xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 0a34963c38fe21eee84ebab010996317731a5171)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2020 Joyent, Inc.
17  * Copyright 2019 Western Digital Corporation.
18  * Copyright 2020 Racktop Systems.
19  * Copyright 2022 Oxide Computer Company.
20  * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
21  */
22 
23 /*
24  * blkdev driver for NVMe compliant storage devices
25  *
26  * This driver targets and is designed to support all NVMe 1.x devices.
27  * Features are added to the driver as we encounter devices that require them
28  * and our needs, so some commands or log pages may not take advantage of newer
29  * features that devices support at this time. When you encounter such a case,
30  * it is generally fine to add that support to the driver as long as you take
31  * care to ensure that the requisite device version is met before using it.
32  *
33  * The driver has only been tested on x86 systems and will not work on big-
34  * endian systems without changes to the code accessing registers and data
35  * structures used by the hardware.
36  *
37  *
38  * Interrupt Usage:
39  *
40  * The driver will use a single interrupt while configuring the device as the
41  * specification requires, but contrary to the specification it will try to use
42  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
43  * will switch to multiple-message MSI(-X) if supported. The driver wants to
44  * have one interrupt vector per CPU, but it will work correctly if less are
45  * available. Interrupts can be shared by queues, the interrupt handler will
46  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
47  * the admin queue will share an interrupt with one I/O queue. The interrupt
48  * handler will retrieve completed commands from all queues sharing an interrupt
49  * vector and will post them to a taskq for completion processing.
50  *
51  *
52  * Command Processing:
53  *
54  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
55  * to 65536 I/O commands. The driver will configure one I/O queue pair per
56  * available interrupt vector, with the queue length usually much smaller than
57  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
58  * interrupt vectors will be used.
59  *
60  * Additionally the hardware provides a single special admin queue pair that can
61  * hold up to 4096 admin commands.
62  *
63  * From the hardware perspective both queues of a queue pair are independent,
64  * but they share some driver state: the command array (holding pointers to
65  * commands currently being processed by the hardware) and the active command
66  * counter. Access to a submission queue and the shared state is protected by
67  * nq_mutex; completion queue is protected by ncq_mutex.
68  *
69  * When a command is submitted to a queue pair the active command counter is
70  * incremented and a pointer to the command is stored in the command array. The
71  * array index is used as command identifier (CID) in the submission queue
72  * entry. Some commands may take a very long time to complete, and if the queue
73  * wraps around in that time a submission may find the next array slot to still
74  * be used by a long-running command. In this case the array is sequentially
75  * searched for the next free slot. The length of the command array is the same
76  * as the configured queue length. Queue overrun is prevented by the semaphore,
77  * so a command submission may block if the queue is full.
78  *
79  *
80  * Polled I/O Support:
81  *
82  * For kernel core dump support the driver can do polled I/O. As interrupts are
83  * turned off while dumping the driver will just submit a command in the regular
84  * way, and then repeatedly attempt a command retrieval until it gets the
85  * command back.
86  *
87  *
88  * Namespace Support:
89  *
90  * NVMe devices can have multiple namespaces, each being a independent data
91  * store. The driver supports multiple namespaces and creates a blkdev interface
92  * for each namespace found. Namespaces can have various attributes to support
93  * protection information. This driver does not support any of this and ignores
94  * namespaces that have these attributes.
95  *
96  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
97  * (EUI64). This driver uses the EUI64 if present to generate the devid and
98  * passes it to blkdev to use it in the device node names. As this is currently
99  * untested namespaces with EUI64 are ignored by default.
100  *
101  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
102  * single controller. This is an artificial limit imposed by the driver to be
103  * able to address a reasonable number of controllers and namespaces using a
104  * 32bit minor node number.
105  *
106  *
107  * Minor nodes:
108  *
109  * For each NVMe device the driver exposes one minor node for the controller and
110  * one minor node for each namespace. The only operations supported by those
111  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
112  * interface for the nvmeadm(1M) utility.
113  *
114  *
115  * Blkdev Interface:
116  *
117  * This driver uses blkdev to do all the heavy lifting involved with presenting
118  * a disk device to the system. As a result, the processing of I/O requests is
119  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
120  * setup, and splitting of transfers into manageable chunks.
121  *
122  * I/O requests coming in from blkdev are turned into NVM commands and posted to
123  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
124  * queues. There is currently no timeout handling of I/O commands.
125  *
126  * Blkdev also supports querying device/media information and generating a
127  * devid. The driver reports the best block size as determined by the namespace
128  * format back to blkdev as physical block size to support partition and block
129  * alignment. The devid is either based on the namespace EUI64, if present, or
130  * composed using the device vendor ID, model number, serial number, and the
131  * namespace ID.
132  *
133  *
134  * Error Handling:
135  *
136  * Error handling is currently limited to detecting fatal hardware errors,
137  * either by asynchronous events, or synchronously through command status or
138  * admin command timeouts. In case of severe errors the device is fenced off,
139  * all further requests will return EIO. FMA is then called to fault the device.
140  *
141  * The hardware has a limit for outstanding asynchronous event requests. Before
142  * this limit is known the driver assumes it is at least 1 and posts a single
143  * asynchronous request. Later when the limit is known more asynchronous event
144  * requests are posted to allow quicker reception of error information. When an
145  * asynchronous event is posted by the hardware the driver will parse the error
146  * status fields and log information or fault the device, depending on the
147  * severity of the asynchronous event. The asynchronous event request is then
148  * reused and posted to the admin queue again.
149  *
150  * On command completion the command status is checked for errors. In case of
151  * errors indicating a driver bug the driver panics. Almost all other error
152  * status values just cause EIO to be returned.
153  *
154  * Command timeouts are currently detected for all admin commands except
155  * asynchronous event requests. If a command times out and the hardware appears
156  * to be healthy the driver attempts to abort the command. The original command
157  * timeout is also applied to the abort command. If the abort times out too the
158  * driver assumes the device to be dead, fences it off, and calls FMA to retire
159  * it. In all other cases the aborted command should return immediately with a
160  * status indicating it was aborted, and the driver will wait indefinitely for
161  * that to happen. No timeout handling of normal I/O commands is presently done.
162  *
163  * Any command that times out due to the controller dropping dead will be put on
164  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
165  * memory being reused by the system and later be written to by a "dead" NVMe
166  * controller.
167  *
168  *
169  * Locking:
170  *
171  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
172  * when accessing shared state and submission queue registers, ncq_mutex
173  * is held when accessing completion queue state and registers.
174  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
175  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
176  * mutexes themselves.
177  *
178  * Each command also has its own nc_mutex, which is associated with the
179  * condition variable nc_cv. It is only used on admin commands which are run
180  * synchronously. In that case it must be held across calls to
181  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
182  * nvme_admin_cmd(). It must also be held whenever the completion state of the
183  * command is changed or while a admin command timeout is handled.
184  *
185  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
186  * More than one nc_mutex may only be held when aborting commands. In this case,
187  * the nc_mutex of the command to be aborted must be held across the call to
188  * nvme_abort_cmd() to prevent the command from completing while the abort is in
189  * progress.
190  *
191  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
192  * acquired first. More than one nq_mutex is never held by a single thread.
193  * The ncq_mutex is only held by nvme_retrieve_cmd() and
194  * nvme_process_iocq(). nvme_process_iocq() is only called from the
195  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
196  * mutex is non-contentious but is required for implementation completeness
197  * and safety.
198  *
199  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
200  * and exclusive-open flag nm_oexcl.
201  *
202  *
203  * Quiesce / Fast Reboot:
204  *
205  * The driver currently does not support fast reboot. A quiesce(9E) entry point
206  * is still provided which is used to send a shutdown notification to the
207  * device.
208  *
209  *
210  * NVMe Hotplug:
211  *
212  * The driver supports hot removal. The driver uses the NDI event framework
213  * to register a callback, nvme_remove_callback, to clean up when a disk is
214  * removed. In particular, the driver will unqueue outstanding I/O commands and
215  * set n_dead on the softstate to true so that other operations, such as ioctls
216  * and command submissions, fail as well.
217  *
218  * While the callback registration relies on the NDI event framework, the
219  * removal event itself is kicked off in the PCIe hotplug framework, when the
220  * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a
221  * device was removed from the slot.
222  *
223  * The NVMe driver instance itself will remain until the final close of the
224  * device.
225  *
226  *
227  * DDI UFM Support
228  *
229  * The driver supports the DDI UFM framework for reporting information about
230  * the device's firmware image and slot configuration. This data can be
231  * queried by userland software via ioctls to the ufm driver. For more
232  * information, see ddi_ufm(9E).
233  *
234  *
235  * Driver Configuration:
236  *
237  * The following driver properties can be changed to control some aspects of the
238  * drivers operation:
239  * - strict-version: can be set to 0 to allow devices conforming to newer
240  *   major versions to be used
241  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
242  *   specific command status as a fatal error leading device faulting
243  * - admin-queue-len: the maximum length of the admin queue (16-4096)
244  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
245  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
246  * - async-event-limit: the maximum number of asynchronous event requests to be
247  *   posted by the driver
248  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
249  *   cache
250  * - min-phys-block-size: the minimum physical block size to report to blkdev,
251  *   which is among other things the basis for ZFS vdev ashift
252  * - max-submission-queues: the maximum number of I/O submission queues.
253  * - max-completion-queues: the maximum number of I/O completion queues,
254  *   can be less than max-submission-queues, in which case the completion
255  *   queues are shared.
256  *
257  *
258  * TODO:
259  * - figure out sane default for I/O queue depth reported to blkdev
260  * - FMA handling of media errors
261  * - support for devices supporting very large I/O requests using chained PRPs
262  * - support for configuring hardware parameters like interrupt coalescing
263  * - support for media formatting and hard partitioning into namespaces
264  * - support for big-endian systems
265  * - support for fast reboot
266  * - support for NVMe Subsystem Reset (1.1)
267  * - support for Scatter/Gather lists (1.1)
268  * - support for Reservations (1.1)
269  * - support for power management
270  */
271 
272 #include <sys/byteorder.h>
273 #ifdef _BIG_ENDIAN
274 #error nvme driver needs porting for big-endian platforms
275 #endif
276 
277 #include <sys/modctl.h>
278 #include <sys/conf.h>
279 #include <sys/devops.h>
280 #include <sys/ddi.h>
281 #include <sys/ddi_ufm.h>
282 #include <sys/sunddi.h>
283 #include <sys/sunndi.h>
284 #include <sys/bitmap.h>
285 #include <sys/sysmacros.h>
286 #include <sys/param.h>
287 #include <sys/varargs.h>
288 #include <sys/cpuvar.h>
289 #include <sys/disp.h>
290 #include <sys/blkdev.h>
291 #include <sys/atomic.h>
292 #include <sys/archsystm.h>
293 #include <sys/sata/sata_hba.h>
294 #include <sys/stat.h>
295 #include <sys/policy.h>
296 #include <sys/list.h>
297 #include <sys/dkio.h>
298 
299 #include <sys/nvme.h>
300 
301 #ifdef __x86
302 #include <sys/x86_archext.h>
303 #endif
304 
305 #include "nvme_reg.h"
306 #include "nvme_var.h"
307 
308 /*
309  * Assertions to make sure that we've properly captured various aspects of the
310  * packed structures and haven't broken them during updates.
311  */
312 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
313 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
314 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
315 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
316 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
317 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
318 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
319 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
320 
321 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
322 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
323 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
324 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
325 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
326 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
327 
328 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
329 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
330 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
331 
332 
333 /* NVMe spec version supported */
334 static const int nvme_version_major = 1;
335 
336 /* tunable for admin command timeout in seconds, default is 1s */
337 int nvme_admin_cmd_timeout = 1;
338 
339 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
340 int nvme_format_cmd_timeout = 600;
341 
342 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
343 int nvme_commit_save_cmd_timeout = 15;
344 
345 /*
346  * tunable for the size of arbitrary vendor specific admin commands,
347  * default is 16MiB.
348  */
349 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24;
350 
351 /*
352  * tunable for the max timeout of arbitary vendor specific admin commands,
353  * default is 60s.
354  */
355 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60;
356 
357 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
358 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
359 static int nvme_quiesce(dev_info_t *);
360 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
361 static int nvme_setup_interrupts(nvme_t *, int, int);
362 static void nvme_release_interrupts(nvme_t *);
363 static uint_t nvme_intr(caddr_t, caddr_t);
364 
365 static void nvme_shutdown(nvme_t *, int, boolean_t);
366 static boolean_t nvme_reset(nvme_t *, boolean_t);
367 static int nvme_init(nvme_t *);
368 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
369 static void nvme_free_cmd(nvme_cmd_t *);
370 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
371     bd_xfer_t *);
372 static void nvme_admin_cmd(nvme_cmd_t *, int);
373 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
374 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
375 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
376 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
377 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
378 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
379 static void nvme_wakeup_cmd(void *);
380 static void nvme_async_event_task(void *);
381 
382 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
383 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
384 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
385 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
386 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
387 static inline int nvme_check_cmd_status(nvme_cmd_t *);
388 
389 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
390 static void nvme_async_event(nvme_t *);
391 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
392     uint8_t, boolean_t, uint8_t);
393 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
394     ...);
395 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
396 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
397     uint32_t *);
398 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
399     void **, size_t *);
400 static int nvme_write_cache_set(nvme_t *, boolean_t);
401 static int nvme_set_nqueues(nvme_t *);
402 
403 static void nvme_free_dma(nvme_dma_t *);
404 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
405     nvme_dma_t **);
406 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
407     nvme_dma_t **);
408 static void nvme_free_qpair(nvme_qpair_t *);
409 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
410 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
411 
412 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
413 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
414 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
415 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
416 
417 static boolean_t nvme_check_regs_hdl(nvme_t *);
418 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
419 
420 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t);
421 
422 static void nvme_bd_xfer_done(void *);
423 static void nvme_bd_driveinfo(void *, bd_drive_t *);
424 static int nvme_bd_mediainfo(void *, bd_media_t *);
425 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
426 static int nvme_bd_read(void *, bd_xfer_t *);
427 static int nvme_bd_write(void *, bd_xfer_t *);
428 static int nvme_bd_sync(void *, bd_xfer_t *);
429 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
430 static int nvme_bd_free_space(void *, bd_xfer_t *);
431 
432 static int nvme_prp_dma_constructor(void *, void *, int);
433 static void nvme_prp_dma_destructor(void *, void *);
434 
435 static void nvme_prepare_devid(nvme_t *, uint32_t);
436 
437 /* DDI UFM callbacks */
438 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
439     ddi_ufm_image_t *);
440 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
441     ddi_ufm_slot_t *);
442 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
443 
444 static int nvme_open(dev_t *, int, int, cred_t *);
445 static int nvme_close(dev_t, int, int, cred_t *);
446 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
447 
448 static ddi_ufm_ops_t nvme_ufm_ops = {
449 	NULL,
450 	nvme_ufm_fill_image,
451 	nvme_ufm_fill_slot,
452 	nvme_ufm_getcaps
453 };
454 
455 #define	NVME_MINOR_INST_SHIFT	9
456 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
457 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
458 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
459 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
460 #define	NVME_IS_VENDOR_SPECIFIC_CMD(x)	(((x) >= 0xC0) && ((x) <= 0xFF))
461 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MIN	0xC0
462 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX	0xFF
463 #define	NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x)	\
464 		(((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \
465 		((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX))
466 
467 /*
468  * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX
469  * DWords in size. However, revision 1.3 also modified the layout of the Get Log
470  * Page command significantly relative to version 1.2, including changing
471  * reserved bits, adding new bitfields, and requiring the use of command DWord
472  * 11 to fully specify the size of the log page (the lower and upper 16 bits of
473  * the number of DWords in the page are split between DWord 10 and DWord 11,
474  * respectively).
475  *
476  * All of these impose significantly different layout requirements on the
477  * `nvme_getlogpage_t` type. This could be solved with two different types, or a
478  * complicated/nested union with the two versions as the overlying members. Both
479  * of these are reasonable, if a bit convoluted. However, these is no current
480  * need for such large pages, or a way to test them, as most log pages actually
481  * fit within the current size limit. So for simplicity, we retain the size cap
482  * from version 1.2.
483  *
484  * Note that the number of DWords is zero-based, so we add 1. It is subtracted
485  * to form a zero-based value in `nvme_get_logpage`.
486  */
487 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE	\
488 		(((1 << 12) + 1) * sizeof (uint32_t))
489 
490 static void *nvme_state;
491 static kmem_cache_t *nvme_cmd_cache;
492 
493 /*
494  * DMA attributes for queue DMA memory
495  *
496  * Queue DMA memory must be page aligned. The maximum length of a queue is
497  * 65536 entries, and an entry can be 64 bytes long.
498  */
499 static ddi_dma_attr_t nvme_queue_dma_attr = {
500 	.dma_attr_version	= DMA_ATTR_V0,
501 	.dma_attr_addr_lo	= 0,
502 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
503 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
504 	.dma_attr_align		= 0x1000,
505 	.dma_attr_burstsizes	= 0x7ff,
506 	.dma_attr_minxfer	= 0x1000,
507 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
508 	.dma_attr_seg		= 0xffffffffffffffffULL,
509 	.dma_attr_sgllen	= 1,
510 	.dma_attr_granular	= 1,
511 	.dma_attr_flags		= 0,
512 };
513 
514 /*
515  * DMA attributes for transfers using Physical Region Page (PRP) entries
516  *
517  * A PRP entry describes one page of DMA memory using the page size specified
518  * in the controller configuration's memory page size register (CC.MPS). It uses
519  * a 64bit base address aligned to this page size. There is no limitation on
520  * chaining PRPs together for arbitrarily large DMA transfers.
521  */
522 static ddi_dma_attr_t nvme_prp_dma_attr = {
523 	.dma_attr_version	= DMA_ATTR_V0,
524 	.dma_attr_addr_lo	= 0,
525 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
526 	.dma_attr_count_max	= 0xfff,
527 	.dma_attr_align		= 0x1000,
528 	.dma_attr_burstsizes	= 0x7ff,
529 	.dma_attr_minxfer	= 0x1000,
530 	.dma_attr_maxxfer	= 0x1000,
531 	.dma_attr_seg		= 0xfff,
532 	.dma_attr_sgllen	= -1,
533 	.dma_attr_granular	= 1,
534 	.dma_attr_flags		= 0,
535 };
536 
537 /*
538  * DMA attributes for transfers using scatter/gather lists
539  *
540  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
541  * 32bit length field. SGL Segment and SGL Last Segment entries require the
542  * length to be a multiple of 16 bytes.
543  */
544 static ddi_dma_attr_t nvme_sgl_dma_attr = {
545 	.dma_attr_version	= DMA_ATTR_V0,
546 	.dma_attr_addr_lo	= 0,
547 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
548 	.dma_attr_count_max	= 0xffffffffUL,
549 	.dma_attr_align		= 1,
550 	.dma_attr_burstsizes	= 0x7ff,
551 	.dma_attr_minxfer	= 0x10,
552 	.dma_attr_maxxfer	= 0xfffffffffULL,
553 	.dma_attr_seg		= 0xffffffffffffffffULL,
554 	.dma_attr_sgllen	= -1,
555 	.dma_attr_granular	= 0x10,
556 	.dma_attr_flags		= 0
557 };
558 
559 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
560 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
561 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
562 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
563 };
564 
565 static struct cb_ops nvme_cb_ops = {
566 	.cb_open	= nvme_open,
567 	.cb_close	= nvme_close,
568 	.cb_strategy	= nodev,
569 	.cb_print	= nodev,
570 	.cb_dump	= nodev,
571 	.cb_read	= nodev,
572 	.cb_write	= nodev,
573 	.cb_ioctl	= nvme_ioctl,
574 	.cb_devmap	= nodev,
575 	.cb_mmap	= nodev,
576 	.cb_segmap	= nodev,
577 	.cb_chpoll	= nochpoll,
578 	.cb_prop_op	= ddi_prop_op,
579 	.cb_str		= 0,
580 	.cb_flag	= D_NEW | D_MP,
581 	.cb_rev		= CB_REV,
582 	.cb_aread	= nodev,
583 	.cb_awrite	= nodev
584 };
585 
586 static struct dev_ops nvme_dev_ops = {
587 	.devo_rev	= DEVO_REV,
588 	.devo_refcnt	= 0,
589 	.devo_getinfo	= ddi_no_info,
590 	.devo_identify	= nulldev,
591 	.devo_probe	= nulldev,
592 	.devo_attach	= nvme_attach,
593 	.devo_detach	= nvme_detach,
594 	.devo_reset	= nodev,
595 	.devo_cb_ops	= &nvme_cb_ops,
596 	.devo_bus_ops	= NULL,
597 	.devo_power	= NULL,
598 	.devo_quiesce	= nvme_quiesce,
599 };
600 
601 static struct modldrv nvme_modldrv = {
602 	.drv_modops	= &mod_driverops,
603 	.drv_linkinfo	= "NVMe v1.1b",
604 	.drv_dev_ops	= &nvme_dev_ops
605 };
606 
607 static struct modlinkage nvme_modlinkage = {
608 	.ml_rev		= MODREV_1,
609 	.ml_linkage	= { &nvme_modldrv, NULL }
610 };
611 
612 static bd_ops_t nvme_bd_ops = {
613 	.o_version	= BD_OPS_CURRENT_VERSION,
614 	.o_drive_info	= nvme_bd_driveinfo,
615 	.o_media_info	= nvme_bd_mediainfo,
616 	.o_devid_init	= nvme_bd_devid,
617 	.o_sync_cache	= nvme_bd_sync,
618 	.o_read		= nvme_bd_read,
619 	.o_write	= nvme_bd_write,
620 	.o_free_space	= nvme_bd_free_space,
621 };
622 
623 /*
624  * This list will hold commands that have timed out and couldn't be aborted.
625  * As we don't know what the hardware may still do with the DMA memory we can't
626  * free them, so we'll keep them forever on this list where we can easily look
627  * at them with mdb.
628  */
629 static struct list nvme_lost_cmds;
630 static kmutex_t nvme_lc_mutex;
631 
632 int
633 _init(void)
634 {
635 	int error;
636 
637 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
638 	if (error != DDI_SUCCESS)
639 		return (error);
640 
641 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
642 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
643 
644 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
645 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
646 	    offsetof(nvme_cmd_t, nc_list));
647 
648 	bd_mod_init(&nvme_dev_ops);
649 
650 	error = mod_install(&nvme_modlinkage);
651 	if (error != DDI_SUCCESS) {
652 		ddi_soft_state_fini(&nvme_state);
653 		mutex_destroy(&nvme_lc_mutex);
654 		list_destroy(&nvme_lost_cmds);
655 		bd_mod_fini(&nvme_dev_ops);
656 	}
657 
658 	return (error);
659 }
660 
661 int
662 _fini(void)
663 {
664 	int error;
665 
666 	if (!list_is_empty(&nvme_lost_cmds))
667 		return (DDI_FAILURE);
668 
669 	error = mod_remove(&nvme_modlinkage);
670 	if (error == DDI_SUCCESS) {
671 		ddi_soft_state_fini(&nvme_state);
672 		kmem_cache_destroy(nvme_cmd_cache);
673 		mutex_destroy(&nvme_lc_mutex);
674 		list_destroy(&nvme_lost_cmds);
675 		bd_mod_fini(&nvme_dev_ops);
676 	}
677 
678 	return (error);
679 }
680 
681 int
682 _info(struct modinfo *modinfop)
683 {
684 	return (mod_info(&nvme_modlinkage, modinfop));
685 }
686 
687 static inline void
688 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
689 {
690 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
691 
692 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
693 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
694 }
695 
696 static inline void
697 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
698 {
699 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
700 
701 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
702 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
703 }
704 
705 static inline uint64_t
706 nvme_get64(nvme_t *nvme, uintptr_t reg)
707 {
708 	uint64_t val;
709 
710 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
711 
712 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
713 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
714 
715 	return (val);
716 }
717 
718 static inline uint32_t
719 nvme_get32(nvme_t *nvme, uintptr_t reg)
720 {
721 	uint32_t val;
722 
723 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
724 
725 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
726 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
727 
728 	return (val);
729 }
730 
731 static boolean_t
732 nvme_check_regs_hdl(nvme_t *nvme)
733 {
734 	ddi_fm_error_t error;
735 
736 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
737 
738 	if (error.fme_status != DDI_FM_OK)
739 		return (B_TRUE);
740 
741 	return (B_FALSE);
742 }
743 
744 static boolean_t
745 nvme_check_dma_hdl(nvme_dma_t *dma)
746 {
747 	ddi_fm_error_t error;
748 
749 	if (dma == NULL)
750 		return (B_FALSE);
751 
752 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
753 
754 	if (error.fme_status != DDI_FM_OK)
755 		return (B_TRUE);
756 
757 	return (B_FALSE);
758 }
759 
760 static void
761 nvme_free_dma_common(nvme_dma_t *dma)
762 {
763 	if (dma->nd_dmah != NULL)
764 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
765 	if (dma->nd_acch != NULL)
766 		ddi_dma_mem_free(&dma->nd_acch);
767 	if (dma->nd_dmah != NULL)
768 		ddi_dma_free_handle(&dma->nd_dmah);
769 }
770 
771 static void
772 nvme_free_dma(nvme_dma_t *dma)
773 {
774 	nvme_free_dma_common(dma);
775 	kmem_free(dma, sizeof (*dma));
776 }
777 
778 /* ARGSUSED */
779 static void
780 nvme_prp_dma_destructor(void *buf, void *private)
781 {
782 	nvme_dma_t *dma = (nvme_dma_t *)buf;
783 
784 	nvme_free_dma_common(dma);
785 }
786 
787 static int
788 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
789     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
790 {
791 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
792 	    &dma->nd_dmah) != DDI_SUCCESS) {
793 		/*
794 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
795 		 * the only other possible error is DDI_DMA_BADATTR which
796 		 * indicates a driver bug which should cause a panic.
797 		 */
798 		dev_err(nvme->n_dip, CE_PANIC,
799 		    "!failed to get DMA handle, check DMA attributes");
800 		return (DDI_FAILURE);
801 	}
802 
803 	/*
804 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
805 	 * or the flags are conflicting, which isn't the case here.
806 	 */
807 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
808 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
809 	    &dma->nd_len, &dma->nd_acch);
810 
811 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
812 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
813 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
814 		dev_err(nvme->n_dip, CE_WARN,
815 		    "!failed to bind DMA memory");
816 		atomic_inc_32(&nvme->n_dma_bind_err);
817 		nvme_free_dma_common(dma);
818 		return (DDI_FAILURE);
819 	}
820 
821 	return (DDI_SUCCESS);
822 }
823 
824 static int
825 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
826     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
827 {
828 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
829 
830 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
831 	    DDI_SUCCESS) {
832 		*ret = NULL;
833 		kmem_free(dma, sizeof (nvme_dma_t));
834 		return (DDI_FAILURE);
835 	}
836 
837 	bzero(dma->nd_memp, dma->nd_len);
838 
839 	*ret = dma;
840 	return (DDI_SUCCESS);
841 }
842 
843 /* ARGSUSED */
844 static int
845 nvme_prp_dma_constructor(void *buf, void *private, int flags)
846 {
847 	nvme_dma_t *dma = (nvme_dma_t *)buf;
848 	nvme_t *nvme = (nvme_t *)private;
849 
850 	dma->nd_dmah = NULL;
851 	dma->nd_acch = NULL;
852 
853 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
854 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
855 		return (-1);
856 	}
857 
858 	ASSERT(dma->nd_ncookie == 1);
859 
860 	dma->nd_cached = B_TRUE;
861 
862 	return (0);
863 }
864 
865 static int
866 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
867     uint_t flags, nvme_dma_t **dma)
868 {
869 	uint32_t len = nentry * qe_len;
870 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
871 
872 	len = roundup(len, nvme->n_pagesize);
873 
874 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
875 	    != DDI_SUCCESS) {
876 		dev_err(nvme->n_dip, CE_WARN,
877 		    "!failed to get DMA memory for queue");
878 		goto fail;
879 	}
880 
881 	if ((*dma)->nd_ncookie != 1) {
882 		dev_err(nvme->n_dip, CE_WARN,
883 		    "!got too many cookies for queue DMA");
884 		goto fail;
885 	}
886 
887 	return (DDI_SUCCESS);
888 
889 fail:
890 	if (*dma) {
891 		nvme_free_dma(*dma);
892 		*dma = NULL;
893 	}
894 
895 	return (DDI_FAILURE);
896 }
897 
898 static void
899 nvme_free_cq(nvme_cq_t *cq)
900 {
901 	mutex_destroy(&cq->ncq_mutex);
902 
903 	if (cq->ncq_cmd_taskq != NULL)
904 		taskq_destroy(cq->ncq_cmd_taskq);
905 
906 	if (cq->ncq_dma != NULL)
907 		nvme_free_dma(cq->ncq_dma);
908 
909 	kmem_free(cq, sizeof (*cq));
910 }
911 
912 static void
913 nvme_free_qpair(nvme_qpair_t *qp)
914 {
915 	int i;
916 
917 	mutex_destroy(&qp->nq_mutex);
918 	sema_destroy(&qp->nq_sema);
919 
920 	if (qp->nq_sqdma != NULL)
921 		nvme_free_dma(qp->nq_sqdma);
922 
923 	if (qp->nq_active_cmds > 0)
924 		for (i = 0; i != qp->nq_nentry; i++)
925 			if (qp->nq_cmd[i] != NULL)
926 				nvme_free_cmd(qp->nq_cmd[i]);
927 
928 	if (qp->nq_cmd != NULL)
929 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
930 
931 	kmem_free(qp, sizeof (nvme_qpair_t));
932 }
933 
934 /*
935  * Destroy the pre-allocated cq array, but only free individual completion
936  * queues from the given starting index.
937  */
938 static void
939 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
940 {
941 	uint_t i;
942 
943 	for (i = start; i < nvme->n_cq_count; i++)
944 		if (nvme->n_cq[i] != NULL)
945 			nvme_free_cq(nvme->n_cq[i]);
946 
947 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
948 }
949 
950 static int
951 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
952     uint_t nthr)
953 {
954 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
955 	char name[64];		/* large enough for the taskq name */
956 
957 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
958 	    DDI_INTR_PRI(nvme->n_intr_pri));
959 
960 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
961 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
962 		goto fail;
963 
964 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
965 	cq->ncq_nentry = nentry;
966 	cq->ncq_id = idx;
967 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
968 
969 	/*
970 	 * Each completion queue has its own command taskq.
971 	 */
972 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
973 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
974 
975 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
976 	    TASKQ_PREPOPULATE);
977 
978 	if (cq->ncq_cmd_taskq == NULL) {
979 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
980 		    "taskq for cq %u", idx);
981 		goto fail;
982 	}
983 
984 	*cqp = cq;
985 	return (DDI_SUCCESS);
986 
987 fail:
988 	nvme_free_cq(cq);
989 	*cqp = NULL;
990 
991 	return (DDI_FAILURE);
992 }
993 
994 /*
995  * Create the n_cq array big enough to hold "ncq" completion queues.
996  * If the array already exists it will be re-sized (but only larger).
997  * The admin queue is included in this array, which boosts the
998  * max number of entries to UINT16_MAX + 1.
999  */
1000 static int
1001 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
1002 {
1003 	nvme_cq_t **cq;
1004 	uint_t i, cq_count;
1005 
1006 	ASSERT3U(ncq, >, nvme->n_cq_count);
1007 
1008 	cq = nvme->n_cq;
1009 	cq_count = nvme->n_cq_count;
1010 
1011 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
1012 	nvme->n_cq_count = ncq;
1013 
1014 	for (i = 0; i < cq_count; i++)
1015 		nvme->n_cq[i] = cq[i];
1016 
1017 	for (; i < nvme->n_cq_count; i++)
1018 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
1019 		    DDI_SUCCESS)
1020 			goto fail;
1021 
1022 	if (cq != NULL)
1023 		kmem_free(cq, sizeof (*cq) * cq_count);
1024 
1025 	return (DDI_SUCCESS);
1026 
1027 fail:
1028 	nvme_destroy_cq_array(nvme, cq_count);
1029 	/*
1030 	 * Restore the original array
1031 	 */
1032 	nvme->n_cq_count = cq_count;
1033 	nvme->n_cq = cq;
1034 
1035 	return (DDI_FAILURE);
1036 }
1037 
1038 static int
1039 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
1040     uint_t idx)
1041 {
1042 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
1043 	uint_t cq_idx;
1044 
1045 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
1046 	    DDI_INTR_PRI(nvme->n_intr_pri));
1047 
1048 	/*
1049 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
1050 	 * initialize the semaphore accordingly.
1051 	 */
1052 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
1053 
1054 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
1055 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
1056 		goto fail;
1057 
1058 	/*
1059 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
1060 	 */
1061 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
1062 	qp->nq_cq = nvme->n_cq[cq_idx];
1063 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1064 	qp->nq_nentry = nentry;
1065 
1066 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1067 
1068 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1069 	qp->nq_next_cmd = 0;
1070 
1071 	*nqp = qp;
1072 	return (DDI_SUCCESS);
1073 
1074 fail:
1075 	nvme_free_qpair(qp);
1076 	*nqp = NULL;
1077 
1078 	return (DDI_FAILURE);
1079 }
1080 
1081 static nvme_cmd_t *
1082 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1083 {
1084 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1085 
1086 	if (cmd == NULL)
1087 		return (cmd);
1088 
1089 	bzero(cmd, sizeof (nvme_cmd_t));
1090 
1091 	cmd->nc_nvme = nvme;
1092 
1093 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1094 	    DDI_INTR_PRI(nvme->n_intr_pri));
1095 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1096 
1097 	return (cmd);
1098 }
1099 
1100 static void
1101 nvme_free_cmd(nvme_cmd_t *cmd)
1102 {
1103 	/* Don't free commands on the lost commands list. */
1104 	if (list_link_active(&cmd->nc_list))
1105 		return;
1106 
1107 	if (cmd->nc_dma) {
1108 		nvme_free_dma(cmd->nc_dma);
1109 		cmd->nc_dma = NULL;
1110 	}
1111 
1112 	if (cmd->nc_prp) {
1113 		kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp);
1114 		cmd->nc_prp = NULL;
1115 	}
1116 
1117 	cv_destroy(&cmd->nc_cv);
1118 	mutex_destroy(&cmd->nc_mutex);
1119 
1120 	kmem_cache_free(nvme_cmd_cache, cmd);
1121 }
1122 
1123 static void
1124 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1125 {
1126 	sema_p(&qp->nq_sema);
1127 	nvme_submit_cmd_common(qp, cmd);
1128 }
1129 
1130 static int
1131 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1132 {
1133 	if (cmd->nc_nvme->n_dead) {
1134 		return (EIO);
1135 	}
1136 
1137 	if (sema_tryp(&qp->nq_sema) == 0)
1138 		return (EAGAIN);
1139 
1140 	nvme_submit_cmd_common(qp, cmd);
1141 	return (0);
1142 }
1143 
1144 static void
1145 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1146 {
1147 	nvme_reg_sqtdbl_t tail = { 0 };
1148 
1149 	mutex_enter(&qp->nq_mutex);
1150 	cmd->nc_completed = B_FALSE;
1151 
1152 	/*
1153 	 * Now that we hold the queue pair lock, we must check whether or not
1154 	 * the controller has been listed as dead (e.g. was removed due to
1155 	 * hotplug). This is necessary as otherwise we could race with
1156 	 * nvme_remove_callback(). Because this has not been enqueued, we don't
1157 	 * call nvme_unqueue_cmd(), which is why we must manually decrement the
1158 	 * semaphore.
1159 	 */
1160 	if (cmd->nc_nvme->n_dead) {
1161 		taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback,
1162 		    cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1163 		sema_v(&qp->nq_sema);
1164 		mutex_exit(&qp->nq_mutex);
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1170 	 * slot. If the slot is already occupied advance to the next slot and
1171 	 * try again. This can happen for long running commands like async event
1172 	 * requests.
1173 	 */
1174 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1175 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1176 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1177 
1178 	qp->nq_active_cmds++;
1179 
1180 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1181 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1182 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1183 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1184 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1185 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1186 
1187 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1188 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1189 
1190 	mutex_exit(&qp->nq_mutex);
1191 }
1192 
1193 static nvme_cmd_t *
1194 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1195 {
1196 	nvme_cmd_t *cmd;
1197 
1198 	ASSERT(mutex_owned(&qp->nq_mutex));
1199 	ASSERT3S(cid, <, qp->nq_nentry);
1200 
1201 	cmd = qp->nq_cmd[cid];
1202 	qp->nq_cmd[cid] = NULL;
1203 	ASSERT3U(qp->nq_active_cmds, >, 0);
1204 	qp->nq_active_cmds--;
1205 	sema_v(&qp->nq_sema);
1206 
1207 	ASSERT3P(cmd, !=, NULL);
1208 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1209 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1210 
1211 	return (cmd);
1212 }
1213 
1214 /*
1215  * Get the command tied to the next completed cqe and bump along completion
1216  * queue head counter.
1217  */
1218 static nvme_cmd_t *
1219 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1220 {
1221 	nvme_qpair_t *qp;
1222 	nvme_cqe_t *cqe;
1223 	nvme_cmd_t *cmd;
1224 
1225 	ASSERT(mutex_owned(&cq->ncq_mutex));
1226 
1227 	cqe = &cq->ncq_cq[cq->ncq_head];
1228 
1229 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1230 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1231 		return (NULL);
1232 
1233 	qp = nvme->n_ioq[cqe->cqe_sqid];
1234 
1235 	mutex_enter(&qp->nq_mutex);
1236 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1237 	mutex_exit(&qp->nq_mutex);
1238 
1239 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1240 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1241 
1242 	qp->nq_sqhead = cqe->cqe_sqhd;
1243 
1244 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1245 
1246 	/* Toggle phase on wrap-around. */
1247 	if (cq->ncq_head == 0)
1248 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1249 
1250 	return (cmd);
1251 }
1252 
1253 /*
1254  * Process all completed commands on the io completion queue.
1255  */
1256 static uint_t
1257 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1258 {
1259 	nvme_reg_cqhdbl_t head = { 0 };
1260 	nvme_cmd_t *cmd;
1261 	uint_t completed = 0;
1262 
1263 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1264 	    DDI_SUCCESS)
1265 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1266 		    __func__);
1267 
1268 	mutex_enter(&cq->ncq_mutex);
1269 
1270 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1271 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1272 		    TQ_NOSLEEP, &cmd->nc_tqent);
1273 
1274 		completed++;
1275 	}
1276 
1277 	if (completed > 0) {
1278 		/*
1279 		 * Update the completion queue head doorbell.
1280 		 */
1281 		head.b.cqhdbl_cqh = cq->ncq_head;
1282 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1283 	}
1284 
1285 	mutex_exit(&cq->ncq_mutex);
1286 
1287 	return (completed);
1288 }
1289 
1290 static nvme_cmd_t *
1291 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1292 {
1293 	nvme_cq_t *cq = qp->nq_cq;
1294 	nvme_reg_cqhdbl_t head = { 0 };
1295 	nvme_cmd_t *cmd;
1296 
1297 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1298 	    DDI_SUCCESS)
1299 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1300 		    __func__);
1301 
1302 	mutex_enter(&cq->ncq_mutex);
1303 
1304 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1305 		head.b.cqhdbl_cqh = cq->ncq_head;
1306 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1307 	}
1308 
1309 	mutex_exit(&cq->ncq_mutex);
1310 
1311 	return (cmd);
1312 }
1313 
1314 static int
1315 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1316 {
1317 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1318 
1319 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1320 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1321 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1322 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1323 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1324 
1325 	if (cmd->nc_xfer != NULL)
1326 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1327 
1328 	if (cmd->nc_nvme->n_strict_version) {
1329 		cmd->nc_nvme->n_dead = B_TRUE;
1330 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1331 	}
1332 
1333 	return (EIO);
1334 }
1335 
1336 static int
1337 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1338 {
1339 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1340 
1341 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1342 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1343 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1344 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1345 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1346 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1347 		cmd->nc_nvme->n_dead = B_TRUE;
1348 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1349 	}
1350 
1351 	return (EIO);
1352 }
1353 
1354 static int
1355 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1356 {
1357 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1358 
1359 	switch (cqe->cqe_sf.sf_sc) {
1360 	case NVME_CQE_SC_INT_NVM_WRITE:
1361 		/* write fail */
1362 		/* TODO: post ereport */
1363 		if (cmd->nc_xfer != NULL)
1364 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1365 		return (EIO);
1366 
1367 	case NVME_CQE_SC_INT_NVM_READ:
1368 		/* read fail */
1369 		/* TODO: post ereport */
1370 		if (cmd->nc_xfer != NULL)
1371 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1372 		return (EIO);
1373 
1374 	default:
1375 		return (nvme_check_unknown_cmd_status(cmd));
1376 	}
1377 }
1378 
1379 static int
1380 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1381 {
1382 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1383 
1384 	switch (cqe->cqe_sf.sf_sc) {
1385 	case NVME_CQE_SC_GEN_SUCCESS:
1386 		return (0);
1387 
1388 	/*
1389 	 * Errors indicating a bug in the driver should cause a panic.
1390 	 */
1391 	case NVME_CQE_SC_GEN_INV_OPC:
1392 		/* Invalid Command Opcode */
1393 		if (!cmd->nc_dontpanic)
1394 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1395 			    "programming error: invalid opcode in cmd %p",
1396 			    (void *)cmd);
1397 		return (EINVAL);
1398 
1399 	case NVME_CQE_SC_GEN_INV_FLD:
1400 		/* Invalid Field in Command */
1401 		if (!cmd->nc_dontpanic)
1402 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1403 			    "programming error: invalid field in cmd %p",
1404 			    (void *)cmd);
1405 		return (EIO);
1406 
1407 	case NVME_CQE_SC_GEN_ID_CNFL:
1408 		/* Command ID Conflict */
1409 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1410 		    "cmd ID conflict in cmd %p", (void *)cmd);
1411 		return (0);
1412 
1413 	case NVME_CQE_SC_GEN_INV_NS:
1414 		/* Invalid Namespace or Format */
1415 		if (!cmd->nc_dontpanic)
1416 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1417 			    "programming error: invalid NS/format in cmd %p",
1418 			    (void *)cmd);
1419 		return (EINVAL);
1420 
1421 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1422 		/* LBA Out Of Range */
1423 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1424 		    "LBA out of range in cmd %p", (void *)cmd);
1425 		return (0);
1426 
1427 	/*
1428 	 * Non-fatal errors, handle gracefully.
1429 	 */
1430 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1431 		/* Data Transfer Error (DMA) */
1432 		/* TODO: post ereport */
1433 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1434 		if (cmd->nc_xfer != NULL)
1435 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1436 		return (EIO);
1437 
1438 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1439 		/*
1440 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1441 		 * detailed error information is returned as async event,
1442 		 * so we pretty much ignore the error here and handle it
1443 		 * in the async event handler.
1444 		 */
1445 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1446 		if (cmd->nc_xfer != NULL)
1447 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1448 		return (EIO);
1449 
1450 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1451 		/*
1452 		 * Command Abort Requested. This normally happens only when a
1453 		 * command times out.
1454 		 */
1455 		/* TODO: post ereport or change blkdev to handle this? */
1456 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1457 		return (ECANCELED);
1458 
1459 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1460 		/* Command Aborted due to Power Loss Notification */
1461 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1462 		cmd->nc_nvme->n_dead = B_TRUE;
1463 		return (EIO);
1464 
1465 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1466 		/* Command Aborted due to SQ Deletion */
1467 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1468 		return (EIO);
1469 
1470 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1471 		/* Capacity Exceeded */
1472 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1473 		if (cmd->nc_xfer != NULL)
1474 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1475 		return (EIO);
1476 
1477 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1478 		/* Namespace Not Ready */
1479 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1480 		if (cmd->nc_xfer != NULL)
1481 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1482 		return (EIO);
1483 
1484 	default:
1485 		return (nvme_check_unknown_cmd_status(cmd));
1486 	}
1487 }
1488 
1489 static int
1490 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1491 {
1492 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1493 
1494 	switch (cqe->cqe_sf.sf_sc) {
1495 	case NVME_CQE_SC_SPC_INV_CQ:
1496 		/* Completion Queue Invalid */
1497 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1498 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1499 		return (EINVAL);
1500 
1501 	case NVME_CQE_SC_SPC_INV_QID:
1502 		/* Invalid Queue Identifier */
1503 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1504 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1505 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1506 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1507 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1508 		return (EINVAL);
1509 
1510 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1511 		/* Max Queue Size Exceeded */
1512 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1513 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1514 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1515 		return (EINVAL);
1516 
1517 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1518 		/* Abort Command Limit Exceeded */
1519 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1520 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1521 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1522 		return (0);
1523 
1524 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1525 		/* Async Event Request Limit Exceeded */
1526 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1527 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1528 		    "async event request limit exceeded in cmd %p",
1529 		    (void *)cmd);
1530 		return (0);
1531 
1532 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1533 		/* Invalid Interrupt Vector */
1534 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1535 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1536 		return (EINVAL);
1537 
1538 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1539 		/* Invalid Log Page */
1540 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1541 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1542 		return (EINVAL);
1543 
1544 	case NVME_CQE_SC_SPC_INV_FORMAT:
1545 		/* Invalid Format */
1546 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1547 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1548 		if (cmd->nc_xfer != NULL)
1549 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1550 		return (EINVAL);
1551 
1552 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1553 		/* Invalid Queue Deletion */
1554 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1555 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1556 		return (EINVAL);
1557 
1558 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1559 		/* Conflicting Attributes */
1560 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1561 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1562 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1563 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1564 		if (cmd->nc_xfer != NULL)
1565 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1566 		return (EINVAL);
1567 
1568 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1569 		/* Invalid Protection Information */
1570 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1571 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1572 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1573 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1574 		if (cmd->nc_xfer != NULL)
1575 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1576 		return (EINVAL);
1577 
1578 	case NVME_CQE_SC_SPC_NVM_READONLY:
1579 		/* Write to Read Only Range */
1580 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1581 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1582 		if (cmd->nc_xfer != NULL)
1583 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1584 		return (EROFS);
1585 
1586 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1587 		/* Invalid Firmware Slot */
1588 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1589 		return (EINVAL);
1590 
1591 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1592 		/* Invalid Firmware Image */
1593 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1594 		return (EINVAL);
1595 
1596 	case NVME_CQE_SC_SPC_FW_RESET:
1597 		/* Conventional Reset Required */
1598 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1599 		return (0);
1600 
1601 	case NVME_CQE_SC_SPC_FW_NSSR:
1602 		/* NVMe Subsystem Reset Required */
1603 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1604 		return (0);
1605 
1606 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1607 		/* Activation Requires Reset */
1608 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1609 		return (0);
1610 
1611 	case NVME_CQE_SC_SPC_FW_MTFA:
1612 		/* Activation Requires Maximum Time Violation */
1613 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1614 		return (EAGAIN);
1615 
1616 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1617 		/* Activation Prohibited */
1618 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1619 		return (EINVAL);
1620 
1621 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1622 		/* Overlapping Firmware Ranges */
1623 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1624 		return (EINVAL);
1625 
1626 	default:
1627 		return (nvme_check_unknown_cmd_status(cmd));
1628 	}
1629 }
1630 
1631 static inline int
1632 nvme_check_cmd_status(nvme_cmd_t *cmd)
1633 {
1634 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1635 
1636 	/*
1637 	 * Take a shortcut if the controller is dead, or if
1638 	 * command status indicates no error.
1639 	 */
1640 	if (cmd->nc_nvme->n_dead)
1641 		return (EIO);
1642 
1643 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1644 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1645 		return (0);
1646 
1647 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1648 		return (nvme_check_generic_cmd_status(cmd));
1649 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1650 		return (nvme_check_specific_cmd_status(cmd));
1651 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1652 		return (nvme_check_integrity_cmd_status(cmd));
1653 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1654 		return (nvme_check_vendor_cmd_status(cmd));
1655 
1656 	return (nvme_check_unknown_cmd_status(cmd));
1657 }
1658 
1659 static int
1660 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1661 {
1662 	nvme_t *nvme = abort_cmd->nc_nvme;
1663 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1664 	nvme_abort_cmd_t ac = { 0 };
1665 	int ret = 0;
1666 
1667 	sema_p(&nvme->n_abort_sema);
1668 
1669 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1670 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1671 
1672 	cmd->nc_sqid = 0;
1673 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1674 	cmd->nc_callback = nvme_wakeup_cmd;
1675 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1676 
1677 	/*
1678 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1679 	 * the aborted command has completed (aborted or otherwise), but since
1680 	 * we still hold the aborted command's mutex its callback hasn't been
1681 	 * processed yet.
1682 	 */
1683 	nvme_admin_cmd(cmd, sec);
1684 	sema_v(&nvme->n_abort_sema);
1685 
1686 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1687 		dev_err(nvme->n_dip, CE_WARN,
1688 		    "!ABORT failed with sct = %x, sc = %x",
1689 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1690 		atomic_inc_32(&nvme->n_abort_failed);
1691 	} else {
1692 		dev_err(nvme->n_dip, CE_WARN,
1693 		    "!ABORT of command %d/%d %ssuccessful",
1694 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1695 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1696 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1697 			atomic_inc_32(&nvme->n_cmd_aborted);
1698 	}
1699 
1700 	nvme_free_cmd(cmd);
1701 	return (ret);
1702 }
1703 
1704 /*
1705  * nvme_wait_cmd -- wait for command completion or timeout
1706  *
1707  * In case of a serious error or a timeout of the abort command the hardware
1708  * will be declared dead and FMA will be notified.
1709  */
1710 static void
1711 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1712 {
1713 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1714 	nvme_t *nvme = cmd->nc_nvme;
1715 	nvme_reg_csts_t csts;
1716 	nvme_qpair_t *qp;
1717 
1718 	ASSERT(mutex_owned(&cmd->nc_mutex));
1719 
1720 	while (!cmd->nc_completed) {
1721 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1722 			break;
1723 	}
1724 
1725 	if (cmd->nc_completed)
1726 		return;
1727 
1728 	/*
1729 	 * The command timed out.
1730 	 *
1731 	 * Check controller for fatal status, any errors associated with the
1732 	 * register or DMA handle, or for a double timeout (abort command timed
1733 	 * out). If necessary log a warning and call FMA.
1734 	 */
1735 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1736 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1737 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1738 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1739 	atomic_inc_32(&nvme->n_cmd_timeout);
1740 
1741 	if (csts.b.csts_cfs ||
1742 	    nvme_check_regs_hdl(nvme) ||
1743 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1744 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1745 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1746 		nvme->n_dead = B_TRUE;
1747 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1748 		/*
1749 		 * If the abort succeeded the command should complete
1750 		 * immediately with an appropriate status.
1751 		 */
1752 		while (!cmd->nc_completed)
1753 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1754 
1755 		return;
1756 	}
1757 
1758 	qp = nvme->n_ioq[cmd->nc_sqid];
1759 
1760 	mutex_enter(&qp->nq_mutex);
1761 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1762 	mutex_exit(&qp->nq_mutex);
1763 
1764 	/*
1765 	 * As we don't know what the presumed dead hardware might still do with
1766 	 * the DMA memory, we'll put the command on the lost commands list if it
1767 	 * has any DMA memory.
1768 	 */
1769 	if (cmd->nc_dma != NULL) {
1770 		mutex_enter(&nvme_lc_mutex);
1771 		list_insert_head(&nvme_lost_cmds, cmd);
1772 		mutex_exit(&nvme_lc_mutex);
1773 	}
1774 }
1775 
1776 static void
1777 nvme_wakeup_cmd(void *arg)
1778 {
1779 	nvme_cmd_t *cmd = arg;
1780 
1781 	mutex_enter(&cmd->nc_mutex);
1782 	cmd->nc_completed = B_TRUE;
1783 	cv_signal(&cmd->nc_cv);
1784 	mutex_exit(&cmd->nc_mutex);
1785 }
1786 
1787 static void
1788 nvme_async_event_task(void *arg)
1789 {
1790 	nvme_cmd_t *cmd = arg;
1791 	nvme_t *nvme = cmd->nc_nvme;
1792 	nvme_error_log_entry_t *error_log = NULL;
1793 	nvme_health_log_t *health_log = NULL;
1794 	nvme_nschange_list_t *nslist = NULL;
1795 	size_t logsize = 0;
1796 	nvme_async_event_t event;
1797 
1798 	/*
1799 	 * Check for errors associated with the async request itself. The only
1800 	 * command-specific error is "async event limit exceeded", which
1801 	 * indicates a programming error in the driver and causes a panic in
1802 	 * nvme_check_cmd_status().
1803 	 *
1804 	 * Other possible errors are various scenarios where the async request
1805 	 * was aborted, or internal errors in the device. Internal errors are
1806 	 * reported to FMA, the command aborts need no special handling here.
1807 	 *
1808 	 * And finally, at least qemu nvme does not support async events,
1809 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1810 	 * will avoid posting async events.
1811 	 */
1812 
1813 	if (nvme_check_cmd_status(cmd) != 0) {
1814 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1815 		    "!async event request returned failure, sct = %x, "
1816 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1817 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1818 		    cmd->nc_cqe.cqe_sf.sf_m);
1819 
1820 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1821 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1822 			cmd->nc_nvme->n_dead = B_TRUE;
1823 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1824 			    DDI_SERVICE_LOST);
1825 		}
1826 
1827 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1828 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1829 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1830 			nvme->n_async_event_supported = B_FALSE;
1831 		}
1832 
1833 		nvme_free_cmd(cmd);
1834 		return;
1835 	}
1836 
1837 	event.r = cmd->nc_cqe.cqe_dw0;
1838 
1839 	/* Clear CQE and re-submit the async request. */
1840 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1841 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1842 
1843 	switch (event.b.ae_type) {
1844 	case NVME_ASYNC_TYPE_ERROR:
1845 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1846 			(void) nvme_get_logpage(nvme, B_FALSE,
1847 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1848 		} else {
1849 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1850 			    "async event reply: %d", event.b.ae_logpage);
1851 			atomic_inc_32(&nvme->n_wrong_logpage);
1852 		}
1853 
1854 		switch (event.b.ae_info) {
1855 		case NVME_ASYNC_ERROR_INV_SQ:
1856 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1857 			    "invalid submission queue");
1858 			return;
1859 
1860 		case NVME_ASYNC_ERROR_INV_DBL:
1861 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1862 			    "invalid doorbell write value");
1863 			return;
1864 
1865 		case NVME_ASYNC_ERROR_DIAGFAIL:
1866 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1867 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1868 			nvme->n_dead = B_TRUE;
1869 			atomic_inc_32(&nvme->n_diagfail_event);
1870 			break;
1871 
1872 		case NVME_ASYNC_ERROR_PERSISTENT:
1873 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1874 			    "device error");
1875 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1876 			nvme->n_dead = B_TRUE;
1877 			atomic_inc_32(&nvme->n_persistent_event);
1878 			break;
1879 
1880 		case NVME_ASYNC_ERROR_TRANSIENT:
1881 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1882 			    "device error");
1883 			/* TODO: send ereport */
1884 			atomic_inc_32(&nvme->n_transient_event);
1885 			break;
1886 
1887 		case NVME_ASYNC_ERROR_FW_LOAD:
1888 			dev_err(nvme->n_dip, CE_WARN,
1889 			    "!firmware image load error");
1890 			atomic_inc_32(&nvme->n_fw_load_event);
1891 			break;
1892 		}
1893 		break;
1894 
1895 	case NVME_ASYNC_TYPE_HEALTH:
1896 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1897 			(void) nvme_get_logpage(nvme, B_FALSE,
1898 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1899 			    -1);
1900 		} else {
1901 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1902 			    "async event reply: %d", event.b.ae_logpage);
1903 			atomic_inc_32(&nvme->n_wrong_logpage);
1904 		}
1905 
1906 		switch (event.b.ae_info) {
1907 		case NVME_ASYNC_HEALTH_RELIABILITY:
1908 			dev_err(nvme->n_dip, CE_WARN,
1909 			    "!device reliability compromised");
1910 			/* TODO: send ereport */
1911 			atomic_inc_32(&nvme->n_reliability_event);
1912 			break;
1913 
1914 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1915 			dev_err(nvme->n_dip, CE_WARN,
1916 			    "!temperature above threshold");
1917 			/* TODO: send ereport */
1918 			atomic_inc_32(&nvme->n_temperature_event);
1919 			break;
1920 
1921 		case NVME_ASYNC_HEALTH_SPARE:
1922 			dev_err(nvme->n_dip, CE_WARN,
1923 			    "!spare space below threshold");
1924 			/* TODO: send ereport */
1925 			atomic_inc_32(&nvme->n_spare_event);
1926 			break;
1927 		}
1928 		break;
1929 
1930 	case NVME_ASYNC_TYPE_NOTICE:
1931 		switch (event.b.ae_info) {
1932 		case NVME_ASYNC_NOTICE_NS_CHANGE:
1933 			dev_err(nvme->n_dip, CE_NOTE,
1934 			    "namespace attribute change event, "
1935 			    "logpage = %x", event.b.ae_logpage);
1936 			atomic_inc_32(&nvme->n_notice_event);
1937 
1938 			if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE)
1939 				break;
1940 
1941 			if (nvme_get_logpage(nvme, B_FALSE, (void **)&nslist,
1942 			    &logsize, event.b.ae_logpage, -1) != 0) {
1943 				break;
1944 			}
1945 
1946 			if (nslist->nscl_ns[0] == UINT32_MAX) {
1947 				dev_err(nvme->n_dip, CE_CONT,
1948 				    "more than %u namespaces have changed.\n",
1949 				    NVME_NSCHANGE_LIST_SIZE);
1950 				break;
1951 			}
1952 
1953 			for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) {
1954 				uint32_t nsid = nslist->nscl_ns[i];
1955 
1956 				if (nsid == 0)	/* end of list */
1957 					break;
1958 
1959 				dev_err(nvme->n_dip, CE_CONT,
1960 				    "namespace %u (%s) has changed.\n",
1961 				    nsid, nvme->n_ns[nsid - 1].ns_name);
1962 				/* TODO: handle namespace resize. */
1963 			}
1964 
1965 			break;
1966 
1967 		case NVME_ASYNC_NOTICE_FW_ACTIVATE:
1968 			dev_err(nvme->n_dip, CE_NOTE,
1969 			    "firmware activation starting, "
1970 			    "logpage = %x", event.b.ae_logpage);
1971 			atomic_inc_32(&nvme->n_notice_event);
1972 			break;
1973 
1974 		case NVME_ASYNC_NOTICE_TELEMETRY:
1975 			dev_err(nvme->n_dip, CE_NOTE,
1976 			    "telemetry log changed, "
1977 			    "logpage = %x", event.b.ae_logpage);
1978 			atomic_inc_32(&nvme->n_notice_event);
1979 			break;
1980 
1981 		case NVME_ASYNC_NOTICE_NS_ASYMM:
1982 			dev_err(nvme->n_dip, CE_NOTE,
1983 			    "asymmetric namespace access change, "
1984 			    "logpage = %x", event.b.ae_logpage);
1985 			atomic_inc_32(&nvme->n_notice_event);
1986 			break;
1987 
1988 		case NVME_ASYNC_NOTICE_LATENCYLOG:
1989 			dev_err(nvme->n_dip, CE_NOTE,
1990 			    "predictable latency event aggregate log change, "
1991 			    "logpage = %x", event.b.ae_logpage);
1992 			atomic_inc_32(&nvme->n_notice_event);
1993 			break;
1994 
1995 		case NVME_ASYNC_NOTICE_LBASTATUS:
1996 			dev_err(nvme->n_dip, CE_NOTE,
1997 			    "LBA status information alert, "
1998 			    "logpage = %x", event.b.ae_logpage);
1999 			atomic_inc_32(&nvme->n_notice_event);
2000 			break;
2001 
2002 		case NVME_ASYNC_NOTICE_ENDURANCELOG:
2003 			dev_err(nvme->n_dip, CE_NOTE,
2004 			    "endurance group event aggregate log page change, "
2005 			    "logpage = %x", event.b.ae_logpage);
2006 			atomic_inc_32(&nvme->n_notice_event);
2007 			break;
2008 
2009 		default:
2010 			dev_err(nvme->n_dip, CE_WARN,
2011 			    "!unknown notice async event received, "
2012 			    "info = %x, logpage = %x", event.b.ae_info,
2013 			    event.b.ae_logpage);
2014 			atomic_inc_32(&nvme->n_unknown_event);
2015 			break;
2016 		}
2017 		break;
2018 
2019 	case NVME_ASYNC_TYPE_VENDOR:
2020 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
2021 		    "received, info = %x, logpage = %x", event.b.ae_info,
2022 		    event.b.ae_logpage);
2023 		atomic_inc_32(&nvme->n_vendor_event);
2024 		break;
2025 
2026 	default:
2027 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
2028 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
2029 		    event.b.ae_info, event.b.ae_logpage);
2030 		atomic_inc_32(&nvme->n_unknown_event);
2031 		break;
2032 	}
2033 
2034 	if (error_log != NULL)
2035 		kmem_free(error_log, logsize);
2036 
2037 	if (health_log != NULL)
2038 		kmem_free(health_log, logsize);
2039 
2040 	if (nslist != NULL)
2041 		kmem_free(nslist, logsize);
2042 }
2043 
2044 static void
2045 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
2046 {
2047 	mutex_enter(&cmd->nc_mutex);
2048 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
2049 	nvme_wait_cmd(cmd, sec);
2050 	mutex_exit(&cmd->nc_mutex);
2051 }
2052 
2053 static void
2054 nvme_async_event(nvme_t *nvme)
2055 {
2056 	nvme_cmd_t *cmd;
2057 
2058 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2059 	cmd->nc_sqid = 0;
2060 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
2061 	cmd->nc_callback = nvme_async_event_task;
2062 	cmd->nc_dontpanic = B_TRUE;
2063 
2064 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
2065 }
2066 
2067 static int
2068 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
2069     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
2070 {
2071 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2072 	nvme_format_nvm_t format_nvm = { 0 };
2073 	int ret;
2074 
2075 	format_nvm.b.fm_lbaf = lbaf & 0xf;
2076 	format_nvm.b.fm_ms = ms ? 1 : 0;
2077 	format_nvm.b.fm_pi = pi & 0x7;
2078 	format_nvm.b.fm_pil = pil ? 1 : 0;
2079 	format_nvm.b.fm_ses = ses & 0x7;
2080 
2081 	cmd->nc_sqid = 0;
2082 	cmd->nc_callback = nvme_wakeup_cmd;
2083 	cmd->nc_sqe.sqe_nsid = nsid;
2084 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
2085 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
2086 
2087 	/*
2088 	 * Some devices like Samsung SM951 don't allow formatting of all
2089 	 * namespaces in one command. Handle that gracefully.
2090 	 */
2091 	if (nsid == (uint32_t)-1)
2092 		cmd->nc_dontpanic = B_TRUE;
2093 	/*
2094 	 * If this format request was initiated by the user, then don't allow a
2095 	 * programmer error to panic the system.
2096 	 */
2097 	if (user)
2098 		cmd->nc_dontpanic = B_TRUE;
2099 
2100 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
2101 
2102 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2103 		dev_err(nvme->n_dip, CE_WARN,
2104 		    "!FORMAT failed with sct = %x, sc = %x",
2105 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2106 	}
2107 
2108 	nvme_free_cmd(cmd);
2109 	return (ret);
2110 }
2111 
2112 /*
2113  * The `bufsize` parameter is usually an output parameter, set by this routine
2114  * when filling in the supported types of logpages from the device. However, for
2115  * vendor-specific pages, it is an input parameter, and must be set
2116  * appropriately by callers.
2117  */
2118 static int
2119 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
2120     uint8_t logpage, ...)
2121 {
2122 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2123 	nvme_getlogpage_t getlogpage = { 0 };
2124 	va_list ap;
2125 	int ret;
2126 
2127 	va_start(ap, logpage);
2128 
2129 	cmd->nc_sqid = 0;
2130 	cmd->nc_callback = nvme_wakeup_cmd;
2131 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
2132 
2133 	if (user)
2134 		cmd->nc_dontpanic = B_TRUE;
2135 
2136 	getlogpage.b.lp_lid = logpage;
2137 
2138 	switch (logpage) {
2139 	case NVME_LOGPAGE_ERROR:
2140 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2141 		*bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE,
2142 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
2143 		break;
2144 
2145 	case NVME_LOGPAGE_HEALTH:
2146 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2147 		*bufsize = sizeof (nvme_health_log_t);
2148 		break;
2149 
2150 	case NVME_LOGPAGE_FWSLOT:
2151 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2152 		*bufsize = sizeof (nvme_fwslot_log_t);
2153 		break;
2154 
2155 	case NVME_LOGPAGE_NSCHANGE:
2156 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2157 		*bufsize = sizeof (nvme_nschange_list_t);
2158 		break;
2159 
2160 	default:
2161 		/*
2162 		 * This intentionally only checks against the minimum valid
2163 		 * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid
2164 		 * page ID, so this one-sided check avoids a compiler error
2165 		 * about a check that's always true.
2166 		 */
2167 		if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) {
2168 			dev_err(nvme->n_dip, CE_WARN,
2169 			    "!unknown log page requested: %d", logpage);
2170 			atomic_inc_32(&nvme->n_unknown_logpage);
2171 			ret = EINVAL;
2172 			goto fail;
2173 		}
2174 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2175 	}
2176 
2177 	va_end(ap);
2178 
2179 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
2180 
2181 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
2182 
2183 	if (nvme_zalloc_dma(nvme, *bufsize,
2184 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2185 		dev_err(nvme->n_dip, CE_WARN,
2186 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
2187 		ret = ENOMEM;
2188 		goto fail;
2189 	}
2190 
2191 	if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
2192 		goto fail;
2193 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2194 
2195 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2196 		dev_err(nvme->n_dip, CE_WARN,
2197 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2198 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2199 		goto fail;
2200 	}
2201 
2202 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2203 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2204 
2205 fail:
2206 	nvme_free_cmd(cmd);
2207 
2208 	return (ret);
2209 }
2210 
2211 static int
2212 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2213 {
2214 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2215 	int ret;
2216 
2217 	if (buf == NULL)
2218 		return (EINVAL);
2219 
2220 	cmd->nc_sqid = 0;
2221 	cmd->nc_callback = nvme_wakeup_cmd;
2222 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2223 	cmd->nc_sqe.sqe_nsid = nsid;
2224 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2225 
2226 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2227 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2228 		dev_err(nvme->n_dip, CE_WARN,
2229 		    "!nvme_zalloc_dma failed for IDENTIFY");
2230 		ret = ENOMEM;
2231 		goto fail;
2232 	}
2233 
2234 	if (cmd->nc_dma->nd_ncookie > 2) {
2235 		dev_err(nvme->n_dip, CE_WARN,
2236 		    "!too many DMA cookies for IDENTIFY");
2237 		atomic_inc_32(&nvme->n_too_many_cookies);
2238 		ret = ENOMEM;
2239 		goto fail;
2240 	}
2241 
2242 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2243 	if (cmd->nc_dma->nd_ncookie > 1) {
2244 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2245 		    &cmd->nc_dma->nd_cookie);
2246 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2247 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2248 	}
2249 
2250 	if (user)
2251 		cmd->nc_dontpanic = B_TRUE;
2252 
2253 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2254 
2255 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2256 		dev_err(nvme->n_dip, CE_WARN,
2257 		    "!IDENTIFY failed with sct = %x, sc = %x",
2258 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2259 		goto fail;
2260 	}
2261 
2262 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2263 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2264 
2265 fail:
2266 	nvme_free_cmd(cmd);
2267 
2268 	return (ret);
2269 }
2270 
2271 static int
2272 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2273     uint32_t val, uint32_t *res)
2274 {
2275 	_NOTE(ARGUNUSED(nsid));
2276 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2277 	int ret = EINVAL;
2278 
2279 	ASSERT(res != NULL);
2280 
2281 	cmd->nc_sqid = 0;
2282 	cmd->nc_callback = nvme_wakeup_cmd;
2283 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2284 	cmd->nc_sqe.sqe_cdw10 = feature;
2285 	cmd->nc_sqe.sqe_cdw11 = val;
2286 
2287 	if (user)
2288 		cmd->nc_dontpanic = B_TRUE;
2289 
2290 	switch (feature) {
2291 	case NVME_FEAT_WRITE_CACHE:
2292 		if (!nvme->n_write_cache_present)
2293 			goto fail;
2294 		break;
2295 
2296 	case NVME_FEAT_NQUEUES:
2297 		break;
2298 
2299 	default:
2300 		goto fail;
2301 	}
2302 
2303 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2304 
2305 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2306 		dev_err(nvme->n_dip, CE_WARN,
2307 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2308 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2309 		    cmd->nc_cqe.cqe_sf.sf_sc);
2310 		goto fail;
2311 	}
2312 
2313 	*res = cmd->nc_cqe.cqe_dw0;
2314 
2315 fail:
2316 	nvme_free_cmd(cmd);
2317 	return (ret);
2318 }
2319 
2320 static int
2321 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2322     uint32_t *res, void **buf, size_t *bufsize)
2323 {
2324 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2325 	int ret = EINVAL;
2326 
2327 	ASSERT(res != NULL);
2328 
2329 	if (bufsize != NULL)
2330 		*bufsize = 0;
2331 
2332 	cmd->nc_sqid = 0;
2333 	cmd->nc_callback = nvme_wakeup_cmd;
2334 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2335 	cmd->nc_sqe.sqe_cdw10 = feature;
2336 	cmd->nc_sqe.sqe_cdw11 = *res;
2337 
2338 	/*
2339 	 * For some of the optional features there doesn't seem to be a method
2340 	 * of detecting whether it is supported other than using it.  This will
2341 	 * cause "Invalid Field in Command" error, which is normally considered
2342 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2343 	 * in nvme_check_generic_cmd_status().
2344 	 */
2345 	switch (feature) {
2346 	case NVME_FEAT_ARBITRATION:
2347 	case NVME_FEAT_POWER_MGMT:
2348 	case NVME_FEAT_TEMPERATURE:
2349 	case NVME_FEAT_ERROR:
2350 	case NVME_FEAT_NQUEUES:
2351 	case NVME_FEAT_INTR_COAL:
2352 	case NVME_FEAT_INTR_VECT:
2353 	case NVME_FEAT_WRITE_ATOM:
2354 	case NVME_FEAT_ASYNC_EVENT:
2355 		break;
2356 
2357 	case NVME_FEAT_WRITE_CACHE:
2358 		if (!nvme->n_write_cache_present)
2359 			goto fail;
2360 		break;
2361 
2362 	case NVME_FEAT_LBA_RANGE:
2363 		if (!nvme->n_lba_range_supported)
2364 			goto fail;
2365 
2366 		cmd->nc_dontpanic = B_TRUE;
2367 		cmd->nc_sqe.sqe_nsid = nsid;
2368 		ASSERT(bufsize != NULL);
2369 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2370 		break;
2371 
2372 	case NVME_FEAT_AUTO_PST:
2373 		if (!nvme->n_auto_pst_supported)
2374 			goto fail;
2375 
2376 		ASSERT(bufsize != NULL);
2377 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2378 		break;
2379 
2380 	case NVME_FEAT_PROGRESS:
2381 		if (!nvme->n_progress_supported)
2382 			goto fail;
2383 
2384 		cmd->nc_dontpanic = B_TRUE;
2385 		break;
2386 
2387 	default:
2388 		goto fail;
2389 	}
2390 
2391 	if (user)
2392 		cmd->nc_dontpanic = B_TRUE;
2393 
2394 	if (bufsize != NULL && *bufsize != 0) {
2395 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2396 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2397 			dev_err(nvme->n_dip, CE_WARN,
2398 			    "!nvme_zalloc_dma failed for GET FEATURES");
2399 			ret = ENOMEM;
2400 			goto fail;
2401 		}
2402 
2403 		if (cmd->nc_dma->nd_ncookie > 2) {
2404 			dev_err(nvme->n_dip, CE_WARN,
2405 			    "!too many DMA cookies for GET FEATURES");
2406 			atomic_inc_32(&nvme->n_too_many_cookies);
2407 			ret = ENOMEM;
2408 			goto fail;
2409 		}
2410 
2411 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2412 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2413 		if (cmd->nc_dma->nd_ncookie > 1) {
2414 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2415 			    &cmd->nc_dma->nd_cookie);
2416 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2417 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2418 		}
2419 	}
2420 
2421 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2422 
2423 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2424 		boolean_t known = B_TRUE;
2425 
2426 		/* Check if this is unsupported optional feature */
2427 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2428 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2429 			switch (feature) {
2430 			case NVME_FEAT_LBA_RANGE:
2431 				nvme->n_lba_range_supported = B_FALSE;
2432 				break;
2433 			case NVME_FEAT_PROGRESS:
2434 				nvme->n_progress_supported = B_FALSE;
2435 				break;
2436 			default:
2437 				known = B_FALSE;
2438 				break;
2439 			}
2440 		} else {
2441 			known = B_FALSE;
2442 		}
2443 
2444 		/* Report the error otherwise */
2445 		if (!known) {
2446 			dev_err(nvme->n_dip, CE_WARN,
2447 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2448 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2449 			    cmd->nc_cqe.cqe_sf.sf_sc);
2450 		}
2451 
2452 		goto fail;
2453 	}
2454 
2455 	if (bufsize != NULL && *bufsize != 0) {
2456 		ASSERT(buf != NULL);
2457 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2458 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2459 	}
2460 
2461 	*res = cmd->nc_cqe.cqe_dw0;
2462 
2463 fail:
2464 	nvme_free_cmd(cmd);
2465 	return (ret);
2466 }
2467 
2468 static int
2469 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2470 {
2471 	nvme_write_cache_t nwc = { 0 };
2472 
2473 	if (enable)
2474 		nwc.b.wc_wce = 1;
2475 
2476 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2477 	    nwc.r, &nwc.r));
2478 }
2479 
2480 static int
2481 nvme_set_nqueues(nvme_t *nvme)
2482 {
2483 	nvme_nqueues_t nq = { 0 };
2484 	int ret;
2485 
2486 	/*
2487 	 * The default is to allocate one completion queue per vector.
2488 	 */
2489 	if (nvme->n_completion_queues == -1)
2490 		nvme->n_completion_queues = nvme->n_intr_cnt;
2491 
2492 	/*
2493 	 * There is no point in having more completion queues than
2494 	 * interrupt vectors.
2495 	 */
2496 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2497 	    nvme->n_intr_cnt);
2498 
2499 	/*
2500 	 * The default is to use one submission queue per completion queue.
2501 	 */
2502 	if (nvme->n_submission_queues == -1)
2503 		nvme->n_submission_queues = nvme->n_completion_queues;
2504 
2505 	/*
2506 	 * There is no point in having more compeletion queues than
2507 	 * submission queues.
2508 	 */
2509 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2510 	    nvme->n_submission_queues);
2511 
2512 	ASSERT(nvme->n_submission_queues > 0);
2513 	ASSERT(nvme->n_completion_queues > 0);
2514 
2515 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2516 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2517 
2518 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2519 	    &nq.r);
2520 
2521 	if (ret == 0) {
2522 		/*
2523 		 * Never use more than the requested number of queues.
2524 		 */
2525 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2526 		    nq.b.nq_nsq + 1);
2527 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2528 		    nq.b.nq_ncq + 1);
2529 	}
2530 
2531 	return (ret);
2532 }
2533 
2534 static int
2535 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2536 {
2537 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2538 	nvme_create_queue_dw10_t dw10 = { 0 };
2539 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2540 	int ret;
2541 
2542 	dw10.b.q_qid = cq->ncq_id;
2543 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2544 
2545 	c_dw11.b.cq_pc = 1;
2546 	c_dw11.b.cq_ien = 1;
2547 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2548 
2549 	cmd->nc_sqid = 0;
2550 	cmd->nc_callback = nvme_wakeup_cmd;
2551 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2552 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2553 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2554 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2555 
2556 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2557 
2558 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2559 		dev_err(nvme->n_dip, CE_WARN,
2560 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2561 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2562 	}
2563 
2564 	nvme_free_cmd(cmd);
2565 
2566 	return (ret);
2567 }
2568 
2569 static int
2570 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2571 {
2572 	nvme_cq_t *cq = qp->nq_cq;
2573 	nvme_cmd_t *cmd;
2574 	nvme_create_queue_dw10_t dw10 = { 0 };
2575 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2576 	int ret;
2577 
2578 	/*
2579 	 * It is possible to have more qpairs than completion queues,
2580 	 * and when the idx > ncq_id, that completion queue is shared
2581 	 * and has already been created.
2582 	 */
2583 	if (idx <= cq->ncq_id &&
2584 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2585 		return (DDI_FAILURE);
2586 
2587 	dw10.b.q_qid = idx;
2588 	dw10.b.q_qsize = qp->nq_nentry - 1;
2589 
2590 	s_dw11.b.sq_pc = 1;
2591 	s_dw11.b.sq_cqid = cq->ncq_id;
2592 
2593 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2594 	cmd->nc_sqid = 0;
2595 	cmd->nc_callback = nvme_wakeup_cmd;
2596 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2597 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2598 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2599 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2600 
2601 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2602 
2603 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2604 		dev_err(nvme->n_dip, CE_WARN,
2605 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2606 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2607 	}
2608 
2609 	nvme_free_cmd(cmd);
2610 
2611 	return (ret);
2612 }
2613 
2614 static boolean_t
2615 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2616 {
2617 	nvme_reg_csts_t csts;
2618 	int i;
2619 
2620 	nvme_put32(nvme, NVME_REG_CC, 0);
2621 
2622 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2623 	if (csts.b.csts_rdy == 1) {
2624 		nvme_put32(nvme, NVME_REG_CC, 0);
2625 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2626 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2627 			if (csts.b.csts_rdy == 0)
2628 				break;
2629 
2630 			if (quiesce)
2631 				drv_usecwait(50000);
2632 			else
2633 				delay(drv_usectohz(50000));
2634 		}
2635 	}
2636 
2637 	nvme_put32(nvme, NVME_REG_AQA, 0);
2638 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2639 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2640 
2641 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2642 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2643 }
2644 
2645 static void
2646 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2647 {
2648 	nvme_reg_cc_t cc;
2649 	nvme_reg_csts_t csts;
2650 	int i;
2651 
2652 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2653 
2654 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2655 	cc.b.cc_shn = mode & 0x3;
2656 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2657 
2658 	for (i = 0; i != 10; i++) {
2659 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2660 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2661 			break;
2662 
2663 		if (quiesce)
2664 			drv_usecwait(100000);
2665 		else
2666 			delay(drv_usectohz(100000));
2667 	}
2668 }
2669 
2670 
2671 static void
2672 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2673 {
2674 	/*
2675 	 * Section 7.7 of the spec describes how to get a unique ID for
2676 	 * the controller: the vendor ID, the model name and the serial
2677 	 * number shall be unique when combined.
2678 	 *
2679 	 * If a namespace has no EUI64 we use the above and add the hex
2680 	 * namespace ID to get a unique ID for the namespace.
2681 	 */
2682 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2683 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2684 
2685 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2686 	bcopy(nvme->n_idctl->id_serial, serial,
2687 	    sizeof (nvme->n_idctl->id_serial));
2688 
2689 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2690 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2691 
2692 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2693 	    nvme->n_idctl->id_vid, model, serial, nsid);
2694 }
2695 
2696 static int
2697 nvme_init_ns(nvme_t *nvme, int nsid)
2698 {
2699 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2700 	nvme_identify_nsid_t *idns;
2701 	boolean_t was_ignored;
2702 	int last_rp;
2703 
2704 	ns->ns_nvme = nvme;
2705 
2706 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2707 		dev_err(nvme->n_dip, CE_WARN,
2708 		    "!failed to identify namespace %d", nsid);
2709 		return (DDI_FAILURE);
2710 	}
2711 
2712 	ns->ns_idns = idns;
2713 	ns->ns_id = nsid;
2714 	ns->ns_block_count = idns->id_nsize;
2715 	ns->ns_block_size =
2716 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2717 	ns->ns_best_block_size = ns->ns_block_size;
2718 
2719 	/*
2720 	 * Get the EUI64 if present. Use it for devid and device node names.
2721 	 */
2722 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2723 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2724 
2725 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2726 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2727 		uint8_t *eui64 = ns->ns_eui64;
2728 
2729 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2730 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2731 		    eui64[0], eui64[1], eui64[2], eui64[3],
2732 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2733 	} else {
2734 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2735 		    ns->ns_id);
2736 
2737 		nvme_prepare_devid(nvme, ns->ns_id);
2738 	}
2739 
2740 	/*
2741 	 * Find the LBA format with no metadata and the best relative
2742 	 * performance. A value of 3 means "degraded", 0 is best.
2743 	 */
2744 	last_rp = 3;
2745 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2746 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2747 			break;
2748 		if (idns->id_lbaf[j].lbaf_ms != 0)
2749 			continue;
2750 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2751 			continue;
2752 		last_rp = idns->id_lbaf[j].lbaf_rp;
2753 		ns->ns_best_block_size =
2754 		    1 << idns->id_lbaf[j].lbaf_lbads;
2755 	}
2756 
2757 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2758 		ns->ns_best_block_size = nvme->n_min_block_size;
2759 
2760 	was_ignored = ns->ns_ignore;
2761 
2762 	/*
2763 	 * We currently don't support namespaces that use either:
2764 	 * - protection information
2765 	 * - illegal block size (< 512)
2766 	 */
2767 	if (idns->id_dps.dp_pinfo) {
2768 		dev_err(nvme->n_dip, CE_WARN,
2769 		    "!ignoring namespace %d, unsupported feature: "
2770 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2771 		ns->ns_ignore = B_TRUE;
2772 	} else if (ns->ns_block_size < 512) {
2773 		dev_err(nvme->n_dip, CE_WARN,
2774 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2775 		    nsid, (uint64_t)ns->ns_block_size);
2776 		ns->ns_ignore = B_TRUE;
2777 	} else {
2778 		ns->ns_ignore = B_FALSE;
2779 	}
2780 
2781 	/*
2782 	 * Keep a count of namespaces which are attachable.
2783 	 * See comments in nvme_bd_driveinfo() to understand its effect.
2784 	 */
2785 	if (was_ignored) {
2786 		/*
2787 		 * Previously ignored, but now not. Count it.
2788 		 */
2789 		if (!ns->ns_ignore)
2790 			nvme->n_namespaces_attachable++;
2791 	} else {
2792 		/*
2793 		 * Wasn't ignored previously, but now needs to be.
2794 		 * Discount it.
2795 		 */
2796 		if (ns->ns_ignore)
2797 			nvme->n_namespaces_attachable--;
2798 	}
2799 
2800 	return (DDI_SUCCESS);
2801 }
2802 
2803 static int
2804 nvme_init(nvme_t *nvme)
2805 {
2806 	nvme_reg_cc_t cc = { 0 };
2807 	nvme_reg_aqa_t aqa = { 0 };
2808 	nvme_reg_asq_t asq = { 0 };
2809 	nvme_reg_acq_t acq = { 0 };
2810 	nvme_reg_cap_t cap;
2811 	nvme_reg_vs_t vs;
2812 	nvme_reg_csts_t csts;
2813 	int i = 0;
2814 	uint16_t nqueues;
2815 	uint_t tq_threads;
2816 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2817 	char *vendor, *product;
2818 
2819 	/* Check controller version */
2820 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2821 	nvme->n_version.v_major = vs.b.vs_mjr;
2822 	nvme->n_version.v_minor = vs.b.vs_mnr;
2823 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2824 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2825 
2826 	if (nvme->n_version.v_major > nvme_version_major) {
2827 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2828 		    nvme_version_major);
2829 		if (nvme->n_strict_version)
2830 			goto fail;
2831 	}
2832 
2833 	/* retrieve controller configuration */
2834 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2835 
2836 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2837 		dev_err(nvme->n_dip, CE_WARN,
2838 		    "!NVM command set not supported by hardware");
2839 		goto fail;
2840 	}
2841 
2842 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2843 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2844 	nvme->n_timeout = cap.b.cap_to;
2845 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2846 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2847 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2848 
2849 	/*
2850 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2851 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2852 	 * page size value.
2853 	 */
2854 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2855 	    cap.b.cap_mpsmax + 12);
2856 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2857 
2858 	/*
2859 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2860 	 */
2861 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2862 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2863 
2864 	/*
2865 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2866 	 * Maxxfer may be increased after we identified the controller limits.
2867 	 */
2868 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2869 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2870 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2871 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2872 
2873 	/*
2874 	 * Reset controller if it's still in ready state.
2875 	 */
2876 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2877 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2878 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2879 		nvme->n_dead = B_TRUE;
2880 		goto fail;
2881 	}
2882 
2883 	/*
2884 	 * Create the cq array with one completion queue to be assigned
2885 	 * to the admin queue pair and a limited number of taskqs (4).
2886 	 */
2887 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2888 	    DDI_SUCCESS) {
2889 		dev_err(nvme->n_dip, CE_WARN,
2890 		    "!failed to pre-allocate admin completion queue");
2891 		goto fail;
2892 	}
2893 	/*
2894 	 * Create the admin queue pair.
2895 	 */
2896 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2897 	    != DDI_SUCCESS) {
2898 		dev_err(nvme->n_dip, CE_WARN,
2899 		    "!unable to allocate admin qpair");
2900 		goto fail;
2901 	}
2902 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2903 	nvme->n_ioq[0] = nvme->n_adminq;
2904 
2905 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2906 
2907 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2908 	    "admin-queue-len", nvme->n_admin_queue_len);
2909 
2910 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2911 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2912 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2913 
2914 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2915 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2916 
2917 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2918 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2919 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2920 
2921 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2922 	cc.b.cc_css = 0;	/* use NVM command set */
2923 	cc.b.cc_mps = nvme->n_pageshift - 12;
2924 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2925 	cc.b.cc_en = 1;		/* enable controller */
2926 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2927 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2928 
2929 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2930 
2931 	/*
2932 	 * Wait for the controller to become ready.
2933 	 */
2934 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2935 	if (csts.b.csts_rdy == 0) {
2936 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2937 			delay(drv_usectohz(50000));
2938 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2939 
2940 			if (csts.b.csts_cfs == 1) {
2941 				dev_err(nvme->n_dip, CE_WARN,
2942 				    "!controller fatal status at init");
2943 				ddi_fm_service_impact(nvme->n_dip,
2944 				    DDI_SERVICE_LOST);
2945 				nvme->n_dead = B_TRUE;
2946 				goto fail;
2947 			}
2948 
2949 			if (csts.b.csts_rdy == 1)
2950 				break;
2951 		}
2952 	}
2953 
2954 	if (csts.b.csts_rdy == 0) {
2955 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2956 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2957 		nvme->n_dead = B_TRUE;
2958 		goto fail;
2959 	}
2960 
2961 	/*
2962 	 * Assume an abort command limit of 1. We'll destroy and re-init
2963 	 * that later when we know the true abort command limit.
2964 	 */
2965 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2966 
2967 	/*
2968 	 * Set up initial interrupt for admin queue.
2969 	 */
2970 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2971 	    != DDI_SUCCESS) &&
2972 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2973 	    != DDI_SUCCESS) &&
2974 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2975 	    != DDI_SUCCESS)) {
2976 		dev_err(nvme->n_dip, CE_WARN,
2977 		    "!failed to setup initial interrupt");
2978 		goto fail;
2979 	}
2980 
2981 	/*
2982 	 * Post an asynchronous event command to catch errors.
2983 	 * We assume the asynchronous events are supported as required by
2984 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2985 	 * However, since at least qemu does not follow the specification,
2986 	 * we need a mechanism to protect ourselves.
2987 	 */
2988 	nvme->n_async_event_supported = B_TRUE;
2989 	nvme_async_event(nvme);
2990 
2991 	/*
2992 	 * Identify Controller
2993 	 */
2994 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2995 		dev_err(nvme->n_dip, CE_WARN,
2996 		    "!failed to identify controller");
2997 		goto fail;
2998 	}
2999 
3000 	/*
3001 	 * Get Vendor & Product ID
3002 	 */
3003 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
3004 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
3005 	sata_split_model(model, &vendor, &product);
3006 
3007 	if (vendor == NULL)
3008 		nvme->n_vendor = strdup("NVMe");
3009 	else
3010 		nvme->n_vendor = strdup(vendor);
3011 
3012 	nvme->n_product = strdup(product);
3013 
3014 	/*
3015 	 * Get controller limits.
3016 	 */
3017 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
3018 	    MIN(nvme->n_admin_queue_len / 10,
3019 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
3020 
3021 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3022 	    "async-event-limit", nvme->n_async_event_limit);
3023 
3024 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
3025 
3026 	/*
3027 	 * Reinitialize the semaphore with the true abort command limit
3028 	 * supported by the hardware. It's not necessary to disable interrupts
3029 	 * as only command aborts use the semaphore, and no commands are
3030 	 * executed or aborted while we're here.
3031 	 */
3032 	sema_destroy(&nvme->n_abort_sema);
3033 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
3034 	    SEMA_DRIVER, NULL);
3035 
3036 	nvme->n_progress |= NVME_CTRL_LIMITS;
3037 
3038 	if (nvme->n_idctl->id_mdts == 0)
3039 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
3040 	else
3041 		nvme->n_max_data_transfer_size =
3042 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
3043 
3044 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
3045 
3046 	/*
3047 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
3048 	 * Chained PRPs are currently unsupported.
3049 	 *
3050 	 * This is a no-op on hardware which doesn't support a transfer size
3051 	 * big enough to require chained PRPs.
3052 	 */
3053 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
3054 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
3055 
3056 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
3057 
3058 	/*
3059 	 * Make sure the minimum/maximum queue entry sizes are not
3060 	 * larger/smaller than the default.
3061 	 */
3062 
3063 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
3064 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
3065 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
3066 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
3067 		goto fail;
3068 
3069 	/*
3070 	 * Check for the presence of a Volatile Write Cache. If present,
3071 	 * enable or disable based on the value of the property
3072 	 * volatile-write-cache-enable (default is enabled).
3073 	 */
3074 	nvme->n_write_cache_present =
3075 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
3076 
3077 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3078 	    "volatile-write-cache-present",
3079 	    nvme->n_write_cache_present ? 1 : 0);
3080 
3081 	if (!nvme->n_write_cache_present) {
3082 		nvme->n_write_cache_enabled = B_FALSE;
3083 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
3084 	    != 0) {
3085 		dev_err(nvme->n_dip, CE_WARN,
3086 		    "!failed to %sable volatile write cache",
3087 		    nvme->n_write_cache_enabled ? "en" : "dis");
3088 		/*
3089 		 * Assume the cache is (still) enabled.
3090 		 */
3091 		nvme->n_write_cache_enabled = B_TRUE;
3092 	}
3093 
3094 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3095 	    "volatile-write-cache-enable",
3096 	    nvme->n_write_cache_enabled ? 1 : 0);
3097 
3098 	/*
3099 	 * Assume LBA Range Type feature is supported. If it isn't this
3100 	 * will be set to B_FALSE by nvme_get_features().
3101 	 */
3102 	nvme->n_lba_range_supported = B_TRUE;
3103 
3104 	/*
3105 	 * Check support for Autonomous Power State Transition.
3106 	 */
3107 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
3108 		nvme->n_auto_pst_supported =
3109 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
3110 
3111 	/*
3112 	 * Assume Software Progress Marker feature is supported.  If it isn't
3113 	 * this will be set to B_FALSE by nvme_get_features().
3114 	 */
3115 	nvme->n_progress_supported = B_TRUE;
3116 
3117 	/*
3118 	 * Identify Namespaces
3119 	 */
3120 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
3121 
3122 	if (nvme->n_namespace_count == 0) {
3123 		dev_err(nvme->n_dip, CE_WARN,
3124 		    "!controllers without namespaces are not supported");
3125 		goto fail;
3126 	}
3127 
3128 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
3129 		dev_err(nvme->n_dip, CE_WARN,
3130 		    "!too many namespaces: %d, limiting to %d\n",
3131 		    nvme->n_namespace_count, NVME_MINOR_MAX);
3132 		nvme->n_namespace_count = NVME_MINOR_MAX;
3133 	}
3134 
3135 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
3136 	    nvme->n_namespace_count, KM_SLEEP);
3137 
3138 	for (i = 0; i != nvme->n_namespace_count; i++) {
3139 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
3140 		    NULL);
3141 		nvme->n_ns[i].ns_ignore = B_TRUE;
3142 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
3143 			goto fail;
3144 	}
3145 
3146 	/*
3147 	 * Try to set up MSI/MSI-X interrupts.
3148 	 */
3149 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
3150 	    != 0) {
3151 		nvme_release_interrupts(nvme);
3152 
3153 		nqueues = MIN(UINT16_MAX, ncpus);
3154 
3155 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
3156 		    nqueues) != DDI_SUCCESS) &&
3157 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
3158 		    nqueues) != DDI_SUCCESS)) {
3159 			dev_err(nvme->n_dip, CE_WARN,
3160 			    "!failed to setup MSI/MSI-X interrupts");
3161 			goto fail;
3162 		}
3163 	}
3164 
3165 	/*
3166 	 * Create I/O queue pairs.
3167 	 */
3168 
3169 	if (nvme_set_nqueues(nvme) != 0) {
3170 		dev_err(nvme->n_dip, CE_WARN,
3171 		    "!failed to set number of I/O queues to %d",
3172 		    nvme->n_intr_cnt);
3173 		goto fail;
3174 	}
3175 
3176 	/*
3177 	 * Reallocate I/O queue array
3178 	 */
3179 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3180 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3181 	    (nvme->n_submission_queues + 1), KM_SLEEP);
3182 	nvme->n_ioq[0] = nvme->n_adminq;
3183 
3184 	/*
3185 	 * There should always be at least as many submission queues
3186 	 * as completion queues.
3187 	 */
3188 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3189 
3190 	nvme->n_ioq_count = nvme->n_submission_queues;
3191 
3192 	nvme->n_io_squeue_len =
3193 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3194 
3195 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3196 	    nvme->n_io_squeue_len);
3197 
3198 	/*
3199 	 * Pre-allocate completion queues.
3200 	 * When there are the same number of submission and completion
3201 	 * queues there is no value in having a larger completion
3202 	 * queue length.
3203 	 */
3204 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3205 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3206 		    nvme->n_io_squeue_len);
3207 
3208 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3209 	    nvme->n_max_queue_entries);
3210 
3211 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3212 	    nvme->n_io_cqueue_len);
3213 
3214 	/*
3215 	 * Assign the equal quantity of taskq threads to each completion
3216 	 * queue, capping the total number of threads to the number
3217 	 * of CPUs.
3218 	 */
3219 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3220 
3221 	/*
3222 	 * In case the calculation above is zero, we need at least one
3223 	 * thread per completion queue.
3224 	 */
3225 	tq_threads = MAX(1, tq_threads);
3226 
3227 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3228 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3229 		dev_err(nvme->n_dip, CE_WARN,
3230 		    "!failed to pre-allocate completion queues");
3231 		goto fail;
3232 	}
3233 
3234 	/*
3235 	 * If we use less completion queues than interrupt vectors return
3236 	 * some of the interrupt vectors back to the system.
3237 	 */
3238 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3239 		nvme_release_interrupts(nvme);
3240 
3241 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3242 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3243 			dev_err(nvme->n_dip, CE_WARN,
3244 			    "!failed to reduce number of interrupts");
3245 			goto fail;
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * Alloc & register I/O queue pairs
3251 	 */
3252 
3253 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3254 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3255 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3256 			dev_err(nvme->n_dip, CE_WARN,
3257 			    "!unable to allocate I/O qpair %d", i);
3258 			goto fail;
3259 		}
3260 
3261 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3262 			dev_err(nvme->n_dip, CE_WARN,
3263 			    "!unable to create I/O qpair %d", i);
3264 			goto fail;
3265 		}
3266 	}
3267 
3268 	/*
3269 	 * Post more asynchronous events commands to reduce event reporting
3270 	 * latency as suggested by the spec.
3271 	 */
3272 	if (nvme->n_async_event_supported) {
3273 		for (i = 1; i != nvme->n_async_event_limit; i++)
3274 			nvme_async_event(nvme);
3275 	}
3276 
3277 	return (DDI_SUCCESS);
3278 
3279 fail:
3280 	(void) nvme_reset(nvme, B_FALSE);
3281 	return (DDI_FAILURE);
3282 }
3283 
3284 static uint_t
3285 nvme_intr(caddr_t arg1, caddr_t arg2)
3286 {
3287 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3288 	nvme_t *nvme = (nvme_t *)arg1;
3289 	int inum = (int)(uintptr_t)arg2;
3290 	int ccnt = 0;
3291 	int qnum;
3292 
3293 	if (inum >= nvme->n_intr_cnt)
3294 		return (DDI_INTR_UNCLAIMED);
3295 
3296 	if (nvme->n_dead)
3297 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3298 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3299 
3300 	/*
3301 	 * The interrupt vector a queue uses is calculated as queue_idx %
3302 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3303 	 * in steps of n_intr_cnt to process all queues using this vector.
3304 	 */
3305 	for (qnum = inum;
3306 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3307 	    qnum += nvme->n_intr_cnt) {
3308 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3309 	}
3310 
3311 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3312 }
3313 
3314 static void
3315 nvme_release_interrupts(nvme_t *nvme)
3316 {
3317 	int i;
3318 
3319 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3320 		if (nvme->n_inth[i] == NULL)
3321 			break;
3322 
3323 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3324 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3325 		else
3326 			(void) ddi_intr_disable(nvme->n_inth[i]);
3327 
3328 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3329 		(void) ddi_intr_free(nvme->n_inth[i]);
3330 	}
3331 
3332 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3333 	nvme->n_inth = NULL;
3334 	nvme->n_inth_sz = 0;
3335 
3336 	nvme->n_progress &= ~NVME_INTERRUPTS;
3337 }
3338 
3339 static int
3340 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3341 {
3342 	int nintrs, navail, count;
3343 	int ret;
3344 	int i;
3345 
3346 	if (nvme->n_intr_types == 0) {
3347 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3348 		    &nvme->n_intr_types);
3349 		if (ret != DDI_SUCCESS) {
3350 			dev_err(nvme->n_dip, CE_WARN,
3351 			    "!%s: ddi_intr_get_supported types failed",
3352 			    __func__);
3353 			return (ret);
3354 		}
3355 #ifdef __x86
3356 		if (get_hwenv() == HW_VMWARE)
3357 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3358 #endif
3359 	}
3360 
3361 	if ((nvme->n_intr_types & intr_type) == 0)
3362 		return (DDI_FAILURE);
3363 
3364 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3365 	if (ret != DDI_SUCCESS) {
3366 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3367 		    __func__);
3368 		return (ret);
3369 	}
3370 
3371 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3372 	if (ret != DDI_SUCCESS) {
3373 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3374 		    __func__);
3375 		return (ret);
3376 	}
3377 
3378 	/* We want at most one interrupt per queue pair. */
3379 	if (navail > nqpairs)
3380 		navail = nqpairs;
3381 
3382 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3383 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3384 
3385 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3386 	    &count, 0);
3387 	if (ret != DDI_SUCCESS) {
3388 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3389 		    __func__);
3390 		goto fail;
3391 	}
3392 
3393 	nvme->n_intr_cnt = count;
3394 
3395 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3396 	if (ret != DDI_SUCCESS) {
3397 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3398 		    __func__);
3399 		goto fail;
3400 	}
3401 
3402 	for (i = 0; i < count; i++) {
3403 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3404 		    (void *)nvme, (void *)(uintptr_t)i);
3405 		if (ret != DDI_SUCCESS) {
3406 			dev_err(nvme->n_dip, CE_WARN,
3407 			    "!%s: ddi_intr_add_handler failed", __func__);
3408 			goto fail;
3409 		}
3410 	}
3411 
3412 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3413 
3414 	for (i = 0; i < count; i++) {
3415 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3416 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3417 		else
3418 			ret = ddi_intr_enable(nvme->n_inth[i]);
3419 
3420 		if (ret != DDI_SUCCESS) {
3421 			dev_err(nvme->n_dip, CE_WARN,
3422 			    "!%s: enabling interrupt %d failed", __func__, i);
3423 			goto fail;
3424 		}
3425 	}
3426 
3427 	nvme->n_intr_type = intr_type;
3428 
3429 	nvme->n_progress |= NVME_INTERRUPTS;
3430 
3431 	return (DDI_SUCCESS);
3432 
3433 fail:
3434 	nvme_release_interrupts(nvme);
3435 
3436 	return (ret);
3437 }
3438 
3439 static int
3440 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3441 {
3442 	_NOTE(ARGUNUSED(arg));
3443 
3444 	pci_ereport_post(dip, fm_error, NULL);
3445 	return (fm_error->fme_status);
3446 }
3447 
3448 static void
3449 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a,
3450     void *b)
3451 {
3452 	nvme_t *nvme = a;
3453 
3454 	nvme->n_dead = B_TRUE;
3455 
3456 	/*
3457 	 * Fail all outstanding commands, including those in the admin queue
3458 	 * (queue 0).
3459 	 */
3460 	for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) {
3461 		nvme_qpair_t *qp = nvme->n_ioq[i];
3462 
3463 		mutex_enter(&qp->nq_mutex);
3464 		for (size_t j = 0; j < qp->nq_nentry; j++) {
3465 			nvme_cmd_t *cmd = qp->nq_cmd[j];
3466 			nvme_cmd_t *u_cmd;
3467 
3468 			if (cmd == NULL) {
3469 				continue;
3470 			}
3471 
3472 			/*
3473 			 * Since we have the queue lock held the entire time we
3474 			 * iterate over it, it's not possible for the queue to
3475 			 * change underneath us. Thus, we don't need to check
3476 			 * that the return value of nvme_unqueue_cmd matches the
3477 			 * requested cmd to unqueue.
3478 			 */
3479 			u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
3480 			taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq,
3481 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
3482 
3483 			ASSERT3P(u_cmd, ==, cmd);
3484 		}
3485 		mutex_exit(&qp->nq_mutex);
3486 	}
3487 }
3488 
3489 static int
3490 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3491 {
3492 	nvme_t *nvme;
3493 	int instance;
3494 	int nregs;
3495 	off_t regsize;
3496 	int i;
3497 	char name[32];
3498 	bd_ops_t ops = nvme_bd_ops;
3499 
3500 	if (cmd != DDI_ATTACH)
3501 		return (DDI_FAILURE);
3502 
3503 	instance = ddi_get_instance(dip);
3504 
3505 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3506 		return (DDI_FAILURE);
3507 
3508 	nvme = ddi_get_soft_state(nvme_state, instance);
3509 	ddi_set_driver_private(dip, nvme);
3510 	nvme->n_dip = dip;
3511 
3512 	/* Set up event handlers for hot removal. */
3513 	if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT,
3514 	    &nvme->n_rm_cookie) != DDI_SUCCESS) {
3515 		goto fail;
3516 	}
3517 	if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie,
3518 	    nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) !=
3519 	    DDI_SUCCESS) {
3520 		goto fail;
3521 	}
3522 
3523 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3524 
3525 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3526 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3527 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3528 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3529 	    B_TRUE : B_FALSE;
3530 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3531 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3532 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3533 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3534 	/*
3535 	 * Double up the default for completion queues in case of
3536 	 * queue sharing.
3537 	 */
3538 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3539 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3540 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3541 	    DDI_PROP_DONTPASS, "async-event-limit",
3542 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3543 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3544 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3545 	    B_TRUE : B_FALSE;
3546 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3547 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3548 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3549 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3550 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3551 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3552 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3553 
3554 	if (!ISP2(nvme->n_min_block_size) ||
3555 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3556 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3557 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3558 		    "too low" : "not a power of 2",
3559 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3560 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3561 	}
3562 
3563 	if (nvme->n_submission_queues != -1 &&
3564 	    (nvme->n_submission_queues < 1 ||
3565 	    nvme->n_submission_queues > UINT16_MAX)) {
3566 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3567 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3568 		    UINT16_MAX);
3569 		nvme->n_submission_queues = -1;
3570 	}
3571 
3572 	if (nvme->n_completion_queues != -1 &&
3573 	    (nvme->n_completion_queues < 1 ||
3574 	    nvme->n_completion_queues > UINT16_MAX)) {
3575 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3576 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3577 		    UINT16_MAX);
3578 		nvme->n_completion_queues = -1;
3579 	}
3580 
3581 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3582 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3583 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3584 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3585 
3586 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3587 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3588 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3589 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3590 
3591 	if (nvme->n_async_event_limit < 1)
3592 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3593 
3594 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3595 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3596 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3597 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3598 
3599 	/*
3600 	 * Set up FMA support.
3601 	 */
3602 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3603 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3604 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3605 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3606 
3607 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3608 
3609 	if (nvme->n_fm_cap) {
3610 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3611 			nvme->n_reg_acc_attr.devacc_attr_access =
3612 			    DDI_FLAGERR_ACC;
3613 
3614 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3615 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3616 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3617 		}
3618 
3619 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3620 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3621 			pci_ereport_setup(dip);
3622 
3623 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3624 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3625 			    (void *)nvme);
3626 	}
3627 
3628 	nvme->n_progress |= NVME_FMA_INIT;
3629 
3630 	/*
3631 	 * The spec defines several register sets. Only the controller
3632 	 * registers (set 1) are currently used.
3633 	 */
3634 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3635 	    nregs < 2 ||
3636 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3637 		goto fail;
3638 
3639 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3640 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3641 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3642 		goto fail;
3643 	}
3644 
3645 	nvme->n_progress |= NVME_REGS_MAPPED;
3646 
3647 	/*
3648 	 * Create PRP DMA cache
3649 	 */
3650 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3651 	    ddi_driver_name(dip), ddi_get_instance(dip));
3652 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3653 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3654 	    NULL, (void *)nvme, NULL, 0);
3655 
3656 	if (nvme_init(nvme) != DDI_SUCCESS)
3657 		goto fail;
3658 
3659 	if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3660 		ops.o_free_space = NULL;
3661 
3662 	/*
3663 	 * Initialize the driver with the UFM subsystem
3664 	 */
3665 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3666 	    &nvme->n_ufmh, nvme) != 0) {
3667 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3668 		goto fail;
3669 	}
3670 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3671 	ddi_ufm_update(nvme->n_ufmh);
3672 	nvme->n_progress |= NVME_UFM_INIT;
3673 
3674 	/*
3675 	 * Attach the blkdev driver for each namespace.
3676 	 */
3677 	for (i = 0; i != nvme->n_namespace_count; i++) {
3678 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3679 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3680 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3681 			dev_err(dip, CE_WARN,
3682 			    "!failed to create minor node for namespace %d", i);
3683 			goto fail;
3684 		}
3685 
3686 		if (nvme->n_ns[i].ns_ignore)
3687 			continue;
3688 
3689 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3690 		    &ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3691 
3692 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3693 			dev_err(dip, CE_WARN,
3694 			    "!failed to get blkdev handle for namespace %d", i);
3695 			goto fail;
3696 		}
3697 
3698 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3699 		    != DDI_SUCCESS) {
3700 			dev_err(dip, CE_WARN,
3701 			    "!failed to attach blkdev handle for namespace %d",
3702 			    i);
3703 			goto fail;
3704 		}
3705 	}
3706 
3707 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3708 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3709 	    != DDI_SUCCESS) {
3710 		dev_err(dip, CE_WARN, "nvme_attach: "
3711 		    "cannot create devctl minor node");
3712 		goto fail;
3713 	}
3714 
3715 	return (DDI_SUCCESS);
3716 
3717 fail:
3718 	/* attach successful anyway so that FMA can retire the device */
3719 	if (nvme->n_dead)
3720 		return (DDI_SUCCESS);
3721 
3722 	(void) nvme_detach(dip, DDI_DETACH);
3723 
3724 	return (DDI_FAILURE);
3725 }
3726 
3727 static int
3728 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3729 {
3730 	int instance, i;
3731 	nvme_t *nvme;
3732 
3733 	if (cmd != DDI_DETACH)
3734 		return (DDI_FAILURE);
3735 
3736 	instance = ddi_get_instance(dip);
3737 
3738 	nvme = ddi_get_soft_state(nvme_state, instance);
3739 
3740 	if (nvme == NULL)
3741 		return (DDI_FAILURE);
3742 
3743 	ddi_remove_minor_node(dip, "devctl");
3744 	mutex_destroy(&nvme->n_minor.nm_mutex);
3745 
3746 	if (nvme->n_ns) {
3747 		for (i = 0; i != nvme->n_namespace_count; i++) {
3748 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3749 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3750 
3751 			if (nvme->n_ns[i].ns_bd_hdl) {
3752 				(void) bd_detach_handle(
3753 				    nvme->n_ns[i].ns_bd_hdl);
3754 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3755 			}
3756 
3757 			if (nvme->n_ns[i].ns_idns)
3758 				kmem_free(nvme->n_ns[i].ns_idns,
3759 				    sizeof (nvme_identify_nsid_t));
3760 			if (nvme->n_ns[i].ns_devid)
3761 				strfree(nvme->n_ns[i].ns_devid);
3762 		}
3763 
3764 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3765 		    nvme->n_namespace_count);
3766 	}
3767 	if (nvme->n_progress & NVME_UFM_INIT) {
3768 		ddi_ufm_fini(nvme->n_ufmh);
3769 		mutex_destroy(&nvme->n_fwslot_mutex);
3770 	}
3771 
3772 	if (nvme->n_progress & NVME_INTERRUPTS)
3773 		nvme_release_interrupts(nvme);
3774 
3775 	for (i = 0; i < nvme->n_cq_count; i++) {
3776 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3777 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3778 	}
3779 
3780 	if (nvme->n_ioq_count > 0) {
3781 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3782 			if (nvme->n_ioq[i] != NULL) {
3783 				/* TODO: send destroy queue commands */
3784 				nvme_free_qpair(nvme->n_ioq[i]);
3785 			}
3786 		}
3787 
3788 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3789 		    (nvme->n_ioq_count + 1));
3790 	}
3791 
3792 	if (nvme->n_prp_cache != NULL) {
3793 		kmem_cache_destroy(nvme->n_prp_cache);
3794 	}
3795 
3796 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3797 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3798 		(void) nvme_reset(nvme, B_FALSE);
3799 	}
3800 
3801 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3802 		sema_destroy(&nvme->n_abort_sema);
3803 
3804 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3805 		nvme_free_qpair(nvme->n_adminq);
3806 
3807 	if (nvme->n_cq_count > 0) {
3808 		nvme_destroy_cq_array(nvme, 0);
3809 		nvme->n_cq = NULL;
3810 		nvme->n_cq_count = 0;
3811 	}
3812 
3813 	if (nvme->n_idctl)
3814 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3815 
3816 	if (nvme->n_progress & NVME_REGS_MAPPED)
3817 		ddi_regs_map_free(&nvme->n_regh);
3818 
3819 	if (nvme->n_progress & NVME_FMA_INIT) {
3820 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3821 			ddi_fm_handler_unregister(nvme->n_dip);
3822 
3823 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3824 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3825 			pci_ereport_teardown(nvme->n_dip);
3826 
3827 		ddi_fm_fini(nvme->n_dip);
3828 	}
3829 
3830 	if (nvme->n_vendor != NULL)
3831 		strfree(nvme->n_vendor);
3832 
3833 	if (nvme->n_product != NULL)
3834 		strfree(nvme->n_product);
3835 
3836 	/* Clean up hot removal event handler. */
3837 	if (nvme->n_ev_rm_cb_id != NULL) {
3838 		(void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id);
3839 	}
3840 	nvme->n_ev_rm_cb_id = NULL;
3841 
3842 	ddi_soft_state_free(nvme_state, instance);
3843 
3844 	return (DDI_SUCCESS);
3845 }
3846 
3847 static int
3848 nvme_quiesce(dev_info_t *dip)
3849 {
3850 	int instance;
3851 	nvme_t *nvme;
3852 
3853 	instance = ddi_get_instance(dip);
3854 
3855 	nvme = ddi_get_soft_state(nvme_state, instance);
3856 
3857 	if (nvme == NULL)
3858 		return (DDI_FAILURE);
3859 
3860 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3861 
3862 	(void) nvme_reset(nvme, B_TRUE);
3863 
3864 	return (DDI_FAILURE);
3865 }
3866 
3867 static int
3868 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma)
3869 {
3870 	nvme_t *nvme = cmd->nc_nvme;
3871 	uint_t nprp_per_page, nprp;
3872 	uint64_t *prp;
3873 	const ddi_dma_cookie_t *cookie;
3874 	uint_t idx;
3875 	uint_t ncookies = ddi_dma_ncookies(dma);
3876 
3877 	if (ncookies == 0)
3878 		return (DDI_FAILURE);
3879 
3880 	if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL)
3881 		return (DDI_FAILURE);
3882 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress;
3883 
3884 	if (ncookies == 1) {
3885 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3886 		return (DDI_SUCCESS);
3887 	} else if (ncookies == 2) {
3888 		if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL)
3889 			return (DDI_FAILURE);
3890 		cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress;
3891 		return (DDI_SUCCESS);
3892 	}
3893 
3894 	/*
3895 	 * At this point, we're always operating on cookies at
3896 	 * index >= 1 and writing the addresses of those cookies
3897 	 * into a new page. The address of that page is stored
3898 	 * as the second PRP entry.
3899 	 */
3900 	nprp_per_page = nvme->n_pagesize / sizeof (uint64_t);
3901 	ASSERT(nprp_per_page > 0);
3902 
3903 	/*
3904 	 * We currently don't support chained PRPs and set up our DMA
3905 	 * attributes to reflect that. If we still get an I/O request
3906 	 * that needs a chained PRP something is very wrong. Account
3907 	 * for the first cookie here, which we've placed in d_prp[0].
3908 	 */
3909 	nprp = howmany(ncookies - 1, nprp_per_page);
3910 	VERIFY(nprp == 1);
3911 
3912 	/*
3913 	 * Allocate a page of pointers, in which we'll write the
3914 	 * addresses of cookies 1 to `ncookies`.
3915 	 */
3916 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3917 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
3918 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress;
3919 
3920 	prp = (uint64_t *)cmd->nc_prp->nd_memp;
3921 	for (idx = 1; idx < ncookies; idx++) {
3922 		if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL)
3923 			return (DDI_FAILURE);
3924 		*prp++ = cookie->dmac_laddress;
3925 	}
3926 
3927 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
3928 	    DDI_DMA_SYNC_FORDEV);
3929 	return (DDI_SUCCESS);
3930 }
3931 
3932 /*
3933  * The maximum number of requests supported for a deallocate request is
3934  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
3935  * unchanged through at least 1.4a). The definition of nvme_range_t is also
3936  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
3937  * a deallocate request will fit into the smallest supported namespace page
3938  * (4k).
3939  */
3940 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
3941 
3942 static int
3943 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
3944     int allocflag)
3945 {
3946 	const dkioc_free_list_t *dfl = xfer->x_dfl;
3947 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
3948 	nvme_t *nvme = cmd->nc_nvme;
3949 	nvme_range_t *ranges = NULL;
3950 	uint_t i;
3951 
3952 	/*
3953 	 * The number of ranges in the request is 0s based (that is
3954 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
3955 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
3956 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
3957 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
3958 	 * in blkdev.
3959 	 */
3960 	VERIFY3U(dfl->dfl_num_exts, >, 0);
3961 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
3962 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
3963 
3964 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
3965 
3966 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
3967 	if (cmd->nc_prp == NULL)
3968 		return (DDI_FAILURE);
3969 
3970 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
3971 	ranges = (nvme_range_t *)cmd->nc_prp->nd_memp;
3972 
3973 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress;
3974 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3975 
3976 	for (i = 0; i < dfl->dfl_num_exts; i++) {
3977 		uint64_t lba, len;
3978 
3979 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
3980 		len = exts[i].dfle_length / blocksize;
3981 
3982 		VERIFY3U(len, <=, UINT32_MAX);
3983 
3984 		/* No context attributes for a deallocate request */
3985 		ranges[i].nr_ctxattr = 0;
3986 		ranges[i].nr_len = len;
3987 		ranges[i].nr_lba = lba;
3988 	}
3989 
3990 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
3991 	    DDI_DMA_SYNC_FORDEV);
3992 
3993 	return (DDI_SUCCESS);
3994 }
3995 
3996 static nvme_cmd_t *
3997 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3998 {
3999 	nvme_t *nvme = ns->ns_nvme;
4000 	nvme_cmd_t *cmd;
4001 	int allocflag;
4002 
4003 	/*
4004 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
4005 	 */
4006 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
4007 	cmd = nvme_alloc_cmd(nvme, allocflag);
4008 
4009 	if (cmd == NULL)
4010 		return (NULL);
4011 
4012 	cmd->nc_sqe.sqe_opc = opc;
4013 	cmd->nc_callback = nvme_bd_xfer_done;
4014 	cmd->nc_xfer = xfer;
4015 
4016 	switch (opc) {
4017 	case NVME_OPC_NVM_WRITE:
4018 	case NVME_OPC_NVM_READ:
4019 		VERIFY(xfer->x_nblks <= 0x10000);
4020 
4021 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4022 
4023 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
4024 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
4025 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
4026 
4027 		if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS)
4028 			goto fail;
4029 		break;
4030 
4031 	case NVME_OPC_NVM_FLUSH:
4032 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4033 		break;
4034 
4035 	case NVME_OPC_NVM_DSET_MGMT:
4036 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4037 
4038 		if (nvme_fill_ranges(cmd, xfer,
4039 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
4040 			goto fail;
4041 		break;
4042 
4043 	default:
4044 		goto fail;
4045 	}
4046 
4047 	return (cmd);
4048 
4049 fail:
4050 	nvme_free_cmd(cmd);
4051 	return (NULL);
4052 }
4053 
4054 static void
4055 nvme_bd_xfer_done(void *arg)
4056 {
4057 	nvme_cmd_t *cmd = arg;
4058 	bd_xfer_t *xfer = cmd->nc_xfer;
4059 	int error = 0;
4060 
4061 	error = nvme_check_cmd_status(cmd);
4062 	nvme_free_cmd(cmd);
4063 
4064 	bd_xfer_done(xfer, error);
4065 }
4066 
4067 static void
4068 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
4069 {
4070 	nvme_namespace_t *ns = arg;
4071 	nvme_t *nvme = ns->ns_nvme;
4072 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
4073 
4074 	/*
4075 	 * Set the blkdev qcount to the number of submission queues.
4076 	 * It will then create one waitq/runq pair for each submission
4077 	 * queue and spread I/O requests across the queues.
4078 	 */
4079 	drive->d_qcount = nvme->n_ioq_count;
4080 
4081 	/*
4082 	 * I/O activity to individual namespaces is distributed across
4083 	 * each of the d_qcount blkdev queues (which has been set to
4084 	 * the number of nvme submission queues). d_qsize is the number
4085 	 * of submitted and not completed I/Os within each queue that blkdev
4086 	 * will allow before it starts holding them in the waitq.
4087 	 *
4088 	 * Each namespace will create a child blkdev instance, for each one
4089 	 * we try and set the d_qsize so that each namespace gets an
4090 	 * equal portion of the submission queue.
4091 	 *
4092 	 * If post instantiation of the nvme drive, n_namespaces_attachable
4093 	 * changes and a namespace is attached it could calculate a
4094 	 * different d_qsize. It may even be that the sum of the d_qsizes is
4095 	 * now beyond the submission queue size. Should that be the case
4096 	 * and the I/O rate is such that blkdev attempts to submit more
4097 	 * I/Os than the size of the submission queue, the excess I/Os
4098 	 * will be held behind the semaphore nq_sema.
4099 	 */
4100 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
4101 
4102 	/*
4103 	 * Don't let the queue size drop below the minimum, though.
4104 	 */
4105 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
4106 
4107 	/*
4108 	 * d_maxxfer is not set, which means the value is taken from the DMA
4109 	 * attributes specified to bd_alloc_handle.
4110 	 */
4111 
4112 	drive->d_removable = B_FALSE;
4113 	drive->d_hotpluggable = B_FALSE;
4114 
4115 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
4116 	drive->d_target = ns->ns_id;
4117 	drive->d_lun = 0;
4118 
4119 	drive->d_model = nvme->n_idctl->id_model;
4120 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
4121 	drive->d_vendor = nvme->n_vendor;
4122 	drive->d_vendor_len = strlen(nvme->n_vendor);
4123 	drive->d_product = nvme->n_product;
4124 	drive->d_product_len = strlen(nvme->n_product);
4125 	drive->d_serial = nvme->n_idctl->id_serial;
4126 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
4127 	drive->d_revision = nvme->n_idctl->id_fwrev;
4128 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
4129 
4130 	/*
4131 	 * If we support the dataset management command, the only restrictions
4132 	 * on a discard request are the maximum number of ranges (segments)
4133 	 * per single request.
4134 	 */
4135 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
4136 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
4137 }
4138 
4139 static int
4140 nvme_bd_mediainfo(void *arg, bd_media_t *media)
4141 {
4142 	nvme_namespace_t *ns = arg;
4143 	nvme_t *nvme = ns->ns_nvme;
4144 
4145 	if (nvme->n_dead) {
4146 		return (EIO);
4147 	}
4148 
4149 	media->m_nblks = ns->ns_block_count;
4150 	media->m_blksize = ns->ns_block_size;
4151 	media->m_readonly = B_FALSE;
4152 	media->m_solidstate = B_TRUE;
4153 
4154 	media->m_pblksize = ns->ns_best_block_size;
4155 
4156 	return (0);
4157 }
4158 
4159 static int
4160 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
4161 {
4162 	nvme_t *nvme = ns->ns_nvme;
4163 	nvme_cmd_t *cmd;
4164 	nvme_qpair_t *ioq;
4165 	boolean_t poll;
4166 	int ret;
4167 
4168 	if (nvme->n_dead) {
4169 		return (EIO);
4170 	}
4171 
4172 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
4173 	if (cmd == NULL)
4174 		return (ENOMEM);
4175 
4176 	cmd->nc_sqid = xfer->x_qnum + 1;
4177 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4178 	ioq = nvme->n_ioq[cmd->nc_sqid];
4179 
4180 	/*
4181 	 * Get the polling flag before submitting the command. The command may
4182 	 * complete immediately after it was submitted, which means we must
4183 	 * treat both cmd and xfer as if they have been freed already.
4184 	 */
4185 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
4186 
4187 	ret = nvme_submit_io_cmd(ioq, cmd);
4188 
4189 	if (ret != 0)
4190 		return (ret);
4191 
4192 	if (!poll)
4193 		return (0);
4194 
4195 	do {
4196 		cmd = nvme_retrieve_cmd(nvme, ioq);
4197 		if (cmd != NULL)
4198 			cmd->nc_callback(cmd);
4199 		else
4200 			drv_usecwait(10);
4201 	} while (ioq->nq_active_cmds != 0);
4202 
4203 	return (0);
4204 }
4205 
4206 static int
4207 nvme_bd_read(void *arg, bd_xfer_t *xfer)
4208 {
4209 	nvme_namespace_t *ns = arg;
4210 
4211 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
4212 }
4213 
4214 static int
4215 nvme_bd_write(void *arg, bd_xfer_t *xfer)
4216 {
4217 	nvme_namespace_t *ns = arg;
4218 
4219 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
4220 }
4221 
4222 static int
4223 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
4224 {
4225 	nvme_namespace_t *ns = arg;
4226 
4227 	if (ns->ns_nvme->n_dead)
4228 		return (EIO);
4229 
4230 	/*
4231 	 * If the volatile write cache is not present or not enabled the FLUSH
4232 	 * command is a no-op, so we can take a shortcut here.
4233 	 */
4234 	if (!ns->ns_nvme->n_write_cache_present) {
4235 		bd_xfer_done(xfer, ENOTSUP);
4236 		return (0);
4237 	}
4238 
4239 	if (!ns->ns_nvme->n_write_cache_enabled) {
4240 		bd_xfer_done(xfer, 0);
4241 		return (0);
4242 	}
4243 
4244 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
4245 }
4246 
4247 static int
4248 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
4249 {
4250 	nvme_namespace_t *ns = arg;
4251 	nvme_t *nvme = ns->ns_nvme;
4252 
4253 	if (nvme->n_dead) {
4254 		return (EIO);
4255 	}
4256 
4257 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
4258 	if (*(uint64_t *)ns->ns_eui64 != 0) {
4259 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4260 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4261 	} else {
4262 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
4263 		    strlen(ns->ns_devid), ns->ns_devid, devid));
4264 	}
4265 }
4266 
4267 static int
4268 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4269 {
4270 	nvme_namespace_t *ns = arg;
4271 
4272 	if (xfer->x_dfl == NULL)
4273 		return (EINVAL);
4274 
4275 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4276 		return (ENOTSUP);
4277 
4278 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4279 }
4280 
4281 static int
4282 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4283 {
4284 #ifndef __lock_lint
4285 	_NOTE(ARGUNUSED(cred_p));
4286 #endif
4287 	minor_t minor = getminor(*devp);
4288 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4289 	int nsid = NVME_MINOR_NSID(minor);
4290 	nvme_minor_state_t *nm;
4291 	int rv = 0;
4292 
4293 	if (otyp != OTYP_CHR)
4294 		return (EINVAL);
4295 
4296 	if (nvme == NULL)
4297 		return (ENXIO);
4298 
4299 	if (nsid > nvme->n_namespace_count)
4300 		return (ENXIO);
4301 
4302 	if (nvme->n_dead)
4303 		return (EIO);
4304 
4305 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4306 
4307 	mutex_enter(&nm->nm_mutex);
4308 	if (nm->nm_oexcl) {
4309 		rv = EBUSY;
4310 		goto out;
4311 	}
4312 
4313 	if (flag & FEXCL) {
4314 		if (nm->nm_ocnt != 0) {
4315 			rv = EBUSY;
4316 			goto out;
4317 		}
4318 		nm->nm_oexcl = B_TRUE;
4319 	}
4320 
4321 	nm->nm_ocnt++;
4322 
4323 out:
4324 	mutex_exit(&nm->nm_mutex);
4325 	return (rv);
4326 
4327 }
4328 
4329 static int
4330 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4331 {
4332 #ifndef __lock_lint
4333 	_NOTE(ARGUNUSED(cred_p));
4334 	_NOTE(ARGUNUSED(flag));
4335 #endif
4336 	minor_t minor = getminor(dev);
4337 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4338 	int nsid = NVME_MINOR_NSID(minor);
4339 	nvme_minor_state_t *nm;
4340 
4341 	if (otyp != OTYP_CHR)
4342 		return (ENXIO);
4343 
4344 	if (nvme == NULL)
4345 		return (ENXIO);
4346 
4347 	if (nsid > nvme->n_namespace_count)
4348 		return (ENXIO);
4349 
4350 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
4351 
4352 	mutex_enter(&nm->nm_mutex);
4353 	if (nm->nm_oexcl)
4354 		nm->nm_oexcl = B_FALSE;
4355 
4356 	ASSERT(nm->nm_ocnt > 0);
4357 	nm->nm_ocnt--;
4358 	mutex_exit(&nm->nm_mutex);
4359 
4360 	return (0);
4361 }
4362 
4363 static int
4364 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4365     cred_t *cred_p)
4366 {
4367 	_NOTE(ARGUNUSED(cred_p));
4368 	int rv = 0;
4369 	void *idctl;
4370 
4371 	if ((mode & FREAD) == 0)
4372 		return (EPERM);
4373 
4374 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4375 		return (EINVAL);
4376 
4377 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4378 		return (rv);
4379 
4380 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4381 	    != 0)
4382 		rv = EFAULT;
4383 
4384 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4385 
4386 	return (rv);
4387 }
4388 
4389 /*
4390  * Execute commands on behalf of the various ioctls.
4391  */
4392 static int
4393 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4394     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4395 {
4396 	nvme_cmd_t *cmd;
4397 	nvme_qpair_t *ioq;
4398 	int rv = 0;
4399 
4400 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4401 	if (is_admin) {
4402 		cmd->nc_sqid = 0;
4403 		ioq = nvme->n_adminq;
4404 	} else {
4405 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4406 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4407 		ioq = nvme->n_ioq[cmd->nc_sqid];
4408 	}
4409 
4410 	/*
4411 	 * This function is used to facilitate requests from
4412 	 * userspace, so don't panic if the command fails. This
4413 	 * is especially true for admin passthru commands, where
4414 	 * the actual command data structure is entirely defined
4415 	 * by userspace.
4416 	 */
4417 	cmd->nc_dontpanic = B_TRUE;
4418 
4419 	cmd->nc_callback = nvme_wakeup_cmd;
4420 	cmd->nc_sqe = *sqe;
4421 
4422 	if ((rwk & (FREAD | FWRITE)) != 0) {
4423 		if (data_addr == NULL) {
4424 			rv = EINVAL;
4425 			goto free_cmd;
4426 		}
4427 
4428 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4429 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4430 			dev_err(nvme->n_dip, CE_WARN,
4431 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4432 
4433 			rv = ENOMEM;
4434 			goto free_cmd;
4435 		}
4436 
4437 		if ((rv = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
4438 			goto free_cmd;
4439 
4440 		if ((rwk & FWRITE) != 0) {
4441 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4442 			    data_len, rwk & FKIOCTL) != 0) {
4443 				rv = EFAULT;
4444 				goto free_cmd;
4445 			}
4446 		}
4447 	}
4448 
4449 	if (is_admin) {
4450 		nvme_admin_cmd(cmd, timeout);
4451 	} else {
4452 		mutex_enter(&cmd->nc_mutex);
4453 
4454 		rv = nvme_submit_io_cmd(ioq, cmd);
4455 
4456 		if (rv == EAGAIN) {
4457 			mutex_exit(&cmd->nc_mutex);
4458 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4459 			    "!nvme_ioc_cmd() failed, I/O Q full");
4460 			goto free_cmd;
4461 		}
4462 
4463 		nvme_wait_cmd(cmd, timeout);
4464 
4465 		mutex_exit(&cmd->nc_mutex);
4466 	}
4467 
4468 	if (cqe != NULL)
4469 		*cqe = cmd->nc_cqe;
4470 
4471 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4472 		dev_err(nvme->n_dip, CE_WARN,
4473 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4474 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4475 
4476 		goto free_cmd;
4477 	}
4478 
4479 	if ((rwk & FREAD) != 0) {
4480 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4481 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4482 			rv = EFAULT;
4483 	}
4484 
4485 free_cmd:
4486 	nvme_free_cmd(cmd);
4487 
4488 	return (rv);
4489 }
4490 
4491 static int
4492 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4493     int mode, cred_t *cred_p)
4494 {
4495 	_NOTE(ARGUNUSED(nsid, cred_p));
4496 	int rv = 0;
4497 	nvme_reg_cap_t cap = { 0 };
4498 	nvme_capabilities_t nc;
4499 
4500 	if ((mode & FREAD) == 0)
4501 		return (EPERM);
4502 
4503 	if (nioc->n_len < sizeof (nc))
4504 		return (EINVAL);
4505 
4506 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4507 
4508 	/*
4509 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4510 	 * specify the base page size of 4k (1<<12), so add 12 here to
4511 	 * get the real page size value.
4512 	 */
4513 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4514 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4515 
4516 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4517 		rv = EFAULT;
4518 
4519 	return (rv);
4520 }
4521 
4522 static int
4523 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4524     int mode, cred_t *cred_p)
4525 {
4526 	_NOTE(ARGUNUSED(cred_p));
4527 	void *log = NULL;
4528 	size_t bufsize = 0;
4529 	int rv = 0;
4530 
4531 	if ((mode & FREAD) == 0)
4532 		return (EPERM);
4533 
4534 	switch (nioc->n_arg) {
4535 	case NVME_LOGPAGE_ERROR:
4536 		if (nsid != 0)
4537 			return (EINVAL);
4538 		break;
4539 	case NVME_LOGPAGE_HEALTH:
4540 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4541 			return (EINVAL);
4542 
4543 		if (nsid == 0)
4544 			nsid = (uint32_t)-1;
4545 
4546 		break;
4547 	case NVME_LOGPAGE_FWSLOT:
4548 		if (nsid != 0)
4549 			return (EINVAL);
4550 		break;
4551 	default:
4552 		if (!NVME_IS_VENDOR_SPECIFIC_LOGPAGE(nioc->n_arg))
4553 			return (EINVAL);
4554 		if (nioc->n_len > NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE) {
4555 			dev_err(nvme->n_dip, CE_NOTE, "!Vendor-specific log "
4556 			    "page size exceeds device maximum supported size: "
4557 			    "%lu", NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE);
4558 			return (EINVAL);
4559 		}
4560 		if (nioc->n_len == 0)
4561 			return (EINVAL);
4562 		bufsize = nioc->n_len;
4563 		if (nsid == 0)
4564 			nsid = (uint32_t)-1;
4565 	}
4566 
4567 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4568 	    != DDI_SUCCESS)
4569 		return (EIO);
4570 
4571 	if (nioc->n_len < bufsize) {
4572 		kmem_free(log, bufsize);
4573 		return (EINVAL);
4574 	}
4575 
4576 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4577 		rv = EFAULT;
4578 
4579 	nioc->n_len = bufsize;
4580 	kmem_free(log, bufsize);
4581 
4582 	return (rv);
4583 }
4584 
4585 static int
4586 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4587     int mode, cred_t *cred_p)
4588 {
4589 	_NOTE(ARGUNUSED(cred_p));
4590 	void *buf = NULL;
4591 	size_t bufsize = 0;
4592 	uint32_t res = 0;
4593 	uint8_t feature;
4594 	int rv = 0;
4595 
4596 	if ((mode & FREAD) == 0)
4597 		return (EPERM);
4598 
4599 	if ((nioc->n_arg >> 32) > 0xff)
4600 		return (EINVAL);
4601 
4602 	feature = (uint8_t)(nioc->n_arg >> 32);
4603 
4604 	switch (feature) {
4605 	case NVME_FEAT_ARBITRATION:
4606 	case NVME_FEAT_POWER_MGMT:
4607 	case NVME_FEAT_ERROR:
4608 	case NVME_FEAT_NQUEUES:
4609 	case NVME_FEAT_INTR_COAL:
4610 	case NVME_FEAT_WRITE_ATOM:
4611 	case NVME_FEAT_ASYNC_EVENT:
4612 	case NVME_FEAT_PROGRESS:
4613 		if (nsid != 0)
4614 			return (EINVAL);
4615 		break;
4616 
4617 	case NVME_FEAT_TEMPERATURE:
4618 		if (nsid != 0)
4619 			return (EINVAL);
4620 		res = nioc->n_arg & 0xffffffffUL;
4621 		if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
4622 			nvme_temp_threshold_t tt;
4623 
4624 			tt.r = res;
4625 			if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
4626 			    tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
4627 				return (EINVAL);
4628 			}
4629 
4630 			if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
4631 				return (EINVAL);
4632 			}
4633 		} else if (res != 0) {
4634 			return (EINVAL);
4635 		}
4636 		break;
4637 
4638 	case NVME_FEAT_INTR_VECT:
4639 		if (nsid != 0)
4640 			return (EINVAL);
4641 
4642 		res = nioc->n_arg & 0xffffffffUL;
4643 		if (res >= nvme->n_intr_cnt)
4644 			return (EINVAL);
4645 		break;
4646 
4647 	case NVME_FEAT_LBA_RANGE:
4648 		if (nvme->n_lba_range_supported == B_FALSE)
4649 			return (EINVAL);
4650 
4651 		if (nsid == 0 ||
4652 		    nsid > nvme->n_namespace_count)
4653 			return (EINVAL);
4654 
4655 		break;
4656 
4657 	case NVME_FEAT_WRITE_CACHE:
4658 		if (nsid != 0)
4659 			return (EINVAL);
4660 
4661 		if (!nvme->n_write_cache_present)
4662 			return (EINVAL);
4663 
4664 		break;
4665 
4666 	case NVME_FEAT_AUTO_PST:
4667 		if (nsid != 0)
4668 			return (EINVAL);
4669 
4670 		if (!nvme->n_auto_pst_supported)
4671 			return (EINVAL);
4672 
4673 		break;
4674 
4675 	default:
4676 		return (EINVAL);
4677 	}
4678 
4679 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4680 	    &bufsize);
4681 	if (rv != 0)
4682 		return (rv);
4683 
4684 	if (nioc->n_len < bufsize) {
4685 		kmem_free(buf, bufsize);
4686 		return (EINVAL);
4687 	}
4688 
4689 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4690 		rv = EFAULT;
4691 
4692 	kmem_free(buf, bufsize);
4693 	nioc->n_arg = res;
4694 	nioc->n_len = bufsize;
4695 
4696 	return (rv);
4697 }
4698 
4699 static int
4700 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4701     cred_t *cred_p)
4702 {
4703 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4704 
4705 	if ((mode & FREAD) == 0)
4706 		return (EPERM);
4707 
4708 	nioc->n_arg = nvme->n_intr_cnt;
4709 	return (0);
4710 }
4711 
4712 static int
4713 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4714     cred_t *cred_p)
4715 {
4716 	_NOTE(ARGUNUSED(nsid, cred_p));
4717 	int rv = 0;
4718 
4719 	if ((mode & FREAD) == 0)
4720 		return (EPERM);
4721 
4722 	if (nioc->n_len < sizeof (nvme->n_version))
4723 		return (ENOMEM);
4724 
4725 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4726 	    sizeof (nvme->n_version), mode) != 0)
4727 		rv = EFAULT;
4728 
4729 	return (rv);
4730 }
4731 
4732 static int
4733 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4734     cred_t *cred_p)
4735 {
4736 	_NOTE(ARGUNUSED(mode));
4737 	nvme_format_nvm_t frmt = { 0 };
4738 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4739 
4740 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4741 		return (EPERM);
4742 
4743 	frmt.r = nioc->n_arg & 0xffffffff;
4744 
4745 	/*
4746 	 * Check whether the FORMAT NVM command is supported.
4747 	 */
4748 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4749 		return (EINVAL);
4750 
4751 	/*
4752 	 * Don't allow format or secure erase of individual namespace if that
4753 	 * would cause a format or secure erase of all namespaces.
4754 	 */
4755 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4756 		return (EINVAL);
4757 
4758 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4759 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4760 		return (EINVAL);
4761 
4762 	/*
4763 	 * Don't allow formatting with Protection Information.
4764 	 */
4765 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4766 		return (EINVAL);
4767 
4768 	/*
4769 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4770 	 * that uses metadata.
4771 	 */
4772 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4773 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4774 		return (EINVAL);
4775 
4776 	/*
4777 	 * Don't allow formatting using an illegal Secure Erase setting.
4778 	 */
4779 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4780 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4781 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4782 		return (EINVAL);
4783 
4784 	if (nsid == 0)
4785 		nsid = (uint32_t)-1;
4786 
4787 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4788 	    B_FALSE, frmt.b.fm_ses));
4789 }
4790 
4791 static int
4792 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4793     cred_t *cred_p)
4794 {
4795 	_NOTE(ARGUNUSED(nioc, mode));
4796 	int rv = 0;
4797 
4798 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4799 		return (EPERM);
4800 
4801 	if (nsid == 0)
4802 		return (EINVAL);
4803 
4804 	if (nvme->n_ns[nsid - 1].ns_ignore)
4805 		return (0);
4806 
4807 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4808 	if (rv != DDI_SUCCESS)
4809 		rv = EBUSY;
4810 
4811 	return (rv);
4812 }
4813 
4814 static int
4815 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4816     cred_t *cred_p)
4817 {
4818 	_NOTE(ARGUNUSED(nioc, mode));
4819 	nvme_identify_nsid_t *idns;
4820 	int rv = 0;
4821 
4822 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4823 		return (EPERM);
4824 
4825 	if (nsid == 0)
4826 		return (EINVAL);
4827 
4828 	/*
4829 	 * Identify namespace again, free old identify data.
4830 	 */
4831 	idns = nvme->n_ns[nsid - 1].ns_idns;
4832 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4833 		return (EIO);
4834 
4835 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4836 
4837 	if (nvme->n_ns[nsid - 1].ns_ignore)
4838 		return (ENOTSUP);
4839 
4840 	if (nvme->n_ns[nsid - 1].ns_bd_hdl == NULL)
4841 		nvme->n_ns[nsid - 1].ns_bd_hdl = bd_alloc_handle(
4842 		    &nvme->n_ns[nsid - 1], &nvme_bd_ops, &nvme->n_prp_dma_attr,
4843 		    KM_SLEEP);
4844 
4845 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4846 	if (rv != DDI_SUCCESS)
4847 		rv = EBUSY;
4848 
4849 	return (rv);
4850 }
4851 
4852 static void
4853 nvme_ufm_update(nvme_t *nvme)
4854 {
4855 	mutex_enter(&nvme->n_fwslot_mutex);
4856 	ddi_ufm_update(nvme->n_ufmh);
4857 	if (nvme->n_fwslot != NULL) {
4858 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4859 		nvme->n_fwslot = NULL;
4860 	}
4861 	mutex_exit(&nvme->n_fwslot_mutex);
4862 }
4863 
4864 static int
4865 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4866     int mode, cred_t *cred_p)
4867 {
4868 	int rv = 0;
4869 	size_t len, copylen;
4870 	offset_t offset;
4871 	uintptr_t buf;
4872 	nvme_sqe_t sqe = {
4873 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
4874 	};
4875 
4876 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4877 		return (EPERM);
4878 
4879 	if (nsid != 0)
4880 		return (EINVAL);
4881 
4882 	/*
4883 	 * The offset (in n_len) is restricted to the number of DWORDs in
4884 	 * 32 bits.
4885 	 */
4886 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4887 		return (EINVAL);
4888 
4889 	/* Confirm that both offset and length are a multiple of DWORD bytes */
4890 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4891 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
4892 		return (EINVAL);
4893 
4894 	len = nioc->n_len;
4895 	offset = nioc->n_arg;
4896 	buf = (uintptr_t)nioc->n_buf;
4897 	while (len > 0 && rv == 0) {
4898 		/*
4899 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
4900 		 * It is limited to 2 PRPs per NVM command, so limit
4901 		 * the size of the data to 2 pages.
4902 		 */
4903 		copylen = MIN(2 * nvme->n_pagesize, len);
4904 
4905 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4906 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4907 
4908 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4909 		    FWRITE, NULL, nvme_admin_cmd_timeout);
4910 
4911 		buf += copylen;
4912 		offset += copylen;
4913 		len -= copylen;
4914 	}
4915 
4916 	/*
4917 	 * Let the DDI UFM subsystem know that the firmware information for
4918 	 * this device has changed.
4919 	 */
4920 	nvme_ufm_update(nvme);
4921 
4922 	return (rv);
4923 }
4924 
4925 static int
4926 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4927     int mode, cred_t *cred_p)
4928 {
4929 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
4930 	uint32_t slot = nioc->n_arg & 0xffffffff;
4931 	uint32_t action = nioc->n_arg >> 32;
4932 	nvme_cqe_t cqe = { 0 };
4933 	nvme_sqe_t sqe = {
4934 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
4935 	};
4936 	int timeout;
4937 	int rv;
4938 
4939 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4940 		return (EPERM);
4941 
4942 	if (nsid != 0)
4943 		return (EINVAL);
4944 
4945 	/* Validate slot is in range. */
4946 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
4947 		return (EINVAL);
4948 
4949 	switch (action) {
4950 	case NVME_FWC_SAVE:
4951 	case NVME_FWC_SAVE_ACTIVATE:
4952 		timeout = nvme_commit_save_cmd_timeout;
4953 		break;
4954 	case NVME_FWC_ACTIVATE:
4955 	case NVME_FWC_ACTIVATE_IMMED:
4956 		timeout = nvme_admin_cmd_timeout;
4957 		break;
4958 	default:
4959 		return (EINVAL);
4960 	}
4961 
4962 	fc_dw10.b.fc_slot = slot;
4963 	fc_dw10.b.fc_action = action;
4964 	sqe.sqe_cdw10 = fc_dw10.r;
4965 
4966 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
4967 
4968 	nioc->n_arg = ((uint64_t)cqe.cqe_sf.sf_sct << 16) | cqe.cqe_sf.sf_sc;
4969 
4970 	/*
4971 	 * Let the DDI UFM subsystem know that the firmware information for
4972 	 * this device has changed.
4973 	 */
4974 	nvme_ufm_update(nvme);
4975 
4976 	return (rv);
4977 }
4978 
4979 /*
4980  * Helper to copy in a passthru command from userspace, handling
4981  * different data models.
4982  */
4983 static int
4984 nvme_passthru_copy_cmd_in(const void *buf, nvme_passthru_cmd_t *cmd, int mode)
4985 {
4986 #ifdef _MULTI_DATAMODEL
4987 	switch (ddi_model_convert_from(mode & FMODELS)) {
4988 	case DDI_MODEL_ILP32: {
4989 		nvme_passthru_cmd32_t cmd32;
4990 		if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0)
4991 			return (-1);
4992 		cmd->npc_opcode = cmd32.npc_opcode;
4993 		cmd->npc_timeout = cmd32.npc_timeout;
4994 		cmd->npc_flags = cmd32.npc_flags;
4995 		cmd->npc_cdw12 = cmd32.npc_cdw12;
4996 		cmd->npc_cdw13 = cmd32.npc_cdw13;
4997 		cmd->npc_cdw14 = cmd32.npc_cdw14;
4998 		cmd->npc_cdw15 = cmd32.npc_cdw15;
4999 		cmd->npc_buflen = cmd32.npc_buflen;
5000 		cmd->npc_buf = cmd32.npc_buf;
5001 		break;
5002 	}
5003 	case DDI_MODEL_NONE:
5004 #endif
5005 	if (ddi_copyin(buf, (void*)cmd, sizeof (nvme_passthru_cmd_t),
5006 	    mode) != 0)
5007 		return (-1);
5008 #ifdef _MULTI_DATAMODEL
5009 		break;
5010 	}
5011 #endif
5012 	return (0);
5013 }
5014 
5015 /*
5016  * Helper to copy out a passthru command result to userspace, handling
5017  * different data models.
5018  */
5019 static int
5020 nvme_passthru_copy_cmd_out(const nvme_passthru_cmd_t *cmd, void *buf, int mode)
5021 {
5022 #ifdef _MULTI_DATAMODEL
5023 	switch (ddi_model_convert_from(mode & FMODELS)) {
5024 	case DDI_MODEL_ILP32: {
5025 		nvme_passthru_cmd32_t cmd32;
5026 		bzero(&cmd32, sizeof (cmd32));
5027 		cmd32.npc_opcode = cmd->npc_opcode;
5028 		cmd32.npc_status = cmd->npc_status;
5029 		cmd32.npc_err = cmd->npc_err;
5030 		cmd32.npc_timeout = cmd->npc_timeout;
5031 		cmd32.npc_flags = cmd->npc_flags;
5032 		cmd32.npc_cdw0 = cmd->npc_cdw0;
5033 		cmd32.npc_cdw12 = cmd->npc_cdw12;
5034 		cmd32.npc_cdw13 = cmd->npc_cdw13;
5035 		cmd32.npc_cdw14 = cmd->npc_cdw14;
5036 		cmd32.npc_cdw15 = cmd->npc_cdw15;
5037 		cmd32.npc_buflen = (size32_t)cmd->npc_buflen;
5038 		cmd32.npc_buf = (uintptr32_t)cmd->npc_buf;
5039 		if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0)
5040 			return (-1);
5041 		break;
5042 	}
5043 	case DDI_MODEL_NONE:
5044 #endif
5045 		if (ddi_copyout(cmd, buf, sizeof (nvme_passthru_cmd_t),
5046 		    mode) != 0)
5047 			return (-1);
5048 #ifdef _MULTI_DATAMODEL
5049 		break;
5050 	}
5051 #endif
5052 	return (0);
5053 }
5054 
5055 /*
5056  * Run an arbitrary vendor-specific admin command on the device.
5057  */
5058 static int
5059 nvme_ioctl_passthru(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5060     cred_t *cred_p)
5061 {
5062 	int rv = 0;
5063 	uint_t timeout = 0;
5064 	int rwk = 0;
5065 	nvme_passthru_cmd_t cmd;
5066 	size_t expected_passthru_size = 0;
5067 	nvme_sqe_t sqe;
5068 	nvme_cqe_t cqe;
5069 
5070 	bzero(&cmd, sizeof (cmd));
5071 	bzero(&sqe, sizeof (sqe));
5072 	bzero(&cqe, sizeof (cqe));
5073 
5074 	/*
5075 	 * Basic checks: permissions, data model, argument size.
5076 	 */
5077 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5078 		return (EPERM);
5079 
5080 	/*
5081 	 * Compute the expected size of the argument buffer
5082 	 */
5083 #ifdef _MULTI_DATAMODEL
5084 	switch (ddi_model_convert_from(mode & FMODELS)) {
5085 	case DDI_MODEL_ILP32:
5086 		expected_passthru_size = sizeof (nvme_passthru_cmd32_t);
5087 		break;
5088 	case DDI_MODEL_NONE:
5089 #endif
5090 		expected_passthru_size = sizeof (nvme_passthru_cmd_t);
5091 #ifdef _MULTI_DATAMODEL
5092 		break;
5093 	}
5094 #endif
5095 
5096 	if (nioc->n_len != expected_passthru_size) {
5097 		cmd.npc_err = NVME_PASSTHRU_ERR_CMD_SIZE;
5098 		rv = EINVAL;
5099 		goto out;
5100 	}
5101 
5102 	/*
5103 	 * Ensure the device supports the standard vendor specific
5104 	 * admin command format.
5105 	 */
5106 	if (!nvme->n_idctl->id_nvscc.nv_spec) {
5107 		cmd.npc_err = NVME_PASSTHRU_ERR_NOT_SUPPORTED;
5108 		rv = ENOTSUP;
5109 		goto out;
5110 	}
5111 
5112 	if (nvme_passthru_copy_cmd_in((const void*)nioc->n_buf, &cmd, mode))
5113 		return (EFAULT);
5114 
5115 	if (!NVME_IS_VENDOR_SPECIFIC_CMD(cmd.npc_opcode)) {
5116 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_OPCODE;
5117 		rv = EINVAL;
5118 		goto out;
5119 	}
5120 
5121 	/*
5122 	 * This restriction is not mandated by the spec, so future work
5123 	 * could relax this if it's necessary to support commands that both
5124 	 * read and write.
5125 	 */
5126 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0 &&
5127 	    (cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) {
5128 		cmd.npc_err = NVME_PASSTHRU_ERR_READ_AND_WRITE;
5129 		rv = EINVAL;
5130 		goto out;
5131 	}
5132 	if (cmd.npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) {
5133 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_TIMEOUT;
5134 		rv = EINVAL;
5135 		goto out;
5136 	}
5137 	timeout = cmd.npc_timeout;
5138 
5139 	/*
5140 	 * Passed-thru command buffer verification:
5141 	 *  - Size is multiple of DWords
5142 	 *  - Non-null iff the length is non-zero
5143 	 *  - Null if neither reading nor writing data.
5144 	 *  - Non-null if reading or writing.
5145 	 *  - Maximum buffer size.
5146 	 */
5147 	if ((cmd.npc_buflen % sizeof (uint32_t)) != 0) {
5148 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5149 		rv = EINVAL;
5150 		goto out;
5151 	}
5152 	if (((void*)cmd.npc_buf != NULL && cmd.npc_buflen == 0) ||
5153 	    ((void*)cmd.npc_buf == NULL && cmd.npc_buflen != 0)) {
5154 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5155 		rv = EINVAL;
5156 		goto out;
5157 	}
5158 	if (cmd.npc_flags == 0 && (void*)cmd.npc_buf != NULL) {
5159 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5160 		rv = EINVAL;
5161 		goto out;
5162 	}
5163 	if ((cmd.npc_flags != 0) && ((void*)cmd.npc_buf == NULL)) {
5164 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5165 		rv = EINVAL;
5166 		goto out;
5167 	}
5168 	if (cmd.npc_buflen > nvme_vendor_specific_admin_cmd_size) {
5169 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5170 		rv = EINVAL;
5171 		goto out;
5172 	}
5173 	if ((cmd.npc_buflen >> NVME_DWORD_SHIFT) > UINT32_MAX) {
5174 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5175 		rv = EINVAL;
5176 		goto out;
5177 	}
5178 
5179 	sqe.sqe_opc = cmd.npc_opcode;
5180 	sqe.sqe_nsid = nsid;
5181 	sqe.sqe_cdw10 = (uint32_t)(cmd.npc_buflen >> NVME_DWORD_SHIFT);
5182 	sqe.sqe_cdw12 = cmd.npc_cdw12;
5183 	sqe.sqe_cdw13 = cmd.npc_cdw13;
5184 	sqe.sqe_cdw14 = cmd.npc_cdw14;
5185 	sqe.sqe_cdw15 = cmd.npc_cdw15;
5186 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0)
5187 		rwk = FREAD;
5188 	else if ((cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0)
5189 		rwk = FWRITE;
5190 
5191 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void*)cmd.npc_buf,
5192 	    cmd.npc_buflen, rwk, &cqe, timeout);
5193 	cmd.npc_status = cqe.cqe_sf.sf_sc;
5194 	cmd.npc_cdw0 = cqe.cqe_dw0;
5195 
5196 out:
5197 	if (nvme_passthru_copy_cmd_out(&cmd, (void*)nioc->n_buf, mode))
5198 		rv = EFAULT;
5199 	return (rv);
5200 }
5201 
5202 static int
5203 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
5204     int *rval_p)
5205 {
5206 #ifndef __lock_lint
5207 	_NOTE(ARGUNUSED(rval_p));
5208 #endif
5209 	minor_t minor = getminor(dev);
5210 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
5211 	int nsid = NVME_MINOR_NSID(minor);
5212 	int rv = 0;
5213 	nvme_ioctl_t nioc;
5214 
5215 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
5216 		NULL,
5217 		nvme_ioctl_identify,
5218 		nvme_ioctl_identify,
5219 		nvme_ioctl_capabilities,
5220 		nvme_ioctl_get_logpage,
5221 		nvme_ioctl_get_features,
5222 		nvme_ioctl_intr_cnt,
5223 		nvme_ioctl_version,
5224 		nvme_ioctl_format,
5225 		nvme_ioctl_detach,
5226 		nvme_ioctl_attach,
5227 		nvme_ioctl_firmware_download,
5228 		nvme_ioctl_firmware_commit,
5229 		nvme_ioctl_passthru
5230 	};
5231 
5232 	if (nvme == NULL)
5233 		return (ENXIO);
5234 
5235 	if (nsid > nvme->n_namespace_count)
5236 		return (ENXIO);
5237 
5238 	if (IS_DEVCTL(cmd))
5239 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
5240 
5241 #ifdef _MULTI_DATAMODEL
5242 	switch (ddi_model_convert_from(mode & FMODELS)) {
5243 	case DDI_MODEL_ILP32: {
5244 		nvme_ioctl32_t nioc32;
5245 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
5246 		    mode) != 0)
5247 			return (EFAULT);
5248 		nioc.n_len = nioc32.n_len;
5249 		nioc.n_buf = nioc32.n_buf;
5250 		nioc.n_arg = nioc32.n_arg;
5251 		break;
5252 	}
5253 	case DDI_MODEL_NONE:
5254 #endif
5255 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
5256 		    != 0)
5257 			return (EFAULT);
5258 #ifdef _MULTI_DATAMODEL
5259 		break;
5260 	}
5261 #endif
5262 
5263 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
5264 		return (EIO);
5265 
5266 
5267 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
5268 		/*
5269 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
5270 		 * attachment point nodes.
5271 		 */
5272 		nsid = 0;
5273 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
5274 		/*
5275 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
5276 		 * will always return identify data for namespace 1.
5277 		 */
5278 		nsid = 1;
5279 	}
5280 
5281 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
5282 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
5283 		    cred_p);
5284 	else
5285 		rv = EINVAL;
5286 
5287 #ifdef _MULTI_DATAMODEL
5288 	switch (ddi_model_convert_from(mode & FMODELS)) {
5289 	case DDI_MODEL_ILP32: {
5290 		nvme_ioctl32_t nioc32;
5291 
5292 		nioc32.n_len = (size32_t)nioc.n_len;
5293 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
5294 		nioc32.n_arg = nioc.n_arg;
5295 
5296 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
5297 		    mode) != 0)
5298 			return (EFAULT);
5299 		break;
5300 	}
5301 	case DDI_MODEL_NONE:
5302 #endif
5303 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
5304 		    != 0)
5305 			return (EFAULT);
5306 #ifdef _MULTI_DATAMODEL
5307 		break;
5308 	}
5309 #endif
5310 
5311 	return (rv);
5312 }
5313 
5314 /*
5315  * DDI UFM Callbacks
5316  */
5317 static int
5318 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5319     ddi_ufm_image_t *img)
5320 {
5321 	nvme_t *nvme = arg;
5322 
5323 	if (imgno != 0)
5324 		return (EINVAL);
5325 
5326 	ddi_ufm_image_set_desc(img, "Firmware");
5327 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
5328 
5329 	return (0);
5330 }
5331 
5332 /*
5333  * Fill out firmware slot information for the requested slot.  The firmware
5334  * slot information is gathered by requesting the Firmware Slot Information log
5335  * page.  The format of the page is described in section 5.10.1.3.
5336  *
5337  * We lazily cache the log page on the first call and then invalidate the cache
5338  * data after a successful firmware download or firmware commit command.
5339  * The cached data is protected by a mutex as the state can change
5340  * asynchronous to this callback.
5341  */
5342 static int
5343 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5344     uint_t slotno, ddi_ufm_slot_t *slot)
5345 {
5346 	nvme_t *nvme = arg;
5347 	void *log = NULL;
5348 	size_t bufsize;
5349 	ddi_ufm_attr_t attr = 0;
5350 	char fw_ver[NVME_FWVER_SZ + 1];
5351 	int ret;
5352 
5353 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
5354 		return (EINVAL);
5355 
5356 	mutex_enter(&nvme->n_fwslot_mutex);
5357 	if (nvme->n_fwslot == NULL) {
5358 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
5359 		    NVME_LOGPAGE_FWSLOT, 0);
5360 		if (ret != DDI_SUCCESS ||
5361 		    bufsize != sizeof (nvme_fwslot_log_t)) {
5362 			if (log != NULL)
5363 				kmem_free(log, bufsize);
5364 			mutex_exit(&nvme->n_fwslot_mutex);
5365 			return (EIO);
5366 		}
5367 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
5368 	}
5369 
5370 	/*
5371 	 * NVMe numbers firmware slots starting at 1
5372 	 */
5373 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
5374 		attr |= DDI_UFM_ATTR_ACTIVE;
5375 
5376 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
5377 		attr |= DDI_UFM_ATTR_WRITEABLE;
5378 
5379 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
5380 		attr |= DDI_UFM_ATTR_EMPTY;
5381 	} else {
5382 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
5383 		    NVME_FWVER_SZ);
5384 		fw_ver[NVME_FWVER_SZ] = '\0';
5385 		ddi_ufm_slot_set_version(slot, fw_ver);
5386 	}
5387 	mutex_exit(&nvme->n_fwslot_mutex);
5388 
5389 	ddi_ufm_slot_set_attrs(slot, attr);
5390 
5391 	return (0);
5392 }
5393 
5394 static int
5395 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
5396 {
5397 	*caps = DDI_UFM_CAP_REPORT;
5398 	return (0);
5399 }
5400