xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 353d89b0745ef752e824c1afc3f0474f66dfbd64)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
14  * Copyright 2020 Joyent, Inc.
15  * Copyright 2020 Racktop Systems.
16  * Copyright 2022 Oxide Computer Company.
17  * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
18  * Copyright 2022 Tintri by DDN, Inc. All rights reserved.
19  */
20 
21 /*
22  * blkdev driver for NVMe compliant storage devices
23  *
24  * This driver targets and is designed to support all NVMe 1.x devices.
25  * Features are added to the driver as we encounter devices that require them
26  * and our needs, so some commands or log pages may not take advantage of newer
27  * features that devices support at this time. When you encounter such a case,
28  * it is generally fine to add that support to the driver as long as you take
29  * care to ensure that the requisite device version is met before using it.
30  *
31  * The driver has only been tested on x86 systems and will not work on big-
32  * endian systems without changes to the code accessing registers and data
33  * structures used by the hardware.
34  *
35  *
36  * Interrupt Usage:
37  *
38  * The driver will use a single interrupt while configuring the device as the
39  * specification requires, but contrary to the specification it will try to use
40  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
41  * will switch to multiple-message MSI(-X) if supported. The driver wants to
42  * have one interrupt vector per CPU, but it will work correctly if less are
43  * available. Interrupts can be shared by queues, the interrupt handler will
44  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
45  * the admin queue will share an interrupt with one I/O queue. The interrupt
46  * handler will retrieve completed commands from all queues sharing an interrupt
47  * vector and will post them to a taskq for completion processing.
48  *
49  *
50  * Command Processing:
51  *
52  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
53  * to 65536 I/O commands. The driver will configure one I/O queue pair per
54  * available interrupt vector, with the queue length usually much smaller than
55  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
56  * interrupt vectors will be used.
57  *
58  * Additionally the hardware provides a single special admin queue pair that can
59  * hold up to 4096 admin commands.
60  *
61  * From the hardware perspective both queues of a queue pair are independent,
62  * but they share some driver state: the command array (holding pointers to
63  * commands currently being processed by the hardware) and the active command
64  * counter. Access to a submission queue and the shared state is protected by
65  * nq_mutex; completion queue is protected by ncq_mutex.
66  *
67  * When a command is submitted to a queue pair the active command counter is
68  * incremented and a pointer to the command is stored in the command array. The
69  * array index is used as command identifier (CID) in the submission queue
70  * entry. Some commands may take a very long time to complete, and if the queue
71  * wraps around in that time a submission may find the next array slot to still
72  * be used by a long-running command. In this case the array is sequentially
73  * searched for the next free slot. The length of the command array is the same
74  * as the configured queue length. Queue overrun is prevented by the semaphore,
75  * so a command submission may block if the queue is full.
76  *
77  *
78  * Polled I/O Support:
79  *
80  * For kernel core dump support the driver can do polled I/O. As interrupts are
81  * turned off while dumping the driver will just submit a command in the regular
82  * way, and then repeatedly attempt a command retrieval until it gets the
83  * command back.
84  *
85  *
86  * Namespace Support:
87  *
88  * NVMe devices can have multiple namespaces, each being a independent data
89  * store. The driver supports multiple namespaces and creates a blkdev interface
90  * for each namespace found. Namespaces can have various attributes to support
91  * protection information. This driver does not support any of this and ignores
92  * namespaces that have these attributes.
93  *
94  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
95  * (EUI64). This driver uses the EUI64 if present to generate the devid and
96  * passes it to blkdev to use it in the device node names. As this is currently
97  * untested namespaces with EUI64 are ignored by default.
98  *
99  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
100  * single controller. This is an artificial limit imposed by the driver to be
101  * able to address a reasonable number of controllers and namespaces using a
102  * 32bit minor node number.
103  *
104  *
105  * Minor nodes:
106  *
107  * For each NVMe device the driver exposes one minor node for the controller and
108  * one minor node for each namespace. The only operations supported by those
109  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
110  * interface for the nvmeadm(8) utility.
111  *
112  * Exclusive opens are required for certain ioctl(9E) operations that alter
113  * controller and/or namespace state. While different namespaces may be opened
114  * exclusively in parallel, an exclusive open of the controller minor node
115  * requires that no namespaces are currently open (exclusive or otherwise).
116  * Opening any namespace minor node (exclusive or otherwise) will fail while
117  * the controller minor node is opened exclusively by any other thread. Thus it
118  * is possible for one thread at a time to open the controller minor node
119  * exclusively, and keep it open while opening any namespace minor node of the
120  * same controller, exclusively or otherwise.
121  *
122  *
123  *
124  * Blkdev Interface:
125  *
126  * This driver uses blkdev to do all the heavy lifting involved with presenting
127  * a disk device to the system. As a result, the processing of I/O requests is
128  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
129  * setup, and splitting of transfers into manageable chunks.
130  *
131  * I/O requests coming in from blkdev are turned into NVM commands and posted to
132  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
133  * queues. There is currently no timeout handling of I/O commands.
134  *
135  * Blkdev also supports querying device/media information and generating a
136  * devid. The driver reports the best block size as determined by the namespace
137  * format back to blkdev as physical block size to support partition and block
138  * alignment. The devid is either based on the namespace EUI64, if present, or
139  * composed using the device vendor ID, model number, serial number, and the
140  * namespace ID.
141  *
142  *
143  * Error Handling:
144  *
145  * Error handling is currently limited to detecting fatal hardware errors,
146  * either by asynchronous events, or synchronously through command status or
147  * admin command timeouts. In case of severe errors the device is fenced off,
148  * all further requests will return EIO. FMA is then called to fault the device.
149  *
150  * The hardware has a limit for outstanding asynchronous event requests. Before
151  * this limit is known the driver assumes it is at least 1 and posts a single
152  * asynchronous request. Later when the limit is known more asynchronous event
153  * requests are posted to allow quicker reception of error information. When an
154  * asynchronous event is posted by the hardware the driver will parse the error
155  * status fields and log information or fault the device, depending on the
156  * severity of the asynchronous event. The asynchronous event request is then
157  * reused and posted to the admin queue again.
158  *
159  * On command completion the command status is checked for errors. In case of
160  * errors indicating a driver bug the driver panics. Almost all other error
161  * status values just cause EIO to be returned.
162  *
163  * Command timeouts are currently detected for all admin commands except
164  * asynchronous event requests. If a command times out and the hardware appears
165  * to be healthy the driver attempts to abort the command. The original command
166  * timeout is also applied to the abort command. If the abort times out too the
167  * driver assumes the device to be dead, fences it off, and calls FMA to retire
168  * it. In all other cases the aborted command should return immediately with a
169  * status indicating it was aborted, and the driver will wait indefinitely for
170  * that to happen. No timeout handling of normal I/O commands is presently done.
171  *
172  * Any command that times out due to the controller dropping dead will be put on
173  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
174  * memory being reused by the system and later be written to by a "dead" NVMe
175  * controller.
176  *
177  *
178  * Locking:
179  *
180  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
181  * when accessing shared state and submission queue registers, ncq_mutex
182  * is held when accessing completion queue state and registers.
183  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
184  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
185  * mutexes themselves.
186  *
187  * Each command also has its own nc_mutex, which is associated with the
188  * condition variable nc_cv. It is only used on admin commands which are run
189  * synchronously. In that case it must be held across calls to
190  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
191  * nvme_admin_cmd(). It must also be held whenever the completion state of the
192  * command is changed or while a admin command timeout is handled.
193  *
194  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
195  * More than one nc_mutex may only be held when aborting commands. In this case,
196  * the nc_mutex of the command to be aborted must be held across the call to
197  * nvme_abort_cmd() to prevent the command from completing while the abort is in
198  * progress.
199  *
200  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
201  * acquired first. More than one nq_mutex is never held by a single thread.
202  * The ncq_mutex is only held by nvme_retrieve_cmd() and
203  * nvme_process_iocq(). nvme_process_iocq() is only called from the
204  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
205  * mutex is non-contentious but is required for implementation completeness
206  * and safety.
207  *
208  * There is one mutex n_minor_mutex which protects all open flags nm_open and
209  * exclusive-open thread pointers nm_oexcl of each minor node associated with a
210  * controller and its namespaces.
211  *
212  *
213  * Quiesce / Fast Reboot:
214  *
215  * The driver currently does not support fast reboot. A quiesce(9E) entry point
216  * is still provided which is used to send a shutdown notification to the
217  * device.
218  *
219  *
220  * NVMe Hotplug:
221  *
222  * The driver supports hot removal. The driver uses the NDI event framework
223  * to register a callback, nvme_remove_callback, to clean up when a disk is
224  * removed. In particular, the driver will unqueue outstanding I/O commands and
225  * set n_dead on the softstate to true so that other operations, such as ioctls
226  * and command submissions, fail as well.
227  *
228  * While the callback registration relies on the NDI event framework, the
229  * removal event itself is kicked off in the PCIe hotplug framework, when the
230  * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a
231  * device was removed from the slot.
232  *
233  * The NVMe driver instance itself will remain until the final close of the
234  * device.
235  *
236  *
237  * DDI UFM Support
238  *
239  * The driver supports the DDI UFM framework for reporting information about
240  * the device's firmware image and slot configuration. This data can be
241  * queried by userland software via ioctls to the ufm driver. For more
242  * information, see ddi_ufm(9E).
243  *
244  *
245  * Driver Configuration:
246  *
247  * The following driver properties can be changed to control some aspects of the
248  * drivers operation:
249  * - strict-version: can be set to 0 to allow devices conforming to newer
250  *   major versions to be used
251  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
252  *   specific command status as a fatal error leading device faulting
253  * - admin-queue-len: the maximum length of the admin queue (16-4096)
254  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
255  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
256  * - async-event-limit: the maximum number of asynchronous event requests to be
257  *   posted by the driver
258  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
259  *   cache
260  * - min-phys-block-size: the minimum physical block size to report to blkdev,
261  *   which is among other things the basis for ZFS vdev ashift
262  * - max-submission-queues: the maximum number of I/O submission queues.
263  * - max-completion-queues: the maximum number of I/O completion queues,
264  *   can be less than max-submission-queues, in which case the completion
265  *   queues are shared.
266  *
267  *
268  * TODO:
269  * - figure out sane default for I/O queue depth reported to blkdev
270  * - FMA handling of media errors
271  * - support for devices supporting very large I/O requests using chained PRPs
272  * - support for configuring hardware parameters like interrupt coalescing
273  * - support for media formatting and hard partitioning into namespaces
274  * - support for big-endian systems
275  * - support for fast reboot
276  * - support for NVMe Subsystem Reset (1.1)
277  * - support for Scatter/Gather lists (1.1)
278  * - support for Reservations (1.1)
279  * - support for power management
280  */
281 
282 #include <sys/byteorder.h>
283 #ifdef _BIG_ENDIAN
284 #error nvme driver needs porting for big-endian platforms
285 #endif
286 
287 #include <sys/modctl.h>
288 #include <sys/conf.h>
289 #include <sys/devops.h>
290 #include <sys/ddi.h>
291 #include <sys/ddi_ufm.h>
292 #include <sys/sunddi.h>
293 #include <sys/sunndi.h>
294 #include <sys/bitmap.h>
295 #include <sys/sysmacros.h>
296 #include <sys/param.h>
297 #include <sys/varargs.h>
298 #include <sys/cpuvar.h>
299 #include <sys/disp.h>
300 #include <sys/blkdev.h>
301 #include <sys/atomic.h>
302 #include <sys/archsystm.h>
303 #include <sys/sata/sata_hba.h>
304 #include <sys/stat.h>
305 #include <sys/policy.h>
306 #include <sys/list.h>
307 #include <sys/dkio.h>
308 
309 #include <sys/nvme.h>
310 
311 #ifdef __x86
312 #include <sys/x86_archext.h>
313 #endif
314 
315 #include "nvme_reg.h"
316 #include "nvme_var.h"
317 
318 /*
319  * Assertions to make sure that we've properly captured various aspects of the
320  * packed structures and haven't broken them during updates.
321  */
322 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
323 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
324 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
325 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
326 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
327 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
328 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
329 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
330 
331 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
332 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
333 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
334 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
335 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
336 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
337 
338 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
339 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
340 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
341 
342 
343 /* NVMe spec version supported */
344 static const int nvme_version_major = 1;
345 
346 /* tunable for admin command timeout in seconds, default is 1s */
347 int nvme_admin_cmd_timeout = 1;
348 
349 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
350 int nvme_format_cmd_timeout = 600;
351 
352 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
353 int nvme_commit_save_cmd_timeout = 15;
354 
355 /*
356  * tunable for the size of arbitrary vendor specific admin commands,
357  * default is 16MiB.
358  */
359 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24;
360 
361 /*
362  * tunable for the max timeout of arbitary vendor specific admin commands,
363  * default is 60s.
364  */
365 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60;
366 
367 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
368 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
369 static int nvme_quiesce(dev_info_t *);
370 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
371 static int nvme_setup_interrupts(nvme_t *, int, int);
372 static void nvme_release_interrupts(nvme_t *);
373 static uint_t nvme_intr(caddr_t, caddr_t);
374 
375 static void nvme_shutdown(nvme_t *, int, boolean_t);
376 static boolean_t nvme_reset(nvme_t *, boolean_t);
377 static int nvme_init(nvme_t *);
378 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
379 static void nvme_free_cmd(nvme_cmd_t *);
380 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
381     bd_xfer_t *);
382 static void nvme_admin_cmd(nvme_cmd_t *, int);
383 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
384 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
385 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
386 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
387 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
388 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
389 static void nvme_wakeup_cmd(void *);
390 static void nvme_async_event_task(void *);
391 
392 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
393 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
394 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
395 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
396 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
397 static inline int nvme_check_cmd_status(nvme_cmd_t *);
398 
399 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
400 static void nvme_async_event(nvme_t *);
401 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
402     uint8_t, boolean_t, uint8_t);
403 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
404     ...);
405 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
406 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
407     uint32_t *);
408 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
409     void **, size_t *);
410 static int nvme_write_cache_set(nvme_t *, boolean_t);
411 static int nvme_set_nqueues(nvme_t *);
412 
413 static void nvme_free_dma(nvme_dma_t *);
414 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
415     nvme_dma_t **);
416 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
417     nvme_dma_t **);
418 static void nvme_free_qpair(nvme_qpair_t *);
419 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
420 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
421 
422 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
423 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
424 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
425 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
426 
427 static boolean_t nvme_check_regs_hdl(nvme_t *);
428 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
429 
430 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t);
431 
432 static void nvme_bd_xfer_done(void *);
433 static void nvme_bd_driveinfo(void *, bd_drive_t *);
434 static int nvme_bd_mediainfo(void *, bd_media_t *);
435 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
436 static int nvme_bd_read(void *, bd_xfer_t *);
437 static int nvme_bd_write(void *, bd_xfer_t *);
438 static int nvme_bd_sync(void *, bd_xfer_t *);
439 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
440 static int nvme_bd_free_space(void *, bd_xfer_t *);
441 
442 static int nvme_prp_dma_constructor(void *, void *, int);
443 static void nvme_prp_dma_destructor(void *, void *);
444 
445 static void nvme_prepare_devid(nvme_t *, uint32_t);
446 
447 /* DDI UFM callbacks */
448 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
449     ddi_ufm_image_t *);
450 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
451     ddi_ufm_slot_t *);
452 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
453 
454 static int nvme_open(dev_t *, int, int, cred_t *);
455 static int nvme_close(dev_t, int, int, cred_t *);
456 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
457 
458 static void nvme_changed_ns(nvme_t *, int);
459 
460 static ddi_ufm_ops_t nvme_ufm_ops = {
461 	NULL,
462 	nvme_ufm_fill_image,
463 	nvme_ufm_fill_slot,
464 	nvme_ufm_getcaps
465 };
466 
467 #define	NVME_MINOR_INST_SHIFT	9
468 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
469 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
470 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
471 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
472 #define	NVME_IS_VENDOR_SPECIFIC_CMD(x)	(((x) >= 0xC0) && ((x) <= 0xFF))
473 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MIN	0xC0
474 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX	0xFF
475 #define	NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x)	\
476 		(((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \
477 		((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX))
478 
479 /*
480  * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX
481  * DWords in size. However, revision 1.3 also modified the layout of the Get Log
482  * Page command significantly relative to version 1.2, including changing
483  * reserved bits, adding new bitfields, and requiring the use of command DWord
484  * 11 to fully specify the size of the log page (the lower and upper 16 bits of
485  * the number of DWords in the page are split between DWord 10 and DWord 11,
486  * respectively).
487  *
488  * All of these impose significantly different layout requirements on the
489  * `nvme_getlogpage_t` type. This could be solved with two different types, or a
490  * complicated/nested union with the two versions as the overlying members. Both
491  * of these are reasonable, if a bit convoluted. However, these is no current
492  * need for such large pages, or a way to test them, as most log pages actually
493  * fit within the current size limit. So for simplicity, we retain the size cap
494  * from version 1.2.
495  *
496  * Note that the number of DWords is zero-based, so we add 1. It is subtracted
497  * to form a zero-based value in `nvme_get_logpage`.
498  */
499 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE	\
500 		(((1 << 12) + 1) * sizeof (uint32_t))
501 
502 static void *nvme_state;
503 static kmem_cache_t *nvme_cmd_cache;
504 
505 /*
506  * DMA attributes for queue DMA memory
507  *
508  * Queue DMA memory must be page aligned. The maximum length of a queue is
509  * 65536 entries, and an entry can be 64 bytes long.
510  */
511 static ddi_dma_attr_t nvme_queue_dma_attr = {
512 	.dma_attr_version	= DMA_ATTR_V0,
513 	.dma_attr_addr_lo	= 0,
514 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
515 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
516 	.dma_attr_align		= 0x1000,
517 	.dma_attr_burstsizes	= 0x7ff,
518 	.dma_attr_minxfer	= 0x1000,
519 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
520 	.dma_attr_seg		= 0xffffffffffffffffULL,
521 	.dma_attr_sgllen	= 1,
522 	.dma_attr_granular	= 1,
523 	.dma_attr_flags		= 0,
524 };
525 
526 /*
527  * DMA attributes for transfers using Physical Region Page (PRP) entries
528  *
529  * A PRP entry describes one page of DMA memory using the page size specified
530  * in the controller configuration's memory page size register (CC.MPS). It uses
531  * a 64bit base address aligned to this page size. There is no limitation on
532  * chaining PRPs together for arbitrarily large DMA transfers.
533  */
534 static ddi_dma_attr_t nvme_prp_dma_attr = {
535 	.dma_attr_version	= DMA_ATTR_V0,
536 	.dma_attr_addr_lo	= 0,
537 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
538 	.dma_attr_count_max	= 0xfff,
539 	.dma_attr_align		= 0x1000,
540 	.dma_attr_burstsizes	= 0x7ff,
541 	.dma_attr_minxfer	= 0x1000,
542 	.dma_attr_maxxfer	= 0x1000,
543 	.dma_attr_seg		= 0xfff,
544 	.dma_attr_sgllen	= -1,
545 	.dma_attr_granular	= 1,
546 	.dma_attr_flags		= 0,
547 };
548 
549 /*
550  * DMA attributes for transfers using scatter/gather lists
551  *
552  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
553  * 32bit length field. SGL Segment and SGL Last Segment entries require the
554  * length to be a multiple of 16 bytes.
555  */
556 static ddi_dma_attr_t nvme_sgl_dma_attr = {
557 	.dma_attr_version	= DMA_ATTR_V0,
558 	.dma_attr_addr_lo	= 0,
559 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
560 	.dma_attr_count_max	= 0xffffffffUL,
561 	.dma_attr_align		= 1,
562 	.dma_attr_burstsizes	= 0x7ff,
563 	.dma_attr_minxfer	= 0x10,
564 	.dma_attr_maxxfer	= 0xfffffffffULL,
565 	.dma_attr_seg		= 0xffffffffffffffffULL,
566 	.dma_attr_sgllen	= -1,
567 	.dma_attr_granular	= 0x10,
568 	.dma_attr_flags		= 0
569 };
570 
571 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
572 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
573 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
574 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
575 };
576 
577 static struct cb_ops nvme_cb_ops = {
578 	.cb_open	= nvme_open,
579 	.cb_close	= nvme_close,
580 	.cb_strategy	= nodev,
581 	.cb_print	= nodev,
582 	.cb_dump	= nodev,
583 	.cb_read	= nodev,
584 	.cb_write	= nodev,
585 	.cb_ioctl	= nvme_ioctl,
586 	.cb_devmap	= nodev,
587 	.cb_mmap	= nodev,
588 	.cb_segmap	= nodev,
589 	.cb_chpoll	= nochpoll,
590 	.cb_prop_op	= ddi_prop_op,
591 	.cb_str		= 0,
592 	.cb_flag	= D_NEW | D_MP,
593 	.cb_rev		= CB_REV,
594 	.cb_aread	= nodev,
595 	.cb_awrite	= nodev
596 };
597 
598 static struct dev_ops nvme_dev_ops = {
599 	.devo_rev	= DEVO_REV,
600 	.devo_refcnt	= 0,
601 	.devo_getinfo	= ddi_no_info,
602 	.devo_identify	= nulldev,
603 	.devo_probe	= nulldev,
604 	.devo_attach	= nvme_attach,
605 	.devo_detach	= nvme_detach,
606 	.devo_reset	= nodev,
607 	.devo_cb_ops	= &nvme_cb_ops,
608 	.devo_bus_ops	= NULL,
609 	.devo_power	= NULL,
610 	.devo_quiesce	= nvme_quiesce,
611 };
612 
613 static struct modldrv nvme_modldrv = {
614 	.drv_modops	= &mod_driverops,
615 	.drv_linkinfo	= "NVMe v1.1b",
616 	.drv_dev_ops	= &nvme_dev_ops
617 };
618 
619 static struct modlinkage nvme_modlinkage = {
620 	.ml_rev		= MODREV_1,
621 	.ml_linkage	= { &nvme_modldrv, NULL }
622 };
623 
624 static bd_ops_t nvme_bd_ops = {
625 	.o_version	= BD_OPS_CURRENT_VERSION,
626 	.o_drive_info	= nvme_bd_driveinfo,
627 	.o_media_info	= nvme_bd_mediainfo,
628 	.o_devid_init	= nvme_bd_devid,
629 	.o_sync_cache	= nvme_bd_sync,
630 	.o_read		= nvme_bd_read,
631 	.o_write	= nvme_bd_write,
632 	.o_free_space	= nvme_bd_free_space,
633 };
634 
635 /*
636  * This list will hold commands that have timed out and couldn't be aborted.
637  * As we don't know what the hardware may still do with the DMA memory we can't
638  * free them, so we'll keep them forever on this list where we can easily look
639  * at them with mdb.
640  */
641 static struct list nvme_lost_cmds;
642 static kmutex_t nvme_lc_mutex;
643 
644 int
645 _init(void)
646 {
647 	int error;
648 
649 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
650 	if (error != DDI_SUCCESS)
651 		return (error);
652 
653 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
654 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
655 
656 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
657 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
658 	    offsetof(nvme_cmd_t, nc_list));
659 
660 	bd_mod_init(&nvme_dev_ops);
661 
662 	error = mod_install(&nvme_modlinkage);
663 	if (error != DDI_SUCCESS) {
664 		ddi_soft_state_fini(&nvme_state);
665 		mutex_destroy(&nvme_lc_mutex);
666 		list_destroy(&nvme_lost_cmds);
667 		bd_mod_fini(&nvme_dev_ops);
668 	}
669 
670 	return (error);
671 }
672 
673 int
674 _fini(void)
675 {
676 	int error;
677 
678 	if (!list_is_empty(&nvme_lost_cmds))
679 		return (DDI_FAILURE);
680 
681 	error = mod_remove(&nvme_modlinkage);
682 	if (error == DDI_SUCCESS) {
683 		ddi_soft_state_fini(&nvme_state);
684 		kmem_cache_destroy(nvme_cmd_cache);
685 		mutex_destroy(&nvme_lc_mutex);
686 		list_destroy(&nvme_lost_cmds);
687 		bd_mod_fini(&nvme_dev_ops);
688 	}
689 
690 	return (error);
691 }
692 
693 int
694 _info(struct modinfo *modinfop)
695 {
696 	return (mod_info(&nvme_modlinkage, modinfop));
697 }
698 
699 static inline void
700 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
701 {
702 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
703 
704 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
705 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
706 }
707 
708 static inline void
709 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
710 {
711 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
712 
713 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
714 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
715 }
716 
717 static inline uint64_t
718 nvme_get64(nvme_t *nvme, uintptr_t reg)
719 {
720 	uint64_t val;
721 
722 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
723 
724 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
725 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
726 
727 	return (val);
728 }
729 
730 static inline uint32_t
731 nvme_get32(nvme_t *nvme, uintptr_t reg)
732 {
733 	uint32_t val;
734 
735 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
736 
737 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
738 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
739 
740 	return (val);
741 }
742 
743 static boolean_t
744 nvme_check_regs_hdl(nvme_t *nvme)
745 {
746 	ddi_fm_error_t error;
747 
748 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
749 
750 	if (error.fme_status != DDI_FM_OK)
751 		return (B_TRUE);
752 
753 	return (B_FALSE);
754 }
755 
756 static boolean_t
757 nvme_check_dma_hdl(nvme_dma_t *dma)
758 {
759 	ddi_fm_error_t error;
760 
761 	if (dma == NULL)
762 		return (B_FALSE);
763 
764 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
765 
766 	if (error.fme_status != DDI_FM_OK)
767 		return (B_TRUE);
768 
769 	return (B_FALSE);
770 }
771 
772 static void
773 nvme_free_dma_common(nvme_dma_t *dma)
774 {
775 	if (dma->nd_dmah != NULL)
776 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
777 	if (dma->nd_acch != NULL)
778 		ddi_dma_mem_free(&dma->nd_acch);
779 	if (dma->nd_dmah != NULL)
780 		ddi_dma_free_handle(&dma->nd_dmah);
781 }
782 
783 static void
784 nvme_free_dma(nvme_dma_t *dma)
785 {
786 	nvme_free_dma_common(dma);
787 	kmem_free(dma, sizeof (*dma));
788 }
789 
790 /* ARGSUSED */
791 static void
792 nvme_prp_dma_destructor(void *buf, void *private)
793 {
794 	nvme_dma_t *dma = (nvme_dma_t *)buf;
795 
796 	nvme_free_dma_common(dma);
797 }
798 
799 static int
800 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
801     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
802 {
803 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
804 	    &dma->nd_dmah) != DDI_SUCCESS) {
805 		/*
806 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
807 		 * the only other possible error is DDI_DMA_BADATTR which
808 		 * indicates a driver bug which should cause a panic.
809 		 */
810 		dev_err(nvme->n_dip, CE_PANIC,
811 		    "!failed to get DMA handle, check DMA attributes");
812 		return (DDI_FAILURE);
813 	}
814 
815 	/*
816 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
817 	 * or the flags are conflicting, which isn't the case here.
818 	 */
819 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
820 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
821 	    &dma->nd_len, &dma->nd_acch);
822 
823 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
824 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
825 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
826 		dev_err(nvme->n_dip, CE_WARN,
827 		    "!failed to bind DMA memory");
828 		atomic_inc_32(&nvme->n_dma_bind_err);
829 		nvme_free_dma_common(dma);
830 		return (DDI_FAILURE);
831 	}
832 
833 	return (DDI_SUCCESS);
834 }
835 
836 static int
837 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
838     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
839 {
840 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
841 
842 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
843 	    DDI_SUCCESS) {
844 		*ret = NULL;
845 		kmem_free(dma, sizeof (nvme_dma_t));
846 		return (DDI_FAILURE);
847 	}
848 
849 	bzero(dma->nd_memp, dma->nd_len);
850 
851 	*ret = dma;
852 	return (DDI_SUCCESS);
853 }
854 
855 /* ARGSUSED */
856 static int
857 nvme_prp_dma_constructor(void *buf, void *private, int flags)
858 {
859 	nvme_dma_t *dma = (nvme_dma_t *)buf;
860 	nvme_t *nvme = (nvme_t *)private;
861 
862 	dma->nd_dmah = NULL;
863 	dma->nd_acch = NULL;
864 
865 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
866 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
867 		return (-1);
868 	}
869 
870 	ASSERT(dma->nd_ncookie == 1);
871 
872 	dma->nd_cached = B_TRUE;
873 
874 	return (0);
875 }
876 
877 static int
878 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
879     uint_t flags, nvme_dma_t **dma)
880 {
881 	uint32_t len = nentry * qe_len;
882 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
883 
884 	len = roundup(len, nvme->n_pagesize);
885 
886 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
887 	    != DDI_SUCCESS) {
888 		dev_err(nvme->n_dip, CE_WARN,
889 		    "!failed to get DMA memory for queue");
890 		goto fail;
891 	}
892 
893 	if ((*dma)->nd_ncookie != 1) {
894 		dev_err(nvme->n_dip, CE_WARN,
895 		    "!got too many cookies for queue DMA");
896 		goto fail;
897 	}
898 
899 	return (DDI_SUCCESS);
900 
901 fail:
902 	if (*dma) {
903 		nvme_free_dma(*dma);
904 		*dma = NULL;
905 	}
906 
907 	return (DDI_FAILURE);
908 }
909 
910 static void
911 nvme_free_cq(nvme_cq_t *cq)
912 {
913 	mutex_destroy(&cq->ncq_mutex);
914 
915 	if (cq->ncq_cmd_taskq != NULL)
916 		taskq_destroy(cq->ncq_cmd_taskq);
917 
918 	if (cq->ncq_dma != NULL)
919 		nvme_free_dma(cq->ncq_dma);
920 
921 	kmem_free(cq, sizeof (*cq));
922 }
923 
924 static void
925 nvme_free_qpair(nvme_qpair_t *qp)
926 {
927 	int i;
928 
929 	mutex_destroy(&qp->nq_mutex);
930 	sema_destroy(&qp->nq_sema);
931 
932 	if (qp->nq_sqdma != NULL)
933 		nvme_free_dma(qp->nq_sqdma);
934 
935 	if (qp->nq_active_cmds > 0)
936 		for (i = 0; i != qp->nq_nentry; i++)
937 			if (qp->nq_cmd[i] != NULL)
938 				nvme_free_cmd(qp->nq_cmd[i]);
939 
940 	if (qp->nq_cmd != NULL)
941 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
942 
943 	kmem_free(qp, sizeof (nvme_qpair_t));
944 }
945 
946 /*
947  * Destroy the pre-allocated cq array, but only free individual completion
948  * queues from the given starting index.
949  */
950 static void
951 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
952 {
953 	uint_t i;
954 
955 	for (i = start; i < nvme->n_cq_count; i++)
956 		if (nvme->n_cq[i] != NULL)
957 			nvme_free_cq(nvme->n_cq[i]);
958 
959 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
960 }
961 
962 static int
963 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
964     uint_t nthr)
965 {
966 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
967 	char name[64];		/* large enough for the taskq name */
968 
969 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
970 	    DDI_INTR_PRI(nvme->n_intr_pri));
971 
972 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
973 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
974 		goto fail;
975 
976 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
977 	cq->ncq_nentry = nentry;
978 	cq->ncq_id = idx;
979 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
980 
981 	/*
982 	 * Each completion queue has its own command taskq.
983 	 */
984 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
985 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
986 
987 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
988 	    TASKQ_PREPOPULATE);
989 
990 	if (cq->ncq_cmd_taskq == NULL) {
991 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
992 		    "taskq for cq %u", idx);
993 		goto fail;
994 	}
995 
996 	*cqp = cq;
997 	return (DDI_SUCCESS);
998 
999 fail:
1000 	nvme_free_cq(cq);
1001 	*cqp = NULL;
1002 
1003 	return (DDI_FAILURE);
1004 }
1005 
1006 /*
1007  * Create the n_cq array big enough to hold "ncq" completion queues.
1008  * If the array already exists it will be re-sized (but only larger).
1009  * The admin queue is included in this array, which boosts the
1010  * max number of entries to UINT16_MAX + 1.
1011  */
1012 static int
1013 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
1014 {
1015 	nvme_cq_t **cq;
1016 	uint_t i, cq_count;
1017 
1018 	ASSERT3U(ncq, >, nvme->n_cq_count);
1019 
1020 	cq = nvme->n_cq;
1021 	cq_count = nvme->n_cq_count;
1022 
1023 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
1024 	nvme->n_cq_count = ncq;
1025 
1026 	for (i = 0; i < cq_count; i++)
1027 		nvme->n_cq[i] = cq[i];
1028 
1029 	for (; i < nvme->n_cq_count; i++)
1030 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
1031 		    DDI_SUCCESS)
1032 			goto fail;
1033 
1034 	if (cq != NULL)
1035 		kmem_free(cq, sizeof (*cq) * cq_count);
1036 
1037 	return (DDI_SUCCESS);
1038 
1039 fail:
1040 	nvme_destroy_cq_array(nvme, cq_count);
1041 	/*
1042 	 * Restore the original array
1043 	 */
1044 	nvme->n_cq_count = cq_count;
1045 	nvme->n_cq = cq;
1046 
1047 	return (DDI_FAILURE);
1048 }
1049 
1050 static int
1051 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
1052     uint_t idx)
1053 {
1054 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
1055 	uint_t cq_idx;
1056 
1057 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
1058 	    DDI_INTR_PRI(nvme->n_intr_pri));
1059 
1060 	/*
1061 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
1062 	 * initialize the semaphore accordingly.
1063 	 */
1064 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
1065 
1066 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
1067 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
1068 		goto fail;
1069 
1070 	/*
1071 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
1072 	 */
1073 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
1074 	qp->nq_cq = nvme->n_cq[cq_idx];
1075 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1076 	qp->nq_nentry = nentry;
1077 
1078 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1079 
1080 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1081 	qp->nq_next_cmd = 0;
1082 
1083 	*nqp = qp;
1084 	return (DDI_SUCCESS);
1085 
1086 fail:
1087 	nvme_free_qpair(qp);
1088 	*nqp = NULL;
1089 
1090 	return (DDI_FAILURE);
1091 }
1092 
1093 static nvme_cmd_t *
1094 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1095 {
1096 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1097 
1098 	if (cmd == NULL)
1099 		return (cmd);
1100 
1101 	bzero(cmd, sizeof (nvme_cmd_t));
1102 
1103 	cmd->nc_nvme = nvme;
1104 
1105 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1106 	    DDI_INTR_PRI(nvme->n_intr_pri));
1107 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1108 
1109 	return (cmd);
1110 }
1111 
1112 static void
1113 nvme_free_cmd(nvme_cmd_t *cmd)
1114 {
1115 	/* Don't free commands on the lost commands list. */
1116 	if (list_link_active(&cmd->nc_list))
1117 		return;
1118 
1119 	if (cmd->nc_dma) {
1120 		nvme_free_dma(cmd->nc_dma);
1121 		cmd->nc_dma = NULL;
1122 	}
1123 
1124 	if (cmd->nc_prp) {
1125 		kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp);
1126 		cmd->nc_prp = NULL;
1127 	}
1128 
1129 	cv_destroy(&cmd->nc_cv);
1130 	mutex_destroy(&cmd->nc_mutex);
1131 
1132 	kmem_cache_free(nvme_cmd_cache, cmd);
1133 }
1134 
1135 static void
1136 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1137 {
1138 	sema_p(&qp->nq_sema);
1139 	nvme_submit_cmd_common(qp, cmd);
1140 }
1141 
1142 static int
1143 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1144 {
1145 	if (cmd->nc_nvme->n_dead) {
1146 		return (EIO);
1147 	}
1148 
1149 	if (sema_tryp(&qp->nq_sema) == 0)
1150 		return (EAGAIN);
1151 
1152 	nvme_submit_cmd_common(qp, cmd);
1153 	return (0);
1154 }
1155 
1156 static void
1157 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1158 {
1159 	nvme_reg_sqtdbl_t tail = { 0 };
1160 
1161 	mutex_enter(&qp->nq_mutex);
1162 	cmd->nc_completed = B_FALSE;
1163 
1164 	/*
1165 	 * Now that we hold the queue pair lock, we must check whether or not
1166 	 * the controller has been listed as dead (e.g. was removed due to
1167 	 * hotplug). This is necessary as otherwise we could race with
1168 	 * nvme_remove_callback(). Because this has not been enqueued, we don't
1169 	 * call nvme_unqueue_cmd(), which is why we must manually decrement the
1170 	 * semaphore.
1171 	 */
1172 	if (cmd->nc_nvme->n_dead) {
1173 		taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback,
1174 		    cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1175 		sema_v(&qp->nq_sema);
1176 		mutex_exit(&qp->nq_mutex);
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1182 	 * slot. If the slot is already occupied advance to the next slot and
1183 	 * try again. This can happen for long running commands like async event
1184 	 * requests.
1185 	 */
1186 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1187 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1188 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1189 
1190 	qp->nq_active_cmds++;
1191 
1192 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1193 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1194 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1195 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1196 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1197 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1198 
1199 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1200 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1201 
1202 	mutex_exit(&qp->nq_mutex);
1203 }
1204 
1205 static nvme_cmd_t *
1206 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1207 {
1208 	nvme_cmd_t *cmd;
1209 
1210 	ASSERT(mutex_owned(&qp->nq_mutex));
1211 	ASSERT3S(cid, <, qp->nq_nentry);
1212 
1213 	cmd = qp->nq_cmd[cid];
1214 	qp->nq_cmd[cid] = NULL;
1215 	ASSERT3U(qp->nq_active_cmds, >, 0);
1216 	qp->nq_active_cmds--;
1217 	sema_v(&qp->nq_sema);
1218 
1219 	ASSERT3P(cmd, !=, NULL);
1220 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1221 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1222 
1223 	return (cmd);
1224 }
1225 
1226 /*
1227  * Get the command tied to the next completed cqe and bump along completion
1228  * queue head counter.
1229  */
1230 static nvme_cmd_t *
1231 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1232 {
1233 	nvme_qpair_t *qp;
1234 	nvme_cqe_t *cqe;
1235 	nvme_cmd_t *cmd;
1236 
1237 	ASSERT(mutex_owned(&cq->ncq_mutex));
1238 
1239 	cqe = &cq->ncq_cq[cq->ncq_head];
1240 
1241 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1242 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1243 		return (NULL);
1244 
1245 	qp = nvme->n_ioq[cqe->cqe_sqid];
1246 
1247 	mutex_enter(&qp->nq_mutex);
1248 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1249 	mutex_exit(&qp->nq_mutex);
1250 
1251 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1252 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1253 
1254 	qp->nq_sqhead = cqe->cqe_sqhd;
1255 
1256 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1257 
1258 	/* Toggle phase on wrap-around. */
1259 	if (cq->ncq_head == 0)
1260 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1261 
1262 	return (cmd);
1263 }
1264 
1265 /*
1266  * Process all completed commands on the io completion queue.
1267  */
1268 static uint_t
1269 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1270 {
1271 	nvme_reg_cqhdbl_t head = { 0 };
1272 	nvme_cmd_t *cmd;
1273 	uint_t completed = 0;
1274 
1275 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1276 	    DDI_SUCCESS)
1277 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1278 		    __func__);
1279 
1280 	mutex_enter(&cq->ncq_mutex);
1281 
1282 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1283 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1284 		    TQ_NOSLEEP, &cmd->nc_tqent);
1285 
1286 		completed++;
1287 	}
1288 
1289 	if (completed > 0) {
1290 		/*
1291 		 * Update the completion queue head doorbell.
1292 		 */
1293 		head.b.cqhdbl_cqh = cq->ncq_head;
1294 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1295 	}
1296 
1297 	mutex_exit(&cq->ncq_mutex);
1298 
1299 	return (completed);
1300 }
1301 
1302 static nvme_cmd_t *
1303 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1304 {
1305 	nvme_cq_t *cq = qp->nq_cq;
1306 	nvme_reg_cqhdbl_t head = { 0 };
1307 	nvme_cmd_t *cmd;
1308 
1309 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1310 	    DDI_SUCCESS)
1311 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1312 		    __func__);
1313 
1314 	mutex_enter(&cq->ncq_mutex);
1315 
1316 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1317 		head.b.cqhdbl_cqh = cq->ncq_head;
1318 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1319 	}
1320 
1321 	mutex_exit(&cq->ncq_mutex);
1322 
1323 	return (cmd);
1324 }
1325 
1326 static int
1327 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1328 {
1329 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1330 
1331 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1332 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1333 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1334 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1335 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1336 
1337 	if (cmd->nc_xfer != NULL)
1338 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1339 
1340 	if (cmd->nc_nvme->n_strict_version) {
1341 		cmd->nc_nvme->n_dead = B_TRUE;
1342 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1343 	}
1344 
1345 	return (EIO);
1346 }
1347 
1348 static int
1349 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1350 {
1351 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1352 
1353 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1354 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1355 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1356 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1357 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1358 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1359 		cmd->nc_nvme->n_dead = B_TRUE;
1360 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1361 	}
1362 
1363 	return (EIO);
1364 }
1365 
1366 static int
1367 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1368 {
1369 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1370 
1371 	switch (cqe->cqe_sf.sf_sc) {
1372 	case NVME_CQE_SC_INT_NVM_WRITE:
1373 		/* write fail */
1374 		/* TODO: post ereport */
1375 		if (cmd->nc_xfer != NULL)
1376 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1377 		return (EIO);
1378 
1379 	case NVME_CQE_SC_INT_NVM_READ:
1380 		/* read fail */
1381 		/* TODO: post ereport */
1382 		if (cmd->nc_xfer != NULL)
1383 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1384 		return (EIO);
1385 
1386 	default:
1387 		return (nvme_check_unknown_cmd_status(cmd));
1388 	}
1389 }
1390 
1391 static int
1392 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1393 {
1394 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1395 
1396 	switch (cqe->cqe_sf.sf_sc) {
1397 	case NVME_CQE_SC_GEN_SUCCESS:
1398 		return (0);
1399 
1400 	/*
1401 	 * Errors indicating a bug in the driver should cause a panic.
1402 	 */
1403 	case NVME_CQE_SC_GEN_INV_OPC:
1404 		/* Invalid Command Opcode */
1405 		if (!cmd->nc_dontpanic)
1406 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1407 			    "programming error: invalid opcode in cmd %p",
1408 			    (void *)cmd);
1409 		return (EINVAL);
1410 
1411 	case NVME_CQE_SC_GEN_INV_FLD:
1412 		/* Invalid Field in Command */
1413 		if (!cmd->nc_dontpanic)
1414 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1415 			    "programming error: invalid field in cmd %p",
1416 			    (void *)cmd);
1417 		return (EIO);
1418 
1419 	case NVME_CQE_SC_GEN_ID_CNFL:
1420 		/* Command ID Conflict */
1421 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1422 		    "cmd ID conflict in cmd %p", (void *)cmd);
1423 		return (0);
1424 
1425 	case NVME_CQE_SC_GEN_INV_NS:
1426 		/* Invalid Namespace or Format */
1427 		if (!cmd->nc_dontpanic)
1428 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1429 			    "programming error: invalid NS/format in cmd %p",
1430 			    (void *)cmd);
1431 		return (EINVAL);
1432 
1433 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1434 		/* LBA Out Of Range */
1435 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1436 		    "LBA out of range in cmd %p", (void *)cmd);
1437 		return (0);
1438 
1439 	/*
1440 	 * Non-fatal errors, handle gracefully.
1441 	 */
1442 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1443 		/* Data Transfer Error (DMA) */
1444 		/* TODO: post ereport */
1445 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1446 		if (cmd->nc_xfer != NULL)
1447 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1448 		return (EIO);
1449 
1450 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1451 		/*
1452 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1453 		 * detailed error information is returned as async event,
1454 		 * so we pretty much ignore the error here and handle it
1455 		 * in the async event handler.
1456 		 */
1457 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1458 		if (cmd->nc_xfer != NULL)
1459 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1460 		return (EIO);
1461 
1462 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1463 		/*
1464 		 * Command Abort Requested. This normally happens only when a
1465 		 * command times out.
1466 		 */
1467 		/* TODO: post ereport or change blkdev to handle this? */
1468 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1469 		return (ECANCELED);
1470 
1471 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1472 		/* Command Aborted due to Power Loss Notification */
1473 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1474 		cmd->nc_nvme->n_dead = B_TRUE;
1475 		return (EIO);
1476 
1477 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1478 		/* Command Aborted due to SQ Deletion */
1479 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1480 		return (EIO);
1481 
1482 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1483 		/* Capacity Exceeded */
1484 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1485 		if (cmd->nc_xfer != NULL)
1486 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1487 		return (EIO);
1488 
1489 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1490 		/* Namespace Not Ready */
1491 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1492 		if (cmd->nc_xfer != NULL)
1493 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1494 		return (EIO);
1495 
1496 	default:
1497 		return (nvme_check_unknown_cmd_status(cmd));
1498 	}
1499 }
1500 
1501 static int
1502 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1503 {
1504 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1505 
1506 	switch (cqe->cqe_sf.sf_sc) {
1507 	case NVME_CQE_SC_SPC_INV_CQ:
1508 		/* Completion Queue Invalid */
1509 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1510 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1511 		return (EINVAL);
1512 
1513 	case NVME_CQE_SC_SPC_INV_QID:
1514 		/* Invalid Queue Identifier */
1515 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1516 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1517 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1518 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1519 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1520 		return (EINVAL);
1521 
1522 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1523 		/* Max Queue Size Exceeded */
1524 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1525 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1526 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1527 		return (EINVAL);
1528 
1529 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1530 		/* Abort Command Limit Exceeded */
1531 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1532 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1533 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1534 		return (0);
1535 
1536 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1537 		/* Async Event Request Limit Exceeded */
1538 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1539 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1540 		    "async event request limit exceeded in cmd %p",
1541 		    (void *)cmd);
1542 		return (0);
1543 
1544 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1545 		/* Invalid Interrupt Vector */
1546 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1547 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1548 		return (EINVAL);
1549 
1550 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1551 		/* Invalid Log Page */
1552 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1553 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1554 		return (EINVAL);
1555 
1556 	case NVME_CQE_SC_SPC_INV_FORMAT:
1557 		/* Invalid Format */
1558 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1559 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1560 		if (cmd->nc_xfer != NULL)
1561 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1562 		return (EINVAL);
1563 
1564 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1565 		/* Invalid Queue Deletion */
1566 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1567 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1568 		return (EINVAL);
1569 
1570 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1571 		/* Conflicting Attributes */
1572 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1573 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1574 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1575 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1576 		if (cmd->nc_xfer != NULL)
1577 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1578 		return (EINVAL);
1579 
1580 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1581 		/* Invalid Protection Information */
1582 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1583 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1584 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1585 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1586 		if (cmd->nc_xfer != NULL)
1587 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1588 		return (EINVAL);
1589 
1590 	case NVME_CQE_SC_SPC_NVM_READONLY:
1591 		/* Write to Read Only Range */
1592 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1593 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1594 		if (cmd->nc_xfer != NULL)
1595 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1596 		return (EROFS);
1597 
1598 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1599 		/* Invalid Firmware Slot */
1600 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1601 		return (EINVAL);
1602 
1603 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1604 		/* Invalid Firmware Image */
1605 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1606 		return (EINVAL);
1607 
1608 	case NVME_CQE_SC_SPC_FW_RESET:
1609 		/* Conventional Reset Required */
1610 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1611 		return (0);
1612 
1613 	case NVME_CQE_SC_SPC_FW_NSSR:
1614 		/* NVMe Subsystem Reset Required */
1615 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1616 		return (0);
1617 
1618 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1619 		/* Activation Requires Reset */
1620 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1621 		return (0);
1622 
1623 	case NVME_CQE_SC_SPC_FW_MTFA:
1624 		/* Activation Requires Maximum Time Violation */
1625 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1626 		return (EAGAIN);
1627 
1628 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1629 		/* Activation Prohibited */
1630 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1631 		return (EINVAL);
1632 
1633 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1634 		/* Overlapping Firmware Ranges */
1635 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1636 		return (EINVAL);
1637 
1638 	default:
1639 		return (nvme_check_unknown_cmd_status(cmd));
1640 	}
1641 }
1642 
1643 static inline int
1644 nvme_check_cmd_status(nvme_cmd_t *cmd)
1645 {
1646 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1647 
1648 	/*
1649 	 * Take a shortcut if the controller is dead, or if
1650 	 * command status indicates no error.
1651 	 */
1652 	if (cmd->nc_nvme->n_dead)
1653 		return (EIO);
1654 
1655 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1656 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1657 		return (0);
1658 
1659 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1660 		return (nvme_check_generic_cmd_status(cmd));
1661 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1662 		return (nvme_check_specific_cmd_status(cmd));
1663 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1664 		return (nvme_check_integrity_cmd_status(cmd));
1665 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1666 		return (nvme_check_vendor_cmd_status(cmd));
1667 
1668 	return (nvme_check_unknown_cmd_status(cmd));
1669 }
1670 
1671 static int
1672 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1673 {
1674 	nvme_t *nvme = abort_cmd->nc_nvme;
1675 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1676 	nvme_abort_cmd_t ac = { 0 };
1677 	int ret = 0;
1678 
1679 	sema_p(&nvme->n_abort_sema);
1680 
1681 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1682 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1683 
1684 	cmd->nc_sqid = 0;
1685 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1686 	cmd->nc_callback = nvme_wakeup_cmd;
1687 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1688 
1689 	/*
1690 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1691 	 * the aborted command has completed (aborted or otherwise), but since
1692 	 * we still hold the aborted command's mutex its callback hasn't been
1693 	 * processed yet.
1694 	 */
1695 	nvme_admin_cmd(cmd, sec);
1696 	sema_v(&nvme->n_abort_sema);
1697 
1698 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1699 		dev_err(nvme->n_dip, CE_WARN,
1700 		    "!ABORT failed with sct = %x, sc = %x",
1701 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1702 		atomic_inc_32(&nvme->n_abort_failed);
1703 	} else {
1704 		dev_err(nvme->n_dip, CE_WARN,
1705 		    "!ABORT of command %d/%d %ssuccessful",
1706 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1707 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1708 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1709 			atomic_inc_32(&nvme->n_cmd_aborted);
1710 	}
1711 
1712 	nvme_free_cmd(cmd);
1713 	return (ret);
1714 }
1715 
1716 /*
1717  * nvme_wait_cmd -- wait for command completion or timeout
1718  *
1719  * In case of a serious error or a timeout of the abort command the hardware
1720  * will be declared dead and FMA will be notified.
1721  */
1722 static void
1723 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1724 {
1725 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1726 	nvme_t *nvme = cmd->nc_nvme;
1727 	nvme_reg_csts_t csts;
1728 	nvme_qpair_t *qp;
1729 
1730 	ASSERT(mutex_owned(&cmd->nc_mutex));
1731 
1732 	while (!cmd->nc_completed) {
1733 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1734 			break;
1735 	}
1736 
1737 	if (cmd->nc_completed)
1738 		return;
1739 
1740 	/*
1741 	 * The command timed out.
1742 	 *
1743 	 * Check controller for fatal status, any errors associated with the
1744 	 * register or DMA handle, or for a double timeout (abort command timed
1745 	 * out). If necessary log a warning and call FMA.
1746 	 */
1747 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1748 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1749 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1750 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1751 	atomic_inc_32(&nvme->n_cmd_timeout);
1752 
1753 	if (csts.b.csts_cfs ||
1754 	    nvme_check_regs_hdl(nvme) ||
1755 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1756 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1757 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1758 		nvme->n_dead = B_TRUE;
1759 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1760 		/*
1761 		 * If the abort succeeded the command should complete
1762 		 * immediately with an appropriate status.
1763 		 */
1764 		while (!cmd->nc_completed)
1765 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1766 
1767 		return;
1768 	}
1769 
1770 	qp = nvme->n_ioq[cmd->nc_sqid];
1771 
1772 	mutex_enter(&qp->nq_mutex);
1773 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1774 	mutex_exit(&qp->nq_mutex);
1775 
1776 	/*
1777 	 * As we don't know what the presumed dead hardware might still do with
1778 	 * the DMA memory, we'll put the command on the lost commands list if it
1779 	 * has any DMA memory.
1780 	 */
1781 	if (cmd->nc_dma != NULL) {
1782 		mutex_enter(&nvme_lc_mutex);
1783 		list_insert_head(&nvme_lost_cmds, cmd);
1784 		mutex_exit(&nvme_lc_mutex);
1785 	}
1786 }
1787 
1788 static void
1789 nvme_wakeup_cmd(void *arg)
1790 {
1791 	nvme_cmd_t *cmd = arg;
1792 
1793 	mutex_enter(&cmd->nc_mutex);
1794 	cmd->nc_completed = B_TRUE;
1795 	cv_signal(&cmd->nc_cv);
1796 	mutex_exit(&cmd->nc_mutex);
1797 }
1798 
1799 static void
1800 nvme_async_event_task(void *arg)
1801 {
1802 	nvme_cmd_t *cmd = arg;
1803 	nvme_t *nvme = cmd->nc_nvme;
1804 	nvme_error_log_entry_t *error_log = NULL;
1805 	nvme_health_log_t *health_log = NULL;
1806 	nvme_nschange_list_t *nslist = NULL;
1807 	size_t logsize = 0;
1808 	nvme_async_event_t event;
1809 
1810 	/*
1811 	 * Check for errors associated with the async request itself. The only
1812 	 * command-specific error is "async event limit exceeded", which
1813 	 * indicates a programming error in the driver and causes a panic in
1814 	 * nvme_check_cmd_status().
1815 	 *
1816 	 * Other possible errors are various scenarios where the async request
1817 	 * was aborted, or internal errors in the device. Internal errors are
1818 	 * reported to FMA, the command aborts need no special handling here.
1819 	 *
1820 	 * And finally, at least qemu nvme does not support async events,
1821 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1822 	 * will avoid posting async events.
1823 	 */
1824 
1825 	if (nvme_check_cmd_status(cmd) != 0) {
1826 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1827 		    "!async event request returned failure, sct = %x, "
1828 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1829 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1830 		    cmd->nc_cqe.cqe_sf.sf_m);
1831 
1832 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1833 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1834 			cmd->nc_nvme->n_dead = B_TRUE;
1835 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1836 			    DDI_SERVICE_LOST);
1837 		}
1838 
1839 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1840 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1841 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1842 			nvme->n_async_event_supported = B_FALSE;
1843 		}
1844 
1845 		nvme_free_cmd(cmd);
1846 		return;
1847 	}
1848 
1849 	event.r = cmd->nc_cqe.cqe_dw0;
1850 
1851 	/* Clear CQE and re-submit the async request. */
1852 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1853 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1854 
1855 	switch (event.b.ae_type) {
1856 	case NVME_ASYNC_TYPE_ERROR:
1857 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1858 			(void) nvme_get_logpage(nvme, B_FALSE,
1859 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1860 		} else {
1861 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1862 			    "async event reply: %d", event.b.ae_logpage);
1863 			atomic_inc_32(&nvme->n_wrong_logpage);
1864 		}
1865 
1866 		switch (event.b.ae_info) {
1867 		case NVME_ASYNC_ERROR_INV_SQ:
1868 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1869 			    "invalid submission queue");
1870 			return;
1871 
1872 		case NVME_ASYNC_ERROR_INV_DBL:
1873 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1874 			    "invalid doorbell write value");
1875 			return;
1876 
1877 		case NVME_ASYNC_ERROR_DIAGFAIL:
1878 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1879 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1880 			nvme->n_dead = B_TRUE;
1881 			atomic_inc_32(&nvme->n_diagfail_event);
1882 			break;
1883 
1884 		case NVME_ASYNC_ERROR_PERSISTENT:
1885 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1886 			    "device error");
1887 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1888 			nvme->n_dead = B_TRUE;
1889 			atomic_inc_32(&nvme->n_persistent_event);
1890 			break;
1891 
1892 		case NVME_ASYNC_ERROR_TRANSIENT:
1893 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1894 			    "device error");
1895 			/* TODO: send ereport */
1896 			atomic_inc_32(&nvme->n_transient_event);
1897 			break;
1898 
1899 		case NVME_ASYNC_ERROR_FW_LOAD:
1900 			dev_err(nvme->n_dip, CE_WARN,
1901 			    "!firmware image load error");
1902 			atomic_inc_32(&nvme->n_fw_load_event);
1903 			break;
1904 		}
1905 		break;
1906 
1907 	case NVME_ASYNC_TYPE_HEALTH:
1908 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1909 			(void) nvme_get_logpage(nvme, B_FALSE,
1910 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1911 			    -1);
1912 		} else {
1913 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1914 			    "async event reply: %d", event.b.ae_logpage);
1915 			atomic_inc_32(&nvme->n_wrong_logpage);
1916 		}
1917 
1918 		switch (event.b.ae_info) {
1919 		case NVME_ASYNC_HEALTH_RELIABILITY:
1920 			dev_err(nvme->n_dip, CE_WARN,
1921 			    "!device reliability compromised");
1922 			/* TODO: send ereport */
1923 			atomic_inc_32(&nvme->n_reliability_event);
1924 			break;
1925 
1926 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1927 			dev_err(nvme->n_dip, CE_WARN,
1928 			    "!temperature above threshold");
1929 			/* TODO: send ereport */
1930 			atomic_inc_32(&nvme->n_temperature_event);
1931 			break;
1932 
1933 		case NVME_ASYNC_HEALTH_SPARE:
1934 			dev_err(nvme->n_dip, CE_WARN,
1935 			    "!spare space below threshold");
1936 			/* TODO: send ereport */
1937 			atomic_inc_32(&nvme->n_spare_event);
1938 			break;
1939 		}
1940 		break;
1941 
1942 	case NVME_ASYNC_TYPE_NOTICE:
1943 		switch (event.b.ae_info) {
1944 		case NVME_ASYNC_NOTICE_NS_CHANGE:
1945 			dev_err(nvme->n_dip, CE_NOTE,
1946 			    "namespace attribute change event, "
1947 			    "logpage = %x", event.b.ae_logpage);
1948 			atomic_inc_32(&nvme->n_notice_event);
1949 
1950 			if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE)
1951 				break;
1952 
1953 			if (nvme_get_logpage(nvme, B_FALSE, (void **)&nslist,
1954 			    &logsize, event.b.ae_logpage, -1) != 0) {
1955 				break;
1956 			}
1957 
1958 			if (nslist->nscl_ns[0] == UINT32_MAX) {
1959 				dev_err(nvme->n_dip, CE_CONT,
1960 				    "more than %u namespaces have changed.\n",
1961 				    NVME_NSCHANGE_LIST_SIZE);
1962 				break;
1963 			}
1964 
1965 			for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) {
1966 				uint32_t nsid = nslist->nscl_ns[i];
1967 
1968 				if (nsid == 0)	/* end of list */
1969 					break;
1970 				nvme_changed_ns(nvme, nsid);
1971 			}
1972 
1973 			break;
1974 
1975 		case NVME_ASYNC_NOTICE_FW_ACTIVATE:
1976 			dev_err(nvme->n_dip, CE_NOTE,
1977 			    "firmware activation starting, "
1978 			    "logpage = %x", event.b.ae_logpage);
1979 			atomic_inc_32(&nvme->n_notice_event);
1980 			break;
1981 
1982 		case NVME_ASYNC_NOTICE_TELEMETRY:
1983 			dev_err(nvme->n_dip, CE_NOTE,
1984 			    "telemetry log changed, "
1985 			    "logpage = %x", event.b.ae_logpage);
1986 			atomic_inc_32(&nvme->n_notice_event);
1987 			break;
1988 
1989 		case NVME_ASYNC_NOTICE_NS_ASYMM:
1990 			dev_err(nvme->n_dip, CE_NOTE,
1991 			    "asymmetric namespace access change, "
1992 			    "logpage = %x", event.b.ae_logpage);
1993 			atomic_inc_32(&nvme->n_notice_event);
1994 			break;
1995 
1996 		case NVME_ASYNC_NOTICE_LATENCYLOG:
1997 			dev_err(nvme->n_dip, CE_NOTE,
1998 			    "predictable latency event aggregate log change, "
1999 			    "logpage = %x", event.b.ae_logpage);
2000 			atomic_inc_32(&nvme->n_notice_event);
2001 			break;
2002 
2003 		case NVME_ASYNC_NOTICE_LBASTATUS:
2004 			dev_err(nvme->n_dip, CE_NOTE,
2005 			    "LBA status information alert, "
2006 			    "logpage = %x", event.b.ae_logpage);
2007 			atomic_inc_32(&nvme->n_notice_event);
2008 			break;
2009 
2010 		case NVME_ASYNC_NOTICE_ENDURANCELOG:
2011 			dev_err(nvme->n_dip, CE_NOTE,
2012 			    "endurance group event aggregate log page change, "
2013 			    "logpage = %x", event.b.ae_logpage);
2014 			atomic_inc_32(&nvme->n_notice_event);
2015 			break;
2016 
2017 		default:
2018 			dev_err(nvme->n_dip, CE_WARN,
2019 			    "!unknown notice async event received, "
2020 			    "info = %x, logpage = %x", event.b.ae_info,
2021 			    event.b.ae_logpage);
2022 			atomic_inc_32(&nvme->n_unknown_event);
2023 			break;
2024 		}
2025 		break;
2026 
2027 	case NVME_ASYNC_TYPE_VENDOR:
2028 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
2029 		    "received, info = %x, logpage = %x", event.b.ae_info,
2030 		    event.b.ae_logpage);
2031 		atomic_inc_32(&nvme->n_vendor_event);
2032 		break;
2033 
2034 	default:
2035 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
2036 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
2037 		    event.b.ae_info, event.b.ae_logpage);
2038 		atomic_inc_32(&nvme->n_unknown_event);
2039 		break;
2040 	}
2041 
2042 	if (error_log != NULL)
2043 		kmem_free(error_log, logsize);
2044 
2045 	if (health_log != NULL)
2046 		kmem_free(health_log, logsize);
2047 
2048 	if (nslist != NULL)
2049 		kmem_free(nslist, logsize);
2050 }
2051 
2052 static void
2053 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
2054 {
2055 	mutex_enter(&cmd->nc_mutex);
2056 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
2057 	nvme_wait_cmd(cmd, sec);
2058 	mutex_exit(&cmd->nc_mutex);
2059 }
2060 
2061 static void
2062 nvme_async_event(nvme_t *nvme)
2063 {
2064 	nvme_cmd_t *cmd;
2065 
2066 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2067 	cmd->nc_sqid = 0;
2068 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
2069 	cmd->nc_callback = nvme_async_event_task;
2070 	cmd->nc_dontpanic = B_TRUE;
2071 
2072 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
2073 }
2074 
2075 static int
2076 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
2077     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
2078 {
2079 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2080 	nvme_format_nvm_t format_nvm = { 0 };
2081 	int ret;
2082 
2083 	format_nvm.b.fm_lbaf = lbaf & 0xf;
2084 	format_nvm.b.fm_ms = ms ? 1 : 0;
2085 	format_nvm.b.fm_pi = pi & 0x7;
2086 	format_nvm.b.fm_pil = pil ? 1 : 0;
2087 	format_nvm.b.fm_ses = ses & 0x7;
2088 
2089 	cmd->nc_sqid = 0;
2090 	cmd->nc_callback = nvme_wakeup_cmd;
2091 	cmd->nc_sqe.sqe_nsid = nsid;
2092 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
2093 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
2094 
2095 	/*
2096 	 * Some devices like Samsung SM951 don't allow formatting of all
2097 	 * namespaces in one command. Handle that gracefully.
2098 	 */
2099 	if (nsid == (uint32_t)-1)
2100 		cmd->nc_dontpanic = B_TRUE;
2101 	/*
2102 	 * If this format request was initiated by the user, then don't allow a
2103 	 * programmer error to panic the system.
2104 	 */
2105 	if (user)
2106 		cmd->nc_dontpanic = B_TRUE;
2107 
2108 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
2109 
2110 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2111 		dev_err(nvme->n_dip, CE_WARN,
2112 		    "!FORMAT failed with sct = %x, sc = %x",
2113 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2114 	}
2115 
2116 	nvme_free_cmd(cmd);
2117 	return (ret);
2118 }
2119 
2120 /*
2121  * The `bufsize` parameter is usually an output parameter, set by this routine
2122  * when filling in the supported types of logpages from the device. However, for
2123  * vendor-specific pages, it is an input parameter, and must be set
2124  * appropriately by callers.
2125  */
2126 static int
2127 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
2128     uint8_t logpage, ...)
2129 {
2130 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2131 	nvme_getlogpage_t getlogpage = { 0 };
2132 	va_list ap;
2133 	int ret;
2134 
2135 	va_start(ap, logpage);
2136 
2137 	cmd->nc_sqid = 0;
2138 	cmd->nc_callback = nvme_wakeup_cmd;
2139 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
2140 
2141 	if (user)
2142 		cmd->nc_dontpanic = B_TRUE;
2143 
2144 	getlogpage.b.lp_lid = logpage;
2145 
2146 	switch (logpage) {
2147 	case NVME_LOGPAGE_ERROR:
2148 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2149 		*bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE,
2150 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
2151 		break;
2152 
2153 	case NVME_LOGPAGE_HEALTH:
2154 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2155 		*bufsize = sizeof (nvme_health_log_t);
2156 		break;
2157 
2158 	case NVME_LOGPAGE_FWSLOT:
2159 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2160 		*bufsize = sizeof (nvme_fwslot_log_t);
2161 		break;
2162 
2163 	case NVME_LOGPAGE_NSCHANGE:
2164 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2165 		*bufsize = sizeof (nvme_nschange_list_t);
2166 		break;
2167 
2168 	default:
2169 		/*
2170 		 * This intentionally only checks against the minimum valid
2171 		 * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid
2172 		 * page ID, so this one-sided check avoids a compiler error
2173 		 * about a check that's always true.
2174 		 */
2175 		if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) {
2176 			dev_err(nvme->n_dip, CE_WARN,
2177 			    "!unknown log page requested: %d", logpage);
2178 			atomic_inc_32(&nvme->n_unknown_logpage);
2179 			ret = EINVAL;
2180 			goto fail;
2181 		}
2182 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2183 	}
2184 
2185 	va_end(ap);
2186 
2187 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
2188 
2189 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
2190 
2191 	if (nvme_zalloc_dma(nvme, *bufsize,
2192 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2193 		dev_err(nvme->n_dip, CE_WARN,
2194 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
2195 		ret = ENOMEM;
2196 		goto fail;
2197 	}
2198 
2199 	if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
2200 		goto fail;
2201 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2202 
2203 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2204 		dev_err(nvme->n_dip, CE_WARN,
2205 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2206 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2207 		goto fail;
2208 	}
2209 
2210 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2211 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2212 
2213 fail:
2214 	nvme_free_cmd(cmd);
2215 
2216 	return (ret);
2217 }
2218 
2219 static int
2220 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2221 {
2222 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2223 	int ret;
2224 
2225 	if (buf == NULL)
2226 		return (EINVAL);
2227 
2228 	cmd->nc_sqid = 0;
2229 	cmd->nc_callback = nvme_wakeup_cmd;
2230 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2231 	cmd->nc_sqe.sqe_nsid = nsid;
2232 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2233 
2234 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2235 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2236 		dev_err(nvme->n_dip, CE_WARN,
2237 		    "!nvme_zalloc_dma failed for IDENTIFY");
2238 		ret = ENOMEM;
2239 		goto fail;
2240 	}
2241 
2242 	if (cmd->nc_dma->nd_ncookie > 2) {
2243 		dev_err(nvme->n_dip, CE_WARN,
2244 		    "!too many DMA cookies for IDENTIFY");
2245 		atomic_inc_32(&nvme->n_too_many_cookies);
2246 		ret = ENOMEM;
2247 		goto fail;
2248 	}
2249 
2250 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2251 	if (cmd->nc_dma->nd_ncookie > 1) {
2252 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2253 		    &cmd->nc_dma->nd_cookie);
2254 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2255 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2256 	}
2257 
2258 	if (user)
2259 		cmd->nc_dontpanic = B_TRUE;
2260 
2261 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2262 
2263 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2264 		dev_err(nvme->n_dip, CE_WARN,
2265 		    "!IDENTIFY failed with sct = %x, sc = %x",
2266 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2267 		goto fail;
2268 	}
2269 
2270 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2271 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2272 
2273 fail:
2274 	nvme_free_cmd(cmd);
2275 
2276 	return (ret);
2277 }
2278 
2279 static int
2280 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2281     uint32_t val, uint32_t *res)
2282 {
2283 	_NOTE(ARGUNUSED(nsid));
2284 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2285 	int ret = EINVAL;
2286 
2287 	ASSERT(res != NULL);
2288 
2289 	cmd->nc_sqid = 0;
2290 	cmd->nc_callback = nvme_wakeup_cmd;
2291 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2292 	cmd->nc_sqe.sqe_cdw10 = feature;
2293 	cmd->nc_sqe.sqe_cdw11 = val;
2294 
2295 	if (user)
2296 		cmd->nc_dontpanic = B_TRUE;
2297 
2298 	switch (feature) {
2299 	case NVME_FEAT_WRITE_CACHE:
2300 		if (!nvme->n_write_cache_present)
2301 			goto fail;
2302 		break;
2303 
2304 	case NVME_FEAT_NQUEUES:
2305 		break;
2306 
2307 	default:
2308 		goto fail;
2309 	}
2310 
2311 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2312 
2313 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2314 		dev_err(nvme->n_dip, CE_WARN,
2315 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2316 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2317 		    cmd->nc_cqe.cqe_sf.sf_sc);
2318 		goto fail;
2319 	}
2320 
2321 	*res = cmd->nc_cqe.cqe_dw0;
2322 
2323 fail:
2324 	nvme_free_cmd(cmd);
2325 	return (ret);
2326 }
2327 
2328 static int
2329 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2330     uint32_t *res, void **buf, size_t *bufsize)
2331 {
2332 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2333 	int ret = EINVAL;
2334 
2335 	ASSERT(res != NULL);
2336 
2337 	if (bufsize != NULL)
2338 		*bufsize = 0;
2339 
2340 	cmd->nc_sqid = 0;
2341 	cmd->nc_callback = nvme_wakeup_cmd;
2342 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2343 	cmd->nc_sqe.sqe_cdw10 = feature;
2344 	cmd->nc_sqe.sqe_cdw11 = *res;
2345 
2346 	/*
2347 	 * For some of the optional features there doesn't seem to be a method
2348 	 * of detecting whether it is supported other than using it.  This will
2349 	 * cause "Invalid Field in Command" error, which is normally considered
2350 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2351 	 * in nvme_check_generic_cmd_status().
2352 	 */
2353 	switch (feature) {
2354 	case NVME_FEAT_ARBITRATION:
2355 	case NVME_FEAT_POWER_MGMT:
2356 	case NVME_FEAT_TEMPERATURE:
2357 	case NVME_FEAT_ERROR:
2358 	case NVME_FEAT_NQUEUES:
2359 	case NVME_FEAT_INTR_COAL:
2360 	case NVME_FEAT_INTR_VECT:
2361 	case NVME_FEAT_WRITE_ATOM:
2362 	case NVME_FEAT_ASYNC_EVENT:
2363 		break;
2364 
2365 	case NVME_FEAT_WRITE_CACHE:
2366 		if (!nvme->n_write_cache_present)
2367 			goto fail;
2368 		break;
2369 
2370 	case NVME_FEAT_LBA_RANGE:
2371 		if (!nvme->n_lba_range_supported)
2372 			goto fail;
2373 
2374 		cmd->nc_dontpanic = B_TRUE;
2375 		cmd->nc_sqe.sqe_nsid = nsid;
2376 		ASSERT(bufsize != NULL);
2377 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2378 		break;
2379 
2380 	case NVME_FEAT_AUTO_PST:
2381 		if (!nvme->n_auto_pst_supported)
2382 			goto fail;
2383 
2384 		ASSERT(bufsize != NULL);
2385 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2386 		break;
2387 
2388 	case NVME_FEAT_PROGRESS:
2389 		if (!nvme->n_progress_supported)
2390 			goto fail;
2391 
2392 		cmd->nc_dontpanic = B_TRUE;
2393 		break;
2394 
2395 	default:
2396 		goto fail;
2397 	}
2398 
2399 	if (user)
2400 		cmd->nc_dontpanic = B_TRUE;
2401 
2402 	if (bufsize != NULL && *bufsize != 0) {
2403 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2404 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2405 			dev_err(nvme->n_dip, CE_WARN,
2406 			    "!nvme_zalloc_dma failed for GET FEATURES");
2407 			ret = ENOMEM;
2408 			goto fail;
2409 		}
2410 
2411 		if (cmd->nc_dma->nd_ncookie > 2) {
2412 			dev_err(nvme->n_dip, CE_WARN,
2413 			    "!too many DMA cookies for GET FEATURES");
2414 			atomic_inc_32(&nvme->n_too_many_cookies);
2415 			ret = ENOMEM;
2416 			goto fail;
2417 		}
2418 
2419 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2420 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2421 		if (cmd->nc_dma->nd_ncookie > 1) {
2422 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2423 			    &cmd->nc_dma->nd_cookie);
2424 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2425 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2426 		}
2427 	}
2428 
2429 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2430 
2431 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2432 		boolean_t known = B_TRUE;
2433 
2434 		/* Check if this is unsupported optional feature */
2435 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2436 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2437 			switch (feature) {
2438 			case NVME_FEAT_LBA_RANGE:
2439 				nvme->n_lba_range_supported = B_FALSE;
2440 				break;
2441 			case NVME_FEAT_PROGRESS:
2442 				nvme->n_progress_supported = B_FALSE;
2443 				break;
2444 			default:
2445 				known = B_FALSE;
2446 				break;
2447 			}
2448 		} else {
2449 			known = B_FALSE;
2450 		}
2451 
2452 		/* Report the error otherwise */
2453 		if (!known) {
2454 			dev_err(nvme->n_dip, CE_WARN,
2455 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2456 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2457 			    cmd->nc_cqe.cqe_sf.sf_sc);
2458 		}
2459 
2460 		goto fail;
2461 	}
2462 
2463 	if (bufsize != NULL && *bufsize != 0) {
2464 		ASSERT(buf != NULL);
2465 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2466 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2467 	}
2468 
2469 	*res = cmd->nc_cqe.cqe_dw0;
2470 
2471 fail:
2472 	nvme_free_cmd(cmd);
2473 	return (ret);
2474 }
2475 
2476 static int
2477 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2478 {
2479 	nvme_write_cache_t nwc = { 0 };
2480 
2481 	if (enable)
2482 		nwc.b.wc_wce = 1;
2483 
2484 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2485 	    nwc.r, &nwc.r));
2486 }
2487 
2488 static int
2489 nvme_set_nqueues(nvme_t *nvme)
2490 {
2491 	nvme_nqueues_t nq = { 0 };
2492 	int ret;
2493 
2494 	/*
2495 	 * The default is to allocate one completion queue per vector.
2496 	 */
2497 	if (nvme->n_completion_queues == -1)
2498 		nvme->n_completion_queues = nvme->n_intr_cnt;
2499 
2500 	/*
2501 	 * There is no point in having more completion queues than
2502 	 * interrupt vectors.
2503 	 */
2504 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2505 	    nvme->n_intr_cnt);
2506 
2507 	/*
2508 	 * The default is to use one submission queue per completion queue.
2509 	 */
2510 	if (nvme->n_submission_queues == -1)
2511 		nvme->n_submission_queues = nvme->n_completion_queues;
2512 
2513 	/*
2514 	 * There is no point in having more compeletion queues than
2515 	 * submission queues.
2516 	 */
2517 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2518 	    nvme->n_submission_queues);
2519 
2520 	ASSERT(nvme->n_submission_queues > 0);
2521 	ASSERT(nvme->n_completion_queues > 0);
2522 
2523 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2524 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2525 
2526 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2527 	    &nq.r);
2528 
2529 	if (ret == 0) {
2530 		/*
2531 		 * Never use more than the requested number of queues.
2532 		 */
2533 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2534 		    nq.b.nq_nsq + 1);
2535 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2536 		    nq.b.nq_ncq + 1);
2537 	}
2538 
2539 	return (ret);
2540 }
2541 
2542 static int
2543 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2544 {
2545 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2546 	nvme_create_queue_dw10_t dw10 = { 0 };
2547 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2548 	int ret;
2549 
2550 	dw10.b.q_qid = cq->ncq_id;
2551 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2552 
2553 	c_dw11.b.cq_pc = 1;
2554 	c_dw11.b.cq_ien = 1;
2555 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2556 
2557 	cmd->nc_sqid = 0;
2558 	cmd->nc_callback = nvme_wakeup_cmd;
2559 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2560 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2561 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2562 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2563 
2564 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2565 
2566 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2567 		dev_err(nvme->n_dip, CE_WARN,
2568 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2569 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2570 	}
2571 
2572 	nvme_free_cmd(cmd);
2573 
2574 	return (ret);
2575 }
2576 
2577 static int
2578 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2579 {
2580 	nvme_cq_t *cq = qp->nq_cq;
2581 	nvme_cmd_t *cmd;
2582 	nvme_create_queue_dw10_t dw10 = { 0 };
2583 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2584 	int ret;
2585 
2586 	/*
2587 	 * It is possible to have more qpairs than completion queues,
2588 	 * and when the idx > ncq_id, that completion queue is shared
2589 	 * and has already been created.
2590 	 */
2591 	if (idx <= cq->ncq_id &&
2592 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2593 		return (DDI_FAILURE);
2594 
2595 	dw10.b.q_qid = idx;
2596 	dw10.b.q_qsize = qp->nq_nentry - 1;
2597 
2598 	s_dw11.b.sq_pc = 1;
2599 	s_dw11.b.sq_cqid = cq->ncq_id;
2600 
2601 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2602 	cmd->nc_sqid = 0;
2603 	cmd->nc_callback = nvme_wakeup_cmd;
2604 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2605 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2606 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2607 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2608 
2609 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2610 
2611 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2612 		dev_err(nvme->n_dip, CE_WARN,
2613 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2614 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2615 	}
2616 
2617 	nvme_free_cmd(cmd);
2618 
2619 	return (ret);
2620 }
2621 
2622 static boolean_t
2623 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2624 {
2625 	nvme_reg_csts_t csts;
2626 	int i;
2627 
2628 	nvme_put32(nvme, NVME_REG_CC, 0);
2629 
2630 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2631 	if (csts.b.csts_rdy == 1) {
2632 		nvme_put32(nvme, NVME_REG_CC, 0);
2633 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2634 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2635 			if (csts.b.csts_rdy == 0)
2636 				break;
2637 
2638 			if (quiesce)
2639 				drv_usecwait(50000);
2640 			else
2641 				delay(drv_usectohz(50000));
2642 		}
2643 	}
2644 
2645 	nvme_put32(nvme, NVME_REG_AQA, 0);
2646 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2647 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2648 
2649 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2650 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2651 }
2652 
2653 static void
2654 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2655 {
2656 	nvme_reg_cc_t cc;
2657 	nvme_reg_csts_t csts;
2658 	int i;
2659 
2660 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2661 
2662 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2663 	cc.b.cc_shn = mode & 0x3;
2664 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2665 
2666 	for (i = 0; i != 10; i++) {
2667 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2668 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2669 			break;
2670 
2671 		if (quiesce)
2672 			drv_usecwait(100000);
2673 		else
2674 			delay(drv_usectohz(100000));
2675 	}
2676 }
2677 
2678 
2679 static void
2680 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2681 {
2682 	/*
2683 	 * Section 7.7 of the spec describes how to get a unique ID for
2684 	 * the controller: the vendor ID, the model name and the serial
2685 	 * number shall be unique when combined.
2686 	 *
2687 	 * If a namespace has no EUI64 we use the above and add the hex
2688 	 * namespace ID to get a unique ID for the namespace.
2689 	 */
2690 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2691 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2692 
2693 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2694 	bcopy(nvme->n_idctl->id_serial, serial,
2695 	    sizeof (nvme->n_idctl->id_serial));
2696 
2697 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2698 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2699 
2700 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2701 	    nvme->n_idctl->id_vid, model, serial, nsid);
2702 }
2703 
2704 static void
2705 nvme_changed_ns(nvme_t *nvme, int nsid)
2706 {
2707 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2708 	nvme_identify_nsid_t *idns, *oidns;
2709 
2710 	dev_err(nvme->n_dip, CE_NOTE, "!namespace %u (%s) has changed.",
2711 	    nsid, ns->ns_name);
2712 
2713 	if (ns->ns_ignore)
2714 		return;
2715 
2716 	/*
2717 	 * The namespace has changed in some way. At present, we only update
2718 	 * the device capacity and trigger blkdev to check the device state.
2719 	 */
2720 
2721 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2722 		dev_err(nvme->n_dip, CE_WARN,
2723 		    "!failed to identify namespace %d", nsid);
2724 		return;
2725 	}
2726 
2727 	oidns = ns->ns_idns;
2728 	ns->ns_idns = idns;
2729 	kmem_free(oidns, sizeof (nvme_identify_nsid_t));
2730 
2731 	ns->ns_block_count = idns->id_nsize;
2732 	ns->ns_block_size =
2733 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2734 	ns->ns_best_block_size = ns->ns_block_size;
2735 
2736 	bd_state_change(ns->ns_bd_hdl);
2737 }
2738 
2739 static int
2740 nvme_init_ns(nvme_t *nvme, int nsid)
2741 {
2742 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2743 	nvme_identify_nsid_t *idns;
2744 	boolean_t was_ignored;
2745 	int last_rp;
2746 
2747 	ns->ns_nvme = nvme;
2748 
2749 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2750 		dev_err(nvme->n_dip, CE_WARN,
2751 		    "!failed to identify namespace %d", nsid);
2752 		return (DDI_FAILURE);
2753 	}
2754 
2755 	ns->ns_idns = idns;
2756 	ns->ns_id = nsid;
2757 	ns->ns_block_count = idns->id_nsize;
2758 	ns->ns_block_size =
2759 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2760 	ns->ns_best_block_size = ns->ns_block_size;
2761 
2762 	/*
2763 	 * Get the EUI64 if present. Use it for devid and device node names.
2764 	 */
2765 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2766 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2767 
2768 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2769 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2770 		uint8_t *eui64 = ns->ns_eui64;
2771 
2772 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2773 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2774 		    eui64[0], eui64[1], eui64[2], eui64[3],
2775 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2776 	} else {
2777 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2778 		    ns->ns_id);
2779 
2780 		nvme_prepare_devid(nvme, ns->ns_id);
2781 	}
2782 
2783 	/*
2784 	 * Find the LBA format with no metadata and the best relative
2785 	 * performance. A value of 3 means "degraded", 0 is best.
2786 	 */
2787 	last_rp = 3;
2788 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2789 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2790 			break;
2791 		if (idns->id_lbaf[j].lbaf_ms != 0)
2792 			continue;
2793 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2794 			continue;
2795 		last_rp = idns->id_lbaf[j].lbaf_rp;
2796 		ns->ns_best_block_size =
2797 		    1 << idns->id_lbaf[j].lbaf_lbads;
2798 	}
2799 
2800 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2801 		ns->ns_best_block_size = nvme->n_min_block_size;
2802 
2803 	was_ignored = ns->ns_ignore;
2804 
2805 	/*
2806 	 * We currently don't support namespaces that use either:
2807 	 * - protection information
2808 	 * - illegal block size (< 512)
2809 	 */
2810 	if (idns->id_dps.dp_pinfo) {
2811 		dev_err(nvme->n_dip, CE_WARN,
2812 		    "!ignoring namespace %d, unsupported feature: "
2813 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2814 		ns->ns_ignore = B_TRUE;
2815 	} else if (ns->ns_block_size < 512) {
2816 		dev_err(nvme->n_dip, CE_WARN,
2817 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2818 		    nsid, (uint64_t)ns->ns_block_size);
2819 		ns->ns_ignore = B_TRUE;
2820 	} else {
2821 		ns->ns_ignore = B_FALSE;
2822 	}
2823 
2824 	/*
2825 	 * Keep a count of namespaces which are attachable.
2826 	 * See comments in nvme_bd_driveinfo() to understand its effect.
2827 	 */
2828 	if (was_ignored) {
2829 		/*
2830 		 * Previously ignored, but now not. Count it.
2831 		 */
2832 		if (!ns->ns_ignore)
2833 			nvme->n_namespaces_attachable++;
2834 	} else {
2835 		/*
2836 		 * Wasn't ignored previously, but now needs to be.
2837 		 * Discount it.
2838 		 */
2839 		if (ns->ns_ignore)
2840 			nvme->n_namespaces_attachable--;
2841 	}
2842 
2843 	return (DDI_SUCCESS);
2844 }
2845 
2846 static int
2847 nvme_init(nvme_t *nvme)
2848 {
2849 	nvme_reg_cc_t cc = { 0 };
2850 	nvme_reg_aqa_t aqa = { 0 };
2851 	nvme_reg_asq_t asq = { 0 };
2852 	nvme_reg_acq_t acq = { 0 };
2853 	nvme_reg_cap_t cap;
2854 	nvme_reg_vs_t vs;
2855 	nvme_reg_csts_t csts;
2856 	int i = 0;
2857 	uint16_t nqueues;
2858 	uint_t tq_threads;
2859 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2860 	char *vendor, *product;
2861 
2862 	/* Check controller version */
2863 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2864 	nvme->n_version.v_major = vs.b.vs_mjr;
2865 	nvme->n_version.v_minor = vs.b.vs_mnr;
2866 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2867 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2868 
2869 	if (nvme->n_version.v_major > nvme_version_major) {
2870 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2871 		    nvme_version_major);
2872 		if (nvme->n_strict_version)
2873 			goto fail;
2874 	}
2875 
2876 	/* retrieve controller configuration */
2877 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2878 
2879 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2880 		dev_err(nvme->n_dip, CE_WARN,
2881 		    "!NVM command set not supported by hardware");
2882 		goto fail;
2883 	}
2884 
2885 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2886 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2887 	nvme->n_timeout = cap.b.cap_to;
2888 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2889 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2890 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2891 
2892 	/*
2893 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2894 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2895 	 * page size value.
2896 	 */
2897 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2898 	    cap.b.cap_mpsmax + 12);
2899 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2900 
2901 	/*
2902 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2903 	 */
2904 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2905 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2906 
2907 	/*
2908 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2909 	 * Maxxfer may be increased after we identified the controller limits.
2910 	 */
2911 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2912 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2913 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2914 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2915 
2916 	/*
2917 	 * Reset controller if it's still in ready state.
2918 	 */
2919 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2920 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2921 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2922 		nvme->n_dead = B_TRUE;
2923 		goto fail;
2924 	}
2925 
2926 	/*
2927 	 * Create the cq array with one completion queue to be assigned
2928 	 * to the admin queue pair and a limited number of taskqs (4).
2929 	 */
2930 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2931 	    DDI_SUCCESS) {
2932 		dev_err(nvme->n_dip, CE_WARN,
2933 		    "!failed to pre-allocate admin completion queue");
2934 		goto fail;
2935 	}
2936 	/*
2937 	 * Create the admin queue pair.
2938 	 */
2939 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2940 	    != DDI_SUCCESS) {
2941 		dev_err(nvme->n_dip, CE_WARN,
2942 		    "!unable to allocate admin qpair");
2943 		goto fail;
2944 	}
2945 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2946 	nvme->n_ioq[0] = nvme->n_adminq;
2947 
2948 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2949 
2950 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2951 	    "admin-queue-len", nvme->n_admin_queue_len);
2952 
2953 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2954 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2955 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2956 
2957 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2958 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2959 
2960 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2961 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2962 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2963 
2964 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2965 	cc.b.cc_css = 0;	/* use NVM command set */
2966 	cc.b.cc_mps = nvme->n_pageshift - 12;
2967 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2968 	cc.b.cc_en = 1;		/* enable controller */
2969 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2970 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2971 
2972 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2973 
2974 	/*
2975 	 * Wait for the controller to become ready.
2976 	 */
2977 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2978 	if (csts.b.csts_rdy == 0) {
2979 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2980 			delay(drv_usectohz(50000));
2981 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2982 
2983 			if (csts.b.csts_cfs == 1) {
2984 				dev_err(nvme->n_dip, CE_WARN,
2985 				    "!controller fatal status at init");
2986 				ddi_fm_service_impact(nvme->n_dip,
2987 				    DDI_SERVICE_LOST);
2988 				nvme->n_dead = B_TRUE;
2989 				goto fail;
2990 			}
2991 
2992 			if (csts.b.csts_rdy == 1)
2993 				break;
2994 		}
2995 	}
2996 
2997 	if (csts.b.csts_rdy == 0) {
2998 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2999 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
3000 		nvme->n_dead = B_TRUE;
3001 		goto fail;
3002 	}
3003 
3004 	/*
3005 	 * Assume an abort command limit of 1. We'll destroy and re-init
3006 	 * that later when we know the true abort command limit.
3007 	 */
3008 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
3009 
3010 	/*
3011 	 * Set up initial interrupt for admin queue.
3012 	 */
3013 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
3014 	    != DDI_SUCCESS) &&
3015 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
3016 	    != DDI_SUCCESS) &&
3017 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
3018 	    != DDI_SUCCESS)) {
3019 		dev_err(nvme->n_dip, CE_WARN,
3020 		    "!failed to setup initial interrupt");
3021 		goto fail;
3022 	}
3023 
3024 	/*
3025 	 * Post an asynchronous event command to catch errors.
3026 	 * We assume the asynchronous events are supported as required by
3027 	 * specification (Figure 40 in section 5 of NVMe 1.2).
3028 	 * However, since at least qemu does not follow the specification,
3029 	 * we need a mechanism to protect ourselves.
3030 	 */
3031 	nvme->n_async_event_supported = B_TRUE;
3032 	nvme_async_event(nvme);
3033 
3034 	/*
3035 	 * Identify Controller
3036 	 */
3037 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
3038 		dev_err(nvme->n_dip, CE_WARN,
3039 		    "!failed to identify controller");
3040 		goto fail;
3041 	}
3042 
3043 	/*
3044 	 * Get Vendor & Product ID
3045 	 */
3046 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
3047 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
3048 	sata_split_model(model, &vendor, &product);
3049 
3050 	if (vendor == NULL)
3051 		nvme->n_vendor = strdup("NVMe");
3052 	else
3053 		nvme->n_vendor = strdup(vendor);
3054 
3055 	nvme->n_product = strdup(product);
3056 
3057 	/*
3058 	 * Get controller limits.
3059 	 */
3060 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
3061 	    MIN(nvme->n_admin_queue_len / 10,
3062 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
3063 
3064 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3065 	    "async-event-limit", nvme->n_async_event_limit);
3066 
3067 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
3068 
3069 	/*
3070 	 * Reinitialize the semaphore with the true abort command limit
3071 	 * supported by the hardware. It's not necessary to disable interrupts
3072 	 * as only command aborts use the semaphore, and no commands are
3073 	 * executed or aborted while we're here.
3074 	 */
3075 	sema_destroy(&nvme->n_abort_sema);
3076 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
3077 	    SEMA_DRIVER, NULL);
3078 
3079 	nvme->n_progress |= NVME_CTRL_LIMITS;
3080 
3081 	if (nvme->n_idctl->id_mdts == 0)
3082 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
3083 	else
3084 		nvme->n_max_data_transfer_size =
3085 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
3086 
3087 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
3088 
3089 	/*
3090 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
3091 	 * Chained PRPs are currently unsupported.
3092 	 *
3093 	 * This is a no-op on hardware which doesn't support a transfer size
3094 	 * big enough to require chained PRPs.
3095 	 */
3096 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
3097 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
3098 
3099 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
3100 
3101 	/*
3102 	 * Make sure the minimum/maximum queue entry sizes are not
3103 	 * larger/smaller than the default.
3104 	 */
3105 
3106 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
3107 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
3108 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
3109 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
3110 		goto fail;
3111 
3112 	/*
3113 	 * Check for the presence of a Volatile Write Cache. If present,
3114 	 * enable or disable based on the value of the property
3115 	 * volatile-write-cache-enable (default is enabled).
3116 	 */
3117 	nvme->n_write_cache_present =
3118 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
3119 
3120 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3121 	    "volatile-write-cache-present",
3122 	    nvme->n_write_cache_present ? 1 : 0);
3123 
3124 	if (!nvme->n_write_cache_present) {
3125 		nvme->n_write_cache_enabled = B_FALSE;
3126 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
3127 	    != 0) {
3128 		dev_err(nvme->n_dip, CE_WARN,
3129 		    "!failed to %sable volatile write cache",
3130 		    nvme->n_write_cache_enabled ? "en" : "dis");
3131 		/*
3132 		 * Assume the cache is (still) enabled.
3133 		 */
3134 		nvme->n_write_cache_enabled = B_TRUE;
3135 	}
3136 
3137 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3138 	    "volatile-write-cache-enable",
3139 	    nvme->n_write_cache_enabled ? 1 : 0);
3140 
3141 	/*
3142 	 * Assume LBA Range Type feature is supported. If it isn't this
3143 	 * will be set to B_FALSE by nvme_get_features().
3144 	 */
3145 	nvme->n_lba_range_supported = B_TRUE;
3146 
3147 	/*
3148 	 * Check support for Autonomous Power State Transition.
3149 	 */
3150 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
3151 		nvme->n_auto_pst_supported =
3152 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
3153 
3154 	/*
3155 	 * Assume Software Progress Marker feature is supported.  If it isn't
3156 	 * this will be set to B_FALSE by nvme_get_features().
3157 	 */
3158 	nvme->n_progress_supported = B_TRUE;
3159 
3160 	/*
3161 	 * Identify Namespaces
3162 	 */
3163 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
3164 
3165 	if (nvme->n_namespace_count == 0) {
3166 		dev_err(nvme->n_dip, CE_WARN,
3167 		    "!controllers without namespaces are not supported");
3168 		goto fail;
3169 	}
3170 
3171 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
3172 		dev_err(nvme->n_dip, CE_WARN,
3173 		    "!too many namespaces: %d, limiting to %d\n",
3174 		    nvme->n_namespace_count, NVME_MINOR_MAX);
3175 		nvme->n_namespace_count = NVME_MINOR_MAX;
3176 	}
3177 
3178 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
3179 	    nvme->n_namespace_count, KM_SLEEP);
3180 
3181 	for (i = 0; i != nvme->n_namespace_count; i++) {
3182 		nvme->n_ns[i].ns_ignore = B_TRUE;
3183 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
3184 			goto fail;
3185 	}
3186 
3187 	/*
3188 	 * Try to set up MSI/MSI-X interrupts.
3189 	 */
3190 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
3191 	    != 0) {
3192 		nvme_release_interrupts(nvme);
3193 
3194 		nqueues = MIN(UINT16_MAX, ncpus);
3195 
3196 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
3197 		    nqueues) != DDI_SUCCESS) &&
3198 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
3199 		    nqueues) != DDI_SUCCESS)) {
3200 			dev_err(nvme->n_dip, CE_WARN,
3201 			    "!failed to setup MSI/MSI-X interrupts");
3202 			goto fail;
3203 		}
3204 	}
3205 
3206 	/*
3207 	 * Create I/O queue pairs.
3208 	 */
3209 
3210 	if (nvme_set_nqueues(nvme) != 0) {
3211 		dev_err(nvme->n_dip, CE_WARN,
3212 		    "!failed to set number of I/O queues to %d",
3213 		    nvme->n_intr_cnt);
3214 		goto fail;
3215 	}
3216 
3217 	/*
3218 	 * Reallocate I/O queue array
3219 	 */
3220 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3221 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3222 	    (nvme->n_submission_queues + 1), KM_SLEEP);
3223 	nvme->n_ioq[0] = nvme->n_adminq;
3224 
3225 	/*
3226 	 * There should always be at least as many submission queues
3227 	 * as completion queues.
3228 	 */
3229 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3230 
3231 	nvme->n_ioq_count = nvme->n_submission_queues;
3232 
3233 	nvme->n_io_squeue_len =
3234 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3235 
3236 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3237 	    nvme->n_io_squeue_len);
3238 
3239 	/*
3240 	 * Pre-allocate completion queues.
3241 	 * When there are the same number of submission and completion
3242 	 * queues there is no value in having a larger completion
3243 	 * queue length.
3244 	 */
3245 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3246 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3247 		    nvme->n_io_squeue_len);
3248 
3249 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3250 	    nvme->n_max_queue_entries);
3251 
3252 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3253 	    nvme->n_io_cqueue_len);
3254 
3255 	/*
3256 	 * Assign the equal quantity of taskq threads to each completion
3257 	 * queue, capping the total number of threads to the number
3258 	 * of CPUs.
3259 	 */
3260 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3261 
3262 	/*
3263 	 * In case the calculation above is zero, we need at least one
3264 	 * thread per completion queue.
3265 	 */
3266 	tq_threads = MAX(1, tq_threads);
3267 
3268 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3269 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3270 		dev_err(nvme->n_dip, CE_WARN,
3271 		    "!failed to pre-allocate completion queues");
3272 		goto fail;
3273 	}
3274 
3275 	/*
3276 	 * If we use less completion queues than interrupt vectors return
3277 	 * some of the interrupt vectors back to the system.
3278 	 */
3279 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3280 		nvme_release_interrupts(nvme);
3281 
3282 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3283 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3284 			dev_err(nvme->n_dip, CE_WARN,
3285 			    "!failed to reduce number of interrupts");
3286 			goto fail;
3287 		}
3288 	}
3289 
3290 	/*
3291 	 * Alloc & register I/O queue pairs
3292 	 */
3293 
3294 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3295 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3296 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3297 			dev_err(nvme->n_dip, CE_WARN,
3298 			    "!unable to allocate I/O qpair %d", i);
3299 			goto fail;
3300 		}
3301 
3302 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3303 			dev_err(nvme->n_dip, CE_WARN,
3304 			    "!unable to create I/O qpair %d", i);
3305 			goto fail;
3306 		}
3307 	}
3308 
3309 	/*
3310 	 * Post more asynchronous events commands to reduce event reporting
3311 	 * latency as suggested by the spec.
3312 	 */
3313 	if (nvme->n_async_event_supported) {
3314 		for (i = 1; i != nvme->n_async_event_limit; i++)
3315 			nvme_async_event(nvme);
3316 	}
3317 
3318 	return (DDI_SUCCESS);
3319 
3320 fail:
3321 	(void) nvme_reset(nvme, B_FALSE);
3322 	return (DDI_FAILURE);
3323 }
3324 
3325 static uint_t
3326 nvme_intr(caddr_t arg1, caddr_t arg2)
3327 {
3328 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3329 	nvme_t *nvme = (nvme_t *)arg1;
3330 	int inum = (int)(uintptr_t)arg2;
3331 	int ccnt = 0;
3332 	int qnum;
3333 
3334 	if (inum >= nvme->n_intr_cnt)
3335 		return (DDI_INTR_UNCLAIMED);
3336 
3337 	if (nvme->n_dead)
3338 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3339 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3340 
3341 	/*
3342 	 * The interrupt vector a queue uses is calculated as queue_idx %
3343 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3344 	 * in steps of n_intr_cnt to process all queues using this vector.
3345 	 */
3346 	for (qnum = inum;
3347 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3348 	    qnum += nvme->n_intr_cnt) {
3349 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3350 	}
3351 
3352 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3353 }
3354 
3355 static void
3356 nvme_release_interrupts(nvme_t *nvme)
3357 {
3358 	int i;
3359 
3360 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3361 		if (nvme->n_inth[i] == NULL)
3362 			break;
3363 
3364 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3365 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3366 		else
3367 			(void) ddi_intr_disable(nvme->n_inth[i]);
3368 
3369 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3370 		(void) ddi_intr_free(nvme->n_inth[i]);
3371 	}
3372 
3373 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3374 	nvme->n_inth = NULL;
3375 	nvme->n_inth_sz = 0;
3376 
3377 	nvme->n_progress &= ~NVME_INTERRUPTS;
3378 }
3379 
3380 static int
3381 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3382 {
3383 	int nintrs, navail, count;
3384 	int ret;
3385 	int i;
3386 
3387 	if (nvme->n_intr_types == 0) {
3388 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3389 		    &nvme->n_intr_types);
3390 		if (ret != DDI_SUCCESS) {
3391 			dev_err(nvme->n_dip, CE_WARN,
3392 			    "!%s: ddi_intr_get_supported types failed",
3393 			    __func__);
3394 			return (ret);
3395 		}
3396 #ifdef __x86
3397 		if (get_hwenv() == HW_VMWARE)
3398 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3399 #endif
3400 	}
3401 
3402 	if ((nvme->n_intr_types & intr_type) == 0)
3403 		return (DDI_FAILURE);
3404 
3405 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3406 	if (ret != DDI_SUCCESS) {
3407 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3408 		    __func__);
3409 		return (ret);
3410 	}
3411 
3412 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3413 	if (ret != DDI_SUCCESS) {
3414 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3415 		    __func__);
3416 		return (ret);
3417 	}
3418 
3419 	/* We want at most one interrupt per queue pair. */
3420 	if (navail > nqpairs)
3421 		navail = nqpairs;
3422 
3423 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3424 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3425 
3426 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3427 	    &count, 0);
3428 	if (ret != DDI_SUCCESS) {
3429 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3430 		    __func__);
3431 		goto fail;
3432 	}
3433 
3434 	nvme->n_intr_cnt = count;
3435 
3436 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3437 	if (ret != DDI_SUCCESS) {
3438 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3439 		    __func__);
3440 		goto fail;
3441 	}
3442 
3443 	for (i = 0; i < count; i++) {
3444 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3445 		    (void *)nvme, (void *)(uintptr_t)i);
3446 		if (ret != DDI_SUCCESS) {
3447 			dev_err(nvme->n_dip, CE_WARN,
3448 			    "!%s: ddi_intr_add_handler failed", __func__);
3449 			goto fail;
3450 		}
3451 	}
3452 
3453 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3454 
3455 	for (i = 0; i < count; i++) {
3456 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3457 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3458 		else
3459 			ret = ddi_intr_enable(nvme->n_inth[i]);
3460 
3461 		if (ret != DDI_SUCCESS) {
3462 			dev_err(nvme->n_dip, CE_WARN,
3463 			    "!%s: enabling interrupt %d failed", __func__, i);
3464 			goto fail;
3465 		}
3466 	}
3467 
3468 	nvme->n_intr_type = intr_type;
3469 
3470 	nvme->n_progress |= NVME_INTERRUPTS;
3471 
3472 	return (DDI_SUCCESS);
3473 
3474 fail:
3475 	nvme_release_interrupts(nvme);
3476 
3477 	return (ret);
3478 }
3479 
3480 static int
3481 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3482 {
3483 	_NOTE(ARGUNUSED(arg));
3484 
3485 	pci_ereport_post(dip, fm_error, NULL);
3486 	return (fm_error->fme_status);
3487 }
3488 
3489 static void
3490 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a,
3491     void *b)
3492 {
3493 	nvme_t *nvme = a;
3494 
3495 	nvme->n_dead = B_TRUE;
3496 
3497 	/*
3498 	 * Fail all outstanding commands, including those in the admin queue
3499 	 * (queue 0).
3500 	 */
3501 	for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) {
3502 		nvme_qpair_t *qp = nvme->n_ioq[i];
3503 
3504 		mutex_enter(&qp->nq_mutex);
3505 		for (size_t j = 0; j < qp->nq_nentry; j++) {
3506 			nvme_cmd_t *cmd = qp->nq_cmd[j];
3507 			nvme_cmd_t *u_cmd;
3508 
3509 			if (cmd == NULL) {
3510 				continue;
3511 			}
3512 
3513 			/*
3514 			 * Since we have the queue lock held the entire time we
3515 			 * iterate over it, it's not possible for the queue to
3516 			 * change underneath us. Thus, we don't need to check
3517 			 * that the return value of nvme_unqueue_cmd matches the
3518 			 * requested cmd to unqueue.
3519 			 */
3520 			u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
3521 			taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq,
3522 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
3523 
3524 			ASSERT3P(u_cmd, ==, cmd);
3525 		}
3526 		mutex_exit(&qp->nq_mutex);
3527 	}
3528 }
3529 
3530 static int
3531 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3532 {
3533 	nvme_t *nvme;
3534 	int instance;
3535 	int nregs;
3536 	off_t regsize;
3537 	int i;
3538 	char name[32];
3539 	bd_ops_t ops = nvme_bd_ops;
3540 
3541 	if (cmd != DDI_ATTACH)
3542 		return (DDI_FAILURE);
3543 
3544 	instance = ddi_get_instance(dip);
3545 
3546 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3547 		return (DDI_FAILURE);
3548 
3549 	nvme = ddi_get_soft_state(nvme_state, instance);
3550 	ddi_set_driver_private(dip, nvme);
3551 	nvme->n_dip = dip;
3552 
3553 	/* Set up event handlers for hot removal. */
3554 	if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT,
3555 	    &nvme->n_rm_cookie) != DDI_SUCCESS) {
3556 		goto fail;
3557 	}
3558 	if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie,
3559 	    nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) !=
3560 	    DDI_SUCCESS) {
3561 		goto fail;
3562 	}
3563 
3564 	mutex_init(&nvme->n_minor_mutex, NULL, MUTEX_DRIVER, NULL);
3565 	nvme->n_progress |= NVME_MUTEX_INIT;
3566 
3567 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3568 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3569 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3570 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3571 	    B_TRUE : B_FALSE;
3572 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3573 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3574 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3575 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3576 	/*
3577 	 * Double up the default for completion queues in case of
3578 	 * queue sharing.
3579 	 */
3580 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3581 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3582 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3583 	    DDI_PROP_DONTPASS, "async-event-limit",
3584 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3585 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3586 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3587 	    B_TRUE : B_FALSE;
3588 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3589 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3590 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3591 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3592 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3593 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3594 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3595 
3596 	if (!ISP2(nvme->n_min_block_size) ||
3597 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3598 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3599 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3600 		    "too low" : "not a power of 2",
3601 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3602 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3603 	}
3604 
3605 	if (nvme->n_submission_queues != -1 &&
3606 	    (nvme->n_submission_queues < 1 ||
3607 	    nvme->n_submission_queues > UINT16_MAX)) {
3608 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3609 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3610 		    UINT16_MAX);
3611 		nvme->n_submission_queues = -1;
3612 	}
3613 
3614 	if (nvme->n_completion_queues != -1 &&
3615 	    (nvme->n_completion_queues < 1 ||
3616 	    nvme->n_completion_queues > UINT16_MAX)) {
3617 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3618 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3619 		    UINT16_MAX);
3620 		nvme->n_completion_queues = -1;
3621 	}
3622 
3623 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3624 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3625 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3626 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3627 
3628 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3629 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3630 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3631 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3632 
3633 	if (nvme->n_async_event_limit < 1)
3634 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3635 
3636 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3637 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3638 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3639 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3640 
3641 	/*
3642 	 * Set up FMA support.
3643 	 */
3644 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3645 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3646 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3647 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3648 
3649 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3650 
3651 	if (nvme->n_fm_cap) {
3652 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3653 			nvme->n_reg_acc_attr.devacc_attr_access =
3654 			    DDI_FLAGERR_ACC;
3655 
3656 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3657 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3658 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3659 		}
3660 
3661 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3662 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3663 			pci_ereport_setup(dip);
3664 
3665 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3666 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3667 			    (void *)nvme);
3668 	}
3669 
3670 	nvme->n_progress |= NVME_FMA_INIT;
3671 
3672 	/*
3673 	 * The spec defines several register sets. Only the controller
3674 	 * registers (set 1) are currently used.
3675 	 */
3676 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3677 	    nregs < 2 ||
3678 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3679 		goto fail;
3680 
3681 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3682 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3683 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3684 		goto fail;
3685 	}
3686 
3687 	nvme->n_progress |= NVME_REGS_MAPPED;
3688 
3689 	/*
3690 	 * Create PRP DMA cache
3691 	 */
3692 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3693 	    ddi_driver_name(dip), ddi_get_instance(dip));
3694 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3695 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3696 	    NULL, (void *)nvme, NULL, 0);
3697 
3698 	if (nvme_init(nvme) != DDI_SUCCESS)
3699 		goto fail;
3700 
3701 	if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3702 		ops.o_free_space = NULL;
3703 
3704 	/*
3705 	 * Initialize the driver with the UFM subsystem
3706 	 */
3707 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3708 	    &nvme->n_ufmh, nvme) != 0) {
3709 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3710 		goto fail;
3711 	}
3712 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3713 	ddi_ufm_update(nvme->n_ufmh);
3714 	nvme->n_progress |= NVME_UFM_INIT;
3715 
3716 	/*
3717 	 * Attach the blkdev driver for each namespace.
3718 	 */
3719 	for (i = 0; i != nvme->n_namespace_count; i++) {
3720 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3721 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3722 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3723 			dev_err(dip, CE_WARN,
3724 			    "!failed to create minor node for namespace %d", i);
3725 			goto fail;
3726 		}
3727 
3728 		if (nvme->n_ns[i].ns_ignore)
3729 			continue;
3730 
3731 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3732 		    &ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3733 
3734 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3735 			dev_err(dip, CE_WARN,
3736 			    "!failed to get blkdev handle for namespace %d", i);
3737 			goto fail;
3738 		}
3739 
3740 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3741 		    != DDI_SUCCESS) {
3742 			dev_err(dip, CE_WARN,
3743 			    "!failed to attach blkdev handle for namespace %d",
3744 			    i);
3745 			goto fail;
3746 		}
3747 	}
3748 
3749 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3750 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3751 	    != DDI_SUCCESS) {
3752 		dev_err(dip, CE_WARN, "nvme_attach: "
3753 		    "cannot create devctl minor node");
3754 		goto fail;
3755 	}
3756 
3757 	return (DDI_SUCCESS);
3758 
3759 fail:
3760 	/* attach successful anyway so that FMA can retire the device */
3761 	if (nvme->n_dead)
3762 		return (DDI_SUCCESS);
3763 
3764 	(void) nvme_detach(dip, DDI_DETACH);
3765 
3766 	return (DDI_FAILURE);
3767 }
3768 
3769 static int
3770 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3771 {
3772 	int instance, i;
3773 	nvme_t *nvme;
3774 
3775 	if (cmd != DDI_DETACH)
3776 		return (DDI_FAILURE);
3777 
3778 	instance = ddi_get_instance(dip);
3779 
3780 	nvme = ddi_get_soft_state(nvme_state, instance);
3781 
3782 	if (nvme == NULL)
3783 		return (DDI_FAILURE);
3784 
3785 	ddi_remove_minor_node(dip, "devctl");
3786 
3787 	if (nvme->n_ns) {
3788 		for (i = 0; i != nvme->n_namespace_count; i++) {
3789 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3790 
3791 			if (nvme->n_ns[i].ns_bd_hdl) {
3792 				(void) bd_detach_handle(
3793 				    nvme->n_ns[i].ns_bd_hdl);
3794 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3795 			}
3796 
3797 			if (nvme->n_ns[i].ns_idns)
3798 				kmem_free(nvme->n_ns[i].ns_idns,
3799 				    sizeof (nvme_identify_nsid_t));
3800 			if (nvme->n_ns[i].ns_devid)
3801 				strfree(nvme->n_ns[i].ns_devid);
3802 		}
3803 
3804 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3805 		    nvme->n_namespace_count);
3806 	}
3807 	if (nvme->n_progress & NVME_UFM_INIT) {
3808 		ddi_ufm_fini(nvme->n_ufmh);
3809 		mutex_destroy(&nvme->n_fwslot_mutex);
3810 	}
3811 
3812 	if (nvme->n_progress & NVME_INTERRUPTS)
3813 		nvme_release_interrupts(nvme);
3814 
3815 	for (i = 0; i < nvme->n_cq_count; i++) {
3816 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3817 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3818 	}
3819 
3820 	if (nvme->n_progress & NVME_MUTEX_INIT) {
3821 		mutex_destroy(&nvme->n_minor_mutex);
3822 	}
3823 
3824 	if (nvme->n_ioq_count > 0) {
3825 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3826 			if (nvme->n_ioq[i] != NULL) {
3827 				/* TODO: send destroy queue commands */
3828 				nvme_free_qpair(nvme->n_ioq[i]);
3829 			}
3830 		}
3831 
3832 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3833 		    (nvme->n_ioq_count + 1));
3834 	}
3835 
3836 	if (nvme->n_prp_cache != NULL) {
3837 		kmem_cache_destroy(nvme->n_prp_cache);
3838 	}
3839 
3840 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3841 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3842 		(void) nvme_reset(nvme, B_FALSE);
3843 	}
3844 
3845 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3846 		sema_destroy(&nvme->n_abort_sema);
3847 
3848 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3849 		nvme_free_qpair(nvme->n_adminq);
3850 
3851 	if (nvme->n_cq_count > 0) {
3852 		nvme_destroy_cq_array(nvme, 0);
3853 		nvme->n_cq = NULL;
3854 		nvme->n_cq_count = 0;
3855 	}
3856 
3857 	if (nvme->n_idctl)
3858 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3859 
3860 	if (nvme->n_progress & NVME_REGS_MAPPED)
3861 		ddi_regs_map_free(&nvme->n_regh);
3862 
3863 	if (nvme->n_progress & NVME_FMA_INIT) {
3864 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3865 			ddi_fm_handler_unregister(nvme->n_dip);
3866 
3867 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3868 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3869 			pci_ereport_teardown(nvme->n_dip);
3870 
3871 		ddi_fm_fini(nvme->n_dip);
3872 	}
3873 
3874 	if (nvme->n_vendor != NULL)
3875 		strfree(nvme->n_vendor);
3876 
3877 	if (nvme->n_product != NULL)
3878 		strfree(nvme->n_product);
3879 
3880 	/* Clean up hot removal event handler. */
3881 	if (nvme->n_ev_rm_cb_id != NULL) {
3882 		(void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id);
3883 	}
3884 	nvme->n_ev_rm_cb_id = NULL;
3885 
3886 	ddi_soft_state_free(nvme_state, instance);
3887 
3888 	return (DDI_SUCCESS);
3889 }
3890 
3891 static int
3892 nvme_quiesce(dev_info_t *dip)
3893 {
3894 	int instance;
3895 	nvme_t *nvme;
3896 
3897 	instance = ddi_get_instance(dip);
3898 
3899 	nvme = ddi_get_soft_state(nvme_state, instance);
3900 
3901 	if (nvme == NULL)
3902 		return (DDI_FAILURE);
3903 
3904 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3905 
3906 	(void) nvme_reset(nvme, B_TRUE);
3907 
3908 	return (DDI_FAILURE);
3909 }
3910 
3911 static int
3912 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma)
3913 {
3914 	nvme_t *nvme = cmd->nc_nvme;
3915 	uint_t nprp_per_page, nprp;
3916 	uint64_t *prp;
3917 	const ddi_dma_cookie_t *cookie;
3918 	uint_t idx;
3919 	uint_t ncookies = ddi_dma_ncookies(dma);
3920 
3921 	if (ncookies == 0)
3922 		return (DDI_FAILURE);
3923 
3924 	if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL)
3925 		return (DDI_FAILURE);
3926 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress;
3927 
3928 	if (ncookies == 1) {
3929 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3930 		return (DDI_SUCCESS);
3931 	} else if (ncookies == 2) {
3932 		if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL)
3933 			return (DDI_FAILURE);
3934 		cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress;
3935 		return (DDI_SUCCESS);
3936 	}
3937 
3938 	/*
3939 	 * At this point, we're always operating on cookies at
3940 	 * index >= 1 and writing the addresses of those cookies
3941 	 * into a new page. The address of that page is stored
3942 	 * as the second PRP entry.
3943 	 */
3944 	nprp_per_page = nvme->n_pagesize / sizeof (uint64_t);
3945 	ASSERT(nprp_per_page > 0);
3946 
3947 	/*
3948 	 * We currently don't support chained PRPs and set up our DMA
3949 	 * attributes to reflect that. If we still get an I/O request
3950 	 * that needs a chained PRP something is very wrong. Account
3951 	 * for the first cookie here, which we've placed in d_prp[0].
3952 	 */
3953 	nprp = howmany(ncookies - 1, nprp_per_page);
3954 	VERIFY(nprp == 1);
3955 
3956 	/*
3957 	 * Allocate a page of pointers, in which we'll write the
3958 	 * addresses of cookies 1 to `ncookies`.
3959 	 */
3960 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3961 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
3962 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress;
3963 
3964 	prp = (uint64_t *)cmd->nc_prp->nd_memp;
3965 	for (idx = 1; idx < ncookies; idx++) {
3966 		if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL)
3967 			return (DDI_FAILURE);
3968 		*prp++ = cookie->dmac_laddress;
3969 	}
3970 
3971 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
3972 	    DDI_DMA_SYNC_FORDEV);
3973 	return (DDI_SUCCESS);
3974 }
3975 
3976 /*
3977  * The maximum number of requests supported for a deallocate request is
3978  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
3979  * unchanged through at least 1.4a). The definition of nvme_range_t is also
3980  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
3981  * a deallocate request will fit into the smallest supported namespace page
3982  * (4k).
3983  */
3984 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
3985 
3986 static int
3987 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
3988     int allocflag)
3989 {
3990 	const dkioc_free_list_t *dfl = xfer->x_dfl;
3991 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
3992 	nvme_t *nvme = cmd->nc_nvme;
3993 	nvme_range_t *ranges = NULL;
3994 	uint_t i;
3995 
3996 	/*
3997 	 * The number of ranges in the request is 0s based (that is
3998 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
3999 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
4000 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
4001 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
4002 	 * in blkdev.
4003 	 */
4004 	VERIFY3U(dfl->dfl_num_exts, >, 0);
4005 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
4006 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
4007 
4008 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
4009 
4010 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
4011 	if (cmd->nc_prp == NULL)
4012 		return (DDI_FAILURE);
4013 
4014 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
4015 	ranges = (nvme_range_t *)cmd->nc_prp->nd_memp;
4016 
4017 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress;
4018 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
4019 
4020 	for (i = 0; i < dfl->dfl_num_exts; i++) {
4021 		uint64_t lba, len;
4022 
4023 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
4024 		len = exts[i].dfle_length / blocksize;
4025 
4026 		VERIFY3U(len, <=, UINT32_MAX);
4027 
4028 		/* No context attributes for a deallocate request */
4029 		ranges[i].nr_ctxattr = 0;
4030 		ranges[i].nr_len = len;
4031 		ranges[i].nr_lba = lba;
4032 	}
4033 
4034 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
4035 	    DDI_DMA_SYNC_FORDEV);
4036 
4037 	return (DDI_SUCCESS);
4038 }
4039 
4040 static nvme_cmd_t *
4041 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
4042 {
4043 	nvme_t *nvme = ns->ns_nvme;
4044 	nvme_cmd_t *cmd;
4045 	int allocflag;
4046 
4047 	/*
4048 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
4049 	 */
4050 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
4051 	cmd = nvme_alloc_cmd(nvme, allocflag);
4052 
4053 	if (cmd == NULL)
4054 		return (NULL);
4055 
4056 	cmd->nc_sqe.sqe_opc = opc;
4057 	cmd->nc_callback = nvme_bd_xfer_done;
4058 	cmd->nc_xfer = xfer;
4059 
4060 	switch (opc) {
4061 	case NVME_OPC_NVM_WRITE:
4062 	case NVME_OPC_NVM_READ:
4063 		VERIFY(xfer->x_nblks <= 0x10000);
4064 
4065 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4066 
4067 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
4068 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
4069 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
4070 
4071 		if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS)
4072 			goto fail;
4073 		break;
4074 
4075 	case NVME_OPC_NVM_FLUSH:
4076 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4077 		break;
4078 
4079 	case NVME_OPC_NVM_DSET_MGMT:
4080 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4081 
4082 		if (nvme_fill_ranges(cmd, xfer,
4083 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
4084 			goto fail;
4085 		break;
4086 
4087 	default:
4088 		goto fail;
4089 	}
4090 
4091 	return (cmd);
4092 
4093 fail:
4094 	nvme_free_cmd(cmd);
4095 	return (NULL);
4096 }
4097 
4098 static void
4099 nvme_bd_xfer_done(void *arg)
4100 {
4101 	nvme_cmd_t *cmd = arg;
4102 	bd_xfer_t *xfer = cmd->nc_xfer;
4103 	int error = 0;
4104 
4105 	error = nvme_check_cmd_status(cmd);
4106 	nvme_free_cmd(cmd);
4107 
4108 	bd_xfer_done(xfer, error);
4109 }
4110 
4111 static void
4112 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
4113 {
4114 	nvme_namespace_t *ns = arg;
4115 	nvme_t *nvme = ns->ns_nvme;
4116 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
4117 
4118 	/*
4119 	 * Set the blkdev qcount to the number of submission queues.
4120 	 * It will then create one waitq/runq pair for each submission
4121 	 * queue and spread I/O requests across the queues.
4122 	 */
4123 	drive->d_qcount = nvme->n_ioq_count;
4124 
4125 	/*
4126 	 * I/O activity to individual namespaces is distributed across
4127 	 * each of the d_qcount blkdev queues (which has been set to
4128 	 * the number of nvme submission queues). d_qsize is the number
4129 	 * of submitted and not completed I/Os within each queue that blkdev
4130 	 * will allow before it starts holding them in the waitq.
4131 	 *
4132 	 * Each namespace will create a child blkdev instance, for each one
4133 	 * we try and set the d_qsize so that each namespace gets an
4134 	 * equal portion of the submission queue.
4135 	 *
4136 	 * If post instantiation of the nvme drive, n_namespaces_attachable
4137 	 * changes and a namespace is attached it could calculate a
4138 	 * different d_qsize. It may even be that the sum of the d_qsizes is
4139 	 * now beyond the submission queue size. Should that be the case
4140 	 * and the I/O rate is such that blkdev attempts to submit more
4141 	 * I/Os than the size of the submission queue, the excess I/Os
4142 	 * will be held behind the semaphore nq_sema.
4143 	 */
4144 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
4145 
4146 	/*
4147 	 * Don't let the queue size drop below the minimum, though.
4148 	 */
4149 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
4150 
4151 	/*
4152 	 * d_maxxfer is not set, which means the value is taken from the DMA
4153 	 * attributes specified to bd_alloc_handle.
4154 	 */
4155 
4156 	drive->d_removable = B_FALSE;
4157 	drive->d_hotpluggable = B_FALSE;
4158 
4159 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
4160 	drive->d_target = ns->ns_id;
4161 	drive->d_lun = 0;
4162 
4163 	drive->d_model = nvme->n_idctl->id_model;
4164 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
4165 	drive->d_vendor = nvme->n_vendor;
4166 	drive->d_vendor_len = strlen(nvme->n_vendor);
4167 	drive->d_product = nvme->n_product;
4168 	drive->d_product_len = strlen(nvme->n_product);
4169 	drive->d_serial = nvme->n_idctl->id_serial;
4170 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
4171 	drive->d_revision = nvme->n_idctl->id_fwrev;
4172 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
4173 
4174 	/*
4175 	 * If we support the dataset management command, the only restrictions
4176 	 * on a discard request are the maximum number of ranges (segments)
4177 	 * per single request.
4178 	 */
4179 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
4180 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
4181 }
4182 
4183 static int
4184 nvme_bd_mediainfo(void *arg, bd_media_t *media)
4185 {
4186 	nvme_namespace_t *ns = arg;
4187 	nvme_t *nvme = ns->ns_nvme;
4188 
4189 	if (nvme->n_dead) {
4190 		return (EIO);
4191 	}
4192 
4193 	media->m_nblks = ns->ns_block_count;
4194 	media->m_blksize = ns->ns_block_size;
4195 	media->m_readonly = B_FALSE;
4196 	media->m_solidstate = B_TRUE;
4197 
4198 	media->m_pblksize = ns->ns_best_block_size;
4199 
4200 	return (0);
4201 }
4202 
4203 static int
4204 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
4205 {
4206 	nvme_t *nvme = ns->ns_nvme;
4207 	nvme_cmd_t *cmd;
4208 	nvme_qpair_t *ioq;
4209 	boolean_t poll;
4210 	int ret;
4211 
4212 	if (nvme->n_dead) {
4213 		return (EIO);
4214 	}
4215 
4216 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
4217 	if (cmd == NULL)
4218 		return (ENOMEM);
4219 
4220 	cmd->nc_sqid = xfer->x_qnum + 1;
4221 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4222 	ioq = nvme->n_ioq[cmd->nc_sqid];
4223 
4224 	/*
4225 	 * Get the polling flag before submitting the command. The command may
4226 	 * complete immediately after it was submitted, which means we must
4227 	 * treat both cmd and xfer as if they have been freed already.
4228 	 */
4229 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
4230 
4231 	ret = nvme_submit_io_cmd(ioq, cmd);
4232 
4233 	if (ret != 0)
4234 		return (ret);
4235 
4236 	if (!poll)
4237 		return (0);
4238 
4239 	do {
4240 		cmd = nvme_retrieve_cmd(nvme, ioq);
4241 		if (cmd != NULL)
4242 			cmd->nc_callback(cmd);
4243 		else
4244 			drv_usecwait(10);
4245 	} while (ioq->nq_active_cmds != 0);
4246 
4247 	return (0);
4248 }
4249 
4250 static int
4251 nvme_bd_read(void *arg, bd_xfer_t *xfer)
4252 {
4253 	nvme_namespace_t *ns = arg;
4254 
4255 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
4256 }
4257 
4258 static int
4259 nvme_bd_write(void *arg, bd_xfer_t *xfer)
4260 {
4261 	nvme_namespace_t *ns = arg;
4262 
4263 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
4264 }
4265 
4266 static int
4267 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
4268 {
4269 	nvme_namespace_t *ns = arg;
4270 
4271 	if (ns->ns_nvme->n_dead)
4272 		return (EIO);
4273 
4274 	/*
4275 	 * If the volatile write cache is not present or not enabled the FLUSH
4276 	 * command is a no-op, so we can take a shortcut here.
4277 	 */
4278 	if (!ns->ns_nvme->n_write_cache_present) {
4279 		bd_xfer_done(xfer, ENOTSUP);
4280 		return (0);
4281 	}
4282 
4283 	if (!ns->ns_nvme->n_write_cache_enabled) {
4284 		bd_xfer_done(xfer, 0);
4285 		return (0);
4286 	}
4287 
4288 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
4289 }
4290 
4291 static int
4292 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
4293 {
4294 	nvme_namespace_t *ns = arg;
4295 	nvme_t *nvme = ns->ns_nvme;
4296 
4297 	if (nvme->n_dead) {
4298 		return (EIO);
4299 	}
4300 
4301 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
4302 	if (*(uint64_t *)ns->ns_eui64 != 0) {
4303 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4304 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4305 	} else {
4306 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
4307 		    strlen(ns->ns_devid), ns->ns_devid, devid));
4308 	}
4309 }
4310 
4311 static int
4312 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4313 {
4314 	nvme_namespace_t *ns = arg;
4315 
4316 	if (xfer->x_dfl == NULL)
4317 		return (EINVAL);
4318 
4319 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4320 		return (ENOTSUP);
4321 
4322 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4323 }
4324 
4325 static int
4326 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4327 {
4328 #ifndef __lock_lint
4329 	_NOTE(ARGUNUSED(cred_p));
4330 #endif
4331 	minor_t minor = getminor(*devp);
4332 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4333 	int nsid = NVME_MINOR_NSID(minor);
4334 	nvme_minor_state_t *nm;
4335 	int rv = 0;
4336 
4337 	if (otyp != OTYP_CHR)
4338 		return (EINVAL);
4339 
4340 	if (nvme == NULL)
4341 		return (ENXIO);
4342 
4343 	if (nsid > nvme->n_namespace_count)
4344 		return (ENXIO);
4345 
4346 	if (nvme->n_dead)
4347 		return (EIO);
4348 
4349 	mutex_enter(&nvme->n_minor_mutex);
4350 
4351 	/*
4352 	 * First check the devctl node and error out if it's been opened
4353 	 * exclusively already by any other thread.
4354 	 */
4355 	if (nvme->n_minor.nm_oexcl != NULL &&
4356 	    nvme->n_minor.nm_oexcl != curthread) {
4357 		rv = EBUSY;
4358 		goto out;
4359 	}
4360 
4361 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4362 
4363 	if (flag & FEXCL) {
4364 		if (nm->nm_oexcl != NULL || nm->nm_open) {
4365 			rv = EBUSY;
4366 			goto out;
4367 		}
4368 
4369 		/*
4370 		 * If at least one namespace is already open, fail the
4371 		 * exclusive open of the devctl node.
4372 		 */
4373 		if (nsid == 0) {
4374 			for (int i = 0; i != nvme->n_namespace_count; i++) {
4375 				if (nvme->n_ns[i].ns_minor.nm_open) {
4376 					rv = EBUSY;
4377 					goto out;
4378 				}
4379 			}
4380 		}
4381 
4382 		nm->nm_oexcl = curthread;
4383 	}
4384 
4385 	nm->nm_open = B_TRUE;
4386 
4387 out:
4388 	mutex_exit(&nvme->n_minor_mutex);
4389 	return (rv);
4390 
4391 }
4392 
4393 static int
4394 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4395 {
4396 #ifndef __lock_lint
4397 	_NOTE(ARGUNUSED(cred_p));
4398 	_NOTE(ARGUNUSED(flag));
4399 #endif
4400 	minor_t minor = getminor(dev);
4401 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4402 	int nsid = NVME_MINOR_NSID(minor);
4403 	nvme_minor_state_t *nm;
4404 
4405 	if (otyp != OTYP_CHR)
4406 		return (ENXIO);
4407 
4408 	if (nvme == NULL)
4409 		return (ENXIO);
4410 
4411 	if (nsid > nvme->n_namespace_count)
4412 		return (ENXIO);
4413 
4414 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4415 
4416 	mutex_enter(&nvme->n_minor_mutex);
4417 	if (nm->nm_oexcl != NULL) {
4418 		ASSERT(nm->nm_oexcl == curthread);
4419 		nm->nm_oexcl = NULL;
4420 	}
4421 
4422 	ASSERT(nm->nm_open);
4423 	nm->nm_open = B_FALSE;
4424 	mutex_exit(&nvme->n_minor_mutex);
4425 
4426 	return (0);
4427 }
4428 
4429 static int
4430 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4431     cred_t *cred_p)
4432 {
4433 	_NOTE(ARGUNUSED(cred_p));
4434 	int rv = 0;
4435 	void *idctl;
4436 
4437 	if ((mode & FREAD) == 0)
4438 		return (EPERM);
4439 
4440 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4441 		return (EINVAL);
4442 
4443 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4444 		return (rv);
4445 
4446 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4447 	    != 0)
4448 		rv = EFAULT;
4449 
4450 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4451 
4452 	return (rv);
4453 }
4454 
4455 /*
4456  * Execute commands on behalf of the various ioctls.
4457  */
4458 static int
4459 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4460     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4461 {
4462 	nvme_cmd_t *cmd;
4463 	nvme_qpair_t *ioq;
4464 	int rv = 0;
4465 
4466 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4467 	if (is_admin) {
4468 		cmd->nc_sqid = 0;
4469 		ioq = nvme->n_adminq;
4470 	} else {
4471 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4472 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4473 		ioq = nvme->n_ioq[cmd->nc_sqid];
4474 	}
4475 
4476 	/*
4477 	 * This function is used to facilitate requests from
4478 	 * userspace, so don't panic if the command fails. This
4479 	 * is especially true for admin passthru commands, where
4480 	 * the actual command data structure is entirely defined
4481 	 * by userspace.
4482 	 */
4483 	cmd->nc_dontpanic = B_TRUE;
4484 
4485 	cmd->nc_callback = nvme_wakeup_cmd;
4486 	cmd->nc_sqe = *sqe;
4487 
4488 	if ((rwk & (FREAD | FWRITE)) != 0) {
4489 		if (data_addr == NULL) {
4490 			rv = EINVAL;
4491 			goto free_cmd;
4492 		}
4493 
4494 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4495 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4496 			dev_err(nvme->n_dip, CE_WARN,
4497 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4498 
4499 			rv = ENOMEM;
4500 			goto free_cmd;
4501 		}
4502 
4503 		if ((rv = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
4504 			goto free_cmd;
4505 
4506 		if ((rwk & FWRITE) != 0) {
4507 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4508 			    data_len, rwk & FKIOCTL) != 0) {
4509 				rv = EFAULT;
4510 				goto free_cmd;
4511 			}
4512 		}
4513 	}
4514 
4515 	if (is_admin) {
4516 		nvme_admin_cmd(cmd, timeout);
4517 	} else {
4518 		mutex_enter(&cmd->nc_mutex);
4519 
4520 		rv = nvme_submit_io_cmd(ioq, cmd);
4521 
4522 		if (rv == EAGAIN) {
4523 			mutex_exit(&cmd->nc_mutex);
4524 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4525 			    "!nvme_ioc_cmd() failed, I/O Q full");
4526 			goto free_cmd;
4527 		}
4528 
4529 		nvme_wait_cmd(cmd, timeout);
4530 
4531 		mutex_exit(&cmd->nc_mutex);
4532 	}
4533 
4534 	if (cqe != NULL)
4535 		*cqe = cmd->nc_cqe;
4536 
4537 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4538 		dev_err(nvme->n_dip, CE_WARN,
4539 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4540 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4541 
4542 		goto free_cmd;
4543 	}
4544 
4545 	if ((rwk & FREAD) != 0) {
4546 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4547 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4548 			rv = EFAULT;
4549 	}
4550 
4551 free_cmd:
4552 	nvme_free_cmd(cmd);
4553 
4554 	return (rv);
4555 }
4556 
4557 static int
4558 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4559     int mode, cred_t *cred_p)
4560 {
4561 	_NOTE(ARGUNUSED(nsid, cred_p));
4562 	int rv = 0;
4563 	nvme_reg_cap_t cap = { 0 };
4564 	nvme_capabilities_t nc;
4565 
4566 	if ((mode & FREAD) == 0)
4567 		return (EPERM);
4568 
4569 	if (nioc->n_len < sizeof (nc))
4570 		return (EINVAL);
4571 
4572 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4573 
4574 	/*
4575 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4576 	 * specify the base page size of 4k (1<<12), so add 12 here to
4577 	 * get the real page size value.
4578 	 */
4579 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4580 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4581 
4582 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4583 		rv = EFAULT;
4584 
4585 	return (rv);
4586 }
4587 
4588 static int
4589 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4590     int mode, cred_t *cred_p)
4591 {
4592 	_NOTE(ARGUNUSED(cred_p));
4593 	void *log = NULL;
4594 	size_t bufsize = 0;
4595 	int rv = 0;
4596 
4597 	if ((mode & FREAD) == 0)
4598 		return (EPERM);
4599 
4600 	switch (nioc->n_arg) {
4601 	case NVME_LOGPAGE_ERROR:
4602 		if (nsid != 0)
4603 			return (EINVAL);
4604 		break;
4605 	case NVME_LOGPAGE_HEALTH:
4606 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4607 			return (EINVAL);
4608 
4609 		if (nsid == 0)
4610 			nsid = (uint32_t)-1;
4611 
4612 		break;
4613 	case NVME_LOGPAGE_FWSLOT:
4614 		if (nsid != 0)
4615 			return (EINVAL);
4616 		break;
4617 	default:
4618 		if (!NVME_IS_VENDOR_SPECIFIC_LOGPAGE(nioc->n_arg))
4619 			return (EINVAL);
4620 		if (nioc->n_len > NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE) {
4621 			dev_err(nvme->n_dip, CE_NOTE, "!Vendor-specific log "
4622 			    "page size exceeds device maximum supported size: "
4623 			    "%lu", NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE);
4624 			return (EINVAL);
4625 		}
4626 		if (nioc->n_len == 0)
4627 			return (EINVAL);
4628 		bufsize = nioc->n_len;
4629 		if (nsid == 0)
4630 			nsid = (uint32_t)-1;
4631 	}
4632 
4633 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4634 	    != DDI_SUCCESS)
4635 		return (EIO);
4636 
4637 	if (nioc->n_len < bufsize) {
4638 		kmem_free(log, bufsize);
4639 		return (EINVAL);
4640 	}
4641 
4642 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4643 		rv = EFAULT;
4644 
4645 	nioc->n_len = bufsize;
4646 	kmem_free(log, bufsize);
4647 
4648 	return (rv);
4649 }
4650 
4651 static int
4652 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4653     int mode, cred_t *cred_p)
4654 {
4655 	_NOTE(ARGUNUSED(cred_p));
4656 	void *buf = NULL;
4657 	size_t bufsize = 0;
4658 	uint32_t res = 0;
4659 	uint8_t feature;
4660 	int rv = 0;
4661 
4662 	if ((mode & FREAD) == 0)
4663 		return (EPERM);
4664 
4665 	if ((nioc->n_arg >> 32) > 0xff)
4666 		return (EINVAL);
4667 
4668 	feature = (uint8_t)(nioc->n_arg >> 32);
4669 
4670 	switch (feature) {
4671 	case NVME_FEAT_ARBITRATION:
4672 	case NVME_FEAT_POWER_MGMT:
4673 	case NVME_FEAT_ERROR:
4674 	case NVME_FEAT_NQUEUES:
4675 	case NVME_FEAT_INTR_COAL:
4676 	case NVME_FEAT_WRITE_ATOM:
4677 	case NVME_FEAT_ASYNC_EVENT:
4678 	case NVME_FEAT_PROGRESS:
4679 		if (nsid != 0)
4680 			return (EINVAL);
4681 		break;
4682 
4683 	case NVME_FEAT_TEMPERATURE:
4684 		if (nsid != 0)
4685 			return (EINVAL);
4686 		res = nioc->n_arg & 0xffffffffUL;
4687 		if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
4688 			nvme_temp_threshold_t tt;
4689 
4690 			tt.r = res;
4691 			if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
4692 			    tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
4693 				return (EINVAL);
4694 			}
4695 
4696 			if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
4697 				return (EINVAL);
4698 			}
4699 		} else if (res != 0) {
4700 			return (ENOTSUP);
4701 		}
4702 		break;
4703 
4704 	case NVME_FEAT_INTR_VECT:
4705 		if (nsid != 0)
4706 			return (EINVAL);
4707 
4708 		res = nioc->n_arg & 0xffffffffUL;
4709 		if (res >= nvme->n_intr_cnt)
4710 			return (EINVAL);
4711 		break;
4712 
4713 	case NVME_FEAT_LBA_RANGE:
4714 		if (nvme->n_lba_range_supported == B_FALSE)
4715 			return (EINVAL);
4716 
4717 		if (nsid == 0 ||
4718 		    nsid > nvme->n_namespace_count)
4719 			return (EINVAL);
4720 
4721 		break;
4722 
4723 	case NVME_FEAT_WRITE_CACHE:
4724 		if (nsid != 0)
4725 			return (EINVAL);
4726 
4727 		if (!nvme->n_write_cache_present)
4728 			return (EINVAL);
4729 
4730 		break;
4731 
4732 	case NVME_FEAT_AUTO_PST:
4733 		if (nsid != 0)
4734 			return (EINVAL);
4735 
4736 		if (!nvme->n_auto_pst_supported)
4737 			return (EINVAL);
4738 
4739 		break;
4740 
4741 	default:
4742 		return (EINVAL);
4743 	}
4744 
4745 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4746 	    &bufsize);
4747 	if (rv != 0)
4748 		return (rv);
4749 
4750 	if (nioc->n_len < bufsize) {
4751 		kmem_free(buf, bufsize);
4752 		return (EINVAL);
4753 	}
4754 
4755 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4756 		rv = EFAULT;
4757 
4758 	kmem_free(buf, bufsize);
4759 	nioc->n_arg = res;
4760 	nioc->n_len = bufsize;
4761 
4762 	return (rv);
4763 }
4764 
4765 static int
4766 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4767     cred_t *cred_p)
4768 {
4769 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4770 
4771 	if ((mode & FREAD) == 0)
4772 		return (EPERM);
4773 
4774 	nioc->n_arg = nvme->n_intr_cnt;
4775 	return (0);
4776 }
4777 
4778 static int
4779 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4780     cred_t *cred_p)
4781 {
4782 	_NOTE(ARGUNUSED(nsid, cred_p));
4783 	int rv = 0;
4784 
4785 	if ((mode & FREAD) == 0)
4786 		return (EPERM);
4787 
4788 	if (nioc->n_len < sizeof (nvme->n_version))
4789 		return (ENOMEM);
4790 
4791 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4792 	    sizeof (nvme->n_version), mode) != 0)
4793 		rv = EFAULT;
4794 
4795 	return (rv);
4796 }
4797 
4798 static int
4799 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4800     cred_t *cred_p)
4801 {
4802 	_NOTE(ARGUNUSED(mode));
4803 	nvme_format_nvm_t frmt = { 0 };
4804 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4805 	nvme_minor_state_t *nm;
4806 
4807 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4808 		return (EPERM);
4809 
4810 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[c_nsid].ns_minor;
4811 	if (nm->nm_oexcl != curthread)
4812 		return (EACCES);
4813 
4814 	frmt.r = nioc->n_arg & 0xffffffff;
4815 
4816 	/*
4817 	 * Check whether the FORMAT NVM command is supported.
4818 	 */
4819 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4820 		return (ENOTSUP);
4821 
4822 	/*
4823 	 * Don't allow format or secure erase of individual namespace if that
4824 	 * would cause a format or secure erase of all namespaces.
4825 	 */
4826 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4827 		return (EINVAL);
4828 
4829 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4830 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4831 		return (EINVAL);
4832 
4833 	/*
4834 	 * Don't allow formatting with Protection Information.
4835 	 */
4836 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4837 		return (EINVAL);
4838 
4839 	/*
4840 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4841 	 * that uses metadata.
4842 	 */
4843 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4844 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4845 		return (EINVAL);
4846 
4847 	/*
4848 	 * Don't allow formatting using an illegal Secure Erase setting.
4849 	 */
4850 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4851 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4852 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4853 		return (EINVAL);
4854 
4855 	if (nsid == 0)
4856 		nsid = (uint32_t)-1;
4857 
4858 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4859 	    B_FALSE, frmt.b.fm_ses));
4860 }
4861 
4862 static int
4863 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4864     cred_t *cred_p)
4865 {
4866 	_NOTE(ARGUNUSED(nioc, mode));
4867 	int rv = 0;
4868 
4869 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4870 		return (EPERM);
4871 
4872 	if (nsid == 0)
4873 		return (EINVAL);
4874 
4875 	if (nvme->n_ns[nsid - 1].ns_minor.nm_oexcl != curthread)
4876 		return (EACCES);
4877 
4878 	if (nvme->n_ns[nsid - 1].ns_ignore)
4879 		return (0);
4880 
4881 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4882 	if (rv != DDI_SUCCESS)
4883 		rv = EBUSY;
4884 
4885 	return (rv);
4886 }
4887 
4888 static int
4889 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4890     cred_t *cred_p)
4891 {
4892 	_NOTE(ARGUNUSED(nioc, mode));
4893 	nvme_identify_nsid_t *idns;
4894 	int rv = 0;
4895 
4896 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4897 		return (EPERM);
4898 
4899 	if (nsid == 0)
4900 		return (EINVAL);
4901 
4902 	if (nvme->n_ns[nsid - 1].ns_minor.nm_oexcl != curthread)
4903 		return (EACCES);
4904 
4905 	/*
4906 	 * Identify namespace again, free old identify data.
4907 	 */
4908 	idns = nvme->n_ns[nsid - 1].ns_idns;
4909 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4910 		return (EIO);
4911 
4912 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4913 
4914 	if (nvme->n_ns[nsid - 1].ns_ignore)
4915 		return (ENOTSUP);
4916 
4917 	if (nvme->n_ns[nsid - 1].ns_bd_hdl == NULL)
4918 		nvme->n_ns[nsid - 1].ns_bd_hdl = bd_alloc_handle(
4919 		    &nvme->n_ns[nsid - 1], &nvme_bd_ops, &nvme->n_prp_dma_attr,
4920 		    KM_SLEEP);
4921 
4922 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4923 	if (rv != DDI_SUCCESS)
4924 		rv = EBUSY;
4925 
4926 	return (rv);
4927 }
4928 
4929 static void
4930 nvme_ufm_update(nvme_t *nvme)
4931 {
4932 	mutex_enter(&nvme->n_fwslot_mutex);
4933 	ddi_ufm_update(nvme->n_ufmh);
4934 	if (nvme->n_fwslot != NULL) {
4935 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4936 		nvme->n_fwslot = NULL;
4937 	}
4938 	mutex_exit(&nvme->n_fwslot_mutex);
4939 }
4940 
4941 static int
4942 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4943     int mode, cred_t *cred_p)
4944 {
4945 	int rv = 0;
4946 	size_t len, copylen;
4947 	offset_t offset;
4948 	uintptr_t buf;
4949 	nvme_cqe_t cqe = { 0 };
4950 	nvme_sqe_t sqe = {
4951 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
4952 	};
4953 
4954 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4955 		return (EPERM);
4956 
4957 	if (nvme->n_idctl->id_oacs.oa_firmware == 0)
4958 		return (ENOTSUP);
4959 
4960 	if (nsid != 0)
4961 		return (EINVAL);
4962 
4963 	/*
4964 	 * The offset (in n_len) is restricted to the number of DWORDs in
4965 	 * 32 bits.
4966 	 */
4967 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4968 		return (EINVAL);
4969 
4970 	/* Confirm that both offset and length are a multiple of DWORD bytes */
4971 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4972 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
4973 		return (EINVAL);
4974 
4975 	len = nioc->n_len;
4976 	offset = nioc->n_arg;
4977 	buf = (uintptr_t)nioc->n_buf;
4978 
4979 	nioc->n_arg = 0;
4980 
4981 	while (len > 0 && rv == 0) {
4982 		/*
4983 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
4984 		 * It is limited to 2 PRPs per NVM command, so limit
4985 		 * the size of the data to 2 pages.
4986 		 */
4987 		copylen = MIN(2 * nvme->n_pagesize, len);
4988 
4989 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4990 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4991 
4992 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4993 		    FWRITE, &cqe, nvme_admin_cmd_timeout);
4994 
4995 		/*
4996 		 * Regardless of whether the command succeeded or not, whether
4997 		 * there's an errno in rv to be returned, we'll return any
4998 		 * command-specific status code in n_arg.
4999 		 *
5000 		 * As n_arg isn't cleared in all other possible code paths
5001 		 * returning an error, we return the status code as a negative
5002 		 * value so it can be distinguished easily from whatever value
5003 		 * was passed in n_arg originally. This of course only works as
5004 		 * long as arguments passed in n_arg are less than INT64_MAX,
5005 		 * which they currently are.
5006 		 */
5007 		if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
5008 			nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc;
5009 
5010 		buf += copylen;
5011 		offset += copylen;
5012 		len -= copylen;
5013 	}
5014 
5015 	/*
5016 	 * Let the DDI UFM subsystem know that the firmware information for
5017 	 * this device has changed.
5018 	 */
5019 	nvme_ufm_update(nvme);
5020 
5021 	return (rv);
5022 }
5023 
5024 static int
5025 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
5026     int mode, cred_t *cred_p)
5027 {
5028 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
5029 	uint32_t slot = nioc->n_arg & 0xffffffff;
5030 	uint32_t action = nioc->n_arg >> 32;
5031 	nvme_cqe_t cqe = { 0 };
5032 	nvme_sqe_t sqe = {
5033 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
5034 	};
5035 	int timeout;
5036 	int rv;
5037 
5038 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5039 		return (EPERM);
5040 
5041 	if (nvme->n_idctl->id_oacs.oa_firmware == 0)
5042 		return (ENOTSUP);
5043 
5044 	if (nsid != 0)
5045 		return (EINVAL);
5046 
5047 	/* Validate slot is in range. */
5048 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
5049 		return (EINVAL);
5050 
5051 	switch (action) {
5052 	case NVME_FWC_SAVE:
5053 	case NVME_FWC_SAVE_ACTIVATE:
5054 		timeout = nvme_commit_save_cmd_timeout;
5055 		if (slot == 1 && nvme->n_idctl->id_frmw.fw_readonly)
5056 			return (EROFS);
5057 		break;
5058 	case NVME_FWC_ACTIVATE:
5059 	case NVME_FWC_ACTIVATE_IMMED:
5060 		timeout = nvme_admin_cmd_timeout;
5061 		break;
5062 	default:
5063 		return (EINVAL);
5064 	}
5065 
5066 	fc_dw10.b.fc_slot = slot;
5067 	fc_dw10.b.fc_action = action;
5068 	sqe.sqe_cdw10 = fc_dw10.r;
5069 
5070 	nioc->n_arg = 0;
5071 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
5072 
5073 	/*
5074 	 * Regardless of whether the command succeeded or not, whether
5075 	 * there's an errno in rv to be returned, we'll return any
5076 	 * command-specific status code in n_arg.
5077 	 *
5078 	 * As n_arg isn't cleared in all other possible code paths
5079 	 * returning an error, we return the status code as a negative
5080 	 * value so it can be distinguished easily from whatever value
5081 	 * was passed in n_arg originally. This of course only works as
5082 	 * long as arguments passed in n_arg are less than INT64_MAX,
5083 	 * which they currently are.
5084 	 */
5085 	if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
5086 		nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc;
5087 
5088 	/*
5089 	 * Let the DDI UFM subsystem know that the firmware information for
5090 	 * this device has changed.
5091 	 */
5092 	nvme_ufm_update(nvme);
5093 
5094 	return (rv);
5095 }
5096 
5097 /*
5098  * Helper to copy in a passthru command from userspace, handling
5099  * different data models.
5100  */
5101 static int
5102 nvme_passthru_copy_cmd_in(const void *buf, nvme_passthru_cmd_t *cmd, int mode)
5103 {
5104 #ifdef _MULTI_DATAMODEL
5105 	switch (ddi_model_convert_from(mode & FMODELS)) {
5106 	case DDI_MODEL_ILP32: {
5107 		nvme_passthru_cmd32_t cmd32;
5108 		if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0)
5109 			return (-1);
5110 		cmd->npc_opcode = cmd32.npc_opcode;
5111 		cmd->npc_timeout = cmd32.npc_timeout;
5112 		cmd->npc_flags = cmd32.npc_flags;
5113 		cmd->npc_cdw12 = cmd32.npc_cdw12;
5114 		cmd->npc_cdw13 = cmd32.npc_cdw13;
5115 		cmd->npc_cdw14 = cmd32.npc_cdw14;
5116 		cmd->npc_cdw15 = cmd32.npc_cdw15;
5117 		cmd->npc_buflen = cmd32.npc_buflen;
5118 		cmd->npc_buf = cmd32.npc_buf;
5119 		break;
5120 	}
5121 	case DDI_MODEL_NONE:
5122 #endif
5123 	if (ddi_copyin(buf, (void*)cmd, sizeof (nvme_passthru_cmd_t),
5124 	    mode) != 0)
5125 		return (-1);
5126 #ifdef _MULTI_DATAMODEL
5127 		break;
5128 	}
5129 #endif
5130 	return (0);
5131 }
5132 
5133 /*
5134  * Helper to copy out a passthru command result to userspace, handling
5135  * different data models.
5136  */
5137 static int
5138 nvme_passthru_copy_cmd_out(const nvme_passthru_cmd_t *cmd, void *buf, int mode)
5139 {
5140 #ifdef _MULTI_DATAMODEL
5141 	switch (ddi_model_convert_from(mode & FMODELS)) {
5142 	case DDI_MODEL_ILP32: {
5143 		nvme_passthru_cmd32_t cmd32;
5144 		bzero(&cmd32, sizeof (cmd32));
5145 		cmd32.npc_opcode = cmd->npc_opcode;
5146 		cmd32.npc_status = cmd->npc_status;
5147 		cmd32.npc_err = cmd->npc_err;
5148 		cmd32.npc_timeout = cmd->npc_timeout;
5149 		cmd32.npc_flags = cmd->npc_flags;
5150 		cmd32.npc_cdw0 = cmd->npc_cdw0;
5151 		cmd32.npc_cdw12 = cmd->npc_cdw12;
5152 		cmd32.npc_cdw13 = cmd->npc_cdw13;
5153 		cmd32.npc_cdw14 = cmd->npc_cdw14;
5154 		cmd32.npc_cdw15 = cmd->npc_cdw15;
5155 		cmd32.npc_buflen = (size32_t)cmd->npc_buflen;
5156 		cmd32.npc_buf = (uintptr32_t)cmd->npc_buf;
5157 		if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0)
5158 			return (-1);
5159 		break;
5160 	}
5161 	case DDI_MODEL_NONE:
5162 #endif
5163 		if (ddi_copyout(cmd, buf, sizeof (nvme_passthru_cmd_t),
5164 		    mode) != 0)
5165 			return (-1);
5166 #ifdef _MULTI_DATAMODEL
5167 		break;
5168 	}
5169 #endif
5170 	return (0);
5171 }
5172 
5173 /*
5174  * Run an arbitrary vendor-specific admin command on the device.
5175  */
5176 static int
5177 nvme_ioctl_passthru(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5178     cred_t *cred_p)
5179 {
5180 	int rv = 0;
5181 	uint_t timeout = 0;
5182 	int rwk = 0;
5183 	nvme_passthru_cmd_t cmd;
5184 	size_t expected_passthru_size = 0;
5185 	nvme_sqe_t sqe;
5186 	nvme_cqe_t cqe;
5187 
5188 	bzero(&cmd, sizeof (cmd));
5189 	bzero(&sqe, sizeof (sqe));
5190 	bzero(&cqe, sizeof (cqe));
5191 
5192 	/*
5193 	 * Basic checks: permissions, data model, argument size.
5194 	 */
5195 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5196 		return (EPERM);
5197 
5198 	/*
5199 	 * Compute the expected size of the argument buffer
5200 	 */
5201 #ifdef _MULTI_DATAMODEL
5202 	switch (ddi_model_convert_from(mode & FMODELS)) {
5203 	case DDI_MODEL_ILP32:
5204 		expected_passthru_size = sizeof (nvme_passthru_cmd32_t);
5205 		break;
5206 	case DDI_MODEL_NONE:
5207 #endif
5208 		expected_passthru_size = sizeof (nvme_passthru_cmd_t);
5209 #ifdef _MULTI_DATAMODEL
5210 		break;
5211 	}
5212 #endif
5213 
5214 	if (nioc->n_len != expected_passthru_size) {
5215 		cmd.npc_err = NVME_PASSTHRU_ERR_CMD_SIZE;
5216 		rv = EINVAL;
5217 		goto out;
5218 	}
5219 
5220 	/*
5221 	 * Ensure the device supports the standard vendor specific
5222 	 * admin command format.
5223 	 */
5224 	if (!nvme->n_idctl->id_nvscc.nv_spec) {
5225 		cmd.npc_err = NVME_PASSTHRU_ERR_NOT_SUPPORTED;
5226 		rv = ENOTSUP;
5227 		goto out;
5228 	}
5229 
5230 	if (nvme_passthru_copy_cmd_in((const void*)nioc->n_buf, &cmd, mode))
5231 		return (EFAULT);
5232 
5233 	if (!NVME_IS_VENDOR_SPECIFIC_CMD(cmd.npc_opcode)) {
5234 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_OPCODE;
5235 		rv = EINVAL;
5236 		goto out;
5237 	}
5238 
5239 	/*
5240 	 * This restriction is not mandated by the spec, so future work
5241 	 * could relax this if it's necessary to support commands that both
5242 	 * read and write.
5243 	 */
5244 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0 &&
5245 	    (cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) {
5246 		cmd.npc_err = NVME_PASSTHRU_ERR_READ_AND_WRITE;
5247 		rv = EINVAL;
5248 		goto out;
5249 	}
5250 	if (cmd.npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) {
5251 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_TIMEOUT;
5252 		rv = EINVAL;
5253 		goto out;
5254 	}
5255 	timeout = cmd.npc_timeout;
5256 
5257 	/*
5258 	 * Passed-thru command buffer verification:
5259 	 *  - Size is multiple of DWords
5260 	 *  - Non-null iff the length is non-zero
5261 	 *  - Null if neither reading nor writing data.
5262 	 *  - Non-null if reading or writing.
5263 	 *  - Maximum buffer size.
5264 	 */
5265 	if ((cmd.npc_buflen % sizeof (uint32_t)) != 0) {
5266 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5267 		rv = EINVAL;
5268 		goto out;
5269 	}
5270 	if (((void*)cmd.npc_buf != NULL && cmd.npc_buflen == 0) ||
5271 	    ((void*)cmd.npc_buf == NULL && cmd.npc_buflen != 0)) {
5272 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5273 		rv = EINVAL;
5274 		goto out;
5275 	}
5276 	if (cmd.npc_flags == 0 && (void*)cmd.npc_buf != NULL) {
5277 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5278 		rv = EINVAL;
5279 		goto out;
5280 	}
5281 	if ((cmd.npc_flags != 0) && ((void*)cmd.npc_buf == NULL)) {
5282 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5283 		rv = EINVAL;
5284 		goto out;
5285 	}
5286 	if (cmd.npc_buflen > nvme_vendor_specific_admin_cmd_size) {
5287 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5288 		rv = EINVAL;
5289 		goto out;
5290 	}
5291 	if ((cmd.npc_buflen >> NVME_DWORD_SHIFT) > UINT32_MAX) {
5292 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5293 		rv = EINVAL;
5294 		goto out;
5295 	}
5296 
5297 	sqe.sqe_opc = cmd.npc_opcode;
5298 	sqe.sqe_nsid = nsid;
5299 	sqe.sqe_cdw10 = (uint32_t)(cmd.npc_buflen >> NVME_DWORD_SHIFT);
5300 	sqe.sqe_cdw12 = cmd.npc_cdw12;
5301 	sqe.sqe_cdw13 = cmd.npc_cdw13;
5302 	sqe.sqe_cdw14 = cmd.npc_cdw14;
5303 	sqe.sqe_cdw15 = cmd.npc_cdw15;
5304 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0)
5305 		rwk = FREAD;
5306 	else if ((cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0)
5307 		rwk = FWRITE;
5308 
5309 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void*)cmd.npc_buf,
5310 	    cmd.npc_buflen, rwk, &cqe, timeout);
5311 	cmd.npc_status = cqe.cqe_sf.sf_sc;
5312 	cmd.npc_cdw0 = cqe.cqe_dw0;
5313 
5314 out:
5315 	if (nvme_passthru_copy_cmd_out(&cmd, (void*)nioc->n_buf, mode))
5316 		rv = EFAULT;
5317 	return (rv);
5318 }
5319 
5320 static int
5321 nvme_ioctl_is_ignored_ns(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5322     cred_t *cred_p)
5323 {
5324 	_NOTE(ARGUNUSED(cred_p));
5325 
5326 	if ((mode & FREAD) == 0)
5327 		return (EPERM);
5328 
5329 	if (nsid == 0)
5330 		return (EINVAL);
5331 
5332 	if (nvme->n_ns[nsid - 1].ns_ignore)
5333 		nioc->n_arg = 1;
5334 	else
5335 		nioc->n_arg = 0;
5336 
5337 	return (0);
5338 }
5339 
5340 static int
5341 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
5342     int *rval_p)
5343 {
5344 #ifndef __lock_lint
5345 	_NOTE(ARGUNUSED(rval_p));
5346 #endif
5347 	minor_t minor = getminor(dev);
5348 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
5349 	int nsid = NVME_MINOR_NSID(minor);
5350 	int rv = 0;
5351 	nvme_ioctl_t nioc;
5352 
5353 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
5354 		NULL,
5355 		nvme_ioctl_identify,
5356 		nvme_ioctl_identify,
5357 		nvme_ioctl_capabilities,
5358 		nvme_ioctl_get_logpage,
5359 		nvme_ioctl_get_features,
5360 		nvme_ioctl_intr_cnt,
5361 		nvme_ioctl_version,
5362 		nvme_ioctl_format,
5363 		nvme_ioctl_detach,
5364 		nvme_ioctl_attach,
5365 		nvme_ioctl_firmware_download,
5366 		nvme_ioctl_firmware_commit,
5367 		nvme_ioctl_passthru,
5368 		nvme_ioctl_is_ignored_ns
5369 	};
5370 
5371 	if (nvme == NULL)
5372 		return (ENXIO);
5373 
5374 	if (nsid > nvme->n_namespace_count)
5375 		return (ENXIO);
5376 
5377 	if (IS_DEVCTL(cmd))
5378 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
5379 
5380 #ifdef _MULTI_DATAMODEL
5381 	switch (ddi_model_convert_from(mode & FMODELS)) {
5382 	case DDI_MODEL_ILP32: {
5383 		nvme_ioctl32_t nioc32;
5384 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
5385 		    mode) != 0)
5386 			return (EFAULT);
5387 		nioc.n_len = nioc32.n_len;
5388 		nioc.n_buf = nioc32.n_buf;
5389 		nioc.n_arg = nioc32.n_arg;
5390 		break;
5391 	}
5392 	case DDI_MODEL_NONE:
5393 #endif
5394 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
5395 		    != 0)
5396 			return (EFAULT);
5397 #ifdef _MULTI_DATAMODEL
5398 		break;
5399 	}
5400 #endif
5401 
5402 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
5403 		return (EIO);
5404 
5405 
5406 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
5407 		/*
5408 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
5409 		 * attachment point nodes.
5410 		 */
5411 		nsid = 0;
5412 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
5413 		/*
5414 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
5415 		 * will always return identify data for namespace 1.
5416 		 */
5417 		nsid = 1;
5418 	}
5419 
5420 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
5421 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
5422 		    cred_p);
5423 	else
5424 		rv = EINVAL;
5425 
5426 #ifdef _MULTI_DATAMODEL
5427 	switch (ddi_model_convert_from(mode & FMODELS)) {
5428 	case DDI_MODEL_ILP32: {
5429 		nvme_ioctl32_t nioc32;
5430 
5431 		nioc32.n_len = (size32_t)nioc.n_len;
5432 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
5433 		nioc32.n_arg = nioc.n_arg;
5434 
5435 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
5436 		    mode) != 0)
5437 			return (EFAULT);
5438 		break;
5439 	}
5440 	case DDI_MODEL_NONE:
5441 #endif
5442 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
5443 		    != 0)
5444 			return (EFAULT);
5445 #ifdef _MULTI_DATAMODEL
5446 		break;
5447 	}
5448 #endif
5449 
5450 	return (rv);
5451 }
5452 
5453 /*
5454  * DDI UFM Callbacks
5455  */
5456 static int
5457 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5458     ddi_ufm_image_t *img)
5459 {
5460 	nvme_t *nvme = arg;
5461 
5462 	if (imgno != 0)
5463 		return (EINVAL);
5464 
5465 	ddi_ufm_image_set_desc(img, "Firmware");
5466 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
5467 
5468 	return (0);
5469 }
5470 
5471 /*
5472  * Fill out firmware slot information for the requested slot.  The firmware
5473  * slot information is gathered by requesting the Firmware Slot Information log
5474  * page.  The format of the page is described in section 5.10.1.3.
5475  *
5476  * We lazily cache the log page on the first call and then invalidate the cache
5477  * data after a successful firmware download or firmware commit command.
5478  * The cached data is protected by a mutex as the state can change
5479  * asynchronous to this callback.
5480  */
5481 static int
5482 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5483     uint_t slotno, ddi_ufm_slot_t *slot)
5484 {
5485 	nvme_t *nvme = arg;
5486 	void *log = NULL;
5487 	size_t bufsize;
5488 	ddi_ufm_attr_t attr = 0;
5489 	char fw_ver[NVME_FWVER_SZ + 1];
5490 	int ret;
5491 
5492 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
5493 		return (EINVAL);
5494 
5495 	mutex_enter(&nvme->n_fwslot_mutex);
5496 	if (nvme->n_fwslot == NULL) {
5497 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
5498 		    NVME_LOGPAGE_FWSLOT, 0);
5499 		if (ret != DDI_SUCCESS ||
5500 		    bufsize != sizeof (nvme_fwslot_log_t)) {
5501 			if (log != NULL)
5502 				kmem_free(log, bufsize);
5503 			mutex_exit(&nvme->n_fwslot_mutex);
5504 			return (EIO);
5505 		}
5506 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
5507 	}
5508 
5509 	/*
5510 	 * NVMe numbers firmware slots starting at 1
5511 	 */
5512 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
5513 		attr |= DDI_UFM_ATTR_ACTIVE;
5514 
5515 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
5516 		attr |= DDI_UFM_ATTR_WRITEABLE;
5517 
5518 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
5519 		attr |= DDI_UFM_ATTR_EMPTY;
5520 	} else {
5521 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
5522 		    NVME_FWVER_SZ);
5523 		fw_ver[NVME_FWVER_SZ] = '\0';
5524 		ddi_ufm_slot_set_version(slot, fw_ver);
5525 	}
5526 	mutex_exit(&nvme->n_fwslot_mutex);
5527 
5528 	ddi_ufm_slot_set_attrs(slot, attr);
5529 
5530 	return (0);
5531 }
5532 
5533 static int
5534 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
5535 {
5536 	*caps = DDI_UFM_CAP_REPORT;
5537 	return (0);
5538 }
5539