supported by the hardware. It's not necessary to disable interrupts 2441 * as only command aborts use the semaphore, and no commands are 2442 * executed or aborted while we're here. 2443 */ 2444 sema_destroy(&nvme->n_abort_sema); 2445 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, 2446 SEMA_DRIVER, NULL); 2447 2448 nvme->n_progress |= NVME_CTRL_LIMITS; 2449 2450 if (nvme->n_idctl->id_mdts == 0) 2451 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; 2452 else 2453 nvme->n_max_data_transfer_size = 2454 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); 2455 2456 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; 2457 2458 /* 2459 * Limit n_max_data_transfer_size to what we can handle in one PRP. 2460 * Chained PRPs are currently unsupported. 2461 * 2462 * This is a no-op on hardware which doesn't support a transfer size 2463 * big enough to require chained PRPs. 2464 */ 2465 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, 2466 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); 2467 2468 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; 2469 2470 /* 2471 * Make sure the minimum/maximum queue entry sizes are not 2472 * larger/smaller than the default. 2473 */ 2474 2475 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || 2476 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || 2477 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || 2478 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) 2479 goto fail; 2480 2481 /* 2482 * Check for the presence of a Volatile Write Cache. If present, 2483 * enable or disable based on the value of the property 2484 * volatile-write-cache-enable (default is enabled). 2485 */ 2486 nvme->n_write_cache_present = 2487 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE; 2488 2489 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 2490 "volatile-write-cache-present", 2491 nvme->n_write_cache_present ? 1 : 0); 2492 2493 if (!nvme->n_write_cache_present) { 2494 nvme->n_write_cache_enabled = B_FALSE; 2495 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled) 2496 != 0) { 2497 dev_err(nvme->n_dip, CE_WARN, 2498 "!failed to %sable volatile write cache", 2499 nvme->n_write_cache_enabled ? "en" : "dis"); 2500 /* 2501 * Assume the cache is (still) enabled. 2502 */ 2503 nvme->n_write_cache_enabled = B_TRUE; 2504 } 2505 2506 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 2507 "volatile-write-cache-enable", 2508 nvme->n_write_cache_enabled ? 1 : 0); 2509 2510 /* 2511 * Assume LBA Range Type feature is supported. If it isn't this 2512 * will be set to B_FALSE by nvme_get_features(). 2513 */ 2514 nvme->n_lba_range_supported = B_TRUE; 2515 2516 /* 2517 * Check support for Autonomous Power State Transition. 2518 */ 2519 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 2520 nvme->n_auto_pst_supported = 2521 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE; 2522 2523 /* 2524 * Identify Namespaces 2525 */ 2526 nvme->n_namespace_count = nvme->n_idctl->id_nn; 2527 if (nvme->n_namespace_count > NVME_MINOR_MAX) { 2528 dev_err(nvme->n_dip, CE_WARN, 2529 "!too many namespaces: %d, limiting to %d\n", 2530 nvme->n_namespace_count, NVME_MINOR_MAX); 2531 nvme->n_namespace_count = NVME_MINOR_MAX; 2532 } 2533 2534 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * 2535 nvme->n_namespace_count, KM_SLEEP); 2536 2537 for (i = 0; i != nvme->n_namespace_count; i++) { 2538 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER, 2539 NULL); 2540 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS) 2541 goto fail; 2542 } 2543 2544 /* 2545 * Try to set up MSI/MSI-X interrupts. 2546 */ 2547 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) 2548 != 0) { 2549 nvme_release_interrupts(nvme); 2550 2551 nqueues = MIN(UINT16_MAX, ncpus); 2552 2553 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 2554 nqueues) != DDI_SUCCESS) && 2555 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 2556 nqueues) != DDI_SUCCESS)) { 2557 dev_err(nvme->n_dip, CE_WARN, 2558 "!failed to setup MSI/MSI-X interrupts"); 2559 goto fail; 2560 } 2561 } 2562 2563 nqueues = nvme->n_intr_cnt; 2564 2565 /* 2566 * Create I/O queue pairs. 2567 */ 2568 2569 if (nvme_set_nqueues(nvme, &nqueues) != 0) { 2570 dev_err(nvme->n_dip, CE_WARN, 2571 "!failed to set number of I/O queues to %d", 2572 nvme->n_intr_cnt); 2573 goto fail; 2574 } 2575 2576 /* 2577 * Reallocate I/O queue array 2578 */ 2579 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); 2580 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * 2581 (nqueues + 1), KM_SLEEP); 2582 nvme->n_ioq[0] = nvme->n_adminq; 2583 2584 nvme->n_ioq_count = nqueues; 2585 2586 /* 2587 * If we got less queues than we asked for we might as well give 2588 * some of the interrupt vectors back to the system. 2589 */ 2590 if (nvme->n_ioq_count < nvme->n_intr_cnt) { 2591 nvme_release_interrupts(nvme); 2592 2593 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, 2594 nvme->n_ioq_count) != DDI_SUCCESS) { 2595 dev_err(nvme->n_dip, CE_WARN, 2596 "!failed to reduce number of interrupts"); 2597 goto fail; 2598 } 2599 } 2600 2601 /* 2602 * Alloc & register I/O queue pairs 2603 */ 2604 nvme->n_io_queue_len = 2605 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries); 2606 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len", 2607 nvme->n_io_queue_len); 2608 2609 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 2610 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len, 2611 &nvme->n_ioq[i], i) != DDI_SUCCESS) { 2612 dev_err(nvme->n_dip, CE_WARN, 2613 "!unable to allocate I/O qpair %d", i); 2614 goto fail; 2615 } 2616 2617 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) { 2618 dev_err(nvme->n_dip, CE_WARN, 2619 "!unable to create I/O qpair %d", i); 2620 goto fail; 2621 } 2622 } 2623 2624 /* 2625 * Post more asynchronous events commands to reduce event reporting 2626 * latency as suggested by the spec. 2627 */ 2628 if (nvme->n_async_event_supported) { 2629 for (i = 1; i != nvme->n_async_event_limit; i++) 2630 nvme_async_event(nvme); 2631 } 2632 2633 return (DDI_SUCCESS); 2634 2635 fail: 2636 (void) nvme_reset(nvme, B_FALSE); 2637 return (DDI_FAILURE); 2638 } 2639 2640 static uint_t 2641 nvme_intr(caddr_t arg1, caddr_t arg2) 2642 { 2643 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2644 nvme_t *nvme = (nvme_t *)arg1; 2645 int inum = (int)(uintptr_t)arg2; 2646 int ccnt = 0; 2647 int qnum; 2648 nvme_cmd_t *cmd; 2649 2650 if (inum >= nvme->n_intr_cnt) 2651 return (DDI_INTR_UNCLAIMED); 2652 2653 if (nvme->n_dead) 2654 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ? 2655 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED); 2656 2657 /* 2658 * The interrupt vector a queue uses is calculated as queue_idx % 2659 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array 2660 * in steps of n_intr_cnt to process all queues using this vector. 2661 */ 2662 for (qnum = inum; 2663 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL; 2664 qnum += nvme->n_intr_cnt) { 2665 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) { 2666 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq, 2667 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); 2668 ccnt++; 2669 } 2670 } 2671 2672 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 2673 } 2674 2675 static void 2676 nvme_release_interrupts(nvme_t *nvme) 2677 { 2678 int i; 2679 2680 for (i = 0; i < nvme->n_intr_cnt; i++) { 2681 if (nvme->n_inth[i] == NULL) 2682 break; 2683 2684 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 2685 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); 2686 else 2687 (void) ddi_intr_disable(nvme->n_inth[i]); 2688 2689 (void) ddi_intr_remove_handler(nvme->n_inth[i]); 2690 (void) ddi_intr_free(nvme->n_inth[i]); 2691 } 2692 2693 kmem_free(nvme->n_inth, nvme->n_inth_sz); 2694 nvme->n_inth = NULL; 2695 nvme->n_inth_sz = 0; 2696 2697 nvme->n_progress &= ~NVME_INTERRUPTS; 2698 } 2699 2700 static int 2701 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) 2702 { 2703 int nintrs, navail, count; 2704 int ret; 2705 int i; 2706 2707 if (nvme->n_intr_types == 0) { 2708 ret = ddi_intr_get_supported_types(nvme->n_dip, 2709 &nvme->n_intr_types); 2710 if (ret != DDI_SUCCESS) { 2711 dev_err(nvme->n_dip, CE_WARN, 2712 "!%s: ddi_intr_get_supported types failed", 2713 __func__); 2714 return (ret); 2715 } 2716 #ifdef __x86 2717 if (get_hwenv() == HW_VMWARE) 2718 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX; 2719 #endif 2720 } 2721 2722 if ((nvme->n_intr_types & intr_type) == 0) 2723 return (DDI_FAILURE); 2724 2725 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); 2726 if (ret != DDI_SUCCESS) { 2727 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", 2728 __func__); 2729 return (ret); 2730 } 2731 2732 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); 2733 if (ret != DDI_SUCCESS) { 2734 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", 2735 __func__); 2736 return (ret); 2737 } 2738 2739 /* We want at most one interrupt per queue pair. */ 2740 if (navail > nqpairs) 2741 navail = nqpairs; 2742 2743 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; 2744 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); 2745 2746 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, 2747 &count, 0); 2748 if (ret != DDI_SUCCESS) { 2749 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", 2750 __func__); 2751 goto fail; 2752 } 2753 2754 nvme->n_intr_cnt = count; 2755 2756 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); 2757 if (ret != DDI_SUCCESS) { 2758 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", 2759 __func__); 2760 goto fail; 2761 } 2762 2763 for (i = 0; i < count; i++) { 2764 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, 2765 (void *)nvme, (void *)(uintptr_t)i); 2766 if (ret != DDI_SUCCESS) { 2767 dev_err(nvme->n_dip, CE_WARN, 2768 "!%s: ddi_intr_add_handler failed", __func__); 2769 goto fail; 2770 } 2771 } 2772 2773 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); 2774 2775 for (i = 0; i < count; i++) { 2776 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 2777 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1); 2778 else 2779 ret = ddi_intr_enable(nvme->n_inth[i]); 2780 2781 if (ret != DDI_SUCCESS) { 2782 dev_err(nvme->n_dip, CE_WARN, 2783 "!%s: enabling interrupt %d failed", __func__, i); 2784 goto fail; 2785 } 2786 } 2787 2788 nvme->n_intr_type = intr_type; 2789 2790 nvme->n_progress |= NVME_INTERRUPTS; 2791 2792 return (DDI_SUCCESS); 2793 2794 fail: 2795 nvme_release_interrupts(nvme); 2796 2797 return (ret); 2798 } 2799 2800 static int 2801 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) 2802 { 2803 _NOTE(ARGUNUSED(arg)); 2804 2805 pci_ereport_post(dip, fm_error, NULL); 2806 return (fm_error->fme_status); 2807 } 2808 2809 static int 2810 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 2811 { 2812 nvme_t *nvme; 2813 int instance; 2814 int nregs; 2815 off_t regsize; 2816 int i; 2817 char name[32]; 2818 2819 if (cmd != DDI_ATTACH) 2820 return (DDI_FAILURE); 2821 2822 instance = ddi_get_instance(dip); 2823 2824 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) 2825 return (DDI_FAILURE); 2826 2827 nvme = ddi_get_soft_state(nvme_state, instance); 2828 ddi_set_driver_private(dip, nvme); 2829 nvme->n_dip = dip; 2830 2831 mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL); 2832 2833 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2834 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; 2835 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, 2836 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? 2837 B_TRUE : B_FALSE; 2838 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2839 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); 2840 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2841 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN); 2842 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2843 DDI_PROP_DONTPASS, "async-event-limit", 2844 NVME_DEFAULT_ASYNC_EVENT_LIMIT); 2845 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2846 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ? 2847 B_TRUE : B_FALSE; 2848 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2849 DDI_PROP_DONTPASS, "min-phys-block-size", 2850 NVME_DEFAULT_MIN_BLOCK_SIZE); 2851 2852 if (!ISP2(nvme->n_min_block_size) || 2853 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) { 2854 dev_err(dip, CE_WARN, "!min-phys-block-size %s, " 2855 "using default %d", ISP2(nvme->n_min_block_size) ? 2856 "too low" : "not a power of 2", 2857 NVME_DEFAULT_MIN_BLOCK_SIZE); 2858 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 2859 } 2860 2861 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) 2862 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; 2863 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) 2864 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; 2865 2866 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN) 2867 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN; 2868 2869 if (nvme->n_async_event_limit < 1) 2870 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; 2871 2872 nvme->n_reg_acc_attr = nvme_reg_acc_attr; 2873 nvme->n_queue_dma_attr = nvme_queue_dma_attr; 2874 nvme->n_prp_dma_attr = nvme_prp_dma_attr; 2875 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; 2876 2877 /* 2878 * Setup FMA support. 2879 */ 2880 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, 2881 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 2882 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 2883 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 2884 2885 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); 2886 2887 if (nvme->n_fm_cap) { 2888 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) 2889 nvme->n_reg_acc_attr.devacc_attr_access = 2890 DDI_FLAGERR_ACC; 2891 2892 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { 2893 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2894 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2895 } 2896 2897 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 2898 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2899 pci_ereport_setup(dip); 2900 2901 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2902 ddi_fm_handler_register(dip, nvme_fm_errcb, 2903 (void *)nvme); 2904 } 2905 2906 nvme->n_progress |= NVME_FMA_INIT; 2907 2908 /* 2909 * The spec defines several register sets. Only the controller 2910 * registers (set 1) are currently used. 2911 */ 2912 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || 2913 nregs < 2 || 2914 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) 2915 goto fail; 2916 2917 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, 2918 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { 2919 dev_err(dip, CE_WARN, "!failed to map regset 1"); 2920 goto fail; 2921 } 2922 2923 nvme->n_progress |= NVME_REGS_MAPPED; 2924 2925 /* 2926 * Create taskq for command completion. 2927 */ 2928 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq", 2929 ddi_driver_name(dip), ddi_get_instance(dip)); 2930 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus), 2931 TASKQ_DEFAULTPRI, 0); 2932 if (nvme->n_cmd_taskq == NULL) { 2933 dev_err(dip, CE_WARN, "!failed to create cmd taskq"); 2934 goto fail; 2935 } 2936 2937 /* 2938 * Create PRP DMA cache 2939 */ 2940 (void) snprintf(name, sizeof (name), "%s%d_prp_cache", 2941 ddi_driver_name(dip), ddi_get_instance(dip)); 2942 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t), 2943 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor, 2944 NULL, (void *)nvme, NULL, 0); 2945 2946 if (nvme_init(nvme) != DDI_SUCCESS) 2947 goto fail; 2948 2949 /* 2950 * Attach the blkdev driver for each namespace. 2951 */ 2952 for (i = 0; i != nvme->n_namespace_count; i++) { 2953 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name, 2954 S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1), 2955 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) { 2956 dev_err(dip, CE_WARN, 2957 "!failed to create minor node for namespace %d", i); 2958 goto fail; 2959 } 2960 2961 if (nvme->n_ns[i].ns_ignore) 2962 continue; 2963 2964 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i], 2965 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP); 2966 2967 if (nvme->n_ns[i].ns_bd_hdl == NULL) { 2968 dev_err(dip, CE_WARN, 2969 "!failed to get blkdev handle for namespace %d", i); 2970 goto fail; 2971 } 2972 2973 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl) 2974 != DDI_SUCCESS) { 2975 dev_err(dip, CE_WARN, 2976 "!failed to attach blkdev handle for namespace %d", 2977 i); 2978 goto fail; 2979 } 2980 } 2981 2982 if (ddi_create_minor_node(dip, "devctl", S_IFCHR, 2983 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0) 2984 != DDI_SUCCESS) { 2985 dev_err(dip, CE_WARN, "nvme_attach: " 2986 "cannot create devctl minor node"); 2987 goto fail; 2988 } 2989 2990 return (DDI_SUCCESS); 2991 2992 fail: 2993 /* attach successful anyway so that FMA can retire the device */ 2994 if (nvme->n_dead) 2995 return (DDI_SUCCESS); 2996 2997 (void) nvme_detach(dip, DDI_DETACH); 2998 2999 return (DDI_FAILURE); 3000 } 3001 3002 static int 3003 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 3004 { 3005 int instance, i; 3006 nvme_t *nvme; 3007 3008 if (cmd != DDI_DETACH) 3009 return (DDI_FAILURE); 3010 3011 instance = ddi_get_instance(dip); 3012 3013 nvme = ddi_get_soft_state(nvme_state, instance); 3014 3015 if (nvme == NULL) 3016 return (DDI_FAILURE); 3017 3018 ddi_remove_minor_node(dip, "devctl"); 3019 mutex_destroy(&nvme->n_minor.nm_mutex); 3020 3021 if (nvme->n_ns) { 3022 for (i = 0; i != nvme->n_namespace_count; i++) { 3023 ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name); 3024 mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex); 3025 3026 if (nvme->n_ns[i].ns_bd_hdl) { 3027 (void) bd_detach_handle( 3028 nvme->n_ns[i].ns_bd_hdl); 3029 bd_free_handle(nvme->n_ns[i].ns_bd_hdl); 3030 } 3031 3032 if (nvme->n_ns[i].ns_idns) 3033 kmem_free(nvme->n_ns[i].ns_idns, 3034 sizeof (nvme_identify_nsid_t)); 3035 if (nvme->n_ns[i].ns_devid) 3036 strfree(nvme->n_ns[i].ns_devid); 3037 } 3038 3039 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * 3040 nvme->n_namespace_count); 3041 } 3042 3043 if (nvme->n_progress & NVME_INTERRUPTS) 3044 nvme_release_interrupts(nvme); 3045 3046 if (nvme->n_cmd_taskq) 3047 ddi_taskq_wait(nvme->n_cmd_taskq); 3048 3049 if (nvme->n_ioq_count > 0) { 3050 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 3051 if (nvme->n_ioq[i] != NULL) { 3052 /* TODO: send destroy queue commands */ 3053 nvme_free_qpair(nvme->n_ioq[i]); 3054 } 3055 } 3056 3057 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * 3058 (nvme->n_ioq_count + 1)); 3059 } 3060 3061 if (nvme->n_prp_cache != NULL) { 3062 kmem_cache_destroy(nvme->n_prp_cache); 3063 } 3064 3065 if (nvme->n_progress & NVME_REGS_MAPPED) { 3066 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE); 3067 (void) nvme_reset(nvme, B_FALSE); 3068 } 3069 3070 if (nvme->n_cmd_taskq) 3071 ddi_taskq_destroy(nvme->n_cmd_taskq); 3072 3073 if (nvme->n_progress & NVME_CTRL_LIMITS) 3074 sema_destroy(&nvme->n_abort_sema); 3075 3076 if (nvme->n_progress & NVME_ADMIN_QUEUE) 3077 nvme_free_qpair(nvme->n_adminq); 3078 3079 if (nvme->n_idctl) 3080 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE); 3081 3082 if (nvme->n_progress & NVME_REGS_MAPPED) 3083 ddi_regs_map_free(&nvme->n_regh); 3084 3085 if (nvme->n_progress & NVME_FMA_INIT) { 3086 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 3087 ddi_fm_handler_unregister(nvme->n_dip); 3088 3089 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 3090 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 3091 pci_ereport_teardown(nvme->n_dip); 3092 3093 ddi_fm_fini(nvme->n_dip); 3094 } 3095 3096 if (nvme->n_vendor != NULL) 3097 strfree(nvme->n_vendor); 3098 3099 if (nvme->n_product != NULL) 3100 strfree(nvme->n_product); 3101 3102 ddi_soft_state_free(nvme_state, instance); 3103 3104 return (DDI_SUCCESS); 3105 } 3106 3107 static int 3108 nvme_quiesce(dev_info_t *dip) 3109 { 3110 int instance; 3111 nvme_t *nvme; 3112 3113 instance = ddi_get_instance(dip); 3114 3115 nvme = ddi_get_soft_state(nvme_state, instance); 3116 3117 if (nvme == NULL) 3118 return (DDI_FAILURE); 3119 3120 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE); 3121 3122 (void) nvme_reset(nvme, B_TRUE); 3123 3124 return (DDI_FAILURE); 3125 } 3126 3127 static int 3128 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer) 3129 { 3130 nvme_t *nvme = cmd->nc_nvme; 3131 int nprp_page, nprp; 3132 uint64_t *prp; 3133 3134 if (xfer->x_ndmac == 0) 3135 return (DDI_FAILURE); 3136 3137 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress; 3138 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 3139 3140 if (xfer->x_ndmac == 1) { 3141 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 3142 return (DDI_SUCCESS); 3143 } else if (xfer->x_ndmac == 2) { 3144 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress; 3145 return (DDI_SUCCESS); 3146 } 3147 3148 xfer->x_ndmac--; 3149 3150 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1; 3151 ASSERT(nprp_page > 0); 3152 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page; 3153 3154 /* 3155 * We currently don't support chained PRPs and set up our DMA 3156 * attributes to reflect that. If we still get an I/O request 3157 * that needs a chained PRP something is very wrong. 3158 */ 3159 VERIFY(nprp == 1); 3160 3161 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP); 3162 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len); 3163 3164 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress; 3165 3166 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3167 for (prp = (uint64_t *)cmd->nc_dma->nd_memp; 3168 xfer->x_ndmac > 0; 3169 prp++, xfer->x_ndmac--) { 3170 *prp = xfer->x_dmac.dmac_laddress; 3171 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 3172 } 3173 3174 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len, 3175 DDI_DMA_SYNC_FORDEV); 3176 return (DDI_SUCCESS); 3177 } 3178 3179 static nvme_cmd_t * 3180 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) 3181 { 3182 nvme_t *nvme = ns->ns_nvme; 3183 nvme_cmd_t *cmd; 3184 3185 /* 3186 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. 3187 */ 3188 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ? 3189 KM_NOSLEEP : KM_SLEEP); 3190 3191 if (cmd == NULL) 3192 return (NULL); 3193 3194 cmd->nc_sqe.sqe_opc = opc; 3195 cmd->nc_callback = nvme_bd_xfer_done; 3196 cmd->nc_xfer = xfer; 3197 3198 switch (opc) { 3199 case NVME_OPC_NVM_WRITE: 3200 case NVME_OPC_NVM_READ: 3201 VERIFY(xfer->x_nblks <= 0x10000); 3202 3203 cmd->nc_sqe.sqe_nsid = ns->ns_id; 3204 3205 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; 3206 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); 3207 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); 3208 3209 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS) 3210 goto fail; 3211 break; 3212 3213 case NVME_OPC_NVM_FLUSH: 3214 cmd->nc_sqe.sqe_nsid = ns->ns_id; 3215 break; 3216 3217 default: 3218 goto fail; 3219 } 3220 3221 return (cmd); 3222 3223 fail: 3224 nvme_free_cmd(cmd); 3225 return (NULL); 3226 } 3227 3228 static void 3229 nvme_bd_xfer_done(void *arg) 3230 { 3231 nvme_cmd_t *cmd = arg; 3232 bd_xfer_t *xfer = cmd->nc_xfer; 3233 int error = 0; 3234 3235 error = nvme_check_cmd_status(cmd); 3236 nvme_free_cmd(cmd); 3237 3238 bd_xfer_done(xfer, error); 3239 } 3240 3241 static void 3242 nvme_bd_driveinfo(void *arg, bd_drive_t *drive) 3243 { 3244 nvme_namespace_t *ns = arg; 3245 nvme_t *nvme = ns->ns_nvme; 3246 3247 /* 3248 * blkdev maintains one queue size per instance (namespace), 3249 * but all namespace share the I/O queues. 3250 * TODO: need to figure out a sane default, or use per-NS I/O queues, 3251 * or change blkdev to handle EAGAIN 3252 */ 3253 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len 3254 / nvme->n_namespace_count; 3255 3256 /* 3257 * d_maxxfer is not set, which means the value is taken from the DMA 3258 * attributes specified to bd_alloc_handle. 3259 */ 3260 3261 drive->d_removable = B_FALSE; 3262 drive->d_hotpluggable = B_FALSE; 3263 3264 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64)); 3265 drive->d_target = ns->ns_id; 3266 drive->d_lun = 0; 3267 3268 drive->d_model = nvme->n_idctl->id_model; 3269 drive->d_model_len = sizeof (nvme->n_idctl->id_model); 3270 drive->d_vendor = nvme->n_vendor; 3271 drive->d_vendor_len = strlen(nvme->n_vendor); 3272 drive->d_product = nvme->n_product; 3273 drive->d_product_len = strlen(nvme->n_product); 3274 drive->d_serial = nvme->n_idctl->id_serial; 3275 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); 3276 drive->d_revision = nvme->n_idctl->id_fwrev; 3277 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); 3278 } 3279 3280 static int 3281 nvme_bd_mediainfo(void *arg, bd_media_t *media) 3282 { 3283 nvme_namespace_t *ns = arg; 3284 3285 media->m_nblks = ns->ns_block_count; 3286 media->m_blksize = ns->ns_block_size; 3287 media->m_readonly = B_FALSE; 3288 media->m_solidstate = B_TRUE; 3289 3290 media->m_pblksize = ns->ns_best_block_size; 3291 3292 return (0); 3293 } 3294 3295 static int 3296 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) 3297 { 3298 nvme_t *nvme = ns->ns_nvme; 3299 nvme_cmd_t *cmd; 3300 nvme_qpair_t *ioq; 3301 boolean_t poll; 3302 int ret; 3303 3304 if (nvme->n_dead) 3305 return (EIO); 3306 3307 cmd = nvme_create_nvm_cmd(ns, opc, xfer); 3308 if (cmd == NULL) 3309 return (ENOMEM); 3310 3311 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1; 3312 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 3313 ioq = nvme->n_ioq[cmd->nc_sqid]; 3314 3315 /* 3316 * Get the polling flag before submitting the command. The command may 3317 * complete immediately after it was submitted, which means we must 3318 * treat both cmd and xfer as if they have been freed already. 3319 */ 3320 poll = (xfer->x_flags & BD_XFER_POLL) != 0; 3321 3322 ret = nvme_submit_io_cmd(ioq, cmd); 3323 3324 if (ret != 0) 3325 return (ret); 3326 3327 if (!poll) 3328 return (0); 3329 3330 do { 3331 cmd = nvme_retrieve_cmd(nvme, ioq); 3332 if (cmd != NULL) 3333 nvme_bd_xfer_done(cmd); 3334 else 3335 drv_usecwait(10); 3336 } while (ioq->nq_active_cmds != 0); 3337 3338 return (0); 3339 } 3340 3341 static int 3342 nvme_bd_read(void *arg, bd_xfer_t *xfer) 3343 { 3344 nvme_namespace_t *ns = arg; 3345 3346 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); 3347 } 3348 3349 static int 3350 nvme_bd_write(void *arg, bd_xfer_t *xfer) 3351 { 3352 nvme_namespace_t *ns = arg; 3353 3354 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); 3355 } 3356 3357 static int 3358 nvme_bd_sync(void *arg, bd_xfer_t *xfer) 3359 { 3360 nvme_namespace_t *ns = arg; 3361 3362 if (ns->ns_nvme->n_dead) 3363 return (EIO); 3364 3365 /* 3366 * If the volatile write cache is not present or not enabled the FLUSH 3367 * command is a no-op, so we can take a shortcut here. 3368 */ 3369 if (!ns->ns_nvme->n_write_cache_present) { 3370 bd_xfer_done(xfer, ENOTSUP); 3371 return (0); 3372 } 3373 3374 if (!ns->ns_nvme->n_write_cache_enabled) { 3375 bd_xfer_done(xfer, 0); 3376 return (0); 3377 } 3378 3379 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); 3380 } 3381 3382 static int 3383 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) 3384 { 3385 nvme_namespace_t *ns = arg; 3386 3387 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 3388 if (*(uint64_t *)ns->ns_eui64 != 0) { 3389 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN, 3390 sizeof (ns->ns_eui64), ns->ns_eui64, devid)); 3391 } else { 3392 return (ddi_devid_init(devinfo, DEVID_ENCAP, 3393 strlen(ns->ns_devid), ns->ns_devid, devid)); 3394 } 3395 } 3396 3397 static int 3398 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 3399 { 3400 #ifndef __lock_lint 3401 _NOTE(ARGUNUSED(cred_p)); 3402 #endif 3403 minor_t minor = getminor(*devp); 3404 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 3405 int nsid = NVME_MINOR_NSID(minor); 3406 nvme_minor_state_t *nm; 3407 int rv = 0; 3408 3409 if (otyp != OTYP_CHR) 3410 return (EINVAL); 3411 3412 if (nvme == NULL) 3413 return (ENXIO); 3414 3415 if (nsid > nvme->n_namespace_count) 3416 return (ENXIO); 3417 3418 if (nvme->n_dead) 3419 return (EIO); 3420 3421 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor; 3422 3423 mutex_enter(&nm->nm_mutex); 3424 if (nm->nm_oexcl) { 3425 rv = EBUSY; 3426 goto out; 3427 } 3428 3429 if (flag & FEXCL) { 3430 if (nm->nm_ocnt != 0) { 3431 rv = EBUSY; 3432 goto out; 3433 } 3434 nm->nm_oexcl = B_TRUE; 3435 } 3436 3437 nm->nm_ocnt++; 3438 3439 out: 3440 mutex_exit(&nm->nm_mutex); 3441 return (rv); 3442 3443 } 3444 3445 static int 3446 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 3447 { 3448 #ifndef __lock_lint 3449 _NOTE(ARGUNUSED(cred_p)); 3450 _NOTE(ARGUNUSED(flag)); 3451 #endif 3452 minor_t minor = getminor(dev); 3453 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 3454 int nsid = NVME_MINOR_NSID(minor); 3455 nvme_minor_state_t *nm; 3456 3457 if (otyp != OTYP_CHR) 3458 return (ENXIO); 3459 3460 if (nvme == NULL) 3461 return (ENXIO); 3462 3463 if (nsid > nvme->n_namespace_count) 3464 return (ENXIO); 3465 3466 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor; 3467 3468 mutex_enter(&nm->nm_mutex); 3469 if (nm->nm_oexcl) 3470 nm->nm_oexcl = B_FALSE; 3471 3472 ASSERT(nm->nm_ocnt > 0); 3473 nm->nm_ocnt--; 3474 mutex_exit(&nm->nm_mutex); 3475 3476 return (0); 3477 } 3478 3479 static int 3480 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 3481 cred_t *cred_p) 3482 { 3483 _NOTE(ARGUNUSED(cred_p)); 3484 int rv = 0; 3485 void *idctl; 3486 3487 if ((mode & FREAD) == 0) 3488 return (EPERM); 3489 3490 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE) 3491 return (EINVAL); 3492 3493 if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0) 3494 return (rv); 3495 3496 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode) 3497 != 0) 3498 rv = EFAULT; 3499 3500 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE); 3501 3502 return (rv); 3503 } 3504 3505 static int 3506 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 3507 int mode, cred_t *cred_p) 3508 { 3509 _NOTE(ARGUNUSED(nsid, cred_p)); 3510 int rv = 0; 3511 nvme_reg_cap_t cap = { 0 }; 3512 nvme_capabilities_t nc; 3513 3514 if ((mode & FREAD) == 0) 3515 return (EPERM); 3516 3517 if (nioc->n_len < sizeof (nc)) 3518 return (EINVAL); 3519 3520 cap.r = nvme_get64(nvme, NVME_REG_CAP); 3521 3522 /* 3523 * The MPSMIN and MPSMAX fields in the CAP register use 0 to 3524 * specify the base page size of 4k (1<<12), so add 12 here to 3525 * get the real page size value. 3526 */ 3527 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax); 3528 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin); 3529 3530 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0) 3531 rv = EFAULT; 3532 3533 return (rv); 3534 } 3535 3536 static int 3537 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 3538 int mode, cred_t *cred_p) 3539 { 3540 _NOTE(ARGUNUSED(cred_p)); 3541 void *log = NULL; 3542 size_t bufsize = 0; 3543 int rv = 0; 3544 3545 if ((mode & FREAD) == 0) 3546 return (EPERM); 3547 3548 switch (nioc->n_arg) { 3549 case NVME_LOGPAGE_ERROR: 3550 if (nsid != 0) 3551 return (EINVAL); 3552 break; 3553 case NVME_LOGPAGE_HEALTH: 3554 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0) 3555 return (EINVAL); 3556 3557 if (nsid == 0) 3558 nsid = (uint32_t)-1; 3559 3560 break; 3561 case NVME_LOGPAGE_FWSLOT: 3562 if (nsid != 0) 3563 return (EINVAL); 3564 break; 3565 default: 3566 return (EINVAL); 3567 } 3568 3569 if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid) 3570 != DDI_SUCCESS) 3571 return (EIO); 3572 3573 if (nioc->n_len < bufsize) { 3574 kmem_free(log, bufsize); 3575 return (EINVAL); 3576 } 3577 3578 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0) 3579 rv = EFAULT; 3580 3581 nioc->n_len = bufsize; 3582 kmem_free(log, bufsize); 3583 3584 return (rv); 3585 } 3586 3587 static int 3588 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 3589 int mode, cred_t *cred_p) 3590 { 3591 _NOTE(ARGUNUSED(cred_p)); 3592 void *buf = NULL; 3593 size_t bufsize = 0; 3594 uint32_t res = 0; 3595 uint8_t feature; 3596 int rv = 0; 3597 3598 if ((mode & FREAD) == 0) 3599 return (EPERM); 3600 3601 if ((nioc->n_arg >> 32) > 0xff) 3602 return (EINVAL); 3603 3604 feature = (uint8_t)(nioc->n_arg >> 32); 3605 3606 switch (feature) { 3607 case NVME_FEAT_ARBITRATION: 3608 case NVME_FEAT_POWER_MGMT: 3609 case NVME_FEAT_TEMPERATURE: 3610 case NVME_FEAT_ERROR: 3611 case NVME_FEAT_NQUEUES: 3612 case NVME_FEAT_INTR_COAL: 3613 case NVME_FEAT_WRITE_ATOM: 3614 case NVME_FEAT_ASYNC_EVENT: 3615 case NVME_FEAT_PROGRESS: 3616 if (nsid != 0) 3617 return (EINVAL); 3618 break; 3619 3620 case NVME_FEAT_INTR_VECT: 3621 if (nsid != 0) 3622 return (EINVAL); 3623 3624 res = nioc->n_arg & 0xffffffffUL; 3625 if (res >= nvme->n_intr_cnt) 3626 return (EINVAL); 3627 break; 3628 3629 case NVME_FEAT_LBA_RANGE: 3630 if (nvme->n_lba_range_supported == B_FALSE) 3631 return (EINVAL); 3632 3633 if (nsid == 0 || 3634 nsid > nvme->n_namespace_count) 3635 return (EINVAL); 3636 3637 break; 3638 3639 case NVME_FEAT_WRITE_CACHE: 3640 if (nsid != 0) 3641 return (EINVAL); 3642 3643 if (!nvme->n_write_cache_present) 3644 return (EINVAL); 3645 3646 break; 3647 3648 case NVME_FEAT_AUTO_PST: 3649 if (nsid != 0) 3650 return (EINVAL); 3651 3652 if (!nvme->n_auto_pst_supported) 3653 return (EINVAL); 3654 3655 break; 3656 3657 default: 3658 return (EINVAL); 3659 } 3660 3661 rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize); 3662 if (rv != 0) 3663 return (rv); 3664 3665 if (nioc->n_len < bufsize) { 3666 kmem_free(buf, bufsize); 3667 return (EINVAL); 3668 } 3669 3670 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0) 3671 rv = EFAULT; 3672 3673 kmem_free(buf, bufsize); 3674 nioc->n_arg = res; 3675 nioc->n_len = bufsize; 3676 3677 return (rv); 3678 } 3679 3680 static int 3681 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 3682 cred_t *cred_p) 3683 { 3684 _NOTE(ARGUNUSED(nsid, mode, cred_p)); 3685 3686 if ((mode & FREAD) == 0) 3687 return (EPERM); 3688 3689 nioc->n_arg = nvme->n_intr_cnt; 3690 return (0); 3691 } 3692 3693 static int 3694 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 3695 cred_t *cred_p) 3696 { 3697 _NOTE(ARGUNUSED(nsid, cred_p)); 3698 int rv = 0; 3699 3700 if ((mode & FREAD) == 0) 3701 return (EPERM); 3702 3703 if (nioc->n_len < sizeof (nvme->n_version)) 3704 return (ENOMEM); 3705 3706 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf, 3707 sizeof (nvme->n_version), mode) != 0) 3708 rv = EFAULT; 3709 3710 return (rv); 3711 } 3712 3713 static int 3714 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 3715 cred_t *cred_p) 3716 { 3717 _NOTE(ARGUNUSED(mode)); 3718 nvme_format_nvm_t frmt = { 0 }; 3719 int c_nsid = nsid != 0 ? nsid - 1 : 0; 3720 3721 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 3722 return (EPERM); 3723 3724 frmt.r = nioc->n_arg & 0xffffffff; 3725 3726 /* 3727 * Check whether the FORMAT NVM command is supported. 3728 */ 3729 if (nvme->n_idctl->id_oacs.oa_format == 0) 3730 return (EINVAL); 3731 3732 /* 3733 * Don't allow format or secure erase of individual namespace if that 3734 * would cause a format or secure erase of all namespaces. 3735 */ 3736 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0) 3737 return (EINVAL); 3738 3739 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE && 3740 nvme->n_idctl->id_fna.fn_sec_erase != 0) 3741 return (EINVAL); 3742 3743 /* 3744 * Don't allow formatting with Protection Information. 3745 */ 3746 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0) 3747 return (EINVAL); 3748 3749 /* 3750 * Don't allow formatting using an illegal LBA format, or any LBA format 3751 * that uses metadata. 3752 */ 3753 if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf || 3754 nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0) 3755 return (EINVAL); 3756 3757 /* 3758 * Don't allow formatting using an illegal Secure Erase setting. 3759 */ 3760 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES || 3761 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO && 3762 nvme->n_idctl->id_fna.fn_crypt_erase == 0)) 3763 return (EINVAL); 3764 3765 if (nsid == 0) 3766 nsid = (uint32_t)-1; 3767 3768 return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE, 3769 frmt.b.fm_ses)); 3770 } 3771 3772 static int 3773 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 3774 cred_t *cred_p) 3775 { 3776 _NOTE(ARGUNUSED(nioc, mode)); 3777 int rv = 0; 3778 3779 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 3780 return (EPERM); 3781 3782 if (nsid == 0) 3783 return (EINVAL); 3784 3785 rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl); 3786 if (rv != DDI_SUCCESS) 3787 rv = EBUSY; 3788 3789 return (rv); 3790 } 3791 3792 static int 3793 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 3794 cred_t *cred_p) 3795 { 3796 _NOTE(ARGUNUSED(nioc, mode)); 3797 nvme_identify_nsid_t *idns; 3798 int rv = 0; 3799 3800 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 3801 return (EPERM); 3802 3803 if (nsid == 0) 3804 return (EINVAL); 3805 3806 /* 3807 * Identify namespace again, free old identify data. 3808 */ 3809 idns = nvme->n_ns[nsid - 1].ns_idns; 3810 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) 3811 return (EIO); 3812 3813 kmem_free(idns, sizeof (nvme_identify_nsid_t)); 3814 3815 rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl); 3816 if (rv != DDI_SUCCESS) 3817 rv = EBUSY; 3818 3819 return (rv); 3820 } 3821 3822 static int 3823 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p, 3824 int *rval_p) 3825 { 3826 #ifndef __lock_lint 3827 _NOTE(ARGUNUSED(rval_p)); 3828 #endif 3829 minor_t minor = getminor(dev); 3830 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 3831 int nsid = NVME_MINOR_NSID(minor); 3832 int rv = 0; 3833 nvme_ioctl_t nioc; 3834 3835 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = { 3836 NULL, 3837 nvme_ioctl_identify, 3838 nvme_ioctl_identify, 3839 nvme_ioctl_capabilities, 3840 nvme_ioctl_get_logpage, 3841 nvme_ioctl_get_features, 3842 nvme_ioctl_intr_cnt, 3843 nvme_ioctl_version, 3844 nvme_ioctl_format, 3845 nvme_ioctl_detach, 3846 nvme_ioctl_attach 3847 }; 3848 3849 if (nvme == NULL) 3850 return (ENXIO); 3851 3852 if (nsid > nvme->n_namespace_count) 3853 return (ENXIO); 3854 3855 if (IS_DEVCTL(cmd)) 3856 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0)); 3857 3858 #ifdef _MULTI_DATAMODEL 3859 switch (ddi_model_convert_from(mode & FMODELS)) { 3860 case DDI_MODEL_ILP32: { 3861 nvme_ioctl32_t nioc32; 3862 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t), 3863 mode) != 0) 3864 return (EFAULT); 3865 nioc.n_len = nioc32.n_len; 3866 nioc.n_buf = nioc32.n_buf; 3867 nioc.n_arg = nioc32.n_arg; 3868 break; 3869 } 3870 case DDI_MODEL_NONE: 3871 #endif 3872 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode) 3873 != 0) 3874 return (EFAULT); 3875 #ifdef _MULTI_DATAMODEL 3876 break; 3877 } 3878 #endif 3879 3880 if (nvme->n_dead && cmd != NVME_IOC_DETACH) 3881 return (EIO); 3882 3883 3884 if (cmd == NVME_IOC_IDENTIFY_CTRL) { 3885 /* 3886 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and 3887 * attachment point nodes. 3888 */ 3889 nsid = 0; 3890 } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) { 3891 /* 3892 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it 3893 * will always return identify data for namespace 1. 3894 */ 3895 nsid = 1; 3896 } 3897 3898 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL) 3899 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode, 3900 cred_p); 3901 else 3902 rv = EINVAL; 3903 3904 #ifdef _MULTI_DATAMODEL 3905 switch (ddi_model_convert_from(mode & FMODELS)) { 3906 case DDI_MODEL_ILP32: { 3907 nvme_ioctl32_t nioc32; 3908 3909 nioc32.n_len = (size32_t)nioc.n_len; 3910 nioc32.n_buf = (uintptr32_t)nioc.n_buf; 3911 nioc32.n_arg = nioc.n_arg; 3912 3913 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t), 3914 mode) != 0) 3915 return (EFAULT); 3916 break; 3917 } 3918 case DDI_MODEL_NONE: 3919 #endif 3920 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode) 3921 != 0) 3922 return (EFAULT); 3923 #ifdef _MULTI_DATAMODEL 3924 break; 3925 } 3926 #endif 3927 3928 return (rv); 3929 } 3930