xref: /illumos-gate/usr/src/uts/common/io/nge/nge_chip.c (revision ef2504f26d1ea5859db9838255bb63f488f1b050)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "nge.h"
28 static uint32_t	nge_watchdog_count	= 1 << 29;
29 extern boolean_t nge_enable_msi;
30 static void nge_sync_mac_modes(nge_t *);
31 
32 #undef NGE_DBG
33 #define	NGE_DBG		NGE_DBG_CHIP
34 
35 /*
36  * Operating register get/set access routines
37  */
38 uint8_t nge_reg_get8(nge_t *ngep, nge_regno_t regno);
39 #pragma	inline(nge_reg_get8)
40 
41 uint8_t
42 nge_reg_get8(nge_t *ngep, nge_regno_t regno)
43 {
44 	NGE_TRACE(("nge_reg_get8($%p, 0x%lx)", (void *)ngep, regno));
45 
46 	return (ddi_get8(ngep->io_handle, PIO_ADDR(ngep, regno)));
47 }
48 
49 void nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data);
50 #pragma	inline(nge_reg_put8)
51 
52 void
53 nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data)
54 {
55 	NGE_TRACE(("nge_reg_put8($%p, 0x%lx, 0x%x)",
56 	    (void *)ngep, regno, data));
57 	ddi_put8(ngep->io_handle, PIO_ADDR(ngep, regno), data);
58 
59 }
60 
61 uint16_t nge_reg_get16(nge_t *ngep, nge_regno_t regno);
62 #pragma	inline(nge_reg_get16)
63 
64 uint16_t
65 nge_reg_get16(nge_t *ngep, nge_regno_t regno)
66 {
67 	NGE_TRACE(("nge_reg_get16($%p, 0x%lx)", (void *)ngep, regno));
68 	return (ddi_get16(ngep->io_handle, PIO_ADDR(ngep, regno)));
69 }
70 
71 void nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data);
72 #pragma	inline(nge_reg_put16)
73 
74 void
75 nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data)
76 {
77 	NGE_TRACE(("nge_reg_put16($%p, 0x%lx, 0x%x)",
78 	    (void *)ngep, regno, data));
79 	ddi_put16(ngep->io_handle, PIO_ADDR(ngep, regno), data);
80 
81 }
82 
83 uint32_t nge_reg_get32(nge_t *ngep, nge_regno_t regno);
84 #pragma	inline(nge_reg_get32)
85 
86 uint32_t
87 nge_reg_get32(nge_t *ngep, nge_regno_t regno)
88 {
89 	NGE_TRACE(("nge_reg_get32($%p, 0x%lx)", (void *)ngep, regno));
90 	return (ddi_get32(ngep->io_handle, PIO_ADDR(ngep, regno)));
91 }
92 
93 void nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data);
94 #pragma	inline(nge_reg_put32)
95 
96 void
97 nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data)
98 {
99 	NGE_TRACE(("nge_reg_put32($%p, 0x%lx, 0x%x)",
100 	    (void *)ngep, regno, data));
101 	ddi_put32(ngep->io_handle, PIO_ADDR(ngep, regno), data);
102 
103 }
104 
105 
106 static int nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
107 #pragma	no_inline(nge_chip_peek_cfg)
108 
109 static int
110 nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
111 {
112 	int err;
113 	uint64_t regval;
114 	uint64_t regno;
115 
116 	NGE_TRACE(("nge_chip_peek_cfg($%p, $%p)",
117 	    (void *)ngep, (void *)ppd));
118 
119 	err = DDI_SUCCESS;
120 	regno = ppd->pp_acc_offset;
121 
122 	switch (ppd->pp_acc_size) {
123 	case 1:
124 		regval = pci_config_get8(ngep->cfg_handle, regno);
125 		break;
126 
127 	case 2:
128 		regval = pci_config_get16(ngep->cfg_handle, regno);
129 		break;
130 
131 	case 4:
132 		regval = pci_config_get32(ngep->cfg_handle, regno);
133 		break;
134 
135 	case 8:
136 		regval = pci_config_get64(ngep->cfg_handle, regno);
137 		break;
138 	}
139 	ppd->pp_acc_data = regval;
140 	return (err);
141 }
142 
143 static int nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
144 
145 static int
146 nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
147 {
148 	int err;
149 	uint64_t regval;
150 	uint64_t regno;
151 
152 	NGE_TRACE(("nge_chip_poke_cfg($%p, $%p)",
153 	    (void *)ngep, (void *)ppd));
154 
155 	err = DDI_SUCCESS;
156 	regno = ppd->pp_acc_offset;
157 	regval = ppd->pp_acc_data;
158 
159 	switch (ppd->pp_acc_size) {
160 	case 1:
161 		pci_config_put8(ngep->cfg_handle, regno, regval);
162 		break;
163 
164 	case 2:
165 		pci_config_put16(ngep->cfg_handle, regno, regval);
166 		break;
167 
168 	case 4:
169 		pci_config_put32(ngep->cfg_handle, regno, regval);
170 		break;
171 
172 	case 8:
173 		pci_config_put64(ngep->cfg_handle, regno, regval);
174 		break;
175 	}
176 
177 	return (err);
178 
179 }
180 
181 static int nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd);
182 
183 static int
184 nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd)
185 {
186 	int err;
187 	uint64_t regval;
188 	void *regaddr;
189 
190 	NGE_TRACE(("nge_chip_peek_reg($%p, $%p)",
191 	    (void *)ngep, (void *)ppd));
192 
193 	err = DDI_SUCCESS;
194 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
195 
196 	switch (ppd->pp_acc_size) {
197 	case 1:
198 		regval = ddi_get8(ngep->io_handle, regaddr);
199 	break;
200 
201 	case 2:
202 		regval = ddi_get16(ngep->io_handle, regaddr);
203 	break;
204 
205 	case 4:
206 		regval = ddi_get32(ngep->io_handle, regaddr);
207 	break;
208 
209 	case 8:
210 		regval = ddi_get64(ngep->io_handle, regaddr);
211 	break;
212 
213 	default:
214 		regval = 0x0ull;
215 	break;
216 	}
217 	ppd->pp_acc_data = regval;
218 	return (err);
219 }
220 
221 static int nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd);
222 
223 static int
224 nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd)
225 {
226 	int err;
227 	uint64_t regval;
228 	void *regaddr;
229 
230 	NGE_TRACE(("nge_chip_poke_reg($%p, $%p)",
231 	    (void *)ngep, (void *)ppd));
232 
233 	err = DDI_SUCCESS;
234 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
235 	regval = ppd->pp_acc_data;
236 
237 	switch (ppd->pp_acc_size) {
238 	case 1:
239 		ddi_put8(ngep->io_handle, regaddr, regval);
240 		break;
241 
242 	case 2:
243 		ddi_put16(ngep->io_handle, regaddr, regval);
244 		break;
245 
246 	case 4:
247 		ddi_put32(ngep->io_handle, regaddr, regval);
248 		break;
249 
250 	case 8:
251 		ddi_put64(ngep->io_handle, regaddr, regval);
252 		break;
253 	}
254 	return (err);
255 }
256 
257 static int nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd);
258 #pragma	no_inline(nge_chip_peek_mii)
259 
260 static int
261 nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd)
262 {
263 	int err;
264 
265 	err = DDI_SUCCESS;
266 	ppd->pp_acc_data = nge_mii_get16(ngep, ppd->pp_acc_offset/2);
267 	return (err);
268 }
269 
270 static int nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd);
271 #pragma	no_inline(nge_chip_poke_mii)
272 
273 static int
274 nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd)
275 {
276 	int err;
277 	err = DDI_SUCCESS;
278 	nge_mii_put16(ngep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
279 	return (err);
280 }
281 
282 /*
283  * Basic SEEPROM get/set access routine
284  *
285  * This uses the chip's SEEPROM auto-access method, controlled by the
286  * Serial EEPROM Address/Data Registers at 0x504h, so the CPU
287  * doesn't have to fiddle with the individual bits.
288  *
289  * The caller should hold <genlock> and *also* have already acquired
290  * the right to access the SEEPROM.
291  *
292  * Return value:
293  *	0 on success,
294  *	ENODATA on access timeout (maybe retryable: device may just be busy)
295  *	EPROTO on other h/w or s/w errors.
296  *
297  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
298  * from a (successful) SEEPROM_ACCESS_READ.
299  */
300 
301 static int
302 nge_seeprom_access(nge_t *ngep, uint32_t cmd, nge_regno_t addr, uint16_t *dp)
303 {
304 	uint32_t tries;
305 	nge_ep_cmd cmd_reg;
306 	nge_ep_data data_reg;
307 
308 	NGE_TRACE(("nge_seeprom_access($%p, %d, %x, $%p)",
309 	    (void *)ngep, cmd, addr, (void *)dp));
310 
311 	ASSERT(mutex_owned(ngep->genlock));
312 
313 	/*
314 	 * Check there's no command in progress.
315 	 *
316 	 * Note: this *shouldn't* ever find that there is a command
317 	 * in progress, because we already hold the <genlock> mutex.
318 	 * Also, to ensure we don't have a conflict with the chip's
319 	 * internal firmware or a process accessing the same (shared)
320 	 * So this is just a final consistency check: we shouldn't
321 	 * see EITHER the START bit (command started but not complete)
322 	 * OR the COMPLETE bit (command completed but not cleared).
323 	 */
324 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
325 	for (tries = 0; tries < 30; tries++) {
326 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
327 			break;
328 		drv_usecwait(10);
329 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
330 	}
331 
332 	/*
333 	 * This should not happen. If so, we have to restart eeprom
334 	 *  state machine
335 	 */
336 	if (tries == 30) {
337 		cmd_reg.cmd_bits.sts = SEEPROM_READY;
338 		nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
339 		drv_usecwait(10);
340 		/*
341 		 * Polling the status bit to make assure the eeprom is ready
342 		 */
343 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
344 		for (tries = 0; tries < 30; tries++) {
345 			if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
346 				break;
347 			drv_usecwait(10);
348 			cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
349 		}
350 	}
351 
352 	/*
353 	 * Assemble the command ...
354 	 */
355 	cmd_reg.cmd_bits.addr = (uint32_t)addr;
356 	cmd_reg.cmd_bits.cmd = cmd;
357 	cmd_reg.cmd_bits.sts = 0;
358 
359 	nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
360 
361 	/*
362 	 * Polling whether the access is successful.
363 	 *
364 	 */
365 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
366 	for (tries = 0; tries < 30; tries++) {
367 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
368 			break;
369 		drv_usecwait(10);
370 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
371 	}
372 
373 	if (tries == 30) {
374 		nge_report(ngep, NGE_HW_ROM);
375 		return (DDI_FAILURE);
376 	}
377 	switch (cmd) {
378 	default:
379 	case SEEPROM_CMD_WRITE_ENABLE:
380 	case SEEPROM_CMD_ERASE:
381 	case SEEPROM_CMD_ERALSE_ALL:
382 	case SEEPROM_CMD_WRITE_DIS:
383 	break;
384 
385 	case SEEPROM_CMD_READ:
386 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
387 		*dp = data_reg.data_bits.data;
388 	break;
389 
390 	case SEEPROM_CMD_WRITE:
391 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
392 		data_reg.data_bits.data = *dp;
393 		nge_reg_put32(ngep, NGE_EP_DATA, data_reg.data_val);
394 	break;
395 	}
396 
397 	return (DDI_SUCCESS);
398 }
399 
400 
401 static int
402 nge_chip_peek_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
403 {
404 	uint16_t data;
405 	int err;
406 
407 	err = nge_seeprom_access(ngep, SEEPROM_CMD_READ,
408 	    ppd->pp_acc_offset, &data);
409 	ppd->pp_acc_data =  data;
410 	return (err);
411 }
412 
413 static int
414 nge_chip_poke_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
415 {
416 	uint16_t data;
417 	int err;
418 
419 	data = ppd->pp_acc_data;
420 	err = nge_seeprom_access(ngep, SEEPROM_CMD_WRITE,
421 	    ppd->pp_acc_offset, &data);
422 	return (err);
423 }
424 
425 void
426 nge_init_dev_spec_param(nge_t *ngep)
427 {
428 	nge_dev_spec_param_t	*dev_param_p;
429 	chip_info_t	*infop;
430 
431 	dev_param_p = &ngep->dev_spec_param;
432 	infop = (chip_info_t *)&ngep->chipinfo;
433 
434 	switch (infop->device) {
435 	case DEVICE_ID_NF3_E6:
436 	case DEVICE_ID_NF3_DF:
437 	case DEVICE_ID_MCP04_37:
438 	case DEVICE_ID_MCP04_38:
439 		dev_param_p->msi = B_FALSE;
440 		dev_param_p->msi_x = B_FALSE;
441 		dev_param_p->vlan = B_FALSE;
442 		dev_param_p->advanced_pm = B_FALSE;
443 		dev_param_p->mac_addr_order = B_FALSE;
444 		dev_param_p->tx_pause_frame = B_FALSE;
445 		dev_param_p->rx_pause_frame = B_FALSE;
446 		dev_param_p->jumbo = B_FALSE;
447 		dev_param_p->tx_rx_64byte = B_FALSE;
448 		dev_param_p->rx_hw_checksum = B_FALSE;
449 		dev_param_p->tx_hw_checksum = 0;
450 		dev_param_p->desc_type = DESC_OFFLOAD;
451 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
452 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
453 		dev_param_p->nge_split = NGE_SPLIT_32;
454 		break;
455 
456 	case DEVICE_ID_CK804_56:
457 	case DEVICE_ID_CK804_57:
458 		dev_param_p->msi = B_TRUE;
459 		dev_param_p->msi_x = B_TRUE;
460 		dev_param_p->vlan = B_FALSE;
461 		dev_param_p->advanced_pm = B_FALSE;
462 		dev_param_p->mac_addr_order = B_FALSE;
463 		dev_param_p->tx_pause_frame = B_FALSE;
464 		dev_param_p->rx_pause_frame = B_TRUE;
465 		dev_param_p->jumbo = B_TRUE;
466 		dev_param_p->tx_rx_64byte = B_FALSE;
467 		dev_param_p->rx_hw_checksum = B_TRUE;
468 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
469 		dev_param_p->desc_type = DESC_HOT;
470 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
471 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
472 		dev_param_p->nge_split = NGE_SPLIT_96;
473 		break;
474 
475 	case DEVICE_ID_MCP51_268:
476 	case DEVICE_ID_MCP51_269:
477 		dev_param_p->msi = B_FALSE;
478 		dev_param_p->msi_x = B_FALSE;
479 		dev_param_p->vlan = B_FALSE;
480 		dev_param_p->advanced_pm = B_TRUE;
481 		dev_param_p->mac_addr_order = B_FALSE;
482 		dev_param_p->tx_pause_frame = B_FALSE;
483 		dev_param_p->rx_pause_frame = B_FALSE;
484 		dev_param_p->jumbo = B_FALSE;
485 		dev_param_p->tx_rx_64byte = B_TRUE;
486 		dev_param_p->rx_hw_checksum = B_FALSE;
487 		dev_param_p->tx_hw_checksum = 0;
488 		dev_param_p->desc_type = DESC_OFFLOAD;
489 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
490 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
491 		dev_param_p->nge_split = NGE_SPLIT_32;
492 		break;
493 
494 	case DEVICE_ID_MCP55_372:
495 	case DEVICE_ID_MCP55_373:
496 		dev_param_p->msi = B_TRUE;
497 		dev_param_p->msi_x = B_TRUE;
498 		dev_param_p->vlan = B_TRUE;
499 		dev_param_p->advanced_pm = B_TRUE;
500 		dev_param_p->mac_addr_order = B_FALSE;
501 		dev_param_p->tx_pause_frame = B_TRUE;
502 		dev_param_p->rx_pause_frame = B_TRUE;
503 		dev_param_p->jumbo = B_TRUE;
504 		dev_param_p->tx_rx_64byte = B_TRUE;
505 		dev_param_p->rx_hw_checksum = B_TRUE;
506 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
507 		dev_param_p->desc_type = DESC_HOT;
508 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
509 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
510 		dev_param_p->nge_split = NGE_SPLIT_96;
511 		break;
512 
513 	case DEVICE_ID_MCP61_3EE:
514 	case DEVICE_ID_MCP61_3EF:
515 		dev_param_p->msi = B_FALSE;
516 		dev_param_p->msi_x = B_FALSE;
517 		dev_param_p->vlan = B_FALSE;
518 		dev_param_p->advanced_pm = B_TRUE;
519 		dev_param_p->mac_addr_order = B_TRUE;
520 		dev_param_p->tx_pause_frame = B_FALSE;
521 		dev_param_p->rx_pause_frame = B_FALSE;
522 		dev_param_p->jumbo = B_FALSE;
523 		dev_param_p->tx_rx_64byte = B_TRUE;
524 		dev_param_p->rx_hw_checksum = B_FALSE;
525 		dev_param_p->tx_hw_checksum = 0;
526 		dev_param_p->desc_type = DESC_OFFLOAD;
527 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
528 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
529 		dev_param_p->nge_split = NGE_SPLIT_32;
530 		break;
531 
532 	default:
533 		dev_param_p->msi = B_FALSE;
534 		dev_param_p->msi_x = B_FALSE;
535 		dev_param_p->vlan = B_FALSE;
536 		dev_param_p->advanced_pm = B_FALSE;
537 		dev_param_p->mac_addr_order = B_FALSE;
538 		dev_param_p->tx_pause_frame = B_FALSE;
539 		dev_param_p->rx_pause_frame = B_FALSE;
540 		dev_param_p->jumbo = B_FALSE;
541 		dev_param_p->tx_rx_64byte = B_FALSE;
542 		dev_param_p->rx_hw_checksum = B_FALSE;
543 		dev_param_p->tx_hw_checksum = 0;
544 		dev_param_p->desc_type = DESC_OFFLOAD;
545 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
546 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
547 		dev_param_p->nge_split = NGE_SPLIT_32;
548 		return;
549 	}
550 }
551 /*
552  * Perform first-stage chip (re-)initialisation, using only config-space
553  * accesses:
554  *
555  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
556  *   returning the data in the structure pointed to by <infop>.
557  */
558 void nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset);
559 #pragma	no_inline(nge_chip_cfg_init)
560 
561 void
562 nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset)
563 {
564 	uint16_t command;
565 	ddi_acc_handle_t handle;
566 	nge_interbus_conf interbus_conf;
567 	nge_msi_mask_conf msi_mask_conf;
568 	nge_msi_map_cap_conf cap_conf;
569 
570 	NGE_TRACE(("nge_chip_cfg_init($%p, $%p, %d)",
571 	    (void *)ngep, (void *)infop, reset));
572 
573 	/*
574 	 * save PCI cache line size and subsystem vendor ID
575 	 *
576 	 * Read all the config-space registers that characterise the
577 	 * chip, specifically vendor/device/revision/subsystem vendor
578 	 * and subsystem device id.  We expect (but don't check) that
579 	 */
580 	handle = ngep->cfg_handle;
581 	/* reading the vendor information once */
582 	if (reset == B_FALSE) {
583 		infop->command = pci_config_get16(handle,
584 		    PCI_CONF_COMM);
585 		infop->vendor = pci_config_get16(handle,
586 		    PCI_CONF_VENID);
587 		infop->device = pci_config_get16(handle,
588 		    PCI_CONF_DEVID);
589 		infop->subven = pci_config_get16(handle,
590 		    PCI_CONF_SUBVENID);
591 		infop->subdev = pci_config_get16(handle,
592 		    PCI_CONF_SUBSYSID);
593 		infop->class_code = pci_config_get8(handle,
594 		    PCI_CONF_BASCLASS);
595 		infop->revision = pci_config_get8(handle,
596 		    PCI_CONF_REVID);
597 		infop->clsize = pci_config_get8(handle,
598 		    PCI_CONF_CACHE_LINESZ);
599 		infop->latency = pci_config_get8(handle,
600 		    PCI_CONF_LATENCY_TIMER);
601 	}
602 	if (nge_enable_msi) {
603 		/* Disable the hidden for MSI support */
604 		interbus_conf.conf_val = pci_config_get32(handle,
605 		    PCI_CONF_HT_INTERNAL);
606 		if ((infop->device == DEVICE_ID_MCP55_373) ||
607 		    (infop->device == DEVICE_ID_MCP55_372))
608 			interbus_conf.conf_bits.msix_off = NGE_SET;
609 		interbus_conf.conf_bits.msi_off = NGE_CLEAR;
610 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
611 		    interbus_conf.conf_val);
612 
613 		if ((infop->device == DEVICE_ID_MCP55_373) ||
614 		    (infop->device == DEVICE_ID_MCP55_372)) {
615 
616 			/* Disable the vector off for mcp55 */
617 			msi_mask_conf.msi_mask_conf_val =
618 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MASK);
619 			msi_mask_conf.msi_mask_bits.vec0_off = NGE_CLEAR;
620 			msi_mask_conf.msi_mask_bits.vec1_off = NGE_CLEAR;
621 			msi_mask_conf.msi_mask_bits.vec2_off = NGE_CLEAR;
622 			msi_mask_conf.msi_mask_bits.vec3_off = NGE_CLEAR;
623 			msi_mask_conf.msi_mask_bits.vec4_off = NGE_CLEAR;
624 			msi_mask_conf.msi_mask_bits.vec5_off = NGE_CLEAR;
625 			msi_mask_conf.msi_mask_bits.vec6_off = NGE_CLEAR;
626 			msi_mask_conf.msi_mask_bits.vec7_off = NGE_CLEAR;
627 			pci_config_put32(handle, PCI_CONF_HT_MSI_MASK,
628 			    msi_mask_conf.msi_mask_conf_val);
629 
630 			/* Enable the MSI mapping */
631 			cap_conf.msi_map_cap_conf_val =
632 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MAP_CAP);
633 			cap_conf.map_cap_conf_bits.map_en = NGE_SET;
634 			pci_config_put32(handle, PCI_CONF_HT_MSI_MAP_CAP,
635 			    cap_conf.msi_map_cap_conf_val);
636 		}
637 	} else {
638 		interbus_conf.conf_val = pci_config_get32(handle,
639 		    PCI_CONF_HT_INTERNAL);
640 		interbus_conf.conf_bits.msi_off = NGE_SET;
641 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
642 		    interbus_conf.conf_val);
643 	}
644 	command = infop->command | PCI_COMM_MAE;
645 	command &= ~PCI_COMM_MEMWR_INVAL;
646 	command |= PCI_COMM_ME;
647 	pci_config_put16(handle, PCI_CONF_COMM, command);
648 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
649 
650 }
651 
652 int
653 nge_chip_stop(nge_t *ngep, boolean_t fault)
654 {
655 	int err;
656 	uint32_t reg_val;
657 	uint32_t	tries;
658 	nge_mintr_src mintr_src;
659 	nge_mii_cs mii_cs;
660 	nge_rx_poll rx_poll;
661 	nge_tx_poll tx_poll;
662 	nge_rx_en rx_en;
663 	nge_tx_en tx_en;
664 	nge_tx_sta tx_sta;
665 	nge_rx_sta rx_sta;
666 	nge_mode_cntl mode;
667 	nge_pmu_cntl2 pmu_cntl2;
668 
669 	NGE_TRACE(("nge_chip_stop($%p, %d)", (void *)ngep, fault));
670 
671 	err = DDI_SUCCESS;
672 
673 	/* Clear any pending PHY interrupt */
674 	mintr_src.src_val = nge_reg_get8(ngep, NGE_MINTR_SRC);
675 	nge_reg_put8(ngep, NGE_MINTR_SRC, mintr_src.src_val);
676 
677 	/* Mask all interrupts */
678 	reg_val = nge_reg_get32(ngep, NGE_INTR_MASK);
679 	reg_val &= ~NGE_INTR_ALL_EN;
680 	nge_reg_put32(ngep, NGE_INTR_MASK, reg_val);
681 
682 	/* Disable auto-polling of phy */
683 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
684 	mii_cs.cs_bits.ap_en = NGE_CLEAR;
685 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
686 
687 	/* Reset buffer management & DMA */
688 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
689 	mode.mode_bits.dma_dis = NGE_SET;
690 	mode.mode_bits.desc_type = ngep->desc_mode;
691 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
692 
693 	for (tries = 0; tries < 10000; tries++) {
694 		drv_usecwait(10);
695 		mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
696 		if (mode.mode_bits.dma_status == NGE_SET)
697 			break;
698 	}
699 	if (tries == 10000) {
700 		ngep->nge_chip_state = NGE_CHIP_FAULT;
701 		return (DDI_FAILURE);
702 	}
703 
704 	/* Disable rx's machine */
705 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
706 	rx_en.bits.rx_en = NGE_CLEAR;
707 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
708 
709 	/* Disable tx's machine */
710 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
711 	tx_en.bits.tx_en = NGE_CLEAR;
712 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
713 
714 	/*
715 	 * Clean the status of tx's state machine
716 	 * and Make assure the tx's channel is idle
717 	 */
718 	tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
719 	for (tries = 0; tries < 1000; tries++) {
720 		if (tx_sta.sta_bits.tx_chan_sta == NGE_CLEAR)
721 			break;
722 		drv_usecwait(10);
723 		tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
724 	}
725 	if (tries == 1000) {
726 		ngep->nge_chip_state = NGE_CHIP_FAULT;
727 		return (DDI_FAILURE);
728 	}
729 	nge_reg_put32(ngep, NGE_TX_STA,  tx_sta.sta_val);
730 
731 	/*
732 	 * Clean the status of rx's state machine
733 	 * and Make assure the tx's channel is idle
734 	 */
735 	rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
736 	for (tries = 0; tries < 1000; tries++) {
737 		if (rx_sta.sta_bits.rx_chan_sta == NGE_CLEAR)
738 			break;
739 		drv_usecwait(10);
740 		rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
741 	}
742 	if (tries == 1000) {
743 		ngep->nge_chip_state = NGE_CHIP_FAULT;
744 		return (DDI_FAILURE);
745 	}
746 	nge_reg_put32(ngep, NGE_RX_STA, rx_sta.sta_val);
747 
748 	/* Disable auto-poll of rx's state machine */
749 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
750 	rx_poll.poll_bits.rpen = NGE_CLEAR;
751 	rx_poll.poll_bits.rpi = NGE_CLEAR;
752 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
753 
754 	/* Disable auto-polling of tx's  state machine */
755 	tx_poll.poll_val = nge_reg_get32(ngep, NGE_TX_POLL);
756 	tx_poll.poll_bits.tpen = NGE_CLEAR;
757 	tx_poll.poll_bits.tpi = NGE_CLEAR;
758 	nge_reg_put32(ngep, NGE_TX_POLL, tx_poll.poll_val);
759 
760 	/* Restore buffer management */
761 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
762 	mode.mode_bits.bm_reset = NGE_SET;
763 	mode.mode_bits.tx_rcom_en = NGE_SET;
764 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
765 
766 	if (ngep->dev_spec_param.advanced_pm) {
767 
768 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT, 0);
769 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT, 0);
770 
771 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
772 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_CLEAR;
773 		pmu_cntl2.cntl2_bits.didle_timer = NGE_CLEAR;
774 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
775 	}
776 	if (fault)
777 		ngep->nge_chip_state = NGE_CHIP_FAULT;
778 	else
779 		ngep->nge_chip_state = NGE_CHIP_STOPPED;
780 
781 	return (err);
782 }
783 
784 static void
785 nge_rx_setup(nge_t *ngep)
786 {
787 	uint64_t desc_addr;
788 	nge_rxtx_dlen dlen;
789 	nge_rx_poll rx_poll;
790 
791 	/*
792 	 * Filling the address and length of rx's descriptors
793 	 */
794 	desc_addr = ngep->recv->desc.cookie.dmac_laddress;
795 	nge_reg_put32(ngep, NGE_RX_DADR, desc_addr);
796 	nge_reg_put32(ngep, NGE_RX_DADR_HI, desc_addr >> 32);
797 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
798 	dlen.dlen_bits.rdlen = ngep->recv->desc.nslots - 1;
799 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
800 
801 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
802 	rx_poll.poll_bits.rpi = RX_POLL_INTV_1G;
803 	rx_poll.poll_bits.rpen = NGE_SET;
804 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
805 }
806 
807 static void
808 nge_tx_setup(nge_t *ngep)
809 {
810 	uint64_t desc_addr;
811 	nge_rxtx_dlen dlen;
812 
813 	/*
814 	 * Filling the address and length of tx's descriptors
815 	 */
816 	desc_addr = ngep->send->desc.cookie.dmac_laddress;
817 	nge_reg_put32(ngep, NGE_TX_DADR, desc_addr);
818 	nge_reg_put32(ngep, NGE_TX_DADR_HI, desc_addr >> 32);
819 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
820 	dlen.dlen_bits.tdlen = ngep->send->desc.nslots - 1;
821 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
822 }
823 
824 static int
825 nge_buff_setup(nge_t *ngep)
826 {
827 	nge_mode_cntl mode_cntl;
828 	nge_dev_spec_param_t	*dev_param_p;
829 
830 	dev_param_p = &ngep->dev_spec_param;
831 
832 	/*
833 	 * Configure Rx&Tx's buffer
834 	 */
835 	nge_rx_setup(ngep);
836 	nge_tx_setup(ngep);
837 
838 	/*
839 	 * Configure buffer attribute
840 	 */
841 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
842 
843 	/*
844 	 * Enable Dma access request
845 	 */
846 	mode_cntl.mode_bits.dma_dis = NGE_CLEAR;
847 
848 	/*
849 	 * Enbale Buffer management
850 	 */
851 	mode_cntl.mode_bits.bm_reset = NGE_CLEAR;
852 
853 	/*
854 	 * Support Standoffload Descriptor
855 	 */
856 	mode_cntl.mode_bits.desc_type = ngep->desc_mode;
857 
858 	/*
859 	 * Support receive hardware checksum
860 	 */
861 	if (dev_param_p->rx_hw_checksum) {
862 		mode_cntl.mode_bits.rx_sum_en = NGE_SET;
863 	} else
864 		mode_cntl.mode_bits.rx_sum_en = NGE_CLEAR;
865 
866 	/*
867 	 * Disable Tx PRD coarse update
868 	 */
869 	mode_cntl.mode_bits.tx_prd_cu_en = NGE_CLEAR;
870 
871 	/*
872 	 * Disable 64-byte access
873 	 */
874 	mode_cntl.mode_bits.w64_dis = NGE_SET;
875 
876 	/*
877 	 * Skip Rx Error Frame is not supported and if
878 	 * enable it, jumbo frame does not work any more.
879 	 */
880 	mode_cntl.mode_bits.rx_filter_en = NGE_CLEAR;
881 
882 	/*
883 	 * Can not support hot mode now
884 	 */
885 	mode_cntl.mode_bits.resv15 = NGE_CLEAR;
886 
887 	if (dev_param_p->vlan) {
888 		/* Disable the vlan strip for devices which support vlan */
889 		mode_cntl.mode_bits.vlan_strip = NGE_CLEAR;
890 
891 		/* Disable the vlan insert for devices which supprot vlan */
892 		mode_cntl.mode_bits.vlan_ins = NGE_CLEAR;
893 	}
894 
895 	if (dev_param_p->tx_rx_64byte) {
896 
897 		/* Set the maximum TX PRD fetch size to 64 bytes */
898 		mode_cntl.mode_bits.tx_fetch_prd = NGE_SET;
899 
900 		/* Set the maximum RX PRD fetch size to 64 bytes */
901 		mode_cntl.mode_bits.rx_fetch_prd = NGE_SET;
902 	}
903 	/*
904 	 * Upload Rx data as it arrives, rather than waiting for full frame
905 	 */
906 	mode_cntl.mode_bits.resv16 = NGE_CLEAR;
907 
908 	/*
909 	 * Normal HOT table accesses
910 	 */
911 	mode_cntl.mode_bits.resv17 = NGE_CLEAR;
912 
913 	/*
914 	 * Normal HOT buffer requesting
915 	 */
916 	mode_cntl.mode_bits.resv18 = NGE_CLEAR;
917 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
918 
919 	/*
920 	 * Signal controller to check for new Rx descriptors
921 	 */
922 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
923 	mode_cntl.mode_bits.rxdm = NGE_SET;
924 	mode_cntl.mode_bits.tx_rcom_en = NGE_SET;
925 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
926 
927 
928 	return (DDI_SUCCESS);
929 }
930 
931 /*
932  * When chipset resets, the chipset can not restore  the orignial
933  * mac address to the mac address registers.
934  *
935  * When the driver is dettached, the function will write the orignial
936  * mac address to the mac address registers.
937  */
938 
939 void
940 nge_restore_mac_addr(nge_t *ngep)
941 {
942 	uint32_t mac_addr;
943 
944 	mac_addr = (uint32_t)ngep->chipinfo.hw_mac_addr;
945 	nge_reg_put32(ngep, NGE_UNI_ADDR0, mac_addr);
946 	mac_addr = (uint32_t)(ngep->chipinfo.hw_mac_addr >> 32);
947 	nge_reg_put32(ngep, NGE_UNI_ADDR1, mac_addr);
948 }
949 
950 int
951 nge_chip_reset(nge_t *ngep)
952 {
953 	int err;
954 	uint8_t i;
955 	uint32_t regno;
956 	uint64_t mac = 0;
957 	uint64_t mac_tmp = 0;
958 	nge_uni_addr1 uaddr1;
959 	nge_cp_cntl ee_cntl;
960 	nge_soft_misc soft_misc;
961 	nge_pmu_cntl0 pmu_cntl0;
962 	nge_pmu_cntl2 pmu_cntl2;
963 	nge_pm_cntl2 pm_cntl2;
964 	const nge_ksindex_t *ksip;
965 
966 	NGE_TRACE(("nge_chip_reset($%p)", (void *)ngep));
967 
968 	/*
969 	 * Clear the statistics by reading the statistics register
970 	 */
971 	for (ksip = nge_statistics; ksip->name != NULL; ++ksip) {
972 		regno = KS_BASE + ksip->index * sizeof (uint32_t);
973 		(void) nge_reg_get32(ngep, regno);
974 	}
975 
976 	/*
977 	 * Setup seeprom control
978 	 */
979 	ee_cntl.cntl_val = nge_reg_get32(ngep, NGE_EP_CNTL);
980 	ee_cntl.cntl_bits.clkdiv = EEPROM_CLKDIV;
981 	ee_cntl.cntl_bits.rom_size = EEPROM_32K;
982 	ee_cntl.cntl_bits.word_wid = ACCESS_16BIT;
983 	ee_cntl.cntl_bits.wait_slots = EEPROM_WAITCLK;
984 	nge_reg_put32(ngep, NGE_EP_CNTL, ee_cntl.cntl_val);
985 
986 	/*
987 	 * Reading the unicast mac address table
988 	 */
989 	if (ngep->nge_chip_state == NGE_CHIP_INITIAL) {
990 		uaddr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
991 		mac = uaddr1.addr_bits.addr;
992 		mac <<= 32;
993 		mac |= nge_reg_get32(ngep, NGE_UNI_ADDR0);
994 		if (mac != 0ULL && mac != ~0ULL) {
995 			/*
996 			 * workaround for the MAC address reversed issue
997 			 * on some motherboards
998 			 */
999 			if (ngep->dev_spec_param.mac_addr_order &&
1000 			    (ngep->mac_addr_reversion ||
1001 			    (mac & LOW_24BITS_MASK) == REVERSE_MAC_ELITE ||
1002 			    (mac & LOW_24BITS_MASK) == REVERSE_MAC_GIGABYTE ||
1003 			    (mac & LOW_24BITS_MASK) == REVERSE_MAC_ASUS)) {
1004 				for (i = 0; i < ETHERADDRL; i ++) {
1005 					mac_tmp <<= 8;
1006 					mac_tmp += (mac & 0xffULL);
1007 					mac >>= 8;
1008 				}
1009 				mac = mac_tmp;
1010 				nge_reg_put32(ngep,
1011 				    NGE_UNI_ADDR0, (uint32_t)mac);
1012 				nge_reg_put32(ngep,
1013 				    NGE_UNI_ADDR1, (uint32_t)(mac>>32));
1014 			}
1015 
1016 			ngep->chipinfo.hw_mac_addr = mac;
1017 			for (i = ETHERADDRL; i-- != 0; ) {
1018 				ngep->chipinfo.vendor_addr.addr[i] =
1019 				    (uchar_t)mac;
1020 				ngep->cur_uni_addr.addr[i] = (uchar_t)mac;
1021 				mac >>= 8;
1022 			}
1023 			ngep->chipinfo.vendor_addr.set = 1;
1024 		}
1025 	}
1026 	pci_config_put8(ngep->cfg_handle, PCI_CONF_CACHE_LINESZ,
1027 	    ngep->chipinfo.clsize);
1028 	pci_config_put8(ngep->cfg_handle, PCI_CONF_LATENCY_TIMER,
1029 	    ngep->chipinfo.latency);
1030 
1031 
1032 	if (ngep->dev_spec_param.advanced_pm) {
1033 
1034 		/* Program software misc register */
1035 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1036 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_SET;
1037 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_SET;
1038 		soft_misc.misc_bits.clk12m_vx_rst = NGE_SET;
1039 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_SET;
1040 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_SET;
1041 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_SET;
1042 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_SET;
1043 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_SET;
1044 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1045 
1046 		/* wait for 32 us */
1047 		drv_usecwait(32);
1048 
1049 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1050 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_CLEAR;
1051 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_CLEAR;
1052 		soft_misc.misc_bits.clk12m_vx_rst = NGE_CLEAR;
1053 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_CLEAR;
1054 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_CLEAR;
1055 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_CLEAR;
1056 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_CLEAR;
1057 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_CLEAR;
1058 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1059 
1060 		/* Program PMU registers */
1061 		pmu_cntl0.cntl0_val = nge_reg_get32(ngep, NGE_PMU_CNTL0);
1062 		pmu_cntl0.cntl0_bits.core_spd10_fp =
1063 		    NGE_PMU_CORE_SPD10_BUSY;
1064 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1065 		    NGE_PMU_CORE_SPD10_IDLE;
1066 		pmu_cntl0.cntl0_bits.core_spd100_fp =
1067 		    NGE_PMU_CORE_SPD100_BUSY;
1068 		pmu_cntl0.cntl0_bits.core_spd100_idle =
1069 		    NGE_PMU_CORE_SPD100_IDLE;
1070 		pmu_cntl0.cntl0_bits.core_spd1000_fp =
1071 		    NGE_PMU_CORE_SPD1000_BUSY;
1072 		pmu_cntl0.cntl0_bits.core_spd1000_idle =
1073 		    NGE_PMU_CORE_SPD100_IDLE;
1074 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1075 		    NGE_PMU_CORE_SPD10_IDLE;
1076 		nge_reg_put32(ngep, NGE_PMU_CNTL0, pmu_cntl0.cntl0_val);
1077 
1078 		/* Set the core idle limit value */
1079 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT,
1080 		    NGE_PMU_CIDLE_LIMIT_DEF);
1081 
1082 		/* Set the device idle limit value */
1083 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT,
1084 		    NGE_PMU_DIDLE_LIMIT_DEF);
1085 
1086 		/* Enable the core/device idle timer in PMU control 2 */
1087 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
1088 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_SET;
1089 		pmu_cntl2.cntl2_bits.didle_timer = NGE_SET;
1090 		pmu_cntl2.cntl2_bits.core_enable = NGE_SET;
1091 		pmu_cntl2.cntl2_bits.dev_enable = NGE_SET;
1092 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
1093 	}
1094 	/*
1095 	 * Stop the chipset and clear buffer management
1096 	 */
1097 	err = nge_chip_stop(ngep, B_FALSE);
1098 	if (err == DDI_FAILURE)
1099 		return (err);
1100 	/*
1101 	 * Clear the power state bits for phy since interface no longer
1102 	 * works after rebooting from Windows on a multi-boot machine
1103 	 */
1104 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_268 ||
1105 	    ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
1106 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372 ||
1107 	    ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1108 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EE ||
1109 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EF) {
1110 
1111 		pm_cntl2.cntl_val = nge_reg_get32(ngep, NGE_PM_CNTL2);
1112 		/* bring phy out of coma mode */
1113 		pm_cntl2.cntl_bits.phy_coma_set = NGE_CLEAR;
1114 		/* disable auto reset coma bits */
1115 		pm_cntl2.cntl_bits.resv4 = NGE_CLEAR;
1116 		/* restore power to gated clocks */
1117 		pm_cntl2.cntl_bits.resv8_11 = NGE_CLEAR;
1118 		nge_reg_put32(ngep, NGE_PM_CNTL2, pm_cntl2.cntl_val);
1119 	}
1120 
1121 	/*
1122 	 * Reset the external phy
1123 	 */
1124 	if (!nge_phy_reset(ngep))
1125 		return (DDI_FAILURE);
1126 	ngep->nge_chip_state = NGE_CHIP_RESET;
1127 	return (DDI_SUCCESS);
1128 }
1129 
1130 int
1131 nge_chip_start(nge_t *ngep)
1132 {
1133 	int err;
1134 	nge_itc itc;
1135 	nge_tx_cntl tx_cntl;
1136 	nge_rx_cntrl0 rx_cntl0;
1137 	nge_rx_cntl1 rx_cntl1;
1138 	nge_tx_en tx_en;
1139 	nge_rx_en rx_en;
1140 	nge_mii_cs mii_cs;
1141 	nge_swtr_cntl swtr_cntl;
1142 	nge_rx_fifo_wm rx_fifo;
1143 	nge_intr_mask intr_mask;
1144 	nge_mintr_mask mintr_mask;
1145 	nge_dev_spec_param_t	*dev_param_p;
1146 
1147 	NGE_TRACE(("nge_chip_start($%p)", (void *)ngep));
1148 
1149 	/*
1150 	 * Setup buffer management
1151 	 */
1152 	err = nge_buff_setup(ngep);
1153 	if (err == DDI_FAILURE)
1154 		return (err);
1155 
1156 	dev_param_p = &ngep->dev_spec_param;
1157 
1158 	/*
1159 	 * Enable polling attribute
1160 	 */
1161 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
1162 	mii_cs.cs_bits.ap_paddr = ngep->phy_xmii_addr;
1163 	mii_cs.cs_bits.ap_en = NGE_SET;
1164 	mii_cs.cs_bits.ap_intv = MII_POLL_INTV;
1165 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
1166 
1167 	/*
1168 	 * Setup link
1169 	 */
1170 	(*ngep->physops->phys_update)(ngep);
1171 
1172 	/*
1173 	 * Configure the tx's parameters
1174 	 */
1175 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1176 	if (dev_param_p->tx_pause_frame)
1177 		tx_cntl.cntl_bits.paen = NGE_SET;
1178 	else
1179 		tx_cntl.cntl_bits.paen = NGE_CLEAR;
1180 	tx_cntl.cntl_bits.retry_en = NGE_SET;
1181 	tx_cntl.cntl_bits.pad_en = NGE_SET;
1182 	tx_cntl.cntl_bits.fappend_en = NGE_SET;
1183 	tx_cntl.cntl_bits.two_def_en = NGE_SET;
1184 	tx_cntl.cntl_bits.max_retry = 15;
1185 	tx_cntl.cntl_bits.burst_en = NGE_CLEAR;
1186 	tx_cntl.cntl_bits.uflo_err_mask = NGE_CLEAR;
1187 	tx_cntl.cntl_bits.tlcol_mask = NGE_CLEAR;
1188 	tx_cntl.cntl_bits.lcar_mask = NGE_CLEAR;
1189 	tx_cntl.cntl_bits.def_mask = NGE_CLEAR;
1190 	tx_cntl.cntl_bits.exdef_mask = NGE_SET;
1191 	tx_cntl.cntl_bits.lcar_mask = NGE_SET;
1192 	tx_cntl.cntl_bits.tlcol_mask = NGE_SET;
1193 	tx_cntl.cntl_bits.uflo_err_mask = NGE_SET;
1194 	tx_cntl.cntl_bits.jam_seq_en = NGE_CLEAR;
1195 	nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1196 
1197 
1198 	/*
1199 	 * Configure the parameters of Rx's state machine
1200 	 * Enabe the parameters:
1201 	 * 1). Pad Strip
1202 	 * 2). FCS Relay
1203 	 * 3). Pause
1204 	 * 4). Address filter
1205 	 * 5). Runt Packet receive
1206 	 * 6). Broadcast
1207 	 * 7). Receive Deferral
1208 	 *
1209 	 * Disable the following parameters for decreasing
1210 	 * the number of interrupts:
1211 	 * 1). Runt Inerrupt.
1212 	 * 2). Rx's Late Collision interrupt.
1213 	 * 3). Rx's Max length Error Interrupt.
1214 	 * 4). Rx's Length Field error Interrupt.
1215 	 * 5). Rx's FCS error interrupt.
1216 	 * 6). Rx's overflow error interrupt.
1217 	 * 7). Rx's Frame alignment error interrupt.
1218 	 */
1219 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1220 	rx_cntl0.cntl_bits.padsen = NGE_CLEAR;
1221 	rx_cntl0.cntl_bits.fcsren = NGE_CLEAR;
1222 	if (dev_param_p->rx_pause_frame)
1223 		rx_cntl0.cntl_bits.paen = NGE_SET;
1224 	else
1225 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1226 	rx_cntl0.cntl_bits.lben = NGE_CLEAR;
1227 	rx_cntl0.cntl_bits.afen = NGE_SET;
1228 	rx_cntl0.cntl_bits.runten = NGE_CLEAR;
1229 	rx_cntl0.cntl_bits.brdis = NGE_CLEAR;
1230 	rx_cntl0.cntl_bits.rdfen = NGE_CLEAR;
1231 	rx_cntl0.cntl_bits.runtm = NGE_CLEAR;
1232 	rx_cntl0.cntl_bits.slfb = NGE_CLEAR;
1233 	rx_cntl0.cntl_bits.rlcolm = NGE_CLEAR;
1234 	rx_cntl0.cntl_bits.maxerm = NGE_CLEAR;
1235 	rx_cntl0.cntl_bits.lferm = NGE_CLEAR;
1236 	rx_cntl0.cntl_bits.crcm = NGE_CLEAR;
1237 	rx_cntl0.cntl_bits.ofolm = NGE_CLEAR;
1238 	rx_cntl0.cntl_bits.framerm = NGE_CLEAR;
1239 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1240 
1241 	/*
1242 	 * Configure the watermark for the rx's statemachine
1243 	 */
1244 	rx_fifo.wm_val = nge_reg_get32(ngep, NGE_RX_FIFO_WM);
1245 	rx_fifo.wm_bits.data_hwm = ngep->rx_datahwm;
1246 	rx_fifo.wm_bits.prd_lwm = ngep->rx_prdlwm;
1247 	rx_fifo.wm_bits.prd_hwm = ngep->rx_prdhwm;
1248 	nge_reg_put32(ngep, NGE_RX_FIFO_WM, rx_fifo.wm_val);
1249 
1250 	/*
1251 	 * Configure the deffer time slot for rx's state machine
1252 	 */
1253 	nge_reg_put8(ngep, NGE_RX_DEf, ngep->rx_def);
1254 
1255 	/*
1256 	 * Configure the length of rx's packet
1257 	 */
1258 	rx_cntl1.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL1);
1259 	rx_cntl1.cntl_bits.length = ngep->max_sdu;
1260 	nge_reg_put32(ngep, NGE_RX_CNTL1, rx_cntl1.cntl_val);
1261 	/*
1262 	 * Enable Tx's state machine
1263 	 */
1264 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
1265 	tx_en.bits.tx_en = NGE_SET;
1266 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
1267 
1268 	/*
1269 	 * Enable Rx's state machine
1270 	 */
1271 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
1272 	rx_en.bits.rx_en = NGE_SET;
1273 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
1274 
1275 	itc.itc_val = nge_reg_get32(ngep, NGE_SWTR_ITC);
1276 	itc.itc_bits.sw_intv = ngep->sw_intr_intv;
1277 	nge_reg_put32(ngep, NGE_SWTR_ITC, itc.itc_val);
1278 
1279 	swtr_cntl.ctrl_val = nge_reg_get8(ngep, NGE_SWTR_CNTL);
1280 	swtr_cntl.cntl_bits.sten = NGE_SET;
1281 	swtr_cntl.cntl_bits.stren = NGE_SET;
1282 	nge_reg_put32(ngep, NGE_SWTR_CNTL, swtr_cntl.ctrl_val);
1283 
1284 	/*
1285 	 * Disable all mii read/write operation Interrupt
1286 	 */
1287 	mintr_mask.mask_val = nge_reg_get8(ngep, NGE_MINTR_MASK);
1288 	mintr_mask.mask_bits.mrei = NGE_CLEAR;
1289 	mintr_mask.mask_bits.mcc2 = NGE_CLEAR;
1290 	mintr_mask.mask_bits.mcc1 = NGE_CLEAR;
1291 	mintr_mask.mask_bits.mapi = NGE_SET;
1292 	mintr_mask.mask_bits.mpdi = NGE_SET;
1293 	nge_reg_put8(ngep, NGE_MINTR_MASK, mintr_mask.mask_val);
1294 
1295 	/*
1296 	 * Enable all interrupt event
1297 	 */
1298 	intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1299 	intr_mask.mask_bits.reint = NGE_SET;
1300 	intr_mask.mask_bits.rcint = NGE_SET;
1301 	intr_mask.mask_bits.miss = NGE_SET;
1302 	intr_mask.mask_bits.teint = NGE_CLEAR;
1303 	intr_mask.mask_bits.tcint = NGE_SET;
1304 	intr_mask.mask_bits.stint = NGE_CLEAR;
1305 	intr_mask.mask_bits.mint = NGE_CLEAR;
1306 	intr_mask.mask_bits.rfint = NGE_CLEAR;
1307 	intr_mask.mask_bits.tfint = NGE_CLEAR;
1308 	intr_mask.mask_bits.feint = NGE_SET;
1309 	intr_mask.mask_bits.resv10 = NGE_CLEAR;
1310 	intr_mask.mask_bits.resv11 = NGE_CLEAR;
1311 	intr_mask.mask_bits.resv12 = NGE_CLEAR;
1312 	intr_mask.mask_bits.resv13 = NGE_CLEAR;
1313 	intr_mask.mask_bits.phyint = NGE_CLEAR;
1314 	ngep->intr_masks = intr_mask.mask_val;
1315 	nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1316 	ngep->nge_chip_state = NGE_CHIP_RUNNING;
1317 	return (DDI_SUCCESS);
1318 }
1319 
1320 /*
1321  * nge_chip_sync() -- program the chip with the unicast MAC address,
1322  * the multicast hash table, the required level of promiscuity.
1323  */
1324 void
1325 nge_chip_sync(nge_t *ngep)
1326 {
1327 	uint8_t i;
1328 	uint64_t macaddr;
1329 	uint64_t mul_addr;
1330 	uint64_t mul_mask;
1331 	nge_rx_cntrl0 rx_cntl;
1332 	nge_uni_addr1 uni_adr1;
1333 
1334 	NGE_TRACE(("nge_chip_sync($%p)", (void *)ngep));
1335 
1336 	macaddr = 0x0ull;
1337 	mul_addr = 0x0ull;
1338 	mul_mask = 0x0ull;
1339 	rx_cntl.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1340 
1341 	if (ngep->promisc) {
1342 		rx_cntl.cntl_bits.afen = NGE_CLEAR;
1343 		rx_cntl.cntl_bits.brdis = NGE_SET;
1344 	} else {
1345 		rx_cntl.cntl_bits.afen = NGE_SET;
1346 		rx_cntl.cntl_bits.brdis = NGE_CLEAR;
1347 	}
1348 
1349 	/*
1350 	 * Transform the MAC address from host to chip format, the unicast
1351 	 * MAC address(es) ...
1352 	 */
1353 	for (i = ETHERADDRL, macaddr = 0ull; i != 0; --i) {
1354 		macaddr |= ngep->cur_uni_addr.addr[i-1];
1355 		macaddr <<= (i > 1) ? 8 : 0;
1356 	}
1357 
1358 	nge_reg_put32(ngep, NGE_UNI_ADDR0, (uint32_t)macaddr);
1359 	macaddr = macaddr >>32;
1360 	uni_adr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1361 	uni_adr1.addr_bits.addr = (uint16_t)macaddr;
1362 	uni_adr1.addr_bits.resv16_31 = (uint16_t)0;
1363 	nge_reg_put32(ngep, NGE_UNI_ADDR1, uni_adr1.addr_val);
1364 
1365 	/*
1366 	 * Reprogram the  multicast address table ...
1367 	 */
1368 	for (i = ETHERADDRL, mul_addr = 0ull; i != 0; --i) {
1369 		mul_addr |= ngep->cur_mul_addr.addr[i-1];
1370 		mul_addr <<= (i > 1) ? 8 : 0;
1371 		mul_mask |= ngep->cur_mul_mask.addr[i-1];
1372 		mul_mask <<= (i > 1) ? 8 : 0;
1373 	}
1374 	nge_reg_put32(ngep, NGE_MUL_ADDR0, (uint32_t)mul_addr);
1375 	mul_addr >>= 32;
1376 	nge_reg_put32(ngep, NGE_MUL_ADDR1, mul_addr);
1377 	nge_reg_put32(ngep, NGE_MUL_MASK, (uint32_t)mul_mask);
1378 	mul_mask >>= 32;
1379 	nge_reg_put32(ngep, NGE_MUL_MASK1, mul_mask);
1380 	/*
1381 	 * Set or clear the PROMISCUOUS mode bit
1382 	 */
1383 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl.cntl_val);
1384 	/*
1385 	 * For internal PHY loopback, the link will
1386 	 * not be up, so it need to sync mac modes directly.
1387 	 */
1388 	if (ngep->param_loop_mode == NGE_LOOP_INTERNAL_PHY)
1389 		nge_sync_mac_modes(ngep);
1390 }
1391 
1392 static void
1393 nge_chip_err(nge_t *ngep)
1394 {
1395 	nge_reg010 reg010_ins;
1396 	nge_sw_statistics_t *psw_stat;
1397 	nge_intr_mask intr_mask;
1398 
1399 	NGE_TRACE(("nge_chip_err($%p)", (void *)ngep));
1400 
1401 	psw_stat = (nge_sw_statistics_t *)&ngep->statistics.sw_statistics;
1402 	reg010_ins.reg010_val = nge_reg_get32(ngep, NGE_REG010);
1403 	if (reg010_ins.reg010_bits.resv0)
1404 		psw_stat->fe_err.tso_err_mss ++;
1405 
1406 	if (reg010_ins.reg010_bits.resv1)
1407 		psw_stat->fe_err.tso_dis ++;
1408 
1409 	if (reg010_ins.reg010_bits.resv2)
1410 		psw_stat->fe_err.tso_err_nosum ++;
1411 
1412 	if (reg010_ins.reg010_bits.resv3)
1413 		psw_stat->fe_err.tso_err_hov ++;
1414 
1415 	if (reg010_ins.reg010_bits.resv4)
1416 		psw_stat->fe_err.tso_err_huf ++;
1417 
1418 	if (reg010_ins.reg010_bits.resv5)
1419 		psw_stat->fe_err.tso_err_l2 ++;
1420 
1421 	if (reg010_ins.reg010_bits.resv6)
1422 		psw_stat->fe_err.tso_err_ip ++;
1423 
1424 	if (reg010_ins.reg010_bits.resv7)
1425 		psw_stat->fe_err.tso_err_l4 ++;
1426 
1427 	if (reg010_ins.reg010_bits.resv8)
1428 		psw_stat->fe_err.tso_err_tcp ++;
1429 
1430 	if (reg010_ins.reg010_bits.resv9)
1431 		psw_stat->fe_err.hsum_err_ip ++;
1432 
1433 	if (reg010_ins.reg010_bits.resv10)
1434 		psw_stat->fe_err.hsum_err_l4 ++;
1435 
1436 	if (reg010_ins.reg010_val != 0) {
1437 
1438 		/*
1439 		 * Fatal error is triggered by malformed driver commands.
1440 		 * Disable unless debugging.
1441 		 */
1442 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1443 		intr_mask.mask_bits.feint = NGE_CLEAR;
1444 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1445 		ngep->intr_masks = intr_mask.mask_val;
1446 
1447 	}
1448 }
1449 
1450 static void
1451 nge_sync_mac_modes(nge_t *ngep)
1452 {
1453 	nge_tx_def tx_def;
1454 	nge_tx_fifo_wm tx_fifo;
1455 	nge_bkoff_cntl bk_cntl;
1456 	nge_mac2phy m2p;
1457 	nge_rx_cntrl0 rx_cntl0;
1458 	nge_dev_spec_param_t	*dev_param_p;
1459 
1460 	dev_param_p = &ngep->dev_spec_param;
1461 
1462 	tx_def.def_val = nge_reg_get32(ngep, NGE_TX_DEF);
1463 	m2p.m2p_val = nge_reg_get32(ngep, NGE_MAC2PHY);
1464 	tx_fifo.wm_val = nge_reg_get32(ngep, NGE_TX_FIFO_WM);
1465 	bk_cntl.cntl_val = nge_reg_get32(ngep, NGE_BKOFF_CNTL);
1466 	bk_cntl.bkoff_bits.rseed = BKOFF_RSEED;
1467 	switch (ngep->param_link_speed) {
1468 	case 10:
1469 		m2p.m2p_bits.speed = low_speed;
1470 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1471 		if (ngep->phy_mode == RGMII_IN) {
1472 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1473 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1474 		} else {
1475 			tx_def.def_bits.if_def = TX_TIFG_MII;
1476 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1477 		}
1478 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1479 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1480 		break;
1481 
1482 	case 100:
1483 		m2p.m2p_bits.speed = fast_speed;
1484 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1485 		if (ngep->phy_mode == RGMII_IN) {
1486 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1487 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1488 		} else {
1489 			tx_def.def_bits.if_def = TX_TIFG_MII;
1490 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1491 		}
1492 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1493 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1494 		break;
1495 
1496 	case 1000:
1497 		m2p.m2p_bits.speed = giga_speed;
1498 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1499 		if (ngep->param_link_duplex == LINK_DUPLEX_FULL) {
1500 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1501 			tx_def.def_bits.if_def = TX_IFG_RGMII_1000_FD;
1502 		} else {
1503 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1504 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1505 		}
1506 
1507 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_GMII;
1508 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_GMII;
1509 		break;
1510 	}
1511 
1512 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1513 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
1514 		m2p.m2p_bits.phyintr = NGE_CLEAR;
1515 		m2p.m2p_bits.phyintrlvl = NGE_CLEAR;
1516 	}
1517 	if (ngep->param_link_duplex == LINK_DUPLEX_HALF) {
1518 		m2p.m2p_bits.hdup_en = NGE_SET;
1519 	}
1520 	else
1521 		m2p.m2p_bits.hdup_en = NGE_CLEAR;
1522 	nge_reg_put32(ngep, NGE_MAC2PHY, m2p.m2p_val);
1523 	nge_reg_put32(ngep, NGE_TX_DEF, tx_def.def_val);
1524 
1525 	tx_fifo.wm_bits.data_lwm = TX_FIFO_DATA_LWM;
1526 	tx_fifo.wm_bits.prd_lwm = TX_FIFO_PRD_LWM;
1527 	tx_fifo.wm_bits.uprd_hwm = TX_FIFO_PRD_HWM;
1528 	tx_fifo.wm_bits.fb_wm = TX_FIFO_TBFW;
1529 	nge_reg_put32(ngep, NGE_TX_FIFO_WM, tx_fifo.wm_val);
1530 
1531 	nge_reg_put32(ngep, NGE_BKOFF_CNTL, bk_cntl.cntl_val);
1532 
1533 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1534 	if (ngep->param_link_rx_pause && dev_param_p->rx_pause_frame)
1535 		rx_cntl0.cntl_bits.paen = NGE_SET;
1536 	else
1537 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1538 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1539 }
1540 
1541 /*
1542  * Handler for hardware link state change.
1543  *
1544  * When this routine is called, the hardware link state has changed
1545  * and the new state is reflected in the param_* variables.  Here
1546  * we must update the softstate, reprogram the MAC to match, and
1547  * record the change in the log and/or on the console.
1548  */
1549 static void
1550 nge_factotum_link_handler(nge_t *ngep)
1551 {
1552 	/*
1553 	 * Update the s/w link_state
1554 	 */
1555 	if (ngep->param_link_up)
1556 		ngep->link_state = LINK_STATE_UP;
1557 	else
1558 		ngep->link_state = LINK_STATE_DOWN;
1559 
1560 	/*
1561 	 * Reprogram the MAC modes to match
1562 	 */
1563 	nge_sync_mac_modes(ngep);
1564 }
1565 
1566 static boolean_t
1567 nge_factotum_link_check(nge_t *ngep)
1568 {
1569 	boolean_t lchg;
1570 	boolean_t check;
1571 
1572 	ASSERT(mutex_owned(ngep->genlock));
1573 
1574 	(*ngep->physops->phys_check)(ngep);
1575 	switch (ngep->link_state) {
1576 	case LINK_STATE_UP:
1577 		lchg = (ngep->param_link_up == B_FALSE);
1578 		check = (ngep->param_link_up == B_FALSE);
1579 		break;
1580 
1581 	case LINK_STATE_DOWN:
1582 		lchg = (ngep->param_link_up == B_TRUE);
1583 		check = (ngep->param_link_up == B_TRUE);
1584 		break;
1585 
1586 	default:
1587 		check = B_TRUE;
1588 		break;
1589 	}
1590 
1591 	/*
1592 	 * If <check> is false, we're sure the link hasn't changed.
1593 	 * If true, however, it's not yet definitive; we have to call
1594 	 * nge_phys_check() to determine whether the link has settled
1595 	 * into a new state yet ... and if it has, then call the link
1596 	 * state change handler.But when the chip is 5700 in Dell 6650
1597 	 * ,even if check is false, the link may have changed.So we
1598 	 * have to call nge_phys_check() to determine the link state.
1599 	 */
1600 	if (check)
1601 		nge_factotum_link_handler(ngep);
1602 
1603 	return (lchg);
1604 }
1605 
1606 /*
1607  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1608  */
1609 static boolean_t nge_factotum_stall_check(nge_t *ngep);
1610 
1611 static boolean_t
1612 nge_factotum_stall_check(nge_t *ngep)
1613 {
1614 	uint32_t dogval;
1615 	/*
1616 	 * Specific check for Tx stall ...
1617 	 *
1618 	 * The 'watchdog' counter is incremented whenever a packet
1619 	 * is queued, reset to 1 when some (but not all) buffers
1620 	 * are reclaimed, reset to 0 (disabled) when all buffers
1621 	 * are reclaimed, and shifted left here.  If it exceeds the
1622 	 * threshold value, the chip is assumed to have stalled and
1623 	 * is put into the ERROR state.  The factotum will then reset
1624 	 * it on the next pass.
1625 	 *
1626 	 * All of which should ensure that we don't get into a state
1627 	 * where packets are left pending indefinitely!
1628 	 */
1629 	dogval = nge_atomic_shl32(&ngep->watchdog, 1);
1630 	if (dogval < nge_watchdog_count) {
1631 		ngep->stall_cknum = 0;
1632 	} else {
1633 		ngep->stall_cknum++;
1634 	}
1635 	if (ngep->stall_cknum < 16) {
1636 		return (B_FALSE);
1637 	} else {
1638 		ngep->stall_cknum = 0;
1639 		ngep->statistics.sw_statistics.tx_stall++;
1640 		return (B_TRUE);
1641 	}
1642 }
1643 
1644 
1645 
1646 /*
1647  * The factotum is woken up when there's something to do that we'd rather
1648  * not do from inside a hardware interrupt handler or high-level cyclic.
1649  * Its two main tasks are:
1650  *	reset & restart the chip after an error
1651  *	check the link status whenever necessary
1652  */
1653 /* ARGSUSED */
1654 uint_t
1655 nge_chip_factotum(caddr_t args1, caddr_t args2)
1656 {
1657 	uint_t result;
1658 	nge_t *ngep;
1659 	boolean_t err;
1660 	boolean_t linkchg;
1661 
1662 	ngep = (nge_t *)args1;
1663 
1664 	NGE_TRACE(("nge_chip_factotum($%p)", (void *)ngep));
1665 
1666 	mutex_enter(ngep->softlock);
1667 	if (ngep->factotum_flag == 0) {
1668 		mutex_exit(ngep->softlock);
1669 		return (DDI_INTR_UNCLAIMED);
1670 	}
1671 	ngep->factotum_flag = 0;
1672 	mutex_exit(ngep->softlock);
1673 	err = B_FALSE;
1674 	linkchg = B_FALSE;
1675 	result = DDI_INTR_CLAIMED;
1676 
1677 	mutex_enter(ngep->genlock);
1678 	switch (ngep->nge_chip_state) {
1679 	default:
1680 		break;
1681 
1682 	case NGE_CHIP_RUNNING:
1683 		linkchg = nge_factotum_link_check(ngep);
1684 		err = nge_factotum_stall_check(ngep);
1685 		break;
1686 
1687 	case NGE_CHIP_FAULT:
1688 		(void) nge_restart(ngep);
1689 		NGE_REPORT((ngep, "automatic recovery activated"));
1690 		break;
1691 	}
1692 
1693 	if (err)
1694 		(void) nge_chip_stop(ngep, B_TRUE);
1695 	mutex_exit(ngep->genlock);
1696 
1697 	/*
1698 	 * If the link state changed, tell the world about it (if
1699 	 * this version of MAC supports link state notification).
1700 	 * Note: can't do this while still holding the mutex.
1701 	 */
1702 	if (linkchg)
1703 		mac_link_update(ngep->mh, ngep->link_state);
1704 
1705 	return (result);
1706 
1707 }
1708 
1709 static void
1710 nge_intr_handle(nge_t *ngep, nge_intr_src *pintr_src)
1711 {
1712 	boolean_t brx;
1713 	boolean_t btx;
1714 	nge_mintr_src mintr_src;
1715 
1716 	brx = B_FALSE;
1717 	btx = B_FALSE;
1718 	ngep->statistics.sw_statistics.intr_count++;
1719 	ngep->statistics.sw_statistics.intr_lval = pintr_src->intr_val;
1720 	brx = (pintr_src->int_bits.reint | pintr_src->int_bits.miss
1721 	    | pintr_src->int_bits.rcint | pintr_src->int_bits.stint)
1722 	    != 0 ? B_TRUE : B_FALSE;
1723 	if (pintr_src->int_bits.reint)
1724 		ngep->statistics.sw_statistics.rx_err++;
1725 	if (pintr_src->int_bits.miss)
1726 		ngep->statistics.sw_statistics.rx_nobuffer++;
1727 
1728 	btx = (pintr_src->int_bits.teint | pintr_src->int_bits.tcint)
1729 	    != 0 ? B_TRUE : B_FALSE;
1730 	if (pintr_src->int_bits.stint && ngep->poll)
1731 		ngep->stint_count ++;
1732 	if (ngep->poll && (ngep->stint_count % ngep->param_tx_n_intr == 0))
1733 		btx = B_TRUE;
1734 	if (btx)
1735 		nge_tx_recycle(ngep, B_TRUE);
1736 	if (brx)
1737 		nge_receive(ngep);
1738 	if (pintr_src->int_bits.teint)
1739 		ngep->statistics.sw_statistics.tx_stop_err++;
1740 	if (ngep->intr_moderation && brx) {
1741 		if (ngep->poll) {
1742 			if (ngep->recv_count < ngep->param_rx_intr_hwater) {
1743 				ngep->quiet_time++;
1744 				if (ngep->quiet_time ==
1745 				    ngep->param_poll_quiet_time) {
1746 					ngep->poll = B_FALSE;
1747 					ngep->quiet_time = 0;
1748 					ngep->stint_count = 0;
1749 					nge_tx_recycle(ngep, B_TRUE);
1750 				}
1751 			} else
1752 				ngep->quiet_time = 0;
1753 		} else {
1754 			if (ngep->recv_count > ngep->param_rx_intr_lwater) {
1755 				ngep->busy_time++;
1756 				if (ngep->busy_time ==
1757 				    ngep->param_poll_busy_time) {
1758 					ngep->poll = B_TRUE;
1759 					ngep->busy_time = 0;
1760 				}
1761 			} else
1762 				ngep->busy_time = 0;
1763 		}
1764 	}
1765 	ngep->recv_count = 0;
1766 	if (pintr_src->int_bits.feint)
1767 		nge_chip_err(ngep);
1768 	/* link interrupt, check the link state */
1769 	if (pintr_src->int_bits.mint) {
1770 		mintr_src.src_val = nge_reg_get32(ngep, NGE_MINTR_SRC);
1771 		nge_reg_put32(ngep, NGE_MINTR_SRC, mintr_src.src_val);
1772 		nge_wake_factotum(ngep);
1773 	}
1774 }
1775 
1776 /*
1777  *	nge_chip_intr() -- handle chip interrupts
1778  */
1779 /* ARGSUSED */
1780 uint_t
1781 nge_chip_intr(caddr_t arg1, caddr_t arg2)
1782 {
1783 	nge_t *ngep = (nge_t *)arg1;
1784 	nge_intr_src intr_src;
1785 	nge_intr_mask intr_mask;
1786 
1787 	mutex_enter(ngep->genlock);
1788 
1789 	if (ngep->suspended) {
1790 		mutex_exit(ngep->genlock);
1791 		return (DDI_INTR_UNCLAIMED);
1792 	}
1793 
1794 	/*
1795 	 * Check whether chip's says it's asserting #INTA;
1796 	 * if not, don't process or claim the interrupt.
1797 	 */
1798 	intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
1799 	if (intr_src.intr_val == 0) {
1800 		mutex_exit(ngep->genlock);
1801 		return (DDI_INTR_UNCLAIMED);
1802 	}
1803 	/*
1804 	 * Ack the interrupt
1805 	 */
1806 	nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
1807 
1808 	if (ngep->nge_chip_state != NGE_CHIP_RUNNING) {
1809 		mutex_exit(ngep->genlock);
1810 		return (DDI_INTR_CLAIMED);
1811 	}
1812 	nge_intr_handle(ngep, &intr_src);
1813 	if (ngep->poll && !ngep->ch_intr_mode) {
1814 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1815 		intr_mask.mask_bits.stint = NGE_SET;
1816 		intr_mask.mask_bits.rcint = NGE_CLEAR;
1817 		intr_mask.mask_bits.reint = NGE_CLEAR;
1818 		intr_mask.mask_bits.tcint = NGE_CLEAR;
1819 		intr_mask.mask_bits.teint = NGE_CLEAR;
1820 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1821 		ngep->ch_intr_mode = B_TRUE;
1822 	} else if ((ngep->ch_intr_mode) && (!ngep->poll)) {
1823 		nge_reg_put32(ngep, NGE_INTR_MASK, ngep->intr_masks);
1824 		ngep->ch_intr_mode = B_FALSE;
1825 	}
1826 	mutex_exit(ngep->genlock);
1827 	return (DDI_INTR_CLAIMED);
1828 }
1829 
1830 static enum ioc_reply
1831 nge_pp_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1832 {
1833 	int err;
1834 	uint64_t sizemask;
1835 	uint64_t mem_va;
1836 	uint64_t maxoff;
1837 	boolean_t peek;
1838 	nge_peekpoke_t *ppd;
1839 	int (*ppfn)(nge_t *ngep, nge_peekpoke_t *ppd);
1840 
1841 	switch (cmd) {
1842 	default:
1843 		return (IOC_INVAL);
1844 
1845 	case NGE_PEEK:
1846 		peek = B_TRUE;
1847 		break;
1848 
1849 	case NGE_POKE:
1850 		peek = B_FALSE;
1851 		break;
1852 	}
1853 
1854 	/*
1855 	 * Validate format of ioctl
1856 	 */
1857 	if (iocp->ioc_count != sizeof (nge_peekpoke_t))
1858 		return (IOC_INVAL);
1859 	if (mp->b_cont == NULL)
1860 		return (IOC_INVAL);
1861 	ppd = (nge_peekpoke_t *)mp->b_cont->b_rptr;
1862 
1863 	/*
1864 	 * Validate request parameters
1865 	 */
1866 	switch (ppd->pp_acc_space) {
1867 	default:
1868 		return (IOC_INVAL);
1869 
1870 	case NGE_PP_SPACE_CFG:
1871 		/*
1872 		 * Config space
1873 		 */
1874 		sizemask = 8|4|2|1;
1875 		mem_va = 0;
1876 		maxoff = PCI_CONF_HDR_SIZE;
1877 		ppfn = peek ? nge_chip_peek_cfg : nge_chip_poke_cfg;
1878 		break;
1879 
1880 	case NGE_PP_SPACE_REG:
1881 		/*
1882 		 * Memory-mapped I/O space
1883 		 */
1884 		sizemask = 8|4|2|1;
1885 		mem_va = 0;
1886 		maxoff = NGE_REG_SIZE;
1887 		ppfn = peek ? nge_chip_peek_reg : nge_chip_poke_reg;
1888 		break;
1889 
1890 	case NGE_PP_SPACE_MII:
1891 		sizemask = 4|2|1;
1892 		mem_va = 0;
1893 		maxoff = NGE_MII_SIZE;
1894 		ppfn = peek ? nge_chip_peek_mii : nge_chip_poke_mii;
1895 		break;
1896 
1897 	case NGE_PP_SPACE_SEEPROM:
1898 		sizemask = 4|2|1;
1899 		mem_va = 0;
1900 		maxoff = NGE_SEEROM_SIZE;
1901 		ppfn = peek ? nge_chip_peek_seeprom : nge_chip_poke_seeprom;
1902 		break;
1903 	}
1904 
1905 	switch (ppd->pp_acc_size) {
1906 	default:
1907 		return (IOC_INVAL);
1908 
1909 	case 8:
1910 	case 4:
1911 	case 2:
1912 	case 1:
1913 		if ((ppd->pp_acc_size & sizemask) == 0)
1914 			return (IOC_INVAL);
1915 		break;
1916 	}
1917 
1918 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1919 		return (IOC_INVAL);
1920 
1921 	if (ppd->pp_acc_offset >= maxoff)
1922 		return (IOC_INVAL);
1923 
1924 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1925 		return (IOC_INVAL);
1926 
1927 	/*
1928 	 * All OK - go do it!
1929 	 */
1930 	ppd->pp_acc_offset += mem_va;
1931 	if (ppfn)
1932 		err = (*ppfn)(ngep, ppd);
1933 	if (err != DDI_SUCCESS)
1934 		return (IOC_INVAL);
1935 	return (peek ? IOC_REPLY : IOC_ACK);
1936 }
1937 
1938 static enum ioc_reply nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp,
1939 					struct iocblk *iocp);
1940 #pragma	no_inline(nge_diag_ioctl)
1941 
1942 static enum ioc_reply
1943 nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1944 {
1945 	ASSERT(mutex_owned(ngep->genlock));
1946 
1947 	switch (cmd) {
1948 	default:
1949 		nge_error(ngep, "nge_diag_ioctl: invalid cmd 0x%x", cmd);
1950 		return (IOC_INVAL);
1951 
1952 	case NGE_DIAG:
1953 		return (IOC_ACK);
1954 
1955 	case NGE_PEEK:
1956 	case NGE_POKE:
1957 		return (nge_pp_ioctl(ngep, cmd, mp, iocp));
1958 
1959 	case NGE_PHY_RESET:
1960 		return (IOC_RESTART_ACK);
1961 
1962 	case NGE_SOFT_RESET:
1963 	case NGE_HARD_RESET:
1964 		return (IOC_ACK);
1965 	}
1966 
1967 	/* NOTREACHED */
1968 }
1969 
1970 enum ioc_reply
1971 nge_chip_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
1972 {
1973 	int cmd;
1974 
1975 	ASSERT(mutex_owned(ngep->genlock));
1976 
1977 	cmd = iocp->ioc_cmd;
1978 
1979 	switch (cmd) {
1980 	default:
1981 		return (IOC_INVAL);
1982 
1983 	case NGE_DIAG:
1984 	case NGE_PEEK:
1985 	case NGE_POKE:
1986 	case NGE_PHY_RESET:
1987 	case NGE_SOFT_RESET:
1988 	case NGE_HARD_RESET:
1989 #if	NGE_DEBUGGING
1990 		return (nge_diag_ioctl(ngep, cmd, mp, iocp));
1991 #else
1992 		return (IOC_INVAL);
1993 #endif
1994 
1995 	case NGE_MII_READ:
1996 	case NGE_MII_WRITE:
1997 		return (IOC_INVAL);
1998 
1999 #if	NGE_SEE_IO32
2000 	case NGE_SEE_READ:
2001 	case NGE_SEE_WRITE:
2002 		return (IOC_INVAL);
2003 #endif
2004 
2005 #if	NGE_FLASH_IO32
2006 	case NGE_FLASH_READ:
2007 	case NGE_FLASH_WRITE:
2008 		return (IOC_INVAL);
2009 #endif
2010 	}
2011 }
2012