xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 590e0b5da08d7261161e979afc4bf4aa0f543574)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
14  * Copyright 2019 Unix Software Ltd.
15  * Copyright 2020 Joyent, Inc.
16  * Copyright 2020 Racktop Systems.
17  * Copyright 2024 Oxide Computer Company.
18  * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
19  * Copyright 2022 Tintri by DDN, Inc. All rights reserved.
20  */
21 
22 /*
23  * blkdev driver for NVMe compliant storage devices
24  *
25  * This driver targets and is designed to support all NVMe 1.x and NVMe 2.x
26  * devices. Features are added to the driver as we encounter devices that
27  * require them and our needs, so some commands or log pages may not take
28  * advantage of newer features that devices support at this time. When you
29  * encounter such a case, it is generally fine to add that support to the driver
30  * as long as you take care to ensure that the requisite device version is met
31  * before using it.
32  *
33  * The driver has only been tested on x86 systems and will not work on big-
34  * endian systems without changes to the code accessing registers and data
35  * structures used by the hardware.
36  *
37  *
38  * Interrupt Usage:
39  *
40  * The driver will use a single interrupt while configuring the device as the
41  * specification requires, but contrary to the specification it will try to use
42  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
43  * will switch to multiple-message MSI(-X) if supported. The driver wants to
44  * have one interrupt vector per CPU, but it will work correctly if less are
45  * available. Interrupts can be shared by queues, the interrupt handler will
46  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
47  * the admin queue will share an interrupt with one I/O queue. The interrupt
48  * handler will retrieve completed commands from all queues sharing an interrupt
49  * vector and will post them to a taskq for completion processing.
50  *
51  *
52  * Command Processing:
53  *
54  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
55  * to 65536 I/O commands. The driver will configure one I/O queue pair per
56  * available interrupt vector, with the queue length usually much smaller than
57  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
58  * interrupt vectors will be used.
59  *
60  * Additionally the hardware provides a single special admin queue pair that can
61  * hold up to 4096 admin commands.
62  *
63  * From the hardware perspective both queues of a queue pair are independent,
64  * but they share some driver state: the command array (holding pointers to
65  * commands currently being processed by the hardware) and the active command
66  * counter. Access to a submission queue and the shared state is protected by
67  * nq_mutex; completion queue is protected by ncq_mutex.
68  *
69  * When a command is submitted to a queue pair the active command counter is
70  * incremented and a pointer to the command is stored in the command array. The
71  * array index is used as command identifier (CID) in the submission queue
72  * entry. Some commands may take a very long time to complete, and if the queue
73  * wraps around in that time a submission may find the next array slot to still
74  * be used by a long-running command. In this case the array is sequentially
75  * searched for the next free slot. The length of the command array is the same
76  * as the configured queue length. Queue overrun is prevented by the semaphore,
77  * so a command submission may block if the queue is full.
78  *
79  *
80  * Polled I/O Support:
81  *
82  * For kernel core dump support the driver can do polled I/O. As interrupts are
83  * turned off while dumping the driver will just submit a command in the regular
84  * way, and then repeatedly attempt a command retrieval until it gets the
85  * command back.
86  *
87  *
88  * Namespace Support:
89  *
90  * NVMe devices can have multiple namespaces, each being a independent data
91  * store. The driver supports multiple namespaces and creates a blkdev interface
92  * for each namespace found. Namespaces can have various attributes to support
93  * protection information. This driver does not support any of this and ignores
94  * namespaces that have these attributes.
95  *
96  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
97  * (EUI64), and NVMe 1.2 introduced an additional 128bit Namespace Globally
98  * Unique Identifier (NGUID). This driver uses either the NGUID or the EUI64
99  * if present to generate the devid, and passes the EUI64 to blkdev to use it
100  * in the device node names.
101  *
102  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
103  * single controller. This is an artificial limit imposed by the driver to be
104  * able to address a reasonable number of controllers and namespaces while
105  * fitting within the constraints of MAXMIN32, aka a 32-bit device number which
106  * only has 18-bits for the minor number. See the minor node section for more
107  * information.
108  *
109  *
110  * Minor nodes:
111  *
112  * For each NVMe device the driver exposes one minor node for the controller and
113  * one minor node for each namespace. The only operations supported by those
114  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
115  * primary control interface for the devices. The character device is a private
116  * interface and we attempt stability through libnvme and more so nvmeadm.
117  *
118  * The controller minor node is much more flexible than the namespace minor node
119  * and should be preferred. The controller node allows one to target any
120  * namespace that the device has, while the namespace is limited in what it can
121  * acquire. While the namespace minor exists, it should not be relied upon and
122  * is not by libnvme.
123  *
124  * The minor number space is split in two. We use the lower part to support the
125  * controller and namespaces as described above in the 'Namespace Support'
126  * section. The second set is used for cloning opens. We set aside one million
127  * minors for this purpose. We utilize a cloning open so that way we can have
128  * per-file_t state. This is how we end up implementing and tracking locking
129  * state and related.
130  *
131  * When we have this cloned open, then we allocate a new nvme_minor_t which gets
132  * its minor number from the nvme_open_minors id_space_t and is stored in the
133  * nvme_open_minors_avl. While someone calls open on a controller or namespace
134  * minor, everything else occurs in the context of one of these ephemeral
135  * minors.
136  *
137  *
138  * ioctls, Errors, and Exclusive Access:
139  *
140  * All of the logical commands that one can issue are driven through the
141  * ioctl(9E) interface. All of our ioctls have a similar shape where they
142  * all include the 'nvme_ioctl_common_t' as their first member.
143  *
144  * This common ioctl structure is used to communicate the namespace that should
145  * be targeted. When the namespace is left as 0, then that indicates that it
146  * should target whatever the default is of the minor node. For a namespace
147  * minor, that will be transparently rewritten to the namespace's namespace id.
148  *
149  * In addition, the nvme_ioctl_common_t structure also has a standard error
150  * return. Our goal in our ioctl path is to ensure that we have useful semantic
151  * errors as much as possible. EINVAL, EIO, etc. are all overloaded. Instead as
152  * long as we can copy in our structure, then we will set a semantic error. If
153  * we have an error from the controller, then that will be included there.
154  *
155  * Each command has a specific policy that controls whether or not it is allowed
156  * on the namespace or controller minor, whether the broadcast namespace is
157  * allowed, various settings around what kind of exclusive access is allowed,
158  * and more. Each of these is wrapped up in a bit of policy described by the
159  * 'nvme_ioctl_check_t' structure.
160  *
161  * The device provides a form of exclusion in the form of both a
162  * controller-level and namespace-level read and write lock. Most operations do
163  * not require a lock (e.g. get log page, identify, etc.), but a few do (e.g.
164  * format nvm, firmware related activity, etc.). A read lock guarantees that you
165  * can complete your operation without interference, but read locks are not
166  * required. If you don't take a read lock and someone comes in with a write
167  * lock, then subsequent operations will fail with a semantic error indicating
168  * that you were blocked due to this.
169  *
170  * Here are some of the rules that govern our locks:
171  *
172  * 1. Writers starve readers. Any readers are allowed to finish when there is a
173  *    pending writer; however, all subsequent readers will be blocked upon that
174  *    writer.
175  * 2. A controller write lock takes priority over all other locks. Put
176  *    differently a controller writer not only starves subsequent controller
177  *    readers, but also all namespace read and write locks.
178  * 3. Each namespace lock is independent.
179  * 4. At most a single namespace lock may be owned.
180  * 5. If you own a namespace lock, you may not take a controller lock (to help
181  *    with lock ordering).
182  * 6. In a similar spirit, if you own a controller write lock, you may not take
183  *    any namespace lock. Someone with the controller write lock can perform any
184  *    operations that they need to. However, if you have a controller read lock
185  *    you may take any namespace lock.
186  * 7. There is no ability to upgrade a read lock to a write lock.
187  * 8. There is no recursive locking.
188  *
189  * While there's a lot there to keep track of, the goals of these are to
190  * constrain things so as to avoid deadlock. This is more complex than the
191  * original implementation in the driver which only allowed for an exclusive
192  * open that was tied to the thread. The first issue with tying this to the
193  * thread was that that didn't work well for software that utilized thread
194  * pools, like complex daemons. The second issue is that we want the ability for
195  * daemons, such as a FRU monitor, to be able to retain a file descriptor to the
196  * device without blocking others from taking action except during critical
197  * periods.
198  *
199  * In particular to enable something like libnvme, we didn't want someone to
200  * have to open and close the file descriptor to change what kind of exclusive
201  * access they desired.
202  *
203  * There are two different sets of data structures that we employ for tracking
204  * locking information:
205  *
206  * 1) The nvme_lock_t structure is contained in both the nvme_t and the
207  * nvme_namespace_t and tracks the current writer, readers, and pending writers
208  * and readers. Each of these lists or the writer pointer all refer to our
209  * second data structure.
210  *
211  * When a lock is owned by a single writer, then the nl_writer field is set to a
212  * specific minor's lock data structure. If instead readers are present, then
213  * the nl_readers list_t is not empty. An invariant of the system is that if
214  * nl_writer is non-NULL, nl_readers must be empty and conversely, if nl_readers
215  * is not empty, nl_writer must be NULL.
216  *
217  * 2) The nvme_minor_lock_info_t exists in the nvme_minor_t. There is one
218  * information structure which represents the minor's controller lock and a
219  * second one that represents the minor's namespace lock. The members of this
220  * are broken into tracking what the current lock is and what it targets. It
221  * also several members that are intended for debugging (nli_last_change,
222  * nli_acq_kthread, etc.).
223  *
224  * While the minor has two different lock information structures, our rules
225  * ensure that only one of the two can be pending and that they shouldn't result
226  * in a deadlock. When a lock is pending, the caller is sleeping on the minor's
227  * nm_cv member.
228  *
229  * These relationships are represented in the following image which shows a
230  * controller write lock being held with a pending readers on the controller
231  * lock and pending writers on one of the controller's namespaces.
232  *
233  *  +---------+
234  *  | nvme_t  |
235  *  |         |
236  *  | n_lock -|-------+
237  *  | n_ns -+ |       |                          +-----------------------------+
238  *  +-------|-+   +-----------------+            | nvme_minor_t                |
239  *          |     | nvme_lock_t     |            |                             |
240  *          |     |                 |            |  +------------------------+ |
241  *          |     | writer        --|-------------->| nvme_minor_lock_info_t | |
242  *          |     | reader list     |            |  | nm_ctrl_lock           | |
243  *          |     | pending writers |            |  +------------------------+ |
244  *          |     | pending readers |------+     |  +------------------------+ |
245  *          |     +-----------------+      |     |  | nvme_minor_lock_info_t | |
246  *          |                              |     |  | nm_ns_lock             | |
247  *          |                              |     |  +------------------------+ |
248  *          |                              |     +-----------------------------+
249  *  +------------------+                   |                 +-----------------+
250  *  | nvme_namespace_t |                   |                 | nvme_minor_t    |
251  *  |                  |                   |                 |                 |
252  *  | ns_lock ---+     |                   |                 | +-------------+ |
253  *  +------------|-----+                   +-----------------|>|nm_ctrl_lock | |
254  *               |                                           | +-------------+ |
255  *               v                                           +-----------------+
256  *     +------------------+                                         ...
257  *     | nvme_lock_t      |                                  +-----------------+
258  *     |                  |                                  | nvme_minor_t    |
259  *     | writer           |                                  |                 |
260  *     | reader list      |                                  | +-------------+ |
261  *     | pending writers -|-----------------+                | |nm_ctrl_lock | |
262  *     | pending readers  |                 |                | +-------------+ |
263  *     +------------------+                 |                +-----------------+
264  *         +-----------------------------+  |  +-----------------------------+
265  *         | nvme_minor_t                |  |  | nvme_minor_t                |
266  *         |                             |  |  |                             |
267  *         |  +------------------------+ |  |  |  +------------------------+ |
268  *         |  | nvme_minor_lock_info_t | |  |  |  | nvme_minor_lock_info_t | |
269  *         |  | nm_ctrl_lock           | |  |  |  | nm_ctrl_lock           | |
270  *         |  +------------------------+ |  |  |  +------------------------+ |
271  *         |  +------------------------+ |  v  |  +------------------------+ |
272  *         |  | nvme_minor_lock_info_t |-|-----|->| nvme_minor_lock_info_t | |
273  *         |  | nm_ns_lock             | |     |  | nm_ns_lock             | |
274  *         |  +------------------------+ |     |  +------------------------+ |
275  *         +-----------------------------+     +-----------------------------+
276  *
277  * Blkdev Interface:
278  *
279  * This driver uses blkdev to do all the heavy lifting involved with presenting
280  * a disk device to the system. As a result, the processing of I/O requests is
281  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
282  * setup, and splitting of transfers into manageable chunks.
283  *
284  * I/O requests coming in from blkdev are turned into NVM commands and posted to
285  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
286  * queues. There is currently no timeout handling of I/O commands.
287  *
288  * Blkdev also supports querying device/media information and generating a
289  * devid. The driver reports the best block size as determined by the namespace
290  * format back to blkdev as physical block size to support partition and block
291  * alignment. The devid is either based on the namespace GUID or EUI64, if
292  * present, or composed using the device vendor ID, model number, serial number,
293  * and the namespace ID.
294  *
295  *
296  * Error Handling:
297  *
298  * Error handling is currently limited to detecting fatal hardware errors,
299  * either by asynchronous events, or synchronously through command status or
300  * admin command timeouts. In case of severe errors the device is fenced off,
301  * all further requests will return EIO. FMA is then called to fault the device.
302  *
303  * The hardware has a limit for outstanding asynchronous event requests. Before
304  * this limit is known the driver assumes it is at least 1 and posts a single
305  * asynchronous request. Later when the limit is known more asynchronous event
306  * requests are posted to allow quicker reception of error information. When an
307  * asynchronous event is posted by the hardware the driver will parse the error
308  * status fields and log information or fault the device, depending on the
309  * severity of the asynchronous event. The asynchronous event request is then
310  * reused and posted to the admin queue again.
311  *
312  * On command completion the command status is checked for errors. In case of
313  * errors indicating a driver bug the driver panics. Almost all other error
314  * status values just cause EIO to be returned.
315  *
316  * Command timeouts are currently detected for all admin commands except
317  * asynchronous event requests. If a command times out and the hardware appears
318  * to be healthy the driver attempts to abort the command. The abort command
319  * timeout is a separate tunable but the original command timeout will be used
320  * if it is greater. If the abort times out too the driver assumes the device
321  * to be dead, fences it off, and calls FMA to retire it. In all other cases
322  * the aborted command should return immediately with a status indicating it
323  * was aborted, and the driver will wait indefinitely for that to happen. No
324  * timeout handling of normal I/O commands is presently done.
325  *
326  * Any command that times out due to the controller dropping dead will be put on
327  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
328  * memory being reused by the system and later being written to by a "dead"
329  * NVMe controller.
330  *
331  *
332  * Locking:
333  *
334  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
335  * when accessing shared state and submission queue registers, ncq_mutex
336  * is held when accessing completion queue state and registers.
337  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
338  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
339  * mutexes themselves.
340  *
341  * Each command also has its own nc_mutex, which is associated with the
342  * condition variable nc_cv. It is only used on admin commands which are run
343  * synchronously. In that case it must be held across calls to
344  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
345  * nvme_admin_cmd(). It must also be held whenever the completion state of the
346  * command is changed or while an admin command timeout is handled.
347  *
348  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
349  * More than one nc_mutex may only be held when aborting commands. In this case,
350  * the nc_mutex of the command to be aborted must be held across the call to
351  * nvme_abort_cmd() to prevent the command from completing while the abort is in
352  * progress.
353  *
354  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
355  * acquired first. More than one nq_mutex is never held by a single thread.
356  * The ncq_mutex is only held by nvme_retrieve_cmd() and
357  * nvme_process_iocq(). nvme_process_iocq() is only called from the
358  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
359  * mutex is non-contentious but is required for implementation completeness
360  * and safety.
361  *
362  * Each nvme_t has an n_admin_stat_mutex that protects the admin command
363  * statistics structure. If this is taken in conjunction with any other locks,
364  * then it must be taken last.
365  *
366  * There is one mutex n_minor_mutex which protects all open flags nm_open and
367  * exclusive-open thread pointers nm_oexcl of each minor node associated with a
368  * controller and its namespaces.
369  *
370  * In addition, there is a logical namespace management mutex which protects the
371  * data about namespaces. When interrogating the metadata of any namespace, this
372  * lock must be held. This gets tricky as we need to call into blkdev, which may
373  * issue callbacks into us which want this and it is illegal to hold locks
374  * across those blkdev calls as otherwise they might lead to deadlock (blkdev
375  * leverages ndi_devi_enter()).
376  *
377  * The lock exposes two levels, one that we call 'NVME' and one 'BDRO' or blkdev
378  * read-only. The idea is that most callers will use the NVME level which says
379  * this is a full traditional mutex operation. The BDRO level is used by blkdev
380  * callback functions and is a promise to only only read the data. When a blkdev
381  * operation starts, the lock holder will use nvme_mgmt_bd_start(). This
382  * strictly speaking drops the mutex, but records that the lock is logically
383  * held by the thread that did the start() operation.
384  *
385  * During this time, other threads (or even the same one) may end up calling
386  * into nvme_mgmt_lock(). Only one person may still hold the lock at any time;
387  * however, the BRDO level will be allowed to proceed during this time. This
388  * allows us to make consistent progress and honor the blkdev lock ordering
389  * requirements, albeit it is not as straightforward as a simple mutex.
390  *
391  * Quiesce / Fast Reboot:
392  *
393  * The driver currently does not support fast reboot. A quiesce(9E) entry point
394  * is still provided which is used to send a shutdown notification to the
395  * device.
396  *
397  *
398  * NVMe Hotplug:
399  *
400  * The driver supports hot removal. The driver uses the NDI event framework
401  * to register a callback, nvme_remove_callback, to clean up when a disk is
402  * removed. In particular, the driver will unqueue outstanding I/O commands and
403  * set n_dead on the softstate to true so that other operations, such as ioctls
404  * and command submissions, fail as well.
405  *
406  * While the callback registration relies on the NDI event framework, the
407  * removal event itself is kicked off in the PCIe hotplug framework, when the
408  * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a
409  * device was removed from the slot.
410  *
411  * The NVMe driver instance itself will remain until the final close of the
412  * device.
413  *
414  *
415  * DDI UFM Support
416  *
417  * The driver supports the DDI UFM framework for reporting information about
418  * the device's firmware image and slot configuration. This data can be
419  * queried by userland software via ioctls to the ufm driver. For more
420  * information, see ddi_ufm(9E).
421  *
422  *
423  * Driver Configuration:
424  *
425  * The following driver properties can be changed to control some aspects of the
426  * drivers operation:
427  * - strict-version: can be set to 0 to allow devices conforming to newer
428  *   major versions to be used
429  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
430  *   specific command status as a fatal error leading device faulting
431  * - admin-queue-len: the maximum length of the admin queue (16-4096)
432  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
433  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
434  * - async-event-limit: the maximum number of asynchronous event requests to be
435  *   posted by the driver
436  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
437  *   cache
438  * - min-phys-block-size: the minimum physical block size to report to blkdev,
439  *   which is among other things the basis for ZFS vdev ashift
440  * - max-submission-queues: the maximum number of I/O submission queues.
441  * - max-completion-queues: the maximum number of I/O completion queues,
442  *   can be less than max-submission-queues, in which case the completion
443  *   queues are shared.
444  *
445  * In addition to the above properties, some device-specific tunables can be
446  * configured using the nvme-config-list global property. The value of this
447  * property is a list of triplets. The formal syntax is:
448  *
449  *   nvme-config-list ::= <triplet> [, <triplet>]* ;
450  *   <triplet>        ::= "<model>" , "<rev-list>" , "<tuple-list>"
451  *   <rev-list>       ::= [ <fwrev> [, <fwrev>]*]
452  *   <tuple-list>     ::= <tunable> [, <tunable>]*
453  *   <tunable>        ::= <name> : <value>
454  *
455  * The <model> and <fwrev> are the strings in nvme_identify_ctrl_t`id_model and
456  * nvme_identify_ctrl_t`id_fwrev, respectively. The remainder of <tuple-list>
457  * contains one or more tunables to apply to all controllers that match the
458  * specified model number and optionally firmware revision. Each <tunable> is a
459  * <name> : <value> pair.  Supported tunables are:
460  *
461  * - ignore-unknown-vendor-status:  can be set to "on" to not handle any vendor
462  *   specific command status as a fatal error leading device faulting
463  *
464  * - min-phys-block-size: the minimum physical block size to report to blkdev,
465  *   which is among other things the basis for ZFS vdev ashift
466  *
467  * - volatile-write-cache: can be set to "on" or "off" to enable or disable the
468  *   volatile write cache, if present
469  *
470  *
471  * TODO:
472  * - figure out sane default for I/O queue depth reported to blkdev
473  * - FMA handling of media errors
474  * - support for devices supporting very large I/O requests using chained PRPs
475  * - support for configuring hardware parameters like interrupt coalescing
476  * - support for media formatting and hard partitioning into namespaces
477  * - support for big-endian systems
478  * - support for fast reboot
479  * - support for NVMe Subsystem Reset (1.1)
480  * - support for Scatter/Gather lists (1.1)
481  * - support for Reservations (1.1)
482  * - support for power management
483  */
484 
485 #include <sys/byteorder.h>
486 #ifdef _BIG_ENDIAN
487 #error nvme driver needs porting for big-endian platforms
488 #endif
489 
490 #include <sys/modctl.h>
491 #include <sys/conf.h>
492 #include <sys/devops.h>
493 #include <sys/ddi.h>
494 #include <sys/ddi_ufm.h>
495 #include <sys/sunddi.h>
496 #include <sys/sunndi.h>
497 #include <sys/bitmap.h>
498 #include <sys/sysmacros.h>
499 #include <sys/param.h>
500 #include <sys/varargs.h>
501 #include <sys/cpuvar.h>
502 #include <sys/disp.h>
503 #include <sys/blkdev.h>
504 #include <sys/atomic.h>
505 #include <sys/archsystm.h>
506 #include <sys/sata/sata_hba.h>
507 #include <sys/stat.h>
508 #include <sys/policy.h>
509 #include <sys/list.h>
510 #include <sys/dkio.h>
511 #include <sys/pci.h>
512 #include <sys/mkdev.h>
513 
514 #include <sys/nvme.h>
515 
516 #ifdef __x86
517 #include <sys/x86_archext.h>
518 #endif
519 
520 #include "nvme_reg.h"
521 #include "nvme_var.h"
522 
523 /*
524  * Assertions to make sure that we've properly captured various aspects of the
525  * packed structures and haven't broken them during updates.
526  */
527 CTASSERT(sizeof (nvme_identify_ctrl_t) == NVME_IDENTIFY_BUFSIZE);
528 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
529 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
530 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
531 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
532 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
533 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
534 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
535 
536 CTASSERT(sizeof (nvme_identify_nsid_t) == NVME_IDENTIFY_BUFSIZE);
537 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
538 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
539 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
540 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
541 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
542 
543 CTASSERT(sizeof (nvme_identify_nsid_list_t) == NVME_IDENTIFY_BUFSIZE);
544 CTASSERT(sizeof (nvme_identify_ctrl_list_t) == NVME_IDENTIFY_BUFSIZE);
545 
546 CTASSERT(sizeof (nvme_identify_primary_caps_t) == NVME_IDENTIFY_BUFSIZE);
547 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
548 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
549 
550 CTASSERT(sizeof (nvme_nschange_list_t) == 4096);
551 
552 /* NVMe spec version supported */
553 static const int nvme_version_major = 2;
554 
555 /* Tunable for FORMAT NVM command timeout in seconds, default is 600s */
556 uint32_t nvme_format_cmd_timeout = 600;
557 
558 /* Tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
559 uint32_t nvme_commit_save_cmd_timeout = 15;
560 
561 /*
562  * Tunable for the admin command timeout used for commands other than those
563  * with their own timeouts defined above; in seconds. While most commands are
564  * expected to complete very quickly (sub-second), experience has shown that
565  * some controllers can occasionally be a bit slower, and not always consistent
566  * in the time taken - times of up to around 4.2s have been observed. Setting
567  * this to 15s by default provides headroom.
568  */
569 uint32_t nvme_admin_cmd_timeout = 15;
570 
571 /*
572  * Tunable for abort command timeout in seconds, default is 60s. This timeout
573  * is used when issuing an abort command, currently only in response to a
574  * different admin command timing out. Aborts always complete after the command
575  * that they are attempting to abort so we need to allow enough time for the
576  * controller to process the long running command that we are attempting to
577  * abort. The abort timeout here is only used if it is greater than the timeout
578  * for the command that is being aborted.
579  */
580 uint32_t nvme_abort_cmd_timeout = 60;
581 
582 /*
583  * Tunable for the size of arbitrary vendor specific admin commands,
584  * default is 16MiB.
585  */
586 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24;
587 
588 /*
589  * Tunable for the max timeout of arbitary vendor specific admin commands,
590  * default is 60s.
591  */
592 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60;
593 
594 /*
595  * This ID space, AVL, and lock are used for keeping track of minor state across
596  * opens between different devices.
597  */
598 static id_space_t *nvme_open_minors;
599 static avl_tree_t nvme_open_minors_avl;
600 kmutex_t nvme_open_minors_mutex;
601 
602 /*
603  * Removal taskq used for n_dead callback processing.
604  */
605 taskq_t *nvme_dead_taskq;
606 
607 /*
608  * This enumeration is used in tandem with nvme_mgmt_lock() to describe which
609  * form of the lock is being taken. See the theory statement for more context.
610  */
611 typedef enum {
612 	/*
613 	 * This is the primary form of taking the management lock and indicates
614 	 * that the user intends to do a read/write of it. This should always be
615 	 * used for any ioctl paths or truly anything other than a blkdev
616 	 * information operation.
617 	 */
618 	NVME_MGMT_LOCK_NVME,
619 	/*
620 	 * This is a subordinate form of the lock whereby the user is in blkdev
621 	 * callback context and will only intend to read the namespace data.
622 	 */
623 	NVME_MGMT_LOCK_BDRO
624 } nvme_mgmt_lock_level_t;
625 
626 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
627 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
628 static int nvme_quiesce(dev_info_t *);
629 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
630 static int nvme_setup_interrupts(nvme_t *, int, int);
631 static void nvme_release_interrupts(nvme_t *);
632 static uint_t nvme_intr(caddr_t, caddr_t);
633 
634 static void nvme_shutdown(nvme_t *, boolean_t);
635 static boolean_t nvme_reset(nvme_t *, boolean_t);
636 static int nvme_init(nvme_t *);
637 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
638 static void nvme_free_cmd(nvme_cmd_t *);
639 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
640     bd_xfer_t *);
641 static void nvme_admin_cmd(nvme_cmd_t *, uint32_t);
642 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *, uint32_t *);
643 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
644 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *, uint32_t *);
645 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
646 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
647 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
648 static void nvme_wakeup_cmd(void *);
649 static void nvme_async_event_task(void *);
650 
651 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
652 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
653 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
654 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
655 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
656 static inline int nvme_check_cmd_status(nvme_cmd_t *);
657 static boolean_t nvme_check_cmd_status_ioctl(nvme_cmd_t *,
658     nvme_ioctl_common_t *);
659 
660 static int nvme_abort_cmd(nvme_cmd_t *, const uint32_t);
661 static void nvme_async_event(nvme_t *);
662 static boolean_t nvme_format_nvm(nvme_t *, nvme_ioctl_format_t *);
663 static boolean_t nvme_get_logpage_int(nvme_t *, boolean_t, void **, size_t *,
664     uint8_t);
665 static boolean_t nvme_identify(nvme_t *, boolean_t, nvme_ioctl_identify_t *,
666     void **);
667 static boolean_t nvme_identify_int(nvme_t *, uint32_t, uint8_t, void **);
668 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
669     uint32_t *);
670 static int nvme_write_cache_set(nvme_t *, boolean_t);
671 static int nvme_set_nqueues(nvme_t *);
672 
673 static void nvme_free_dma(nvme_dma_t *);
674 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
675     nvme_dma_t **);
676 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
677     nvme_dma_t **);
678 static void nvme_free_qpair(nvme_qpair_t *);
679 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
680 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
681 
682 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
683 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
684 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
685 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
686 
687 static boolean_t nvme_check_regs_hdl(nvme_t *);
688 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
689 
690 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t);
691 
692 static void nvme_bd_xfer_done(void *);
693 static void nvme_bd_driveinfo(void *, bd_drive_t *);
694 static int nvme_bd_mediainfo(void *, bd_media_t *);
695 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
696 static int nvme_bd_read(void *, bd_xfer_t *);
697 static int nvme_bd_write(void *, bd_xfer_t *);
698 static int nvme_bd_sync(void *, bd_xfer_t *);
699 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
700 static int nvme_bd_free_space(void *, bd_xfer_t *);
701 
702 static int nvme_prp_dma_constructor(void *, void *, int);
703 static void nvme_prp_dma_destructor(void *, void *);
704 
705 static void nvme_prepare_devid(nvme_t *, uint32_t);
706 
707 /* DDI UFM callbacks */
708 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
709     ddi_ufm_image_t *);
710 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
711     ddi_ufm_slot_t *);
712 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
713 
714 static int nvme_open(dev_t *, int, int, cred_t *);
715 static int nvme_close(dev_t, int, int, cred_t *);
716 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
717 
718 static int nvme_init_ns(nvme_t *, uint32_t);
719 static boolean_t nvme_attach_ns(nvme_t *, nvme_ioctl_common_t *);
720 static boolean_t nvme_detach_ns(nvme_t *, nvme_ioctl_common_t *);
721 
722 static int nvme_minor_comparator(const void *, const void *);
723 
724 static ddi_ufm_ops_t nvme_ufm_ops = {
725 	NULL,
726 	nvme_ufm_fill_image,
727 	nvme_ufm_fill_slot,
728 	nvme_ufm_getcaps
729 };
730 
731 /*
732  * Minor numbers are split amongst those used for controllers and for device
733  * opens. The number of controller minors are limited based open MAXMIN32 per
734  * the theory statement. We allocate 1 million minors as a total guess at a
735  * number that'll probably be enough. The starting point of the open minors can
736  * be shifted to accommodate future expansion of the NVMe device minors.
737  */
738 #define	NVME_MINOR_INST_SHIFT	9
739 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
740 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
741 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
742 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
743 
744 #define	NVME_OPEN_NMINORS		(1024 * 1024)
745 #define	NVME_OPEN_MINOR_MIN		(MAXMIN32 + 1)
746 #define	NVME_OPEN_MINOR_MAX_EXCL	(NVME_OPEN_MINOR_MIN + \
747     NVME_OPEN_NMINORS)
748 
749 #define	NVME_BUMP_STAT(nvme, stat)	\
750 	atomic_inc_64(&nvme->n_device_stat.nds_ ## stat.value.ui64)
751 
752 static void *nvme_state;
753 static kmem_cache_t *nvme_cmd_cache;
754 
755 /*
756  * DMA attributes for queue DMA memory
757  *
758  * Queue DMA memory must be page aligned. The maximum length of a queue is
759  * 65536 entries, and an entry can be 64 bytes long.
760  */
761 static const ddi_dma_attr_t nvme_queue_dma_attr = {
762 	.dma_attr_version	= DMA_ATTR_V0,
763 	.dma_attr_addr_lo	= 0,
764 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
765 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
766 	.dma_attr_align		= 0x1000,
767 	.dma_attr_burstsizes	= 0x7ff,
768 	.dma_attr_minxfer	= 0x1000,
769 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
770 	.dma_attr_seg		= 0xffffffffffffffffULL,
771 	.dma_attr_sgllen	= 1,
772 	.dma_attr_granular	= 1,
773 	.dma_attr_flags		= 0,
774 };
775 
776 /*
777  * DMA attributes for transfers using Physical Region Page (PRP) entries
778  *
779  * A PRP entry describes one page of DMA memory using the page size specified
780  * in the controller configuration's memory page size register (CC.MPS). It uses
781  * a 64bit base address aligned to this page size. There is no limitation on
782  * chaining PRPs together for arbitrarily large DMA transfers. These DMA
783  * attributes will be copied into the nvme_t during nvme_attach() and the
784  * dma_attr_maxxfer will be updated.
785  */
786 static const ddi_dma_attr_t nvme_prp_dma_attr = {
787 	.dma_attr_version	= DMA_ATTR_V0,
788 	.dma_attr_addr_lo	= 0,
789 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
790 	.dma_attr_count_max	= 0xfff,
791 	.dma_attr_align		= 0x1000,
792 	.dma_attr_burstsizes	= 0x7ff,
793 	.dma_attr_minxfer	= 0x1000,
794 	.dma_attr_maxxfer	= 0x1000,
795 	.dma_attr_seg		= 0xfff,
796 	.dma_attr_sgllen	= -1,
797 	.dma_attr_granular	= 1,
798 	.dma_attr_flags		= 0,
799 };
800 
801 /*
802  * DMA attributes for transfers using scatter/gather lists
803  *
804  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
805  * 32bit length field. SGL Segment and SGL Last Segment entries require the
806  * length to be a multiple of 16 bytes. While the SGL DMA attributes are copied
807  * into the nvme_t, they are not currently used for any I/O.
808  */
809 static const ddi_dma_attr_t nvme_sgl_dma_attr = {
810 	.dma_attr_version	= DMA_ATTR_V0,
811 	.dma_attr_addr_lo	= 0,
812 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
813 	.dma_attr_count_max	= 0xffffffffUL,
814 	.dma_attr_align		= 1,
815 	.dma_attr_burstsizes	= 0x7ff,
816 	.dma_attr_minxfer	= 0x10,
817 	.dma_attr_maxxfer	= 0xfffffffffULL,
818 	.dma_attr_seg		= 0xffffffffffffffffULL,
819 	.dma_attr_sgllen	= -1,
820 	.dma_attr_granular	= 0x10,
821 	.dma_attr_flags		= 0
822 };
823 
824 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
825 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
826 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
827 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
828 };
829 
830 /*
831  * ioctl validation policies. These are policies that determine which namespaces
832  * are allowed or disallowed for various operations. Note, all policy items
833  * should be explicitly listed here to help make it clear what our intent is.
834  * That is also why some of these are identical or repeated when they cover
835  * different ioctls.
836  */
837 
838 /*
839  * The controller information ioctl generally contains read-only information
840  * about the controller that is sourced from multiple different pieces of
841  * information. This does not operate on a namespace and none are accepted.
842  */
843 static const nvme_ioctl_check_t nvme_check_ctrl_info = {
844 	.nck_ns_ok = B_FALSE, .nck_ns_minor_ok = B_FALSE,
845 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE,
846 	.nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_NONE
847 };
848 
849 /*
850  * The kernel namespace information requires a namespace ID to be specified. It
851  * does not allow for the broadcast ID to be specified.
852  */
853 static const nvme_ioctl_check_t nvme_check_ns_info = {
854 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE,
855 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE,
856 	.nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_NONE
857 };
858 
859 /*
860  * Identify commands are allowed to operate on a namespace minor. Unfortunately,
861  * the namespace field in identify commands is a bit, weird. In particular, some
862  * commands need a valid namespace, while others are namespace listing
863  * operations, which means illegal namespaces like zero are allowed.
864  */
865 static const nvme_ioctl_check_t nvme_check_identify = {
866 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE,
867 	.nck_skip_ctrl = B_TRUE, .nck_ctrl_rewrite = B_FALSE,
868 	.nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE
869 };
870 
871 /*
872  * The get log page command requires the ability to specify namespaces. When
873  * targeting the controller, one must use the broadcast NSID.
874  */
875 static const nvme_ioctl_check_t nvme_check_get_logpage = {
876 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE,
877 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_TRUE,
878 	.nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE
879 };
880 
881 /*
882  * When getting a feature, we do not want rewriting behavior as most features do
883  * not require a namespace to be specified. Specific instances are checked in
884  * nvme_validate_get_feature().
885  */
886 static const nvme_ioctl_check_t nvme_check_get_feature = {
887 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE,
888 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE,
889 	.nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE
890 };
891 
892 /*
893  * Format commands must target a namespace. The broadcast namespace must be used
894  * when referring to the controller.
895  */
896 static const nvme_ioctl_check_t nvme_check_format = {
897 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE,
898 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_TRUE,
899 	.nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_WRITE
900 };
901 
902 /*
903  * Attach and detach must always target a minor. However, the broadcast
904  * namespace is not allowed. We still perform rewriting so that way specifying
905  * the controller node with 0 will be caught.
906  */
907 static const nvme_ioctl_check_t nvme_check_attach_detach = {
908 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE,
909 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_TRUE,
910 	.nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_WRITE
911 };
912 
913 /*
914  * Firmware operations must not target a namespace and are only allowed from the
915  * controller.
916  */
917 static const nvme_ioctl_check_t nvme_check_firmware = {
918 	.nck_ns_ok = B_FALSE, .nck_ns_minor_ok = B_FALSE,
919 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE,
920 	.nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_WRITE
921 };
922 
923 /*
924  * Passthru commands are an odd set. We only allow them from the primary
925  * controller; however, we allow a namespace to be specified in them and allow
926  * the broadcast namespace. We do not perform rewriting because we don't know
927  * what the semantics are. We explicitly exempt passthru commands from needing
928  * an exclusive lock and leave it up to them to tell us the impact of the
929  * command and semantics. As this is a privileged interface and the semantics
930  * are arbitrary, there's not much we can do without some assistance from the
931  * consumer.
932  */
933 static const nvme_ioctl_check_t nvme_check_passthru = {
934 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_FALSE,
935 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE,
936 	.nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE
937 };
938 
939 /*
940  * Lock operations are allowed to target a namespace, but must not be rewritten.
941  * There is no support for the broadcast namespace. This is the only ioctl that
942  * should skip exclusive checking as it's used to grant it.
943  */
944 static const nvme_ioctl_check_t nvme_check_locking = {
945 	.nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE,
946 	.nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE,
947 	.nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_SKIP
948 };
949 
950 static struct cb_ops nvme_cb_ops = {
951 	.cb_open	= nvme_open,
952 	.cb_close	= nvme_close,
953 	.cb_strategy	= nodev,
954 	.cb_print	= nodev,
955 	.cb_dump	= nodev,
956 	.cb_read	= nodev,
957 	.cb_write	= nodev,
958 	.cb_ioctl	= nvme_ioctl,
959 	.cb_devmap	= nodev,
960 	.cb_mmap	= nodev,
961 	.cb_segmap	= nodev,
962 	.cb_chpoll	= nochpoll,
963 	.cb_prop_op	= ddi_prop_op,
964 	.cb_str		= 0,
965 	.cb_flag	= D_NEW | D_MP,
966 	.cb_rev		= CB_REV,
967 	.cb_aread	= nodev,
968 	.cb_awrite	= nodev
969 };
970 
971 static struct dev_ops nvme_dev_ops = {
972 	.devo_rev	= DEVO_REV,
973 	.devo_refcnt	= 0,
974 	.devo_getinfo	= ddi_no_info,
975 	.devo_identify	= nulldev,
976 	.devo_probe	= nulldev,
977 	.devo_attach	= nvme_attach,
978 	.devo_detach	= nvme_detach,
979 	.devo_reset	= nodev,
980 	.devo_cb_ops	= &nvme_cb_ops,
981 	.devo_bus_ops	= NULL,
982 	.devo_power	= NULL,
983 	.devo_quiesce	= nvme_quiesce,
984 };
985 
986 static struct modldrv nvme_modldrv = {
987 	.drv_modops	= &mod_driverops,
988 	.drv_linkinfo	= "NVMe driver",
989 	.drv_dev_ops	= &nvme_dev_ops
990 };
991 
992 static struct modlinkage nvme_modlinkage = {
993 	.ml_rev		= MODREV_1,
994 	.ml_linkage	= { &nvme_modldrv, NULL }
995 };
996 
997 static bd_ops_t nvme_bd_ops = {
998 	.o_version	= BD_OPS_CURRENT_VERSION,
999 	.o_drive_info	= nvme_bd_driveinfo,
1000 	.o_media_info	= nvme_bd_mediainfo,
1001 	.o_devid_init	= nvme_bd_devid,
1002 	.o_sync_cache	= nvme_bd_sync,
1003 	.o_read		= nvme_bd_read,
1004 	.o_write	= nvme_bd_write,
1005 	.o_free_space	= nvme_bd_free_space,
1006 };
1007 
1008 /*
1009  * This list will hold commands that have timed out and couldn't be aborted.
1010  * As we don't know what the hardware may still do with the DMA memory we can't
1011  * free them, so we'll keep them forever on this list where we can easily look
1012  * at them with mdb.
1013  */
1014 static struct list nvme_lost_cmds;
1015 static kmutex_t nvme_lc_mutex;
1016 
1017 int
1018 _init(void)
1019 {
1020 	int error;
1021 
1022 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
1023 	if (error != DDI_SUCCESS)
1024 		return (error);
1025 
1026 	if ((nvme_open_minors = id_space_create("nvme_open_minors",
1027 	    NVME_OPEN_MINOR_MIN, NVME_OPEN_MINOR_MAX_EXCL)) == NULL) {
1028 		ddi_soft_state_fini(&nvme_state);
1029 		return (ENOMEM);
1030 	}
1031 
1032 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
1033 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1034 
1035 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
1036 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
1037 	    offsetof(nvme_cmd_t, nc_list));
1038 
1039 	mutex_init(&nvme_open_minors_mutex, NULL, MUTEX_DRIVER, NULL);
1040 	avl_create(&nvme_open_minors_avl, nvme_minor_comparator,
1041 	    sizeof (nvme_minor_t), offsetof(nvme_minor_t, nm_avl));
1042 
1043 	nvme_dead_taskq = taskq_create("nvme_dead_taskq", 1, minclsyspri, 1, 1,
1044 	    TASKQ_PREPOPULATE);
1045 
1046 	bd_mod_init(&nvme_dev_ops);
1047 
1048 	error = mod_install(&nvme_modlinkage);
1049 	if (error != DDI_SUCCESS) {
1050 		ddi_soft_state_fini(&nvme_state);
1051 		id_space_destroy(nvme_open_minors);
1052 		mutex_destroy(&nvme_lc_mutex);
1053 		list_destroy(&nvme_lost_cmds);
1054 		bd_mod_fini(&nvme_dev_ops);
1055 		mutex_destroy(&nvme_open_minors_mutex);
1056 		avl_destroy(&nvme_open_minors_avl);
1057 		taskq_destroy(nvme_dead_taskq);
1058 	}
1059 
1060 	return (error);
1061 }
1062 
1063 int
1064 _fini(void)
1065 {
1066 	int error;
1067 
1068 	if (!list_is_empty(&nvme_lost_cmds))
1069 		return (DDI_FAILURE);
1070 
1071 	error = mod_remove(&nvme_modlinkage);
1072 	if (error == DDI_SUCCESS) {
1073 		ddi_soft_state_fini(&nvme_state);
1074 		id_space_destroy(nvme_open_minors);
1075 		kmem_cache_destroy(nvme_cmd_cache);
1076 		mutex_destroy(&nvme_lc_mutex);
1077 		list_destroy(&nvme_lost_cmds);
1078 		bd_mod_fini(&nvme_dev_ops);
1079 		mutex_destroy(&nvme_open_minors_mutex);
1080 		avl_destroy(&nvme_open_minors_avl);
1081 		taskq_destroy(nvme_dead_taskq);
1082 	}
1083 
1084 	return (error);
1085 }
1086 
1087 int
1088 _info(struct modinfo *modinfop)
1089 {
1090 	return (mod_info(&nvme_modlinkage, modinfop));
1091 }
1092 
1093 static inline void
1094 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
1095 {
1096 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
1097 
1098 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
1099 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
1100 }
1101 
1102 static inline void
1103 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
1104 {
1105 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
1106 
1107 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
1108 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
1109 }
1110 
1111 static inline uint64_t
1112 nvme_get64(nvme_t *nvme, uintptr_t reg)
1113 {
1114 	uint64_t val;
1115 
1116 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
1117 
1118 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
1119 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
1120 
1121 	return (val);
1122 }
1123 
1124 static inline uint32_t
1125 nvme_get32(nvme_t *nvme, uintptr_t reg)
1126 {
1127 	uint32_t val;
1128 
1129 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
1130 
1131 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
1132 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
1133 
1134 	return (val);
1135 }
1136 
1137 static void
1138 nvme_mgmt_lock_fini(nvme_mgmt_lock_t *lock)
1139 {
1140 	ASSERT3U(lock->nml_bd_own, ==, 0);
1141 	mutex_destroy(&lock->nml_lock);
1142 	cv_destroy(&lock->nml_cv);
1143 }
1144 
1145 static void
1146 nvme_mgmt_lock_init(nvme_mgmt_lock_t *lock)
1147 {
1148 	mutex_init(&lock->nml_lock, NULL, MUTEX_DRIVER, NULL);
1149 	cv_init(&lock->nml_cv, NULL, CV_DRIVER, NULL);
1150 	lock->nml_bd_own = 0;
1151 }
1152 
1153 static void
1154 nvme_mgmt_unlock(nvme_t *nvme)
1155 {
1156 	nvme_mgmt_lock_t *lock = &nvme->n_mgmt;
1157 
1158 	cv_broadcast(&lock->nml_cv);
1159 	mutex_exit(&lock->nml_lock);
1160 }
1161 
1162 #ifdef	DEBUG
1163 static boolean_t
1164 nvme_mgmt_lock_held(nvme_t *nvme)
1165 {
1166 	return (MUTEX_HELD(&nvme->n_mgmt.nml_lock) != 0);
1167 }
1168 #endif	/* DEBUG */
1169 
1170 static void
1171 nvme_mgmt_lock(nvme_t *nvme, nvme_mgmt_lock_level_t level)
1172 {
1173 	nvme_mgmt_lock_t *lock = &nvme->n_mgmt;
1174 	mutex_enter(&lock->nml_lock);
1175 	while (lock->nml_bd_own != 0) {
1176 		if (level == NVME_MGMT_LOCK_BDRO)
1177 			break;
1178 		cv_wait(&lock->nml_cv, &lock->nml_lock);
1179 	}
1180 }
1181 
1182 /*
1183  * This and nvme_mgmt_bd_end() are used to indicate that the driver is going to
1184  * be calling into a re-entrant blkdev related function. We cannot hold the lock
1185  * across such an operation and therefore must indicate that this is logically
1186  * held, while allowing other operations to proceed. This nvme_mgmt_bd_end() may
1187  * only be called by a thread that already holds the nmve_mgmt_lock().
1188  */
1189 static void
1190 nvme_mgmt_bd_start(nvme_t *nvme)
1191 {
1192 	nvme_mgmt_lock_t *lock = &nvme->n_mgmt;
1193 
1194 	VERIFY(MUTEX_HELD(&lock->nml_lock));
1195 	VERIFY3U(lock->nml_bd_own, ==, 0);
1196 	lock->nml_bd_own = (uintptr_t)curthread;
1197 	mutex_exit(&lock->nml_lock);
1198 }
1199 
1200 static void
1201 nvme_mgmt_bd_end(nvme_t *nvme)
1202 {
1203 	nvme_mgmt_lock_t *lock = &nvme->n_mgmt;
1204 
1205 	mutex_enter(&lock->nml_lock);
1206 	VERIFY3U(lock->nml_bd_own, ==, (uintptr_t)curthread);
1207 	lock->nml_bd_own = 0;
1208 }
1209 
1210 /*
1211  * This is a central clearing house for marking an NVMe controller dead and/or
1212  * removed. This takes care of setting the flag, taking care of outstanding
1213  * blocked locks, and sending a DDI FMA impact. This is called from a precarious
1214  * place where locking is suspect. The only guarantee we have is that the nvme_t
1215  * is valid and won't disappear until we return.
1216  *
1217  * This should only be used after attach has been called.
1218  */
1219 static void
1220 nvme_ctrl_mark_dead(nvme_t *nvme, boolean_t removed)
1221 {
1222 	boolean_t was_dead;
1223 
1224 	/*
1225 	 * See if we win the race to set things up here. If someone beat us to
1226 	 * it, we do not do anything.
1227 	 */
1228 	was_dead = atomic_cas_32((volatile uint32_t *)&nvme->n_dead, B_FALSE,
1229 	    B_TRUE);
1230 	if (was_dead) {
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * If this was removed, there is no reason to change the service impact.
1236 	 * However, then we need to change our default return code that we use
1237 	 * here to indicate that it was gone versus that it is dead.
1238 	 */
1239 	if (removed) {
1240 		nvme->n_dead_status = NVME_IOCTL_E_CTRL_GONE;
1241 	} else {
1242 		ASSERT3U(nvme->n_dead_status, ==, NVME_IOCTL_E_CTRL_DEAD);
1243 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1244 	}
1245 
1246 	taskq_dispatch_ent(nvme_dead_taskq, nvme_rwlock_ctrl_dead, nvme,
1247 	    TQ_NOSLEEP, &nvme->n_dead_tqent);
1248 }
1249 
1250 static boolean_t
1251 nvme_check_regs_hdl(nvme_t *nvme)
1252 {
1253 	ddi_fm_error_t error;
1254 
1255 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
1256 
1257 	if (error.fme_status != DDI_FM_OK)
1258 		return (B_TRUE);
1259 
1260 	return (B_FALSE);
1261 }
1262 
1263 static boolean_t
1264 nvme_check_dma_hdl(nvme_dma_t *dma)
1265 {
1266 	ddi_fm_error_t error;
1267 
1268 	if (dma == NULL)
1269 		return (B_FALSE);
1270 
1271 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
1272 
1273 	if (error.fme_status != DDI_FM_OK)
1274 		return (B_TRUE);
1275 
1276 	return (B_FALSE);
1277 }
1278 
1279 static void
1280 nvme_free_dma_common(nvme_dma_t *dma)
1281 {
1282 	if (dma->nd_dmah != NULL)
1283 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
1284 	if (dma->nd_acch != NULL)
1285 		ddi_dma_mem_free(&dma->nd_acch);
1286 	if (dma->nd_dmah != NULL)
1287 		ddi_dma_free_handle(&dma->nd_dmah);
1288 }
1289 
1290 static void
1291 nvme_free_dma(nvme_dma_t *dma)
1292 {
1293 	nvme_free_dma_common(dma);
1294 	kmem_free(dma, sizeof (*dma));
1295 }
1296 
1297 static void
1298 nvme_prp_dma_destructor(void *buf, void *private __unused)
1299 {
1300 	nvme_dma_t *dma = (nvme_dma_t *)buf;
1301 
1302 	nvme_free_dma_common(dma);
1303 }
1304 
1305 static int
1306 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
1307     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
1308 {
1309 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
1310 	    &dma->nd_dmah) != DDI_SUCCESS) {
1311 		/*
1312 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
1313 		 * the only other possible error is DDI_DMA_BADATTR which
1314 		 * indicates a driver bug which should cause a panic.
1315 		 */
1316 		dev_err(nvme->n_dip, CE_PANIC,
1317 		    "!failed to get DMA handle, check DMA attributes");
1318 		return (DDI_FAILURE);
1319 	}
1320 
1321 	/*
1322 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
1323 	 * or the flags are conflicting, which isn't the case here.
1324 	 */
1325 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
1326 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
1327 	    &dma->nd_len, &dma->nd_acch);
1328 
1329 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
1330 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
1331 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
1332 		dev_err(nvme->n_dip, CE_WARN,
1333 		    "!failed to bind DMA memory");
1334 		NVME_BUMP_STAT(nvme, dma_bind_err);
1335 		nvme_free_dma_common(dma);
1336 		return (DDI_FAILURE);
1337 	}
1338 
1339 	return (DDI_SUCCESS);
1340 }
1341 
1342 static int
1343 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
1344     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
1345 {
1346 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
1347 
1348 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
1349 	    DDI_SUCCESS) {
1350 		*ret = NULL;
1351 		kmem_free(dma, sizeof (nvme_dma_t));
1352 		return (DDI_FAILURE);
1353 	}
1354 
1355 	bzero(dma->nd_memp, dma->nd_len);
1356 
1357 	*ret = dma;
1358 	return (DDI_SUCCESS);
1359 }
1360 
1361 static int
1362 nvme_prp_dma_constructor(void *buf, void *private, int flags __unused)
1363 {
1364 	nvme_dma_t *dma = (nvme_dma_t *)buf;
1365 	nvme_t *nvme = (nvme_t *)private;
1366 
1367 	dma->nd_dmah = NULL;
1368 	dma->nd_acch = NULL;
1369 
1370 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
1371 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
1372 		return (-1);
1373 	}
1374 
1375 	ASSERT(dma->nd_ncookie == 1);
1376 
1377 	dma->nd_cached = B_TRUE;
1378 
1379 	return (0);
1380 }
1381 
1382 static int
1383 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
1384     uint_t flags, nvme_dma_t **dma)
1385 {
1386 	uint32_t len = nentry * qe_len;
1387 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
1388 
1389 	len = roundup(len, nvme->n_pagesize);
1390 
1391 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
1392 	    != DDI_SUCCESS) {
1393 		dev_err(nvme->n_dip, CE_WARN,
1394 		    "!failed to get DMA memory for queue");
1395 		goto fail;
1396 	}
1397 
1398 	if ((*dma)->nd_ncookie != 1) {
1399 		dev_err(nvme->n_dip, CE_WARN,
1400 		    "!got too many cookies for queue DMA");
1401 		goto fail;
1402 	}
1403 
1404 	return (DDI_SUCCESS);
1405 
1406 fail:
1407 	if (*dma) {
1408 		nvme_free_dma(*dma);
1409 		*dma = NULL;
1410 	}
1411 
1412 	return (DDI_FAILURE);
1413 }
1414 
1415 static void
1416 nvme_free_cq(nvme_cq_t *cq)
1417 {
1418 	mutex_destroy(&cq->ncq_mutex);
1419 
1420 	if (cq->ncq_cmd_taskq != NULL)
1421 		taskq_destroy(cq->ncq_cmd_taskq);
1422 
1423 	if (cq->ncq_dma != NULL)
1424 		nvme_free_dma(cq->ncq_dma);
1425 
1426 	kmem_free(cq, sizeof (*cq));
1427 }
1428 
1429 static void
1430 nvme_free_qpair(nvme_qpair_t *qp)
1431 {
1432 	int i;
1433 
1434 	mutex_destroy(&qp->nq_mutex);
1435 	sema_destroy(&qp->nq_sema);
1436 
1437 	if (qp->nq_sqdma != NULL)
1438 		nvme_free_dma(qp->nq_sqdma);
1439 
1440 	if (qp->nq_active_cmds > 0)
1441 		for (i = 0; i != qp->nq_nentry; i++)
1442 			if (qp->nq_cmd[i] != NULL)
1443 				nvme_free_cmd(qp->nq_cmd[i]);
1444 
1445 	if (qp->nq_cmd != NULL)
1446 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
1447 
1448 	kmem_free(qp, sizeof (nvme_qpair_t));
1449 }
1450 
1451 /*
1452  * Destroy the pre-allocated cq array, but only free individual completion
1453  * queues from the given starting index.
1454  */
1455 static void
1456 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
1457 {
1458 	uint_t i;
1459 
1460 	for (i = start; i < nvme->n_cq_count; i++)
1461 		if (nvme->n_cq[i] != NULL)
1462 			nvme_free_cq(nvme->n_cq[i]);
1463 
1464 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
1465 }
1466 
1467 static int
1468 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
1469     uint_t nthr)
1470 {
1471 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
1472 	char name[64];		/* large enough for the taskq name */
1473 
1474 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
1475 	    DDI_INTR_PRI(nvme->n_intr_pri));
1476 
1477 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
1478 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
1479 		goto fail;
1480 
1481 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
1482 	cq->ncq_nentry = nentry;
1483 	cq->ncq_id = idx;
1484 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
1485 
1486 	/*
1487 	 * Each completion queue has its own command taskq.
1488 	 */
1489 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
1490 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
1491 
1492 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
1493 	    TASKQ_PREPOPULATE);
1494 
1495 	if (cq->ncq_cmd_taskq == NULL) {
1496 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
1497 		    "taskq for cq %u", idx);
1498 		goto fail;
1499 	}
1500 
1501 	*cqp = cq;
1502 	return (DDI_SUCCESS);
1503 
1504 fail:
1505 	nvme_free_cq(cq);
1506 	*cqp = NULL;
1507 
1508 	return (DDI_FAILURE);
1509 }
1510 
1511 /*
1512  * Create the n_cq array big enough to hold "ncq" completion queues.
1513  * If the array already exists it will be re-sized (but only larger).
1514  * The admin queue is included in this array, which boosts the
1515  * max number of entries to UINT16_MAX + 1.
1516  */
1517 static int
1518 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
1519 {
1520 	nvme_cq_t **cq;
1521 	uint_t i, cq_count;
1522 
1523 	ASSERT3U(ncq, >, nvme->n_cq_count);
1524 
1525 	cq = nvme->n_cq;
1526 	cq_count = nvme->n_cq_count;
1527 
1528 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
1529 	nvme->n_cq_count = ncq;
1530 
1531 	for (i = 0; i < cq_count; i++)
1532 		nvme->n_cq[i] = cq[i];
1533 
1534 	for (; i < nvme->n_cq_count; i++)
1535 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
1536 		    DDI_SUCCESS)
1537 			goto fail;
1538 
1539 	if (cq != NULL)
1540 		kmem_free(cq, sizeof (*cq) * cq_count);
1541 
1542 	return (DDI_SUCCESS);
1543 
1544 fail:
1545 	nvme_destroy_cq_array(nvme, cq_count);
1546 	/*
1547 	 * Restore the original array
1548 	 */
1549 	nvme->n_cq_count = cq_count;
1550 	nvme->n_cq = cq;
1551 
1552 	return (DDI_FAILURE);
1553 }
1554 
1555 static int
1556 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
1557     uint_t idx)
1558 {
1559 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
1560 	uint_t cq_idx;
1561 
1562 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
1563 	    DDI_INTR_PRI(nvme->n_intr_pri));
1564 
1565 	/*
1566 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
1567 	 * initialize the semaphore accordingly.
1568 	 */
1569 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
1570 
1571 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
1572 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
1573 		goto fail;
1574 
1575 	/*
1576 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
1577 	 */
1578 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
1579 	qp->nq_cq = nvme->n_cq[cq_idx];
1580 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1581 	qp->nq_nentry = nentry;
1582 
1583 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1584 
1585 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1586 	qp->nq_next_cmd = 0;
1587 
1588 	*nqp = qp;
1589 	return (DDI_SUCCESS);
1590 
1591 fail:
1592 	nvme_free_qpair(qp);
1593 	*nqp = NULL;
1594 
1595 	return (DDI_FAILURE);
1596 }
1597 
1598 /*
1599  * One might reasonably consider that the nvme_cmd_cache should have a cache
1600  * constructor and destructor that takes care of the mutex/cv init/destroy, and
1601  * that nvme_free_cmd should reset more fields such that allocation becomes
1602  * simpler. This is not currently implemented as:
1603  * - nvme_cmd_cache is a global cache, shared across nvme instances and
1604  *   therefore there is no easy access to the corresponding nvme_t in the
1605  *   constructor to determine the required interrupt priority.
1606  * - Most fields in nvme_cmd_t would need to be zeroed in nvme_free_cmd while
1607  *   preserving the mutex/cv. It is easier to able to zero the entire
1608  *   structure and then init the mutex/cv only in the unlikely event that we
1609  *   want an admin command.
1610  */
1611 static nvme_cmd_t *
1612 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1613 {
1614 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1615 
1616 	if (cmd != NULL) {
1617 		bzero(cmd, sizeof (nvme_cmd_t));
1618 		cmd->nc_nvme = nvme;
1619 	}
1620 
1621 	return (cmd);
1622 }
1623 
1624 static nvme_cmd_t *
1625 nvme_alloc_admin_cmd(nvme_t *nvme, int kmflag)
1626 {
1627 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, kmflag);
1628 
1629 	if (cmd != NULL) {
1630 		cmd->nc_flags |= NVME_CMD_F_USELOCK;
1631 		mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1632 		    DDI_INTR_PRI(nvme->n_intr_pri));
1633 		cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1634 	}
1635 
1636 	return (cmd);
1637 }
1638 
1639 static void
1640 nvme_free_cmd(nvme_cmd_t *cmd)
1641 {
1642 	/* Don't free commands on the lost commands list. */
1643 	if (list_link_active(&cmd->nc_list))
1644 		return;
1645 
1646 	if (cmd->nc_dma) {
1647 		nvme_free_dma(cmd->nc_dma);
1648 		cmd->nc_dma = NULL;
1649 	}
1650 
1651 	if (cmd->nc_prp) {
1652 		kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp);
1653 		cmd->nc_prp = NULL;
1654 	}
1655 
1656 	if ((cmd->nc_flags & NVME_CMD_F_USELOCK) != 0) {
1657 		cv_destroy(&cmd->nc_cv);
1658 		mutex_destroy(&cmd->nc_mutex);
1659 	}
1660 
1661 	kmem_cache_free(nvme_cmd_cache, cmd);
1662 }
1663 
1664 static void
1665 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd, uint32_t *qtimeoutp)
1666 {
1667 	sema_p(&qp->nq_sema);
1668 	nvme_submit_cmd_common(qp, cmd, qtimeoutp);
1669 }
1670 
1671 static int
1672 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1673 {
1674 	if (cmd->nc_nvme->n_dead) {
1675 		return (EIO);
1676 	}
1677 
1678 	if (sema_tryp(&qp->nq_sema) == 0)
1679 		return (EAGAIN);
1680 
1681 	nvme_submit_cmd_common(qp, cmd, NULL);
1682 	return (0);
1683 }
1684 
1685 /*
1686  * Common command submission routine. If `qtimeoutp` is not NULL then it will
1687  * be set to the sum of the timeouts of any active commands ahead of the one
1688  * being submitted.
1689  */
1690 static void
1691 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd, uint32_t *qtimeoutp)
1692 {
1693 	nvme_reg_sqtdbl_t tail = { 0 };
1694 
1695 	/*
1696 	 * We don't need to take a lock on cmd since it is not yet enqueued.
1697 	 */
1698 	cmd->nc_submit_ts = gethrtime();
1699 	cmd->nc_state = NVME_CMD_SUBMITTED;
1700 
1701 	mutex_enter(&qp->nq_mutex);
1702 
1703 	/*
1704 	 * Now that we hold the queue pair lock, we must check whether or not
1705 	 * the controller has been listed as dead (e.g. was removed due to
1706 	 * hotplug). This is necessary as otherwise we could race with
1707 	 * nvme_remove_callback(). Because this has not been enqueued, we don't
1708 	 * call nvme_unqueue_cmd(), which is why we must manually decrement the
1709 	 * semaphore.
1710 	 */
1711 	if (cmd->nc_nvme->n_dead) {
1712 		cmd->nc_queue_ts = gethrtime();
1713 		cmd->nc_state = NVME_CMD_QUEUED;
1714 		taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback,
1715 		    cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1716 		sema_v(&qp->nq_sema);
1717 		mutex_exit(&qp->nq_mutex);
1718 		return;
1719 	}
1720 
1721 	/*
1722 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1723 	 * slot. If the slot is already occupied advance to the next slot and
1724 	 * try again. This can happen for long running commands like async event
1725 	 * requests.
1726 	 */
1727 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1728 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1729 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1730 
1731 	/*
1732 	 * We keep track of the number of active commands in this queue, and
1733 	 * the sum of the timeouts for those active commands.
1734 	 */
1735 	qp->nq_active_cmds++;
1736 	if (qtimeoutp != NULL)
1737 		*qtimeoutp = qp->nq_active_timeout;
1738 	qp->nq_active_timeout += cmd->nc_timeout;
1739 
1740 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1741 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1742 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1743 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1744 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1745 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1746 
1747 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1748 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1749 
1750 	mutex_exit(&qp->nq_mutex);
1751 }
1752 
1753 static nvme_cmd_t *
1754 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1755 {
1756 	nvme_cmd_t *cmd;
1757 
1758 	ASSERT(mutex_owned(&qp->nq_mutex));
1759 	ASSERT3S(cid, <, qp->nq_nentry);
1760 
1761 	cmd = qp->nq_cmd[cid];
1762 	/*
1763 	 * Some controllers will erroneously add things to the completion queue
1764 	 * for which there is no matching outstanding command. If this happens,
1765 	 * it is almost certainly a controller firmware bug since nq_mutex
1766 	 * is held across command submission and ringing the queue doorbell,
1767 	 * and is also held in this function.
1768 	 *
1769 	 * If we see such an unexpected command, there is not much we can do.
1770 	 * These will be logged and counted in nvme_get_completed(), but
1771 	 * otherwise ignored.
1772 	 */
1773 	if (cmd == NULL)
1774 		return (NULL);
1775 	qp->nq_cmd[cid] = NULL;
1776 	ASSERT3U(qp->nq_active_cmds, >, 0);
1777 	qp->nq_active_cmds--;
1778 	ASSERT3U(qp->nq_active_timeout, >=, cmd->nc_timeout);
1779 	qp->nq_active_timeout -= cmd->nc_timeout;
1780 	sema_v(&qp->nq_sema);
1781 
1782 	ASSERT3P(cmd, !=, NULL);
1783 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1784 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1785 
1786 	return (cmd);
1787 }
1788 
1789 /*
1790  * This is called when an admin abort has failed to complete, once for the
1791  * original command and once for the abort itself. At this point the controller
1792  * has been marked dead. The commands are considered lost, de-queued if
1793  * possible, and placed on a global lost commands list so that they cannot be
1794  * freed and so that any DMA memory they have have is not re-used.
1795  */
1796 static void
1797 nvme_lost_cmd(nvme_t *nvme, nvme_cmd_t *cmd)
1798 {
1799 	ASSERT(mutex_owned(&cmd->nc_mutex));
1800 
1801 	switch (cmd->nc_state) {
1802 	case NVME_CMD_SUBMITTED: {
1803 		nvme_qpair_t *qp = nvme->n_ioq[cmd->nc_sqid];
1804 
1805 		/*
1806 		 * The command is still in the submitted state, meaning that we
1807 		 * have not processed a completion queue entry for it. De-queue
1808 		 * should be successful and if the hardware does later report
1809 		 * completion we'll skip it as a command for which we aren't
1810 		 * expecting a response (see nvme_unqueue_cmd()).
1811 		 */
1812 		mutex_enter(&qp->nq_mutex);
1813 		(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1814 		mutex_exit(&qp->nq_mutex);
1815 	}
1816 	case NVME_CMD_ALLOCATED:
1817 	case NVME_CMD_COMPLETED:
1818 		/*
1819 		 * If the command has not been submitted, or has completed,
1820 		 * there is nothing to do here. In the event of an abort
1821 		 * command timeout, we can end up here in the process of
1822 		 * "losing" the original command. It's possible that command
1823 		 * has actually completed (or been queued on the taskq) in the
1824 		 * interim.
1825 		 */
1826 		break;
1827 	case NVME_CMD_QUEUED:
1828 		/*
1829 		 * The command is on the taskq, awaiting callback. This should
1830 		 * be fairly rapid so wait for completion.
1831 		 */
1832 		while (cmd->nc_state != NVME_CMD_COMPLETED)
1833 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1834 		break;
1835 	case NVME_CMD_LOST:
1836 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1837 		    "%s: command %p already lost", __func__, (void *)cmd);
1838 		break;
1839 	}
1840 
1841 	cmd->nc_state = NVME_CMD_LOST;
1842 
1843 	mutex_enter(&nvme_lc_mutex);
1844 	list_insert_head(&nvme_lost_cmds, cmd);
1845 	mutex_exit(&nvme_lc_mutex);
1846 }
1847 
1848 /*
1849  * Get the command tied to the next completed cqe and bump along completion
1850  * queue head counter.
1851  */
1852 static nvme_cmd_t *
1853 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1854 {
1855 	nvme_qpair_t *qp;
1856 	nvme_cqe_t *cqe;
1857 	nvme_cmd_t *cmd;
1858 
1859 	ASSERT(mutex_owned(&cq->ncq_mutex));
1860 
1861 retry:
1862 	cqe = &cq->ncq_cq[cq->ncq_head];
1863 
1864 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1865 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1866 		return (NULL);
1867 
1868 	qp = nvme->n_ioq[cqe->cqe_sqid];
1869 
1870 	mutex_enter(&qp->nq_mutex);
1871 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1872 	mutex_exit(&qp->nq_mutex);
1873 
1874 	qp->nq_sqhead = cqe->cqe_sqhd;
1875 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1876 
1877 	/* Toggle phase on wrap-around. */
1878 	if (cq->ncq_head == 0)
1879 		cq->ncq_phase = cq->ncq_phase != 0 ? 0 : 1;
1880 
1881 	if (cmd == NULL) {
1882 		dev_err(nvme->n_dip, CE_WARN,
1883 		    "!received completion for unknown cid 0x%x", cqe->cqe_cid);
1884 		NVME_BUMP_STAT(nvme, unknown_cid);
1885 		/*
1886 		 * We want to ignore this unexpected completion entry as it
1887 		 * is most likely a result of a bug in the controller firmware.
1888 		 * However, if we return NULL, then callers will assume there
1889 		 * are no more pending commands for this wakeup. Retry to keep
1890 		 * enumerating commands until the phase tag indicates there are
1891 		 * no more and we are really done.
1892 		 */
1893 		goto retry;
1894 	}
1895 
1896 	ASSERT3U(cmd->nc_sqid, ==, cqe->cqe_sqid);
1897 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1898 
1899 	return (cmd);
1900 }
1901 
1902 /*
1903  * Process all completed commands on the io completion queue.
1904  */
1905 static uint_t
1906 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1907 {
1908 	nvme_reg_cqhdbl_t head = { 0 };
1909 	nvme_cmd_t *cmd;
1910 	uint_t completed = 0;
1911 
1912 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1913 	    DDI_SUCCESS)
1914 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1915 		    __func__);
1916 
1917 	mutex_enter(&cq->ncq_mutex);
1918 
1919 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1920 		/*
1921 		 * NVME_CMD_F_USELOCK is applied to all commands which are
1922 		 * going to be waited for by another thread in nvme_wait_cmd
1923 		 * and indicates that the lock should be taken before modifying
1924 		 * protected fields, and that the mutex has been initialised.
1925 		 * Commands which do not require the mutex to be held have not
1926 		 * initialised it (to reduce overhead).
1927 		 */
1928 		if ((cmd->nc_flags & NVME_CMD_F_USELOCK) != 0) {
1929 			mutex_enter(&cmd->nc_mutex);
1930 			/*
1931 			 * The command could have been de-queued as lost while
1932 			 * we waited on the lock, in which case we drop it.
1933 			 */
1934 			if (cmd->nc_state == NVME_CMD_LOST) {
1935 				mutex_exit(&cmd->nc_mutex);
1936 				completed++;
1937 				continue;
1938 			}
1939 		}
1940 		cmd->nc_queue_ts = gethrtime();
1941 		cmd->nc_state = NVME_CMD_QUEUED;
1942 		if ((cmd->nc_flags & NVME_CMD_F_USELOCK) != 0)
1943 			mutex_exit(&cmd->nc_mutex);
1944 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1945 		    TQ_NOSLEEP, &cmd->nc_tqent);
1946 
1947 		completed++;
1948 	}
1949 
1950 	if (completed > 0) {
1951 		/*
1952 		 * Update the completion queue head doorbell.
1953 		 */
1954 		head.b.cqhdbl_cqh = cq->ncq_head;
1955 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1956 	}
1957 
1958 	mutex_exit(&cq->ncq_mutex);
1959 
1960 	return (completed);
1961 }
1962 
1963 static nvme_cmd_t *
1964 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1965 {
1966 	nvme_cq_t *cq = qp->nq_cq;
1967 	nvme_reg_cqhdbl_t head = { 0 };
1968 	nvme_cmd_t *cmd;
1969 
1970 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1971 	    DDI_SUCCESS)
1972 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1973 		    __func__);
1974 
1975 	mutex_enter(&cq->ncq_mutex);
1976 
1977 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1978 		head.b.cqhdbl_cqh = cq->ncq_head;
1979 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1980 	}
1981 
1982 	mutex_exit(&cq->ncq_mutex);
1983 
1984 	return (cmd);
1985 }
1986 
1987 static int
1988 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1989 {
1990 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1991 
1992 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1993 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1994 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1995 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1996 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1997 
1998 	if (cmd->nc_xfer != NULL)
1999 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
2000 
2001 	if (cmd->nc_nvme->n_strict_version) {
2002 		nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE);
2003 	}
2004 
2005 	return (EIO);
2006 }
2007 
2008 static int
2009 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
2010 {
2011 	nvme_cqe_t *cqe = &cmd->nc_cqe;
2012 
2013 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
2014 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
2015 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
2016 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
2017 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
2018 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
2019 		nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE);
2020 	}
2021 
2022 	return (EIO);
2023 }
2024 
2025 static int
2026 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
2027 {
2028 	nvme_cqe_t *cqe = &cmd->nc_cqe;
2029 
2030 	switch (cqe->cqe_sf.sf_sc) {
2031 	case NVME_CQE_SC_INT_NVM_WRITE:
2032 		/* write fail */
2033 		/* TODO: post ereport */
2034 		if (cmd->nc_xfer != NULL)
2035 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
2036 		return (EIO);
2037 
2038 	case NVME_CQE_SC_INT_NVM_READ:
2039 		/* read fail */
2040 		/* TODO: post ereport */
2041 		if (cmd->nc_xfer != NULL)
2042 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
2043 		return (EIO);
2044 
2045 	default:
2046 		return (nvme_check_unknown_cmd_status(cmd));
2047 	}
2048 }
2049 
2050 static int
2051 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
2052 {
2053 	nvme_cqe_t *cqe = &cmd->nc_cqe;
2054 
2055 	switch (cqe->cqe_sf.sf_sc) {
2056 	case NVME_CQE_SC_GEN_SUCCESS:
2057 		return (0);
2058 
2059 	/*
2060 	 * Errors indicating a bug in the driver should cause a panic.
2061 	 */
2062 	case NVME_CQE_SC_GEN_INV_OPC:
2063 		/* Invalid Command Opcode */
2064 		NVME_BUMP_STAT(cmd->nc_nvme, inv_cmd_err);
2065 		if ((cmd->nc_flags & NVME_CMD_F_DONTPANIC) == 0) {
2066 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
2067 			    "programming error: invalid opcode in cmd %p",
2068 			    (void *)cmd);
2069 		}
2070 		return (EINVAL);
2071 
2072 	case NVME_CQE_SC_GEN_INV_FLD:
2073 		/* Invalid Field in Command */
2074 		NVME_BUMP_STAT(cmd->nc_nvme, inv_field_err);
2075 		if ((cmd->nc_flags & NVME_CMD_F_DONTPANIC) == 0) {
2076 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
2077 			    "programming error: invalid field in cmd %p",
2078 			    (void *)cmd);
2079 		}
2080 		return (EIO);
2081 
2082 	case NVME_CQE_SC_GEN_ID_CNFL:
2083 		/* Command ID Conflict */
2084 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
2085 		    "cmd ID conflict in cmd %p", (void *)cmd);
2086 		return (0);
2087 
2088 	case NVME_CQE_SC_GEN_INV_NS:
2089 		/* Invalid Namespace or Format */
2090 		NVME_BUMP_STAT(cmd->nc_nvme, inv_nsfmt_err);
2091 		if ((cmd->nc_flags & NVME_CMD_F_DONTPANIC) == 0) {
2092 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
2093 			    "programming error: invalid NS/format in cmd %p",
2094 			    (void *)cmd);
2095 		}
2096 		return (EINVAL);
2097 
2098 	case NVME_CQE_SC_GEN_CMD_SEQ_ERR:
2099 		/*
2100 		 * Command Sequence Error
2101 		 *
2102 		 * This can be generated normally by user log page requests that
2103 		 * come out of order (e.g. getting the persistent event log
2104 		 * without establishing the context). If the kernel manages this
2105 		 * on its own then that's problematic.
2106 		 */
2107 		NVME_BUMP_STAT(cmd->nc_nvme, inv_cmdseq_err);
2108 		if ((cmd->nc_flags & NVME_CMD_F_DONTPANIC) == 0) {
2109 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
2110 			    "programming error: command sequencing error %p",
2111 			    (void *)cmd);
2112 		}
2113 		return (EINVAL);
2114 
2115 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
2116 		/* LBA Out Of Range */
2117 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
2118 		    "LBA out of range in cmd %p", (void *)cmd);
2119 		return (0);
2120 
2121 	/*
2122 	 * Non-fatal errors, handle gracefully.
2123 	 */
2124 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
2125 		/* Data Transfer Error (DMA) */
2126 		/* TODO: post ereport */
2127 		NVME_BUMP_STAT(cmd->nc_nvme, data_xfr_err);
2128 		if (cmd->nc_xfer != NULL)
2129 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
2130 		return (EIO);
2131 
2132 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
2133 		/*
2134 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
2135 		 * detailed error information is returned as async event,
2136 		 * so we pretty much ignore the error here and handle it
2137 		 * in the async event handler.
2138 		 */
2139 		NVME_BUMP_STAT(cmd->nc_nvme, internal_err);
2140 		if (cmd->nc_xfer != NULL)
2141 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
2142 		return (EIO);
2143 
2144 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
2145 		/*
2146 		 * Command Abort Requested. This normally happens only when a
2147 		 * command times out.
2148 		 */
2149 		/* TODO: post ereport or change blkdev to handle this? */
2150 		NVME_BUMP_STAT(cmd->nc_nvme, abort_rq_err);
2151 		return (ECANCELED);
2152 
2153 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
2154 		/* Command Aborted due to Power Loss Notification */
2155 		NVME_BUMP_STAT(cmd->nc_nvme, abort_pwrloss_err);
2156 		nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE);
2157 		return (EIO);
2158 
2159 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
2160 		/* Command Aborted due to SQ Deletion */
2161 		NVME_BUMP_STAT(cmd->nc_nvme, abort_sq_del);
2162 		return (EIO);
2163 
2164 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
2165 		/* Capacity Exceeded */
2166 		NVME_BUMP_STAT(cmd->nc_nvme, nvm_cap_exc);
2167 		if (cmd->nc_xfer != NULL)
2168 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
2169 		return (EIO);
2170 
2171 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
2172 		/* Namespace Not Ready */
2173 		NVME_BUMP_STAT(cmd->nc_nvme, nvm_ns_notrdy);
2174 		if (cmd->nc_xfer != NULL)
2175 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
2176 		return (EIO);
2177 
2178 	case NVME_CQE_SC_GEN_NVM_FORMATTING:
2179 		/* Format in progress (1.2) */
2180 		if (!NVME_VERSION_ATLEAST(&cmd->nc_nvme->n_version, 1, 2))
2181 			return (nvme_check_unknown_cmd_status(cmd));
2182 		NVME_BUMP_STAT(cmd->nc_nvme, nvm_ns_formatting);
2183 		if (cmd->nc_xfer != NULL)
2184 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
2185 		return (EIO);
2186 
2187 	default:
2188 		return (nvme_check_unknown_cmd_status(cmd));
2189 	}
2190 }
2191 
2192 static int
2193 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
2194 {
2195 	nvme_cqe_t *cqe = &cmd->nc_cqe;
2196 
2197 	switch (cqe->cqe_sf.sf_sc) {
2198 	case NVME_CQE_SC_SPC_INV_CQ:
2199 		/* Completion Queue Invalid */
2200 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
2201 		NVME_BUMP_STAT(cmd->nc_nvme, inv_cq_err);
2202 		return (EINVAL);
2203 
2204 	case NVME_CQE_SC_SPC_INV_QID:
2205 		/* Invalid Queue Identifier */
2206 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
2207 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
2208 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
2209 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
2210 		NVME_BUMP_STAT(cmd->nc_nvme, inv_qid_err);
2211 		return (EINVAL);
2212 
2213 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
2214 		/* Max Queue Size Exceeded */
2215 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
2216 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
2217 		NVME_BUMP_STAT(cmd->nc_nvme, max_qsz_exc);
2218 		return (EINVAL);
2219 
2220 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
2221 		/* Abort Command Limit Exceeded */
2222 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
2223 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
2224 		    "abort command limit exceeded in cmd %p", (void *)cmd);
2225 		return (0);
2226 
2227 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
2228 		/* Async Event Request Limit Exceeded */
2229 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
2230 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
2231 		    "async event request limit exceeded in cmd %p",
2232 		    (void *)cmd);
2233 		return (0);
2234 
2235 	case NVME_CQE_SC_SPC_INV_INT_VECT:
2236 		/* Invalid Interrupt Vector */
2237 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
2238 		NVME_BUMP_STAT(cmd->nc_nvme, inv_int_vect);
2239 		return (EINVAL);
2240 
2241 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
2242 		/* Invalid Log Page */
2243 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
2244 		NVME_BUMP_STAT(cmd->nc_nvme, inv_log_page);
2245 		return (EINVAL);
2246 
2247 	case NVME_CQE_SC_SPC_INV_FORMAT:
2248 		/* Invalid Format */
2249 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
2250 		NVME_BUMP_STAT(cmd->nc_nvme, inv_format);
2251 		if (cmd->nc_xfer != NULL)
2252 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
2253 		return (EINVAL);
2254 
2255 	case NVME_CQE_SC_SPC_INV_Q_DEL:
2256 		/* Invalid Queue Deletion */
2257 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
2258 		NVME_BUMP_STAT(cmd->nc_nvme, inv_q_del);
2259 		return (EINVAL);
2260 
2261 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
2262 		/* Conflicting Attributes */
2263 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
2264 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
2265 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
2266 		NVME_BUMP_STAT(cmd->nc_nvme, cnfl_attr);
2267 		if (cmd->nc_xfer != NULL)
2268 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
2269 		return (EINVAL);
2270 
2271 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
2272 		/* Invalid Protection Information */
2273 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
2274 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
2275 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
2276 		NVME_BUMP_STAT(cmd->nc_nvme, inv_prot);
2277 		if (cmd->nc_xfer != NULL)
2278 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
2279 		return (EINVAL);
2280 
2281 	case NVME_CQE_SC_SPC_NVM_READONLY:
2282 		/* Write to Read Only Range */
2283 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
2284 		NVME_BUMP_STAT(cmd->nc_nvme, readonly);
2285 		if (cmd->nc_xfer != NULL)
2286 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
2287 		return (EROFS);
2288 
2289 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
2290 		/* Invalid Firmware Slot */
2291 		NVME_BUMP_STAT(cmd->nc_nvme, inv_fwslot);
2292 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2293 		return (EINVAL);
2294 
2295 	case NVME_CQE_SC_SPC_INV_FW_IMG:
2296 		/* Invalid Firmware Image */
2297 		NVME_BUMP_STAT(cmd->nc_nvme, inv_fwimg);
2298 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2299 		return (EINVAL);
2300 
2301 	case NVME_CQE_SC_SPC_FW_RESET:
2302 		/* Conventional Reset Required */
2303 		NVME_BUMP_STAT(cmd->nc_nvme, fwact_creset);
2304 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2305 		return (0);
2306 
2307 	case NVME_CQE_SC_SPC_FW_NSSR:
2308 		/* NVMe Subsystem Reset Required */
2309 		NVME_BUMP_STAT(cmd->nc_nvme, fwact_nssr);
2310 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2311 		return (0);
2312 
2313 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
2314 		/* Activation Requires Reset */
2315 		NVME_BUMP_STAT(cmd->nc_nvme, fwact_reset);
2316 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2317 		return (0);
2318 
2319 	case NVME_CQE_SC_SPC_FW_MTFA:
2320 		/* Activation Requires Maximum Time Violation */
2321 		NVME_BUMP_STAT(cmd->nc_nvme, fwact_mtfa);
2322 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2323 		return (EAGAIN);
2324 
2325 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
2326 		/* Activation Prohibited */
2327 		NVME_BUMP_STAT(cmd->nc_nvme, fwact_prohibited);
2328 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2329 		return (EINVAL);
2330 
2331 	case NVME_CQE_SC_SPC_FW_OVERLAP:
2332 		/* Overlapping Firmware Ranges */
2333 		NVME_BUMP_STAT(cmd->nc_nvme, fw_overlap);
2334 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD ||
2335 		    cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
2336 		return (EINVAL);
2337 
2338 	default:
2339 		return (nvme_check_unknown_cmd_status(cmd));
2340 	}
2341 }
2342 
2343 static inline int
2344 nvme_check_cmd_status(nvme_cmd_t *cmd)
2345 {
2346 	nvme_cqe_t *cqe = &cmd->nc_cqe;
2347 
2348 	/*
2349 	 * Take a shortcut if the controller is dead, or if
2350 	 * command status indicates no error.
2351 	 */
2352 	if (cmd->nc_nvme->n_dead)
2353 		return (EIO);
2354 
2355 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2356 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
2357 		return (0);
2358 
2359 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
2360 		return (nvme_check_generic_cmd_status(cmd));
2361 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
2362 		return (nvme_check_specific_cmd_status(cmd));
2363 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
2364 		return (nvme_check_integrity_cmd_status(cmd));
2365 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
2366 		return (nvme_check_vendor_cmd_status(cmd));
2367 
2368 	return (nvme_check_unknown_cmd_status(cmd));
2369 }
2370 
2371 /*
2372  * Check the command status as used by an ioctl path and do not convert it to an
2373  * errno. We still allow all the command status checking to occur, but otherwise
2374  * will pass back the controller error as is.
2375  */
2376 static boolean_t
2377 nvme_check_cmd_status_ioctl(nvme_cmd_t *cmd, nvme_ioctl_common_t *ioc)
2378 {
2379 	nvme_cqe_t *cqe = &cmd->nc_cqe;
2380 	nvme_t *nvme = cmd->nc_nvme;
2381 
2382 	if (nvme->n_dead) {
2383 		return (nvme_ioctl_error(ioc, nvme->n_dead_status, 0, 0));
2384 	}
2385 
2386 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2387 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
2388 		return (B_TRUE);
2389 
2390 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) {
2391 		(void) nvme_check_generic_cmd_status(cmd);
2392 	} else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) {
2393 		(void) nvme_check_specific_cmd_status(cmd);
2394 	} else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) {
2395 		(void) nvme_check_integrity_cmd_status(cmd);
2396 	} else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) {
2397 		(void) nvme_check_vendor_cmd_status(cmd);
2398 	} else {
2399 		(void) nvme_check_unknown_cmd_status(cmd);
2400 	}
2401 
2402 	return (nvme_ioctl_error(ioc, NVME_IOCTL_E_CTRL_ERROR,
2403 	    cqe->cqe_sf.sf_sct, cqe->cqe_sf.sf_sc));
2404 }
2405 
2406 static int
2407 nvme_abort_cmd(nvme_cmd_t *cmd, const uint32_t sec)
2408 {
2409 	nvme_t *nvme = cmd->nc_nvme;
2410 	nvme_cmd_t *abort_cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
2411 	nvme_abort_cmd_t ac = { 0 };
2412 	int ret = 0;
2413 
2414 	sema_p(&nvme->n_abort_sema);
2415 
2416 	ac.b.ac_cid = cmd->nc_sqe.sqe_cid;
2417 	ac.b.ac_sqid = cmd->nc_sqid;
2418 
2419 	abort_cmd->nc_sqid = 0;
2420 	abort_cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
2421 	abort_cmd->nc_callback = nvme_wakeup_cmd;
2422 	abort_cmd->nc_sqe.sqe_cdw10 = ac.r;
2423 
2424 	/*
2425 	 * Send the ABORT to the hardware. The ABORT command will return _after_
2426 	 * the aborted command has completed (aborted or otherwise) so we must
2427 	 * drop the aborted command's lock to allow it to complete.
2428 	 * We want to allow at least `nvme_abort_cmd_timeout` seconds for the
2429 	 * abort to be processed, but more if we are aborting a long-running
2430 	 * command to give that time to complete/abort too.
2431 	 */
2432 	mutex_exit(&cmd->nc_mutex);
2433 	nvme_admin_cmd(abort_cmd, MAX(nvme_abort_cmd_timeout, sec));
2434 	mutex_enter(&cmd->nc_mutex);
2435 
2436 	sema_v(&nvme->n_abort_sema);
2437 
2438 	/*
2439 	 * If the abort command itself has timed out, it will have been
2440 	 * de-queued so that its callback will not be called after this point,
2441 	 * and its state will be NVME_CMD_LOST.
2442 	 *
2443 	 * nvme_admin_cmd(abort_cmd)
2444 	 *   -> nvme_wait_cmd(abort_cmd)
2445 	 *     -> nvme_cmd(abort_cmd)
2446 	 *     | -> nvme_admin_cmd(cmd)
2447 	 *     |   -> nvme_wait_cmd(cmd)
2448 	 *     |     -> nvme_ctrl_mark_dead()
2449 	 *     |     -> nvme_lost_cmd(cmd)
2450 	 *     |       -> cmd->nc_stat = NVME_CMD_LOST
2451 	 *     and here we are.
2452 	 */
2453 	if (abort_cmd->nc_state == NVME_CMD_LOST) {
2454 		dev_err(nvme->n_dip, CE_WARN,
2455 		    "!ABORT of command %d/%d timed out",
2456 		    cmd->nc_sqe.sqe_cid, cmd->nc_sqid);
2457 		NVME_BUMP_STAT(nvme, abort_timeout);
2458 		ret = EIO;
2459 	} else if ((ret = nvme_check_cmd_status(abort_cmd)) != 0) {
2460 		dev_err(nvme->n_dip, CE_WARN,
2461 		    "!ABORT of command %d/%d "
2462 		    "failed with sct = %x, sc = %x",
2463 		    cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
2464 		    abort_cmd->nc_cqe.cqe_sf.sf_sct,
2465 		    abort_cmd->nc_cqe.cqe_sf.sf_sc);
2466 		NVME_BUMP_STAT(nvme, abort_failed);
2467 	} else {
2468 		boolean_t success = ((abort_cmd->nc_cqe.cqe_dw0 & 1) == 0);
2469 
2470 		dev_err(nvme->n_dip, CE_WARN,
2471 		    "!ABORT of command %d/%d %ssuccessful",
2472 		    cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
2473 		    success ? "" : "un");
2474 
2475 		if (success) {
2476 			NVME_BUMP_STAT(nvme, abort_successful);
2477 		} else {
2478 			NVME_BUMP_STAT(nvme, abort_unsuccessful);
2479 		}
2480 	}
2481 
2482 	/*
2483 	 * This abort abort_cmd has either completed or been de-queued as
2484 	 * lost in nvme_wait_cmd. Either way it's safe to free it here.
2485 	 */
2486 	nvme_free_cmd(abort_cmd);
2487 
2488 	return (ret);
2489 }
2490 
2491 /*
2492  * nvme_wait_cmd -- wait for command completion or timeout
2493  *
2494  * In case of a serious error or a timeout of the abort command the hardware
2495  * will be declared dead and FMA will be notified.
2496  */
2497 static void
2498 nvme_wait_cmd(nvme_cmd_t *cmd, uint32_t sec)
2499 {
2500 	nvme_t *nvme = cmd->nc_nvme;
2501 	nvme_reg_csts_t csts;
2502 
2503 	ASSERT(mutex_owned(&cmd->nc_mutex));
2504 
2505 	while (cmd->nc_state != NVME_CMD_COMPLETED) {
2506 		clock_t timeout = ddi_get_lbolt() +
2507 		    drv_usectohz((long)sec * MICROSEC);
2508 
2509 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) {
2510 			/*
2511 			 * If this command is on the task queue then we don't
2512 			 * consider it to have timed out. We are waiting for
2513 			 * the callback to be invoked, the timing of which can
2514 			 * be affected by system load and should not count
2515 			 * against the device; continue to wait.
2516 			 * While this doesn't help deal with the possibility of
2517 			 * a command timing out between being placed on the CQ
2518 			 * and arriving on the taskq, we expect interrupts to
2519 			 * run fairly promptly making this a small window.
2520 			 */
2521 			if (cmd->nc_state != NVME_CMD_QUEUED)
2522 				break;
2523 		}
2524 	}
2525 
2526 	if (cmd->nc_state == NVME_CMD_COMPLETED) {
2527 		DTRACE_PROBE1(nvme_admin_cmd_completed, nvme_cmd_t *, cmd);
2528 		nvme_admin_stat_cmd(nvme, cmd);
2529 		return;
2530 	}
2531 
2532 	/*
2533 	 * The command timed out.
2534 	 */
2535 
2536 	DTRACE_PROBE1(nvme_admin_cmd_timeout, nvme_cmd_t *, cmd);
2537 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2538 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
2539 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
2540 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
2541 	NVME_BUMP_STAT(nvme, cmd_timeout);
2542 
2543 	/*
2544 	 * Check controller for fatal status, any errors associated with the
2545 	 * register or DMA handle, or for a double timeout (abort command timed
2546 	 * out). If necessary log a warning and call FMA.
2547 	 */
2548 	if (csts.b.csts_cfs ||
2549 	    nvme_check_regs_hdl(nvme) ||
2550 	    nvme_check_dma_hdl(cmd->nc_dma) ||
2551 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
2552 		nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE);
2553 		nvme_lost_cmd(nvme, cmd);
2554 		return;
2555 	}
2556 
2557 	/* Issue an abort for the command that has timed out */
2558 	if (nvme_abort_cmd(cmd, sec) == 0) {
2559 		/*
2560 		 * If the abort completed, whether or not it was
2561 		 * successful in aborting the command, that command
2562 		 * will also have completed with an appropriate
2563 		 * status.
2564 		 */
2565 		while (cmd->nc_state != NVME_CMD_COMPLETED)
2566 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
2567 		return;
2568 	}
2569 
2570 	/*
2571 	 * Otherwise, the abort has also timed out or failed, which
2572 	 * will have marked the controller dead. De-queue the original command
2573 	 * and add it to the lost commands list.
2574 	 */
2575 	VERIFY(cmd->nc_nvme->n_dead);
2576 	nvme_lost_cmd(nvme, cmd);
2577 }
2578 
2579 static void
2580 nvme_wakeup_cmd(void *arg)
2581 {
2582 	nvme_cmd_t *cmd = arg;
2583 
2584 	ASSERT(cmd->nc_flags & NVME_CMD_F_USELOCK);
2585 
2586 	mutex_enter(&cmd->nc_mutex);
2587 	cmd->nc_state = NVME_CMD_COMPLETED;
2588 	cv_signal(&cmd->nc_cv);
2589 	mutex_exit(&cmd->nc_mutex);
2590 }
2591 
2592 static void
2593 nvme_async_event_task(void *arg)
2594 {
2595 	nvme_cmd_t *cmd = arg;
2596 	nvme_t *nvme = cmd->nc_nvme;
2597 	nvme_error_log_entry_t *error_log = NULL;
2598 	nvme_health_log_t *health_log = NULL;
2599 	nvme_nschange_list_t *nslist = NULL;
2600 	size_t logsize = 0;
2601 	nvme_async_event_t event;
2602 
2603 	/*
2604 	 * Check for errors associated with the async request itself. The only
2605 	 * command-specific error is "async event limit exceeded", which
2606 	 * indicates a programming error in the driver and causes a panic in
2607 	 * nvme_check_cmd_status().
2608 	 *
2609 	 * Other possible errors are various scenarios where the async request
2610 	 * was aborted, or internal errors in the device. Internal errors are
2611 	 * reported to FMA, the command aborts need no special handling here.
2612 	 *
2613 	 * And finally, at least qemu nvme does not support async events,
2614 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
2615 	 * will avoid posting async events.
2616 	 */
2617 
2618 	if (nvme_check_cmd_status(cmd) != 0) {
2619 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
2620 		    "!async event request returned failure, sct = 0x%x, "
2621 		    "sc = 0x%x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
2622 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
2623 		    cmd->nc_cqe.cqe_sf.sf_m);
2624 
2625 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2626 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
2627 			nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE);
2628 		}
2629 
2630 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2631 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
2632 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
2633 			nvme->n_async_event_supported = B_FALSE;
2634 		}
2635 
2636 		nvme_free_cmd(cmd);
2637 		return;
2638 	}
2639 
2640 	event.r = cmd->nc_cqe.cqe_dw0;
2641 
2642 	/* Clear CQE and re-submit the async request. */
2643 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
2644 	nvme_submit_admin_cmd(nvme->n_adminq, cmd, NULL);
2645 	cmd = NULL;	/* cmd can no longer be used after resubmission */
2646 
2647 	switch (event.b.ae_type) {
2648 	case NVME_ASYNC_TYPE_ERROR:
2649 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
2650 			if (!nvme_get_logpage_int(nvme, B_FALSE,
2651 			    (void **)&error_log, &logsize,
2652 			    NVME_LOGPAGE_ERROR)) {
2653 				return;
2654 			}
2655 		} else {
2656 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
2657 			    "async event reply: type=0x%x logpage=0x%x",
2658 			    event.b.ae_type, event.b.ae_logpage);
2659 			NVME_BUMP_STAT(nvme, wrong_logpage);
2660 			return;
2661 		}
2662 
2663 		switch (event.b.ae_info) {
2664 		case NVME_ASYNC_ERROR_INV_SQ:
2665 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
2666 			    "invalid submission queue");
2667 			return;
2668 
2669 		case NVME_ASYNC_ERROR_INV_DBL:
2670 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
2671 			    "invalid doorbell write value");
2672 			return;
2673 
2674 		case NVME_ASYNC_ERROR_DIAGFAIL:
2675 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
2676 			nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE);
2677 			NVME_BUMP_STAT(nvme, diagfail_event);
2678 			break;
2679 
2680 		case NVME_ASYNC_ERROR_PERSISTENT:
2681 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
2682 			    "device error");
2683 			nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE);
2684 			NVME_BUMP_STAT(nvme, persistent_event);
2685 			break;
2686 
2687 		case NVME_ASYNC_ERROR_TRANSIENT:
2688 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
2689 			    "device error");
2690 			/* TODO: send ereport */
2691 			NVME_BUMP_STAT(nvme, transient_event);
2692 			break;
2693 
2694 		case NVME_ASYNC_ERROR_FW_LOAD:
2695 			dev_err(nvme->n_dip, CE_WARN,
2696 			    "!firmware image load error");
2697 			NVME_BUMP_STAT(nvme, fw_load_event);
2698 			break;
2699 		}
2700 		break;
2701 
2702 	case NVME_ASYNC_TYPE_HEALTH:
2703 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
2704 			if (!nvme_get_logpage_int(nvme, B_FALSE,
2705 			    (void **)&health_log, &logsize,
2706 			    NVME_LOGPAGE_HEALTH)) {
2707 				return;
2708 			}
2709 		} else {
2710 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
2711 			    "type=0x%x logpage=0x%x", event.b.ae_type,
2712 			    event.b.ae_logpage);
2713 			NVME_BUMP_STAT(nvme, wrong_logpage);
2714 			return;
2715 		}
2716 
2717 		switch (event.b.ae_info) {
2718 		case NVME_ASYNC_HEALTH_RELIABILITY:
2719 			dev_err(nvme->n_dip, CE_WARN,
2720 			    "!device reliability compromised");
2721 			/* TODO: send ereport */
2722 			NVME_BUMP_STAT(nvme, reliability_event);
2723 			break;
2724 
2725 		case NVME_ASYNC_HEALTH_TEMPERATURE:
2726 			dev_err(nvme->n_dip, CE_WARN,
2727 			    "!temperature above threshold");
2728 			/* TODO: send ereport */
2729 			NVME_BUMP_STAT(nvme, temperature_event);
2730 			break;
2731 
2732 		case NVME_ASYNC_HEALTH_SPARE:
2733 			dev_err(nvme->n_dip, CE_WARN,
2734 			    "!spare space below threshold");
2735 			/* TODO: send ereport */
2736 			NVME_BUMP_STAT(nvme, spare_event);
2737 			break;
2738 		}
2739 		break;
2740 
2741 	case NVME_ASYNC_TYPE_NOTICE:
2742 		switch (event.b.ae_info) {
2743 		case NVME_ASYNC_NOTICE_NS_CHANGE:
2744 			if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE) {
2745 				dev_err(nvme->n_dip, CE_WARN,
2746 				    "!wrong logpage in async event reply: "
2747 				    "type=0x%x logpage=0x%x",
2748 				    event.b.ae_type, event.b.ae_logpage);
2749 				NVME_BUMP_STAT(nvme, wrong_logpage);
2750 				break;
2751 			}
2752 
2753 			dev_err(nvme->n_dip, CE_NOTE,
2754 			    "namespace attribute change event, "
2755 			    "logpage = 0x%x", event.b.ae_logpage);
2756 			NVME_BUMP_STAT(nvme, notice_event);
2757 
2758 			if (!nvme_get_logpage_int(nvme, B_FALSE,
2759 			    (void **)&nslist, &logsize,
2760 			    NVME_LOGPAGE_NSCHANGE)) {
2761 				break;
2762 			}
2763 
2764 			if (nslist->nscl_ns[0] == UINT32_MAX) {
2765 				dev_err(nvme->n_dip, CE_CONT,
2766 				    "more than %u namespaces have changed.\n",
2767 				    NVME_NSCHANGE_LIST_SIZE);
2768 				break;
2769 			}
2770 
2771 			nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_NVME);
2772 			for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) {
2773 				uint32_t nsid = nslist->nscl_ns[i];
2774 
2775 				if (nsid == 0)	/* end of list */
2776 					break;
2777 
2778 				dev_err(nvme->n_dip, CE_NOTE,
2779 				    "!namespace nvme%d/%u has changed.",
2780 				    ddi_get_instance(nvme->n_dip), nsid);
2781 
2782 				if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
2783 					continue;
2784 
2785 				nvme_mgmt_bd_start(nvme);
2786 				bd_state_change(nvme_nsid2ns(nvme,
2787 				    nsid)->ns_bd_hdl);
2788 				nvme_mgmt_bd_end(nvme);
2789 			}
2790 			nvme_mgmt_unlock(nvme);
2791 
2792 			break;
2793 
2794 		case NVME_ASYNC_NOTICE_FW_ACTIVATE:
2795 			dev_err(nvme->n_dip, CE_NOTE,
2796 			    "firmware activation starting, "
2797 			    "logpage = 0x%x", event.b.ae_logpage);
2798 			NVME_BUMP_STAT(nvme, notice_event);
2799 			break;
2800 
2801 		case NVME_ASYNC_NOTICE_TELEMETRY:
2802 			dev_err(nvme->n_dip, CE_NOTE,
2803 			    "telemetry log changed, "
2804 			    "logpage = 0x%x", event.b.ae_logpage);
2805 			NVME_BUMP_STAT(nvme, notice_event);
2806 			break;
2807 
2808 		case NVME_ASYNC_NOTICE_NS_ASYMM:
2809 			dev_err(nvme->n_dip, CE_NOTE,
2810 			    "asymmetric namespace access change, "
2811 			    "logpage = 0x%x", event.b.ae_logpage);
2812 			NVME_BUMP_STAT(nvme, notice_event);
2813 			break;
2814 
2815 		case NVME_ASYNC_NOTICE_LATENCYLOG:
2816 			dev_err(nvme->n_dip, CE_NOTE,
2817 			    "predictable latency event aggregate log change, "
2818 			    "logpage = 0x%x", event.b.ae_logpage);
2819 			NVME_BUMP_STAT(nvme, notice_event);
2820 			break;
2821 
2822 		case NVME_ASYNC_NOTICE_LBASTATUS:
2823 			dev_err(nvme->n_dip, CE_NOTE,
2824 			    "LBA status information alert, "
2825 			    "logpage = 0x%x", event.b.ae_logpage);
2826 			NVME_BUMP_STAT(nvme, notice_event);
2827 			break;
2828 
2829 		case NVME_ASYNC_NOTICE_ENDURANCELOG:
2830 			dev_err(nvme->n_dip, CE_NOTE,
2831 			    "endurance group event aggregate log page change, "
2832 			    "logpage = 0x%x", event.b.ae_logpage);
2833 			NVME_BUMP_STAT(nvme, notice_event);
2834 			break;
2835 
2836 		default:
2837 			dev_err(nvme->n_dip, CE_WARN,
2838 			    "!unknown notice async event received, "
2839 			    "info = 0x%x, logpage = 0x%x", event.b.ae_info,
2840 			    event.b.ae_logpage);
2841 			NVME_BUMP_STAT(nvme, unknown_event);
2842 			break;
2843 		}
2844 		break;
2845 
2846 	case NVME_ASYNC_TYPE_VENDOR:
2847 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
2848 		    "received, info = 0x%x, logpage = 0x%x", event.b.ae_info,
2849 		    event.b.ae_logpage);
2850 		NVME_BUMP_STAT(nvme, vendor_event);
2851 		break;
2852 
2853 	default:
2854 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
2855 		    "type = 0x%x, info = 0x%x, logpage = 0x%x", event.b.ae_type,
2856 		    event.b.ae_info, event.b.ae_logpage);
2857 		NVME_BUMP_STAT(nvme, unknown_event);
2858 		break;
2859 	}
2860 
2861 	if (error_log != NULL)
2862 		kmem_free(error_log, logsize);
2863 
2864 	if (health_log != NULL)
2865 		kmem_free(health_log, logsize);
2866 
2867 	if (nslist != NULL)
2868 		kmem_free(nslist, logsize);
2869 }
2870 
2871 static void
2872 nvme_admin_cmd(nvme_cmd_t *cmd, uint32_t sec)
2873 {
2874 	uint32_t qtimeout;
2875 
2876 	ASSERT(cmd->nc_flags & NVME_CMD_F_USELOCK);
2877 
2878 	mutex_enter(&cmd->nc_mutex);
2879 	cmd->nc_timeout = sec;
2880 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd, &qtimeout);
2881 	/*
2882 	 * We will wait for a total of this command's specified timeout plus
2883 	 * the sum of the timeouts of any commands queued ahead of this one. If
2884 	 * we aren't first in the queue, this will inflate the timeout somewhat
2885 	 * but these times are not critical and it means that if we get stuck
2886 	 * behind a long running command such as a namespace format then we
2887 	 * won't time out and trigger an abort.
2888 	 */
2889 	nvme_wait_cmd(cmd, sec + qtimeout);
2890 	mutex_exit(&cmd->nc_mutex);
2891 }
2892 
2893 static void
2894 nvme_async_event(nvme_t *nvme)
2895 {
2896 	nvme_cmd_t *cmd;
2897 
2898 	cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
2899 	cmd->nc_sqid = 0;
2900 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
2901 	cmd->nc_callback = nvme_async_event_task;
2902 	cmd->nc_flags |= NVME_CMD_F_DONTPANIC;
2903 
2904 	nvme_submit_admin_cmd(nvme->n_adminq, cmd, NULL);
2905 }
2906 
2907 /*
2908  * There are commands such as format or vendor unique commands that are going to
2909  * manipulate the data in a namespace or destroy them, we make sure that none of
2910  * the ones that will be impacted are actually attached.
2911  */
2912 static boolean_t
2913 nvme_no_blkdev_attached(nvme_t *nvme, uint32_t nsid)
2914 {
2915 	ASSERT(nvme_mgmt_lock_held(nvme));
2916 	ASSERT3U(nsid, !=, 0);
2917 
2918 	if (nsid != NVME_NSID_BCAST) {
2919 		nvme_namespace_t *ns = nvme_nsid2ns(nvme, nsid);
2920 		return (!ns->ns_attached);
2921 	}
2922 
2923 	for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) {
2924 		nvme_namespace_t *ns = nvme_nsid2ns(nvme, i);
2925 
2926 		if (ns->ns_attached) {
2927 			return (B_FALSE);
2928 		}
2929 	}
2930 
2931 	return (B_TRUE);
2932 }
2933 
2934 static boolean_t
2935 nvme_format_nvm(nvme_t *nvme, nvme_ioctl_format_t *ioc)
2936 {
2937 	nvme_cmd_t *cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
2938 	nvme_format_nvm_t format_nvm = { 0 };
2939 	boolean_t ret;
2940 
2941 	format_nvm.b.fm_lbaf = bitx32(ioc->nif_lbaf, 3, 0);
2942 	format_nvm.b.fm_ses = bitx32(ioc->nif_ses, 2, 0);
2943 
2944 	cmd->nc_sqid = 0;
2945 	cmd->nc_callback = nvme_wakeup_cmd;
2946 	cmd->nc_sqe.sqe_nsid = ioc->nif_common.nioc_nsid;
2947 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
2948 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
2949 
2950 	/*
2951 	 * We don't want to panic on any format commands. There are two reasons
2952 	 * for this:
2953 	 *
2954 	 * 1) All format commands are initiated by users. We don't want to panic
2955 	 * on user commands.
2956 	 *
2957 	 * 2) Several devices like the Samsung SM951 don't allow formatting of
2958 	 * all namespaces in one command and we'd prefer to handle that
2959 	 * gracefully.
2960 	 */
2961 	cmd->nc_flags |= NVME_CMD_F_DONTPANIC;
2962 
2963 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
2964 
2965 	if (!nvme_check_cmd_status_ioctl(cmd, &ioc->nif_common) != 0) {
2966 		dev_err(nvme->n_dip, CE_WARN,
2967 		    "!FORMAT failed with sct = %x, sc = %x",
2968 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2969 		ret = B_FALSE;
2970 		goto fail;
2971 	}
2972 
2973 	ret = B_TRUE;
2974 fail:
2975 	nvme_free_cmd(cmd);
2976 	return (ret);
2977 }
2978 
2979 /*
2980  * Retrieve a specific log page. The contents of the log page request should
2981  * have already been validated by the system.
2982  */
2983 static boolean_t
2984 nvme_get_logpage(nvme_t *nvme, boolean_t user, nvme_ioctl_get_logpage_t *log,
2985     void **buf)
2986 {
2987 	nvme_cmd_t *cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
2988 	nvme_getlogpage_dw10_t dw10;
2989 	uint32_t offlo, offhi;
2990 	nvme_getlogpage_dw11_t dw11;
2991 	nvme_getlogpage_dw14_t dw14;
2992 	uint32_t ndw;
2993 	boolean_t ret = B_FALSE;
2994 
2995 	bzero(&dw10, sizeof (dw10));
2996 	bzero(&dw11, sizeof (dw11));
2997 	bzero(&dw14, sizeof (dw14));
2998 
2999 	cmd->nc_sqid = 0;
3000 	cmd->nc_callback = nvme_wakeup_cmd;
3001 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
3002 	cmd->nc_sqe.sqe_nsid = log->nigl_common.nioc_nsid;
3003 
3004 	if (user)
3005 		cmd->nc_flags |= NVME_CMD_F_DONTPANIC;
3006 
3007 	/*
3008 	 * The size field is the number of double words, but is a zeros based
3009 	 * value. We need to store our actual value minus one.
3010 	 */
3011 	ndw = (uint32_t)(log->nigl_len / 4);
3012 	ASSERT3U(ndw, >, 0);
3013 	ndw--;
3014 
3015 	dw10.b.lp_lid = bitx32(log->nigl_lid, 7, 0);
3016 	dw10.b.lp_lsp = bitx32(log->nigl_lsp, 6, 0);
3017 	dw10.b.lp_rae = bitx32(log->nigl_lsp, 0, 0);
3018 	dw10.b.lp_lnumdl = bitx32(ndw, 15, 0);
3019 
3020 	dw11.b.lp_numdu = bitx32(ndw, 31, 16);
3021 	dw11.b.lp_lsi = bitx32(log->nigl_lsi, 15, 0);
3022 
3023 	offlo = bitx64(log->nigl_offset, 31, 0);
3024 	offhi = bitx64(log->nigl_offset, 63, 32);
3025 
3026 	dw14.b.lp_csi = bitx32(log->nigl_csi, 7, 0);
3027 
3028 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
3029 	cmd->nc_sqe.sqe_cdw11 = dw11.r;
3030 	cmd->nc_sqe.sqe_cdw12 = offlo;
3031 	cmd->nc_sqe.sqe_cdw13 = offhi;
3032 	cmd->nc_sqe.sqe_cdw14 = dw14.r;
3033 
3034 	if (nvme_zalloc_dma(nvme, log->nigl_len, DDI_DMA_READ,
3035 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
3036 		dev_err(nvme->n_dip, CE_WARN,
3037 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
3038 		ret = nvme_ioctl_error(&log->nigl_common,
3039 		    NVME_IOCTL_E_NO_DMA_MEM, 0, 0);
3040 		goto fail;
3041 	}
3042 
3043 	if (nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah) != 0) {
3044 		ret = nvme_ioctl_error(&log->nigl_common,
3045 		    NVME_IOCTL_E_NO_DMA_MEM, 0, 0);
3046 		goto fail;
3047 	}
3048 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
3049 
3050 	if (!nvme_check_cmd_status_ioctl(cmd, &log->nigl_common)) {
3051 		if (!user) {
3052 			dev_err(nvme->n_dip, CE_WARN,
3053 			    "!GET LOG PAGE failed with sct = %x, sc = %x",
3054 			    cmd->nc_cqe.cqe_sf.sf_sct,
3055 			    cmd->nc_cqe.cqe_sf.sf_sc);
3056 		}
3057 		ret = B_FALSE;
3058 		goto fail;
3059 	}
3060 
3061 	*buf = kmem_alloc(log->nigl_len, KM_SLEEP);
3062 	bcopy(cmd->nc_dma->nd_memp, *buf, log->nigl_len);
3063 
3064 	ret = B_TRUE;
3065 fail:
3066 	nvme_free_cmd(cmd);
3067 
3068 	return (ret);
3069 }
3070 
3071 /*
3072  * This is an internal wrapper for when the kernel wants to get a log page.
3073  * Currently this assumes that the only thing that is required is the log page
3074  * ID. If more information is required, we'll be better served to just use the
3075  * general ioctl interface.
3076  */
3077 static boolean_t
3078 nvme_get_logpage_int(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
3079     uint8_t lid)
3080 {
3081 	const nvme_log_page_info_t *info = NULL;
3082 	nvme_ioctl_get_logpage_t log;
3083 	nvme_valid_ctrl_data_t data;
3084 	boolean_t bret;
3085 	bool var;
3086 
3087 	for (size_t i = 0; i < nvme_std_log_npages; i++) {
3088 		if (nvme_std_log_pages[i].nlpi_lid == lid &&
3089 		    nvme_std_log_pages[i].nlpi_csi == NVME_CSI_NVM) {
3090 			info = &nvme_std_log_pages[i];
3091 			break;
3092 		}
3093 	}
3094 
3095 	if (info == NULL) {
3096 		return (B_FALSE);
3097 	}
3098 
3099 	data.vcd_vers = &nvme->n_version;
3100 	data.vcd_id = nvme->n_idctl;
3101 	bzero(&log, sizeof (log));
3102 	log.nigl_common.nioc_nsid = NVME_NSID_BCAST;
3103 	log.nigl_csi = info->nlpi_csi;
3104 	log.nigl_lid = info->nlpi_lid;
3105 	log.nigl_len = nvme_log_page_info_size(info, &data, &var);
3106 
3107 	/*
3108 	 * We only support getting standard fixed-length log pages through the
3109 	 * kernel interface at this time. If a log page either has an unknown
3110 	 * size or has a variable length, then we cannot get it.
3111 	 */
3112 	if (log.nigl_len == 0 || var) {
3113 		return (B_FALSE);
3114 	}
3115 
3116 	bret = nvme_get_logpage(nvme, user, &log, buf);
3117 	if (!bret) {
3118 		return (B_FALSE);
3119 	}
3120 
3121 	*bufsize = log.nigl_len;
3122 	return (B_TRUE);
3123 }
3124 
3125 static boolean_t
3126 nvme_identify(nvme_t *nvme, boolean_t user, nvme_ioctl_identify_t *ioc,
3127     void **buf)
3128 {
3129 	nvme_cmd_t *cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
3130 	boolean_t ret = B_FALSE;
3131 	nvme_identify_dw10_t dw10;
3132 
3133 	ASSERT3P(buf, !=, NULL);
3134 
3135 	bzero(&dw10, sizeof (dw10));
3136 
3137 	cmd->nc_sqid = 0;
3138 	cmd->nc_callback = nvme_wakeup_cmd;
3139 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
3140 	cmd->nc_sqe.sqe_nsid = ioc->nid_common.nioc_nsid;
3141 
3142 	dw10.b.id_cns = bitx32(ioc->nid_cns, 7, 0);
3143 	dw10.b.id_cntid = bitx32(ioc->nid_ctrlid, 15, 0);
3144 
3145 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
3146 
3147 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
3148 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
3149 		dev_err(nvme->n_dip, CE_WARN,
3150 		    "!nvme_zalloc_dma failed for IDENTIFY");
3151 		ret = nvme_ioctl_error(&ioc->nid_common,
3152 		    NVME_IOCTL_E_NO_DMA_MEM, 0, 0);
3153 		goto fail;
3154 	}
3155 
3156 	if (cmd->nc_dma->nd_ncookie > 2) {
3157 		dev_err(nvme->n_dip, CE_WARN,
3158 		    "!too many DMA cookies for IDENTIFY");
3159 		NVME_BUMP_STAT(nvme, too_many_cookies);
3160 		ret = nvme_ioctl_error(&ioc->nid_common,
3161 		    NVME_IOCTL_E_BAD_PRP, 0, 0);
3162 		goto fail;
3163 	}
3164 
3165 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
3166 	if (cmd->nc_dma->nd_ncookie > 1) {
3167 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
3168 		    &cmd->nc_dma->nd_cookie);
3169 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
3170 		    cmd->nc_dma->nd_cookie.dmac_laddress;
3171 	}
3172 
3173 	if (user)
3174 		cmd->nc_flags |= NVME_CMD_F_DONTPANIC;
3175 
3176 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
3177 
3178 	if (!nvme_check_cmd_status_ioctl(cmd, &ioc->nid_common)) {
3179 		dev_err(nvme->n_dip, CE_WARN,
3180 		    "!IDENTIFY failed with sct = %x, sc = %x",
3181 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
3182 		ret = B_FALSE;
3183 		goto fail;
3184 	}
3185 
3186 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
3187 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
3188 	ret = B_TRUE;
3189 
3190 fail:
3191 	nvme_free_cmd(cmd);
3192 
3193 	return (ret);
3194 }
3195 
3196 static boolean_t
3197 nvme_identify_int(nvme_t *nvme, uint32_t nsid, uint8_t cns, void **buf)
3198 {
3199 	nvme_ioctl_identify_t id;
3200 
3201 	bzero(&id, sizeof (nvme_ioctl_identify_t));
3202 	id.nid_common.nioc_nsid = nsid;
3203 	id.nid_cns = cns;
3204 
3205 	return (nvme_identify(nvme, B_FALSE, &id, buf));
3206 }
3207 
3208 static int
3209 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
3210     uint32_t val, uint32_t *res)
3211 {
3212 	_NOTE(ARGUNUSED(nsid));
3213 	nvme_cmd_t *cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
3214 	int ret = EINVAL;
3215 
3216 	ASSERT(res != NULL);
3217 
3218 	cmd->nc_sqid = 0;
3219 	cmd->nc_callback = nvme_wakeup_cmd;
3220 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
3221 	cmd->nc_sqe.sqe_cdw10 = feature;
3222 	cmd->nc_sqe.sqe_cdw11 = val;
3223 
3224 	if (user)
3225 		cmd->nc_flags |= NVME_CMD_F_DONTPANIC;
3226 
3227 	switch (feature) {
3228 	case NVME_FEAT_WRITE_CACHE:
3229 		if (!nvme->n_write_cache_present)
3230 			goto fail;
3231 		break;
3232 
3233 	case NVME_FEAT_NQUEUES:
3234 		break;
3235 
3236 	default:
3237 		goto fail;
3238 	}
3239 
3240 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
3241 
3242 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
3243 		dev_err(nvme->n_dip, CE_WARN,
3244 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
3245 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
3246 		    cmd->nc_cqe.cqe_sf.sf_sc);
3247 		goto fail;
3248 	}
3249 
3250 	*res = cmd->nc_cqe.cqe_dw0;
3251 
3252 fail:
3253 	nvme_free_cmd(cmd);
3254 	return (ret);
3255 }
3256 
3257 static int
3258 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
3259 {
3260 	nvme_write_cache_t nwc = { 0 };
3261 
3262 	if (enable)
3263 		nwc.b.wc_wce = 1;
3264 
3265 	/*
3266 	 * We've seen some cases where this fails due to us being told we've
3267 	 * specified an invalid namespace when operating against the Xen xcp-ng
3268 	 * qemu NVMe virtual device. As such, we generally ensure that trying to
3269 	 * enable this doesn't lead us to panic. It's not completely clear why
3270 	 * specifying namespace zero here fails, but not when we're setting the
3271 	 * number of queues below.
3272 	 */
3273 	return (nvme_set_features(nvme, B_TRUE, 0, NVME_FEAT_WRITE_CACHE,
3274 	    nwc.r, &nwc.r));
3275 }
3276 
3277 static int
3278 nvme_set_nqueues(nvme_t *nvme)
3279 {
3280 	nvme_nqueues_t nq = { 0 };
3281 	int ret;
3282 
3283 	/*
3284 	 * The default is to allocate one completion queue per vector.
3285 	 */
3286 	if (nvme->n_completion_queues == -1)
3287 		nvme->n_completion_queues = nvme->n_intr_cnt;
3288 
3289 	/*
3290 	 * There is no point in having more completion queues than
3291 	 * interrupt vectors.
3292 	 */
3293 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
3294 	    nvme->n_intr_cnt);
3295 
3296 	/*
3297 	 * The default is to use one submission queue per completion queue.
3298 	 */
3299 	if (nvme->n_submission_queues == -1)
3300 		nvme->n_submission_queues = nvme->n_completion_queues;
3301 
3302 	/*
3303 	 * There is no point in having more completion queues than
3304 	 * submission queues.
3305 	 */
3306 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
3307 	    nvme->n_submission_queues);
3308 
3309 	ASSERT(nvme->n_submission_queues > 0);
3310 	ASSERT(nvme->n_completion_queues > 0);
3311 
3312 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
3313 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
3314 
3315 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
3316 	    &nq.r);
3317 
3318 	if (ret == 0) {
3319 		/*
3320 		 * Never use more than the requested number of queues.
3321 		 */
3322 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
3323 		    nq.b.nq_nsq + 1);
3324 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
3325 		    nq.b.nq_ncq + 1);
3326 	}
3327 
3328 	return (ret);
3329 }
3330 
3331 static int
3332 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
3333 {
3334 	nvme_cmd_t *cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
3335 	nvme_create_queue_dw10_t dw10 = { 0 };
3336 	nvme_create_cq_dw11_t c_dw11 = { 0 };
3337 	int ret;
3338 
3339 	dw10.b.q_qid = cq->ncq_id;
3340 	dw10.b.q_qsize = cq->ncq_nentry - 1;
3341 
3342 	c_dw11.b.cq_pc = 1;
3343 	c_dw11.b.cq_ien = 1;
3344 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
3345 
3346 	cmd->nc_sqid = 0;
3347 	cmd->nc_callback = nvme_wakeup_cmd;
3348 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
3349 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
3350 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
3351 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
3352 
3353 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
3354 
3355 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
3356 		dev_err(nvme->n_dip, CE_WARN,
3357 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
3358 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
3359 	}
3360 
3361 	nvme_free_cmd(cmd);
3362 
3363 	return (ret);
3364 }
3365 
3366 static int
3367 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
3368 {
3369 	nvme_cq_t *cq = qp->nq_cq;
3370 	nvme_cmd_t *cmd;
3371 	nvme_create_queue_dw10_t dw10 = { 0 };
3372 	nvme_create_sq_dw11_t s_dw11 = { 0 };
3373 	int ret;
3374 
3375 	/*
3376 	 * It is possible to have more qpairs than completion queues,
3377 	 * and when the idx > ncq_id, that completion queue is shared
3378 	 * and has already been created.
3379 	 */
3380 	if (idx <= cq->ncq_id &&
3381 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
3382 		return (DDI_FAILURE);
3383 
3384 	dw10.b.q_qid = idx;
3385 	dw10.b.q_qsize = qp->nq_nentry - 1;
3386 
3387 	s_dw11.b.sq_pc = 1;
3388 	s_dw11.b.sq_cqid = cq->ncq_id;
3389 
3390 	cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
3391 	cmd->nc_sqid = 0;
3392 	cmd->nc_callback = nvme_wakeup_cmd;
3393 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
3394 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
3395 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
3396 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
3397 
3398 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
3399 
3400 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
3401 		dev_err(nvme->n_dip, CE_WARN,
3402 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
3403 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
3404 	}
3405 
3406 	nvme_free_cmd(cmd);
3407 
3408 	return (ret);
3409 }
3410 
3411 static boolean_t
3412 nvme_reset(nvme_t *nvme, boolean_t quiesce)
3413 {
3414 	nvme_reg_csts_t csts;
3415 	int i;
3416 
3417 	nvme_put32(nvme, NVME_REG_CC, 0);
3418 
3419 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3420 	if (csts.b.csts_rdy == 1) {
3421 		nvme_put32(nvme, NVME_REG_CC, 0);
3422 
3423 		/*
3424 		 * The timeout value is from the Controller Capabilities
3425 		 * register (CAP.TO, section 3.1.1). This is the worst case
3426 		 * time to wait for CSTS.RDY to transition from 1 to 0 after
3427 		 * CC.EN transitions from 1 to 0.
3428 		 *
3429 		 * The timeout units are in 500 ms units, and we are delaying
3430 		 * in 50ms chunks, hence counting to n_timeout * 10.
3431 		 */
3432 		for (i = 0; i < nvme->n_timeout * 10; i++) {
3433 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3434 			if (csts.b.csts_rdy == 0)
3435 				break;
3436 
3437 			/*
3438 			 * Quiescing drivers should not use locks or timeouts,
3439 			 * so if this is the quiesce path, use a quiesce-safe
3440 			 * delay.
3441 			 */
3442 			if (quiesce) {
3443 				drv_usecwait(50000);
3444 			} else {
3445 				delay(drv_usectohz(50000));
3446 			}
3447 		}
3448 	}
3449 
3450 	nvme_put32(nvme, NVME_REG_AQA, 0);
3451 	nvme_put32(nvme, NVME_REG_ASQ, 0);
3452 	nvme_put32(nvme, NVME_REG_ACQ, 0);
3453 
3454 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3455 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
3456 }
3457 
3458 static void
3459 nvme_shutdown(nvme_t *nvme, boolean_t quiesce)
3460 {
3461 	nvme_reg_cc_t cc;
3462 	nvme_reg_csts_t csts;
3463 	int i;
3464 
3465 	cc.r = nvme_get32(nvme, NVME_REG_CC);
3466 	cc.b.cc_shn = NVME_CC_SHN_NORMAL;
3467 	nvme_put32(nvme, NVME_REG_CC, cc.r);
3468 
3469 	for (i = 0; i < 10; i++) {
3470 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3471 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
3472 			break;
3473 
3474 		if (quiesce) {
3475 			drv_usecwait(100000);
3476 		} else {
3477 			delay(drv_usectohz(100000));
3478 		}
3479 	}
3480 }
3481 
3482 /*
3483  * Return length of string without trailing spaces.
3484  */
3485 static int
3486 nvme_strlen(const char *str, int len)
3487 {
3488 	if (len <= 0)
3489 		return (0);
3490 
3491 	while (str[--len] == ' ')
3492 		;
3493 
3494 	return (++len);
3495 }
3496 
3497 static void
3498 nvme_config_min_block_size(nvme_t *nvme, char *model, char *val)
3499 {
3500 	ulong_t bsize = 0;
3501 	char *msg = "";
3502 
3503 	if (ddi_strtoul(val, NULL, 0, &bsize) != 0)
3504 		goto err;
3505 
3506 	if (!ISP2(bsize)) {
3507 		msg = ": not a power of 2";
3508 		goto err;
3509 	}
3510 
3511 	if (bsize < NVME_DEFAULT_MIN_BLOCK_SIZE) {
3512 		msg = ": too low";
3513 		goto err;
3514 	}
3515 
3516 	nvme->n_min_block_size = bsize;
3517 	return;
3518 
3519 err:
3520 	dev_err(nvme->n_dip, CE_WARN,
3521 	    "!nvme-config-list: ignoring invalid min-phys-block-size '%s' "
3522 	    "for model '%s'%s", val, model, msg);
3523 
3524 	nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3525 }
3526 
3527 static void
3528 nvme_config_boolean(nvme_t *nvme, char *model, char *name, char *val,
3529     boolean_t *b)
3530 {
3531 	if (strcmp(val, "on") == 0 ||
3532 	    strcmp(val, "true") == 0)
3533 		*b = B_TRUE;
3534 	else if (strcmp(val, "off") == 0 ||
3535 	    strcmp(val, "false") == 0)
3536 		*b = B_FALSE;
3537 	else
3538 		dev_err(nvme->n_dip, CE_WARN,
3539 		    "!nvme-config-list: invalid value for %s '%s'"
3540 		    " for model '%s', ignoring", name, val, model);
3541 }
3542 
3543 static void
3544 nvme_config_list(nvme_t *nvme)
3545 {
3546 	char	**config_list;
3547 	uint_t	nelem;
3548 	int	rv, i;
3549 
3550 	/*
3551 	 * We're following the pattern of 'sd-config-list' here, but extend it.
3552 	 * Instead of two we have three separate strings for "model", "fwrev",
3553 	 * and "name-value-list".
3554 	 */
3555 	rv = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, nvme->n_dip,
3556 	    DDI_PROP_DONTPASS, "nvme-config-list", &config_list, &nelem);
3557 
3558 	if (rv != DDI_PROP_SUCCESS) {
3559 		if (rv == DDI_PROP_CANNOT_DECODE) {
3560 			dev_err(nvme->n_dip, CE_WARN,
3561 			    "!nvme-config-list: cannot be decoded");
3562 		}
3563 
3564 		return;
3565 	}
3566 
3567 	if ((nelem % 3) != 0) {
3568 		dev_err(nvme->n_dip, CE_WARN, "!nvme-config-list: must be "
3569 		    "triplets of <model>/<fwrev>/<name-value-list> strings ");
3570 		goto out;
3571 	}
3572 
3573 	for (i = 0; i < nelem; i += 3) {
3574 		char	*model = config_list[i];
3575 		char	*fwrev = config_list[i + 1];
3576 		char	*nvp, *save_nv;
3577 		int	id_model_len, id_fwrev_len;
3578 
3579 		id_model_len = nvme_strlen(nvme->n_idctl->id_model,
3580 		    sizeof (nvme->n_idctl->id_model));
3581 
3582 		if (strlen(model) != id_model_len)
3583 			continue;
3584 
3585 		if (strncmp(model, nvme->n_idctl->id_model, id_model_len) != 0)
3586 			continue;
3587 
3588 		id_fwrev_len = nvme_strlen(nvme->n_idctl->id_fwrev,
3589 		    sizeof (nvme->n_idctl->id_fwrev));
3590 
3591 		if (strlen(fwrev) != 0) {
3592 			boolean_t match = B_FALSE;
3593 			char *fwr, *last_fw;
3594 
3595 			for (fwr = strtok_r(fwrev, ",", &last_fw);
3596 			    fwr != NULL;
3597 			    fwr = strtok_r(NULL, ",", &last_fw)) {
3598 				if (strlen(fwr) != id_fwrev_len)
3599 					continue;
3600 
3601 				if (strncmp(fwr, nvme->n_idctl->id_fwrev,
3602 				    id_fwrev_len) == 0)
3603 					match = B_TRUE;
3604 			}
3605 
3606 			if (!match)
3607 				continue;
3608 		}
3609 
3610 		/*
3611 		 * We should now have a comma-separated list of name:value
3612 		 * pairs.
3613 		 */
3614 		for (nvp = strtok_r(config_list[i + 2], ",", &save_nv);
3615 		    nvp != NULL; nvp = strtok_r(NULL, ",", &save_nv)) {
3616 			char	*name = nvp;
3617 			char	*val = strchr(nvp, ':');
3618 
3619 			if (val == NULL || name == val) {
3620 				dev_err(nvme->n_dip, CE_WARN,
3621 				    "!nvme-config-list: <name-value-list> "
3622 				    "for model '%s' is malformed", model);
3623 				goto out;
3624 			}
3625 
3626 			/*
3627 			 * Null-terminate 'name', move 'val' past ':' sep.
3628 			 */
3629 			*val++ = '\0';
3630 
3631 			/*
3632 			 * Process the name:val pairs that we know about.
3633 			 */
3634 			if (strcmp(name, "ignore-unknown-vendor-status") == 0) {
3635 				nvme_config_boolean(nvme, model, name, val,
3636 				    &nvme->n_ignore_unknown_vendor_status);
3637 			} else if (strcmp(name, "min-phys-block-size") == 0) {
3638 				nvme_config_min_block_size(nvme, model, val);
3639 			} else if (strcmp(name, "volatile-write-cache") == 0) {
3640 				nvme_config_boolean(nvme, model, name, val,
3641 				    &nvme->n_write_cache_enabled);
3642 			} else {
3643 				/*
3644 				 * Unknown 'name'.
3645 				 */
3646 				dev_err(nvme->n_dip, CE_WARN,
3647 				    "!nvme-config-list: unknown config '%s' "
3648 				    "for model '%s', ignoring", name, model);
3649 			}
3650 		}
3651 	}
3652 
3653 out:
3654 	ddi_prop_free(config_list);
3655 }
3656 
3657 static void
3658 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
3659 {
3660 	/*
3661 	 * Section 7.7 of the spec describes how to get a unique ID for
3662 	 * the controller: the vendor ID, the model name and the serial
3663 	 * number shall be unique when combined.
3664 	 *
3665 	 * If a namespace has no EUI64 we use the above and add the hex
3666 	 * namespace ID to get a unique ID for the namespace.
3667 	 */
3668 	char model[sizeof (nvme->n_idctl->id_model) + 1];
3669 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
3670 
3671 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
3672 	bcopy(nvme->n_idctl->id_serial, serial,
3673 	    sizeof (nvme->n_idctl->id_serial));
3674 
3675 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
3676 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
3677 
3678 	nvme_nsid2ns(nvme, nsid)->ns_devid = kmem_asprintf("%4X-%s-%s-%X",
3679 	    nvme->n_idctl->id_vid, model, serial, nsid);
3680 }
3681 
3682 static nvme_identify_nsid_list_t *
3683 nvme_update_nsid_list(nvme_t *nvme, int cns)
3684 {
3685 	nvme_identify_nsid_list_t *nslist;
3686 
3687 	/*
3688 	 * We currently don't handle cases where there are more than
3689 	 * 1024 active namespaces, requiring several IDENTIFY commands.
3690 	 */
3691 	if (nvme_identify_int(nvme, 0, cns, (void **)&nslist))
3692 		return (nslist);
3693 
3694 	return (NULL);
3695 }
3696 
3697 nvme_namespace_t *
3698 nvme_nsid2ns(nvme_t *nvme, uint32_t nsid)
3699 {
3700 	ASSERT3U(nsid, !=, 0);
3701 	ASSERT3U(nsid, <=, nvme->n_namespace_count);
3702 	return (&nvme->n_ns[nsid - 1]);
3703 }
3704 
3705 static boolean_t
3706 nvme_allocated_ns(nvme_namespace_t *ns)
3707 {
3708 	nvme_t *nvme = ns->ns_nvme;
3709 	uint32_t i;
3710 
3711 	ASSERT(nvme_mgmt_lock_held(nvme));
3712 
3713 	/*
3714 	 * If supported, update the list of allocated namespace IDs.
3715 	 */
3716 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) &&
3717 	    nvme->n_idctl->id_oacs.oa_nsmgmt != 0) {
3718 		nvme_identify_nsid_list_t *nslist = nvme_update_nsid_list(nvme,
3719 		    NVME_IDENTIFY_NSID_ALLOC_LIST);
3720 		boolean_t found = B_FALSE;
3721 
3722 		/*
3723 		 * When namespace management is supported, this really shouldn't
3724 		 * be NULL. Treat all namespaces as allocated if it is.
3725 		 */
3726 		if (nslist == NULL)
3727 			return (B_TRUE);
3728 
3729 		for (i = 0; i < ARRAY_SIZE(nslist->nl_nsid); i++) {
3730 			if (ns->ns_id == 0)
3731 				break;
3732 
3733 			if (ns->ns_id == nslist->nl_nsid[i])
3734 				found = B_TRUE;
3735 		}
3736 
3737 		kmem_free(nslist, NVME_IDENTIFY_BUFSIZE);
3738 		return (found);
3739 	} else {
3740 		/*
3741 		 * If namespace management isn't supported, report all
3742 		 * namespaces as allocated.
3743 		 */
3744 		return (B_TRUE);
3745 	}
3746 }
3747 
3748 static boolean_t
3749 nvme_active_ns(nvme_namespace_t *ns)
3750 {
3751 	nvme_t *nvme = ns->ns_nvme;
3752 	uint64_t *ptr;
3753 	uint32_t i;
3754 
3755 	ASSERT(nvme_mgmt_lock_held(nvme));
3756 
3757 	/*
3758 	 * If supported, update the list of active namespace IDs.
3759 	 */
3760 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) {
3761 		nvme_identify_nsid_list_t *nslist = nvme_update_nsid_list(nvme,
3762 		    NVME_IDENTIFY_NSID_LIST);
3763 		boolean_t found = B_FALSE;
3764 
3765 		/*
3766 		 * When namespace management is supported, this really shouldn't
3767 		 * be NULL. Treat all namespaces as allocated if it is.
3768 		 */
3769 		if (nslist == NULL)
3770 			return (B_TRUE);
3771 
3772 		for (i = 0; i < ARRAY_SIZE(nslist->nl_nsid); i++) {
3773 			if (ns->ns_id == 0)
3774 				break;
3775 
3776 			if (ns->ns_id == nslist->nl_nsid[i])
3777 				found = B_TRUE;
3778 		}
3779 
3780 		kmem_free(nslist, NVME_IDENTIFY_BUFSIZE);
3781 		return (found);
3782 	}
3783 
3784 	/*
3785 	 * Workaround for revision 1.0:
3786 	 * Check whether the IDENTIFY NAMESPACE data is zero-filled.
3787 	 */
3788 	for (ptr = (uint64_t *)ns->ns_idns;
3789 	    ptr != (uint64_t *)(ns->ns_idns + 1);
3790 	    ptr++) {
3791 		if (*ptr != 0) {
3792 			return (B_TRUE);
3793 		}
3794 	}
3795 
3796 	return (B_FALSE);
3797 }
3798 
3799 static int
3800 nvme_init_ns(nvme_t *nvme, uint32_t nsid)
3801 {
3802 	nvme_namespace_t *ns = nvme_nsid2ns(nvme, nsid);
3803 	nvme_identify_nsid_t *idns;
3804 	boolean_t was_ignored;
3805 	int last_rp;
3806 
3807 	ns->ns_nvme = nvme;
3808 
3809 	ASSERT(nvme_mgmt_lock_held(nvme));
3810 
3811 	/*
3812 	 * Because we might rescan a namespace and this will fail after boot
3813 	 * that'd leave us in a bad spot. We need to do something about this
3814 	 * longer term, but it's not clear how exactly we would recover right
3815 	 * now.
3816 	 */
3817 	if (!nvme_identify_int(nvme, nsid, NVME_IDENTIFY_NSID,
3818 	    (void **)&idns)) {
3819 		dev_err(nvme->n_dip, CE_WARN,
3820 		    "!failed to identify namespace %d", nsid);
3821 		return (DDI_FAILURE);
3822 	}
3823 
3824 	if (ns->ns_idns != NULL)
3825 		kmem_free(ns->ns_idns, sizeof (nvme_identify_nsid_t));
3826 
3827 	ns->ns_idns = idns;
3828 	ns->ns_id = nsid;
3829 
3830 	was_ignored = ns->ns_ignore;
3831 
3832 	ns->ns_allocated = nvme_allocated_ns(ns);
3833 	ns->ns_active = nvme_active_ns(ns);
3834 
3835 	ns->ns_block_count = idns->id_nsize;
3836 	ns->ns_block_size =
3837 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
3838 	ns->ns_best_block_size = ns->ns_block_size;
3839 
3840 	/*
3841 	 * Get the EUI64 if present.
3842 	 */
3843 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
3844 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
3845 
3846 	/*
3847 	 * Get the NGUID if present.
3848 	 */
3849 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2))
3850 		bcopy(idns->id_nguid, ns->ns_nguid, sizeof (ns->ns_nguid));
3851 
3852 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3853 	if (*(uint64_t *)ns->ns_eui64 == 0)
3854 		nvme_prepare_devid(nvme, ns->ns_id);
3855 
3856 	(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%u", ns->ns_id);
3857 
3858 	/*
3859 	 * Find the LBA format with no metadata and the best relative
3860 	 * performance. A value of 3 means "degraded", 0 is best.
3861 	 */
3862 	last_rp = 3;
3863 	for (int j = 0; j <= idns->id_nlbaf; j++) {
3864 		if (idns->id_lbaf[j].lbaf_lbads == 0)
3865 			break;
3866 		if (idns->id_lbaf[j].lbaf_ms != 0)
3867 			continue;
3868 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
3869 			continue;
3870 		last_rp = idns->id_lbaf[j].lbaf_rp;
3871 		ns->ns_best_block_size =
3872 		    1 << idns->id_lbaf[j].lbaf_lbads;
3873 	}
3874 
3875 	if (ns->ns_best_block_size < nvme->n_min_block_size)
3876 		ns->ns_best_block_size = nvme->n_min_block_size;
3877 
3878 	was_ignored = ns->ns_ignore;
3879 
3880 	/*
3881 	 * We currently don't support namespaces that are inactive, or use
3882 	 * either:
3883 	 * - protection information
3884 	 * - illegal block size (< 512)
3885 	 */
3886 	if (!ns->ns_active) {
3887 		ns->ns_ignore = B_TRUE;
3888 	} else if (idns->id_dps.dp_pinfo) {
3889 		dev_err(nvme->n_dip, CE_WARN,
3890 		    "!ignoring namespace %d, unsupported feature: "
3891 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
3892 		ns->ns_ignore = B_TRUE;
3893 	} else if (ns->ns_block_size < 512) {
3894 		dev_err(nvme->n_dip, CE_WARN,
3895 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
3896 		    nsid, (uint64_t)ns->ns_block_size);
3897 		ns->ns_ignore = B_TRUE;
3898 	} else {
3899 		ns->ns_ignore = B_FALSE;
3900 	}
3901 
3902 	/*
3903 	 * Keep a count of namespaces which are attachable.
3904 	 * See comments in nvme_bd_driveinfo() to understand its effect.
3905 	 */
3906 	if (was_ignored) {
3907 		/*
3908 		 * Previously ignored, but now not. Count it.
3909 		 */
3910 		if (!ns->ns_ignore)
3911 			nvme->n_namespaces_attachable++;
3912 	} else {
3913 		/*
3914 		 * Wasn't ignored previously, but now needs to be.
3915 		 * Discount it.
3916 		 */
3917 		if (ns->ns_ignore)
3918 			nvme->n_namespaces_attachable--;
3919 	}
3920 
3921 	return (DDI_SUCCESS);
3922 }
3923 
3924 static boolean_t
3925 nvme_attach_ns(nvme_t *nvme, nvme_ioctl_common_t *com)
3926 {
3927 	nvme_namespace_t *ns = nvme_nsid2ns(nvme, com->nioc_nsid);
3928 	int ret;
3929 
3930 	ASSERT(nvme_mgmt_lock_held(nvme));
3931 
3932 	if (ns->ns_ignore) {
3933 		return (nvme_ioctl_error(com, NVME_IOCTL_E_UNSUP_ATTACH_NS,
3934 		    0, 0));
3935 	}
3936 
3937 	if (ns->ns_bd_hdl == NULL) {
3938 		bd_ops_t ops = nvme_bd_ops;
3939 
3940 		if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3941 			ops.o_free_space = NULL;
3942 
3943 		ns->ns_bd_hdl = bd_alloc_handle(ns, &ops, &nvme->n_prp_dma_attr,
3944 		    KM_SLEEP);
3945 
3946 		if (ns->ns_bd_hdl == NULL) {
3947 			dev_err(nvme->n_dip, CE_WARN, "!Failed to get blkdev "
3948 			    "handle for namespace id %u", com->nioc_nsid);
3949 			return (nvme_ioctl_error(com,
3950 			    NVME_IOCTL_E_BLKDEV_ATTACH, 0, 0));
3951 		}
3952 	}
3953 
3954 	nvme_mgmt_bd_start(nvme);
3955 	ret = bd_attach_handle(nvme->n_dip, ns->ns_bd_hdl);
3956 	nvme_mgmt_bd_end(nvme);
3957 	if (ret != DDI_SUCCESS) {
3958 		return (nvme_ioctl_error(com, NVME_IOCTL_E_BLKDEV_ATTACH,
3959 		    0, 0));
3960 	}
3961 
3962 	ns->ns_attached = B_TRUE;
3963 
3964 	return (B_TRUE);
3965 }
3966 
3967 static boolean_t
3968 nvme_detach_ns(nvme_t *nvme, nvme_ioctl_common_t *com)
3969 {
3970 	nvme_namespace_t *ns = nvme_nsid2ns(nvme, com->nioc_nsid);
3971 	int ret;
3972 
3973 	ASSERT(nvme_mgmt_lock_held(nvme));
3974 
3975 	if (ns->ns_ignore || !ns->ns_attached)
3976 		return (B_TRUE);
3977 
3978 	nvme_mgmt_bd_start(nvme);
3979 	ASSERT3P(ns->ns_bd_hdl, !=, NULL);
3980 	ret = bd_detach_handle(ns->ns_bd_hdl);
3981 	nvme_mgmt_bd_end(nvme);
3982 
3983 	if (ret != DDI_SUCCESS) {
3984 		return (nvme_ioctl_error(com, NVME_IOCTL_E_BLKDEV_DETACH, 0,
3985 		    0));
3986 	}
3987 
3988 	ns->ns_attached = B_FALSE;
3989 	return (B_TRUE);
3990 
3991 }
3992 
3993 /*
3994  * Rescan the namespace information associated with the namespaces indicated by
3995  * ioc. They should not be attached to blkdev right now.
3996  */
3997 static void
3998 nvme_rescan_ns(nvme_t *nvme, uint32_t nsid)
3999 {
4000 	ASSERT(nvme_mgmt_lock_held(nvme));
4001 	ASSERT3U(nsid, !=, 0);
4002 
4003 	if (nsid != NVME_NSID_BCAST) {
4004 		nvme_namespace_t *ns = nvme_nsid2ns(nvme, nsid);
4005 
4006 		ASSERT3U(ns->ns_attached, ==, B_FALSE);
4007 		(void) nvme_init_ns(nvme, nsid);
4008 		return;
4009 	}
4010 
4011 	for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) {
4012 		nvme_namespace_t *ns = nvme_nsid2ns(nvme, i);
4013 
4014 		ASSERT3U(ns->ns_attached, ==, B_FALSE);
4015 		(void) nvme_init_ns(nvme, i);
4016 	}
4017 }
4018 
4019 typedef struct nvme_quirk_table {
4020 	uint16_t nq_vendor_id;
4021 	uint16_t nq_device_id;
4022 	nvme_quirk_t nq_quirks;
4023 } nvme_quirk_table_t;
4024 
4025 static const nvme_quirk_table_t nvme_quirks[] = {
4026 	{ 0x1987, 0x5018, NVME_QUIRK_START_CID },	/* Phison E18 */
4027 };
4028 
4029 static void
4030 nvme_detect_quirks(nvme_t *nvme)
4031 {
4032 	for (uint_t i = 0; i < ARRAY_SIZE(nvme_quirks); i++) {
4033 		const nvme_quirk_table_t *nqt = &nvme_quirks[i];
4034 
4035 		if (nqt->nq_vendor_id == nvme->n_vendor_id &&
4036 		    nqt->nq_device_id == nvme->n_device_id) {
4037 			nvme->n_quirks = nqt->nq_quirks;
4038 			return;
4039 		}
4040 	}
4041 }
4042 
4043 static int
4044 nvme_init(nvme_t *nvme)
4045 {
4046 	nvme_reg_cc_t cc = { 0 };
4047 	nvme_reg_aqa_t aqa = { 0 };
4048 	nvme_reg_asq_t asq = { 0 };
4049 	nvme_reg_acq_t acq = { 0 };
4050 	nvme_reg_cap_t cap;
4051 	nvme_reg_vs_t vs;
4052 	nvme_reg_csts_t csts;
4053 	int i = 0;
4054 	uint16_t nqueues;
4055 	uint_t tq_threads;
4056 	char model[sizeof (nvme->n_idctl->id_model) + 1];
4057 	char *vendor, *product;
4058 	uint32_t nsid;
4059 
4060 	/* Check controller version */
4061 	vs.r = nvme_get32(nvme, NVME_REG_VS);
4062 	nvme->n_version.v_major = vs.b.vs_mjr;
4063 	nvme->n_version.v_minor = vs.b.vs_mnr;
4064 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d\n",
4065 	    nvme->n_version.v_major, nvme->n_version.v_minor);
4066 
4067 	if (nvme->n_version.v_major > nvme_version_major) {
4068 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
4069 		    nvme_version_major);
4070 		if (nvme->n_strict_version)
4071 			goto fail;
4072 	}
4073 
4074 	/* retrieve controller configuration */
4075 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4076 
4077 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
4078 		dev_err(nvme->n_dip, CE_WARN,
4079 		    "!NVM command set not supported by hardware");
4080 		goto fail;
4081 	}
4082 
4083 	nvme->n_nssr_supported = cap.b.cap_nssrs;
4084 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
4085 	nvme->n_timeout = cap.b.cap_to;
4086 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
4087 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
4088 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
4089 
4090 	/*
4091 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
4092 	 * the base page size of 4k (1<<12), so add 12 here to get the real
4093 	 * page size value.
4094 	 */
4095 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
4096 	    cap.b.cap_mpsmax + 12);
4097 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
4098 
4099 	/*
4100 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
4101 	 */
4102 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
4103 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
4104 
4105 	/*
4106 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
4107 	 * Maxxfer may be increased after we identified the controller limits.
4108 	 */
4109 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
4110 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
4111 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
4112 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
4113 
4114 	/*
4115 	 * Reset controller if it's still in ready state.
4116 	 */
4117 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
4118 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
4119 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
4120 		nvme->n_dead = B_TRUE;
4121 		goto fail;
4122 	}
4123 
4124 	/*
4125 	 * Create the cq array with one completion queue to be assigned
4126 	 * to the admin queue pair and a limited number of taskqs (4).
4127 	 */
4128 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
4129 	    DDI_SUCCESS) {
4130 		dev_err(nvme->n_dip, CE_WARN,
4131 		    "!failed to pre-allocate admin completion queue");
4132 		goto fail;
4133 	}
4134 	/*
4135 	 * Create the admin queue pair.
4136 	 */
4137 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
4138 	    != DDI_SUCCESS) {
4139 		dev_err(nvme->n_dip, CE_WARN,
4140 		    "!unable to allocate admin qpair");
4141 		goto fail;
4142 	}
4143 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
4144 	nvme->n_ioq[0] = nvme->n_adminq;
4145 
4146 	if (nvme->n_quirks & NVME_QUIRK_START_CID)
4147 		nvme->n_adminq->nq_next_cmd++;
4148 
4149 	nvme->n_progress |= NVME_ADMIN_QUEUE;
4150 
4151 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
4152 	    "admin-queue-len", nvme->n_admin_queue_len);
4153 
4154 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
4155 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
4156 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
4157 
4158 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
4159 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
4160 
4161 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
4162 	nvme_put64(nvme, NVME_REG_ASQ, asq);
4163 	nvme_put64(nvme, NVME_REG_ACQ, acq);
4164 
4165 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
4166 	cc.b.cc_css = 0;	/* use NVM command set */
4167 	cc.b.cc_mps = nvme->n_pageshift - 12;
4168 	cc.b.cc_shn = 0;	/* no shutdown in progress */
4169 	cc.b.cc_en = 1;		/* enable controller */
4170 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
4171 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
4172 
4173 	nvme_put32(nvme, NVME_REG_CC, cc.r);
4174 
4175 	/*
4176 	 * Wait for the controller to become ready.
4177 	 */
4178 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
4179 	if (csts.b.csts_rdy == 0) {
4180 		for (i = 0; i != nvme->n_timeout * 10; i++) {
4181 			delay(drv_usectohz(50000));
4182 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
4183 
4184 			if (csts.b.csts_cfs == 1) {
4185 				dev_err(nvme->n_dip, CE_WARN,
4186 				    "!controller fatal status at init");
4187 				ddi_fm_service_impact(nvme->n_dip,
4188 				    DDI_SERVICE_LOST);
4189 				nvme->n_dead = B_TRUE;
4190 				goto fail;
4191 			}
4192 
4193 			if (csts.b.csts_rdy == 1)
4194 				break;
4195 		}
4196 	}
4197 
4198 	if (csts.b.csts_rdy == 0) {
4199 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
4200 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
4201 		nvme->n_dead = B_TRUE;
4202 		goto fail;
4203 	}
4204 
4205 	/*
4206 	 * Assume an abort command limit of 1. We'll destroy and re-init
4207 	 * that later when we know the true abort command limit.
4208 	 */
4209 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
4210 
4211 	/*
4212 	 * Set up initial interrupt for admin queue.
4213 	 */
4214 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
4215 	    != DDI_SUCCESS) &&
4216 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
4217 	    != DDI_SUCCESS) &&
4218 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
4219 	    != DDI_SUCCESS)) {
4220 		dev_err(nvme->n_dip, CE_WARN,
4221 		    "!failed to set up initial interrupt");
4222 		goto fail;
4223 	}
4224 
4225 	/*
4226 	 * Post an asynchronous event command to catch errors.
4227 	 * We assume the asynchronous events are supported as required by
4228 	 * specification (Figure 40 in section 5 of NVMe 1.2).
4229 	 * However, since at least qemu does not follow the specification,
4230 	 * we need a mechanism to protect ourselves.
4231 	 */
4232 	nvme->n_async_event_supported = B_TRUE;
4233 	nvme_async_event(nvme);
4234 
4235 	/*
4236 	 * Identify Controller
4237 	 */
4238 	if (!nvme_identify_int(nvme, 0, NVME_IDENTIFY_CTRL,
4239 	    (void **)&nvme->n_idctl)) {
4240 		dev_err(nvme->n_dip, CE_WARN, "!failed to identify controller");
4241 		goto fail;
4242 	}
4243 
4244 	/*
4245 	 * Get the common namespace information if available. If not, we use the
4246 	 * information for nsid 1.
4247 	 */
4248 	if (nvme_ctrl_atleast(nvme, &nvme_vers_1v2) &&
4249 	    nvme->n_idctl->id_oacs.oa_nsmgmt != 0) {
4250 		nsid = NVME_NSID_BCAST;
4251 	} else {
4252 		nsid = 1;
4253 	}
4254 
4255 	if (!nvme_identify_int(nvme, nsid, NVME_IDENTIFY_NSID,
4256 	    (void **)&nvme->n_idcomns)) {
4257 		dev_err(nvme->n_dip, CE_WARN, "!failed to identify common "
4258 		    "namespace information");
4259 		goto fail;
4260 	}
4261 	/*
4262 	 * Process nvme-config-list (if present) in nvme.conf.
4263 	 */
4264 	nvme_config_list(nvme);
4265 
4266 	/*
4267 	 * Get Vendor & Product ID
4268 	 */
4269 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
4270 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
4271 	sata_split_model(model, &vendor, &product);
4272 
4273 	if (vendor == NULL)
4274 		nvme->n_vendor = strdup("NVMe");
4275 	else
4276 		nvme->n_vendor = strdup(vendor);
4277 
4278 	nvme->n_product = strdup(product);
4279 
4280 	/*
4281 	 * Get controller limits.
4282 	 */
4283 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
4284 	    MIN(nvme->n_admin_queue_len / 10,
4285 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
4286 
4287 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
4288 	    "async-event-limit", nvme->n_async_event_limit);
4289 
4290 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
4291 
4292 	/*
4293 	 * Reinitialize the semaphore with the true abort command limit
4294 	 * supported by the hardware. It's not necessary to disable interrupts
4295 	 * as only command aborts use the semaphore, and no commands are
4296 	 * executed or aborted while we're here.
4297 	 */
4298 	sema_destroy(&nvme->n_abort_sema);
4299 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
4300 	    SEMA_DRIVER, NULL);
4301 
4302 	nvme->n_progress |= NVME_CTRL_LIMITS;
4303 
4304 	if (nvme->n_idctl->id_mdts == 0)
4305 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
4306 	else
4307 		nvme->n_max_data_transfer_size =
4308 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
4309 
4310 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
4311 
4312 	/*
4313 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
4314 	 * Chained PRPs are currently unsupported.
4315 	 *
4316 	 * This is a no-op on hardware which doesn't support a transfer size
4317 	 * big enough to require chained PRPs.
4318 	 */
4319 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
4320 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
4321 
4322 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
4323 
4324 	/*
4325 	 * Make sure the minimum/maximum queue entry sizes are not
4326 	 * larger/smaller than the default.
4327 	 */
4328 
4329 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
4330 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
4331 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
4332 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
4333 		goto fail;
4334 
4335 	/*
4336 	 * Check for the presence of a Volatile Write Cache. If present,
4337 	 * enable or disable based on the value of the property
4338 	 * volatile-write-cache-enable (default is enabled).
4339 	 */
4340 	nvme->n_write_cache_present =
4341 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
4342 
4343 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
4344 	    "volatile-write-cache-present",
4345 	    nvme->n_write_cache_present ? 1 : 0);
4346 
4347 	if (!nvme->n_write_cache_present) {
4348 		nvme->n_write_cache_enabled = B_FALSE;
4349 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
4350 	    != 0) {
4351 		dev_err(nvme->n_dip, CE_WARN,
4352 		    "!failed to %sable volatile write cache",
4353 		    nvme->n_write_cache_enabled ? "en" : "dis");
4354 		/*
4355 		 * Assume the cache is (still) enabled.
4356 		 */
4357 		nvme->n_write_cache_enabled = B_TRUE;
4358 	}
4359 
4360 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
4361 	    "volatile-write-cache-enable",
4362 	    nvme->n_write_cache_enabled ? 1 : 0);
4363 
4364 	/*
4365 	 * Get number of supported namespaces and allocate namespace array.
4366 	 */
4367 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
4368 
4369 	if (nvme->n_namespace_count == 0) {
4370 		dev_err(nvme->n_dip, CE_WARN,
4371 		    "!controllers without namespaces are not supported");
4372 		goto fail;
4373 	}
4374 
4375 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
4376 		dev_err(nvme->n_dip, CE_WARN,
4377 		    "!too many namespaces: %d, limiting to %d\n",
4378 		    nvme->n_namespace_count, NVME_MINOR_MAX);
4379 		nvme->n_namespace_count = NVME_MINOR_MAX;
4380 	}
4381 
4382 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
4383 	    nvme->n_namespace_count, KM_SLEEP);
4384 
4385 	/*
4386 	 * Try to set up MSI/MSI-X interrupts.
4387 	 */
4388 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
4389 	    != 0) {
4390 		nvme_release_interrupts(nvme);
4391 
4392 		nqueues = MIN(UINT16_MAX, ncpus);
4393 
4394 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
4395 		    nqueues) != DDI_SUCCESS) &&
4396 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
4397 		    nqueues) != DDI_SUCCESS)) {
4398 			dev_err(nvme->n_dip, CE_WARN,
4399 			    "!failed to set up MSI/MSI-X interrupts");
4400 			goto fail;
4401 		}
4402 	}
4403 
4404 	/*
4405 	 * Create I/O queue pairs.
4406 	 */
4407 
4408 	if (nvme_set_nqueues(nvme) != 0) {
4409 		dev_err(nvme->n_dip, CE_WARN,
4410 		    "!failed to set number of I/O queues to %d",
4411 		    nvme->n_intr_cnt);
4412 		goto fail;
4413 	}
4414 
4415 	/*
4416 	 * Reallocate I/O queue array
4417 	 */
4418 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
4419 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
4420 	    (nvme->n_submission_queues + 1), KM_SLEEP);
4421 	nvme->n_ioq[0] = nvme->n_adminq;
4422 
4423 	/*
4424 	 * There should always be at least as many submission queues
4425 	 * as completion queues.
4426 	 */
4427 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
4428 
4429 	nvme->n_ioq_count = nvme->n_submission_queues;
4430 
4431 	nvme->n_io_squeue_len =
4432 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
4433 
4434 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
4435 	    nvme->n_io_squeue_len);
4436 
4437 	/*
4438 	 * Pre-allocate completion queues.
4439 	 * When there are the same number of submission and completion
4440 	 * queues there is no value in having a larger completion
4441 	 * queue length.
4442 	 */
4443 	if (nvme->n_submission_queues == nvme->n_completion_queues)
4444 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
4445 		    nvme->n_io_squeue_len);
4446 
4447 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
4448 	    nvme->n_max_queue_entries);
4449 
4450 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
4451 	    nvme->n_io_cqueue_len);
4452 
4453 	/*
4454 	 * Assign the equal quantity of taskq threads to each completion
4455 	 * queue, capping the total number of threads to the number
4456 	 * of CPUs.
4457 	 */
4458 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
4459 
4460 	/*
4461 	 * In case the calculation above is zero, we need at least one
4462 	 * thread per completion queue.
4463 	 */
4464 	tq_threads = MAX(1, tq_threads);
4465 
4466 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
4467 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
4468 		dev_err(nvme->n_dip, CE_WARN,
4469 		    "!failed to pre-allocate completion queues");
4470 		goto fail;
4471 	}
4472 
4473 	/*
4474 	 * If we use less completion queues than interrupt vectors return
4475 	 * some of the interrupt vectors back to the system.
4476 	 */
4477 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
4478 		nvme_release_interrupts(nvme);
4479 
4480 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
4481 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
4482 			dev_err(nvme->n_dip, CE_WARN,
4483 			    "!failed to reduce number of interrupts");
4484 			goto fail;
4485 		}
4486 	}
4487 
4488 	/*
4489 	 * Alloc & register I/O queue pairs
4490 	 */
4491 
4492 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
4493 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
4494 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
4495 			dev_err(nvme->n_dip, CE_WARN,
4496 			    "!unable to allocate I/O qpair %d", i);
4497 			goto fail;
4498 		}
4499 
4500 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
4501 			dev_err(nvme->n_dip, CE_WARN,
4502 			    "!unable to create I/O qpair %d", i);
4503 			goto fail;
4504 		}
4505 	}
4506 
4507 	/*
4508 	 * Post more asynchronous events commands to reduce event reporting
4509 	 * latency as suggested by the spec.
4510 	 */
4511 	if (nvme->n_async_event_supported) {
4512 		for (i = 1; i != nvme->n_async_event_limit; i++)
4513 			nvme_async_event(nvme);
4514 	}
4515 
4516 	return (DDI_SUCCESS);
4517 
4518 fail:
4519 	(void) nvme_reset(nvme, B_FALSE);
4520 	return (DDI_FAILURE);
4521 }
4522 
4523 static uint_t
4524 nvme_intr(caddr_t arg1, caddr_t arg2)
4525 {
4526 	nvme_t *nvme = (nvme_t *)arg1;
4527 	int inum = (int)(uintptr_t)arg2;
4528 	int ccnt = 0;
4529 	int qnum;
4530 
4531 	if (inum >= nvme->n_intr_cnt)
4532 		return (DDI_INTR_UNCLAIMED);
4533 
4534 	if (nvme->n_dead) {
4535 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
4536 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
4537 	}
4538 
4539 	/*
4540 	 * The interrupt vector a queue uses is calculated as queue_idx %
4541 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
4542 	 * in steps of n_intr_cnt to process all queues using this vector.
4543 	 */
4544 	for (qnum = inum;
4545 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
4546 	    qnum += nvme->n_intr_cnt) {
4547 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
4548 	}
4549 
4550 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
4551 }
4552 
4553 static void
4554 nvme_release_interrupts(nvme_t *nvme)
4555 {
4556 	int i;
4557 
4558 	for (i = 0; i < nvme->n_intr_cnt; i++) {
4559 		if (nvme->n_inth[i] == NULL)
4560 			break;
4561 
4562 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
4563 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
4564 		else
4565 			(void) ddi_intr_disable(nvme->n_inth[i]);
4566 
4567 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
4568 		(void) ddi_intr_free(nvme->n_inth[i]);
4569 	}
4570 
4571 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
4572 	nvme->n_inth = NULL;
4573 	nvme->n_inth_sz = 0;
4574 
4575 	nvme->n_progress &= ~NVME_INTERRUPTS;
4576 }
4577 
4578 static int
4579 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
4580 {
4581 	int nintrs, navail, count;
4582 	int ret;
4583 	int i;
4584 
4585 	if (nvme->n_intr_types == 0) {
4586 		ret = ddi_intr_get_supported_types(nvme->n_dip,
4587 		    &nvme->n_intr_types);
4588 		if (ret != DDI_SUCCESS) {
4589 			dev_err(nvme->n_dip, CE_WARN,
4590 			    "!%s: ddi_intr_get_supported types failed",
4591 			    __func__);
4592 			return (ret);
4593 		}
4594 #ifdef __x86
4595 		if (get_hwenv() == HW_VMWARE)
4596 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
4597 #endif
4598 	}
4599 
4600 	if ((nvme->n_intr_types & intr_type) == 0)
4601 		return (DDI_FAILURE);
4602 
4603 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
4604 	if (ret != DDI_SUCCESS) {
4605 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
4606 		    __func__);
4607 		return (ret);
4608 	}
4609 
4610 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
4611 	if (ret != DDI_SUCCESS) {
4612 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
4613 		    __func__);
4614 		return (ret);
4615 	}
4616 
4617 	/* We want at most one interrupt per queue pair. */
4618 	if (navail > nqpairs)
4619 		navail = nqpairs;
4620 
4621 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
4622 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
4623 
4624 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
4625 	    &count, 0);
4626 	if (ret != DDI_SUCCESS) {
4627 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
4628 		    __func__);
4629 		goto fail;
4630 	}
4631 
4632 	nvme->n_intr_cnt = count;
4633 
4634 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
4635 	if (ret != DDI_SUCCESS) {
4636 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
4637 		    __func__);
4638 		goto fail;
4639 	}
4640 
4641 	for (i = 0; i < count; i++) {
4642 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
4643 		    (void *)nvme, (void *)(uintptr_t)i);
4644 		if (ret != DDI_SUCCESS) {
4645 			dev_err(nvme->n_dip, CE_WARN,
4646 			    "!%s: ddi_intr_add_handler failed", __func__);
4647 			goto fail;
4648 		}
4649 	}
4650 
4651 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
4652 
4653 	for (i = 0; i < count; i++) {
4654 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
4655 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
4656 		else
4657 			ret = ddi_intr_enable(nvme->n_inth[i]);
4658 
4659 		if (ret != DDI_SUCCESS) {
4660 			dev_err(nvme->n_dip, CE_WARN,
4661 			    "!%s: enabling interrupt %d failed", __func__, i);
4662 			goto fail;
4663 		}
4664 	}
4665 
4666 	nvme->n_intr_type = intr_type;
4667 
4668 	nvme->n_progress |= NVME_INTERRUPTS;
4669 
4670 	return (DDI_SUCCESS);
4671 
4672 fail:
4673 	nvme_release_interrupts(nvme);
4674 
4675 	return (ret);
4676 }
4677 
4678 static int
4679 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
4680 {
4681 	_NOTE(ARGUNUSED(arg));
4682 
4683 	pci_ereport_post(dip, fm_error, NULL);
4684 	return (fm_error->fme_status);
4685 }
4686 
4687 static void
4688 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a,
4689     void *b)
4690 {
4691 	nvme_t *nvme = a;
4692 
4693 	nvme_ctrl_mark_dead(nvme, B_TRUE);
4694 
4695 	/*
4696 	 * Fail all outstanding commands, including those in the admin queue
4697 	 * (queue 0).
4698 	 */
4699 	for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) {
4700 		nvme_qpair_t *qp = nvme->n_ioq[i];
4701 
4702 		mutex_enter(&qp->nq_mutex);
4703 		for (size_t j = 0; j < qp->nq_nentry; j++) {
4704 			nvme_cmd_t *cmd = qp->nq_cmd[j];
4705 			nvme_cmd_t *u_cmd;
4706 
4707 			if (cmd == NULL) {
4708 				continue;
4709 			}
4710 
4711 			/*
4712 			 * Since we have the queue lock held the entire time we
4713 			 * iterate over it, it's not possible for the queue to
4714 			 * change underneath us. Thus, we don't need to check
4715 			 * that the return value of nvme_unqueue_cmd matches the
4716 			 * requested cmd to unqueue.
4717 			 */
4718 			u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
4719 			taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq,
4720 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
4721 
4722 			ASSERT3P(u_cmd, ==, cmd);
4723 		}
4724 		mutex_exit(&qp->nq_mutex);
4725 	}
4726 }
4727 
4728 /*
4729  * Open minor management
4730  */
4731 static int
4732 nvme_minor_comparator(const void *l, const void *r)
4733 {
4734 	const nvme_minor_t *lm = l;
4735 	const nvme_minor_t *rm = r;
4736 
4737 	if (lm->nm_minor > rm->nm_minor) {
4738 		return (1);
4739 	} else if (lm->nm_minor < rm->nm_minor) {
4740 		return (-1);
4741 	} else {
4742 		return (0);
4743 	}
4744 }
4745 
4746 static void
4747 nvme_minor_free(nvme_minor_t *minor)
4748 {
4749 	if (minor->nm_minor > 0) {
4750 		ASSERT3S(minor->nm_minor, >=, NVME_OPEN_MINOR_MIN);
4751 		id_free(nvme_open_minors, minor->nm_minor);
4752 		minor->nm_minor = 0;
4753 	}
4754 	VERIFY0(list_link_active(&minor->nm_ctrl_lock.nli_node));
4755 	VERIFY0(list_link_active(&minor->nm_ns_lock.nli_node));
4756 	cv_destroy(&minor->nm_cv);
4757 	kmem_free(minor, sizeof (nvme_minor_t));
4758 }
4759 
4760 static nvme_minor_t *
4761 nvme_minor_find_by_dev(dev_t dev)
4762 {
4763 	id_t id = (id_t)getminor(dev);
4764 	nvme_minor_t search = { .nm_minor = id };
4765 	nvme_minor_t *ret;
4766 
4767 	mutex_enter(&nvme_open_minors_mutex);
4768 	ret = avl_find(&nvme_open_minors_avl, &search, NULL);
4769 	mutex_exit(&nvme_open_minors_mutex);
4770 
4771 	return (ret);
4772 }
4773 
4774 static int
4775 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
4776 {
4777 	nvme_t *nvme;
4778 	int instance;
4779 	int nregs;
4780 	off_t regsize;
4781 	char name[32];
4782 	boolean_t attached_ns;
4783 
4784 	if (cmd != DDI_ATTACH)
4785 		return (DDI_FAILURE);
4786 
4787 	instance = ddi_get_instance(dip);
4788 
4789 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
4790 		return (DDI_FAILURE);
4791 
4792 	nvme = ddi_get_soft_state(nvme_state, instance);
4793 	ddi_set_driver_private(dip, nvme);
4794 	nvme->n_dip = dip;
4795 
4796 	/*
4797 	 * Map PCI config space
4798 	 */
4799 	if (pci_config_setup(dip, &nvme->n_pcicfg_handle) != DDI_SUCCESS) {
4800 		dev_err(dip, CE_WARN, "!failed to map PCI config space");
4801 		goto fail;
4802 	}
4803 	nvme->n_progress |= NVME_PCI_CONFIG;
4804 
4805 	/*
4806 	 * Get the various PCI IDs from config space
4807 	 */
4808 	nvme->n_vendor_id =
4809 	    pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_VENID);
4810 	nvme->n_device_id =
4811 	    pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_DEVID);
4812 	nvme->n_revision_id =
4813 	    pci_config_get8(nvme->n_pcicfg_handle, PCI_CONF_REVID);
4814 	nvme->n_subsystem_device_id =
4815 	    pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_SUBSYSID);
4816 	nvme->n_subsystem_vendor_id =
4817 	    pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_SUBVENID);
4818 
4819 	nvme_detect_quirks(nvme);
4820 
4821 	/*
4822 	 * Set up event handlers for hot removal. While npe(4D) supports the hot
4823 	 * removal event being injected for devices, the same is not true of all
4824 	 * of our possible parents (i.e. pci(4D) as of this writing). The most
4825 	 * common case this shows up is in some virtualization environments. We
4826 	 * should treat this as non-fatal so that way devices work but leave
4827 	 * this set up in such a way that if a nexus does grow support for this
4828 	 * we're good to go.
4829 	 */
4830 	if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT,
4831 	    &nvme->n_rm_cookie) == DDI_SUCCESS) {
4832 		if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie,
4833 		    nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) !=
4834 		    DDI_SUCCESS) {
4835 			goto fail;
4836 		}
4837 	} else {
4838 		nvme->n_ev_rm_cb_id = NULL;
4839 	}
4840 
4841 	mutex_init(&nvme->n_minor_mutex, NULL, MUTEX_DRIVER, NULL);
4842 	nvme->n_progress |= NVME_MUTEX_INIT;
4843 
4844 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4845 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
4846 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
4847 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
4848 	    B_TRUE : B_FALSE;
4849 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4850 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
4851 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4852 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
4853 	/*
4854 	 * Double up the default for completion queues in case of
4855 	 * queue sharing.
4856 	 */
4857 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4858 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
4859 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4860 	    DDI_PROP_DONTPASS, "async-event-limit",
4861 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
4862 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4863 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
4864 	    B_TRUE : B_FALSE;
4865 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4866 	    DDI_PROP_DONTPASS, "min-phys-block-size",
4867 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
4868 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4869 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
4870 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
4871 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
4872 
4873 	if (!ISP2(nvme->n_min_block_size) ||
4874 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
4875 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
4876 		    "using default %d", ISP2(nvme->n_min_block_size) ?
4877 		    "too low" : "not a power of 2",
4878 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
4879 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
4880 	}
4881 
4882 	if (nvme->n_submission_queues != -1 &&
4883 	    (nvme->n_submission_queues < 1 ||
4884 	    nvme->n_submission_queues > UINT16_MAX)) {
4885 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
4886 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
4887 		    UINT16_MAX);
4888 		nvme->n_submission_queues = -1;
4889 	}
4890 
4891 	if (nvme->n_completion_queues != -1 &&
4892 	    (nvme->n_completion_queues < 1 ||
4893 	    nvme->n_completion_queues > UINT16_MAX)) {
4894 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
4895 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
4896 		    UINT16_MAX);
4897 		nvme->n_completion_queues = -1;
4898 	}
4899 
4900 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
4901 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
4902 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
4903 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
4904 
4905 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
4906 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
4907 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
4908 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
4909 
4910 	if (nvme->n_async_event_limit < 1)
4911 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
4912 
4913 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
4914 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
4915 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
4916 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
4917 
4918 	/*
4919 	 * Set up FMA support.
4920 	 */
4921 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
4922 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
4923 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
4924 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
4925 
4926 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
4927 
4928 	if (nvme->n_fm_cap) {
4929 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
4930 			nvme->n_reg_acc_attr.devacc_attr_access =
4931 			    DDI_FLAGERR_ACC;
4932 
4933 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
4934 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
4935 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
4936 		}
4937 
4938 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
4939 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
4940 			pci_ereport_setup(dip);
4941 
4942 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
4943 			ddi_fm_handler_register(dip, nvme_fm_errcb,
4944 			    (void *)nvme);
4945 	}
4946 
4947 	nvme->n_progress |= NVME_FMA_INIT;
4948 
4949 	/*
4950 	 * The spec defines several register sets. Only the controller
4951 	 * registers (set 1) are currently used.
4952 	 */
4953 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
4954 	    nregs < 2 ||
4955 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
4956 		goto fail;
4957 
4958 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
4959 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
4960 		dev_err(dip, CE_WARN, "!failed to map regset 1");
4961 		goto fail;
4962 	}
4963 
4964 	nvme->n_progress |= NVME_REGS_MAPPED;
4965 
4966 	/*
4967 	 * Set up kstats
4968 	 */
4969 	if (!nvme_stat_init(nvme)) {
4970 		dev_err(dip, CE_WARN, "!failed to create device kstats");
4971 		goto fail;
4972 	}
4973 	nvme->n_progress |= NVME_STAT_INIT;
4974 
4975 	/*
4976 	 * Create PRP DMA cache
4977 	 */
4978 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
4979 	    ddi_driver_name(dip), ddi_get_instance(dip));
4980 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
4981 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
4982 	    NULL, (void *)nvme, NULL, 0);
4983 
4984 	if (nvme_init(nvme) != DDI_SUCCESS)
4985 		goto fail;
4986 
4987 	/*
4988 	 * Initialize the driver with the UFM subsystem
4989 	 */
4990 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
4991 	    &nvme->n_ufmh, nvme) != 0) {
4992 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
4993 		goto fail;
4994 	}
4995 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
4996 	ddi_ufm_update(nvme->n_ufmh);
4997 	nvme->n_progress |= NVME_UFM_INIT;
4998 
4999 	nvme_mgmt_lock_init(&nvme->n_mgmt);
5000 	nvme_lock_init(&nvme->n_lock);
5001 	nvme->n_progress |= NVME_MGMT_INIT;
5002 	nvme->n_dead_status = NVME_IOCTL_E_CTRL_DEAD;
5003 
5004 	/*
5005 	 * Identify namespaces.
5006 	 */
5007 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_NVME);
5008 
5009 	for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) {
5010 		nvme_namespace_t *ns = nvme_nsid2ns(nvme, i);
5011 
5012 		nvme_lock_init(&ns->ns_lock);
5013 		ns->ns_progress |= NVME_NS_LOCK;
5014 
5015 		/*
5016 		 * Namespaces start out ignored. When nvme_init_ns() checks
5017 		 * their properties and finds they can be used, it will set
5018 		 * ns_ignore to B_FALSE. It will also use this state change
5019 		 * to keep an accurate count of attachable namespaces.
5020 		 */
5021 		ns->ns_ignore = B_TRUE;
5022 		if (nvme_init_ns(nvme, i) != 0) {
5023 			nvme_mgmt_unlock(nvme);
5024 			goto fail;
5025 		}
5026 
5027 		if (ddi_create_minor_node(nvme->n_dip, ns->ns_name, S_IFCHR,
5028 		    NVME_MINOR(ddi_get_instance(nvme->n_dip), i),
5029 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
5030 			nvme_mgmt_unlock(nvme);
5031 			dev_err(dip, CE_WARN,
5032 			    "!failed to create minor node for namespace %d", i);
5033 			goto fail;
5034 		}
5035 	}
5036 
5037 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
5038 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0) !=
5039 	    DDI_SUCCESS) {
5040 		nvme_mgmt_unlock(nvme);
5041 		dev_err(dip, CE_WARN, "nvme_attach: "
5042 		    "cannot create devctl minor node");
5043 		goto fail;
5044 	}
5045 
5046 	attached_ns = B_FALSE;
5047 	for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) {
5048 		nvme_ioctl_common_t com = { .nioc_nsid = i };
5049 
5050 		if (nvme_attach_ns(nvme, &com)) {
5051 			attached_ns = B_TRUE;
5052 		} else if (com.nioc_drv_err != NVME_IOCTL_E_UNSUP_ATTACH_NS) {
5053 			dev_err(nvme->n_dip, CE_WARN, "!failed to attach "
5054 			    "namespace %d due to blkdev error", i);
5055 			/*
5056 			 * Once we have successfully attached a namespace we
5057 			 * can no longer fail the driver attach as there is now
5058 			 * a blkdev child node linked to this device, and
5059 			 * our node is not yet in the attached state.
5060 			 */
5061 			if (!attached_ns) {
5062 				nvme_mgmt_unlock(nvme);
5063 				goto fail;
5064 			}
5065 		}
5066 	}
5067 
5068 	nvme_mgmt_unlock(nvme);
5069 
5070 	return (DDI_SUCCESS);
5071 
5072 fail:
5073 	/* attach successful anyway so that FMA can retire the device */
5074 	if (nvme->n_dead)
5075 		return (DDI_SUCCESS);
5076 
5077 	(void) nvme_detach(dip, DDI_DETACH);
5078 
5079 	return (DDI_FAILURE);
5080 }
5081 
5082 static int
5083 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5084 {
5085 	int instance;
5086 	nvme_t *nvme;
5087 
5088 	if (cmd != DDI_DETACH)
5089 		return (DDI_FAILURE);
5090 
5091 	instance = ddi_get_instance(dip);
5092 
5093 	nvme = ddi_get_soft_state(nvme_state, instance);
5094 
5095 	if (nvme == NULL)
5096 		return (DDI_FAILURE);
5097 
5098 	/*
5099 	 * Remove all minor nodes from the device regardless of the source in
5100 	 * one swoop.
5101 	 */
5102 	ddi_remove_minor_node(dip, NULL);
5103 
5104 	/*
5105 	 * We need to remove the event handler as one of the first things that
5106 	 * we do. If we proceed with other teardown without removing the event
5107 	 * handler, we could end up in a very unfortunate race with ourselves.
5108 	 * The DDI does not serialize these with detach (just like timeout(9F)
5109 	 * and others).
5110 	 */
5111 	if (nvme->n_ev_rm_cb_id != NULL) {
5112 		(void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id);
5113 	}
5114 	nvme->n_ev_rm_cb_id = NULL;
5115 
5116 	/*
5117 	 * If the controller was marked dead, there is a slight chance that we
5118 	 * are asynchronusly processing the removal taskq. Because we have
5119 	 * removed the callback handler above and all minor nodes and commands
5120 	 * are closed, there is no other way to get in here. As such, we wait on
5121 	 * the nvme_dead_taskq to complete so we can avoid tracking if it's
5122 	 * running or not.
5123 	 */
5124 	taskq_wait(nvme_dead_taskq);
5125 
5126 	if (nvme->n_ns) {
5127 		for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) {
5128 			nvme_namespace_t *ns = nvme_nsid2ns(nvme, i);
5129 
5130 			if (ns->ns_bd_hdl) {
5131 				(void) bd_detach_handle(ns->ns_bd_hdl);
5132 				bd_free_handle(ns->ns_bd_hdl);
5133 			}
5134 
5135 			if (ns->ns_idns)
5136 				kmem_free(ns->ns_idns,
5137 				    sizeof (nvme_identify_nsid_t));
5138 			if (ns->ns_devid)
5139 				strfree(ns->ns_devid);
5140 
5141 			if ((ns->ns_progress & NVME_NS_LOCK) != 0)
5142 				nvme_lock_fini(&ns->ns_lock);
5143 		}
5144 
5145 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
5146 		    nvme->n_namespace_count);
5147 	}
5148 
5149 	if (nvme->n_progress & NVME_MGMT_INIT) {
5150 		nvme_lock_fini(&nvme->n_lock);
5151 		nvme_mgmt_lock_fini(&nvme->n_mgmt);
5152 	}
5153 
5154 	if (nvme->n_progress & NVME_UFM_INIT) {
5155 		ddi_ufm_fini(nvme->n_ufmh);
5156 		mutex_destroy(&nvme->n_fwslot_mutex);
5157 	}
5158 
5159 	if (nvme->n_progress & NVME_INTERRUPTS)
5160 		nvme_release_interrupts(nvme);
5161 
5162 	for (uint_t i = 0; i < nvme->n_cq_count; i++) {
5163 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
5164 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
5165 	}
5166 
5167 	if (nvme->n_progress & NVME_MUTEX_INIT) {
5168 		mutex_destroy(&nvme->n_minor_mutex);
5169 	}
5170 
5171 	if (nvme->n_ioq_count > 0) {
5172 		for (uint_t i = 1; i != nvme->n_ioq_count + 1; i++) {
5173 			if (nvme->n_ioq[i] != NULL) {
5174 				/* TODO: send destroy queue commands */
5175 				nvme_free_qpair(nvme->n_ioq[i]);
5176 			}
5177 		}
5178 
5179 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
5180 		    (nvme->n_ioq_count + 1));
5181 	}
5182 
5183 	if (nvme->n_prp_cache != NULL) {
5184 		kmem_cache_destroy(nvme->n_prp_cache);
5185 	}
5186 
5187 	if (nvme->n_progress & NVME_REGS_MAPPED) {
5188 		nvme_shutdown(nvme, B_FALSE);
5189 		(void) nvme_reset(nvme, B_FALSE);
5190 	}
5191 
5192 	if (nvme->n_progress & NVME_CTRL_LIMITS)
5193 		sema_destroy(&nvme->n_abort_sema);
5194 
5195 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
5196 		nvme_free_qpair(nvme->n_adminq);
5197 
5198 	if (nvme->n_cq_count > 0) {
5199 		nvme_destroy_cq_array(nvme, 0);
5200 		nvme->n_cq = NULL;
5201 		nvme->n_cq_count = 0;
5202 	}
5203 
5204 	if (nvme->n_idcomns)
5205 		kmem_free(nvme->n_idcomns, NVME_IDENTIFY_BUFSIZE);
5206 
5207 	if (nvme->n_idctl)
5208 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
5209 
5210 	if (nvme->n_progress & NVME_REGS_MAPPED)
5211 		ddi_regs_map_free(&nvme->n_regh);
5212 
5213 	if (nvme->n_progress & NVME_STAT_INIT)
5214 		nvme_stat_cleanup(nvme);
5215 
5216 	if (nvme->n_progress & NVME_FMA_INIT) {
5217 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
5218 			ddi_fm_handler_unregister(nvme->n_dip);
5219 
5220 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
5221 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
5222 			pci_ereport_teardown(nvme->n_dip);
5223 
5224 		ddi_fm_fini(nvme->n_dip);
5225 	}
5226 
5227 	if (nvme->n_progress & NVME_PCI_CONFIG)
5228 		pci_config_teardown(&nvme->n_pcicfg_handle);
5229 
5230 	if (nvme->n_vendor != NULL)
5231 		strfree(nvme->n_vendor);
5232 
5233 	if (nvme->n_product != NULL)
5234 		strfree(nvme->n_product);
5235 
5236 	ddi_soft_state_free(nvme_state, instance);
5237 
5238 	return (DDI_SUCCESS);
5239 }
5240 
5241 static int
5242 nvme_quiesce(dev_info_t *dip)
5243 {
5244 	int instance;
5245 	nvme_t *nvme;
5246 
5247 	instance = ddi_get_instance(dip);
5248 
5249 	nvme = ddi_get_soft_state(nvme_state, instance);
5250 
5251 	if (nvme == NULL)
5252 		return (DDI_FAILURE);
5253 
5254 	nvme_shutdown(nvme, B_TRUE);
5255 
5256 	(void) nvme_reset(nvme, B_TRUE);
5257 
5258 	return (DDI_SUCCESS);
5259 }
5260 
5261 static int
5262 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma)
5263 {
5264 	nvme_t *nvme = cmd->nc_nvme;
5265 	uint_t nprp_per_page, nprp;
5266 	uint64_t *prp;
5267 	const ddi_dma_cookie_t *cookie;
5268 	uint_t idx;
5269 	uint_t ncookies = ddi_dma_ncookies(dma);
5270 
5271 	if (ncookies == 0)
5272 		return (DDI_FAILURE);
5273 
5274 	if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL)
5275 		return (DDI_FAILURE);
5276 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress;
5277 
5278 	if (ncookies == 1) {
5279 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
5280 		return (DDI_SUCCESS);
5281 	} else if (ncookies == 2) {
5282 		if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL)
5283 			return (DDI_FAILURE);
5284 		cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress;
5285 		return (DDI_SUCCESS);
5286 	}
5287 
5288 	/*
5289 	 * At this point, we're always operating on cookies at
5290 	 * index >= 1 and writing the addresses of those cookies
5291 	 * into a new page. The address of that page is stored
5292 	 * as the second PRP entry.
5293 	 */
5294 	nprp_per_page = nvme->n_pagesize / sizeof (uint64_t);
5295 	ASSERT(nprp_per_page > 0);
5296 
5297 	/*
5298 	 * We currently don't support chained PRPs and set up our DMA
5299 	 * attributes to reflect that. If we still get an I/O request
5300 	 * that needs a chained PRP something is very wrong. Account
5301 	 * for the first cookie here, which we've placed in d_prp[0].
5302 	 */
5303 	nprp = howmany(ncookies - 1, nprp_per_page);
5304 	VERIFY(nprp == 1);
5305 
5306 	/*
5307 	 * Allocate a page of pointers, in which we'll write the
5308 	 * addresses of cookies 1 to `ncookies`.
5309 	 */
5310 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
5311 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
5312 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress;
5313 
5314 	prp = (uint64_t *)cmd->nc_prp->nd_memp;
5315 	for (idx = 1; idx < ncookies; idx++) {
5316 		if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL)
5317 			return (DDI_FAILURE);
5318 		*prp++ = cookie->dmac_laddress;
5319 	}
5320 
5321 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
5322 	    DDI_DMA_SYNC_FORDEV);
5323 	return (DDI_SUCCESS);
5324 }
5325 
5326 /*
5327  * The maximum number of requests supported for a deallocate request is
5328  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
5329  * unchanged through at least 1.4a). The definition of nvme_range_t is also
5330  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
5331  * a deallocate request will fit into the smallest supported namespace page
5332  * (4k).
5333  */
5334 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
5335 
5336 static int
5337 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
5338     int allocflag)
5339 {
5340 	const dkioc_free_list_t *dfl = xfer->x_dfl;
5341 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
5342 	nvme_t *nvme = cmd->nc_nvme;
5343 	nvme_range_t *ranges = NULL;
5344 	uint_t i;
5345 
5346 	/*
5347 	 * The number of ranges in the request is 0s based (that is
5348 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
5349 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
5350 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
5351 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
5352 	 * in blkdev.
5353 	 */
5354 	VERIFY3U(dfl->dfl_num_exts, >, 0);
5355 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
5356 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
5357 
5358 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
5359 
5360 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
5361 	if (cmd->nc_prp == NULL)
5362 		return (DDI_FAILURE);
5363 
5364 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
5365 	ranges = (nvme_range_t *)cmd->nc_prp->nd_memp;
5366 
5367 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress;
5368 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
5369 
5370 	for (i = 0; i < dfl->dfl_num_exts; i++) {
5371 		uint64_t lba, len;
5372 
5373 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
5374 		len = exts[i].dfle_length / blocksize;
5375 
5376 		VERIFY3U(len, <=, UINT32_MAX);
5377 
5378 		/* No context attributes for a deallocate request */
5379 		ranges[i].nr_ctxattr = 0;
5380 		ranges[i].nr_len = len;
5381 		ranges[i].nr_lba = lba;
5382 	}
5383 
5384 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
5385 	    DDI_DMA_SYNC_FORDEV);
5386 
5387 	return (DDI_SUCCESS);
5388 }
5389 
5390 static nvme_cmd_t *
5391 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
5392 {
5393 	nvme_t *nvme = ns->ns_nvme;
5394 	nvme_cmd_t *cmd;
5395 	int allocflag;
5396 
5397 	/*
5398 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
5399 	 */
5400 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
5401 	cmd = nvme_alloc_cmd(nvme, allocflag);
5402 
5403 	if (cmd == NULL)
5404 		return (NULL);
5405 
5406 	cmd->nc_sqe.sqe_opc = opc;
5407 	cmd->nc_callback = nvme_bd_xfer_done;
5408 	cmd->nc_xfer = xfer;
5409 
5410 	switch (opc) {
5411 	case NVME_OPC_NVM_WRITE:
5412 	case NVME_OPC_NVM_READ:
5413 		VERIFY(xfer->x_nblks <= 0x10000);
5414 
5415 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
5416 
5417 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
5418 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
5419 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
5420 
5421 		if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS)
5422 			goto fail;
5423 		break;
5424 
5425 	case NVME_OPC_NVM_FLUSH:
5426 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
5427 		break;
5428 
5429 	case NVME_OPC_NVM_DSET_MGMT:
5430 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
5431 
5432 		if (nvme_fill_ranges(cmd, xfer,
5433 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
5434 			goto fail;
5435 		break;
5436 
5437 	default:
5438 		goto fail;
5439 	}
5440 
5441 	return (cmd);
5442 
5443 fail:
5444 	nvme_free_cmd(cmd);
5445 	return (NULL);
5446 }
5447 
5448 static void
5449 nvme_bd_xfer_done(void *arg)
5450 {
5451 	nvme_cmd_t *cmd = arg;
5452 	bd_xfer_t *xfer = cmd->nc_xfer;
5453 	int error = 0;
5454 
5455 	error = nvme_check_cmd_status(cmd);
5456 	nvme_free_cmd(cmd);
5457 
5458 	bd_xfer_done(xfer, error);
5459 }
5460 
5461 static void
5462 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
5463 {
5464 	nvme_namespace_t *ns = arg;
5465 	nvme_t *nvme = ns->ns_nvme;
5466 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
5467 
5468 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_BDRO);
5469 
5470 	/*
5471 	 * Set the blkdev qcount to the number of submission queues.
5472 	 * It will then create one waitq/runq pair for each submission
5473 	 * queue and spread I/O requests across the queues.
5474 	 */
5475 	drive->d_qcount = nvme->n_ioq_count;
5476 
5477 	/*
5478 	 * I/O activity to individual namespaces is distributed across
5479 	 * each of the d_qcount blkdev queues (which has been set to
5480 	 * the number of nvme submission queues). d_qsize is the number
5481 	 * of submitted and not completed I/Os within each queue that blkdev
5482 	 * will allow before it starts holding them in the waitq.
5483 	 *
5484 	 * Each namespace will create a child blkdev instance, for each one
5485 	 * we try and set the d_qsize so that each namespace gets an
5486 	 * equal portion of the submission queue.
5487 	 *
5488 	 * If post instantiation of the nvme drive, n_namespaces_attachable
5489 	 * changes and a namespace is attached it could calculate a
5490 	 * different d_qsize. It may even be that the sum of the d_qsizes is
5491 	 * now beyond the submission queue size. Should that be the case
5492 	 * and the I/O rate is such that blkdev attempts to submit more
5493 	 * I/Os than the size of the submission queue, the excess I/Os
5494 	 * will be held behind the semaphore nq_sema.
5495 	 */
5496 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
5497 
5498 	/*
5499 	 * Don't let the queue size drop below the minimum, though.
5500 	 */
5501 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
5502 
5503 	/*
5504 	 * d_maxxfer is not set, which means the value is taken from the DMA
5505 	 * attributes specified to bd_alloc_handle.
5506 	 */
5507 
5508 	drive->d_removable = B_FALSE;
5509 	drive->d_hotpluggable = B_FALSE;
5510 
5511 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
5512 	drive->d_target = ns->ns_id;
5513 	drive->d_lun = 0;
5514 
5515 	drive->d_model = nvme->n_idctl->id_model;
5516 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
5517 	drive->d_vendor = nvme->n_vendor;
5518 	drive->d_vendor_len = strlen(nvme->n_vendor);
5519 	drive->d_product = nvme->n_product;
5520 	drive->d_product_len = strlen(nvme->n_product);
5521 	drive->d_serial = nvme->n_idctl->id_serial;
5522 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
5523 	drive->d_revision = nvme->n_idctl->id_fwrev;
5524 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
5525 
5526 	/*
5527 	 * If we support the dataset management command, the only restrictions
5528 	 * on a discard request are the maximum number of ranges (segments)
5529 	 * per single request.
5530 	 */
5531 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
5532 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
5533 
5534 	nvme_mgmt_unlock(nvme);
5535 }
5536 
5537 static int
5538 nvme_bd_mediainfo(void *arg, bd_media_t *media)
5539 {
5540 	nvme_namespace_t *ns = arg;
5541 	nvme_t *nvme = ns->ns_nvme;
5542 
5543 	if (nvme->n_dead) {
5544 		return (EIO);
5545 	}
5546 
5547 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_BDRO);
5548 
5549 	media->m_nblks = ns->ns_block_count;
5550 	media->m_blksize = ns->ns_block_size;
5551 	media->m_readonly = B_FALSE;
5552 	media->m_solidstate = B_TRUE;
5553 
5554 	media->m_pblksize = ns->ns_best_block_size;
5555 
5556 	nvme_mgmt_unlock(nvme);
5557 
5558 	return (0);
5559 }
5560 
5561 static int
5562 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
5563 {
5564 	nvme_t *nvme = ns->ns_nvme;
5565 	nvme_cmd_t *cmd;
5566 	nvme_qpair_t *ioq;
5567 	boolean_t poll;
5568 	int ret;
5569 
5570 	if (nvme->n_dead) {
5571 		return (EIO);
5572 	}
5573 
5574 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
5575 	if (cmd == NULL)
5576 		return (ENOMEM);
5577 
5578 	cmd->nc_sqid = xfer->x_qnum + 1;
5579 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
5580 	ioq = nvme->n_ioq[cmd->nc_sqid];
5581 
5582 	/*
5583 	 * Get the polling flag before submitting the command. The command may
5584 	 * complete immediately after it was submitted, which means we must
5585 	 * treat both cmd and xfer as if they have been freed already.
5586 	 */
5587 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
5588 
5589 	ret = nvme_submit_io_cmd(ioq, cmd);
5590 
5591 	if (ret != 0)
5592 		return (ret);
5593 
5594 	if (!poll)
5595 		return (0);
5596 
5597 	do {
5598 		cmd = nvme_retrieve_cmd(nvme, ioq);
5599 		if (cmd != NULL) {
5600 			ASSERT0(cmd->nc_flags & NVME_CMD_F_USELOCK);
5601 			cmd->nc_callback(cmd);
5602 		} else {
5603 			drv_usecwait(10);
5604 		}
5605 	} while (ioq->nq_active_cmds != 0);
5606 
5607 	return (0);
5608 }
5609 
5610 static int
5611 nvme_bd_read(void *arg, bd_xfer_t *xfer)
5612 {
5613 	nvme_namespace_t *ns = arg;
5614 
5615 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
5616 }
5617 
5618 static int
5619 nvme_bd_write(void *arg, bd_xfer_t *xfer)
5620 {
5621 	nvme_namespace_t *ns = arg;
5622 
5623 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
5624 }
5625 
5626 static int
5627 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
5628 {
5629 	nvme_namespace_t *ns = arg;
5630 
5631 	if (ns->ns_nvme->n_dead)
5632 		return (EIO);
5633 
5634 	/*
5635 	 * If the volatile write cache is not present or not enabled the FLUSH
5636 	 * command is a no-op, so we can take a shortcut here.
5637 	 */
5638 	if (!ns->ns_nvme->n_write_cache_present) {
5639 		bd_xfer_done(xfer, ENOTSUP);
5640 		return (0);
5641 	}
5642 
5643 	if (!ns->ns_nvme->n_write_cache_enabled) {
5644 		bd_xfer_done(xfer, 0);
5645 		return (0);
5646 	}
5647 
5648 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
5649 }
5650 
5651 static int
5652 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
5653 {
5654 	nvme_namespace_t *ns = arg;
5655 	nvme_t *nvme = ns->ns_nvme;
5656 
5657 	if (nvme->n_dead) {
5658 		return (EIO);
5659 	}
5660 
5661 	if (*(uint64_t *)ns->ns_nguid != 0 ||
5662 	    *(uint64_t *)(ns->ns_nguid + 8) != 0) {
5663 		return (ddi_devid_init(devinfo, DEVID_NVME_NGUID,
5664 		    sizeof (ns->ns_nguid), ns->ns_nguid, devid));
5665 	} else if (*(uint64_t *)ns->ns_eui64 != 0) {
5666 		return (ddi_devid_init(devinfo, DEVID_NVME_EUI64,
5667 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
5668 	} else {
5669 		return (ddi_devid_init(devinfo, DEVID_NVME_NSID,
5670 		    strlen(ns->ns_devid), ns->ns_devid, devid));
5671 	}
5672 }
5673 
5674 static int
5675 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
5676 {
5677 	nvme_namespace_t *ns = arg;
5678 
5679 	if (xfer->x_dfl == NULL)
5680 		return (EINVAL);
5681 
5682 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
5683 		return (ENOTSUP);
5684 
5685 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
5686 }
5687 
5688 static int
5689 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
5690 {
5691 #ifndef __lock_lint
5692 	_NOTE(ARGUNUSED(cred_p));
5693 #endif
5694 	nvme_t *nvme;
5695 	nvme_minor_t *minor = NULL;
5696 	uint32_t nsid;
5697 	minor_t m = getminor(*devp);
5698 	int rv = 0;
5699 
5700 	if (otyp != OTYP_CHR)
5701 		return (EINVAL);
5702 
5703 	if (m >= NVME_OPEN_MINOR_MIN)
5704 		return (ENXIO);
5705 
5706 	nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(m));
5707 	nsid = NVME_MINOR_NSID(m);
5708 
5709 	if (nvme == NULL)
5710 		return (ENXIO);
5711 
5712 	if (nsid > nvme->n_namespace_count)
5713 		return (ENXIO);
5714 
5715 	if (nvme->n_dead)
5716 		return (EIO);
5717 
5718 	/*
5719 	 * At this point, we're going to allow an open to proceed on this
5720 	 * device. We need to allocate a new instance for this (presuming one is
5721 	 * available).
5722 	 */
5723 	minor = kmem_zalloc(sizeof (nvme_minor_t), KM_NOSLEEP_LAZY);
5724 	if (minor == NULL) {
5725 		return (ENOMEM);
5726 	}
5727 
5728 	cv_init(&minor->nm_cv, NULL, CV_DRIVER, NULL);
5729 	list_link_init(&minor->nm_ctrl_lock.nli_node);
5730 	minor->nm_ctrl_lock.nli_nvme = nvme;
5731 	minor->nm_ctrl_lock.nli_minor = minor;
5732 	list_link_init(&minor->nm_ns_lock.nli_node);
5733 	minor->nm_ns_lock.nli_nvme = nvme;
5734 	minor->nm_ns_lock.nli_minor = minor;
5735 	minor->nm_minor = id_alloc_nosleep(nvme_open_minors);
5736 	if (minor->nm_minor == -1) {
5737 		nvme_minor_free(minor);
5738 		return (ENOSPC);
5739 	}
5740 
5741 	minor->nm_ctrl = nvme;
5742 	if (nsid != 0) {
5743 		minor->nm_ns = nvme_nsid2ns(nvme, nsid);
5744 	}
5745 
5746 	/*
5747 	 * Before we check for exclusive access and attempt a lock if requested,
5748 	 * ensure that this minor is persisted.
5749 	 */
5750 	mutex_enter(&nvme_open_minors_mutex);
5751 	avl_add(&nvme_open_minors_avl, minor);
5752 	mutex_exit(&nvme_open_minors_mutex);
5753 
5754 	/*
5755 	 * A request for opening this FEXCL, is translated into a non-blocking
5756 	 * write lock of the appropriate entity. This honors the original
5757 	 * semantics here. In the future, we should see if we can remove this
5758 	 * and turn a request for FEXCL at open into ENOTSUP.
5759 	 */
5760 	mutex_enter(&nvme->n_minor_mutex);
5761 	if ((flag & FEXCL) != 0) {
5762 		nvme_ioctl_lock_t lock = {
5763 			.nil_level = NVME_LOCK_L_WRITE,
5764 			.nil_flags = NVME_LOCK_F_DONT_BLOCK
5765 		};
5766 
5767 		if (minor->nm_ns != NULL) {
5768 			lock.nil_ent = NVME_LOCK_E_NS;
5769 			lock.nil_common.nioc_nsid = nsid;
5770 		} else {
5771 			lock.nil_ent = NVME_LOCK_E_CTRL;
5772 		}
5773 		nvme_rwlock(minor, &lock);
5774 		if (lock.nil_common.nioc_drv_err != NVME_IOCTL_E_OK) {
5775 			mutex_exit(&nvme->n_minor_mutex);
5776 
5777 			mutex_enter(&nvme_open_minors_mutex);
5778 			avl_remove(&nvme_open_minors_avl, minor);
5779 			mutex_exit(&nvme_open_minors_mutex);
5780 
5781 			nvme_minor_free(minor);
5782 			return (EBUSY);
5783 		}
5784 	}
5785 	mutex_exit(&nvme->n_minor_mutex);
5786 
5787 	*devp = makedevice(getmajor(*devp), (minor_t)minor->nm_minor);
5788 	return (rv);
5789 
5790 }
5791 
5792 static int
5793 nvme_close(dev_t dev, int flag __unused, int otyp, cred_t *cred_p __unused)
5794 {
5795 	nvme_minor_t *minor;
5796 	nvme_t *nvme;
5797 
5798 	if (otyp != OTYP_CHR) {
5799 		return (ENXIO);
5800 	}
5801 
5802 	minor = nvme_minor_find_by_dev(dev);
5803 	if (minor == NULL) {
5804 		return (ENXIO);
5805 	}
5806 
5807 	mutex_enter(&nvme_open_minors_mutex);
5808 	avl_remove(&nvme_open_minors_avl, minor);
5809 	mutex_exit(&nvme_open_minors_mutex);
5810 
5811 	/*
5812 	 * When this device is being closed, we must ensure that any locks held
5813 	 * by this are dealt with.
5814 	 */
5815 	nvme = minor->nm_ctrl;
5816 	mutex_enter(&nvme->n_minor_mutex);
5817 	ASSERT3U(minor->nm_ctrl_lock.nli_state, !=, NVME_LOCK_STATE_BLOCKED);
5818 	ASSERT3U(minor->nm_ns_lock.nli_state, !=, NVME_LOCK_STATE_BLOCKED);
5819 
5820 	if (minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_ACQUIRED) {
5821 		VERIFY3P(minor->nm_ctrl_lock.nli_lock, !=, NULL);
5822 		nvme_rwunlock(&minor->nm_ctrl_lock,
5823 		    minor->nm_ctrl_lock.nli_lock);
5824 	}
5825 
5826 	if (minor->nm_ns_lock.nli_state == NVME_LOCK_STATE_ACQUIRED) {
5827 		VERIFY3P(minor->nm_ns_lock.nli_lock, !=, NULL);
5828 		nvme_rwunlock(&minor->nm_ns_lock, minor->nm_ns_lock.nli_lock);
5829 	}
5830 	mutex_exit(&nvme->n_minor_mutex);
5831 
5832 	nvme_minor_free(minor);
5833 
5834 	return (0);
5835 }
5836 
5837 void
5838 nvme_ioctl_success(nvme_ioctl_common_t *ioc)
5839 {
5840 	ioc->nioc_drv_err = NVME_IOCTL_E_OK;
5841 	ioc->nioc_ctrl_sc = NVME_CQE_SC_GEN_SUCCESS;
5842 	ioc->nioc_ctrl_sct = NVME_CQE_SCT_GENERIC;
5843 }
5844 
5845 boolean_t
5846 nvme_ioctl_error(nvme_ioctl_common_t *ioc, nvme_ioctl_errno_t err, uint32_t sct,
5847     uint32_t sc)
5848 {
5849 	ioc->nioc_drv_err = err;
5850 	ioc->nioc_ctrl_sct = sct;
5851 	ioc->nioc_ctrl_sc = sc;
5852 
5853 	return (B_FALSE);
5854 }
5855 
5856 static int
5857 nvme_ioctl_copyout_error(nvme_ioctl_errno_t err, intptr_t uaddr, int mode)
5858 {
5859 	nvme_ioctl_common_t ioc;
5860 
5861 	ASSERT3U(err, !=, NVME_IOCTL_E_CTRL_ERROR);
5862 	bzero(&ioc, sizeof (ioc));
5863 	if (ddi_copyout(&ioc, (void *)uaddr, sizeof (nvme_ioctl_common_t),
5864 	    mode & FKIOCTL) != 0) {
5865 		return (EFAULT);
5866 	}
5867 	return (0);
5868 }
5869 
5870 /*
5871  * The companion to the namespace checking. This occurs after any rewriting
5872  * occurs. This is the primary point that we attempt to enforce any operation's
5873  * exclusivity. Note, it is theoretically possible for an operation to be
5874  * ongoing and to have someone with an exclusive lock ask to unlock it for some
5875  * reason. This does not maintain the number of such events that are going on.
5876  * While perhaps this is leaving too much up to the user, by the same token we
5877  * don't try to stop them from issuing two different format NVM commands
5878  * targeting the whole device at the same time either, even though the
5879  * controller would really rather that didn't happen.
5880  */
5881 static boolean_t
5882 nvme_ioctl_excl_check(nvme_minor_t *minor, nvme_ioctl_common_t *ioc,
5883     const nvme_ioctl_check_t *check)
5884 {
5885 	nvme_t *const nvme = minor->nm_ctrl;
5886 	nvme_namespace_t *ns;
5887 	boolean_t have_ctrl, have_ns, ctrl_is_excl, ns_is_excl;
5888 
5889 	/*
5890 	 * If the command doesn't require anything, then we're done.
5891 	 */
5892 	if (check->nck_excl == NVME_IOCTL_EXCL_SKIP) {
5893 		return (B_TRUE);
5894 	}
5895 
5896 	if (ioc->nioc_nsid == 0 || ioc->nioc_nsid == NVME_NSID_BCAST) {
5897 		ns = NULL;
5898 	} else {
5899 		ns = nvme_nsid2ns(nvme, ioc->nioc_nsid);
5900 	}
5901 
5902 	mutex_enter(&nvme->n_minor_mutex);
5903 	ctrl_is_excl = nvme->n_lock.nl_writer != NULL;
5904 	have_ctrl = nvme->n_lock.nl_writer == &minor->nm_ctrl_lock;
5905 	if (ns != NULL) {
5906 		/*
5907 		 * We explicitly test the namespace lock's writer versus asking
5908 		 * the minor because the minor's namespace lock may apply to a
5909 		 * different namespace.
5910 		 */
5911 		ns_is_excl = ns->ns_lock.nl_writer != NULL;
5912 		have_ns = ns->ns_lock.nl_writer == &minor->nm_ns_lock;
5913 		ASSERT0(have_ctrl && have_ns);
5914 #ifdef	DEBUG
5915 		if (have_ns) {
5916 			ASSERT3P(minor->nm_ns_lock.nli_ns, ==, ns);
5917 		}
5918 #endif
5919 	} else {
5920 		ns_is_excl = B_FALSE;
5921 		have_ns = B_FALSE;
5922 	}
5923 	ASSERT0(ctrl_is_excl && ns_is_excl);
5924 	mutex_exit(&nvme->n_minor_mutex);
5925 
5926 	if (check->nck_excl == NVME_IOCTL_EXCL_WRITE) {
5927 		if (ns == NULL) {
5928 			if (have_ctrl) {
5929 				return (B_TRUE);
5930 			}
5931 			return (nvme_ioctl_error(ioc,
5932 			    NVME_IOCTL_E_NEED_CTRL_WRLOCK, 0, 0));
5933 		} else {
5934 			if (have_ctrl || have_ns) {
5935 				return (B_TRUE);
5936 			}
5937 			return (nvme_ioctl_error(ioc,
5938 			    NVME_IOCTL_E_NEED_NS_WRLOCK, 0, 0));
5939 		}
5940 	}
5941 
5942 	/*
5943 	 * Now we have an operation that does not require exclusive access. We
5944 	 * can proceed as long as no one else has it or if someone does it is
5945 	 * us. Regardless of what we target, a controller lock will stop us.
5946 	 */
5947 	if (ctrl_is_excl && !have_ctrl) {
5948 		return (nvme_ioctl_error(ioc, NVME_IOCTL_E_CTRL_LOCKED, 0, 0));
5949 	}
5950 
5951 	/*
5952 	 * Only check namespace exclusivity if we are targeting one.
5953 	 */
5954 	if (ns != NULL && ns_is_excl && !have_ns) {
5955 		return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NS_LOCKED, 0, 0));
5956 	}
5957 
5958 	return (B_TRUE);
5959 }
5960 
5961 /*
5962  * Perform common checking as to whether or not an ioctl operation may proceed.
5963  * We check in this function various aspects of the namespace attributes that
5964  * it's calling on. Once the namespace attributes and any possible rewriting
5965  * have been performed, then we proceed to check whether or not the requisite
5966  * exclusive access is present in nvme_ioctl_excl_check().
5967  */
5968 static boolean_t
5969 nvme_ioctl_check(nvme_minor_t *minor, nvme_ioctl_common_t *ioc,
5970     const nvme_ioctl_check_t *check)
5971 {
5972 	/*
5973 	 * If the minor has a namespace pointer, then it is constrained to that
5974 	 * namespace. If a namespace is allowed, then there are only two valid
5975 	 * values that we can find. The first is matching the minor. The second
5976 	 * is our value zero, which will be transformed to the current
5977 	 * namespace.
5978 	 */
5979 	if (minor->nm_ns != NULL) {
5980 		if (!check->nck_ns_ok || !check->nck_ns_minor_ok) {
5981 			return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NOT_CTRL, 0,
5982 			    0));
5983 		}
5984 
5985 		if (ioc->nioc_nsid == 0) {
5986 			ioc->nioc_nsid = minor->nm_ns->ns_id;
5987 		} else if (ioc->nioc_nsid != minor->nm_ns->ns_id) {
5988 			return (nvme_ioctl_error(ioc,
5989 			    NVME_IOCTL_E_MINOR_WRONG_NS, 0, 0));
5990 		}
5991 
5992 		return (nvme_ioctl_excl_check(minor, ioc, check));
5993 	}
5994 
5995 	/*
5996 	 * If we've been told to skip checking the controller, here's where we
5997 	 * do that. This should really only be for commands which use the
5998 	 * namespace ID for listing purposes and therefore can have
5999 	 * traditionally illegal values here.
6000 	 */
6001 	if (check->nck_skip_ctrl) {
6002 		return (nvme_ioctl_excl_check(minor, ioc, check));
6003 	}
6004 
6005 	/*
6006 	 * At this point, we know that we're on the controller's node. We first
6007 	 * deal with the simple case, is a namespace allowed at all or not. If
6008 	 * it is not allowed, then the only acceptable value is zero.
6009 	 */
6010 	if (!check->nck_ns_ok) {
6011 		if (ioc->nioc_nsid != 0) {
6012 			return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NS_UNUSE, 0,
6013 			    0));
6014 		}
6015 
6016 		return (nvme_ioctl_excl_check(minor, ioc, check));
6017 	}
6018 
6019 	/*
6020 	 * At this point, we know that a controller is allowed to use a
6021 	 * namespace. If we haven't been given zero or the broadcast namespace,
6022 	 * check to see if it's actually a valid namespace ID. If is outside of
6023 	 * range, then it is an error. Next, if we have been requested to
6024 	 * rewrite 0 (the this controller indicator) as the broadcast namespace,
6025 	 * do so.
6026 	 *
6027 	 * While we validate that this namespace is within the valid range, we
6028 	 * do not check if it is active or inactive. That is left to our callers
6029 	 * to determine.
6030 	 */
6031 	if (ioc->nioc_nsid > minor->nm_ctrl->n_namespace_count &&
6032 	    ioc->nioc_nsid != NVME_NSID_BCAST) {
6033 		return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NS_RANGE, 0, 0));
6034 	}
6035 
6036 	if (ioc->nioc_nsid == 0 && check->nck_ctrl_rewrite) {
6037 		ioc->nioc_nsid = NVME_NSID_BCAST;
6038 	}
6039 
6040 	/*
6041 	 * Finally, see if we have ended up with a broadcast namespace ID
6042 	 * whether through specification or rewriting. If that is not allowed,
6043 	 * then that is an error.
6044 	 */
6045 	if (!check->nck_bcast_ok && ioc->nioc_nsid == NVME_NSID_BCAST) {
6046 		return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NO_BCAST_NS, 0, 0));
6047 	}
6048 
6049 	return (nvme_ioctl_excl_check(minor, ioc, check));
6050 }
6051 
6052 static int
6053 nvme_ioctl_ctrl_info(nvme_minor_t *minor, intptr_t arg, int mode,
6054     cred_t *cred_p)
6055 {
6056 	nvme_t *const nvme = minor->nm_ctrl;
6057 	nvme_ioctl_ctrl_info_t *info;
6058 	nvme_reg_cap_t cap = { 0 };
6059 	nvme_ioctl_identify_t id = { .nid_cns = NVME_IDENTIFY_CTRL };
6060 	void *idbuf;
6061 
6062 	if ((mode & FREAD) == 0)
6063 		return (EBADF);
6064 
6065 	info = kmem_alloc(sizeof (nvme_ioctl_ctrl_info_t), KM_NOSLEEP_LAZY);
6066 	if (info == NULL) {
6067 		return (nvme_ioctl_copyout_error(NVME_IOCTL_E_NO_KERN_MEM, arg,
6068 		    mode));
6069 	}
6070 
6071 	if (ddi_copyin((void *)arg, info, sizeof (nvme_ioctl_ctrl_info_t),
6072 	    mode & FKIOCTL) != 0) {
6073 		kmem_free(info, sizeof (nvme_ioctl_ctrl_info_t));
6074 		return (EFAULT);
6075 	}
6076 
6077 	if (!nvme_ioctl_check(minor, &info->nci_common,
6078 	    &nvme_check_ctrl_info)) {
6079 		goto copyout;
6080 	}
6081 
6082 	/*
6083 	 * We explicitly do not use the identify controller copy in the kernel
6084 	 * right now so that way we can get a snapshot of the controller's
6085 	 * current capacity and values. While it's tempting to try to use this
6086 	 * to refresh the kernel's version we don't just to simplify the rest of
6087 	 * the driver right now.
6088 	 */
6089 	if (!nvme_identify(nvme, B_TRUE, &id, &idbuf)) {
6090 		info->nci_common = id.nid_common;
6091 		goto copyout;
6092 	}
6093 	bcopy(idbuf, &info->nci_ctrl_id, sizeof (nvme_identify_ctrl_t));
6094 	kmem_free(idbuf, NVME_IDENTIFY_BUFSIZE);
6095 
6096 	/*
6097 	 * Use the kernel's cached common namespace information for this.
6098 	 */
6099 	bcopy(nvme->n_idcomns, &info->nci_common_ns,
6100 	    sizeof (nvme_identify_nsid_t));
6101 
6102 	info->nci_vers = nvme->n_version;
6103 
6104 	/*
6105 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
6106 	 * specify the base page size of 4k (1<<12), so add 12 here to
6107 	 * get the real page size value.
6108 	 */
6109 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
6110 	info->nci_caps.cap_mpsmax = 1 << (12 + cap.b.cap_mpsmax);
6111 	info->nci_caps.cap_mpsmin = 1 << (12 + cap.b.cap_mpsmin);
6112 
6113 	info->nci_nintrs = (uint32_t)nvme->n_intr_cnt;
6114 
6115 copyout:
6116 	if (ddi_copyout(info, (void *)arg, sizeof (nvme_ioctl_ctrl_info_t),
6117 	    mode & FKIOCTL) != 0) {
6118 		kmem_free(info, sizeof (nvme_ioctl_ctrl_info_t));
6119 		return (EFAULT);
6120 	}
6121 
6122 	kmem_free(info, sizeof (nvme_ioctl_ctrl_info_t));
6123 	return (0);
6124 }
6125 
6126 static int
6127 nvme_ioctl_ns_info(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p)
6128 {
6129 	nvme_t *const nvme = minor->nm_ctrl;
6130 	nvme_ioctl_ns_info_t *ns_info;
6131 	nvme_namespace_t *ns;
6132 	nvme_ioctl_identify_t id = { .nid_cns = NVME_IDENTIFY_NSID };
6133 	void *idbuf;
6134 
6135 	if ((mode & FREAD) == 0)
6136 		return (EBADF);
6137 
6138 	ns_info = kmem_zalloc(sizeof (nvme_ioctl_ns_info_t), KM_NOSLEEP_LAZY);
6139 	if (ns_info == NULL) {
6140 		return (nvme_ioctl_copyout_error(NVME_IOCTL_E_NO_KERN_MEM, arg,
6141 		    mode));
6142 	}
6143 
6144 	if (ddi_copyin((void *)arg, ns_info, sizeof (nvme_ioctl_ns_info_t),
6145 	    mode & FKIOCTL) != 0) {
6146 		kmem_free(ns_info, sizeof (nvme_ioctl_ns_info_t));
6147 		return (EFAULT);
6148 	}
6149 
6150 	if (!nvme_ioctl_check(minor, &ns_info->nni_common,
6151 	    &nvme_check_ns_info)) {
6152 		goto copyout;
6153 	}
6154 
6155 	ASSERT3U(ns_info->nni_common.nioc_nsid, >, 0);
6156 	ns = nvme_nsid2ns(nvme, ns_info->nni_common.nioc_nsid);
6157 
6158 	/*
6159 	 * First fetch a fresh copy of the namespace information. Most callers
6160 	 * are using this because they will want a mostly accurate snapshot of
6161 	 * capacity and utilization.
6162 	 */
6163 	id.nid_common.nioc_nsid = ns_info->nni_common.nioc_nsid;
6164 	if (!nvme_identify(nvme, B_TRUE, &id, &idbuf)) {
6165 		ns_info->nni_common = id.nid_common;
6166 		goto copyout;
6167 	}
6168 	bcopy(idbuf, &ns_info->nni_id, sizeof (nvme_identify_nsid_t));
6169 	kmem_free(idbuf, NVME_IDENTIFY_BUFSIZE);
6170 
6171 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_NVME);
6172 	if (ns->ns_allocated)
6173 		ns_info->nni_state |= NVME_NS_STATE_ALLOCATED;
6174 
6175 	if (ns->ns_active)
6176 		ns_info->nni_state |= NVME_NS_STATE_ACTIVE;
6177 
6178 	if (ns->ns_ignore)
6179 		ns_info->nni_state |= NVME_NS_STATE_IGNORED;
6180 
6181 	if (ns->ns_attached) {
6182 		const char *addr;
6183 
6184 		ns_info->nni_state |= NVME_NS_STATE_ATTACHED;
6185 		addr = bd_address(ns->ns_bd_hdl);
6186 		if (strlcpy(ns_info->nni_addr, addr,
6187 		    sizeof (ns_info->nni_addr)) >= sizeof (ns_info->nni_addr)) {
6188 			nvme_mgmt_unlock(nvme);
6189 			(void) nvme_ioctl_error(&ns_info->nni_common,
6190 			    NVME_IOCTL_E_BD_ADDR_OVER, 0, 0);
6191 			goto copyout;
6192 		}
6193 	}
6194 	nvme_mgmt_unlock(nvme);
6195 
6196 copyout:
6197 	if (ddi_copyout(ns_info, (void *)arg, sizeof (nvme_ioctl_ns_info_t),
6198 	    mode & FKIOCTL) != 0) {
6199 		kmem_free(ns_info, sizeof (nvme_ioctl_ns_info_t));
6200 		return (EFAULT);
6201 	}
6202 
6203 	kmem_free(ns_info, sizeof (nvme_ioctl_ns_info_t));
6204 	return (0);
6205 }
6206 
6207 static int
6208 nvme_ioctl_identify(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p)
6209 {
6210 	_NOTE(ARGUNUSED(cred_p));
6211 	nvme_t *const nvme = minor->nm_ctrl;
6212 	void *idctl;
6213 	uint_t model;
6214 	nvme_ioctl_identify_t id;
6215 #ifdef	_MULTI_DATAMODEL
6216 	nvme_ioctl_identify32_t id32;
6217 #endif
6218 	boolean_t ns_minor;
6219 
6220 	if ((mode & FREAD) == 0)
6221 		return (EBADF);
6222 
6223 	model = ddi_model_convert_from(mode);
6224 	switch (model) {
6225 #ifdef	_MULTI_DATAMODEL
6226 	case DDI_MODEL_ILP32:
6227 		bzero(&id, sizeof (id));
6228 		if (ddi_copyin((void *)arg, &id32, sizeof (id32),
6229 		    mode & FKIOCTL) != 0) {
6230 			return (EFAULT);
6231 		}
6232 		id.nid_common.nioc_nsid = id32.nid_common.nioc_nsid;
6233 		id.nid_cns = id32.nid_cns;
6234 		id.nid_ctrlid = id32.nid_ctrlid;
6235 		id.nid_data = id32.nid_data;
6236 		break;
6237 #endif	/* _MULTI_DATAMODEL */
6238 	case DDI_MODEL_NONE:
6239 		if (ddi_copyin((void *)arg, &id, sizeof (id),
6240 		    mode & FKIOCTL) != 0) {
6241 			return (EFAULT);
6242 		}
6243 		break;
6244 	default:
6245 		return (ENOTSUP);
6246 	}
6247 
6248 	if (!nvme_ioctl_check(minor, &id.nid_common, &nvme_check_identify)) {
6249 		goto copyout;
6250 	}
6251 
6252 	ns_minor = minor->nm_ns != NULL;
6253 	if (!nvme_validate_identify(nvme, &id, ns_minor)) {
6254 		goto copyout;
6255 	}
6256 
6257 	if (nvme_identify(nvme, B_TRUE, &id, &idctl)) {
6258 		int ret = ddi_copyout(idctl, (void *)id.nid_data,
6259 		    NVME_IDENTIFY_BUFSIZE, mode & FKIOCTL);
6260 		kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
6261 		if (ret != 0) {
6262 			(void) nvme_ioctl_error(&id.nid_common,
6263 			    NVME_IOCTL_E_BAD_USER_DATA, 0, 0);
6264 			goto copyout;
6265 		}
6266 
6267 		nvme_ioctl_success(&id.nid_common);
6268 	}
6269 
6270 copyout:
6271 	switch (model) {
6272 #ifdef	_MULTI_DATAMODEL
6273 	case DDI_MODEL_ILP32:
6274 		id32.nid_common = id.nid_common;
6275 
6276 		if (ddi_copyout(&id32, (void *)arg, sizeof (id32),
6277 		    mode & FKIOCTL) != 0) {
6278 			return (EFAULT);
6279 		}
6280 		break;
6281 #endif	/* _MULTI_DATAMODEL */
6282 	case DDI_MODEL_NONE:
6283 		if (ddi_copyout(&id, (void *)arg, sizeof (id),
6284 		    mode & FKIOCTL) != 0) {
6285 			return (EFAULT);
6286 		}
6287 		break;
6288 	default:
6289 		return (ENOTSUP);
6290 	}
6291 
6292 	return (0);
6293 }
6294 
6295 /*
6296  * Execute commands on behalf of the various ioctls.
6297  *
6298  * If this returns true then the command completed successfully. Otherwise error
6299  * information is returned in the nvme_ioctl_common_t arguments.
6300  */
6301 typedef struct {
6302 	nvme_sqe_t *ica_sqe;
6303 	void *ica_data;
6304 	uint32_t ica_data_len;
6305 	uint_t ica_dma_flags;
6306 	int ica_copy_flags;
6307 	uint32_t ica_timeout;
6308 	uint32_t ica_cdw0;
6309 } nvme_ioc_cmd_args_t;
6310 
6311 static boolean_t
6312 nvme_ioc_cmd(nvme_t *nvme, nvme_ioctl_common_t *ioc, nvme_ioc_cmd_args_t *args)
6313 {
6314 	nvme_cmd_t *cmd;
6315 	boolean_t ret = B_FALSE;
6316 
6317 	cmd = nvme_alloc_admin_cmd(nvme, KM_SLEEP);
6318 	cmd->nc_sqid = 0;
6319 
6320 	/*
6321 	 * This function is used to facilitate requests from
6322 	 * userspace, so don't panic if the command fails. This
6323 	 * is especially true for admin passthru commands, where
6324 	 * the actual command data structure is entirely defined
6325 	 * by userspace.
6326 	 */
6327 	cmd->nc_flags |= NVME_CMD_F_DONTPANIC;
6328 
6329 	cmd->nc_callback = nvme_wakeup_cmd;
6330 	cmd->nc_sqe = *args->ica_sqe;
6331 
6332 	if ((args->ica_dma_flags & DDI_DMA_RDWR) != 0) {
6333 		if (args->ica_data == NULL) {
6334 			ret = nvme_ioctl_error(ioc, NVME_IOCTL_E_NO_DMA_MEM,
6335 			    0, 0);
6336 			goto free_cmd;
6337 		}
6338 
6339 		if (nvme_zalloc_dma(nvme, args->ica_data_len,
6340 		    args->ica_dma_flags, &nvme->n_prp_dma_attr, &cmd->nc_dma) !=
6341 		    DDI_SUCCESS) {
6342 			dev_err(nvme->n_dip, CE_WARN,
6343 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
6344 			ret = nvme_ioctl_error(ioc,
6345 			    NVME_IOCTL_E_NO_DMA_MEM, 0, 0);
6346 			goto free_cmd;
6347 		}
6348 
6349 		if (nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah) != 0) {
6350 			ret = nvme_ioctl_error(ioc,
6351 			    NVME_IOCTL_E_NO_DMA_MEM, 0, 0);
6352 			goto free_cmd;
6353 		}
6354 
6355 		if ((args->ica_dma_flags & DDI_DMA_WRITE) != 0 &&
6356 		    ddi_copyin(args->ica_data, cmd->nc_dma->nd_memp,
6357 		    args->ica_data_len, args->ica_copy_flags) != 0) {
6358 			ret = nvme_ioctl_error(ioc, NVME_IOCTL_E_BAD_USER_DATA,
6359 			    0, 0);
6360 			goto free_cmd;
6361 		}
6362 	}
6363 
6364 	nvme_admin_cmd(cmd, args->ica_timeout);
6365 
6366 	if (!nvme_check_cmd_status_ioctl(cmd, ioc)) {
6367 		ret = B_FALSE;
6368 		goto free_cmd;
6369 	}
6370 
6371 	args->ica_cdw0 = cmd->nc_cqe.cqe_dw0;
6372 
6373 	if ((args->ica_dma_flags & DDI_DMA_READ) != 0 &&
6374 	    ddi_copyout(cmd->nc_dma->nd_memp, args->ica_data,
6375 	    args->ica_data_len, args->ica_copy_flags) != 0) {
6376 		ret = nvme_ioctl_error(ioc, NVME_IOCTL_E_BAD_USER_DATA, 0, 0);
6377 		goto free_cmd;
6378 	}
6379 
6380 	ret = B_TRUE;
6381 	nvme_ioctl_success(ioc);
6382 
6383 free_cmd:
6384 	nvme_free_cmd(cmd);
6385 
6386 	return (ret);
6387 }
6388 
6389 static int
6390 nvme_ioctl_get_logpage(nvme_minor_t *minor, intptr_t arg, int mode,
6391     cred_t *cred_p)
6392 {
6393 	nvme_t *const nvme = minor->nm_ctrl;
6394 	void *buf;
6395 	nvme_ioctl_get_logpage_t log;
6396 	uint_t model;
6397 #ifdef	_MULTI_DATAMODEL
6398 	nvme_ioctl_get_logpage32_t log32;
6399 #endif
6400 
6401 	if ((mode & FREAD) == 0) {
6402 		return (EBADF);
6403 	}
6404 
6405 	model = ddi_model_convert_from(mode);
6406 	switch (model) {
6407 #ifdef	_MULTI_DATAMODEL
6408 	case DDI_MODEL_ILP32:
6409 		bzero(&log, sizeof (log));
6410 		if (ddi_copyin((void *)arg, &log32, sizeof (log32),
6411 		    mode & FKIOCTL) != 0) {
6412 			return (EFAULT);
6413 		}
6414 
6415 		log.nigl_common.nioc_nsid = log32.nigl_common.nioc_nsid;
6416 		log.nigl_csi = log32.nigl_csi;
6417 		log.nigl_lid = log32.nigl_lid;
6418 		log.nigl_lsp = log32.nigl_lsp;
6419 		log.nigl_len = log32.nigl_len;
6420 		log.nigl_offset = log32.nigl_offset;
6421 		log.nigl_data = log32.nigl_data;
6422 		break;
6423 #endif	/* _MULTI_DATAMODEL */
6424 	case DDI_MODEL_NONE:
6425 		if (ddi_copyin((void *)arg, &log, sizeof (log),
6426 		    mode & FKIOCTL) != 0) {
6427 			return (EFAULT);
6428 		}
6429 		break;
6430 	default:
6431 		return (ENOTSUP);
6432 	}
6433 
6434 	/*
6435 	 * Eventually we'd like to do a soft lock on the namespaces from
6436 	 * changing out from us during this operation in the future. But we
6437 	 * haven't implemented that yet.
6438 	 */
6439 	if (!nvme_ioctl_check(minor, &log.nigl_common,
6440 	    &nvme_check_get_logpage)) {
6441 		goto copyout;
6442 	}
6443 
6444 	if (!nvme_validate_logpage(nvme, &log)) {
6445 		goto copyout;
6446 	}
6447 
6448 	if (nvme_get_logpage(nvme, B_TRUE, &log, &buf)) {
6449 		int copy;
6450 
6451 		copy = ddi_copyout(buf, (void *)log.nigl_data, log.nigl_len,
6452 		    mode & FKIOCTL);
6453 		kmem_free(buf, log.nigl_len);
6454 		if (copy != 0) {
6455 			(void) nvme_ioctl_error(&log.nigl_common,
6456 			    NVME_IOCTL_E_BAD_USER_DATA, 0, 0);
6457 			goto copyout;
6458 		}
6459 
6460 		nvme_ioctl_success(&log.nigl_common);
6461 	}
6462 
6463 copyout:
6464 	switch (model) {
6465 #ifdef	_MULTI_DATAMODEL
6466 	case DDI_MODEL_ILP32:
6467 		bzero(&log32, sizeof (log32));
6468 
6469 		log32.nigl_common = log.nigl_common;
6470 		log32.nigl_csi = log.nigl_csi;
6471 		log32.nigl_lid = log.nigl_lid;
6472 		log32.nigl_lsp = log.nigl_lsp;
6473 		log32.nigl_len = log.nigl_len;
6474 		log32.nigl_offset = log.nigl_offset;
6475 		log32.nigl_data = log.nigl_data;
6476 		if (ddi_copyout(&log32, (void *)arg, sizeof (log32),
6477 		    mode & FKIOCTL) != 0) {
6478 			return (EFAULT);
6479 		}
6480 		break;
6481 #endif	/* _MULTI_DATAMODEL */
6482 	case DDI_MODEL_NONE:
6483 		if (ddi_copyout(&log, (void *)arg, sizeof (log),
6484 		    mode & FKIOCTL) != 0) {
6485 			return (EFAULT);
6486 		}
6487 		break;
6488 	default:
6489 		return (ENOTSUP);
6490 	}
6491 
6492 	return (0);
6493 }
6494 
6495 static int
6496 nvme_ioctl_get_feature(nvme_minor_t *minor, intptr_t arg, int mode,
6497     cred_t *cred_p)
6498 {
6499 	nvme_t *const nvme = minor->nm_ctrl;
6500 	nvme_ioctl_get_feature_t feat;
6501 	uint_t model;
6502 #ifdef	_MULTI_DATAMODEL
6503 	nvme_ioctl_get_feature32_t feat32;
6504 #endif
6505 	nvme_get_features_dw10_t gf_dw10 = { 0 };
6506 	nvme_ioc_cmd_args_t args = { NULL };
6507 	nvme_sqe_t sqe = {
6508 	    .sqe_opc	= NVME_OPC_GET_FEATURES
6509 	};
6510 
6511 	if ((mode & FREAD) == 0) {
6512 		return (EBADF);
6513 	}
6514 
6515 	model = ddi_model_convert_from(mode);
6516 	switch (model) {
6517 #ifdef	_MULTI_DATAMODEL
6518 	case DDI_MODEL_ILP32:
6519 		bzero(&feat, sizeof (feat));
6520 		if (ddi_copyin((void *)arg, &feat32, sizeof (feat32),
6521 		    mode & FKIOCTL) != 0) {
6522 			return (EFAULT);
6523 		}
6524 
6525 		feat.nigf_common.nioc_nsid = feat32.nigf_common.nioc_nsid;
6526 		feat.nigf_fid = feat32.nigf_fid;
6527 		feat.nigf_sel = feat32.nigf_sel;
6528 		feat.nigf_cdw11 = feat32.nigf_cdw11;
6529 		feat.nigf_data = feat32.nigf_data;
6530 		feat.nigf_len = feat32.nigf_len;
6531 		break;
6532 #endif	/* _MULTI_DATAMODEL */
6533 	case DDI_MODEL_NONE:
6534 		if (ddi_copyin((void *)arg, &feat, sizeof (feat),
6535 		    mode & FKIOCTL) != 0) {
6536 			return (EFAULT);
6537 		}
6538 		break;
6539 	default:
6540 		return (ENOTSUP);
6541 	}
6542 
6543 	if (!nvme_ioctl_check(minor, &feat.nigf_common,
6544 	    &nvme_check_get_feature)) {
6545 		goto copyout;
6546 	}
6547 
6548 	if (!nvme_validate_get_feature(nvme, &feat)) {
6549 		goto copyout;
6550 	}
6551 
6552 	gf_dw10.b.gt_fid = bitx32(feat.nigf_fid, 7, 0);
6553 	gf_dw10.b.gt_sel = bitx32(feat.nigf_sel, 2, 0);
6554 	sqe.sqe_cdw10 = gf_dw10.r;
6555 	sqe.sqe_cdw11 = feat.nigf_cdw11;
6556 	sqe.sqe_nsid = feat.nigf_common.nioc_nsid;
6557 
6558 	args.ica_sqe = &sqe;
6559 	if (feat.nigf_len != 0) {
6560 		args.ica_data = (void *)feat.nigf_data;
6561 		args.ica_data_len = feat.nigf_len;
6562 		args.ica_dma_flags = DDI_DMA_READ;
6563 	}
6564 	args.ica_copy_flags = mode;
6565 	args.ica_timeout = nvme_admin_cmd_timeout;
6566 
6567 	if (!nvme_ioc_cmd(nvme, &feat.nigf_common, &args)) {
6568 		goto copyout;
6569 	}
6570 
6571 	feat.nigf_cdw0 = args.ica_cdw0;
6572 
6573 copyout:
6574 	switch (model) {
6575 #ifdef	_MULTI_DATAMODEL
6576 	case DDI_MODEL_ILP32:
6577 		bzero(&feat32, sizeof (feat32));
6578 
6579 		feat32.nigf_common = feat.nigf_common;
6580 		feat32.nigf_fid = feat.nigf_fid;
6581 		feat32.nigf_sel = feat.nigf_sel;
6582 		feat32.nigf_cdw11 = feat.nigf_cdw11;
6583 		feat32.nigf_data = feat.nigf_data;
6584 		feat32.nigf_len = feat.nigf_len;
6585 		feat32.nigf_cdw0 = feat.nigf_cdw0;
6586 		if (ddi_copyout(&feat32, (void *)arg, sizeof (feat32),
6587 		    mode & FKIOCTL) != 0) {
6588 			return (EFAULT);
6589 		}
6590 		break;
6591 #endif	/* _MULTI_DATAMODEL */
6592 	case DDI_MODEL_NONE:
6593 		if (ddi_copyout(&feat, (void *)arg, sizeof (feat),
6594 		    mode & FKIOCTL) != 0) {
6595 			return (EFAULT);
6596 		}
6597 		break;
6598 	default:
6599 		return (ENOTSUP);
6600 	}
6601 
6602 	return (0);
6603 }
6604 
6605 static int
6606 nvme_ioctl_format(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p)
6607 {
6608 	nvme_t *const nvme = minor->nm_ctrl;
6609 	nvme_ioctl_format_t ioc;
6610 
6611 	if ((mode & FWRITE) == 0)
6612 		return (EBADF);
6613 
6614 	if (secpolicy_sys_config(cred_p, B_FALSE) != 0)
6615 		return (EPERM);
6616 
6617 	if (ddi_copyin((void *)(uintptr_t)arg, &ioc,
6618 	    sizeof (nvme_ioctl_format_t), mode & FKIOCTL) != 0)
6619 		return (EFAULT);
6620 
6621 	if (!nvme_ioctl_check(minor, &ioc.nif_common, &nvme_check_format)) {
6622 		goto copyout;
6623 	}
6624 
6625 	if (!nvme_validate_format(nvme, &ioc)) {
6626 		goto copyout;
6627 	}
6628 
6629 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_NVME);
6630 	if (!nvme_no_blkdev_attached(nvme, ioc.nif_common.nioc_nsid)) {
6631 		nvme_mgmt_unlock(nvme);
6632 		(void) nvme_ioctl_error(&ioc.nif_common,
6633 		    NVME_IOCTL_E_NS_BLKDEV_ATTACH, 0, 0);
6634 		goto copyout;
6635 	}
6636 
6637 	if (nvme_format_nvm(nvme, &ioc)) {
6638 		nvme_ioctl_success(&ioc.nif_common);
6639 		nvme_rescan_ns(nvme, ioc.nif_common.nioc_nsid);
6640 	}
6641 	nvme_mgmt_unlock(nvme);
6642 
6643 copyout:
6644 	if (ddi_copyout(&ioc, (void *)(uintptr_t)arg, sizeof (ioc),
6645 	    mode & FKIOCTL) != 0) {
6646 		return (EFAULT);
6647 	}
6648 
6649 	return (0);
6650 }
6651 
6652 static int
6653 nvme_ioctl_detach(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p)
6654 {
6655 	nvme_t *const nvme = minor->nm_ctrl;
6656 	nvme_ioctl_common_t com;
6657 
6658 	if ((mode & FWRITE) == 0)
6659 		return (EBADF);
6660 
6661 	if (secpolicy_sys_config(cred_p, B_FALSE) != 0)
6662 		return (EPERM);
6663 
6664 	if (ddi_copyin((void *)(uintptr_t)arg, &com, sizeof (com),
6665 	    mode & FKIOCTL) != 0) {
6666 		return (EFAULT);
6667 	}
6668 
6669 	if (!nvme_ioctl_check(minor, &com, &nvme_check_attach_detach)) {
6670 		goto copyout;
6671 	}
6672 
6673 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_NVME);
6674 	if (nvme_detach_ns(nvme, &com)) {
6675 		nvme_ioctl_success(&com);
6676 	}
6677 	nvme_mgmt_unlock(nvme);
6678 
6679 copyout:
6680 	if (ddi_copyout(&com, (void *)(uintptr_t)arg, sizeof (com),
6681 	    mode & FKIOCTL) != 0) {
6682 		return (EFAULT);
6683 	}
6684 
6685 	return (0);
6686 }
6687 
6688 static int
6689 nvme_ioctl_attach(nvme_minor_t *minor, intptr_t arg, int mode,
6690     cred_t *cred_p)
6691 {
6692 	nvme_t *const nvme = minor->nm_ctrl;
6693 	nvme_ioctl_common_t com;
6694 	nvme_namespace_t *ns;
6695 
6696 	if ((mode & FWRITE) == 0)
6697 		return (EBADF);
6698 
6699 	if (secpolicy_sys_config(cred_p, B_FALSE) != 0)
6700 		return (EPERM);
6701 
6702 	if (ddi_copyin((void *)(uintptr_t)arg, &com, sizeof (com),
6703 	    mode & FKIOCTL) != 0) {
6704 		return (EFAULT);
6705 	}
6706 
6707 	if (!nvme_ioctl_check(minor, &com, &nvme_check_attach_detach)) {
6708 		goto copyout;
6709 	}
6710 
6711 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_NVME);
6712 	ns = nvme_nsid2ns(nvme, com.nioc_nsid);
6713 
6714 	/*
6715 	 * Strictly speaking we shouldn't need to call nvme_init_ns() here as
6716 	 * we should be properly refreshing the internal state when we are
6717 	 * issuing commands that change things. However, we opt to still do so
6718 	 * as a bit of a safety check lest we give the kernel something bad or a
6719 	 * vendor unique command somehow did something behind our backs.
6720 	 */
6721 	if (!ns->ns_attached) {
6722 		(void) nvme_rescan_ns(nvme, com.nioc_nsid);
6723 		if (nvme_attach_ns(nvme, &com)) {
6724 			nvme_ioctl_success(&com);
6725 		}
6726 	} else {
6727 		nvme_ioctl_success(&com);
6728 	}
6729 	nvme_mgmt_unlock(nvme);
6730 
6731 copyout:
6732 	if (ddi_copyout(&com, (void *)(uintptr_t)arg, sizeof (com),
6733 	    mode & FKIOCTL) != 0) {
6734 		return (EFAULT);
6735 	}
6736 
6737 	return (0);
6738 }
6739 
6740 static void
6741 nvme_ufm_update(nvme_t *nvme)
6742 {
6743 	mutex_enter(&nvme->n_fwslot_mutex);
6744 	ddi_ufm_update(nvme->n_ufmh);
6745 	if (nvme->n_fwslot != NULL) {
6746 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
6747 		nvme->n_fwslot = NULL;
6748 	}
6749 	mutex_exit(&nvme->n_fwslot_mutex);
6750 }
6751 
6752 /*
6753  * Download new firmware to the device's internal staging area. We do not call
6754  * nvme_ufm_update() here because after a firmware download, there has been no
6755  * change to any of the actual persistent firmware data. That requires a
6756  * subsequent ioctl (NVME_IOC_FIRMWARE_COMMIT) to commit the firmware to a slot
6757  * or to activate a slot.
6758  */
6759 static int
6760 nvme_ioctl_firmware_download(nvme_minor_t *minor, intptr_t arg, int mode,
6761     cred_t *cred_p)
6762 {
6763 	nvme_t *const nvme = minor->nm_ctrl;
6764 	nvme_ioctl_fw_load_t fw;
6765 	uint64_t len, maxcopy;
6766 	offset_t offset;
6767 	uint32_t gran;
6768 	nvme_valid_ctrl_data_t data;
6769 	uintptr_t buf;
6770 	nvme_sqe_t sqe = {
6771 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
6772 	};
6773 
6774 	if ((mode & FWRITE) == 0)
6775 		return (EBADF);
6776 
6777 	if (secpolicy_sys_config(cred_p, B_FALSE) != 0)
6778 		return (EPERM);
6779 
6780 	if (ddi_copyin((void *)(uintptr_t)arg, &fw, sizeof (fw),
6781 	    mode & FKIOCTL) != 0) {
6782 		return (EFAULT);
6783 	}
6784 
6785 	if (!nvme_ioctl_check(minor, &fw.fwl_common, &nvme_check_firmware)) {
6786 		goto copyout;
6787 	}
6788 
6789 	if (!nvme_validate_fw_load(nvme, &fw)) {
6790 		goto copyout;
6791 	}
6792 
6793 	len = fw.fwl_len;
6794 	offset = fw.fwl_off;
6795 	buf = fw.fwl_buf;
6796 
6797 	/*
6798 	 * We need to determine the minimum and maximum amount of data that we
6799 	 * will send to the device in a given go. Starting in NMVe 1.3 this must
6800 	 * be a multiple of the firmware update granularity (FWUG), but must not
6801 	 * exceed the maximum data transfer that we've set. Many devices don't
6802 	 * report something here, which means we'll end up getting our default
6803 	 * value. Our policy is a little simple, but it's basically if the
6804 	 * maximum data transfer is evenly divided by the granularity, then use
6805 	 * it. Otherwise we use the granularity itself. The granularity is
6806 	 * always in page sized units, so trying to find another optimum point
6807 	 * isn't worth it. If we encounter a contradiction, then we will have to
6808 	 * error out.
6809 	 */
6810 	data.vcd_vers = &nvme->n_version;
6811 	data.vcd_id = nvme->n_idctl;
6812 	gran = nvme_fw_load_granularity(&data);
6813 
6814 	if ((nvme->n_max_data_transfer_size % gran) == 0) {
6815 		maxcopy = nvme->n_max_data_transfer_size;
6816 	} else if (gran <= nvme->n_max_data_transfer_size) {
6817 		maxcopy = gran;
6818 	} else {
6819 		(void) nvme_ioctl_error(&fw.fwl_common,
6820 		    NVME_IOCTL_E_FW_LOAD_IMPOS_GRAN, 0, 0);
6821 		goto copyout;
6822 	}
6823 
6824 	while (len > 0) {
6825 		nvme_ioc_cmd_args_t args = { NULL };
6826 		uint64_t copylen = MIN(maxcopy, len);
6827 
6828 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
6829 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
6830 
6831 		args.ica_sqe = &sqe;
6832 		args.ica_data = (void *)buf;
6833 		args.ica_data_len = copylen;
6834 		args.ica_dma_flags = DDI_DMA_WRITE;
6835 		args.ica_copy_flags = mode;
6836 		args.ica_timeout = nvme_admin_cmd_timeout;
6837 
6838 		if (!nvme_ioc_cmd(nvme, &fw.fwl_common, &args)) {
6839 			break;
6840 		}
6841 
6842 		buf += copylen;
6843 		offset += copylen;
6844 		len -= copylen;
6845 	}
6846 
6847 copyout:
6848 	if (ddi_copyout(&fw, (void *)(uintptr_t)arg, sizeof (fw),
6849 	    mode & FKIOCTL) != 0) {
6850 		return (EFAULT);
6851 	}
6852 
6853 	return (0);
6854 }
6855 
6856 static int
6857 nvme_ioctl_firmware_commit(nvme_minor_t *minor, intptr_t arg, int mode,
6858     cred_t *cred_p)
6859 {
6860 	nvme_t *const nvme = minor->nm_ctrl;
6861 	nvme_ioctl_fw_commit_t fw;
6862 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
6863 	nvme_ioc_cmd_args_t args = { NULL };
6864 	nvme_sqe_t sqe = {
6865 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
6866 	};
6867 
6868 	if ((mode & FWRITE) == 0)
6869 		return (EBADF);
6870 
6871 	if (secpolicy_sys_config(cred_p, B_FALSE) != 0)
6872 		return (EPERM);
6873 
6874 	if (ddi_copyin((void *)(uintptr_t)arg, &fw, sizeof (fw),
6875 	    mode & FKIOCTL) != 0) {
6876 		return (EFAULT);
6877 	}
6878 
6879 	if (!nvme_ioctl_check(minor, &fw.fwc_common, &nvme_check_firmware)) {
6880 		goto copyout;
6881 	}
6882 
6883 	if (!nvme_validate_fw_commit(nvme, &fw)) {
6884 		goto copyout;
6885 	}
6886 
6887 	fc_dw10.b.fc_slot = fw.fwc_slot;
6888 	fc_dw10.b.fc_action = fw.fwc_action;
6889 	sqe.sqe_cdw10 = fc_dw10.r;
6890 
6891 	args.ica_sqe = &sqe;
6892 	args.ica_timeout = nvme_commit_save_cmd_timeout;
6893 
6894 	/*
6895 	 * There are no conditional actions to take based on this succeeding or
6896 	 * failing. A failure is recorded in the ioctl structure returned to the
6897 	 * user.
6898 	 */
6899 	(void) nvme_ioc_cmd(nvme, &fw.fwc_common, &args);
6900 
6901 	/*
6902 	 * Let the DDI UFM subsystem know that the firmware information for
6903 	 * this device has changed. We perform this unconditionally as an
6904 	 * invalidation doesn't particularly hurt us.
6905 	 */
6906 	nvme_ufm_update(nvme);
6907 
6908 copyout:
6909 	if (ddi_copyout(&fw, (void *)(uintptr_t)arg, sizeof (fw),
6910 	    mode & FKIOCTL) != 0) {
6911 		return (EFAULT);
6912 	}
6913 
6914 	return (0);
6915 }
6916 
6917 /*
6918  * Helper to copy in a passthru command from userspace, handling
6919  * different data models.
6920  */
6921 static int
6922 nvme_passthru_copyin_cmd(const void *buf, nvme_ioctl_passthru_t *cmd, int mode)
6923 {
6924 	switch (ddi_model_convert_from(mode & FMODELS)) {
6925 #ifdef _MULTI_DATAMODEL
6926 	case DDI_MODEL_ILP32: {
6927 		nvme_ioctl_passthru32_t cmd32;
6928 
6929 		if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0)
6930 			return (EFAULT);
6931 
6932 		bzero(cmd, sizeof (nvme_ioctl_passthru_t));
6933 
6934 		cmd->npc_common.nioc_nsid = cmd32.npc_common.nioc_nsid;
6935 		cmd->npc_opcode = cmd32.npc_opcode;
6936 		cmd->npc_timeout = cmd32.npc_timeout;
6937 		cmd->npc_flags = cmd32.npc_flags;
6938 		cmd->npc_impact = cmd32.npc_impact;
6939 		cmd->npc_cdw12 = cmd32.npc_cdw12;
6940 		cmd->npc_cdw13 = cmd32.npc_cdw13;
6941 		cmd->npc_cdw14 = cmd32.npc_cdw14;
6942 		cmd->npc_cdw15 = cmd32.npc_cdw15;
6943 		cmd->npc_buflen = cmd32.npc_buflen;
6944 		cmd->npc_buf = cmd32.npc_buf;
6945 		break;
6946 	}
6947 #endif	/* _MULTI_DATAMODEL */
6948 	case DDI_MODEL_NONE:
6949 		if (ddi_copyin(buf, (void *)cmd, sizeof (nvme_ioctl_passthru_t),
6950 		    mode) != 0) {
6951 			return (EFAULT);
6952 		}
6953 		break;
6954 	default:
6955 		return (ENOTSUP);
6956 	}
6957 
6958 	return (0);
6959 }
6960 
6961 /*
6962  * Helper to copy out a passthru command result to userspace, handling
6963  * different data models.
6964  */
6965 static int
6966 nvme_passthru_copyout_cmd(const nvme_ioctl_passthru_t *cmd, void *buf, int mode)
6967 {
6968 	switch (ddi_model_convert_from(mode & FMODELS)) {
6969 #ifdef _MULTI_DATAMODEL
6970 	case DDI_MODEL_ILP32: {
6971 		nvme_ioctl_passthru32_t cmd32;
6972 
6973 		bzero(&cmd32, sizeof (nvme_ioctl_passthru32_t));
6974 
6975 		cmd32.npc_common = cmd->npc_common;
6976 		cmd32.npc_opcode = cmd->npc_opcode;
6977 		cmd32.npc_timeout = cmd->npc_timeout;
6978 		cmd32.npc_flags = cmd->npc_flags;
6979 		cmd32.npc_impact = cmd->npc_impact;
6980 		cmd32.npc_cdw0 = cmd->npc_cdw0;
6981 		cmd32.npc_cdw12 = cmd->npc_cdw12;
6982 		cmd32.npc_cdw13 = cmd->npc_cdw13;
6983 		cmd32.npc_cdw14 = cmd->npc_cdw14;
6984 		cmd32.npc_cdw15 = cmd->npc_cdw15;
6985 		cmd32.npc_buflen = (size32_t)cmd->npc_buflen;
6986 		cmd32.npc_buf = (uintptr32_t)cmd->npc_buf;
6987 		if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0)
6988 			return (EFAULT);
6989 		break;
6990 	}
6991 #endif	/* _MULTI_DATAMODEL */
6992 	case DDI_MODEL_NONE:
6993 		if (ddi_copyout(cmd, buf, sizeof (nvme_ioctl_passthru_t),
6994 		    mode) != 0) {
6995 			return (EFAULT);
6996 		}
6997 		break;
6998 	default:
6999 		return (ENOTSUP);
7000 	}
7001 	return (0);
7002 }
7003 
7004 /*
7005  * Run an arbitrary vendor-specific admin command on the device.
7006  */
7007 static int
7008 nvme_ioctl_passthru(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p)
7009 {
7010 	nvme_t *const nvme = minor->nm_ctrl;
7011 	int rv;
7012 	nvme_ioctl_passthru_t pass;
7013 	nvme_sqe_t sqe;
7014 	nvme_ioc_cmd_args_t args = { NULL };
7015 
7016 	/*
7017 	 * Basic checks: permissions, data model, argument size.
7018 	 */
7019 	if ((mode & FWRITE) == 0)
7020 		return (EBADF);
7021 
7022 	if (secpolicy_sys_config(cred_p, B_FALSE) != 0)
7023 		return (EPERM);
7024 
7025 	if ((rv = nvme_passthru_copyin_cmd((void *)(uintptr_t)arg, &pass,
7026 	    mode)) != 0) {
7027 		return (rv);
7028 	}
7029 
7030 	if (!nvme_ioctl_check(minor, &pass.npc_common, &nvme_check_passthru)) {
7031 		goto copyout;
7032 	}
7033 
7034 	if (!nvme_validate_vuc(nvme, &pass)) {
7035 		goto copyout;
7036 	}
7037 
7038 	nvme_mgmt_lock(nvme, NVME_MGMT_LOCK_NVME);
7039 	if ((pass.npc_impact & NVME_IMPACT_NS) != 0) {
7040 		/*
7041 		 * We've been told this has ns impact. Right now force that to
7042 		 * be every ns until we have more use cases and reason to trust
7043 		 * the nsid field.
7044 		 */
7045 		if (!nvme_no_blkdev_attached(nvme, NVME_NSID_BCAST)) {
7046 			nvme_mgmt_unlock(nvme);
7047 			(void) nvme_ioctl_error(&pass.npc_common,
7048 			    NVME_IOCTL_E_NS_BLKDEV_ATTACH, 0, 0);
7049 			goto copyout;
7050 		}
7051 	}
7052 
7053 	bzero(&sqe, sizeof (sqe));
7054 
7055 	sqe.sqe_opc = pass.npc_opcode;
7056 	sqe.sqe_nsid = pass.npc_common.nioc_nsid;
7057 	sqe.sqe_cdw10 = (uint32_t)(pass.npc_buflen >> NVME_DWORD_SHIFT);
7058 	sqe.sqe_cdw12 = pass.npc_cdw12;
7059 	sqe.sqe_cdw13 = pass.npc_cdw13;
7060 	sqe.sqe_cdw14 = pass.npc_cdw14;
7061 	sqe.sqe_cdw15 = pass.npc_cdw15;
7062 
7063 	args.ica_sqe = &sqe;
7064 	args.ica_data = (void *)pass.npc_buf;
7065 	args.ica_data_len = pass.npc_buflen;
7066 	args.ica_copy_flags = mode;
7067 	args.ica_timeout = pass.npc_timeout;
7068 
7069 	if ((pass.npc_flags & NVME_PASSTHRU_READ) != 0)
7070 		args.ica_dma_flags |= DDI_DMA_READ;
7071 	else if ((pass.npc_flags & NVME_PASSTHRU_WRITE) != 0)
7072 		args.ica_dma_flags |= DDI_DMA_WRITE;
7073 
7074 	if (nvme_ioc_cmd(nvme, &pass.npc_common, &args)) {
7075 		pass.npc_cdw0 = args.ica_cdw0;
7076 		if ((pass.npc_impact & NVME_IMPACT_NS) != 0) {
7077 			nvme_rescan_ns(nvme, NVME_NSID_BCAST);
7078 		}
7079 	}
7080 	nvme_mgmt_unlock(nvme);
7081 
7082 copyout:
7083 	rv = nvme_passthru_copyout_cmd(&pass, (void *)(uintptr_t)arg,
7084 	    mode);
7085 
7086 	return (rv);
7087 }
7088 
7089 static int
7090 nvme_ioctl_lock(nvme_minor_t *minor, intptr_t arg, int mode,
7091     cred_t *cred_p)
7092 {
7093 	nvme_ioctl_lock_t lock;
7094 	const nvme_lock_flags_t all_flags = NVME_LOCK_F_DONT_BLOCK;
7095 	nvme_t *nvme = minor->nm_ctrl;
7096 
7097 	if ((mode & FWRITE) == 0)
7098 		return (EBADF);
7099 
7100 	if (secpolicy_sys_config(cred_p, B_FALSE) != 0)
7101 		return (EPERM);
7102 
7103 	if (ddi_copyin((void *)(uintptr_t)arg, &lock, sizeof (lock),
7104 	    mode & FKIOCTL) != 0) {
7105 		return (EFAULT);
7106 	}
7107 
7108 	if (lock.nil_ent != NVME_LOCK_E_CTRL &&
7109 	    lock.nil_ent != NVME_LOCK_E_NS) {
7110 		(void) nvme_ioctl_error(&lock.nil_common,
7111 		    NVME_IOCTL_E_BAD_LOCK_ENTITY, 0, 0);
7112 		goto copyout;
7113 	}
7114 
7115 	if (lock.nil_level != NVME_LOCK_L_READ &&
7116 	    lock.nil_level != NVME_LOCK_L_WRITE) {
7117 		(void) nvme_ioctl_error(&lock.nil_common,
7118 		    NVME_IOCTL_E_BAD_LOCK_LEVEL, 0, 0);
7119 		goto copyout;
7120 	}
7121 
7122 	if ((lock.nil_flags & ~all_flags) != 0) {
7123 		(void) nvme_ioctl_error(&lock.nil_common,
7124 		    NVME_IOCTL_E_BAD_LOCK_FLAGS, 0, 0);
7125 		goto copyout;
7126 	}
7127 
7128 	if (!nvme_ioctl_check(minor, &lock.nil_common, &nvme_check_locking)) {
7129 		goto copyout;
7130 	}
7131 
7132 	/*
7133 	 * If we're on a namespace, confirm that we're not asking for the
7134 	 * controller.
7135 	 */
7136 	if (lock.nil_common.nioc_nsid != 0 &&
7137 	    lock.nil_ent == NVME_LOCK_E_CTRL) {
7138 		(void) nvme_ioctl_error(&lock.nil_common,
7139 		    NVME_IOCTL_E_NS_CANNOT_LOCK_CTRL, 0, 0);
7140 		goto copyout;
7141 	}
7142 
7143 	/*
7144 	 * We've reached the point where we can no longer actually check things
7145 	 * without serializing state. First, we need to check to make sure that
7146 	 * none of our invariants are being broken for locking:
7147 	 *
7148 	 * 1) The caller isn't already blocking for a lock operation to
7149 	 * complete.
7150 	 *
7151 	 * 2) The caller is attempting to grab a lock that they already have.
7152 	 * While there are other rule violations that this might create, we opt
7153 	 * to check this ahead of it so we can have slightly better error
7154 	 * messages for our callers.
7155 	 *
7156 	 * 3) The caller is trying to grab a controller lock, while holding a
7157 	 * namespace lock.
7158 	 *
7159 	 * 4) The caller has a controller write lock and is trying to get a
7160 	 * namespace lock. For now, we disallow this case. Holding a controller
7161 	 * read lock is allowed, but the write lock allows you to operate on all
7162 	 * namespaces anyways. In addition, this simplifies the locking logic;
7163 	 * however, this constraint may be loosened in the future.
7164 	 *
7165 	 * 5) The caller is trying to acquire a second namespace lock when they
7166 	 * already have one.
7167 	 */
7168 	mutex_enter(&nvme->n_minor_mutex);
7169 	if (minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_BLOCKED ||
7170 	    minor->nm_ns_lock.nli_state == NVME_LOCK_STATE_BLOCKED) {
7171 		(void) nvme_ioctl_error(&lock.nil_common,
7172 		    NVME_IOCTL_E_LOCK_PENDING, 0, 0);
7173 		mutex_exit(&nvme->n_minor_mutex);
7174 		goto copyout;
7175 	}
7176 
7177 	if ((lock.nil_ent == NVME_LOCK_E_CTRL &&
7178 	    minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_ACQUIRED) ||
7179 	    (lock.nil_ent == NVME_LOCK_E_NS &&
7180 	    minor->nm_ns_lock.nli_state == NVME_LOCK_STATE_ACQUIRED &&
7181 	    minor->nm_ns_lock.nli_ns->ns_id == lock.nil_common.nioc_nsid)) {
7182 		(void) nvme_ioctl_error(&lock.nil_common,
7183 		    NVME_IOCTL_E_LOCK_ALREADY_HELD, 0, 0);
7184 		mutex_exit(&nvme->n_minor_mutex);
7185 		goto copyout;
7186 	}
7187 
7188 	if (lock.nil_ent == NVME_LOCK_E_CTRL &&
7189 	    minor->nm_ns_lock.nli_state != NVME_LOCK_STATE_UNLOCKED) {
7190 		(void) nvme_ioctl_error(&lock.nil_common,
7191 		    NVME_IOCTL_E_LOCK_NO_CTRL_WITH_NS, 0, 0);
7192 		mutex_exit(&nvme->n_minor_mutex);
7193 		goto copyout;
7194 	}
7195 
7196 	if (lock.nil_ent == NVME_LOCK_E_NS &&
7197 	    (minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_ACQUIRED &&
7198 	    minor->nm_ctrl_lock.nli_curlevel == NVME_LOCK_L_WRITE)) {
7199 		(void) nvme_ioctl_error(&lock.nil_common,
7200 		    NVME_IOCTL_LOCK_NO_NS_WITH_CTRL_WRLOCK, 0, 0);
7201 		mutex_exit(&nvme->n_minor_mutex);
7202 		goto copyout;
7203 	}
7204 
7205 	if (lock.nil_ent == NVME_LOCK_E_NS &&
7206 	    minor->nm_ns_lock.nli_state != NVME_LOCK_STATE_UNLOCKED) {
7207 		(void) nvme_ioctl_error(&lock.nil_common,
7208 		    NVME_IOCTL_E_LOCK_NO_2ND_NS, 0, 0);
7209 		mutex_exit(&nvme->n_minor_mutex);
7210 		goto copyout;
7211 	}
7212 
7213 #ifdef	DEBUG
7214 	/*
7215 	 * This is a big block of sanity checks to make sure that we haven't
7216 	 * allowed anything bad to happen.
7217 	 */
7218 	if (lock.nil_ent == NVME_LOCK_E_NS) {
7219 		ASSERT3P(minor->nm_ns_lock.nli_lock, ==, NULL);
7220 		ASSERT3U(minor->nm_ns_lock.nli_state, ==,
7221 		    NVME_LOCK_STATE_UNLOCKED);
7222 		ASSERT3U(minor->nm_ns_lock.nli_curlevel, ==, 0);
7223 		ASSERT3P(minor->nm_ns_lock.nli_ns, ==, NULL);
7224 
7225 		if (minor->nm_ns != NULL) {
7226 			ASSERT3U(minor->nm_ns->ns_id, ==,
7227 			    lock.nil_common.nioc_nsid);
7228 		}
7229 
7230 		ASSERT0(list_link_active(&minor->nm_ns_lock.nli_node));
7231 	} else {
7232 		ASSERT3P(minor->nm_ctrl_lock.nli_lock, ==, NULL);
7233 		ASSERT3U(minor->nm_ctrl_lock.nli_state, ==,
7234 		    NVME_LOCK_STATE_UNLOCKED);
7235 		ASSERT3U(minor->nm_ctrl_lock.nli_curlevel, ==, 0);
7236 		ASSERT3P(minor->nm_ns_lock.nli_ns, ==, NULL);
7237 		ASSERT0(list_link_active(&minor->nm_ctrl_lock.nli_node));
7238 
7239 		ASSERT3P(minor->nm_ns_lock.nli_lock, ==, NULL);
7240 		ASSERT3U(minor->nm_ns_lock.nli_state, ==,
7241 		    NVME_LOCK_STATE_UNLOCKED);
7242 		ASSERT3U(minor->nm_ns_lock.nli_curlevel, ==, 0);
7243 		ASSERT3P(minor->nm_ns_lock.nli_ns, ==, NULL);
7244 		ASSERT0(list_link_active(&minor->nm_ns_lock.nli_node));
7245 	}
7246 #endif	/* DEBUG */
7247 
7248 	/*
7249 	 * At this point we should actually attempt a locking operation.
7250 	 */
7251 	nvme_rwlock(minor, &lock);
7252 	mutex_exit(&nvme->n_minor_mutex);
7253 
7254 copyout:
7255 	if (ddi_copyout(&lock, (void *)(uintptr_t)arg, sizeof (lock),
7256 	    mode & FKIOCTL) != 0) {
7257 		return (EFAULT);
7258 	}
7259 
7260 	return (0);
7261 }
7262 
7263 static int
7264 nvme_ioctl_unlock(nvme_minor_t *minor, intptr_t arg, int mode,
7265     cred_t *cred_p)
7266 {
7267 	nvme_ioctl_unlock_t unlock;
7268 	nvme_t *const nvme = minor->nm_ctrl;
7269 	boolean_t is_ctrl;
7270 	nvme_lock_t *lock;
7271 	nvme_minor_lock_info_t *info;
7272 
7273 	/*
7274 	 * Note, we explicitly don't check for privileges for unlock. The idea
7275 	 * being that if you have the lock, that's what matters. If you don't
7276 	 * have the lock, it doesn't matter what privileges that you have at
7277 	 * all.
7278 	 */
7279 	if ((mode & FWRITE) == 0)
7280 		return (EBADF);
7281 
7282 	if (ddi_copyin((void *)(uintptr_t)arg, &unlock, sizeof (unlock),
7283 	    mode & FKIOCTL) != 0) {
7284 		return (EFAULT);
7285 	}
7286 
7287 	if (unlock.niu_ent != NVME_LOCK_E_CTRL &&
7288 	    unlock.niu_ent != NVME_LOCK_E_NS) {
7289 		(void) nvme_ioctl_error(&unlock.niu_common,
7290 		    NVME_IOCTL_E_BAD_LOCK_ENTITY, 0, 0);
7291 		goto copyout;
7292 	}
7293 
7294 	if (!nvme_ioctl_check(minor, &unlock.niu_common, &nvme_check_locking)) {
7295 		goto copyout;
7296 	}
7297 
7298 	/*
7299 	 * If we're on a namespace, confirm that we're not asking for the
7300 	 * controller.
7301 	 */
7302 	if (unlock.niu_common.nioc_nsid != 0 &&
7303 	    unlock.niu_ent == NVME_LOCK_E_CTRL) {
7304 		(void) nvme_ioctl_error(&unlock.niu_common,
7305 		    NVME_IOCTL_E_NS_CANNOT_UNLOCK_CTRL, 0, 0);
7306 		goto copyout;
7307 	}
7308 
7309 	mutex_enter(&nvme->n_minor_mutex);
7310 	if (unlock.niu_ent == NVME_LOCK_E_CTRL) {
7311 		if (minor->nm_ctrl_lock.nli_state != NVME_LOCK_STATE_ACQUIRED) {
7312 			mutex_exit(&nvme->n_minor_mutex);
7313 			(void) nvme_ioctl_error(&unlock.niu_common,
7314 			    NVME_IOCTL_E_LOCK_NOT_HELD, 0, 0);
7315 			goto copyout;
7316 		}
7317 	} else {
7318 		if (minor->nm_ns_lock.nli_ns == NULL) {
7319 			mutex_exit(&nvme->n_minor_mutex);
7320 			(void) nvme_ioctl_error(&unlock.niu_common,
7321 			    NVME_IOCTL_E_LOCK_NOT_HELD, 0, 0);
7322 			goto copyout;
7323 		}
7324 
7325 		/*
7326 		 * Check that our unlock request corresponds to the namespace ID
7327 		 * that is currently locked. This could happen if we're using
7328 		 * the controller node and it specified a valid, but not locked,
7329 		 * namespace ID.
7330 		 */
7331 		if (minor->nm_ns_lock.nli_ns->ns_id !=
7332 		    unlock.niu_common.nioc_nsid) {
7333 			mutex_exit(&nvme->n_minor_mutex);
7334 			ASSERT3P(minor->nm_ns, ==, NULL);
7335 			(void) nvme_ioctl_error(&unlock.niu_common,
7336 			    NVME_IOCTL_E_LOCK_WRONG_NS, 0, 0);
7337 			goto copyout;
7338 		}
7339 
7340 		if (minor->nm_ns_lock.nli_state != NVME_LOCK_STATE_ACQUIRED) {
7341 			mutex_exit(&nvme->n_minor_mutex);
7342 			(void) nvme_ioctl_error(&unlock.niu_common,
7343 			    NVME_IOCTL_E_LOCK_NOT_HELD, 0, 0);
7344 			goto copyout;
7345 		}
7346 	}
7347 
7348 	/*
7349 	 * Finally, perform the unlock.
7350 	 */
7351 	is_ctrl = unlock.niu_ent == NVME_LOCK_E_CTRL;
7352 	if (is_ctrl) {
7353 		lock = &nvme->n_lock;
7354 		info = &minor->nm_ctrl_lock;
7355 	} else {
7356 		nvme_namespace_t *ns;
7357 		const uint32_t nsid = unlock.niu_common.nioc_nsid;
7358 
7359 		ns = nvme_nsid2ns(nvme, nsid);
7360 		lock = &ns->ns_lock;
7361 		info = &minor->nm_ns_lock;
7362 		VERIFY3P(ns, ==, info->nli_ns);
7363 	}
7364 	nvme_rwunlock(info, lock);
7365 	mutex_exit(&nvme->n_minor_mutex);
7366 	nvme_ioctl_success(&unlock.niu_common);
7367 
7368 copyout:
7369 	if (ddi_copyout(&unlock, (void *)(uintptr_t)arg, sizeof (unlock),
7370 	    mode & FKIOCTL) != 0) {
7371 		return (EFAULT);
7372 	}
7373 
7374 	return (0);
7375 }
7376 
7377 static int
7378 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
7379     int *rval_p)
7380 {
7381 #ifndef __lock_lint
7382 	_NOTE(ARGUNUSED(rval_p));
7383 #endif
7384 	nvme_minor_t *minor;
7385 	nvme_t *nvme;
7386 
7387 	minor = nvme_minor_find_by_dev(dev);
7388 	if (minor == NULL) {
7389 		return (ENXIO);
7390 	}
7391 
7392 	nvme = minor->nm_ctrl;
7393 	if (nvme == NULL)
7394 		return (ENXIO);
7395 
7396 	if (IS_DEVCTL(cmd))
7397 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
7398 
7399 	if (nvme->n_dead && (cmd != NVME_IOC_DETACH && cmd !=
7400 	    NVME_IOC_UNLOCK)) {
7401 		if (IS_NVME_IOC(cmd) == 0) {
7402 			return (EIO);
7403 		}
7404 
7405 		return (nvme_ioctl_copyout_error(nvme->n_dead_status, arg,
7406 		    mode));
7407 	}
7408 
7409 	/*
7410 	 * ioctls that are no longer using the original ioctl structure.
7411 	 */
7412 	switch (cmd) {
7413 	case NVME_IOC_CTRL_INFO:
7414 		return (nvme_ioctl_ctrl_info(minor, arg, mode, cred_p));
7415 	case NVME_IOC_IDENTIFY:
7416 		return (nvme_ioctl_identify(minor, arg, mode, cred_p));
7417 	case NVME_IOC_GET_LOGPAGE:
7418 		return (nvme_ioctl_get_logpage(minor, arg, mode, cred_p));
7419 	case NVME_IOC_GET_FEATURE:
7420 		return (nvme_ioctl_get_feature(minor, arg, mode, cred_p));
7421 	case NVME_IOC_DETACH:
7422 		return (nvme_ioctl_detach(minor, arg, mode, cred_p));
7423 	case NVME_IOC_ATTACH:
7424 		return (nvme_ioctl_attach(minor, arg, mode, cred_p));
7425 	case NVME_IOC_FORMAT:
7426 		return (nvme_ioctl_format(minor, arg, mode, cred_p));
7427 	case NVME_IOC_FIRMWARE_DOWNLOAD:
7428 		return (nvme_ioctl_firmware_download(minor, arg, mode,
7429 		    cred_p));
7430 	case NVME_IOC_FIRMWARE_COMMIT:
7431 		return (nvme_ioctl_firmware_commit(minor, arg, mode,
7432 		    cred_p));
7433 	case NVME_IOC_NS_INFO:
7434 		return (nvme_ioctl_ns_info(minor, arg, mode, cred_p));
7435 	case NVME_IOC_PASSTHRU:
7436 		return (nvme_ioctl_passthru(minor, arg, mode, cred_p));
7437 	case NVME_IOC_LOCK:
7438 		return (nvme_ioctl_lock(minor, arg, mode, cred_p));
7439 	case NVME_IOC_UNLOCK:
7440 		return (nvme_ioctl_unlock(minor, arg, mode, cred_p));
7441 	default:
7442 		return (ENOTTY);
7443 	}
7444 }
7445 
7446 /*
7447  * DDI UFM Callbacks
7448  */
7449 static int
7450 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
7451     ddi_ufm_image_t *img)
7452 {
7453 	nvme_t *nvme = arg;
7454 
7455 	if (imgno != 0)
7456 		return (EINVAL);
7457 
7458 	ddi_ufm_image_set_desc(img, "Firmware");
7459 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
7460 
7461 	return (0);
7462 }
7463 
7464 /*
7465  * Fill out firmware slot information for the requested slot.  The firmware
7466  * slot information is gathered by requesting the Firmware Slot Information log
7467  * page.  The format of the page is described in section 5.10.1.3.
7468  *
7469  * We lazily cache the log page on the first call and then invalidate the cache
7470  * data after a successful firmware download or firmware commit command.
7471  * The cached data is protected by a mutex as the state can change
7472  * asynchronous to this callback.
7473  */
7474 static int
7475 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
7476     uint_t slotno, ddi_ufm_slot_t *slot)
7477 {
7478 	nvme_t *nvme = arg;
7479 	void *log = NULL;
7480 	size_t bufsize;
7481 	ddi_ufm_attr_t attr = 0;
7482 	char fw_ver[NVME_FWVER_SZ + 1];
7483 
7484 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
7485 		return (EINVAL);
7486 
7487 	mutex_enter(&nvme->n_fwslot_mutex);
7488 	if (nvme->n_fwslot == NULL) {
7489 		if (!nvme_get_logpage_int(nvme, B_TRUE, &log, &bufsize,
7490 		    NVME_LOGPAGE_FWSLOT) ||
7491 		    bufsize != sizeof (nvme_fwslot_log_t)) {
7492 			if (log != NULL)
7493 				kmem_free(log, bufsize);
7494 			mutex_exit(&nvme->n_fwslot_mutex);
7495 			return (EIO);
7496 		}
7497 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
7498 	}
7499 
7500 	/*
7501 	 * NVMe numbers firmware slots starting at 1
7502 	 */
7503 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
7504 		attr |= DDI_UFM_ATTR_ACTIVE;
7505 
7506 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
7507 		attr |= DDI_UFM_ATTR_WRITEABLE;
7508 
7509 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
7510 		attr |= DDI_UFM_ATTR_EMPTY;
7511 	} else {
7512 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
7513 		    NVME_FWVER_SZ);
7514 		fw_ver[NVME_FWVER_SZ] = '\0';
7515 		ddi_ufm_slot_set_version(slot, fw_ver);
7516 	}
7517 	mutex_exit(&nvme->n_fwslot_mutex);
7518 
7519 	ddi_ufm_slot_set_attrs(slot, attr);
7520 
7521 	return (0);
7522 }
7523 
7524 static int
7525 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
7526 {
7527 	*caps = DDI_UFM_CAP_REPORT;
7528 	return (0);
7529 }
7530 
7531 boolean_t
7532 nvme_ctrl_atleast(nvme_t *nvme, const nvme_version_t *min)
7533 {
7534 	return (nvme_vers_atleast(&nvme->n_version, min) ? B_TRUE : B_FALSE);
7535 }
7536