xref: /illumos-gate/usr/src/uts/common/io/net80211/net80211_crypto_wep.c (revision f3af49816e370d667d566ab703e94b81305a536e)
1 /*
2  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2001 Atsushi Onoe
8  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * Alternatively, this software may be distributed under the terms of the
23  * GNU General Public License ("GPL") version 2 as published by the Free
24  * Software Foundation.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #pragma ident	"%Z%%M%	%I%	%E% SMI"
39 
40 /*
41  * IEEE 802.11 WEP crypto support.
42  */
43 #include <sys/byteorder.h>
44 #include <sys/crypto/common.h>
45 #include <sys/crypto/api.h>
46 #include <sys/crc32.h>
47 #include <sys/random.h>
48 #include "net80211_impl.h"
49 
50 static  void *wep_attach(struct ieee80211com *, struct ieee80211_key *);
51 static  void wep_detach(struct ieee80211_key *);
52 static  int wep_setkey(struct ieee80211_key *);
53 static  int wep_encap(struct ieee80211_key *, mblk_t *, uint8_t keyid);
54 static  int wep_decap(struct ieee80211_key *, mblk_t *, int);
55 static  int wep_enmic(struct ieee80211_key *, mblk_t *, int);
56 static  int wep_demic(struct ieee80211_key *, mblk_t *, int);
57 
58 const struct ieee80211_cipher wep = {
59 	"WEP",
60 	IEEE80211_CIPHER_WEP,
61 	IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
62 	IEEE80211_WEP_CRCLEN,
63 	0,
64 	wep_attach,
65 	wep_detach,
66 	wep_setkey,
67 	wep_encap,
68 	wep_decap,
69 	wep_enmic,
70 	wep_demic,
71 };
72 
73 int rc4_init(crypto_context_t *, const uint8_t *, int);
74 int rc4_crypt(crypto_context_t, const uint8_t *, uint8_t *, int);
75 int rc4_final(crypto_context_t, uint8_t *, int);
76 
77 static	int wep_encrypt(struct ieee80211_key *, mblk_t *, int);
78 static	int wep_decrypt(struct ieee80211_key *, mblk_t *, int);
79 
80 struct wep_ctx {
81 	ieee80211com_t *wc_ic;		/* for diagnostics */
82 	uint32_t	wc_iv;		/* initial vector for crypto */
83 };
84 
85 /* Table of CRCs of all 8-bit messages */
86 static uint32_t crc_table[] = { CRC32_TABLE };
87 
88 /* ARGSUSED */
89 static void *
90 wep_attach(struct ieee80211com *ic, struct ieee80211_key *k)
91 {
92 	struct wep_ctx *ctx;
93 
94 	ctx = kmem_zalloc(sizeof (struct wep_ctx), KM_NOSLEEP);
95 	if (ctx == NULL)
96 		return (NULL);
97 
98 	ctx->wc_ic = ic;
99 	(void) random_get_pseudo_bytes((unsigned char *)&ctx->wc_iv,
100 	    sizeof (uint32_t));
101 	return (ctx);
102 }
103 
104 static void
105 wep_detach(struct ieee80211_key *k)
106 {
107 	struct wep_ctx *ctx = k->wk_private;
108 
109 	if (ctx != NULL)
110 		kmem_free(ctx, sizeof (struct wep_ctx));
111 }
112 
113 static int
114 wep_setkey(struct ieee80211_key *k)
115 {
116 	/*
117 	 * WEP key length is standardized to 40-bit. Many
118 	 * implementations support 104-bit WEP kwys.
119 	 */
120 	return (k->wk_keylen == 40/NBBY || k->wk_keylen == 104/NBBY);
121 }
122 
123 /*
124  * Add privacy headers appropriate for the specified key.
125  */
126 static int
127 wep_encap(struct ieee80211_key *k, mblk_t *mp, uint8_t keyid)
128 {
129 	struct wep_ctx *ctx = k->wk_private;
130 	struct ieee80211_frame *wh = (struct ieee80211_frame *)mp->b_rptr;
131 	uint32_t iv;
132 	uint8_t *ivp;
133 	int hdrlen;
134 
135 	if (mp == NULL)
136 		return (0);
137 	hdrlen = ieee80211_hdrspace(wh);
138 
139 	ivp = (uint8_t *)wh;
140 	ivp += hdrlen;
141 
142 	/*
143 	 * IV must not duplicate during the lifetime of the key.
144 	 * But no mechanism to renew keys is defined in IEEE 802.11
145 	 * WEP.  And IV may be duplicated between other stations
146 	 * because of the session key itself is shared.
147 	 * So we use pseudo random IV for now, though it is not the
148 	 * right way.
149 	 */
150 	iv = ctx->wc_iv;
151 	/*
152 	 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
153 	 * (B, 255, N) with 3 <= B < 8
154 	 */
155 	if ((iv & 0xff00) == 0xff00) {
156 		int B = (iv & 0xff0000) >> 16;
157 		if (3 <= B && B < 16)
158 			iv = (B+1) << 16;
159 	}
160 	ctx->wc_iv = iv + 1;
161 
162 	ivp[2] = (uint8_t)(iv >> 0);
163 	ivp[1] = (uint8_t)(iv >> 8);
164 	ivp[0] = (uint8_t)(iv >> 16);
165 
166 	/* Key ID and pad */
167 	ivp[IEEE80211_WEP_IVLEN] = keyid;
168 
169 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
170 	    (wep_encrypt(k, mp, hdrlen) == 0))
171 		return (0);
172 
173 	return (1);
174 }
175 
176 /*
177  * Validate and strip privacy headers (and trailer) for a
178  * received frame.  If necessary, decrypt the frame using
179  * the specified key.
180  */
181 static int
182 wep_decap(struct ieee80211_key *k, mblk_t *mp, int hdrlen)
183 {
184 	struct ieee80211_frame *wh, whbuf;
185 
186 	wh = (struct ieee80211_frame *)mp->b_rptr;
187 
188 	/*
189 	 * Check if the device handled the decrypt in hardware.
190 	 * If so we just strip the header; otherwise we need to
191 	 * handle the decrypt in software.
192 	 */
193 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
194 	    (wep_decrypt(k, mp, hdrlen) == 0)) {
195 		ieee80211_err("WEP ICV mismatch on decrypt\n");
196 		return (0);
197 	}
198 
199 	/*
200 	 * Copy up 802.11 header and strip crypto bits.
201 	 */
202 	bcopy(wh, &whbuf, sizeof (whbuf));
203 	mp->b_rptr += wep.ic_header;
204 	bcopy(&whbuf, mp->b_rptr, hdrlen);
205 	mp->b_wptr -= wep.ic_trailer;
206 
207 	return (1);
208 }
209 
210 /*
211  * Add MIC to the frame as needed.
212  */
213 /* ARGSUSED */
214 static int
215 wep_enmic(struct ieee80211_key *k, mblk_t *mp, int force)
216 {
217 	return (1);
218 }
219 
220 /*
221  * Verify and strip MIC from the frame.
222  */
223 /* ARGSUSED */
224 static int
225 wep_demic(struct ieee80211_key *k, mblk_t *mp, int force)
226 {
227 	return (1);
228 }
229 
230 static int
231 wep_encrypt(struct ieee80211_key *key, mblk_t *mp, int hdrlen)
232 {
233 	uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
234 	uint8_t crcbuf[IEEE80211_WEP_CRCLEN];
235 	uint8_t *icv;
236 	uint32_t crc;
237 	crypto_context_t ctx;
238 	int rv;
239 
240 	ASSERT(key->wk_flags & IEEE80211_KEY_SWCRYPT);
241 
242 	/* ctx->wc_ic->isc_stats.is_crypto_wep++; */
243 
244 	(void) memcpy(rc4key, mp->b_rptr + hdrlen, IEEE80211_WEP_IVLEN);
245 	(void) memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key,
246 		key->wk_keylen);
247 
248 	ctx = NULL;
249 	rv = rc4_init(&ctx, (const uint8_t *)rc4key,
250 		IEEE80211_WEP_IVLEN + key->wk_keylen);
251 
252 	if (rv != CRYPTO_SUCCESS)
253 		return (0);
254 
255 	/* calculate CRC over unencrypted data */
256 	CRC32(crc, mp->b_rptr + hdrlen + wep.ic_header,
257 	    mp->b_wptr - mp->b_rptr - (hdrlen + wep.ic_header),
258 	    -1U, crc_table);
259 
260 	/* encrypt data */
261 	(void) rc4_crypt(ctx,
262 		mp->b_rptr + hdrlen + wep.ic_header,
263 		mp->b_rptr + hdrlen + wep.ic_header,
264 		mp->b_wptr - mp->b_rptr - (hdrlen + wep.ic_header));
265 
266 	/* tack on ICV */
267 	*(uint32_t *)crcbuf = LE_32(~crc);
268 	icv = mp->b_wptr;
269 	mp->b_wptr += IEEE80211_WEP_CRCLEN;
270 	(void) rc4_crypt(ctx, crcbuf, icv, IEEE80211_WEP_CRCLEN);
271 
272 	(void) rc4_final(ctx, icv, IEEE80211_WEP_CRCLEN);
273 
274 	return (1);
275 }
276 
277 static int
278 wep_decrypt(struct ieee80211_key *key, mblk_t *mp, int hdrlen)
279 {
280 	uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
281 	uint8_t crcbuf[IEEE80211_WEP_CRCLEN];
282 	uint8_t *icv;
283 	uint32_t crc;
284 	crypto_context_t ctx;
285 	int rv;
286 
287 	ASSERT(key->wk_flags & IEEE80211_KEY_SWCRYPT);
288 
289 	/* ctx->wc_ic->isc_stats.is_crypto_wep++; */
290 
291 	(void) memcpy(rc4key, mp->b_rptr + hdrlen, IEEE80211_WEP_IVLEN);
292 	(void) memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key,
293 		key->wk_keylen);
294 
295 	ctx = NULL;
296 	rv = rc4_init(&ctx, (const uint8_t *)rc4key,
297 		IEEE80211_WEP_IVLEN + key->wk_keylen);
298 
299 	if (rv != CRYPTO_SUCCESS)
300 		return (0);
301 
302 	/* decrypt data */
303 	(void) rc4_crypt(ctx,
304 		mp->b_rptr + hdrlen + wep.ic_header,
305 		mp->b_rptr + hdrlen + wep.ic_header,
306 		mp->b_wptr - mp->b_rptr -
307 		(hdrlen + wep.ic_header + wep.ic_trailer));
308 
309 	/* calculate CRC over unencrypted data */
310 	CRC32(crc, mp->b_rptr + hdrlen + wep.ic_header,
311 	    mp->b_wptr - mp->b_rptr -
312 	    (hdrlen + wep.ic_header + wep.ic_trailer),
313 	    -1U, crc_table);
314 
315 	/* decrypt ICV and compare to CRC */
316 	icv = mp->b_wptr - IEEE80211_WEP_CRCLEN;
317 	(void) rc4_crypt(ctx, icv, crcbuf, IEEE80211_WEP_CRCLEN);
318 
319 	(void) rc4_final(ctx, crcbuf, IEEE80211_WEP_CRCLEN);
320 
321 	return (crc == ~LE_32(*(uint32_t *)crcbuf));
322 }
323 
324 /*
325  * rc_init() -  To init the key, for multiply encryption/decryption
326  * Using the Kernel encryption framework
327  */
328 int
329 rc4_init(crypto_context_t *ctx, const uint8_t *key, int keylen)
330 {
331 	crypto_mechanism_t mech;
332 	crypto_key_t crkey;
333 	int rv;
334 
335 	bzero(&crkey, sizeof (crkey));
336 
337 	crkey.ck_format = CRYPTO_KEY_RAW;
338 	crkey.ck_data   = (char *)key;
339 	/* keys are measured in bits, not bytes, so multiply by 8 */
340 	crkey.ck_length = keylen * 8;
341 
342 	mech.cm_type	  = crypto_mech2id(SUN_CKM_RC4);
343 	mech.cm_param	  = NULL;
344 	mech.cm_param_len = 0;
345 
346 	rv = crypto_encrypt_init(&mech, &crkey, NULL, ctx, NULL);
347 	if (rv != CRYPTO_SUCCESS)
348 		cmn_err(CE_WARN, "rc4_init failed (%x)", rv);
349 
350 	return (rv);
351 }
352 
353 /*
354  * rc4_crypt
355  *
356  * Use the Kernel encryption framework to provide the
357  * crypto operations for the indicated data.
358  */
359 int
360 rc4_crypt(crypto_context_t ctx, const uint8_t *inbuf,
361 	uint8_t *outbuf, int buflen)
362 {
363 	int rv = CRYPTO_FAILED;
364 
365 	crypto_data_t d1, d2;
366 
367 	ASSERT(inbuf  != NULL);
368 	ASSERT(outbuf != NULL);
369 
370 	bzero(&d1, sizeof (d1));
371 	bzero(&d2, sizeof (d2));
372 
373 	d1.cd_format = CRYPTO_DATA_RAW;
374 	d1.cd_offset = 0;
375 	d1.cd_length = buflen;
376 	d1.cd_raw.iov_base = (char *)inbuf;
377 	d1.cd_raw.iov_len  = buflen;
378 
379 	d2.cd_format = CRYPTO_DATA_RAW;
380 	d2.cd_offset = 0;
381 	d2.cd_length = buflen;
382 	d2.cd_raw.iov_base = (char *)outbuf;
383 	d2.cd_raw.iov_len  = buflen;
384 
385 	rv = crypto_encrypt_update(ctx, &d1, &d2, NULL);
386 
387 	if (rv != CRYPTO_SUCCESS)
388 		cmn_err(CE_WARN, "rc4_crypt failed (%x)", rv);
389 	return (rv);
390 }
391 
392 /*
393  * rc4_final
394  *
395  * Use the Kernel encryption framework to provide the
396  * crypto operations for the indicated data.
397  */
398 int
399 rc4_final(crypto_context_t ctx, uint8_t *outbuf, int buflen)
400 {
401 	int rv = CRYPTO_FAILED;
402 
403 	crypto_data_t d2;
404 
405 	ASSERT(outbuf != NULL);
406 
407 	bzero(&d2, sizeof (d2));
408 
409 	d2.cd_format = CRYPTO_DATA_RAW;
410 	d2.cd_offset = 0;
411 	d2.cd_length = buflen;
412 	d2.cd_raw.iov_base = (char *)outbuf;
413 	d2.cd_raw.iov_len = buflen;
414 
415 	rv = crypto_encrypt_final(ctx, &d2, NULL);
416 
417 	if (rv != CRYPTO_SUCCESS)
418 		cmn_err(CE_WARN, "rc4_final failed (%x)", rv);
419 	return (rv);
420 }
421