xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 251becc882939aaf03088561add2c257a7a92424)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2020 Joyent, Inc.
17  * Copyright 2019 Western Digital Corporation.
18  * Copyright 2020 Racktop Systems.
19  * Copyright 2022 Oxide Computer Company.
20  */
21 
22 /*
23  * blkdev driver for NVMe compliant storage devices
24  *
25  * This driver targets and is designed to support all NVMe 1.x devices.
26  * Features are added to the driver as we encounter devices that require them
27  * and our needs, so some commands or log pages may not take advantage of newer
28  * features that devices support at this time. When you encounter such a case,
29  * it is generally fine to add that support to the driver as long as you take
30  * care to ensure that the requisite device version is met before using it.
31  *
32  * The driver has only been tested on x86 systems and will not work on big-
33  * endian systems without changes to the code accessing registers and data
34  * structures used by the hardware.
35  *
36  *
37  * Interrupt Usage:
38  *
39  * The driver will use a single interrupt while configuring the device as the
40  * specification requires, but contrary to the specification it will try to use
41  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
42  * will switch to multiple-message MSI(-X) if supported. The driver wants to
43  * have one interrupt vector per CPU, but it will work correctly if less are
44  * available. Interrupts can be shared by queues, the interrupt handler will
45  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
46  * the admin queue will share an interrupt with one I/O queue. The interrupt
47  * handler will retrieve completed commands from all queues sharing an interrupt
48  * vector and will post them to a taskq for completion processing.
49  *
50  *
51  * Command Processing:
52  *
53  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
54  * to 65536 I/O commands. The driver will configure one I/O queue pair per
55  * available interrupt vector, with the queue length usually much smaller than
56  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
57  * interrupt vectors will be used.
58  *
59  * Additionally the hardware provides a single special admin queue pair that can
60  * hold up to 4096 admin commands.
61  *
62  * From the hardware perspective both queues of a queue pair are independent,
63  * but they share some driver state: the command array (holding pointers to
64  * commands currently being processed by the hardware) and the active command
65  * counter. Access to a submission queue and the shared state is protected by
66  * nq_mutex; completion queue is protected by ncq_mutex.
67  *
68  * When a command is submitted to a queue pair the active command counter is
69  * incremented and a pointer to the command is stored in the command array. The
70  * array index is used as command identifier (CID) in the submission queue
71  * entry. Some commands may take a very long time to complete, and if the queue
72  * wraps around in that time a submission may find the next array slot to still
73  * be used by a long-running command. In this case the array is sequentially
74  * searched for the next free slot. The length of the command array is the same
75  * as the configured queue length. Queue overrun is prevented by the semaphore,
76  * so a command submission may block if the queue is full.
77  *
78  *
79  * Polled I/O Support:
80  *
81  * For kernel core dump support the driver can do polled I/O. As interrupts are
82  * turned off while dumping the driver will just submit a command in the regular
83  * way, and then repeatedly attempt a command retrieval until it gets the
84  * command back.
85  *
86  *
87  * Namespace Support:
88  *
89  * NVMe devices can have multiple namespaces, each being a independent data
90  * store. The driver supports multiple namespaces and creates a blkdev interface
91  * for each namespace found. Namespaces can have various attributes to support
92  * protection information. This driver does not support any of this and ignores
93  * namespaces that have these attributes.
94  *
95  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
96  * (EUI64). This driver uses the EUI64 if present to generate the devid and
97  * passes it to blkdev to use it in the device node names. As this is currently
98  * untested namespaces with EUI64 are ignored by default.
99  *
100  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
101  * single controller. This is an artificial limit imposed by the driver to be
102  * able to address a reasonable number of controllers and namespaces using a
103  * 32bit minor node number.
104  *
105  *
106  * Minor nodes:
107  *
108  * For each NVMe device the driver exposes one minor node for the controller and
109  * one minor node for each namespace. The only operations supported by those
110  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
111  * interface for the nvmeadm(1M) utility.
112  *
113  *
114  * Blkdev Interface:
115  *
116  * This driver uses blkdev to do all the heavy lifting involved with presenting
117  * a disk device to the system. As a result, the processing of I/O requests is
118  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
119  * setup, and splitting of transfers into manageable chunks.
120  *
121  * I/O requests coming in from blkdev are turned into NVM commands and posted to
122  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
123  * queues. There is currently no timeout handling of I/O commands.
124  *
125  * Blkdev also supports querying device/media information and generating a
126  * devid. The driver reports the best block size as determined by the namespace
127  * format back to blkdev as physical block size to support partition and block
128  * alignment. The devid is either based on the namespace EUI64, if present, or
129  * composed using the device vendor ID, model number, serial number, and the
130  * namespace ID.
131  *
132  *
133  * Error Handling:
134  *
135  * Error handling is currently limited to detecting fatal hardware errors,
136  * either by asynchronous events, or synchronously through command status or
137  * admin command timeouts. In case of severe errors the device is fenced off,
138  * all further requests will return EIO. FMA is then called to fault the device.
139  *
140  * The hardware has a limit for outstanding asynchronous event requests. Before
141  * this limit is known the driver assumes it is at least 1 and posts a single
142  * asynchronous request. Later when the limit is known more asynchronous event
143  * requests are posted to allow quicker reception of error information. When an
144  * asynchronous event is posted by the hardware the driver will parse the error
145  * status fields and log information or fault the device, depending on the
146  * severity of the asynchronous event. The asynchronous event request is then
147  * reused and posted to the admin queue again.
148  *
149  * On command completion the command status is checked for errors. In case of
150  * errors indicating a driver bug the driver panics. Almost all other error
151  * status values just cause EIO to be returned.
152  *
153  * Command timeouts are currently detected for all admin commands except
154  * asynchronous event requests. If a command times out and the hardware appears
155  * to be healthy the driver attempts to abort the command. The original command
156  * timeout is also applied to the abort command. If the abort times out too the
157  * driver assumes the device to be dead, fences it off, and calls FMA to retire
158  * it. In all other cases the aborted command should return immediately with a
159  * status indicating it was aborted, and the driver will wait indefinitely for
160  * that to happen. No timeout handling of normal I/O commands is presently done.
161  *
162  * Any command that times out due to the controller dropping dead will be put on
163  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
164  * memory being reused by the system and later be written to by a "dead" NVMe
165  * controller.
166  *
167  *
168  * Locking:
169  *
170  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
171  * when accessing shared state and submission queue registers, ncq_mutex
172  * is held when accessing completion queue state and registers.
173  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
174  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
175  * mutexes themselves.
176  *
177  * Each command also has its own nc_mutex, which is associated with the
178  * condition variable nc_cv. It is only used on admin commands which are run
179  * synchronously. In that case it must be held across calls to
180  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
181  * nvme_admin_cmd(). It must also be held whenever the completion state of the
182  * command is changed or while a admin command timeout is handled.
183  *
184  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
185  * More than one nc_mutex may only be held when aborting commands. In this case,
186  * the nc_mutex of the command to be aborted must be held across the call to
187  * nvme_abort_cmd() to prevent the command from completing while the abort is in
188  * progress.
189  *
190  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
191  * acquired first. More than one nq_mutex is never held by a single thread.
192  * The ncq_mutex is only held by nvme_retrieve_cmd() and
193  * nvme_process_iocq(). nvme_process_iocq() is only called from the
194  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
195  * mutex is non-contentious but is required for implementation completeness
196  * and safety.
197  *
198  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
199  * and exclusive-open flag nm_oexcl.
200  *
201  *
202  * Quiesce / Fast Reboot:
203  *
204  * The driver currently does not support fast reboot. A quiesce(9E) entry point
205  * is still provided which is used to send a shutdown notification to the
206  * device.
207  *
208  *
209  * NVMe Hotplug:
210  *
211  * The driver supports hot removal. The driver uses the NDI event framework
212  * to register a callback, nvme_remove_callback, to clean up when a disk is
213  * removed. In particular, the driver will unqueue outstanding I/O commands and
214  * set n_dead on the softstate to true so that other operations, such as ioctls
215  * and command submissions, fail as well.
216  *
217  * While the callback registration relies on the NDI event framework, the
218  * removal event itself is kicked off in the PCIe hotplug framework, when the
219  * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicatating that a
220  * device was removed from the slot.
221  *
222  * The NVMe driver instance itself will remain until the final close of the
223  * device.
224  *
225  *
226  * DDI UFM Support
227  *
228  * The driver supports the DDI UFM framework for reporting information about
229  * the device's firmware image and slot configuration. This data can be
230  * queried by userland software via ioctls to the ufm driver. For more
231  * information, see ddi_ufm(9E).
232  *
233  *
234  * Driver Configuration:
235  *
236  * The following driver properties can be changed to control some aspects of the
237  * drivers operation:
238  * - strict-version: can be set to 0 to allow devices conforming to newer
239  *   major versions to be used
240  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
241  *   specific command status as a fatal error leading device faulting
242  * - admin-queue-len: the maximum length of the admin queue (16-4096)
243  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
244  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
245  * - async-event-limit: the maximum number of asynchronous event requests to be
246  *   posted by the driver
247  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
248  *   cache
249  * - min-phys-block-size: the minimum physical block size to report to blkdev,
250  *   which is among other things the basis for ZFS vdev ashift
251  * - max-submission-queues: the maximum number of I/O submission queues.
252  * - max-completion-queues: the maximum number of I/O completion queues,
253  *   can be less than max-submission-queues, in which case the completion
254  *   queues are shared.
255  *
256  *
257  * TODO:
258  * - figure out sane default for I/O queue depth reported to blkdev
259  * - FMA handling of media errors
260  * - support for devices supporting very large I/O requests using chained PRPs
261  * - support for configuring hardware parameters like interrupt coalescing
262  * - support for media formatting and hard partitioning into namespaces
263  * - support for big-endian systems
264  * - support for fast reboot
265  * - support for NVMe Subsystem Reset (1.1)
266  * - support for Scatter/Gather lists (1.1)
267  * - support for Reservations (1.1)
268  * - support for power management
269  */
270 
271 #include <sys/byteorder.h>
272 #ifdef _BIG_ENDIAN
273 #error nvme driver needs porting for big-endian platforms
274 #endif
275 
276 #include <sys/modctl.h>
277 #include <sys/conf.h>
278 #include <sys/devops.h>
279 #include <sys/ddi.h>
280 #include <sys/ddi_ufm.h>
281 #include <sys/sunddi.h>
282 #include <sys/sunndi.h>
283 #include <sys/bitmap.h>
284 #include <sys/sysmacros.h>
285 #include <sys/param.h>
286 #include <sys/varargs.h>
287 #include <sys/cpuvar.h>
288 #include <sys/disp.h>
289 #include <sys/blkdev.h>
290 #include <sys/atomic.h>
291 #include <sys/archsystm.h>
292 #include <sys/sata/sata_hba.h>
293 #include <sys/stat.h>
294 #include <sys/policy.h>
295 #include <sys/list.h>
296 #include <sys/dkio.h>
297 
298 #include <sys/nvme.h>
299 
300 #ifdef __x86
301 #include <sys/x86_archext.h>
302 #endif
303 
304 #include "nvme_reg.h"
305 #include "nvme_var.h"
306 
307 /*
308  * Assertions to make sure that we've properly captured various aspects of the
309  * packed structures and haven't broken them during updates.
310  */
311 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
312 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
313 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
314 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
315 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
316 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
317 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
318 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
319 
320 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
321 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
322 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
323 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
324 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
325 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
326 
327 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
328 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
329 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
330 
331 
332 /* NVMe spec version supported */
333 static const int nvme_version_major = 1;
334 
335 /* tunable for admin command timeout in seconds, default is 1s */
336 int nvme_admin_cmd_timeout = 1;
337 
338 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
339 int nvme_format_cmd_timeout = 600;
340 
341 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
342 int nvme_commit_save_cmd_timeout = 15;
343 
344 /*
345  * tunable for the size of arbitrary vendor specific admin commands,
346  * default is 16MiB.
347  */
348 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24;
349 
350 /*
351  * tunable for the max timeout of arbitary vendor specific admin commands,
352  * default is 60s.
353  */
354 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60;
355 
356 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
357 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
358 static int nvme_quiesce(dev_info_t *);
359 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
360 static int nvme_setup_interrupts(nvme_t *, int, int);
361 static void nvme_release_interrupts(nvme_t *);
362 static uint_t nvme_intr(caddr_t, caddr_t);
363 
364 static void nvme_shutdown(nvme_t *, int, boolean_t);
365 static boolean_t nvme_reset(nvme_t *, boolean_t);
366 static int nvme_init(nvme_t *);
367 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
368 static void nvme_free_cmd(nvme_cmd_t *);
369 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
370     bd_xfer_t *);
371 static void nvme_admin_cmd(nvme_cmd_t *, int);
372 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
373 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
374 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
375 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
376 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
377 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
378 static void nvme_wakeup_cmd(void *);
379 static void nvme_async_event_task(void *);
380 
381 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
382 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
383 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
384 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
385 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
386 static inline int nvme_check_cmd_status(nvme_cmd_t *);
387 
388 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
389 static void nvme_async_event(nvme_t *);
390 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
391     uint8_t, boolean_t, uint8_t);
392 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
393     ...);
394 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
395 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
396     uint32_t *);
397 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
398     void **, size_t *);
399 static int nvme_write_cache_set(nvme_t *, boolean_t);
400 static int nvme_set_nqueues(nvme_t *);
401 
402 static void nvme_free_dma(nvme_dma_t *);
403 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
404     nvme_dma_t **);
405 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
406     nvme_dma_t **);
407 static void nvme_free_qpair(nvme_qpair_t *);
408 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
409 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
410 
411 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
412 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
413 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
414 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
415 
416 static boolean_t nvme_check_regs_hdl(nvme_t *);
417 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
418 
419 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t);
420 
421 static void nvme_bd_xfer_done(void *);
422 static void nvme_bd_driveinfo(void *, bd_drive_t *);
423 static int nvme_bd_mediainfo(void *, bd_media_t *);
424 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
425 static int nvme_bd_read(void *, bd_xfer_t *);
426 static int nvme_bd_write(void *, bd_xfer_t *);
427 static int nvme_bd_sync(void *, bd_xfer_t *);
428 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
429 static int nvme_bd_free_space(void *, bd_xfer_t *);
430 
431 static int nvme_prp_dma_constructor(void *, void *, int);
432 static void nvme_prp_dma_destructor(void *, void *);
433 
434 static void nvme_prepare_devid(nvme_t *, uint32_t);
435 
436 /* DDI UFM callbacks */
437 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
438     ddi_ufm_image_t *);
439 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
440     ddi_ufm_slot_t *);
441 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
442 
443 static int nvme_open(dev_t *, int, int, cred_t *);
444 static int nvme_close(dev_t, int, int, cred_t *);
445 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
446 
447 static ddi_ufm_ops_t nvme_ufm_ops = {
448 	NULL,
449 	nvme_ufm_fill_image,
450 	nvme_ufm_fill_slot,
451 	nvme_ufm_getcaps
452 };
453 
454 #define	NVME_MINOR_INST_SHIFT	9
455 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
456 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
457 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
458 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
459 #define	NVME_IS_VENDOR_SPECIFIC_CMD(x)	(((x) >= 0xC0) && ((x) <= 0xFF))
460 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MIN	0xC0
461 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX	0xFF
462 #define	NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x)	\
463 		(((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \
464 		((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX))
465 
466 /*
467  * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX
468  * DWords in size. However, revision 1.3 also modified the layout of the Get Log
469  * Page command significantly relative to version 1.2, including changing
470  * reserved bits, adding new bitfields, and requiring the use of command DWord
471  * 11 to fully specify the size of the log page (the lower and upper 16 bits of
472  * the number of DWords in the page are split between DWord 10 and DWord 11,
473  * respectively).
474  *
475  * All of these impose significantly different layout requirements on the
476  * `nvme_getlogpage_t` type. This could be solved with two different types, or a
477  * complicated/nested union with the two versions as the overlying members. Both
478  * of these are reasonable, if a bit convoluted. However, these is no current
479  * need for such large pages, or a way to test them, as most log pages actually
480  * fit within the current size limit. So for simplicity, we retain the size cap
481  * from version 1.2.
482  *
483  * Note that the number of DWords is zero-based, so we add 1. It is subtracted
484  * to form a zero-based value in `nvme_get_logpage`.
485  */
486 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE	\
487 		(((1 << 12) + 1) * sizeof (uint32_t))
488 
489 static void *nvme_state;
490 static kmem_cache_t *nvme_cmd_cache;
491 
492 /*
493  * DMA attributes for queue DMA memory
494  *
495  * Queue DMA memory must be page aligned. The maximum length of a queue is
496  * 65536 entries, and an entry can be 64 bytes long.
497  */
498 static ddi_dma_attr_t nvme_queue_dma_attr = {
499 	.dma_attr_version	= DMA_ATTR_V0,
500 	.dma_attr_addr_lo	= 0,
501 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
502 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
503 	.dma_attr_align		= 0x1000,
504 	.dma_attr_burstsizes	= 0x7ff,
505 	.dma_attr_minxfer	= 0x1000,
506 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
507 	.dma_attr_seg		= 0xffffffffffffffffULL,
508 	.dma_attr_sgllen	= 1,
509 	.dma_attr_granular	= 1,
510 	.dma_attr_flags		= 0,
511 };
512 
513 /*
514  * DMA attributes for transfers using Physical Region Page (PRP) entries
515  *
516  * A PRP entry describes one page of DMA memory using the page size specified
517  * in the controller configuration's memory page size register (CC.MPS). It uses
518  * a 64bit base address aligned to this page size. There is no limitation on
519  * chaining PRPs together for arbitrarily large DMA transfers.
520  */
521 static ddi_dma_attr_t nvme_prp_dma_attr = {
522 	.dma_attr_version	= DMA_ATTR_V0,
523 	.dma_attr_addr_lo	= 0,
524 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
525 	.dma_attr_count_max	= 0xfff,
526 	.dma_attr_align		= 0x1000,
527 	.dma_attr_burstsizes	= 0x7ff,
528 	.dma_attr_minxfer	= 0x1000,
529 	.dma_attr_maxxfer	= 0x1000,
530 	.dma_attr_seg		= 0xfff,
531 	.dma_attr_sgllen	= -1,
532 	.dma_attr_granular	= 1,
533 	.dma_attr_flags		= 0,
534 };
535 
536 /*
537  * DMA attributes for transfers using scatter/gather lists
538  *
539  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
540  * 32bit length field. SGL Segment and SGL Last Segment entries require the
541  * length to be a multiple of 16 bytes.
542  */
543 static ddi_dma_attr_t nvme_sgl_dma_attr = {
544 	.dma_attr_version	= DMA_ATTR_V0,
545 	.dma_attr_addr_lo	= 0,
546 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
547 	.dma_attr_count_max	= 0xffffffffUL,
548 	.dma_attr_align		= 1,
549 	.dma_attr_burstsizes	= 0x7ff,
550 	.dma_attr_minxfer	= 0x10,
551 	.dma_attr_maxxfer	= 0xfffffffffULL,
552 	.dma_attr_seg		= 0xffffffffffffffffULL,
553 	.dma_attr_sgllen	= -1,
554 	.dma_attr_granular	= 0x10,
555 	.dma_attr_flags		= 0
556 };
557 
558 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
559 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
560 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
561 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
562 };
563 
564 static struct cb_ops nvme_cb_ops = {
565 	.cb_open	= nvme_open,
566 	.cb_close	= nvme_close,
567 	.cb_strategy	= nodev,
568 	.cb_print	= nodev,
569 	.cb_dump	= nodev,
570 	.cb_read	= nodev,
571 	.cb_write	= nodev,
572 	.cb_ioctl	= nvme_ioctl,
573 	.cb_devmap	= nodev,
574 	.cb_mmap	= nodev,
575 	.cb_segmap	= nodev,
576 	.cb_chpoll	= nochpoll,
577 	.cb_prop_op	= ddi_prop_op,
578 	.cb_str		= 0,
579 	.cb_flag	= D_NEW | D_MP,
580 	.cb_rev		= CB_REV,
581 	.cb_aread	= nodev,
582 	.cb_awrite	= nodev
583 };
584 
585 static struct dev_ops nvme_dev_ops = {
586 	.devo_rev	= DEVO_REV,
587 	.devo_refcnt	= 0,
588 	.devo_getinfo	= ddi_no_info,
589 	.devo_identify	= nulldev,
590 	.devo_probe	= nulldev,
591 	.devo_attach	= nvme_attach,
592 	.devo_detach	= nvme_detach,
593 	.devo_reset	= nodev,
594 	.devo_cb_ops	= &nvme_cb_ops,
595 	.devo_bus_ops	= NULL,
596 	.devo_power	= NULL,
597 	.devo_quiesce	= nvme_quiesce,
598 };
599 
600 static struct modldrv nvme_modldrv = {
601 	.drv_modops	= &mod_driverops,
602 	.drv_linkinfo	= "NVMe v1.1b",
603 	.drv_dev_ops	= &nvme_dev_ops
604 };
605 
606 static struct modlinkage nvme_modlinkage = {
607 	.ml_rev		= MODREV_1,
608 	.ml_linkage	= { &nvme_modldrv, NULL }
609 };
610 
611 static bd_ops_t nvme_bd_ops = {
612 	.o_version	= BD_OPS_CURRENT_VERSION,
613 	.o_drive_info	= nvme_bd_driveinfo,
614 	.o_media_info	= nvme_bd_mediainfo,
615 	.o_devid_init	= nvme_bd_devid,
616 	.o_sync_cache	= nvme_bd_sync,
617 	.o_read		= nvme_bd_read,
618 	.o_write	= nvme_bd_write,
619 	.o_free_space	= nvme_bd_free_space,
620 };
621 
622 /*
623  * This list will hold commands that have timed out and couldn't be aborted.
624  * As we don't know what the hardware may still do with the DMA memory we can't
625  * free them, so we'll keep them forever on this list where we can easily look
626  * at them with mdb.
627  */
628 static struct list nvme_lost_cmds;
629 static kmutex_t nvme_lc_mutex;
630 
631 int
632 _init(void)
633 {
634 	int error;
635 
636 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
637 	if (error != DDI_SUCCESS)
638 		return (error);
639 
640 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
641 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
642 
643 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
644 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
645 	    offsetof(nvme_cmd_t, nc_list));
646 
647 	bd_mod_init(&nvme_dev_ops);
648 
649 	error = mod_install(&nvme_modlinkage);
650 	if (error != DDI_SUCCESS) {
651 		ddi_soft_state_fini(&nvme_state);
652 		mutex_destroy(&nvme_lc_mutex);
653 		list_destroy(&nvme_lost_cmds);
654 		bd_mod_fini(&nvme_dev_ops);
655 	}
656 
657 	return (error);
658 }
659 
660 int
661 _fini(void)
662 {
663 	int error;
664 
665 	if (!list_is_empty(&nvme_lost_cmds))
666 		return (DDI_FAILURE);
667 
668 	error = mod_remove(&nvme_modlinkage);
669 	if (error == DDI_SUCCESS) {
670 		ddi_soft_state_fini(&nvme_state);
671 		kmem_cache_destroy(nvme_cmd_cache);
672 		mutex_destroy(&nvme_lc_mutex);
673 		list_destroy(&nvme_lost_cmds);
674 		bd_mod_fini(&nvme_dev_ops);
675 	}
676 
677 	return (error);
678 }
679 
680 int
681 _info(struct modinfo *modinfop)
682 {
683 	return (mod_info(&nvme_modlinkage, modinfop));
684 }
685 
686 static inline void
687 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
688 {
689 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
690 
691 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
692 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
693 }
694 
695 static inline void
696 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
697 {
698 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
699 
700 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
701 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
702 }
703 
704 static inline uint64_t
705 nvme_get64(nvme_t *nvme, uintptr_t reg)
706 {
707 	uint64_t val;
708 
709 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
710 
711 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
712 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
713 
714 	return (val);
715 }
716 
717 static inline uint32_t
718 nvme_get32(nvme_t *nvme, uintptr_t reg)
719 {
720 	uint32_t val;
721 
722 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
723 
724 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
725 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
726 
727 	return (val);
728 }
729 
730 static boolean_t
731 nvme_check_regs_hdl(nvme_t *nvme)
732 {
733 	ddi_fm_error_t error;
734 
735 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
736 
737 	if (error.fme_status != DDI_FM_OK)
738 		return (B_TRUE);
739 
740 	return (B_FALSE);
741 }
742 
743 static boolean_t
744 nvme_check_dma_hdl(nvme_dma_t *dma)
745 {
746 	ddi_fm_error_t error;
747 
748 	if (dma == NULL)
749 		return (B_FALSE);
750 
751 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
752 
753 	if (error.fme_status != DDI_FM_OK)
754 		return (B_TRUE);
755 
756 	return (B_FALSE);
757 }
758 
759 static void
760 nvme_free_dma_common(nvme_dma_t *dma)
761 {
762 	if (dma->nd_dmah != NULL)
763 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
764 	if (dma->nd_acch != NULL)
765 		ddi_dma_mem_free(&dma->nd_acch);
766 	if (dma->nd_dmah != NULL)
767 		ddi_dma_free_handle(&dma->nd_dmah);
768 }
769 
770 static void
771 nvme_free_dma(nvme_dma_t *dma)
772 {
773 	nvme_free_dma_common(dma);
774 	kmem_free(dma, sizeof (*dma));
775 }
776 
777 /* ARGSUSED */
778 static void
779 nvme_prp_dma_destructor(void *buf, void *private)
780 {
781 	nvme_dma_t *dma = (nvme_dma_t *)buf;
782 
783 	nvme_free_dma_common(dma);
784 }
785 
786 static int
787 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
788     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
789 {
790 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
791 	    &dma->nd_dmah) != DDI_SUCCESS) {
792 		/*
793 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
794 		 * the only other possible error is DDI_DMA_BADATTR which
795 		 * indicates a driver bug which should cause a panic.
796 		 */
797 		dev_err(nvme->n_dip, CE_PANIC,
798 		    "!failed to get DMA handle, check DMA attributes");
799 		return (DDI_FAILURE);
800 	}
801 
802 	/*
803 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
804 	 * or the flags are conflicting, which isn't the case here.
805 	 */
806 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
807 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
808 	    &dma->nd_len, &dma->nd_acch);
809 
810 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
811 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
812 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
813 		dev_err(nvme->n_dip, CE_WARN,
814 		    "!failed to bind DMA memory");
815 		atomic_inc_32(&nvme->n_dma_bind_err);
816 		nvme_free_dma_common(dma);
817 		return (DDI_FAILURE);
818 	}
819 
820 	return (DDI_SUCCESS);
821 }
822 
823 static int
824 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
825     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
826 {
827 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
828 
829 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
830 	    DDI_SUCCESS) {
831 		*ret = NULL;
832 		kmem_free(dma, sizeof (nvme_dma_t));
833 		return (DDI_FAILURE);
834 	}
835 
836 	bzero(dma->nd_memp, dma->nd_len);
837 
838 	*ret = dma;
839 	return (DDI_SUCCESS);
840 }
841 
842 /* ARGSUSED */
843 static int
844 nvme_prp_dma_constructor(void *buf, void *private, int flags)
845 {
846 	nvme_dma_t *dma = (nvme_dma_t *)buf;
847 	nvme_t *nvme = (nvme_t *)private;
848 
849 	dma->nd_dmah = NULL;
850 	dma->nd_acch = NULL;
851 
852 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
853 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
854 		return (-1);
855 	}
856 
857 	ASSERT(dma->nd_ncookie == 1);
858 
859 	dma->nd_cached = B_TRUE;
860 
861 	return (0);
862 }
863 
864 static int
865 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
866     uint_t flags, nvme_dma_t **dma)
867 {
868 	uint32_t len = nentry * qe_len;
869 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
870 
871 	len = roundup(len, nvme->n_pagesize);
872 
873 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
874 	    != DDI_SUCCESS) {
875 		dev_err(nvme->n_dip, CE_WARN,
876 		    "!failed to get DMA memory for queue");
877 		goto fail;
878 	}
879 
880 	if ((*dma)->nd_ncookie != 1) {
881 		dev_err(nvme->n_dip, CE_WARN,
882 		    "!got too many cookies for queue DMA");
883 		goto fail;
884 	}
885 
886 	return (DDI_SUCCESS);
887 
888 fail:
889 	if (*dma) {
890 		nvme_free_dma(*dma);
891 		*dma = NULL;
892 	}
893 
894 	return (DDI_FAILURE);
895 }
896 
897 static void
898 nvme_free_cq(nvme_cq_t *cq)
899 {
900 	mutex_destroy(&cq->ncq_mutex);
901 
902 	if (cq->ncq_cmd_taskq != NULL)
903 		taskq_destroy(cq->ncq_cmd_taskq);
904 
905 	if (cq->ncq_dma != NULL)
906 		nvme_free_dma(cq->ncq_dma);
907 
908 	kmem_free(cq, sizeof (*cq));
909 }
910 
911 static void
912 nvme_free_qpair(nvme_qpair_t *qp)
913 {
914 	int i;
915 
916 	mutex_destroy(&qp->nq_mutex);
917 	sema_destroy(&qp->nq_sema);
918 
919 	if (qp->nq_sqdma != NULL)
920 		nvme_free_dma(qp->nq_sqdma);
921 
922 	if (qp->nq_active_cmds > 0)
923 		for (i = 0; i != qp->nq_nentry; i++)
924 			if (qp->nq_cmd[i] != NULL)
925 				nvme_free_cmd(qp->nq_cmd[i]);
926 
927 	if (qp->nq_cmd != NULL)
928 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
929 
930 	kmem_free(qp, sizeof (nvme_qpair_t));
931 }
932 
933 /*
934  * Destroy the pre-allocated cq array, but only free individual completion
935  * queues from the given starting index.
936  */
937 static void
938 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
939 {
940 	uint_t i;
941 
942 	for (i = start; i < nvme->n_cq_count; i++)
943 		if (nvme->n_cq[i] != NULL)
944 			nvme_free_cq(nvme->n_cq[i]);
945 
946 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
947 }
948 
949 static int
950 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
951     uint_t nthr)
952 {
953 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
954 	char name[64];		/* large enough for the taskq name */
955 
956 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
957 	    DDI_INTR_PRI(nvme->n_intr_pri));
958 
959 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
960 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
961 		goto fail;
962 
963 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
964 	cq->ncq_nentry = nentry;
965 	cq->ncq_id = idx;
966 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
967 
968 	/*
969 	 * Each completion queue has its own command taskq.
970 	 */
971 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
972 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
973 
974 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
975 	    TASKQ_PREPOPULATE);
976 
977 	if (cq->ncq_cmd_taskq == NULL) {
978 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
979 		    "taskq for cq %u", idx);
980 		goto fail;
981 	}
982 
983 	*cqp = cq;
984 	return (DDI_SUCCESS);
985 
986 fail:
987 	nvme_free_cq(cq);
988 	*cqp = NULL;
989 
990 	return (DDI_FAILURE);
991 }
992 
993 /*
994  * Create the n_cq array big enough to hold "ncq" completion queues.
995  * If the array already exists it will be re-sized (but only larger).
996  * The admin queue is included in this array, which boosts the
997  * max number of entries to UINT16_MAX + 1.
998  */
999 static int
1000 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
1001 {
1002 	nvme_cq_t **cq;
1003 	uint_t i, cq_count;
1004 
1005 	ASSERT3U(ncq, >, nvme->n_cq_count);
1006 
1007 	cq = nvme->n_cq;
1008 	cq_count = nvme->n_cq_count;
1009 
1010 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
1011 	nvme->n_cq_count = ncq;
1012 
1013 	for (i = 0; i < cq_count; i++)
1014 		nvme->n_cq[i] = cq[i];
1015 
1016 	for (; i < nvme->n_cq_count; i++)
1017 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
1018 		    DDI_SUCCESS)
1019 			goto fail;
1020 
1021 	if (cq != NULL)
1022 		kmem_free(cq, sizeof (*cq) * cq_count);
1023 
1024 	return (DDI_SUCCESS);
1025 
1026 fail:
1027 	nvme_destroy_cq_array(nvme, cq_count);
1028 	/*
1029 	 * Restore the original array
1030 	 */
1031 	nvme->n_cq_count = cq_count;
1032 	nvme->n_cq = cq;
1033 
1034 	return (DDI_FAILURE);
1035 }
1036 
1037 static int
1038 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
1039     uint_t idx)
1040 {
1041 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
1042 	uint_t cq_idx;
1043 
1044 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
1045 	    DDI_INTR_PRI(nvme->n_intr_pri));
1046 
1047 	/*
1048 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
1049 	 * initialize the semaphore accordingly.
1050 	 */
1051 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
1052 
1053 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
1054 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
1055 		goto fail;
1056 
1057 	/*
1058 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
1059 	 */
1060 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
1061 	qp->nq_cq = nvme->n_cq[cq_idx];
1062 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1063 	qp->nq_nentry = nentry;
1064 
1065 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1066 
1067 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1068 	qp->nq_next_cmd = 0;
1069 
1070 	*nqp = qp;
1071 	return (DDI_SUCCESS);
1072 
1073 fail:
1074 	nvme_free_qpair(qp);
1075 	*nqp = NULL;
1076 
1077 	return (DDI_FAILURE);
1078 }
1079 
1080 static nvme_cmd_t *
1081 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1082 {
1083 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1084 
1085 	if (cmd == NULL)
1086 		return (cmd);
1087 
1088 	bzero(cmd, sizeof (nvme_cmd_t));
1089 
1090 	cmd->nc_nvme = nvme;
1091 
1092 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1093 	    DDI_INTR_PRI(nvme->n_intr_pri));
1094 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1095 
1096 	return (cmd);
1097 }
1098 
1099 static void
1100 nvme_free_cmd(nvme_cmd_t *cmd)
1101 {
1102 	/* Don't free commands on the lost commands list. */
1103 	if (list_link_active(&cmd->nc_list))
1104 		return;
1105 
1106 	if (cmd->nc_dma) {
1107 		nvme_free_dma(cmd->nc_dma);
1108 		cmd->nc_dma = NULL;
1109 	}
1110 
1111 	if (cmd->nc_prp) {
1112 		kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp);
1113 		cmd->nc_prp = NULL;
1114 	}
1115 
1116 	cv_destroy(&cmd->nc_cv);
1117 	mutex_destroy(&cmd->nc_mutex);
1118 
1119 	kmem_cache_free(nvme_cmd_cache, cmd);
1120 }
1121 
1122 static void
1123 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1124 {
1125 	sema_p(&qp->nq_sema);
1126 	nvme_submit_cmd_common(qp, cmd);
1127 }
1128 
1129 static int
1130 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1131 {
1132 	if (cmd->nc_nvme->n_dead) {
1133 		return (EIO);
1134 	}
1135 
1136 	if (sema_tryp(&qp->nq_sema) == 0)
1137 		return (EAGAIN);
1138 
1139 	nvme_submit_cmd_common(qp, cmd);
1140 	return (0);
1141 }
1142 
1143 static void
1144 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1145 {
1146 	nvme_reg_sqtdbl_t tail = { 0 };
1147 
1148 	mutex_enter(&qp->nq_mutex);
1149 	cmd->nc_completed = B_FALSE;
1150 
1151 	/*
1152 	 * Now that we hold the queue pair lock, we must check whether or not
1153 	 * the controller has been listed as dead (e.g. was removed due to
1154 	 * hotplug). This is necessary as otherwise we could race with
1155 	 * nvme_remove_callback(). Because this has not been enqueued, we don't
1156 	 * call nvme_unqueue_cmd(), which is why we must manually decrement the
1157 	 * semaphore.
1158 	 */
1159 	if (cmd->nc_nvme->n_dead) {
1160 		taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback,
1161 		    cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1162 		sema_v(&qp->nq_sema);
1163 		mutex_exit(&qp->nq_mutex);
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1169 	 * slot. If the slot is already occupied advance to the next slot and
1170 	 * try again. This can happen for long running commands like async event
1171 	 * requests.
1172 	 */
1173 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1174 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1175 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1176 
1177 	qp->nq_active_cmds++;
1178 
1179 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1180 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1181 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1182 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1183 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1184 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1185 
1186 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1187 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1188 
1189 	mutex_exit(&qp->nq_mutex);
1190 }
1191 
1192 static nvme_cmd_t *
1193 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1194 {
1195 	nvme_cmd_t *cmd;
1196 
1197 	ASSERT(mutex_owned(&qp->nq_mutex));
1198 	ASSERT3S(cid, <, qp->nq_nentry);
1199 
1200 	cmd = qp->nq_cmd[cid];
1201 	qp->nq_cmd[cid] = NULL;
1202 	ASSERT3U(qp->nq_active_cmds, >, 0);
1203 	qp->nq_active_cmds--;
1204 	sema_v(&qp->nq_sema);
1205 
1206 	ASSERT3P(cmd, !=, NULL);
1207 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1208 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1209 
1210 	return (cmd);
1211 }
1212 
1213 /*
1214  * Get the command tied to the next completed cqe and bump along completion
1215  * queue head counter.
1216  */
1217 static nvme_cmd_t *
1218 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1219 {
1220 	nvme_qpair_t *qp;
1221 	nvme_cqe_t *cqe;
1222 	nvme_cmd_t *cmd;
1223 
1224 	ASSERT(mutex_owned(&cq->ncq_mutex));
1225 
1226 	cqe = &cq->ncq_cq[cq->ncq_head];
1227 
1228 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1229 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1230 		return (NULL);
1231 
1232 	qp = nvme->n_ioq[cqe->cqe_sqid];
1233 
1234 	mutex_enter(&qp->nq_mutex);
1235 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1236 	mutex_exit(&qp->nq_mutex);
1237 
1238 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1239 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1240 
1241 	qp->nq_sqhead = cqe->cqe_sqhd;
1242 
1243 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1244 
1245 	/* Toggle phase on wrap-around. */
1246 	if (cq->ncq_head == 0)
1247 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1248 
1249 	return (cmd);
1250 }
1251 
1252 /*
1253  * Process all completed commands on the io completion queue.
1254  */
1255 static uint_t
1256 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1257 {
1258 	nvme_reg_cqhdbl_t head = { 0 };
1259 	nvme_cmd_t *cmd;
1260 	uint_t completed = 0;
1261 
1262 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1263 	    DDI_SUCCESS)
1264 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1265 		    __func__);
1266 
1267 	mutex_enter(&cq->ncq_mutex);
1268 
1269 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1270 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1271 		    TQ_NOSLEEP, &cmd->nc_tqent);
1272 
1273 		completed++;
1274 	}
1275 
1276 	if (completed > 0) {
1277 		/*
1278 		 * Update the completion queue head doorbell.
1279 		 */
1280 		head.b.cqhdbl_cqh = cq->ncq_head;
1281 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1282 	}
1283 
1284 	mutex_exit(&cq->ncq_mutex);
1285 
1286 	return (completed);
1287 }
1288 
1289 static nvme_cmd_t *
1290 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1291 {
1292 	nvme_cq_t *cq = qp->nq_cq;
1293 	nvme_reg_cqhdbl_t head = { 0 };
1294 	nvme_cmd_t *cmd;
1295 
1296 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1297 	    DDI_SUCCESS)
1298 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1299 		    __func__);
1300 
1301 	mutex_enter(&cq->ncq_mutex);
1302 
1303 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1304 		head.b.cqhdbl_cqh = cq->ncq_head;
1305 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1306 	}
1307 
1308 	mutex_exit(&cq->ncq_mutex);
1309 
1310 	return (cmd);
1311 }
1312 
1313 static int
1314 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1315 {
1316 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1317 
1318 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1319 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1320 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1321 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1322 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1323 
1324 	if (cmd->nc_xfer != NULL)
1325 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1326 
1327 	if (cmd->nc_nvme->n_strict_version) {
1328 		cmd->nc_nvme->n_dead = B_TRUE;
1329 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1330 	}
1331 
1332 	return (EIO);
1333 }
1334 
1335 static int
1336 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1337 {
1338 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1339 
1340 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1341 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1342 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1343 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1344 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1345 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1346 		cmd->nc_nvme->n_dead = B_TRUE;
1347 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1348 	}
1349 
1350 	return (EIO);
1351 }
1352 
1353 static int
1354 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1355 {
1356 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1357 
1358 	switch (cqe->cqe_sf.sf_sc) {
1359 	case NVME_CQE_SC_INT_NVM_WRITE:
1360 		/* write fail */
1361 		/* TODO: post ereport */
1362 		if (cmd->nc_xfer != NULL)
1363 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1364 		return (EIO);
1365 
1366 	case NVME_CQE_SC_INT_NVM_READ:
1367 		/* read fail */
1368 		/* TODO: post ereport */
1369 		if (cmd->nc_xfer != NULL)
1370 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1371 		return (EIO);
1372 
1373 	default:
1374 		return (nvme_check_unknown_cmd_status(cmd));
1375 	}
1376 }
1377 
1378 static int
1379 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1380 {
1381 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1382 
1383 	switch (cqe->cqe_sf.sf_sc) {
1384 	case NVME_CQE_SC_GEN_SUCCESS:
1385 		return (0);
1386 
1387 	/*
1388 	 * Errors indicating a bug in the driver should cause a panic.
1389 	 */
1390 	case NVME_CQE_SC_GEN_INV_OPC:
1391 		/* Invalid Command Opcode */
1392 		if (!cmd->nc_dontpanic)
1393 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1394 			    "programming error: invalid opcode in cmd %p",
1395 			    (void *)cmd);
1396 		return (EINVAL);
1397 
1398 	case NVME_CQE_SC_GEN_INV_FLD:
1399 		/* Invalid Field in Command */
1400 		if (!cmd->nc_dontpanic)
1401 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1402 			    "programming error: invalid field in cmd %p",
1403 			    (void *)cmd);
1404 		return (EIO);
1405 
1406 	case NVME_CQE_SC_GEN_ID_CNFL:
1407 		/* Command ID Conflict */
1408 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1409 		    "cmd ID conflict in cmd %p", (void *)cmd);
1410 		return (0);
1411 
1412 	case NVME_CQE_SC_GEN_INV_NS:
1413 		/* Invalid Namespace or Format */
1414 		if (!cmd->nc_dontpanic)
1415 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1416 			    "programming error: invalid NS/format in cmd %p",
1417 			    (void *)cmd);
1418 		return (EINVAL);
1419 
1420 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1421 		/* LBA Out Of Range */
1422 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1423 		    "LBA out of range in cmd %p", (void *)cmd);
1424 		return (0);
1425 
1426 	/*
1427 	 * Non-fatal errors, handle gracefully.
1428 	 */
1429 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1430 		/* Data Transfer Error (DMA) */
1431 		/* TODO: post ereport */
1432 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1433 		if (cmd->nc_xfer != NULL)
1434 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1435 		return (EIO);
1436 
1437 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1438 		/*
1439 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1440 		 * detailed error information is returned as async event,
1441 		 * so we pretty much ignore the error here and handle it
1442 		 * in the async event handler.
1443 		 */
1444 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1445 		if (cmd->nc_xfer != NULL)
1446 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1447 		return (EIO);
1448 
1449 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1450 		/*
1451 		 * Command Abort Requested. This normally happens only when a
1452 		 * command times out.
1453 		 */
1454 		/* TODO: post ereport or change blkdev to handle this? */
1455 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1456 		return (ECANCELED);
1457 
1458 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1459 		/* Command Aborted due to Power Loss Notification */
1460 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1461 		cmd->nc_nvme->n_dead = B_TRUE;
1462 		return (EIO);
1463 
1464 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1465 		/* Command Aborted due to SQ Deletion */
1466 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1467 		return (EIO);
1468 
1469 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1470 		/* Capacity Exceeded */
1471 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1472 		if (cmd->nc_xfer != NULL)
1473 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1474 		return (EIO);
1475 
1476 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1477 		/* Namespace Not Ready */
1478 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1479 		if (cmd->nc_xfer != NULL)
1480 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1481 		return (EIO);
1482 
1483 	default:
1484 		return (nvme_check_unknown_cmd_status(cmd));
1485 	}
1486 }
1487 
1488 static int
1489 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1490 {
1491 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1492 
1493 	switch (cqe->cqe_sf.sf_sc) {
1494 	case NVME_CQE_SC_SPC_INV_CQ:
1495 		/* Completion Queue Invalid */
1496 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1497 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1498 		return (EINVAL);
1499 
1500 	case NVME_CQE_SC_SPC_INV_QID:
1501 		/* Invalid Queue Identifier */
1502 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1503 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1504 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1505 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1506 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1507 		return (EINVAL);
1508 
1509 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1510 		/* Max Queue Size Exceeded */
1511 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1512 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1513 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1514 		return (EINVAL);
1515 
1516 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1517 		/* Abort Command Limit Exceeded */
1518 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1519 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1520 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1521 		return (0);
1522 
1523 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1524 		/* Async Event Request Limit Exceeded */
1525 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1526 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1527 		    "async event request limit exceeded in cmd %p",
1528 		    (void *)cmd);
1529 		return (0);
1530 
1531 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1532 		/* Invalid Interrupt Vector */
1533 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1534 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1535 		return (EINVAL);
1536 
1537 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1538 		/* Invalid Log Page */
1539 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1540 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1541 		return (EINVAL);
1542 
1543 	case NVME_CQE_SC_SPC_INV_FORMAT:
1544 		/* Invalid Format */
1545 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1546 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1547 		if (cmd->nc_xfer != NULL)
1548 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1549 		return (EINVAL);
1550 
1551 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1552 		/* Invalid Queue Deletion */
1553 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1554 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1555 		return (EINVAL);
1556 
1557 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1558 		/* Conflicting Attributes */
1559 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1560 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1561 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1562 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1563 		if (cmd->nc_xfer != NULL)
1564 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1565 		return (EINVAL);
1566 
1567 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1568 		/* Invalid Protection Information */
1569 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1570 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1571 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1572 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1573 		if (cmd->nc_xfer != NULL)
1574 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1575 		return (EINVAL);
1576 
1577 	case NVME_CQE_SC_SPC_NVM_READONLY:
1578 		/* Write to Read Only Range */
1579 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1580 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1581 		if (cmd->nc_xfer != NULL)
1582 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1583 		return (EROFS);
1584 
1585 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1586 		/* Invalid Firmware Slot */
1587 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1588 		return (EINVAL);
1589 
1590 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1591 		/* Invalid Firmware Image */
1592 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1593 		return (EINVAL);
1594 
1595 	case NVME_CQE_SC_SPC_FW_RESET:
1596 		/* Conventional Reset Required */
1597 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1598 		return (0);
1599 
1600 	case NVME_CQE_SC_SPC_FW_NSSR:
1601 		/* NVMe Subsystem Reset Required */
1602 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1603 		return (0);
1604 
1605 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1606 		/* Activation Requires Reset */
1607 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1608 		return (0);
1609 
1610 	case NVME_CQE_SC_SPC_FW_MTFA:
1611 		/* Activation Requires Maximum Time Violation */
1612 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1613 		return (EAGAIN);
1614 
1615 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1616 		/* Activation Prohibited */
1617 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1618 		return (EINVAL);
1619 
1620 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1621 		/* Overlapping Firmware Ranges */
1622 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1623 		return (EINVAL);
1624 
1625 	default:
1626 		return (nvme_check_unknown_cmd_status(cmd));
1627 	}
1628 }
1629 
1630 static inline int
1631 nvme_check_cmd_status(nvme_cmd_t *cmd)
1632 {
1633 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1634 
1635 	/*
1636 	 * Take a shortcut if the controller is dead, or if
1637 	 * command status indicates no error.
1638 	 */
1639 	if (cmd->nc_nvme->n_dead)
1640 		return (EIO);
1641 
1642 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1643 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1644 		return (0);
1645 
1646 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1647 		return (nvme_check_generic_cmd_status(cmd));
1648 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1649 		return (nvme_check_specific_cmd_status(cmd));
1650 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1651 		return (nvme_check_integrity_cmd_status(cmd));
1652 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1653 		return (nvme_check_vendor_cmd_status(cmd));
1654 
1655 	return (nvme_check_unknown_cmd_status(cmd));
1656 }
1657 
1658 static int
1659 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1660 {
1661 	nvme_t *nvme = abort_cmd->nc_nvme;
1662 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1663 	nvme_abort_cmd_t ac = { 0 };
1664 	int ret = 0;
1665 
1666 	sema_p(&nvme->n_abort_sema);
1667 
1668 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1669 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1670 
1671 	cmd->nc_sqid = 0;
1672 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1673 	cmd->nc_callback = nvme_wakeup_cmd;
1674 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1675 
1676 	/*
1677 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1678 	 * the aborted command has completed (aborted or otherwise), but since
1679 	 * we still hold the aborted command's mutex its callback hasn't been
1680 	 * processed yet.
1681 	 */
1682 	nvme_admin_cmd(cmd, sec);
1683 	sema_v(&nvme->n_abort_sema);
1684 
1685 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1686 		dev_err(nvme->n_dip, CE_WARN,
1687 		    "!ABORT failed with sct = %x, sc = %x",
1688 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1689 		atomic_inc_32(&nvme->n_abort_failed);
1690 	} else {
1691 		dev_err(nvme->n_dip, CE_WARN,
1692 		    "!ABORT of command %d/%d %ssuccessful",
1693 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1694 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1695 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1696 			atomic_inc_32(&nvme->n_cmd_aborted);
1697 	}
1698 
1699 	nvme_free_cmd(cmd);
1700 	return (ret);
1701 }
1702 
1703 /*
1704  * nvme_wait_cmd -- wait for command completion or timeout
1705  *
1706  * In case of a serious error or a timeout of the abort command the hardware
1707  * will be declared dead and FMA will be notified.
1708  */
1709 static void
1710 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1711 {
1712 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1713 	nvme_t *nvme = cmd->nc_nvme;
1714 	nvme_reg_csts_t csts;
1715 	nvme_qpair_t *qp;
1716 
1717 	ASSERT(mutex_owned(&cmd->nc_mutex));
1718 
1719 	while (!cmd->nc_completed) {
1720 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1721 			break;
1722 	}
1723 
1724 	if (cmd->nc_completed)
1725 		return;
1726 
1727 	/*
1728 	 * The command timed out.
1729 	 *
1730 	 * Check controller for fatal status, any errors associated with the
1731 	 * register or DMA handle, or for a double timeout (abort command timed
1732 	 * out). If necessary log a warning and call FMA.
1733 	 */
1734 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1735 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1736 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1737 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1738 	atomic_inc_32(&nvme->n_cmd_timeout);
1739 
1740 	if (csts.b.csts_cfs ||
1741 	    nvme_check_regs_hdl(nvme) ||
1742 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1743 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1744 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1745 		nvme->n_dead = B_TRUE;
1746 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1747 		/*
1748 		 * If the abort succeeded the command should complete
1749 		 * immediately with an appropriate status.
1750 		 */
1751 		while (!cmd->nc_completed)
1752 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1753 
1754 		return;
1755 	}
1756 
1757 	qp = nvme->n_ioq[cmd->nc_sqid];
1758 
1759 	mutex_enter(&qp->nq_mutex);
1760 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1761 	mutex_exit(&qp->nq_mutex);
1762 
1763 	/*
1764 	 * As we don't know what the presumed dead hardware might still do with
1765 	 * the DMA memory, we'll put the command on the lost commands list if it
1766 	 * has any DMA memory.
1767 	 */
1768 	if (cmd->nc_dma != NULL) {
1769 		mutex_enter(&nvme_lc_mutex);
1770 		list_insert_head(&nvme_lost_cmds, cmd);
1771 		mutex_exit(&nvme_lc_mutex);
1772 	}
1773 }
1774 
1775 static void
1776 nvme_wakeup_cmd(void *arg)
1777 {
1778 	nvme_cmd_t *cmd = arg;
1779 
1780 	mutex_enter(&cmd->nc_mutex);
1781 	cmd->nc_completed = B_TRUE;
1782 	cv_signal(&cmd->nc_cv);
1783 	mutex_exit(&cmd->nc_mutex);
1784 }
1785 
1786 static void
1787 nvme_async_event_task(void *arg)
1788 {
1789 	nvme_cmd_t *cmd = arg;
1790 	nvme_t *nvme = cmd->nc_nvme;
1791 	nvme_error_log_entry_t *error_log = NULL;
1792 	nvme_health_log_t *health_log = NULL;
1793 	size_t logsize = 0;
1794 	nvme_async_event_t event;
1795 
1796 	/*
1797 	 * Check for errors associated with the async request itself. The only
1798 	 * command-specific error is "async event limit exceeded", which
1799 	 * indicates a programming error in the driver and causes a panic in
1800 	 * nvme_check_cmd_status().
1801 	 *
1802 	 * Other possible errors are various scenarios where the async request
1803 	 * was aborted, or internal errors in the device. Internal errors are
1804 	 * reported to FMA, the command aborts need no special handling here.
1805 	 *
1806 	 * And finally, at least qemu nvme does not support async events,
1807 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1808 	 * will avoid posting async events.
1809 	 */
1810 
1811 	if (nvme_check_cmd_status(cmd) != 0) {
1812 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1813 		    "!async event request returned failure, sct = %x, "
1814 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1815 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1816 		    cmd->nc_cqe.cqe_sf.sf_m);
1817 
1818 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1819 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1820 			cmd->nc_nvme->n_dead = B_TRUE;
1821 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1822 			    DDI_SERVICE_LOST);
1823 		}
1824 
1825 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1826 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1827 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1828 			nvme->n_async_event_supported = B_FALSE;
1829 		}
1830 
1831 		nvme_free_cmd(cmd);
1832 		return;
1833 	}
1834 
1835 
1836 	event.r = cmd->nc_cqe.cqe_dw0;
1837 
1838 	/* Clear CQE and re-submit the async request. */
1839 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1840 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1841 
1842 	switch (event.b.ae_type) {
1843 	case NVME_ASYNC_TYPE_ERROR:
1844 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1845 			(void) nvme_get_logpage(nvme, B_FALSE,
1846 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1847 		} else {
1848 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1849 			    "async event reply: %d", event.b.ae_logpage);
1850 			atomic_inc_32(&nvme->n_wrong_logpage);
1851 		}
1852 
1853 		switch (event.b.ae_info) {
1854 		case NVME_ASYNC_ERROR_INV_SQ:
1855 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1856 			    "invalid submission queue");
1857 			return;
1858 
1859 		case NVME_ASYNC_ERROR_INV_DBL:
1860 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1861 			    "invalid doorbell write value");
1862 			return;
1863 
1864 		case NVME_ASYNC_ERROR_DIAGFAIL:
1865 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1866 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1867 			nvme->n_dead = B_TRUE;
1868 			atomic_inc_32(&nvme->n_diagfail_event);
1869 			break;
1870 
1871 		case NVME_ASYNC_ERROR_PERSISTENT:
1872 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1873 			    "device error");
1874 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1875 			nvme->n_dead = B_TRUE;
1876 			atomic_inc_32(&nvme->n_persistent_event);
1877 			break;
1878 
1879 		case NVME_ASYNC_ERROR_TRANSIENT:
1880 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1881 			    "device error");
1882 			/* TODO: send ereport */
1883 			atomic_inc_32(&nvme->n_transient_event);
1884 			break;
1885 
1886 		case NVME_ASYNC_ERROR_FW_LOAD:
1887 			dev_err(nvme->n_dip, CE_WARN,
1888 			    "!firmware image load error");
1889 			atomic_inc_32(&nvme->n_fw_load_event);
1890 			break;
1891 		}
1892 		break;
1893 
1894 	case NVME_ASYNC_TYPE_HEALTH:
1895 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1896 			(void) nvme_get_logpage(nvme, B_FALSE,
1897 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1898 			    -1);
1899 		} else {
1900 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1901 			    "async event reply: %d", event.b.ae_logpage);
1902 			atomic_inc_32(&nvme->n_wrong_logpage);
1903 		}
1904 
1905 		switch (event.b.ae_info) {
1906 		case NVME_ASYNC_HEALTH_RELIABILITY:
1907 			dev_err(nvme->n_dip, CE_WARN,
1908 			    "!device reliability compromised");
1909 			/* TODO: send ereport */
1910 			atomic_inc_32(&nvme->n_reliability_event);
1911 			break;
1912 
1913 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1914 			dev_err(nvme->n_dip, CE_WARN,
1915 			    "!temperature above threshold");
1916 			/* TODO: send ereport */
1917 			atomic_inc_32(&nvme->n_temperature_event);
1918 			break;
1919 
1920 		case NVME_ASYNC_HEALTH_SPARE:
1921 			dev_err(nvme->n_dip, CE_WARN,
1922 			    "!spare space below threshold");
1923 			/* TODO: send ereport */
1924 			atomic_inc_32(&nvme->n_spare_event);
1925 			break;
1926 		}
1927 		break;
1928 
1929 	case NVME_ASYNC_TYPE_VENDOR:
1930 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1931 		    "received, info = %x, logpage = %x", event.b.ae_info,
1932 		    event.b.ae_logpage);
1933 		atomic_inc_32(&nvme->n_vendor_event);
1934 		break;
1935 
1936 	default:
1937 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1938 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1939 		    event.b.ae_info, event.b.ae_logpage);
1940 		atomic_inc_32(&nvme->n_unknown_event);
1941 		break;
1942 	}
1943 
1944 	if (error_log)
1945 		kmem_free(error_log, logsize);
1946 
1947 	if (health_log)
1948 		kmem_free(health_log, logsize);
1949 }
1950 
1951 static void
1952 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1953 {
1954 	mutex_enter(&cmd->nc_mutex);
1955 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1956 	nvme_wait_cmd(cmd, sec);
1957 	mutex_exit(&cmd->nc_mutex);
1958 }
1959 
1960 static void
1961 nvme_async_event(nvme_t *nvme)
1962 {
1963 	nvme_cmd_t *cmd;
1964 
1965 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1966 	cmd->nc_sqid = 0;
1967 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1968 	cmd->nc_callback = nvme_async_event_task;
1969 	cmd->nc_dontpanic = B_TRUE;
1970 
1971 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1972 }
1973 
1974 static int
1975 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1976     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1977 {
1978 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1979 	nvme_format_nvm_t format_nvm = { 0 };
1980 	int ret;
1981 
1982 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1983 	format_nvm.b.fm_ms = ms ? 1 : 0;
1984 	format_nvm.b.fm_pi = pi & 0x7;
1985 	format_nvm.b.fm_pil = pil ? 1 : 0;
1986 	format_nvm.b.fm_ses = ses & 0x7;
1987 
1988 	cmd->nc_sqid = 0;
1989 	cmd->nc_callback = nvme_wakeup_cmd;
1990 	cmd->nc_sqe.sqe_nsid = nsid;
1991 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1992 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1993 
1994 	/*
1995 	 * Some devices like Samsung SM951 don't allow formatting of all
1996 	 * namespaces in one command. Handle that gracefully.
1997 	 */
1998 	if (nsid == (uint32_t)-1)
1999 		cmd->nc_dontpanic = B_TRUE;
2000 	/*
2001 	 * If this format request was initiated by the user, then don't allow a
2002 	 * programmer error to panic the system.
2003 	 */
2004 	if (user)
2005 		cmd->nc_dontpanic = B_TRUE;
2006 
2007 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
2008 
2009 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2010 		dev_err(nvme->n_dip, CE_WARN,
2011 		    "!FORMAT failed with sct = %x, sc = %x",
2012 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2013 	}
2014 
2015 	nvme_free_cmd(cmd);
2016 	return (ret);
2017 }
2018 
2019 /*
2020  * The `bufsize` parameter is usually an output parameter, set by this routine
2021  * when filling in the supported types of logpages from the device. However, for
2022  * vendor-specific pages, it is an input parameter, and must be set
2023  * appropriately by callers.
2024  */
2025 static int
2026 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
2027     uint8_t logpage, ...)
2028 {
2029 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2030 	nvme_getlogpage_t getlogpage = { 0 };
2031 	va_list ap;
2032 	int ret;
2033 
2034 	va_start(ap, logpage);
2035 
2036 	cmd->nc_sqid = 0;
2037 	cmd->nc_callback = nvme_wakeup_cmd;
2038 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
2039 
2040 	if (user)
2041 		cmd->nc_dontpanic = B_TRUE;
2042 
2043 	getlogpage.b.lp_lid = logpage;
2044 
2045 	switch (logpage) {
2046 	case NVME_LOGPAGE_ERROR:
2047 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2048 		*bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE,
2049 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
2050 		break;
2051 
2052 	case NVME_LOGPAGE_HEALTH:
2053 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2054 		*bufsize = sizeof (nvme_health_log_t);
2055 		break;
2056 
2057 	case NVME_LOGPAGE_FWSLOT:
2058 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2059 		*bufsize = sizeof (nvme_fwslot_log_t);
2060 		break;
2061 
2062 	default:
2063 		/*
2064 		 * This intentionally only checks against the minimum valid
2065 		 * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid
2066 		 * page ID, so this one-sided check avoids a compiler error
2067 		 * about a check that's always true.
2068 		 */
2069 		if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) {
2070 			dev_err(nvme->n_dip, CE_WARN,
2071 			    "!unknown log page requested: %d", logpage);
2072 			atomic_inc_32(&nvme->n_unknown_logpage);
2073 			ret = EINVAL;
2074 			goto fail;
2075 		}
2076 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2077 	}
2078 
2079 	va_end(ap);
2080 
2081 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
2082 
2083 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
2084 
2085 	if (nvme_zalloc_dma(nvme, *bufsize,
2086 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2087 		dev_err(nvme->n_dip, CE_WARN,
2088 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
2089 		ret = ENOMEM;
2090 		goto fail;
2091 	}
2092 
2093 	if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
2094 		goto fail;
2095 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2096 
2097 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2098 		dev_err(nvme->n_dip, CE_WARN,
2099 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2100 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2101 		goto fail;
2102 	}
2103 
2104 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2105 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2106 
2107 fail:
2108 	nvme_free_cmd(cmd);
2109 
2110 	return (ret);
2111 }
2112 
2113 static int
2114 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2115 {
2116 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2117 	int ret;
2118 
2119 	if (buf == NULL)
2120 		return (EINVAL);
2121 
2122 	cmd->nc_sqid = 0;
2123 	cmd->nc_callback = nvme_wakeup_cmd;
2124 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2125 	cmd->nc_sqe.sqe_nsid = nsid;
2126 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2127 
2128 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2129 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2130 		dev_err(nvme->n_dip, CE_WARN,
2131 		    "!nvme_zalloc_dma failed for IDENTIFY");
2132 		ret = ENOMEM;
2133 		goto fail;
2134 	}
2135 
2136 	if (cmd->nc_dma->nd_ncookie > 2) {
2137 		dev_err(nvme->n_dip, CE_WARN,
2138 		    "!too many DMA cookies for IDENTIFY");
2139 		atomic_inc_32(&nvme->n_too_many_cookies);
2140 		ret = ENOMEM;
2141 		goto fail;
2142 	}
2143 
2144 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2145 	if (cmd->nc_dma->nd_ncookie > 1) {
2146 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2147 		    &cmd->nc_dma->nd_cookie);
2148 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2149 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2150 	}
2151 
2152 	if (user)
2153 		cmd->nc_dontpanic = B_TRUE;
2154 
2155 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2156 
2157 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2158 		dev_err(nvme->n_dip, CE_WARN,
2159 		    "!IDENTIFY failed with sct = %x, sc = %x",
2160 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2161 		goto fail;
2162 	}
2163 
2164 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2165 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2166 
2167 fail:
2168 	nvme_free_cmd(cmd);
2169 
2170 	return (ret);
2171 }
2172 
2173 static int
2174 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2175     uint32_t val, uint32_t *res)
2176 {
2177 	_NOTE(ARGUNUSED(nsid));
2178 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2179 	int ret = EINVAL;
2180 
2181 	ASSERT(res != NULL);
2182 
2183 	cmd->nc_sqid = 0;
2184 	cmd->nc_callback = nvme_wakeup_cmd;
2185 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2186 	cmd->nc_sqe.sqe_cdw10 = feature;
2187 	cmd->nc_sqe.sqe_cdw11 = val;
2188 
2189 	if (user)
2190 		cmd->nc_dontpanic = B_TRUE;
2191 
2192 	switch (feature) {
2193 	case NVME_FEAT_WRITE_CACHE:
2194 		if (!nvme->n_write_cache_present)
2195 			goto fail;
2196 		break;
2197 
2198 	case NVME_FEAT_NQUEUES:
2199 		break;
2200 
2201 	default:
2202 		goto fail;
2203 	}
2204 
2205 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2206 
2207 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2208 		dev_err(nvme->n_dip, CE_WARN,
2209 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2210 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2211 		    cmd->nc_cqe.cqe_sf.sf_sc);
2212 		goto fail;
2213 	}
2214 
2215 	*res = cmd->nc_cqe.cqe_dw0;
2216 
2217 fail:
2218 	nvme_free_cmd(cmd);
2219 	return (ret);
2220 }
2221 
2222 static int
2223 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2224     uint32_t *res, void **buf, size_t *bufsize)
2225 {
2226 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2227 	int ret = EINVAL;
2228 
2229 	ASSERT(res != NULL);
2230 
2231 	if (bufsize != NULL)
2232 		*bufsize = 0;
2233 
2234 	cmd->nc_sqid = 0;
2235 	cmd->nc_callback = nvme_wakeup_cmd;
2236 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2237 	cmd->nc_sqe.sqe_cdw10 = feature;
2238 	cmd->nc_sqe.sqe_cdw11 = *res;
2239 
2240 	/*
2241 	 * For some of the optional features there doesn't seem to be a method
2242 	 * of detecting whether it is supported other than using it.  This will
2243 	 * cause "Invalid Field in Command" error, which is normally considered
2244 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2245 	 * in nvme_check_generic_cmd_status().
2246 	 */
2247 	switch (feature) {
2248 	case NVME_FEAT_ARBITRATION:
2249 	case NVME_FEAT_POWER_MGMT:
2250 	case NVME_FEAT_TEMPERATURE:
2251 	case NVME_FEAT_ERROR:
2252 	case NVME_FEAT_NQUEUES:
2253 	case NVME_FEAT_INTR_COAL:
2254 	case NVME_FEAT_INTR_VECT:
2255 	case NVME_FEAT_WRITE_ATOM:
2256 	case NVME_FEAT_ASYNC_EVENT:
2257 		break;
2258 
2259 	case NVME_FEAT_WRITE_CACHE:
2260 		if (!nvme->n_write_cache_present)
2261 			goto fail;
2262 		break;
2263 
2264 	case NVME_FEAT_LBA_RANGE:
2265 		if (!nvme->n_lba_range_supported)
2266 			goto fail;
2267 
2268 		cmd->nc_dontpanic = B_TRUE;
2269 		cmd->nc_sqe.sqe_nsid = nsid;
2270 		ASSERT(bufsize != NULL);
2271 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2272 		break;
2273 
2274 	case NVME_FEAT_AUTO_PST:
2275 		if (!nvme->n_auto_pst_supported)
2276 			goto fail;
2277 
2278 		ASSERT(bufsize != NULL);
2279 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2280 		break;
2281 
2282 	case NVME_FEAT_PROGRESS:
2283 		if (!nvme->n_progress_supported)
2284 			goto fail;
2285 
2286 		cmd->nc_dontpanic = B_TRUE;
2287 		break;
2288 
2289 	default:
2290 		goto fail;
2291 	}
2292 
2293 	if (user)
2294 		cmd->nc_dontpanic = B_TRUE;
2295 
2296 	if (bufsize != NULL && *bufsize != 0) {
2297 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2298 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2299 			dev_err(nvme->n_dip, CE_WARN,
2300 			    "!nvme_zalloc_dma failed for GET FEATURES");
2301 			ret = ENOMEM;
2302 			goto fail;
2303 		}
2304 
2305 		if (cmd->nc_dma->nd_ncookie > 2) {
2306 			dev_err(nvme->n_dip, CE_WARN,
2307 			    "!too many DMA cookies for GET FEATURES");
2308 			atomic_inc_32(&nvme->n_too_many_cookies);
2309 			ret = ENOMEM;
2310 			goto fail;
2311 		}
2312 
2313 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2314 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2315 		if (cmd->nc_dma->nd_ncookie > 1) {
2316 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2317 			    &cmd->nc_dma->nd_cookie);
2318 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2319 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2320 		}
2321 	}
2322 
2323 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2324 
2325 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2326 		boolean_t known = B_TRUE;
2327 
2328 		/* Check if this is unsupported optional feature */
2329 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2330 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2331 			switch (feature) {
2332 			case NVME_FEAT_LBA_RANGE:
2333 				nvme->n_lba_range_supported = B_FALSE;
2334 				break;
2335 			case NVME_FEAT_PROGRESS:
2336 				nvme->n_progress_supported = B_FALSE;
2337 				break;
2338 			default:
2339 				known = B_FALSE;
2340 				break;
2341 			}
2342 		} else {
2343 			known = B_FALSE;
2344 		}
2345 
2346 		/* Report the error otherwise */
2347 		if (!known) {
2348 			dev_err(nvme->n_dip, CE_WARN,
2349 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2350 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2351 			    cmd->nc_cqe.cqe_sf.sf_sc);
2352 		}
2353 
2354 		goto fail;
2355 	}
2356 
2357 	if (bufsize != NULL && *bufsize != 0) {
2358 		ASSERT(buf != NULL);
2359 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2360 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2361 	}
2362 
2363 	*res = cmd->nc_cqe.cqe_dw0;
2364 
2365 fail:
2366 	nvme_free_cmd(cmd);
2367 	return (ret);
2368 }
2369 
2370 static int
2371 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2372 {
2373 	nvme_write_cache_t nwc = { 0 };
2374 
2375 	if (enable)
2376 		nwc.b.wc_wce = 1;
2377 
2378 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2379 	    nwc.r, &nwc.r));
2380 }
2381 
2382 static int
2383 nvme_set_nqueues(nvme_t *nvme)
2384 {
2385 	nvme_nqueues_t nq = { 0 };
2386 	int ret;
2387 
2388 	/*
2389 	 * The default is to allocate one completion queue per vector.
2390 	 */
2391 	if (nvme->n_completion_queues == -1)
2392 		nvme->n_completion_queues = nvme->n_intr_cnt;
2393 
2394 	/*
2395 	 * There is no point in having more compeletion queues than
2396 	 * interrupt vectors.
2397 	 */
2398 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2399 	    nvme->n_intr_cnt);
2400 
2401 	/*
2402 	 * The default is to use one submission queue per completion queue.
2403 	 */
2404 	if (nvme->n_submission_queues == -1)
2405 		nvme->n_submission_queues = nvme->n_completion_queues;
2406 
2407 	/*
2408 	 * There is no point in having more compeletion queues than
2409 	 * submission queues.
2410 	 */
2411 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2412 	    nvme->n_submission_queues);
2413 
2414 	ASSERT(nvme->n_submission_queues > 0);
2415 	ASSERT(nvme->n_completion_queues > 0);
2416 
2417 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2418 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2419 
2420 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2421 	    &nq.r);
2422 
2423 	if (ret == 0) {
2424 		/*
2425 		 * Never use more than the requested number of queues.
2426 		 */
2427 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2428 		    nq.b.nq_nsq + 1);
2429 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2430 		    nq.b.nq_ncq + 1);
2431 	}
2432 
2433 	return (ret);
2434 }
2435 
2436 static int
2437 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2438 {
2439 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2440 	nvme_create_queue_dw10_t dw10 = { 0 };
2441 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2442 	int ret;
2443 
2444 	dw10.b.q_qid = cq->ncq_id;
2445 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2446 
2447 	c_dw11.b.cq_pc = 1;
2448 	c_dw11.b.cq_ien = 1;
2449 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2450 
2451 	cmd->nc_sqid = 0;
2452 	cmd->nc_callback = nvme_wakeup_cmd;
2453 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2454 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2455 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2456 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2457 
2458 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2459 
2460 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2461 		dev_err(nvme->n_dip, CE_WARN,
2462 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2463 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2464 	}
2465 
2466 	nvme_free_cmd(cmd);
2467 
2468 	return (ret);
2469 }
2470 
2471 static int
2472 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2473 {
2474 	nvme_cq_t *cq = qp->nq_cq;
2475 	nvme_cmd_t *cmd;
2476 	nvme_create_queue_dw10_t dw10 = { 0 };
2477 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2478 	int ret;
2479 
2480 	/*
2481 	 * It is possible to have more qpairs than completion queues,
2482 	 * and when the idx > ncq_id, that completion queue is shared
2483 	 * and has already been created.
2484 	 */
2485 	if (idx <= cq->ncq_id &&
2486 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2487 		return (DDI_FAILURE);
2488 
2489 	dw10.b.q_qid = idx;
2490 	dw10.b.q_qsize = qp->nq_nentry - 1;
2491 
2492 	s_dw11.b.sq_pc = 1;
2493 	s_dw11.b.sq_cqid = cq->ncq_id;
2494 
2495 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2496 	cmd->nc_sqid = 0;
2497 	cmd->nc_callback = nvme_wakeup_cmd;
2498 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2499 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2500 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2501 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2502 
2503 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2504 
2505 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2506 		dev_err(nvme->n_dip, CE_WARN,
2507 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2508 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2509 	}
2510 
2511 	nvme_free_cmd(cmd);
2512 
2513 	return (ret);
2514 }
2515 
2516 static boolean_t
2517 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2518 {
2519 	nvme_reg_csts_t csts;
2520 	int i;
2521 
2522 	nvme_put32(nvme, NVME_REG_CC, 0);
2523 
2524 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2525 	if (csts.b.csts_rdy == 1) {
2526 		nvme_put32(nvme, NVME_REG_CC, 0);
2527 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2528 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2529 			if (csts.b.csts_rdy == 0)
2530 				break;
2531 
2532 			if (quiesce)
2533 				drv_usecwait(50000);
2534 			else
2535 				delay(drv_usectohz(50000));
2536 		}
2537 	}
2538 
2539 	nvme_put32(nvme, NVME_REG_AQA, 0);
2540 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2541 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2542 
2543 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2544 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2545 }
2546 
2547 static void
2548 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2549 {
2550 	nvme_reg_cc_t cc;
2551 	nvme_reg_csts_t csts;
2552 	int i;
2553 
2554 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2555 
2556 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2557 	cc.b.cc_shn = mode & 0x3;
2558 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2559 
2560 	for (i = 0; i != 10; i++) {
2561 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2562 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2563 			break;
2564 
2565 		if (quiesce)
2566 			drv_usecwait(100000);
2567 		else
2568 			delay(drv_usectohz(100000));
2569 	}
2570 }
2571 
2572 
2573 static void
2574 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2575 {
2576 	/*
2577 	 * Section 7.7 of the spec describes how to get a unique ID for
2578 	 * the controller: the vendor ID, the model name and the serial
2579 	 * number shall be unique when combined.
2580 	 *
2581 	 * If a namespace has no EUI64 we use the above and add the hex
2582 	 * namespace ID to get a unique ID for the namespace.
2583 	 */
2584 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2585 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2586 
2587 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2588 	bcopy(nvme->n_idctl->id_serial, serial,
2589 	    sizeof (nvme->n_idctl->id_serial));
2590 
2591 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2592 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2593 
2594 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2595 	    nvme->n_idctl->id_vid, model, serial, nsid);
2596 }
2597 
2598 static int
2599 nvme_init_ns(nvme_t *nvme, int nsid)
2600 {
2601 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2602 	nvme_identify_nsid_t *idns;
2603 	boolean_t was_ignored;
2604 	int last_rp;
2605 
2606 	ns->ns_nvme = nvme;
2607 
2608 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2609 		dev_err(nvme->n_dip, CE_WARN,
2610 		    "!failed to identify namespace %d", nsid);
2611 		return (DDI_FAILURE);
2612 	}
2613 
2614 	ns->ns_idns = idns;
2615 	ns->ns_id = nsid;
2616 	ns->ns_block_count = idns->id_nsize;
2617 	ns->ns_block_size =
2618 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2619 	ns->ns_best_block_size = ns->ns_block_size;
2620 
2621 	/*
2622 	 * Get the EUI64 if present. Use it for devid and device node names.
2623 	 */
2624 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2625 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2626 
2627 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2628 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2629 		uint8_t *eui64 = ns->ns_eui64;
2630 
2631 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2632 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2633 		    eui64[0], eui64[1], eui64[2], eui64[3],
2634 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2635 	} else {
2636 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2637 		    ns->ns_id);
2638 
2639 		nvme_prepare_devid(nvme, ns->ns_id);
2640 	}
2641 
2642 	/*
2643 	 * Find the LBA format with no metadata and the best relative
2644 	 * performance. A value of 3 means "degraded", 0 is best.
2645 	 */
2646 	last_rp = 3;
2647 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2648 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2649 			break;
2650 		if (idns->id_lbaf[j].lbaf_ms != 0)
2651 			continue;
2652 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2653 			continue;
2654 		last_rp = idns->id_lbaf[j].lbaf_rp;
2655 		ns->ns_best_block_size =
2656 		    1 << idns->id_lbaf[j].lbaf_lbads;
2657 	}
2658 
2659 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2660 		ns->ns_best_block_size = nvme->n_min_block_size;
2661 
2662 	was_ignored = ns->ns_ignore;
2663 
2664 	/*
2665 	 * We currently don't support namespaces that use either:
2666 	 * - protection information
2667 	 * - illegal block size (< 512)
2668 	 */
2669 	if (idns->id_dps.dp_pinfo) {
2670 		dev_err(nvme->n_dip, CE_WARN,
2671 		    "!ignoring namespace %d, unsupported feature: "
2672 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2673 		ns->ns_ignore = B_TRUE;
2674 	} else if (ns->ns_block_size < 512) {
2675 		dev_err(nvme->n_dip, CE_WARN,
2676 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2677 		    nsid, (uint64_t)ns->ns_block_size);
2678 		ns->ns_ignore = B_TRUE;
2679 	} else {
2680 		ns->ns_ignore = B_FALSE;
2681 	}
2682 
2683 	/*
2684 	 * Keep a count of namespaces which are attachable.
2685 	 * See comments in nvme_bd_driveinfo() to understand its effect.
2686 	 */
2687 	if (was_ignored) {
2688 		/*
2689 		 * Previously ignored, but now not. Count it.
2690 		 */
2691 		if (!ns->ns_ignore)
2692 			nvme->n_namespaces_attachable++;
2693 	} else {
2694 		/*
2695 		 * Wasn't ignored previously, but now needs to be.
2696 		 * Discount it.
2697 		 */
2698 		if (ns->ns_ignore)
2699 			nvme->n_namespaces_attachable--;
2700 	}
2701 
2702 	return (DDI_SUCCESS);
2703 }
2704 
2705 static int
2706 nvme_init(nvme_t *nvme)
2707 {
2708 	nvme_reg_cc_t cc = { 0 };
2709 	nvme_reg_aqa_t aqa = { 0 };
2710 	nvme_reg_asq_t asq = { 0 };
2711 	nvme_reg_acq_t acq = { 0 };
2712 	nvme_reg_cap_t cap;
2713 	nvme_reg_vs_t vs;
2714 	nvme_reg_csts_t csts;
2715 	int i = 0;
2716 	uint16_t nqueues;
2717 	uint_t tq_threads;
2718 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2719 	char *vendor, *product;
2720 
2721 	/* Check controller version */
2722 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2723 	nvme->n_version.v_major = vs.b.vs_mjr;
2724 	nvme->n_version.v_minor = vs.b.vs_mnr;
2725 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2726 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2727 
2728 	if (nvme->n_version.v_major > nvme_version_major) {
2729 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2730 		    nvme_version_major);
2731 		if (nvme->n_strict_version)
2732 			goto fail;
2733 	}
2734 
2735 	/* retrieve controller configuration */
2736 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2737 
2738 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2739 		dev_err(nvme->n_dip, CE_WARN,
2740 		    "!NVM command set not supported by hardware");
2741 		goto fail;
2742 	}
2743 
2744 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2745 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2746 	nvme->n_timeout = cap.b.cap_to;
2747 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2748 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2749 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2750 
2751 	/*
2752 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2753 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2754 	 * page size value.
2755 	 */
2756 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2757 	    cap.b.cap_mpsmax + 12);
2758 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2759 
2760 	/*
2761 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2762 	 */
2763 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2764 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2765 
2766 	/*
2767 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2768 	 * Maxxfer may be increased after we identified the controller limits.
2769 	 */
2770 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2771 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2772 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2773 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2774 
2775 	/*
2776 	 * Reset controller if it's still in ready state.
2777 	 */
2778 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2779 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2780 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2781 		nvme->n_dead = B_TRUE;
2782 		goto fail;
2783 	}
2784 
2785 	/*
2786 	 * Create the cq array with one completion queue to be assigned
2787 	 * to the admin queue pair and a limited number of taskqs (4).
2788 	 */
2789 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2790 	    DDI_SUCCESS) {
2791 		dev_err(nvme->n_dip, CE_WARN,
2792 		    "!failed to pre-allocate admin completion queue");
2793 		goto fail;
2794 	}
2795 	/*
2796 	 * Create the admin queue pair.
2797 	 */
2798 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2799 	    != DDI_SUCCESS) {
2800 		dev_err(nvme->n_dip, CE_WARN,
2801 		    "!unable to allocate admin qpair");
2802 		goto fail;
2803 	}
2804 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2805 	nvme->n_ioq[0] = nvme->n_adminq;
2806 
2807 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2808 
2809 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2810 	    "admin-queue-len", nvme->n_admin_queue_len);
2811 
2812 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2813 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2814 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2815 
2816 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2817 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2818 
2819 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2820 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2821 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2822 
2823 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2824 	cc.b.cc_css = 0;	/* use NVM command set */
2825 	cc.b.cc_mps = nvme->n_pageshift - 12;
2826 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2827 	cc.b.cc_en = 1;		/* enable controller */
2828 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2829 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2830 
2831 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2832 
2833 	/*
2834 	 * Wait for the controller to become ready.
2835 	 */
2836 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2837 	if (csts.b.csts_rdy == 0) {
2838 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2839 			delay(drv_usectohz(50000));
2840 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2841 
2842 			if (csts.b.csts_cfs == 1) {
2843 				dev_err(nvme->n_dip, CE_WARN,
2844 				    "!controller fatal status at init");
2845 				ddi_fm_service_impact(nvme->n_dip,
2846 				    DDI_SERVICE_LOST);
2847 				nvme->n_dead = B_TRUE;
2848 				goto fail;
2849 			}
2850 
2851 			if (csts.b.csts_rdy == 1)
2852 				break;
2853 		}
2854 	}
2855 
2856 	if (csts.b.csts_rdy == 0) {
2857 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2858 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2859 		nvme->n_dead = B_TRUE;
2860 		goto fail;
2861 	}
2862 
2863 	/*
2864 	 * Assume an abort command limit of 1. We'll destroy and re-init
2865 	 * that later when we know the true abort command limit.
2866 	 */
2867 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2868 
2869 	/*
2870 	 * Setup initial interrupt for admin queue.
2871 	 */
2872 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2873 	    != DDI_SUCCESS) &&
2874 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2875 	    != DDI_SUCCESS) &&
2876 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2877 	    != DDI_SUCCESS)) {
2878 		dev_err(nvme->n_dip, CE_WARN,
2879 		    "!failed to setup initial interrupt");
2880 		goto fail;
2881 	}
2882 
2883 	/*
2884 	 * Post an asynchronous event command to catch errors.
2885 	 * We assume the asynchronous events are supported as required by
2886 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2887 	 * However, since at least qemu does not follow the specification,
2888 	 * we need a mechanism to protect ourselves.
2889 	 */
2890 	nvme->n_async_event_supported = B_TRUE;
2891 	nvme_async_event(nvme);
2892 
2893 	/*
2894 	 * Identify Controller
2895 	 */
2896 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2897 		dev_err(nvme->n_dip, CE_WARN,
2898 		    "!failed to identify controller");
2899 		goto fail;
2900 	}
2901 
2902 	/*
2903 	 * Get Vendor & Product ID
2904 	 */
2905 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2906 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2907 	sata_split_model(model, &vendor, &product);
2908 
2909 	if (vendor == NULL)
2910 		nvme->n_vendor = strdup("NVMe");
2911 	else
2912 		nvme->n_vendor = strdup(vendor);
2913 
2914 	nvme->n_product = strdup(product);
2915 
2916 	/*
2917 	 * Get controller limits.
2918 	 */
2919 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2920 	    MIN(nvme->n_admin_queue_len / 10,
2921 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2922 
2923 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2924 	    "async-event-limit", nvme->n_async_event_limit);
2925 
2926 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2927 
2928 	/*
2929 	 * Reinitialize the semaphore with the true abort command limit
2930 	 * supported by the hardware. It's not necessary to disable interrupts
2931 	 * as only command aborts use the semaphore, and no commands are
2932 	 * executed or aborted while we're here.
2933 	 */
2934 	sema_destroy(&nvme->n_abort_sema);
2935 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2936 	    SEMA_DRIVER, NULL);
2937 
2938 	nvme->n_progress |= NVME_CTRL_LIMITS;
2939 
2940 	if (nvme->n_idctl->id_mdts == 0)
2941 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2942 	else
2943 		nvme->n_max_data_transfer_size =
2944 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2945 
2946 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2947 
2948 	/*
2949 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2950 	 * Chained PRPs are currently unsupported.
2951 	 *
2952 	 * This is a no-op on hardware which doesn't support a transfer size
2953 	 * big enough to require chained PRPs.
2954 	 */
2955 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2956 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2957 
2958 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2959 
2960 	/*
2961 	 * Make sure the minimum/maximum queue entry sizes are not
2962 	 * larger/smaller than the default.
2963 	 */
2964 
2965 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2966 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2967 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2968 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2969 		goto fail;
2970 
2971 	/*
2972 	 * Check for the presence of a Volatile Write Cache. If present,
2973 	 * enable or disable based on the value of the property
2974 	 * volatile-write-cache-enable (default is enabled).
2975 	 */
2976 	nvme->n_write_cache_present =
2977 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2978 
2979 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2980 	    "volatile-write-cache-present",
2981 	    nvme->n_write_cache_present ? 1 : 0);
2982 
2983 	if (!nvme->n_write_cache_present) {
2984 		nvme->n_write_cache_enabled = B_FALSE;
2985 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2986 	    != 0) {
2987 		dev_err(nvme->n_dip, CE_WARN,
2988 		    "!failed to %sable volatile write cache",
2989 		    nvme->n_write_cache_enabled ? "en" : "dis");
2990 		/*
2991 		 * Assume the cache is (still) enabled.
2992 		 */
2993 		nvme->n_write_cache_enabled = B_TRUE;
2994 	}
2995 
2996 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2997 	    "volatile-write-cache-enable",
2998 	    nvme->n_write_cache_enabled ? 1 : 0);
2999 
3000 	/*
3001 	 * Assume LBA Range Type feature is supported. If it isn't this
3002 	 * will be set to B_FALSE by nvme_get_features().
3003 	 */
3004 	nvme->n_lba_range_supported = B_TRUE;
3005 
3006 	/*
3007 	 * Check support for Autonomous Power State Transition.
3008 	 */
3009 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
3010 		nvme->n_auto_pst_supported =
3011 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
3012 
3013 	/*
3014 	 * Assume Software Progress Marker feature is supported.  If it isn't
3015 	 * this will be set to B_FALSE by nvme_get_features().
3016 	 */
3017 	nvme->n_progress_supported = B_TRUE;
3018 
3019 	/*
3020 	 * Identify Namespaces
3021 	 */
3022 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
3023 
3024 	if (nvme->n_namespace_count == 0) {
3025 		dev_err(nvme->n_dip, CE_WARN,
3026 		    "!controllers without namespaces are not supported");
3027 		goto fail;
3028 	}
3029 
3030 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
3031 		dev_err(nvme->n_dip, CE_WARN,
3032 		    "!too many namespaces: %d, limiting to %d\n",
3033 		    nvme->n_namespace_count, NVME_MINOR_MAX);
3034 		nvme->n_namespace_count = NVME_MINOR_MAX;
3035 	}
3036 
3037 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
3038 	    nvme->n_namespace_count, KM_SLEEP);
3039 
3040 	for (i = 0; i != nvme->n_namespace_count; i++) {
3041 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
3042 		    NULL);
3043 		nvme->n_ns[i].ns_ignore = B_TRUE;
3044 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
3045 			goto fail;
3046 	}
3047 
3048 	/*
3049 	 * Try to set up MSI/MSI-X interrupts.
3050 	 */
3051 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
3052 	    != 0) {
3053 		nvme_release_interrupts(nvme);
3054 
3055 		nqueues = MIN(UINT16_MAX, ncpus);
3056 
3057 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
3058 		    nqueues) != DDI_SUCCESS) &&
3059 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
3060 		    nqueues) != DDI_SUCCESS)) {
3061 			dev_err(nvme->n_dip, CE_WARN,
3062 			    "!failed to setup MSI/MSI-X interrupts");
3063 			goto fail;
3064 		}
3065 	}
3066 
3067 	/*
3068 	 * Create I/O queue pairs.
3069 	 */
3070 
3071 	if (nvme_set_nqueues(nvme) != 0) {
3072 		dev_err(nvme->n_dip, CE_WARN,
3073 		    "!failed to set number of I/O queues to %d",
3074 		    nvme->n_intr_cnt);
3075 		goto fail;
3076 	}
3077 
3078 	/*
3079 	 * Reallocate I/O queue array
3080 	 */
3081 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3082 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3083 	    (nvme->n_submission_queues + 1), KM_SLEEP);
3084 	nvme->n_ioq[0] = nvme->n_adminq;
3085 
3086 	/*
3087 	 * There should always be at least as many submission queues
3088 	 * as completion queues.
3089 	 */
3090 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3091 
3092 	nvme->n_ioq_count = nvme->n_submission_queues;
3093 
3094 	nvme->n_io_squeue_len =
3095 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3096 
3097 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3098 	    nvme->n_io_squeue_len);
3099 
3100 	/*
3101 	 * Pre-allocate completion queues.
3102 	 * When there are the same number of submission and completion
3103 	 * queues there is no value in having a larger completion
3104 	 * queue length.
3105 	 */
3106 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3107 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3108 		    nvme->n_io_squeue_len);
3109 
3110 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3111 	    nvme->n_max_queue_entries);
3112 
3113 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3114 	    nvme->n_io_cqueue_len);
3115 
3116 	/*
3117 	 * Assign the equal quantity of taskq threads to each completion
3118 	 * queue, capping the total number of threads to the number
3119 	 * of CPUs.
3120 	 */
3121 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3122 
3123 	/*
3124 	 * In case the calculation above is zero, we need at least one
3125 	 * thread per completion queue.
3126 	 */
3127 	tq_threads = MAX(1, tq_threads);
3128 
3129 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3130 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3131 		dev_err(nvme->n_dip, CE_WARN,
3132 		    "!failed to pre-allocate completion queues");
3133 		goto fail;
3134 	}
3135 
3136 	/*
3137 	 * If we use less completion queues than interrupt vectors return
3138 	 * some of the interrupt vectors back to the system.
3139 	 */
3140 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3141 		nvme_release_interrupts(nvme);
3142 
3143 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3144 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3145 			dev_err(nvme->n_dip, CE_WARN,
3146 			    "!failed to reduce number of interrupts");
3147 			goto fail;
3148 		}
3149 	}
3150 
3151 	/*
3152 	 * Alloc & register I/O queue pairs
3153 	 */
3154 
3155 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3156 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3157 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3158 			dev_err(nvme->n_dip, CE_WARN,
3159 			    "!unable to allocate I/O qpair %d", i);
3160 			goto fail;
3161 		}
3162 
3163 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3164 			dev_err(nvme->n_dip, CE_WARN,
3165 			    "!unable to create I/O qpair %d", i);
3166 			goto fail;
3167 		}
3168 	}
3169 
3170 	/*
3171 	 * Post more asynchronous events commands to reduce event reporting
3172 	 * latency as suggested by the spec.
3173 	 */
3174 	if (nvme->n_async_event_supported) {
3175 		for (i = 1; i != nvme->n_async_event_limit; i++)
3176 			nvme_async_event(nvme);
3177 	}
3178 
3179 	return (DDI_SUCCESS);
3180 
3181 fail:
3182 	(void) nvme_reset(nvme, B_FALSE);
3183 	return (DDI_FAILURE);
3184 }
3185 
3186 static uint_t
3187 nvme_intr(caddr_t arg1, caddr_t arg2)
3188 {
3189 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3190 	nvme_t *nvme = (nvme_t *)arg1;
3191 	int inum = (int)(uintptr_t)arg2;
3192 	int ccnt = 0;
3193 	int qnum;
3194 
3195 	if (inum >= nvme->n_intr_cnt)
3196 		return (DDI_INTR_UNCLAIMED);
3197 
3198 	if (nvme->n_dead)
3199 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3200 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3201 
3202 	/*
3203 	 * The interrupt vector a queue uses is calculated as queue_idx %
3204 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3205 	 * in steps of n_intr_cnt to process all queues using this vector.
3206 	 */
3207 	for (qnum = inum;
3208 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3209 	    qnum += nvme->n_intr_cnt) {
3210 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3211 	}
3212 
3213 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3214 }
3215 
3216 static void
3217 nvme_release_interrupts(nvme_t *nvme)
3218 {
3219 	int i;
3220 
3221 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3222 		if (nvme->n_inth[i] == NULL)
3223 			break;
3224 
3225 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3226 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3227 		else
3228 			(void) ddi_intr_disable(nvme->n_inth[i]);
3229 
3230 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3231 		(void) ddi_intr_free(nvme->n_inth[i]);
3232 	}
3233 
3234 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3235 	nvme->n_inth = NULL;
3236 	nvme->n_inth_sz = 0;
3237 
3238 	nvme->n_progress &= ~NVME_INTERRUPTS;
3239 }
3240 
3241 static int
3242 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3243 {
3244 	int nintrs, navail, count;
3245 	int ret;
3246 	int i;
3247 
3248 	if (nvme->n_intr_types == 0) {
3249 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3250 		    &nvme->n_intr_types);
3251 		if (ret != DDI_SUCCESS) {
3252 			dev_err(nvme->n_dip, CE_WARN,
3253 			    "!%s: ddi_intr_get_supported types failed",
3254 			    __func__);
3255 			return (ret);
3256 		}
3257 #ifdef __x86
3258 		if (get_hwenv() == HW_VMWARE)
3259 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3260 #endif
3261 	}
3262 
3263 	if ((nvme->n_intr_types & intr_type) == 0)
3264 		return (DDI_FAILURE);
3265 
3266 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3267 	if (ret != DDI_SUCCESS) {
3268 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3269 		    __func__);
3270 		return (ret);
3271 	}
3272 
3273 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3274 	if (ret != DDI_SUCCESS) {
3275 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3276 		    __func__);
3277 		return (ret);
3278 	}
3279 
3280 	/* We want at most one interrupt per queue pair. */
3281 	if (navail > nqpairs)
3282 		navail = nqpairs;
3283 
3284 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3285 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3286 
3287 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3288 	    &count, 0);
3289 	if (ret != DDI_SUCCESS) {
3290 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3291 		    __func__);
3292 		goto fail;
3293 	}
3294 
3295 	nvme->n_intr_cnt = count;
3296 
3297 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3298 	if (ret != DDI_SUCCESS) {
3299 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3300 		    __func__);
3301 		goto fail;
3302 	}
3303 
3304 	for (i = 0; i < count; i++) {
3305 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3306 		    (void *)nvme, (void *)(uintptr_t)i);
3307 		if (ret != DDI_SUCCESS) {
3308 			dev_err(nvme->n_dip, CE_WARN,
3309 			    "!%s: ddi_intr_add_handler failed", __func__);
3310 			goto fail;
3311 		}
3312 	}
3313 
3314 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3315 
3316 	for (i = 0; i < count; i++) {
3317 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3318 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3319 		else
3320 			ret = ddi_intr_enable(nvme->n_inth[i]);
3321 
3322 		if (ret != DDI_SUCCESS) {
3323 			dev_err(nvme->n_dip, CE_WARN,
3324 			    "!%s: enabling interrupt %d failed", __func__, i);
3325 			goto fail;
3326 		}
3327 	}
3328 
3329 	nvme->n_intr_type = intr_type;
3330 
3331 	nvme->n_progress |= NVME_INTERRUPTS;
3332 
3333 	return (DDI_SUCCESS);
3334 
3335 fail:
3336 	nvme_release_interrupts(nvme);
3337 
3338 	return (ret);
3339 }
3340 
3341 static int
3342 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3343 {
3344 	_NOTE(ARGUNUSED(arg));
3345 
3346 	pci_ereport_post(dip, fm_error, NULL);
3347 	return (fm_error->fme_status);
3348 }
3349 
3350 static void
3351 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a,
3352     void *b)
3353 {
3354 	nvme_t *nvme = a;
3355 
3356 	nvme->n_dead = B_TRUE;
3357 
3358 	/*
3359 	 * Fail all outstanding commands, including those in the admin queue
3360 	 * (queue 0).
3361 	 */
3362 	for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) {
3363 		nvme_qpair_t *qp = nvme->n_ioq[i];
3364 
3365 		mutex_enter(&qp->nq_mutex);
3366 		for (size_t j = 0; j < qp->nq_nentry; j++) {
3367 			nvme_cmd_t *cmd = qp->nq_cmd[j];
3368 			nvme_cmd_t *u_cmd;
3369 
3370 			if (cmd == NULL) {
3371 				continue;
3372 			}
3373 
3374 			/*
3375 			 * Since we have the queue lock held the entire time we
3376 			 * iterate over it, it's not possible for the queue to
3377 			 * change underneath us. Thus, we don't need to check
3378 			 * that the return value of nvme_unqueue_cmd matches the
3379 			 * requested cmd to unqueue.
3380 			 */
3381 			u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
3382 			taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq,
3383 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
3384 
3385 			ASSERT3P(u_cmd, ==, cmd);
3386 		}
3387 		mutex_exit(&qp->nq_mutex);
3388 	}
3389 }
3390 
3391 static int
3392 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3393 {
3394 	nvme_t *nvme;
3395 	int instance;
3396 	int nregs;
3397 	off_t regsize;
3398 	int i;
3399 	char name[32];
3400 	bd_ops_t ops = nvme_bd_ops;
3401 
3402 	if (cmd != DDI_ATTACH)
3403 		return (DDI_FAILURE);
3404 
3405 	instance = ddi_get_instance(dip);
3406 
3407 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3408 		return (DDI_FAILURE);
3409 
3410 	nvme = ddi_get_soft_state(nvme_state, instance);
3411 	ddi_set_driver_private(dip, nvme);
3412 	nvme->n_dip = dip;
3413 
3414 	/* Set up event handlers for hot removal. */
3415 	if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT,
3416 	    &nvme->n_rm_cookie) != DDI_SUCCESS) {
3417 		goto fail;
3418 	}
3419 	if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie,
3420 	    nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) !=
3421 	    DDI_SUCCESS) {
3422 		goto fail;
3423 	}
3424 
3425 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3426 
3427 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3428 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3429 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3430 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3431 	    B_TRUE : B_FALSE;
3432 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3433 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3434 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3435 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3436 	/*
3437 	 * Double up the default for completion queues in case of
3438 	 * queue sharing.
3439 	 */
3440 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3441 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3442 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3443 	    DDI_PROP_DONTPASS, "async-event-limit",
3444 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3445 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3446 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3447 	    B_TRUE : B_FALSE;
3448 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3449 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3450 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3451 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3452 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3453 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3454 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3455 
3456 	if (!ISP2(nvme->n_min_block_size) ||
3457 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3458 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3459 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3460 		    "too low" : "not a power of 2",
3461 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3462 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3463 	}
3464 
3465 	if (nvme->n_submission_queues != -1 &&
3466 	    (nvme->n_submission_queues < 1 ||
3467 	    nvme->n_submission_queues > UINT16_MAX)) {
3468 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3469 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3470 		    UINT16_MAX);
3471 		nvme->n_submission_queues = -1;
3472 	}
3473 
3474 	if (nvme->n_completion_queues != -1 &&
3475 	    (nvme->n_completion_queues < 1 ||
3476 	    nvme->n_completion_queues > UINT16_MAX)) {
3477 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3478 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3479 		    UINT16_MAX);
3480 		nvme->n_completion_queues = -1;
3481 	}
3482 
3483 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3484 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3485 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3486 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3487 
3488 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3489 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3490 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3491 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3492 
3493 	if (nvme->n_async_event_limit < 1)
3494 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3495 
3496 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3497 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3498 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3499 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3500 
3501 	/*
3502 	 * Setup FMA support.
3503 	 */
3504 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3505 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3506 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3507 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3508 
3509 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3510 
3511 	if (nvme->n_fm_cap) {
3512 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3513 			nvme->n_reg_acc_attr.devacc_attr_access =
3514 			    DDI_FLAGERR_ACC;
3515 
3516 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3517 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3518 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3519 		}
3520 
3521 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3522 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3523 			pci_ereport_setup(dip);
3524 
3525 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3526 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3527 			    (void *)nvme);
3528 	}
3529 
3530 	nvme->n_progress |= NVME_FMA_INIT;
3531 
3532 	/*
3533 	 * The spec defines several register sets. Only the controller
3534 	 * registers (set 1) are currently used.
3535 	 */
3536 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3537 	    nregs < 2 ||
3538 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3539 		goto fail;
3540 
3541 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3542 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3543 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3544 		goto fail;
3545 	}
3546 
3547 	nvme->n_progress |= NVME_REGS_MAPPED;
3548 
3549 	/*
3550 	 * Create PRP DMA cache
3551 	 */
3552 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3553 	    ddi_driver_name(dip), ddi_get_instance(dip));
3554 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3555 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3556 	    NULL, (void *)nvme, NULL, 0);
3557 
3558 	if (nvme_init(nvme) != DDI_SUCCESS)
3559 		goto fail;
3560 
3561 	if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3562 		ops.o_free_space = NULL;
3563 
3564 	/*
3565 	 * Initialize the driver with the UFM subsystem
3566 	 */
3567 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3568 	    &nvme->n_ufmh, nvme) != 0) {
3569 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3570 		goto fail;
3571 	}
3572 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3573 	ddi_ufm_update(nvme->n_ufmh);
3574 	nvme->n_progress |= NVME_UFM_INIT;
3575 
3576 	/*
3577 	 * Attach the blkdev driver for each namespace.
3578 	 */
3579 	for (i = 0; i != nvme->n_namespace_count; i++) {
3580 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3581 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3582 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3583 			dev_err(dip, CE_WARN,
3584 			    "!failed to create minor node for namespace %d", i);
3585 			goto fail;
3586 		}
3587 
3588 		if (nvme->n_ns[i].ns_ignore)
3589 			continue;
3590 
3591 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3592 		    &ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3593 
3594 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3595 			dev_err(dip, CE_WARN,
3596 			    "!failed to get blkdev handle for namespace %d", i);
3597 			goto fail;
3598 		}
3599 
3600 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3601 		    != DDI_SUCCESS) {
3602 			dev_err(dip, CE_WARN,
3603 			    "!failed to attach blkdev handle for namespace %d",
3604 			    i);
3605 			goto fail;
3606 		}
3607 	}
3608 
3609 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3610 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3611 	    != DDI_SUCCESS) {
3612 		dev_err(dip, CE_WARN, "nvme_attach: "
3613 		    "cannot create devctl minor node");
3614 		goto fail;
3615 	}
3616 
3617 	return (DDI_SUCCESS);
3618 
3619 fail:
3620 	/* attach successful anyway so that FMA can retire the device */
3621 	if (nvme->n_dead)
3622 		return (DDI_SUCCESS);
3623 
3624 	(void) nvme_detach(dip, DDI_DETACH);
3625 
3626 	return (DDI_FAILURE);
3627 }
3628 
3629 static int
3630 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3631 {
3632 	int instance, i;
3633 	nvme_t *nvme;
3634 
3635 	if (cmd != DDI_DETACH)
3636 		return (DDI_FAILURE);
3637 
3638 	instance = ddi_get_instance(dip);
3639 
3640 	nvme = ddi_get_soft_state(nvme_state, instance);
3641 
3642 	if (nvme == NULL)
3643 		return (DDI_FAILURE);
3644 
3645 	ddi_remove_minor_node(dip, "devctl");
3646 	mutex_destroy(&nvme->n_minor.nm_mutex);
3647 
3648 	if (nvme->n_ns) {
3649 		for (i = 0; i != nvme->n_namespace_count; i++) {
3650 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3651 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3652 
3653 			if (nvme->n_ns[i].ns_bd_hdl) {
3654 				(void) bd_detach_handle(
3655 				    nvme->n_ns[i].ns_bd_hdl);
3656 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3657 			}
3658 
3659 			if (nvme->n_ns[i].ns_idns)
3660 				kmem_free(nvme->n_ns[i].ns_idns,
3661 				    sizeof (nvme_identify_nsid_t));
3662 			if (nvme->n_ns[i].ns_devid)
3663 				strfree(nvme->n_ns[i].ns_devid);
3664 		}
3665 
3666 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3667 		    nvme->n_namespace_count);
3668 	}
3669 	if (nvme->n_progress & NVME_UFM_INIT) {
3670 		ddi_ufm_fini(nvme->n_ufmh);
3671 		mutex_destroy(&nvme->n_fwslot_mutex);
3672 	}
3673 
3674 	if (nvme->n_progress & NVME_INTERRUPTS)
3675 		nvme_release_interrupts(nvme);
3676 
3677 	for (i = 0; i < nvme->n_cq_count; i++) {
3678 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3679 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3680 	}
3681 
3682 	if (nvme->n_ioq_count > 0) {
3683 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3684 			if (nvme->n_ioq[i] != NULL) {
3685 				/* TODO: send destroy queue commands */
3686 				nvme_free_qpair(nvme->n_ioq[i]);
3687 			}
3688 		}
3689 
3690 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3691 		    (nvme->n_ioq_count + 1));
3692 	}
3693 
3694 	if (nvme->n_prp_cache != NULL) {
3695 		kmem_cache_destroy(nvme->n_prp_cache);
3696 	}
3697 
3698 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3699 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3700 		(void) nvme_reset(nvme, B_FALSE);
3701 	}
3702 
3703 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3704 		sema_destroy(&nvme->n_abort_sema);
3705 
3706 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3707 		nvme_free_qpair(nvme->n_adminq);
3708 
3709 	if (nvme->n_cq_count > 0) {
3710 		nvme_destroy_cq_array(nvme, 0);
3711 		nvme->n_cq = NULL;
3712 		nvme->n_cq_count = 0;
3713 	}
3714 
3715 	if (nvme->n_idctl)
3716 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3717 
3718 	if (nvme->n_progress & NVME_REGS_MAPPED)
3719 		ddi_regs_map_free(&nvme->n_regh);
3720 
3721 	if (nvme->n_progress & NVME_FMA_INIT) {
3722 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3723 			ddi_fm_handler_unregister(nvme->n_dip);
3724 
3725 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3726 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3727 			pci_ereport_teardown(nvme->n_dip);
3728 
3729 		ddi_fm_fini(nvme->n_dip);
3730 	}
3731 
3732 	if (nvme->n_vendor != NULL)
3733 		strfree(nvme->n_vendor);
3734 
3735 	if (nvme->n_product != NULL)
3736 		strfree(nvme->n_product);
3737 
3738 	/* Clean up hot removal event handler. */
3739 	if (nvme->n_ev_rm_cb_id != NULL) {
3740 		(void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id);
3741 	}
3742 	nvme->n_ev_rm_cb_id = NULL;
3743 
3744 	ddi_soft_state_free(nvme_state, instance);
3745 
3746 	return (DDI_SUCCESS);
3747 }
3748 
3749 static int
3750 nvme_quiesce(dev_info_t *dip)
3751 {
3752 	int instance;
3753 	nvme_t *nvme;
3754 
3755 	instance = ddi_get_instance(dip);
3756 
3757 	nvme = ddi_get_soft_state(nvme_state, instance);
3758 
3759 	if (nvme == NULL)
3760 		return (DDI_FAILURE);
3761 
3762 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3763 
3764 	(void) nvme_reset(nvme, B_TRUE);
3765 
3766 	return (DDI_FAILURE);
3767 }
3768 
3769 static int
3770 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma)
3771 {
3772 	nvme_t *nvme = cmd->nc_nvme;
3773 	uint_t nprp_per_page, nprp;
3774 	uint64_t *prp;
3775 	const ddi_dma_cookie_t *cookie;
3776 	uint_t idx;
3777 	uint_t ncookies = ddi_dma_ncookies(dma);
3778 
3779 	if (ncookies == 0)
3780 		return (DDI_FAILURE);
3781 
3782 	if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL)
3783 		return (DDI_FAILURE);
3784 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress;
3785 
3786 	if (ncookies == 1) {
3787 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3788 		return (DDI_SUCCESS);
3789 	} else if (ncookies == 2) {
3790 		if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL)
3791 			return (DDI_FAILURE);
3792 		cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress;
3793 		return (DDI_SUCCESS);
3794 	}
3795 
3796 	/*
3797 	 * At this point, we're always operating on cookies at
3798 	 * index >= 1 and writing the addresses of those cookies
3799 	 * into a new page. The address of that page is stored
3800 	 * as the second PRP entry.
3801 	 */
3802 	nprp_per_page = nvme->n_pagesize / sizeof (uint64_t);
3803 	ASSERT(nprp_per_page > 0);
3804 
3805 	/*
3806 	 * We currently don't support chained PRPs and set up our DMA
3807 	 * attributes to reflect that. If we still get an I/O request
3808 	 * that needs a chained PRP something is very wrong. Account
3809 	 * for the first cookie here, which we've placed in d_prp[0].
3810 	 */
3811 	nprp = howmany(ncookies - 1, nprp_per_page);
3812 	VERIFY(nprp == 1);
3813 
3814 	/*
3815 	 * Allocate a page of pointers, in which we'll write the
3816 	 * addresses of cookies 1 to `ncookies`.
3817 	 */
3818 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3819 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
3820 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress;
3821 
3822 	prp = (uint64_t *)cmd->nc_prp->nd_memp;
3823 	for (idx = 1; idx < ncookies; idx++) {
3824 		if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL)
3825 			return (DDI_FAILURE);
3826 		*prp++ = cookie->dmac_laddress;
3827 	}
3828 
3829 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
3830 	    DDI_DMA_SYNC_FORDEV);
3831 	return (DDI_SUCCESS);
3832 }
3833 
3834 /*
3835  * The maximum number of requests supported for a deallocate request is
3836  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
3837  * unchanged through at least 1.4a). The definition of nvme_range_t is also
3838  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
3839  * a deallocate request will fit into the smallest supported namespace page
3840  * (4k).
3841  */
3842 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
3843 
3844 static int
3845 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
3846     int allocflag)
3847 {
3848 	const dkioc_free_list_t *dfl = xfer->x_dfl;
3849 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
3850 	nvme_t *nvme = cmd->nc_nvme;
3851 	nvme_range_t *ranges = NULL;
3852 	uint_t i;
3853 
3854 	/*
3855 	 * The number of ranges in the request is 0s based (that is
3856 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
3857 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
3858 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
3859 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
3860 	 * in blkdev.
3861 	 */
3862 	VERIFY3U(dfl->dfl_num_exts, >, 0);
3863 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
3864 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
3865 
3866 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
3867 
3868 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
3869 	if (cmd->nc_prp == NULL)
3870 		return (DDI_FAILURE);
3871 
3872 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
3873 	ranges = (nvme_range_t *)cmd->nc_prp->nd_memp;
3874 
3875 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress;
3876 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3877 
3878 	for (i = 0; i < dfl->dfl_num_exts; i++) {
3879 		uint64_t lba, len;
3880 
3881 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
3882 		len = exts[i].dfle_length / blocksize;
3883 
3884 		VERIFY3U(len, <=, UINT32_MAX);
3885 
3886 		/* No context attributes for a deallocate request */
3887 		ranges[i].nr_ctxattr = 0;
3888 		ranges[i].nr_len = len;
3889 		ranges[i].nr_lba = lba;
3890 	}
3891 
3892 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
3893 	    DDI_DMA_SYNC_FORDEV);
3894 
3895 	return (DDI_SUCCESS);
3896 }
3897 
3898 static nvme_cmd_t *
3899 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3900 {
3901 	nvme_t *nvme = ns->ns_nvme;
3902 	nvme_cmd_t *cmd;
3903 	int allocflag;
3904 
3905 	/*
3906 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3907 	 */
3908 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
3909 	cmd = nvme_alloc_cmd(nvme, allocflag);
3910 
3911 	if (cmd == NULL)
3912 		return (NULL);
3913 
3914 	cmd->nc_sqe.sqe_opc = opc;
3915 	cmd->nc_callback = nvme_bd_xfer_done;
3916 	cmd->nc_xfer = xfer;
3917 
3918 	switch (opc) {
3919 	case NVME_OPC_NVM_WRITE:
3920 	case NVME_OPC_NVM_READ:
3921 		VERIFY(xfer->x_nblks <= 0x10000);
3922 
3923 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3924 
3925 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3926 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3927 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3928 
3929 		if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS)
3930 			goto fail;
3931 		break;
3932 
3933 	case NVME_OPC_NVM_FLUSH:
3934 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3935 		break;
3936 
3937 	case NVME_OPC_NVM_DSET_MGMT:
3938 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3939 
3940 		if (nvme_fill_ranges(cmd, xfer,
3941 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
3942 			goto fail;
3943 		break;
3944 
3945 	default:
3946 		goto fail;
3947 	}
3948 
3949 	return (cmd);
3950 
3951 fail:
3952 	nvme_free_cmd(cmd);
3953 	return (NULL);
3954 }
3955 
3956 static void
3957 nvme_bd_xfer_done(void *arg)
3958 {
3959 	nvme_cmd_t *cmd = arg;
3960 	bd_xfer_t *xfer = cmd->nc_xfer;
3961 	int error = 0;
3962 
3963 	error = nvme_check_cmd_status(cmd);
3964 	nvme_free_cmd(cmd);
3965 
3966 	bd_xfer_done(xfer, error);
3967 }
3968 
3969 static void
3970 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3971 {
3972 	nvme_namespace_t *ns = arg;
3973 	nvme_t *nvme = ns->ns_nvme;
3974 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
3975 
3976 	/*
3977 	 * Set the blkdev qcount to the number of submission queues.
3978 	 * It will then create one waitq/runq pair for each submission
3979 	 * queue and spread I/O requests across the queues.
3980 	 */
3981 	drive->d_qcount = nvme->n_ioq_count;
3982 
3983 	/*
3984 	 * I/O activity to individual namespaces is distributed across
3985 	 * each of the d_qcount blkdev queues (which has been set to
3986 	 * the number of nvme submission queues). d_qsize is the number
3987 	 * of submitted and not completed I/Os within each queue that blkdev
3988 	 * will allow before it starts holding them in the waitq.
3989 	 *
3990 	 * Each namespace will create a child blkdev instance, for each one
3991 	 * we try and set the d_qsize so that each namespace gets an
3992 	 * equal portion of the submission queue.
3993 	 *
3994 	 * If post instantiation of the nvme drive, n_namespaces_attachable
3995 	 * changes and a namespace is attached it could calculate a
3996 	 * different d_qsize. It may even be that the sum of the d_qsizes is
3997 	 * now beyond the submission queue size. Should that be the case
3998 	 * and the I/O rate is such that blkdev attempts to submit more
3999 	 * I/Os than the size of the submission queue, the excess I/Os
4000 	 * will be held behind the semaphore nq_sema.
4001 	 */
4002 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
4003 
4004 	/*
4005 	 * Don't let the queue size drop below the minimum, though.
4006 	 */
4007 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
4008 
4009 	/*
4010 	 * d_maxxfer is not set, which means the value is taken from the DMA
4011 	 * attributes specified to bd_alloc_handle.
4012 	 */
4013 
4014 	drive->d_removable = B_FALSE;
4015 	drive->d_hotpluggable = B_FALSE;
4016 
4017 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
4018 	drive->d_target = ns->ns_id;
4019 	drive->d_lun = 0;
4020 
4021 	drive->d_model = nvme->n_idctl->id_model;
4022 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
4023 	drive->d_vendor = nvme->n_vendor;
4024 	drive->d_vendor_len = strlen(nvme->n_vendor);
4025 	drive->d_product = nvme->n_product;
4026 	drive->d_product_len = strlen(nvme->n_product);
4027 	drive->d_serial = nvme->n_idctl->id_serial;
4028 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
4029 	drive->d_revision = nvme->n_idctl->id_fwrev;
4030 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
4031 
4032 	/*
4033 	 * If we support the dataset management command, the only restrictions
4034 	 * on a discard request are the maximum number of ranges (segments)
4035 	 * per single request.
4036 	 */
4037 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
4038 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
4039 }
4040 
4041 static int
4042 nvme_bd_mediainfo(void *arg, bd_media_t *media)
4043 {
4044 	nvme_namespace_t *ns = arg;
4045 	nvme_t *nvme = ns->ns_nvme;
4046 
4047 	if (nvme->n_dead) {
4048 		return (EIO);
4049 	}
4050 
4051 	media->m_nblks = ns->ns_block_count;
4052 	media->m_blksize = ns->ns_block_size;
4053 	media->m_readonly = B_FALSE;
4054 	media->m_solidstate = B_TRUE;
4055 
4056 	media->m_pblksize = ns->ns_best_block_size;
4057 
4058 	return (0);
4059 }
4060 
4061 static int
4062 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
4063 {
4064 	nvme_t *nvme = ns->ns_nvme;
4065 	nvme_cmd_t *cmd;
4066 	nvme_qpair_t *ioq;
4067 	boolean_t poll;
4068 	int ret;
4069 
4070 	if (nvme->n_dead) {
4071 		return (EIO);
4072 	}
4073 
4074 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
4075 	if (cmd == NULL)
4076 		return (ENOMEM);
4077 
4078 	cmd->nc_sqid = xfer->x_qnum + 1;
4079 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4080 	ioq = nvme->n_ioq[cmd->nc_sqid];
4081 
4082 	/*
4083 	 * Get the polling flag before submitting the command. The command may
4084 	 * complete immediately after it was submitted, which means we must
4085 	 * treat both cmd and xfer as if they have been freed already.
4086 	 */
4087 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
4088 
4089 	ret = nvme_submit_io_cmd(ioq, cmd);
4090 
4091 	if (ret != 0)
4092 		return (ret);
4093 
4094 	if (!poll)
4095 		return (0);
4096 
4097 	do {
4098 		cmd = nvme_retrieve_cmd(nvme, ioq);
4099 		if (cmd != NULL)
4100 			cmd->nc_callback(cmd);
4101 		else
4102 			drv_usecwait(10);
4103 	} while (ioq->nq_active_cmds != 0);
4104 
4105 	return (0);
4106 }
4107 
4108 static int
4109 nvme_bd_read(void *arg, bd_xfer_t *xfer)
4110 {
4111 	nvme_namespace_t *ns = arg;
4112 
4113 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
4114 }
4115 
4116 static int
4117 nvme_bd_write(void *arg, bd_xfer_t *xfer)
4118 {
4119 	nvme_namespace_t *ns = arg;
4120 
4121 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
4122 }
4123 
4124 static int
4125 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
4126 {
4127 	nvme_namespace_t *ns = arg;
4128 
4129 	if (ns->ns_nvme->n_dead)
4130 		return (EIO);
4131 
4132 	/*
4133 	 * If the volatile write cache is not present or not enabled the FLUSH
4134 	 * command is a no-op, so we can take a shortcut here.
4135 	 */
4136 	if (!ns->ns_nvme->n_write_cache_present) {
4137 		bd_xfer_done(xfer, ENOTSUP);
4138 		return (0);
4139 	}
4140 
4141 	if (!ns->ns_nvme->n_write_cache_enabled) {
4142 		bd_xfer_done(xfer, 0);
4143 		return (0);
4144 	}
4145 
4146 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
4147 }
4148 
4149 static int
4150 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
4151 {
4152 	nvme_namespace_t *ns = arg;
4153 	nvme_t *nvme = ns->ns_nvme;
4154 
4155 	if (nvme->n_dead) {
4156 		return (EIO);
4157 	}
4158 
4159 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
4160 	if (*(uint64_t *)ns->ns_eui64 != 0) {
4161 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4162 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4163 	} else {
4164 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
4165 		    strlen(ns->ns_devid), ns->ns_devid, devid));
4166 	}
4167 }
4168 
4169 static int
4170 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4171 {
4172 	nvme_namespace_t *ns = arg;
4173 
4174 	if (xfer->x_dfl == NULL)
4175 		return (EINVAL);
4176 
4177 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4178 		return (ENOTSUP);
4179 
4180 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4181 }
4182 
4183 static int
4184 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4185 {
4186 #ifndef __lock_lint
4187 	_NOTE(ARGUNUSED(cred_p));
4188 #endif
4189 	minor_t minor = getminor(*devp);
4190 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4191 	int nsid = NVME_MINOR_NSID(minor);
4192 	nvme_minor_state_t *nm;
4193 	int rv = 0;
4194 
4195 	if (otyp != OTYP_CHR)
4196 		return (EINVAL);
4197 
4198 	if (nvme == NULL)
4199 		return (ENXIO);
4200 
4201 	if (nsid > nvme->n_namespace_count)
4202 		return (ENXIO);
4203 
4204 	if (nvme->n_dead)
4205 		return (EIO);
4206 
4207 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4208 
4209 	mutex_enter(&nm->nm_mutex);
4210 	if (nm->nm_oexcl) {
4211 		rv = EBUSY;
4212 		goto out;
4213 	}
4214 
4215 	if (flag & FEXCL) {
4216 		if (nm->nm_ocnt != 0) {
4217 			rv = EBUSY;
4218 			goto out;
4219 		}
4220 		nm->nm_oexcl = B_TRUE;
4221 	}
4222 
4223 	nm->nm_ocnt++;
4224 
4225 out:
4226 	mutex_exit(&nm->nm_mutex);
4227 	return (rv);
4228 
4229 }
4230 
4231 static int
4232 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4233 {
4234 #ifndef __lock_lint
4235 	_NOTE(ARGUNUSED(cred_p));
4236 	_NOTE(ARGUNUSED(flag));
4237 #endif
4238 	minor_t minor = getminor(dev);
4239 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4240 	int nsid = NVME_MINOR_NSID(minor);
4241 	nvme_minor_state_t *nm;
4242 
4243 	if (otyp != OTYP_CHR)
4244 		return (ENXIO);
4245 
4246 	if (nvme == NULL)
4247 		return (ENXIO);
4248 
4249 	if (nsid > nvme->n_namespace_count)
4250 		return (ENXIO);
4251 
4252 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4253 
4254 	mutex_enter(&nm->nm_mutex);
4255 	if (nm->nm_oexcl)
4256 		nm->nm_oexcl = B_FALSE;
4257 
4258 	ASSERT(nm->nm_ocnt > 0);
4259 	nm->nm_ocnt--;
4260 	mutex_exit(&nm->nm_mutex);
4261 
4262 	return (0);
4263 }
4264 
4265 static int
4266 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4267     cred_t *cred_p)
4268 {
4269 	_NOTE(ARGUNUSED(cred_p));
4270 	int rv = 0;
4271 	void *idctl;
4272 
4273 	if ((mode & FREAD) == 0)
4274 		return (EPERM);
4275 
4276 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4277 		return (EINVAL);
4278 
4279 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4280 		return (rv);
4281 
4282 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4283 	    != 0)
4284 		rv = EFAULT;
4285 
4286 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4287 
4288 	return (rv);
4289 }
4290 
4291 /*
4292  * Execute commands on behalf of the various ioctls.
4293  */
4294 static int
4295 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4296     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4297 {
4298 	nvme_cmd_t *cmd;
4299 	nvme_qpair_t *ioq;
4300 	int rv = 0;
4301 
4302 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4303 	if (is_admin) {
4304 		cmd->nc_sqid = 0;
4305 		ioq = nvme->n_adminq;
4306 	} else {
4307 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4308 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4309 		ioq = nvme->n_ioq[cmd->nc_sqid];
4310 	}
4311 
4312 	/*
4313 	 * This function is used to faciliate requests from
4314 	 * userspace, so don't panic if the command fails. This
4315 	 * is especially true for admin passthru commands, where
4316 	 * the actual command data structure is entirely defined
4317 	 * by userspace.
4318 	 */
4319 	cmd->nc_dontpanic = B_TRUE;
4320 
4321 	cmd->nc_callback = nvme_wakeup_cmd;
4322 	cmd->nc_sqe = *sqe;
4323 
4324 	if ((rwk & (FREAD | FWRITE)) != 0) {
4325 		if (data_addr == NULL) {
4326 			rv = EINVAL;
4327 			goto free_cmd;
4328 		}
4329 
4330 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4331 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4332 			dev_err(nvme->n_dip, CE_WARN,
4333 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4334 
4335 			rv = ENOMEM;
4336 			goto free_cmd;
4337 		}
4338 
4339 		if ((rv = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
4340 			goto free_cmd;
4341 
4342 		if ((rwk & FWRITE) != 0) {
4343 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4344 			    data_len, rwk & FKIOCTL) != 0) {
4345 				rv = EFAULT;
4346 				goto free_cmd;
4347 			}
4348 		}
4349 	}
4350 
4351 	if (is_admin) {
4352 		nvme_admin_cmd(cmd, timeout);
4353 	} else {
4354 		mutex_enter(&cmd->nc_mutex);
4355 
4356 		rv = nvme_submit_io_cmd(ioq, cmd);
4357 
4358 		if (rv == EAGAIN) {
4359 			mutex_exit(&cmd->nc_mutex);
4360 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4361 			    "!nvme_ioc_cmd() failed, I/O Q full");
4362 			goto free_cmd;
4363 		}
4364 
4365 		nvme_wait_cmd(cmd, timeout);
4366 
4367 		mutex_exit(&cmd->nc_mutex);
4368 	}
4369 
4370 	if (cqe != NULL)
4371 		*cqe = cmd->nc_cqe;
4372 
4373 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4374 		dev_err(nvme->n_dip, CE_WARN,
4375 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4376 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4377 
4378 		goto free_cmd;
4379 	}
4380 
4381 	if ((rwk & FREAD) != 0) {
4382 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4383 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4384 			rv = EFAULT;
4385 	}
4386 
4387 free_cmd:
4388 	nvme_free_cmd(cmd);
4389 
4390 	return (rv);
4391 }
4392 
4393 static int
4394 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4395     int mode, cred_t *cred_p)
4396 {
4397 	_NOTE(ARGUNUSED(nsid, cred_p));
4398 	int rv = 0;
4399 	nvme_reg_cap_t cap = { 0 };
4400 	nvme_capabilities_t nc;
4401 
4402 	if ((mode & FREAD) == 0)
4403 		return (EPERM);
4404 
4405 	if (nioc->n_len < sizeof (nc))
4406 		return (EINVAL);
4407 
4408 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4409 
4410 	/*
4411 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4412 	 * specify the base page size of 4k (1<<12), so add 12 here to
4413 	 * get the real page size value.
4414 	 */
4415 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4416 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4417 
4418 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4419 		rv = EFAULT;
4420 
4421 	return (rv);
4422 }
4423 
4424 static int
4425 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4426     int mode, cred_t *cred_p)
4427 {
4428 	_NOTE(ARGUNUSED(cred_p));
4429 	void *log = NULL;
4430 	size_t bufsize = 0;
4431 	int rv = 0;
4432 
4433 	if ((mode & FREAD) == 0)
4434 		return (EPERM);
4435 
4436 	switch (nioc->n_arg) {
4437 	case NVME_LOGPAGE_ERROR:
4438 		if (nsid != 0)
4439 			return (EINVAL);
4440 		break;
4441 	case NVME_LOGPAGE_HEALTH:
4442 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4443 			return (EINVAL);
4444 
4445 		if (nsid == 0)
4446 			nsid = (uint32_t)-1;
4447 
4448 		break;
4449 	case NVME_LOGPAGE_FWSLOT:
4450 		if (nsid != 0)
4451 			return (EINVAL);
4452 		break;
4453 	default:
4454 		if (!NVME_IS_VENDOR_SPECIFIC_LOGPAGE(nioc->n_arg))
4455 			return (EINVAL);
4456 		if (nioc->n_len > NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE) {
4457 			dev_err(nvme->n_dip, CE_NOTE, "!Vendor-specific log "
4458 			    "page size exceeds device maximum supported size: "
4459 			    "%lu", NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE);
4460 			return (EINVAL);
4461 		}
4462 		if (nioc->n_len == 0)
4463 			return (EINVAL);
4464 		bufsize = nioc->n_len;
4465 		if (nsid == 0)
4466 			nsid = (uint32_t)-1;
4467 	}
4468 
4469 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4470 	    != DDI_SUCCESS)
4471 		return (EIO);
4472 
4473 	if (nioc->n_len < bufsize) {
4474 		kmem_free(log, bufsize);
4475 		return (EINVAL);
4476 	}
4477 
4478 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4479 		rv = EFAULT;
4480 
4481 	nioc->n_len = bufsize;
4482 	kmem_free(log, bufsize);
4483 
4484 	return (rv);
4485 }
4486 
4487 static int
4488 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4489     int mode, cred_t *cred_p)
4490 {
4491 	_NOTE(ARGUNUSED(cred_p));
4492 	void *buf = NULL;
4493 	size_t bufsize = 0;
4494 	uint32_t res = 0;
4495 	uint8_t feature;
4496 	int rv = 0;
4497 
4498 	if ((mode & FREAD) == 0)
4499 		return (EPERM);
4500 
4501 	if ((nioc->n_arg >> 32) > 0xff)
4502 		return (EINVAL);
4503 
4504 	feature = (uint8_t)(nioc->n_arg >> 32);
4505 
4506 	switch (feature) {
4507 	case NVME_FEAT_ARBITRATION:
4508 	case NVME_FEAT_POWER_MGMT:
4509 	case NVME_FEAT_ERROR:
4510 	case NVME_FEAT_NQUEUES:
4511 	case NVME_FEAT_INTR_COAL:
4512 	case NVME_FEAT_WRITE_ATOM:
4513 	case NVME_FEAT_ASYNC_EVENT:
4514 	case NVME_FEAT_PROGRESS:
4515 		if (nsid != 0)
4516 			return (EINVAL);
4517 		break;
4518 
4519 	case NVME_FEAT_TEMPERATURE:
4520 		if (nsid != 0)
4521 			return (EINVAL);
4522 		res = nioc->n_arg & 0xffffffffUL;
4523 		if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
4524 			nvme_temp_threshold_t tt;
4525 
4526 			tt.r = res;
4527 			if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
4528 			    tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
4529 				return (EINVAL);
4530 			}
4531 
4532 			if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
4533 				return (EINVAL);
4534 			}
4535 		} else if (res != 0) {
4536 			return (EINVAL);
4537 		}
4538 		break;
4539 
4540 	case NVME_FEAT_INTR_VECT:
4541 		if (nsid != 0)
4542 			return (EINVAL);
4543 
4544 		res = nioc->n_arg & 0xffffffffUL;
4545 		if (res >= nvme->n_intr_cnt)
4546 			return (EINVAL);
4547 		break;
4548 
4549 	case NVME_FEAT_LBA_RANGE:
4550 		if (nvme->n_lba_range_supported == B_FALSE)
4551 			return (EINVAL);
4552 
4553 		if (nsid == 0 ||
4554 		    nsid > nvme->n_namespace_count)
4555 			return (EINVAL);
4556 
4557 		break;
4558 
4559 	case NVME_FEAT_WRITE_CACHE:
4560 		if (nsid != 0)
4561 			return (EINVAL);
4562 
4563 		if (!nvme->n_write_cache_present)
4564 			return (EINVAL);
4565 
4566 		break;
4567 
4568 	case NVME_FEAT_AUTO_PST:
4569 		if (nsid != 0)
4570 			return (EINVAL);
4571 
4572 		if (!nvme->n_auto_pst_supported)
4573 			return (EINVAL);
4574 
4575 		break;
4576 
4577 	default:
4578 		return (EINVAL);
4579 	}
4580 
4581 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4582 	    &bufsize);
4583 	if (rv != 0)
4584 		return (rv);
4585 
4586 	if (nioc->n_len < bufsize) {
4587 		kmem_free(buf, bufsize);
4588 		return (EINVAL);
4589 	}
4590 
4591 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4592 		rv = EFAULT;
4593 
4594 	kmem_free(buf, bufsize);
4595 	nioc->n_arg = res;
4596 	nioc->n_len = bufsize;
4597 
4598 	return (rv);
4599 }
4600 
4601 static int
4602 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4603     cred_t *cred_p)
4604 {
4605 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4606 
4607 	if ((mode & FREAD) == 0)
4608 		return (EPERM);
4609 
4610 	nioc->n_arg = nvme->n_intr_cnt;
4611 	return (0);
4612 }
4613 
4614 static int
4615 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4616     cred_t *cred_p)
4617 {
4618 	_NOTE(ARGUNUSED(nsid, cred_p));
4619 	int rv = 0;
4620 
4621 	if ((mode & FREAD) == 0)
4622 		return (EPERM);
4623 
4624 	if (nioc->n_len < sizeof (nvme->n_version))
4625 		return (ENOMEM);
4626 
4627 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4628 	    sizeof (nvme->n_version), mode) != 0)
4629 		rv = EFAULT;
4630 
4631 	return (rv);
4632 }
4633 
4634 static int
4635 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4636     cred_t *cred_p)
4637 {
4638 	_NOTE(ARGUNUSED(mode));
4639 	nvme_format_nvm_t frmt = { 0 };
4640 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4641 
4642 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4643 		return (EPERM);
4644 
4645 	frmt.r = nioc->n_arg & 0xffffffff;
4646 
4647 	/*
4648 	 * Check whether the FORMAT NVM command is supported.
4649 	 */
4650 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4651 		return (EINVAL);
4652 
4653 	/*
4654 	 * Don't allow format or secure erase of individual namespace if that
4655 	 * would cause a format or secure erase of all namespaces.
4656 	 */
4657 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4658 		return (EINVAL);
4659 
4660 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4661 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4662 		return (EINVAL);
4663 
4664 	/*
4665 	 * Don't allow formatting with Protection Information.
4666 	 */
4667 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4668 		return (EINVAL);
4669 
4670 	/*
4671 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4672 	 * that uses metadata.
4673 	 */
4674 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4675 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4676 		return (EINVAL);
4677 
4678 	/*
4679 	 * Don't allow formatting using an illegal Secure Erase setting.
4680 	 */
4681 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4682 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4683 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4684 		return (EINVAL);
4685 
4686 	if (nsid == 0)
4687 		nsid = (uint32_t)-1;
4688 
4689 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4690 	    B_FALSE, frmt.b.fm_ses));
4691 }
4692 
4693 static int
4694 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4695     cred_t *cred_p)
4696 {
4697 	_NOTE(ARGUNUSED(nioc, mode));
4698 	int rv = 0;
4699 
4700 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4701 		return (EPERM);
4702 
4703 	if (nsid == 0)
4704 		return (EINVAL);
4705 
4706 	if (nvme->n_ns[nsid - 1].ns_ignore)
4707 		return (0);
4708 
4709 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4710 	if (rv != DDI_SUCCESS)
4711 		rv = EBUSY;
4712 
4713 	return (rv);
4714 }
4715 
4716 static int
4717 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4718     cred_t *cred_p)
4719 {
4720 	_NOTE(ARGUNUSED(nioc, mode));
4721 	nvme_identify_nsid_t *idns;
4722 	int rv = 0;
4723 
4724 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4725 		return (EPERM);
4726 
4727 	if (nsid == 0)
4728 		return (EINVAL);
4729 
4730 	/*
4731 	 * Identify namespace again, free old identify data.
4732 	 */
4733 	idns = nvme->n_ns[nsid - 1].ns_idns;
4734 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4735 		return (EIO);
4736 
4737 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4738 
4739 	if (nvme->n_ns[nsid - 1].ns_ignore)
4740 		return (ENOTSUP);
4741 
4742 	if (nvme->n_ns[nsid - 1].ns_bd_hdl == NULL)
4743 		nvme->n_ns[nsid - 1].ns_bd_hdl = bd_alloc_handle(
4744 		    &nvme->n_ns[nsid - 1], &nvme_bd_ops, &nvme->n_prp_dma_attr,
4745 		    KM_SLEEP);
4746 
4747 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4748 	if (rv != DDI_SUCCESS)
4749 		rv = EBUSY;
4750 
4751 	return (rv);
4752 }
4753 
4754 static void
4755 nvme_ufm_update(nvme_t *nvme)
4756 {
4757 	mutex_enter(&nvme->n_fwslot_mutex);
4758 	ddi_ufm_update(nvme->n_ufmh);
4759 	if (nvme->n_fwslot != NULL) {
4760 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4761 		nvme->n_fwslot = NULL;
4762 	}
4763 	mutex_exit(&nvme->n_fwslot_mutex);
4764 }
4765 
4766 static int
4767 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4768     int mode, cred_t *cred_p)
4769 {
4770 	int rv = 0;
4771 	size_t len, copylen;
4772 	offset_t offset;
4773 	uintptr_t buf;
4774 	nvme_sqe_t sqe = {
4775 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
4776 	};
4777 
4778 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4779 		return (EPERM);
4780 
4781 	if (nsid != 0)
4782 		return (EINVAL);
4783 
4784 	/*
4785 	 * The offset (in n_len) is restricted to the number of DWORDs in
4786 	 * 32 bits.
4787 	 */
4788 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4789 		return (EINVAL);
4790 
4791 	/* Confirm that both offset and length are a multiple of DWORD bytes */
4792 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4793 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
4794 		return (EINVAL);
4795 
4796 	len = nioc->n_len;
4797 	offset = nioc->n_arg;
4798 	buf = (uintptr_t)nioc->n_buf;
4799 	while (len > 0 && rv == 0) {
4800 		/*
4801 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
4802 		 * It is limited to 2 PRPs per NVM command, so limit
4803 		 * the size of the data to 2 pages.
4804 		 */
4805 		copylen = MIN(2 * nvme->n_pagesize, len);
4806 
4807 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4808 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4809 
4810 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4811 		    FWRITE, NULL, nvme_admin_cmd_timeout);
4812 
4813 		buf += copylen;
4814 		offset += copylen;
4815 		len -= copylen;
4816 	}
4817 
4818 	/*
4819 	 * Let the DDI UFM subsystem know that the firmware information for
4820 	 * this device has changed.
4821 	 */
4822 	nvme_ufm_update(nvme);
4823 
4824 	return (rv);
4825 }
4826 
4827 static int
4828 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4829     int mode, cred_t *cred_p)
4830 {
4831 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
4832 	uint32_t slot = nioc->n_arg & 0xffffffff;
4833 	uint32_t action = nioc->n_arg >> 32;
4834 	nvme_cqe_t cqe = { 0 };
4835 	nvme_sqe_t sqe = {
4836 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
4837 	};
4838 	int timeout;
4839 	int rv;
4840 
4841 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4842 		return (EPERM);
4843 
4844 	if (nsid != 0)
4845 		return (EINVAL);
4846 
4847 	/* Validate slot is in range. */
4848 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
4849 		return (EINVAL);
4850 
4851 	switch (action) {
4852 	case NVME_FWC_SAVE:
4853 	case NVME_FWC_SAVE_ACTIVATE:
4854 		timeout = nvme_commit_save_cmd_timeout;
4855 		break;
4856 	case NVME_FWC_ACTIVATE:
4857 	case NVME_FWC_ACTIVATE_IMMED:
4858 		timeout = nvme_admin_cmd_timeout;
4859 		break;
4860 	default:
4861 		return (EINVAL);
4862 	}
4863 
4864 	fc_dw10.b.fc_slot = slot;
4865 	fc_dw10.b.fc_action = action;
4866 	sqe.sqe_cdw10 = fc_dw10.r;
4867 
4868 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
4869 
4870 	nioc->n_arg = ((uint64_t)cqe.cqe_sf.sf_sct << 16) | cqe.cqe_sf.sf_sc;
4871 
4872 	/*
4873 	 * Let the DDI UFM subsystem know that the firmware information for
4874 	 * this device has changed.
4875 	 */
4876 	nvme_ufm_update(nvme);
4877 
4878 	return (rv);
4879 }
4880 
4881 /*
4882  * Helper to copy in a passthru command from userspace, handling
4883  * different data models.
4884  */
4885 static int
4886 nvme_passthru_copy_cmd_in(const void *buf, nvme_passthru_cmd_t *cmd, int mode)
4887 {
4888 #ifdef _MULTI_DATAMODEL
4889 	switch (ddi_model_convert_from(mode & FMODELS)) {
4890 	case DDI_MODEL_ILP32: {
4891 		nvme_passthru_cmd32_t cmd32;
4892 		if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0)
4893 			return (-1);
4894 		cmd->npc_opcode = cmd32.npc_opcode;
4895 		cmd->npc_timeout = cmd32.npc_timeout;
4896 		cmd->npc_flags = cmd32.npc_flags;
4897 		cmd->npc_cdw12 = cmd32.npc_cdw12;
4898 		cmd->npc_cdw13 = cmd32.npc_cdw13;
4899 		cmd->npc_cdw14 = cmd32.npc_cdw14;
4900 		cmd->npc_cdw15 = cmd32.npc_cdw15;
4901 		cmd->npc_buflen = cmd32.npc_buflen;
4902 		cmd->npc_buf = cmd32.npc_buf;
4903 		break;
4904 	}
4905 	case DDI_MODEL_NONE:
4906 #endif
4907 	if (ddi_copyin(buf, (void*)cmd, sizeof (nvme_passthru_cmd_t),
4908 	    mode) != 0)
4909 		return (-1);
4910 #ifdef _MULTI_DATAMODEL
4911 		break;
4912 	}
4913 #endif
4914 	return (0);
4915 }
4916 
4917 /*
4918  * Helper to copy out a passthru command result to userspace, handling
4919  * different data models.
4920  */
4921 static int
4922 nvme_passthru_copy_cmd_out(const nvme_passthru_cmd_t *cmd, void *buf, int mode)
4923 {
4924 #ifdef _MULTI_DATAMODEL
4925 	switch (ddi_model_convert_from(mode & FMODELS)) {
4926 	case DDI_MODEL_ILP32: {
4927 		nvme_passthru_cmd32_t cmd32;
4928 		bzero(&cmd32, sizeof (cmd32));
4929 		cmd32.npc_opcode = cmd->npc_opcode;
4930 		cmd32.npc_status = cmd->npc_status;
4931 		cmd32.npc_err = cmd->npc_err;
4932 		cmd32.npc_timeout = cmd->npc_timeout;
4933 		cmd32.npc_flags = cmd->npc_flags;
4934 		cmd32.npc_cdw0 = cmd->npc_cdw0;
4935 		cmd32.npc_cdw12 = cmd->npc_cdw12;
4936 		cmd32.npc_cdw13 = cmd->npc_cdw13;
4937 		cmd32.npc_cdw14 = cmd->npc_cdw14;
4938 		cmd32.npc_cdw15 = cmd->npc_cdw15;
4939 		cmd32.npc_buflen = (size32_t)cmd->npc_buflen;
4940 		cmd32.npc_buf = (uintptr32_t)cmd->npc_buf;
4941 		if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0)
4942 			return (-1);
4943 		break;
4944 	}
4945 	case DDI_MODEL_NONE:
4946 #endif
4947 		if (ddi_copyout(cmd, buf, sizeof (nvme_passthru_cmd_t),
4948 		    mode) != 0)
4949 			return (-1);
4950 #ifdef _MULTI_DATAMODEL
4951 		break;
4952 	}
4953 #endif
4954 	return (0);
4955 }
4956 
4957 /*
4958  * Run an arbitrary vendor-specific admin command on the device.
4959  */
4960 static int
4961 nvme_ioctl_passthru(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4962     cred_t *cred_p)
4963 {
4964 	int rv = 0;
4965 	uint_t timeout = 0;
4966 	int rwk = 0;
4967 	nvme_passthru_cmd_t cmd;
4968 	size_t expected_passthru_size = 0;
4969 	nvme_sqe_t sqe;
4970 	nvme_cqe_t cqe;
4971 
4972 	bzero(&cmd, sizeof (cmd));
4973 	bzero(&sqe, sizeof (sqe));
4974 	bzero(&cqe, sizeof (cqe));
4975 
4976 	/*
4977 	 * Basic checks: permissions, data model, argument size.
4978 	 */
4979 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4980 		return (EPERM);
4981 
4982 	/*
4983 	 * Compute the expected size of the argument buffer
4984 	 */
4985 #ifdef _MULTI_DATAMODEL
4986 	switch (ddi_model_convert_from(mode & FMODELS)) {
4987 	case DDI_MODEL_ILP32:
4988 		expected_passthru_size = sizeof (nvme_passthru_cmd32_t);
4989 		break;
4990 	case DDI_MODEL_NONE:
4991 #endif
4992 		expected_passthru_size = sizeof (nvme_passthru_cmd_t);
4993 #ifdef _MULTI_DATAMODEL
4994 		break;
4995 	}
4996 #endif
4997 
4998 	if (nioc->n_len != expected_passthru_size) {
4999 		cmd.npc_err = NVME_PASSTHRU_ERR_CMD_SIZE;
5000 		rv = EINVAL;
5001 		goto out;
5002 	}
5003 
5004 	/*
5005 	 * Ensure the device supports the standard vendor specific
5006 	 * admin command format.
5007 	 */
5008 	if (!nvme->n_idctl->id_nvscc.nv_spec) {
5009 		cmd.npc_err = NVME_PASSTHRU_ERR_NOT_SUPPORTED;
5010 		rv = ENOTSUP;
5011 		goto out;
5012 	}
5013 
5014 	if (nvme_passthru_copy_cmd_in((const void*)nioc->n_buf, &cmd, mode))
5015 		return (EFAULT);
5016 
5017 	if (!NVME_IS_VENDOR_SPECIFIC_CMD(cmd.npc_opcode)) {
5018 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_OPCODE;
5019 		rv = EINVAL;
5020 		goto out;
5021 	}
5022 
5023 	/*
5024 	 * This restriction is not mandated by the spec, so future work
5025 	 * could relax this if it's necessary to support commands that both
5026 	 * read and write.
5027 	 */
5028 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0 &&
5029 	    (cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) {
5030 		cmd.npc_err = NVME_PASSTHRU_ERR_READ_AND_WRITE;
5031 		rv = EINVAL;
5032 		goto out;
5033 	}
5034 	if (cmd.npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) {
5035 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_TIMEOUT;
5036 		rv = EINVAL;
5037 		goto out;
5038 	}
5039 	timeout = cmd.npc_timeout;
5040 
5041 	/*
5042 	 * Passed-thru command buffer verification:
5043 	 *  - Size is multiple of DWords
5044 	 *  - Non-null iff the length is non-zero
5045 	 *  - Null if neither reading nor writing data.
5046 	 *  - Non-null if reading or writing.
5047 	 *  - Maximum buffer size.
5048 	 */
5049 	if ((cmd.npc_buflen % sizeof (uint32_t)) != 0) {
5050 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5051 		rv = EINVAL;
5052 		goto out;
5053 	}
5054 	if (((void*)cmd.npc_buf != NULL && cmd.npc_buflen == 0) ||
5055 	    ((void*)cmd.npc_buf == NULL && cmd.npc_buflen != 0)) {
5056 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5057 		rv = EINVAL;
5058 		goto out;
5059 	}
5060 	if (cmd.npc_flags == 0 && (void*)cmd.npc_buf != NULL) {
5061 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5062 		rv = EINVAL;
5063 		goto out;
5064 	}
5065 	if ((cmd.npc_flags != 0) && ((void*)cmd.npc_buf == NULL)) {
5066 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5067 		rv = EINVAL;
5068 		goto out;
5069 	}
5070 	if (cmd.npc_buflen > nvme_vendor_specific_admin_cmd_size) {
5071 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5072 		rv = EINVAL;
5073 		goto out;
5074 	}
5075 	if ((cmd.npc_buflen >> NVME_DWORD_SHIFT) > UINT32_MAX) {
5076 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5077 		rv = EINVAL;
5078 		goto out;
5079 	}
5080 
5081 	sqe.sqe_opc = cmd.npc_opcode;
5082 	sqe.sqe_nsid = nsid;
5083 	sqe.sqe_cdw10 = (uint32_t)(cmd.npc_buflen >> NVME_DWORD_SHIFT);
5084 	sqe.sqe_cdw12 = cmd.npc_cdw12;
5085 	sqe.sqe_cdw13 = cmd.npc_cdw13;
5086 	sqe.sqe_cdw14 = cmd.npc_cdw14;
5087 	sqe.sqe_cdw15 = cmd.npc_cdw15;
5088 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0)
5089 		rwk = FREAD;
5090 	else if ((cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0)
5091 		rwk = FWRITE;
5092 
5093 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void*)cmd.npc_buf,
5094 	    cmd.npc_buflen, rwk, &cqe, timeout);
5095 	cmd.npc_status = cqe.cqe_sf.sf_sc;
5096 	cmd.npc_cdw0 = cqe.cqe_dw0;
5097 
5098 out:
5099 	if (nvme_passthru_copy_cmd_out(&cmd, (void*)nioc->n_buf, mode))
5100 		rv = EFAULT;
5101 	return (rv);
5102 }
5103 
5104 static int
5105 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
5106     int *rval_p)
5107 {
5108 #ifndef __lock_lint
5109 	_NOTE(ARGUNUSED(rval_p));
5110 #endif
5111 	minor_t minor = getminor(dev);
5112 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
5113 	int nsid = NVME_MINOR_NSID(minor);
5114 	int rv = 0;
5115 	nvme_ioctl_t nioc;
5116 
5117 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
5118 		NULL,
5119 		nvme_ioctl_identify,
5120 		nvme_ioctl_identify,
5121 		nvme_ioctl_capabilities,
5122 		nvme_ioctl_get_logpage,
5123 		nvme_ioctl_get_features,
5124 		nvme_ioctl_intr_cnt,
5125 		nvme_ioctl_version,
5126 		nvme_ioctl_format,
5127 		nvme_ioctl_detach,
5128 		nvme_ioctl_attach,
5129 		nvme_ioctl_firmware_download,
5130 		nvme_ioctl_firmware_commit,
5131 		nvme_ioctl_passthru
5132 	};
5133 
5134 	if (nvme == NULL)
5135 		return (ENXIO);
5136 
5137 	if (nsid > nvme->n_namespace_count)
5138 		return (ENXIO);
5139 
5140 	if (IS_DEVCTL(cmd))
5141 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
5142 
5143 #ifdef _MULTI_DATAMODEL
5144 	switch (ddi_model_convert_from(mode & FMODELS)) {
5145 	case DDI_MODEL_ILP32: {
5146 		nvme_ioctl32_t nioc32;
5147 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
5148 		    mode) != 0)
5149 			return (EFAULT);
5150 		nioc.n_len = nioc32.n_len;
5151 		nioc.n_buf = nioc32.n_buf;
5152 		nioc.n_arg = nioc32.n_arg;
5153 		break;
5154 	}
5155 	case DDI_MODEL_NONE:
5156 #endif
5157 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
5158 		    != 0)
5159 			return (EFAULT);
5160 #ifdef _MULTI_DATAMODEL
5161 		break;
5162 	}
5163 #endif
5164 
5165 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
5166 		return (EIO);
5167 
5168 
5169 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
5170 		/*
5171 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
5172 		 * attachment point nodes.
5173 		 */
5174 		nsid = 0;
5175 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
5176 		/*
5177 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
5178 		 * will always return identify data for namespace 1.
5179 		 */
5180 		nsid = 1;
5181 	}
5182 
5183 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
5184 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
5185 		    cred_p);
5186 	else
5187 		rv = EINVAL;
5188 
5189 #ifdef _MULTI_DATAMODEL
5190 	switch (ddi_model_convert_from(mode & FMODELS)) {
5191 	case DDI_MODEL_ILP32: {
5192 		nvme_ioctl32_t nioc32;
5193 
5194 		nioc32.n_len = (size32_t)nioc.n_len;
5195 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
5196 		nioc32.n_arg = nioc.n_arg;
5197 
5198 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
5199 		    mode) != 0)
5200 			return (EFAULT);
5201 		break;
5202 	}
5203 	case DDI_MODEL_NONE:
5204 #endif
5205 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
5206 		    != 0)
5207 			return (EFAULT);
5208 #ifdef _MULTI_DATAMODEL
5209 		break;
5210 	}
5211 #endif
5212 
5213 	return (rv);
5214 }
5215 
5216 /*
5217  * DDI UFM Callbacks
5218  */
5219 static int
5220 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5221     ddi_ufm_image_t *img)
5222 {
5223 	nvme_t *nvme = arg;
5224 
5225 	if (imgno != 0)
5226 		return (EINVAL);
5227 
5228 	ddi_ufm_image_set_desc(img, "Firmware");
5229 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
5230 
5231 	return (0);
5232 }
5233 
5234 /*
5235  * Fill out firmware slot information for the requested slot.  The firmware
5236  * slot information is gathered by requesting the Firmware Slot Information log
5237  * page.  The format of the page is described in section 5.10.1.3.
5238  *
5239  * We lazily cache the log page on the first call and then invalidate the cache
5240  * data after a successful firmware download or firmware commit command.
5241  * The cached data is protected by a mutex as the state can change
5242  * asynchronous to this callback.
5243  */
5244 static int
5245 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5246     uint_t slotno, ddi_ufm_slot_t *slot)
5247 {
5248 	nvme_t *nvme = arg;
5249 	void *log = NULL;
5250 	size_t bufsize;
5251 	ddi_ufm_attr_t attr = 0;
5252 	char fw_ver[NVME_FWVER_SZ + 1];
5253 	int ret;
5254 
5255 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
5256 		return (EINVAL);
5257 
5258 	mutex_enter(&nvme->n_fwslot_mutex);
5259 	if (nvme->n_fwslot == NULL) {
5260 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
5261 		    NVME_LOGPAGE_FWSLOT, 0);
5262 		if (ret != DDI_SUCCESS ||
5263 		    bufsize != sizeof (nvme_fwslot_log_t)) {
5264 			if (log != NULL)
5265 				kmem_free(log, bufsize);
5266 			mutex_exit(&nvme->n_fwslot_mutex);
5267 			return (EIO);
5268 		}
5269 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
5270 	}
5271 
5272 	/*
5273 	 * NVMe numbers firmware slots starting at 1
5274 	 */
5275 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
5276 		attr |= DDI_UFM_ATTR_ACTIVE;
5277 
5278 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
5279 		attr |= DDI_UFM_ATTR_WRITEABLE;
5280 
5281 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
5282 		attr |= DDI_UFM_ATTR_EMPTY;
5283 	} else {
5284 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
5285 		    NVME_FWVER_SZ);
5286 		fw_ver[NVME_FWVER_SZ] = '\0';
5287 		ddi_ufm_slot_set_version(slot, fw_ver);
5288 	}
5289 	mutex_exit(&nvme->n_fwslot_mutex);
5290 
5291 	ddi_ufm_slot_set_attrs(slot, attr);
5292 
5293 	return (0);
5294 }
5295 
5296 static int
5297 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
5298 {
5299 	*caps = DDI_UFM_CAP_REPORT;
5300 	return (0);
5301 }
5302