xref: /illumos-gate/usr/src/uts/common/io/nge/nge_chip.c (revision f5488aa822e08905cde61d596e965030a1dfffcd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "nge.h"
30 static uint32_t	nge_watchdog_count	= 1 << 29;
31 extern boolean_t nge_enable_msi;
32 static void nge_sync_mac_modes(nge_t *);
33 
34 #undef NGE_DBG
35 #define	NGE_DBG		NGE_DBG_CHIP
36 
37 /*
38  * Operating register get/set access routines
39  */
40 uint8_t nge_reg_get8(nge_t *ngep, nge_regno_t regno);
41 #pragma	inline(nge_reg_get8)
42 
43 uint8_t
44 nge_reg_get8(nge_t *ngep, nge_regno_t regno)
45 {
46 	NGE_TRACE(("nge_reg_get8($%p, 0x%lx)", (void *)ngep, regno));
47 
48 	return (ddi_get8(ngep->io_handle, PIO_ADDR(ngep, regno)));
49 }
50 
51 void nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data);
52 #pragma	inline(nge_reg_put8)
53 
54 void
55 nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data)
56 {
57 	NGE_TRACE(("nge_reg_put8($%p, 0x%lx, 0x%x)",
58 	    (void *)ngep, regno, data));
59 	ddi_put8(ngep->io_handle, PIO_ADDR(ngep, regno), data);
60 
61 }
62 
63 uint16_t nge_reg_get16(nge_t *ngep, nge_regno_t regno);
64 #pragma	inline(nge_reg_get16)
65 
66 uint16_t
67 nge_reg_get16(nge_t *ngep, nge_regno_t regno)
68 {
69 	NGE_TRACE(("nge_reg_get16($%p, 0x%lx)", (void *)ngep, regno));
70 	return (ddi_get16(ngep->io_handle, PIO_ADDR(ngep, regno)));
71 }
72 
73 void nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data);
74 #pragma	inline(nge_reg_put16)
75 
76 void
77 nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data)
78 {
79 	NGE_TRACE(("nge_reg_put16($%p, 0x%lx, 0x%x)",
80 	    (void *)ngep, regno, data));
81 	ddi_put16(ngep->io_handle, PIO_ADDR(ngep, regno), data);
82 
83 }
84 
85 uint32_t nge_reg_get32(nge_t *ngep, nge_regno_t regno);
86 #pragma	inline(nge_reg_get32)
87 
88 uint32_t
89 nge_reg_get32(nge_t *ngep, nge_regno_t regno)
90 {
91 	NGE_TRACE(("nge_reg_get32($%p, 0x%lx)", (void *)ngep, regno));
92 	return (ddi_get32(ngep->io_handle, PIO_ADDR(ngep, regno)));
93 }
94 
95 void nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data);
96 #pragma	inline(nge_reg_put32)
97 
98 void
99 nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data)
100 {
101 	NGE_TRACE(("nge_reg_put32($%p, 0x%lx, 0x%x)",
102 	    (void *)ngep, regno, data));
103 	ddi_put32(ngep->io_handle, PIO_ADDR(ngep, regno), data);
104 
105 }
106 
107 
108 static int nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
109 #pragma	no_inline(nge_chip_peek_cfg)
110 
111 static int
112 nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
113 {
114 	int err;
115 	uint64_t regval;
116 	uint64_t regno;
117 
118 	NGE_TRACE(("nge_chip_peek_cfg($%p, $%p)",
119 	    (void *)ngep, (void *)ppd));
120 
121 	err = DDI_SUCCESS;
122 	regno = ppd->pp_acc_offset;
123 
124 	switch (ppd->pp_acc_size) {
125 	case 1:
126 		regval = pci_config_get8(ngep->cfg_handle, regno);
127 		break;
128 
129 	case 2:
130 		regval = pci_config_get16(ngep->cfg_handle, regno);
131 		break;
132 
133 	case 4:
134 		regval = pci_config_get32(ngep->cfg_handle, regno);
135 		break;
136 
137 	case 8:
138 		regval = pci_config_get64(ngep->cfg_handle, regno);
139 		break;
140 	}
141 	ppd->pp_acc_data = regval;
142 	return (err);
143 }
144 
145 static int nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
146 
147 static int
148 nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
149 {
150 	int err;
151 	uint64_t regval;
152 	uint64_t regno;
153 
154 	NGE_TRACE(("nge_chip_poke_cfg($%p, $%p)",
155 	    (void *)ngep, (void *)ppd));
156 
157 	err = DDI_SUCCESS;
158 	regno = ppd->pp_acc_offset;
159 	regval = ppd->pp_acc_data;
160 
161 	switch (ppd->pp_acc_size) {
162 	case 1:
163 		pci_config_put8(ngep->cfg_handle, regno, regval);
164 		break;
165 
166 	case 2:
167 		pci_config_put16(ngep->cfg_handle, regno, regval);
168 		break;
169 
170 	case 4:
171 		pci_config_put32(ngep->cfg_handle, regno, regval);
172 		break;
173 
174 	case 8:
175 		pci_config_put64(ngep->cfg_handle, regno, regval);
176 		break;
177 	}
178 
179 	return (err);
180 
181 }
182 
183 static int nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd);
184 
185 static int
186 nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd)
187 {
188 	int err;
189 	uint64_t regval;
190 	void *regaddr;
191 
192 	NGE_TRACE(("nge_chip_peek_reg($%p, $%p)",
193 	    (void *)ngep, (void *)ppd));
194 
195 	err = DDI_SUCCESS;
196 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
197 
198 	switch (ppd->pp_acc_size) {
199 	case 1:
200 		regval = ddi_get8(ngep->io_handle, regaddr);
201 	break;
202 
203 	case 2:
204 		regval = ddi_get16(ngep->io_handle, regaddr);
205 	break;
206 
207 	case 4:
208 		regval = ddi_get32(ngep->io_handle, regaddr);
209 	break;
210 
211 	case 8:
212 		regval = ddi_get64(ngep->io_handle, regaddr);
213 	break;
214 
215 	default:
216 		regval = 0x0ull;
217 	break;
218 	}
219 	ppd->pp_acc_data = regval;
220 	return (err);
221 }
222 
223 static int nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd);
224 
225 static int
226 nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd)
227 {
228 	int err;
229 	uint64_t regval;
230 	void *regaddr;
231 
232 	NGE_TRACE(("nge_chip_poke_reg($%p, $%p)",
233 	    (void *)ngep, (void *)ppd));
234 
235 	err = DDI_SUCCESS;
236 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
237 	regval = ppd->pp_acc_data;
238 
239 	switch (ppd->pp_acc_size) {
240 	case 1:
241 		ddi_put8(ngep->io_handle, regaddr, regval);
242 		break;
243 
244 	case 2:
245 		ddi_put16(ngep->io_handle, regaddr, regval);
246 		break;
247 
248 	case 4:
249 		ddi_put32(ngep->io_handle, regaddr, regval);
250 		break;
251 
252 	case 8:
253 		ddi_put64(ngep->io_handle, regaddr, regval);
254 		break;
255 	}
256 	return (err);
257 }
258 
259 static int nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd);
260 #pragma	no_inline(nge_chip_peek_mii)
261 
262 static int
263 nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd)
264 {
265 	int err;
266 
267 	err = DDI_SUCCESS;
268 	ppd->pp_acc_data = nge_mii_get16(ngep, ppd->pp_acc_offset/2);
269 	return (err);
270 }
271 
272 static int nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd);
273 #pragma	no_inline(nge_chip_poke_mii)
274 
275 static int
276 nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd)
277 {
278 	int err;
279 	err = DDI_SUCCESS;
280 	nge_mii_put16(ngep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
281 	return (err);
282 }
283 
284 /*
285  * Basic SEEPROM get/set access routine
286  *
287  * This uses the chip's SEEPROM auto-access method, controlled by the
288  * Serial EEPROM Address/Data Registers at 0x504h, so the CPU
289  * doesn't have to fiddle with the individual bits.
290  *
291  * The caller should hold <genlock> and *also* have already acquired
292  * the right to access the SEEPROM.
293  *
294  * Return value:
295  *	0 on success,
296  *	ENODATA on access timeout (maybe retryable: device may just be busy)
297  *	EPROTO on other h/w or s/w errors.
298  *
299  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
300  * from a (successful) SEEPROM_ACCESS_READ.
301  */
302 
303 static int
304 nge_seeprom_access(nge_t *ngep, uint32_t cmd, nge_regno_t addr, uint16_t *dp)
305 {
306 	uint32_t tries;
307 	nge_ep_cmd cmd_reg;
308 	nge_ep_data data_reg;
309 
310 	NGE_TRACE(("nge_seeprom_access($%p, %d, %x, $%p)",
311 	    (void *)ngep, cmd, addr, (void *)dp));
312 
313 	ASSERT(mutex_owned(ngep->genlock));
314 
315 	/*
316 	 * Check there's no command in progress.
317 	 *
318 	 * Note: this *shouldn't* ever find that there is a command
319 	 * in progress, because we already hold the <genlock> mutex.
320 	 * Also, to ensure we don't have a conflict with the chip's
321 	 * internal firmware or a process accessing the same (shared)
322 	 * So this is just a final consistency check: we shouldn't
323 	 * see EITHER the START bit (command started but not complete)
324 	 * OR the COMPLETE bit (command completed but not cleared).
325 	 */
326 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
327 	for (tries = 0; tries < 30; tries++) {
328 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
329 			break;
330 		drv_usecwait(10);
331 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
332 	}
333 
334 	/*
335 	 * This should not happen. If so, we have to restart eeprom
336 	 *  state machine
337 	 */
338 	if (tries == 30) {
339 		cmd_reg.cmd_bits.sts = SEEPROM_READY;
340 		nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
341 		drv_usecwait(10);
342 		/*
343 		 * Polling the status bit to make assure the eeprom is ready
344 		 */
345 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
346 		for (tries = 0; tries < 30; tries++) {
347 			if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
348 				break;
349 			drv_usecwait(10);
350 			cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
351 		}
352 	}
353 
354 	/*
355 	 * Assemble the command ...
356 	 */
357 	cmd_reg.cmd_bits.addr = addr;
358 	cmd_reg.cmd_bits.cmd = cmd;
359 	cmd_reg.cmd_bits.sts = 0;
360 
361 	nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
362 
363 	/*
364 	 * Polling whether the access is successful.
365 	 *
366 	 */
367 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
368 	for (tries = 0; tries < 30; tries++) {
369 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
370 			break;
371 		drv_usecwait(10);
372 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
373 	}
374 
375 	if (tries == 30) {
376 		nge_report(ngep, NGE_HW_ROM);
377 		return (DDI_FAILURE);
378 	}
379 	switch (cmd) {
380 	default:
381 	case SEEPROM_CMD_WRITE_ENABLE:
382 	case SEEPROM_CMD_ERASE:
383 	case SEEPROM_CMD_ERALSE_ALL:
384 	case SEEPROM_CMD_WRITE_DIS:
385 	break;
386 
387 	case SEEPROM_CMD_READ:
388 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
389 		*dp = data_reg.data_bits.data;
390 	break;
391 
392 	case SEEPROM_CMD_WRITE:
393 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
394 		data_reg.data_bits.data = *dp;
395 		nge_reg_put32(ngep, NGE_EP_DATA, data_reg.data_val);
396 	break;
397 	}
398 
399 	return (DDI_SUCCESS);
400 }
401 
402 
403 static int
404 nge_chip_peek_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
405 {
406 	uint16_t data;
407 	int err;
408 
409 	err = nge_seeprom_access(ngep, SEEPROM_CMD_READ,
410 	    ppd->pp_acc_offset, &data);
411 	ppd->pp_acc_data =  data;
412 	return (err);
413 }
414 
415 static int
416 nge_chip_poke_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
417 {
418 	uint16_t data;
419 	int err;
420 
421 	data = ppd->pp_acc_data;
422 	err = nge_seeprom_access(ngep, SEEPROM_CMD_WRITE,
423 	    ppd->pp_acc_offset, &data);
424 	return (err);
425 }
426 
427 void
428 nge_init_dev_spec_param(nge_t *ngep)
429 {
430 	nge_dev_spec_param_t	*dev_param_p;
431 	chip_info_t	*infop;
432 
433 	dev_param_p = &ngep->dev_spec_param;
434 	infop = (chip_info_t *)&ngep->chipinfo;
435 
436 	switch (infop->device) {
437 	case DEVICE_ID_NF3_E6:
438 	case DEVICE_ID_NF3_DF:
439 	case DEVICE_ID_MCP04_37:
440 	case DEVICE_ID_MCP04_38:
441 		dev_param_p->msi = B_FALSE;
442 		dev_param_p->msi_x = B_FALSE;
443 		dev_param_p->vlan = B_FALSE;
444 		dev_param_p->advanced_pm = B_FALSE;
445 		dev_param_p->tx_pause_frame = B_FALSE;
446 		dev_param_p->rx_pause_frame = B_FALSE;
447 		dev_param_p->jumbo = B_FALSE;
448 		dev_param_p->tx_rx_64byte = B_FALSE;
449 		dev_param_p->rx_hw_checksum = B_FALSE;
450 		dev_param_p->tx_hw_checksum = 0;
451 		dev_param_p->desc_type = DESC_OFFLOAD;
452 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
453 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
454 		dev_param_p->nge_split = NGE_SPLIT_32;
455 		break;
456 
457 	case DEVICE_ID_CK804_56:
458 	case DEVICE_ID_CK804_57:
459 		dev_param_p->msi = B_TRUE;
460 		dev_param_p->msi_x = B_TRUE;
461 		dev_param_p->vlan = B_FALSE;
462 		dev_param_p->advanced_pm = B_FALSE;
463 		dev_param_p->tx_pause_frame = B_FALSE;
464 		dev_param_p->rx_pause_frame = B_TRUE;
465 		dev_param_p->jumbo = B_TRUE;
466 		dev_param_p->tx_rx_64byte = B_FALSE;
467 		dev_param_p->rx_hw_checksum = B_TRUE;
468 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
469 		dev_param_p->desc_type = DESC_HOT;
470 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
471 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
472 		dev_param_p->nge_split = NGE_SPLIT_96;
473 		break;
474 
475 	case DEVICE_ID_MCP61_3EE:
476 	case DEVICE_ID_MCP61_3EF:
477 	case DEVICE_ID_MCP51_268:
478 	case DEVICE_ID_MCP51_269:
479 		dev_param_p->msi = B_FALSE;
480 		dev_param_p->msi_x = B_FALSE;
481 		dev_param_p->vlan = B_FALSE;
482 		dev_param_p->advanced_pm = B_TRUE;
483 		dev_param_p->tx_pause_frame = B_FALSE;
484 		dev_param_p->rx_pause_frame = B_FALSE;
485 		dev_param_p->jumbo = B_FALSE;
486 		dev_param_p->tx_rx_64byte = B_TRUE;
487 		dev_param_p->rx_hw_checksum = B_FALSE;
488 		dev_param_p->tx_hw_checksum = 0;
489 		dev_param_p->desc_type = DESC_OFFLOAD;
490 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
491 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
492 		dev_param_p->nge_split = NGE_SPLIT_32;
493 		break;
494 
495 	case DEVICE_ID_MCP55_372:
496 	case DEVICE_ID_MCP55_373:
497 		dev_param_p->msi = B_TRUE;
498 		dev_param_p->msi_x = B_TRUE;
499 		dev_param_p->vlan = B_TRUE;
500 		dev_param_p->advanced_pm = B_TRUE;
501 		dev_param_p->tx_pause_frame = B_TRUE;
502 		dev_param_p->rx_pause_frame = B_TRUE;
503 		dev_param_p->jumbo = B_TRUE;
504 		dev_param_p->tx_rx_64byte = B_TRUE;
505 		dev_param_p->rx_hw_checksum = B_TRUE;
506 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
507 		dev_param_p->desc_type = DESC_HOT;
508 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
509 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
510 		dev_param_p->nge_split = NGE_SPLIT_96;
511 		break;
512 
513 	default:
514 		dev_param_p->msi = B_FALSE;
515 		dev_param_p->msi_x = B_FALSE;
516 		dev_param_p->vlan = B_FALSE;
517 		dev_param_p->advanced_pm = B_FALSE;
518 		dev_param_p->tx_pause_frame = B_FALSE;
519 		dev_param_p->rx_pause_frame = B_FALSE;
520 		dev_param_p->jumbo = B_FALSE;
521 		dev_param_p->tx_rx_64byte = B_FALSE;
522 		dev_param_p->rx_hw_checksum = B_FALSE;
523 		dev_param_p->tx_hw_checksum = 0;
524 		dev_param_p->desc_type = DESC_OFFLOAD;
525 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
526 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
527 		dev_param_p->nge_split = NGE_SPLIT_32;
528 		return;
529 	}
530 }
531 /*
532  * Perform first-stage chip (re-)initialisation, using only config-space
533  * accesses:
534  *
535  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
536  *   returning the data in the structure pointed to by <infop>.
537  */
538 void nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset);
539 #pragma	no_inline(nge_chip_cfg_init)
540 
541 void
542 nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset)
543 {
544 	uint16_t command;
545 	ddi_acc_handle_t handle;
546 	nge_interbus_conf interbus_conf;
547 	nge_msi_mask_conf msi_mask_conf;
548 	nge_msi_map_cap_conf cap_conf;
549 
550 	NGE_TRACE(("nge_chip_cfg_init($%p, $%p, %d)",
551 	    (void *)ngep, (void *)infop, reset));
552 
553 	/*
554 	 * save PCI cache line size and subsystem vendor ID
555 	 *
556 	 * Read all the config-space registers that characterise the
557 	 * chip, specifically vendor/device/revision/subsystem vendor
558 	 * and subsystem device id.  We expect (but don't check) that
559 	 */
560 	handle = ngep->cfg_handle;
561 	/* reading the vendor information once */
562 	if (reset == B_FALSE) {
563 		infop->command = pci_config_get16(handle,
564 		    PCI_CONF_COMM);
565 		infop->vendor = pci_config_get16(handle,
566 		    PCI_CONF_VENID);
567 		infop->device = pci_config_get16(handle,
568 		    PCI_CONF_DEVID);
569 		infop->subven = pci_config_get16(handle,
570 		    PCI_CONF_SUBVENID);
571 		infop->subdev = pci_config_get16(handle,
572 		    PCI_CONF_SUBSYSID);
573 		infop->class_code = pci_config_get8(handle,
574 		    PCI_CONF_BASCLASS);
575 		infop->revision = pci_config_get8(handle,
576 		    PCI_CONF_REVID);
577 		infop->clsize = pci_config_get8(handle,
578 		    PCI_CONF_CACHE_LINESZ);
579 		infop->latency = pci_config_get8(handle,
580 		    PCI_CONF_LATENCY_TIMER);
581 	}
582 	if (nge_enable_msi) {
583 		/* Disable the hidden for MSI support */
584 		interbus_conf.conf_val = pci_config_get32(handle,
585 		    PCI_CONF_HT_INTERNAL);
586 		if ((infop->device == DEVICE_ID_MCP55_373) ||
587 		    (infop->device == DEVICE_ID_MCP55_372))
588 			interbus_conf.conf_bits.msix_off = NGE_SET;
589 		interbus_conf.conf_bits.msi_off = NGE_CLEAR;
590 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
591 		    interbus_conf.conf_val);
592 
593 		if ((infop->device == DEVICE_ID_MCP55_373) ||
594 		    (infop->device == DEVICE_ID_MCP55_372)) {
595 
596 			/* Disable the vector off for mcp55 */
597 			msi_mask_conf.msi_mask_conf_val =
598 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MASK);
599 			msi_mask_conf.msi_mask_bits.vec0_off = NGE_CLEAR;
600 			msi_mask_conf.msi_mask_bits.vec1_off = NGE_CLEAR;
601 			msi_mask_conf.msi_mask_bits.vec2_off = NGE_CLEAR;
602 			msi_mask_conf.msi_mask_bits.vec3_off = NGE_CLEAR;
603 			msi_mask_conf.msi_mask_bits.vec4_off = NGE_CLEAR;
604 			msi_mask_conf.msi_mask_bits.vec5_off = NGE_CLEAR;
605 			msi_mask_conf.msi_mask_bits.vec6_off = NGE_CLEAR;
606 			msi_mask_conf.msi_mask_bits.vec7_off = NGE_CLEAR;
607 			pci_config_put32(handle, PCI_CONF_HT_MSI_MASK,
608 			    msi_mask_conf.msi_mask_conf_val);
609 
610 			/* Enable the MSI mapping */
611 			cap_conf.msi_map_cap_conf_val =
612 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MAP_CAP);
613 			cap_conf.map_cap_conf_bits.map_en = NGE_SET;
614 			pci_config_put32(handle, PCI_CONF_HT_MSI_MAP_CAP,
615 			    cap_conf.msi_map_cap_conf_val);
616 		}
617 	} else {
618 		interbus_conf.conf_val = pci_config_get32(handle,
619 		    PCI_CONF_HT_INTERNAL);
620 		interbus_conf.conf_bits.msi_off = NGE_SET;
621 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
622 		    interbus_conf.conf_val);
623 	}
624 	command = infop->command | PCI_COMM_MAE;
625 	command &= ~PCI_COMM_MEMWR_INVAL;
626 	command |= PCI_COMM_ME;
627 	pci_config_put16(handle, PCI_CONF_COMM, command);
628 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
629 
630 }
631 
632 int
633 nge_chip_stop(nge_t *ngep, boolean_t fault)
634 {
635 	int err;
636 	uint32_t reg_val;
637 	uint32_t	tries;
638 	nge_mintr_src mintr_src;
639 	nge_mii_cs mii_cs;
640 	nge_rx_poll rx_poll;
641 	nge_tx_poll tx_poll;
642 	nge_rx_en rx_en;
643 	nge_tx_en tx_en;
644 	nge_tx_sta tx_sta;
645 	nge_rx_sta rx_sta;
646 	nge_mode_cntl mode;
647 	nge_pmu_cntl2 pmu_cntl2;
648 
649 	NGE_TRACE(("nge_chip_stop($%p, %d)", (void *)ngep, fault));
650 
651 	err = DDI_SUCCESS;
652 
653 	/* Clear any pending PHY interrupt */
654 	mintr_src.src_val = nge_reg_get8(ngep, NGE_MINTR_SRC);
655 	nge_reg_put8(ngep, NGE_MINTR_SRC, mintr_src.src_val);
656 
657 	/* Mask all interrupts */
658 	reg_val = nge_reg_get32(ngep, NGE_INTR_MASK);
659 	reg_val &= ~NGE_INTR_ALL_EN;
660 	nge_reg_put32(ngep, NGE_INTR_MASK, reg_val);
661 
662 	/* Disable auto-polling of phy */
663 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
664 	mii_cs.cs_bits.ap_en = NGE_CLEAR;
665 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
666 
667 	/* Reset buffer management & DMA */
668 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
669 	mode.mode_bits.dma_dis = NGE_SET;
670 	mode.mode_bits.desc_type = ngep->desc_mode;
671 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
672 
673 	for (tries = 0; tries < 5000; tries++) {
674 		drv_usecwait(10);
675 		mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
676 		if (mode.mode_bits.dma_status == NGE_SET)
677 			break;
678 	}
679 	if (tries == 5000) {
680 		return (DDI_FAILURE);
681 	}
682 
683 	/*
684 	 * For mcp55, the bits 1:31 of NGE_RX_EN and NGE_TX_EN are
685 	 * defined to be used by SMU. The newer PXE than 527 began to
686 	 * support SMU and bit 24 of NGE_RX_EN/NGE_TX_EN are set
687 	 * when leaving PXE to prevents the MAC from winning
688 	 * arbitration to the main transmit/receive channels.
689 	 */
690 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
691 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
692 
693 		/* Disable rx's machine */
694 		nge_reg_put32(ngep, NGE_RX_EN, 0x0);
695 
696 		/* Disable tx's machine */
697 		nge_reg_put32(ngep, NGE_TX_EN, 0x0);
698 	} else {
699 
700 		/* Disable rx's machine */
701 		rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
702 		rx_en.bits.rx_en = NGE_CLEAR;
703 		nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
704 
705 
706 		/* Disable tx's machine */
707 		tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
708 		tx_en.bits.tx_en = NGE_CLEAR;
709 		nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
710 	}
711 
712 	/*
713 	 * Clean the status of tx's state machine
714 	 * and Make assure the tx's channel is idle
715 	 */
716 	tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
717 	for (tries = 0; tries < 1000; tries++) {
718 		if (tx_sta.sta_bits.tx_chan_sta == NGE_CLEAR)
719 			break;
720 		drv_usecwait(10);
721 		tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
722 	}
723 	if (tries == 1000) {
724 		return (DDI_FAILURE);
725 	}
726 	nge_reg_put32(ngep, NGE_TX_STA,  tx_sta.sta_val);
727 
728 	/*
729 	 * Clean the status of rx's state machine
730 	 * and Make assure the tx's channel is idle
731 	 */
732 	rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
733 	for (tries = 0; tries < 1000; tries++) {
734 		if (rx_sta.sta_bits.rx_chan_sta == NGE_CLEAR)
735 			break;
736 		drv_usecwait(10);
737 		rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
738 	}
739 	if (tries == 1000) {
740 		return (DDI_FAILURE);
741 	}
742 	nge_reg_put32(ngep, NGE_RX_STA, rx_sta.sta_val);
743 
744 	/* Disable auto-poll of rx's state machine */
745 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
746 	rx_poll.poll_bits.rpen = NGE_CLEAR;
747 	rx_poll.poll_bits.rpi = NGE_CLEAR;
748 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
749 
750 	/* Disable auto-polling of tx's  state machine */
751 	tx_poll.poll_val = nge_reg_get32(ngep, NGE_TX_POLL);
752 	tx_poll.poll_bits.tpen = NGE_CLEAR;
753 	tx_poll.poll_bits.tpi = NGE_CLEAR;
754 	nge_reg_put32(ngep, NGE_TX_POLL, tx_poll.poll_val);
755 
756 	/* Restore buffer management */
757 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
758 	mode.mode_bits.bm_reset = NGE_SET;
759 	mode.mode_bits.tx_rcom_en = NGE_SET;
760 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
761 
762 	if (ngep->dev_spec_param.advanced_pm) {
763 
764 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT, 0);
765 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT, 0);
766 
767 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
768 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_CLEAR;
769 		pmu_cntl2.cntl2_bits.didle_timer = NGE_CLEAR;
770 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
771 	}
772 	if (fault)
773 		ngep->nge_chip_state = NGE_CHIP_FAULT;
774 	else
775 		ngep->nge_chip_state = NGE_CHIP_STOPPED;
776 
777 	return (err);
778 }
779 
780 static void
781 nge_rx_setup(nge_t *ngep)
782 {
783 	uint64_t desc_addr;
784 	nge_rxtx_dlen dlen;
785 	nge_rx_poll rx_poll;
786 
787 	/*
788 	 * Filling the address and length of rx's descriptors
789 	 */
790 	desc_addr = ngep->recv->desc.cookie.dmac_laddress;
791 	nge_reg_put32(ngep, NGE_RX_DADR, desc_addr);
792 	nge_reg_put32(ngep, NGE_RX_DADR_HI, desc_addr >> 32);
793 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
794 	dlen.dlen_bits.rdlen = ngep->recv->desc.nslots - 1;
795 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
796 
797 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
798 	rx_poll.poll_bits.rpi = RX_POLL_INTV_1G;
799 	rx_poll.poll_bits.rpen = NGE_SET;
800 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
801 }
802 
803 static void
804 nge_tx_setup(nge_t *ngep)
805 {
806 	uint64_t desc_addr;
807 	nge_rxtx_dlen dlen;
808 
809 	/*
810 	 * Filling the address and length of tx's descriptors
811 	 */
812 	desc_addr = ngep->send->desc.cookie.dmac_laddress;
813 	nge_reg_put32(ngep, NGE_TX_DADR, desc_addr);
814 	nge_reg_put32(ngep, NGE_TX_DADR_HI, desc_addr >> 32);
815 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
816 	dlen.dlen_bits.tdlen = ngep->send->desc.nslots - 1;
817 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
818 }
819 
820 static int
821 nge_buff_setup(nge_t *ngep)
822 {
823 	nge_mode_cntl mode_cntl;
824 	nge_dev_spec_param_t	*dev_param_p;
825 
826 	dev_param_p = &ngep->dev_spec_param;
827 
828 	/*
829 	 * Configure Rx&Tx's buffer
830 	 */
831 	nge_rx_setup(ngep);
832 	nge_tx_setup(ngep);
833 
834 	/*
835 	 * Configure buffer attribute
836 	 */
837 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
838 
839 	/*
840 	 * Enable Dma access request
841 	 */
842 	mode_cntl.mode_bits.dma_dis = NGE_CLEAR;
843 
844 	/*
845 	 * Enbale Buffer management
846 	 */
847 	mode_cntl.mode_bits.bm_reset = NGE_CLEAR;
848 
849 	/*
850 	 * Support Standoffload Descriptor
851 	 */
852 	mode_cntl.mode_bits.desc_type = ngep->desc_mode;
853 
854 	/*
855 	 * Support receive hardware checksum
856 	 */
857 	if (dev_param_p->rx_hw_checksum) {
858 		mode_cntl.mode_bits.rx_sum_en = NGE_SET;
859 	} else
860 		mode_cntl.mode_bits.rx_sum_en = NGE_CLEAR;
861 
862 	/*
863 	 * Disable Tx PRD coarse update
864 	 */
865 	mode_cntl.mode_bits.tx_prd_cu_en = NGE_CLEAR;
866 
867 	/*
868 	 * Disable 64-byte access
869 	 */
870 	mode_cntl.mode_bits.w64_dis = NGE_SET;
871 
872 	/*
873 	 * Skip Rx Error Frame is not supported and if
874 	 * enable it, jumbo frame does not work any more.
875 	 */
876 	mode_cntl.mode_bits.rx_filter_en = NGE_CLEAR;
877 
878 	/*
879 	 * Can not support hot mode now
880 	 */
881 	mode_cntl.mode_bits.resv15 = NGE_CLEAR;
882 
883 	if (dev_param_p->vlan) {
884 		/* Disable the vlan strip for devices which support vlan */
885 		mode_cntl.mode_bits.vlan_strip = NGE_CLEAR;
886 
887 		/* Disable the vlan insert for devices which supprot vlan */
888 		mode_cntl.mode_bits.vlan_ins = NGE_CLEAR;
889 	}
890 
891 	if (dev_param_p->tx_rx_64byte) {
892 
893 		/* Set the maximum TX PRD fetch size to 64 bytes */
894 		mode_cntl.mode_bits.tx_fetch_prd = NGE_SET;
895 
896 		/* Set the maximum RX PRD fetch size to 64 bytes */
897 		mode_cntl.mode_bits.rx_fetch_prd = NGE_SET;
898 	}
899 	/*
900 	 * Upload Rx data as it arrives, rather than waiting for full frame
901 	 */
902 	mode_cntl.mode_bits.resv16 = NGE_CLEAR;
903 
904 	/*
905 	 * Normal HOT table accesses
906 	 */
907 	mode_cntl.mode_bits.resv17 = NGE_CLEAR;
908 
909 	/*
910 	 * Normal HOT buffer requesting
911 	 */
912 	mode_cntl.mode_bits.resv18 = NGE_CLEAR;
913 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
914 
915 	/*
916 	 * Signal controller to check for new Rx descriptors
917 	 */
918 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
919 	mode_cntl.mode_bits.rxdm = NGE_SET;
920 	mode_cntl.mode_bits.tx_rcom_en = NGE_SET;
921 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
922 
923 
924 	return (DDI_SUCCESS);
925 }
926 
927 /*
928  * When chipset resets, the chipset can not restore  the orignial
929  * mac address to the mac address registers.
930  *
931  * When the driver is dettached, the function will write the orignial
932  * mac address to the mac address registers.
933  */
934 
935 void
936 nge_restore_mac_addr(nge_t *ngep)
937 {
938 	uint32_t mac_addr;
939 
940 	mac_addr = (uint32_t)ngep->chipinfo.hw_mac_addr;
941 	nge_reg_put32(ngep, NGE_UNI_ADDR0, mac_addr);
942 	mac_addr = (uint32_t)(ngep->chipinfo.hw_mac_addr >> 32);
943 	nge_reg_put32(ngep, NGE_UNI_ADDR1, mac_addr);
944 }
945 
946 int
947 nge_chip_reset(nge_t *ngep)
948 {
949 	int err;
950 	uint8_t i;
951 	uint32_t regno;
952 	uint64_t mac;
953 	nge_uni_addr1 uaddr1;
954 	nge_cp_cntl ee_cntl;
955 	nge_soft_misc soft_misc;
956 	nge_pmu_cntl0 pmu_cntl0;
957 	nge_pmu_cntl2 pmu_cntl2;
958 	nge_pm_cntl2 pm_cntl2;
959 	const nge_ksindex_t *ksip;
960 
961 	NGE_TRACE(("nge_chip_reset($%p)", (void *)ngep));
962 
963 	/*
964 	 * Clear the statistics by reading the statistics register
965 	 */
966 	for (ksip = nge_statistics; ksip->name != NULL; ++ksip) {
967 		regno = KS_BASE + ksip->index * sizeof (uint32_t);
968 		(void) nge_reg_get32(ngep, regno);
969 	}
970 
971 	/*
972 	 * Setup seeprom control
973 	 */
974 	ee_cntl.cntl_val = nge_reg_get32(ngep, NGE_EP_CNTL);
975 	ee_cntl.cntl_bits.clkdiv = EEPROM_CLKDIV;
976 	ee_cntl.cntl_bits.rom_size = EEPROM_32K;
977 	ee_cntl.cntl_bits.word_wid = ACCESS_16BIT;
978 	ee_cntl.cntl_bits.wait_slots = EEPROM_WAITCLK;
979 	nge_reg_put32(ngep, NGE_EP_CNTL, ee_cntl.cntl_val);
980 
981 	/*
982 	 * Reading the unicast mac address table
983 	 */
984 	if (ngep->nge_chip_state == NGE_CHIP_INITIAL) {
985 		uaddr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
986 		mac = uaddr1.addr_bits.addr;
987 		mac <<= 32;
988 		mac |= nge_reg_get32(ngep, NGE_UNI_ADDR0);
989 		if (mac != 0ULL && mac != ~0ULL) {
990 			ngep->chipinfo.hw_mac_addr = mac;
991 			for (i = ETHERADDRL; i-- != 0; ) {
992 				ngep->chipinfo.vendor_addr.addr[i] =
993 				    (uchar_t)mac;
994 				ngep->cur_uni_addr.addr[i] = (uchar_t)mac;
995 				mac >>= 8;
996 			}
997 			ngep->chipinfo.vendor_addr.set = 1;
998 		}
999 	}
1000 	pci_config_put8(ngep->cfg_handle, PCI_CONF_CACHE_LINESZ,
1001 	    ngep->chipinfo.clsize);
1002 	pci_config_put8(ngep->cfg_handle, PCI_CONF_LATENCY_TIMER,
1003 	    ngep->chipinfo.latency);
1004 
1005 
1006 	if (ngep->dev_spec_param.advanced_pm) {
1007 
1008 		/* Program software misc register */
1009 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1010 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_SET;
1011 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_SET;
1012 		soft_misc.misc_bits.clk12m_vx_rst = NGE_SET;
1013 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_SET;
1014 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_SET;
1015 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_SET;
1016 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_SET;
1017 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_SET;
1018 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1019 
1020 		/* wait for 32 us */
1021 		drv_usecwait(32);
1022 
1023 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1024 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_CLEAR;
1025 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_CLEAR;
1026 		soft_misc.misc_bits.clk12m_vx_rst = NGE_CLEAR;
1027 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_CLEAR;
1028 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_CLEAR;
1029 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_CLEAR;
1030 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_CLEAR;
1031 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_CLEAR;
1032 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1033 
1034 		/* Program PMU registers */
1035 		pmu_cntl0.cntl0_val = nge_reg_get32(ngep, NGE_PMU_CNTL0);
1036 		pmu_cntl0.cntl0_bits.core_spd10_fp =
1037 		    NGE_PMU_CORE_SPD10_BUSY;
1038 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1039 		    NGE_PMU_CORE_SPD10_IDLE;
1040 		pmu_cntl0.cntl0_bits.core_spd100_fp =
1041 		    NGE_PMU_CORE_SPD100_BUSY;
1042 		pmu_cntl0.cntl0_bits.core_spd100_idle =
1043 		    NGE_PMU_CORE_SPD100_IDLE;
1044 		pmu_cntl0.cntl0_bits.core_spd1000_fp =
1045 		    NGE_PMU_CORE_SPD1000_BUSY;
1046 		pmu_cntl0.cntl0_bits.core_spd1000_idle =
1047 		    NGE_PMU_CORE_SPD100_IDLE;
1048 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1049 		    NGE_PMU_CORE_SPD10_IDLE;
1050 		nge_reg_put32(ngep, NGE_PMU_CNTL0, pmu_cntl0.cntl0_val);
1051 
1052 		/* Set the core idle limit value */
1053 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT,
1054 		    NGE_PMU_CIDLE_LIMIT_DEF);
1055 
1056 		/* Set the device idle limit value */
1057 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT,
1058 		    NGE_PMU_DIDLE_LIMIT_DEF);
1059 
1060 		/* Enable the core/device idle timer in PMU control 2 */
1061 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
1062 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_SET;
1063 		pmu_cntl2.cntl2_bits.didle_timer = NGE_SET;
1064 		pmu_cntl2.cntl2_bits.core_enable = NGE_SET;
1065 		pmu_cntl2.cntl2_bits.dev_enable = NGE_SET;
1066 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
1067 	}
1068 	/*
1069 	 * Stop the chipset and clear buffer management
1070 	 */
1071 	err = nge_chip_stop(ngep, B_FALSE);
1072 	if (err == DDI_FAILURE)
1073 		return (err);
1074 	/*
1075 	 * Clear the power state bits for phy since interface no longer
1076 	 * works after rebooting from Windows on a multi-boot machine
1077 	 */
1078 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_268 ||
1079 	    ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
1080 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372 ||
1081 	    ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1082 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EE ||
1083 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EF) {
1084 
1085 		pm_cntl2.cntl_val = nge_reg_get32(ngep, NGE_PM_CNTL2);
1086 		/* bring phy out of coma mode */
1087 		pm_cntl2.cntl_bits.phy_coma_set = NGE_CLEAR;
1088 		/* disable auto reset coma bits */
1089 		pm_cntl2.cntl_bits.resv4 = NGE_CLEAR;
1090 		/* restore power to gated clocks */
1091 		pm_cntl2.cntl_bits.resv8_11 = NGE_CLEAR;
1092 		nge_reg_put32(ngep, NGE_PM_CNTL2, pm_cntl2.cntl_val);
1093 	}
1094 
1095 	/*
1096 	 * Reset the external phy
1097 	 */
1098 	if (!nge_phy_reset(ngep))
1099 		return (DDI_FAILURE);
1100 	ngep->nge_chip_state = NGE_CHIP_RESET;
1101 	return (DDI_SUCCESS);
1102 }
1103 
1104 int
1105 nge_chip_start(nge_t *ngep)
1106 {
1107 	int err;
1108 	nge_itc itc;
1109 	nge_tx_cntl tx_cntl;
1110 	nge_rx_cntrl0 rx_cntl0;
1111 	nge_rx_cntl1 rx_cntl1;
1112 	nge_tx_en tx_en;
1113 	nge_rx_en rx_en;
1114 	nge_mii_cs mii_cs;
1115 	nge_swtr_cntl swtr_cntl;
1116 	nge_rx_fifo_wm rx_fifo;
1117 	nge_intr_mask intr_mask;
1118 	nge_mintr_mask mintr_mask;
1119 	nge_dev_spec_param_t	*dev_param_p;
1120 
1121 	NGE_TRACE(("nge_chip_start($%p)", (void *)ngep));
1122 
1123 	/*
1124 	 * Setup buffer management
1125 	 */
1126 	err = nge_buff_setup(ngep);
1127 	if (err == DDI_FAILURE)
1128 		return (err);
1129 
1130 	dev_param_p = &ngep->dev_spec_param;
1131 
1132 	/*
1133 	 * Enable polling attribute
1134 	 */
1135 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
1136 	mii_cs.cs_bits.ap_paddr = ngep->phy_xmii_addr;
1137 	mii_cs.cs_bits.ap_en = NGE_SET;
1138 	mii_cs.cs_bits.ap_intv = MII_POLL_INTV;
1139 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
1140 
1141 	/*
1142 	 * Setup link
1143 	 */
1144 	(*ngep->physops->phys_update)(ngep);
1145 
1146 	/*
1147 	 * Configure the tx's parameters
1148 	 */
1149 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1150 	if (dev_param_p->tx_pause_frame)
1151 		tx_cntl.cntl_bits.paen = NGE_SET;
1152 	else
1153 		tx_cntl.cntl_bits.paen = NGE_CLEAR;
1154 	tx_cntl.cntl_bits.retry_en = NGE_SET;
1155 	tx_cntl.cntl_bits.pad_en = NGE_SET;
1156 	tx_cntl.cntl_bits.fappend_en = NGE_SET;
1157 	tx_cntl.cntl_bits.two_def_en = NGE_SET;
1158 	tx_cntl.cntl_bits.max_retry = 15;
1159 	tx_cntl.cntl_bits.burst_en = NGE_CLEAR;
1160 	tx_cntl.cntl_bits.uflo_err_mask = NGE_CLEAR;
1161 	tx_cntl.cntl_bits.tlcol_mask = NGE_CLEAR;
1162 	tx_cntl.cntl_bits.lcar_mask = NGE_CLEAR;
1163 	tx_cntl.cntl_bits.def_mask = NGE_CLEAR;
1164 	tx_cntl.cntl_bits.exdef_mask = NGE_SET;
1165 	tx_cntl.cntl_bits.lcar_mask = NGE_SET;
1166 	tx_cntl.cntl_bits.tlcol_mask = NGE_SET;
1167 	tx_cntl.cntl_bits.uflo_err_mask = NGE_SET;
1168 	tx_cntl.cntl_bits.jam_seq_en = NGE_CLEAR;
1169 	nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1170 
1171 
1172 	/*
1173 	 * Configure the parameters of Rx's state machine
1174 	 * Enabe the parameters:
1175 	 * 1). Pad Strip
1176 	 * 2). FCS Relay
1177 	 * 3). Pause
1178 	 * 4). Address filter
1179 	 * 5). Runt Packet receive
1180 	 * 6). Broadcast
1181 	 * 7). Receive Deferral
1182 	 *
1183 	 * Disable the following parameters for decreasing
1184 	 * the number of interrupts:
1185 	 * 1). Runt Inerrupt.
1186 	 * 2). Rx's Late Collision interrupt.
1187 	 * 3). Rx's Max length Error Interrupt.
1188 	 * 4). Rx's Length Field error Interrupt.
1189 	 * 5). Rx's FCS error interrupt.
1190 	 * 6). Rx's overflow error interrupt.
1191 	 * 7). Rx's Frame alignment error interrupt.
1192 	 */
1193 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1194 	rx_cntl0.cntl_bits.padsen = NGE_CLEAR;
1195 	rx_cntl0.cntl_bits.fcsren = NGE_CLEAR;
1196 	if (dev_param_p->rx_pause_frame)
1197 		rx_cntl0.cntl_bits.paen = NGE_SET;
1198 	else
1199 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1200 	rx_cntl0.cntl_bits.lben = NGE_CLEAR;
1201 	rx_cntl0.cntl_bits.afen = NGE_SET;
1202 	rx_cntl0.cntl_bits.runten = NGE_CLEAR;
1203 	rx_cntl0.cntl_bits.brdis = NGE_CLEAR;
1204 	rx_cntl0.cntl_bits.rdfen = NGE_CLEAR;
1205 	rx_cntl0.cntl_bits.runtm = NGE_CLEAR;
1206 	rx_cntl0.cntl_bits.slfb = NGE_CLEAR;
1207 	rx_cntl0.cntl_bits.rlcolm = NGE_CLEAR;
1208 	rx_cntl0.cntl_bits.maxerm = NGE_CLEAR;
1209 	rx_cntl0.cntl_bits.lferm = NGE_CLEAR;
1210 	rx_cntl0.cntl_bits.crcm = NGE_CLEAR;
1211 	rx_cntl0.cntl_bits.ofolm = NGE_CLEAR;
1212 	rx_cntl0.cntl_bits.framerm = NGE_CLEAR;
1213 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1214 
1215 	/*
1216 	 * Configure the watermark for the rx's statemachine
1217 	 */
1218 	rx_fifo.wm_val = nge_reg_get32(ngep, NGE_RX_FIFO_WM);
1219 	rx_fifo.wm_bits.data_hwm = ngep->rx_datahwm;
1220 	rx_fifo.wm_bits.prd_lwm = ngep->rx_prdlwm;
1221 	rx_fifo.wm_bits.prd_hwm = ngep->rx_prdhwm;
1222 	nge_reg_put32(ngep, NGE_RX_FIFO_WM, rx_fifo.wm_val);
1223 
1224 	/*
1225 	 * Configure the deffer time slot for rx's state machine
1226 	 */
1227 	nge_reg_put8(ngep, NGE_RX_DEf, ngep->rx_def);
1228 
1229 	/*
1230 	 * Configure the length of rx's packet
1231 	 */
1232 	rx_cntl1.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL1);
1233 	rx_cntl1.cntl_bits.length = ngep->max_sdu;
1234 	nge_reg_put32(ngep, NGE_RX_CNTL1, rx_cntl1.cntl_val);
1235 	/*
1236 	 * Enable Tx's state machine
1237 	 */
1238 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
1239 	tx_en.bits.tx_en = NGE_SET;
1240 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
1241 
1242 	/*
1243 	 * Enable Rx's state machine
1244 	 */
1245 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
1246 	rx_en.bits.rx_en = NGE_SET;
1247 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
1248 
1249 	itc.itc_val = nge_reg_get32(ngep, NGE_SWTR_ITC);
1250 	itc.itc_bits.sw_intv = ngep->sw_intr_intv;
1251 	nge_reg_put32(ngep, NGE_SWTR_ITC, itc.itc_val);
1252 
1253 	swtr_cntl.ctrl_val = nge_reg_get8(ngep, NGE_SWTR_CNTL);
1254 	swtr_cntl.cntl_bits.sten = NGE_SET;
1255 	swtr_cntl.cntl_bits.stren = NGE_SET;
1256 	nge_reg_put32(ngep, NGE_SWTR_CNTL, swtr_cntl.ctrl_val);
1257 
1258 	/*
1259 	 * Disable all mii read/write operation Interrupt
1260 	 */
1261 	mintr_mask.mask_val = nge_reg_get8(ngep, NGE_MINTR_MASK);
1262 	mintr_mask.mask_bits.mrei = NGE_CLEAR;
1263 	mintr_mask.mask_bits.mcc2 = NGE_CLEAR;
1264 	mintr_mask.mask_bits.mcc1 = NGE_CLEAR;
1265 	mintr_mask.mask_bits.mapi = NGE_SET;
1266 	mintr_mask.mask_bits.mpdi = NGE_SET;
1267 	nge_reg_put8(ngep, NGE_MINTR_MASK, mintr_mask.mask_val);
1268 
1269 	/*
1270 	 * Enable all interrupt event
1271 	 */
1272 	intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1273 	intr_mask.mask_bits.reint = NGE_SET;
1274 	intr_mask.mask_bits.rcint = NGE_SET;
1275 	intr_mask.mask_bits.miss = NGE_SET;
1276 	intr_mask.mask_bits.teint = NGE_CLEAR;
1277 	intr_mask.mask_bits.tcint = NGE_SET;
1278 	intr_mask.mask_bits.stint = NGE_CLEAR;
1279 	intr_mask.mask_bits.mint = NGE_CLEAR;
1280 	intr_mask.mask_bits.rfint = NGE_CLEAR;
1281 	intr_mask.mask_bits.tfint = NGE_CLEAR;
1282 	intr_mask.mask_bits.feint = NGE_SET;
1283 	intr_mask.mask_bits.resv10 = NGE_CLEAR;
1284 	intr_mask.mask_bits.resv11 = NGE_CLEAR;
1285 	intr_mask.mask_bits.resv12 = NGE_CLEAR;
1286 	intr_mask.mask_bits.resv13 = NGE_CLEAR;
1287 	intr_mask.mask_bits.phyint = NGE_CLEAR;
1288 	ngep->intr_masks = intr_mask.mask_val;
1289 	nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1290 	ngep->nge_chip_state = NGE_CHIP_RUNNING;
1291 	return (DDI_SUCCESS);
1292 }
1293 
1294 /*
1295  * nge_chip_sync() -- program the chip with the unicast MAC address,
1296  * the multicast hash table, the required level of promiscuity.
1297  */
1298 void
1299 nge_chip_sync(nge_t *ngep)
1300 {
1301 	uint8_t i;
1302 	uint64_t macaddr;
1303 	uint64_t mul_addr;
1304 	uint64_t mul_mask;
1305 	nge_rx_cntrl0 rx_cntl;
1306 	nge_uni_addr1 uni_adr1;
1307 
1308 	NGE_TRACE(("nge_chip_sync($%p)", (void *)ngep));
1309 
1310 	macaddr = 0x0ull;
1311 	mul_addr = 0x0ull;
1312 	mul_mask = 0x0ull;
1313 	rx_cntl.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1314 
1315 	if (ngep->promisc) {
1316 		rx_cntl.cntl_bits.afen = NGE_CLEAR;
1317 		rx_cntl.cntl_bits.brdis = NGE_SET;
1318 	} else {
1319 		rx_cntl.cntl_bits.afen = NGE_SET;
1320 		rx_cntl.cntl_bits.brdis = NGE_CLEAR;
1321 	}
1322 
1323 	/*
1324 	 * Transform the MAC address from host to chip format, the unicast
1325 	 * MAC address(es) ...
1326 	 */
1327 	for (i = ETHERADDRL, macaddr = 0ull; i != 0; --i) {
1328 		macaddr |= ngep->cur_uni_addr.addr[i-1];
1329 		macaddr <<= (i > 1) ? 8 : 0;
1330 	}
1331 
1332 	nge_reg_put32(ngep, NGE_UNI_ADDR0, (uint32_t)macaddr);
1333 	macaddr = macaddr >>32;
1334 	uni_adr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1335 	uni_adr1.addr_bits.addr = (uint16_t)macaddr;
1336 	uni_adr1.addr_bits.resv16_31 = (uint16_t)0;
1337 	nge_reg_put32(ngep, NGE_UNI_ADDR1, uni_adr1.addr_val);
1338 
1339 	/*
1340 	 * Reprogram the  multicast address table ...
1341 	 */
1342 	for (i = ETHERADDRL, mul_addr = 0ull; i != 0; --i) {
1343 		mul_addr |= ngep->cur_mul_addr.addr[i-1];
1344 		mul_addr <<= (i > 1) ? 8 : 0;
1345 		mul_mask |= ngep->cur_mul_mask.addr[i-1];
1346 		mul_mask <<= (i > 1) ? 8 : 0;
1347 	}
1348 	nge_reg_put32(ngep, NGE_MUL_ADDR0, (uint32_t)mul_addr);
1349 	mul_addr >>= 32;
1350 	nge_reg_put32(ngep, NGE_MUL_ADDR1, mul_addr);
1351 	nge_reg_put32(ngep, NGE_MUL_MASK, (uint32_t)mul_mask);
1352 	mul_mask >>= 32;
1353 	nge_reg_put32(ngep, NGE_MUL_MASK1, mul_mask);
1354 	/*
1355 	 * Set or clear the PROMISCUOUS mode bit
1356 	 */
1357 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl.cntl_val);
1358 	/*
1359 	 * For internal PHY loopback, the link will
1360 	 * not be up, so it need to sync mac modes directly.
1361 	 */
1362 	if (ngep->param_loop_mode == NGE_LOOP_INTERNAL_PHY)
1363 		nge_sync_mac_modes(ngep);
1364 }
1365 
1366 static void
1367 nge_chip_err(nge_t *ngep)
1368 {
1369 	nge_reg010 reg010_ins;
1370 	nge_sw_statistics_t *psw_stat;
1371 	nge_intr_mask intr_mask;
1372 
1373 	NGE_TRACE(("nge_chip_err($%p)", (void *)ngep));
1374 
1375 	psw_stat = (nge_sw_statistics_t *)&ngep->statistics.sw_statistics;
1376 	reg010_ins.reg010_val = nge_reg_get32(ngep, NGE_REG010);
1377 	if (reg010_ins.reg010_bits.resv0)
1378 		psw_stat->fe_err.tso_err_mss ++;
1379 
1380 	if (reg010_ins.reg010_bits.resv1)
1381 		psw_stat->fe_err.tso_dis ++;
1382 
1383 	if (reg010_ins.reg010_bits.resv2)
1384 		psw_stat->fe_err.tso_err_nosum ++;
1385 
1386 	if (reg010_ins.reg010_bits.resv3)
1387 		psw_stat->fe_err.tso_err_hov ++;
1388 
1389 	if (reg010_ins.reg010_bits.resv4)
1390 		psw_stat->fe_err.tso_err_huf ++;
1391 
1392 	if (reg010_ins.reg010_bits.resv5)
1393 		psw_stat->fe_err.tso_err_l2 ++;
1394 
1395 	if (reg010_ins.reg010_bits.resv6)
1396 		psw_stat->fe_err.tso_err_ip ++;
1397 
1398 	if (reg010_ins.reg010_bits.resv7)
1399 		psw_stat->fe_err.tso_err_l4 ++;
1400 
1401 	if (reg010_ins.reg010_bits.resv8)
1402 		psw_stat->fe_err.tso_err_tcp ++;
1403 
1404 	if (reg010_ins.reg010_bits.resv9)
1405 		psw_stat->fe_err.hsum_err_ip ++;
1406 
1407 	if (reg010_ins.reg010_bits.resv10)
1408 		psw_stat->fe_err.hsum_err_l4 ++;
1409 
1410 	if (reg010_ins.reg010_val != 0) {
1411 
1412 		/*
1413 		 * Fatal error is triggered by malformed driver commands.
1414 		 * Disable unless debugging.
1415 		 */
1416 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1417 		intr_mask.mask_bits.feint = NGE_CLEAR;
1418 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1419 		ngep->intr_masks = intr_mask.mask_val;
1420 
1421 	}
1422 }
1423 
1424 static void
1425 nge_sync_mac_modes(nge_t *ngep)
1426 {
1427 	nge_tx_def tx_def;
1428 	nge_tx_fifo_wm tx_fifo;
1429 	nge_bkoff_cntl bk_cntl;
1430 	nge_mac2phy m2p;
1431 	nge_rx_cntrl0 rx_cntl0;
1432 	nge_dev_spec_param_t	*dev_param_p;
1433 
1434 	dev_param_p = &ngep->dev_spec_param;
1435 
1436 	tx_def.def_val = nge_reg_get32(ngep, NGE_TX_DEF);
1437 	m2p.m2p_val = nge_reg_get32(ngep, NGE_MAC2PHY);
1438 	tx_fifo.wm_val = nge_reg_get32(ngep, NGE_TX_FIFO_WM);
1439 	bk_cntl.cntl_val = nge_reg_get32(ngep, NGE_BKOFF_CNTL);
1440 	bk_cntl.bkoff_bits.rseed = BKOFF_RSEED;
1441 	switch (ngep->param_link_speed) {
1442 	case 10:
1443 		m2p.m2p_bits.speed = low_speed;
1444 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1445 		if (ngep->phy_mode == RGMII_IN) {
1446 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1447 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1448 		} else {
1449 			tx_def.def_bits.if_def = TX_TIFG_MII;
1450 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1451 		}
1452 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1453 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1454 		break;
1455 
1456 	case 100:
1457 		m2p.m2p_bits.speed = fast_speed;
1458 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1459 		if (ngep->phy_mode == RGMII_IN) {
1460 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1461 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1462 		} else {
1463 			tx_def.def_bits.if_def = TX_TIFG_MII;
1464 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1465 		}
1466 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1467 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1468 		break;
1469 
1470 	case 1000:
1471 		m2p.m2p_bits.speed = giga_speed;
1472 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1473 		if (ngep->param_link_duplex == LINK_DUPLEX_FULL) {
1474 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1475 			tx_def.def_bits.if_def = TX_IFG_RGMII_1000_FD;
1476 		} else {
1477 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1478 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1479 		}
1480 
1481 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_GMII;
1482 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_GMII;
1483 		break;
1484 	}
1485 
1486 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1487 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
1488 		m2p.m2p_bits.phyintr = NGE_CLEAR;
1489 		m2p.m2p_bits.phyintrlvl = NGE_CLEAR;
1490 	}
1491 	if (ngep->param_link_duplex == LINK_DUPLEX_HALF) {
1492 		m2p.m2p_bits.hdup_en = NGE_SET;
1493 	}
1494 	else
1495 		m2p.m2p_bits.hdup_en = NGE_CLEAR;
1496 	nge_reg_put32(ngep, NGE_MAC2PHY, m2p.m2p_val);
1497 	nge_reg_put32(ngep, NGE_TX_DEF, tx_def.def_val);
1498 
1499 	tx_fifo.wm_bits.data_lwm = TX_FIFO_DATA_LWM;
1500 	tx_fifo.wm_bits.prd_lwm = TX_FIFO_PRD_LWM;
1501 	tx_fifo.wm_bits.uprd_hwm = TX_FIFO_PRD_HWM;
1502 	tx_fifo.wm_bits.fb_wm = TX_FIFO_TBFW;
1503 	nge_reg_put32(ngep, NGE_TX_FIFO_WM, tx_fifo.wm_val);
1504 
1505 	nge_reg_put32(ngep, NGE_BKOFF_CNTL, bk_cntl.cntl_val);
1506 
1507 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1508 	if (ngep->param_link_rx_pause && dev_param_p->rx_pause_frame)
1509 		rx_cntl0.cntl_bits.paen = NGE_SET;
1510 	else
1511 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1512 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1513 }
1514 
1515 /*
1516  * Handler for hardware link state change.
1517  *
1518  * When this routine is called, the hardware link state has changed
1519  * and the new state is reflected in the param_* variables.  Here
1520  * we must update the softstate, reprogram the MAC to match, and
1521  * record the change in the log and/or on the console.
1522  */
1523 static void
1524 nge_factotum_link_handler(nge_t *ngep)
1525 {
1526 	/*
1527 	 * Update the s/w link_state
1528 	 */
1529 	if (ngep->param_link_up)
1530 		ngep->link_state = LINK_STATE_UP;
1531 	else
1532 		ngep->link_state = LINK_STATE_DOWN;
1533 
1534 	/*
1535 	 * Reprogram the MAC modes to match
1536 	 */
1537 	nge_sync_mac_modes(ngep);
1538 }
1539 
1540 static boolean_t
1541 nge_factotum_link_check(nge_t *ngep)
1542 {
1543 	boolean_t lchg;
1544 	boolean_t check;
1545 
1546 	ASSERT(mutex_owned(ngep->genlock));
1547 
1548 	(*ngep->physops->phys_check)(ngep);
1549 	switch (ngep->link_state) {
1550 	case LINK_STATE_UP:
1551 		lchg = (ngep->param_link_up == B_FALSE);
1552 		check = (ngep->param_link_up == B_FALSE);
1553 		break;
1554 
1555 	case LINK_STATE_DOWN:
1556 		lchg = (ngep->param_link_up == B_TRUE);
1557 		check = (ngep->param_link_up == B_TRUE);
1558 		break;
1559 
1560 	default:
1561 		check = B_TRUE;
1562 		break;
1563 	}
1564 
1565 	/*
1566 	 * If <check> is false, we're sure the link hasn't changed.
1567 	 * If true, however, it's not yet definitive; we have to call
1568 	 * nge_phys_check() to determine whether the link has settled
1569 	 * into a new state yet ... and if it has, then call the link
1570 	 * state change handler.But when the chip is 5700 in Dell 6650
1571 	 * ,even if check is false, the link may have changed.So we
1572 	 * have to call nge_phys_check() to determine the link state.
1573 	 */
1574 	if (check)
1575 		nge_factotum_link_handler(ngep);
1576 
1577 	return (lchg);
1578 }
1579 
1580 /*
1581  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1582  */
1583 static boolean_t nge_factotum_stall_check(nge_t *ngep);
1584 
1585 static boolean_t
1586 nge_factotum_stall_check(nge_t *ngep)
1587 {
1588 	uint32_t dogval;
1589 	/*
1590 	 * Specific check for Tx stall ...
1591 	 *
1592 	 * The 'watchdog' counter is incremented whenever a packet
1593 	 * is queued, reset to 1 when some (but not all) buffers
1594 	 * are reclaimed, reset to 0 (disabled) when all buffers
1595 	 * are reclaimed, and shifted left here.  If it exceeds the
1596 	 * threshold value, the chip is assumed to have stalled and
1597 	 * is put into the ERROR state.  The factotum will then reset
1598 	 * it on the next pass.
1599 	 *
1600 	 * All of which should ensure that we don't get into a state
1601 	 * where packets are left pending indefinitely!
1602 	 */
1603 	dogval = nge_atomic_shl32(&ngep->watchdog, 1);
1604 	if (dogval < nge_watchdog_count) {
1605 		ngep->stall_cknum = 0;
1606 	} else {
1607 		ngep->stall_cknum++;
1608 	}
1609 	if (ngep->stall_cknum < 8) {
1610 		return (B_FALSE);
1611 	} else {
1612 		ngep->stall_cknum = 0;
1613 		ngep->statistics.sw_statistics.tx_stall++;
1614 		return (B_TRUE);
1615 	}
1616 }
1617 
1618 
1619 
1620 /*
1621  * The factotum is woken up when there's something to do that we'd rather
1622  * not do from inside a hardware interrupt handler or high-level cyclic.
1623  * Its two main tasks are:
1624  *	reset & restart the chip after an error
1625  *	check the link status whenever necessary
1626  */
1627 /* ARGSUSED */
1628 uint_t
1629 nge_chip_factotum(caddr_t args1, caddr_t args2)
1630 {
1631 	uint_t result;
1632 	nge_t *ngep;
1633 	boolean_t err;
1634 	boolean_t linkchg;
1635 
1636 	ngep = (nge_t *)args1;
1637 
1638 	NGE_TRACE(("nge_chip_factotum($%p)", (void *)ngep));
1639 
1640 	mutex_enter(ngep->softlock);
1641 	if (ngep->factotum_flag == 0) {
1642 		mutex_exit(ngep->softlock);
1643 		return (DDI_INTR_UNCLAIMED);
1644 	}
1645 	ngep->factotum_flag = 0;
1646 	mutex_exit(ngep->softlock);
1647 	err = B_FALSE;
1648 	linkchg = B_FALSE;
1649 	result = DDI_INTR_CLAIMED;
1650 
1651 	mutex_enter(ngep->genlock);
1652 	switch (ngep->nge_chip_state) {
1653 	default:
1654 		break;
1655 
1656 	case NGE_CHIP_RUNNING:
1657 		linkchg = nge_factotum_link_check(ngep);
1658 		err = nge_factotum_stall_check(ngep);
1659 		break;
1660 
1661 	case NGE_CHIP_FAULT:
1662 		(void) nge_restart(ngep);
1663 		NGE_REPORT((ngep, "automatic recovery activated"));
1664 		break;
1665 	}
1666 
1667 	if (err)
1668 		(void) nge_chip_stop(ngep, B_TRUE);
1669 	mutex_exit(ngep->genlock);
1670 
1671 	/*
1672 	 * If the link state changed, tell the world about it (if
1673 	 * this version of MAC supports link state notification).
1674 	 * Note: can't do this while still holding the mutex.
1675 	 */
1676 	if (linkchg)
1677 		mac_link_update(ngep->mh, ngep->link_state);
1678 
1679 	return (result);
1680 
1681 }
1682 
1683 static void
1684 nge_intr_handle(nge_t *ngep, nge_intr_src *pintr_src)
1685 {
1686 	boolean_t brx;
1687 	boolean_t btx;
1688 	nge_mintr_src mintr_src;
1689 
1690 	brx = B_FALSE;
1691 	btx = B_FALSE;
1692 	ngep->statistics.sw_statistics.intr_count++;
1693 	ngep->statistics.sw_statistics.intr_lval = pintr_src->intr_val;
1694 	brx = (pintr_src->int_bits.reint | pintr_src->int_bits.miss
1695 	    | pintr_src->int_bits.rcint | pintr_src->int_bits.stint)
1696 	    != 0 ? B_TRUE : B_FALSE;
1697 	if (pintr_src->int_bits.reint)
1698 		ngep->statistics.sw_statistics.rx_err++;
1699 	if (pintr_src->int_bits.miss)
1700 		ngep->statistics.sw_statistics.rx_nobuffer++;
1701 
1702 	btx = (pintr_src->int_bits.teint | pintr_src->int_bits.tcint)
1703 	    != 0 ? B_TRUE : B_FALSE;
1704 	if (pintr_src->int_bits.stint && ngep->poll)
1705 		ngep->stint_count ++;
1706 	if (ngep->poll && (ngep->stint_count % ngep->param_tx_n_intr == 0))
1707 		btx = B_TRUE;
1708 	if (btx)
1709 		nge_tx_recycle(ngep, B_TRUE);
1710 	if (brx)
1711 		nge_receive(ngep);
1712 	if (pintr_src->int_bits.teint)
1713 		ngep->statistics.sw_statistics.tx_stop_err++;
1714 	if (ngep->intr_moderation && brx) {
1715 		if (ngep->poll) {
1716 			if (ngep->recv_count < ngep->param_rx_intr_hwater) {
1717 				ngep->quiet_time++;
1718 				if (ngep->quiet_time ==
1719 				    ngep->param_poll_quiet_time) {
1720 					ngep->poll = B_FALSE;
1721 					ngep->quiet_time = 0;
1722 					ngep->stint_count = 0;
1723 					nge_tx_recycle(ngep, B_TRUE);
1724 				}
1725 			} else
1726 				ngep->quiet_time = 0;
1727 		} else {
1728 			if (ngep->recv_count > ngep->param_rx_intr_lwater) {
1729 				ngep->busy_time++;
1730 				if (ngep->busy_time ==
1731 				    ngep->param_poll_busy_time) {
1732 					ngep->poll = B_TRUE;
1733 					ngep->busy_time = 0;
1734 				}
1735 			} else
1736 				ngep->busy_time = 0;
1737 		}
1738 	}
1739 	ngep->recv_count = 0;
1740 	if (pintr_src->int_bits.feint)
1741 		nge_chip_err(ngep);
1742 	/* link interrupt, check the link state */
1743 	if (pintr_src->int_bits.mint) {
1744 		mintr_src.src_val = nge_reg_get32(ngep, NGE_MINTR_SRC);
1745 		nge_reg_put32(ngep, NGE_MINTR_SRC, mintr_src.src_val);
1746 		nge_wake_factotum(ngep);
1747 	}
1748 }
1749 
1750 /*
1751  *	nge_chip_intr() -- handle chip interrupts
1752  */
1753 /* ARGSUSED */
1754 uint_t
1755 nge_chip_intr(caddr_t arg1, caddr_t arg2)
1756 {
1757 	nge_t *ngep = (nge_t *)arg1;
1758 	nge_intr_src intr_src;
1759 	nge_intr_mask intr_mask;
1760 
1761 	mutex_enter(ngep->genlock);
1762 
1763 	if (ngep->suspended) {
1764 		mutex_exit(ngep->genlock);
1765 		return (DDI_INTR_UNCLAIMED);
1766 	}
1767 
1768 	/*
1769 	 * Check whether chip's says it's asserting #INTA;
1770 	 * if not, don't process or claim the interrupt.
1771 	 */
1772 	intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
1773 	if (intr_src.intr_val == 0) {
1774 		mutex_exit(ngep->genlock);
1775 		return (DDI_INTR_UNCLAIMED);
1776 	}
1777 	/*
1778 	 * Ack the interrupt
1779 	 */
1780 	nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
1781 
1782 	if (ngep->nge_chip_state != NGE_CHIP_RUNNING) {
1783 		mutex_exit(ngep->genlock);
1784 		return (DDI_INTR_CLAIMED);
1785 	}
1786 	nge_intr_handle(ngep, &intr_src);
1787 	if (ngep->poll && !ngep->ch_intr_mode) {
1788 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1789 		intr_mask.mask_bits.stint = NGE_SET;
1790 		intr_mask.mask_bits.rcint = NGE_CLEAR;
1791 		intr_mask.mask_bits.reint = NGE_CLEAR;
1792 		intr_mask.mask_bits.tcint = NGE_CLEAR;
1793 		intr_mask.mask_bits.teint = NGE_CLEAR;
1794 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1795 		ngep->ch_intr_mode = B_TRUE;
1796 	} else if ((ngep->ch_intr_mode) && (!ngep->poll)) {
1797 		nge_reg_put32(ngep, NGE_INTR_MASK, ngep->intr_masks);
1798 		ngep->ch_intr_mode = B_FALSE;
1799 	}
1800 	mutex_exit(ngep->genlock);
1801 	return (DDI_INTR_CLAIMED);
1802 }
1803 
1804 static enum ioc_reply
1805 nge_pp_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1806 {
1807 	int err;
1808 	uint64_t sizemask;
1809 	uint64_t mem_va;
1810 	uint64_t maxoff;
1811 	boolean_t peek;
1812 	nge_peekpoke_t *ppd;
1813 	int (*ppfn)(nge_t *ngep, nge_peekpoke_t *ppd);
1814 
1815 	switch (cmd) {
1816 	default:
1817 		return (IOC_INVAL);
1818 
1819 	case NGE_PEEK:
1820 		peek = B_TRUE;
1821 		break;
1822 
1823 	case NGE_POKE:
1824 		peek = B_FALSE;
1825 		break;
1826 	}
1827 
1828 	/*
1829 	 * Validate format of ioctl
1830 	 */
1831 	if (iocp->ioc_count != sizeof (nge_peekpoke_t))
1832 		return (IOC_INVAL);
1833 	if (mp->b_cont == NULL)
1834 		return (IOC_INVAL);
1835 	ppd = (nge_peekpoke_t *)mp->b_cont->b_rptr;
1836 
1837 	/*
1838 	 * Validate request parameters
1839 	 */
1840 	switch (ppd->pp_acc_space) {
1841 	default:
1842 		return (IOC_INVAL);
1843 
1844 	case NGE_PP_SPACE_CFG:
1845 		/*
1846 		 * Config space
1847 		 */
1848 		sizemask = 8|4|2|1;
1849 		mem_va = 0;
1850 		maxoff = PCI_CONF_HDR_SIZE;
1851 		ppfn = peek ? nge_chip_peek_cfg : nge_chip_poke_cfg;
1852 		break;
1853 
1854 	case NGE_PP_SPACE_REG:
1855 		/*
1856 		 * Memory-mapped I/O space
1857 		 */
1858 		sizemask = 8|4|2|1;
1859 		mem_va = 0;
1860 		maxoff = NGE_REG_SIZE;
1861 		ppfn = peek ? nge_chip_peek_reg : nge_chip_poke_reg;
1862 		break;
1863 
1864 	case NGE_PP_SPACE_MII:
1865 		sizemask = 4|2|1;
1866 		mem_va = 0;
1867 		maxoff = NGE_MII_SIZE;
1868 		ppfn = peek ? nge_chip_peek_mii : nge_chip_poke_mii;
1869 		break;
1870 
1871 	case NGE_PP_SPACE_SEEPROM:
1872 		sizemask = 4|2|1;
1873 		mem_va = 0;
1874 		maxoff = NGE_SEEROM_SIZE;
1875 		ppfn = peek ? nge_chip_peek_seeprom : nge_chip_poke_seeprom;
1876 		break;
1877 	}
1878 
1879 	switch (ppd->pp_acc_size) {
1880 	default:
1881 		return (IOC_INVAL);
1882 
1883 	case 8:
1884 	case 4:
1885 	case 2:
1886 	case 1:
1887 		if ((ppd->pp_acc_size & sizemask) == 0)
1888 			return (IOC_INVAL);
1889 		break;
1890 	}
1891 
1892 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1893 		return (IOC_INVAL);
1894 
1895 	if (ppd->pp_acc_offset >= maxoff)
1896 		return (IOC_INVAL);
1897 
1898 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1899 		return (IOC_INVAL);
1900 
1901 	/*
1902 	 * All OK - go do it!
1903 	 */
1904 	ppd->pp_acc_offset += mem_va;
1905 	if (ppfn)
1906 		err = (*ppfn)(ngep, ppd);
1907 	if (err != DDI_SUCCESS)
1908 		return (IOC_INVAL);
1909 	return (peek ? IOC_REPLY : IOC_ACK);
1910 }
1911 
1912 static enum ioc_reply nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp,
1913 					struct iocblk *iocp);
1914 #pragma	no_inline(nge_diag_ioctl)
1915 
1916 static enum ioc_reply
1917 nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1918 {
1919 	ASSERT(mutex_owned(ngep->genlock));
1920 
1921 	switch (cmd) {
1922 	default:
1923 		nge_error(ngep, "nge_diag_ioctl: invalid cmd 0x%x", cmd);
1924 		return (IOC_INVAL);
1925 
1926 	case NGE_DIAG:
1927 		return (IOC_ACK);
1928 
1929 	case NGE_PEEK:
1930 	case NGE_POKE:
1931 		return (nge_pp_ioctl(ngep, cmd, mp, iocp));
1932 
1933 	case NGE_PHY_RESET:
1934 		return (IOC_RESTART_ACK);
1935 
1936 	case NGE_SOFT_RESET:
1937 	case NGE_HARD_RESET:
1938 		return (IOC_ACK);
1939 	}
1940 
1941 	/* NOTREACHED */
1942 }
1943 
1944 enum ioc_reply
1945 nge_chip_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
1946 {
1947 	int cmd;
1948 
1949 	ASSERT(mutex_owned(ngep->genlock));
1950 
1951 	cmd = iocp->ioc_cmd;
1952 
1953 	switch (cmd) {
1954 	default:
1955 		return (IOC_INVAL);
1956 
1957 	case NGE_DIAG:
1958 	case NGE_PEEK:
1959 	case NGE_POKE:
1960 	case NGE_PHY_RESET:
1961 	case NGE_SOFT_RESET:
1962 	case NGE_HARD_RESET:
1963 #if	NGE_DEBUGGING
1964 		return (nge_diag_ioctl(ngep, cmd, mp, iocp));
1965 #else
1966 		return (IOC_INVAL);
1967 #endif
1968 
1969 	case NGE_MII_READ:
1970 	case NGE_MII_WRITE:
1971 		return (IOC_INVAL);
1972 
1973 #if	NGE_SEE_IO32
1974 	case NGE_SEE_READ:
1975 	case NGE_SEE_WRITE:
1976 		return (IOC_INVAL);
1977 #endif
1978 
1979 #if	NGE_FLASH_IO32
1980 	case NGE_FLASH_READ:
1981 	case NGE_FLASH_WRITE:
1982 		return (IOC_INVAL);
1983 #endif
1984 	}
1985 }
1986