xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 6e6c7d67bf5ba2efa13619acd59395d0f278ee75)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2017 Joyent, Inc.
17  */
18 
19 /*
20  * blkdev driver for NVMe compliant storage devices
21  *
22  * This driver was written to conform to version 1.2.1 of the NVMe
23  * specification.  It may work with newer versions, but that is completely
24  * untested and disabled by default.
25  *
26  * The driver has only been tested on x86 systems and will not work on big-
27  * endian systems without changes to the code accessing registers and data
28  * structures used by the hardware.
29  *
30  *
31  * Interrupt Usage:
32  *
33  * The driver will use a single interrupt while configuring the device as the
34  * specification requires, but contrary to the specification it will try to use
35  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36  * will switch to multiple-message MSI(-X) if supported. The driver wants to
37  * have one interrupt vector per CPU, but it will work correctly if less are
38  * available. Interrupts can be shared by queues, the interrupt handler will
39  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40  * the admin queue will share an interrupt with one I/O queue. The interrupt
41  * handler will retrieve completed commands from all queues sharing an interrupt
42  * vector and will post them to a taskq for completion processing.
43  *
44  *
45  * Command Processing:
46  *
47  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48  * to 65536 I/O commands. The driver will configure one I/O queue pair per
49  * available interrupt vector, with the queue length usually much smaller than
50  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51  * interrupt vectors will be used.
52  *
53  * Additionally the hardware provides a single special admin queue pair that can
54  * hold up to 4096 admin commands.
55  *
56  * From the hardware perspective both queues of a queue pair are independent,
57  * but they share some driver state: the command array (holding pointers to
58  * commands currently being processed by the hardware) and the active command
59  * counter. Access to a queue pair and the shared state is protected by
60  * nq_mutex.
61  *
62  * When a command is submitted to a queue pair the active command counter is
63  * incremented and a pointer to the command is stored in the command array. The
64  * array index is used as command identifier (CID) in the submission queue
65  * entry. Some commands may take a very long time to complete, and if the queue
66  * wraps around in that time a submission may find the next array slot to still
67  * be used by a long-running command. In this case the array is sequentially
68  * searched for the next free slot. The length of the command array is the same
69  * as the configured queue length. Queue overrun is prevented by the semaphore,
70  * so a command submission may block if the queue is full.
71  *
72  *
73  * Polled I/O Support:
74  *
75  * For kernel core dump support the driver can do polled I/O. As interrupts are
76  * turned off while dumping the driver will just submit a command in the regular
77  * way, and then repeatedly attempt a command retrieval until it gets the
78  * command back.
79  *
80  *
81  * Namespace Support:
82  *
83  * NVMe devices can have multiple namespaces, each being a independent data
84  * store. The driver supports multiple namespaces and creates a blkdev interface
85  * for each namespace found. Namespaces can have various attributes to support
86  * thin provisioning and protection information. This driver does not support
87  * any of this and ignores namespaces that have these attributes.
88  *
89  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
90  * (EUI64). This driver uses the EUI64 if present to generate the devid and
91  * passes it to blkdev to use it in the device node names. As this is currently
92  * untested namespaces with EUI64 are ignored by default.
93  *
94  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
95  * single controller. This is an artificial limit imposed by the driver to be
96  * able to address a reasonable number of controllers and namespaces using a
97  * 32bit minor node number.
98  *
99  *
100  * Minor nodes:
101  *
102  * For each NVMe device the driver exposes one minor node for the controller and
103  * one minor node for each namespace. The only operations supported by those
104  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
105  * interface for the nvmeadm(1M) utility.
106  *
107  *
108  * Blkdev Interface:
109  *
110  * This driver uses blkdev to do all the heavy lifting involved with presenting
111  * a disk device to the system. As a result, the processing of I/O requests is
112  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
113  * setup, and splitting of transfers into manageable chunks.
114  *
115  * I/O requests coming in from blkdev are turned into NVM commands and posted to
116  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
117  * queues. There is currently no timeout handling of I/O commands.
118  *
119  * Blkdev also supports querying device/media information and generating a
120  * devid. The driver reports the best block size as determined by the namespace
121  * format back to blkdev as physical block size to support partition and block
122  * alignment. The devid is either based on the namespace EUI64, if present, or
123  * composed using the device vendor ID, model number, serial number, and the
124  * namespace ID.
125  *
126  *
127  * Error Handling:
128  *
129  * Error handling is currently limited to detecting fatal hardware errors,
130  * either by asynchronous events, or synchronously through command status or
131  * admin command timeouts. In case of severe errors the device is fenced off,
132  * all further requests will return EIO. FMA is then called to fault the device.
133  *
134  * The hardware has a limit for outstanding asynchronous event requests. Before
135  * this limit is known the driver assumes it is at least 1 and posts a single
136  * asynchronous request. Later when the limit is known more asynchronous event
137  * requests are posted to allow quicker reception of error information. When an
138  * asynchronous event is posted by the hardware the driver will parse the error
139  * status fields and log information or fault the device, depending on the
140  * severity of the asynchronous event. The asynchronous event request is then
141  * reused and posted to the admin queue again.
142  *
143  * On command completion the command status is checked for errors. In case of
144  * errors indicating a driver bug the driver panics. Almost all other error
145  * status values just cause EIO to be returned.
146  *
147  * Command timeouts are currently detected for all admin commands except
148  * asynchronous event requests. If a command times out and the hardware appears
149  * to be healthy the driver attempts to abort the command. The original command
150  * timeout is also applied to the abort command. If the abort times out too the
151  * driver assumes the device to be dead, fences it off, and calls FMA to retire
152  * it. In all other cases the aborted command should return immediately with a
153  * status indicating it was aborted, and the driver will wait indefinitely for
154  * that to happen. No timeout handling of normal I/O commands is presently done.
155  *
156  * Any command that times out due to the controller dropping dead will be put on
157  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
158  * memory being reused by the system and later be written to by a "dead" NVMe
159  * controller.
160  *
161  *
162  * Locking:
163  *
164  * Each queue pair has its own nq_mutex, which must be held when accessing the
165  * associated queue registers or the shared state of the queue pair. Callers of
166  * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
167  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
168  * themselves.
169  *
170  * Each command also has its own nc_mutex, which is associated with the
171  * condition variable nc_cv. It is only used on admin commands which are run
172  * synchronously. In that case it must be held across calls to
173  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
174  * nvme_admin_cmd(). It must also be held whenever the completion state of the
175  * command is changed or while a admin command timeout is handled.
176  *
177  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
178  * More than one nc_mutex may only be held when aborting commands. In this case,
179  * the nc_mutex of the command to be aborted must be held across the call to
180  * nvme_abort_cmd() to prevent the command from completing while the abort is in
181  * progress.
182  *
183  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
184  * and exclusive-open flag nm_oexcl.
185  *
186  *
187  * Quiesce / Fast Reboot:
188  *
189  * The driver currently does not support fast reboot. A quiesce(9E) entry point
190  * is still provided which is used to send a shutdown notification to the
191  * device.
192  *
193  *
194  * Driver Configuration:
195  *
196  * The following driver properties can be changed to control some aspects of the
197  * drivers operation:
198  * - strict-version: can be set to 0 to allow devices conforming to newer
199  *   versions or namespaces with EUI64 to be used
200  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
201  *   specific command status as a fatal error leading device faulting
202  * - admin-queue-len: the maximum length of the admin queue (16-4096)
203  * - io-queue-len: the maximum length of the I/O queues (16-65536)
204  * - async-event-limit: the maximum number of asynchronous event requests to be
205  *   posted by the driver
206  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
207  *   cache
208  * - min-phys-block-size: the minimum physical block size to report to blkdev,
209  *   which is among other things the basis for ZFS vdev ashift
210  *
211  *
212  * TODO:
213  * - figure out sane default for I/O queue depth reported to blkdev
214  * - FMA handling of media errors
215  * - support for devices supporting very large I/O requests using chained PRPs
216  * - support for configuring hardware parameters like interrupt coalescing
217  * - support for media formatting and hard partitioning into namespaces
218  * - support for big-endian systems
219  * - support for fast reboot
220  * - support for firmware updates
221  * - support for NVMe Subsystem Reset (1.1)
222  * - support for Scatter/Gather lists (1.1)
223  * - support for Reservations (1.1)
224  * - support for power management
225  */
226 
227 #include <sys/byteorder.h>
228 #ifdef _BIG_ENDIAN
229 #error nvme driver needs porting for big-endian platforms
230 #endif
231 
232 #include <sys/modctl.h>
233 #include <sys/conf.h>
234 #include <sys/devops.h>
235 #include <sys/ddi.h>
236 #include <sys/sunddi.h>
237 #include <sys/sunndi.h>
238 #include <sys/bitmap.h>
239 #include <sys/sysmacros.h>
240 #include <sys/param.h>
241 #include <sys/varargs.h>
242 #include <sys/cpuvar.h>
243 #include <sys/disp.h>
244 #include <sys/blkdev.h>
245 #include <sys/atomic.h>
246 #include <sys/archsystm.h>
247 #include <sys/sata/sata_hba.h>
248 #include <sys/stat.h>
249 #include <sys/policy.h>
250 #include <sys/list.h>
251 
252 #include <sys/nvme.h>
253 
254 #ifdef __x86
255 #include <sys/x86_archext.h>
256 #endif
257 
258 #include "nvme_reg.h"
259 #include "nvme_var.h"
260 
261 
262 /* NVMe spec version supported */
263 static const int nvme_version_major = 1;
264 static const int nvme_version_minor = 2;
265 
266 /* tunable for admin command timeout in seconds, default is 1s */
267 int nvme_admin_cmd_timeout = 1;
268 
269 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
270 int nvme_format_cmd_timeout = 600;
271 
272 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
273 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
274 static int nvme_quiesce(dev_info_t *);
275 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
276 static int nvme_setup_interrupts(nvme_t *, int, int);
277 static void nvme_release_interrupts(nvme_t *);
278 static uint_t nvme_intr(caddr_t, caddr_t);
279 
280 static void nvme_shutdown(nvme_t *, int, boolean_t);
281 static boolean_t nvme_reset(nvme_t *, boolean_t);
282 static int nvme_init(nvme_t *);
283 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
284 static void nvme_free_cmd(nvme_cmd_t *);
285 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
286     bd_xfer_t *);
287 static void nvme_admin_cmd(nvme_cmd_t *, int);
288 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
289 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
290 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
291 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
292 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
293 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
294 static void nvme_wakeup_cmd(void *);
295 static void nvme_async_event_task(void *);
296 
297 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
298 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
299 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
300 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
301 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
302 static inline int nvme_check_cmd_status(nvme_cmd_t *);
303 
304 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
305 static void nvme_async_event(nvme_t *);
306 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
307     boolean_t, uint8_t);
308 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
309 static int nvme_identify(nvme_t *, uint32_t, void **);
310 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
311     uint32_t *);
312 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
313     void **, size_t *);
314 static int nvme_write_cache_set(nvme_t *, boolean_t);
315 static int nvme_set_nqueues(nvme_t *, uint16_t *);
316 
317 static void nvme_free_dma(nvme_dma_t *);
318 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
319     nvme_dma_t **);
320 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
321     nvme_dma_t **);
322 static void nvme_free_qpair(nvme_qpair_t *);
323 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
324 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
325 
326 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
327 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
328 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
329 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
330 
331 static boolean_t nvme_check_regs_hdl(nvme_t *);
332 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
333 
334 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
335 
336 static void nvme_bd_xfer_done(void *);
337 static void nvme_bd_driveinfo(void *, bd_drive_t *);
338 static int nvme_bd_mediainfo(void *, bd_media_t *);
339 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
340 static int nvme_bd_read(void *, bd_xfer_t *);
341 static int nvme_bd_write(void *, bd_xfer_t *);
342 static int nvme_bd_sync(void *, bd_xfer_t *);
343 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
344 
345 static int nvme_prp_dma_constructor(void *, void *, int);
346 static void nvme_prp_dma_destructor(void *, void *);
347 
348 static void nvme_prepare_devid(nvme_t *, uint32_t);
349 
350 static int nvme_open(dev_t *, int, int, cred_t *);
351 static int nvme_close(dev_t, int, int, cred_t *);
352 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
353 
354 #define	NVME_MINOR_INST_SHIFT	9
355 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
356 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
357 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
358 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
359 
360 static void *nvme_state;
361 static kmem_cache_t *nvme_cmd_cache;
362 
363 /*
364  * DMA attributes for queue DMA memory
365  *
366  * Queue DMA memory must be page aligned. The maximum length of a queue is
367  * 65536 entries, and an entry can be 64 bytes long.
368  */
369 static ddi_dma_attr_t nvme_queue_dma_attr = {
370 	.dma_attr_version	= DMA_ATTR_V0,
371 	.dma_attr_addr_lo	= 0,
372 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
373 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
374 	.dma_attr_align		= 0x1000,
375 	.dma_attr_burstsizes	= 0x7ff,
376 	.dma_attr_minxfer	= 0x1000,
377 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
378 	.dma_attr_seg		= 0xffffffffffffffffULL,
379 	.dma_attr_sgllen	= 1,
380 	.dma_attr_granular	= 1,
381 	.dma_attr_flags		= 0,
382 };
383 
384 /*
385  * DMA attributes for transfers using Physical Region Page (PRP) entries
386  *
387  * A PRP entry describes one page of DMA memory using the page size specified
388  * in the controller configuration's memory page size register (CC.MPS). It uses
389  * a 64bit base address aligned to this page size. There is no limitation on
390  * chaining PRPs together for arbitrarily large DMA transfers.
391  */
392 static ddi_dma_attr_t nvme_prp_dma_attr = {
393 	.dma_attr_version	= DMA_ATTR_V0,
394 	.dma_attr_addr_lo	= 0,
395 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
396 	.dma_attr_count_max	= 0xfff,
397 	.dma_attr_align		= 0x1000,
398 	.dma_attr_burstsizes	= 0x7ff,
399 	.dma_attr_minxfer	= 0x1000,
400 	.dma_attr_maxxfer	= 0x1000,
401 	.dma_attr_seg		= 0xfff,
402 	.dma_attr_sgllen	= -1,
403 	.dma_attr_granular	= 1,
404 	.dma_attr_flags		= 0,
405 };
406 
407 /*
408  * DMA attributes for transfers using scatter/gather lists
409  *
410  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
411  * 32bit length field. SGL Segment and SGL Last Segment entries require the
412  * length to be a multiple of 16 bytes.
413  */
414 static ddi_dma_attr_t nvme_sgl_dma_attr = {
415 	.dma_attr_version	= DMA_ATTR_V0,
416 	.dma_attr_addr_lo	= 0,
417 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
418 	.dma_attr_count_max	= 0xffffffffUL,
419 	.dma_attr_align		= 1,
420 	.dma_attr_burstsizes	= 0x7ff,
421 	.dma_attr_minxfer	= 0x10,
422 	.dma_attr_maxxfer	= 0xfffffffffULL,
423 	.dma_attr_seg		= 0xffffffffffffffffULL,
424 	.dma_attr_sgllen	= -1,
425 	.dma_attr_granular	= 0x10,
426 	.dma_attr_flags		= 0
427 };
428 
429 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
430 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
431 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
432 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
433 };
434 
435 static struct cb_ops nvme_cb_ops = {
436 	.cb_open	= nvme_open,
437 	.cb_close	= nvme_close,
438 	.cb_strategy	= nodev,
439 	.cb_print	= nodev,
440 	.cb_dump	= nodev,
441 	.cb_read	= nodev,
442 	.cb_write	= nodev,
443 	.cb_ioctl	= nvme_ioctl,
444 	.cb_devmap	= nodev,
445 	.cb_mmap	= nodev,
446 	.cb_segmap	= nodev,
447 	.cb_chpoll	= nochpoll,
448 	.cb_prop_op	= ddi_prop_op,
449 	.cb_str		= 0,
450 	.cb_flag	= D_NEW | D_MP,
451 	.cb_rev		= CB_REV,
452 	.cb_aread	= nodev,
453 	.cb_awrite	= nodev
454 };
455 
456 static struct dev_ops nvme_dev_ops = {
457 	.devo_rev	= DEVO_REV,
458 	.devo_refcnt	= 0,
459 	.devo_getinfo	= ddi_no_info,
460 	.devo_identify	= nulldev,
461 	.devo_probe	= nulldev,
462 	.devo_attach	= nvme_attach,
463 	.devo_detach	= nvme_detach,
464 	.devo_reset	= nodev,
465 	.devo_cb_ops	= &nvme_cb_ops,
466 	.devo_bus_ops	= NULL,
467 	.devo_power	= NULL,
468 	.devo_quiesce	= nvme_quiesce,
469 };
470 
471 static struct modldrv nvme_modldrv = {
472 	.drv_modops	= &mod_driverops,
473 	.drv_linkinfo	= "NVMe v1.1b",
474 	.drv_dev_ops	= &nvme_dev_ops
475 };
476 
477 static struct modlinkage nvme_modlinkage = {
478 	.ml_rev		= MODREV_1,
479 	.ml_linkage	= { &nvme_modldrv, NULL }
480 };
481 
482 static bd_ops_t nvme_bd_ops = {
483 	.o_version	= BD_OPS_VERSION_0,
484 	.o_drive_info	= nvme_bd_driveinfo,
485 	.o_media_info	= nvme_bd_mediainfo,
486 	.o_devid_init	= nvme_bd_devid,
487 	.o_sync_cache	= nvme_bd_sync,
488 	.o_read		= nvme_bd_read,
489 	.o_write	= nvme_bd_write,
490 };
491 
492 /*
493  * This list will hold commands that have timed out and couldn't be aborted.
494  * As we don't know what the hardware may still do with the DMA memory we can't
495  * free them, so we'll keep them forever on this list where we can easily look
496  * at them with mdb.
497  */
498 static struct list nvme_lost_cmds;
499 static kmutex_t nvme_lc_mutex;
500 
501 int
502 _init(void)
503 {
504 	int error;
505 
506 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
507 	if (error != DDI_SUCCESS)
508 		return (error);
509 
510 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
511 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
512 
513 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
514 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
515 	    offsetof(nvme_cmd_t, nc_list));
516 
517 	bd_mod_init(&nvme_dev_ops);
518 
519 	error = mod_install(&nvme_modlinkage);
520 	if (error != DDI_SUCCESS) {
521 		ddi_soft_state_fini(&nvme_state);
522 		mutex_destroy(&nvme_lc_mutex);
523 		list_destroy(&nvme_lost_cmds);
524 		bd_mod_fini(&nvme_dev_ops);
525 	}
526 
527 	return (error);
528 }
529 
530 int
531 _fini(void)
532 {
533 	int error;
534 
535 	if (!list_is_empty(&nvme_lost_cmds))
536 		return (DDI_FAILURE);
537 
538 	error = mod_remove(&nvme_modlinkage);
539 	if (error == DDI_SUCCESS) {
540 		ddi_soft_state_fini(&nvme_state);
541 		kmem_cache_destroy(nvme_cmd_cache);
542 		mutex_destroy(&nvme_lc_mutex);
543 		list_destroy(&nvme_lost_cmds);
544 		bd_mod_fini(&nvme_dev_ops);
545 	}
546 
547 	return (error);
548 }
549 
550 int
551 _info(struct modinfo *modinfop)
552 {
553 	return (mod_info(&nvme_modlinkage, modinfop));
554 }
555 
556 static inline void
557 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
558 {
559 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
560 
561 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
562 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
563 }
564 
565 static inline void
566 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
567 {
568 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
569 
570 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
571 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
572 }
573 
574 static inline uint64_t
575 nvme_get64(nvme_t *nvme, uintptr_t reg)
576 {
577 	uint64_t val;
578 
579 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
580 
581 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
582 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
583 
584 	return (val);
585 }
586 
587 static inline uint32_t
588 nvme_get32(nvme_t *nvme, uintptr_t reg)
589 {
590 	uint32_t val;
591 
592 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
593 
594 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
595 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
596 
597 	return (val);
598 }
599 
600 static boolean_t
601 nvme_check_regs_hdl(nvme_t *nvme)
602 {
603 	ddi_fm_error_t error;
604 
605 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
606 
607 	if (error.fme_status != DDI_FM_OK)
608 		return (B_TRUE);
609 
610 	return (B_FALSE);
611 }
612 
613 static boolean_t
614 nvme_check_dma_hdl(nvme_dma_t *dma)
615 {
616 	ddi_fm_error_t error;
617 
618 	if (dma == NULL)
619 		return (B_FALSE);
620 
621 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
622 
623 	if (error.fme_status != DDI_FM_OK)
624 		return (B_TRUE);
625 
626 	return (B_FALSE);
627 }
628 
629 static void
630 nvme_free_dma_common(nvme_dma_t *dma)
631 {
632 	if (dma->nd_dmah != NULL)
633 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
634 	if (dma->nd_acch != NULL)
635 		ddi_dma_mem_free(&dma->nd_acch);
636 	if (dma->nd_dmah != NULL)
637 		ddi_dma_free_handle(&dma->nd_dmah);
638 }
639 
640 static void
641 nvme_free_dma(nvme_dma_t *dma)
642 {
643 	nvme_free_dma_common(dma);
644 	kmem_free(dma, sizeof (*dma));
645 }
646 
647 /* ARGSUSED */
648 static void
649 nvme_prp_dma_destructor(void *buf, void *private)
650 {
651 	nvme_dma_t *dma = (nvme_dma_t *)buf;
652 
653 	nvme_free_dma_common(dma);
654 }
655 
656 static int
657 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
658     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
659 {
660 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
661 	    &dma->nd_dmah) != DDI_SUCCESS) {
662 		/*
663 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
664 		 * the only other possible error is DDI_DMA_BADATTR which
665 		 * indicates a driver bug which should cause a panic.
666 		 */
667 		dev_err(nvme->n_dip, CE_PANIC,
668 		    "!failed to get DMA handle, check DMA attributes");
669 		return (DDI_FAILURE);
670 	}
671 
672 	/*
673 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
674 	 * or the flags are conflicting, which isn't the case here.
675 	 */
676 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
677 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
678 	    &dma->nd_len, &dma->nd_acch);
679 
680 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
681 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
682 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
683 		dev_err(nvme->n_dip, CE_WARN,
684 		    "!failed to bind DMA memory");
685 		atomic_inc_32(&nvme->n_dma_bind_err);
686 		nvme_free_dma_common(dma);
687 		return (DDI_FAILURE);
688 	}
689 
690 	return (DDI_SUCCESS);
691 }
692 
693 static int
694 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
695     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
696 {
697 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
698 
699 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
700 	    DDI_SUCCESS) {
701 		*ret = NULL;
702 		kmem_free(dma, sizeof (nvme_dma_t));
703 		return (DDI_FAILURE);
704 	}
705 
706 	bzero(dma->nd_memp, dma->nd_len);
707 
708 	*ret = dma;
709 	return (DDI_SUCCESS);
710 }
711 
712 /* ARGSUSED */
713 static int
714 nvme_prp_dma_constructor(void *buf, void *private, int flags)
715 {
716 	nvme_dma_t *dma = (nvme_dma_t *)buf;
717 	nvme_t *nvme = (nvme_t *)private;
718 
719 	dma->nd_dmah = NULL;
720 	dma->nd_acch = NULL;
721 
722 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
723 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
724 		return (-1);
725 	}
726 
727 	ASSERT(dma->nd_ncookie == 1);
728 
729 	dma->nd_cached = B_TRUE;
730 
731 	return (0);
732 }
733 
734 static int
735 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
736     uint_t flags, nvme_dma_t **dma)
737 {
738 	uint32_t len = nentry * qe_len;
739 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
740 
741 	len = roundup(len, nvme->n_pagesize);
742 
743 	q_dma_attr.dma_attr_minxfer = len;
744 
745 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
746 	    != DDI_SUCCESS) {
747 		dev_err(nvme->n_dip, CE_WARN,
748 		    "!failed to get DMA memory for queue");
749 		goto fail;
750 	}
751 
752 	if ((*dma)->nd_ncookie != 1) {
753 		dev_err(nvme->n_dip, CE_WARN,
754 		    "!got too many cookies for queue DMA");
755 		goto fail;
756 	}
757 
758 	return (DDI_SUCCESS);
759 
760 fail:
761 	if (*dma) {
762 		nvme_free_dma(*dma);
763 		*dma = NULL;
764 	}
765 
766 	return (DDI_FAILURE);
767 }
768 
769 static void
770 nvme_free_qpair(nvme_qpair_t *qp)
771 {
772 	int i;
773 
774 	mutex_destroy(&qp->nq_mutex);
775 	sema_destroy(&qp->nq_sema);
776 
777 	if (qp->nq_sqdma != NULL)
778 		nvme_free_dma(qp->nq_sqdma);
779 	if (qp->nq_cqdma != NULL)
780 		nvme_free_dma(qp->nq_cqdma);
781 
782 	if (qp->nq_active_cmds > 0)
783 		for (i = 0; i != qp->nq_nentry; i++)
784 			if (qp->nq_cmd[i] != NULL)
785 				nvme_free_cmd(qp->nq_cmd[i]);
786 
787 	if (qp->nq_cmd != NULL)
788 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
789 
790 	kmem_free(qp, sizeof (nvme_qpair_t));
791 }
792 
793 static int
794 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
795     int idx)
796 {
797 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
798 
799 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
800 	    DDI_INTR_PRI(nvme->n_intr_pri));
801 	sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
802 
803 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
804 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
805 		goto fail;
806 
807 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
808 	    DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
809 		goto fail;
810 
811 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
812 	qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
813 	qp->nq_nentry = nentry;
814 
815 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
816 	qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
817 
818 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
819 	qp->nq_next_cmd = 0;
820 
821 	*nqp = qp;
822 	return (DDI_SUCCESS);
823 
824 fail:
825 	nvme_free_qpair(qp);
826 	*nqp = NULL;
827 
828 	return (DDI_FAILURE);
829 }
830 
831 static nvme_cmd_t *
832 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
833 {
834 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
835 
836 	if (cmd == NULL)
837 		return (cmd);
838 
839 	bzero(cmd, sizeof (nvme_cmd_t));
840 
841 	cmd->nc_nvme = nvme;
842 
843 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
844 	    DDI_INTR_PRI(nvme->n_intr_pri));
845 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
846 
847 	return (cmd);
848 }
849 
850 static void
851 nvme_free_cmd(nvme_cmd_t *cmd)
852 {
853 	/* Don't free commands on the lost commands list. */
854 	if (list_link_active(&cmd->nc_list))
855 		return;
856 
857 	if (cmd->nc_dma) {
858 		if (cmd->nc_dma->nd_cached)
859 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
860 			    cmd->nc_dma);
861 		else
862 			nvme_free_dma(cmd->nc_dma);
863 		cmd->nc_dma = NULL;
864 	}
865 
866 	cv_destroy(&cmd->nc_cv);
867 	mutex_destroy(&cmd->nc_mutex);
868 
869 	kmem_cache_free(nvme_cmd_cache, cmd);
870 }
871 
872 static void
873 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
874 {
875 	sema_p(&qp->nq_sema);
876 	nvme_submit_cmd_common(qp, cmd);
877 }
878 
879 static int
880 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
881 {
882 	if (sema_tryp(&qp->nq_sema) == 0)
883 		return (EAGAIN);
884 
885 	nvme_submit_cmd_common(qp, cmd);
886 	return (0);
887 }
888 
889 static void
890 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
891 {
892 	nvme_reg_sqtdbl_t tail = { 0 };
893 
894 	mutex_enter(&qp->nq_mutex);
895 	cmd->nc_completed = B_FALSE;
896 
897 	/*
898 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
899 	 * slot. If the slot is already occupied advance to the next slot and
900 	 * try again. This can happen for long running commands like async event
901 	 * requests.
902 	 */
903 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
904 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
905 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
906 
907 	qp->nq_active_cmds++;
908 
909 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
910 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
911 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
912 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
913 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
914 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
915 
916 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
917 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
918 
919 	mutex_exit(&qp->nq_mutex);
920 }
921 
922 static nvme_cmd_t *
923 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
924 {
925 	nvme_cmd_t *cmd;
926 
927 	ASSERT(mutex_owned(&qp->nq_mutex));
928 	ASSERT3S(cid, <, qp->nq_nentry);
929 
930 	cmd = qp->nq_cmd[cid];
931 	qp->nq_cmd[cid] = NULL;
932 	ASSERT3U(qp->nq_active_cmds, >, 0);
933 	qp->nq_active_cmds--;
934 	sema_v(&qp->nq_sema);
935 
936 	ASSERT3P(cmd, !=, NULL);
937 	ASSERT3P(cmd->nc_nvme, ==, nvme);
938 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
939 
940 	return (cmd);
941 }
942 
943 static nvme_cmd_t *
944 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
945 {
946 	nvme_reg_cqhdbl_t head = { 0 };
947 
948 	nvme_cqe_t *cqe;
949 	nvme_cmd_t *cmd;
950 
951 	(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
952 	    sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
953 
954 	mutex_enter(&qp->nq_mutex);
955 	cqe = &qp->nq_cq[qp->nq_cqhead];
956 
957 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
958 	if (cqe->cqe_sf.sf_p == qp->nq_phase) {
959 		mutex_exit(&qp->nq_mutex);
960 		return (NULL);
961 	}
962 
963 	ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
964 
965 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
966 
967 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
968 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
969 
970 	qp->nq_sqhead = cqe->cqe_sqhd;
971 
972 	head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
973 
974 	/* Toggle phase on wrap-around. */
975 	if (qp->nq_cqhead == 0)
976 		qp->nq_phase = qp->nq_phase ? 0 : 1;
977 
978 	nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
979 	mutex_exit(&qp->nq_mutex);
980 
981 	return (cmd);
982 }
983 
984 static int
985 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
986 {
987 	nvme_cqe_t *cqe = &cmd->nc_cqe;
988 
989 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
990 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
991 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
992 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
993 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
994 
995 	if (cmd->nc_xfer != NULL)
996 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
997 
998 	if (cmd->nc_nvme->n_strict_version) {
999 		cmd->nc_nvme->n_dead = B_TRUE;
1000 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1001 	}
1002 
1003 	return (EIO);
1004 }
1005 
1006 static int
1007 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1008 {
1009 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1010 
1011 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1017 		cmd->nc_nvme->n_dead = B_TRUE;
1018 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1019 	}
1020 
1021 	return (EIO);
1022 }
1023 
1024 static int
1025 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1026 {
1027 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1028 
1029 	switch (cqe->cqe_sf.sf_sc) {
1030 	case NVME_CQE_SC_INT_NVM_WRITE:
1031 		/* write fail */
1032 		/* TODO: post ereport */
1033 		if (cmd->nc_xfer != NULL)
1034 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1035 		return (EIO);
1036 
1037 	case NVME_CQE_SC_INT_NVM_READ:
1038 		/* read fail */
1039 		/* TODO: post ereport */
1040 		if (cmd->nc_xfer != NULL)
1041 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1042 		return (EIO);
1043 
1044 	default:
1045 		return (nvme_check_unknown_cmd_status(cmd));
1046 	}
1047 }
1048 
1049 static int
1050 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1051 {
1052 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1053 
1054 	switch (cqe->cqe_sf.sf_sc) {
1055 	case NVME_CQE_SC_GEN_SUCCESS:
1056 		return (0);
1057 
1058 	/*
1059 	 * Errors indicating a bug in the driver should cause a panic.
1060 	 */
1061 	case NVME_CQE_SC_GEN_INV_OPC:
1062 		/* Invalid Command Opcode */
1063 		if (!cmd->nc_dontpanic)
1064 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1065 			    "programming error: invalid opcode in cmd %p",
1066 			    (void *)cmd);
1067 		return (EINVAL);
1068 
1069 	case NVME_CQE_SC_GEN_INV_FLD:
1070 		/* Invalid Field in Command */
1071 		if (!cmd->nc_dontpanic)
1072 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1073 			    "programming error: invalid field in cmd %p",
1074 			    (void *)cmd);
1075 		return (EIO);
1076 
1077 	case NVME_CQE_SC_GEN_ID_CNFL:
1078 		/* Command ID Conflict */
1079 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1080 		    "cmd ID conflict in cmd %p", (void *)cmd);
1081 		return (0);
1082 
1083 	case NVME_CQE_SC_GEN_INV_NS:
1084 		/* Invalid Namespace or Format */
1085 		if (!cmd->nc_dontpanic)
1086 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1087 			    "programming error: " "invalid NS/format in cmd %p",
1088 			    (void *)cmd);
1089 		return (EINVAL);
1090 
1091 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1092 		/* LBA Out Of Range */
1093 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1094 		    "LBA out of range in cmd %p", (void *)cmd);
1095 		return (0);
1096 
1097 	/*
1098 	 * Non-fatal errors, handle gracefully.
1099 	 */
1100 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1101 		/* Data Transfer Error (DMA) */
1102 		/* TODO: post ereport */
1103 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1104 		if (cmd->nc_xfer != NULL)
1105 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1106 		return (EIO);
1107 
1108 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1109 		/*
1110 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1111 		 * detailed error information is returned as async event,
1112 		 * so we pretty much ignore the error here and handle it
1113 		 * in the async event handler.
1114 		 */
1115 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1116 		if (cmd->nc_xfer != NULL)
1117 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1118 		return (EIO);
1119 
1120 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1121 		/*
1122 		 * Command Abort Requested. This normally happens only when a
1123 		 * command times out.
1124 		 */
1125 		/* TODO: post ereport or change blkdev to handle this? */
1126 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1127 		return (ECANCELED);
1128 
1129 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1130 		/* Command Aborted due to Power Loss Notification */
1131 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1132 		cmd->nc_nvme->n_dead = B_TRUE;
1133 		return (EIO);
1134 
1135 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1136 		/* Command Aborted due to SQ Deletion */
1137 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1138 		return (EIO);
1139 
1140 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1141 		/* Capacity Exceeded */
1142 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1143 		if (cmd->nc_xfer != NULL)
1144 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1145 		return (EIO);
1146 
1147 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1148 		/* Namespace Not Ready */
1149 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1150 		if (cmd->nc_xfer != NULL)
1151 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1152 		return (EIO);
1153 
1154 	default:
1155 		return (nvme_check_unknown_cmd_status(cmd));
1156 	}
1157 }
1158 
1159 static int
1160 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1161 {
1162 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1163 
1164 	switch (cqe->cqe_sf.sf_sc) {
1165 	case NVME_CQE_SC_SPC_INV_CQ:
1166 		/* Completion Queue Invalid */
1167 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1168 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1169 		return (EINVAL);
1170 
1171 	case NVME_CQE_SC_SPC_INV_QID:
1172 		/* Invalid Queue Identifier */
1173 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1174 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1175 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1176 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1177 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1178 		return (EINVAL);
1179 
1180 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1181 		/* Max Queue Size Exceeded */
1182 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1183 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1184 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1185 		return (EINVAL);
1186 
1187 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1188 		/* Abort Command Limit Exceeded */
1189 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1190 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1191 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1192 		return (0);
1193 
1194 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1195 		/* Async Event Request Limit Exceeded */
1196 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1197 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1198 		    "async event request limit exceeded in cmd %p",
1199 		    (void *)cmd);
1200 		return (0);
1201 
1202 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1203 		/* Invalid Interrupt Vector */
1204 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1205 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1206 		return (EINVAL);
1207 
1208 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1209 		/* Invalid Log Page */
1210 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1211 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1212 		return (EINVAL);
1213 
1214 	case NVME_CQE_SC_SPC_INV_FORMAT:
1215 		/* Invalid Format */
1216 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1217 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1218 		if (cmd->nc_xfer != NULL)
1219 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1220 		return (EINVAL);
1221 
1222 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1223 		/* Invalid Queue Deletion */
1224 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1225 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1226 		return (EINVAL);
1227 
1228 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1229 		/* Conflicting Attributes */
1230 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1231 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1232 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1233 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1234 		if (cmd->nc_xfer != NULL)
1235 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1236 		return (EINVAL);
1237 
1238 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1239 		/* Invalid Protection Information */
1240 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1241 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1242 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1243 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1244 		if (cmd->nc_xfer != NULL)
1245 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1246 		return (EINVAL);
1247 
1248 	case NVME_CQE_SC_SPC_NVM_READONLY:
1249 		/* Write to Read Only Range */
1250 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1251 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1252 		if (cmd->nc_xfer != NULL)
1253 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1254 		return (EROFS);
1255 
1256 	default:
1257 		return (nvme_check_unknown_cmd_status(cmd));
1258 	}
1259 }
1260 
1261 static inline int
1262 nvme_check_cmd_status(nvme_cmd_t *cmd)
1263 {
1264 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1265 
1266 	/*
1267 	 * Take a shortcut if the controller is dead, or if
1268 	 * command status indicates no error.
1269 	 */
1270 	if (cmd->nc_nvme->n_dead)
1271 		return (EIO);
1272 
1273 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1274 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1275 		return (0);
1276 
1277 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1278 		return (nvme_check_generic_cmd_status(cmd));
1279 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1280 		return (nvme_check_specific_cmd_status(cmd));
1281 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1282 		return (nvme_check_integrity_cmd_status(cmd));
1283 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1284 		return (nvme_check_vendor_cmd_status(cmd));
1285 
1286 	return (nvme_check_unknown_cmd_status(cmd));
1287 }
1288 
1289 static int
1290 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1291 {
1292 	nvme_t *nvme = abort_cmd->nc_nvme;
1293 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1294 	nvme_abort_cmd_t ac = { 0 };
1295 	int ret = 0;
1296 
1297 	sema_p(&nvme->n_abort_sema);
1298 
1299 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1300 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1301 
1302 	cmd->nc_sqid = 0;
1303 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1304 	cmd->nc_callback = nvme_wakeup_cmd;
1305 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1306 
1307 	/*
1308 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1309 	 * the aborted command has completed (aborted or otherwise), but since
1310 	 * we still hold the aborted command's mutex its callback hasn't been
1311 	 * processed yet.
1312 	 */
1313 	nvme_admin_cmd(cmd, sec);
1314 	sema_v(&nvme->n_abort_sema);
1315 
1316 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1317 		dev_err(nvme->n_dip, CE_WARN,
1318 		    "!ABORT failed with sct = %x, sc = %x",
1319 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1320 		atomic_inc_32(&nvme->n_abort_failed);
1321 	} else {
1322 		dev_err(nvme->n_dip, CE_WARN,
1323 		    "!ABORT of command %d/%d %ssuccessful",
1324 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1325 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1326 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1327 			atomic_inc_32(&nvme->n_cmd_aborted);
1328 	}
1329 
1330 	nvme_free_cmd(cmd);
1331 	return (ret);
1332 }
1333 
1334 /*
1335  * nvme_wait_cmd -- wait for command completion or timeout
1336  *
1337  * In case of a serious error or a timeout of the abort command the hardware
1338  * will be declared dead and FMA will be notified.
1339  */
1340 static void
1341 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1342 {
1343 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1344 	nvme_t *nvme = cmd->nc_nvme;
1345 	nvme_reg_csts_t csts;
1346 	nvme_qpair_t *qp;
1347 
1348 	ASSERT(mutex_owned(&cmd->nc_mutex));
1349 
1350 	while (!cmd->nc_completed) {
1351 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1352 			break;
1353 	}
1354 
1355 	if (cmd->nc_completed)
1356 		return;
1357 
1358 	/*
1359 	 * The command timed out.
1360 	 *
1361 	 * Check controller for fatal status, any errors associated with the
1362 	 * register or DMA handle, or for a double timeout (abort command timed
1363 	 * out). If necessary log a warning and call FMA.
1364 	 */
1365 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1366 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1367 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1368 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1369 	atomic_inc_32(&nvme->n_cmd_timeout);
1370 
1371 	if (csts.b.csts_cfs ||
1372 	    nvme_check_regs_hdl(nvme) ||
1373 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1374 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1375 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1376 		nvme->n_dead = B_TRUE;
1377 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1378 		/*
1379 		 * If the abort succeeded the command should complete
1380 		 * immediately with an appropriate status.
1381 		 */
1382 		while (!cmd->nc_completed)
1383 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1384 
1385 		return;
1386 	}
1387 
1388 	qp = nvme->n_ioq[cmd->nc_sqid];
1389 
1390 	mutex_enter(&qp->nq_mutex);
1391 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1392 	mutex_exit(&qp->nq_mutex);
1393 
1394 	/*
1395 	 * As we don't know what the presumed dead hardware might still do with
1396 	 * the DMA memory, we'll put the command on the lost commands list if it
1397 	 * has any DMA memory.
1398 	 */
1399 	if (cmd->nc_dma != NULL) {
1400 		mutex_enter(&nvme_lc_mutex);
1401 		list_insert_head(&nvme_lost_cmds, cmd);
1402 		mutex_exit(&nvme_lc_mutex);
1403 	}
1404 }
1405 
1406 static void
1407 nvme_wakeup_cmd(void *arg)
1408 {
1409 	nvme_cmd_t *cmd = arg;
1410 
1411 	mutex_enter(&cmd->nc_mutex);
1412 	cmd->nc_completed = B_TRUE;
1413 	cv_signal(&cmd->nc_cv);
1414 	mutex_exit(&cmd->nc_mutex);
1415 }
1416 
1417 static void
1418 nvme_async_event_task(void *arg)
1419 {
1420 	nvme_cmd_t *cmd = arg;
1421 	nvme_t *nvme = cmd->nc_nvme;
1422 	nvme_error_log_entry_t *error_log = NULL;
1423 	nvme_health_log_t *health_log = NULL;
1424 	size_t logsize = 0;
1425 	nvme_async_event_t event;
1426 
1427 	/*
1428 	 * Check for errors associated with the async request itself. The only
1429 	 * command-specific error is "async event limit exceeded", which
1430 	 * indicates a programming error in the driver and causes a panic in
1431 	 * nvme_check_cmd_status().
1432 	 *
1433 	 * Other possible errors are various scenarios where the async request
1434 	 * was aborted, or internal errors in the device. Internal errors are
1435 	 * reported to FMA, the command aborts need no special handling here.
1436 	 *
1437 	 * And finally, at least qemu nvme does not support async events,
1438 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1439 	 * will avoid posting async events.
1440 	 */
1441 
1442 	if (nvme_check_cmd_status(cmd) != 0) {
1443 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1444 		    "!async event request returned failure, sct = %x, "
1445 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1446 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1447 		    cmd->nc_cqe.cqe_sf.sf_m);
1448 
1449 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1450 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1451 			cmd->nc_nvme->n_dead = B_TRUE;
1452 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1453 			    DDI_SERVICE_LOST);
1454 		}
1455 
1456 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1457 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1458 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1459 			nvme->n_async_event_supported = B_FALSE;
1460 		}
1461 
1462 		nvme_free_cmd(cmd);
1463 		return;
1464 	}
1465 
1466 
1467 	event.r = cmd->nc_cqe.cqe_dw0;
1468 
1469 	/* Clear CQE and re-submit the async request. */
1470 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1471 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1472 
1473 	switch (event.b.ae_type) {
1474 	case NVME_ASYNC_TYPE_ERROR:
1475 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1476 			(void) nvme_get_logpage(nvme, (void **)&error_log,
1477 			    &logsize, event.b.ae_logpage);
1478 		} else {
1479 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1480 			    "async event reply: %d", event.b.ae_logpage);
1481 			atomic_inc_32(&nvme->n_wrong_logpage);
1482 		}
1483 
1484 		switch (event.b.ae_info) {
1485 		case NVME_ASYNC_ERROR_INV_SQ:
1486 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1487 			    "invalid submission queue");
1488 			return;
1489 
1490 		case NVME_ASYNC_ERROR_INV_DBL:
1491 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1492 			    "invalid doorbell write value");
1493 			return;
1494 
1495 		case NVME_ASYNC_ERROR_DIAGFAIL:
1496 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1497 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1498 			nvme->n_dead = B_TRUE;
1499 			atomic_inc_32(&nvme->n_diagfail_event);
1500 			break;
1501 
1502 		case NVME_ASYNC_ERROR_PERSISTENT:
1503 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1504 			    "device error");
1505 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1506 			nvme->n_dead = B_TRUE;
1507 			atomic_inc_32(&nvme->n_persistent_event);
1508 			break;
1509 
1510 		case NVME_ASYNC_ERROR_TRANSIENT:
1511 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1512 			    "device error");
1513 			/* TODO: send ereport */
1514 			atomic_inc_32(&nvme->n_transient_event);
1515 			break;
1516 
1517 		case NVME_ASYNC_ERROR_FW_LOAD:
1518 			dev_err(nvme->n_dip, CE_WARN,
1519 			    "!firmware image load error");
1520 			atomic_inc_32(&nvme->n_fw_load_event);
1521 			break;
1522 		}
1523 		break;
1524 
1525 	case NVME_ASYNC_TYPE_HEALTH:
1526 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1527 			(void) nvme_get_logpage(nvme, (void **)&health_log,
1528 			    &logsize, event.b.ae_logpage, -1);
1529 		} else {
1530 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1531 			    "async event reply: %d", event.b.ae_logpage);
1532 			atomic_inc_32(&nvme->n_wrong_logpage);
1533 		}
1534 
1535 		switch (event.b.ae_info) {
1536 		case NVME_ASYNC_HEALTH_RELIABILITY:
1537 			dev_err(nvme->n_dip, CE_WARN,
1538 			    "!device reliability compromised");
1539 			/* TODO: send ereport */
1540 			atomic_inc_32(&nvme->n_reliability_event);
1541 			break;
1542 
1543 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1544 			dev_err(nvme->n_dip, CE_WARN,
1545 			    "!temperature above threshold");
1546 			/* TODO: send ereport */
1547 			atomic_inc_32(&nvme->n_temperature_event);
1548 			break;
1549 
1550 		case NVME_ASYNC_HEALTH_SPARE:
1551 			dev_err(nvme->n_dip, CE_WARN,
1552 			    "!spare space below threshold");
1553 			/* TODO: send ereport */
1554 			atomic_inc_32(&nvme->n_spare_event);
1555 			break;
1556 		}
1557 		break;
1558 
1559 	case NVME_ASYNC_TYPE_VENDOR:
1560 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1561 		    "received, info = %x, logpage = %x", event.b.ae_info,
1562 		    event.b.ae_logpage);
1563 		atomic_inc_32(&nvme->n_vendor_event);
1564 		break;
1565 
1566 	default:
1567 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1568 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1569 		    event.b.ae_info, event.b.ae_logpage);
1570 		atomic_inc_32(&nvme->n_unknown_event);
1571 		break;
1572 	}
1573 
1574 	if (error_log)
1575 		kmem_free(error_log, logsize);
1576 
1577 	if (health_log)
1578 		kmem_free(health_log, logsize);
1579 }
1580 
1581 static void
1582 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1583 {
1584 	mutex_enter(&cmd->nc_mutex);
1585 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1586 	nvme_wait_cmd(cmd, sec);
1587 	mutex_exit(&cmd->nc_mutex);
1588 }
1589 
1590 static void
1591 nvme_async_event(nvme_t *nvme)
1592 {
1593 	nvme_cmd_t *cmd;
1594 
1595 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1596 	cmd->nc_sqid = 0;
1597 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1598 	cmd->nc_callback = nvme_async_event_task;
1599 	cmd->nc_dontpanic = B_TRUE;
1600 
1601 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1602 }
1603 
1604 static int
1605 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1606     uint8_t pi, boolean_t pil, uint8_t ses)
1607 {
1608 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1609 	nvme_format_nvm_t format_nvm = { 0 };
1610 	int ret;
1611 
1612 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1613 	format_nvm.b.fm_ms = ms ? 1 : 0;
1614 	format_nvm.b.fm_pi = pi & 0x7;
1615 	format_nvm.b.fm_pil = pil ? 1 : 0;
1616 	format_nvm.b.fm_ses = ses & 0x7;
1617 
1618 	cmd->nc_sqid = 0;
1619 	cmd->nc_callback = nvme_wakeup_cmd;
1620 	cmd->nc_sqe.sqe_nsid = nsid;
1621 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1622 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1623 
1624 	/*
1625 	 * Some devices like Samsung SM951 don't allow formatting of all
1626 	 * namespaces in one command. Handle that gracefully.
1627 	 */
1628 	if (nsid == (uint32_t)-1)
1629 		cmd->nc_dontpanic = B_TRUE;
1630 
1631 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1632 
1633 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1634 		dev_err(nvme->n_dip, CE_WARN,
1635 		    "!FORMAT failed with sct = %x, sc = %x",
1636 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1637 	}
1638 
1639 	nvme_free_cmd(cmd);
1640 	return (ret);
1641 }
1642 
1643 static int
1644 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1645     ...)
1646 {
1647 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1648 	nvme_getlogpage_t getlogpage = { 0 };
1649 	va_list ap;
1650 	int ret;
1651 
1652 	va_start(ap, logpage);
1653 
1654 	cmd->nc_sqid = 0;
1655 	cmd->nc_callback = nvme_wakeup_cmd;
1656 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1657 
1658 	getlogpage.b.lp_lid = logpage;
1659 
1660 	switch (logpage) {
1661 	case NVME_LOGPAGE_ERROR:
1662 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1663 		/*
1664 		 * The GET LOG PAGE command can use at most 2 pages to return
1665 		 * data, PRP lists are not supported.
1666 		 */
1667 		*bufsize = MIN(2 * nvme->n_pagesize,
1668 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1669 		break;
1670 
1671 	case NVME_LOGPAGE_HEALTH:
1672 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1673 		*bufsize = sizeof (nvme_health_log_t);
1674 		break;
1675 
1676 	case NVME_LOGPAGE_FWSLOT:
1677 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1678 		*bufsize = sizeof (nvme_fwslot_log_t);
1679 		break;
1680 
1681 	default:
1682 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1683 		    logpage);
1684 		atomic_inc_32(&nvme->n_unknown_logpage);
1685 		ret = EINVAL;
1686 		goto fail;
1687 	}
1688 
1689 	va_end(ap);
1690 
1691 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1692 
1693 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1694 
1695 	if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1696 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1697 		dev_err(nvme->n_dip, CE_WARN,
1698 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1699 		ret = ENOMEM;
1700 		goto fail;
1701 	}
1702 
1703 	if (cmd->nc_dma->nd_ncookie > 2) {
1704 		dev_err(nvme->n_dip, CE_WARN,
1705 		    "!too many DMA cookies for GET LOG PAGE");
1706 		atomic_inc_32(&nvme->n_too_many_cookies);
1707 		ret = ENOMEM;
1708 		goto fail;
1709 	}
1710 
1711 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1712 	if (cmd->nc_dma->nd_ncookie > 1) {
1713 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1714 		    &cmd->nc_dma->nd_cookie);
1715 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1716 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1717 	}
1718 
1719 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1720 
1721 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1722 		dev_err(nvme->n_dip, CE_WARN,
1723 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1724 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1725 		goto fail;
1726 	}
1727 
1728 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
1729 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1730 
1731 fail:
1732 	nvme_free_cmd(cmd);
1733 
1734 	return (ret);
1735 }
1736 
1737 static int
1738 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1739 {
1740 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1741 	int ret;
1742 
1743 	if (buf == NULL)
1744 		return (EINVAL);
1745 
1746 	cmd->nc_sqid = 0;
1747 	cmd->nc_callback = nvme_wakeup_cmd;
1748 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1749 	cmd->nc_sqe.sqe_nsid = nsid;
1750 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1751 
1752 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1753 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1754 		dev_err(nvme->n_dip, CE_WARN,
1755 		    "!nvme_zalloc_dma failed for IDENTIFY");
1756 		ret = ENOMEM;
1757 		goto fail;
1758 	}
1759 
1760 	if (cmd->nc_dma->nd_ncookie > 2) {
1761 		dev_err(nvme->n_dip, CE_WARN,
1762 		    "!too many DMA cookies for IDENTIFY");
1763 		atomic_inc_32(&nvme->n_too_many_cookies);
1764 		ret = ENOMEM;
1765 		goto fail;
1766 	}
1767 
1768 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1769 	if (cmd->nc_dma->nd_ncookie > 1) {
1770 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1771 		    &cmd->nc_dma->nd_cookie);
1772 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1773 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1774 	}
1775 
1776 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1777 
1778 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1779 		dev_err(nvme->n_dip, CE_WARN,
1780 		    "!IDENTIFY failed with sct = %x, sc = %x",
1781 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1782 		goto fail;
1783 	}
1784 
1785 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1786 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1787 
1788 fail:
1789 	nvme_free_cmd(cmd);
1790 
1791 	return (ret);
1792 }
1793 
1794 static int
1795 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1796     uint32_t *res)
1797 {
1798 	_NOTE(ARGUNUSED(nsid));
1799 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1800 	int ret = EINVAL;
1801 
1802 	ASSERT(res != NULL);
1803 
1804 	cmd->nc_sqid = 0;
1805 	cmd->nc_callback = nvme_wakeup_cmd;
1806 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1807 	cmd->nc_sqe.sqe_cdw10 = feature;
1808 	cmd->nc_sqe.sqe_cdw11 = val;
1809 
1810 	switch (feature) {
1811 	case NVME_FEAT_WRITE_CACHE:
1812 		if (!nvme->n_write_cache_present)
1813 			goto fail;
1814 		break;
1815 
1816 	case NVME_FEAT_NQUEUES:
1817 		break;
1818 
1819 	default:
1820 		goto fail;
1821 	}
1822 
1823 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1824 
1825 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1826 		dev_err(nvme->n_dip, CE_WARN,
1827 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
1828 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1829 		    cmd->nc_cqe.cqe_sf.sf_sc);
1830 		goto fail;
1831 	}
1832 
1833 	*res = cmd->nc_cqe.cqe_dw0;
1834 
1835 fail:
1836 	nvme_free_cmd(cmd);
1837 	return (ret);
1838 }
1839 
1840 static int
1841 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1842     void **buf, size_t *bufsize)
1843 {
1844 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1845 	int ret = EINVAL;
1846 
1847 	ASSERT(res != NULL);
1848 
1849 	if (bufsize != NULL)
1850 		*bufsize = 0;
1851 
1852 	cmd->nc_sqid = 0;
1853 	cmd->nc_callback = nvme_wakeup_cmd;
1854 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1855 	cmd->nc_sqe.sqe_cdw10 = feature;
1856 	cmd->nc_sqe.sqe_cdw11 = *res;
1857 
1858 	switch (feature) {
1859 	case NVME_FEAT_ARBITRATION:
1860 	case NVME_FEAT_POWER_MGMT:
1861 	case NVME_FEAT_TEMPERATURE:
1862 	case NVME_FEAT_ERROR:
1863 	case NVME_FEAT_NQUEUES:
1864 	case NVME_FEAT_INTR_COAL:
1865 	case NVME_FEAT_INTR_VECT:
1866 	case NVME_FEAT_WRITE_ATOM:
1867 	case NVME_FEAT_ASYNC_EVENT:
1868 	case NVME_FEAT_PROGRESS:
1869 		break;
1870 
1871 	case NVME_FEAT_WRITE_CACHE:
1872 		if (!nvme->n_write_cache_present)
1873 			goto fail;
1874 		break;
1875 
1876 	case NVME_FEAT_LBA_RANGE:
1877 		if (!nvme->n_lba_range_supported)
1878 			goto fail;
1879 
1880 		/*
1881 		 * The LBA Range Type feature is optional. There doesn't seem
1882 		 * be a method of detecting whether it is supported other than
1883 		 * using it. This will cause a "invalid field in command" error,
1884 		 * which is normally considered a programming error and causes
1885 		 * panic in nvme_check_generic_cmd_status().
1886 		 */
1887 		cmd->nc_dontpanic = B_TRUE;
1888 		cmd->nc_sqe.sqe_nsid = nsid;
1889 		ASSERT(bufsize != NULL);
1890 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
1891 
1892 		break;
1893 
1894 	case NVME_FEAT_AUTO_PST:
1895 		if (!nvme->n_auto_pst_supported)
1896 			goto fail;
1897 
1898 		ASSERT(bufsize != NULL);
1899 		*bufsize = NVME_AUTO_PST_BUFSIZE;
1900 		break;
1901 
1902 	default:
1903 		goto fail;
1904 	}
1905 
1906 	if (bufsize != NULL && *bufsize != 0) {
1907 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1908 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1909 			dev_err(nvme->n_dip, CE_WARN,
1910 			    "!nvme_zalloc_dma failed for GET FEATURES");
1911 			ret = ENOMEM;
1912 			goto fail;
1913 		}
1914 
1915 		if (cmd->nc_dma->nd_ncookie > 2) {
1916 			dev_err(nvme->n_dip, CE_WARN,
1917 			    "!too many DMA cookies for GET FEATURES");
1918 			atomic_inc_32(&nvme->n_too_many_cookies);
1919 			ret = ENOMEM;
1920 			goto fail;
1921 		}
1922 
1923 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
1924 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1925 		if (cmd->nc_dma->nd_ncookie > 1) {
1926 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1927 			    &cmd->nc_dma->nd_cookie);
1928 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
1929 			    cmd->nc_dma->nd_cookie.dmac_laddress;
1930 		}
1931 	}
1932 
1933 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1934 
1935 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1936 		if (feature == NVME_FEAT_LBA_RANGE &&
1937 		    cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1938 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1939 			nvme->n_lba_range_supported = B_FALSE;
1940 		else
1941 			dev_err(nvme->n_dip, CE_WARN,
1942 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
1943 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
1944 			    cmd->nc_cqe.cqe_sf.sf_sc);
1945 		goto fail;
1946 	}
1947 
1948 	if (bufsize != NULL && *bufsize != 0) {
1949 		ASSERT(buf != NULL);
1950 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
1951 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1952 	}
1953 
1954 	*res = cmd->nc_cqe.cqe_dw0;
1955 
1956 fail:
1957 	nvme_free_cmd(cmd);
1958 	return (ret);
1959 }
1960 
1961 static int
1962 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1963 {
1964 	nvme_write_cache_t nwc = { 0 };
1965 
1966 	if (enable)
1967 		nwc.b.wc_wce = 1;
1968 
1969 	return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1970 	    &nwc.r));
1971 }
1972 
1973 static int
1974 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
1975 {
1976 	nvme_nqueues_t nq = { 0 };
1977 	int ret;
1978 
1979 	nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
1980 
1981 	ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
1982 
1983 	if (ret == 0) {
1984 		/*
1985 		 * Always use the same number of submission and completion
1986 		 * queues, and never use more than the requested number of
1987 		 * queues.
1988 		 */
1989 		*nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
1990 	}
1991 
1992 	return (ret);
1993 }
1994 
1995 static int
1996 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1997 {
1998 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1999 	nvme_create_queue_dw10_t dw10 = { 0 };
2000 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2001 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2002 	int ret;
2003 
2004 	dw10.b.q_qid = idx;
2005 	dw10.b.q_qsize = qp->nq_nentry - 1;
2006 
2007 	c_dw11.b.cq_pc = 1;
2008 	c_dw11.b.cq_ien = 1;
2009 	c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2010 
2011 	cmd->nc_sqid = 0;
2012 	cmd->nc_callback = nvme_wakeup_cmd;
2013 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2014 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2015 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2016 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2017 
2018 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2019 
2020 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2021 		dev_err(nvme->n_dip, CE_WARN,
2022 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2023 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2024 		goto fail;
2025 	}
2026 
2027 	nvme_free_cmd(cmd);
2028 
2029 	s_dw11.b.sq_pc = 1;
2030 	s_dw11.b.sq_cqid = idx;
2031 
2032 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2033 	cmd->nc_sqid = 0;
2034 	cmd->nc_callback = nvme_wakeup_cmd;
2035 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2036 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2037 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2038 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2039 
2040 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2041 
2042 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2043 		dev_err(nvme->n_dip, CE_WARN,
2044 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2045 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2046 		goto fail;
2047 	}
2048 
2049 fail:
2050 	nvme_free_cmd(cmd);
2051 
2052 	return (ret);
2053 }
2054 
2055 static boolean_t
2056 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2057 {
2058 	nvme_reg_csts_t csts;
2059 	int i;
2060 
2061 	nvme_put32(nvme, NVME_REG_CC, 0);
2062 
2063 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2064 	if (csts.b.csts_rdy == 1) {
2065 		nvme_put32(nvme, NVME_REG_CC, 0);
2066 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2067 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2068 			if (csts.b.csts_rdy == 0)
2069 				break;
2070 
2071 			if (quiesce)
2072 				drv_usecwait(50000);
2073 			else
2074 				delay(drv_usectohz(50000));
2075 		}
2076 	}
2077 
2078 	nvme_put32(nvme, NVME_REG_AQA, 0);
2079 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2080 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2081 
2082 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2083 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2084 }
2085 
2086 static void
2087 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2088 {
2089 	nvme_reg_cc_t cc;
2090 	nvme_reg_csts_t csts;
2091 	int i;
2092 
2093 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2094 
2095 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2096 	cc.b.cc_shn = mode & 0x3;
2097 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2098 
2099 	for (i = 0; i != 10; i++) {
2100 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2101 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2102 			break;
2103 
2104 		if (quiesce)
2105 			drv_usecwait(100000);
2106 		else
2107 			delay(drv_usectohz(100000));
2108 	}
2109 }
2110 
2111 
2112 static void
2113 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2114 {
2115 	/*
2116 	 * Section 7.7 of the spec describes how to get a unique ID for
2117 	 * the controller: the vendor ID, the model name and the serial
2118 	 * number shall be unique when combined.
2119 	 *
2120 	 * If a namespace has no EUI64 we use the above and add the hex
2121 	 * namespace ID to get a unique ID for the namespace.
2122 	 */
2123 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2124 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2125 
2126 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2127 	bcopy(nvme->n_idctl->id_serial, serial,
2128 	    sizeof (nvme->n_idctl->id_serial));
2129 
2130 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2131 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2132 
2133 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2134 	    nvme->n_idctl->id_vid, model, serial, nsid);
2135 }
2136 
2137 static int
2138 nvme_init_ns(nvme_t *nvme, int nsid)
2139 {
2140 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2141 	nvme_identify_nsid_t *idns;
2142 	int last_rp;
2143 
2144 	ns->ns_nvme = nvme;
2145 
2146 	if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2147 		dev_err(nvme->n_dip, CE_WARN,
2148 		    "!failed to identify namespace %d", nsid);
2149 		return (DDI_FAILURE);
2150 	}
2151 
2152 	ns->ns_idns = idns;
2153 	ns->ns_id = nsid;
2154 	ns->ns_block_count = idns->id_nsize;
2155 	ns->ns_block_size =
2156 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2157 	ns->ns_best_block_size = ns->ns_block_size;
2158 
2159 	/*
2160 	 * Get the EUI64 if present. Use it for devid and device node names.
2161 	 */
2162 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2163 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2164 
2165 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2166 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2167 		uint8_t *eui64 = ns->ns_eui64;
2168 
2169 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2170 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2171 		    eui64[0], eui64[1], eui64[2], eui64[3],
2172 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2173 	} else {
2174 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2175 		    ns->ns_id);
2176 
2177 		nvme_prepare_devid(nvme, ns->ns_id);
2178 	}
2179 
2180 	/*
2181 	 * Find the LBA format with no metadata and the best relative
2182 	 * performance. A value of 3 means "degraded", 0 is best.
2183 	 */
2184 	last_rp = 3;
2185 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2186 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2187 			break;
2188 		if (idns->id_lbaf[j].lbaf_ms != 0)
2189 			continue;
2190 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2191 			continue;
2192 		last_rp = idns->id_lbaf[j].lbaf_rp;
2193 		ns->ns_best_block_size =
2194 		    1 << idns->id_lbaf[j].lbaf_lbads;
2195 	}
2196 
2197 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2198 		ns->ns_best_block_size = nvme->n_min_block_size;
2199 
2200 	/*
2201 	 * We currently don't support namespaces that use either:
2202 	 * - thin provisioning
2203 	 * - protection information
2204 	 * - illegal block size (< 512)
2205 	 */
2206 	if (idns->id_nsfeat.f_thin ||
2207 	    idns->id_dps.dp_pinfo) {
2208 		dev_err(nvme->n_dip, CE_WARN,
2209 		    "!ignoring namespace %d, unsupported features: "
2210 		    "thin = %d, pinfo = %d", nsid,
2211 		    idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2212 		ns->ns_ignore = B_TRUE;
2213 	} else if (ns->ns_block_size < 512) {
2214 		dev_err(nvme->n_dip, CE_WARN,
2215 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2216 		    nsid, (uint64_t)ns->ns_block_size);
2217 		ns->ns_ignore = B_TRUE;
2218 	} else {
2219 		ns->ns_ignore = B_FALSE;
2220 	}
2221 
2222 	return (DDI_SUCCESS);
2223 }
2224 
2225 static int
2226 nvme_init(nvme_t *nvme)
2227 {
2228 	nvme_reg_cc_t cc = { 0 };
2229 	nvme_reg_aqa_t aqa = { 0 };
2230 	nvme_reg_asq_t asq = { 0 };
2231 	nvme_reg_acq_t acq = { 0 };
2232 	nvme_reg_cap_t cap;
2233 	nvme_reg_vs_t vs;
2234 	nvme_reg_csts_t csts;
2235 	int i = 0;
2236 	uint16_t nqueues;
2237 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2238 	char *vendor, *product;
2239 
2240 	/* Check controller version */
2241 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2242 	nvme->n_version.v_major = vs.b.vs_mjr;
2243 	nvme->n_version.v_minor = vs.b.vs_mnr;
2244 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2245 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2246 
2247 	if (NVME_VERSION_HIGHER(&nvme->n_version,
2248 	    nvme_version_major, nvme_version_minor)) {
2249 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2250 		    nvme_version_major, nvme_version_minor);
2251 		if (nvme->n_strict_version)
2252 			goto fail;
2253 	}
2254 
2255 	/* retrieve controller configuration */
2256 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2257 
2258 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2259 		dev_err(nvme->n_dip, CE_WARN,
2260 		    "!NVM command set not supported by hardware");
2261 		goto fail;
2262 	}
2263 
2264 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2265 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2266 	nvme->n_timeout = cap.b.cap_to;
2267 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2268 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2269 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2270 
2271 	/*
2272 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2273 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2274 	 * page size value.
2275 	 */
2276 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2277 	    cap.b.cap_mpsmax + 12);
2278 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2279 
2280 	/*
2281 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2282 	 */
2283 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2284 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2285 
2286 	/*
2287 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2288 	 * Maxxfer may be increased after we identified the controller limits.
2289 	 */
2290 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2291 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2292 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2293 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2294 
2295 	/*
2296 	 * Reset controller if it's still in ready state.
2297 	 */
2298 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2299 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2300 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2301 		nvme->n_dead = B_TRUE;
2302 		goto fail;
2303 	}
2304 
2305 	/*
2306 	 * Create the admin queue pair.
2307 	 */
2308 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2309 	    != DDI_SUCCESS) {
2310 		dev_err(nvme->n_dip, CE_WARN,
2311 		    "!unable to allocate admin qpair");
2312 		goto fail;
2313 	}
2314 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2315 	nvme->n_ioq[0] = nvme->n_adminq;
2316 
2317 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2318 
2319 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2320 	    "admin-queue-len", nvme->n_admin_queue_len);
2321 
2322 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2323 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2324 	acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2325 
2326 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2327 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2328 
2329 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2330 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2331 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2332 
2333 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2334 	cc.b.cc_css = 0;	/* use NVM command set */
2335 	cc.b.cc_mps = nvme->n_pageshift - 12;
2336 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2337 	cc.b.cc_en = 1;		/* enable controller */
2338 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2339 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2340 
2341 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2342 
2343 	/*
2344 	 * Wait for the controller to become ready.
2345 	 */
2346 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2347 	if (csts.b.csts_rdy == 0) {
2348 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2349 			delay(drv_usectohz(50000));
2350 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2351 
2352 			if (csts.b.csts_cfs == 1) {
2353 				dev_err(nvme->n_dip, CE_WARN,
2354 				    "!controller fatal status at init");
2355 				ddi_fm_service_impact(nvme->n_dip,
2356 				    DDI_SERVICE_LOST);
2357 				nvme->n_dead = B_TRUE;
2358 				goto fail;
2359 			}
2360 
2361 			if (csts.b.csts_rdy == 1)
2362 				break;
2363 		}
2364 	}
2365 
2366 	if (csts.b.csts_rdy == 0) {
2367 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2368 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2369 		nvme->n_dead = B_TRUE;
2370 		goto fail;
2371 	}
2372 
2373 	/*
2374 	 * Assume an abort command limit of 1. We'll destroy and re-init
2375 	 * that later when we know the true abort command limit.
2376 	 */
2377 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2378 
2379 	/*
2380 	 * Setup initial interrupt for admin queue.
2381 	 */
2382 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2383 	    != DDI_SUCCESS) &&
2384 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2385 	    != DDI_SUCCESS) &&
2386 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2387 	    != DDI_SUCCESS)) {
2388 		dev_err(nvme->n_dip, CE_WARN,
2389 		    "!failed to setup initial interrupt");
2390 		goto fail;
2391 	}
2392 
2393 	/*
2394 	 * Post an asynchronous event command to catch errors.
2395 	 * We assume the asynchronous events are supported as required by
2396 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2397 	 * However, since at least qemu does not follow the specification,
2398 	 * we need a mechanism to protect ourselves.
2399 	 */
2400 	nvme->n_async_event_supported = B_TRUE;
2401 	nvme_async_event(nvme);
2402 
2403 	/*
2404 	 * Identify Controller
2405 	 */
2406 	if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2407 		dev_err(nvme->n_dip, CE_WARN,
2408 		    "!failed to identify controller");
2409 		goto fail;
2410 	}
2411 
2412 	/*
2413 	 * Get Vendor & Product ID
2414 	 */
2415 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2416 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2417 	sata_split_model(model, &vendor, &product);
2418 
2419 	if (vendor == NULL)
2420 		nvme->n_vendor = strdup("NVMe");
2421 	else
2422 		nvme->n_vendor = strdup(vendor);
2423 
2424 	nvme->n_product = strdup(product);
2425 
2426 	/*
2427 	 * Get controller limits.
2428 	 */
2429 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2430 	    MIN(nvme->n_admin_queue_len / 10,
2431 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2432 
2433 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2434 	    "async-event-limit", nvme->n_async_event_limit);
2435 
2436 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2437 
2438 	/*
2439 	 * Reinitialize the semaphore with the true abort command limit
2440 	 * supported by the hardware. It's not necessary to disable interrupts
2441 	 * as only command aborts use the semaphore, and no commands are
2442 	 * executed or aborted while we're here.
2443 	 */
2444 	sema_destroy(&nvme->n_abort_sema);
2445 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2446 	    SEMA_DRIVER, NULL);
2447 
2448 	nvme->n_progress |= NVME_CTRL_LIMITS;
2449 
2450 	if (nvme->n_idctl->id_mdts == 0)
2451 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2452 	else
2453 		nvme->n_max_data_transfer_size =
2454 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2455 
2456 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2457 
2458 	/*
2459 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2460 	 * Chained PRPs are currently unsupported.
2461 	 *
2462 	 * This is a no-op on hardware which doesn't support a transfer size
2463 	 * big enough to require chained PRPs.
2464 	 */
2465 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2466 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2467 
2468 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2469 
2470 	/*
2471 	 * Make sure the minimum/maximum queue entry sizes are not
2472 	 * larger/smaller than the default.
2473 	 */
2474 
2475 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2476 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2477 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2478 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2479 		goto fail;
2480 
2481 	/*
2482 	 * Check for the presence of a Volatile Write Cache. If present,
2483 	 * enable or disable based on the value of the property
2484 	 * volatile-write-cache-enable (default is enabled).
2485 	 */
2486 	nvme->n_write_cache_present =
2487 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2488 
2489 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2490 	    "volatile-write-cache-present",
2491 	    nvme->n_write_cache_present ? 1 : 0);
2492 
2493 	if (!nvme->n_write_cache_present) {
2494 		nvme->n_write_cache_enabled = B_FALSE;
2495 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2496 	    != 0) {
2497 		dev_err(nvme->n_dip, CE_WARN,
2498 		    "!failed to %sable volatile write cache",
2499 		    nvme->n_write_cache_enabled ? "en" : "dis");
2500 		/*
2501 		 * Assume the cache is (still) enabled.
2502 		 */
2503 		nvme->n_write_cache_enabled = B_TRUE;
2504 	}
2505 
2506 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2507 	    "volatile-write-cache-enable",
2508 	    nvme->n_write_cache_enabled ? 1 : 0);
2509 
2510 	/*
2511 	 * Assume LBA Range Type feature is supported. If it isn't this
2512 	 * will be set to B_FALSE by nvme_get_features().
2513 	 */
2514 	nvme->n_lba_range_supported = B_TRUE;
2515 
2516 	/*
2517 	 * Check support for Autonomous Power State Transition.
2518 	 */
2519 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2520 		nvme->n_auto_pst_supported =
2521 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2522 
2523 	/*
2524 	 * Identify Namespaces
2525 	 */
2526 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2527 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2528 		dev_err(nvme->n_dip, CE_WARN,
2529 		    "!too many namespaces: %d, limiting to %d\n",
2530 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2531 		nvme->n_namespace_count = NVME_MINOR_MAX;
2532 	}
2533 
2534 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2535 	    nvme->n_namespace_count, KM_SLEEP);
2536 
2537 	for (i = 0; i != nvme->n_namespace_count; i++) {
2538 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2539 		    NULL);
2540 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2541 			goto fail;
2542 	}
2543 
2544 	/*
2545 	 * Try to set up MSI/MSI-X interrupts.
2546 	 */
2547 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2548 	    != 0) {
2549 		nvme_release_interrupts(nvme);
2550 
2551 		nqueues = MIN(UINT16_MAX, ncpus);
2552 
2553 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2554 		    nqueues) != DDI_SUCCESS) &&
2555 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2556 		    nqueues) != DDI_SUCCESS)) {
2557 			dev_err(nvme->n_dip, CE_WARN,
2558 			    "!failed to setup MSI/MSI-X interrupts");
2559 			goto fail;
2560 		}
2561 	}
2562 
2563 	nqueues = nvme->n_intr_cnt;
2564 
2565 	/*
2566 	 * Create I/O queue pairs.
2567 	 */
2568 
2569 	if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2570 		dev_err(nvme->n_dip, CE_WARN,
2571 		    "!failed to set number of I/O queues to %d",
2572 		    nvme->n_intr_cnt);
2573 		goto fail;
2574 	}
2575 
2576 	/*
2577 	 * Reallocate I/O queue array
2578 	 */
2579 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2580 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2581 	    (nqueues + 1), KM_SLEEP);
2582 	nvme->n_ioq[0] = nvme->n_adminq;
2583 
2584 	nvme->n_ioq_count = nqueues;
2585 
2586 	/*
2587 	 * If we got less queues than we asked for we might as well give
2588 	 * some of the interrupt vectors back to the system.
2589 	 */
2590 	if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2591 		nvme_release_interrupts(nvme);
2592 
2593 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2594 		    nvme->n_ioq_count) != DDI_SUCCESS) {
2595 			dev_err(nvme->n_dip, CE_WARN,
2596 			    "!failed to reduce number of interrupts");
2597 			goto fail;
2598 		}
2599 	}
2600 
2601 	/*
2602 	 * Alloc & register I/O queue pairs
2603 	 */
2604 	nvme->n_io_queue_len =
2605 	    MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2606 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2607 	    nvme->n_io_queue_len);
2608 
2609 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2610 		if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2611 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2612 			dev_err(nvme->n_dip, CE_WARN,
2613 			    "!unable to allocate I/O qpair %d", i);
2614 			goto fail;
2615 		}
2616 
2617 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2618 			dev_err(nvme->n_dip, CE_WARN,
2619 			    "!unable to create I/O qpair %d", i);
2620 			goto fail;
2621 		}
2622 	}
2623 
2624 	/*
2625 	 * Post more asynchronous events commands to reduce event reporting
2626 	 * latency as suggested by the spec.
2627 	 */
2628 	if (nvme->n_async_event_supported) {
2629 		for (i = 1; i != nvme->n_async_event_limit; i++)
2630 			nvme_async_event(nvme);
2631 	}
2632 
2633 	return (DDI_SUCCESS);
2634 
2635 fail:
2636 	(void) nvme_reset(nvme, B_FALSE);
2637 	return (DDI_FAILURE);
2638 }
2639 
2640 static uint_t
2641 nvme_intr(caddr_t arg1, caddr_t arg2)
2642 {
2643 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2644 	nvme_t *nvme = (nvme_t *)arg1;
2645 	int inum = (int)(uintptr_t)arg2;
2646 	int ccnt = 0;
2647 	int qnum;
2648 	nvme_cmd_t *cmd;
2649 
2650 	if (inum >= nvme->n_intr_cnt)
2651 		return (DDI_INTR_UNCLAIMED);
2652 
2653 	if (nvme->n_dead)
2654 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2655 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2656 
2657 	/*
2658 	 * The interrupt vector a queue uses is calculated as queue_idx %
2659 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2660 	 * in steps of n_intr_cnt to process all queues using this vector.
2661 	 */
2662 	for (qnum = inum;
2663 	    qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2664 	    qnum += nvme->n_intr_cnt) {
2665 		while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2666 			taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2667 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2668 			ccnt++;
2669 		}
2670 	}
2671 
2672 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2673 }
2674 
2675 static void
2676 nvme_release_interrupts(nvme_t *nvme)
2677 {
2678 	int i;
2679 
2680 	for (i = 0; i < nvme->n_intr_cnt; i++) {
2681 		if (nvme->n_inth[i] == NULL)
2682 			break;
2683 
2684 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2685 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2686 		else
2687 			(void) ddi_intr_disable(nvme->n_inth[i]);
2688 
2689 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
2690 		(void) ddi_intr_free(nvme->n_inth[i]);
2691 	}
2692 
2693 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
2694 	nvme->n_inth = NULL;
2695 	nvme->n_inth_sz = 0;
2696 
2697 	nvme->n_progress &= ~NVME_INTERRUPTS;
2698 }
2699 
2700 static int
2701 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2702 {
2703 	int nintrs, navail, count;
2704 	int ret;
2705 	int i;
2706 
2707 	if (nvme->n_intr_types == 0) {
2708 		ret = ddi_intr_get_supported_types(nvme->n_dip,
2709 		    &nvme->n_intr_types);
2710 		if (ret != DDI_SUCCESS) {
2711 			dev_err(nvme->n_dip, CE_WARN,
2712 			    "!%s: ddi_intr_get_supported types failed",
2713 			    __func__);
2714 			return (ret);
2715 		}
2716 #ifdef __x86
2717 		if (get_hwenv() == HW_VMWARE)
2718 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2719 #endif
2720 	}
2721 
2722 	if ((nvme->n_intr_types & intr_type) == 0)
2723 		return (DDI_FAILURE);
2724 
2725 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2726 	if (ret != DDI_SUCCESS) {
2727 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2728 		    __func__);
2729 		return (ret);
2730 	}
2731 
2732 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2733 	if (ret != DDI_SUCCESS) {
2734 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2735 		    __func__);
2736 		return (ret);
2737 	}
2738 
2739 	/* We want at most one interrupt per queue pair. */
2740 	if (navail > nqpairs)
2741 		navail = nqpairs;
2742 
2743 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2744 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2745 
2746 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2747 	    &count, 0);
2748 	if (ret != DDI_SUCCESS) {
2749 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2750 		    __func__);
2751 		goto fail;
2752 	}
2753 
2754 	nvme->n_intr_cnt = count;
2755 
2756 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2757 	if (ret != DDI_SUCCESS) {
2758 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2759 		    __func__);
2760 		goto fail;
2761 	}
2762 
2763 	for (i = 0; i < count; i++) {
2764 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2765 		    (void *)nvme, (void *)(uintptr_t)i);
2766 		if (ret != DDI_SUCCESS) {
2767 			dev_err(nvme->n_dip, CE_WARN,
2768 			    "!%s: ddi_intr_add_handler failed", __func__);
2769 			goto fail;
2770 		}
2771 	}
2772 
2773 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2774 
2775 	for (i = 0; i < count; i++) {
2776 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2777 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2778 		else
2779 			ret = ddi_intr_enable(nvme->n_inth[i]);
2780 
2781 		if (ret != DDI_SUCCESS) {
2782 			dev_err(nvme->n_dip, CE_WARN,
2783 			    "!%s: enabling interrupt %d failed", __func__, i);
2784 			goto fail;
2785 		}
2786 	}
2787 
2788 	nvme->n_intr_type = intr_type;
2789 
2790 	nvme->n_progress |= NVME_INTERRUPTS;
2791 
2792 	return (DDI_SUCCESS);
2793 
2794 fail:
2795 	nvme_release_interrupts(nvme);
2796 
2797 	return (ret);
2798 }
2799 
2800 static int
2801 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2802 {
2803 	_NOTE(ARGUNUSED(arg));
2804 
2805 	pci_ereport_post(dip, fm_error, NULL);
2806 	return (fm_error->fme_status);
2807 }
2808 
2809 static int
2810 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2811 {
2812 	nvme_t *nvme;
2813 	int instance;
2814 	int nregs;
2815 	off_t regsize;
2816 	int i;
2817 	char name[32];
2818 
2819 	if (cmd != DDI_ATTACH)
2820 		return (DDI_FAILURE);
2821 
2822 	instance = ddi_get_instance(dip);
2823 
2824 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2825 		return (DDI_FAILURE);
2826 
2827 	nvme = ddi_get_soft_state(nvme_state, instance);
2828 	ddi_set_driver_private(dip, nvme);
2829 	nvme->n_dip = dip;
2830 
2831 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2832 
2833 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2834 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2835 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2836 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2837 	    B_TRUE : B_FALSE;
2838 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2839 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2840 	nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2841 	    DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2842 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2843 	    DDI_PROP_DONTPASS, "async-event-limit",
2844 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2845 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2846 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2847 	    B_TRUE : B_FALSE;
2848 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2849 	    DDI_PROP_DONTPASS, "min-phys-block-size",
2850 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
2851 
2852 	if (!ISP2(nvme->n_min_block_size) ||
2853 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2854 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2855 		    "using default %d", ISP2(nvme->n_min_block_size) ?
2856 		    "too low" : "not a power of 2",
2857 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
2858 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2859 	}
2860 
2861 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2862 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2863 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2864 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2865 
2866 	if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2867 		nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2868 
2869 	if (nvme->n_async_event_limit < 1)
2870 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2871 
2872 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2873 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2874 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2875 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2876 
2877 	/*
2878 	 * Setup FMA support.
2879 	 */
2880 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2881 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2882 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2883 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2884 
2885 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2886 
2887 	if (nvme->n_fm_cap) {
2888 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2889 			nvme->n_reg_acc_attr.devacc_attr_access =
2890 			    DDI_FLAGERR_ACC;
2891 
2892 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2893 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2894 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2895 		}
2896 
2897 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2898 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2899 			pci_ereport_setup(dip);
2900 
2901 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2902 			ddi_fm_handler_register(dip, nvme_fm_errcb,
2903 			    (void *)nvme);
2904 	}
2905 
2906 	nvme->n_progress |= NVME_FMA_INIT;
2907 
2908 	/*
2909 	 * The spec defines several register sets. Only the controller
2910 	 * registers (set 1) are currently used.
2911 	 */
2912 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2913 	    nregs < 2 ||
2914 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2915 		goto fail;
2916 
2917 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2918 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2919 		dev_err(dip, CE_WARN, "!failed to map regset 1");
2920 		goto fail;
2921 	}
2922 
2923 	nvme->n_progress |= NVME_REGS_MAPPED;
2924 
2925 	/*
2926 	 * Create taskq for command completion.
2927 	 */
2928 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2929 	    ddi_driver_name(dip), ddi_get_instance(dip));
2930 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2931 	    TASKQ_DEFAULTPRI, 0);
2932 	if (nvme->n_cmd_taskq == NULL) {
2933 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2934 		goto fail;
2935 	}
2936 
2937 	/*
2938 	 * Create PRP DMA cache
2939 	 */
2940 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2941 	    ddi_driver_name(dip), ddi_get_instance(dip));
2942 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2943 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2944 	    NULL, (void *)nvme, NULL, 0);
2945 
2946 	if (nvme_init(nvme) != DDI_SUCCESS)
2947 		goto fail;
2948 
2949 	/*
2950 	 * Attach the blkdev driver for each namespace.
2951 	 */
2952 	for (i = 0; i != nvme->n_namespace_count; i++) {
2953 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2954 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2955 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2956 			dev_err(dip, CE_WARN,
2957 			    "!failed to create minor node for namespace %d", i);
2958 			goto fail;
2959 		}
2960 
2961 		if (nvme->n_ns[i].ns_ignore)
2962 			continue;
2963 
2964 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2965 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2966 
2967 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2968 			dev_err(dip, CE_WARN,
2969 			    "!failed to get blkdev handle for namespace %d", i);
2970 			goto fail;
2971 		}
2972 
2973 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2974 		    != DDI_SUCCESS) {
2975 			dev_err(dip, CE_WARN,
2976 			    "!failed to attach blkdev handle for namespace %d",
2977 			    i);
2978 			goto fail;
2979 		}
2980 	}
2981 
2982 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2983 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2984 	    != DDI_SUCCESS) {
2985 		dev_err(dip, CE_WARN, "nvme_attach: "
2986 		    "cannot create devctl minor node");
2987 		goto fail;
2988 	}
2989 
2990 	return (DDI_SUCCESS);
2991 
2992 fail:
2993 	/* attach successful anyway so that FMA can retire the device */
2994 	if (nvme->n_dead)
2995 		return (DDI_SUCCESS);
2996 
2997 	(void) nvme_detach(dip, DDI_DETACH);
2998 
2999 	return (DDI_FAILURE);
3000 }
3001 
3002 static int
3003 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3004 {
3005 	int instance, i;
3006 	nvme_t *nvme;
3007 
3008 	if (cmd != DDI_DETACH)
3009 		return (DDI_FAILURE);
3010 
3011 	instance = ddi_get_instance(dip);
3012 
3013 	nvme = ddi_get_soft_state(nvme_state, instance);
3014 
3015 	if (nvme == NULL)
3016 		return (DDI_FAILURE);
3017 
3018 	ddi_remove_minor_node(dip, "devctl");
3019 	mutex_destroy(&nvme->n_minor.nm_mutex);
3020 
3021 	if (nvme->n_ns) {
3022 		for (i = 0; i != nvme->n_namespace_count; i++) {
3023 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3024 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3025 
3026 			if (nvme->n_ns[i].ns_bd_hdl) {
3027 				(void) bd_detach_handle(
3028 				    nvme->n_ns[i].ns_bd_hdl);
3029 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3030 			}
3031 
3032 			if (nvme->n_ns[i].ns_idns)
3033 				kmem_free(nvme->n_ns[i].ns_idns,
3034 				    sizeof (nvme_identify_nsid_t));
3035 			if (nvme->n_ns[i].ns_devid)
3036 				strfree(nvme->n_ns[i].ns_devid);
3037 		}
3038 
3039 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3040 		    nvme->n_namespace_count);
3041 	}
3042 
3043 	if (nvme->n_progress & NVME_INTERRUPTS)
3044 		nvme_release_interrupts(nvme);
3045 
3046 	if (nvme->n_cmd_taskq)
3047 		ddi_taskq_wait(nvme->n_cmd_taskq);
3048 
3049 	if (nvme->n_ioq_count > 0) {
3050 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3051 			if (nvme->n_ioq[i] != NULL) {
3052 				/* TODO: send destroy queue commands */
3053 				nvme_free_qpair(nvme->n_ioq[i]);
3054 			}
3055 		}
3056 
3057 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3058 		    (nvme->n_ioq_count + 1));
3059 	}
3060 
3061 	if (nvme->n_prp_cache != NULL) {
3062 		kmem_cache_destroy(nvme->n_prp_cache);
3063 	}
3064 
3065 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3066 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3067 		(void) nvme_reset(nvme, B_FALSE);
3068 	}
3069 
3070 	if (nvme->n_cmd_taskq)
3071 		ddi_taskq_destroy(nvme->n_cmd_taskq);
3072 
3073 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3074 		sema_destroy(&nvme->n_abort_sema);
3075 
3076 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3077 		nvme_free_qpair(nvme->n_adminq);
3078 
3079 	if (nvme->n_idctl)
3080 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3081 
3082 	if (nvme->n_progress & NVME_REGS_MAPPED)
3083 		ddi_regs_map_free(&nvme->n_regh);
3084 
3085 	if (nvme->n_progress & NVME_FMA_INIT) {
3086 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3087 			ddi_fm_handler_unregister(nvme->n_dip);
3088 
3089 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3090 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3091 			pci_ereport_teardown(nvme->n_dip);
3092 
3093 		ddi_fm_fini(nvme->n_dip);
3094 	}
3095 
3096 	if (nvme->n_vendor != NULL)
3097 		strfree(nvme->n_vendor);
3098 
3099 	if (nvme->n_product != NULL)
3100 		strfree(nvme->n_product);
3101 
3102 	ddi_soft_state_free(nvme_state, instance);
3103 
3104 	return (DDI_SUCCESS);
3105 }
3106 
3107 static int
3108 nvme_quiesce(dev_info_t *dip)
3109 {
3110 	int instance;
3111 	nvme_t *nvme;
3112 
3113 	instance = ddi_get_instance(dip);
3114 
3115 	nvme = ddi_get_soft_state(nvme_state, instance);
3116 
3117 	if (nvme == NULL)
3118 		return (DDI_FAILURE);
3119 
3120 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3121 
3122 	(void) nvme_reset(nvme, B_TRUE);
3123 
3124 	return (DDI_FAILURE);
3125 }
3126 
3127 static int
3128 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3129 {
3130 	nvme_t *nvme = cmd->nc_nvme;
3131 	int nprp_page, nprp;
3132 	uint64_t *prp;
3133 
3134 	if (xfer->x_ndmac == 0)
3135 		return (DDI_FAILURE);
3136 
3137 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3138 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3139 
3140 	if (xfer->x_ndmac == 1) {
3141 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3142 		return (DDI_SUCCESS);
3143 	} else if (xfer->x_ndmac == 2) {
3144 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3145 		return (DDI_SUCCESS);
3146 	}
3147 
3148 	xfer->x_ndmac--;
3149 
3150 	nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3151 	ASSERT(nprp_page > 0);
3152 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3153 
3154 	/*
3155 	 * We currently don't support chained PRPs and set up our DMA
3156 	 * attributes to reflect that. If we still get an I/O request
3157 	 * that needs a chained PRP something is very wrong.
3158 	 */
3159 	VERIFY(nprp == 1);
3160 
3161 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3162 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3163 
3164 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3165 
3166 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3167 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3168 	    xfer->x_ndmac > 0;
3169 	    prp++, xfer->x_ndmac--) {
3170 		*prp = xfer->x_dmac.dmac_laddress;
3171 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3172 	}
3173 
3174 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3175 	    DDI_DMA_SYNC_FORDEV);
3176 	return (DDI_SUCCESS);
3177 }
3178 
3179 static nvme_cmd_t *
3180 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3181 {
3182 	nvme_t *nvme = ns->ns_nvme;
3183 	nvme_cmd_t *cmd;
3184 
3185 	/*
3186 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3187 	 */
3188 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3189 	    KM_NOSLEEP : KM_SLEEP);
3190 
3191 	if (cmd == NULL)
3192 		return (NULL);
3193 
3194 	cmd->nc_sqe.sqe_opc = opc;
3195 	cmd->nc_callback = nvme_bd_xfer_done;
3196 	cmd->nc_xfer = xfer;
3197 
3198 	switch (opc) {
3199 	case NVME_OPC_NVM_WRITE:
3200 	case NVME_OPC_NVM_READ:
3201 		VERIFY(xfer->x_nblks <= 0x10000);
3202 
3203 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3204 
3205 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3206 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3207 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3208 
3209 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3210 			goto fail;
3211 		break;
3212 
3213 	case NVME_OPC_NVM_FLUSH:
3214 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3215 		break;
3216 
3217 	default:
3218 		goto fail;
3219 	}
3220 
3221 	return (cmd);
3222 
3223 fail:
3224 	nvme_free_cmd(cmd);
3225 	return (NULL);
3226 }
3227 
3228 static void
3229 nvme_bd_xfer_done(void *arg)
3230 {
3231 	nvme_cmd_t *cmd = arg;
3232 	bd_xfer_t *xfer = cmd->nc_xfer;
3233 	int error = 0;
3234 
3235 	error = nvme_check_cmd_status(cmd);
3236 	nvme_free_cmd(cmd);
3237 
3238 	bd_xfer_done(xfer, error);
3239 }
3240 
3241 static void
3242 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3243 {
3244 	nvme_namespace_t *ns = arg;
3245 	nvme_t *nvme = ns->ns_nvme;
3246 
3247 	/*
3248 	 * blkdev maintains one queue size per instance (namespace),
3249 	 * but all namespace share the I/O queues.
3250 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3251 	 * or change blkdev to handle EAGAIN
3252 	 */
3253 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3254 	    / nvme->n_namespace_count;
3255 
3256 	/*
3257 	 * d_maxxfer is not set, which means the value is taken from the DMA
3258 	 * attributes specified to bd_alloc_handle.
3259 	 */
3260 
3261 	drive->d_removable = B_FALSE;
3262 	drive->d_hotpluggable = B_FALSE;
3263 
3264 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3265 	drive->d_target = ns->ns_id;
3266 	drive->d_lun = 0;
3267 
3268 	drive->d_model = nvme->n_idctl->id_model;
3269 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3270 	drive->d_vendor = nvme->n_vendor;
3271 	drive->d_vendor_len = strlen(nvme->n_vendor);
3272 	drive->d_product = nvme->n_product;
3273 	drive->d_product_len = strlen(nvme->n_product);
3274 	drive->d_serial = nvme->n_idctl->id_serial;
3275 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3276 	drive->d_revision = nvme->n_idctl->id_fwrev;
3277 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3278 }
3279 
3280 static int
3281 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3282 {
3283 	nvme_namespace_t *ns = arg;
3284 
3285 	media->m_nblks = ns->ns_block_count;
3286 	media->m_blksize = ns->ns_block_size;
3287 	media->m_readonly = B_FALSE;
3288 	media->m_solidstate = B_TRUE;
3289 
3290 	media->m_pblksize = ns->ns_best_block_size;
3291 
3292 	return (0);
3293 }
3294 
3295 static int
3296 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3297 {
3298 	nvme_t *nvme = ns->ns_nvme;
3299 	nvme_cmd_t *cmd;
3300 	nvme_qpair_t *ioq;
3301 	boolean_t poll;
3302 	int ret;
3303 
3304 	if (nvme->n_dead)
3305 		return (EIO);
3306 
3307 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3308 	if (cmd == NULL)
3309 		return (ENOMEM);
3310 
3311 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3312 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3313 	ioq = nvme->n_ioq[cmd->nc_sqid];
3314 
3315 	/*
3316 	 * Get the polling flag before submitting the command. The command may
3317 	 * complete immediately after it was submitted, which means we must
3318 	 * treat both cmd and xfer as if they have been freed already.
3319 	 */
3320 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3321 
3322 	ret = nvme_submit_io_cmd(ioq, cmd);
3323 
3324 	if (ret != 0)
3325 		return (ret);
3326 
3327 	if (!poll)
3328 		return (0);
3329 
3330 	do {
3331 		cmd = nvme_retrieve_cmd(nvme, ioq);
3332 		if (cmd != NULL)
3333 			nvme_bd_xfer_done(cmd);
3334 		else
3335 			drv_usecwait(10);
3336 	} while (ioq->nq_active_cmds != 0);
3337 
3338 	return (0);
3339 }
3340 
3341 static int
3342 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3343 {
3344 	nvme_namespace_t *ns = arg;
3345 
3346 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3347 }
3348 
3349 static int
3350 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3351 {
3352 	nvme_namespace_t *ns = arg;
3353 
3354 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3355 }
3356 
3357 static int
3358 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3359 {
3360 	nvme_namespace_t *ns = arg;
3361 
3362 	if (ns->ns_nvme->n_dead)
3363 		return (EIO);
3364 
3365 	/*
3366 	 * If the volatile write cache is not present or not enabled the FLUSH
3367 	 * command is a no-op, so we can take a shortcut here.
3368 	 */
3369 	if (!ns->ns_nvme->n_write_cache_present) {
3370 		bd_xfer_done(xfer, ENOTSUP);
3371 		return (0);
3372 	}
3373 
3374 	if (!ns->ns_nvme->n_write_cache_enabled) {
3375 		bd_xfer_done(xfer, 0);
3376 		return (0);
3377 	}
3378 
3379 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3380 }
3381 
3382 static int
3383 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3384 {
3385 	nvme_namespace_t *ns = arg;
3386 
3387 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3388 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3389 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3390 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3391 	} else {
3392 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3393 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3394 	}
3395 }
3396 
3397 static int
3398 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3399 {
3400 #ifndef __lock_lint
3401 	_NOTE(ARGUNUSED(cred_p));
3402 #endif
3403 	minor_t minor = getminor(*devp);
3404 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3405 	int nsid = NVME_MINOR_NSID(minor);
3406 	nvme_minor_state_t *nm;
3407 	int rv = 0;
3408 
3409 	if (otyp != OTYP_CHR)
3410 		return (EINVAL);
3411 
3412 	if (nvme == NULL)
3413 		return (ENXIO);
3414 
3415 	if (nsid > nvme->n_namespace_count)
3416 		return (ENXIO);
3417 
3418 	if (nvme->n_dead)
3419 		return (EIO);
3420 
3421 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3422 
3423 	mutex_enter(&nm->nm_mutex);
3424 	if (nm->nm_oexcl) {
3425 		rv = EBUSY;
3426 		goto out;
3427 	}
3428 
3429 	if (flag & FEXCL) {
3430 		if (nm->nm_ocnt != 0) {
3431 			rv = EBUSY;
3432 			goto out;
3433 		}
3434 		nm->nm_oexcl = B_TRUE;
3435 	}
3436 
3437 	nm->nm_ocnt++;
3438 
3439 out:
3440 	mutex_exit(&nm->nm_mutex);
3441 	return (rv);
3442 
3443 }
3444 
3445 static int
3446 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3447 {
3448 #ifndef __lock_lint
3449 	_NOTE(ARGUNUSED(cred_p));
3450 	_NOTE(ARGUNUSED(flag));
3451 #endif
3452 	minor_t minor = getminor(dev);
3453 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3454 	int nsid = NVME_MINOR_NSID(minor);
3455 	nvme_minor_state_t *nm;
3456 
3457 	if (otyp != OTYP_CHR)
3458 		return (ENXIO);
3459 
3460 	if (nvme == NULL)
3461 		return (ENXIO);
3462 
3463 	if (nsid > nvme->n_namespace_count)
3464 		return (ENXIO);
3465 
3466 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3467 
3468 	mutex_enter(&nm->nm_mutex);
3469 	if (nm->nm_oexcl)
3470 		nm->nm_oexcl = B_FALSE;
3471 
3472 	ASSERT(nm->nm_ocnt > 0);
3473 	nm->nm_ocnt--;
3474 	mutex_exit(&nm->nm_mutex);
3475 
3476 	return (0);
3477 }
3478 
3479 static int
3480 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3481     cred_t *cred_p)
3482 {
3483 	_NOTE(ARGUNUSED(cred_p));
3484 	int rv = 0;
3485 	void *idctl;
3486 
3487 	if ((mode & FREAD) == 0)
3488 		return (EPERM);
3489 
3490 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3491 		return (EINVAL);
3492 
3493 	if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3494 		return (rv);
3495 
3496 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3497 	    != 0)
3498 		rv = EFAULT;
3499 
3500 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3501 
3502 	return (rv);
3503 }
3504 
3505 static int
3506 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3507     int mode, cred_t *cred_p)
3508 {
3509 	_NOTE(ARGUNUSED(nsid, cred_p));
3510 	int rv = 0;
3511 	nvme_reg_cap_t cap = { 0 };
3512 	nvme_capabilities_t nc;
3513 
3514 	if ((mode & FREAD) == 0)
3515 		return (EPERM);
3516 
3517 	if (nioc->n_len < sizeof (nc))
3518 		return (EINVAL);
3519 
3520 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
3521 
3522 	/*
3523 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3524 	 * specify the base page size of 4k (1<<12), so add 12 here to
3525 	 * get the real page size value.
3526 	 */
3527 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3528 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3529 
3530 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3531 		rv = EFAULT;
3532 
3533 	return (rv);
3534 }
3535 
3536 static int
3537 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3538     int mode, cred_t *cred_p)
3539 {
3540 	_NOTE(ARGUNUSED(cred_p));
3541 	void *log = NULL;
3542 	size_t bufsize = 0;
3543 	int rv = 0;
3544 
3545 	if ((mode & FREAD) == 0)
3546 		return (EPERM);
3547 
3548 	switch (nioc->n_arg) {
3549 	case NVME_LOGPAGE_ERROR:
3550 		if (nsid != 0)
3551 			return (EINVAL);
3552 		break;
3553 	case NVME_LOGPAGE_HEALTH:
3554 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3555 			return (EINVAL);
3556 
3557 		if (nsid == 0)
3558 			nsid = (uint32_t)-1;
3559 
3560 		break;
3561 	case NVME_LOGPAGE_FWSLOT:
3562 		if (nsid != 0)
3563 			return (EINVAL);
3564 		break;
3565 	default:
3566 		return (EINVAL);
3567 	}
3568 
3569 	if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3570 	    != DDI_SUCCESS)
3571 		return (EIO);
3572 
3573 	if (nioc->n_len < bufsize) {
3574 		kmem_free(log, bufsize);
3575 		return (EINVAL);
3576 	}
3577 
3578 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3579 		rv = EFAULT;
3580 
3581 	nioc->n_len = bufsize;
3582 	kmem_free(log, bufsize);
3583 
3584 	return (rv);
3585 }
3586 
3587 static int
3588 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3589     int mode, cred_t *cred_p)
3590 {
3591 	_NOTE(ARGUNUSED(cred_p));
3592 	void *buf = NULL;
3593 	size_t bufsize = 0;
3594 	uint32_t res = 0;
3595 	uint8_t feature;
3596 	int rv = 0;
3597 
3598 	if ((mode & FREAD) == 0)
3599 		return (EPERM);
3600 
3601 	if ((nioc->n_arg >> 32) > 0xff)
3602 		return (EINVAL);
3603 
3604 	feature = (uint8_t)(nioc->n_arg >> 32);
3605 
3606 	switch (feature) {
3607 	case NVME_FEAT_ARBITRATION:
3608 	case NVME_FEAT_POWER_MGMT:
3609 	case NVME_FEAT_TEMPERATURE:
3610 	case NVME_FEAT_ERROR:
3611 	case NVME_FEAT_NQUEUES:
3612 	case NVME_FEAT_INTR_COAL:
3613 	case NVME_FEAT_WRITE_ATOM:
3614 	case NVME_FEAT_ASYNC_EVENT:
3615 	case NVME_FEAT_PROGRESS:
3616 		if (nsid != 0)
3617 			return (EINVAL);
3618 		break;
3619 
3620 	case NVME_FEAT_INTR_VECT:
3621 		if (nsid != 0)
3622 			return (EINVAL);
3623 
3624 		res = nioc->n_arg & 0xffffffffUL;
3625 		if (res >= nvme->n_intr_cnt)
3626 			return (EINVAL);
3627 		break;
3628 
3629 	case NVME_FEAT_LBA_RANGE:
3630 		if (nvme->n_lba_range_supported == B_FALSE)
3631 			return (EINVAL);
3632 
3633 		if (nsid == 0 ||
3634 		    nsid > nvme->n_namespace_count)
3635 			return (EINVAL);
3636 
3637 		break;
3638 
3639 	case NVME_FEAT_WRITE_CACHE:
3640 		if (nsid != 0)
3641 			return (EINVAL);
3642 
3643 		if (!nvme->n_write_cache_present)
3644 			return (EINVAL);
3645 
3646 		break;
3647 
3648 	case NVME_FEAT_AUTO_PST:
3649 		if (nsid != 0)
3650 			return (EINVAL);
3651 
3652 		if (!nvme->n_auto_pst_supported)
3653 			return (EINVAL);
3654 
3655 		break;
3656 
3657 	default:
3658 		return (EINVAL);
3659 	}
3660 
3661 	rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3662 	if (rv != 0)
3663 		return (rv);
3664 
3665 	if (nioc->n_len < bufsize) {
3666 		kmem_free(buf, bufsize);
3667 		return (EINVAL);
3668 	}
3669 
3670 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3671 		rv = EFAULT;
3672 
3673 	kmem_free(buf, bufsize);
3674 	nioc->n_arg = res;
3675 	nioc->n_len = bufsize;
3676 
3677 	return (rv);
3678 }
3679 
3680 static int
3681 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3682     cred_t *cred_p)
3683 {
3684 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
3685 
3686 	if ((mode & FREAD) == 0)
3687 		return (EPERM);
3688 
3689 	nioc->n_arg = nvme->n_intr_cnt;
3690 	return (0);
3691 }
3692 
3693 static int
3694 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3695     cred_t *cred_p)
3696 {
3697 	_NOTE(ARGUNUSED(nsid, cred_p));
3698 	int rv = 0;
3699 
3700 	if ((mode & FREAD) == 0)
3701 		return (EPERM);
3702 
3703 	if (nioc->n_len < sizeof (nvme->n_version))
3704 		return (ENOMEM);
3705 
3706 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3707 	    sizeof (nvme->n_version), mode) != 0)
3708 		rv = EFAULT;
3709 
3710 	return (rv);
3711 }
3712 
3713 static int
3714 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3715     cred_t *cred_p)
3716 {
3717 	_NOTE(ARGUNUSED(mode));
3718 	nvme_format_nvm_t frmt = { 0 };
3719 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
3720 
3721 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3722 		return (EPERM);
3723 
3724 	frmt.r = nioc->n_arg & 0xffffffff;
3725 
3726 	/*
3727 	 * Check whether the FORMAT NVM command is supported.
3728 	 */
3729 	if (nvme->n_idctl->id_oacs.oa_format == 0)
3730 		return (EINVAL);
3731 
3732 	/*
3733 	 * Don't allow format or secure erase of individual namespace if that
3734 	 * would cause a format or secure erase of all namespaces.
3735 	 */
3736 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3737 		return (EINVAL);
3738 
3739 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3740 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
3741 		return (EINVAL);
3742 
3743 	/*
3744 	 * Don't allow formatting with Protection Information.
3745 	 */
3746 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3747 		return (EINVAL);
3748 
3749 	/*
3750 	 * Don't allow formatting using an illegal LBA format, or any LBA format
3751 	 * that uses metadata.
3752 	 */
3753 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3754 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3755 		return (EINVAL);
3756 
3757 	/*
3758 	 * Don't allow formatting using an illegal Secure Erase setting.
3759 	 */
3760 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3761 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3762 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3763 		return (EINVAL);
3764 
3765 	if (nsid == 0)
3766 		nsid = (uint32_t)-1;
3767 
3768 	return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3769 	    frmt.b.fm_ses));
3770 }
3771 
3772 static int
3773 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3774     cred_t *cred_p)
3775 {
3776 	_NOTE(ARGUNUSED(nioc, mode));
3777 	int rv = 0;
3778 
3779 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3780 		return (EPERM);
3781 
3782 	if (nsid == 0)
3783 		return (EINVAL);
3784 
3785 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3786 	if (rv != DDI_SUCCESS)
3787 		rv = EBUSY;
3788 
3789 	return (rv);
3790 }
3791 
3792 static int
3793 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3794     cred_t *cred_p)
3795 {
3796 	_NOTE(ARGUNUSED(nioc, mode));
3797 	nvme_identify_nsid_t *idns;
3798 	int rv = 0;
3799 
3800 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3801 		return (EPERM);
3802 
3803 	if (nsid == 0)
3804 		return (EINVAL);
3805 
3806 	/*
3807 	 * Identify namespace again, free old identify data.
3808 	 */
3809 	idns = nvme->n_ns[nsid - 1].ns_idns;
3810 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3811 		return (EIO);
3812 
3813 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
3814 
3815 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3816 	if (rv != DDI_SUCCESS)
3817 		rv = EBUSY;
3818 
3819 	return (rv);
3820 }
3821 
3822 static int
3823 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3824     int *rval_p)
3825 {
3826 #ifndef __lock_lint
3827 	_NOTE(ARGUNUSED(rval_p));
3828 #endif
3829 	minor_t minor = getminor(dev);
3830 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3831 	int nsid = NVME_MINOR_NSID(minor);
3832 	int rv = 0;
3833 	nvme_ioctl_t nioc;
3834 
3835 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3836 		NULL,
3837 		nvme_ioctl_identify,
3838 		nvme_ioctl_identify,
3839 		nvme_ioctl_capabilities,
3840 		nvme_ioctl_get_logpage,
3841 		nvme_ioctl_get_features,
3842 		nvme_ioctl_intr_cnt,
3843 		nvme_ioctl_version,
3844 		nvme_ioctl_format,
3845 		nvme_ioctl_detach,
3846 		nvme_ioctl_attach
3847 	};
3848 
3849 	if (nvme == NULL)
3850 		return (ENXIO);
3851 
3852 	if (nsid > nvme->n_namespace_count)
3853 		return (ENXIO);
3854 
3855 	if (IS_DEVCTL(cmd))
3856 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3857 
3858 #ifdef _MULTI_DATAMODEL
3859 	switch (ddi_model_convert_from(mode & FMODELS)) {
3860 	case DDI_MODEL_ILP32: {
3861 		nvme_ioctl32_t nioc32;
3862 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3863 		    mode) != 0)
3864 			return (EFAULT);
3865 		nioc.n_len = nioc32.n_len;
3866 		nioc.n_buf = nioc32.n_buf;
3867 		nioc.n_arg = nioc32.n_arg;
3868 		break;
3869 	}
3870 	case DDI_MODEL_NONE:
3871 #endif
3872 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3873 		    != 0)
3874 			return (EFAULT);
3875 #ifdef _MULTI_DATAMODEL
3876 		break;
3877 	}
3878 #endif
3879 
3880 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3881 		return (EIO);
3882 
3883 
3884 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3885 		/*
3886 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3887 		 * attachment point nodes.
3888 		 */
3889 		nsid = 0;
3890 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3891 		/*
3892 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3893 		 * will always return identify data for namespace 1.
3894 		 */
3895 		nsid = 1;
3896 	}
3897 
3898 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3899 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3900 		    cred_p);
3901 	else
3902 		rv = EINVAL;
3903 
3904 #ifdef _MULTI_DATAMODEL
3905 	switch (ddi_model_convert_from(mode & FMODELS)) {
3906 	case DDI_MODEL_ILP32: {
3907 		nvme_ioctl32_t nioc32;
3908 
3909 		nioc32.n_len = (size32_t)nioc.n_len;
3910 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3911 		nioc32.n_arg = nioc.n_arg;
3912 
3913 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3914 		    mode) != 0)
3915 			return (EFAULT);
3916 		break;
3917 	}
3918 	case DDI_MODEL_NONE:
3919 #endif
3920 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3921 		    != 0)
3922 			return (EFAULT);
3923 #ifdef _MULTI_DATAMODEL
3924 		break;
3925 	}
3926 #endif
3927 
3928 	return (rv);
3929 }
3930