1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. 14 * Copyright 2019 Unix Software Ltd. 15 * Copyright 2020 Joyent, Inc. 16 * Copyright 2020 Racktop Systems. 17 * Copyright 2022 Oxide Computer Company. 18 * Copyright 2022 OmniOS Community Edition (OmniOSce) Association. 19 * Copyright 2022 Tintri by DDN, Inc. All rights reserved. 20 */ 21 22 /* 23 * blkdev driver for NVMe compliant storage devices 24 * 25 * This driver targets and is designed to support all NVMe 1.x devices. 26 * Features are added to the driver as we encounter devices that require them 27 * and our needs, so some commands or log pages may not take advantage of newer 28 * features that devices support at this time. When you encounter such a case, 29 * it is generally fine to add that support to the driver as long as you take 30 * care to ensure that the requisite device version is met before using it. 31 * 32 * The driver has only been tested on x86 systems and will not work on big- 33 * endian systems without changes to the code accessing registers and data 34 * structures used by the hardware. 35 * 36 * 37 * Interrupt Usage: 38 * 39 * The driver will use a single interrupt while configuring the device as the 40 * specification requires, but contrary to the specification it will try to use 41 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it 42 * will switch to multiple-message MSI(-X) if supported. The driver wants to 43 * have one interrupt vector per CPU, but it will work correctly if less are 44 * available. Interrupts can be shared by queues, the interrupt handler will 45 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only 46 * the admin queue will share an interrupt with one I/O queue. The interrupt 47 * handler will retrieve completed commands from all queues sharing an interrupt 48 * vector and will post them to a taskq for completion processing. 49 * 50 * 51 * Command Processing: 52 * 53 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up 54 * to 65536 I/O commands. The driver will configure one I/O queue pair per 55 * available interrupt vector, with the queue length usually much smaller than 56 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer 57 * interrupt vectors will be used. 58 * 59 * Additionally the hardware provides a single special admin queue pair that can 60 * hold up to 4096 admin commands. 61 * 62 * From the hardware perspective both queues of a queue pair are independent, 63 * but they share some driver state: the command array (holding pointers to 64 * commands currently being processed by the hardware) and the active command 65 * counter. Access to a submission queue and the shared state is protected by 66 * nq_mutex; completion queue is protected by ncq_mutex. 67 * 68 * When a command is submitted to a queue pair the active command counter is 69 * incremented and a pointer to the command is stored in the command array. The 70 * array index is used as command identifier (CID) in the submission queue 71 * entry. Some commands may take a very long time to complete, and if the queue 72 * wraps around in that time a submission may find the next array slot to still 73 * be used by a long-running command. In this case the array is sequentially 74 * searched for the next free slot. The length of the command array is the same 75 * as the configured queue length. Queue overrun is prevented by the semaphore, 76 * so a command submission may block if the queue is full. 77 * 78 * 79 * Polled I/O Support: 80 * 81 * For kernel core dump support the driver can do polled I/O. As interrupts are 82 * turned off while dumping the driver will just submit a command in the regular 83 * way, and then repeatedly attempt a command retrieval until it gets the 84 * command back. 85 * 86 * 87 * Namespace Support: 88 * 89 * NVMe devices can have multiple namespaces, each being a independent data 90 * store. The driver supports multiple namespaces and creates a blkdev interface 91 * for each namespace found. Namespaces can have various attributes to support 92 * protection information. This driver does not support any of this and ignores 93 * namespaces that have these attributes. 94 * 95 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier 96 * (EUI64), and NVMe 1.2 introduced an additional 128bit Namespace Globally 97 * Unique Identifier (NGUID). This driver uses either the NGUID or the EUI64 98 * if present to generate the devid, and passes the EUI64 to blkdev to use it 99 * in the device node names. 100 * 101 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a 102 * single controller. This is an artificial limit imposed by the driver to be 103 * able to address a reasonable number of controllers and namespaces using a 104 * 32bit minor node number. 105 * 106 * 107 * Minor nodes: 108 * 109 * For each NVMe device the driver exposes one minor node for the controller and 110 * one minor node for each namespace. The only operations supported by those 111 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the 112 * interface for the nvmeadm(8) utility. 113 * 114 * Exclusive opens are required for certain ioctl(9E) operations that alter 115 * controller and/or namespace state. While different namespaces may be opened 116 * exclusively in parallel, an exclusive open of the controller minor node 117 * requires that no namespaces are currently open (exclusive or otherwise). 118 * Opening any namespace minor node (exclusive or otherwise) will fail while 119 * the controller minor node is opened exclusively by any other thread. Thus it 120 * is possible for one thread at a time to open the controller minor node 121 * exclusively, and keep it open while opening any namespace minor node of the 122 * same controller, exclusively or otherwise. 123 * 124 * 125 * 126 * Blkdev Interface: 127 * 128 * This driver uses blkdev to do all the heavy lifting involved with presenting 129 * a disk device to the system. As a result, the processing of I/O requests is 130 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA 131 * setup, and splitting of transfers into manageable chunks. 132 * 133 * I/O requests coming in from blkdev are turned into NVM commands and posted to 134 * an I/O queue. The queue is selected by taking the CPU id modulo the number of 135 * queues. There is currently no timeout handling of I/O commands. 136 * 137 * Blkdev also supports querying device/media information and generating a 138 * devid. The driver reports the best block size as determined by the namespace 139 * format back to blkdev as physical block size to support partition and block 140 * alignment. The devid is either based on the namespace GUID or EUI64, if 141 * present, or composed using the device vendor ID, model number, serial number, 142 * and the namespace ID. 143 * 144 * 145 * Error Handling: 146 * 147 * Error handling is currently limited to detecting fatal hardware errors, 148 * either by asynchronous events, or synchronously through command status or 149 * admin command timeouts. In case of severe errors the device is fenced off, 150 * all further requests will return EIO. FMA is then called to fault the device. 151 * 152 * The hardware has a limit for outstanding asynchronous event requests. Before 153 * this limit is known the driver assumes it is at least 1 and posts a single 154 * asynchronous request. Later when the limit is known more asynchronous event 155 * requests are posted to allow quicker reception of error information. When an 156 * asynchronous event is posted by the hardware the driver will parse the error 157 * status fields and log information or fault the device, depending on the 158 * severity of the asynchronous event. The asynchronous event request is then 159 * reused and posted to the admin queue again. 160 * 161 * On command completion the command status is checked for errors. In case of 162 * errors indicating a driver bug the driver panics. Almost all other error 163 * status values just cause EIO to be returned. 164 * 165 * Command timeouts are currently detected for all admin commands except 166 * asynchronous event requests. If a command times out and the hardware appears 167 * to be healthy the driver attempts to abort the command. The original command 168 * timeout is also applied to the abort command. If the abort times out too the 169 * driver assumes the device to be dead, fences it off, and calls FMA to retire 170 * it. In all other cases the aborted command should return immediately with a 171 * status indicating it was aborted, and the driver will wait indefinitely for 172 * that to happen. No timeout handling of normal I/O commands is presently done. 173 * 174 * Any command that times out due to the controller dropping dead will be put on 175 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA 176 * memory being reused by the system and later be written to by a "dead" NVMe 177 * controller. 178 * 179 * 180 * Locking: 181 * 182 * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held 183 * when accessing shared state and submission queue registers, ncq_mutex 184 * is held when accessing completion queue state and registers. 185 * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while 186 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both 187 * mutexes themselves. 188 * 189 * Each command also has its own nc_mutex, which is associated with the 190 * condition variable nc_cv. It is only used on admin commands which are run 191 * synchronously. In that case it must be held across calls to 192 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by 193 * nvme_admin_cmd(). It must also be held whenever the completion state of the 194 * command is changed or while a admin command timeout is handled. 195 * 196 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first. 197 * More than one nc_mutex may only be held when aborting commands. In this case, 198 * the nc_mutex of the command to be aborted must be held across the call to 199 * nvme_abort_cmd() to prevent the command from completing while the abort is in 200 * progress. 201 * 202 * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be 203 * acquired first. More than one nq_mutex is never held by a single thread. 204 * The ncq_mutex is only held by nvme_retrieve_cmd() and 205 * nvme_process_iocq(). nvme_process_iocq() is only called from the 206 * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the 207 * mutex is non-contentious but is required for implementation completeness 208 * and safety. 209 * 210 * There is one mutex n_minor_mutex which protects all open flags nm_open and 211 * exclusive-open thread pointers nm_oexcl of each minor node associated with a 212 * controller and its namespaces. 213 * 214 * In addition, there is one mutex n_mgmt_mutex which must be held whenever the 215 * driver state for any namespace is changed, especially across calls to 216 * nvme_init_ns(), nvme_attach_ns() and nvme_detach_ns(). Except when detaching 217 * nvme, it should also be held across calls that modify the blkdev handle of a 218 * namespace. Command and queue mutexes may be acquired and released while 219 * n_mgmt_mutex is held, n_minor_mutex should not. 220 * 221 * 222 * Quiesce / Fast Reboot: 223 * 224 * The driver currently does not support fast reboot. A quiesce(9E) entry point 225 * is still provided which is used to send a shutdown notification to the 226 * device. 227 * 228 * 229 * NVMe Hotplug: 230 * 231 * The driver supports hot removal. The driver uses the NDI event framework 232 * to register a callback, nvme_remove_callback, to clean up when a disk is 233 * removed. In particular, the driver will unqueue outstanding I/O commands and 234 * set n_dead on the softstate to true so that other operations, such as ioctls 235 * and command submissions, fail as well. 236 * 237 * While the callback registration relies on the NDI event framework, the 238 * removal event itself is kicked off in the PCIe hotplug framework, when the 239 * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a 240 * device was removed from the slot. 241 * 242 * The NVMe driver instance itself will remain until the final close of the 243 * device. 244 * 245 * 246 * DDI UFM Support 247 * 248 * The driver supports the DDI UFM framework for reporting information about 249 * the device's firmware image and slot configuration. This data can be 250 * queried by userland software via ioctls to the ufm driver. For more 251 * information, see ddi_ufm(9E). 252 * 253 * 254 * Driver Configuration: 255 * 256 * The following driver properties can be changed to control some aspects of the 257 * drivers operation: 258 * - strict-version: can be set to 0 to allow devices conforming to newer 259 * major versions to be used 260 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor 261 * specific command status as a fatal error leading device faulting 262 * - admin-queue-len: the maximum length of the admin queue (16-4096) 263 * - io-squeue-len: the maximum length of the I/O submission queues (16-65536) 264 * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536) 265 * - async-event-limit: the maximum number of asynchronous event requests to be 266 * posted by the driver 267 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write 268 * cache 269 * - min-phys-block-size: the minimum physical block size to report to blkdev, 270 * which is among other things the basis for ZFS vdev ashift 271 * - max-submission-queues: the maximum number of I/O submission queues. 272 * - max-completion-queues: the maximum number of I/O completion queues, 273 * can be less than max-submission-queues, in which case the completion 274 * queues are shared. 275 * 276 * In addition to the above properties, some device-specific tunables can be 277 * configured using the nvme-config-list global property. The value of this 278 * property is a list of triplets. The formal syntax is: 279 * 280 * nvme-config-list ::= <triplet> [, <triplet>]* ; 281 * <triplet> ::= "<model>" , "<rev-list>" , "<tuple-list>" 282 * <rev-list> ::= [ <fwrev> [, <fwrev>]*] 283 * <tuple-list> ::= <tunable> [, <tunable>]* 284 * <tunable> ::= <name> : <value> 285 * 286 * The <model> and <fwrev> are the strings in nvme_identify_ctrl_t`id_model and 287 * nvme_identify_ctrl_t`id_fwrev, respectively. The remainder of <tuple-list> 288 * contains one or more tunables to apply to all controllers that match the 289 * specified model number and optionally firmware revision. Each <tunable> is a 290 * <name> : <value> pair. Supported tunables are: 291 * 292 * - ignore-unknown-vendor-status: can be set to "on" to not handle any vendor 293 * specific command status as a fatal error leading device faulting 294 * 295 * - min-phys-block-size: the minimum physical block size to report to blkdev, 296 * which is among other things the basis for ZFS vdev ashift 297 * 298 * - volatile-write-cache: can be set to "on" or "off" to enable or disable the 299 * volatile write cache, if present 300 * 301 * 302 * TODO: 303 * - figure out sane default for I/O queue depth reported to blkdev 304 * - FMA handling of media errors 305 * - support for devices supporting very large I/O requests using chained PRPs 306 * - support for configuring hardware parameters like interrupt coalescing 307 * - support for media formatting and hard partitioning into namespaces 308 * - support for big-endian systems 309 * - support for fast reboot 310 * - support for NVMe Subsystem Reset (1.1) 311 * - support for Scatter/Gather lists (1.1) 312 * - support for Reservations (1.1) 313 * - support for power management 314 */ 315 316 #include <sys/byteorder.h> 317 #ifdef _BIG_ENDIAN 318 #error nvme driver needs porting for big-endian platforms 319 #endif 320 321 #include <sys/modctl.h> 322 #include <sys/conf.h> 323 #include <sys/devops.h> 324 #include <sys/ddi.h> 325 #include <sys/ddi_ufm.h> 326 #include <sys/sunddi.h> 327 #include <sys/sunndi.h> 328 #include <sys/bitmap.h> 329 #include <sys/sysmacros.h> 330 #include <sys/param.h> 331 #include <sys/varargs.h> 332 #include <sys/cpuvar.h> 333 #include <sys/disp.h> 334 #include <sys/blkdev.h> 335 #include <sys/atomic.h> 336 #include <sys/archsystm.h> 337 #include <sys/sata/sata_hba.h> 338 #include <sys/stat.h> 339 #include <sys/policy.h> 340 #include <sys/list.h> 341 #include <sys/dkio.h> 342 343 #include <sys/nvme.h> 344 345 #ifdef __x86 346 #include <sys/x86_archext.h> 347 #endif 348 349 #include "nvme_reg.h" 350 #include "nvme_var.h" 351 352 /* 353 * Assertions to make sure that we've properly captured various aspects of the 354 * packed structures and haven't broken them during updates. 355 */ 356 CTASSERT(sizeof (nvme_identify_ctrl_t) == NVME_IDENTIFY_BUFSIZE); 357 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256); 358 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512); 359 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520); 360 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768); 361 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792); 362 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048); 363 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072); 364 365 CTASSERT(sizeof (nvme_identify_nsid_t) == NVME_IDENTIFY_BUFSIZE); 366 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32); 367 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92); 368 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104); 369 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128); 370 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384); 371 372 CTASSERT(sizeof (nvme_identify_nsid_list_t) == NVME_IDENTIFY_BUFSIZE); 373 CTASSERT(sizeof (nvme_identify_ctrl_list_t) == NVME_IDENTIFY_BUFSIZE); 374 375 CTASSERT(sizeof (nvme_identify_primary_caps_t) == NVME_IDENTIFY_BUFSIZE); 376 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32); 377 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64); 378 379 CTASSERT(sizeof (nvme_nschange_list_t) == 4096); 380 381 382 /* NVMe spec version supported */ 383 static const int nvme_version_major = 1; 384 385 /* tunable for admin command timeout in seconds, default is 1s */ 386 int nvme_admin_cmd_timeout = 1; 387 388 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */ 389 int nvme_format_cmd_timeout = 600; 390 391 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */ 392 int nvme_commit_save_cmd_timeout = 15; 393 394 /* 395 * tunable for the size of arbitrary vendor specific admin commands, 396 * default is 16MiB. 397 */ 398 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24; 399 400 /* 401 * tunable for the max timeout of arbitary vendor specific admin commands, 402 * default is 60s. 403 */ 404 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60; 405 406 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); 407 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); 408 static int nvme_quiesce(dev_info_t *); 409 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); 410 static int nvme_setup_interrupts(nvme_t *, int, int); 411 static void nvme_release_interrupts(nvme_t *); 412 static uint_t nvme_intr(caddr_t, caddr_t); 413 414 static void nvme_shutdown(nvme_t *, int, boolean_t); 415 static boolean_t nvme_reset(nvme_t *, boolean_t); 416 static int nvme_init(nvme_t *); 417 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); 418 static void nvme_free_cmd(nvme_cmd_t *); 419 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, 420 bd_xfer_t *); 421 static void nvme_admin_cmd(nvme_cmd_t *, int); 422 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *); 423 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *); 424 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *); 425 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int); 426 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); 427 static void nvme_wait_cmd(nvme_cmd_t *, uint_t); 428 static void nvme_wakeup_cmd(void *); 429 static void nvme_async_event_task(void *); 430 431 static int nvme_check_unknown_cmd_status(nvme_cmd_t *); 432 static int nvme_check_vendor_cmd_status(nvme_cmd_t *); 433 static int nvme_check_integrity_cmd_status(nvme_cmd_t *); 434 static int nvme_check_specific_cmd_status(nvme_cmd_t *); 435 static int nvme_check_generic_cmd_status(nvme_cmd_t *); 436 static inline int nvme_check_cmd_status(nvme_cmd_t *); 437 438 static int nvme_abort_cmd(nvme_cmd_t *, uint_t); 439 static void nvme_async_event(nvme_t *); 440 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t, 441 uint8_t, boolean_t, uint8_t); 442 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t, 443 ...); 444 static int nvme_identify(nvme_t *, boolean_t, uint32_t, uint8_t, void **); 445 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t, 446 uint32_t *); 447 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *, 448 void **, size_t *); 449 static int nvme_write_cache_set(nvme_t *, boolean_t); 450 static int nvme_set_nqueues(nvme_t *); 451 452 static void nvme_free_dma(nvme_dma_t *); 453 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, 454 nvme_dma_t **); 455 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, 456 nvme_dma_t **); 457 static void nvme_free_qpair(nvme_qpair_t *); 458 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t); 459 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); 460 461 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); 462 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); 463 static inline uint64_t nvme_get64(nvme_t *, uintptr_t); 464 static inline uint32_t nvme_get32(nvme_t *, uintptr_t); 465 466 static boolean_t nvme_check_regs_hdl(nvme_t *); 467 static boolean_t nvme_check_dma_hdl(nvme_dma_t *); 468 469 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t); 470 471 static void nvme_bd_xfer_done(void *); 472 static void nvme_bd_driveinfo(void *, bd_drive_t *); 473 static int nvme_bd_mediainfo(void *, bd_media_t *); 474 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); 475 static int nvme_bd_read(void *, bd_xfer_t *); 476 static int nvme_bd_write(void *, bd_xfer_t *); 477 static int nvme_bd_sync(void *, bd_xfer_t *); 478 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); 479 static int nvme_bd_free_space(void *, bd_xfer_t *); 480 481 static int nvme_prp_dma_constructor(void *, void *, int); 482 static void nvme_prp_dma_destructor(void *, void *); 483 484 static void nvme_prepare_devid(nvme_t *, uint32_t); 485 486 /* DDI UFM callbacks */ 487 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t, 488 ddi_ufm_image_t *); 489 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t, 490 ddi_ufm_slot_t *); 491 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *); 492 493 static int nvme_open(dev_t *, int, int, cred_t *); 494 static int nvme_close(dev_t, int, int, cred_t *); 495 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 496 497 static int nvme_init_ns(nvme_t *, int); 498 static int nvme_attach_ns(nvme_t *, int); 499 static int nvme_detach_ns(nvme_t *, int); 500 501 #define NVME_NSID2NS(nvme, nsid) (&((nvme)->n_ns[(nsid) - 1])) 502 503 static ddi_ufm_ops_t nvme_ufm_ops = { 504 NULL, 505 nvme_ufm_fill_image, 506 nvme_ufm_fill_slot, 507 nvme_ufm_getcaps 508 }; 509 510 #define NVME_MINOR_INST_SHIFT 9 511 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid)) 512 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT) 513 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1)) 514 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2) 515 #define NVME_IS_VENDOR_SPECIFIC_CMD(x) (((x) >= 0xC0) && ((x) <= 0xFF)) 516 #define NVME_VENDOR_SPECIFIC_LOGPAGE_MIN 0xC0 517 #define NVME_VENDOR_SPECIFIC_LOGPAGE_MAX 0xFF 518 #define NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x) \ 519 (((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \ 520 ((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX)) 521 522 /* 523 * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX 524 * DWords in size. However, revision 1.3 also modified the layout of the Get Log 525 * Page command significantly relative to version 1.2, including changing 526 * reserved bits, adding new bitfields, and requiring the use of command DWord 527 * 11 to fully specify the size of the log page (the lower and upper 16 bits of 528 * the number of DWords in the page are split between DWord 10 and DWord 11, 529 * respectively). 530 * 531 * All of these impose significantly different layout requirements on the 532 * `nvme_getlogpage_t` type. This could be solved with two different types, or a 533 * complicated/nested union with the two versions as the overlying members. Both 534 * of these are reasonable, if a bit convoluted. However, these is no current 535 * need for such large pages, or a way to test them, as most log pages actually 536 * fit within the current size limit. So for simplicity, we retain the size cap 537 * from version 1.2. 538 * 539 * Note that the number of DWords is zero-based, so we add 1. It is subtracted 540 * to form a zero-based value in `nvme_get_logpage`. 541 */ 542 #define NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE \ 543 (((1 << 12) + 1) * sizeof (uint32_t)) 544 545 static void *nvme_state; 546 static kmem_cache_t *nvme_cmd_cache; 547 548 /* 549 * DMA attributes for queue DMA memory 550 * 551 * Queue DMA memory must be page aligned. The maximum length of a queue is 552 * 65536 entries, and an entry can be 64 bytes long. 553 */ 554 static ddi_dma_attr_t nvme_queue_dma_attr = { 555 .dma_attr_version = DMA_ATTR_V0, 556 .dma_attr_addr_lo = 0, 557 .dma_attr_addr_hi = 0xffffffffffffffffULL, 558 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, 559 .dma_attr_align = 0x1000, 560 .dma_attr_burstsizes = 0x7ff, 561 .dma_attr_minxfer = 0x1000, 562 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 563 .dma_attr_seg = 0xffffffffffffffffULL, 564 .dma_attr_sgllen = 1, 565 .dma_attr_granular = 1, 566 .dma_attr_flags = 0, 567 }; 568 569 /* 570 * DMA attributes for transfers using Physical Region Page (PRP) entries 571 * 572 * A PRP entry describes one page of DMA memory using the page size specified 573 * in the controller configuration's memory page size register (CC.MPS). It uses 574 * a 64bit base address aligned to this page size. There is no limitation on 575 * chaining PRPs together for arbitrarily large DMA transfers. 576 */ 577 static ddi_dma_attr_t nvme_prp_dma_attr = { 578 .dma_attr_version = DMA_ATTR_V0, 579 .dma_attr_addr_lo = 0, 580 .dma_attr_addr_hi = 0xffffffffffffffffULL, 581 .dma_attr_count_max = 0xfff, 582 .dma_attr_align = 0x1000, 583 .dma_attr_burstsizes = 0x7ff, 584 .dma_attr_minxfer = 0x1000, 585 .dma_attr_maxxfer = 0x1000, 586 .dma_attr_seg = 0xfff, 587 .dma_attr_sgllen = -1, 588 .dma_attr_granular = 1, 589 .dma_attr_flags = 0, 590 }; 591 592 /* 593 * DMA attributes for transfers using scatter/gather lists 594 * 595 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a 596 * 32bit length field. SGL Segment and SGL Last Segment entries require the 597 * length to be a multiple of 16 bytes. 598 */ 599 static ddi_dma_attr_t nvme_sgl_dma_attr = { 600 .dma_attr_version = DMA_ATTR_V0, 601 .dma_attr_addr_lo = 0, 602 .dma_attr_addr_hi = 0xffffffffffffffffULL, 603 .dma_attr_count_max = 0xffffffffUL, 604 .dma_attr_align = 1, 605 .dma_attr_burstsizes = 0x7ff, 606 .dma_attr_minxfer = 0x10, 607 .dma_attr_maxxfer = 0xfffffffffULL, 608 .dma_attr_seg = 0xffffffffffffffffULL, 609 .dma_attr_sgllen = -1, 610 .dma_attr_granular = 0x10, 611 .dma_attr_flags = 0 612 }; 613 614 static ddi_device_acc_attr_t nvme_reg_acc_attr = { 615 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 616 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 617 .devacc_attr_dataorder = DDI_STRICTORDER_ACC 618 }; 619 620 static struct cb_ops nvme_cb_ops = { 621 .cb_open = nvme_open, 622 .cb_close = nvme_close, 623 .cb_strategy = nodev, 624 .cb_print = nodev, 625 .cb_dump = nodev, 626 .cb_read = nodev, 627 .cb_write = nodev, 628 .cb_ioctl = nvme_ioctl, 629 .cb_devmap = nodev, 630 .cb_mmap = nodev, 631 .cb_segmap = nodev, 632 .cb_chpoll = nochpoll, 633 .cb_prop_op = ddi_prop_op, 634 .cb_str = 0, 635 .cb_flag = D_NEW | D_MP, 636 .cb_rev = CB_REV, 637 .cb_aread = nodev, 638 .cb_awrite = nodev 639 }; 640 641 static struct dev_ops nvme_dev_ops = { 642 .devo_rev = DEVO_REV, 643 .devo_refcnt = 0, 644 .devo_getinfo = ddi_no_info, 645 .devo_identify = nulldev, 646 .devo_probe = nulldev, 647 .devo_attach = nvme_attach, 648 .devo_detach = nvme_detach, 649 .devo_reset = nodev, 650 .devo_cb_ops = &nvme_cb_ops, 651 .devo_bus_ops = NULL, 652 .devo_power = NULL, 653 .devo_quiesce = nvme_quiesce, 654 }; 655 656 static struct modldrv nvme_modldrv = { 657 .drv_modops = &mod_driverops, 658 .drv_linkinfo = "NVMe v1.1b", 659 .drv_dev_ops = &nvme_dev_ops 660 }; 661 662 static struct modlinkage nvme_modlinkage = { 663 .ml_rev = MODREV_1, 664 .ml_linkage = { &nvme_modldrv, NULL } 665 }; 666 667 static bd_ops_t nvme_bd_ops = { 668 .o_version = BD_OPS_CURRENT_VERSION, 669 .o_drive_info = nvme_bd_driveinfo, 670 .o_media_info = nvme_bd_mediainfo, 671 .o_devid_init = nvme_bd_devid, 672 .o_sync_cache = nvme_bd_sync, 673 .o_read = nvme_bd_read, 674 .o_write = nvme_bd_write, 675 .o_free_space = nvme_bd_free_space, 676 }; 677 678 /* 679 * This list will hold commands that have timed out and couldn't be aborted. 680 * As we don't know what the hardware may still do with the DMA memory we can't 681 * free them, so we'll keep them forever on this list where we can easily look 682 * at them with mdb. 683 */ 684 static struct list nvme_lost_cmds; 685 static kmutex_t nvme_lc_mutex; 686 687 int 688 _init(void) 689 { 690 int error; 691 692 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); 693 if (error != DDI_SUCCESS) 694 return (error); 695 696 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", 697 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 698 699 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL); 700 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t), 701 offsetof(nvme_cmd_t, nc_list)); 702 703 bd_mod_init(&nvme_dev_ops); 704 705 error = mod_install(&nvme_modlinkage); 706 if (error != DDI_SUCCESS) { 707 ddi_soft_state_fini(&nvme_state); 708 mutex_destroy(&nvme_lc_mutex); 709 list_destroy(&nvme_lost_cmds); 710 bd_mod_fini(&nvme_dev_ops); 711 } 712 713 return (error); 714 } 715 716 int 717 _fini(void) 718 { 719 int error; 720 721 if (!list_is_empty(&nvme_lost_cmds)) 722 return (DDI_FAILURE); 723 724 error = mod_remove(&nvme_modlinkage); 725 if (error == DDI_SUCCESS) { 726 ddi_soft_state_fini(&nvme_state); 727 kmem_cache_destroy(nvme_cmd_cache); 728 mutex_destroy(&nvme_lc_mutex); 729 list_destroy(&nvme_lost_cmds); 730 bd_mod_fini(&nvme_dev_ops); 731 } 732 733 return (error); 734 } 735 736 int 737 _info(struct modinfo *modinfop) 738 { 739 return (mod_info(&nvme_modlinkage, modinfop)); 740 } 741 742 static inline void 743 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) 744 { 745 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 746 747 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 748 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); 749 } 750 751 static inline void 752 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) 753 { 754 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 755 756 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 757 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); 758 } 759 760 static inline uint64_t 761 nvme_get64(nvme_t *nvme, uintptr_t reg) 762 { 763 uint64_t val; 764 765 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 766 767 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 768 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); 769 770 return (val); 771 } 772 773 static inline uint32_t 774 nvme_get32(nvme_t *nvme, uintptr_t reg) 775 { 776 uint32_t val; 777 778 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 779 780 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 781 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); 782 783 return (val); 784 } 785 786 static boolean_t 787 nvme_check_regs_hdl(nvme_t *nvme) 788 { 789 ddi_fm_error_t error; 790 791 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); 792 793 if (error.fme_status != DDI_FM_OK) 794 return (B_TRUE); 795 796 return (B_FALSE); 797 } 798 799 static boolean_t 800 nvme_check_dma_hdl(nvme_dma_t *dma) 801 { 802 ddi_fm_error_t error; 803 804 if (dma == NULL) 805 return (B_FALSE); 806 807 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); 808 809 if (error.fme_status != DDI_FM_OK) 810 return (B_TRUE); 811 812 return (B_FALSE); 813 } 814 815 static void 816 nvme_free_dma_common(nvme_dma_t *dma) 817 { 818 if (dma->nd_dmah != NULL) 819 (void) ddi_dma_unbind_handle(dma->nd_dmah); 820 if (dma->nd_acch != NULL) 821 ddi_dma_mem_free(&dma->nd_acch); 822 if (dma->nd_dmah != NULL) 823 ddi_dma_free_handle(&dma->nd_dmah); 824 } 825 826 static void 827 nvme_free_dma(nvme_dma_t *dma) 828 { 829 nvme_free_dma_common(dma); 830 kmem_free(dma, sizeof (*dma)); 831 } 832 833 /* ARGSUSED */ 834 static void 835 nvme_prp_dma_destructor(void *buf, void *private) 836 { 837 nvme_dma_t *dma = (nvme_dma_t *)buf; 838 839 nvme_free_dma_common(dma); 840 } 841 842 static int 843 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, 844 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) 845 { 846 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, 847 &dma->nd_dmah) != DDI_SUCCESS) { 848 /* 849 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and 850 * the only other possible error is DDI_DMA_BADATTR which 851 * indicates a driver bug which should cause a panic. 852 */ 853 dev_err(nvme->n_dip, CE_PANIC, 854 "!failed to get DMA handle, check DMA attributes"); 855 return (DDI_FAILURE); 856 } 857 858 /* 859 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified 860 * or the flags are conflicting, which isn't the case here. 861 */ 862 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, 863 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, 864 &dma->nd_len, &dma->nd_acch); 865 866 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, 867 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 868 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { 869 dev_err(nvme->n_dip, CE_WARN, 870 "!failed to bind DMA memory"); 871 atomic_inc_32(&nvme->n_dma_bind_err); 872 nvme_free_dma_common(dma); 873 return (DDI_FAILURE); 874 } 875 876 return (DDI_SUCCESS); 877 } 878 879 static int 880 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, 881 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) 882 { 883 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); 884 885 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != 886 DDI_SUCCESS) { 887 *ret = NULL; 888 kmem_free(dma, sizeof (nvme_dma_t)); 889 return (DDI_FAILURE); 890 } 891 892 bzero(dma->nd_memp, dma->nd_len); 893 894 *ret = dma; 895 return (DDI_SUCCESS); 896 } 897 898 /* ARGSUSED */ 899 static int 900 nvme_prp_dma_constructor(void *buf, void *private, int flags) 901 { 902 nvme_dma_t *dma = (nvme_dma_t *)buf; 903 nvme_t *nvme = (nvme_t *)private; 904 905 dma->nd_dmah = NULL; 906 dma->nd_acch = NULL; 907 908 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, 909 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { 910 return (-1); 911 } 912 913 ASSERT(dma->nd_ncookie == 1); 914 915 dma->nd_cached = B_TRUE; 916 917 return (0); 918 } 919 920 static int 921 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, 922 uint_t flags, nvme_dma_t **dma) 923 { 924 uint32_t len = nentry * qe_len; 925 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; 926 927 len = roundup(len, nvme->n_pagesize); 928 929 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) 930 != DDI_SUCCESS) { 931 dev_err(nvme->n_dip, CE_WARN, 932 "!failed to get DMA memory for queue"); 933 goto fail; 934 } 935 936 if ((*dma)->nd_ncookie != 1) { 937 dev_err(nvme->n_dip, CE_WARN, 938 "!got too many cookies for queue DMA"); 939 goto fail; 940 } 941 942 return (DDI_SUCCESS); 943 944 fail: 945 if (*dma) { 946 nvme_free_dma(*dma); 947 *dma = NULL; 948 } 949 950 return (DDI_FAILURE); 951 } 952 953 static void 954 nvme_free_cq(nvme_cq_t *cq) 955 { 956 mutex_destroy(&cq->ncq_mutex); 957 958 if (cq->ncq_cmd_taskq != NULL) 959 taskq_destroy(cq->ncq_cmd_taskq); 960 961 if (cq->ncq_dma != NULL) 962 nvme_free_dma(cq->ncq_dma); 963 964 kmem_free(cq, sizeof (*cq)); 965 } 966 967 static void 968 nvme_free_qpair(nvme_qpair_t *qp) 969 { 970 int i; 971 972 mutex_destroy(&qp->nq_mutex); 973 sema_destroy(&qp->nq_sema); 974 975 if (qp->nq_sqdma != NULL) 976 nvme_free_dma(qp->nq_sqdma); 977 978 if (qp->nq_active_cmds > 0) 979 for (i = 0; i != qp->nq_nentry; i++) 980 if (qp->nq_cmd[i] != NULL) 981 nvme_free_cmd(qp->nq_cmd[i]); 982 983 if (qp->nq_cmd != NULL) 984 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); 985 986 kmem_free(qp, sizeof (nvme_qpair_t)); 987 } 988 989 /* 990 * Destroy the pre-allocated cq array, but only free individual completion 991 * queues from the given starting index. 992 */ 993 static void 994 nvme_destroy_cq_array(nvme_t *nvme, uint_t start) 995 { 996 uint_t i; 997 998 for (i = start; i < nvme->n_cq_count; i++) 999 if (nvme->n_cq[i] != NULL) 1000 nvme_free_cq(nvme->n_cq[i]); 1001 1002 kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count); 1003 } 1004 1005 static int 1006 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx, 1007 uint_t nthr) 1008 { 1009 nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP); 1010 char name[64]; /* large enough for the taskq name */ 1011 1012 mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER, 1013 DDI_INTR_PRI(nvme->n_intr_pri)); 1014 1015 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), 1016 DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS) 1017 goto fail; 1018 1019 cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp; 1020 cq->ncq_nentry = nentry; 1021 cq->ncq_id = idx; 1022 cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx); 1023 1024 /* 1025 * Each completion queue has its own command taskq. 1026 */ 1027 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u", 1028 ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx); 1029 1030 cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX, 1031 TASKQ_PREPOPULATE); 1032 1033 if (cq->ncq_cmd_taskq == NULL) { 1034 dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd " 1035 "taskq for cq %u", idx); 1036 goto fail; 1037 } 1038 1039 *cqp = cq; 1040 return (DDI_SUCCESS); 1041 1042 fail: 1043 nvme_free_cq(cq); 1044 *cqp = NULL; 1045 1046 return (DDI_FAILURE); 1047 } 1048 1049 /* 1050 * Create the n_cq array big enough to hold "ncq" completion queues. 1051 * If the array already exists it will be re-sized (but only larger). 1052 * The admin queue is included in this array, which boosts the 1053 * max number of entries to UINT16_MAX + 1. 1054 */ 1055 static int 1056 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr) 1057 { 1058 nvme_cq_t **cq; 1059 uint_t i, cq_count; 1060 1061 ASSERT3U(ncq, >, nvme->n_cq_count); 1062 1063 cq = nvme->n_cq; 1064 cq_count = nvme->n_cq_count; 1065 1066 nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP); 1067 nvme->n_cq_count = ncq; 1068 1069 for (i = 0; i < cq_count; i++) 1070 nvme->n_cq[i] = cq[i]; 1071 1072 for (; i < nvme->n_cq_count; i++) 1073 if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) != 1074 DDI_SUCCESS) 1075 goto fail; 1076 1077 if (cq != NULL) 1078 kmem_free(cq, sizeof (*cq) * cq_count); 1079 1080 return (DDI_SUCCESS); 1081 1082 fail: 1083 nvme_destroy_cq_array(nvme, cq_count); 1084 /* 1085 * Restore the original array 1086 */ 1087 nvme->n_cq_count = cq_count; 1088 nvme->n_cq = cq; 1089 1090 return (DDI_FAILURE); 1091 } 1092 1093 static int 1094 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, 1095 uint_t idx) 1096 { 1097 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); 1098 uint_t cq_idx; 1099 1100 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, 1101 DDI_INTR_PRI(nvme->n_intr_pri)); 1102 1103 /* 1104 * The NVMe spec defines that a full queue has one empty (unused) slot; 1105 * initialize the semaphore accordingly. 1106 */ 1107 sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL); 1108 1109 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), 1110 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) 1111 goto fail; 1112 1113 /* 1114 * idx == 0 is adminq, those above 0 are shared io completion queues. 1115 */ 1116 cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1); 1117 qp->nq_cq = nvme->n_cq[cq_idx]; 1118 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; 1119 qp->nq_nentry = nentry; 1120 1121 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); 1122 1123 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); 1124 qp->nq_next_cmd = 0; 1125 1126 *nqp = qp; 1127 return (DDI_SUCCESS); 1128 1129 fail: 1130 nvme_free_qpair(qp); 1131 *nqp = NULL; 1132 1133 return (DDI_FAILURE); 1134 } 1135 1136 static nvme_cmd_t * 1137 nvme_alloc_cmd(nvme_t *nvme, int kmflag) 1138 { 1139 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); 1140 1141 if (cmd == NULL) 1142 return (cmd); 1143 1144 bzero(cmd, sizeof (nvme_cmd_t)); 1145 1146 cmd->nc_nvme = nvme; 1147 1148 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, 1149 DDI_INTR_PRI(nvme->n_intr_pri)); 1150 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); 1151 1152 return (cmd); 1153 } 1154 1155 static void 1156 nvme_free_cmd(nvme_cmd_t *cmd) 1157 { 1158 /* Don't free commands on the lost commands list. */ 1159 if (list_link_active(&cmd->nc_list)) 1160 return; 1161 1162 if (cmd->nc_dma) { 1163 nvme_free_dma(cmd->nc_dma); 1164 cmd->nc_dma = NULL; 1165 } 1166 1167 if (cmd->nc_prp) { 1168 kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp); 1169 cmd->nc_prp = NULL; 1170 } 1171 1172 cv_destroy(&cmd->nc_cv); 1173 mutex_destroy(&cmd->nc_mutex); 1174 1175 kmem_cache_free(nvme_cmd_cache, cmd); 1176 } 1177 1178 static void 1179 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1180 { 1181 sema_p(&qp->nq_sema); 1182 nvme_submit_cmd_common(qp, cmd); 1183 } 1184 1185 static int 1186 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1187 { 1188 if (cmd->nc_nvme->n_dead) { 1189 return (EIO); 1190 } 1191 1192 if (sema_tryp(&qp->nq_sema) == 0) 1193 return (EAGAIN); 1194 1195 nvme_submit_cmd_common(qp, cmd); 1196 return (0); 1197 } 1198 1199 static void 1200 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1201 { 1202 nvme_reg_sqtdbl_t tail = { 0 }; 1203 1204 mutex_enter(&qp->nq_mutex); 1205 cmd->nc_completed = B_FALSE; 1206 1207 /* 1208 * Now that we hold the queue pair lock, we must check whether or not 1209 * the controller has been listed as dead (e.g. was removed due to 1210 * hotplug). This is necessary as otherwise we could race with 1211 * nvme_remove_callback(). Because this has not been enqueued, we don't 1212 * call nvme_unqueue_cmd(), which is why we must manually decrement the 1213 * semaphore. 1214 */ 1215 if (cmd->nc_nvme->n_dead) { 1216 taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback, 1217 cmd, TQ_NOSLEEP, &cmd->nc_tqent); 1218 sema_v(&qp->nq_sema); 1219 mutex_exit(&qp->nq_mutex); 1220 return; 1221 } 1222 1223 /* 1224 * Try to insert the cmd into the active cmd array at the nq_next_cmd 1225 * slot. If the slot is already occupied advance to the next slot and 1226 * try again. This can happen for long running commands like async event 1227 * requests. 1228 */ 1229 while (qp->nq_cmd[qp->nq_next_cmd] != NULL) 1230 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 1231 qp->nq_cmd[qp->nq_next_cmd] = cmd; 1232 1233 qp->nq_active_cmds++; 1234 1235 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; 1236 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); 1237 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, 1238 sizeof (nvme_sqe_t) * qp->nq_sqtail, 1239 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); 1240 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 1241 1242 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; 1243 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); 1244 1245 mutex_exit(&qp->nq_mutex); 1246 } 1247 1248 static nvme_cmd_t * 1249 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid) 1250 { 1251 nvme_cmd_t *cmd; 1252 1253 ASSERT(mutex_owned(&qp->nq_mutex)); 1254 ASSERT3S(cid, <, qp->nq_nentry); 1255 1256 cmd = qp->nq_cmd[cid]; 1257 qp->nq_cmd[cid] = NULL; 1258 ASSERT3U(qp->nq_active_cmds, >, 0); 1259 qp->nq_active_cmds--; 1260 sema_v(&qp->nq_sema); 1261 1262 ASSERT3P(cmd, !=, NULL); 1263 ASSERT3P(cmd->nc_nvme, ==, nvme); 1264 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid); 1265 1266 return (cmd); 1267 } 1268 1269 /* 1270 * Get the command tied to the next completed cqe and bump along completion 1271 * queue head counter. 1272 */ 1273 static nvme_cmd_t * 1274 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq) 1275 { 1276 nvme_qpair_t *qp; 1277 nvme_cqe_t *cqe; 1278 nvme_cmd_t *cmd; 1279 1280 ASSERT(mutex_owned(&cq->ncq_mutex)); 1281 1282 cqe = &cq->ncq_cq[cq->ncq_head]; 1283 1284 /* Check phase tag of CQE. Hardware inverts it for new entries. */ 1285 if (cqe->cqe_sf.sf_p == cq->ncq_phase) 1286 return (NULL); 1287 1288 qp = nvme->n_ioq[cqe->cqe_sqid]; 1289 1290 mutex_enter(&qp->nq_mutex); 1291 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid); 1292 mutex_exit(&qp->nq_mutex); 1293 1294 ASSERT(cmd->nc_sqid == cqe->cqe_sqid); 1295 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); 1296 1297 qp->nq_sqhead = cqe->cqe_sqhd; 1298 1299 cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry; 1300 1301 /* Toggle phase on wrap-around. */ 1302 if (cq->ncq_head == 0) 1303 cq->ncq_phase = cq->ncq_phase ? 0 : 1; 1304 1305 return (cmd); 1306 } 1307 1308 /* 1309 * Process all completed commands on the io completion queue. 1310 */ 1311 static uint_t 1312 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq) 1313 { 1314 nvme_reg_cqhdbl_t head = { 0 }; 1315 nvme_cmd_t *cmd; 1316 uint_t completed = 0; 1317 1318 if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != 1319 DDI_SUCCESS) 1320 dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", 1321 __func__); 1322 1323 mutex_enter(&cq->ncq_mutex); 1324 1325 while ((cmd = nvme_get_completed(nvme, cq)) != NULL) { 1326 taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd, 1327 TQ_NOSLEEP, &cmd->nc_tqent); 1328 1329 completed++; 1330 } 1331 1332 if (completed > 0) { 1333 /* 1334 * Update the completion queue head doorbell. 1335 */ 1336 head.b.cqhdbl_cqh = cq->ncq_head; 1337 nvme_put32(nvme, cq->ncq_hdbl, head.r); 1338 } 1339 1340 mutex_exit(&cq->ncq_mutex); 1341 1342 return (completed); 1343 } 1344 1345 static nvme_cmd_t * 1346 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) 1347 { 1348 nvme_cq_t *cq = qp->nq_cq; 1349 nvme_reg_cqhdbl_t head = { 0 }; 1350 nvme_cmd_t *cmd; 1351 1352 if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != 1353 DDI_SUCCESS) 1354 dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", 1355 __func__); 1356 1357 mutex_enter(&cq->ncq_mutex); 1358 1359 if ((cmd = nvme_get_completed(nvme, cq)) != NULL) { 1360 head.b.cqhdbl_cqh = cq->ncq_head; 1361 nvme_put32(nvme, cq->ncq_hdbl, head.r); 1362 } 1363 1364 mutex_exit(&cq->ncq_mutex); 1365 1366 return (cmd); 1367 } 1368 1369 static int 1370 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) 1371 { 1372 nvme_cqe_t *cqe = &cmd->nc_cqe; 1373 1374 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1375 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 1376 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 1377 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 1378 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 1379 1380 if (cmd->nc_xfer != NULL) 1381 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1382 1383 if (cmd->nc_nvme->n_strict_version) { 1384 cmd->nc_nvme->n_dead = B_TRUE; 1385 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1386 } 1387 1388 return (EIO); 1389 } 1390 1391 static int 1392 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) 1393 { 1394 nvme_cqe_t *cqe = &cmd->nc_cqe; 1395 1396 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1397 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 1398 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 1399 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 1400 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 1401 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { 1402 cmd->nc_nvme->n_dead = B_TRUE; 1403 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1404 } 1405 1406 return (EIO); 1407 } 1408 1409 static int 1410 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) 1411 { 1412 nvme_cqe_t *cqe = &cmd->nc_cqe; 1413 1414 switch (cqe->cqe_sf.sf_sc) { 1415 case NVME_CQE_SC_INT_NVM_WRITE: 1416 /* write fail */ 1417 /* TODO: post ereport */ 1418 if (cmd->nc_xfer != NULL) 1419 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1420 return (EIO); 1421 1422 case NVME_CQE_SC_INT_NVM_READ: 1423 /* read fail */ 1424 /* TODO: post ereport */ 1425 if (cmd->nc_xfer != NULL) 1426 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1427 return (EIO); 1428 1429 default: 1430 return (nvme_check_unknown_cmd_status(cmd)); 1431 } 1432 } 1433 1434 static int 1435 nvme_check_generic_cmd_status(nvme_cmd_t *cmd) 1436 { 1437 nvme_cqe_t *cqe = &cmd->nc_cqe; 1438 1439 switch (cqe->cqe_sf.sf_sc) { 1440 case NVME_CQE_SC_GEN_SUCCESS: 1441 return (0); 1442 1443 /* 1444 * Errors indicating a bug in the driver should cause a panic. 1445 */ 1446 case NVME_CQE_SC_GEN_INV_OPC: 1447 /* Invalid Command Opcode */ 1448 if (!cmd->nc_dontpanic) 1449 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1450 "programming error: invalid opcode in cmd %p", 1451 (void *)cmd); 1452 return (EINVAL); 1453 1454 case NVME_CQE_SC_GEN_INV_FLD: 1455 /* Invalid Field in Command */ 1456 if (!cmd->nc_dontpanic) 1457 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1458 "programming error: invalid field in cmd %p", 1459 (void *)cmd); 1460 return (EIO); 1461 1462 case NVME_CQE_SC_GEN_ID_CNFL: 1463 /* Command ID Conflict */ 1464 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1465 "cmd ID conflict in cmd %p", (void *)cmd); 1466 return (0); 1467 1468 case NVME_CQE_SC_GEN_INV_NS: 1469 /* Invalid Namespace or Format */ 1470 if (!cmd->nc_dontpanic) 1471 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1472 "programming error: invalid NS/format in cmd %p", 1473 (void *)cmd); 1474 return (EINVAL); 1475 1476 case NVME_CQE_SC_GEN_NVM_LBA_RANGE: 1477 /* LBA Out Of Range */ 1478 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1479 "LBA out of range in cmd %p", (void *)cmd); 1480 return (0); 1481 1482 /* 1483 * Non-fatal errors, handle gracefully. 1484 */ 1485 case NVME_CQE_SC_GEN_DATA_XFR_ERR: 1486 /* Data Transfer Error (DMA) */ 1487 /* TODO: post ereport */ 1488 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); 1489 if (cmd->nc_xfer != NULL) 1490 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1491 return (EIO); 1492 1493 case NVME_CQE_SC_GEN_INTERNAL_ERR: 1494 /* 1495 * Internal Error. The spec (v1.0, section 4.5.1.2) says 1496 * detailed error information is returned as async event, 1497 * so we pretty much ignore the error here and handle it 1498 * in the async event handler. 1499 */ 1500 atomic_inc_32(&cmd->nc_nvme->n_internal_err); 1501 if (cmd->nc_xfer != NULL) 1502 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1503 return (EIO); 1504 1505 case NVME_CQE_SC_GEN_ABORT_REQUEST: 1506 /* 1507 * Command Abort Requested. This normally happens only when a 1508 * command times out. 1509 */ 1510 /* TODO: post ereport or change blkdev to handle this? */ 1511 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); 1512 return (ECANCELED); 1513 1514 case NVME_CQE_SC_GEN_ABORT_PWRLOSS: 1515 /* Command Aborted due to Power Loss Notification */ 1516 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 1517 cmd->nc_nvme->n_dead = B_TRUE; 1518 return (EIO); 1519 1520 case NVME_CQE_SC_GEN_ABORT_SQ_DEL: 1521 /* Command Aborted due to SQ Deletion */ 1522 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); 1523 return (EIO); 1524 1525 case NVME_CQE_SC_GEN_NVM_CAP_EXC: 1526 /* Capacity Exceeded */ 1527 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); 1528 if (cmd->nc_xfer != NULL) 1529 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1530 return (EIO); 1531 1532 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: 1533 /* Namespace Not Ready */ 1534 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); 1535 if (cmd->nc_xfer != NULL) 1536 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1537 return (EIO); 1538 1539 default: 1540 return (nvme_check_unknown_cmd_status(cmd)); 1541 } 1542 } 1543 1544 static int 1545 nvme_check_specific_cmd_status(nvme_cmd_t *cmd) 1546 { 1547 nvme_cqe_t *cqe = &cmd->nc_cqe; 1548 1549 switch (cqe->cqe_sf.sf_sc) { 1550 case NVME_CQE_SC_SPC_INV_CQ: 1551 /* Completion Queue Invalid */ 1552 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); 1553 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); 1554 return (EINVAL); 1555 1556 case NVME_CQE_SC_SPC_INV_QID: 1557 /* Invalid Queue Identifier */ 1558 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1559 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || 1560 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || 1561 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1562 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); 1563 return (EINVAL); 1564 1565 case NVME_CQE_SC_SPC_MAX_QSZ_EXC: 1566 /* Max Queue Size Exceeded */ 1567 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1568 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1569 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); 1570 return (EINVAL); 1571 1572 case NVME_CQE_SC_SPC_ABRT_CMD_EXC: 1573 /* Abort Command Limit Exceeded */ 1574 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); 1575 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1576 "abort command limit exceeded in cmd %p", (void *)cmd); 1577 return (0); 1578 1579 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: 1580 /* Async Event Request Limit Exceeded */ 1581 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); 1582 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1583 "async event request limit exceeded in cmd %p", 1584 (void *)cmd); 1585 return (0); 1586 1587 case NVME_CQE_SC_SPC_INV_INT_VECT: 1588 /* Invalid Interrupt Vector */ 1589 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1590 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); 1591 return (EINVAL); 1592 1593 case NVME_CQE_SC_SPC_INV_LOG_PAGE: 1594 /* Invalid Log Page */ 1595 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); 1596 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); 1597 return (EINVAL); 1598 1599 case NVME_CQE_SC_SPC_INV_FORMAT: 1600 /* Invalid Format */ 1601 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); 1602 atomic_inc_32(&cmd->nc_nvme->n_inv_format); 1603 if (cmd->nc_xfer != NULL) 1604 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1605 return (EINVAL); 1606 1607 case NVME_CQE_SC_SPC_INV_Q_DEL: 1608 /* Invalid Queue Deletion */ 1609 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1610 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); 1611 return (EINVAL); 1612 1613 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: 1614 /* Conflicting Attributes */ 1615 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || 1616 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1617 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1618 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); 1619 if (cmd->nc_xfer != NULL) 1620 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1621 return (EINVAL); 1622 1623 case NVME_CQE_SC_SPC_NVM_INV_PROT: 1624 /* Invalid Protection Information */ 1625 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || 1626 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1627 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1628 atomic_inc_32(&cmd->nc_nvme->n_inv_prot); 1629 if (cmd->nc_xfer != NULL) 1630 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1631 return (EINVAL); 1632 1633 case NVME_CQE_SC_SPC_NVM_READONLY: 1634 /* Write to Read Only Range */ 1635 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1636 atomic_inc_32(&cmd->nc_nvme->n_readonly); 1637 if (cmd->nc_xfer != NULL) 1638 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1639 return (EROFS); 1640 1641 case NVME_CQE_SC_SPC_INV_FW_SLOT: 1642 /* Invalid Firmware Slot */ 1643 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1644 return (EINVAL); 1645 1646 case NVME_CQE_SC_SPC_INV_FW_IMG: 1647 /* Invalid Firmware Image */ 1648 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1649 return (EINVAL); 1650 1651 case NVME_CQE_SC_SPC_FW_RESET: 1652 /* Conventional Reset Required */ 1653 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1654 return (0); 1655 1656 case NVME_CQE_SC_SPC_FW_NSSR: 1657 /* NVMe Subsystem Reset Required */ 1658 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1659 return (0); 1660 1661 case NVME_CQE_SC_SPC_FW_NEXT_RESET: 1662 /* Activation Requires Reset */ 1663 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1664 return (0); 1665 1666 case NVME_CQE_SC_SPC_FW_MTFA: 1667 /* Activation Requires Maximum Time Violation */ 1668 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1669 return (EAGAIN); 1670 1671 case NVME_CQE_SC_SPC_FW_PROHIBITED: 1672 /* Activation Prohibited */ 1673 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 1674 return (EINVAL); 1675 1676 case NVME_CQE_SC_SPC_FW_OVERLAP: 1677 /* Overlapping Firmware Ranges */ 1678 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD); 1679 return (EINVAL); 1680 1681 default: 1682 return (nvme_check_unknown_cmd_status(cmd)); 1683 } 1684 } 1685 1686 static inline int 1687 nvme_check_cmd_status(nvme_cmd_t *cmd) 1688 { 1689 nvme_cqe_t *cqe = &cmd->nc_cqe; 1690 1691 /* 1692 * Take a shortcut if the controller is dead, or if 1693 * command status indicates no error. 1694 */ 1695 if (cmd->nc_nvme->n_dead) 1696 return (EIO); 1697 1698 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1699 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 1700 return (0); 1701 1702 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) 1703 return (nvme_check_generic_cmd_status(cmd)); 1704 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 1705 return (nvme_check_specific_cmd_status(cmd)); 1706 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) 1707 return (nvme_check_integrity_cmd_status(cmd)); 1708 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) 1709 return (nvme_check_vendor_cmd_status(cmd)); 1710 1711 return (nvme_check_unknown_cmd_status(cmd)); 1712 } 1713 1714 static int 1715 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec) 1716 { 1717 nvme_t *nvme = abort_cmd->nc_nvme; 1718 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1719 nvme_abort_cmd_t ac = { 0 }; 1720 int ret = 0; 1721 1722 sema_p(&nvme->n_abort_sema); 1723 1724 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; 1725 ac.b.ac_sqid = abort_cmd->nc_sqid; 1726 1727 cmd->nc_sqid = 0; 1728 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; 1729 cmd->nc_callback = nvme_wakeup_cmd; 1730 cmd->nc_sqe.sqe_cdw10 = ac.r; 1731 1732 /* 1733 * Send the ABORT to the hardware. The ABORT command will return _after_ 1734 * the aborted command has completed (aborted or otherwise), but since 1735 * we still hold the aborted command's mutex its callback hasn't been 1736 * processed yet. 1737 */ 1738 nvme_admin_cmd(cmd, sec); 1739 sema_v(&nvme->n_abort_sema); 1740 1741 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 1742 dev_err(nvme->n_dip, CE_WARN, 1743 "!ABORT failed with sct = %x, sc = %x", 1744 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1745 atomic_inc_32(&nvme->n_abort_failed); 1746 } else { 1747 dev_err(nvme->n_dip, CE_WARN, 1748 "!ABORT of command %d/%d %ssuccessful", 1749 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid, 1750 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : ""); 1751 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0) 1752 atomic_inc_32(&nvme->n_cmd_aborted); 1753 } 1754 1755 nvme_free_cmd(cmd); 1756 return (ret); 1757 } 1758 1759 /* 1760 * nvme_wait_cmd -- wait for command completion or timeout 1761 * 1762 * In case of a serious error or a timeout of the abort command the hardware 1763 * will be declared dead and FMA will be notified. 1764 */ 1765 static void 1766 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) 1767 { 1768 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); 1769 nvme_t *nvme = cmd->nc_nvme; 1770 nvme_reg_csts_t csts; 1771 nvme_qpair_t *qp; 1772 1773 ASSERT(mutex_owned(&cmd->nc_mutex)); 1774 1775 while (!cmd->nc_completed) { 1776 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) 1777 break; 1778 } 1779 1780 if (cmd->nc_completed) 1781 return; 1782 1783 /* 1784 * The command timed out. 1785 * 1786 * Check controller for fatal status, any errors associated with the 1787 * register or DMA handle, or for a double timeout (abort command timed 1788 * out). If necessary log a warning and call FMA. 1789 */ 1790 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1791 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, " 1792 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid, 1793 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); 1794 atomic_inc_32(&nvme->n_cmd_timeout); 1795 1796 if (csts.b.csts_cfs || 1797 nvme_check_regs_hdl(nvme) || 1798 nvme_check_dma_hdl(cmd->nc_dma) || 1799 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { 1800 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1801 nvme->n_dead = B_TRUE; 1802 } else if (nvme_abort_cmd(cmd, sec) == 0) { 1803 /* 1804 * If the abort succeeded the command should complete 1805 * immediately with an appropriate status. 1806 */ 1807 while (!cmd->nc_completed) 1808 cv_wait(&cmd->nc_cv, &cmd->nc_mutex); 1809 1810 return; 1811 } 1812 1813 qp = nvme->n_ioq[cmd->nc_sqid]; 1814 1815 mutex_enter(&qp->nq_mutex); 1816 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); 1817 mutex_exit(&qp->nq_mutex); 1818 1819 /* 1820 * As we don't know what the presumed dead hardware might still do with 1821 * the DMA memory, we'll put the command on the lost commands list if it 1822 * has any DMA memory. 1823 */ 1824 if (cmd->nc_dma != NULL) { 1825 mutex_enter(&nvme_lc_mutex); 1826 list_insert_head(&nvme_lost_cmds, cmd); 1827 mutex_exit(&nvme_lc_mutex); 1828 } 1829 } 1830 1831 static void 1832 nvme_wakeup_cmd(void *arg) 1833 { 1834 nvme_cmd_t *cmd = arg; 1835 1836 mutex_enter(&cmd->nc_mutex); 1837 cmd->nc_completed = B_TRUE; 1838 cv_signal(&cmd->nc_cv); 1839 mutex_exit(&cmd->nc_mutex); 1840 } 1841 1842 static void 1843 nvme_async_event_task(void *arg) 1844 { 1845 nvme_cmd_t *cmd = arg; 1846 nvme_t *nvme = cmd->nc_nvme; 1847 nvme_error_log_entry_t *error_log = NULL; 1848 nvme_health_log_t *health_log = NULL; 1849 nvme_nschange_list_t *nslist = NULL; 1850 size_t logsize = 0; 1851 nvme_async_event_t event; 1852 1853 /* 1854 * Check for errors associated with the async request itself. The only 1855 * command-specific error is "async event limit exceeded", which 1856 * indicates a programming error in the driver and causes a panic in 1857 * nvme_check_cmd_status(). 1858 * 1859 * Other possible errors are various scenarios where the async request 1860 * was aborted, or internal errors in the device. Internal errors are 1861 * reported to FMA, the command aborts need no special handling here. 1862 * 1863 * And finally, at least qemu nvme does not support async events, 1864 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we 1865 * will avoid posting async events. 1866 */ 1867 1868 if (nvme_check_cmd_status(cmd) != 0) { 1869 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1870 "!async event request returned failure, sct = %x, " 1871 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, 1872 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, 1873 cmd->nc_cqe.cqe_sf.sf_m); 1874 1875 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1876 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { 1877 cmd->nc_nvme->n_dead = B_TRUE; 1878 ddi_fm_service_impact(cmd->nc_nvme->n_dip, 1879 DDI_SERVICE_LOST); 1880 } 1881 1882 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1883 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC && 1884 cmd->nc_cqe.cqe_sf.sf_dnr == 1) { 1885 nvme->n_async_event_supported = B_FALSE; 1886 } 1887 1888 nvme_free_cmd(cmd); 1889 return; 1890 } 1891 1892 event.r = cmd->nc_cqe.cqe_dw0; 1893 1894 /* Clear CQE and re-submit the async request. */ 1895 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); 1896 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 1897 1898 switch (event.b.ae_type) { 1899 case NVME_ASYNC_TYPE_ERROR: 1900 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { 1901 (void) nvme_get_logpage(nvme, B_FALSE, 1902 (void **)&error_log, &logsize, event.b.ae_logpage); 1903 } else { 1904 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1905 "async event reply: %d", event.b.ae_logpage); 1906 atomic_inc_32(&nvme->n_wrong_logpage); 1907 } 1908 1909 switch (event.b.ae_info) { 1910 case NVME_ASYNC_ERROR_INV_SQ: 1911 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1912 "invalid submission queue"); 1913 return; 1914 1915 case NVME_ASYNC_ERROR_INV_DBL: 1916 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1917 "invalid doorbell write value"); 1918 return; 1919 1920 case NVME_ASYNC_ERROR_DIAGFAIL: 1921 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); 1922 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1923 nvme->n_dead = B_TRUE; 1924 atomic_inc_32(&nvme->n_diagfail_event); 1925 break; 1926 1927 case NVME_ASYNC_ERROR_PERSISTENT: 1928 dev_err(nvme->n_dip, CE_WARN, "!persistent internal " 1929 "device error"); 1930 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1931 nvme->n_dead = B_TRUE; 1932 atomic_inc_32(&nvme->n_persistent_event); 1933 break; 1934 1935 case NVME_ASYNC_ERROR_TRANSIENT: 1936 dev_err(nvme->n_dip, CE_WARN, "!transient internal " 1937 "device error"); 1938 /* TODO: send ereport */ 1939 atomic_inc_32(&nvme->n_transient_event); 1940 break; 1941 1942 case NVME_ASYNC_ERROR_FW_LOAD: 1943 dev_err(nvme->n_dip, CE_WARN, 1944 "!firmware image load error"); 1945 atomic_inc_32(&nvme->n_fw_load_event); 1946 break; 1947 } 1948 break; 1949 1950 case NVME_ASYNC_TYPE_HEALTH: 1951 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { 1952 (void) nvme_get_logpage(nvme, B_FALSE, 1953 (void **)&health_log, &logsize, event.b.ae_logpage, 1954 -1); 1955 } else { 1956 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1957 "async event reply: %d", event.b.ae_logpage); 1958 atomic_inc_32(&nvme->n_wrong_logpage); 1959 } 1960 1961 switch (event.b.ae_info) { 1962 case NVME_ASYNC_HEALTH_RELIABILITY: 1963 dev_err(nvme->n_dip, CE_WARN, 1964 "!device reliability compromised"); 1965 /* TODO: send ereport */ 1966 atomic_inc_32(&nvme->n_reliability_event); 1967 break; 1968 1969 case NVME_ASYNC_HEALTH_TEMPERATURE: 1970 dev_err(nvme->n_dip, CE_WARN, 1971 "!temperature above threshold"); 1972 /* TODO: send ereport */ 1973 atomic_inc_32(&nvme->n_temperature_event); 1974 break; 1975 1976 case NVME_ASYNC_HEALTH_SPARE: 1977 dev_err(nvme->n_dip, CE_WARN, 1978 "!spare space below threshold"); 1979 /* TODO: send ereport */ 1980 atomic_inc_32(&nvme->n_spare_event); 1981 break; 1982 } 1983 break; 1984 1985 case NVME_ASYNC_TYPE_NOTICE: 1986 switch (event.b.ae_info) { 1987 case NVME_ASYNC_NOTICE_NS_CHANGE: 1988 dev_err(nvme->n_dip, CE_NOTE, 1989 "namespace attribute change event, " 1990 "logpage = %x", event.b.ae_logpage); 1991 atomic_inc_32(&nvme->n_notice_event); 1992 1993 if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE) 1994 break; 1995 1996 if (nvme_get_logpage(nvme, B_FALSE, (void **)&nslist, 1997 &logsize, event.b.ae_logpage, -1) != 0) { 1998 break; 1999 } 2000 2001 if (nslist->nscl_ns[0] == UINT32_MAX) { 2002 dev_err(nvme->n_dip, CE_CONT, 2003 "more than %u namespaces have changed.\n", 2004 NVME_NSCHANGE_LIST_SIZE); 2005 break; 2006 } 2007 2008 mutex_enter(&nvme->n_mgmt_mutex); 2009 for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) { 2010 uint32_t nsid = nslist->nscl_ns[i]; 2011 2012 if (nsid == 0) /* end of list */ 2013 break; 2014 2015 dev_err(nvme->n_dip, CE_NOTE, 2016 "!namespace nvme%d/%u has changed.", 2017 ddi_get_instance(nvme->n_dip), nsid); 2018 2019 2020 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) 2021 continue; 2022 2023 bd_state_change( 2024 NVME_NSID2NS(nvme, nsid)->ns_bd_hdl); 2025 } 2026 mutex_exit(&nvme->n_mgmt_mutex); 2027 2028 break; 2029 2030 case NVME_ASYNC_NOTICE_FW_ACTIVATE: 2031 dev_err(nvme->n_dip, CE_NOTE, 2032 "firmware activation starting, " 2033 "logpage = %x", event.b.ae_logpage); 2034 atomic_inc_32(&nvme->n_notice_event); 2035 break; 2036 2037 case NVME_ASYNC_NOTICE_TELEMETRY: 2038 dev_err(nvme->n_dip, CE_NOTE, 2039 "telemetry log changed, " 2040 "logpage = %x", event.b.ae_logpage); 2041 atomic_inc_32(&nvme->n_notice_event); 2042 break; 2043 2044 case NVME_ASYNC_NOTICE_NS_ASYMM: 2045 dev_err(nvme->n_dip, CE_NOTE, 2046 "asymmetric namespace access change, " 2047 "logpage = %x", event.b.ae_logpage); 2048 atomic_inc_32(&nvme->n_notice_event); 2049 break; 2050 2051 case NVME_ASYNC_NOTICE_LATENCYLOG: 2052 dev_err(nvme->n_dip, CE_NOTE, 2053 "predictable latency event aggregate log change, " 2054 "logpage = %x", event.b.ae_logpage); 2055 atomic_inc_32(&nvme->n_notice_event); 2056 break; 2057 2058 case NVME_ASYNC_NOTICE_LBASTATUS: 2059 dev_err(nvme->n_dip, CE_NOTE, 2060 "LBA status information alert, " 2061 "logpage = %x", event.b.ae_logpage); 2062 atomic_inc_32(&nvme->n_notice_event); 2063 break; 2064 2065 case NVME_ASYNC_NOTICE_ENDURANCELOG: 2066 dev_err(nvme->n_dip, CE_NOTE, 2067 "endurance group event aggregate log page change, " 2068 "logpage = %x", event.b.ae_logpage); 2069 atomic_inc_32(&nvme->n_notice_event); 2070 break; 2071 2072 default: 2073 dev_err(nvme->n_dip, CE_WARN, 2074 "!unknown notice async event received, " 2075 "info = %x, logpage = %x", event.b.ae_info, 2076 event.b.ae_logpage); 2077 atomic_inc_32(&nvme->n_unknown_event); 2078 break; 2079 } 2080 break; 2081 2082 case NVME_ASYNC_TYPE_VENDOR: 2083 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " 2084 "received, info = %x, logpage = %x", event.b.ae_info, 2085 event.b.ae_logpage); 2086 atomic_inc_32(&nvme->n_vendor_event); 2087 break; 2088 2089 default: 2090 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " 2091 "type = %x, info = %x, logpage = %x", event.b.ae_type, 2092 event.b.ae_info, event.b.ae_logpage); 2093 atomic_inc_32(&nvme->n_unknown_event); 2094 break; 2095 } 2096 2097 if (error_log != NULL) 2098 kmem_free(error_log, logsize); 2099 2100 if (health_log != NULL) 2101 kmem_free(health_log, logsize); 2102 2103 if (nslist != NULL) 2104 kmem_free(nslist, logsize); 2105 } 2106 2107 static void 2108 nvme_admin_cmd(nvme_cmd_t *cmd, int sec) 2109 { 2110 mutex_enter(&cmd->nc_mutex); 2111 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd); 2112 nvme_wait_cmd(cmd, sec); 2113 mutex_exit(&cmd->nc_mutex); 2114 } 2115 2116 static void 2117 nvme_async_event(nvme_t *nvme) 2118 { 2119 nvme_cmd_t *cmd; 2120 2121 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2122 cmd->nc_sqid = 0; 2123 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; 2124 cmd->nc_callback = nvme_async_event_task; 2125 cmd->nc_dontpanic = B_TRUE; 2126 2127 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 2128 } 2129 2130 static int 2131 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf, 2132 boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses) 2133 { 2134 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2135 nvme_format_nvm_t format_nvm = { 0 }; 2136 int ret; 2137 2138 format_nvm.b.fm_lbaf = lbaf & 0xf; 2139 format_nvm.b.fm_ms = ms ? 1 : 0; 2140 format_nvm.b.fm_pi = pi & 0x7; 2141 format_nvm.b.fm_pil = pil ? 1 : 0; 2142 format_nvm.b.fm_ses = ses & 0x7; 2143 2144 cmd->nc_sqid = 0; 2145 cmd->nc_callback = nvme_wakeup_cmd; 2146 cmd->nc_sqe.sqe_nsid = nsid; 2147 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT; 2148 cmd->nc_sqe.sqe_cdw10 = format_nvm.r; 2149 2150 /* 2151 * Some devices like Samsung SM951 don't allow formatting of all 2152 * namespaces in one command. Handle that gracefully. 2153 */ 2154 if (nsid == (uint32_t)-1) 2155 cmd->nc_dontpanic = B_TRUE; 2156 /* 2157 * If this format request was initiated by the user, then don't allow a 2158 * programmer error to panic the system. 2159 */ 2160 if (user) 2161 cmd->nc_dontpanic = B_TRUE; 2162 2163 nvme_admin_cmd(cmd, nvme_format_cmd_timeout); 2164 2165 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2166 dev_err(nvme->n_dip, CE_WARN, 2167 "!FORMAT failed with sct = %x, sc = %x", 2168 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2169 } 2170 2171 nvme_free_cmd(cmd); 2172 return (ret); 2173 } 2174 2175 /* 2176 * The `bufsize` parameter is usually an output parameter, set by this routine 2177 * when filling in the supported types of logpages from the device. However, for 2178 * vendor-specific pages, it is an input parameter, and must be set 2179 * appropriately by callers. 2180 */ 2181 static int 2182 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize, 2183 uint8_t logpage, ...) 2184 { 2185 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2186 nvme_getlogpage_t getlogpage = { 0 }; 2187 va_list ap; 2188 int ret; 2189 2190 va_start(ap, logpage); 2191 2192 cmd->nc_sqid = 0; 2193 cmd->nc_callback = nvme_wakeup_cmd; 2194 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; 2195 2196 if (user) 2197 cmd->nc_dontpanic = B_TRUE; 2198 2199 getlogpage.b.lp_lid = logpage; 2200 2201 switch (logpage) { 2202 case NVME_LOGPAGE_ERROR: 2203 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 2204 *bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE, 2205 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t)); 2206 break; 2207 2208 case NVME_LOGPAGE_HEALTH: 2209 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 2210 *bufsize = sizeof (nvme_health_log_t); 2211 break; 2212 2213 case NVME_LOGPAGE_FWSLOT: 2214 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 2215 *bufsize = sizeof (nvme_fwslot_log_t); 2216 break; 2217 2218 case NVME_LOGPAGE_NSCHANGE: 2219 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 2220 *bufsize = sizeof (nvme_nschange_list_t); 2221 break; 2222 2223 default: 2224 /* 2225 * This intentionally only checks against the minimum valid 2226 * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid 2227 * page ID, so this one-sided check avoids a compiler error 2228 * about a check that's always true. 2229 */ 2230 if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) { 2231 dev_err(nvme->n_dip, CE_WARN, 2232 "!unknown log page requested: %d", logpage); 2233 atomic_inc_32(&nvme->n_unknown_logpage); 2234 ret = EINVAL; 2235 goto fail; 2236 } 2237 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 2238 } 2239 2240 va_end(ap); 2241 2242 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1; 2243 2244 cmd->nc_sqe.sqe_cdw10 = getlogpage.r; 2245 2246 if (nvme_zalloc_dma(nvme, *bufsize, 2247 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2248 dev_err(nvme->n_dip, CE_WARN, 2249 "!nvme_zalloc_dma failed for GET LOG PAGE"); 2250 ret = ENOMEM; 2251 goto fail; 2252 } 2253 2254 if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0) 2255 goto fail; 2256 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2257 2258 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2259 dev_err(nvme->n_dip, CE_WARN, 2260 "!GET LOG PAGE failed with sct = %x, sc = %x", 2261 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2262 goto fail; 2263 } 2264 2265 *buf = kmem_alloc(*bufsize, KM_SLEEP); 2266 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); 2267 2268 fail: 2269 nvme_free_cmd(cmd); 2270 2271 return (ret); 2272 } 2273 2274 static int 2275 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t cns, 2276 void **buf) 2277 { 2278 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2279 int ret; 2280 2281 if (buf == NULL) 2282 return (EINVAL); 2283 2284 cmd->nc_sqid = 0; 2285 cmd->nc_callback = nvme_wakeup_cmd; 2286 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; 2287 cmd->nc_sqe.sqe_nsid = nsid; 2288 cmd->nc_sqe.sqe_cdw10 = cns; 2289 2290 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, 2291 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2292 dev_err(nvme->n_dip, CE_WARN, 2293 "!nvme_zalloc_dma failed for IDENTIFY"); 2294 ret = ENOMEM; 2295 goto fail; 2296 } 2297 2298 if (cmd->nc_dma->nd_ncookie > 2) { 2299 dev_err(nvme->n_dip, CE_WARN, 2300 "!too many DMA cookies for IDENTIFY"); 2301 atomic_inc_32(&nvme->n_too_many_cookies); 2302 ret = ENOMEM; 2303 goto fail; 2304 } 2305 2306 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 2307 if (cmd->nc_dma->nd_ncookie > 1) { 2308 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 2309 &cmd->nc_dma->nd_cookie); 2310 cmd->nc_sqe.sqe_dptr.d_prp[1] = 2311 cmd->nc_dma->nd_cookie.dmac_laddress; 2312 } 2313 2314 if (user) 2315 cmd->nc_dontpanic = B_TRUE; 2316 2317 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2318 2319 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2320 dev_err(nvme->n_dip, CE_WARN, 2321 "!IDENTIFY failed with sct = %x, sc = %x", 2322 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2323 goto fail; 2324 } 2325 2326 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); 2327 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE); 2328 2329 fail: 2330 nvme_free_cmd(cmd); 2331 2332 return (ret); 2333 } 2334 2335 static int 2336 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature, 2337 uint32_t val, uint32_t *res) 2338 { 2339 _NOTE(ARGUNUSED(nsid)); 2340 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2341 int ret = EINVAL; 2342 2343 ASSERT(res != NULL); 2344 2345 cmd->nc_sqid = 0; 2346 cmd->nc_callback = nvme_wakeup_cmd; 2347 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; 2348 cmd->nc_sqe.sqe_cdw10 = feature; 2349 cmd->nc_sqe.sqe_cdw11 = val; 2350 2351 if (user) 2352 cmd->nc_dontpanic = B_TRUE; 2353 2354 switch (feature) { 2355 case NVME_FEAT_WRITE_CACHE: 2356 if (!nvme->n_write_cache_present) 2357 goto fail; 2358 break; 2359 2360 case NVME_FEAT_NQUEUES: 2361 break; 2362 2363 default: 2364 goto fail; 2365 } 2366 2367 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2368 2369 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2370 dev_err(nvme->n_dip, CE_WARN, 2371 "!SET FEATURES %d failed with sct = %x, sc = %x", 2372 feature, cmd->nc_cqe.cqe_sf.sf_sct, 2373 cmd->nc_cqe.cqe_sf.sf_sc); 2374 goto fail; 2375 } 2376 2377 *res = cmd->nc_cqe.cqe_dw0; 2378 2379 fail: 2380 nvme_free_cmd(cmd); 2381 return (ret); 2382 } 2383 2384 static int 2385 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature, 2386 uint32_t *res, void **buf, size_t *bufsize) 2387 { 2388 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2389 int ret = EINVAL; 2390 2391 ASSERT(res != NULL); 2392 2393 if (bufsize != NULL) 2394 *bufsize = 0; 2395 2396 cmd->nc_sqid = 0; 2397 cmd->nc_callback = nvme_wakeup_cmd; 2398 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES; 2399 cmd->nc_sqe.sqe_cdw10 = feature; 2400 cmd->nc_sqe.sqe_cdw11 = *res; 2401 2402 /* 2403 * For some of the optional features there doesn't seem to be a method 2404 * of detecting whether it is supported other than using it. This will 2405 * cause "Invalid Field in Command" error, which is normally considered 2406 * a programming error. Set the nc_dontpanic flag to override the panic 2407 * in nvme_check_generic_cmd_status(). 2408 */ 2409 switch (feature) { 2410 case NVME_FEAT_ARBITRATION: 2411 case NVME_FEAT_POWER_MGMT: 2412 case NVME_FEAT_TEMPERATURE: 2413 case NVME_FEAT_ERROR: 2414 case NVME_FEAT_NQUEUES: 2415 case NVME_FEAT_INTR_COAL: 2416 case NVME_FEAT_INTR_VECT: 2417 case NVME_FEAT_WRITE_ATOM: 2418 case NVME_FEAT_ASYNC_EVENT: 2419 break; 2420 2421 case NVME_FEAT_WRITE_CACHE: 2422 if (!nvme->n_write_cache_present) 2423 goto fail; 2424 break; 2425 2426 case NVME_FEAT_LBA_RANGE: 2427 if (!nvme->n_lba_range_supported) 2428 goto fail; 2429 2430 cmd->nc_dontpanic = B_TRUE; 2431 cmd->nc_sqe.sqe_nsid = nsid; 2432 ASSERT(bufsize != NULL); 2433 *bufsize = NVME_LBA_RANGE_BUFSIZE; 2434 break; 2435 2436 case NVME_FEAT_AUTO_PST: 2437 if (!nvme->n_auto_pst_supported) 2438 goto fail; 2439 2440 ASSERT(bufsize != NULL); 2441 *bufsize = NVME_AUTO_PST_BUFSIZE; 2442 break; 2443 2444 case NVME_FEAT_PROGRESS: 2445 if (!nvme->n_progress_supported) 2446 goto fail; 2447 2448 cmd->nc_dontpanic = B_TRUE; 2449 break; 2450 2451 default: 2452 goto fail; 2453 } 2454 2455 if (user) 2456 cmd->nc_dontpanic = B_TRUE; 2457 2458 if (bufsize != NULL && *bufsize != 0) { 2459 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ, 2460 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2461 dev_err(nvme->n_dip, CE_WARN, 2462 "!nvme_zalloc_dma failed for GET FEATURES"); 2463 ret = ENOMEM; 2464 goto fail; 2465 } 2466 2467 if (cmd->nc_dma->nd_ncookie > 2) { 2468 dev_err(nvme->n_dip, CE_WARN, 2469 "!too many DMA cookies for GET FEATURES"); 2470 atomic_inc_32(&nvme->n_too_many_cookies); 2471 ret = ENOMEM; 2472 goto fail; 2473 } 2474 2475 cmd->nc_sqe.sqe_dptr.d_prp[0] = 2476 cmd->nc_dma->nd_cookie.dmac_laddress; 2477 if (cmd->nc_dma->nd_ncookie > 1) { 2478 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 2479 &cmd->nc_dma->nd_cookie); 2480 cmd->nc_sqe.sqe_dptr.d_prp[1] = 2481 cmd->nc_dma->nd_cookie.dmac_laddress; 2482 } 2483 } 2484 2485 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2486 2487 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2488 boolean_t known = B_TRUE; 2489 2490 /* Check if this is unsupported optional feature */ 2491 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 2492 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) { 2493 switch (feature) { 2494 case NVME_FEAT_LBA_RANGE: 2495 nvme->n_lba_range_supported = B_FALSE; 2496 break; 2497 case NVME_FEAT_PROGRESS: 2498 nvme->n_progress_supported = B_FALSE; 2499 break; 2500 default: 2501 known = B_FALSE; 2502 break; 2503 } 2504 } else { 2505 known = B_FALSE; 2506 } 2507 2508 /* Report the error otherwise */ 2509 if (!known) { 2510 dev_err(nvme->n_dip, CE_WARN, 2511 "!GET FEATURES %d failed with sct = %x, sc = %x", 2512 feature, cmd->nc_cqe.cqe_sf.sf_sct, 2513 cmd->nc_cqe.cqe_sf.sf_sc); 2514 } 2515 2516 goto fail; 2517 } 2518 2519 if (bufsize != NULL && *bufsize != 0) { 2520 ASSERT(buf != NULL); 2521 *buf = kmem_alloc(*bufsize, KM_SLEEP); 2522 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); 2523 } 2524 2525 *res = cmd->nc_cqe.cqe_dw0; 2526 2527 fail: 2528 nvme_free_cmd(cmd); 2529 return (ret); 2530 } 2531 2532 static int 2533 nvme_write_cache_set(nvme_t *nvme, boolean_t enable) 2534 { 2535 nvme_write_cache_t nwc = { 0 }; 2536 2537 if (enable) 2538 nwc.b.wc_wce = 1; 2539 2540 return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE, 2541 nwc.r, &nwc.r)); 2542 } 2543 2544 static int 2545 nvme_set_nqueues(nvme_t *nvme) 2546 { 2547 nvme_nqueues_t nq = { 0 }; 2548 int ret; 2549 2550 /* 2551 * The default is to allocate one completion queue per vector. 2552 */ 2553 if (nvme->n_completion_queues == -1) 2554 nvme->n_completion_queues = nvme->n_intr_cnt; 2555 2556 /* 2557 * There is no point in having more completion queues than 2558 * interrupt vectors. 2559 */ 2560 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2561 nvme->n_intr_cnt); 2562 2563 /* 2564 * The default is to use one submission queue per completion queue. 2565 */ 2566 if (nvme->n_submission_queues == -1) 2567 nvme->n_submission_queues = nvme->n_completion_queues; 2568 2569 /* 2570 * There is no point in having more compeletion queues than 2571 * submission queues. 2572 */ 2573 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2574 nvme->n_submission_queues); 2575 2576 ASSERT(nvme->n_submission_queues > 0); 2577 ASSERT(nvme->n_completion_queues > 0); 2578 2579 nq.b.nq_nsq = nvme->n_submission_queues - 1; 2580 nq.b.nq_ncq = nvme->n_completion_queues - 1; 2581 2582 ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r, 2583 &nq.r); 2584 2585 if (ret == 0) { 2586 /* 2587 * Never use more than the requested number of queues. 2588 */ 2589 nvme->n_submission_queues = MIN(nvme->n_submission_queues, 2590 nq.b.nq_nsq + 1); 2591 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2592 nq.b.nq_ncq + 1); 2593 } 2594 2595 return (ret); 2596 } 2597 2598 static int 2599 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq) 2600 { 2601 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2602 nvme_create_queue_dw10_t dw10 = { 0 }; 2603 nvme_create_cq_dw11_t c_dw11 = { 0 }; 2604 int ret; 2605 2606 dw10.b.q_qid = cq->ncq_id; 2607 dw10.b.q_qsize = cq->ncq_nentry - 1; 2608 2609 c_dw11.b.cq_pc = 1; 2610 c_dw11.b.cq_ien = 1; 2611 c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt; 2612 2613 cmd->nc_sqid = 0; 2614 cmd->nc_callback = nvme_wakeup_cmd; 2615 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; 2616 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2617 cmd->nc_sqe.sqe_cdw11 = c_dw11.r; 2618 cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress; 2619 2620 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2621 2622 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2623 dev_err(nvme->n_dip, CE_WARN, 2624 "!CREATE CQUEUE failed with sct = %x, sc = %x", 2625 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2626 } 2627 2628 nvme_free_cmd(cmd); 2629 2630 return (ret); 2631 } 2632 2633 static int 2634 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) 2635 { 2636 nvme_cq_t *cq = qp->nq_cq; 2637 nvme_cmd_t *cmd; 2638 nvme_create_queue_dw10_t dw10 = { 0 }; 2639 nvme_create_sq_dw11_t s_dw11 = { 0 }; 2640 int ret; 2641 2642 /* 2643 * It is possible to have more qpairs than completion queues, 2644 * and when the idx > ncq_id, that completion queue is shared 2645 * and has already been created. 2646 */ 2647 if (idx <= cq->ncq_id && 2648 nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS) 2649 return (DDI_FAILURE); 2650 2651 dw10.b.q_qid = idx; 2652 dw10.b.q_qsize = qp->nq_nentry - 1; 2653 2654 s_dw11.b.sq_pc = 1; 2655 s_dw11.b.sq_cqid = cq->ncq_id; 2656 2657 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2658 cmd->nc_sqid = 0; 2659 cmd->nc_callback = nvme_wakeup_cmd; 2660 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; 2661 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2662 cmd->nc_sqe.sqe_cdw11 = s_dw11.r; 2663 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; 2664 2665 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2666 2667 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2668 dev_err(nvme->n_dip, CE_WARN, 2669 "!CREATE SQUEUE failed with sct = %x, sc = %x", 2670 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2671 } 2672 2673 nvme_free_cmd(cmd); 2674 2675 return (ret); 2676 } 2677 2678 static boolean_t 2679 nvme_reset(nvme_t *nvme, boolean_t quiesce) 2680 { 2681 nvme_reg_csts_t csts; 2682 int i; 2683 2684 nvme_put32(nvme, NVME_REG_CC, 0); 2685 2686 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2687 if (csts.b.csts_rdy == 1) { 2688 nvme_put32(nvme, NVME_REG_CC, 0); 2689 for (i = 0; i != nvme->n_timeout * 10; i++) { 2690 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2691 if (csts.b.csts_rdy == 0) 2692 break; 2693 2694 if (quiesce) 2695 drv_usecwait(50000); 2696 else 2697 delay(drv_usectohz(50000)); 2698 } 2699 } 2700 2701 nvme_put32(nvme, NVME_REG_AQA, 0); 2702 nvme_put32(nvme, NVME_REG_ASQ, 0); 2703 nvme_put32(nvme, NVME_REG_ACQ, 0); 2704 2705 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2706 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); 2707 } 2708 2709 static void 2710 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) 2711 { 2712 nvme_reg_cc_t cc; 2713 nvme_reg_csts_t csts; 2714 int i; 2715 2716 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); 2717 2718 cc.r = nvme_get32(nvme, NVME_REG_CC); 2719 cc.b.cc_shn = mode & 0x3; 2720 nvme_put32(nvme, NVME_REG_CC, cc.r); 2721 2722 for (i = 0; i != 10; i++) { 2723 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2724 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) 2725 break; 2726 2727 if (quiesce) 2728 drv_usecwait(100000); 2729 else 2730 delay(drv_usectohz(100000)); 2731 } 2732 } 2733 2734 /* 2735 * Return length of string without trailing spaces. 2736 */ 2737 static int 2738 nvme_strlen(const char *str, int len) 2739 { 2740 if (len <= 0) 2741 return (0); 2742 2743 while (str[--len] == ' ') 2744 ; 2745 2746 return (++len); 2747 } 2748 2749 static void 2750 nvme_config_min_block_size(nvme_t *nvme, char *model, char *val) 2751 { 2752 ulong_t bsize = 0; 2753 char *msg = ""; 2754 2755 if (ddi_strtoul(val, NULL, 0, &bsize) != 0) 2756 goto err; 2757 2758 if (!ISP2(bsize)) { 2759 msg = ": not a power of 2"; 2760 goto err; 2761 } 2762 2763 if (bsize < NVME_DEFAULT_MIN_BLOCK_SIZE) { 2764 msg = ": too low"; 2765 goto err; 2766 } 2767 2768 nvme->n_min_block_size = bsize; 2769 return; 2770 2771 err: 2772 dev_err(nvme->n_dip, CE_WARN, 2773 "!nvme-config-list: ignoring invalid min-phys-block-size '%s' " 2774 "for model '%s'%s", val, model, msg); 2775 2776 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 2777 } 2778 2779 static void 2780 nvme_config_boolean(nvme_t *nvme, char *model, char *name, char *val, 2781 boolean_t *b) 2782 { 2783 if (strcmp(val, "on") == 0 || 2784 strcmp(val, "true") == 0) 2785 *b = B_TRUE; 2786 else if (strcmp(val, "off") == 0 || 2787 strcmp(val, "false") == 0) 2788 *b = B_FALSE; 2789 else 2790 dev_err(nvme->n_dip, CE_WARN, 2791 "!nvme-config-list: invalid value for %s '%s'" 2792 " for model '%s', ignoring", name, val, model); 2793 } 2794 2795 static void 2796 nvme_config_list(nvme_t *nvme) 2797 { 2798 char **config_list; 2799 uint_t nelem; 2800 int rv, i; 2801 2802 /* 2803 * We're following the pattern of 'sd-config-list' here, but extend it. 2804 * Instead of two we have three separate strings for "model", "fwrev", 2805 * and "name-value-list". 2806 */ 2807 rv = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, nvme->n_dip, 2808 DDI_PROP_DONTPASS, "nvme-config-list", &config_list, &nelem); 2809 2810 if (rv != DDI_PROP_SUCCESS) { 2811 if (rv == DDI_PROP_CANNOT_DECODE) { 2812 dev_err(nvme->n_dip, CE_WARN, 2813 "!nvme-config-list: cannot be decoded"); 2814 } 2815 2816 return; 2817 } 2818 2819 if ((nelem % 3) != 0) { 2820 dev_err(nvme->n_dip, CE_WARN, "!nvme-config-list: must be " 2821 "triplets of <model>/<fwrev>/<name-value-list> strings "); 2822 goto out; 2823 } 2824 2825 for (i = 0; i < nelem; i += 3) { 2826 char *model = config_list[i]; 2827 char *fwrev = config_list[i + 1]; 2828 char *nvp, *save_nv; 2829 int id_model_len, id_fwrev_len; 2830 2831 id_model_len = nvme_strlen(nvme->n_idctl->id_model, 2832 sizeof (nvme->n_idctl->id_model)); 2833 2834 if (strlen(model) != id_model_len) 2835 continue; 2836 2837 if (strncmp(model, nvme->n_idctl->id_model, id_model_len) != 0) 2838 continue; 2839 2840 id_fwrev_len = nvme_strlen(nvme->n_idctl->id_fwrev, 2841 sizeof (nvme->n_idctl->id_fwrev)); 2842 2843 if (strlen(fwrev) != 0) { 2844 boolean_t match = B_FALSE; 2845 char *fwr, *last_fw; 2846 2847 for (fwr = strtok_r(fwrev, ",", &last_fw); 2848 fwr != NULL; 2849 fwr = strtok_r(NULL, ",", &last_fw)) { 2850 if (strlen(fwr) != id_fwrev_len) 2851 continue; 2852 2853 if (strncmp(fwr, nvme->n_idctl->id_fwrev, 2854 id_fwrev_len) == 0) 2855 match = B_TRUE; 2856 } 2857 2858 if (!match) 2859 continue; 2860 } 2861 2862 /* 2863 * We should now have a comma-separated list of name:value 2864 * pairs. 2865 */ 2866 for (nvp = strtok_r(config_list[i + 2], ",", &save_nv); 2867 nvp != NULL; nvp = strtok_r(NULL, ",", &save_nv)) { 2868 char *name = nvp; 2869 char *val = strchr(nvp, ':'); 2870 2871 if (val == NULL || name == val) { 2872 dev_err(nvme->n_dip, CE_WARN, 2873 "!nvme-config-list: <name-value-list> " 2874 "for model '%s' is malformed", model); 2875 goto out; 2876 } 2877 2878 /* 2879 * Null-terminate 'name', move 'val' past ':' sep. 2880 */ 2881 *val++ = '\0'; 2882 2883 /* 2884 * Process the name:val pairs that we know about. 2885 */ 2886 if (strcmp(name, "ignore-unknown-vendor-status") == 0) { 2887 nvme_config_boolean(nvme, model, name, val, 2888 &nvme->n_ignore_unknown_vendor_status); 2889 } else if (strcmp(name, "min-phys-block-size") == 0) { 2890 nvme_config_min_block_size(nvme, model, val); 2891 } else if (strcmp(name, "volatile-write-cache") == 0) { 2892 nvme_config_boolean(nvme, model, name, val, 2893 &nvme->n_write_cache_enabled); 2894 } else { 2895 /* 2896 * Unknown 'name'. 2897 */ 2898 dev_err(nvme->n_dip, CE_WARN, 2899 "!nvme-config-list: unknown config '%s' " 2900 "for model '%s', ignoring", name, model); 2901 } 2902 } 2903 } 2904 2905 out: 2906 ddi_prop_free(config_list); 2907 } 2908 2909 static void 2910 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) 2911 { 2912 /* 2913 * Section 7.7 of the spec describes how to get a unique ID for 2914 * the controller: the vendor ID, the model name and the serial 2915 * number shall be unique when combined. 2916 * 2917 * If a namespace has no EUI64 we use the above and add the hex 2918 * namespace ID to get a unique ID for the namespace. 2919 */ 2920 char model[sizeof (nvme->n_idctl->id_model) + 1]; 2921 char serial[sizeof (nvme->n_idctl->id_serial) + 1]; 2922 2923 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 2924 bcopy(nvme->n_idctl->id_serial, serial, 2925 sizeof (nvme->n_idctl->id_serial)); 2926 2927 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 2928 serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; 2929 2930 NVME_NSID2NS(nvme, nsid)->ns_devid = kmem_asprintf("%4X-%s-%s-%X", 2931 nvme->n_idctl->id_vid, model, serial, nsid); 2932 } 2933 2934 static boolean_t 2935 nvme_allocated_ns(nvme_namespace_t *ns) 2936 { 2937 nvme_t *nvme = ns->ns_nvme; 2938 2939 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 2940 2941 /* 2942 * Since we don't know any better, we assume all namespaces to be 2943 * allocated. 2944 */ 2945 return (B_TRUE); 2946 } 2947 2948 static boolean_t 2949 nvme_active_ns(nvme_namespace_t *ns) 2950 { 2951 nvme_t *nvme = ns->ns_nvme; 2952 boolean_t ret = B_FALSE; 2953 uint64_t *ptr; 2954 2955 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 2956 2957 /* 2958 * Check whether the IDENTIFY NAMESPACE data is zero-filled. 2959 */ 2960 for (ptr = (uint64_t *)ns->ns_idns; 2961 ptr != (uint64_t *)(ns->ns_idns + 1); 2962 ptr++) { 2963 if (*ptr != 0) { 2964 ret = B_TRUE; 2965 break; 2966 } 2967 } 2968 2969 return (ret); 2970 } 2971 2972 static int 2973 nvme_init_ns(nvme_t *nvme, int nsid) 2974 { 2975 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 2976 nvme_identify_nsid_t *idns; 2977 boolean_t was_ignored; 2978 int last_rp; 2979 2980 ns->ns_nvme = nvme; 2981 2982 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 2983 2984 if (nvme_identify(nvme, B_FALSE, nsid, NVME_IDENTIFY_NSID, 2985 (void **)&idns) != 0) { 2986 dev_err(nvme->n_dip, CE_WARN, 2987 "!failed to identify namespace %d", nsid); 2988 return (DDI_FAILURE); 2989 } 2990 2991 if (ns->ns_idns != NULL) 2992 kmem_free(ns->ns_idns, sizeof (nvme_identify_nsid_t)); 2993 2994 ns->ns_idns = idns; 2995 ns->ns_id = nsid; 2996 2997 was_ignored = ns->ns_ignore; 2998 2999 ns->ns_allocated = nvme_allocated_ns(ns); 3000 ns->ns_active = nvme_active_ns(ns); 3001 3002 ns->ns_block_count = idns->id_nsize; 3003 ns->ns_block_size = 3004 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; 3005 ns->ns_best_block_size = ns->ns_block_size; 3006 3007 /* 3008 * Get the EUI64 if present. 3009 */ 3010 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 3011 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64)); 3012 3013 /* 3014 * Get the NGUID if present. 3015 */ 3016 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) 3017 bcopy(idns->id_nguid, ns->ns_nguid, sizeof (ns->ns_nguid)); 3018 3019 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 3020 if (*(uint64_t *)ns->ns_eui64 == 0) 3021 nvme_prepare_devid(nvme, ns->ns_id); 3022 3023 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%u", ns->ns_id); 3024 3025 /* 3026 * Find the LBA format with no metadata and the best relative 3027 * performance. A value of 3 means "degraded", 0 is best. 3028 */ 3029 last_rp = 3; 3030 for (int j = 0; j <= idns->id_nlbaf; j++) { 3031 if (idns->id_lbaf[j].lbaf_lbads == 0) 3032 break; 3033 if (idns->id_lbaf[j].lbaf_ms != 0) 3034 continue; 3035 if (idns->id_lbaf[j].lbaf_rp >= last_rp) 3036 continue; 3037 last_rp = idns->id_lbaf[j].lbaf_rp; 3038 ns->ns_best_block_size = 3039 1 << idns->id_lbaf[j].lbaf_lbads; 3040 } 3041 3042 if (ns->ns_best_block_size < nvme->n_min_block_size) 3043 ns->ns_best_block_size = nvme->n_min_block_size; 3044 3045 was_ignored = ns->ns_ignore; 3046 3047 /* 3048 * We currently don't support namespaces that use either: 3049 * - protection information 3050 * - illegal block size (< 512) 3051 */ 3052 if (idns->id_dps.dp_pinfo) { 3053 dev_err(nvme->n_dip, CE_WARN, 3054 "!ignoring namespace %d, unsupported feature: " 3055 "pinfo = %d", nsid, idns->id_dps.dp_pinfo); 3056 ns->ns_ignore = B_TRUE; 3057 } else if (ns->ns_block_size < 512) { 3058 dev_err(nvme->n_dip, CE_WARN, 3059 "!ignoring namespace %d, unsupported block size %"PRIu64, 3060 nsid, (uint64_t)ns->ns_block_size); 3061 ns->ns_ignore = B_TRUE; 3062 } else { 3063 ns->ns_ignore = B_FALSE; 3064 } 3065 3066 /* 3067 * Keep a count of namespaces which are attachable. 3068 * See comments in nvme_bd_driveinfo() to understand its effect. 3069 */ 3070 if (was_ignored) { 3071 /* 3072 * Previously ignored, but now not. Count it. 3073 */ 3074 if (!ns->ns_ignore) 3075 nvme->n_namespaces_attachable++; 3076 } else { 3077 /* 3078 * Wasn't ignored previously, but now needs to be. 3079 * Discount it. 3080 */ 3081 if (ns->ns_ignore) 3082 nvme->n_namespaces_attachable--; 3083 } 3084 3085 return (DDI_SUCCESS); 3086 } 3087 3088 static int 3089 nvme_attach_ns(nvme_t *nvme, int nsid) 3090 { 3091 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 3092 3093 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3094 3095 if (ns->ns_ignore) 3096 return (ENOTSUP); 3097 3098 if (ns->ns_bd_hdl == NULL) { 3099 bd_ops_t ops = nvme_bd_ops; 3100 3101 if (!nvme->n_idctl->id_oncs.on_dset_mgmt) 3102 ops.o_free_space = NULL; 3103 3104 ns->ns_bd_hdl = bd_alloc_handle(ns, &ops, &nvme->n_prp_dma_attr, 3105 KM_SLEEP); 3106 3107 if (ns->ns_bd_hdl == NULL) { 3108 dev_err(nvme->n_dip, CE_WARN, "!Failed to get blkdev " 3109 "handle for namespace id %d", nsid); 3110 return (EINVAL); 3111 } 3112 } 3113 3114 if (bd_attach_handle(nvme->n_dip, ns->ns_bd_hdl) != DDI_SUCCESS) 3115 return (EBUSY); 3116 3117 ns->ns_attached = B_TRUE; 3118 3119 return (0); 3120 } 3121 3122 static int 3123 nvme_detach_ns(nvme_t *nvme, int nsid) 3124 { 3125 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 3126 int rv; 3127 3128 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3129 3130 if (ns->ns_ignore || !ns->ns_attached) 3131 return (0); 3132 3133 ASSERT(ns->ns_bd_hdl != NULL); 3134 rv = bd_detach_handle(ns->ns_bd_hdl); 3135 if (rv != DDI_SUCCESS) 3136 return (EBUSY); 3137 else 3138 ns->ns_attached = B_FALSE; 3139 3140 return (0); 3141 } 3142 3143 static int 3144 nvme_init(nvme_t *nvme) 3145 { 3146 nvme_reg_cc_t cc = { 0 }; 3147 nvme_reg_aqa_t aqa = { 0 }; 3148 nvme_reg_asq_t asq = { 0 }; 3149 nvme_reg_acq_t acq = { 0 }; 3150 nvme_reg_cap_t cap; 3151 nvme_reg_vs_t vs; 3152 nvme_reg_csts_t csts; 3153 int i = 0; 3154 uint16_t nqueues; 3155 uint_t tq_threads; 3156 char model[sizeof (nvme->n_idctl->id_model) + 1]; 3157 char *vendor, *product; 3158 3159 /* Check controller version */ 3160 vs.r = nvme_get32(nvme, NVME_REG_VS); 3161 nvme->n_version.v_major = vs.b.vs_mjr; 3162 nvme->n_version.v_minor = vs.b.vs_mnr; 3163 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", 3164 nvme->n_version.v_major, nvme->n_version.v_minor); 3165 3166 if (nvme->n_version.v_major > nvme_version_major) { 3167 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x", 3168 nvme_version_major); 3169 if (nvme->n_strict_version) 3170 goto fail; 3171 } 3172 3173 /* retrieve controller configuration */ 3174 cap.r = nvme_get64(nvme, NVME_REG_CAP); 3175 3176 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { 3177 dev_err(nvme->n_dip, CE_WARN, 3178 "!NVM command set not supported by hardware"); 3179 goto fail; 3180 } 3181 3182 nvme->n_nssr_supported = cap.b.cap_nssrs; 3183 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; 3184 nvme->n_timeout = cap.b.cap_to; 3185 nvme->n_arbitration_mechanisms = cap.b.cap_ams; 3186 nvme->n_cont_queues_reqd = cap.b.cap_cqr; 3187 nvme->n_max_queue_entries = cap.b.cap_mqes + 1; 3188 3189 /* 3190 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify 3191 * the base page size of 4k (1<<12), so add 12 here to get the real 3192 * page size value. 3193 */ 3194 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), 3195 cap.b.cap_mpsmax + 12); 3196 nvme->n_pagesize = 1UL << (nvme->n_pageshift); 3197 3198 /* 3199 * Set up Queue DMA to transfer at least 1 page-aligned page at a time. 3200 */ 3201 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; 3202 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 3203 3204 /* 3205 * Set up PRP DMA to transfer 1 page-aligned page at a time. 3206 * Maxxfer may be increased after we identified the controller limits. 3207 */ 3208 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; 3209 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 3210 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; 3211 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; 3212 3213 /* 3214 * Reset controller if it's still in ready state. 3215 */ 3216 if (nvme_reset(nvme, B_FALSE) == B_FALSE) { 3217 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); 3218 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 3219 nvme->n_dead = B_TRUE; 3220 goto fail; 3221 } 3222 3223 /* 3224 * Create the cq array with one completion queue to be assigned 3225 * to the admin queue pair and a limited number of taskqs (4). 3226 */ 3227 if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) != 3228 DDI_SUCCESS) { 3229 dev_err(nvme->n_dip, CE_WARN, 3230 "!failed to pre-allocate admin completion queue"); 3231 goto fail; 3232 } 3233 /* 3234 * Create the admin queue pair. 3235 */ 3236 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) 3237 != DDI_SUCCESS) { 3238 dev_err(nvme->n_dip, CE_WARN, 3239 "!unable to allocate admin qpair"); 3240 goto fail; 3241 } 3242 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); 3243 nvme->n_ioq[0] = nvme->n_adminq; 3244 3245 nvme->n_progress |= NVME_ADMIN_QUEUE; 3246 3247 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3248 "admin-queue-len", nvme->n_admin_queue_len); 3249 3250 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; 3251 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; 3252 acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress; 3253 3254 ASSERT((asq & (nvme->n_pagesize - 1)) == 0); 3255 ASSERT((acq & (nvme->n_pagesize - 1)) == 0); 3256 3257 nvme_put32(nvme, NVME_REG_AQA, aqa.r); 3258 nvme_put64(nvme, NVME_REG_ASQ, asq); 3259 nvme_put64(nvme, NVME_REG_ACQ, acq); 3260 3261 cc.b.cc_ams = 0; /* use Round-Robin arbitration */ 3262 cc.b.cc_css = 0; /* use NVM command set */ 3263 cc.b.cc_mps = nvme->n_pageshift - 12; 3264 cc.b.cc_shn = 0; /* no shutdown in progress */ 3265 cc.b.cc_en = 1; /* enable controller */ 3266 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ 3267 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ 3268 3269 nvme_put32(nvme, NVME_REG_CC, cc.r); 3270 3271 /* 3272 * Wait for the controller to become ready. 3273 */ 3274 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3275 if (csts.b.csts_rdy == 0) { 3276 for (i = 0; i != nvme->n_timeout * 10; i++) { 3277 delay(drv_usectohz(50000)); 3278 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3279 3280 if (csts.b.csts_cfs == 1) { 3281 dev_err(nvme->n_dip, CE_WARN, 3282 "!controller fatal status at init"); 3283 ddi_fm_service_impact(nvme->n_dip, 3284 DDI_SERVICE_LOST); 3285 nvme->n_dead = B_TRUE; 3286 goto fail; 3287 } 3288 3289 if (csts.b.csts_rdy == 1) 3290 break; 3291 } 3292 } 3293 3294 if (csts.b.csts_rdy == 0) { 3295 dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); 3296 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 3297 nvme->n_dead = B_TRUE; 3298 goto fail; 3299 } 3300 3301 /* 3302 * Assume an abort command limit of 1. We'll destroy and re-init 3303 * that later when we know the true abort command limit. 3304 */ 3305 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); 3306 3307 /* 3308 * Set up initial interrupt for admin queue. 3309 */ 3310 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) 3311 != DDI_SUCCESS) && 3312 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) 3313 != DDI_SUCCESS) && 3314 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) 3315 != DDI_SUCCESS)) { 3316 dev_err(nvme->n_dip, CE_WARN, 3317 "!failed to setup initial interrupt"); 3318 goto fail; 3319 } 3320 3321 /* 3322 * Post an asynchronous event command to catch errors. 3323 * We assume the asynchronous events are supported as required by 3324 * specification (Figure 40 in section 5 of NVMe 1.2). 3325 * However, since at least qemu does not follow the specification, 3326 * we need a mechanism to protect ourselves. 3327 */ 3328 nvme->n_async_event_supported = B_TRUE; 3329 nvme_async_event(nvme); 3330 3331 /* 3332 * Identify Controller 3333 */ 3334 if (nvme_identify(nvme, B_FALSE, 0, NVME_IDENTIFY_CTRL, 3335 (void **)&nvme->n_idctl) != 0) { 3336 dev_err(nvme->n_dip, CE_WARN, 3337 "!failed to identify controller"); 3338 goto fail; 3339 } 3340 3341 /* 3342 * Process nvme-config-list (if present) in nvme.conf. 3343 */ 3344 nvme_config_list(nvme); 3345 3346 /* 3347 * Get Vendor & Product ID 3348 */ 3349 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 3350 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 3351 sata_split_model(model, &vendor, &product); 3352 3353 if (vendor == NULL) 3354 nvme->n_vendor = strdup("NVMe"); 3355 else 3356 nvme->n_vendor = strdup(vendor); 3357 3358 nvme->n_product = strdup(product); 3359 3360 /* 3361 * Get controller limits. 3362 */ 3363 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, 3364 MIN(nvme->n_admin_queue_len / 10, 3365 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); 3366 3367 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3368 "async-event-limit", nvme->n_async_event_limit); 3369 3370 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; 3371 3372 /* 3373 * Reinitialize the semaphore with the true abort command limit 3374 * supported by the hardware. It's not necessary to disable interrupts 3375 * as only command aborts use the semaphore, and no commands are 3376 * executed or aborted while we're here. 3377 */ 3378 sema_destroy(&nvme->n_abort_sema); 3379 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, 3380 SEMA_DRIVER, NULL); 3381 3382 nvme->n_progress |= NVME_CTRL_LIMITS; 3383 3384 if (nvme->n_idctl->id_mdts == 0) 3385 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; 3386 else 3387 nvme->n_max_data_transfer_size = 3388 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); 3389 3390 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; 3391 3392 /* 3393 * Limit n_max_data_transfer_size to what we can handle in one PRP. 3394 * Chained PRPs are currently unsupported. 3395 * 3396 * This is a no-op on hardware which doesn't support a transfer size 3397 * big enough to require chained PRPs. 3398 */ 3399 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, 3400 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); 3401 3402 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; 3403 3404 /* 3405 * Make sure the minimum/maximum queue entry sizes are not 3406 * larger/smaller than the default. 3407 */ 3408 3409 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || 3410 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || 3411 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || 3412 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) 3413 goto fail; 3414 3415 /* 3416 * Check for the presence of a Volatile Write Cache. If present, 3417 * enable or disable based on the value of the property 3418 * volatile-write-cache-enable (default is enabled). 3419 */ 3420 nvme->n_write_cache_present = 3421 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE; 3422 3423 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3424 "volatile-write-cache-present", 3425 nvme->n_write_cache_present ? 1 : 0); 3426 3427 if (!nvme->n_write_cache_present) { 3428 nvme->n_write_cache_enabled = B_FALSE; 3429 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled) 3430 != 0) { 3431 dev_err(nvme->n_dip, CE_WARN, 3432 "!failed to %sable volatile write cache", 3433 nvme->n_write_cache_enabled ? "en" : "dis"); 3434 /* 3435 * Assume the cache is (still) enabled. 3436 */ 3437 nvme->n_write_cache_enabled = B_TRUE; 3438 } 3439 3440 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3441 "volatile-write-cache-enable", 3442 nvme->n_write_cache_enabled ? 1 : 0); 3443 3444 /* 3445 * Assume LBA Range Type feature is supported. If it isn't this 3446 * will be set to B_FALSE by nvme_get_features(). 3447 */ 3448 nvme->n_lba_range_supported = B_TRUE; 3449 3450 /* 3451 * Check support for Autonomous Power State Transition. 3452 */ 3453 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 3454 nvme->n_auto_pst_supported = 3455 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE; 3456 3457 /* 3458 * Assume Software Progress Marker feature is supported. If it isn't 3459 * this will be set to B_FALSE by nvme_get_features(). 3460 */ 3461 nvme->n_progress_supported = B_TRUE; 3462 3463 /* 3464 * Get number of supported namespaces and allocate namespace array. 3465 */ 3466 nvme->n_namespace_count = nvme->n_idctl->id_nn; 3467 3468 if (nvme->n_namespace_count == 0) { 3469 dev_err(nvme->n_dip, CE_WARN, 3470 "!controllers without namespaces are not supported"); 3471 goto fail; 3472 } 3473 3474 if (nvme->n_namespace_count > NVME_MINOR_MAX) { 3475 dev_err(nvme->n_dip, CE_WARN, 3476 "!too many namespaces: %d, limiting to %d\n", 3477 nvme->n_namespace_count, NVME_MINOR_MAX); 3478 nvme->n_namespace_count = NVME_MINOR_MAX; 3479 } 3480 3481 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * 3482 nvme->n_namespace_count, KM_SLEEP); 3483 3484 /* 3485 * Try to set up MSI/MSI-X interrupts. 3486 */ 3487 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) 3488 != 0) { 3489 nvme_release_interrupts(nvme); 3490 3491 nqueues = MIN(UINT16_MAX, ncpus); 3492 3493 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 3494 nqueues) != DDI_SUCCESS) && 3495 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 3496 nqueues) != DDI_SUCCESS)) { 3497 dev_err(nvme->n_dip, CE_WARN, 3498 "!failed to setup MSI/MSI-X interrupts"); 3499 goto fail; 3500 } 3501 } 3502 3503 /* 3504 * Create I/O queue pairs. 3505 */ 3506 3507 if (nvme_set_nqueues(nvme) != 0) { 3508 dev_err(nvme->n_dip, CE_WARN, 3509 "!failed to set number of I/O queues to %d", 3510 nvme->n_intr_cnt); 3511 goto fail; 3512 } 3513 3514 /* 3515 * Reallocate I/O queue array 3516 */ 3517 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); 3518 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * 3519 (nvme->n_submission_queues + 1), KM_SLEEP); 3520 nvme->n_ioq[0] = nvme->n_adminq; 3521 3522 /* 3523 * There should always be at least as many submission queues 3524 * as completion queues. 3525 */ 3526 ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues); 3527 3528 nvme->n_ioq_count = nvme->n_submission_queues; 3529 3530 nvme->n_io_squeue_len = 3531 MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries); 3532 3533 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len", 3534 nvme->n_io_squeue_len); 3535 3536 /* 3537 * Pre-allocate completion queues. 3538 * When there are the same number of submission and completion 3539 * queues there is no value in having a larger completion 3540 * queue length. 3541 */ 3542 if (nvme->n_submission_queues == nvme->n_completion_queues) 3543 nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len, 3544 nvme->n_io_squeue_len); 3545 3546 nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len, 3547 nvme->n_max_queue_entries); 3548 3549 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len", 3550 nvme->n_io_cqueue_len); 3551 3552 /* 3553 * Assign the equal quantity of taskq threads to each completion 3554 * queue, capping the total number of threads to the number 3555 * of CPUs. 3556 */ 3557 tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues; 3558 3559 /* 3560 * In case the calculation above is zero, we need at least one 3561 * thread per completion queue. 3562 */ 3563 tq_threads = MAX(1, tq_threads); 3564 3565 if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1, 3566 nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) { 3567 dev_err(nvme->n_dip, CE_WARN, 3568 "!failed to pre-allocate completion queues"); 3569 goto fail; 3570 } 3571 3572 /* 3573 * If we use less completion queues than interrupt vectors return 3574 * some of the interrupt vectors back to the system. 3575 */ 3576 if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) { 3577 nvme_release_interrupts(nvme); 3578 3579 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, 3580 nvme->n_completion_queues + 1) != DDI_SUCCESS) { 3581 dev_err(nvme->n_dip, CE_WARN, 3582 "!failed to reduce number of interrupts"); 3583 goto fail; 3584 } 3585 } 3586 3587 /* 3588 * Alloc & register I/O queue pairs 3589 */ 3590 3591 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 3592 if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len, 3593 &nvme->n_ioq[i], i) != DDI_SUCCESS) { 3594 dev_err(nvme->n_dip, CE_WARN, 3595 "!unable to allocate I/O qpair %d", i); 3596 goto fail; 3597 } 3598 3599 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) { 3600 dev_err(nvme->n_dip, CE_WARN, 3601 "!unable to create I/O qpair %d", i); 3602 goto fail; 3603 } 3604 } 3605 3606 /* 3607 * Post more asynchronous events commands to reduce event reporting 3608 * latency as suggested by the spec. 3609 */ 3610 if (nvme->n_async_event_supported) { 3611 for (i = 1; i != nvme->n_async_event_limit; i++) 3612 nvme_async_event(nvme); 3613 } 3614 3615 return (DDI_SUCCESS); 3616 3617 fail: 3618 (void) nvme_reset(nvme, B_FALSE); 3619 return (DDI_FAILURE); 3620 } 3621 3622 static uint_t 3623 nvme_intr(caddr_t arg1, caddr_t arg2) 3624 { 3625 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3626 nvme_t *nvme = (nvme_t *)arg1; 3627 int inum = (int)(uintptr_t)arg2; 3628 int ccnt = 0; 3629 int qnum; 3630 3631 if (inum >= nvme->n_intr_cnt) 3632 return (DDI_INTR_UNCLAIMED); 3633 3634 if (nvme->n_dead) 3635 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ? 3636 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED); 3637 3638 /* 3639 * The interrupt vector a queue uses is calculated as queue_idx % 3640 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array 3641 * in steps of n_intr_cnt to process all queues using this vector. 3642 */ 3643 for (qnum = inum; 3644 qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL; 3645 qnum += nvme->n_intr_cnt) { 3646 ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]); 3647 } 3648 3649 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 3650 } 3651 3652 static void 3653 nvme_release_interrupts(nvme_t *nvme) 3654 { 3655 int i; 3656 3657 for (i = 0; i < nvme->n_intr_cnt; i++) { 3658 if (nvme->n_inth[i] == NULL) 3659 break; 3660 3661 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 3662 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); 3663 else 3664 (void) ddi_intr_disable(nvme->n_inth[i]); 3665 3666 (void) ddi_intr_remove_handler(nvme->n_inth[i]); 3667 (void) ddi_intr_free(nvme->n_inth[i]); 3668 } 3669 3670 kmem_free(nvme->n_inth, nvme->n_inth_sz); 3671 nvme->n_inth = NULL; 3672 nvme->n_inth_sz = 0; 3673 3674 nvme->n_progress &= ~NVME_INTERRUPTS; 3675 } 3676 3677 static int 3678 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) 3679 { 3680 int nintrs, navail, count; 3681 int ret; 3682 int i; 3683 3684 if (nvme->n_intr_types == 0) { 3685 ret = ddi_intr_get_supported_types(nvme->n_dip, 3686 &nvme->n_intr_types); 3687 if (ret != DDI_SUCCESS) { 3688 dev_err(nvme->n_dip, CE_WARN, 3689 "!%s: ddi_intr_get_supported types failed", 3690 __func__); 3691 return (ret); 3692 } 3693 #ifdef __x86 3694 if (get_hwenv() == HW_VMWARE) 3695 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX; 3696 #endif 3697 } 3698 3699 if ((nvme->n_intr_types & intr_type) == 0) 3700 return (DDI_FAILURE); 3701 3702 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); 3703 if (ret != DDI_SUCCESS) { 3704 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", 3705 __func__); 3706 return (ret); 3707 } 3708 3709 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); 3710 if (ret != DDI_SUCCESS) { 3711 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", 3712 __func__); 3713 return (ret); 3714 } 3715 3716 /* We want at most one interrupt per queue pair. */ 3717 if (navail > nqpairs) 3718 navail = nqpairs; 3719 3720 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; 3721 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); 3722 3723 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, 3724 &count, 0); 3725 if (ret != DDI_SUCCESS) { 3726 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", 3727 __func__); 3728 goto fail; 3729 } 3730 3731 nvme->n_intr_cnt = count; 3732 3733 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); 3734 if (ret != DDI_SUCCESS) { 3735 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", 3736 __func__); 3737 goto fail; 3738 } 3739 3740 for (i = 0; i < count; i++) { 3741 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, 3742 (void *)nvme, (void *)(uintptr_t)i); 3743 if (ret != DDI_SUCCESS) { 3744 dev_err(nvme->n_dip, CE_WARN, 3745 "!%s: ddi_intr_add_handler failed", __func__); 3746 goto fail; 3747 } 3748 } 3749 3750 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); 3751 3752 for (i = 0; i < count; i++) { 3753 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 3754 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1); 3755 else 3756 ret = ddi_intr_enable(nvme->n_inth[i]); 3757 3758 if (ret != DDI_SUCCESS) { 3759 dev_err(nvme->n_dip, CE_WARN, 3760 "!%s: enabling interrupt %d failed", __func__, i); 3761 goto fail; 3762 } 3763 } 3764 3765 nvme->n_intr_type = intr_type; 3766 3767 nvme->n_progress |= NVME_INTERRUPTS; 3768 3769 return (DDI_SUCCESS); 3770 3771 fail: 3772 nvme_release_interrupts(nvme); 3773 3774 return (ret); 3775 } 3776 3777 static int 3778 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) 3779 { 3780 _NOTE(ARGUNUSED(arg)); 3781 3782 pci_ereport_post(dip, fm_error, NULL); 3783 return (fm_error->fme_status); 3784 } 3785 3786 static void 3787 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a, 3788 void *b) 3789 { 3790 nvme_t *nvme = a; 3791 3792 nvme->n_dead = B_TRUE; 3793 3794 /* 3795 * Fail all outstanding commands, including those in the admin queue 3796 * (queue 0). 3797 */ 3798 for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) { 3799 nvme_qpair_t *qp = nvme->n_ioq[i]; 3800 3801 mutex_enter(&qp->nq_mutex); 3802 for (size_t j = 0; j < qp->nq_nentry; j++) { 3803 nvme_cmd_t *cmd = qp->nq_cmd[j]; 3804 nvme_cmd_t *u_cmd; 3805 3806 if (cmd == NULL) { 3807 continue; 3808 } 3809 3810 /* 3811 * Since we have the queue lock held the entire time we 3812 * iterate over it, it's not possible for the queue to 3813 * change underneath us. Thus, we don't need to check 3814 * that the return value of nvme_unqueue_cmd matches the 3815 * requested cmd to unqueue. 3816 */ 3817 u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); 3818 taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, 3819 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); 3820 3821 ASSERT3P(u_cmd, ==, cmd); 3822 } 3823 mutex_exit(&qp->nq_mutex); 3824 } 3825 } 3826 3827 static int 3828 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 3829 { 3830 nvme_t *nvme; 3831 int instance; 3832 int nregs; 3833 off_t regsize; 3834 int i; 3835 char name[32]; 3836 boolean_t attached_ns; 3837 3838 if (cmd != DDI_ATTACH) 3839 return (DDI_FAILURE); 3840 3841 instance = ddi_get_instance(dip); 3842 3843 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) 3844 return (DDI_FAILURE); 3845 3846 nvme = ddi_get_soft_state(nvme_state, instance); 3847 ddi_set_driver_private(dip, nvme); 3848 nvme->n_dip = dip; 3849 3850 /* Set up event handlers for hot removal. */ 3851 if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT, 3852 &nvme->n_rm_cookie) != DDI_SUCCESS) { 3853 goto fail; 3854 } 3855 if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie, 3856 nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) != 3857 DDI_SUCCESS) { 3858 goto fail; 3859 } 3860 3861 mutex_init(&nvme->n_minor_mutex, NULL, MUTEX_DRIVER, NULL); 3862 nvme->n_progress |= NVME_MUTEX_INIT; 3863 3864 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3865 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; 3866 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, 3867 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? 3868 B_TRUE : B_FALSE; 3869 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3870 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); 3871 nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3872 DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN); 3873 /* 3874 * Double up the default for completion queues in case of 3875 * queue sharing. 3876 */ 3877 nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3878 DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN); 3879 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3880 DDI_PROP_DONTPASS, "async-event-limit", 3881 NVME_DEFAULT_ASYNC_EVENT_LIMIT); 3882 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3883 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ? 3884 B_TRUE : B_FALSE; 3885 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3886 DDI_PROP_DONTPASS, "min-phys-block-size", 3887 NVME_DEFAULT_MIN_BLOCK_SIZE); 3888 nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3889 DDI_PROP_DONTPASS, "max-submission-queues", -1); 3890 nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 3891 DDI_PROP_DONTPASS, "max-completion-queues", -1); 3892 3893 if (!ISP2(nvme->n_min_block_size) || 3894 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) { 3895 dev_err(dip, CE_WARN, "!min-phys-block-size %s, " 3896 "using default %d", ISP2(nvme->n_min_block_size) ? 3897 "too low" : "not a power of 2", 3898 NVME_DEFAULT_MIN_BLOCK_SIZE); 3899 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 3900 } 3901 3902 if (nvme->n_submission_queues != -1 && 3903 (nvme->n_submission_queues < 1 || 3904 nvme->n_submission_queues > UINT16_MAX)) { 3905 dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not " 3906 "valid. Must be [1..%d]", nvme->n_submission_queues, 3907 UINT16_MAX); 3908 nvme->n_submission_queues = -1; 3909 } 3910 3911 if (nvme->n_completion_queues != -1 && 3912 (nvme->n_completion_queues < 1 || 3913 nvme->n_completion_queues > UINT16_MAX)) { 3914 dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not " 3915 "valid. Must be [1..%d]", nvme->n_completion_queues, 3916 UINT16_MAX); 3917 nvme->n_completion_queues = -1; 3918 } 3919 3920 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) 3921 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; 3922 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) 3923 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; 3924 3925 if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN) 3926 nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN; 3927 if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN) 3928 nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN; 3929 3930 if (nvme->n_async_event_limit < 1) 3931 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; 3932 3933 nvme->n_reg_acc_attr = nvme_reg_acc_attr; 3934 nvme->n_queue_dma_attr = nvme_queue_dma_attr; 3935 nvme->n_prp_dma_attr = nvme_prp_dma_attr; 3936 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; 3937 3938 /* 3939 * Set up FMA support. 3940 */ 3941 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, 3942 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 3943 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 3944 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 3945 3946 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); 3947 3948 if (nvme->n_fm_cap) { 3949 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) 3950 nvme->n_reg_acc_attr.devacc_attr_access = 3951 DDI_FLAGERR_ACC; 3952 3953 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { 3954 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 3955 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 3956 } 3957 3958 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 3959 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 3960 pci_ereport_setup(dip); 3961 3962 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 3963 ddi_fm_handler_register(dip, nvme_fm_errcb, 3964 (void *)nvme); 3965 } 3966 3967 nvme->n_progress |= NVME_FMA_INIT; 3968 3969 /* 3970 * The spec defines several register sets. Only the controller 3971 * registers (set 1) are currently used. 3972 */ 3973 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || 3974 nregs < 2 || 3975 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) 3976 goto fail; 3977 3978 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, 3979 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { 3980 dev_err(dip, CE_WARN, "!failed to map regset 1"); 3981 goto fail; 3982 } 3983 3984 nvme->n_progress |= NVME_REGS_MAPPED; 3985 3986 /* 3987 * Create PRP DMA cache 3988 */ 3989 (void) snprintf(name, sizeof (name), "%s%d_prp_cache", 3990 ddi_driver_name(dip), ddi_get_instance(dip)); 3991 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t), 3992 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor, 3993 NULL, (void *)nvme, NULL, 0); 3994 3995 if (nvme_init(nvme) != DDI_SUCCESS) 3996 goto fail; 3997 3998 /* 3999 * Initialize the driver with the UFM subsystem 4000 */ 4001 if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops, 4002 &nvme->n_ufmh, nvme) != 0) { 4003 dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem"); 4004 goto fail; 4005 } 4006 mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL); 4007 ddi_ufm_update(nvme->n_ufmh); 4008 nvme->n_progress |= NVME_UFM_INIT; 4009 4010 mutex_init(&nvme->n_mgmt_mutex, NULL, MUTEX_DRIVER, NULL); 4011 nvme->n_progress |= NVME_MGMT_INIT; 4012 4013 /* 4014 * Identify namespaces. 4015 */ 4016 mutex_enter(&nvme->n_mgmt_mutex); 4017 4018 for (i = 1; i <= nvme->n_namespace_count; i++) { 4019 nvme_namespace_t *ns = NVME_NSID2NS(nvme, i); 4020 4021 /* 4022 * Namespaces start out ignored. When nvme_init_ns() checks 4023 * their properties and finds they can be used, it will set 4024 * ns_ignore to B_FALSE. It will also use this state change 4025 * to keep an accurate count of attachable namespaces. 4026 */ 4027 ns->ns_ignore = B_TRUE; 4028 if (nvme_init_ns(nvme, i) != 0) { 4029 mutex_exit(&nvme->n_mgmt_mutex); 4030 goto fail; 4031 } 4032 4033 if (ddi_create_minor_node(nvme->n_dip, ns->ns_name, S_IFCHR, 4034 NVME_MINOR(ddi_get_instance(nvme->n_dip), i), 4035 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) { 4036 mutex_exit(&nvme->n_mgmt_mutex); 4037 dev_err(dip, CE_WARN, 4038 "!failed to create minor node for namespace %d", i); 4039 goto fail; 4040 } 4041 } 4042 4043 if (ddi_create_minor_node(dip, "devctl", S_IFCHR, 4044 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0) 4045 != DDI_SUCCESS) { 4046 mutex_exit(&nvme->n_mgmt_mutex); 4047 dev_err(dip, CE_WARN, "nvme_attach: " 4048 "cannot create devctl minor node"); 4049 goto fail; 4050 } 4051 4052 attached_ns = B_FALSE; 4053 for (i = 1; i <= nvme->n_namespace_count; i++) { 4054 int rv; 4055 4056 rv = nvme_attach_ns(nvme, i); 4057 if (rv == 0) { 4058 attached_ns = B_TRUE; 4059 } else if (rv != ENOTSUP) { 4060 dev_err(nvme->n_dip, CE_WARN, 4061 "!failed to attach namespace %d: %d", i, rv); 4062 /* 4063 * Once we have successfully attached a namespace we 4064 * can no longer fail the driver attach as there is now 4065 * a blkdev child node linked to this device, and 4066 * our node is not yet in the attached state. 4067 */ 4068 if (!attached_ns) { 4069 mutex_exit(&nvme->n_mgmt_mutex); 4070 goto fail; 4071 } 4072 } 4073 } 4074 4075 mutex_exit(&nvme->n_mgmt_mutex); 4076 4077 return (DDI_SUCCESS); 4078 4079 fail: 4080 /* attach successful anyway so that FMA can retire the device */ 4081 if (nvme->n_dead) 4082 return (DDI_SUCCESS); 4083 4084 (void) nvme_detach(dip, DDI_DETACH); 4085 4086 return (DDI_FAILURE); 4087 } 4088 4089 static int 4090 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 4091 { 4092 int instance, i; 4093 nvme_t *nvme; 4094 4095 if (cmd != DDI_DETACH) 4096 return (DDI_FAILURE); 4097 4098 instance = ddi_get_instance(dip); 4099 4100 nvme = ddi_get_soft_state(nvme_state, instance); 4101 4102 if (nvme == NULL) 4103 return (DDI_FAILURE); 4104 4105 ddi_remove_minor_node(dip, "devctl"); 4106 4107 if (nvme->n_ns) { 4108 for (i = 1; i <= nvme->n_namespace_count; i++) { 4109 nvme_namespace_t *ns = NVME_NSID2NS(nvme, i); 4110 4111 ddi_remove_minor_node(dip, ns->ns_name); 4112 4113 if (ns->ns_bd_hdl) { 4114 (void) bd_detach_handle(ns->ns_bd_hdl); 4115 bd_free_handle(ns->ns_bd_hdl); 4116 } 4117 4118 if (ns->ns_idns) 4119 kmem_free(ns->ns_idns, 4120 sizeof (nvme_identify_nsid_t)); 4121 if (ns->ns_devid) 4122 strfree(ns->ns_devid); 4123 } 4124 4125 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * 4126 nvme->n_namespace_count); 4127 } 4128 4129 if (nvme->n_progress & NVME_MGMT_INIT) { 4130 mutex_destroy(&nvme->n_mgmt_mutex); 4131 } 4132 4133 if (nvme->n_progress & NVME_UFM_INIT) { 4134 ddi_ufm_fini(nvme->n_ufmh); 4135 mutex_destroy(&nvme->n_fwslot_mutex); 4136 } 4137 4138 if (nvme->n_progress & NVME_INTERRUPTS) 4139 nvme_release_interrupts(nvme); 4140 4141 for (i = 0; i < nvme->n_cq_count; i++) { 4142 if (nvme->n_cq[i]->ncq_cmd_taskq != NULL) 4143 taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq); 4144 } 4145 4146 if (nvme->n_progress & NVME_MUTEX_INIT) { 4147 mutex_destroy(&nvme->n_minor_mutex); 4148 } 4149 4150 if (nvme->n_ioq_count > 0) { 4151 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 4152 if (nvme->n_ioq[i] != NULL) { 4153 /* TODO: send destroy queue commands */ 4154 nvme_free_qpair(nvme->n_ioq[i]); 4155 } 4156 } 4157 4158 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * 4159 (nvme->n_ioq_count + 1)); 4160 } 4161 4162 if (nvme->n_prp_cache != NULL) { 4163 kmem_cache_destroy(nvme->n_prp_cache); 4164 } 4165 4166 if (nvme->n_progress & NVME_REGS_MAPPED) { 4167 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE); 4168 (void) nvme_reset(nvme, B_FALSE); 4169 } 4170 4171 if (nvme->n_progress & NVME_CTRL_LIMITS) 4172 sema_destroy(&nvme->n_abort_sema); 4173 4174 if (nvme->n_progress & NVME_ADMIN_QUEUE) 4175 nvme_free_qpair(nvme->n_adminq); 4176 4177 if (nvme->n_cq_count > 0) { 4178 nvme_destroy_cq_array(nvme, 0); 4179 nvme->n_cq = NULL; 4180 nvme->n_cq_count = 0; 4181 } 4182 4183 if (nvme->n_idctl) 4184 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE); 4185 4186 if (nvme->n_progress & NVME_REGS_MAPPED) 4187 ddi_regs_map_free(&nvme->n_regh); 4188 4189 if (nvme->n_progress & NVME_FMA_INIT) { 4190 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4191 ddi_fm_handler_unregister(nvme->n_dip); 4192 4193 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 4194 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4195 pci_ereport_teardown(nvme->n_dip); 4196 4197 ddi_fm_fini(nvme->n_dip); 4198 } 4199 4200 if (nvme->n_vendor != NULL) 4201 strfree(nvme->n_vendor); 4202 4203 if (nvme->n_product != NULL) 4204 strfree(nvme->n_product); 4205 4206 /* Clean up hot removal event handler. */ 4207 if (nvme->n_ev_rm_cb_id != NULL) { 4208 (void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id); 4209 } 4210 nvme->n_ev_rm_cb_id = NULL; 4211 4212 ddi_soft_state_free(nvme_state, instance); 4213 4214 return (DDI_SUCCESS); 4215 } 4216 4217 static int 4218 nvme_quiesce(dev_info_t *dip) 4219 { 4220 int instance; 4221 nvme_t *nvme; 4222 4223 instance = ddi_get_instance(dip); 4224 4225 nvme = ddi_get_soft_state(nvme_state, instance); 4226 4227 if (nvme == NULL) 4228 return (DDI_FAILURE); 4229 4230 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE); 4231 4232 (void) nvme_reset(nvme, B_TRUE); 4233 4234 return (DDI_FAILURE); 4235 } 4236 4237 static int 4238 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma) 4239 { 4240 nvme_t *nvme = cmd->nc_nvme; 4241 uint_t nprp_per_page, nprp; 4242 uint64_t *prp; 4243 const ddi_dma_cookie_t *cookie; 4244 uint_t idx; 4245 uint_t ncookies = ddi_dma_ncookies(dma); 4246 4247 if (ncookies == 0) 4248 return (DDI_FAILURE); 4249 4250 if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL) 4251 return (DDI_FAILURE); 4252 cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress; 4253 4254 if (ncookies == 1) { 4255 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 4256 return (DDI_SUCCESS); 4257 } else if (ncookies == 2) { 4258 if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL) 4259 return (DDI_FAILURE); 4260 cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress; 4261 return (DDI_SUCCESS); 4262 } 4263 4264 /* 4265 * At this point, we're always operating on cookies at 4266 * index >= 1 and writing the addresses of those cookies 4267 * into a new page. The address of that page is stored 4268 * as the second PRP entry. 4269 */ 4270 nprp_per_page = nvme->n_pagesize / sizeof (uint64_t); 4271 ASSERT(nprp_per_page > 0); 4272 4273 /* 4274 * We currently don't support chained PRPs and set up our DMA 4275 * attributes to reflect that. If we still get an I/O request 4276 * that needs a chained PRP something is very wrong. Account 4277 * for the first cookie here, which we've placed in d_prp[0]. 4278 */ 4279 nprp = howmany(ncookies - 1, nprp_per_page); 4280 VERIFY(nprp == 1); 4281 4282 /* 4283 * Allocate a page of pointers, in which we'll write the 4284 * addresses of cookies 1 to `ncookies`. 4285 */ 4286 cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP); 4287 bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len); 4288 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress; 4289 4290 prp = (uint64_t *)cmd->nc_prp->nd_memp; 4291 for (idx = 1; idx < ncookies; idx++) { 4292 if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL) 4293 return (DDI_FAILURE); 4294 *prp++ = cookie->dmac_laddress; 4295 } 4296 4297 (void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len, 4298 DDI_DMA_SYNC_FORDEV); 4299 return (DDI_SUCCESS); 4300 } 4301 4302 /* 4303 * The maximum number of requests supported for a deallocate request is 4304 * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and 4305 * unchanged through at least 1.4a). The definition of nvme_range_t is also 4306 * from the NVMe 1.1 spec. Together, the result is that all of the ranges for 4307 * a deallocate request will fit into the smallest supported namespace page 4308 * (4k). 4309 */ 4310 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096); 4311 4312 static int 4313 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize, 4314 int allocflag) 4315 { 4316 const dkioc_free_list_t *dfl = xfer->x_dfl; 4317 const dkioc_free_list_ext_t *exts = dfl->dfl_exts; 4318 nvme_t *nvme = cmd->nc_nvme; 4319 nvme_range_t *ranges = NULL; 4320 uint_t i; 4321 4322 /* 4323 * The number of ranges in the request is 0s based (that is 4324 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ..., 4325 * word10 == 255 -> 256 ranges). Therefore the allowed values are 4326 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request, 4327 * we either provided bad info in nvme_bd_driveinfo() or there is a bug 4328 * in blkdev. 4329 */ 4330 VERIFY3U(dfl->dfl_num_exts, >, 0); 4331 VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES); 4332 cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff; 4333 4334 cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE; 4335 4336 cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag); 4337 if (cmd->nc_prp == NULL) 4338 return (DDI_FAILURE); 4339 4340 bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len); 4341 ranges = (nvme_range_t *)cmd->nc_prp->nd_memp; 4342 4343 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress; 4344 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 4345 4346 for (i = 0; i < dfl->dfl_num_exts; i++) { 4347 uint64_t lba, len; 4348 4349 lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize; 4350 len = exts[i].dfle_length / blocksize; 4351 4352 VERIFY3U(len, <=, UINT32_MAX); 4353 4354 /* No context attributes for a deallocate request */ 4355 ranges[i].nr_ctxattr = 0; 4356 ranges[i].nr_len = len; 4357 ranges[i].nr_lba = lba; 4358 } 4359 4360 (void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len, 4361 DDI_DMA_SYNC_FORDEV); 4362 4363 return (DDI_SUCCESS); 4364 } 4365 4366 static nvme_cmd_t * 4367 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) 4368 { 4369 nvme_t *nvme = ns->ns_nvme; 4370 nvme_cmd_t *cmd; 4371 int allocflag; 4372 4373 /* 4374 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. 4375 */ 4376 allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP; 4377 cmd = nvme_alloc_cmd(nvme, allocflag); 4378 4379 if (cmd == NULL) 4380 return (NULL); 4381 4382 cmd->nc_sqe.sqe_opc = opc; 4383 cmd->nc_callback = nvme_bd_xfer_done; 4384 cmd->nc_xfer = xfer; 4385 4386 switch (opc) { 4387 case NVME_OPC_NVM_WRITE: 4388 case NVME_OPC_NVM_READ: 4389 VERIFY(xfer->x_nblks <= 0x10000); 4390 4391 cmd->nc_sqe.sqe_nsid = ns->ns_id; 4392 4393 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; 4394 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); 4395 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); 4396 4397 if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS) 4398 goto fail; 4399 break; 4400 4401 case NVME_OPC_NVM_FLUSH: 4402 cmd->nc_sqe.sqe_nsid = ns->ns_id; 4403 break; 4404 4405 case NVME_OPC_NVM_DSET_MGMT: 4406 cmd->nc_sqe.sqe_nsid = ns->ns_id; 4407 4408 if (nvme_fill_ranges(cmd, xfer, 4409 (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS) 4410 goto fail; 4411 break; 4412 4413 default: 4414 goto fail; 4415 } 4416 4417 return (cmd); 4418 4419 fail: 4420 nvme_free_cmd(cmd); 4421 return (NULL); 4422 } 4423 4424 static void 4425 nvme_bd_xfer_done(void *arg) 4426 { 4427 nvme_cmd_t *cmd = arg; 4428 bd_xfer_t *xfer = cmd->nc_xfer; 4429 int error = 0; 4430 4431 error = nvme_check_cmd_status(cmd); 4432 nvme_free_cmd(cmd); 4433 4434 bd_xfer_done(xfer, error); 4435 } 4436 4437 static void 4438 nvme_bd_driveinfo(void *arg, bd_drive_t *drive) 4439 { 4440 nvme_namespace_t *ns = arg; 4441 nvme_t *nvme = ns->ns_nvme; 4442 uint_t ns_count = MAX(1, nvme->n_namespaces_attachable); 4443 boolean_t mutex_exit_needed = B_TRUE; 4444 4445 /* 4446 * nvme_bd_driveinfo is called by blkdev in two situations: 4447 * - during bd_attach_handle(), which we call with the mutex held 4448 * - during bd_attach(), which may be called with or without the 4449 * mutex held 4450 */ 4451 if (mutex_owned(&nvme->n_mgmt_mutex)) 4452 mutex_exit_needed = B_FALSE; 4453 else 4454 mutex_enter(&nvme->n_mgmt_mutex); 4455 4456 /* 4457 * Set the blkdev qcount to the number of submission queues. 4458 * It will then create one waitq/runq pair for each submission 4459 * queue and spread I/O requests across the queues. 4460 */ 4461 drive->d_qcount = nvme->n_ioq_count; 4462 4463 /* 4464 * I/O activity to individual namespaces is distributed across 4465 * each of the d_qcount blkdev queues (which has been set to 4466 * the number of nvme submission queues). d_qsize is the number 4467 * of submitted and not completed I/Os within each queue that blkdev 4468 * will allow before it starts holding them in the waitq. 4469 * 4470 * Each namespace will create a child blkdev instance, for each one 4471 * we try and set the d_qsize so that each namespace gets an 4472 * equal portion of the submission queue. 4473 * 4474 * If post instantiation of the nvme drive, n_namespaces_attachable 4475 * changes and a namespace is attached it could calculate a 4476 * different d_qsize. It may even be that the sum of the d_qsizes is 4477 * now beyond the submission queue size. Should that be the case 4478 * and the I/O rate is such that blkdev attempts to submit more 4479 * I/Os than the size of the submission queue, the excess I/Os 4480 * will be held behind the semaphore nq_sema. 4481 */ 4482 drive->d_qsize = nvme->n_io_squeue_len / ns_count; 4483 4484 /* 4485 * Don't let the queue size drop below the minimum, though. 4486 */ 4487 drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN); 4488 4489 /* 4490 * d_maxxfer is not set, which means the value is taken from the DMA 4491 * attributes specified to bd_alloc_handle. 4492 */ 4493 4494 drive->d_removable = B_FALSE; 4495 drive->d_hotpluggable = B_FALSE; 4496 4497 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64)); 4498 drive->d_target = ns->ns_id; 4499 drive->d_lun = 0; 4500 4501 drive->d_model = nvme->n_idctl->id_model; 4502 drive->d_model_len = sizeof (nvme->n_idctl->id_model); 4503 drive->d_vendor = nvme->n_vendor; 4504 drive->d_vendor_len = strlen(nvme->n_vendor); 4505 drive->d_product = nvme->n_product; 4506 drive->d_product_len = strlen(nvme->n_product); 4507 drive->d_serial = nvme->n_idctl->id_serial; 4508 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); 4509 drive->d_revision = nvme->n_idctl->id_fwrev; 4510 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); 4511 4512 /* 4513 * If we support the dataset management command, the only restrictions 4514 * on a discard request are the maximum number of ranges (segments) 4515 * per single request. 4516 */ 4517 if (nvme->n_idctl->id_oncs.on_dset_mgmt) 4518 drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES; 4519 4520 if (mutex_exit_needed) 4521 mutex_exit(&nvme->n_mgmt_mutex); 4522 } 4523 4524 static int 4525 nvme_bd_mediainfo(void *arg, bd_media_t *media) 4526 { 4527 nvme_namespace_t *ns = arg; 4528 nvme_t *nvme = ns->ns_nvme; 4529 boolean_t mutex_exit_needed = B_TRUE; 4530 4531 if (nvme->n_dead) { 4532 return (EIO); 4533 } 4534 4535 /* 4536 * nvme_bd_mediainfo is called by blkdev in various situations, 4537 * most of them out of our control. There's one exception though: 4538 * When we call bd_state_change() in response to "namespace change" 4539 * notification, where the mutex is already being held by us. 4540 */ 4541 if (mutex_owned(&nvme->n_mgmt_mutex)) 4542 mutex_exit_needed = B_FALSE; 4543 else 4544 mutex_enter(&nvme->n_mgmt_mutex); 4545 4546 media->m_nblks = ns->ns_block_count; 4547 media->m_blksize = ns->ns_block_size; 4548 media->m_readonly = B_FALSE; 4549 media->m_solidstate = B_TRUE; 4550 4551 media->m_pblksize = ns->ns_best_block_size; 4552 4553 if (mutex_exit_needed) 4554 mutex_exit(&nvme->n_mgmt_mutex); 4555 4556 return (0); 4557 } 4558 4559 static int 4560 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) 4561 { 4562 nvme_t *nvme = ns->ns_nvme; 4563 nvme_cmd_t *cmd; 4564 nvme_qpair_t *ioq; 4565 boolean_t poll; 4566 int ret; 4567 4568 if (nvme->n_dead) { 4569 return (EIO); 4570 } 4571 4572 cmd = nvme_create_nvm_cmd(ns, opc, xfer); 4573 if (cmd == NULL) 4574 return (ENOMEM); 4575 4576 cmd->nc_sqid = xfer->x_qnum + 1; 4577 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 4578 ioq = nvme->n_ioq[cmd->nc_sqid]; 4579 4580 /* 4581 * Get the polling flag before submitting the command. The command may 4582 * complete immediately after it was submitted, which means we must 4583 * treat both cmd and xfer as if they have been freed already. 4584 */ 4585 poll = (xfer->x_flags & BD_XFER_POLL) != 0; 4586 4587 ret = nvme_submit_io_cmd(ioq, cmd); 4588 4589 if (ret != 0) 4590 return (ret); 4591 4592 if (!poll) 4593 return (0); 4594 4595 do { 4596 cmd = nvme_retrieve_cmd(nvme, ioq); 4597 if (cmd != NULL) 4598 cmd->nc_callback(cmd); 4599 else 4600 drv_usecwait(10); 4601 } while (ioq->nq_active_cmds != 0); 4602 4603 return (0); 4604 } 4605 4606 static int 4607 nvme_bd_read(void *arg, bd_xfer_t *xfer) 4608 { 4609 nvme_namespace_t *ns = arg; 4610 4611 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); 4612 } 4613 4614 static int 4615 nvme_bd_write(void *arg, bd_xfer_t *xfer) 4616 { 4617 nvme_namespace_t *ns = arg; 4618 4619 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); 4620 } 4621 4622 static int 4623 nvme_bd_sync(void *arg, bd_xfer_t *xfer) 4624 { 4625 nvme_namespace_t *ns = arg; 4626 4627 if (ns->ns_nvme->n_dead) 4628 return (EIO); 4629 4630 /* 4631 * If the volatile write cache is not present or not enabled the FLUSH 4632 * command is a no-op, so we can take a shortcut here. 4633 */ 4634 if (!ns->ns_nvme->n_write_cache_present) { 4635 bd_xfer_done(xfer, ENOTSUP); 4636 return (0); 4637 } 4638 4639 if (!ns->ns_nvme->n_write_cache_enabled) { 4640 bd_xfer_done(xfer, 0); 4641 return (0); 4642 } 4643 4644 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); 4645 } 4646 4647 static int 4648 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) 4649 { 4650 nvme_namespace_t *ns = arg; 4651 nvme_t *nvme = ns->ns_nvme; 4652 4653 if (nvme->n_dead) { 4654 return (EIO); 4655 } 4656 4657 if (*(uint64_t *)ns->ns_nguid != 0 || 4658 *(uint64_t *)(ns->ns_nguid + 8) != 0) { 4659 return (ddi_devid_init(devinfo, DEVID_NVME_NGUID, 4660 sizeof (ns->ns_nguid), ns->ns_nguid, devid)); 4661 } else if (*(uint64_t *)ns->ns_eui64 != 0) { 4662 return (ddi_devid_init(devinfo, DEVID_NVME_EUI64, 4663 sizeof (ns->ns_eui64), ns->ns_eui64, devid)); 4664 } else { 4665 return (ddi_devid_init(devinfo, DEVID_NVME_NSID, 4666 strlen(ns->ns_devid), ns->ns_devid, devid)); 4667 } 4668 } 4669 4670 static int 4671 nvme_bd_free_space(void *arg, bd_xfer_t *xfer) 4672 { 4673 nvme_namespace_t *ns = arg; 4674 4675 if (xfer->x_dfl == NULL) 4676 return (EINVAL); 4677 4678 if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt) 4679 return (ENOTSUP); 4680 4681 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT)); 4682 } 4683 4684 static int 4685 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 4686 { 4687 #ifndef __lock_lint 4688 _NOTE(ARGUNUSED(cred_p)); 4689 #endif 4690 minor_t minor = getminor(*devp); 4691 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 4692 int nsid = NVME_MINOR_NSID(minor); 4693 nvme_minor_state_t *nm; 4694 int rv = 0; 4695 4696 if (otyp != OTYP_CHR) 4697 return (EINVAL); 4698 4699 if (nvme == NULL) 4700 return (ENXIO); 4701 4702 if (nsid > nvme->n_namespace_count) 4703 return (ENXIO); 4704 4705 if (nvme->n_dead) 4706 return (EIO); 4707 4708 mutex_enter(&nvme->n_minor_mutex); 4709 4710 /* 4711 * First check the devctl node and error out if it's been opened 4712 * exclusively already by any other thread. 4713 */ 4714 if (nvme->n_minor.nm_oexcl != NULL && 4715 nvme->n_minor.nm_oexcl != curthread) { 4716 rv = EBUSY; 4717 goto out; 4718 } 4719 4720 nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor); 4721 4722 if (flag & FEXCL) { 4723 if (nm->nm_oexcl != NULL || nm->nm_open) { 4724 rv = EBUSY; 4725 goto out; 4726 } 4727 4728 /* 4729 * If at least one namespace is already open, fail the 4730 * exclusive open of the devctl node. 4731 */ 4732 if (nsid == 0) { 4733 for (int i = 1; i <= nvme->n_namespace_count; i++) { 4734 if (NVME_NSID2NS(nvme, i)->ns_minor.nm_open) { 4735 rv = EBUSY; 4736 goto out; 4737 } 4738 } 4739 } 4740 4741 nm->nm_oexcl = curthread; 4742 } 4743 4744 nm->nm_open = B_TRUE; 4745 4746 out: 4747 mutex_exit(&nvme->n_minor_mutex); 4748 return (rv); 4749 4750 } 4751 4752 static int 4753 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 4754 { 4755 #ifndef __lock_lint 4756 _NOTE(ARGUNUSED(cred_p)); 4757 _NOTE(ARGUNUSED(flag)); 4758 #endif 4759 minor_t minor = getminor(dev); 4760 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 4761 int nsid = NVME_MINOR_NSID(minor); 4762 nvme_minor_state_t *nm; 4763 4764 if (otyp != OTYP_CHR) 4765 return (ENXIO); 4766 4767 if (nvme == NULL) 4768 return (ENXIO); 4769 4770 if (nsid > nvme->n_namespace_count) 4771 return (ENXIO); 4772 4773 nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor); 4774 4775 mutex_enter(&nvme->n_minor_mutex); 4776 if (nm->nm_oexcl != NULL) { 4777 ASSERT(nm->nm_oexcl == curthread); 4778 nm->nm_oexcl = NULL; 4779 } 4780 4781 ASSERT(nm->nm_open); 4782 nm->nm_open = B_FALSE; 4783 mutex_exit(&nvme->n_minor_mutex); 4784 4785 return (0); 4786 } 4787 4788 static int 4789 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 4790 cred_t *cred_p) 4791 { 4792 _NOTE(ARGUNUSED(cred_p)); 4793 int rv = 0; 4794 void *idctl; 4795 4796 if ((mode & FREAD) == 0) 4797 return (EPERM); 4798 4799 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE) 4800 return (EINVAL); 4801 4802 switch (nioc->n_arg) { 4803 case NVME_IDENTIFY_NSID: 4804 /* 4805 * If we support namespace management, set the nsid to -1 to 4806 * retrieve the common namespace capabilities. Otherwise 4807 * have a best guess by returning identify data for namespace 1. 4808 */ 4809 if (nsid == 0) 4810 nsid = nvme->n_idctl->id_oacs.oa_nsmgmt == 1 ? -1 : 1; 4811 break; 4812 4813 case NVME_IDENTIFY_CTRL: 4814 /* 4815 * Let NVME_IDENTIFY_CTRL work the same on devctl and attachment 4816 * point nodes. 4817 */ 4818 nsid = 0; 4819 break; 4820 4821 case NVME_IDENTIFY_NSID_LIST: 4822 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 4823 return (ENOTSUP); 4824 4825 /* 4826 * For now, always try to get the list of active NSIDs starting 4827 * at the first namespace. This will have to be revisited should 4828 * the need arise to support more than 1024 namespaces. 4829 */ 4830 nsid = 0; 4831 break; 4832 4833 case NVME_IDENTIFY_NSID_DESC: 4834 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 3)) 4835 return (ENOTSUP); 4836 break; 4837 4838 case NVME_IDENTIFY_NSID_ALLOC: 4839 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4840 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4841 return (ENOTSUP); 4842 4843 /* 4844 * To make this work on a devctl node, make this return the 4845 * identify data for namespace 1. We assume that any NVMe 4846 * device supports at least one namespace, which has ID 1. 4847 */ 4848 if (nsid == 0) 4849 nsid = 1; 4850 break; 4851 4852 case NVME_IDENTIFY_NSID_ALLOC_LIST: 4853 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4854 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4855 return (ENOTSUP); 4856 4857 /* 4858 * For now, always try to get the list of allocated NSIDs 4859 * starting at the first namespace. This will have to be 4860 * revisited should the need arise to support more than 1024 4861 * namespaces. 4862 */ 4863 nsid = 0; 4864 break; 4865 4866 case NVME_IDENTIFY_NSID_CTRL_LIST: 4867 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4868 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4869 return (ENOTSUP); 4870 4871 if (nsid == 0) 4872 return (EINVAL); 4873 break; 4874 4875 case NVME_IDENTIFY_CTRL_LIST: 4876 if (!NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) || 4877 (nvme->n_idctl->id_oacs.oa_nsmgmt == 0)) 4878 return (ENOTSUP); 4879 4880 if (nsid != 0) 4881 return (EINVAL); 4882 break; 4883 4884 default: 4885 return (EINVAL); 4886 } 4887 4888 if ((rv = nvme_identify(nvme, B_TRUE, nsid, nioc->n_arg & 0xff, 4889 (void **)&idctl)) != 0) 4890 return (rv); 4891 4892 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode) 4893 != 0) 4894 rv = EFAULT; 4895 4896 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE); 4897 4898 return (rv); 4899 } 4900 4901 /* 4902 * Execute commands on behalf of the various ioctls. 4903 */ 4904 static int 4905 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr, 4906 uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout) 4907 { 4908 nvme_cmd_t *cmd; 4909 nvme_qpair_t *ioq; 4910 int rv = 0; 4911 4912 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 4913 if (is_admin) { 4914 cmd->nc_sqid = 0; 4915 ioq = nvme->n_adminq; 4916 } else { 4917 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1; 4918 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 4919 ioq = nvme->n_ioq[cmd->nc_sqid]; 4920 } 4921 4922 /* 4923 * This function is used to facilitate requests from 4924 * userspace, so don't panic if the command fails. This 4925 * is especially true for admin passthru commands, where 4926 * the actual command data structure is entirely defined 4927 * by userspace. 4928 */ 4929 cmd->nc_dontpanic = B_TRUE; 4930 4931 cmd->nc_callback = nvme_wakeup_cmd; 4932 cmd->nc_sqe = *sqe; 4933 4934 if ((rwk & (FREAD | FWRITE)) != 0) { 4935 if (data_addr == NULL) { 4936 rv = EINVAL; 4937 goto free_cmd; 4938 } 4939 4940 if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ, 4941 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 4942 dev_err(nvme->n_dip, CE_WARN, 4943 "!nvme_zalloc_dma failed for nvme_ioc_cmd()"); 4944 4945 rv = ENOMEM; 4946 goto free_cmd; 4947 } 4948 4949 if ((rv = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0) 4950 goto free_cmd; 4951 4952 if ((rwk & FWRITE) != 0) { 4953 if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp, 4954 data_len, rwk & FKIOCTL) != 0) { 4955 rv = EFAULT; 4956 goto free_cmd; 4957 } 4958 } 4959 } 4960 4961 if (is_admin) { 4962 nvme_admin_cmd(cmd, timeout); 4963 } else { 4964 mutex_enter(&cmd->nc_mutex); 4965 4966 rv = nvme_submit_io_cmd(ioq, cmd); 4967 4968 if (rv == EAGAIN) { 4969 mutex_exit(&cmd->nc_mutex); 4970 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 4971 "!nvme_ioc_cmd() failed, I/O Q full"); 4972 goto free_cmd; 4973 } 4974 4975 nvme_wait_cmd(cmd, timeout); 4976 4977 mutex_exit(&cmd->nc_mutex); 4978 } 4979 4980 if (cqe != NULL) 4981 *cqe = cmd->nc_cqe; 4982 4983 if ((rv = nvme_check_cmd_status(cmd)) != 0) { 4984 dev_err(nvme->n_dip, CE_WARN, 4985 "!nvme_ioc_cmd() failed with sct = %x, sc = %x", 4986 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 4987 4988 goto free_cmd; 4989 } 4990 4991 if ((rwk & FREAD) != 0) { 4992 if (ddi_copyout(cmd->nc_dma->nd_memp, 4993 data_addr, data_len, rwk & FKIOCTL) != 0) 4994 rv = EFAULT; 4995 } 4996 4997 free_cmd: 4998 nvme_free_cmd(cmd); 4999 5000 return (rv); 5001 } 5002 5003 static int 5004 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5005 int mode, cred_t *cred_p) 5006 { 5007 _NOTE(ARGUNUSED(nsid, cred_p)); 5008 int rv = 0; 5009 nvme_reg_cap_t cap = { 0 }; 5010 nvme_capabilities_t nc; 5011 5012 if ((mode & FREAD) == 0) 5013 return (EPERM); 5014 5015 if (nioc->n_len < sizeof (nc)) 5016 return (EINVAL); 5017 5018 cap.r = nvme_get64(nvme, NVME_REG_CAP); 5019 5020 /* 5021 * The MPSMIN and MPSMAX fields in the CAP register use 0 to 5022 * specify the base page size of 4k (1<<12), so add 12 here to 5023 * get the real page size value. 5024 */ 5025 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax); 5026 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin); 5027 5028 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0) 5029 rv = EFAULT; 5030 5031 return (rv); 5032 } 5033 5034 static int 5035 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5036 int mode, cred_t *cred_p) 5037 { 5038 _NOTE(ARGUNUSED(cred_p)); 5039 void *log = NULL; 5040 size_t bufsize = 0; 5041 int rv = 0; 5042 5043 if ((mode & FREAD) == 0) 5044 return (EPERM); 5045 5046 if (nsid > 0 && !NVME_NSID2NS(nvme, nsid)->ns_active) 5047 return (EINVAL); 5048 5049 switch (nioc->n_arg) { 5050 case NVME_LOGPAGE_ERROR: 5051 if (nsid != 0) 5052 return (EINVAL); 5053 break; 5054 case NVME_LOGPAGE_HEALTH: 5055 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0) 5056 return (EINVAL); 5057 5058 if (nsid == 0) 5059 nsid = (uint32_t)-1; 5060 5061 break; 5062 case NVME_LOGPAGE_FWSLOT: 5063 if (nsid != 0) 5064 return (EINVAL); 5065 break; 5066 default: 5067 if (!NVME_IS_VENDOR_SPECIFIC_LOGPAGE(nioc->n_arg)) 5068 return (EINVAL); 5069 if (nioc->n_len > NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE) { 5070 dev_err(nvme->n_dip, CE_NOTE, "!Vendor-specific log " 5071 "page size exceeds device maximum supported size: " 5072 "%lu", NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE); 5073 return (EINVAL); 5074 } 5075 if (nioc->n_len == 0) 5076 return (EINVAL); 5077 bufsize = nioc->n_len; 5078 if (nsid == 0) 5079 nsid = (uint32_t)-1; 5080 } 5081 5082 if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid) 5083 != DDI_SUCCESS) 5084 return (EIO); 5085 5086 if (nioc->n_len < bufsize) { 5087 kmem_free(log, bufsize); 5088 return (EINVAL); 5089 } 5090 5091 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0) 5092 rv = EFAULT; 5093 5094 nioc->n_len = bufsize; 5095 kmem_free(log, bufsize); 5096 5097 return (rv); 5098 } 5099 5100 static int 5101 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5102 int mode, cred_t *cred_p) 5103 { 5104 _NOTE(ARGUNUSED(cred_p)); 5105 void *buf = NULL; 5106 size_t bufsize = 0; 5107 uint32_t res = 0; 5108 uint8_t feature; 5109 int rv = 0; 5110 5111 if ((mode & FREAD) == 0) 5112 return (EPERM); 5113 5114 if (nsid > 0 && !NVME_NSID2NS(nvme, nsid)->ns_active) 5115 return (EINVAL); 5116 5117 if ((nioc->n_arg >> 32) > 0xff) 5118 return (EINVAL); 5119 5120 feature = (uint8_t)(nioc->n_arg >> 32); 5121 5122 switch (feature) { 5123 case NVME_FEAT_ARBITRATION: 5124 case NVME_FEAT_POWER_MGMT: 5125 case NVME_FEAT_ERROR: 5126 case NVME_FEAT_NQUEUES: 5127 case NVME_FEAT_INTR_COAL: 5128 case NVME_FEAT_WRITE_ATOM: 5129 case NVME_FEAT_ASYNC_EVENT: 5130 case NVME_FEAT_PROGRESS: 5131 if (nsid != 0) 5132 return (EINVAL); 5133 break; 5134 5135 case NVME_FEAT_TEMPERATURE: 5136 if (nsid != 0) 5137 return (EINVAL); 5138 res = nioc->n_arg & 0xffffffffUL; 5139 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) { 5140 nvme_temp_threshold_t tt; 5141 5142 tt.r = res; 5143 if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER && 5144 tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) { 5145 return (EINVAL); 5146 } 5147 5148 if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) { 5149 return (EINVAL); 5150 } 5151 } else if (res != 0) { 5152 return (ENOTSUP); 5153 } 5154 break; 5155 5156 case NVME_FEAT_INTR_VECT: 5157 if (nsid != 0) 5158 return (EINVAL); 5159 5160 res = nioc->n_arg & 0xffffffffUL; 5161 if (res >= nvme->n_intr_cnt) 5162 return (EINVAL); 5163 break; 5164 5165 case NVME_FEAT_LBA_RANGE: 5166 if (nvme->n_lba_range_supported == B_FALSE) 5167 return (EINVAL); 5168 5169 if (nsid == 0 || 5170 nsid > nvme->n_namespace_count) 5171 return (EINVAL); 5172 5173 break; 5174 5175 case NVME_FEAT_WRITE_CACHE: 5176 if (nsid != 0) 5177 return (EINVAL); 5178 5179 if (!nvme->n_write_cache_present) 5180 return (EINVAL); 5181 5182 break; 5183 5184 case NVME_FEAT_AUTO_PST: 5185 if (nsid != 0) 5186 return (EINVAL); 5187 5188 if (!nvme->n_auto_pst_supported) 5189 return (EINVAL); 5190 5191 break; 5192 5193 default: 5194 return (EINVAL); 5195 } 5196 5197 rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf, 5198 &bufsize); 5199 if (rv != 0) 5200 return (rv); 5201 5202 if (nioc->n_len < bufsize) { 5203 kmem_free(buf, bufsize); 5204 return (EINVAL); 5205 } 5206 5207 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0) 5208 rv = EFAULT; 5209 5210 kmem_free(buf, bufsize); 5211 nioc->n_arg = res; 5212 nioc->n_len = bufsize; 5213 5214 return (rv); 5215 } 5216 5217 static int 5218 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5219 cred_t *cred_p) 5220 { 5221 _NOTE(ARGUNUSED(nsid, mode, cred_p)); 5222 5223 if ((mode & FREAD) == 0) 5224 return (EPERM); 5225 5226 nioc->n_arg = nvme->n_intr_cnt; 5227 return (0); 5228 } 5229 5230 static int 5231 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5232 cred_t *cred_p) 5233 { 5234 _NOTE(ARGUNUSED(nsid, cred_p)); 5235 int rv = 0; 5236 5237 if ((mode & FREAD) == 0) 5238 return (EPERM); 5239 5240 if (nioc->n_len < sizeof (nvme->n_version)) 5241 return (ENOMEM); 5242 5243 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf, 5244 sizeof (nvme->n_version), mode) != 0) 5245 rv = EFAULT; 5246 5247 return (rv); 5248 } 5249 5250 static int 5251 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5252 cred_t *cred_p) 5253 { 5254 _NOTE(ARGUNUSED(mode)); 5255 nvme_format_nvm_t frmt = { 0 }; 5256 int c_nsid = nsid != 0 ? nsid : 1; 5257 nvme_identify_nsid_t *idns; 5258 nvme_minor_state_t *nm; 5259 5260 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5261 return (EPERM); 5262 5263 nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor); 5264 if (nm->nm_oexcl != curthread) 5265 return (EACCES); 5266 5267 if (nsid != 0) { 5268 if (NVME_NSID2NS(nvme, nsid)->ns_attached) 5269 return (EBUSY); 5270 else if (!NVME_NSID2NS(nvme, nsid)->ns_active) 5271 return (EINVAL); 5272 } 5273 5274 frmt.r = nioc->n_arg & 0xffffffff; 5275 5276 /* 5277 * Check whether the FORMAT NVM command is supported. 5278 */ 5279 if (nvme->n_idctl->id_oacs.oa_format == 0) 5280 return (ENOTSUP); 5281 5282 /* 5283 * Don't allow format or secure erase of individual namespace if that 5284 * would cause a format or secure erase of all namespaces. 5285 */ 5286 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0) 5287 return (EINVAL); 5288 5289 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE && 5290 nvme->n_idctl->id_fna.fn_sec_erase != 0) 5291 return (EINVAL); 5292 5293 /* 5294 * Don't allow formatting with Protection Information. 5295 */ 5296 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0) 5297 return (EINVAL); 5298 5299 /* 5300 * Don't allow formatting using an illegal LBA format, or any LBA format 5301 * that uses metadata. 5302 */ 5303 idns = NVME_NSID2NS(nvme, c_nsid)->ns_idns; 5304 if (frmt.b.fm_lbaf > idns->id_nlbaf || 5305 idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0) 5306 return (EINVAL); 5307 5308 /* 5309 * Don't allow formatting using an illegal Secure Erase setting. 5310 */ 5311 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES || 5312 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO && 5313 nvme->n_idctl->id_fna.fn_crypt_erase == 0)) 5314 return (EINVAL); 5315 5316 if (nsid == 0) 5317 nsid = (uint32_t)-1; 5318 5319 return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0, 5320 B_FALSE, frmt.b.fm_ses)); 5321 } 5322 5323 static int 5324 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5325 cred_t *cred_p) 5326 { 5327 _NOTE(ARGUNUSED(nioc, mode)); 5328 int rv; 5329 5330 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5331 return (EPERM); 5332 5333 if (nsid == 0) 5334 return (EINVAL); 5335 5336 if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread) 5337 return (EACCES); 5338 5339 mutex_enter(&nvme->n_mgmt_mutex); 5340 5341 rv = nvme_detach_ns(nvme, nsid); 5342 5343 mutex_exit(&nvme->n_mgmt_mutex); 5344 5345 return (rv); 5346 } 5347 5348 static int 5349 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5350 cred_t *cred_p) 5351 { 5352 _NOTE(ARGUNUSED(nioc, mode)); 5353 int rv; 5354 5355 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5356 return (EPERM); 5357 5358 if (nsid == 0) 5359 return (EINVAL); 5360 5361 if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread) 5362 return (EACCES); 5363 5364 mutex_enter(&nvme->n_mgmt_mutex); 5365 5366 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) { 5367 mutex_exit(&nvme->n_mgmt_mutex); 5368 return (EIO); 5369 } 5370 5371 rv = nvme_attach_ns(nvme, nsid); 5372 5373 mutex_exit(&nvme->n_mgmt_mutex); 5374 return (rv); 5375 } 5376 5377 static void 5378 nvme_ufm_update(nvme_t *nvme) 5379 { 5380 mutex_enter(&nvme->n_fwslot_mutex); 5381 ddi_ufm_update(nvme->n_ufmh); 5382 if (nvme->n_fwslot != NULL) { 5383 kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t)); 5384 nvme->n_fwslot = NULL; 5385 } 5386 mutex_exit(&nvme->n_fwslot_mutex); 5387 } 5388 5389 static int 5390 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5391 int mode, cred_t *cred_p) 5392 { 5393 int rv = 0; 5394 size_t len, copylen; 5395 offset_t offset; 5396 uintptr_t buf; 5397 nvme_cqe_t cqe = { 0 }; 5398 nvme_sqe_t sqe = { 5399 .sqe_opc = NVME_OPC_FW_IMAGE_LOAD 5400 }; 5401 5402 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5403 return (EPERM); 5404 5405 if (nvme->n_idctl->id_oacs.oa_firmware == 0) 5406 return (ENOTSUP); 5407 5408 if (nsid != 0) 5409 return (EINVAL); 5410 5411 /* 5412 * The offset (in n_len) is restricted to the number of DWORDs in 5413 * 32 bits. 5414 */ 5415 if (nioc->n_len > NVME_FW_OFFSETB_MAX) 5416 return (EINVAL); 5417 5418 /* Confirm that both offset and length are a multiple of DWORD bytes */ 5419 if ((nioc->n_len & NVME_DWORD_MASK) != 0 || 5420 (nioc->n_arg & NVME_DWORD_MASK) != 0) 5421 return (EINVAL); 5422 5423 len = nioc->n_len; 5424 offset = nioc->n_arg; 5425 buf = (uintptr_t)nioc->n_buf; 5426 5427 nioc->n_arg = 0; 5428 5429 while (len > 0 && rv == 0) { 5430 /* 5431 * nvme_ioc_cmd() does not use SGLs or PRP lists. 5432 * It is limited to 2 PRPs per NVM command, so limit 5433 * the size of the data to 2 pages. 5434 */ 5435 copylen = MIN(2 * nvme->n_pagesize, len); 5436 5437 sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1; 5438 sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT); 5439 5440 rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen, 5441 FWRITE, &cqe, nvme_admin_cmd_timeout); 5442 5443 /* 5444 * Regardless of whether the command succeeded or not, whether 5445 * there's an errno in rv to be returned, we'll return any 5446 * command-specific status code in n_arg. 5447 * 5448 * As n_arg isn't cleared in all other possible code paths 5449 * returning an error, we return the status code as a negative 5450 * value so it can be distinguished easily from whatever value 5451 * was passed in n_arg originally. This of course only works as 5452 * long as arguments passed in n_arg are less than INT64_MAX, 5453 * which they currently are. 5454 */ 5455 if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 5456 nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc; 5457 5458 buf += copylen; 5459 offset += copylen; 5460 len -= copylen; 5461 } 5462 5463 /* 5464 * Let the DDI UFM subsystem know that the firmware information for 5465 * this device has changed. 5466 */ 5467 nvme_ufm_update(nvme); 5468 5469 return (rv); 5470 } 5471 5472 static int 5473 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, 5474 int mode, cred_t *cred_p) 5475 { 5476 nvme_firmware_commit_dw10_t fc_dw10 = { 0 }; 5477 uint32_t slot = nioc->n_arg & 0xffffffff; 5478 uint32_t action = nioc->n_arg >> 32; 5479 nvme_cqe_t cqe = { 0 }; 5480 nvme_sqe_t sqe = { 5481 .sqe_opc = NVME_OPC_FW_ACTIVATE 5482 }; 5483 int timeout; 5484 int rv; 5485 5486 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5487 return (EPERM); 5488 5489 if (nvme->n_idctl->id_oacs.oa_firmware == 0) 5490 return (ENOTSUP); 5491 5492 if (nsid != 0) 5493 return (EINVAL); 5494 5495 /* Validate slot is in range. */ 5496 if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX) 5497 return (EINVAL); 5498 5499 switch (action) { 5500 case NVME_FWC_SAVE: 5501 case NVME_FWC_SAVE_ACTIVATE: 5502 timeout = nvme_commit_save_cmd_timeout; 5503 if (slot == 1 && nvme->n_idctl->id_frmw.fw_readonly) 5504 return (EROFS); 5505 break; 5506 case NVME_FWC_ACTIVATE: 5507 case NVME_FWC_ACTIVATE_IMMED: 5508 timeout = nvme_admin_cmd_timeout; 5509 break; 5510 default: 5511 return (EINVAL); 5512 } 5513 5514 fc_dw10.b.fc_slot = slot; 5515 fc_dw10.b.fc_action = action; 5516 sqe.sqe_cdw10 = fc_dw10.r; 5517 5518 nioc->n_arg = 0; 5519 rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout); 5520 5521 /* 5522 * Regardless of whether the command succeeded or not, whether 5523 * there's an errno in rv to be returned, we'll return any 5524 * command-specific status code in n_arg. 5525 * 5526 * As n_arg isn't cleared in all other possible code paths 5527 * returning an error, we return the status code as a negative 5528 * value so it can be distinguished easily from whatever value 5529 * was passed in n_arg originally. This of course only works as 5530 * long as arguments passed in n_arg are less than INT64_MAX, 5531 * which they currently are. 5532 */ 5533 if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 5534 nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc; 5535 5536 /* 5537 * Let the DDI UFM subsystem know that the firmware information for 5538 * this device has changed. 5539 */ 5540 nvme_ufm_update(nvme); 5541 5542 return (rv); 5543 } 5544 5545 /* 5546 * Helper to copy in a passthru command from userspace, handling 5547 * different data models. 5548 */ 5549 static int 5550 nvme_passthru_copy_cmd_in(const void *buf, nvme_passthru_cmd_t *cmd, int mode) 5551 { 5552 #ifdef _MULTI_DATAMODEL 5553 switch (ddi_model_convert_from(mode & FMODELS)) { 5554 case DDI_MODEL_ILP32: { 5555 nvme_passthru_cmd32_t cmd32; 5556 if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0) 5557 return (-1); 5558 cmd->npc_opcode = cmd32.npc_opcode; 5559 cmd->npc_timeout = cmd32.npc_timeout; 5560 cmd->npc_flags = cmd32.npc_flags; 5561 cmd->npc_cdw12 = cmd32.npc_cdw12; 5562 cmd->npc_cdw13 = cmd32.npc_cdw13; 5563 cmd->npc_cdw14 = cmd32.npc_cdw14; 5564 cmd->npc_cdw15 = cmd32.npc_cdw15; 5565 cmd->npc_buflen = cmd32.npc_buflen; 5566 cmd->npc_buf = cmd32.npc_buf; 5567 break; 5568 } 5569 case DDI_MODEL_NONE: 5570 #endif 5571 if (ddi_copyin(buf, (void*)cmd, sizeof (nvme_passthru_cmd_t), 5572 mode) != 0) 5573 return (-1); 5574 #ifdef _MULTI_DATAMODEL 5575 break; 5576 } 5577 #endif 5578 return (0); 5579 } 5580 5581 /* 5582 * Helper to copy out a passthru command result to userspace, handling 5583 * different data models. 5584 */ 5585 static int 5586 nvme_passthru_copy_cmd_out(const nvme_passthru_cmd_t *cmd, void *buf, int mode) 5587 { 5588 #ifdef _MULTI_DATAMODEL 5589 switch (ddi_model_convert_from(mode & FMODELS)) { 5590 case DDI_MODEL_ILP32: { 5591 nvme_passthru_cmd32_t cmd32; 5592 bzero(&cmd32, sizeof (cmd32)); 5593 cmd32.npc_opcode = cmd->npc_opcode; 5594 cmd32.npc_status = cmd->npc_status; 5595 cmd32.npc_err = cmd->npc_err; 5596 cmd32.npc_timeout = cmd->npc_timeout; 5597 cmd32.npc_flags = cmd->npc_flags; 5598 cmd32.npc_cdw0 = cmd->npc_cdw0; 5599 cmd32.npc_cdw12 = cmd->npc_cdw12; 5600 cmd32.npc_cdw13 = cmd->npc_cdw13; 5601 cmd32.npc_cdw14 = cmd->npc_cdw14; 5602 cmd32.npc_cdw15 = cmd->npc_cdw15; 5603 cmd32.npc_buflen = (size32_t)cmd->npc_buflen; 5604 cmd32.npc_buf = (uintptr32_t)cmd->npc_buf; 5605 if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0) 5606 return (-1); 5607 break; 5608 } 5609 case DDI_MODEL_NONE: 5610 #endif 5611 if (ddi_copyout(cmd, buf, sizeof (nvme_passthru_cmd_t), 5612 mode) != 0) 5613 return (-1); 5614 #ifdef _MULTI_DATAMODEL 5615 break; 5616 } 5617 #endif 5618 return (0); 5619 } 5620 5621 /* 5622 * Run an arbitrary vendor-specific admin command on the device. 5623 */ 5624 static int 5625 nvme_ioctl_passthru(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5626 cred_t *cred_p) 5627 { 5628 int rv = 0; 5629 uint_t timeout = 0; 5630 int rwk = 0; 5631 nvme_passthru_cmd_t cmd; 5632 size_t expected_passthru_size = 0; 5633 nvme_sqe_t sqe; 5634 nvme_cqe_t cqe; 5635 5636 bzero(&cmd, sizeof (cmd)); 5637 bzero(&sqe, sizeof (sqe)); 5638 bzero(&cqe, sizeof (cqe)); 5639 5640 /* 5641 * Basic checks: permissions, data model, argument size. 5642 */ 5643 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0) 5644 return (EPERM); 5645 5646 /* 5647 * Compute the expected size of the argument buffer 5648 */ 5649 #ifdef _MULTI_DATAMODEL 5650 switch (ddi_model_convert_from(mode & FMODELS)) { 5651 case DDI_MODEL_ILP32: 5652 expected_passthru_size = sizeof (nvme_passthru_cmd32_t); 5653 break; 5654 case DDI_MODEL_NONE: 5655 #endif 5656 expected_passthru_size = sizeof (nvme_passthru_cmd_t); 5657 #ifdef _MULTI_DATAMODEL 5658 break; 5659 } 5660 #endif 5661 5662 if (nioc->n_len != expected_passthru_size) { 5663 cmd.npc_err = NVME_PASSTHRU_ERR_CMD_SIZE; 5664 rv = EINVAL; 5665 goto out; 5666 } 5667 5668 /* 5669 * Ensure the device supports the standard vendor specific 5670 * admin command format. 5671 */ 5672 if (!nvme->n_idctl->id_nvscc.nv_spec) { 5673 cmd.npc_err = NVME_PASSTHRU_ERR_NOT_SUPPORTED; 5674 rv = ENOTSUP; 5675 goto out; 5676 } 5677 5678 if (nvme_passthru_copy_cmd_in((const void*)nioc->n_buf, &cmd, mode)) 5679 return (EFAULT); 5680 5681 if (!NVME_IS_VENDOR_SPECIFIC_CMD(cmd.npc_opcode)) { 5682 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_OPCODE; 5683 rv = EINVAL; 5684 goto out; 5685 } 5686 5687 /* 5688 * This restriction is not mandated by the spec, so future work 5689 * could relax this if it's necessary to support commands that both 5690 * read and write. 5691 */ 5692 if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0 && 5693 (cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) { 5694 cmd.npc_err = NVME_PASSTHRU_ERR_READ_AND_WRITE; 5695 rv = EINVAL; 5696 goto out; 5697 } 5698 if (cmd.npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) { 5699 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_TIMEOUT; 5700 rv = EINVAL; 5701 goto out; 5702 } 5703 timeout = cmd.npc_timeout; 5704 5705 /* 5706 * Passed-thru command buffer verification: 5707 * - Size is multiple of DWords 5708 * - Non-null iff the length is non-zero 5709 * - Null if neither reading nor writing data. 5710 * - Non-null if reading or writing. 5711 * - Maximum buffer size. 5712 */ 5713 if ((cmd.npc_buflen % sizeof (uint32_t)) != 0) { 5714 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5715 rv = EINVAL; 5716 goto out; 5717 } 5718 if (((void*)cmd.npc_buf != NULL && cmd.npc_buflen == 0) || 5719 ((void*)cmd.npc_buf == NULL && cmd.npc_buflen != 0)) { 5720 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5721 rv = EINVAL; 5722 goto out; 5723 } 5724 if (cmd.npc_flags == 0 && (void*)cmd.npc_buf != NULL) { 5725 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5726 rv = EINVAL; 5727 goto out; 5728 } 5729 if ((cmd.npc_flags != 0) && ((void*)cmd.npc_buf == NULL)) { 5730 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5731 rv = EINVAL; 5732 goto out; 5733 } 5734 if (cmd.npc_buflen > nvme_vendor_specific_admin_cmd_size) { 5735 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5736 rv = EINVAL; 5737 goto out; 5738 } 5739 if ((cmd.npc_buflen >> NVME_DWORD_SHIFT) > UINT32_MAX) { 5740 cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER; 5741 rv = EINVAL; 5742 goto out; 5743 } 5744 5745 sqe.sqe_opc = cmd.npc_opcode; 5746 sqe.sqe_nsid = nsid; 5747 sqe.sqe_cdw10 = (uint32_t)(cmd.npc_buflen >> NVME_DWORD_SHIFT); 5748 sqe.sqe_cdw12 = cmd.npc_cdw12; 5749 sqe.sqe_cdw13 = cmd.npc_cdw13; 5750 sqe.sqe_cdw14 = cmd.npc_cdw14; 5751 sqe.sqe_cdw15 = cmd.npc_cdw15; 5752 if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0) 5753 rwk = FREAD; 5754 else if ((cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) 5755 rwk = FWRITE; 5756 5757 rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void*)cmd.npc_buf, 5758 cmd.npc_buflen, rwk, &cqe, timeout); 5759 cmd.npc_status = cqe.cqe_sf.sf_sc; 5760 cmd.npc_cdw0 = cqe.cqe_dw0; 5761 5762 out: 5763 if (nvme_passthru_copy_cmd_out(&cmd, (void*)nioc->n_buf, mode)) 5764 rv = EFAULT; 5765 return (rv); 5766 } 5767 5768 static int 5769 nvme_ioctl_ns_state(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode, 5770 cred_t *cred_p) 5771 { 5772 _NOTE(ARGUNUSED(cred_p)); 5773 nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid); 5774 5775 if ((mode & FREAD) == 0) 5776 return (EPERM); 5777 5778 if (nsid == 0) 5779 return (EINVAL); 5780 5781 nioc->n_arg = 0; 5782 5783 mutex_enter(&nvme->n_mgmt_mutex); 5784 5785 if (ns->ns_allocated) 5786 nioc->n_arg |= NVME_NS_STATE_ALLOCATED; 5787 5788 if (ns->ns_active) 5789 nioc->n_arg |= NVME_NS_STATE_ACTIVE; 5790 5791 if (ns->ns_attached) 5792 nioc->n_arg |= NVME_NS_STATE_ATTACHED; 5793 5794 if (ns->ns_ignore) 5795 nioc->n_arg |= NVME_NS_STATE_IGNORED; 5796 5797 mutex_exit(&nvme->n_mgmt_mutex); 5798 5799 return (0); 5800 } 5801 5802 static int 5803 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p, 5804 int *rval_p) 5805 { 5806 #ifndef __lock_lint 5807 _NOTE(ARGUNUSED(rval_p)); 5808 #endif 5809 minor_t minor = getminor(dev); 5810 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor)); 5811 int nsid = NVME_MINOR_NSID(minor); 5812 int rv = 0; 5813 nvme_ioctl_t nioc; 5814 5815 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = { 5816 NULL, 5817 nvme_ioctl_identify, 5818 NULL, 5819 nvme_ioctl_capabilities, 5820 nvme_ioctl_get_logpage, 5821 nvme_ioctl_get_features, 5822 nvme_ioctl_intr_cnt, 5823 nvme_ioctl_version, 5824 nvme_ioctl_format, 5825 nvme_ioctl_detach, 5826 nvme_ioctl_attach, 5827 nvme_ioctl_firmware_download, 5828 nvme_ioctl_firmware_commit, 5829 nvme_ioctl_passthru, 5830 nvme_ioctl_ns_state 5831 }; 5832 5833 if (nvme == NULL) 5834 return (ENXIO); 5835 5836 if (nsid > nvme->n_namespace_count) 5837 return (ENXIO); 5838 5839 if (IS_DEVCTL(cmd)) 5840 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0)); 5841 5842 #ifdef _MULTI_DATAMODEL 5843 switch (ddi_model_convert_from(mode & FMODELS)) { 5844 case DDI_MODEL_ILP32: { 5845 nvme_ioctl32_t nioc32; 5846 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t), 5847 mode) != 0) 5848 return (EFAULT); 5849 nioc.n_len = nioc32.n_len; 5850 nioc.n_buf = nioc32.n_buf; 5851 nioc.n_arg = nioc32.n_arg; 5852 break; 5853 } 5854 case DDI_MODEL_NONE: 5855 #endif 5856 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode) 5857 != 0) 5858 return (EFAULT); 5859 #ifdef _MULTI_DATAMODEL 5860 break; 5861 } 5862 #endif 5863 5864 if (nvme->n_dead && cmd != NVME_IOC_DETACH) 5865 return (EIO); 5866 5867 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL) 5868 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode, 5869 cred_p); 5870 else 5871 rv = EINVAL; 5872 5873 #ifdef _MULTI_DATAMODEL 5874 switch (ddi_model_convert_from(mode & FMODELS)) { 5875 case DDI_MODEL_ILP32: { 5876 nvme_ioctl32_t nioc32; 5877 5878 nioc32.n_len = (size32_t)nioc.n_len; 5879 nioc32.n_buf = (uintptr32_t)nioc.n_buf; 5880 nioc32.n_arg = nioc.n_arg; 5881 5882 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t), 5883 mode) != 0) 5884 return (EFAULT); 5885 break; 5886 } 5887 case DDI_MODEL_NONE: 5888 #endif 5889 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode) 5890 != 0) 5891 return (EFAULT); 5892 #ifdef _MULTI_DATAMODEL 5893 break; 5894 } 5895 #endif 5896 5897 return (rv); 5898 } 5899 5900 /* 5901 * DDI UFM Callbacks 5902 */ 5903 static int 5904 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, 5905 ddi_ufm_image_t *img) 5906 { 5907 nvme_t *nvme = arg; 5908 5909 if (imgno != 0) 5910 return (EINVAL); 5911 5912 ddi_ufm_image_set_desc(img, "Firmware"); 5913 ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot); 5914 5915 return (0); 5916 } 5917 5918 /* 5919 * Fill out firmware slot information for the requested slot. The firmware 5920 * slot information is gathered by requesting the Firmware Slot Information log 5921 * page. The format of the page is described in section 5.10.1.3. 5922 * 5923 * We lazily cache the log page on the first call and then invalidate the cache 5924 * data after a successful firmware download or firmware commit command. 5925 * The cached data is protected by a mutex as the state can change 5926 * asynchronous to this callback. 5927 */ 5928 static int 5929 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, 5930 uint_t slotno, ddi_ufm_slot_t *slot) 5931 { 5932 nvme_t *nvme = arg; 5933 void *log = NULL; 5934 size_t bufsize; 5935 ddi_ufm_attr_t attr = 0; 5936 char fw_ver[NVME_FWVER_SZ + 1]; 5937 int ret; 5938 5939 if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1)) 5940 return (EINVAL); 5941 5942 mutex_enter(&nvme->n_fwslot_mutex); 5943 if (nvme->n_fwslot == NULL) { 5944 ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, 5945 NVME_LOGPAGE_FWSLOT, 0); 5946 if (ret != DDI_SUCCESS || 5947 bufsize != sizeof (nvme_fwslot_log_t)) { 5948 if (log != NULL) 5949 kmem_free(log, bufsize); 5950 mutex_exit(&nvme->n_fwslot_mutex); 5951 return (EIO); 5952 } 5953 nvme->n_fwslot = (nvme_fwslot_log_t *)log; 5954 } 5955 5956 /* 5957 * NVMe numbers firmware slots starting at 1 5958 */ 5959 if (slotno == (nvme->n_fwslot->fw_afi - 1)) 5960 attr |= DDI_UFM_ATTR_ACTIVE; 5961 5962 if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0) 5963 attr |= DDI_UFM_ATTR_WRITEABLE; 5964 5965 if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') { 5966 attr |= DDI_UFM_ATTR_EMPTY; 5967 } else { 5968 (void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno], 5969 NVME_FWVER_SZ); 5970 fw_ver[NVME_FWVER_SZ] = '\0'; 5971 ddi_ufm_slot_set_version(slot, fw_ver); 5972 } 5973 mutex_exit(&nvme->n_fwslot_mutex); 5974 5975 ddi_ufm_slot_set_attrs(slot, attr); 5976 5977 return (0); 5978 } 5979 5980 static int 5981 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps) 5982 { 5983 *caps = DDI_UFM_CAP_REPORT; 5984 return (0); 5985 } 5986