xref: /illumos-gate/usr/src/uts/common/io/mxfe/mxfe.c (revision 13b136d3061155363c62c9f6568d25b8b27da8f6)
1 /*
2  * Solaris driver for ethernet cards based on the Macronix 98715
3  *
4  * Copyright (c) 2007 by Garrett D'Amore <garrett@damore.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the author nor the names of any co-contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS''
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
33  * Use is subject to license terms.
34  */
35 
36 
37 #include <sys/varargs.h>
38 #include <sys/types.h>
39 #include <sys/modctl.h>
40 #include <sys/conf.h>
41 #include <sys/devops.h>
42 #include <sys/stream.h>
43 #include <sys/strsun.h>
44 #include <sys/cmn_err.h>
45 #include <sys/dlpi.h>
46 #include <sys/ethernet.h>
47 #include <sys/kmem.h>
48 #include <sys/time.h>
49 #include <sys/miiregs.h>
50 #include <sys/strsun.h>
51 #include <sys/mac.h>
52 #include <sys/mac_ether.h>
53 #include <sys/ddi.h>
54 #include <sys/sunddi.h>
55 #include <sys/vlan.h>
56 
57 #include "mxfe.h"
58 #include "mxfeimpl.h"
59 
60 /*
61  * Driver globals.
62  */
63 
64 /* patchable debug flag ... must not be static! */
65 #ifdef	DEBUG
66 unsigned		mxfe_debug = DWARN;
67 #endif
68 
69 /* table of supported devices */
70 static mxfe_card_t mxfe_cards[] = {
71 
72 	/*
73 	 * Lite-On products
74 	 */
75 	{ 0x11ad, 0xc115, 0, 0, "Lite-On LC82C115", MXFE_PNICII },
76 
77 	/*
78 	 * Macronix chips
79 	 */
80 	{ 0x10d9, 0x0531, 0x25, 0xff, "Macronix MX98715AEC", MXFE_98715AEC },
81 	{ 0x10d9, 0x0531, 0x20, 0xff, "Macronix MX98715A", MXFE_98715A },
82 	{ 0x10d9, 0x0531, 0x60, 0xff, "Macronix MX98715B", MXFE_98715B },
83 	{ 0x10d9, 0x0531, 0x30, 0xff, "Macronix MX98725", MXFE_98725 },
84 	{ 0x10d9, 0x0531, 0x00, 0xff, "Macronix MX98715", MXFE_98715 },
85 	{ 0x10d9, 0x0512, 0, 0, "Macronix MX98713", MXFE_98713 },
86 
87 	/*
88 	 * Compex (relabeled Macronix products)
89 	 */
90 	{ 0x11fc, 0x9881, 0x00, 0x00, "Compex 9881", MXFE_98713 },
91 	{ 0x11fc, 0x9881, 0x10, 0xff, "Compex 9881A", MXFE_98713A },
92 	/*
93 	 * Models listed here
94 	 */
95 	{ 0x11ad, 0xc001, 0, 0, "Linksys LNE100TX", MXFE_PNICII },
96 	{ 0x2646, 0x000b, 0, 0, "Kingston KNE111TX", MXFE_PNICII },
97 	{ 0x1154, 0x0308, 0, 0, "Buffalo LGY-PCI-TXL", MXFE_98715AEC },
98 };
99 
100 #define	ETHERVLANMTU	(ETHERMAX + 4)
101 
102 /*
103  * Function prototypes
104  */
105 static int	mxfe_attach(dev_info_t *, ddi_attach_cmd_t);
106 static int	mxfe_detach(dev_info_t *, ddi_detach_cmd_t);
107 static int	mxfe_resume(dev_info_t *);
108 static int	mxfe_quiesce(dev_info_t *);
109 static int	mxfe_m_unicst(void *, const uint8_t *);
110 static int	mxfe_m_multicst(void *, boolean_t, const uint8_t *);
111 static int	mxfe_m_promisc(void *, boolean_t);
112 static mblk_t	*mxfe_m_tx(void *, mblk_t *);
113 static int	mxfe_m_stat(void *, uint_t, uint64_t *);
114 static int	mxfe_m_start(void *);
115 static void	mxfe_m_stop(void *);
116 static int	mxfe_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
117     void *);
118 static int	mxfe_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
119     const void *);
120 static void	mxfe_m_propinfo(void *, const char *, mac_prop_id_t,
121     mac_prop_info_handle_t);
122 static unsigned	mxfe_intr(caddr_t);
123 static void	mxfe_startmac(mxfe_t *);
124 static void	mxfe_stopmac(mxfe_t *);
125 static void	mxfe_resetrings(mxfe_t *);
126 static boolean_t	mxfe_initialize(mxfe_t *);
127 static void	mxfe_startall(mxfe_t *);
128 static void	mxfe_stopall(mxfe_t *);
129 static void	mxfe_resetall(mxfe_t *);
130 static mxfe_txbuf_t *mxfe_alloctxbuf(mxfe_t *);
131 static void	mxfe_destroytxbuf(mxfe_txbuf_t *);
132 static mxfe_rxbuf_t *mxfe_allocrxbuf(mxfe_t *);
133 static void	mxfe_destroyrxbuf(mxfe_rxbuf_t *);
134 static void	mxfe_send_setup(mxfe_t *);
135 static boolean_t	mxfe_send(mxfe_t *, mblk_t *);
136 static int	mxfe_allocrxring(mxfe_t *);
137 static void	mxfe_freerxring(mxfe_t *);
138 static int	mxfe_alloctxring(mxfe_t *);
139 static void	mxfe_freetxring(mxfe_t *);
140 static void	mxfe_error(dev_info_t *, char *, ...);
141 static uint8_t	mxfe_sromwidth(mxfe_t *);
142 static uint16_t	mxfe_readsromword(mxfe_t *, unsigned);
143 static void	mxfe_readsrom(mxfe_t *, unsigned, unsigned, void *);
144 static void	mxfe_getfactaddr(mxfe_t *, uchar_t *);
145 static uint8_t	mxfe_miireadbit(mxfe_t *);
146 static void	mxfe_miiwritebit(mxfe_t *, uint8_t);
147 static void	mxfe_miitristate(mxfe_t *);
148 static uint16_t	mxfe_miiread(mxfe_t *, int, int);
149 static void	mxfe_miiwrite(mxfe_t *, int, int, uint16_t);
150 static uint16_t	mxfe_miireadgeneral(mxfe_t *, int, int);
151 static void	mxfe_miiwritegeneral(mxfe_t *, int, int, uint16_t);
152 static uint16_t	mxfe_miiread98713(mxfe_t *, int, int);
153 static void	mxfe_miiwrite98713(mxfe_t *, int, int, uint16_t);
154 static void	mxfe_startphy(mxfe_t *);
155 static void	mxfe_stopphy(mxfe_t *);
156 static void	mxfe_startphymii(mxfe_t *);
157 static void	mxfe_startphynway(mxfe_t *);
158 static void	mxfe_startnway(mxfe_t *);
159 static void	mxfe_reportlink(mxfe_t *);
160 static void	mxfe_checklink(mxfe_t *);
161 static void	mxfe_checklinkmii(mxfe_t *);
162 static void	mxfe_checklinknway(mxfe_t *);
163 static void	mxfe_disableinterrupts(mxfe_t *);
164 static void	mxfe_enableinterrupts(mxfe_t *);
165 static void	mxfe_reclaim(mxfe_t *);
166 static boolean_t	mxfe_receive(mxfe_t *, mblk_t **);
167 
168 #ifdef	DEBUG
169 static void	mxfe_dprintf(mxfe_t *, const char *, int, char *, ...);
170 #endif
171 
172 #define	KIOIP	KSTAT_INTR_PTR(mxfep->mxfe_intrstat)
173 
174 static mac_callbacks_t mxfe_m_callbacks = {
175 	MC_SETPROP | MC_GETPROP | MC_PROPINFO,
176 	mxfe_m_stat,
177 	mxfe_m_start,
178 	mxfe_m_stop,
179 	mxfe_m_promisc,
180 	mxfe_m_multicst,
181 	mxfe_m_unicst,
182 	mxfe_m_tx,
183 	NULL,
184 	NULL,		/* mc_ioctl */
185 	NULL,		/* mc_getcapab */
186 	NULL,		/* mc_open */
187 	NULL,		/* mc_close */
188 	mxfe_m_setprop,
189 	mxfe_m_getprop,
190 	mxfe_m_propinfo
191 };
192 
193 /*
194  * Stream information
195  */
196 DDI_DEFINE_STREAM_OPS(mxfe_devops, nulldev, nulldev, mxfe_attach, mxfe_detach,
197     nodev, NULL, D_MP, NULL, mxfe_quiesce);
198 
199 /*
200  * Module linkage information.
201  */
202 
203 static struct modldrv mxfe_modldrv = {
204 	&mod_driverops,			/* drv_modops */
205 	"Macronix Fast Ethernet",	/* drv_linkinfo */
206 	&mxfe_devops			/* drv_dev_ops */
207 };
208 
209 static struct modlinkage mxfe_modlinkage = {
210 	MODREV_1,		/* ml_rev */
211 	{ &mxfe_modldrv, NULL } /* ml_linkage */
212 };
213 
214 /*
215  * Device attributes.
216  */
217 static ddi_device_acc_attr_t mxfe_devattr = {
218 	DDI_DEVICE_ATTR_V0,
219 	DDI_STRUCTURE_LE_ACC,
220 	DDI_STRICTORDER_ACC
221 };
222 
223 static ddi_device_acc_attr_t mxfe_bufattr = {
224 	DDI_DEVICE_ATTR_V0,
225 	DDI_NEVERSWAP_ACC,
226 	DDI_STRICTORDER_ACC
227 };
228 
229 static ddi_dma_attr_t mxfe_dma_attr = {
230 	DMA_ATTR_V0,		/* dma_attr_version */
231 	0,			/* dma_attr_addr_lo */
232 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
233 	0x7FFFFFFFU,		/* dma_attr_count_max */
234 	4,			/* dma_attr_align */
235 	0x3F,			/* dma_attr_burstsizes */
236 	1,			/* dma_attr_minxfer */
237 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
238 	0xFFFFFFFFU,		/* dma_attr_seg */
239 	1,			/* dma_attr_sgllen */
240 	1,			/* dma_attr_granular */
241 	0			/* dma_attr_flags */
242 };
243 
244 /*
245  * Tx buffers can be arbitrarily aligned.  Additionally, they can
246  * cross a page boundary, so we use the two buffer addresses of the
247  * chip to provide a two-entry scatter-gather list.
248  */
249 static ddi_dma_attr_t mxfe_dma_txattr = {
250 	DMA_ATTR_V0,		/* dma_attr_version */
251 	0,			/* dma_attr_addr_lo */
252 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
253 	0x7FFFFFFFU,		/* dma_attr_count_max */
254 	1,			/* dma_attr_align */
255 	0x3F,			/* dma_attr_burstsizes */
256 	1,			/* dma_attr_minxfer */
257 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
258 	0xFFFFFFFFU,		/* dma_attr_seg */
259 	2,			/* dma_attr_sgllen */
260 	1,			/* dma_attr_granular */
261 	0			/* dma_attr_flags */
262 };
263 
264 /*
265  * Ethernet addresses.
266  */
267 static uchar_t mxfe_broadcast[ETHERADDRL] = {
268 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
269 };
270 
271 /*
272  * DDI entry points.
273  */
274 int
275 _init(void)
276 {
277 	int	rv;
278 	mac_init_ops(&mxfe_devops, "mxfe");
279 	if ((rv = mod_install(&mxfe_modlinkage)) != DDI_SUCCESS) {
280 		mac_fini_ops(&mxfe_devops);
281 	}
282 	return (rv);
283 }
284 
285 int
286 _fini(void)
287 {
288 	int	rv;
289 	if ((rv = mod_remove(&mxfe_modlinkage)) == DDI_SUCCESS) {
290 		mac_fini_ops(&mxfe_devops);
291 	}
292 	return (rv);
293 }
294 
295 int
296 _info(struct modinfo *modinfop)
297 {
298 	return (mod_info(&mxfe_modlinkage, modinfop));
299 }
300 
301 int
302 mxfe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
303 {
304 	mxfe_t			*mxfep;
305 	mac_register_t		*macp;
306 	int			inst = ddi_get_instance(dip);
307 	ddi_acc_handle_t	pci;
308 	uint16_t		venid;
309 	uint16_t		devid;
310 	uint16_t		revid;
311 	uint16_t		svid;
312 	uint16_t		ssid;
313 	uint16_t		cachesize;
314 	mxfe_card_t		*cardp;
315 	int			i;
316 
317 	switch (cmd) {
318 	case DDI_RESUME:
319 		return (mxfe_resume(dip));
320 
321 	case DDI_ATTACH:
322 		break;
323 
324 	default:
325 		return (DDI_FAILURE);
326 	}
327 
328 	/* this card is a bus master, reject any slave-only slot */
329 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
330 		mxfe_error(dip, "slot does not support PCI bus-master");
331 		return (DDI_FAILURE);
332 	}
333 	/* PCI devices shouldn't generate hilevel interrupts */
334 	if (ddi_intr_hilevel(dip, 0) != 0) {
335 		mxfe_error(dip, "hilevel interrupts not supported");
336 		return (DDI_FAILURE);
337 	}
338 	if (pci_config_setup(dip, &pci) != DDI_SUCCESS) {
339 		mxfe_error(dip, "unable to setup PCI config handle");
340 		return (DDI_FAILURE);
341 	}
342 
343 	venid = pci_config_get16(pci, PCI_VID);
344 	devid = pci_config_get16(pci, PCI_DID);
345 	revid = pci_config_get16(pci, PCI_RID);
346 	svid = pci_config_get16(pci, PCI_SVID);
347 	ssid = pci_config_get16(pci, PCI_SSID);
348 
349 	/*
350 	 * the last entry in the card table matches every possible
351 	 * card, so the for-loop always terminates properly.
352 	 */
353 	cardp = NULL;
354 	for (i = 0; i < (sizeof (mxfe_cards) / sizeof (mxfe_card_t)); i++) {
355 		if ((venid == mxfe_cards[i].card_venid) &&
356 		    (devid == mxfe_cards[i].card_devid) &&
357 		    ((revid & mxfe_cards[i].card_revmask) ==
358 		    mxfe_cards[i].card_revid)) {
359 			cardp = &mxfe_cards[i];
360 		}
361 		if ((svid == mxfe_cards[i].card_venid) &&
362 		    (ssid == mxfe_cards[i].card_devid) &&
363 		    ((revid & mxfe_cards[i].card_revmask) ==
364 		    mxfe_cards[i].card_revid)) {
365 			cardp = &mxfe_cards[i];
366 			break;
367 		}
368 	}
369 
370 	if (cardp == NULL) {
371 		pci_config_teardown(&pci);
372 		mxfe_error(dip, "Unable to identify PCI card");
373 		return (DDI_FAILURE);
374 	}
375 
376 	if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
377 	    cardp->card_cardname) != DDI_PROP_SUCCESS) {
378 		pci_config_teardown(&pci);
379 		mxfe_error(dip, "Unable to create model property");
380 		return (DDI_FAILURE);
381 	}
382 
383 	/*
384 	 * Grab the PCI cachesize -- we use this to program the
385 	 * cache-optimization bus access bits.
386 	 */
387 	cachesize = pci_config_get8(pci, PCI_CLS);
388 
389 	/* this cannot fail */
390 	mxfep = kmem_zalloc(sizeof (mxfe_t), KM_SLEEP);
391 	ddi_set_driver_private(dip, mxfep);
392 
393 	/* get the interrupt block cookie */
394 	if (ddi_get_iblock_cookie(dip, 0, &mxfep->mxfe_icookie)
395 	    != DDI_SUCCESS) {
396 		mxfe_error(dip, "ddi_get_iblock_cookie failed");
397 		pci_config_teardown(&pci);
398 		kmem_free(mxfep, sizeof (mxfe_t));
399 		return (DDI_FAILURE);
400 	}
401 
402 	mxfep->mxfe_dip = dip;
403 	mxfep->mxfe_cardp = cardp;
404 	mxfep->mxfe_phyaddr = -1;
405 	mxfep->mxfe_cachesize = cachesize;
406 
407 	/* default properties */
408 	mxfep->mxfe_adv_aneg = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
409 	    "adv_autoneg_cap", 1);
410 	mxfep->mxfe_adv_100T4 = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
411 	    "adv_100T4_cap", 1);
412 	mxfep->mxfe_adv_100fdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
413 	    "adv_100fdx_cap", 1);
414 	mxfep->mxfe_adv_100hdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
415 	    "adv_100hdx_cap", 1);
416 	mxfep->mxfe_adv_10fdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
417 	    "adv_10fdx_cap", 1);
418 	mxfep->mxfe_adv_10hdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
419 	    "adv_10hdx_cap", 1);
420 
421 	DBG(DPCI, "PCI vendor id = %x", venid);
422 	DBG(DPCI, "PCI device id = %x", devid);
423 	DBG(DPCI, "PCI revision id = %x", revid);
424 	DBG(DPCI, "PCI cachesize = %d", cachesize);
425 	DBG(DPCI, "PCI COMM = %x", pci_config_get8(pci, PCI_CMD));
426 	DBG(DPCI, "PCI STAT = %x", pci_config_get8(pci, PCI_STAT));
427 
428 	mutex_init(&mxfep->mxfe_xmtlock, NULL, MUTEX_DRIVER,
429 	    mxfep->mxfe_icookie);
430 	mutex_init(&mxfep->mxfe_intrlock, NULL, MUTEX_DRIVER,
431 	    mxfep->mxfe_icookie);
432 
433 	/*
434 	 * Enable bus master, IO space, and memory space accesses.
435 	 */
436 	pci_config_put16(pci, PCI_CMD,
437 	    pci_config_get16(pci, PCI_CMD) |
438 	    PCI_CMD_BME | PCI_CMD_MAE | PCI_CMD_MWIE);
439 
440 	/* we're done with this now, drop it */
441 	pci_config_teardown(&pci);
442 
443 	/*
444 	 * Initialize interrupt kstat.  This should not normally fail, since
445 	 * we don't use a persistent stat.  We do it this way to avoid having
446 	 * to test for it at run time on the hot path.
447 	 */
448 	mxfep->mxfe_intrstat = kstat_create("mxfe", inst, "intr", "controller",
449 	    KSTAT_TYPE_INTR, 1, 0);
450 	if (mxfep->mxfe_intrstat == NULL) {
451 		mxfe_error(dip, "kstat_create failed");
452 		goto failed;
453 	}
454 	kstat_install(mxfep->mxfe_intrstat);
455 
456 	/*
457 	 * Map in the device registers.
458 	 */
459 	if (ddi_regs_map_setup(dip, 1, (caddr_t *)&mxfep->mxfe_regs,
460 	    0, 0, &mxfe_devattr, &mxfep->mxfe_regshandle)) {
461 		mxfe_error(dip, "ddi_regs_map_setup failed");
462 		goto failed;
463 	}
464 
465 	/*
466 	 * Allocate DMA resources (descriptor rings and buffers).
467 	 */
468 	if ((mxfe_allocrxring(mxfep) != DDI_SUCCESS) ||
469 	    (mxfe_alloctxring(mxfep) != DDI_SUCCESS)) {
470 		mxfe_error(dip, "unable to allocate DMA resources");
471 		goto failed;
472 	}
473 
474 	/* Initialize the chip. */
475 	mutex_enter(&mxfep->mxfe_intrlock);
476 	mutex_enter(&mxfep->mxfe_xmtlock);
477 	if (!mxfe_initialize(mxfep)) {
478 		mutex_exit(&mxfep->mxfe_xmtlock);
479 		mutex_exit(&mxfep->mxfe_intrlock);
480 		goto failed;
481 	}
482 	mutex_exit(&mxfep->mxfe_xmtlock);
483 	mutex_exit(&mxfep->mxfe_intrlock);
484 
485 	/* Determine the number of address bits to our EEPROM. */
486 	mxfep->mxfe_sromwidth = mxfe_sromwidth(mxfep);
487 
488 	/*
489 	 * Get the factory ethernet address.  This becomes the current
490 	 * ethernet address (it can be overridden later via ifconfig).
491 	 */
492 	mxfe_getfactaddr(mxfep, mxfep->mxfe_curraddr);
493 	mxfep->mxfe_promisc = B_FALSE;
494 
495 	/*
496 	 * Establish interrupt handler.
497 	 */
498 	if (ddi_add_intr(dip, 0, NULL, NULL, mxfe_intr, (caddr_t)mxfep) !=
499 	    DDI_SUCCESS) {
500 		mxfe_error(dip, "unable to add interrupt");
501 		goto failed;
502 	}
503 
504 	/* TODO: do the power management stuff */
505 
506 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
507 		mxfe_error(dip, "mac_alloc failed");
508 		goto failed;
509 	}
510 
511 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
512 	macp->m_driver = mxfep;
513 	macp->m_dip = dip;
514 	macp->m_src_addr = mxfep->mxfe_curraddr;
515 	macp->m_callbacks = &mxfe_m_callbacks;
516 	macp->m_min_sdu = 0;
517 	macp->m_max_sdu = ETHERMTU;
518 	macp->m_margin = VLAN_TAGSZ;
519 
520 	if (mac_register(macp, &mxfep->mxfe_mh) == DDI_SUCCESS) {
521 		mac_free(macp);
522 		return (DDI_SUCCESS);
523 	}
524 
525 	/* failed to register with MAC */
526 	mac_free(macp);
527 failed:
528 	if (mxfep->mxfe_icookie != NULL) {
529 		ddi_remove_intr(dip, 0, mxfep->mxfe_icookie);
530 	}
531 	if (mxfep->mxfe_intrstat) {
532 		kstat_delete(mxfep->mxfe_intrstat);
533 	}
534 	mutex_destroy(&mxfep->mxfe_intrlock);
535 	mutex_destroy(&mxfep->mxfe_xmtlock);
536 
537 	mxfe_freerxring(mxfep);
538 	mxfe_freetxring(mxfep);
539 
540 	if (mxfep->mxfe_regshandle != NULL) {
541 		ddi_regs_map_free(&mxfep->mxfe_regshandle);
542 	}
543 	kmem_free(mxfep, sizeof (mxfe_t));
544 	return (DDI_FAILURE);
545 }
546 
547 int
548 mxfe_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
549 {
550 	mxfe_t		*mxfep;
551 
552 	mxfep = ddi_get_driver_private(dip);
553 	if (mxfep == NULL) {
554 		mxfe_error(dip, "no soft state in detach!");
555 		return (DDI_FAILURE);
556 	}
557 
558 	switch (cmd) {
559 	case DDI_DETACH:
560 
561 		if (mac_unregister(mxfep->mxfe_mh) != 0) {
562 			return (DDI_FAILURE);
563 		}
564 
565 		/* make sure hardware is quiesced */
566 		mutex_enter(&mxfep->mxfe_intrlock);
567 		mutex_enter(&mxfep->mxfe_xmtlock);
568 		mxfep->mxfe_flags &= ~MXFE_RUNNING;
569 		mxfe_stopall(mxfep);
570 		mutex_exit(&mxfep->mxfe_xmtlock);
571 		mutex_exit(&mxfep->mxfe_intrlock);
572 
573 		/* clean up and shut down device */
574 		ddi_remove_intr(dip, 0, mxfep->mxfe_icookie);
575 
576 		/* clean up kstats */
577 		kstat_delete(mxfep->mxfe_intrstat);
578 
579 		ddi_prop_remove_all(dip);
580 
581 		/* free up any left over buffers or DMA resources */
582 		mxfe_freerxring(mxfep);
583 		mxfe_freetxring(mxfep);
584 
585 		ddi_regs_map_free(&mxfep->mxfe_regshandle);
586 		mutex_destroy(&mxfep->mxfe_intrlock);
587 		mutex_destroy(&mxfep->mxfe_xmtlock);
588 
589 		kmem_free(mxfep, sizeof (mxfe_t));
590 		return (DDI_SUCCESS);
591 
592 	case DDI_SUSPEND:
593 		/* quiesce the hardware */
594 		mutex_enter(&mxfep->mxfe_intrlock);
595 		mutex_enter(&mxfep->mxfe_xmtlock);
596 		mxfep->mxfe_flags |= MXFE_SUSPENDED;
597 		mxfe_stopall(mxfep);
598 		mutex_exit(&mxfep->mxfe_xmtlock);
599 		mutex_exit(&mxfep->mxfe_intrlock);
600 		return (DDI_SUCCESS);
601 	default:
602 		return (DDI_FAILURE);
603 	}
604 }
605 
606 int
607 mxfe_resume(dev_info_t *dip)
608 {
609 	mxfe_t		*mxfep;
610 
611 	if ((mxfep = ddi_get_driver_private(dip)) == NULL) {
612 		return (DDI_FAILURE);
613 	}
614 
615 	mutex_enter(&mxfep->mxfe_intrlock);
616 	mutex_enter(&mxfep->mxfe_xmtlock);
617 
618 	mxfep->mxfe_flags &= ~MXFE_SUSPENDED;
619 
620 	/* re-initialize chip */
621 	if (!mxfe_initialize(mxfep)) {
622 		mxfe_error(mxfep->mxfe_dip, "unable to resume chip!");
623 		mxfep->mxfe_flags |= MXFE_SUSPENDED;
624 		mutex_exit(&mxfep->mxfe_intrlock);
625 		mutex_exit(&mxfep->mxfe_xmtlock);
626 		return (DDI_SUCCESS);
627 	}
628 
629 	/* start the chip */
630 	if (mxfep->mxfe_flags & MXFE_RUNNING) {
631 		mxfe_startall(mxfep);
632 	}
633 
634 	/* drop locks */
635 	mutex_exit(&mxfep->mxfe_xmtlock);
636 	mutex_exit(&mxfep->mxfe_intrlock);
637 
638 	return (DDI_SUCCESS);
639 }
640 
641 int
642 mxfe_quiesce(dev_info_t *dip)
643 {
644 	mxfe_t	*mxfep;
645 
646 	if ((mxfep = ddi_get_driver_private(dip)) == NULL) {
647 		return (DDI_FAILURE);
648 	}
649 
650 	/* just do a hard reset of everything */
651 	SETBIT(mxfep, CSR_PAR, PAR_RESET);
652 
653 	return (DDI_SUCCESS);
654 }
655 
656 /*ARGSUSED*/
657 int
658 mxfe_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
659 {
660 	/* we already receive all multicast frames */
661 	return (0);
662 }
663 
664 int
665 mxfe_m_promisc(void *arg, boolean_t on)
666 {
667 	mxfe_t		*mxfep = arg;
668 
669 	/* exclusive access to the card while we reprogram it */
670 	mutex_enter(&mxfep->mxfe_intrlock);
671 	mutex_enter(&mxfep->mxfe_xmtlock);
672 	/* save current promiscuous mode state for replay in resume */
673 	mxfep->mxfe_promisc = on;
674 
675 	if ((mxfep->mxfe_flags & (MXFE_RUNNING|MXFE_SUSPENDED)) ==
676 	    MXFE_RUNNING) {
677 		if (on)
678 			SETBIT(mxfep, CSR_NAR, NAR_RX_PROMISC);
679 		else
680 			CLRBIT(mxfep, CSR_NAR, NAR_RX_PROMISC);
681 	}
682 
683 	mutex_exit(&mxfep->mxfe_xmtlock);
684 	mutex_exit(&mxfep->mxfe_intrlock);
685 
686 	return (0);
687 }
688 
689 int
690 mxfe_m_unicst(void *arg, const uint8_t *macaddr)
691 {
692 	mxfe_t		*mxfep = arg;
693 
694 	mutex_enter(&mxfep->mxfe_intrlock);
695 	mutex_enter(&mxfep->mxfe_xmtlock);
696 	bcopy(macaddr, mxfep->mxfe_curraddr, ETHERADDRL);
697 
698 	mxfe_resetall(mxfep);
699 
700 	mutex_exit(&mxfep->mxfe_intrlock);
701 	mutex_exit(&mxfep->mxfe_xmtlock);
702 
703 	return (0);
704 }
705 
706 mblk_t *
707 mxfe_m_tx(void *arg, mblk_t *mp)
708 {
709 	mxfe_t	*mxfep = arg;
710 	mblk_t	*nmp;
711 
712 	mutex_enter(&mxfep->mxfe_xmtlock);
713 
714 	if (mxfep->mxfe_flags & MXFE_SUSPENDED) {
715 		mutex_exit(&mxfep->mxfe_xmtlock);
716 		return (mp);
717 	}
718 
719 	while (mp != NULL) {
720 		nmp = mp->b_next;
721 		mp->b_next = NULL;
722 
723 		if (!mxfe_send(mxfep, mp)) {
724 			mp->b_next = nmp;
725 			break;
726 		}
727 		mp = nmp;
728 	}
729 	mutex_exit(&mxfep->mxfe_xmtlock);
730 
731 	return (mp);
732 }
733 
734 /*
735  * Hardware management.
736  */
737 boolean_t
738 mxfe_initialize(mxfe_t *mxfep)
739 {
740 	int		i;
741 	unsigned	val;
742 	uint32_t	par, nar;
743 
744 	ASSERT(mutex_owned(&mxfep->mxfe_intrlock));
745 	ASSERT(mutex_owned(&mxfep->mxfe_xmtlock));
746 
747 	DBG(DCHATTY, "resetting!");
748 	SETBIT(mxfep, CSR_PAR, PAR_RESET);
749 	for (i = 1; i < 10; i++) {
750 		drv_usecwait(5);
751 		val = GETCSR(mxfep, CSR_PAR);
752 		if (!(val & PAR_RESET)) {
753 			break;
754 		}
755 	}
756 	if (i == 10) {
757 		mxfe_error(mxfep->mxfe_dip, "timed out waiting for reset!");
758 		return (B_FALSE);
759 	}
760 
761 	/* initialize busctl register */
762 	par = PAR_BAR | PAR_MRME | PAR_MRLE | PAR_MWIE;
763 
764 	/* set the cache alignment if its supported */
765 	switch (mxfep->mxfe_cachesize) {
766 	case 8:
767 		par |= PAR_CALIGN_8;
768 		break;
769 	case 16:
770 		par |= PAR_CALIGN_16;
771 		break;
772 	case 32:
773 		par |= PAR_CALIGN_32;
774 		break;
775 	default:
776 		par &= ~(PAR_MWIE | PAR_MRME | PAR_MRLE);
777 	}
778 
779 	/* leave the burst length at zero, indicating infinite burst */
780 	PUTCSR(mxfep, CSR_PAR, par);
781 
782 	mxfe_resetrings(mxfep);
783 
784 	/* clear the lost packet counter (cleared on read) */
785 	(void) GETCSR(mxfep, CSR_LPC);
786 
787 	/* a few other NAR bits */
788 	nar = GETCSR(mxfep, CSR_NAR);
789 	nar &= ~NAR_RX_HO;	/* disable hash only filtering */
790 	nar |= NAR_RX_HP;	/* hash perfect forwarding */
791 	nar |= NAR_RX_MULTI;	/* receive all multicast */
792 	nar |= NAR_SF;	/* store-and-forward */
793 
794 	if (mxfep->mxfe_promisc) {
795 		nar |= NAR_RX_PROMISC;
796 	} else {
797 		nar &= ~NAR_RX_PROMISC;
798 	}
799 	PUTCSR(mxfep, CSR_NAR, nar);
800 
801 	mxfe_send_setup(mxfep);
802 
803 	return (B_TRUE);
804 }
805 
806 /*
807  * Serial EEPROM access - inspired by the FreeBSD implementation.
808  */
809 
810 uint8_t
811 mxfe_sromwidth(mxfe_t *mxfep)
812 {
813 	int		i;
814 	int		eeread;
815 	uint8_t		addrlen = 8;
816 
817 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
818 
819 	PUTCSR(mxfep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
820 	drv_usecwait(1);
821 	PUTCSR(mxfep, CSR_SPR, eeread);
822 
823 	/* command bits first */
824 	for (i = 4; i != 0; i >>= 1) {
825 		unsigned val = (SROM_READCMD & i) ? SPR_SROM_DIN : 0;
826 		PUTCSR(mxfep, CSR_SPR, eeread | val);
827 		drv_usecwait(1);
828 		PUTCSR(mxfep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
829 		drv_usecwait(1);
830 	}
831 
832 	PUTCSR(mxfep, CSR_SPR, eeread);
833 
834 	for (addrlen = 1; addrlen <= 12; addrlen++) {
835 		PUTCSR(mxfep, CSR_SPR, eeread | SPR_SROM_CLOCK);
836 		drv_usecwait(1);
837 		if (!(GETCSR(mxfep, CSR_SPR) & SPR_SROM_DOUT)) {
838 			PUTCSR(mxfep, CSR_SPR, eeread);
839 			drv_usecwait(1);
840 			break;
841 		}
842 		PUTCSR(mxfep, CSR_SPR, eeread);
843 		drv_usecwait(1);
844 	}
845 
846 	/* turn off accesses to the EEPROM */
847 	PUTCSR(mxfep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
848 
849 	DBG(DSROM, "detected srom width = %d bits", addrlen);
850 
851 	return ((addrlen < 4 || addrlen > 12) ? 6 : addrlen);
852 }
853 
854 /*
855  * The words in EEPROM are stored in little endian order.  We
856  * shift bits out in big endian order, though.  This requires
857  * a byte swap on some platforms.
858  */
859 uint16_t
860 mxfe_readsromword(mxfe_t *mxfep, unsigned romaddr)
861 {
862 	int		i;
863 	uint16_t	word = 0;
864 	uint16_t	retval;
865 	int		eeread;
866 	uint8_t		addrlen;
867 	int		readcmd;
868 	uchar_t		*ptr;
869 
870 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
871 	addrlen = mxfep->mxfe_sromwidth;
872 	readcmd = (SROM_READCMD << addrlen) | romaddr;
873 
874 	if (romaddr >= (1 << addrlen)) {
875 		/* too big to fit! */
876 		return (0);
877 	}
878 
879 	PUTCSR(mxfep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
880 	PUTCSR(mxfep, CSR_SPR, eeread);
881 
882 	/* command and address bits */
883 	for (i = 4 + addrlen; i >= 0; i--) {
884 		short val = (readcmd & (1 << i)) ?  SPR_SROM_DIN : 0;
885 		PUTCSR(mxfep, CSR_SPR, eeread | val);
886 		drv_usecwait(1);
887 		PUTCSR(mxfep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
888 		drv_usecwait(1);
889 	}
890 
891 	PUTCSR(mxfep, CSR_SPR, eeread);
892 
893 	for (i = 0; i < 16; i++) {
894 		PUTCSR(mxfep, CSR_SPR, eeread | SPR_SROM_CLOCK);
895 		drv_usecwait(1);
896 		word <<= 1;
897 		if (GETCSR(mxfep, CSR_SPR) & SPR_SROM_DOUT) {
898 			word |= 1;
899 		}
900 		PUTCSR(mxfep, CSR_SPR, eeread);
901 		drv_usecwait(1);
902 	}
903 
904 	/* turn off accesses to the EEPROM */
905 	PUTCSR(mxfep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
906 
907 	/*
908 	 * Fix up the endianness thing.  Note that the values
909 	 * are stored in little endian format on the SROM.
910 	 */
911 	DBG(DSROM, "got value %d from SROM (before swap)", word);
912 	ptr = (uchar_t *)&word;
913 	retval = (ptr[1] << 8) | ptr[0];
914 	return (retval);
915 }
916 
917 void
918 mxfe_readsrom(mxfe_t *mxfep, unsigned romaddr, unsigned len, void *dest)
919 {
920 	char		*ptr = dest;
921 	int		i;
922 	uint16_t	word;
923 
924 	for (i = 0; i < len; i++) {
925 		word = mxfe_readsromword(mxfep, romaddr + i);
926 		bcopy(&word, ptr, 2);
927 		ptr += 2;
928 		DBG(DSROM, "word at %d is 0x%x", romaddr + i, word);
929 	}
930 }
931 
932 void
933 mxfe_getfactaddr(mxfe_t *mxfep, uchar_t *eaddr)
934 {
935 	uint16_t	word;
936 	uchar_t		*ptr;
937 
938 	/* first read to get the location of mac address in srom */
939 	word = mxfe_readsromword(mxfep, SROM_ENADDR / 2);
940 	ptr = (uchar_t *)&word;
941 	word = (ptr[1] << 8) | ptr[0];
942 
943 	/* then read the actual mac address */
944 	mxfe_readsrom(mxfep, word / 2, ETHERADDRL / 2, eaddr);
945 	DBG(DMACID,
946 	    "factory ethernet address = %02x:%02x:%02x:%02x:%02x:%02x",
947 	    eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]);
948 }
949 
950 void
951 mxfe_startphy(mxfe_t *mxfep)
952 {
953 	switch (MXFE_MODEL(mxfep)) {
954 	case MXFE_98713A:
955 		mxfe_startphymii(mxfep);
956 		break;
957 	default:
958 		mxfe_startphynway(mxfep);
959 		break;
960 	}
961 }
962 
963 void
964 mxfe_stopphy(mxfe_t *mxfep)
965 {
966 	uint32_t	nar;
967 	int		i;
968 
969 	/* stop the phy timer */
970 	PUTCSR(mxfep, CSR_TIMER, 0);
971 
972 	switch (MXFE_MODEL(mxfep)) {
973 	case MXFE_98713A:
974 		for (i = 0; i < 32; i++) {
975 			mxfe_miiwrite(mxfep, mxfep->mxfe_phyaddr, MII_CONTROL,
976 			    MII_CONTROL_PWRDN | MII_CONTROL_ISOLATE);
977 		}
978 		break;
979 	default:
980 		DBG(DPHY, "resetting SIA");
981 		PUTCSR(mxfep, CSR_SIA, SIA_RESET);
982 		drv_usecwait(500);
983 		CLRBIT(mxfep, CSR_TCTL, TCTL_PWR | TCTL_ANE);
984 		nar = GETCSR(mxfep, CSR_NAR);
985 		nar &= ~(NAR_PORTSEL | NAR_PCS | NAR_SCR | NAR_FDX);
986 		nar |= NAR_SPEED;
987 		PUTCSR(mxfep, CSR_NAR, nar);
988 		break;
989 	}
990 
991 	/*
992 	 * mark the link state unknown
993 	 */
994 	if (!mxfep->mxfe_resetting) {
995 		mxfep->mxfe_linkup = LINK_STATE_UNKNOWN;
996 		mxfep->mxfe_ifspeed = 0;
997 		mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN;
998 		if (mxfep->mxfe_flags & MXFE_RUNNING)
999 			mxfe_reportlink(mxfep);
1000 	}
1001 }
1002 
1003 /*
1004  * NWay support.
1005  */
1006 void
1007 mxfe_startnway(mxfe_t *mxfep)
1008 {
1009 	unsigned	nar;
1010 	unsigned	tctl;
1011 	unsigned	restart;
1012 
1013 	/* this should not happen in a healthy system */
1014 	if (mxfep->mxfe_nwaystate != MXFE_NOLINK) {
1015 		DBG(DWARN, "link start called out of state (%x)",
1016 		    mxfep->mxfe_nwaystate);
1017 		return;
1018 	}
1019 
1020 	if (mxfep->mxfe_adv_aneg == 0) {
1021 		/* not done for forced mode */
1022 		return;
1023 	}
1024 
1025 	nar = GETCSR(mxfep, CSR_NAR);
1026 	restart = nar & (NAR_TX_ENABLE | NAR_RX_ENABLE);
1027 	nar &= ~restart;
1028 
1029 	if (restart != 0)
1030 		mxfe_stopmac(mxfep);
1031 
1032 	nar |= NAR_SCR | NAR_PCS | NAR_HBD;
1033 	nar &= ~(NAR_FDX);
1034 
1035 	tctl = GETCSR(mxfep, CSR_TCTL);
1036 	tctl &= ~(TCTL_100FDX | TCTL_100HDX | TCTL_HDX);
1037 
1038 	if (mxfep->mxfe_adv_100fdx) {
1039 		tctl |= TCTL_100FDX;
1040 	}
1041 	if (mxfep->mxfe_adv_100hdx) {
1042 		tctl |= TCTL_100HDX;
1043 	}
1044 	if (mxfep->mxfe_adv_10fdx) {
1045 		nar |= NAR_FDX;
1046 	}
1047 	if (mxfep->mxfe_adv_10hdx) {
1048 		tctl |= TCTL_HDX;
1049 	}
1050 	tctl |= TCTL_PWR | TCTL_ANE | TCTL_LTE | TCTL_RSQ;
1051 
1052 	/* possibly we should add in support for PAUSE frames */
1053 	DBG(DPHY, "writing nar = 0x%x", nar);
1054 	PUTCSR(mxfep, CSR_NAR, nar);
1055 
1056 	DBG(DPHY, "writing tctl = 0x%x", tctl);
1057 	PUTCSR(mxfep, CSR_TCTL, tctl);
1058 
1059 	/* restart autonegotation */
1060 	DBG(DPHY, "writing tstat = 0x%x", TSTAT_ANS_START);
1061 	PUTCSR(mxfep, CSR_TSTAT, TSTAT_ANS_START);
1062 
1063 	/* restart tx/rx processes... */
1064 	if (restart != 0)
1065 		mxfe_startmac(mxfep);
1066 
1067 	/* Macronix initializations from Bolo Tsai */
1068 	PUTCSR(mxfep, CSR_MXMAGIC, 0x0b2c0000);
1069 	PUTCSR(mxfep, CSR_ACOMP, 0x11000);
1070 
1071 	mxfep->mxfe_nwaystate = MXFE_NWAYCHECK;
1072 }
1073 
1074 void
1075 mxfe_checklinknway(mxfe_t *mxfep)
1076 {
1077 	unsigned	tstat;
1078 	uint16_t	lpar;
1079 
1080 	DBG(DPHY, "NWay check, state %x", mxfep->mxfe_nwaystate);
1081 	tstat = GETCSR(mxfep, CSR_TSTAT);
1082 	lpar = TSTAT_LPAR(tstat);
1083 
1084 	mxfep->mxfe_anlpar = lpar;
1085 	if (tstat & TSTAT_LPN) {
1086 		mxfep->mxfe_aner |= MII_AN_EXP_LPCANAN;
1087 	} else {
1088 		mxfep->mxfe_aner &= ~(MII_AN_EXP_LPCANAN);
1089 	}
1090 
1091 	DBG(DPHY, "tstat(CSR12) = 0x%x", tstat);
1092 	DBG(DPHY, "ANEG state = 0x%x", (tstat & TSTAT_ANS) >> 12);
1093 
1094 	if ((tstat & TSTAT_ANS) != TSTAT_ANS_OK) {
1095 		/* autoneg did not complete */
1096 		mxfep->mxfe_bmsr &= ~MII_STATUS_ANDONE;
1097 	} else {
1098 		mxfep->mxfe_bmsr |= ~MII_STATUS_ANDONE;
1099 	}
1100 
1101 	if ((tstat & TSTAT_100F) && (tstat & TSTAT_10F)) {
1102 		mxfep->mxfe_linkup = LINK_STATE_DOWN;
1103 		mxfep->mxfe_ifspeed = 0;
1104 		mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN;
1105 		mxfep->mxfe_nwaystate = MXFE_NOLINK;
1106 		mxfe_reportlink(mxfep);
1107 		mxfe_startnway(mxfep);
1108 		return;
1109 	}
1110 
1111 	/*
1112 	 * if the link is newly up, then we might need to set various
1113 	 * mode bits, or negotiate for parameters, etc.
1114 	 */
1115 	if (mxfep->mxfe_adv_aneg) {
1116 
1117 		uint16_t	anlpar;
1118 
1119 		mxfep->mxfe_linkup = LINK_STATE_UP;
1120 		anlpar = mxfep->mxfe_anlpar;
1121 
1122 		if (tstat & TSTAT_LPN) {
1123 			/* partner has NWay */
1124 
1125 			if ((anlpar & MII_ABILITY_100BASE_TX_FD) &&
1126 			    mxfep->mxfe_adv_100fdx) {
1127 				mxfep->mxfe_ifspeed = 100000000;
1128 				mxfep->mxfe_duplex = LINK_DUPLEX_FULL;
1129 			} else if ((anlpar & MII_ABILITY_100BASE_TX) &&
1130 			    mxfep->mxfe_adv_100hdx) {
1131 				mxfep->mxfe_ifspeed = 100000000;
1132 				mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1133 			} else if ((anlpar & MII_ABILITY_10BASE_T_FD) &&
1134 			    mxfep->mxfe_adv_10fdx) {
1135 				mxfep->mxfe_ifspeed = 10000000;
1136 				mxfep->mxfe_duplex = LINK_DUPLEX_FULL;
1137 			} else if ((anlpar & MII_ABILITY_10BASE_T) &&
1138 			    mxfep->mxfe_adv_10hdx) {
1139 				mxfep->mxfe_ifspeed = 10000000;
1140 				mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1141 			} else {
1142 				mxfep->mxfe_ifspeed = 0;
1143 			}
1144 		} else {
1145 			/* link partner does not have NWay */
1146 			/* just assume half duplex, since we can't detect */
1147 			mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1148 			if (!(tstat & TSTAT_100F)) {
1149 				DBG(DPHY, "Partner doesn't have NWAY");
1150 				mxfep->mxfe_ifspeed = 100000000;
1151 			} else {
1152 				mxfep->mxfe_ifspeed = 10000000;
1153 			}
1154 		}
1155 	} else {
1156 		/* forced modes */
1157 		mxfep->mxfe_linkup = LINK_STATE_UP;
1158 		if (mxfep->mxfe_adv_100fdx) {
1159 			mxfep->mxfe_ifspeed = 100000000;
1160 			mxfep->mxfe_duplex = LINK_DUPLEX_FULL;
1161 		} else if (mxfep->mxfe_adv_100hdx) {
1162 			mxfep->mxfe_ifspeed = 100000000;
1163 			mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1164 		} else if (mxfep->mxfe_adv_10fdx) {
1165 			mxfep->mxfe_ifspeed = 10000000;
1166 			mxfep->mxfe_duplex = LINK_DUPLEX_FULL;
1167 		} else if (mxfep->mxfe_adv_10hdx) {
1168 			mxfep->mxfe_ifspeed = 10000000;
1169 			mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1170 		} else {
1171 			mxfep->mxfe_ifspeed = 0;
1172 		}
1173 	}
1174 	mxfe_reportlink(mxfep);
1175 	mxfep->mxfe_nwaystate = MXFE_GOODLINK;
1176 }
1177 
1178 void
1179 mxfe_startphynway(mxfe_t *mxfep)
1180 {
1181 	/* take NWay and PHY out of reset */
1182 	PUTCSR(mxfep, CSR_SIA, SIA_NRESET);
1183 	drv_usecwait(500);
1184 
1185 	mxfep->mxfe_nwaystate = MXFE_NOLINK;
1186 	mxfep->mxfe_bmsr = MII_STATUS_CANAUTONEG |
1187 	    MII_STATUS_100_BASEX_FD | MII_STATUS_100_BASEX |
1188 	    MII_STATUS_10_FD | MII_STATUS_10;
1189 	mxfep->mxfe_cap_aneg =
1190 	    mxfep->mxfe_cap_100fdx = mxfep->mxfe_cap_100hdx =
1191 	    mxfep->mxfe_cap_10fdx = mxfep->mxfe_cap_10hdx = 1;
1192 
1193 	/* lie about the transceiver... its not really 802.3u compliant */
1194 	mxfep->mxfe_phyaddr = 0;
1195 	mxfep->mxfe_phyinuse = XCVR_100X;
1196 	mxfep->mxfe_phyid = 0;
1197 
1198 	/* 100-T4 not supported with NWay */
1199 	mxfep->mxfe_adv_100T4 = 0;
1200 	mxfep->mxfe_cap_100T4 = 0;
1201 
1202 	/* make sure at least one valid mode is selected */
1203 	if ((!mxfep->mxfe_adv_100fdx) &&
1204 	    (!mxfep->mxfe_adv_100hdx) &&
1205 	    (!mxfep->mxfe_adv_10fdx) &&
1206 	    (!mxfep->mxfe_adv_10hdx)) {
1207 		mxfe_error(mxfep->mxfe_dip, "No valid link mode selected.");
1208 		mxfe_error(mxfep->mxfe_dip, "Powering down PHY.");
1209 		mxfe_stopphy(mxfep);
1210 		mxfep->mxfe_linkup = LINK_STATE_DOWN;
1211 		if (mxfep->mxfe_flags & MXFE_RUNNING)
1212 			mxfe_reportlink(mxfep);
1213 		return;
1214 	}
1215 
1216 	if (mxfep->mxfe_adv_aneg == 0) {
1217 		/* forced mode */
1218 		unsigned	nar;
1219 		unsigned	tctl;
1220 
1221 		nar = GETCSR(mxfep, CSR_NAR);
1222 		tctl = GETCSR(mxfep, CSR_TCTL);
1223 
1224 		ASSERT((nar & (NAR_TX_ENABLE | NAR_RX_ENABLE)) == 0);
1225 
1226 		nar &= ~(NAR_FDX | NAR_PORTSEL | NAR_SCR | NAR_SPEED);
1227 		tctl &= ~TCTL_ANE;
1228 		if (mxfep->mxfe_adv_100fdx) {
1229 			nar |= NAR_PORTSEL | NAR_PCS | NAR_SCR | NAR_FDX;
1230 		} else if (mxfep->mxfe_adv_100hdx) {
1231 			nar |= NAR_PORTSEL | NAR_PCS | NAR_SCR;
1232 		} else if (mxfep->mxfe_adv_10fdx) {
1233 			nar |= NAR_FDX | NAR_SPEED;
1234 		} else { /* mxfep->mxfe_adv_10hdx */
1235 			nar |= NAR_SPEED;
1236 		}
1237 
1238 		PUTCSR(mxfep, CSR_NAR, nar);
1239 		PUTCSR(mxfep, CSR_TCTL, tctl);
1240 
1241 		/* Macronix initializations from Bolo Tsai */
1242 		PUTCSR(mxfep, CSR_MXMAGIC, 0x0b2c0000);
1243 		PUTCSR(mxfep, CSR_ACOMP, 0x11000);
1244 	} else {
1245 		mxfe_startnway(mxfep);
1246 	}
1247 	PUTCSR(mxfep, CSR_TIMER, TIMER_LOOP |
1248 	    (MXFE_LINKTIMER * 1000 / TIMER_USEC));
1249 }
1250 
1251 /*
1252  * MII management.
1253  */
1254 void
1255 mxfe_startphymii(mxfe_t *mxfep)
1256 {
1257 	unsigned	phyaddr;
1258 	unsigned	bmcr;
1259 	unsigned	bmsr;
1260 	unsigned	anar;
1261 	unsigned	phyidr1;
1262 	unsigned	phyidr2;
1263 	int		retries;
1264 	int		cnt;
1265 
1266 	mxfep->mxfe_phyaddr = -1;
1267 
1268 	/* search for first PHY we can find */
1269 	for (phyaddr = 0; phyaddr < 32; phyaddr++) {
1270 		bmsr = mxfe_miiread(mxfep, phyaddr, MII_STATUS);
1271 		if ((bmsr != 0) && (bmsr != 0xffff)) {
1272 			mxfep->mxfe_phyaddr = phyaddr;
1273 			break;
1274 		}
1275 	}
1276 
1277 	phyidr1 = mxfe_miiread(mxfep, phyaddr, MII_PHYIDH);
1278 	phyidr2 = mxfe_miiread(mxfep, phyaddr, MII_PHYIDL);
1279 	mxfep->mxfe_phyid = (phyidr1 << 16) | (phyidr2);
1280 
1281 	/*
1282 	 * Generally, all Macronix based devices use an internal
1283 	 * 100BASE-TX internal transceiver.  If we ever run into a
1284 	 * variation on this, then the following logic will need to be
1285 	 * enhanced.
1286 	 *
1287 	 * One could question the value of the XCVR_INUSE field in the
1288 	 * MII statistics.
1289 	 */
1290 	if (bmsr & MII_STATUS_100_BASE_T4) {
1291 		mxfep->mxfe_phyinuse = XCVR_100T4;
1292 	} else {
1293 		mxfep->mxfe_phyinuse = XCVR_100X;
1294 	}
1295 
1296 	/* assume we support everything to start */
1297 	mxfep->mxfe_cap_aneg = mxfep->mxfe_cap_100T4 =
1298 	    mxfep->mxfe_cap_100fdx = mxfep->mxfe_cap_100hdx =
1299 	    mxfep->mxfe_cap_10fdx = mxfep->mxfe_cap_10hdx = 1;
1300 
1301 	DBG(DPHY, "phy at %d: %x,%x", phyaddr, phyidr1, phyidr2);
1302 	DBG(DPHY, "bmsr = %x", mxfe_miiread(mxfep,
1303 	    mxfep->mxfe_phyaddr, MII_STATUS));
1304 	DBG(DPHY, "anar = %x", mxfe_miiread(mxfep,
1305 	    mxfep->mxfe_phyaddr, MII_AN_ADVERT));
1306 	DBG(DPHY, "anlpar = %x", mxfe_miiread(mxfep,
1307 	    mxfep->mxfe_phyaddr, MII_AN_LPABLE));
1308 	DBG(DPHY, "aner = %x", mxfe_miiread(mxfep,
1309 	    mxfep->mxfe_phyaddr, MII_AN_EXPANSION));
1310 
1311 	DBG(DPHY, "resetting phy");
1312 
1313 	/* we reset the phy block */
1314 	mxfe_miiwrite(mxfep, phyaddr, MII_CONTROL, MII_CONTROL_RESET);
1315 	/*
1316 	 * wait for it to complete -- 500usec is still to short to
1317 	 * bother getting the system clock involved.
1318 	 */
1319 	drv_usecwait(500);
1320 	for (retries = 0; retries < 10; retries++) {
1321 		if (mxfe_miiread(mxfep, phyaddr, MII_CONTROL) &
1322 		    MII_CONTROL_RESET) {
1323 			drv_usecwait(500);
1324 			continue;
1325 		}
1326 		break;
1327 	}
1328 	if (retries == 100) {
1329 		mxfe_error(mxfep->mxfe_dip, "timeout waiting on phy to reset");
1330 		return;
1331 	}
1332 
1333 	DBG(DPHY, "phy reset complete");
1334 
1335 	bmsr = mxfe_miiread(mxfep, phyaddr, MII_STATUS);
1336 	bmcr = mxfe_miiread(mxfep, phyaddr, MII_CONTROL);
1337 	anar = mxfe_miiread(mxfep, phyaddr, MII_AN_ADVERT);
1338 
1339 	anar &= ~(MII_ABILITY_100BASE_T4 |
1340 	    MII_ABILITY_100BASE_TX_FD | MII_ABILITY_100BASE_TX |
1341 	    MII_ABILITY_10BASE_T_FD | MII_ABILITY_10BASE_T);
1342 
1343 	/* disable modes not supported in hardware */
1344 	if (!(bmsr & MII_STATUS_100_BASE_T4)) {
1345 		mxfep->mxfe_adv_100T4 = 0;
1346 		mxfep->mxfe_cap_100T4 = 0;
1347 	}
1348 	if (!(bmsr & MII_STATUS_100_BASEX_FD)) {
1349 		mxfep->mxfe_adv_100fdx = 0;
1350 		mxfep->mxfe_cap_100fdx = 0;
1351 	}
1352 	if (!(bmsr & MII_STATUS_100_BASEX)) {
1353 		mxfep->mxfe_adv_100hdx = 0;
1354 		mxfep->mxfe_cap_100hdx = 0;
1355 	}
1356 	if (!(bmsr & MII_STATUS_10_FD)) {
1357 		mxfep->mxfe_adv_10fdx = 0;
1358 		mxfep->mxfe_cap_10fdx = 0;
1359 	}
1360 	if (!(bmsr & MII_STATUS_10)) {
1361 		mxfep->mxfe_adv_10hdx = 0;
1362 		mxfep->mxfe_cap_10hdx = 0;
1363 	}
1364 	if (!(bmsr & MII_STATUS_CANAUTONEG)) {
1365 		mxfep->mxfe_adv_aneg = 0;
1366 		mxfep->mxfe_cap_aneg = 0;
1367 	}
1368 
1369 	cnt = 0;
1370 	if (mxfep->mxfe_adv_100T4) {
1371 		anar |= MII_ABILITY_100BASE_T4;
1372 		cnt++;
1373 	}
1374 	if (mxfep->mxfe_adv_100fdx) {
1375 		anar |= MII_ABILITY_100BASE_TX_FD;
1376 		cnt++;
1377 	}
1378 	if (mxfep->mxfe_adv_100hdx) {
1379 		anar |= MII_ABILITY_100BASE_TX;
1380 		cnt++;
1381 	}
1382 	if (mxfep->mxfe_adv_10fdx) {
1383 		anar |= MII_ABILITY_10BASE_T_FD;
1384 		cnt++;
1385 	}
1386 	if (mxfep->mxfe_adv_10hdx) {
1387 		anar |= MII_ABILITY_10BASE_T;
1388 		cnt++;
1389 	}
1390 
1391 	/*
1392 	 * Make certain at least one valid link mode is selected.
1393 	 */
1394 	if (!cnt) {
1395 		mxfe_error(mxfep->mxfe_dip, "No valid link mode selected.");
1396 		mxfe_error(mxfep->mxfe_dip, "Powering down PHY.");
1397 		mxfe_stopphy(mxfep);
1398 		mxfep->mxfe_linkup = LINK_STATE_DOWN;
1399 		if (mxfep->mxfe_flags & MXFE_RUNNING)
1400 			mxfe_reportlink(mxfep);
1401 		return;
1402 	}
1403 
1404 	if ((mxfep->mxfe_adv_aneg) && (bmsr & MII_STATUS_CANAUTONEG)) {
1405 		DBG(DPHY, "using autoneg mode");
1406 		bmcr = (MII_CONTROL_ANE | MII_CONTROL_RSAN);
1407 	} else {
1408 		DBG(DPHY, "using forced mode");
1409 		if (mxfep->mxfe_adv_100fdx) {
1410 			bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX);
1411 		} else if (mxfep->mxfe_adv_100hdx) {
1412 			bmcr = MII_CONTROL_100MB;
1413 		} else if (mxfep->mxfe_adv_10fdx) {
1414 			bmcr = MII_CONTROL_FDUPLEX;
1415 		} else {
1416 			/* 10HDX */
1417 			bmcr = 0;
1418 		}
1419 	}
1420 
1421 	DBG(DPHY, "programming anar to 0x%x", anar);
1422 	mxfe_miiwrite(mxfep, phyaddr, MII_AN_ADVERT, anar);
1423 	DBG(DPHY, "programming bmcr to 0x%x", bmcr);
1424 	mxfe_miiwrite(mxfep, phyaddr, MII_CONTROL, bmcr);
1425 
1426 	/*
1427 	 * schedule a query of the link status
1428 	 */
1429 	PUTCSR(mxfep, CSR_TIMER, TIMER_LOOP |
1430 	    (MXFE_LINKTIMER * 1000 / TIMER_USEC));
1431 }
1432 
1433 void
1434 mxfe_reportlink(mxfe_t *mxfep)
1435 {
1436 	int changed = 0;
1437 
1438 	if (mxfep->mxfe_ifspeed != mxfep->mxfe_lastifspeed) {
1439 		mxfep->mxfe_lastifspeed = mxfep->mxfe_ifspeed;
1440 		changed++;
1441 	}
1442 	if (mxfep->mxfe_duplex != mxfep->mxfe_lastduplex) {
1443 		mxfep->mxfe_lastduplex = mxfep->mxfe_duplex;
1444 		changed++;
1445 	}
1446 	if (mxfep->mxfe_linkup != mxfep->mxfe_lastlinkup) {
1447 		mxfep->mxfe_lastlinkup = mxfep->mxfe_linkup;
1448 		changed++;
1449 	}
1450 	if (changed)
1451 		mac_link_update(mxfep->mxfe_mh, mxfep->mxfe_linkup);
1452 }
1453 
1454 void
1455 mxfe_checklink(mxfe_t *mxfep)
1456 {
1457 	if ((mxfep->mxfe_flags & MXFE_RUNNING) == 0)
1458 		return;
1459 
1460 	if ((mxfep->mxfe_txstall_time != 0) &&
1461 	    (gethrtime() > mxfep->mxfe_txstall_time) &&
1462 	    (mxfep->mxfe_txavail != MXFE_TXRING)) {
1463 		mxfep->mxfe_txstall_time = 0;
1464 		mxfe_error(mxfep->mxfe_dip, "TX stall detected!");
1465 		mxfe_resetall(mxfep);
1466 		return;
1467 	}
1468 
1469 	switch (MXFE_MODEL(mxfep)) {
1470 	case MXFE_98713A:
1471 		mxfe_checklinkmii(mxfep);
1472 		break;
1473 	default:
1474 		mxfe_checklinknway(mxfep);
1475 	}
1476 }
1477 
1478 void
1479 mxfe_checklinkmii(mxfe_t *mxfep)
1480 {
1481 	/* read MII state registers */
1482 	uint16_t 	bmsr;
1483 	uint16_t 	bmcr;
1484 	uint16_t 	anar;
1485 	uint16_t 	anlpar;
1486 	uint16_t 	aner;
1487 
1488 	/* read this twice, to clear latched link state */
1489 	bmsr = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_STATUS);
1490 	bmsr = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_STATUS);
1491 	bmcr = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_CONTROL);
1492 	anar = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_ADVERT);
1493 	anlpar = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_LPABLE);
1494 	aner = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_EXPANSION);
1495 
1496 	mxfep->mxfe_bmsr = bmsr;
1497 	mxfep->mxfe_anlpar = anlpar;
1498 	mxfep->mxfe_aner = aner;
1499 
1500 	if (bmsr & MII_STATUS_REMFAULT) {
1501 		mxfe_error(mxfep->mxfe_dip, "Remote fault detected.");
1502 	}
1503 	if (bmsr & MII_STATUS_JABBERING) {
1504 		mxfe_error(mxfep->mxfe_dip, "Jabber condition detected.");
1505 	}
1506 	if ((bmsr & MII_STATUS_LINKUP) == 0) {
1507 		/* no link */
1508 		mxfep->mxfe_ifspeed = 0;
1509 		mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN;
1510 		mxfep->mxfe_linkup = LINK_STATE_DOWN;
1511 		mxfe_reportlink(mxfep);
1512 		return;
1513 	}
1514 
1515 	DBG(DCHATTY, "link up!");
1516 	mxfep->mxfe_linkup = LINK_STATE_UP;
1517 
1518 	if (!(bmcr & MII_CONTROL_ANE)) {
1519 		/* forced mode */
1520 		if (bmcr & MII_CONTROL_100MB) {
1521 			mxfep->mxfe_ifspeed = 100000000;
1522 		} else {
1523 			mxfep->mxfe_ifspeed = 10000000;
1524 		}
1525 		if (bmcr & MII_CONTROL_FDUPLEX) {
1526 			mxfep->mxfe_duplex = LINK_DUPLEX_FULL;
1527 		} else {
1528 			mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1529 		}
1530 	} else if ((!(bmsr & MII_STATUS_CANAUTONEG)) ||
1531 	    (!(bmsr & MII_STATUS_ANDONE))) {
1532 		mxfep->mxfe_ifspeed = 0;
1533 		mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN;
1534 	} else if (anar & anlpar & MII_ABILITY_100BASE_TX_FD) {
1535 		mxfep->mxfe_ifspeed = 100000000;
1536 		mxfep->mxfe_duplex = LINK_DUPLEX_FULL;
1537 	} else if (anar & anlpar & MII_ABILITY_100BASE_T4) {
1538 		mxfep->mxfe_ifspeed = 100000000;
1539 		mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1540 	} else if (anar & anlpar & MII_ABILITY_100BASE_TX) {
1541 		mxfep->mxfe_ifspeed = 100000000;
1542 		mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1543 	} else if (anar & anlpar & MII_ABILITY_10BASE_T_FD) {
1544 		mxfep->mxfe_ifspeed = 10000000;
1545 		mxfep->mxfe_duplex = LINK_DUPLEX_FULL;
1546 	} else if (anar & anlpar & MII_ABILITY_10BASE_T) {
1547 		mxfep->mxfe_ifspeed = 10000000;
1548 		mxfep->mxfe_duplex = LINK_DUPLEX_HALF;
1549 	} else {
1550 		mxfep->mxfe_ifspeed = 0;
1551 		mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN;
1552 	}
1553 
1554 	mxfe_reportlink(mxfep);
1555 }
1556 
1557 void
1558 mxfe_miitristate(mxfe_t *mxfep)
1559 {
1560 	unsigned val = SPR_SROM_WRITE | SPR_MII_CTRL;
1561 	PUTCSR(mxfep, CSR_SPR, val);
1562 	drv_usecwait(1);
1563 	PUTCSR(mxfep, CSR_SPR, val | SPR_MII_CLOCK);
1564 	drv_usecwait(1);
1565 }
1566 
1567 void
1568 mxfe_miiwritebit(mxfe_t *mxfep, uint8_t bit)
1569 {
1570 	unsigned val = bit ? SPR_MII_DOUT : 0;
1571 	PUTCSR(mxfep, CSR_SPR, val);
1572 	drv_usecwait(1);
1573 	PUTCSR(mxfep, CSR_SPR, val | SPR_MII_CLOCK);
1574 	drv_usecwait(1);
1575 }
1576 
1577 uint8_t
1578 mxfe_miireadbit(mxfe_t *mxfep)
1579 {
1580 	unsigned val = SPR_MII_CTRL | SPR_SROM_READ;
1581 	uint8_t bit;
1582 	PUTCSR(mxfep, CSR_SPR, val);
1583 	drv_usecwait(1);
1584 	bit = (GETCSR(mxfep, CSR_SPR) & SPR_MII_DIN) ? 1 : 0;
1585 	PUTCSR(mxfep, CSR_SPR, val | SPR_MII_CLOCK);
1586 	drv_usecwait(1);
1587 	return (bit);
1588 }
1589 
1590 uint16_t
1591 mxfe_miiread(mxfe_t *mxfep, int phy, int reg)
1592 {
1593 	switch (MXFE_MODEL(mxfep)) {
1594 	case MXFE_98713A:
1595 		return (mxfe_miiread98713(mxfep, phy, reg));
1596 	default:
1597 		return (0xffff);
1598 	}
1599 }
1600 
1601 uint16_t
1602 mxfe_miireadgeneral(mxfe_t *mxfep, int phy, int reg)
1603 {
1604 	uint16_t	value = 0;
1605 	int		i;
1606 
1607 	/* send the 32 bit preamble */
1608 	for (i = 0; i < 32; i++) {
1609 		mxfe_miiwritebit(mxfep, 1);
1610 	}
1611 
1612 	/* send the start code - 01b */
1613 	mxfe_miiwritebit(mxfep, 0);
1614 	mxfe_miiwritebit(mxfep, 1);
1615 
1616 	/* send the opcode for read, - 10b */
1617 	mxfe_miiwritebit(mxfep, 1);
1618 	mxfe_miiwritebit(mxfep, 0);
1619 
1620 	/* next we send the 5 bit phy address */
1621 	for (i = 0x10; i > 0; i >>= 1) {
1622 		mxfe_miiwritebit(mxfep, (phy & i) ? 1 : 0);
1623 	}
1624 
1625 	/* the 5 bit register address goes next */
1626 	for (i = 0x10; i > 0; i >>= 1) {
1627 		mxfe_miiwritebit(mxfep, (reg & i) ? 1 : 0);
1628 	}
1629 
1630 	/* turnaround - tristate followed by logic 0 */
1631 	mxfe_miitristate(mxfep);
1632 	mxfe_miiwritebit(mxfep, 0);
1633 
1634 	/* read the 16 bit register value */
1635 	for (i = 0x8000; i > 0; i >>= 1) {
1636 		value <<= 1;
1637 		value |= mxfe_miireadbit(mxfep);
1638 	}
1639 	mxfe_miitristate(mxfep);
1640 	return (value);
1641 }
1642 
1643 uint16_t
1644 mxfe_miiread98713(mxfe_t *mxfep, int phy, int reg)
1645 {
1646 	unsigned nar;
1647 	uint16_t retval;
1648 	/*
1649 	 * like an ordinary MII, but we have to turn off portsel while
1650 	 * we read it.
1651 	 */
1652 	nar = GETCSR(mxfep, CSR_NAR);
1653 	PUTCSR(mxfep, CSR_NAR, nar & ~NAR_PORTSEL);
1654 	retval = mxfe_miireadgeneral(mxfep, phy, reg);
1655 	PUTCSR(mxfep, CSR_NAR, nar);
1656 	return (retval);
1657 }
1658 
1659 void
1660 mxfe_miiwrite(mxfe_t *mxfep, int phy, int reg, uint16_t val)
1661 {
1662 	switch (MXFE_MODEL(mxfep)) {
1663 	case MXFE_98713A:
1664 		mxfe_miiwrite98713(mxfep, phy, reg, val);
1665 		break;
1666 	default:
1667 		break;
1668 	}
1669 }
1670 
1671 void
1672 mxfe_miiwritegeneral(mxfe_t *mxfep, int phy, int reg, uint16_t val)
1673 {
1674 	int i;
1675 
1676 	/* send the 32 bit preamble */
1677 	for (i = 0; i < 32; i++) {
1678 		mxfe_miiwritebit(mxfep, 1);
1679 	}
1680 
1681 	/* send the start code - 01b */
1682 	mxfe_miiwritebit(mxfep, 0);
1683 	mxfe_miiwritebit(mxfep, 1);
1684 
1685 	/* send the opcode for write, - 01b */
1686 	mxfe_miiwritebit(mxfep, 0);
1687 	mxfe_miiwritebit(mxfep, 1);
1688 
1689 	/* next we send the 5 bit phy address */
1690 	for (i = 0x10; i > 0; i >>= 1) {
1691 		mxfe_miiwritebit(mxfep, (phy & i) ? 1 : 0);
1692 	}
1693 
1694 	/* the 5 bit register address goes next */
1695 	for (i = 0x10; i > 0; i >>= 1) {
1696 		mxfe_miiwritebit(mxfep, (reg & i) ? 1 : 0);
1697 	}
1698 
1699 	/* turnaround - tristate followed by logic 0 */
1700 	mxfe_miitristate(mxfep);
1701 	mxfe_miiwritebit(mxfep, 0);
1702 
1703 	/* now write out our data (16 bits) */
1704 	for (i = 0x8000; i > 0; i >>= 1) {
1705 		mxfe_miiwritebit(mxfep, (val & i) ? 1 : 0);
1706 	}
1707 
1708 	/* idle mode */
1709 	mxfe_miitristate(mxfep);
1710 }
1711 
1712 void
1713 mxfe_miiwrite98713(mxfe_t *mxfep, int phy, int reg, uint16_t val)
1714 {
1715 	unsigned nar;
1716 	/*
1717 	 * like an ordinary MII, but we have to turn off portsel while
1718 	 * we read it.
1719 	 */
1720 	nar = GETCSR(mxfep, CSR_NAR);
1721 	PUTCSR(mxfep, CSR_NAR, nar & ~NAR_PORTSEL);
1722 	mxfe_miiwritegeneral(mxfep, phy, reg, val);
1723 	PUTCSR(mxfep, CSR_NAR, nar);
1724 }
1725 
1726 int
1727 mxfe_m_start(void *arg)
1728 {
1729 	mxfe_t	*mxfep = arg;
1730 
1731 	/* grab exclusive access to the card */
1732 	mutex_enter(&mxfep->mxfe_intrlock);
1733 	mutex_enter(&mxfep->mxfe_xmtlock);
1734 
1735 	mxfe_startall(mxfep);
1736 	mxfep->mxfe_flags |= MXFE_RUNNING;
1737 
1738 	mutex_exit(&mxfep->mxfe_xmtlock);
1739 	mutex_exit(&mxfep->mxfe_intrlock);
1740 	return (0);
1741 }
1742 
1743 void
1744 mxfe_m_stop(void *arg)
1745 {
1746 	mxfe_t	*mxfep = arg;
1747 
1748 	/* exclusive access to the hardware! */
1749 	mutex_enter(&mxfep->mxfe_intrlock);
1750 	mutex_enter(&mxfep->mxfe_xmtlock);
1751 
1752 	mxfe_stopall(mxfep);
1753 	mxfep->mxfe_flags &= ~MXFE_RUNNING;
1754 
1755 	mutex_exit(&mxfep->mxfe_xmtlock);
1756 	mutex_exit(&mxfep->mxfe_intrlock);
1757 }
1758 
1759 void
1760 mxfe_startmac(mxfe_t *mxfep)
1761 {
1762 	/* verify exclusive access to the card */
1763 	ASSERT(mutex_owned(&mxfep->mxfe_intrlock));
1764 	ASSERT(mutex_owned(&mxfep->mxfe_xmtlock));
1765 
1766 	/* start the card */
1767 	SETBIT(mxfep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1768 
1769 	if (mxfep->mxfe_txavail != MXFE_TXRING)
1770 		PUTCSR(mxfep, CSR_TDR, 0);
1771 
1772 	/* tell the mac that we are ready to go! */
1773 	if (mxfep->mxfe_flags & MXFE_RUNNING)
1774 		mac_tx_update(mxfep->mxfe_mh);
1775 }
1776 
1777 void
1778 mxfe_stopmac(mxfe_t *mxfep)
1779 {
1780 	int		i;
1781 
1782 	/* exclusive access to the hardware! */
1783 	ASSERT(mutex_owned(&mxfep->mxfe_intrlock));
1784 	ASSERT(mutex_owned(&mxfep->mxfe_xmtlock));
1785 
1786 	CLRBIT(mxfep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1787 
1788 	/*
1789 	 * A 1518 byte frame at 10Mbps takes about 1.2 msec to drain.
1790 	 * We just add up to the nearest msec (2), which should be
1791 	 * plenty to complete.
1792 	 *
1793 	 * Note that some chips never seem to indicate the transition to
1794 	 * the stopped state properly.  Experience shows that we can safely
1795 	 * proceed anyway, after waiting the requisite timeout.
1796 	 */
1797 	for (i = 2000; i != 0; i -= 10) {
1798 		if ((GETCSR(mxfep, CSR_SR) & (SR_TX_STATE | SR_RX_STATE)) == 0)
1799 			break;
1800 		drv_usecwait(10);
1801 	}
1802 
1803 	/* prevent an interrupt */
1804 	PUTCSR(mxfep, CSR_SR, INT_RXSTOPPED | INT_TXSTOPPED);
1805 }
1806 
1807 void
1808 mxfe_resetrings(mxfe_t *mxfep)
1809 {
1810 	int	i;
1811 
1812 	/* now we need to reset the pointers... */
1813 	PUTCSR(mxfep, CSR_RDB, 0);
1814 	PUTCSR(mxfep, CSR_TDB, 0);
1815 
1816 	/* reset the descriptor ring pointers */
1817 	mxfep->mxfe_rxhead = 0;
1818 	mxfep->mxfe_txreclaim = 0;
1819 	mxfep->mxfe_txsend = 0;
1820 	mxfep->mxfe_txavail = MXFE_TXRING;
1821 
1822 	/* set up transmit descriptor ring */
1823 	for (i = 0; i < MXFE_TXRING; i++) {
1824 		mxfe_desc_t	*tmdp = &mxfep->mxfe_txdescp[i];
1825 		unsigned	control = 0;
1826 		if (i == (MXFE_TXRING - 1)) {
1827 			control |= TXCTL_ENDRING;
1828 		}
1829 		PUTTXDESC(mxfep, tmdp->desc_status, 0);
1830 		PUTTXDESC(mxfep, tmdp->desc_control, control);
1831 		PUTTXDESC(mxfep, tmdp->desc_buffer1, 0);
1832 		PUTTXDESC(mxfep, tmdp->desc_buffer2, 0);
1833 		SYNCTXDESC(mxfep, i, DDI_DMA_SYNC_FORDEV);
1834 	}
1835 	PUTCSR(mxfep, CSR_TDB, mxfep->mxfe_txdesc_paddr);
1836 
1837 	/* make the receive buffers available */
1838 	for (i = 0; i < MXFE_RXRING; i++) {
1839 		mxfe_rxbuf_t	*rxb = mxfep->mxfe_rxbufs[i];
1840 		mxfe_desc_t	*rmdp = &mxfep->mxfe_rxdescp[i];
1841 		unsigned	control;
1842 
1843 		control = MXFE_BUFSZ & RXCTL_BUFLEN1;
1844 		if (i == (MXFE_RXRING - 1)) {
1845 			control |= RXCTL_ENDRING;
1846 		}
1847 		PUTRXDESC(mxfep, rmdp->desc_buffer1, rxb->rxb_paddr);
1848 		PUTRXDESC(mxfep, rmdp->desc_buffer2, 0);
1849 		PUTRXDESC(mxfep, rmdp->desc_control, control);
1850 		PUTRXDESC(mxfep, rmdp->desc_status, RXSTAT_OWN);
1851 		SYNCRXDESC(mxfep, i, DDI_DMA_SYNC_FORDEV);
1852 	}
1853 	PUTCSR(mxfep, CSR_RDB, mxfep->mxfe_rxdesc_paddr);
1854 }
1855 
1856 void
1857 mxfe_stopall(mxfe_t *mxfep)
1858 {
1859 	mxfe_disableinterrupts(mxfep);
1860 
1861 	mxfe_stopmac(mxfep);
1862 
1863 	/* stop the phy */
1864 	mxfe_stopphy(mxfep);
1865 }
1866 
1867 void
1868 mxfe_startall(mxfe_t *mxfep)
1869 {
1870 	ASSERT(mutex_owned(&mxfep->mxfe_intrlock));
1871 	ASSERT(mutex_owned(&mxfep->mxfe_xmtlock));
1872 
1873 	/* make sure interrupts are disabled to begin */
1874 	mxfe_disableinterrupts(mxfep);
1875 
1876 	/* initialize the chip */
1877 	(void) mxfe_initialize(mxfep);
1878 
1879 	/* now we can enable interrupts */
1880 	mxfe_enableinterrupts(mxfep);
1881 
1882 	/* start up the phy */
1883 	mxfe_startphy(mxfep);
1884 
1885 	/* start up the mac */
1886 	mxfe_startmac(mxfep);
1887 }
1888 
1889 void
1890 mxfe_resetall(mxfe_t *mxfep)
1891 {
1892 	mxfep->mxfe_resetting = B_TRUE;
1893 	mxfe_stopall(mxfep);
1894 	mxfep->mxfe_resetting = B_FALSE;
1895 	mxfe_startall(mxfep);
1896 }
1897 
1898 mxfe_txbuf_t *
1899 mxfe_alloctxbuf(mxfe_t *mxfep)
1900 {
1901 	ddi_dma_cookie_t	dmac;
1902 	unsigned		ncookies;
1903 	mxfe_txbuf_t		*txb;
1904 	size_t			len;
1905 
1906 	txb = kmem_zalloc(sizeof (*txb), KM_SLEEP);
1907 
1908 	if (ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_txattr,
1909 	    DDI_DMA_SLEEP, NULL, &txb->txb_dmah) != DDI_SUCCESS) {
1910 		return (NULL);
1911 	}
1912 
1913 	if (ddi_dma_mem_alloc(txb->txb_dmah, MXFE_BUFSZ, &mxfe_bufattr,
1914 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &txb->txb_buf,
1915 	    &len, &txb->txb_acch) != DDI_SUCCESS) {
1916 		return (NULL);
1917 	}
1918 	if (ddi_dma_addr_bind_handle(txb->txb_dmah, NULL, txb->txb_buf,
1919 	    len, DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
1920 	    &dmac, &ncookies) != DDI_DMA_MAPPED) {
1921 		return (NULL);
1922 	}
1923 	txb->txb_paddr = dmac.dmac_address;
1924 
1925 	return (txb);
1926 }
1927 
1928 void
1929 mxfe_destroytxbuf(mxfe_txbuf_t *txb)
1930 {
1931 	if (txb != NULL) {
1932 		if (txb->txb_paddr)
1933 			(void) ddi_dma_unbind_handle(txb->txb_dmah);
1934 		if (txb->txb_acch)
1935 			ddi_dma_mem_free(&txb->txb_acch);
1936 		if (txb->txb_dmah)
1937 			ddi_dma_free_handle(&txb->txb_dmah);
1938 		kmem_free(txb, sizeof (*txb));
1939 	}
1940 }
1941 
1942 mxfe_rxbuf_t *
1943 mxfe_allocrxbuf(mxfe_t *mxfep)
1944 {
1945 	mxfe_rxbuf_t 		*rxb;
1946 	size_t			len;
1947 	unsigned		ccnt;
1948 	ddi_dma_cookie_t	dmac;
1949 
1950 	rxb = kmem_zalloc(sizeof (*rxb), KM_SLEEP);
1951 
1952 	if (ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_attr,
1953 	    DDI_DMA_SLEEP, NULL, &rxb->rxb_dmah) != DDI_SUCCESS) {
1954 		kmem_free(rxb, sizeof (*rxb));
1955 		return (NULL);
1956 	}
1957 	if (ddi_dma_mem_alloc(rxb->rxb_dmah, MXFE_BUFSZ, &mxfe_bufattr,
1958 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
1959 	    &rxb->rxb_buf, &len, &rxb->rxb_acch) != DDI_SUCCESS) {
1960 		ddi_dma_free_handle(&rxb->rxb_dmah);
1961 		kmem_free(rxb, sizeof (*rxb));
1962 		return (NULL);
1963 	}
1964 	if (ddi_dma_addr_bind_handle(rxb->rxb_dmah, NULL, rxb->rxb_buf, len,
1965 	    DDI_DMA_READ | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac,
1966 	    &ccnt) != DDI_DMA_MAPPED) {
1967 		ddi_dma_mem_free(&rxb->rxb_acch);
1968 		ddi_dma_free_handle(&rxb->rxb_dmah);
1969 		kmem_free(rxb, sizeof (*rxb));
1970 		return (NULL);
1971 	}
1972 	rxb->rxb_paddr = dmac.dmac_address;
1973 
1974 	return (rxb);
1975 }
1976 
1977 void
1978 mxfe_destroyrxbuf(mxfe_rxbuf_t *rxb)
1979 {
1980 	if (rxb != NULL) {
1981 		(void) ddi_dma_unbind_handle(rxb->rxb_dmah);
1982 		ddi_dma_mem_free(&rxb->rxb_acch);
1983 		ddi_dma_free_handle(&rxb->rxb_dmah);
1984 		kmem_free(rxb, sizeof (*rxb));
1985 	}
1986 }
1987 
1988 /*
1989  * Allocate receive resources.
1990  */
1991 int
1992 mxfe_allocrxring(mxfe_t *mxfep)
1993 {
1994 	int			rval;
1995 	int			i;
1996 	size_t			size;
1997 	size_t			len;
1998 	ddi_dma_cookie_t	dmac;
1999 	unsigned		ncookies;
2000 	caddr_t			kaddr;
2001 
2002 	size = MXFE_RXRING * sizeof (mxfe_desc_t);
2003 
2004 	rval = ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_attr,
2005 	    DDI_DMA_SLEEP, NULL, &mxfep->mxfe_rxdesc_dmah);
2006 	if (rval != DDI_SUCCESS) {
2007 		mxfe_error(mxfep->mxfe_dip,
2008 		    "unable to allocate DMA handle for rx descriptors");
2009 		return (DDI_FAILURE);
2010 	}
2011 
2012 	rval = ddi_dma_mem_alloc(mxfep->mxfe_rxdesc_dmah, size, &mxfe_devattr,
2013 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
2014 	    &mxfep->mxfe_rxdesc_acch);
2015 	if (rval != DDI_SUCCESS) {
2016 		mxfe_error(mxfep->mxfe_dip,
2017 		    "unable to allocate DMA memory for rx descriptors");
2018 		return (DDI_FAILURE);
2019 	}
2020 
2021 	rval = ddi_dma_addr_bind_handle(mxfep->mxfe_rxdesc_dmah, NULL, kaddr,
2022 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
2023 	    &dmac, &ncookies);
2024 	if (rval != DDI_DMA_MAPPED) {
2025 		mxfe_error(mxfep->mxfe_dip,
2026 		    "unable to bind DMA for rx descriptors");
2027 		return (DDI_FAILURE);
2028 	}
2029 
2030 	/* because of mxfe_dma_attr */
2031 	ASSERT(ncookies == 1);
2032 
2033 	/* we take the 32-bit physical address out of the cookie */
2034 	mxfep->mxfe_rxdesc_paddr = dmac.dmac_address;
2035 	mxfep->mxfe_rxdescp = (void *)kaddr;
2036 
2037 	/* allocate buffer pointers (not the buffers themselves, yet) */
2038 	mxfep->mxfe_rxbufs = kmem_zalloc(MXFE_RXRING * sizeof (mxfe_rxbuf_t *),
2039 	    KM_SLEEP);
2040 
2041 	/* now allocate rx buffers */
2042 	for (i = 0; i < MXFE_RXRING; i++) {
2043 		mxfe_rxbuf_t *rxb = mxfe_allocrxbuf(mxfep);
2044 		if (rxb == NULL)
2045 			return (DDI_FAILURE);
2046 		mxfep->mxfe_rxbufs[i] = rxb;
2047 	}
2048 
2049 	return (DDI_SUCCESS);
2050 }
2051 
2052 /*
2053  * Allocate transmit resources.
2054  */
2055 int
2056 mxfe_alloctxring(mxfe_t *mxfep)
2057 {
2058 	int			rval;
2059 	int			i;
2060 	size_t			size;
2061 	size_t			len;
2062 	ddi_dma_cookie_t	dmac;
2063 	unsigned		ncookies;
2064 	caddr_t			kaddr;
2065 
2066 	size = MXFE_TXRING * sizeof (mxfe_desc_t);
2067 
2068 	rval = ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_attr,
2069 	    DDI_DMA_SLEEP, NULL, &mxfep->mxfe_txdesc_dmah);
2070 	if (rval != DDI_SUCCESS) {
2071 		mxfe_error(mxfep->mxfe_dip,
2072 		    "unable to allocate DMA handle for tx descriptors");
2073 		return (DDI_FAILURE);
2074 	}
2075 
2076 	rval = ddi_dma_mem_alloc(mxfep->mxfe_txdesc_dmah, size, &mxfe_devattr,
2077 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
2078 	    &mxfep->mxfe_txdesc_acch);
2079 	if (rval != DDI_SUCCESS) {
2080 		mxfe_error(mxfep->mxfe_dip,
2081 		    "unable to allocate DMA memory for tx descriptors");
2082 		return (DDI_FAILURE);
2083 	}
2084 
2085 	rval = ddi_dma_addr_bind_handle(mxfep->mxfe_txdesc_dmah, NULL, kaddr,
2086 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
2087 	    &dmac, &ncookies);
2088 	if (rval != DDI_DMA_MAPPED) {
2089 		mxfe_error(mxfep->mxfe_dip,
2090 		    "unable to bind DMA for tx descriptors");
2091 		return (DDI_FAILURE);
2092 	}
2093 
2094 	/* because of mxfe_dma_attr */
2095 	ASSERT(ncookies == 1);
2096 
2097 	/* we take the 32-bit physical address out of the cookie */
2098 	mxfep->mxfe_txdesc_paddr = dmac.dmac_address;
2099 	mxfep->mxfe_txdescp = (void *)kaddr;
2100 
2101 	/* allocate buffer pointers (not the buffers themselves, yet) */
2102 	mxfep->mxfe_txbufs = kmem_zalloc(MXFE_TXRING * sizeof (mxfe_txbuf_t *),
2103 	    KM_SLEEP);
2104 
2105 	/* now allocate tx buffers */
2106 	for (i = 0; i < MXFE_TXRING; i++) {
2107 		mxfe_txbuf_t *txb = mxfe_alloctxbuf(mxfep);
2108 		if (txb == NULL)
2109 			return (DDI_FAILURE);
2110 		/* stick it in the stack */
2111 		mxfep->mxfe_txbufs[i] = txb;
2112 	}
2113 
2114 	return (DDI_SUCCESS);
2115 }
2116 
2117 void
2118 mxfe_freerxring(mxfe_t *mxfep)
2119 {
2120 	int		i;
2121 
2122 	for (i = 0; i < MXFE_RXRING; i++) {
2123 		mxfe_destroyrxbuf(mxfep->mxfe_rxbufs[i]);
2124 	}
2125 
2126 	if (mxfep->mxfe_rxbufs) {
2127 		kmem_free(mxfep->mxfe_rxbufs,
2128 		    MXFE_RXRING * sizeof (mxfe_rxbuf_t *));
2129 	}
2130 
2131 	if (mxfep->mxfe_rxdesc_paddr)
2132 		(void) ddi_dma_unbind_handle(mxfep->mxfe_rxdesc_dmah);
2133 	if (mxfep->mxfe_rxdesc_acch)
2134 		ddi_dma_mem_free(&mxfep->mxfe_rxdesc_acch);
2135 	if (mxfep->mxfe_rxdesc_dmah)
2136 		ddi_dma_free_handle(&mxfep->mxfe_rxdesc_dmah);
2137 }
2138 
2139 void
2140 mxfe_freetxring(mxfe_t *mxfep)
2141 {
2142 	int			i;
2143 
2144 	for (i = 0; i < MXFE_TXRING; i++) {
2145 		mxfe_destroytxbuf(mxfep->mxfe_txbufs[i]);
2146 	}
2147 
2148 	if (mxfep->mxfe_txbufs) {
2149 		kmem_free(mxfep->mxfe_txbufs,
2150 		    MXFE_TXRING * sizeof (mxfe_txbuf_t *));
2151 	}
2152 	if (mxfep->mxfe_txdesc_paddr)
2153 		(void) ddi_dma_unbind_handle(mxfep->mxfe_txdesc_dmah);
2154 	if (mxfep->mxfe_txdesc_acch)
2155 		ddi_dma_mem_free(&mxfep->mxfe_txdesc_acch);
2156 	if (mxfep->mxfe_txdesc_dmah)
2157 		ddi_dma_free_handle(&mxfep->mxfe_txdesc_dmah);
2158 }
2159 
2160 /*
2161  * Interrupt service routine.
2162  */
2163 unsigned
2164 mxfe_intr(caddr_t arg)
2165 {
2166 	mxfe_t		*mxfep = (void *)arg;
2167 	uint32_t	status;
2168 	mblk_t		*mp = NULL;
2169 	boolean_t	error = B_FALSE;
2170 
2171 	mutex_enter(&mxfep->mxfe_intrlock);
2172 
2173 	if (mxfep->mxfe_flags & MXFE_SUSPENDED) {
2174 		/* we cannot receive interrupts! */
2175 		mutex_exit(&mxfep->mxfe_intrlock);
2176 		return (DDI_INTR_UNCLAIMED);
2177 	}
2178 
2179 	/* check interrupt status bits, did we interrupt? */
2180 	status = GETCSR(mxfep, CSR_SR) & INT_ALL;
2181 
2182 	if (status == 0) {
2183 		KIOIP->intrs[KSTAT_INTR_SPURIOUS]++;
2184 		mutex_exit(&mxfep->mxfe_intrlock);
2185 		return (DDI_INTR_UNCLAIMED);
2186 	}
2187 	/* ack the interrupt */
2188 	PUTCSR(mxfep, CSR_SR, status);
2189 	KIOIP->intrs[KSTAT_INTR_HARD]++;
2190 
2191 	if (!(mxfep->mxfe_flags & MXFE_RUNNING)) {
2192 		/* not running, don't touch anything */
2193 		mutex_exit(&mxfep->mxfe_intrlock);
2194 		return (DDI_INTR_CLAIMED);
2195 	}
2196 
2197 	if (status & INT_RXOK) {
2198 		/* receive packets */
2199 		if (mxfe_receive(mxfep, &mp)) {
2200 			error = B_TRUE;
2201 		}
2202 	}
2203 
2204 	if (status & INT_TXOK) {
2205 		/* transmit completed */
2206 		mutex_enter(&mxfep->mxfe_xmtlock);
2207 		mxfe_reclaim(mxfep);
2208 		mutex_exit(&mxfep->mxfe_xmtlock);
2209 	}
2210 
2211 	if (((status & (INT_TIMER|INT_ANEG)) != 0) ||
2212 	    ((mxfep->mxfe_linkup == LINK_STATE_UP) &&
2213 	    ((status & (INT_10LINK|INT_100LINK)) != 0))) {
2214 		/* rescan the link */
2215 		mutex_enter(&mxfep->mxfe_xmtlock);
2216 		mxfe_checklink(mxfep);
2217 		mutex_exit(&mxfep->mxfe_xmtlock);
2218 	}
2219 
2220 	if (status & (INT_RXSTOPPED|INT_TXSTOPPED|INT_RXNOBUF|
2221 	    INT_RXJABBER|INT_TXJABBER|INT_TXUNDERFLOW)) {
2222 
2223 		if (status & (INT_RXJABBER | INT_TXJABBER)) {
2224 			mxfep->mxfe_jabber++;
2225 		}
2226 		DBG(DWARN, "error interrupt: status %x", status);
2227 		error = B_TRUE;
2228 	}
2229 
2230 	if (status & INT_BUSERR) {
2231 		switch (status & SR_BERR_TYPE) {
2232 		case SR_BERR_PARITY:
2233 			mxfe_error(mxfep->mxfe_dip, "PCI parity error");
2234 			break;
2235 		case SR_BERR_TARGET_ABORT:
2236 			mxfe_error(mxfep->mxfe_dip, "PCI target abort");
2237 			break;
2238 		case SR_BERR_MASTER_ABORT:
2239 			mxfe_error(mxfep->mxfe_dip, "PCI master abort");
2240 			break;
2241 		default:
2242 			mxfe_error(mxfep->mxfe_dip, "Unknown PCI error");
2243 			break;
2244 		}
2245 
2246 		error = B_TRUE;
2247 	}
2248 
2249 	if (error) {
2250 		/* reset the chip in an attempt to fix things */
2251 		mutex_enter(&mxfep->mxfe_xmtlock);
2252 		mxfe_resetall(mxfep);
2253 		mutex_exit(&mxfep->mxfe_xmtlock);
2254 	}
2255 
2256 	mutex_exit(&mxfep->mxfe_intrlock);
2257 
2258 	/*
2259 	 * Send up packets.  We do this outside of the intrlock.
2260 	 */
2261 	if (mp) {
2262 		mac_rx(mxfep->mxfe_mh, NULL, mp);
2263 	}
2264 
2265 	return (DDI_INTR_CLAIMED);
2266 }
2267 
2268 void
2269 mxfe_enableinterrupts(mxfe_t *mxfep)
2270 {
2271 	unsigned mask = INT_WANTED;
2272 
2273 	if (mxfep->mxfe_wantw)
2274 		mask |= INT_TXOK;
2275 
2276 	if (MXFE_MODEL(mxfep) != MXFE_98713A)
2277 		mask |= INT_LINKSTATUS;
2278 
2279 	DBG(DINTR, "setting int mask to 0x%x", mask);
2280 	PUTCSR(mxfep, CSR_IER, mask);
2281 }
2282 
2283 void
2284 mxfe_disableinterrupts(mxfe_t *mxfep)
2285 {
2286 	/* disable further interrupts */
2287 	PUTCSR(mxfep, CSR_IER, 0);
2288 
2289 	/* clear any pending interrupts */
2290 	PUTCSR(mxfep, CSR_SR, INT_ALL);
2291 }
2292 
2293 void
2294 mxfe_send_setup(mxfe_t *mxfep)
2295 {
2296 	mxfe_txbuf_t	*txb;
2297 	mxfe_desc_t	*tmdp;
2298 
2299 	ASSERT(mutex_owned(&mxfep->mxfe_xmtlock));
2300 
2301 	/* setup frame -- must be at head of list -- guaranteed by caller! */
2302 	ASSERT(mxfep->mxfe_txsend == 0);
2303 
2304 	txb = mxfep->mxfe_txbufs[0];
2305 	tmdp = &mxfep->mxfe_txdescp[0];
2306 
2307 	bzero(txb->txb_buf, MXFE_SETUP_LEN);
2308 
2309 	/* program the unicast address */
2310 	txb->txb_buf[156] = mxfep->mxfe_curraddr[0];
2311 	txb->txb_buf[157] = mxfep->mxfe_curraddr[1];
2312 	txb->txb_buf[160] = mxfep->mxfe_curraddr[2];
2313 	txb->txb_buf[161] = mxfep->mxfe_curraddr[3];
2314 	txb->txb_buf[164] = mxfep->mxfe_curraddr[4];
2315 	txb->txb_buf[165] = mxfep->mxfe_curraddr[5];
2316 
2317 	/* make sure that the hardware can see it */
2318 	SYNCTXBUF(txb, MXFE_SETUP_LEN, DDI_DMA_SYNC_FORDEV);
2319 
2320 	PUTTXDESC(mxfep, tmdp->desc_control,
2321 	    TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE | TXCTL_HASHPERF |
2322 	    TXCTL_SETUP | MXFE_SETUP_LEN);
2323 
2324 	PUTTXDESC(mxfep, tmdp->desc_buffer1, txb->txb_paddr);
2325 	PUTTXDESC(mxfep, tmdp->desc_buffer2, 0);
2326 	PUTTXDESC(mxfep, tmdp->desc_status, TXSTAT_OWN);
2327 
2328 	/* sync the descriptor out to the device */
2329 	SYNCTXDESC(mxfep, 0, DDI_DMA_SYNC_FORDEV);
2330 
2331 	/*
2332 	 * wake up the chip ... inside the lock to protect against DR suspend,
2333 	 * etc.
2334 	 */
2335 	PUTCSR(mxfep, CSR_TDR, 0);
2336 	mxfep->mxfe_txsend++;
2337 	mxfep->mxfe_txavail--;
2338 
2339 	/*
2340 	 * Program promiscuous mode.
2341 	 */
2342 	if (mxfep->mxfe_promisc) {
2343 		SETBIT(mxfep, CSR_NAR, NAR_RX_PROMISC);
2344 	} else {
2345 		CLRBIT(mxfep, CSR_NAR, NAR_RX_PROMISC);
2346 	}
2347 }
2348 
2349 boolean_t
2350 mxfe_send(mxfe_t *mxfep, mblk_t *mp)
2351 {
2352 	size_t			len;
2353 	mxfe_txbuf_t		*txb;
2354 	mxfe_desc_t		*tmd;
2355 	uint32_t		control;
2356 	int			txsend;
2357 
2358 	ASSERT(mutex_owned(&mxfep->mxfe_xmtlock));
2359 	ASSERT(mp != NULL);
2360 
2361 	len = msgsize(mp);
2362 	if (len > ETHERVLANMTU) {
2363 		DBG(DXMIT, "frame too long: %d", len);
2364 		mxfep->mxfe_macxmt_errors++;
2365 		freemsg(mp);
2366 		return (B_TRUE);
2367 	}
2368 
2369 	if (mxfep->mxfe_txavail < MXFE_TXRECLAIM)
2370 		mxfe_reclaim(mxfep);
2371 
2372 	if (mxfep->mxfe_txavail == 0) {
2373 		/* no more tmds */
2374 		mxfep->mxfe_wantw = B_TRUE;
2375 		/* enable TX interrupt */
2376 		mxfe_enableinterrupts(mxfep);
2377 		return (B_FALSE);
2378 	}
2379 
2380 	txsend = mxfep->mxfe_txsend;
2381 
2382 	/*
2383 	 * For simplicity, we just do a copy into a preallocated
2384 	 * DMA buffer.
2385 	 */
2386 
2387 	txb = mxfep->mxfe_txbufs[txsend];
2388 	mcopymsg(mp, txb->txb_buf);	/* frees mp! */
2389 
2390 	/*
2391 	 * Statistics.
2392 	 */
2393 	mxfep->mxfe_opackets++;
2394 	mxfep->mxfe_obytes += len;
2395 	if (txb->txb_buf[0] & 0x1) {
2396 		if (bcmp(txb->txb_buf, mxfe_broadcast, ETHERADDRL) != 0)
2397 			mxfep->mxfe_multixmt++;
2398 		else
2399 			mxfep->mxfe_brdcstxmt++;
2400 	}
2401 
2402 	/* note len is already known to be a small unsigned */
2403 	control = len | TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE;
2404 
2405 	if (txsend == (MXFE_TXRING - 1))
2406 		control |= TXCTL_ENDRING;
2407 
2408 	tmd = &mxfep->mxfe_txdescp[txsend];
2409 
2410 	SYNCTXBUF(txb, len, DDI_DMA_SYNC_FORDEV);
2411 	PUTTXDESC(mxfep, tmd->desc_control, control);
2412 	PUTTXDESC(mxfep, tmd->desc_buffer1, txb->txb_paddr);
2413 	PUTTXDESC(mxfep, tmd->desc_buffer2, 0);
2414 	PUTTXDESC(mxfep, tmd->desc_status, TXSTAT_OWN);
2415 	/* sync the descriptor out to the device */
2416 	SYNCTXDESC(mxfep, txsend, DDI_DMA_SYNC_FORDEV);
2417 
2418 	/*
2419 	 * Note the new values of txavail and txsend.
2420 	 */
2421 	mxfep->mxfe_txavail--;
2422 	mxfep->mxfe_txsend = (txsend + 1) % MXFE_TXRING;
2423 
2424 	/*
2425 	 * It should never, ever take more than 5 seconds to drain
2426 	 * the ring.  If it happens, then we are stuck!
2427 	 */
2428 	mxfep->mxfe_txstall_time = gethrtime() + (5 * 1000000000ULL);
2429 
2430 	/*
2431 	 * wake up the chip ... inside the lock to protect against DR suspend,
2432 	 * etc.
2433 	 */
2434 	PUTCSR(mxfep, CSR_TDR, 0);
2435 
2436 	return (B_TRUE);
2437 }
2438 
2439 /*
2440  * Reclaim buffers that have completed transmission.
2441  */
2442 void
2443 mxfe_reclaim(mxfe_t *mxfep)
2444 {
2445 	mxfe_desc_t	*tmdp;
2446 
2447 	while (mxfep->mxfe_txavail != MXFE_TXRING) {
2448 		uint32_t	status;
2449 		uint32_t	control;
2450 		int		index = mxfep->mxfe_txreclaim;
2451 
2452 		tmdp = &mxfep->mxfe_txdescp[index];
2453 
2454 		/* sync it before we read it */
2455 		SYNCTXDESC(mxfep, index, DDI_DMA_SYNC_FORKERNEL);
2456 
2457 		control = GETTXDESC(mxfep, tmdp->desc_control);
2458 		status = GETTXDESC(mxfep, tmdp->desc_status);
2459 
2460 		if (status & TXSTAT_OWN) {
2461 			/* chip is still working on it, we're done */
2462 			break;
2463 		}
2464 
2465 		mxfep->mxfe_txavail++;
2466 		mxfep->mxfe_txreclaim = (index + 1) % MXFE_TXRING;
2467 
2468 		/* in the most common successful case, all bits are clear */
2469 		if (status == 0)
2470 			continue;
2471 
2472 		if (((control & TXCTL_SETUP) != 0) ||
2473 		    ((control & TXCTL_LAST) == 0)) {
2474 			/* no interesting statistics here */
2475 			continue;
2476 		}
2477 
2478 		if (status & TXSTAT_TXERR) {
2479 			mxfep->mxfe_errxmt++;
2480 
2481 			if (status & TXSTAT_JABBER) {
2482 				/* transmit jabber timeout */
2483 				mxfep->mxfe_macxmt_errors++;
2484 			}
2485 			if (status & (TXSTAT_CARRLOST | TXSTAT_NOCARR)) {
2486 				mxfep->mxfe_carrier_errors++;
2487 			}
2488 			if (status & TXSTAT_UFLOW) {
2489 				mxfep->mxfe_underflow++;
2490 			}
2491 			if (status & TXSTAT_LATECOL) {
2492 				mxfep->mxfe_tx_late_collisions++;
2493 			}
2494 			if (status & TXSTAT_EXCOLL) {
2495 				mxfep->mxfe_ex_collisions++;
2496 				mxfep->mxfe_collisions += 16;
2497 			}
2498 		}
2499 
2500 		if (status & TXSTAT_DEFER) {
2501 			mxfep->mxfe_defer_xmts++;
2502 		}
2503 
2504 		/* collision counting */
2505 		if (TXCOLLCNT(status) == 1) {
2506 			mxfep->mxfe_collisions++;
2507 			mxfep->mxfe_first_collisions++;
2508 		} else if (TXCOLLCNT(status)) {
2509 			mxfep->mxfe_collisions += TXCOLLCNT(status);
2510 			mxfep->mxfe_multi_collisions += TXCOLLCNT(status);
2511 		}
2512 	}
2513 
2514 	if (mxfep->mxfe_txavail >= MXFE_TXRESCHED) {
2515 		if (mxfep->mxfe_wantw) {
2516 			/*
2517 			 * we were able to reclaim some packets, so
2518 			 * disable tx interrupts
2519 			 */
2520 			mxfep->mxfe_wantw = B_FALSE;
2521 			mxfe_enableinterrupts(mxfep);
2522 			mac_tx_update(mxfep->mxfe_mh);
2523 		}
2524 	}
2525 }
2526 
2527 boolean_t
2528 mxfe_receive(mxfe_t *mxfep, mblk_t **rxchain)
2529 {
2530 	unsigned		len;
2531 	mxfe_rxbuf_t		*rxb;
2532 	mxfe_desc_t		*rmd;
2533 	uint32_t		status;
2534 	mblk_t			*mpchain, **mpp, *mp;
2535 	int			head, cnt;
2536 	boolean_t		error = B_FALSE;
2537 
2538 	mpchain = NULL;
2539 	mpp = &mpchain;
2540 	head = mxfep->mxfe_rxhead;
2541 
2542 	/* limit the number of packets we process to a ring size */
2543 	for (cnt = 0; cnt < MXFE_RXRING; cnt++) {
2544 
2545 		DBG(DRECV, "receive at index %d", head);
2546 
2547 		rmd = &mxfep->mxfe_rxdescp[head];
2548 		rxb = mxfep->mxfe_rxbufs[head];
2549 
2550 		SYNCRXDESC(mxfep, head, DDI_DMA_SYNC_FORKERNEL);
2551 		status = GETRXDESC(mxfep, rmd->desc_status);
2552 		if (status & RXSTAT_OWN) {
2553 			/* chip is still chewing on it */
2554 			break;
2555 		}
2556 
2557 		/* discard the ethernet frame checksum */
2558 		len = RXLENGTH(status) - ETHERFCSL;
2559 
2560 		DBG(DRECV, "recv length %d, status %x", len, status);
2561 
2562 		if ((status & (RXSTAT_ERRS | RXSTAT_FIRST | RXSTAT_LAST)) !=
2563 		    (RXSTAT_FIRST | RXSTAT_LAST)) {
2564 
2565 			mxfep->mxfe_errrcv++;
2566 
2567 			/*
2568 			 * Abnormal status bits detected, analyze further.
2569 			 */
2570 			if ((status & (RXSTAT_LAST|RXSTAT_FIRST)) !=
2571 			    (RXSTAT_LAST|RXSTAT_FIRST)) {
2572 				/* someone trying to send jumbo frames? */
2573 				DBG(DRECV, "rx packet overspill");
2574 				if (status & RXSTAT_FIRST) {
2575 					mxfep->mxfe_toolong_errors++;
2576 				}
2577 			} else if (status & RXSTAT_DESCERR) {
2578 				/* this should never occur! */
2579 				mxfep->mxfe_macrcv_errors++;
2580 				error = B_TRUE;
2581 
2582 			} else if (status & RXSTAT_RUNT) {
2583 				mxfep->mxfe_runt++;
2584 
2585 			} else if (status & RXSTAT_COLLSEEN) {
2586 				/* this should really be rx_late_collisions */
2587 				mxfep->mxfe_macrcv_errors++;
2588 
2589 			} else if (status & RXSTAT_DRIBBLE) {
2590 				mxfep->mxfe_align_errors++;
2591 
2592 			} else if (status & RXSTAT_CRCERR) {
2593 				mxfep->mxfe_fcs_errors++;
2594 
2595 			} else if (status & RXSTAT_OFLOW) {
2596 				/* this is a MAC FIFO error, need to reset */
2597 				mxfep->mxfe_overflow++;
2598 				error = B_TRUE;
2599 			}
2600 		}
2601 
2602 		else if (len > ETHERVLANMTU) {
2603 			mxfep->mxfe_errrcv++;
2604 			mxfep->mxfe_toolong_errors++;
2605 		}
2606 
2607 		/*
2608 		 * At this point, the chip thinks the packet is OK.
2609 		 */
2610 		else {
2611 			mp = allocb(len + MXFE_HEADROOM, 0);
2612 			if (mp == NULL) {
2613 				mxfep->mxfe_errrcv++;
2614 				mxfep->mxfe_norcvbuf++;
2615 				goto skip;
2616 			}
2617 
2618 			/* sync the buffer before we look at it */
2619 			SYNCRXBUF(rxb, len, DDI_DMA_SYNC_FORKERNEL);
2620 			mp->b_rptr += MXFE_HEADROOM;
2621 			mp->b_wptr = mp->b_rptr + len;
2622 			bcopy((char *)rxb->rxb_buf, mp->b_rptr, len);
2623 
2624 			mxfep->mxfe_ipackets++;
2625 			mxfep->mxfe_rbytes += len;
2626 			if (status & RXSTAT_GROUP) {
2627 				if (bcmp(mp->b_rptr, mxfe_broadcast,
2628 				    ETHERADDRL) == 0)
2629 					mxfep->mxfe_brdcstrcv++;
2630 				else
2631 					mxfep->mxfe_multircv++;
2632 			}
2633 			*mpp = mp;
2634 			mpp = &mp->b_next;
2635 		}
2636 
2637 skip:
2638 		/* return ring entry to the hardware */
2639 		PUTRXDESC(mxfep, rmd->desc_status, RXSTAT_OWN);
2640 		SYNCRXDESC(mxfep, head, DDI_DMA_SYNC_FORDEV);
2641 
2642 		/* advance to next RMD */
2643 		head = (head + 1) % MXFE_RXRING;
2644 	}
2645 
2646 	mxfep->mxfe_rxhead = head;
2647 
2648 	*rxchain = mpchain;
2649 	return (error);
2650 }
2651 
2652 int
2653 mxfe_m_stat(void *arg, uint_t stat, uint64_t *val)
2654 {
2655 	mxfe_t	*mxfep = arg;
2656 
2657 	mutex_enter(&mxfep->mxfe_xmtlock);
2658 	if ((mxfep->mxfe_flags & (MXFE_RUNNING|MXFE_SUSPENDED)) == MXFE_RUNNING)
2659 		mxfe_reclaim(mxfep);
2660 	mutex_exit(&mxfep->mxfe_xmtlock);
2661 
2662 	switch (stat) {
2663 	case MAC_STAT_IFSPEED:
2664 		*val = mxfep->mxfe_ifspeed;
2665 		break;
2666 
2667 	case MAC_STAT_MULTIRCV:
2668 		*val = mxfep->mxfe_multircv;
2669 		break;
2670 
2671 	case MAC_STAT_BRDCSTRCV:
2672 		*val = mxfep->mxfe_brdcstrcv;
2673 		break;
2674 
2675 	case MAC_STAT_MULTIXMT:
2676 		*val = mxfep->mxfe_multixmt;
2677 		break;
2678 
2679 	case MAC_STAT_BRDCSTXMT:
2680 		*val = mxfep->mxfe_brdcstxmt;
2681 		break;
2682 
2683 	case MAC_STAT_IPACKETS:
2684 		*val = mxfep->mxfe_ipackets;
2685 		break;
2686 
2687 	case MAC_STAT_RBYTES:
2688 		*val = mxfep->mxfe_rbytes;
2689 		break;
2690 
2691 	case MAC_STAT_OPACKETS:
2692 		*val = mxfep->mxfe_opackets;
2693 		break;
2694 
2695 	case MAC_STAT_OBYTES:
2696 		*val = mxfep->mxfe_obytes;
2697 		break;
2698 
2699 	case MAC_STAT_NORCVBUF:
2700 		*val = mxfep->mxfe_norcvbuf;
2701 		break;
2702 
2703 	case MAC_STAT_NOXMTBUF:
2704 		*val = mxfep->mxfe_noxmtbuf;
2705 		break;
2706 
2707 	case MAC_STAT_COLLISIONS:
2708 		*val = mxfep->mxfe_collisions;
2709 		break;
2710 
2711 	case MAC_STAT_IERRORS:
2712 		*val = mxfep->mxfe_errrcv;
2713 		break;
2714 
2715 	case MAC_STAT_OERRORS:
2716 		*val = mxfep->mxfe_errxmt;
2717 		break;
2718 
2719 	case ETHER_STAT_LINK_DUPLEX:
2720 		*val = mxfep->mxfe_duplex;
2721 		break;
2722 
2723 	case ETHER_STAT_ALIGN_ERRORS:
2724 		*val = mxfep->mxfe_align_errors;
2725 		break;
2726 
2727 	case ETHER_STAT_FCS_ERRORS:
2728 		*val = mxfep->mxfe_fcs_errors;
2729 		break;
2730 
2731 	case ETHER_STAT_SQE_ERRORS:
2732 		*val = mxfep->mxfe_sqe_errors;
2733 		break;
2734 
2735 	case ETHER_STAT_DEFER_XMTS:
2736 		*val = mxfep->mxfe_defer_xmts;
2737 		break;
2738 
2739 	case ETHER_STAT_FIRST_COLLISIONS:
2740 		*val  = mxfep->mxfe_first_collisions;
2741 		break;
2742 
2743 	case ETHER_STAT_MULTI_COLLISIONS:
2744 		*val = mxfep->mxfe_multi_collisions;
2745 		break;
2746 
2747 	case ETHER_STAT_TX_LATE_COLLISIONS:
2748 		*val = mxfep->mxfe_tx_late_collisions;
2749 		break;
2750 
2751 	case ETHER_STAT_EX_COLLISIONS:
2752 		*val = mxfep->mxfe_ex_collisions;
2753 		break;
2754 
2755 	case ETHER_STAT_MACXMT_ERRORS:
2756 		*val = mxfep->mxfe_macxmt_errors;
2757 		break;
2758 
2759 	case ETHER_STAT_CARRIER_ERRORS:
2760 		*val = mxfep->mxfe_carrier_errors;
2761 		break;
2762 
2763 	case ETHER_STAT_TOOLONG_ERRORS:
2764 		*val = mxfep->mxfe_toolong_errors;
2765 		break;
2766 
2767 	case ETHER_STAT_MACRCV_ERRORS:
2768 		*val = mxfep->mxfe_macrcv_errors;
2769 		break;
2770 
2771 	case MAC_STAT_OVERFLOWS:
2772 		*val = mxfep->mxfe_overflow;
2773 		break;
2774 
2775 	case MAC_STAT_UNDERFLOWS:
2776 		*val = mxfep->mxfe_underflow;
2777 		break;
2778 
2779 	case ETHER_STAT_TOOSHORT_ERRORS:
2780 		*val = mxfep->mxfe_runt;
2781 		break;
2782 
2783 	case ETHER_STAT_JABBER_ERRORS:
2784 		*val = mxfep->mxfe_jabber;
2785 		break;
2786 
2787 	case ETHER_STAT_ADV_CAP_100T4:
2788 		*val = mxfep->mxfe_adv_100T4;
2789 		break;
2790 
2791 	case ETHER_STAT_LP_CAP_100T4:
2792 		*val = (mxfep->mxfe_anlpar & MII_ABILITY_100BASE_T4) ? 1 : 0;
2793 		break;
2794 
2795 	case ETHER_STAT_CAP_100T4:
2796 		*val = mxfep->mxfe_cap_100T4;
2797 		break;
2798 
2799 	case ETHER_STAT_CAP_100FDX:
2800 		*val = mxfep->mxfe_cap_100fdx;
2801 		break;
2802 
2803 	case ETHER_STAT_CAP_100HDX:
2804 		*val = mxfep->mxfe_cap_100hdx;
2805 		break;
2806 
2807 	case ETHER_STAT_CAP_10FDX:
2808 		*val = mxfep->mxfe_cap_10fdx;
2809 		break;
2810 
2811 	case ETHER_STAT_CAP_10HDX:
2812 		*val = mxfep->mxfe_cap_10hdx;
2813 		break;
2814 
2815 	case ETHER_STAT_CAP_AUTONEG:
2816 		*val = mxfep->mxfe_cap_aneg;
2817 		break;
2818 
2819 	case ETHER_STAT_LINK_AUTONEG:
2820 		*val = ((mxfep->mxfe_adv_aneg != 0) &&
2821 		    ((mxfep->mxfe_aner & MII_AN_EXP_LPCANAN) != 0));
2822 		break;
2823 
2824 	case ETHER_STAT_ADV_CAP_100FDX:
2825 		*val = mxfep->mxfe_adv_100fdx;
2826 		break;
2827 
2828 	case ETHER_STAT_ADV_CAP_100HDX:
2829 		*val = mxfep->mxfe_adv_100hdx;
2830 		break;
2831 
2832 	case ETHER_STAT_ADV_CAP_10FDX:
2833 		*val = mxfep->mxfe_adv_10fdx;
2834 		break;
2835 
2836 	case ETHER_STAT_ADV_CAP_10HDX:
2837 		*val = mxfep->mxfe_adv_10hdx;
2838 		break;
2839 
2840 	case ETHER_STAT_ADV_CAP_AUTONEG:
2841 		*val = mxfep->mxfe_adv_aneg;
2842 		break;
2843 
2844 	case ETHER_STAT_LP_CAP_100FDX:
2845 		*val = (mxfep->mxfe_anlpar & MII_ABILITY_100BASE_TX_FD) ? 1 : 0;
2846 		break;
2847 
2848 	case ETHER_STAT_LP_CAP_100HDX:
2849 		*val = (mxfep->mxfe_anlpar & MII_ABILITY_100BASE_TX) ? 1 : 0;
2850 		break;
2851 
2852 	case ETHER_STAT_LP_CAP_10FDX:
2853 		*val = (mxfep->mxfe_anlpar & MII_ABILITY_10BASE_T_FD) ? 1 : 0;
2854 		break;
2855 
2856 	case ETHER_STAT_LP_CAP_10HDX:
2857 		*val = (mxfep->mxfe_anlpar & MII_ABILITY_10BASE_T) ? 1 : 0;
2858 		break;
2859 
2860 	case ETHER_STAT_LP_CAP_AUTONEG:
2861 		*val = (mxfep->mxfe_aner & MII_AN_EXP_LPCANAN) ? 1 : 0;
2862 		break;
2863 
2864 	case ETHER_STAT_XCVR_ADDR:
2865 		*val = mxfep->mxfe_phyaddr;
2866 		break;
2867 
2868 	case ETHER_STAT_XCVR_ID:
2869 		*val = mxfep->mxfe_phyid;
2870 		break;
2871 
2872 	case ETHER_STAT_XCVR_INUSE:
2873 		*val = mxfep->mxfe_phyinuse;
2874 		break;
2875 
2876 	default:
2877 		return (ENOTSUP);
2878 	}
2879 	return (0);
2880 }
2881 
2882 /*ARGSUSED*/
2883 int
2884 mxfe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz,
2885     void *val)
2886 {
2887 	mxfe_t		*mxfep = arg;
2888 	int		err = 0;
2889 
2890 	switch (num) {
2891 	case MAC_PROP_DUPLEX:
2892 		ASSERT(sz >= sizeof (link_duplex_t));
2893 		bcopy(&mxfep->mxfe_duplex, val, sizeof (link_duplex_t));
2894 		break;
2895 
2896 	case MAC_PROP_SPEED:
2897 		ASSERT(sz >= sizeof (uint64_t));
2898 		bcopy(&mxfep->mxfe_ifspeed, val, sizeof (uint64_t));
2899 		break;
2900 
2901 	case MAC_PROP_AUTONEG:
2902 		*(uint8_t *)val = mxfep->mxfe_adv_aneg;
2903 		break;
2904 
2905 	case MAC_PROP_ADV_100FDX_CAP:
2906 	case MAC_PROP_EN_100FDX_CAP:
2907 		*(uint8_t *)val = mxfep->mxfe_adv_100fdx;
2908 		break;
2909 
2910 	case MAC_PROP_ADV_100HDX_CAP:
2911 	case MAC_PROP_EN_100HDX_CAP:
2912 		*(uint8_t *)val = mxfep->mxfe_adv_100hdx;
2913 		break;
2914 
2915 	case MAC_PROP_ADV_10FDX_CAP:
2916 	case MAC_PROP_EN_10FDX_CAP:
2917 		*(uint8_t *)val = mxfep->mxfe_adv_10fdx;
2918 		break;
2919 
2920 	case MAC_PROP_ADV_10HDX_CAP:
2921 	case MAC_PROP_EN_10HDX_CAP:
2922 		*(uint8_t *)val = mxfep->mxfe_adv_10hdx;
2923 		break;
2924 
2925 	case MAC_PROP_ADV_100T4_CAP:
2926 	case MAC_PROP_EN_100T4_CAP:
2927 		*(uint8_t *)val = mxfep->mxfe_adv_100T4;
2928 		break;
2929 
2930 	default:
2931 		err = ENOTSUP;
2932 	}
2933 
2934 	return (err);
2935 }
2936 
2937 /*ARGSUSED*/
2938 int
2939 mxfe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz,
2940     const void *val)
2941 {
2942 	mxfe_t		*mxfep = arg;
2943 	uint8_t		*advp;
2944 	uint8_t		*capp;
2945 
2946 	switch (num) {
2947 	case MAC_PROP_EN_100FDX_CAP:
2948 		advp = &mxfep->mxfe_adv_100fdx;
2949 		capp = &mxfep->mxfe_cap_100fdx;
2950 		break;
2951 
2952 	case MAC_PROP_EN_100HDX_CAP:
2953 		advp = &mxfep->mxfe_adv_100hdx;
2954 		capp = &mxfep->mxfe_cap_100hdx;
2955 		break;
2956 
2957 	case MAC_PROP_EN_10FDX_CAP:
2958 		advp = &mxfep->mxfe_adv_10fdx;
2959 		capp = &mxfep->mxfe_cap_10fdx;
2960 		break;
2961 
2962 	case MAC_PROP_EN_10HDX_CAP:
2963 		advp = &mxfep->mxfe_adv_10hdx;
2964 		capp = &mxfep->mxfe_cap_10hdx;
2965 		break;
2966 
2967 	case MAC_PROP_EN_100T4_CAP:
2968 		advp = &mxfep->mxfe_adv_100T4;
2969 		capp = &mxfep->mxfe_cap_100T4;
2970 		break;
2971 
2972 	case MAC_PROP_AUTONEG:
2973 		advp = &mxfep->mxfe_adv_aneg;
2974 		capp = &mxfep->mxfe_cap_aneg;
2975 		break;
2976 
2977 	default:
2978 		return (ENOTSUP);
2979 	}
2980 
2981 	if (*capp == 0)		/* ensure phy can support value */
2982 		return (ENOTSUP);
2983 
2984 	mutex_enter(&mxfep->mxfe_intrlock);
2985 	mutex_enter(&mxfep->mxfe_xmtlock);
2986 
2987 	if (*advp != *(const uint8_t *)val) {
2988 		*advp = *(const uint8_t *)val;
2989 
2990 		if ((mxfep->mxfe_flags & (MXFE_RUNNING|MXFE_SUSPENDED)) ==
2991 		    MXFE_RUNNING) {
2992 			/*
2993 			 * This re-initializes the phy, but it also
2994 			 * restarts transmit and receive rings.
2995 			 * Needless to say, changing the link
2996 			 * parameters is destructive to traffic in
2997 			 * progress.
2998 			 */
2999 			mxfe_resetall(mxfep);
3000 		}
3001 	}
3002 	mutex_exit(&mxfep->mxfe_xmtlock);
3003 	mutex_exit(&mxfep->mxfe_intrlock);
3004 
3005 	return (0);
3006 }
3007 
3008 static void
3009 mxfe_m_propinfo(void *arg, const char *name, mac_prop_id_t num,
3010     mac_prop_info_handle_t mph)
3011 {
3012 	mxfe_t		*mxfep = arg;
3013 
3014         _NOTE(ARGUNUSED(name));
3015 
3016 	switch (num) {
3017 	case MAC_PROP_DUPLEX:
3018 	case MAC_PROP_SPEED:
3019 	case MAC_PROP_ADV_100FDX_CAP:
3020 	case MAC_PROP_ADV_100HDX_CAP:
3021 	case MAC_PROP_ADV_10FDX_CAP:
3022 	case MAC_PROP_ADV_10HDX_CAP:
3023 	case MAC_PROP_ADV_100T4_CAP:
3024 		mac_prop_info_set_perm(mph, MAC_PROP_PERM_READ);
3025 		break;
3026 
3027 	case MAC_PROP_AUTONEG:
3028 		mac_prop_info_set_default_uint8(mph, mxfep->mxfe_cap_aneg);
3029 		break;
3030 
3031 	case MAC_PROP_EN_100FDX_CAP:
3032 		mac_prop_info_set_default_uint8(mph, mxfep->mxfe_cap_100fdx);
3033 		break;
3034 
3035 	case MAC_PROP_EN_100HDX_CAP:
3036 		mac_prop_info_set_default_uint8(mph, mxfep->mxfe_cap_100hdx);
3037 		break;
3038 
3039 	case MAC_PROP_EN_10FDX_CAP:
3040 		mac_prop_info_set_default_uint8(mph, mxfep->mxfe_cap_10fdx);
3041 		break;
3042 
3043 	case MAC_PROP_EN_10HDX_CAP:
3044 		mac_prop_info_set_default_uint8(mph, mxfep->mxfe_cap_10hdx);
3045 		break;
3046 
3047 	case MAC_PROP_EN_100T4_CAP:
3048 		mac_prop_info_set_default_uint8(mph, mxfep->mxfe_cap_100T4);
3049 		break;
3050 	}
3051 }
3052 
3053 /*
3054  * Debugging and error reporting.
3055  */
3056 void
3057 mxfe_error(dev_info_t *dip, char *fmt, ...)
3058 {
3059 	va_list	ap;
3060 	char	buf[256];
3061 
3062 	va_start(ap, fmt);
3063 	(void) vsnprintf(buf, sizeof (buf), fmt, ap);
3064 	va_end(ap);
3065 
3066 	if (dip) {
3067 		cmn_err(CE_WARN, "%s%d: %s",
3068 		    ddi_driver_name(dip), ddi_get_instance(dip), buf);
3069 	} else {
3070 		cmn_err(CE_WARN, "mxfe: %s", buf);
3071 	}
3072 }
3073 
3074 #ifdef DEBUG
3075 
3076 void
3077 mxfe_dprintf(mxfe_t *mxfep, const char *func, int level, char *fmt, ...)
3078 {
3079 	va_list	ap;
3080 
3081 	va_start(ap, fmt);
3082 	if (mxfe_debug & level) {
3083 		char	tag[64];
3084 		char	buf[256];
3085 
3086 		if (mxfep && mxfep->mxfe_dip) {
3087 			(void) snprintf(tag, sizeof (tag),
3088 			    "%s%d", ddi_driver_name(mxfep->mxfe_dip),
3089 			    ddi_get_instance(mxfep->mxfe_dip));
3090 		} else {
3091 			(void) snprintf(tag, sizeof (tag), "mxfe");
3092 		}
3093 
3094 		(void) snprintf(buf, sizeof (buf), "%s: %s: %s\n", tag,
3095 		    func, fmt);
3096 
3097 		vcmn_err(CE_CONT, buf, ap);
3098 	}
3099 	va_end(ap);
3100 }
3101 
3102 #endif
3103