xref: /illumos-gate/usr/src/uts/common/io/nge/nge_main.c (revision a4faba164aa153855d621c694fc5aa75dd183b81)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 
28 #include "nge.h"
29 
30 /*
31  * Describes the chip's DMA engine
32  */
33 
34 static ddi_dma_attr_t hot_dma_attr = {
35 	DMA_ATTR_V0,			/* dma_attr version	*/
36 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
37 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
38 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
39 	0x0000000000000010ull,		/* dma_attr_align	*/
40 	0x00000FFF,			/* dma_attr_burstsizes	*/
41 	0x00000001,			/* dma_attr_minxfer	*/
42 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
43 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
44 	1,				/* dma_attr_sgllen 	*/
45 	0x00000001,			/* dma_attr_granular 	*/
46 	0
47 };
48 
49 static ddi_dma_attr_t hot_tx_dma_attr = {
50 	DMA_ATTR_V0,			/* dma_attr version	*/
51 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
52 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
53 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
54 	0x0000000000000010ull,		/* dma_attr_align	*/
55 	0x00000FFF,			/* dma_attr_burstsizes	*/
56 	0x00000001,			/* dma_attr_minxfer	*/
57 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
58 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
59 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
60 	1,				/* dma_attr_granular 	*/
61 	0
62 };
63 
64 static ddi_dma_attr_t sum_dma_attr = {
65 	DMA_ATTR_V0,			/* dma_attr version	*/
66 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
67 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
68 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
69 	0x0000000000000010ull,		/* dma_attr_align	*/
70 	0x00000FFF,			/* dma_attr_burstsizes	*/
71 	0x00000001,			/* dma_attr_minxfer	*/
72 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
73 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
74 	1,				/* dma_attr_sgllen 	*/
75 	0x00000001,			/* dma_attr_granular 	*/
76 	0
77 };
78 
79 static ddi_dma_attr_t sum_tx_dma_attr = {
80 	DMA_ATTR_V0,			/* dma_attr version	*/
81 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
82 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
83 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
84 	0x0000000000000010ull,		/* dma_attr_align	*/
85 	0x00000FFF,			/* dma_attr_burstsizes	*/
86 	0x00000001,			/* dma_attr_minxfer	*/
87 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
88 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
89 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
90 	1,				/* dma_attr_granular 	*/
91 	0
92 };
93 
94 /*
95  * DMA access attributes for data.
96  */
97 ddi_device_acc_attr_t nge_data_accattr = {
98 	DDI_DEVICE_ATTR_V0,
99 	DDI_STRUCTURE_LE_ACC,
100 	DDI_STRICTORDER_ACC,
101 	DDI_DEFAULT_ACC
102 };
103 
104 /*
105  * DMA access attributes for descriptors.
106  */
107 static ddi_device_acc_attr_t nge_desc_accattr = {
108 	DDI_DEVICE_ATTR_V0,
109 	DDI_STRUCTURE_LE_ACC,
110 	DDI_STRICTORDER_ACC,
111 	DDI_DEFAULT_ACC
112 };
113 
114 /*
115  * PIO access attributes for registers
116  */
117 static ddi_device_acc_attr_t nge_reg_accattr = {
118 	DDI_DEVICE_ATTR_V0,
119 	DDI_STRUCTURE_LE_ACC,
120 	DDI_STRICTORDER_ACC,
121 	DDI_DEFAULT_ACC
122 };
123 
124 /*
125  * NIC DESC MODE 2
126  */
127 
128 static const nge_desc_attr_t nge_sum_desc = {
129 
130 	sizeof (sum_rx_bd),
131 	sizeof (sum_tx_bd),
132 	&sum_dma_attr,
133 	&sum_tx_dma_attr,
134 	nge_sum_rxd_fill,
135 	nge_sum_rxd_check,
136 	nge_sum_txd_fill,
137 	nge_sum_txd_check,
138 };
139 
140 /*
141  * NIC DESC MODE 3
142  */
143 
144 static const nge_desc_attr_t nge_hot_desc = {
145 
146 	sizeof (hot_rx_bd),
147 	sizeof (hot_tx_bd),
148 	&hot_dma_attr,
149 	&hot_tx_dma_attr,
150 	nge_hot_rxd_fill,
151 	nge_hot_rxd_check,
152 	nge_hot_txd_fill,
153 	nge_hot_txd_check,
154 };
155 
156 static char nge_ident[] = "nVidia 1Gb Ethernet";
157 static char clsize_propname[] = "cache-line-size";
158 static char latency_propname[] = "latency-timer";
159 static char debug_propname[]	= "nge-debug-flags";
160 static char intr_moderation[] = "intr-moderation";
161 static char rx_data_hw[] = "rx-data-hw";
162 static char rx_prd_lw[] = "rx-prd-lw";
163 static char rx_prd_hw[] = "rx-prd-hw";
164 static char sw_intr_intv[] = "sw-intr-intvl";
165 static char nge_desc_mode[] = "desc-mode";
166 static char default_mtu[] = "default_mtu";
167 static char low_memory_mode[] = "minimal-memory-usage";
168 extern kmutex_t nge_log_mutex[1];
169 
170 static int		nge_m_start(void *);
171 static void		nge_m_stop(void *);
172 static int		nge_m_promisc(void *, boolean_t);
173 static int		nge_m_multicst(void *, boolean_t, const uint8_t *);
174 static int		nge_m_unicst(void *, const uint8_t *);
175 static void		nge_m_ioctl(void *, queue_t *, mblk_t *);
176 static boolean_t	nge_m_getcapab(void *, mac_capab_t, void *);
177 static int		nge_m_setprop(void *, const char *, mac_prop_id_t,
178 	uint_t, const void *);
179 static int		nge_m_getprop(void *, const char *, mac_prop_id_t,
180 	uint_t, uint_t, void *, uint_t *);
181 static int		nge_set_priv_prop(nge_t *, const char *, uint_t,
182 	const void *);
183 static int		nge_get_priv_prop(nge_t *, const char *, uint_t,
184 	uint_t, void *);
185 
186 #define		NGE_M_CALLBACK_FLAGS\
187 		(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
188 
189 static mac_callbacks_t nge_m_callbacks = {
190 	NGE_M_CALLBACK_FLAGS,
191 	nge_m_stat,
192 	nge_m_start,
193 	nge_m_stop,
194 	nge_m_promisc,
195 	nge_m_multicst,
196 	nge_m_unicst,
197 	nge_m_tx,
198 	nge_m_ioctl,
199 	nge_m_getcapab,
200 	NULL,
201 	NULL,
202 	nge_m_setprop,
203 	nge_m_getprop
204 };
205 
206 mac_priv_prop_t nge_priv_props[] = {
207 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
208 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
209 	{"_recv_max_packet", MAC_PROP_PERM_RW},
210 	{"_poll_quiet_time", MAC_PROP_PERM_RW},
211 	{"_poll_busy_time", MAC_PROP_PERM_RW},
212 	{"_rx_intr_hwater", MAC_PROP_PERM_RW},
213 	{"_rx_intr_lwater", MAC_PROP_PERM_RW},
214 	{"_tx_n_intr", MAC_PROP_PERM_RW}
215 };
216 
217 #define	NGE_MAX_PRIV_PROPS \
218 	(sizeof (nge_priv_props)/sizeof (mac_priv_prop_t))
219 
220 static int nge_add_intrs(nge_t *, int);
221 static void nge_rem_intrs(nge_t *);
222 static int nge_register_intrs_and_init_locks(nge_t *);
223 
224 /*
225  * NGE MSI tunable:
226  */
227 boolean_t nge_enable_msi = B_FALSE;
228 
229 static enum ioc_reply
230 nge_set_loop_mode(nge_t *ngep, uint32_t mode)
231 {
232 	/*
233 	 * If the mode isn't being changed, there's nothing to do ...
234 	 */
235 	if (mode == ngep->param_loop_mode)
236 		return (IOC_ACK);
237 
238 	/*
239 	 * Validate the requested mode and prepare a suitable message
240 	 * to explain the link down/up cycle that the change will
241 	 * probably induce ...
242 	 */
243 	switch (mode) {
244 	default:
245 		return (IOC_INVAL);
246 
247 	case NGE_LOOP_NONE:
248 	case NGE_LOOP_EXTERNAL_100:
249 	case NGE_LOOP_EXTERNAL_10:
250 	case NGE_LOOP_INTERNAL_PHY:
251 		break;
252 	}
253 
254 	/*
255 	 * All OK; tell the caller to reprogram
256 	 * the PHY and/or MAC for the new mode ...
257 	 */
258 	ngep->param_loop_mode = mode;
259 	return (IOC_RESTART_ACK);
260 }
261 
262 #undef	NGE_DBG
263 #define	NGE_DBG		NGE_DBG_INIT
264 
265 /*
266  * Utility routine to carve a slice off a chunk of allocated memory,
267  * updating the chunk descriptor accordingly.  The size of the slice
268  * is given by the product of the <qty> and <size> parameters.
269  */
270 void
271 nge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
272     uint32_t qty, uint32_t size)
273 {
274 	size_t totsize;
275 
276 	totsize = qty*size;
277 	ASSERT(size > 0);
278 	ASSERT(totsize <= chunk->alength);
279 
280 	*slice = *chunk;
281 	slice->nslots = qty;
282 	slice->size = size;
283 	slice->alength = totsize;
284 
285 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
286 	chunk->alength -= totsize;
287 	chunk->offset += totsize;
288 	chunk->cookie.dmac_laddress += totsize;
289 	chunk->cookie.dmac_size -= totsize;
290 }
291 
292 /*
293  * Allocate an area of memory and a DMA handle for accessing it
294  */
295 int
296 nge_alloc_dma_mem(nge_t *ngep, size_t memsize, ddi_device_acc_attr_t *attr_p,
297     uint_t dma_flags, dma_area_t *dma_p)
298 {
299 	int err;
300 	caddr_t va;
301 
302 	NGE_TRACE(("nge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
303 	    (void *)ngep, memsize, attr_p, dma_flags, dma_p));
304 	/*
305 	 * Allocate handle
306 	 */
307 	err = ddi_dma_alloc_handle(ngep->devinfo, ngep->desc_attr.dma_attr,
308 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
309 	if (err != DDI_SUCCESS)
310 		goto fail;
311 
312 	/*
313 	 * Allocate memory
314 	 */
315 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
316 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
317 	    DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
318 	if (err != DDI_SUCCESS)
319 		goto fail;
320 
321 	/*
322 	 * Bind the two together
323 	 */
324 	dma_p->mem_va = va;
325 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
326 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
327 	    &dma_p->cookie, &dma_p->ncookies);
328 
329 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
330 		goto fail;
331 
332 	dma_p->nslots = ~0U;
333 	dma_p->size = ~0U;
334 	dma_p->offset = 0;
335 
336 	return (DDI_SUCCESS);
337 
338 fail:
339 	nge_free_dma_mem(dma_p);
340 	NGE_DEBUG(("nge_alloc_dma_mem: fail to alloc dma memory!"));
341 
342 	return (DDI_FAILURE);
343 }
344 
345 /*
346  * Free one allocated area of DMAable memory
347  */
348 void
349 nge_free_dma_mem(dma_area_t *dma_p)
350 {
351 	if (dma_p->dma_hdl != NULL) {
352 		if (dma_p->ncookies) {
353 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
354 			dma_p->ncookies = 0;
355 		}
356 	}
357 	if (dma_p->acc_hdl != NULL) {
358 		ddi_dma_mem_free(&dma_p->acc_hdl);
359 		dma_p->acc_hdl = NULL;
360 	}
361 	if (dma_p->dma_hdl != NULL) {
362 		ddi_dma_free_handle(&dma_p->dma_hdl);
363 		dma_p->dma_hdl = NULL;
364 	}
365 }
366 
367 #define	ALLOC_TX_BUF	0x1
368 #define	ALLOC_TX_DESC	0x2
369 #define	ALLOC_RX_DESC	0x4
370 
371 int
372 nge_alloc_bufs(nge_t *ngep)
373 {
374 	int err;
375 	int split;
376 	int progress;
377 	size_t txbuffsize;
378 	size_t rxdescsize;
379 	size_t txdescsize;
380 
381 	txbuffsize = ngep->tx_desc * ngep->buf_size;
382 	rxdescsize = ngep->rx_desc;
383 	txdescsize = ngep->tx_desc;
384 	rxdescsize *= ngep->desc_attr.rxd_size;
385 	txdescsize *= ngep->desc_attr.txd_size;
386 	progress = 0;
387 
388 	NGE_TRACE(("nge_alloc_bufs($%p)", (void *)ngep));
389 	/*
390 	 * Allocate memory & handles for TX buffers
391 	 */
392 	ASSERT((txbuffsize % ngep->nge_split) == 0);
393 	for (split = 0; split < ngep->nge_split; ++split) {
394 		err = nge_alloc_dma_mem(ngep, txbuffsize/ngep->nge_split,
395 		    &nge_data_accattr, DDI_DMA_WRITE | NGE_DMA_MODE,
396 		    &ngep->send->buf[split]);
397 		if (err != DDI_SUCCESS)
398 			goto fail;
399 	}
400 
401 	progress |= ALLOC_TX_BUF;
402 
403 	/*
404 	 * Allocate memory & handles for receive return rings and
405 	 * buffer (producer) descriptor rings
406 	 */
407 	err = nge_alloc_dma_mem(ngep, rxdescsize, &nge_desc_accattr,
408 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->recv->desc);
409 	if (err != DDI_SUCCESS)
410 		goto fail;
411 	progress |= ALLOC_RX_DESC;
412 
413 	/*
414 	 * Allocate memory & handles for TX descriptor rings,
415 	 */
416 	err = nge_alloc_dma_mem(ngep, txdescsize, &nge_desc_accattr,
417 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->send->desc);
418 	if (err != DDI_SUCCESS)
419 		goto fail;
420 	return (DDI_SUCCESS);
421 
422 fail:
423 	if (progress & ALLOC_RX_DESC)
424 		nge_free_dma_mem(&ngep->recv->desc);
425 	if (progress & ALLOC_TX_BUF) {
426 		for (split = 0; split < ngep->nge_split; ++split)
427 			nge_free_dma_mem(&ngep->send->buf[split]);
428 	}
429 
430 	return (DDI_FAILURE);
431 }
432 
433 /*
434  * This routine frees the transmit and receive buffers and descriptors.
435  * Make sure the chip is stopped before calling it!
436  */
437 void
438 nge_free_bufs(nge_t *ngep)
439 {
440 	int split;
441 
442 	NGE_TRACE(("nge_free_bufs($%p)", (void *)ngep));
443 
444 	nge_free_dma_mem(&ngep->recv->desc);
445 	nge_free_dma_mem(&ngep->send->desc);
446 
447 	for (split = 0; split < ngep->nge_split; ++split)
448 		nge_free_dma_mem(&ngep->send->buf[split]);
449 }
450 
451 /*
452  * Clean up initialisation done above before the memory is freed
453  */
454 static void
455 nge_fini_send_ring(nge_t *ngep)
456 {
457 	uint32_t slot;
458 	size_t dmah_num;
459 	send_ring_t *srp;
460 	sw_tx_sbd_t *ssbdp;
461 
462 	srp = ngep->send;
463 	ssbdp = srp->sw_sbds;
464 
465 	NGE_TRACE(("nge_fini_send_ring($%p)", (void *)ngep));
466 
467 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
468 
469 	for (slot = 0; slot < dmah_num; ++slot) {
470 		if (srp->dmahndl[slot].hndl) {
471 			(void) ddi_dma_unbind_handle(srp->dmahndl[slot].hndl);
472 			ddi_dma_free_handle(&srp->dmahndl[slot].hndl);
473 			srp->dmahndl[slot].hndl = NULL;
474 			srp->dmahndl[slot].next = NULL;
475 		}
476 	}
477 
478 	srp->dmah_free.head = NULL;
479 	srp->dmah_free.tail = NULL;
480 
481 	kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
482 
483 }
484 
485 /*
486  * Initialise the specified Send Ring, using the information in the
487  * <dma_area> descriptors that it contains to set up all the other
488  * fields. This routine should be called only once for each ring.
489  */
490 static int
491 nge_init_send_ring(nge_t *ngep)
492 {
493 	size_t dmah_num;
494 	uint32_t nslots;
495 	uint32_t err;
496 	uint32_t slot;
497 	uint32_t split;
498 	send_ring_t *srp;
499 	sw_tx_sbd_t *ssbdp;
500 	dma_area_t desc;
501 	dma_area_t pbuf;
502 
503 	srp = ngep->send;
504 	srp->desc.nslots = ngep->tx_desc;
505 	nslots = srp->desc.nslots;
506 
507 	NGE_TRACE(("nge_init_send_ring($%p)", (void *)ngep));
508 	/*
509 	 * Other one-off initialisation of per-ring data
510 	 */
511 	srp->ngep = ngep;
512 
513 	/*
514 	 * Allocate the array of s/w Send Buffer Descriptors
515 	 */
516 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
517 	srp->sw_sbds = ssbdp;
518 
519 	/*
520 	 * Now initialise each array element once and for all
521 	 */
522 	desc = srp->desc;
523 	for (split = 0; split < ngep->nge_split; ++split) {
524 		pbuf = srp->buf[split];
525 		for (slot = 0; slot < nslots/ngep->nge_split; ++ssbdp, ++slot) {
526 			nge_slice_chunk(&ssbdp->desc, &desc, 1,
527 			    ngep->desc_attr.txd_size);
528 			nge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
529 			    ngep->buf_size);
530 		}
531 		ASSERT(pbuf.alength == 0);
532 	}
533 	ASSERT(desc.alength == 0);
534 
535 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
536 
537 	/* preallocate dma handles for tx buffer */
538 	for (slot = 0; slot < dmah_num; ++slot) {
539 
540 		err = ddi_dma_alloc_handle(ngep->devinfo,
541 		    ngep->desc_attr.tx_dma_attr, DDI_DMA_DONTWAIT,
542 		    NULL, &srp->dmahndl[slot].hndl);
543 
544 		if (err != DDI_SUCCESS) {
545 			nge_fini_send_ring(ngep);
546 			nge_error(ngep,
547 			    "nge_init_send_ring: alloc dma handle fails");
548 			return (DDI_FAILURE);
549 		}
550 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
551 	}
552 
553 	srp->dmah_free.head = srp->dmahndl;
554 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
555 	srp->dmah_free.tail->next = NULL;
556 
557 	return (DDI_SUCCESS);
558 }
559 
560 /*
561  * Intialize the tx recycle pointer and tx sending pointer of tx ring
562  * and set the type of tx's data descriptor by default.
563  */
564 static void
565 nge_reinit_send_ring(nge_t *ngep)
566 {
567 	size_t dmah_num;
568 	uint32_t slot;
569 	send_ring_t *srp;
570 	sw_tx_sbd_t *ssbdp;
571 
572 	srp = ngep->send;
573 
574 	/*
575 	 * Reinitialise control variables ...
576 	 */
577 
578 	srp->tx_hwmark = NGE_DESC_MIN;
579 	srp->tx_lwmark = NGE_DESC_MIN;
580 
581 	srp->tx_next = 0;
582 	srp->tx_free = srp->desc.nslots;
583 	srp->tc_next = 0;
584 
585 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
586 
587 	for (slot = 0; slot - dmah_num != 0; ++slot)
588 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
589 
590 	srp->dmah_free.head = srp->dmahndl;
591 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
592 	srp->dmah_free.tail->next = NULL;
593 
594 	/*
595 	 * Zero and sync all the h/w Send Buffer Descriptors
596 	 */
597 	for (slot = 0; slot < srp->desc.nslots; ++slot) {
598 		ssbdp = &srp->sw_sbds[slot];
599 		ssbdp->flags = HOST_OWN;
600 	}
601 
602 	DMA_ZERO(srp->desc);
603 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
604 }
605 
606 /*
607  * Initialize the slot number of rx's ring
608  */
609 static void
610 nge_init_recv_ring(nge_t *ngep)
611 {
612 	recv_ring_t *rrp;
613 
614 	rrp = ngep->recv;
615 	rrp->desc.nslots = ngep->rx_desc;
616 	rrp->ngep = ngep;
617 }
618 
619 /*
620  * Intialize the rx recycle pointer and rx sending pointer of rx ring
621  */
622 static void
623 nge_reinit_recv_ring(nge_t *ngep)
624 {
625 	recv_ring_t *rrp;
626 
627 	rrp = ngep->recv;
628 
629 	/*
630 	 * Reinitialise control variables ...
631 	 */
632 	rrp->prod_index = 0;
633 	/*
634 	 * Zero and sync all the h/w Send Buffer Descriptors
635 	 */
636 	DMA_ZERO(rrp->desc);
637 	DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORDEV);
638 }
639 
640 /*
641  * Clean up initialisation done above before the memory is freed
642  */
643 static void
644 nge_fini_buff_ring(nge_t *ngep)
645 {
646 	uint32_t i;
647 	buff_ring_t *brp;
648 	dma_area_t *bufp;
649 	sw_rx_sbd_t *bsbdp;
650 
651 	brp = ngep->buff;
652 	bsbdp = brp->sw_rbds;
653 
654 	NGE_DEBUG(("nge_fini_buff_ring($%p)", (void *)ngep));
655 
656 	mutex_enter(brp->recycle_lock);
657 	brp->buf_sign++;
658 	mutex_exit(brp->recycle_lock);
659 	for (i = 0; i < ngep->rx_desc; i++, ++bsbdp) {
660 		if (bsbdp->bufp) {
661 			if (bsbdp->bufp->mp)
662 				freemsg(bsbdp->bufp->mp);
663 			nge_free_dma_mem(bsbdp->bufp);
664 			kmem_free(bsbdp->bufp, sizeof (dma_area_t));
665 			bsbdp->bufp = NULL;
666 		}
667 	}
668 	while (brp->free_list != NULL) {
669 		bufp = brp->free_list;
670 		brp->free_list = bufp->next;
671 		bufp->next = NULL;
672 		if (bufp->mp)
673 			freemsg(bufp->mp);
674 		nge_free_dma_mem(bufp);
675 		kmem_free(bufp, sizeof (dma_area_t));
676 	}
677 	while (brp->recycle_list != NULL) {
678 		bufp = brp->recycle_list;
679 		brp->recycle_list = bufp->next;
680 		bufp->next = NULL;
681 		if (bufp->mp)
682 			freemsg(bufp->mp);
683 		nge_free_dma_mem(bufp);
684 		kmem_free(bufp, sizeof (dma_area_t));
685 	}
686 
687 
688 	kmem_free(brp->sw_rbds, (ngep->rx_desc * sizeof (*bsbdp)));
689 	brp->sw_rbds = NULL;
690 }
691 
692 /*
693  * Intialize the Rx's data ring and free ring
694  */
695 static int
696 nge_init_buff_ring(nge_t *ngep)
697 {
698 	uint32_t err;
699 	uint32_t slot;
700 	uint32_t nslots_buff;
701 	uint32_t nslots_recv;
702 	buff_ring_t *brp;
703 	recv_ring_t *rrp;
704 	dma_area_t desc;
705 	dma_area_t *bufp;
706 	sw_rx_sbd_t *bsbdp;
707 
708 	rrp = ngep->recv;
709 	brp = ngep->buff;
710 	brp->nslots = ngep->rx_buf;
711 	brp->rx_bcopy = B_FALSE;
712 	nslots_recv = rrp->desc.nslots;
713 	nslots_buff = brp->nslots;
714 	brp->ngep = ngep;
715 
716 	NGE_TRACE(("nge_init_buff_ring($%p)", (void *)ngep));
717 
718 	/*
719 	 * Allocate the array of s/w Recv Buffer Descriptors
720 	 */
721 	bsbdp = kmem_zalloc(nslots_recv *sizeof (*bsbdp), KM_SLEEP);
722 	brp->sw_rbds = bsbdp;
723 	brp->free_list = NULL;
724 	brp->recycle_list = NULL;
725 	for (slot = 0; slot < nslots_buff; ++slot) {
726 		bufp = kmem_zalloc(sizeof (dma_area_t), KM_SLEEP);
727 		err = nge_alloc_dma_mem(ngep, (ngep->buf_size
728 		    + NGE_HEADROOM),
729 		    &nge_data_accattr, DDI_DMA_READ | NGE_DMA_MODE, bufp);
730 		if (err != DDI_SUCCESS) {
731 			kmem_free(bufp, sizeof (dma_area_t));
732 			return (DDI_FAILURE);
733 		}
734 
735 		bufp->alength -= NGE_HEADROOM;
736 		bufp->offset += NGE_HEADROOM;
737 		bufp->private = (caddr_t)ngep;
738 		bufp->rx_recycle.free_func = nge_recv_recycle;
739 		bufp->rx_recycle.free_arg = (caddr_t)bufp;
740 		bufp->signature = brp->buf_sign;
741 		bufp->rx_delivered = B_FALSE;
742 		bufp->mp = desballoc(DMA_VPTR(*bufp),
743 		    ngep->buf_size + NGE_HEADROOM,
744 		    0, &bufp->rx_recycle);
745 
746 		if (bufp->mp == NULL) {
747 			return (DDI_FAILURE);
748 		}
749 		bufp->next = brp->free_list;
750 		brp->free_list = bufp;
751 	}
752 
753 	/*
754 	 * Now initialise each array element once and for all
755 	 */
756 	desc = rrp->desc;
757 	for (slot = 0; slot < nslots_recv; ++slot, ++bsbdp) {
758 		nge_slice_chunk(&bsbdp->desc, &desc, 1,
759 		    ngep->desc_attr.rxd_size);
760 		bufp = brp->free_list;
761 		brp->free_list = bufp->next;
762 		bsbdp->bufp = bufp;
763 		bsbdp->flags = CONTROLER_OWN;
764 		bufp->next = NULL;
765 	}
766 
767 	ASSERT(desc.alength == 0);
768 	return (DDI_SUCCESS);
769 }
770 
771 /*
772  * Fill the host address of data in rx' descriptor
773  * and initialize free pointers of rx free ring
774  */
775 static int
776 nge_reinit_buff_ring(nge_t *ngep)
777 {
778 	uint32_t slot;
779 	uint32_t nslots_recv;
780 	buff_ring_t *brp;
781 	recv_ring_t *rrp;
782 	sw_rx_sbd_t *bsbdp;
783 	void *hw_bd_p;
784 
785 	brp = ngep->buff;
786 	rrp = ngep->recv;
787 	bsbdp = brp->sw_rbds;
788 	nslots_recv = rrp->desc.nslots;
789 	for (slot = 0; slot < nslots_recv; ++bsbdp, ++slot) {
790 		hw_bd_p = DMA_VPTR(bsbdp->desc);
791 	/*
792 	 * There is a scenario: When the traffic of small tcp
793 	 * packet is heavy, suspending the tcp traffic will
794 	 * cause the preallocated buffers for rx not to be
795 	 * released in time by tcp taffic and cause rx's buffer
796 	 * pointers not to be refilled in time.
797 	 *
798 	 * At this point, if we reinitialize the driver, the bufp
799 	 * pointer for rx's traffic will be NULL.
800 	 * So the result of the reinitializion fails.
801 	 */
802 		if (bsbdp->bufp == NULL)
803 			return (DDI_FAILURE);
804 
805 		ngep->desc_attr.rxd_fill(hw_bd_p, &bsbdp->bufp->cookie,
806 		    bsbdp->bufp->alength);
807 	}
808 	return (DDI_SUCCESS);
809 }
810 
811 static void
812 nge_init_ring_param_lock(nge_t *ngep)
813 {
814 	buff_ring_t *brp;
815 	send_ring_t *srp;
816 
817 	srp = ngep->send;
818 	brp = ngep->buff;
819 
820 	/* Init the locks for send ring */
821 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
822 	    DDI_INTR_PRI(ngep->intr_pri));
823 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
824 	    DDI_INTR_PRI(ngep->intr_pri));
825 	mutex_init(&srp->dmah_lock, NULL, MUTEX_DRIVER,
826 	    DDI_INTR_PRI(ngep->intr_pri));
827 
828 	/* Init parameters of buffer ring */
829 	brp->free_list = NULL;
830 	brp->recycle_list = NULL;
831 	brp->rx_hold = 0;
832 	brp->buf_sign = 0;
833 
834 	/* Init recycle list lock */
835 	mutex_init(brp->recycle_lock, NULL, MUTEX_DRIVER,
836 	    DDI_INTR_PRI(ngep->intr_pri));
837 }
838 
839 int
840 nge_init_rings(nge_t *ngep)
841 {
842 	uint32_t err;
843 
844 	err = nge_init_send_ring(ngep);
845 	if (err != DDI_SUCCESS) {
846 		return (err);
847 	}
848 	nge_init_recv_ring(ngep);
849 
850 	err = nge_init_buff_ring(ngep);
851 	if (err != DDI_SUCCESS) {
852 		nge_fini_send_ring(ngep);
853 		return (DDI_FAILURE);
854 	}
855 
856 	return (err);
857 }
858 
859 static int
860 nge_reinit_ring(nge_t *ngep)
861 {
862 	int err;
863 
864 	nge_reinit_recv_ring(ngep);
865 	nge_reinit_send_ring(ngep);
866 	err = nge_reinit_buff_ring(ngep);
867 	return (err);
868 }
869 
870 
871 void
872 nge_fini_rings(nge_t *ngep)
873 {
874 	/*
875 	 * For receive ring, nothing need to be finished.
876 	 * So only finish buffer ring and send ring here.
877 	 */
878 	nge_fini_buff_ring(ngep);
879 	nge_fini_send_ring(ngep);
880 }
881 
882 /*
883  * Loopback ioctl code
884  */
885 
886 static lb_property_t loopmodes[] = {
887 	{ normal,	"normal",	NGE_LOOP_NONE		},
888 	{ external,	"100Mbps",	NGE_LOOP_EXTERNAL_100	},
889 	{ external,	"10Mbps",	NGE_LOOP_EXTERNAL_10	},
890 	{ internal,	"PHY",		NGE_LOOP_INTERNAL_PHY	},
891 };
892 
893 enum ioc_reply
894 nge_loop_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
895 {
896 	int cmd;
897 	uint32_t *lbmp;
898 	lb_info_sz_t *lbsp;
899 	lb_property_t *lbpp;
900 
901 	/*
902 	 * Validate format of ioctl
903 	 */
904 	if (mp->b_cont == NULL)
905 		return (IOC_INVAL);
906 
907 	cmd = iocp->ioc_cmd;
908 
909 	switch (cmd) {
910 	default:
911 		return (IOC_INVAL);
912 
913 	case LB_GET_INFO_SIZE:
914 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
915 			return (IOC_INVAL);
916 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
917 		*lbsp = sizeof (loopmodes);
918 		return (IOC_REPLY);
919 
920 	case LB_GET_INFO:
921 		if (iocp->ioc_count != sizeof (loopmodes))
922 			return (IOC_INVAL);
923 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
924 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
925 		return (IOC_REPLY);
926 
927 	case LB_GET_MODE:
928 		if (iocp->ioc_count != sizeof (uint32_t))
929 			return (IOC_INVAL);
930 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
931 		*lbmp = ngep->param_loop_mode;
932 		return (IOC_REPLY);
933 
934 	case LB_SET_MODE:
935 		if (iocp->ioc_count != sizeof (uint32_t))
936 			return (IOC_INVAL);
937 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
938 		return (nge_set_loop_mode(ngep, *lbmp));
939 	}
940 }
941 
942 #undef	NGE_DBG
943 #define	NGE_DBG	NGE_DBG_NEMO
944 
945 
946 static void
947 nge_check_desc_prop(nge_t *ngep)
948 {
949 	if (ngep->desc_mode != DESC_HOT && ngep->desc_mode != DESC_OFFLOAD)
950 		ngep->desc_mode = DESC_HOT;
951 
952 	if (ngep->desc_mode == DESC_OFFLOAD)	{
953 
954 		ngep->desc_attr = nge_sum_desc;
955 
956 	}	else if (ngep->desc_mode == DESC_HOT)	{
957 
958 		ngep->desc_attr = nge_hot_desc;
959 	}
960 }
961 
962 /*
963  * nge_get_props -- get the parameters to tune the driver
964  */
965 static void
966 nge_get_props(nge_t *ngep)
967 {
968 	chip_info_t *infop;
969 	dev_info_t *devinfo;
970 	nge_dev_spec_param_t *dev_param_p;
971 
972 	devinfo = ngep->devinfo;
973 	infop = (chip_info_t *)&ngep->chipinfo;
974 	dev_param_p = &ngep->dev_spec_param;
975 
976 	infop->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
977 	    DDI_PROP_DONTPASS, clsize_propname, 32);
978 
979 	infop->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
980 	    DDI_PROP_DONTPASS, latency_propname, 64);
981 	ngep->intr_moderation = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
982 	    DDI_PROP_DONTPASS, intr_moderation, NGE_SET);
983 	ngep->rx_datahwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
984 	    DDI_PROP_DONTPASS, rx_data_hw, 0x20);
985 	ngep->rx_prdlwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
986 	    DDI_PROP_DONTPASS, rx_prd_lw, 0x4);
987 	ngep->rx_prdhwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
988 	    DDI_PROP_DONTPASS, rx_prd_hw, 0xc);
989 
990 	ngep->sw_intr_intv = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
991 	    DDI_PROP_DONTPASS, sw_intr_intv, SWTR_ITC);
992 	ngep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
993 	    DDI_PROP_DONTPASS, debug_propname, NGE_DBG_CHIP);
994 	ngep->desc_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
995 	    DDI_PROP_DONTPASS, nge_desc_mode, dev_param_p->desc_type);
996 	ngep->lowmem_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
997 	    DDI_PROP_DONTPASS, low_memory_mode, 0);
998 
999 	if (dev_param_p->jumbo) {
1000 		ngep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
1001 		    DDI_PROP_DONTPASS, default_mtu, ETHERMTU);
1002 	} else
1003 		ngep->default_mtu = ETHERMTU;
1004 	if (dev_param_p->tx_pause_frame)
1005 			ngep->param_link_tx_pause = B_TRUE;
1006 	else
1007 			ngep->param_link_tx_pause = B_FALSE;
1008 
1009 	if (dev_param_p->rx_pause_frame)
1010 			ngep->param_link_rx_pause = B_TRUE;
1011 	else
1012 			ngep->param_link_rx_pause = B_FALSE;
1013 
1014 	if (ngep->default_mtu > ETHERMTU &&
1015 	    ngep->default_mtu <= NGE_MTU_2500) {
1016 		ngep->buf_size = NGE_JB2500_BUFSZ;
1017 		ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
1018 		ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
1019 		ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
1020 		ngep->nge_split = NGE_SPLIT_256;
1021 	} else if (ngep->default_mtu > NGE_MTU_2500 &&
1022 	    ngep->default_mtu <= NGE_MTU_4500) {
1023 		ngep->buf_size = NGE_JB4500_BUFSZ;
1024 		ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1025 		ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1026 		ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1027 		ngep->nge_split = NGE_SPLIT_256;
1028 	} else if (ngep->default_mtu > NGE_MTU_4500 &&
1029 	    ngep->default_mtu <= NGE_MAX_MTU) {
1030 		ngep->buf_size = NGE_JB9000_BUFSZ;
1031 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1032 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1033 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1034 		ngep->nge_split = NGE_SPLIT_256;
1035 	} else if (ngep->default_mtu > NGE_MAX_MTU) {
1036 		ngep->default_mtu = NGE_MAX_MTU;
1037 		ngep->buf_size = NGE_JB9000_BUFSZ;
1038 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1039 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1040 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1041 		ngep->nge_split = NGE_SPLIT_256;
1042 	} else if (ngep->lowmem_mode != 0) {
1043 		ngep->default_mtu = ETHERMTU;
1044 		ngep->buf_size = NGE_STD_BUFSZ;
1045 		ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1046 		ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1047 		ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1048 		ngep->nge_split = NGE_SPLIT_32;
1049 	} else {
1050 		ngep->default_mtu = ETHERMTU;
1051 		ngep->buf_size = NGE_STD_BUFSZ;
1052 		ngep->tx_desc = dev_param_p->tx_desc_num;
1053 		ngep->rx_desc = dev_param_p->rx_desc_num;
1054 		ngep->rx_buf = dev_param_p->rx_desc_num * 2;
1055 		ngep->nge_split = dev_param_p->nge_split;
1056 	}
1057 
1058 	nge_check_desc_prop(ngep);
1059 }
1060 
1061 
1062 static int
1063 nge_reset_dev(nge_t *ngep)
1064 {
1065 	int err;
1066 	nge_mul_addr1 maddr1;
1067 	nge_sw_statistics_t *sw_stp;
1068 	sw_stp = &ngep->statistics.sw_statistics;
1069 	send_ring_t *srp = ngep->send;
1070 
1071 	ASSERT(mutex_owned(ngep->genlock));
1072 	mutex_enter(srp->tc_lock);
1073 	mutex_enter(srp->tx_lock);
1074 
1075 	nge_tx_recycle_all(ngep);
1076 	err = nge_reinit_ring(ngep);
1077 	if (err == DDI_FAILURE) {
1078 		mutex_exit(srp->tx_lock);
1079 		mutex_exit(srp->tc_lock);
1080 		return (err);
1081 	}
1082 	err = nge_chip_reset(ngep);
1083 	/*
1084 	 * Clear the Multicast mac address table
1085 	 */
1086 	nge_reg_put32(ngep, NGE_MUL_ADDR0, 0);
1087 	maddr1.addr_val = nge_reg_get32(ngep, NGE_MUL_ADDR1);
1088 	maddr1.addr_bits.addr = 0;
1089 	nge_reg_put32(ngep, NGE_MUL_ADDR1, maddr1.addr_val);
1090 
1091 	mutex_exit(srp->tx_lock);
1092 	mutex_exit(srp->tc_lock);
1093 	if (err == DDI_FAILURE)
1094 		return (err);
1095 	ngep->watchdog = 0;
1096 	ngep->resched_needed = B_FALSE;
1097 	ngep->promisc = B_FALSE;
1098 	ngep->param_loop_mode = NGE_LOOP_NONE;
1099 	ngep->factotum_flag = 0;
1100 	ngep->resched_needed = 0;
1101 	ngep->nge_mac_state = NGE_MAC_RESET;
1102 	ngep->max_sdu = ngep->default_mtu + ETHER_HEAD_LEN + ETHERFCSL;
1103 	ngep->max_sdu += VTAG_SIZE;
1104 	ngep->rx_def = 0x16;
1105 
1106 	/* Clear the software statistics */
1107 	sw_stp->recv_count = 0;
1108 	sw_stp->xmit_count = 0;
1109 	sw_stp->rbytes = 0;
1110 	sw_stp->obytes = 0;
1111 
1112 	return (DDI_SUCCESS);
1113 }
1114 
1115 static void
1116 nge_m_stop(void *arg)
1117 {
1118 	nge_t *ngep = arg;		/* private device info	*/
1119 	int err;
1120 
1121 	NGE_TRACE(("nge_m_stop($%p)", arg));
1122 
1123 	/*
1124 	 * Just stop processing, then record new MAC state
1125 	 */
1126 	mutex_enter(ngep->genlock);
1127 	/* If suspended, the adapter is already stopped, just return. */
1128 	if (ngep->suspended) {
1129 		ASSERT(ngep->nge_mac_state == NGE_MAC_STOPPED);
1130 		mutex_exit(ngep->genlock);
1131 		return;
1132 	}
1133 	rw_enter(ngep->rwlock, RW_WRITER);
1134 
1135 	err = nge_chip_stop(ngep, B_FALSE);
1136 	if (err == DDI_FAILURE)
1137 		err = nge_chip_reset(ngep);
1138 	if (err == DDI_FAILURE)
1139 		nge_problem(ngep, "nge_m_stop: stop chip failed");
1140 	ngep->nge_mac_state = NGE_MAC_STOPPED;
1141 
1142 	/* Recycle all the TX BD */
1143 	nge_tx_recycle_all(ngep);
1144 	nge_fini_rings(ngep);
1145 	nge_free_bufs(ngep);
1146 
1147 	NGE_DEBUG(("nge_m_stop($%p) done", arg));
1148 
1149 	rw_exit(ngep->rwlock);
1150 	mutex_exit(ngep->genlock);
1151 }
1152 
1153 static int
1154 nge_m_start(void *arg)
1155 {
1156 	int err;
1157 	nge_t *ngep = arg;
1158 
1159 	NGE_TRACE(("nge_m_start($%p)", arg));
1160 
1161 	/*
1162 	 * Start processing and record new MAC state
1163 	 */
1164 	mutex_enter(ngep->genlock);
1165 	/*
1166 	 * If suspended, don't start, as the resume processing
1167 	 * will recall this function with the suspended flag off.
1168 	 */
1169 	if (ngep->suspended) {
1170 		mutex_exit(ngep->genlock);
1171 		return (EIO);
1172 	}
1173 	rw_enter(ngep->rwlock, RW_WRITER);
1174 	err = nge_alloc_bufs(ngep);
1175 	if (err != DDI_SUCCESS) {
1176 		nge_problem(ngep, "nge_m_start: DMA buffer allocation failed");
1177 		goto finish;
1178 	}
1179 	err = nge_init_rings(ngep);
1180 	if (err != DDI_SUCCESS) {
1181 		nge_free_bufs(ngep);
1182 		nge_problem(ngep, "nge_init_rings() failed,err=%x", err);
1183 		goto finish;
1184 	}
1185 	err = nge_restart(ngep);
1186 
1187 	NGE_DEBUG(("nge_m_start($%p) done", arg));
1188 finish:
1189 	rw_exit(ngep->rwlock);
1190 	mutex_exit(ngep->genlock);
1191 
1192 	return (err == DDI_SUCCESS ? 0 : EIO);
1193 }
1194 
1195 static int
1196 nge_m_unicst(void *arg, const uint8_t *macaddr)
1197 {
1198 	nge_t *ngep = arg;
1199 
1200 	NGE_TRACE(("nge_m_unicst($%p)", arg));
1201 	/*
1202 	 * Remember the new current address in the driver state
1203 	 * Sync the chip's idea of the address too ...
1204 	 */
1205 	mutex_enter(ngep->genlock);
1206 
1207 	ethaddr_copy(macaddr, ngep->cur_uni_addr.addr);
1208 	ngep->cur_uni_addr.set = 1;
1209 
1210 	/*
1211 	 * If we are suspended, we want to quit now, and not update
1212 	 * the chip.  Doing so might put it in a bad state, but the
1213 	 * resume will get the unicast address installed.
1214 	 */
1215 	if (ngep->suspended) {
1216 		mutex_exit(ngep->genlock);
1217 		return (DDI_SUCCESS);
1218 	}
1219 	nge_chip_sync(ngep);
1220 
1221 	NGE_DEBUG(("nge_m_unicst($%p) done", arg));
1222 	mutex_exit(ngep->genlock);
1223 
1224 	return (0);
1225 }
1226 
1227 static int
1228 nge_m_promisc(void *arg, boolean_t on)
1229 {
1230 	nge_t *ngep = arg;
1231 
1232 	NGE_TRACE(("nge_m_promisc($%p)", arg));
1233 
1234 	/*
1235 	 * Store specified mode and pass to chip layer to update h/w
1236 	 */
1237 	mutex_enter(ngep->genlock);
1238 	/*
1239 	 * If suspended, there is no need to do anything, even
1240 	 * recording the promiscuious mode is not neccessary, as
1241 	 * it won't be properly set on resume.  Just return failing.
1242 	 */
1243 	if (ngep->suspended) {
1244 		mutex_exit(ngep->genlock);
1245 		return (DDI_FAILURE);
1246 	}
1247 	if (ngep->promisc == on) {
1248 		mutex_exit(ngep->genlock);
1249 		NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1250 		return (0);
1251 	}
1252 	ngep->promisc = on;
1253 	ngep->record_promisc = ngep->promisc;
1254 	nge_chip_sync(ngep);
1255 	NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1256 	mutex_exit(ngep->genlock);
1257 
1258 	return (0);
1259 }
1260 
1261 static void nge_mulparam(nge_t *ngep)
1262 {
1263 	uint8_t number;
1264 	ether_addr_t pand;
1265 	ether_addr_t por;
1266 	mul_item *plist;
1267 
1268 	for (number = 0; number < ETHERADDRL; number++) {
1269 		pand[number] = 0x00;
1270 		por[number] = 0x00;
1271 	}
1272 	for (plist = ngep->pcur_mulist; plist != NULL; plist = plist->next) {
1273 		for (number = 0; number < ETHERADDRL; number++) {
1274 			pand[number] &= plist->mul_addr[number];
1275 			por[number] |= plist->mul_addr[number];
1276 		}
1277 	}
1278 	for (number = 0; number < ETHERADDRL; number++) {
1279 		ngep->cur_mul_addr.addr[number]
1280 		    = pand[number] & por[number];
1281 		ngep->cur_mul_mask.addr[number]
1282 		    = pand [number] | (~por[number]);
1283 	}
1284 }
1285 static int
1286 nge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1287 {
1288 	boolean_t update;
1289 	boolean_t b_eq;
1290 	nge_t *ngep = arg;
1291 	mul_item *plist;
1292 	mul_item *plist_prev;
1293 	mul_item *pitem;
1294 
1295 	NGE_TRACE(("nge_m_multicst($%p, %s, %s)", arg,
1296 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1297 
1298 	update = B_FALSE;
1299 	plist = plist_prev = NULL;
1300 	mutex_enter(ngep->genlock);
1301 	if (add) {
1302 		if (ngep->pcur_mulist != NULL) {
1303 			for (plist = ngep->pcur_mulist; plist != NULL;
1304 			    plist = plist->next) {
1305 				b_eq = ether_eq(plist->mul_addr, mca);
1306 				if (b_eq) {
1307 					plist->ref_cnt++;
1308 					break;
1309 				}
1310 				plist_prev = plist;
1311 			}
1312 		}
1313 
1314 		if (plist == NULL) {
1315 			pitem = kmem_zalloc(sizeof (mul_item), KM_SLEEP);
1316 			ether_copy(mca, pitem->mul_addr);
1317 			pitem ->ref_cnt++;
1318 			pitem ->next = NULL;
1319 			if (plist_prev == NULL)
1320 				ngep->pcur_mulist = pitem;
1321 			else
1322 				plist_prev->next = pitem;
1323 			update = B_TRUE;
1324 		}
1325 	} else {
1326 		if (ngep->pcur_mulist != NULL) {
1327 			for (plist = ngep->pcur_mulist; plist != NULL;
1328 			    plist = plist->next) {
1329 				b_eq = ether_eq(plist->mul_addr, mca);
1330 				if (b_eq) {
1331 					update = B_TRUE;
1332 					break;
1333 				}
1334 				plist_prev = plist;
1335 			}
1336 
1337 			if (update) {
1338 				if ((plist_prev == NULL) &&
1339 				    (plist->next == NULL))
1340 					ngep->pcur_mulist = NULL;
1341 				else if ((plist_prev == NULL) &&
1342 				    (plist->next != NULL))
1343 					ngep->pcur_mulist = plist->next;
1344 				else
1345 					plist_prev->next = plist->next;
1346 				kmem_free(plist, sizeof (mul_item));
1347 			}
1348 		}
1349 	}
1350 
1351 	if (update && !ngep->suspended) {
1352 		nge_mulparam(ngep);
1353 		nge_chip_sync(ngep);
1354 	}
1355 	NGE_DEBUG(("nge_m_multicst($%p) done", arg));
1356 	mutex_exit(ngep->genlock);
1357 
1358 	return (0);
1359 }
1360 
1361 static void
1362 nge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1363 {
1364 	int err;
1365 	int cmd;
1366 	nge_t *ngep = arg;
1367 	struct iocblk *iocp;
1368 	enum ioc_reply status;
1369 	boolean_t need_privilege;
1370 
1371 	/*
1372 	 * If suspended, we might actually be able to do some of
1373 	 * these ioctls, but it is harder to make sure they occur
1374 	 * without actually putting the hardware in an undesireable
1375 	 * state.  So just NAK it.
1376 	 */
1377 	mutex_enter(ngep->genlock);
1378 	if (ngep->suspended) {
1379 		miocnak(wq, mp, 0, EINVAL);
1380 		mutex_exit(ngep->genlock);
1381 		return;
1382 	}
1383 	mutex_exit(ngep->genlock);
1384 
1385 	/*
1386 	 * Validate the command before bothering with the mutex ...
1387 	 */
1388 	iocp = (struct iocblk *)mp->b_rptr;
1389 	iocp->ioc_error = 0;
1390 	need_privilege = B_TRUE;
1391 	cmd = iocp->ioc_cmd;
1392 
1393 	NGE_DEBUG(("nge_m_ioctl:  cmd 0x%x", cmd));
1394 	switch (cmd) {
1395 	default:
1396 		NGE_LDB(NGE_DBG_BADIOC,
1397 		    ("nge_m_ioctl: unknown cmd 0x%x", cmd));
1398 
1399 		miocnak(wq, mp, 0, EINVAL);
1400 		return;
1401 
1402 	case NGE_MII_READ:
1403 	case NGE_MII_WRITE:
1404 	case NGE_SEE_READ:
1405 	case NGE_SEE_WRITE:
1406 	case NGE_DIAG:
1407 	case NGE_PEEK:
1408 	case NGE_POKE:
1409 	case NGE_PHY_RESET:
1410 	case NGE_SOFT_RESET:
1411 	case NGE_HARD_RESET:
1412 		break;
1413 
1414 	case LB_GET_INFO_SIZE:
1415 	case LB_GET_INFO:
1416 	case LB_GET_MODE:
1417 		need_privilege = B_FALSE;
1418 		break;
1419 	case LB_SET_MODE:
1420 		break;
1421 	}
1422 
1423 	if (need_privilege) {
1424 		/*
1425 		 * Check for specific net_config privilege.
1426 		 */
1427 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1428 		if (err != 0) {
1429 			NGE_DEBUG(("nge_m_ioctl: rejected cmd 0x%x, err %d",
1430 			    cmd, err));
1431 			miocnak(wq, mp, 0, err);
1432 			return;
1433 		}
1434 	}
1435 
1436 	mutex_enter(ngep->genlock);
1437 
1438 	switch (cmd) {
1439 	default:
1440 		_NOTE(NOTREACHED)
1441 		status = IOC_INVAL;
1442 	break;
1443 
1444 	case NGE_MII_READ:
1445 	case NGE_MII_WRITE:
1446 	case NGE_SEE_READ:
1447 	case NGE_SEE_WRITE:
1448 	case NGE_DIAG:
1449 	case NGE_PEEK:
1450 	case NGE_POKE:
1451 	case NGE_PHY_RESET:
1452 	case NGE_SOFT_RESET:
1453 	case NGE_HARD_RESET:
1454 		status = nge_chip_ioctl(ngep, mp, iocp);
1455 	break;
1456 
1457 	case LB_GET_INFO_SIZE:
1458 	case LB_GET_INFO:
1459 	case LB_GET_MODE:
1460 	case LB_SET_MODE:
1461 		status = nge_loop_ioctl(ngep, mp, iocp);
1462 	break;
1463 
1464 	}
1465 
1466 	/*
1467 	 * Do we need to reprogram the PHY and/or the MAC?
1468 	 * Do it now, while we still have the mutex.
1469 	 *
1470 	 * Note: update the PHY first, 'cos it controls the
1471 	 * speed/duplex parameters that the MAC code uses.
1472 	 */
1473 
1474 	NGE_DEBUG(("nge_m_ioctl: cmd 0x%x status %d", cmd, status));
1475 
1476 	switch (status) {
1477 	case IOC_RESTART_REPLY:
1478 	case IOC_RESTART_ACK:
1479 		(*ngep->physops->phys_update)(ngep);
1480 		nge_chip_sync(ngep);
1481 		break;
1482 
1483 	default:
1484 	break;
1485 	}
1486 
1487 	mutex_exit(ngep->genlock);
1488 
1489 	/*
1490 	 * Finally, decide how to reply
1491 	 */
1492 	switch (status) {
1493 
1494 	default:
1495 	case IOC_INVAL:
1496 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1497 		    EINVAL : iocp->ioc_error);
1498 		break;
1499 
1500 	case IOC_DONE:
1501 		break;
1502 
1503 	case IOC_RESTART_ACK:
1504 	case IOC_ACK:
1505 		miocack(wq, mp, 0, 0);
1506 		break;
1507 
1508 	case IOC_RESTART_REPLY:
1509 	case IOC_REPLY:
1510 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1511 		    M_IOCACK : M_IOCNAK;
1512 		qreply(wq, mp);
1513 		break;
1514 	}
1515 }
1516 
1517 static boolean_t
1518 nge_param_locked(mac_prop_id_t pr_num)
1519 {
1520 	/*
1521 	 * All adv_* parameters are locked (read-only) while
1522 	 * the device is in any sort of loopback mode ...
1523 	 */
1524 	switch (pr_num) {
1525 		case MAC_PROP_ADV_1000FDX_CAP:
1526 		case MAC_PROP_EN_1000FDX_CAP:
1527 		case MAC_PROP_ADV_1000HDX_CAP:
1528 		case MAC_PROP_EN_1000HDX_CAP:
1529 		case MAC_PROP_ADV_100FDX_CAP:
1530 		case MAC_PROP_EN_100FDX_CAP:
1531 		case MAC_PROP_ADV_100HDX_CAP:
1532 		case MAC_PROP_EN_100HDX_CAP:
1533 		case MAC_PROP_ADV_10FDX_CAP:
1534 		case MAC_PROP_EN_10FDX_CAP:
1535 		case MAC_PROP_ADV_10HDX_CAP:
1536 		case MAC_PROP_EN_10HDX_CAP:
1537 		case MAC_PROP_AUTONEG:
1538 		case MAC_PROP_FLOWCTRL:
1539 			return (B_TRUE);
1540 	}
1541 	return (B_FALSE);
1542 }
1543 
1544 /*
1545  * callback functions for set/get of properties
1546  */
1547 static int
1548 nge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1549     uint_t pr_valsize, const void *pr_val)
1550 {
1551 	nge_t *ngep = barg;
1552 	int err = 0;
1553 	uint32_t cur_mtu, new_mtu;
1554 	link_flowctrl_t fl;
1555 
1556 	mutex_enter(ngep->genlock);
1557 	if (ngep->param_loop_mode != NGE_LOOP_NONE &&
1558 	    nge_param_locked(pr_num)) {
1559 		/*
1560 		 * All adv_* parameters are locked (read-only)
1561 		 * while the device is in any sort of loopback mode.
1562 		 */
1563 		mutex_exit(ngep->genlock);
1564 		return (EBUSY);
1565 	}
1566 	switch (pr_num) {
1567 		case MAC_PROP_EN_1000FDX_CAP:
1568 			ngep->param_en_1000fdx = *(uint8_t *)pr_val;
1569 			ngep->param_adv_1000fdx = *(uint8_t *)pr_val;
1570 			goto reprogram;
1571 		case MAC_PROP_EN_100FDX_CAP:
1572 			ngep->param_en_100fdx = *(uint8_t *)pr_val;
1573 			ngep->param_adv_100fdx = *(uint8_t *)pr_val;
1574 			goto reprogram;
1575 		case MAC_PROP_EN_100HDX_CAP:
1576 			ngep->param_en_100hdx = *(uint8_t *)pr_val;
1577 			ngep->param_adv_100hdx = *(uint8_t *)pr_val;
1578 			goto reprogram;
1579 		case MAC_PROP_EN_10FDX_CAP:
1580 			ngep->param_en_10fdx = *(uint8_t *)pr_val;
1581 			ngep->param_adv_10fdx = *(uint8_t *)pr_val;
1582 			goto reprogram;
1583 		case MAC_PROP_EN_10HDX_CAP:
1584 			ngep->param_en_10hdx = *(uint8_t *)pr_val;
1585 			ngep->param_adv_10hdx = *(uint8_t *)pr_val;
1586 reprogram:
1587 		(*ngep->physops->phys_update)(ngep);
1588 		nge_chip_sync(ngep);
1589 		break;
1590 
1591 		case MAC_PROP_ADV_1000FDX_CAP:
1592 		case MAC_PROP_ADV_1000HDX_CAP:
1593 		case MAC_PROP_ADV_100FDX_CAP:
1594 		case MAC_PROP_ADV_100HDX_CAP:
1595 		case MAC_PROP_ADV_10FDX_CAP:
1596 		case MAC_PROP_ADV_10HDX_CAP:
1597 		case MAC_PROP_STATUS:
1598 		case MAC_PROP_SPEED:
1599 		case MAC_PROP_DUPLEX:
1600 		case MAC_PROP_EN_1000HDX_CAP:
1601 			err = ENOTSUP; /* read-only prop. Can't set this */
1602 			break;
1603 		case MAC_PROP_AUTONEG:
1604 			ngep->param_adv_autoneg = *(uint8_t *)pr_val;
1605 			(*ngep->physops->phys_update)(ngep);
1606 			nge_chip_sync(ngep);
1607 			break;
1608 		case MAC_PROP_MTU:
1609 			cur_mtu = ngep->default_mtu;
1610 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
1611 			if (new_mtu == cur_mtu) {
1612 				err = 0;
1613 				break;
1614 			}
1615 			if (new_mtu < ETHERMTU ||
1616 			    new_mtu > NGE_MAX_MTU) {
1617 				err = EINVAL;
1618 				break;
1619 			}
1620 			if ((new_mtu > ETHERMTU) &&
1621 			    (!ngep->dev_spec_param.jumbo)) {
1622 				err = EINVAL;
1623 				break;
1624 			}
1625 			if (ngep->nge_mac_state == NGE_MAC_STARTED) {
1626 				err = EBUSY;
1627 				break;
1628 			}
1629 
1630 			ngep->default_mtu = new_mtu;
1631 			if (ngep->default_mtu > ETHERMTU &&
1632 			    ngep->default_mtu <= NGE_MTU_2500) {
1633 				ngep->buf_size = NGE_JB2500_BUFSZ;
1634 				ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
1635 				ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
1636 				ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
1637 				ngep->nge_split = NGE_SPLIT_256;
1638 			} else if (ngep->default_mtu > NGE_MTU_2500 &&
1639 			    ngep->default_mtu <= NGE_MTU_4500) {
1640 				ngep->buf_size = NGE_JB4500_BUFSZ;
1641 				ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1642 				ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1643 				ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1644 				ngep->nge_split = NGE_SPLIT_256;
1645 			} else if (ngep->default_mtu > NGE_MTU_4500 &&
1646 			    ngep->default_mtu <= NGE_MAX_MTU) {
1647 				ngep->buf_size = NGE_JB9000_BUFSZ;
1648 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1649 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1650 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1651 				ngep->nge_split = NGE_SPLIT_256;
1652 			} else if (ngep->default_mtu > NGE_MAX_MTU) {
1653 				ngep->default_mtu = NGE_MAX_MTU;
1654 				ngep->buf_size = NGE_JB9000_BUFSZ;
1655 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1656 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1657 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1658 				ngep->nge_split = NGE_SPLIT_256;
1659 			} else if (ngep->lowmem_mode != 0) {
1660 				ngep->default_mtu = ETHERMTU;
1661 				ngep->buf_size = NGE_STD_BUFSZ;
1662 				ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1663 				ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1664 				ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1665 				ngep->nge_split = NGE_SPLIT_32;
1666 			} else {
1667 				ngep->default_mtu = ETHERMTU;
1668 				ngep->buf_size = NGE_STD_BUFSZ;
1669 				ngep->tx_desc =
1670 				    ngep->dev_spec_param.tx_desc_num;
1671 				ngep->rx_desc =
1672 				    ngep->dev_spec_param.rx_desc_num;
1673 				ngep->rx_buf =
1674 				    ngep->dev_spec_param.rx_desc_num * 2;
1675 				ngep->nge_split =
1676 				    ngep->dev_spec_param.nge_split;
1677 			}
1678 
1679 			err = mac_maxsdu_update(ngep->mh, ngep->default_mtu);
1680 
1681 			break;
1682 		case MAC_PROP_FLOWCTRL:
1683 			bcopy(pr_val, &fl, sizeof (fl));
1684 			switch (fl) {
1685 			default:
1686 				err = ENOTSUP;
1687 				break;
1688 			case LINK_FLOWCTRL_NONE:
1689 				ngep->param_adv_pause = 0;
1690 				ngep->param_adv_asym_pause = 0;
1691 
1692 				ngep->param_link_rx_pause = B_FALSE;
1693 				ngep->param_link_tx_pause = B_FALSE;
1694 				break;
1695 			case LINK_FLOWCTRL_RX:
1696 				if (!((ngep->param_lp_pause == 0) &&
1697 				    (ngep->param_lp_asym_pause == 1))) {
1698 					err = EINVAL;
1699 					break;
1700 				}
1701 				ngep->param_adv_pause = 1;
1702 				ngep->param_adv_asym_pause = 1;
1703 
1704 				ngep->param_link_rx_pause = B_TRUE;
1705 				ngep->param_link_tx_pause = B_FALSE;
1706 				break;
1707 			case LINK_FLOWCTRL_TX:
1708 				if (!((ngep->param_lp_pause == 1) &&
1709 				    (ngep->param_lp_asym_pause == 1))) {
1710 					err = EINVAL;
1711 					break;
1712 				}
1713 				ngep->param_adv_pause = 0;
1714 				ngep->param_adv_asym_pause = 1;
1715 
1716 				ngep->param_link_rx_pause = B_FALSE;
1717 				ngep->param_link_tx_pause = B_TRUE;
1718 				break;
1719 			case LINK_FLOWCTRL_BI:
1720 				if (ngep->param_lp_pause != 1) {
1721 					err = EINVAL;
1722 					break;
1723 				}
1724 				ngep->param_adv_pause = 1;
1725 
1726 				ngep->param_link_rx_pause = B_TRUE;
1727 				ngep->param_link_tx_pause = B_TRUE;
1728 				break;
1729 			}
1730 
1731 			if (err == 0) {
1732 				(*ngep->physops->phys_update)(ngep);
1733 				nge_chip_sync(ngep);
1734 			}
1735 
1736 			break;
1737 		case MAC_PROP_PRIVATE:
1738 			err = nge_set_priv_prop(ngep, pr_name, pr_valsize,
1739 			    pr_val);
1740 			if (err == 0) {
1741 				(*ngep->physops->phys_update)(ngep);
1742 				nge_chip_sync(ngep);
1743 			}
1744 			break;
1745 		default:
1746 			err = ENOTSUP;
1747 	}
1748 	mutex_exit(ngep->genlock);
1749 	return (err);
1750 }
1751 
1752 static int
1753 nge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1754     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
1755 {
1756 	nge_t *ngep = barg;
1757 	int err = 0;
1758 	link_flowctrl_t fl;
1759 	uint64_t speed;
1760 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1761 
1762 	if (pr_valsize == 0)
1763 		return (EINVAL);
1764 
1765 	*perm = MAC_PROP_PERM_RW;
1766 
1767 	bzero(pr_val, pr_valsize);
1768 
1769 	switch (pr_num) {
1770 		case MAC_PROP_DUPLEX:
1771 			*perm = MAC_PROP_PERM_READ;
1772 			if (pr_valsize >= sizeof (link_duplex_t)) {
1773 				bcopy(&ngep->param_link_duplex, pr_val,
1774 				    sizeof (link_duplex_t));
1775 			} else
1776 				err = EINVAL;
1777 			break;
1778 		case MAC_PROP_SPEED:
1779 			*perm = MAC_PROP_PERM_READ;
1780 			if (pr_valsize >= sizeof (uint64_t)) {
1781 				speed = ngep->param_link_speed * 1000000ull;
1782 				bcopy(&speed, pr_val, sizeof (speed));
1783 			} else
1784 				err = EINVAL;
1785 			break;
1786 		case MAC_PROP_AUTONEG:
1787 			if (is_default) {
1788 				*(uint8_t *)pr_val = 1;
1789 			} else {
1790 				*(uint8_t *)pr_val = ngep->param_adv_autoneg;
1791 			}
1792 			break;
1793 		case MAC_PROP_FLOWCTRL:
1794 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
1795 				if (pr_flags & MAC_PROP_DEFAULT) {
1796 					fl = LINK_FLOWCTRL_BI;
1797 					bcopy(&fl, pr_val, sizeof (fl));
1798 					break;
1799 				}
1800 				if (ngep->param_link_rx_pause &&
1801 				    !ngep->param_link_tx_pause)
1802 					fl = LINK_FLOWCTRL_RX;
1803 
1804 				if (!ngep->param_link_rx_pause &&
1805 				    !ngep->param_link_tx_pause)
1806 					fl = LINK_FLOWCTRL_NONE;
1807 
1808 				if (!ngep->param_link_rx_pause &&
1809 				    ngep->param_link_tx_pause)
1810 					fl = LINK_FLOWCTRL_TX;
1811 
1812 				if (ngep->param_link_rx_pause &&
1813 				    ngep->param_link_tx_pause)
1814 					fl = LINK_FLOWCTRL_BI;
1815 				bcopy(&fl, pr_val, sizeof (fl));
1816 			} else
1817 				err = EINVAL;
1818 			break;
1819 		case MAC_PROP_ADV_1000FDX_CAP:
1820 			*perm = MAC_PROP_PERM_READ;
1821 			if (is_default) {
1822 				*(uint8_t *)pr_val = 1;
1823 			} else {
1824 				*(uint8_t *)pr_val = ngep->param_adv_1000fdx;
1825 			}
1826 			break;
1827 		case MAC_PROP_EN_1000FDX_CAP:
1828 			if (is_default) {
1829 				*(uint8_t *)pr_val = 1;
1830 			} else {
1831 				*(uint8_t *)pr_val = ngep->param_en_1000fdx;
1832 			}
1833 			break;
1834 		case MAC_PROP_ADV_1000HDX_CAP:
1835 			*perm = MAC_PROP_PERM_READ;
1836 			if (is_default) {
1837 				*(uint8_t *)pr_val = 0;
1838 			} else {
1839 				*(uint8_t *)pr_val = ngep->param_adv_1000hdx;
1840 			}
1841 			break;
1842 		case MAC_PROP_EN_1000HDX_CAP:
1843 			*perm = MAC_PROP_PERM_READ;
1844 			if (is_default) {
1845 				*(uint8_t *)pr_val = 0;
1846 			} else {
1847 				*(uint8_t *)pr_val = ngep->param_en_1000hdx;
1848 			}
1849 			break;
1850 		case MAC_PROP_ADV_100FDX_CAP:
1851 			*perm = MAC_PROP_PERM_READ;
1852 			if (is_default) {
1853 				*(uint8_t *)pr_val = 1;
1854 			} else {
1855 				*(uint8_t *)pr_val = ngep->param_adv_100fdx;
1856 			}
1857 			break;
1858 		case MAC_PROP_EN_100FDX_CAP:
1859 			if (is_default) {
1860 				*(uint8_t *)pr_val = 1;
1861 			} else {
1862 				*(uint8_t *)pr_val = ngep->param_en_100fdx;
1863 			}
1864 			break;
1865 		case MAC_PROP_ADV_100HDX_CAP:
1866 			*perm = MAC_PROP_PERM_READ;
1867 			if (is_default) {
1868 				*(uint8_t *)pr_val = 1;
1869 			} else {
1870 				*(uint8_t *)pr_val = ngep->param_adv_100hdx;
1871 			}
1872 			break;
1873 		case MAC_PROP_EN_100HDX_CAP:
1874 			if (is_default) {
1875 				*(uint8_t *)pr_val = 1;
1876 			} else {
1877 				*(uint8_t *)pr_val = ngep->param_en_100hdx;
1878 			}
1879 			break;
1880 		case MAC_PROP_ADV_10FDX_CAP:
1881 			*perm = MAC_PROP_PERM_READ;
1882 			if (is_default) {
1883 				*(uint8_t *)pr_val = 1;
1884 			} else {
1885 				*(uint8_t *)pr_val = ngep->param_adv_10fdx;
1886 			}
1887 			break;
1888 		case MAC_PROP_EN_10FDX_CAP:
1889 			if (is_default) {
1890 				*(uint8_t *)pr_val = 1;
1891 			} else {
1892 				*(uint8_t *)pr_val = ngep->param_en_10fdx;
1893 			}
1894 			break;
1895 		case MAC_PROP_ADV_10HDX_CAP:
1896 			*perm = MAC_PROP_PERM_READ;
1897 			if (is_default) {
1898 				*(uint8_t *)pr_val = 1;
1899 			} else {
1900 				*(uint8_t *)pr_val = ngep->param_adv_10hdx;
1901 			}
1902 			break;
1903 		case MAC_PROP_EN_10HDX_CAP:
1904 			if (is_default) {
1905 				*(uint8_t *)pr_val = 1;
1906 			} else {
1907 				*(uint8_t *)pr_val = ngep->param_en_10hdx;
1908 			}
1909 			break;
1910 		case MAC_PROP_ADV_100T4_CAP:
1911 		case MAC_PROP_EN_100T4_CAP:
1912 			*perm = MAC_PROP_PERM_READ;
1913 			*(uint8_t *)pr_val = 0;
1914 			break;
1915 		case MAC_PROP_PRIVATE:
1916 			err = nge_get_priv_prop(ngep, pr_name, pr_flags,
1917 			    pr_valsize, pr_val);
1918 			break;
1919 		case MAC_PROP_MTU: {
1920 			mac_propval_range_t range;
1921 
1922 			if (!(pr_flags & MAC_PROP_POSSIBLE))
1923 				return (ENOTSUP);
1924 			if (pr_valsize < sizeof (mac_propval_range_t))
1925 				return (EINVAL);
1926 			range.mpr_count = 1;
1927 			range.mpr_type = MAC_PROPVAL_UINT32;
1928 			range.range_uint32[0].mpur_min =
1929 			    range.range_uint32[0].mpur_max = ETHERMTU;
1930 			if (ngep->dev_spec_param.jumbo)
1931 				range.range_uint32[0].mpur_max = NGE_MAX_MTU;
1932 			bcopy(&range, pr_val, sizeof (range));
1933 			break;
1934 		}
1935 		default:
1936 			err = ENOTSUP;
1937 	}
1938 	return (err);
1939 }
1940 
1941 /* ARGSUSED */
1942 static int
1943 nge_set_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_valsize,
1944     const void *pr_val)
1945 {
1946 	int err = 0;
1947 	long result;
1948 
1949 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
1950 		if (pr_val == NULL) {
1951 			err = EINVAL;
1952 			return (err);
1953 		}
1954 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1955 		if (result < 0 || result > NGE_MAX_SDU) {
1956 			err = EINVAL;
1957 		} else {
1958 			ngep->param_txbcopy_threshold = (uint32_t)result;
1959 			goto reprogram;
1960 		}
1961 		return (err);
1962 	}
1963 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
1964 		if (pr_val == NULL) {
1965 			err = EINVAL;
1966 			return (err);
1967 		}
1968 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1969 		if (result < 0 || result > NGE_MAX_SDU) {
1970 			err = EINVAL;
1971 		} else {
1972 			ngep->param_rxbcopy_threshold = (uint32_t)result;
1973 			goto reprogram;
1974 		}
1975 		return (err);
1976 	}
1977 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
1978 		if (pr_val == NULL) {
1979 			err = EINVAL;
1980 			return (err);
1981 		}
1982 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1983 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
1984 			err = EINVAL;
1985 		} else {
1986 			ngep->param_recv_max_packet = (uint32_t)result;
1987 			goto reprogram;
1988 		}
1989 		return (err);
1990 	}
1991 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
1992 		if (pr_val == NULL) {
1993 			err = EINVAL;
1994 			return (err);
1995 		}
1996 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1997 		if (result < 0 || result > 10000) {
1998 			err = EINVAL;
1999 		} else {
2000 			ngep->param_poll_quiet_time = (uint32_t)result;
2001 			goto reprogram;
2002 		}
2003 		return (err);
2004 	}
2005 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
2006 		if (pr_val == NULL) {
2007 			err = EINVAL;
2008 			return (err);
2009 		}
2010 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2011 		if (result < 0 || result > 10000) {
2012 			err = EINVAL;
2013 		} else {
2014 			ngep->param_poll_busy_time = (uint32_t)result;
2015 			goto reprogram;
2016 		}
2017 		return (err);
2018 	}
2019 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
2020 		if (pr_val == NULL) {
2021 			err = EINVAL;
2022 			return (err);
2023 		}
2024 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2025 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
2026 			err = EINVAL;
2027 		} else {
2028 			ngep->param_rx_intr_hwater = (uint32_t)result;
2029 			goto reprogram;
2030 		}
2031 		return (err);
2032 	}
2033 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
2034 		if (pr_val == NULL) {
2035 			err = EINVAL;
2036 			return (err);
2037 		}
2038 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2039 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
2040 			err = EINVAL;
2041 		} else {
2042 			ngep->param_rx_intr_lwater = (uint32_t)result;
2043 			goto reprogram;
2044 		}
2045 		return (err);
2046 	}
2047 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
2048 		if (pr_val == NULL) {
2049 			err = EINVAL;
2050 			return (err);
2051 		}
2052 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2053 		if (result < 1 || result > 10000) {
2054 			err = EINVAL;
2055 		} else {
2056 			ngep->param_tx_n_intr = (uint32_t)result;
2057 			goto reprogram;
2058 		}
2059 		return (err);
2060 	}
2061 
2062 	err = ENOTSUP;
2063 	return (err);
2064 
2065 reprogram:
2066 	if (err == 0) {
2067 		(*ngep->physops->phys_update)(ngep);
2068 		nge_chip_sync(ngep);
2069 	}
2070 
2071 	return (err);
2072 }
2073 
2074 static int
2075 nge_get_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_flags,
2076     uint_t pr_valsize, void *pr_val)
2077 {
2078 	int err = ENOTSUP;
2079 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
2080 	int value;
2081 
2082 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2083 		value = (is_default ? NGE_TX_COPY_SIZE :
2084 		    ngep->param_txbcopy_threshold);
2085 		err = 0;
2086 		goto done;
2087 	}
2088 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2089 		value = (is_default ? NGE_RX_COPY_SIZE :
2090 		    ngep->param_rxbcopy_threshold);
2091 		err = 0;
2092 		goto done;
2093 	}
2094 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
2095 		value = (is_default ? 128 : ngep->param_recv_max_packet);
2096 		err = 0;
2097 		goto done;
2098 	}
2099 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
2100 		value = (is_default ? NGE_POLL_QUIET_TIME :
2101 		    ngep->param_poll_quiet_time);
2102 		err = 0;
2103 		goto done;
2104 	}
2105 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
2106 		value = (is_default ? NGE_POLL_BUSY_TIME :
2107 		    ngep->param_poll_busy_time);
2108 		err = 0;
2109 		goto done;
2110 	}
2111 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
2112 		value = (is_default ? 1 : ngep->param_rx_intr_hwater);
2113 		err = 0;
2114 		goto done;
2115 	}
2116 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
2117 		value = (is_default ? 8 : ngep->param_rx_intr_lwater);
2118 		err = 0;
2119 		goto done;
2120 	}
2121 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
2122 		value = (is_default ? NGE_TX_N_INTR :
2123 		    ngep->param_tx_n_intr);
2124 		err = 0;
2125 		goto done;
2126 	}
2127 
2128 done:
2129 	if (err == 0) {
2130 		(void) snprintf(pr_val, pr_valsize, "%d", value);
2131 	}
2132 	return (err);
2133 }
2134 
2135 /* ARGSUSED */
2136 static boolean_t
2137 nge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2138 {
2139 	nge_t	*ngep = arg;
2140 	nge_dev_spec_param_t *dev_param_p;
2141 
2142 	dev_param_p = &ngep->dev_spec_param;
2143 
2144 	switch (cap) {
2145 	case MAC_CAPAB_HCKSUM: {
2146 		uint32_t *hcksum_txflags = cap_data;
2147 
2148 		if (dev_param_p->tx_hw_checksum) {
2149 			*hcksum_txflags = dev_param_p->tx_hw_checksum;
2150 		} else
2151 			return (B_FALSE);
2152 		break;
2153 	}
2154 	default:
2155 		return (B_FALSE);
2156 	}
2157 	return (B_TRUE);
2158 }
2159 
2160 #undef	NGE_DBG
2161 #define	NGE_DBG	NGE_DBG_INIT	/* debug flag for this code	*/
2162 int
2163 nge_restart(nge_t *ngep)
2164 {
2165 	int err = 0;
2166 	err = nge_reset_dev(ngep);
2167 	/* write back the promisc setting */
2168 	ngep->promisc = ngep->record_promisc;
2169 	nge_chip_sync(ngep);
2170 	if (!err)
2171 		err = nge_chip_start(ngep);
2172 
2173 	if (err) {
2174 		ngep->nge_mac_state = NGE_MAC_STOPPED;
2175 		return (DDI_FAILURE);
2176 	} else {
2177 		ngep->nge_mac_state = NGE_MAC_STARTED;
2178 		return (DDI_SUCCESS);
2179 	}
2180 }
2181 
2182 void
2183 nge_wake_factotum(nge_t *ngep)
2184 {
2185 	mutex_enter(ngep->softlock);
2186 	if (ngep->factotum_flag == 0) {
2187 		ngep->factotum_flag = 1;
2188 		(void) ddi_intr_trigger_softint(ngep->factotum_hdl, NULL);
2189 	}
2190 	mutex_exit(ngep->softlock);
2191 }
2192 
2193 /*
2194  * High-level cyclic handler
2195  *
2196  * This routine schedules a (low-level) softint callback to the
2197  * factotum.
2198  */
2199 
2200 static void
2201 nge_chip_cyclic(void *arg)
2202 {
2203 	nge_t *ngep;
2204 
2205 	ngep = (nge_t *)arg;
2206 
2207 	switch (ngep->nge_chip_state) {
2208 	default:
2209 		return;
2210 
2211 	case NGE_CHIP_RUNNING:
2212 		break;
2213 
2214 	case NGE_CHIP_FAULT:
2215 	case NGE_CHIP_ERROR:
2216 		break;
2217 	}
2218 
2219 	nge_wake_factotum(ngep);
2220 }
2221 
2222 /*
2223  * Get/Release semaphore of SMU
2224  * For SMU enabled chipset
2225  * When nge driver is attached, driver should acquire
2226  * semaphore before PHY init and accessing MAC registers.
2227  * When nge driver is unattached, driver should release
2228  * semaphore.
2229  */
2230 
2231 static int
2232 nge_smu_sema(nge_t *ngep, boolean_t acquire)
2233 {
2234 	nge_tx_en tx_en;
2235 	uint32_t tries;
2236 
2237 	if (acquire) {
2238 		for (tries = 0; tries < 5; tries++) {
2239 			tx_en.val = nge_reg_get32(ngep, NGE_TX_EN);
2240 			if (tx_en.bits.smu2mac == NGE_SMU_FREE)
2241 				break;
2242 			delay(drv_usectohz(1000000));
2243 		}
2244 		if (tx_en.bits.smu2mac != NGE_SMU_FREE)
2245 			return (DDI_FAILURE);
2246 		for (tries = 0; tries < 5; tries++) {
2247 			tx_en.val = nge_reg_get32(ngep, NGE_TX_EN);
2248 			tx_en.bits.mac2smu = NGE_SMU_GET;
2249 			nge_reg_put32(ngep, NGE_TX_EN, tx_en.val);
2250 			tx_en.val = nge_reg_get32(ngep, NGE_TX_EN);
2251 
2252 			if (tx_en.bits.mac2smu == NGE_SMU_GET &&
2253 			    tx_en.bits.smu2mac == NGE_SMU_FREE)
2254 				return (DDI_SUCCESS);
2255 			drv_usecwait(10);
2256 		}
2257 		return (DDI_FAILURE);
2258 	} else
2259 		nge_reg_put32(ngep, NGE_TX_EN, 0x0);
2260 
2261 	return (DDI_SUCCESS);
2262 
2263 }
2264 static void
2265 nge_unattach(nge_t *ngep)
2266 {
2267 	send_ring_t *srp;
2268 	buff_ring_t *brp;
2269 
2270 	srp = ngep->send;
2271 	brp = ngep->buff;
2272 	NGE_TRACE(("nge_unattach($%p)", (void *)ngep));
2273 
2274 	/*
2275 	 * Flag that no more activity may be initiated
2276 	 */
2277 	ngep->progress &= ~PROGRESS_READY;
2278 	ngep->nge_mac_state = NGE_MAC_UNATTACH;
2279 
2280 	/*
2281 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2282 	 * Clean up and free all NGE data structures
2283 	 */
2284 	if (ngep->periodic_id != NULL) {
2285 		ddi_periodic_delete(ngep->periodic_id);
2286 		ngep->periodic_id = NULL;
2287 	}
2288 
2289 	if (ngep->progress & PROGRESS_KSTATS)
2290 		nge_fini_kstats(ngep);
2291 
2292 	if (ngep->progress & PROGRESS_HWINT) {
2293 		mutex_enter(ngep->genlock);
2294 		nge_restore_mac_addr(ngep);
2295 		(void) nge_chip_stop(ngep, B_FALSE);
2296 		if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2297 		    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2298 			(void) nge_smu_sema(ngep, B_FALSE);
2299 		}
2300 		mutex_exit(ngep->genlock);
2301 	}
2302 
2303 	if (ngep->progress & PROGRESS_SWINT)
2304 		nge_rem_intrs(ngep);
2305 
2306 	if (ngep->progress & PROGRESS_FACTOTUM)
2307 		(void) ddi_intr_remove_softint(ngep->factotum_hdl);
2308 
2309 	if (ngep->progress & PROGRESS_RESCHED)
2310 		(void) ddi_intr_remove_softint(ngep->resched_hdl);
2311 
2312 	if (ngep->progress & PROGRESS_INTR) {
2313 		mutex_destroy(srp->tx_lock);
2314 		mutex_destroy(srp->tc_lock);
2315 		mutex_destroy(&srp->dmah_lock);
2316 		mutex_destroy(brp->recycle_lock);
2317 
2318 		mutex_destroy(ngep->genlock);
2319 		mutex_destroy(ngep->softlock);
2320 		rw_destroy(ngep->rwlock);
2321 	}
2322 
2323 	if (ngep->progress & PROGRESS_REGS)
2324 		ddi_regs_map_free(&ngep->io_handle);
2325 
2326 	if (ngep->progress & PROGRESS_CFG)
2327 		pci_config_teardown(&ngep->cfg_handle);
2328 
2329 	ddi_remove_minor_node(ngep->devinfo, NULL);
2330 
2331 	kmem_free(ngep, sizeof (*ngep));
2332 }
2333 
2334 static int
2335 nge_resume(dev_info_t *devinfo)
2336 {
2337 	nge_t		*ngep;
2338 	chip_info_t	*infop;
2339 	int 		err;
2340 
2341 	ASSERT(devinfo != NULL);
2342 
2343 	ngep = ddi_get_driver_private(devinfo);
2344 	err = 0;
2345 
2346 	/*
2347 	 * If there are state inconsistancies, this is bad.  Returning
2348 	 * DDI_FAILURE here will eventually cause the machine to panic,
2349 	 * so it is best done here so that there is a possibility of
2350 	 * debugging the problem.
2351 	 */
2352 	if (ngep == NULL)
2353 		cmn_err(CE_PANIC,
2354 		    "nge: ngep returned from ddi_get_driver_private was NULL");
2355 	infop = (chip_info_t *)&ngep->chipinfo;
2356 
2357 	if (ngep->devinfo != devinfo)
2358 		cmn_err(CE_PANIC,
2359 		    "nge: passed devinfo not the same as saved devinfo");
2360 
2361 	mutex_enter(ngep->genlock);
2362 	rw_enter(ngep->rwlock, RW_WRITER);
2363 
2364 	/*
2365 	 * Fetch the config space.  Even though we have most of it cached,
2366 	 * some values *might* change across a suspend/resume.
2367 	 */
2368 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2369 
2370 	/*
2371 	 * Only in one case, this conditional branch can be executed: the port
2372 	 * hasn't been plumbed.
2373 	 */
2374 	if (ngep->suspended == B_FALSE) {
2375 		rw_exit(ngep->rwlock);
2376 		mutex_exit(ngep->genlock);
2377 		return (DDI_SUCCESS);
2378 	}
2379 
2380 	nge_tx_recycle_all(ngep);
2381 	err = nge_reinit_ring(ngep);
2382 	if (!err) {
2383 		err = nge_chip_reset(ngep);
2384 		if (!err)
2385 			err = nge_chip_start(ngep);
2386 	}
2387 
2388 	if (err) {
2389 		/*
2390 		 * We note the failure, but return success, as the
2391 		 * system is still usable without this controller.
2392 		 */
2393 		cmn_err(CE_WARN, "nge: resume: failed to restart controller");
2394 	} else {
2395 		ngep->nge_mac_state = NGE_MAC_STARTED;
2396 	}
2397 	ngep->suspended = B_FALSE;
2398 
2399 	rw_exit(ngep->rwlock);
2400 	mutex_exit(ngep->genlock);
2401 
2402 	return (DDI_SUCCESS);
2403 }
2404 
2405 /*
2406  * attach(9E) -- Attach a device to the system
2407  *
2408  * Called once for each board successfully probed.
2409  */
2410 static int
2411 nge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2412 {
2413 	int		err;
2414 	int		i;
2415 	int		instance;
2416 	caddr_t		regs;
2417 	nge_t		*ngep;
2418 	chip_info_t	*infop;
2419 	mac_register_t	*macp;
2420 
2421 	switch (cmd) {
2422 	default:
2423 		return (DDI_FAILURE);
2424 
2425 	case DDI_RESUME:
2426 		return (nge_resume(devinfo));
2427 
2428 	case DDI_ATTACH:
2429 		break;
2430 	}
2431 
2432 	ngep = kmem_zalloc(sizeof (*ngep), KM_SLEEP);
2433 	instance = ddi_get_instance(devinfo);
2434 	ddi_set_driver_private(devinfo, ngep);
2435 	ngep->devinfo = devinfo;
2436 
2437 	(void) snprintf(ngep->ifname, sizeof (ngep->ifname), "%s%d",
2438 	    NGE_DRIVER_NAME, instance);
2439 	err = pci_config_setup(devinfo, &ngep->cfg_handle);
2440 	if (err != DDI_SUCCESS) {
2441 		nge_problem(ngep, "nge_attach: pci_config_setup() failed");
2442 		goto attach_fail;
2443 	}
2444 	/*
2445 	 * param_txbcopy_threshold and param_rxbcopy_threshold are tx/rx bcopy
2446 	 * thresholds. Bounds: min 0, max NGE_MAX_SDU
2447 	 */
2448 	ngep->param_txbcopy_threshold = NGE_TX_COPY_SIZE;
2449 	ngep->param_rxbcopy_threshold = NGE_RX_COPY_SIZE;
2450 
2451 	/*
2452 	 * param_recv_max_packet is max packet received per interupt.
2453 	 * Bounds: min 0, max NGE_RECV_SLOTS_DESC_1024
2454 	 */
2455 	ngep->param_recv_max_packet = 128;
2456 
2457 	/*
2458 	 * param_poll_quiet_time and param_poll_busy_time are quiet/busy time
2459 	 * switch from per packet interrupt to polling interrupt.
2460 	 * Bounds: min 0, max 10000
2461 	 */
2462 	ngep->param_poll_quiet_time = NGE_POLL_QUIET_TIME;
2463 	ngep->param_poll_busy_time = NGE_POLL_BUSY_TIME;
2464 
2465 	/*
2466 	 * param_rx_intr_hwater/param_rx_intr_lwater: ackets received
2467 	 * to trigger the poll_quiet_time/poll_busy_time counter.
2468 	 * Bounds: min 0, max  NGE_RECV_SLOTS_DESC_1024.
2469 	 */
2470 	ngep->param_rx_intr_hwater = 1;
2471 	ngep->param_rx_intr_lwater = 8;
2472 
2473 	/*
2474 	 * param_tx_n_intr: Per N tx packets to do tx recycle in poll mode.
2475 	 * Bounds: min 1, max 10000.
2476 	 */
2477 	ngep->param_tx_n_intr = NGE_TX_N_INTR;
2478 
2479 	infop = (chip_info_t *)&ngep->chipinfo;
2480 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2481 	nge_init_dev_spec_param(ngep);
2482 	nge_get_props(ngep);
2483 	ngep->progress |= PROGRESS_CFG;
2484 
2485 	err = ddi_regs_map_setup(devinfo, NGE_PCI_OPREGS_RNUMBER,
2486 	    &regs, 0, 0, &nge_reg_accattr, &ngep->io_handle);
2487 	if (err != DDI_SUCCESS) {
2488 		nge_problem(ngep, "nge_attach: ddi_regs_map_setup() failed");
2489 		goto attach_fail;
2490 	}
2491 	ngep->io_regs = regs;
2492 	ngep->progress |= PROGRESS_REGS;
2493 
2494 	err = nge_register_intrs_and_init_locks(ngep);
2495 	if (err != DDI_SUCCESS) {
2496 		nge_problem(ngep, "nge_attach:"
2497 		    " register intrs and init locks failed");
2498 		goto attach_fail;
2499 	}
2500 	nge_init_ring_param_lock(ngep);
2501 	ngep->progress |= PROGRESS_INTR;
2502 
2503 	mutex_enter(ngep->genlock);
2504 
2505 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2506 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2507 		err = nge_smu_sema(ngep, B_TRUE);
2508 		if (err != DDI_SUCCESS) {
2509 			nge_problem(ngep, "nge_attach: nge_smu_sema() failed");
2510 			goto attach_fail;
2511 		}
2512 	}
2513 	/*
2514 	 * Initialise link state variables
2515 	 * Stop, reset & reinitialise the chip.
2516 	 * Initialise the (internal) PHY.
2517 	 */
2518 	nge_phys_init(ngep);
2519 	ngep->nge_chip_state = NGE_CHIP_INITIAL;
2520 	err = nge_chip_reset(ngep);
2521 	if (err != DDI_SUCCESS) {
2522 		nge_problem(ngep, "nge_attach: nge_chip_reset() failed");
2523 		mutex_exit(ngep->genlock);
2524 		goto attach_fail;
2525 	}
2526 	nge_chip_sync(ngep);
2527 
2528 	/*
2529 	 * Now that mutex locks are initialized, enable interrupts.
2530 	 */
2531 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2532 		/* Call ddi_intr_block_enable() for MSI interrupts */
2533 		(void) ddi_intr_block_enable(ngep->htable,
2534 		    ngep->intr_actual_cnt);
2535 	} else {
2536 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
2537 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2538 			(void) ddi_intr_enable(ngep->htable[i]);
2539 		}
2540 	}
2541 
2542 	ngep->link_state = LINK_STATE_UNKNOWN;
2543 	ngep->progress |= PROGRESS_HWINT;
2544 
2545 	/*
2546 	 * Register NDD-tweakable parameters
2547 	 */
2548 	if (nge_nd_init(ngep)) {
2549 		nge_problem(ngep, "nge_attach: nge_nd_init() failed");
2550 		mutex_exit(ngep->genlock);
2551 		goto attach_fail;
2552 	}
2553 	ngep->progress |= PROGRESS_NDD;
2554 
2555 	/*
2556 	 * Create & initialise named kstats
2557 	 */
2558 	nge_init_kstats(ngep, instance);
2559 	ngep->progress |= PROGRESS_KSTATS;
2560 
2561 	mutex_exit(ngep->genlock);
2562 
2563 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
2564 		goto attach_fail;
2565 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2566 	macp->m_driver = ngep;
2567 	macp->m_dip = devinfo;
2568 	macp->m_src_addr = infop->vendor_addr.addr;
2569 	macp->m_callbacks = &nge_m_callbacks;
2570 	macp->m_min_sdu = 0;
2571 	macp->m_max_sdu = ngep->default_mtu;
2572 	macp->m_margin = VTAG_SIZE;
2573 	macp->m_priv_props = nge_priv_props;
2574 	macp->m_priv_prop_count = NGE_MAX_PRIV_PROPS;
2575 	/*
2576 	 * Finally, we're ready to register ourselves with the mac
2577 	 * interface; if this succeeds, we're all ready to start()
2578 	 */
2579 	err = mac_register(macp, &ngep->mh);
2580 	mac_free(macp);
2581 	if (err != 0)
2582 		goto attach_fail;
2583 
2584 	/*
2585 	 * Register a periodical handler.
2586 	 * nge_chip_cyclic() is invoked in kernel context.
2587 	 */
2588 	ngep->periodic_id = ddi_periodic_add(nge_chip_cyclic, ngep,
2589 	    NGE_CYCLIC_PERIOD, DDI_IPL_0);
2590 
2591 	ngep->progress |= PROGRESS_READY;
2592 	return (DDI_SUCCESS);
2593 
2594 attach_fail:
2595 	nge_unattach(ngep);
2596 	return (DDI_FAILURE);
2597 }
2598 
2599 static int
2600 nge_suspend(nge_t *ngep)
2601 {
2602 	mutex_enter(ngep->genlock);
2603 	rw_enter(ngep->rwlock, RW_WRITER);
2604 
2605 	/* if the port hasn't been plumbed, just return */
2606 	if (ngep->nge_mac_state != NGE_MAC_STARTED) {
2607 		rw_exit(ngep->rwlock);
2608 		mutex_exit(ngep->genlock);
2609 		return (DDI_SUCCESS);
2610 	}
2611 	ngep->suspended = B_TRUE;
2612 	(void) nge_chip_stop(ngep, B_FALSE);
2613 	ngep->nge_mac_state = NGE_MAC_STOPPED;
2614 
2615 	rw_exit(ngep->rwlock);
2616 	mutex_exit(ngep->genlock);
2617 	return (DDI_SUCCESS);
2618 }
2619 
2620 /*
2621  * detach(9E) -- Detach a device from the system
2622  */
2623 static int
2624 nge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2625 {
2626 	int i;
2627 	nge_t *ngep;
2628 	mul_item *p, *nextp;
2629 	buff_ring_t *brp;
2630 
2631 	NGE_GTRACE(("nge_detach($%p, %d)", (void *)devinfo, cmd));
2632 
2633 	ngep = ddi_get_driver_private(devinfo);
2634 	brp = ngep->buff;
2635 
2636 	switch (cmd) {
2637 	default:
2638 		return (DDI_FAILURE);
2639 
2640 	case DDI_SUSPEND:
2641 		/*
2642 		 * Stop the NIC
2643 		 * Note: This driver doesn't currently support WOL, but
2644 		 *	should it in the future, it is important to
2645 		 *	make sure the PHY remains powered so that the
2646 		 *	wakeup packet can actually be recieved.
2647 		 */
2648 		return (nge_suspend(ngep));
2649 
2650 	case DDI_DETACH:
2651 		break;
2652 	}
2653 
2654 	/* Try to wait all the buffer post to upper layer be released */
2655 	for (i = 0; i < 1000; i++) {
2656 		if (brp->rx_hold == 0)
2657 			break;
2658 		drv_usecwait(1000);
2659 	}
2660 
2661 	/* If there is any posted buffer, reject to detach */
2662 	if (brp->rx_hold != 0)
2663 		return (DDI_FAILURE);
2664 
2665 	/*
2666 	 * Unregister from the GLD subsystem.  This can fail, in
2667 	 * particular if there are DLPI style-2 streams still open -
2668 	 * in which case we just return failure without shutting
2669 	 * down chip operations.
2670 	 */
2671 	if (mac_unregister(ngep->mh) != DDI_SUCCESS)
2672 		return (DDI_FAILURE);
2673 
2674 	/*
2675 	 * Recycle the multicast table. mac_unregister() should be called
2676 	 * before it to ensure the multicast table can be used even if
2677 	 * mac_unregister() fails.
2678 	 */
2679 	for (p = ngep->pcur_mulist; p != NULL; p = nextp) {
2680 		nextp = p->next;
2681 		kmem_free(p, sizeof (mul_item));
2682 	}
2683 	ngep->pcur_mulist = NULL;
2684 
2685 	/*
2686 	 * All activity stopped, so we can clean up & exit
2687 	 */
2688 	nge_unattach(ngep);
2689 	return (DDI_SUCCESS);
2690 }
2691 
2692 /*
2693  * quiesce(9E) entry point.
2694  *
2695  * This function is called when the system is single-threaded at high
2696  * PIL with preemption disabled. Therefore, this function must not be
2697  * blocked.
2698  *
2699  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
2700  * DDI_FAILURE indicates an error condition and should almost never happen.
2701  */
2702 static int
2703 nge_quiesce(dev_info_t *devinfo)
2704 {
2705 	nge_t *ngep;
2706 
2707 	ngep = ddi_get_driver_private(devinfo);
2708 
2709 	if (ngep == NULL)
2710 		return (DDI_FAILURE);
2711 
2712 	/*
2713 	 * Turn off debug tracing
2714 	 */
2715 	nge_debug = 0;
2716 	ngep->debug = 0;
2717 
2718 	nge_restore_mac_addr(ngep);
2719 	(void) nge_chip_stop(ngep, B_FALSE);
2720 
2721 	return (DDI_SUCCESS);
2722 }
2723 
2724 
2725 
2726 /*
2727  * ========== Module Loading Data & Entry Points ==========
2728  */
2729 
2730 DDI_DEFINE_STREAM_OPS(nge_dev_ops, nulldev, nulldev, nge_attach, nge_detach,
2731     NULL, NULL, D_MP, NULL, nge_quiesce);
2732 
2733 
2734 static struct modldrv nge_modldrv = {
2735 	&mod_driverops,		/* Type of module.  This one is a driver */
2736 	nge_ident,		/* short description */
2737 	&nge_dev_ops		/* driver specific ops */
2738 };
2739 
2740 static struct modlinkage modlinkage = {
2741 	MODREV_1, (void *)&nge_modldrv, NULL
2742 };
2743 
2744 
2745 int
2746 _info(struct modinfo *modinfop)
2747 {
2748 	return (mod_info(&modlinkage, modinfop));
2749 }
2750 
2751 int
2752 _init(void)
2753 {
2754 	int status;
2755 
2756 	mac_init_ops(&nge_dev_ops, "nge");
2757 	status = mod_install(&modlinkage);
2758 	if (status != DDI_SUCCESS)
2759 		mac_fini_ops(&nge_dev_ops);
2760 	else
2761 		mutex_init(nge_log_mutex, NULL, MUTEX_DRIVER, NULL);
2762 
2763 	return (status);
2764 }
2765 
2766 int
2767 _fini(void)
2768 {
2769 	int status;
2770 
2771 	status = mod_remove(&modlinkage);
2772 	if (status == DDI_SUCCESS) {
2773 		mac_fini_ops(&nge_dev_ops);
2774 		mutex_destroy(nge_log_mutex);
2775 	}
2776 
2777 	return (status);
2778 }
2779 
2780 /*
2781  * ============ Init MSI/Fixed/SoftInterrupt routines ==============
2782  */
2783 
2784 /*
2785  * Register interrupts and initialize each mutex and condition variables
2786  */
2787 
2788 static int
2789 nge_register_intrs_and_init_locks(nge_t *ngep)
2790 {
2791 	int		err;
2792 	int		intr_types;
2793 	uint_t		soft_prip;
2794 	nge_msi_mask	msi_mask;
2795 	nge_msi_map0_vec map0_vec;
2796 	nge_msi_map1_vec map1_vec;
2797 
2798 	/*
2799 	 * Add the softint handlers:
2800 	 *
2801 	 * Both of these handlers are used to avoid restrictions on the
2802 	 * context and/or mutexes required for some operations.  In
2803 	 * particular, the hardware interrupt handler and its subfunctions
2804 	 * can detect a number of conditions that we don't want to handle
2805 	 * in that context or with that set of mutexes held.  So, these
2806 	 * softints are triggered instead:
2807 	 *
2808 	 * the <resched> softint is triggered if if we have previously
2809 	 * had to refuse to send a packet because of resource shortage
2810 	 * (we've run out of transmit buffers), but the send completion
2811 	 * interrupt handler has now detected that more buffers have
2812 	 * become available.  Its only purpose is to call gld_sched()
2813 	 * to retry the pending transmits (we're not allowed to hold
2814 	 * driver-defined mutexes across gld_sched()).
2815 	 *
2816 	 * the <factotum> is triggered if the h/w interrupt handler
2817 	 * sees the <link state changed> or <error> bits in the status
2818 	 * block.  It's also triggered periodically to poll the link
2819 	 * state, just in case we aren't getting link status change
2820 	 * interrupts ...
2821 	 */
2822 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->resched_hdl,
2823 	    DDI_INTR_SOFTPRI_MIN, nge_reschedule, (caddr_t)ngep);
2824 	if (err != DDI_SUCCESS) {
2825 		nge_problem(ngep,
2826 		    "nge_attach: add nge_reschedule softintr failed");
2827 
2828 		return (DDI_FAILURE);
2829 	}
2830 	ngep->progress |= PROGRESS_RESCHED;
2831 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->factotum_hdl,
2832 	    DDI_INTR_SOFTPRI_MIN, nge_chip_factotum, (caddr_t)ngep);
2833 	if (err != DDI_SUCCESS) {
2834 		nge_problem(ngep,
2835 		    "nge_attach: add nge_chip_factotum softintr failed!");
2836 
2837 		return (DDI_FAILURE);
2838 	}
2839 	if (ddi_intr_get_softint_pri(ngep->factotum_hdl, &soft_prip)
2840 	    != DDI_SUCCESS) {
2841 		nge_problem(ngep, "nge_attach: get softintr priority failed\n");
2842 
2843 		return (DDI_FAILURE);
2844 	}
2845 	ngep->soft_pri = soft_prip;
2846 
2847 	ngep->progress |= PROGRESS_FACTOTUM;
2848 	/* Get supported interrupt types */
2849 	if (ddi_intr_get_supported_types(ngep->devinfo, &intr_types)
2850 	    != DDI_SUCCESS) {
2851 		nge_error(ngep, "ddi_intr_get_supported_types failed\n");
2852 
2853 		return (DDI_FAILURE);
2854 	}
2855 
2856 	NGE_DEBUG(("ddi_intr_get_supported_types() returned: %x",
2857 	    intr_types));
2858 
2859 	if ((intr_types & DDI_INTR_TYPE_MSI) && nge_enable_msi) {
2860 
2861 		/* MSI Configurations for mcp55 chipset */
2862 		if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2863 		    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2864 
2865 
2866 			/* Enable the 8 vectors */
2867 			msi_mask.msi_mask_val =
2868 			    nge_reg_get32(ngep, NGE_MSI_MASK);
2869 			msi_mask.msi_msk_bits.vec0 = NGE_SET;
2870 			msi_mask.msi_msk_bits.vec1 = NGE_SET;
2871 			msi_mask.msi_msk_bits.vec2 = NGE_SET;
2872 			msi_mask.msi_msk_bits.vec3 = NGE_SET;
2873 			msi_mask.msi_msk_bits.vec4 = NGE_SET;
2874 			msi_mask.msi_msk_bits.vec5 = NGE_SET;
2875 			msi_mask.msi_msk_bits.vec6 = NGE_SET;
2876 			msi_mask.msi_msk_bits.vec7 = NGE_SET;
2877 			nge_reg_put32(ngep, NGE_MSI_MASK,
2878 			    msi_mask.msi_mask_val);
2879 
2880 			/*
2881 			 * Remapping the MSI MAP0 and MAP1. MCP55
2882 			 * is default mapping all the interrupt to 0 vector.
2883 			 * Software needs to remapping this.
2884 			 * This mapping is same as CK804.
2885 			 */
2886 			map0_vec.msi_map0_val =
2887 			    nge_reg_get32(ngep, NGE_MSI_MAP0);
2888 			map1_vec.msi_map1_val =
2889 			    nge_reg_get32(ngep, NGE_MSI_MAP1);
2890 			map0_vec.vecs_bits.reint_vec = 0;
2891 			map0_vec.vecs_bits.rcint_vec = 0;
2892 			map0_vec.vecs_bits.miss_vec = 3;
2893 			map0_vec.vecs_bits.teint_vec = 5;
2894 			map0_vec.vecs_bits.tcint_vec = 5;
2895 			map0_vec.vecs_bits.stint_vec = 2;
2896 			map0_vec.vecs_bits.mint_vec = 6;
2897 			map0_vec.vecs_bits.rfint_vec = 0;
2898 			map1_vec.vecs_bits.tfint_vec = 5;
2899 			map1_vec.vecs_bits.feint_vec = 6;
2900 			map1_vec.vecs_bits.resv8_11 = 3;
2901 			map1_vec.vecs_bits.resv12_15 = 1;
2902 			map1_vec.vecs_bits.resv16_19 = 0;
2903 			map1_vec.vecs_bits.resv20_23 = 7;
2904 			map1_vec.vecs_bits.resv24_31 = 0xff;
2905 			nge_reg_put32(ngep, NGE_MSI_MAP0,
2906 			    map0_vec.msi_map0_val);
2907 			nge_reg_put32(ngep, NGE_MSI_MAP1,
2908 			    map1_vec.msi_map1_val);
2909 		}
2910 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
2911 			NGE_DEBUG(("MSI registration failed, "
2912 			    "trying FIXED interrupt type\n"));
2913 		} else {
2914 			nge_log(ngep, "Using MSI interrupt type\n");
2915 
2916 			ngep->intr_type = DDI_INTR_TYPE_MSI;
2917 			ngep->progress |= PROGRESS_SWINT;
2918 		}
2919 	}
2920 
2921 	if (!(ngep->progress & PROGRESS_SWINT) &&
2922 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
2923 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
2924 			nge_error(ngep, "FIXED interrupt "
2925 			    "registration failed\n");
2926 
2927 			return (DDI_FAILURE);
2928 		}
2929 
2930 		nge_log(ngep, "Using FIXED interrupt type\n");
2931 
2932 		ngep->intr_type = DDI_INTR_TYPE_FIXED;
2933 		ngep->progress |= PROGRESS_SWINT;
2934 	}
2935 
2936 
2937 	if (!(ngep->progress & PROGRESS_SWINT)) {
2938 		nge_error(ngep, "No interrupts registered\n");
2939 
2940 		return (DDI_FAILURE);
2941 	}
2942 	mutex_init(ngep->genlock, NULL, MUTEX_DRIVER,
2943 	    DDI_INTR_PRI(ngep->intr_pri));
2944 	mutex_init(ngep->softlock, NULL, MUTEX_DRIVER,
2945 	    DDI_INTR_PRI(ngep->soft_pri));
2946 	rw_init(ngep->rwlock, NULL, RW_DRIVER,
2947 	    DDI_INTR_PRI(ngep->intr_pri));
2948 
2949 	return (DDI_SUCCESS);
2950 }
2951 
2952 /*
2953  * nge_add_intrs:
2954  *
2955  * Register FIXED or MSI interrupts.
2956  */
2957 static int
2958 nge_add_intrs(nge_t *ngep, int	intr_type)
2959 {
2960 	dev_info_t	*dip = ngep->devinfo;
2961 	int		avail, actual, intr_size, count = 0;
2962 	int		i, flag, ret;
2963 
2964 	NGE_DEBUG(("nge_add_intrs: interrupt type 0x%x\n", intr_type));
2965 
2966 	/* Get number of interrupts */
2967 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
2968 	if ((ret != DDI_SUCCESS) || (count == 0)) {
2969 		nge_error(ngep, "ddi_intr_get_nintrs() failure, ret: %d, "
2970 		    "count: %d", ret, count);
2971 
2972 		return (DDI_FAILURE);
2973 	}
2974 
2975 	/* Get number of available interrupts */
2976 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
2977 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
2978 		nge_error(ngep, "ddi_intr_get_navail() failure, "
2979 		    "ret: %d, avail: %d\n", ret, avail);
2980 
2981 		return (DDI_FAILURE);
2982 	}
2983 
2984 	if (avail < count) {
2985 		NGE_DEBUG(("nitrs() returned %d, navail returned %d\n",
2986 		    count, avail));
2987 	}
2988 	flag = DDI_INTR_ALLOC_NORMAL;
2989 
2990 	/* Allocate an array of interrupt handles */
2991 	intr_size = count * sizeof (ddi_intr_handle_t);
2992 	ngep->htable = kmem_alloc(intr_size, KM_SLEEP);
2993 
2994 	/* Call ddi_intr_alloc() */
2995 	ret = ddi_intr_alloc(dip, ngep->htable, intr_type, 0,
2996 	    count, &actual, flag);
2997 
2998 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
2999 		nge_error(ngep, "ddi_intr_alloc() failed %d\n", ret);
3000 
3001 		kmem_free(ngep->htable, intr_size);
3002 		return (DDI_FAILURE);
3003 	}
3004 
3005 	if (actual < count) {
3006 		NGE_DEBUG(("Requested: %d, Received: %d\n",
3007 		    count, actual));
3008 	}
3009 
3010 	ngep->intr_actual_cnt = actual;
3011 	ngep->intr_req_cnt = count;
3012 
3013 	/*
3014 	 * Get priority for first msi, assume remaining are all the same
3015 	 */
3016 	if ((ret = ddi_intr_get_pri(ngep->htable[0], &ngep->intr_pri)) !=
3017 	    DDI_SUCCESS) {
3018 		nge_error(ngep, "ddi_intr_get_pri() failed %d\n", ret);
3019 
3020 		/* Free already allocated intr */
3021 		for (i = 0; i < actual; i++) {
3022 			(void) ddi_intr_free(ngep->htable[i]);
3023 		}
3024 
3025 		kmem_free(ngep->htable, intr_size);
3026 
3027 		return (DDI_FAILURE);
3028 	}
3029 	/* Test for high level mutex */
3030 	if (ngep->intr_pri >= ddi_intr_get_hilevel_pri()) {
3031 		nge_error(ngep, "nge_add_intrs:"
3032 		    "Hi level interrupt not supported");
3033 
3034 		for (i = 0; i < actual; i++)
3035 			(void) ddi_intr_free(ngep->htable[i]);
3036 
3037 		kmem_free(ngep->htable, intr_size);
3038 
3039 		return (DDI_FAILURE);
3040 	}
3041 
3042 
3043 	/* Call ddi_intr_add_handler() */
3044 	for (i = 0; i < actual; i++) {
3045 		if ((ret = ddi_intr_add_handler(ngep->htable[i], nge_chip_intr,
3046 		    (caddr_t)ngep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3047 			nge_error(ngep, "ddi_intr_add_handler() "
3048 			    "failed %d\n", ret);
3049 
3050 			/* Free already allocated intr */
3051 			for (i = 0; i < actual; i++) {
3052 				(void) ddi_intr_free(ngep->htable[i]);
3053 			}
3054 
3055 			kmem_free(ngep->htable, intr_size);
3056 
3057 			return (DDI_FAILURE);
3058 		}
3059 	}
3060 
3061 	if ((ret = ddi_intr_get_cap(ngep->htable[0], &ngep->intr_cap))
3062 	    != DDI_SUCCESS) {
3063 		nge_error(ngep, "ddi_intr_get_cap() failed %d\n", ret);
3064 
3065 		for (i = 0; i < actual; i++) {
3066 			(void) ddi_intr_remove_handler(ngep->htable[i]);
3067 			(void) ddi_intr_free(ngep->htable[i]);
3068 		}
3069 
3070 		kmem_free(ngep->htable, intr_size);
3071 
3072 		return (DDI_FAILURE);
3073 	}
3074 
3075 	return (DDI_SUCCESS);
3076 }
3077 
3078 /*
3079  * nge_rem_intrs:
3080  *
3081  * Unregister FIXED or MSI interrupts
3082  */
3083 static void
3084 nge_rem_intrs(nge_t *ngep)
3085 {
3086 	int	i;
3087 
3088 	NGE_DEBUG(("nge_rem_intrs\n"));
3089 
3090 	/* Disable all interrupts */
3091 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3092 		/* Call ddi_intr_block_disable() */
3093 		(void) ddi_intr_block_disable(ngep->htable,
3094 		    ngep->intr_actual_cnt);
3095 	} else {
3096 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
3097 			(void) ddi_intr_disable(ngep->htable[i]);
3098 		}
3099 	}
3100 
3101 	/* Call ddi_intr_remove_handler() */
3102 	for (i = 0; i < ngep->intr_actual_cnt; i++) {
3103 		(void) ddi_intr_remove_handler(ngep->htable[i]);
3104 		(void) ddi_intr_free(ngep->htable[i]);
3105 	}
3106 
3107 	kmem_free(ngep->htable,
3108 	    ngep->intr_req_cnt * sizeof (ddi_intr_handle_t));
3109 }
3110