1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. 14 * Copyright 2019 Unix Software Ltd. 15 * Copyright 2020 Joyent, Inc. 16 * Copyright 2020 Racktop Systems. 17 * Copyright 2024 Oxide Computer Company. 18 * Copyright 2022 OmniOS Community Edition (OmniOSce) Association. 19 * Copyright 2022 Tintri by DDN, Inc. All rights reserved. 20 */ 21 22 /* 23 * blkdev driver for NVMe compliant storage devices 24 * 25 * This driver targets and is designed to support all NVMe 1.x and NVMe 2.x 26 * devices. Features are added to the driver as we encounter devices that 27 * require them and our needs, so some commands or log pages may not take 28 * advantage of newer features that devices support at this time. When you 29 * encounter such a case, it is generally fine to add that support to the driver 30 * as long as you take care to ensure that the requisite device version is met 31 * before using it. 32 * 33 * The driver has only been tested on x86 systems and will not work on big- 34 * endian systems without changes to the code accessing registers and data 35 * structures used by the hardware. 36 * 37 * 38 * Interrupt Usage: 39 * 40 * The driver will use a single interrupt while configuring the device as the 41 * specification requires, but contrary to the specification it will try to use 42 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it 43 * will switch to multiple-message MSI(-X) if supported. The driver wants to 44 * have one interrupt vector per CPU, but it will work correctly if less are 45 * available. Interrupts can be shared by queues, the interrupt handler will 46 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only 47 * the admin queue will share an interrupt with one I/O queue. The interrupt 48 * handler will retrieve completed commands from all queues sharing an interrupt 49 * vector and will post them to a taskq for completion processing. 50 * 51 * 52 * Command Processing: 53 * 54 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up 55 * to 65536 I/O commands. The driver will configure one I/O queue pair per 56 * available interrupt vector, with the queue length usually much smaller than 57 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer 58 * interrupt vectors will be used. 59 * 60 * Additionally the hardware provides a single special admin queue pair that can 61 * hold up to 4096 admin commands. 62 * 63 * From the hardware perspective both queues of a queue pair are independent, 64 * but they share some driver state: the command array (holding pointers to 65 * commands currently being processed by the hardware) and the active command 66 * counter. Access to a submission queue and the shared state is protected by 67 * nq_mutex; completion queue is protected by ncq_mutex. 68 * 69 * When a command is submitted to a queue pair the active command counter is 70 * incremented and a pointer to the command is stored in the command array. The 71 * array index is used as command identifier (CID) in the submission queue 72 * entry. Some commands may take a very long time to complete, and if the queue 73 * wraps around in that time a submission may find the next array slot to still 74 * be used by a long-running command. In this case the array is sequentially 75 * searched for the next free slot. The length of the command array is the same 76 * as the configured queue length. Queue overrun is prevented by the semaphore, 77 * so a command submission may block if the queue is full. 78 * 79 * 80 * Polled I/O Support: 81 * 82 * For kernel core dump support the driver can do polled I/O. As interrupts are 83 * turned off while dumping the driver will just submit a command in the regular 84 * way, and then repeatedly attempt a command retrieval until it gets the 85 * command back. 86 * 87 * 88 * Namespace Support: 89 * 90 * NVMe devices can have multiple namespaces, each being a independent data 91 * store. The driver supports multiple namespaces and creates a blkdev interface 92 * for each namespace found. Namespaces can have various attributes to support 93 * protection information. This driver does not support any of this and ignores 94 * namespaces that have these attributes. 95 * 96 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier 97 * (EUI64), and NVMe 1.2 introduced an additional 128bit Namespace Globally 98 * Unique Identifier (NGUID). This driver uses either the NGUID or the EUI64 99 * if present to generate the devid, and passes the EUI64 to blkdev to use it 100 * in the device node names. 101 * 102 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a 103 * single controller. This is an artificial limit imposed by the driver to be 104 * able to address a reasonable number of controllers and namespaces while 105 * fitting within the constraints of MAXMIN32, aka a 32-bit device number which 106 * only has 18-bits for the minor number. See the minor node section for more 107 * information. 108 * 109 * 110 * Minor nodes: 111 * 112 * For each NVMe device the driver exposes one minor node for the controller and 113 * one minor node for each namespace. The only operations supported by those 114 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the 115 * primary control interface for the devices. The character device is a private 116 * interface and we attempt stability through libnvme and more so nvmeadm. 117 * 118 * The controller minor node is much more flexible than the namespace minor node 119 * and should be preferred. The controller node allows one to target any 120 * namespace that the device has, while the namespace is limited in what it can 121 * acquire. While the namespace minor exists, it should not be relied upon and 122 * is not by libnvme. 123 * 124 * The minor number space is split in two. We use the lower part to support the 125 * controller and namespaces as described above in the 'Namespace Support' 126 * section. The second set is used for cloning opens. We set aside one million 127 * minors for this purpose. We utilize a cloning open so that way we can have 128 * per-file_t state. This is how we end up implementing and tracking locking 129 * state and related. 130 * 131 * When we have this cloned open, then we allocate a new nvme_minor_t which gets 132 * its minor number from the nvme_open_minors id_space_t and is stored in the 133 * nvme_open_minors_avl. While someone calls open on a controller or namespace 134 * minor, everything else occurs in the context of one of these ephemeral 135 * minors. 136 * 137 * 138 * ioctls, Errors, and Exclusive Access: 139 * 140 * All of the logical commands that one can issue are driven through the 141 * ioctl(9E) interface. All of our ioctls have a similar shape where they 142 * all include the 'nvme_ioctl_common_t' as their first member. 143 * 144 * This common ioctl structure is used to communicate the namespace that should 145 * be targeted. When the namespace is left as 0, then that indicates that it 146 * should target whatever the default is of the minor node. For a namespace 147 * minor, that will be transparently rewritten to the namespace's namespace id. 148 * 149 * In addition, the nvme_ioctl_common_t structure also has a standard error 150 * return. Our goal in our ioctl path is to ensure that we have useful semantic 151 * errors as much as possible. EINVAL, EIO, etc. are all overloaded. Instead as 152 * long as we can copy in our structure, then we will set a semantic error. If 153 * we have an error from the controller, then that will be included there. 154 * 155 * Each command has a specific policy that controls whether or not it is allowed 156 * on the namespace or controller minor, whether the broadcast namespace is 157 * allowed, various settings around what kind of exclusive access is allowed, 158 * and more. Each of these is wrapped up in a bit of policy described by the 159 * 'nvme_ioctl_check_t' structure. 160 * 161 * The device provides a form of exclusion in the form of both a 162 * controller-level and namespace-level read and write lock. Most operations do 163 * not require a lock (e.g. get log page, identify, etc.), but a few do (e.g. 164 * format nvm, firmware related activity, etc.). A read lock guarantees that you 165 * can complete your operation without interference, but read locks are not 166 * required. If you don't take a read lock and someone comes in with a write 167 * lock, then subsequent operations will fail with a semantic error indicating 168 * that you were blocked due to this. 169 * 170 * Here are some of the rules that govern our locks: 171 * 172 * 1. Writers starve readers. Any readers are allowed to finish when there is a 173 * pending writer; however, all subsequent readers will be blocked upon that 174 * writer. 175 * 2. A controller write lock takes priority over all other locks. Put 176 * differently a controller writer not only starves subsequent controller 177 * readers, but also all namespace read and write locks. 178 * 3. Each namespace lock is independent. 179 * 4. At most a single namespace lock may be owned. 180 * 5. If you own a namespace lock, you may not take a controller lock (to help 181 * with lock ordering). 182 * 6. In a similar spirit, if you own a controller write lock, you may not take 183 * any namespace lock. Someone with the controller write lock can perform any 184 * operations that they need to. However, if you have a controller read lock 185 * you may take any namespace lock. 186 * 7. There is no ability to upgrade a read lock to a write lock. 187 * 8. There is no recursive locking. 188 * 189 * While there's a lot there to keep track of, the goals of these are to 190 * constrain things so as to avoid deadlock. This is more complex than the 191 * original implementation in the driver which only allowed for an exclusive 192 * open that was tied to the thread. The first issue with tying this to the 193 * thread was that that didn't work well for software that utilized thread 194 * pools, like complex daemons. The second issue is that we want the ability for 195 * daemons, such as a FRU monitor, to be able to retain a file descriptor to the 196 * device without blocking others from taking action except during critical 197 * periods. 198 * 199 * In particular to enable something like libnvme, we didn't want someone to 200 * have to open and close the file descriptor to change what kind of exclusive 201 * access they desired. 202 * 203 * There are two different sets of data structures that we employ for tracking 204 * locking information: 205 * 206 * 1) The nvme_lock_t structure is contained in both the nvme_t and the 207 * nvme_namespace_t and tracks the current writer, readers, and pending writers 208 * and readers. Each of these lists or the writer pointer all refer to our 209 * second data structure. 210 * 211 * When a lock is owned by a single writer, then the nl_writer field is set to a 212 * specific minor's lock data structure. If instead readers are present, then 213 * the nl_readers list_t is not empty. An invariant of the system is that if 214 * nl_writer is non-NULL, nl_readers must be empty and conversely, if nl_readers 215 * is not empty, nl_writer must be NULL. 216 * 217 * 2) The nvme_minor_lock_info_t exists in the nvme_minor_t. There is one 218 * information structure which represents the minor's controller lock and a 219 * second one that represents the minor's namespace lock. The members of this 220 * are broken into tracking what the current lock is and what it targets. It 221 * also several members that are intended for debugging (nli_last_change, 222 * nli_acq_kthread, etc.). 223 * 224 * While the minor has two different lock information structures, our rules 225 * ensure that only one of the two can be pending and that they shouldn't result 226 * in a deadlock. When a lock is pending, the caller is sleeping on the minor's 227 * nm_cv member. 228 * 229 * These relationships are represented in the following image which shows a 230 * controller write lock being held with a pending readers on the controller 231 * lock and pending writers on one of the controller's namespaces. 232 * 233 * +---------+ 234 * | nvme_t | 235 * | | 236 * | n_lock -|-------+ 237 * | n_ns -+ | | +-----------------------------+ 238 * +-------|-+ +-----------------+ | nvme_minor_t | 239 * | | nvme_lock_t | | | 240 * | | | | +------------------------+ | 241 * | | writer --|-------------->| nvme_minor_lock_info_t | | 242 * | | reader list | | | nm_ctrl_lock | | 243 * | | pending writers | | +------------------------+ | 244 * | | pending readers |------+ | +------------------------+ | 245 * | +-----------------+ | | | nvme_minor_lock_info_t | | 246 * | | | | nm_ns_lock | | 247 * | | | +------------------------+ | 248 * | | +-----------------------------+ 249 * +------------------+ | +-----------------+ 250 * | nvme_namespace_t | | | nvme_minor_t | 251 * | | | | | 252 * | ns_lock ---+ | | | +-------------+ | 253 * +------------|-----+ +-----------------|>|nm_ctrl_lock | | 254 * | | +-------------+ | 255 * v +-----------------+ 256 * +------------------+ ... 257 * | nvme_lock_t | +-----------------+ 258 * | | | nvme_minor_t | 259 * | writer | | | 260 * | reader list | | +-------------+ | 261 * | pending writers -|-----------------+ | |nm_ctrl_lock | | 262 * | pending readers | | | +-------------+ | 263 * +------------------+ | +-----------------+ 264 * +-----------------------------+ | +-----------------------------+ 265 * | nvme_minor_t | | | nvme_minor_t | 266 * | | | | | 267 * | +------------------------+ | | | +------------------------+ | 268 * | | nvme_minor_lock_info_t | | | | | nvme_minor_lock_info_t | | 269 * | | nm_ctrl_lock | | | | | nm_ctrl_lock | | 270 * | +------------------------+ | | | +------------------------+ | 271 * | +------------------------+ | v | +------------------------+ | 272 * | | nvme_minor_lock_info_t |-|-----|->| nvme_minor_lock_info_t | | 273 * | | nm_ns_lock | | | | nm_ns_lock | | 274 * | +------------------------+ | | +------------------------+ | 275 * +-----------------------------+ +-----------------------------+ 276 * 277 * Blkdev Interface: 278 * 279 * This driver uses blkdev to do all the heavy lifting involved with presenting 280 * a disk device to the system. As a result, the processing of I/O requests is 281 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA 282 * setup, and splitting of transfers into manageable chunks. 283 * 284 * I/O requests coming in from blkdev are turned into NVM commands and posted to 285 * an I/O queue. The queue is selected by taking the CPU id modulo the number of 286 * queues. There is currently no timeout handling of I/O commands. 287 * 288 * Blkdev also supports querying device/media information and generating a 289 * devid. The driver reports the best block size as determined by the namespace 290 * format back to blkdev as physical block size to support partition and block 291 * alignment. The devid is either based on the namespace GUID or EUI64, if 292 * present, or composed using the device vendor ID, model number, serial number, 293 * and the namespace ID. 294 * 295 * 296 * Error Handling: 297 * 298 * Error handling is currently limited to detecting fatal hardware errors, 299 * either by asynchronous events, or synchronously through command status or 300 * admin command timeouts. In case of severe errors the device is fenced off, 301 * all further requests will return EIO. FMA is then called to fault the device. 302 * 303 * The hardware has a limit for outstanding asynchronous event requests. Before 304 * this limit is known the driver assumes it is at least 1 and posts a single 305 * asynchronous request. Later when the limit is known more asynchronous event 306 * requests are posted to allow quicker reception of error information. When an 307 * asynchronous event is posted by the hardware the driver will parse the error 308 * status fields and log information or fault the device, depending on the 309 * severity of the asynchronous event. The asynchronous event request is then 310 * reused and posted to the admin queue again. 311 * 312 * On command completion the command status is checked for errors. In case of 313 * errors indicating a driver bug the driver panics. Almost all other error 314 * status values just cause EIO to be returned. 315 * 316 * Command timeouts are currently detected for all admin commands except 317 * asynchronous event requests. If a command times out and the hardware appears 318 * to be healthy the driver attempts to abort the command. The original command 319 * timeout is also applied to the abort command. If the abort times out too the 320 * driver assumes the device to be dead, fences it off, and calls FMA to retire 321 * it. In all other cases the aborted command should return immediately with a 322 * status indicating it was aborted, and the driver will wait indefinitely for 323 * that to happen. No timeout handling of normal I/O commands is presently done. 324 * 325 * Any command that times out due to the controller dropping dead will be put on 326 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA 327 * memory being reused by the system and later be written to by a "dead" NVMe 328 * controller. 329 * 330 * 331 * Locking: 332 * 333 * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held 334 * when accessing shared state and submission queue registers, ncq_mutex 335 * is held when accessing completion queue state and registers. 336 * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while 337 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both 338 * mutexes themselves. 339 * 340 * Each command also has its own nc_mutex, which is associated with the 341 * condition variable nc_cv. It is only used on admin commands which are run 342 * synchronously. In that case it must be held across calls to 343 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by 344 * nvme_admin_cmd(). It must also be held whenever the completion state of the 345 * command is changed or while a admin command timeout is handled. 346 * 347 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first. 348 * More than one nc_mutex may only be held when aborting commands. In this case, 349 * the nc_mutex of the command to be aborted must be held across the call to 350 * nvme_abort_cmd() to prevent the command from completing while the abort is in 351 * progress. 352 * 353 * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be 354 * acquired first. More than one nq_mutex is never held by a single thread. 355 * The ncq_mutex is only held by nvme_retrieve_cmd() and 356 * nvme_process_iocq(). nvme_process_iocq() is only called from the 357 * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the 358 * mutex is non-contentious but is required for implementation completeness 359 * and safety. 360 * 361 * There is one mutex n_minor_mutex which protects all open flags nm_open and 362 * exclusive-open thread pointers nm_oexcl of each minor node associated with a 363 * controller and its namespaces. 364 * 365 * In addition, there is one mutex n_mgmt_mutex which must be held whenever the 366 * driver state for any namespace is changed, especially across calls to 367 * nvme_init_ns(), nvme_attach_ns() and nvme_detach_ns(). Except when detaching 368 * nvme, it should also be held across calls that modify the blkdev handle of a 369 * namespace. Command and queue mutexes may be acquired and released while 370 * n_mgmt_mutex is held, n_minor_mutex should not. 371 * 372 * 373 * Quiesce / Fast Reboot: 374 * 375 * The driver currently does not support fast reboot. A quiesce(9E) entry point 376 * is still provided which is used to send a shutdown notification to the 377 * device. 378 * 379 * 380 * NVMe Hotplug: 381 * 382 * The driver supports hot removal. The driver uses the NDI event framework 383 * to register a callback, nvme_remove_callback, to clean up when a disk is 384 * removed. In particular, the driver will unqueue outstanding I/O commands and 385 * set n_dead on the softstate to true so that other operations, such as ioctls 386 * and command submissions, fail as well. 387 * 388 * While the callback registration relies on the NDI event framework, the 389 * removal event itself is kicked off in the PCIe hotplug framework, when the 390 * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a 391 * device was removed from the slot. 392 * 393 * The NVMe driver instance itself will remain until the final close of the 394 * device. 395 * 396 * 397 * DDI UFM Support 398 * 399 * The driver supports the DDI UFM framework for reporting information about 400 * the device's firmware image and slot configuration. This data can be 401 * queried by userland software via ioctls to the ufm driver. For more 402 * information, see ddi_ufm(9E). 403 * 404 * 405 * Driver Configuration: 406 * 407 * The following driver properties can be changed to control some aspects of the 408 * drivers operation: 409 * - strict-version: can be set to 0 to allow devices conforming to newer 410 * major versions to be used 411 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor 412 * specific command status as a fatal error leading device faulting 413 * - admin-queue-len: the maximum length of the admin queue (16-4096) 414 * - io-squeue-len: the maximum length of the I/O submission queues (16-65536) 415 * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536) 416 * - async-event-limit: the maximum number of asynchronous event requests to be 417 * posted by the driver 418 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write 419 * cache 420 * - min-phys-block-size: the minimum physical block size to report to blkdev, 421 * which is among other things the basis for ZFS vdev ashift 422 * - max-submission-queues: the maximum number of I/O submission queues. 423 * - max-completion-queues: the maximum number of I/O completion queues, 424 * can be less than max-submission-queues, in which case the completion 425 * queues are shared. 426 * 427 * In addition to the above properties, some device-specific tunables can be 428 * configured using the nvme-config-list global property. The value of this 429 * property is a list of triplets. The formal syntax is: 430 * 431 * nvme-config-list ::= <triplet> [, <triplet>]* ; 432 * <triplet> ::= "<model>" , "<rev-list>" , "<tuple-list>" 433 * <rev-list> ::= [ <fwrev> [, <fwrev>]*] 434 * <tuple-list> ::= <tunable> [, <tunable>]* 435 * <tunable> ::= <name> : <value> 436 * 437 * The <model> and <fwrev> are the strings in nvme_identify_ctrl_t`id_model and 438 * nvme_identify_ctrl_t`id_fwrev, respectively. The remainder of <tuple-list> 439 * contains one or more tunables to apply to all controllers that match the 440 * specified model number and optionally firmware revision. Each <tunable> is a 441 * <name> : <value> pair. Supported tunables are: 442 * 443 * - ignore-unknown-vendor-status: can be set to "on" to not handle any vendor 444 * specific command status as a fatal error leading device faulting 445 * 446 * - min-phys-block-size: the minimum physical block size to report to blkdev, 447 * which is among other things the basis for ZFS vdev ashift 448 * 449 * - volatile-write-cache: can be set to "on" or "off" to enable or disable the 450 * volatile write cache, if present 451 * 452 * 453 * TODO: 454 * - figure out sane default for I/O queue depth reported to blkdev 455 * - FMA handling of media errors 456 * - support for devices supporting very large I/O requests using chained PRPs 457 * - support for configuring hardware parameters like interrupt coalescing 458 * - support for media formatting and hard partitioning into namespaces 459 * - support for big-endian systems 460 * - support for fast reboot 461 * - support for NVMe Subsystem Reset (1.1) 462 * - support for Scatter/Gather lists (1.1) 463 * - support for Reservations (1.1) 464 * - support for power management 465 */ 466 467 #include <sys/byteorder.h> 468 #ifdef _BIG_ENDIAN 469 #error nvme driver needs porting for big-endian platforms 470 #endif 471 472 #include <sys/modctl.h> 473 #include <sys/conf.h> 474 #include <sys/devops.h> 475 #include <sys/ddi.h> 476 #include <sys/ddi_ufm.h> 477 #include <sys/sunddi.h> 478 #include <sys/sunndi.h> 479 #include <sys/bitmap.h> 480 #include <sys/sysmacros.h> 481 #include <sys/param.h> 482 #include <sys/varargs.h> 483 #include <sys/cpuvar.h> 484 #include <sys/disp.h> 485 #include <sys/blkdev.h> 486 #include <sys/atomic.h> 487 #include <sys/archsystm.h> 488 #include <sys/sata/sata_hba.h> 489 #include <sys/stat.h> 490 #include <sys/policy.h> 491 #include <sys/list.h> 492 #include <sys/dkio.h> 493 #include <sys/pci.h> 494 #include <sys/mkdev.h> 495 496 #include <sys/nvme.h> 497 498 #ifdef __x86 499 #include <sys/x86_archext.h> 500 #endif 501 502 #include "nvme_reg.h" 503 #include "nvme_var.h" 504 505 /* 506 * Assertions to make sure that we've properly captured various aspects of the 507 * packed structures and haven't broken them during updates. 508 */ 509 CTASSERT(sizeof (nvme_identify_ctrl_t) == NVME_IDENTIFY_BUFSIZE); 510 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256); 511 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512); 512 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520); 513 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768); 514 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792); 515 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048); 516 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072); 517 518 CTASSERT(sizeof (nvme_identify_nsid_t) == NVME_IDENTIFY_BUFSIZE); 519 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32); 520 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92); 521 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104); 522 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128); 523 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384); 524 525 CTASSERT(sizeof (nvme_identify_nsid_list_t) == NVME_IDENTIFY_BUFSIZE); 526 CTASSERT(sizeof (nvme_identify_ctrl_list_t) == NVME_IDENTIFY_BUFSIZE); 527 528 CTASSERT(sizeof (nvme_identify_primary_caps_t) == NVME_IDENTIFY_BUFSIZE); 529 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32); 530 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64); 531 532 CTASSERT(sizeof (nvme_nschange_list_t) == 4096); 533 534 535 /* NVMe spec version supported */ 536 static const int nvme_version_major = 2; 537 538 /* tunable for admin command timeout in seconds, default is 1s */ 539 uint32_t nvme_admin_cmd_timeout = 1; 540 541 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */ 542 uint32_t nvme_format_cmd_timeout = 600; 543 544 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */ 545 uint32_t nvme_commit_save_cmd_timeout = 15; 546 547 /* 548 * tunable for the size of arbitrary vendor specific admin commands, 549 * default is 16MiB. 550 */ 551 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24; 552 553 /* 554 * tunable for the max timeout of arbitary vendor specific admin commands, 555 * default is 60s. 556 */ 557 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60; 558 559 /* 560 * This ID space, AVL, and lock are used for keeping track of minor state across 561 * opens between different devices. 562 */ 563 static id_space_t *nvme_open_minors; 564 static avl_tree_t nvme_open_minors_avl; 565 kmutex_t nvme_open_minors_mutex; 566 567 /* 568 * Removal taskq used for n_dead callback processing. 569 */ 570 taskq_t *nvme_dead_taskq; 571 572 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); 573 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); 574 static int nvme_quiesce(dev_info_t *); 575 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); 576 static int nvme_setup_interrupts(nvme_t *, int, int); 577 static void nvme_release_interrupts(nvme_t *); 578 static uint_t nvme_intr(caddr_t, caddr_t); 579 580 static void nvme_shutdown(nvme_t *, boolean_t); 581 static boolean_t nvme_reset(nvme_t *, boolean_t); 582 static int nvme_init(nvme_t *); 583 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); 584 static void nvme_free_cmd(nvme_cmd_t *); 585 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, 586 bd_xfer_t *); 587 static void nvme_admin_cmd(nvme_cmd_t *, uint32_t); 588 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *); 589 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *); 590 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *); 591 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int); 592 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); 593 static void nvme_wait_cmd(nvme_cmd_t *, uint_t); 594 static void nvme_wakeup_cmd(void *); 595 static void nvme_async_event_task(void *); 596 597 static int nvme_check_unknown_cmd_status(nvme_cmd_t *); 598 static int nvme_check_vendor_cmd_status(nvme_cmd_t *); 599 static int nvme_check_integrity_cmd_status(nvme_cmd_t *); 600 static int nvme_check_specific_cmd_status(nvme_cmd_t *); 601 static int nvme_check_generic_cmd_status(nvme_cmd_t *); 602 static inline int nvme_check_cmd_status(nvme_cmd_t *); 603 static boolean_t nvme_check_cmd_status_ioctl(nvme_cmd_t *, 604 nvme_ioctl_common_t *); 605 606 static int nvme_abort_cmd(nvme_cmd_t *, uint_t); 607 static void nvme_async_event(nvme_t *); 608 static boolean_t nvme_format_nvm(nvme_t *, nvme_ioctl_format_t *); 609 static boolean_t nvme_get_logpage_int(nvme_t *, boolean_t, void **, size_t *, 610 uint8_t); 611 static boolean_t nvme_identify(nvme_t *, boolean_t, nvme_ioctl_identify_t *, 612 void **); 613 static boolean_t nvme_identify_int(nvme_t *, uint32_t, uint8_t, void **); 614 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t, 615 uint32_t *); 616 static int nvme_write_cache_set(nvme_t *, boolean_t); 617 static int nvme_set_nqueues(nvme_t *); 618 619 static void nvme_free_dma(nvme_dma_t *); 620 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, 621 nvme_dma_t **); 622 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, 623 nvme_dma_t **); 624 static void nvme_free_qpair(nvme_qpair_t *); 625 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t); 626 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); 627 628 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); 629 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); 630 static inline uint64_t nvme_get64(nvme_t *, uintptr_t); 631 static inline uint32_t nvme_get32(nvme_t *, uintptr_t); 632 633 static boolean_t nvme_check_regs_hdl(nvme_t *); 634 static boolean_t nvme_check_dma_hdl(nvme_dma_t *); 635 636 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t); 637 638 static void nvme_bd_xfer_done(void *); 639 static void nvme_bd_driveinfo(void *, bd_drive_t *); 640 static int nvme_bd_mediainfo(void *, bd_media_t *); 641 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); 642 static int nvme_bd_read(void *, bd_xfer_t *); 643 static int nvme_bd_write(void *, bd_xfer_t *); 644 static int nvme_bd_sync(void *, bd_xfer_t *); 645 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); 646 static int nvme_bd_free_space(void *, bd_xfer_t *); 647 648 static int nvme_prp_dma_constructor(void *, void *, int); 649 static void nvme_prp_dma_destructor(void *, void *); 650 651 static void nvme_prepare_devid(nvme_t *, uint32_t); 652 653 /* DDI UFM callbacks */ 654 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t, 655 ddi_ufm_image_t *); 656 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t, 657 ddi_ufm_slot_t *); 658 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *); 659 660 static int nvme_open(dev_t *, int, int, cred_t *); 661 static int nvme_close(dev_t, int, int, cred_t *); 662 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 663 664 static int nvme_init_ns(nvme_t *, uint32_t); 665 static boolean_t nvme_attach_ns(nvme_t *, nvme_ioctl_common_t *); 666 static boolean_t nvme_detach_ns(nvme_t *, nvme_ioctl_common_t *); 667 668 static int nvme_minor_comparator(const void *, const void *); 669 670 static ddi_ufm_ops_t nvme_ufm_ops = { 671 NULL, 672 nvme_ufm_fill_image, 673 nvme_ufm_fill_slot, 674 nvme_ufm_getcaps 675 }; 676 677 /* 678 * Minor numbers are split amongst those used for controllers and for device 679 * opens. The number of controller minors are limited based open MAXMIN32 per 680 * the theory statement. We allocate 1 million minors as a total guess at a 681 * number that'll probably be enough. The starting point of the open minors can 682 * be shifted to accommodate future expansion of the NVMe device minors. 683 */ 684 #define NVME_MINOR_INST_SHIFT 9 685 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid)) 686 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT) 687 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1)) 688 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2) 689 #define NVME_IS_VENDOR_SPECIFIC_CMD(x) (((x) >= 0xC0) && ((x) <= 0xFF)) 690 691 #define NVME_OPEN_NMINORS (1024 * 1024) 692 #define NVME_OPEN_MINOR_MIN (MAXMIN32 + 1) 693 #define NVME_OPEN_MINOR_MAX_EXCL (NVME_OPEN_MINOR_MIN + \ 694 NVME_OPEN_NMINORS) 695 696 static void *nvme_state; 697 static kmem_cache_t *nvme_cmd_cache; 698 699 /* 700 * DMA attributes for queue DMA memory 701 * 702 * Queue DMA memory must be page aligned. The maximum length of a queue is 703 * 65536 entries, and an entry can be 64 bytes long. 704 */ 705 static const ddi_dma_attr_t nvme_queue_dma_attr = { 706 .dma_attr_version = DMA_ATTR_V0, 707 .dma_attr_addr_lo = 0, 708 .dma_attr_addr_hi = 0xffffffffffffffffULL, 709 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, 710 .dma_attr_align = 0x1000, 711 .dma_attr_burstsizes = 0x7ff, 712 .dma_attr_minxfer = 0x1000, 713 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 714 .dma_attr_seg = 0xffffffffffffffffULL, 715 .dma_attr_sgllen = 1, 716 .dma_attr_granular = 1, 717 .dma_attr_flags = 0, 718 }; 719 720 /* 721 * DMA attributes for transfers using Physical Region Page (PRP) entries 722 * 723 * A PRP entry describes one page of DMA memory using the page size specified 724 * in the controller configuration's memory page size register (CC.MPS). It uses 725 * a 64bit base address aligned to this page size. There is no limitation on 726 * chaining PRPs together for arbitrarily large DMA transfers. These DMA 727 * attributes will be copied into the nvme_t during nvme_attach() and the 728 * dma_attr_maxxfer will be updated. 729 */ 730 static const ddi_dma_attr_t nvme_prp_dma_attr = { 731 .dma_attr_version = DMA_ATTR_V0, 732 .dma_attr_addr_lo = 0, 733 .dma_attr_addr_hi = 0xffffffffffffffffULL, 734 .dma_attr_count_max = 0xfff, 735 .dma_attr_align = 0x1000, 736 .dma_attr_burstsizes = 0x7ff, 737 .dma_attr_minxfer = 0x1000, 738 .dma_attr_maxxfer = 0x1000, 739 .dma_attr_seg = 0xfff, 740 .dma_attr_sgllen = -1, 741 .dma_attr_granular = 1, 742 .dma_attr_flags = 0, 743 }; 744 745 /* 746 * DMA attributes for transfers using scatter/gather lists 747 * 748 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a 749 * 32bit length field. SGL Segment and SGL Last Segment entries require the 750 * length to be a multiple of 16 bytes. While the SGL DMA attributes are copied 751 * into the nvme_t, they are not currently used for any I/O. 752 */ 753 static const ddi_dma_attr_t nvme_sgl_dma_attr = { 754 .dma_attr_version = DMA_ATTR_V0, 755 .dma_attr_addr_lo = 0, 756 .dma_attr_addr_hi = 0xffffffffffffffffULL, 757 .dma_attr_count_max = 0xffffffffUL, 758 .dma_attr_align = 1, 759 .dma_attr_burstsizes = 0x7ff, 760 .dma_attr_minxfer = 0x10, 761 .dma_attr_maxxfer = 0xfffffffffULL, 762 .dma_attr_seg = 0xffffffffffffffffULL, 763 .dma_attr_sgllen = -1, 764 .dma_attr_granular = 0x10, 765 .dma_attr_flags = 0 766 }; 767 768 static ddi_device_acc_attr_t nvme_reg_acc_attr = { 769 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 770 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 771 .devacc_attr_dataorder = DDI_STRICTORDER_ACC 772 }; 773 774 /* 775 * ioctl validation policies. These are policies that determine which namespaces 776 * are allowed or disallowed for various operations. Note, all policy items 777 * should be explicitly listed here to help make it clear what our intent is. 778 * That is also why some of these are identical or repeated when they cover 779 * different ioctls. 780 */ 781 782 /* 783 * The controller information ioctl generally contains read-only information 784 * about the controller that is sourced from multiple different pieces of 785 * information. This does not operate on a namespace and none are accepted. 786 */ 787 static const nvme_ioctl_check_t nvme_check_ctrl_info = { 788 .nck_ns_ok = B_FALSE, .nck_ns_minor_ok = B_FALSE, 789 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE, 790 .nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_NONE 791 }; 792 793 /* 794 * The kernel namespace information requires a namespace ID to be specified. It 795 * does not allow for the broadcast ID to be specified. 796 */ 797 static const nvme_ioctl_check_t nvme_check_ns_info = { 798 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE, 799 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE, 800 .nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_NONE 801 }; 802 803 /* 804 * Identify commands are allowed to operate on a namespace minor. Unfortunately, 805 * the namespace field in identify commands is a bit, weird. In particular, some 806 * commands need a valid namespace, while others are namespace listing 807 * operations, which means illegal namespaces like zero are allowed. 808 */ 809 static const nvme_ioctl_check_t nvme_check_identify = { 810 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE, 811 .nck_skip_ctrl = B_TRUE, .nck_ctrl_rewrite = B_FALSE, 812 .nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE 813 }; 814 815 /* 816 * The get log page command requires the ability to specify namespaces. When 817 * targeting the controller, one must use the broadcast NSID. 818 */ 819 static const nvme_ioctl_check_t nvme_check_get_logpage = { 820 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE, 821 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_TRUE, 822 .nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE 823 }; 824 825 /* 826 * When getting a feature, we do not want rewriting behavior as most features do 827 * not require a namespace to be specified. Specific instances are checked in 828 * nvme_validate_get_feature(). 829 */ 830 static const nvme_ioctl_check_t nvme_check_get_feature = { 831 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE, 832 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE, 833 .nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE 834 }; 835 836 /* 837 * Format commands must target a namespace. The broadcast namespace must be used 838 * when referring to the controller. 839 */ 840 static const nvme_ioctl_check_t nvme_check_format = { 841 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE, 842 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_TRUE, 843 .nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_WRITE 844 }; 845 846 /* 847 * Attach and detach must always target a minor. However, the broadcast 848 * namespace is not allowed. We still perform rewriting so that way specifying 849 * the controller node with 0 will be caught. 850 */ 851 static const nvme_ioctl_check_t nvme_check_attach_detach = { 852 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE, 853 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_TRUE, 854 .nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_WRITE 855 }; 856 857 /* 858 * Firmware operations must not target a namespace and are only allowed from the 859 * controller. 860 */ 861 static const nvme_ioctl_check_t nvme_check_firmware = { 862 .nck_ns_ok = B_FALSE, .nck_ns_minor_ok = B_FALSE, 863 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE, 864 .nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_WRITE 865 }; 866 867 /* 868 * Passthru commands are an odd set. We only allow them from the primary 869 * controller; however, we allow a namespace to be specified in them and allow 870 * the broadcast namespace. We do not perform rewriting because we don't know 871 * what the semantics are. We explicitly exempt passthru commands from needing 872 * an exclusive lock and leave it up to them to tell us the impact of the 873 * command and semantics. As this is a privileged interface and the semantics 874 * are arbitrary, there's not much we can do without some assistance from the 875 * consumer. 876 */ 877 static const nvme_ioctl_check_t nvme_check_passthru = { 878 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_FALSE, 879 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE, 880 .nck_bcast_ok = B_TRUE, .nck_excl = NVME_IOCTL_EXCL_NONE 881 }; 882 883 /* 884 * Lock operations are allowed to target a namespace, but must not be rewritten. 885 * There is no support for the broadcast namespace. This is the only ioctl that 886 * should skip exclusive checking as it's used to grant it. 887 */ 888 static const nvme_ioctl_check_t nvme_check_locking = { 889 .nck_ns_ok = B_TRUE, .nck_ns_minor_ok = B_TRUE, 890 .nck_skip_ctrl = B_FALSE, .nck_ctrl_rewrite = B_FALSE, 891 .nck_bcast_ok = B_FALSE, .nck_excl = NVME_IOCTL_EXCL_SKIP 892 }; 893 894 static struct cb_ops nvme_cb_ops = { 895 .cb_open = nvme_open, 896 .cb_close = nvme_close, 897 .cb_strategy = nodev, 898 .cb_print = nodev, 899 .cb_dump = nodev, 900 .cb_read = nodev, 901 .cb_write = nodev, 902 .cb_ioctl = nvme_ioctl, 903 .cb_devmap = nodev, 904 .cb_mmap = nodev, 905 .cb_segmap = nodev, 906 .cb_chpoll = nochpoll, 907 .cb_prop_op = ddi_prop_op, 908 .cb_str = 0, 909 .cb_flag = D_NEW | D_MP, 910 .cb_rev = CB_REV, 911 .cb_aread = nodev, 912 .cb_awrite = nodev 913 }; 914 915 static struct dev_ops nvme_dev_ops = { 916 .devo_rev = DEVO_REV, 917 .devo_refcnt = 0, 918 .devo_getinfo = ddi_no_info, 919 .devo_identify = nulldev, 920 .devo_probe = nulldev, 921 .devo_attach = nvme_attach, 922 .devo_detach = nvme_detach, 923 .devo_reset = nodev, 924 .devo_cb_ops = &nvme_cb_ops, 925 .devo_bus_ops = NULL, 926 .devo_power = NULL, 927 .devo_quiesce = nvme_quiesce, 928 }; 929 930 static struct modldrv nvme_modldrv = { 931 .drv_modops = &mod_driverops, 932 .drv_linkinfo = "NVMe driver", 933 .drv_dev_ops = &nvme_dev_ops 934 }; 935 936 static struct modlinkage nvme_modlinkage = { 937 .ml_rev = MODREV_1, 938 .ml_linkage = { &nvme_modldrv, NULL } 939 }; 940 941 static bd_ops_t nvme_bd_ops = { 942 .o_version = BD_OPS_CURRENT_VERSION, 943 .o_drive_info = nvme_bd_driveinfo, 944 .o_media_info = nvme_bd_mediainfo, 945 .o_devid_init = nvme_bd_devid, 946 .o_sync_cache = nvme_bd_sync, 947 .o_read = nvme_bd_read, 948 .o_write = nvme_bd_write, 949 .o_free_space = nvme_bd_free_space, 950 }; 951 952 /* 953 * This list will hold commands that have timed out and couldn't be aborted. 954 * As we don't know what the hardware may still do with the DMA memory we can't 955 * free them, so we'll keep them forever on this list where we can easily look 956 * at them with mdb. 957 */ 958 static struct list nvme_lost_cmds; 959 static kmutex_t nvme_lc_mutex; 960 961 int 962 _init(void) 963 { 964 int error; 965 966 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); 967 if (error != DDI_SUCCESS) 968 return (error); 969 970 if ((nvme_open_minors = id_space_create("nvme_open_minors", 971 NVME_OPEN_MINOR_MIN, NVME_OPEN_MINOR_MAX_EXCL)) == NULL) { 972 ddi_soft_state_fini(&nvme_state); 973 return (ENOMEM); 974 } 975 976 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", 977 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 978 979 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL); 980 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t), 981 offsetof(nvme_cmd_t, nc_list)); 982 983 mutex_init(&nvme_open_minors_mutex, NULL, MUTEX_DRIVER, NULL); 984 avl_create(&nvme_open_minors_avl, nvme_minor_comparator, 985 sizeof (nvme_minor_t), offsetof(nvme_minor_t, nm_avl)); 986 987 nvme_dead_taskq = taskq_create("nvme_dead_taskq", 1, minclsyspri, 1, 1, 988 TASKQ_PREPOPULATE); 989 990 bd_mod_init(&nvme_dev_ops); 991 992 error = mod_install(&nvme_modlinkage); 993 if (error != DDI_SUCCESS) { 994 ddi_soft_state_fini(&nvme_state); 995 id_space_destroy(nvme_open_minors); 996 mutex_destroy(&nvme_lc_mutex); 997 list_destroy(&nvme_lost_cmds); 998 bd_mod_fini(&nvme_dev_ops); 999 mutex_destroy(&nvme_open_minors_mutex); 1000 avl_destroy(&nvme_open_minors_avl); 1001 taskq_destroy(nvme_dead_taskq); 1002 } 1003 1004 return (error); 1005 } 1006 1007 int 1008 _fini(void) 1009 { 1010 int error; 1011 1012 if (!list_is_empty(&nvme_lost_cmds)) 1013 return (DDI_FAILURE); 1014 1015 error = mod_remove(&nvme_modlinkage); 1016 if (error == DDI_SUCCESS) { 1017 ddi_soft_state_fini(&nvme_state); 1018 id_space_destroy(nvme_open_minors); 1019 kmem_cache_destroy(nvme_cmd_cache); 1020 mutex_destroy(&nvme_lc_mutex); 1021 list_destroy(&nvme_lost_cmds); 1022 bd_mod_fini(&nvme_dev_ops); 1023 mutex_destroy(&nvme_open_minors_mutex); 1024 avl_destroy(&nvme_open_minors_avl); 1025 taskq_destroy(nvme_dead_taskq); 1026 } 1027 1028 return (error); 1029 } 1030 1031 int 1032 _info(struct modinfo *modinfop) 1033 { 1034 return (mod_info(&nvme_modlinkage, modinfop)); 1035 } 1036 1037 static inline void 1038 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) 1039 { 1040 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 1041 1042 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 1043 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); 1044 } 1045 1046 static inline void 1047 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) 1048 { 1049 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 1050 1051 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 1052 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); 1053 } 1054 1055 static inline uint64_t 1056 nvme_get64(nvme_t *nvme, uintptr_t reg) 1057 { 1058 uint64_t val; 1059 1060 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 1061 1062 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 1063 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); 1064 1065 return (val); 1066 } 1067 1068 static inline uint32_t 1069 nvme_get32(nvme_t *nvme, uintptr_t reg) 1070 { 1071 uint32_t val; 1072 1073 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 1074 1075 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 1076 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); 1077 1078 return (val); 1079 } 1080 1081 /* 1082 * This is a central clearing house for marking an NVMe controller dead and/or 1083 * removed. This takes care of setting the flag, taking care of outstanding 1084 * blocked locks, and sending a DDI FMA impact. This is called from a precarious 1085 * place where locking is suspect. The only guarantee we have is that the nvme_t 1086 * is valid and won't disappear until we return. 1087 * 1088 * This should only be used after attach has been called. 1089 */ 1090 static void 1091 nvme_ctrl_mark_dead(nvme_t *nvme, boolean_t removed) 1092 { 1093 boolean_t was_dead; 1094 1095 /* 1096 * See if we win the race to set things up here. If someone beat us to 1097 * it, we do not do anything. 1098 */ 1099 was_dead = atomic_cas_32((volatile uint32_t *)&nvme->n_dead, B_FALSE, 1100 B_TRUE); 1101 if (was_dead) { 1102 return; 1103 } 1104 1105 /* 1106 * If this was removed, there is no reason to change the service impact. 1107 * However, then we need to change our default return code that we use 1108 * here to indicate that it was gone versus that it is dead. 1109 */ 1110 if (removed) { 1111 nvme->n_dead_status = NVME_IOCTL_E_CTRL_GONE; 1112 } else { 1113 ASSERT3U(nvme->n_dead_status, ==, NVME_IOCTL_E_CTRL_DEAD); 1114 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1115 } 1116 1117 taskq_dispatch_ent(nvme_dead_taskq, nvme_rwlock_ctrl_dead, nvme, 1118 TQ_NOSLEEP, &nvme->n_dead_tqent); 1119 } 1120 1121 static boolean_t 1122 nvme_check_regs_hdl(nvme_t *nvme) 1123 { 1124 ddi_fm_error_t error; 1125 1126 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); 1127 1128 if (error.fme_status != DDI_FM_OK) 1129 return (B_TRUE); 1130 1131 return (B_FALSE); 1132 } 1133 1134 static boolean_t 1135 nvme_check_dma_hdl(nvme_dma_t *dma) 1136 { 1137 ddi_fm_error_t error; 1138 1139 if (dma == NULL) 1140 return (B_FALSE); 1141 1142 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); 1143 1144 if (error.fme_status != DDI_FM_OK) 1145 return (B_TRUE); 1146 1147 return (B_FALSE); 1148 } 1149 1150 static void 1151 nvme_free_dma_common(nvme_dma_t *dma) 1152 { 1153 if (dma->nd_dmah != NULL) 1154 (void) ddi_dma_unbind_handle(dma->nd_dmah); 1155 if (dma->nd_acch != NULL) 1156 ddi_dma_mem_free(&dma->nd_acch); 1157 if (dma->nd_dmah != NULL) 1158 ddi_dma_free_handle(&dma->nd_dmah); 1159 } 1160 1161 static void 1162 nvme_free_dma(nvme_dma_t *dma) 1163 { 1164 nvme_free_dma_common(dma); 1165 kmem_free(dma, sizeof (*dma)); 1166 } 1167 1168 /* ARGSUSED */ 1169 static void 1170 nvme_prp_dma_destructor(void *buf, void *private) 1171 { 1172 nvme_dma_t *dma = (nvme_dma_t *)buf; 1173 1174 nvme_free_dma_common(dma); 1175 } 1176 1177 static int 1178 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, 1179 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) 1180 { 1181 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, 1182 &dma->nd_dmah) != DDI_SUCCESS) { 1183 /* 1184 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and 1185 * the only other possible error is DDI_DMA_BADATTR which 1186 * indicates a driver bug which should cause a panic. 1187 */ 1188 dev_err(nvme->n_dip, CE_PANIC, 1189 "!failed to get DMA handle, check DMA attributes"); 1190 return (DDI_FAILURE); 1191 } 1192 1193 /* 1194 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified 1195 * or the flags are conflicting, which isn't the case here. 1196 */ 1197 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, 1198 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, 1199 &dma->nd_len, &dma->nd_acch); 1200 1201 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, 1202 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 1203 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { 1204 dev_err(nvme->n_dip, CE_WARN, 1205 "!failed to bind DMA memory"); 1206 atomic_inc_32(&nvme->n_dma_bind_err); 1207 nvme_free_dma_common(dma); 1208 return (DDI_FAILURE); 1209 } 1210 1211 return (DDI_SUCCESS); 1212 } 1213 1214 static int 1215 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, 1216 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) 1217 { 1218 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); 1219 1220 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != 1221 DDI_SUCCESS) { 1222 *ret = NULL; 1223 kmem_free(dma, sizeof (nvme_dma_t)); 1224 return (DDI_FAILURE); 1225 } 1226 1227 bzero(dma->nd_memp, dma->nd_len); 1228 1229 *ret = dma; 1230 return (DDI_SUCCESS); 1231 } 1232 1233 /* ARGSUSED */ 1234 static int 1235 nvme_prp_dma_constructor(void *buf, void *private, int flags) 1236 { 1237 nvme_dma_t *dma = (nvme_dma_t *)buf; 1238 nvme_t *nvme = (nvme_t *)private; 1239 1240 dma->nd_dmah = NULL; 1241 dma->nd_acch = NULL; 1242 1243 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, 1244 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { 1245 return (-1); 1246 } 1247 1248 ASSERT(dma->nd_ncookie == 1); 1249 1250 dma->nd_cached = B_TRUE; 1251 1252 return (0); 1253 } 1254 1255 static int 1256 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, 1257 uint_t flags, nvme_dma_t **dma) 1258 { 1259 uint32_t len = nentry * qe_len; 1260 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; 1261 1262 len = roundup(len, nvme->n_pagesize); 1263 1264 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) 1265 != DDI_SUCCESS) { 1266 dev_err(nvme->n_dip, CE_WARN, 1267 "!failed to get DMA memory for queue"); 1268 goto fail; 1269 } 1270 1271 if ((*dma)->nd_ncookie != 1) { 1272 dev_err(nvme->n_dip, CE_WARN, 1273 "!got too many cookies for queue DMA"); 1274 goto fail; 1275 } 1276 1277 return (DDI_SUCCESS); 1278 1279 fail: 1280 if (*dma) { 1281 nvme_free_dma(*dma); 1282 *dma = NULL; 1283 } 1284 1285 return (DDI_FAILURE); 1286 } 1287 1288 static void 1289 nvme_free_cq(nvme_cq_t *cq) 1290 { 1291 mutex_destroy(&cq->ncq_mutex); 1292 1293 if (cq->ncq_cmd_taskq != NULL) 1294 taskq_destroy(cq->ncq_cmd_taskq); 1295 1296 if (cq->ncq_dma != NULL) 1297 nvme_free_dma(cq->ncq_dma); 1298 1299 kmem_free(cq, sizeof (*cq)); 1300 } 1301 1302 static void 1303 nvme_free_qpair(nvme_qpair_t *qp) 1304 { 1305 int i; 1306 1307 mutex_destroy(&qp->nq_mutex); 1308 sema_destroy(&qp->nq_sema); 1309 1310 if (qp->nq_sqdma != NULL) 1311 nvme_free_dma(qp->nq_sqdma); 1312 1313 if (qp->nq_active_cmds > 0) 1314 for (i = 0; i != qp->nq_nentry; i++) 1315 if (qp->nq_cmd[i] != NULL) 1316 nvme_free_cmd(qp->nq_cmd[i]); 1317 1318 if (qp->nq_cmd != NULL) 1319 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); 1320 1321 kmem_free(qp, sizeof (nvme_qpair_t)); 1322 } 1323 1324 /* 1325 * Destroy the pre-allocated cq array, but only free individual completion 1326 * queues from the given starting index. 1327 */ 1328 static void 1329 nvme_destroy_cq_array(nvme_t *nvme, uint_t start) 1330 { 1331 uint_t i; 1332 1333 for (i = start; i < nvme->n_cq_count; i++) 1334 if (nvme->n_cq[i] != NULL) 1335 nvme_free_cq(nvme->n_cq[i]); 1336 1337 kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count); 1338 } 1339 1340 static int 1341 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx, 1342 uint_t nthr) 1343 { 1344 nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP); 1345 char name[64]; /* large enough for the taskq name */ 1346 1347 mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER, 1348 DDI_INTR_PRI(nvme->n_intr_pri)); 1349 1350 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), 1351 DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS) 1352 goto fail; 1353 1354 cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp; 1355 cq->ncq_nentry = nentry; 1356 cq->ncq_id = idx; 1357 cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx); 1358 1359 /* 1360 * Each completion queue has its own command taskq. 1361 */ 1362 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u", 1363 ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx); 1364 1365 cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX, 1366 TASKQ_PREPOPULATE); 1367 1368 if (cq->ncq_cmd_taskq == NULL) { 1369 dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd " 1370 "taskq for cq %u", idx); 1371 goto fail; 1372 } 1373 1374 *cqp = cq; 1375 return (DDI_SUCCESS); 1376 1377 fail: 1378 nvme_free_cq(cq); 1379 *cqp = NULL; 1380 1381 return (DDI_FAILURE); 1382 } 1383 1384 /* 1385 * Create the n_cq array big enough to hold "ncq" completion queues. 1386 * If the array already exists it will be re-sized (but only larger). 1387 * The admin queue is included in this array, which boosts the 1388 * max number of entries to UINT16_MAX + 1. 1389 */ 1390 static int 1391 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr) 1392 { 1393 nvme_cq_t **cq; 1394 uint_t i, cq_count; 1395 1396 ASSERT3U(ncq, >, nvme->n_cq_count); 1397 1398 cq = nvme->n_cq; 1399 cq_count = nvme->n_cq_count; 1400 1401 nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP); 1402 nvme->n_cq_count = ncq; 1403 1404 for (i = 0; i < cq_count; i++) 1405 nvme->n_cq[i] = cq[i]; 1406 1407 for (; i < nvme->n_cq_count; i++) 1408 if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) != 1409 DDI_SUCCESS) 1410 goto fail; 1411 1412 if (cq != NULL) 1413 kmem_free(cq, sizeof (*cq) * cq_count); 1414 1415 return (DDI_SUCCESS); 1416 1417 fail: 1418 nvme_destroy_cq_array(nvme, cq_count); 1419 /* 1420 * Restore the original array 1421 */ 1422 nvme->n_cq_count = cq_count; 1423 nvme->n_cq = cq; 1424 1425 return (DDI_FAILURE); 1426 } 1427 1428 static int 1429 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, 1430 uint_t idx) 1431 { 1432 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); 1433 uint_t cq_idx; 1434 1435 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, 1436 DDI_INTR_PRI(nvme->n_intr_pri)); 1437 1438 /* 1439 * The NVMe spec defines that a full queue has one empty (unused) slot; 1440 * initialize the semaphore accordingly. 1441 */ 1442 sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL); 1443 1444 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), 1445 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) 1446 goto fail; 1447 1448 /* 1449 * idx == 0 is adminq, those above 0 are shared io completion queues. 1450 */ 1451 cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1); 1452 qp->nq_cq = nvme->n_cq[cq_idx]; 1453 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; 1454 qp->nq_nentry = nentry; 1455 1456 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); 1457 1458 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); 1459 qp->nq_next_cmd = 0; 1460 1461 *nqp = qp; 1462 return (DDI_SUCCESS); 1463 1464 fail: 1465 nvme_free_qpair(qp); 1466 *nqp = NULL; 1467 1468 return (DDI_FAILURE); 1469 } 1470 1471 static nvme_cmd_t * 1472 nvme_alloc_cmd(nvme_t *nvme, int kmflag) 1473 { 1474 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); 1475 1476 if (cmd == NULL) 1477 return (cmd); 1478 1479 bzero(cmd, sizeof (nvme_cmd_t)); 1480 1481 cmd->nc_nvme = nvme; 1482 1483 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, 1484 DDI_INTR_PRI(nvme->n_intr_pri)); 1485 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); 1486 1487 return (cmd); 1488 } 1489 1490 static void 1491 nvme_free_cmd(nvme_cmd_t *cmd) 1492 { 1493 /* Don't free commands on the lost commands list. */ 1494 if (list_link_active(&cmd->nc_list)) 1495 return; 1496 1497 if (cmd->nc_dma) { 1498 nvme_free_dma(cmd->nc_dma); 1499 cmd->nc_dma = NULL; 1500 } 1501 1502 if (cmd->nc_prp) { 1503 kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp); 1504 cmd->nc_prp = NULL; 1505 } 1506 1507 cv_destroy(&cmd->nc_cv); 1508 mutex_destroy(&cmd->nc_mutex); 1509 1510 kmem_cache_free(nvme_cmd_cache, cmd); 1511 } 1512 1513 static void 1514 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1515 { 1516 sema_p(&qp->nq_sema); 1517 nvme_submit_cmd_common(qp, cmd); 1518 } 1519 1520 static int 1521 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1522 { 1523 if (cmd->nc_nvme->n_dead) { 1524 return (EIO); 1525 } 1526 1527 if (sema_tryp(&qp->nq_sema) == 0) 1528 return (EAGAIN); 1529 1530 nvme_submit_cmd_common(qp, cmd); 1531 return (0); 1532 } 1533 1534 static void 1535 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd) 1536 { 1537 nvme_reg_sqtdbl_t tail = { 0 }; 1538 1539 mutex_enter(&qp->nq_mutex); 1540 cmd->nc_completed = B_FALSE; 1541 1542 /* 1543 * Now that we hold the queue pair lock, we must check whether or not 1544 * the controller has been listed as dead (e.g. was removed due to 1545 * hotplug). This is necessary as otherwise we could race with 1546 * nvme_remove_callback(). Because this has not been enqueued, we don't 1547 * call nvme_unqueue_cmd(), which is why we must manually decrement the 1548 * semaphore. 1549 */ 1550 if (cmd->nc_nvme->n_dead) { 1551 taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback, 1552 cmd, TQ_NOSLEEP, &cmd->nc_tqent); 1553 sema_v(&qp->nq_sema); 1554 mutex_exit(&qp->nq_mutex); 1555 return; 1556 } 1557 1558 /* 1559 * Try to insert the cmd into the active cmd array at the nq_next_cmd 1560 * slot. If the slot is already occupied advance to the next slot and 1561 * try again. This can happen for long running commands like async event 1562 * requests. 1563 */ 1564 while (qp->nq_cmd[qp->nq_next_cmd] != NULL) 1565 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 1566 qp->nq_cmd[qp->nq_next_cmd] = cmd; 1567 1568 qp->nq_active_cmds++; 1569 1570 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; 1571 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); 1572 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, 1573 sizeof (nvme_sqe_t) * qp->nq_sqtail, 1574 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); 1575 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 1576 1577 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; 1578 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); 1579 1580 mutex_exit(&qp->nq_mutex); 1581 } 1582 1583 static nvme_cmd_t * 1584 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid) 1585 { 1586 nvme_cmd_t *cmd; 1587 1588 ASSERT(mutex_owned(&qp->nq_mutex)); 1589 ASSERT3S(cid, <, qp->nq_nentry); 1590 1591 cmd = qp->nq_cmd[cid]; 1592 /* 1593 * Some controllers will erroneously add things to the completion queue 1594 * for which there is no matching outstanding command. If this happens, 1595 * it is almost certainly a controller firmware bug since nq_mutex 1596 * is held across command submission and ringing the queue doorbell, 1597 * and is also held in this function. 1598 * 1599 * If we see such an unexpected command, there is not much we can do. 1600 * These will be logged and counted in nvme_get_completed(), but 1601 * otherwise ignored. 1602 */ 1603 if (cmd == NULL) 1604 return (NULL); 1605 qp->nq_cmd[cid] = NULL; 1606 ASSERT3U(qp->nq_active_cmds, >, 0); 1607 qp->nq_active_cmds--; 1608 sema_v(&qp->nq_sema); 1609 1610 ASSERT3P(cmd, !=, NULL); 1611 ASSERT3P(cmd->nc_nvme, ==, nvme); 1612 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid); 1613 1614 return (cmd); 1615 } 1616 1617 /* 1618 * Get the command tied to the next completed cqe and bump along completion 1619 * queue head counter. 1620 */ 1621 static nvme_cmd_t * 1622 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq) 1623 { 1624 nvme_qpair_t *qp; 1625 nvme_cqe_t *cqe; 1626 nvme_cmd_t *cmd; 1627 1628 ASSERT(mutex_owned(&cq->ncq_mutex)); 1629 1630 retry: 1631 cqe = &cq->ncq_cq[cq->ncq_head]; 1632 1633 /* Check phase tag of CQE. Hardware inverts it for new entries. */ 1634 if (cqe->cqe_sf.sf_p == cq->ncq_phase) 1635 return (NULL); 1636 1637 qp = nvme->n_ioq[cqe->cqe_sqid]; 1638 1639 mutex_enter(&qp->nq_mutex); 1640 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid); 1641 mutex_exit(&qp->nq_mutex); 1642 1643 qp->nq_sqhead = cqe->cqe_sqhd; 1644 cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry; 1645 1646 /* Toggle phase on wrap-around. */ 1647 if (cq->ncq_head == 0) 1648 cq->ncq_phase = cq->ncq_phase != 0 ? 0 : 1; 1649 1650 if (cmd == NULL) { 1651 dev_err(nvme->n_dip, CE_WARN, 1652 "!received completion for unknown cid 0x%x", cqe->cqe_cid); 1653 atomic_inc_32(&nvme->n_unknown_cid); 1654 /* 1655 * We want to ignore this unexpected completion entry as it 1656 * is most likely a result of a bug in the controller firmware. 1657 * However, if we return NULL, then callers will assume there 1658 * are no more pending commands for this wakeup. Retry to keep 1659 * enumerating commands until the phase tag indicates there are 1660 * no more and we are really done. 1661 */ 1662 goto retry; 1663 } 1664 1665 ASSERT3U(cmd->nc_sqid, ==, cqe->cqe_sqid); 1666 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); 1667 1668 return (cmd); 1669 } 1670 1671 /* 1672 * Process all completed commands on the io completion queue. 1673 */ 1674 static uint_t 1675 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq) 1676 { 1677 nvme_reg_cqhdbl_t head = { 0 }; 1678 nvme_cmd_t *cmd; 1679 uint_t completed = 0; 1680 1681 if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != 1682 DDI_SUCCESS) 1683 dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", 1684 __func__); 1685 1686 mutex_enter(&cq->ncq_mutex); 1687 1688 while ((cmd = nvme_get_completed(nvme, cq)) != NULL) { 1689 taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd, 1690 TQ_NOSLEEP, &cmd->nc_tqent); 1691 1692 completed++; 1693 } 1694 1695 if (completed > 0) { 1696 /* 1697 * Update the completion queue head doorbell. 1698 */ 1699 head.b.cqhdbl_cqh = cq->ncq_head; 1700 nvme_put32(nvme, cq->ncq_hdbl, head.r); 1701 } 1702 1703 mutex_exit(&cq->ncq_mutex); 1704 1705 return (completed); 1706 } 1707 1708 static nvme_cmd_t * 1709 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) 1710 { 1711 nvme_cq_t *cq = qp->nq_cq; 1712 nvme_reg_cqhdbl_t head = { 0 }; 1713 nvme_cmd_t *cmd; 1714 1715 if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != 1716 DDI_SUCCESS) 1717 dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", 1718 __func__); 1719 1720 mutex_enter(&cq->ncq_mutex); 1721 1722 if ((cmd = nvme_get_completed(nvme, cq)) != NULL) { 1723 head.b.cqhdbl_cqh = cq->ncq_head; 1724 nvme_put32(nvme, cq->ncq_hdbl, head.r); 1725 } 1726 1727 mutex_exit(&cq->ncq_mutex); 1728 1729 return (cmd); 1730 } 1731 1732 static int 1733 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) 1734 { 1735 nvme_cqe_t *cqe = &cmd->nc_cqe; 1736 1737 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1738 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 1739 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 1740 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 1741 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 1742 1743 if (cmd->nc_xfer != NULL) 1744 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1745 1746 if (cmd->nc_nvme->n_strict_version) { 1747 nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE); 1748 } 1749 1750 return (EIO); 1751 } 1752 1753 static int 1754 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) 1755 { 1756 nvme_cqe_t *cqe = &cmd->nc_cqe; 1757 1758 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1759 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 1760 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 1761 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 1762 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 1763 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { 1764 nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE); 1765 } 1766 1767 return (EIO); 1768 } 1769 1770 static int 1771 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) 1772 { 1773 nvme_cqe_t *cqe = &cmd->nc_cqe; 1774 1775 switch (cqe->cqe_sf.sf_sc) { 1776 case NVME_CQE_SC_INT_NVM_WRITE: 1777 /* write fail */ 1778 /* TODO: post ereport */ 1779 if (cmd->nc_xfer != NULL) 1780 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1781 return (EIO); 1782 1783 case NVME_CQE_SC_INT_NVM_READ: 1784 /* read fail */ 1785 /* TODO: post ereport */ 1786 if (cmd->nc_xfer != NULL) 1787 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1788 return (EIO); 1789 1790 default: 1791 return (nvme_check_unknown_cmd_status(cmd)); 1792 } 1793 } 1794 1795 static int 1796 nvme_check_generic_cmd_status(nvme_cmd_t *cmd) 1797 { 1798 nvme_cqe_t *cqe = &cmd->nc_cqe; 1799 1800 switch (cqe->cqe_sf.sf_sc) { 1801 case NVME_CQE_SC_GEN_SUCCESS: 1802 return (0); 1803 1804 /* 1805 * Errors indicating a bug in the driver should cause a panic. 1806 */ 1807 case NVME_CQE_SC_GEN_INV_OPC: 1808 /* Invalid Command Opcode */ 1809 if (!cmd->nc_dontpanic) 1810 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1811 "programming error: invalid opcode in cmd %p", 1812 (void *)cmd); 1813 return (EINVAL); 1814 1815 case NVME_CQE_SC_GEN_INV_FLD: 1816 /* Invalid Field in Command */ 1817 if (!cmd->nc_dontpanic) 1818 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1819 "programming error: invalid field in cmd %p", 1820 (void *)cmd); 1821 return (EIO); 1822 1823 case NVME_CQE_SC_GEN_ID_CNFL: 1824 /* Command ID Conflict */ 1825 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1826 "cmd ID conflict in cmd %p", (void *)cmd); 1827 return (0); 1828 1829 case NVME_CQE_SC_GEN_INV_NS: 1830 /* Invalid Namespace or Format */ 1831 if (!cmd->nc_dontpanic) 1832 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, 1833 "programming error: invalid NS/format in cmd %p", 1834 (void *)cmd); 1835 return (EINVAL); 1836 1837 case NVME_CQE_SC_GEN_NVM_LBA_RANGE: 1838 /* LBA Out Of Range */ 1839 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1840 "LBA out of range in cmd %p", (void *)cmd); 1841 return (0); 1842 1843 /* 1844 * Non-fatal errors, handle gracefully. 1845 */ 1846 case NVME_CQE_SC_GEN_DATA_XFR_ERR: 1847 /* Data Transfer Error (DMA) */ 1848 /* TODO: post ereport */ 1849 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); 1850 if (cmd->nc_xfer != NULL) 1851 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1852 return (EIO); 1853 1854 case NVME_CQE_SC_GEN_INTERNAL_ERR: 1855 /* 1856 * Internal Error. The spec (v1.0, section 4.5.1.2) says 1857 * detailed error information is returned as async event, 1858 * so we pretty much ignore the error here and handle it 1859 * in the async event handler. 1860 */ 1861 atomic_inc_32(&cmd->nc_nvme->n_internal_err); 1862 if (cmd->nc_xfer != NULL) 1863 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1864 return (EIO); 1865 1866 case NVME_CQE_SC_GEN_ABORT_REQUEST: 1867 /* 1868 * Command Abort Requested. This normally happens only when a 1869 * command times out. 1870 */ 1871 /* TODO: post ereport or change blkdev to handle this? */ 1872 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); 1873 return (ECANCELED); 1874 1875 case NVME_CQE_SC_GEN_ABORT_PWRLOSS: 1876 /* Command Aborted due to Power Loss Notification */ 1877 nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE); 1878 return (EIO); 1879 1880 case NVME_CQE_SC_GEN_ABORT_SQ_DEL: 1881 /* Command Aborted due to SQ Deletion */ 1882 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); 1883 return (EIO); 1884 1885 case NVME_CQE_SC_GEN_NVM_CAP_EXC: 1886 /* Capacity Exceeded */ 1887 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); 1888 if (cmd->nc_xfer != NULL) 1889 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 1890 return (EIO); 1891 1892 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: 1893 /* Namespace Not Ready */ 1894 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); 1895 if (cmd->nc_xfer != NULL) 1896 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1897 return (EIO); 1898 1899 case NVME_CQE_SC_GEN_NVM_FORMATTING: 1900 /* Format in progress (1.2) */ 1901 if (!NVME_VERSION_ATLEAST(&cmd->nc_nvme->n_version, 1, 2)) 1902 return (nvme_check_unknown_cmd_status(cmd)); 1903 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_formatting); 1904 if (cmd->nc_xfer != NULL) 1905 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 1906 return (EIO); 1907 1908 default: 1909 return (nvme_check_unknown_cmd_status(cmd)); 1910 } 1911 } 1912 1913 static int 1914 nvme_check_specific_cmd_status(nvme_cmd_t *cmd) 1915 { 1916 nvme_cqe_t *cqe = &cmd->nc_cqe; 1917 1918 switch (cqe->cqe_sf.sf_sc) { 1919 case NVME_CQE_SC_SPC_INV_CQ: 1920 /* Completion Queue Invalid */ 1921 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); 1922 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); 1923 return (EINVAL); 1924 1925 case NVME_CQE_SC_SPC_INV_QID: 1926 /* Invalid Queue Identifier */ 1927 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1928 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || 1929 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || 1930 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1931 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); 1932 return (EINVAL); 1933 1934 case NVME_CQE_SC_SPC_MAX_QSZ_EXC: 1935 /* Max Queue Size Exceeded */ 1936 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 1937 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1938 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); 1939 return (EINVAL); 1940 1941 case NVME_CQE_SC_SPC_ABRT_CMD_EXC: 1942 /* Abort Command Limit Exceeded */ 1943 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); 1944 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1945 "abort command limit exceeded in cmd %p", (void *)cmd); 1946 return (0); 1947 1948 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: 1949 /* Async Event Request Limit Exceeded */ 1950 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); 1951 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 1952 "async event request limit exceeded in cmd %p", 1953 (void *)cmd); 1954 return (0); 1955 1956 case NVME_CQE_SC_SPC_INV_INT_VECT: 1957 /* Invalid Interrupt Vector */ 1958 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 1959 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); 1960 return (EINVAL); 1961 1962 case NVME_CQE_SC_SPC_INV_LOG_PAGE: 1963 /* Invalid Log Page */ 1964 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); 1965 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); 1966 return (EINVAL); 1967 1968 case NVME_CQE_SC_SPC_INV_FORMAT: 1969 /* Invalid Format */ 1970 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); 1971 atomic_inc_32(&cmd->nc_nvme->n_inv_format); 1972 if (cmd->nc_xfer != NULL) 1973 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1974 return (EINVAL); 1975 1976 case NVME_CQE_SC_SPC_INV_Q_DEL: 1977 /* Invalid Queue Deletion */ 1978 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 1979 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); 1980 return (EINVAL); 1981 1982 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: 1983 /* Conflicting Attributes */ 1984 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || 1985 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1986 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1987 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); 1988 if (cmd->nc_xfer != NULL) 1989 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1990 return (EINVAL); 1991 1992 case NVME_CQE_SC_SPC_NVM_INV_PROT: 1993 /* Invalid Protection Information */ 1994 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || 1995 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1996 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1997 atomic_inc_32(&cmd->nc_nvme->n_inv_prot); 1998 if (cmd->nc_xfer != NULL) 1999 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 2000 return (EINVAL); 2001 2002 case NVME_CQE_SC_SPC_NVM_READONLY: 2003 /* Write to Read Only Range */ 2004 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 2005 atomic_inc_32(&cmd->nc_nvme->n_readonly); 2006 if (cmd->nc_xfer != NULL) 2007 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 2008 return (EROFS); 2009 2010 case NVME_CQE_SC_SPC_INV_FW_SLOT: 2011 /* Invalid Firmware Slot */ 2012 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 2013 return (EINVAL); 2014 2015 case NVME_CQE_SC_SPC_INV_FW_IMG: 2016 /* Invalid Firmware Image */ 2017 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 2018 return (EINVAL); 2019 2020 case NVME_CQE_SC_SPC_FW_RESET: 2021 /* Conventional Reset Required */ 2022 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 2023 return (0); 2024 2025 case NVME_CQE_SC_SPC_FW_NSSR: 2026 /* NVMe Subsystem Reset Required */ 2027 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 2028 return (0); 2029 2030 case NVME_CQE_SC_SPC_FW_NEXT_RESET: 2031 /* Activation Requires Reset */ 2032 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 2033 return (0); 2034 2035 case NVME_CQE_SC_SPC_FW_MTFA: 2036 /* Activation Requires Maximum Time Violation */ 2037 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 2038 return (EAGAIN); 2039 2040 case NVME_CQE_SC_SPC_FW_PROHIBITED: 2041 /* Activation Prohibited */ 2042 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); 2043 return (EINVAL); 2044 2045 case NVME_CQE_SC_SPC_FW_OVERLAP: 2046 /* Overlapping Firmware Ranges */ 2047 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD); 2048 return (EINVAL); 2049 2050 default: 2051 return (nvme_check_unknown_cmd_status(cmd)); 2052 } 2053 } 2054 2055 static inline int 2056 nvme_check_cmd_status(nvme_cmd_t *cmd) 2057 { 2058 nvme_cqe_t *cqe = &cmd->nc_cqe; 2059 2060 /* 2061 * Take a shortcut if the controller is dead, or if 2062 * command status indicates no error. 2063 */ 2064 if (cmd->nc_nvme->n_dead) 2065 return (EIO); 2066 2067 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 2068 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 2069 return (0); 2070 2071 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) 2072 return (nvme_check_generic_cmd_status(cmd)); 2073 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 2074 return (nvme_check_specific_cmd_status(cmd)); 2075 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) 2076 return (nvme_check_integrity_cmd_status(cmd)); 2077 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) 2078 return (nvme_check_vendor_cmd_status(cmd)); 2079 2080 return (nvme_check_unknown_cmd_status(cmd)); 2081 } 2082 2083 /* 2084 * Check the command status as used by an ioctl path and do not convert it to an 2085 * errno. We still allow all the command status checking to occur, but otherwise 2086 * will pass back the controller error as is. 2087 */ 2088 static boolean_t 2089 nvme_check_cmd_status_ioctl(nvme_cmd_t *cmd, nvme_ioctl_common_t *ioc) 2090 { 2091 nvme_cqe_t *cqe = &cmd->nc_cqe; 2092 nvme_t *nvme = cmd->nc_nvme; 2093 2094 if (nvme->n_dead) { 2095 return (nvme_ioctl_error(ioc, nvme->n_dead_status, 0, 0)); 2096 } 2097 2098 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 2099 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 2100 return (B_TRUE); 2101 2102 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) { 2103 (void) nvme_check_generic_cmd_status(cmd); 2104 } else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) { 2105 (void) nvme_check_specific_cmd_status(cmd); 2106 } else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) { 2107 (void) nvme_check_integrity_cmd_status(cmd); 2108 } else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) { 2109 (void) nvme_check_vendor_cmd_status(cmd); 2110 } else { 2111 (void) nvme_check_unknown_cmd_status(cmd); 2112 } 2113 2114 return (nvme_ioctl_error(ioc, NVME_IOCTL_E_CTRL_ERROR, 2115 cqe->cqe_sf.sf_sct, cqe->cqe_sf.sf_sc)); 2116 } 2117 2118 static int 2119 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec) 2120 { 2121 nvme_t *nvme = abort_cmd->nc_nvme; 2122 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2123 nvme_abort_cmd_t ac = { 0 }; 2124 int ret = 0; 2125 2126 sema_p(&nvme->n_abort_sema); 2127 2128 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; 2129 ac.b.ac_sqid = abort_cmd->nc_sqid; 2130 2131 cmd->nc_sqid = 0; 2132 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; 2133 cmd->nc_callback = nvme_wakeup_cmd; 2134 cmd->nc_sqe.sqe_cdw10 = ac.r; 2135 2136 /* 2137 * Send the ABORT to the hardware. The ABORT command will return _after_ 2138 * the aborted command has completed (aborted or otherwise), but since 2139 * we still hold the aborted command's mutex its callback hasn't been 2140 * processed yet. 2141 */ 2142 nvme_admin_cmd(cmd, sec); 2143 sema_v(&nvme->n_abort_sema); 2144 2145 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2146 dev_err(nvme->n_dip, CE_WARN, 2147 "!ABORT failed with sct = %x, sc = %x", 2148 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2149 atomic_inc_32(&nvme->n_abort_failed); 2150 } else { 2151 dev_err(nvme->n_dip, CE_WARN, 2152 "!ABORT of command %d/%d %ssuccessful", 2153 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid, 2154 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : ""); 2155 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0) 2156 atomic_inc_32(&nvme->n_cmd_aborted); 2157 } 2158 2159 nvme_free_cmd(cmd); 2160 return (ret); 2161 } 2162 2163 /* 2164 * nvme_wait_cmd -- wait for command completion or timeout 2165 * 2166 * In case of a serious error or a timeout of the abort command the hardware 2167 * will be declared dead and FMA will be notified. 2168 */ 2169 static void 2170 nvme_wait_cmd(nvme_cmd_t *cmd, uint32_t sec) 2171 { 2172 clock_t timeout = ddi_get_lbolt() + drv_usectohz((long)sec * MICROSEC); 2173 nvme_t *nvme = cmd->nc_nvme; 2174 nvme_reg_csts_t csts; 2175 nvme_qpair_t *qp; 2176 2177 ASSERT(mutex_owned(&cmd->nc_mutex)); 2178 2179 while (!cmd->nc_completed) { 2180 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) 2181 break; 2182 } 2183 2184 if (cmd->nc_completed) 2185 return; 2186 2187 /* 2188 * The command timed out. 2189 * 2190 * Check controller for fatal status, any errors associated with the 2191 * register or DMA handle, or for a double timeout (abort command timed 2192 * out). If necessary log a warning and call FMA. 2193 */ 2194 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 2195 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, " 2196 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid, 2197 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); 2198 atomic_inc_32(&nvme->n_cmd_timeout); 2199 2200 if (csts.b.csts_cfs || 2201 nvme_check_regs_hdl(nvme) || 2202 nvme_check_dma_hdl(cmd->nc_dma) || 2203 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { 2204 nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE); 2205 } else if (nvme_abort_cmd(cmd, sec) == 0) { 2206 /* 2207 * If the abort succeeded the command should complete 2208 * immediately with an appropriate status. 2209 */ 2210 while (!cmd->nc_completed) 2211 cv_wait(&cmd->nc_cv, &cmd->nc_mutex); 2212 2213 return; 2214 } 2215 2216 qp = nvme->n_ioq[cmd->nc_sqid]; 2217 2218 mutex_enter(&qp->nq_mutex); 2219 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); 2220 mutex_exit(&qp->nq_mutex); 2221 2222 /* 2223 * As we don't know what the presumed dead hardware might still do with 2224 * the DMA memory, we'll put the command on the lost commands list if it 2225 * has any DMA memory. 2226 */ 2227 if (cmd->nc_dma != NULL) { 2228 mutex_enter(&nvme_lc_mutex); 2229 list_insert_head(&nvme_lost_cmds, cmd); 2230 mutex_exit(&nvme_lc_mutex); 2231 } 2232 } 2233 2234 static void 2235 nvme_wakeup_cmd(void *arg) 2236 { 2237 nvme_cmd_t *cmd = arg; 2238 2239 mutex_enter(&cmd->nc_mutex); 2240 cmd->nc_completed = B_TRUE; 2241 cv_signal(&cmd->nc_cv); 2242 mutex_exit(&cmd->nc_mutex); 2243 } 2244 2245 static void 2246 nvme_async_event_task(void *arg) 2247 { 2248 nvme_cmd_t *cmd = arg; 2249 nvme_t *nvme = cmd->nc_nvme; 2250 nvme_error_log_entry_t *error_log = NULL; 2251 nvme_health_log_t *health_log = NULL; 2252 nvme_nschange_list_t *nslist = NULL; 2253 size_t logsize = 0; 2254 nvme_async_event_t event; 2255 2256 /* 2257 * Check for errors associated with the async request itself. The only 2258 * command-specific error is "async event limit exceeded", which 2259 * indicates a programming error in the driver and causes a panic in 2260 * nvme_check_cmd_status(). 2261 * 2262 * Other possible errors are various scenarios where the async request 2263 * was aborted, or internal errors in the device. Internal errors are 2264 * reported to FMA, the command aborts need no special handling here. 2265 * 2266 * And finally, at least qemu nvme does not support async events, 2267 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we 2268 * will avoid posting async events. 2269 */ 2270 2271 if (nvme_check_cmd_status(cmd) != 0) { 2272 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 2273 "!async event request returned failure, sct = 0x%x, " 2274 "sc = 0x%x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, 2275 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, 2276 cmd->nc_cqe.cqe_sf.sf_m); 2277 2278 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 2279 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { 2280 nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE); 2281 } 2282 2283 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 2284 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC && 2285 cmd->nc_cqe.cqe_sf.sf_dnr == 1) { 2286 nvme->n_async_event_supported = B_FALSE; 2287 } 2288 2289 nvme_free_cmd(cmd); 2290 return; 2291 } 2292 2293 event.r = cmd->nc_cqe.cqe_dw0; 2294 2295 /* Clear CQE and re-submit the async request. */ 2296 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); 2297 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 2298 cmd = NULL; /* cmd can no longer be used after resubmission */ 2299 2300 switch (event.b.ae_type) { 2301 case NVME_ASYNC_TYPE_ERROR: 2302 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { 2303 if (!nvme_get_logpage_int(nvme, B_FALSE, 2304 (void **)&error_log, &logsize, 2305 NVME_LOGPAGE_ERROR)) { 2306 return; 2307 } 2308 } else { 2309 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 2310 "async event reply: type=0x%x logpage=0x%x", 2311 event.b.ae_type, event.b.ae_logpage); 2312 atomic_inc_32(&nvme->n_wrong_logpage); 2313 return; 2314 } 2315 2316 switch (event.b.ae_info) { 2317 case NVME_ASYNC_ERROR_INV_SQ: 2318 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 2319 "invalid submission queue"); 2320 return; 2321 2322 case NVME_ASYNC_ERROR_INV_DBL: 2323 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 2324 "invalid doorbell write value"); 2325 return; 2326 2327 case NVME_ASYNC_ERROR_DIAGFAIL: 2328 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); 2329 nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE); 2330 atomic_inc_32(&nvme->n_diagfail_event); 2331 break; 2332 2333 case NVME_ASYNC_ERROR_PERSISTENT: 2334 dev_err(nvme->n_dip, CE_WARN, "!persistent internal " 2335 "device error"); 2336 nvme_ctrl_mark_dead(cmd->nc_nvme, B_FALSE); 2337 atomic_inc_32(&nvme->n_persistent_event); 2338 break; 2339 2340 case NVME_ASYNC_ERROR_TRANSIENT: 2341 dev_err(nvme->n_dip, CE_WARN, "!transient internal " 2342 "device error"); 2343 /* TODO: send ereport */ 2344 atomic_inc_32(&nvme->n_transient_event); 2345 break; 2346 2347 case NVME_ASYNC_ERROR_FW_LOAD: 2348 dev_err(nvme->n_dip, CE_WARN, 2349 "!firmware image load error"); 2350 atomic_inc_32(&nvme->n_fw_load_event); 2351 break; 2352 } 2353 break; 2354 2355 case NVME_ASYNC_TYPE_HEALTH: 2356 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { 2357 if (!nvme_get_logpage_int(nvme, B_FALSE, 2358 (void **)&health_log, &logsize, 2359 NVME_LOGPAGE_HEALTH)) { 2360 return; 2361 } 2362 } else { 2363 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 2364 "type=0x%x logpage=0x%x", event.b.ae_type, 2365 event.b.ae_logpage); 2366 atomic_inc_32(&nvme->n_wrong_logpage); 2367 return; 2368 } 2369 2370 switch (event.b.ae_info) { 2371 case NVME_ASYNC_HEALTH_RELIABILITY: 2372 dev_err(nvme->n_dip, CE_WARN, 2373 "!device reliability compromised"); 2374 /* TODO: send ereport */ 2375 atomic_inc_32(&nvme->n_reliability_event); 2376 break; 2377 2378 case NVME_ASYNC_HEALTH_TEMPERATURE: 2379 dev_err(nvme->n_dip, CE_WARN, 2380 "!temperature above threshold"); 2381 /* TODO: send ereport */ 2382 atomic_inc_32(&nvme->n_temperature_event); 2383 break; 2384 2385 case NVME_ASYNC_HEALTH_SPARE: 2386 dev_err(nvme->n_dip, CE_WARN, 2387 "!spare space below threshold"); 2388 /* TODO: send ereport */ 2389 atomic_inc_32(&nvme->n_spare_event); 2390 break; 2391 } 2392 break; 2393 2394 case NVME_ASYNC_TYPE_NOTICE: 2395 switch (event.b.ae_info) { 2396 case NVME_ASYNC_NOTICE_NS_CHANGE: 2397 if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE) { 2398 dev_err(nvme->n_dip, CE_WARN, 2399 "!wrong logpage in async event reply: " 2400 "type=0x%x logpage=0x%x", 2401 event.b.ae_type, event.b.ae_logpage); 2402 atomic_inc_32(&nvme->n_wrong_logpage); 2403 break; 2404 } 2405 2406 dev_err(nvme->n_dip, CE_NOTE, 2407 "namespace attribute change event, " 2408 "logpage = 0x%x", event.b.ae_logpage); 2409 atomic_inc_32(&nvme->n_notice_event); 2410 2411 if (!nvme_get_logpage_int(nvme, B_FALSE, 2412 (void **)&nslist, &logsize, 2413 NVME_LOGPAGE_NSCHANGE)) { 2414 break; 2415 } 2416 2417 if (nslist->nscl_ns[0] == UINT32_MAX) { 2418 dev_err(nvme->n_dip, CE_CONT, 2419 "more than %u namespaces have changed.\n", 2420 NVME_NSCHANGE_LIST_SIZE); 2421 break; 2422 } 2423 2424 mutex_enter(&nvme->n_mgmt_mutex); 2425 for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) { 2426 uint32_t nsid = nslist->nscl_ns[i]; 2427 2428 if (nsid == 0) /* end of list */ 2429 break; 2430 2431 dev_err(nvme->n_dip, CE_NOTE, 2432 "!namespace nvme%d/%u has changed.", 2433 ddi_get_instance(nvme->n_dip), nsid); 2434 2435 2436 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) 2437 continue; 2438 2439 bd_state_change(nvme_nsid2ns(nvme, 2440 nsid)->ns_bd_hdl); 2441 } 2442 mutex_exit(&nvme->n_mgmt_mutex); 2443 2444 break; 2445 2446 case NVME_ASYNC_NOTICE_FW_ACTIVATE: 2447 dev_err(nvme->n_dip, CE_NOTE, 2448 "firmware activation starting, " 2449 "logpage = 0x%x", event.b.ae_logpage); 2450 atomic_inc_32(&nvme->n_notice_event); 2451 break; 2452 2453 case NVME_ASYNC_NOTICE_TELEMETRY: 2454 dev_err(nvme->n_dip, CE_NOTE, 2455 "telemetry log changed, " 2456 "logpage = 0x%x", event.b.ae_logpage); 2457 atomic_inc_32(&nvme->n_notice_event); 2458 break; 2459 2460 case NVME_ASYNC_NOTICE_NS_ASYMM: 2461 dev_err(nvme->n_dip, CE_NOTE, 2462 "asymmetric namespace access change, " 2463 "logpage = 0x%x", event.b.ae_logpage); 2464 atomic_inc_32(&nvme->n_notice_event); 2465 break; 2466 2467 case NVME_ASYNC_NOTICE_LATENCYLOG: 2468 dev_err(nvme->n_dip, CE_NOTE, 2469 "predictable latency event aggregate log change, " 2470 "logpage = 0x%x", event.b.ae_logpage); 2471 atomic_inc_32(&nvme->n_notice_event); 2472 break; 2473 2474 case NVME_ASYNC_NOTICE_LBASTATUS: 2475 dev_err(nvme->n_dip, CE_NOTE, 2476 "LBA status information alert, " 2477 "logpage = 0x%x", event.b.ae_logpage); 2478 atomic_inc_32(&nvme->n_notice_event); 2479 break; 2480 2481 case NVME_ASYNC_NOTICE_ENDURANCELOG: 2482 dev_err(nvme->n_dip, CE_NOTE, 2483 "endurance group event aggregate log page change, " 2484 "logpage = 0x%x", event.b.ae_logpage); 2485 atomic_inc_32(&nvme->n_notice_event); 2486 break; 2487 2488 default: 2489 dev_err(nvme->n_dip, CE_WARN, 2490 "!unknown notice async event received, " 2491 "info = 0x%x, logpage = 0x%x", event.b.ae_info, 2492 event.b.ae_logpage); 2493 atomic_inc_32(&nvme->n_unknown_event); 2494 break; 2495 } 2496 break; 2497 2498 case NVME_ASYNC_TYPE_VENDOR: 2499 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " 2500 "received, info = 0x%x, logpage = 0x%x", event.b.ae_info, 2501 event.b.ae_logpage); 2502 atomic_inc_32(&nvme->n_vendor_event); 2503 break; 2504 2505 default: 2506 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " 2507 "type = 0x%x, info = 0x%x, logpage = 0x%x", event.b.ae_type, 2508 event.b.ae_info, event.b.ae_logpage); 2509 atomic_inc_32(&nvme->n_unknown_event); 2510 break; 2511 } 2512 2513 if (error_log != NULL) 2514 kmem_free(error_log, logsize); 2515 2516 if (health_log != NULL) 2517 kmem_free(health_log, logsize); 2518 2519 if (nslist != NULL) 2520 kmem_free(nslist, logsize); 2521 } 2522 2523 static void 2524 nvme_admin_cmd(nvme_cmd_t *cmd, uint32_t sec) 2525 { 2526 mutex_enter(&cmd->nc_mutex); 2527 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd); 2528 nvme_wait_cmd(cmd, sec); 2529 mutex_exit(&cmd->nc_mutex); 2530 } 2531 2532 static void 2533 nvme_async_event(nvme_t *nvme) 2534 { 2535 nvme_cmd_t *cmd; 2536 2537 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2538 cmd->nc_sqid = 0; 2539 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; 2540 cmd->nc_callback = nvme_async_event_task; 2541 cmd->nc_dontpanic = B_TRUE; 2542 2543 nvme_submit_admin_cmd(nvme->n_adminq, cmd); 2544 } 2545 2546 /* 2547 * There are commands such as format or vendor unique commands that are going to 2548 * manipulate the data in a namespace or destroy them, we make sure that none of 2549 * the ones that will be impacted are actually attached. 2550 */ 2551 static boolean_t 2552 nvme_no_blkdev_attached(nvme_t *nvme, uint32_t nsid) 2553 { 2554 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 2555 ASSERT3U(nsid, !=, 0); 2556 2557 if (nsid != NVME_NSID_BCAST) { 2558 nvme_namespace_t *ns = nvme_nsid2ns(nvme, nsid); 2559 return (!ns->ns_attached); 2560 } 2561 2562 for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) { 2563 nvme_namespace_t *ns = nvme_nsid2ns(nvme, i); 2564 2565 if (ns->ns_attached) { 2566 return (B_FALSE); 2567 } 2568 } 2569 2570 return (B_TRUE); 2571 } 2572 2573 static boolean_t 2574 nvme_format_nvm(nvme_t *nvme, nvme_ioctl_format_t *ioc) 2575 { 2576 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2577 nvme_format_nvm_t format_nvm = { 0 }; 2578 boolean_t ret; 2579 2580 format_nvm.b.fm_lbaf = bitx32(ioc->nif_lbaf, 3, 0); 2581 format_nvm.b.fm_ses = bitx32(ioc->nif_ses, 2, 0); 2582 2583 cmd->nc_sqid = 0; 2584 cmd->nc_callback = nvme_wakeup_cmd; 2585 cmd->nc_sqe.sqe_nsid = ioc->nif_common.nioc_nsid; 2586 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT; 2587 cmd->nc_sqe.sqe_cdw10 = format_nvm.r; 2588 2589 /* 2590 * We don't want to panic on any format commands. There are two reasons 2591 * for this: 2592 * 2593 * 1) All format commands are initiated by users. We don't want to panic 2594 * on user commands. 2595 * 2596 * 2) Several devices like the Samsung SM951 don't allow formatting of 2597 * all namespaces in one command and we'd prefer to handle that 2598 * gracefully. 2599 */ 2600 cmd->nc_dontpanic = B_TRUE; 2601 2602 nvme_admin_cmd(cmd, nvme_format_cmd_timeout); 2603 2604 if (!nvme_check_cmd_status_ioctl(cmd, &ioc->nif_common) != 0) { 2605 dev_err(nvme->n_dip, CE_WARN, 2606 "!FORMAT failed with sct = %x, sc = %x", 2607 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2608 ret = B_FALSE; 2609 goto fail; 2610 } 2611 2612 ret = B_TRUE; 2613 fail: 2614 nvme_free_cmd(cmd); 2615 return (ret); 2616 } 2617 2618 /* 2619 * Retrieve a specific log page. The contents of the log page request should 2620 * have already been validated by the system. 2621 */ 2622 static boolean_t 2623 nvme_get_logpage(nvme_t *nvme, boolean_t user, nvme_ioctl_get_logpage_t *log, 2624 void **buf) 2625 { 2626 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2627 nvme_getlogpage_dw10_t dw10; 2628 uint32_t offlo, offhi; 2629 nvme_getlogpage_dw11_t dw11; 2630 nvme_getlogpage_dw14_t dw14; 2631 uint32_t ndw; 2632 boolean_t ret = B_FALSE; 2633 2634 bzero(&dw10, sizeof (dw10)); 2635 bzero(&dw11, sizeof (dw11)); 2636 bzero(&dw14, sizeof (dw14)); 2637 2638 cmd->nc_sqid = 0; 2639 cmd->nc_callback = nvme_wakeup_cmd; 2640 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; 2641 cmd->nc_sqe.sqe_nsid = log->nigl_common.nioc_nsid; 2642 2643 if (user) 2644 cmd->nc_dontpanic = B_TRUE; 2645 2646 /* 2647 * The size field is the number of double words, but is a zeros based 2648 * value. We need to store our actual value minus one. 2649 */ 2650 ndw = (uint32_t)(log->nigl_len / 4); 2651 ASSERT3U(ndw, >, 0); 2652 ndw--; 2653 2654 dw10.b.lp_lid = bitx32(log->nigl_lid, 7, 0); 2655 dw10.b.lp_lsp = bitx32(log->nigl_lsp, 6, 0); 2656 dw10.b.lp_rae = bitx32(log->nigl_lsp, 0, 0); 2657 dw10.b.lp_lnumdl = bitx32(ndw, 15, 0); 2658 2659 dw11.b.lp_numdu = bitx32(ndw, 31, 16); 2660 dw11.b.lp_lsi = bitx32(log->nigl_lsi, 15, 0); 2661 2662 offlo = bitx64(log->nigl_offset, 31, 0); 2663 offhi = bitx64(log->nigl_offset, 63, 32); 2664 2665 dw14.b.lp_csi = bitx32(log->nigl_csi, 7, 0); 2666 2667 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2668 cmd->nc_sqe.sqe_cdw11 = dw11.r; 2669 cmd->nc_sqe.sqe_cdw12 = offlo; 2670 cmd->nc_sqe.sqe_cdw13 = offhi; 2671 cmd->nc_sqe.sqe_cdw14 = dw14.r; 2672 2673 if (nvme_zalloc_dma(nvme, log->nigl_len, DDI_DMA_READ, 2674 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2675 dev_err(nvme->n_dip, CE_WARN, 2676 "!nvme_zalloc_dma failed for GET LOG PAGE"); 2677 ret = nvme_ioctl_error(&log->nigl_common, 2678 NVME_IOCTL_E_NO_DMA_MEM, 0, 0); 2679 goto fail; 2680 } 2681 2682 if (nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah) != 0) { 2683 ret = nvme_ioctl_error(&log->nigl_common, 2684 NVME_IOCTL_E_NO_DMA_MEM, 0, 0); 2685 goto fail; 2686 } 2687 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2688 2689 if (!nvme_check_cmd_status_ioctl(cmd, &log->nigl_common)) { 2690 if (!user) { 2691 dev_err(nvme->n_dip, CE_WARN, 2692 "!GET LOG PAGE failed with sct = %x, sc = %x", 2693 cmd->nc_cqe.cqe_sf.sf_sct, 2694 cmd->nc_cqe.cqe_sf.sf_sc); 2695 } 2696 ret = B_FALSE; 2697 goto fail; 2698 } 2699 2700 *buf = kmem_alloc(log->nigl_len, KM_SLEEP); 2701 bcopy(cmd->nc_dma->nd_memp, *buf, log->nigl_len); 2702 2703 ret = B_TRUE; 2704 fail: 2705 nvme_free_cmd(cmd); 2706 2707 return (ret); 2708 } 2709 2710 /* 2711 * This is an internal wrapper for when the kernel wants to get a log page. 2712 * Currently this assumes that the only thing that is required is the log page 2713 * ID. If more information is required, we'll be better served to just use the 2714 * general ioctl interface. 2715 */ 2716 static boolean_t 2717 nvme_get_logpage_int(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize, 2718 uint8_t lid) 2719 { 2720 const nvme_log_page_info_t *info = NULL; 2721 nvme_ioctl_get_logpage_t log; 2722 nvme_valid_ctrl_data_t data; 2723 boolean_t bret; 2724 bool var; 2725 2726 for (size_t i = 0; i < nvme_std_log_npages; i++) { 2727 if (nvme_std_log_pages[i].nlpi_lid == lid && 2728 nvme_std_log_pages[i].nlpi_csi == NVME_CSI_NVM) { 2729 info = &nvme_std_log_pages[i]; 2730 break; 2731 } 2732 } 2733 2734 if (info == NULL) { 2735 return (B_FALSE); 2736 } 2737 2738 data.vcd_vers = &nvme->n_version; 2739 data.vcd_id = nvme->n_idctl; 2740 bzero(&log, sizeof (log)); 2741 log.nigl_common.nioc_nsid = NVME_NSID_BCAST; 2742 log.nigl_csi = info->nlpi_csi; 2743 log.nigl_lid = info->nlpi_lid; 2744 log.nigl_len = nvme_log_page_info_size(info, &data, &var); 2745 2746 /* 2747 * We only support getting standard fixed-length log pages through the 2748 * kernel interface at this time. If a log page either has an unknown 2749 * size or has a variable length, then we cannot get it. 2750 */ 2751 if (log.nigl_len == 0 || var) { 2752 return (B_FALSE); 2753 } 2754 2755 bret = nvme_get_logpage(nvme, user, &log, buf); 2756 if (!bret) { 2757 return (B_FALSE); 2758 } 2759 2760 *bufsize = log.nigl_len; 2761 return (B_TRUE); 2762 } 2763 2764 static boolean_t 2765 nvme_identify(nvme_t *nvme, boolean_t user, nvme_ioctl_identify_t *ioc, 2766 void **buf) 2767 { 2768 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2769 boolean_t ret = B_FALSE; 2770 nvme_identify_dw10_t dw10; 2771 2772 ASSERT3P(buf, !=, NULL); 2773 2774 bzero(&dw10, sizeof (dw10)); 2775 2776 cmd->nc_sqid = 0; 2777 cmd->nc_callback = nvme_wakeup_cmd; 2778 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; 2779 cmd->nc_sqe.sqe_nsid = ioc->nid_common.nioc_nsid; 2780 2781 dw10.b.id_cns = bitx32(ioc->nid_cns, 7, 0); 2782 dw10.b.id_cntid = bitx32(ioc->nid_ctrlid, 15, 0); 2783 2784 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2785 2786 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, 2787 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2788 dev_err(nvme->n_dip, CE_WARN, 2789 "!nvme_zalloc_dma failed for IDENTIFY"); 2790 ret = nvme_ioctl_error(&ioc->nid_common, 2791 NVME_IOCTL_E_NO_DMA_MEM, 0, 0); 2792 goto fail; 2793 } 2794 2795 if (cmd->nc_dma->nd_ncookie > 2) { 2796 dev_err(nvme->n_dip, CE_WARN, 2797 "!too many DMA cookies for IDENTIFY"); 2798 atomic_inc_32(&nvme->n_too_many_cookies); 2799 ret = nvme_ioctl_error(&ioc->nid_common, 2800 NVME_IOCTL_E_BAD_PRP, 0, 0); 2801 goto fail; 2802 } 2803 2804 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 2805 if (cmd->nc_dma->nd_ncookie > 1) { 2806 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 2807 &cmd->nc_dma->nd_cookie); 2808 cmd->nc_sqe.sqe_dptr.d_prp[1] = 2809 cmd->nc_dma->nd_cookie.dmac_laddress; 2810 } 2811 2812 if (user) 2813 cmd->nc_dontpanic = B_TRUE; 2814 2815 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2816 2817 if (!nvme_check_cmd_status_ioctl(cmd, &ioc->nid_common)) { 2818 dev_err(nvme->n_dip, CE_WARN, 2819 "!IDENTIFY failed with sct = %x, sc = %x", 2820 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2821 ret = B_FALSE; 2822 goto fail; 2823 } 2824 2825 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); 2826 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE); 2827 ret = B_TRUE; 2828 2829 fail: 2830 nvme_free_cmd(cmd); 2831 2832 return (ret); 2833 } 2834 2835 static boolean_t 2836 nvme_identify_int(nvme_t *nvme, uint32_t nsid, uint8_t cns, void **buf) 2837 { 2838 nvme_ioctl_identify_t id; 2839 2840 bzero(&id, sizeof (nvme_ioctl_identify_t)); 2841 id.nid_common.nioc_nsid = nsid; 2842 id.nid_cns = cns; 2843 2844 return (nvme_identify(nvme, B_FALSE, &id, buf)); 2845 } 2846 2847 static int 2848 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature, 2849 uint32_t val, uint32_t *res) 2850 { 2851 _NOTE(ARGUNUSED(nsid)); 2852 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2853 int ret = EINVAL; 2854 2855 ASSERT(res != NULL); 2856 2857 cmd->nc_sqid = 0; 2858 cmd->nc_callback = nvme_wakeup_cmd; 2859 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; 2860 cmd->nc_sqe.sqe_cdw10 = feature; 2861 cmd->nc_sqe.sqe_cdw11 = val; 2862 2863 if (user) 2864 cmd->nc_dontpanic = B_TRUE; 2865 2866 switch (feature) { 2867 case NVME_FEAT_WRITE_CACHE: 2868 if (!nvme->n_write_cache_present) 2869 goto fail; 2870 break; 2871 2872 case NVME_FEAT_NQUEUES: 2873 break; 2874 2875 default: 2876 goto fail; 2877 } 2878 2879 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2880 2881 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2882 dev_err(nvme->n_dip, CE_WARN, 2883 "!SET FEATURES %d failed with sct = %x, sc = %x", 2884 feature, cmd->nc_cqe.cqe_sf.sf_sct, 2885 cmd->nc_cqe.cqe_sf.sf_sc); 2886 goto fail; 2887 } 2888 2889 *res = cmd->nc_cqe.cqe_dw0; 2890 2891 fail: 2892 nvme_free_cmd(cmd); 2893 return (ret); 2894 } 2895 2896 static int 2897 nvme_write_cache_set(nvme_t *nvme, boolean_t enable) 2898 { 2899 nvme_write_cache_t nwc = { 0 }; 2900 2901 if (enable) 2902 nwc.b.wc_wce = 1; 2903 2904 /* 2905 * We've seen some cases where this fails due to us being told we've 2906 * specified an invalid namespace when operating against the Xen xcp-ng 2907 * qemu NVMe virtual device. As such, we generally ensure that trying to 2908 * enable this doesn't lead us to panic. It's not completely clear why 2909 * specifying namespace zero here fails, but not when we're setting the 2910 * number of queues below. 2911 */ 2912 return (nvme_set_features(nvme, B_TRUE, 0, NVME_FEAT_WRITE_CACHE, 2913 nwc.r, &nwc.r)); 2914 } 2915 2916 static int 2917 nvme_set_nqueues(nvme_t *nvme) 2918 { 2919 nvme_nqueues_t nq = { 0 }; 2920 int ret; 2921 2922 /* 2923 * The default is to allocate one completion queue per vector. 2924 */ 2925 if (nvme->n_completion_queues == -1) 2926 nvme->n_completion_queues = nvme->n_intr_cnt; 2927 2928 /* 2929 * There is no point in having more completion queues than 2930 * interrupt vectors. 2931 */ 2932 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2933 nvme->n_intr_cnt); 2934 2935 /* 2936 * The default is to use one submission queue per completion queue. 2937 */ 2938 if (nvme->n_submission_queues == -1) 2939 nvme->n_submission_queues = nvme->n_completion_queues; 2940 2941 /* 2942 * There is no point in having more completion queues than 2943 * submission queues. 2944 */ 2945 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2946 nvme->n_submission_queues); 2947 2948 ASSERT(nvme->n_submission_queues > 0); 2949 ASSERT(nvme->n_completion_queues > 0); 2950 2951 nq.b.nq_nsq = nvme->n_submission_queues - 1; 2952 nq.b.nq_ncq = nvme->n_completion_queues - 1; 2953 2954 ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r, 2955 &nq.r); 2956 2957 if (ret == 0) { 2958 /* 2959 * Never use more than the requested number of queues. 2960 */ 2961 nvme->n_submission_queues = MIN(nvme->n_submission_queues, 2962 nq.b.nq_nsq + 1); 2963 nvme->n_completion_queues = MIN(nvme->n_completion_queues, 2964 nq.b.nq_ncq + 1); 2965 } 2966 2967 return (ret); 2968 } 2969 2970 static int 2971 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq) 2972 { 2973 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 2974 nvme_create_queue_dw10_t dw10 = { 0 }; 2975 nvme_create_cq_dw11_t c_dw11 = { 0 }; 2976 int ret; 2977 2978 dw10.b.q_qid = cq->ncq_id; 2979 dw10.b.q_qsize = cq->ncq_nentry - 1; 2980 2981 c_dw11.b.cq_pc = 1; 2982 c_dw11.b.cq_ien = 1; 2983 c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt; 2984 2985 cmd->nc_sqid = 0; 2986 cmd->nc_callback = nvme_wakeup_cmd; 2987 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; 2988 cmd->nc_sqe.sqe_cdw10 = dw10.r; 2989 cmd->nc_sqe.sqe_cdw11 = c_dw11.r; 2990 cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress; 2991 2992 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 2993 2994 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 2995 dev_err(nvme->n_dip, CE_WARN, 2996 "!CREATE CQUEUE failed with sct = %x, sc = %x", 2997 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 2998 } 2999 3000 nvme_free_cmd(cmd); 3001 3002 return (ret); 3003 } 3004 3005 static int 3006 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) 3007 { 3008 nvme_cq_t *cq = qp->nq_cq; 3009 nvme_cmd_t *cmd; 3010 nvme_create_queue_dw10_t dw10 = { 0 }; 3011 nvme_create_sq_dw11_t s_dw11 = { 0 }; 3012 int ret; 3013 3014 /* 3015 * It is possible to have more qpairs than completion queues, 3016 * and when the idx > ncq_id, that completion queue is shared 3017 * and has already been created. 3018 */ 3019 if (idx <= cq->ncq_id && 3020 nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS) 3021 return (DDI_FAILURE); 3022 3023 dw10.b.q_qid = idx; 3024 dw10.b.q_qsize = qp->nq_nentry - 1; 3025 3026 s_dw11.b.sq_pc = 1; 3027 s_dw11.b.sq_cqid = cq->ncq_id; 3028 3029 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 3030 cmd->nc_sqid = 0; 3031 cmd->nc_callback = nvme_wakeup_cmd; 3032 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; 3033 cmd->nc_sqe.sqe_cdw10 = dw10.r; 3034 cmd->nc_sqe.sqe_cdw11 = s_dw11.r; 3035 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; 3036 3037 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); 3038 3039 if ((ret = nvme_check_cmd_status(cmd)) != 0) { 3040 dev_err(nvme->n_dip, CE_WARN, 3041 "!CREATE SQUEUE failed with sct = %x, sc = %x", 3042 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 3043 } 3044 3045 nvme_free_cmd(cmd); 3046 3047 return (ret); 3048 } 3049 3050 static boolean_t 3051 nvme_reset(nvme_t *nvme, boolean_t quiesce) 3052 { 3053 nvme_reg_csts_t csts; 3054 int i; 3055 3056 nvme_put32(nvme, NVME_REG_CC, 0); 3057 3058 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3059 if (csts.b.csts_rdy == 1) { 3060 nvme_put32(nvme, NVME_REG_CC, 0); 3061 3062 /* 3063 * The timeout value is from the Controller Capabilities 3064 * register (CAP.TO, section 3.1.1). This is the worst case 3065 * time to wait for CSTS.RDY to transition from 1 to 0 after 3066 * CC.EN transitions from 1 to 0. 3067 * 3068 * The timeout units are in 500 ms units, and we are delaying 3069 * in 50ms chunks, hence counting to n_timeout * 10. 3070 */ 3071 for (i = 0; i < nvme->n_timeout * 10; i++) { 3072 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3073 if (csts.b.csts_rdy == 0) 3074 break; 3075 3076 /* 3077 * Quiescing drivers should not use locks or timeouts, 3078 * so if this is the quiesce path, use a quiesce-safe 3079 * delay. 3080 */ 3081 if (quiesce) { 3082 drv_usecwait(50000); 3083 } else { 3084 delay(drv_usectohz(50000)); 3085 } 3086 } 3087 } 3088 3089 nvme_put32(nvme, NVME_REG_AQA, 0); 3090 nvme_put32(nvme, NVME_REG_ASQ, 0); 3091 nvme_put32(nvme, NVME_REG_ACQ, 0); 3092 3093 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3094 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); 3095 } 3096 3097 static void 3098 nvme_shutdown(nvme_t *nvme, boolean_t quiesce) 3099 { 3100 nvme_reg_cc_t cc; 3101 nvme_reg_csts_t csts; 3102 int i; 3103 3104 cc.r = nvme_get32(nvme, NVME_REG_CC); 3105 cc.b.cc_shn = NVME_CC_SHN_NORMAL; 3106 nvme_put32(nvme, NVME_REG_CC, cc.r); 3107 3108 for (i = 0; i < 10; i++) { 3109 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3110 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) 3111 break; 3112 3113 if (quiesce) { 3114 drv_usecwait(100000); 3115 } else { 3116 delay(drv_usectohz(100000)); 3117 } 3118 } 3119 } 3120 3121 /* 3122 * Return length of string without trailing spaces. 3123 */ 3124 static int 3125 nvme_strlen(const char *str, int len) 3126 { 3127 if (len <= 0) 3128 return (0); 3129 3130 while (str[--len] == ' ') 3131 ; 3132 3133 return (++len); 3134 } 3135 3136 static void 3137 nvme_config_min_block_size(nvme_t *nvme, char *model, char *val) 3138 { 3139 ulong_t bsize = 0; 3140 char *msg = ""; 3141 3142 if (ddi_strtoul(val, NULL, 0, &bsize) != 0) 3143 goto err; 3144 3145 if (!ISP2(bsize)) { 3146 msg = ": not a power of 2"; 3147 goto err; 3148 } 3149 3150 if (bsize < NVME_DEFAULT_MIN_BLOCK_SIZE) { 3151 msg = ": too low"; 3152 goto err; 3153 } 3154 3155 nvme->n_min_block_size = bsize; 3156 return; 3157 3158 err: 3159 dev_err(nvme->n_dip, CE_WARN, 3160 "!nvme-config-list: ignoring invalid min-phys-block-size '%s' " 3161 "for model '%s'%s", val, model, msg); 3162 3163 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 3164 } 3165 3166 static void 3167 nvme_config_boolean(nvme_t *nvme, char *model, char *name, char *val, 3168 boolean_t *b) 3169 { 3170 if (strcmp(val, "on") == 0 || 3171 strcmp(val, "true") == 0) 3172 *b = B_TRUE; 3173 else if (strcmp(val, "off") == 0 || 3174 strcmp(val, "false") == 0) 3175 *b = B_FALSE; 3176 else 3177 dev_err(nvme->n_dip, CE_WARN, 3178 "!nvme-config-list: invalid value for %s '%s'" 3179 " for model '%s', ignoring", name, val, model); 3180 } 3181 3182 static void 3183 nvme_config_list(nvme_t *nvme) 3184 { 3185 char **config_list; 3186 uint_t nelem; 3187 int rv, i; 3188 3189 /* 3190 * We're following the pattern of 'sd-config-list' here, but extend it. 3191 * Instead of two we have three separate strings for "model", "fwrev", 3192 * and "name-value-list". 3193 */ 3194 rv = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, nvme->n_dip, 3195 DDI_PROP_DONTPASS, "nvme-config-list", &config_list, &nelem); 3196 3197 if (rv != DDI_PROP_SUCCESS) { 3198 if (rv == DDI_PROP_CANNOT_DECODE) { 3199 dev_err(nvme->n_dip, CE_WARN, 3200 "!nvme-config-list: cannot be decoded"); 3201 } 3202 3203 return; 3204 } 3205 3206 if ((nelem % 3) != 0) { 3207 dev_err(nvme->n_dip, CE_WARN, "!nvme-config-list: must be " 3208 "triplets of <model>/<fwrev>/<name-value-list> strings "); 3209 goto out; 3210 } 3211 3212 for (i = 0; i < nelem; i += 3) { 3213 char *model = config_list[i]; 3214 char *fwrev = config_list[i + 1]; 3215 char *nvp, *save_nv; 3216 int id_model_len, id_fwrev_len; 3217 3218 id_model_len = nvme_strlen(nvme->n_idctl->id_model, 3219 sizeof (nvme->n_idctl->id_model)); 3220 3221 if (strlen(model) != id_model_len) 3222 continue; 3223 3224 if (strncmp(model, nvme->n_idctl->id_model, id_model_len) != 0) 3225 continue; 3226 3227 id_fwrev_len = nvme_strlen(nvme->n_idctl->id_fwrev, 3228 sizeof (nvme->n_idctl->id_fwrev)); 3229 3230 if (strlen(fwrev) != 0) { 3231 boolean_t match = B_FALSE; 3232 char *fwr, *last_fw; 3233 3234 for (fwr = strtok_r(fwrev, ",", &last_fw); 3235 fwr != NULL; 3236 fwr = strtok_r(NULL, ",", &last_fw)) { 3237 if (strlen(fwr) != id_fwrev_len) 3238 continue; 3239 3240 if (strncmp(fwr, nvme->n_idctl->id_fwrev, 3241 id_fwrev_len) == 0) 3242 match = B_TRUE; 3243 } 3244 3245 if (!match) 3246 continue; 3247 } 3248 3249 /* 3250 * We should now have a comma-separated list of name:value 3251 * pairs. 3252 */ 3253 for (nvp = strtok_r(config_list[i + 2], ",", &save_nv); 3254 nvp != NULL; nvp = strtok_r(NULL, ",", &save_nv)) { 3255 char *name = nvp; 3256 char *val = strchr(nvp, ':'); 3257 3258 if (val == NULL || name == val) { 3259 dev_err(nvme->n_dip, CE_WARN, 3260 "!nvme-config-list: <name-value-list> " 3261 "for model '%s' is malformed", model); 3262 goto out; 3263 } 3264 3265 /* 3266 * Null-terminate 'name', move 'val' past ':' sep. 3267 */ 3268 *val++ = '\0'; 3269 3270 /* 3271 * Process the name:val pairs that we know about. 3272 */ 3273 if (strcmp(name, "ignore-unknown-vendor-status") == 0) { 3274 nvme_config_boolean(nvme, model, name, val, 3275 &nvme->n_ignore_unknown_vendor_status); 3276 } else if (strcmp(name, "min-phys-block-size") == 0) { 3277 nvme_config_min_block_size(nvme, model, val); 3278 } else if (strcmp(name, "volatile-write-cache") == 0) { 3279 nvme_config_boolean(nvme, model, name, val, 3280 &nvme->n_write_cache_enabled); 3281 } else { 3282 /* 3283 * Unknown 'name'. 3284 */ 3285 dev_err(nvme->n_dip, CE_WARN, 3286 "!nvme-config-list: unknown config '%s' " 3287 "for model '%s', ignoring", name, model); 3288 } 3289 } 3290 } 3291 3292 out: 3293 ddi_prop_free(config_list); 3294 } 3295 3296 static void 3297 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) 3298 { 3299 /* 3300 * Section 7.7 of the spec describes how to get a unique ID for 3301 * the controller: the vendor ID, the model name and the serial 3302 * number shall be unique when combined. 3303 * 3304 * If a namespace has no EUI64 we use the above and add the hex 3305 * namespace ID to get a unique ID for the namespace. 3306 */ 3307 char model[sizeof (nvme->n_idctl->id_model) + 1]; 3308 char serial[sizeof (nvme->n_idctl->id_serial) + 1]; 3309 3310 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 3311 bcopy(nvme->n_idctl->id_serial, serial, 3312 sizeof (nvme->n_idctl->id_serial)); 3313 3314 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 3315 serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; 3316 3317 nvme_nsid2ns(nvme, nsid)->ns_devid = kmem_asprintf("%4X-%s-%s-%X", 3318 nvme->n_idctl->id_vid, model, serial, nsid); 3319 } 3320 3321 static nvme_identify_nsid_list_t * 3322 nvme_update_nsid_list(nvme_t *nvme, int cns) 3323 { 3324 nvme_identify_nsid_list_t *nslist; 3325 3326 /* 3327 * We currently don't handle cases where there are more than 3328 * 1024 active namespaces, requiring several IDENTIFY commands. 3329 */ 3330 if (nvme_identify_int(nvme, 0, cns, (void **)&nslist)) 3331 return (nslist); 3332 3333 return (NULL); 3334 } 3335 3336 nvme_namespace_t * 3337 nvme_nsid2ns(nvme_t *nvme, uint32_t nsid) 3338 { 3339 ASSERT3U(nsid, !=, 0); 3340 ASSERT3U(nsid, <=, nvme->n_namespace_count); 3341 return (&nvme->n_ns[nsid - 1]); 3342 } 3343 3344 static boolean_t 3345 nvme_allocated_ns(nvme_namespace_t *ns) 3346 { 3347 nvme_t *nvme = ns->ns_nvme; 3348 uint32_t i; 3349 3350 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3351 3352 /* 3353 * If supported, update the list of allocated namespace IDs. 3354 */ 3355 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2) && 3356 nvme->n_idctl->id_oacs.oa_nsmgmt != 0) { 3357 nvme_identify_nsid_list_t *nslist = nvme_update_nsid_list(nvme, 3358 NVME_IDENTIFY_NSID_ALLOC_LIST); 3359 boolean_t found = B_FALSE; 3360 3361 /* 3362 * When namespace management is supported, this really shouldn't 3363 * be NULL. Treat all namespaces as allocated if it is. 3364 */ 3365 if (nslist == NULL) 3366 return (B_TRUE); 3367 3368 for (i = 0; i < ARRAY_SIZE(nslist->nl_nsid); i++) { 3369 if (ns->ns_id == 0) 3370 break; 3371 3372 if (ns->ns_id == nslist->nl_nsid[i]) 3373 found = B_TRUE; 3374 } 3375 3376 kmem_free(nslist, NVME_IDENTIFY_BUFSIZE); 3377 return (found); 3378 } else { 3379 /* 3380 * If namespace management isn't supported, report all 3381 * namespaces as allocated. 3382 */ 3383 return (B_TRUE); 3384 } 3385 } 3386 3387 static boolean_t 3388 nvme_active_ns(nvme_namespace_t *ns) 3389 { 3390 nvme_t *nvme = ns->ns_nvme; 3391 uint64_t *ptr; 3392 uint32_t i; 3393 3394 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3395 3396 /* 3397 * If supported, update the list of active namespace IDs. 3398 */ 3399 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) { 3400 nvme_identify_nsid_list_t *nslist = nvme_update_nsid_list(nvme, 3401 NVME_IDENTIFY_NSID_LIST); 3402 boolean_t found = B_FALSE; 3403 3404 /* 3405 * When namespace management is supported, this really shouldn't 3406 * be NULL. Treat all namespaces as allocated if it is. 3407 */ 3408 if (nslist == NULL) 3409 return (B_TRUE); 3410 3411 for (i = 0; i < ARRAY_SIZE(nslist->nl_nsid); i++) { 3412 if (ns->ns_id == 0) 3413 break; 3414 3415 if (ns->ns_id == nslist->nl_nsid[i]) 3416 found = B_TRUE; 3417 } 3418 3419 kmem_free(nslist, NVME_IDENTIFY_BUFSIZE); 3420 return (found); 3421 } 3422 3423 /* 3424 * Workaround for revision 1.0: 3425 * Check whether the IDENTIFY NAMESPACE data is zero-filled. 3426 */ 3427 for (ptr = (uint64_t *)ns->ns_idns; 3428 ptr != (uint64_t *)(ns->ns_idns + 1); 3429 ptr++) { 3430 if (*ptr != 0) { 3431 return (B_TRUE); 3432 } 3433 } 3434 3435 return (B_FALSE); 3436 } 3437 3438 static int 3439 nvme_init_ns(nvme_t *nvme, uint32_t nsid) 3440 { 3441 nvme_namespace_t *ns = nvme_nsid2ns(nvme, nsid); 3442 nvme_identify_nsid_t *idns; 3443 boolean_t was_ignored; 3444 int last_rp; 3445 3446 ns->ns_nvme = nvme; 3447 3448 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3449 3450 /* 3451 * Because we might rescan a namespace and this will fail after boot 3452 * that'd leave us in a bad spot. We need to do something about this 3453 * longer term, but it's not clear how exactly we would recover right 3454 * now. 3455 */ 3456 if (!nvme_identify_int(nvme, nsid, NVME_IDENTIFY_NSID, 3457 (void **)&idns)) { 3458 dev_err(nvme->n_dip, CE_WARN, 3459 "!failed to identify namespace %d", nsid); 3460 return (DDI_FAILURE); 3461 } 3462 3463 if (ns->ns_idns != NULL) 3464 kmem_free(ns->ns_idns, sizeof (nvme_identify_nsid_t)); 3465 3466 ns->ns_idns = idns; 3467 ns->ns_id = nsid; 3468 3469 was_ignored = ns->ns_ignore; 3470 3471 ns->ns_allocated = nvme_allocated_ns(ns); 3472 ns->ns_active = nvme_active_ns(ns); 3473 3474 ns->ns_block_count = idns->id_nsize; 3475 ns->ns_block_size = 3476 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; 3477 ns->ns_best_block_size = ns->ns_block_size; 3478 3479 /* 3480 * Get the EUI64 if present. 3481 */ 3482 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) 3483 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64)); 3484 3485 /* 3486 * Get the NGUID if present. 3487 */ 3488 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) 3489 bcopy(idns->id_nguid, ns->ns_nguid, sizeof (ns->ns_nguid)); 3490 3491 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 3492 if (*(uint64_t *)ns->ns_eui64 == 0) 3493 nvme_prepare_devid(nvme, ns->ns_id); 3494 3495 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%u", ns->ns_id); 3496 3497 /* 3498 * Find the LBA format with no metadata and the best relative 3499 * performance. A value of 3 means "degraded", 0 is best. 3500 */ 3501 last_rp = 3; 3502 for (int j = 0; j <= idns->id_nlbaf; j++) { 3503 if (idns->id_lbaf[j].lbaf_lbads == 0) 3504 break; 3505 if (idns->id_lbaf[j].lbaf_ms != 0) 3506 continue; 3507 if (idns->id_lbaf[j].lbaf_rp >= last_rp) 3508 continue; 3509 last_rp = idns->id_lbaf[j].lbaf_rp; 3510 ns->ns_best_block_size = 3511 1 << idns->id_lbaf[j].lbaf_lbads; 3512 } 3513 3514 if (ns->ns_best_block_size < nvme->n_min_block_size) 3515 ns->ns_best_block_size = nvme->n_min_block_size; 3516 3517 was_ignored = ns->ns_ignore; 3518 3519 /* 3520 * We currently don't support namespaces that are inactive, or use 3521 * either: 3522 * - protection information 3523 * - illegal block size (< 512) 3524 */ 3525 if (!ns->ns_active) { 3526 ns->ns_ignore = B_TRUE; 3527 } else if (idns->id_dps.dp_pinfo) { 3528 dev_err(nvme->n_dip, CE_WARN, 3529 "!ignoring namespace %d, unsupported feature: " 3530 "pinfo = %d", nsid, idns->id_dps.dp_pinfo); 3531 ns->ns_ignore = B_TRUE; 3532 } else if (ns->ns_block_size < 512) { 3533 dev_err(nvme->n_dip, CE_WARN, 3534 "!ignoring namespace %d, unsupported block size %"PRIu64, 3535 nsid, (uint64_t)ns->ns_block_size); 3536 ns->ns_ignore = B_TRUE; 3537 } else { 3538 ns->ns_ignore = B_FALSE; 3539 } 3540 3541 /* 3542 * Keep a count of namespaces which are attachable. 3543 * See comments in nvme_bd_driveinfo() to understand its effect. 3544 */ 3545 if (was_ignored) { 3546 /* 3547 * Previously ignored, but now not. Count it. 3548 */ 3549 if (!ns->ns_ignore) 3550 nvme->n_namespaces_attachable++; 3551 } else { 3552 /* 3553 * Wasn't ignored previously, but now needs to be. 3554 * Discount it. 3555 */ 3556 if (ns->ns_ignore) 3557 nvme->n_namespaces_attachable--; 3558 } 3559 3560 return (DDI_SUCCESS); 3561 } 3562 3563 static boolean_t 3564 nvme_attach_ns(nvme_t *nvme, nvme_ioctl_common_t *com) 3565 { 3566 nvme_namespace_t *ns = nvme_nsid2ns(nvme, com->nioc_nsid); 3567 3568 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3569 3570 if (ns->ns_ignore) { 3571 return (nvme_ioctl_error(com, NVME_IOCTL_E_UNSUP_ATTACH_NS, 3572 0, 0)); 3573 } 3574 3575 if (ns->ns_bd_hdl == NULL) { 3576 bd_ops_t ops = nvme_bd_ops; 3577 3578 if (!nvme->n_idctl->id_oncs.on_dset_mgmt) 3579 ops.o_free_space = NULL; 3580 3581 ns->ns_bd_hdl = bd_alloc_handle(ns, &ops, &nvme->n_prp_dma_attr, 3582 KM_SLEEP); 3583 3584 if (ns->ns_bd_hdl == NULL) { 3585 dev_err(nvme->n_dip, CE_WARN, "!Failed to get blkdev " 3586 "handle for namespace id %u", com->nioc_nsid); 3587 return (nvme_ioctl_error(com, 3588 NVME_IOCTL_E_BLKDEV_ATTACH, 0, 0)); 3589 } 3590 } 3591 3592 if (bd_attach_handle(nvme->n_dip, ns->ns_bd_hdl) != DDI_SUCCESS) { 3593 return (nvme_ioctl_error(com, NVME_IOCTL_E_BLKDEV_ATTACH, 3594 0, 0)); 3595 } 3596 3597 ns->ns_attached = B_TRUE; 3598 3599 return (B_TRUE); 3600 } 3601 3602 static boolean_t 3603 nvme_detach_ns(nvme_t *nvme, nvme_ioctl_common_t *com) 3604 { 3605 nvme_namespace_t *ns = nvme_nsid2ns(nvme, com->nioc_nsid); 3606 3607 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3608 3609 if (ns->ns_ignore || !ns->ns_attached) 3610 return (B_TRUE); 3611 3612 ASSERT3P(ns->ns_bd_hdl, !=, NULL); 3613 if (bd_detach_handle(ns->ns_bd_hdl) != DDI_SUCCESS) { 3614 return (nvme_ioctl_error(com, NVME_IOCTL_E_BLKDEV_DETACH, 0, 3615 0)); 3616 } 3617 3618 ns->ns_attached = B_FALSE; 3619 return (B_TRUE); 3620 3621 } 3622 3623 /* 3624 * Rescan the namespace information associated with the namespaces indicated by 3625 * ioc. They should not be attached to blkdev right now. 3626 */ 3627 static void 3628 nvme_rescan_ns(nvme_t *nvme, uint32_t nsid) 3629 { 3630 ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex)); 3631 ASSERT3U(nsid, !=, 0); 3632 3633 if (nsid != NVME_NSID_BCAST) { 3634 nvme_namespace_t *ns = nvme_nsid2ns(nvme, nsid); 3635 3636 ASSERT3U(ns->ns_attached, ==, B_FALSE); 3637 (void) nvme_init_ns(nvme, nsid); 3638 return; 3639 } 3640 3641 for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) { 3642 nvme_namespace_t *ns = nvme_nsid2ns(nvme, i); 3643 3644 ASSERT3U(ns->ns_attached, ==, B_FALSE); 3645 (void) nvme_init_ns(nvme, i); 3646 } 3647 } 3648 3649 typedef struct nvme_quirk_table { 3650 uint16_t nq_vendor_id; 3651 uint16_t nq_device_id; 3652 nvme_quirk_t nq_quirks; 3653 } nvme_quirk_table_t; 3654 3655 static const nvme_quirk_table_t nvme_quirks[] = { 3656 { 0x1987, 0x5018, NVME_QUIRK_START_CID }, /* Phison E18 */ 3657 }; 3658 3659 static void 3660 nvme_detect_quirks(nvme_t *nvme) 3661 { 3662 for (uint_t i = 0; i < ARRAY_SIZE(nvme_quirks); i++) { 3663 const nvme_quirk_table_t *nqt = &nvme_quirks[i]; 3664 3665 if (nqt->nq_vendor_id == nvme->n_vendor_id && 3666 nqt->nq_device_id == nvme->n_device_id) { 3667 nvme->n_quirks = nqt->nq_quirks; 3668 return; 3669 } 3670 } 3671 } 3672 3673 static int 3674 nvme_init(nvme_t *nvme) 3675 { 3676 nvme_reg_cc_t cc = { 0 }; 3677 nvme_reg_aqa_t aqa = { 0 }; 3678 nvme_reg_asq_t asq = { 0 }; 3679 nvme_reg_acq_t acq = { 0 }; 3680 nvme_reg_cap_t cap; 3681 nvme_reg_vs_t vs; 3682 nvme_reg_csts_t csts; 3683 int i = 0; 3684 uint16_t nqueues; 3685 uint_t tq_threads; 3686 char model[sizeof (nvme->n_idctl->id_model) + 1]; 3687 char *vendor, *product; 3688 uint32_t nsid; 3689 3690 /* Check controller version */ 3691 vs.r = nvme_get32(nvme, NVME_REG_VS); 3692 nvme->n_version.v_major = vs.b.vs_mjr; 3693 nvme->n_version.v_minor = vs.b.vs_mnr; 3694 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", 3695 nvme->n_version.v_major, nvme->n_version.v_minor); 3696 3697 if (nvme->n_version.v_major > nvme_version_major) { 3698 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x", 3699 nvme_version_major); 3700 if (nvme->n_strict_version) 3701 goto fail; 3702 } 3703 3704 /* retrieve controller configuration */ 3705 cap.r = nvme_get64(nvme, NVME_REG_CAP); 3706 3707 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { 3708 dev_err(nvme->n_dip, CE_WARN, 3709 "!NVM command set not supported by hardware"); 3710 goto fail; 3711 } 3712 3713 nvme->n_nssr_supported = cap.b.cap_nssrs; 3714 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; 3715 nvme->n_timeout = cap.b.cap_to; 3716 nvme->n_arbitration_mechanisms = cap.b.cap_ams; 3717 nvme->n_cont_queues_reqd = cap.b.cap_cqr; 3718 nvme->n_max_queue_entries = cap.b.cap_mqes + 1; 3719 3720 /* 3721 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify 3722 * the base page size of 4k (1<<12), so add 12 here to get the real 3723 * page size value. 3724 */ 3725 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), 3726 cap.b.cap_mpsmax + 12); 3727 nvme->n_pagesize = 1UL << (nvme->n_pageshift); 3728 3729 /* 3730 * Set up Queue DMA to transfer at least 1 page-aligned page at a time. 3731 */ 3732 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; 3733 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 3734 3735 /* 3736 * Set up PRP DMA to transfer 1 page-aligned page at a time. 3737 * Maxxfer may be increased after we identified the controller limits. 3738 */ 3739 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; 3740 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 3741 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; 3742 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; 3743 3744 /* 3745 * Reset controller if it's still in ready state. 3746 */ 3747 if (nvme_reset(nvme, B_FALSE) == B_FALSE) { 3748 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); 3749 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 3750 nvme->n_dead = B_TRUE; 3751 goto fail; 3752 } 3753 3754 /* 3755 * Create the cq array with one completion queue to be assigned 3756 * to the admin queue pair and a limited number of taskqs (4). 3757 */ 3758 if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) != 3759 DDI_SUCCESS) { 3760 dev_err(nvme->n_dip, CE_WARN, 3761 "!failed to pre-allocate admin completion queue"); 3762 goto fail; 3763 } 3764 /* 3765 * Create the admin queue pair. 3766 */ 3767 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) 3768 != DDI_SUCCESS) { 3769 dev_err(nvme->n_dip, CE_WARN, 3770 "!unable to allocate admin qpair"); 3771 goto fail; 3772 } 3773 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); 3774 nvme->n_ioq[0] = nvme->n_adminq; 3775 3776 if (nvme->n_quirks & NVME_QUIRK_START_CID) 3777 nvme->n_adminq->nq_next_cmd++; 3778 3779 nvme->n_progress |= NVME_ADMIN_QUEUE; 3780 3781 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3782 "admin-queue-len", nvme->n_admin_queue_len); 3783 3784 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; 3785 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; 3786 acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress; 3787 3788 ASSERT((asq & (nvme->n_pagesize - 1)) == 0); 3789 ASSERT((acq & (nvme->n_pagesize - 1)) == 0); 3790 3791 nvme_put32(nvme, NVME_REG_AQA, aqa.r); 3792 nvme_put64(nvme, NVME_REG_ASQ, asq); 3793 nvme_put64(nvme, NVME_REG_ACQ, acq); 3794 3795 cc.b.cc_ams = 0; /* use Round-Robin arbitration */ 3796 cc.b.cc_css = 0; /* use NVM command set */ 3797 cc.b.cc_mps = nvme->n_pageshift - 12; 3798 cc.b.cc_shn = 0; /* no shutdown in progress */ 3799 cc.b.cc_en = 1; /* enable controller */ 3800 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ 3801 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ 3802 3803 nvme_put32(nvme, NVME_REG_CC, cc.r); 3804 3805 /* 3806 * Wait for the controller to become ready. 3807 */ 3808 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3809 if (csts.b.csts_rdy == 0) { 3810 for (i = 0; i != nvme->n_timeout * 10; i++) { 3811 delay(drv_usectohz(50000)); 3812 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 3813 3814 if (csts.b.csts_cfs == 1) { 3815 dev_err(nvme->n_dip, CE_WARN, 3816 "!controller fatal status at init"); 3817 ddi_fm_service_impact(nvme->n_dip, 3818 DDI_SERVICE_LOST); 3819 nvme->n_dead = B_TRUE; 3820 goto fail; 3821 } 3822 3823 if (csts.b.csts_rdy == 1) 3824 break; 3825 } 3826 } 3827 3828 if (csts.b.csts_rdy == 0) { 3829 dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); 3830 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 3831 nvme->n_dead = B_TRUE; 3832 goto fail; 3833 } 3834 3835 /* 3836 * Assume an abort command limit of 1. We'll destroy and re-init 3837 * that later when we know the true abort command limit. 3838 */ 3839 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); 3840 3841 /* 3842 * Set up initial interrupt for admin queue. 3843 */ 3844 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) 3845 != DDI_SUCCESS) && 3846 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) 3847 != DDI_SUCCESS) && 3848 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) 3849 != DDI_SUCCESS)) { 3850 dev_err(nvme->n_dip, CE_WARN, 3851 "!failed to set up initial interrupt"); 3852 goto fail; 3853 } 3854 3855 /* 3856 * Post an asynchronous event command to catch errors. 3857 * We assume the asynchronous events are supported as required by 3858 * specification (Figure 40 in section 5 of NVMe 1.2). 3859 * However, since at least qemu does not follow the specification, 3860 * we need a mechanism to protect ourselves. 3861 */ 3862 nvme->n_async_event_supported = B_TRUE; 3863 nvme_async_event(nvme); 3864 3865 /* 3866 * Identify Controller 3867 */ 3868 if (!nvme_identify_int(nvme, 0, NVME_IDENTIFY_CTRL, 3869 (void **)&nvme->n_idctl)) { 3870 dev_err(nvme->n_dip, CE_WARN, "!failed to identify controller"); 3871 goto fail; 3872 } 3873 3874 /* 3875 * Get the common namespace information if available. If not, we use the 3876 * information for nsid 1. 3877 */ 3878 if (nvme_ctrl_atleast(nvme, &nvme_vers_1v2) && 3879 nvme->n_idctl->id_oacs.oa_nsmgmt != 0) { 3880 nsid = NVME_NSID_BCAST; 3881 } else { 3882 nsid = 1; 3883 } 3884 3885 if (!nvme_identify_int(nvme, nsid, NVME_IDENTIFY_NSID, 3886 (void **)&nvme->n_idcomns)) { 3887 dev_err(nvme->n_dip, CE_WARN, "!failed to identify common " 3888 "namespace information"); 3889 goto fail; 3890 } 3891 /* 3892 * Process nvme-config-list (if present) in nvme.conf. 3893 */ 3894 nvme_config_list(nvme); 3895 3896 /* 3897 * Get Vendor & Product ID 3898 */ 3899 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 3900 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 3901 sata_split_model(model, &vendor, &product); 3902 3903 if (vendor == NULL) 3904 nvme->n_vendor = strdup("NVMe"); 3905 else 3906 nvme->n_vendor = strdup(vendor); 3907 3908 nvme->n_product = strdup(product); 3909 3910 /* 3911 * Get controller limits. 3912 */ 3913 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, 3914 MIN(nvme->n_admin_queue_len / 10, 3915 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); 3916 3917 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3918 "async-event-limit", nvme->n_async_event_limit); 3919 3920 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; 3921 3922 /* 3923 * Reinitialize the semaphore with the true abort command limit 3924 * supported by the hardware. It's not necessary to disable interrupts 3925 * as only command aborts use the semaphore, and no commands are 3926 * executed or aborted while we're here. 3927 */ 3928 sema_destroy(&nvme->n_abort_sema); 3929 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, 3930 SEMA_DRIVER, NULL); 3931 3932 nvme->n_progress |= NVME_CTRL_LIMITS; 3933 3934 if (nvme->n_idctl->id_mdts == 0) 3935 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; 3936 else 3937 nvme->n_max_data_transfer_size = 3938 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); 3939 3940 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; 3941 3942 /* 3943 * Limit n_max_data_transfer_size to what we can handle in one PRP. 3944 * Chained PRPs are currently unsupported. 3945 * 3946 * This is a no-op on hardware which doesn't support a transfer size 3947 * big enough to require chained PRPs. 3948 */ 3949 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, 3950 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); 3951 3952 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; 3953 3954 /* 3955 * Make sure the minimum/maximum queue entry sizes are not 3956 * larger/smaller than the default. 3957 */ 3958 3959 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || 3960 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || 3961 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || 3962 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) 3963 goto fail; 3964 3965 /* 3966 * Check for the presence of a Volatile Write Cache. If present, 3967 * enable or disable based on the value of the property 3968 * volatile-write-cache-enable (default is enabled). 3969 */ 3970 nvme->n_write_cache_present = 3971 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE; 3972 3973 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3974 "volatile-write-cache-present", 3975 nvme->n_write_cache_present ? 1 : 0); 3976 3977 if (!nvme->n_write_cache_present) { 3978 nvme->n_write_cache_enabled = B_FALSE; 3979 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled) 3980 != 0) { 3981 dev_err(nvme->n_dip, CE_WARN, 3982 "!failed to %sable volatile write cache", 3983 nvme->n_write_cache_enabled ? "en" : "dis"); 3984 /* 3985 * Assume the cache is (still) enabled. 3986 */ 3987 nvme->n_write_cache_enabled = B_TRUE; 3988 } 3989 3990 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 3991 "volatile-write-cache-enable", 3992 nvme->n_write_cache_enabled ? 1 : 0); 3993 3994 /* 3995 * Get number of supported namespaces and allocate namespace array. 3996 */ 3997 nvme->n_namespace_count = nvme->n_idctl->id_nn; 3998 3999 if (nvme->n_namespace_count == 0) { 4000 dev_err(nvme->n_dip, CE_WARN, 4001 "!controllers without namespaces are not supported"); 4002 goto fail; 4003 } 4004 4005 if (nvme->n_namespace_count > NVME_MINOR_MAX) { 4006 dev_err(nvme->n_dip, CE_WARN, 4007 "!too many namespaces: %d, limiting to %d\n", 4008 nvme->n_namespace_count, NVME_MINOR_MAX); 4009 nvme->n_namespace_count = NVME_MINOR_MAX; 4010 } 4011 4012 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * 4013 nvme->n_namespace_count, KM_SLEEP); 4014 4015 /* 4016 * Try to set up MSI/MSI-X interrupts. 4017 */ 4018 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) 4019 != 0) { 4020 nvme_release_interrupts(nvme); 4021 4022 nqueues = MIN(UINT16_MAX, ncpus); 4023 4024 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 4025 nqueues) != DDI_SUCCESS) && 4026 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 4027 nqueues) != DDI_SUCCESS)) { 4028 dev_err(nvme->n_dip, CE_WARN, 4029 "!failed to set up MSI/MSI-X interrupts"); 4030 goto fail; 4031 } 4032 } 4033 4034 /* 4035 * Create I/O queue pairs. 4036 */ 4037 4038 if (nvme_set_nqueues(nvme) != 0) { 4039 dev_err(nvme->n_dip, CE_WARN, 4040 "!failed to set number of I/O queues to %d", 4041 nvme->n_intr_cnt); 4042 goto fail; 4043 } 4044 4045 /* 4046 * Reallocate I/O queue array 4047 */ 4048 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); 4049 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * 4050 (nvme->n_submission_queues + 1), KM_SLEEP); 4051 nvme->n_ioq[0] = nvme->n_adminq; 4052 4053 /* 4054 * There should always be at least as many submission queues 4055 * as completion queues. 4056 */ 4057 ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues); 4058 4059 nvme->n_ioq_count = nvme->n_submission_queues; 4060 4061 nvme->n_io_squeue_len = 4062 MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries); 4063 4064 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len", 4065 nvme->n_io_squeue_len); 4066 4067 /* 4068 * Pre-allocate completion queues. 4069 * When there are the same number of submission and completion 4070 * queues there is no value in having a larger completion 4071 * queue length. 4072 */ 4073 if (nvme->n_submission_queues == nvme->n_completion_queues) 4074 nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len, 4075 nvme->n_io_squeue_len); 4076 4077 nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len, 4078 nvme->n_max_queue_entries); 4079 4080 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len", 4081 nvme->n_io_cqueue_len); 4082 4083 /* 4084 * Assign the equal quantity of taskq threads to each completion 4085 * queue, capping the total number of threads to the number 4086 * of CPUs. 4087 */ 4088 tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues; 4089 4090 /* 4091 * In case the calculation above is zero, we need at least one 4092 * thread per completion queue. 4093 */ 4094 tq_threads = MAX(1, tq_threads); 4095 4096 if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1, 4097 nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) { 4098 dev_err(nvme->n_dip, CE_WARN, 4099 "!failed to pre-allocate completion queues"); 4100 goto fail; 4101 } 4102 4103 /* 4104 * If we use less completion queues than interrupt vectors return 4105 * some of the interrupt vectors back to the system. 4106 */ 4107 if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) { 4108 nvme_release_interrupts(nvme); 4109 4110 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, 4111 nvme->n_completion_queues + 1) != DDI_SUCCESS) { 4112 dev_err(nvme->n_dip, CE_WARN, 4113 "!failed to reduce number of interrupts"); 4114 goto fail; 4115 } 4116 } 4117 4118 /* 4119 * Alloc & register I/O queue pairs 4120 */ 4121 4122 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 4123 if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len, 4124 &nvme->n_ioq[i], i) != DDI_SUCCESS) { 4125 dev_err(nvme->n_dip, CE_WARN, 4126 "!unable to allocate I/O qpair %d", i); 4127 goto fail; 4128 } 4129 4130 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) { 4131 dev_err(nvme->n_dip, CE_WARN, 4132 "!unable to create I/O qpair %d", i); 4133 goto fail; 4134 } 4135 } 4136 4137 /* 4138 * Post more asynchronous events commands to reduce event reporting 4139 * latency as suggested by the spec. 4140 */ 4141 if (nvme->n_async_event_supported) { 4142 for (i = 1; i != nvme->n_async_event_limit; i++) 4143 nvme_async_event(nvme); 4144 } 4145 4146 return (DDI_SUCCESS); 4147 4148 fail: 4149 (void) nvme_reset(nvme, B_FALSE); 4150 return (DDI_FAILURE); 4151 } 4152 4153 static uint_t 4154 nvme_intr(caddr_t arg1, caddr_t arg2) 4155 { 4156 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 4157 nvme_t *nvme = (nvme_t *)arg1; 4158 int inum = (int)(uintptr_t)arg2; 4159 int ccnt = 0; 4160 int qnum; 4161 4162 if (inum >= nvme->n_intr_cnt) 4163 return (DDI_INTR_UNCLAIMED); 4164 4165 if (nvme->n_dead) 4166 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ? 4167 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED); 4168 4169 /* 4170 * The interrupt vector a queue uses is calculated as queue_idx % 4171 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array 4172 * in steps of n_intr_cnt to process all queues using this vector. 4173 */ 4174 for (qnum = inum; 4175 qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL; 4176 qnum += nvme->n_intr_cnt) { 4177 ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]); 4178 } 4179 4180 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 4181 } 4182 4183 static void 4184 nvme_release_interrupts(nvme_t *nvme) 4185 { 4186 int i; 4187 4188 for (i = 0; i < nvme->n_intr_cnt; i++) { 4189 if (nvme->n_inth[i] == NULL) 4190 break; 4191 4192 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 4193 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); 4194 else 4195 (void) ddi_intr_disable(nvme->n_inth[i]); 4196 4197 (void) ddi_intr_remove_handler(nvme->n_inth[i]); 4198 (void) ddi_intr_free(nvme->n_inth[i]); 4199 } 4200 4201 kmem_free(nvme->n_inth, nvme->n_inth_sz); 4202 nvme->n_inth = NULL; 4203 nvme->n_inth_sz = 0; 4204 4205 nvme->n_progress &= ~NVME_INTERRUPTS; 4206 } 4207 4208 static int 4209 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) 4210 { 4211 int nintrs, navail, count; 4212 int ret; 4213 int i; 4214 4215 if (nvme->n_intr_types == 0) { 4216 ret = ddi_intr_get_supported_types(nvme->n_dip, 4217 &nvme->n_intr_types); 4218 if (ret != DDI_SUCCESS) { 4219 dev_err(nvme->n_dip, CE_WARN, 4220 "!%s: ddi_intr_get_supported types failed", 4221 __func__); 4222 return (ret); 4223 } 4224 #ifdef __x86 4225 if (get_hwenv() == HW_VMWARE) 4226 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX; 4227 #endif 4228 } 4229 4230 if ((nvme->n_intr_types & intr_type) == 0) 4231 return (DDI_FAILURE); 4232 4233 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); 4234 if (ret != DDI_SUCCESS) { 4235 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", 4236 __func__); 4237 return (ret); 4238 } 4239 4240 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); 4241 if (ret != DDI_SUCCESS) { 4242 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", 4243 __func__); 4244 return (ret); 4245 } 4246 4247 /* We want at most one interrupt per queue pair. */ 4248 if (navail > nqpairs) 4249 navail = nqpairs; 4250 4251 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; 4252 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); 4253 4254 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, 4255 &count, 0); 4256 if (ret != DDI_SUCCESS) { 4257 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", 4258 __func__); 4259 goto fail; 4260 } 4261 4262 nvme->n_intr_cnt = count; 4263 4264 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); 4265 if (ret != DDI_SUCCESS) { 4266 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", 4267 __func__); 4268 goto fail; 4269 } 4270 4271 for (i = 0; i < count; i++) { 4272 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, 4273 (void *)nvme, (void *)(uintptr_t)i); 4274 if (ret != DDI_SUCCESS) { 4275 dev_err(nvme->n_dip, CE_WARN, 4276 "!%s: ddi_intr_add_handler failed", __func__); 4277 goto fail; 4278 } 4279 } 4280 4281 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); 4282 4283 for (i = 0; i < count; i++) { 4284 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 4285 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1); 4286 else 4287 ret = ddi_intr_enable(nvme->n_inth[i]); 4288 4289 if (ret != DDI_SUCCESS) { 4290 dev_err(nvme->n_dip, CE_WARN, 4291 "!%s: enabling interrupt %d failed", __func__, i); 4292 goto fail; 4293 } 4294 } 4295 4296 nvme->n_intr_type = intr_type; 4297 4298 nvme->n_progress |= NVME_INTERRUPTS; 4299 4300 return (DDI_SUCCESS); 4301 4302 fail: 4303 nvme_release_interrupts(nvme); 4304 4305 return (ret); 4306 } 4307 4308 static int 4309 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) 4310 { 4311 _NOTE(ARGUNUSED(arg)); 4312 4313 pci_ereport_post(dip, fm_error, NULL); 4314 return (fm_error->fme_status); 4315 } 4316 4317 static void 4318 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a, 4319 void *b) 4320 { 4321 nvme_t *nvme = a; 4322 4323 nvme_ctrl_mark_dead(nvme, B_TRUE); 4324 4325 /* 4326 * Fail all outstanding commands, including those in the admin queue 4327 * (queue 0). 4328 */ 4329 for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) { 4330 nvme_qpair_t *qp = nvme->n_ioq[i]; 4331 4332 mutex_enter(&qp->nq_mutex); 4333 for (size_t j = 0; j < qp->nq_nentry; j++) { 4334 nvme_cmd_t *cmd = qp->nq_cmd[j]; 4335 nvme_cmd_t *u_cmd; 4336 4337 if (cmd == NULL) { 4338 continue; 4339 } 4340 4341 /* 4342 * Since we have the queue lock held the entire time we 4343 * iterate over it, it's not possible for the queue to 4344 * change underneath us. Thus, we don't need to check 4345 * that the return value of nvme_unqueue_cmd matches the 4346 * requested cmd to unqueue. 4347 */ 4348 u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); 4349 taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, 4350 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); 4351 4352 ASSERT3P(u_cmd, ==, cmd); 4353 } 4354 mutex_exit(&qp->nq_mutex); 4355 } 4356 } 4357 4358 /* 4359 * Open minor management 4360 */ 4361 static int 4362 nvme_minor_comparator(const void *l, const void *r) 4363 { 4364 const nvme_minor_t *lm = l; 4365 const nvme_minor_t *rm = r; 4366 4367 if (lm->nm_minor > rm->nm_minor) { 4368 return (1); 4369 } else if (lm->nm_minor < rm->nm_minor) { 4370 return (-1); 4371 } else { 4372 return (0); 4373 } 4374 } 4375 4376 static void 4377 nvme_minor_free(nvme_minor_t *minor) 4378 { 4379 if (minor->nm_minor > 0) { 4380 ASSERT3S(minor->nm_minor, >=, NVME_OPEN_MINOR_MIN); 4381 id_free(nvme_open_minors, minor->nm_minor); 4382 minor->nm_minor = 0; 4383 } 4384 VERIFY0(list_link_active(&minor->nm_ctrl_lock.nli_node)); 4385 VERIFY0(list_link_active(&minor->nm_ns_lock.nli_node)); 4386 cv_destroy(&minor->nm_cv); 4387 kmem_free(minor, sizeof (nvme_minor_t)); 4388 } 4389 4390 static nvme_minor_t * 4391 nvme_minor_find_by_dev(dev_t dev) 4392 { 4393 id_t id = (id_t)getminor(dev); 4394 nvme_minor_t search = { .nm_minor = id }; 4395 nvme_minor_t *ret; 4396 4397 mutex_enter(&nvme_open_minors_mutex); 4398 ret = avl_find(&nvme_open_minors_avl, &search, NULL); 4399 mutex_exit(&nvme_open_minors_mutex); 4400 4401 return (ret); 4402 } 4403 4404 static int 4405 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 4406 { 4407 nvme_t *nvme; 4408 int instance; 4409 int nregs; 4410 off_t regsize; 4411 char name[32]; 4412 boolean_t attached_ns; 4413 4414 if (cmd != DDI_ATTACH) 4415 return (DDI_FAILURE); 4416 4417 instance = ddi_get_instance(dip); 4418 4419 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) 4420 return (DDI_FAILURE); 4421 4422 nvme = ddi_get_soft_state(nvme_state, instance); 4423 ddi_set_driver_private(dip, nvme); 4424 nvme->n_dip = dip; 4425 4426 /* 4427 * Map PCI config space 4428 */ 4429 if (pci_config_setup(dip, &nvme->n_pcicfg_handle) != DDI_SUCCESS) { 4430 dev_err(dip, CE_WARN, "!failed to map PCI config space"); 4431 goto fail; 4432 } 4433 nvme->n_progress |= NVME_PCI_CONFIG; 4434 4435 /* 4436 * Get the various PCI IDs from config space 4437 */ 4438 nvme->n_vendor_id = 4439 pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_VENID); 4440 nvme->n_device_id = 4441 pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_DEVID); 4442 nvme->n_revision_id = 4443 pci_config_get8(nvme->n_pcicfg_handle, PCI_CONF_REVID); 4444 nvme->n_subsystem_device_id = 4445 pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_SUBSYSID); 4446 nvme->n_subsystem_vendor_id = 4447 pci_config_get16(nvme->n_pcicfg_handle, PCI_CONF_SUBVENID); 4448 4449 nvme_detect_quirks(nvme); 4450 4451 /* 4452 * Set up event handlers for hot removal. While npe(4D) supports the hot 4453 * removal event being injected for devices, the same is not true of all 4454 * of our possible parents (i.e. pci(4D) as of this writing). The most 4455 * common case this shows up is in some virtualization environments. We 4456 * should treat this as non-fatal so that way devices work but leave 4457 * this set up in such a way that if a nexus does grow support for this 4458 * we're good to go. 4459 */ 4460 if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT, 4461 &nvme->n_rm_cookie) == DDI_SUCCESS) { 4462 if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie, 4463 nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) != 4464 DDI_SUCCESS) { 4465 goto fail; 4466 } 4467 } else { 4468 nvme->n_ev_rm_cb_id = NULL; 4469 } 4470 4471 mutex_init(&nvme->n_minor_mutex, NULL, MUTEX_DRIVER, NULL); 4472 nvme->n_progress |= NVME_MUTEX_INIT; 4473 4474 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4475 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; 4476 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, 4477 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? 4478 B_TRUE : B_FALSE; 4479 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4480 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); 4481 nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4482 DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN); 4483 /* 4484 * Double up the default for completion queues in case of 4485 * queue sharing. 4486 */ 4487 nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4488 DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN); 4489 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4490 DDI_PROP_DONTPASS, "async-event-limit", 4491 NVME_DEFAULT_ASYNC_EVENT_LIMIT); 4492 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4493 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ? 4494 B_TRUE : B_FALSE; 4495 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4496 DDI_PROP_DONTPASS, "min-phys-block-size", 4497 NVME_DEFAULT_MIN_BLOCK_SIZE); 4498 nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4499 DDI_PROP_DONTPASS, "max-submission-queues", -1); 4500 nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 4501 DDI_PROP_DONTPASS, "max-completion-queues", -1); 4502 4503 if (!ISP2(nvme->n_min_block_size) || 4504 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) { 4505 dev_err(dip, CE_WARN, "!min-phys-block-size %s, " 4506 "using default %d", ISP2(nvme->n_min_block_size) ? 4507 "too low" : "not a power of 2", 4508 NVME_DEFAULT_MIN_BLOCK_SIZE); 4509 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; 4510 } 4511 4512 if (nvme->n_submission_queues != -1 && 4513 (nvme->n_submission_queues < 1 || 4514 nvme->n_submission_queues > UINT16_MAX)) { 4515 dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not " 4516 "valid. Must be [1..%d]", nvme->n_submission_queues, 4517 UINT16_MAX); 4518 nvme->n_submission_queues = -1; 4519 } 4520 4521 if (nvme->n_completion_queues != -1 && 4522 (nvme->n_completion_queues < 1 || 4523 nvme->n_completion_queues > UINT16_MAX)) { 4524 dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not " 4525 "valid. Must be [1..%d]", nvme->n_completion_queues, 4526 UINT16_MAX); 4527 nvme->n_completion_queues = -1; 4528 } 4529 4530 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) 4531 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; 4532 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) 4533 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; 4534 4535 if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN) 4536 nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN; 4537 if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN) 4538 nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN; 4539 4540 if (nvme->n_async_event_limit < 1) 4541 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; 4542 4543 nvme->n_reg_acc_attr = nvme_reg_acc_attr; 4544 nvme->n_queue_dma_attr = nvme_queue_dma_attr; 4545 nvme->n_prp_dma_attr = nvme_prp_dma_attr; 4546 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; 4547 4548 /* 4549 * Set up FMA support. 4550 */ 4551 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, 4552 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 4553 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 4554 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 4555 4556 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); 4557 4558 if (nvme->n_fm_cap) { 4559 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) 4560 nvme->n_reg_acc_attr.devacc_attr_access = 4561 DDI_FLAGERR_ACC; 4562 4563 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { 4564 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 4565 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 4566 } 4567 4568 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 4569 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4570 pci_ereport_setup(dip); 4571 4572 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4573 ddi_fm_handler_register(dip, nvme_fm_errcb, 4574 (void *)nvme); 4575 } 4576 4577 nvme->n_progress |= NVME_FMA_INIT; 4578 4579 /* 4580 * The spec defines several register sets. Only the controller 4581 * registers (set 1) are currently used. 4582 */ 4583 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || 4584 nregs < 2 || 4585 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) 4586 goto fail; 4587 4588 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, 4589 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { 4590 dev_err(dip, CE_WARN, "!failed to map regset 1"); 4591 goto fail; 4592 } 4593 4594 nvme->n_progress |= NVME_REGS_MAPPED; 4595 4596 /* 4597 * Create PRP DMA cache 4598 */ 4599 (void) snprintf(name, sizeof (name), "%s%d_prp_cache", 4600 ddi_driver_name(dip), ddi_get_instance(dip)); 4601 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t), 4602 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor, 4603 NULL, (void *)nvme, NULL, 0); 4604 4605 if (nvme_init(nvme) != DDI_SUCCESS) 4606 goto fail; 4607 4608 /* 4609 * Initialize the driver with the UFM subsystem 4610 */ 4611 if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops, 4612 &nvme->n_ufmh, nvme) != 0) { 4613 dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem"); 4614 goto fail; 4615 } 4616 mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL); 4617 ddi_ufm_update(nvme->n_ufmh); 4618 nvme->n_progress |= NVME_UFM_INIT; 4619 4620 mutex_init(&nvme->n_mgmt_mutex, NULL, MUTEX_DRIVER, NULL); 4621 nvme_lock_init(&nvme->n_lock); 4622 nvme->n_progress |= NVME_MGMT_INIT; 4623 nvme->n_dead_status = NVME_IOCTL_E_CTRL_DEAD; 4624 4625 4626 /* 4627 * Identify namespaces. 4628 */ 4629 mutex_enter(&nvme->n_mgmt_mutex); 4630 4631 for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) { 4632 nvme_namespace_t *ns = nvme_nsid2ns(nvme, i); 4633 4634 nvme_lock_init(&ns->ns_lock); 4635 ns->ns_progress |= NVME_NS_LOCK; 4636 4637 /* 4638 * Namespaces start out ignored. When nvme_init_ns() checks 4639 * their properties and finds they can be used, it will set 4640 * ns_ignore to B_FALSE. It will also use this state change 4641 * to keep an accurate count of attachable namespaces. 4642 */ 4643 ns->ns_ignore = B_TRUE; 4644 if (nvme_init_ns(nvme, i) != 0) { 4645 mutex_exit(&nvme->n_mgmt_mutex); 4646 goto fail; 4647 } 4648 4649 if (ddi_create_minor_node(nvme->n_dip, ns->ns_name, S_IFCHR, 4650 NVME_MINOR(ddi_get_instance(nvme->n_dip), i), 4651 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) { 4652 mutex_exit(&nvme->n_mgmt_mutex); 4653 dev_err(dip, CE_WARN, 4654 "!failed to create minor node for namespace %d", i); 4655 goto fail; 4656 } 4657 } 4658 4659 if (ddi_create_minor_node(dip, "devctl", S_IFCHR, 4660 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0) 4661 != DDI_SUCCESS) { 4662 mutex_exit(&nvme->n_mgmt_mutex); 4663 dev_err(dip, CE_WARN, "nvme_attach: " 4664 "cannot create devctl minor node"); 4665 goto fail; 4666 } 4667 4668 attached_ns = B_FALSE; 4669 for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) { 4670 nvme_ioctl_common_t com = { .nioc_nsid = i }; 4671 4672 if (nvme_attach_ns(nvme, &com)) { 4673 attached_ns = B_TRUE; 4674 } else if (com.nioc_drv_err != NVME_IOCTL_E_UNSUP_ATTACH_NS) { 4675 dev_err(nvme->n_dip, CE_WARN, "!failed to attach " 4676 "namespace %d due to blkdev error", i); 4677 /* 4678 * Once we have successfully attached a namespace we 4679 * can no longer fail the driver attach as there is now 4680 * a blkdev child node linked to this device, and 4681 * our node is not yet in the attached state. 4682 */ 4683 if (!attached_ns) { 4684 mutex_exit(&nvme->n_mgmt_mutex); 4685 goto fail; 4686 } 4687 } 4688 } 4689 4690 mutex_exit(&nvme->n_mgmt_mutex); 4691 4692 return (DDI_SUCCESS); 4693 4694 fail: 4695 /* attach successful anyway so that FMA can retire the device */ 4696 if (nvme->n_dead) 4697 return (DDI_SUCCESS); 4698 4699 (void) nvme_detach(dip, DDI_DETACH); 4700 4701 return (DDI_FAILURE); 4702 } 4703 4704 static int 4705 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 4706 { 4707 int instance; 4708 nvme_t *nvme; 4709 4710 if (cmd != DDI_DETACH) 4711 return (DDI_FAILURE); 4712 4713 instance = ddi_get_instance(dip); 4714 4715 nvme = ddi_get_soft_state(nvme_state, instance); 4716 4717 if (nvme == NULL) 4718 return (DDI_FAILURE); 4719 4720 /* 4721 * Remove all minor nodes from the device regardless of the source in 4722 * one swoop. 4723 */ 4724 ddi_remove_minor_node(dip, NULL); 4725 4726 /* 4727 * We need to remove the event handler as one of the first things that 4728 * we do. If we proceed with other teardown without removing the event 4729 * handler, we could end up in a very unfortunate race with ourselves. 4730 * The DDI does not serialize these with detach (just like timeout(9F) 4731 * and others). 4732 */ 4733 if (nvme->n_ev_rm_cb_id != NULL) { 4734 (void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id); 4735 } 4736 nvme->n_ev_rm_cb_id = NULL; 4737 4738 /* 4739 * If the controller was marked dead, there is a slight chance that we 4740 * are asynchronusly processing the removal taskq. Because we have 4741 * removed the callback handler above and all minor nodes and commands 4742 * are closed, there is no other way to get in here. As such, we wait on 4743 * the nvme_dead_taskq to complete so we can avoid tracking if it's 4744 * running or not. 4745 */ 4746 taskq_wait(nvme_dead_taskq); 4747 4748 if (nvme->n_ns) { 4749 for (uint32_t i = 1; i <= nvme->n_namespace_count; i++) { 4750 nvme_namespace_t *ns = nvme_nsid2ns(nvme, i); 4751 4752 if (ns->ns_bd_hdl) { 4753 (void) bd_detach_handle(ns->ns_bd_hdl); 4754 bd_free_handle(ns->ns_bd_hdl); 4755 } 4756 4757 if (ns->ns_idns) 4758 kmem_free(ns->ns_idns, 4759 sizeof (nvme_identify_nsid_t)); 4760 if (ns->ns_devid) 4761 strfree(ns->ns_devid); 4762 4763 if ((ns->ns_progress & NVME_NS_LOCK) != 0) 4764 nvme_lock_fini(&ns->ns_lock); 4765 } 4766 4767 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * 4768 nvme->n_namespace_count); 4769 } 4770 4771 if (nvme->n_progress & NVME_MGMT_INIT) { 4772 nvme_lock_fini(&nvme->n_lock); 4773 mutex_destroy(&nvme->n_mgmt_mutex); 4774 } 4775 4776 if (nvme->n_progress & NVME_UFM_INIT) { 4777 ddi_ufm_fini(nvme->n_ufmh); 4778 mutex_destroy(&nvme->n_fwslot_mutex); 4779 } 4780 4781 if (nvme->n_progress & NVME_INTERRUPTS) 4782 nvme_release_interrupts(nvme); 4783 4784 for (uint_t i = 0; i < nvme->n_cq_count; i++) { 4785 if (nvme->n_cq[i]->ncq_cmd_taskq != NULL) 4786 taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq); 4787 } 4788 4789 if (nvme->n_progress & NVME_MUTEX_INIT) { 4790 mutex_destroy(&nvme->n_minor_mutex); 4791 } 4792 4793 if (nvme->n_ioq_count > 0) { 4794 for (uint_t i = 1; i != nvme->n_ioq_count + 1; i++) { 4795 if (nvme->n_ioq[i] != NULL) { 4796 /* TODO: send destroy queue commands */ 4797 nvme_free_qpair(nvme->n_ioq[i]); 4798 } 4799 } 4800 4801 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * 4802 (nvme->n_ioq_count + 1)); 4803 } 4804 4805 if (nvme->n_prp_cache != NULL) { 4806 kmem_cache_destroy(nvme->n_prp_cache); 4807 } 4808 4809 if (nvme->n_progress & NVME_REGS_MAPPED) { 4810 nvme_shutdown(nvme, B_FALSE); 4811 (void) nvme_reset(nvme, B_FALSE); 4812 } 4813 4814 if (nvme->n_progress & NVME_CTRL_LIMITS) 4815 sema_destroy(&nvme->n_abort_sema); 4816 4817 if (nvme->n_progress & NVME_ADMIN_QUEUE) 4818 nvme_free_qpair(nvme->n_adminq); 4819 4820 if (nvme->n_cq_count > 0) { 4821 nvme_destroy_cq_array(nvme, 0); 4822 nvme->n_cq = NULL; 4823 nvme->n_cq_count = 0; 4824 } 4825 4826 if (nvme->n_idcomns) 4827 kmem_free(nvme->n_idcomns, NVME_IDENTIFY_BUFSIZE); 4828 4829 if (nvme->n_idctl) 4830 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE); 4831 4832 if (nvme->n_progress & NVME_REGS_MAPPED) 4833 ddi_regs_map_free(&nvme->n_regh); 4834 4835 if (nvme->n_progress & NVME_FMA_INIT) { 4836 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4837 ddi_fm_handler_unregister(nvme->n_dip); 4838 4839 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 4840 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 4841 pci_ereport_teardown(nvme->n_dip); 4842 4843 ddi_fm_fini(nvme->n_dip); 4844 } 4845 4846 if (nvme->n_progress & NVME_PCI_CONFIG) 4847 pci_config_teardown(&nvme->n_pcicfg_handle); 4848 4849 if (nvme->n_vendor != NULL) 4850 strfree(nvme->n_vendor); 4851 4852 if (nvme->n_product != NULL) 4853 strfree(nvme->n_product); 4854 4855 ddi_soft_state_free(nvme_state, instance); 4856 4857 return (DDI_SUCCESS); 4858 } 4859 4860 static int 4861 nvme_quiesce(dev_info_t *dip) 4862 { 4863 int instance; 4864 nvme_t *nvme; 4865 4866 instance = ddi_get_instance(dip); 4867 4868 nvme = ddi_get_soft_state(nvme_state, instance); 4869 4870 if (nvme == NULL) 4871 return (DDI_FAILURE); 4872 4873 nvme_shutdown(nvme, B_TRUE); 4874 4875 (void) nvme_reset(nvme, B_TRUE); 4876 4877 return (DDI_SUCCESS); 4878 } 4879 4880 static int 4881 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma) 4882 { 4883 nvme_t *nvme = cmd->nc_nvme; 4884 uint_t nprp_per_page, nprp; 4885 uint64_t *prp; 4886 const ddi_dma_cookie_t *cookie; 4887 uint_t idx; 4888 uint_t ncookies = ddi_dma_ncookies(dma); 4889 4890 if (ncookies == 0) 4891 return (DDI_FAILURE); 4892 4893 if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL) 4894 return (DDI_FAILURE); 4895 cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress; 4896 4897 if (ncookies == 1) { 4898 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 4899 return (DDI_SUCCESS); 4900 } else if (ncookies == 2) { 4901 if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL) 4902 return (DDI_FAILURE); 4903 cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress; 4904 return (DDI_SUCCESS); 4905 } 4906 4907 /* 4908 * At this point, we're always operating on cookies at 4909 * index >= 1 and writing the addresses of those cookies 4910 * into a new page. The address of that page is stored 4911 * as the second PRP entry. 4912 */ 4913 nprp_per_page = nvme->n_pagesize / sizeof (uint64_t); 4914 ASSERT(nprp_per_page > 0); 4915 4916 /* 4917 * We currently don't support chained PRPs and set up our DMA 4918 * attributes to reflect that. If we still get an I/O request 4919 * that needs a chained PRP something is very wrong. Account 4920 * for the first cookie here, which we've placed in d_prp[0]. 4921 */ 4922 nprp = howmany(ncookies - 1, nprp_per_page); 4923 VERIFY(nprp == 1); 4924 4925 /* 4926 * Allocate a page of pointers, in which we'll write the 4927 * addresses of cookies 1 to `ncookies`. 4928 */ 4929 cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP); 4930 bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len); 4931 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress; 4932 4933 prp = (uint64_t *)cmd->nc_prp->nd_memp; 4934 for (idx = 1; idx < ncookies; idx++) { 4935 if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL) 4936 return (DDI_FAILURE); 4937 *prp++ = cookie->dmac_laddress; 4938 } 4939 4940 (void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len, 4941 DDI_DMA_SYNC_FORDEV); 4942 return (DDI_SUCCESS); 4943 } 4944 4945 /* 4946 * The maximum number of requests supported for a deallocate request is 4947 * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and 4948 * unchanged through at least 1.4a). The definition of nvme_range_t is also 4949 * from the NVMe 1.1 spec. Together, the result is that all of the ranges for 4950 * a deallocate request will fit into the smallest supported namespace page 4951 * (4k). 4952 */ 4953 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096); 4954 4955 static int 4956 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize, 4957 int allocflag) 4958 { 4959 const dkioc_free_list_t *dfl = xfer->x_dfl; 4960 const dkioc_free_list_ext_t *exts = dfl->dfl_exts; 4961 nvme_t *nvme = cmd->nc_nvme; 4962 nvme_range_t *ranges = NULL; 4963 uint_t i; 4964 4965 /* 4966 * The number of ranges in the request is 0s based (that is 4967 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ..., 4968 * word10 == 255 -> 256 ranges). Therefore the allowed values are 4969 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request, 4970 * we either provided bad info in nvme_bd_driveinfo() or there is a bug 4971 * in blkdev. 4972 */ 4973 VERIFY3U(dfl->dfl_num_exts, >, 0); 4974 VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES); 4975 cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff; 4976 4977 cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE; 4978 4979 cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag); 4980 if (cmd->nc_prp == NULL) 4981 return (DDI_FAILURE); 4982 4983 bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len); 4984 ranges = (nvme_range_t *)cmd->nc_prp->nd_memp; 4985 4986 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress; 4987 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 4988 4989 for (i = 0; i < dfl->dfl_num_exts; i++) { 4990 uint64_t lba, len; 4991 4992 lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize; 4993 len = exts[i].dfle_length / blocksize; 4994 4995 VERIFY3U(len, <=, UINT32_MAX); 4996 4997 /* No context attributes for a deallocate request */ 4998 ranges[i].nr_ctxattr = 0; 4999 ranges[i].nr_len = len; 5000 ranges[i].nr_lba = lba; 5001 } 5002 5003 (void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len, 5004 DDI_DMA_SYNC_FORDEV); 5005 5006 return (DDI_SUCCESS); 5007 } 5008 5009 static nvme_cmd_t * 5010 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) 5011 { 5012 nvme_t *nvme = ns->ns_nvme; 5013 nvme_cmd_t *cmd; 5014 int allocflag; 5015 5016 /* 5017 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. 5018 */ 5019 allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP; 5020 cmd = nvme_alloc_cmd(nvme, allocflag); 5021 5022 if (cmd == NULL) 5023 return (NULL); 5024 5025 cmd->nc_sqe.sqe_opc = opc; 5026 cmd->nc_callback = nvme_bd_xfer_done; 5027 cmd->nc_xfer = xfer; 5028 5029 switch (opc) { 5030 case NVME_OPC_NVM_WRITE: 5031 case NVME_OPC_NVM_READ: 5032 VERIFY(xfer->x_nblks <= 0x10000); 5033 5034 cmd->nc_sqe.sqe_nsid = ns->ns_id; 5035 5036 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; 5037 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); 5038 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); 5039 5040 if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS) 5041 goto fail; 5042 break; 5043 5044 case NVME_OPC_NVM_FLUSH: 5045 cmd->nc_sqe.sqe_nsid = ns->ns_id; 5046 break; 5047 5048 case NVME_OPC_NVM_DSET_MGMT: 5049 cmd->nc_sqe.sqe_nsid = ns->ns_id; 5050 5051 if (nvme_fill_ranges(cmd, xfer, 5052 (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS) 5053 goto fail; 5054 break; 5055 5056 default: 5057 goto fail; 5058 } 5059 5060 return (cmd); 5061 5062 fail: 5063 nvme_free_cmd(cmd); 5064 return (NULL); 5065 } 5066 5067 static void 5068 nvme_bd_xfer_done(void *arg) 5069 { 5070 nvme_cmd_t *cmd = arg; 5071 bd_xfer_t *xfer = cmd->nc_xfer; 5072 int error = 0; 5073 5074 error = nvme_check_cmd_status(cmd); 5075 nvme_free_cmd(cmd); 5076 5077 bd_xfer_done(xfer, error); 5078 } 5079 5080 static void 5081 nvme_bd_driveinfo(void *arg, bd_drive_t *drive) 5082 { 5083 nvme_namespace_t *ns = arg; 5084 nvme_t *nvme = ns->ns_nvme; 5085 uint_t ns_count = MAX(1, nvme->n_namespaces_attachable); 5086 boolean_t mutex_exit_needed = B_TRUE; 5087 5088 /* 5089 * nvme_bd_driveinfo is called by blkdev in two situations: 5090 * - during bd_attach_handle(), which we call with the mutex held 5091 * - during bd_attach(), which may be called with or without the 5092 * mutex held 5093 */ 5094 if (mutex_owned(&nvme->n_mgmt_mutex)) 5095 mutex_exit_needed = B_FALSE; 5096 else 5097 mutex_enter(&nvme->n_mgmt_mutex); 5098 5099 /* 5100 * Set the blkdev qcount to the number of submission queues. 5101 * It will then create one waitq/runq pair for each submission 5102 * queue and spread I/O requests across the queues. 5103 */ 5104 drive->d_qcount = nvme->n_ioq_count; 5105 5106 /* 5107 * I/O activity to individual namespaces is distributed across 5108 * each of the d_qcount blkdev queues (which has been set to 5109 * the number of nvme submission queues). d_qsize is the number 5110 * of submitted and not completed I/Os within each queue that blkdev 5111 * will allow before it starts holding them in the waitq. 5112 * 5113 * Each namespace will create a child blkdev instance, for each one 5114 * we try and set the d_qsize so that each namespace gets an 5115 * equal portion of the submission queue. 5116 * 5117 * If post instantiation of the nvme drive, n_namespaces_attachable 5118 * changes and a namespace is attached it could calculate a 5119 * different d_qsize. It may even be that the sum of the d_qsizes is 5120 * now beyond the submission queue size. Should that be the case 5121 * and the I/O rate is such that blkdev attempts to submit more 5122 * I/Os than the size of the submission queue, the excess I/Os 5123 * will be held behind the semaphore nq_sema. 5124 */ 5125 drive->d_qsize = nvme->n_io_squeue_len / ns_count; 5126 5127 /* 5128 * Don't let the queue size drop below the minimum, though. 5129 */ 5130 drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN); 5131 5132 /* 5133 * d_maxxfer is not set, which means the value is taken from the DMA 5134 * attributes specified to bd_alloc_handle. 5135 */ 5136 5137 drive->d_removable = B_FALSE; 5138 drive->d_hotpluggable = B_FALSE; 5139 5140 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64)); 5141 drive->d_target = ns->ns_id; 5142 drive->d_lun = 0; 5143 5144 drive->d_model = nvme->n_idctl->id_model; 5145 drive->d_model_len = sizeof (nvme->n_idctl->id_model); 5146 drive->d_vendor = nvme->n_vendor; 5147 drive->d_vendor_len = strlen(nvme->n_vendor); 5148 drive->d_product = nvme->n_product; 5149 drive->d_product_len = strlen(nvme->n_product); 5150 drive->d_serial = nvme->n_idctl->id_serial; 5151 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); 5152 drive->d_revision = nvme->n_idctl->id_fwrev; 5153 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); 5154 5155 /* 5156 * If we support the dataset management command, the only restrictions 5157 * on a discard request are the maximum number of ranges (segments) 5158 * per single request. 5159 */ 5160 if (nvme->n_idctl->id_oncs.on_dset_mgmt) 5161 drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES; 5162 5163 if (mutex_exit_needed) 5164 mutex_exit(&nvme->n_mgmt_mutex); 5165 } 5166 5167 static int 5168 nvme_bd_mediainfo(void *arg, bd_media_t *media) 5169 { 5170 nvme_namespace_t *ns = arg; 5171 nvme_t *nvme = ns->ns_nvme; 5172 boolean_t mutex_exit_needed = B_TRUE; 5173 5174 if (nvme->n_dead) { 5175 return (EIO); 5176 } 5177 5178 /* 5179 * nvme_bd_mediainfo is called by blkdev in various situations, 5180 * most of them out of our control. There's one exception though: 5181 * When we call bd_state_change() in response to "namespace change" 5182 * notification, where the mutex is already being held by us. 5183 */ 5184 if (mutex_owned(&nvme->n_mgmt_mutex)) 5185 mutex_exit_needed = B_FALSE; 5186 else 5187 mutex_enter(&nvme->n_mgmt_mutex); 5188 5189 media->m_nblks = ns->ns_block_count; 5190 media->m_blksize = ns->ns_block_size; 5191 media->m_readonly = B_FALSE; 5192 media->m_solidstate = B_TRUE; 5193 5194 media->m_pblksize = ns->ns_best_block_size; 5195 5196 if (mutex_exit_needed) 5197 mutex_exit(&nvme->n_mgmt_mutex); 5198 5199 return (0); 5200 } 5201 5202 static int 5203 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) 5204 { 5205 nvme_t *nvme = ns->ns_nvme; 5206 nvme_cmd_t *cmd; 5207 nvme_qpair_t *ioq; 5208 boolean_t poll; 5209 int ret; 5210 5211 if (nvme->n_dead) { 5212 return (EIO); 5213 } 5214 5215 cmd = nvme_create_nvm_cmd(ns, opc, xfer); 5216 if (cmd == NULL) 5217 return (ENOMEM); 5218 5219 cmd->nc_sqid = xfer->x_qnum + 1; 5220 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 5221 ioq = nvme->n_ioq[cmd->nc_sqid]; 5222 5223 /* 5224 * Get the polling flag before submitting the command. The command may 5225 * complete immediately after it was submitted, which means we must 5226 * treat both cmd and xfer as if they have been freed already. 5227 */ 5228 poll = (xfer->x_flags & BD_XFER_POLL) != 0; 5229 5230 ret = nvme_submit_io_cmd(ioq, cmd); 5231 5232 if (ret != 0) 5233 return (ret); 5234 5235 if (!poll) 5236 return (0); 5237 5238 do { 5239 cmd = nvme_retrieve_cmd(nvme, ioq); 5240 if (cmd != NULL) 5241 cmd->nc_callback(cmd); 5242 else 5243 drv_usecwait(10); 5244 } while (ioq->nq_active_cmds != 0); 5245 5246 return (0); 5247 } 5248 5249 static int 5250 nvme_bd_read(void *arg, bd_xfer_t *xfer) 5251 { 5252 nvme_namespace_t *ns = arg; 5253 5254 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); 5255 } 5256 5257 static int 5258 nvme_bd_write(void *arg, bd_xfer_t *xfer) 5259 { 5260 nvme_namespace_t *ns = arg; 5261 5262 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); 5263 } 5264 5265 static int 5266 nvme_bd_sync(void *arg, bd_xfer_t *xfer) 5267 { 5268 nvme_namespace_t *ns = arg; 5269 5270 if (ns->ns_nvme->n_dead) 5271 return (EIO); 5272 5273 /* 5274 * If the volatile write cache is not present or not enabled the FLUSH 5275 * command is a no-op, so we can take a shortcut here. 5276 */ 5277 if (!ns->ns_nvme->n_write_cache_present) { 5278 bd_xfer_done(xfer, ENOTSUP); 5279 return (0); 5280 } 5281 5282 if (!ns->ns_nvme->n_write_cache_enabled) { 5283 bd_xfer_done(xfer, 0); 5284 return (0); 5285 } 5286 5287 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); 5288 } 5289 5290 static int 5291 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) 5292 { 5293 nvme_namespace_t *ns = arg; 5294 nvme_t *nvme = ns->ns_nvme; 5295 5296 if (nvme->n_dead) { 5297 return (EIO); 5298 } 5299 5300 if (*(uint64_t *)ns->ns_nguid != 0 || 5301 *(uint64_t *)(ns->ns_nguid + 8) != 0) { 5302 return (ddi_devid_init(devinfo, DEVID_NVME_NGUID, 5303 sizeof (ns->ns_nguid), ns->ns_nguid, devid)); 5304 } else if (*(uint64_t *)ns->ns_eui64 != 0) { 5305 return (ddi_devid_init(devinfo, DEVID_NVME_EUI64, 5306 sizeof (ns->ns_eui64), ns->ns_eui64, devid)); 5307 } else { 5308 return (ddi_devid_init(devinfo, DEVID_NVME_NSID, 5309 strlen(ns->ns_devid), ns->ns_devid, devid)); 5310 } 5311 } 5312 5313 static int 5314 nvme_bd_free_space(void *arg, bd_xfer_t *xfer) 5315 { 5316 nvme_namespace_t *ns = arg; 5317 5318 if (xfer->x_dfl == NULL) 5319 return (EINVAL); 5320 5321 if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt) 5322 return (ENOTSUP); 5323 5324 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT)); 5325 } 5326 5327 static int 5328 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 5329 { 5330 #ifndef __lock_lint 5331 _NOTE(ARGUNUSED(cred_p)); 5332 #endif 5333 nvme_t *nvme; 5334 nvme_minor_t *minor = NULL; 5335 uint32_t nsid; 5336 minor_t m = getminor(*devp); 5337 int rv = 0; 5338 5339 if (otyp != OTYP_CHR) 5340 return (EINVAL); 5341 5342 if (m >= NVME_OPEN_MINOR_MIN) 5343 return (ENXIO); 5344 5345 nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(m)); 5346 nsid = NVME_MINOR_NSID(m); 5347 5348 if (nvme == NULL) 5349 return (ENXIO); 5350 5351 if (nsid > nvme->n_namespace_count) 5352 return (ENXIO); 5353 5354 if (nvme->n_dead) 5355 return (EIO); 5356 5357 /* 5358 * At this point, we're going to allow an open to proceed on this 5359 * device. We need to allocate a new instance for this (presuming one is 5360 * available). 5361 */ 5362 minor = kmem_zalloc(sizeof (nvme_minor_t), KM_NOSLEEP_LAZY); 5363 if (minor == NULL) { 5364 return (ENOMEM); 5365 } 5366 5367 cv_init(&minor->nm_cv, NULL, CV_DRIVER, NULL); 5368 list_link_init(&minor->nm_ctrl_lock.nli_node); 5369 minor->nm_ctrl_lock.nli_nvme = nvme; 5370 minor->nm_ctrl_lock.nli_minor = minor; 5371 list_link_init(&minor->nm_ns_lock.nli_node); 5372 minor->nm_ns_lock.nli_nvme = nvme; 5373 minor->nm_ns_lock.nli_minor = minor; 5374 minor->nm_minor = id_alloc_nosleep(nvme_open_minors); 5375 if (minor->nm_minor == -1) { 5376 nvme_minor_free(minor); 5377 return (ENOSPC); 5378 } 5379 5380 minor->nm_ctrl = nvme; 5381 if (nsid != 0) { 5382 minor->nm_ns = nvme_nsid2ns(nvme, nsid); 5383 } 5384 5385 /* 5386 * Before we check for exclusive access and attempt a lock if requested, 5387 * ensure that this minor is persisted. 5388 */ 5389 mutex_enter(&nvme_open_minors_mutex); 5390 avl_add(&nvme_open_minors_avl, minor); 5391 mutex_exit(&nvme_open_minors_mutex); 5392 5393 /* 5394 * A request for opening this FEXCL, is translated into a non-blocking 5395 * write lock of the appropriate entity. This honors the original 5396 * semantics here. In the future, we should see if we can remove this 5397 * and turn a request for FEXCL at open into ENOTSUP. 5398 */ 5399 mutex_enter(&nvme->n_minor_mutex); 5400 if ((flag & FEXCL) != 0) { 5401 nvme_ioctl_lock_t lock = { 5402 .nil_level = NVME_LOCK_L_WRITE, 5403 .nil_flags = NVME_LOCK_F_DONT_BLOCK 5404 }; 5405 5406 if (minor->nm_ns != NULL) { 5407 lock.nil_ent = NVME_LOCK_E_NS; 5408 lock.nil_common.nioc_nsid = nsid; 5409 } else { 5410 lock.nil_ent = NVME_LOCK_E_CTRL; 5411 } 5412 nvme_rwlock(minor, &lock); 5413 if (lock.nil_common.nioc_drv_err != NVME_IOCTL_E_OK) { 5414 mutex_exit(&nvme->n_minor_mutex); 5415 5416 mutex_enter(&nvme_open_minors_mutex); 5417 avl_remove(&nvme_open_minors_avl, minor); 5418 mutex_exit(&nvme_open_minors_mutex); 5419 5420 nvme_minor_free(minor); 5421 return (EBUSY); 5422 } 5423 } 5424 mutex_exit(&nvme->n_minor_mutex); 5425 5426 *devp = makedevice(getmajor(*devp), (minor_t)minor->nm_minor); 5427 return (rv); 5428 5429 } 5430 5431 static int 5432 nvme_close(dev_t dev, int flag __unused, int otyp, cred_t *cred_p __unused) 5433 { 5434 nvme_minor_t *minor; 5435 nvme_t *nvme; 5436 5437 if (otyp != OTYP_CHR) { 5438 return (ENXIO); 5439 } 5440 5441 minor = nvme_minor_find_by_dev(dev); 5442 if (minor == NULL) { 5443 return (ENXIO); 5444 } 5445 5446 mutex_enter(&nvme_open_minors_mutex); 5447 avl_remove(&nvme_open_minors_avl, minor); 5448 mutex_exit(&nvme_open_minors_mutex); 5449 5450 /* 5451 * When this device is being closed, we must ensure that any locks held 5452 * by this are dealt with. 5453 */ 5454 nvme = minor->nm_ctrl; 5455 mutex_enter(&nvme->n_minor_mutex); 5456 ASSERT3U(minor->nm_ctrl_lock.nli_state, !=, NVME_LOCK_STATE_BLOCKED); 5457 ASSERT3U(minor->nm_ns_lock.nli_state, !=, NVME_LOCK_STATE_BLOCKED); 5458 5459 if (minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_ACQUIRED) { 5460 VERIFY3P(minor->nm_ctrl_lock.nli_lock, !=, NULL); 5461 nvme_rwunlock(&minor->nm_ctrl_lock, 5462 minor->nm_ctrl_lock.nli_lock); 5463 } 5464 5465 if (minor->nm_ns_lock.nli_state == NVME_LOCK_STATE_ACQUIRED) { 5466 VERIFY3P(minor->nm_ns_lock.nli_lock, !=, NULL); 5467 nvme_rwunlock(&minor->nm_ns_lock, minor->nm_ns_lock.nli_lock); 5468 } 5469 mutex_exit(&nvme->n_minor_mutex); 5470 5471 nvme_minor_free(minor); 5472 5473 return (0); 5474 } 5475 5476 void 5477 nvme_ioctl_success(nvme_ioctl_common_t *ioc) 5478 { 5479 ioc->nioc_drv_err = NVME_IOCTL_E_OK; 5480 ioc->nioc_ctrl_sc = NVME_CQE_SC_GEN_SUCCESS; 5481 ioc->nioc_ctrl_sct = NVME_CQE_SCT_GENERIC; 5482 } 5483 5484 boolean_t 5485 nvme_ioctl_error(nvme_ioctl_common_t *ioc, nvme_ioctl_errno_t err, uint32_t sct, 5486 uint32_t sc) 5487 { 5488 ioc->nioc_drv_err = err; 5489 ioc->nioc_ctrl_sct = sct; 5490 ioc->nioc_ctrl_sc = sc; 5491 5492 return (B_FALSE); 5493 } 5494 5495 static int 5496 nvme_ioctl_copyout_error(nvme_ioctl_errno_t err, intptr_t uaddr, int mode) 5497 { 5498 nvme_ioctl_common_t ioc; 5499 5500 ASSERT3U(err, !=, NVME_IOCTL_E_CTRL_ERROR); 5501 bzero(&ioc, sizeof (ioc)); 5502 if (ddi_copyout(&ioc, (void *)uaddr, sizeof (nvme_ioctl_common_t), 5503 mode & FKIOCTL) != 0) { 5504 return (EFAULT); 5505 } 5506 return (0); 5507 } 5508 5509 5510 /* 5511 * The companion to the namespace checking. This occurs after any rewriting 5512 * occurs. This is the primary point that we attempt to enforce any operation's 5513 * exclusivity. Note, it is theoretically possible for an operation to be 5514 * ongoing and to have someone with an exclusive lock ask to unlock it for some 5515 * reason. This does not maintain the number of such events that are going on. 5516 * While perhaps this is leaving too much up to the user, by the same token we 5517 * don't try to stop them from issuing two different format NVM commands 5518 * targeting the whole device at the same time either, even though the 5519 * controller would really rather that didn't happen. 5520 */ 5521 static boolean_t 5522 nvme_ioctl_excl_check(nvme_minor_t *minor, nvme_ioctl_common_t *ioc, 5523 const nvme_ioctl_check_t *check) 5524 { 5525 nvme_t *const nvme = minor->nm_ctrl; 5526 nvme_namespace_t *ns; 5527 boolean_t have_ctrl, have_ns, ctrl_is_excl, ns_is_excl; 5528 5529 /* 5530 * If the command doesn't require anything, then we're done. 5531 */ 5532 if (check->nck_excl == NVME_IOCTL_EXCL_SKIP) { 5533 return (B_TRUE); 5534 } 5535 5536 if (ioc->nioc_nsid == 0 || ioc->nioc_nsid == NVME_NSID_BCAST) { 5537 ns = NULL; 5538 } else { 5539 ns = nvme_nsid2ns(nvme, ioc->nioc_nsid); 5540 } 5541 5542 mutex_enter(&nvme->n_minor_mutex); 5543 ctrl_is_excl = nvme->n_lock.nl_writer != NULL; 5544 have_ctrl = nvme->n_lock.nl_writer == &minor->nm_ctrl_lock; 5545 if (ns != NULL) { 5546 /* 5547 * We explicitly test the namespace lock's writer versus asking 5548 * the minor because the minor's namespace lock may apply to a 5549 * different namespace. 5550 */ 5551 ns_is_excl = ns->ns_lock.nl_writer != NULL; 5552 have_ns = ns->ns_lock.nl_writer == &minor->nm_ns_lock; 5553 ASSERT0(have_ctrl && have_ns); 5554 #ifdef DEBUG 5555 if (have_ns) { 5556 ASSERT3P(minor->nm_ns_lock.nli_ns, ==, ns); 5557 } 5558 #endif 5559 } else { 5560 ns_is_excl = B_FALSE; 5561 have_ns = B_FALSE; 5562 } 5563 ASSERT0(ctrl_is_excl && ns_is_excl); 5564 mutex_exit(&nvme->n_minor_mutex); 5565 5566 if (check->nck_excl == NVME_IOCTL_EXCL_WRITE) { 5567 if (ns == NULL) { 5568 if (have_ctrl) { 5569 return (B_TRUE); 5570 } 5571 return (nvme_ioctl_error(ioc, 5572 NVME_IOCTL_E_NEED_CTRL_WRLOCK, 0, 0)); 5573 } else { 5574 if (have_ctrl || have_ns) { 5575 return (B_TRUE); 5576 } 5577 return (nvme_ioctl_error(ioc, 5578 NVME_IOCTL_E_NEED_NS_WRLOCK, 0, 0)); 5579 } 5580 } 5581 5582 /* 5583 * Now we have an operation that does not require exclusive access. We 5584 * can proceed as long as no one else has it or if someone does it is 5585 * us. Regardless of what we target, a controller lock will stop us. 5586 */ 5587 if (ctrl_is_excl && !have_ctrl) { 5588 return (nvme_ioctl_error(ioc, NVME_IOCTL_E_CTRL_LOCKED, 0, 0)); 5589 } 5590 5591 /* 5592 * Only check namespace exclusivity if we are targeting one. 5593 */ 5594 if (ns != NULL && ns_is_excl && !have_ns) { 5595 return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NS_LOCKED, 0, 0)); 5596 } 5597 5598 return (B_TRUE); 5599 } 5600 5601 /* 5602 * Perform common checking as to whether or not an ioctl operation may proceed. 5603 * We check in this function various aspects of the namespace attributes that 5604 * it's calling on. Once the namespace attributes and any possible rewriting 5605 * have been performed, then we proceed to check whether or not the requisite 5606 * exclusive access is present in nvme_ioctl_excl_check(). 5607 */ 5608 static boolean_t 5609 nvme_ioctl_check(nvme_minor_t *minor, nvme_ioctl_common_t *ioc, 5610 const nvme_ioctl_check_t *check) 5611 { 5612 /* 5613 * If the minor has a namespace pointer, then it is constrained to that 5614 * namespace. If a namespace is allowed, then there are only two valid 5615 * values that we can find. The first is matching the minor. The second 5616 * is our value zero, which will be transformed to the current 5617 * namespace. 5618 */ 5619 if (minor->nm_ns != NULL) { 5620 if (!check->nck_ns_ok || !check->nck_ns_minor_ok) { 5621 return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NOT_CTRL, 0, 5622 0)); 5623 } 5624 5625 if (ioc->nioc_nsid == 0) { 5626 ioc->nioc_nsid = minor->nm_ns->ns_id; 5627 } else if (ioc->nioc_nsid != minor->nm_ns->ns_id) { 5628 return (nvme_ioctl_error(ioc, 5629 NVME_IOCTL_E_MINOR_WRONG_NS, 0, 0)); 5630 } 5631 5632 return (nvme_ioctl_excl_check(minor, ioc, check)); 5633 } 5634 5635 /* 5636 * If we've been told to skip checking the controller, here's where we 5637 * do that. This should really only be for commands which use the 5638 * namespace ID for listing purposes and therefore can have 5639 * traditionally illegal values here. 5640 */ 5641 if (check->nck_skip_ctrl) { 5642 return (nvme_ioctl_excl_check(minor, ioc, check)); 5643 } 5644 5645 /* 5646 * At this point, we know that we're on the controller's node. We first 5647 * deal with the simple case, is a namespace allowed at all or not. If 5648 * it is not allowed, then the only acceptable value is zero. 5649 */ 5650 if (!check->nck_ns_ok) { 5651 if (ioc->nioc_nsid != 0) { 5652 return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NS_UNUSE, 0, 5653 0)); 5654 } 5655 5656 return (nvme_ioctl_excl_check(minor, ioc, check)); 5657 } 5658 5659 /* 5660 * At this point, we know that a controller is allowed to use a 5661 * namespace. If we haven't been given zero or the broadcast namespace, 5662 * check to see if it's actually a valid namespace ID. If is outside of 5663 * range, then it is an error. Next, if we have been requested to 5664 * rewrite 0 (the this controller indicator) as the broadcast namespace, 5665 * do so. 5666 * 5667 * While we validate that this namespace is within the valid range, we 5668 * do not check if it is active or inactive. That is left to our callers 5669 * to determine. 5670 */ 5671 if (ioc->nioc_nsid > minor->nm_ctrl->n_namespace_count && 5672 ioc->nioc_nsid != NVME_NSID_BCAST) { 5673 return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NS_RANGE, 0, 0)); 5674 } 5675 5676 if (ioc->nioc_nsid == 0 && check->nck_ctrl_rewrite) { 5677 ioc->nioc_nsid = NVME_NSID_BCAST; 5678 } 5679 5680 /* 5681 * Finally, see if we have ended up with a broadcast namespace ID 5682 * whether through specification or rewriting. If that is not allowed, 5683 * then that is an error. 5684 */ 5685 if (!check->nck_bcast_ok && ioc->nioc_nsid == NVME_NSID_BCAST) { 5686 return (nvme_ioctl_error(ioc, NVME_IOCTL_E_NO_BCAST_NS, 0, 0)); 5687 } 5688 5689 return (nvme_ioctl_excl_check(minor, ioc, check)); 5690 } 5691 5692 static int 5693 nvme_ioctl_ctrl_info(nvme_minor_t *minor, intptr_t arg, int mode, 5694 cred_t *cred_p) 5695 { 5696 nvme_t *const nvme = minor->nm_ctrl; 5697 nvme_ioctl_ctrl_info_t *info; 5698 nvme_reg_cap_t cap = { 0 }; 5699 nvme_ioctl_identify_t id = { .nid_cns = NVME_IDENTIFY_CTRL }; 5700 void *idbuf; 5701 5702 if ((mode & FREAD) == 0) 5703 return (EBADF); 5704 5705 info = kmem_alloc(sizeof (nvme_ioctl_ctrl_info_t), KM_NOSLEEP_LAZY); 5706 if (info == NULL) { 5707 return (nvme_ioctl_copyout_error(NVME_IOCTL_E_NO_KERN_MEM, arg, 5708 mode)); 5709 } 5710 5711 if (ddi_copyin((void *)arg, info, sizeof (nvme_ioctl_ctrl_info_t), 5712 mode & FKIOCTL) != 0) { 5713 kmem_free(info, sizeof (nvme_ioctl_ctrl_info_t)); 5714 return (EFAULT); 5715 } 5716 5717 if (!nvme_ioctl_check(minor, &info->nci_common, 5718 &nvme_check_ctrl_info)) { 5719 goto copyout; 5720 } 5721 5722 /* 5723 * We explicitly do not use the identify controller copy in the kernel 5724 * right now so that way we can get a snapshot of the controller's 5725 * current capacity and values. While it's tempting to try to use this 5726 * to refresh the kernel's version we don't just to simplify the rest of 5727 * the driver right now. 5728 */ 5729 if (!nvme_identify(nvme, B_TRUE, &id, &idbuf)) { 5730 info->nci_common = id.nid_common; 5731 goto copyout; 5732 } 5733 bcopy(idbuf, &info->nci_ctrl_id, sizeof (nvme_identify_ctrl_t)); 5734 kmem_free(idbuf, NVME_IDENTIFY_BUFSIZE); 5735 5736 /* 5737 * Use the kernel's cached common namespace information for this. 5738 */ 5739 bcopy(nvme->n_idcomns, &info->nci_common_ns, 5740 sizeof (nvme_identify_nsid_t)); 5741 5742 info->nci_vers = nvme->n_version; 5743 5744 /* 5745 * The MPSMIN and MPSMAX fields in the CAP register use 0 to 5746 * specify the base page size of 4k (1<<12), so add 12 here to 5747 * get the real page size value. 5748 */ 5749 cap.r = nvme_get64(nvme, NVME_REG_CAP); 5750 info->nci_caps.cap_mpsmax = 1 << (12 + cap.b.cap_mpsmax); 5751 info->nci_caps.cap_mpsmin = 1 << (12 + cap.b.cap_mpsmin); 5752 5753 info->nci_nintrs = (uint32_t)nvme->n_intr_cnt; 5754 5755 copyout: 5756 if (ddi_copyout(info, (void *)arg, sizeof (nvme_ioctl_ctrl_info_t), 5757 mode & FKIOCTL) != 0) { 5758 kmem_free(info, sizeof (nvme_ioctl_ctrl_info_t)); 5759 return (EFAULT); 5760 } 5761 5762 kmem_free(info, sizeof (nvme_ioctl_ctrl_info_t)); 5763 return (0); 5764 } 5765 5766 static int 5767 nvme_ioctl_ns_info(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p) 5768 { 5769 nvme_t *const nvme = minor->nm_ctrl; 5770 nvme_ioctl_ns_info_t *ns_info; 5771 nvme_namespace_t *ns; 5772 nvme_ioctl_identify_t id = { .nid_cns = NVME_IDENTIFY_NSID }; 5773 void *idbuf; 5774 5775 if ((mode & FREAD) == 0) 5776 return (EBADF); 5777 5778 ns_info = kmem_zalloc(sizeof (nvme_ioctl_ns_info_t), KM_NOSLEEP_LAZY); 5779 if (ns_info == NULL) { 5780 return (nvme_ioctl_copyout_error(NVME_IOCTL_E_NO_KERN_MEM, arg, 5781 mode)); 5782 } 5783 5784 if (ddi_copyin((void *)arg, ns_info, sizeof (nvme_ioctl_ns_info_t), 5785 mode & FKIOCTL) != 0) { 5786 kmem_free(ns_info, sizeof (nvme_ioctl_ns_info_t)); 5787 return (EFAULT); 5788 } 5789 5790 if (!nvme_ioctl_check(minor, &ns_info->nni_common, 5791 &nvme_check_ns_info)) { 5792 goto copyout; 5793 } 5794 5795 ASSERT3U(ns_info->nni_common.nioc_nsid, >, 0); 5796 ns = nvme_nsid2ns(nvme, ns_info->nni_common.nioc_nsid); 5797 5798 /* 5799 * First fetch a fresh copy of the namespace information. Most callers 5800 * are using this because they will want a mostly accurate snapshot of 5801 * capacity and utilization. 5802 */ 5803 id.nid_common.nioc_nsid = ns_info->nni_common.nioc_nsid; 5804 if (!nvme_identify(nvme, B_TRUE, &id, &idbuf)) { 5805 ns_info->nni_common = id.nid_common; 5806 goto copyout; 5807 } 5808 bcopy(idbuf, &ns_info->nni_id, sizeof (nvme_identify_nsid_t)); 5809 kmem_free(idbuf, NVME_IDENTIFY_BUFSIZE); 5810 5811 mutex_enter(&nvme->n_mgmt_mutex); 5812 if (ns->ns_allocated) 5813 ns_info->nni_state |= NVME_NS_STATE_ALLOCATED; 5814 5815 if (ns->ns_active) 5816 ns_info->nni_state |= NVME_NS_STATE_ACTIVE; 5817 5818 if (ns->ns_ignore) 5819 ns_info->nni_state |= NVME_NS_STATE_IGNORED; 5820 5821 if (ns->ns_attached) { 5822 const char *addr; 5823 5824 ns_info->nni_state |= NVME_NS_STATE_ATTACHED; 5825 addr = bd_address(ns->ns_bd_hdl); 5826 if (strlcpy(ns_info->nni_addr, addr, 5827 sizeof (ns_info->nni_addr)) >= sizeof (ns_info->nni_addr)) { 5828 mutex_exit(&nvme->n_mgmt_mutex); 5829 (void) nvme_ioctl_error(&ns_info->nni_common, 5830 NVME_IOCTL_E_BD_ADDR_OVER, 0, 0); 5831 goto copyout; 5832 } 5833 } 5834 mutex_exit(&nvme->n_mgmt_mutex); 5835 5836 copyout: 5837 if (ddi_copyout(ns_info, (void *)arg, sizeof (nvme_ioctl_ns_info_t), 5838 mode & FKIOCTL) != 0) { 5839 kmem_free(ns_info, sizeof (nvme_ioctl_ns_info_t)); 5840 return (EFAULT); 5841 } 5842 5843 kmem_free(ns_info, sizeof (nvme_ioctl_ns_info_t)); 5844 return (0); 5845 } 5846 5847 static int 5848 nvme_ioctl_identify(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p) 5849 { 5850 _NOTE(ARGUNUSED(cred_p)); 5851 nvme_t *const nvme = minor->nm_ctrl; 5852 void *idctl; 5853 uint_t model; 5854 nvme_ioctl_identify_t id; 5855 #ifdef _MULTI_DATAMODEL 5856 nvme_ioctl_identify32_t id32; 5857 #endif 5858 boolean_t ns_minor; 5859 5860 if ((mode & FREAD) == 0) 5861 return (EBADF); 5862 5863 model = ddi_model_convert_from(mode); 5864 switch (model) { 5865 #ifdef _MULTI_DATAMODEL 5866 case DDI_MODEL_ILP32: 5867 bzero(&id, sizeof (id)); 5868 if (ddi_copyin((void *)arg, &id32, sizeof (id32), 5869 mode & FKIOCTL) != 0) { 5870 return (EFAULT); 5871 } 5872 id.nid_common.nioc_nsid = id32.nid_common.nioc_nsid; 5873 id.nid_cns = id32.nid_cns; 5874 id.nid_ctrlid = id32.nid_ctrlid; 5875 id.nid_data = id32.nid_data; 5876 break; 5877 #endif /* _MULTI_DATAMODEL */ 5878 case DDI_MODEL_NONE: 5879 if (ddi_copyin((void *)arg, &id, sizeof (id), 5880 mode & FKIOCTL) != 0) { 5881 return (EFAULT); 5882 } 5883 break; 5884 default: 5885 return (ENOTSUP); 5886 } 5887 5888 if (!nvme_ioctl_check(minor, &id.nid_common, &nvme_check_identify)) { 5889 goto copyout; 5890 } 5891 5892 ns_minor = minor->nm_ns != NULL; 5893 if (!nvme_validate_identify(nvme, &id, ns_minor)) { 5894 goto copyout; 5895 } 5896 5897 if (nvme_identify(nvme, B_TRUE, &id, &idctl)) { 5898 int ret = ddi_copyout(idctl, (void *)id.nid_data, 5899 NVME_IDENTIFY_BUFSIZE, mode & FKIOCTL); 5900 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE); 5901 if (ret != 0) { 5902 (void) nvme_ioctl_error(&id.nid_common, 5903 NVME_IOCTL_E_BAD_USER_DATA, 0, 0); 5904 goto copyout; 5905 } 5906 5907 nvme_ioctl_success(&id.nid_common); 5908 } 5909 5910 copyout: 5911 switch (model) { 5912 #ifdef _MULTI_DATAMODEL 5913 case DDI_MODEL_ILP32: 5914 id32.nid_common = id.nid_common; 5915 5916 if (ddi_copyout(&id32, (void *)arg, sizeof (id32), 5917 mode & FKIOCTL) != 0) { 5918 return (EFAULT); 5919 } 5920 break; 5921 #endif /* _MULTI_DATAMODEL */ 5922 case DDI_MODEL_NONE: 5923 if (ddi_copyout(&id, (void *)arg, sizeof (id), 5924 mode & FKIOCTL) != 0) { 5925 return (EFAULT); 5926 } 5927 break; 5928 default: 5929 return (ENOTSUP); 5930 } 5931 5932 return (0); 5933 } 5934 5935 /* 5936 * Execute commands on behalf of the various ioctls. 5937 * 5938 * If this returns true then the command completed successfully. Otherwise error 5939 * information is returned in the nvme_ioctl_common_t arguments. 5940 */ 5941 typedef struct { 5942 nvme_sqe_t *ica_sqe; 5943 void *ica_data; 5944 uint32_t ica_data_len; 5945 uint_t ica_dma_flags; 5946 int ica_copy_flags; 5947 uint32_t ica_timeout; 5948 uint32_t ica_cdw0; 5949 } nvme_ioc_cmd_args_t; 5950 5951 static boolean_t 5952 nvme_ioc_cmd(nvme_t *nvme, nvme_ioctl_common_t *ioc, nvme_ioc_cmd_args_t *args) 5953 { 5954 nvme_cmd_t *cmd; 5955 boolean_t ret = B_FALSE; 5956 5957 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 5958 cmd->nc_sqid = 0; 5959 5960 /* 5961 * This function is used to facilitate requests from 5962 * userspace, so don't panic if the command fails. This 5963 * is especially true for admin passthru commands, where 5964 * the actual command data structure is entirely defined 5965 * by userspace. 5966 */ 5967 cmd->nc_dontpanic = B_TRUE; 5968 5969 cmd->nc_callback = nvme_wakeup_cmd; 5970 cmd->nc_sqe = *args->ica_sqe; 5971 5972 if ((args->ica_dma_flags & DDI_DMA_RDWR) != 0) { 5973 if (args->ica_data == NULL) { 5974 ret = nvme_ioctl_error(ioc, NVME_IOCTL_E_NO_DMA_MEM, 5975 0, 0); 5976 goto free_cmd; 5977 } 5978 5979 if (nvme_zalloc_dma(nvme, args->ica_data_len, 5980 args->ica_dma_flags, &nvme->n_prp_dma_attr, &cmd->nc_dma) != 5981 DDI_SUCCESS) { 5982 dev_err(nvme->n_dip, CE_WARN, 5983 "!nvme_zalloc_dma failed for nvme_ioc_cmd()"); 5984 ret = nvme_ioctl_error(ioc, 5985 NVME_IOCTL_E_NO_DMA_MEM, 0, 0); 5986 goto free_cmd; 5987 } 5988 5989 if (nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah) != 0) { 5990 ret = nvme_ioctl_error(ioc, 5991 NVME_IOCTL_E_NO_DMA_MEM, 0, 0); 5992 goto free_cmd; 5993 } 5994 5995 if ((args->ica_dma_flags & DDI_DMA_WRITE) != 0 && 5996 ddi_copyin(args->ica_data, cmd->nc_dma->nd_memp, 5997 args->ica_data_len, args->ica_copy_flags) != 0) { 5998 ret = nvme_ioctl_error(ioc, NVME_IOCTL_E_BAD_USER_DATA, 5999 0, 0); 6000 goto free_cmd; 6001 } 6002 } 6003 6004 nvme_admin_cmd(cmd, args->ica_timeout); 6005 6006 if (!nvme_check_cmd_status_ioctl(cmd, ioc)) { 6007 ret = B_FALSE; 6008 goto free_cmd; 6009 } 6010 6011 args->ica_cdw0 = cmd->nc_cqe.cqe_dw0; 6012 6013 if ((args->ica_dma_flags & DDI_DMA_READ) != 0 && 6014 ddi_copyout(cmd->nc_dma->nd_memp, args->ica_data, 6015 args->ica_data_len, args->ica_copy_flags) != 0) { 6016 ret = nvme_ioctl_error(ioc, NVME_IOCTL_E_BAD_USER_DATA, 0, 0); 6017 goto free_cmd; 6018 } 6019 6020 ret = B_TRUE; 6021 nvme_ioctl_success(ioc); 6022 6023 free_cmd: 6024 nvme_free_cmd(cmd); 6025 6026 return (ret); 6027 } 6028 6029 static int 6030 nvme_ioctl_get_logpage(nvme_minor_t *minor, intptr_t arg, int mode, 6031 cred_t *cred_p) 6032 { 6033 nvme_t *const nvme = minor->nm_ctrl; 6034 void *buf; 6035 nvme_ioctl_get_logpage_t log; 6036 uint_t model; 6037 #ifdef _MULTI_DATAMODEL 6038 nvme_ioctl_get_logpage32_t log32; 6039 #endif 6040 6041 if ((mode & FREAD) == 0) { 6042 return (EBADF); 6043 } 6044 6045 model = ddi_model_convert_from(mode); 6046 switch (model) { 6047 #ifdef _MULTI_DATAMODEL 6048 case DDI_MODEL_ILP32: 6049 bzero(&log, sizeof (log)); 6050 if (ddi_copyin((void *)arg, &log32, sizeof (log32), 6051 mode & FKIOCTL) != 0) { 6052 return (EFAULT); 6053 } 6054 6055 log.nigl_common.nioc_nsid = log32.nigl_common.nioc_nsid; 6056 log.nigl_csi = log32.nigl_csi; 6057 log.nigl_lid = log32.nigl_lid; 6058 log.nigl_lsp = log32.nigl_lsp; 6059 log.nigl_len = log32.nigl_len; 6060 log.nigl_offset = log32.nigl_offset; 6061 log.nigl_data = log32.nigl_data; 6062 break; 6063 #endif /* _MULTI_DATAMODEL */ 6064 case DDI_MODEL_NONE: 6065 if (ddi_copyin((void *)arg, &log, sizeof (log), 6066 mode & FKIOCTL) != 0) { 6067 return (EFAULT); 6068 } 6069 break; 6070 default: 6071 return (ENOTSUP); 6072 } 6073 6074 /* 6075 * Eventually we'd like to do a soft lock on the namespaces from 6076 * changing out from us during this operation in the future. But we 6077 * haven't implemented that yet. 6078 */ 6079 if (!nvme_ioctl_check(minor, &log.nigl_common, 6080 &nvme_check_get_logpage)) { 6081 goto copyout; 6082 } 6083 6084 if (!nvme_validate_logpage(nvme, &log)) { 6085 goto copyout; 6086 } 6087 6088 if (nvme_get_logpage(nvme, B_TRUE, &log, &buf)) { 6089 int copy; 6090 6091 copy = ddi_copyout(buf, (void *)log.nigl_data, log.nigl_len, 6092 mode & FKIOCTL); 6093 kmem_free(buf, log.nigl_len); 6094 if (copy != 0) { 6095 (void) nvme_ioctl_error(&log.nigl_common, 6096 NVME_IOCTL_E_BAD_USER_DATA, 0, 0); 6097 goto copyout; 6098 } 6099 6100 nvme_ioctl_success(&log.nigl_common); 6101 } 6102 6103 copyout: 6104 switch (model) { 6105 #ifdef _MULTI_DATAMODEL 6106 case DDI_MODEL_ILP32: 6107 bzero(&log32, sizeof (log32)); 6108 6109 log32.nigl_common = log.nigl_common; 6110 log32.nigl_csi = log.nigl_csi; 6111 log32.nigl_lid = log.nigl_lid; 6112 log32.nigl_lsp = log.nigl_lsp; 6113 log32.nigl_len = log.nigl_len; 6114 log32.nigl_offset = log.nigl_offset; 6115 log32.nigl_data = log.nigl_data; 6116 if (ddi_copyout(&log32, (void *)arg, sizeof (log32), 6117 mode & FKIOCTL) != 0) { 6118 return (EFAULT); 6119 } 6120 break; 6121 #endif /* _MULTI_DATAMODEL */ 6122 case DDI_MODEL_NONE: 6123 if (ddi_copyout(&log, (void *)arg, sizeof (log), 6124 mode & FKIOCTL) != 0) { 6125 return (EFAULT); 6126 } 6127 break; 6128 default: 6129 return (ENOTSUP); 6130 } 6131 6132 return (0); 6133 } 6134 6135 static int 6136 nvme_ioctl_get_feature(nvme_minor_t *minor, intptr_t arg, int mode, 6137 cred_t *cred_p) 6138 { 6139 nvme_t *const nvme = minor->nm_ctrl; 6140 nvme_ioctl_get_feature_t feat; 6141 uint_t model; 6142 #ifdef _MULTI_DATAMODEL 6143 nvme_ioctl_get_feature32_t feat32; 6144 #endif 6145 nvme_get_features_dw10_t gf_dw10 = { 0 }; 6146 nvme_ioc_cmd_args_t args = { NULL }; 6147 nvme_sqe_t sqe = { 6148 .sqe_opc = NVME_OPC_GET_FEATURES 6149 }; 6150 6151 if ((mode & FREAD) == 0) { 6152 return (EBADF); 6153 } 6154 6155 model = ddi_model_convert_from(mode); 6156 switch (model) { 6157 #ifdef _MULTI_DATAMODEL 6158 case DDI_MODEL_ILP32: 6159 bzero(&feat, sizeof (feat)); 6160 if (ddi_copyin((void *)arg, &feat32, sizeof (feat32), 6161 mode & FKIOCTL) != 0) { 6162 return (EFAULT); 6163 } 6164 6165 feat.nigf_common.nioc_nsid = feat32.nigf_common.nioc_nsid; 6166 feat.nigf_fid = feat32.nigf_fid; 6167 feat.nigf_sel = feat32.nigf_sel; 6168 feat.nigf_cdw11 = feat32.nigf_cdw11; 6169 feat.nigf_data = feat32.nigf_data; 6170 feat.nigf_len = feat32.nigf_len; 6171 break; 6172 #endif /* _MULTI_DATAMODEL */ 6173 case DDI_MODEL_NONE: 6174 if (ddi_copyin((void *)arg, &feat, sizeof (feat), 6175 mode & FKIOCTL) != 0) { 6176 return (EFAULT); 6177 } 6178 break; 6179 default: 6180 return (ENOTSUP); 6181 } 6182 6183 if (!nvme_ioctl_check(minor, &feat.nigf_common, 6184 &nvme_check_get_feature)) { 6185 goto copyout; 6186 } 6187 6188 if (!nvme_validate_get_feature(nvme, &feat)) { 6189 goto copyout; 6190 } 6191 6192 gf_dw10.b.gt_fid = bitx32(feat.nigf_fid, 7, 0); 6193 gf_dw10.b.gt_sel = bitx32(feat.nigf_sel, 2, 0); 6194 sqe.sqe_cdw10 = gf_dw10.r; 6195 sqe.sqe_cdw11 = feat.nigf_cdw11; 6196 sqe.sqe_nsid = feat.nigf_common.nioc_nsid; 6197 6198 args.ica_sqe = &sqe; 6199 if (feat.nigf_len != 0) { 6200 args.ica_data = (void *)feat.nigf_data; 6201 args.ica_data_len = feat.nigf_len; 6202 args.ica_dma_flags = DDI_DMA_READ; 6203 } 6204 args.ica_copy_flags = mode; 6205 args.ica_timeout = nvme_admin_cmd_timeout; 6206 6207 if (!nvme_ioc_cmd(nvme, &feat.nigf_common, &args)) { 6208 goto copyout; 6209 } 6210 6211 feat.nigf_cdw0 = args.ica_cdw0; 6212 6213 copyout: 6214 switch (model) { 6215 #ifdef _MULTI_DATAMODEL 6216 case DDI_MODEL_ILP32: 6217 bzero(&feat32, sizeof (feat32)); 6218 6219 feat32.nigf_common = feat.nigf_common; 6220 feat32.nigf_fid = feat.nigf_fid; 6221 feat32.nigf_sel = feat.nigf_sel; 6222 feat32.nigf_cdw11 = feat.nigf_cdw11; 6223 feat32.nigf_data = feat.nigf_data; 6224 feat32.nigf_len = feat.nigf_len; 6225 feat32.nigf_cdw0 = feat.nigf_cdw0; 6226 if (ddi_copyout(&feat32, (void *)arg, sizeof (feat32), 6227 mode & FKIOCTL) != 0) { 6228 return (EFAULT); 6229 } 6230 break; 6231 #endif /* _MULTI_DATAMODEL */ 6232 case DDI_MODEL_NONE: 6233 if (ddi_copyout(&feat, (void *)arg, sizeof (feat), 6234 mode & FKIOCTL) != 0) { 6235 return (EFAULT); 6236 } 6237 break; 6238 default: 6239 return (ENOTSUP); 6240 } 6241 6242 return (0); 6243 } 6244 6245 static int 6246 nvme_ioctl_format(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p) 6247 { 6248 nvme_t *const nvme = minor->nm_ctrl; 6249 nvme_ioctl_format_t ioc; 6250 6251 if ((mode & FWRITE) == 0) 6252 return (EBADF); 6253 6254 if (secpolicy_sys_config(cred_p, B_FALSE) != 0) 6255 return (EPERM); 6256 6257 if (ddi_copyin((void *)(uintptr_t)arg, &ioc, 6258 sizeof (nvme_ioctl_format_t), mode & FKIOCTL) != 0) 6259 return (EFAULT); 6260 6261 if (!nvme_ioctl_check(minor, &ioc.nif_common, &nvme_check_format)) { 6262 goto copyout; 6263 } 6264 6265 if (!nvme_validate_format(nvme, &ioc)) { 6266 goto copyout; 6267 } 6268 6269 mutex_enter(&nvme->n_mgmt_mutex); 6270 if (!nvme_no_blkdev_attached(nvme, ioc.nif_common.nioc_nsid)) { 6271 mutex_exit(&nvme->n_mgmt_mutex); 6272 (void) nvme_ioctl_error(&ioc.nif_common, 6273 NVME_IOCTL_E_NS_BLKDEV_ATTACH, 0, 0); 6274 goto copyout; 6275 } 6276 6277 if (nvme_format_nvm(nvme, &ioc)) { 6278 nvme_ioctl_success(&ioc.nif_common); 6279 nvme_rescan_ns(nvme, ioc.nif_common.nioc_nsid); 6280 } 6281 mutex_exit(&nvme->n_mgmt_mutex); 6282 6283 copyout: 6284 if (ddi_copyout(&ioc, (void *)(uintptr_t)arg, sizeof (ioc), 6285 mode & FKIOCTL) != 0) { 6286 return (EFAULT); 6287 } 6288 6289 return (0); 6290 } 6291 6292 static int 6293 nvme_ioctl_detach(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p) 6294 { 6295 nvme_t *const nvme = minor->nm_ctrl; 6296 nvme_ioctl_common_t com; 6297 6298 if ((mode & FWRITE) == 0) 6299 return (EBADF); 6300 6301 if (secpolicy_sys_config(cred_p, B_FALSE) != 0) 6302 return (EPERM); 6303 6304 if (ddi_copyin((void *)(uintptr_t)arg, &com, sizeof (com), 6305 mode & FKIOCTL) != 0) { 6306 return (EFAULT); 6307 } 6308 6309 if (!nvme_ioctl_check(minor, &com, &nvme_check_attach_detach)) { 6310 goto copyout; 6311 } 6312 6313 mutex_enter(&nvme->n_mgmt_mutex); 6314 if (nvme_detach_ns(nvme, &com)) { 6315 nvme_ioctl_success(&com); 6316 } 6317 mutex_exit(&nvme->n_mgmt_mutex); 6318 6319 copyout: 6320 if (ddi_copyout(&com, (void *)(uintptr_t)arg, sizeof (com), 6321 mode & FKIOCTL) != 0) { 6322 return (EFAULT); 6323 } 6324 6325 return (0); 6326 } 6327 6328 static int 6329 nvme_ioctl_attach(nvme_minor_t *minor, intptr_t arg, int mode, 6330 cred_t *cred_p) 6331 { 6332 nvme_t *const nvme = minor->nm_ctrl; 6333 nvme_ioctl_common_t com; 6334 nvme_namespace_t *ns; 6335 6336 if ((mode & FWRITE) == 0) 6337 return (EBADF); 6338 6339 if (secpolicy_sys_config(cred_p, B_FALSE) != 0) 6340 return (EPERM); 6341 6342 if (ddi_copyin((void *)(uintptr_t)arg, &com, sizeof (com), 6343 mode & FKIOCTL) != 0) { 6344 return (EFAULT); 6345 } 6346 6347 if (!nvme_ioctl_check(minor, &com, &nvme_check_attach_detach)) { 6348 goto copyout; 6349 } 6350 6351 mutex_enter(&nvme->n_mgmt_mutex); 6352 ns = nvme_nsid2ns(nvme, com.nioc_nsid); 6353 6354 /* 6355 * Strictly speaking we shouldn't need to call nvme_init_ns() here as 6356 * we should be properly refreshing the internal state when we are 6357 * issuing commands that change things. However, we opt to still do so 6358 * as a bit of a safety check lest we give the kernel something bad or a 6359 * vendor unique command somehow did something behind our backs. 6360 */ 6361 if (!ns->ns_attached) { 6362 (void) nvme_rescan_ns(nvme, com.nioc_nsid); 6363 if (nvme_attach_ns(nvme, &com)) { 6364 nvme_ioctl_success(&com); 6365 } 6366 } else { 6367 nvme_ioctl_success(&com); 6368 } 6369 mutex_exit(&nvme->n_mgmt_mutex); 6370 6371 copyout: 6372 if (ddi_copyout(&com, (void *)(uintptr_t)arg, sizeof (com), 6373 mode & FKIOCTL) != 0) { 6374 return (EFAULT); 6375 } 6376 6377 return (0); 6378 } 6379 6380 static void 6381 nvme_ufm_update(nvme_t *nvme) 6382 { 6383 mutex_enter(&nvme->n_fwslot_mutex); 6384 ddi_ufm_update(nvme->n_ufmh); 6385 if (nvme->n_fwslot != NULL) { 6386 kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t)); 6387 nvme->n_fwslot = NULL; 6388 } 6389 mutex_exit(&nvme->n_fwslot_mutex); 6390 } 6391 6392 /* 6393 * Download new firmware to the device's internal staging area. We do not call 6394 * nvme_ufm_update() here because after a firmware download, there has been no 6395 * change to any of the actual persistent firmware data. That requires a 6396 * subsequent ioctl (NVME_IOC_FIRMWARE_COMMIT) to commit the firmware to a slot 6397 * or to activate a slot. 6398 */ 6399 static int 6400 nvme_ioctl_firmware_download(nvme_minor_t *minor, intptr_t arg, int mode, 6401 cred_t *cred_p) 6402 { 6403 nvme_t *const nvme = minor->nm_ctrl; 6404 nvme_ioctl_fw_load_t fw; 6405 uint64_t len, maxcopy; 6406 offset_t offset; 6407 uint32_t gran; 6408 nvme_valid_ctrl_data_t data; 6409 uintptr_t buf; 6410 nvme_sqe_t sqe = { 6411 .sqe_opc = NVME_OPC_FW_IMAGE_LOAD 6412 }; 6413 6414 if ((mode & FWRITE) == 0) 6415 return (EBADF); 6416 6417 if (secpolicy_sys_config(cred_p, B_FALSE) != 0) 6418 return (EPERM); 6419 6420 if (ddi_copyin((void *)(uintptr_t)arg, &fw, sizeof (fw), 6421 mode & FKIOCTL) != 0) { 6422 return (EFAULT); 6423 } 6424 6425 if (!nvme_ioctl_check(minor, &fw.fwl_common, &nvme_check_firmware)) { 6426 goto copyout; 6427 } 6428 6429 if (!nvme_validate_fw_load(nvme, &fw)) { 6430 goto copyout; 6431 } 6432 6433 len = fw.fwl_len; 6434 offset = fw.fwl_off; 6435 buf = fw.fwl_buf; 6436 6437 /* 6438 * We need to determine the minimum and maximum amount of data that we 6439 * will send to the device in a given go. Starting in NMVe 1.3 this must 6440 * be a multiple of the firmware update granularity (FWUG), but must not 6441 * exceed the maximum data transfer that we've set. Many devices don't 6442 * report something here, which means we'll end up getting our default 6443 * value. Our policy is a little simple, but it's basically if the 6444 * maximum data transfer is evenly divided by the granularity, then use 6445 * it. Otherwise we use the granularity itself. The granularity is 6446 * always in page sized units, so trying to find another optimum point 6447 * isn't worth it. If we encounter a contradiction, then we will have to 6448 * error out. 6449 */ 6450 data.vcd_vers = &nvme->n_version; 6451 data.vcd_id = nvme->n_idctl; 6452 gran = nvme_fw_load_granularity(&data); 6453 6454 if ((nvme->n_max_data_transfer_size % gran) == 0) { 6455 maxcopy = nvme->n_max_data_transfer_size; 6456 } else if (gran <= nvme->n_max_data_transfer_size) { 6457 maxcopy = gran; 6458 } else { 6459 (void) nvme_ioctl_error(&fw.fwl_common, 6460 NVME_IOCTL_E_FW_LOAD_IMPOS_GRAN, 0, 0); 6461 goto copyout; 6462 } 6463 6464 while (len > 0) { 6465 nvme_ioc_cmd_args_t args = { NULL }; 6466 uint64_t copylen = MIN(maxcopy, len); 6467 6468 sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1; 6469 sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT); 6470 6471 args.ica_sqe = &sqe; 6472 args.ica_data = (void *)buf; 6473 args.ica_data_len = copylen; 6474 args.ica_dma_flags = DDI_DMA_WRITE; 6475 args.ica_copy_flags = mode; 6476 args.ica_timeout = nvme_admin_cmd_timeout; 6477 6478 if (!nvme_ioc_cmd(nvme, &fw.fwl_common, &args)) { 6479 break; 6480 } 6481 6482 buf += copylen; 6483 offset += copylen; 6484 len -= copylen; 6485 } 6486 6487 copyout: 6488 if (ddi_copyout(&fw, (void *)(uintptr_t)arg, sizeof (fw), 6489 mode & FKIOCTL) != 0) { 6490 return (EFAULT); 6491 } 6492 6493 return (0); 6494 } 6495 6496 static int 6497 nvme_ioctl_firmware_commit(nvme_minor_t *minor, intptr_t arg, int mode, 6498 cred_t *cred_p) 6499 { 6500 nvme_t *const nvme = minor->nm_ctrl; 6501 nvme_ioctl_fw_commit_t fw; 6502 nvme_firmware_commit_dw10_t fc_dw10 = { 0 }; 6503 nvme_ioc_cmd_args_t args = { NULL }; 6504 nvme_sqe_t sqe = { 6505 .sqe_opc = NVME_OPC_FW_ACTIVATE 6506 }; 6507 6508 if ((mode & FWRITE) == 0) 6509 return (EBADF); 6510 6511 if (secpolicy_sys_config(cred_p, B_FALSE) != 0) 6512 return (EPERM); 6513 6514 if (ddi_copyin((void *)(uintptr_t)arg, &fw, sizeof (fw), 6515 mode & FKIOCTL) != 0) { 6516 return (EFAULT); 6517 } 6518 6519 if (!nvme_ioctl_check(minor, &fw.fwc_common, &nvme_check_firmware)) { 6520 goto copyout; 6521 } 6522 6523 if (!nvme_validate_fw_commit(nvme, &fw)) { 6524 goto copyout; 6525 } 6526 6527 fc_dw10.b.fc_slot = fw.fwc_slot; 6528 fc_dw10.b.fc_action = fw.fwc_action; 6529 sqe.sqe_cdw10 = fc_dw10.r; 6530 6531 args.ica_sqe = &sqe; 6532 args.ica_timeout = nvme_commit_save_cmd_timeout; 6533 6534 /* 6535 * There are no conditional actions to take based on this succeeding or 6536 * failing. A failure is recorded in the ioctl structure returned to the 6537 * user. 6538 */ 6539 (void) nvme_ioc_cmd(nvme, &fw.fwc_common, &args); 6540 6541 /* 6542 * Let the DDI UFM subsystem know that the firmware information for 6543 * this device has changed. We perform this unconditionally as an 6544 * invalidation doesn't particularly hurt us. 6545 */ 6546 nvme_ufm_update(nvme); 6547 6548 copyout: 6549 if (ddi_copyout(&fw, (void *)(uintptr_t)arg, sizeof (fw), 6550 mode & FKIOCTL) != 0) { 6551 return (EFAULT); 6552 } 6553 6554 return (0); 6555 } 6556 6557 /* 6558 * Helper to copy in a passthru command from userspace, handling 6559 * different data models. 6560 */ 6561 static int 6562 nvme_passthru_copyin_cmd(const void *buf, nvme_ioctl_passthru_t *cmd, int mode) 6563 { 6564 switch (ddi_model_convert_from(mode & FMODELS)) { 6565 #ifdef _MULTI_DATAMODEL 6566 case DDI_MODEL_ILP32: { 6567 nvme_ioctl_passthru32_t cmd32; 6568 6569 if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0) 6570 return (EFAULT); 6571 6572 bzero(cmd, sizeof (nvme_ioctl_passthru_t)); 6573 6574 cmd->npc_common.nioc_nsid = cmd32.npc_common.nioc_nsid; 6575 cmd->npc_opcode = cmd32.npc_opcode; 6576 cmd->npc_timeout = cmd32.npc_timeout; 6577 cmd->npc_flags = cmd32.npc_flags; 6578 cmd->npc_impact = cmd32.npc_impact; 6579 cmd->npc_cdw12 = cmd32.npc_cdw12; 6580 cmd->npc_cdw13 = cmd32.npc_cdw13; 6581 cmd->npc_cdw14 = cmd32.npc_cdw14; 6582 cmd->npc_cdw15 = cmd32.npc_cdw15; 6583 cmd->npc_buflen = cmd32.npc_buflen; 6584 cmd->npc_buf = cmd32.npc_buf; 6585 break; 6586 } 6587 #endif /* _MULTI_DATAMODEL */ 6588 case DDI_MODEL_NONE: 6589 if (ddi_copyin(buf, (void *)cmd, sizeof (nvme_ioctl_passthru_t), 6590 mode) != 0) { 6591 return (EFAULT); 6592 } 6593 break; 6594 default: 6595 return (ENOTSUP); 6596 } 6597 6598 return (0); 6599 } 6600 6601 /* 6602 * Helper to copy out a passthru command result to userspace, handling 6603 * different data models. 6604 */ 6605 static int 6606 nvme_passthru_copyout_cmd(const nvme_ioctl_passthru_t *cmd, void *buf, int mode) 6607 { 6608 switch (ddi_model_convert_from(mode & FMODELS)) { 6609 #ifdef _MULTI_DATAMODEL 6610 case DDI_MODEL_ILP32: { 6611 nvme_ioctl_passthru32_t cmd32; 6612 6613 bzero(&cmd32, sizeof (nvme_ioctl_passthru32_t)); 6614 6615 cmd32.npc_common = cmd->npc_common; 6616 cmd32.npc_opcode = cmd->npc_opcode; 6617 cmd32.npc_timeout = cmd->npc_timeout; 6618 cmd32.npc_flags = cmd->npc_flags; 6619 cmd32.npc_impact = cmd->npc_impact; 6620 cmd32.npc_cdw0 = cmd->npc_cdw0; 6621 cmd32.npc_cdw12 = cmd->npc_cdw12; 6622 cmd32.npc_cdw13 = cmd->npc_cdw13; 6623 cmd32.npc_cdw14 = cmd->npc_cdw14; 6624 cmd32.npc_cdw15 = cmd->npc_cdw15; 6625 cmd32.npc_buflen = (size32_t)cmd->npc_buflen; 6626 cmd32.npc_buf = (uintptr32_t)cmd->npc_buf; 6627 if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0) 6628 return (EFAULT); 6629 break; 6630 } 6631 #endif /* _MULTI_DATAMODEL */ 6632 case DDI_MODEL_NONE: 6633 if (ddi_copyout(cmd, buf, sizeof (nvme_ioctl_passthru_t), 6634 mode) != 0) { 6635 return (EFAULT); 6636 } 6637 break; 6638 default: 6639 return (ENOTSUP); 6640 } 6641 return (0); 6642 } 6643 6644 /* 6645 * Run an arbitrary vendor-specific admin command on the device. 6646 */ 6647 static int 6648 nvme_ioctl_passthru(nvme_minor_t *minor, intptr_t arg, int mode, cred_t *cred_p) 6649 { 6650 nvme_t *const nvme = minor->nm_ctrl; 6651 int rv; 6652 nvme_ioctl_passthru_t pass; 6653 nvme_sqe_t sqe; 6654 nvme_ioc_cmd_args_t args = { NULL }; 6655 6656 /* 6657 * Basic checks: permissions, data model, argument size. 6658 */ 6659 if ((mode & FWRITE) == 0) 6660 return (EBADF); 6661 6662 if (secpolicy_sys_config(cred_p, B_FALSE) != 0) 6663 return (EPERM); 6664 6665 if ((rv = nvme_passthru_copyin_cmd((void *)(uintptr_t)arg, &pass, 6666 mode)) != 0) { 6667 return (rv); 6668 } 6669 6670 if (!nvme_ioctl_check(minor, &pass.npc_common, &nvme_check_passthru)) { 6671 goto copyout; 6672 } 6673 6674 if (!nvme_validate_vuc(nvme, &pass)) { 6675 goto copyout; 6676 } 6677 6678 mutex_enter(&nvme->n_mgmt_mutex); 6679 if ((pass.npc_impact & NVME_IMPACT_NS) != 0) { 6680 /* 6681 * We've been told this has ns impact. Right now force that to 6682 * be every ns until we have more use cases and reason to trust 6683 * the nsid field. 6684 */ 6685 if (!nvme_no_blkdev_attached(nvme, NVME_NSID_BCAST)) { 6686 mutex_exit(&nvme->n_mgmt_mutex); 6687 (void) nvme_ioctl_error(&pass.npc_common, 6688 NVME_IOCTL_E_NS_BLKDEV_ATTACH, 0, 0); 6689 goto copyout; 6690 } 6691 } 6692 6693 bzero(&sqe, sizeof (sqe)); 6694 6695 sqe.sqe_opc = pass.npc_opcode; 6696 sqe.sqe_nsid = pass.npc_common.nioc_nsid; 6697 sqe.sqe_cdw10 = (uint32_t)(pass.npc_buflen >> NVME_DWORD_SHIFT); 6698 sqe.sqe_cdw12 = pass.npc_cdw12; 6699 sqe.sqe_cdw13 = pass.npc_cdw13; 6700 sqe.sqe_cdw14 = pass.npc_cdw14; 6701 sqe.sqe_cdw15 = pass.npc_cdw15; 6702 6703 args.ica_sqe = &sqe; 6704 args.ica_data = (void *)pass.npc_buf; 6705 args.ica_data_len = pass.npc_buflen; 6706 args.ica_copy_flags = mode; 6707 args.ica_timeout = pass.npc_timeout; 6708 6709 if ((pass.npc_flags & NVME_PASSTHRU_READ) != 0) 6710 args.ica_dma_flags |= DDI_DMA_READ; 6711 else if ((pass.npc_flags & NVME_PASSTHRU_WRITE) != 0) 6712 args.ica_dma_flags |= DDI_DMA_WRITE; 6713 6714 if (nvme_ioc_cmd(nvme, &pass.npc_common, &args)) { 6715 pass.npc_cdw0 = args.ica_cdw0; 6716 if ((pass.npc_impact & NVME_IMPACT_NS) != 0) { 6717 nvme_rescan_ns(nvme, NVME_NSID_BCAST); 6718 } 6719 } 6720 mutex_exit(&nvme->n_mgmt_mutex); 6721 6722 copyout: 6723 rv = nvme_passthru_copyout_cmd(&pass, (void *)(uintptr_t)arg, 6724 mode); 6725 6726 return (rv); 6727 } 6728 6729 static int 6730 nvme_ioctl_lock(nvme_minor_t *minor, intptr_t arg, int mode, 6731 cred_t *cred_p) 6732 { 6733 nvme_ioctl_lock_t lock; 6734 const nvme_lock_flags_t all_flags = NVME_LOCK_F_DONT_BLOCK; 6735 nvme_t *nvme = minor->nm_ctrl; 6736 6737 if ((mode & FWRITE) == 0) 6738 return (EBADF); 6739 6740 if (secpolicy_sys_config(cred_p, B_FALSE) != 0) 6741 return (EPERM); 6742 6743 if (ddi_copyin((void *)(uintptr_t)arg, &lock, sizeof (lock), 6744 mode & FKIOCTL) != 0) { 6745 return (EFAULT); 6746 } 6747 6748 if (lock.nil_ent != NVME_LOCK_E_CTRL && 6749 lock.nil_ent != NVME_LOCK_E_NS) { 6750 (void) nvme_ioctl_error(&lock.nil_common, 6751 NVME_IOCTL_E_BAD_LOCK_ENTITY, 0, 0); 6752 goto copyout; 6753 } 6754 6755 if (lock.nil_level != NVME_LOCK_L_READ && 6756 lock.nil_level != NVME_LOCK_L_WRITE) { 6757 (void) nvme_ioctl_error(&lock.nil_common, 6758 NVME_IOCTL_E_BAD_LOCK_LEVEL, 0, 0); 6759 goto copyout; 6760 } 6761 6762 if ((lock.nil_flags & ~all_flags) != 0) { 6763 (void) nvme_ioctl_error(&lock.nil_common, 6764 NVME_IOCTL_E_BAD_LOCK_FLAGS, 0, 0); 6765 goto copyout; 6766 } 6767 6768 if (!nvme_ioctl_check(minor, &lock.nil_common, &nvme_check_locking)) { 6769 goto copyout; 6770 } 6771 6772 /* 6773 * If we're on a namespace, confirm that we're not asking for the 6774 * controller. 6775 */ 6776 if (lock.nil_common.nioc_nsid != 0 && 6777 lock.nil_ent == NVME_LOCK_E_CTRL) { 6778 (void) nvme_ioctl_error(&lock.nil_common, 6779 NVME_IOCTL_E_NS_CANNOT_LOCK_CTRL, 0, 0); 6780 goto copyout; 6781 } 6782 6783 /* 6784 * We've reached the point where we can no longer actually check things 6785 * without serializing state. First, we need to check to make sure that 6786 * none of our invariants are being broken for locking: 6787 * 6788 * 1) The caller isn't already blocking for a lock operation to 6789 * complete. 6790 * 6791 * 2) The caller is attempting to grab a lock that they already have. 6792 * While there are other rule violations that this might create, we opt 6793 * to check this ahead of it so we can have slightly better error 6794 * messages for our callers. 6795 * 6796 * 3) The caller is trying to grab a controller lock, while holding a 6797 * namespace lock. 6798 * 6799 * 4) The caller has a controller write lock and is trying to get a 6800 * namespace lock. For now, we disallow this case. Holding a controller 6801 * read lock is allowed, but the write lock allows you to operate on all 6802 * namespaces anyways. In addition, this simplifies the locking logic; 6803 * however, this constraint may be loosened in the future. 6804 * 6805 * 5) The caller is trying to acquire a second namespace lock when they 6806 * already have one. 6807 */ 6808 mutex_enter(&nvme->n_minor_mutex); 6809 if (minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_BLOCKED || 6810 minor->nm_ns_lock.nli_state == NVME_LOCK_STATE_BLOCKED) { 6811 (void) nvme_ioctl_error(&lock.nil_common, 6812 NVME_IOCTL_E_LOCK_PENDING, 0, 0); 6813 mutex_exit(&nvme->n_minor_mutex); 6814 goto copyout; 6815 } 6816 6817 if ((lock.nil_ent == NVME_LOCK_E_CTRL && 6818 minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_ACQUIRED) || 6819 (lock.nil_ent == NVME_LOCK_E_NS && 6820 minor->nm_ns_lock.nli_state == NVME_LOCK_STATE_ACQUIRED && 6821 minor->nm_ns_lock.nli_ns->ns_id == lock.nil_common.nioc_nsid)) { 6822 (void) nvme_ioctl_error(&lock.nil_common, 6823 NVME_IOCTL_E_LOCK_ALREADY_HELD, 0, 0); 6824 mutex_exit(&nvme->n_minor_mutex); 6825 goto copyout; 6826 } 6827 6828 if (lock.nil_ent == NVME_LOCK_E_CTRL && 6829 minor->nm_ns_lock.nli_state != NVME_LOCK_STATE_UNLOCKED) { 6830 (void) nvme_ioctl_error(&lock.nil_common, 6831 NVME_IOCTL_E_LOCK_NO_CTRL_WITH_NS, 0, 0); 6832 mutex_exit(&nvme->n_minor_mutex); 6833 goto copyout; 6834 } 6835 6836 if (lock.nil_ent == NVME_LOCK_E_NS && 6837 (minor->nm_ctrl_lock.nli_state == NVME_LOCK_STATE_ACQUIRED && 6838 minor->nm_ctrl_lock.nli_curlevel == NVME_LOCK_L_WRITE)) { 6839 (void) nvme_ioctl_error(&lock.nil_common, 6840 NVME_IOCTL_LOCK_NO_NS_WITH_CTRL_WRLOCK, 0, 0); 6841 mutex_exit(&nvme->n_minor_mutex); 6842 goto copyout; 6843 } 6844 6845 if (lock.nil_ent == NVME_LOCK_E_NS && 6846 minor->nm_ns_lock.nli_state != NVME_LOCK_STATE_UNLOCKED) { 6847 (void) nvme_ioctl_error(&lock.nil_common, 6848 NVME_IOCTL_E_LOCK_NO_2ND_NS, 0, 0); 6849 mutex_exit(&nvme->n_minor_mutex); 6850 goto copyout; 6851 } 6852 6853 6854 #ifdef DEBUG 6855 /* 6856 * This is a big block of sanity checks to make sure that we haven't 6857 * allowed anything bad to happen. 6858 */ 6859 if (lock.nil_ent == NVME_LOCK_E_NS) { 6860 ASSERT3P(minor->nm_ns_lock.nli_lock, ==, NULL); 6861 ASSERT3U(minor->nm_ns_lock.nli_state, ==, 6862 NVME_LOCK_STATE_UNLOCKED); 6863 ASSERT3U(minor->nm_ns_lock.nli_curlevel, ==, 0); 6864 ASSERT3P(minor->nm_ns_lock.nli_ns, ==, NULL); 6865 6866 if (minor->nm_ns != NULL) { 6867 ASSERT3U(minor->nm_ns->ns_id, ==, 6868 lock.nil_common.nioc_nsid); 6869 } 6870 6871 ASSERT0(list_link_active(&minor->nm_ns_lock.nli_node)); 6872 } else { 6873 ASSERT3P(minor->nm_ctrl_lock.nli_lock, ==, NULL); 6874 ASSERT3U(minor->nm_ctrl_lock.nli_state, ==, 6875 NVME_LOCK_STATE_UNLOCKED); 6876 ASSERT3U(minor->nm_ctrl_lock.nli_curlevel, ==, 0); 6877 ASSERT3P(minor->nm_ns_lock.nli_ns, ==, NULL); 6878 ASSERT0(list_link_active(&minor->nm_ctrl_lock.nli_node)); 6879 6880 ASSERT3P(minor->nm_ns_lock.nli_lock, ==, NULL); 6881 ASSERT3U(minor->nm_ns_lock.nli_state, ==, 6882 NVME_LOCK_STATE_UNLOCKED); 6883 ASSERT3U(minor->nm_ns_lock.nli_curlevel, ==, 0); 6884 ASSERT3P(minor->nm_ns_lock.nli_ns, ==, NULL); 6885 ASSERT0(list_link_active(&minor->nm_ns_lock.nli_node)); 6886 } 6887 #endif /* DEBUG */ 6888 6889 /* 6890 * At this point we should actually attempt a locking operation. 6891 */ 6892 nvme_rwlock(minor, &lock); 6893 mutex_exit(&nvme->n_minor_mutex); 6894 6895 copyout: 6896 if (ddi_copyout(&lock, (void *)(uintptr_t)arg, sizeof (lock), 6897 mode & FKIOCTL) != 0) { 6898 return (EFAULT); 6899 } 6900 6901 return (0); 6902 } 6903 6904 static int 6905 nvme_ioctl_unlock(nvme_minor_t *minor, intptr_t arg, int mode, 6906 cred_t *cred_p) 6907 { 6908 nvme_ioctl_unlock_t unlock; 6909 nvme_t *const nvme = minor->nm_ctrl; 6910 boolean_t is_ctrl; 6911 nvme_lock_t *lock; 6912 nvme_minor_lock_info_t *info; 6913 6914 /* 6915 * Note, we explicitly don't check for privileges for unlock. The idea 6916 * being that if you have the lock, that's what matters. If you don't 6917 * have the lock, it doesn't matter what privileges that you have at 6918 * all. 6919 */ 6920 if ((mode & FWRITE) == 0) 6921 return (EBADF); 6922 6923 if (ddi_copyin((void *)(uintptr_t)arg, &unlock, sizeof (unlock), 6924 mode & FKIOCTL) != 0) { 6925 return (EFAULT); 6926 } 6927 6928 if (unlock.niu_ent != NVME_LOCK_E_CTRL && 6929 unlock.niu_ent != NVME_LOCK_E_NS) { 6930 (void) nvme_ioctl_error(&unlock.niu_common, 6931 NVME_IOCTL_E_BAD_LOCK_ENTITY, 0, 0); 6932 goto copyout; 6933 } 6934 6935 if (!nvme_ioctl_check(minor, &unlock.niu_common, &nvme_check_locking)) { 6936 goto copyout; 6937 } 6938 6939 /* 6940 * If we're on a namespace, confirm that we're not asking for the 6941 * controller. 6942 */ 6943 if (unlock.niu_common.nioc_nsid != 0 && 6944 unlock.niu_ent == NVME_LOCK_E_CTRL) { 6945 (void) nvme_ioctl_error(&unlock.niu_common, 6946 NVME_IOCTL_E_NS_CANNOT_UNLOCK_CTRL, 0, 0); 6947 goto copyout; 6948 } 6949 6950 mutex_enter(&nvme->n_minor_mutex); 6951 if (unlock.niu_ent == NVME_LOCK_E_CTRL) { 6952 if (minor->nm_ctrl_lock.nli_state != NVME_LOCK_STATE_ACQUIRED) { 6953 mutex_exit(&nvme->n_minor_mutex); 6954 (void) nvme_ioctl_error(&unlock.niu_common, 6955 NVME_IOCTL_E_LOCK_NOT_HELD, 0, 0); 6956 goto copyout; 6957 } 6958 } else { 6959 if (minor->nm_ns_lock.nli_ns == NULL) { 6960 mutex_exit(&nvme->n_minor_mutex); 6961 (void) nvme_ioctl_error(&unlock.niu_common, 6962 NVME_IOCTL_E_LOCK_NOT_HELD, 0, 0); 6963 goto copyout; 6964 } 6965 6966 /* 6967 * Check that our unlock request corresponds to the namespace ID 6968 * that is currently locked. This could happen if we're using 6969 * the controller node and it specified a valid, but not locked, 6970 * namespace ID. 6971 */ 6972 if (minor->nm_ns_lock.nli_ns->ns_id != 6973 unlock.niu_common.nioc_nsid) { 6974 mutex_exit(&nvme->n_minor_mutex); 6975 ASSERT3P(minor->nm_ns, ==, NULL); 6976 (void) nvme_ioctl_error(&unlock.niu_common, 6977 NVME_IOCTL_E_LOCK_WRONG_NS, 0, 0); 6978 goto copyout; 6979 } 6980 6981 if (minor->nm_ns_lock.nli_state != NVME_LOCK_STATE_ACQUIRED) { 6982 mutex_exit(&nvme->n_minor_mutex); 6983 (void) nvme_ioctl_error(&unlock.niu_common, 6984 NVME_IOCTL_E_LOCK_NOT_HELD, 0, 0); 6985 goto copyout; 6986 } 6987 } 6988 6989 /* 6990 * Finally, perform the unlock. 6991 */ 6992 is_ctrl = unlock.niu_ent == NVME_LOCK_E_CTRL; 6993 if (is_ctrl) { 6994 lock = &nvme->n_lock; 6995 info = &minor->nm_ctrl_lock; 6996 } else { 6997 nvme_namespace_t *ns; 6998 const uint32_t nsid = unlock.niu_common.nioc_nsid; 6999 7000 ns = nvme_nsid2ns(nvme, nsid); 7001 lock = &ns->ns_lock; 7002 info = &minor->nm_ns_lock; 7003 VERIFY3P(ns, ==, info->nli_ns); 7004 } 7005 nvme_rwunlock(info, lock); 7006 mutex_exit(&nvme->n_minor_mutex); 7007 nvme_ioctl_success(&unlock.niu_common); 7008 7009 copyout: 7010 if (ddi_copyout(&unlock, (void *)(uintptr_t)arg, sizeof (unlock), 7011 mode & FKIOCTL) != 0) { 7012 return (EFAULT); 7013 } 7014 7015 return (0); 7016 } 7017 7018 static int 7019 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p, 7020 int *rval_p) 7021 { 7022 #ifndef __lock_lint 7023 _NOTE(ARGUNUSED(rval_p)); 7024 #endif 7025 nvme_minor_t *minor; 7026 nvme_t *nvme; 7027 7028 minor = nvme_minor_find_by_dev(dev); 7029 if (minor == NULL) { 7030 return (ENXIO); 7031 } 7032 7033 nvme = minor->nm_ctrl; 7034 if (nvme == NULL) 7035 return (ENXIO); 7036 7037 if (IS_DEVCTL(cmd)) 7038 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0)); 7039 7040 if (nvme->n_dead && (cmd != NVME_IOC_DETACH && cmd != 7041 NVME_IOC_UNLOCK)) { 7042 if (IS_NVME_IOC(cmd) == 0) { 7043 return (EIO); 7044 } 7045 7046 return (nvme_ioctl_copyout_error(nvme->n_dead_status, arg, 7047 mode)); 7048 } 7049 7050 /* 7051 * ioctls that are no longer using the original ioctl structure. 7052 */ 7053 switch (cmd) { 7054 case NVME_IOC_CTRL_INFO: 7055 return (nvme_ioctl_ctrl_info(minor, arg, mode, cred_p)); 7056 case NVME_IOC_IDENTIFY: 7057 return (nvme_ioctl_identify(minor, arg, mode, cred_p)); 7058 case NVME_IOC_GET_LOGPAGE: 7059 return (nvme_ioctl_get_logpage(minor, arg, mode, cred_p)); 7060 case NVME_IOC_GET_FEATURE: 7061 return (nvme_ioctl_get_feature(minor, arg, mode, cred_p)); 7062 case NVME_IOC_DETACH: 7063 return (nvme_ioctl_detach(minor, arg, mode, cred_p)); 7064 case NVME_IOC_ATTACH: 7065 return (nvme_ioctl_attach(minor, arg, mode, cred_p)); 7066 case NVME_IOC_FORMAT: 7067 return (nvme_ioctl_format(minor, arg, mode, cred_p)); 7068 case NVME_IOC_FIRMWARE_DOWNLOAD: 7069 return (nvme_ioctl_firmware_download(minor, arg, mode, 7070 cred_p)); 7071 case NVME_IOC_FIRMWARE_COMMIT: 7072 return (nvme_ioctl_firmware_commit(minor, arg, mode, 7073 cred_p)); 7074 case NVME_IOC_NS_INFO: 7075 return (nvme_ioctl_ns_info(minor, arg, mode, cred_p)); 7076 case NVME_IOC_PASSTHRU: 7077 return (nvme_ioctl_passthru(minor, arg, mode, cred_p)); 7078 case NVME_IOC_LOCK: 7079 return (nvme_ioctl_lock(minor, arg, mode, cred_p)); 7080 case NVME_IOC_UNLOCK: 7081 return (nvme_ioctl_unlock(minor, arg, mode, cred_p)); 7082 default: 7083 return (ENOTTY); 7084 } 7085 } 7086 7087 /* 7088 * DDI UFM Callbacks 7089 */ 7090 static int 7091 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, 7092 ddi_ufm_image_t *img) 7093 { 7094 nvme_t *nvme = arg; 7095 7096 if (imgno != 0) 7097 return (EINVAL); 7098 7099 ddi_ufm_image_set_desc(img, "Firmware"); 7100 ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot); 7101 7102 return (0); 7103 } 7104 7105 /* 7106 * Fill out firmware slot information for the requested slot. The firmware 7107 * slot information is gathered by requesting the Firmware Slot Information log 7108 * page. The format of the page is described in section 5.10.1.3. 7109 * 7110 * We lazily cache the log page on the first call and then invalidate the cache 7111 * data after a successful firmware download or firmware commit command. 7112 * The cached data is protected by a mutex as the state can change 7113 * asynchronous to this callback. 7114 */ 7115 static int 7116 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, 7117 uint_t slotno, ddi_ufm_slot_t *slot) 7118 { 7119 nvme_t *nvme = arg; 7120 void *log = NULL; 7121 size_t bufsize; 7122 ddi_ufm_attr_t attr = 0; 7123 char fw_ver[NVME_FWVER_SZ + 1]; 7124 7125 if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1)) 7126 return (EINVAL); 7127 7128 mutex_enter(&nvme->n_fwslot_mutex); 7129 if (nvme->n_fwslot == NULL) { 7130 if (!nvme_get_logpage_int(nvme, B_TRUE, &log, &bufsize, 7131 NVME_LOGPAGE_FWSLOT) || 7132 bufsize != sizeof (nvme_fwslot_log_t)) { 7133 if (log != NULL) 7134 kmem_free(log, bufsize); 7135 mutex_exit(&nvme->n_fwslot_mutex); 7136 return (EIO); 7137 } 7138 nvme->n_fwslot = (nvme_fwslot_log_t *)log; 7139 } 7140 7141 /* 7142 * NVMe numbers firmware slots starting at 1 7143 */ 7144 if (slotno == (nvme->n_fwslot->fw_afi - 1)) 7145 attr |= DDI_UFM_ATTR_ACTIVE; 7146 7147 if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0) 7148 attr |= DDI_UFM_ATTR_WRITEABLE; 7149 7150 if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') { 7151 attr |= DDI_UFM_ATTR_EMPTY; 7152 } else { 7153 (void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno], 7154 NVME_FWVER_SZ); 7155 fw_ver[NVME_FWVER_SZ] = '\0'; 7156 ddi_ufm_slot_set_version(slot, fw_ver); 7157 } 7158 mutex_exit(&nvme->n_fwslot_mutex); 7159 7160 ddi_ufm_slot_set_attrs(slot, attr); 7161 7162 return (0); 7163 } 7164 7165 static int 7166 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps) 7167 { 7168 *caps = DDI_UFM_CAP_REPORT; 7169 return (0); 7170 } 7171 7172 boolean_t 7173 nvme_ctrl_atleast(nvme_t *nvme, const nvme_version_t *min) 7174 { 7175 return (nvme_vers_atleast(&nvme->n_version, min) ? B_TRUE : B_FALSE); 7176 } 7177